Loading...
HomeMy WebLinkAboutHydrologic & Hydraulic Study (Addendum) I I -, 1 I .. '. I I I I I I .1 .1 '1 I I I ADDENDUM TO HYDROLOGIC AND HYDRAULIC STUDY RED HAWK DEVELOPMENT TRACT NO. 23065-PHASE 6 IN THE UNICORPORATED TERRITORY OF THE COUNTY OF RIVERSIDE Prepared By: A DIVISION OF THE KEITH COMPANIES, INC. 5650 EI Camino Real, Suite 100 Carlsbad, CA 92008 Tel (760) 438-1210. Fax (760) 438-2765 Engineer of Work: Job No. 160097 March 20, 2002 /" / I I I I I I I I I I I I I I I I I I I TABLE OF CONTENTS I. INTRODUCTION II. HYDROLOGIC ANALYSIS . HYDROLOGIC CRITERIA . HYDROLOGIC RESULTS III. HYDRAULIC ANALYSIS . HYDRAULIC CRITERIA . HYDRAULIC RESULTS IV. CONCLUSION APPENDICES A. HYDROLOGIC PARAMETERS AND RATIONAL METHOD RESULTS B. PIPEFLOW RESULTS MAPS 1. WORKMAP AND HYDRAULIC WORKMAP (PHASE 5) 2. WOLF VALLEY VINE STREET STORM DRAIN PLAN AND PROFILE LINE A (SHEET 6 OF 24) 0:\160097.00\Doc\Reports\RH6Addeudum.doc I I I I I I I I I I I I I I I I I I I I. INTRODUCTION I I I I I I I I I I I I I I I I I I I INTRODUCTION The Redhawk development (Tract 23065) is' a proposed residential community located in an unincorporated portion of Riverside County west of the intersection of Deer Hollow Way and Pala Road, see Vicinity Map. This drainage report is an addendum to Phase 6 and analyzes the private storm drain A-7, located south of Dryman Avenue. This report contains the hydrologic and hydraulic analyses used to design the private line. \\NTSER VER\DESIGN\ 160097 .OO\Doc\Reports\RH6Addendurn.doc \ I I I I I J- , TEMECULA ,... I ., /', / ',./ . v' ....... DEER HOLLOW WA r / TO I SAN DIEGO PROJECT SITE VTM 23065-5 PECHANGA RD. REDHA WK VICINITY MAP 1r I I I I I I I I I I I I I I I I I I I II. HYDROLOGIC ANAL YS/S 'b I I I I I I I I I I I I I I I I I I I HYDROLOGIC CRITERIA The criteria outlined in the Riverside County Flood Control and Water Conservation District's Hydrology Manual was used for the 100-year hydrologic analysis. The drainage area tributary to the private line is less than 0.5 square miles; therefore, the Rational Method was used for the analysis. Backup data for the Rational Method parameters are included in Appendix A, and the parameters are summarized as follows: . 2-year, I-hour precipitation: 0.6 inches (plates 4.3-4.6) · 100-year, I-hour precipitation: 1.4 inches (plates 4.3-4.6) · Soil Type: The soil types were based on Plate C-1.61 and are primarily type Be. Type C was used in the analysis. . Runoff Coefficient: 0.85 for undeveloped (poor cover) · Drainage Areas: Determined using a planimeter HYDROLOGIC RESULTS The hydrologic analysis is included in Appendix A and the corresponding work map is located in Map Pocket 1. The hydrologic analyses were performed using the CiviIDesign Rational Method program. This program is based on the County of Riverside's hydrologic criteria and allows for the modeling of processes such as initial areas, street flow, pipe flow, channel flow, confluences, etc. The program uses node numbers to identify the location of each process. The node numbers are shown on the workmap. The analysis determined that there is a flow rate of 1.9 cubic feet per second tributary to the private storm drain line A-7. t\ I I I I I I I I I I I I I I I I I I I III. HYDRAULIC ANAL YS/S -6 I I I I I I I I I I I I I I I I I I I HYDRAULIC CRITERIA Hydraulic analyses have been used to design the storm drain system. Pressure pipe flow has been avoided wherever possible throughout Phase 6. However, due to site constraints, pressure flow does occur along this reach. The downstream control hydraulic grade line (HGL) was from the analysis performed for storm drain 'A', found in the Hydrologic and Hydraulic Study for Redhawk Development - Phase 5. An excerpt of this pipeflow analysis is included in Appendix B for reference along with the corresponding workmap located in Map Pocket I. HYDRAULIC RESULTS The hydraulic results for the private storm drain line A-7 are included in Appendix B and the corresponding workmap is located in Map Pocket I. The hydraulic analysis was performed using the "pipe flow" program by Advanced Engineering Software. The pipeflow program calculates friction, bend, entrance, exit, junction, manhole, and catch basin losses in a storm drain system. The program uses node numbers to identify the location of each process. The node numbers are shown on the workmap. The nodal elevations and distance between nodes match the storm drain profiles. For reference, sheet 6 of 24 from the Wolf Valley Vine Street Storm Drain Plan and Profile Line A plans is located in Map Pocket 2, and shows the HGL and' flow rate for the private line. The analysis determined that at the upstream inlet ofline A-7 the water is above top of grade by approximately 0.8 feet. As a result, a 2-foot berm has been installed to prevent the water from flowing past the inlet and over the hill into the golf course. Cp I I I I I I I I I I I I I I I I I I I IV. CONCLUSION '\ I I I I I I I I I I I I I I I I I I I CONCLUSION . Analyses were performed for the private storm drain line A-7 for the Redhawk development, Phase 6. The hydrologic analysis was based on the Rational Method procedures outlined by the County of Riverside and determined the 100-year flow rate. The hydraulic analysis was based on storm drain system losses and determined the hydraulic grade line within the proposed private line. These analyses have been used to design the proposed storm drain improvement. ~ I I I I I I I I I I I I I I I I I I , APPENDIX A HYDROLOGIC PARAMETERS RATIONAL METHOD RESULTS ~ , , , , I I I ~-- I , , f , , , P I a: ~ o :c a: w a.. m w :c u z I >- ?- m z w I- Z ...J ...J ~ Z <d: a: ~ w oJ oJ 4 . . " z w ~ " w a .. .. ... .w -~ e.._..... ...."".. t... . .......""....Ilw ........ ~~~~": NfI,I"""'.N .."'W\. ........... .... . ----- _.0"""" "'_0.. .... . """"N"'... ...."...... ......... .... . ----- f\l~"Il". "" ....... .... . ----- ".NO"" ""NfW__ .... . ----- ...."'.-.. . ~-:~~~ ----- .."".. -.... .... . ---- ..........N ,",NN__ .... . ----- ."."'-- ....... .... . ........ ..... .... . --- ...."'... ............ .... . ._N""" .."...... ON... ON... ."'..... "'..".." ~---- _____ NNNN"" """""""""" ..~W\. .......... ""."'.fIlI lIftN..... .... . ...""... PI...."'... ......'" .... . IVN"'N'" ....",1"1. ----- ..... ...If'I. .... . NNNNN .....N. ......... .... . ...---- O_N""" ----- ..Ift__ .... -0. t... . ......"""",." .."".. .......-.. t... . NNNfllI'" __IIW"". ----- ....... -..-..... .... . ""_"W.... ,........ ........ .... . ----- .-...."". ----- RCFC a weD :: .. .. w L z .... _w ~~ C~ !! ... .. . ! .. L .. . oJ C L . " . .. ~ .. w .. .. A.. -.. ~~ c:> !! o. .. " .. .. . . ~ ~ " .. .. .. I.. -.. ~~ ..~ !! o. c.. oJ- ~. u.. ..0 ... ..- ~oJ 4 I U f~ ..c .... i.. ~ U . .. :> " .. a .. I.. -.. .... 4:> !! ... 4 . .. oJ 4 ~ . . U . w :> .. w .. ~ A.. -.. ~~ 4:> H HYDROLOGY . .c _w ~ .-.... ....N.. .... . "".....tV""_ ""...... .. .. ... -. ..."'- ....11\-. .... . .."""". .. .c _w ~ "..fIII... ""'_"NO .... . ....lOt"'''' "'...... .. .4 .w -. ........ -..."'''''... .... . .....,..."""" .. ... _w . ............ ......,-. .... . ""....""NN ......... :~I -~ . ....'