HomeMy WebLinkAboutHydrology Hydraulic Study
(
I:
I
I
I,
"
I
I'
I:
(
I
I~
(
[
I~
".
I,
,
,
[
I~
t.
'-
CITY OF TEMECULA
HYDROLOGY/HYDRAULIC STUDY
FOR
TRACT 23143-3 & 23143-4
CROWNE HILL
==CS:'~ l ~U2~
- RICHARD L VALDEZ, RCE.....
JUNE 14, 1995
27'lQi Enterprise Circle West
Temecula, CA 92;90 USA
Tel. (909) 6;6. ;000
Fax (909) 694 . 8413
I
I
,I
I
I'
I
I
I
I
I
-
I'
I
Ii
I
f
I
.J
J
SUBJECT:
DEVELOPED AND UNDEVELOPED CONDmONS
HYDROLOGY/HYDRAULIC STUDY
TRACT:
23143-3 & 23143-4
SUBMITTED TO:
CITY OF TEMECUlA
CLIENT:
TAYLOR WOODROW HOMES, CALIFORNIA LIMITED
4921 BIRCH STREET, SUITE 110
NEWPORT BEACH, CALIFORNIA 92660
408-005 & 408-006
TPC FILE NO.:
REVIEWED BY:
JEI KIM
PREPARED BY:
EDWIN R SAMILIN
PROJECT MANAGER: RICHARD VALDEZ
\
I
I
I
'J
I'
I
-4,
I
I
I
I
'I
:,.
,-
I
,I
I
'0
I
1
'I'
TABLE OF CONTENTS
I. INTRODUCTION
1) BACKGROUND
a) Vicinity Map
b) Location Map
2) METHODOLOGY
3) EXECUTIVE SUMMARY
II. 100-YEAR DEVELOPED STUDY (ULTIMATE CONDmON)
II.A 100- YEAR DEVELOPED STUDY (PIPE ROUTING 1/ /I
BASED ON CATCH BASIN CAPACITY) - LIJ-J e. A
III. 10- YEAR DEVELOPED STUDY (ULTIMATE CONDmON)
N. 100- YEAR DEVELOPED STUDY (INTERIM CONDmON)
V. 10- YEAR DEVELOPED STUDY (INTERIM CONDmON)
VI. 100- YEAR CATCH BASIN SIZING & ST. HYDRAULICS
VII. PIPE HYDRAULICS
VIII. HYDROLOGY MAP & REFERENCE PLANS
7/
I
I
I
I
,-
I
'f
I
I
I,
I,
t
I
II
I
I
I
I
I
I.
INTRODUCTION
The subject is located east of the Temecula Freeway (Interstate 15) and south of
Rancho California Road, Riverside County, California. Specifically, the site is located
southeast of the intersection of Butterfield Stage Road and Pauba Road in Rancho
California. The geographic relationships are presented on the attached Location
Map, Exhibit 1-1, and Vicinity Map, Exlubit 1-2.
1. BACKGROUND AND PURPOSE
The property consists of rolling foothill terrain covered with annual grasses
and scattered brush. The alluvial valleys are typically v-shaped and incised
along and intermittently active stream channel from the center to the head of
the valley.
The project is located within the Santa Margarita Drainage Basin with a small
portion of the site area tnbutary to TemecuIa Creek. The site is not subject
to any flood or dam inundation hazards identified by the General Plan.
The majority of the site drains southeasterly. As part of Assessment District
159, a storm drain was designed in Butterfield Stage Road & Crowne Hill
Drive to accept storm flows. The storm drain plan has been approved by
Riverside County, Transportation Department. Portions of Crowne Hill Drive
& Butterfield Stage Road will be part of this project. A proposed storm drain
per Tract No. 23143-2 in Via Angeles Street and Fox Road is presently
accepting on-site and off-site flows, and will be extended upstream from
subdivision boundary to proposed Fox Road (northerly).
The purpose of this study, then, is threefold. First, the on-site flows must be
evaulated to verify that the street sections have the capacity to' convey
anticipated storm flows. Second, compare if the Interim and Ultimate
Conditions flows are more than the original flows per Assessment District 159
for Crowne Hill Drive and proposed Tract 23143-2 in Via Angeles storm
drains. Finally, compute the hydraulics of the lines to verify that the final
design is adequate.
':7
I
1\
I
I
I
I
I
I
I
I
),
I
-
i'
I
,I'
I
I
I
2. METHODOLOGY
The hydrology study for T;:act 23143-2 (Crowne Hill) was prepa;:ed using
the Rational Me~'1od Computer p;:ogram (Version 2.5), copyright by Civil
CADD/Civil Design, 1988. This program requires input data for rainfall,
soil type, type of development and topographic for the area under study.
This information was determined for T;:act 23143- 2 as follows:
Rainfall Data: The 1 DO-year, I-hour precipitation
and the 2-year, I-hour precipitation were determined to be
1.4 inches and 0.55 inches respectively. This information was
obtained from Plate D-4.4 and modified Plate E-5.6 from
Riverside County Flood Control and Water Conservation
District Hydrology Manual. Copies of these plates are
included in the report.
Soil Type Data: The soil type was obtained from
hydrologic soils group map from the Riverside County Flood
Control & Water Conservation District hydrology manual. A
copy of this map is included in this report.
Type of Development: This study is for the developed
conditions, therefore, all areas are considered. developed.
Topographic Data: The tnbutary drainage subareas
were determined from the grading and street plans. These
areas have been delineated on the hydrology map that is
included in the back of this report. The flows generated from
both the 10-year and 100-year storms were computed and are
included in this report.
Bureau of Engineering, City of Los Angeles, Department of Public Works, Side-Opening
Catch Basin Design Charts, were used to size the catch basins used in this project.. These
charts give capacities as developed from experimental hydraulic model studies for Catch
Basin No. 40 type curb openings with standard local depressions, and may be used in
determining the length ("W') andl or the capacity ("Q") of basin openings of this type
under various values of "D".
Los Angeles County Flood control District's Water Surface Pressure Gradient Hydraulic
Analysis Computer Program was used for analyzing the pipes in this project. This
program is a hydraulic analysis system developed by the Design System and standards
Group of the Design Division and Data Processing Section of the Business and Fiscal
Division of the Los A.'ge!es County Flood Control District. The program computes and
plots uniform and nonuniform steady flow water surface profiles and pressure gradients
t\
I
I
I
I
I
I,
I
I,
I,
'I~ -,
--
I,
I
I
'I
I
I
I
I
I
in open channels or closed conduits 'With irregular or regular sections. The flow in a
system may alternate between super critical, subcritical or pressure flow in any sequence.
Tne program will also analyze natural river channels although the principle use of the
program is intended ior determining profiles in improved flood control systems. Tne
computation procedure is based on solving Bernoulli's equation ior the total energy at
each section and Manning's formula ior friction loss between the sections in 'a reach.
The open channel flow procedure unitizes the standard step method. Comluences and
bridge piers are'analyzed using Pressure and Momentum Theory. The program uses
basic mathematical and hydraulic principles to calculate all such data as cross sectional
area, wetted perimeter, normal depth, critical depth, pressure, and momentum.
"5
I
I
I
I
I
I
I
I
II
I
*
I
I
I
I
I
I
I
I
EXECUTIVE SUMMARY
The hydrology analysis showed that computed flows are lower than anticipated for Crowne
Hill Drive, Butterfield Stage Road and Via Angeles storm drains, for both Interim and
Ultimate Conditions. Therefore, original design for Crowne Hill Drive ston:i:1 drain would
still be adequate and upstream extension of existing Via Angeles storm drain did not impact
the hydraulic grade line downstream.
A copy of plans and HydrologylHydraulic Report for Crowne Hill Drive & Butterfield Stage
Road Ultimate Condition will be included in this report. A copy of Tract 23143-2 storm
drain plan will also be included.
(p
I
I
I
I
I
I
I
I
I ;ii'
,
I
I
I
I
I.
I
I
I
I
--'
/'
(~ '"
PROJECT
SITe
VICINITY MAP
^'. 7: S.
\
I'
Ii
I
I.
,.
11
11
11
I.
I J);
,
j.
,-
I-
I~
j .
I l
I i
I
I
. Wat,..
. .,"1>.
'. SITE
<
-.J
F'- \.
"
.-
.-
.-
-
SCAL" ,"
_ _ 2000'
I'b
o. C
.
D
01:
o
.
,
Ii: ~: i
: I' 1 ~.,~!
I,' ;..........
j"i ......
"1.- ;"
,
0,
!;
"
-'
.;'
'"
.
e
.- "
,.
i:
,.
I'
::"H \1,'
~J'r:'~.'.
...--
o'~:' H'
l~
"
I.
~
-
-.
.'
;.:::~.~
-:;:.7 .
"
:F:
z:
~"
0:
t:j'
:...~;_.
..
I
~
~
........
I
"-:'-:."'..;:"
'.,
~
hi
~
HYDROLDGIC SOILS GROUP MAP
FOR
._L~GENO
I-
SOL:.
~
~;tQUP 9OUHQ.lRT
~ 0ES1;H.&:nOll
'-:-:.-.~......-:.:'
I RCFC:~ weD
..',~"'-
--::~rtOLOIGY' ; .', .'.I'!IJ,A1
- ". -
?~CHANGA ~.
-----
" C'C'C""!' ..,..,.."..
o .
I' , '\1
.a.t.aec
..
0:
,
II::
Il"(CIOa_' \" U'M
0: 0:
~. riYDROLOG1C SOILS GROUP MAP \
,
~ FOR I
\ BACHELOR MTN. I
~ - - \f;)
~-...-- ::;
.~~
L!::GENO
-~ GROUP 9OUNOART
... :?.::...s GRO~IP ~-5IGM...nON
RC;=-.:s,WCD
'.1.._ __. _. \ ,:. -..J' ,.\,
lif
L
i~'
1;:
/{..~:,' .
E?
I~L:.
- -~~.'
~.:.
,'~.
e
Il
,3
1- ;'\
,J.
11
11
11
Il
J
I'"
"
~
1-
I
I
I
. !N$'1'llIlC"ICXS !'OR RA':Ic::w.L l"':'~::1a:J P.r.JRa-...;x;y ou---u-..xr:::ClNS
\
(!>&sed on ,=-"e Racion&l Fo=ll.. Q - C:;>)
1. an map 0: d:a.i.nage a:ea., d:'&'" c--a.i...~ge sys~e:::. and block 0:= Slioa.=eas
-=,:.;,u-:.a....-y ':.0 it.
2. Oe~e-~~e t..~e ini"'; ,..' t.i:De 0: co:lcen_a.-:ion, -"!".., usinq pl.ate D-3.
:he in:itiU ar8& ~d l:>e leas ~.&:1 10 ac.."'eS. have a new pa~ of
less -:han 1,000 feet, and l:>e the most upst..-e.... suba..-ea..
\:,.
3. Osinc; the time of eonce..~-==ation, dete:::i:le "I", in't.enSi-::y 0: :a.i::2-
=a.ll i:1 iDc.'1es pe.:' hou:", ==cm ":..."le a.PP="=,p=ia.te :....~~"1Si-=Y-d'C--a::,icn
eu--ve for -Qe pa.:-..j.c:uJ.a.= a:e.a under stndy. ::'0= a=eas whe.-..-e s-...an-
da..-d c:-.:=ve5 a.--e a~le. use PlateS {).o4~t: to :ep..-oduce
~e standarC c:-.:..-v-e. Fo= areas ....he...... eu--ves have not been publi.shed
by -:he Dist..-i~. use Plates '&.4~"--"........p:,.........."", to devel.cp a suix-
able intensi -::y-au..--ation CI:--ve.
4. Oe~~e "en, the coe:=ic:ient 0: :uno:=, asing '":he :"'.mo:= coe==i-
ci=t c:-.:..-ve which c:o::=esponds as closely as possible ",i~ ,=-"e soil.
ccve= type and devel.op:llen": of the cL-a.i:1age a..-ea. S=da.--d c:-.:..-ves
{PJ;a~.5;;l.o."""'~"':~ have been developed by '=-'le Dist..-iC':
for ~e ~n case of 1:--::'= ~dsc..ping type cove::. Whe..-e ~ese
cu..-ves a...... :1ot applicacle, c:-.:..-ves may be developed us:.:.g Plates
1>.:5' S-"'OlJ~~a.
c.
5. Oe'Ce-~e "A", 'the a.=ea of 'the subarea in ac:=es.
,:.
6_ =pute Q - CIA f= the sub=.....
7. l\eaSU-.... the len......h of nOW' to the poi.:lt of i;:.:;10W' of the next sci>-
a..--e.a d~:m:.. De.~e.=i:1e ~"le ve~oc::..~ 0: flow iD ':.."l:is =each ::0=
~e peak Q in ":be -:ype of conveyance bei=>C; c::=ide=ed (na=--al
QaIme.l, s-:=eet:., p:i~, 0= open c:ha.m1el) I u.si=1; ~"le -:a:c.li.nq rids =
Pl.a.~.rC:~~
Using 'tile :each le:1q-...h a-~d veloc::..--:y de'1:p-,; ::lee. above, ca1l?'.:-:e -:."1e
_Avel t:.i:ne, anc ac.:. -:his ~e t:.O ":..."1e -:.:.:ne 0: ccnce.."'1-:=a::.ic: ::0:- ~e
p:::-eviot:S suba:ea ':.0 d.e~e.:-....:...~e a n~ ":i::1e 0: co:1ce::=aci=.
s. Ca.lc:'.llAo:.e Q :0= -=he :leV S".:Zarea, usi:lg so:eps 3 ~""'l--ough 6 a..,6 -=.."le
Dew -:.:.me 0: C'O:"1Ce:l':.-.-z:::..O:1.... De-~-';:'J.e "Q'O", ":..~e peak Q :0= all 5"..:-'--
=el>S ='...=uta...-y ":0 ,=-"e syste:n to -:r~ ?O:..::t :.y a<i~g Q :0= -::."e
Dew sQarea ':::l t."le s'=:~a::.ic:1 0: Q =o~ all .:?s-:=eam s\:ba--e.a.s.. De-:.e:-
c....'"1e ":..~e 't.iJne 0: CQ:lce...,':.-.-a -:..icn ~c= ~e :lex-:. ~~a:ea dcwns=ea: ~~;
S~p i.. Con':i:1ue -~''''U.:lg d~ea: i:l si:..ila= :a.shi.o:l t:.."1=.l a
ju..,:-:.ion ..."i-:.~ a a-:e:2.l c.:ai:l is =eac""1ec:..
RCFC a weD
METHOD
r\ATIONAL
HYDROLOGY };!ANUAL
iNSTRUCTIONS
\""
r
.,
01 .-=-
. __I _ -'
: \ 0: - '.
:...:.,
~'r::
':.
"
....c.:
F
~,
- 70~
Ir~{
../I .-
I, /-:..
I{~r~
- - tl~'.;
',,~
10 ~
~:i
I
Il~
II..
11 :~
II
II
I
-'
-'
(
9. SUt:-"O a": -:.."e uP?"=' e..,d 0:: ":he la":e=al =c. -:able i-:s Q a",..-n ":0 -:."e
j=c--::.on ...i":h -:."e, =:...., l:....,e. us:"'.,.. -:.'le :ne":hoC.s ou~:....,ed ;; ":he
?:'e.......ious s~eps..
10. C=pu-:.e -:."e pea;: Q ..": -:.."e junc--::'or.. :,e<:~, ':'", 1" cc=="spond <:0
":he =~UUl--y a...-e.. ...i<;;h -:.."e 10nge= ':i::le ot eoncen=..--::.on. u>d Qs,
TD' III co::espond t:.O ":he =,~"Ul-ry a..-e.. vi<;;h <;;he shc~ tiJne ot
CC:1cer.':..~--::'= llIld Qp. ':p co::=espond -:0 -:.."e pea;: Q llIla -;:i:lle 0::
ccnce.:::':.:'a:ccn..
... 1= -:."e =D>uta.--y o.=eas have -:."e same -;:i:lle 0:: co:>c==..--::.o:"..
-:.."e =D>uUl-'"j' Q's are addea ~'=c-..ly -:0 ol:>=i:l ":he combined
peaX Q.
Q?
"' QA
. Qa
M _
-p
TA
TB
-
b. r= '::he =D>u"Ca-"j' o.=eas have c -=::e..-e": tiJnes 0: =cen=a~cn.
<;;he soaUe: 0: ":he =,~u-:z...'"j' Q's ~ be c=ec:::ea ilS ::ollo<oiS:
(1) The usual case :is ...he..-e -:.."e =D>uta.-ry a:u vi<;;h '::he 10:>-
ge: o;:iJ:>e c:: ccncer.':..-a~cn haS ":!ie la--;e: Q. I:l -"is c,.se.
-:."e smalJ.e: Q :is cc=eC":ed 'r1y a ::a--::'o 0:: '::he in=.s:i~es
and added t:.O <;;he 1=ge: Q -:0 ol:l-:ai=l -:.."e cc:::ined peak Q.
The -:abl.inC; :is tiler. cont:inued dO\iT".s':..-eam us:i:lC; <;;he 10:'19e:
-:;ime 0: CC::1cen _ACOn.
Q? - Q]. + ~ ""-- M "' -
^ -? ';'n.
;'3,
(2) !:l SCXlle c,.ses. ":he =:.;u-:z...-y a..-ea ",:i<;;h -:.."e sho:-"Oe: -;:i:lle
ct =cer.=a~c::. has -:......e :..a:ge= Q. !:l -::-.i.s case. -:......e
=11e: Q :is cc=c':.ed ':Jy a :a-:io 0:: tile tiJnes c:: cc::>cer.-
_a~on and ..dded -:0 -:......e la--;e= Q ':.0 ol:l-';- ':.....e ,"~~:i:led
pea:.<. Q. The =",line; :is -:......en ccn-;i."lued dcr-=":ea::> ..:sine;
-:he sho:-...e: -::--ua c: conce::.":--a -=i.c:l.
Q?
Q;;
+
~
-
.;.:;
':1.
M
-?
-s
"'
"'
\
RCFC a weD
RAT\ONAL METHOD
INSTRUCTIONS
\1"
HYDROLOGY MANUAL
1
~T
I~..
~'r
i!F.'
.I~~z
,..'
.~.:~.
~.
Ifi~'
~"
P
.~~~
I~.;;;,
:,'"
--.
-..,
.:...
~~:
I~i
-
..-
~
:,..~
I.~ )
_.
I~G
_.w
v,
If~
".:'"
.
It'''t:; .
~.., r'..
.r.~
.,i.,
If~
:~
II"~
II ~
I.
I,
Il
~
Tc'
- 100
L
-
FlOOD 90
80
_900
70
800
700 60
c
r ..
t 600 i
p--;
.~ ~
.. ..
- 400 ~
c: _
g L350 :
~ "
c c:
E
C 300
c:
-
0
- Z50
~r
~E
c: ZOO
..
...l
150
100
50
40
=5
30
Z5
e ZO
19
- 18
-~ 17
- 16
c: 15
~ 14
c
~ 13
c:
gvlZ '2.)
II
-
c
.. 9
!
~ 8
7
6
5
_4
RCFC So weD
LIMITATIONS:
,
L Maximum length = 1000
2.. Maximum aree = 10 Acres
-::.
<
-
-
..
~ J:L
u
500
400
300
ZOO
lI:: ..
- "
00 .2
c: .
C -
o ..
... a. 100
_ ,g 80
~-a ~
.. _ .0
E coo.. 30
o ~
~ c ; ZO
(I) .. - ~
______ ; ~ ;c 1_0............
----.::. ! -e I -
~,;6 '(i)"
3'
unOey~.~~r - Z .
Good -- :~
Undeveloped +0 -: ~eO
FaIr Co_ I . - .6
=~.~
Undeveloped -F= ~ '2.
PoClr Co_ 5 F- .Z
(1/4 Acre) ..
Commercia.. .
(PClVI:S1 g
/ ~
-
K
c
KEY
- T'
L-tt-\c-;(- c
\
Tc
-
:5
6
..
-
u
,<
....
"
EXAMPLE':
(I) L =550" H =5.0~ K = Single Fomily(l/4 Ac:..) 35
Development, Tc = IZ_6 min.
{Zl L =550', H =5.0', K = CClmmercicl
DevelClpmen! , Tc = 9.7 inin.
7
-
-
"-
."'-
V
8
9
>
..
c
10
>-
E
c
~
Reference: 9ibliClQlOphy item No. 35.
~
14 ,~
153:
16~~
17 E
IS -=
19..Ju
,f--
ZO ..,.
c
o
c
~
c:
..
u
c:
o
Z5
30
40
TIME OF CONCENTRATION
FOR ,INITIAL SUBAREA \'b
}-JYDHOLDGY !'11ANUAL
,
~
.. .. -
I
I
c::
:::l
o
:I:
c::
W
0..
(j)
W
:I:
U
Z
-
I
>-
I-
-
(j)
i "\Z
W
I-
Z
I
I
I
I
.....l
.....l
<1
U-
Z
-
<1
0::
i
I
I,
I
I
I
I
~
,
,
:
v
.
~
-
o
~
.
.
.
--
~-
--
..---*
-.-..-
__r
..",.---
_..--~
----...
...-....-
...----
----
........
-...---
-----
a" ...
-----
----.
--_...-
\
{
---
-
.
.
-----
-----
........ ..
-----
..---..
----..
...... ..
. .
...----
-----
........--
-----
.......-
-----
........ ..
.......- ...
......---
. .
-----
...---
.......--
_..-.,..~
---.....
. .
----
..
.
o
,
~
...--..-
....---
.' .
-----
.
-
--
-
...... ..
-----
-----
........",
-----
~
-----
----...
.......-
--....-
~~
-----
-----
-----
.....--"
-----
--..--
..."",..--
"
.
-
.
. .
,,'
\ Q;-
...---
""..---
........ ..
_...---
..--.,...,.
-----
....... ..
--_..-
......--
...... ..
-----
-....-
..----
....... ..
...----
.--"-
...----
-..---
..----
-
-
~
.. ......
~
-
.
-
.
.
~
.
o .-
V .-
. --
~
.
-
- .
. --
o --
o
-_....-
...-....--
........ ..
..-......
""..-....
...----
--.......
. .,
...----
-
.... ....
..-..-"
---"'.
-----
........ ..
-----
-
.
o
-'
~
..----
...--"""
........ ..
-----
....--..
.--_...
........ ..
-----
.....--'"
...----
...-.. ......
...",..-
.. ......
........--
-----
......-.
.... .
.........-
....-...-
.
-'
f,~
........
...,......-....
......
--.......-
.........
.........
""'........
.....-..
.
--
..
~;
..........
----.
-----
....-...
-----
<'
V
.
<'
z
.
- --
V --
Z --
~
o
- .
. --
~ --
....-..-
--.......-
...... .
.............
.----
..........
, . .
..--...-
...........
.----
........ ..
..----
.----
.....--
...... .
...----
.........-
-.........
.....-....
........--
........ ..
-----
...--..-
-_...-
...... ..
-----
-
-
~
.
. .'
-----
---..
.......-.
........ ..
...-..-
...-....-
...... ..
-----
---...
.... .
-----
.......--
-......--
...... ..
-----
.....--
.........
.-..-.
...-_.
..-...-
_..---
..
.
o
-'
-
.... ....
-----
. .,
-----
........ ..
........---
.......-'"
..----
........
.........
(
r
o~
--
-~
!,~
oZ
....--..
.-.........
-----
.....-..
-----
........-
..-.......-
.-....-
................
. -
J-
~r
u.
wo
. 0
--
-'
.
'V
_0
.x
_V
_r
. .
!,"
iJ
.
. --
V --
.:or -..
-
~
o
- .
. --
. --
o
.-.....
-.........
.......r
....-..-
.....-"'"
.........
........
----..
-..--
....-_..
--....-
.......--
....... ..
-----
.-..--
-----
-' .
-----
-
~
~
...... ..
...... ..
-----
...... .
---""-
........ ..
-----
-----
........ ..
.--...-
-----
.. ......
......--
.....---
--....-
.....-...
......---
........ ..
-......
.......-...
.... ..
-----
......-..
.---..
....-....
----..
.... ....
--
...----
.--.....
~
.
o
-'
~
-----
...... ..
., .
-----
. .
""----
...---....
.........-
............
...........
..----
.-..-
-----
.-.....
----..
z
o~
.....--..
-----
\
...___r
----..
-----
--
--
.~
. Z
~-
o.
t
"'_.......
-_...-
... .."
-----
-
.
..
c
--
--
_0
--"....
...........
........ ..
....---
.......-.
-....--
---
....--..
.......--
--..-.
........ ..
.....flol-""
-........
....... ..
-----
.........
.......--
....... ..
-----
., .
-----
.. ......
---...-
.~.... _..~.- ..~..-.. ~-_...~
~......__ ___.. .c.-- ~-....
.
.
o
-'
-
'i
-
"
o
- & ....--- .--_. .~...-
. .~ -~~-- ..--- ~~...
- -- ......... .. .
.. ----- ----- -----
----- ----
-----
......... ...... .. .......... ........
..
~
o
-'
-
.
.
=
0-
--
..__r _--.- _____ ___.- ---.- _r-.O ~-.--
_____ _____ __N_N ~-~_... ....... .----
.
-~
.x
.-
0>
RCFC a WCD
l'llA l'lUAL
STANDARD l,.
INTENSITY - DURATION
CURVES DATA
PLAT:: 0_4.1(4016) '^
H'fDRC'LDGY
-:?
I
I
I
I
~
I
I
~
I
I
I
"
I
I
[
, '
I
11
I:
'...
I'
-
J
,
:~
\:
.~
.h.f>".?..(~. '"
~=
- :: L., I:
Q Q;J !Ie
- I'<!J'i'
:: "'j',.'\
c: [i it
:: U --"T
< r..; I
'-'C:
,... "-
N
I p-c
, );f
'. ~~-.
-'
~-
..
I~'
I
I
I
I
I
I
I
I
I
.'''',
.J. .
I
I
I
. '.~
I
~
-11
I
I,
I,
I
c
D-::'-"./~
. .. '.".
~ 'ft:",
--(:,. 1" -# .:1-:\',
,,-
.~ '<.
:: 'I,
-~ - "'II,
- 1";11.
: ~ ~~ ;.i~
I <: I ""\
= :I"i
c... ::::;
c: - ~
<:: ;:. I il
W c:: II
~ Co. :!
o
o
.
.
, .
"
.
'.
:.;"1.
:.-
r~'
"
<
;,.-:.. 0'
",
,
,
~
~
~..
',".
, .'
fl "':-'...
. --. .. ~ .....
:t" -,
'f : ;:. ~
. .'. .~' ~ ,....
..-. ~l.". : -"
y... . ~ ..- . -- ~l'
~ ;r'~ ~r-: r-';;: ~
~ :,.:. '\"":: :'::"~:.
!ooo<I ,~'; ;, 'f , ; :'<, 1-+
r", .1_..z..,. , . ;
\I.J. '.., ;--~)1' j~" ":;i (
~ ..T"':'::'~iJ':I;' :i'~:~,,~
~ -', " '1<\ '" ,:! ';
~ '- ~~/./;/ .~~ ;~.~:
;'.
,:. .:~~;~}~
';7:" . .~~.
, .,
.~
....10\
:.. I
...... '!: :-.
"-'-';~J
. :...r....:.._..
1
I
I
1
I
I
,
I
I
I
I
1'\
1'\
Il
I ~,
I"~
I
11
If
II
~
,... I
I - ~-,
1''' '
i\~'
,- '.
.,,;
_. '
"
'0
-
,
$,
':0"\
C~\
\'\ 12.
~ ....
Ii:
1"71
;::-:
1-,
1--
?:
~: J
I':;
I;..'
..,
I.~'
I':'.'
-
I'...
:~
I'';.
==1
1,-
: !
! -;
11
_J
I
I: .~
: .
. :.i
111
-t i
I'l
L ~.~
It ;
....
1[;.;
, "
J
It
It
II~
If
~
) .5
o
9
.8
.7
, ,
.6
" ,
1111 j
, "
, I
, ,
, ,
I I
I
" ,
, ,
, I
,
,
,
,
.4
.3
.2
.I
)
o
o
,'.#:
~,
, I
" ,.
11#: I
, ,
I
II
, ,
"
, ,
,
, ,
,'~
I ,
,
,
, ,
, ,
I
,
,
, ,
, ,
1.1
" I
I I II
1111
t: 1 I I' I i I
" ,
, ,
, ,
" ,
" ,
'I I!
, ,
, ,
,.11
" ,
,
III I 1 I I I I' I
It' I I 1 I I I I I
I III I I I I 1
"I I I I I I
I! I" 1 I I ! I I
I '1 I I I j I 1 I I I
1 I I I I j I I 11111
I I I \ t I I I I I I I
I 1'1 I I' j I I.
I I I I I I I I! I
I I I I I \ 1 I I I \ I
1 It' I L 1 I I I
, ,
"
, ,
I! II I
,
'"
, ,
,
I I 1'1
I I I I
,
" ,
, ,
, ,
1'1'1 I t
" ,
, ,
,
, ,
" '
I: I
, ,
" ,
I ( ~
" ,
" ,
,
, ,
I I
"
, ,
, ,
, ,
, ,
I
, ,
, ,
" ,
,"
" '
, ,
, '
z
,
, ,
I; I I
,
'I I I
, '
, ,
,
, "
I I I I
, "
,
"
, ,
t I:
I II I I
t I II!
1 I I:
t I I t I I I I I I
1 I 1'1 I i I
1 I I I I I I I
, ,
, ,
,
, ,
, ,
1\ 1 I
" ,
I; I I
'"
, ,
, ,
, ,
, ,
, ,
, ,
" ,
, ,
,I I I I
, ,
I I I 1
, ,
1 I I I
, ,
, ,
, ,
, '
, I
, ,
, ,
, ,
, ,
, ,
" ,
111 I
I I:
, I
, ,
, ,
" Ill'
, "
" ,
, ,
I. I I I I'
I t I I;
, "
, I I. I
, ,
,
,
, ,
,
, ,
"
, ,
, ,
I \ I 11
I; I I
I
,
, ,
" ,
I I 1 I I \
, ,
'"
It I t
I I I I
I I: 1
I t I I
I 1'1
I I I I
, ,
, ,
,
, ,
I I"
I
,
, ,
" ,
, ,
I' ,
" ,
, ,
, ,
,
. l' t
, ,
, ,
, ,
,
" ,
I I 1 I
, ,
" ,
I I I 1
, '
" ,
,
" ,
, ,
,
, "
I' I I
, ,
, ,
, ,
'I j j
"NO USE OR
1 I I I
OEVELOPWENT TYPE : : ' :
I' I I;' I I I
! r 1 t I I;
I t I' I:
"I I I' t
I I 1 I
I I I I.
I \ I 1 1'1
I 1,1 I
:, I': I
l' ",
3
1111~1
, ,
I'
, ,
, ,
"
,
" ,
, ,
"
, ,
, I
" ,
I I I r'
I I I I
I I I I
, ,
,
,
I I:
" ,
: I I
,
,
,
, ,
, ,
, ,
, ,
"
, ,
" ,
I 1.1
" ,
I $ I I
" ,
,
I 1"
" ,
" ,
,
, I
, ;
, :
, ,
, I
, ,
,
, ,
, ,
I
, ,
" ,
I' ,
'"
I j I' \
, ,
(I I I I I
", I I, I
I I II I :
1\ 1 I I t I
11 I,'l "
I t I I I I I 11'
I t I 1 I I I I I
I I I I I I I " I
111 I' I
, '
"
, ,
" ,
I I I I 1 '"
" ,
! I I I I
I I I j
,
" I
" ,
: ,
, ,
: 1 I I
,
,
" ,
I I)
I 11 I:
'I I I 1 I I
, ,
, ,
I I! I!
" ,
'I l l I 1
, ,
: RAINFALL
INTENSITY
" ,
2
I I j
I 1'1
I I I I
'Ill
I. I I;
I j' I'
" ,
" ,
3
"I j
, ,
I I I I
, ,
" ,
\ I \ I
, , ,
,
, ,
,
: I I
,.,
, '
,
I I I I'
I
, ,
, I
, ,
, ,
, ,
, ,
, ,
,
" ,
, ,
,
, ,
, ,
; I I
I
,
I
,
, ,
" I
, :
" ,
" ,
'"
, ,
,
I I I;
, "
" I
, ,
, ,
,
" ,
,
, "
, ,
, ,
, ,
, ,
"
"
..
;,
, ,
"I!
, ,
, ,
, ,
, ,
I I j I 141-'
,
I 1'1
, ,
, ,
, ,
, '
,
, '
,
, ,
, ,
, ,
11 I I
LO
,
'I' .
, '
,
, ,
" ,
.9
, ,
, ,
'I I \ I I
" '
I I I I
" ,
" ,
If' I
I;' I I
I I I I : I"
" ,
I I I I
"I I
I I I I
" ,
" ,
.8
.7
ll~
~i-
~~
Zr-
~~
;g
~J
zi: 5
~E'
U'-
-l..
, t:~~'
w:
0,
u'
.-'-1
.6
4
,
,
, ,
" ,
,
I I:
" ,
,
.3
,
I
,
, ,
",i
" ,
" ,
" ,
, ,
1'1 I I
, ,
" ,
I I I I i
,
" ,
, ,
" ,
I I:
,
, ,
2
COEFF1CIENT
SOIL GROUP-C
COVER TYPE -URSAN LANDSCAPING
AMC-Ol"
(RUNOFF' INDEX NUMBER
, ,
I I I ",;:,
'I I I I
" ,
" ,
, ,
I I I I
, ,
, ,
, '
: I I I I I
1'1 I' I I I
~'
" ,
" ,
" ,
, ,
t I' 'I I'
I I I I I I I f I
I I j I " I I I
,:! j I I I I I 1 I
I I I I' I I I
I I \ I I I (I j
I I I I I I' I I I 1 I
I I j j I I I 'I
I j I II! I I I I \
'I I I I: I I I I"
I I I It' I I t I I
I ! I I I I I I \
I I I I I I I I I I I
1 I I I I I I I I I
11 I I I I I I lIt
1'1 I I f I
I I ", I I " I
I I I I I I I, I
I 1 1 I I ~
I I I I I
1 I I I! I
I I I I I
1 II I I
" I I I
I I' I: I
11 I I I I
, '
I I I I
,
, '
I I I f I
I I I I I
, ,
I'
It t I
I I I I
,
I! t I
, ,
, ,
, ,
, ,
,
, I
, I
,
,
" ,
"
'I I I
,
,
, ,
,
ill
, ,
,
I
, ,
, ,
, ,
, ,
, I
,
"
,
,
,
,
,
, ,
, ,
, ,
I" )
" ,
, '
, ,
, ,
, ,
,
,
, ,
, ,
" ,
I;' I
" I
,
, ,
, ,
, ,
, ,
, ,
, ,
" I
" ,
" ,
" ,
I ,: I
I I! I I
II I I
"
1 III
I I I I
" ,
" '
(1'1
, ,
,I 1'1 I" t
11 I l' I I I
I I I I 1 I!
I I I' "1 I
I I 1 I';' I
I I I t I I I
I II I I I:!
I I I I I I I
I 'I I ~ I .
