HomeMy WebLinkAboutTract Map 15421 Parcel 2 Islamic Center Hydrology & Hydraulics Report 1
HYDROLOGY AND HYDRAULIC
REPORT FOR ICTV
' PA08-0241 AND PA08-0242 ICTV - PHASE I AND PHASE II
tPARCEL MAP 15421 , PARCEL 2 PROJECT NO.: Afa-9 0041
CITY OF TEMECULA FILE CATEGORY : 73
' CALIFORNIA PROJECTMGR.:
' PREPARED FOR:
RAMCAM
670 E. PARKRIDGE AVENUE,SUITE 101
CORONA,CA 92879
(951)734-6330 x202
1
PREPARED BY:
���ria� 1 Gkasalt�ng, Inc.
36263 CALLE DE LOBO
' MURRIETA, CA 92562
(951) 304-9552 • FAx (951) 304-3568
' DATE PREPARED:
JUKE 11, 2012
' REVISED:
AUGUST 9, 2012
1
1
' PRELIMINARY HYDROLOGY AND HYDRAULIC STUDY FOR ICTV
' CITY OF TEMECULA, CALIFORNIA
This,report has been prepared by or under the direction of the following registered civil
engineer who attests to the technical information contained herein. The registered civil
engineer has also judged the qualifications of any technical specialists providing
engineering data upon which recommendations, conclusions, and decisions are based.
1
1
' QaOFESS/q�
GST�t
1 G g
N0.59835
EXP. 12/31/13
� ' \!06-11-2012 OF CAl1
' Joseph L. Castaneda RCE 59835 Date Seal
Registered Civil Engineer
1
1
1
1
' 0:\IXG.II1.L1Engi=ri"W,EmbKy PlanVtcPimWldm Pcp)nAi'n
' PRELIMINARY HYDROLOGY AND HYDRAULIC STUDY FOR ICTV
' CITY OF TEMECULA, CALIFORNIA
' TABLE OF CONTENTS
I. INTRODUCTION.........................................................................................1
' II. PROJECT SITE AND DRAINAGE AREA OVERVIEW................................................1
III. HYDROLOGY ANALYSIS .......................................................................................1
' IV. HYDRAULIC ANALYSIS...............................................................................2
V. MITIGATION............................................................................................4
' VI. CONCLUSIONS........................................................................................4
VII. REFERENCES.........................................................................................5
' FIGURES
' FIGURE 1: VICINITY MAP
' APPENDICES
APPENDIX A: RATIONAL METHOD HYDROLOGY CALCULATIONS
APPENDIX A.1: AREA A
APPENDIX B: HYDRAULIC ANALYSIS
' APPENDIX BA: PARKWAY DRAIN #1
APPENDIX B.2: PARKWAY DRAIN#2
APPENDIX B.3: PARKWAY DRAIN #3
APPENDIX BA: V-DITCH #1
APPENDIX B.5: V-DITCH #2
' APPENDIX C: UNIT HYDROGRAPH HYDROLOGY CALCULATIONS
APPENDIX CA: PRE-PROJECT 100-YEAR, 1-HOUR ONSITE ANALYSIS
APPENDIX C.2: POST-PROJECT 100-YEAR, 1-HOUR ONSITE ANALYSIS
' APPENDIX C.3: EXISTING CONDITION 100-YEAR, 1-HOUR OFFSITE ANALYSIS
' APPENDIX D: SEDIMENT BASIN
APPENDIX D.1: SEDIMENT BASIN STORAGE VOLUME
EXHIBITS
EXHIBIT A: POST-PROJECT CONDITION ONSITE RATIONAL METHOD HYDROLOGY
' MAP
EXHIBIT B: DRAINAGE FACILITIES MAP
EXHIBIT C: HYDROLOGIC SOILS MAP
Egheedq 1 GuYlgq,laa.
011Mh.01.1'_\Engircen�WydmYryy_PlanVlepm.Vydm ReP)nAra
' PRELIMINARY-HYDROLOGY AND HYDRAULIC STUDY FOR ICTV
' CITY OF TEMECULA, CALIFORNIA
EXHIBIT D: RAINFALL MAPS
' EXHIBIT E: SLOPE OF INTENSITY DURATION CURVES
EXHIBIT F: POST-PROJECT CONDITION UNIT HYDROGRAPH HYDROLOGY MAP
EXHIBIT G: PHASE I SITE PLAN
' EXHIBIT H: PHASE II SITE PLAN
1
1
1
1
1
1
'LCEYAIGudllq,l¢
OdI X(r.01.1?1Fnyi¢eringWptmbyy_PLnnVtaPrnnVl/dm Raprn.8a'a '
' PRELIMINARY HYDROLOGY AND HYDRAULIC STUDY FOR ICTV
CITY OF TEMECULA, CALIFORNIA
I. INTRODUCTION
' The ICTV (Islamic Center of Temecula Valley) is a proposed development that
incorporates building area, parking area, street area, infiltration basins, and porous
' pavement. The project will be constructed in two phases, with phase 1 consisting of the
smaller building, the southerly and central parking areas, the infiltration basins, and the
street area. Phase 2 will consist of the remaining larger building and the northerly
parking area, including the porous pavement. This purpose of this study is to determine
the 100-year and 10-year flow rates emanating from the onsite and offsite area that is
tributary to the north westerly corner of the project site. The scope of this report will
I include:
• Determine the peak 100-year and 10-year peak flow rates for the post-project
condition for the onsite and offsite area tributary to the north west corner of the
project site using the Riverside County Flood Control and Water Conservation
District (RCFC & WCD) Rational Method.
• Determine the 100-year, 1-hour peak flow rates for the onsite and offsite areas
for the pre-project and post-project conditions using the Riverside County Flood
Control and Water Conservation District (RCFC & WCD) Unit Hydrograph
Method.
' • Determine the required v-ditch and parkway drain sizes to convey the peak 100-
year flow rates.
• Determine the volume required to store in order to mitigate flows for the 100-
year, 1-hour storm duration for the onsite area.
• Preparation of a hydrology and hydraulic report, which consists of hydrological
and analytical results and exhibits.
II. PROJECT SITE AND DRAINAGE OVERVIEW
4fo.G 6
The ICTV Islamic Center of Temecula Valley) is a proposed 3.5 acre
developmen ocated in the City of Temecula. The project fronts Nicolas Road, and is
roughly bou ded by Enfield Lane to the south, Calle Colibri Road to the east, Los
Choras RiLrWRoad to the west, and Nicolas Road to the north. The project is located
in Section 20 of Township 7 South, Range 2 West.
The project will convey the offsite flows tributary to the southerly project boundary via v-
ditches to the street area located adjacent to the project. The majority of the flows from
the offsite area will not enter the project site, and will be conveyed to the trapezoidal
1 channel located along the northerly portion of the project site. Onsite and offsite flows
will ultimately discharge into Parkway Drain #3 (See Exhibit B, Drainage Facilities Map),
which is located at the north westerly corner of the project site. All flows discharge into
' the San Gertrudis Creek on the north side of Nicolas Road, which is an existing MS4
facility. The onsite flows will be treated in accordance with the current water quality
permit, and is discussed in the Water Quality Management Plan. Since the project
discharges into an existing MS4 facility that has been designed for the ultimate 100-year
developed flow rates, mitigation of increased runoff is not required for the project.
J Lc 7
Aapu...lq i(02,4 AR,lit
-..-
0-AI Nfi9 legy_PlunUtepinnWydm HepID.dnox 1
t '
' PRELIMINARY HYDROLOGY AND HYDRAULIC STUDY FOR ICTV
' CITY OF TEMECULA, CALIFORNIA
III. HYDROLOGY ANALYSIS
' The RCFC & WCD Hydrology Manual (Reference 1) was used to develop the.
hydrological parameters for the rational method. The calculations were performed using
' the computer program developed by Civil Cadd/Civil Design.
The existing soil types are Soil C, and is shown in Exhibit C: Exhibit C is a Hydrologic
' Soils Map which was obtained from the United States Department of Agriculture, Natural
Resources Conservation Service (NRCS) WebSoil Survey. The project utilized
commercial area for the onsite area and street area, and open brush (poor cover) for the
offsite areas that are undeveloped. Commercial area was also utilized for the
commercial development that drains into Calle Colibri Road and is tributary to Parkway
Drain #2.
The following rainfall depths (in inches) were utilized in the hydrology analyses, which
were obtained from,the RCFC & WCD'Hydrology Manual's)sohyetal Maps:
Storm Event Duration
1-hour
2-Year 0.50
100-Year 1.20
The slope value used for the rational method value is 0.55. The rainfall maps have
been included Exhibit D, and the slope of intensity duration curves have been included
as Exhibit E.
The hydrology analyses analyzed the area tributary to Parkway Drain #3, which includes .
the onsite area and portions of offsite area. The post-project rational method analyses
have been included in Appendix A, and the post-project hydrology map has been
included as Exhibit A.
' The unit hydrograph calculations were performed for the existing offsite area to the east
of the Calle Colibri centerline, the pre-project onsite condition, and the post-project
onsite condition. The unit hydrograph analyses have been included in Appendix C.
' IV. HYDRAULIC ANALYSIS
' The project will incorporate three parkway drains and two v-ditches to convey the offsite
flows and onsite flows associated with the 100-year peak flow rate. The location of
these facilities have been included on Exhibit B — Drainage Facilities Map. The Haestad
' Flowmaster program was utilized to perform normal depth calculations for the parkway
drains and the v-ditches. The parkway drains and v-ditches used a slope of 2% for the
analyses. The v-ditches have a top width of 4 feet, and a depth of 1 foot. The parkway
' drains have a width of 5 feet, and will have a minimum opening height of 0.6 feet. The
calculations have been included in Appendix B.
J��Ei'�d�Gu,ltiq.❑a.
O:\ING.111.1'_1E,igircerinyVlydnhrgl_PlanWrynn.W\dni Repin.hr
' 2
' PRELIMINARY HYDROLOGY AND HYDRAULIC STUDY FOR ICTV
' CITY OF TEMECULA, CALIFORNIA
V. MITIGATION
' Based upon meetings with the City of Temecula, in order to mitigate flows, the project
will be required to retain the onsite runoff volume associated with the 100-year, 1-hour
storm duration. The tributary offsite area to the east of Calle Colibri will be allowed to
' bypass. The following table summarizes the unit hydrograph analyses:
100-year, 1-hour 100-year, 1-hour 100-year, 1-hour
' "A" flow rate ft3/s volume ac-ft volume ft3
Area Area "A"
Pre-Project ) 13.92 0.3616 15,752
' Post-Project Onsite 14.42 0.4014 17,485
Area Area "A"
Existing Offsite 13.86 0.4010 17,468
Area Area "B"
1'.
For the Phase I condition, the water quality volume and mitigation volume will be stored
' in a sediment basin located at the northerly portion of the site, where the future Phase II
parking area will be located. For the Phase II condition, the water quality volume and
mitigation volume will be stored within the porous pavement area. Details on the water
quality volumes have been included in the Water Quality Management Plan.
The total required volume to be retained for water quality-is 2,907 ft3 and the total
required mitigation volume to be retained is 17,485 ft3, for a total storage volume of
20,392 ft3. The Phase I sediment basin has a total -storage volume 22,221 ft3. The
Phase 11 porous pavement reservoir will have a depth of 3 feet, and has a total surface
' area of 17,466 ft , resulting in a volume of-52,398 ft3. This total volume was multiplied
by a 40% void ratio, resulting'in a total storage volume of 20,959 ft3. Therefore, both the
Phase 1 sediment basin and. the Phase II porous pavers .will have sufficient storage
' volume to treat for water quality purposes as well as mitigate the 100-year, 1-hour storm
event.
tVI. CONCLUSIONS
Based upon the hydrology and hydraulic calculations, the proposed facilities have the
capacity to convey the flows associated with the peak 100-year storm event, and the
required storage volume to mitigate the 100-year, 1-hour storm duration.
' Vll. REFERENCES
1 . Riverside County Flood Control and Water Conservation District Hydrology
' Manual, April 1978.
2. Los Angeles County Flood Control Design Manual, March 1982
1
' J��Eq> ifuldllq,lu.
O:\I MM1 III,I?V�irce,ingUlyilmNigy_Phn\RcprmWytlm ReprpAc.
' 3
1
1
1
1
1
1
' FIGURES
1
11
i
1
1
1
1
1
' FIGURE 1: VICINITY MAP
1
1
1
ICTV - TEMECULA
�9
,p
o � s
9
'9� n
y
PROJECT SITE
VIA NORM .
OpO
Q-�
v
z
15 N s ON
z
o MPRGpRitA ROAD
FIGURE 1-- VICINTY MAP
1
1
APPENDICES
1
1
1
1
1
1
1
1
1
1
' APPENDIX A: RATIONAL METHOD HYDROLOGY CALCULATIONS
1
1
1
1
1
1
1
1
1
1
1
1
APPENDIX A.1: AREA A
1
1
1
■
' 100-YEAR
' Riverside County Rational Hydrology Program
' CIVILCADD/CIVILDESIGNEngineeringSoftware, (c) 1989-= 2005Version7.1
Rational Hydrology Study Date: 08/01/12 File:ARAP100.0ut- - - - - - --
ICTV POST-PROJECT CONDITION HYDROLOGY
RATIONAL METHOD ANALYSIS, 100-YEAR STORM EVENT
FILENAME: ARAP100
------------------------------------------------------------------------
`•"•"" Hydrology Study Control Information •••••••••
' English (in-lb) Units used in input data file
------------------------------------------------------------------------
Program License Serial Number 6045
------------------------------------------------------------------------
. , Rational Method Hydrology Program based on
Riverside County Flood Control 6.Water, Conservation District
1978 hydrology manual
Storm event (year) - 100.00 Antecedent.Moisture Condition - 2
2 year, 1 hour precipitation = 0.500(In.)
