Loading...
HomeMy WebLinkAboutHydrology Hydraulic Study ( I: I I I, " I I' I: ( I I~ ( [ I~ ". I, , , [ I~ t. '- CITY OF TEMECULA HYDROLOGY/HYDRAULIC STUDY FOR TRACT 23143-3 & 23143-4 CROWNE HILL ==CS:'~ l ~U2~ - RICHARD L VALDEZ, RCE..... JUNE 14, 1995 27'lQi Enterprise Circle West Temecula, CA 92;90 USA Tel. (909) 6;6. ;000 Fax (909) 694 . 8413 I I ,I I I' I I I I I - I' I Ii I f I .J J SUBJECT: DEVELOPED AND UNDEVELOPED CONDmONS HYDROLOGY/HYDRAULIC STUDY TRACT: 23143-3 & 23143-4 SUBMITTED TO: CITY OF TEMECUlA CLIENT: TAYLOR WOODROW HOMES, CALIFORNIA LIMITED 4921 BIRCH STREET, SUITE 110 NEWPORT BEACH, CALIFORNIA 92660 408-005 & 408-006 TPC FILE NO.: REVIEWED BY: JEI KIM PREPARED BY: EDWIN R SAMILIN PROJECT MANAGER: RICHARD VALDEZ \ I I I 'J I' I -4, I I I I 'I :,. ,- I ,I I '0 I 1 'I' TABLE OF CONTENTS I. INTRODUCTION 1) BACKGROUND a) Vicinity Map b) Location Map 2) METHODOLOGY 3) EXECUTIVE SUMMARY II. 100-YEAR DEVELOPED STUDY (ULTIMATE CONDmON) II.A 100- YEAR DEVELOPED STUDY (PIPE ROUTING 1/ /I BASED ON CATCH BASIN CAPACITY) - LIJ-J e. A III. 10- YEAR DEVELOPED STUDY (ULTIMATE CONDmON) N. 100- YEAR DEVELOPED STUDY (INTERIM CONDmON) V. 10- YEAR DEVELOPED STUDY (INTERIM CONDmON) VI. 100- YEAR CATCH BASIN SIZING & ST. HYDRAULICS VII. PIPE HYDRAULICS VIII. HYDROLOGY MAP & REFERENCE PLANS 7/ I I I I ,- I 'f I I I, I, t I II I I I I I I. INTRODUCTION The subject is located east of the Temecula Freeway (Interstate 15) and south of Rancho California Road, Riverside County, California. Specifically, the site is located southeast of the intersection of Butterfield Stage Road and Pauba Road in Rancho California. The geographic relationships are presented on the attached Location Map, Exhibit 1-1, and Vicinity Map, Exlubit 1-2. 1. BACKGROUND AND PURPOSE The property consists of rolling foothill terrain covered with annual grasses and scattered brush. The alluvial valleys are typically v-shaped and incised along and intermittently active stream channel from the center to the head of the valley. The project is located within the Santa Margarita Drainage Basin with a small portion of the site area tnbutary to TemecuIa Creek. The site is not subject to any flood or dam inundation hazards identified by the General Plan. The majority of the site drains southeasterly. As part of Assessment District 159, a storm drain was designed in Butterfield Stage Road & Crowne Hill Drive to accept storm flows. The storm drain plan has been approved by Riverside County, Transportation Department. Portions of Crowne Hill Drive & Butterfield Stage Road will be part of this project. A proposed storm drain per Tract No. 23143-2 in Via Angeles Street and Fox Road is presently accepting on-site and off-site flows, and will be extended upstream from subdivision boundary to proposed Fox Road (northerly). The purpose of this study, then, is threefold. First, the on-site flows must be evaulated to verify that the street sections have the capacity to' convey anticipated storm flows. Second, compare if the Interim and Ultimate Conditions flows are more than the original flows per Assessment District 159 for Crowne Hill Drive and proposed Tract 23143-2 in Via Angeles storm drains. Finally, compute the hydraulics of the lines to verify that the final design is adequate. ':7 I 1\ I I I I I I I I ), I - i' I ,I' I I I 2. METHODOLOGY The hydrology study for T;:act 23143-2 (Crowne Hill) was prepa;:ed using the Rational Me~'1od Computer p;:ogram (Version 2.5), copyright by Civil CADD/Civil Design, 1988. This program requires input data for rainfall, soil type, type of development and topographic for the area under study. This information was determined for T;:act 23143- 2 as follows: Rainfall Data: The 1 DO-year, I-hour precipitation and the 2-year, I-hour precipitation were determined to be 1.4 inches and 0.55 inches respectively. This information was obtained from Plate D-4.4 and modified Plate E-5.6 from Riverside County Flood Control and Water Conservation District Hydrology Manual. Copies of these plates are included in the report. Soil Type Data: The soil type was obtained from hydrologic soils group map from the Riverside County Flood Control & Water Conservation District hydrology manual. A copy of this map is included in this report. Type of Development: This study is for the developed conditions, therefore, all areas are considered. developed. Topographic Data: The tnbutary drainage subareas were determined from the grading and street plans. These areas have been delineated on the hydrology map that is included in the back of this report. The flows generated from both the 10-year and 100-year storms were computed and are included in this report. Bureau of Engineering, City of Los Angeles, Department of Public Works, Side-Opening Catch Basin Design Charts, were used to size the catch basins used in this project.. These charts give capacities as developed from experimental hydraulic model studies for Catch Basin No. 40 type curb openings with standard local depressions, and may be used in determining the length ("W') andl or the capacity ("Q") of basin openings of this type under various values of "D". Los Angeles County Flood control District's Water Surface Pressure Gradient Hydraulic Analysis Computer Program was used for analyzing the pipes in this project. This program is a hydraulic analysis system developed by the Design System and standards Group of the Design Division and Data Processing Section of the Business and Fiscal Division of the Los A.'ge!es County Flood Control District. The program computes and plots uniform and nonuniform steady flow water surface profiles and pressure gradients t\ I I I I I I, I I, I, 'I~ -, -- I, I I 'I I I I I I in open channels or closed conduits 'With irregular or regular sections. The flow in a system may alternate between super critical, subcritical or pressure flow in any sequence. Tne program will also analyze natural river channels although the principle use of the program is intended ior determining profiles in improved flood control systems. Tne computation procedure is based on solving Bernoulli's equation ior the total energy at each section and Manning's formula ior friction loss between the sections in 'a reach. The open channel flow procedure unitizes the standard step method. Comluences and bridge piers are'analyzed using Pressure and Momentum Theory. The program uses basic mathematical and hydraulic principles to calculate all such data as cross sectional area, wetted perimeter, normal depth, critical depth, pressure, and momentum. "5 I I I I I I I I II I * I I I I I I I I EXECUTIVE SUMMARY The hydrology analysis showed that computed flows are lower than anticipated for Crowne Hill Drive, Butterfield Stage Road and Via Angeles storm drains, for both Interim and Ultimate Conditions. Therefore, original design for Crowne Hill Drive ston:i:1 drain would still be adequate and upstream extension of existing Via Angeles storm drain did not impact the hydraulic grade line downstream. A copy of plans and HydrologylHydraulic Report for Crowne Hill Drive & Butterfield Stage Road Ultimate Condition will be included in this report. A copy of Tract 23143-2 storm drain plan will also be included. (p I I I I I I I I I ;ii' , I I I I I. I I I I --' /' (~ '" PROJECT SITe VICINITY MAP ^'. 7: S. \ I' Ii I I. ,. 11 11 11 I. I J); , j. ,- I- I~ j . I l I i I I . Wat,.. . .,"1>. '. SITE < -.J F'- \. " .- .- .- - SCAL" ," _ _ 2000' I'b o. C . D 01: o . , Ii: ~: i : I' 1 ~.,~! I,' ;.......... j"i ...... "1.- ;" , 0, !; " -' .;' '" . e .- " ,. i: ,. I' ::"H \1,' ~J'r:'~.'. ...-- o'~:' H' l~ " I. ~ - -. .' ;.:::~.~ -:;:.7 . " :F: z: ~" 0: t:j' :...~;_. .. I ~ ~ ........ I "-:'-:."'..;:" '., ~ hi ~ HYDROLDGIC SOILS GROUP MAP FOR ._L~GENO I- SOL:. ~ ~;tQUP 9OUHQ.lRT ~ 0ES1;H.&:nOll '-:-:.-.~......-:.:' I RCFC:~ weD ..',~"'- --::~rtOLOIGY' ; .', .'.I'!IJ,A1 - ". - ?~CHANGA ~. ----- " C'C'C""!' ..,..,..".. o . I' , '\1 .a.t.aec .. 0: , II:: Il"(CIOa_' \" U'M 0: 0: ~. riYDROLOG1C SOILS GROUP MAP \ , ~ FOR I \ BACHELOR MTN. I ~ - - \f;) ~-...-- ::; .~~ L!::GENO -~ GROUP 9OUNOART ... :?.::...s GRO~IP ~-5IGM...nON RC;=-.:s,WCD '.1.._ __. _. \ ,:. -..J' ,.\, lif L i~' 1;: /{..~:,' . E? I~L:. - -~~.' ~.:. ,'~. e Il ,3 1- ;'\ ,J. 11 11 11 Il J I'" " ~ 1- I I I . !N$'1'llIlC"ICXS !'OR RA':Ic::w.L l"':'~::1a:J P.r.JRa-...;x;y ou---u-..xr:::ClNS \ (!>&sed on ,=-"e Racion&l Fo=ll.. Q - C:;>) 1. an map 0: d:a.i.nage a:ea., d:'&'" c--a.i...~ge sys~e:::. and block 0:= Slioa.=eas -=,:.;,u-:.a....-y ':.0 it. 2. Oe~e-~~e t..~e ini"'; ,..' t.i:De 0: co:lcen_a.-:ion, -"!".., usinq pl.ate D-3. :he in:itiU ar8& ~d l:>e leas ~.&:1 10 ac.."'eS. have a new pa~ of less -:han 1,000 feet, and l:>e the most upst..-e.... suba..-ea.. \:,. 3. Osinc; the time of eonce..~-==ation, dete:::i:le "I", in't.enSi-::y 0: :a.i::2- =a.ll i:1 iDc.'1es pe.:' hou:", ==cm ":..."le a.PP="=,p=ia.te :....~~"1Si-=Y-d'C--a::,icn eu--ve for -Qe pa.:-..j.c:uJ.a.= a:e.a under stndy. ::'0= a=eas whe.-..-e s-...an- da..-d c:-.:=ve5 a.--e a~le. use PlateS {).o4~t: to :ep..-oduce ~e standarC c:-.:..-v-e. Fo= areas ....he...... eu--ves have not been publi.shed by -:he Dist..-i~. use Plates '&.4~"--"........p:,.........."", to devel.cp a suix- able intensi -::y-au..--ation CI:--ve. 4. Oe~~e "en, the coe:=ic:ient 0: :uno:=, asing '":he :"'.mo:= coe==i- ci=t c:-.:..-ve which c:o::=esponds as closely as possible ",i~ ,=-"e soil. ccve= type and devel.op:llen": of the cL-a.i:1age a..-ea. S=da.--d c:-.:..-ves {PJ;a~.5;;l.o."""'~"':~ have been developed by '=-'le Dist..-iC': for ~e ~n case of 1:--::'= ~dsc..ping type cove::. Whe..-e ~ese cu..-ves a...... :1ot applicacle, c:-.:..-ves may be developed us:.:.g Plates 1>.:5' S-"'OlJ~~a. c. 5. Oe'Ce-~e "A", 'the a.=ea of 'the subarea in ac:=es. ,:. 6_ =pute Q - CIA f= the sub=..... 7. l\eaSU-.... the len......h of nOW' to the poi.:lt of i;:.:;10W' of the next sci>- a..--e.a d~:m:.. De.~e.=i:1e ~"le ve~oc::..~ 0: flow iD ':.."l:is =each ::0= ~e peak Q in ":be -:ype of conveyance bei=>C; c::=ide=ed (na=--al QaIme.l, s-:=eet:., p:i~, 0= open c:ha.m1el) I u.si=1; ~"le -:a:c.li.nq rids = Pl.a.~.rC:~~ Using 'tile :each le:1q-...h a-~d veloc::..--:y de'1:p-,; ::lee. above, ca1l?'.:-:e -:."1e _Avel t:.i:ne, anc ac.:. -:his ~e t:.O ":..."1e -:.:.:ne 0: ccnce.."'1-:=a::.ic: ::0:- ~e p:::-eviot:S suba:ea ':.0 d.e~e.:-....:...~e a n~ ":i::1e 0: co:1ce::=aci=. s. Ca.lc:'.llAo:.e Q :0= -=he :leV S".:Zarea, usi:lg so:eps 3 ~""'l--ough 6 a..,6 -=.."le Dew -:.:.me 0: C'O:"1Ce:l':.-.-z:::..O:1.... De-~-';:'J.e "Q'O", ":..~e peak Q :0= all 5"..:-'-- =el>S ='...=uta...-y ":0 ,=-"e syste:n to -:r~ ?O:..::t :.y a<i~g Q :0= -::."e Dew sQarea ':::l t."le s'=:~a::.ic:1 0: Q =o~ all .:?s-:=eam s\:ba--e.a.s.. De-:.e:- c....'"1e ":..~e 't.iJne 0: CQ:lce...,':.-.-a -:..icn ~c= ~e :lex-:. ~~a:ea dcwns=ea: ~~; S~p i.. Con':i:1ue -~''''U.:lg d~ea: i:l si:..ila= :a.shi.o:l t:.."1=.l a ju..,:-:.ion ..."i-:.~ a a-:e:2.l c.:ai:l is =eac""1ec:.. RCFC a weD METHOD r\ATIONAL HYDROLOGY };!ANUAL iNSTRUCTIONS \"" r ., 01 .-=- . __I _ -' : \ 0: - '. :...:., ~'r:: ':. " ....c.: F ~, - 70~ Ir~{ ../I .- I, /-:.. I{~r~ - - tl~'.; ',,~ 10 ~ ~:i I Il~ II.. 11 :~ II II I -' -' ( 9. SUt:-"O a": -:.."e uP?"=' e..,d 0:: ":he la":e=al =c. -:able i-:s Q a",..-n ":0 -:."e j=c--::.on ...i":h -:."e, =:...., l:....,e. us:"'.,.. -:.'le :ne":hoC.s ou~:....,ed ;; ":he ?:'e.......ious s~eps.. 10. C=pu-:.e -:."e pea;: Q ..": -:.."e junc--::'or.. :,e<:~, ':'", 1" cc=="spond <:0 ":he =~UUl--y a...-e.. ...i<;;h -:.."e 10nge= ':i::le ot eoncen=..--::.on. u>d Qs, TD' III co::espond t:.O ":he =,~"Ul-ry a..-e.. vi<;;h <;;he shc~ tiJne ot CC:1cer.':..~--::'= llIld Qp. ':p co::=espond -:0 -:.."e pea;: Q llIla -;:i:lle 0:: ccnce.:::':.:'a:ccn.. ... 1= -:."e =D>uta.--y o.=eas have -:."e same -;:i:lle 0:: co:>c==..--::.o:".. -:.."e =D>uUl-'"j' Q's are addea ~'=c-..ly -:0 ol:>=i:l ":he combined peaX Q. Q? "' QA . Qa M _ -p TA TB - b. r= '::he =D>u"Ca-"j' o.=eas have c -=::e..-e": tiJnes 0: =cen=a~cn. <;;he soaUe: 0: ":he =,~u-:z...'"j' Q's ~ be c=ec:::ea ilS ::ollo<oiS: (1) The usual case :is ...he..-e -:.."e =D>uta.-ry a:u vi<;;h '::he 10:>- ge: o;:iJ:>e c:: ccncer.':..-a~cn haS ":!ie la--;e: Q. I:l -"is c,.se. -:."e smalJ.e: Q :is cc=eC":ed 'r1y a ::a--::'o 0:: '::he in=.s:i~es and added t:.O <;;he 1=ge: Q -:0 ol:l-:ai=l -:.."e cc:::ined peak Q. The -:abl.inC; :is tiler. cont:inued dO\iT".s':..-eam us:i:lC; <;;he 10:'19e: -:;ime 0: CC::1cen _ACOn. Q? - Q]. + ~ ""-- M "' - ^ -? ';'n. ;'3, (2) !:l SCXlle c,.ses. ":he =:.;u-:z...-y a..-ea ",:i<;;h -:.."e sho:-"Oe: -;:i:lle ct =cer.=a~c::. has -:......e :..a:ge= Q. !:l -::-.i.s case. -:......e =11e: Q :is cc=c':.ed ':Jy a :a-:io 0:: tile tiJnes c:: cc::>cer.- _a~on and ..dded -:0 -:......e la--;e= Q ':.0 ol:l-';- ':.....e ,"~~:i:led pea:.<. Q. The =",line; :is -:......en ccn-;i."lued dcr-=":ea::> ..:sine; -:he sho:-...e: -::--ua c: conce::.":--a -=i.c:l. Q? Q;; + ~ - .;.:; ':1. M -? -s "' "' \ RCFC a weD RAT\ONAL METHOD INSTRUCTIONS \1" HYDROLOGY MANUAL 1 ~T I~.. ~'r i!F.' .I~~z ,..' .~.:~. ~. Ifi~' ~" P .~~~ I~.;;;, :,'" --. -.., .:... ~~: I~i - ..- ~ :,..~ I.~ ) _. I~G _.w v, If~ ".:'" . It'''t:; . ~.., r'.. .r.~ .,i., If~ :~ II"~ II ~ I. I, Il ~ Tc' - 100 L - FlOOD 90 80 _900 70 800 700 60 c r .. t 600 i p--; .~ ~ .. .. - 400 ~ c: _ g L350 : ~ " c c: E C 300 c: - 0 - Z50 ~r ~E c: ZOO .. ...l 150 100 50 40 =5 30 Z5 e ZO 19 - 18 -~ 17 - 16 c: 15 ~ 14 c ~ 13 c: gvlZ '2.) II - c .. 9 ! ~ 8 7 6 5 _4 RCFC So weD LIMITATIONS: , L Maximum length = 1000 2.. Maximum aree = 10 Acres -::. < - - .. ~ J:L u 500 400 300 ZOO lI:: .. - " 00 .2 c: . C - o .. ... a. 100 _ ,g 80 ~-a ~ .. _ .0 E coo.. 30 o ~ ~ c ; ZO (I) .. - ~ ______ ; ~ ;c 1_0............ ----.::. ! -e I - ~,;6 '(i)" 3' unOey~.~~r - Z . Good -- :~ Undeveloped +0 -: ~eO FaIr Co_ I . - .6 =~.~ Undeveloped -F= ~ '2. PoClr Co_ 5 F- .Z (1/4 Acre) .. Commercia.. . (PClVI:S1 g / ~ - K c KEY - T' L-tt-\c-;(- c \ Tc - :5 6 .. - u ,< .... " EXAMPLE': (I) L =550" H =5.0~ K = Single Fomily(l/4 Ac:..) 35 Development, Tc = IZ_6 min. {Zl L =550', H =5.0', K = CClmmercicl DevelClpmen! , Tc = 9.7 inin. 7 - - "- ."'- V 8 9 > .. c 10 >- E c ~ Reference: 9ibliClQlOphy item No. 35. ~ 14 ,~ 153: 16~~ 17 E IS -= 19..Ju ,f-- ZO ..,. c o c ~ c: .. u c: o Z5 30 40 TIME OF CONCENTRATION FOR ,INITIAL SUBAREA \'b }-JYDHOLDGY !'11ANUAL , ~ .. .. - I I c:: :::l o :I: c:: W 0.. (j) W :I: U Z - I >- I- - (j) i "\Z W I- Z I I I I .....l .....l <1 U- Z - <1 0:: i I I, I I I I ~ , , : v . ~ - o ~ . . . -- ~- -- ..---* -.-..- __r ..",.--- _..--~ ----... ...-....- ...---- ---- ........ -...--- ----- a" ... ----- ----. --_...- \ { --- - . . ----- ----- ........ .. ----- ..---.. ----.. ...... .. . . ...---- ----- ........-- ----- .......- ----- ........ .. .......- ... ......--- . . ----- ...--- .......-- _..-.,..~ ---..... . . ---- .. . o , ~ ...--..- ....--- .' . ----- . - -- - ...... .. ----- ----- ........", ----- ~ ----- ----... .......- --....- ~~ ----- ----- ----- .....--" ----- --..-- ..."",..-- " . - . . . ,,' \ Q;- ...--- ""..--- ........ .. _...--- ..--.,...,. ----- ....... .. --_..- ......-- ...... .. ----- -....- ..---- ....... .. ...---- .--"- ...---- -..--- ..---- - - ~ .. ...... ~ - . - . . ~ . o .- V .- . -- ~ . - - . . -- o -- o -_....- ...-....-- ........ .. ..-...... ""..-.... ...---- --....... . ., ...---- - .... .... ..-..-" ---"'. ----- ........ .. ----- - . o -' ~ ..---- ...--""" ........ .. ----- ....--.. .--_... ........ .. ----- .....--'" ...---- ...-.. ...... ...",..- .. ...... ........-- ----- ......-. .... . .........- ....-...- . -' f,~ ........ ...,......-.... ...... --.......- ......... ......... ""'........ .....-.. . -- .. ~; .......... ----. ----- ....-... ----- <' V . <' z . - -- V -- Z -- ~ o - . . -- ~ -- ....-..- --.......- ...... . ............. .---- .......... , . . ..--...- ........... .---- ........ .. ..---- .---- .....-- ...... . ...---- .........- -......... .....-.... ........-- ........ .. ----- ...--..- -_...- ...... .. ----- - - ~ . . .' ----- ---.. .......-. ........ .. ...-..- ...-....- ...... .. ----- ---... .... . ----- .......-- -......-- ...... .. ----- .....-- ......... .-..-. ...-_. ..-...- _..--- .. . o -' - .... .... ----- . ., ----- ........ .. ........--- .......-'" ..---- ........ ......... ( r o~ -- -~ !,~ oZ ....--.. .-......... ----- .....-.. ----- ........- ..-.......- .-....- ................ . - J- ~r u. wo . 0 -- -' . 'V _0 .x _V _r . . !," iJ . . -- V -- .:or -.. - ~ o - . . -- . -- o .-..... -......... .......r ....-..- .....-"'" ......... ........ ----.. -..-- ....-_.. --....- .......-- ....... .. ----- .-..-- ----- -' . ----- - ~ ~ ...... .. ...... .. ----- ...... . ---""- ........ .. ----- ----- ........ .. .--...- ----- .. ...... ......-- .....--- --....- .....-... ......--- ........ .. -...... .......-... .... .. ----- ......-.. .---.. ....-.... ----.. .... .... -- ...---- .--..... ~ . o -' ~ ----- ...... .. ., . ----- . . ""---- ...---.... .........- ............ ........... ..---- .-..- ----- .-..... ----.. z o~ .....--.. ----- \ ...___r ----.. ----- -- -- .~ . Z ~- o. t "'_....... -_...- ... .." ----- - . .. c -- -- _0 --".... ........... ........ .. ....--- .......-. -....-- --- ....--.. .......-- --..-. ........ .. .....flol-"" -........ ....... .. ----- ......... .......-- ....... .. ----- ., . ----- .. ...... ---...- .~.... _..~.- ..~..-.. ~-_...~ ~......__ ___.. .c.-- ~-.... . . o -' - 'i - " o - & ....--- .--_. .~...- . .~ -~~-- ..--- ~~... - -- ......... .. . .. ----- ----- ----- ----- ---- ----- ......... ...... .. .......... ........ .. ~ o -' - . . = 0- -- ..__r _--.- _____ ___.- ---.- _r-.O ~-.-- _____ _____ __N_N ~-~_... ....... .---- . -~ .x .- 0> RCFC a WCD l'llA l'lUAL STANDARD l,. INTENSITY - DURATION CURVES DATA PLAT:: 0_4.1(4016) '^ H'fDRC'LDGY -:? I I I I ~ I I ~ I I I " I I [ , ' I 11 I: '... I' - J , :~ \: .~ .h.f>".?..(~. '" ~= - :: L., I: Q Q;J !Ie - I'<!J'i' :: "'j',.'\ c: [i it :: U --"T < r..; I '-'C: ,... "- N I p-c , );f '. ~~-. -' ~- .. I~' I I I I I I I I I .'''', .J. . I I I . '.~ I ~ -11 I I, I, I c D-::'-"./~ . .. '.". ~ 'ft:", --(:,. 1" -# .:1-:\', ,,- .~ '<. :: 'I, -~ - "'II, - 1";11. : ~ ~~ ;.i~ I <: I ""\ = :I"i c... ::::; c: - ~ <:: ;:. I il W c:: II ~ Co. :! o o . . , . " . '. :.;"1. :.- r~' " < ;,.-:.. 0' ", , , ~ ~ ~.. ',". , .' fl "':-'... . --. .. ~ ..... :t" -, 'f : ;:. ~ . .'. .~' ~ ,.... ..-. ~l.". : -" y... . ~ ..- . -- ~l' ~ ;r'~ ~r-: r-';;: ~ ~ :,.:. '\"":: :'::"~:. !ooo<I ,~'; ;, 'f , ; :'<, 1-+ r", .1_..z..,. , . ; \I.J. '.., ;--~)1' j~" ":;i ( ~ ..T"':'::'~iJ':I;' :i'~:~,,~ ~ -', " '1<\ '" ,:! '; ~ '- ~~/./;/ .~~ ;~.~: ;'. ,:. .:~~;~}~ ';7:" . .~~. , ., .~ ....10\ :.. I ...... '!: :-. "-'-';~J . :...r....:.._.. 1 I I 1 I I , I I I I 1'\ 1'\ Il I ~, I"~ I 11 If II ~ ,... I I - ~-, 1''' ' i\~' ,- '. .,,; _. ' " '0 - , $, ':0"\ C~\ \'\ 12. ~ .... Ii: 1"71 ;::-: 1-, 1-- ?: ~: J I':; I;..' .., I.~' I':'.' - I'... :~ I'';. ==1 1,- : ! ! -; 11 _J I I: .~ : . . :.i 111 -t i I'l L ~.~ It ; .... 1[;.; , " J It It II~ If ~ ) .5 o 9 .8 .7 , , .6 " , 1111 j , " , I , , , , I I I " , , , , I , , , , .4 .3 .2 .I ) o o ,'.#: ~, , I " ,. 11#: I , , I II , , " , , , , , ,'~ I , , , , , , , I , , , , , , 1.1 " I I I II 1111 t: 1 I I' I i I " , , , , , " , " , 'I I! , , , , ,.11 " , , III I 1 I I I I' I It' I I 1 I I I I I I III I I I I 1 "I I I I I I I! I" 1 I I ! I I I '1 I I I j I 1 I I I 1 I I I I j I I 11111 I I I \ t I I I I I I I I 1'1 I I' j I I. I I I I I I I I! I I I I I I \ 1 I I I \ I 1 It' I L 1 I I I , , " , , I! II I , '" , , , I I 1'1 I I I I , " , , , , , 1'1'1 I t " , , , , , , " ' I: I , , " , I ( ~ " , " , , , , I I " , , , , , , , , I , , , , " , ," " ' , , , ' z , , , I; I I , 'I I I , ' , , , , " I I I I , " , " , , t I: I II I I t I II! 1 I I: t I I t I I I I I I 1 I 1'1 I i I 1 I I I I I I I , , , , , , , , , 1\ 1 I " , I; I I '" , , , , , , , , , , , , " , , , ,I I I I , , I I I 1 , , 1 I I I , , , , , , , ' , I , , , , , , , , , , " , 111 I I I: , I , , , , " Ill' , " " , , , I. I I I I' I t I I; , " , I I. I , , , , , , , , , " , , , , I \ I 11 I; I I I , , , " , I I 1 I I \ , , '" It I t I I I I I I: 1 I t I I I 1'1 I I I I , , , , , , , I I" I , , , " , , , I' , " , , , , , , . l' t , , , , , , , " , I I 1 I , , " , I I I 1 , ' " , , " , , , , , " I' I I , , , , , , 'I j j "NO USE OR 1 I I I OEVELOPWENT TYPE : : ' : I' I I;' I I I ! r 1 t I I; I t I' I: "I I I' t I I 1 I I I I I. I \ I 1 1'1 I 1,1 I :, I': I l' ", 3 1111~1 , , I' , , , , " , " , , , " , , , I " , I I I r' I I I I I I I I , , , , I I: " , : I I , , , , , , , , , , , " , , " , I 1.1 " , I $ I I " , , I 1" " , " , , , I , ; , : , , , I , , , , , , , I , , " , I' , '" I j I' \ , , (I I I I I ", I I, I I I II I : 1\ 1 I I t I 11 I,'l " I t I I I I I 11' I t I 1 I I I I I I I I I I I I " I 111 I' I , ' " , , " , I I I I 1 '" " , ! I I I I I I I j , " I " , : , , , : 1 I I , , " , I I) I 11 I: 'I I I 1 I I , , , , I I! I! " , 'I l l I 1 , , : RAINFALL INTENSITY " , 2 I I j I 1'1 I I I I 'Ill I. I I; I j' I' " , " , 3 "I j , , I I I I , , " , \ I \ I , , , , , , , : I I ,., , ' , I I I I' I , , , I , , , , , , , , , , , " , , , , , , , , ; I I I , I , , , " I , : " , " , '" , , , I I I; , " " I , , , , , " , , , " , , , , , , , , " " .. ;, , , "I! , , , , , , , , I I j I 141-' , I 1'1 , , , , , , , ' , , ' , , , , , , , 11 I I LO , 'I' . , ' , , , " , .9 , , , , 'I I \ I I " ' I I I I " , " , If' I I;' I I I I I I : I" " , I I I I "I I I I I I " , " , .8 .7 ll~ ~i- ~~ Zr- ~~ ;g ~J zi: 5 ~E' U'- -l.. , t:~~' w: 0, u' .-'-1 .6 4 , , , , " , , I I: " , , .3 , I , , , ",i " , " , " , , , 1'1 I I , , " , I I I I i , " , , , " , I I: , , , 2 COEFF1CIENT SOIL GROUP-C COVER TYPE -URSAN LANDSCAPING AMC-Ol" (RUNOFF' INDEX NUMBER , , I I I ",;:, 'I I I I " , " , , , I I I I , , , , , ' : I I I I I 1'1 I' I I I ~' " , " , " , , , t I' 'I I' I I I I I I I f I I I j I " I I I ,:! j I I I I I 1 I I I I I' I I I I I \ I I I (I j I I I I I I' I I I 1 I I I j j I I I 'I I j I II! I I I I \ 'I I I I: I I I I" I I I It' I I t I I I ! I I I I I I \ I I I I I I I I I I I 1 I I I I I I I I I 11 I I I I I I lIt 1'1 I I f I I I ", I I " I I I I I I I I, I I 1 1 I I ~ I I I I I 1 I I I! I I I I I I 1 II I I " I I I I I' I: I 11 I I I I , ' I I I I , , ' I I I f I I I I I I , , I' It t I I I I I , I! t I , , , , , , , , , , I , I , , " , " 'I I I , , , , , ill , , , I , , , , , , , , , I , " , , , , , , , , , , , I" ) " , , ' , , , , , , , , , , , , " , I;' I " I , , , , , , , , , , , , , " I " , " , " , I ,: I I I! I I II I I " 1 III I I I I " , " ' (1'1 , , ,I 1'1 I" t 11 I l' I I I I I I I 1 I! I I I' "1 I I I 1 I';' I I I I t I I I I II I I I:! I I I I I I I I 'I I ~ I . I I I I I : I I t I \ I ,t I I \ I I 11 11 I I I) I I ,I I I I I \ 1 1 I J ) I " , " , " , " , 1111 t 1 I I I t I I I I I I I I , , , , , , , I ~ ,I! , , IiI I ; I I : J I " , " , , , , , , ' , , I; I It' I I t III I: I , I , , , , " ' , , ; \ 1 , , " , , j'l' I I I; , , " , I It: I , I I I I I j 11' I I I I:' ! , , I ", , , ,'111 " , , , , , I I I I 1 , , , I I I' , , " , " , " ' I I! I I: I I " , 111' I I It'! " I , ; I I I :, I I I I I 1 I I I I! I I I I 1 III j t I I I I! j I; 111 I , , , , , , , I' I) 1,1 I I I I " , , , , , , 'I I I I I I I I I' w CD , " , RCFC a , , , , HYDROLOGY I r II! 1 I I 7"'"1 I , I MANUAL '1 ,j I" 1 1 ! i1 1 I I I I RUNOFF CURVES , , " , , , , IN 69) " , " , , , I INCHES PER HOUR 4 5 \t(; o I I I I I I I I I I ! I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/14/95 Version 3.3 ------------------------------------------------------------------------ 100 YR HYDROLOGIC CALC. BASIN "A" TRACT NO. 23143-3 CROWNE HILL FILE:23143A 6/12/95 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula; CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water conservation District 1978 hydrology manual Storm event (year) = : 100.00 Antecedent Moisture condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 1.000 to point/station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 700.000(Ft.) Top (of initial area) elevation = 1304.000(Ft.) Bottom (of initial area) elevation = l298.000(Ft.) Difference in elevation = 6.000(Ft.) Slope = 0.00857 s.(percent)= 0.86 TC = k(0.390)*[(length^3)/(e1evation change)]^0.2 Initial area time of boncentration = 13.883 min. Rainfall intensity = I 3.131(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 9.251(CFS) Total initial stream area = 3.500(Ac.) Pervious area fraction = 0.500 \a.... +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I l I I I I I I I I I Process from Point/station 2.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 3.000 Top of street segment elevation = 1298.000(Ft.) End of street segment elevation = 1283.000(Ft.) Length of street segment = 930.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 14.141(CFS) Depth of flow = 0.492(Ft.), Average velocity = 4.079(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.275(Ft.) Flow velocity = 4.08(Ft/s) Travel time = 3.80'min. TC = 17.68 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.837 Decimal fraction soil'group A = 0.000 Decimal fraction soil: group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMCj2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.741(In/Hr) for a 100.0 year storm Subarea runoff = '8.492(CFS) for 3.700(Ac.) Total runoff = 17~743(CFS) Total area = 7.200(Ac.) Street flow at end of' street = 17.743(CFS) Half street flow at epd of street = 17.743(CFS) Depth of flow = 0.532(Ft.), Average velocity = 4. 163 (Ft/s) warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 1.60(Ft.) Flow width (from curb towards crown)= 20.271(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1283.000(Ft.) End of street segment elevation = 1274.000(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1]' side(s) of the street Distance from curb to; property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 ~ I I I I I I I I I I I I I I I I I I I Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.560(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetf10w hydraulics' at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 4.53(Ft/s) Travel time = 2.21 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil,group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.570(In/Hr) for a 100.0 year storm Subarea runoff = 11.353(CFS) for 5.300(Ac.) Total runoff = 29~096(CFS) Total area = 12.500(Ac.) Street flow at end of' street = 29.096(CFS) Half street flow at end of street = 29.096(CFS) Depth of flow = 0.592(Ft.), Average velocity = warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Flow width (from curb towards crown)= 20.000(Ft.) 24.273(CFS) 4.530(Ft/s) 2.98(Ft.) TC = 19.89 min. 4.741(Ft/s) 4.61(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1268.00(Ft.) Downstream point/station elevation = l230.00(Ft.) Pipe length = 880.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Re~ired pipe flow = 29.096(CFS) Given pipe size = ; 24.00(In.) Calculated individual pipe flow = 29.096(CFS) Normal flow depth in pipe = 13.66(In.) Flow top width inside, pipe = 23.77(In.) critical Depth = 22.18(In.) Pipe flow velocity = 15.75(Ft/s) Travel time through pipe = 0.93 min. Time of concentration' (TC) = 20.82 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.500(AC.) Runoff from this stream = 29.096(CFS) ~\ I I I I I I I I I I I I I I I I I I I Time of concentrationi= Rainfall intensity = 20.82 min. 2.506(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 8.000 to Point/station 9.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 880.000(Ft.) Top (of initial area) elevation = l274.000(Ft.) Bottom (of initial area) elevation = 1235.000(Ft.) Difference in elevation = 39.000(Ft.) Slope = 0.04432 s(percent)= 4.43 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 10.953 min. Rainfall intensity = 3.567(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil, group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC; 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 19.411(CFS) Total initial stream area = 6.400(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 9.000 to Point/station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1231.00(Ft.) Downstream point/station elevation = 1230.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 ReqUired pipe flow = 19.411(CFS) Given pipe size = 18.00(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 3.5l7(Ft.) at the headworks or inlet Pipe friction loss =; 1.707(Ft.) Minor friction loss k 2.810(Ft.) K-factor = Pipe flow velocity = . 10.98(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 11.03 min. selected pipe size. the pipe invert is of the pipets) 1.50 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/St~tion 9.000 to Point/station '10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 Stream flow area = . 