I I I I I : I I
t I \ I ,t I
I \ I I 11
11 I I I) I I
,I I I I I \ 1
1 I J ) I
" ,
" ,
" ,
" ,
1111
t 1 I I I
t I I I I
I I I I
,
,
, ,
, ,
, I ~ ,I!
, ,
IiI I
; I I
: J I
" ,
" ,
, ,
, ,
, '
, ,
I; I
It' I
I t III
I: I
, I
, ,
, ,
" '
, ,
; \ 1
, ,
" ,
,
j'l'
I I I;
, ,
" ,
I
It: I
,
I I I I I j 11' I I
I I:' !
, ,
I ",
, ,
,'111
" ,
, ,
, ,
I I I I 1
,
, ,
I I I'
,
,
" ,
" ,
" '
I I! I I: I I
" ,
111' I I
It'! " I
,
; I I I :, I I
I I I 1 I I I
I! I I I I 1
III j t
I I I I! j I;
111 I
, ,
,
, ,
, ,
I'
I) 1,1
I I I I
" ,
,
, ,
, ,
'I I I
I I I I I I'
w CD
,
" ,
RCFC
a
, ,
, ,
HYDROLOGY
I r II! 1 I I 7"'"1 I , I
MANUAL
'1 ,j I" 1 1 ! i1 1
I I I I
RUNOFF
CURVES
, ,
" ,
, ,
,
IN
69)
" ,
" ,
,
, I
INCHES
PER
HOUR
4
5
\t(;
o
I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/14/95
Version 3.3
------------------------------------------------------------------------
100 YR HYDROLOGIC CALC.
BASIN "A" TRACT NO. 23143-3 CROWNE HILL
FILE:23143A
6/12/95
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula; CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water conservation District
1978 hydrology manual
Storm event (year) = : 100.00 Antecedent Moisture condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 1.000 to point/station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 700.000(Ft.)
Top (of initial area) elevation = 1304.000(Ft.)
Bottom (of initial area) elevation = l298.000(Ft.)
Difference in elevation = 6.000(Ft.)
Slope = 0.00857 s.(percent)= 0.86
TC = k(0.390)*[(length^3)/(e1evation change)]^0.2
Initial area time of boncentration = 13.883 min.
Rainfall intensity = I 3.131(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.844
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 9.251(CFS)
Total initial stream area = 3.500(Ac.)
Pervious area fraction = 0.500
\a....
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
Process from Point/station 2.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
3.000
Top of street segment elevation = 1298.000(Ft.)
End of street segment elevation = 1283.000(Ft.)
Length of street segment = 930.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 11.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 14.141(CFS)
Depth of flow = 0.492(Ft.), Average velocity = 4.079(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 18.275(Ft.)
Flow velocity = 4.08(Ft/s)
Travel time = 3.80'min. TC = 17.68 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.837
Decimal fraction soil'group A = 0.000
Decimal fraction soil: group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMCj2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.741(In/Hr) for a 100.0 year storm
Subarea runoff = '8.492(CFS) for 3.700(Ac.)
Total runoff = 17~743(CFS) Total area = 7.200(Ac.)
Street flow at end of' street = 17.743(CFS)
Half street flow at epd of street = 17.743(CFS)
Depth of flow = 0.532(Ft.), Average velocity = 4. 163 (Ft/s)
warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property = 1.60(Ft.)
Flow width (from curb towards crown)= 20.271(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 3.000 to Point/Station 4.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1283.000(Ft.)
End of street segment elevation = 1274.000(Ft.)
Length of street segment = 600.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1]' side(s) of the street
Distance from curb to; property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.560(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetf10w hydraulics' at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 4.53(Ft/s)
Travel time = 2.21 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.834
Decimal fraction soil group A = 0.000
Decimal fraction soil,group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.570(In/Hr) for a 100.0 year storm
Subarea runoff = 11.353(CFS) for 5.300(Ac.)
Total runoff = 29~096(CFS) Total area = 12.500(Ac.)
Street flow at end of' street = 29.096(CFS)
Half street flow at end of street = 29.096(CFS)
Depth of flow = 0.592(Ft.), Average velocity =
warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Flow width (from curb towards crown)= 20.000(Ft.)
24.273(CFS)
4.530(Ft/s)
2.98(Ft.)
TC =
19.89
min.
4.741(Ft/s)
4.61(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1268.00(Ft.)
Downstream point/station elevation = l230.00(Ft.)
Pipe length = 880.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Re~ired pipe flow = 29.096(CFS)
Given pipe size = ; 24.00(In.)
Calculated individual pipe flow = 29.096(CFS)
Normal flow depth in pipe = 13.66(In.)
Flow top width inside, pipe = 23.77(In.)
critical Depth = 22.18(In.)
Pipe flow velocity = 15.75(Ft/s)
Travel time through pipe = 0.93 min.
Time of concentration' (TC) = 20.82 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to point/Station 10.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 12.500(AC.)
Runoff from this stream = 29.096(CFS)
~\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Time of concentrationi=
Rainfall intensity =
20.82 min.
2.506(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 8.000 to Point/station 9.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 880.000(Ft.)
Top (of initial area) elevation = l274.000(Ft.)
Bottom (of initial area) elevation = 1235.000(Ft.)
Difference in elevation = 39.000(Ft.)
Slope = 0.04432 s(percent)= 4.43
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 10.953 min.
Rainfall intensity = 3.567(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.850
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil, group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC; 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 19.411(CFS)
Total initial stream area = 6.400(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 9.000 to Point/station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1231.00(Ft.)
Downstream point/station elevation = 1230.00(Ft.)
Pipe length = 50.00(Ft.) Manning's N = 0.013
No. of pipes = 1 ReqUired pipe flow = 19.411(CFS)
Given pipe size = 18.00(In.)
NOTE: Normal flow is pressure flow in user
The approximate hydraulic grade line above
3.5l7(Ft.) at the headworks or inlet
Pipe friction loss =; 1.707(Ft.)
Minor friction loss k 2.810(Ft.) K-factor =
Pipe flow velocity = . 10.98(Ft/s)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 11.03 min.
selected pipe size.
the pipe invert is
of the pipets)
1.50
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/St~tion 9.000 to Point/station '10.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 1 in normal stream number 2
Stream flow area = . 6.400(Ac.)
Runoff from this stream = 19.411(CFS)
Time of concentration' = 11.03 min.
Rainfall intensity = 3.554(In/Hr)
7Y
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from Point/station 5.000 to point/Station
**** INITIAL AREA EVALUATION ****
6.000
Initial area flow distance = 500.000(Ft.)
Top (of initial area). elevation = 1280.000(Ft.)
Bottom (of initial area) elevation = 1273.500(Ft.)
Difference in elevation = 6.500(Ft.)
Slope = 0.01300 s(percent)= 1.30
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 11.165 min.
Rainfall intensity = 3.530(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.850
Decimal fraction soil,group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil, group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 8.398(CFS)
Total initial stream area = 2.800(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 6.000 to Point/Station 7.000
**** STREET FLOW TRAvEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment\elevation = 1273.500(Ft.)
End of street segment'elevation = 1242.000(Ft.)
Length of street segment = 900.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to'property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning'S N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning'S N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 12.598(CFS)
Depth of flow = 0.414(Ft.), Average velocity = 5.116(Ft/s)
Streetflow hydraulics, at midpoint of street travel:
Halfstreet flow width'= 16.556(Ft.)
Flow velocity = 5.12(Ft/s)
Travel time = 2.93'min. TC = 14.10 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.844
Decimal fraction soil group A = 0.000
Decimal fraction soil' group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC. 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500 ~~
Rainfall intensity = 3.105(In/Hr) for a 100.0 year storm
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Subarea runoff = 7.335(CFS) for 2.800(Ac.)
Total runoff = 15.734(CFS) Total area = 5.600(AC.)
Street flow at end of street = 15.734(CFS)
Half street flow at end of street = 15.734(CFS)
Depth of flow = 0.440(Ft.), Average velocity = 5.398(Ft/s)
Flow width (from curb; towards crown)= 18.091(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 7.000 to Point/Station 10.000
**** PIPEFLOW~RAVEL TIME (User specified size) ****
Upstream point/station elevation = 1231.00(Ft.)
Downstream point/station elevation = 1230.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.015
No. of pipes = 1 Required pipe flow = 15.734(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 15.734(CFS)
Normal flow depth in pipe = 13.97(In.)
Flow top width inside pipe = 15.01(In.)
critical Depth = 17~03(In.)
Pipe flow velocity = 10.70(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration: (TC) = 14.14 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 7.000 to Point/station 10.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 5.600(Ac.)
Runoff from this stream = 15.734(CFS)
Time of concentration'= 14.14 min.
Rainfall intensity =' 3. 100 (In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
3
Largest
Qp=
29.096 20L82
19.411 11.03
15.734 14.14
stream flow has longer
29.096 + sum of
Qb Ia/Ib
19.411 * ' 0.705 =
Qb Ia/Ib
15.734 * '0.808 =
55.500
12.719
2.506
3.554
3.100
time of concentration
13.685
Qp =
Total of 3 streams to confluence:
Flow rates before confluence point:
29.096 19.411 15.734
Area of streams before confluence:
12.500 6.400 5.600
Results of confluence:
Total flow rate = 55.500(CFS)
Time of concentration. = 20.822 min.
~
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
I
I
Effective stream area after confluence =
24.500 (AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1230.00(Ft.)
Downstream point/station elevation = 1226.50(Ft.)
Pipe length = 150.00(Ft.) Manning's N = 0.013
No. of pipes ~ 1 Required pipe flow = 55.500(CFS)
Given pipe size = .36.00(In.)
Calculated individual pipe flow = 55.500(CFS)
Normal flow depth in pipe = 18.94(In.)
Flow top width inside pipe = 35.95(In.)
critical Depth = 29.00(In.)
Pipe flow velocity = 14.72(Ft/s)
Travel time through pipe = 0.17 min.
Time of concentration (TC) = 20.99 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/station 18.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number~ 1
Stream flow area = 24.500(Ac.)
Runoff from this stream = 55.500(CFS)
Time of concentration'= 20.99 min.
Rainfall intensity =' 2.495(In/Hr)
Program is now startipg with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 11.000 to Point/Station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 780.000(Ft.)
Top (of initial area) elevation = l263.000(Ft.)
Bottom (of initial area) elevation = l246.500(Ft.)
Difference in elevation = 16.500(Ft.)
Slope = 0.02115 s(percent)= 2.12
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 12.101 min.
Rainfall intensity = ' 3.377(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.848
Decimal fraction soil. group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil: group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500: Impervious fraction = 0.500
Initial subarea runoff = 18.894(CFS)
Total initial stream area = 6.600(AC.)
Pervious area fraction = 0.500
~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from Point/Station 12.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
13 . 000
Top of street segment elevation = l246.500(Ft.)
End of street segment elevation = 1233.000(Ft.)
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [ll! siders) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.583(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics\at midpoint of street travel:
Halfstreet flow width: = 20.000(Ft.)
Flow velocity = 4.56(Ft/s)
Travel time = 3. 48~ min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.841
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC: 2) = 75.00
Pervious area fractioh = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.939(In/Hr) for a 100.0 year storm
Subarea runoff = ~3.842(CFS) for 5.600(Ac.)
Total runoff = 32.736(CFS) Total area = 12.200(Ac.)
street flow at end of' street = 32.736(CFS)
Half street flow at end of street = 32.736(CFS)
Depth of flow = 0.620(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Flow width (from curb towards crown)= 20.000(Ft.)
26.910(CFS)
4.556 (Ft/s)
4.14(Ft.)
TC =
15.58
min.
4.786(Ft/s)
6.00(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 13.000 to point/station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.50(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 32.736(CFS)
Given pipe size = ' 18.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size. ~
The approximate hydra~lic grade line above the pipe invert is
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
9.905(Ft.) at the headworks or inlet of the pipets)
Pipe friction loss = 2.913(Ft.)
Minor friction loss ~ 7.993(Ft.) K-factor = 1.50
Pipe flow velocity = 18.52(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 15.60 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 13.000 to Point/station 17.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 1
Stream flow area = ,12.200(Ac.)
Runoff from this stream = 32.736(CFS)
Time of concentration = 15.60 min.
Rainfall intensity = 2.937(In/Hr)
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 14.000 to point/station 15.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 480.000(Ft.)
Top (of initial area) elevation = 1258.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 11.500(Ft.)
Slope = 0.02396 s(percent)= 2.40
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 9.720 min.
Rainfall intensity = 3.810(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.853
Decimal fraction soiligroup A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC.2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 4.874(CFS)
Total initial stream area = l.500(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 15.000 to Point/Station 16.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
,
Top of street segment elevation = 1246.500(Ft.)
End of street segment elevation = l233.000(Ft.)
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1]' siders) of the street
Distance from curb to' property line = 10.000(Ft.)
Slope from curb to prpperty line (vjhz) = 0.020
Gutter width = 2.000(Ft.)
y
I
I
I
I
I
I
I
I
I
I
(
I
I
I
I
I
I
I
I
I
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 11.699(CFS)
Depth of flow = 0.460(Ft.), Average velocity = 3.571(Ft/s)
Streetflow hydraulics' at midpoint of street travel:
Halfstreet flow width = 19.230(Ft.)
Flow velocity = 3.57(Ft/s)
Travel time = 4.43:min. TC = 14.15 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.844
Decimal fraction soil, group A = 0.000
Decimal fraction soil' group B = 0.000
Decimal fraction soil group C = O~OOO
Decimal fraction soil,group D = 1.000
RI index for soil (AMC' 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.098(In/Hr) for a 100.0 year storm
Subarea runoff = 10.977(CFS) for 4.200(Ac.)
Total runoff = 15~852(CFS) Total area = 5.700(Ac.)
Street flow at end of street = 15.852(CFS)
Half street flow at end of street = 15.852(CFS)
Depth of flow = 0.496(Ft.), Average velocity = 3.968(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
i
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 16.000 to point/station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.50(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 15.852(CFS)
Given pipe size = : 18.00(In.)
Calculated individual pipe flow = 15.852(CFS)
Normal flow depth in pipe = 12.47(In.)
Flow top width inside pipe = l6.61(In.)
Critical Depth = 17,06(In.)
Pipe flow velocity =: 12.12(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 14.19 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 16.000 to Point/station 17.000
**** CONFLUENCE OF MI~OR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = I 5.700(Ac.)
Runoff from this stream = 15.852(CFS)
Time of concentration'= 14.19 min.
Rainfall intensity =: 3.093 (In/Hr)
Summary of stream data:
stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
116
TC
(min)
,.
I
I
I
I,
I
I
,.
I
,I,
I
il
I
I
.1
'I
I
,I
1\
1
2
Largest
QP =
32.736 15.60
15.852 14.19
stream flow has longer
32.736 + sum of
Qb Ia/Ib
15;852 * 0.949 =
47.784
2.937
3.093
time of concentration
15.048
Qp =
Total of 2 streams to confluence:
Flow rates before confluence point:
32.736 15.852
Area of streams before confluence:
12.200 5.700
Results of confluence:
Total flow rate = 47.784(CFS)
Time of concentration = 15.603 min.
Effective stream area after confluence =
17.900(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 17.000 to Point/station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1225.50(Ft.)
Downstream point/station elevation = 1224.00(Ft.)
Pipe length = 50.00(Ft.) Manning's N = 0.013
No. of pipes = 1 ReqUired pipe flow = 47.784(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 47.784(CFS)
Normal flow depth in pipe = 16.14(In.)
Flow top width inside pipe = 35.81(In.)
critical Depth = 27.03(In.)
Pipe flow velocity = 15.57(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 15.66 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 17.000 to point/station 18.000
**** CONFLUENCE OF MA~N STREAMS ****
The following data inside Main stream is listed:
In Main stream number~ 2
Stream flow area = 17.900(Ac.)
Runoff from this stream = 47.784(CFS)
Time of concentration'= 15.66 min.
Rainfall intensity = 2.931(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
Largest
Qp =
2.495
2.931
concentration
55.500 20.99
47.784 15.66
stream flow has longer time of
55.500 + sumiof
Qb Ia/Ib
,
~f\
,.
I
I
I
I
I
I
I
"
I
,t
'I
il
I.
I
'J
I
I
I
Qp =
47.784 *
96.167
0.851 =
40.667
Total of 2 main streams to confluence:
Flow rates before confluence point:
55.500 47.784
Area of streams before confluence:
24.500 17.900
Results of confluence:
Total flow rate = 96.167(CFS)
Time of concentration' = 20.991 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
Area averaged pervious area fraction(Ap) =
Area averaged RI index number = 75.0
42.400(Ac.)
42.40 (Ac.)
same area.
0.500
'}c?
I
I
II
I
,
I
I
I;
I'
'i,
i
II
I
I
,I
,I,
'I
I,
I
"
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/13/95
version 3.3
------------------------------------------------------------------------
100 YR. HYDROLOGIC CALC.
BASIN "B" TR NO. 23143-3 CROWNE HILL
FILE:23143B
5/12/95
*********
Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - SIN 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = ' 100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 31.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1224.000(Ft.)
Bottom (of initial area) elevation = l22l.000(Ft.)
Difference in elevation = 3.000(Ft.)
Slope = 0.01000 s(percent)= 1.00
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 9.592 min.
Rainfall intensity = 3.838(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.853
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.930(CFS)
Total initial stream area = 1.200(Ac.)
Pervious area fraction = 0.500
0;\
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
.
I
I
I
?
I
.
I
f
I
I
.
,
,
I
i
~
~
.
.
.
Process from Point/station 31.000 to point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
32.000
Top of street segment elevation = 122l.000(Ft.)
End of street segment elevation = 1220.500(Ft.)
Length of street segment = 600.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on (ll'side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.653(Ft.), Average velocity =
warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics' at midpoint of street travel:
Halfstreet flow width'= 20.000(Ft.)
Flow velocity = 1.21(Ft/s)
Travel time = 8.28:min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.837
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.725(In/Hr) for a 100.0 year storm
Subarea runoff = '7.526(CFS) for 3.300(Ac.)
Total runoff = 11.456(CFS) Total area = 4.500(Ac.)
street flow at end of street = 11.456(CFS)
Half street flow at end of street = ll.456(CFS)
Depth of flow = 0.698(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Flow width, (from curb, towards crown)= 20.000(Ft.)
9.333(CFS)
1.208(Ft/s)
7.66(Ft.)
TC =
17.87
min.
1.271(Ft/s)
9.88(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 32.000 to Point/station 36.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1215.00(Ft.)
Downstream point/station elevation = 1214.00(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 11.456(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 11.456(CFS)
Normal flow depth in pipe = 10.02(In.)
7~
I
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
Flow top width inside pipe = 17.88(In.)
critical Depth = 15.48(In.)
Pipe flow velocity = 11.33(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 17.92 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 36.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 4.500(Ac.)
Runoff from this stream = 11.456(CFS)
Time of concentration = 17.92 min.
Rainfall intensity = 2.72l(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/station 34.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 200.000(Ft.)
Top (of initial area) elevation = l224.000(Ft.)
Bottom (of initial area) eievation = l22l.000(Ft.)
Difference in elevation = 3.000(Ft.)
Slope = 0.01500 s(percent)= 1.50
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.521 min.
Rainfall intensity = 4.387(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.859
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil: group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 1.883(CFS)
Total initial stream area = 0.500(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = l22l.000(Ft.)
End of street segment elevation = l220.000(Ft.)
Length of street segment = 550.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to cross fall grade break = l8.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1]. siders) of the street
Distance from curb to! property line = 10.OOO(Ft.)
Slope from curb to property line (v/hz) = 0.020
~
I'
:1
I
I
I
I
I
I
I
I
i
I
I
I
I'
I
I
I
I
a
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.01S0
Manning's N from gutter to grade break = 0.01S0
Manning's N from grade break to crown = 0.01S0
Estimated mean flow rate at midpoint of street = 4.332(CFS)
Depth of flow = 0.464(Ft.), Average velocity = 1.288(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 19.493(Ft.)
Flow velocity = 1.29(Ft/s)
Travel time =- 7.12 min. TC = 14.64 min.
Adding area flow to street
SINGLE FAMILY (114 Acre Lot)
Runoff Coefficient = 0.843
Decimal fraction soil'group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = O.SOO
Rainfall intensity = 3.042(In/Hr) for a 100.0 year storm
Subarea runoff = 3.332(CFS) for 1.300(Ac.)
Total runoff = S.21S(CFS) Total area = 1.800(AC.)
Street flow at end of street = 5.215(CFS)
Half street flow at end of street = S.21S(CFS)
Depth of flow = 0.486(Ft.), Average velocity = 1.373(Ft/s)
Note: depth of flow exceeds top of street crown.
Flow width (from curb,towards crown)= 20.000(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 35.000 to Point/Station 36.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1215.00(Ft.)
Downstream point/station elevation = 1214.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 5.215(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 5.21S(CFS)
Normal flow depth in pipe = 6.42(In.)
Flow top width inside pipe = 17.24(In.)
Critical Depth = 10.56 (In.)
Pipe flow velocity = . 9.24(Ft/s)
Travel time through pipe = O.OS min.
Time of concentration' (Te) = 14.69 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 35.000 to Point/Station 36.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.800(Ac.)
Runoff from this stream = S.21S(CFS)
Time of concentration = 14.69 min.
Rainfall intensity = 3.036(In/Hr)
Summary of stream data:
7ft
I
I
I
I
I
I'
I
,I
I
I
I
I
I
I
I
I
I
I
I
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
( In/Hr)
1
2
Largest
Qp =
11.456 17.92
5.215 14.69
stream flow has longer
11. 456 + sum of
Qb Ia/Ib
5.215 * 0.897 =
16.132
2.721
3.036
time of concentration
4.676
QP =
Total of 2 main streams to confluence:
Flow rates before confluence point:
11.456 5.215
Area of streams before confluence:
4.500 1.800
Results of confluence:
Total flow rate = 16.132(CFS)
Time of concentration = 17.918 min.
Effective stream area: after confluence =
End of computations, ~otal study area =
The following figures may
be used for a unit hydrograph study of the
6.300(Ac.)
6.30 (Ac.)
same area.
Area averaged pervious area fraction (Ap) =
Area averaged RI index number = 75.0
0.500
/
"9
I
I
I
I
I
I'
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
Riverside county Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/13/95
version 3.3
------------------------------------------------------------------------
10 YR HYDROLOGIC CALC.
BASIN "B" TR 23143-3 CROWNE HILL
FILE:2314BB
6/12/95
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) =
10.00 Antecedent Moisture Condition = 2
0.550 (Inches)
1.400 (Inches)
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.900 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 20.000 to Point/Station 21.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 250.000(Ft.)
Top (of initial area) elevation = 1291.000(Ft.)
Bottom (of initial area) elevation = 1288.500(Ft.)
Difference in elevation = 2.S00(Ft.)
Slope = 0.01000 s(percent)= 1.00
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 8.917 min.
Rainfall intensity = 2.567 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.834
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 2.140(CFS)
Total initial stream area = 1.000(AC.)
Pervious area fraction = 0.500
~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
(
I
I
I
I
I
I
I
I
I
Process from point/Station 21.000 to point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
22.000
Top of street segment elevation = 1288.500(Ft.)
End of street segment elevation = 1282.500(Ft.)
Length of street segment = 500.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow 'is on [2] siders) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 5.992(CFS)
Depth of flow = 0.326(Ft.), Average velocity = 2.422(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Ha1fstreet flow width = 11.398(Ft.)
Flow velocity = 2.42(Ft/s)
Travel time = 3.44 min. TC = 12.36 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.823
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.145(In/Hr) for a 10.0 year storm
Subarea runoff = 6.355(CFS) for 3.600(Ac.)
Total runoff = 8.494(CFS) Total area = 4.600(Ac.)
street flow at end of street = 8.494(CFS)
Half street flow at end of street = 4.247(CFS)
Depth of flow = 0.357(Ft.), Average velocity = 2.627(Ft/s)
Flow width (from curb towards crown)= l3.2l5(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 22.000 to Point/station 23.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1282.500(Ft.)
End of street segment elevation = 1250.000(Ft.)
Length of street segment. 750.000 (Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = ll.OOO(Ft.)
Slope from curb to property line (v/hz) = 0.020 ~'\
Gutter width = 2.000(Ft.) J
Gutter hike from flowline = 2.000(In.)
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
I
I
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 9.879(CFS)
Depth of flow =0.387(Ft.), Average velocity = 5.442(Ftjs)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 12.995(Ft.)
Flow velocity = 5.44(Ftjs)
Travel time = 2.30 min. TC = 14.66 min.
Adding area flow to street
SINGLE FAMILY-(lj4 Acre Lot)
Runoff Coefficient = 0.817
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soi1(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.953(InjHr) for a 10.0 year storm
Subarea runoff = 2.393(CFS) for 1.500(AC.)
Total runoff = 10.887(CFS) Total area = 6.100(Ac.)
Street flow at end of street = 10.887(CFS)
Half street flow at end of street = 10.887(CFS)
Depth of flow = 0.397(Ft.), Average velocity = 5.570(Ftjs)
Flow width (from curb towards crown)= 13.521(Ft.)
End of computations, total study area = 6.10 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
Area averaged RI index number = 75.0
,trtJ
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/14/95
version 3.3
------------------------------------------------------------------------
100 YR. HYDROLOGIC CALC.
BASIN "B" TR 23143-3 CROWNE HILL
FILE: 23lBBB
6/12/95
------------------------------------------------------------------------
*********Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood control & Water conservation District
1978 hydrology manual
storm event (year) = .100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 24.000 to point/station 25.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area)' elevation = 1263.000 (Ft.)
Bottom (of initial area) elevation = l262.500(Ft.)
Difference in elevation = 0.500(Ft.)
Slope = 0.00167 s(percent)= 0.17
TC = k(0.390)*[(length-3)/(elevation change)]-0.2
Initial area time of concentration = 13.726 min.
Rainfall intensity = ' 3.151(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.844
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC, 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.193(CFS)
Total initial stream area = 1.200(Ac.)
Pervious area fraction = 0.500
sq
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from point/Station 25.000 to point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
26.000
Top of street segment elevation = 1260.000(Ft.)
End of street segment elevation = 1250.000(Ft.)
Length of street segment = 600.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [2]: side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.381(CFS)
Depth of flow = 0.341(Ft.), Average velocity = 2.969(Ftjs)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = l2.265(Ft.)
Flow velocity = 2.97(Ft/s)
Travel time = 3.37 min. TC = 17.09 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.838
Decimal fraction soil'group A = 0.000
Decimal fraction soil' group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.793 (In/Hr) for a 100.0 year storm
Subarea runoff = ,9.130(CFS) for 3.900(Ac.)
Total runoff = 12.323(CFS) Total area = 5.100(Ac.)
Street flow at end of'street = 12.323(CFS)
Half street flow at end of street = 6.161(CFS)
Depth of flow = 0.377(Ft.), Average velocity = 3.251(Ft/s)
Flow width (from curb towards crown)= 14.400(Ft.)
End of computations, total study area = 5.10 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction (Ap) = 0.500
Area averaged RI index number = 75.0
~f)
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology study Date: 06/13/95
version 3.3
------------------------------------------------------------------------
100 YR. HYDROLOGIC CALC.
BASIN "c" TR 23143-4
FILE:23143C
6/12/95
------------------------------------------------------------------------
********* 'Hydrology study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering corporation, Temecula, CA - SIN 560
-----------------------------~------------------------------------------
Rational Method Hydrology Program based on
Riverside county Flood Control & Water conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 40.000 to point/Station 41.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 550.000(Ft.)
Top (of initial area) elevation = 1281.500(Ft.)
Bottom (of initial area) elevation = 1266.000(Ft.)
Difference in elevation = 15.500(Ft.)
Slope = 0.02818 s(percent)= 2.82
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 9.936 min.
Rainfall intensity = 3.764(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.852
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 11.872(CFS)
Total initial stream area = 3.700(Ac.)
Pervious area fraction = 0.500
A,\
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
,
,
I
I
I
I
I
I
I
I
I
Process from Point/station 41.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
42.000
Top of street segment elevation = 1266.000(Ft.)
End of street segment elevation = 1252.000(Ft.)
Length of street segment = 230.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grqde break to crown (v/hz) = 0.017
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 16.204(CFS)
Depth of flow = 0.342(Ft.), Average velocity = 5.690(Ft/s)
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = 12.325 (Ft.)
Flow velocity = 5.69(Ft/s)
Travel time = 0.67 min. TC = 10.61 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.851
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group c = 0.000
Decimal fraction soil group D = 1.000
RI index for soi1(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.631(In/Hr) for a 100.0 year storm
Subarea runoff = 8.341(CFS) for 2.700(AC.)
Total runoff = 20.213(CFS) Total area = 6.400(Ac.)
Street flow at end of street = 20.213(CFS)
Half street flow at end of street = 10. 107 (CFS)
Depth of flow = 0.363(Ft.), Average velocity = 5.993(Ft/S)
Flow width (from curb towards crown)= 13.521(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 42.000 to point/station 43.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1252.000(Ft.)
End of street segment elevation = 1229.000(Ft.)
Length of street segment = 630.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
t{V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.476(Ft.), Average velocity =
Note: depth of flow exceeds top of street crown.
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = S.93(Ft/s)
Travel time = 1.77 min.
Adding area ~low to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.847
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.335(In/Hr) for a 100.0 year storm
Subarea runoff = 1.978(CFS) for 0.700(Ac.)
Total runoff = 22.191(CFS) Total area = 7.100(Ac.)
Street flow at end of street = 22.191(CFS)
Half street flow at end of street = 22.191(CFS)
Depth of flow = 0.480(Ft.), Average velocity =
Note: depth of flow exceeds top of street crown.
Flow width (from curb towards crown)= 20.000(Ft.)
21.319(CFS)
S.932(Ft/s)
TC =
12.38
min.
6.027(Ft/s)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 43.000 to Point/station 48.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1224.00(Ft.)
Downstream point/station elevation = 1222.00(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 22.191(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 22.191(CFS)
Normal flow depth in pipe = 12.38(In.)
Flow top width inside pipe = 16.69(In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.12(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 12.41 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 43.000 to point/station 48.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 1 in normal stream number 1
Stream flow area = 7.100(Ac.)
Runoff from this stream = 22.191(CFS)
Time of concentration = 12.41 min.
Rainfall intensity = 3.331(In/Hr)
~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 44.000 to point/station 45.000
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 350.000(Ft.)
TOp (of initial area) elevation = l255.500(Ft.)
Bottom (of initial area) elevation = l249.500(Ft.)
Difference in elevation = 6.000(Ft.)
Slope = 0.01714 s(percent)= 1.71
TC = k(0.390)*[(length'3)/(elevation change)]'0.2
Initial area time of concentration = 9.160 min.
Rainfall intensity = 3.936(In/Hr) for a 100.0 year storm
SINGLE FAMILY _(1/4 Acre Lot)
Runoff Coefficient = 0.854
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.699(CFS)
Total initial stream area = 1.100(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 45.000 to Point/station 46.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = l249.500(Ft.)
End of street segment elevation = 1246.000(Ft.)
Length of street segment = 350.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.239(CFS)
Depth of flow = 0.363(Ft.), Average velocity = 2.432(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 13.552(Ft.)
Flow velocity = 2.43(Ft/s)
Travel time = 2.40 min. TC = 11.56 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.849
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00 t\~
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.464(In/Hr) for a 100_0 year storm
Subarea runoff = 7.938(CFS) for 2.700(AC.)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Total runoff = 11.637(CFS) Total area = 3.S00(AC.)
street flow at end of street = 11.637(CFS)
Half street flow at end of street = 5.S19(CFS)
Depth of flow = 0.398(Ft.), Average velocity = 2.640(Ft/s)
Flow width (from curb towards crown)= 15.609(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 46.000 to point/station 47.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1246.000(Ft.)
End of street segment elevation = 1229.000(Ft.)
Length of street segment = 450.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 14.393(CFS)
Depth of flow = 0.425(Ft.), Average velocity = 5.438(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Ha1fstreet flow width = 17.197(Ft.)
Flow velocity = 5.44(FtjS)
Travel time = 1.38 min. TC = 12.94 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.846
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.255(In/Hr) for a 100.0 year storm
Subarea runoff = 4.957(CFS) for 1.800(Ac.)
Total runoff = 16.594(CFS) Total area = 5.600(Ac.)
Street flow at end of street = 16.594(CFS)
Half street flow at end of street = 16.594(CFS)
Depth of flow = 0.442(Ft.), Average velocity = 5.629(Ft/s)
Flow width (from curb towards crown)= lS.199(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 47.000 to point/Station 4S.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1224.00(Ft.)
Downstream point/station elevation = 1222.00(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 16.594(CFS)
Given pipe size = 18.00(In.)
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
calculated individual pipe flow = l6.594(CFS)
Normal flow depth in pipe = 10.17(In.)
Flow top width inside pipe = l7.85(In.)
critical depth could not be calculated.
pipe flow velocity = 16.1l(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 12.97 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from ~oint/Station 47.000 to Point/station 48,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 5.600(Ac.)
Runoff from this stream = 16.594(CFS)
Time of concentration = 12.97 min.
Rainfall intensity = 3.251(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1 22.191 12.41
2 16.594 12.97
Largest stream flow has longer
QP = 22.191 + sum of
Qa Tb/Ta
16.594 * 0.957 =
QP = 38.070
3.331
3.251
or shorter time of concentration
15.879
Total of 2 streams to confluence:
Flow rates before confluence point:
22.191 16.594
Area of streams before confluence:
7.100 5.600
Results of confluence:
Total flow rate = 38.070(CFS)
Time of concentration = 12.409 min.
Effective stream area after confluence =
12.700(AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 48.000 to point/Station 52.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1222.00(Ft.)
Downstream point/station elevation = 1218.00(Ft.)
Pipe length = 130.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 38.070(CFS)
Given pipe size = 30.00(In.)
Calculated individual pipe flow = 38.070(CFS)
Normal flow depth in pipe = 15.52(In.)
Flow top width inside pipe = 29.98(In.)
Critical Depth = 25.01(In.)
Pipe flow velocity = 14.87(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 12.55 min.
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 48.000 to point/Station 52.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 12.700(AC.)
Runoff from this stream = 38.070(CFS)
Time of concentration = 12.55 min.
Rainfall intensity = 3.310(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 49.000 to Point/station 50.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 280.000(Ft.)
Top (of initial area) elevation = 1267.000(Ft.)
Bottom (of initial area) elevation = 1250.700(Ft.)
Difference in elevation = 16.300(Ft.)
Slope = 0.05821 s(percent)= 5.82
TC = k(0.390)*[(length'3)/(elevation change)]'0.2
Initial area time of concentration = 6.560 min.
Rainfall intensity = 4.729(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.861
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Oecimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 6.518(CFS)
Total initial stream area = 1.600(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 50.000 to point/station 51.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1250.700(Ft.)
End of street segment elevation = 1226.000(Ft.)
Length of street segment = 400.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = ll.OOO(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning'S N in gutter = 0.0150
Manning'S N from gutter to grade break = 0.0150
Manning'S N from grade break to crown = 0.0150 ~1
Estimated mean flow rate at midpoint of street = 18.l28(CFS)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Depth of flow = 0.360(Ft.), Average velocity = 6.105(Ftjs)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.653(Ft.)
Flow velocity = 6.10(Ftjs)
Travel time = 1.09 min. TC = 7.65 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.858
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fract~on soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 4.345(In/Hr) for a 100.0 year storm
Subarea runoff = 21.257(CFS) for 5.700(AC.)