100 year, 1 hour precipitation = 1.200(In.)
' Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity - 1.200(In/Hr)
Slope of intensity duration curve = 0.5500
1
t +++++++++++++++++++++++++++++.'++++++++++++++++++++++++++++++++++++++
Process from Point/Station 101.000 to Point/Station 102.000
•`• INITIAL AREA EVALUATION `
Initial area flow distance = 321.000(Ft.)
Top (of initial areal elevation = 1212.000(Ft.)
Bottom (of initial areal elevation = 1156.200(Ft.)
Difference in elevation; = 55.800(Ft.)
Slope = 0.17383 s(percent)= 17.38
' TC = k(0.541)•((length^3)/(elevation change) !^0.2
Initial area time of concentration = 7.717 min.
Rainfall intensity = 3.707(In/Hr) for a 100.0 year storm
USER INPUT of soil data for subarea
' Runoff Coefficient = 0.842
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 1.343(CFS)
Total initial stream area = 0.430(Ac.)
Pervious area fraction = 1.000
+++i+++++++++++++++++++++•++++1+++++++++++++++++++++++++++++++++++++++
Process from Point/Station 102.000 to Point/Station 108.000
...• IMPROVED CHANNEL TRAVEL TIME •"
Upstream point elevation = 1156.200(Ft.)
Downstream point elevation = 1151.000(Ft.)
' Channel length thru subarea = 554.000(Ft.)
1
1
1
' Channel base width 0.000(Ft.)
Slope or 'Z' of left channel bank = 9.375
Slope or 'Z' of right channel bank = 9.375
' Estimated mean flow rate at midpoint of channel = 3.407(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 0.160(Ft.)
Flow(q) thru subarea = 3.407(CFS)
' Depth of flow = 0.359(Ft.), Average velocity = 4.078(Ft/s)
!.!Warning: Water is above left or right bank elevations
Channel flow top width = 3.000(Ft.)
Flow velocity = 4.08(Ft/s)
Travel time = 2.26 min.
Time of concentration = 9.98 min.
Sub-Channel No. 1 Critical depth = 0.422(Ft.)
' Critical flow top width 3.000(Ft.)
' Critical flow velocity= 3.322(Ft/5)
Critical flow area = 1.026(Sq.Ft)
ERROR - Channel depth exceeds maximum allowable depth
Adding area flow to channel
' COMMERCIAL subarea type
Runoff Coefficient = 0.886
Decimal fraction soil group A- = 0.000
Decimal fraction soil group e = 0.000
' Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI. index for soil(AMC 2) = 69.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 3.218(In/Hr) for a 100.0 year storm
Subarea runoff = 4.0771CFS) for 1.430(Ac.)
Total runoff = .5.420(CFS) Total area = 1.860(Ac.)
Depth of flow = 0.448(Ft.). Average velocity = 4.930(Ft/s)
! !Warning: Water is above left or right bank elevations
' ERROR - Channel depth exceeds maximum allowable depth
Sub-Channel No. 1 Critical depth = 0.547(Ft.)
Critical flow top width = 3.000(Ft.)
Critical flow velocity= 3.869.(Ft/s)
' Critical .flow area = 1.401(Sq.Ft)
::
+++++++++++++++++++++++++++++++++++t+++++++++++♦+♦++++++++++++++++++
Process from Point/Station 102.000 to Point/Station 108.000
•• CONFLUENCE OF MAIN STREAMS ••••
The following data inside Main Stream is listed:
' In Main Stream number: 1
Stream flow area = 1.860(Ac.)
Runoff from this stream = 5.420(CFS)
Time. of concentration = 9.98 min.
Rainfall intensity = 3.218(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' Process from Point/Station 103.000 to Point/Station 107.000
•• • INITIAL AREA.EVALUATION ••
Initial area flow distance = 708.000(Ft.)
' Top (of initial area) elevation = 1170.000(Ft.)
Bottom (of initial area) elevation = 1152.800(Ft.)
Difference in elevation = 17,200(Ft.)
Slope = 0.02429 s(percent)= 2.43
TC = k(0_3001•[(length^31/(elevation change)1^0.2
Initial area time of concentration = 8.710 min.
Rainfall intensity = 3.469(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.887
' Decimal fraction soil group A = 0.000
2
1
' Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction - 0.100; Impervious fraction = 0.900
Initial subarea runoff = 3.937(CFS)
Total initial stream area = 1.280(Ac.)
' Pervious area fraction = 0.100
............................,......................+.................
Process from Point/Station 103.000 to Point/Station 107.000
.... CONFLUENCE OF MINOR STREAMS ••••
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 1.280(Ac.)
' Runoff from this stream = 3.937(CFS)
Time of concentration = 8.71 min.
Rainfall intensity = 3.469(In/Hr)
1 ♦..................HH H.... . .................+...................
Process from Point/Station 104.000 to Point/Station 105.000
•• INITIAL AREA EVALUATION ..•
Initial area flow distance = 507,.000(Ft.)
Tup (of initial area) elevation = 1274.000(Ft.)
Bottom (of .initial area) elevation = 1155.000(Ft.)
Difference in elevation = 119.000(Ft.)
Slope = 0.23471 s(percent)= 23.47
TC - k(0.541)•l(length^3)/(elevation change) 1"0.2
Initial area cime of concentration = 8.725 min.
Rainfallintensity = 3.465(In/Hr) for a 100.0 year storm
USER INPUT of soil data for subarea
' Runoff Coefficient = 0.839
Decimal fraction soil group A - 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C - 1.000
Decimal fraction soil group D = 0.000
' RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 1.831(CFS)
Total initial stream area = 0.630(Ac.)
' Pervious area fraction = 1.000
.+...+......+.........................................................
Process from Point/Station 105.000 to Point/Station 107.000
I •••• STREET .FLOW TRAVEL TIME . SUBAREA FLOW ADDITION ••••
Top of street segment elevation = 1155.000(Ft.)
End of street segment elevation = 1152.000(Fc.)
' Length of street segment = 443.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (1) side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
' Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to.grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimaced mean flow rate at midpoint of street = 2.372(CFS)
Depth of flow = 0.338(Ft.), Average velocity = 1.914(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.548(Ft.)
Flow velocity = 1.91(Ft/s)
3
1
1 Travel time = 3.86 min. TC = 12.58 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.884
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
' Decimal fraction soil ,group 0 = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 2.833(In/Hr) for a 100.0 year storm
Subarea runoff = 1.002(CFS) for. 0.400(Ac.)
' Total runoff = 2.833(CFS) Total area = 1.030(Ac.)
Street flow at end of street = 2.833(CFS)
Half street flow at end of street = 2.833(CFS)
Depth of flow = 0.354(Ft.). Average velocity = 1.995(Ft/s)
LFlow width (from curb towards crown)= 11.374(Ft.)
+++++++++++++++a....+.++++...+.+.++....+..+...+......i++i+............
Process from Point/Station 105.000 to Point/Station 107.000
' •••• CONFLUENCE OF MINOR STREAMS ••••
Along Main Stream number: 2 in normal stream numhar 2
Stream flow area = 1.030(Ac.)
Runoff from this stream = 2.833(CFS)
Time of concentration = 12.58 min.
Rainfall intensity = 2.833(In/Hr)
.... INITIAL
......................+......+.+...........................
Process from Point/Station 106.000 to Point/Station 107.000
• INITIAL AREA EVALUATION
' Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1274.000(Ft.)
Bottom (of initial area) elevation = 1152.000(Ft.)
Difference in elevation 122:000(Ft.)
Slope = 0.12200 s(percent) 12.20
' TC = k(0.367)•1(length-3)/(elevation changeW0.2
Initial area time of concentration = 8.850 min.
Rainfall intensity .= 3.438(In/Hr) for a 100.0 year storm
USER INPUT of soil data, for subarea
' .Runoff Coefficient = 0.861
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
.Decimal fraction soil group D = 0.000
' RI index for soil(AMC 2) = 72.92
Pervious area fraction. = 0.340; Impervious fraction = 0.660
Initial subarea runoff = 13.359(CFS)
Total initial stream area = 4.510(Ac.)
' Pervious .area fraction = 0.340
......................................................................
Process from Point/Station 106.000 to Point/Station 107.000
' ...• CONFLUENCE OF MINOR STREAMS ••••
Along Main Stream number: 2 in normal stream number 3
Stream flow area = 4.510(AC.)
' Runoff from this stream 13.359(CFS)
Time of concentration = 8.85 min.
Rainfall intensity = 3.438(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CPS) (min) (In/Hr)
' 1 3.937 8.71 3.469
4
1
' 2 2.833 12.58 2.833
3 13.359 8.85 3.438
Largest stream flow has longer or shorter time of concentration
' Qp = 13.359 + sum of
Qb Ia/Ib
3.937 • 0.991 = 3.903
Qa Tb/Ta
' 2.833 • 0.703 - 1.992
Qp = 19.254
Total of 3 streams to Confluence:
Flow rates before confluence point:
3.937 2.833. 13.359
Area of streams before confluence:
1.280 1.030 4.510
Results of confluence:
I Total flow rate = 19.254(CFS)
Time of concentration = 8.850 min.
Effective stream area after confluence = 6.820(Ac.)
Process from Point/Station 107.000 to Point/Station 108.000
• IMPROVED CHANNEL TRAVEL TIME ••
' Upstream point elevation. = 11=52.000(Ft.)
am Downstre point elevation 1151.000(Ft.)
Channel length thru subarea 296.000(Ft.)
Channel base width = 9.000(Ft.)
Slope or 'Z' of left channel bank 3.000
Slope or 'Z' of right channel bank 3.000
Estimated mean flow rate at midpoint of channel 19.494(CFS)
Manning's 'N' = 0.030
Maximum depth of channel = 1.00O(Ft.)
' Flow(q) thru subarea = 19.494(CFS)
Depth of flow = 0.796(Ft.), Average velocity = 2.151(Ft/s)
Channel flow top width = 13.775(Ft.)
Flow Velocity = 2.15(Ft/6)
Travel time 2.29 min.
Time of concentration = 11.14 min.
Sub-Channel No. 1 Critical depth - 0.496(Ft.)
Critical flow top width = 11.977(Ft.)
' Critical flow velocity= 3.747(Ft/s)
Critical flow area 5.203(Sq.Ft)
Adding area flow to channel
USER INPUT of soil data for subarea
Runoff Coefficient - 0.751
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
' Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 3.029(In/Hr) for a 100.0 year storm
' Subarea runoff = 0.387(CFS) for 0.170(Ac.)
Total runoff = 19.641(CFS) Total area = 6.990(Ac.)
Depth of flow = 0.799(Ft.), Average velocity = 2.156(Ft/s)
Sub-Channel No. 1 Critical depth = 0.500(Ft.)
Critical flow top width = 12.00O(Ft.)
Critical flow velocity= 3.741(Ft/s)
Critical flow area = 5.250(Sq.Ft)
End of computations, total study area = 8.85 (Ac..)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.347
' Area averaged RI index number = 72.8
5
1
1
i
i
1
1
-i
' 10-YEAR
1
1
1
1
1
Riverside County Rational Hydrology Program
' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2005 Version 7.1
-------Rational Hydrology Study ---- Date:- 08/01/12 File:ARAP10.ouc
---------------- -______-___________________
ICPV POST-PROJECT CONDITION HYDROLOGY
' RATIONAL METHOD ANALYSIS, 10-YEAR STORM EVENT
FILENAME: ARAP10
________________________________________________________________________.
•`••••••• Hydrology Study Control Information `•"•••••`
English (in-lb) Units used in input data file
________________________________________________________________________
Program License Serial Number 6045
------------------------------------------------------------------------
' Rational Method Hydrology Program based on
Riverside County Flood Control & water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
2 year, I hour precipitation - 0.500(In.)
100 year, 1. hour precipitation - 1.200(1n.)
Storm event year = 1 0.0
Calculated rainfall intensity data:
1 hour intensity = 0.788(In/Hr)
Slope of intensity duration curve = 0.5500
1 ♦1+♦+•♦♦+++♦♦+++++++f+++++++++..++++++++++++++++++++++++++++++++++++++
Process from Point/Station 101.000 to Point/Station 102.000
••'• INITIAL AREA EVALUATION
1 Initial area flow distance 321.000(Ft.)
Top (of initial area) elevation. = 1212.000(Ft.)
Bottom (of initial area) elevation = 1156.200(Fc.)
Difference in elevation = 55.800(Ft.)
slope = 0.17383 s(percent)= 17.38
TC = k(0.541) •[(length^3)/(elevation change) ]^0.2
Initial area time of concentration = 7.717 min.
Rainfall intensity = 2.435(In/Hr) for a 10.0 year storm
USER INPUT of soil data for subarea
' Runoff Coefficient = 0.815
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
' RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction 0.000
Initial subarea runoff = 0.853(CFS)
Total initial stream area = 0.430(Ac.)
Pervious area fraction = 1.000
++++++++i+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Poinc/Station 102.000 to Point/Station 108.000
...• IMPROVED CHANNEL TRAVEL TIME •'•`
Upstream point elevation = 1156.200(Ft.)
Downstream point elevation = 1151.000(Fc.)
' Channel length thru subarea = 554.000(Ft.)
1
1
' Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 9.375
Slope or 'Z' of right channel bank = 9.375
' Estimated mean flow rate at midpoint of channel = 2.183(CFS)
Manning's 'N' = 0.015
Maximum depth of channel - 0.160(Ft.)
