Loading...
HomeMy WebLinkAboutDrainage Study :1 II I I :1 I I I I I I I I I I I I I I f111 RECEIVED SEP 1 0 1999 CITY OF TEMl:liUi.A ENGINEER1NG DEPARTMENT 27aJ7 27431 Enterprise Circle West Temecula, CA 92j90-4833 Tel. (909) 676-7000 Fax (909) 699-7324 e-mail: tpc@pe.net VAIL RANCH COMMERCIAL CENTER DRAINAGE STUDY (Hydrology & Hydraulic Calculations) Professional Engineering Services Since 1976 \ I :. '. . . I . . . I I I . . . . . . I SUBJECT: PROJECT: SUBMITTED TO: CLIENT: FILE: PREPARED BY: CHECKED BY: Drainage Study . Hydrology and Hydraulic Calculations Vail Ranch Commercial Center City ofTemecu1a Public Works Department Landgrant Development 12625 High Bluff Drive, Suite 212 San Diego, CA 92130 508-012.00 Joe Reyes Won Yoo Z- I . I . I I . I I I I I . I . I . I I I TABLE OF CONTENTS SECTION PAGE I. SUMMARY II. INTRODUCTION m. MAPS AND PLATES L Vicinity Map 2, Rainfall Intensities Calculations 3. RCFC & WCD Discussion for 100 Year- 24 Hour Precipitation Overlay 4. Plate E-5.6 with Overlay (100 Year - 24 Hour Precipitation) 5. Pate D-4.3 (2 Year - 1 Hour Precipitation) 6. Plate D-4.6 (Slope ofIntensity Duration Curve) 7. Hydrologic Soils Group Map for Portion of Murrieta 8, Hydrology Map Tract 28924 IV.' RATlONJ\l, HYDROLOGY STUDY (100 YEAR STORM) V. RATIONAL HYDROLOGY STUDY (10 YEAR STORM) VI. HYDRAULIC CALCULATIONS 1. Line "A" 2. Line "B" 3. Line "c" VII. CATCH BASIN CALCULATION L C.Sasin @ S' L Y Via Rio Temecula 2. C.Sasin @ N' L Y Via Rio Temecula 3. C Basin @ Country Glen Way 3 I I I I I . I I I I I I I I I I I I . I. I I. SUMMARY '\ I I I I I I I I I I I I' I I I I I I I I. SUMMARY' Vail Ranch Commercial Center Project lies just north of Temecula Creek channel and east of an existing double 8'x14' box culvert constructed by Assessment District No, 159, The existing box culvert has been designed and was constructed to handle the Q100 storm runoff generated from the project. Based from the results of the Hydrology study and hydraulic calculations, the proposed pipes connected to the existing pipe systems can adequately handle Q1 00 year flows, The results are presented in Section N, V, and Vl, 5. I II I I I I I I I I I II . II. INTRODUCTION I II I I I I I I I I I (p I I I I I I I I I I I I I I I I I I 'I II. INTRODUCTION: 1. PROJECT DESCRIPTION: Vail Ranch Commercial Center is located in the City of Temecula bounded by County Glen Way to the West, Redhawk Parkway to the east, State Route 79 south to the north, and Via Rio Temecula to the South. The project is approximately 33 acres of commercial site and is being developed in three phases, Existing shops, restaurants, and supermarkets comprises Phase I development of the project, Phase II comprises the proposed Steinmart and Shop E buildings, Phase III comprises the remainder of the proposed development. Phase I development is comprised of drainage basin areas H, I, J, K, L and a portion of Area B as indicated in the Hydrology Map, Phase I development is currently draining into an existing private drainage system and is tributary to the existing box culvert, Phase II development intends to complete the drainage system in anticipation of the remaining site being graded and improved. 2. PURPOSE OF THE STUDY The purpose of the study is to verify and identify the amount of drainage flows generated by Phase II and III development The study is focused on Basin Areas A, B, C, D, E, F, and G, The results of the Study are presented in Section N and Section V, 3. DESCRIPTION OF ANALYSISIMETHODOLOGY Hydrology The 10- and 100-Year storm rational method hydrology was prepared using Civil CaddlCivil Design: Software, 1992 Version 3.3, The hydrology study control information, Le, 2-year - 1 hour precipitation, 100-year - 24 hour precipitation, slope intensity duration curve and hydrologic soils map for Pechanga were obtained from Riverside County Flood Control and Water Conservation District (RCFC & WCD) 1978 Manual, which is included in Section III of this report. The rainfall intensities were adjusted to reflect the changes using RCFC & WCD overlay. Calculations are presented under rainfall intensity calculations in Section III, Hydraulics Q 100 flows from the resulting Hydrology Studies were used to analyze the sizes and the hydraulic grade lines of the proposed storm drain pipe, A value of n=O,014 was used to determine the HGL, The resulting HGL indicates that the storm drain system can adequately handle flows using RCP, The analysis were performed utilizing the Los Angeles Water Surface Profile Program Package, 1997, Ver, 9,7. The resulting figures are presented in Section Vl, 1. I I I I I I I I I I I I I I I ~ I I I Catch Basin Calculation Results of the hydrology analysis, the street flows were collected at catch basins using QI00 flows, City of Los Angeles Department of Public Works formulas (design charts U-13 and LL-14) were used to design catch basin openings, The results are presented in Section VII of this report, ~. I I I I I I I I I I I I, I I I I I I I III. MAPS AND PLATES 0... ~ / ~ - ~I~ : !~I ~(~IJI\lH l!l~~~ i~ (, I 1- ., 1 \ I I . I ..:.....~. J "l~,~. -........... .~4. ....--.. ~ t""'" o n ~ ... o z ~ ;I> ~ z o -l d en ~ r m 0' .....\ ;i ! , , , , , I / \ ' '...-...-,1 ( .. .1 ...- ';f;. :11 --_ ,V '. 1 .... -I ..<! , ~ + I ~ "" ~ ...... "C - '" ,." ;0 '" ;E :;;: ~ :;:: ;:j '" ~ ~ ~ .----- m X ::r: l:ll '=i ...... I I I I I I I I I I I II I I I II I I II I I RAINFALL INTENSITIES CALCULATIONS 1 00 Year - 24 Hour (using RCFC overlay on Plate E-S,6) = 6,0" 100 Year- 6 Hour (adjusted per RCFC factor ofO,S7) 6,0 x O,S7 = 3,42" 100 Year - 3 Hour (adjusted per RCFC factor of 0.38) 6,0 x 0.38 = 2.28" 100 Year- 1 Hour (adjusted per RCFC factor of 0.20) 6,0 x 0.20 = 1.20" 2 Year - 1 Hour (Plate D-4.3) = 0,57" Slope - Intensity Duration (plate D-4,6) = 0,55" . \\ I " I, , ,J--..\ I I I ::: ... 85~ ..~ I ::: ii. ... 000 ....~2. I .;:::: " :::: .....1 I ~1~1 I 1"( I I I I I I I ._J _, I 50,m IGO LjCJ>.-t:... \13r~"tJD Co ttQVe... Pc)//'JT T2AIA'FALl-:,UAU;e:, .tvtvtJ -n\c \:iOfu.-(€'I'" rnl'--PS \(AR-\'C:D :50'06.Tt.-rVTIA\..'--'1 FiGGIVI i2-GC~ Dl/'J&, .:$'H>-TlOr--i ~t>-~, :DUE: 10 n~ LtM\~ NAOU 1 01=' ~ I-'t0IG\ 'CIJiL/>.TIDtJ DATA AU~ILABLt::: AND SJ.-\OfL' Lc:T0SnlS cr: fcB:'C)(2. D I \T t,-N.~ DCC.I!::H::..-b 10 VnU2-E:' i2A\70S IQ .Dt;I\::..r~IN'E' 1131 A"-'JD <6 Iloue U,t?LUL'S. '!?IX- HDvl?.. p{)INr t2A li,/FflL-L.. /1IIlP t/~t.(,I[.5 C<Joz-c CC/-fr-"/:,e.t'/) ,0 24 \-\oJc... Ai"".. VAUJC-:;'. ~'t;Sc 12AT)~ bl D NeT CC/--1PAp-'Z FI'o.\!C'U.eL'.1 Wllr\ MD..f' l2..t>..\1~ Q~ ~;;T1'-.\l6Ti(-AL ~A.TI\:)':;'. STtrr I c: . . I . ' (2/.',"'/OS PrcCt/c[) 'T?:) COR-E-e-LATC VCiC,? l--1LZ-L- t/U(TJ+ mAP T2f,T/OS . 11\(: T'..0D Sl"1>..TI()N~ WI~ 1l-\e:: LO",,'G,,-r~ U:: ~~C,,-!,\:::.. or I:;U.O,:c,c;, J (EJ.,:S/AfCi.ff: .sD~ /1;,;u tJJII.,,{H~_-:;'-'"Z-) !/./C12-E: t:11r~'CAJ f:,..s ~t>.\l.I,t..JG ~c- rnOST R.C.?~-::'CNI'A.TI'.jC !2.ATlC:s rCL -rt\c :::"1')0"1 !\l=-Cb. II1JCLVDII,J<s l2-ATlCs 6c''T1,....J\:..~ 'TI\(, 11.0 AND- ~ +\otJi::. R-.~TlO~, T~ FQLLCUJI"";q 1,31/AND Co H00iC 1ZA.\lC~ 10 \"\-\1;:: 24- HQV~ DOINT (2.A.I/J Ft>.LL .20 .38 .57 1:24- 3:Z4- l.o : 24 . . \r" '\ , ''''"""",,,,'W; ^~., . ~"""~"~ ....,,~.. '''''''"'''"'K~'"""r- - ~';, !' 'l~, .... :~~":.