Loading...
HomeMy WebLinkAboutTract Map 3334 Lot A & D Drainage Report Costco• • • • • ;1i�„ _ SCE • E N G I N E E R I N G • • • • DRAINAGE STUDY COSTCO TEMECULA SITE RENOVATION • MAY 2016 Temecula, CA prepared for: • Costco Wholesale I • 999 Lake Drive r• • Issaquah, WA 98027 858.270.9900 • Fuscoe Engineering, Inc. • 6390 Greenwich Drive, Suite 170 t R San Diego, California 92122 • 858.554.1500 • • www.fuscoe.com Bryan D. Smith, P.E. • Job # 2156.088.01 ,. {: ' • • • • • • • DRAINAGE STUDY • • • • • Costco Wholesale #491 Site Renovations • • • • City of Temecula, California • • • • • • Q�pFESSlO� • i D. SMi��ci • , � C 75822 � Prepared By Jesus Garcia Under the Responsible Charge of: EXP.p6)g0116 cl %\- ?�P • SIq�OF • • 5 ! K l6 • Bryan D. S RCE 75822 EXP: 06-30-16 • Fuscoe Engineering, San Diego, Inc. • 6390 Greenwich Dr., Ste 170 San Diego, CA 92122 • • For • Costco Wholesale Corporation • 999 Lake Drive • Issaquah, WA 98027 • • May 2016 • • • • • • • Costco Wholesale #491 MAY 2016 DRAINAGE STUDY • • TABLE OF CONTENTS • • 1. INTRODUCTION ......................................................................................................................... 2 1.1 Project Description.......................................................................................................................2 • 1.2 Existing Conditions ......................................................................................................................2 • 1.3 Proposed Conditions ...................................................................................................................2 • 2. METHODOLOGY ........................................................................................................................ 3 • 2.1 Rational Method..........................................................................................................................3 • 2.2 Runoff Coefficient........................................................................................................................5 • 2.3 Rainfall Intensity...........................................................................................................................5 • 2.4 Tributary Areas............................................................................................................................5 • 3. CALCULATIONS/RESULTS............................................................................................................. 6 3.1 Pre & Post Development Peak Flow Comparison ............................................................................6 3.2 Storm Water Quality....................................................................................................................8 • 3.3 HGL Calculations........................................................................................................................8 4. CONCLUSION............................................................................................................................ 8 • • Appendix 1 ..................................................................Pre-Development Map • Appendix 2 .................................................................Post-Development Map • Appendix 3......................................Riverside Hydrology Manual References Appendix 4 .......................................................................... AES Calculations • Appendix 5...................................................Storm Drain Record Drawings Appendix 6....................................................................HGL Calculations • • • • • • • • • • • • • • • • • • • Costco Wholesale #491 MAY 2016 DRAINAGE STUDY • • • • • • • • • • • N COSTCO • ,� WHOLESALE • `gyp • is �W • �oHo� • • • VICINITY MAP • NO SCALE • Figure l Vicinity Map • • • • • • • • • • • • • • • 1 • • • • • Costco Wholesale #491 MAY 2016 DRAINAGE STUDY • • 1 . INTRODUCTION The drainage study was performed to determine the hydrologic impact of the Costco Temecula Site Renovations project and analyze the capacity of the onsite storm drain facilities. The following is a summary • of the analysis which was performed in accordance with the Riverside County Hydrology Manual. This study • demonstrates the proposed project will not result in a significant increase in total runoff from the site and will • not cause a condition of concern for drainage systems when compared to existing conditions. • 1 .1 Project Description • • The project site is located of 26610 Ynez Rood in the City of Temecula, California, northeast of the Ynez • Road and Overland Drive intersection. The site is approximately 0.4 miles east of Interstate 5. • The proposed Costco Temecula Site Renovations project will relocate the Costco gasoline station entrance • on Ring Road 150ft to the east and will realign the entry drive aisle while adding landscape planters and • reconfiguring some parking. • 1 .2 Existing Conditions • The existing project site is the north-west quadrant of the commercial development that consists of an • existing Costco Warehouse, gasoline station and parking lot with landscape areas. For this north- west quadrant the parking lot area primarily sheet flows from east to west and enters a private 18" • HDPE storm drain that runs north to south. Runoff for the west half of the warehouse roof is collected • and piped to o private 15" HDPE storm drain that runs north to south. The gas station canopy storm runoff is also piped to the private 15" HDPE via a 4" storm drain. These private drainage areas are • routed to onsite public drainage systems and eventually converge to the public 5'x7' RCB across Ynez • Road. The private and on-site public storm drain system were constructed per drawing no. LD99- 219GR included in Appendix 5. • • The project's existing layout and grading divides the project site into seven (7) sub-basins. These • basins have independent, private drainage systems which will tie into the existing public storm drain system located on-site. The existing 18" HDPE collects '2 of these sub-basins which makeup the • majority of the parking lot. The existing 15" collects the roof runoff of the warehouse, the gas station • canopy and some parking area north of the warehouse. • For the Pre-development Drainage Exhibit refer to Appendix 1 . • 1 .3 Proposed Conditions The proposed project consists of a relocating the gasoline station entranced 150ff to the east and will reconfigure the existing parking lot to include landscaped planters along the entrance aisle. The • project's layout and grading design introduces an eighth (8th) sub-basin for the new improvements. • The proposed improvements will effectively reduce drainage area by 0.30ac from the parking area • that sheet flows to the west into the 18" HDPE and re-routes the runoff of the new improvement to the 15" HDPE collector for the roof drains. The runoff for the new improvements will be drained and collected to a proposed flow through planter (FTP). In order to meet water quality requirements the • FTP will serve to filter low storm runoff while higher storm flows will bypass the filtration of the FTP. The proposed outlet of the FTP is on 8" HDPE that connects to the existing 15"HDPE. • Please refer to Appendix 2 for the Post-Development Drainage Exhibit. • • 2 • • • • Cosrco Wholesale #491 MAY 2016 DRAINAGE STUDY • • 2. METHODOLOGY The storm drain system was designed based on the Riverside County Hydrology Manual, April 1978. • The AES-2014 computer program was used to calculate the peak runoff from the 100-year storm • event using the rational method as described in the Riverside County Hydrology Manual. For the • results of these calculations refer to Appendix 4 • 2.1 Rational Method As mentioned above, runoff on the project site was calculated for the 100-year storm event. Runoff was calculated using the Modified Rational Method which is given by the following equation: • • Q = C x I x A • Where: • Q = Flow rote in cubic feet per second (cfs) • C = Runoff coefficient I = Rainfall Intensity in inches per hour (in/hr) • A = Drainage basin area in acres, (ac) • • Modified Rational Method calculations were performed using the AES-2014 computer program. To perform the hydrology routing, the total watershed area is divided into sub-areas which discharge at • designated nodes. The procedure for the sub-area summation model is as follows: • • (1) Subdivide the watershed into an subareas and subsequent sub-areas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each sub- area. (2) Estimate an initial T, by using the appropriate nomograph or overland flow velocity estimation. The minimum Tc considered is 5.0 minutes.. • • (3) Using the initial T,, determine the corresponding values of I. Then Q = CIA. • (4) Using Q, estimate the travel time between this node and the next by Manning's equation • as applied to particular channel or conduit linking the two nodes. Then, repeat the • calculation for Q based on the revised intensity (which is a function of the revised time of • concentration) • • • • • • • • 3 • • • • • Costco Wholesale #491 MAY2016 DRAINAGE STUDY • The nodes are joined together by links, which may be sheet flow and pipe flow. The AES-2014 • computer sub-area menu is as follows: • SUBAREA HYDROLOGIC PROCESS 1 . Confluence analysis at node. 2. Initial sub-area analysis (including time of concentration calculation). • 3. Pipe flow travel time (computer estimated). • 4. Pipe flow travel time (user specified). 5. Trapezoidal channel travel time. • 6. Street flow analysis through sub-area. • 7. User-specified information at node. • 8. Addition of sub-area runoff to main line. 9. V-gutter flow through area. • 10. Copy main stream data to memory bank • 11 . Confluence main stream data with a memory bank • 12. Clear a memory bank • At the confluence point of two or more basins, the following procedure is used to combine peak flow • rates to account for differences in the basin's times of concentration. This adjustment is based on the • assumption that each basin's hydrographs are triangular in shape. • (1). If the collection streams have the some times of concentration, then the Q values are directly • summed, • Qp = Q. + Qb; Tp = T. = Tb • • (2). If the collection streams have different times of concentration, the smaller of the tributary Q • values may be adjusted as follows: • (i). The most frequent case is where the collection stream with the longer time of • concentration has the larger Q. The smaller Q value is adjusted by a ratio of rainfall • intensities, • Qp = Qb + Q.