Loading...
HomeMy WebLinkAboutHydrology & Storm Drain Investigation (2) I I I ,I I ,. I I I, I I I .1 I I I i' I I -- f-Dqq-oqICO Basis of Design 24-JEO PALOMA DE SOL DEVELOPMENT- TRACT NO utSZ- HYDROLOGY AND STORM DRAIN INVESTIGATION May 20, 1999 Prepared For: Newland Communities 27393 Ynez Road, Suite 253 Temecula, CA 92591-4608 Prepared By: 'if CJ{oberf CJJei1l.. CWilliam 'Trost c&c!jJssociates Professional Engineers, Planners & Surveyors P.O. Box 57057,14725 Alton Parkway, Irvine, CA 92619 (714) 472-3505 Fax: (714) 472-8122 Contact Person: Steve Giffen, RCE 42154 Andy Gong RBF IN 15-100006 \ I I I I I I I '1' I 'f I I I, .1 j I I I I, ~. Table of Contents Section 1 Introduction..,.................................................... I_I Section 2 Hydrology Analysis & Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.1 Rational Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Section 3- Hydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 Storm Drain Design Criteria ....................................... 3-1 3.2 Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.3 Inlet Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Appendix Hydrology ................................................................ A-I 10-Year Storm Event 100- Y ear Storm Event LACDPW RD4412 Computer Program for Storm Drain Analysis. . . . . . . . . . . . . . . . . . . .. A-2 Inlet Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. A-3 'Y~ I I, II I 'I; I, I 'I , I I 11r I 'I I I I I' ,j I Section 1 - Introduction Robert Bein, William Frost and Associates (RBF) has been retained by Newland Communities, to prepare a hydrology and hydraulics study for the Paloma de Sol Development, located in the City of Temecula, County of Riverside. The 42 acre site is located north of Campanula Way, south of De Portola Road, and west of Meadows Parkway, Figure 1. The surface runoff generated by the development will be collected by the onsite storm drain system and conveyed into the existing 84" RCP storm drain on Campanula Way. The following investigation has been prepared based on the proposed grading plan, dated on May 1999. The proposed storm drain system will be designed to convey a lO-year storm event, and the 100- year storm event will be contained within the street Right-of-way limits. The objectives of this study include the following: 1. Develop a hydrology map which identifies drainage boundaries and subareas within the project. Subarea boundaries will be based on the development drainage patterns and concentration points. 2. Prepare a hydrology analysis of the proposed residential development watershed based the Riverside County Flood Control District and Water Conservation District (RCFC & WCD) rational method for the 10 and 100-year storm event. 3. Identify preliminary storm drain facility requirements for the project based on the proposed grading plan, and delineate the drainage area tributary to each proposed inlet/concentration point. 4. Provide hydraulic calculations to determine preliminary storm drain pipe sizes and verify the operation of the facilities under design flows. The RCFC & WCD Hydrology Manual (April 1978) guidelines were used in performing the hydrologic analysis presented in this report. The hydrologic analysis was performed using the Advanced Engineering Software computer program developed for RCFC & WCD Rational Method (AES, 1998). Desert Springs Villas North Golf Course Hydrology & Drainage Investigation 1-1 Section I Introduction :? I I ,~ I. I I I 'I I I I, I I I I Ii I' I I /-~ 8 Figure 1- Project Location Map o ,. o Sf>.tfi\ I,GU RO'!>'O W <9 " ~ en q d ~ w ~ ~ :0 QJ VICINITY MAP NOT TO SC,\l E 1-2 Section I Introduction 10 SMJ DI[GO Desert .\;Jrings Villas North (jolfCourse Hydrology & Drainage Investigation l\ I I I I, I I I I I, I I I I I I I: I I I Section 2 - Hydrology Analysis & Procedure U Rational Method The Rational Method is an empirical computational procedure for developing a peak runoff rate (discharge) for small watersheds for storms of a specified recurrence interval. The Rational Method is used to compute peak flow rates for watersheds less than 640 acres. The formula is: Q = CIA where: Q = Peak runoff rate, in cfs. C = Runoff coefficient, proportion of rainfall that runs off the surface I = Average rainfall intensity corresponding to the time of concentration for the area, in in/hr. A = Drainage area, in acres The basic assumption for the Rational Method is that the precipitation rate is constant and uniform over the entire watershed for a time duration such that runoff could travel from the most remote point in the watershed to the concentration point; after which time the rate of runoff does not increase. This is the time defined as the "time of concentration(Tc)'" The method is based on the assumption that the peak flow rate is directly proportional to drainage area, rainfall intensity, and a runoff coefficient "C," which is related to land use and soil type. The 10 and 100-year hydrologic analysis for the proposed Paloma de Sol Development has been performed based on the proposed grading plan, and using the procedures outlined in the RCFC & WCD Hydrology Manual, dated April 1978. The hydrologic calculations for the Paloma de Sol were performed using a computer program prepared by Advanced Engineering Software (AES) for the RCFCD & WCD Rational Method. The 10 and 100-year design discharges at intermediate points were computed by generating a hydrologic "link-node" model which divides the area into drainage subareas, each tributary to a concentration point or hydrologic "node" point determined by the existing terrain or proposed street layout. The following assumptions/guidelines were applied for use of the Rational Method: Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 2-1 Section 2 Hydrology Analysis & Procedure ? I 'I I I I '1 I ,I I I I I I I I, I I I I 1. The Rational Method hydrology includes the effects of infiltration caused by soil surface characteristics. The soils map from the RCFC&WCD Hydrology Manual indicates that the study area consists of primarily soil type "B". Hydrologic soil ratings are based on a scale of A through D, where D is the least pervious, providing the greatest runoff. 2. The infiltration rate is also affected by the type of vegetation or ground cover and percentage of impervious surfaces. The runoff coefficients specified for "Single-Family (114 acre lot)" land uses was used to represent the hydrologic subareas. 3. The Kirpich formula was used to determine the times of concentration (Tc) for initial upstream subareas. Initial subareas were drawn to be less than 10 acres in size and less than 1,000 feet in length per County guidelines. 4. Pipe travel times were computed based on preliminary pipe sizes, with a minimum pipe size of 18-inches specified. 5. Standard intensity-duration curve data was taken from the RCFC & WCD Hydrology Manual dated April 1978. The Hydrology Summary can be found in Table No.1, this summary is used to size the catch basins. Concentration points can be found in Table No.2, this is used in the storm drain design. Table 1- Hydrolo v Summary Table Subarea Acre (Ac) Q-I0 Runoff (cfs) Q-I00 (cfs) lA 0.54 1.50 2.26 2A 3.85 7.85 11.90 3A 2.57 5.24 7.94 4A 6.63 11.49 17.90 5A 1.20 3.33 5.02 6A 5.36 8.86 13.81 7A 5.73 9.47 14.77 8A 2.82 4.67 7.50 9A 1.19 2.21 3.41 Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 2-2 Section 2 Hydrology Analysis & Procedure (p I I I I I I .1 I I I I I I I I I I I I I Q-I0 Runoff (cfs) I Q.I00 (cfs) Subarea Acre (Ac) IB 0.60 1.19 1.81 2B 2.00 3.01 4.60 3B 2.10 3.16 4.83 4B 1.31 3.22 4.87 5B 3.85 7.37 11.24 6B 1.61 3.08 4.70 Table 2- Concentration Point Summary Concentration Points 10-Year Runoff (cfs) 100-Year Runoff (cfs) 140 24.19 37.21 194 39.61 62.07 212 44.28 69.57 230 46.61 73.11 280 7.37 11.24 307 18.68 28.39 A detailed summary of the AES Rational Method hydrology results are included in Technical Appendix A. The hydrology Map is included as Exhibit A. Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 2-3 Section 2 Hydrology Analysis & Procedure '\ I I I I I I I I I I I I I I I I I I I I Section 3- Hydraulics II Storm Drain Design Criteria The proposed storm drain system was analyzed for the conveyance of the 10-year storm event. The 100-year storm event will be conveyed by the street. The 10 and 100-year storm event flow rates were developed in the hydrology portion of the study. The following parameters were utilized for the preliminary design of the storm drain system: 1. Manning's "n" value of 0.013 for reinforced concrete pipe (RCP) was used in the calculations. 2. The minimum pipe size is 18-inches. 3. A sump location inlet needs to be designed to convey the 100-year storm event. 4. The analysis of the onsite storm drain lines takes the hydraulic grade line from the existing storm drain on Campanula Way into the proposed storm drain analysis. 5. 100-year storm event runoff will be contained within the street right of way, in accordance with RCFC & WCD hydrology Manual for Flood Protection Criteria. 