6.400(Ac.) Runoff from this stream = 19.411(CFS) Time of concentration' = 11.03 min. Rainfall intensity = 3.554(In/Hr) 7Y ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I I Process from Point/station 5.000 to point/Station **** INITIAL AREA EVALUATION **** 6.000 Initial area flow distance = 500.000(Ft.) Top (of initial area). elevation = 1280.000(Ft.) Bottom (of initial area) elevation = 1273.500(Ft.) Difference in elevation = 6.500(Ft.) Slope = 0.01300 s(percent)= 1.30 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 11.165 min. Rainfall intensity = 3.530(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil,group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil, group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 8.398(CFS) Total initial stream area = 2.800(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 6.000 to Point/Station 7.000 **** STREET FLOW TRAvEL TIME + SUBAREA FLOW ADDITION **** Top of street segment\elevation = 1273.500(Ft.) End of street segment'elevation = 1242.000(Ft.) Length of street segment = 900.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to'property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning'S N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning'S N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.598(CFS) Depth of flow = 0.414(Ft.), Average velocity = 5.116(Ft/s) Streetflow hydraulics, at midpoint of street travel: Halfstreet flow width'= 16.556(Ft.) Flow velocity = 5.12(Ft/s) Travel time = 2.93'min. TC = 14.10 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A = 0.000 Decimal fraction soil' group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC. 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ~~ Rainfall intensity = 3.105(In/Hr) for a 100.0 year storm I I I I I I I I I I I I I I I I I I I Subarea runoff = 7.335(CFS) for 2.800(Ac.) Total runoff = 15.734(CFS) Total area = 5.600(AC.) Street flow at end of street = 15.734(CFS) Half street flow at end of street = 15.734(CFS) Depth of flow = 0.440(Ft.), Average velocity = 5.398(Ft/s) Flow width (from curb; towards crown)= 18.091(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 7.000 to Point/Station 10.000 **** PIPEFLOW~RAVEL TIME (User specified size) **** Upstream point/station elevation = 1231.00(Ft.) Downstream point/station elevation = 1230.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 15.734(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 15.734(CFS) Normal flow depth in pipe = 13.97(In.) Flow top width inside pipe = 15.01(In.) critical Depth = 17~03(In.) Pipe flow velocity = 10.70(Ft/s) Travel time through pipe = 0.05 min. Time of concentration: (TC) = 14.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 7.000 to Point/station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 5.600(Ac.) Runoff from this stream = 15.734(CFS) Time of concentration'= 14.14 min. Rainfall intensity =' 3. 100 (In/Hr) summary of stream data: stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 3 Largest Qp= 29.096 20L82 19.411 11.03 15.734 14.14 stream flow has longer 29.096 + sum of Qb Ia/Ib 19.411 * ' 0.705 = Qb Ia/Ib 15.734 * '0.808 = 55.500 12.719 2.506 3.554 3.100 time of concentration 13.685 Qp = Total of 3 streams to confluence: Flow rates before confluence point: 29.096 19.411 15.734 Area of streams before confluence: 12.500 6.400 5.600 Results of confluence: Total flow rate = 55.500(CFS) Time of concentration. = 20.822 min. ~ I I I I I I I I I I , I I I I I I I I I Effective stream area after confluence = 24.500 (AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1230.00(Ft.) Downstream point/station elevation = 1226.50(Ft.) Pipe length = 150.00(Ft.) Manning's N = 0.013 No. of pipes ~ 1 Required pipe flow = 55.500(CFS) Given pipe size = .36.00(In.) Calculated individual pipe flow = 55.500(CFS) Normal flow depth in pipe = 18.94(In.) Flow top width inside pipe = 35.95(In.) critical Depth = 29.00(In.) Pipe flow velocity = 14.72(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 20.99 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/station 18.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number~ 1 Stream flow area = 24.500(Ac.) Runoff from this stream = 55.500(CFS) Time of concentration'= 20.99 min. Rainfall intensity =' 2.495(In/Hr) Program is now startipg with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 780.000(Ft.) Top (of initial area) elevation = l263.000(Ft.) Bottom (of initial area) elevation = l246.500(Ft.) Difference in elevation = 16.500(Ft.) Slope = 0.02115 s(percent)= 2.12 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 12.101 min. Rainfall intensity = ' 3.377(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil. group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil: group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500: Impervious fraction = 0.500 Initial subarea runoff = 18.894(CFS) Total initial stream area = 6.600(AC.) Pervious area fraction = 0.500 ~ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I Process from Point/Station 12.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 13 . 000 Top of street segment elevation = l246.500(Ft.) End of street segment elevation = 1233.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [ll! siders) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.583(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics\at midpoint of street travel: Halfstreet flow width: = 20.000(Ft.) Flow velocity = 4.56(Ft/s) Travel time = 3. 48~ min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC: 2) = 75.00 Pervious area fractioh = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.939(In/Hr) for a 100.0 year storm Subarea runoff = ~3.842(CFS) for 5.600(Ac.) Total runoff = 32.736(CFS) Total area = 12.200(Ac.) street flow at end of' street = 32.736(CFS) Half street flow at end of street = 32.736(CFS) Depth of flow = 0.620(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Flow width (from curb towards crown)= 20.000(Ft.) 26.910(CFS) 4.556 (Ft/s) 4.14(Ft.) TC = 15.58 min. 4.786(Ft/s) 6.00(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 13.000 to point/station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.50(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 32.736(CFS) Given pipe size = ' 18.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. ~ The approximate hydra~lic grade line above the pipe invert is I I I I I I I I I I I I I I I I I I I 9.905(Ft.) at the headworks or inlet of the pipets) Pipe friction loss = 2.913(Ft.) Minor friction loss ~ 7.993(Ft.) K-factor = 1.50 Pipe flow velocity = 18.52(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 13.000 to Point/station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 1 Stream flow area = ,12.200(Ac.) Runoff from this stream = 32.736(CFS) Time of concentration = 15.60 min. Rainfall intensity = 2.937(In/Hr) +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 14.000 to point/station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 480.000(Ft.) Top (of initial area) elevation = 1258.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 11.500(Ft.) Slope = 0.02396 s(percent)= 2.40 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 9.720 min. Rainfall intensity = 3.810(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.853 Decimal fraction soiligroup A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC.2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 4.874(CFS) Total initial stream area = l.500(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 15.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** , Top of street segment elevation = 1246.500(Ft.) End of street segment elevation = l233.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1]' siders) of the street Distance from curb to' property line = 10.000(Ft.) Slope from curb to prpperty line (vjhz) = 0.020 Gutter width = 2.000(Ft.) y I I I I I I I I I I ( I I I I I I I I I Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.699(CFS) Depth of flow = 0.460(Ft.), Average velocity = 3.571(Ft/s) Streetflow hydraulics' at midpoint of street travel: Halfstreet flow width = 19.230(Ft.) Flow velocity = 3.57(Ft/s) Travel time = 4.43:min. TC = 14.15 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil, group A = 0.000 Decimal fraction soil' group B = 0.000 Decimal fraction soil group C = O~OOO Decimal fraction soil,group D = 1.000 RI index for soil (AMC' 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.098(In/Hr) for a 100.0 year storm Subarea runoff = 10.977(CFS) for 4.200(Ac.) Total runoff = 15~852(CFS) Total area = 5.700(Ac.) Street flow at end of street = 15.852(CFS) Half street flow at end of street = 15.852(CFS) Depth of flow = 0.496(Ft.), Average velocity = 3.968(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) i ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 16.000 to point/station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.50(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 15.852(CFS) Given pipe size = : 18.00(In.) Calculated individual pipe flow = 15.852(CFS) Normal flow depth in pipe = 12.47(In.) Flow top width inside pipe = l6.61(In.) Critical Depth = 17,06(In.) Pipe flow velocity =: 12.12(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 16.000 to Point/station 17.000 **** CONFLUENCE OF MI~OR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = I 5.700(Ac.) Runoff from this stream = 15.852(CFS) Time of concentration'= 14.19 min. Rainfall intensity =: 3.093 (In/Hr) Summary of stream data: stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) 116 TC (min) ,. I I I I, I I ,. I ,I, I il I I .1 'I I ,I 1\ 1 2 Largest QP = 32.736 15.60 15.852 14.19 stream flow has longer 32.736 + sum of Qb Ia/Ib 15;852 * 0.949 = 47.784 2.937 3.093 time of concentration 15.048 Qp = Total of 2 streams to confluence: Flow rates before confluence point: 32.736 15.852 Area of streams before confluence: 12.200 5.700 Results of confluence: Total flow rate = 47.784(CFS) Time of concentration = 15.603 min. Effective stream area after confluence = 17.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 17.000 to Point/station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1225.50(Ft.) Downstream point/station elevation = 1224.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 ReqUired pipe flow = 47.784(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 47.784(CFS) Normal flow depth in pipe = 16.14(In.) Flow top width inside pipe = 35.81(In.) critical Depth = 27.03(In.) Pipe flow velocity = 15.57(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 17.000 to point/station 18.000 **** CONFLUENCE OF MA~N STREAMS **** The following data inside Main stream is listed: In Main stream number~ 2 Stream flow area = 17.900(Ac.) Runoff from this stream = 47.784(CFS) Time of concentration'= 15.66 min. Rainfall intensity = 2.931(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 Largest Qp = 2.495 2.931 concentration 55.500 20.99 47.784 15.66 stream flow has longer time of 55.500 + sumiof Qb Ia/Ib , ~f\ ,. I I I I I I I " I ,t 'I il I. I 'J I I I Qp = 47.784 * 96.167 0.851 = 40.667 Total of 2 main streams to confluence: Flow rates before confluence point: 55.500 47.784 Area of streams before confluence: 24.500 17.900 Results of confluence: Total flow rate = 96.167(CFS) Time of concentration' = 20.991 min. Effective stream area after confluence = End of computations, total study area = The following figures may be used for a unit hydrograph study of the Area averaged pervious area fraction(Ap) = Area averaged RI index number = 75.0 42.400(Ac.) 42.40 (Ac.) same area. 0.500 '}c? I I II I , I I I; I' 'i, i II I I ,I ,I, 'I I, I " Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/13/95 version 3.3 ------------------------------------------------------------------------ 100 YR. HYDROLOGIC CALC. BASIN "B" TR NO. 23143-3 CROWNE HILL FILE:23143B 5/12/95 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - SIN 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = ' 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1224.000(Ft.) Bottom (of initial area) elevation = l22l.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 9.592 min. Rainfall intensity = 3.838(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.853 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.930(CFS) Total initial stream area = 1.200(Ac.) Pervious area fraction = 0.500 0;\ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I . I I I ? I . I f I I . , , I i ~ ~ . . . Process from Point/station 31.000 to point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 32.000 Top of street segment elevation = 122l.000(Ft.) End of street segment elevation = 1220.500(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on (ll'side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.653(Ft.), Average velocity = warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics' at midpoint of street travel: Halfstreet flow width'= 20.000(Ft.) Flow velocity = 1.21(Ft/s) Travel time = 8.28:min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.725(In/Hr) for a 100.0 year storm Subarea runoff = '7.526(CFS) for 3.300(Ac.) Total runoff = 11.456(CFS) Total area = 4.500(Ac.) street flow at end of street = 11.456(CFS) Half street flow at end of street = ll.456(CFS) Depth of flow = 0.698(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Flow width, (from curb, towards crown)= 20.000(Ft.) 9.333(CFS) 1.208(Ft/s) 7.66(Ft.) TC = 17.87 min. 1.271(Ft/s) 9.88(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 32.000 to Point/station 36.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1215.00(Ft.) Downstream point/station elevation = 1214.00(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 11.456(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 11.456(CFS) Normal flow depth in pipe = 10.02(In.) 7~ I I I I I I I I I I I , I I I I I I I Flow top width inside pipe = 17.88(In.) critical Depth = 15.48(In.) Pipe flow velocity = 11.33(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 17.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 36.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.500(Ac.) Runoff from this stream = 11.456(CFS) Time of concentration = 17.92 min. Rainfall intensity = 2.72l(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/station 34.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 200.000(Ft.) Top (of initial area) elevation = l224.000(Ft.) Bottom (of initial area) eievation = l22l.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.01500 s(percent)= 1.50 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.521 min. Rainfall intensity = 4.387(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.859 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil: group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.883(CFS) Total initial stream area = 0.500(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = l22l.000(Ft.) End of street segment elevation = l220.000(Ft.) Length of street segment = 550.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to cross fall grade break = l8.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1]. siders) of the street Distance from curb to! property line = 10.OOO(Ft.) Slope from curb to property line (v/hz) = 0.020 ~ I' :1 I I I I I I I I i I I I I' I I I I a Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.01S0 Manning's N from gutter to grade break = 0.01S0 Manning's N from grade break to crown = 0.01S0 Estimated mean flow rate at midpoint of street = 4.332(CFS) Depth of flow = 0.464(Ft.), Average velocity = 1.288(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 19.493(Ft.) Flow velocity = 1.29(Ft/s) Travel time =- 7.12 min. TC = 14.64 min. Adding area flow to street SINGLE FAMILY (114 Acre Lot) Runoff Coefficient = 0.843 Decimal fraction soil'group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = O.SOO Rainfall intensity = 3.042(In/Hr) for a 100.0 year storm Subarea runoff = 3.332(CFS) for 1.300(Ac.) Total runoff = S.21S(CFS) Total area = 1.800(AC.) Street flow at end of street = 5.215(CFS) Half street flow at end of street = S.21S(CFS) Depth of flow = 0.486(Ft.), Average velocity = 1.373(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb,towards crown)= 20.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 36.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1215.00(Ft.) Downstream point/station elevation = 1214.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.215(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.21S(CFS) Normal flow depth in pipe = 6.42(In.) Flow top width inside pipe = 17.24(In.) Critical Depth = 10.56 (In.) Pipe flow velocity = . 9.24(Ft/s) Travel time through pipe = O.OS min. Time of concentration' (Te) = 14.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 35.000 to Point/Station 36.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.800(Ac.) Runoff from this stream = S.21S(CFS) Time of concentration = 14.69 min. Rainfall intensity = 3.036(In/Hr) Summary of stream data: 7ft I I I I I I' I ,I I I I I I I I I I I I stream No. Flow rate (CFS) TC (min) Rainfall Intensity ( In/Hr) 1 2 Largest Qp = 11.456 17.92 5.215 14.69 stream flow has longer 11. 456 + sum of Qb Ia/Ib 5.215 * 0.897 = 16.132 2.721 3.036 time of concentration 4.676 QP = Total of 2 main streams to confluence: Flow rates before confluence point: 11.456 5.215 Area of streams before confluence: 4.500 1.800 Results of confluence: Total flow rate = 16.132(CFS) Time of concentration = 17.918 min. Effective stream area: after confluence = End of computations, ~otal study area = The following figures may be used for a unit hydrograph study of the 6.300(Ac.) 6.30 (Ac.) same area. Area averaged pervious area fraction (Ap) = Area averaged RI index number = 75.0 0.500 / "9 I I I I I I' I I I I. I I I I I I I I I I Riverside county Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/13/95 version 3.3 ------------------------------------------------------------------------ 10 YR HYDROLOGIC CALC. BASIN "B" TR 23143-3 CROWNE HILL FILE:2314BB 6/12/95 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 0.550 (Inches) 1.400 (Inches) 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.900 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 20.000 to Point/Station 21.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1291.000(Ft.) Bottom (of initial area) elevation = 1288.500(Ft.) Difference in elevation = 2.S00(Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 8.917 min. Rainfall intensity = 2.567 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.140(CFS) Total initial stream area = 1.000(AC.) Pervious area fraction = 0.500 ~ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I ( I I I I I I I I I Process from point/Station 21.000 to point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 22.000 Top of street segment elevation = 1288.500(Ft.) End of street segment elevation = 1282.500(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow 'is on [2] siders) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.992(CFS) Depth of flow = 0.326(Ft.), Average velocity = 2.422(Ft/s) Streetflow hydraulics at midpoint of street travel: Ha1fstreet flow width = 11.398(Ft.) Flow velocity = 2.42(Ft/s) Travel time = 3.44 min. TC = 12.36 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.145(In/Hr) for a 10.0 year storm Subarea runoff = 6.355(CFS) for 3.600(Ac.) Total runoff = 8.494(CFS) Total area = 4.600(Ac.) street flow at end of street = 8.494(CFS) Half street flow at end of street = 4.247(CFS) Depth of flow = 0.357(Ft.), Average velocity = 2.627(Ft/s) Flow width (from curb towards crown)= l3.2l5(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 22.000 to Point/station 23.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1282.500(Ft.) End of street segment elevation = 1250.000(Ft.) Length of street segment. 750.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = ll.OOO(Ft.) Slope from curb to property line (v/hz) = 0.020 ~'\ Gutter width = 2.000(Ft.) J Gutter hike from flowline = 2.000(In.) I I I I I I I I I I , I I I I I I I I I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.879(CFS) Depth of flow =0.387(Ft.), Average velocity = 5.442(Ftjs) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.995(Ft.) Flow velocity = 5.44(Ftjs) Travel time = 2.30 min. TC = 14.66 min. Adding area flow to street SINGLE FAMILY-(lj4 Acre Lot) Runoff Coefficient = 0.817 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soi1(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.953(InjHr) for a 10.0 year storm Subarea runoff = 2.393(CFS) for 1.500(AC.) Total runoff = 10.887(CFS) Total area = 6.100(Ac.) Street flow at end of street = 10.887(CFS) Half street flow at end of street = 10.887(CFS) Depth of flow = 0.397(Ft.), Average velocity = 5.570(Ftjs) Flow width (from curb towards crown)= 13.521(Ft.) End of computations, total study area = 6.10 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 75.0 ,trtJ I I I I I I I I I I I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/14/95 version 3.3 ------------------------------------------------------------------------ 100 YR. HYDROLOGIC CALC. BASIN "B" TR 23143-3 CROWNE HILL FILE: 23lBBB 6/12/95 ------------------------------------------------------------------------ *********Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood control & Water conservation District 1978 hydrology manual storm event (year) = .100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 24.000 to point/station 25.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area)' elevation = 1263.000 (Ft.) Bottom (of initial area) elevation = l262.500(Ft.) Difference in elevation = 0.500(Ft.) Slope = 0.00167 s(percent)= 0.17 TC = k(0.390)*[(length-3)/(elevation change)]-0.2 Initial area time of concentration = 13.726 min. Rainfall intensity = ' 3.151(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC, 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.193(CFS) Total initial stream area = 1.200(Ac.) Pervious area fraction = 0.500 sq ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I Process from point/Station 25.000 to point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 26.000 Top of street segment elevation = 1260.000(Ft.) End of street segment elevation = 1250.000(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [2]: side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.381(CFS) Depth of flow = 0.341(Ft.), Average velocity = 2.969(Ftjs) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = l2.265(Ft.) Flow velocity = 2.97(Ft/s) Travel time = 3.37 min. TC = 17.09 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 Decimal fraction soil'group A = 0.000 Decimal fraction soil' group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.793 (In/Hr) for a 100.0 year storm Subarea runoff = ,9.130(CFS) for 3.900(Ac.) Total runoff = 12.323(CFS) Total area = 5.100(Ac.) Street flow at end of'street = 12.323(CFS) Half street flow at end of street = 6.161(CFS) Depth of flow = 0.377(Ft.), Average velocity = 3.251(Ft/s) Flow width (from curb towards crown)= 14.400(Ft.) End of computations, total study area = 5.10 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction (Ap) = 0.500 Area averaged RI index number = 75.0 ~f) I I I I I I I I I I , I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology study Date: 06/13/95 version 3.3 ------------------------------------------------------------------------ 100 YR. HYDROLOGIC CALC. BASIN "c" TR 23143-4 FILE:23143C 6/12/95 ------------------------------------------------------------------------ ********* 'Hydrology study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering corporation, Temecula, CA - SIN 560 -----------------------------~------------------------------------------ Rational Method Hydrology Program based on Riverside county Flood Control & Water conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 40.000 to point/Station 41.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 550.000(Ft.) Top (of initial area) elevation = 1281.500(Ft.) Bottom (of initial area) elevation = 1266.000(Ft.) Difference in elevation = 15.500(Ft.) Slope = 0.02818 s(percent)= 2.82 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 9.936 min. Rainfall intensity = 3.764(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.852 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 11.872(CFS) Total initial stream area = 3.700(Ac.) Pervious area fraction = 0.500 A,\ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I , , I I I I I I I I I Process from Point/station 41.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 42.000 Top of street segment elevation = 1266.000(Ft.) End of street segment elevation = 1252.000(Ft.) Length of street segment = 230.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grqde break to crown (v/hz) = 0.017 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 16.204(CFS) Depth of flow = 0.342(Ft.), Average velocity = 5.690(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 12.325 (Ft.) Flow velocity = 5.69(Ft/s) Travel time = 0.67 min. TC = 10.61 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.851 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 1.000 RI index for soi1(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.631(In/Hr) for a 100.0 year storm Subarea runoff = 8.341(CFS) for 2.700(AC.) Total runoff = 20.213(CFS) Total area = 6.400(Ac.) Street flow at end of street = 20.213(CFS) Half street flow at end of street = 10. 107 (CFS) Depth of flow = 0.363(Ft.), Average velocity = 5.993(Ft/S) Flow width (from curb towards crown)= 13.521(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 42.000 to point/station 43.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1252.000(Ft.) End of street segment elevation = 1229.000(Ft.) Length of street segment = 630.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) t{V I I I I I I I I I I I I I I I I I I I I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.476(Ft.), Average velocity = Note: depth of flow exceeds top of street crown. Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = S.93(Ft/s) Travel time = 1.77 min. Adding area ~low to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.335(In/Hr) for a 100.0 year storm Subarea runoff = 1.978(CFS) for 0.700(Ac.) Total runoff = 22.191(CFS) Total area = 7.100(Ac.) Street flow at end of street = 22.191(CFS) Half street flow at end of street = 22.191(CFS) Depth of flow = 0.480(Ft.), Average velocity = Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 20.000(Ft.) 21.319(CFS) S.932(Ft/s) TC = 12.38 min. 6.027(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 43.000 to Point/station 48.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1224.00(Ft.) Downstream point/station elevation = 1222.00(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 22.191(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 22.191(CFS) Normal flow depth in pipe = 12.38(In.) Flow top width inside pipe = 16.69(In.) Critical depth could not be calculated. Pipe flow velocity = 17.12(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 43.000 to point/station 48.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 1 Stream flow area = 7.100(Ac.) Runoff from this stream = 22.191(CFS) Time of concentration = 12.41 min. Rainfall intensity = 3.331(In/Hr) ~ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 44.000 to point/station 45.000 I I I I I I I I I I i I I I I I I I I I **** INITIAL AREA EVALUATION **** Initial area flow distance = 350.000(Ft.) TOp (of initial area) elevation = l255.500(Ft.) Bottom (of initial area) elevation = l249.500(Ft.) Difference in elevation = 6.000(Ft.) Slope = 0.01714 s(percent)= 1.71 TC = k(0.390)*[(length'3)/(elevation change)]'0.2 Initial area time of concentration = 9.160 min. Rainfall intensity = 3.936(In/Hr) for a 100.0 year storm SINGLE FAMILY _(1/4 Acre Lot) Runoff Coefficient = 0.854 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.699(CFS) Total initial stream area = 1.100(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 45.000 to Point/station 46.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = l249.500(Ft.) End of street segment elevation = 1246.000(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.239(CFS) Depth of flow = 0.363(Ft.), Average velocity = 2.432(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.552(Ft.) Flow velocity = 2.43(Ft/s) Travel time = 2.40 min. TC = 11.56 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 t\~ Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.464(In/Hr) for a 100_0 year storm Subarea runoff = 7.938(CFS) for 2.700(AC.) I I I I I I I I I I I I I I I I I I I Total runoff = 11.637(CFS) Total area = 3.S00(AC.) street flow at end of street = 11.637(CFS) Half street flow at end of street = 5.S19(CFS) Depth of flow = 0.398(Ft.), Average velocity = 2.640(Ft/s) Flow width (from curb towards crown)= 15.609(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 46.000 to point/station 47.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.000(Ft.) End of street segment elevation = 1229.000(Ft.) Length of street segment = 450.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 14.393(CFS) Depth of flow = 0.425(Ft.), Average velocity = 5.438(Ft/s) Streetflow hydraulics at midpoint of street travel: Ha1fstreet flow width = 17.197(Ft.) Flow velocity = 5.44(FtjS) Travel time = 1.38 min. TC = 12.94 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.255(In/Hr) for a 100.0 year storm Subarea runoff = 4.957(CFS) for 1.800(Ac.) Total runoff = 16.594(CFS) Total area = 5.600(Ac.) Street flow at end of street = 16.594(CFS) Half street flow at end of street = 16.594(CFS) Depth of flow = 0.442(Ft.), Average velocity = 5.629(Ft/s) Flow width (from curb towards crown)= lS.199(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 47.000 to point/Station 4S.