.. -..... .... . "'.......... .~I -.. . ........... .......'" .... . ""!"'INN"'" "'...... .. .. ... -~ .....,... ......'" .... . ....."'... a .4 -.. . ......... .""'11II. ... .., ......NIIrII ......... MA NUAL ."""NfIIII .,....."'... .... . ............... :~::f .... . fIlII""fIllN_ ......... ----- ....If'l.... ."'N__ .... . "'''''''''filii'''' ."'..'" .Ift""." .... . ----- "'...... ----- ......... ....."'. .... . "'''''NNN ......... ......... ..... . ----- ......... ----- ON"- ...._ -..'"''''''''' .... . ......""'.. 0.,0". "'..... .... . ----- ::~~!~ "'.N.. ........ ,... . """NNN ..."". .........'" .... . ----- ON... N""'fIIlIV#If ::::: .... . AI___'" ."".fIlI'" ......fIlIN_ .... . ----- ON... ""'''''''''NN ...... l"'I"'_.. .... . "'''''filii 1'lI_ ......... ......."" .... . ----- e.,... NfIW""NN ~:t~: .10.. . ...filiI___ ...... "fIlII""-_ .... . ----- 0""'... ""NNN.... ..Nll'l. PlIPl1N_O .... . NNNNN ..... ..~~~ .... . ---..- ."'... ~~,.,.~ =::::; .... . ----- '"'...~- --... .... . ----- ON... "''"'~,.~ ...""~ .....,... .... . ...---- ....... "" NNN__ .... . --...-... 0"'.... P1"""'''''~ "'... N"'''' ......ll'l'" .... . ...---- O.~O'" _000. ..., . ---- .l'lII... ~"',..,.."" "'.... ..,.... .... . N___... ....-ll'l. N__.. .... . --...-- ."'OIl"lO ...Il"I. ....-Il"I. ."'I"'I""'N .... . ----... ON... ..... .... . ."'.ll'lO .."'If''' NN... .."".,."" .... . ......--- .""~N. -..... .... . -- OW'\OIllO ..1tItn" .ON.. ~ ~ ~.~~ ---....- ......10 ....... .... . ..... Olf'll. ..ll'l...... ~.-"'- "'.....,., .... . ----- ""_."'N ..... .... . ll'lOIl"l."" .,....... trl_...._ --.00 .... . - ---- ~.N.'" ........... .... . If'IlOll'l.'" ......... ..If'I_~ N___. .... . ----- .-.11\'" .....,..... .... . 1f'II0"'.'" .......... "'......,.,. __000 .... . ----- ,",0.1ft'" .......... .... . tn."'.'" ....,.... EXHIBIT . . . . . W L .. oJ .. . . .. . . w & oJ .. . . .. . a ... .. co ..J '" '. . .. .. . . W L o J .. . .. .. . . l' o ... .. STANDARD INTENSITY - DURATION , CURVES DATA 'P I B I I I I I I I I I I I I I I I I I , A A B LEGEND - SOILS GROUP BOUNDARY A SOILS GROUP DESIGNATION ~ FIGURE 1 HYDROLOGIC SOILS GROUP MAP FOR PECHANGA RCFcaWCD HYDROLOGY MANUAL ~-~ o ,EET 5000 ~ -- .. .. .. 't' '- ~ ~ , [\ I I I I I I I I I . ...h.. 1000 900 800 700 500 ... . . ... .5 400 Tc' -100 90 10' 70 60 ... i E .t . ,. ~ ,) t so o 35 LIMITATIONS: I. Maximu", ""oth = 1000' 2. Maxi",um ar.a a 10 Acr.. Tc - 5 D e' 350 D ! ... i 300 .. of 30 - c - I.li. - \,) M: . i - j .. r . 1 i ! N .i 'c 5 ... .- -I i · D " ,(/) _ ! i -------J i I K M.a U"dt....,.~ 0 Goo~ Co"., 1 ~ - ... c: .. 8 E t 'i . 'C o 6 Unde JII.,'11 Fair eo- '" /5 16 /7 18 '" 20 .... o 250 ! ~ c: 'E 25 7 (I) 10 " ~ 'e {i - .J - .&: ... 01 c: . .J 200 .5 20 19 18 17 16 15 14 13 12 II .s if :5 ~ .2/ 150 - 'u F - .1 ... E! - c: I ... o UoOI..I.p.lI Poor c._ o j 501 100 ~ i= 9 8 SlIIlJIt F-'I, (1M Ac,.j C~io 7 . u i .. ~ .... is 7 , 5 " 25 I<EY L-o+f-Tc-tC-Tc' ... 0, 30 . e i= EXAMPLE: (I)L=5SO',H =5.0:K=Sinole Fo~II)'(I/4Ac.) 35 Develop",,,,,, Tc = 12.6 min. (2) L = 5SO', H =5.0', I< = Com",.rcial 40 Oewloplll'''', Tc = 9.7 inin. ExHIBIT D Reference: Biblio9raph, 111m No. 35. RCFC a WCD HYDROLOGY MANUAL TIME OF CONCENTRATION FOR INITIAL SU BAREA DI AT~ n_.... I I Riverside County Rational Hydrology Program I CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 version 6.3 I Rational Hydrology Study File:RHadd6.out Date: 03/20/02 I RED HAWK - PHASE 6 100-YEAR STORM WATER EVENT ADDENDUM REPORT FOR PRIVATE LINE A-7 J-160097.00.000 I ********* Hydrology Study Control Information ********** I English (in-lb) Units used in input data file I Crosby, Mead, Benton & Associates! Carlsbad, CA - SiN 776 I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition 2 I 2 year, 1 hour precipitation 100 year, 1 hour precipitation 0.600(In.) 1.400(In.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400(In/Hr) Slope of intensity duration curve = 0.5500 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ I Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 180.000(Ft.) Top (of initial area) elevation = 1237.500(Ft.) Bottom (of initial area) elevation = 1234.000(Ft.) Difference in elevation = 3.500(Ft,) Slope = 0.01944 s (percent) = 1.94 TC = k(0.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.303 min. Rainfall intensity = 3.903(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.853 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 I I I I ~ I I I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff: 0.665(CFS) Total initial stream area O,200(Ac.) Pervious area fraction = 1.000 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I ++++ Process from Point/Station 101.000 to Point/Station 102.000 **** IMPROVED CHANNEL TRAVEL TIME **** I I Upstream point elevation: 1234.000(Ft.) Downstream point elevation 1224,OOO(Ft.) Channel length thru subarea 180.000(Ft,) Channel base width 5,000 (Ft.) Slope or 'Z' of left channel bank: 2.500 Slope or 'Z' of right channel bank: 2.500 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.045 Maximum depth of channel 5.000(Ft.) Flow(q) thru subarea: 1.348(CFS) Depth of flow: 0.132(Ft.), Average velocity Channel flow top width: 5.658(Ft.) Flow Velocity: 1.92(Ft/s) Travel time 1. 56 min. Time of concentration = 10.86 min. 1. 348 (CFS) I I 1. 923 (Ft/s) I Sub-Channel No. 1 Critical depth : Critical flow Critical flow Critical flow 0.129(Ft.) top width velocity: area = 5.645(Ft.) 1. 964 (Ft/s) 0.686(Sq.Ft) I I I Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient: 0.849 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C : 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 2) : 86.00 Pervious area fraction = 1.000i Impervious fraction Rainfall intensity 3.584(In/Hr) for a 100.0 Subarea runoff 1.247(CFS) for O,410(Ac.) Total runoff: 1.912(CFS) Total area: 0.000 year storm I I 0.610(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I ++++ Process from Point/Station 102.000 to point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** I I Upstream point/station elevation: 1221.190(Ft.) Downstream point/station elevation 1219.790(Ft.) Pipe length 140.00(Ft.) Manning's N : 0.013 I \A.. I I I No. of pipes = 1 Re'qliired pipe flow = 1.912(CFS) Nearest computed pipe diameter 12.00(In.) Calculated individual pipe flow = 1.912(CFS) Normal flow depth in pipe = 6.26(In.) Flow top width inside pipe = 11.99(In.) Critical Depth = 7.08(In.) Pipe flow velocity = 4.62(Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) 11.37 min. End of computations, total study area = 0.61 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I Area averaged pervious area fraction (Ap) Area averaged RI index number = 86.0 1.000 I I I I I I I I I I I I ~ I I I I I I I I I I I I I I I I I I I I ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2001 License ID 1513 Analysis prepared by: THE KEITH COMPANIES SAN DIEGO DIVISION 5650 EL CAMINO REAL, SUITE 100 CARLSBAD, CALIFORNIA 92008 ************************** DESCRIPTION OF STUDY ************************** * RED HAWK - PHASE 6 * * 100-YEAR STORM WATER EVENT * * ADDENDUM REPORT FOR PRIVATE LINE A-7 * ************************************************************************** FILE NAME: RHSDA7.DAT TIME/DATE OF STUDY: 12:00 03/21/2002 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: 11*11 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 82.00- 2.57* 462.11 1.20 356.80 } FRICTION 82.03- 2.42* 445.21 1.41 Dc 340,86 } FRICTION+BEND 82.02- 2.96* 505.53 1.41 Dc 340.86 } FRICTION 82.01- 4.21* 643.49 1.11 372.50 } FRICTION 82.01- 3.86* 604.66 1.41 Dc 340.86 } JUNCTION 103.00- 6.15* 599.50 0.42 21.56 } FRICTION 102.00- 4.63* 431. 