3.2 Methodology The Storm Drain Analysis Program PC/RD4412 created by the Los Angeles County Department of Public Works, Roads Department was used to perform an hydraulic analysis on the proposed storm drain system. The program calculates the hydraulic grade line elevations of a proposed storm drain system given the physical characteristics and the discharge. It allows for either pressure flow or partial flow with cross sections being either circular or rectangular box. Storm drain invert elevations are based on Paloma de Sol Development Storm Drain Plans, dated May 1999. The program starts the computation for the hydraulic grade line by evaluating the friction losses and minor losses throughout the system. The junction losses are evaluated by equating pressure plus momentum for the incoming and outgoing flows through the junction. This is accomplished by applying the formula developed by the City of Los Angeles, which establishes Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 3-1 Section 3 Hydraulics <6 I I I I I I I I I I I I I I I I I I I that the summation of pressures, ignoring friction, is equal to the average cross section flow area, multiplied by the change in the hydraulic gradient through the junction. The basic flow elevations used for the main lines at either end of the junction that apply to the pressure plus momentum equation depend on the type of flow at each end of the junction. These elevations are determined by computing the drawdown curves for each line. The control elevation for the lateral or lateral system is taken as the average of the hydraulic grade line elevations at both ends of the junction. If the water elevation in the lateral is above this control, the momentum contributed by the lateral in the analysis of the junction is decreased in proportion to the ratio of the area in the lateral below the control to the total area of flow. When flow changes from partial to full or from full to partial, the program determines and prints the location where this change occurs. If the flow reaches normal depth within a line, the program determines and prints the location. When flow changes from supercritical to subcritical because of downstream conditions, it happens via a hydraulic jump; the program determines the precise location of the jump by equating the pressure plus momentum for the two kinds of flow. It prints the jump location, pressure plus momentum at the jump and the depth of water before and after the jump. The starting water surface elevation was taken from the storm drain line on Campanula Way. This information was taken from the "Paloma del Sol Temecula Creek Channel- Campanula Way S.D., Oabbiano Dr. & A1coba Dr. S.D. Tract No. 24182 Storm Drain Plans" by Keith International Inc., dated 8/29/97. The assumption of the starting water elevation will result for a ultimate hydraulic analysis. Detailed analysis of the Storm Drain Analysis Program PC/RD4412 can be found in Technical Appendix B. Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 3-2 Section 3 Hydraulics <\ I I I I I I I I I I I I I il I I I I I 11 Inlet Sizing Inlet sizing was determined using the HEC-12 program ("Drainage of Highway Pavement" by Federal Highway Administration, dated March 1984), which uses the basic equation for calculating a curb opening inlet on grade. Curb openings on grade will need to convey a 10-year storm event. The following equation is for a curb opening on grade. LT = K Q 0.42 SO.3 (__!...f6 nS , where, LT = curb opening length K=O.6 Q= design discharge in cfs S= longitudinal slope n= Manning's Hn" Sx = gutter cross slope Curb openings at a sag will need to convey a 100-year storm event. A curb opening for a sag can be analyzed as a weir or an orfice. When the gutter depth is less than the height of the curb opening (d,;h), the flow is considered to be at weir flow and is expressed by the following equation: Q= C (L+I.8W)dLS where, C= weir coefficient of 1.25 L= curb opening length d= depth of gutter flow w= is the lateral width of depression Orfice flow is assumed when the depth at the lip of the curb opening greater than 1.4 times the curb opening (d~ l.4h). The following equation is used for a curb inlet opening at a sag. Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 3-3 Section 3 Hydraulics \0 I I I I I I I I I I I I II I I II I I I Q= ChL(2gd)oS where, C= orifice coefficient of 1.66 h= curb opening height d= depth of gutter flow L= Length of gutter Curb inlet at grade analysis for Street "A" assumed that 100% of Drainage Area "A" would be collected for the 10- Y ear storm event by the four curb inlets. By selecting the standard curb inlet sizes, HEC-12 calculated a recommended curb length required for 100% interception. Curb inlet less than the recommended curb length will result in a calculated flow bypass or the additional curb inlet. Curb inlets at sumps are calculated to depth of water. Table 3- Inlet Sizing Summary Inlet No. Q-IO Inlet Size Q-10 Comment Inflow (ft) By-Pass (cfs) (cfs) 1 20.84 21 8.84 By-Pass to Inlet No.2 2 8.84 21 1.59 By-Pass to Inlet No.6 3 5.24 21 0,22 By-Pass to Inlet No.6 4 8.86 21 0.00 5 9.47 21 0.00 6 2.90 21 0.00 By-Pass from Inlet No.2, 3', and Subarea 8A Inlet No. Q-IOO Inlet Size Gutter Comment Inflow (ft) Flow Depth (cfs) (ft) 7 13.62 21 0.43 Inlet Designed for 100- Y ear Storm Event 8 22.51 14 0.78 Inlet Designed for 100- Y ear Storm Event A detailed HEC-12 analysis can be found in Technical Appendix C. Desert Springs Villas North Golf Course Hydrology and Drainage Investigation 3-4 Section 3 Hydraulics \\ I I I' I I I I I I I I I I I I I 'I 'I ~~'";- PALOMA de SOL DEVELOPMENT APPENDIX A Hydrology \'V I ************************************.*************************************** I RATIONAL METHOO HYDROLDGY COMPUTER PROGRAM BASEO ON RIVERSIDE COUNTY FLOOD CONTROL & ~ATER CONSERVATION DISTRICT (RCFC&~CD) 1978 HYOROLOGY MANUAL (e) Copyright 1983-98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1264 I Analysis prepared by: I Robert Bein, William Frost & Associates 14725 Alton Parkway Irvine, California 92618 (0- ye <( V ~Wl evurt- I ******************....**** DESCRIPTION OF STUDY ************************** 1* PROPOSED 10-YEAR STORM EVENT " PALOMA OE SOL, TRACT NO. 24182 * FN: PALOMA.RES * " " I **********......**********..********************************************** FILE NAME: PALOMA.DAT TIME/DATE OF STUDY: 13:49 5/20/1999 1---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYORAULIC MOOEL INFORMATION: .-----.--------------------------------------------------------------------- I USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIEO MINIMUM PIPE SIZECINCH) = 18.00 SPECIFIED PERCENT OF GRADIENTSCDECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM TO-MINUTE INTENSITYCINCH/HOUR) = 2.360 10'YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 TOO-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITYCINCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732 SLOPE OF 100-YEAR INTENSITY-OURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITYCINCH/HOUR) = 0.BBB8 SLOPE OF INTENSITY DURATION CURVE = 0.5506 RCFC&~CD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOO NOTE: COMPUTE CONFLUENCE VALUES ACCOROING TO RCFC&~CD HYOROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR OOWNSTREAM ANALYSES "USER-DEFINED STREET-SECTIONS FOR COUPLEO PIPEFLOW AND STREET FLOW MOOEL" HALF- CROYN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFAll IN- / OUT-/PARK- HEIGHT WIDTH liP HIKE FACTOR (FT) (FT) SlOE / SIDE/ ~AY (FT) CFT) (FT) (FT) (n) I I I I I INO. --------- --------- ----------------- ----- ------ ----- ------- ----------------- ------ ----- ------ ----- ------- 30.0 20.0 0.018/0.01B/0.020 0.67 III GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum AllowabLe Street FLow Depth) - (Top-of-Curb) 2. (Depth)*CVelocity) Constraint = 6.0 (FT"FT/S) "SIZE PIPE ~ITH A FLOW CAPACITY GREATER TNAN I OR EQUAL TO THE UPSTREAM TRI8UTARY PIPE.* **************************************************************************** 2.000.031250.16700.01500 I FLOW PROCESS FROM NOOE 100.00 TO NODE 110.00 IS COOE = 21 1------------------.--------------------------------------------------------. >>>>>RATIONAl METHOD JNITIAl SUBAREA ANAlYSIS<<<<< ============================================================================ I \<1;; I ASSUMED INITIAL SUBAREA UNIFORM TC = K'[(LENGTH"3)/(ELEVATION CHANGE)]".2 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 1152.00 DOWNSTREAM ELEVATION = 1124.00 ELEVATION DIFFERENCE = 28.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.491 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.50 I I .7961 I 1.50 0.54 TOTAL RUNOFF(CFS) = *********......************.**...*********************......****..**....**** I FLOW PROCESS FROM NOOE 110.00 TO NODE 120.00 IS COOE = 61 -~_....._....._..._------------------------.-----_._------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>(STANDARO CURB SECTION USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 1124.00 DOWNSTREAM ELEVATION(FEET) = 1100.47 I STREET LENGTH(FEET) = 830.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSS FALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(OECIMAL) = 0.017 OUTSIDE STREET CROSSFALL(OECIMAL) = 0.050 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 I "TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREET FLOW MOOEL RESULTS USING ESTIMATED FLOW: STREET FLOW OEPTH(FEET) = 0.32 HALFSTREET FLOOO WIDTH(FEET) = 4.74 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.19 PRODUCT OF DEPTH&VELOCITY(FT'FT/SEC.) 1.33 STREET FLOW TRAVEL TIME(MIN.) = 3.30 Tc(MIN.) = 8.30 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.641 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7722 SOil CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 3.85 TOTAL AREA(ACRES) = 4.39 7.85 9.35 5.42 I I SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) I END OF SU6AREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.39 HALFSTREET FLOOO WIOTH(FEET) = 6.57 FLOW VELOCITY(FEET/SEC.) = 4.17 DEPTH*VELOCITY(FT*FT/SEC.) = 1.63 LONGEST FLOWPATH FROM NOOE 100.00 TO NODE 120.00 = 980.00 FEET. I ***...***..********...******......**.....*********.......**********...****** II FLOW PROCESS FROM NODE 120.00 TO NODE 122.00 IS COOE = 81 < --------------------------------------------------------------.-.---.-.----- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FlOW<<<<< 1============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.641 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7722 I SOIL CLASSIFICATION IS IIBII SUBAREA AREA(ACRES) = 2.57 SUBAREA RUNOFF(CFS) = 5.24 TOTAL AREA(ACRES) = 6.96 TOTAL RUNOFF(CFS) = 14.59 TC(MIN) = 8.30 III............................................................................ FLOW PROCESS FROM NODE 122.00 TO NODE 130.00 IS CODE = 10 I JlL ZA - ~A \t>... 