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1224.00(Ft.) Downstream point/station elevation = 1222.00(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 16.594(CFS) Given pipe size = 18.00(In.) ~ I I I I I I I I I I I I I I I I I I I I calculated individual pipe flow = l6.594(CFS) Normal flow depth in pipe = 10.17(In.) Flow top width inside pipe = l7.85(In.) critical depth could not be calculated. pipe flow velocity = 16.1l(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.97 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from ~oint/Station 47.000 to Point/station 48,000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.600(Ac.) Runoff from this stream = 16.594(CFS) Time of concentration = 12.97 min. Rainfall intensity = 3.251(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 22.191 12.41 2 16.594 12.97 Largest stream flow has longer QP = 22.191 + sum of Qa Tb/Ta 16.594 * 0.957 = QP = 38.070 3.331 3.251 or shorter time of concentration 15.879 Total of 2 streams to confluence: Flow rates before confluence point: 22.191 16.594 Area of streams before confluence: 7.100 5.600 Results of confluence: Total flow rate = 38.070(CFS) Time of concentration = 12.409 min. Effective stream area after confluence = 12.700(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 48.000 to point/Station 52.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1222.00(Ft.) Downstream point/station elevation = 1218.00(Ft.) Pipe length = 130.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 38.070(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 38.070(CFS) Normal flow depth in pipe = 15.52(In.) Flow top width inside pipe = 29.98(In.) Critical Depth = 25.01(In.) Pipe flow velocity = 14.87(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 12.55 min. ~ I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 48.000 to point/Station 52.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12.700(AC.) Runoff from this stream = 38.070(CFS) Time of concentration = 12.55 min. Rainfall intensity = 3.310(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 49.000 to Point/station 50.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 280.000(Ft.) Top (of initial area) elevation = 1267.000(Ft.) Bottom (of initial area) elevation = 1250.700(Ft.) Difference in elevation = 16.300(Ft.) Slope = 0.05821 s(percent)= 5.82 TC = k(0.390)*[(length'3)/(elevation change)]'0.2 Initial area time of concentration = 6.560 min. Rainfall intensity = 4.729(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.861 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Oecimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 6.518(CFS) Total initial stream area = 1.600(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 50.000 to point/station 51.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1250.700(Ft.) End of street segment elevation = 1226.000(Ft.) Length of street segment = 400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = ll.OOO(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning'S N in gutter = 0.0150 Manning'S N from gutter to grade break = 0.0150 Manning'S N from grade break to crown = 0.0150 ~1 Estimated mean flow rate at midpoint of street = 18.l28(CFS) I I I I I I I I I I I I I I I I I I I Depth of flow = 0.360(Ft.), Average velocity = 6.105(Ftjs) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.653(Ft.) Flow velocity = 6.10(Ftjs) Travel time = 1.09 min. TC = 7.65 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.858 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fract~on soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.345(In/Hr) for a 100.0 year storm Subarea runoff = 21.257(CFS) for 5.700(AC.) Total runoff = 27.775(CFS) Total area = 7.300(Ac.) Street flow at end of street = 27.775(CFS) Half street flow at end of street = 13.888(CFS) Depth of flow = 0.404(Ft.), Average velocity = 6.755(Ft/s) Flow width (from curb towards crown)= 13.890(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 51.000 to Point/station 52.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1219.00(Ft.) Downstream point/station elevation = 1218.00(Ft.) pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 27.775(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 27.775(CFS) Normal flow depth in pipe = 14.41(In_) Flow top width inside pipe = 23.51(In.) Critical Depth = 21.88(In.) Pipe flow velocity = 14.10(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 7.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 51.000 to Point/station 52.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main stream number: 2 stream flow area = 7.300(Ac.) Runoff from this stream = 27.775(CFS) Time of concentration = 7.69 min. Rainfall intensity = 4.334(In/Hr) summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Largest 38.070 27.775 stream 12.55 7.69 flow has longer 3.310 4.334 time of concentration ~ I I I I I I I I I I i I I I I I I I I I Qp = 38.070 + sum of Qb Ia/lb 27.775 * 0.764 = 59.278 21.208 QP = Total of 2 main streams to confluence: Flow rates before confluence point: 38.070 27.775 Area of streams before confluence: 12.700 7.300 Results of confluence: Total flow rate = 59.278(CFS) Time of concentration = 12.555 min. Effective stream area after confluence = End of computations, total study area = The following figures may be used for a unit hydrograph study of the Area averaged pervious area fraction (Ap) = Area averaged RI index number = 75.0 20.000(Ac.) 20.00 (AC.) same area. 0.500 M PIPE HYD~f-or:?rt1 p-o UTIN~ LINe fA II 8A-~ I~ (Ic. II . I (BA~ec (),(V A-C-T1tAi C.8. CAAo?AC/TI1) C,~;:I: Z @ QIOO -::. lttl, 0 , IG =- '\"2.-, G:l4- MI10 A. ~ 7, (p Qc,-es C.B*- 4- ~''''I Q" ,'. " 71/. " . 100= I Z. I 0 I. '...' :TC;.:7 c.S-'Mi,.J "A ;;,'~' 1~C.r I.U) ~ " , .; .' . " ;:-. - , . ... . ~; ." - ." . . . i I I I. Co :iF- I ~?; I I I Q,oa ::: 1C/. r> Te.. :: /'2.,"?g J;1/tJ A ::: 7. I '';A.c.. l :- '- ...~ tt\ ~CB 1l= '!. IT QIfO:'IZ.,~ {,II' I TC'?71.,'(,(" .. M.lt..? ..., "~ I '," A ::/'1;:~ ~., AZ; ,,', .' , ,','r,' ;"... ~"': ." //,-"';' ,~," .. "-.- I I. I I I , I (. 'I .. ('4\ -' .-"....._, . "-. '-> , -., .'" '-", ~,~ . 1.';O"';....>'''~j.)., ,',,:"';' .,'.c . -;'.='" -..: ",~ . "'.',..".. >~. ~..: 0,',_, .---~. - , '.' . ."'~. e..~~'?" ',." ~s Q,oo = I-z..r- ~ TC. -= II. 4- S lY\ uJ A :::- :$. 3 ~ _ ;".". ...01.>; ~'":':" . . ':'.'-" .,;. .':......-;";,~,,,.: '''.'''' '~~~', I I I I I I I I I I (,., f I I I I I ~ I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology study Date: 06/22/95 Version 3.3 ------------------------------------------------------------------------ 100 YR HYDROLOGIC CALC. LINE "A" (PIPES 9i.=.} po::) 'I. "i(, ) TR 23143-4 BASIN "C" FILE: LINEA ------------------------------------------------------------------------ ********* > -'>Hydrology Study Control Information ********** . -~ -" ------------------------------------------------------------------------ RANPAC Engineering corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = !100.00 Antecedent Moisture condition = 2 0.550 (Inches) 1. 400 (Inches) 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 43.000 to Point/Station 43.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = , 3.335(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil: group A = 0.000 Decimal fraction soil,group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil'group D = 1.000 RI index for soil (AMC! 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values: are as follows: TC = 12.38 min. Rain intensity = 3.34(In/Hr) Total area = 7.10(Ac.) Total runoff = 16.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from 'Point/station 43.000 to Point/Station 48.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** , Upstream point/station elevation = 1221.16(Ft.} Downstream point/station elevation = 1220.70(Ft.} Pipe length = 27.13(Ft.) Manning's N = 0.013 No. of pipes = 1 ReqUired pipe flow = 16.000(CFS} ~\ I I I I I I I I I I i,',' I I I I I I , I I Given pipe size = 24.00(In.) Calculated individual pipe flow = l6.000(CFS) Normal flow depth in pipe = 12.61(In.) Flow top width inside: pipe = 23.97(In.) critical Depth = 17.31(In.) Pipe flow velocity = 9.57(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 12.43 min. +++++++++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from"Point/Station 43.000 to Point/Station 48.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main stream number: 1 in normal stream number 1 Stream flow area = 7.100(Ac.) Runoff from this stream = 16.000(CFS) Time of concentration = 12.43 min. Rainfall intensity = - 3.328(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 47.000 to Point/station 47.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = ; 3.255(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 Decimal fraction soil: group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil1group C = 0.000 Decimal fraction soil i' group D = 1. 000 RI index for soil (AMC, 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 12.94 min. Rain intensity = 3.25(In/Hr) Total area = 5.60(Ac.) Total runoff = 16.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 47.000 to point/station 48.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** i Upstream point/station elevation = 1224.56(Ft.) Downstream point/station elevation = 1221.20(Ft.) Pipe length = 34.65(Ft.) Manning's N = 0.013 No. of pipes = 1 Re~ired pipe flow = 16.000(CFS) Given pipe size = _ 18.00(In.) Calculated individual;pipe flow = 16.000(CFS) Normal flow depth in pipe = 8.88(In.) Flow top width inside-pipe = 18.00(In.) critical Depth = 17.09(In.) Pipe flow velocity =' 18.41(Ft/s) Travel time through pipe = 0.03 min. Time of concentration~ (TC) = 12.97 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/St~tion 47.000 to Point/station 48.000 q~ **** CONFLUENCE OF MINOR STREAMS **** ~v I I I I I I I I I I , I I I I I I ( I I Along Main stream number: 1 in normal stream number 2 stream flow area = 5.600(AC.) Runoff from this stream = 16.000(CFS) Time of concentration = 12.97 min. Rainfall intensity = 3.251(In/Hr) summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) , -" 1 2 Largest QP = 16.000 12.43 16.000, 12.97 stream flow has longer 16.000 + sum' of Qa ' Tb/Ta 16.000 * '0.958 = 31. 329 .3.328 .:";' . 3 .251 or shorter time of concentration 15.329 QP = Total of 2 streams to' confluence: Flow rates before confluence point: 16.000 16.000 Area of streams before confluence: 7.100 5.600 Results of confluence~ Total flow rate = · 31.329(CFS) Time of concentration; = 12.427 min. Effective stream area; after confluence = 12.700(AC.) +++++++++++++++++++++T++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 48.000 to point/station 52.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1220.20(Ft.) Downstream point/station elevation = 1218.27(Ft.) Pipe length = 118.pO(Ft.) Manning's N = 0.013 No. of pipes = 1 Recri1ired pipe flow" = 31. 329 (CFS) . ., I G1ven p1pe S1ze = [ 30.00(In.) Calculated individual; pipe flow = 31.329(CFS) Normal flow depth in pipe = 16.70(In.) Flow top width inside; pipe = 29.81(In.) critical Depth = 22~90(In.) Pipe flow velocity =: 11.16(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 12.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 48.000 to point/station 52.000 **** CONFLUENCE OF MIFOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = ! 12.700(AC.) Runoff from this stream = 31.329(CFS) Time of concentration: = 12.60 min. Rainfall intensity =! 3.302(In/Hr) ~ I I I I I I I I I I j- I I I I I , I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 51.000 to point/station 52.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 4.346(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.858 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil,group D = 1.000 RI index for'soil(AMC2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: ~U_ TC = 7.65 min. Rain intensity = 4.35(In/Hr) Total area = 7.30(Ac.) Total runoff = 12.50(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 51.000 to Point/Station 52.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = , 7.300(Ac.) Runoff from this stream = 12.500(CFS) Time of concentration I = 7.65 min. Rainfall intensity =: 4.346(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 51.100 to Point/station 51.100 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = i 4. 346 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.858 Decimal fraction soil'group A = 0.000 Decimal fraction soil; group B = 0.000 Decimal fraction soiligroup C = 0.000 Decimal fraction soil; group D = 1.000 RI index for soil (AMC.2) = 75.00 . . , Perv10us area fract10n = 0.500; Impervious fraction = 0.500 User specified values; are as follows: TC = 7.65 min. Rain intensity = 4.35(In/Hr) Total area = O.OO(Ac.) Total runoff = 12.00(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 51.100 to Point/station 52.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ! Upstream point/station elevation = l221.50(Ft.) Downstream point/station elevation = 1218.82(Ft.) Pipe length ~= 16.11(Ft.) Manning'S N = 0.013 No. of pipes = 1 ReqUired pipe flow = 12.000(CFS) Given pipe size = ' 18.00(In.) Calculated individual pipe flow = 12.000(CFS) Normal flow depth in pipe = 6.52(In.) Flow top width inside: pipe = 17.30(In.) critical Depth = 15,76(In.) '64. I I I I I I I I I I ,i" I". I I I I I I ( I I Pipe flow velocity = 20.80(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 51.100 to Point/station 52.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow a~a = O.OOO(Ac.) Runoff from~this stream = 12.000(CFS) Time of concentration I = 7.66 min;',' Rainfall intensity = 4.342 (In/Hr).,"'- . summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Largest Qp = 31.329 12;.60 12.500 7.65 12.000 7~66 stream flow has longer 31.329 + sum' of Qb Ia/lb 12.500 * fO.760 = Qb ~a/lb 12.000 * ~ 0.761 = 49.954 3.302 4.346 4.342 time of concentration 9.498 9.127 Qp = Total of 3 streams to; confluence: Flow rates before confluence point: 31.329 12.500 12.000 Area of streams before confluence: 12.700 7.300 0.000 Results of confluence; Total flow rate = · 49.954(CFS) Time of concentration: = 12.604 min, Effective stream area' after confluence = 20.000(Ac.) +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 52.000 to Point/station 54.000 **** PIPEFLOW TRAVEL ~IME (User specified size) **** Upstream point/station elevation = 1217.00(Ft.) Downstream point/station elevation = 1206.77(Ft.) Pipe length = 350.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 49.954(CFS) Given pipe size = : 30.00(In.) Calculated individual, pipe flow = 49.954(CFS) Normal flow depth in pipe = 18.70(In.) Flow top width inside: pipe = 29.07(In.) Critical Depth = 27~59(In.) Pipe flow velocity = 15.51(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 12.98 min. ~ I I I I I I I I I I 1" 1''- I I I I I I f I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 52.000 to Point/station 54.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 20.000(Ac.) Runoff from this stream = 49.954(CFS) Time of concentration, = 12.98 min. Rainfall intensity =! 3.250(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 53.-000 to point/station 53.000 **** USER DEFINED FLOW INFORMATION AT.1i.'POINT **** 100.0 year storm Rainfall intensity = 3.485(In/Hr) for a SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 Decimal fraction soil: group A = Decimal fraction soil group B = Decimal fraction soil: group C = . .. I Dec~mal fract~on so~l:group D = 1.000 RI index for soil (AMCI 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 11.43 min. Raih intensity = 3.48(In/Hr) Total area = 3.30(Ac.) Total runoff = 12.50(CFS) 0.000 0.000 0.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 53.000 to point/station **** PIPEFLOW TRAVEL TIME (User specified size) **** I upstream point/station elevation = 1207.50(Ft.) Downstream point/station elevation = 1206.50(Ft.) pipe length = 35.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Req4ired pipe flow = 12.500(CFS) Given pipe size = . 18.00(In.) Calculated individual~pipe flow = .,12.500(CFS) Normal flow depth in pipe = 11.13(In.) Flow top width inside pipe = 17.49(In.) critical Depth = 16.00(In.) Pipe flow velocity =! 10.88(Ft/s) Travel time through pipe = 0.05 min. Time of concentration! (TC) = 11.48 min. 54.000 ',' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 53.000 to Point/station 54.000 **** CONFLUENCE OF MI~OR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = i 3.300(Ac.) Runoff from this stream = 12.500(CFS) Time of concentration; = 11.48 min. Rainfall intensity = 3.476(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) :5<" TC (min) I I I I I I I I I I f' .- I I I I I ~ I I 1 2 Largest Qp = 3.250 3.476 time of concentration Qp = 49.954 12.98 12.500 11.48 stream flow has longer 49.954 + sum. of Qb Iajlb 12.500 * '0.935 = 61. 640 11. 686 Total of 2 streams to! confluence: Flow rates before confluence point: 49.954 12.500 ,Area of streams before confluence: 20.000 3.300 Results of confluence: Total flow rate = 61.640(CFS) Time of concentration. = 12.980 min. Effective stream area; after confluence = End of computations, total study area = The following figures,may be used for a unit hy~rograph study of the Area averaged perviouk area fraction (Ap) = Area averaged RI index number = 75.0 23.300(Ac.) 23.30 (Ac.) same area. 0.500 0'1. I I I I I I I I I I I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/14/95 version 3.3 ------------------------------------------------------------------------ 10 YR HYDROLOGIC CALC. BASIN "A" TRACT NO. 23143-3 CROWNE HILL FILE:23143A 6/12/95 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) =' 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.550 (Inches) 100 year, 1 hour precipitation = 1.400 (Inches) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.900 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to point/station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 700.000(Ft.) Top (of initial area) elevation = 1304.000(Ft.) Bottom (of initial area) elevation = l298.000(Ft.) Difference in elevatipn = 6.000(Ft.) Slope = 0.00857 s(percent)= 0.86 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 13.883 min. Rainfall intensity = I 2.012 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.819 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 5.766(CFS) Total initial stream area = 3.500(Ac.) Pervious area fraction = 0.500 ? ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I ,I i I I I I I I I I I Process from Point/station 2.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 3.000 Top of street segment elevation = 1298.000(Ft.) End of street segment elevation = 1283.000(Ft.) Length of street segment = 930.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.813(CFS) Depth of flow = 0.430(Ft.), Average velocity = 3.637(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.155(Ft.) Flow velocity = 3.64{Ft/s) Travel time = 4.26imin. TC = 18.15 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil: group A = 0.000 Decimal fraction soil! group B = 0.000 Decimal fraction soil: group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil{AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.737{In/Hr) for a 10.0 year storm Subarea runoff = '5.194{CFS) for 3.700{Ac.) , Total runoff = 10~960(CFS) Total area = 7.200{Ac.) Street flow at end of: street = 10.960{CFS) Half street flow at end of street = 10.960{CFS) Depth of flow = 0.457{Ft.), Average velocity = 3.834{Ft/s) Flow width (from curb towards crown)= l6.529{Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** , Top of street segment: elevation = 1283.000{Ft.) End of street segment elevation = 1274.000{Ft.) Length of street segment = 600.000{Ft.) Height of curb above gutter flowline = 6.0{In.) width of half street {curb to crown) = 20.000{Ft.) Distance from crown to crossfall grade break = 18.000{Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side{s) of the street Distance from curb to property line = 10.000{Ft.) /t\ Slope from curb to property line (v/hz) = 0.020 ~' Gutter width = 2.000{Ft.) Gutter hike from flowline = 2.000{In.) I I I I I I I I I I I I I I I I I I I Manning's N in gutter = 0.01S0 Manning's N from gutter to grade break = 0.01S0 Manning's N from grade break to crown = 0.01S0 Estimated mean flow rate at midpoint of street = Depth of flow = 0.486(Ft.), Average velocity = Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width: = 20.000(Ft.) Flow velocity = 3.9S(Ft/s) Travel time = 2.S3imin. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.803 Decimal fraction soil, group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC. 2) = 7S.00 Pervious area fraction = O.SOO; Impervious fraction = O.SOO Rainfall intensity = ! 1.616(In/Hr) for a 10.0 year storm Subarea runoff = '6.878(CFS) for S.300(AC.) Total runoff = 17~838(CFS) Total area = 12.S00(Ac.) Street flow at end of' street = 17.838(CFS) , Half street flow at end of street = 17.838(CFS) Depth of flow = 0.S09(Ft.), Average velocity = 4.193(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Flow width (from curb towards crown)= 20.000(Ft.) , 14.994(CFS) 3.94S(Ft/s) TC = 20.68 min. 0.43(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 4.000 to point/station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1268.00(Ft.) Downstream point/station elevation = 1230.00(Ft.) Pipe length = 880.00(Ft.) Manning's N = 0.013 No. of pipes = 1 ReqUired pipe flow = 17.838(CFS) Given pipe size = ,24.00(In.) Calculated individual; pipe flow = l7.838(CFS) Normal flow depth in pipe = 10.2S(In.) Flow top width inside; pipe = 23.74(In.) critical Depth = 18.26(In.) Pipe flow velocity = ~ 13.94(Ft/s) Travel time through pipe = 1.0S min. Time of concentration (TC) = 21.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 4.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = '12.S00(Ac.) Runoff from this stream = 17.838(CFS) Time of concentration' = 21.73 min. Rainfall intensity = 1.S73(In/Hr) ~ I I I I I I I I I I I I I I I I I I .' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 8.000 to Point/station 9.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 880.000(Ft.) Top (of initial area) elevation = 1274.000(Ft.) Bottom (of initial area) elevation = 1235.000(Ft.) Difference in elevation = 39.000(Ft.) Slope = 0.04432 s(percent) = 4.43 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.953 min. Rainfall intensity = 2.293(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil! group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 12.133(CFS) Total initial stream area = 6.400(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to point/station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1231.00(Ft.) Downstream point/station elevation = 1230.00(Ft.) pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 ReqUired pipe flow = 12.133(CFS) Given pipe size = .18.00(In.) Calculated individual pipe flow = 12.133(CFS) Normal flow depth in pipe = 12.38(In.) Flow top width inside pipe = 16.69(In.) Critical Depth = 15,.83(In.) Pipe flow velocity = ' 9.38(Ft/s) Travel time through pipe = 0.09 min. Time of concentration' (TCl = 11. 04 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 9.000 to point/station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.400(Ac.) Runoff from this stream = 12.133(CFS) Time of concentration: = 11.04 min. Rainfall intensity =' 2.282(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 5.000 to Point/Station 6.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 500.000(Ft.) Top (of initial area) elevation = 1280.000(Ft.) <p\.. I I I I I I I I I I I I I I I I I I I Bottom (of initial area) elevation = 1273.500(Ft.) Difference in elevation = 6.500(Ft.) Slope = 0.01300 s(percent) = 1.30 TC = k(0.390)*[(length'3)/(elevation change)]'0.2 Initial area time of concentration = 11.165 min. Rainfall intensity = 2.269(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil" group B = 0.000 Decimal fractron soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 5.249(CFS) Total initial stream area = 2.800(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 6.000 to Point/station 7.000 **** STREET FLOW TRA~L TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1273.500(Ft.) End of street segment elevation = 1242.000(Ft.) Length of street segment = 900.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to cross fall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to; property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.873(CFS) Depth of flow = 0.365(Ft.), Average velocity = 4.573(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = l3.672(Ft.) Flow velocity = 4.57(Ft/s) Travel time = 3.28'min. TC = 14.45 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.817 Decimal fraction soil~group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil, group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.969(In/Hr) for a 10.0 year storm Subarea runoff = 4.505(CFS) for 2.800(AC.) Total runoff = 9.753(CFS) Total area = 5.600(Ac.) Street flow at end of; street = 9.753(CFS) Half street flow at end of street = 9.753(CFS) r~ Depth of flow = 0.386(Ft.), Average velocity = 4.812(Ft/s) ~ I I I I I I I I I I I I I I I I I I I Flow width (from curb'towards crown)= 14.929(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 7.000 to point/station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1231.00(Ft.) Downstream point/station elevation = 1230.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 9.753(CFS) Given pipe .ize = 18.00(In.) Calculated individual pipe flow =9.753(CFS) Normal flow depth in pipe = 9.91(In.) Flow top width inside pipe = 17.91(In.) critical Depth = 14.47(In.) Pipe flow velocity = 9.78(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 14.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 7.000 to point/station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 5.600(Ac.) Runoff from this stream = 9.753(CFS) Time of concentration'= 14.50 min. Rainfall intensity = 1.965(In/Hr) summary of stream data: stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 3 Largest Qp = 17.838 21~73 12.133 11.04 9.753 14.50 stream flow has longer 17.838 + sum: of Qb Fa/Ib 12.133 * '0.689 = Qb Ia/Ib 9.753 * 0.800 = 34.005 7.806 1.573 2.282 1.965 time of concentration 8.361 Qp = Total of 3 streams to confluence: Flow rates before confluence point: 17.838 12.133 9.753 Area of streams before confluence: 12.500 6.400 5.600 Results of confluence: Total flow rate = 34.005(CFS) Time of concentration = 21.732 min. Effective stream area after confluence = 24.500(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i!~ Process from Point/station 10.000 to Point/station 18.000 I I I I I I I I I I I I I I I I I I I **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1230.00(Ft.) Downstream point/station elevation = 1226.50(Ft.) pipe length = 150.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 34.005(CFS) Given pipe size = '36.00(In.) Calculated individual pipe flow = 34.005(CFS) Normal flow depth in pipe = 14.32(In.) Flow top width inside pipe = 35.24(In.) Critical Depth = 22.72(In.) Pipe flow velocity = 12.97(Ft/s) Travel time through pipe = 0.19 min. Time of concentration' (TC) = 21. 93 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 10.000 to Point/station 18.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main stream number: 1 Stream flow area = 24.500(Ac.) Runoff from this stream = 34.005(CFS) Time of concentration: = 21.93 min. Rainfall intensity = 1. 565 (In/Hr) Program is now starting with Main stream No. 2 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 11.000 to point/station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 780.000(Ft.) Top (of initial area) elevation = 1263.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 16.500(Ft.) Slope = 0.02115 s(percent)= 2.12 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 12.101 min. Rainfall intensity = 2.170(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil: group C = 0.000 Decimal fraction soi1'group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 11.796(CFS) Total initial stream area = 6.600(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 12.000 to point/Station 13.