43 0.52 Dc 20.18 } CATCH BASIN 102.10- 4.32* 393,45 0.52 Dc 7.30 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL NODE NUMBER = 82.00 PIPE FLOW = 15.44 CFS ASSUMED DOWNSTREAM CONTROL DATA: FLOWLINE ELEVATION = 1216.92 PIPE DIAMETER = 18.00 INCHES HGL = 1219.490 FEET NODE 82.00 : HGL = < 1219.490>;EGL= < 1220.675>;FLOWLINE= < 1216.920> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.03 82.00 TO NODE 82.03 IS CODE = 1 ELEVATION ~ 1217.29 (FLOW IS UNDER PRESSURE) LOSSES (LACFCD) : 15.44 CFS PIPE DIAMETER = 10.03 FEET MANNING'S N (( 15.44)/( 105.049))**2 = 0.02160 10.03) * (0.02160) = 0.217 CALCULATE FRICTION PIPE FLOW PIPE LENGTH SF=(Q/K) **2 HF=L*SF = ( 18.00 INCHES 0.01300 ~ I I I I I I I I I I I I I I I I I I I NODE 82.03 : HGL = < 1219.707>;EGL= < 1220.892>;FLOWLINE= < 1217.290> *~~~~~~~~~~~~~~~*~~,~~~~~~~~**~~*~~~***~*************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.02 82.03 TO NODE 82.02 IS CODE = 3 ELEVATION = 1217.59 (FLOW IS UNDER PRESSURE) CALCULATE PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 15.44 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE 38.500 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 30.23 FEET BEND COEFFICIENT(KB) = 0.16351 FLOW VELOCITY 8.74 FEET/SEC. VELOCITY HEAD = 1.185 FEET HB=KB*(VELOCITY HEAD) = ( 0.164)*( 1.185) = 0.194 SF=(Q/K)**2 = (( 15.44)/( 105.046))**2 = 0.02160 HF=L*SF = ( 30.23)*(0.02160) = 0.653 TOTAL HEAD LOSSES = HB + HF = ( 0.194)+( 0.653) = 0.847 NODE 82.02 : HGL = < 1220.554>;EGL= < 1221.739>;FLOWLINE= < 1217.590> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.01 82.02 TO NODE 82,01 IS CODE = 1 ELEVATION = 1218.67 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 15.44 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH 107.90 FEET MANNING'S N 0.01300 SF=(Q/K) **2 (( 15.44)/( 105.044))**2 = 0.02160 HF=L*SF = ( 107.90)*(0.02160) = 2.331 NODE 82,01 : HGL = < 1222.885>;EGL= < 1224.070>;FLOWLINE= < 1218.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82,01 82.01 TO NODE 82.01 IS CODE = 1 ELEVATION = 1219.29 (FLOW IS UNDER PRESSURE) LOSSES (LACFCD) : 15.44 CFS PIPE DIAMETER = 18.00 INCHES 12.40 FEET MANNING'S NO. 013 00 (( 15.44)/( 105.035))**2 = 0.02161 12.40)*(0.02161) = 0.268 CALCULATE FRICTION PIPE FLOW PIPE LENGTH SF=(Q/K)**2 HF=L*SF = ( NODE 82.01 : HGL = < 1223.153>;EGL= < 1224.338>;FLOWLINE= < 1219.290> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 103.00 82,01 TO NODE 103.00 IS CODE = 5 ELEVATION = 1219.62 (FLOW IS UNDER PRESSURE) CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 1.90 18.00 15.44 18.00 0.00 0.00 0.00 0.00 13.54===Q5 EQUALS ANGLE (DEGREES) 20.00 FLOWLINE ELEVATION 1219.62 1219.29 0.00 0.00 0.00 0.00 BASIN INPUT=== CRITICAL DEPTH (FT. ) 0.52 1.41 0.00 0.00 VELOCITY (FT/SEC) 1. 075 8.737 0.000 0.000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16,l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00033 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02160 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0,01097 JUNCTION LENGTH 4.00 FEET FRrCTION LOSSES 0.044 FEET ENTRANCE LOSSES 0.237 FEET JUNCTION LOSSES (DY+HV1-HV2) + (ENTRANCE LOSSES) JUNCTION LOSSES (1.213)+( 0.237) = 1.451 NODE 103.00 : HGL = < 1225.771>;EGL= < 1225.789>;FLOWLINE= < 1219.620> \~ I ****************************************************************************** I FLOW PROCESS FROM NODE UPSTREAM NODE 102.00 103.00 TO NODE ELEVATION = 102.00 IS CODE = 1 1221.19 (FLOW IS UNDER PRESSURE) I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 1.90 CFS PIPE DIAMETER = PIPE LENGTH 140.00 FEET MANNING'S N SF=(Q/K) **2 (( 1.90)/( 105.074))**2 = 0.00033 HF=L*SF = ( 140.00) * (0.00033) = 0.046 18.00 INCHES 0.01300 I NODE 102.00 : HGL = < 1225.817>;EGL= < 1225.834>;FLOWLINE= < 1221.190> I ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 102.10 102.00 TO NODE ELEVATION = 102.10 IS CODE = 8 1221,52 (FLOW IS UNDER PRESSURE) I CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW = 1.90 CFS PIPE DIAMETER = FLOW VELOCITY = 1.09 FEET/SEC. VELOCITY HEAD = CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 18.00 INCHES 0.018 FEET 0.018) = 0,004 I NODE 102.10 : HGL = < 1225.838>;EGL= < 1225.838>;FLOWLINE= < 1221,520> ****************************************************************************** I UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.10 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 1221.52 1222.04 FOR DOWNSTREAM RUN ANALYSIS I ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ END OF GRADUALLY VARIED FLOW ANALYSIS I I I I I I I I I I \~ I I I I I I I I I I I I I I I I I I I 88.00- 3.98 4155.85 2.27* 4881. 55 } FRICTION 87.00- 3.41 Dc 3987.61 2.29* 4846.35 } FRICTION+BEi'ID 63.00- 3.41 Dc 3987.61 2.44* 4605.51 } JUNCTION 82.10- 3.99 3943.26 2.23* 4579.09 } FRICTION+BEND 62.07- 3.35 Dc 3744.47 2.90* 3851. 02 } MANHOLE 62.06- 3.48 3753.10 2.85* 3880.09 } FRICTION 82.05- 3.35*Dc 3744.47 3.35*Dc 3744.47 } JUNCTION 82.00- 3.82* 3471. 93 2.80 3416.07 } FRICTION+BEND } HYDRAULIC JUMP 76.00- 3.23*Dc 3324.60 3.23*Dc 3324.60 } JUNCTION 75.00- 3.98* 3246.73 2.83 2980.85 } FRICTION+BEND 74.00- 3.87* 3178.95 3.10 Dc 2947.11 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. *********************************************************************.********* DOWNSTREAM PIPE FLOW CONTROL NODE NUMBER = 113.00 PIPE FLOW = 174.21 CFS ASSUMED DOWNSTREAM CONTROL DATA: FLOWLINE ELEVATION = 1164.96 PIPE DIAMETER = 54.00 INCHES HGL = 1172.300 ------------------------------------------------------------------------------ NODE 113.00 : HGL = < 1172.300>;EGL= < 1174.163>;FLOWLINE= < 1164.960> k***************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.00 113.00 TO NODE 112.00 IS, CODE = 1 ELEVATION = 1165.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 174.21 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH 4.00 FEET MANNING'S N = .01400 SF= (Q/K) **2 (( 174.21)/( 1626.796))**2 = .00909 HF=L*SF = ( 4.00) * ( .00909) = .036 ------------------------------------------------------------------------------ NODE 112.00 : HGL = < 1172.336>;EGL= < 1174.199>;FLOWLINE= < 1165.