Total runoff = 27.775(CFS) Total area = 7.300(Ac.)
Street flow at end of street = 27.775(CFS)
Half street flow at end of street = 13.888(CFS)
Depth of flow = 0.404(Ft.), Average velocity = 6.755(Ft/s)
Flow width (from curb towards crown)= 13.890(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 51.000 to Point/station 52.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1219.00(Ft.)
Downstream point/station elevation = 1218.00(Ft.)
pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 27.775(CFS)
Given pipe size = 24.00(In.)
Calculated individual pipe flow = 27.775(CFS)
Normal flow depth in pipe = 14.41(In_)
Flow top width inside pipe = 23.51(In.)
Critical Depth = 21.88(In.)
Pipe flow velocity = 14.10(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 7.69 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 51.000 to Point/station 52.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
In Main stream number: 2
stream flow area = 7.300(Ac.)
Runoff from this stream = 27.775(CFS)
Time of concentration = 7.69 min.
Rainfall intensity = 4.334(In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Largest
38.070
27.775
stream
12.55
7.69
flow has longer
3.310
4.334
time of concentration
~
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
Qp =
38.070 + sum of
Qb Ia/lb
27.775 * 0.764 =
59.278
21.208
QP =
Total of 2 main streams to confluence:
Flow rates before confluence point:
38.070 27.775
Area of streams before confluence:
12.700 7.300
Results of confluence:
Total flow rate = 59.278(CFS)
Time of concentration = 12.555 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
Area averaged pervious area fraction (Ap) =
Area averaged RI index number = 75.0
20.000(Ac.)
20.00 (AC.)
same area.
0.500
M
PIPE HYD~f-or:?rt1 p-o UTIN~
LINe fA II 8A-~ I~ (Ic. II .
I (BA~ec (),(V A-C-T1tAi C.8. CAAo?AC/TI1)
C,~;:I: Z @
QIOO -::. lttl, 0 ,
IG =- '\"2.-, G:l4- MI10
A. ~ 7, (p Qc,-es
C.B*- 4-
~''''I
Q" ,'. " 71/.
" . 100= I Z. I 0 I. '...'
:TC;.:7 c.S-'Mi,.J
"A ;;,'~' 1~C.r I.U) ~ "
, .; .' . " ;:-. - , . ... . ~; ." - ." . . .
i
I
I
I. Co :iF- I
~?;
I
I
I
Q,oa ::: 1C/. r>
Te.. :: /'2.,"?g J;1/tJ
A ::: 7. I '';A.c..
l
:- '-
...~
tt\
~CB 1l= '!. IT
QIfO:'IZ.,~ {,II'
I TC'?71.,'(,(" .. M.lt..? ..., "~
I '," A ::/'1;:~ ~., AZ; ,,', .' ,
,','r,' ;"... ~"': ." //,-"';' ,~," .. "-.-
I
I.
I
I
I
,
I
(.
'I
..
('4\
-'
.-"....._,
. "-.
'->
,
-., .'" '-", ~,~ .
1.';O"';....>'''~j.)., ,',,:"';' .,'.c
. -;'.='" -..: ",~
. "'.',..".. >~. ~..:
0,',_,
.---~. - ,
'.' .
."'~. e..~~'?" ',." ~s
Q,oo = I-z..r- ~
TC. -= II. 4- S lY\ uJ
A :::- :$. 3 ~
_ ;".". ...01.>; ~'":':"
.
. ':'.'-" .,;. .':......-;";,~,,,.: '''.''''
'~~~',
I
I
I
I
I
I
I
I
I
I
(,.,
f
I
I
I
I
I
~
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology study Date: 06/22/95
Version 3.3
------------------------------------------------------------------------
100 YR HYDROLOGIC CALC. LINE "A" (PIPES 9i.=.} po::) 'I. "i(, )
TR 23143-4 BASIN "C"
FILE: LINEA
------------------------------------------------------------------------
********* > -'>Hydrology Study Control Information **********
. -~ -"
------------------------------------------------------------------------
RANPAC Engineering corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = !100.00 Antecedent Moisture condition = 2
0.550 (Inches)
1. 400 (Inches)
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 43.000 to Point/Station 43.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Rainfall intensity = , 3.335(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.847
Decimal fraction soil: group A = 0.000
Decimal fraction soil,group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil'group D = 1.000
RI index for soil (AMC! 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
User specified values: are as follows:
TC = 12.38 min. Rain intensity = 3.34(In/Hr)
Total area = 7.10(Ac.) Total runoff = 16.00(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from 'Point/station 43.000 to Point/Station 48.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
,
Upstream point/station elevation = 1221.16(Ft.}
Downstream point/station elevation = 1220.70(Ft.}
Pipe length = 27.13(Ft.) Manning's N = 0.013
No. of pipes = 1 ReqUired pipe flow = 16.000(CFS} ~\
I
I
I
I
I
I
I
I
I
I
i,','
I
I
I
I
I
I
,
I
I
Given pipe size = 24.00(In.)
Calculated individual pipe flow = l6.000(CFS)
Normal flow depth in pipe = 12.61(In.)
Flow top width inside: pipe = 23.97(In.)
critical Depth = 17.31(In.)
Pipe flow velocity = 9.57(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 12.43 min.
+++++++++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from"Point/Station 43.000 to Point/Station 48.000
**** CONFLUENCE OF MINOR STREAMS****
Along Main stream number: 1 in normal stream number 1
Stream flow area = 7.100(Ac.)
Runoff from this stream = 16.000(CFS)
Time of concentration = 12.43 min.
Rainfall intensity = - 3.328(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 47.000 to Point/station 47.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Rainfall intensity = ; 3.255(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.846
Decimal fraction soil: group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil1group C = 0.000
Decimal fraction soil i' group D = 1. 000
RI index for soil (AMC, 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
User specified values are as follows:
TC = 12.94 min. Rain intensity = 3.25(In/Hr)
Total area = 5.60(Ac.) Total runoff = 16.00(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 47.000 to point/station 48.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
i
Upstream point/station elevation = 1224.56(Ft.)
Downstream point/station elevation = 1221.20(Ft.)
Pipe length = 34.65(Ft.) Manning's N = 0.013
No. of pipes = 1 Re~ired pipe flow = 16.000(CFS)
Given pipe size = _ 18.00(In.)
Calculated individual;pipe flow = 16.000(CFS)
Normal flow depth in pipe = 8.88(In.)
Flow top width inside-pipe = 18.00(In.)
critical Depth = 17.09(In.)
Pipe flow velocity =' 18.41(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration~ (TC) = 12.97 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/St~tion 47.000 to Point/station 48.000 q~
**** CONFLUENCE OF MINOR STREAMS **** ~v
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
(
I
I
Along Main stream number: 1 in normal stream number 2
stream flow area = 5.600(AC.)
Runoff from this stream = 16.000(CFS)
Time of concentration = 12.97 min.
Rainfall intensity = 3.251(In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
, -"
1
2
Largest
QP =
16.000 12.43
16.000, 12.97
stream flow has longer
16.000 + sum' of
Qa ' Tb/Ta
16.000 * '0.958 =
31. 329
.3.328
.:";' . 3 .251
or shorter time
of concentration
15.329
QP =
Total of 2 streams to' confluence:
Flow rates before confluence point:
16.000 16.000
Area of streams before confluence:
7.100 5.600
Results of confluence~
Total flow rate = · 31.329(CFS)
Time of concentration; = 12.427 min.
Effective stream area; after confluence =
12.700(AC.)
+++++++++++++++++++++T++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 48.000 to point/station 52.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1220.20(Ft.)
Downstream point/station elevation = 1218.27(Ft.)
Pipe length = 118.pO(Ft.) Manning's N = 0.013
No. of pipes = 1 Recri1ired pipe flow" = 31. 329 (CFS)
. ., I
G1ven p1pe S1ze = [ 30.00(In.)
Calculated individual; pipe flow = 31.329(CFS)
Normal flow depth in pipe = 16.70(In.)
Flow top width inside; pipe = 29.81(In.)
critical Depth = 22~90(In.)
Pipe flow velocity =: 11.16(Ft/s)
Travel time through pipe = 0.18 min.
Time of concentration (TC) = 12.60 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 48.000 to point/station 52.000
**** CONFLUENCE OF MIFOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = ! 12.700(AC.)
Runoff from this stream = 31.329(CFS)
Time of concentration: = 12.60 min.
Rainfall intensity =! 3.302(In/Hr)
~
I
I
I
I
I
I
I
I
I
I
j-
I
I
I
I
I
,
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 51.000 to point/station 52.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Rainfall intensity = 4.346(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.858
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil,group D = 1.000
RI index for'soil(AMC2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
User specified values are as follows: ~U_
TC = 7.65 min. Rain intensity = 4.35(In/Hr)
Total area = 7.30(Ac.) Total runoff = 12.50(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 51.000 to Point/Station 52.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = , 7.300(Ac.)
Runoff from this stream = 12.500(CFS)
Time of concentration I = 7.65 min.
Rainfall intensity =: 4.346(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 51.100 to Point/station 51.100
**** USER DEFINED FLOW INFORMATION AT A POINT ****
Rainfall intensity = i 4. 346 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.858
Decimal fraction soil'group A = 0.000
Decimal fraction soil; group B = 0.000
Decimal fraction soiligroup C = 0.000
Decimal fraction soil; group D = 1.000
RI index for soil (AMC.2) = 75.00
. . ,
Perv10us area fract10n = 0.500; Impervious fraction = 0.500
User specified values; are as follows:
TC = 7.65 min. Rain intensity = 4.35(In/Hr)
Total area = O.OO(Ac.) Total runoff = 12.00(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 51.100 to Point/station 52.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
!
Upstream point/station elevation = l221.50(Ft.)
Downstream point/station elevation = 1218.82(Ft.)
Pipe length ~= 16.11(Ft.) Manning'S N = 0.013
No. of pipes = 1 ReqUired pipe flow = 12.000(CFS)
Given pipe size = ' 18.00(In.)
Calculated individual pipe flow = 12.000(CFS)
Normal flow depth in pipe = 6.52(In.)
Flow top width inside: pipe = 17.30(In.)
critical Depth = 15,76(In.)
'64.
I
I
I
I
I
I
I
I
I
I
,i"
I".
I
I
I
I
I
I
(
I
I
Pipe flow velocity = 20.80(Ft/s)
Travel time through pipe = 0.01 min.
Time of concentration (TC) = 7.66 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 51.100 to Point/station 52.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow a~a = O.OOO(Ac.)
Runoff from~this stream = 12.000(CFS)
Time of concentration I = 7.66 min;','
Rainfall intensity = 4.342 (In/Hr).,"'- .
summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
3
Largest
Qp =
31.329 12;.60
12.500 7.65
12.000 7~66
stream flow has longer
31.329 + sum' of
Qb Ia/lb
12.500 * fO.760 =
Qb ~a/lb
12.000 * ~ 0.761 =
49.954
3.302
4.346
4.342
time of concentration
9.498
9.127
Qp =
Total of 3 streams to; confluence:
Flow rates before confluence point:
31.329 12.500 12.000
Area of streams before confluence:
12.700 7.300 0.000
Results of confluence;
Total flow rate = · 49.954(CFS)
Time of concentration: = 12.604 min,
Effective stream area' after confluence =
20.000(Ac.)
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 52.000 to Point/station 54.000
**** PIPEFLOW TRAVEL ~IME (User specified size) ****
Upstream point/station elevation = 1217.00(Ft.)
Downstream point/station elevation = 1206.77(Ft.)
Pipe length = 350.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 49.954(CFS)
Given pipe size = : 30.00(In.)
Calculated individual, pipe flow = 49.954(CFS)
Normal flow depth in pipe = 18.70(In.)
Flow top width inside: pipe = 29.07(In.)
Critical Depth = 27~59(In.)
Pipe flow velocity = 15.51(Ft/s)
Travel time through pipe = 0.38 min.
Time of concentration (TC) = 12.98 min.
~
I
I
I
I
I
I
I
I
I
I
1"
1''-
I
I
I
I
I
I
f
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 52.000 to Point/station 54.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 20.000(Ac.)
Runoff from this stream = 49.954(CFS)
Time of concentration, = 12.98 min.
Rainfall intensity =! 3.250(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 53.-000 to point/station 53.000
**** USER DEFINED FLOW INFORMATION AT.1i.'POINT ****
100.0 year storm
Rainfall intensity = 3.485(In/Hr) for a
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.849
Decimal fraction soil: group A =
Decimal fraction soil group B =
Decimal fraction soil: group C =
. .. I
Dec~mal fract~on so~l:group D = 1.000
RI index for soil (AMCI 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
User specified values are as follows:
TC = 11.43 min. Raih intensity = 3.48(In/Hr)
Total area = 3.30(Ac.) Total runoff = 12.50(CFS)
0.000
0.000
0.000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 53.000 to point/station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
upstream point/station elevation = 1207.50(Ft.)
Downstream point/station elevation = 1206.50(Ft.)
pipe length = 35.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Req4ired pipe flow = 12.500(CFS)
Given pipe size = . 18.00(In.)
Calculated individual~pipe flow = .,12.500(CFS)
Normal flow depth in pipe = 11.13(In.)
Flow top width inside pipe = 17.49(In.)
critical Depth = 16.00(In.)
Pipe flow velocity =! 10.88(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration! (TC) = 11.48 min.
54.000
','
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 53.000 to Point/station 54.000
**** CONFLUENCE OF MI~OR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = i 3.300(Ac.)
Runoff from this stream = 12.500(CFS)
Time of concentration; = 11.48 min.
Rainfall intensity = 3.476(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
:5<"
TC
(min)
I
I
I
I
I
I
I
I
I
I
f'
.-
I
I
I
I
I
~
I
I
1
2
Largest
Qp =
3.250
3.476
time of concentration
Qp =
49.954 12.98
12.500 11.48
stream flow has longer
49.954 + sum. of
Qb Iajlb
12.500 * '0.935 =
61. 640
11. 686
Total of 2 streams to! confluence:
Flow rates before confluence point:
49.954 12.500
,Area of streams before confluence:
20.000 3.300
Results of confluence:
Total flow rate = 61.640(CFS)
Time of concentration. = 12.980 min.
Effective stream area; after confluence =
End of computations, total study area =
The following figures,may
be used for a unit hy~rograph study of the
Area averaged perviouk area fraction (Ap) =
Area averaged RI index number = 75.0
23.300(Ac.)
23.30 (Ac.)
same area.
0.500
0'1.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/14/95
version 3.3
------------------------------------------------------------------------
10 YR HYDROLOGIC CALC.
BASIN "A" TRACT NO. 23143-3 CROWNE HILL
FILE:23143A
6/12/95
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) =' 10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation = 0.550 (Inches)
100 year, 1 hour precipitation = 1.400 (Inches)
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.900 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to point/station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 700.000(Ft.)
Top (of initial area) elevation = 1304.000(Ft.)
Bottom (of initial area) elevation = l298.000(Ft.)
Difference in elevatipn = 6.000(Ft.)
Slope = 0.00857 s(percent)= 0.86
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 13.883 min.
Rainfall intensity = I 2.012 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.819
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 5.766(CFS)
Total initial stream area = 3.500(Ac.)
Pervious area fraction = 0.500
?
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
,I
i
I
I
I
I
I
I
I
I
I
Process from Point/station 2.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
3.000
Top of street segment elevation = 1298.000(Ft.)
End of street segment elevation = 1283.000(Ft.)
Length of street segment = 930.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 11.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.813(CFS)
Depth of flow = 0.430(Ft.), Average velocity = 3.637(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.155(Ft.)
Flow velocity = 3.64{Ft/s)
Travel time = 4.26imin. TC = 18.15 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.808
Decimal fraction soil: group A = 0.000
Decimal fraction soil! group B = 0.000
Decimal fraction soil: group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil{AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.737{In/Hr) for a 10.0 year storm
Subarea runoff = '5.194{CFS) for 3.700{Ac.)
,
Total runoff = 10~960(CFS) Total area = 7.200{Ac.)
Street flow at end of: street = 10.960{CFS)
Half street flow at end of street = 10.960{CFS)
Depth of flow = 0.457{Ft.), Average velocity = 3.834{Ft/s)
Flow width (from curb towards crown)= l6.529{Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 3.000 to Point/Station 4.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
,
Top of street segment: elevation = 1283.000{Ft.)
End of street segment elevation = 1274.000{Ft.)
Length of street segment = 600.000{Ft.)
Height of curb above gutter flowline = 6.0{In.)
width of half street {curb to crown) = 20.000{Ft.)
Distance from crown to crossfall grade break = 18.000{Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side{s) of the street
Distance from curb to property line = 10.000{Ft.) /t\
Slope from curb to property line (v/hz) = 0.020 ~'
Gutter width = 2.000{Ft.)
Gutter hike from flowline = 2.000{In.)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning's N in gutter = 0.01S0
Manning's N from gutter to grade break = 0.01S0
Manning's N from grade break to crown = 0.01S0
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.486(Ft.), Average velocity =
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width: = 20.000(Ft.)
Flow velocity = 3.9S(Ft/s)
Travel time = 2.S3imin.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.803
Decimal fraction soil, group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC. 2) = 7S.00
Pervious area fraction = O.SOO; Impervious fraction = O.SOO
Rainfall intensity = ! 1.616(In/Hr) for a 10.0 year storm
Subarea runoff = '6.878(CFS) for S.300(AC.)
Total runoff = 17~838(CFS) Total area = 12.S00(Ac.)
Street flow at end of' street = 17.838(CFS)
,
Half street flow at end of street = 17.838(CFS)
Depth of flow = 0.S09(Ft.), Average velocity = 4.193(Ft/s)
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Flow width (from curb towards crown)= 20.000(Ft.)
,
14.994(CFS)
3.94S(Ft/s)
TC =
20.68
min.
0.43(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 4.000 to point/station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1268.00(Ft.)
Downstream point/station elevation = 1230.00(Ft.)
Pipe length = 880.00(Ft.) Manning's N = 0.013
No. of pipes = 1 ReqUired pipe flow = 17.838(CFS)
Given pipe size = ,24.00(In.)
Calculated individual; pipe flow = l7.838(CFS)
Normal flow depth in pipe = 10.2S(In.)
Flow top width inside; pipe = 23.74(In.)
critical Depth = 18.26(In.)
Pipe flow velocity = ~ 13.94(Ft/s)
Travel time through pipe = 1.0S min.
Time of concentration (TC) = 21.73 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 4.000 to Point/Station 10.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = '12.S00(Ac.)
Runoff from this stream = 17.838(CFS)
Time of concentration' = 21.73 min.
Rainfall intensity = 1.S73(In/Hr)
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.'
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 8.000 to Point/station 9.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 880.000(Ft.)
Top (of initial area) elevation = 1274.000(Ft.)
Bottom (of initial area) elevation = 1235.000(Ft.)
Difference in elevation = 39.000(Ft.)
Slope = 0.04432 s(percent) = 4.43
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 10.953 min.
Rainfall intensity = 2.293(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.827
Decimal fraction soil group A = 0.000
Decimal fraction soil! group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 12.133(CFS)
Total initial stream area = 6.400(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to point/station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1231.00(Ft.)
Downstream point/station elevation = 1230.00(Ft.)
pipe length = 50.00(Ft.) Manning's N = 0.013
No. of pipes = 1 ReqUired pipe flow = 12.133(CFS)
Given pipe size = .18.00(In.)
Calculated individual pipe flow = 12.133(CFS)
Normal flow depth in pipe = 12.38(In.)
Flow top width inside pipe = 16.69(In.)
Critical Depth = 15,.83(In.)
Pipe flow velocity = ' 9.38(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration' (TCl = 11. 04 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 9.000 to point/station 10.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 6.400(Ac.)
Runoff from this stream = 12.133(CFS)
Time of concentration: = 11.04 min.
Rainfall intensity =' 2.282(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 5.000 to Point/Station 6.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 500.000(Ft.)
Top (of initial area) elevation = 1280.000(Ft.)
<p\..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Bottom (of initial area) elevation = 1273.500(Ft.)
Difference in elevation = 6.500(Ft.)
Slope = 0.01300 s(percent) = 1.30
TC = k(0.390)*[(length'3)/(elevation change)]'0.2
Initial area time of concentration = 11.165 min.
Rainfall intensity = 2.269(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.826
Decimal fraction soil group A = 0.000
Decimal fraction soil" group B = 0.000
Decimal fractron soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 5.249(CFS)
Total initial stream area = 2.800(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 6.000 to Point/station 7.000
**** STREET FLOW TRA~L TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1273.500(Ft.)
End of street segment elevation = 1242.000(Ft.)
Length of street segment = 900.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to cross fall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to; property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 7.873(CFS)
Depth of flow = 0.365(Ft.), Average velocity = 4.573(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = l3.672(Ft.)
Flow velocity = 4.57(Ft/s)
Travel time = 3.28'min. TC = 14.45 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.817
Decimal fraction soil~group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil, group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.969(In/Hr) for a 10.0 year storm
Subarea runoff = 4.505(CFS) for 2.800(AC.)
Total runoff = 9.753(CFS) Total area = 5.600(Ac.)
Street flow at end of; street = 9.753(CFS)
Half street flow at end of street = 9.753(CFS) r~
Depth of flow = 0.386(Ft.), Average velocity = 4.812(Ft/s) ~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Flow width (from curb'towards crown)= 14.929(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 7.000 to point/station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1231.00(Ft.)
Downstream point/station elevation = 1230.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.015
No. of pipes = 1 Required pipe flow = 9.753(CFS)
Given pipe .ize = 18.00(In.)
Calculated individual pipe flow =9.753(CFS)
Normal flow depth in pipe = 9.91(In.)
Flow top width inside pipe = 17.91(In.)
critical Depth = 14.47(In.)
Pipe flow velocity = 9.78(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 14.50 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 7.000 to point/station 10.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 5.600(Ac.)
Runoff from this stream = 9.753(CFS)
Time of concentration'= 14.50 min.
Rainfall intensity = 1.965(In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
3
Largest
Qp =
17.838 21~73
12.133 11.04
9.753 14.50
stream flow has longer
17.838 + sum: of
Qb Fa/Ib
12.133 * '0.689 =
Qb Ia/Ib
9.753 * 0.800 =
34.005
7.806
1.573
2.282
1.965
time of concentration
8.361
Qp =
Total of 3 streams to confluence:
Flow rates before confluence point:
17.838 12.133 9.753
Area of streams before confluence:
12.500 6.400 5.600
Results of confluence:
Total flow rate = 34.005(CFS)
Time of concentration = 21.732 min.
Effective stream area after confluence =
24.500(Ac.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i!~
Process from Point/station 10.000 to Point/station 18.000
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1230.00(Ft.)
Downstream point/station elevation = 1226.50(Ft.)
pipe length = 150.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 34.005(CFS)
Given pipe size = '36.00(In.)
Calculated individual pipe flow = 34.005(CFS)
Normal flow depth in pipe = 14.32(In.)
Flow top width inside pipe = 35.24(In.)
Critical Depth = 22.72(In.)
Pipe flow velocity = 12.97(Ft/s)
Travel time through pipe = 0.19 min.
Time of concentration' (TC) = 21. 93 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 10.000 to Point/station 18.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
In Main stream number: 1
Stream flow area = 24.500(Ac.)
Runoff from this stream = 34.005(CFS)
Time of concentration: = 21.93 min.
Rainfall intensity = 1. 565 (In/Hr)
Program is now starting with Main stream No. 2
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 11.000 to point/station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 780.000(Ft.)
Top (of initial area) elevation = 1263.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 16.500(Ft.)
Slope = 0.02115 s(percent)= 2.12
TC = k(0.390)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 12.101 min.
Rainfall intensity = 2.170(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.824
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil: group C = 0.000
Decimal fraction soi1'group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 11.796(CFS)
Total initial stream area = 6.600(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 12.000 to point/Station 13.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
TOp of street segment elevation =
End of street segment elevation =
1246.500(Ft. )
1233.000 (Ft.)
(pk
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.504(Ft.), Average velocity =
warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics' at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 4.05(Ft/s)
Travel time = 3.91Imin.
Adding area flow to ~treet
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.813
Decimal fraction soil group A = 0.000
Decimal fraction soil: group B = 0.000
Decimal fraction soil: group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.860(In/Hr) for a 10.0 year storm
Subarea runoff = · 8.473(CFS) for 5.600(Ac.)
Total runoff = 20~269(CFS) Total area = 12.200(Ac.)
Street flow at end of street = 20.269(CFS)
Half street flow at end of street = 20.269(CFS)
Depth of flow = 0.533(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Flow width (from curb; towards crown)= 20.000(Ft.)
16.801(CFS)
4.047(Ft/s)
0.18 (Ft.)
TC =
16.01
min.
4.243 (Ft/s)
1.67(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.50(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 20.269(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 20.269(CFS)
Normal flow depth in pipe = 18.00(In.)
Flow top width inside pipe = O.OO(In.)
Critical depth could not be calculated.
pipe flow velocity = ' 10.85(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentrationl (TC) = 16.06 min.
rP
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 13.000 to point/station 17.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 1
Stream flow area = 12.200(Ac.)
Runoff from this stream = 20.269(CFS)
Time of concentration: = 16.06 min.
Rainfall intensity = 1.858 (In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 14.000 to Point/Station 15.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 480.000(Ft.)
Top (of initial area) elevation = 1258.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 11.500(Ft.)
Slope = 0.02396 s(percent)= 2.40
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.720 min.
Rainfall intensity = 2.448 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.831
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area, fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.051(CFS)
Total initial stream area = 1.500(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/station 16.000
****STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1246.500(Ft.)
End of street segment,elevation = 1233.000(Ft.)
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to cross fall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1], side(s) of the street
Distance from curb to'property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning'S N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning'S N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 7.323(CFS) r~~
Depth of flow = 0.404(Ft.), Average velocity = 3.189(Ft/s) ~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.955(Ft.)
Flow velocity = 3.19(Ft/s)
Travel time = 4.97'min. TC = 14.69 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff coefficient = 0.817
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.951(In/Hr) for a 10.0 year storm
Subarea runoff = 6.691(CFS) for 4.200(Ac.)
Total runoff = 9.742(CFS) Total area = 5.700(Ac.)
Street flow at end of street = 9.742(CFS)
Half street flow at end of street = 9.742(CFS)
Depth of flow = 0.437(Ft.), Average velocity = 3.416(Ft/s)
Flow width (from curb'towards crown)= 17.886(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 16.000 to Point/station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.50(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 9.742(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 9.742(CFS)
Normal flow depth in pipe = 9.08(In.)
Flow top width inside pipe = 18.00(In.)
critical Depth = 14.46(In.)
pipe flow velocity = 10.89(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration' (TC) = 14.73 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 16.000 to point/station 17.000
**** CONFLUENCE OF MI~OR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 5.700(Ac.)
Runoff from this stream = 9.742(CFS)
Time of concentration = 14.73 min.
Rainfall intensity =' 1. 948 (In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
Largest
Qp =
20.269 16.06
9.742 14.73
stream flow has longer time of
20.269 + sum of
Qb Ia/Ib
1. 858
1. 948
concentration
(Pl
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
QP =
9.742 *
29.560
0.954 =
9.291
Total of 2 streams to confluence:
Flow rates before confluence point:
20.269 9.742
Area of streams before confluence:
12.200 5.700
Results of confluence:
Total flow rate = ,29.560(CFS)
Time of concentration = 16.059 min.
Effective stream area after confluence =
17.900(AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 17.000 to point/station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1225.50(Ft.)
Downstream point/station elevation = l224.00(Ft.)
Pipe length = 50.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 29.560(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 29.560(CFS)
Normal flow depth in pipe = 12.42(In.)
Flow top width inside pipe = 34.23(In.)
Critical Depth = 21.12(In.)
Pipe flow velocity = 13.67(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration' (TC) = 16.12 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 17.000 to Point/station 18.000
**** CONFLUENCE OF MAINSTREAMS ****
The following data inside Main Stream is listed:
In Main Stream number~ 2
Stream flow area = : 17.900(Ac.)
Runoff from this stream = 29.560(CFS)
Time of concentration: = 16.12 min.
Rainfall intensity = 1.854 (InjHr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
Largest
Qp =
34.005 21.93
29.560 16.12
stream flow has longer
34.005 + sum. of
Qb Ia/Ib
29.560 * '0.844 =
58.965
1. 565
1. 854
time of concentration
24.959
Qp =
Total of 2 main streams to confluence:
Flow rates before confluence point:
34.005 29.560
Area of streams before confluence:
(/0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
24.500
17.900
Results of confluence:
Total flow rate = 58.965(CFS)
Time of concentration = 21.925 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
Area averaged pervious area fraction (Ap) =
Area averaged RI index number = 75.0
42.400(Ac.)
42 .40 (Ac.)
same area.
0.500
~t\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology study Date: 06/13/95
Version 3.3
------------------------------------------------------------------------
10 YR. HYDROLOGIC CALC.
BASIN "B" TR NO. 23143-3 CROWNE HILL
FILE:23143B'
6/12/95
-------------~----------------------------------------------------------
*********
Hydrology study control Information **********
------------------------------------------------------------------------
RANPAC Engineering corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) =
10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.900 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to point/Station 31.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1224.000(Ft.)
Bottom (of initial area) elevation = l22l.000(Ft.)
Difference in elevation = 3.000(Ft.)
Slope = 0.01000 s(percent)= 1.00
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.592 min.
Rainfall intensity = i 2.466(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.831
Decimal fraction soil, group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 2.460(CFS)
Total initial stream area = 1.200(Ac.)
Pervious area fraction = 0.500
. 10
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from Point/station 31.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
32.000
Top of street segment elevation = l22l.000(Ft.)
End of street segment elevation = l220.500(Ft.)
Length of street segment = 600.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = lS.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1]' side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.5~3(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 1.07(Ft/s)
Travel time = 9.32 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.S07
Decimal fraction soil group A = 0.000
Decimal fraction soil: group B = 0.000
Decimal fraction soil! group C = 0.000
Decimal fraction soil'group D = 1.000
RI index for soil(AMC2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.69S(In/Hr) for a 10.0 year storm
Subarea runoff = ,4.520(CFS) for 3.300(Ac.)
Total runoff = 6~9S0(CFS) Total area = 4.500(AC.)
street flow at end of' street = 6.980(CFS)
Half street flow at end of street = 6.9S0(CFS)
Depth of flow = 0.596(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Flow width' (from curb towards crown)= 20.000(Ft.)
5.S43(CFS)
1. 073 (Ft/s)
3.l6(Ft.)
TC =
lS.9l
min.
1.122 (Ft/s)
4.7S(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 32.000 to Point/station 36.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1215.00(Ft.)
Downstream point/station elevation = 1214.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = I Required pipe flow = 6.9S0(CFS)
Given pipe size = . IS.OO(In.)
Calculated individual pipe flow = 6.9S0(CFS)
Normal flow depth in pipe = 7.51(In.)
f'\\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Flow top width inside pipe = 17.75(In.)
critical Depth = l2.28(In.)
Pipe flow velocity = lO.OO(Ft/s)
Travel time through pipe = 0.05 min.
Time of concentration (TCl = 18.96 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 36.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 4.500(Ac.)
Runoff from this stream = 6.980(CFS)
Time of concentration = 18.96 min.
Rainfall intensity = 1. 695 (In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 33.000 to Point/Station 34.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 200.000(Ft.)
Top (of initial area) elevation = 1224.000(Ft.)
Bottom (of initial area) elevation = 1221.000(Ft.)
Difference in elevation = 3.000(Ft.)
Slope = 0.01500 s(percent)= 1.50
TC = k(0.390)*[(length-3)/(elevation change)]"0.2
Initial area time of concentration = 7.521 min.
Rainfall intensity = , 2.819(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.839
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = l.l82(CFS)
Total initial stream area = 0.500(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 34.000 to Point/Station 35.000
**** STREET FLOW TRAvtL TIME + SUBAREA FLOW ADDITION ****
Top of street segment: elevation = 122l.000(Ft.)
End of street segment elevation = 1220.000(Ft.)
Length of street segment = 550.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (vjhz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to'property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
1V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.719(CFS)
Depth of flow = 0.408(Ft.), Average velocity = 1.151(Ft/s)
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.198(Ft.)
Flow velocity = 1.15(Ft/s)
Travel time =- 7.96 min. TC = 15.49 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.815
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.895(In/Hr) for a 10.0 year storm
Subarea runoff = . 2.007(CFS) for 1.300(Ac.)
Total runoff = 3~189(CFS) Total area = 1.800(Ac.)
Street flow at end of'street = 3.l89(CFS)
Half street flow at end of street = 3.l89(CFS)
Depth of flow = 0.426(Ft.), Average velocity = 1.196(Ft/s)
Flow width (from curb towards crown)= l7.265(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 35.000 to point/station 36.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = l215.00(Ft.)
Downstream point/station elevation = l2l4.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 3.l89(CFS)
Given pipe size = l8.00(In.)
calculated individual! pipe flow = 3.l89(CFS)
Normal flow depth in pipe = 4.96(In.)
Flow top width inside pipe = 16.09(In.)
Critical Depth = 8~16(In.)
Pipe flow velocity = . 8.04(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 15.55 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 35.000 to Point/Station 36.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number.: 2
Stream flow area = 1.800(Ac.)
Runoff from this stream = 3.l89(CFS)
Time of concentration = 15.55 min.
Rainfall intensity = 1.89l(In/Hr)
Summary of stream data:
i
1~
Stream
Flow rate
Rainfall Intensity
TC
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
No.
(CFS)
(min)
(In/Hr)
1
2
Largest
Qp =
6.980 18.96
3.189 15.55
stream flow has longer
6.980 + sum' of
Qb Ia/lb
3.189 * 0.897 =
9.839
1. 695
1.891
time of concentration
2.859
Qp =
Total of 2 main streams to confluence:
Flow rates before con~luence point:
6.980 3.189
Area of streams before confluence:
4.500 1.800
Results of confluence:
Total flow rate = 9.839(CFS)
Time of concentration = 18.958 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
6.300(AC.)
6.30 (Ac.)
same area.
Area averaged pervious area fraction (Ap) =
Area averaged RI index number = 75.0
0.500
\~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/13/95
version 3.3
------------------------------------------------------------------------
100 YR. HYDROLOGIC CALC.
BASIN "B" TR 23143-3 CROWNE HILL
FILE: 2314BB
6/12/95
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1.400 (Inches)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 20.000 to Point/Station 21.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 250.000(Ft.)
Top (of initial area) elevation = 1291.000(Ft.)
Bottom (of initial area) elevation = 1288.500(Ft.)
Difference in elevation = 2.500(Ft.)
slope = 0.01000 s(percent)= 1.00
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.917 min.
Rainfall intensity = 3.995(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.855
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.415(CFS)
Total initial stream area = 1.000(Ac.)
Pervious area fraction = 0.500
/
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++:l~+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from point/station 21.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
22.000
Top of street segment elevation = 1288.500(Ft.)
End of street segment elevation = 1282.500(Ft.)
Length of street segment = 500.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from gr~de break to crown (v/hz) = 0.017
Street flow~is on [2] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 9.563(CFS)
Depth of flow = 0.369(Ft.), Average velocity = 2.701(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 13.880(Ft.)