(Ct.:--{~ ~;r-1lt:/~.1. f l..-, ftt:',l~';~I\'..:;)fit:.:.. " ~," /~ ~~ ;1\\1;' ~ ,:. .::;.. _ -~ ~l' 1'-' I. -:- '-,1 .ll]:~If;~~ :u ') lr <Y :l'tilZ~:'~,t~ ,~~,.,;~~Ll\!:;'<~:i}:'v'~i~~1.~:rc., ~1),;'~i(,~:"'-~f;')~::~,~k~L': "'IJ11; ~)'M \, ,.-.-' f '111'", --j~1 r~ ""' 1,': 0'1:',:' ...... -- ,. :{~.r~}~~...:2.i.I..:.~. ~l \j':J'''''.'''' 'f..~li:~~l~"..:~" ,,~ "....:u~~li:-."Plf\N < D:;: .... <'\....k-' ~ ~'1' '\ t, ~~ q ,~c~'~.\'(";' <-J~," "I ,'" J' ',':' '! t "l,.;,f:~' (."'..,.;' ....:,,!' ~~-<t' ~~"'~~ ,'. "'1J~'!I!,l:~"ry'~>~' ~~r:;~,,<' :!,! ",~;;J; ,':.-)'1 ,,'," .~, " ,,"r -." '~j' , 't',",., ,,; ::u' . ~ "r.... 'I "., lC.. .,...."' ~<", -< - ..c....'1>~..-:O v..' f " j 'Y'..",', ~l.'., l:':!' ' - .". '; L1 .'__ i -~" '.' ,'.~,.< :',,', '2'7"'y ,,,,' "'-:.::' -~ "".,~'.L'" ::""'1." ,."" '.',,-, ,~, " '" ' " I."_'~"_" J :--\. 1 .' ,{.,.... h"" J '.. ~,~'4 .':V,,":..-.:: :(1i, '1:';");,< '.f'! N.~' I'" - 1 "'. - '- - . iI ~" ';'"'l ,//,', '-~Bt,:Y~/f:fY'1~r~~,~:~~,,,~~.:];.~~ ';"'1~r\Jf;.~':'~'~: ':,:,I,~~'(,r,;f",~ :: ~ : ~~. 1-;-, ,'-;. 't:-:r."i'Ll {~ffh'~"t"l""~\:~; .' . ~.'''''';''' ........~,~.;::..l'"l~...\\./ 'i .'" :,f,."., 'i-';.:..1f-.;,L. ~~(.:~.\ ytif ~; ,~~ ,t. y.,1.~) Vy-;.o...: ::u ~1. 'I r ~;. ...: __' ,t '< ' ' '~:.:'~~-~~~"~-:'i~,~-,,,~~~s~; .~!:..~~ ';.':"~~ ~."i'f ~:}t, i.~;:';J r. fi?!'(""" ""ffi\""":.5~'{ ~r 1 .. \ . '~', . '..~. ~_" .~ ~ C Wr .: l, 10" 'I 0 ,: ~:] ,~ , ' J ,--~,' ',-1. -''''~''~ '. , - "'-~-l' . c:..::l ;,~"C""i!i" ',,' : " ,', " ~" 'r, 'fI'" '--r I' " I .... '. ~., "" .- __ .. ....,;, .., . . "":::;:1,.",\ " ,.-- , ... ,~ .' ~ I ...f _. .., . ~ .J\l.'I>)",,\:,:~<~,..... :1~~",.V\,.JJ:l,~j\'ib,'~"~';!~~ '.':::l)'./,';"f"'; ,,\~"~ ~,~.r.:~",':. LdJ-=~Jl<'" 1" .... ;$!I f;._.,1 .1::.:..,\... '.11. ;:>(";1,'.\, S.'> -:'-;}.",,"~;-} ;!:!.:,Wf~l:;:," ,,' :-,' ,'., fi:z.,,'-:y '. t~\e. '::. .Il" i~:' ....~;:.: ,.\ , "~" ,.',"""',1'." "').'\j,y,j -', t,,,~,,J,~',,\, ":;;;''''~~'i';.~'.4i\,~I'' ,,~Sii.~"~-"Y~-' II": ' ~~iC.'''' 'Il... ~~.~ .. ijl; ~f.""" .,' _.JI;.::I"Jl. 'J :u. 'I r ,,'" ,-' -., . "';" 'l' hl' ", :~~I'K'!'1""'"'' ,1( ,,,,,~""'1, ' " ;"(1,-" , , '," '.1 "II :u m ~ ~.o"','" J, :/;.~ ,j ;':.; 'j' . > \~~~f.:!'~ _ 'J"" ~ " ~\ ~1 _~~."~, -, "iii3 li'1~':.Q~'f:-i; ~': t:: rli'" [:'-;;.rJ 1". ,.1 J' ~ . II r.," ,,:; ~t , . ~-.-J : ~ ~ ~,' m ; . .".', ..t' i,", .... \:'~ 'to ~tl:'i:: 'j '~':l,..:, 'r.:~...'~~, ;;:'\.~;' ~ ..' , ,~ ~'~, . . !'~. :'Q:;;' . , 'rr ' . r,: '~_lf!:: ~ ':.:.', '~t ' :;; .':"[~<t:~/,,"~\~;:;\ '''It:'\K\%I~~~~d~~o/l '" ;'~~I'I~,;;~~~, ";.J~,:tl," dt-~.~ "'.'\"" ~ll~~;:'~"-";;'i ~;'-\,~:,J~~{'~ j";~"" '~!~ '.j"'~~\~ . r . ','1. ",., " '. H;~ ' ,.~....:~:..,. :t/1..iJ_;'11 J"'''} . ~,' f.' " Z ~, :J}".J....." I ,~,....\' 1 .' .,I'J~ It. h. IF'l:f l~O ~ ,.~ ;.!~. 3')" 'i ~ " \ I -~" I' , ~,'\:Y' II\."'" _.... ... '. . ,,~_.., hl'\ . T.- lJ,. - ','''. '\'" II ,\ . .,. \ ; ",' ",,\.,; "'~"~t'~''i.v''!~\'~'';'' ~'~"11'!:"'I":"""";' ". ' ~ \, ,. '~1i'rf.':;;!:?/j}:"'-'-'"'''' "'" _'. ~ " ~ \, ,I '" ,,~. 'I\.~ _"IL '.~,,:r '--.-'" '-'"1 -"'<;i\~'1"- ",,"'1i-.,..L~ ' I.;.... ... . :T. 'oJ,."/". ~ .,,~' r ' n;- J ~. ':. '\ ' -.1 ~,'.l:,:\.. '~I.'" J,,\ ~ ,:( ,~-::-~,f; r.:: ' ill . ' ~. ,.-:' '(0.:, "!.: z.. ' '.'. T. 'l .. I II ,i ; ',. ',' " > ,f6:,. <,\""" , -,Vj. ,~, . 13\1;;,. "0 C),;s;' '~ """ _,t' ~m,,~ (;1- ~,:~" d "~' . "',". ~j ,,- ~","-, 1'1-'-'" . ". , . 5' "')'" , """ h, ,'C,,,'j' ' '" " I '>0, "h " :". s-' ,,, \ ..,' d,. . ',: ~.. .', ~ -!I' ,-,"Ii;l' '~r,' ~t.~..;;.....,-,~~,;.~" '- '~I ,~', ,"ll"i-..... II" ~", '--;. '. I <.- ;!:\oICD'i.' I ,r.J'~ ,,:1' ' ."'c......-:~ I, .' . '''. '("1 (f Y,,' .cr~r 'l)-.'\'Ill~~ ' 'J J" ." .... (,1' . .':-' 'IL_ t ,Il t I, ( 1JI",,,~,,:,"'\I""':,!'~-i'>'c;, t'''''''''' _'4 ,'--'.(S' ',"".!" . ',"j';" )\;:~'-" " J:). "",..., " ,,'v.," .1 "'.,<; ,\.~Ul '" ~,." .... 'r' '''\ ,. . <,!l'tl ~ l.., ''''~~:'\ '7l\> '1'" ,. ... .'.:::: \;,,11 -,..........~... I'::. II 1'~ ~. ..... "It),. ';''S' i' ~l....::.-,~'N ..... >.l','l" '^"""-:~'\ ""~","',!,,, '.. .-;-..... I . ''''':'';i,,=' ~ I, ,. fi.~I.R; "..0:::: t, "" -\: ;;;/1...;" "'::,,~"', Y;~,!~-, 1),'" i,L-'" - ,,~~:H:~_> "~" I i'~I.. 'i.",~" ",J~, s>:R;:lfl~'" :fi~~~lt?i"l: .' ." :...~,.,~I//"i;'~~' Il;;.:;' .0> "~ ~ I .I'll,." ~;-- .~,., 'f,'1-..../ Ihi:~ r... ;:'~.~~4i :':l,..t, 'u;'i;:"-"-~"'~;"'R";->.r'~......'O, i:.!~<~}I,i, -,,,'~,' ~4'" ~.'f.' 'Vj.~'''i~~,'t-;i \ ';,' .\",;\"',~ ,.;. ; """,? ,. 0,1)1",' ~." \: ~~r- ._,~~~.-.I"'t. j~l ,.-~o/ ....~~ ..,~I\'.".;.::.~....:." ~.... - . ~ 'j :t~ _ . ~ / ~\ . ~,If.:'.;'--..-.' ",t~.;,.~, ",-,'--,"':"" '. ".. p,"",;"",,,,, ",,;,r;; ,~: .' ';;M''. "",', "";;t>:( -;1:-:-1' ,,'" ,r',' . IF:' -..' ~ ('2J::'''~''i~f.J:)~'(~' ,', '. ~l';!>;__,,~1<i:1fl.:') ',~' ;_. ~c i~d 't,':.f..z. 1 :' ~U1 ~<: ," "r,-lr."~~I', " ~1r/J'" ,..._I;i:-~"'\'I,' '4 . ...... 4 "'~ ) f. . .' I .'- IF- -, ,,-, _~ et'~" I, ,5.~.., I ~ _ ~l:;' !h'~'i~':"';" ~;/: "",~~\;,>,{:~ , ;~:-,,~:,~,:;Q r ~r" ~~:;~l~'~~~ffEl;;:~r/\:'... le-~I&/Jr,;!~1f.>'~..,.F.iJ' ~i;:~~'~I~~~~:~',~~~..:,MI. ~"~:~~ "'"V:g.,-,.,;, '~),"'1"'-'-~"" '"e,; '- '.i~l;;"";!;-.::""'X,o" " ,"-' _,: '. "":'f;."~;"="I";"I'''{f.i''n1~ ... ->i.1 ;.A.... ~ ~';'I ../r,'IJ,) ~ ~:\"f;"~" ,'~ ," ,'I.. ." ~' ';1 ":Pl";..,:, \ ...~ ~'&.';,~., r:;-.". "', ~".~.-, I,) -;~\ .r/ ' ff~b" h1 !It.; 'I:: JV\~~;~r~~;; <~~~7'\"'i~~, ~~ " . ~ ,;,:,~~:& ~11:~B~;;3,.,.,,:-~~~t~..i. ~j., ".7 ~ r -'I~~.l:(~?~~}18 ~.!~'~.: i'f,~:~ ~ iuf& ""kg'h,,!':I,,' '-~<:" ."~~,:\;~~, '~~~~;'P ,i,lr'"1.~'.~,"- ~~ '_ i or.\~ ~..$:,,~~fI,l1J'lo -:: ~\/:;~f;. . ,f:>:l' '. ,,)/ "~ ft \\''' ~l',~: '., .'~-, c<>< '10 :;;'--"'~' J' . -,' .' L~f' f "'\6,''''':" , lI'i''''' .,; I,' ~:i\~~:Ii ~\""il{-' ;u:':-~~.~ I;"" J\i.t",-:~ .~.".-~",",:: ~;~~ .r::~........... ~. 'pr':" ,w"'I"~ n)., ~ ..-_'>l:, ~ .. I 1..i"if: ~",. \'~1 ~h!.l~'tr~;"i J~'/_'J;. '-,.' ~'~r~j:'l ':((~'i:~'iJ~ )..t..~: . .... ,...r', ~~ ~ :.,*:\,: . ~~ . -:Y~ " '.. ': ~.'.. . -,,-:;rill .;I~~~, ~.,r.": ."!rl"j l~.. :I'/"~: ~~ .. . b =~ ';:, S ',,": ';--.\, . ~\' ~~' I \]~~,t.~ ~J\~ ~ ,,,, ,:~~,,~ ~q ~~~ :,. t' ,:-,,::-':~I.~ ~~~~ \-1! IW ' ,~~;/~: ~:' ",4, ""W ~i';~~~:' f',i"!'i,:1~J '," ," '. ",^'ll'J:;:N ~\ ., ," '''"j j"'! -- ..~:s!.'<"- "~~-l' '.' j~ >-'" 'J'i~I"'-""" "-,!,,' ',l.,' d'! ',"'" '",I~~ ,. ~ i. ~. ~_ ('1 ~ t :~_'i :;:..., ^~ , ," >-..~J::';'~<('" .' I ..1 r. f~. '.. ,,., ~)'.J/;';':',!.;-;.,:'l::\.~~~',.,.."~,/,7 '~,r"',~(" l...~'~- ~.!~ ~." ,~;.' t~",~~F= 7.J~:..~7i" ''l1f.!J,,;', Eti~, ~iffj.:;~,~~41:'! ~..~,'i.~_.~ '..~' ."....(,"r.~ 5..'11l.~ .-;::-'.~,--l-. . ~ --'- I~_ ___ . i' -.l-' ~~ \' \.' .~~~ """:<':/~l";l~'''iJ!i'.;.r .~"t,~ .~,,-~ "..:, '.,,- i'~' _ { . I' ( . :&'.' " r - ..' ~ ~. \., {~-:H;~.. 1\.';'~~'~" [f~:~'" ,;,\.~P~~"I::IoI. ....)0;". ~' ,I. c' ," -:" _ !,~ 'I\,,~'J~'~ J!i~, I, ,':' ~r'~f~~~\mt ,'., __;':, ~c~~p'J'}; ;"},,I ~, 1!~,. ''if''J.:::;.~:, t,!i. 'l:;~~l'I'J~'iZ-::,"::~: " ,':C" "'''.,01; ,'-....:Xi'i ~k ,~.' ," ~WI!l'~ ,.... .,1. ,1",,<,11, >, Q-Ioh.. "'~"'d; '" "-i"i'':''i' ~~.....,~",.:!('ft:t<""9t" ";~r ",...,:\'.t~'. "i'f.,'" "\ ~.. "pl" \.". ;. .. - .~j.{:'\-~(;t""'-!\" (/.V1>'\O'/ '\: I . .~1.~:)...8it~:il':.'.::~ ......;.-~,J 1""'~l.i~' ~i'*'\;':dll'':(''''\';;1~1 OJ' -...: I ~\..:.. \,1 ',-.' . ;\._1:'."" . j"1 . t ' I . . /' :z~.::.' '1:...,'.....: ',' ~ ~"1 - . " 'r,!