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** TOp of street segment elevation = End of street segment elevation = 1246.500(Ft. ) 1233.000 (Ft.) (pk I I I I I I I I I I I I I I I I I I I Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.504(Ft.), Average velocity = warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics' at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 4.05(Ft/s) Travel time = 3.91Imin. Adding area flow to ~treet SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A = 0.000 Decimal fraction soil: group B = 0.000 Decimal fraction soil: group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.860(In/Hr) for a 10.0 year storm Subarea runoff = · 8.473(CFS) for 5.600(Ac.) Total runoff = 20~269(CFS) Total area = 12.200(Ac.) Street flow at end of street = 20.269(CFS) Half street flow at end of street = 20.269(CFS) Depth of flow = 0.533(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Flow width (from curb; towards crown)= 20.000(Ft.) 16.801(CFS) 4.047(Ft/s) 0.18 (Ft.) TC = 16.01 min. 4.243 (Ft/s) 1.67(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.50(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.269(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 20.269(CFS) Normal flow depth in pipe = 18.00(In.) Flow top width inside pipe = O.OO(In.) Critical depth could not be calculated. pipe flow velocity = ' 10.85(Ft/s) Travel time through pipe = 0.05 min. Time of concentrationl (TC) = 16.06 min. rP I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 13.000 to point/station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 1 Stream flow area = 12.200(Ac.) Runoff from this stream = 20.269(CFS) Time of concentration: = 16.06 min. Rainfall intensity = 1.858 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 14.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 480.000(Ft.) Top (of initial area) elevation = 1258.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 11.500(Ft.) Slope = 0.02396 s(percent)= 2.40 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.720 min. Rainfall intensity = 2.448 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.831 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area, fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.051(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/station 16.000 ****STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.500(Ft.) End of street segment,elevation = 1233.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to cross fall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1], side(s) of the street Distance from curb to'property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning'S N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning'S N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.323(CFS) r~~ Depth of flow = 0.404(Ft.), Average velocity = 3.189(Ft/s) ~ I I I I I I I I I I I I I I I I I I I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.955(Ft.) Flow velocity = 3.19(Ft/s) Travel time = 4.97'min. TC = 14.69 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff coefficient = 0.817 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.951(In/Hr) for a 10.0 year storm Subarea runoff = 6.691(CFS) for 4.200(Ac.) Total runoff = 9.742(CFS) Total area = 5.700(Ac.) Street flow at end of street = 9.742(CFS) Half street flow at end of street = 9.742(CFS) Depth of flow = 0.437(Ft.), Average velocity = 3.416(Ft/s) Flow width (from curb'towards crown)= 17.886(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 16.000 to Point/station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.50(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.742(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.742(CFS) Normal flow depth in pipe = 9.08(In.) Flow top width inside pipe = 18.00(In.) critical Depth = 14.46(In.) pipe flow velocity = 10.89(Ft/s) Travel time through pipe = 0.05 min. Time of concentration' (TC) = 14.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 16.000 to point/station 17.000 **** CONFLUENCE OF MI~OR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 5.700(Ac.) Runoff from this stream = 9.742(CFS) Time of concentration = 14.73 min. Rainfall intensity =' 1. 948 (In/Hr) summary of stream data: stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 Largest Qp = 20.269 16.06 9.742 14.73 stream flow has longer time of 20.269 + sum of Qb Ia/Ib 1. 858 1. 948 concentration (Pl I I, I I I I I I I I I I I I I I I I I QP = 9.742 * 29.560 0.954 = 9.291 Total of 2 streams to confluence: Flow rates before confluence point: 20.269 9.742 Area of streams before confluence: 12.200 5.700 Results of confluence: Total flow rate = ,29.560(CFS) Time of concentration = 16.059 min. Effective stream area after confluence = 17.900(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 17.000 to point/station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1225.50(Ft.) Downstream point/station elevation = l224.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 29.560(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 29.560(CFS) Normal flow depth in pipe = 12.42(In.) Flow top width inside pipe = 34.23(In.) Critical Depth = 21.12(In.) Pipe flow velocity = 13.67(Ft/s) Travel time through pipe = 0.06 min. Time of concentration' (TC) = 16.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 17.000 to Point/station 18.000 **** CONFLUENCE OF MAINSTREAMS **** The following data inside Main Stream is listed: In Main Stream number~ 2 Stream flow area = : 17.900(Ac.) Runoff from this stream = 29.560(CFS) Time of concentration: = 16.12 min. Rainfall intensity = 1.854 (InjHr) Summary of stream data: Stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 Largest Qp = 34.005 21.93 29.560 16.12 stream flow has longer 34.005 + sum. of Qb Ia/Ib 29.560 * '0.844 = 58.965 1. 565 1. 854 time of concentration 24.959 Qp = Total of 2 main streams to confluence: Flow rates before confluence point: 34.005 29.560 Area of streams before confluence: (/0 I I I I I I I I I I I I I I I I I I I 24.500 17.900 Results of confluence: Total flow rate = 58.965(CFS) Time of concentration = 21.925 min. Effective stream area after confluence = End of computations, total study area = The following figures may be used for a unit hydrograph study of the Area averaged pervious area fraction (Ap) = Area averaged RI index number = 75.0 42.400(Ac.) 42 .40 (Ac.) same area. 0.500 ~t\ I I I I I I I I I I I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology study Date: 06/13/95 Version 3.3 ------------------------------------------------------------------------ 10 YR. HYDROLOGIC CALC. BASIN "B" TR NO. 23143-3 CROWNE HILL FILE:23143B' 6/12/95 -------------~---------------------------------------------------------- ********* Hydrology study control Information ********** ------------------------------------------------------------------------ RANPAC Engineering corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.900 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to point/Station 31.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1224.000(Ft.) Bottom (of initial area) elevation = l22l.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.592 min. Rainfall intensity = i 2.466(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.831 Decimal fraction soil, group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.460(CFS) Total initial stream area = 1.200(Ac.) Pervious area fraction = 0.500 . 10 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I Process from Point/station 31.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 32.000 Top of street segment elevation = l22l.000(Ft.) End of street segment elevation = l220.500(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = lS.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1]' side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.5~3(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 1.07(Ft/s) Travel time = 9.32 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.S07 Decimal fraction soil group A = 0.000 Decimal fraction soil: group B = 0.000 Decimal fraction soil! group C = 0.000 Decimal fraction soil'group D = 1.000 RI index for soil(AMC2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.69S(In/Hr) for a 10.0 year storm Subarea runoff = ,4.520(CFS) for 3.300(Ac.) Total runoff = 6~9S0(CFS) Total area = 4.500(AC.) street flow at end of' street = 6.980(CFS) Half street flow at end of street = 6.9S0(CFS) Depth of flow = 0.596(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Flow width' (from curb towards crown)= 20.000(Ft.) 5.S43(CFS) 1. 073 (Ft/s) 3.l6(Ft.) TC = lS.9l min. 1.122 (Ft/s) 4.7S(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 32.000 to Point/station 36.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1215.00(Ft.) Downstream point/station elevation = 1214.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = I Required pipe flow = 6.9S0(CFS) Given pipe size = . IS.OO(In.) Calculated individual pipe flow = 6.9S0(CFS) Normal flow depth in pipe = 7.51(In.) f'\\ I I I I I I I I I I I I I I I I I I I Flow top width inside pipe = 17.75(In.) critical Depth = l2.28(In.) Pipe flow velocity = lO.OO(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TCl = 18.96 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 36.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.500(Ac.) Runoff from this stream = 6.980(CFS) Time of concentration = 18.96 min. Rainfall intensity = 1. 695 (In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 33.000 to Point/Station 34.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 200.000(Ft.) Top (of initial area) elevation = 1224.000(Ft.) Bottom (of initial area) elevation = 1221.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.01500 s(percent)= 1.50 TC = k(0.390)*[(length-3)/(elevation change)]"0.2 Initial area time of concentration = 7.521 min. Rainfall intensity = , 2.819(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = l.l82(CFS) Total initial stream area = 0.500(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 34.000 to Point/Station 35.000 **** STREET FLOW TRAvtL TIME + SUBAREA FLOW ADDITION **** Top of street segment: elevation = 122l.000(Ft.) End of street segment elevation = 1220.000(Ft.) Length of street segment = 550.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (vjhz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to'property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 1V I I I I I I I I I I I I I I I I I I I Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.719(CFS) Depth of flow = 0.408(Ft.), Average velocity = 1.151(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 16.198(Ft.) Flow velocity = 1.15(Ft/s) Travel time =- 7.96 min. TC = 15.49 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.815 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.895(In/Hr) for a 10.0 year storm Subarea runoff = . 2.007(CFS) for 1.300(Ac.) Total runoff = 3~189(CFS) Total area = 1.800(Ac.) Street flow at end of'street = 3.l89(CFS) Half street flow at end of street = 3.l89(CFS) Depth of flow = 0.426(Ft.), Average velocity = 1.196(Ft/s) Flow width (from curb towards crown)= l7.265(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to point/station 36.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = l215.00(Ft.) Downstream point/station elevation = l2l4.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.l89(CFS) Given pipe size = l8.00(In.) calculated individual! pipe flow = 3.l89(CFS) Normal flow depth in pipe = 4.96(In.) Flow top width inside pipe = 16.09(In.) Critical Depth = 8~16(In.) Pipe flow velocity = . 8.04(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 15.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 36.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number.: 2 Stream flow area = 1.800(Ac.) Runoff from this stream = 3.l89(CFS) Time of concentration = 15.55 min. Rainfall intensity = 1.89l(In/Hr) Summary of stream data: i 1~ Stream Flow rate Rainfall Intensity TC I I I I I I I I I I I I I I I I I I I I No. (CFS) (min) (In/Hr) 1 2 Largest Qp = 6.980 18.96 3.189 15.55 stream flow has longer 6.980 + sum' of Qb Ia/lb 3.189 * 0.897 = 9.839 1. 695 1.891 time of concentration 2.859 Qp = Total of 2 main streams to confluence: Flow rates before con~luence point: 6.980 3.189 Area of streams before confluence: 4.500 1.800 Results of confluence: Total flow rate = 9.839(CFS) Time of concentration = 18.958 min. Effective stream area after confluence = End of computations, total study area = The following figures may be used for a unit hydrograph study of the 6.300(AC.) 6.30 (Ac.) same area. Area averaged pervious area fraction (Ap) = Area averaged RI index number = 75.0 0.500 \~ I I I I I I I I I I I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/13/95 version 3.3 ------------------------------------------------------------------------ 100 YR. HYDROLOGIC CALC. BASIN "B" TR 23143-3 CROWNE HILL FILE: 2314BB 6/12/95 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1.400 (Inches) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 20.000 to Point/Station 21.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1291.000(Ft.) Bottom (of initial area) elevation = 1288.500(Ft.) Difference in elevation = 2.500(Ft.) slope = 0.01000 s(percent)= 1.00 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.917 min. Rainfall intensity = 3.995(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.855 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.415(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 0.500 / ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++:l~+ I I I I I I I I I I I I I I I I I I I Process from point/station 21.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 22.000 Top of street segment elevation = 1288.500(Ft.) End of street segment elevation = 1282.500(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from gr~de break to crown (v/hz) = 0.017 Street flow~is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.563(CFS) Depth of flow = 0.369(Ft.), Average velocity = 2.701(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.880(Ft.) Flow velocity = 2.70(Ft/s) Travel time = 3.09 min. TC = 12.00 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.392(In/Hr) for a 100.0 year storm Subarea runoff = 10.355(CFS) for 3.600(Ac.) Total runoff = 13.770(CFS) Total area = 4.600(Ac.) Street flow at end of street = 13.770(CFS) Half street flow at end of street = 6.885(CFS) Depth of flow = 0.406(Ft.), Average velocity = 2.946(Ft/s) Flow width (from curb towards crown)= 16.103(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 22.000 to Point/Station 23.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1282.500(Ft.) End of street segment elevation = 1250.000(Ft.) Length of street segment = 750.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) ~y Gutter hike from flowline = 2.000(In.) \ I I I I I I I I I I I I I I I I I I I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 16.015(CFS) Depth of flow = 0.443(Ft.), Average velocity = 6.111(Ftjs) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.792(Ft.) Flow velocity = 6.11(Ftjs) Travel time = 2.05 min. TC = 14.05 min. Adding area flow to street SINGLE FAMILY_(lj4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3. 111 (InjHr) for a 100.0 year storm Subarea runoff = 3.938(CFS) for 1.500(Ac.) Total runoff = 17.707(CFS) Total area = 6.100(Ac.) street flow at end of street = 17.707(CFS) Half street flow at end of street = l7.707(CFS) Depth of flow = 0.455(Ft.), Average velocity = 6.262(Ftjs) Flow width (from curb towards crown)= 16.435(Ft.) End of computations, total study area = 6.10 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 75.0 11 I I I I I I I I I I I I I I I I I I I 1B :1 I I- I I I I , I ~ I I I 'I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology study Date: 06/14/95 version 3.3 10 YR HYDROLOGIC CALC. BASIN "B" TR 23143-3 CROWNE HILL FILE: 231BBB 6/12/95 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - SIN 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) storm event year = Calculated rainfall 1 hour intensity = Slope of intensity 10.0 intensity data: 0.900 (in./hr.) duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/station 25.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = l263.000(Ft.) Bottom (of initial area) elevation = 1262.500(Ft.) Difference in elevation = 0.500(Ft.) Slope = 0.00167 s(percent)= 0.17 TC = k(0.390)*[(lengt~^3)/(elevation change)]^0.2 Initial area time of concentration = 13.726 min. Rainfall intensity = I 2.025(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.819 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.990(CFS) Total initial stream area = 1.200(Ac.) Pervious area fraction = 0.500 1t:\ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ,I I ,I; :1 I) I il I, !I .1 t I I 'I I 'I t I I Process from Point/station 2S.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 26.000 Top of street segment elevation = 1260.000(Ft.) End of street segment elevation = 12S0.000(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow 'is on [2J side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.01S0 Manning's N from gutter to grade break = 0.01S0 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = S.224(CFS) Depth of flow = 0.302(Ft.), Average velocity = 2.666(Ft/s) Streetflow hydraulics. at midpoint of street travel: Halfstreet flow width = 9.983(Ft.) Flow velocity = 2.67(Ft/s) Travel time = 3.7S'min. TC = 17.48 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.810 . ., I Dec~mal fract~on so~l;group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 7S.00 Pervious area fraction = 0.500; Impervious fraction = O.SOO Rainfall intensity = 1.773 (In/Hr) for a 10.0 year storm Subarea runoff = .5.600(CFS) for 3.900(Ac.) Total runoff = 7~S90(CFS) Total area = S.100(AC.) Street flow at end of'street = 7.S90(CFS) Half street flow at end of street = 3.795(CFS) Depth of flow = 0.333(Ft.), Average velocity = 2.902(Ft/s) Flow width (from curb towards crown)= 11.757(Ft.) End of computations, total study area = S.10 (Ac.) The following figures may be used for a unit hy~rograph study of the same area. Area averaged perviou~ area fraction(Ap) = O.SOO Area averaged RI index number = 7S.0 ~ ,I I ,I I I j I I I I, I I I 'I I' I , I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/13/95 version 3.3 ------------------------------------------------------------------------ 10 YR. HYDROLOGIC CALC. BASIN "c" TR 23143-4 FILE:23l43C 6/12/95 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology program based on Riverside County Flood Control & Water conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 0.550 (Inches) 1.400 (Inches) 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = storm event year = 10.0 calculated rainfall intensity data: 1 hour intensity = 0.900 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 40.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 550.000(Ft.) Top (of initial area) elevation = 1281.500(Ft.) ~ Bottom (of initial area) elevation = 1266.000(Ft.) Difference in elevation = 15.500(Ft.) Slope = 0.02818 s(percent)= 2.82 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.936 min. Rainfall intensity = 2.419 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AM~ 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 7.430(CFS) Total initial stream area = 3.700(Ac.) Pervious area fraction = 0.500 ~\ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I 'I .j I I' li I '. ,. 'j I .- --, I I' i t ;"' I l t' Process from point/station 41.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 42.000 Top of street segment elevation = 1266.000(Ft.) End of street segment elevation = 1252.000(Ft.) Length of street segment = 230.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = l8.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 . Slope from grade break to crown (v/hz) = 0.017 Street flow-is on [2] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.140(CFS) Depth of flow = 0.304(Ft.), Average velocity = 5.ll3(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.053(Ft.) Flow velocity = 5.ll(Ft/s) Travel time = 0.75 min. TC = 10.69 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.828 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.324(In/Hr) for a 10.0 year storm Subarea runoff = 5.l94(CFS) for 2.700(Ac.) Total runoff = l2.624(CFS) Total area = 6.400(Ac.) street flow at end of street = l2.624(CFS) Half street flow at end of street = 6.3l2(CFS) Depth of flow = 0.32l(Ft.), Average velocity = 5.372(Ft/s) Flow width (from curb towards crown)= 11.073(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 42.000 to Point/station 43.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = l252.000(Ft.) End of street segment elevation = l229.000(Ft.) Length of street segment = 630.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = l8.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 ~Q/ Gutter width = 2.000(Ft.) e>V Gutter hike from flowline = 2.000(In.) I t J I t i ~ I I I I I , j I j I "". , I I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 13.314(CFS) Depth of flow = 0.418(Ft.), Average velocity = 5.268(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 16.784(Ft.) Flow velocity = 5.27(Ft/s) Travel time = 1.99 min. TC = 12.68 min. Adding area flow to street SINGLE FAMILY,(1/4 Acre Lot) Runoff Coefficient = 0.822 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500: Impervious fraction = 0.500 Rainfall intensity = 2.115(In/Hr) for a 10.0 year storm Subarea runoff = 1.217(CFS) for 0.700(Ac.) Total runoff = 13.841(CFS) Total area = 7.100(Ac.) Street flow at end of street = 13.841(CFS) Half street flow at end of street = 13.841(CFS) Depth of flow = 0.422(Ft.), Average velocity = S.31S(Ft/s) Flow width (from curb towards crown)= 17.047(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 43.000 to Point/Station 48.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1224.00(Ft.) Downstream point/station elevation = 1222.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.S41(CFS) Given pipe size = lS.00(In.) Calculated individual pipe flow = 13.841(CFS) Normal flow depth in pipe = 9.1l(In.) Flow top width inside pipe = 18.00(In.) critical Depth = 16.S2(In.) Pipe flow velocity = lS.42(Ftjs) Travel time through pipe = 0.03 min. Time of concentration (Te) = 12.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 43.000 to point/station 48.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 7.100(Ac.) Runoff from this stream = 13.841(CFS) Time of concentration = 12.71 min. Rainfall intensity = 2.112 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 44.000 to point/station 45.000 **** INITIAL AREA EVALUATION **** ~~ I I J , t , t I I I t , I I I i I I I Initial area flow distance = 350.000(Ft.) Top (of initial area) elevation = 1255.500(Ft.) Bottom (of initial area) elevation = 1249.500(Ft.) Difference in elevation = 6.000(Ft.) Slope = 0.01714 s(percent)= 1.71 TC = k(0.390)*[(length'3)/(elevation change)] '0.2 Initial area time of concentration = 9.160 min. Rainfall intensity = 2.530(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.833 Decimal fract~on soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.317(CFS) Total initial stream area = 1.100(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 45.000 to Point/station 46.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1249.500(Ft.) End of street segment elevation = 1246.000(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [2] siders) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.l6l(CFS) Depth of flow = 0.322(Ft.), Average velocity = 2.182(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width = ll.ll5(Ft.) Flow velocity = 2.18(Ft/s) Travel time = 2.67 min. TC = 11.83 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.197(In/Hr) for a 10.0 year storm Subarea runoff = 4.890(CFS) for 2.700(Ac.) Total runoff = 7.207(CFS) Total area = 3.800(Ac.) ~~ Street flow at end of street = 7.207(CFS) {7' I ., ' , ,I I I j I I j J t 1 I j I I I I I Half street flow Depth of flow = Flow width (from at end of street = 0.351(Ft.), Average curb towards crown)= 3.604(CFS) velocity = 2.357(Ft/s) 12.817(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 46.000 to Point/station 47.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.000(Ft.) End of street,segment elevation = 1229.000(Ft.) Length of street segment = 450.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.914(CFS) Depth of flow = 0.373(Ft.), Average velocity = 4.849(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.166(Ft.) Flow velocity = 4.85(Ft/s) Travel time = 1.55 min. TC = 13.38 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.820 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.054 (In/Hr) for a 10.0 year storm Subarea runoff = 3.031(CFS) for 1.800(Ac.) Total runoff = 10.238(CFS) Total area = 5.600(AC.) Street flow at end of street = 10.238(CFS) Half street flow at end of street = 10.238(CFS) Depth of flow = 0.388(Ft.), Average velocity = 5.011(Ft/s) Flow width (from curb towards crown)= 14.992(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 47.000 to Point/station 48.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1224.00(Ft.) Downstream point/station elevation = 1222.00(Ft.) Pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.238(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 10.238(CFS) Normal flow depth in pipe = 7.66(In.) ~ J J J ~ I . I ~ ~ I l I k ~ ~ l ( ~ t ,- l l , l L \ l ,r Flow top width inside pipe = 17.80(In.) critical Depth = 14.78(In.) pipe flow velocity = 14.27(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.42 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 47.000 to Point/station 48.000 **** CONFLUENCE OF MINOR STREAMS **** . Along Main stream number: 1 in normal stream number 2 Stream flow area = 5.600(AC.) Runoff from this stream = 10.238(CFS) Time of concentration = 13.42 min. Rainfall intensity = 2.051(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Largest QP = 13.841 12.71 10.238 13.42 stream flow has longer or 13.841 + sum of Qa Tb/Ta 10.238 * 0.948 = 23.542 2.112 2.051 shorter time of concentration 9.701 Qp = Total of 2 streams to confluence: Flow rates before confluence point: 13.841 10.238 Area of streams before confluence: 7.100 5.600 Results of confluence: Total flow rate = 23.542(CFS) ~ime of concentration = 12.711 min. Effective stream area after confluence = 12.700(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 48.000 to point/station 52.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1222.00(Ft.) Downstream point/station elevation = 1218.00(Ft.) pipe length = 130.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.542(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 23.542(CFS) Normal flow depth in pipe = 11.81(In.) Flow top width inside pipe = 29.31(In.) critical Depth = 19.80(In.) Pipe flow velocity = 13.12(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (Te) = 12.88 min. ~ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I t I I I t 1 I t ) i I I I I I I I I Process from point/station 48.000 to point/station **** CONFLUENCE OF MAIN STREAMS **** 52.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12.700(AC.) Runoff from this stream = 23.542(CFS) Time of concentration = 12.88 min. Rainfall intensity = 2.097(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 49.000 to Point/station 50.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 280.000(Ft.) Top (of initial area) elevation = 1267.000(Ft.) Bottom (of initial area) elevation = 1250.700(Ft.) Difference in elevation = l6.300(Ft.) Slope = 0.05821 s(percent)= 5.82 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.560 min. Rainfall intensity = 3.039(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 4.097(CFS) Total initial stream area = 1.600(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to point/station 51.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1250.700(Ft.) End of street segment elevation = 1226.000(Ft.) Length of street segment = 400.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 22.000(Ft.) Distance from crown to crossfall grade break = 20.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.396(CFS) Depth of flow = 0.318(Ft.), Average velocity = 5.485(Ft/s) Q?q Streetflow hydraulics at midpoint of street travel: ~~ I , ',i ~. I I I I I 1\ J, i I I I i I a I I Halfstreet flow width = 9.550(Ft.) Flow velocity = 5.49(Ft/s) Travel time = 1.22 min. TC = 7.78 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for ~oil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.768(InjHr) for a 10.0 year storm " Subarea runoff = 13.218(CFS) for 5.700(AC.) Total runoff = 17.315(CFS) Total area = 7.300(AC.) Street flow at end of street = 17.315(CFS) Half street flow at end of street = 8.658(CFS) Depth of flow = 0.355(Ft.), Average velocity = 6.040(Ftjs) Flow width (from curb towards crown)= 11.431(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Pointjstation 51.000 to Pointjstation 52.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream pointjstation elevation = 1219.00(Ft.) Downstream pointjstation elevation = 1218.00(Ft.) pipe length = 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.315(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 17.315(CFS) Normal flow depth in pipe = 10.84(In.) Flow top width inside pipe = 23.89(In.) critical Depth = 17.98(In.) pipe flow velocity = 12.57(Ftjs) Travel time through pipe = 0.04 min. Time of concentration (TC) = 7.82 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 51.000 to Pointjstation 52.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 7.300(Ac.) Runoff from this stream = 17.315(CFS) Time of concentration = 7.82 min. Rainfall intensity = 2.760(InjHr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (InjHr) 1 2 Largest QP = 23.542 12.88 17.315 7.82 stream flow has longer time of 23.542 + sum of Qb Iajlb 2.097 2.760 concentration ~ I " I. i I I I I: I' I, I I I I I I j I I QP = 17.315 * 36.699 0.760 = 13 . 