Flow(q) thru subarea = 2.183(CFS)
' Depth of flow = 0.293(Ft.). Average velocity = 3.412(Ft/s)
! !Warning: Water is above left or right bank elevations
Channel flow top width - 3.000(Ft.)
Flow Velocity 3.41(Ft/s)
Travel time = 2.71 min.
Time of concentration - 10.42 min.
Sub-Channel No. 1 Critical depth - 0.336(Ft.)
Critical flow top width = 3.000(Ft.)
' Critical flow velocity= 2.843(Ft/s)
Critical flow area - 0.766(Sq.Ft)
ERROR - Channel depth exceeds maximum allowable depth
' Adding area flow to channel
COMMERCIAL subarea type
Runoff Coefficient = 0.880
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction - 0.100; Impervious fraction = 0.900
Rainfall intensity = 2.064(In/Hr) for a 10.0 year storm
Subarea runoff = 2.596(CFS) for 1.430(Ac.)
Total runoff = 3.449(CFS) Total area = 1.860(Ac.)
Depth of flow 0.361(Ft.), Average velocity = 4.098(Ft/s)
! !Warning: Water is above left or right bank elevations
ERROR - Channel depth exceeds maximum allowable depth
Sub-Channel No. 1 Critical depth = 0.426(Ft.)
Critical flow top width = 3.000(Ft.)
Critical flow velocity= 3.325(Ft/s)
Critical flow area = 1.037(Sq.Ft)
1 Process from
Process from Point/Station 102.000 to Point/Station 108.000
'• CONFLUENCE OF MAIN STREAMS ••
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 1.860(Ac.)
Runoff from this stream = 3.449(CFS)
Time of concentration = 10.42 min.
' Rainfall intensity = 2.064(ln/Hr)
Program is now starting with Main Stream No. 2
}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
' Process from Point/Station 103.000 to Point/Station 107.000
..
'• INITIAL AREA EVALUATION ` `
Initial area flow distance = 708.000(Ft.)
Top (of initial area) elevation = 1170.000(Ft.)
Bottom (of initial area) elevation = 1152.800(Ft.)
Difference in elevation = 17.200(Ft.)
Slope - 0.02429 s(percenc)= 2.43
TC = k(0.300)`((length"3)/(elevation rhange) 1"0.2
Initial area time of concentration = 6.710 min'.
Rainfall intensity = 2.278(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.881
' Decimal fraction soil group A = 0.000
Z
1
' Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 2.569(CFS)
Total initial stream area = 1.280(Ac.)
' Pervious area fraction = 0.100
Process from Point/Station 103.000 to Point/Station 107.000
' ••.. CONFLUENCE OF MINOR STREAMS "•'
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 1.280(Ac.)
' Runoff from this stream = 2.569(CFS)
Time of concentration = 8.71 min.
Rainfall intensity = 2.278(In/Hr)
1 ..........+++++++....+...+.......+.++...............+.................
Process from Point/Station 104.000 to Point/Station 105.000
" INITIAL AREA EVALUATION
Initial,area flow distance = 507.000(Ft.)
' Top (of initial area) elevation = 1274.000(Ft.)
Bottom (of initial area) elevation .= 1155.000(Ft.)
Difference in elevation = 119.000(Ft.)
Slope = 0.23471 s(percent)= 23.47
' TC = k(0.541)-((length^3)/(elevation change))^0.2
Initial area time of concentration = 8.725 min.
Rainfall intensity = 2.276(In/Hr) for a 10.0 year storm
USER INPUT of soil data for subarea
' Runoff Coefficient = 0.810
Decimal fraction soil group A - 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D 0.000 '
L RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 1.161(CFS)
Total initial stream area = 0.630(Ac.)
' Pervious area fraction = 1.000
+.............i.......................................................
Process from Point/Station 105.000 to Point/Station 107..000
..'• STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION '•"
Top of street segment elevation = 1155.000(Ft.)
End of street segment elevation = 1152.000(Ft.)
Length of street segment = 443.000(Fc.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
' Slope from gutter to grade break IV/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (11 side(s) of the street
Distance from curb to property line = 10.00O(Ft.)
Slope from curb to property line (v/hz) = 0.020
' Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0750
Estimated mean flow rate at midpoint of street = 1.529(CFS)
Depth of flow = 0.301(Ft.), Average velocity = 1.733(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.693(Ft.)
' Flow velocity = 1.73(Ft/s)
3
' Travel time = 4.26 min. TC = 12.98 min.
Adding area flow to street
COMMERCIAL subarea type
t Runoff Coefficient = 0.878
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
' Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) 69.00
Pervious area fraction = 0.100; Impervious fraction0.900
Rainfall intensity = 1.829(In/Hr) for a 10.0 year storm
Subarea runoff = 0.642(CFS) for 0.400(Ac.)
Total runoff = 1.803(CFS) Total area = 1.030(Ac.)
Street .flow at end of street = 1.803(CFS)
Half street flow at end of street = 1.803(CFS)
Depth of flow = 0.314(Ft.), Average velocity = 1.798(Ft/s)
' Flow width (from curb towards crown)= 9.360(Ft.)
+?.........I..........................................................
Process from Point/Station 105.000 to Point/Station 107.000
' "•' CONFLUENCE OF MINOR STREAMS, ""
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 1.030(Ac.)
' Runoff from this stream = 1.8031CFS)
Time of concentration = 12.98 min.
Rainfall intensity - 1.829(In/H0
..............+.+.....................................................
Process from Point/Station 106.000 to Point/Station 107.000
•' INITIAL AREA EVALUATION -•
' Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1274.000(Ft.)
Bottom (of initial area) elevation = 1152.000(Ft.)
Difference in elevation = 122.000(Ft.)
' Slope = 0.12200 s(percent)= 12.20
TC = k(0.367)•[(length^3)/(elevation change))^0.2
Initial area time of concentration = 8.850 min.
Rainfall intensity = 2.258(1n/Hr) for a 10.0 year storm
USER INPUT Of soil data for subarea
- ' Runoff Coefficient - 0.845
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soi1(AMC 2) = 72.92
Pervious area fraction = 0.340; Impervious fraction = 0.660
Initial subarea runoff = 8.604(CFS)
Total initial stream area = 4.510(Ac.)
Pervious area fraction = 0.340
♦.....................................................................
Process from Point/Station 106.000 to Point/Station 107,000
' .... CONFLUENCE OF MINOR STREAMS ••..
Along Main Stream number: 2 in normal stream number 3
Stream flow area = 4.530(Ac.)
Runoff from this stream = 8.604(CFS)
Time of concentration = 8.85 min.
Rainfall intensity = 2.258(In/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CPS) (min) (In/Hr)
' 1 2.569 8.71 2.278
4
t
2 1.803 12.98 1.829
3 8.604 8.85 2.258
Largest stream flow has longer or shorter time of concentration
' Qp = 8.604 # sum of
Qb Ia/Ib
2.569 • 0.991 = 2.547
Qa Tb/Ta
1.803 • 0.682 = 1.229
Qp = 12.380
Total of 3 streams to confluence:
Flow rates before confluence point:
2.569 1.803 8.604
Area of streams before confluence:
1.280 1.030. 4.510
Results of confluence:
' Total flow"rate = 12.380(CFS)
Time of concentration = 8.850 min.
Effective stream area after confluence = 6.820(Ac.)
1 # #1################1###########i....#######f###########4f###i#######
Process from Point/Station 107.000 to Point/Station 108.000
.... IMPROVED CHANNEL TRAVEL TIME
' Upstream point elevation = 1152.000(Ft.)
Downstream point elevation 1151.000(Ft.)
Channel length thru 'subarea = 296.000(Ft.)
Channel base width = 9.000(Ft.)
Slope or 'Z' of left channel bank = 3.000
Slope or 'Z' of right channel bank = 3.000
Estimated mean flow rate at midpoint of channel = 12.534(CFS)
Manning's 'N' = 0.030
Maximum depth of .channel = 1.000(Ft.)
' Flow(q) thru subarea = 12.534(CFS)
Depth of flow = 0.619(Ft.), Average velocity = 1.863(Ft/s)
Channel flow top width = 12.717(Ft.)
Flow Velocity = 1.86(Ft/s)
Travel time = 2.65 min.
Time of concentration = 11.50 min.
Sub-Channel No. 1 Critical depth = 0.375(Ft.)
Critical flow top width = 11.250(Ft.)
Critical flow velocity= 3.301(Ft/s)
Critical flow area = 3.797(Sq.Ft)
Adding area flow to channel
USER INPUT of soil data for subarea
i' Runoff Coefficient = 0.689
Decimal fraction soil group A = 0.000
Decimal -fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity 1.955(In/Hr) for a 10.0 year storm
' Subarea runoff = 0.229(CFS) for 0.170(Ac.)
Total runoff = 12.609(CFS) Total area = 6.990(Ac.)
Depth of flow = 0.622(Ft.). Average velocity = 1.867(Ft/s)
Sub-Channel No. 1 Critical depth = 0.375(Ft.)
' Critical flow top width = 11.250(Ft.)
Critical flow velocity= 3.321(Ft/s)
Critical flow area = 3.797(Sq.Ft)
' End of computations, total study area - 8.85 (AC.)
The following figures may
be used for a unit hydrograph study of the, same area.
Area averaged pervious area fraction(Ap) = 0.347
' Area averaged RI index number = 72.8
5
1
i
1
i
1
1
1
1
1
1
' APPENDIX B: HYDRAULIC ANALYSIS
1
1
1
1
i
�1
1
1 '
1 ,
L
1
1
L _
t
APPENDIX B.1: PARKWAY DRAIN#1
L ,
L
1
Worksheet for PARKWAY DRAIN #1
Project Description 1
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.015
Channel Slope 0.02000 ft/ft
Bottom Width 5.00 It
' Discharge 1.83 ft3/s
Results
Normal Depth 0.11 It -
FlowArea 0.57 'ft'
Wetted Perimeter 5.23 It
Hydraulic Radius - ' 0.11 _ It
Top Width 5.00 ft
Critical Depth 0.16 It
Critical Slope. 0.00655 ft/ft
Velocity 3.20 'fVs
Velocity Head •0.16 It
L Specific Energy 0.27 -ft
Fmude Number 1.67
Flow Type - Supercritical -
LGVF Input Data
Downstream Depth 0.00 It
Lengtti 0.00 It,
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 It
' Profile Description
Profile Headloss 0.00 It
Downstream Velocity Infinity fils
Upstream Velocity Infinity ft/s
Normal Depth 0.11 It
Critical Depth 0.16 ft
Channel Slope 0.02000 ft/ft
Critical Slope 0.00655 Rift
Bentley Systems,Inc. Hassled Methods Soll>IYallIdplik rMaster V81(SELECTserl"1) [09.11.01.03]
' 61111201211:20:59 AM 27 Slemons Company Orlve Suite 200 W Watertown,CT 06795 USA +1.203.755.1668 Page 1 of 1
APPENDIX B.2: PARKWAY DRAiN'#2
L�
1
1
1 Worksheet for PARKWAY DRAIN #2
' Project Description
Friction Method h Manning Formula
Solve For Normal Depth
IInput Data
Roughness Coefficient 0.015
' Channel Slope 0.02000 Nft
Bottom Width 5.00 ft
Discharge 16.19 ft'/s
Results
' Normal Depth 0.44 It -
Flow Area 2.22 It'
Wetted Perimeter 5.89 It
Hydraulic Radius 0.38 It .
Top Width 5.00 ft
Critical Depth 0.69 It
Critical Slope - 0.00514 ft/ft ,
Velocity 7.31 ft/s
Velocity,Head 0.83 ft
Specific Energy 1.27 It
Froude Number 1.94
Flow Type - Supercritical
GVF Input Data -- — — ------ — — — -- — _�
Downstream Depth 0.00 It
Length 0.00 It
Number Of Steps 0
' GVF Output Data
Upstream Depth 0.00 It
' Profile Description
Profile Headloss 0.00 it
Downstream Velocity Infinity ft/s
' Upstream Velocity Infinity ft/s
Normal Depth 0.44 ft
Critical Depth 0.69 ft
Channel Slope 0.02000 ft/ft
Critical Slope 0.00514 Rift
Bentley Systems,Inc. Haestad Methods So18kil1dollib Master Vol(SELECTseries 1) (08.11.01.031
611112012 11:21:16 AM 27 Stamen Company Drive Suite 200 W Watertown,CT 06795 USA +1.203.755•1666 Page 1 of 1
1
I
APPENDIX B.3: PARKWAY DRAIN #3
1
I
1
1
1
1
Worksheet for PARKWAY DRAIN #3
' Project Description
Friction Method Manning.Formula
Solve For Normal Depth
IJnput Data --�
Roughness Coelficient 0.015
' Channel Slope 0.02000 ft/ft
Bottom Width 5.00 ft
Discharge 19.89 ft/s
Results
Normal Depth _ 0.51 ft
Flow Area 2.53 ft'
Wetted Perimeter, 6.01 ft
1 Hydraulic Radius 0.42 ft
Top Width 5.00• ft
Critical Depth' 0.79 ft
ICritical Slope 0 00511 ft/ft .
Velocity 7.87 We Velocity Head - 0.96 ft
Specific Energy _ 1.47 ft
' Froude Number 1.95 '
Flow Type Supercritical _ - -
' -.G p Data - — --- -- ^�
Downstream Depth 0.00 ft
Length 0.00 ft
Number.Of Steps - 0
GVF Output Data
Upstream Depth 0.00 ft
' Profile Description
Profile Headloss 0.00 ft
Downstream Velocity Infinity ftls
Upstream Velocity Infinity ft/s
., Normal Depth 0.51 ft
Critical Depth 019 ft
' Channel Slope 0.02000 ft/ft
Critical Slope 0.00511 ft/ft
Bentley Systems,Inc. Haestad Methods Sol®bllf080oxMaster Vet(SELECTseries I [08.11.01.03]
' 6111 t2012 11:21:23 AM 27 Siemens Company Drive Suite 200 W Watertown,CT 06785 USA .1-203-75}1668 Page 1 of 1
_1
r . .