- I"" ". d~~~/~. _ "I'};.... ~t" :~y'...)t:J; ~ ~,~..;, il.:; ,1.;:,,:,;->'. I. ,,\ ;~'l-.:;iJ\~, ;I> L -' """~ .pl" ;~ ~l",'JiG" j' d ':"~.:Jr;"',1 ;c'i' '" l ':\if,'\;'i,,/"~~;'(~$i{l:~).l~:: '..... -. p ')' '\, ';'. _I" 'i I , ' .". I . ' - ~.\'. ".I'lo .' . _, (' ~,. 'O/'H" ..~rl. (<;' . "~..!oo!.i'." -'ii""'.\B'~ -'/ ., ~. --"'~'rV.',,/ I \,;J, -"', I.!' / " ..... ~ ...,', .' ,'If. \'...J1.1\....:,. ..:'~." 1.(II't1 \, I . 1 J!!_~", I ."J 11 l ""r ~ .#~1'_.._.t... . r.-t,.' .."..:....Ln 0'\' '" _ ~ Ji'l..1"';'-:: ~'.. t.j...I(....',~' ._1, .,~, .J-7;''':'\.~~ J .'. .-'-~ ~I :"-_~~TLi ... -, ". .:t-~~,., 1'll("~'".F. .~,;rf'.fFi":Ill .Lll'~" !.i,l'" '.t.'A ,,~~:.?.:,,~ :' .i<', t : ~':~! ,. ~, ,Iff] I ' 1"1 ' ,~, '\ ~ '. I,' ~:A.. "All' , ~,," "'~. "~ ';. ~ ,";;"'$' ",(," " ," ;;;j'\~,l.' Ii:;;.. ,:;s'~ [I' ~!\~,ij~n~' <-"',>';I'I!!: \;'k')';'':' " " ~ ~, .. 't f ).r .t.::~ ~ \.:...~ r'. l' -.~ ........'t:,~ I~~,'t~. .~" U .tori.' '.,~ ,)< ~i r.'t'ir.::i I,' r. ':, 'I.:':,' ,I " .:~ " ""'/ '. ,.JI . ~ L-' ~. '. . _......-Iv .~.:.. ~,....-. ~~~~x .". ..t:..:,:.:. :.. (.,1 l \ '\~' ""'~I''''I':~j .I.' ~:;/h ''''''\1.' 1'I . "':'.. 'I" \I, -: ' ,',Y-" ~ ,." '\. ;: ,"'.... '~(/I .~ ,...... . .;i ,'.. ":.p.~.::,,'''' ,'.' ~""'-.~~~ I,i.~, ..7f7'}"r'\'s~ -I"'. 'I l<I "1,;,'_ :..,. I" i'''' t .. '4- ~,..-.,:~.:::n t; . ~,I,..'..r.'~ -0{ ...../l-. ....-j, :1J.! ;"'.'I''''~ ""1 1"~;r:J:: ',l'u.: 'V.I....... '~ "}ii.",~\~,~"!~,,, '.1",1, :n~.':~""I' \.:;,'1 eV'it' .?:~',~+:I,-;;.' - l).~ - ~"'jf. :~~,,~<r;?;''1f''I_~Qi~i~g~.~]:.uii.\~~. ,r;!mf,::!,'''';'i .~t'M ,I. r ~,'I/" I. /. " .'., , - \' .....-.... . I ~ b po r. ~ t:- ~ ~ _ ',..~' >,)/'_' '.~i" <f"J'/' l 0 I ~ '. ~~; 'J" ,.~ 'J.\.i4!l;1.'II!~'if';f,~1; f,t;. '"I, ,1 , ~i,i. G ,:," W, ,I~' 1;/ ' . :,; ','_ \ , "....'~_',' {';'l::.:~\~ ~:::7f.' Yl ~'1\ C i'o;' ;.} '"r, ,tl/,::::,~:: ,~;' ;; ~1-f1 C:;,i' 1.6 ~, l;~,i0 :, ;X+.~ 'ill ~"~ f~ ~~\,. :"$ .., ~ \.'... . ,', -r/'.....:O F - .. :sc. ..l\,Jt....P. : LJrl r" l~l2.. .' - ,I, ,. ,'.,',-u ''',.. _ I't r, ~~.~ . '. lh'..;,l ~J!~~~j~~~(. i~"~~~;~:,~,<~~" t1;~ .,'~~,~~~),~ ,'~ V,;;t;j~:~ft"o/4~ '$1~f:~;;~0~~'~~.; ?1Ii; ;~~~'~~~\lit~;\: ~}~1 jrn~ ;~~'JI*li'~fZ~~X~~:l Xr~i .fiJ ~4 ,-.Jt;t 1 !P,"'.,'::;;I. '~1' ..... Y~"'I .....~.....J"..~ t:,.,tl.!.<:)-, :l{\~ l;' ;?l;,ll~ ,,1-1 , ;$;~/~/I.ln;l '(.j...1. .'1') ~.", .~"!" f' ,,,,,;. )(-,.' I '~""; ,~~ I .~,. I.!>:: ~ ~,.:I.':"'; ~ ..~ . - ~)-., ,i.Q~ 'I., }.r:'o'I: .' rl' '/ ,~' .I'~ '.' ~ <: {'"" {"~'0'" /' 1, ."".",. ',~ >i\"";'''', '- 't; "', , ''"'' "~~W""\"'~''''' i.b" .:.;;:,~, ,', . .~'i,;""'.f'$' :';"':I'",~",~",~!. ',~~1" ii5!,J--}, l .. d p' r "'c, t I~ .. - ...~. ") ~" ,'~ '............- ')r...._ h J>.I_ '.' ',t f f'll~l;:', :Cti. ;; .'I,~" t1. '1>.1~~~:.c.'.~;' 'v '..... ;t;I\li'~t1t,'" 4;,.... '\~ .-':t., ,I, .I I- '\1,."1,, '.' j "', -".I .4 '...-;....{I ',.. 51 .=:.;.....l~.~- '2(.... '.}- ... ....~...''-f1~.r.l';5' "I(,;;#:..J.i':::;' 'I'. (.L.loI;;tr.'.\,lrP il' "~"~~l}lf.~j~' .r~,>:;;..;r\.~~::.~::..;~t~'/.1.r:~:~.~".- ,~"", ':~~~n<:.:~/:rti~.:-!{:1~"7-'~-}/",1~::tL,.... .:: '~-':~mt'.-;.\ :~}~!~ ~~~~ ;'<~.j~",\.~~~!~{"~)f~l\ '-- " r..'L"".... oJ'~,,~ A~~J.:',-:,-.r ~~ ,-' "' M ';0-'1'" ~~ . -r. ..... ~ 7%':-Y ~r.- """1' ',I:. r" J,. ','i;:r. ~ ~;~?' 'r, 11'. 'It! .,~~,~ ;J,:~""\"', r I, ,I ," ',... ... : I ~f, ". .., J' ...,-r .",-;..1 '\'.[.v ' " j:-,., J '" S , " "I 9', /;.",.. , ... , ~. " +, j1 ,';#: 1'p,-'>:""" ifZ""'./ '~.\:>~G:;' .'~~l>~~~h ." k0t~)'-,'.;;, :,7:)j"~;tt3lf.~':'!}f~", ,"M1' J2~ .*~;k"'ij, !~'..1~_I' ,,~];~1-;~'i~:jj ,.v~~;.\Wft~.m1 ,"" , " '~,' ,'_~.-,,"It~(-'..e' ~;). ,'" ,i-,,1..?i " ,'.., .'-l;j""~':I',,:j! :1& '~"~".:,,',~~ ;.,' [i~:J'I('~"",.,"I:.:-t_>_-,~, .:' '.....~ : ,",,\1, ~.I,~ :-'~ I-"'\,.J";.II~"~ " 'f': n}'';,' ,:.' '>>,':,I''i:~/.~'':';j' ~ ~'~l-f 'X "i,>';"" :1 ,"\~ :~.i.: ,u~' ," i'~'~I;" J "li~h.L~I".-:;'-lJ/'",," ;l I ..', r I,' 1,'".. ~ " ~-. f' ....! ~:"'... ') 1f-'" '/ " "U '.,1 !(\{o:\, ,.", ~ .;~' '. . ....'" ,i'1, .! '~'.~ ',T. ,.1'. i .1,' '-:. f}'( . iri~,..;;.":.Ii' r:~. . . ?' :,~,.}J '/~~ ~7 ;~; ~~\I~"I~!~/~ :,-' ~~'::'-I1J ::,i1 ~;~r<.~ '." ,,~~: '.'~}:::"~ I?"'" '\..,- -, J~';jiN?-i~~~1. ::~t~13~ :~~:~il'il{)i; , ..,... " '" ' "" ,:i' ,,~~-" ~"~~')' , " 'Lit. '. , , ."" '~-< ~", Ii:;' : ~ "":', '~' , , .,J.fJ E:'" "I'" (- \ _?~t1~~1 .~L ''="'~.~..,1 ..~., ~)"I' ,ij: ',,{ ~ :"', ~,'I''''',,:f,:'~n ::ll~', ~ t~~:' ~ l~',~, :~~., ~'~ .~\~f..,;jl~,.j '~~Ii tv_/...~.t,:. '~i' ~~l'~: ,I~I " ... ...' ~~, Ii" ~~ . 1",~~"'I' 'I"J .;'l:.," 1,1..I~~.,:\f '~_fl' '::%1 . ~:".' '. ..., 'jo. SJ".'.". . s.;.\.,.....,'4-;' "i\,:~",:,.,,~~~.i' ,~',~~:~1<',~)-'/i~~\ 'i~~tt}~~~~' ~../ .-)~:'I,~~ "^~: :}f}" ~~ " >2t.<;3 'l'~:"'~~~"'1:.,:~~nl~tt~~f,{;lt'i:;~l?-I,ir~,.til;""~'1 ". I", " , ~" ..,', 'II ",,"'Ti"'\'" ':~I~:'~,... ""..i' \"'''/;'''' 1"""1<" ." "'m' 'I"'~~"':'!'\l:~"" ')" ,~/ .J" f.r'lA~.......'" .h ;-':~,~r ,J:~~"? i' '\~', ot!"~:;.-o!" - I', - (._.') ,It I;.?~~;~, .:f~!I"'" ~.'l,f,,'..')ll~' ~~f~'l,l'',..;I\,),,'' r:l,.;;;' ,-. .. ,.- .. ~ J~' I: t, . \ ~,?"'l"',-::; /;:,'... ...., ,-..;f '1..... (, ',~ 'J .~'I .,. "h ......~ 'Jc, :,~I J;. ~,!:....I~,,\~ '~' ii~1 -I. f2~<~~ '.J. a11"'7~~ ~(~~' 0:, :~f,Q_~ ,,' ~ , -, ~~!Z~,.. .',~ 1~~,?~;~ti:~,'h~;';:;?~:\'~l!;'~~:{I5.e:~~.J'" ,;,,;,'1. ,', ",.'~_...." r, , j~'";,.\.,..........",,,,.-'.'.,':,~<~...., ~c,,'" ^' """'" -'-'f,\:.SH.' 'ii!(ZI:""-~'N: "".':711~"",..,.--I~ II \: i t'-it ~'~:'l .;. ~/::. r;-.' , "~?n' ~:' .;;'h I ',~ r.~~;;!r;:~ ]{,r.,: \,; '~:;;;'lf~ ~ r~~: ..-:~. I ~ ~~, ,. - .\'.t . '" j .:., .' :.... :"'L~i' 5;"~~.:,\ I;L;;:~" ~f~:"!lW0/;;rl' i .~ "1 ,'q 'V'; '- . f ".,." ,;:;;r.~ ....\,~,:\;....:... .'t'~ ~ . _ ~\~"": '~I" i .....-. ~~IO '., .'~~ l"'-l,)".r ,. ,. i\il ';':<"'~4/1/ ~;,:~;r(, ~:+y /".::,z~.1::1~~:;;"k~:;{".'~'\ii"~::';i:~;;:' "~~ :":~'" Ij.JJt, ~'j\'~>::'~lf,\<;-:~~,";&'\j(1--:fkr;t%~Af"~1 "'-,' II ~"l.: ,..' \ .,:'" .;:.'., '11f'~ \. .',. .... ~~..." l'~'ii,.\..1........., ~ il ~ ~... r j.~'. ..\:~:.~; '. !\~j: /( !~!: -'it_: ;..';'\~ _, "\/ . . .),,;H~,") ~.. L;,,,:.', ",";..,:' ,;':</:' "~'l":).' '/:: '. "'IE bj'P"i;; i~:C'~'~~(~~"" '''":".,;,,,,-,;;%,,1' ", ,'.. '~,.,; 5'.;:",,,t '" '~ll;"'J y::~\. 'iiK{('\:..,,\ i'~ \' :.~:*;,~/-" flit l ',,, ",,- ~"'" ,~..)i:"."i;;:'';;l.':I'" 'i..Ii0l' C~l.--' p,...., TJ ... f':--lj::Itf:l'.\"'I.~', ," ." '. , . ~':I':" >";:::':':1 :~:~~t} ~;... ';:'1~'~U:'! ':j .A~)~j~l~itl,~~i.0~~ . ':~~~i~RiJ.I~:":, .... , ~ I ib:1:,' ': j ~.~~~~t-'~~~ ~~~~,{ ~~J~ '~~~~~i~~~J\.l"':'.)~:;':'>\; ~~: .-'- '''_..{-L.~ ".:?ft. - 1t"'" . - ,';- --, (fC ',- - . -' -.;. ....;. ":' .~- .~'''''I , f;:.!.+=k"f',~" . .t-Z,: - -~ M'" -..'+....i' I!~~~' ...j:'-;- ,~,!... .\'~,' \~{:', " ::, ,,:':,!'\ .":,::~; 1:- .x, )7,,, (r,? mr';~,' '~~7i~'1;~:: :1".:T"~'~~:-:~'k;; :~! :,;,: JlI\~1~i&:: J5f il! '~,il"" /~~'Fi':' [I ::.~'.'), iJ'fi, t2IC'r~'~:i;,-h ,"\.'U?\'~;j',"" ~1 ;; ......"~"..t" "I(..,,~.J~~"A"'-: ,\,.:,.'.)...:'~", ."il~..J;~~~,,'>;"'.J"."~"\~~" ...~;"'~~.' ~L-~. Vii '1~~1"1":":"j.;~~.\f.""'"''1;(''''' \' t.,-" \\..~. t ~ ....".::., .. ('.., I-' . "lQ:> r:~l.. A,"(o",:ll:;" W-.I.'} .~ 'It_~ .,' .' Yrr" aft('r".,;~l '~'I'\ -: I >I,... ~"~ I~ ... ':"'1.