(Ib/lo); Ta = T. • • (ii). In some cases, the collection stream with the shorter time of concentration has the • larger Q. Then the sma(Tb./T.); llerQ is adjusted by a ratio of the T values. ll • Qp = Qb+ Q.`'b./r n); Tp = Tb • • • • • • • • 4 • • • • • Cosfco Wholesale #491 MAY 2016 DRAINAGE STUDY • • 2.2 Runoff Coefficient • A composite runoff coefficient was calculated for each of the basins. Based on the Riverside • Hydrology Manual; Plate C-1 .52, the site is located in Soil Group BC. The runoff coefficient for the • project was calculated using Runoff Coefficient curves, Plate 5.2 and Plate 5.3, for Soil B and Soil C. • The runoff coefficient for a commercial project with a minimum Tc of 5 minutes, is approximately 0.89. See Appendix 3 for Riverside Hydrology references. • • 2.3 Rainfall Intensity • Rainfall intensity was determined by AES using the 1978 Riverside County Hydrology Manual.. • 2.4 Tributary Areas • Drainage basins are delineated on the enclosed Post Development Drainage Exhibit and graphically • portray the tributary area for each drainage basin. • • • • • • • • • • • • • • • • • • • • • • • • • 5 • • • • • Costco Wholesale #491 MAY 2016 DRAINAGE STUDY • • 3. CALCULATIONS/RESULTS 3.1 Pre & Post Development Peak Flow Comparison • Below are a series of tables which summarize the calculations provided in the Appendix of this report. • • EXISTING DRAINAGE FLOWSTO CONFLUENCE POINT • CONDITION BASIN DRAINAGE AREA (ac) Quo (cfs) • Existing Basin A 1.06 3.4 • Existing Basin B 2.40 7.6 • Existing Condition Total @ Confluence Point 3.46 11.0 • Table 1 a. Existing Condition Peak Drainage Flow Rates @ Confluence Point 1 • • EXISTING DRAINAGE FLOWSTO CONFLUENCE POINT • CONDITION BASIN DRAINAGE AREA (ac) Quo (cfs) • Existing Basin C 0.38 1.6 • Existing Basin D 0.12 0.5 • Existing Basin E 0.34 1.4 • Existing Basin F 0.83 3.3 • Existing Basin G 0.87 3.4 • Existing Condition Total @ Confluence Point 2.54 10.2 • Table 1 b. Existing Condition Peak Drainage Flow Rates @ Confluence Point 2 • • The tables above lists the peak flow rates for the project site for the existing condition for the. 100 year rainfall event. For offsite drainage, see Appendix 5 for existing drainage study. • • • • • • • • • • • • • • • 6 • • • • • Costco Wholesale #491 MAY 2016 DRAINAGE STUDY PROPOSED DRAINAGE FLOWS TO CONFLUENCE POINT 1 • • CONDITION BASIN DRAINAGE AREA (ac) Qtuo (cfs) • Existing Basin A 1.06 3.4 • Proposed Basin B 2.10 6.6 • Existing Condition Total @ Confluence Point 3.16 10.0 • Table.2a. Proposed Condition Peak Drainage Flow Rates @ Confluence Point 1 • PROPOSED DRAINAGE FLOWSTO CONFLUENCE POINT • CONDITION BASIN DRAINAGE AREA (ac) Qtuo (cfs) • Proposed Basin C 0.29 1.2 • Existing Basin D 0.12 0.5 • Existing Basin E 0.34 1.4 • Proposed Basin F 0.83 3.3 • Existing Basin G 0.87 3.4 • Existing Basin H 0.39 l.b • Existing Condition Total @ Confluence Point 2.84 11.4 • Table 2b. Proposed Condition Peak Drainage Flow Rates @ Confluence Point 2 • • The tables above lists the peak flow rates for the project site for the proposed condition for the 100 • year rainfall event. For offsite drainage, see Appendix 5 for existing drainage study. • • PEAK DRAINAGE FLOW • • • CONFLUENCE RAINFALL EXISTING CONDITION PROPOSED CONDITION COMPARISION • POINT EVENT • A 0100 (CFS) 11.0 10.0 0.9 Decrease • B 0100 (CFS) 10.2 11.4 1.1 Increase TOTAL 21.2 21.4 0.2Increase • Table 3. Proposed Condition Peak Drainage Flow Rates • • Table 3 shows the comparison between the peak flow rates for the proposed project and the existing • flow rate for the project site for the proposed condition for the 100 year rainfall event. The storm runoff flows confluence points of analysis then combined before entering the public culvert at Ynez • Road. As shown in Table 3 above, the project's combined peak runoff rate increase for the 100 year rainfall event is 0.2cfs. • • • • • 7 • • • • Cosrco Wholesale #491 MAY 2016 DRAINAGE STUDY • • 3.2 Storm Water Quality • The project's runoff will be treated for storm water quality through the use of a flow through planter • area. A more detailed discussion of the project's storm water quality BMPs can be found in the • project's Storm Water Quality Management Plan. • 3.3 HGL Calculations • • In order to analyze the hydraulic effects on the increase of 1 A cfs to the existing private 15" HDPE • storm collector, hydraulic grade line calculations hove been provided in Appendix 6. In existing conditions at confluence point 1 (node 100) where the private 15" HDPE connects to the public • 36"RCP, the public main is under pressure with an HGL of 1052.7. This results in a surface to HGL • depth of 7.4ft about per reference drawing LD99-219GR. The existing private 15" HDPE is analyzed • upstream from this point along with the increase in flow coming from the FTP (node 115) and the results show that upstream HGLs for the private collector are equal or greater than 2.3h below • ground. • 4. CONCLUSION • As shown in Table 3 in Section 3, the proposed project peak flow is similar to existing. The private 15" • HDPE storm drain has capacity to convey the increase of 1 .2cfs per the HGL calculations'. The public 36" RCP has a surface to HGL depth of 7.4h and also has capacity to convey the 1.2cfs increase. • Point of confluence I & 2 converge onsite just before entering the public double 5'X7' RCB on Ynez • Road and together hove a minimal increase of 0.2cfs which negligibly affects the HGL's of the double • 5'X7' RCB. Therefore, the proposed project is not anticipated to negatively affect any downstream facilities when compared to the existing condition. • • • • • • • • • • • • • • • • • • 8 • • • • • • • • • • • • • • • • • Appendix 1 • • Pre-Development Map • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Appendix 2 • • Post-Development Map • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Appendix 3 • • Riverside Hydrology Manual. References • • • • • • • • • • • • • • • • • • • • • • • • • • . L ' �' .,, fir, t •'f! ��"k�l� �J. � .� '9 yQ a yAN � z . <eTy (1"�, L �°J , - r 5lommxXVtV �a 5 � ..S ' rA Ip=rJ!�7t• ,y}5� -� f lrr i YY it^" °� +�ry !�' f° Y! �o ,i r`r•igg : {,jn9�(pP�+"liatJ,1i• � �p �✓�fr jjr� 116,p7yi Fi1y . , ^ `9 i y��YiNEI f�.'M6tAta�l �3 � A f a y1 49 0 'Y1�� I 1 '"1 y� r l n 1 '�.Yi.��r�1 �• �p.. �v ly ' � �,� .mot;. 4�M1/{x. • ((/ r� \�,aI y %l+ �NM ;,y�y�. 1a`,i AI✓� r. y r./f • _ ^\u:nC Y � �f° n y•�1 fi � � �71A l�v ,.'n • +�`��•�-• y4 w�, �ulr�,���,���j� a yh�J g 9�e=\�1'1 L{��,t!'Z aJ,�vF J �, j � n} �d 'r = j7" _1 .1 'S may" yet. !r ,y l�Y�' J.�". I I[aN� •��C`�,Ya �• t? oliffi� " �, � 79Syy7AYtvap � enjr �t jys��� 11f�\C1 '.. L 17' li�kc 1 �11 7' Li 6`r, e •1V'•! �� "�)y��hi' 1 �.�y�! IJ�,r' • , ��1'���'bF°;fl' �. ir�'` `�,�� �3'.�=��; , �, ;; �fit�� • . ;r`;;, . ". r.,.�IV, 571 ti'01t . F� IJ.._ 'y '3: /(• ` �Y Y �j.� f /p�f;st �f,�i�"��i��. r� {� 7 i:fir f}J�r I(_4 tr ��lr,� ,1ri ��i "Y �h, �?• /7 !J,$ i.r : 1�+� 3 �1�~ +7'�1t i4L. .LlK�1^c4C,. .I, ` +- 4w.♦1�, y'"All. ^ , .• A•S �i9lT ��/�y1�• �•�I/�:}[��r'v�. 1 .� rZ 1�Y�yy�y ��� / I rl.(�=i-��, (•� /I r, � 1 .1. f' •IM' W.'. r eLLarVl j'S j*`—, 1( l�I/�� ,. r '�}�1i�,, ENS �. L71 0 .�-��• e; j�� •^ `•5.I..J a r4 .�a � t/j, •t`�'rr,P'�.,/e.r �l°41�.�f"11:'�'q� 9J/�' R'\�. �� R�>ff I( ! s��l � ��1�',• ' `y( '`� �i���� S `��rj• ,�,Ij��a�i,�yq,��lf�'�e������r��„'' ��5 �a\�,�' �wj WIN j,,1,+1��/7`x��`� .41 � - 11,01 `•/ \� '� ti� a .. 1 a l �7�::'r`��;T11°,��tl �\ � � r:i/�-af. �5'.`_.✓IJE,�a, 1 �� 'f• ' , � r � �` ��} h i.�,t �'f`� '�A1' +y +'yam rY ¢ r . •` //"r,g' d� \�'f i, '�°+ ?�" 'T ��4•r<.�3 v.o�y,Aa �% `y ? I^. _ 1 i ° ���a i �`.I,s�. 6`;.\� \ � rr�FF, C ) � + , a����,.- : d I . ��, +4.11�iiClpA ((�� I `•'J�. � (<i;r�: a l • ■Yt��NrNY!!llesY!■ ■■d■♦•■■■■qln■■■t■�d�p���NNME■dt■■q!�■� d■ ■ qt■! NtHtttt■ttH1HW■!■■■■Bpd■q■gt■■t n■tt !t■Bgd■NtYY� ■■NYYggdt■■NtNN■■W■N■ttN■N■■W■t■gq■i■YY■N�t■u hint ommo■ins ■ ■t■!■d■■N■lttt■■!t■Nq■■!p■�■_ Y� NfnmmtWf•'7N ■■ ■!■t�iN�di a n■ommNICAMER NdR■■■■■■■■l:an■■■■W!!■t■C/■gdq■t■NqB■■Y■w■■ti mmtYmYmo mYNNNmNmNHHtttt mHHY■■■mmNmmmmmm YNmm�mY mm�ttt�■I.1■gNltyt■tv���-----■— mYmm■■•YtHI{IT�rPIMI"S7f����m Np]�_p_'_=ai_■p■~aNM�■ttt■■■■N ■■tt■ttl.TZ�•1!lu�+'��atq■YH■■■■NM�� _ ■ttt■p■ ■Y■t■t■Ld� C7Y�t��_�-G�■t■1P�_��_ ■■A■■M------W■■N■Y NYtr,�/■M1K7.1�11HV_„•�■■aPv__ �mmmN■WWBOOM p■■ W/./NttM1•\i1Y`!=.jG■J_\dui-�■■���■t■■��_��■tt���■ �t��t�Yar��tNY�N■ mP.mNtt7l:11�r/1�(•t:>:��NmNtmi■��-:■Nut !_■N■�e�-w��mmmm■W mNto■ JtNtq'..J�i/fR•�►_�"�/NMtt!!��■���■Nth■■ _'_!Me■■■N��W_��-��/tttgtlY Mq!■tdiw\ulv �•In N■!�:d!■f■NOON =:■t■■Ht■��-:�t■tdY■l nNd!■■■tNN/ifliy�NtlRCllil�/■■NNeI■V_S�fttt■t��G:/Nt�ttlWtlq■YNYN■WdI./lllJ itt�!•�'�`:,YwN■pt�ll7�i■■■■t■�:■■��ydN■tt■v�:�■■per ■N!G/Ydtf![:•CK:/NN■I!!;►�i/7nt/SiA■■t■■ ■■tN!���t■t■tNttt YV./t/'I!•t l3aUrinY■1111.7 Vi/t\•!N■-miNtt■N■t■ i�HttNOM�:■H m■I/.oml/ttli+.iNdnL]Ji■!C�!►:�:MEN t■N■d■!i■an ■■N��Nnt ■I.AI,IN? :1■Wt[I�JiI■[�1i��q■t■■!t■■!i/■llWt�!��t■!■tWN ■ I/■R�flaitNmmll\".J:/mC■rrdgN■eNm!i/e■ommmtp�i■■mtNtmtmd■tN. . Id�tH�AgpI���N\►:�Ym■gmmF�N■tHtm��:■■!■mm mN n mt'ImW�mm■mlm\•f IpM/■■■■■■■N�'■mmmm■■■■■■WW!♦■ttNtgt■M,!!!II■OtIKCvY!\9 itWR7m1i/tmim■mm��t�■d■o!■■■ttNN■t■■ttgtgN I�ItPYYtTJ�1\"•✓Y■ttM Void YYt■i/■■tt■tttttN■tNitYttNt■YYp FAMEWA l ■MFM& ltYttgWNtl�■!■y■■� saw, mtRtilt'>!s'l""WS'\%iOONmr/ptq■tq■tNN■q- R� N�'t■fit••%OC'A��tm�gi�:J'�■M:/000tYn Ygtt■W ■l/,tq■!//tr:;%■t!t!!V' i■■tNtW■■NtttN��ttgYtlN ■■'I■gMpR\'pgM�lY ■I,lgft�IYY•�IWRJ��W■Y-Ate■!■t!�■t! tWtlt!■tNNYt■NNH■ ■'IqN►.o�.I.mNKJ�.ImmM'iNttm■MONOMERS mdtt Woo IN■pAl•:]!/YpC1'it■t■t/It■NttHft��0tttlt■■N■!♦■ta ■a 11t mfm�Ipm'�■■mm:1�i■■N■►AdYN■q■■NN■t ttN■■■■■■t■ttt W d Immtr./tt/ ■HI.w..■ttt■ /■■■■ttt■■lttHtt■■tt■!t■t■tt■tlnittd■d ■■q•It■fu■tV;:/■■t■I.■■ttlNn■t■■■nt■ttt■■■MONSOON t■t■■Yq■q■� i ■■■Imot'I■t!I[•l'It■■f►/■■t■N■tt■■!tt■tt■!t■■■■t■■■■ttt■■Ht■n■ ■ ■otrl■■I.mN E.:I■NmI./mNtee■mm!N■Ntnm■■■■■■t■■■mmmmm■t■Ntlt ■■Imm■'/ttt..)'i■tt■I�■td■■■Nttttt■■t■■t■tN■t!