111____________________________._______________________________________________ >>>>>MAIN~STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< 11I=========================================================================== ********************...********...****************...****************.****** I fLOW PROCESS fROM NOOE 130.00 TO NODE 132.00 IS CODE = 13 -----------------------.-------------------.-.---.-------...------.-.------ >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- Ill........................................................................... fLOW PROCESS fROM NODE 132.00 TO NODE 140.00 IS CODE = 61 1-.------------------------------------------..----------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< 1_=========================================================================== UPSTREAM ELEVATION(fEET) = 1107.00 OOWNSTREAM ELEVATION(fEET) = 1100.47 . STREET LENGTH(fEET) = 830.00 CURB HEIGHT(INCHES) = 6.0 STREET HALfWIDTH(fEET) = 20.00 I DISTANCE fROM CROWN TO CROSSfALL GRADEBREAK(fEET) 15.00 INSIDE STREET CROSSfALL(DECIMAL) = 0.017 OUTSIDE STREET CROSSfALL(DECIMAL) = 0.050 I SPECifiED NUMBER Of HALf STREETS CARRYING RUNOff = 2 I I "TRAVEL TIME COMPUTEO USING ESTIMATED fLOW(CfS) = STREETfLOW MODEL RESULTS USING ESTIMATED fLOW: STREET fLOW DEPTH(fEET) = 0.46 HALf STREET fLOOO WIDTH(fEET) = 12.56 AVERAGE fLOW VELOCITY(fEET/SEC.) = 2.38 PRODUCT Of OEPTH&VELOCITY(fT'fT/SEC.) = 1.10 STREET fLOW TRAVEL TIME(MIN.) = 5.80 Tc(MIN.) = 10.80 10 YEAR RAINfALL INTENSITY(INCH/HOUR) = 2.284 SINGLE-fAMILY(1/4 ACRE LOT) RUNOff COEffiCIENT = .7585 SOIL CLASSIFICATION IS liB" SUBAREA AREA(ACRES) = 6.63 TOTAL AREA(ACRES) = 6.64 11.49 12.49 8.76 I I SUBAREA RUNOff(CfS) = PEAK fLOW RATE(CfS) I END Of SUBAREA STREET fLOW HYDRAULICS: DEPTH(fEET) = 0.50 HALf STREET fLOOO WIDTH(fEET) = 15.14 FLOW VELOCITY(FEET/SEC.) = 2.55 OEPTH'VELOCITY(FT'FT/SEC.) = 1.29 LONGEST fLOWPATH FROM NOOE 100.00 TO NODE 140.00 = 1810.00 fEET. Ill........................................................................... FLOW PROCESS FROM NODE 140.00 TO NODE 150.00 IS CODE = 11 1_-------------------------------------------------------------------------- >>>>>CONFlUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ I ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) ( INCH/HOUR) (ACRE) 1 12.49 10.80 2.284 6.64 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 150.00 1810.00 FEET. I I ** MEMORY STREAM NUMBER 1 AREA (ACRE) 6.96 BANK # RUNOFF (CFS) 14.59 CONFLUENCE DATA ** Tc INTENSITY (MIN.) (INCH/HOUR) 8.30 2.641 I 4-rt - ,-5 I 100.00 TO NOOE 150.00 = 980.00 FEET. LONGEST FLOWPATH FROM NODE I *********************************WARNI NG********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCO FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I ************.*****************************************....***************. I ** PEAK FLOW RATE TABLE -- STREAM RUNOFF Te INTENSITY NUMBER (CFS) (MIN.) (lNCH/HooR) 1 24.19 B.30 2.641 2 25.11 10.BO 2.284 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 24.19 Te(MIN.) = TOTAL AREA(ACRES) = 13.60 8.30 I ******************************************************************....****** 1 FLOW PROCESS FROM NOOE 150.00 TO NOOE 160.00 IS COOE = 12 -----------._-.---._------..------------------------------------------------ >>>>>ClEAR MEMORY BANK # 1 <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 11I*...*....*.***************************************************************** FLOW PROCESS FROM NOOE 170.00 TO NOOE 180.00 IS CODE = 10 1--------------------.-----.--..-------------------------------......-------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 11I**************************************************************************** FLOW PROCESS FROM NOOE 180.00 TO NOOE 182.00 IS COOE = 13 I >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ============================================================================ 1**************************************************************************** FLOW PROCESS FROM NOOE 182.00 TO NOOE 190.00 15 COOE = 21 II==::::::::;;:::;:;:;;;:::;::::::~~:;;~::::::::::::::======================== TC = K*(CLENGTH**3)/CElEVATION CHANGE)]**.2 INITIAL SU8AREA FLOW-LENGTH = 180.00 UPSTREAM ELEVATION = 1136.00 OOWNSTREAM ELEVATION = 1119.00 ELEVATION DIFFERENCE = 17.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.482 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7959 SOil CLASSIFICATION IS I1BII SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = II I I 3.33 1.20 TOTAL RUNOFF(CFS) = 3.33 .**********-**-**********-----*********************************************** FLOW PROCESS FROM NOOE 190.00 TO NODE 192.00 IS COOE = 61 ..-------......----------.....---------------------..---------------._------ >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>CSTANDARD CURB SECTION USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 1120.93 DOWNSTREAM ELEVATION(FEET) = 1089.00 II 5A \~ I II STREET LENGTH(FEET) = 1450.00 CURB HEIGHTCINCHES) = 6.0 STREET HALFWIDTHCFEET) = 20.00 OISTANCE FROM CROWN TO CROSSFALL GRADEBREAKCFEET) INSIDE STREET CROSSFALLCDECIMAL) = 0.017 OUTSIDE STREET CROSSFALLCDECIMAL) = 0.050 15.00 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 I "TRAVEL TIME COMPUTED USING ESTIMATED FLOWCCFS) = STREET FLOW MODEL RESULTS USING ESTIMATEO FLOW: STREET FLOW DEPTHCFEET) = 0.39 HALFSTREET FLOOD WIOTHCFEET) = 8.22 AVERAGE FLOW VELOCITYCFEET/SEC.) 3.64 PRODUCT OF DEPTH&VELOCITYCFT'FT/SEC.) = 1.41 STREET FLOW TRAVEL TIMECMIN.) = 6.63 Te(MIN.) = 11.66 10 YEAR RAINFALL INTENSITYCINCH/HOUR) = 2.191 SINGLE-FAMILYC1/4 ACRE LOT) RUNOFF COEFFICIENT = .7544 SOIL CLASSIFICATION IS "B" I SUBAREA AREA(ACRES) = 5.36 TOTAL AREA(ACRES) = 6.56 7.81 I I SU8AREA RUNOFFCCFS) = PEAK FLOW RATECCFS) = 8.86 12.18 ~ I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTHCFEET) = 11.27 FLOW VELOCITYCFEET/SEC.) = 3.86 DEPTH'VELOCITYCFT'FT/SEC.) LONGEST FLOWPATH FROM NODE 182.00 TO NOOE 192.00 = 1630.00 1.69 FEET. II............................................................................ FLOW PROCESS FROM NOOE 192.00 TO NODE 194.00 IS COOE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FlOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.191 I SINGLE-FAMILYC1/4 ACRE LOT) RUNOFF COEFFICIENT = .7544 SOIL CLASSIFICATION IS IIB" SUBAREA AREACACRES) = 5.73 I TOTAL AREA(ACRES) = 12.29 TCCMIN) = 11.66 SU8AREA RUNOFFCCFS) = TOTAL RUNOFFCCFS) = 9.47 21.66 7A **************************************************************************** I FLOW PROCESS FROM NODE 194.00 TO NODE 200.00 IS CODE = 11 -----.---------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< 1============================================================================ ** MAIN STREAM CONFLUENCE DATA .. STREAM RUNOFF Te INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 21.66 11.66 2.191 12.29 LONGEST FLOWPATH FROM NODE 182.00 TO NODE 200.00 = 1630.00 FEET. 1 ** MEMORY BANK # CONFLUENCE DATA .. STREAM RUNOFF Te INTENSITY AREA I NUMBER (CFS) CMIN.) (! NCH/HOUR) CACRE) 1 24.19 8.30 2.641 13.60 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 200.00 = 1810.00 FEET. I ***************.*****************WARNI NG**************...***************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA I \"' I WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. *************************************..***............****...*.******.**** I ** PEAK FLOW RATE TABLE .- STREAM RUNOFF Te INTENSITY NUMBER (CFS) (MIN.) CINCH/HOUR) 1 1 39.61 B.30 2.641 2 41. 72 11.66 2.191 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATECCFS) = 39.61 Te(MIN.) = TOTAL AREACACRES) = 25.89 8.30 1***************...************************.*******..********.*******....**** FLOW PROCESS FROM NOOE 200.00 TO NOOE 210.00 IS COOE = 12 I >>>>>ClEAR MEMORY BANK # 1 <<<<< ============================================================================ ***************.***..**.***....*************.*****.....********************* I--~~~-~~~~~~~-~~~.~~~----~~~:~~-~~-~~~----~~~:~~-~~-~~~_:_-~~--------_. >>>>>COMPUTE PIPE~FlOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAMCFEET) = 1083.93 DOWNSTREAMCFEET) = 1080.73 III FLOW LENGTHCFEET) = 213.63 MANNING'S N = 0.013 OEPTH OF FLOW IN 30.0 INCH PIPE IS 20.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.85 ESTIMATED PIPE DIAMETER(INCH) = 30.00 I PIPE-FLOW(CFS) = 39.61 PIPE TRAVEL TIME(MIN.) = 0.33 Te(MIN.) = LONGEST FLOWPATH FROM NOOE 100.00 TO NOOE NUMBER OF PIPES = B.63 212.00 = 2023.63 FEET. I............................................................................ FLOW PROCESS FROM NOOE 212.00 TO NOOE 220.00 IS COOE = 81 1 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITYCINCH/HOUR) = 2.585 I UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .6405 SOIL CLASSIFICATION IS IIBIl ~ III SUBAREA AREA(ACRES) = TOTAL AREACACRES) TCCMIN) = 8.63 2.82 2B.71 SUBAREA RUNOFFCCFS) = 4.67 TOTAL RUNOFFCCFS) = 44.28 *********************************************************...............*.** II--~~~.~~~~~~~-~~~.~~~.._-~~~:~~-~~-~~~----~~~:~~.~~-~~~_:_-~~---------- >>>>>COHPUTE PIPE.FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING COMPUTER-ESTIMATED PIPESIZE CNON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 1082.00 DOWNSTREAMCFEET) = 1075.00 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 I DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.7 INCHES PIPE'FLOW VELOCITY(FEET/SEC.) = 14.24 ESTIMATED PIPE OIAMETERCINCH) = 27.00 I PIPE-FLOWCCFS) = 44.28 PIPE TRAVEL TIMECMIN.) = 0.2B Te(MIN.) = LONGEST FLOWPATH FROM NOOE 100.00 TO NOOE NUMBER OF PIPES = 8.91 230.00 2263.63 FEET. \€b III I , I **************************************************************************** 1 FLOW PROCE55 FROM NODE 230.00 TO NODE 240.00 IS CODE = 81 -.....-------...-----------------------............---------------....~----- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FL~<<<<< 1 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 10 YEAR RAINFAll INTEN5ITY(INCH/HOUR) = 2.540 5INGlE-FAMllY(1/4 ACRE lOT) RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "BII SUBAREA AREA(ACRE5) 1.19 TOTAL AREA(ACRE5) = 29.90 TC(MIN) = 8.91 .7686 I 2.32 46.61 5UBAREA RUNOFF(CF5) = TOTAL RUNOFF(CF5) = I............................................................................ FLOW PROCE55 FROM NODE 240.00 TO NODE 250.00 15 CODE = 31 I >>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>U5ING COMPUTER-ESTIMATED PIPE51ZE (NON-PRE55URE FlOW)<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- II ELEVATION DATA: UP5TREAM(FEET) = 1075.00 DOWNSTREAM(FEET) = FLOW lENGTH(FEET) = 735.00 MANNING'5 N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE 15 25.7 INCHE5 PIPE-FLOW VElOCITY(FEET/5EC.) = 9.38 ESTIMATED PIPE DIAMETER(INCH) = 33.00 PIPE-FlOW(CF5) = 46.61 PIPE TRAVEL TIME(MIN.) = lONGEST FlOWPATH FROM NOOE 1068.00 I NUMBER OF PIPES II 1.31 Tc(MIN.) = 100.00 TO NODE 10.22 250.00 = 2998.63 FEET. **************************************************************************** II FLOW PROCESS FROM NOOE 250.00 TO NODE 260.00 15 CODE = 10 ~-...._.._.._--------------------.---.--.--...........----------------~..... >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- II............................................................................ FLOW PROCES5 FROM NODE 260.00 TO NODE 262.00 15 CODE = 13 1----------------------------.-.--------------------------------------------- >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 1**************************************************************************** FLOW PROCE5S FROM NODE 262.00 TO NODE 270.00 15 CODE = 21 1 >>>>>RATIONAL METHOO INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ A5SUMED INITIAL SUBAREA UNIFORM TC = K*[CLENGTH**3)/CELEVATION CHANGE)]**.2 INITIAL 5U8AREA FLOW-lENGTH = 440.00 UP5TREAM ELEVATION = 1105.00 OOWN5TREAM ELEVATION = 1088.81 ELEVATION DIFFERENCE = 16.19 10 YEAR RAINFAll INTEN5ITY(INCH/HOUR) = 2.578 SINGlE-FAMIlY(1/4 ACRE lOT) RUNOFF COEFFICIENT = .7700 SOIL CLASSIFICATION IS "B" SU8AREA RUNOFF(CFS) = TOTAL AREA(ACRE5) = II I 1 1.19 0.60 1.19 TOTAL RUNOFF(CF5) = 11**************************************************************************** FLOW PROCE55 FROM NODE 270.00 TO NODE 2BO.00 15 CODE = 61 ........_._------........_--~~-------------.-~......_-------.._~-~~~~......- II Cf4 - IB \0... III >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANDARD CURB SECTION USED)<<<<< III==:;;;::::=:::::;;~:;;::;:=:=~~::~:~==~~:;;::::=:::::;;~:;;::;:=:=~~::~~~== STREET LENGTH(FEET) = 630.00 CURB HEIGHT(INCHES) = 6.0 II STREET HALFWIDTH(FEET) = 20.00 III DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.017 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.050 = 15.00 SPECIFIEO NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 III **TRAVEL TIME COMPUTEO USING ESTIMATED FLOW(CFS) = STREET FLOW MOOEL RESULTS USING ESTIMATEO FLOW: STREET FLOW OEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 4.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.16 PROOUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68 STREET FLOW TRAVEL TIME(MIN.) = 4.86 Tc(MIN.) = 13.53 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.018 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7462 III SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.00 TOTAL AREA(ACRES) = 2.60 2.71 II III 3.01 4.20 SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) = lEND OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 7.52 FLOW VELOCITY(FEET/SEC.) = 2.15 DEPTH*VELOCITY(FT*FT/SEC.) = 0.80 LONGEST FLOWPATH FROM NOOE 262.00 TO NOOE 280.00 = 1070.00 FEET. III **************************************************************************** II-.~~~.~~~~~~~-~~~-~~~-_..~~~:~~-~~-~~~----~~~:~~-~~-~~~-~--~~---------- >>>>>AOOITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- II 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.018 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7462 SOIl. CLASSIFICATION IS "BlI II SU8AREA AREA(ACRES) 2.10 TOTAL AREA(ACRES) = 4.70 TC(MIN) = 13.53 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = 3.16 7.37 1*******************************************...******************..********** FLOW PROCESS FROM NOOE 282.00 TO NOOE 290.00 IS COOE = 10 .-------.......-------.......----------------------..-----------......_----- II >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ============================================================================ **************************************************************************** II FLOW PROCESS FROM NOOE 290.00 TO NOOE 292.00 IS COOE = 13 -......------......------------.....-..------------.--_..._---------.--..... >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< 11============================================================================ **************************************************************************** 1 FLOW PROCESS FROM NOOE 292.00 TO NOOE 300.00 IS COOE = 21 ..--------........-------------.---.......-----------.......----.....------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< 11============================================================================ Zi3 --- 3e, - 1fJ I ASSUMED INITIAL SUBAREA UNIFORM TC = K*[CLENGTH**3)/CELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 1145.00 DOWNSTREAM ELEVATION = 1106.00 ELEVATION DIFFERENCE = 39.00 10 YEAR RAINFALL INTENSITYCINCH/HOUR) = 3.123 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS IIB" SUBAREA RUNOFF(CFS) = TOTAL AREACACRES) = 3.22 I I .7870 I 3.22 1.31 TOTAL RUNOFF(CFS) = 1****..****************************************************..**************.* FLOW PROCESS FROM NooE 300.00 TO NooE 305.00 IS CooE = 61 ----------------------------------------------------.------------.-.-------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>(STANDARD CURB SECTION USED)<<<<< ============================================================================ UPSTREAM ELEVATIONCFEET) = 1107.00 DOWNSTREAM ELEVATIONCFEET) = 1084.00 STREET LENGTH(FEET) = 780.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 1 1 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.017 OUTSIDE STREET CROSSFALLCDECIMAL) = 0.050 = 15.00 1 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 1 **TRAVEL TIME COMPUTED USING ESTIMATED FLOWCCFS) = STREETFLOW MooEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.35 HALFSTREET FLOOD WIDTH(FEET) = 6.11 AVERAGE FLOW VELOCITYCFEET/SEC.) = 4.23 PRooUCT OF OEPTH&VELOCITY(FT*FT/SEC.) = 1.48 STREET FLOW TRAVEL TIMECMIN.) = 3.07 TeCMIN.) = 10 YEAR RAINFALL INTENSITYCINCH/HOUR) = 2.497 SINGLE-FAMILY(I/4 ACRE LOT) RUNOFF COEFFICIENT = .7670 SOIL CLASSIFICATION IS IIB" SUBAREA AREACACRES) = 3.85 TOTAL AREACACRES) = 5.16 7.37 10.59 6.90 1 9.19 1 1 SUBAREA RUNOFF(CFS) = PEAK FLOW RATECCFS) = END OF SUBAREA STREET FLOW HYDRAULICS: OEPTH(FEET) = 0.40 HALFSTREET FLOOD WIDTHCFEET) 9.28 1 FLOW VELOCITY(FEET/SEC.) = 4.31 DEPTH*VELOCITYCFT*FT/SEC.) = LONGEST FLOWPATH FROM NooE 292.00 TO NooE 305.00 = 1110.00 1. 74 FEET. ..************.****....********......************.....******************...** FLOW PROCESS FROM NooE 305.00 TO NooE 307.00 IS CooE = 81 ----..---------------.---------.-------------------------------------------- I==::~~:;::::;:;:;:~:~;:;;:;;;~;;:~:;:~:;::=:;~;;:::======================= SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7670 1 SOIL CLASSIFICATION IS "B" SU8AREA AREACACRES) = 1.61 SU8AREA RUNOFFCCFS) = TOTAL AREA(ACRES) = 6.77 TOTAL RUNOFFCCFS) = TCCMIN) = 9.19 11I**************************************************************************** 3.08 13.68 FLOW PROCESS FROM NooE 307.00 TO NooE 310.00 IS CooE = " 1 4-8 SB r.,f> ~\ 11I---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< 11============================================================================ ** MAIN STREAM CONFLUENCE DATA -- STREAM RUNOFF Te INTENSITY NUM8ER (CFS) (MIN.) (INCH/HOUR) 1 13.68 9.19 2.497 LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE AREA (ACRE) 6.77 310.00 = 1110.00 FEET. II II ** MEMORY BANK # 2 CONFLUENCE DATA _. STREAM RUNOFF Te INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.37 13.53 2.018 4.70 LONGEST FLOWPATH FROM NOOE 262.00 TO NOOE 310.00 = 1070.00 FEET. II II .................................WARNI NG.................................. IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. II **************************...********************************************* II ** PEAK FLOW RATE TABLE -- STREAM RUNOFF Te INTENSITY NUM8ER (CFS) (MIN.) (INCH/HOUR) 1 18.68 9.19 2.497 2 18.42 13.53 2.018 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.68 Te(MIN.) = TOTAL AREA(ACRES) = 11.47 9.W II ***************************.********************..********************..**** II FLOW PROCESS FROM NOOE 310.00 TO NOOE 312.00 IS COOE = 12 --.-.----------------------.-......-----------------.....-------------.----- >>>>>ClEAR MEMORY BANK # 2 <<<<< II:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: FLOW PROCESS FROM NOOE 312.00 TO NOOE 320.00 IS COOE = 31 II--:::::~~~~;~-~;~~:;:~';~~~~:-;;~~-;~~~'~~~~~~~:::::--------..-.-.-------- >>>>>USING COMPUTER-ESTIMATEO PIPESIZE (NON-PRESSURE FLOW)<<<<< II==:::::;;~:=~:;::=~;;;::::;;::;;=:==;~:~~~~==~~:;;::::;;::;;=:==;~::~~~==== FLOW LENGTH(FEET) = 375.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21,0 INCH PIPE IS 12.9 INCHES PIPE'FLOW VELOCITY(FEET/SEC.) = 12.08 ESTIMATEO PIPE OIAMETER(INCH) = 21.00 PIPE-FLOW(CFS) = 18.68 PIPE TRAVEL TIME(MIN.) = 0.52 Te(MIN.) = LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE II NUMBER OF PIPES = II 9.71 320.00 = 1485.00 FEET. ***.**************************************...***************..************** II_.~~~_~~~~~~~.~~~-~~~----~~~:~~-~~-~~~----~~~:~~.~~-~~~_:_.~~..._______ >>>>>CONFlUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< 11============================================================================ ** MAtN STREAM CONFLUENCE DATA ** ~ II I STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (I NCH/HOUR) (ACRE) I 1 1B.6B 9.71 2.423 11.47 LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE 330.00 = 1485.00 FEET. .. MEMORY BANK # CONFLUENCE DATA .. I STREAM RUNOFF Tc INTENSITY AREA NUM8ER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 46.61 10.22 2.356 29.90 I LONGEST FLOWPATH FROM NOOE 100.00 TO NOOE 330.00 = 2998.63 FEET. ****************..