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.00 112.00 TO NODE 111.00 IS CODE = 5 ELEVATION = 1165.50 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 169.14 48.00 174.21 54.00 5.07 18.00 .00 .00 .00===Q5 EQUALS ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1165.50 1165.00 45.00 1166.75 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT. ) 3.72 3.83 .87 .00 VELOCITY (FT/SEC) 13.460 10.954 2.869 .000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM, MANNING'S N = .01400; FRICTION SLOPE DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01259 JUNCTION LENGTH = 4.66 FEET FRICTrON LOSSES .059 FEET ENTRANCE LOSSES = JUNCTION LOSSES (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE .01608 .00910 .000 FEET LOSSES) ,~ 1 1 I I I I I I I JUNCTION LOSSES = ( .124)+( .059)+( .000) = .183 ------------------------------------------------------------------------------ NODE 111.00 : HGL = < 1171.569>;EGL= < 1174.382>;FLOWLINE= < 1165.500> ************************************************#***************************** FLOW PROCESS FROM NODE VPSTREAM NODE 110.30 111.00 TO NODE 110.30 IS CODE = 3 ELEVATION = 1165.91 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 169.14 CFS PIPE DIAMETER = 48.00 INCHES CENTRAL ANGLE = 15.560 DEGREES MANNING'S N = .01400 PIPE LENGTH = 24.44 FEET BEND COEFFICIENT(KB) = .08316 FLOW VELOCITY = 13.46 FEET/SEC. VELOCITY HEAD = 2.813 FEET HB=KB*(VELOCITY HEAD) = ( .083)*( 2.813) = .234 SF= (Q/K) **2 = (( 169.14) / ( 1333.804)) **2 = .01608 HF=L*SF = ( 24.44)*( .01608) = .393 TOTAL HEAD LOSSES = HB + HF = ( .234)+( .393) = .627 ------------------------------------------------------------------------------ NODE 110.30 : HGL = < 1172.196>;EGL= < 117S.009>;FLOWLINE= < 1165.910> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.20 110.30 TO NODE 110.20 IS CODE = 1 ELEVATION = 1167.08 (FLOW IS UNDER,PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 169.14 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 69.13 FEET MANNING'S N = .01400 SF= (Q/K) **2 = (( 169.14) / ( 1333.862)) **2 = .01608 HF=L*SF = ( 69.13)*( .01608) = 1.112 ------------------------------------------------------------------------------ NODE 110.20 : HGL = < 1173.308>;EGL= < 1176.121>;FLOWLINE= < 1167.080> 1-- ****************************************************************************** , FLOW PROCESS FROM NODE 110.20 TO NODE 110.10 IS CODE = 3 UPSTREAM NODE 110.10 ELEVATION = 1168.49 (FLOW IS UNDER PRESSURE) I I I I 1 I I I 1 ------------------------------------------------------------------------------ CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 169.14 CFS PIPE DIAMETER = 48.00 INCHES CENTRAL ANGLE = 16.370 DEGREES MANNING'S N = .01400 PIPE LENGTH = 83.41 FEET BEND COEFFICIENT(KB) = .08530 FLOW VELOCITY = 13.46 FEET/SEC. VELOCITY HEAD = 2.813 FEET HB=KB*(VELOCITY HEAD) = ( .085)*( 2.813) = .240 SF=(Q/K)**2 = (( 169.14)/( 1333.841))**2 = .01608 HF=L*SF = ( 83.41)*( .01608) = 1.341 TOTAL HEAD LOSSES = HB + HF = ( .240)+( 1.341) = 1.581 ------------------------------------------------------------------------------ NODE 110.10 : HGL = < 1174.889>;EGL= < 1177.702>;FLOWLINE= < 1168.490> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 110.10 TO NODE 110.00 IS CODE = 2 ELEVATION = 1168.57 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 169.14 CFS FLOW VELOCITY = 13.46 FEET/SEC. HMN = .05* (VELOCITY HEAD) = .05*( PIPE DIAMETER = VELOCITY HEAD = 2.813) = .141 48.00 INCHES 2.813 FEET ------------------------------------------------------------------------------ NODE 110.00 : HGL = < 117S.030>;EGL= < 1177.843>;FLOWLINE= < 1168.570> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 109.00 110.00 TO NODE 109.00 IS CODE = 1 ELEVATION = 1171.93 (FLOW IS UNDER PRESSURE) ----------------------------------------------------------------------------- CALCULATE FRICTION LOSSES (LACFCD) : PI,PE FLOW 169.14 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 197.37 FEET MANNING'S N .01400 SF= (Q/K) **2 (( 169.14)/( 1333.839))**2 = .01608 HF=L*SF = ( 197.37)*( .01608) = 3.174 1P I 1 I 1 1 1 1 1 1 ------------------------------------------------------------------------------ NODE 109.00 : HGL = < 1178.203>;EGL= < 1181.016>;FLOWLINE~ < 1171.930> **: *:.* ** *******.*.* *.*-******** *** * * *** ******** ** ** * *** * *** ***** *'~*'*^*-** fi,***-***** it '* ** FLOW PROCESS FROM NODE UPSTREAM NODE 108.00 109.00 TO NODE ELEVATION = 108.00 IS CODE = 5 1171.96 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 163.89 48.00 169.14 48.00 5.25 18.00 .00 .00 .00===Q5 EQUALS ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1171.96 1171.93 45.00 1172.89 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT.) 3.69 3.72 .88 .00 VELOCITY (FT/SEC) 13.042 13.460 2.971 .000 UPSTREAM, DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM: MANNING'S N = .01400; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01559 JUNCTION LENGTH 2.00 FEET FRICTION LOSSES = .031 FEET ENTRANCE LOSSES = JUNCTION LOSSES (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE JUNCTION LOSSES = ( .145)+( '.031)+( .000) = .176 .01510 .01608 .000 FEET LOSSES) ------------------------------------------------~----------------------------- NODE 108.00 : HGL = < 1178.551>;EGL= < 1181.192>;FLOWLINE= < 1171.960> ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE = 1 UPSTREAM NODE 107.00 ELEVATION = 1173.02 (FLOW IS UNDER PRESSURE) 11-- --~~~~~~-;~~~;~;;:~~~~~;~~~;~~)~-----::::-~:~:::~-~--~:~::-:~~~:~-------- PIPE LENGTH = 62.26 FEET MANNING'S N .01400 SF=(Q/K)**2'= (( 163.89)/( 1333.849))**2 = .01510 HF=L*SF = ( 62.26)*( .01510) = .940 II I I I 1 II II 1 II ------------------------------------------------------------------------------ NODE 107.00 : HGL = < 1179.491>;EGL= < 1182.132>;FLOWLINE= < 1173.020> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 106.00 107.00 TO NODE 106.00 IS CODE = 3 ELEVATION = 1173.79 (FLOW IS UNDER PRESSURE) -------------------------------------.----------------------------------------- CALCULATE PIPE-BEND LOSSES (LACFCD) : prPE FLOW = 163.89 CFS PIPE DIAMETER = 48.00 INCHES CENTRAL ANGLE = 28.400 DEGREES MANNING'S N = .01400 PIPE LENGTH = ,44.61 FEET BEND COEFFICIENT(KB) = .11235 FLOW VELOCITY = 13.04 FEET/SEC. VELOCITY HEAD = 2.641 FEET HE=KB*(VELOCITY HEAD) = ( .112)*( 2.641) = .297 SF= (Q/K) **2 ,,; (( 163.89) / ( 1333.839)) **2 = .01510 HF=L*SF = ( 44.61)*( .01510) = .673 TOTAL HEAD LOSSES = HE + HF = ( .297)+( .673) .970 ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 1180.461>;EGL= < 1183.102>;FLOWLINE= < 1173.790> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 97.00 106.00 TO NODE 97.00 IS CODE = 3 ELEVATION = 1174.27 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 163.89 CFS PIPE DIAMETER = 48.00 INCHES CENTRAL ANGLE 18.000 DEGREES MANNING'S N = .01400 PIPE LENGTH = 28.26 FEET BEND COEFFICIENT(KB) = .08944 FLOW VELOCITY = 13.04 FEET/SEC. VELOCITY READ = 2.641 FEET HB=KB*(VELOCITY HEAD) = ( .089)*( 2.641) = .236 SF= (Q/K) **2 = (( 163.89) / ( 1333.720)) **2 = .01510 1). I 1 1 1 I 1 I 1 I 1- I 1 I I I I I 1 I HF=L*SF = ( 28.26)*( .Ol510) = .427 TOTAL HEAD LOSSES = HE + HF = ( .236)+( .427) = .663 ------------------------------------------------------------------------------ NODE 97.00 : HGL = < 1181: 124> iEGL=' < 1l83. 76~> i FLo.WLINE= <. 1174.270> ****************************************************************************** FLaW PROCESS FRaM NaDE UPSTREAM NaDE 96.00 97.00 TO NaDE 96.00 IS CaDE = 5 ELEVATIaN = 1174.55 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 142.74 48.00 163.89 48.00 21.15 24.00 .00 .00 .00===Q5 EQUALS ANGLE (DEGREES) .00 FLOWLINE ELEVATIaN 1174.55 1174.27 45.00 1176.55 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT.) 3.53 3.69 1.65 .00 VELaCITY (FT/SEe) 11.359 13 . 