■■t■■tt■"MEN NNttN ■WSWE'AnnoWlAwor AttN//■M.`,IIN■t■■Ntt!■■t■!!■■■tt■■■tttgt■■■t■tdtt■■ ■ m■mel.efmW7/t■I:voW■■t OWNERS Hlmmq■■en■tmtme■■■■■■■■mM■d■■q■ ■ ■II■o.'I■■■m�IYR►i1■■■■mm MEN■!■!!■!mt■!■mmommo■■d ■■■■■■tNttt■■fft I/m/Imemmr/tt/LJ/■t■►`■■tt■■Ntt■■■!t■t■tt■t■t■!t■t■t■t■tt■ttt■■■■N1■ ■11mEmomorism"/tt■■■►\■■■!■■■■tt■N■t■t■ttommmo tNtt■■t■ttN■■ttN ■tl■I/■■tl/nCJ■mtoeoo\�■N■_��qlp■l���ptt■t■!H■■dqt ■•■UImmY/mmlUtm■NN■m:__� � �•1:a�1_�7/�R•]l�Ta Yi■7,�tNt■■tNa ■ M/oeW/■/VFIoWegnNe■tot■nl wwff■t■smolwl ■M■NtB■d ■Iim■■I/t\'l�tdNnd■N■t■!N■■EWttt■■■ttt■■■■Ntt■qN■t■■■tN ■ ■Ilmtml/eeell►.\■tH■■■■■m■mme■■■■■■NAMENIAMENAMbSE on on 0 ONE mom■tmm■■■■■■■■tm■mtm■■t■■■■■■tt■■■ ■ . NEE INm■mmo1,■mm■om■■■■memos■momm■mmm ONE■■■mmmmmmm■m■■mmmmmr soon ■sot■! ■ IitNFitt!'/m NOON \\■mt Re■,,�■mrym��■m�m7m7mmmm■mmmmmlmmmtlmom■■mmmlNm■mm■■mmmm ■ MENUENSNENE�mommosommo7YWi�7■•11e0W■�IIi1:4:Gt�7iin mmmumm"MUME■tiiitien■m mtml■tfltmgttmmmmtmm■■■t■tmtm■■N■■mtNtNt■■■�■■■t■■HtHmmmtNtYtm Nolllfl■d■■m■■■t■■■moomommN■mtmJim mnYttNNmot■mtmdmtoNnNmgtp ■mwmmmmm m■N.Nm�Nsamom"EM 0�NNEtSMENNeMl����ttN�N�■m/Nlmtmmmm■W■■m■mmmmtm■tm■mmeMENON■o■Y■see■■■■t■■gtgWe■mtttf ■■11mm/lgmm■ItlNmmmdmomm■■■eo■ttmtm■otngntmtmgton-NN" ■m11NIINNmtN WmMt■■■■mm■■emm■Yef■YtNNtemN■tttmttgm BtY■etn■t■■■HmNt■m ="Em■■m■Nm■mmtYtgn■■NHtmm■■mmtotomt!dtgtN■m ■/M/gfgNNNOH■■tmNet■■Y!■omm■omteltmN■n■ ■etfoommwf Nsmm ■l m■Ilo■Wt■mgNgode■■oNmoom■em■tmq - I ■NEWS mint•m mmW■tnt■tmeo■ommomm■mmm■■ tp 1 iNi l■nttmtttt■tmtmo■m■et■em■■■mm■■■■q■ womonnonso am" mff•■mtWNimlt■tt �aN■lN�el��1eN' • PUM- - ■mmNmNto NtmgmmdNH■mmmdmmmm■ 1 m11HmoNlN N NNH�t� • •1 - NG ml ltmmtWmttW tmt■■neetNttmmmmm■ - ■'■mW mYmttmmHmmmtt W mttmtmmttm■■ttnottt■t■mmmttnmttmttmYttWN ■■gq■ttmtm■gtW■NtdWN■tYmtq■t NONSENSE—— mWYmRN■YmdmttgN emtmt■tmtlYW� NYmmtW t■mmtle■ogYt■Ygt■Op�m 1/�■tmlttmmis tmBtlgq m■wtm!!m otf ttm■■te�� NNNNN N W■//N/q/■/W/NN■NN■N■ ■■H//■WN■W//N■■■■ //NN■■■■■//HN NN . . ■■ NN/N■N■■N■■q ■ ■ 1 WNN■/NNN/N>1gN ■M■■!1■■N■■Nq�N■■ ■gyp NOYOrggq ggN�N■q/N ■B■■q�q q■WgN N■Nf;�7N■■ VNgq NNW N■N\NN -Is ■■ ■WNNNW■ ■■C/HH/■■NN N■.]■■qNq monninoompRq mBIr3f\9Bo�eNN�■M ----- NH■::iiN■■R:le� q ��Y-�.N_//N//M■ N ViNMI��...:f CNN■/�iNN■�■/--�/M/�-�uH/■\/�i��-:.�a�■N__/■■/Nqq■■■ i■gf.GV�C i/q■oiY/NpC�N��/!-d■�■■■■�C-�/ /_�■■■��-��N/qq///N ■■1■: . .._.M/t'p_JN■7■/!i■/NS'1■■t■N■!L�■�N■■��=r�■/B■■NNq■q■■■ NB'iV�J/RJrJN■!l•YSf/OSMW■/■/CL■N■■ N/N■■■/q■!■//N/HNI N■�u10gF J:INB9��•//!i//N■/■V_iNN057f■wiliM W■■//■■■qqN■■qqqq��■p■/�■ NI.■I./!J'iq■■��✓.dC:V:f■N■NN:fgq/��N■■■/■/W/ ■■■NW■■ ■IY/■I[>I/N(l7iA■�M■■Mp!JN■pMioN//■/■ME" NrNN■//■■■qq■■ V/l'/NGrr%NMJJ'IS:YiN■■■//!Nq■!i■N/■■N/OEM /■■NN■■■N/q/q!■ IH�■Ilu'i■NG;�■\S://W■NJN■/5rN/N■HN/■noun" q■■ ■N■■■q■Yggq■N■ F1■ lifN■■■//■NN■■■/■//■■■■■■■/NNI■//q■■/■N 1/�■■/N!'�Y./JiN■■p'•■WPM■N///■■■/■// //■■■NN■Nq■H■■O■>fq■■ FH■'I/■/Y.EWM■WIANI'i/MN■W/■//■//���///////////Nq■■/NH■q■■ I NI,Nli//C�iHMppM■M.MNIgN■■■N■■q/N■■■■■■■■H■NHW NBq■/N II■f/N!_/C 7.qq.!'�.f■/■�iNM■N//NN■HN///NNNq/W■a■q/N■gNB■ M•.NR�.P✓/qIN/.��i�N/■■NW■q■■qW/■N■gq/gBI�W ■■I/■■K'M'Mpl7.AN'dNgq■■■■pp��■W N■gq■M■q N/Nf I,f:7.N■P✓.■gVi■■ga■/NN■N■qN■■■q Mfl■.i.'f ti W■✓N/■�i/■■!tl/■fB/■■■■W■■■■■■N/N■■M■///■f�///�N■ ■'A■I fY.gfJlq■IiNN■gN■NgNgp/N■/■MN/■■■q■� INI■/t:Y//■/./�//V/■WN/WNN■N■//■N/NW/NNq/fBgq � /i■q II Nf 7 Np"I/W■NNMW//■■N■//N■■NW N/gM0/N■ I1■■I:=1 R+I NNN/N/NNW//■N■///NN■ •//IIJI 7■ N■ NNN■N■W■■N/■/NW//N■■■■NMW■■N ■■■//,N+-�I■N'I■NN■■N/■■N■//NNN■/■■/■■■■■■■■■■■NH■N/N■N . ■ N//�/WH■►.NNW■WNNN■//■N■N■■■■■//■■■■■■■■■W■NNW N/I■1/C^11///�/q■//N■/■//N■■/////N///■/////■■/////N■//■q■ ■/�11.■/NI NI.WNN/■N■N■NN■N■NH/■//N//W/NW Wq■ ■/■■/111■L::' N, ■/■■/■/■■N//N /////N■■■///■■■/■■■W■■■■/N■q////■ 1■:'AN/.MNN■/NNNHW■■■■!W/■■■■NNN■■■■■■■B■so ■ ■//I■/V■q'I■■■■■■■///■■/■MEN■■/■/■■N■///////■■N///■■NN■■/■■■■■■ ■ ■III i■EII■GV■NN■H■/■■/■p■NN/NN■■W■■■HWN■/■N■■■■■■■N ■ /■K//■N■NW■■H■■■/W/■////■/N■///■■NH/gWWN■ ■■R*ffp■■r1■■/■/■///■■■■/■/■NH■y/////■■//�/■T■///■N///qN■■/■N■NN■ ■ 1■//II/Pn,. •:C� NEW///I ..+VT' 1.� . L4d?RYMT!//■/■N■N■NNN■ ■ /11■■1/JIN■■■■■■■■N■■N■N■N■NNN■N■■N■■N■■■■■■■/■■■■N■ ■11■I/L%,N■////■N//■■N■■N//■■■NH■H■NN ■■N■■W/■NH ■IN I■�II/■■/■//■■gq■N/NNN/■W/p■■NW■NN■NNW q ■N'I is i I■N N■N■NNN■■■■■■N NgNNN N W■qN■W■■NN I Smarr■/N■■/■Hr/{/rN■■//NNN��/yN�� /W����'�/{{��N.T7■/MM■/■■sommonamesmang III so a ■//■NNW W■■/■ •■'IMF■/W/■//H■■/■■■■■■NN///pW■NN///■■■/■/NN/■■■■NW •■■■11■NN■■W■■■■■N■N■■N■N W■//N■N///NN■■N//N■■NNN ■■■■'!/■■■■///■/■/////■■■■■■//■/■■///■/NO/■■■■/■■■NNNN■N■qW/■ ■I■/1/////■/■■■//■■■■■/■//■/■■HW/W■N■■N///■N/■N/N/N/NNN■ N Ip NqN/■H/////■■■■■/■/N///■N/O■/NN/■■/■■/■N/NN/gq■q■N ■11■IIN/H■NNNNNNN■N■N■/NNNN W N■N///N//N1N Wppq■ ■I I■II///■N W N■NH//■NN/N■W■■qqq■■■/N■■gNNNN■B■/■q!■ ■/■'•■N W■■■/q■■■■■■■■■■/W//■N W■■NN■■■■■■■gNN■N■WNq■■ ■■/1■N■N/■/W//N/NW■■■/NN■■N■■q■/■■■■■■■■■N■MN■oi ■ ■NI NWNNN■■■/N■■ggW■■■■NN/N■NNN///■q/W■■■N/■p� ■■I/■WN■■//■■■■/■///■/■NN■■/NN■q■HW --- W ■ERM ■N■■■/NW- 1i■11■■■Nq/N■■■NNN■HWN■/■■�gpN■�N�NH■N■ NgN IIviiNNN■■\MN MEN ■■N■/%■NNNN■H■sW■q 1 qN II■•■N■N///■■q//NNN /■■N/■■ II i/NH/N////■■N//■■/■■■//N■///■■■■N ■11■N N//■////■N/■■/N■/■N■/N■■Sam■■■■■■■N 1■■■■■N■Nf Nmmommum 1 wam"NM"mmmm RUNOFF COEFFICIENT CURVES ■■■■/NW■■/■■■■////■■■■N■■■■■■N COVER LANDSCAPING■NNNN■/■NNN■■NH■■N�■■■m 1�/om/H/NmN■\■H NN NoN • 1 IiWWW■■■■■////■N■■■N■■■N■N • / NUMBER 11/■■■N■■■■NN■N■■///N■/■//0■/■■ 69) ■N/■■N/■B■■/////■■//NN■//N/H■■NNN■p..q.. N/NN■/ N/Hq■igN IIWW/!•/N'B■NN■NN N/q■ /■N//p■■---- ■■■qq■N I■WYWBgq/W ■BWB■/gq■■■■EN WWgr BNN�■■�■q■/gN/qW W Wq//�ggNgqW■q ��B■gNNNN■■��q�■� Wi■■MO � - • - Wq� � NNMN■INNNW■ NN■■■/■■g1MgN■■M� � • • • • • • • • • • • • Appendix 4 • • AES Calculations • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Job Name: COSTCO TEMECULA Date: 5/12/2016 FU E SITE RENOVATIONS moo o 1 1 ■ s o • .Job #: 02156-088 Run Name: TEMEX atno.eu a►.ostr ra w.r+eta • rotes.h w Page: I • Node to Node Code Elev 1 Elev 2 Length Land Friction Area Comments • feet feet feet Use Coeff. ac. • 215 210 2 1,061.8 1,055.0 580.4 0.89 1.06 INITIAL BASIN/BASIN A 210 205 4 1,052.8 1,052.3 62.0 18"HDPE • 205 205 8 2.40 BASIN B • 205 200 4 1,052.2 1,051.4 86.0 1B'HDPE 125 120 2 1,062.5 1,061.7 112.3 0.89 0.38 INITIAL BASIN/BASIN C 120 115 4 1,058.5 1,055.3 244.5 12'HDPE • 115 115 8 0.12 BASIN D 115 115 8 0.34 BASIN E • 115 110 4 1 055.2 1 054.7 33.4 15'HDPE • 110 110 8 0.83 BASIN F 110 105 4 1,054.7 1,051.9 186.9 15'HDPE • 105 105 8 0.87 BASIN G 105 100 4 11,051.9 1,048.6 221.0 15'HDPE • • • • • • • • • • • • • • • • • • • • • • • • • • • • • TEMEX.TXT • 4trtrAAtr#trAtr4trAtrtr4trAtrtr4trtrtrtr#trtr4trtrtrtr4trtr4trtr4trtrtrtrtrAAAAAAAAAA#AAAAAAAA4AAAtr##A###tr 'RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON • RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT • (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) copyright 1982-2014 Advanced Engineering Software (aes) (Rational Tabling version 21.0) • Release Date: 06/01/2014 License ID 1355 • Analysis prepared by: • Fuscoe Engineering • 6390 Greenwich Drive Suite 170 • San Diego, CA 92122 • AAA#AA#o-444o-tro-o-o-A#tro-tr#trtro-tr DESCRIPTION OF STUDY *AtrtrAo-#tr4o-4trtrtrtrtrA4tro-4444trA • * COSTCO TEMECULA * EXISTING CONDITIONS - 100 YR • * SITE RENOVATIONS _ 44A#trAAtrA4trtrtrAAAAtrtrAAtrAtrtrAAtrtrtrtrtrtrtrtrtrtrtrtrtrAAtrAtrtrtrtrtrtrtrtrtrtrtrtrtr4trtrtrtr4trtrtrtrtrtrtrtrtrtrtr • FILE NAME: TEMEX.DAT • TIME/DATE OF STUDY: 16:26 05/12/2016 --------------------------------------------------------------------- • USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: • --------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) 100.00 • SPECIFIED MINIMUM PIPE SIZE(INCH) 6.00 • SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 • 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300 • SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0. 5505732 • SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0. 5495536 COMPUTED RAINFALL INTENSITY DATA: • STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.300 • SLOPE OF INTENSITY DURATION CURVE = 0. 5496 SPECIFIED CONSTANT RUNOFF COEFFICIENT = 0.890 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL • AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES • *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING • WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0 018/0 020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: • 1. Relative Flow-Depth = 0.00 FEET • as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(velocity) Constraint = 6.0 (FT*FT/S) • *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN • OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ' 4 AAtrtr4trtr4trtrtrtrtrtr4trtrtr4trtr 44Rtr44tr44trtrtr444trtrtr4444444tr4tr4A44trtrtrtrtrtrtr4444tr4trtrtr4trtr4trtr • FLOW PROCESS FROM NODE 215.00 TO NODE 210.00 IS CODE = 21 • »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< • ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL • Page 1 • • • • • • • TEMEX.TXT • TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]** 2 • INITIAL SUBAREA FLOW-LENGTH(FEET) = 580.00 UPSTREAM ELEVATION(FEET) = 1061.80 • DOWNSTREAM ELEVATION(FEET) = 1055.00 ELEVATION DIFFERENCE(FEET) = 6.80 • TC = 0. 303*[( 580.00**3)/( 6.80)]**.2 = 9.400 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.600 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA RUNOFF(CFS) = 3.40 • TOTAL AREA(ACRES) = 1.06 TOTAL RUNOFF(CFS) = 3.40 • kaatr4trtrtrtrtrdtrtr4AAAA444d444trtrtrtrtrAd44tr444A444dtrA444tr44tr4R444tr4444a4A4trtrtrtrtrtrtrtr44 • --FLOW PROCESS FROM NODE 210.00 TO NODE 205.00 IS CODE = 41 ---------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------- • ELEVATION DATA UPSTREAM(FEET) = 1052.80 DOWNSTREAM(FEET) = 1052.30 • FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 5.32 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 3.40 PIPE TRAVELTIME(MIN.) = 0.19 TC(MIN.) = 9. 