Flow velocity = 2.70(Ft/s)
Travel time = 3.09 min. TC = 12.00 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.848
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.392(In/Hr) for a 100.0 year storm
Subarea runoff = 10.355(CFS) for 3.600(Ac.)
Total runoff = 13.770(CFS) Total area = 4.600(Ac.)
Street flow at end of street = 13.770(CFS)
Half street flow at end of street = 6.885(CFS)
Depth of flow = 0.406(Ft.), Average velocity = 2.946(Ft/s)
Flow width (from curb towards crown)= 16.103(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 22.000 to Point/Station 23.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1282.500(Ft.)
End of street segment elevation = 1250.000(Ft.)
Length of street segment = 750.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 11.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.) ~y
Gutter hike from flowline = 2.000(In.) \
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 16.015(CFS)
Depth of flow = 0.443(Ft.), Average velocity = 6.111(Ftjs)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15.792(Ft.)
Flow velocity = 6.11(Ftjs)
Travel time = 2.05 min. TC = 14.05 min.
Adding area flow to street
SINGLE FAMILY_(lj4 Acre Lot)
Runoff Coefficient = 0.844
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3. 111 (InjHr) for a 100.0 year storm
Subarea runoff = 3.938(CFS) for 1.500(Ac.)
Total runoff = 17.707(CFS) Total area = 6.100(Ac.)
street flow at end of street = 17.707(CFS)
Half street flow at end of street = l7.707(CFS)
Depth of flow = 0.455(Ft.), Average velocity = 6.262(Ftjs)
Flow width (from curb towards crown)= 16.435(Ft.)
End of computations, total study area = 6.10 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
Area averaged RI index number = 75.0
11
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1B
:1
I
I-
I
I
I
I
,
I
~
I
I
I
'I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology study Date: 06/14/95
version 3.3
10 YR HYDROLOGIC CALC.
BASIN "B" TR 23143-3 CROWNE HILL
FILE: 231BBB
6/12/95
*********
Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - SIN 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
storm event (year) =
10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
storm event year =
Calculated rainfall
1 hour intensity =
Slope of intensity
10.0
intensity data:
0.900 (in./hr.)
duration curve =
0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 24.000 to Point/station 25.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = l263.000(Ft.)
Bottom (of initial area) elevation = 1262.500(Ft.)
Difference in elevation = 0.500(Ft.)
Slope = 0.00167 s(percent)= 0.17
TC = k(0.390)*[(lengt~^3)/(elevation change)]^0.2
Initial area time of concentration = 13.726 min.
Rainfall intensity = I 2.025(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.819
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 1.990(CFS)
Total initial stream area = 1.200(Ac.)
Pervious area fraction = 0.500
1t:\
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
,I
I
,I;
:1
I)
I
il
I,
!I
.1
t
I
I
'I
I
'I
t
I
I
Process from Point/station 2S.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
26.000
Top of street segment elevation = 1260.000(Ft.)
End of street segment elevation = 12S0.000(Ft.)
Length of street segment = 600.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow 'is on [2J side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.01S0
Manning's N from gutter to grade break = 0.01S0
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = S.224(CFS)
Depth of flow = 0.302(Ft.), Average velocity = 2.666(Ft/s)
Streetflow hydraulics. at midpoint of street travel:
Halfstreet flow width = 9.983(Ft.)
Flow velocity = 2.67(Ft/s)
Travel time = 3.7S'min. TC = 17.48 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.810
. ., I
Dec~mal fract~on so~l;group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 7S.00
Pervious area fraction = 0.500; Impervious fraction = O.SOO
Rainfall intensity = 1.773 (In/Hr) for a 10.0 year storm
Subarea runoff = .5.600(CFS) for 3.900(Ac.)
Total runoff = 7~S90(CFS) Total area = S.100(AC.)
Street flow at end of'street = 7.S90(CFS)
Half street flow at end of street = 3.795(CFS)
Depth of flow = 0.333(Ft.), Average velocity = 2.902(Ft/s)
Flow width (from curb towards crown)= 11.757(Ft.)
End of computations, total study area = S.10 (Ac.)
The following figures may
be used for a unit hy~rograph study of the same area.
Area averaged perviou~ area fraction(Ap) = O.SOO
Area averaged RI index number = 7S.0
~
,I
I
,I
I
I
j
I
I
I
I,
I
I
I
'I
I'
I
,
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/13/95
version 3.3
------------------------------------------------------------------------
10 YR. HYDROLOGIC CALC.
BASIN "c" TR 23143-4
FILE:23l43C
6/12/95
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology program based on
Riverside County Flood Control & Water conservation District
1978 hydrology manual
Storm event (year) =
10.00 Antecedent Moisture Condition = 2
0.550 (Inches)
1.400 (Inches)
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
storm event year = 10.0
calculated rainfall intensity data:
1 hour intensity = 0.900 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 40.000 to Point/Station 41.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 550.000(Ft.)
Top (of initial area) elevation = 1281.500(Ft.)
~ Bottom (of initial area) elevation = 1266.000(Ft.)
Difference in elevation = 15.500(Ft.)
Slope = 0.02818 s(percent)= 2.82
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.936 min.
Rainfall intensity = 2.419 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.830
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AM~ 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 7.430(CFS)
Total initial stream area = 3.700(Ac.)
Pervious area fraction = 0.500
~\
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
'I
.j
I
I'
li
I
'.
,.
'j
I
.-
--,
I
I'
i
t
;"'
I
l
t'
Process from point/station 41.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
42.000
Top of street segment elevation = 1266.000(Ft.)
End of street segment elevation = 1252.000(Ft.)
Length of street segment = 230.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = l8.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064 .
Slope from grade break to crown (v/hz) = 0.017
Street flow-is on [2] side(s) of the street
Distance from curb to property line 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 10.140(CFS)
Depth of flow = 0.304(Ft.), Average velocity = 5.ll3(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.053(Ft.)
Flow velocity = 5.ll(Ft/s)
Travel time = 0.75 min. TC = 10.69 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.828
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.324(In/Hr) for a 10.0 year storm
Subarea runoff = 5.l94(CFS) for 2.700(Ac.)
Total runoff = l2.624(CFS) Total area = 6.400(Ac.)
street flow at end of street = l2.624(CFS)
Half street flow at end of street = 6.3l2(CFS)
Depth of flow = 0.32l(Ft.), Average velocity = 5.372(Ft/s)
Flow width (from curb towards crown)= 11.073(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 42.000 to Point/station 43.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = l252.000(Ft.)
End of street segment elevation = l229.000(Ft.)
Length of street segment = 630.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = l8.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020 ~Q/
Gutter width = 2.000(Ft.) e>V
Gutter hike from flowline = 2.000(In.)
I
t
J
I
t
i
~
I
I
I
I
I
,
j
I
j
I
"".
,
I
I
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 13.314(CFS)
Depth of flow = 0.418(Ft.), Average velocity = 5.268(Ft/s)
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.784(Ft.)
Flow velocity = 5.27(Ft/s)
Travel time = 1.99 min. TC = 12.68 min.
Adding area flow to street
SINGLE FAMILY,(1/4 Acre Lot)
Runoff Coefficient = 0.822
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500: Impervious fraction = 0.500
Rainfall intensity = 2.115(In/Hr) for a 10.0 year storm
Subarea runoff = 1.217(CFS) for 0.700(Ac.)
Total runoff = 13.841(CFS) Total area = 7.100(Ac.)
Street flow at end of street = 13.841(CFS)
Half street flow at end of street = 13.841(CFS)
Depth of flow = 0.422(Ft.), Average velocity = S.31S(Ft/s)
Flow width (from curb towards crown)= 17.047(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 43.000 to Point/Station 48.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1224.00(Ft.)
Downstream point/station elevation = 1222.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 13.S41(CFS)
Given pipe size = lS.00(In.)
Calculated individual pipe flow = 13.841(CFS)
Normal flow depth in pipe = 9.1l(In.)
Flow top width inside pipe = 18.00(In.)
critical Depth = 16.S2(In.)
Pipe flow velocity = lS.42(Ftjs)
Travel time through pipe = 0.03 min.
Time of concentration (Te) = 12.71 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 43.000 to point/station 48.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 7.100(Ac.)
Runoff from this stream = 13.841(CFS)
Time of concentration = 12.71 min.
Rainfall intensity = 2.112 (In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 44.000 to point/station 45.000
**** INITIAL AREA EVALUATION ****
~~
I
I
J
,
t
,
t
I
I
I
t
,
I
I
I
i
I
I
I
Initial area flow distance = 350.000(Ft.)
Top (of initial area) elevation = 1255.500(Ft.)
Bottom (of initial area) elevation = 1249.500(Ft.)
Difference in elevation = 6.000(Ft.)
Slope = 0.01714 s(percent)= 1.71
TC = k(0.390)*[(length'3)/(elevation change)] '0.2
Initial area time of concentration = 9.160 min.
Rainfall intensity = 2.530(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.833
Decimal fract~on soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 2.317(CFS)
Total initial stream area = 1.100(AC.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 45.000 to Point/station 46.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1249.500(Ft.)
End of street segment elevation = 1246.000(Ft.)
Length of street segment = 350.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [2] siders) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 5.l6l(CFS)
Depth of flow = 0.322(Ft.), Average velocity = 2.182(Ft/s)
streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = ll.ll5(Ft.)
Flow velocity = 2.18(Ft/s)
Travel time = 2.67 min. TC = 11.83 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.824
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.197(In/Hr) for a 10.0 year storm
Subarea runoff = 4.890(CFS) for 2.700(Ac.)
Total runoff = 7.207(CFS) Total area = 3.800(Ac.) ~~
Street flow at end of street = 7.207(CFS) {7'
I
.,
' ,
,I
I
I
j
I
I
j
J
t
1
I
j
I
I
I
I
I
Half street flow
Depth of flow =
Flow width (from
at end of street =
0.351(Ft.), Average
curb towards crown)=
3.604(CFS)
velocity = 2.357(Ft/s)
12.817(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 46.000 to Point/station 47.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1246.000(Ft.)
End of street,segment elevation = 1229.000(Ft.)
Length of street segment = 450.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.914(CFS)
Depth of flow = 0.373(Ft.), Average velocity = 4.849(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 14.166(Ft.)
Flow velocity = 4.85(Ft/s)
Travel time = 1.55 min. TC = 13.38 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.820
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.054 (In/Hr) for a 10.0 year storm
Subarea runoff = 3.031(CFS) for 1.800(Ac.)
Total runoff = 10.238(CFS) Total area = 5.600(AC.)
Street flow at end of street = 10.238(CFS)
Half street flow at end of street = 10.238(CFS)
Depth of flow = 0.388(Ft.), Average velocity = 5.011(Ft/s)
Flow width (from curb towards crown)= 14.992(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 47.000 to Point/station 48.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1224.00(Ft.)
Downstream point/station elevation = 1222.00(Ft.)
Pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 10.238(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 10.238(CFS)
Normal flow depth in pipe = 7.66(In.)
~
J
J
J
~
I
.
I
~
~
I
l
I
k
~
~
l
(
~
t
,-
l
l
,
l
L
\
l
,r
Flow top width inside pipe = 17.80(In.)
critical Depth = 14.78(In.)
pipe flow velocity = 14.27(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 13.42 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 47.000 to Point/station 48.000
**** CONFLUENCE OF MINOR STREAMS **** .
Along Main stream number: 1 in normal stream number 2
Stream flow area = 5.600(AC.)
Runoff from this stream = 10.238(CFS)
Time of concentration = 13.42 min.
Rainfall intensity = 2.051(In/Hr)
Summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Largest
QP =
13.841 12.71
10.238 13.42
stream flow has longer or
13.841 + sum of
Qa Tb/Ta
10.238 * 0.948 =
23.542
2.112
2.051
shorter time
of concentration
9.701
Qp =
Total of 2 streams to confluence:
Flow rates before confluence point:
13.841 10.238
Area of streams before confluence:
7.100 5.600
Results of confluence:
Total flow rate = 23.542(CFS)
~ime of concentration = 12.711 min.
Effective stream area after confluence =
12.700(AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 48.000 to point/station 52.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1222.00(Ft.)
Downstream point/station elevation = 1218.00(Ft.)
pipe length = 130.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 23.542(CFS)
Given pipe size = 30.00(In.)
Calculated individual pipe flow = 23.542(CFS)
Normal flow depth in pipe = 11.81(In.)
Flow top width inside pipe = 29.31(In.)
critical Depth = 19.80(In.)
Pipe flow velocity = 13.12(Ft/s)
Travel time through pipe = 0.17 min.
Time of concentration (Te) = 12.88 min.
~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
t
I
I
I
t
1
I
t
)
i
I
I
I
I
I
I
I
I
Process from point/station 48.000 to point/station
**** CONFLUENCE OF MAIN STREAMS ****
52.000
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 12.700(AC.)
Runoff from this stream = 23.542(CFS)
Time of concentration = 12.88 min.
Rainfall intensity = 2.097(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 49.000 to Point/station 50.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 280.000(Ft.)
Top (of initial area) elevation = 1267.000(Ft.)
Bottom (of initial area) elevation = 1250.700(Ft.)
Difference in elevation = l6.300(Ft.)
Slope = 0.05821 s(percent)= 5.82
TC = k(0.390)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.560 min.
Rainfall intensity = 3.039(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.843
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 4.097(CFS)
Total initial stream area = 1.600(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 50.000 to point/station 51.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1250.700(Ft.)
End of street segment elevation = 1226.000(Ft.)
Length of street segment = 400.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 22.000(Ft.)
Distance from crown to crossfall grade break = 20.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 11.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 11.396(CFS)
Depth of flow = 0.318(Ft.), Average velocity = 5.485(Ft/s) Q?q
Streetflow hydraulics at midpoint of street travel: ~~
I
,
',i
~.
I
I
I
I
I
1\
J,
i
I
I
I
i
I
a
I
I
Halfstreet flow width = 9.550(Ft.)
Flow velocity = 5.49(Ft/s)
Travel time = 1.22 min. TC = 7.78 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.838
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for ~oil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.768(InjHr) for a 10.0 year storm
"
Subarea runoff = 13.218(CFS) for 5.700(AC.)
Total runoff = 17.315(CFS) Total area = 7.300(AC.)
Street flow at end of street = 17.315(CFS)
Half street flow at end of street = 8.658(CFS)
Depth of flow = 0.355(Ft.), Average velocity = 6.040(Ftjs)
Flow width (from curb towards crown)= 11.431(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Pointjstation 51.000 to Pointjstation 52.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream pointjstation elevation = 1219.00(Ft.)
Downstream pointjstation elevation = 1218.00(Ft.)
pipe length = 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 17.315(CFS)
Given pipe size = 24.00(In.)
Calculated individual pipe flow = 17.315(CFS)
Normal flow depth in pipe = 10.84(In.)
Flow top width inside pipe = 23.89(In.)
critical Depth = 17.98(In.)
pipe flow velocity = 12.57(Ftjs)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 7.82 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 51.000 to Pointjstation 52.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 7.300(Ac.)
Runoff from this stream = 17.315(CFS)
Time of concentration = 7.82 min.
Rainfall intensity = 2.760(InjHr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(InjHr)
1
2
Largest
QP =
23.542 12.88
17.315 7.82
stream flow has longer time of
23.542 + sum of
Qb Iajlb
2.097
2.760
concentration
~
I
"
I.
i
I
I
I
I:
I'
I,
I
I
I
I
I
I
j
I
I
QP =
17.315 *
36.699
0.760 =
13 . 157
Total of 2 main streams to confluence:
Flow rates before confluence point:
23.542 ' 17.315
Area of streams before confluence:
12.700 7.300
Results of confluence:
Total flow rate = 36.699(CFS)
Time of concentration = 12.876 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
Area averaged pervious area fraction (Ap) =
Area averaged RI index number = 75.0
20.000(Ac.)
20.00 (AC.)
same area.
0.500
~
I
I
I
J
1
I
1
I
I
I,
{
I
I
J
I'
I
I
I.
'I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/14/95
Version 3.3
------------------------------------------------------------------------
100 YR. HYDROLOGIC CALC.
BASIN "A" TRIBUTARY 'fO EXIST 36" RCP @ BUTTERFIELD STG. RD.
INTERIM CONDITION (TR 23413-3)
FILE:CHINT
------------------------------------------------------------------------
********* 'Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) =100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 750.000(Ft.)
Top (of initial area) elevation = 1326.000(Ft.)
Bottom (of initial area) elevation = 1255.000(Ft.)
Difference in elevation = 71.000(Ft.)
Slope = 0.09467 s(percent)= 9.47
TC = k(0.710)*[(length^3)/(e1evation change)]^0.2
Initial area time of concentration = 16.071 min.
Rainfall intensity = 2.889(In/Hr) for a 100.0 year storm
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.827
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 20.078(CFS)
Total initial stream area = 8.400(Ac.)
Pervious area fraction = 1.000
,
~()
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
1
t
f
1
i
I
I
I
I
I
I
I
I
Process from Point/station 2.000 to point/station
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
5.000
Top of natural channel elevation = 1255.000(Ft.)
End of natural channel elevation = 1237.000(Ft.)
Length of natural channel = 400.000(Ft.)
Estimated mean flow rate at midpoint of channel = 29.519(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (~ + 8(q"~352) (slope"0.5)
Velocity using mean channel flow = 7.07(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0450
Corrected/adjusted channel slope = 0.0450
Travel time = 0.94 min. TC = 17.01 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.825
Decimal fraction soil group A = 0.000
Decimal f~action soil group B = 0.000
Decimal fraction soil' group C = 0.000
Decimal fraction soil,group D = 1.000
RI index for soil (AMC: 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = , 2.800(In/Hr) for a 100.0 year storm
Subarea runoff = 18.253(CFS) for 7.900(Ac.)
Total runoff = 38.331(CFS) Total area = 16.300(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/station 5.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 16.300(Ac.)
Runoff from this stream = 3S.331(CFS)
Time of concentration = 17.01 min.
Rainfall intensity = 2.800(In/Hr)
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 800.000(Ft.)
Top (of initial area) elevation = 1325.000(Ft.)
Bottom (of initial area) elevation = 1268.900(Ft.)
Difference in elevation = 56.100(Ft.)
Slope = 0.07012 s(percent)= 7.01
TC = k(0.710)*[(length"3)j(elevation change)]"0.2
Initial area time of concentration = 17.511 min.
Rainfall intensity = 2.756(In/Hr) for a 100.0 year storm
UNDEVELOPED (fair cover) subarea n\
Runoff Coefficient = 0.824 ~
Decimal fraction soil' group A = 0.000
I
I
I
,I
1
I
I
I
I
J,
I
I
J
I
I
,
I,
I
I,
I
Decimal fraction soil group B = 0.000
Decimal fraction soil, group C = 0.000
Decimal fraction soil' group D = 1.000
RI index for soil (AMC; 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 5.678(CFS)
Total initial stream area = 2.500(Ac.)
Pervious area fraction = 1.000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 4.000 to Point/Station 5.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1268.900(Ft.)
End of natural channel elevation = 1237.000(Ft.)
Length of natural channel = 350.000(Ft.)
Estimated mean flow rate at midpoint of channel = 7.949(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(q"~352) (slope"0.5)
Velocity using mean c~annel flow = 7.12(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls {Plate D-6.2)
Normal channel slope = 0.0911
Corrected/adjusted channel slope = 0.0911
Travel time = 0.82 min. TC = 18.33 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.822
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = , 2. 688 (In/Hr) for a 100.0 year storm
Subarea runoff = : 4.420(CFS) for 2.000(Ac.)
Total runoff = 10.098(CFS) Total area = 4.500(Ac.)
i
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/station 5.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 4.500(Ac.)
Runoff from this stream = 10.098(CFS)
Time of concentration = 18.33 min.
Rainfall intensity = 2.688 (In/Hr)
Summary of stream data:
Stream
No.
Rainfall Intensity
(In/Hr)
~?/
Flow rate
(CFS)
TC
(min)
I
I
I
I
1
I
I
I
I
I
I
i
I
I
I
I
I
I
I
r
1 38.331 17.01 2.800
2 10.098 18.33 2.688
Largest stream flow has longer or shorter time of concentration
QP = 38.331 + sum of
Qa Tb/Ta
10.098 * 0.928 = 9.373
Qp = 47.704
Total of 2 streams to confluence:
Flow rates before confluence point:
38.331 - 10.098
Area of streams before confluence:
16.300 4.500
Results of confluence:
Total flow rate = 47.704(CFS)
Time of concentration = 17.014 min.
Effective stream area after confluence =
20.800(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 5.000 to point/station 6.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1237.000(Ft.)
End of natural channel elevation = 1222.000(Ft.)
Length of natural channel = 550.000(Ft.)
Estimated mean flow rate at midpoint of channel = 57.680(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(q"~352) (slope"0.5)
Velocity using mean channel flow = 6.66(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0273
Corrected/adjusted channel slope = 0.0273
Travel time = 1.38 min. TC = 18.39 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.822
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil' group C = 0.000
Decimal fraction soil, group D = 1.000
RI index for soil (AMC, 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = , 2.683(In/Hr) for a 100.0 year storm
Subarea runoff = 19.190(CFS) for 8.700(Ac.)
Total runoff = 66!.894 (CFS) Total area = 29.500(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 6.000 to point/station 7.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
a,.?7
Top of natural channel elevation =
End of natural channel elevation =
1222.000 (Ft.)
1217 .500(Ft.)
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
,
I
I
I
Length of natural channel = 270.000(Ft.)
Estimated mean flow rate at midpoint of channel = 74.604(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(q".352) (slope"0.5)
Velocity using mean channel flow = 5.62(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate 0-6.2)
Norma~ channel slope = 0.0167
corrected/adjusted channel slope = 0.0167
Travel time = 0.80 min. TC = 19.19 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.820
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil, group 0 = 1.000
RI index for soil (AMC: 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.621(In/Hr) for a 100.0 year storm
Subarea runoff = 14.621(CFS) for 6.800(AC.)
Total runoff = 81.515(CFS) Total area = 36.300(AC.)
End of computations, total study area = 36.30 (Ac.)
The following figures,may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction (Ap) = 1.000
Area averaged RI index number = 84.0
~
I
I
I
I
I
I
I
.1
I
I
I
I
I
'I
I
I
I
I
I
-'
~
I
I
I
J
I
I
I
I
I
I
'I
,
I
I
I
'I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/14/95
version 3.3
100 YR. HYDROLOGIC CALC.
BASIN "A" TRIBUTARY TO EXIST 36" RCP @ BUTTERFIELD STG. RD.
INTERIM CONDITION (TR 23413-3)
FILE:CHINT
********* - Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering corporation, Temecula, CA - SIN 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = .100.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 750.000(Ft.)
Top (of initial area) elevation = 1326.000(Ft.)
Bottom (of initial area) elevation = 1255.000(Ft.)
Difference in elevation = 71.000(Ft.)
Slope = 0.09467 s(percent)= 9.47
TC = k(O.710)*[(length^3)j(elevation change)]^0.2
Initial area time of boncentration = 16.071 min.
Rainfall intensity = ' 2.889(In/Hr) for a 100.0 year storm
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.827
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 20.078(CFS)
Total initial stream area = 8.400(Ac.)
Pervious area fraction = 1.000
qc.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
J
I
I
I
I
I
'~
I
I
I
I
I
I
I
I
I
I
Process from Point/station 2.000 to Point/Station
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
5.000
Top of natural channel elevation = 1255.000(Ft.)
End of natural channel elevation = 1237.000(Ft.)
Length of natural channel = 400.000(Ft.)
Estimated mean flow rate at midpoint of channel = 29.519(CFS)
Natural valley channel type used'
L.A. County flood control district formula for channel velocity:
Velocity = (~ + 8(q'.352) (slope'0.5)
Velocity using mean channel flow = 7.07(Ftjs)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate 0-6.2)
Normal channel slope = 0.0450
Correctedjadjusted channel slope = 0.0450
Travel time = 0.94 min. TC = 17.01 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.825
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.800(InjHr) for a 100.0 year storm
Subarea runoff = 18.253(CFS) for 7.900(Ac.)
Total runoff = 38.331(CFS) Total area = 16.300(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from PointjStation 2.000 to pointjStation 5.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
stream flow area = : 16.300(Ac.)
Runoff from this stream = 38.33l(CFS)
Time of concentration'= 17.01 min.
Rainfall intensity =, 2.800(InjHr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Pointjstation 3.000 to pointjstation 4.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 800.000(Ft.)
Top (of initial area) elevation = 1325.000(Ft.)
Bottom (of initial area) elevation = 1268.900(Ft.)
Difference in elevation = 56.100(Ft.)
Slope = 0.07012 s{percent)= 7.01
TC = k(0.710)*[(length'3)j(elevation change)]'0.2
Initial area time of concentration = 17.511 min.
Rainfall intensity = 2.756(InjHr) for a 100.0 year storm
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.824
Decimal fraction soil group A = 0.000
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group 0 = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 5.678(CFS)
Total initial stream area = 2.500(Ac.)
Pervious area fraction = 1.000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 4.000 to Point/station 5.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1268.900(Ft.)
End of natural channel elevation = 1237.000(Ft.)
Length of natural channel = 350.000(Ft.)
Estimated mean flow rate at midpoint of channel = 7.949(CFS)
Natural valley channel type used
L.A. county flood control district formula for channel velocity:
Velocity = (7 + 8(qA.352) (slopeAO.5)
Velocity using mean channel flow = 7.12(Ft/s)
,
Correction to map slope used on extremely rugged channels with
drops and waterfalls '(Plate 0-6.2)
Normal channel slope = 0.0911
Corrected/adjusted channel slope = 0.0911
Travel time = 0.82.min. TC = 18.33 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.822
Decimal fraction soil' group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.688(In/Hr) for a 100.0 year storm
I
Subarea runoff = '4.420(CFS) for 2.000(Ac.)
Total runoff = 10(098(CFS) Total area = 4.500(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/station 5.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = ( 4.500(Ac.)
Runoff from this stream = 10.098(CFS)
Time of concentration'= 18.33 min.
Rainfall intensity =: 2.688 (In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1 38.331 17 .01 2.800
2 10.098 18.33 2.688
Largest stream flow has longer or shorter time of concentration
Qp = 38.331 + sum of
Qa Tb/Ta
10.098 * 0.928 = 9.373
Qp = 47.704
Total of 2 streams to confluence:
Flow rates before confluence point:
38.331- 10.098
Area of streams before confluence:
16.300 4.500
Results of confluence:
Total flow rate = 47.704(CFS)
Time of concentration = 17.014 min.
Effective stream area after confluence =
20.800(Ac. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 6.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1237.000(Ft.)
End of natural channel elevation = 1222.000(Ft.)
Length of natural channel = 550.000(Ft.)
Estimated mean flow rate at midpoint of channel = 57.680(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(q"~352) (slope"0.5)
Velocity using mean channel flow = 6.66(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0273
Corrected/adjusted channel slope = 0.0273
Travel time = 1.38 min. TC = 18.39 min.
. I
Add1ng area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.822
Decimal fraction soil'group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.683 (In/Hr) for a 100.0 year storm
Subarea runoff = 19.190(CFS) for 8.700(AC.)
Total runoff = 66~894(CFS) Total area = 29.500(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 6.000 to Point/Station 7.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
C\.l\
Top of natural channel elevation =
End of natural channel elevation =
,
1222.000(Ft.)
1217.500(Ft.)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Length of natural channel = 270.000(Ft.)
Estimated mean flow rate at midpoint of channel = 74.604(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(q'.352) (slope'0.5)
Velocity using mean channel flow = 5.62(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normak channel slope = 0.0167
Corrected/adjusted channel slope = 0.0167
Travel time = 0.80 min. TC = 19.19 min.,
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.820
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.621(In/Hr) for a 100.0 year storm
Subarea runoff = 14.621(CFS) for 6.800(Ac.)
Total runoff = 81.515(CFS) Total area = 36.300(AC.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 7.000 to point/station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1217.50(Ft.)
Downstream point/station elevation = 1211.90(Ft.)
Pipe length = 107.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 81.515(CFS)
Given pipe size = ,36.00(In.)
Calculated individual pipe flow = 81.515(CFS)
Normal flow depth in pipe = 18.73(In.)
Flow top width inside pipe = 35.97(In.)
Critical Depth = 33.38(In.)
Pipe flow velocity = 21.95(Ftjs)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 19.27 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/station 18.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number': 1
Stream flow area = . 36.300(Ac.)
Runoff from this stream = 81.515(CFS)
Time of concentration = 19.27 min.
Rainfall intensity = 2.615(In/Hr)
Program is now starting with Main Stream No. 2
vP
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 11.000 to Point/station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 780.000(Ft.)
Top (of initial area) elevation = 1263.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 16.500(Ft.)
Slope = 0.02115 s(percent)= 2.12
TC = k(0.390)*[(length'3)/(elevation change)]'0.2
Initial area time of concentration = 12.101 min.
Rainfall intensity = 3.377(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.848
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 18.894(CFS)
Total initial stream area = 6.600(Ac.)
Pervious area fraction = 0.500
,
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 12.000 to Point/station 13.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment: elevation = 1246.500(Ft.)
End of street segment elevation = 1233.000(Ft.)
Length of street segment = 950.000 (Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (vjhz) = 0.017
Street flow is on [1] siders) of the street
Distance from curb to'property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = O. 015'0
Manning'S N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.578(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property =
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.000(Ft.)
Flow velocity = 4.53(Ft/s)
Travel time = 3.50 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.841
Decimal fraction soil group A =
Decimal fraction soil; group B =
Decimal fraction soil; group C =
26.194(CFS)
4.525(Ft/s)
3.89(Ft.)
TC =
15.60
min.
0.000
0.000
0.000
\t>\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.937(In/Hr) for a 100.0 year storm
Subarea runoff = 12.595(CFS) for 5.100(Ac.)
Total runoff = 31.489(CFS) Total area = 11.700(Ac.)
street flow at end of street = 31.489(CFS)
Half street flow at end of street = 31.489(CFS)
Depth of flow = 0.612(Ft.), Average velocity = 4.739(Ft/s)
warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 5.62(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 13.000 to Point/station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.50(Ft.)
Pipe length = 30.bO(Ft.) Manning's N = 0.013
No. of pipes = 1 ReqUired pipe flow = 31.489(CFS)
Given pipe size = 24.00(In.)
Calculated individual pipe flow = 31.489(CFS)
Normal flow depth in pipe = 15.68(In.)
Flow top width inside pipe = 22.84(In.)
Critical Depth = 22.59(In.)
Pipe flow velocity =' 14.47(Ft/s)
Travel time through pipe = 0.03 min.
Time of concentration' (TC) = 15.63 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 13.000 to point/station 17.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 1
stream flow area = ! 11.700(Ac.)
Runoff from this stream = 31.489(CFS)
Time of concentration: = 15.63 min.
Rainfall intensity = 2.933 (In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 14.000 to Point/station 15.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 480.000(Ft.)
Top (of initial area) elevation = 1258.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 11.500(Ft.)
Slope = 0.02396 s(percent)= 2.40
TC = k(0.390)*[(lengthA3)/(elevation change)]'0.2
Initial area time of concentration = 9.720 min.
Rainfall intensity = , 3.810(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.853
Decimal fraction soiligroup A = 0.000
Decimal fraction soil group B = 0.000
\t>V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soi1(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 4.874(CFS)
Total initial stream area = 1.500(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from goint/station 15.000 to Point/Station 16.000
**** STREET-FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1246.400(Ft.)
End of street segment elevation = 1233.000(Ft.)
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to cross fall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to'property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 9.749(CFS)
Depth of flow = 0.437(Ft.), Average velocity = 3.407(Ft/s)
streetflow hydraulics, at midpoint of street travel:
Halfstreet flow width = 17.917(Ft.)
Flow velocity = 3.41(Ft/s)
Travel time = 4.65 min. TC = 14.37 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.843
Decimal fraction soil: group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.073(InjHr) for a 100.0 year storm
Subarea runoff = '7.773(CFS) for 3.000(AC.)
Total runoff = 12~647(CFS) Total area = 4.500(AC.)
Street flow at end of; street = 12.647(CFS)
Half street flow at epd of street = 12.647(CFS)
Depth of flow = 0.470(Ft.), Average velocity = 3.630(Ftjs)
Flow width (from curb'towards crown)= 19.858(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.00(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
\~~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
No. of pipes = 1 Required pipe flow = 12.647(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 12.647(CFS)
Normal flow depth in pipe = 9.41(In.)
Flow top width inside pipe = 17.98(In.)
critical Depth = 16.07(In.)
Pipe flow velocity = 13.54(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 14.40 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/station 17.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 4.500(Ac.)
Runoff from this stream = 12.647(CFS)
Time of concentration = 14.40 min.
Rainfall intensity =; 3.069(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
Largest
Qp =
31.489 15.63
12.647 14.40
stream flow has longer
31. 489 + sum of
Qb Ia/Ib
12.647 * : 0.956 =
43.578 '
2.933
3.069
time of concentration
12.090
Qp =
Total of 2 streams to' confluence:
Flow rates before confluence point:
31.489 12.647
Area of streams before COnfluence:
11.700 4.500
Results of confluence:
Total flow rate = ; 43.578(CFS)
Time of concentration: = 15.635 min.
Effective stream area after confluence =
16.200(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1225.00(Ft.)
Downstream point/station elevation = 1211.90(Ft.)
Pipe length = 300.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 43.578(CFS)
Given pipe size = 36.00(In.)
Calculated individual; pipe flow = 43.578(CFS)
Normal flow depth in pipe = 13.83(In.)
Flow top width inside pipe = 35.02(In.)
Critical Depth = 25'.79 (In.)
Pipe flow velocity ~' 17.43(Ft/s)
Travel time through pipe = 0.29 min.
\oct
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Time of concentration (TC) =
15.92 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 17.000 to Point/station 18.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main stream is listed:
In Main stream number: 2
Stream flow area = 16.200(Ac.)
Runoff from this stre?m = 43.578(CFS)
Time of concentration = 15.92 min.
Rainfall intensity = 2.904(In/Hr)
Summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Largest
Qp =
81.515 19.27
43.578 15.92
stream flow has longer
81. 515 + sum. of
Qb Ia/Ib
43.578 * . 0.900 =
120.748
2.615
2.904
time of concentration
39.233
Qp =
Total of 2 main streams to confluence:
Flow rates before confluence point:
81.515 43.578
Area of streams before confluence:
36.300 16.200
Results of confluence:
Total flow rate = 120.748(CFS)
Time of concentration = 19.272 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
52.500(Ac.)
52.50 (Ac.)
same area.
,
Area averaged pervious area fraction (Ap) = 0.846
Area averaged RI index number = 81.2
\~
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 06/14/95
version 3.3
------------------------------------------------------------------------
100 YR HYDROLOGIC CALC
BASIN "C" INTERIM CONDo
FILE:2314CC
6/12/95
-------------~----------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water conservation District
1978 hydrology manual
Storm event (year) = ' 100.00 Antecedent Moisture Condition = 2
0.550 (Inches)
1.400 (Inches)
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
Storm event year = 109.0
Calculated rainfall intensity data:
1 hour intensity = 1.400 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 40.000 to point/station 41.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1250.000(Ft.)
Bottom (of initial area) elevation = 1217.000(Ft.)
Difference in elevation = 33.000(Ft.)