042 6.732 .000 UPSTREAM DaWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND aCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*i6.1) UPSTREAM: MANNING'S N = .01400; FRICTION SLaPE DOWNSTREAM: MANNING'S N = .01400; FRICTIaN SLaPE AVERAGED FRICTION SLaPE INJUNCTIaN ASSUMED AS .01327 JUNCTION LENGTH = 5.67 FEET FRICTION LOSSES .075 FEET ENTRANCE LaSSES = JUNCTION LaSSES (DY+HVl-HV2)+(FRICTION LOSS) + (ENTRANCE JUNCTION LOSSES = ( .389)+( .075)+( .000) = .464 .01145 . 01510 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 96.00 : HGL = < 1182.226>;EGL= < 1184.229>;FLaWLINE= < 1174.550> ****************************************************************************** FLaW PROCESS FRaM NODE UPSTREAM NaDE 95.50 96.00 TO. NaDE 95.5Q IS CODE = 1 ELEVATION = 1178.36 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LaSSES (LACFCD) : PIPE FLOW = 142.74 CFS PIPE LENGTH = 70.40 FEET PIPE DIAMETER = 48.00 INCHES MANNING'S N = .01400 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.91 CRITICAL DEPTH(FT) = 3.53 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.02 ======================~======================================================= GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 2.024 22.363 9.795 6530.28 4.202 2.020 22.430 9.837 6546.95 8.603 2.015 22.498 9.879 6563.73 13.220 2.010 22.565 9.922 6580.64 18.074 2.005 22.634 9.965 6597.67 23.187 2.001 22.703 10.009 6614.81 28.587 1. 996 22.772 10.053 6632.08 34.304 1.991 22.841 10.097 6649.47 40.375 1. 986 22.911 10.142 6666.98 46.843 1. 981 22.982 lO.188 6684.62 53.760 1.977 23.053 10.234 6702.39 61.l86 1.972 23.124 10.280 6720.28 69.199 1.967 23.196 10.327 6738.29 70.400 1.967 23.206 10.333 6740.79 .----------------------------------------------------------------------------- HXDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 7.68 1fr ============================================================================== I 1 I I 1 1 I 1 1 1- 1 I I 1 I I I I I PRESSURE FLOW PROFILE COMPUTED INFORMATION: -------------------------------------------------------------~---------------- DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) HEAD (FT) (F~/13Ec:) ];;~RG.X(FT) MOIl'l.E.NTIJM (POUNDS) .000 7.676 11.359 9.679 7592.71 70.400 4.672 11.359 6.676 5237.38 ------------------------END OF HYDRAULIC JUMP ANALYSIS--------------------____ I PRESSURE+MOMENTUM BALANCE OCCURS AT 27.46 FEET UPSTREAM OF NODE 96.00 I DOWNSTREAM DEPTH = 6.504 FEET, UPSTREAM CONJUGATE DEPTH = 1.984 FEET' ------------------------------------------------------------------------------ NODE 95.50 : HGL = < 1180.384>;EGL= < 1188.155>;FLOWLINE= < 1178.360> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 95.00 95.50 TO NODE 95.00 IS CODE = 5 ELEVATION = 1178.46 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 136.74 48.00 142.74 48.00 6.00 18.00 .00 .00 .00===Q5 EQUALS ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1178.46 1178.36 45.00 1179.66 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT.) 3.48 3.53 .95 .00 VELOCITY (FT/SEC) 23.483 22.370 5.110 .000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM: MANNING'S N = .01400; FRICTION SLOPE DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .04775 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES .096 FEET ENTRANCE LOSSES = JUNCTION LOSSES (DY+HVI-HV2) + (FRICTION LOSS) + (ENTRANCE JUNCTrON LOSSES ( .657)+( .0~6)+( .000) = .753 .05154 .04396 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 95.00 : HGL = < 1180.345>;EGL= < 1188.908>;FLOWLINE= < 1178.460> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 90.00 95.00 TO NODE 90.00 IS CODE = 1 ELEVATION = 1201.55 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 136.74 CFS PIPE LENGTH = 427.60 FEET PIPE DIAMETER = 48.00 INCHES MANNING'S N = .01400 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1. 86 CRITICAL DEPTH(FT) = 3.48 ============================================================================;= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 2.503 16.521 6.744 4940.63 2.365 2.477 16.722 6.822 4980.88 4.908 2.452 16.930 6.905 5022.80 7.647 2.426 17.143 6.992 5066.43 10.600 2.400 17.362 7.084 5111. 83 13.791 2.374 17.588 7.181 5159.06 17.245 2.349 17.820 7.283 5208.18 20.991 2.323 18.059 7.390 5259.26 25.066 2.297 18.305 7.503 5312.37 29.510 2.272 18.558 7.623 5367.57 34.375 2.246 18.819 7.748 5424.94 39.719 2.220 19.087 7.881 5484.56 157 45.618 2.194 19.364 8.020 5546.51 52.161 2.169 19.649 8.168 5610.88 I 1 1 1 1 I I I 1 1- 1 I 1 I I 1 I 1 I 59.465 2.143 19.943 8.323 5677.77 67.679 2.117 20.247 8.487 5747.27 76.998 2.091 20.560 8.659 5819.48 87.687 2",9~,~ 2,9.8,S,3 8,.842 5894.5.i.. 100.120 2.040 21. 216 9.034 5972.48 114.840 2.014 21.561 9.237 6053.51 132.694 1.988 21. 917 9.452 6137.72 155.098 1.963 22.284 9.679 6225.26 184.710 1. 937 22.664 9.918 6316.26 227.497 1.911 23.058 10.172 6410.89 302.614 1. 886 23.465 10.440 6509.29 427.600 1.885 23.476 10.448 6512.01 ------------------------------------------------------------------------------ NODE 90.00 : HGL = < 1204.053>;EGL= < 1208.294>;FLOWLINE= < 1201.550> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 89.00 90.00 TO NODE 89.00 IS CODE = 5 ELEVATION = 1201.75 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 134.22 48.00 136.74 48.00 2.52 18.00 .00 .00 .00===Q5 EQUALS ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1201. 75 1201.55 45.00 1202.93 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT.) 3.45 3.48 .60 .00 VELOCITY (FT/SEC) 16.933 16.526 1.692 .000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED, DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((Al+A2)*16.1) UPSTREAM, MANNING'S N = .01400; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02128 JUNCTION LENGTH = 4.66 'FEET FRICTION LOSSES = .099 FEET ENTRANCE LOSSES = JUNCTION LOSSES (DY+HVI-HV2)+(FRICTION LOSS) + (ENTRANCE JUNCTION LOSSES ( .223)+( .099)+( .000) = .322 .02204 .02051 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 89.00 : HGL = < 1204.164>;EGL= < 1208.616>;FLOWLINE= < 1201.750> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 88.50 89.00 TO NODE 88.50 IS CODE = 1 ELEVATION = 1202.17 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 134.22 CFS PIPE LENGTH = 16.16 FEET PIPE DIAMETER = 48.00 INCHES MANNING'S N .01400 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 2.29 CRITICAL DEPTH(FT) = 3.45 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.43 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 2.434 16.758 6.798 4886.69 4.294 2.429 16.805 6.817 4896.18 8.800 2.423 16.853 6.836 4905.76 13 .536 2.417 16.902 6.856 4915.43 16.160 2.414 16.927 6.866 4920.55 .