59 • LONGEST FLOWPATH FROM NODE 215.00 TO NODE 205.00 = 642.00 FEET. • 4Atrd4tr44Atrtrtr4aatrtrtrtrtr4trtrAtratraaktrtr4trktrtrtrtrtr44trAAAAAatrtrAAtrkk4k4444akkaktraaaatrtrktr • FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81 ---------------------------------------------------------------------------- • »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««<. -------=-------------------------------------------------------------------- • - - - - - ----------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 560 *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA AREA(ACRES) = 2.40 SUBAREA RUNOFF(CFS) = 7.60 TOTAL AREA(ACRES) = 3. 5 TOTAL RUNOFF(CFS) = 11.00 • TC(MIN.) = 9.59 • Atrtr44tratr A.tr tra4trtrtratr444adtrtratratr4atrtrtra444444traatrtrtrtrAtrtrtrtrtrtraa4kk4a4aaatrtrtrtrtrtrtrtrtra • --FLOW-PROCESS FROM NODE 205.00 TO NODE 200.00 IS CODE = 41 --------------------------------------------------------------------- >>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1052.20 DOWNSTREAM(FEET) = 1051.40 • FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.011 • DEPTH OF FLOW IN 18.0 INCH PIPE IS 14. 3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7. 32 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 11.00 • PIPE TRAVEL TIME(MIN.) = 0.20 TC(MIN.) = 9.79 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 200.00 728.00 FEET. • trtrtratrd4A4trtr4tr4444ddddtr44trtr4trtr4444dbtr44atr4trtrtrtrtr4tr44tr44ktrtrtrtrtrtrAtrtrtrtrtrtr4tr4tr4trAktr • FLOW PROCESS FROM NODE 125.00 TO NODE 120:00 IS CODE = 21 ---------------------------------------------------------------------------- • »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< • ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 • INITIAL SUBAREA FLOW-LENGTH(FEET) _ .112.30 • Page 2 • • • • • • • TEMEX.TXT • UPSTREAM ELEVATION(FEET) = 1062. 50 • DOWNSTREAM ELEVATION(FEET) = 1061.70 ELEVATION DIFFERENCE(FEET) = 0.80 • TC = 0.303*[( 112.30**3)/( 0.80)]**.2 = 5.385, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.890 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA RUNOFF(CFS) = 1.65 • TOTAL AREA(ACRES) = 0.38 TOTAL RUNOFF(CFS) = 1.65 • 444eea4a4a4a4a444444a44tr4*aatrtratratrtratr4trtraaa4aaatraaatratratraaaaaetrtrtr44aaaaee4aa FLOW PROCESS FROM NODE 120.00 TO NODE 115.00 IS CODE = 41 • --------------------------------------------------------------------- • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------------------- ---------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1058. 50 DOWNSTREAM(FEET) = 1055. 30 • FLOW LENGTH(FEET) = 244. 50 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.0 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 5. 35 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 1.65 • PIPE TRAVEL TIME(MIN.) = 0.76 TC(MIN.) = 6.15 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 115.00 = 356.80 FEET. • aaatr44a44aaa44a4k4atraaatrbatrktr4a44e4k44aaaaa4b4aaaaaaaaaaaeaaaaetrtrtr4aaaa4ee44 • --FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81 ------------------------------------------------- -------------------- • »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 547 *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.49 • TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.14 TC(MIN.) = 6.15 • atr4trtr4atraaa4atrtraaa4atr4atr4aa444a4ea4a4aa4a4aaaaaaa4aaaaaaaaaaaaee44aaaaaaeea4 FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81 • • »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 547 • *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.34 SUBAREA RUNOFF(CFS) = 1.38 • TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.52 • TC(MIN.) = 6.15 a tre44traa4aaaatr4aaaa4a44tr4a4aa4tr4e4aaaaa4aa4444atrtreetrtreetraeeetreeeeaaatratrtretrtra • FLOW PROCESS FROM NODE 115.00 TO NODE 110.00 IS CODE = 41 • --------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • --»»>USING USER-SPECIFIED PIPESIZE (EXISTINGELEMENT)««< --------------------------------------------------------------------- ---------------------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1055.20 DOWNSTREAM(FEET) = 1054.70 FLOW LENGTH(FEET) = 33.40 MANNING'S N = 0.011 • DEPTH OF FLOW IN 15.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.80 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 3. 52 PIPE TRAVEL TIME(MIN.) = 0.08 TC(MIN.) = 6.23 • LONGEST FLOWPATH FROM NODE 125.00 TO NODE 110.00 = 390.20 FEET. • Page 3 • • • • • • • TEMEX.TXT • trtrtr4trtrtrA4tr44#4444a4trAatr44A44#kktrtrak#4adtrtrtrtrtrtrtrtr4A4AAAAaaAaaaaaAatrtra4aAkkkk44 FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81 • -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.514 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) 3. 33 • TOTAL AREA(ACRES) = 1.7 TOTAL RUNOFF(CFS) = 6.85' TC(MIN.) = 6.23 • trtr4tratrtrtrtrtrtr444trtrtr4aAtr*atratrtrA4a4aAtraaAAAaa4a4atrtrtrAa4aaAkkkk44akkkktr#kk4###atra • FLOW PROCESS FROM NODE 110.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • --»»>USING-USER-SPECIFIED-PIPESIZE-(EXISTING-ELEMENT)<<<<< ------------- • ELEVATION DATA: UPSTREAM(FEET) = 1054.70 DOWNSTREAM(FEET) = 1051.90 FLOW LENGTH(FEET) = 186.90 MANNING'S N = 0.011 • DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.9 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 7.97 GIVEN PIPE .DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.85 • PIPE TRAVEL TIME(MIN.) = 0.39 TC(MIN.) = 6.62 • LONGEST FLOWPATH FROM NODE 125.00 TO NODE 105.00 = 577.10 FEET. • dk#kkkdak####k#a#a#kd#k4a44a4atrkd4#ak4daa4trdd444##aatraaatrtrad4444444tr4tre44dtra FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 • ------------------------------------------------------------------------ • -------ADDITION-OF-SUBAREA-TO MAINLINE-PEAK-FLOW««<----------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.366 • *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.87 SUBAREA RUNOFF(CFS) = 3. 38 • TOTAL AREA(ACRES) _ 2. 5 TOTAL RUNOFF(CFS) = 10.23 TC(MIN.) = 6.62 • trtrakktrAtrtr4aatrkAAAkkd4#ktrk4katrAtrkkk4kk4trkkdd4#kk##b##RAa##akaaak4trk4*k##kkktrk • FLOW PROCESS FROM NODE 105.00 TO NODE 100.00 IS CODE = 41 • -------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • --»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ------------------------------------------------------------------- ---------------------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) _ 1051.90 DOWNSTREAM(FEET) = 1048.60 • FLOW LENGTH(FEET) = 221.00 MANNING'S N = 0.011 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 8.34 • PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 10.23 • PIPE TRAVEL TIME(MIN.) = 0.44 TC(MIN.) _. 7_06 LONGEST FLOWPATH FROM NODE 125.00 TO NODE 100.00 = 798.10 FEET. END OF STUDY SUMMARY'_____________________________________________________ TOTAL AREA(ACRES) 2. 5 TC(MIN.) = 7.06 • ==PEAK-FLOW-RATE(CFS) 10_23=====____ • END OF RATIONAL METHOD ANALYSIS Page 4 • • • • • • • • Job Name: COSTCO TEMECULA Dale: 5/12/2016 SITE RENOVATIONS�S�E • • s ■ I a I 1 ■ 6 Job k: 02156.088 Run Name: TEMPR • me ..kla" mtp • u®out+ Page: I • Node to Node Code Elev I 1 Elev 2 Length. Land Fnctio Area Comments (feet) (feet) (feet) Use Coen. (ac. 215 210 2 1,061.8 1,055.0 580.4 0:89 1.06 INITIAL BASIN/BASIN A 210 205 4 1,052.8 1,052.3 62.0 18'HDPE 205 205 8 2.10 BASIN B• 205 200 4 1,052.2 1,051.4 86.0 18'HDPE • • 130 125 2 1,062.5 1,061.7 112.3 0.89 0.29 INITIAL.BASIN/BASIN C 125 120 4 1,058.5 1,055.3 244.5 12'HDPE • 120 120 8 1 0.12 BASIN D • 120 120 8 0.34 BASIN E 120 115 4 1,055.2 1,054.9 19.8 15'HDPE • 115 115 8 0.39 BASIN F 115 110 4 1,054.9 1,054.7 13.6 15'HDPE • 110 110 8 0.83 BASIN G • 110 105 4 1,054.7 1,051.9 186.9 15'HDPE 105 105 8 0.87 BASIN H 0 105 100 4 1,051.9 1,048.6 221.0 IS' HDPE • • • • • • • • • • • • • • • • • • • • • • • • • • • • TEMPR.TXT • AAAtrtrktrktrtrkAtrktrtrtrtrkAktrtr4trtrkkktrAtrkkkktrtrAtrtrtrtrtrtrAAAAtrAAAAtrAAAAtrAAAAAAAAAAAAAAtrA RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON • RIVERSIDE COUNTY FLOOD CONTROL. & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL • (c) Copyright 1982-2014 Advanced Engineeringg Software (aes) (Rational Tabling version 21.0) • Release Date: 06/01/2014 License ID 1355 • Analysis prepared by: • Fuscoe Engineering • 6390 Greenwich Drive suite 170 • San Diego, CA 92122 • *********************°'**** DESCRIPTION OF STUDY AAAAtrAAAAtrtrtrtrtrAtratrtrAaaAAAA • ° COSTCO TEMECULA * PROPOSED CONDITIONS - 100 YR • * SITE RENOVATIONS trtrkkkkkAtrkktrtrtrkktrtrkkAtrtrtrkAtrtrAkktrkkkkA4AtrtrAAkkktrtrdAtrtrktrAktrkkkktrtrkAtrtrtrtrkRAAA • FILE NAME: TEMPR.DAT • TIME/DATE OF STUDY: 16:24 05/12/2016 --------------------------------------------------------------------- • USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: • --------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 • SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 • SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 • 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300 • SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0. 5505732 • SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0. 5495536 COMPUTED RAINFALL INTENSITY DATA: • STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1. 300 • SLOPE OF INTENSITY DURATION CURVE = 0.5496 SPECIFIED CONSTANT RUNOFF COEFFICIENT = 0.890 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL • AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES • *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING • WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0 018/0 020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: • 1. Relative Flow-Depth = 0.00 FEET • as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/5) • *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* • AAAAAAtrtrtrtrtr4AAAbAAAAAtrAtrAtrAA4AtrA4AtrtrtrtrAAAAtrAAtrtrtr4AAAAtrtrtrtrtrtrtrtrtrtrAtrAtrtr4Ak4AAAA • FLOW PROCESS FROM NODE 215.00 TO NODE 210.00 IS CODE = 21 • -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL • Page 1 • • • • • • • TEMPR.TXT • TC = K4[(LENGTHtr43)/(ELEVATION CHANGE)]4tr.2 • INITIAL SUBAREA FLOW-LENGTH(FEET) = 580.00 UPSTREAM ELEVATION(FEET) = 1061.80 • DOWNSTREAM ELEVATION(FEET) = 1055.00 ELEVATION DIFFERENCE(FEET) = 6.80 • TC = 0.303tr[( 580.004tr3)/( 6.80)]4tr.2 = 9.400 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.600 • *USER SPECIFIED(GLOBAL): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA RUNOFF(CFS) = 3.40 • TOTAL AREA(ACRES) = 1.06 TOTAL RUNOFF(CFS) = 3.40 • dddtr4¢4d4¢tr4¢tr44trtrdtrdtrd44444tr4tr4tr4444k444trtrtrtr4trtrtrtrtrdkbtr444k44k4trtrtrktrkktrkkktr4 • --FLOW PROCESS FROM NODE 210.00 TO NODE 205.00 IS CODE = 41 ------------------------------------------------------------------------- • >»»COMPUTE PIPE-FLOW TRAVEL TIME THRU .SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1052.80 DOWNSTREAM(FEET) = 1052.30 • FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 5. 