157 Total of 2 main streams to confluence: Flow rates before confluence point: 23.542 ' 17.315 Area of streams before confluence: 12.700 7.300 Results of confluence: Total flow rate = 36.699(CFS) Time of concentration = 12.876 min. Effective stream area after confluence = End of computations, total study area = The following figures may be used for a unit hydrograph study of the Area averaged pervious area fraction (Ap) = Area averaged RI index number = 75.0 20.000(Ac.) 20.00 (AC.) same area. 0.500 ~ I I I J 1 I 1 I I I, { I I J I' I I I. 'I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/14/95 Version 3.3 ------------------------------------------------------------------------ 100 YR. HYDROLOGIC CALC. BASIN "A" TRIBUTARY 'fO EXIST 36" RCP @ BUTTERFIELD STG. RD. INTERIM CONDITION (TR 23413-3) FILE:CHINT ------------------------------------------------------------------------ ********* 'Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) =100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 750.000(Ft.) Top (of initial area) elevation = 1326.000(Ft.) Bottom (of initial area) elevation = 1255.000(Ft.) Difference in elevation = 71.000(Ft.) Slope = 0.09467 s(percent)= 9.47 TC = k(0.710)*[(length^3)/(e1evation change)]^0.2 Initial area time of concentration = 16.071 min. Rainfall intensity = 2.889(In/Hr) for a 100.0 year storm UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 20.078(CFS) Total initial stream area = 8.400(Ac.) Pervious area fraction = 1.000 , ~() +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I 1 t f 1 i I I I I I I I I Process from Point/station 2.000 to point/station **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** 5.000 Top of natural channel elevation = 1255.000(Ft.) End of natural channel elevation = 1237.000(Ft.) Length of natural channel = 400.000(Ft.) Estimated mean flow rate at midpoint of channel = 29.519(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (~ + 8(q"~352) (slope"0.5) Velocity using mean channel flow = 7.07(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0450 Corrected/adjusted channel slope = 0.0450 Travel time = 0.94 min. TC = 17.01 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 Decimal f~action soil group B = 0.000 Decimal fraction soil' group C = 0.000 Decimal fraction soil,group D = 1.000 RI index for soil (AMC: 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = , 2.800(In/Hr) for a 100.0 year storm Subarea runoff = 18.253(CFS) for 7.900(Ac.) Total runoff = 38.331(CFS) Total area = 16.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/station 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 16.300(Ac.) Runoff from this stream = 3S.331(CFS) Time of concentration = 17.01 min. Rainfall intensity = 2.800(In/Hr) +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 800.000(Ft.) Top (of initial area) elevation = 1325.000(Ft.) Bottom (of initial area) elevation = 1268.900(Ft.) Difference in elevation = 56.100(Ft.) Slope = 0.07012 s(percent)= 7.01 TC = k(0.710)*[(length"3)j(elevation change)]"0.2 Initial area time of concentration = 17.511 min. Rainfall intensity = 2.756(In/Hr) for a 100.0 year storm UNDEVELOPED (fair cover) subarea n\ Runoff Coefficient = 0.824 ~ Decimal fraction soil' group A = 0.000 I I I ,I 1 I I I I J, I I J I I , I, I I, I Decimal fraction soil group B = 0.000 Decimal fraction soil, group C = 0.000 Decimal fraction soil' group D = 1.000 RI index for soil (AMC; 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 5.678(CFS) Total initial stream area = 2.500(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 4.000 to Point/Station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1268.900(Ft.) End of natural channel elevation = 1237.000(Ft.) Length of natural channel = 350.000(Ft.) Estimated mean flow rate at midpoint of channel = 7.949(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q"~352) (slope"0.5) Velocity using mean c~annel flow = 7.12(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls {Plate D-6.2) Normal channel slope = 0.0911 Corrected/adjusted channel slope = 0.0911 Travel time = 0.82 min. TC = 18.33 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.822 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = , 2. 688 (In/Hr) for a 100.0 year storm Subarea runoff = : 4.420(CFS) for 2.000(Ac.) Total runoff = 10.098(CFS) Total area = 4.500(Ac.) i ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/station 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.500(Ac.) Runoff from this stream = 10.098(CFS) Time of concentration = 18.33 min. Rainfall intensity = 2.688 (In/Hr) Summary of stream data: Stream No. Rainfall Intensity (In/Hr) ~?/ Flow rate (CFS) TC (min) I I I I 1 I I I I I I i I I I I I I I r 1 38.331 17.01 2.800 2 10.098 18.33 2.688 Largest stream flow has longer or shorter time of concentration QP = 38.331 + sum of Qa Tb/Ta 10.098 * 0.928 = 9.373 Qp = 47.704 Total of 2 streams to confluence: Flow rates before confluence point: 38.331 - 10.098 Area of streams before confluence: 16.300 4.500 Results of confluence: Total flow rate = 47.704(CFS) Time of concentration = 17.014 min. Effective stream area after confluence = 20.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 5.000 to point/station 6.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1237.000(Ft.) End of natural channel elevation = 1222.000(Ft.) Length of natural channel = 550.000(Ft.) Estimated mean flow rate at midpoint of channel = 57.680(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q"~352) (slope"0.5) Velocity using mean channel flow = 6.66(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0273 Corrected/adjusted channel slope = 0.0273 Travel time = 1.38 min. TC = 18.39 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.822 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil' group C = 0.000 Decimal fraction soil, group D = 1.000 RI index for soil (AMC, 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = , 2.683(In/Hr) for a 100.0 year storm Subarea runoff = 19.190(CFS) for 8.700(Ac.) Total runoff = 66!.894 (CFS) Total area = 29.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 6.000 to point/station 7.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** a,.?7 Top of natural channel elevation = End of natural channel elevation = 1222.000 (Ft.) 1217 .500(Ft.) I I I I I I I t I I I I I I I , I I I Length of natural channel = 270.000(Ft.) Estimated mean flow rate at midpoint of channel = 74.604(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q".352) (slope"0.5) Velocity using mean channel flow = 5.62(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate 0-6.2) Norma~ channel slope = 0.0167 corrected/adjusted channel slope = 0.0167 Travel time = 0.80 min. TC = 19.19 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.820 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil, group 0 = 1.000 RI index for soil (AMC: 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.621(In/Hr) for a 100.0 year storm Subarea runoff = 14.621(CFS) for 6.800(AC.) Total runoff = 81.515(CFS) Total area = 36.300(AC.) End of computations, total study area = 36.30 (Ac.) The following figures,may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction (Ap) = 1.000 Area averaged RI index number = 84.0 ~ I I I I I I I .1 I I I I I 'I I I I I I -' ~ I I I J I I I I I I 'I , I I I 'I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/14/95 version 3.3 100 YR. HYDROLOGIC CALC. BASIN "A" TRIBUTARY TO EXIST 36" RCP @ BUTTERFIELD STG. RD. INTERIM CONDITION (TR 23413-3) FILE:CHINT ********* - Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering corporation, Temecula, CA - SIN 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = .100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 750.000(Ft.) Top (of initial area) elevation = 1326.000(Ft.) Bottom (of initial area) elevation = 1255.000(Ft.) Difference in elevation = 71.000(Ft.) Slope = 0.09467 s(percent)= 9.47 TC = k(O.710)*[(length^3)j(elevation change)]^0.2 Initial area time of boncentration = 16.071 min. Rainfall intensity = ' 2.889(In/Hr) for a 100.0 year storm UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 20.078(CFS) Total initial stream area = 8.400(Ac.) Pervious area fraction = 1.000 qc. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I J I I I I I '~ I I I I I I I I I I Process from Point/station 2.000 to Point/Station **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** 5.000 Top of natural channel elevation = 1255.000(Ft.) End of natural channel elevation = 1237.000(Ft.) Length of natural channel = 400.000(Ft.) Estimated mean flow rate at midpoint of channel = 29.519(CFS) Natural valley channel type used' L.A. County flood control district formula for channel velocity: Velocity = (~ + 8(q'.352) (slope'0.5) Velocity using mean channel flow = 7.07(Ftjs) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate 0-6.2) Normal channel slope = 0.0450 Correctedjadjusted channel slope = 0.0450 Travel time = 0.94 min. TC = 17.01 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.800(InjHr) for a 100.0 year storm Subarea runoff = 18.253(CFS) for 7.900(Ac.) Total runoff = 38.331(CFS) Total area = 16.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from PointjStation 2.000 to pointjStation 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 stream flow area = : 16.300(Ac.) Runoff from this stream = 38.33l(CFS) Time of concentration'= 17.01 min. Rainfall intensity =, 2.800(InjHr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Pointjstation 3.000 to pointjstation 4.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 800.000(Ft.) Top (of initial area) elevation = 1325.000(Ft.) Bottom (of initial area) elevation = 1268.900(Ft.) Difference in elevation = 56.100(Ft.) Slope = 0.07012 s{percent)= 7.01 TC = k(0.710)*[(length'3)j(elevation change)]'0.2 Initial area time of concentration = 17.511 min. Rainfall intensity = 2.756(InjHr) for a 100.0 year storm UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 ~ I I I I I I I I I I I I I I I I I I I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group 0 = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 5.678(CFS) Total initial stream area = 2.500(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 4.000 to Point/station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1268.900(Ft.) End of natural channel elevation = 1237.000(Ft.) Length of natural channel = 350.000(Ft.) Estimated mean flow rate at midpoint of channel = 7.949(CFS) Natural valley channel type used L.A. county flood control district formula for channel velocity: Velocity = (7 + 8(qA.352) (slopeAO.5) Velocity using mean channel flow = 7.12(Ft/s) , Correction to map slope used on extremely rugged channels with drops and waterfalls '(Plate 0-6.2) Normal channel slope = 0.0911 Corrected/adjusted channel slope = 0.0911 Travel time = 0.82.min. TC = 18.33 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.822 Decimal fraction soil' group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.688(In/Hr) for a 100.0 year storm I Subarea runoff = '4.420(CFS) for 2.000(Ac.) Total runoff = 10(098(CFS) Total area = 4.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/station 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = ( 4.500(Ac.) Runoff from this stream = 10.098(CFS) Time of concentration'= 18.33 min. Rainfall intensity =: 2.688 (In/Hr) summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) ~ I I I I I I I I I I I I I I I I I I I 1 38.331 17 .01 2.800 2 10.098 18.33 2.688 Largest stream flow has longer or shorter time of concentration Qp = 38.331 + sum of Qa Tb/Ta 10.098 * 0.928 = 9.373 Qp = 47.704 Total of 2 streams to confluence: Flow rates before confluence point: 38.331- 10.098 Area of streams before confluence: 16.300 4.500 Results of confluence: Total flow rate = 47.704(CFS) Time of concentration = 17.014 min. Effective stream area after confluence = 20.800(Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1237.000(Ft.) End of natural channel elevation = 1222.000(Ft.) Length of natural channel = 550.000(Ft.) Estimated mean flow rate at midpoint of channel = 57.680(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q"~352) (slope"0.5) Velocity using mean channel flow = 6.66(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0273 Corrected/adjusted channel slope = 0.0273 Travel time = 1.38 min. TC = 18.39 min. . I Add1ng area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.822 Decimal fraction soil'group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.683 (In/Hr) for a 100.0 year storm Subarea runoff = 19.190(CFS) for 8.700(AC.) Total runoff = 66~894(CFS) Total area = 29.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 6.000 to Point/Station 7.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** C\.l\ Top of natural channel elevation = End of natural channel elevation = , 1222.000(Ft.) 1217.500(Ft.) I I I I I I I I I I I I I I I I I I I Length of natural channel = 270.000(Ft.) Estimated mean flow rate at midpoint of channel = 74.604(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q'.352) (slope'0.5) Velocity using mean channel flow = 5.62(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normak channel slope = 0.0167 Corrected/adjusted channel slope = 0.0167 Travel time = 0.80 min. TC = 19.19 min., Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.820 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.621(In/Hr) for a 100.0 year storm Subarea runoff = 14.621(CFS) for 6.800(Ac.) Total runoff = 81.515(CFS) Total area = 36.300(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 7.000 to point/station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1217.50(Ft.) Downstream point/station elevation = 1211.90(Ft.) Pipe length = 107.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 81.515(CFS) Given pipe size = ,36.00(In.) Calculated individual pipe flow = 81.515(CFS) Normal flow depth in pipe = 18.73(In.) Flow top width inside pipe = 35.97(In.) Critical Depth = 33.38(In.) Pipe flow velocity = 21.95(Ftjs) Travel time through pipe = 0.08 min. Time of concentration (TC) = 19.27 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/station 18.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number': 1 Stream flow area = . 36.300(Ac.) Runoff from this stream = 81.515(CFS) Time of concentration = 19.27 min. Rainfall intensity = 2.615(In/Hr) Program is now starting with Main Stream No. 2 vP I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 11.000 to Point/station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 780.000(Ft.) Top (of initial area) elevation = 1263.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 16.500(Ft.) Slope = 0.02115 s(percent)= 2.12 TC = k(0.390)*[(length'3)/(elevation change)]'0.2 Initial area time of concentration = 12.101 min. Rainfall intensity = 3.377(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 18.894(CFS) Total initial stream area = 6.600(Ac.) Pervious area fraction = 0.500 , +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 12.000 to Point/station 13.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment: elevation = 1246.500(Ft.) End of street segment elevation = 1233.000(Ft.) Length of street segment = 950.000 (Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (vjhz) = 0.017 Street flow is on [1] siders) of the street Distance from curb to'property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = O. 015'0 Manning'S N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.578(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.000(Ft.) Flow velocity = 4.53(Ft/s) Travel time = 3.50 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A = Decimal fraction soil; group B = Decimal fraction soil; group C = 26.194(CFS) 4.525(Ft/s) 3.89(Ft.) TC = 15.60 min. 0.000 0.000 0.000 \t>\ I I I I I I I I I I I I I I I I I I I Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.937(In/Hr) for a 100.0 year storm Subarea runoff = 12.595(CFS) for 5.100(Ac.) Total runoff = 31.489(CFS) Total area = 11.700(Ac.) street flow at end of street = 31.489(CFS) Half street flow at end of street = 31.489(CFS) Depth of flow = 0.612(Ft.), Average velocity = 4.739(Ft/s) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 5.62(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 13.000 to Point/station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.50(Ft.) Pipe length = 30.bO(Ft.) Manning's N = 0.013 No. of pipes = 1 ReqUired pipe flow = 31.489(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 31.489(CFS) Normal flow depth in pipe = 15.68(In.) Flow top width inside pipe = 22.84(In.) Critical Depth = 22.59(In.) Pipe flow velocity =' 14.47(Ft/s) Travel time through pipe = 0.03 min. Time of concentration' (TC) = 15.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 13.000 to point/station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 1 stream flow area = ! 11.700(Ac.) Runoff from this stream = 31.489(CFS) Time of concentration: = 15.63 min. Rainfall intensity = 2.933 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 14.000 to Point/station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 480.000(Ft.) Top (of initial area) elevation = 1258.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 11.500(Ft.) Slope = 0.02396 s(percent)= 2.40 TC = k(0.390)*[(lengthA3)/(elevation change)]'0.2 Initial area time of concentration = 9.720 min. Rainfall intensity = , 3.810(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.853 Decimal fraction soiligroup A = 0.000 Decimal fraction soil group B = 0.000 \t>V I I I I I I I I I I I I I I I I I I I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soi1(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 4.874(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from goint/station 15.000 to Point/Station 16.000 **** STREET-FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.400(Ft.) End of street segment elevation = 1233.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to cross fall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to'property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.749(CFS) Depth of flow = 0.437(Ft.), Average velocity = 3.407(Ft/s) streetflow hydraulics, at midpoint of street travel: Halfstreet flow width = 17.917(Ft.) Flow velocity = 3.41(Ft/s) Travel time = 4.65 min. TC = 14.37 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Decimal fraction soil: group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.073(InjHr) for a 100.0 year storm Subarea runoff = '7.773(CFS) for 3.000(AC.) Total runoff = 12~647(CFS) Total area = 4.500(AC.) Street flow at end of; street = 12.647(CFS) Half street flow at epd of street = 12.647(CFS) Depth of flow = 0.470(Ft.), Average velocity = 3.630(Ftjs) Flow width (from curb'towards crown)= 19.858(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.00(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 \~~ I I I I I I I I I I I I I I I I I I I No. of pipes = 1 Required pipe flow = 12.647(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 12.647(CFS) Normal flow depth in pipe = 9.41(In.) Flow top width inside pipe = 17.98(In.) critical Depth = 16.07(In.) Pipe flow velocity = 13.54(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 4.500(Ac.) Runoff from this stream = 12.647(CFS) Time of concentration = 14.40 min. Rainfall intensity =; 3.069(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 Largest Qp = 31.489 15.63 12.647 14.40 stream flow has longer 31. 489 + sum of Qb Ia/Ib 12.647 * : 0.956 = 43.578 ' 2.933 3.069 time of concentration 12.090 Qp = Total of 2 streams to' confluence: Flow rates before confluence point: 31.489 12.647 Area of streams before COnfluence: 11.700 4.500 Results of confluence: Total flow rate = ; 43.578(CFS) Time of concentration: = 15.635 min. Effective stream area after confluence = 16.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1225.00(Ft.) Downstream point/station elevation = 1211.90(Ft.) Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 43.578(CFS) Given pipe size = 36.00(In.) Calculated individual; pipe flow = 43.578(CFS) Normal flow depth in pipe = 13.83(In.) Flow top width inside pipe = 35.02(In.) Critical Depth = 25'.79 (In.) Pipe flow velocity ~' 17.43(Ft/s) Travel time through pipe = 0.29 min. \oct I I I I I I I I I I I I I I I I I I I Time of concentration (TC) = 15.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 17.000 to Point/station 18.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main stream number: 2 Stream flow area = 16.200(Ac.) Runoff from this stre?m = 43.578(CFS) Time of concentration = 15.92 min. Rainfall intensity = 2.904(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Largest Qp = 81.515 19.27 43.578 15.92 stream flow has longer 81. 515 + sum. of Qb Ia/Ib 43.578 * . 0.900 = 120.748 2.615 2.904 time of concentration 39.233 Qp = Total of 2 main streams to confluence: Flow rates before confluence point: 81.515 43.578 Area of streams before confluence: 36.300 16.200 Results of confluence: Total flow rate = 120.748(CFS) Time of concentration = 19.272 min. Effective stream area after confluence = End of computations, total study area = The following figures may be used for a unit hydrograph study of the 52.500(Ac.) 52.50 (Ac.) same area. , Area averaged pervious area fraction (Ap) = 0.846 Area averaged RI index number = 81.2 \~ I I I I I I I I I I , I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 06/14/95 version 3.3 ------------------------------------------------------------------------ 100 YR HYDROLOGIC CALC BASIN "C" INTERIM CONDo FILE:2314CC 6/12/95 -------------~---------------------------------------------------------- ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water conservation District 1978 hydrology manual Storm event (year) = ' 100.00 Antecedent Moisture Condition = 2 0.550 (Inches) 1.400 (Inches) 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = Storm event year = 109.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to point/station 41.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1250.000(Ft.) Bottom (of initial area) elevation = 1217.000(Ft.) Difference in elevation = 33.000(Ft.) Slope = 0.11000 s,(percent) = 11.00 TC = k(0.710)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 10.810 min. Rainfall intensity = : 3.593(In/Hr) for a 100.0 year storm UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 7.249(CFS) Total initial stream area = 2.400(Ac.) Pervious area fractiop = 1.000 \()p +++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I Process from Point/station 41.000 to point/station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 42.000 Top of street segment elevation = 1217.000(Ft.) End of street segment elevation = 1207.000(Ft.) Length of street segment = 200.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow 'is on [1], side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz)' = 0.020 Gutter width = 2.00b(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.609(CFS) Depth of flow = 0.357(Ft.), Average velocity = 5.353(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.176(Ft.) Flow velocity = 5.35(Ft/s) Travel time = 0.62 min. TC = 11.43 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 Decimal fraction soil: group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil: group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = ' 3.484(In/Hr) for a 100.0 year storm Subarea runoff = i 2.663(CFS) for 0.900(Ac.) Total runoff = 9~912(CFS) Total area = 3.300(Ac.) Street flow at end of'street = 9.912(CFS) Half street flow at ehd of street = 9.912(CFS) Depth of flow = 0.370(Ft.), Average velocity = 5.533(Ft/s) Flow width (from curb towards crown)= 13.969(Ft.) End of computations, total study area = 3.30 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.864 Area averaged RI index number = 81.5 \t/\ I I I I I I I I I I I I I I I I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering software, (c) 1992 Rational Hydrology Study Date: 06/14/95 version 3.3 ------------------------------------------------------------------------ 10 YR HYDROLOGIC CALC. BASIN "A" TRIBUTARY TO EXIST 36" RCP @ BUTTERFIELD STG. RD. INTERIM CONDITION (TR 23413-3) FILE:CHINT ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ RANPAC Engineering Corporation, Temecula, CA - SIN 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 100 year, 1 hour precipitation = 0.550 (Inches) 1. 400 (Inches) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.900 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 750.000(Ft.) Top (of initial area) elevation = 1326.000(Ft.) Bottom (of initial area) elevation = 1255.000(Ft.) Difference in elevation = 71.000(Ft.) Slope = 0.09467 s(percent)= 9.47 TC = k(0.710)*[(length'3)/(elevation change)]"0.2 Initial area time of concentration = 16.071 min. Rainfall intensity = ! 1.857 (In/Hr) for a 10.0 year storm UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.792 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 12.348(CFS) Total initial stream area = 8.400(Ac.) Pervious area fraction = 1.000 \~ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I Process from Point/Station 2.000 to point/Station **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** 5.000 Top of natural channel elevation = 1255.000(Ft.) End of natural channel elevation = 1237.000(Ft.) Length of natural channel = 400.000(Ft.) Estimated mean flow rate at midpoint of channel = 18.155(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (L + 8(qA.352) (slopeAO.5) Velocity using mean channel flow = 6.19(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0450 Corrected/adjusted channel slope = 0.0450 Travel time = 1.08 min. TC = 17.15 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.788 Decimal fraction soil group A = 0.000 Decimal fraction soil: group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil,group D = 1.000 RI index for soil (AMC' 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = , 1.792 (In/Hr) for a 10.0 year storm Subarea runoff = 11.158(CFS) for 7.900(Ac.) Total runoff = 23~506(CFS) Total area = 16.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 2.000 to Point/station 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = : 16.300(Ac.) RUnoff from this stream = 23.506(CFS) Time of concentration = 17.15 min. Rainfall intensity =, 1.792(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to point/Station 4.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = "800.000(Ft.) Top (of initial area), elevation = 1325.000(Ft.) Bottom (of initial area) elevation = 1268.900(Ft.) Difference in elevation = 56.100(Ft.) Slope = 0.07012 s(percent)= 7.01 TC = k(0.710)*[(lengthA3)/(elevation change)]AO.2 Initial area time of concentration = 17.511 min. Rainfall intensity = . 1.771(In/Hr) for a 10.0 year storm UNDEVELOPED (fair cover) subarea \~~ Runoff Coefficient = 0.787 \ Decimal fraction soil'group A = 0.000 I I I I I I I I I I I I I I I I I I I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC, 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 3.485(CFS) Total initial stream area = 2.500(Ac.) Pervious area fraction = 1.000 +++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to point/station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1268.900(Ft.) End of natural channel elevation = 1237.000(Ft.) Length of natural channel = 350.000(Ft.) Estimated mean flow rate at midpoint of channel = 4.879(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(qA.352) (slopeAO.5) Velocity using mean channel flow = 6.33(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls '(Plate D-6.2) Normal channel slope = 0.0911 Corrected/adjusted channel slope = 0.0911 Travel time = 0.92'min. TC = 18.43 min. Adding area flow to bhannel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.784 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil, group D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.722 (In/Hr) for a 10.0 year storm Subarea runoff = '2.701(CFS) for 2.000(Ac.) Total runoff = 6,.186(CFS) Total area = 4.500(Ac.) , ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 4.000 to Point/Station 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 Stream flow area = ' 4.500(Ac.) Runoff from this stream = 6.186(CFS) Time of concentration = 18.43 min. Rainfall intensity = 1.722(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) \\t? I I I I I I I I I I I I I I I I I I I 1 2 Largest Qp = 23.506 17.15 6.186 18.43 stream flow has longer or 23.506 + sum, of Qa : Tb/Ta 6.186 * 0.930 = 29.261 5.755 1. 792 1. 722 shorter time of concentration Qp = Total of 2 streams to,confluence: Flow rates before confluence point: 23.506 _ 6.186 Area of streams before confluence: 16.300 4.500 Results of confluence: Total flow rate = 29.261(CFS) Time of concentration = 17.147 min. Effective stream area after confluence = 20.