******..******.WARNI NG..******...*****...**********.**** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED I ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ..************************...*********************..**.....********..***** I .. PEAK STREAM I NUMB~R FLOW RATE RUNOFF (CFS) 62.97 64.77 TABLE -- Tc (MIN. ) 9.71 10.22 INTENSITY (I NCH/HOUR) 2.423 2.356 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 64.77 Tc(MIN.) = 10.22 TOTAL AREA(ACRES) = 41.37 1=====.====================================================================== END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 41.37 TC(MIN.) = 10.22 lit::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: END OF RATIONAL METHOD ANALYSIS I I I I I I I I I ~?:; I ****************....*************************.**.*.*..********..*.....****** I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOO CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1983-98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License 10 1264 I Analysis prepared by: I Robert Be;n, William Frost & Associates 14725 Alton Parkway Irvine, California 92618 IOO-yet!l( .m tV~ 1 ************************** DESCRIPTION OF I. PROPOSED 100-YEAR STORM EVENT . PALOMA DE SOL, TRACT NO. 24182 . FN: PALOMA.RES STUDY ......******..**.....****. . . . I .......................................................................... FILE NAME: PALOMA.DAT I--~~~~~~~~~;;;~~~~~~~~:~~~~~~~~~~~~~~:;~-~~~~-;~;~~~~;~~;----------------- I I USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIEO MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.3000 SLOPE OF INTENSITY DURATION CURVE = 0.5496 RCFC&WCO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOO NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCO HYDROLOGY MANUAL lAND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES 'USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MOOEL' HAlF- CR~N TO STREET.CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIOTH LIP HIKE FACTOR (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) I 1 INO. --------- --------- ----------------- ----------------- ----- ------ ----- ------ ----- ------- I 30.0 20.0 0.018/0.018/0.020 0.67 2.000.031250.16700.01500 I GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*CVelocfty) Constraint = 6.0 (FT*FT/S) 'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN I OR EQUAL TO THE UPSTREAM TRI8UTARY PIPE.' *****.....**.*******.......*****..*..........****.*******.*.....*.****...... II--~~~-~~~~~~~-~~~-~~~----~~~:~~-~~-~~~----~~~:~~-~~-~~~_:_-~~---------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ 1--6... 1 I ASSUMEO INITIAL SUBAREA UNIFORM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 150.00 UPSTREAM ELEVATION = 1152.00 DOWNSTREAM ELEVATION = 1124.00 ELEVATION DIFFERENCE = 28.00 I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.093 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = I .8232 I 2.26 0.54 TOTAL RUNOFF(CFS) = 2.26 *****************************....******************************************* I FLOW PROCESS FROM NOOE 110.00 TO NOOE 120.00 IS COOE = 61 ...........--------------......---------------------------------------.----- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>(STANDARD CURB SECTION USED)<<<<< i ============================================================================ UPSTREAM ELEVATION(FEET) = 1124.00 DOWNSTREAM ELEVATION(FEET) = 1100.47 I STREET LENGTH(FEET) = 830.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIOTH(FEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL(OECIMAL) OUTSIDE STREET CROSSFALL(OECIMAL) 15.00 GRAOEBREAK(FEET) = 0.017 = 0.050 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 I ..TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = STREETFLOW MOOEL RESULTS USING ESTIMATED FLOW: STREET FLOW OEPTH(FEET) = 0.38 HALFSTREET FLOOO WIOTH(FEET) = 7.64 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.15 PROOUCT OF OEPTH&VELOCITY(FT.FT/SEC.) 1.56 STREET FLOW TRAVEL TIME(MIN.) = 3.33 Tc(MIN.) = 8.33 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.846 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8037 SOIL CLASSJFICATJON IS "B" SUBAREA AREA(ACRES) = 3.85 TOTAL AREA(ACRES) = 4.39 11.90 14.17 8.23 ,I I ,j SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) = END OF SUBAREA STREET FLOW HYDRAULICS: OEPTH(FEET) = 0.44 HALFSTREET FLOOO WIOTH(FEET) = 11.50 FLOW VELOCITY(FEET/SEC.) = 4.37 DEPTH.VELOCITY(FT.FT/SEC.) = 1.93 LONGEST FLOWPATH FROM NOOE 100.00 TO NOOE 120.00 = 980.00 FEET. I *******.....**************.......********************************...******** I FLOW PROCESS FROM NOOE 120.00 TO NOOE 122.00 15 COOE = 81 -----------.-..------------------..................------------------...... >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< t=========================================================================== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.846 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8037 I SOIL CLASSIFICATION IS "B" , SUBAREA AREA(ACRES) = 2.57 SU8AREA RUNOFF(CFS) = 7.94 TOTAL AREA(ACRES) = 6.96 TOTAL RUNOFF(CFS) = 22.11 TC(MIN) = 8.33 Ill........................................................................... FLOW PROCESS FROM NOOE 122.00 TO.NOOE 130.00 IS COOE = 10 I lA Z-A 3-A "J,~ 111-----------------------------------------------------.---------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< r----------------------------------------------------------------------------- JIl:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: FLOW PROCESS FROM NODE 130.00 TO NOOE 132.00 15 COOE = 13 1_--------------------------------------------------------------------------- >>>>>ClEAR THE MAIN-STREAM MEMORY<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- lIf............................................................................ FLOW PROCESS FROM NOOE 132.00 TO NOOE 140.00 IS COOE = 61 I >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STANOARD CURB SECTION USED)<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- " UPSTREAM ELEVATIONCFEET) = 1107.00 DOWNSTREAM ELEVATIONCFEET) = 1100.47 STREET LENGTHCFEET) = 830.00 CURB HEIGHTCINCHES) = 6.0 STREET HALFWIDTHCFEET) = 20.00 I DISTANCE FROM CROWN TO CROSSFALL GRAOEBREAK(FEET) INSIDE STREET CROSSFALLCDECIMAL) = 0.017 OUTSIDE STREET CROSSFALLCDECIMAL) = D.050 15.00 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 I I "TRAVEL TIME COMPUTED USING ESTIMATED FLOWCCFS) = STREETFLOW MOOEL RESULTS USING ESTIMATED FLOW: NOTE: STREET FLOW EXCEEDS TOP OF CUR8. THE FOLLOWING STREE:' FLOW RESULTS ARE BASED ON THE ASSUMPTION THAT NEGLIBLE FLOW OCCURS OUTSIDE OF THE STREET CHANNEL. THAT IS, ALL FLOW ALONG THE PARKWAY, ETC., IS NEGLECTED. STREET FLOW OEPTHCFEET) = 0.51 HALFSTREET FLOOD WIDTH(FEET) = 15.37 AVERAGE FLOW VELOCITYCFEET/SEC.) = 2.55 PROOUCT OF OEPTH&VELOCITYCFT'FT/SEC.) 1.29 STREET FLOW TRAVEL TIME(MIN.) = 5.43 TcCMIN.) = TO.43 100 YEAR RAINFALL INTENSITYCINCH/HOUR) = 3.40D SINGLE-FAMILYC1/4 ACRE LOT) RUNOFF COEFFICIENT = .7940 SOil CLASSIFICATION IS IIBIl SUBAREA AREACACRES) = 6.63 TOTAL AREA(ACRES) = 6.64 12.76 \1 I i SU8AREA RUNOFFCCFS) = PEAK FLOW RATECCFS) = 17.90 18.90 END OF SUBAREA STREET FLOW HYDRAULICS: OEPTH(FEET) = 0.56 HALFSTREET FLOOO WIDTHCFEET) = lB.42 FLOW VELOCITY(FEET/SEC.) = 2.80 OEPTH'VELOCITYCFT'FT/SEC.) = 1.56 'NOTE: INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, ANO L = 830.0 FT WITH ELEVATION-DROP = 6.5 FT, IS 14.2 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 140.00 LONGEST FLOWPATH FROM NOOE 100.00 TO NODE 140.00 = 181D.DO FEET. ~*************...**.****.....***************....********.......*********.... FLOW PROCESS FROM NOOE 140.00 TO NOOE 150.00 15 COOE = 11 I ~I: . , [----------------------------------------------------------------..--------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< --------------------------------------------------------------------------- ---------------------------------------------------------------------------- " *. MAIN STREAM NUMBER STREAM CONFLUENCE DATA .. RUNOFF Tc INTENSITY CCFS) (MIN.) (INCH/HOUR) AREA (ACRE) I ~ 1Y I 1 18.90 10.43 LONGEST FLOWPATH FROM NOllE 3.400 100.00 TO NOllE 6.64 150.00 = 1810.00 FEET. I ** MEMORY BANK # CONFLUENCE DATA .. STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 22.11 8.33 3.846 LONGEST FLOWPATH FROM NOllE 100.00 TO NOllE 980.00 FEET. 'I AREA (ACRE) 6.96 150.00 = I *******..************************YARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED 15 8ASED ON THE RCFC&WCD FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I ******......******************..******************************...********* t '*'* PEAK FLOW RATE TABLE -- STREAM RUNOFF Tc I NTENSI TV NUMBER (CFS) (MIN. ) (I NCH/HOUR) 1 37.21 8.33 3.846 2 38.44 10.43 3.400 I ,I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA(ACRES) = 8.33 ESTIMATES ARE AS FOLLOWS: 37.21 TC(MIN.) = 13.60 **************************************************************************** I FLOW PROCESS FROM NODE 150.00 TO NOllE 160.00 IS COIlE = 12 ." ---.-------....._~~-------------------------_._----------------.--_..._----- >>>>>ClEAR MEMORY BANK # 1 <<<<< :11I============================================================================ . .*****************.*.*.***************************************************** '1-- ..~:~.~~~~:~~-~~~.~~~:-...~~~:~~-~~-~~:----~~~:~~-~~.~~:-:--~~--------.: >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 'II............................................................................ FLOW PROCESS FROM NOOE 180.00 TO NOOE 182.00 IS COIlE = 13 11- -.-...--.-------------......-..-----------------.-.....---------------....-- >>>>>ClEAR THE MAIN-STREAM MEMORY<<<<< - ============================================================================ f*************************************************************************** FLOW PROCESS FROM NOllE 182.00 TO NOllE 190.00 15 COIlE = 21 .