32 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 3.40 PIPE TRAVEL TIME(MIN.) = 0.19 TC(MIN.) = 9.59 • LONGEST FLOWPATH FROM NODE 215.00 TO NODE 205.00 = 642.00 FEET. • bktrtrtr4tr4trtrtrtrtrtrktrtrtrtrtrktrktrtrktrdtrktrtrtrtrkkk4ktr4trk4trtrtrtrtrktrtrkkkkkktrkkkkkdtrktrdddtrdtrd¢ • FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81 ---------------------------------------------------------------------------- • »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------------------------------------------------- - -------------------------------------------------------------- • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.560 "USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 6.65 TOTAL AREA(ACRES) = 3.2 TOTAL RUNOFF(CFS) = 10.05 • TC(MIN.) = 9.59 • dtrtrtrtrdtrtrtrtrtrtrtrtr444trk44trktrk4tr4trktrtrtr4ktrkkk44trtr44444444trkktrkkkkkkkkkkktrkkdtrtrkk4k • FLOW PROCESS FROM NODE 205.00 TO NODE 200.00 IS CODE = 41 -- - • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRUSUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1052.20 DOWNSTREAM(FEET) = 1051.40 • FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.011 • DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.26 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 •. PIPE-FLOW(CFS) = 10.05 • .PIPE TRAVEL TIME(MIN.) = 0.20 TC(MIN.) = 9.79 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 200.00 = 728.00 FEET. • trtrktrtr4trtrtrktr444dddtr444k44b4tr4trdtrtrtrdtrtrtrtrtr44bk444kk4trtr44trtr4tr4tr4ktrtrtrtrtrktrkdkkktrkk • FLOW PROCESS FROM NODE 130.00 TO NODE 125.00 IS CODE = 21 ---------------------------------------------------------------------------- • »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< • ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL TC = Ktr[(LENGTHkk3)/(ELEVATION CHANGE)]4k.2 • INITIAL SUBAREA FLOW-LENGTH(FEET) = 112. 30 • Page 2 • • • • • • • TEMPR.TXT • UPSTREAM ELEVATION(FEET) = 1062. 50 • DOWNSTREAM ELEVATION(FEET) = 1061.70 ELEVATION DIFFERENCE(FEET) = 0.80 • TC = 0. 303*[( 112.30**3)/( 0.80)]**.2 = 5. 385 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.890 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA RUNOFF(CFS) = 1.26 • TOTAL AREA(ACRES) = 0.29 TOTAL RUNOFF(CFS) = 1.26 • 4tratr444traatrtraaa4btrtrtr4trtrtrtr4htr44trtrtrbbb44444trtrtrtrtrtrtrtr444444aa4aaa4traatrtr4tr4trtr4444 FLOW PROCESS FROM NODE 125.00 TO NODE 120.00 IS CODE = 41 • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >»r>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------------------- ---------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1058. 50 DOWNSTREAM(FEET) = 1055.30 • FLOW LENGTH(FEET) = 244.50 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4..3 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 4.96 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 1.26 PIPE TRAVEL TIME(MIN.) = 0.82 TC(MIN.) = 6.21 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 120.00 = 356.80 .FEET. • btr44atrtr4444tr4444444a4b4bbtrtra4a4ktratrtrtrtratratraaaaaaaaatrtrtr4trtrtr44tr4a4tr444444aatrkk • --FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 • »»>ADDITION OF SUBAREA TO MAINLINE. PEAK FLOW««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 523 *USER SPECIFIED(GLOBAL): • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.75 TC(MIN.) = 6.21 • 4atr4trtratrtra444tr4tr4trtrtr444b44tr4a4trtrha4trtrtrtratraaaaa4aaaaatrtrtrtrtrtrtrtrtra4tr44btrah444tr44 • --FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 ---------------------------------------------------------------------- • --»»>ADDITION-OF-SUBAREA-TO-MAINLINE-PEAK-FLOW<<<<< -------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 523 • *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.34 SUBAREA RUNOFF(CFS) = 1. 37 • TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.11 • TC(MIN.) = 6.21 a 444trtr444tr4444trtrtrtr4tr44a4tr44444trb4a4444traa44tra44aaaa444444444444trtrtrtratrtrhtrtr4htr • FLOW PROCESS FROM NODE 120.00 TO NODE 115.00 IS CODE = 41 • -------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1055.20 DOWNSTREAM(FEET) = 1054.90 FLOW LENGTH(FEET) = 19.80 MANNING'S N = 0.011 • DEPTH OF FLOW IN 15.0 INCH PIPE IS 6.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.62 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 3.11 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 6.26 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 115.00 = 376.60 FEET. • Page 3 • • • • • • • • TEMPR.TXT • trtrtr4444trtrtrtrtrtr4atrAatrtrbtrtratrtra4AtrdtrktrAAAtr4tr444tr44tr44trktrtrtrtrtrtrtrtrtrtrtrdAtrtrtrktratrAktrtra FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = -81 • ------------------------------------------------------------------------ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 503 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA AREA(ACRES) 0. 39 SUBAREA RUNOFF(CFS) .= 1. 56 • TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 4.68 TC(MIN.) = 6.26 • trtrtrtrtrtrtrtrtrtrtrtr4trtrtrtrtrtrtr4trtr4trtrtrtrtrtrtrtrtrtrktrtrtrkktrtrtrkktrtrddtrtrkAAdAAAAaAaAaktr44trktrtr4trtrk • FLOW PROCESS FROM NODE 115.00 TO NODE 110.00 IS CODE = 41 ---------------------------------------------------------------------------- • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • --»»>USING-USER-SPECIFIED-PIPESIZE-(EXISTING-ELEMENT)<<<<< ------------- • ELEVATION DATA: UPSTREAM(FEET) = 1054.90 DOWNSTREAM(FEET) = 1054.70 FLOW LENGTH(FEET) = 13.60 MANNING'S N = 0.011 • DEPTH OF FLOW IN 15.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.27 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 4.68 PIPE TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 6.29 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 110.00 = 390.20 FEET. • trtrkAAtrd4AdAAkaAAAAaatratrtrdtrtratr4tratrAtrtrtrtrtrtrtrtrAtrktrtrtrtrtrtrtrk4trtr4trbtraAbtrdtrtrtrtrtrtrtrtrtr4tr FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81 • ---------------------------------------------------------------------------- • »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ____________________________________________________________________________ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.491 • *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 3. 32 • TOTAL AREA(ACRES) = 2.0 TOTAL RUNOFF(CFS) = 7.99 • TC(MIN.) = 6.29 d trtrdtrtrktrkktrkdtrtrtrdAAAAAAAdtrAAAdAAAAAAAAAAAAAAaktrAaAkaaAkatraAAdAAAAkbk4trtrtrkatra • FLOW PROCESS FROM NODE 110.00 TO NODE 105.00 IS CODE = 41 • -------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • -»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------- ---------------------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1054.70 DOWNSTREAM(FEET) = 1051.90 • FLOW LENGTH(FEET) = 186.90 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.17 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 7.99 PIPE TRAVEL TIME(MIN.) = 0.38 TC(MIN.-) = 6.67 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 105.00 = 577,10 FEET. • kAtrtrtrtrtrtrtrtrtrtrtrtrtrtr4trtrtrtrAtrktrdAtrAtrtrtrtrtrtrtrdtrtrddkAA4AAtr4trdtrtrakaakakk44kk4aaatrtr4a4ab • --FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------- --»»>ADDITION-OF-SUBAREA-TO-MAINLINE-PEAK-FLOW<<<<< -------------------- • 100 YEAR RAINFALL INTENSITYCINCH/HOUR) = 4.348 *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • Page 4 • • • • • • • TEMPR.TXT • SUBAREA AREA(ACRES) = 0.87 SUBAREA RUNOFF(CFS) = 3.37 • TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) = 11.36 TC(MIN.) = 6.67 • atretraaatratrtrtrtrtrtrtrtrtratrtraatratratrtratratraaaf.trtratraaaaaaatrtraaaaatrtratr,+aatratraatrtrtrtrtrtrtrtrtr • FLOW PROCESS FROM NODE 105.00 TO NODE 100.00 IS CODE = 41 ---------------------------------------------------------------------------- • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1051.90 DOWNSTREAM(FEET) = 1048.60 FLOW LENGTH(FEET) = 221.00 MANNING'S N = 0.011 • ASSUME FULL-FLOWING PIPELINE • PIPE-FLOW VELOCITY(FEET/SEC.) = 9.26 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 11.36 • PIPE TRAVEL TIME(MIN.) = 0.40 TC(MIN.) = 7.07 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 100.00 = 798.10 FEET. END OF STUDY SUMMARY: • TOTAL AREA(ACRES) = 2.8 TC(MIN.) = 7.07 • PEAK FLOW RATE(CFS) 11.36 ---------------------------------------------------------------------------- ---------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS • • • • • • • • • • • • • • • • • • Page 5 • • • • • • • • Job Name: COSTCO TEMECULA Dote: 5/1 212 0 1 6 • FUSCOE SITE RENOVATIONS • 4 4 4 s 4 4 4 4 15 4 Job k: 02156-088 Run Name: TEMPR • ~im��.e m11° • tl®o4ua•ravr® Page: T w4r • Node to Node Code Elev 1 Elev 2 Length Land Friction Area Comments feet (feet) (feet) Use CoeB. oc. 215 210 2 1,061.8 1,055.0 580.4 0.89 1.06 INITIAL BASIN/BASIN A 210 205 4 1,052.8 1,052.3 62.0 18'HDPE • 205 205 8 2.10 BASIN B 205 200 4 1,052.2 1,051.4 86.0 18'HDPE • • 130 125 2 1,062.5 1,061.7 112.3 0.89 0.29 INITIAL BASIN/BASIN C • 125 120 4 1,058.5 1,055.3 244.5 12'HDPE 120 120 8 0.12 BASIN D • 120 120 8 0.34 BASIN E 120 115 4 1,055.2 1,054.9 19.8 15'HDPE • 115 115 8 0.39 BASIN H 115 110 4 1054.9 1,054.7 13,6 15*HDPE • Ilo 110 8 0.83 BASIN F • 110 105 4 1,054.7 1,051.9 186.9 15'HDPE 105 105 8 0.87 BASIN G • 105 100 4 1,051.9 1 048.6 221.0 15'HDPE • • • • • • • • • • • • • • • • • • • • • • • 0 • • • • • TEMPR.TXT •, AAA4tr44a4trAaA4trtrtrtrtrtrtrtrA4Atrtrtr4A4d44aatrtrtrtrtrtrAatrdd44444trtr4444AAAa4trtrtrtrtrAtrtraatrtrd RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON • RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL • (c) Copyright 1982-2014 Advanced Engineering Software (aes) (Rational Tabling Version 21.0) • Release Date: 06/01/2014 License ID 1355 • Analysis prepared by: • Fuscoe Engineering • 6390 Greenwich Drive Suite 170 • San Diego, CA 92122 • ***trtr°***°°°**°dddtr4tr***** DESCRIPTION OF STUDY 4trtrtrtrtrtr4tr44444AaaAtrAtrAAAtra • * COSTCO TEMECULA * PROPOSED CONDITIONS - 100 YR ° • * SITE RENOVATIONS tr dtrtrtrtr4AAtrtrtrtrtrAtrtrtrtrtrtrtr4trAtrdatrdtrtrtrtrAd4trd444tr4trdtrd444tr444trk4444tr44tr4trbtrtrtrtrtrtr • FILE NAME: TEMPR.DAT • TIME/DATE OF STUDY: 16:24 05/12/2016 --------------------------------------------------------------------- • USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: • --------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 • SPECIFIED MINIMUM PIPE SIZE(INCH) = 6.00 • SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 • 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300 • SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732 • SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: • STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1. 