{_J ~.., '1 .'~'.:' ,[ "JIJ,,;;,~~ '~:,l '.l,' L.. \ :t.,\,\ ~,.' .' I ;': .. '/ .:':.' 'f'l,:I:.~'1,' '. ',( X, If, I \~ l.)}" I'/;,l;d "",1 .~;'<:l':'_ ~::t~~~~.i'::'/.~ ~~h'" 1 i'S"1 H. r;~/... \ .,' ,~.f<~/"0~; ;;t: .~~: ~I'~.~', 7' ."t. .f l;t,,~~.~ ~~'. . .,f~ ~ \.... .' .' . ,'11 \;Iolt 'i'!, '-, J""- ..... ~_ r:':;~:'~; \.~. _, ',\ j.l.....~. _ :'t: _' ....,... .." .;,,:\ _..,. .. ,r-:", r ':' ," / 'IJ"r, '~:I~~t""" ! ',".>" if ':'J...!,:r.'i, "':~',. ,,',,', -'p" ,- ," "",: __\" ..,.,"',f'~,',,", """Ii!, , .' ,r",', '! ,- I"N~' '. ," .~, ,,,,,,-, , O~ I" ,. ~ . -,. ">1-,~,.r.~):()1'. , ~ /.l:" .-.....ri /.. .~\.. 's_lt't 'J:w. '0; ,l.~'.., < '-;1-:.." I !.:;';'I'~ li ,Y{",'", )! ~;'{f I', ~Y::\V\!l "J:'-A j('~' .'l:~i.,;:'r/r;,:i"'x::~,;:!J?h'" ".+~ ~ > '''~:;:;:';''.:r0~<~'; 'I,A/~~:~,#!:;,:,;l~?~, It~t :~.LI \.~,.,,,u 'G . , 1,'" ~i " )),' ,,' .C:,C, ,~,\' ':""" "~~"'~.l";;'" -'--"---~"'f ---, ~. --I'- , ,~' ,~, ~ :;;'\;"T~:'~:l/""hD' ,~l: '~:- ~\' ",~ -~., ,- t._ ;''''~-':-I'' . ~'~'~'~i',t':-,-, '~l)'.~ '. I (' nc,J .IJ~.).~ 11rt" f."~",' )~~~rr!~: It ;.1 ;-.,.,~~. ~Z~l rl l , -;,. 1 '} \ ~, i .'l" l'j:- t:~- .:3'~:.: ,~~"., '~:s r.-~' .~j;I:' .._:':,:Ji!.~ _~_:' :''4.. ~,., :1 ',,1 '1t(J'I~:\f'?f\ ~'1;.,;'~ \..~.-.', L.'l,~},"''';'''''", }t.~..:,!.1. :,.;{J-~l..:-7i.\.; :;;. / '/',::'.. .!~' . ,,'...T.~t"'."!:,,:,:',>',' ,;r"~l-:~'~~~ ...:.....";.1.",... <'"'"'1 ..... if.:r~~.. ,/ J'~'(' I"" '--';'.': . .!.0'::.' I. '~~~.,. :(...,~t,."".LJ,.,.:;", .~ ..,:,.f..~" ,f" ...r -t. ':. :!,,~ ","" " ~)'. . . ./. " ': - ,"~'~;~" I' 1.... .,:~;:8.': ":'~~":', i\ 0) ~ Oi A":I,ii~:JI".(4: ',.,.;: i'~1""1.1,.tl~~..t.,.::~;.'.L:IY'J., ,~~';?f..\,~ ~/ \ ~ I,,'" ,~',\. fJ.:" ~ ,.' ~'l' )1/.;~'"" ~';';..{:;11)~ ~~'>.\;'~"-jf'" r=:~I\'''''';-;--'lt.,: rn " :::0 1 'j, J' . "'l\,;,...IU-' '. ~/I,,~.:.,'I t' .~/ . ""~':r, r ..... ~ '. I, ~ . ,:-,: ll/I", ( -): ..~.; tn... ';' . ""I '"~' .'. ':'I'r~'" It. . " . - < =<' . /irJ.....J.{ ,\. ,~,.<tcn'.~ . f J1}..(..."J::~:.~....J \. /,"}r;~,t l I, :1.' \. " ' ~ {'''~ ~~ r.~l '. "";....~4;?,'.~ ~I~~~.., ""(.':..:~"ii{"" JJ... ~y~'~ .- <: fT1 J' (.'.J Jd . If\d)' ,u, I !: ~ -.. ..:; I~', :.) _'-&_., I -d~ ... ......~' ,'" - '''::I~...:J; . li'l"~:- ~....,;"t~~.."I,/,:" 4-'~\'1",,' \":?i.: I;.. g ::; ~ '.':rf~/~f:,P'T\ gc~~; t~h7f!>?4~~~"'lLJI-."'~'j.~.:z't ~ T, !<'I'''A 'J~71":'. 'S/~~~~ 1\I)~'\<'~~)~;'-I~.~-,~'3: ,r;<I"J~;I,. :1;'1' I fT1 0 ~,t':'1;rl" .',/71 :~~..."~ '!:.J.;~~ \\Cl~((.~?r ~~0:-'. :.J..'-:'~..~ /~';'~':~\, ~ I' (r,' :~ .~~/[/,~ 'Z,:ie':\i1f'P/~Wt~~i .1....::.: :'iP,-~,J";.,"'~ , : ~~":I" 1 \'. -0 -< :0 '" ,1,,"1 l' "'g' '". ", I, ~'O'~' ;;' ,. . "/f .,... '" -.- ,. .,r ""'J(: .,'t4 ( ''',,'f.:';' .\ :c ' ''''t;'' "'.~.,IV.' "- ',....~, ;","'",' --- 1 I\C""'I-'I' "'/:.1 1 :""ff" "r.- ";'"'' ~1 , "", ,,",, "H<:: , ,,\,-,. '"",,' I" :::0 fT1 n n ":n'I"~""'j' 'f ii"l'.: ',,~.,'l':.. "'~ ~T:' "'~- ,A;.-,;..t I .....: !'~~\";";-';"1tI-':";--""'- !~A',~r ..!;;'..\~+"f~j'.;:.\: lZ I a;~,J ~ "," -t.,. \ '/.:.... ..:1.-" I ~~. I I - .' ~ 1''- ~ :xl' ~ , ,-, ,~,. 'f'" ___ .", ~ - Ul Z . I .\ 'I 'f la :::I"l:'~.f~J I , ~t'~ .\",\. 'J.'-? . ' 'I-. ,.:"(\. ~' ",:, J' ';;., '-I'"' I .' r 1--0 I ~>::;! "\;\f:~;!,,~,, :'j\ls;[,,,?,':,1-! ,'""--- '~' ~n' -: '(G.. 12 r~':..i"~ I i,.,.~r1t,~:!ti;" '.::', :z~'T'/'\ .",:.~' :':'J:l!~ :'vi~:\ ':,'~ .: '._ f --I <%' ';"\1 if;.:"l"=t"""\ "o~~ -~ .' ;ij;.. : !*,' ,('~"""'" ,', ~,~,l-' ". "~,, 0'f,5l'J' \.,,'.:;Y.1. \. \ ~.t.'.!, /.,).. . ......~J. :\, : ~:--l ". 0 ''''4' '~I. ". ~ ~.:: _- - ~. ''''=l- ~. ~f .l,....---l,~ . i,' -rOO"'... ". .-...., . '_. - ... . . tJ'" l> N ::! ~ ?.;,,\'~,,;'~::-:;, ... '2"g,. \ ;;... " ;; ...-lJ, .,;;lI,r;; ) .;-: ":"~:,";I't :"'l'\'~ ',..~, ",t",,,Wi" I\:;"~::']' -.' b1)" -,:-..i ,., ~ I\. 0 o.l~."&""'(")' '10-'/.. .,', lio"--T"~n""\"''''I''I-<'''''"'/6u, \,-/, .,'j" ':''''0''':'''''-''''1,'''''''1', . -, ..... ,""'. "" ",' '"" ',,- \ '.1 "'" .. ~' ' ". __ - I Z 0 ' ,.f. o. ':- r.'_'.~ ..__~ ""L"'..._. ._..h~'''' ~...:I, ./,(""g.,..".l\\:'\,.!,.....i "'. iwS"1 !." .1.... _ ,.~~ ^ ..' ;:'/'~"~, ...J'-I ,I:... fI.""1 ~- '...., -, l -;; .' '" h " \ ,~".\\"-,,, ,~, .1....._ " .... ~ .'~ .. :...tl"'~ . I' o I 0, ~ ~~ 0' to V'\ .' ,.. "., /: . ~ \", / j ""''';;:'.'',,<, /:".,0 ':I1:'t' C ,. ,,' 1. "',i- j,,,, o,!;f!;, 'JY'1- _, ,,_ Z 52 " c;"'~~ ,-'''-oJ ~1~f .... .~;-.........'~---;- : J } \"....-.. I .',:2j'hf;,rl.l''j;. 'l:~':'.:..J I:" :-m;j \.. .,~"'~-'!l;\ _~\::"~I"j.: 1.2',r:!: ,~:".: 1::0 o ~ 8 ~ ~i' I:JJ' .;l) ~: ....~-:.':~,~.JlA,-',\""t-\/:~,~f>!i;;:i~r;:~~;"~I~~&ffii;r.lp ~~:~~"/'::<)~~\I>i~,,:t:'~H",rt:"!:-\'~7' ~,:-;,,--I. ! co C :0 Z rn ,-1 ',ji'l ":":r'~!!'~ /..8;:;?>."~ I IJj;<1, """ i.;rt,;;;,<[~,,~,,;, ,:!I:"'..", JI;,1i;lm"~/'?'" ',' 11' "','11."; .~,;d:;'!f"""'ii I I'" , :::0 () -I r-' ,J..~. .:.........;_~.~... ,,:..;-:- . :.-~__ - -p~> (.' t,.. {''t~.t'}~~I,I~J';~~':';(:)Y'"'' ,/;;y.:/.+. )'UT./', ': . ~ f,"'I!IIII'l;;i+1II"~"(':f:.4 -; ;:UI~ ,,1 ~'J.I ':!. f if.~::'IO'/.1 ,:;:~~Af'",:.~,,~ .r,,>'3'~~!~:~~~'li;~/:~i;R:< ~~..,,. .,J ./'...~ l: i ol/J;~,I~:,~:~:.""%/~'-:.'.' r Or \ ~ " .. I ..... \. \. ~-:~';".' t' .... ,',.""''; - .\.1.,._.. .:-...1 ';o-------I'.'L. 0;".-.."", f:J....T,#:---t~c;.;...~- r .., ....' ~.Il....~ .L ~ 1 \....----l. ~'f. ') '\o!';"~~' r. 1".1. .~.L.. .,.::ir l- . _ J " --...' 1 ,j .~ '. ~.-, \ 1, ..' --'J~~ ,', . .......~...;t~::tt..~;.:-" ~l ,,(.. --, "'I' Or' ~-l ~,l..l "j " .'~ ~ I l".U' , o/.,i-.J. L" ~\O>J..:' ..' ,'....\ ot,.,{,'~. ~{. ..,.,," ~\'~J;(~ .' ';.1... 'i......- -............-.Nr'.,.,1 ...':!. f,uj:---i.,'),l. 11 IJ" . tin ~"'~. I....!'.,;i' J;.l,~. If:A;;&.?"I~i>~,~." Y!fl.?~J'~ f~~~;/'~~,,~~:;;;!, ;'f~~}*\f'ir'7: ',/IJJ'. ';,-I(::,'~!~,);,:;>:.PiB,r),;'~;1i h~~l'TiI , j . ~ ......~..~...u...,--..:._.......~__..~,__~_,...._______...._~._.____""'_ - ~,~ J, /;/ " i ~'~. I.....~, Ci:J):..cw"'>o,>.;,,S?:,~ '::.: ","{, '-'?-!;<i!:<~ ,~"W'I' "Yl"J:' ~~p.~;*:~' i~',1 ,V~;;~~" 'J,'t/;'~'I;y.~' 'f}iY.,,~{,!:r ;~X; (0' 'i'i:'f! r 1f,[ ";J II '(tI'f' ,Yf f.=\,. ~1!:;S'-- . ,'/ ,~,' . -j_ ~;~!:.r "1/", 1"'J"n")I':(~'"1'1~'r"'~'f:~.r,..~: '.....: ,~""l,i,:.';'tl ~~~"r.;..r{'.',~L::(/" )'",f"-'#I" _-'1,. 1::O-i "~I- .'1., , '. :II 0 """ .. . '. ~'.."" . "'\,:4,.", .. . ..., '\"; ,q...... "'":;:I' 'f ", ' .. . I 1" -j... , fSlL.,. q,,,; , ' / ~,:,' ;-i,:,>, ,l!- ,:;~:!~","''';;~ -;"'~ I~".' ' ,1~:' ~ ~1'(,r:,lIJ ,1;4 .g!t~., t~'-1" ~~W~ _ , ; ~ I ,~ : ",,' . ",/ . '-")1<' / '~I' "m ';-, '~""-,{ ~',," ',:.!...., ,~'."..~,~. ':\.':,,~N,tn" '1."" .' "MI.'!;:':;: . "" on' .~ I' r /~. . \.'l.~:l;'''!~' ./1:.,.z../J'\:.....:f,:'..;lJ:i..,:.:.......~:.r~:l.:..\:.~.t~'...~.~~.~~:;:~(llj:.1'~,~~f,~J:~ ~~\. ~...'~\ \'Ii/~..:....E~J.~ II '.~}.t I ~} ,/i ',::~ [<!tl!~;'v.~~,~I'l1~J ~':~:~~~~fa"~";,~>~'~~~f~;'t~l;~'*~ 1\)'~ ,Y~ dr~r~ _j,l!:,l,::' J~ff,~t~o~:~fr~~~ e -,-..-_:...... /../1 ',/,!:>l!' '" l,,"')"--"'V' ,',~ ,'-, :>,':;'1.':' "~', '~'.~ A'l.\;<:t-.'~\'X' if,', '''''..1 . ~ . '- , 'f ') '. 61,1 "'I' ;';1i: -~ ,-V '" ".' <",,~, ,'~',l-~,";!' 'elr,~ 'I), 'i''''I.~,,--1C ',' ,,~I'i.".':\: '\~ ::\:l:,_ <; l< ,(, -;"oy, --"""'I-~,.:-", ,. 'J",' 1 '-l"~; "i..' ~\,~, , .\~'...;:;~~'" (" ,\."...".-e...~",,\.c._~._:"......."? 