Slope = 0.11000 s,(percent) = 11.00
TC = k(0.710)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 10.810 min.
Rainfall intensity = : 3.593(In/Hr) for a 100.0 year storm
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.841
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 7.249(CFS)
Total initial stream area = 2.400(Ac.)
Pervious area fractiop = 1.000 \()p
+++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from Point/station 41.000 to point/station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
42.000
Top of street segment elevation = 1217.000(Ft.)
End of street segment elevation = 1207.000(Ft.)
Length of street segment = 200.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow 'is on [1], side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz)' = 0.020
Gutter width = 2.00b(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.609(CFS)
Depth of flow = 0.357(Ft.), Average velocity = 5.353(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 13.176(Ft.)
Flow velocity = 5.35(Ft/s)
Travel time = 0.62 min. TC = 11.43 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.849
Decimal fraction soil: group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil: group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = ' 3.484(In/Hr) for a 100.0 year storm
Subarea runoff = i 2.663(CFS) for 0.900(Ac.)
Total runoff = 9~912(CFS) Total area = 3.300(Ac.)
Street flow at end of'street = 9.912(CFS)
Half street flow at ehd of street = 9.912(CFS)
Depth of flow = 0.370(Ft.), Average velocity = 5.533(Ft/s)
Flow width (from curb towards crown)= 13.969(Ft.)
End of computations, total study area = 3.30 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.864
Area averaged RI index number = 81.5
\t/\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering software, (c) 1992
Rational Hydrology Study Date: 06/14/95
version 3.3
------------------------------------------------------------------------
10 YR HYDROLOGIC CALC.
BASIN "A" TRIBUTARY TO EXIST 36" RCP @ BUTTERFIELD STG. RD.
INTERIM CONDITION (TR 23413-3)
FILE:CHINT
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
------------------------------------------------------------------------
RANPAC Engineering Corporation, Temecula, CA - SIN 560
------------------------------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water conservation District
1978 hydrology manual
Storm event (year) =
10.00 Antecedent Moisture Condition = 2
2 year, 1 hour precipitation =
100 year, 1 hour precipitation =
0.550 (Inches)
1. 400 (Inches)
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.900 (in./hr.)
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 750.000(Ft.)
Top (of initial area) elevation = 1326.000(Ft.)
Bottom (of initial area) elevation = 1255.000(Ft.)
Difference in elevation = 71.000(Ft.)
Slope = 0.09467 s(percent)= 9.47
TC = k(0.710)*[(length'3)/(elevation change)]"0.2
Initial area time of concentration = 16.071 min.
Rainfall intensity = ! 1.857 (In/Hr) for a 10.0 year storm
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.792
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 12.348(CFS)
Total initial stream area = 8.400(Ac.)
Pervious area fraction = 1.000
\~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Process from Point/Station 2.000 to point/Station
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
5.000
Top of natural channel elevation = 1255.000(Ft.)
End of natural channel elevation = 1237.000(Ft.)
Length of natural channel = 400.000(Ft.)
Estimated mean flow rate at midpoint of channel = 18.155(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (L + 8(qA.352) (slopeAO.5)
Velocity using mean channel flow = 6.19(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0450
Corrected/adjusted channel slope = 0.0450
Travel time = 1.08 min. TC = 17.15 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.788
Decimal fraction soil group A = 0.000
Decimal fraction soil: group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil,group D = 1.000
RI index for soil (AMC' 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = , 1.792 (In/Hr) for a 10.0 year storm
Subarea runoff = 11.158(CFS) for 7.900(Ac.)
Total runoff = 23~506(CFS) Total area = 16.300(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 2.000 to Point/station 5.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = : 16.300(Ac.)
RUnoff from this stream = 23.506(CFS)
Time of concentration = 17.15 min.
Rainfall intensity =, 1.792(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to point/Station 4.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = "800.000(Ft.)
Top (of initial area), elevation = 1325.000(Ft.)
Bottom (of initial area) elevation = 1268.900(Ft.)
Difference in elevation = 56.100(Ft.)
Slope = 0.07012 s(percent)= 7.01
TC = k(0.710)*[(lengthA3)/(elevation change)]AO.2
Initial area time of concentration = 17.511 min.
Rainfall intensity = . 1.771(In/Hr) for a 10.0 year storm
UNDEVELOPED (fair cover) subarea \~~
Runoff Coefficient = 0.787 \
Decimal fraction soil'group A = 0.000
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC, 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 3.485(CFS)
Total initial stream area = 2.500(Ac.)
Pervious area fraction = 1.000
+++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to point/station 5.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1268.900(Ft.)
End of natural channel elevation = 1237.000(Ft.)
Length of natural channel = 350.000(Ft.)
Estimated mean flow rate at midpoint of channel = 4.879(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(qA.352) (slopeAO.5)
Velocity using mean channel flow = 6.33(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls '(Plate D-6.2)
Normal channel slope = 0.0911
Corrected/adjusted channel slope = 0.0911
Travel time = 0.92'min. TC = 18.43 min.
Adding area flow to bhannel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.784
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil, group D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 1.722 (In/Hr) for a 10.0 year storm
Subarea runoff = '2.701(CFS) for 2.000(Ac.)
Total runoff = 6,.186(CFS) Total area = 4.500(Ac.)
,
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 4.000 to Point/Station 5.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 1 in normal stream number 2
Stream flow area = ' 4.500(Ac.)
Runoff from this stream = 6.186(CFS)
Time of concentration = 18.43 min.
Rainfall intensity = 1.722(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
\\t?
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
2
Largest
Qp =
23.506 17.15
6.186 18.43
stream flow has longer or
23.506 + sum, of
Qa : Tb/Ta
6.186 * 0.930 =
29.261
5.755
1. 792
1. 722
shorter time
of concentration
Qp =
Total of 2 streams to,confluence:
Flow rates before confluence point:
23.506 _ 6.186
Area of streams before confluence:
16.300 4.500
Results of confluence:
Total flow rate = 29.261(CFS)
Time of concentration = 17.147 min.
Effective stream area after confluence =
20.800(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 6.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1237.000(Ft.)
End of natural channel elevation = 1222.000(Ft.)
Length of natural channel = 550.000(Ft.)
Estimated mean flow rate at midpoint of channel = 35.380(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(qA~352) (slopeAO.5)
Velocity using mean channel flow = 5.79(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0273
Corrected/adjusted channel slope = 0.0273
Travel time = 1.58 min. TC = 18.73 min.
. '
Add1ng area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.783
Decimal fraction soil'group A = 0.000
Decimal fraction soil' group B = 0.000
Decimal fraction soil; group C = 0.000
Decimal fraction soiligroup D = 1.000
RI index for soil(AMC 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 1.707(In/Hr) for a 10.0 year storm
Subarea runoff = 11.633(CFS) for 8.700(Ac.)
Total runoff = 40.894(CFS) Total area = 29.500(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/station 7.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** \\\
Top of natural channel elevation =
End of natural channel elevation =
1222.000(Ft.)
1217.500(Ft.)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Length of natural channel = 270.000(Ft.)
Estimated mean flow rate at midpoint of channel = 45.607(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8(qA.352) (slope'0.5)
Velocity using mean channel flow = 4.87(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
NormaL channel slope = 0.0167
corrected/adjusted channel slope = 0.0167
Travel time = 0.92 min. TC = 19.65 min.
Adding area flow to channel
UNDEVELOPED (fair cover) subarea
Runoff Coefficient = 0.781
Decimal fraction soil group A = 0.000
Decimal fraction soil'group B = 0.000
Decimal fraction soil'group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil (AMC' 2) = 84.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 1.662(In/Hr) for a 10.0 year storm
Subarea runoff = : 8.824(CFS) for 6.800(Ac.)
Total runoff = 49.718(CFS) Total area = 36.300(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 7.000 to point/station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1217.50(Ft.)
Downstream point/station elevation = 1211.90(Ft.)
Pipe length = 107.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 ReqUired pipe flow = 49.718(CFS)
Given pipe size = ,36.00(In.)
Calculated individual pipe flow = 49.718(CFS)
Normal flow depth in pipe = 14.13(In.)
Flow top width inside,pipe = 35.16(In.)
critical Depth = 27.53(In.)
Pipe flow velocity = 19.29(Ftjs)
Travel time through pipe = 0.09 min.
Time of concentration (TC) = 19.75 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 7.000 to point/Station 18.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main stream number': 1
stream flow area = ,36.300(Ac.)
RUnoff from this stream = 49.718(CFS)
Time of concentration = 19.75 min.
Rainfall intensity = 1.658 (In/Hr)
Program is now starting with Main Stream No. 2
f
\\v
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/Station 11.000 to Point/station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 780.000(Ft.)
Top (of initial area) elevation = 1263.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 16.500(Ft.)
Slope = 0.02115 s(percent)= 2.12
TC = k(0.390)*[(lengthA3)/(elevation change)]"0.2
Initial area time of concentration = 12.101 min.
Rainfall intensity = 2. 170 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.824
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 11.796(CFS)
Total initial stream area = 6.600(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 12.000 to point/station 13.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment'elevation = 1246.500(Ft.)
End of street segment elevation = 1233.000(Ft.)
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to; property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning'S N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.500(Ft.), Average velocity =
Note: depth of flow exceeds top of street crown.
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width,= 20.000(Ft.)
Flow velocity = 4.02(Ftjs)
Travel time = 3.94'min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.813
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil'group
RI index for soil (AMC' 2) =
16.354(CFS)
4.018(Ft/s)
TC =
16.04
min.
A = 0.000
B = 0.000
C = 0.000
D = 1.000.
75.00
\\7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.859(In/Hr) for a 10.0 year storm
Subarea runoff = '7.708(CFS) for 5.100(AC.)
Total runoff = 19.504(CFS) Total area = 11.700(Ac.)
street flow at end of street = 19.504(CFS)
Half street flow at end of street = 19.504(CFS)
Depth of flow = 0.527(Ft.), Average velocity = 4.202(Ft/s)
warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top of street crown.
Distance that curb overflow reaches into property = 1.36(Ft.)
Flow width (from curb towards crown)= 20.000(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 13.000 to Point/station 17.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.50(Ft.)
Pipe length = 30.bO(Ft.) Manning'S N = 0.013
No. of pipes = 1 ReqUired pipe flow = 19.504(CFS)
Given pipe size = '24.00(In.)
Calculated individual pipe flow = 19.504(CFS)
Normal flow depth in pipe = 11.60(In.)
Flow top width inside~pipe = 23.99(In.)
Critical Depth = 19~05(In.)
Pipe flow velocity = 12.96(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration' (TC) = 16.08 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to point/Station 17.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = i 11.700(Ac.)
Runoff from this stream = 19.504(CFS)
Time of concentrationl= 16.08 min.
Rainfall intensity =: 1.856(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/stktion 14.000 to point/Station 15.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 480.000(Ft.)
Top (of initial area) elevation = 1258.000(Ft.)
Bottom (of initial area) elevation = 1246.500(Ft.)
Difference in elevation = 11.500(Ft.)
Slope = 0.02396 s(percent)= 2.40
TC = k(0.390)*[(lengthA3)j(elevation change)]"0.2
Initial area time of concentration = 9.720 min.
Rainfall intensity = ' 2.448(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.831
Decimal fraction soil, group A = 0.000
Decimal fraction soil group B = 0.000 k
Decimal fraction soil group C = 0.000 \\~
Decimal fraction soil group D = 1.000
I
I
I
I
I
I
I
I
I
I
,
I
I
I
I
I
I
I
I
I
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.051(CFS)
Total initial stream area = 1.500(Ac.)
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from point/station 15.000 to Point/station 16.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1246.400(Ft.)
End of street segment elevation = 1233.000(Ft.)
Length of street segment = 950.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.064
Slope from grade break to crown (v/hz) = 0.017
Street flow is on [1] side(s) of the street
Distance from curb to: property line = 10.000(Ft.)
Slope from curb to property line (vjhz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 6.103(CFS)
Depth of flow = 0.3~5(Ft.), Average velocity = 3.044(Ftjs)
Streetflow hydraulics; at midpoint of street travel:
Ha1fstreet flow width: = 14.841(Ft.)
Flow velocity = 3.04(Ftjs)
Travel time = 5.20'min. TC = 14.92 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.816
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 1.000
RI index for soil(AMC 2) = 75.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 1.934(In/Hr) for a 10.0 year storm
Subarea runoff = ,4.734(CFS) for 3.000(AC.)
Total runoff = 7.785(CFS) Total area = 4.500(Ac.)
Street flow at end of: street = 7.785(CFS)
Half street flow at epd of street = 7.785(CFS)
Depth of flow = 0.411(Ft.), Average velocity = 3.227(Ft/s)
Flow width (from curb towards crown)= 16.378(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Pointjstation 16.000 to PointjStation 17.000
**** PIPEFLOW TRAVEL tIME (User specified size) ****
upstream point/station elevation = 1226.50(Ft.)
Downstream point/station elevation = 1225.00(Ft.)
Pipe length = 30.00(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow = 7.785(CFS)
Given pipe size = 18.00(In.)
/
~
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
Calculated individual pipe flow
Normal flow depth in pipe =
Flow top width inside pipe =
Critical Depth = 12.98(In.)
Pipe flow velocity = 11.94(Ft/s)
Travel time through pipe = 0.04 min.
Time of concentration (TC) = 14.96 min.
= 7.785 (CFS)
7.14(In.)
17 . 61 (In. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 16.000 to Point/Station 17.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main stream number: 2 in normal stream number 2
Stream flow area = 4.500(Ac.)
Runoff from this stream = 7.785(CFS)
Time of concentration = 14.96 min.
Rainfall intensity = 1.931(In/Hr)
Summary of stream data:
stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
Largest
Qp =
QP =
19.504 16.08
7.785 14.96
stream flow has longer
19.504 + sum,of
Qb Ia/Ib
7.785 * 0.961 =
26.987
7.483
1. 856
1. 931
time of concentration
Total of 2 streams to confluence:
Flow rates before confluence point:
19.504 7.785
Area of streams before confluence:
11.700 4.500
Results of COnfluence:
Total flow rate = ,26.987(CFS)
Time of concentration: = 16.080 min.
Effective stream area after confluence =
16.200(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to point/Station 18.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1225.00(Ft.)
Downstream point/station elevation = 1211.90(Ft.)
Pipe length = 300.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 26.987(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 26.987(CFS)
Normal flow depth in pipe = 10.73(In.)
Flow top width inside pipe = 32.94(In.)
Critical Depth = 20.17(In.)
Pipe flow velocity = 15.25(Ft/s)
Travel time through pipe = 0.33 min.
Time of concentration (TC) = 16.41 min.
\,Co
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/station 17.000 to Point/Station 18.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main stream number: 2
Stream flow area = 16.200(Ac.)
Runoff from this stream = 26.987(CFS)
Time of concentration = 16.41 min.
Rainfall intensity = 1.836(In/Hr)
summary of stream data:
stream
No.
Flow rate
(CFS)
Rainfall Intensity
(In/Hr)
TC
(min)
1
2
Largest
Qp =
49.718 19.75
26.987 16.41
stream flow has longer
49.718 + sum'of
Qb Ia/Ib
26.987 * 0.903 =
74.091
1. 658
1.836
time of concentration
24.373
Qp =
Total of 2 main streams to confluence:
Flow rates before confluence point:
49.718 26.987
Area of streams before confluence:
36.300 16.200
Results of confluence:
Total flow rate = 74.091(CFS)
Time of concentration, = 19.747 min.
Effective stream area after confluence =
End of computations, total study area =
The following figures'may
be used for a unit hydrograph study of the
52.500(Ac.)
52.50 (Ac.)
same area.
Area averaged pervious area fraction (Ap) =
Area averaged RI index number = 81.2
0.846
\\'\
,
I
I
I
I
I
,
I
I
I
I.
,.
(
I
I
I
-..
I
I
I
"
I
I
~,- c::::H 13.A:S' {N ::tr I ~ '2
~, +fY'DPALAl-IC ANALYStS
(T1<', -23 ( 43 - 3)
~~(N I(BI\
~
rL t6
~)- ~~
~
~~ 9
(fl
l() - -
II ~ ::r: 110
(j
o) - '
0:t ZrJ.. (j
::J-
~\J
r _
D -:::: 0,443 I L-- Z!
QlQo"O&' C.6> it:Z== {I.S'crs
(NO - 'By - PA-SS')
SV-F ~C(..()c;e-D cttAf2.T
~ Q:<., l...C..U L. A Tl 0 l\J
I
D== O-'?? 'L41
)
C:B.* f ==-0.2 CF$
(No BY - f'A'3S)
<;~e 11\( LOse C
~ CA LCS.
,
I
L
:( ,
'\ -t1( LL
~
/ \
/
DP-
------
CfZOW N e.
\\~
I
I
I
I
I
I
I
I
I
)
I
I
I
I
I
I
I
I
I
I
-=- ;:,.:::. ~:.....::...=. ~.. ...........'..- .:::.::. --,~-_.~
, . . , -. ,
,.-. ;-, ;'
. '", I; , . .
;" .~\ : ! ': _ N......::. t}\ ~.... ~IDI
r~---....~:"-~ aHD5-. ~_~.'::-'~"l.....::n___Qt::.C ~-_._.O._.-:>..O.OC:::;.C
:. x..;...:' ..... 0:;:' ?OOOCC 0 0.0 :;OOOC:
.. I""'(\;.F.S; :N;::'IC;-:~S;N~
_~ I 'c-:_~~__:__.L': :' ! I r _~I; ,~ I . i '_~_~_~L_~~I~_
~, - .. .....,._.... ., __ ,.. , " .' . I .
, I' 'I'!I""-r' .. 1 '1'- 1 '5-...." "1'-'" I", ,
..-- ! ';~~_:~~~~'.;:-':.'.~'i~::;::.;: :.:;,,":! :. i .:!~. ~ !~;:~ ~;':~ ,0 i' ::":> : i ': '_:;
~~ ,'~ !".;C'L:,:.+,.li: ";~:';.J ~ ~~: '~ ;. IT' ,-:-_;
I I' "IV'>' , " ,~ ... I , 1 i .
." I I'.. ~l . I r:- . I . I I-! I,
1 1-1' '_., ' 'I I 1 1 1 1 : " 'C ' I I . ' ! , ' '
I", I' "" IOm..I. 1.1., .1
I I . ,. <J> I I,' I .
: ~ . . " i ~ : I - '':" ~ ' : .. ~ 1 Ii '
, 1 " 1 'I " I'" I-
I II" i 'I'!;! 1 'I i I'i ii' , ,::;:!:
'\ I .::; I I I _," I I I , ,.
. . -j, 1'1 ""I' I' ! ' , 'I -' .,.N
,,' 'I ., I '..'..I' ,..'.." .'1"... '- , 1
: : 1 ,I ..:,....!..:I,1 ! ~..~~-_:t:l~
" I 111'1 1,'I'I',.lll .: j. .1'""I~ClI!:
.. I 1_.,. 1.' ..c.,"".
- _ . .... ! i 1 j U I. !':.i i I I I i:~.~.~~l I ~~ :tn! i
. j "j. "t.! 1 , .:~! O_:tf.l1oL; ;
~
;.- ," 1"1"1' 'II. i' 1''"'101 1'.'bh1I!'
;. .. .:: I ..J ,', ,.,.! "'T11 Iftil'! I
..\::!i;;; ;.. I r j, 'I I ,.I 1 I! .Pld I' ?: "
D C\ ,." ",' ' ",..
. -f . f" _ "-: ' ! n,. I.. 1 ! I.:' :. j j' :\1 'C I I.
_ - ,j' 'J-"i *'1 I I I ! : II : I \...JQ' I' I
8 ..,. ,., I I I I 1m :tv,
m, I i_" .... "(" I! ,-j" I
IfV 0"",' "f .,1 1-" , ' , " " ,,' , , ""Zl" 1 I'
. _. . ._n " -......
...... -"'.~' i-'-'-, ~,'-l-.f';+-+."_--D"L"'" rr' !o'f'TE'S.:.S'.."j'T'.j--: -.I.'I'-..".C:"',...'!... 'II'.!
Y' 0 I "..-,--- '1.- I"... .,{..,-I ,_. ~ UM, , I ' , , ,. ,. '. 1 ,... 1 ' ,
~_ --,~-_...'_..,...I'"!----..I.I:il..II'... . ,~-""";,,,':.52 Ii
~ Z -'.'1' '-j"I'I'I'rr'''1' I.' '1'1 '...."1.'1 I' ..'1...."1..1'1'1111
." " '-c'.t" '" '....,.., ' '.....-,., ," ..,' ' ,,',' ....' , .." '"
-f . ;.~. -'-'f;.::~: -'-. . .. - ': ".':' .: . -t-. I I .: ,'" - . . I .:"::. I: ~ . ";:." :.: ,1."- N
\00111'..."..'1'1.' 1'1.1."11' 1"11 III' -I J '1"'1"1"1'1'0
C> >....,-:.~..;_:;.,.:-... ..:l.;:t:.t. [. .::.. .j......:'"I..:..::+::-:.i
C r '~ 1II"~'I,lil:f4-:-' ,!'I i II'; L 1,"1'1,1 Illi!..
V\ I ",' " ,I " 1"1-1, ! 1':1'..,[! I ! '! , I I ! I I" L 1',:1' I: I'..!". I :....:
11 .-- l.,. i ..j. 1':'1 1_'1 'I ,...,. ./':4-.1 1 I t Iii t-! j I' 1.. TO:. .! i I.: !
iii 1,0__1.. '.1"-.'1'-'1'''''-'1' .1" 'I'-"~" ,',' " I I" 1 I I: 1'1 ' " I 1'1" I,' '..,""
_. , ., .... _' 'r" . ..[..II.L. .. I ,'" I ' .' . ,. I I., I
...... ~. - .. .-.,. -.. . .-, -- , ,., ... . .,... ,....
.. .'- . ,.. ...~. . -, , " . . . .. ... ~
," I ~--, I,... ..,... 'I "'1"1'.' I I" , 1 , I 'I I, '1'1'-1 "..1',1 "I'" I "
'J' )lo"! ..,.. .. . . ..... .1 ' ., . .
, -I I' 'j .:i;:' I: i: i i I 'j. I' f i i; 1 1 .j. I' . t i I'!;'! I~
~ 1..1 ';"...1:; i l:---i'.~ __~.. ! I. I I I j I. . 1 I I-
I\) \1 -4 I I." i ..'I!. ill -I I \ I I; :
~ '\J ..;.... l.. I .,..1>,,11'1 .~". I II ,
\ ~' ;;;,..!: :.I.'I'I''''.'llt.''f,~1 ,I. I "I'~ I > =i~ C5i',~ = "i'1' I'll II
- \., ,. I, 1 "I ' 'I " I ,-. ' , , ."'"' IOJ 1 ,- 3:' '- ., ' 1
C'l .._ . .. ... . .... . - .- j- I/' ., . - ..
'^ 0 ,...1 I I .., ,.. " I.:!! 1 0" '~ " "i,' Ii;
, I' I' ' , "1:.1" I I 1 .ft I>"" 0 I" 'I 'I " 'I
r-.^ 0;" I" I-t'.l:' !51."'~~;<'1 .,:, I:, J,
I) \oN:l'TT .....~.: ....1:.- '1.::1_. . ',<:n=~~...:~:: ,.", ,.'"
, 1 I '1::,1 :01"'.1' 1 'I 1...,1....'1 I 1 ,,' , I "" > ,.< I'" PlI' I .. 1,1 I 'I "I 'i
\ W ," '...... , ' .. L , , ..' ~ ~ '" r , .. , ~,
rn -:'l i I.\:,! ii' '11'.ii'llll ; I': 9 r::: Ien; 01: : :11 I; ! ':
\J~ (jl 'I I I I ,," I I" ',' , ,",,' "0' ~': " ' , ' -
. .;" ".~'.:,,":-: : :~e-;_;~!~ I" ..~J-:.~
, , " I' I,,... ,.0,. ""If I . fgl
r- ~ :;:-:-;: Irnl((')i .r;'" . , ..' ._.-,C\"l'i ~JlL-'-'r-,:( -.-"
\ t~ IC"l '.. ,. ...., '/,1'1:-' ,,":0,.,1. CO. 11%1. I
!V'l10 ::oIO,.~ .lm!:1 ~;=i::cr-i:;;:. :.:::,...,....9!_ "'~:::D:,..
.."1 "1l1I'f"'1 " i ~: VoIll C).( IO~' ......,;:...~....' ,Ci
\) _Lz'l,."l .,>, 'I 'Z' 1 ~_(n'~ ,'t ~~_...-.,.-.t>II&I:~ ..
~V'lO'-iO.jCPO; ~2'i: 'r 'j=:.- _ 7.1.iO'h':::'''':::a-.1~
...\. ~~:Tl~"""..;'..:..:.....; "':i~! . ::>. .....'=.~.J ';~_~'c. 'c.!l~"C'l'-l!..
\'J -'-"~>~I~I ,.::a" - -,-.~ '. ..,~~,.;:,Ol :I'\:I!..-.~-
-':-"1':"::::"'-" -01 1 i.1 j." ~:::., ~~U):.:.: :.....'.2.
_ I I' 3:a-!~lC')1 . \ I : i : I ~i :t.nli ;i:T1c.Ul ~1"'l!O. iN: "
11.0' ei""l~101'IZ:-;1 I: 1 i : h: =<:::--ci. ,I~'NZ~.-:": ~::"r.f)i
. 1 ;::) _ _ :,' _., , . .... . ......- >, r ' . _ .. ,V'I' I~"-'
1". .;....... =---.--.------ .j.... ....-;;.:;..;.:::----_.'1 -~.o."....----rc;'-I -
...._! _-41'1'1,'''I.,"'t)'' ' " . ...,. ...... ., UI ".....0. I.!'IT\ ::.
I J" .:!: '== I =:~ I (') I!: i ~ i' i ~:, 0:. : I ~:::I- (") j ....:. : i~:rTl I ~
w.t . I::: _ L _,,: ;-' rTll ___.... . =--.=-!:..:..: ' r;. ~:: 0 "'tl .~...;_-:
.....: ! ;:;; 'c:,_.,>, 0 ......5;::..; i'Tl:<":-::: -:::;>.' jtp:Uii_:"';
- - - -._- - .----
- -' . - - -
\0\\
~
'i
1
r\
'tJl
:R
V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'.
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
~***************************************************************************
.lis software prepared for: Ranpac Corporation
*****************************************************************************
CALCULATE DEPTH
Channel Slope =
Given Flow Rate =
OF FLOW GIVEN:
.015000 (Ft./Ft.) = 1.5000 %
5.20 Cubic Feet/Second
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0150
Mannings "nil value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Crossfall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .331 (Ft.)
Average Velocity = 2.99 (Ft./Sec.)
Channel flow top width = 13.92 (Ft.)
(Ft.) =
.064
.017
18.00
10.00
.020
Streetflow Hydraulics :
Halfstreet Flow width(Ft.) = 13.92
Flow Velocity(Ft./Sec.) = 2.99 Depth*Velocity = .99
Flow rate of street channel (CFS) = 5.20
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow TOp Width(Ft.) =
Subchannel critical Flow Velocity(Ft./Sec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = .999
Subchannel Critical Depth = .374
16.47
2.165
2.40
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
\VJ
I
PLOT ************************
II *********************** CHANNEL CROSS-SECTION
Depth of flow = .33 Feet ,= "W"
I
STREET FLOW HALF-WIDTH CROSS SECTION
critical
I X (Feet)
depth for Channel No.l=
.37 Feet
"e"
, =
Y-Axis-->O.
.2
.4
------------------~--------------------------------------------------------
X
I .00 .70
- 1.00 .68
2.00 .66
3.00 .64
I 4.00 .62
5.00 .60
6.00 .58
I 7.00 .56
8.00 .54
9.00 .52
I 10.00 .50
11.00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
I' 14.00 .16 X W c
15.00 .18 X W c
16.00 .20 X W c
I' 17.00 .21 Xx W c
18.00 .23 W c
19.00 .25 X W c
20.00 .26 X W c
I' 21.00 .28 X W c
22.00 .30 XW c
23.00 .31 XW c
I 24.00 .33 X c
25.00 .35 X c
26.00 .37 Xc
I 27.00 .38 X
28.00 .40 X
29.00 .42 X
30.00 .43 X
1 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
Y(Feet)
.5
.7
X
X
X
X
X
X
X
X
X
X
\'t-l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~\
_.::. ~ ::.....,."'-..- .::.........-...-..:-:::.
\ ~. . ": ~ ..~.~ J: . : !. ..~ j ! : ~ ~ ~
~--',,"""~~fh""'::::K0-5. ----=u_l.o-_~'"L...:n._.I'Q.r.:::o_-.--_D-.-- 0
. ,-. :. ~: : . ' ; 0 . _0' 0 p ,0 0 DCQ 0 P
.~ :/1:: c.:..TCi-' :~SjN . .
! .\~~:;~t~~. ~':"-~~~;'.';~:'.~~: ! l:t! -;.-! ":" :. ,u~7J_J.._ -!.!
-'- ";"-~'~_i;';~:~~:i. ~ .~., .: .~ !:: ~ ~ =
. -
I t :'..1 i-I :-.","":::r''':'-I:1' ,"1' c ,'" 1 C..j..~ J _ . I..:. ii'
, I . .", .,_..." ....J "/- ,. "t. I ~ ' .,- .--.! - :.. -, .
i ~' ; ",:,;!c~+: ~; 'i~ ~:;i 05i i ~ ....;: c, ':
'I~ 'I I 1'1' ~
: . : . ~ t ;, ~ r:-,' I I .
,. 'I I 1 I I I: <> 'm " , I I' "
, 1= 10 ..1 I ...
, I j iQl! I', C;!' I,!! -.:j
I ' " I" [ , I I' I' , ' ' " "
'I "I ~ 1 . . I'.]' ; I I.. ; ,
.: =-1 I 1 I _,. I I I ,_
-N
, I" 1"11..1"11 I...".; I-I. 'I
.' . ...... . t .,1 ,::..,:...1:::, : .~.. ~~ ~
'! ~;_ .::l~,-. ';1' -. _' I. I I I' I. I I"i L ! . i !' ....I'!. ~ I '.
i ..;...: 'i;.i. ~".l."" ,i I.. j-'j ! II .1 i';.-"i-l.'G:l1 I- ~
0:: .':i. .:~. ~:--:l~:'~!..~.. :,: L:.:::: ., ~; ~:' I,::; ;.. l " : ~ .;~~ ,0; ~~
() 'F;XAMPt." UNE"" 1""1' 1"1",,1," 1,'1.'1"'101 I i,
, .,.~.'-' ;.. . ~.. _: :._ :-:....:~:;;, . .. :'" ;. ':. ..: .~: I. ~
, , '" ' ... 01 sa, " .I ",I,,,",,,,-,-,~, 'i':: I ,I "I I.., 1 : ,,..lnl, .:...J
~ \\i I:: : t . ~~.-..~!: ,. I:. .~. i:' .: I:~'.I:~~ f:: '_. ,::'~ 1 .. I. !.. ~ . ~. 1-:', :.! I:'. i !~
\J"'" ,I I -,. .1.. ..1, .!,-.":!'-~-- I. I J ( ,.11 ,I ,...,Q I 4
~ _; I' ,.. :~:'.'r""" , ! ' 1 .. :...:ml 7-f~
- 0, .", ie'.'" ' ",!",[, ..I." P
~ t '...r:~" ,-,-!' "'1" "-"I"c,,, ......, "~I
O ' '" 'I 'I' ,
, .' . .... .:. .:.. "'1
~. ;. ~... .;.".'. '. I I
. - "I "''''I'''j''!' -II
1> ,::: , ,"::"1:",' ; rl5
r 1'\\ 01 >- , I' ..1":'1 I 1-,
\ \J ' I,... ., ,
^~ \10 ,- "foi 1 I '....'I': 1 1 Ij.
~ ItTI'!.:1 !.:' ....- .j Itl.-I j '.i.I:/'j-I';;.. .W
~ _ I ! I I j!-'I I' !:.'T 1':1
.,- I 0,:7'[' , -I' I I; I' "'I ,,! I; I' 'I 'I 1"1' "I,' -I',: ,
,.... Q .;zt". " . I ,1 , ...... ....1
\ "'-l \ ... :..,_ ._ "." . .... ----:-:-..
1 '7' , , ' , I' I, ,,, 'I' 1"1 " ,..", "I' ,,: ,
>- t' .' . t J I" , . .
~ II -I" ii, I 1 I, ; I " ,i' ---;'('
1 ::! i . "' i I. 1 I 'I ) i ! I I..' I ----ri-
..! ~. j I I. ,. 1'1 l' 1'1 j IIi :; <
\' ~ ,-. I I 1.1-;"" 'I , .~ i I; 1" ~
V ,'" ~'I t II' ,. I 0' -', ,",'I" ',4 , I ' , ,
. I "'. I ,.,.., ..I.. I'" , , : " 1,%' >:: :~ 0;" 1 "",,!, I ' I
.. .-. ..1 . . .. - ... . , I ..;:tl ''''tl C I .,' . .
'\ ~ ,0 i .+ i"l J"I..I" "I.';' 10 h!~l:;; I ;;i"AI d I
t--\ /\ 4:>. rg'll![' l II-HI I I Ie L. '" "'I:it!~"" ~ 'j"';"I! lTl
\~ /--:-r.\ -~""!~~.:.~.: 1_>"",_ :.:.:'. !. ~=~~'\,i.I:~:~~~! ',j':' ~N
"" 1 I ,I.:-,I'"I'..CI' I. 'I'+-"I,J' I , I I '" > "'I"" ""t> 1 I , I,ll I '"
-..... ,.,....... .'. ,......... L 1 I I ro 1"". ~!.... ' l',r ..... , ..- , --1.-:"'_'
~ I! .:j"l.l.:i':; 'I.'F-!:"]'I! '1 ! ! !-iSj.!: !(niO!;~; :1' I l' -LJ....~..
r 0.1 1 I ' j ..( ':;1 1 'j "1 ,I ~ I ':la S;,o ::l. I! 1 I ;
~ r- I' 1" .'1'" i i I" -I . I ~ 0 ~i ' ~:~ ..... - . I" -;-;-:
l-^ \\ ., ' . I .'..r" i Ii' , ~ ~ ...'_'O,~ ~I ' ==:-...
- 1 r, 1 , I" ! I . ~ I ~ ,--- < . , .
....~Ol~ Imlu)Jl. ~n' ,', "Ui t._._,~IA..... 'mt""\JA..-.-,r;:{~..!.
I 1\\ I~ 'c,' I .,.. I .:;, 'm: 4. tn I '::J'" ~I
.....u \'J 1,1)'0 !::lIOI. .,i:n! II:' I 2;.:l:Il....../':;I_ .;;:....~.;P!Cl)h,..::'!l,
""(;)1 "',""; I' """i i-"t.,l,(;).OS. \) '~<:'C......::....;:~.,...;C,'
_ _~z (.."'! l: -'~ . :z: --==--- In:-' lA'S--=>- ~... -< ........~....,.., -'.
r'\. ..~U)O 101 DIQj ~ :;:::3:: 'm:2' i~_N7.lJoI,(..:::il\):::LJ,
\j - _':TI'!'U~~'-' ... ~I ' :>. ":'" :::;~;l C"l 'i~_':'r~....t!l~,-t:!'-i!..