300 SLOPE OF INTENSITY DURATION CURVE = 0. 5496 • SPECIFIED CONSTANT RUNOFF COEFFICIENT = 0.890 NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL • AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES °USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* • HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING • WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0 020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: • 1. Relative Flow-Depth = 0.00 FEET • as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) • *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* • 444trtrAtrAO4trA4tr4tr4trAtrAtrtr44dAdtr44a4tr4Ada4da4a4d44444aRaaaabatrdd4tr444444444A444 • FLOW PROCESS FROM NODE 215.00 TO NODE 210.00 IS CODE = 21 • ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< • ____--_==ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL • Page 1 • • • • • • TEMPR.TXT • TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 • INITIAL SUBAREA FLOW-LENGTH(FEET) = 580.00 UPSTREAM ELEVATION(FEET) = 1061.80 • DOWNSTREAM ELEVATION(FEET) = 1055.00 • ELEVATION DIFFERENCE(FEET) = 6.80 TC = 0.303*[( 580.00**3)/( 6.80)]**.2 = 9.400 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.600 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA RUNOFF(CFS) = 3.40 • TOTAL AREA(ACRES) = 1.06 TOTAL RUNOFF(CFS) = 3.40 • trtr44kkkktrtr4trtrtrtrtrtrtrtrtrtrb4trb4bbtrbtrbbbbb¢b4444kk4k4444444trkkAktrtrtrtrtrtrtrtrtrkkkbbbbtrb • FLOW PROCESS FROM NODE 210.00 TO NODE 205.00 IS CODE = 41 -- • »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1052.80 DOWNSTREAM(FEET) = 1052.30 • FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.011 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 5.32 GIVEN PIPE DIAMETER(3NCH) = 18.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 3.40 PIPE TRAVEL TIME(MIN.) = 0.19 TC(MIN.) = 9. 59 • LONGEST FLOWPATH FROM NODE 215.00 TO NODE 205.00 = 642.00 FEET. • tr4trbb4b4bbbb¢b¢trtr¢tr4trtrktr4btr4ktrk4k44trktrk4tr44tr4trtrtrtrtrtrtrbtrb4444btrtr4btrtrtr¢ktrtrktrtrtrk • FLOW PROCESS FROM NODE 205.00 TO NODE 205.00 IS CODE = 81 ---------------------------------------------------------------------------- • »»>ADDITION OF .SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------------------------------------------------- --------------------------------------------------------------------- • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.560 *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA AREA(ACRES) = 2.10 SUBAREA RUNOFF(CFS) = 6.65 TOTAL AREA(ACRES) = 3.2 TOTAL RUNOFF(CFS) = 10.05 • TC(MIN.) = 9.59 • rttr4trtr44kk4ktrtrbbtrtrtrtrtrtrtrb¢tr44trktrktr4trkk4444k4444444tr4trtrtrtrtrtrk4b44kk4trbtrbtrtrbtr4bk4 • --FLOW PROCESS FROM NODE 205.00 TO NODE 200.00 IS CODE = 41 ---------------------------------------------------------------------- • i»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1052.20 DOWNSTREAM(FEET) = 1051.40 • FLOW LENGTH(FEET) = 86.00 MANNING'S N = 0.011 • DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.26 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 10.05 • PIPE TRAVEL TIME(MIN.) = 0.20 TC(MIN.) = 9.79 LONGEST FLOWPATH FROM NODE 215.00 TO NODE 200.00 = 728.00 FEET. • trtrrt44ktrktrtrtrtrtrtrtrtrktrktrbtr*4trbtrtrbbbb4trbbbbb4rbbktrktrkkb44444tr4ktrtrtr4trtrtr44444k444444 • FLOW PROCESS FROM NODE 130.00 TO NODE 125.00 IS CODE = 21 ---------------------------------------------------------------------------- • »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< • ASSUMED INITIAL SUBAREA UNIFORM • DEVELOPMENT IS COMMERCIAL TC =- K*[(LENGTH**3)/(ELEVATION CHANGE)]** 2 • INITIAL SUBAREA FLOW-LENGTH(FEET) = 112. 30 • Page 2 • • • • • • TEMPR.TXT • UPSTREAM ELEVATION(FEET) = 1062. 50 • DOWNSTREAM ELEVATION(FEET) = 1061.70 ELEVATION DIFFERENCE(FEET) = 0.80 • TC = 0. 303*[( 112.30**3)/( 0.80)]**.2 = 5.385 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.890 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 • SUBAREA RUNOFF(CFS) = 1.26 • TOTAL AREA(ACRES) = 0.29 TOTAL. RUNOFF(CFS) = 1.26 • trtrtrtrtrtrtrtrtratrtrtrQtrtr44a4tr44tr4tr44tr4tr4trtrtr44Q4tr4aQtr4444atrtraaaaatrtrtratrtrtrtrtrtrtrtrtrtratr4trtr4 FLOW PROCESS FROM NODE 125.00 TO NODE 120.00 IS CODE = 41 • ------------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • i»»USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------------------- - - - -------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1058. 50 DOWNSTREAM(FEET) = 1055.30 • FLOW LENGTH(FEET) = 244.50 MANNING'S N = 0.011 DEPTH OF FLOW IN 12.0 INCH PIPE IS 4. 3 INCHES • PIPE-FLOW VELOCITY(FEET/SEC.) = 4.96 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 1.26 PIPE TRAVEL TIME(MIN.) = 0.82 TC(MIN.) = 6.21 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 120.00 = 356.80 FEET. • 44Q4tr4tr444tr44aatr4trtrtr4tr44trbtr44tr4trtrtrtrtr444tr4tr44Q44trtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr4trtrtr • --FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 ---------------------------------------------------------------------- • »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 523 *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.48 • TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.75 • TC(MIN.) = 6.21 • tr444trtr444444trtra4atr44trtrtr4tr4444trtr4trtrtrtr4k4btr4trtrtrtrtrtrtrtrtrtratrtrtrtrtrtrtrtrtrtrtrtrtr44trtrtrtrtrtrtr4 FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 81 • -------------------------------------------=-------------------------------- • ----- -ADDITION OF- ----------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 523 • *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) .= 0.34 SUBAREA RUNOFF(CFS)- = 1. 37 • TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.11 • TC(MIN.) _ 6.21 tr trtr4tr4trQ4trtrtrtrtrtrtrtrtrk44Q44a4trtrtrtr44trQtr44444trtrtrtrtrtrtrtrtrtrtr4trtrtrtr444trtrtr4trtr4trtrtrtrtrtrtrtrtr4 • FLOW PROCESS FROM NODE 120.00 TO NODE 115.00 IS CODE = 41 • -------------------------------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • --»»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------- ---------------------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1055.20 DOWNSTREAM(FEET) = 1054.90 FLOW LENGTH(FEET) = 19.80 MANNING'S N = 0.011 • DEPTH OF FLOW IN 15.0 INCH PIPE IS 6.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.62 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 3.11 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 6.26 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 115.00 = 376.60 FEET. • Page 3 • • • • • • ., TEMPR.TXT • AtradtrAAAAAtrtrtrtrtrtrtrtrtr4A4trtr4trAAAAtrAtr4AAAAatraa4AaAaAaaA4traatraaAAAAtrA4AAAAAAAAaAA FLOW PROCESS FROM NODE 115.00 TO NODE 115.00 IS CODE = 81 • -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 503 • *USER SPECIFIED(GLOBAL) : COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT =. .8900 • SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 1. S6 • TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 4.68 TC(MIN.) = 6.26 • Atr4Aa4trtrtr d.a a4AAAAAAAtrAAtrAAtrAtr4A4AAtrAtraOtrAaAtraatrtrad4dAtrtrAAdAA A.A AAAAAtrtr4trtr44AA • FLOW PROCESS FROM NODE 115.00 TO NODE 110.00 IS CODE = 41 • ------------------------------------------------------------------------ »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< • ELEVATION DATA: UPSTREAM(FEET) = 1054.90 DOWNSTREAM(FEET) = 1054.70 • FLOWLENGTH(FEET) = 13.60 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 7.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.27 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.68 • PIPE TRAVEL TIME(MIN.) = 0.03 TC(MIN.) = 6.29 • LONGEST FLOWPATH FROM NODE 130.00 TO NODE 110.00 = 390.20 FEET.. • AtrtrAAtrtrAtrtrtrAAAAAAAAAa4A44AAAAdatrAAdd4AAAAtraaatr44trtrtrtrdtrdtrtrtrAtrtr4tr4AtrAaAAdAddAA • --FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE 81 ---------------------------------------------------------------------- • --»»>ADDITION-OF-SUBAREA-TO-MAINLINE-PEAK-FLOW.<<<<< -------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.491 • *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 SUBAREA AREA(ACRES) = 0.83 SUBAREA RUNOFF(CFS) = 3. 