5':""\..,J,''-''>,f. ~ r::l :;.r... ~ ",. :m_~ :ri.'i ~ ~'...I~ r~M 't "~I"'{' .' v' ,.~:,~~: ._:..:::1 t.;;;;i,.;:~:~'" ,~~ 'L,{f" -:':':J'~>. ,"'.t .~( ~'i.l~1:" ,r.~" ,r;:;" /tf: "t.4_0 .~~ ~,,:,c \\eJ - ',I, 'f".~' ~r-,,';f -'1" _S: :.. . i'" ... t'~'''''' f"J .~.. '.(.h ,--'\- ..... .~~._~ "",<;' ~ .1"';."' 't~'''11 I .' "'~~ '- ..:0. __.", t... ,...;:.. r. ~L__,J .;1.."" '_--'iJ~j'~'--"'l-j~~J_3 ..".4,;,; cs:~ 1.)J.j , ~~. T'-"'- n ,.1 '" I ,I 'r' 'fa II" I, I p ....Jt! ,po ~\ \---.';. ""r'1:~ .:~.';4.;'~"'" ~~":-"'~W'~'-""" I ,,::,,[..,.; ~'':''V-'' "'~ ~p-~.! L.:.": ,'~~~O_~ .,.l,.... : "I'S'\.1 .{ ",/,'i, \,' ..............1.... ftJ"",!,(,::---'>~(,.;:-I. ~.{Yo:.~~""~,{..... ~._..' .'" .<Ji.{; )i'.....r.~ '\\- -yipr, :; ,- r~~., ;:.. "'f..t- I,' . If' _ \. J ,.... '. -!I .. \ :-... -. ".~!.\ ',:--~;.).' . _ J ... . '. .. ,.."'c::oJ;. I \. ii' ~ .. . :. . ::1 \' .t ..--.,~:,' ",t: ,,/ ,;,;,.:'\\",\. 1 .,' F'l.\,.!-I,,>K~""I~" I, 'c' "'~'" '~1'rt.~:~!t." i\i.'~!"/~MJ>..I;(>t1~!)(1, ;.1:' ~ ! ~'"'''' "%i"~' ~ll~" I.,! L ;~, '(:" ,..t;;t '. -,1 '-I)' ';.,' u., '. I .. . ',~ ,-." -- ... l"e' ,,,.~~~t1li"C"'C'I~ ,,)i~ ,,~,:~Ys'jr:;;,;..,v . . - ,,{? ~ ,- hi' 0 " I ,~' n .. '.0';":, ./;.r. J . :j'; \.:~I"' ""':"\~~~,' ~..' ~~,.\''t'''~ '0~.~.!..', .\H~'~I;\~~~~~' ~~':~~~~oI: _'_~~f~...tl . . 1 SJJ;1~;' J r~;- "~:';r;';J: ~. ,I. I' "':_.m , '. \ ~ \~ ~ 1 . .. I'-~.......,- " .. \~ :-"'V1'" 't: ,~. .. r r;l. ""Ii ~ f ,\ ~....' ,. ., , . E. ',h::~;~:< '~~I'J'~, :~~,,'{~*~?~i >'~i;)A:h-,~: \:'5j~1i(~~~ ~fl): <" ~'r:~ ?,~:>: 1.1!!:H l~r> ~"~';~ ~l(\~\, ., ,:LV .J ,;,~(' i r~' 1~lu 'lr~'~'~\~\ ; .... 1" ....~. \. Xi.1.._.. ,'" ~ ~'.' ...., I. .~ ~~ ;;:.I!',.')._1" . _,'., ","f\.~ " ".. ....~l.:.' ";1\\ . ....,. ~._ [\, _~ .. .__ ..,.r . . ...,'"tl .,., " .~'. ' . I ~.., . , . ~7~ '4 " __ _... ".' :., .. ." ::"...1,., ~I,';M ._.~~"J:""--J,-..l;\\!T'f'[~', "~ -, .:-- '";ft'~-n~~~ ~J-'';-\-''~',~J. ~:::r'J~~ ~,1<.~'~ './<1 I, 'f){'1~'; ,~I}I ~ I' : , .', ,.117;, ",,\, r "..I",!"",,~;t \,":~ 1:; "oj:~A1~'~'\J' "'!\'''!I[~::.fl ,"""5I:"'C:,, r;> "", \,~:I'-,' .--, "'''', ..",.1 ,t.... ......~, :,..f/"P1" \'t: ....0) '~.., s......\ ',,~f'(_ 'fi."}.;;"'.", "r~"- llI..O' ,,J'" .Jr'r '...~.. ,\ l' ~ I.~~; "':J .~/-~:,' J;~,1 ~ ""II:",;l',,'llt,<,~i'i.;"~~;'a....;~~:,;iU" ,~~_;;I l\~,~'\I','i,~,\',I-\ 1.,j):,.';;~\:;j.lt'J' '. ;.~,,"'., :i;',r>;'- \~i1J{'~k"'/;';U' . "('1 r..t .' , t' jo,1 ,',~:~:..w.:-",~..' '..) V' '. \ (.\li.~. l\..' J .1-.,. -,r..:("';"'1.' 'l~', .:,'. ~ [~ ,,;; ".., .0'" 'I'. ~~, ,',,'" ;' i..I,If'''-;''' /'~...V'.. ,,~~,:...f!t.:.-.~,-, ;:'t"\ ( . '.~ ')'....)4 ~~)" '-1:.",' r-;-. '..J,'",. '. :.' '.l-..~ .......... ," i I~' ::r.' ~.,01 J1 I~I"".' "\'r:r.~'if'~;;'-'''r ("';.I(:.;",..l'-~\VJl""""/" ,:".~..( d '..' '.;~"'I:r......C"": {"(~"":"\ . ;::,'-.-' -~ " ll; :}]i'~ e of "~', -:";"/r'~:~I)W'..,;::;i{:?JJ!f,"',:,,+", ~}}~;~~[::~....:~" .' 'I",: ,r",,;I..'tr)ifr.'I. ':'~~I'l "l"~ 'If:i~lil,t;.::,,; :"'(; .... 1~'" ~r,\:~""~~";" \~tt.......:'.~.!~.I!..~~~~;>.~,.,'l-.~~..... ,...:~. ;:,.7:'. I~~ ,r-~r'''li :.~, r. ~,,1-...~."~.:t. ..'~;': ~ " U::ri-'" '~-" ~":'r-;.,>,/j,', -,i.-t, .";l.~,' F :,~ .,L;,~ ,:l ;X'~:p..,,f'; ?~!.' ,i., :f'~'j~t:"1:T~~, '/ \-<:;''f;j" :}:': .. ~..'..:.i ': ,::,~{,\l;. , \: ~,)~ ,\0;; .~-M~. a'~ Y-' " '.!.~."'_~"""'-'''I 7;;ol..r-J:"':"'-~'c.....c.~f,'~"'~ .":,,... Ol'~'~""r ~y..-=--~...- -~-""''''''m--:~:\:n,'tl~J i;._...., ~;' \ .r..r.. ,1:.~ t* . .,....,:....,.. ."lI. 1-/;( ...~ .. .", t. ~.)., r- , .'.r.? "'J) ",." ,.. -\... .. '-'\'':'!'''''..' '-J""'~""\ j/'-.. ,,'" l' ','t'.. '....l)l=,,'g!." ~.:; ',\,,"':-~if', ~":''''J Lj /4".1--P\.'_.-......:. Jif[...-,,~, , "., ,,'~~ ,.; ~'.' :,:;: " .i>""-',:l~/';:;.' ,\'t,,' ','. \ ,!'n. ,- ':,' ~'." ,f"" c '.,,>:\,; ,.t;~y,' ;", :'t",;l)l_~Ul' '_hc'.~' ",;,:,.' .'j ::11./,"'" ~~. ~", ,~~ l- '- ~ C'} .IC....).. r'\.1 'j !...\ ,", ,." 6 .... ~ '" ,:y.... ..' ~~ ,-." 1<.1. ~l\.~""'" . 1.'-....1. l, 'U;! ..,~...:,' a.f' : __If I' . ':' ~." 1'( ~"'~." '.' t. . "..,~1..:. _1. .,..ll'.t....~:",~'!.' ;.:.:.:'.t.,-...(I.p..,)..,\'..~.?'.~.\.... ;'---j.r ,;....... .i::r".f~:~;',;~{, :S.~~.'.t~... " ,/:0 1>""" .,'" I ,t ,If,.,. , r ," \ ! ',\": \. "'ld ")\'1 ....1:;.>'... . ,.....,...,.......Q I" ....."....7 f ~ I I... \<_..') t . .Ill" 1.....Colj!Jf I:" ~I :~I",\ ... ~ ,4 : :':1 ,. ....~. .. ,~~,..., " ,\ ':, ",.... ,.~ _ ~.t', .. f" 1:",,,",,,.,, ..,.' IV... I ". . ~:: . ~,~' ~ :"~i- /. r,};, ~~~~,;;;:, thJ.~~,:, ,,!l;"''.~\' ~,~~ '1)' ~l~ t>\;:,:':j.!~'" ~';,-sr,:'b:~.~.~r\r[f.,}.,,~~,;~f' ,- ~N!;l ;,1. ~]i~~[\(.: :~~;J'~I':"~ ~, ~,:i?" '~I. ,.', . -".)f . .tl....."........ I =>',.:)...,:. t ....'1-- ", .. \ \ \ 1-1';\' . ~1:~ 1f7~/1 I:' l.~'.~, O' '~'k:~: ~~..fL l"t;... t~~ j.,-"',h.. ,.....,.......;:t._}:....~._t1:-~.'~\~ "",~./t' 'J \~....,..''.I..t .._.,..~.-:.....-r.~ .. ':.~....' ~e_.:P.-~.._- ~ - ~~I_..,...;a5~...:!'I......;.:".'..~.~f "'-;}t;=' f:..b),: ",- " 0, ~' " , "",,' ," ,", ' "I' , " 7. \0'''' I > -' .' I, ';;," .. .:.t'>' . I "" J. ...~. IF.= I, m;'J .. .~, -\ '--" W I "l'i "...~~.,r~.i......- C r'.'I~' . ;,." . ~ .~ ~ \O~ tjr~'~' 1 .'j ~ '\ .. i' r~ ~.... " '. ..... ,: ",,"t.' . -...., : ......;.....~..L .~ ....I,~ ." '.- -'.-... .; ~I t..:v. .,I'f..,;~.. ~ :o';,-j' ,;/'. \-' ,W ~', It,"" ''1' ' I '/>:?> ,,~'\, r~? hiC/ ~'~~i..I<,~j; ,j,,~v..i'l': \-1J'f.i~?-', -)- 0 f/:Dft~~ (,/~.<" '; . Ji-~~I: ,:I~~~ 1-1' .:'l' r.{\~I'\"'~ . ,J ' , -t/L".~ " ..., IiI ~ ..>1TO,- .....1 ~f,,{: I"". --:rl"~ ~ L ~~~l 14;.~; ..1.... ".'}.,,',' f, ~':l.;t. ...II ~ ~~.,. ~t~..., '?,::! "'I.-;,i~~,: l:y,t "i;,(q<':','::'~,:,~\:~'" h.!(.:;::"-fY:7 "'~j' II ,l:G-/!"~ hl;:- ~:A,\!i~., ',\~":,:;f~ ft;~~ ~ J:,~~:.!?~!t.,,>(!tJ~'j' .' .:.. .'~' tl /1,' ,-l,,,, .~,.,,"'..'J.~ I ",2<f"'t1 .ft ... 1\~: \'~<::i-...~-..~.~,.I.!f _\, '4~F ,,".t....,~ ....." _.', I'" ,t,). ~(.\I':!i1;-,J I ..... ~. . 1 . ~. 'l! . .. 0:; !, . ~ ~ .... .. II.; . . -....., . ...... '"'".. ,,,'\II' ,j' ;::. " , \. 1"'\:1. '"", ,~')\ ',,\\ ,J~, ," '. I ~I"J" ,~ J 2.,J-0 ""Q,,\\~), ,\J~ ,\1,,= '1:.'~fitt.li }t~f. "Ff I.!' I "I ~'&1'. ,',;,~l~;: l'l~" ' - ,;';;\,~ >, ',.l\~/" r."''''.(' ",r,~j~_ ',' f ''', r, , .. .:;\t.,,-.'W;,--- _V,cl.;'l", ' ~__,',':JI. , I.:, ',l.; "';!-', ""~,,,&t'~t.., ...}:)j;:'I~';:ri';f."'rr":,,, ""'~ -ir '--~,"l"'.r-: . _:.,~.- --: ~ I --;-~~ ~-r; +::-- t,\:i, \.":.,!~;"!. ~-~ _', .{:jr!;l~' \j';~" ~,..;.! !J:1~:\':1"\-1 ;~~;'~;~~'~.., .... .' .i. .' ~.1":t . .".. .. 11 . ',. ' ... , ..,..... ""_ . _ _' , ..:g;..., ,',1. .'''''''~ "\:,,,~'. ~l)..... " Pl,.,.~l .,'. 'Z'..j ,".I:,~: '., ~.,_",'.;'..!.~~ "-. '>" :1 r'l/~1 '1"E., ~',~1l\I'1 ,I '. ~I:!:,~;::"~~(': ("-.....,,:1r..,J'\\-..:~:r-fj~'.i;l~t ~ :0 .1_ I ':... " "?' ':,': . /.. I.. i 1 ''''\~'' ; 0'1 ~,.J ~:,.. ,:' ~"', ) I. : ". r': "~."':'.. .l'~~..": \, I.!';" ";\I:"o14o.;::(':'':'!N~ ",1., ':' 1"" L" ,,-I "I, ,.""1"'- ':\.r'V1,. 0' I, '\ ,I' -Il,'lo. pJ ,\~ j.,.",--gY!/('!f~ .;,j "'b/~~V ,""'" ,,>'~, " ',; l:'i'- ; f" '~:"~").\,,JI{~~'~l::;:'{',':,\I).~.....:, , " .,. ,.", , '", ," .~' . _., _' u,' ," ,,' _;~' ,<,,~ "'~,. " ,'..",'", "~'~',' '.<:, E,~,r :1': ';-' "",,' ~'.r ,r;"t~\1 If,',,' ,".,,' /).,,,,, '.'< ",,1'": i\....\,,;;, i,'''d J';~~,V-f-A IL'!<<'~t;;'i'~"':'\",'t:,; .(;;f~":\!l'.,~"~"\l'" 'lj;\~:r-)~"...1.'r\>; , '~:"~~~'", .'