-----............-------.----......---------------------.....----------.-.. I~-, >>>>>RATIONAl METHOD INITIAL SUBAREA ANAlYSIS<<<<< , ~=========================================================================== - ASSUMED INITIAL SUBAREA UNIFORM 'I' ;~I;l~:[~~::~~:';~~~~~:~~:I~N C~:~~~~l...2 UPSTREAM ELEVATION = 1136.00 DOWNSTREAM ELEVATION = 1119.00 I' ELEVATION DIFFERENCE = 17.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.080 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT .8231 " SOH CLASSIFICATION IS IIBIl SU8AREA RUNOFF(CFS) = 5.02 TOTAL AREA(ACRES) = 1.20 TOTAL RUNOFF(CFS) = 5.02 I 5A ~ ~1 ;1Il........................................................................... FLOW PROCESS FROM NOOE 190.00 TO NOOE 192.00 IS COOE = 61 'II-.~~~~~~~~~~~-~~~~~~-;~~-~~~~~~-~;~~-~~~~-~~~~~~~:::::---.---------------- >>>>>(STANDARD CURB SECTION USED)<<<<< !II==~;;;::::=:::::;;~:;;::;:=:=~~;~~:;==~~:;;::::=:::::;;~:;;::;:=:=~~::~~~== STREET LENGTHCFEET) = 1450.00 CURB HEIGHTCINCHES) = 6.0 STREET HALFWIOTHCFEET) = 20.00 I I DISTANCE FROM CROWN TO CROSSFALL GRAOE8REAKCFEET) = 15.00 INSIDE STREET CROSSFALLCDECIMAL) = 0.017 OUTSIDE STREET CROSSFALLCOECIMAL) = 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 I 12.04 ..TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREET FLOW MOOEL RESULTS USING ESTIMATED FLOW: STREET FLOW OEPTHCFEET) = 0.44 HALFSTREET FLOOO WIDTHCFEET) = 11.15 AVERAGE FLOW VELOCITYCFEET/SEC.) = 3.87 PROOUCT OF DEPTH&VELOCITYCFT'FT/SEC.) = 1.69 STREET FLOW TRAVEL TIMECMIN.) = 6.24 TcCMIN.) = 11.26 100 YEAR RAINFALL INTENSITYCINCH/HOUR) = 3.260 SINGLE-FAMILY{1/4 ACRE LOT) RUNOFF COEFFICIENT = .7906 SOIL CLASSIFICATION IS "B" I., SUBAREA AREACACRES) = 5.36 TOTAL AREACACRES) = 6.56 I i 13.81 18.83 SUBAREA RUNOFFCCFS) = PEAK FLOW RATECCFS) = I'.~' END OF SU8AREA STREET FLOW HYORAULICS: DEPTHCFEETl = 0.49 HALFSTREET FLOOO WIDTH{FEET) 14.43 FLOW VELOCITYCFEET/SEC.) = 4.15 OEPTH'VELOCITYCFT'FT/SEC.) = 2.04 LONGEST FLOWPATH FROM NOOE 182.00 TO NOOE 192.00 = 1630.00 FEET. 11***.**..................**..........................*..*.*.................. FLOW PROCESS FROM NOOE 192.00 TO NOOE 194.00 IS COOE = 81 l'~.------------------------------------._-----------.....---------------------- . >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITYCINCH/HOUR) = 3.260 SINGLE-FAMILYC1/4 ACRE LOT) RUNOFF COEFFICIENT = .7906 SOIL CLASSIFICATION IS "B" SUBAREA AREACACRES) = 5.73 I TOTAL AREACACRES) = 12.29 TCCMIN) = 11.26 'I 14.n 33.60 SUBAREA RUNOFFCCFS) = TOTAL RUNOFFCCFS) = ~....*...**...............*..............*..*...*..**.........****...**...... ~ FLOW PROCESS FROM NOOE 194.00 TO NOOE 200.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< '1[=====================================================~====================== ** MAIN STREAM CONFLUENCE OATA .. '-~* STREAM RUNOFF Tc I NTENS!TY AREA ,[ NUMBER (CFS) (MIN.) (INCH/HOUR) CACRE) 1 33.60 11.26 3.260 12.29 LONGEST FLOWPATH FROM NODE 182.00 TO NODE 200.00 = 1630.00 FEET. 1 .. MEMORY BANK # STREAM RUNOFF CONFLUENCE DATA .. Tc INTENSITY AREA l "Po ?3 -z$ III NUM8ER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 37.21 8.33 3.846 13.60 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 200.00 = 1810.00 FEET. II .................................WARNING.................................. . IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USEO IS BASED I ON THE RCFC&WCO FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ***.........********....***..........***.**********...************........ I I .. PEAK FLOW RATE STREAM RUNOFF NUMBER (CFS) 1 62.07 2 65.13 TABLE *'* Tc (MIN. ) 8.33 11.26 INTENSITY (INCH/HOUR) 3.846 3.260 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: _ PEAK FLOW RATE(CFS) = 62.07 Tc(MIN.) = 8.33 TOTAL AREA(ACRES) = 25.89 .1..***********.....**....******.....******..**.........*******...**..******* . FLOW PROCESS FROM NODE 200.00 TO NODE 210.00 IS CODE = 12 -- I >>>>>CLEAR MEMORY BANK # 1 <<<<< . =========================================================================== .(*.******..........****.......***.**..**.************..........**....**..... FLOW PROCESS FROM NODE 210.00 TO NODE 212.00 IS CODE = 31 -------------------...------------------------------------------------------ ~ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< -=========================================================================== ELEVATION DATA: UPSTREAM(FEET) = 1083.93 OOWNSTREAM(FEET) = 1080.73 1_' FLOW LENGTH(FEET) = 213.63 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 24.4 INCHES PIPE.FLOW VELOCITY(FEET/SEC.) = 12.18 ~ ESTIMATEO PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = I PIPE-FLOW(CFS) = 62.07 . PIPE TRAVEL TIME(MIN.) = 0.29 Tc(MIN.) = 8.63 LONGEST FLOWPATH FROM NOOE 100.00 TO NODE 212.00 = 2023.63 FEET. III............................................................................ FLOW PROCESS FROM NODE 212.00 TO NODE 220.00 IS CODE = 81 1_--------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< -, ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ,I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.774 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7045 SOIL CLASSIFICATION IS "BII SUBAREA AREA(ACRES) = 2.82 TOTAL AREA(ACRES) = 28.71 TC(MIN) = 8.63 BA - I SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = 7.50 69.57 **************************************************************************** I FLOW PROCESS FROM NODE 220.00 TO NODE 230.00 15 CODE = 31 ) ---.....---------------.--........-------------------.-.-------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< I >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< - -=========================================================================== ELEVATION DATA: UPSTREAM(FEET) = 1082.00 DOWNSTREAM(FEET) = 1075.00 I -z,o." I I FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE 15 22.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.07 ESTIMATED PIPE DIAMETER(INCH) = 33.00 PIPE-FLOW(CFS) = 69.57 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NOllE NUMBER OF PIPES I 0.25 Tc(MIN.) = 100.00 TO NOllE 8.88 230.00 = 2263.63 FEET. *******.*.*****************************************...********************** I I FLOW PROCESS FROM NOllE 230.00 TO NOllE 240.00 IS COllE = 81 - -------.--.........------------------------.....--..--------------......._-- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< II===~~~=~;::=::;:;:~~=;:;;:;;;~;;:~:;:~:;=:==;~;~:========================== SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8010 SOIL CLASSIFICATION IS "BIl SU8AREA AREA(ACRES) 1.19 TOTAL AREAIACRES) = 29.90 TC(MIN) = 8.88 CIA SU8AREA RUNOFF(CFS) = TOTAL RUNOFFICFS) = 3.54 73.11 II............................................................................ FLOW PROCESS FROM NOllE 240.00 TO NOllE 250.00 IS COllE = 31 ------------------------...._.........._-----.----....---------------------- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU 5UBAREA<<<<< >>>>>USING COMPUTER-ESTIMATEO PIPESI2E (NON-PRESSURE FLOW)<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ELEVATION OATA: UPSTREAM(FEET) = 1075.00 OOWNSTREAM(FEET) FLOW LENGTH(FEET) = 735.00 MANNING'S N = 0.013 OEPTH OF FLOW IN 39.0 INCH PIPE IS 30.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 10.49 ESTIMATEO PIPE DIAMETER(INCH) = 39.00 PIPE-FLOW(CFS) = 73.11 PIPE TRAVEL TIMEIMIN.) = LONGEST FLOWPATH FROM NOllE = 1068.00 I' NUMBER OF PIPES = I 1.17 T.(MIN.) = 100.00 TO NOllE 10.04 250.00 = 2998.63 FEET. ***************.......****.*........*********.***..........*********....**** 1- FLOW PROCESS FROM NOllE 250.00 TO NOllE 260.00 IS COllE = 10 - ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< II:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: FLOW PROCESS FROM NODE 260.00 TO NODE 262.00 IS CODE = 13 '1-----...--.--------.-..-----------.......-----------.----------------------- >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- II............................................................................ FLOW PROCESS FROM NOllE 262.00 TO NOllE 270.00 IS COllE = 21 --------...-..---------..-------------...........----------.---------------. I >>>>>RATIONAl METHOD INITIAL SUBAREA ANALYSIS<<<<< , ============================================================================ ASSUMEO INITIAL SU8AREA UNIFORM TC = K.[ILENGTH..3)/(ELEVATION CHANGE)]...2 INITIAL SU8AREA FLOW-LENGTH = 440.00 UPSTREAM ELEVATION = 1105.00 OOWNSTREAM ELEVATION = 1088.81 I ELEVATION OIFFERENCE = 16.19 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.763 SINGLE-FAMILYll/4 ACRE LOT) RUNOFF COEFFICIENT = .8020 I 16 - I '"J;P I SOIL CLASSIFICATION 15 "B" SUBAREA RUNOFF(CFS) = 1.B1 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) = 1.B1 ~........................................................................... FLOW PROCESS FROM NODE 270.00 TO NODE 280.00 15 CODE = 61 1I.-~~~~~~~;~;~.~;;~~;.;~~-;;~~~~.;;~~-;~;~-~~~~;~~~~~~~....-...-....-...... >>>>>(STANDARO CURB SECTION USEO)<<<<< II==~~:::~~::~~~~;~~~~;~:;;:;:~~~~:~::~~:~::~~:~~~~~;~~:~~~:;;=:=~~;:~~~== STREET HALFWIDTH(FEET) = 20.00 II DISTANCE FROM CROWN TO CROSSFALL GRAOEBREAK(FEET) INSIDE STREET CROSSFALL(OECIMAL) = 0.017 OUTSIOE STREET CROSSFALL(DECIMAL) = 0.050 = 15.00 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 I I --TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREET FLOW MOOEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.37 HALFSTREET FLOOD WIDTH(FEET) = 7.40 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.14 PRODUCT OF OEPTH&VELOCITY(FT'FT/SEC.) = 0.79 STREET FLOW TRAVEL TIME(MIN.) = 4.91 Tc(MIN.) = 13.59 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.940 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7818 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.00 TOTAL AREA(ACRES) = 2.60 4.60 6.41 4. l' I II' SUBAREA RUNOFF(CFS) = PEAK FLOW RATE(CFS) = I ENO OF SUBAREA STREET FLOW HYDRAULICS: . DEPTH(FEET) = 0.43 HALFSTREET FLOOD WIDTH(FEETl = 10.57 FLOW VELOCITY(FEET/SEC.) = 2.22 DEPTH'VELOCITY(FT'FT/SEC.) = 0.94 _ LONGEST FLOWPATH FROM NOOE 262.00 TO NOOE 2BD.00 = 1070.00 FEET. ~........................................................................... FLOW PROCESS FROM NOOE 280.00 TO NOOE 282.00 IS CODE = 81 (.