1
r ,
I
1
1
APPENDIX B.4: V-DITCH#1
L
1
1
1
1
L
Worksheet for V-DITCH #1
Project Description
Friction Method Manning Formula
Solve For Normal Depth
Input Data
Roughness Coefficient 0.015
' Channel Slope 0.02000 f ift
Left Side Slope 2.00 Rift(H:V)
Right Side Slope 2.00 ft/ft(H:V)
Discharge 1.83 ft'/s
Results
Normal Depth 0.44 ft
Flow Area 0.39 ft'
Wetted Perimeter 1.97 ft
Hydraulic Radius 0.20 ft
Top Width 1.76 ft
Critical Depth 0.55 ft
Critical Slope 0.00564 ft/ft
Velocity 4.74 fits
Velocity Head 0.35 It
Specific Energy 0.79 ft
Froude Number 1.78
Flow Type Supercritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Downstream Velocity Infinity fits
Upstream Velocity Infinity fits
Normal Depth 0.44 It
1 Critical Depth 0.55 it
Channel Slope 0.02000 full
Critical Slope 0.00584 Rift
Bentley Systems,Inc. Hassled Methods Sol®lorlgeNlorrMaster Val(SELECTserles 1) [08.11.01.031
' 611112 01 2 11:17:48 AM 27 Slamons Company Drive Sulte 200 W Watertown,CT 06795 USA .1.203.755-1858 Page 1 of 1
i
1
I
APPENDIX B.5: V-DITCH#2
l
1
I
1
1
1
L
1
1 Worksheet for V-DITCH #2
Project Description
Friction Method Manning Formula
Solve For Normal Depth -
Input Data
Roughness Coefficient 0.015
Channel Slope 0.02000 ft/ft
Left Side Slope 2.00 ft/ft(H:V)
Right Side Slope 2.00 ft/ft(H:V)
Discharge 1.34 ft'/s
Results -
Normal Depth - 0.39 If
Flow Area 0.31 ft
Wetted Perimeter - 1.75 ft
Hydraulic Radius 0.17 it
Top Width 1.56 It
I Critical Depth 0.49 ft
Critical Slope 0.00608 ft/ft
Velocity 4.38 ft/s
Velocity Head 0.30 ft
Specific Energy 0.69 If
Froude Number 1.75
Flow Type Supercritical -
ptData - - - - — ----
Downstream Depth 0.00 11
Length _ -0.00 it
Number Of Steps 0
GVF Output Data
' Upstream Depth 0.00 It
Profile Description
Profile Headloss 0.00 It
Downstream Velocity Infinity ft/s
Upstream Velocity Infinity ft/s
Normal Depth 0.39 ft
Critical Depth 0.49 ft
Channel Slope 0.02000 ft/ft
Critical Slope 0.00608 ft/ft
Bentley Systems,Inc. Haestad Methods Sol®IdIIQeMeWaster V81(SELECTseries 1) [08.11.01.031
S/11/2012 11:20:47 AM 27 Siemens Company Drive Suite 200 W Watertown,CT 06795 USA •1-203-755-1666 Page 1 of 1
I
1
EXHIBITS
1
1
1
1
' APPENDIX C: UNIT HYDROGRAPH HYDROLOGY CALCULATIONS
1
I�
11
i'.
I,
APPENDIX C.1: PRE-PROJECT 1 OO-YEAR, 1-HOUR ONSITE ANALYSIS
I,
I�
1
i�
U n i t H y d r o g rap h A n a l y s i s
(' Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2008, Version 8.1
Study date 07/25/12 File: AREXONSITE1100.out
------------------------------------------------------------------------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
I� Program License Serial Number 6045
---------------------------------------------------------------------
i, English (in-lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
I'
---------------------------------------------------------------------
ICTV PRE-PROJECT CONDITION ONSITE UNIT HYDROGRAPH
100-YEAR STORM ,EVENT
FILENAME: AREXONSITE
--------------------------------- ----------------------------------
-
Drainage Area = 4.33(Ac.) 0:007 Sq. Mi.
Drainage Area for Depth-Area Areal .Adjustment = 4.33(Ac.) = 0v007 Sq. Mi.
Length along longest watercourse = 766.00(Ft.)
Length along longest watercourse measured to centroid = 200.00(Ft.)
Length along longest watercourse = 0.145 Mi.
Length along longest watercourse measured to centroid = 0.038 Mi.
Difference in elevation = 121.25(Ft.)
Slope along watercourse = 835.7702 Ft./Mi.
Average Manning's 'N' = 0.030
I' Lag time = 0.028 Hr.
Lag time = 1.67 Min.
25% of lag time = 0.42 Min.
40% of lag time = 0.67 Min.
.� Unit time = 5.00 Min.
Duration of storm = 1 Hour(s)
User .Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
I�
Area(Ac.) I11 Rainfa1111n1121 Weightingl1`21
4.33 0.55 2.38
' 100 YEAR Area rainfall data:.
Area(Ac.) [1] Rainfall(In) [21 Weighting[1`21
4.33 1.20 5.20
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.550(In)
Area Averaged 100-Year Rainfall = 1.200(In)
Point rain (area averaged) = 1.200(In)
Areal adjustment factor = 100.00 8
Adjusted average point rAin = 1 .20n(Tn)
1 Sub-Area Data:
Area(Ac. ) Runoff Index Impervious 8
4.330 83.23. 0.050
' Total Area Entered 4.33(Ac.)
1
11
r
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC-2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr)
83.2 83.2 0.207 0.050 0.198 1.000 0.198
Sum (F) = 0.198
Area averaged mean soil. loss (F) (In/Hr) - 0.198
' Minimum soil loss race 1(In/Hr)1 = 0.099
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.860
_____________________________________________________________________
Slope of intensity-duration curve for a 1 hour storm =0.5500
1 ---------------------------------------------------- ----=
I
U n i t H y d r o g r a p h
VALLEY S-Curve
r _______________Unit-HydrograPh_Data_______________________________-__
Unit time period Time % of lag Distribution Unit Hydrograph
. (bra) Graph % (CFS)
1 ---------------------------------------------------------------------
1. 0.083 300.252 56.706 2.475
2 0.167 600.504 37.114 1.620
3 0.250 900.757 6.180 0.270 I Sum 100.000 Sum= 4-.364_
The following loss rate calculations reflect use of the minimum calculated loss
rate subtracted from the Storm Rain to produce the maximum Effective Rain value
Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective
(Hr.) Percent (In/Hr) Max I Low (In/Hr)
1 0.08 3.30 0.475 0.198 ( 0.409) 0.277
2 0.17 4.20 0.605 0.198 1 0.520) 0.407
3 0.25 4.40 0.634 0.198 ( 0.545) 0.436
4 0.33 4.80 0.691 0.198 ( 0.594) 0.493
5 0.42 5.20 0.749 0.198 ( 0.644) 0.551
if 6 0.50 6.20 0.893 0.198 ( 0.768) 0.695
7 0.58 6.80 0.979 0.198 ( 0.842) 0.781
6 0.67 8.80 1.267 0.198 ( 1.090) 1.069
9 0.75 13.90 2.002 0.198 1 1.721) 1.804
10 0.83 31.40 4.521 0.198 1 3.888) 4.324
it 11 0.92 7.20 1.037 0.198 1 0.892) 0.839
12 1.00 3.80 0.547 0.198 ( 0.471) 0.349
(Loss Rate Not Used)
Sum = 100.0 Sum.= 12.0
�r Flood volume = Effective rainfall 1.00(In)
times area 4.3(Ac.)/[(In)1(Ft.)] = 0.4(Ac.Ft)
Total soil loss = 0.20(In)
Total soil loss = 0.071(Ac.Ft)
r Total rainfall = 1.20(In)
Flood volume = 15750.9 Cubic Feet
Tocal soil loss = 3109.9 Cubic Feet--------------------------------------------------------------------
Peak flow rate of this hydrograph = 13 916(CFS)
--------------------------------------------------------------------
I� ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 - H O U R S T O R M
R u n o f f H y d r o g r a p h
1 -------------------------------=----------------
Hydrograph in 5 Minute intervals ((CFS))
Time(h------_ml-Volumo --------Q(CFS)--O-_ -- --5_0 -----10_0------15.0------20.0
0+ 5 0.0047 0.69 VQ 1
0+10 0.0148 1.46 IVQ 1 I I
0+15 0.0272 1.81 1 Q I I I I
0+20 0.0413 2.04 I Q I 1 1 1
Z
II
0+25 0.0570 2.28 Q V I I J
0+30 0.0759 2.75 Q V I I 1
0+35 0.0980 3.21 Q V I I
0+40 0.1262 4.10
Q V 0+45 0.1704 6.41 I QV
0+50 0.2662 13.92 I I Q VI 1
0+55 0.3321 9.57 I 1 Q1 V
' 1+ 0 0.3555 3.39 I Q I I VI
1+ 5 0.3609 0.79 IQ I I
1+10 0.3616 0.09 Q I I VI
_______________________________________________________________________
�1
f,
I'
1`
I'
I'
4,
3
i1
f'
I,
' APPENDIX C.2: POST-PROJECT 1 OO-YEAR, 1-HOUR ONSITE ANALYSIS
f,
1
U n i t H y d r o g r a p h A n a l y s i s
4, Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2008, Version 8.1
Study date 07/25/12 File: ARPONSITE1100.out
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date April 1978
Program License Serial Number 6045
------------------------------------------------------------
f English (in-lb) Input Units Used
1 English Rainfall Data (Inches) Input Values Used
.English Units used in output format
_____________________________________________________________________
ICTV POST-PROJECT CONDITION ONSITE UNIT HYDROGRAPH
100-YEAR STORM EVENT
FILENAME: ARPONSITE
--------------_-----------------__ _________________________-__-__
' Drainage Area = 4.33(Ac.) = 0.007 Sq. Mi.
[ Drainage Area for Depth-Area Areal Adjustment = 4.33(Ac.) = 0.007 Sq. Mi.
Length along longest watercourse = 1218.00(Ft.)
Length along longest watercourse measured to centroid = 614.00(Ft.)
' Length along longest watercourse = 0.231 Mi.
Length along longest watercourse measured to centroid = 0.116 Mi.
Difference in elevation = 123.00(Ft.)
Slope along watercourse = 533.2020 Ft./Mi.
Average Manning's 'N' = 0.015
�'. Lag time = 0.028 'Hr.
Lag time = 1.66 Min:
25% of lag time = . 0.41 Min.
40% of lag time = 0.66 Min.
Unit time = 5.00 Min.
Duration of storm = 1 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
I' Area(Ac.) [1] Rainfall(In) [2] Weighting[I.2]
4.33 0.55 2.38
100 YEAR Area rainfall data:
Area(Ac.) (1] Rainfall(In) [2] Weighting[1.2]
' 4.33 1.20 5.20
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.550(In)
' Area Averaged 100-Year Rainfall = 1.200(In)
Point rain (area averaged) _ 1.200(In)
Areal adjustment factor = 100.00 9
Adjusted average point rain = 1.200(In)
(' Sub-Area Data:
Area(Ac.) Runoff Index Impervious 9
4.330 69.00 0.850
Total Area Entered = 4.33(Ac.)