.llO'! I.. ,,;;;' ''!" rl)..r;...,t j I .,.(, ~'t .....'\ _" ~::'l't ~~ I "!'tl ......."'\ ,,:;' If' ,., -,:>.. "...:~.I,:;;.\ .j.,;) 'i'" 'Tl,~ ~m'..n'J~ ~~.t1't.~\:<.:'\,~: '~~!''''!1'''''~ " ;:;..:....\~ 11.;~lilI'\, ~,~ 1.~'1!.1.! .,,-"1-""11 ,l.#-~_~.."" ....r~.~.:::-!...'"'! '\"l/:"'-:;:.fflx~"'t:,;~":",, ,_U~5-,..i.t.~.~.Jj\.l! If{',~';~<,:.,\,~, "', I' ...;~I' ',1 ':l.i. . .... ''''''.'' /, '.....'( ~I(i .-~ ,\,'. ...1...... .,,~.~.. , lcr"',.;'~~...",.,........., II~I"-\" ~,,. .'J....t":. '!'\I'.:f.'~'...... ~ :'i!) ':.1"1l:~" 1 ~~, '. I/'\lo ~;t": ( .\.t...~:... ...~t"- t.~ , .\...~:.t._ _..:~.J.;,.;.tl~/.t...~~_........\.' '-=..:...;.,:,.. , " ;;""!~ _ ..../...--\1 ~ ':'il'~i'~.'.. ~"':,- ',': 'tt' J ",~'",f '-. ",. ,"-'). ....,..Il".- ,I,.., ,J" ~,:,; .,,_.~-T,;,.,~((\',l,b't "'i' - ri~"'~<< .(t-, ,~...",;;t~. F'11 ," ".,'~ t:,,'l. pil'~r!"< "i:':i~, ","~' ~ ,,, 1 ' ,\ ' 'I ':' , ' ," t- '!WI,-, " " ~ ",,~,'..;' '"~I 1 "0 L '!I\ \.1., I , 1"" ,,"'1 O),~ ,-' ,ii"" '~I'II"l';I"'n.l I,':" ,'~l"c" 'ij~I"""~~<:~ ,,'" l" ""., ...."1, :,~tl'" ',' I, p'I',"" ~/11 Q..r ' ': L","'~I!!: I"'";''' '.!.::;<lr,. 1;1...' " ","t' .;:.;~ ""II. '"b~i~~':.;/ 'i,1 ~/, 1:~,,';' ',oh.t'1'~',;\" '~I~l~/ ~.;;I!'~3r'l',"; -" Ul H _ " - "I' ~''', . ',-'-li: (,.,~>j" "'" ". 'l' -', ",-,rr.",,~tl-. ~"Jif."~ --".. ....."', :;. \.\': 'i i~ II :. ' ~ (J'I:'" L""l',~: ~~'I.' .' I, . '" . j 01 ~\"'_..t;l{ :~ '7 II ~ ; : ...,..: .' ~i\., .: :~-:;....:,..., ,.,' '-:. '{:.:~':': ",.'~ '~t~ . f ',',' ,.!:-.;;,'iY,:~~~6 {:$-'i~:":':. !:~. !1,:;?' 1.,:~li 1~,:,,~Cn i1 \f'~~ " ,,~/I' ('l 'i';'J~~,:F;tc:"0:,ci'f~\":' '. jj~ ~1,,!>"{:1;..G1r"{'"'Y'~"F;':S~~:...-r .~~' 'h,~i;.'j,,'~~~0:;~)t'I\[~~r: '>;l1r;~~~i~~' e',;: '/!'::~ ;~'~{<.J\ "~;r ,.:"" "'il,.", '\'(}l~j',,: yt:f:.'> '.I'j' ;~ \-1 ,~);. "~~{'Fh'I~.:,,-'.,',:",;, \r.i .' ":,:; 'K\':"'L~' ',1:1.:~ ~;.\' ,il~~If':;:'" ',1"",' .:'q..'1~2;1~,;,..,.- .J/.',.I',/:ti /qP .\- ~J ~~\...\~"", ,- It" (1,.r_~I,;l" 'I.,....'~ ~t :'f:.....:.h.~~".\.\,~.~y..... ,~,'./~... /.'~~\7.)\ ~I;fr,;; ,L,~r~'; , '~,: H"J' .' 'i':' en.;' "I !',' ," ..., ,....-.!.:! ~1ij.1 ~n 'l;,' }"~";r;{': "":,;.oi.:;> 1n': '-::Yi/f~1 :);{r\11~~;:~u ,'It' ,'~fY : '~;, ", .~I,.'" I -.\.~.... ;.. I-: ....,....,::-....1.' .'.' ..........~~,."""~ .~ ~o1 ...p 1."'-\'.1, ~...".'::L,"1 .:. r~.. If.' ~!;l' )"/l~' ;.;.J;/'~~/:-'''l'j /f~' ~w...,'~'-(::.'~.. ,.,~' '~i:;:' " "'t ,,{., -: -J.~"t"~"'~ ,I,;;:~< ,.\'),' :....;,,-, ,:.~i~:;t ;~;;:;'."-, ..,(.J.- .ll t "-It, ~/.,~ w(~~j7-;;;."~4 . '<'S~ ,d,',:""'" ."!:l:'~~ ~ 'I :?1'",:;,,:\' ~~, :1':'~~,: "~'f,Jjii;~'1 ,;' ,,\,~0'';~:~ '.' ,,' " ...., 'p, ~^f' J .: ::.;1\"1 '. ."" I .l),.........~ ':"7':( I wS-: -i. :. . ~I!y 1'1 ] ~/"~' , 1.~l.:)' ~::.,:..' r-. '.t' ',~l ~r:v~, -iJ'1tJ1o:.'I'.bll":'l: r:.:..-\'i.~~:tl." 1, i. l iY(..:,>, " ",', '1.' . , ..,;;. .;..'\.:.:: "')",. . \ ~l' -',,,, "'" '.. ~.\ I- ...1;.'- ;. "'.. . :'IlS, "'tl_' ", ,~.~ ~~.. ~ .., ;:;.,.,'r:.~:""i>\j.;, }" ,." It, . :.}' l"r~L"",~ " 1~ ',,' >''''- S~'," ,!;~l:l~ '::': ~ <- 1.";1, \ ,\~::;<:i ('Y'0'lk l'::.i-,;;i,j ):, ;..~.-1'" ", "J:' ',' :?;>it'1;;~ =:' )J;~?f,\;\'~;::! <;;;, #I:!~~~<i.',"'{:;,~ '"iI~.: ,~~0 1(': II) } ',"J! f. 'J;;~!/( ",Z,,'t:' 't"~P '--., ):~t{,',:'~" \ ),:~", <~~ "A>',(fb)'Ui ,t I. ));':~,<~_' :'. Li~\.l~\tl.,:, ',,\(-.12.~/:,;:'s. ~~, ~l~~I'il~.':,;'\~r\}~)i~~~n~j - "Il'-'. ';:, . .~ /1 !, ... '. ~\ 1 ,.I '\'~. .r, .('1:'/. .. <~ \ l! I .1', I' It:r. ...;~;'':''~;'~~', ~...l Ii...;!,"", 'iI.i',)' ~~';,P"I.'>' '1,/,', '''', ~" 'f' ,<, ~, '""" / q'u',d ,,~ ,'_.-,,,','-, ~!~""2:,,,,:H."~'''j'.'''''I,,,,,,,,,ZJ'"lj'?ln'''~''~(b}]~' L,r!l. ,i , .~.': . -4:\' .. _......' J: ". ""~'~ I ~.-...,- -..... I /;"'~ 1\" \:..~ l:: mtl1i '" .. '.~ 'w .' 0"' ~.li .Ir'}' 6.oJr.'1' .~). .JI '( .~~,I(:: ,.4'""\1; -.:.., :> ..... t'../ . (.., ...1<& \. -~(lr::~ / VI'~' '/ n. .. . C:::r~':;.......: ~'1'''''' 3~1! _ ;oo~l ~f,1 Jj '.1 ~'~ ,,,.'.~ ,l.; li'j.,' 'r.1';.o::, :fj p:....\~.;./~ 'J.,~~I.,:\ln, l ,,-d/,,,:,<.' ,:1 :~; ". ,,- r! _,('<,: 'J;' <,>:; ""'~'~'1~-- ~,;i L /":: -/ 7:.!~.if~~C; ~~,~:,-V~~W~i:,~~~< I,~j;', .: bqr~~~~ i'~,:f!~ ~~1.;lJt~~1\i i~~)'~){l ./. ~ . ~ '~.;'/( .: :'f' .:' ,;. \ 1 ~ { l , .' ., .....g.- ,/" U~ 'o:n' /;"I"~\~ ....:[0 (~~.\i ~_~~i,:/..Z:~......f~/~. ,.~:',.; A~lr" '~'~jJi:i;i,.li:; r:,71)'~i~ ~4!~~.<~:J!;,~~;!I.,~'jO'~..~): f'ffJ.1 ;~ ~. . .-1......,;.. ~- (. '." ~'" _:,.:>t ~ ,_~ J:: 1"1"." .' J""}'/~ ~\( \.... . ..'J-:1'....h'':t.- .':_~J.,-,..,,,,....:{; ..,1~""" /1.** 't,,~..I:,.;.:'..,' '.V ',.," 1'. I:' I",~ ",' ,"~"I.~,,:,' p'U"~'''- ,"L'f',','~.iJ;'"'-",,.""'~,. ,,' ...{('/r l..,,1 '.\1' , ~'''''';!l"'['r.:~;:'"Jtg~'~.t;'':::~:P,J":p,~I,,, , . " ,,' .' - 1 ~ I \,'., Ol~", n" ',~ it' .." 'f ' . > ~ ',,1' " ""~" "'i.(""""'''~'\'' N::~"~'lh~ ~l~ '::U. ~ '~"i.. :,1. '/ " \~\. {';-..', ,;-',"It ,V ,;" '~"~. ;!'r~... ~..~ I )~,1.?(.~. '/:.I~!~"'.. :(t;;' ~1'~~~~~~.:~~'f!71" "~./$f'~'" ~,;~:v :';~.:?~"~~r.:",,:~~0~tif.:~J. . '.:~f';;~' '11~'-~ ....1'. "'-!,~-'," "1~1"\,(li:r '1 .'''111'''''"., '\~.' I(,'I;-'l \'.(J..\."'.!r[:t~.-l,~J~. 'J\!~'_'~"" ]~'I':.~ ,fi'A~"l,'-:",,'}.i", ~ : ii': ' j . : 'x" ',~,'!", "I!' j~ ~.- ." ':'\"-/! l~,.( f:-~;,t{t"'-~r/-) ,;?'~l'~\ jS",.: -. v~~'~' '~'!/}'~:"~'I S(, '1~' 1,1> (qI~, ;~\~~"')' ~\;!~:l'-1;lll!L~B',~if"I!.1 !\~'~ ,--" " '" 1 I','v <;, "'J\-' .Y ,r:l' 1 ",>. ~ 1,)1" ")' , .,- "".":;&,,, ," ~,~ . ",,""C., r,~, ,,~ ,1, .:,,',J"'" .'". 'I, i B~~:;.!, '''''''~J:l' ." '.. \..... *', - . I ..... ~ . '1' I~' tf'1. m ";"'" \':')', '(l ":,l ~" "'1."1 "I,l. ;~... ( ,. ~c:;:,h" y....}. 4\ L'~ ..,' ..) ~.~ ,'v' " 14..' . l. ,C..[ ." .....;: 'JI'\' IrJ'r' "'$' ,,1.:' ~'~ . .. ,:I.).., '~i~v.0J:!,'C.'r;,IO.. 1~io:~~-o;..'1'_ 's..:\~~'l'~ *"1 II l,../ '. :,:;:,.', ,,: )f"'i~:\, '\ : '1~,;rL;\ ''']''7;;;'7~::'r~{f(~ff\'.;;..?~f,':~?,'~'1i6~,~ 'tj' ~~""'~';;-~J m':' FLJ-l\ ,~ ~ !l'-~ ~;"~$!;:l~i:;~\~;:,~'~t~~I~I;,':i~j /_~~' I.... \, ,,:,.' '''''\' '\ _. '1.:, \-..-'\'I:'~~ ~~-~\J- -; ~,;~'! (}i-) ',,'I d,J;~.,~. r: 1]I'i:.,~:~ ..!- ~t~';:Y~ ".\:" )l.~vl. I.~t';:--.~~;~: 'tJ~ ~~;r;r.r,i:~~'!l. 1V"/',f' ;"'%',.' :l:, I,:,' ~\ " ,~., \ 0 . .., '11\ ,.. .). .- "', ..,~' .,,," ..~,,~ ... Ii .,;..1. ,'. " ". .' ." \" " '\.," ;"",'''''.,,' 01"'[ 1-," ~i' 'I !,\ ,,;jl'~FII"\' ,:,^"JJ",/ ,,-~,,' ':l.;J'~'ie;; :"./".~, '~';t:12 :;'\~:: j'-.- )jf',:,.'~,\~~il'!'('?>',';::r~!;'!,.IJ:,L:;3_.;;i+:.)~'..::-:::;,'i\' . :,...., ~.... " - I ::'I) t, oCr; 1 J' 4~'" . I.;P , .' tft:~J' ,\ ~.~' r':I ,,f.. t'~l' ''iJr' . :'7'~~ M"':"'~' l"~~\' :'IJ I ,GS\~."';' ':lI'.l .- :) J...J, ':. / :' '~1':~/ ' ....., , ,g';>' J~.'~.~ ,/.:- ~~r';'- f . L,:,r.;. ...f!' 1\." h'1';", (I....~'_"::~';.'))......r. ,~I. ~ .r~;' ->:'!:...:~TI~~ .1:l,T;:,~~1.}'!;.>..N;~./lt~~:...J,1{:pJ '.~ , '': , . ," , "'.. ',' . - r. ' -'I'" I~" -. 'I.. ..,' J' .f.. '.... .- ,,".'! " f.t'.' \':;"" T """'--""~.,, ~.... -: ./'. ....~-,.n.;~,. -, . 'A t:~ \! ...~i;"''!'.'"';'',~iN .~-:;.~../;".:,., J~r:,;""'\'I'~'1)I'Y:Ir..r'}1 "i'~' "",, >":'1", ,.~e" ":/"."'i" .jfk;,^''1-::'",o.''.'~~J;;!,~:~:,hi'\'' "Jf)'i:!'::1":'~;:':""'" ,. '~."i0!~, f>.,:{ ""',,,,'?iJ'i\:'i-"'IJ:,r;;"ll":"'~ ',' 1:-" " ",0 0'<1( 'i'~I'''''-''; .~"':,\,", /'1.\ .... '. I~.I'\.~,:':""~.'f:'''-:'\''>''''~I;'V ,:t~..,1/ ,.r . H.'; .....', "'./ . ;...,..tJ.