----------------------------------------------------------------------------- NODE 88.50 : HGL = < 1204.604>;EGL= < 1208.968>;FLOWLINE= < 1202.170> **~*************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 88.00 88.50 TO NODE 88.00 IS CODE = 5 ELEVATION = 1202.22 (FLOW IS SUPERCRITICAL) 1A. I 1 1 1 I 1 I I 1 1--- 1 I I I I I I 1 1 ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER - (CFS) (INCHES) 129.89 48.00 134.22 48.00 4.33 18.00 .00 .00 .00===Q5 EQUALS ANGLE (DE:GgE:E:S) .00 FLOWLINE E,LJ;:VATION 1202.22 1202.17 45.00 1203.48 .00 .00 BASIN INPUT=== CRITICAL DEPTH(FT.) 3.41 3.45 .80 .00 VELOCITY (FT/SEC) , 17.606 16.763 3.213 .000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD' AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM: MANNING'S N = .01400; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02316 JUNCTION LENGTH 2.00 FEET FRICTION LOSSES .046 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS) + (ENTRANCE JUNCTION LOSSES = ( .294) + ( .046) + ( .000) = .340 .02484 .02148 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 88.00 : HGL = < 1204.494>;EGL= < 1209.308>;FLOWLINE= < 1202.220> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 87.00 88.00 TO NODE 87.00 IS CODE = 1 ELEVATION = 1203.62 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 129.89 CFS PIPE LENGTH = 53.92 FEET PIPE DIAMETER = 48.00 INCHES MANNING'S N .01400 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 2.24 CRITICAL DEPTH(FT) = 3.41 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.29 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 2.293 17.427 7.012 4846.35 4.661 2.291 17.446 7.020 4850.07 9.530 2.289 17.464 7.028 4853.80 14.626 2.287 17.483 7.036 4857.55 19.970 2.285 17.501 7.044 4861. 31 25.587 2.283 17.520 7.052 4865.08 31.505 2.281 17.538 7.060 4868.86 37.755 2.279 17.557 7.069 4872.65 44.376 2.277 17.576 7.077 4876.46 51.414 2.275 17.595 7.085 4880.27 53.920 2.274 17.601 7.088 4881. 55 ------------------------------------------------------------------------------ NODE 87.00 : HGL = < 1205.913>;EGL= < 1210.632>;FLOWLINE= < 1203.620> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 83.00 87.00 TO NODE 83.00 IS CODE = 3 ELEVATION = 1207.38 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 129.89 CFS CENTRAL ANGLE = 17.100 DEGREES PIPE LENGTH = 144.59 FEET PIPE DIAMETER = 48.00 INCHES MANNING'S N = .01400 BEND COEFFICIENT(KB) = ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 2.24 CRITICAL DEPTH(FT) = 3.41 :============================================================================= UpSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.44 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATrON: vS ------------------------------------------------------------------------------ I I I 1 1 I 1 DISTANCE FROM CONTROL (FT) .000 3.986 S.i78 12.597 17.262 22.199 27.434 33.002 38.938 45.290 52.110 59.463 67.429 76.105 85.617 96.124 107.836 121. 038 136.129 144.590 FLOW DEPTH (FT) 2.437 2.430 2.422 2.414 2.406 2.398 2.390 2.383 2.375 2.367 2.359 2.351 2.344 2.336 2.328 2.320 2.312 2.305 2.297 2.293' VELOCITY (FT/SEC) 16.194 ~€i,256 16.318 16.381 16.444 16.508 16.573 16.638 16.704 16.770 16.837 16.904 16.972 17.040 17.110 17.179 ,17.250 17.321 17.392 17.427 SPECIFIC ENERGY (FT) 6.512 6'535 6.559 6.583 6.608 6.633 6.658 6.684 6.710 6.737 6.764 6.791 6.819 6.848 6.876 6.906 6.936 6.966 6.997 7.012 PRESSURE+ MOMENTUM (POUNDS) 4605.51 4617.,18 4628.99 4640.95 4653.06 4665.33 4677.75 4690.32 4703.05 4715.94 4728.99 4742.20 4755.58 4769.12 4782.82 4796.70 4810.74 4824.96 4839.35 4846.35 ------------------------------------------------------------------------------ I NODE 83.00 : HGL = < 1209.817>,EGL= < 1213.892>,FLOWLINE= < 1207.380> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.10 83.00 TO NODE ELEVATION = 82.10 IS CODE = 5 1207.43 (FLOW IS SUPERCRITICAL) 1 ------------------------------------------------------------------------------ 1-, 1 1 I I JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 124.30 48.00 129.89, 48.00 ,5.59 18.00 .00 .00 .00===Q5 EQUALS CALCULATE PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1207.43 1207.38 45.00 1208.85 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT.) 3.35 3.41 .91 .00 VELOCITY (FT/SEC) 17.218 16.199 4.972 .000 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16.1) UPSTREAM: MANNING'S N = .0140,0; FRICTION SLOPE DOWNSTREAM: MANNING'S N = .01400, FRICTION SLOPE AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02206 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES .044 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE JUNCTION LOSSES = ( .332)+( .044)+( .000) = .376 .02407 .02005 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 82.10 : HGL = < 1209.665>;EGL= < 1214.268>,FLOWLINE= < 1207.430> I ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.07 82.10,TO NODE 82.07 IS CODE = 3 ELEVATION = 1213.55 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ I CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 124.30 CFS CENTRAL ANGLE = 27.200 DEGREES PIPE LENGTH = 235.30 FEET PIPE DIAMETER = 48.00 INCHES MANNING'S N = .01400 BEND COEFFICIENT(KB) = I ------------------------------------------------------------------------------ 3.35 NORMAL DEPTH(FT) = 2.18 CRITICAL DEPTH(FT) = ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.90 I ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ I DISTANCE FROM CONTROL (FT) FLOW DEPTH (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM (POUNDS) ~ I I I 1 1 1 I I .000 1. 725 3.640 5.763 8. it5 10.717 13.598 16.789 20.326 24.253 28.623 ,33.498 38.955 45.090 52.025 59.914 68.963 79.450 91.764 106.478 124.475 147.240 177.556 221.676 235.300 2.905 2.876 2:847 2.818 2.789 2.760 2.731 2.702 2.673 2.645 2.616 2.587 2.558 2.529 2.500 2.471 2.442 2.413 2.384 2.355 2.326 2.297 2.269 2.240 2.235 12 . 712 12.848 12.989 1~,1~3 13.282 13.435 13.593 13.755 13 . 923 14.095 14.273 14.456 14.645 14.840 15.041 15.248 15.461 15.682 15.910 16.145 16.387 16.638 16.897 17.165 17.213 5.416 5.441 5.468 ~,498 5.530 5.565 5.602 5.642 5.685 5.731 5.781 5.834 5.890 5.950 6.015 6.083 6.156 6.234 6.317 6.405 6.499 6:599 6.705 6.818 6.838 3851. 02 3866.28 3882.71 3900,.33 3919.19 3939.30 3960.72 3983.48 4007.61 4033.17 4060.19 4088.72 4118.82 4150.53 4183.90 4219.01 4255.89 4294.62 4335.27 4377.91 4422.61 4469.44 4518.50 4569.87 4579.09 ------------------------------------------------------------------------------ NODE 82.07 : HGL = < 1216.455>;EGL= < 1218.966>;FLOWLINE= < 1213.550> I ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.06 82.07 TO NODE 82.06 IS CODE = 2 ELEVATION = 1213.63 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ I CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 124.30 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 2.562 FEET liMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 2.562) = 48.00 INCHES 1 ------------------------------------------------------------------------------ .128 NODE 82.06 : HGL = < 1216.481>;EGL= < 1219.094>;FLOWLINE= < 1213.630> .