I
1
1
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
AMC2 AMC-2 (In/Hr) (DecA) (In/Hr) (Dec.) (In/Hr)
69.0 69.0 0.373 0.850 0.088 1.000 0.088
_Sum (F) = 0.088
Area averaged mean soil loss (F) (In/Hr) = 0.088
Minimum soil loss rate ((In/Hrl) = 0.044
(for 24 hour storm duration)
Soil low loss race (decimal) = 0.220
_____________________________________________________________________
Slope of intensicy-duration curve for a 1 hour storm =0.5500
- - - - - - - - - - - - - -
U n i t H y d r ,og r a p h
VALLEY S-Curve
1 --------------------------------------------------------------------
1 _ Unit Hydrograph Data
Unit time period Time % of lag Distribution Unit Hydrograph
(hrs) Graph % (CPS)
,1 ---------------------------------------------------------------------
1 0.083 301.841 56.868 2.482
2 0.167 603.681 37.027 1.616
3 0.250 905.522 6.105 0.266
Sum = 0 Sum. 4:364
---------- - ----- ------ --
The following loss rate calculations reflect use of the minimum calculated loss
' rate subtracted from the Storm Rain to produce the maximum Effective Rain value
Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective
(Hr.) Percent (In/Hr) Max I Low (In/Hr)
1 0.08 3.30 0.475 0.088 1 0.105) 0.388
n' "2 0.17 4.20 0.605 0.088 1 0.133) 0.517
3 0.25 4.40 0.634 0.088 1 0.139) 0'.546
4 0.33 4.80 0.691 0.088 1 0.152) 0.604
5 0.42 5.20 0.749 0.088 l 0.165) 0.661
6 0.50 6.20 0.893 0.088. 1 0.196) 0.805
7 0.58 6.80 0.979 0.088 ( 0.215) 0.892
8 0.67 8.80 1.267 0.088 ( 0.279) 1.180
9 0.75 13.90 2.002 0.088 ( 0.440) 1.914
10 0.83 31.40 4.521 0.088 ( 0.995) 4.434
11 0.92 7.20 1.037 0.088 ( 0.228) 0.949
12 1.00 3.80 0.547 0.088 ( 0.120) 0.460
(Loss Rate Not Used)
Sum = 100.0 Sum = 13.3
(' Flood. volume = Effective rainfall 1.11(In)
times area 4.3(Ac.)/((In)/(Ft.)] = 0.4(Ac.Ft)
Total soil loss = 0.09(In)
Total soil loss = 0.032(Ac.Ft)
' Total rainfall = 1.20(1n)
Flood volume = 17483.7 Cubic Feet
Total soil loss = 1377.0 Cubic Feet
____________________________________________________________________
Peak flow .rate of this hydrograph = 14.417(CFS)
--------------------------------------------------------------------
1 +++++++++++++++++++++++i+h+++++++++++++++++f++++++++++++++++h+++++++
1 - H O U R S T O R M
R u n o f f H y d r o g r a p h
--------------------------------------------------------------------
Hydrograph in 5 Minute intervals ((CFS))
____________________________________________________________________
Time(h+m) Volume Ac.Ft Q(CFS) 0 5.0 10.0 15.0 20.0
------______----______-______-________-______________-_-___
0+ 5 0.0066 0.96 VQ I I
0+10 0.0198 1.91 IV 0 1
0+15 0.0356 2.29 I VQ I I I I
0+20 0.0529 2.52 I Q II
2
, 0+25 0.0720 2.76
Q V
0+30 0.0942 3.23 Q V I
0+35 0.1196 3.69 I Q V I I I
' 0+40 0.1512 4.58 Q V
0+45 0.1987 6.90
0+50 0.2980 14.42 Q VI QVI I
0+55 0.3671 10.03 Q I V I
' 1+ 0 0.3937 3.86 Q I I VI
1+ 5 0.4005 1.00 IQ I I VI
1+10 0.4014 0.12 Q I I V
-----------------------------------------------------------------------
L
r'
I'
1'
3
_1
APPENDIX C.3: EXISTING CONDITION 100-YEAR, 1-HOUR CIFFSITE ANALYSIS
1
.1
' U n i t H y d r o g r a ph A n a l y s i s
' Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2008, Version 8.1
Study date 08/09/12 File: AREXOFFSITE1100.out
♦.....................I..+.......I...+..................................
________________________________________________________________________
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
' Program License Serial Number 6045
_________________________________________________--""-----
! English (in-lb) Input Units Used
English Rainfall Data. (Inches) Input Values Used
English Units used in output .format
_____________________________________________________________________
ICTV PRE-PROJECT CONDITION OFFSITE UNIT HYDROGRAPH
100-YEAR STORM EVENT
FILENAME: AREXOFFSITE
____________________________________________________________________
' Drainage Area— 4.51(Ac.) = 0.007 Sq. Mi. -
Drainage Area for Depth-Area Areal Adjustment = 4.51(Ac.) 0.007 Sq. Mi.
Length along longest watercourse = 1021.00(Ft.)
Length along longest watercourse measured to centroid 367.00(Ft.)
Length along longest watercourse = 0.193 Mi.
Length along longest watercourse measured to centroid = 0.070 Mi.
Difference in elevation = 119.00(Ft.)
Slope along watercourse = 615.3967 Ft./Mi.
Average Manning's 'N' = 0.025
' Lag time = 0.034 Hr.
Lag time = 2.07 Min.
25% of lag time. = 0.52 Min.
40% of lag time = 0.83 Min.
' Unit time. = 5.00 Min.
Duration of storm = 1 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
' Area(AC.) [I) Rainfall(In) (2) Weighting(1'21
4.51 0.55 2.48
100 YEAR Area rainfall data:
Area(Ac.) [11 Rainfall(In) (2) Weighting[1.21
' 4.51 1.20 5.41
STORM EVENT (YEAR) = 100.00
Area Averaged 2-Year Rainfall = 0.550(In)
' Area Averaged 100-Year Rainfall = 1.200(In)
Point rain (area averaged) = 1.200(In)
Areal adjustment factor = 100.00 8
Adjusted average point rain = 1:200(In)
Sub-Area Data:
Area(Ac.) Runoff Index Impervious 8
4.510 72.92 0.660
' Total Area Entered = 4.51(Ac.)
1
1.
1'
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
' AMC2 AMC-2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr)
72.9 72.9 0.328 0.660 0.133 1.000 0.133
Sum IF) = 0.133
Area averaged mean soil loss (F) (In/Hr) = 0.133
..' Minimum soil loss rate ((In/Hr)) = 0.066
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.372
_____________________________________________________________________
Slope of intensity-duration curve for a 1 hour storm =0.5500
______________________________________________________________________
U n it H y d r o g r a p h
VALLEY S-Curve
____________________________________________________________________
' Unit Hydrograph Data
_______ -_____ __________________________________________________
Unit time period Time 8 of lag Distribution Unit Hydrograph
(bra) Graph 8 (CPS)
1 ------------------'____""---------'_---""-------------------"'--
1 0.083 241.995 49.831 2.265
2 0.167 483.989 40.555 1.843
3 0.250 725.984 7.285 0.331
' - 4 0.333 967.979 2.329 0.166
Sum = 100.000 Sum 4.545
_____________________________________ _______ -
' The following loss rate calculations reflect use of the minimum calculated loss
rate subtracted from the Storm Rain to produce the maximum Effective Rain value
Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective
(Hr.) Percent (In/Hr) Max I Low (In/Hr)
1 0.08 3.30 0.475 0.133 ( 0.177) 0.342
2 0.17 4.20 0.605 0.133 ( 0.225) 0.472
3 0.25 4.40 0.634 0.133 ( 0.236) 0.501
4 0.33 4.80 0.691 0.133 ( 0.257) 0.558
' 5 0.42 5.20 0.749 0.133 ( 0.279) 0.616
6 0.50 6.20 0.893 0.133 1 0.332) 0.760
7 0.58 6.80 0.979 0.133 1 0.364) 0.846
a 0.67 8.80 1.267 0.133 1 0.471) 1.134
9 0.75 13.90 2.002 0.133 1 0.745) 1.869
10 0.83 31.40 4.521 0.133 ( 1.682) 4.388
11 0.92 7.20 1.037 0.133 ( 0.386) 0.904
12 1.00 3.80 0.547 0.133 ( 0.204) 0.414
(Loss Rate Not Used)
Sum = 100.0 Sum = 12.8
Flood volume = Effective rainfall 1.07(In)
times ,area 4.5(Ad.)/[(In)/(Ft.) 1 = 0.4(Ac.Ft)
Total soil loss = 0.13(In)
' Total soil loss =. 0.050(Ac.Ft)
Total rainfall = 1.20(1n)
Flood volume = 17467.7 Cubic Feet
Total soil loss = 2177.1 Cubic Feet
____________________________________________________________________
Peak flow rate of this hydrograph = -13.856(CFS)
_
######i######i################i♦#################ii#{f#4############
1 - H O U R S T 0 R M
' R u n o f f H_y_d_r o g r a p h
Hydrograph in 5 Minute intervals ( (CFS))
____________________________________________________________________
' Time(htm) Volume AC.Ft Q(CFS) 0- 5_0 10_0-----_15_0 _ _20.0
( ------______----_____
0# 5 0.0053 0.78 VQ I I I
0#10 0.0171 1.70 IV Q I I
0+15 0.-0316 2.12 1 VQ I I
2
'• 0+20 0.0480 2.39
Q 0+25 0.0662 2.64 QV I
0+30 0.0875 3.10 Q V I I
0+35 0.1122 3.58 Q. IV I I
0+40 0.1428 4.45 Q I V
0+45 0.1889 6.69 I 1 Q V I I
0+50 0.2843 13.86 I 1 QV I
' 0+55 0.3593 10.88 I IQ I V I
1+ 0 0.3886 4.26 I Q I I I V I
1+ 5 0.3991 1.53 Q I I I VI
1+10 0.4007 0.23 Q I I I VI
1+15 0.4010 0.04 Q I I I V
-----------------------------------------------------------------------
1
1
�1
1
1
3
: 1
1
1
1
1
' APPENDIX D: SEDIMENT BASIN
1
1
1
1
1
1
1
1
1
1
1
' APPENDIX D.1: SEDIMENT BASIN STORAGE VOLUME
1
1
1
1
1
1
1
1
t SEDIMENT BASIN
' Contour Contour Contour Contour Total Total
Elevation Area Area Interval Basin Basin
(SO (ac) Volume Volume Volume
' ac-n ac-n n3
1151.00 21311.52 0.489 0.0000 0.0000
0.510
' 1152.00 23143.5 0.531 0.5101 22221.23
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
EXHIBITS
1
1
1
1
1
1
1
1
1
1
EXHIBIT A: POST-PROJECT CONDITION ONSITE RATIONAL METHOD
' HYDROLOGY MAP
1
1
1
1
�t
1
l'
i
' 1
I
t
1
1�
I
1
EXHIBIT B: DRAINAGE FACILITIES MAP
1
1
1
1 .
1
i
1
-t
1
i
1
1
1
1
' EXHIBIT C: HYDROLOGIC SOILS MAP
1
1
1
1
1
1
1
1
Hydrologic Soil Group--Western Riverside Area,California
4!8 M 488300 48MM 488700 48MW 488900 489000 489100 489200 489300 dB9/00 489500 489800 489700 489800
"37" 37 37 44'
S
�t
8 •Y 1 i $
A m
8 8
HgA
8
!� `]
`J 8
i l3
8 RaA
(J02 $
lug
8 GA,it 8
0
i
33.37 tr 33°37 it
48MM 4700 488600 488700 488800 488900 489000 489100 489200 489300 409400 489500 489600 489]00 489800
MaP Srale:1:],060 it pmiM on A site(8.8'x 11'1 sheet
N Meters
0 50 100 200 300
Fee
0 350 700 1,400 2,100
USDA Natural Resources Web Soil Survey 6/6/2012
Conservation Service National Cooperative Soil Survey Page 1 of 4
Hydrologic Soil Group-Westem Riverside Area,California
MAP LEGEND MAP INFORMATION
Area of Interest(AOQ Map Scale: 1:7,060 if printed on A size(8.5"a 11")sheet.
O Area of Interest(AD[) The soil surveys that comprise your AOI were mapped at 1:15,840.
Solis
Soil Map Units Warning:Soil Map may not be valid at this scale.
Soil Ratings Enlargement of maps beyond the scale of mapping can cause
O A misunderstanding of the detail of mapping and accuracy of soil line
placement.The maps do not show the small areas of contrasting
Q AID soils that could have been shown at a more detailed scale.
8 Please rely on the bar scale on each map sheet for accurate map
Q &D measurements.
0 C Source of Map: Natural Resources Conservation Service
CID Web Soil Survey URL: http://websoilsuNey.nrm.usda.gov
Coordinate System: UTM Zone 11 N NAD83
D This product is generated from the USDA-NRCS certified data as of
Not rated or not available the version date(s)listed below.
Political Features Soil Survey Area: Western Riverside Area,California
Cities Survey Area Data: Version 5,Jan 3,2008
Water Features Dates)aerial images were photographed: 6/7/2005
Streams and Canals The orthophoto or other base map on which the soil lines were
Transportation compiled and digitized probably differs from the background
+.+ Rails imagery displayed on these maps.As a result,some minor shifting
of map unit boundaries may be evident.
iy Interstate Highways
N US Routes
Major Roads
N Local Roads
Natural Resources Web Soil Survey 6/8/2012
d� Conservation Service National Cooperative Soil Survey Page 2 of 4
1
1
1 .
1,
1
1
1
1
' EXHIBIT D: RAINFALL MAPS
1
1
1
1
1
1
1
<` S 'C•-�'_ tt :t' I 1 . ' :=vi y,. p �� , +y �� X r. �rt n--7,.v. - , . .
. �r - �_•yr . � . t •a
2 YEAR, 1 HOUR
' I •� �,1, :. �` ;� � a 1 '�. I.;r '°- } d,: �lruyr ,rwlia`, _ _ •, r,.
7 R _� .-a �, ra' , � ei^.dt r ti ` ,"^h T 1 'ltdsf}� -• =J •/ �$ff"T'� 't' 1 I Ley
1r n,l' ,^• .7 /1•, y5 ` •, ^[ ♦ ..d-..ft ♦ •i a r ♦.R,� 'Cr� -,.` I1..,, t t a , ! , a',. 1,i. ._., .., .., , Y
,t h �.`� � wsfr � �i'� ��:� ht r.:� ".l-`��..�-�._. -y t �.4.r♦ trlt:� I h t y '1t �,.1 :� . .
I .A. , .. aa7. ,1 1 -
i d
•� �� J,. J l_.) ` ( `s. ;Lnr w\. �,r.t✓L',: «i �f1 .4�r4M tfiif
'`^
�`,'�•-' • �"' .d♦.('Y l �' '.ij;.i'yf � \..,.. , "�' ' {' - • -:1 T• 14 51 � � �If"'�`i `� v�fa� � _ - 'ef 'VQ)�I f. :.-.� �`r 1 4 ' .., 1
. .F� ' 'rye, P ..It y 1 •%.y� f { � �.KII .fl,,� � ' \ -r . ,.'.-} .P- r a !�, f i 1 F• y.r. QR 1 t t"
r @@
y' ' . f, 7r 'i. !• :r. :, - I •i•. •..r ��� 1 t' �" .i p i i ' _ Ir.lIl •4. �JS
' i { s. " `n a� ♦:v `1 { 4,� .r YW r . :> ,ipS t" e "y ;�. f "•,t J .:.',t,.
