Loading...
HomeMy WebLinkAboutHyrology&Calculation(Sept.15,1999) .. . r. HYDROLOGY & HYDRAULIC CALCULATION FOR TRACT 23513 .. COUNTY OF RIVERSIDE RECF!\lFD SEP 16 1999 CITY OF Ttl\lt:~uLA ENGINEERING DEPARTMENT PREPARED UNDER THE SUPERVISION OF: ~ ~ '.tft Paul R. uddleston Jr. R.C.E. 58020 Exp. 6/30/01 Date: HUNSAKER & ASSOC~TES IRVINE, INC INLAND EMPIRE REGION 2900 ADAMS STREET, SUITE A-15 . .. RIVERSIDE CA 92504 19091352-7200 PLANNING/ENGINEERING/SURVEYING/GOVERNMENT RELATIONS. \ - INTRODUCTION . . 11 . INTRODUCTION A. PROJECT LOCATION The proposed development is Tract Map Number 29381, located in the County of Riverside (see Vicinity Map for details.) B. STUDY PURPOSE The purposed of this study is: 1. To compare the runoffs produced under the undeveloped condition and the new runoffs produced after the comp- Letion of the proposed development. . 2. To examine the Street flow capacity. C. DISCUSSION AND CONCLUSION 1. The new 100 year runoff at discharge point node 11 (see Hydrology Map) increases from 66.8 cfs to 85.4 cfs This 18.7 cfs should not make significant impact to the existing storm drain. 2. The existing culvert (2-50"x31" CMP Arch-Pipe) will have a maximum flow capacity of 60 cfs per barrel (see Hydraulics Calculation)which mean that the existing culvert is adequate to handle the new projected flow of 68.30 cfs. (see culvert Hydrology) . '? It VICINITY MAP . .. I>\. \ . RANCHO"VISTA B,Op...D p... B,Qp...D ?p...\..\'i3 DE ?ORIO\.J'. STATE HIGHWAY 79 VICINITY MAP N.T.S. " ~ . HYDROLOGY . . CQ 13'30' ~ lWRFlllOTAI C ~ :A~ ~#").tQ~ (;~ ..C ~~. :(!,.~~-J;O'''~ (\~,~~~t~~\~I\~~~~c:&' .- ~~:~Q5"citr0~ ~I,;\f(,\n~ ~ ..' ~:! ~l'~~~ ~~. ,1~f'~;)' :,~~~qJ~':;:' ~~-. U.~ c.Sj', ~f~8 '.~'S . 1-0 1'. ~~ ~ "",0 "':"l~ >.... '..' ~kN8'? (}'(~W~1"I'" ..:\~j)~~l~ (i( ,,'"?"5)~!:r:!l'!, I'i' ~ ,J>...:_"A.~- . ~ -\\Bc.~...:."..~,or:t{, ~j~8\j,~~' . ~: D~Vq~~/ j)~L~~8"" >15;(~\;~~~~~ :70"/'-1 .:..~.\!cU "'f'nl<c;,;-<;". /) . 'i')?j',?'2':~'-. 'n,..-:)\~,--"JC==_' i A.....~O ~~] ........ "l,fkJ'ff~C..C ::':~I~~J ~'..':};~~ ~~1(r~~~" ';';.A:~..A)~ ~,n~J~7~1{~~~~~. '.~"~~~~~"'~ ~',,':1?~~:6.:~:..~~]~~, ~~.f:!J~~11 ~~~\f~~~~gj~~~m,_n'&~I"~tl~ L "i22J i~6~"~~1~: ~j'j'iil1.~,...,j.' r~.t..%~.~...~~. )~., ~~. '\~~_' ;~ ... ~~. ;...~:~.~,. {~:~..~.' ..1..~\\:;.~" ~PIJ. <;. "'~"., ~J:1~i/~ 'i8rrcr-O~(rL ~\\ ~~~U, . r.4:J: i ~ (~(~Z1fr!M) ")[J; ?~~l;'~ ~~~5J;~ _"~~fJ.?--,: ffi] @~Vtr2"f, TI!Il!:>,"0_')j,":, ~ '/0,C~ ,V:v-.:ti~'i ~~~.-:.' :..-....~~':'. .'~ rZ:LI:f'" '.~.. '~..i$"'O.'2=f.. [It.i;;fl.:,.; ~ I"~ .~.I ~~~ ;~~~&t'('o~'~i :"~~~~~1f~t,: l(~ ~m~~~~fi ~"~ ,:~q(. V', 2%(( .,,"~~~~~~~~o . r~(:%~' ~~~.. ~~/ :J.9~ . . i:~';' " .D8i. ..:~ ..~. ~ if; . ...1..' i IJO -""v': ;Jh.g' r ..'l; K~i" '. 'V ~i $L4'~.~., ~>>~ r}'~~/1@'ft~~.,' Wf. ( J.X..)'~D.' .H'!rJ/.;:/(.<f:i/..f:~5J'j.....'~.'.'.' ~)(Z~~iff1:lfi/!!j;'4 :Z-1.Ph~;;//~1-''i();~'''f~;","%~;:X ~~~~:.::1,.qqjfj(/; I/l ~~~. ~:r.4ltjf h)~~ ,.if.;: \>':iJ>:""~~~?~S:i \: ;-d~~~~'UI, "'J' ~t~?~/--:: :fff#JlJ? \ '. .' ,"';':-: f..--J'IJ, r_' ',."C "C ...."'.a. - ~~~:~'-" 'lJ~^J:" .;:; l! ;.......;._.~..i~~i%~. -'! ~~: ~~~~ ~~~~.:.f.~!~~~cJ11@. ~~~~~~1. '... . ;z~~..:~.6b.:,A;~ J.!d! 2iif;ft;,.:.W&r-.,.:,:.:: l~\~~.~~S~~~~. '~.~ ~~'~~h~r~~~~~ ~i:: j\,0?~~~~(;m,,-: Lf.; .[\~~];l; ~;g ;('~~(~~'" .!~I.:".::".':~~~~\~.:; !~" ~(.;. ..~~ "ih~ J; i~ k t - ~NI,\. ~"/f!fR: :.\,~~t~((~l .:.;. /~,@ 1\":.'f,i/;UWi? }}m.~ ~"t:"fi~.';~~).~b. ';'~~i~ J$~ > J,'.. . M,,' .~.'.'^.f.')~.~.\ <,,=1 1 \ . .S~IIJ.,<'r)~( 1"-'-.",:;'1._ ,r"M~::::'\ ~l:;"~'i" , :.i!u:fd(~(:" ^~ ~\..,~ LJ.;n~ .'~.h_' '... i\ (f it. ~.I~ ;;'~~)' ~ . v. ~,~". . - l:: :.r~: ;" ,".~ 'I.~".~. ,~ 'J. r 'b.;\: !!.: . i'liT~ VI:"~. ; ~:&J$ ~~~"''i~T,~(.''( \~ q,..t, ' ~;" "",>;:;:ii" ;;, :.\.({i ~",,~~:,.;}~:..~ . . .1,( :'. . ',~ If :~L ;'.' ~ 1~~~:~.~..1"'~.~ ~;;; R" ".' .2::!.~""",_''M,l-7'{'-'''';1 #:f -{I. i',n.' .i?;J '''~~\\~''~.fe'.' 'J .~ ~)."0 , ~l ~:- :". ...::; 1 _;;;< :.:,1 "rd'-..: .'..,:" .,:. : L.';" :...:.-. .1;l.-1 ~',' . ~'-v}. .-...." tv~' j{ \~ -,' ~t~ ..fi:t-V I'.. ..' ,. .,. ,...,. ... I" l.. _....,,,,,.,..'" ^ ..0 ,,,\'-I "",,' '. VJi(~'i.;'r;'rt 'il~):'1 ' K- ,.I .. ..~iiJ~P~~']::~!I"j-)0..~t;;t~'~ '.~;:ji::'-r?yt,; 'PJ ~i\,J'\ '1":' ~.s' 'M, ~:<h'Sl~:UA... d,r,~~~jfjfliJ:Pi ~'\~;~J':~~.~~:.J,fl'J)\r.1 '7~'~'f(tG:" .- .,~~r::""1(,;.'''t~ '~.J.:\~ '.h:f.-' ~:~' /";':;'?OC'{.'{{,)lt-I}Hr. '~~:'t ....,:-!,. " . '~:- 1." ,!' ~,.'..". ~ ',~ .:. ". V .~-;.< 'j; f< ~ ':I_h....,. tfA:. 0>~rt. ".., I" -I . ..:. ..~ 'J.' "~.. " ,. ~.~...q ..' 2, , ,.' .t..\\ '- :I:$"' .I H' ~..' . < ~ ~~~ .$ r~r:?i ,':~"~ ':'~".-:'.~ t:' '. _.:1 1;..:!:. ,~~..... ~.:.....:......., <~'j;: \.'f;!'iIi:..~:)I~~.~ t...~. ~~.~ ~ '. . .rl' I.. ..' '., .' ..l ,. '", . .' t_..Ad1 ',J vJ"': ,....,. fi1,,>.,.!j";rW~L.; .\) .R ~W~.. 11"%210 ,...e LEGEND . - SOILS GROUP BOUNDARY A SOILS GROUP DESIGNATION RCFcaWCD HYDROLOGY l'lJANUAL \~ HYDROLOGIC SOILS GROUP MAP FOR TEMECULA '\ r-_-_I""""I o FEET 5000 , . . . DEVELOPED CONDITION ~ - ~..._..,."..~_.h -;.~.. - --...~=,'" . Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 09/1 0/99 TENTATIVE TRACT MAP NUMBER 23513 W,O 1635-23513 100 YEAR STORM HYDROLOGY STUDY DEVELOPED CONDITION FILENAME F:\JERR Y\PROJEC1\HYDRO\HY -DEV ********* Hydrology Study Control Information ********** Hunsaker & Associates Irvine, Inc. - SIN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 . Standard intensity-duration curves data (Plate 0-4.1) For the [ Murrieta,Tmc,Rnch CaNorco I area used. 10 year storm 10 minute intensity = 2.360 (in.lhL) 10 year storm 60 minute intensity = 0.880 (in./hL) 100 year storm 10 minute intensity = 3.480 (in./hL) 100 year storm 60 minute intensity = 1.300 (in./hL) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in./hL) Slope of intensity duration curve = 0.5500 '. a... . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** . Initial area flow distance ~ 320.000(Ft.) Top (of initial area) elevation = 1250.000(Ft.) Bottom (of initial area) elevation = 1245.