****************************************************************************** I FLOW PROCESS FROM NODE UPSTREAM NODE 82.05 82.06 TO NODE 82.05 IS CODE = 1 ELEVATION = 1215.34 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 124.30 CFS PIPE LENGTH = 137.25 FEET PIPE DIAMETER = MANNING'S N = 48.00 INCHES .01400 ------------------------------------------------------------------------------ I NORMAL DEPTH(FT) = 2.79 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.35 CRITICAL DEPTH(FT) = 3.35 ============================================================================== ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ I I I I DISTANCE FROM CONTROL (FT) .000 .087 .355 .819 1.495 2.402 3.562 4.999 6.745 8.836 11.313 14.230 17.649 FLOW DEPTH (FT) 3.348 3.326 3.304 3.282 3.260 3.237 3.215 3.193 3.171 3.149 3.127 3.104 3.082 VELOCITY (FT/SEC) 11.061 11.127 11.194 11.262 11.333 11.405 11.478 11.554 11.631 11.711 11.792 11.875 11.959 SPECIFIC ENERGY (FT) 5.249 5.250 5.251 5.252 5.255 5.258 5.262 5.267 5.273 5.279 5.287 5.295 5.304 PRESSURE+ MOMENTUM (POUNDS) 3744.47 3744.72 3745.45 3746.68 3748.41 3750.65 3753.41 3756.69 3760.50 3764.86 3769.76 3775.21 3781. 23 ~1 I 1 1 I 1 I 1 1 I 1- 1 I I I 1 I 1 I I 21. 651 3.060 12 . 046 5.315 3787.83 26.335 3.038 12.135 5.326 3795.01 31. 830 3.016 12.226 5.338 3802.79 3~.3p7 2.994 12.319 5,.351 38.11.18 45.995 :2.971 12.414 5.366 3820.18 55.220 2.949 12.511 5.381 3829.81 66.453 2.927 12.610 5.398 3840.08 80.431 2.905 ,12.712 5.416 3851. 01 98.386 2.88.3 12.8.16 5.435 3862.60 122.627 2.861 12.922 5.455 3874.87 137.250 2.851 12.967 5.464 3880.09 ------------------------------------------------------------------------------ NODE 82.05 : HGL = < 1218.688>;EGL= < 1220.589>;FLOWLINE= < 1215.340> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 82.00 82.05 TO NODE 82.00 IS CODE = 5 ELEVATION = 1215.67 (FLOW IS AT CRITICAL DEPTH) ------------------------------------------------------------------------------ CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 114.26 48.00 124.30 48.00 10.04 18.00 .00 .00 .00===Q5 EQUALS , ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1215.67 1215.34 45.00 1217.19 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT.) 3.23 3.35 1.22 .00 VELOCITY (FT/SEC) 9.245 11.065 5.6n .000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((Al+A2)*16.1) UPSTREAM: MANNING'S N = .01400; FRICTION SLOPE DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .. 00737 JUNCTION LENGTH = 4.66 FEET FRICTION LOSSES .034 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HVI-HV2) + (FRICTION LOSS) + (ENTRANCE JUNCTION LOSSES ( .190)+( .034)+( .000) = .224 .00637 .00838 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 82.00 : HGL = < 1219.486>;EGL= < 1220.813>;FLOWLINE= < 1215.670> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 76.00 82.00 TO NODE 76.00 IS CODE = 3 ELEVATION = 1216.31 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 114.26 CFS CENTRAL ANGLE = 4.200 DEGREES PIPE LENGTH = 51.20 FEET PIPE DIAMETER = MANNING'S N = 48.00 INCHES .01400 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 2.62 CRITICAL DEPTH(FT) = 3.23 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.23 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.226 10.517 4.945 3324.60 .082 3.202 10.592 4.945 3324.87 .338 3.178 10.668 4.947 3325.69 .781 3.154 10.747 4.949 3327.06 1. 427 3.130 10.828 4.952 3328.99 2.297 3.106 10.910 4.955 3331. 50 3.412 3.082 10.995 4.960 3334.59 ~ 4.798 3.058 11. 082 4.966 3338.28 6.485 3.033 11.171 4.972 3342.57 I 1 I I I 1 I I 1 I- I I I I I I 1 I I 8.509 3.009 11.263 4.980 3347.48 10.913 2.985 11.356 4.989 3353.01 13.750 2.961 11. 452 4.999 3359.19 17,Q82 2.937 11. 5!;0 5.010 3366.02 20.990 2.913 11.651 5.022 3373.52 25.573 2.889 11. 754 5.036 3381.70 30.961 2.865 11 . 860 5.050 3390.58 37.323 2.841 11.969 5.066 3400.16 44.890 2.816 12.080 5.084 3410.48 51. 200 2.800 12.158 5.097 3418.07 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ DOWNSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 3.82 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 3.816 9.243 5.143 3471.93 2.408 3.792 9.273 5.128 3460.55 4.717 3.769 9.306 5.114 3449.64 6.932 3.745 9.340 5.100 3439.21 9.057 3.721 9.376 5.087 3429.25 11.097 3.69,8 9.414 5.075 3419.74 13.052 3.674 9.453 5.063 3410.67 14.924 3.651 9.495 5.051 3402.06 16.715 3.627 9.537 5.040 3393.89 18.424 3.604 9.582 5.030 3386.17 20.052 3.580 9.628 5.020 3378.88 21.598 3.556 9.676 5.011 3372.05 23.061 3.533 9.725 5.002 3365.65 24.439 3.509 9.776 4.994 3359.71 25.732 3.486 9.829 4.987 3354.21 26.936 3.462 9.883 4.980 3349.17 28.049 3.439 9.939 4.973 3344.58 29.067 3.415 9.996 4.968 3340.45 29.988 3.391 10.055 4.962 3336.79 30.806 3.368 10.116 4.958 3333.59 31.516 3.344 10.179 4.954 3330.87 32.114 3.321 10.243 4.951 3328.63 32.593 3.297 10.309 4.948 3326.88 32.94.5 3.273 10.376 4.946 3325.62 33.163 3.250 10.446 4.945 3324.86 33.238 3.226 10.517 4.945 3324.60 51.200 3.226 10.517 4.945 3324.60 ------------------------END OF HYDRAULIC JUMP ANALYSIS----------______________ I PRESSURE+MOMENTUM BALANCE OCCURS AT 16.06 FEET UPSTREAM OF NODE 82.00 I I DOWNSTREAM DEPTH = 3.636 FEET, UPSTREAM CONJUGATE DEPTH = 2.849 FEET ------------------------------------------------------------------------------ NODE 76.00: HGL = < 1219.536>;EGL= < 1221.255>;FLOWLINE= < 1216.310> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 75.00 76.00 TO NODE 75.00 IS CODE = 5 ELEVATION = 1216.34 (FLOW IS AT CRITICAL DEPTH) ----------------------------------------.-------------------------------------- CALCULATE PIPE JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 104.78 48.00 114.26 48.00 9.48 18.00 .00 .00 .00===Q5 EQUALS ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1216.34 1216.31 45.00 1217.58 .00 .00 BASIN INPUT=== CRITICAL DEPTH (FT. ) 3.10 3.23 1.19 .00 VELOCITY (FT/SEC) 8.343 10.520 5.365 .000 UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*16.1) 7A.- 1 I I I I 1 I I I I I 1 I I 1 I I I I UPSTREAM: MANNING'S N = .01400; FRICTION SLOPE = DOWNSTREAM: MANNING'S N = .01400; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00669 JUNCTION LENGTH = 2.00 FEET FRICTIO,N LOSSES = .Oi3 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTrON LOSS) + (ENTRANCE JUNCTION LOSSES ( .132)+( .013)+( .000) = .146 .00582 .00756 .000 FEET LOSSES) ------------------------------------------------------------------------------ NODE 75.00 : HGL = < 1220.320>;EGL= < 1221.401>;FLOWLINE= < 1216.340> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 74.00 75.00 TO NODE ELEVATION = 74.00 IS CODE = 3 1216.50 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 104.78 CFS CENTRAL ANGLE = 1.100 DEGREES PIPE LENGTH = 13.13 FEET PIPE DIAMETER MANNING'S N = 48.00 INCHES .01400 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 2.49 CRITICAL DEPTH(FT) = 3.10 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.98 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM CONTROL (FT) .000 4.720 9.047 13 .092 13.130 FLOW DEPTH (FT) 3.980 3.945 3.910 3.874 3.874 VELOCITY (FT/SEC) 8.341 8.358 8.384 8.414 8.415 SPECIFIC ENERGY (FT) 5.061 5.030 5.002 4.974 4.974 PRESSURE+ MOMENTUM (POUNDS) 3246.73 3222.77 3200.35 3179.16 3178.95 ------------------------------------------------------------------------------- NODE 74.00 : HGL = < 1220.374>;EGL= < 1221.474>;FLOWLINE= < 1216.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 74.