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1237.000(Ft.) End of natural channel elevation = 1222.000(Ft.) Length of natural channel = 550.000(Ft.) Estimated mean flow rate at midpoint of channel = 35.380(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(qA~352) (slopeAO.5) Velocity using mean channel flow = 5.79(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0273 Corrected/adjusted channel slope = 0.0273 Travel time = 1.58 min. TC = 18.73 min. . ' Add1ng area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.783 Decimal fraction soil'group A = 0.000 Decimal fraction soil' group B = 0.000 Decimal fraction soil; group C = 0.000 Decimal fraction soiligroup D = 1.000 RI index for soil(AMC 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.707(In/Hr) for a 10.0 year storm Subarea runoff = 11.633(CFS) for 8.700(Ac.) Total runoff = 40.894(CFS) Total area = 29.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/station 7.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** \\\ Top of natural channel elevation = End of natural channel elevation = 1222.000(Ft.) 1217.500(Ft.) I I I I I I I I I I I I I I I I I I I Length of natural channel = 270.000(Ft.) Estimated mean flow rate at midpoint of channel = 45.607(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(qA.352) (slope'0.5) Velocity using mean channel flow = 4.87(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) NormaL channel slope = 0.0167 corrected/adjusted channel slope = 0.0167 Travel time = 0.92 min. TC = 19.65 min. Adding area flow to channel UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.781 Decimal fraction soil group A = 0.000 Decimal fraction soil'group B = 0.000 Decimal fraction soil'group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC' 2) = 84.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.662(In/Hr) for a 10.0 year storm Subarea runoff = : 8.824(CFS) for 6.800(Ac.) Total runoff = 49.718(CFS) Total area = 36.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 7.000 to point/station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1217.50(Ft.) Downstream point/station elevation = 1211.90(Ft.) Pipe length = 107.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 ReqUired pipe flow = 49.718(CFS) Given pipe size = ,36.00(In.) Calculated individual pipe flow = 49.718(CFS) Normal flow depth in pipe = 14.13(In.) Flow top width inside,pipe = 35.16(In.) critical Depth = 27.53(In.) Pipe flow velocity = 19.29(Ftjs) Travel time through pipe = 0.09 min. Time of concentration (TC) = 19.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 7.000 to point/Station 18.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number': 1 stream flow area = ,36.300(Ac.) RUnoff from this stream = 49.718(CFS) Time of concentration = 19.75 min. Rainfall intensity = 1.658 (In/Hr) Program is now starting with Main Stream No. 2 f \\v I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/Station 11.000 to Point/station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 780.000(Ft.) Top (of initial area) elevation = 1263.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 16.500(Ft.) Slope = 0.02115 s(percent)= 2.12 TC = k(0.390)*[(lengthA3)/(elevation change)]"0.2 Initial area time of concentration = 12.101 min. Rainfall intensity = 2. 170 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 11.796(CFS) Total initial stream area = 6.600(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 12.000 to point/station 13.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment'elevation = 1246.500(Ft.) End of street segment elevation = 1233.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to; property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning'S N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = Depth of flow = 0.500(Ft.), Average velocity = Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width,= 20.000(Ft.) Flow velocity = 4.02(Ftjs) Travel time = 3.94'min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil'group RI index for soil (AMC' 2) = 16.354(CFS) 4.018(Ft/s) TC = 16.04 min. A = 0.000 B = 0.000 C = 0.000 D = 1.000. 75.00 \\7 I I I I I I I I I I I I I I I I I I I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.859(In/Hr) for a 10.0 year storm Subarea runoff = '7.708(CFS) for 5.100(AC.) Total runoff = 19.504(CFS) Total area = 11.700(Ac.) street flow at end of street = 19.504(CFS) Half street flow at end of street = 19.504(CFS) Depth of flow = 0.527(Ft.), Average velocity = 4.202(Ft/s) warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.36(Ft.) Flow width (from curb towards crown)= 20.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 13.000 to Point/station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.50(Ft.) Pipe length = 30.bO(Ft.) Manning'S N = 0.013 No. of pipes = 1 ReqUired pipe flow = 19.504(CFS) Given pipe size = '24.00(In.) Calculated individual pipe flow = 19.504(CFS) Normal flow depth in pipe = 11.60(In.) Flow top width inside~pipe = 23.99(In.) Critical Depth = 19~05(In.) Pipe flow velocity = 12.96(Ft/s) Travel time through pipe = 0.04 min. Time of concentration' (TC) = 16.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = i 11.700(Ac.) Runoff from this stream = 19.504(CFS) Time of concentrationl= 16.08 min. Rainfall intensity =: 1.856(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/stktion 14.000 to point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 480.000(Ft.) Top (of initial area) elevation = 1258.000(Ft.) Bottom (of initial area) elevation = 1246.500(Ft.) Difference in elevation = 11.500(Ft.) Slope = 0.02396 s(percent)= 2.40 TC = k(0.390)*[(lengthA3)j(elevation change)]"0.2 Initial area time of concentration = 9.720 min. Rainfall intensity = ' 2.448(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.831 Decimal fraction soil, group A = 0.000 Decimal fraction soil group B = 0.000 k Decimal fraction soil group C = 0.000 \\~ Decimal fraction soil group D = 1.000 I I I I I I I I I I , I I I I I I I I I RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.051(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from point/station 15.000 to Point/station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.400(Ft.) End of street segment elevation = 1233.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.064 Slope from grade break to crown (v/hz) = 0.017 Street flow is on [1] side(s) of the street Distance from curb to: property line = 10.000(Ft.) Slope from curb to property line (vjhz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.103(CFS) Depth of flow = 0.3~5(Ft.), Average velocity = 3.044(Ftjs) Streetflow hydraulics; at midpoint of street travel: Ha1fstreet flow width: = 14.841(Ft.) Flow velocity = 3.04(Ftjs) Travel time = 5.20'min. TC = 14.92 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.934(In/Hr) for a 10.0 year storm Subarea runoff = ,4.734(CFS) for 3.000(AC.) Total runoff = 7.785(CFS) Total area = 4.500(Ac.) Street flow at end of: street = 7.785(CFS) Half street flow at epd of street = 7.785(CFS) Depth of flow = 0.411(Ft.), Average velocity = 3.227(Ft/s) Flow width (from curb towards crown)= 16.378(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Pointjstation 16.000 to PointjStation 17.000 **** PIPEFLOW TRAVEL tIME (User specified size) **** upstream point/station elevation = 1226.50(Ft.) Downstream point/station elevation = 1225.00(Ft.) Pipe length = 30.00(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow = 7.785(CFS) Given pipe size = 18.00(In.) / ~ I I I I I I I I I I I, I I I I I I I I I Calculated individual pipe flow Normal flow depth in pipe = Flow top width inside pipe = Critical Depth = 12.98(In.) Pipe flow velocity = 11.94(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.96 min. = 7.785 (CFS) 7.14(In.) 17 . 61 (In. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 16.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 2 Stream flow area = 4.500(Ac.) Runoff from this stream = 7.785(CFS) Time of concentration = 14.96 min. Rainfall intensity = 1.931(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Largest Qp = QP = 19.504 16.08 7.785 14.96 stream flow has longer 19.504 + sum,of Qb Ia/Ib 7.785 * 0.961 = 26.987 7.483 1. 856 1. 931 time of concentration Total of 2 streams to confluence: Flow rates before confluence point: 19.504 7.785 Area of streams before confluence: 11.700 4.500 Results of COnfluence: Total flow rate = ,26.987(CFS) Time of concentration: = 16.080 min. Effective stream area after confluence = 16.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to point/Station 18.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1225.00(Ft.) Downstream point/station elevation = 1211.90(Ft.) Pipe length = 300.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 26.987(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 26.987(CFS) Normal flow depth in pipe = 10.73(In.) Flow top width inside pipe = 32.94(In.) Critical Depth = 20.17(In.) Pipe flow velocity = 15.25(Ft/s) Travel time through pipe = 0.33 min. Time of concentration (TC) = 16.41 min. \,Co I I I I I I I I I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 17.000 to Point/Station 18.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number: 2 Stream flow area = 16.200(Ac.) Runoff from this stream = 26.987(CFS) Time of concentration = 16.41 min. Rainfall intensity = 1.836(In/Hr) summary of stream data: stream No. Flow rate (CFS) Rainfall Intensity (In/Hr) TC (min) 1 2 Largest Qp = 49.718 19.75 26.987 16.41 stream flow has longer 49.718 + sum'of Qb Ia/Ib 26.987 * 0.903 = 74.091 1. 658 1.836 time of concentration 24.373 Qp = Total of 2 main streams to confluence: Flow rates before confluence point: 49.718 26.987 Area of streams before confluence: 36.300 16.200 Results of confluence: Total flow rate = 74.091(CFS) Time of concentration, = 19.747 min. Effective stream area after confluence = End of computations, total study area = The following figures'may be used for a unit hydrograph study of the 52.500(Ac.) 52.50 (Ac.) same area. Area averaged pervious area fraction (Ap) = Area averaged RI index number = 81.2 0.846 \\'\ , I I I I I , I I I I. ,. ( I I I -.. I I I " I I ~,- c::::H 13.A:S' {N ::tr I ~ '2 ~, +fY'DPALAl-IC ANALYStS (T1<', -23 ( 43 - 3) ~~(N I(BI\ ~ rL t6 ~)- ~~ ~ ~~ 9 (fl l() - - II ~ ::r: 110 (j o) - ' 0:t ZrJ.. (j ::J- ~\J r _ D -:::: 0,443 I L-- Z! QlQo"O&' C.6> it:Z== {I.S'crs (NO - 'By - PA-SS') SV-F ~C(..()c;e-D cttAf2.T ~ Q:<., l...C..U L. A Tl 0 l\J I D== O-'?? 'L41 ) C:B.* f ==-0.2 CF$ (No BY - f'A'3S) <;~e 11\( LOse C ~ CA LCS. , I L :( , '\ -t1( LL ~ / \ / DP- ------ CfZOW N e. \\~ I I I I I I I I I ) I I I I I I I I I I -=- ;:,.:::. ~:.....::...=. ~.. ...........'..- .:::.::. --,~-_.~ , . . , -. , ,.-. ;-, ;' . '", I; , . . ;" .~\ : ! ': _ N......::. t}\ ~.... ~IDI r~---....~:"-~ aHD5-. ~_~.'::-'~"l.....::n___Qt::.C ~-_._.O._.-:>..O.OC:::;.C :. x..;...:' ..... 0:;:' ?OOOCC 0 0.0 :;OOOC: .. I""'(\;.F.S; :N;::'IC;-:~S;N~ _~ I 'c-:_~~__:__.L': :' ! I r _~I; ,~ I . i '_~_~_~L_~~I~_ ~, - .. .....,._.... ., __ ,.. , " .' . I . , I' 'I'!I""-r' .. 1 '1'- 1 '5-...." "1'-'" I", , ..-- ! ';~~_:~~~~'.;:-':.'.~'i~::;::.;: :.:;,,":! :. i .:!~. ~ !~;:~ ~;':~ ,0 i' ::":> : i ': '_:; ~~ ,'~ !".;C'L:,:.+,.li: ";~:';.J ~ ~~: '~ ;. IT' ,-:-_; I I' "IV'>' , " ,~ ... I , 1 i . ." I I'.. ~l . I r:- . I . I I-! I, 1 1-1' '_., ' 'I I 1 1 1 1 : " 'C ' I I . ' ! , ' ' I", I' "" IOm..I. 1.1., .1 I I . ,. <J> I I,' I . : ~ . . " i ~ : I - '':" ~ ' : .. ~ 1 Ii ' , 1 " 1 'I " I'" I- I II" i 'I'!;! 1 'I i I'i ii' , ,::;:!: '\ I .::; I I I _," I I I , ,. . . -j, 1'1 ""I' I' ! ' , 'I -' .,.N ,,' 'I ., I '..'..I' ,..'.." .'1"... '- , 1 : : 1 ,I ..:,....!..:I,1 ! ~..~~-_:t:l~ " I 111'1 1,'I'I',.lll .: j. .1'""I~ClI!: .. I 1_.,. 1.' ..c.,"". - _ . .... ! i 1 j U I. !':.i i I I I i:~.~.~~l I ~~ :tn! i . j "j. "t.! 1 , .:~! O_:tf.l1oL; ; ~ ;.- ," 1"1"1' 'II. i' 1''"'101 1'.'bh1I!' ;. .. .:: I ..J ,', ,.,.! "'T11 Iftil'! I ..\::!i;;; ;.. I r j, 'I I ,.I 1 I! .Pld I' ?: " D C\ ,." ",' ' ",.. . -f . f" _ "-: ' ! n,. I.. 1 ! I.:' :. j j' :\1 'C I I. _ - ,j' 'J-"i *'1 I I I ! : II : I \...JQ' I' I 8 ..,. ,., I I I I 1m :tv, m, I i_" .... "(" I! ,-j" I IfV 0"",' "f .,1 1-" , ' , " " ,,' , , ""Zl" 1 I' . _. . ._n " -...... ...... -"'.~' i-'-'-, ~,'-l-.f';+-+."_--D"L"'" rr' !o'f'TE'S.:.S'.."j'T'.j--: -.I.'I'-..".C:"',...'!... 'II'.! Y' 0 I "..-,--- '1.- I"... .,{..,-I ,_. ~ UM, , I ' , , ,. ,. '. 1 ,... 1 ' , ~_ --,~-_...'_..,...I'"!----..I.I:il..II'... . ,~-""";,,,':.52 Ii ~ Z -'.'1' '-j"I'I'I'rr'''1' I.' '1'1 '...."1.'1 I' ..'1...."1..1'1'1111 ." " '-c'.t" '" '....,.., ' '.....-,., ," ..,' ' ,,',' ....' , .." '" -f . ;.~. -'-'f;.::~: -'-. . .. - ': ".':' .: . -t-. I I .: ,'" - . . I .:"::. I: ~ . ";:." :.: ,1."- N \00111'..."..'1'1.' 1'1.1."11' 1"11 III' -I J '1"'1"1"1'1'0 C> >....,-:.~..;_:;.,.:-... ..:l.;:t:.t. [. .::.. .j......:'"I..:..::+::-:.i C r '~ 1II"~'I,lil:f4-:-' ,!'I i II'; L 1,"1'1,1 Illi!.. V\ I ",' " ,I " 1"1-1, ! 1':1'..,[! I ! '! , I I ! I I" L 1',:1' I: I'..!". I :....: 11 .-- l.,. i ..j. 1':'1 1_'1 'I ,...,. ./':4-.1 1 I t Iii t-! j I' 1.. TO:. .! i I.: ! iii 1,0__1.. '.1"-.'1'-'1'''''-'1' .1" 'I'-"~" ,',' " I I" 1 I I: 1'1 ' " I 1'1" I,' '..,"" _. , ., .... _' 'r" . ..[..II.L. .. I ,'" I ' .' . ,. I I., I ...... ~. - .. .-.,. -.. . .-, -- , ,., ... . .,... ,.... .. .'- . ,.. ...~. . -, , " . . . .. ... ~ ," I ~--, I,... ..,... 'I "'1"1'.' I I" , 1 , I 'I I, '1'1'-1 "..1',1 "I'" I " 'J' )lo"! ..,.. .. . . ..... .1 ' ., . . , -I I' 'j .:i;:' I: i: i i I 'j. I' f i i; 1 1 .j. I' . t i I'!;'! I~ ~ 1..1 ';"...1:; i l:---i'.~ __~.. ! I. I I I j I. . 1 I I- I\) \1 -4 I I." i ..'I!. ill -I I \ I I; : ~ '\J ..;.... l.. I .,..1>,,11'1 .~". I II , \ ~' ;;;,..!: :.I.'I'I''''.'llt.''f,~1 ,I. I "I'~ I > =i~ C5i',~ = "i'1' I'll II - \., ,. I, 1 "I ' 'I " I ,-. ' , , ."'"' IOJ 1 ,- 3:' '- ., ' 1 C'l .._ . .. ... . .... . - .- j- I/' ., . - .. '^ 0 ,...1 I I .., ,.. " I.:!! 1 0" '~ " "i,' Ii; , I' I' ' , "1:.1" I I 1 .ft I>"" 0 I" 'I 'I " 'I r-.^ 0;" I" I-t'.l:' !51."'~~;<'1 .,:, I:, J, I) \oN:l'TT .....~.: ....1:.- '1.::1_. . ',<:n=~~...:~:: ,.", ,.'" , 1 I '1::,1 :01"'.1' 1 'I 1...,1....'1 I 1 ,,' , I "" > ,.< I'" PlI' I .. 1,1 I 'I "I 'i \ W ," '...... , ' .. L , , ..' ~ ~ '" r , .. , ~, rn -:'l i I.\:,! ii' '11'.ii'llll ; I': 9 r::: Ien; 01: : :11 I; ! ': \J~ (jl 'I I I I ,," I I" ',' , ,",,' "0' ~': " ' , ' - . .;" ".~'.:,,":-: : :~e-;_;~!~ I" ..~J-:.~ , , " I' I,,... ,.0,. ""If I . fgl r- ~ :;:-:-;: Irnl((')i .r;'" . , ..' ._.-,C\"l'i ~JlL-'-'r-,:( -.-" \ t~ IC"l '.. ,. ...., '/,1'1:-' ,,":0,.,1. CO. 11%1. I !V'l10 ::oIO,.~ .lm!:1 ~;=i::cr-i:;;:. :.:::,...,....9!_ "'~:::D:,.. .."1 "1l1I'f"'1 " i ~: VoIll C).( IO~' ......,;:...~....' ,Ci \) _Lz'l,."l .,>, 'I 'Z' 1 ~_(n'~ ,'t ~~_...-.,.-.t>II&I:~ .. ~V'lO'-iO.jCPO; ~2'i: 'r 'j=:.- _ 7.1.iO'h':::'''':::a-.1~ ...\. ~~:Tl~"""..;'..:..:.....; "':i~! . ::>. .....'=.~.J ';~_~'c. 'c.!l~"C'l'-l!.. \'J -'-"~>~I~I ,.::a" - -,-.~ '. ..,~~,.;:,Ol :I'\:I!..-.~- -':-"1':"::::"'-" -01 1 i.1 j." ~:::., ~~U):.:.: :.....'.2. _ I I' 3:a-!~lC')1 . \ I : i : I ~i :t.nli ;i:T1c.Ul ~1"'l!O. iN: " 11.0' ei""l~101'IZ:-;1 I: 1 i : h: =<:::--ci. ,I~'NZ~.-:": ~::"r.f)i . 1 ;::) _ _ :,' _., , . .... . ......- >, r ' . _ .. ,V'I' I~"-' 1". .;....... =---.--.------ .j.... ....-;;.:;..;.:::----_.'1 -~.o."....----rc;'-I - ...._! _-41'1'1,'''I.,"'t)'' ' " . ...,. ...... ., UI ".....0. I.!'IT\ ::. I J" .:!: '== I =:~ I (') I!: i ~ i' i ~:, 0:. : I ~:::I- (") j ....:. : i~:rTl I ~ w.t . I::: _ L _,,: ;-' rTll ___.... . =--.=-!:..:..: ' r;. ~:: 0 "'tl .~...;_-: .....: ! ;:;; 'c:,_.,>, 0 ......5;::..; i'Tl:<":-::: -:::;>.' jtp:Uii_:"'; - - - -._- - .---- - -' . - - - \0\\ ~ 'i 1 r\ 'tJl :R V I I I I I I I I I I I I I I I I '. I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** ~*************************************************************************** .lis software prepared for: Ranpac Corporation ***************************************************************************** CALCULATE DEPTH Channel Slope = Given Flow Rate = OF FLOW GIVEN: .015000 (Ft./Ft.) = 1.5000 % 5.20 Cubic Feet/Second *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0150 Mannings "nil value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Crossfall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .331 (Ft.) Average Velocity = 2.99 (Ft./Sec.) Channel flow top width = 13.92 (Ft.) (Ft.) = .064 .017 18.00 10.00 .020 Streetflow Hydraulics : Halfstreet Flow width(Ft.) = 13.92 Flow Velocity(Ft./Sec.) = 2.99 Depth*Velocity = .99 Flow rate of street channel (CFS) = 5.20 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow TOp Width(Ft.) = Subchannel critical Flow Velocity(Ft./Sec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = .999 Subchannel Critical Depth = .374 16.47 2.165 2.40 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- \VJ I PLOT ************************ II *********************** CHANNEL CROSS-SECTION Depth of flow = .33 Feet ,= "W" I STREET FLOW HALF-WIDTH CROSS SECTION critical I X (Feet) depth for Channel No.l= .37 Feet "e" , = Y-Axis-->O. .2 .4 ------------------~-------------------------------------------------------- X I .00 .70 - 1.00 .68 2.00 .66 3.00 .64 I 4.00 .62 5.00 .60 6.00 .58 I 7.00 .56 8.00 .54 9.00 .52 I 10.00 .50 11.00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c I' 14.00 .16 X W c 15.00 .18 X W c 16.00 .20 X W c I' 17.00 .21 Xx W c 18.00 .23 W c 19.00 .25 X W c 20.00 .26 X W c I' 21.00 .28 X W c 22.00 .30 XW c 23.00 .31 XW c I 24.00 .33 X c 25.00 .35 X c 26.00 .37 Xc I 27.00 .38 X 28.00 .40 X 29.00 .42 X 30.00 .43 X 1 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I Y(Feet) .5 .7 X X X X X X X X X X \'t-l I I I I I I I I I I I I I I I I I I I ~\ _.::. ~ ::.....,."'-..- .::.........-...-..:-:::. \ ~. . ": ~ ..~.~ J: . : !. ..~ j ! : ~ ~ ~ ~--',,"""~~fh""'::::K0-5. ----=u_l.o-_~'"L...:n._.I'Q.r.:::o_-.--_D-.-- 0 . ,-. :. ~: : . ' ; 0 . _0' 0 p ,0 0 DCQ 0 P .~ :/1:: c.:..TCi-' :~SjN . . ! .\~~:;~t~~. ~':"-~~~;'.';~:'.~~: ! l:t! -;.-! ":" :. ,u~7J_J.._ -!.! -'- ";"-~'~_i;';~:~~:i. ~ .~., .: .~ !:: ~ ~ = . - I t :'..1 i-I :-.","":::r''':'-I:1' ,"1' c ,'" 1 C..j..~ J _ . I..:. ii' , I . .", .,_..." ....J "/- ,. "t. I ~ ' .,- .--.! - :.. -, . i ~' ; ",:,;!c~+: ~; 'i~ ~:;i 05i i ~ ....;: c, ': 'I~ 'I I 1'1' ~ : . : . ~ t ;, ~ r:-,' I I . ,. 'I I 1 I I I: <> 'm " , I I' " , 1= 10 ..1 I ... , I j iQl! I', C;!' I,!! -.:j I ' " I" [ , I I' I' , ' ' " " 'I "I ~ 1 . . I'.]' ; I I.. ; , .: =-1 I 1 I _,. I I I ,_ -N , I" 1"11..1"11 I...".; I-I. 'I .' . ...... . t .,1 ,::..,:...1:::, : .~.. ~~ ~ '! ~;_ .::l~,-. ';1' -. _' I. I I I' I. I I"i L ! . i !' ....I'!. ~ I '. i ..;...: 'i;.i. ~".l."" ,i I.. j-'j ! II .1 i';.-"i-l.'G:l1 I- ~ 0:: .':i. .:~. ~:--:l~:'~!..~.. :,: L:.:::: ., ~; ~:' I,::; ;.. l " : ~ .;~~ ,0; ~~ () 'F;XAMPt." UNE"" 1""1' 1"1",,1," 1,'1.'1"'101 I i, , .,.~.'-' ;.. . ~.. _: :._ :-:....:~:;;, . .. :'" ;. ':. ..: .~: I. ~ , , '" ' ... 01 sa, " .I ",I,,,",,,,-,-,~, 'i':: I ,I "I I.., 1 : ,,..lnl, .:...J ~ \\i I:: : t . ~~.-..~!: ,. I:. .~. i:' .: I:~'.I:~~ f:: '_. ,::'~ 1 .. I. !.. ~ . ~. 1-:', :.! I:'. i !~ \J"'" ,I I -,. .1.. ..1, .!,-.":!'-~-- I. I J ( ,.11 ,I ,...,Q I 4 ~ _; I' ,.. :~:'.'r""" , ! ' 1 .. :...:ml 7-f~ - 0, .", ie'.'" ' ",!",[, ..I." P ~ t '...r:~" ,-,-!' "'1" "-"I"c,,, ......, "~I O ' '" 'I 'I' , , .' . .... .:. .:.. "'1 ~. ;. ~... .;.".'. '. I I . - "I "''''I'''j''!' -II 1> ,::: , ,"::"1:",' ; rl5 r 1'\\ 01 >- , I' ..1":'1 I 1-, \ \J ' I,... ., , ^~ \10 ,- "foi 1 I '....'I': 1 1 Ij. ~ ItTI'!.:1 !.:' ....- .j Itl.-I j '.i.I:/'j-I';;.. .W ~ _ I ! I I j!-'I I' !:.'T 1':1 .,- I 0,:7'[' , -I' I I; I' "'I ,,! I; I' 'I 'I 1"1' "I,' -I',: , ,.... Q .;zt". " . I ,1 , ...... ....1 \ "'-l \ ... :..,_ ._ "." . .... ----:-:-.. 1 '7' , , ' , I' I, ,,, 'I' 1"1 " ,..", "I' ,,: , >- t' .' . t J I" , . . ~ II -I" ii, I 1 I, ; I " ,i' ---;'(' 1 ::! i . "' i I. 1 I 'I ) i ! I I..' I ----ri- ..! ~. j I I. ,. 1'1 l' 1'1 j IIi :; < \' ~ ,-. I I 1.1-;"" 'I , .~ i I; 1" ~ V ,'" ~'I t II' ,. I 0' -', ,",'I" ',4 , I ' , , . I "'. I ,.,.., ..I.. I'" , , : " 1,%' >:: :~ 0;" 1 "",,!, I ' I .. .-. ..1 . . .. - ... . , I ..;:tl ''''tl C I .,' . . '\ ~ ,0 i .+ i"l J"I..I" "I.';' 10 h!~l:;; I ;;i"AI d I t--\ /\ 4:>. rg'll![' l II-HI I I Ie L. '" "'I:it!~"" ~ 'j"';"I! lTl \~ /--:-r.\ -~""!~~.:.~.: 1_>"",_ :.:.:'. !. ~=~~'\,i.I:~:~~~! ',j':' ~N "" 1 I ,I.:-,I'"I'..CI' I. 'I'+-"I,J' I , I I '" > "'I"" ""t> 1 I , I,ll I '" -..... ,.,....... .'. ,......... L 1 I I ro 1"". ~!.... ' l',r ..... , ..- , --1.-:"'_' ~ I! .:j"l.l.:i':; 'I.'F-!:"]'I! '1 ! ! !-iSj.!: !(niO!;~; :1' I l' -LJ....~.. r 0.1 1 I ' j ..( ':;1 1 'j "1 ,I ~ I ':la S;,o ::l. I! 1 I ; ~ r- I' 1" .'1'" i i I" -I . I ~ 0 ~i ' ~:~ ..... - . I" -;-;-: l-^ \\ ., ' . I .'..r" i Ii' , ~ ~ ...'_'O,~ ~I ' ==:-... - 1 r, 1 , I" ! I . ~ I ~ ,--- < . , . ....~Ol~ Imlu)Jl. ~n' ,', "Ui t._._,~IA..... 'mt""\JA..-.-,r;:{~..!. I 1\\ I~ 'c,' I .,.. I .:;, 'm: 4. tn I '::J'" ~I .....u \'J 1,1)'0 !::lIOI. .,i:n! II:' I 2;.:l:Il....../':;I_ .;;:....~.;P!Cl)h,..::'!l, ""(;)1 "',""; I' """i i-"t.,l,(;).OS. \) '~<:'C......::....;:~.,...;C,' _ _~z (.."'! l: -'~ . :z: --==--- In:-' lA'S--=>- ~... -< ........~....,.., -'. r'\. ..~U)O 101 DIQj ~ :;:::3:: 'm:2' i~_N7.lJoI,(..:::il\):::LJ, \j - _':TI'!'U~~'-' ... ~I ' :>. ":'" :::;~;l C"l 'i~_':'r~....t!l~,-t:!'-i!.. _,-, >;1; (,.;:.. -' -,-,~ ., u'~.'.~'(D, 11\)'......"'1_ ........, I~I'~::;:;:I~' Cl,OI ,i, ;", d!O,::;,;:;;; ,,,,"Ca;""-'" ':::''''1' V">,J . ~:::'l 1 ~ I 1 , , I "',' I ~ '" ' I :TI - ~ i 'N' l,.oO 10 :::... C}l Z' -l I : 'I : : , ::"-; U) 10 . - !, -. ::::..tl- .....'tfJ I I, ,::l~~l t, i I: ! Q: e;;=;:!i;;; > 1 ...;.NZ ,-. !iV;=-l ~ .--, l- =<.:------ ----. .....~.......-_._.,~... '''--, ~.o."'" -~: 1 ~ '--I -"'''' I ,,, - ""'C. . I.' .". I ,-.W' ,.. '(Jl' ' ,.....!Tl.... I, . z ,- >, 01 I : ; =-<, ; ,- 01 . 'I .;:0--- ,--.- ~ 1:>. ' '" ' c::; 1 --I' 1 ......, ' , , ' ....... - "'" 0 ' ...." 00"'" -: 'U'l' .... ,:-"., . . .....' ::::,.,.. J>...... _ I ~ ,-;:::J .....'----'..,; - .......- n -. ---'--"--..... - _.~ '- ,j ;:;;.~l=:;>.()j c ~:c;:6.::::l< !:-n;<~! !~,t.ni:...; __ _ _ M ____ ..,~~;~ , , " , -=:. U'I ::n~=I.O; '-"-0" 0- 0 '-'....0: ::> ::: oCoc' - , -. I I I *************************************************************************** ,.is software prepared for: Ranpac Corporation ***************************************************************************** I I I I I I I I I I I I I I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** CALCULATE DEPTH Channel Slope = Given Flow Rate OF FLOW GIVEN: .009800 (Ft./Ft.) = - _ 11.50 Cubic Feet/Second .9800 % *** OPEN CHANNEL FLOW - STREET FLOW *** street Slope (Ft./Ft.) = .0098 Mannings "n" value for street = Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft.jFt.) = Number of Halfstreets carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft.jFt.) = Depth of flow = .443 (Ft.) Average Velocity = 3.12 (Ft.jSec.) Channel flow top width = 20.00 (Ft.) .015 (Ft.) = .064 .017 18.00 10.00 .020 Street flow Hydraulics : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 3.13 Depth*Velocity = Flow rate of street channel (CFS) = 11.50 1.39 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow Top Width(Ft.) = Subchannel critical Flow Velocity(Ft./Sec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.000 Subchanne1 critical Depth = 20.00 2.646 4.35 .477 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- \7? I I I I I I I I I I i, I I I I I I I I I *********************** CHANNEL CROSS-SECTION PLOT ************************ Depth of flow = .44 Feet ,= "W" STREET FLOW HALF-WIDTH CROSS SECTION Critical depth for Channel No.1= .48 Feet = liCit Y-Axis-->O. .2 .4 --------------------------------------------------------------------------- x .00 .70 1.00 .68 2.00 .66 3.00 .64 4.00 .62 5.00 .60 6.00 .58 7.00 .56 X 8.00 .54 X 9.00 .52 X 10.00 .50 X 11.00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c 14.00 .16 X W c 15.00 .18 X W c 16.00 .20 X W c 17.00 .21 X W c 18.00 .23 X W C 19.00 .25 X W c 20.00 .26 X W c 21.00 .28 X W c 22.00 .30 X W c 23.00 .31 X W c 24.00 .33 X W c 25.00 .35 X W c 26.00 .37 X W c 27.00 .38 X W C 28.00 .40 X W c 29.00 .42 X W C 30.00 .43 XW c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ X (Feet) Y(Feet) .5 .7 X X X X X X \V't CAlC+\- ~IN .:f:l::- 3 i 4 <0T \-\-'Y[)F2A{)L-IC At-JALY5iS (" If<. 2'3 I 43 -:3 ) \VA-;; I i--l ' I A, '~ (iN IE,R 1M C::::ON D i TI (W. ~ UllrfV/A\E CofJOI - 1(010) , I 0:::: 0.9'1 L- = -Z J , Q'Q? -= (q CFS (jAliE(Z.IM (~ ,p1'\Cl.-OS€1? CHA(2.T. .; QAt..-C?) ( \II Qcc <= ur 3 Cf"s @(.;n~AT~ ~ c.otJO, - pUT'AILEo III ~ '5UMP)~Ee a:;iI\CMl~E=-O lti it Ci1MZ-1) I, !4:\? g )-:2 I 0" \fl0 ' .' I I I I I I I I I I c I I I I I I , I I ~ ~ ~ ~ "-..J ~ I- \'I (tI II <J r---- cO ;... \r 0. II ~ ~ cr~ ~ \1 Q ~ cil\N :t:- . 'l' ~ N (I ~ ~0\t; J t IJ\ ~ \\l IL lE25 u rf B ~ \01 ~ 8 cr I I D -== o.~q L: 'Z( ( Q,Cb -= (q CFs (lNIEfZITYl) (StsF ~CU>JFO Ct/4f2-T ~; C4-<... c r) QlOC> = '24.3 q.r (uLfir'VIAn:::i cOt-J 0 I ThrJ - F UTC.-l [!-c '5U/11 p) ~~ -E=Nc.-LOS~O Ct+Af2-T. Q,co lOT.M- = 48.<:- o - o. s-q ~E:' ENC<.o~FO CAI..(!,. ''2'''''. CAP.) = 1?3 CFS C~F' Ei-lcc.os: c-<..C!s) . D= 0.47 ' 1?' ... -"-.-.--. FoX F-D. \~ _.::. :.:....., "'-:0",- :.::::....... "_"-."_ ::':. _:........!:...-:...~ : ~. \:";':--.~.t~;:~!: . , !.! 11: _ ~ ~ ~ ~ '~~'~~. ~~---~ tJ"-ty)>_ ~O'--- ~_.:...o...._":""-":"'"l....:f"..__Ct:.O. -----""'>-.-- o._.~.. 0- 0 c :;:;.,-," "....~" '. 0.0 :.?pooocc 0":::: ~::.oooc: ... ili.:;:S.; :N;C;.j"C,...~SjN: - . ' ' ~ .~ \~-:~'~._~;';':"'~;";~':.:~:'.~~;! : : :t:.. -;' .: :. ~ :;" ; ;.,_.~~~-+-~-i...J.! ..;__ t. ',-'" ;._~.. i'-.~~'~\:.:. L: ';'~ :.% :~ ~~~'I~~_~ " ",,' ;' 'I ,','"..."..,'".-" "y\ 'I : ,=- ',' " c:.,L" :, 1'-:" 1 Ii, ,- . 1 . ........... ....1 "/,',.l.! ,........;.,...oj. ..-- "PH'I % .-.., ,'. . ~~~T'-'~~'!;~)~.t;~i..;:i~ .. ~ -;; O!~:1 :~~i ".~ :"_ ;::, ,-~ r I' ...... ' , 1 ' , ;,; 'I"" 'e>' 'I' ;!! ,;:! 'I" i !I\ . I ,- 1,0 i.n !., I. i! L.; I' , ~'I I!" I II <> ,,"',,'" , ",;!,,, , I':,! lQ! ,.:';!' ),'!!! 'Ii: 1 1 I 11'1' i 'I'~ 1 1'1 ! ' I i ,I ' j 'II'::;:!: . . I. , _,. .. 1 I I I " ,. , ' I" I' " 'II I' .~, , ' . ' , ,N , , 1 -.. I .... ... I ,...t-., .-1 ."1- ....j:-,. , I ':. I 1 ,l. ',:' ''',!:.: r .:.. .._1" Q: i 1 " 1."1111'11,"1'1""11 .. ;'I!':;;;;;~!E": . I ._ I..' ."". \ .~: :::,. -l:'i: .-:......:..: e j il! i I I.. I':i I j I : 1 ;::'.!-i.IGlI I-i\ :lZli 1 , .. ... 'X ",' i!!.! i' i.' I. I .t ! j ) .!: :- .;~;: O:~tn "'-l ! ; '-'~ ;:'T_",' ........."'-"1."" "'I;:'!'II, , ',',~,I' '";bhli"" ,., .. :~MPI.;.E ., l.'.i'i....!..! ! ..::I..J r' !.,.rl~J llftll ,!I -~ i'li i.. ~: ,.." "'" i'--.:e.:: ~ 1 r j, I I j I , , : 'i-Ini I "":; ! ~, ' . \ I) I' ----' ~ . i" ,;.;, ,';.. : ; ",.: ..... . ... l"o. ..... ''-1"'- I. 1 I 1 ; . . i , .. "" !a:l:1 I.. " \.-1,; ., -"': " I . .. .: ;x 1'- ''- ..... '-'-. ,,,. ". f ","~" _'., ,I - 'J"";',l,,'~',1 "'-I:. 1 ~'1-...""-l,i I.l.jl ; I I \...IQ: l.r!I!. :'t"\ .~: .. . " ' :' 1 :' 1 , . I ' I. f. :1"1'11 I ;r~.. I. vv _' ,._.1 .,_1. I . . ' , ,. I' l.., I I ,._ 1::>, "'Ii ;":-!..t.:~i"'+-: : : : , , " ' :" ,': ":'::':;""'II~ ','1 ill' ,.r'__1-- '.' . -O'L~ "..-... T~S-SI....I'T..1 "-"---I-'IC'I'-:"imJ,., "f"I' o I .... "'-1::' +"1 I" . ~ ~M" ,v ., ' , ... , , 'I'" 1 "I - ~_. -~ 1-- -! . . : ,.f . I ' i I ! t j I .. . -. ,... :,..:.. ..' .._. I - 1"1 I I'" '1'1' '1 -I i 1'1 '1"1'1' f 1'1'1' ,....'1...."1 "1'1'11 'I ." ::: ' ;~-,-=r.,~::'i:c ,', ':,: C"' ,; .. ," :'11 " ,,:'.,:"1' ..", ii',: ,,' N 01 I I "'''1'''1'1' UI I' II 11111' I 'I" I 1"'10 >- '.' "1':' r.-:-....;... .:: 'I . : . ,i "".h.t 1 , :+':r: J \5 ! ,..:'",~TI..i' ! i I I' : ,I I;'; ',1"'.'1..,,1 ,! 1 i, l -<, " 'I"'..,..' I"~ 1 ' , I 1 I , ' I 1'1 " , " ," '.., ,'" 1 ' ,. "' .. !, .JM' , r.. . t I ,. ..' : .1. 1"+' :-.; .,. ,1. 1--'1 1'1 'I :-,. I 1 I I I ( i j to! I I.T I '1 j I J I l 0 ' '". '1' '1- "-,, I" '1'- " , I 'I I ' II ' " , I' I "I "I '. , , ,,,.[" ,,', " ,-,"-"," ,'..'... , .', , ' ! I, ':' ,'I,' I :::t__ ,. I . ._.,. r.. . I ,.. , ' ... ...1,.... -I :;0";- ,I-',~,:'I"..T'I.I..'I.. I ! II! 1 ! r~i I, !' I! 'I':i i ;" !' "I j' 1 ':!: I i: i. i I Ii!! I j I: . i ; j i I.j I ! I. I ;:.: 1 ..I C:;;;..I '\ ( il.l I l. t ! I i I I.. I I 1 1- ~ ...... t I..;. I. ': .! 1 I _ ! I ( I I ! I l. I. I: ': :-: ,,' I' r " I' ,. I ' '0: i:: ~ ~ '" l., I 'I' I I I ' , I' ~"',' 1"'..'1...., I '"1'%''' 01>< 1 ","..." I. -.1, ,I ,.. ' 'I -', I..", ~ ,." a,..", II 'c> ': . "'I I' -I" '''I' ' I ,- 1 '... '-;" ,-..,.' 'I' , , , ' = too " ,I... ...:!! 0 .JloI::tl 1m' .,. I ., I " 'I I " " I I 1 I I "' I" - ":-~''';t ! (J) I" 'I I ' , I ' I 0,' .... I II ,. , c:, l" -<J ..I... -<' "', 1,',1 : \"1'1'! : :... "':1" '. ~~ L.. ,~i2 =1 ! III.!.... , --'I,;7''I-''I''!'' 'II' 1 1 I' =" W'"'j> tn, 1 ' 111'1'1: ; ! .! .....::..!.! ..:':.:' ~,i ,~~~ ~~!r:! ,t._....' : '~: I ! :l~,'j I.;:; .j 1-- I! I ! t .!:f~ Ui; 01; h: : !;. I I ! ! ! ~ :.. "I i I. j '.1 ';'\. I (Jo-! a S;iO ;:I. I: i . : ! I 1 ..~~_ ..----.--.__~. r 1 I'f I !:::i e . ; :1> Gl . I , ; . , ' . _, 1,1 c..' -:%'i-:c .' '~---1. ")II: ;'r::' ' (/) t: _i -r:tl!- ... I '"" ,..,~-,....." ~ ~..l~ "'fU;!6 1 ;i.! !m! :> ?~I ~ :;:; '" !:z.~;:"'';O!t:I;', L~::::Il I,. "'1 c;> I I ':1: I' : , ~ Pl (;)..- ~l I ';,; ~ i:: ...........~;; ic,O'C i _1-z ,(,."1 ' II .~' _~_--=--......c ~-=>- - N.' ......,... '- '. .~lJ)O )11010, ---:..-_E-- z:! ',." f j~- 7.l>I!("'=;I'\)~~~ . ,..,! --rrr .., I ~l ; :> - ~, ("J' I "" ~ ~'I.O ,', ,t:':,_ I ~;_If\:~; ~I t~1 _ ~~ ;-:'-;;~~~"~~:-N''''''~_ I...., I~::; ;;'I~'IOI' i ;..,' 01=._ rf;: :i~'c~~U'l:~: ~z': I '?" ....1 I ' , , ,,....... I I :'T\ -...... ~ l'T1'O' IN' '," i,C- -,: z'~1 ! i I ....;tn!c ''''. ~.:::::. _' ...: -oJ.... I ~ ,", ' ,~ --<,- ',.,- ,-" ,-"' , . :::l _ ! I.: ' I . ~. 