-...-............-.......-..--.................-----............-.---.-... >>>>>ADDITION OF SUBAREA TO HAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.940 SINGLE.FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7818 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) = 2.10 TOTAL AREA(ACRES) 4.70 TC(MIN) = 13.59 I 4.83 11.24 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = ,********...***************...**********************.****.*************..... FLOW PROCESS FROM NODE 282.00 TO NODE 290.00 IS CODE = 10 ----.--......._------------------------------------------------------------- 1It=::::::::::::::::=:::~::=~~:::~=~::~=:::~::=:::~=:=~=:::::================= **************************************************************************** I FLOW PROCESS FROM NOOE 290.00 TO NOOE 292.00 IS COOE = 13 --------------------------------------------------------------------------- ,. >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< I Z.B - 35 '7\ "TRAVEL TIME COMPUTED USING ESTIMATEO FLOW(CFS) = 10.51 STREET FLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW OEPTH(FEET) = 0.40 HALFSTREET FLOOO WIDTHCFEET) = 9.28 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.28 PROOUCT OF OEPTH&VELOCITYCFT'FT/SEC.) 1.73 STREET FLOW TRAVEL TIME(MIN.) = 3.04 Tc(MIN.> 9.16 lOa YEAR RAINFALL INTENSITY(INCH/HOURl = 3.652 SINGlE-FAMllY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7997 SOIL CLASSIFICATION IS "BII SUBAREA AREA(ACRES) = 3.85 SUBAREA RUNOFFCCFS) = 11.24 S-B TOTAL AREA(ACRES) = 5.16 PEAK FLOW RATECCFS) = 16.11 111============================================================================ . *****.............*******..............************......**********......... I FLOW PROCESS FROM NOOE 292.00 TO NOOE 300.00 IS COOE = 21 .------------....------------------------------------------------------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< 1============================================================================ ASSUMED INITIAL SUBAREA UNIFORM Te = K*[(LENGTH**3)/(ELEVATION CHANGE))**.2 I INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 1145.00 DOWNSTREAM ELEVATION = 1106.00 ELEVATION DIFFERENCE = 39.00 100 YEAR RAINFALL INTENSITYCINCH/HOUR) = 4.557 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .8159 SOIL CLASSIFICATION IS IISI1 I SUBAREA RUNOFF(CFS) , TOTAL AREACACRES) = I 4.87 1.31 TOTAL RUNOFFCCFS) = 4.87 ...***..************....********.********.**.*****.***.....*.**.**.......*** 1II--~~~-~~~~~~~-~~~~.~~~----~~~:~~-~~-~~~_.._~~~:~~-~~-~~~-~--~~---------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SU8AREA<<<<< I >>>>>(STANDARD CURB SECTION USED)<<<<< . ============================================================================ UPSTREAM ELEVATIONCFEET) = 1107.00 DOWNSTREAM ELEVATION(FEET) = 1084.00 I STREET LENGTH(FEET) = 780.00 CURB HEIGHTCINCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 I OISTANCE FROM CROWN TO CROSSFALL GRADEBREAKCFEET) = 15.00 INSIDE STREET CROSSFALLCDECIMAL) = 0.017 OUTSIDE STREET CROSSFALLCDECIMAL) = 0.050 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 I I I I END OF SUBAREA STREET FLOW HYORAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOOO WIDTH(FEET) = 12.21 FLOW VELOCITY(FEET/SEC.) = 4.57 DEPTH'VELOCITY(FT'FT/SEC.) = 2.07 LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE 305.00 = 1110.00 FEET. I **********************************************************************.*..** I FLOW PROCESS FROM NODE 305.00 TO NODE 307.00 IS COOE = 81 ----------------------------.----------------------------------------------- >>>>>AOOJTJON OF SUBAREA TO MAJNLJNE PEAK FLOW<<<<< t=========================================================================== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.652 SINGLE-FAMILY(1/4 ACRE LOT) RUNOFF COEFFICIENT = .7997 I ~ '!JIV I SOIL CLASSIFICATION SUBAREA AREACACRES) TOTAL AREA(ACRES) = TCCMIN) = 9.16 IS "B" 1.61 6.77 4.70 20.B2 SU8AREA RUNOFFCCFS) = TOTAL RUNOFFCCFS) = I *********..*******....**.........**.......**.......******...****......****** I FLOW PROCESS FROM NOOE 307.00 TO NOOE 310.00 IS COOE = 11 -------.__...._______________........._________________e__.._....___________ >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< 11============================================================================ *. MAIN STREAM CONFLUENCE DATA *- I STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 20.82 9.16 3.652 6.77 LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE 310.00 = 1110.00 FEET. I .. MEMORY BANK # 2 CONFLUENCE DATA .. STREAM RUNOFF Tc INTENSITY AREA I NUMBER (CFS) (MIN.) (INCH/HOUR) CACRE) 1 11.24 13.59 2.940 4.70 LONGEST FLOWPATH FROM NODE 262.00 TO NOOE 310.00 = 1070.00 FEET. I .**......*********.....****......WARNI NG...................**............. . IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCO FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA I WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. , ..........****.***.****............*******.**........................**... I ** PEAK STREAM NUMBER 1 2 INTENSITY (INCH/HOUR) 3.652 2.940 FLOW RATE RUNOFF CCFS) 28.39 28.00 TABLE *'* Tc (MIN.) 9.16 13.59 I I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.39 TcCMIN.) = TOTAL AREA(ACRES) = 11.47 9.16 ....******.**..**.***..**...******..******.*****.*****.........**........... .1 FLOW PROCESS FROM NOOE 310.00 TO NOOE 312.00 IS COOE = 12 --------------------------------------------------------------.._-------.._- >>>>>ClEAR MEMORY BANK # 2 <<<<< 11I=========================================================================== **************************************************************************** ~-~~~-~~~~:~~-~~~-~~:_---~~~:~~-~~-~~:_---~~~:~~-~~-~~:_:_-~~---------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU 5UBAREA<<<<< lII:=:::::;;~~;:;:;~~;;;:;::;;:;;~::::~~:~~~~~:~~:;;:;::;;:;;;::::~~:;~~~==== FLOW LENGTH(FEET) = 375.00 MANNING'S N = 0.013 I OEPTH OF FLOW IN 24.0 INCH PIPE 15 15.4 INCHES PIPE-FLOW VELOCITYCFEET/SEC.) = 13.38 ESTIMATED PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW(CFS) = 28.39 I PIPE TRAVEL TIME(MIN.) = 0.47 Tc(MIN.) = LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE NUMBER OF PIPES 9.63 320.00 = 1485.00 FEET. I ~.B ~ 111**..******...********************************************...********..****** FLOW PROCESS FROM NOOE 320.00 TO NOOE 330.00 IS COOE = 11 1---------------------------------------------------------------------------- >>>>>CONFlUENCE MEMORY BANK # 1 ~ITH THE MAIN-STREAM MEMORY<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ** MAIN STREAM CONFLUENCE OATA .. STREAM RUNOFF Tc INTENSITY AREA NUM5ER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 25.39 9.63 3.553 11.47 LONGEST FLOWPATH FROM NOOE 292.00 TO NOOE 330.00 = 1455.00 FEET. ** MEMORY 5ANK # 1 CONFLUENCE OATA .. STREAM RUNOFF Tc INTENSITY AREA NUII5ER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 73.11 10.04 3.472 29.90 LONGEST FU)I/PATH FROM NOOE 100.00 TO NOOE 330.00 = 2995.63 FEET. I I II ******..*************...*********WARNI NG*******.......********..******.... I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USEO IS 5ASEO ON THE RCFC&WCO FORMULA OF PLATE 0-1 AS OEFAULT VALUE. THIS FORMULA I/ILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOI/. I ***************.***....*.***************...***********.........**********. I ** PEAK FLOI/ RATE TA5LE .. STREAM RUNOFF Tc INTENSITY NUM5ER (CFS) (MIN.) (I NCH/HOUR) 1 95.47 9.63 3.553 2 100.55 10.04 3.472 II COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOI/S: PEAK FLOI/ RATE(CFS) 100.55 Tc(MIN.) = 10.04 II==;:~:~;:;;~;~~;~::::~~===~~~~~============================================= TOTAL AREA(ACRES) = 41.37 TC(MIN.) = 10.04 I PEAK FLOW RATE(CFS) = 100.55 - ============================================================================ ============================================================================ 11 ENO OF RATIONAL METHOO ANALYSIS I I I I I I r-. I II I I I I I I I I I I I I I I I I I PALOMA de SOL DEVELOPMENT APPENDIX B LACDPW RD4412 Computer Output Storm Drain Hydraulic Analysis 11> IA COUNTY PUBLI C WORKS IIlROJECT: PALOMA DE SOL DEVELOPMENT, TRACT NO. 24183 DESIGNER: AG F/N: PALOMA_A.OA 110 L2 MAX Q AOJ Q LENGTH FL 1 FL 2 II: 2 20.0 20.0 CTL/TW 1075.73 ~ 80.00 1070.65 1073.27 0.00 30. 12 3 18.8 18.8 166.68 1073.27 1079.95 2 4 7.4 7.4 80.93 1079.95 1082.00 I I I I I 1 I I I I I I I I 0.00 30. 0.00 18. STORM DRAJN ANALYStS (INPUT) Lrru "A · o W 5 KJ KE KM LC Ll L3 L4 Al REPT: DATE: PAGE A3 PC/R04412.1 OS/20/99 1 A4 J N T"b-t, f,IM'I e-"I~~ i-ItrL. C1>1 a.....p.l~ WAA-j O. 3 0.00 0.00 0.05 O. 3 0.00 0.20 0.15 O. 0.00 0.20 0.15 o o 3 4 o o o o o. o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 O. O. 0.00 0.013 1}P ~ COUNTY PU8LIC WORKS lOJECT: OESIGNER: INE STORM DRAIN ANALYSIS PALOMA DE SOL DEVELOPMENT, TRACT NO. 24183 AG FIN: PALOMA_A.OA Q 0 W ON DC FLOW SF-FULL V 1 V 2 NO ICFS) IIN)(IN) 1FT) (FT) TYPE (FT/FT) (FPS) (FPS) III 1 HYDRAULIC GRADE LINE CONTROL = 1075.73 .: 20.0 30 0 0.89 1.52 FULL 0.00238 18.8 30 0 0.81 1.47 SEAL 0.00210 X = 0.00 XIN) = 147.34 XIJ) = 14 Fl 1 1FT) FL 2 1FT) HG 1 CALC HG 2 CALC 4.1 4.1 1070.65 1073.271075.73 1075.93 3.8 6.3 1073.27 1079.95 1075.99 1081.42 5.75 FIJ) = 8.40 OIBJ) = 0.81 O(AJ) = 7.4 18 0 0.70 1.05 SEAL 0.00496 4.2 5.6 1079.95 1082.00 1082.55 1083.05 X = 54.06 X(N) 0.00 XIJ) = 57.52 F(J) = 2.16 D(BJ) = 0.77 DIAJ) = . I I I I I I I I I I I I o 1 (FT) 5.08 2.66 2.72 1.47 2.50 2.60 1.41 o 2 1FT) REPT: OATE: PAGE PC/RD4412.2 05/20/99 1 TW CALC TW CK REMARKS 0.00 0.00 0.00 0.00 HYD JUMP 1.05 1083.63 0.00 HYO JUMP "J:;'" I I v 1, Fl 1, 0 1 AND HG 1 REFER TO DOWNSTREAM END V 2, FL 2, 0 2 AND HG 2 REFER TO UPSTREAM END X - DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONDITION X(N) OISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER DRAWOOWN OR BACKWATER X(J) - OISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) THE COMPUTED FORCE AT THE HYDRAULIC JUMP D(BJ) - DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SIDE) D(AJ) - DEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE I I I EOJ 5/20/1999 14:21 I I I I I I I I I I I I I I ~ III COUNTY PU8LIC WORKS STORM DRAIN ANALYSIS (I NPUT) I PROJECT: PALOMA DE SOL DEVELOPMENT TRACT NO. 24183 IifSIGNER: AG F/N:PALOMA_8.0AT lit L2 MAX Q ADJ Q LENGTH FL 1 FL 2 CTL/TW 0 I 2 2 48.4 48.4 16.00 1075.00 1077.20 ~ 3 48.4 48.4 44.00 1077.20 1077.77 I 4 47.2 47.2 56.48 1077.77 1078.30 5 47.2 47.2 165.74 1078.30 1080.73 I 2 6 33.2 33.2 213.63 1080.73 1083.93 7 24.3 24.3 20.85 1083.93 1084.25 I 8 12.0 12.0 46.70 1084.25 1085.18 2 9 I 10 .11 ~ 12 113 1.2 1.2 39.73 1078.65 1081.32 4.6 4.6 37.79 1081.98 1084.52 9.5 9.5 27.44 1081.98 1082.39 8.9 8.9 50.00 1085.18 1085.72 7.5 7.5 30.82 1085.50 1088.58 2 14 5.0 5.0 72.47 1085.50 1088.58 I I I I I I I I LAM e," W S KJ KE KM REPT: PC/R04412.1 DATE: OS/20/99 PAGE 1 LC L 1 L3 L4 A 1 A3 A4 N J 1081.36 -'7' iajc,1Il ~ ~iSiM tt6L {if t. ..1." . J <n1' "'FI1I1./fA ......