32 • TOTAL AREA(ACRES) = 2.0 TOTAL RUNOFF(CFS) = 7.99 • TC(MIN.) = 6.29 A trtrtrA4tra4trtrtrtrd4ddddtr4atratrAAAAAAA44Atrtrdtrtrtr4trtrtr444trtraaaaaa444444.d adtrattrAtr44tr4A • FLOW PROCESS FROM NODE 110.00 TO NODE 105.00 IS CODE = 41 • --------------------------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • »»>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)««< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- • ELEVATION DATA: UPSTREAM(FEET) = 1054.70 DOWNSTREAM(FEET) = 1051..90 • FLOW LENGTH(FEET) = 186.90 MANNING'S N = 0.011 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.17 • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 • PIPE-FLOW(CFS) = 7.99 PIPE TRAVEL TIME(MIN.) = 0.38 Tc(MIN.) = 6.67 • LONGEST FLOWPATH FROM NODE 130.00 TO. NODE 105.00 = 577.10 FEET. • trAtr4Atrtra4trddddtrdaAAAAAAA4AAtrA4AA4trAtrAtrd44trtrtr3trtrtr4fr b6AAAAAAtrtrARtrtrtr4A4trirAtrtrA44 • FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 -- • --»»>ADDITION-OF_SUBAREA-TO-MAINLINE-PEAK-FLOW<<<<< -------------------- • 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 348 *USER SPECIFIED(GLOBAL) : • COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8900 Page 4 • • • • • • • TEMPR.TXT • SUBAREA AREA(ACRES) 0.87 SUBAREA RUNOFF(CFS) = 3.37 • TOTAL AREA(ACRES) = 2.8 TOTAL RUNOFF(CFS) = 11.36 TC(MIN.) = 6.67 • trtrtrtr444tr4trtrtr4tr4trtrtrtrtrtrtrtr4trtrtrtrtr4tr4tr44tr4trtrtr4444tr4trtr4tr44trtrtrtrtrtrtr4tr4444tr44trtrtrtrtrtrtrtr • FLOW PROCESS FROM NODE 105.00 TO NODE 100.00 IS CODE = 41 ---------------------------------------------------------------------------- • i»»COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< • --»»>USING-USER-SPECIFIED-PIPESIZE-(EXISTING-ELEMENT)<<<<< ------------- • ELEVATION DATA: UPSTREAM(FEET) = 1051.90 DOWNSTREAM(FEET) = 1048.60 FLOW LENGTH(FEET) = 221.00 MANNING`S N = 0.011 • ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 9.26 • PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) • GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.36 • PIPE TRAVEL TIME(MIN.) = 0.40 TC(MIN.) = 7.07 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 100.00 = 798.10 FEET. • END OF STUDY SUMMARY: - TOTAL AREA(ACRES) 2.8 TC(MIN.) 7.07 • --PEAK-FLOW-RATE(CFS) 11_36________________________________________ • END OF RATIONAL METHOD ANALYSIS • € • • • • • • • • • • • • • • • • • • • • Page 5 • • • • • • • • • • • • • • • • • • • • AARpendix 5 • • Storm Drain Record Drawings • • • • • • • • • • • • • • • • • • • • • • • • • • - ;I j/ -••••••• -' r/,(-/=0Y�-rrl'.�/l//IA\�II 1 TII II`IjI I I rIr Cyp p I a�o:aI C`�7 a' -�`e\�\cl(9�j`��,�v jl IIrI 1r/1�lI-}II\•-{9 IIIIIII `I , _ S, 1 �I_ � -' IIIII1 -x .}.-I1 /l�NI , Jf `;1P.�3 I„ )/l a>.J r'�i1`J'���\`"\CC TV GV \ °`�` .` z. 1r'«.1!r.1� W]9 ].!z.�. -rraIaI mn Bo1''•'uSySe1''a'3Sx9°I'2'Et[ D-_--=R-_--_ IN DATASTORM N C RADIUSALE I M.a'Oti 1 17:r: r irO,'O !O o z o a 1.ao 0-Wor war ltc�a I. i V r 39 NNE _= Frop a = ISICAR Mee PA .. O = a MIMI`EON aao AO mmor % ) 15.13pP 11 FLOP a Memo, a r n• aoD• a aeo 9 x>l'W31t s a o. 1oe•a'Jt aei ermat 4. woaflOAD Iaea'� o a.a % m•J 'at lta� OI. Ii Df A•a'u' eaw 9 O I.O ' o+O I.OIi IITUP O 1. n 31[ -- •• \I I I VUlIII1I1 rroc Vi O OI. �� 9 Ri wlw ' 1 r6a lc O1Y !Y I O+. O 1.a1i, r o 1.51X 1X J,DIWx'E E I ID1 Y']at -- 640 le'14VIE O+.]a • 10Le) I I I l ill /', I FOC 1� ` I / NM'M'92 ALar IV HOPE a Leas • $ 4 iI ' 1 1 1'��J l 1 ' i 'a• -- .2aa• +Y+OPE O1.]ai I � I 1e1'WM'%'E Sat eiar IV1E]PE O 1.50% 5 1ic,-la e c .1W IV HWE O I.eai ze ') MC ° + 1 1 "wee'r -- 319r 4' IOPE O I.]Oi • 1 1[p\{\ S, .I l l I RC I ; I 1pW3VE -- 2a47 r 1® O 1.31i IT, 1.i�\ I l �{�, © IOC• IW I I t ar r aYu]I'b• .Mar e)4T 3'1mP[ O 1.6a' l I I ull • M• •m•a -- ,.e.ee' r 1mvE o L31Xmi r. PLt )0 1 I1OI'S3'I)t ]LIT a•1OPy a o.9ai • -6 3° (\�Tl I 11 I I I p1 I0-er13t 11 n3r Y o aWi • \ lD]I.JI qli l l �' I�• 1 K N ].•Qy I II l f I I l lJIW l Po A 11� .L� I° OO Owi = :10 e mom[ a 6K3Nn m.w .r NOE O O."X \ I I • I l l I i I 1 I. ]D POc 1 1 �, .// I I 1 i / 1mWol'E I 91sa Ir NO[ *am I` S r1U4 fl r E I POC `/ 1 Ha'a• ww W--- IM r HIPE o a94i rm'u'a'a 'ma' °•Iap[o IL.a rervo 1 l -- a.er a•HPE O Mari • \ 5�F- s 9 ; • l °� �b \ r 1 I I / M'12'56•11 -- anoa r HIP[ a 14.aOt • ` V l Imnr �\ O )roc I �'ii'b'o __ Mae, Im mar a• O°a a•HfE a 3n. z • e•RIPE a-12'N•E _= HfE 1 16 I i I I ® POC _ • •La • • s Y a • s e • a••s •.J I I ' 1 1 r 1m'Irxl -- 6ar a•FmPE a]a.ei \ \ \ _ IWSax IL Je' loxu,c e• Y a ', ,`� I ]. ® .-'� � 1 I 1m•lra•a -- ,aar e•ImP[e x0051 • ® 1 3 l I aaJ.Ic �1 ]. IM a�E) /I 1 Ip'M'sat -- >470' a•IaI O a4ai I.A.1• I 1 169'R'Sa'E Jae1' Vial[ 0 6Ni • - " A II I 'I} ]E • / ��•{m a % I I re1'Oa•tVIII 61 __ az.w a•RIPE O 9.+0e2 1 1 5 11 I I I l• 1 ' 1^11, IrI1 InI_I �A� \\ a / •�p / I ,I I' -- 50 I al Im • a• P a Lu e •wUN n°O a isP a a. i Imwwo IT II uzo.' e•HVE a 1.aai Iowa's, -- nl)r e•HlP[O 6.1e2 OP 1m'Iz'Sa•E um a•RIPE o n9oi 1 1 l7 I x lmza ou r r p 1 I 1 Ie,'u'a'° nte9' e•I o Can 1a9 1 ar _ _ _ _ / — I I i !l l�lfArsaoxr-• e 1 O� 1 r r 1ee•u'a•E e..m• e•1OP[a&M . , — — — — —' L _ —— I'�— / V I I I I w]•.1'91•a exar Ior 1mv[a awi 1 ; 1 _ -- Im•u'Y1 -_ naeT +C• 11 o,.Oa,n1e' Jo' 90'�o awi OVER I 1 LAND E ORIV q • -l- F' �--� Ie1•a"12 -- m6.31- Ir 1Q1P[a a�i W-51.17, 49a' 418r 12-1OM o n•Ii STORM DRAIN CONSTRUCTION NOTES512r: eI w x+• M) ' Ix• na aAIi la'RO(J asKf 12 10v 31 o06NUCr Iasi m x a/6p =Par RQW sm Data arm ]] aMIr1UCr IS'H 1M't0 SYE M Ia•RO 10 I.OIZ x QErsavucr yA lal BA9r illy I lar III Sm am.C91a1 im6IID.�.: Ca4 r H'1 ".Wm.]'E eGJ. 3a'HIP[ O 1.oli x] ydSMUCI CarOl(I'aixAa PER R sm DED IMN Oa61s,Cr 3�Iaq Ip'Sx'IJt 31)T 11r RIPE O 6,.I . . [ IFZI.Cr A91CMll SND[IL9E M I FIEF?Ram sm OK m2f. CONSr T]D'RO(IJSD-oJ i ilae'Il'01•E _ 6JY Ix'HP[O nali ] RP$O9Cf SIGN p9A91 CtIANQI!P[R Ralp Sal DEG S_16 Caysaa,Ci]a•RO(1110.oJ F V 1..!V O E mom•.W V x6 walE E.O W IV RO. ® COH LAiSIIID RiB mvsmlcr JlK11D9 SaUCRl9: Is.i91 a®m = a,N9 raseR:a,Na.AEI. © Ara, ]Rw Ram sm as um ENGINEERING n~i Weil C IMi Ca.VaIE area,wr R Rea)Sm w1a ® rlahCM 1117 W"C'am SIT).am W). ov[w m a m41RIKr ui�e.m+1 I rar aaro am Jima4Da °'°"�" I.r°°'°" L099-219GR COffngjM=FED o 1"Til ar I mare a.[ ®olewe a®o®er ; ouwlar o®®er CITY.OF7ELE-CULA oWAMMEWOPRacIIIII n �ss�, irenl�MrE et���m,c1 1COS 5 1-sa n•Im)n � A A . falb•nv u. a....a t am®.o: rlAoay E49: 1lrrhall! laEa Hvo aE+RysEO u.as 4u 51a011rim eE // ,I '/ ' x io�Es v 1er som ae ILD om.. PHASE 1 uaa. Acw1r el ow.rrn ra an 9om �a a Io sms EE00(.VAr O ErOe eH�1 s lor[A � • .9FA • ei®II A W Z 1011n pEaY a 11OL EW ARait A A!e O a lar IS'L AaYSi101r HL PA-%-61N,1A99-61m a Mel.[aM1 w dO to•R 1—IWI�°451e ��yQ + acC N4 .1aw [yyR .l_n-W 0.CE 11a :9)« y.p.c 9-�'01 STORM DRAIN C.-5 SESSION W. mm�w i E m 10 �0 =IMAIMMAIR NOR ME IMMI ®r NOR _ � - u�.,u..u.u®.■ou. ■quo. , m aEms - �� • . � � min " ern �'. G now RZ Y .. - == == mom _ • • • _ - - - .. _ . ..'Ir - M MEN . .. ... . . ., 'i�.' � � MEN ■ ,-, I.II • • • • • • • • • • • • • Appendix b • • HGL Calculations • • • • • • • • • • • • • • • • • • • • • • • • • • 0 • {llV L {{Ml�.�' l ll{{V 1kIlV , ub,. , v, , • • The Energy Principle L < I > The first law of thermodynamics states that for any given system, the change in energy is equal to the difference between the heat transferred to the system and the work done by the system on its surroundings during a given • time interval. The energy referred to in this principle represents the total energy of the system minus the sum of the potential, • kinetic, and internal (molecular)forms of energy, such as electrical and chemical energy. The internal energy changes are commonly disregarded in water distribution analysis because of their relatively small magnitude. • In hydraulic applications, energy is often represented as energy per unit weight, resulting in units of length. Using these length equivalents gives engineers a better feel for the resulting behavior of the system. When using these length equivalents, the state of the system is expressed in terms of head. The energy at any point within a • hydraulic system is often represented in three parts: Pressure Head: p/j Elevation Head: z Velocity Head: V2/2g Where p = Pressure (N/m2, Ib./ft.Z) j = Specific weight(N/m3, Ib./ft.3) • z = Elevation (m, ft.) • V = Velocity (m/s, ft./sec.) • 9 = Gravitational acceleration constant (m/s2, ft./sec.2) These quantities can be used to express the headloss or head gain between two locations using the energy • equation (for more information, see The Energy Equation). • Note: The headloss result on a node and pipe is delta HGL when the Structure Loss Mode calculation option is set to HGL, and delta EGL when the Structure Loss Mode • calculation option is set to EGL. Copyright and Trademark Information • JY YV.Y.V •.�rYY.VJJ • Y�V • V. J • • • Structure Headloss >-- • When water flows through a junction structure, there are headlosses associated with mixing, change of direction, • and so forth. This.section deals with the computation of these losses based on the following popular methods: • Absolute • • c Standard • HEC-22 Energy • Generic • t Flow-Headloss Curve • Structure headlosses are used to determine the hydraulic grade to use as the tailwater condition for upstream pipes during the backwater analysis. With the exception of the HEC-22 Energy method, the headloss through the • structure is assumed to be the same for each incoming pipe. • Headloss- Absolute Method • The absolute method is the simplest of the headloss methods. The structure headloss becomes an editable • value, which is then used during calculations. No computations relating to velocity, confluence angle, or other • factors are needed., • Headloss- Standard Method • • The standard method calculates structure headloss based on the exit pipe's velocity. The exit velocity head is multiplied by a user-entered coefficient to determine the loss: • • `J 2 • hs K �0 • g • Where: • a hS = Structure headloss (ft, m) • V0 = Exit pipe velocity (ft/s, m/s) a g = Gravitational acceleration constant(ft/s2, m/s2) K = Headloss coefficient (unitless) • For suggested coefficient values for various structure configurations, see the Typical Headloss Coefficient table • at the end of this chapter. . Headloss- Generic Method • The generic method computes the structure headloss by multiplying the velocity head of the exit pipe by the user- entered downstream coefficient and then subtracting the velocity head of the governing upstream pipe multiplied • by the user-entered upstream coefficient. • • • • JL.YL.LY.L. LLYYY,VJJ L Y�.M i V. J • • • v2 v2 • __ 1 • hs K° L 0 — K1 L • 2g 2g • Where: • • hS = Structure headloss (ft, m) • a V0 = Exit pipe velocity(fl/s, m/s) KD = Downstream coefficient(unitless) • e V,I = Governing upstream pipe velocity(ft/s, m/s) • a Kt = Upstream coefficient (unitless) e g = Gravitational acceleration constant(ft/s2, m/s2) • If there are multiple upstream pipes entering the junction then the program must choose one of the pipes to use in the calculation. The pipe that is chosen is considered the governing upstream pipe. The governing upstream • pipe is selected based on one of the following methodologies: 2 The upstream pipe with the maximum flow times velocity • e The upstream pipe with the maximum velocity head c The upstream pipe with the minimum bend angle • The default method for selecting the governing upstream