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.01563 s(percent)= 1.56 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11,080 min. Rainfall intensity = 3.292(InlHr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.814 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.875(CFS) Total initial stream area = 0.700(Ac.) Pervious area fraction = 0.800 . \() . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 .... STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION .... . Top of street segment elevation = 1245.000(Ft.) End of street segment elevation = 1217.000(Ft.) Length of street segment = 270.000(Ft.) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [I] side(s) of the street Distance from curb to property line = II.OOO(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2,OOO(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.419(CFS) Depth of flow = 0.278(Ft.), Average velocity = 6.353(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.543(Ft,) Flow velocity = 6.35(Ft/s) Travel time = 0.71 min. TC = 11.79 min. Adding area flow to street SINGLE FAMll.. Y (1 Acre Lot) Runoff Coefficient = 0.811 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0,000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.181(In/Hr) for a 100.0 year storm Subarea runoff = 4.902(CFS) for 1.900(Ac.) Total runoff = 6.776(CFS) Total area = 2.600(Ac.) Street flow at end of street = 6.776(CFS) Half street flow at end of street = 6.776(CFS) Depth of flow = 0.31 I (Ft.), Average velocity = 6.972(Ft/s) Flow width (from curb towards crown)= 9. I 94(Ft.) .. \\. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** . Top of street segment elevation = 1217.000(Ft) End of street segment elevation = 1195.500(Ft) Length of street segment = 220.000(Ft) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [I] side(s) of the street Distance from curb to property line = 11.000(Ft) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.513(CFS) Depth of flow = 0.343(Ft.), Average velocity = 7.363(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1O.795(Ft) Flow velocity = 7.36(Ft/s) Travel time = 0.50 min. TC = 12.29 min, Adding area flow to street SINGLE FAMILY (I Acre Lot) Runoff Coefficient = 0.809 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0,000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0,200 Rainfall intensity = 3.11O(In/Hr) for a 100.0 year storm Subarea runoff = 5.284(CFS) for 2.100(Ac,) Total runoff = 12.061(CFS) Total area = 4.700(Ac.) Street flow at end of street = 12.061(CFS) Half street flow at end of street = 12.061(CFS) Depth of flow = 0.365(Ft.), Average velocity = 7.782(Ft/s) Flow width (from curb towards crown)= 11.930(Ft) . \~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1195.500(Ft.) End of street segment elevation = 1170.000(Ft.) Length of street segment = 265.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (vlhz) = 0.083 Slope from grade break to crown (vlhz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (vlhz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 13.985(CFS) Depth of flow = 0.316(Ft.), Average velocity = 6.82 I (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.479(Ft.) Flow velocity = 6.82(Ft/s) Travel time = 0,65 min. TC = 12.93 mm. Adding area flow to street SINGLE FAMll.. Y (I Acre Lot) Runoff Coefficient = 0.807 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.023(In/Hr) for a 100.0 year storm - Subarea runoff = 3,659(CFS) for 1.500(Ac.) Total runoff = 15.720(CFS) Total area = 6.200(Ac.) Street flow at end of street = 15,720(CFS) Half street flow at end of street = 7.860(CFS) Depth of flow = 0.326(Ft.), Average velocity = 7.004(Ft/s) Flow width (from curb towards crown)= 9.977(Ft.) . . \1.J . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 5.000 .... CONFLUENCE OF MINOR STREAMS .... Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.200(Ac.) Runoff from this stream = 15.720(CFS) Time of concentration = 12.93 min. Rainfall intensity = 3.023(In/Hr) . . \~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 2.000 **** INITIAL AREA EV ALUA TION **** Initial area flow distance'; 320.000(Ft.) Top (of initial area) elevation = 1250.000(Ft.) Bottom (of initial area) elevation = 1245.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.01563 s(percent)= 1.56 TC = k(0.480)*[(1ength^3)/(elevation change)I^0.2 Initial area time of concentration = 11.080 min. Rainfall intensity = 3.292(InlHr) for a 100.0 year storm SINGLE FAMILY (I Acre Lot) Runoff Coefficient = 0.814 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.607(CFS) Total initial stream area = 0.600(Ac.) Pervious area fraction = 0.800 . . \t . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 .... STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION .... . Top of street segment elevation = I245.000(Ft.) End of street segment elevation = I217,OOO(Ft.) Length of street segment = 270.000(Ft.) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = I4.000(Ft.) Distance from crown to crossfall grade break = I2,OOO(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [11 side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(10.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.4IO(CFS) Depth of flow = 0.236(Ft.), Average velocity = 5.652(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.475(Ft.) Flow velocity = 5.65(Ft/s) Travel time = 0.80 min, TC = 11.88 min. Adding area flow to street SINGLE FAMILY (I Acre Lot) Runoff Coefficient = 0.811 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.169(In/Hr) for a 100.0 year storm Subarea runoff = 1.541(CFS) for 0.600(Ac.) Total runoff = 3.I48(CFS) Total area = 1.200(Ac.) Street flow at end of street = 3,148(CFS) Half street flow at end of street = 3.148(CFS) Depth of flow = 0.254(Ft.), Average velocity = 5.932(Ft/s) Flow width (from curb towards crown)= 6.356(Ft.) . \<a.. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** . Top of street segment elevation = 1217.000(Ft.) End of street segment elevation = I I 95.500(Ft.) Length of street segment = 220.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0,020 Street flow is on [I] side(s) of the street Distance from curb to property line = 11.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.115(CFS) Depth of flow = 0.291(Ft.), Average velocity = 6.403(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8. I 99(Ft.) Flow velocity = 6.40(Ft/s) Travel time = 0.57 min, TC = 12.45 min, Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.809 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.087(InJHr) for a 100,0 year storm Subarea runoff = 3.745(CFS) for 1.500(Ac.) Total runoff = 6.892(CFS) Total area = 2,700(Ac.) Street flow at end of street = 6.892(CFS) Half street flow at end of street = 6.892(CFS) Depth of flow = 0.314(Ft.), Average velocity = 6.840(Ft/s) Flow width (from curb towards crown)= 9.386(Ft.) . \1.. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4,000 to Point/Station 5,000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** . Top of street segment elevation = I I 95.500(Ft.) End of street segment elevation = 1170.000(Ft.) Length of street segment = 265.000(Ft.) Height of curb above gutter flowline = 6.0(ln.) Width of half street (curb to crown) = 14.000(Ft.) Distance from crown to crossfall grade break = 12,OOO(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [I] side(s) of the street Distance from curb to property line = II.OOO(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.828(CFS) Depth of flow = 0.346(Ft.), Average velocity = 7.374(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1O.982(Ft.) Flow velocity = 7.37(Ft/s) Travel time = 0.60 min. TC = 13.05 mm. Adding area flow to street SINGLE FAMILY (I Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.009(InlHr) for a 100.0 year storm Subarea runoff = 5,581(CFS) for 2.300(Ac.) Total runoff = 12.473(CFS) Total area = 5.000(Ac.) Street flow at end of street = 12.473(CFS) Half street flow at end of street = 12.473(CFS) Depth of flow = 0.369(Ft.), Average velocity = 7.798(Ft/s) Flow width (from curb towards crown)= 12,136(Ft.) . $ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 5.000 .... CONFLUENCE OF MINOR STREAMS .... Along Main Stream number: I in normal stream number 2 Stream flow area = . 5.000(Ac.) Runoff from this stream = 12.473(CFS) Time of concentration = 13.05 min. Rainfall intensity = 3.009(InlHr) Summary of stream data: Stream Flow rate TC No. (CFS) (min) Rainfall Intensity (InJHr) I 15.720 12.93 . 3.023 2 12.473 13.05 3.009 Largest stream flow has longer or shorter time of concentration Qp = 15,720 + sum of Qa Tbrra 12.473. 0,991 = 12.364 Qp = 28.084 . Total of 2 streams to confluence: Flow rates before confluence point: 15.720 12.473 Area of streams before confluence: 6.200 5.000 Results of confluence: Total flow rate = 28,084(CFS) Time of concentration = 12.934 min. Effective stream area after confluence = 11.200(Ac.) . ~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 8.000 .... STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION .... . Top of street segment elevation = 1170.000(Ft.) End of street segment elevation = 1164.000(Ft.) Length of street segment = 295.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [I] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 28.962(CFS) Depth of flow = 0.598(Ft.), Average velocity = 4.900(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 4,88(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 23.550(Ft.) Flow velocity = 4.90(Ftfs) Travel time = 1.00 min. TC = 13.94 min. Adding area flow to street SINGLE FAMll.. Y (I Acre Lot) Runoff Coefficient = 0,803 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.902(In/Hr) for a 100.0 year storm Subarea runoff = 1.632(CFS) for 0.700(Ac.) Total runoff = 29.7l6(CFS) Total area = 11.900(Ac,) Street flow at end of street = 29.7 I 6(CFS) Half street flow at end of street = 29.7l6(CFS) Depth of flow = 0.602(Ft.), Average velocity = 4.920(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 5.1 I (Ft.) Flow width (from curb towards crown)= 23.775(Ft.) End of computations, total study area = 11.90 (Ac.) The following figures may be used for a unit hydro graph study of the same area. . R€> . Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 56.0 . . ~ . EXISTING CONDITION . . 7,-7/ . Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 07/22/99 TRACT MAP NOS. 235.13 W.O. 1635-23513 100 YEAR STORM HYDROLOGY EXISTING CONDITION FILENAME: F:\JERRY - WF\PROJEC1\23513\HYDRO\HYD-EX ********* Hydrology Study Control Information ********** Hunsaker & Associates Irvine, Inc. - SIN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 . Standard intensity-duration curves data (Plate D-4.I) For the [ Murrieta,Tmc,Rnch CaNorco I area used. 10 year storm 10 minute intensity = 2.360 (in.lhr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = 100.0 Calculated rainfall intensity data: I hour intensity = 1.300 (in./hr.) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EV ALVA nON **** . Initial area flow distance = 21O.000(Ft.) Top (of initial area) elevation = 1259.000(Ft.) Bottom (of initial area) elevation = 1248.000(Ft.) Difference in elevation = 11.000(Ft.) Slope = 0.05238 s(percent)= 5.24 TC = k(0.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.116 min. Rainfall intensity = 3.907(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.880 1J7 . Decimal fraction soil group A = 0.000 Decimal fraction soil group B = OAOO Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.600 RI index for soil(AMC '3) = 93.76 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = '. 1.375(CFS) Total initial stream area = OAOO(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = I 248.000(Ft.) End of natural channel elevation = 1214.000(Ft.) Length ofnaturaI channel = 215.000(FL) Estimated mean flow rate at midpoint of channel = 3.266(CFS) . Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 7.14(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1581 Corrected/adjusted channel slope = 0.1391 Travel time = 0.50 min. TC = 8.62 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.865 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.780(In/Hr) for a 100.0 year storm Subarea runoff = 3.598(CFS) for I.IOO(Ac.) Total runoff = 4.973(CFS) Total area = 1.500(Ac.) . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** z..A.. . Top of natural channel elevation = 1214.000(Ft.) End of natural channel elevation = 1193.000(Ft.) Length of natural channel = 220.000(Ft.) Estimated mean flow rate at midpoint of channel = 9.117(CFS) Natural valley channel type used L.A. County flood contror.district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 7.54(Ft/s) Correction to map slope used on extremely rugged chann~ls with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0955 Corrected/adjusted channel slope = 0.0955 Travel time = 0.49 min. TC = 9.10 min. . Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.864 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89,80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.667(InlHr) for a 100.0 year storm Subarea runoff = 7.924(CFS) for 2.500(Ac.) Total runoff = 12.897(CFS) Total area = 4.000(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1193.000(Ft.) End of natural channel elevation = 1174.000(Ft.) Length of natural channel = 290.000(Ft.) Estimated mean flow rate at midpoint of channel = 15.960(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 7.22(Ft/s) . Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0655 Corrected/adjusted channel slope = 0.0655 Travel time = 0.67 min. TC = 9.77 min. 1...{y . Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.863 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.527(In/Hr) for a 100.0 year storm Subarea runoff = 5.783(CFS) for 1.900(Ac.) Total runoff = 18.680(CFS) Total area = 5.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 5.000 **** SUBAREA FLOW ADDITION **** . UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.863 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Time of concentration = 9.77 min. Rainfall intensity = 3.527(InlHr) for a 100.0 year storm Subarea runoff = 5.174(CFS) for 1.700(Ac.) Total runoff = 23.854(CFS) Total area = 7.600(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 8.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = lI74,Ooo(Ft.) End of natural channel elevation = 1155.000(Ft.) Length of natural channel = 290.000(Ft.) Estimated mean flow rate at midpoint of channel = 25.580(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 8.20(Ft/s) . Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0655 Corrected/adjusted channel slope = 0.0655 7Y . . . Travel time = 0.59 min. TC = 10.36 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.862 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.415(InIHr) for a 100.0 year stonn Subarea runoff = 3.237(CFS) for 1.l00(Ac.) Total runoff = 27.092(CFS) Total area = 8.700(Ac.) End of computations, total study area = 8.70 (Ac.) The following figures may be used for a unit hydrograph study of the same area, Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.3 I I ~"\ . EXISTING CULVERT . . 156 . Riverside County Rational Hydrology Program CIVILCADDICIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydro1ogy Study Date: 07/23/99 TRACT MAP NOS. 23513 W.O. 1635-23513 100 YEAR STORM HYDROLOGY RUNOFF FLOW AT EXIST. 2-50"x31" CMP ARCH PIPE FILENAME:F:\JERRY - WF\PROJEC1\235l3IHYDRo\CUL VERT ......... Hydrology Study Control Information .......... Hunsaker & Associates Irvine, Inc. - SIN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 . Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco I area used. 10 year storm 10 minute intensity = 2.360 (in.lhr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = 100.0 Calculated rainfall intensity data: I hour intensity = 1.300 (in./hr.) Slope of intensity duration curve = 0.5500 . 7A . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EV ALUA nON **** . Initial area flow distance = 400.000(Ft.) Top (of initial area) elevation = 1284.000(Ft.) Bottom (of initial area) elevation = l280.000(Ft.) Difference in elevation = 4.000(Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.480)*[(1ength^3)/(elevation change)I^O.2 Initial area time of concentration = 13.245 min. Rainfall intensity = 2.984(In/Hr) for a 100,0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1O.339(CFS) Total initial stream area = 4.300(Ac.) Pervious area fraction = 0.800 . '?ti . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = I280.000(Ft.) End of natural channel elevation = I270.000(Ft.) Length of natural channel = 380.000(Ft) Estimated mean flow rate at midpoint of channel = 17.Q72(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 4.66(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate 0-6.2) Normal channel slope = 0.0263 Corrected/adjusted channel slope = 0.0263 Travel time = 1.36 min. TC = 14.60 min. . Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.854 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group 0 = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.828(In/Hr) for a 100.0 year storm Subarea runoff = 13.528(CFS) for 5.600(Ac.) Total runoff = 23.867(CFS) Total area = 9.900(Ac.) . '7~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 5.000 .... NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION .... Top of natural channel elevation = 1270.000(Ft.) End of natural channel elevation = 1216.000(FL) Length of natural channel = 400.000(Ft.) Estimated mean flow rate at midpoint of channel = 28.206(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 11.62(Ftls) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate 0-6.2) Normal channel slope = 0.1350 Corrected/adjusted channel slope = 0.1245 Travel time = 0.57 min. TC = 15.18 min. . Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.853 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group 0 = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.769(In/Hr) for a 100.0 year storm Subarea runoff = 8.505(CFS) for 3.600(Ac.) Total runoff = 32.372(CFS) Total area = 13.500(Ac,) . }~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1216.00(Ft.) Downstream point/station elevation = 1215.50(Ft.) Pipe length = 1140.00(Ft.) Manning's N = 0.013 No. of pipes = I Required pipe flow = 32.372(CFS) Nearest computed pipe diameter = 48.00(In.) Calculated individual pipe flow = 32.372(CFS) Normal flow depth in pipe = 45.02(In,) Flow top width inside pipe = 23.15(In.) Critical Depth = 20.29(In.) Pipe flow velocity = 2.64(Ft/s) Travel time through pipe = 7.19 min. Time of concentration (TC) = 22.37 min. . . ?;"r1 . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Starion 6.000 to Point/Station 6.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 13.500(Ac.) Runoff from this stream = 32.372(CFS) Time of concentration = 22.37 min. Rainfall intensity = 2.237(InIHr) Program is now starting with Main Stream No.2 . . :A . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 .... INITIAL AREA EV ALVA TION .... . Initial area flow distance = 500.000(R) Top (of initial area) elevation = I250.000(R) Bottom (of initial area) elevation = 1245.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.480)'Wength^3)/(elevation change)I^0.2 Initial area time of concentration = 14.482 min. Rainfall intensity = 2.841(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.802 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 5.694(CFS) Total initial stream area = 2.500(Ac.) Pervious area fraction = 0.800 . '?~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** IMPROVED CHANNEL TRAVEL TIME **** . Upstream point elevation = I 250.00(Ft.) Downstream point elevation = 1245.00(Ft.) Channel length thru subarea = 370.00(Ft.) Channel base width = O.OOO(Ft.) Slope or Z' of left channel bank = 2.000 Slope or Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 8. I 99(CFS) Manning's N' = 0.030 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 8.199(CFS) Depth of flow = 1.063(Ft.), Average velocity = 3.643(Ft/s) !!W aming: Water is above left or right bank elevations Channel flow top width = 4.000(Ft.) Flow Velocity = 3.64(Ft/s) Travel time = 1.69 min. Time of concentration = 16.17 min. Critical depth = 1.008(Ft.) ERROR - Channel depth exceeds maximum allowable depth Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0,800; Impervious fraction = 0.200 Rainfall intensity = 2.673(In/Hr) for a 100.0 year stonn Subarea runoff = 4.684(CFS) for 2.200(Ac,) Total runoff = 1O.378(CFS) Total area = 4.700(Ac.) . '?~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 13.000 .... IMPROVED CHANNEL TRAVEL TIME .... . Upstream point elevation = 1245.00(Ft.) Downstream point elevation = 1231.00(Ft.) Channel length thru subarea = 220.00(Ft.) Channel base width = O.OOO(Ft.) Slope or Z' of left channel bank = 2,000 Slope or Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 10.709(CFS) Manning's 'N' = 0.030 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 10.709(CFS) Depth of flow = 0.890(Ft.), Average velocity = 6.761(Ft/s) Channel flow top width = 3.560(Ft.) Flow Velocity = 6.76(Ft/s) Travel time = 0.54 min. Time of concentration = 16.72 min. Critical depth = 1.109(Ft.) Adding area flow to channel COMMERCIAL subarea type Runoff Coefficient = 0.887 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.625(In/Hr) for a 100.0 year storm Subarea runoff = 0.698(CFS) for 0.300(Ac.) Total runoff = 11.077(CFS) Total area = 5.000(Ac.) . ,?1 . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 13.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 5.000(Ac.) Runoff from this stream = 11.077(CFS) Time of concentration = 16.72 min. Rainfall intensity = 2.625(In/Hr) . . "fb . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 13.000 **** INITIAL AREA EV ALUA TION **** . Initial area flow distance = 530.000(Ft.) Top (of initial area) elevation = 1241.000(Ft.) Bottom (of initial area) elevation = 1231.000(Ft) Difference in elevation = 1O.000(Ft) Slope = 0.01887 s(percent)= 1.89 TC = k(0.480)*[(1ength^3)/(elevation change)]^0.2 Initial area time of concentration = 13.056 min. Rainfall intensity = 3.008(InlHr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil gfOUP C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 7.762(CFS) Total initial stream area = 3.200(Ac.) Pervious area fraction = 0.800 . .".. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 13.000 .... CONFLUENCE OF MINOR STREAMS .... Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.200(Ac.) Runoff from this stream = 7.762(CFS) Time of concentration = 13.06 min. Rainfall intensity = 3.008(InlHr) Summary of stream data: Stream Flow rate TC No. (CFS) (nun) Rainfall Intensity (In/Hr) . 11.077 16.72 2.625 2 7.762 13.06 3.008 Largest stream flow has longer time of concentration Qp = 11.077 + sum of Qb Ia/Ib 7.762' 0.873 = 6.775 Qp = 17 .852 Total of 2 streams to confluence: Flow rates before confluence point: 11.077 7.762 Area of streams before confluence: 5.000 3.200 Results of confluence: Total flow rate = 17.852(CFS) Time of concentration = 16.717 min. Effective stream area after confluence = 8.200(Ac.) . ~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Starion 13.000 to Point/Station 6.000 **** IMPROVED CHANNEL TRAVEL TIME **** . Upstream point elevation = 1231.00(Ft.) Downstream point elevation = 1215.50(Ft.) Channel length thru subarea = 200.00(Ft.) Channel base width = 0.000(Ft.) Slope or Z' of left channel bank = 2.000 Slope or Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 18,178(CFS) Manning's N' = 0.030 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 18.178(CFS) Depth of flow = 1.037(Ft,), Average velocity = 8.459(Ft/s) !!Warning: Water is above left or right bank elevations Channel flow top width = 4.000(Ft.) Flow Velocity = 8.46(Ft/s) Travel time = 0.39 min. Time of concentration = 17.11 min. Critical depth = 1.359(Ft.) ERROR - Channel depth exceeds maximum allowable depth Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.794 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 74.80 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.592(In/Hr) for a 100.0 year storm Subarea runoff = 0.617(CFS) for O.3oo(Ac.) Total runoff = 18.469(CFS) Total area = 8.500(Ac.) . IX:J. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 6.000 **** SUBAREA FLOW ADDITION **** UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.850 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Time of concentration = 17 .11 min. Rainfall intensity = 2.592(In/Hr) for a 100.0 year storm Subarea runoff = 1.l02(CFS) for 0.500(Ac.) Total runoff = 19.571(CFS) Total area = 9.000(Ac.) . . ~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 6.000 .... CONFLUENCE OF MAIN STREAMS .... The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 9.000(Ac.) Runoff from this stream = 19.571(CFS) Time of concentration = 17.11 min. Rainfall intensity = 2.592(InlHr) Summary of stream data: Stream . Flow rate . TC No. (CFS) (min) Rainfall Intensity (In/Hr) . 1 32.372 22.37 2.237 2 19.571 17.11 2.592 Largest stream flow has longer time of concentration Qp = 32.372 + sum of Qb Ia/Ib 19.571' 0.863 = 16.890 Qp = 49.262 Total of 2 main streams to confluence: Flow rates before confluence point: 32.372 19.571 Area of streams before confluence: 13.500 9.000 Results of confluence: Total flow rate = 49.262(CFS) Time of concentration = 22.367 min. Effective stream area after confluence = 22.500(Ac.) . ~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 12l5.500(FL) End of natural channel elevation = 1202.000(Ft.) Length of natural channel = 300.000(FL) Estimated mean flow rate at midpoint of channel = 53.093(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean"channel flow = 8.35(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0450 Corrected/adjusted channel slope = 0.0450 Travel time = 0.60 min. TC = 22.97 min. . Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.842 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.205(In/Hr) for a 100,0 year storm Subarea runoff = 6.498(CFS) for 3.500(Ac.) Total runoff = 55,760(CFS) Total area = 26.000(Ac.) . M.. . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1202.000(Ft.) End of natural channel elevation = 1165,OOO(Ft.) Length of natural channel = 750.000(Ft.) Estimated mean flow rate at midpoint of channel = 60.049(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8(q^.352)(slope^0.5) Velocity using mean channel flow = 9.07(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0493 Corrected/adjusted channel slope = 0.0493 Travel time = 1.38 min. TC = 24.34 min. . Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2. 135(ln/Hr) for a 100.0 year storm Subarea runoff = 7,1 77(CFS) for 4.000(Ac.) Total runoff = 62.937(CFS) Total area = 30.000(Ac.) . ~ . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 8.000 **** SUBAREA FLOW ADDITION **** UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Time of concentration = 24.34 min. Rainfall intensity = 2. I 35(InIHr) for a 100.0 year storm Subarea runoff = 5.383(CFS) for 3.000(Ac.) Total runoff = 68.319(CFS) Total area = 33.000(Ac.) End of computations, total study area = 33.00 (Ac.) The following figures may be used for a unit hydrograph study of the same area. . Area averaged pervious area fraction(Ap) = 0.916 Area averaged RI index number = 69.5 . '-*' . HYDRAULIC CALCULATIONS . . A,"\ ._" --.--. x_..___..__ ",'""_~~._~ . . i. ',:;. ~t -,: :.-.: . ~ .. ; ~'.. :.-':...~ ':...; ;/&.1, .::-. ~<;~ ....:. , ' ~ 1 MAX, 'rN, 9, ~ In d) t- III (1) C:J II n I - FLow --~- :E'X 1ST -Z,;;-SO"X -o{~C.MF-ARCHCU\..YE RTS E'er. NoT.S. 'O\::: I t:..RM\t4E.: MAx\MuM FlaW ~t='A-c \TY C. M.&'x w. s E\..EV. <3..,-of' OF W.bLL..) H~b - a.15 /'2.56 - 1.45 Q = GO.a C-Pa / eAv:z.~L (~ Aa::>M "T\otE C\;~e\ ) . Q GOX'Z - I~O c:3fe Mb.X. CUl..Vld>G\ ~~C\\'1 -. - " ~. . . '. EXI5l': CULVe.l2'T \-\YD2AULlC ,6..~L~\5 GIVEN: Q = Ge,30 cfs ,(E'X\5T. Cl1LYEeT NEW P\a:1-.lEc I t=\-> Ft.OW) ., 34-. \~ cfs ~'2.. 15"-I2.l2EL n -= 0.024 (eMF.) L" 70,0 ft, bET~MIJ-tE: E\--t'\2ANCE CO~L \-\E.6-.'OWA~~ C\-'..w) . \4~o =- 0,88' (SEE"ATTAc.I-\1:=:'D C~~_'34) HW = o,88X 2.58 ., Z.21 FT . O\<" < 3,7S \~l.E"T Co~t<O bET\::~M\\-.lt::.: OUT11='T CO\-.lTQOL t-\EA.OW,6,.,lE,>? C HW) He. -= 0,.50 l-\ = 0_ ~o FT: C.6ee .6.\Tt.>.CHct;J c\-\~ a<:::>) de = I.se LeE'1Z A.\TACI-\I::.P C~'e\31) c\d P \,58+ 2,58 :: '2 2 L<ib ., LOo- n: \-Iv-! .". \-I ;- no - (Le.:o) = 1.~8 FT: '= 'no '" O~;- \.'~8- \,0 = 1.Be:> PI OL\-rU::'=T '. "'=I-4T'd::l L .~ EXI'3T Q..!LVE.'2T WILL6E.~PEl2A\\I4~.~T II-I.LET a:?l....tt12OL Wrn-J c~:)l..rr~l\N.G \-\.W, c:>\"" e. '2, F\. y = <S>"; /p... = 34,JE> 8.\ " _ ,3,0:>0 r=f"S / \3.6.'i2-t2SL ~ 1-8-1 m HEADWATER DEPTH FOR C.M. PIPE-ARCH CULVERTS WITH INLET CONTROL · 0 CHART 34 ,5,000 J 16'-7- I: 10'-1- 4,000 15'-4-x 9'-3- 3,QOO EXAMPLE Sill: 36- I 22- 2,000 g.20ch '" 12'-10..8'-4- ",d HW .. HW " 0 (tll'l coo ...... II'-S-x 7'-3- I" 1.10 2.0 "'.. ffi~ 1,000 12) I.IS 2.1 z-' 800 131 1.22 2.2 ~~ "" 9'- 6- Jl. 6'-5- 600 -0 in hd ..... ;:;" 500 '" !!!'" .... 8'-2-:11 S'-g- 400 U> 1 300 7'-0. a S'-I- 200 :J: 6'-1- x 4'-7- 0 a: .- <l ./ , ./ w '" 100 ./ n. 72- x 44- u. n. 0 80 ./ u. ~ .'-./ 65- x 40. ",';/ . 0 2 60 ...~ > w w 50 ./ '" SeeK 36- '" 40 ./ a: a: ./ ~ <l ./ :J: 30 ./ z 0 <l 50. x 31- '" ./ n. o ./ '" ./ 20 HW SCALE ENTRANCE w /' 0' TYPE t:! 43-.27- '" ./ ./ /I) Headwoll ./ 10 :i ./ 12, Mitered 10 conform U ./ 8 tOlloPI 0 /36.x 22- (3, ~'oj'cfing ll: 6 .. 0 5 z ;! 4 " To IoIst .col. (2) or (31 proJ.ct 29- Jt IS- 3 llorizontoll,'olcolllll,thtn use .troi;htlnclintdllntthrouljIh D and Q Icol.., or ~'''r'' as 25- J. 16- 2 .. IlIut'ralld. 22- .13- 1,0 .8 . ,6 ,5 'li' ADDITIONAL SIZES NOT DIMENSIONED ARE LISTED IN FABRICATOR'S CATALOG IS- xII- BUREAU OF PUBLIC ftOAOS JAN. 1963 '. 