(rr gel'y pm.S.S�1..� ^ .r �;,. \ •`'• I I°t �'F" t•'�r r'� � 1'•rt i�� v��S v i;. cl. 3� •.ct /J�J_ .`I"t` � '. 1 '*._ _
• C. q°::.. :>h 'i• Jgyp+ : -�I - 1 T yf f . ' '.vt { e 1'' - C_. { �4w ' "'C�,'l •.�t,' '9 - kP�•�:�.•�
If
ti L1{ '7� .,�. "�. '. �"i I .y 1.. (!'. :n _ .�,' n{° fl` „! - O- .� i •'. _ -.Ir '): 'ta
+�. h - �. ., � �" .:-••lt�y-� •r+ Tr °.. C♦s.. _ - Y. n �. '1 '� ' r'' �'
J�'''°'� a F ! -^t. li -.� = \', r- 00`,�1.- .11 �._�, �.,! l{ \ t'<D._v r. �\ al 2'r .+./. 4 :\. r �. S �,.. R ,+ r.'• �r . i '
'Ir, 7t . �C y�yp '^.. �,'.:k.- t .I. r'::: �' A-- t �- �('�,�• �.,-.: ,' "C �r� f . •:1 :'g` 2' 7�:W �"-.:����� � _ ';y ,.2,.,� ;/ � 1 ��rr ,q ; .,,`
;±.' -'y:�� 1 ` 'ti' t;'�q•"t � y-,e'` ?!•' r1' i E- �t- ��'�' � +•1 a..O,.L •i .,_� � �i. ✓ '� � _ I 11 •,� "` � � 1''; ?a �#�
J' 11 �� ^�:j `�- e. tit: ,•. 1, 1 .� I :f I °"•�� 'f
:/+ �11r '•1 .:,', frry .j. ,7 :L `t � . �; 4.L
P � .r i:. 'kr�i A i v r,� .�� i a_ I i J.:'n ,2:�• '\ f(nr.. _ �r�: �, � . r ��. _ f �'�r r
�,- R . ,1 F" r" l �. x 1 , 'X 7-- -�. _'w-,•J i. .+� �" F'r: i '''r' 1` -.f ; � � ` ��. � �'P` `
1 _
-°• ^ ,IAp` t i_• J. - '.r .', _ r. - ..� �G}iT q .,,�� ( - - - fi"+, v.. •. - _'.1t 1 ?f�"i
✓ 1 .11`• •Y � r /.�.I-.w°ice " `� I 1J 1 ^"' i i I _. _.\.� �r �)f,, :r ,i c�_3 � yl- . tg' \ r ' ___ � - _ ___ - . *-...
"{ l , a � o�>, ♦ a..•L. .vL _ _r• 1 1._1�� . - ',�w� R. �' '1. �i. t 'r',t., S- t < - r. '�- *�Y, I� -fP:_4 •\ -f.
{ l��_, i- {p. �� 1. d i`.:r '1 { I \ '�'. ,.,i'• 'c1 -r ' I w - •,t' P;, ."Yk �V��- 1 qr�, , ''. ., ;' - t f� \' -�,.
T5a
filir�hart`r a 1s ,1,. J/ J� ,IL, �- ) 'l✓ _ ` •a� � ,,,A^ �. ' � ,�'`L l r•-L. , v ''.,I_ .V,I ,� S .r�l._ s T\ Y` I
1 +7• �. -s. .,(' 1 , .±1n - .. -F-"r` J 1 _.a� xl. r�. _af� - S (.� (-,• _, -.'y ,.�, I. - �t
' C:lt•' � At` Y a•1 wJ`:•!.. `1 � .I,,' wta .�. i Y�A• C�. 1�. n},:; ;,.n'•1 ` i �,i' -`. •� '[ � a. � I # .�,�
fr�, L4.y..-� � �� J' v,. 1 i _ 1' �` I /.7, allP�__ `\ _� ,GV .:\F � �ry.�,'/.. �•J. }'"j- ,i '4 �ri"�Q-1� t _r tyr 1 _ � �l _...
t... i`.°- -"` ♦ s -A^�-e. �� 1 7 •.rl, �!• __'.r _ IF crj �F �..1',. 'f. +✓w- rL•,1, 1 �,��� , '�' 61. � 4 .ar'�'T•7'SI •�f..l. 1�-\I e.l '
\aM M. I y, 6 t '•1� ' -"I:
^y•6 ','•F ;r .�w1 `•y t . .r .,j. .�"'r;; .a "'1'L ^':� �,, t -4 „ i <.. r F ; i
1 "",f .�R .L` ` 1• ..I. ■! TR)- 1 4`R l^1. 4 Yt t�k'1r t!} I O k$FFCF,tO 16-� 'F, i 'y ly "f 'v:� t\
r V•�..n ,tT„• a' v �. ,• -_,,_� x r I,f� ^.' 1C1 ♦
Afi' UI 11 1, ``�• +; l , .,��: � -�r �•. . r' ' ,:�" r-?,•s •� i ,1,„�,.,• TAy1( :< .e \ " {•,-_ it/- \I, �' _1•`�,
RAINFALL =0.55 s. '., Y i `� :'JY '•ct J '.r. -�
`(�� ` x° °M1t� "`� ' I k..r} tF • r •.< {. In '1 r f ,.y 1L �J�-, i l �_ -
�� �) S - _„ lSn`+•"`Y �,t'7' W K r 1 ' - ar . ,• 'r \i T.- "� :.,. gfJ' a'. 1 rt. ..:dr�y�, 'igVJt"'�.V- -•� �''T�,�- .) 30, �i s
+•� 1 `� s - kT .,,.. + I ! .n'v ~ - . it _ t ` '.r•,J '
. r- �`� S T 5� �� t,• y O 8 . r 1 •r'�N.>r.sf,v}r >•� t
_
- -" f-$
d.1�LyjOhfsy�6afR3% NOAA
-, �Iy'�'s- it �` 'a '1�> a' f yfi - rT "�f ;,r ✓ `� L„ - r /� } ', + ,:C, a. t-/7�1 7(d : _ _ , Y �..o.!'Cul n1a 19,. ' 't
' n'•�' ,>. °° •• - ' � ..F - , - � �! ••1 i- ..t � r i�,� �,'J°Y � i ��`�e1��'y",r�; ``'� ^
��CI " 0 6" r1; 40a�f L p5
EOflII12enn eC ( onNulllll_L'. hic. - n - +'< r :1
tl,• � IL
,.e -;..r.'1„ .`.:..rl-.5..+.�'r. 'Y = At
.-....ateAl
36263 CALLE DE LOBO r
-• r,r. ` �' '-'t'+'�•65 T�""�!+� I, \ t � . RIVE451DE COUNTY FLOOD CONTROL.
NURRIETA,CA 92562 H
r a ♦ ° "! e t ri o
PH.951304.9552 FAX9513043568 47FR C(iNSERVATIOV D!SiRICT
r 2-YEAR -1-HOUR
PRECIPITATION
' � ��, '+r 1 i, , .�• 'T 1,r^" 1._ . ,Y _t,:� r., _ ,.T.ln , r _... i r1 y ' _ r
3 `�..— �- _ '�-�:, ,••":.r r� KE �, R3E e 11'I_A E 0- 4 3 -
}j
h•F 17�.�,`.,, c .�—_'t t .t �'t' '1' 1 � , �+^W:�.f�l 3 s•,' S1 � i O .v by .,y„ �.��i.• f y.1 � �f ,i
100 YEAR, 1 HOUR ,`. s 1 ;A r R
/ :R [ l Trr, vnl
' I :' 4 r�l.. .I/ .� '!N'. 1� r, _ ��. .,♦'1 � 1. ,� r-M1111��F• r + I 'VI . ' :l,.fir \ ,.. i" .'Uy �I ...J � !jti 11 1, �.
' b.-. _ .1 �1 ! '/.t,. 1 - � /.11 i' ,,'.�,' Iy '� r v I'�1 _J •-MG 1 A vx \
..1 � ' '' j I A 1 �W�_ \ .MTV' �' 1 'JL I � � � � y.,f.r.I, r.l4M�,11, /. j rox•_ tr'� � I ..r ' '•.. J1.. ..�_ :'.of �Y - .�
}f' _ 'm :r� r, �i� ✓:l,`n},w- -,4fc 'Lt W /R. V, 1�'' 1 9 (. 1• �6 T
�I J � U�'1 I -. " y�V � hn.1 4 �^` n 1` .S , �/�y4 �/' �� Y�/..�� � ...�i��• \' t , 11. � rhelll 1
' 1 ! f, u . _ 1` At• 'iw '' .I.. iA.,., I'"h� 1-c '.'yCa ie*•4f w , fl....� .-, ��. _ , ..� ,. I r�` , f : ' II� ✓�
y Y iA . ;
/ � '7; 'Y An 4 ♦ `> -'!.� •� _. I `_ \., ; 1.._. 1 �\ _ •q, I:. t r � 1.1 rl
�i. _ •� .:11 io' c it- ."� f �'_...�f. 9 . f... �' ;T �.1''�1;., ,. ' t '. 11! t-i - Y _ , LBn w� frt- .•{� ` \,,'.
'a"►': A {. . ' l _LI�'F-r �i I _.C. i1 ` V. f,' r �"PP 1_ 11
- 'r`• I- � h .\�� _I'. YIII 9{b. rl�,l, (` \ � Sa ._y, rp F' y�l �i`` , - - IM
__ ,� ��„`• �, u-- c . l_,._1tV F,`i .}. 7777
' YI. a,., �. _'r; r.. ., \ '! L• f / 'n.1±,- fi4° �' '�Yvl �'� ! 1: `S'� i ♦ i �•• ',, rys..� _�
Y s}I iil: v ,p �}r' "'I�• S - .\,.ti �� r .i^��. _ /!-.,, CY;J M :�:' J-�*j- `4.. 1�:JJI,,��, r'.-r r� •_` Y. . . "� �"' (. [� l
Ili '` '1, 7 f+�h-4' :• 'j ��"I pi `a• , .hY..,l' '�I1e t#fir, it II C..+,� ',;` h �. J-"'I -A y�
(.,�, - u`' •� _. �FA.. _ y7 ;F •fT
,.• ��.'' „ .L;� .ti.4��r.:.u. _ h ' _ - i ^ ,
"*r'.
.i. + (' '� v- �. 1 tiu,rv.iy rr ,pr�.:�' � i_, w r -+.�� •ai. v�. ,.I�u '.+ 'i' . ;. `'� I..
}. �• p .A nyf 14u A r• 1 .V r, �, _I t,. •,�• I ♦ lry i ♦1 •1 Y _ T I- ti T"1 ,
•1 ,Fill
f
At: ,� 1:•: T y{ ' w ��•\. `-:�. \ �' s� �!"t}rye, Wit,, '•4� •i s-v.. C ?'I AI \ u
G'. )`•F.7r _ .yw.f".... _ I ' �t.. s _ •L wt:." �� I., T
F: �_. r..;,.>.� .a.: t� (( C• ,1^ I ' ,� � ��.i �'r. r .1, iF �iwi 1, 1 ! Le
1/ ��
-�^y-•>s�.,17r_, �y �� �a .�i,r � 1 _ i ..L.. I _ ..1•' �I _ t 'isl..���iµ. i}c.�r.,� :�r Ti - .� A1., � rv... 1 �� l � „•
' E ? Win►. v. �"� t _•1 h, - 2. 'lt ..� wH.w �ad• I
.!".' -..jj n•Ir :��`� c tJ 'I15i . tih .r if1 - dn �� •�?
/,��) _ ..�
�� r.� 1X
711
IC TV
•
f.t'N ;I S' � �.'. ' �I f� �,i ��� .� ���/ ♦.-, � ���
RAINFALL = t , ��•��,{�� I � vL-r�twr,�t,/e >�V - ti � ^y ./,�• r � 1
ca. '. ,� I rl•>r 1.64 �. .`-' } 1.2U
(.// IS r f 1 t• •.
' .,'F� ... , r'- .� " g, 7•. '1"" ' - y s. 2 1-.r�1 P., 7d�?t 7;:Ef ` rc71" '-2Tt "4 3UrU0G'.
'� ry C - a• ..bit`. 'i'.,_ - '
v .� ,/r �'`�� i ' .�•" �I, � �e b :�' r. 1 �. _ , C .. y.J._� i,� �f z- :n,.��•,�. �_ I��i '��•.�`�,,,_ar V _a c i r . � '�•'�t
ony4�1s hbst'�b'n YOAA s1us ,f
197
♦l `~T'�: - ''` 1 "i lI i �a'v, � .4 '' _ _ I. ,/ � :a:.u'� I .
JFngmtring Ri. Ll�n\Illl!IIL. IIII'. •<� {..�� - ^� V 1
� f +, 1 � ��F� ,7�7- j •�
' 36263 CALLS DE LOBO
t It I,7
r - r4E510E R COUNTY FI OOD CONiPO!
• t 1 .�. NURRIETA,CA 92562 1 "'.'. `Z`,� \'�_ 1 +' L
_...k PH.951304.9552 FAX951.304J568 11 VAIER CONSERVATION ❑ISr+ICT
100-YEAR- I-HOUR
PRECIPITATION
1.