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 1216.50 1219.60 FOR DOWNSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ END OF GRADUALLY VARIED FLOW ANALYSIS ? '}Q ..:# V' ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4.5A Release Date: 2/20/92 License ID 1225 Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 ************************** DESCRIPTION OF STUDY ************************** * REDHAWK - UNIT 5 - LINE A-4 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * * 100 YEAR STORM EVENT J, N, 160097 * ************************************************************************** FILE NAME: HWK5LA4.DAT TIME/DATE OF STUDY: 11:20 3/22/2002 ****************************************************************************** NODE NUMBER 89.00- } 89.30- } 89.20- } 89.20- } 89.10- } 89.10- MODEL PROCESS GRADUALLY VARIED FLOW NODAL POINT (Note: 11 *" indicates UPSTREAM RUN PRESSURE PRESSURE+ HEAD (FT) MOMENTUM (POUNDS) 1.23 66.50 ANALYSIS FOR PIPE SYSTEM STATUS TABLE nodal point data used.) DOWNSTREAM FLOW DEPTH (FT) .27* RUN PRESSURE+ MOMENTUM (POUNDS) 89.11 FRICTION .67 Dc 37.98 .27* 86.38 FRICTION+BEND .67 Dc 37.98 .45* 46.93 JUNCTION .68 Dc 37.98 .44* 48.08 FRICTION .67*Dc 37.98 .67*Dc 37.98 CATCH BASIN .98* 20.42 .67 Dc 13 .48 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL NODE NUMBER = 89.00 PIPE FLOW = 3.11 CFS ASSUMED DOWNSTREAM CONTROL HGL = DATA: FLOWLINE ELEVATION = 1202.93 PIPE DIAMETER = 18.00 INCHES 1204.160 NODE 89.00 : HGL = < 1203.198>;EGL= < 1206.483>;FLOWLINE= < 1202.930> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 89.30 89.00 TO NODE ELEVATION = 89.30 IS CODE = 1 1206.68 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION PIPE FLOW PIPE LENGTH = LOSSES (LACFCD) : 3.11 CFS 20.24 FEET PIPE DIAMETER = MANNING'S N = 18.00 INCHES .01300 NORMAL DEPTH(FT) = .27 CRITICAL DEPTH(FT) = .67 _/, -4 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = _ 27 'Q\ ;; ..,- ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 .483 .988 1. 516 2.070 2.651 3.264 3.910 4.595 5.323 6.098 6.929 7.823 8.790 9.843 10.998 12.277 13.709 15.336 17.216 19.445 20.240 FLOW DEPTH (FT) .274 .274 .273 .273 .273 .272 .272 .272 .272 .271 .271 ,271 .270 .270 .270 .269 .269 .269 .269 .268 .268 .268 VELOCITY (FT/SEC) 14.074 14.096 14.119 14.141 14.164 14.186 14.209 14.232 14.255 14.278 14.301 14.324 14.347 14.370 14.393 14.416 14.440 14.463 14,486 14.510 14.534 14.540 SPECIFIC ENERGY (FT) 3.352 3.361 3.371 3.380 3.390 3.400 3.409 3.419 3.429 3.439 3.448 3,458 3,468 3.478 3.488 3.499 3.509 3.519 3.529 3.539 3.550 3,553 PRESSURE+ MOMENTUM (POUNDS) 86.38 86.52 86.65 86.78 86.91 87.04 87.18 87.31 87.44 87.58 87.71 87.84 87.98 88.11 88.25 88.39 88,52 88.66 88.80 88.94 89.07 89.11 NODE 89.30 : HGL = < 1206.954>;EGL= < 1210.032>;FLOWLINE= < 1206.680> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 89.20 89.30 TO NODE 89.20 IS CODE = 3 ELEVATION = 1213.21 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 3.11 CFS CENTRAL ANGLE = 45.000 DEGREES PIPE LENGTH = 35.34 FEET NORMAL DEPTH(FT) = .27 PIPE DIAMETER 18.00 INCHES MANNING'S N = .01300 CRITICAL DEPTH(FT) = .67 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .45 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL (FT) .000 .170 .357 .562 .787 1. 034 1. 3 06 1. 607 1. 940 2.310 2.721 3,181 3.697 4.280 4.942 5.699 6.573 7.592 8.799 10.252 12.045 FLOW DEPTH (FT) .453 .445 .438 .430 .423 .415 .408 .401 .393 .386 .378 .371 .363 .356 .348 .341 .334 .326 ,319 .311 .304 VELOCITY (FT/SEC) 6,916 7.077 7.245 7.420 7.602 7.793 7.993 8.202 8.421 8.650 8.891 9.143 9.409 9.689 9.983 10.293 10.621 10.968 11. 335 11.723 12.136 SPECIFIC ENERGY (FT) 1.196 1. 223 1. 253 1.286 1.321 1.359 1.401 1. 446 1. 495 1. 548 1. 606 1. 670 1. 73 9 1. 814 1.897 1.987 2.086 2.195 2.315 2.447 2.592 PRESSURE+ MOMENTUM (POUNDS) 46.93 47.70 48.51 49,36 50.27 51.24 52.26 53.34 54.48 55.70 56.98 58.35 59.79 61. 33 62.96 64.68 66.52 68.48 70.56 72.78 75.14 ~ i,. " 14.333 .296 12.574 2.753 77.67 17.410 .289 13.041 2,931 80.37 21.934 .281 13.538 3.129 83.26 30.015 .274 14.070 3.350 86.36 35.340 ,274 14.074 3.352 86.38 NODE 89.20 : HGL = < 1213.663>;EGL= < 1214,406>;FLOWLINE= < 1213.210> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 89.20 CALCULATE PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 89.20 TO NODE 89.20 IS CODE = 5 ELEVATION = 1213.33 (FLOW IS SUPERCRITICAL) ANGLE (DEGREES) .00 FLOWLINE ELEVATION 1213.33 1213.21 .00 .00 .00 .00 BASIN INPUT=== CRITICAL DEPTH(FT.) .67 .67 .00 .00 VELOCITY (FT/SEC) 7,159 6.918 .000 .000 JUNCTION LOSSES: FLOW DIAMETER (CFS) (INCHES) 3.11 18.00 3.11 18.00 .00 .00 .00 .00 .00===Q5 EQUALS LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2) *16,1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02346 JUNCTION LENGTH 4.00 FEET FRICTION, LOSSES .094 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS)+(ENTRANCE JUNCTION LOSSES ( .068) + ( .094) + ( .000) = .162 NODE .02459 .02234 .000 FEET LOSSES) 89.20 : HGL = < 1213.772>;EGL= < 1214.568>;FLOWLINE= < 1213.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 89.10 89.20 TO NODE 89.10 IS CODE = 1 ELEVATION = 1216.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 3.11 CFS PIPE LENGTH = 100.55 FEET NORMAL DEPTH(FT) = .43 PIPE DIAMETER = 18.00 INCHES MANNING'S N .01300 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .67 CRITICAL DEPTH(FT) = ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ .67 ============================================================================== FLOW DEPTH (FT) .671 .661 .652 .642 .633 .623 .614 .604 .595 .585 .576 .566 .557 .547 .538 .528 .519 .509 VELOCITY (FT/SEC) 4.063 4.140 4.219 4.302 4.388 4.477 4.569 4.665 4.765 4.870 4.978 5.091 5.209 5.332 5.460 5.59,5 5.735 5.882 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC ENERGY (FT) .927 .928 .929 .930 .932 .935 .938 .942 .948 .954 .961 .969 .978 ,989 1.001 1. 014 1. 03 0 1.047 PRESSURE+ MOMENTUM (POUNDS) 37.98 37.99 38.03 38.09 38.18 38.30 38,45 38.63 38.84 39.09 39.37 39.68 40.03 40.43 40.86 41.33 41. 85 42.42 '?'7 DISTANCE FROM CONTROL (FT) .000 .012 .052 ,120 ,221 .358 .535 .757 1. 031 1. 362 1. 758 2.231 2.791 3.454 4.238 5.169 6.279 7.610 -------- I;' 9.225 .500 6.036 1.066 43.04 ,11.213 .490 6.198 1.087 43.71 13.714 .481 6.367 1.111 44.44 16.961 ' .471 6.546 1.137 45.23 21.392 .462 6.733 1.166 46.08 27.993 .452 6.930 1.198 47.00 39.921 .442 7.138 1. 234 47.99 100.550 .442 7.157 1. 23 8 48.08 NODE 89.10 : HGL = < 1216.671>;EGL= < 1216.927>;FLOWLINE= < 1216.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 89.10 89.10 TO NODE ELEVATION = 89.10 IS CODE = 8 1216.00 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW = 3.11 CFS PIPE DIAMETER = FLOW VELOCITY = 4.06 FEET/SEC. VELOCITY HEAD = CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 18.00 INCHES .256 FEET .256) = .051 NODE 89.10 : HGL = < 1216.979>;EGL= < 1216.979>;FLOWLINE= < 1216.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 89.10 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 1216.00 1216.67 FOR DOWNSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ END OF GRADUALLY VARIED FLOW ANALYSIS ??~