1 =::> I"';:' , ! _ ::::: _-. ;Ul I IIV'=, I . ~ -<-, .---.,-- ,-, --'z"cn''''---~'-..I''' .----j1:l. -I --I _-I "I' '1)' I. ' .,' ., t1I. ''''''0' 1 'JT\ v...z, ~:I("')!: ~, ; ~O!"'I'l : :1 ~.:?'n j~;.! i;;;:1'Tl ...~: __C; :"_.~: __ - :::'-'.S2 IO~.5':::"~~ I : ~ >'("): 0 o. :::;:;:1 < l"l'l:<-:.:;: ..::.>. :t:;.u:; __ _u__ .. --- - :: Z 10 \.N '" .\0. \) ~ o \Il -i\ r \1 N - ~\ .0 o o (\ ~ ~ ." ~ - ....Q ~ C/) ~ C\ Q'> - I I I I I I I I I I I I I I I I I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** '*************************************************************************** ..is software prepared for: Ranpac corporation ***************************************************************************** CALCULATE DEPTH Channel Slope = Given Flow Rate = OF FLOW GIVEN: .011100 (Ft./Ft.) = 1.1100 % 48.60 Cubic Feet/Second *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0111 Mannings "nil value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets carrying Runoff = 2 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .585 (Ft.) Average Velocity = 4.37 (Ft./Sec.) Channel flow top width = 24.27 (Ft.) WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = (Ft.) = .064 .017 18.00 10.00 .020 4.272 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 4.37 Depth*Velocity = Flow rate of street channel (CFS) = 48.60 2.56 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow Top Width(Ft.) = Subchannel Critical Flow Velocity(Ft.jSec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.001 Subchannel Critical Depth = .678 28.89 3.197 9.16 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.2: Subchannel critical Flow Top Width(Ft.) = Subchannel Critical Flow Velocity(Ft.jSec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.001 Subchannel critical Depth = .678 28.89 3.197 9.16 \'l--l +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- I I I *********************** CHANNEL CROSS-SECTION PLOT ************************ 'epth of flow = .59 Feet ,= "W" STREET FLOW HALF-WIDTH CROSS SECTION Critical depth for Channel No.l= .68 Feet = "e" I Critical depth for Channel NO.2= .68 Feet = "e" I X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .5 .7 --------~------------------------------------------------------------------ .00 .70 X I 1. 00 .68 X 2.00 .66 Xc 3.00 .64 X c 4.00 .62 X c I 5.00 .60 X c 6.00 .58 X c 7.00 .56 X W c I 8.00 .54 X W c 9.00 .52 X W c 10.00 .50 X W c 11. 00 .06 X W c I 12.00 .13 X W c 13.00 .14 X W c 14.00 .16 X W c I 15.00 .18 X W c 16.00 .20 X W c 17.00 .21 X W c I 18.00 .23 X W C 19.00 .25 X W c 20.00 .26 X W c 21. 00 .28 X W c I 22.00 .30 X W c 23.00 .31 X W c 24.00 .33 X W c I 25.00 .35 X W C 26.00 .37 X W c 27.00 .38 X W c 28.00 .40 X W c I 29.00 .42 X W c 30.00 .43 X W c 31. 00 .42 X W c I 32.00 .40 X W c 33.00 .38 X W c 34.00 .37 X W c I 35.00 .35 X W c 36.00 .33 X W c 37.00 .31 X W c 38.00 .30 X W c I 39.00 .28 X W c 40.00 .26 X W c 41. 00 .25 X W c I 42.00 .23 X W c 43.00 .21 X W c ,1$ 44.00 .20 X W c I 45.00 .18 X W c 46.00 .16 Xl W c I I I I I I I I I I ! I I I I I I I I I 47.00 .14 X W c 48.00 .13 X W c 49.00 .06 X W c 50.00 .00 X W c 51.00 .52 X W c 52.00 .54 X W c 53.00 .56 X W c 54.00 .58 X c 55.00 .60 X c 56.00 .62 X c 57.00 .64. X c 58.00 .66 Xc 59.00 .68 X 60.00 .70 X +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~ I I I I I I I I I I i I I I I I I I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** '*************************************************************************** ,!is software prepared for: Ranpac Corporation ***************************************************************************** CALCULATE CHANNEL Channel Slope = Depth of Flow = CAPACITY GIVEN: .011100 (Ft./Ft.) = _ . 470 Feet 1. 1100 % *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0111 Mannings "nil value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft.jFt.) = Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .470 (Ft.) Average Velocity = 3.64 (Ft./Sec.) Channel flow top width = 20.00 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft.jSec.) = 3.64 Depth*Velocity = Flow rate of street channel (CFS) = 15.33 (Ft.) = .064 .017 18.00 10.00 .020 1.71 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow Top Width(Ft.) = Subchannel Critical Flow Velocity(Ft.jSec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.001 Subchannel Critical Depth = .527 21. 37 2.850 5.38 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- \'7P I I I I I I I I I I ( I I I I I I I I I *********************** CHANNEL CROSS-SECTION PLOT ************************ ')epth of flow = .47 Feet ,= "W" STREET FLOW HALF-WIDTH CROSS SECTION critical depth for Channel No.1= .53 Feet = lie" X (Feet) --------------------------------------------------------------------------- Y(Feet) Y-Axis-->O. .2 .4 .5 .7 .00 .70 1.00 .68 2.00 .66 3.00 .64 4.00 .62 5.00 .60 6.00 .58 7.00 .56 X 8.00 .54 X 9.00 .52 Xc 10.00 .50 X c 11.00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c 14.00 .16 X W c 15.00 .18 X W c 16.00 .20 X W c 17.00 .21 X W c 18.00 .23 X W c 19.00 .25 X W c 20.00 .26 X W c 21.00 .28 X W c 22.00 .30 X W c 23.00 .31 X W c 24.00 .33 X W c 25.00 .35 X W c 26.00 .37 X W c 27.00 .38 X W C 28.00 .40 X W c 29.00 .42 X W c 30.00 .43 X W c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ X X X X X X X \17\ I ~ s::~ o c... ""'... -"I" ~ .~_ ~ ~~E_ __ SiNi -,- p\ I _.B.__ g N ,0 ~ !::! ~ * -_.- iN C.:.7CH :::1 I I I . I I I I I I I I I I I I I I ~ ~ " () "'l --..f\ :\ :-~ ,-.L::o.?:::-__ __ .:;(.:.:5.; - ------..--.-- . -- - - ,. ,- i 1 [ ! i 1 I 1 1 i"-' ." ~ .C:.m,r.". p.1..:..m. .d;~'':6i ".l o:'r= "'3"(' =- ::J~' ~ ~ n' r;~~- :~!: --(")''0-'- ~ '0::. ~ lJ).z: L ----~-- ., J J ,---" -,- .,--- ,-- I-"~ ~L_~;.__---h-. 4 - - , . , , , .~l :.~. .~ ! I L l I. o -II" ..,'" .....0- t...;N" ..h =":P:' . -of' '* ... ~ ~ >, 'I' -t! . ~! ",.1:" "" I' >, I ~ -,j ':.- . i 1 I , L L I [: i ;> i j i L i i :,,',_. - ----..-.---- - o ;;; _:"1__1.>' .__;._ _._.---_.~- - L. .' ! r:- " i , - I i ; 1 I -j 1 I 'i i i i t [ (j- ~ \) Ii a "l -Il w ~ L-, , HYOr<AULIC ANALYSIS r C8 NO I :F 2 I( f< (..., BA S {N C -Cff2AQ qr, @ ~ '" I I I Qu>o (crown CAP. = I /8.<1 CFs (!'-z. 71' C4PAC\TY) ~i'= e.J CU),f"D C4W: - I I- I I I I ( I I I I I I I , I I Q,,,,, C B NQ.,/ :; Ie c.FS (~ CHA~T-) '\f (l\ - v ~ + (\J ~ ~ IJ . III ..) III ~ I'l\ ~ II ~ 8' II ~ ;jN v " o N I( oJ t-J ~ 2 ~ ~~ /I ~~ ~ :S~ 9 (j' ~\il\5 Q,oo ~ Ie, CF=5 C.B. t-LQ./ (Se"E' C+lA~T) III Vl a! t'1) ~ ~ ~ ~ C4 I \J t 8 T If U (fq:~ U II ~ c. B ' /JQ .3 (J"EI3 sr. HI10)':AlIJt..ic. ANA tJl1Ji, FOfL C. 13. #" S <i 4 , -23143-4) GIOO = 38.8 (T~TAL.) I 0 < 0.51 (SSE E'NC""'5D CA(CUL.ATION) ,_. <7 =-- . crt" C.s NE. 1:=1(4 (SEe CHAR. "') 't -3- ~ N <t- \p .., - 3 I' '. 0 J () l\:- <l ~ Cl :;:::-- 2 " ),. -Cl \J II ~ ~ <t ~ ~ G- ~ (j 0.: G /I Qlilb - Ie. CFS C.6. N!?,.Z '\ (SE15 GMF-T.) $ ~ I t III B G ~ ~ \J I \) Z If t cfi cri ~ \i - 0 Ii II F- ee. (SE:E' f';rr NO .4- 'ST. 1+'1 0 (2A uy cAlVA Uf'5 t .( G,e Nq g ~4 \~ JqOv\ ! (j Q Or :II, 2:" .Q N -., ~~ I) 1:. ~ ~ Ii II ~ ~ ~ (l) ...... ~ ~ Z C') '" <: () ....... "l, ~ -... -..,- T h r :;)-.,! Ii l., i: I ! : LN', ~ ~ -=~::, ..... .~t.lI-(h>o."jl>>Wo--' .N__:..o-..~..m.Ooo4C:U,CO'------o-'--'o'-'-o-" O. '""' O;:jC : ...: i" ~:.:: :.i: 0 0- 0 ,0,00000' o' 0.0 c 5ooc: ...i '. ,..! C.F.:S.l IN i C:.TCH :SASIN: . ~ ~ .. ~ ~~~r~~~~-~: ~'~'--r:.~~.:r~l:i : l:t ~:' -!:. .!", ~. !" ; i. : I :_.~_~.~~___~_:._~._. I. ,- ....L....!"..,... W.J ,1111" 1'1' , '. ~ !: . .. . . . .. .' I I '. , " " . :~ -' :'~.:'~':"'r:;,l>:~ ~:.~: :~'::~::, ~..: ,. ,..:.., ~ I' -," , '..1.'..-"-'1'.1,) 1,,1, 'u I .! I,.. ! '!'- ";,' :z, "'I", I " " ~K~ : .'.--....', :'~.I:_,j..l.:l.::' ~.' ',1,' 0 ' ,.m,'.. :. ;", ;. ': -." , "...___"",.. _......,..,.. I ~ I ._...... ",()" ,....(n o. t. L_ ,j', . ...... ... P'. r"l..,. """ ,'"I:;. . . - .. . ... a ~', "r;' :..:..-::~~:....~.:....~~~i;..: .~~ .'J;" :;.~ 'i~ :.:: "f"'~'~t~~ -"6;: i,~';:; :::;'! ,+.': .'"'r -, I" .~..;_.t ",- ;...,;.,~::-~ :; '", I : I '.'O~ 1> :'.:.+: i ; a; ~'~' ''i.~, """111' "'I ",",,11,,11'1' f.l 1,"1"1 I ,"-., "" I, I' 1.'1.' ,_. ',' I' 'I I I I' ,P I,' ,.. ii' I I, ' : I .: .t.~", ,': . Il-T'- j! I.! llZll! .1 ~ : .r,,!""! 1.1 ~ ! :n; :-1 !,-c "t, N:.l"'::,.,[ t[cl.'l I '1'1': I I~I I'I! I I,' i i "I ~I: i ,I "-., ,.. ..1"-":,:''''' '-:'t",','I' ! " ,I I~I, I, ; 1'- ,I " : I-<!'" ',",','" ",:0<, ,,"'. ,)',-,'... ..., i 1"11'.1 '''I +1"'11 ' I .....""'.1' .". ",c..; i I'" . : '-I .:l..~:~r::i:--'" ::.. _ '.. "... 1_ . ,l _ I":: :0',,:.: ' I ~.. ~~:..J....L. "-:,ix'I'-i,~,I,,-'-'t--"'I, ~ . I ill I I 111.: LI 'I' r!!~I~ ",.,.,!Ei " ~}, I'~~"';",~.:,.~...,~ . , ;; 1 I' !'!-i II' "I !,-:!,,')!, I"; V,! , ! .1:,;1,' ',_':;.,!C'f..h ':', " ~ il' '!" ",'J,"l !! I ! .i",) "!::J:l _;tf.l. '::0. '. ;:' -, 'x,. .c..;"",":;'O""',' '~~'''' "'''''!II I' I'" "I "I,' , I 1''''':01 ,'";b hli, , 'I ("7"' '. : EXAMPLE"""JLlN~.' T:',l" !;.:N . ........ I....... ........... "'- -. ,n " I . I ' ,", "1 .1...,1 iffi ',-" ! ~ '" ,.. ,,,"OI5<l'.''l>..I,"''-,,eo',,,,-::;,;, " i'-.. " " 0.: r I, 'I II 1 , : ,":pbi ! 'K~i ' '.. "..,,1' 1.,-11".,>,'1,,-,,':1,,,"",[.'1 " ,,"," '"'! ,1,1..;, i ; 1.''l!'!''1 l"iLc' i I. ,I .::" "i' .1.: ". I -,(~s:r>,:_ \: . I r.1 I ; Ii: -.i2, j' r 'I L i' .. , I I. I I I : ! I 'fit I ~N . I , ' _" ,. ~ . C' I I I' ~ I " I!'., ii" I . I I O_;,'...l:S-': f". " r' 1'''C''''fi'.+1''~.O:'UXl: , IT' 10' f'TE:ST:S!'.'!"!"I'".,: !'''I.i,~:5f..-l::lrli 1:.lf o I'" .'-r-' '1." " ..,., 'r "" UM, . . " , , ."1" '1,I"'b'!1 I .~__I. .....;--_.. ,-' !....I" ---,...,,": ; i 1. I I..... .- ;... ;...,..:-1..'" . I - 1'- :r::cjj I '1' .;r f" ,'-.. I. . I " 'II' "'1'1' " ',j I' . ",.'1.." 1"1 rtm'II',' ." - -- -, , ,~.' -, ." "! 1 ,,,' ..I....' .., "I' ,..- .. .. -t... I' " .., , " ',"",..,' -f .... . . _ _ ! ! .. ,. . . ... .... 01 'I I.... '"I''' I 1 '" I ,,' , 'III I 1II1 I ' ,.. , I I "I I ',U >- ",' .. .:~ C-":.";"[-' .:. .,:::':. !. " .1 .. ," .1" I , :..1:::,:':,' o 1",,!::'i""ll"l <1,.i';q..1 -" I III illl'i' I '+.",1 !II' "' I !','!"'T.-', 1',:'1'.., fl ' Iii I 1'1,' I '!:i' I,' .;,.." I I' " 1 "-1 I,'j -T.'::J~.II t. I i'l -! I: i.T"r i .1 I h ,O.ct' '.1'-"1""+'"-" '1"1'-"'+' ,',I', I I '1'1 ' III" I ",I 1"1' 'I' 1 1,1' ,. .:o~: . 7' ',':'..:::.'~':..' .... ..I~l,: " - I ,"l I . .;. .;. r.....~ r "I ~., '-. }"-+ "1"",1 '''1'''1 " 'I I'''' "'I I i I I, '1'1"1 " 1'..'1.1 'I " , " " _ ;c.-.! " .' ,h. .: :- . - ,- .~... "1 . . 1, ! I : , , i ':- )' 'I,' I':!; I..i, i ii' If i ' , I I' I I I II I ' , i , i ii' ,:I I_ I ::;., I :; I: j' I,: T.~ .,'-1 i i. I." i \ 1 1 j i ! 1 '..! I I I : I ..' -4 I :.J,', ! 1. 1'1 I' I 1 I ! I ! ' I I I., I' I I I: , 1 1 I \:..,,, I .1 I , : \,' 1 I' I 1 ' '~C'I' ,"'" '1"1"1 It"f'l "I. I 1,\2I'.~-il~,15jx I"" 1",;,'j.I!lill . _'. .1 .. ,...' - - , -~ ":O'~ . I"V a I.., , ''"' " "-I'. '-I 1..,.,.1 ,.. , : "I' , I ,- I ',,.,' ~ ",I ,"> ' , ' I! . 1_' .' 1 .'. .., "I ,,"'::!! 0" '~I:D 1 m .. .--" I I ,i:...., 0, ~ "I I' 11'[' 1-1."'\.:.1'1' ! ,I 1 I c: i' f' III I~ !"1~:l1 ';!'I 'Id ,I I I I' ! IJ I : lTI' ! ~ :... "j ,,:: t,:' . _ I, :0 H t ki 1 ~jZ _! . ,. !.. ". I ., 1 ' .... .\ ..'1....1 !'" I 'I 1,1 "II "I 1,1- ;, -I 'I" tn' I ' , I I I ' I ' " I I :.;:.... :;: I',.r: ,:.: .:,:':'r..< I ro- ~ r t! "'1 ~,r- ....! i.,. .., ,. . i ~_! I i 'Ii, 'i I ::111" 1'''1111 I "I ': !;! ,., I 'triS2!::: "" I ' 'I: II i I ! i' "'j i I" J': I ! :;'1. i" .I'.j:,'\~'j i i . i ' ~ ~,,'- ~i~ :3: ;. I ; ; i i : : ! i ~~ L ;:;a .....: -=- - ._--, r-- I' I'~:! Iii! I ! !'i""'(_;";I-,'II:to>6'I'--J: !!!II:,jl... -.." . , 'I I ' II I' 'I I ' , ' ,~, 0,;. - I ' , ' , ' ' , ~ '\ ....~ Iml(J)jl! Ln''', j I. I, in !:e!--l~!R;;; ilt'rl"".UL-::(""')t~l~ f'\) ....r.n16 1~loi.!!I'i 1!! I I >r=h,i~=1 en :1:~::tI"'[.;pl~!..L(ZIi:- II _L-~jL.'l 11:1.';\1 !Zl II ~ rn:::1t~!8~" il"Tl~O~,~t>olU)'~I. 'I ) .~_LN_r.nO 011 I ; C-i-z'i:;; 'm ;p, 11~-Nl;::r;UI'''=:' i\31~ ("'\ .~ I Ii 1>' ~:Z:~;I ('): I~_~'''~ l.D~'~-1I~ lo.' \..J ~ J' > I 1 I .... 1 ;:R'2".~ II~,,'~~'-~cn '1\)1':)1- ''l ' I: -1 . 'Ol I , ii" r-, 1(;)1 ::1 - l"1 'I 0 v :t (fll,:)' ''"'''z I ~V) ~ IS;~~ ~lll~i,-il :,I'!~I I : i ;r'11 ~!d~I~(fl - :j~~~'~l~~O ~,~'Vl , '_~ I' I, . C') r- ~"'T':to 1 _ I-~ t.n I 1\)1..... t ___, _ > ...,;) ::<.:_.__.U_____, .. ~ 1 ......,.::"'"-.-rtn ...-.-- -0 ""'''''-'_-'-'--1 ~ -.l -1"," " 1 ,~.... ""'"." 1 .", ,.....",'"" \." ,I Z'::l I >11 C)! ""01 !! I I t 1':..( I I l~ 01 : 1 U'I...::J ('l 1 ....;,0 I r- J'I1 ~ "----' _~lJIl 07 rill rTll ,i I _ I I..... g'l'T'Itt>o.:;..,g.. I,O~::l '0''''01 ~_.~ 'I ;:;;'C;I=:::t>'......1 " I ,01 ~5&;O< ;1:Tl=<~I~> L~.~II~ ...."'0: ...... ...} - ...J, ", ,-... - J- - ----- ~-._4.F C . - - ---- 0----. -.(") I ---1--.-....' '>" ....-- .;l. 21 Q~:::jICI-i,: Q r;;=o:=> 0 -~:!l =00 ,0 1:.J'l ... --S:~~~-L-:::U+-- . ._-_._~~-.....,..--~-"- -.--- ;;: 1 ~ - I w,' , ' '1 0' -- i> ... , 1Il.... I ,Olf\;) I (') I ~l_."On-o --1 I OJI _ ~ -----.-- . ---- -;:< 'c r :t m -. -. I _ r. _._.._~ I _ I Z I::: _ -:: 2:' ! r- :::! :2 C;:' 0 - - .... - . :: . -----~~-o--- ----- --- --------..-- ~- ~- - l.ll- ;.t;- - -;:.-- :> 'lo1:;:;-Or-,(jr_ ::;' _--~>_ I ~ ,:::;,= , _ :.n ~ ri 1 J V :'::; '- '^ -' ~""'.....- --~ts~-:~-="1'T1- -- -. -- - "------- ---S~~~-c --~-----;-- - i:: 'f-~Q-'~::-->-";:"-Z- .-- --- --. ____1.zD__l'f't..C--~_---~.---__:- --- ---, '. r' c. jl".ol'" ,....In: _ ... :::~Vl !' ~ 'ri ~~~c~~~~~~~~;~~:==--=:-::~1=~. f'-~~:::~,:~- _-':~~~Ft.- ~jg .... . .- -- ^. I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** I ~*************************************************************************** _.lis software prepared for: Ranpac corporation ***************************************************************************** I I I I I I I i I I I I I I I I I CALCULATE DEPTH Channel Slope = Given Flow Rate = OF FLOW GIVEN: .016000 (Ft./Ft.) = 1.6000 % 38.80 Cubic Feet/Second *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0160 Mannings "nil value for street = Curb Height (In.) = 6. street Halfwidth (Ft.) = 20.00 Distance From Crown to Crossfall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets Carrying Runoff = 2 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .512 (Ft.) Average Velocity = 4.83 (Ft.jSec.) Channel flow top width = 20.59 (Ft.) .015 (Ft.) = .064 .017 18.00 10.00 .020 WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = .586 (Ft.) Street flow Hydraulics : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 4.83 Depth*Velocity = Flow rate of street channel (CFS) = 38.80 2.47 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchanne1 critical Flow Top width(Ft.) = Subchannel Critical Flow Velocity(Ft.jSec.) = Subchannel critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.000 Subchannel critical Depth = 26.62 3.091 7.90 .632 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.2: Subchannel Critical Flow Top width(Ft.) = Subchannel Critical Flow Velocity(Ft./Sec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.000 Subchannel Critical Depth = 26.62 3.091 7.90 .632 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ------------------------------------------------------------------------~~~ I PLOT ************************ I *********************** CHANNEL CROSS-SECTION '1epth of flow = .51 Feet ,= "W" I STREET FLOW HALF-WIDTH CROSS SECTION Critical depth for Channel No.l= .63 Feet = "c" I Critical depth for Channel No.2= .63 Feet = "c" - I X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .5 .7 --------------------------------------------------------------------------- .00 .70 X I I I I I ! I I I I I I I I I 1. 00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21. 00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 3!j.00 40.00 41. 00 42.00 43.00 44.00 45.00 46.00 .68 .66 .64 .62 .60 .58 .56 .54 .52 .50 .06 .13 .14 .16 .18 .20 .21 .23 .25 .26 .28 .30 .31 .33 .35 .37 .38 .40 .42 ' .43 .42 .40 .38 .37 .35 .33 .31 .30 .28 .26 .25 .23 .21 .20 .18 .16 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X xl X X X X XW W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W X X X Xc X c X c c c c c c c c c c c c C C C C C C C C C C C C C C C C C C C C C C C C C C C C C \1Y I I I I I t I I I I I I I I I I I I I I 47.00 .14 X W c 48.00 .13 X W c 49.00 .06 X W c 50.00 .00 X W c 51.00 .52 X c 52.00 .54 X c 53.00 .56 X c 54.00 .58 X c 55.00 .60 X c 56.00 .62 Xc 57.00 .64_ X 58.00 .66 X 59.00 .68 X 60.00 .70 X +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ & I If *****************************************************************>********* ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** iJ .*************************************************************************** '~.,is software prepared for: Ranpac Corporation Ii*~~~~~~;;*~~;~*~~;~~;;;*~;;;;~****************************************** IU Channel Slope = .016000 (Ft./Ft.) = 1.6000 % Depth of Flow = - .470 Feet I I I, - I I ( I , I I I I' I I I *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0160 Mannings "n" value for street = Curb ~eight (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade'Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .470 (Ft.) Average Velocity = 4~37 (Ft./Sec.) channel flow top width = '20.00 (Ft.) .015 (Ft.) = .064 .017 18.00 10.00 .020 streetflow Hydraulics, : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 4.37 Depth*Velocity = Flow rate of street channel (CFS) = 18.41 2.05 CRITICAL FLOW CALCULATIONS Subchannel Critical Flow Subchannel critical Flow Subchannel critical Flow Froude Number Calculated Subchannel critical Depth = FOR CHANNEL NO.1: Top width (Ft. ) = Velocity(Ft./Sec.) = Area(Sq. Ft.) = = 1. 000 23.34 2.939 6.26 .....',. .567 ++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ --~------------------------------------------------------------------------ \v~ I I Depth of flow = I I " I I I *********************** CHANNEL CROSS-SECTION PLOT **************.********* .47 Feet ,= "W" STREET FLOW HALF-WIDTH CROSS SECTION critical depth for Channel NO.l= .57 Feet , = "e" X (Feet) Y(Feet) Y-Axis-->o. .2 . 4 .5 .7 , .~ I I i I I I I I I .00 .70 1.00 .68 X 2.00 .66 X 3.00 .64 X 4.00 .62 X 5.00 .60 X 6.00 .58 I X 7.00 .56 Xc 8.qO .54 X c 9.00 .52 X c 10.00 .50 X c 11.00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c 14.00 .16 X W c 15.00 .18 X W c 16.00 .20 X W c 17.00 .21 X W c 18.00 .23 X W c 19.00 .25 X W c 20.00 .26 X W c 21.00 .28 X W c 22.00 .30 X W c 23.00 .31 X W c 24.00 .33 X W c 25.00 .35 X W c 26.00 .37 X W c 27.00 .38 X W c 28.00 .40 X W c 29.00 .42 X W c 30.00 .43 X W c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ X \7J'. I I I I I I' I I I I ( , I ~ t(i I 8 C21CX>: ?78 c~ e CF tlYDfZOU>Cl.( -S-TlIDV] <flOo ACru~L= 16.4 ~ jSi:"" ip'NGL, Ct>,.u:::~ Qra)'{1!:.<J (~~~1 c. e>. NQ .3 I I I I "!7T HYDAULIC @ C,B. Ne.. At--IALY-SIS :3 "[ , 4 Q,a::, ACros;:S' CroWl) Z7 8 -t- 3.4 15 -4) _ /.z, B Qlex> (Crbwn CA p.) - / B ,4 ~ (,yz <;;1, CAP, SJ2<=' ..Net.., CALCUlATIoN D- 0,47' 0100 107M.- = '3 - <4 -+ 12, 8 ~ IG,2. Cf=s D,; 0. 454 ' ( :5 ~ E ptJ0<.." CAl.. c,) " "" QCb- fa. Cl""Sl C-C!>. NO. I Q'<<1l -== (/(P CF~) C . e. NO.-z. N 'J' Ii1 .1; rq III tci II ~ ' ~~ 9 tl:IJ ~ ~ Q& \j ~ ~ ~ 7)< ~ '~..-~ .". I. '6' \' .8 cFs , Qoo = ('2.. C.B. Cf=- 5 (s~ CflAf?-T) NQ. .4 In ~Is N - I ~ T. ~ ~ t-I Ir> :Q ~ ~ l\l ~ \I \i: G: ....... II ~ 8 lI't)-. \! :). '0 I' ~ II ro.. \AP 1 1: 1 ~ 1 l' \..' I ~'". 1 '-' \, V .' . , , , .. -/ V' . , , ' . ~ . " . \, . . \ I . I _.::. :.::::. .::..::..: ~...,..... - .. ..- -:::. ::...~ : I' . , ii, I j 1 i ; i ~; j i Ii. I . IT"!" I ! ! t., . ..; ;" ;,! :-:-\", T- i _ : . : : : ! u; :' ~ : ;.... N t.>I'::' t."1 In -...I QtOi r~ .~~OI-,",~ CDW6- __~__u-_~"::""L-m_.....Q.r&Q.____-O"_._'O'."~'" Q. 000.0 : ;": \'.~.;.:':.; . 0 0::0,0:0,0000 . O' ,0; 0 OOOOC: ~: ..~ !. '\ I .;$': .IN iC~TCH..1..allSjN! ' '" I'" .... 'I' , , , ' -1 '" , , " " I . ..~._.. ..' t ..-....-; - I , 1; .j- I '"I" . , . , ' I ' i ~ \:--~~'~~-~:;:;:~::>i::<'.~~:; ;1;: 1. ;;! i .(---r--~~--~-i'-1" L. -i--- !: ':->T'-i:.~'i~;:~t..~~~::.';':.~::~'. ;~ . ~;. i':'.;'~ ~.- -; I -r-, . ",;1 ; I .."....,',,'..1:.,',' ;, ' '1 ,<= I' I, <=,1 r' ;, I,",: I , I , , \ _[ . .._.,."... ..J....I..I. ;.1.' .. I I' ~ ..- '_N I :Z.:.. t. I ,,: , "': :'i~-.:~~~i__.i;.l.~J:.:;::;yi..~i-.:-i -~ .i .:i~. 0 .lo-!'; r;':p. 0 .1' ~:.'! i ! _~.i ;.j~ ~,:":cU'.?Flt :~ :: 1'" .:!::':..J ~;~: ':.: : i: '; ....r I.'" I" 1_ ". I.! . ~ ; I I' I i I I I..' i i: 0 I Ii' ~ . I i." j I I . !' I <:, 111"i I! 1.1 i! .! .. ~ . I .' I !.", I I' ! 1..1 J' i'll~ I I , ; I .... I I I I. . t. , '" I' 1 I j'...L.i_11 __.1. ':-'~I' 'I' " , ' I.. II .+_. ... .~~~,' r\ I ,. .1 i..' .lrrll;.. -< '- (OJ I i .' I. , ......., I'. ". _ ,,', "I-:-......'(:)l 1_,' :(1.11 ~ . . :.~ - ' \ '1 1 i .1'. I -t:t:t !=:Ltn !'" :... -\ ".. I" I, ,"I- i.' 11,",,'101 i 0.1 ,.", 1 " f'\. r. _ ..1 ,I ,1 I "'". j. . t. '" ;, b-O!501:...., II II ! 1 :'1"1(, I, ,"'1," C\. -I. E-" :1:'-1.. '..! J I.. 1 ! I.:' 1,":1 0 I !. V .1' .I..,~"... 1. I I III : l \-..1Q I', I\. - ._,.;, 1 1 " 1 '~"'I I' I o ~ _ I ._" ". .. 1:" '. I' 11- o \}J 0 ,", "'.' , ,,,,-' ' , ' ""%\."1'." 'II' . I" ., " ,,' . , . ., , ; , . .... . ......... _,r._.. "r.fl-"T' r-'{"'-."=LIO,m,' rr'-If' TESTS'....I.. 'I - 'm.I...,c.!"-:..,l....,,.. 'I' :..,,1 ...... 0 I '.-r'... '1"'1 ,.."" 'r "_.,, _:0 I,' "" , "." I ".. V\ .~. I ...~ ---.' ,;"" t- '---'1 .: . i 1 j' I I"'" ... j" ;... ::..: ,.'. I. \\ - 1.- I I t'I"1 "1'1'1,1"1"'1 . "'.'1 "I I "I'"'''' I "I,' 1'11,11 Z b ~ : ~~~, -1= ,~:~l:~~:\:... .: >f:l::.l: --=t=:- ,;-' I : l' >;:.. I: . ':1'::'" :.: h' 1'1" 1 ~ I ,.. '! '" b.ll;- ,I",,[! ! I ! ! ,1:- 11./,:' t '0 ",1.."..",1'.,"1"1 ","',..,,1',' ,,: ';', , I ',,1...,'....,' 'III" I ". t-. .'r....1 " :.....:. , :\t "", "''1''''''1, : Ii" 111," "'II'..: " IN I .,. ':-11.'1 1 i !!. 'T i l'l.ll (, .0 ..'t.. ....I'-'j'-"I"Lc'I' i ' I I : I I \. I ',1,1 1 'I ,I 1,1, "I, 1 1,,1' I' W ;:0'" .., ... _'" -1 I I, - ....1 .. ! I _I .. '~'''I- ' I' ...."','I:~,":; 'I : , , I " I' I, 'I ,..,' " I" I': 1 ":1 "i ; " I" II l>" ''''', ,.,.. I " " '''', I' ",,"'- .. 1 I' I <!; I. .j,'\ I ! ! I I , i 1 i j 1'; I. i 1 I- I co;:, l:i j" I 1, I I ! I 1 I I 1- .-- ~ ! -I' 1 1 .i: j 1 t.: 1'1 I..' \ I, I. I ! I; I: N 'Q -I I:" ,,' '1 I . I I. j -~,:O""I, 1"i"I",':lu'l J : '11_'1'. .\' I, i ~ I a ! LI_{".I' II ill \ I c>, ,..- "'1 I....' , .1 ' I' 1 '" '-I.., I, ",! ' if'.. . I.... I, ......, ..j,':!! :xt ! m .. . 1.1 , , I' 'I I 1 I I'" 'I' I I 1 ;< 'Ul I" 'I I' , 1 ' I " 0,',' ' u.. -, C it'" ...,., :. ,'I I,,' J Vim' ~ . :.. . .... .:.:' I I :tI '""'. :z :r, ! '.' .1 r . !... ~ -i:>. I ""1:'I,I'!111111 I I 1..1" l>; ~ ~I I ,I!II i LlI..! 'I ,I '1'.i:"I'I' ", ",I" <> S ' ::!: ::!:' I' 'i': 1 I i r ! ! ' -...J. ',_, ..1,.....' ~" ,. . i.,--, V\ -... i.!.:' "I :::1. I" ! I,.j:-I ill i )>! ~ 0 ~ j I I I _:-L.LL '-! ',' I I ,. III I i-l l ~l> '--1 \ j 1 I I ! Ii! , ,"'""'l;:l' ... - " , 1 'I "I' , , " 'I' 'I ~ I" , , .. , r- o's '~''''' I, !II' 1,1 ""'. A~' '~~..<Il.-.-,,,i<~'. \ .~ 1",10;1;10, I i'i' ! i >~'t .+-en :!~'~'::""'i~~~""",l t\ "c;>Il.1' I 11';I;iZ~ I'i '--f="--.l--! ~~:. !1""~o~"':'N~;;:::::llDt~I.. r..' T2..,~eno1:lol~'~; 'I'; 5...J~",:p, "3:-;""';'"-'~:'~' \" '!"'IN~~;i~ ' ' :> '(1' '1"- '"'~"':;;'-''''; ," '" I > I 1 ..... ~' + .,c.'..p'[D. ~NIO -_ -~~ ; ~z i'-,'Ol I, Ii, i I i;'" i! Ic~ rii; il~}O~~u)'~! IL~:Z - , 3i Zl~' I ",,' i' I I en ,'" 'I '" 0 . '" ,o! N', '~"':' :g/T!~C)~I-t, [11\\ : i i!~ I ~:> il-':i\.i'z!-.-r(J)i-Z;~_ , :c...-,.~..I ----.. ,- '.' ~ I en en-.-~~-o", OTI, ...,..-IBl,"'j 0 "!1:z1~I:>lhl"'Ci tli:,i ' i :i:..cl" I . : t1l:::i("l;-1IP1i~:;'T'l"1"l U\ 0::; -t( _I rrli I ! i, : 1 I...... I:!: 0' 'oO:::l: C!"'O I ~ ;:: __ ---....- __"-...or- , r 0 . I n -~ I ~,'" 1 Xl I 1> : I . , : I :.' ,O,! ,:0 < I ."T'l:<"':n "'0 :;..: lo::Vl,,~ _ _~"o,_~_~2::o:, (')! : ~ ; : ; . _.._. .....:..____. :.,. .(")~.. : ("> ~: .__~..l.;'.":' :.:tJl : :;:z..;_ i:;~" I ' 01 ;;;~~Ir:::I-'I~: : ::. : ,2: ::> 0 .1-~Z1' :z,co:~.::: ... ::l~C:J ~~::U:----:--:--~~"---:------ ~-"'"'O"--"4"""'~"""'~'''''-:- ;:> -,s. . ~ (,I): : ,: ; I : i. i 0, : ~ . CD -I r , O'l'\), (') = ~U ""'01--1,' ,CD, ,-.."...."__._.,'..., "-...~-;- ,-"',-.....,1.. =r,-,-"c~... I ~ I ~ _' =:..~...: ~ ~ ~ i z:J..r-':"o--- ~_....:...-_____..__-.g..._:- : ~:?':"" '; : ~.~.:..._:_.S-.": .~ iO';:V;o~'n'lr;-iJ z .>:: I :.o'~ :_.313 ~~1l~~~~~~1~~~__"~~: ~.~=~~~~==-=-;~ ~~~~n:-~} =.._.L-.~~-.....J ~! ~ -r-;;j ;;,,'. 'm: ",;,1 " ~ -1 ......:...-_c_...."-',..L_,! 0 :t:.~L~~ L~.l__--="'J _d__'.-="=-:--=-_ ~-=-__ '.-~"=-=-:'=~-~ ..__..0;,. f.-~.,j_C::: -- - - -. -~._._- -- --.. -~.- --'- .... ~ .. ~ - - w\ I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** " "**************************************************************************** , nis software prepared for: Ranpac Corporation ***************************************************************************** I I I I I I I I I I I I 1 I I I CALCULATE CHANNEL Channel Slope = Depth of Flow = CAPACITY GIVEN: .016000 (Ft./Ft.) = - . 470 Feet 1. 6000 % *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0160 Mannings "n" value for street = Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .470 (Ft.) Average Velocity = 4~37 (Ft./Sec.) Channel flow top width = '20.00 (Ft.) .015 (Ft.) = .064 .017 18.00 10.00 .020 Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 4.37 Depth*Velocity = Flow rate of street channel (CFS) = 18.41 2.05 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel critical Flow Top Width(Ft.) = Subchannel Critical Flow Velocity(Ft./Sec.) = Subchannel critical Flow Area(Sq. Ft.) = Froude Number Calculated, = 1.000 Subchanne1 Critical Depth = 23.34 2.939 6.26 .567 ++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- \A~ I 1(, *********************** CHANNEL CROSS-SECTION PLOT ************************ , iepth of flow = .47 Feet ,= "W" II STREET FLOW HALF-WIDTH CROSS SECTION I' critical 'x (Feet) depth for Channel No.l= .57 Feet , = "c" Y(Feet) Y-Axis-->o. .2 .4 .5 .7 --------------------------------------------------------------------------- I, I 1 I 1 , " I I I I, I I I I .00 .70 X 1.00 .68 X 2.00 .66 X 3.00 .64 X 4.00 .62 X 5.00 .60 X 6.00 .58 X 7.00 .56 Xc 8.00 .54 X c 9.00 .52 X c 10.00 .50 X c 11.00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c 14.00 .16 X W c 15.00 .18 X W c 16.00 .20 X W c 17.00 .21 X W c 18.00 .23 X W c 19.00 .25 X W c 20.00 .26 X W c 21.00 .28 X W c 22.00 .30 X W c 23.00 .31 X W c 24.00 .33 X W c 25.00 .35 X W c 26.00 .37 X W c 27.00 .38 X W c 28.00 .40 X W c 29.00 .42 X W C 30.00 .43 X W c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ \/J/t I, I I \*************************************************************************** ,.lis software prepared for: Ranpac Corporation 1***************************************************************************** , CALCULATE DEPTH OF FLOW GIVEN: ' Channel Slope = .016000 (Ft./Ft.) = 1.6000 % Given Flow Rate =_ 16.20 Cubic Feet/Second *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** 1 I I I 1 I , I, I I I I I ,I 'I I *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) = .0160 Mannings linn value for street = .015 Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Crossfall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .454 (Ft.) Average Velocity = 4.15 (Ft./Sec.) Channel flow top width = 20.00 (Ft.) Streetflow Hydraulics : Halfstreet Flow Width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 4.15 Depth*Velocity = Flow rate of street channel (CFS) = 16.20 (Ft.) = .064 .017 18.00 10.00 .020 1.89 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow Top width(Ft.) = Subchannel Critical Flow Velocity(Ft.jSec.) = Subchannel Critical Flow Area(Sq. Ft.) = Froude Number Calculated = 1.000 Subchannel Critical Depth = .539 21.95 2.875 5.63 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- /' \A? I I' lJepth of flow = I *********************** CHANNEL CROSS-SECTION PLOT ************************ .45 Feet ,= "W" STREET FLOW HALF-WIDTH CROSS SECTION critical depth for Channel No.1= .54 Feet, = "c" I X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .5 .7 --------------------------------------------------------------------------- .00 .70 X I 1.00 .68 X 2.00 .66 X 3.00 .64 X I' 4.00 .62 X 5.00 .60 X 6.00 .58 X 1',' 7.00 .56 X ,,8.00 .54 X 9.00 .52 Xc 10.00 .50 X c I 11. 00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c 'I', 14.00 .16 X W C ,15.00 .18 X W c 16.00 .20 X W c 1,- 17.00 .21 X W c 18.00 .23 X W c 19.00 .25 X W c 20.00 .26 X W c _,' 21. 00 .28 X W c II 22.00 .30 X W c 23.00 .31 X W c I 24.00 .33 X W c 25.00 .35 X W c 26.00 .37 X W c I 27.00 .38 X W c 28.00 .40 X W c 29.00 .42 X W c 30.00 .43 XW c I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I I I \A,{p I I I I ,. I I I I I I I I I I I .1 I I QIIX) ; 14,( p". 0.41':' CSc}:'" ENC{A)/;f?O C4c..cs. qr. C.6. !-1-{O f2.AUL-t'C N9.. 6 'B\5(r---L 1\ II C c.e,. :It l c .t::>.:tF z. c f-,. #-4 C$ 1F.s !IW ^ I t\l G~ f: ? t> N ~ If ~ . v lc~ t -: () 'J: ' 'It- 0- _ o:-~ II 1\ cr-~ d /I ~ B e G rY \J DE= PiH =- o-4~ I L;: Z I , J n Q,Co c. B_ f-..1E, S-, IJ = 17.. ~ CB (JEe EI/1 CW5f:.r;l S Cf-/A 1"- T ~ CA<.-C-) ~ ~ ~ q. (J & \1><.'\ I I I I 1 I I I I I I I I I ,I ,I I I I - ....... ... .. ... '" - &,...... .... .. ... .. '.- - ... '. " .,. -. .