1
1
t
1
EXHIBIT E: SLOPE OF INTENSITY DURATION CURVES
1
1
1
1
1
t
a d r 7
s• jd I"
J - yl. - l..; .,�......1-ia.� �.s- -�.... 1 -Ir» .. '1. ', .��, (; ! 1' J"'•.- Y.t•1'� 1� 7 /, w w y y r
W - { _ '�,_ 1_ ` \ a �y�,' ,y �+s ,�c._• .�' �'. ram, ?'�`_'?'.7��h. q/
SLOPE�PE IN s�, :_,•� ' � , .',_ �.- O TENSITY �' , y� ,• , . 1 �.I ,,
.r 1 1 � 1 , . , . Ii . ++ •i 1 � / ' , 'J t� .,. '� oS` ' �. [ If)^,} L '.1�f] \ 1
AV •I � ( -i4 I J T L N:i'
,5C• n•u \.f. ..�{., J�.} ; CU1\ • E
�• k r -r+v 11 r i1 G,fR. �r�'rVI:{ .!• ''h '�� •P� +
i .^� •l�l ti (�+! .F• a/ a RR. i'C ..y `,•,4 S�� F ... ,
I 1 55 �, a ].. ,'' 4 1.' 'i' , �`p� 2 �a•t..` + •L 'f �' /. 1. '1".�1 n `}� 'TT.',} 7 ry- 'I >'. .r.'1(,!/�3�..-• • I. ..M1 ,IL�� �.5 +fps ` \ �.
�ti. ',I- _�� -t�-.. . j,ar� -"I L ld'kJF : �.���•/ d� • fir �� �v-
1t `b>W n +•'�� t�� _',VT _ �7v a.... �. ` i I� , JFy. ' 7 :- a .?TI' ' ',a.� r!•" . 1 ,� 71 '.y' /a � � Nr ?r,.. � .
�. [' tip_ Y �'. }.. y �: # .tr1 ., .4 'TI . F rNnr7 .a 'T• { , `�r� Se•,t1•yty }�? j r•' -.li J'. [ L �h_ 1,
. �: 1`. ./:' - .• .. A W .icy „t. !' t ,bJ I -1
•!- a i.1.. •��c�+ �F„yh� I, 'y.[�;. - r. ..9 r` i-,:'..r'�„w
1, '�y:1rt.'' �-•�+�f i l*7: J-! .n�.i y,",�.t" y+�':,A�.[?'b�S.r .rl%' 1 ; t � � !. ♦ ri r .a ✓, r{ �T 1, ,'+ I.
+ }-f��L• �flh �� ~ ~ ' ...t`.�44=�_ !, .•CJ t'f""�' � t.' � - f*_� l "',�.�a 1 •- F:
s \a •''.`- `.. './.'I T . 1..= '.`"., / •'•r }. - , •� �{1((({{^^7����`1^'"��, i.-» 1 7-' �, '•l -Y-Fa l r, ) i. 7
+ I _y '`-5y •.A.. ^l�N �e y x ) Sir J'��. [`..Ni.��l •.r:, ty I60
�'ij•c; r .AO 1 � y • 1,�' 7_ _t I 1� q� ( / 1 c. � � RI '� hs. (T��t, 4.
' a .SJ •` �� T I' 1f 'tir �ie.C, x ' '� i T C.r. / ' _ � � '\ I ; .I 'I I / ,'1 � s L`- (4,
✓ .SfS .'�/ •,,,. rx 1+; ' • !` 9 I ,1.+-1 7.�. # ,_v..✓' � i� 1 �. y -` .jl: , 'L •°- 1!c'r�dl ' R.\ I. yl'- rl 1- .(I ••�•�` 4y,'?: ? { �1b�/ Hln' J^(t, •.
�' .i: � .C- {, . "t' �7 � �, � v; ` ',.J'.(.\ n.'+. I�r,�n,) ,(( ,;�' K.`i �v;..+., ,¢,,_a 's , �' �� '• h," n ,( ir,h/'r r �Y' 1�y� '
!R. (�: lyyS C •�, �+ �i. _�, I / lr�� „(..� 1-��+jj�}1 4 h � jr �•: i�-mH•.: 'YpsL '�� .i:- fY.!.I t.. �'\ ,A... tC" I �. /V: � �w � h�• .�`Y�tY fc. •i.'
F.Si('• � ��, ! . � i�' 1 {'i _ I� � I, I .1 .� S. �, i _41.1 J}�I � : �" .i� f v V :x ,rr iv f 2.ra1�vy;� ,7;u. �•� t 1 �:ls G:� t �t., .�} . 1;
' 1 `:.4 "��' M. c '[. •I- -r+--1_ —/'1 Y �q(yy �• , �1;.. 7. •v c: 1.. p,i4 yh "'gib• _ .�� ` '1�.4;1np ''_G -f \• , =\ / °•r?�..+w•.H � +r rh'S� [''".
,7•'1 ".. {,.�a '\a i�: - ii. i \ , I ,iV,rv•. 'o�"-'�P -r :: , ; �S. _t'y, ''j � '.rF •.1•t'., -�1-' �. � n. 1. 1`r�/ '.'R'` ../ , l !S ' �ii(';,
�i. ^y. �-:5- M�: 4 '-�.. 1i0..� �'' �� i 1 + �l ltr�. �-:�{�•r( ^r��T ' t' e^d.; ;'� ».+ 'I. �y, ti..\ �n..` -$� _�'.r:' ..'a` 'S l 7 `� •� '�r . j.�f ,+�r}ilk,. +'
.�;,lS�.j(y 1. Y. �I. .n.•dr,Q: "�-,t'-- -` �t fr �,',�'1'-,:,•� '� .v'+.� �i't�.�'.'•.iT,. li'• .1 f-{•.S.;v+ri'4;�:4 .y`�,..u.,.1c�/ .;. 'd1W �t 1' + w e ,.i{ �f I([ryr:•�.V \,`( - _ W3;'ft a+�::�1
'.e� :�: hl � t +`C x. •Yn 1 '�,`r . . � !' \� _ � ',�/., r `�6L.. . 1.,,.,�+ •li,� i +f1�'7.t:" » = � �..a - � A.1 ( .�� � 1 T •✓e�"i. �.'N= .
���/ �.. 1' ` ti :I 'd' �: i . 1 ..�,J w - 1;�! 1 C(F•e•h"•-+ �F'W/ �q • 1. ♦ �.-1 v_ r j >,- F .y JJ �.T�. � a a! _� � .Y: •? -'I�i-.il-
x�l' �{ . -.. ;,�.. Y._ , ,wd-d r .�._ .,� '4, 1 ��5� 7! .,. +i , .f'. � �� y�1.1 ;11� r:� `/ ^ 7;: 9' � rI c 'y!, � Y. •.A � - ,Yy
Tl' •y. Y ff ej. -,t a:ja.-.r.: " ' L'�I ... ./� . ksi;'•fI7�\�' R 4,,�I "{.,� -^br.� ._�$ ! ';i_„iN �-�.; ij Ij y+'f�IW ;k ' � '� .ate` �3r ' tr•; �:..
te. . Fi, ;.. .� ^lM3»l - T_•����• _ 1 lr t_' I V . i.J t.f ,.f�.1 _ y,'.�! jr'. . .t r6..�•we<x/ �1. fY_.� ... �- i�', k. 'v 1. 'a. Cl •� :n t J.Nr..
�e- �e ' I I >T 2 v.�' I� :, - •I un4gy/ rlap'F:+y'F iJ I- ,�}..; r. /. � r... 4-. ` � ' t r .`�y,i c. •:, ,.t� %4�rr'Nu4 f. '�� �/
/ •;/,y 4 ''� :i- - �` fI ./� �J; +�, �~ ?.. t ♦ : � ,- :iS '.�1�, �.L >;1�y �. f. F'• - `l+�+ I{� •,fir � 4^'
_f �` `' \ t .f' }•;
r •ILK t7�• ��, •'I-� 1 S.. TL+� ,T( t rh .S r m -•C '+. 1 �� '.
_
I.'�.�"JJ �' _, '�"L'• ! �':ro` � W n Y Y� •i� I 1 i - .F f -I ^+ '•1�`� •�r1�Y�:�T �' f Y 4R °1�.�9�?;R y•' �. t��•'Tra l i _ d S.r�_ `'I +[r
I,,�((•• r r :� ,ai e. tp I .. `: 'r, r^">a. _.[e, +� -�,i� . ?i' '•�. i � T ,r1 if i 1y�p��� ., !� l.. •` E 1
',:`T.: r.� � .,�. (`S �'n' Nam. J+r .��yy.Se, '�i " _ � _ �� � ` ,� .i. I ��rs `'S. .SI.!R *j :�l` `i. k`v.•, r.:M nr..n � . n '� T-.
{�?rp��'-. ^'✓ _ i'r .':)'• I - '{' ti� ' '4`_ .5�- � � .:1 7b y - �e��r r{+ 'i::( �` r ,. r � (� ^ `., ,r ,/ •11 h .1 .
:•' .. ' " q te,�`+ '�.,' G . n� �M ve,t\ r .�. '�'#''� � yi.•� ..� _�\,-. ' ,�Xg'e, .f,`4 _ r- ' ;1,, _S{./r f i ,�1 ,� � 1 ,v., .
C.�. Y t. -, R ..• 7�, { f_ _ 1 • 1 1. ` `°i . 'J.•. 1 -_'"1:4Wfr "}j fl. i.: 'l ,e / +,4,,'. - _ , `I, ';\ '�� ).
,A,. .,.r. �. ..•�4� �'1* '� _ 1 .. -.t .,f.' II Fi^. *f"r �'� ' .-•r.:-Q' -' , \ �l".. flr�y? �.� c��•,.a , i � } �, l •+ •c .
r' .r . y h'• .6 - - r4 -- ,r ♦•a }.-..-.T`' c: ;[w'
� /'•�'7" _}k r-i f, ./... � �� f� , � �-#/. 7J•_• 1 q � �` � � „` 'i, q�:� }'. �, tn,�„5�1.+��I F.�.., Y�� r, 1�� q�`'la .`� .�.11••
^ '' 't'LyoS " use +' _L'7 - D i "a ,S:,n. F•1� r.� - - `cw + ",t r•:4JaF*yrMf?'. _ ''� L r a:` './4 '7ta,. �.y .ly - "•J° , i I, J
j - a ,�i4 _� � : \, •'., � r � � ^-'1 _ ". Q,
�/Y• / tG._ ,A 5e, ��,r c n i
1 1 ! ?•_ -
•/1 l T � !, '�•t t) I '•" r . . fY- .` jy ( 1.. 1 .w•r l;. • Y N�.I
I r ' ', r .. * K -. �+ ..,'. ..s•.
RAINFALL = 0.55 '� ;� \ i d.i y,aLn,f�,Yl,•. '�.. :1 � ,* ��1,.�,, ,L�` � "•_�_� -1 �: rsl_ ♦;
1 ..,i �(, A++L -O,L, _ } -t••i r(_Y+.1 r .�9} r t ,I� j1 tf�l'. I S. • �t SJ �' I��.` I �. } I i i L,
'�,JT r.r fl i'r`� t •raM'-'YK-?. •r#+�AF r , X yn- .iwn- 1. ,r.. Lt i. •. 1 I 'r•
! :� � �. � �f ., r 1-I.� , r il�• , -:3-i'� _ .�•l� — i. , '.�!41 ': .r tr.r µl ] j '?• ��{•�1t _�( .�,:� �� .�.'y� .'��i.Fai-'.1 �^-y.p �l
r. / ^• ' _ ,'�. .r. I •�:A�ei�. i l��_ A1,. ..7�d_WV �I,�. i ;:� :�u _
:. 1 (f•.rfn•F. ��•I r �Y ',' .Jr� i.,l. . la '.1�, ��.f .s r ,, 3+ '_ I y •.n. "+� �; . q -�I.� �_ r . l .
.SI I- -.y}. _,�� Y., ti _,` I Y ,�O.e. n, "P ll'.� •f.Jr ,r' .. '� .r � i a +�"• ` .� 1 - � , '1'•^� ?� inQ { +3 Ce rI{r v.( i u• ,
I.. ". ,i`., * *+ y. ,1 ., .I:' . t 1 e �� t / '!: j. 1 �'�! f-i �i.\�hp ' ^Y,' g• 11lTQl� h•LPUfdI� bt'
'J .r� .r,y •r ,�+{,� y
,, •ra.-y, yx- ;} ,� ,/ ,:i 5, �� ;�• 1 ., .� •, .r tl•• ,i, � n'' .i ` Shc; 'DIY ri' .' 't 1' .r'�hpr?�t•tli,�.dllj!{ L}i'OU10 TIC
,1tfa, 11ii +• >, t .rL L� ...f u' h2•' l' n `}• ,4 C ''S'- . I'{. .h,�• ict-4 } , h '�'i '.'T':.0�1'f�p p �: ecoids
• D ) r -�oaL 11 I .� -11. _ � .�' l - /: ..L. . x �. s ._.
` w� 'r'�'1.,-- y I"�i "' _ _ I -�^ • r _� v , .7 1^I +!I l AFL , , ♦— •' .: '�K'. ., ,:' {�], ((//I���� , �.
��
+:, y, I .,/ - T'e.'+ a �, �i .I r..c W�—�••'•Y4"^a• ':. w f t - ! �v ( 1 `, t {):.� 1' i~.', `�# �' t � '!• �� 0 - ,iw•� -1•Jt,1 �-.. J-'
.+r.A ���mlln•liln6 a� Con,Ultin@. IUC. %,: ,'. 1 ..tee: .r., ' 'r ♦ i _ a ♦7 • ` / > y rri �, �.
,, . ! !r'K, �_ y.jldr.� s Y, �- i . ` �_ •�� ,.,•, t , , .,r_ 1 ._ ! 'k a l M .p.."