~...,,:.;J(i."I(ftlj. . ;', ... . l'.... - .~.-: ."tl/;' , ,;.(. '\ ..' . .J' ..'\..... lh !...i' ,'" '~..~.. ~,.' \J ,,\_, ."l....~:r;a:J- -..' . .:'.:f '" l~,-_ .....~"L-.~M': r1j'~'-'f1 ,,~. .-,.:+;l.'~ ", "'~." "'-", ',:, ' , - ,:/1 ;'0,_' "': ",II '" ,"/_Le:r,; e' --,~':'::'.', r:_>i~Pf::<;t,~!o-.? .,~ i';;71\;\~'Y~Z7,';aJ:td.~;' .~ ~TitF...:-"f'''''~ " .'ri%>;('i,ql";~.:,,.<~'i\ \, . !, ','" - ,- '", I 1 ,.'f;.." -,' " ." , 11, 't..",<l~"-~lo>l,? ~-'_.,. ':;;'-<..i,.lf~-:'J'" ,I '" '...:. ' .. ,t.~ ,'~o ' 'Ji'- '~" \':V"" 1 '.( .'.1 .I ,\,,.:.:. ,- " f,:, ,(' . . :--......1, .~..-'.';l . .,.1(= ~"'."" ~', _I;J .\(',.. ~(.. I "..~- '0 . , :.'o"ll.......--""". 1'~/: '}}.~'l:~. . !..I' I",: . :.* . I" t'r.': ,;.~., '1-,-/; ;.lff~"". ,....... 'I r' " 'h.. ~ !....~ _, ') -rll..~I.,J..:,',.". .r.... \.;1.:. ~,.t::r..J~}..:~~~,} :,,', I' r......;i.'",', J. ' ~<\1\.: ,"; ,L~:,. r :l(, :., '.1 , .' '"'i". ,;' . .... ('". r . ". '. '.1. ,-.1'" \O'~ .,:,.... ,'- '. i~ ..\ ,,'i:!.~f.- v..... 7 !:t.., ,,'.....,. ~ ~', I ,.f/~ '.., i......' . g~ ,'I ".'" ,',; '....:; ,:",,~{i/.1'll~"~:';''''t-.. ,: o,f"~2~'-;J)1:~~u~~s" "~~ '>il-,.---'+:::;-t"; 't, I "B' . r' .:~~-- .:-:,,,,>; :""""'-",,.~l,~ :l!.f .' " 'l "', . . "':" I ->1 \ ... . ~~ :'() ",' 'M"\'~'::"'~ .(.f: '~lr-'l)'" .. 11 r ...1.....". - t;;~~!1 ~ r~ I .~f. I, 'i . (V;.(:::,.., ~~, \., ,'!',. tl ("\ . J 4S1 I.' ". ,. f.,'" r . ~ :i 7: ,~Vl' ".<'1 ".1XJ . --- "';~..''', ,~ \ \".[1'''''' . . /. l ... ~~. J- . I .: ,....... . ..,~,,~" ,,"\ : ',,': i' ""7".-, . '-"'6 ':~"" 'CJn.:c.:,~".._,..._,~.,) """'" ~",vRt' ",' "'~""""'~"'_" -\::.... 'r--'/' ,'j""j', ~"( \~~~~,f"C>ir.' :,1''1-: 'I,"" "'." \ ',' I '., ,- '" v.." i" .. "-l: "'"~:l'_1.- ,...-/', 'C," I' \" '>, ." ." , "II'" "'1 '.'~'~~ \.""".' , 1\~1I.";"6'/""{-""~ ~.,(\.rJi.~:~I'J:":'~'''''': ..;:.------r.t:;:~.....-l:~ .~..-' :";;;1," '-:'. ""';,' ,~\~t:.''';'1~:\' ".....:..~\':":;I'/ ~:. I .' :'.\ ""'f", .', ,:Ii~ Q ~, I'. J'........, ,".I:'!.l" ,;.., '.'.1:' 'J:;,\, , . . ~ :"Ii ..1' ~1''>.I-;.. ;0,',' 'i,\: ':"""-"'11"411( ,:1.:.: ,:,,, ,,~.-,' ", : A ( .";~-,<('h...- '" 1.7,5\.t.1+"" f'l::::~''''''':'''-;<i::;td _""C~'~"~L~~~~,.)F,lffi1 t -' /J 1 il;c, fU;~ ,~'\:~,,0~~, '" "'(':j~;f ,~~ ,"I . :.:. .... i.-:.; -,:.~.. t-...;..- /JI:':= "f..~~';. , .1"Cr~ Jr, .~ :.. ...., 'ltli11~~7~;'.)':, > ,\J:\~: '1...~~!.rtt!A',~ ~-<'!: 5~..~1 ,.' ~ i" ':'~! ';1' ;~:~ ~:.t1$~ 'la"'f...'i'~"";\~~"ij~~-~'I" I'} ''';~'.~','', .,,:,-~.,; ':. ,'i.. . 1"'11: ''-1,'/ If II.:WI',\l, ,J~,' ''f:''.n~ ~I,"'." ......)1l..: ~ -,,~~,:'~;O$<'~~t(~&...'''' .~-*.~\~;;,.. ./"-"! ~~""\'i'''~lJ)~,...,.~;.:..,::..H~>...:~~..:l~\); "~~:'\'li ......~~"'i... .. \ .,,,. t 't . . f' . '~. \, l--1. I -.~'7"i' . 1"/ ' " , .r, . (':' 4,,(,e' .,.:~ -N 1/1 I,;:, ~- . "~(" 'i( I'.;!/ .t!o!'. '>lJ . \ "'I "" . :..',;'"t',',~:""'",,1.- """,\',: ',:'-:/1 ,),'::i'f:7, \ V'('? (~.-r"'/,/",J,.',.,':f;-:> "'f"t'i'" ;H-[/.fC;"":""L~- ,r'~,: d1""':;;'-J~~"""""I:;,.'~ 'J(,~'(";';l) ''<;., ," "'I'"'' I)' , -."" ~)-. ~-, 19~.:?',.\. 1'1--- "'I~'/J-'-' '-'r:'~iT"-'-C;"''''''.''r. ....:J.I.(}1" O;l...~...~.~. ,.,'" . :', .. 'i".'1r.::''l.1> :-11 ~~ r'<:' ;!. ~ ..~.' ..,?-'P ''-~' '{.\'<<' -::",' '2"-. 1 ',.-:;- -;"tl 1:-"'" ~Wl~',~tMJt:-~. ~, ~"I~\:::'. I ../(.'-"j , ~"::'" \~ ,;\ '~"'~ ',"I,'J -,'/11' :"'~"~hb'I(:t' .,-1; 1':~".\,I, i;i1~~t, :J~' ~,'~; i~,~~:J:t:{',,,, -,,' e-' p~t; /:'1 /"T-~ /(~ '. <;,-.i'./ltl'~~~;y0'~<,;;J~'I' ~:,. !~W;[71"~';':' ~; ,'" " ' , 'I' f> ,- ) 1" "'. / ',' ""..>..(.--, ,..<'1." (, r~Y1 I,' W '!}'\'P'" '. '( ,"'" ' ') , I~< : '.'. '. ;.:~;~ll... {, / ,:~.~..,l?} !:';11rl' ,~"".:...":.J. '''.!''.J1<':.: .~"'f\\J...'~": .....- ,....+-...,~ .', f," /,,~"'" ::'.' ,.r~'it','dt !><\~t'XII'''''''! ~1"~ . 1::",,11 ' ,:"'~ \' , /', '. ",'~ V;" 'i,\""~~>3:.!(.,,I,,' ," l~"," ,'''','kJ, ! " ' I' ~j'" ",~r-;- ,-,'",-V '(\ :;,1, "I':'~"" ~"";I;:: ..,,:' ,<, ')' ,,/ [" " '. I,' , ,,-, , ,'~:~' -.;:.c...\:.f,,~...,.,.. "!..,L_" .....j " -~"t-'-"""-" _'_~~d ,"""',' '-, -",,~"""" '.".." ".'-" ,'. ;, ,- , J!. j' .,1... . ,'. '.' ''''''i''''~ ~. _.., . l... ...... * '~~'~"" j,J)>.II'\, ..,f ....1,.:;...-1' ~-7':1t'\',~,):" '\'llt'I>~t.)\.'0l.J.J:'~'i~':' ~~,~~~:",_',~J,:>';,...,-aJll~i'l ')/ li '. . [~. .' ,-=-l:~('~~:";::(i~t.;-:iJ,,::~~.:}-:---;:.J:-~.' ::1 ..' . "'. .'.~~ .. '~"." ..I!,~;'~'.~~,'t.n'/': I. '. "e ~><;.:.r;-,;~-",;","\~ .~. I,' ":",' :;".' ,.'"r\.., './v..( ~""'. ,".'..~',11.: '~'..'" I', " "I "VI '."."<J ~n , ' ' '~"~" .", ,,;..,', ''''J ?",) \ I '- Il';,~ '( · "".',, IjBj 1il v /if (' ,~~, ~ ','" "----J-'L,o" , . , . ".~ ..I.....:r~ ,i ,.': f'"'' ,.".\. :.' :"1' r:)" '" ~a,,- '. ),1. JY,.s, ,: \ to ',"", j~ ~ ,,(;-~ .:'~ . 'l"(~~~/ .,' I~lj','\\'r"l.'~ .'" I,. ::0' :;..('~'''' ' . ,.' ~'~'" ,', .' ). 'r... " ...... ....', ''I.' ,I.... \ t. , f._" > .. ..,,:). 1 .......~..,., II' .~..:i..:/,~ l;:""4'{)" ' , ,,,.,,,.. ,A):..I'. ""..' . .". '.' . , r - . -"I f, .' :~;.i '.... . " ...........~ ,~::/1 '''. '" j,! -.~,1..:. ',," , , " I (.. ,( "~,,,J:Jt'(",')' 'I' 0,,' J, ""..sJ ;"" 5? ,,,"".'1,f",,.- , ;. .. .t.,,-,,<..' ..<f'"",:>~~,-, "'JI \.. en I. r.ti' .J") :\~".t""'f,,~.lt ~:.r"Z~ ,I". .~, "I.")pl.loti'" :,,";'- 0' ~ I' ".:l:':" fUl!;~ ....:__nr,'..c.; "'\~Io.' ~I";(~'- .J,I,~,I. I' -dj\ '..rr1, i ,: .'( ':..::~ ~ M\~))..'rJ .:~~. \~i~'~~ ,) ,~.~r~;,{.'~",\% t ;1;: '1,,~ J '...~ -~, I, '<"~,.' {'( : ./ ~S1t~J' "~. ~~~ .!:"'~" .' ;~~.~~..: "';'t~~~ '19,;1, / f. ( ~:: \:\ " ::!1 ,:' ,J.1L.s,,~ "~\:.J,1",J;t, J;' ;/:,}ii,',':' ""'~\':1 ".,~l",~, ...j J ) ';'\'~" "",\ ,:",,:>::,,,~.,.., cH", "~rA,o?"""'/<'\~j;~,,,,,.1" L, '.. - < ,}"O~,' 'I ..,"",In, ','"." ".',,:, ",,, ':#t' " ~"'~."" '~'_'''~' ~." ."',,,,1 "}" ',l ,"'h""_ . ot:'..' ) I . .,~' .... rn.O" .' .,)0 L, , '. '-0; ~. " ..".- ;.i;:,"", i: . ~',\'. . ~ ::r./ ....' ._......., .' ~ {:; I ,,'..' ':'.1:".' "" "~''';'''''~I' " . <: ~ I" 'L I,:::;...... 4'" ".~_" _ __ _ . -.--" "....""-.. . _.....~_ _ .......:_ C-__ .... .;- - . ~., '"-,'':'r''''' .... 1"'f'e..... : ...,'" ~ ,.,..~'~'~~'-,o, "~"gl~~'" 't.'f~ ,'0", ,:\" ',(~u.':,,~. ~, ,o"'o::~. ,:>"l.., ,'.' .;, \, ..,...:, ,,'I" ',' "\"~ 'I>I~~";'~ :,(\G''i<i:..;cli":,r,..,,..- l'J,<,j,;~' ';}-C \~,I'. '1,.' ~L ! , 'v.... Ul . ", )" '\ ,~r~~", "" ~",. 'nC' ,'" ".. !. ' ','. ~'''.,~' ~ ';'21' " . I , I - - ""'"}IT '.'Oft, 1 "'~lr'"'' ,~ ,. , ," ',,"" "Q/' 'I '.,';,;',: ,. j ,,1ft" r"':'~:''''''''''~'I''''-rv,.. .',:;.,-, :,", .--)/"'1 ' ""I-'! J'., . 1" 0 l'\,-4.' . '!J ~,I ...... "." . '., '" ",.:+-:...,~ ..,~ ,,~-,. - /j '.'; ,'.', ~"",.' : '';;>:l;~~'\'r' ,1.'-:1>' 1,('::; 1;,:.1.;.:1"-[0 ')f ".rI"~\' 'r.:: '... : lJ -< ::tI fTI 1\,(11 ./rl-':I,. \.' ~"-, i:.'1 Ill' ~':"'+." '.;; . :...(f :~::_. .\: .... . ..., " .,.." / {.':.':~.?t~~,~~...> :~.' ~;~I,';~:.~ . ~ ":J:~: ':~ : !f.':';. ~1.'QJ,\.I\:;(..'7.'~ I'~}' -~-(~~~ I '~.:bll .t::o () ,.)l"J .\". ,. ~. Ilj.:T ,;"..{ ....:~ ?:::,.- ~ ",,-:r: ~ _ '~::,.~~~,..\ 1.'Il' '., \~..' .-': /..1 . ..' "h~''i ....=r.~ \~rJ""''''~I' .' . :z I oi~ : rrI ~ 0 8 :;;O'!'<)O(,~:;,,~~,.I6-.i"'!":" '~;':;;r~l I tl:=-~,; ; ~h:ii'*tt.:':' :;: :),(.';~':t:"t,/,~~,':"i;:;I4})':.'~I..,:.'6";}~'-!-::i~r"L'7''Em , 0;:0 21 c~''''''IS'^ "C'l,"'.""" ~""L,L., L\:;",~c~.' :\!.