_,-, >;1; (,.;:.. -' -,-,~ ., u'~.'.~'(D, 11\)'......"'1_
........, I~I'~::;:;:I~' Cl,OI ,i, ;", d!O,::;,;:;;; ,,,,"Ca;""-'" ':::''''1'
V">,J . ~:::'l 1 ~ I 1 , , I "',' I ~ '" ' I :TI - ~ i 'N'
l,.oO 10 :::... C}l Z' -l I : 'I : : , ::"-; U) 10 . - !, -. ::::..tl- .....'tfJ I
I, ,::l~~l t, i I: ! Q: e;;=;:!i;;; > 1 ...;.NZ ,-. !iV;=-l
~ .--, l- =<.:------ ----. .....~.......-_._.,~... '''--, ~.o."'" -~: 1 ~
'--I -"'''' I ,,, - ""'C. . I.' .". I ,-.W' ,.. '(Jl' ' ,.....!Tl....
I, . z ,- >, 01 I : ; =-<, ; ,- 01 . 'I .;:0--- ,--.- ~
1:>. ' '" ' c::; 1 --I' 1 ......, ' , , ' ....... - "'" 0 ' ...." 00"'" -:
'U'l' .... ,:-"., . . .....' ::::,.,.. J>...... _ I ~ ,-;:::J .....'----'..,; -
.......- n -. ---'--"--..... - _.~ '-
,j ;:;;.~l=:;>.()j c ~:c;:6.::::l< !:-n;<~! !~,t.ni:...;
__ _ _ M ____
..,~~;~
, ,
" ,
-=:. U'I ::n~=I.O;
'-"-0" 0- 0 '-'....0:
::> ::: oCoc'
-
,
-.
I
I
I ***************************************************************************
,.is software prepared for: Ranpac Corporation
*****************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
CALCULATE DEPTH
Channel Slope =
Given Flow Rate
OF FLOW GIVEN:
.009800 (Ft./Ft.) =
- _ 11.50 Cubic Feet/Second
.9800 %
*** OPEN CHANNEL FLOW - STREET FLOW ***
street Slope (Ft./Ft.) = .0098
Mannings "n" value for street =
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft.jFt.) =
Number of Halfstreets carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft.jFt.) =
Depth of flow = .443 (Ft.)
Average Velocity = 3.12 (Ft.jSec.)
Channel flow top width = 20.00 (Ft.)
.015
(Ft.) =
.064
.017
18.00
10.00
.020
Street flow Hydraulics :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 3.13 Depth*Velocity =
Flow rate of street channel (CFS) = 11.50
1.39
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow Top Width(Ft.) =
Subchannel critical Flow Velocity(Ft./Sec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.000
Subchanne1 critical Depth =
20.00
2.646
4.35
.477
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
\7?
I
I
I
I
I
I
I
I
I
I
i,
I
I
I
I
I
I
I
I
I
*********************** CHANNEL CROSS-SECTION PLOT ************************
Depth of flow =
.44 Feet ,= "W"
STREET FLOW HALF-WIDTH CROSS SECTION
Critical depth for Channel No.1=
.48 Feet
= liCit
Y-Axis-->O.
.2
.4
---------------------------------------------------------------------------
x
.00 .70
1.00 .68
2.00 .66
3.00 .64
4.00 .62
5.00 .60
6.00 .58
7.00 .56 X
8.00 .54 X
9.00 .52 X
10.00 .50 X
11.00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
14.00 .16 X W c
15.00 .18 X W c
16.00 .20 X W c
17.00 .21 X W c
18.00 .23 X W C
19.00 .25 X W c
20.00 .26 X W c
21.00 .28 X W c
22.00 .30 X W c
23.00 .31 X W c
24.00 .33 X W c
25.00 .35 X W c
26.00 .37 X W c
27.00 .38 X W C
28.00 .40 X W c
29.00 .42 X W C
30.00 .43 XW c
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
X (Feet)
Y(Feet)
.5
.7
X
X
X
X
X
X
\V't
CAlC+\- ~IN .:f:l::- 3 i 4
<0T \-\-'Y[)F2A{)L-IC At-JALY5iS
(" If<. 2'3 I 43 -:3 )
\VA-;; I i--l ' I A, '~ (iN IE,R 1M C::::ON D i TI (W.
~ UllrfV/A\E CofJOI -
1(010)
, I
0:::: 0.9'1 L- = -Z J
,
Q'Q? -= (q CFS (jAliE(Z.IM
(~ ,p1'\Cl.-OS€1?
CHA(2.T. .; QAt..-C?)
( \II
Qcc <= ur 3 Cf"s @(.;n~AT~ ~
c.otJO, - pUT'AILEo III ~
'5UMP)~Ee a:;iI\CMl~E=-O lti it
Ci1MZ-1) I, !4:\?
g )-:2 I
0" \fl0 '
.'
I
I
I
I
I
I
I
I
I
I
c
I
I
I
I
I
I
,
I
I
~
~
~
~
"-..J
~
I-
\'I
(tI
II
<J r----
cO ;...
\r 0.
II ~ ~
cr~
~ \1 Q
~ cil\N :t:-
. 'l' ~
N (I ~
~0\t;
J t IJ\
~ \\l IL
lE25 u
rf B ~
\01 ~
8
cr
I I
D -== o.~q L: 'Z(
(
Q,Cb -= (q CFs (lNIEfZITYl)
(StsF ~CU>JFO Ct/4f2-T
~; C4-<... c r)
QlOC> = '24.3 q.r (uLfir'VIAn:::i
cOt-J 0 I ThrJ - F UTC.-l [!-c
'5U/11 p) ~~ -E=Nc.-LOS~O
Ct+Af2-T.
Q,co lOT.M- = 48.<:-
o - o. s-q ~E:' ENC<.o~FO
CAI..(!,.
''2'''''. CAP.) =
1?3 CFS C~F' Ei-lcc.os:
c-<..C!s) . D= 0.47 '
1?' ...
-"-.-.--.
FoX F-D.
\~
_.::. :.:....., "'-:0",- :.::::....... "_"-."_ ::':. _:........!:...-:...~
: ~. \:";':--.~.t~;:~!: . , !.! 11: _ ~ ~ ~ ~ '~~'~~.
~~---~ tJ"-ty)>_ ~O'--- ~_.:...o...._":""-":"'"l....:f"..__Ct:.O. -----""'>-.-- o._.~.. 0- 0 c :;:;.,-,"
"....~" '. 0.0 :.?pooocc 0":::: ~::.oooc:
... ili.:;:S.; :N;C;.j"C,...~SjN: - . ' '
~ .~ \~-:~'~._~;';':"'~;";~':.:~:'.~~;! : : :t:.. -;' .: :. ~ :;" ; ;.,_.~~~-+-~-i...J.!
..;__ t. ',-'" ;._~.. i'-.~~'~\:.:. L: ';'~ :.% :~ ~~~'I~~_~
" ",,' ;' 'I ,','"..."..,'".-" "y\ 'I : ,=- ',' " c:.,L" :, 1'-:" 1 Ii, ,-
. 1 . ........... ....1 "/,',.l.! ,........;.,...oj. ..-- "PH'I % .-.., ,'. .
~~~T'-'~~'!;~)~.t;~i..;:i~ .. ~ -;; O!~:1 :~~i ".~ :"_ ;::, ,-~
r I' ...... ' , 1 '
, ;,; 'I"" 'e>' 'I' ;!! ,;:! 'I" i
!I\ . I ,- 1,0 i.n !., I. i! L.; I'
, ~'I I!" I II <> ,,"',,'" , ",;!,,,
, I':,! lQ! ,.:';!' ),'!!! 'Ii: 1
1 I 11'1' i 'I'~ 1 1'1 ! ' I i ,I ' j 'II'::;:!:
. . I. , _,. .. 1 I I I " ,.
, ' I" I' " 'II I' .~, , ' . ' , ,N
, , 1 -.. I .... ... I ,...t-., .-1 ."1- ....j:-,. , I
':. I 1 ,l. ',:' ''',!:.: r .:.. .._1" Q: i 1
" 1."1111'11,"1'1""11 .. ;'I!':;;;;;~!E":
. I ._ I..' ."".
\ .~: :::,. -l:'i: .-:......:..: e j il! i I I.. I':i I j I : 1 ;::'.!-i.IGlI I-i\ :lZli 1
, .. ... 'X ",' i!!.! i' i.' I. I .t ! j ) .!: :- .;~;: O:~tn "'-l ! ;
'-'~ ;:'T_",' ........."'-"1."" "'I;:'!'II, , ',',~,I' '";bhli""
,., .. :~MPI.;.E ., l.'.i'i....!..! ! ..::I..J r' !.,.rl~J llftll ,!I
-~ i'li i.. ~: ,.." "'" i'--.:e.:: ~ 1 r j, I I j I , , : 'i-Ini I "":; !
~, ' .
\ I) I' ----' ~ . i" ,;.;, ,';.. : ; ",.: ..... . ... l"o. ..... ''-1"'- I. 1 I 1 ; . . i , .. "" !a:l:1 I.. " \.-1,;
., -"': " I . .. .: ;x 1'- ''- ..... '-'-. ,,,. ". f ","~" _'.,
,I - 'J"";',l,,'~',1 "'-I:. 1 ~'1-...""-l,i I.l.jl ; I I \...IQ: l.r!I!.
:'t"\ .~: .. . " ' :' 1 :' 1 , . I ' I. f. :1"1'11 I ;r~.. I.
vv _' ,._.1 .,_1. I . . ' , ,. I' l.., I I ,._
1::>, "'Ii ;":-!..t.:~i"'+-: : : : , , " ' :" ,': ":'::':;""'II~ ','1 ill'
,.r'__1-- '.' . -O'L~ "..-... T~S-SI....I'T..1 "-"---I-'IC'I'-:"imJ,., "f"I'
o I .... "'-1::' +"1 I" . ~ ~M" ,v ., ' , ... , , 'I'" 1 "I
- ~_. -~ 1-- -! . . : ,.f . I ' i I ! t j I .. . -. ,... :,..:.. ..' .._. I
- 1"1 I I'" '1'1' '1 -I i 1'1 '1"1'1' f 1'1'1' ,....'1...."1 "1'1'11 'I
." ::: ' ;~-,-=r.,~::'i:c ,', ':,: C"' ,; .. ," :'11 " ,,:'.,:"1' ..", ii',: ,,' N
01 I I "'''1'''1'1' UI I' II 11111' I 'I" I 1"'10
>- '.' "1':' r.-:-....;... .:: 'I . : . ,i "".h.t 1 , :+':r: J
\5 ! ,..:'",~TI..i' ! i I I' : ,I I;'; ',1"'.'1..,,1 ,! 1 i,
l -<, " 'I"'..,..' I"~ 1 ' , I 1 I , ' I 1'1 " , " ," '.., ,'" 1 ' ,.
"' .. !, .JM' , r.. . t I ,. ..' : .1. 1"+' :-.;
.,. ,1. 1--'1 1'1 'I :-,. I 1 I I I ( i j to! I I.T I '1 j I J I
l 0 ' '". '1' '1- "-,, I" '1'- " , I 'I I ' II ' " , I' I "I "I '. ,
, ,,,.[" ,,', " ,-,"-"," ,'..'... , .', , ' ! I, ':' ,'I,' I
:::t__ ,. I . ._.,. r.. . I ,.. , ' ... ...1,....
-I :;0";- ,I-',~,:'I"..T'I.I..'I.. I ! II! 1 ! r~i I, !' I! 'I':i i ;" !'
"I j' 1 ':!: I i: i. i I Ii!! I j I: . i ; j i I.j I ! I.
I ;:.: 1 ..I C:;;;..I '\ ( il.l I l. t ! I i I I.. I I 1 1-
~ ...... t I..;. I. ': .! 1 I _ ! I ( I I ! I l. I. I:
': :-: ,,' I' r " I' ,. I ' '0: i:: ~ ~ '" l., I 'I' I I I ' , I'
~"',' 1"'..'1...., I '"1'%''' 01>< 1 ","..." I.
-.1, ,I ,.. ' 'I -', I..", ~ ,." a,..", II
'c> ': . "'I I' -I" '''I' ' I ,- 1 '... '-;" ,-..,.' 'I' , , , '
= too " ,I... ...:!! 0 .JloI::tl 1m' .,. I ., I
" 'I I " " I I 1 I I "' I" - ":-~''';t ! (J) I" 'I I ' , I ' I
0,' .... I II ,. , c:, l" -<J ..I... -<' "', 1,',1
: \"1'1'! : :... "':1" '. ~~ L.. ,~i2 =1 ! III.!....
, --'I,;7''I-''I''!'' 'II' 1 1 I' =" W'"'j> tn, 1 ' 111'1'1: ;
! .! .....::..!.! ..:':.:' ~,i ,~~~ ~~!r:! ,t._....' : '~:
I ! :l~,'j I.;:; .j 1-- I! I ! t .!:f~ Ui; 01; h: : !;. I I ! ! ! ~ :..
"I i I. j '.1 ';'\. I (Jo-! a S;iO ;:I. I: i . : ! I
1 ..~~_ ..----.--.__~.
r 1 I'f I !:::i e . ; :1> Gl . I , ; . , '
. _, 1,1 c..' -:%'i-:c .'
'~---1. ")II: ;'r::' ' (/) t: _i -r:tl!- ... I '"" ,..,~-,....." ~ ~..l~
"'fU;!6 1 ;i.! !m! :> ?~I ~ :;:; '" !:z.~;:"'';O!t:I;', L~::::Il I,.
"'1 c;> I I ':1: I' : , ~ Pl (;)..- ~l I ';,; ~ i:: ...........~;; ic,O'C i
_1-z ,(,."1 ' II .~' _~_--=--......c ~-=>- - N.' ......,... '- '.
.~lJ)O )11010, ---:..-_E-- z:! ',." f j~- 7.l>I!("'=;I'\)~~~
. ,..,! --rrr .., I ~l ; :> - ~, ("J' I "" ~ ~'I.O ,', ,t:':,_ I
~;_If\:~; ~I t~1 _ ~~ ;-:'-;;~~~"~~:-N''''''~_
I...., I~::; ;;'I~'IOI' i ;..,' 01=._ rf;: :i~'c~~U'l:~: ~z':
I '?" ....1 I ' , , ,,....... I I :'T\ -...... ~ l'T1'O' IN'
'," i,C- -,: z'~1 ! i I ....;tn!c ''''. ~.:::::. _' ...: -oJ.... I
~ ,", ' ,~ --<,- ',.,- ,-" ,-"'
, . :::l _ ! I.: ' I . ~. 1 =::> I"';:' , ! _ ::::: _-. ;Ul I IIV'=, I
. ~ -<-, .---.,-- ,-, --'z"cn''''---~'-..I''' .----j1:l. -I
--I _-I "I' '1)' I. ' .,' ., t1I. ''''''0' 1 'JT\
v...z, ~:I("')!: ~, ; ~O!"'I'l : :1 ~.:?'n j~;.! i;;;:1'Tl
...~: __C; :"_.~: __ - :::'-'.S2 IO~.5':::"~~
I : ~ >'("): 0 o. :::;:;:1 < l"l'l:<-:.:;: ..::.>. :t:;.u:;
__ _u__ .. ---
-
::
Z
10
\.N
'"
.\0.
\)
~
o
\Il
-i\
r
\1
N
-
~\
.0
o
o
(\
~
~
."
~
-
....Q
~
C/)
~
C\
Q'>
-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
'***************************************************************************
..is software prepared for: Ranpac corporation
*****************************************************************************
CALCULATE DEPTH
Channel Slope =
Given Flow Rate =
OF FLOW GIVEN:
.011100 (Ft./Ft.) = 1.1100 %
48.60 Cubic Feet/Second
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0111
Mannings "nil value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets carrying Runoff = 2
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .585 (Ft.)
Average Velocity = 4.37 (Ft./Sec.)
Channel flow top width = 24.27 (Ft.)
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is =
(Ft.) =
.064
.017
18.00
10.00
.020
4.272 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 4.37 Depth*Velocity =
Flow rate of street channel (CFS) = 48.60
2.56
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow Top Width(Ft.) =
Subchannel Critical Flow Velocity(Ft.jSec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.001
Subchannel Critical Depth = .678
28.89
3.197
9.16
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.2:
Subchannel critical Flow Top Width(Ft.) =
Subchannel Critical Flow Velocity(Ft.jSec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.001
Subchannel critical Depth = .678
28.89
3.197
9.16
\'l--l
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
I
I
I
*********************** CHANNEL CROSS-SECTION PLOT ************************
'epth of flow = .59 Feet ,= "W"
STREET FLOW HALF-WIDTH CROSS SECTION
Critical depth for Channel No.l= .68 Feet = "e"
I Critical
depth for Channel NO.2= .68 Feet = "e"
I X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .5 .7
--------~------------------------------------------------------------------
.00 .70 X
I 1. 00 .68 X
2.00 .66 Xc
3.00 .64 X c
4.00 .62 X c
I 5.00 .60 X c
6.00 .58 X c
7.00 .56 X W c
I 8.00 .54 X W c
9.00 .52 X W c
10.00 .50 X W c
11. 00 .06 X W c
I 12.00 .13 X W c
13.00 .14 X W c
14.00 .16 X W c
I 15.00 .18 X W c
16.00 .20 X W c
17.00 .21 X W c
I 18.00 .23 X W C
19.00 .25 X W c
20.00 .26 X W c
21. 00 .28 X W c
I 22.00 .30 X W c
23.00 .31 X W c
24.00 .33 X W c
I 25.00 .35 X W C
26.00 .37 X W c
27.00 .38 X W c
28.00 .40 X W c
I 29.00 .42 X W c
30.00 .43 X W c
31. 00 .42 X W c
I 32.00 .40 X W c
33.00 .38 X W c
34.00 .37 X W c
I 35.00 .35 X W c
36.00 .33 X W c
37.00 .31 X W c
38.00 .30 X W c
I 39.00 .28 X W c
40.00 .26 X W c
41. 00 .25 X W c
I 42.00 .23 X W c
43.00 .21 X W c ,1$
44.00 .20 X W c
I 45.00 .18 X W c
46.00 .16 Xl W c
I
I
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
47.00 .14 X W c
48.00 .13 X W c
49.00 .06 X W c
50.00 .00 X W c
51.00 .52 X W c
52.00 .54 X W c
53.00 .56 X W c
54.00 .58 X c
55.00 .60 X c
56.00 .62 X c
57.00 .64. X c
58.00 .66 Xc
59.00 .68 X
60.00 .70 X
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
~
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
'***************************************************************************
,!is software prepared for: Ranpac Corporation
*****************************************************************************
CALCULATE CHANNEL
Channel Slope =
Depth of Flow =
CAPACITY GIVEN:
.011100 (Ft./Ft.) =
_ . 470 Feet
1. 1100 %
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0111
Mannings "nil value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft.jFt.) =
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .470 (Ft.)
Average Velocity = 3.64 (Ft./Sec.)
Channel flow top width = 20.00 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft.jSec.) = 3.64 Depth*Velocity =
Flow rate of street channel (CFS) = 15.33
(Ft.) =
.064
.017
18.00
10.00
.020
1.71
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow Top Width(Ft.) =
Subchannel Critical Flow Velocity(Ft.jSec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.001
Subchannel Critical Depth = .527
21. 37
2.850
5.38
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
\'7P
I
I
I
I
I
I
I
I
I
I
(
I
I
I
I
I
I
I
I
I
*********************** CHANNEL CROSS-SECTION PLOT ************************
')epth of flow =
.47 Feet ,= "W"
STREET FLOW HALF-WIDTH CROSS SECTION
critical depth for Channel No.1=
.53 Feet
= lie"
X (Feet)
---------------------------------------------------------------------------
Y(Feet)
Y-Axis-->O.
.2
.4
.5
.7
.00 .70
1.00 .68
2.00 .66
3.00 .64
4.00 .62
5.00 .60
6.00 .58
7.00 .56 X
8.00 .54 X
9.00 .52 Xc
10.00 .50 X c
11.00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
14.00 .16 X W c
15.00 .18 X W c
16.00 .20 X W c
17.00 .21 X W c
18.00 .23 X W c
19.00 .25 X W c
20.00 .26 X W c
21.00 .28 X W c
22.00 .30 X W c
23.00 .31 X W c
24.00 .33 X W c
25.00 .35 X W c
26.00 .37 X W c
27.00 .38 X W C
28.00 .40 X W c
29.00 .42 X W c
30.00 .43 X W c
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
X
X
X
X
X
X
X
\17\
I
~ s::~
o c... ""'...
-"I" ~
.~_ ~ ~~E_ __
SiNi
-,-
p\
I
_.B.__ g
N
,0
~
!::! ~ *
-_.-
iN C.:.7CH :::1
I
I
I
.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~
~
"
()
"'l
--..f\
:\
:-~
,-.L::o.?:::-__ __
.:;(.:.:5.;
-
------..--.--
.
-- - -
,.
,-
i
1
[
!
i
1
I
1
1
i"-' ."
~
.C:.m,r.".
p.1..:..m.
.d;~'':6i
".l o:'r=
"'3"('
=- ::J~'
~ ~ n'
r;~~- :~!:
--(")''0-'-
~ '0::.
~
lJ).z:
L
----~--
.,
J
J
,---" -,- .,--- ,-- I-"~
~L_~;.__---h-. 4
- -
, .
, , ,
.~l :.~.
.~ !
I
L
l
I.
o
-II"
..,'"
.....0-
t...;N"
..h
=":P:'
.
-of'
'*
...
~
~
>, 'I'
-t! .
~! ",.1:"
"" I'
>, I
~
-,j
':.-
.
i
1
I
,
L
L
I
[:
i
;>
i
j
i
L
i
i
:,,',_.
-
----..-.----
-
o
;;;
_:"1__1.>' .__;._
_._.---_.~-
-
L.
.'
!
r:-
"
i
,
-
I
i
;
1
I
-j
1
I
'i
i
i
i
t
[
(j-
~
\)
Ii
a
"l
-Il
w
~
L-,
,
HYOr<AULIC ANALYSIS
r
C8 NO I :F 2
I( f< (...,
BA S {N C -Cff2AQ
qr,
@
~ '"
I
I
I
Qu>o (crown CAP. =
I /8.<1 CFs
(!'-z. 71' C4PAC\TY)
~i'= e.J CU),f"D C4W: -
I
I-
I
I
I
I
(
I
I
I
I
I
I
I
,
I
I
Q,,,,, C B NQ.,/ :; Ie c.FS
(~ CHA~T-)
'\f
(l\
-
v
~
+
(\J ~
~ IJ
. III
..) III
~ I'l\
~ II
~
8'
II
~ ;jN
v "
o
N I( oJ
t-J ~ 2
~ ~~
/I ~~
~ :S~ 9
(j' ~\il\5
Q,oo ~ Ie, CF=5
C.B. t-LQ./
(Se"E' C+lA~T)
III
Vl
a! t'1)
~ ~ ~ ~
C4 I \J t
8 T If U
(fq:~
U II ~
c. B ' /JQ .3
(J"EI3 sr.
HI10)':AlIJt..ic.
ANA tJl1Ji, FOfL
C. 13. #" S <i 4
,
-23143-4)
GIOO = 38.8 (T~TAL.)
I 0 < 0.51 (SSE E'NC""'5D
CA(CUL.ATION)
,_. <7
=-- .
crt" C.s NE. 1:=1(4
(SEe CHAR.
"') 't
-3- ~ N <t-
\p .., -
3 I'
'. 0 J
() l\:- <l
~ Cl :;:::-- 2
" ),. -Cl \J
II ~ ~ <t
~ ~ G- ~
(j 0.: G
/I
Qlilb - Ie. CFS
C.6. N!?,.Z '\
(SE15 GMF-T.)
$
~
I
t
III
B
G
~ ~ \J
I \) Z
If t cfi
cri ~ \i
- 0
Ii II F-
ee.
(SE:E'
f';rr
NO .4-
'ST. 1+'1 0 (2A uy cAlVA Uf'5 t .(
G,e Nq g ~4
\~
JqOv\
!
(j Q
Or
:II, 2:" .Q
N -.,
~~ I)
1:.
~ ~
Ii II ~
~ ~
(l)
......
~ ~ Z
C') '" <:
()
.......
"l,
~
-... -..,-
T h r :;)-.,! Ii l., i: I ! : LN', ~ ~ -=~::,
..... .~t.lI-(h>o."jl>>Wo--' .N__:..o-..~..m.Ooo4C:U,CO'------o-'--'o'-'-o-" O. '""' O;:jC
: ...: i" ~:.:: :.i: 0 0- 0 ,0,00000' o' 0.0 c 5ooc:
...i '. ,..! C.F.:S.l IN i C:.TCH :SASIN: . ~
~ .. ~ ~~~r~~~~-~: ~'~'--r:.~~.:r~l:i : l:t ~:' -!:. .!", ~. !" ; i. : I :_.~_~.~~___~_:._~._.
I. ,- ....L....!"..,... W.J ,1111" 1'1'
, '. ~ !: . .. . . . .. .' I I '. , " " .
:~ -' :'~.:'~':"'r:;,l>:~ ~:.~: :~'::~::, ~..: ,. ,..:.., ~ I' -,"
, '..1.'..-"-'1'.1,) 1,,1, 'u I .! I,.. ! '!'- ";,' :z, "'I", I " "
~K~ : .'.--....', :'~.I:_,j..l.:l.::' ~.' ',1,' 0 ' ,.m,'.. :. ;", ;. ': -."
, "...___"",.. _......,..,.. I ~ I ._...... ",()" ,....(n o. t. L_ ,j', .
...... ... P'. r"l..,. """ ,'"I:;. . . - .. . ... a
~', "r;' :..:..-::~~:....~.:....~~~i;..: .~~ .'J;" :;.~ 'i~ :.:: "f"'~'~t~~ -"6;: i,~';:; :::;'! ,+.':
.'"'r -, I" .~..;_.t ",- ;...,;.,~::-~ :; '", I : I '.'O~ 1> :'.:.+: i ; a;
~'~' ''i.~, """111' "'I ",",,11,,11'1' f.l 1,"1"1
I ,"-., "" I, I' 1.'1.' ,_. ',' I' 'I I I I' ,P I,' ,.. ii' I I, ' :
I .: .t.~", ,': . Il-T'- j! I.! llZll! .1 ~ : .r,,!""! 1.1 ~ ! :n; :-1
!,-c "t, N:.l"'::,.,[ t[cl.'l I '1'1': I I~I I'I! I I,' i i "I ~I: i
,I "-., ,.. ..1"-":,:''''' '-:'t",','I' ! " ,I I~I, I, ; 1'- ,I " : I-<!'"
',",','" ",:0<, ,,"'. ,)',-,'... ..., i 1"11'.1 '''I +1"'11 ' I .....""'.1' .". ",c..; i I'"
. : '-I .:l..~:~r::i:--'" ::.. _ '.. "... 1_ . ,l _ I":: :0',,:.: ' I ~.. ~~:..J....L.
"-:,ix'I'-i,~,I,,-'-'t--"'I, ~ . I ill I I 111.: LI 'I' r!!~I~ ",.,.,!Ei "
~}, I'~~"';",~.:,.~...,~ . , ;; 1 I' !'!-i II' "I !,-:!,,')!, I"; V,! ,
! .1:,;1,' ',_':;.,!C'f..h ':', " ~ il' '!" ",'J,"l !! I ! .i",) "!::J:l _;tf.l. '::0.
'. ;:' -, 'x,. .c..;"",":;'O""',' '~~'''' "'''''!II I' I'" "I "I,' , I 1''''':01 ,'";b hli, , 'I
("7"' '. : EXAMPLE"""JLlN~.' T:',l" !;.:N . ........ I....... ........... "'- -. ,n " I . I ' ,", "1 .1...,1 iffi ',-" !
~ '" ,.. ,,,"OI5<l'.''l>..I,"''-,,eo',,,,-::;,;, " i'-.. " " 0.: r I, 'I II 1 , : ,":pbi ! 'K~i ' '..
"..,,1' 1.,-11".,>,'1,,-,,':1,,,"",[.'1 " ,,"," '"'! ,1,1..;, i ; 1.''l!'!''1 l"iLc' i I.
,I .::" "i' .1.: ". I -,(~s:r>,:_ \: . I r.1 I ; Ii: -.i2, j' r 'I L
i' .. , I I. I I I : ! I 'fit I ~N . I
, ' _" ,. ~ . C' I I I' ~ I " I!'., ii" I . I I
O_;,'...l:S-': f". " r' 1'''C''''fi'.+1''~.O:'UXl: , IT' 10' f'TE:ST:S!'.'!"!"I'".,: !'''I.i,~:5f..-l::lrli 1:.lf
o I'" .'-r-' '1." " ..,., 'r "" UM, . . " , , ."1" '1,I"'b'!1 I
.~__I. .....;--_.. ,-' !....I" ---,...,,": ; i 1. I I..... .- ;... ;...,..:-1..'" . I
- 1'- :r::cjj I '1' .;r f" ,'-.. I. . I " 'II' "'1'1' " ',j I' . ",.'1.." 1"1 rtm'II','
." - -- -, , ,~.' -, ." "! 1 ,,,' ..I....' .., "I'
,..- .. .. -t... I' " .., , " ',"",..,'
-f .... . . _ _ ! ! .. ,. . . ... ....
01 'I I.... '"I''' I 1 '" I ,,' , 'III I 1II1 I ' ,.. , I I "I I ',U
>- ",' .. .:~ C-":.";"[-' .:. .,:::':. !. " .1 .. ," .1" I , :..1:::,:':,'
o 1",,!::'i""ll"l <1,.i';q..1 -" I III illl'i' I '+.",1 !II'
"' I !','!"'T.-', 1',:'1'.., fl ' Iii I 1'1,' I '!:i' I,' .;,.." I I' "
1 "-1 I,'j -T.'::J~.II t. I i'l -! I: i.T"r i .1 I h
,O.ct' '.1'-"1""+'"-" '1"1'-"'+' ,',I', I I '1'1 ' III" I ",I 1"1' 'I' 1 1,1' ,.
.:o~: . 7' ',':'..:::.'~':..' .... ..I~l,: " - I ,"l I . .;. .;. r.....~ r
"I ~., '-. }"-+ "1"",1 '''1'''1 " 'I I'''' "'I I i I I, '1'1"1 " 1'..'1.1 'I " , " "
_ ;c.-.! " .' ,h. .: :- . - ,- .~... "1 . . 1, ! I : , , i ':-
)' 'I,' I':!; I..i, i ii' If i ' , I I' I I I II I ' , i , i ii' ,:I I_
I ::;., I :; I: j' I,: T.~ .,'-1 i i. I." i \ 1 1 j i ! 1 '..! I I I : I
..' -4 I :.J,', ! 1. 1'1 I' I 1 I ! I ! ' I I I., I' I I I:
, 1 1 I \:..,,, I .1 I , : \,' 1 I' I 1 '
'~C'I' ,"'" '1"1"1 It"f'l "I. I 1,\2I'.~-il~,15jx I"" 1",;,'j.I!lill
. _'. .1 .. ,...' - - , -~ ":O'~ . I"V a I.., ,
''"' " "-I'. '-I 1..,.,.1 ,.. , : "I' , I ,- I ',,.,' ~ ",I ,"> ' , ' I!
. 1_' .' 1 .'. .., "I ,,"'::!! 0" '~I:D 1 m .. .--" I I ,i:....,
0, ~ "I I' 11'[' 1-1."'\.:.1'1' ! ,I 1 I c: i' f' III I~ !"1~:l1 ';!'I 'Id ,I I I I' ! IJ I
: lTI' ! ~ :... "j ,,:: t,:' . _ I, :0 H t ki 1 ~jZ _! . ,. !.. ". I ., 1 ' ....
.\ ..'1....1 !'" I 'I 1,1 "II "I 1,1- ;, -I 'I" tn' I ' , I I I ' I ' "
I I :.;:.... :;: I',.r: ,:.: .:,:':'r..< I ro- ~ r t! "'1 ~,r- ....! i.,. .., ,. . i ~_!
I i 'Ii, 'i I ::111" 1'''1111 I "I ': !;! ,., I 'triS2!::: "" I ' 'I: II i I ! i'
"'j i I" J': I ! :;'1. i" .I'.j:,'\~'j i i . i ' ~ ~,,'- ~i~ :3: ;. I ; ; i i : : ! i ~~
L ;:;a .....: -=- - ._--,
r-- I' I'~:! Iii! I ! !'i""'(_;";I-,'II:to>6'I'--J: !!!II:,jl...
-.." . , 'I I ' II I' 'I I ' , ' ,~, 0,;. - I ' , ' , ' ' ,
~ '\ ....~ Iml(J)jl! Ln''', j I. I, in !:e!--l~!R;;; ilt'rl"".UL-::(""')t~l~
f'\) ....r.n16 1~loi.!!I'i 1!! I I >r=h,i~=1 en :1:~::tI"'[.;pl~!..L(ZIi:-
II _L-~jL.'l 11:1.';\1 !Zl II ~ rn:::1t~!8~" il"Tl~O~,~t>olU)'~I.
'I ) .~_LN_r.nO 011 I ; C-i-z'i:;; 'm ;p, 11~-Nl;::r;UI'''=:' i\31~
("'\ .~ I Ii 1>' ~:Z:~;I ('): I~_~'''~ l.D~'~-1I~
lo.' \..J ~ J' > I 1 I .... 1 ;:R'2".~ II~,,'~~'-~cn '1\)1':)1-
''l ' I: -1 . 'Ol I , ii" r-, 1(;)1 ::1 - l"1 'I 0 v :t (fll,:)' ''"'''z I
~V) ~ IS;~~ ~lll~i,-il :,I'!~I I : i ;r'11 ~!d~I~(fl - :j~~~'~l~~O ~,~'Vl
, '_~ I' I, . C') r- ~"'T':to 1 _ I-~ t.n I 1\)1..... t
___, _ > ...,;) ::<.:_.__.U_____, .. ~ 1 ......,.::"'"-.-rtn ...-.-- -0 ""'''''-'_-'-'--1 ~
-.l -1"," " 1 ,~.... ""'"." 1 .", ,.....",'""
\." ,I Z'::l I >11 C)! ""01 !! I I t 1':..( I I l~ 01 : 1 U'I...::J ('l 1 ....;,0 I r- J'I1 ~
"----' _~lJIl 07 rill rTll ,i I _ I I..... g'l'T'Itt>o.:;..,g.. I,O~::l '0''''01 ~_.~
'I ;:;;'C;I=:::t>'......1 " I ,01 ~5&;O< ;1:Tl=<~I~> L~.~II~
...."'0: ...... ...} - ...J, ", ,-... - J-
- ----- ~-._4.F C . - - ---- 0----. -.(") I ---1--.-....' '>" ....-- .;l.