214 (I) 4 .- (2) .-4 (3)- 3 r4 3 f-3 2 2 2 r 1.5 1.5 1.5 .L --- ---- ~ 1.0 1.0 ;0 1.0 :J: ,9 f- .9 w '" .9_ a: f- .6 t- .8 u. 0 '" ,8 ::; a: ,7 w ,7 .... z .7- - :J: .... n. .6 w ,6 Cl ,6 a: w .... <l ;0 0 <l ,5 w ,5 ,5 :J: ,4 ,4 ,4 1 L ,35 .35 l .35 L-o ~'J I { ~ '. o CHART 37 2.0 I.B '. ....., !:::=' r- ..... '. i.--' -' V ". .....- ./ , k::: ::::::' V ...-: ,.. V ". / ,.. V # , /' ,/ ~ , 1/ / / 'l V V de CANNOT EXCEED TOP OF PIPE /, V /' II- / V / / J. / ./ .. . Ij 'I' 31"2f IJ 29-.JS- 25', 16'-' 10 20 30 40 DISCHARGE- Q - CFS 50 60 I- 1.6 '" '" ... . 'au 1.4 . :z: I- 11. 1.2 '" Q ...J c( 1.0 .., l- ll:: .., O.B 0.6 0.4 o . 3.4 3.2 3.0 I- 2.B '" ~ 2.6 . -oU 2.4 , :z: 2.2 l- ll. 2.0 '" o 1.8 -- -!-- ". V I ..... i::::==' ...-: i/ ~ ~ V .A ,.. ~ % ;/' ...-: V/ / I.v:: 7/ % '" ~ V/ ij de CANNOT EXCEED TOP OF PIPE /, ~ ~ I ~ {/ ~72" 44' 6S.x40. ~.B" 36" O.Jl'31~-' l:4~3"*7t 20 140 60 BO 100 120 140 160 IBO 200 220 24C DISCHARGE-Q -CFS ...J ct 1,6 .., j: 1.4 ir .., 1.2 1.0 O,B 0.6 o \. BUREAU OF PU8L1C ROADS JAN. 1964 \ CRITICAL DE PTH STANDARD C.M, PIPE-ARCP 217 ~'- . 300 200 100 90 SO 70 80 50 :l: <.:> 0: "" Ul 40__ I ... O..~O~ <.:> :;; a. 30 ... '0 0 '" UJ '" Ul 0: a: "" 20 :l: )( . <.:> ::z Ul C "" a. Ul UJ N Ul 10 9 S 7 6 5 4 3 2 ~I 72"X44' 65'X40" 5S"X36' ~ .'~~'-........_/ --..:..:: "SO.X31- 43'X27' 36"X22' 29"XI8" 25'XI6" BUREAU OF PUBL Ie ROADS JAN. 1963 '. . ..,.... .-. c CHART 39 ~"I 7 .::"_l.~,"" SUBMERGED OUTLET CULVERT FLOWING FULL .. !!! ~ '" '" '" ~ ~ >- For OIltl,t Crown nol IUbm,rllld. comput, HW by ",.'l'lodl d"Crib'd if! th, delill" procedure o '''',j' 0 o ~ ',j' o + 'oS> . ~.--' <", ~G' ,;0. ,00 oS- -;: '" --~.- .,0 --- / _/ ....-.-- --- ~"'PLE Sl;:~ ----..0........ ., s~~ Se '-........ "" {.~ ~OO '..~ ..~ 500 HEAD FOR STANDARD C. M, PIPE-ARCH CULVERTS FLOWING FULL n =0,024 ( 219 ."- . - .__.._------~-~ " .4 .5 .6 .... '" .7 '" ... .S :;; .9 :l: 1.0 0 "" '" :l: H./.7 - 2 300 3 400 4 500 5 6 7 8 9 10 ~1J . . '. " NORTHERLY fl. SOUTHERLY Rbi! 2., h-l T ~ I.~' ~ ~.n '.-2X. 1, ...' ~. .-1J( ....,~' '-"ffi-;::j <~~~ L "'t S\' onos) . Proposed 0.30' A.c. PCMlmftlt a: ROUGH CRADING UNE . 0.157' A.a. CI. 0 _/primecoat TYPICAL SECTION N.". SANTIAGO ROAD T.L - I1D{1f - VALlE 40) A.a CLASS D BASE-O.6,]", ~ PAVINC_O.JQ' PER CITY OF TEIIECULA STD, NO, 102 I, 9 . . . **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-96 Advanced Engineering Software (aes) Ver, 6,1 Release Date: 01/01/96 License ID 1239 Analysis prepared by: Hunsaker & Associates Irvine, Inc. Inland Empire Region 2900 Adams Street, Suite A-IS Riverside CA 92504 (909) 352-7200 ---------------------------------------------------T,------------------------ TIME/DATE OF STUDY: 16:20 7/26/1999 ============================================================================ ************************** DESCRIPTION OF STUDY ************************** * TRACT MAP NUMBER 23513 , W,O,1635-23513 * * SANTIAGO ROAD STREET CAPACITY * * ************************************************************************** **************************************************************************** >>>>STREETFLOW MODEL INPUT INFORMATION<<<< ---------------------------------------------------------------------------- CONSTANT STREET GRADE (FEET/FEET) = ,040000 CONSTANT STREET FLOW(CFS) = 29,10 AVERAGE STREETFLOW FRICTION FACTOR(MANNING) = ,015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 32.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = ,020000 OUTSIDE STREET CROSSFALL(DECIMAL) = ,083300 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = ,50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 2,00 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = ,03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = ,16600 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ============================================================================ STREET FLOW MODEL RESULTS: ------------------------------------------ NOTE: STREET FLOW EXCEEDS TOP OF CURB, THE FOLLOWING STREET FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL, THAT IS. ALL FLOW ALONG THE PARKWAY, ETC, , IS NEGLECTED, STREET FLOW DEPTH(FEET) = .56 O.K WATER SURFACE WILL NOT EXCEED R/W ELEVATION HALF STREET FLOOD WIDTH(FEET) = 20,28 AVERAGE FLOW VELOCITY(FEET/SEC.) = 6.76 PRODUCT OF DEPTH&VELOCITY = 3.81 ============================================================================ '. * /~ YJ . HYDROLOGY MAPS .. . ~~ .' ....: I'" '~~~~."'.'...~;I':. Cl~"{' ~1I0r; ,\t~ . :}~ .'. i; m ~ 1!, ';' 7.}(( (I" . . 'l\,. ,t \! ,:~ ~ . ~, . '1 ' '. ,'(:t~' '. . ~ l,-.;' . ", ~ '- . ~',';,' ~:'j . ~ {, ,'" i(' '.~".. <.' ',\.t.," i~~i;':;;k,~'a'~". ~ d , I ,\11, " ""rh,' ~'~i-<!~ < ':' f , Ii' r~;; ,,' _J",~~ t, . ,~.. ~.\. . . ~.. '. ;,':" ''!,'Il 'J', .\, .', '. .__ , ' 1;:\' \1 ~';: <':.1'''- :r *(,~' t, leu! <'.j., '. , \ 1?~ ~ <' ~f\ If$f) ~ ,'l'" ~ ,',\I,.~l, , " J ~1";~ Sf,.J;"/ ~ . . t'f,. l), r, ~ t~'. ~ 'f~l ,\1!'''~)/.;;'Y."'';' ',' " "~~'~~~'l\ ' .:/t (;/ YIJ \C ;, \' .,/h,n ' ~ ~', t.:~1l::,;! :1;~,:-x ~ :J'{' ~'- h ~ ~ : ~ ~ , "fl. 1\:;:.J:~.~.i0 ~""'\.i.- ~'';1~' :r' , ~;: i,J:~..~\),~ ~"\.":' ~. '. "., . \~ ,'< ,. ..",-" .... . ~ t, ~ I. '. ;: .\l"-;~ ~ ? Ii'i ',''''' i Sl it~' ;l ":t:,,~~ :" 1 ,~.I\\\\ -\ \' ~! ~ 1~5~ . ~ .' '. '.' ,\.\'X" 3}...VI{;'.........".~ '; \ l' \.\ I"\,~) 'V' 'lf~.;0.' ~. -f.,.,., :_'.' ,\' ~" ' ~"iV~~~~?~);r,l,.::'\;. it "':\" \" . l\\ ) $'" 'o':!:.~~ ~~';., .\.'.l,."......,~."-., '. "'I'.' '. - :;,\ ;', r. \.. ~ :;::-... '::., . ~ 1'1!i ,,\,' 't.,-'....... ",:'>,. i\.' V "i'~' . '. ......., ; ""1 ' .\.: ~" , ' ,~;.\ . ~,' ",. ", . ~ ,t;; '~.~~ ~(;' ''''''r, ..... " . . "lr I' ~'-~ ~w~ .~)~" \1,. \ --.. . 'p,;' " ~'l"'" "', 'I)'i)\"'%" ~,(. ('~b~ ,." " ~",. ~:':. ''['bcd'tl.o''ff/( .:Ofi/ . 'l'rM1I)X:/lln~~'~f;~; t:." ddl(z ~ J' ~. , (' ~ L~:]/ ;'--:l~~; ~ .. -,\. 'to f1 'I\: IE ~"", .,' ,~\ 0~ \ .'