pipe is to choose the pipe with the maximum flow times • velocity. However, the user can select one of the other options through the generic structure loss options. • Headloss-HEC-22 Energy Method • • Similar to the standard method, the HEC-22 Energy method (from the FHWA's Urban Drainage Design Manual, Hydraulic Engineering Circular No. 22) correlates structure headloss to the velocity head in the outlet pipe using • a coefficient. Experimental studies have determined that this coefficient can be approximated.by: • • K = KOCDCdCQCpCS • • Where: • • K = Adjusted headloss coefficient • e KO Initial headloss coefficient based on relative junction size • e CD = Correction factor for the pipe diameter Cd = Correction factor for flow depth • CQ= Correction for relative flow CP = Correction for plunging flow • • • JU YVLYLM L LYYULVJJ • YSY J VL J • • • z CB = Correction factor for benching • Headloss- Flow-Headloss Curve Method In this method, the user defines a curve where a given Flow rate causes a resultant headloss. Copvriaht and Trademark Information • • • • • Calculation Detailed Summary • Element Details • ID 27 Notes • Base Label Calculation • Options • Hydraulic Summary • Backwater Actual • Flow Profile Method Analysis Average Velocity Method Uniform Flow Velocity • Number of Flow Profile Steps 5 Minimum Structure Headloss 0.00 ft Hydraulic Grade Convergence• 0.00 ft Minimum Time of 0.083 hours Test Concentration • Inlets • Neglect Side Flow? False Active Components for Grate and • Combination Inlets In Sag Curb • Neglect Gutter Cross Slope False Active Components for Grate and For Side Flow? Combination Inlets on Grade Curb • HEC-22 Energy Losses • Elevations Considered Equal Depressed Unsubmerged • Within 0.50 ft Factor 1.000 • Consider Non-Piped Plunging False Half Bench Submerged Factor 0.950 Flow? • Flat Submerged Factor 1.000 Half Bench Unsubmerged 0.150 Factor • Flat Unsubmerged Factor 1.000 Full Bench Submerged Factor 0.750 Depressed Submerged Factor 1.000 Full Bench Unsubmerged 0.070 • Factor • Headloss(AASHTO) • Expansion, Ke 0.350 Shaping Adjustment,Cs 0.500 • Contraction, Kc 0.250 Non-Piped Flow Adjustment, 1.300 • Cn • Bend Angle vs. Bend Loss Curve • Bend Angle Bend Loss Coefficient, Kb (degrees) • 0.00 0.000 • 15.00 0.190 30.00 0.350 • 45.00 0.470 60.00 0.560 • 75.00 0.640 • 90.00 0.700 Gravity Hydraulics • Bentley Systems,Inc. Haestad Methods Solution Bentley StormCAD V8i(SELECTsedes 4) • LAT A-t.stsw Center (08.11.04.541 5/12/2016 27 Siemon Company Drive Suite 200 W Page 1 of 3 Watertown,CT 06795 USA +1-203-755-1666 • • • • • • • • • Calculation Detailed Summary • Gravity Hydraulics • Governing Upstream Pipe Pipe with • Selection Method Maximum QV • Catchment Summary • Label Area(User Defined) Time of Concentration Runoff Coefficient Catchment CA • (acres) (hours) (Rational) (acres) . Catchment Intensity Catchment Rational • Orl Flow (ds) • Conduit Summary • Label Section Type Branch ID Subnetworic Outfall Flow • (`fs) • 15", 221.0 LF Circle 1 100 11.36 15", 186.9 LF Circle 1 100 7.99 • 15", 13.6 LF Circle 1 100 4.68 • 15", 19.8 LF Circle 1 100 3.11 12", 244.5 LF Circle 1 100 1.26 • Velocity Hydraulic Grade Line Hydraulic Grade Line Depth(In) Depth(Out) (ft/s) (In) (Out) (ft) (ft) • (ft) (ft) • 9.26 1,056.74 1,052.70 4.85 4.75 6.51 1,058.97 1,057.27 4.27 5.38 • 3.81 1,059.231 1,059.19 4.33 4.49 • 2.53 1059.34 1:05932 4.09 4.42 1.60 1:059.57 1059:39 1.12 4.14 • Node Summary • Label Element Type Subnetwork Outfall Flow(Total In) Flaw(Total Out) • WS) (ems) 105 Catch Basin 100 19.35 11.36 • 110 Catch Basin 100 12.67 7.99 • 115 Catch Basin 100 7.79 4.68 120 Catch Basin 100 4.37 3.11 • 125 Catch Basin 100 1.26 1.26 • 100 Outfall (N/A) (N/A) 11.36 Elevation (Ground) Elevation(Invert) Energy Grade Line(In) Energy Grade Line • (ft) (ft) (ft) (Out) • (ft) 1,062.60 1,051.89 1,057.67 1,058.08 • 1,061.90 1,054.70 1,059.32 1,059.63 1,062.50 1,054.90 1,059.38 1,059.46 • 1,062.04 1,055.25 1,059.42 1,059.44 • 1,061.70 1,058.45 1,059.61 1,059.61 1,060.13 1,047.95 (N/A) (N/A) • Inlet Summary • Label Inlet Type Catalog Inlet Type Catalog Inlet Flow(Captured) • (ds) • Bentley Systems,Inc. Hassled Methods Solution Bentley StormCAD V8i(SELECTseries 4) • LAT A-1.stsw Center [08.11.04.54) 5,12/2016 27 Siemon Company Drive Suite 200 W Page 2 of 3 Watertown,CT 06795 USA +1-203-755-1666 • • • • • • • • • Calculation Detailed Summary • Inlet Summary • Label Inlet Type Catalog Inlet Type Catalog Inlet Flow(Captured) • (cfs) • 105 (N/A) (N/A) (N/A) 0.00 110 (N/A) (N/A) (N/A) 0.00 • 115 (N/A) (N/A) (N/A) 0.00 • 120 (N/A) (N/A) (N/A) 0.00 125 (N/A) (N/A) (N/A) 0.00 • Flow(Total Bypassed) Bypass Target Capture Efficiency Depth(Gutter) Spread/Top Width • (cfs) (Calculated) (ft) (ft) • 0.00 (N/A) 100.0 0.00 0.0 0.00 (N/A) 100.0 0.00 0.0 • 0.00 (N/A) 100.0 0.00 0.0 • 0.00 (N/A) 100.0 0.00 0.0 0.00 (N/A) 100.0 0.00 0.0 • Pond Summary • label Element Type Subnetwork Outfall Flow(Total In) Flow(Total Out) • (cfs) (Cfs) Hydraulic Grade Volume • (ft) (gal) • • • • • • • • • • • • • • • • • • • Bentley Systems,Inc. Haestad Methods Solution Bentley Sto"CAD V8i(SELECTsenes 4) • LAT A-tstsw Center [08.11.04.541 5/12/2016 27 Siemon Company Drive Suite 2D0 W Page 3 of 3 Watertown,CT 06795 USA +1-203-755-1666 • • • • • • • • • • • • • • • 170 • Mat xO5170A 11s • iwrz 1,00250A Mac t,o5a90. • Im 1m xoSxroA .u.�:taS:ofA • , ?ssca tzs 1,051.Mf • Marc t06AK • b xOBR1JA • d� I t2011� I . 5 t.055 c0 __ - • $ - t ti0O0 �✓' W ta0� m GfrO 1465JDV W t5 I l Q0-0c nm . t.t}5pr0 OM vqC • . -0L50 0+00 Oti9D Nw 1a50 2440 2-dD 3-07 31M 6N00 Y50 6-M 5150 6,00 fY50 7�W � mac» • • • • • • Label: 105 Label: 115 • Ty De: Catch Basin 100 t0 125 - Base Type: Catch Basin • ID: 50 ID: 54 Label: 125 . 1,062.50 - - - - Type.Catch Basin ID: 58 . 1,062.00 -- --- 1,061.5D Label: ISO - Label: 120 EGL . Type: Catch Basin Type: Catch Basin - HGL . 1,061.00 ID: 52 ID: 56 1,060.50 1,060.00 - - .•-_-_ r t_-. ___� 1,059.50 1,059.00 1,058.50 ---- . r-- i _ r - . 1,058.00- . 1,057.50 2,057.00 1,056.50 2,056.00 Label: 244.5 LF 12" Q v 1,055.50 - -- - - Typet Conduit C 1 D: 59 0 1,055.00 - . Label: 19.8 LF 15" 1,054.50 ---- - - --+- ----- - -*-- Type: Condut __-___ y_.-____-_ I ID: 57 d 1,054.00 - - -..__ ____r__---- _._...__-_ . 1,053.50 Label: 13.6 LF 15" 0 5=1.5°:e Type: Conduit - 1,053.00 ID. 5 - -- - - i Label: 186.9 LF IS" �5�1.5 1,052.50 --I---+--- -_ - Tvpe: Cendu@ _ -`t ID: 53 1,052.OD .i_._. .--------_.. - j1.051.50 1,051.00 Lab eE 100 i T { 1,050.50 Type:Outfall 1,oso.00 ID:a9 :.-- ._ i_ - - 1 1,049.00 1---1,048.50 �5_.�..1..5 Type: Conduit -_�-_-1,048.00 Label: 221.0 LF 15' -- + ID: 51 1,047.50 ..._._ ... ....................... ... .. .. _... .. .. _.. .................................. -------- .. ........ ........ .... .. _ _....-- -t_--._i,, . -..__. ........... - ......_...�r. ..-_...._. ..._. ..._-1: - .-................... ... .._.. _ _1,047.00 - 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 260.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.D 680.0 Station(ft) LEGEND 1 , III RIGHT-OF-WAY — — %' EXISTING EASEMENT - c EXISTING STORM DRAIN == C MAJOR BASIN BOUNDARY IF3 FLOW PATH FLOW DIRECTION NODE NUMBER -p 6pCD nor BASIN A 1061.8FS Q o RING ROAD —_= 1058.51E A = 1.06 ac /P�' / Q100= 3.4 cfs - 2 I A = 0.38 ac / S ' p NO ----•-•.._. , Q100= 1.6 cfs / � / / •'' Quo , 2 a� ❑ '� % l _ — - _ Oscfs I �� 1�1 , -IJI 1062.5FS 2 / =1.6CFS — T T "F.—IQ 1oo,IN 106.0fB /// �► ;• � � I I I I '. I 1055.31E : — BASIN E / I / 1055.21E A = 0.34 ac Q100= 1.4 cfs 1 I / / 1 I I IIIIII Q100,0uT=3.5CFS- I '' I I I I I I •''. � ��'• I I I I IIIIII :! I Q100,IN=3.5CFS a. Q100,OUT=6.13F \ \.• �ASIN B \\ \ \\ 0= 7.6 cfs I BASIN F 1055.OTG A = 0.83 ac 1052.81E \ 1Q'1 I U o - - - _ \\ Q100= 3.3 cfs Q100,0UT=3.4CFS \\ \ \\ \ p`ss Q rn rn ti I — � CD I Q100,IN=3.4CFS \\ \\ \ 1055.OTG 0 �\\\ \\ — — ` 1052.31E �'� \ \\ El 1052.21E \\ : & u U 0 D Q100,ouT=11.00FS BASIN G \ \\\\ A = 0.87 ac .\ _ Q100= 3.4 cfs \ \\ \\ Q 0U,i l=6}8C S I �\ Ej 0 \ Q100.IN=11.00FS \:\\ \\ c110.0 0.2 1051.41E \\\ \ =� p' 101 \ L —_— — o �G Ld 0 L2 Ih • 1062. o a x \\ 1060.1TB"En �11 % -- -,I - - - - - - - - - - - -� . 1048.61E o •� _ Q -10.2CFS 1061 i \ r LJ LJ 60 Li 40 20 0 40 80 120 \\\ so III \\ — \ GRAPHIC SCALE IN FEET ta 1\\ — II -Ott go 111111\ _ _ PRE-DEVELOPMENT DRAINAGE EXHIBIT W a DRAINAGE STUDY - COSTCO WHOLESALE #491 = FUSCOE III,,. o TEMECULA, CA _ •_ _ `� r .• PROJECT NUMBER: 2156-088 6390 Greenwich Drive, Suite 170 \\ ••'. SCALE: 1" =40' San Diego, California 92122 DATE: MAY 2016 tel 858.554.1500 °Fax 858.597.0335 www.fuscoe.com SHEET 1 OF 1 LEGEND I \ — I RIGHT-OF-WAY — — %� EXISTING EASEMENT — -- - I EXISTING STORM DRAIN =::!SD� PROPOSED STORM DRAIN MAJOR BASIN BOUNDARY FLOW PATH FLOW DIRECTION NODE NUMBER '•moo I / 6, 1061.8FS 0 =— ___ -CD 1058.51E= — BASIN A RING ROAD A = 1.06 ac — — �� Q100= 3.4 cfs — — — — ,, Q` O 2 BASIN9," _ q egs�N A =_0.29 ac -'-•- - - �Q�00- 1.2 cfs Q�00� 0 ��ac Scfs Q100,1N=1. CFS 1062.5FS 1062.OTB --- 17T BASIN H 1055.31E 0 t A = 0.39 ac 1055.21E BASIN E / I Q100=�cfs / A = 0.34 ac I / 2 100,0urI CFS Q100= 1 .4 cfs II 11 Il Q100,1N=3+1 CFS: Q100,0ur=4.7CFS . Lj \\ \ I Q�00,0ur I8. CFS 1 \\ \ \ BASIN B \� \\ A = 2.10ac Q100= 6.6 cfs7E�rj — — — — 1 \\ \ 1055.OTG \\ BASIN F 1052.81E \\ \ • A = 0.83 ac Qloo,our=3.4CFS \\\\\ \\\ \ os�` o, o Q o ti — — — — — Q1oo= 3.3 cfs cr o Q100,1N-3.4CFS 1055.OTG 0 \\\ \\ , El 7 I — — — 1052.31E \\ T 1052.21E Q100,our 10.00FS BASIN G A = 0.87 ac Q100= 3.4cfs Q100,IN=8.00 S \ Q100 IN=1 O.00FS �\ \ \\ \ 0 \ Q1 11.4 F =101 \ I Lij o N \\ / 111 � •. J 0a. 0 \ J G o \ o 0 � o 1062 .... o ..... 0 M \ JOG ��. i � �Q / ' . .•• \ Gam!/ �. � I \j w . 0 o \ \ I' \ 1060.1 TB W 0 1048.61E o _- - - - - -_ - - = —•- - - _ - - - - Q _ 1060 e 1 r� \�� I 40 20 0 40 80 120 \ � 'o II \ s N \ \\ GRAPHIC SCALE IN FEET m POST-DEVELOPMENT DRAINAGE EXHIBIT a \ � __ __-______ ___ DRAINAGE STUDY - \ COSTCO WHOLESALE #491 = FUSCOE 0 OVERLAND DRIVE TEMECULA, CA E N G J E E R I N G `� _ .... PROJECT NUMBER: 2156-088 6390 Greenwich Drive, Suite 170 0 \\ ? SCALE: 1" =40' San Diego, California 92122 Ll tel 858.554.1500 ofax 858.597.0335 0 DATE: MAY 2016 L www.fuscoe.com SHEET 1 OF 1