21 Q~:::jICI-i,: Q r;;=o:=> 0 -~:!l =00 ,0 1:.J'l
... --S:~~~-L-:::U+-- . ._-_._~~-.....,..--~-"- -.--- ;;:
1 ~ - I w,' , ' '1 0' -- i> ... , 1Il.... I ,Olf\;) I (') I
~l_."On-o --1 I OJI _ ~ -----.-- . ---- -;:< 'c r :t m -. -. I _ r. _._.._~ I _ I Z
I::: _ -:: 2:' ! r- :::! :2 C;:' 0 - - .... - . ::
. -----~~-o--- ----- --- --------..-- ~- ~- - l.ll- ;.t;- - -;:.-- :>
'lo1:;:;-Or-,(jr_ ::;' _--~>_ I ~ ,:::;,=
, _ :.n ~ ri 1 J V :'::; '- '^ -' ~""'.....-
--~ts~-:~-="1'T1- -- -. -- - "------- ---S~~~-c --~-----;-- - i::
'f-~Q-'~::-->-";:"-Z- .-- --- --. ____1.zD__l'f't..C--~_---~.---__:- --- ---, '. r' c.
jl".ol'" ,....In: _ ... :::~Vl !' ~ 'ri
~~~c~~~~~~~~;~~:==--=:-::~1=~. f'-~~:::~,:~- _-':~~~Ft.- ~jg
.... . .- --
^.
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
I ~***************************************************************************
_.lis software prepared for: Ranpac corporation
*****************************************************************************
I
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
CALCULATE DEPTH
Channel Slope =
Given Flow Rate =
OF FLOW GIVEN:
.016000 (Ft./Ft.) = 1.6000 %
38.80 Cubic Feet/Second
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0160
Mannings "nil value for street =
Curb Height (In.) = 6.
street Halfwidth (Ft.) = 20.00
Distance From Crown to Crossfall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets Carrying Runoff = 2
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .512 (Ft.)
Average Velocity = 4.83 (Ft.jSec.)
Channel flow top width = 20.59 (Ft.)
.015
(Ft.) =
.064
.017
18.00
10.00
.020
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is =
.586 (Ft.)
Street flow Hydraulics :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 4.83 Depth*Velocity =
Flow rate of street channel (CFS) = 38.80
2.47
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchanne1 critical Flow Top width(Ft.) =
Subchannel Critical Flow Velocity(Ft.jSec.) =
Subchannel critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.000
Subchannel critical Depth =
26.62
3.091
7.90
.632
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.2:
Subchannel Critical Flow Top width(Ft.) =
Subchannel Critical Flow Velocity(Ft./Sec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.000
Subchannel Critical Depth =
26.62
3.091
7.90
.632
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
------------------------------------------------------------------------~~~
I
PLOT ************************
I *********************** CHANNEL CROSS-SECTION
'1epth of flow = .51 Feet ,= "W"
I STREET FLOW HALF-WIDTH CROSS SECTION
Critical depth for Channel No.l= .63 Feet = "c"
I Critical depth for Channel No.2= .63 Feet = "c"
-
I X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .5 .7
---------------------------------------------------------------------------
.00 .70 X
I
I
I
I
I
!
I
I
I
I
I
I
I
I
I
1. 00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
19.00
20.00
21. 00
22.00
23.00
24.00
25.00
26.00
27.00
28.00
29.00
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
3!j.00
40.00
41. 00
42.00
43.00
44.00
45.00
46.00
.68
.66
.64
.62
.60
.58
.56
.54
.52
.50
.06
.13
.14
.16
.18
.20
.21
.23
.25
.26
.28
.30
.31
.33
.35
.37
.38
.40
.42 '
.43
.42
.40
.38
.37
.35
.33
.31
.30
.28
.26
.25
.23
.21
.20
.18
.16
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
xl
X
X
X
X
XW
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
X
X
X
Xc
X c
X c
c
c
c
c
c
c
c
c
c
c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
\1Y
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
47.00 .14 X W c
48.00 .13 X W c
49.00 .06 X W c
50.00 .00 X W c
51.00 .52 X c
52.00 .54 X c
53.00 .56 X c
54.00 .58 X c
55.00 .60 X c
56.00 .62 Xc
57.00 .64_ X
58.00 .66 X
59.00 .68 X
60.00 .70 X
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
&
I
If *****************************************************************>*********
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
iJ .***************************************************************************
'~.,is software prepared for: Ranpac Corporation
Ii*~~~~~~;;*~~;~*~~;~~;;;*~;;;;~******************************************
IU Channel Slope = .016000 (Ft./Ft.) = 1.6000 %
Depth of Flow = - .470 Feet
I
I
I,
-
I
I
(
I
,
I
I
I
I'
I
I
I
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0160
Mannings "n" value for street =
Curb ~eight (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade'Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .470 (Ft.)
Average Velocity = 4~37 (Ft./Sec.)
channel flow top width = '20.00 (Ft.)
.015
(Ft.) =
.064
.017
18.00
10.00
.020
streetflow Hydraulics, :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 4.37 Depth*Velocity =
Flow rate of street channel (CFS) = 18.41
2.05
CRITICAL FLOW CALCULATIONS
Subchannel Critical Flow
Subchannel critical Flow
Subchannel critical Flow
Froude Number Calculated
Subchannel critical Depth =
FOR CHANNEL NO.1:
Top width (Ft. ) =
Velocity(Ft./Sec.) =
Area(Sq. Ft.) =
= 1. 000
23.34
2.939
6.26
.....',.
.567
++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
--~------------------------------------------------------------------------
\v~
I
I
Depth of flow =
I
I
"
I
I
I
*********************** CHANNEL CROSS-SECTION PLOT **************.*********
.47 Feet ,= "W"
STREET FLOW HALF-WIDTH CROSS SECTION
critical depth for Channel NO.l=
.57 Feet
, =
"e"
X (Feet)
Y(Feet)
Y-Axis-->o.
.2
. 4
.5
.7
,
.~
I
I
i
I
I
I
I
I
I
.00 .70
1.00 .68 X
2.00 .66 X
3.00 .64 X
4.00 .62 X
5.00 .60 X
6.00 .58 I X
7.00 .56 Xc
8.qO .54 X c
9.00 .52 X c
10.00 .50 X c
11.00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
14.00 .16 X W c
15.00 .18 X W c
16.00 .20 X W c
17.00 .21 X W c
18.00 .23 X W c
19.00 .25 X W c
20.00 .26 X W c
21.00 .28 X W c
22.00 .30 X W c
23.00 .31 X W c
24.00 .33 X W c
25.00 .35 X W c
26.00 .37 X W c
27.00 .38 X W c
28.00 .40 X W c
29.00 .42 X W c
30.00 .43 X W c
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
X
\7J'.
I
I
I
I
I
I'
I
I
I
I
(
,
I ~
t(i
I 8
C21CX>: ?78 c~ e
CF tlYDfZOU>Cl.( -S-TlIDV]
<flOo ACru~L= 16.4 ~
jSi:"" ip'NGL, Ct>,.u:::~
Qra)'{1!:.<J (~~~1
c. e>. NQ .3
I
I
I
I
"!7T HYDAULIC
@ C,B. Ne..
At--IALY-SIS
:3
"[
,
4
Q,a::, ACros;:S' CroWl)
Z7 8 -t- 3.4 15 -4) _ /.z, B
Qlex> (Crbwn CA p.) - / B ,4 ~
(,yz <;;1, CAP, SJ2<=' ..Net..,
CALCUlATIoN D- 0,47'
0100 107M.- = '3 - <4 -+ 12, 8
~ IG,2. Cf=s
D,; 0. 454 ' ( :5 ~ E
ptJ0<.." CAl.. c,)
"
""
QCb- fa. Cl""Sl
C-C!>. NO. I
Q'<<1l -== (/(P CF~)
C . e. NO.-z.
N
'J' Ii1 .1;
rq III tci
II ~ '
~~ 9 tl:IJ
~ ~ Q& \j ~ ~
~ 7)< ~
'~..-~ .".
I. '6' \'
.8 cFs ,
Qoo = ('2..
C.B.
Cf=- 5 (s~ CflAf?-T)
NQ. .4
In ~Is
N
-
I ~
T. ~ ~
t-I Ir>
:Q ~ ~ l\l ~
\I \i: G: .......
II ~
8 lI't)-. \! :).
'0 I' ~ II ro.. \AP
1
1:
1
~
1
l'
\..'
I
~'".
1
'-'
\,
V
.'
.
,
,
,
..
-/
V'
.
,
, '
.
~
.
"
.
\,
.
. \
I
.
I
_.::. :.::::. .::..::..: ~...,..... - .. ..- -:::. ::...~
: I' . , ii, I j 1 i ; i ~; j i
Ii. I . IT"!" I ! ! t., .
..; ;" ;,! :-:-\", T- i _ : . : : : ! u; :' ~ : ;.... N t.>I'::' t."1 In -...I QtOi
r~ .~~OI-,",~ CDW6- __~__u-_~"::""L-m_.....Q.r&Q.____-O"_._'O'."~'" Q. 000.0
: ;": \'.~.;.:':.; . 0 0::0,0:0,0000 . O' ,0; 0 OOOOC:
~: ..~ !. '\ I .;$': .IN iC~TCH..1..allSjN! '
'" I'" .... 'I' , , , ' -1 '" , , " "
I . ..~._.. ..' t ..-....-; - I , 1; .j- I '"I" . , . , ' I ' i
~ \:--~~'~~-~:;:;:~::>i::<'.~~:; ;1;: 1. ;;! i .(---r--~~--~-i'-1" L.
-i--- !: ':->T'-i:.~'i~;:~t..~~~::.';':.~::~'. ;~ . ~;. i':'.;'~ ~.- -; I
-r-, . ",;1 ; I .."....,',,'..1:.,',' ;, ' '1 ,<= I' I, <=,1 r' ;, I,",: I , I ,
, \ _[ . .._.,."... ..J....I..I. ;.1.' .. I I' ~ ..- '_N I :Z.:.. t. I ,,: ,
"': :'i~-.:~~~i__.i;.l.~J:.:;::;yi..~i-.:-i -~ .i .:i~. 0 .lo-!'; r;':p. 0 .1' ~:.'! i ! _~.i ;.j~
~,:":cU'.?Flt :~ :: 1'" .:!::':..J ~;~: ':.: : i: ';
....r I.'" I" 1_ ". I.! . ~
; I I' I i I I I..' i
i: 0 I Ii' ~ . I i." j I I .
!' I <:, 111"i I! 1.1 i! .!
.. ~ . I .' I !.",
I I' ! 1..1 J' i'll~ I I
, ; I .... I I I I. . t.
, '"
I' 1 I j'...L.i_11 __.1. ':-'~I' 'I'
" , ' I.. II .+_.
... .~~~,'
r\ I ,. .1 i..' .lrrll;.. -< '- (OJ I i
.' I. , ......., I'.
". _ ,,', "I-:-......'(:)l 1_,' :(1.11
~ . . :.~ - '
\ '1 1 i .1'. I -t:t:t !=:Ltn !'" :...
-\ ".. I" I, ,"I- i.' 11,",,'101 i 0.1 ,.", 1 "
f'\. r. _ ..1 ,I ,1 I "'". j. .
t. '" ;, b-O!501:...., II II ! 1 :'1"1(, I, ,"'1,"
C\. -I. E-" :1:'-1.. '..! J I.. 1 ! I.:' 1,":1 0 I !.
V .1' .I..,~"... 1. I I III : l \-..1Q I', I\.
- ._,.;, 1 1 " 1 '~"'I I' I
o ~ _ I ._" ". .. 1:" '. I' 11-
o \}J 0 ,", "'.' , ,,,,-' ' , ' ""%\."1'." 'II'
. I" ., " ,,' . , . ., , ; , . .... .
......... _,r._.. "r.fl-"T' r-'{"'-."=LIO,m,' rr'-If' TESTS'....I.. 'I - 'm.I...,c.!"-:..,l....,,.. 'I' :..,,1
...... 0 I '.-r'... '1"'1 ,.."" 'r "_.,, _:0 I,' "" , "." I "..
V\ .~. I ...~ ---.' ,;"" t- '---'1 .: . i 1 j' I I"'" ... j" ;... ::..: ,.'. I.
\\ - 1.- I I t'I"1 "1'1'1,1"1"'1 . "'.'1 "I I "I'"'''' I "I,' 1'11,11
Z b ~ : ~~~, -1= ,~:~l:~~:\:... .: >f:l::.l: --=t=:- ,;-' I : l' >;:.. I: . ':1'::'" :.: h' 1'1" 1
~ I ,.. '! '" b.ll;- ,I",,[! ! I ! ! ,1:- 11./,:'
t '0 ",1.."..",1'.,"1"1 ","',..,,1',' ,,: ';', , I ',,1...,'....,' 'III"
I ". t-. .'r....1 " :.....:. ,
:\t "", "''1''''''1, : Ii" 111," "'II'..: "
IN I .,. ':-11.'1 1 i !!. 'T i l'l.ll
(, .0 ..'t.. ....I'-'j'-"I"Lc'I' i ' I I : I I \. I ',1,1 1 'I ,I 1,1, "I, 1 1,,1' I'
W ;:0'" .., ... _'" -1 I I, - ....1 .. ! I
_I .. '~'''I- ' I' ...."','I:~,":; 'I : , , I " I' I, 'I ,..,' " I" I': 1 ":1 "i ; " I"
II l>" ''''', ,.,.. I " " '''', I' ",,"'-
.. 1 I' I <!; I. .j,'\ I ! ! I I , i 1 i j 1'; I. i 1 I-
I co;:, l:i j" I 1, I I ! I 1 I I 1-
.-- ~ ! -I' 1 1 .i: j 1 t.: 1'1 I..' \ I, I. I ! I; I:
N 'Q -I I:" ,,' '1 I . I I. j
-~,:O""I, 1"i"I",':lu'l J : '11_'1'. .\' I, i ~ I a ! LI_{".I' II ill
\ I c>, ,..- "'1 I....' , .1 ' I' 1 '" '-I.., I, ",! '
if'.. . I.... I, ......, ..j,':!! :xt ! m .. . 1.1
, , I' 'I I 1 I I'" 'I' I I 1 ;< 'Ul I" 'I I' , 1 ' I
" 0,',' ' u.. -, C it'" ...,., :. ,'I I,,' J
Vim' ~ . :.. . .... .:.:' I I :tI '""'. :z :r, ! '.' .1 r . !...
~ -i:>. I ""1:'I,I'!111111 I I 1..1" l>; ~ ~I I ,I!II i LlI..!
'I ,I '1'.i:"I'I' ", ",I" <> S ' ::!: ::!:' I' 'i': 1 I i r ! ! '
-...J. ',_, ..1,.....' ~" ,. . i.,--,
V\ -... i.!.:' "I :::1. I" ! I,.j:-I ill i )>! ~ 0 ~ j I I I _:-L.LL
'-! ',' I I ,. III I i-l l ~l> '--1 \ j 1 I I ! Ii!
, ,"'""'l;:l' ...
- " , 1 'I "I' , , " 'I' 'I ~ I" , , .. ,
r- o's '~''''' I, !II' 1,1 ""'. A~' '~~..<Il.-.-,,,i<~'.
\ .~ 1",10;1;10, I i'i' ! i >~'t .+-en :!~'~'::""'i~~~""",l
t\ "c;>Il.1' I 11';I;iZ~ I'i '--f="--.l--! ~~:. !1""~o~"':'N~;;:::::llDt~I..
r..' T2..,~eno1:lol~'~; 'I'; 5...J~",:p, "3:-;""';'"-'~:'~'
\" '!"'IN~~;i~ ' ' :> '(1' '1"- '"'~"':;;'-''''; ,"
'" I > I 1 ..... ~' + .,c.'..p'[D. ~NIO
-_ -~~ ; ~z i'-,'Ol I, Ii, i I i;'" i! Ic~ rii; il~}O~~u)'~! IL~:Z -
, 3i Zl~' I ",,' i' I I en ,'" 'I '" 0 . '" ,o! N',
'~"':' :g/T!~C)~I-t, [11\\ : i i!~ I ~:> il-':i\.i'z!-.-r(J)i-Z;~_
, :c...-,.~..I ----.. ,- '.' ~ I en en-.-~~-o", OTI, ...,..-IBl,"'j 0
"!1:z1~I:>lhl"'Ci tli:,i ' i :i:..cl" I . : t1l:::i("l;-1IP1i~:;'T'l"1"l
U\ 0::; -t( _I rrli I ! i, : 1 I...... I:!: 0' 'oO:::l: C!"'O I ~ ;::
__ ---....- __"-...or- , r 0 . I n
-~ I ~,'" 1 Xl I 1> : I . , : I :.' ,O,! ,:0 < I ."T'l:<"':n "'0 :;..: lo::Vl,,~
_ _~"o,_~_~2::o:, (')! : ~ ; : ; . _.._. .....:..____. :.,. .(")~.. : ("> ~: .__~..l.;'.":' :.:tJl : :;:z..;_ i:;~" I '
01 ;;;~~Ir:::I-'I~: : ::. : ,2: ::> 0 .1-~Z1' :z,co:~.:::
... ::l~C:J ~~::U:----:--:--~~"---:------ ~-"'"'O"--"4"""'~"""'~'''''-:- ;:>
-,s. . ~ (,I): : ,: ; I : i. i 0, : ~ . CD -I r , O'l'\), (') =
~U ""'01--1,' ,CD, ,-.."...."__._.,'..., "-...~-;- ,-"',-.....,1.. =r,-,-"c~... I ~ I ~
_' =:..~...: ~ ~ ~ i z:J..r-':"o--- ~_....:...-_____..__-.g..._:- : ~:?':"" '; : ~.~.:..._:_.S-.": .~
iO';:V;o~'n'lr;-iJ z .>:: I :.o'~ :_.313
~~1l~~~~~~1~~~__"~~: ~.~=~~~~==-=-;~ ~~~~n:-~} =.._.L-.~~-.....J ~! ~
-r-;;j ;;,,'. 'm: ",;,1 " ~ -1 ......:...-_c_...."-',..L_,! 0
:t:.~L~~ L~.l__--="'J _d__'.-="=-:--=-_ ~-=-__ '.-~"=-=-:'=~-~ ..__..0;,. f.-~.,j_C:::
-- - - -. -~._._- -- --.. -~.- --'-
.... ~ .. ~ -
-
w\
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
" "****************************************************************************
, nis software prepared for: Ranpac Corporation
*****************************************************************************
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
CALCULATE CHANNEL
Channel Slope =
Depth of Flow =
CAPACITY GIVEN:
.016000 (Ft./Ft.) =
- . 470 Feet
1. 6000 %
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0160
Mannings "n" value for street =
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .470 (Ft.)
Average Velocity = 4~37 (Ft./Sec.)
Channel flow top width = '20.00 (Ft.)
.015
(Ft.) =
.064
.017
18.00
10.00
.020
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 4.37 Depth*Velocity =
Flow rate of street channel (CFS) = 18.41
2.05
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel critical Flow Top Width(Ft.) =
Subchannel Critical Flow Velocity(Ft./Sec.) =
Subchannel critical Flow Area(Sq. Ft.) =
Froude Number Calculated, = 1.000
Subchanne1 Critical Depth =
23.34
2.939
6.26
.567
++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
\A~
I
1(, *********************** CHANNEL CROSS-SECTION PLOT ************************
, iepth of flow = .47 Feet ,= "W"
II STREET FLOW HALF-WIDTH CROSS SECTION
I' critical
'x (Feet)
depth for Channel No.l=
.57 Feet
, =
"c"
Y(Feet)
Y-Axis-->o.
.2
.4
.5
.7
---------------------------------------------------------------------------
I,
I
1
I
1
,
"
I
I
I
I,
I
I
I
I
.00 .70 X
1.00 .68 X
2.00 .66 X
3.00 .64 X
4.00 .62 X
5.00 .60 X
6.00 .58 X
7.00 .56 Xc
8.00 .54 X c
9.00 .52 X c
10.00 .50 X c
11.00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
14.00 .16 X W c
15.00 .18 X W c
16.00 .20 X W c
17.00 .21 X W c
18.00 .23 X W c
19.00 .25 X W c
20.00 .26 X W c
21.00 .28 X W c
22.00 .30 X W c
23.00 .31 X W c
24.00 .33 X W c
25.00 .35 X W c
26.00 .37 X W c
27.00 .38 X W c
28.00 .40 X W c
29.00 .42 X W C
30.00 .43 X W c
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
\/J/t
I,
I
I \***************************************************************************
,.lis software prepared for: Ranpac Corporation
1*****************************************************************************
, CALCULATE DEPTH OF FLOW GIVEN: '
Channel Slope = .016000 (Ft./Ft.) = 1.6000 %
Given Flow Rate =_ 16.20 Cubic Feet/Second
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
1
I
I
I
1
I
,
I,
I
I
I
I
I
,I
'I
I
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) = .0160
Mannings linn value for street = .015
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Crossfall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .454 (Ft.)
Average Velocity = 4.15 (Ft./Sec.)
Channel flow top width = 20.00 (Ft.)
Streetflow Hydraulics :
Halfstreet Flow Width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 4.15 Depth*Velocity =
Flow rate of street channel (CFS) = 16.20
(Ft.) =
.064
.017
18.00
10.00
.020
1.89
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow Top width(Ft.) =
Subchannel Critical Flow Velocity(Ft.jSec.) =
Subchannel Critical Flow Area(Sq. Ft.) =
Froude Number Calculated = 1.000
Subchannel Critical Depth = .539
21.95
2.875
5.63
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
/'
\A?
I
I'
lJepth of flow =
I
*********************** CHANNEL CROSS-SECTION PLOT ************************
.45 Feet ,= "W"
STREET FLOW HALF-WIDTH CROSS SECTION
critical depth for Channel No.1= .54 Feet, = "c"
I X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .5 .7
---------------------------------------------------------------------------
.00 .70 X
I 1.00 .68 X
2.00 .66 X
3.00 .64 X
I' 4.00 .62 X
5.00 .60 X
6.00 .58 X
1',' 7.00 .56 X
,,8.00 .54 X
9.00 .52 Xc
10.00 .50 X c
I 11. 00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
'I', 14.00 .16 X W C
,15.00 .18 X W c
16.00 .20 X W c
1,- 17.00 .21 X W c
18.00 .23 X W c
19.00 .25 X W c
20.00 .26 X W c
_,' 21. 00 .28 X W c
II 22.00 .30 X W c
23.00 .31 X W c
I 24.00 .33 X W c
25.00 .35 X W c
26.00 .37 X W c
I 27.00 .38 X W c
28.00 .40 X W c
29.00 .42 X W c
30.00 .43 XW c
I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I
I
I
I
I
\A,{p
I
I
I
I
,.
I
I
I
I
I
I
I
I
I
I
I
.1
I
I
QIIX) ; 14,(
p". 0.41':' CSc}:'"
ENC{A)/;f?O C4c..cs.
qr.
C.6.
!-1-{O f2.AUL-t'C
N9.. 6
'B\5(r---L
1\ II
C
c.e,. :It l
c .t::>.:tF z.
c f-,. #-4
C$ 1F.s
!IW
^ I t\l
G~ f:
?
t> N
~ If ~
. v
lc~ t -:
() 'J: ' 'It-
0- _
o:-~ II 1\
cr-~ d
/I ~
B e
G rY
\J DE= PiH =- o-4~ I L;: Z I
, J
n Q,Co c. B_ f-..1E, S-,
IJ = 17.. ~ CB (JEe EI/1 CW5f:.r;l
S Cf-/A 1"- T ~ CA<.-C-)
~ ~
~ q.
(J &
\1><.'\
I
I
I
I
1
I
I
I
I
I
I
I
I
I
,I
,I
I
I
I
- ....... ... .. ... '" - &,...... .... .. ... .. '.- - ... '. " .,. -. .~ .
-~ ! ~ :H;" ~:.~. - - I! : ,: i - -~-;~
: ,.;. .~'\. j': '. ' ;.: ~ ..; : : : __ N '\,.II'::' ~ ~...., ~l.O'
~___:...--=-- ~".,._~. _'\.l_:....:-..::.-..:,.."I..-a\.>o.J.O~..----o-.__.O._..O... O' -. 0;::'0
... ." ': ;' ~ :"~.:. ~(;;_..;-~.; :N;~~T~;':~~j~'OCO C . 0 ::; ::; 5ooc:
~ 'l~~~~7-,t:~::'~':'-'C;~t.'L.~~: ! ! :t;' ";'.i ..!, ~ : j.: ;_n~~~--~-i.-!. .~-.
. !",,;". i;...j:~;.~. L;.J i U)"" -i'::::l C
.l ";': 'i-. : .'-'."; i. .:;:-: \ '" ;:r
, ',..' "1",..,..,,,..'....'..-1;'..' l' i 'I' ,: ,"I C:,L" -:' ".... I:;,
. .....1_.. ..1....1 r ,- -,... ,. I . """4 . ..-- .,.L.1 -. l.. 1. , I
"'~ ':~..:.: ;.: '. .":.;.. ;., ; ::~:.: ; d. '.' I .'.; ; :'~'. ;.... '; . I -
. (--...... ' ..___, "'" !.. !_......,.. t... \ _10 0 ,n~."Ol 0 J' . 1 I.
g~ - ~ i' ''''':'j':~i~';,' 'i"' ....:~i -:'~ ; E ': ;'~' ;i, ,..~
"I'''' "", : 'I' :,', '
:' . 1(';1 1 i 1:0 .r.-;.. : i !! i .: t
I ,I I ,,,,I I I, 0 In,,: I " : I,; : ,,'
; :! I ~~ ! I'. ,~ !!"!' , '~'
! i1' 'I' i ! '11;1 I i I' I I ""I . I 'i I ~ :
, " 1 .:; J.I I _.. I I I I . h
N
, I" ",I I 1"1.. 1..11 I, ....".':. i.""" '-<....; : i
. ~:_'';. _'.":. . ; 111. '::..-:":;:~: : ~'~'j~;;;:~:tD:l,
! ,,,,,I,,,. ..1_-,-" L I II! I 1 I I , LI "",.."", , , "
! _ :..: ;:~" ~F ;:. ~i:.,..L::-\. .. I., I i I j LJ I.. I':j I j 1 .1 i-.c.~.~'2) 1 !~ :tn! :
!:.:i. .;: ',.,:.-;.!,:.;\.:. ::'1., 11 ! : I' I, 1.'1 ~ I l. 1 '::c:!; O_:tn ,"" :
..
"" ;'iu ,~ UNE' . "~I~~:" ..- j' j=. r: 1: 1"1 J ~.: I. i'r"I~! i "'i~ mi' ~ i.
,,-~ '..' '.. 1"_'\"_ ,-"""", I I"" I' I I I I '" ""~'I.' I ,~,'
\ J" m '_ g.OI50:.-~...:.:.:=~:::.::-I~.~!. 1 . . ... :: r'ol .; ~.:Ot
, "-oj. f' t~."~l; "!"'I' F I:. I;:;F. ,.~ ! I. I. ! ! j.:' ttDl 1..\1 :c ! l.
.1 ,'- "i' .1..' ".1 -q;_ ::c,.::..~,;.;:. I. 1 I I I ! I j :...121 I'! . I
~ .. ,. ,., ~ 1 ~lTlf )v, I
_' l' .... ". ... 'f' I I' 1 I,. ,,, 1'_
~ 01 "T\: ' "t :,i L" 1 , 1 , ; " .",: '12:1 j, 'I i,
_,r-:~,~ ' '-", ',~..-J." ~t+1'" ---0' ",;., "IT' ;..' TE' S.:.S;....I't'I' u: ,.., I'-..I'c:""r~..::,:::,\ 1..11
o .. _. ~_ _ j'~ - ... .... ,..- .." I,.Uo,I U....iIJ I '. ,." c... ,. . -.. I "j'
=It ..~..I 1_"uL'".I',..T~m..,': 'il""I.., ,.." ',......,...,,1.., ,I
- 1"- 1 ~~J..I "I' 'I" f" '1'~..-I' "I ' "I' ..,..,......', "1'1111/
'T!. .. .-...., ..... .... .:' .' - "....,....- -.. , . ...j", ...,. . "... . .
~ . ;:--. .;-' ....:::1': . ", ,:"..,.:' . --t- - I j ! :.-::.-1: ' . '::..' :.: ,." N
01 I I '....1..'\'\.. 1"''''1 ' I ' 1'1' , I I "'"
)lo- ',' .,,:.. ~'''.';'.' ..:>.I'::~t. ! . . i ",".:"l ',::-l":i,,'tJ
'0 !' 'I, ',I'h~'.F"1 " '1'..I'"f4", '-! I: Y ;, I 'h"'I': I, 11'1 i '-".
'" i ,I I', 1',,:':'1, !I,::1,..,I, 1'1 i j i I I" I Ii',' ,; :I' I: I 'I: ,.." 'I I : !
I"' I l'l 'I :'"1". '::j-I I ! 1 ! I : 1'1 t-!! I:.'j': I !. i I.n
O ' '1'- 'I' -I" "-"[' Ih '1-'''] .. '[' I I 'I I I' I ' II ' " I I I ..\ I" " ,
, "-l" -- ' ,_...~ ,.. h 1-' '1'1" , , '" I ,..' ,. "','
.;n';'.:' -,.:'.=::.":..' ..,. ..~..: ,- ('.' .," : .:.. .:.. t.!.:!
. ^
I ~:"-I: '1-'+:,:'I..'!,I,I..-"..LII,i..'.. i I I Iii I' il,-I i I'II'I,;! '_
"I \.. .:!;. 1..L I. i i. 'j.I'r i I I! I I i.1 I j: ill i.j j.:! I'
I ,... i ..1 ':;'" 1:1 j k:j':~l,::!-. J ; . 1 I I I ! ! i ! :" I I I I I:
! ~ \ I ..1: I," 1. ,!..:I 1.1 I 1'1 1 1 I I I! I I l. I. I I ..
.~: ~'I' ,',''''h,''I,,''''I' i'"t,=f'i' i :1:" I' '~i'~ ~ix I'~ i I' i /"111 i'l
.. ... ,I .. ' , ".1 ,- , I" 101 ,." ,.." I l
'c) I' ,._ . ..: ....' , I"" 1.....( '. ......: ' , . . ,
:ll j: ..1 rll. ",'" f O.~..:.~I::D ! m ....: .! 1':1
,... 'I I ' I' I I t 1"1'1 'I p I'" , 'I;: 'Ul 'I" I I 'I ' I ' 1
o. ~ ... I" I . .. 'or: I'tl -<1 .!oJ 1TI ....' -I ' ".' '. 1
I fTT' ! : :.. ".j' " : ,.:"' , p '~i:;: =! ! '!"',' II, ~ I...
I ......, "'I I'" , 'I I ' '" '" '-",' I ' , I I I .. i' ..
1 "', ',..'..,' .." ,'1.."1'.." ' I .., > I '1..' i' i
, . , .. ,_...... l. j 1 ".1 ....' , ,... , _,
" "I' " ,,' 'I 1",.1"'1'11 i " C'> ,. ,-, 0'- =, : ,.. I I I , ; ,:
, ,. :: . 1..1 ,":.. : j I - ~ I .th~' J '!>: , I j," '..
"'i i j. I ..j :;;1. r .! r. i~'! ! )l> 1 .c:!O! _10 ~ i I I! j , ' , 1
r- Ii: \ i I i I ~ 0 ~i~ j l~ - .;---;-~~.
.'" . : ' .' I'; . , ,. , ' ;- ,-., "";.... f. I .
" I" I' ,'-:>' '''''Ir <
....I~ Irn 1(J)l1 I ;'n" ! .) tD 1:"'I"I:_:I1'I.-~. ilM'>I""'J.ll...-......,..,~~....:._.
r ~~ i o' I S loiJ ..1 m: 1 " ! Ii> ?"':;.... ,'~ == I P (I) ! _: ~ .., ',; C It:' '" ~::l:m I
"". .- . .' - -- ....' -,- ,_.-....,' " . -
""C')' ""1""1: I'; ,-6: ....I'1tC')'~ .l 'C~'coJ><_""'.;...::::illl:C:'
-:"'2' t" 'f:' II - ,2' ---1=--_ Ifl...... t~:&~ .... ., .....,,.... '" - "-
~U)O 10;1010; ::::: 2::;:,'m 2. !3:._N7.t>>l,t.w::~"5'~,
~i:T1I",,,,,,~""':..;r~jml . i -:> .....:;::~,I n' ~_=,~. tO~''..~;-!
:' _ ~> _ l/'lI~1 I - ~.,J"" _ ...:-'~.~'nl :r.),......~_
~'-'I =-::;Z'_'I'~,OI ,II . ~'Z,':ClI=:- fTI 1!~~o5;~U):':': ~::::,z,'
I .,.. _ \wI, ' I" I C V;'- 1:'7\ - .. 1"11'0' IN
1 0-8 ......: Z' ~I I , ' ! i ! = '-I' CD 0 : ~,,:::. "- ... . .....'Vl i
!".I m- "/'I,~ < . .....-.-11- I' ---,. ~ .
, . .::= _ _ ! I" I i I . !;', ~:= > I"'::> ' I - I\J.... ..~ '(/)' IN'='" I
_ ,~ K:_,.. ____, ," '_~--, -"en' ...---~'O."';"--T--it:l' .
__I _-Im".'I' '~', ' , , L,,' ...', ,.... ...' '1(11' ""'0' L.rnl
., ..... ,_ I>' (')1 ...: . I , ........ 1 ' .- '01 . , .:l.r, -!.! '--IT\ j
_I~: :~:;';j::-:"";f.il: ! '___ I....: 2::~::!:oO' ::o"~~ :::~;.~~
I: ~':l=:!~~(}ii C.=:gc~;:)~. i"':<?~ ;'?; :~'~i
-..- .-
"
~
'~
-
<f\
Q
II
a
-t:...
<S\
\
\I
\\l
:~\
8
:2
\1
-
~
CI\
~
c.,
1
n
en
Ij
):>,
~
1>
()
--\
-<
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
11*****************************************************************************
- is software prepared for: Ranpac Corporation
,~.***************************************************************************
I
I
I
I
I
I
I
I
I
I
I
,.
I
I
I
I
CALCULATE DEPTH
Channel Slope =
Given Flow Rate =
OF FLOW GIVEN:
.011600 (Ft./Ft.) = 1.1600 %
14.10 Cubic Feet/Second
*** OPEN CHANNEL FLOW - STREET FLOW ***
street Slope (Ft./Ft.) = .0116
Mannings "n" value for street =
Curb Height (In.) = 6.
Street Halfwidth (Ft.) = 20.00
Distance From Crown to Cross fall Grade Break
. Slope from Gutter to Grade Break (Ft./Ft.) =
Slope from Grade Break to Crown (Ft./Ft.) =
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.) =
Depth of flow = .457 (Ft.)
Average Velocity = 3.57 (Ft./Sec.)
Channel flow top width = 20.00 (Ft.)
.015
(Ft.) =
.064
.017
18.00
10.00
.020
streetflow Hydraulics :
Halfstreet Flow width(Ft.) = 20.00
Flow Velocity(Ft./Sec.) = 3.57 Depth*Velocity =
Flow rate of street channel (CFS) = 14.10
1. 63
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow'Top Width(Ft.) =
Subchannel critical Flow Velocity(Ft./Sec.) =
. . '
Subchannel Cr~t~cal Flow Area (Sq. Ft.) =
Froude Number Calculated = 1.000
Subchannel critical Depth =
20.51
2.809
5.02
.510
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
,6/\
I
II *********************** CHANNEL CROSS-SECTION
~epth of flow = .46 Feet ,= "W"
PLOT ************************
I
STREET FLOW HALF-WIDTH CROSS SECTION
-:ritical
I X (Feet)
.51 Feet
, =
"c"
depth for Channel No.l=
Y-Axis-->o.