--, 0.00 36. O. 3 0.00 0.00 0.05 0.00 36. O. 3 0.00 0.00 0.05 0.00 36. O. 3 0.00 0.00 0.05 0.00 30. O. 3 0.00 0.00 0.05 0.00 30. O. 3 0.00 0.00 0.05 0.00 30. O. 3 0.00 0.00 0.05 0.00 24. O. 0.00 0.20 0.15 0.00 18. O. 0.00 0.20 0.15 0.00 18. O. 0.00 0.20 0.15 0.00 18. O. 0.00 0.20 0.15 0.00 18. O. 0.00 0.20 0.15 0.00 24. O. 0.00 0.20 0.15 0.00 24. O. 0.00 0.20 0.15 o o o o o o 3 4 5 6 7 8 o o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 9 o O. 45. O. 0.00 0.013 o o O. O. O. 0.00 0.013 10 11 O. 45. 45. 0.00 0.013 12 o O. 45. O. 0.00 0.013 o 13 14 O. 45. 45. 0.00 0.013 4 6 6 7 8 8 o o o o o o o o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 o o O. O. O. 0.00 0.013 '?!' IIlA COUNTY PUBLIC WORKS 1 PROJECT: PALOMA DE SOL DEVELOPMENT TRACT NO. 24183 lIiESIGNER: AG f/N:PALOMA_B.DAT IIINE Q 0 W ON OC fLOW Sf-fULL V 1 V 2 fL 1 fL 2 NO (CfS) (IN)(IN) (fT) (fT) TYPE (fT/fT) (fPS) (fPS) (fT) (fT) 11 12 3 14 16 I: II 14 9 I STORM DRAIN ANALYSIS PC/RD4412.2 05120/99 1 REPT: DATE: PAGE HG 1 CALC HG 2 CALC o 1 (fT) o 2 (fT) TW CALC TW CK REMARKS 5 HYDRAULIC GRACE LINE CONTROL = 1081.36 48.4 36 0 0.90 2.26 fULL 0.00527 6.8 6.8 1075.00 1077.20 1081.36 1081.48 6.36 4.28 0.00 0.00 48.4 36 0 1.74 2.26 fULL 0.00527 6.8 6.8 1077.20 1077.77 1081.48 1081.75 4.28 3.98 0.00 0.00 47.2 36 0 1.91 2.24 fULL 0.00501 6.7 6.7 1077.77 1078.30 1081.82 1082.14 4.05 3.84 0.00 0.00 47.2 30 0 1.95 2.26 fULL 0.01324 9.6 9.6 1078.30 1080.73 1081.42 1083.68 3.12 2.95 0.00 0.00 33.2 30 0 1.49 1.96 fULL 0.00655 6.8 6.8 1080.73 1083.93 1085.13 1086.57 4.40 2.64 0.00 0.00 24.3 30 0 1.22 1.67 fUll 0.00351 5.0 5.0 1083.93 1084.25 1086.94 1087.04 3.01 2.79 0.00 0.00 12.0 24 0 0.85 1.24 fULL 0.00281 3.8 3.8 1084.25 1085.18 1087.37 1087.53 3.12 2.35 1087.80 0.00 HYORAULIC GRADE LINE CONTROL = 1081.78 1.2 18 0 0.21 0.41 SEAL 0.00013 0.7 3.1 1078.65 1081.32 1081.78 1081.73 X = 24.37 X(N) = 0.00 X(J) = 37.82 f(J) = 0.21 D(BJ) = 0.31 O(AJ) = 3.13 0.41 1081.90 0.53 0.00 HYD JUMP II 6 HYDRAULIC GRAOE LINE CONTROL = 1084.41 6 HYORAULIC GRADE LINE CONTROL = 1084.41 111 110 I I 7 112 I I 4.6 18 0 0.42 0.82 SEAL 0.00192 X = 14.19 X(N) = 0.00 X(J) = 2.6 4.6 1081.98 1084.52 1084.41 1085.34 16.51 f(J) = 1.44 D(BJ) = 0.49 O(AJ) = 2.43 0.82 1085.74 1.32 0.00 HYO JUMP 9.5 18 0 0.96 1.19 fULL 0.00818 5.4 5.4 1081.98 1082.39 1084.41 1084.70 2.43 2.31 1085.24 0.00 HYORAULIC GRADE LINE CONTROL = 1086.76 8.9 18 0 1.03 1.15 SEAL 0.00718 5.0 5.5 1085.181085.721086.761087.02 X = 21.01 X(N) 0.00 1.58 1.30 1087.58 0.00 ~o ~ COUNTY PUBLIC WORKS STORM DRAIN ANALYSIS REPT: PC/RD4412.2 DATE: OS/20/99 PAGE 2 ~OJECT: PALOMA DE SOL DEVELOPMENT TRACT NO. DESIGNER: AG F/N:PALOMA_8.DAT 24183 _~E 18 Q 0 ~ ON DC FLO~ SF-FULL V 1 V 2 CCFS) CIN)CIN) CFT) CFT) TYPE CFT/FT) CFPS) CFPS) FL 1 (FT) FL 2 CFT) HG 1 CALC HG 2 CALC o 1 (FT) o 2 CFT) T~ CALC T~ CK REMARKS HYDRAULIC GRADE LINE CONTROL = 1087.20 13 7.5 24 0 0.43 0.97 PART 0.00110 13.3 5.0 1085.50 1088.58 1085.97 1089.55 0.47 0.97 1090.01 0.00 II II 8 HYDRAULIC GRADE LINE CONTROL = 1087.20 14 I 5.0 24 0 0.44 0.79 PART 0.00049 X = 0.00 XCN) = 71.59 X(J) = 1.8 4.4 1085.50 1088.58 1087.20 1089.37 1.70 0.79 1089.72 8.54 FCJ) = 1.60 DC8J) = 0.44 D(AJ) = 1.30 0.00 HYD JUMP II I II II II II II II II II II II f>t. \ I v 1, FL 1, 0 1 AND HG 1 REFER TO DOWNSTREAM ENO V 2, FL 2, 0 2 AND HG 2 REFER TO UPSTREAM ENO X . DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HG INTERSECTS SOFFIT IN SEAL CONOITION X(N) DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE WATER SURFACE REACHES NORMAL DEPTH BY EITHER ORAWOOWN OR BACKWATER X(J) DISTANCE IN FEET FROM DOWNSTREAM END TO POINT WHERE HYDRAULIC JUMP OCCURS IN LINE F(J) THE COMPUTED FORCE AT THE HYDRAULIC JUMP DCBJ) DEPTH OF WATER BEFORE THE HYDRAULIC JUMP (UPSTREAM SlOE) DCAJ) - OEPTH OF WATER AFTER THE HYDRAULIC JUMP (DOWNSTREAM SIDE) SEAL INDICATES FLOW CHANGES FROM PART TO FULL OR FROM FULL TO PART HYD JUMP INDICATES THAT FLOW CHANGES FROM SUPERCRITICAL TO SUBCRITICAL THROUGH A HYDRAULIC JUMP HJ @ UJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE UPSTREAM END OF THE LINE HJ @ DJT INDICATES THAT HYDRAULIC JUMP OCCURS AT THE JUNCTION AT THE DOWNSTREAM END OF THE LINE I I I I EOJ 5/20/1999 15:55 I I I I I I I I I I I I I I 1>0..7/ I I I I I I I I I I I I I I I I I I I PALOMA de SOL DEVELOPMENT APPENDIX C Inlet Sizing A"tJ ~.. "..,-~. ~ ,--,oo .._..._. _.. .._ ...~-.,~~~_.- -.--..,--"... ,,'._--_.... ....,,'-....---..--- -.--...., ._ _._~,_" ........ c __.... _.. _ __' _....... .. ...' _ n....'_ '___ .. '_, _.,_,~_...' _ _0_ __ '''-, ~_'~"_' __. ....'n..._.... "'_"_"_ _ "... ".. __ .. ___. ___.,_.________""^~c__""'~.___~....-~___._.,....~.,,_~ .",..-_"',~.i~b*""'...,."""."'"_"'.c.".._...:c"'='Jo_:"~~. ."" ..._~__, u. ___...~......_~ ~OJECT 15100006 I HEC12 Version: V2.30 , I User SIN: 77010134 Run Date: 05-19-1999 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- IIILET NUMBER 1 LENGTH 21.0 TOTAL PEAK OISCHARGE = 20.84 (cfs) ----:> IIUTTER SLOPE = 0.0560 fT/fT STATION ~b:iYl'a lA, zA I 4-A PAVEMENT CROSS SLOPE = 0.0200 FTIFT SPREAO W WIT SW SW/SX Eo a S'W SE 1115.99 2.0 0.13 0.0200 , .0 0.30 4.0 0.167 0.070 XXXXXXXXXX CUR8 INLET ON A CONTINUOUS GRADE XXXXXXXXXX I REQUIRED LENGTH (ft) = 55.4 EffICIENCY= 0.58 CfS INTERCEPTEO= 12.00 CfS CARRYOVER= 8.84 -? -ro I>> lei N~. 2. II II II II I II I I II I II I I ~ I ~========================================================================== INLET NUMBER 2 LENGTH 21.0 STATION I TOTAL PEAK OISCHARGE = 8.B4 ecls) -7 .{'rnt1 (,de+- No. '2. GUTTER SLOPE = 0.0560 FT/FT ~READ W WIT SW 11.59 2.0 0.17 0.0200 PAVEMENT CROSS SLOPE = 0.0200 FT/FT SW/SX 1.0 Eo . 0.40 4.0 5'W SE 0.167 0.086 I XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH eft) = 34.1 EFFICIENCY= 0.B2 CFS INTERCEPTEO= 7.25 CFS CARRYOVER= 1.59 -> -10 I I I I I I I I I I I I I I Ink+ No. h A.6 I 1=========================================================================== NLET NUMBER 3 LENGTH 21.0 STATION I TOTAL PEAK DISCHARGE = 5.24 UTTER SLOPE = 0.0560 FT/FT (cts) -7 -ten-l #{ht(~4 3ft PAVEMENT CROSS SLOPE = 0.0200 FT/FT IPREAD 9.53 W 2.0 WIT SW 0.21 0.0200 SW/SX 1.0 Eo . 0.47 4.0 S'W SE 0.167 0.098 I XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX RECUIRED LENGTH (ft) = 25.4 EFFICIENCY= 0.96 CFS INTERCEPTED= 5.02 CFS CARRYOVER= 0.22 -7 +0 Inlef No. ~ I I I I I I II I I I I I I I * I 1========================================================================== LET NUMBER 4 LENGTH 21.0 STATION ITOTAL PEAK OISCHARGE = B.86 (cfs) -) -h-1n1 5ntba.rf4 6, A TTER SLOPE = 0.0050 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT IREAO 8.25 W 2.0 WIT SW 0.11 0.0200 SW/SX 1.0 Eo a 0.27 4.0 S'W SE 0.167 0.064 I XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH (ft) = 19.7 EFFICIENCY= 1.00 CFS INTERCEPTED= 8.86 CFS CARRYOVER= 0.00 -') I DO ../. M..-l?(('fpf I I I I I I I I I I I I I I ~'\ I 1=========================================================================== NLET NUMBER 5 LENGTH 21.0 STATION j;m1 ~k.rta 7A 1 TOTAL PEAK DISCHARGE = 9.47 (cfs) ---7 GUTTER SLOPE = 0.0050 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT IPREAD 18.71 W 2.0 WIT SW 0.11 0.0200 SW/SX 1.0 Eo a 0.26 4.0 S'W SE 0.167 0.063 1 xxxxxxxxxx CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH (ft) = 20.5 EFFICIENCY= 1.00 CFS INTERCEPTED= 9.47 CFS CARRYOVER= 0.00 -, ,C>tJ "/0 I I 1 1 I I I I I I 1 I I I IttkrC~ ~~ I 1=========================================================================== NLET NUMBER 6 LENGTH 14.0 STATION 1 TOTAL PEAK DISCHARGE = 2.90 (cis) -'") ~ fnlcf fJ,;-PA~~ Alz,. 2 (M1d 3, GUTTER SLOPE = 0.0050 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT IPREAD 12.00 W 2.0 WIT 0.17 sw 0.0200 SWlSX 1.0 Eo a S'\l SE 0.167 0.084 0.39 4.0 1 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH (ft) = 10.5 EFFICIENCY= 1.00 CFS INTERCEPTEO= 2.90 CFS CARRYOVER= 0.00 I I I I 1 1 I I I I I I I I ~o.. IIROJECT 15100006 HEC12 Version: V70112.2 User SIN: 77010105 Run Oate: 05-20-1999 . .-=========================================================================== NLET NUMBER 7 LENGTH 21.0 STATION TOTAL PEAK OISCHARGE = 13.62 IluTTER SLOPE = 0.0100 FT/FT (cfs) PAVEMENT CROSS SLOPE 0.0200 FT/FT . SPREAD AT A SLOPE OF .010 (ft./ft.) IS lB.83 (ft.) . XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC. LENGTH = 21.09 H = 0.750 DEPTH OF WATER = 0.43 SPREAD = 21.43 II II II II II II I I II I II I I ~ I 11=========================================================================== "NLET NUMBER B LENGTH 14.0 STATION II TOTAL PEAK DISCHARGE = 22.51 (cfs) GUTTER SLOPE = 0.0100 FTIFT PAVEMENT CROSS SLOPE = 0.0200 FTIFT II SPREAD AT A SLOPE OF .010 (ft./ft.) 15 22.73 (ft.) I XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC. LENGTH = 14.09 H = 0.750 OEPTH OF WATER = 0.78 SPREAD = 39.21 I I I I I I I I I I I I I I ~\