36263CALLEDELOBO ,. -; g5 ._�"" 1, t r4 - - RIVERSIDE COLNTY FLOOD CONTROL
' f ! MURRIETA CA 92562 - - - / ~ a. ? c `� ."- o� ` rta.. ar '/ f . .r R v D
[ "� r ' .r•G . 4'x �.roa. � °' / Y' • V 'a yi '- } �'• WATER CONSERVATION DISTRICT
PIL 951304.9552 FAX 9513043%8
1 a �l: , >9 I ! 1 SLOPE OF
. k ', t �. '. INTENSITY DURATION
_ <� .''I , I �`- ti . .T� .,_. _ � 4 •, �..5 ; .�` .Il,;`.�rN , ', k '`\L t , t • ♦��x5j.,; '! ^' sl CURVE
1 �
1
1
i
1
1
1
i
1
iEXHIBIT F: POST-PROJECT UNIT HYDROGRAPH HYDROLOGY MAP
1
i
1
1
1
1
i
1
i
i
' EXHIBIT G: PHASE I SITE PLAN
1.
1
1
;1
'1
1
1
1
' � l
EXHIBIT H: PHASE II SITE PLAN
1
1
1
I�
ICTV
IN THE CITY OF TEMECULA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA
..........
OST� ROJ CT CONDITION SIT HYDRO OGY MA
—r~--.- —`—
.............
NICHD�` AD -fir .
S RO Y � —•�.�— K
0. 17 T
y _ I
�'.—• er..��••. Y�g �_�_ 1 Mom'
108 it i
1151 . D y t
1
107
1 1
1152. 0
f A5 X 1159.76
0. 40
X 1151 .69
X 1155.7
m
` X 153.5
i A2
1 . 4.3
GRAPHIC SCALE
f 50, 0 25' 50' l00'
1 =
1
1
1" 50'
It 8 g
1 \
1 a
Y�Y
1 �
102
1156. 2 � -- _
< 1176.53 A3 �.
1 .28 Y
105
�. 1155. 0
t
A6
4. 51 X 11 �
Al 103
1170. 0 LEGEND:
X.X NODE/CONCENTRATION POINT
X.X FLOWLINE ELEVATION
XXXX.X APPROXIMATE INVERT ELEVATION
G rxxx SUB AREA
1 A4 Q
.X ACRES
0. 63 L=XXX' FLOW DISTANCE
\ ----------F--------- FLOW PATH
WATERSHED SUB-BOUNDARY
1
101 t O (� WATERSHED BOUNDARY
1212. 0
1
1
,
104 �
N
1274. 0
X1
301
1274. 0
EXHIBIT "A"
_ ICTV
�=gineering & Consulting, Inc.
36263 CALLE DE LOBO POST-PROJECT CONDITION
MURRIETA, CA 92562
Drawing Name: 0:\186.01.12\Engineering\Hydrology—Plan\Exhibits\Hydrology Map—rev.dwg
PH. 951.304.9552 FAX 951.304.3568 SITE HYDROLOGY MAP
Last Opened: Aug 09, 2012 — 4:31pm by Jcarver
ICTV
IN THE CITY OF TEMECULA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA
DRAIN'AG FACI ITI S MA
.......... .................
...............
PARKWAY
DRAIN #3
L
00
CNO�pS ROAD
o -
�rsr[t � •4� m �
•
—
Ali PARKWAY
DRAIN #2
—
a
1
X 1159.76
INFIL TRA TION
X 1151 .69 BASINS
I g�
1 X 1155.7
X 153.5
I
4
i
1
1
R
50' 0R4PH15'SCALE50' 100'
PARKWAY
8 DRAIN #1 1" s 50'
g E
r
O \ w
O f
1-
< 1176.53
E
E
V—DI TCH #2
F
I
t
{crL
X 11E
E
f
f V—DI TCH` #1 G
V �
F
i
i
E
Im R VP l
A i �
10
1 _
�� X 12
f
EXHIBIT
R _
I 1 _
I
i E[f
E _
I
i
F
/I
Engineering Consulting, Inc.
ICTV E
36263 CALLE DE LOBO DRAINAGE
FACILITIES
MURRIETA, CA 92562
PH. 951.304.9552 FAX 951.304.3568 MAP
I �
ICTV
IN THE CITY OF TEMECULA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA
............ ......................
OST� ROJ CT UNIT HYDROGRA H HYDRO OGY MA
r__
N,CHOL`S ROAD 40'
_ o
102 i
a I
_ 202
1155. 0
1
1 �1
X 1159.76
X 1151 .69
rn
H
X 1155.7
I X 11 A 3.5
I
� e
I 4. 33 4. 51 - -
I �
50' O�PH'25'SCALE50' 100'
B 1" = 50'
8
g —'r
M�
1176.53 ® ®
1 i
X 11E
LEGEND:
X.X NODE/CONCENTRATION POINT
X.X FLOWLINE ELEVATION
i
G XXX SUB AREA
X.X ACRES
---------t---- FLOW PATH
WATERSHED BOUNDARY
P
1
SRN 1 VC)OI
IfA7'OK Otl.
1
• f0.
101
N \
1274. 0
X1
201
1274. 0
lilill Engineering & Consulting, Inc.
ICTV
36263 CALLE DE LOBO POST-PROJECT UNIT
MURRIETA, CA 92562
Drawing Name: 0:\186.01.12\Engineering\Hydrology—Plan\Exhibits\UH Hydrology Map—post.dwg PH. 951.304.9552 FAX 951.304.3568 HYDROGRAPH MAP
Last Opened: Aug 13, 2012 — 3:54pm by jcarver
ICTV
IN THE CITY OF TEMECULA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA
SIT AN - HAS I
-53.95 T 56.40
_ -- -------PARKWAY 8
DRAIN #3 --- ------------ VARIES 4'
----- w 4.00
6°° -------------- Of 7 5'-22.2'
CH��S R�A� -- -r- -- >
CD
2.00 1
.� A 7 n a9� 2
0. 17
3"-6" RIVER ROCK
IMPERVIOUS
N 65 E 200 FABRIC ALONG
SIDES ONLY
-
0 0 1 .5"-2.5" AASHTO
p p p " PERFORATED p 0. 57 GRAVEL PER
Nb E CASQA HANDBOOK
} - PARKWAY
DRAIN #2 Op o Op - p co 0
PHASE 1 TEMPORARY BASIN
_= _ - ==� - ,.�.- 6" CLEAN
t: .:}Y "-;� i _: y :.- ,.�. � �: ��;�� �. ON-COMPACTED
WQ VOL-2 , 907 CF �..t_ -::=:5` -=�=_ w.�:� -��=_�� == _
�+ :j.:_,.. SAND
100-YR MIT VOL-1 , 734 CF � Ty�S�`� SECTION A-A
.27 R
TOTAL REQ ' D VOL=4 , 641 CF 3.4 ' 4.3'
BASIN VOLUME=22 , 221 CF E NTS 55.8 VARIES
4.7'-20.7'
E + Lo
r. 1
7 /-53.65
h N
„F 2
a, 3"-6" RIVER ROCK
a 'R A5 X 1159.76
4 / IMPERVIOUS
+ FABRIC ALONG
J, 0 40 I NFI L TRA TI ON p p p p p
SIDES ONLY
�.�t -BASINS
r.'
1 .5"-2.5" AASHTO
p p p c9" PERFORATED p GRAVEL Ft. (SEE FIGURE 3C) , M E CASQA7 HANDBOOK
P
55.7 VARIES 4.0
X 1155.7 /-53.75 J 1 _ - _ 6" CLEAN
2 co ��~ - - • . . �'- r==- ON-COMPACTED
t: SAND
3 :: �I_ n' <,fF. a) 3"-6" RIVER ROCK
zF „- m
X 153.5 - = O o 0 0 0 0 o I SECTION B-B
$, I MPERV OUS
;a p p p p p p FABRIC ALONG
f' F A2 o t �o SIDES DES ONLY
` NTS
n -2.5" AASHTO
• '43 Bra B ;� O O" PER�FORAT 0 10 "57 GRAVEL PER
n,U .,r
E CASQA HANDBOOK
Tr
CD
;r -,. 6" CLEAN
., ON COMPACTED
SAND
4.0' VARIES 3.0'
55.8 5.35
3.5'-22.6'
r SECTION C-C
k d T NTS N 3.85
1
r s � PARK WA Y
ti5p = DRAIN #1
3"-6" RIVER ROCK
�F
1- �
15-.
NT
m
s, IMPERVIOUS
FABRIC ALONG
SIDES ONLY
s; os
rn , Q O O 1 .5"-2.5" AASHTO
Sul- PERFORATED p 0. 57 GRAVEL PER
E CASQA HANDBOOK
O O O O O
a
a
A3 i 6" CLEAN
- - _t;= .=' =' ON-COMPACTED
�,_ 'Qt' - � ..s..t -.c->t.�.:1:�'�+-.,-�. .;..� .:.-. .' li:cam_"'�-•-•_ _
•� _.�_ '�:"``,.'.:=.ice-c'^:-c MB.:... ',;'±
Y= ': 1 . 28
_ SAND
i
-D
V—DI TCH #2 SECTION D
N � NTS
tom . u l fi
d f o
3' 155' 3'
z = Jil-
-
V—DI TCH #1
v NTS
A4
0. 63 LEGEND:
rxx_x*'� SUB AREA
X.X ACRES
WATERSHED BOUNDARY
RIP-RAP
TEMPORARY PHASE I PARKING
v
FIGURE
es '%•
3 A
ICTV
M%k E gineenng & Consulting, Inc.
GRAPHIC SCALE
X 12 21 �1 80"
36263 CALLE DE LOBO SITE PLAN
= 40' MURRIETA, CA 92562
PH. 951.304.9552 FAX 951.304.3568 PHASE
r
E
ICTV
IN THE CITY OF TEMECULA, COUNTY OF RIVERSIDE, STATE OF CALIFORNIA
SIT AN HAS 11
............
-----PARK WA Y g
DRAIN #`3 ___- ------
FS --
8+00 -------- _-_--_-
CH0�-p`5 ROAD P
POROUS
PAVEMENT
�w oA A7 � o
1 uw WP
1 . , n +,6 •
jk 1152.73 u _
FSS1
'Z
m
D S f gp
m-'vm rZ n� ,p4 .Y 1S 13
N 1 �
N
_ A PARKWAY
DRAIN #2
STA9>
53 50. 7" CONCRETE PAVER TYP. NO 8 PARKING STALL CONCRETE
.27 � F
AGGREGATE PAVERS
2"-6" OF 3'4" WASHED
FRACTURED OPEN—GRADED
STONE PER ASTM NO. 57
a BASE REQUIREMENT ,Ik+r.�. �4�� ':. •.'.win:.'"• �, .i � v ' �.5c•1- F-+�'L' u.. > s• sl'�J4.3.
1 SY `��F �
"' 1+9 \�'4�•'' 'F�4 e.������� �R�1��'>�v�.�i�S�'.2.Y`'�^� .��f'i�+�� ���}"J r4
V' _ N A 4 �t{J'.��.+'�n "'�y�� r%n���.��`�,YiSjC f `'iG.'k�•y' F .�`7�� '�.
T 6237" 14"-16" OF 1 Y2"-3"CLEANED
Z$ F D FRACTURED OPEN—GRADED
T 52.0 STONE PER ASTM N0. 2
n FS 9
�N N N N" �� �N N oTNi in n m uy�cn c:o�s rN y, AT W ALK/RWF AY SUBBASE REQUIREMENTS
EC9 ( — i I )I I II_—
0.0 CU / 1159.A 5
ww wwwN O 4O INFIL TRA TION 90% COMPACTED FILL
s IMPERVIOUS LINER
s ' 1 OR NATURAL SOIL ALL SIDES
�� aGR C' BASINS
wA, SUBGRADE
X
A t� t►l��A n X - N �� NN NtT _ T +7 .
V' n A p.P O rn� Nn NA - 1 TC
LA �btif rnJ �� o� S�FL
AA � wN b
O rn U m 0 2.9% ; rn N uZ 5 .32 TC
65 FL
52.
� X 1155.7 NTS
r m
wa
2X m a a N��o
N DGE Wp m
xm'�153 2 N o
N " O N
mm A2 �� � c F 3 3
inn C
U A
O
�;o 1 . 43 s4
5
u�n N SS.gOF i
N
�n inn ` j0 g5 ,yb, �T rn � 53.37 FL
Or 9
Si
0A \\ 2X EDG aF W WAY _
m
%
v� jOV 9
O E
�� `y Ocn NJ
tP C
Ss�
map
1G3 � o
4.3
PARKWAY
�> N4 DRAIN #1
15+06 r
p 4.6
54.02 FL = �� ...
m
�m �� AN r Pn-oo C71 2. 55. 7F� FS F
nv-
{�
m
93 SS.50 -
inn�nn
'Z1L � y,TA, 15+56.37
54.35 R_ u Fs
PP Nrn +1
n 0 �, Rt•
In Atn� 5'S
Arn 1 . 28 � ��nsss �wpy
n
J OJN rn� TV—DI TCH #2
N 00 00
O �n n
' a N n FS1a�
Jpp J W N�• ..i:Y -
I�O -
r �O,a rn oo p,�p wO �i orn n
m� N �� �� V• Orn rn0�' �N O f0 �' �- .
C
.J �O � U rn ONipi 1�
GRAPHIC SCALE
4 . 51 50' 0 25' 50' 100'
�� ww
a,rn rn am u'o" wu �c
A 1
n 1" 50'
N �n
O JJ
0 . 43
o
t.vzIq
rn N trni+# �� MODJ�N J
�nb N~ 2. DPNNlT,EO O.E 'ED
O
r
"'o oNo ino n
� r
�rn w iO>
rnm
rn rn rn,
N J
U�J
V—DI TCH #1
J
A4
\
FIGURE 3E
N _ -
�----.� ICTV
Engineering & Consulting, Inc.
x 12 36263 CALLE DE LOBO SITE PLAN
MURRIETA, CA 92562 9
PH. 951.304.9552 FAX 951.304.3568 PHASE 11