Y(Feet)
.2
.4
---------------------------------------------------------------------------
X
.00 .70
1. 00 .68
2.00 .66
3.00 .64
4.00 .62
5.00 .60
6.00 .58
7.00 .56 X
8.00 .54 X
9.00 .52 X
10.00 .50 Xc
11.00 .06 X W c
12.00 .13 X W c
13.00 .14 X W c
14.00 .16 X W c
15.00 .18 X W c
16.00 .20 X W c
17.00 .21 X W c
18.00 .23 X W c
19.00 .25 X W c
20.00 .26 X W c
21.00 .28 X W c
22.00 .30 X W c
23.00 .31 X W c
24.00 .33 X W c
25.00 .35 X W c
26.00 .37 X W c
27.00 .38 X W c
28.00 .40 X W c
29.00 .42 X W c
30.00 .43 X W c
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1
I
I
I
'I
I
I
I
I
I
"
I
I
I
I
.5
.7
x
X
X
X
X
X
{P
I
~1 100 YR HYDRAULIC CALC
I LINE "A" TR 23143-4
FILE:L1NEA.WSP
< 2850.141205.35 1 1209.00
I 30n.001212.28 1 .014 .00 .00 1
3252.921218.27 1 .014 .00 .00 0
-, 5252.931218.28 4 2 3.014 9.3 9.41218.821218.87 45.00 45.00
R 3365.921220.20 4 .014 .00 .00 1
I 3369.921220.70 6 5 .014 15.3 1221.20 45.00
3395.051221.16 6 .014 .00 .00 0
we 3395.051221.16 7 .500
, 3395.051221.16 7 1221.16
1 4 0 .00 2.50 .00 .00 .00 .00
2 4 0 .00 1.50 .00 .00 .00 .00
I 3 4 0 .00 1.50 .00 .00 .00 .00
4 4 0 .00 2.50 .00 .00 .00 .00
5 4 0 .00 1.50 .00 .00 .00 .00
CD 6 4 0 .00 2.50 .00 .00 .00 .00
I 7 3 0 .00 8.11 21.00 .00 .00 .00
16.0 .0
I
I
I
I
I
I
I
I
I
I
I
I \'6\
I
F0515P CD Vers 2.2 PAGE
I ~ATER SURFACE PROFILE LISTING
100 YR HYORAULIC CALC
LINE IIA" TR 23143-4
I FILE:LlNEA.~SP
,TrON INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl ZL NO AVBPR
ELEV OF FLOII ELEV HEAD GRO.EL. ELEV DEPTH OIA 10 NO. PIER
I L/ELEM SO SF AVE HF NORM DEPTH ZR
. .'************.......**..........***....***.....**.......**.........*****.**......_*****..**..******..****............................
12850.,4 1205.35 3.650 1209.000 50.0 10.19 1.611 1210.611 .00 2.300 2.50 .00 .00 0 .0
, 28.74 .03124 .017234 .50 1.603 .00
12878.88 1206.25 3.258 1209.506 50.0 10.19 1.611 1211.117 .00 2.300 2.50 .00 .00 0 .0
HYORAULl C JUMP .00
.
12878.88 1206.25 1.603 1207.851 50.0 15.04 3.511 1211.362 .00 2.300 2.50 .00 .00 0 .0
83.00 .03124 .031325 2.60 1.603 .00
12961. 88 1208.84 1.603 1210.443 50.0 15.04 3.511 1213.955 .00 2.300 2.50 .00 .00 0 .0
1,,0.,2 .03124 .031615 3.48 1. 603 .00
3072.00 1212.28 1.593 1213.873 50.0 15.15 3.563 1217.436 .00 2.300 2.50 .00 .00 0 .0
I 3.86 .03311 .030943 1.98 1.571 .00
5.86 1214.39 1.627 1216.021 50.0 14.78 3.391 1219.412 .00 2.300 2.50 .00 .00 0 .0
I 49.75 .033'" .028320 1.41 1.571 .00
13185.61 1216.04 1.697 1217.739 50.0 14.09 3.082 1220.821 .00 2.300 2.50 .00 .00 0 .0
.025215
26.00 .03311 .66 1.571 .00
13211.61 1216.90 l.m 1218.675 50.0 13.43 2.802 1221.477 .00 2.300 2.50 .00 .00 0 .0
16.32 .03311 .022524 .37 1.571 .00
13227.93 1217.44 1.854 1219.297 50.0 12.81 2.547 1221.844 .00 2.300 2.50 .00 .00 0 .0
l'1.05 .03311 .020204 .22 1.571 .00
238.98 1217.81 1. 943 1219.752 50.0 12.21 2.316 1222.068 .00 2.300 2.50 .00 .00 0 .0
'I 7.49 .03311 .018227 .14 1.571 .00
3246.48 1218.06 2.042 1220.099 50.0 11.64 2.105 1222.204 .00 2.300 2.50 .00 .00 0 .0
I 4.63 .03311 .016604 .08 1.571 .00
I
I \4
I
F0515P co Vors 2.2
WATER SURFACE PROFILE LISTING
PAGE 2
I
:ION
100 YR HYDRAULIC CALC
LINE 114" TR 23143.4
FILE:LlNEA.WSP
DEPTH W.S. Q
OF FLOW ELEV
VEL
VEL
HEAD
ENERGY
GRO.EL.
SUPER CRITICAL
ELEV DEPTH
HGTI
OIA
BASEl
10 NO.
ZL
NO AVBPR
PIER
I
INVERT
ELEV
I L/ELEM SO SF AVE HF NORM DEPTH ZR
\ ****....*.*.*.**.***************.*.******..*********..*****.....**......**..**..............**********..**...***...***.*.**********
13251.10 1218.21 2.157 1220.367 50.0 11.10 1.914 1222.281 .00 2.300 2.50 .00 .00 0 .0
.03311 .015423 .03 1.571 .00
. 1.81
13252.92 1218.27 2.300 1220.570 50.0 10.58 1.739 1222.309 .00 2.300 2.50 .00 .00 0 .0
JUNCT STR 1. 00000 .010857 .00 .00
I 3252.93 1218.28 3.964 1222.244 31.3 6.38 .631 1222.875 .00 1.906 2.50 .00 .00 0 .0
112.99 .01699 .006753 .76 1.440 .00
13365.92 1220.20 2.838 1223.038 31.3 6.38 .631 1223.670 .00 1.906 2.50 .00 .00 0 .0
IUNCT STR .12500 .004259 .02 .00
3369.92 1220.70 2.822 1223.522 16.0 3.26 .165 1223.687 .00 1.351 2.50 .00 .00 0 .0
I '9.46 .01831 .001750 .03 .955 .00
i '9.38 1221.06 2.500 1223.556 16.0 3.26 .165 1223.721 .00 1.351 2.50 .00 .00 0 .0
I 5.67 .01831 .001636 .01 .955 .00
13395.05 1221.16 2.400 1223.560 16.0 3.30 .169 1223.729 .00 1.351 2.50 .00 .00 0 .0
\/ALL ENTRANCE .00
13395.05 1221.16 2.733 1223.893 16.0 .28 .001 1223.894 .00 .262 8.11 21.00 .00 0 .0
1
I
I
I
I
I
I \~3>
I
T1 100 HYORAULIC CALC
,2 LINE "A-7" TR 23143-4
3 FILE:L1NEA7
.- 1001.001218.82 1
1015.501219.47 1
1020.511221.50 1
1020.511221.50 2
1020.511221.50 2
1 4 0 .00 1.50
2 3 0 .00 5.77
12.5 .0
I
SH
t
Q
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.014
.014
.500
.00 .00 .00
21.00 .00 .00
1222.24
1221.50
.00
.00
.00
.00
.00 0
.00 0
\~4..
I
F0515P co Vers 2.2 PAGE
I ~ATER SURFACE PROFILE LISTING
100 HYDRAULIC CALC
LINE IIA-7" TR 23143.4
I FILE:L1NEA7
TION INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CRITICAL HGT/ BASE/ 2L NO AVBPR
ELEV OF FLOII ELEV HEAD GRD.EL. ELEV DEPTH DIA ID NO. PIER
I L/ELEH SO SF AVE HF NOllM DEPTH 2R
***...******.****.*****..*****************......******.**************************************************.**.*.*...****************
,1001.00 1218.82 3.420 1222.240 12.5 7.07 .m 1223.017 .00 1.334 1.50 .00 .00 0 .0
14.50 .04483 .016423 .24 .840 .00
11015.50 1219.47 3.008 1222.478 12.5 7.07 .m 1223.255 .00 1.334 1.50 .00 .00 0 .0
2.24 .40519 .016423 .04 .460 .00
11017.74 1220.38 2.138 1222.514 12.5 7.07 .m 1223.291 .00 1.334 1.50 .00 .00 0 .0
HYDRAULIC JUMP .00
11017.74 1220.38 .826 1221.202 12.5 12.53 2.439 1223.641 .00 1.334 1.50 .00 .00 0 .0
I .32 .40519 .045736 .01 .460 .00
1221.354 1223.639 .00
1018.06 1220.51 .848 12.5 12.13 2.285 1.334 1.50 .00 .00 0 .0
I .48 .40519 .041249 .02 .460 .00
8.53 1220.70 .882 1221.582 12.5 11.57 2.077 1223.659 .00 1.334 1.50 .00 .00 0 .0
I .41 .40519 .036485 .02 .460 .00
11018.95 1220.87 .918 1221.786 12.5 11.03 1.889 1223.674 .00 1.334 1.50 .00 .00 0 .0
.40519 .032317 .01
.36 .460 .00
1'019.31 1221.01 .956 1221.969 12.5 10.51 1.717 1223.686 .00 1.334 1.50 .00 .00 0 .0
.31 .40519 .028666 .01 .460 .00
11019.62 1221.14 .996 1222.134 12.5 10.03 1.561 1223.695 .00 1. 334 1.50 .00 .00 0 .0
I .26 .40519 .025489 .01 .460 .00
1221.24 1.040 1222.282 12.5 9.56 1.419 1223.701 .00 1.334 1.50 .00 .00 .0
. 1019.87 0
I .22 .40519 .022725 .00 .460 .00
1020.09 1221.33 1.086 1222.416 12.5 9.11 1. 290 1223.706 .00 1.334 1.50 .00 .00 0 .0
I .17 .40519 .020327 .00 .460 .00
I \-s5
I
I
I
I
\TION
INVERT
ELEV
100 NYORAULIC CALC
LINE I-A.7" TR 23143.4
FILE:L1NEA7
DEPTH W.S. Q
OF FLOII ELEV
F0515P CO Vers 2.2
WATER SURFACE PROFILE LISTING
VEL
VEL EHERGY
HEAD GRO.EL.
SUPER CRITICAL
ELEV DEPTH
HGTI
OIA
PAGE 2
BASEl
10 NO.
ZL
NO AVBPR
PIER
IL/ELEM SO SF AVE HF NORM DEPTH ZR
.. ..**,.***...******..*******..**.....****.**************............***........*********..******..*****.....**...********..........
11020.26 1221.40
.40519
.13
11020.39 1221.45
.09 .40519
'1020.48 1221.49
.03 .40519
11020.51 1221.50
fLL ENTRANCE
1020.51 1221.50
I
I
I
I
I
I
I
I
I
I
1.137 1222.537
12.5
1.194 1222.646
12.5
1.257 1222.744
12.5
1.334 1222.834
12.5
2.991 1224.491
12.5
8.69
1.173 1223.710
.018285
8.29
1.066 1223.712
.016567
7.90
.969 1223.714
.015199
7.53
.880 1223.714
.20
.001 1224.492
.00
.00
.00
.00
1.334
.00
1.334
.00
1.334
.00
1.334
.00
.222
.460
.460
.460
1.50
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.0
1.50
.0
1.50
.0
1.50
.0
.00
5.77 21.00 .00 0
.0
\~
I
Tl 100 YR HYDRAULIC CALC
IT2 LINE "A-S" TR 23143-4
T3 FILE:LlNEA8
." 1002.001221.20 1
1034.651225.23 1
1034.651225.23 2
1034.651225.23 2
1 4 0 .00 1.50
2 3 0 .00 4.04
16.0 .0
t
CO
ID
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.014
.500
.00 .00 .00
21.00 .00 .00
1223.52
1225.23
.00
.00
.00
.00 0
\'51
I
F0515P co Vers 2.2 PAGE
I WATER SURFACE PROFILE LISTING
100 YR HYDRAULIC CALC
LINE IIA-811 TR 23.143-4
I FILE:LINEA8
rION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl ZL NO AVSPR
ELEV OF FLOII ELEV HEAD GRD. EL. ELEV DEPTH DIA 10 NO. PIER
~L/ELEM SO SF AVE HF NORM DEPTH ZR
\ ************....**...*******.....*****.....**.****..............**..**.*.**..*.....**.****************.~**.........*....**....*.*.
11002.00 1221.20 .815 1222.015 16.0 16.31 4.132 1226.146 .00 1.425 1.50 .00 .00 0 .0
7.03 .12343 .077058 .54 .720 .00
11009.03 1222.07 .845 1222.912 16.0 15.59 3.774 1226.687 .00 1.425 1.50 .00 .00 0 .0
5.61 .12343 .068288 .38 .720 .00
'1014.63 1222.76 .879 1223.638 16.0 14.87 3.431 1227.070 .00 1.425 1.50 .00 .00 0 .0
4.39 .12343 .060376 .27 .720 .00
11019.03 1223.30 .914 1224.215 16.0 14.17 3.119 1227.335 .00 1.425 1.50 .00 .00 0 .0
I 3.51 .12343 .053452 .19 .720 .00
1223.73 .952 1224.687 16.0 13.51 2.836 1227.522 .00 1.425 1.50 .00 .00 0 .0
1022.54
I 2.85 .12343 .047438 .14 .720 .00
5.39 1224.09 .993 1225.080 16.0 12.88 2.578 1227.658 .00 1.425 1.50 .00 .00 0 .0
I 2.36 .12343 .042185 .10 .720 .00
11027.74 1224.38 1. 036 1225.414 16.0 12.29 2.344 1227.757 .00 1.425 1.50 .00 .00 0 .0
.12343 .037592 .07 .720 .00
1.95
11029.69 1224.62 1. 082 1225.700 16.0 11.71 2.131 1227.830 .00 1.425 1.50 .00 .00 0 .0
1.59 .12343 .033624 .05 .720 .00
11031.28 1224.81 1.133 1225.947 16.0 11.17 1.937 1227.884 .00 1.425 1.50 .00 .00 0 .0
I 1.29 .12343 .030232 .04 .720 .00
032.57 1224.97 1.189 1226.162 16.0 10.65 1.761 1227.923 .00 1.425 1.50 .00 .00 0 .0
I 1.01 .12343 .027372 .03 .720 .00
1033.58 1225.10 1. 252 1226.350 16.0 10.15 1.6(11 1227.950 .00 1. 425 1.50 .00 .00 0 .0
I .74 .12343 .025073 .02 .720 .00
I \-50
I
I
I
I .TlON INVERT
ELEV
2
PAGE
F0515P CD Vors 2.2
"ATER SURFACE PROFILE LISTING
100 YR HYDRAULIC CALC
LINE l'A.a'l TR 23143-4
FILE:LINEA8
DEPTH ".S. Q
OF FLOII ELEV
2L NO AVBPR
PIER
BASEl
ID NO.
HGT!
DIA
SUPER CR I TI CAL
ELEV DEPTH
ENERGY
GRD.EL.
VEL
HEAD
VEL
I L/ELEM SO SF AVE HF NORM OEPTH ZR
******.****.**.***.***********...******.***...********.....*******************************.*......*....*******..***........********
o
.0
.00
.00
1.50
1.425
1.455 1227.969
.00
9.68
16.0
1.325 1226.514
1225.19
1034.32
I .33
.00
.no
.023688 .01
.12343
.0
.00 .00 0
1.50
1.425
.00
1.322 1227.977
9.23
16.0
1.425 1226.655
I 1034.65 1225.23
"ALL ENTRANCE
11034.65 1225.23
1
I
.00
4.04 21.00 .00 0
.0
.262
.00
.001 1229.250
.19
16.0
4.019 1229.249
, . ~'
\.,c 5 I'l.T': ,- , V
- ~~ :-
;, _I
-:::: :. ;'t"" + ICi
, , ,
- /27- 7, /... (
I
I
I
I
I
I
I
I
I
I
\~
I
I
Tl 100 YR HYDRAULIC CALC
I LINE "A-9" TR 23143-9
FILE:LINEA9
S" 1001.001218.87 1
1031.541222.06 1
1031.541222.06 2
1031.541222.06 2
1 4 0 .00 1.50
2 3 0 .00 5.21
12.0 .0
I
CO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.014
.500
.00 .00 .00
21.00 .00 .00
1222.24
1222.06
.00
.00
.00
.00 0
\rp
I
F0515P CD Vers 2.2 PAGE
I WATER SURFACE PROFILE liSTING
100 YR HYDRAULIC CALC
LINE IIA-911 TR 23143-9
I FIlE:lINEA9
.TION INVERT DEPTH W.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl Zl NO AVBPR
ELEV OF FlOll ElEV HEAD GRD.EL. ElEV DEPTH OIA 10 NO. PIER
I/ELEM SO SF AVE HF NORM DEPTH ZR
....*-.*.--.------....-.--.........-.......-.-.-----.-*********..****************...************************.....********.*****..
11001.00 1218.87 3.370 1222.240 12.0 6.79 .716 1222.956 .00 1.314 1.50 .00 .00 0 .0
13.07 .10446 .015135 .20 .640 .00
1014.07 1220.23 2.201 1222.436 12.0 6.79 .716 1223.152 .00 1.314 1.50 .00 .00 0 .0
HYDRAULIC JUMP .00
1014.07 1220.23 .m 1221.013 12.0 12.96 2.6119 1223.622 .00 1.314 1.50 .00 .00 0 .0
3.06 .10446 .050312 .15 .640 .00
1017.12 1220.55 .808 1221.362 12.0 12.36 2.3n 1223.7J4 .00 1.314 1.50 .00 .00 0 .0
I 3.06 .10446 .044375 .14 .640 .00
1220.87 1221. 713 12.0 11.78 2.156 1223.869 .00 1.314 1.50 .00 .00 0 .0
1020.18 .840
I ~.50 .10446 .039183 .10 .640 .00
2.67 1221.13 .873 1222.007 12.0 11.23 1.9611 1223.967 .00 1.314 1.50 .00 .00 0 .0
I 2.05 .10446 .034627 .07 .640 .00
1024.n 1221.35 .908 1222.256 12.0 10.71 1.782 1224.038 .00 1.314 1.50 .00 .00 0 .0
.10446 .030659 .05 .640 .00
1.68
1026.40 1221.52 .946 1222.470 12.0 10.21 1.620 1224.090 .00 1.314 1.50 .00 .00 0 .0
1.39 .10446 .027199 .04 .640 .00
1027.79 1221.67 .986 1222.655 12.0 9.74 1.473 1224.127 .00 1.314 1.50 .00 .00 0 .0
, 1.13 .10446 .024177 .03 .640 .00
028.92 1221. 79 1.029 1222.816 12.0 9.28 1.J39 1224.155 .00 1.314 1.50 .00 .00 0 .0
I .91 .10446 .021545 .02 .640 .00
1029.84 1221.88 1.075 1222.957 12.0 8.85 1.217 1224.174 .00 1.314 1.50 .00 .00 0 .0
I .n .10446 .019253 .01 .640 .00
I
I \10\
I
I
I
100 YR HYDRAULIC CALC
LINE -A-9" TR 23143-9
FILE:LINEA9
DEPTH ~.S. Q
OF FLOW ELEV
.TION
INVERT
ELEV
F0515P CD Vers 2.2
~TER SURFACE PROFILE LISTING
VEL
VEL ENERGY
HEAD GRD. EL.
SUPER CRITICAL
ELEV DEPTH
HGTI
DIA
PAGE 2
BASEl
10 NO.
ZL
NO AVBPR
PIER
IL/ELEM SO SF AVE HF NORM DEPTH ' ZR
-...-.-.-----.-.----..----------.-.---------.-...-....--*......**.....*.*..*****....***********.***........********************...
1'030.56 1221.96
.10446
.52
1'031.08 1222.01
.33 .10446
1,031.42 1222.05
.12 .10446
.,031.54 1222.06
1.124 1223.082
1.179 1223.192
1.241 1223.288
1.314 1223.374
rLL ENTWCE
1031.54 1222.06 2.861 1224.921
I
\
I
I
I
I
I
I
I
I
I
12.0
12.0
12.0
12.0
12.0
8.44
1.106 1224.188
.017283
8.05
1.006 1224.197
.015629
7.67
.914 1224.203
.014284
7.31
.830 1224.204
.20
.001 1224.922
.01
.01
.00
.00
1.314
.00
1.314
.00
1.314
.00
1.314
.00
.216
.640
.640
.640
1.50
1.50
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.0
.0
1.50
.0
.0
1.50
5.21 Z1.00 .00 0
.0
\vp
I
T1 100 HYDRAULIC CALC.
I LINE "0-6" TR 23143-3
FILE:D06.~SP
S" 1002.001214.00 1
1027.321214.58 1
1027.321214.58 2
1027.321214.58 2
1 4 0 .00
2 3 0 .00
11.5
I
CO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1.50
4.21
.0
1215.50
.014 .00 .00 0
.500
1214.58
.00 .00 .00 .00
21. 00 .00 .00 .00
\rP
I
I
I
lION
INVERT
ELEV
100 HYORAULIC CALC.
LINE 110-6" TR 23143-3
FILE:006.WSP
DEPTH W.S. Q
OF FLDII ELEV
F0515P CO Vers 2.2
WATER SURFACE PROFILE LISTING
VEL
VEL ENERGY
HEAD GRD. EL.
SUPER CR I TI CAL
ELEV DEPTH
HGTI
DIA
PAGE
BASEl
ID NO.
ZL NO AVBPR
PIER
I/ELEM SO SF AVE HF NORM DEPTH, ZR
********************.************.*.**********************.**********...*************.************.********..****.***..**~*.***.*
11002.00 1214.00
.02290
2.73
1004.73 1214.06
12.04 .02290
'016.77 1214.34
6.22 .02290
1022.99 1214.48
I
1026.32 1214.56
3.33
.02290
I . .00 .02290
i ~
I :7.32 1214.58
LL ENTRANCE
1027.32
1
1214.58
I
I
I
I
I
I
I
1.055 1215.055
11.5
1.062 1215.125
11.5
1.110 1215.448
11.5
1.164 1215.645
11.5
1.223 1215.780
11.5
1.293 1215.873
11.5
2.734 1217.314
11.5
8.66
1.164 1216.219
.019410
.05
8.60
1.147 1216.2n
.018228
8.20
1.043 1216.491
.016345
7.81
.948 1216.593
.014746
7.45
.862 1216.642
.013422
7.10
.783 1216.656
.20
1217.315
.001
.22
.10
.05
.01
.00
1.293
.00
1.293
.00
1. 293
.00
1. 293
.00
1. 293
.00
1.293
.00
.210
1. 000
1.000
1. 000
1. 000
1. 000
1.50
1.50
1.50
.00 .00 0
.OD
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.0
.0
.0
.0
1.50
.0
1.50
.0
1.50
4.21
.00
.0
21.00
o
\~"
I
F0515P co Vers 2.2 PAGE
. ~ATER SURFACE PROFILE LISTING
100 YR HYDRAULIC CALC.
LINE "0-5" TR 23143-3
. FILE:005.~SP
:ION INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CR IT I CAL HGTI BASEl ZL NO AVSPR
ELEV OF FLOW ELEV HEAD GRO.EL. ELEV DEPTH OIA 10 NO. PIER
I LIELEM SO SF AVE HF NORM DEPTH, ZR
************************************...*********************.....********.........**.******..***...................******.....**..
.1002.00 1214.00 1. 500 1215.500 5.2 2.94 .134 1215.634 .00 .878 1.50 .00 .00 0 .0
.05698 .002424 .00 .460 .00
.00
.'002000 1214.00 1. 500 1215.500 5.2 2.94 .134 1215.634 .00 .878 1.50 .00 .00 0 .0
2.29 .05698 .002270 .01 .460 .00
11004.29 1214.13 1.360 1215.491 5.2 3.09 .148 1215.639 .00 .878 1.50 .00 .00 0 .0
.83 .05698 .002218 .00 .460 .00
11005.13 1214.18 1. 280 1215.458 5.2 3.24 .163 1215.621 .00 .878 1.50 .00 .00 0 .0
10RAULI C JUMP .00
.00 0
1005.13 1214.18 .562 1214.740 5.2 8.60 1.148 1215.888 .00 .878 1.50 .00 .0
I 1.46 .05698 .025706 .04 .460 .00
i ,.59 1214.26 .583 1214.844 5.2 8.18 1. 040 1215.885 .00 .878 1.50 .00 .00 0 .0
I 2.13 .05698 .022493 .05 .460 .00
110OS.72 1214.38 .604 1214.987 5.2 7.80 .946 1215.932 .00 .878 1.50 .00 .00 0 .0
.05698 .019741 .03 .460 .00
1.72
11010.44 1214.48 .626 1215.107 5.2 7.44 .860 1215.966 .00 .878 1.50 .00 .00 0 .0
1.39 .05698 .017334 .02 .460 .00
1,011.83 1214.56 .649 1215.209 5.2 7.09 .782 1215.991 .00 .878 1.50 .00 .00 0 .0
I 1.13 .05698 .015228 .02 .460 .00
1214.62 .673 1215.297 5.2 6.76 .710 1216.008 .00 .878 1.50 .00 .00 0 .0
1012.95
I .91 .05698 .013385 .01 .460 .00
1013.86 1214.68 .698 1215.374 5.2 6.45 .646 1216.020 .00 .878 1.50 .00 .00 0 .0
I .72 .05698 .011770 .01 .460 .00
1 \fq~
.
I
1
F0515P co Vers 2.2
WATER SURFACE PROFILE LISTING
I
100 YR HYDRAULIC CALC.
LINE IID-Su TR 23143.3
FILE:005.WSP
DEPTH W.S. Q
OF FLOW ELEV
,TlON
INVERT
ELEV
VEL
VEL
HEAD
ENERGY
ORO. EL.
SUPER CRITICAL
ELEV DEPTH
HGTI
OIA
PAGE 2
BASEl
10 NO.
ZL
NO AVBPR
PIER
IL/ELEM SO SF AVE HF NORM DEPTH, ZR
***************************.******************.***********************************************************************************
1'014.59 1214.72
.05698
.54
11015.13 1214.75
.41 .05698
11015.54 1214.77
I .29 .05698
1015.83 1214.79
I .16 .05698
1015.99 1214.80
I .05 .05698
6.04 1214.80
lLL ENTRANCE
11016.04 1214.80
1
I
I
I
I
I
I
I
.724 1215.441
.752 1215.500
.781 1215.552
.811 1215.599
.843 1215.640
.878 1215.678
1.421 1216.221
5.2 6.15 .587 1216.028 .00 .878
.010359 .01 .460
5.2 5.86 .534 1216.034 .00 .878
.009127 .00 .460
5.2 5.59 .485 1216.038 .00 .878
.008044 .00 .460
5.2 5.33 .441 1216.040 .00 .878
.007095 .00 .460
5.2 5.08 .401 1216.041 .00 .878
.006257 .00 .460
5.2 4.84 .364 1216.042 .00 .878
5.2
.000 1216.222
.00
.124
.17
1.50
1.50
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
.0
.0
.0
1.50
.0
1.50
.0
1.50
.0
1.50
4.21 21.00 .00 0
.0
\ro~
I
T1 100 YR HYORAULIC CALC.
'LINE "0-5" TR 23143-3
FILE:005.~SP
1002.001214.00 1
~ 1016.041214.80 1
I 1016.041214.80 2
1016.041214.80 2
CO 1 4 0 .00 1.50
r 2 3 0 .00 4.21
5.2 .0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.013
.500
.00 .00 .00
21.00 .00 .00
1215.50
1214.80
.00
.00
.00
.00 0
\~1
I
T1 100 YR HYDRAULIC CALC.
_2 LINE "F" TR 23143-3
3 FILE L1NEF
~ 1235.911219.59 1 1225.70
1354.781221.47 1 .014 .00 .00 1
I 1356.781221.50 3 2 .014 48.4 1222.19 45.00
1372.891221.75 3 .014 .00 .00 0
JX 1372.891221.75 5 4 .014 23.5 1222.75 45.00
I 1400.001222.18 5 .014 .00 .00 0
1428.911226.10 5 .014 .00 .00 0
WE 1428.911226.10 6 .500
~ 1428.911226.10 6 1226.10
1 4 0 .00 3.50 .00 .00 .00 .00
2 4 0 .00 2.00 .00 .00 .00 .00
CD 3 4 0 .00 3.50 .00 .00 .00 .00
t 4 4 0 .00 1.50 .00 .00 .00 .00
5 4 0 .00 3.50 .00 .00 .00 .00
CD 6 3 0 .00 6.00 21.00 .00 .00 .00
I 24.3 .0
I
I
I
I
I
I
I
I
I
I
I
I
\~ro
I
F0515P CD Vers 2.2 PAGE
I ~ATER SURFACE PROFILE LISTING
100 YR HYDRAULIC CALC.
LINE I_Fl. TR 23143-3
__,"TION FILE LINEF
INVERT DEPTH ~.S. Q VEL VEL ENERGY SUPER CRITICAL HGTI BASEl ZL NO AVSPR
ELEV OF FLOW ELEV HEAD GRD.EL. ELEV DEPTH DIA 10 NO. PIER
1 LIELEM SO SF AVE HF NORM DEPTH, ZR
...****************************************************************************************************************....********....
11235.91 1219.59 6.110 1225.700 96.2 10.00 1.552 1227.252 .00 3.024 3.50 .00 .00 0 .0
118.87 .01582 .010603 1.26 2.410 .00
11354.78 1221.47 5.568 1227.038 96.2 10.00 1.552 1228.590 .00 3.024 3.50 .00 .00 0 .0
JUNCT STR .01501 .006611 .01 .00
1 1356.78 1221.50 6.720 1228.220 47.8 4.97 .383 1228.604 .00 2.159 3.50 .00 .00 0 .0
16.11 .01552 .002618 .04 1. 562 .00
11372.89 1221.15 6.513 1228.262 47.8 4.97 .383 1228.646 .00 2.159 3.50 .00 .00 0 .0
INCT STR .00000 .001647 .00 .00
1372.89 1221.15 6.797 1228.547 24.3 2.53 .099 1228.646 .00 1.516 3.50 .00 .00 0 .0
1 7.11 .01586 .000677 .02 1.080 .00
.0.00 1222.18 6.385 1228.565 24.3 2.53 .099 1228.664 .00 1.516 3.50 .00 .00 0 .0
1 21.38 .13559 .000672 .01 .630 .00
11421.38 1225.08 3.500 1228.580 24.3 2.53 .099 1228.679 .00 1.516 3.50 .00 .00 0 .0
.13559 .000629 .00 .630
2.33 .00
11423.71 1225.40 3.115 1228.570 24.3 2.65 .109 1228.679 .00 1.516 3.50 .00 .00 0 .0
1.31 .13559 .000613 .00 .630 .00
11425.02 1225.57 2.987 1228.560 24.3 2.78 .120 1228.680 .00 1.516 3.50 .00 .00 0 .0
1 1.07 .13559 .000663 .00 .630 .00
1225.72 2.831 1228.549 24.3 2.91 .132
1426.09 1228.681 .00 1.516 3.50 .00 .00 0 .0
1 .91 .13559 .000729 .00 .630 .00
1427.00 1225.84 2.695 1228.536 24.3 3.06 .145 1228.681 .00 1.516 3.50 .00 .00 0 .0
1 .80 .13559 .000810 .00 .630 .00
I
1 \lpC\
I
1
I
~TlON
INVERT
ELEV
100 YR HYDRAULIC CALC.
LINE "F" TR 23143-3
FILE LINEF
DEPTH W.S.
OF FLOII ELEV
Q
F0515P CO Vers 2.2
WATER SURFACE PROFILE LISTING
VEL
VEL
HEAD
ENERGY
GRO.EL.
SUPER CRITICAL
ELEV DEPTH
HGTI
OIA
BASEl
10 NO.
PAGE
2
2L NO AVBPR
PIER
1 LIELEM SO SF AVE HF NORM DEPTH, ZR
.*-.*.---------.-.---........-...-.........--......-.-*******..**********************************************************.*******..
I 1427::
11428.52
.39
1225.95
.13559
1226.05
.13559
1'428.91 1226.10
WALL ENTRANCE
1,428.91 1226.10
1
I
1
1
I
I
I
1
I
I
I
I
2.573 1228.522
2.460 1228.507
2.398 1228.498
2.738 1228.838
24.3
24.3
24.3
24.3
3.21
.160 1228.682
.000903 .00
3.36
.175 1228.683
.000988 .00
3.46
.186 1228.684
.42
.003 1228.841
.00
1.516
.00
1.516
.00
1.516
.00
.347
.630
.630
3.50
3.50
3.50
.00
.00
o
.0
.00
.00
.00
.0
o
.00
.00 .00 0
.0
.00
6.00 21.00 .00 0
.0
\<\{)
lIIT1 100 YR HYORAULIC CALC.
T2 TR 23143-3 LINE IIF_pl
t F1LE:LINEF1
1001.441222.67 1
1030.001223.48 1
1056.391226.19 1
1056.391226.19 2
1056.391226.19 2
1 4 0 .00 2.00
2 3 0 .00 5.21
24.3 .0
I.
SH
f
I
1
1
I
I
I
;,
1
I
I
1
I
I
1
I
I
1228.54
.014 .00 .00 0
.014 .00 .00 0
.500
1226.19
.00 .00 .00 .00
3.70 .00 .00 .00
\-y\
I
I
I .TJON INVERT
ELEV
100 YR HYDRAULIC CALC.
TR 23143-3 LINE IIF-1"
FILE:L1NEF1
DEPTH W.S. Q
OF FUJII ELEV
F0515P CD Vers 2.2
WATER SURFACE PROFILE LISTING
VEL
VEL
HEAO
ENERGY
GRD.EL.
SUPER CR IT I CAL
ELEV DEPTH
HGTI
DIA
PAGE
BASEl
10 NO.
ZL NO AVBPR
PIER
I/ELEM SO SF AVE HF NORM DEPTH ZR
*****.******************.***...............**..****..***.*.************......*****.*****....**********..*************************
11001.44 1222.67 5.870 1228.540
28.56 .02836
1030.00 1223.48 5.442 1228.922
26.39 .10269
1056.39 1226.19 3.085 1229.275
WALL ENTRANCE
1056.39 1226.19 4.887 1231.077
1
1
1
24.3
24.3
24.3
24.3
1
1
1
1
1
1
1
I
I
7.73
.929 1229.469
.013382
7.73
.929 1229.851
.013382
7.73
.929 1230.204
1.34
.028 1231.105
.00
.38
.00
.35
1.744
1.744
.00
1.744
.00
1.103
1. 220
2.00
.830
2.00
.00 .00 0
.00
.00 .00 0
.00
.00 .00 0
.00
3.70 .00 0
.0
.0
2.00
.0
5.21
.0
\,\9/'