. ~ \ C ' ',i<, t, t" ,~ "~I . ",; ,..v '.1, . l'~ t~ i. ~ IJ : '\:' 1\\\1 ,~ 'l-~d' '~u~ :;'1 ~ h. ,~.j ~ 1 f 'Jill . , j~~~\\\\~,\"":;' ',;'. ftr :~ I[Yi IM,"';'..?$ . , , \\\'1M~' \~,\.:;: . .,'-.:..Y / lilt.):': i'~J' '.' '. \, ....'. ).'.1~'" ". '. '..1..' \::..~o"., K.' ~. :,. ;'-'it, ~ ~ ". -. . l~ ,'~,. '"/:o/ ,""',," ;,'\\ '....'..:: \\~'-.....~'? '"u',' ~ '~'\.;'\"r"'~1'.'..~;;~~:'~ '~)f),\A\1! :;,;.,,( j'11ft !~. ~~~' "~\'~'.\' li'."". . ' ", ,; (i~,~,~, ~':':'~;~:~M~\ '! : ~ k~ '. . ~ ~ . i.'j~' Jr"'~ .. rJV' tlI.. . ~ [,x.. ''I' \'If" . /~ '" .-.;..........." Co 'tt\~\\\\' " 'f'- i ~. \ :'. < ,,' .-' ,"' ~ \ \t \ ~ ". d. \ I ,:,,' ,,'''0/m'l' ";JIIL>l '\ ;" · ;, \' \" ",,"\;; ~i \; ''''~'' _,;.i.;!:,,'\:mll';'\I;,:~, "~"" "if,&,m\,;; '-" i 5f"" .:~ ~ ":{'Idilt'. J It, '_ :\\ ,_ ".\1_ _ d ~ ; \'\' ',' " j' '.;' '. f' ";~)~~)" ,'~)y"'~ 1:,f'I' ~~ } '~v} ~~ ' " <': If.{l J" \. ~ '~ . ~,. ,~ { il""\ .'~ ,'I\, "'~ '\, l ,'? '.1: .~ ~ j ~t" r !, rv. t~: . I. 'l 1.. 'J. ".' f., ~ ..It "4 r~~t{ ~\~'i>\. f;, '~l/o1}~:~ r ;tV : 'W' It: .~. ',~. \ , Y'/~,f 1,,\ t\l,;'~ 'f.; ,TI r-. , ,;\ '_ . " 'f{(,t';A" '<{' ~" ,.' ':I{' ~,..dl,rr\'\,\ ,.r,> , ' ",," ""} ,. "-i'.,~' 'J..'.'fl!" t'~"........~ ~ ,r....t,.,-t, ~ '. ~t ,.t,\.\ ~ '1 I ( ,jitl/tr :~:'~,v> VIA ,>/-' _........' ~ E''i:~:Fii~,~ti" D ~n. 1,1;' ,f, '.,~ .)(1). './ . '.' .:' .:,:' ~,:t , " , . I.," "'....0' .." ", ". . . ~ . , , , i . ,"'" '\ "'i'liJj(~ fl" xl iIl-' '/ '\.'\\ :\ltf ">1j4.!t" +, S II i \.\.,' ~!:'.,.~ j .' 'Il~l ., It) \ mi' 1 if>> \ ~)t ' ......, ,~,"".,)" 1/; .p' . t~ ;:. ~l/'.\ "tl~' ~~. :tl ~:";"~' :"I/{,'.' j;-"-;,~~~ ..l:' ".. / . Lt'. T' ,_. <, _. lid; 'j\Uj-t~.0~'. j '~i~ '.~ ~, ',~ j I! "~:~ ,'JIIfI1((.1~~> .b ~ if, ~:l \ '~~~ ~: ".i;~ ~ 2; l;~.{ ,;-';: ;,,,,",,.,}\.ltl.. .'. 'I' ""fib ""I. '~I~;"" " .~; ~ ".v,;. ' ~ rJJ" "..4..,1/'" (:j"'! '''l.' 'M<'"" ');J4 . ~.:~:':~" :"..'~'li ....."'~.;..:. ,~', . "It'~"'"' ~iJl';,1J, ; ttji.... ,. ,:.:~ "'.'.~" 1\: ,.:., -;..'t, .~'I~. " ......~~ :.,'" ~~ J;fi~.;.i; 1~;-'''1. r" t ~~~ v',' ,'. . .~Ii.g r.v.I.:" :i~~' 1!:""'"f?.':h'~t':I\'i::I~"'Y~'" :;<; " ' . ~-. _ ''''~~',",\y:;/'~ rt' ~i f.t ~~. ,.".i, o,:q';1J,:: ,~,,~tjh~~~i..' .;1'''' ;;(I,:~l;'.i,'.':! "L; " 1._;' 'I "Ii' C "I_~,'.'.{.~J; ,~.t/q " ,&'1" .:,_~,,,,,,,'!~W;::~~~"7/,li~~1,'-t~ ". . ',..'g'! I ! .:~:j'A~ ,,' ~ d., i..~ t~l~.--~ ,~-:~,',11~. r . ._...._..'..n x/" . ~ "~." ) ,,,'.,,... '''', '. '. ".~ " ...."'i'"'~\~7l/h './';1 1:/ .<tt,~"~ L."'!f'."t.~~\~._ i',":<l!,\ '.... ''':':I,i~~,t\.\C " .'*i~ \,,'~i II ;,11\ ,;~...:'. '" ''',," '+".III".N~~~' :,.".c.,."",. <l""... ", . ~ ,. .:gg :g~;~ ~ ';~"~/Yl~~ll ~~,'1~~~~~~~-'.~ "~J~:~;'~:'~'.-~l')',\_~;.'~.'~ib ~ ~.~" ~~;~~'i'.ti,.:,~~. r~~ '. <c<~' ~~~ -<~"> II I."-.j ,,\. \=c.n,'.j,,~, ,......;;;;,'..'(..,. 't;"ll" . ',1:' 'L'. i. '..' . .'..' 5~~ >:<zz ~- \J\~~!.')~. '~"~_r!'~~~J~~rJ;.1~lft!t;'I~~,".:~~:it;~.'.i~~... -,.,..,;.,:'..:_,"1 ,I, -" '"I ;.~\ Ii" 1\',,\., \.~;'" ':..,". / . ':;' ~=:;! ::z::;:::z _ ,ji,,,', ' .' ".'. \\'.}',~:~ ,!, '~~~ ~;; ~~~~~ t." .i,tf1. , I. ,;:,:~~~. \?!~1' ~i,~~ .'i!,{.:,:>;"'~!t'$J~ ion ... "1f,r.. itl.'.... ,:"f't<,., , . ."" ".11: ."). '1.\ >........,. ",..... . . ',,, }', '] tJ' :r: z "..,..,.. , \ ~ ,',\('",,,':;\1./.\.,\\,1, :' .:-,'.. " II' " '. . .v,C. 7LfD'm:~,7! I:l: ~:!'-''''''''1'., 'd~'i(\:'''."", 'L '(~f;'" .... 1"'1,1# ',' (.')-. e",,',i,'J' ii1 =< ~:G;C:: ;~~~J,;!~, '~l ;'.TNi;,~~:",..:r(~<.,j(}..(;':i':::~ '.{,~""'~v'I(,".4 r ttf'i ","7A ~.: ;7".; ~~..../1,;; (j\ r ~ ~zO&; ','i'\j~~1!,:'~\~li ~~\. ..9~. ',." ," ;? ~il1:lv ~iX~I~ '!/i)}1fr -\ rn [I::! ;;,. >- !}'~it.,. ~JP.~l~.','a~~\:~i:;' .<:.,<>,:;,y;:.~ ~'~i'~"..... ~;'\:" ')..X ."~~'...' I -::. ~JJ?\ "f".~~,~",~I. '\ ;::\ .'" ~ ;~\ 'f/~ ",II -f,,'\' I w{j\~'... \.ll ii' ()o~zS::n-I ~'tl.l"~kil.\..,,\:\ \\Q/. ~. .'" ., """9~..:0 I.M' '. /-.. ". .......... '';'~J~,''''J.. ."1. l1:S.,! ~'T1 ''^'~~''''''. lC, '" 'n "', .\V"'~ .'" . ' , . ,.1' ~ z(' Gir' A. '~__"y'~,-r:::= -tJ~'{" '<..7,' /qyM-~~, "flll/ ,/Af)i::if n'd':'1 J z ') ... ",'y~~~i~' ~ ~~~"-'C) JJ .' ~Jd-;---= (flll/.,ij/JJij$J;ri}J. '. ,h .... ',.Jr, .) I ~ '/ ~ ; .:i .~ .," ',' 1il{1:n~l:r.1.;..:V;': ';ld\\\W \.\' ",. ?'''''. ~:~:t00~'. '/~~. '~II.l!" 'J " . '., .~', ','h', 1!l~"h,\'S. ~ ' 'I. -,,' ~h"1 ,. 't~J '. .;~.. ;.;~l.j8\1 ,"1': t~ "li',? .. , '\ .:r ' '<,~'>.~. ~.,. .'/. ','''' ~f .J 'l'~'., ",,::,'fJt ,1 . f .f " . ~ ", ,.,tf J . Ilu~~i d " 4<<t t ~ J 1, (~ "'/' " " t1l .:(~'~'-:;1i~~,t"""~ ,.; :';, · ':-;, u; X ~. ~ ~~!/. ~1j ,''- :'! l ~' ~ ~ :.. ~i~}~,"~;:~~";' "~\h~1N;'1: . "!\,"..,~.I, " '.~'JI\ ~~'''''}:~''''':~ ")~:I 'i" ",':' ' ~",,' r, ~I ~ tlt~' I ~ .' I) t&'i : I . , ' \ ',: -' ~ ~.."''>';'f ' ',' . - '. -~ ,~ JJiJ;:' \...-:.- .. I " '>; ,'/ r. ,,' ~ 'r.'.t:: ' \' ~ ,,'f (,' oi (,i '~ ~. . Ii'" .,', " .. 0000"",! .,'... \ .l.... It'"-l. t~, .... Ii J) \ \ ... ~~.f!~'\x.' '.. '.' !. i:, C) :,1,. 't~ Y;,;-; ~ : \, t. ~~ .. :~:~\' l~i,'\' ~... \ \J ~~"<~~l ~::. it ; , '.. Cl-'kCij , \ .;t,(. . i~ ...., ~-",'4 , , J :. :'l- 7"'- , 1,.'/,:";1'" .~ ~ !_} f t' I .t,1 <'!l, ~ '," ~. '''':~'ij~ '\ \.~t't~ . " ,'. ,.'~ , ~'\ f: : :~ ~ li; , . . ~ I' ~ r -" ',11 '\/1' \{:~ t ,. , , j,\i2-i;' , '~t1;,..\""X"\ .... ~'.~ \ ''1. , ., , ", I t : ,.Iv H~ ,:+, ''''' 'Ii ,i \s' ,; ,~ . " .' ., '. , ):1> q' , ;. p ;'i .. J '/ . /~ ',i iU' ....., U\\ \\\' , \ \ '. 1. ~ ~.. ~t .~ ,,: $., t Ji~' "'" ~: ~ t' '~ /' ~" f \ , ,. ~j\, \!~ ~ . ~o'~ .1\\; 1 '\ 'lM' "\,.\\. f~'" '\ ~ '1 .>l' . ..' 4' ',; ~ , . {i\ ' ,. tr; ~1, t .. i* i\~.. 1 N if Jllif'~'/~'" '" p\ ~i I t ~ -'J.:\li ~ I :If ';>,y ,If '\ \-'~ I~~, .-_E' : 'l\ 1, l " '\Y \ %i; \ I 'f; ., .If, " . !r CJ ,,'\';' " ,: ~ , \ ....~ L , '; ';;J.' , ,'-;V , ,'. "i. I : ~.1 ""i" ,r , :. , ~ 1~" ;t"{,' ,~4 '< ,. <ilf-. ~! , p'\" J .' <', ; \ ~ '" . , , . "~ '...< '?: ~ <C'r.' , , , .,'JII'!' ~;\' V , ~ ~ ." ;(1:;. 'I ,.\' "-i: ~ " i . "',,..,'rf ,. j'" .'n.-_:tV , ., ....,:;.t~'>;j " '., )' ~ " ':'~ " \'.; ~ ,-"'~ : ,.,.~" , " " I. ,. ~'t :, . .f, ,. , " .~ ~,. ( ., \' ;- Y' <11~i'.!io\: ,.J / J