~ . -~ ! ~ :H;" ~:.~. - - I! : ,: i - -~-;~ : ,.;. .~'\. j': '. ' ;.: ~ ..; : : : __ N '\,.II'::' ~ ~...., ~l.O' ~___:...--=-- ~".,._~. _'\.l_:....:-..::.-..:,.."I..-a\.>o.J.O~..----o-.__.O._..O... O' -. 0;::'0 ... ." ': ;' ~ :"~.:. ~(;;_..;-~.; :N;~~T~;':~~j~'OCO C . 0 ::; ::; 5ooc: ~ 'l~~~~7-,t:~::'~':'-'C;~t.'L.~~: ! ! :t;' ";'.i ..!, ~ : j.: ;_n~~~--~-i.-!. .~-. . !",,;". i;...j:~;.~. L;.J i U)"" -i'::::l C .l ";': 'i-. : .'-'."; i. .:;:-: \ '" ;:r , ',..' "1",..,..,,,..'....'..-1;'..' l' i 'I' ,: ,"I C:,L" -:' ".... I:;, . .....1_.. ..1....1 r ,- -,... ,. I . """4 . ..-- .,.L.1 -. l.. 1. , I "'~ ':~..:.: ;.: '. .":.;.. ;., ; ::~:.: ; d. '.' I .'.; ; :'~'. ;.... '; . I - . (--...... ' ..___, "'" !.. !_......,.. t... \ _10 0 ,n~."Ol 0 J' . 1 I. g~ - ~ i' ''''':'j':~i~';,' 'i"' ....:~i -:'~ ; E ': ;'~' ;i, ,..~ "I'''' "", : 'I' :,', ' :' . 1(';1 1 i 1:0 .r.-;.. : i !! i .: t I ,I I ,,,,I I I, 0 In,,: I " : I,; : ,,' ; :! I ~~ ! I'. ,~ !!"!' , '~' ! i1' 'I' i ! '11;1 I i I' I I ""I . I 'i I ~ : , " 1 .:; J.I I _.. I I I I . h N , I" ",I I 1"1.. 1..11 I, ....".':. i.""" '-<....; : i . ~:_'';. _'.":. . ; 111. '::..-:":;:~: : ~'~'j~;;;:~:tD:l, ! ,,,,,I,,,. ..1_-,-" L I II! I 1 I I , LI "",.."", , , " ! _ :..: ;:~" ~F ;:. ~i:.,..L::-\. .. I., I i I j LJ I.. I':j I j 1 .1 i-.c.~.~'2) 1 !~ :tn! : !:.:i. .;: ',.,:.-;.!,:.;\.:. ::'1., 11 ! : I' I, 1.'1 ~ I l. 1 '::c:!; O_:tn ,"" : .. "" ;'iu ,~ UNE' . "~I~~:" ..- j' j=. r: 1: 1"1 J ~.: I. i'r"I~! i "'i~ mi' ~ i. ,,-~ '..' '.. 1"_'\"_ ,-"""", I I"" I' I I I I '" ""~'I.' I ,~,' \ J" m '_ g.OI50:.-~...:.:.:=~:::.::-I~.~!. 1 . . ... :: r'ol .; ~.:Ot , "-oj. f' t~."~l; "!"'I' F I:. I;:;F. ,.~ ! I. I. ! ! j.:' ttDl 1..\1 :c ! l. .1 ,'- "i' .1..' ".1 -q;_ ::c,.::..~,;.;:. I. 1 I I I ! I j :...121 I'! . I ~ .. ,. ,., ~ 1 ~lTlf )v, I _' l' .... ". ... 'f' I I' 1 I,. ,,, 1'_ ~ 01 "T\: ' "t :,i L" 1 , 1 , ; " .",: '12:1 j, 'I i, _,r-:~,~ ' '-", ',~..-J." ~t+1'" ---0' ",;., "IT' ;..' TE' S.:.S;....I't'I' u: ,.., I'-..I'c:""r~..::,:::,\ 1..11 o .. _. ~_ _ j'~ - ... .... ,..- .." I,.Uo,I U....iIJ I '. ,." c... ,. . -.. I "j' =It ..~..I 1_"uL'".I',..T~m..,': 'il""I.., ,.." ',......,...,,1.., ,I - 1"- 1 ~~J..I "I' 'I" f" '1'~..-I' "I ' "I' ..,..,......', "1'1111/ 'T!. .. .-...., ..... .... .:' .' - "....,....- -.. , . ...j", ...,. . "... . . ~ . ;:--. .;-' ....:::1': . ", ,:"..,.:' . --t- - I j ! :.-::.-1: ' . '::..' :.: ,." N 01 I I '....1..'\'\.. 1"''''1 ' I ' 1'1' , I I "'" )lo- ',' .,,:.. ~'''.';'.' ..:>.I'::~t. ! . . i ",".:"l ',::-l":i,,'tJ '0 !' 'I, ',I'h~'.F"1 " '1'..I'"f4", '-! I: Y ;, I 'h"'I': I, 11'1 i '-". '" i ,I I', 1',,:':'1, !I,::1,..,I, 1'1 i j i I I" I Ii',' ,; :I' I: I 'I: ,.." 'I I : ! I"' I l'l 'I :'"1". '::j-I I ! 1 ! I : 1'1 t-!! I:.'j': I !. i I.n O ' '1'- 'I' -I" "-"[' Ih '1-'''] .. '[' I I 'I I I' I ' II ' " I I I ..\ I" " , , "-l" -- ' ,_...~ ,.. h 1-' '1'1" , , '" I ,..' ,. "',' .;n';'.:' -,.:'.=::.":..' ..,. ..~..: ,- ('.' .," : .:.. .:.. t.!.:! . ^ I ~:"-I: '1-'+:,:'I..'!,I,I..-"..LII,i..'.. i I I Iii I' il,-I i I'II'I,;! '_ "I \.. .:!;. 1..L I. i i. 'j.I'r i I I! I I i.1 I j: ill i.j j.:! I' I ,... i ..1 ':;'" 1:1 j k:j':~l,::!-. J ; . 1 I I I ! ! i ! :" I I I I I: ! ~ \ I ..1: I," 1. ,!..:I 1.1 I 1'1 1 1 I I I! I I l. I. I I .. .~: ~'I' ,',''''h,''I,,''''I' i'"t,=f'i' i :1:" I' '~i'~ ~ix I'~ i I' i /"111 i'l .. ... ,I .. ' , ".1 ,- , I" 101 ,." ,.." I l 'c) I' ,._ . ..: ....' , I"" 1.....( '. ......: ' , . . , :ll j: ..1 rll. ",'" f O.~..:.~I::D ! m ....: .! 1':1 ,... 'I I ' I' I I t 1"1'1 'I p I'" , 'I;: 'Ul 'I" I I 'I ' I ' 1 o. ~ ... I" I . .. 'or: I'tl -<1 .!oJ 1TI ....' -I ' ".' '. 1 I fTT' ! : :.. ".j' " : ,.:"' , p '~i:;: =! ! '!"',' II, ~ I... I ......, "'I I'" , 'I I ' '" '" '-",' I ' , I I I .. i' .. 1 "', ',..'..,' .." ,'1.."1'.." ' I .., > I '1..' i' i , . , .. ,_...... l. j 1 ".1 ....' , ,... , _, " "I' " ,,' 'I 1",.1"'1'11 i " C'> ,. ,-, 0'- =, : ,.. I I I , ; ,: , ,. :: . 1..1 ,":.. : j I - ~ I .th~' J '!>: , I j," '.. "'i i j. I ..j :;;1. r .! r. i~'! ! )l> 1 .c:!O! _10 ~ i I I! j , ' , 1 r- Ii: \ i I i I ~ 0 ~i~ j l~ - .;---;-~~. .'" . : ' .' I'; . , ,. , ' ;- ,-., "";.... f. I . " I" I' ,'-:>' '''''Ir < ....I~ Irn 1(J)l1 I ;'n" ! .) tD 1:"'I"I:_:I1'I.-~. ilM'>I""'J.ll...-......,..,~~....:._. r ~~ i o' I S loiJ ..1 m: 1 " ! Ii> ?"':;.... ,'~ == I P (I) ! _: ~ .., ',; C It:' '" ~::l:m I "". .- . .' - -- ....' -,- ,_.-....,' " . - ""C')' ""1""1: I'; ,-6: ....I'1tC')'~ .l 'C~'coJ><_""'.;...::::illl:C:' -:"'2' t" 'f:' II - ,2' ---1=--_ Ifl...... t~:&~ .... ., .....,,.... '" - "- ~U)O 10;1010; ::::: 2::;:,'m 2. !3:._N7.t>>l,t.w::~"5'~, ~i:T1I",,,,,,~""':..;r~jml . i -:> .....:;::~,I n' ~_=,~. tO~''..~;-! :' _ ~> _ l/'lI~1 I - ~.,J"" _ ...:-'~.~'nl :r.),......~_ ~'-'I =-::;Z'_'I'~,OI ,II . ~'Z,':ClI=:- fTI 1!~~o5;~U):':': ~::::,z,' I .,.. _ \wI, ' I" I C V;'- 1:'7\ - .. 1"11'0' IN 1 0-8 ......: Z' ~I I , ' ! i ! = '-I' CD 0 : ~,,:::. "- ... . .....'Vl i !".I m- "/'I,~ < . .....-.-11- I' ---,. ~ . , . .::= _ _ ! I" I i I . !;', ~:= > I"'::> ' I - I\J.... ..~ '(/)' IN'='" I _ ,~ K:_,.. ____, ," '_~--, -"en' ...---~'O."';"--T--it:l' . __I _-Im".'I' '~', ' , , L,,' ...', ,.... ...' '1(11' ""'0' L.rnl ., ..... ,_ I>' (')1 ...: . I , ........ 1 ' .- '01 . , .:l.r, -!.! '--IT\ j _I~: :~:;';j::-:"";f.il: ! '___ I....: 2::~::!:oO' ::o"~~ :::~;.~~ I: ~':l=:!~~(}ii C.=:gc~;:)~. i"':<?~ ;'?; :~'~i -..- .- " ~ '~ - <f\ Q II a -t:... <S\ \ \I \\l :~\ 8 :2 \1 - ~ CI\ ~ c., 1 n en Ij ):>, ~ 1> () --\ -< I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** 11***************************************************************************** - is software prepared for: Ranpac Corporation ,~.*************************************************************************** I I I I I I I I I I I ,. I I I I CALCULATE DEPTH Channel Slope = Given Flow Rate = OF FLOW GIVEN: .011600 (Ft./Ft.) = 1.1600 % 14.10 Cubic Feet/Second *** OPEN CHANNEL FLOW - STREET FLOW *** street Slope (Ft./Ft.) = .0116 Mannings "n" value for street = Curb Height (In.) = 6. Street Halfwidth (Ft.) = 20.00 Distance From Crown to Cross fall Grade Break . Slope from Gutter to Grade Break (Ft./Ft.) = Slope from Grade Break to Crown (Ft./Ft.) = Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) = Depth of flow = .457 (Ft.) Average Velocity = 3.57 (Ft./Sec.) Channel flow top width = 20.00 (Ft.) .015 (Ft.) = .064 .017 18.00 10.00 .020 streetflow Hydraulics : Halfstreet Flow width(Ft.) = 20.00 Flow Velocity(Ft./Sec.) = 3.57 Depth*Velocity = Flow rate of street channel (CFS) = 14.10 1. 63 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow'Top Width(Ft.) = Subchannel critical Flow Velocity(Ft./Sec.) = . . ' Subchannel Cr~t~cal Flow Area (Sq. Ft.) = Froude Number Calculated = 1.000 Subchannel critical Depth = 20.51 2.809 5.02 .510 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- ,6/\ I II *********************** CHANNEL CROSS-SECTION ~epth of flow = .46 Feet ,= "W" PLOT ************************ I STREET FLOW HALF-WIDTH CROSS SECTION -:ritical I X (Feet) .51 Feet , = "c" depth for Channel No.l= Y-Axis-->o. Y(Feet) .2 .4 --------------------------------------------------------------------------- X .00 .70 1. 00 .68 2.00 .66 3.00 .64 4.00 .62 5.00 .60 6.00 .58 7.00 .56 X 8.00 .54 X 9.00 .52 X 10.00 .50 Xc 11.00 .06 X W c 12.00 .13 X W c 13.00 .14 X W c 14.00 .16 X W c 15.00 .18 X W c 16.00 .20 X W c 17.00 .21 X W c 18.00 .23 X W c 19.00 .25 X W c 20.00 .26 X W c 21.00 .28 X W c 22.00 .30 X W c 23.00 .31 X W c 24.00 .33 X W c 25.00 .35 X W c 26.00 .37 X W c 27.00 .38 X W c 28.00 .40 X W c 29.00 .42 X W c 30.00 .43 X W c +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 I I I 'I I I I I I " I I I I .5 .7 x X X X X X {P I ~1 100 YR HYDRAULIC CALC I LINE "A" TR 23143-4 FILE:L1NEA.WSP < 2850.141205.35 1 1209.00 I 30n.001212.28 1 .014 .00 .00 1 3252.921218.27 1 .014 .00 .00 0 -, 5252.931218.28 4 2 3.014 9.3 9.41218.821218.87 45.00 45.00 R 3365.921220.20 4 .014 .00 .00 1 I 3369.921220.70 6 5 .014 15.3 1221.20 45.00 3395.051221.16 6 .014 .00 .00 0 we 3395.051221.16 7 .500 , 3395.051221.16 7 1221.16 1 4 0 .00 2.50 .00 .00 .00 .00 2 4 0 .00 1.50 .00 .00 .00 .00 I 3 4 0 .00 1.50 .00 .00 .00 .00 4 4 0 .00 2.50 .00 .00 .00 .00 5 4 0 .00 1.50 .00 .00 .00 .00 CD 6 4 0 .00 2.50 .00 .00 .00 .00 I 7 3 0 .00 8.11 21.00 .00 .00 .00 16.0 .0 I I I I I I I I I I I I \'6\ I F0515P CD Vers 2.2 PAGE I ~ATER SURFACE PROFILE LISTING 100 YR HYORAULIC CALC LINE IIA" TR 23143-4 I FILE:LlNEA.~SP ,TrON INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl ZL NO AVBPR ELEV OF FLOII ELEV HEAD GRO.EL. ELEV DEPTH OIA 10 NO. PIER I L/ELEM SO SF AVE HF NORM DEPTH ZR . .'************.......**..........***....***.....**.......**.........*****.**......_*****..**..******..****............................ 12850.,4 1205.35 3.650 1209.000 50.0 10.19 1.611 1210.611 .00 2.300 2.50 .00 .00 0 .0 , 28.74 .03124 .017234 .50 1.603 .00 12878.88 1206.25 3.258 1209.506 50.0 10.19 1.611 1211.117 .00 2.300 2.50 .00 .00 0 .0 HYORAULl C JUMP .00 . 12878.88 1206.25 1.603 1207.851 50.0 15.04 3.511 1211.362 .00 2.300 2.50 .00 .00 0 .0 83.00 .03124 .031325 2.60 1.603 .00 12961. 88 1208.84 1.603 1210.443 50.0 15.04 3.511 1213.955 .00 2.300 2.50 .00 .00 0 .0 1,,0.,2 .03124 .031615 3.48 1. 603 .00 3072.00 1212.28 1.593 1213.873 50.0 15.15 3.563 1217.436 .00 2.300 2.50 .00 .00 0 .0 I 3.86 .03311 .030943 1.98 1.571 .00 5.86 1214.39 1.627 1216.021 50.0 14.78 3.391 1219.412 .00 2.300 2.50 .00 .00 0 .0 I 49.75 .033'" .028320 1.41 1.571 .00 13185.61 1216.04 1.697 1217.739 50.0 14.09 3.082 1220.821 .00 2.300 2.50 .00 .00 0 .0 .025215 26.00 .03311 .66 1.571 .00 13211.61 1216.90 l.m 1218.675 50.0 13.43 2.802 1221.477 .00 2.300 2.50 .00 .00 0 .0 16.32 .03311 .022524 .37 1.571 .00 13227.93 1217.44 1.854 1219.297 50.0 12.81 2.547 1221.844 .00 2.300 2.50 .00 .00 0 .0 l'1.05 .03311 .020204 .22 1.571 .00 238.98 1217.81 1. 943 1219.752 50.0 12.21 2.316 1222.068 .00 2.300 2.50 .00 .00 0 .0 'I 7.49 .03311 .018227 .14 1.571 .00 3246.48 1218.06 2.042 1220.099 50.0 11.64 2.105 1222.204 .00 2.300 2.50 .00 .00 0 .0 I 4.63 .03311 .016604 .08 1.571 .00 I I \4 I F0515P co Vors 2.2 WATER SURFACE PROFILE LISTING PAGE 2 I :ION 100 YR HYDRAULIC CALC LINE 114" TR 23143.4 FILE:LlNEA.WSP DEPTH W.S. Q OF FLOW ELEV VEL VEL HEAD ENERGY GRO.EL. SUPER CRITICAL ELEV DEPTH HGTI OIA BASEl 10 NO. ZL NO AVBPR PIER I INVERT ELEV I L/ELEM SO SF AVE HF NORM DEPTH ZR \ ****....*.*.*.**.***************.*.******..*********..*****.....**......**..**..............**********..**...***...***.*.********** 13251.10 1218.21 2.157 1220.367 50.0 11.10 1.914 1222.281 .00 2.300 2.50 .00 .00 0 .0 .03311 .015423 .03 1.571 .00 . 1.81 13252.92 1218.27 2.300 1220.570 50.0 10.58 1.739 1222.309 .00 2.300 2.50 .00 .00 0 .0 JUNCT STR 1. 00000 .010857 .00 .00 I 3252.93 1218.28 3.964 1222.244 31.3 6.38 .631 1222.875 .00 1.906 2.50 .00 .00 0 .0 112.99 .01699 .006753 .76 1.440 .00 13365.92 1220.20 2.838 1223.038 31.3 6.38 .631 1223.670 .00 1.906 2.50 .00 .00 0 .0 IUNCT STR .12500 .004259 .02 .00 3369.92 1220.70 2.822 1223.522 16.0 3.26 .165 1223.687 .00 1.351 2.50 .00 .00 0 .0 I '9.46 .01831 .001750 .03 .955 .00 i '9.38 1221.06 2.500 1223.556 16.0 3.26 .165 1223.721 .00 1.351 2.50 .00 .00 0 .0 I 5.67 .01831 .001636 .01 .955 .00 13395.05 1221.16 2.400 1223.560 16.0 3.30 .169 1223.729 .00 1.351 2.50 .00 .00 0 .0 \/ALL ENTRANCE .00 13395.05 1221.16 2.733 1223.893 16.0 .28 .001 1223.894 .00 .262 8.11 21.00 .00 0 .0 1 I I I I I I \~3> I T1 100 HYORAULIC CALC ,2 LINE "A-7" TR 23143-4 3 FILE:L1NEA7 .- 1001.001218.82 1 1015.501219.47 1 1020.511221.50 1 1020.511221.50 2 1020.511221.50 2 1 4 0 .00 1.50 2 3 0 .00 5.77 12.5 .0 I SH t Q I I I I I I I I I I I I I I I .014 .014 .500 .00 .00 .00 21.00 .00 .00 1222.24 1221.50 .00 .00 .00 .00 .00 0 .00 0 \~4.. I F0515P co Vers 2.2 PAGE I ~ATER SURFACE PROFILE LISTING 100 HYDRAULIC CALC LINE IIA-7" TR 23143.4 I FILE:L1NEA7 TION INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ 2L NO AVBPR ELEV OF FLOII ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER I L/ELEH SO SF AVE HF NOllM DEPTH 2R ***...******.****.*****..*****************......******.**************************************************.**.*.*...**************** ,1001.00 1218.82 3.420 1222.240 12.5 7.07 .m 1223.017 .00 1.334 1.50 .00 .00 0 .0 14.50 .04483 .016423 .24 .840 .00 11015.50 1219.47 3.008 1222.478 12.5 7.07 .m 1223.255 .00 1.334 1.50 .00 .00 0 .0 2.24 .40519 .016423 .04 .460 .00 11017.74 1220.38 2.138 1222.514 12.5 7.07 .m 1223.291 .00 1.334 1.50 .00 .00 0 .0 HYDRAULIC JUMP .00 11017.74 1220.38 .826 1221.202 12.5 12.53 2.439 1223.641 .00 1.334 1.50 .00 .00 0 .0 I .32 .40519 .045736 .01 .460 .00 1221.354 1223.639 .00 1018.06 1220.51 .848 12.5 12.13 2.285 1.334 1.50 .00 .00 0 .0 I .48 .40519 .041249 .02 .460 .00 8.53 1220.70 .882 1221.582 12.5 11.57 2.077 1223.659 .00 1.334 1.50 .00 .00 0 .0 I .41 .40519 .036485 .02 .460 .00 11018.95 1220.87 .918 1221.786 12.5 11.03 1.889 1223.674 .00 1.334 1.50 .00 .00 0 .0 .40519 .032317 .01 .36 .460 .00 1'019.31 1221.01 .956 1221.969 12.5 10.51 1.717 1223.686 .00 1.334 1.50 .00 .00 0 .0 .31 .40519 .028666 .01 .460 .00 11019.62 1221.14 .996 1222.134 12.5 10.03 1.561 1223.695 .00 1. 334 1.50 .00 .00 0 .0 I .26 .40519 .025489 .01 .460 .00 1221.24 1.040 1222.282 12.5 9.56 1.419 1223.701 .00 1.334 1.50 .00 .00 .0 . 1019.87 0 I .22 .40519 .022725 .00 .460 .00 1020.09 1221.33 1.086 1222.416 12.5 9.11 1. 290 1223.706 .00 1.334 1.50 .00 .00 0 .0 I .17 .40519 .020327 .00 .460 .00 I \-s5 I I I I \TION INVERT ELEV 100 NYORAULIC CALC LINE I-A.7" TR 23143.4 FILE:L1NEA7 DEPTH W.S. Q OF FLOII ELEV F0515P CO Vers 2.2 WATER SURFACE PROFILE LISTING VEL VEL EHERGY HEAD GRO.EL. SUPER CRITICAL ELEV DEPTH HGTI OIA PAGE 2 BASEl 10 NO. ZL NO AVBPR PIER IL/ELEM SO SF AVE HF NORM DEPTH ZR .. ..**,.***...******..*******..**.....****.**************............***........*********..******..*****.....**...********.......... 11020.26 1221.40 .40519 .13 11020.39 1221.45 .09 .40519 '1020.48 1221.49 .03 .40519 11020.51 1221.50 fLL ENTRANCE 1020.51 1221.50 I I I I I I I I I I 1.137 1222.537 12.5 1.194 1222.646 12.5 1.257 1222.744 12.5 1.334 1222.834 12.5 2.991 1224.491 12.5 8.69 1.173 1223.710 .018285 8.29 1.066 1223.712 .016567 7.90 .969 1223.714 .015199 7.53 .880 1223.714 .20 .001 1224.492 .00 .00 .00 .00 1.334 .00 1.334 .00 1.334 .00 1.334 .00 .222 .460 .460 .460 1.50 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .0 1.50 .0 1.50 .0 1.50 .0 .00 5.77 21.00 .00 0 .0 \~ I Tl 100 YR HYDRAULIC CALC IT2 LINE "A-S" TR 23143-4 T3 FILE:LlNEA8 ." 1002.001221.20 1 1034.651225.23 1 1034.651225.23 2 1034.651225.23 2 1 4 0 .00 1.50 2 3 0 .00 4.04 16.0 .0 t CO ID I I I I I I I I I I I I I I I .014 .500 .00 .00 .00 21.00 .00 .00 1223.52 1225.23 .00 .00 .00 .00 0 \'51 I F0515P co Vers 2.2 PAGE I WATER SURFACE PROFILE LISTING 100 YR HYDRAULIC CALC LINE IIA-811 TR 23.143-4 I FILE:LINEA8 rION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl ZL NO AVSPR ELEV OF FLOII ELEV HEAD GRD. EL. ELEV DEPTH DIA 10 NO. PIER ~L/ELEM SO SF AVE HF NORM DEPTH ZR \ ************....**...*******.....*****.....**.****..............**..**.*.**..*.....**.****************.~**.........*....**....*.*. 11002.00 1221.20 .815 1222.015 16.0 16.31 4.132 1226.146 .00 1.425 1.50 .00 .00 0 .0 7.03 .12343 .077058 .54 .720 .00 11009.03 1222.07 .845 1222.912 16.0 15.59 3.774 1226.687 .00 1.425 1.50 .00 .00 0 .0 5.61 .12343 .068288 .38 .720 .00 '1014.63 1222.76 .879 1223.638 16.0 14.87 3.431 1227.070 .00 1.425 1.50 .00 .00 0 .0 4.39 .12343 .060376 .27 .720 .00 11019.03 1223.30 .914 1224.215 16.0 14.17 3.119 1227.335 .00 1.425 1.50 .00 .00 0 .0 I 3.51 .12343 .053452 .19 .720 .00 1223.73 .952 1224.687 16.0 13.51 2.836 1227.522 .00 1.425 1.50 .00 .00 0 .0 1022.54 I 2.85 .12343 .047438 .14 .720 .00 5.39 1224.09 .993 1225.080 16.0 12.88 2.578 1227.658 .00 1.425 1.50 .00 .00 0 .0 I 2.36 .12343 .042185 .10 .720 .00 11027.74 1224.38 1. 036 1225.414 16.0 12.29 2.344 1227.757 .00 1.425 1.50 .00 .00 0 .0 .12343 .037592 .07 .720 .00 1.95 11029.69 1224.62 1. 082 1225.700 16.0 11.71 2.131 1227.830 .00 1.425 1.50 .00 .00 0 .0 1.59 .12343 .033624 .05 .720 .00 11031.28 1224.81 1.133 1225.947 16.0 11.17 1.937 1227.884 .00 1.425 1.50 .00 .00 0 .0 I 1.29 .12343 .030232 .04 .720 .00 032.57 1224.97 1.189 1226.162 16.0 10.65 1.761 1227.923 .00 1.425 1.50 .00 .00 0 .0 I 1.01 .12343 .027372 .03 .720 .00 1033.58 1225.10 1. 252 1226.350 16.0 10.15 1.6(11 1227.950 .00 1. 425 1.50 .00 .00 0 .0 I .74 .12343 .025073 .02 .720 .00 I \-50 I I I I .TlON INVERT ELEV 2 PAGE F0515P CD Vors 2.2 "ATER SURFACE PROFILE LISTING 100 YR HYDRAULIC CALC LINE l'A.a'l TR 23143-4 FILE:LINEA8 DEPTH ".S. Q OF FLOII ELEV 2L NO AVBPR PIER BASEl ID NO. HGT! DIA SUPER CR I TI CAL ELEV DEPTH ENERGY GRD.EL. VEL HEAD VEL I L/ELEM SO SF AVE HF NORM OEPTH ZR ******.****.**.***.***********...******.***...********.....*******************************.*......*....*******..***........******** o .0 .00 .00 1.50 1.425 1.455 1227.969 .00 9.68 16.0 1.325 1226.514 1225.19 1034.32 I .33 .00 .no .023688 .01 .12343 .0 .00 .00 0 1.50 1.425 .00 1.322 1227.977 9.23 16.0 1.425 1226.655 I 1034.65 1225.23 "ALL ENTRANCE 11034.65 1225.23 1 I .00 4.04 21.00 .00 0 .0 .262 .00 .001 1229.250 .19 16.0 4.019 1229.249 , . ~' \.,c 5 I'l.T': ,- , V - ~~ :- ;, _I -:::: :. ;'t"" + ICi , , , - /27- 7, /... ( I I I I I I I I I I \~ I I Tl 100 YR HYDRAULIC CALC I LINE "A-9" TR 23143-9 FILE:LINEA9 S" 1001.001218.87 1 1031.541222.06 1 1031.541222.06 2 1031.541222.06 2 1 4 0 .00 1.50 2 3 0 .00 5.21 12.0 .0 I CO I I I I I I I I I I I I I I I I .014 .500 .00 .00 .00 21.00 .00 .00 1222.24 1222.06 .00 .00 .00 .00 0 \rp I F0515P CD Vers 2.2 PAGE I WATER SURFACE PROFILE liSTING 100 YR HYDRAULIC CALC LINE IIA-911 TR 23143-9 I FIlE:lINEA9 .TION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl Zl NO AVBPR ELEV OF FlOll ElEV HEAD GRD.EL. ElEV DEPTH OIA 10 NO. PIER I/ELEM SO SF AVE HF NORM DEPTH ZR ....*-.*.--.------....-.--.........-.......-.-.-----.-*********..****************...************************.....********.*****.. 11001.00 1218.87 3.370 1222.240 12.0 6.79 .716 1222.956 .00 1.314 1.50 .00 .00 0 .0 13.07 .10446 .015135 .20 .640 .00 1014.07 1220.23 2.201 1222.436 12.0 6.79 .716 1223.152 .00 1.314 1.50 .00 .00 0 .0 HYDRAULIC JUMP .00 1014.07 1220.23 .m 1221.013 12.0 12.96 2.6119 1223.622 .00 1.314 1.50 .00 .00 0 .0 3.06 .10446 .050312 .15 .640 .00 1017.12 1220.55 .808 1221.362 12.0 12.36 2.3n 1223.7J4 .00 1.314 1.50 .00 .00 0 .0 I 3.06 .10446 .044375 .14 .640 .00 1220.87 1221. 713 12.0 11.78 2.156 1223.869 .00 1.314 1.50 .00 .00 0 .0 1020.18 .840 I ~.50 .10446 .039183 .10 .640 .00 2.67 1221.13 .873 1222.007 12.0 11.23 1.9611 1223.967 .00 1.314 1.50 .00 .00 0 .0 I 2.05 .10446 .034627 .07 .640 .00 1024.n 1221.35 .908 1222.256 12.0 10.71 1.782 1224.038 .00 1.314 1.50 .00 .00 0 .0 .10446 .030659 .05 .640 .00 1.68 1026.40 1221.52 .946 1222.470 12.0 10.21 1.620 1224.090 .00 1.314 1.50 .00 .00 0 .0 1.39 .10446 .027199 .04 .640 .00 1027.79 1221.67 .986 1222.655 12.0 9.74 1.473 1224.127 .00 1.314 1.50 .00 .00 0 .0 , 1.13 .10446 .024177 .03 .640 .00 028.92 1221. 79 1.029 1222.816 12.0 9.28 1.J39 1224.155 .00 1.314 1.50 .00 .00 0 .0 I .91 .10446 .021545 .02 .640 .00 1029.84 1221.88 1.075 1222.957 12.0 8.85 1.217 1224.174 .00 1.314 1.50 .00 .00 0 .0 I .n .10446 .019253 .01 .640 .00 I I \10\ I I I 100 YR HYDRAULIC CALC LINE -A-9" TR 23143-9 FILE:LINEA9 DEPTH ~.S. Q OF FLOW ELEV .TION INVERT ELEV F0515P CD Vers 2.2 ~TER SURFACE PROFILE LISTING VEL VEL ENERGY HEAD GRD. EL. SUPER CRITICAL ELEV DEPTH HGTI DIA PAGE 2 BASEl 10 NO. ZL NO AVBPR PIER IL/ELEM SO SF AVE HF NORM DEPTH ' ZR -...-.-.-----.-.----..----------.-.---------.-...-....--*......**.....*.*..*****....***********.***........********************... 1'030.56 1221.96 .10446 .52 1'031.08 1222.01 .33 .10446 1,031.42 1222.05 .12 .10446 .,031.54 1222.06 1.124 1223.082 1.179 1223.192 1.241 1223.288 1.314 1223.374 rLL ENTWCE 1031.54 1222.06 2.861 1224.921 I \ I I I I I I I I I 12.0 12.0 12.0 12.0 12.0 8.44 1.106 1224.188 .017283 8.05 1.006 1224.197 .015629 7.67 .914 1224.203 .014284 7.31 .830 1224.204 .20 .001 1224.922 .01 .01 .00 .00 1.314 .00 1.314 .00 1.314 .00 1.314 .00 .216 .640 .640 .640 1.50 1.50 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .0 .0 1.50 .0 .0 1.50 5.21 Z1.00 .00 0 .0 \vp I T1 100 HYDRAULIC CALC. I LINE "0-6" TR 23143-3 FILE:D06.~SP S" 1002.001214.00 1 1027.321214.58 1 1027.321214.58 2 1027.321214.58 2 1 4 0 .00 2 3 0 .00 11.5 I CO I I I I I I I I I I I I I I I I 1.50 4.21 .0 1215.50 .014 .00 .00 0 .500 1214.58 .00 .00 .00 .00 21. 00 .00 .00 .00 \rP I I I lION INVERT ELEV 100 HYORAULIC CALC. LINE 110-6" TR 23143-3 FILE:006.WSP DEPTH W.S. Q OF FLDII ELEV F0515P CO Vers 2.2 WATER SURFACE PROFILE LISTING VEL VEL ENERGY HEAD GRD. EL. SUPER CR I TI CAL ELEV DEPTH HGTI DIA PAGE BASEl ID NO. ZL NO AVBPR PIER I/ELEM SO SF AVE HF NORM DEPTH, ZR ********************.************.*.**********************.**********...*************.************.********..****.***..**~*.***.* 11002.00 1214.00 .02290 2.73 1004.73 1214.06 12.04 .02290 '016.77 1214.34 6.22 .02290 1022.99 1214.48 I 1026.32 1214.56 3.33 .02290 I . .00 .02290 i ~ I :7.32 1214.58 LL ENTRANCE 1027.32 1 1214.58 I I I I I I I 1.055 1215.055 11.5 1.062 1215.125 11.5 1.110 1215.448 11.5 1.164 1215.645 11.5 1.223 1215.780 11.5 1.293 1215.873 11.5 2.734 1217.314 11.5 8.66 1.164 1216.219 .019410 .05 8.60 1.147 1216.2n .018228 8.20 1.043 1216.491 .016345 7.81 .948 1216.593 .014746 7.45 .862 1216.642 .013422 7.10 .783 1216.656 .20 1217.315 .001 .22 .10 .05 .01 .00 1.293 .00 1.293 .00 1. 293 .00 1. 293 .00 1. 293 .00 1.293 .00 .210 1. 000 1.000 1. 000 1. 000 1. 000 1.50 1.50 1.50 .00 .00 0 .OD .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .0 .0 .0 .0 1.50 .0 1.50 .0 1.50 4.21 .00 .0 21.00 o \~" I F0515P co Vers 2.2 PAGE . ~ATER SURFACE PROFILE LISTING 100 YR HYDRAULIC CALC. LINE "0-5" TR 23143-3 . FILE:005.~SP :ION INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CR IT I CAL HGTI BASEl ZL NO AVSPR ELEV OF FLOW ELEV HEAD GRO.EL. ELEV DEPTH OIA 10 NO. PIER I LIELEM SO SF AVE HF NORM DEPTH, ZR ************************************...*********************.....********.........**.******..***...................******.....**.. .1002.00 1214.00 1. 500 1215.500 5.2 2.94 .134 1215.634 .00 .878 1.50 .00 .00 0 .0 .05698 .002424 .00 .460 .00 .00 .'002000 1214.00 1. 500 1215.500 5.2 2.94 .134 1215.634 .00 .878 1.50 .00 .00 0 .0 2.29 .05698 .002270 .01 .460 .00 11004.29 1214.13 1.360 1215.491 5.2 3.09 .148 1215.639 .00 .878 1.50 .00 .00 0 .0 .83 .05698 .002218 .00 .460 .00 11005.13 1214.18 1. 280 1215.458 5.2 3.24 .163 1215.621 .00 .878 1.50 .00 .00 0 .0 10RAULI C JUMP .00 .00 0 1005.13 1214.18 .562 1214.740 5.2 8.60 1.148 1215.888 .00 .878 1.50 .00 .0 I 1.46 .05698 .025706 .04 .460 .00 i ,.59 1214.26 .583 1214.844 5.2 8.18 1. 040 1215.885 .00 .878 1.50 .00 .00 0 .0 I 2.13 .05698 .022493 .05 .460 .00 110OS.72 1214.38 .604 1214.987 5.2 7.80 .946 1215.932 .00 .878 1.50 .00 .00 0 .0 .05698 .019741 .03 .460 .00 1.72 11010.44 1214.48 .626 1215.107 5.2 7.44 .860 1215.966 .00 .878 1.50 .00 .00 0 .0 1.39 .05698 .017334 .02 .460 .00 1,011.83 1214.56 .649 1215.209 5.2 7.09 .782 1215.991 .00 .878 1.50 .00 .00 0 .0 I 1.13 .05698 .015228 .02 .460 .00 1214.62 .673 1215.297 5.2 6.76 .710 1216.008 .00 .878 1.50 .00 .00 0 .0 1012.95 I .91 .05698 .013385 .01 .460 .00 1013.86 1214.68 .698 1215.374 5.2 6.45 .646 1216.020 .00 .878 1.50 .00 .00 0 .0 I .72 .05698 .011770 .01 .460 .00 1 \fq~ . I 1 F0515P co Vers 2.2 WATER SURFACE PROFILE LISTING I 100 YR HYDRAULIC CALC. LINE IID-Su TR 23143.3 FILE:005.WSP DEPTH W.S. Q OF FLOW ELEV ,TlON INVERT ELEV VEL VEL HEAD ENERGY ORO. EL. SUPER CRITICAL ELEV DEPTH HGTI OIA PAGE 2 BASEl 10 NO. ZL NO AVBPR PIER IL/ELEM SO SF AVE HF NORM DEPTH, ZR ***************************.******************.*********************************************************************************** 1'014.59 1214.72 .05698 .54 11015.13 1214.75 .41 .05698 11015.54 1214.77 I .29 .05698 1015.83 1214.79 I .16 .05698 1015.99 1214.80 I .05 .05698 6.04 1214.80 lLL ENTRANCE 11016.04 1214.80 1 I I I I I I I .724 1215.441 .752 1215.500 .781 1215.552 .811 1215.599 .843 1215.640 .878 1215.678 1.421 1216.221 5.2 6.15 .587 1216.028 .00 .878 .010359 .01 .460 5.2 5.86 .534 1216.034 .00 .878 .009127 .00 .460 5.2 5.59 .485 1216.038 .00 .878 .008044 .00 .460 5.2 5.33 .441 1216.040 .00 .878 .007095 .00 .460 5.2 5.08 .401 1216.041 .00 .878 .006257 .00 .460 5.2 4.84 .364 1216.042 .00 .878 5.2 .000 1216.222 .00 .124 .17 1.50 1.50 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 .0 .0 .0 1.50 .0 1.50 .0 1.50 .0 1.50 4.21 21.00 .00 0 .0 \ro~ I T1 100 YR HYORAULIC CALC. 'LINE "0-5" TR 23143-3 FILE:005.~SP 1002.001214.00 1 ~ 1016.041214.80 1 I 1016.041214.80 2 1016.041214.80 2 CO 1 4 0 .00 1.50 r 2 3 0 .00 4.21 5.2 .0 I I I I I I I I I I I I I I I .013 .500 .00 .00 .00 21.00 .00 .00 1215.50 1214.80 .00 .00 .00 .00 0 \~1 I T1 100 YR HYDRAULIC CALC. _2 LINE "F" TR 23143-3 3 FILE L1NEF ~ 1235.911219.59 1 1225.70 1354.781221.47 1 .014 .00 .00 1 I 1356.781221.50 3 2 .014 48.4 1222.19 45.00 1372.891221.75 3 .014 .00 .00 0 JX 1372.891221.75 5 4 .014 23.5 1222.75 45.00 I 1400.001222.18 5 .014 .00 .00 0 1428.911226.10 5 .014 .00 .00 0 WE 1428.911226.10 6 .500 ~ 1428.911226.10 6 1226.10 1 4 0 .00 3.50 .00 .00 .00 .00 2 4 0 .00 2.00 .00 .00 .00 .00 CD 3 4 0 .00 3.50 .00 .00 .00 .00 t 4 4 0 .00 1.50 .00 .00 .00 .00 5 4 0 .00 3.50 .00 .00 .00 .00 CD 6 3 0 .00 6.00 21.00 .00 .00 .00 I 24.3 .0 I I I I I I I I I I I I \~ro I F0515P CD Vers 2.2 PAGE I ~ATER SURFACE PROFILE LISTING 100 YR HYDRAULIC CALC. LINE I_Fl. TR 23143-3 __,"TION FILE LINEF INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl ZL NO AVSPR ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA 10 NO. PIER 1 LIELEM SO SF AVE HF NORM DEPTH, ZR ...****************************************************************************************************************....********.... 11235.91 1219.59 6.110 1225.700 96.2 10.00 1.552 1227.252 .00 3.024 3.50 .00 .00 0 .0 118.87 .01582 .010603 1.26 2.410 .00 11354.78 1221.47 5.568 1227.038 96.2 10.00 1.552 1228.590 .00 3.024 3.50 .00 .00 0 .0 JUNCT STR .01501 .006611 .01 .00 1 1356.78 1221.50 6.720 1228.220 47.8 4.97 .383 1228.604 .00 2.159 3.50 .00 .00 0 .0 16.11 .01552 .002618 .04 1. 562 .00 11372.89 1221.15 6.513 1228.262 47.8 4.97 .383 1228.646 .00 2.159 3.50 .00 .00 0 .0 INCT STR .00000 .001647 .00 .00 1372.89 1221.15 6.797 1228.547 24.3 2.53 .099 1228.646 .00 1.516 3.50 .00 .00 0 .0 1 7.11 .01586 .000677 .02 1.080 .00 .0.00 1222.18 6.385 1228.565 24.3 2.53 .099 1228.664 .00 1.516 3.50 .00 .00 0 .0 1 21.38 .13559 .000672 .01 .630 .00 11421.38 1225.08 3.500 1228.580 24.3 2.53 .099 1228.679 .00 1.516 3.50 .00 .00 0 .0 .13559 .000629 .00 .630 2.33 .00 11423.71 1225.40 3.115 1228.570 24.3 2.65 .109 1228.679 .00 1.516 3.50 .00 .00 0 .0 1.31 .13559 .000613 .00 .630 .00 11425.02 1225.57 2.987 1228.560 24.3 2.78 .120 1228.680 .00 1.516 3.50 .00 .00 0 .0 1 1.07 .13559 .000663 .00 .630 .00 1225.72 2.831 1228.549 24.3 2.91 .132 1426.09 1228.681 .00 1.516 3.50 .00 .00 0 .0 1 .91 .13559 .000729 .00 .630 .00 1427.00 1225.84 2.695 1228.536 24.3 3.06 .145 1228.681 .00 1.516 3.50 .00 .00 0 .0 1 .80 .13559 .000810 .00 .630 .00 I 1 \lpC\ I 1 I ~TlON INVERT ELEV 100 YR HYDRAULIC CALC. LINE "F" TR 23143-3 FILE LINEF DEPTH W.S. OF FLOII ELEV Q F0515P CO Vers 2.2 WATER SURFACE PROFILE LISTING VEL VEL HEAD ENERGY GRO.EL. SUPER CRITICAL ELEV DEPTH HGTI OIA BASEl 10 NO. PAGE 2 2L NO AVBPR PIER 1 LIELEM SO SF AVE HF NORM DEPTH, ZR .*-.*.---------.-.---........-...-.........--......-.-*******..**********************************************************.*******.. I 1427:: 11428.52 .39 1225.95 .13559 1226.05 .13559 1'428.91 1226.10 WALL ENTRANCE 1,428.91 1226.10 1 I 1 1 I I I 1 I I I I 2.573 1228.522 2.460 1228.507 2.398 1228.498 2.738 1228.838 24.3 24.3 24.3 24.3 3.21 .160 1228.682 .000903 .00 3.36 .175 1228.683 .000988 .00 3.46 .186 1228.684 .42 .003 1228.841 .00 1.516 .00 1.516 .00 1.516 .00 .347 .630 .630 3.50 3.50 3.50 .00 .00 o .0 .00 .00 .00 .0 o .00 .00 .00 0 .0 .00 6.00 21.00 .00 0 .0 \<\{) lIIT1 100 YR HYORAULIC CALC. T2 TR 23143-3 LINE IIF_pl t F1LE:LINEF1 1001.441222.67 1 1030.001223.48 1 1056.391226.19 1 1056.391226.19 2 1056.391226.19 2 1 4 0 .00 2.00 2 3 0 .00 5.21 24.3 .0 I. SH f I 1 1 I I I ;, 1 I I 1 I I 1 I I 1228.54 .014 .00 .00 0 .014 .00 .00 0 .500 1226.19 .00 .00 .00 .00 3.70 .00 .00 .00 \-y\ I I I .TJON INVERT ELEV 100 YR HYDRAULIC CALC. TR 23143-3 LINE IIF-1" FILE:L1NEF1 DEPTH W.S. Q OF FUJII ELEV F0515P CD Vers 2.2 WATER SURFACE PROFILE LISTING VEL VEL HEAO ENERGY GRD.EL. SUPER CR IT I CAL ELEV DEPTH HGTI DIA PAGE BASEl 10 NO. ZL NO AVBPR PIER I/ELEM SO SF AVE HF NORM DEPTH ZR *****.******************.***...............**..****..***.*.************......*****.*****....**********..************************* 11001.44 1222.67 5.870 1228.540 28.56 .02836 1030.00 1223.48 5.442 1228.922 26.39 .10269 1056.39 1226.19 3.085 1229.275 WALL ENTRANCE 1056.39 1226.19 4.887 1231.077 1 1 1 24.3 24.3 24.3 24.3 1 1 1 1 1 1 1 I I 7.73 .929 1229.469 .013382 7.73 .929 1229.851 .013382 7.73 .929 1230.204 1.34 .028 1231.105 .00 .38 .00 .35 1.744 1.744 .00 1.744 .00 1.103 1. 220 2.00 .830 2.00 .00 .00 0 .00 .00 .00 0 .00 .00 .00 0 .00 3.70 .00 0 .0 .0 2.00 .0 5.21 .0 \,\9/'