- ""aYr,)/", , """'k""J""'<'-''''''- - ~'''''''12) )""',,1 ,~~,.., (f) .~y..~ ~ I; r~.o" 'J't'" r. ,.,'1' I 1.1.." 'S:!.',., "l..:'~.!' ^ '1; . 'oj' / 1\' lJ..."......~ I' ~~'! - fTI :. ~ ''''Jl\'~V~' .'.. .,:". 'j-:; .~\ .~~.I ....... -:. . -'''r - .....1 ;.~J. ; ~'I.~,~i: '7.:i{'{ . j.. ' /.. .;: ;: ~' '~/:;1 '. b,J~ \ :,:~. .~'.-. :'l "',:., :~. . '2,1 r ~ . ;, l \) I ::gz-< ~".I;"?..""~'>~':"""f .'a!ib.)' I_i 1':~ -;1 ~I ~T~~~'::/"\"" rl;':;i;:,~,~2{t~:~;V::~'i!i!I ~ti,,:J',J~i'':'\'' I ", " -' ". c ''''''.J:I~~., " ,~." ',' -, - =i-~~" W-,o/U.~7--~' '. " . -;'T.1' '1f/,!. , .,..,,'" "".'. "J-"- . <,' '1,,"'~' !. ~ 'TT . '--~;-.. ,,~. - -. \'=. - !::',' '\ if .,,',', ,'.)' .~l ',;";.;'~.' .;"\:,,'. ,A:. . ... 'I: .:~ _1 ':...'l. 1,1 J ,J~ ~):,; ::!,.. \!'~;, ':. ,,-" O'B' ", , ,', ," .!,.'';/,!,~<" ,\ ",Ii",:;rrri"I"~~A !'."J,~,~,':"l '",;s.:',,,,,, 1 ,-- '.b>,'" ,1 1 ;.. :..; - Oz 0 -1~',r"~"~O' I '-~ ".' I?' "'(~l///f. i'i".rr \,,is''{'~','~';i()''i:I. ,,,~'/ t'?""': '7"-':"",,' 'O~""I' "".)..",~,..,,'" ';' '-f' ...) _ I ,. c. ..' .J.... . ~."'" "' '" 'c7. .' I :l' . " .f~.. . ~ '-....:-.,... ~ . r..' , "It I .~.. 'l 0 I 0 ..'" ::t., 'I W. -- 'Oi,..",!L..-_'" t'~~rw 'I :) 1 1';;";'/", ';"""' ',' ,c ,\'5. .-'1','\ I -i5::..:"j..,:': 0 'i":'f~:"~I:i , o ! " e~ r-"I ~.' 1~'f '. f~ j / ~r v, ;-:l" ;" \.' I i i'..'r;:.;~ 't. \; 9.'",-.' . (' -, .', <'I ').'~1'':."1' I~ '..,',..-" t,......t'"40".... _ .... l~' 1 ,:,..t t .- ," .-~... . Z 0 2 I ."\.>",!-,-"'~'- '~'r.. ...A.N.'~-:: ;'ili.~l'~ ~...r/ I 1'-:: :'~I'.~t.'.I'. ~7t:-' ~':J .,;...." If:' .i~:...:'...-J~ ...~~ ;:..\.1.. .Z~:,\'.'~~{.,': * I ~::o C Ul n ~ J1;i~" 1 :~,,;ol '"" i ~ .jl"'/'-- . ,,\ i'"~,,, t'-:,{,'iI;'C" ';' ".I'~ " f1~ ,,(J ~;,.-: 'i\ ~'d""..J, I' 8,-t:"j-~"'", /'''.'''r 1'_,1 00' .... 0 00 l:"" .-.', "1-: 01' "b--L"'" "" -.17' ,\ ,.,,,., ",' 'I,'F """'-;'1h: "y;-,!" ," ': ',"'. , , 'II- \"" I, ~ '.r \', )" ,) , , 'I \ :0 R ~ 'f'l r'; ~r ,I,,' ,- Ul~'i.:ff:;?'~ ~;:;:gl;;;;i', J I I ~Jf"" '?" ,,;"'''' t.A }I""Ii~I,l';.h~"~~r..-~;y,:<;'0!~j:':" O~;;..u'" ': "'" ! ~ "-//'1'" i~.;,:,;/"I'/J",,,,J '1 : fTI I ~ ~,~ '''~:'3 :-"'!:"'- "., ~ot ..'-("'''''--:;;;. . ~ .., ,.:r.~.._...rjft...;:C;r1.:.'t~n\':' ,,". .',.,,' . i ....l~~ I "'l.'.,';Yjh:-.J. I... ".. ---i ..,"., 1 l' I .:.'. ,~' ~ ,,(.-:.-"". ,,\. ,.' ... ',l:~ '~'1."1 ""r......+r....~/.{.J. '," '.,. ol1:J~;,.~..2...',.) ..,. . . )?- 0 ,-; ',,:, ", ,;' ;~. .:6,' ,-'-"1.,. ~----~,".-l"'~'~ 'J='G,"""-'+" ')F" '. }~""',,..c.' .l .""~ I"'~ .'..." ' ".. ",','." ..I" 1-, ., '-'Yr' , '" .." ""'~, ,'" ~'-,' ",,,~,,:"hc:\' ".~- 'H'~ ,-' ~ ,II. 01' '....' "f"" .~.,' 'to, :.1 if; -...I.':. t:::..t -i.m:.:.',I..' ::. t..': U'I~"\,;, \\;'.i~{~:::';~.':':~':..'i..: \'...~~;>.~"i\'0J.,~t-...;..._. ..---.....Nl J./, "'i-' t':;.::H:l'\ '.1: /L:'ilu I '" J . "_ ' . . ' , ...- \.' ~;:" ....~ '.~", . ,. >, . '1 '. ....... . 1," ... ". p...... f <:1""'~ ';,I,A f.n,!.. ~ ~y)_.JJ.I"~'~;'I~"""')/ .~./':~}.t1.~ A:'f~:/.:\~;:~~~(::~, ~..:;.'':=''~ \rU' \ /...C/).. '.:')":"':~:~..~~i'.:l.i.~~)~:~'ri~ n'r . .~i II :, ., '. , ',"~i:o: i',,0l h: i: ." ('l o :z -< :u o r ::;: )> -< '" :u c Vi -< :u () -< z -; f'Tl ZC/) C/)r (')-;0 C-<"U :0 f'Tl < f'TlOO i" .~ o z ~ . I! ~ ~ l I I~ tj.~ J3 P ~y ....' p (8A.,C~-l-OR,:.MTN.) ~C". I ~:~{6J~~.(,;f€Nr: '~J"~.-'~~k!!4jti~':'~B ~~/, J..J\,~ ~ I)~ ~h' f;,fl "",C l~V/ ,;- 1--, ,D '.J"'" <1')(// 7" ~'. ,<;, .~ ,/":> u,~~~~,~~~.l , :: : ~'BC'( B ~ 1 .' l~~ ( 1/ ~\\.~ ')~. 'B'" / ':c::- _ -, ,'--i Be ..... .l -- \\.' V ~ \, (-" j' ~ ~ . ~ .' . _ . Zt\., , '),. / )< / , ./ ~ \..-. ./ ,~ '1. ~ bj;\.. \, ~~~r . .' ~.,}< ',' / ~~ \.,~. , 3~"" 'Ill'" ~ /' or ~~ < ~l{t~~\";' ~7 v "I:-~ \ ~~,".\~,~iti. ~t\,~ ,l{ ,-::' \y~ \\~\.~~ ,,"Y'~~~ , T~\/~AAY -v~ """~ ~. ~ *.... /' .\~\ \- . . -:-'( \ '\~{""~.". ~,,~' ~~A"8- ~.Y_ ::~:~=i- \ ~\ . ";- -~\ ,'~'''_ r.t~?~ j ~ ~\>""--~' r' F>-Y ~ . \\~, ,^y"'=A.~':~ ,B." .-:lo::~,k'... '~:'" p ~\\' ~"'" i? ~\ /.:"7 -~:4.- . _g-:::7 ~~.. 1P;~\'(jv,'\ \'~~~"" ' - ,.". A-."r, ,/' 0 -'" ';,w:,'At'IF~ '~"\ ~ . . "" C;,'" - ." ~~p _ ... ~,;,." ~- '>;f ,f:'i ~.,;.. , ' IY , , 0 '1--7 .- ~ . " , '.A", " \.\\,.1.. ,-" . ~~. .{,);....~...~(..; r. r" ~__.. ~~ . ,,,,,,,':"~~'c:'" ""'. . '. .,\ti~ ~ 1_ ,'::'~' #~ .-~~, j- ,_-r1 -".., ._~-.:.:;...--tl.. '~'- . ~....,,,:;4:...~_ \ -.-' ~ 'r _ '!i ' ~R'@JEtT,SIT "" , ~i':::&:'7~ --"/'~rr- .~ r ~ ' I ..'4...............',- . . ." ':l. .:..:.. -~.~. J-....., ~ ._1 I :r.,z;~r3<i.:'-6/li'-'~' ":, ;..:<- ,'-, ~,'~'S:"",~v'~ , - ...J ~ ;,rqfiD'<> : 1/" . ~':) ~~~:.. _ ~ ".' , '8",0 0-'~~ ' .c::. "'- ,\'J ,~~'" '("D S""....'_ '~ ' ,~,k..,_:::,\ - c' . . I ',~' '. c.=-:::;~'C /,4N,'" ~ ',"': , ,- ~ /. A , ",,' -;,;\' I"", -~ --Wv--l[) 'i: I ~: \8~ " :-:lf~;;t.;\, I (to.?"~? ' '6'/\= f' ~~ ~B~ f'-' ',-';c:'f(>':i(":J 0:~@:< , 'I' ~'\1 0 r- r- .-:....i'<<'G':;~,_...' "':; .... ,. "J;,;,'0-..-:..<:,<':'.;' ,,";", .1'i~;<I, '::::"""i , /. ,-~ ,; .:, . c:;" '" IC~:;~!;~7,~i;ji~;~i\!:;5~f::::~-' ',,;;j >{t'\.!\) \.. ,E -: ' \," ~ . . K~:"g~J~12' 'D l ~ B ~ w.: I~ ,,\, B "~"'k 't Be \ B 11.,' B AJ ~ ~~B~A~ORTION 6F~~~~~G~,_,,___~.'~ A ~" II .... HYDROLOGIC ,SOILS MAP \Cp I I I I I I I I I I I I I I I I I I I IV. RATIONAL HYDROLOGY STUDY , (100 YEAR STORM) \\ I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 08/31/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER QI00 FLOWS SOUTHERLY SIDE OF VIA RIO BASIN A FILE: A ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc" Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 100.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2,360 (in./hr.) 10 year storm 60 minute intensity = 0,880 (in,/hr.) 100 year storm 10 minute intensity 3.480 (in,/hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in./hr,) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 300.000(Ft,) Top (of initial area) elevation = 1059.500(Ft.) Bottom (of initial area) elevation = 1054.000(Ft.) Difference in elevation = 5.500(Ft.) Slope = 0.01833 s(percent)= 1,83 TC = k(O,300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.536 min. Rainfall intensity 4,400(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84,40 Pervious area fraction = 0.100; Impervious fraction 0.900 Initial subarea runoff = 1.182(CFS) Total initial stream area = 0.300(Ac.) I I I I I \~ I I I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1054,000(Ft.) End of street segment elevation ~ 1049.500(Ft.) Length of street segment 765,000(Ft.) Height of curb above gutter flowline = 6,O(In.) Width of half street (curb to crown) 28.000(Ft.) Distance from crown to cross fall grade break 26.000(Ft,) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) 0,020 Gutter width = 2.000(Ft,) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0,0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.121(CFS) Depth of flow = 0.425(Ft,), Average velocity ~ 2,176(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14,923(Ft,) Flow velocity = 2,18(Ft/s) Travel time = 5.86 min. .TC = 12.40 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0,893 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0,000 Decimal fraction soil group C 1,000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) B4.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Rainfall intensity 3,095(In/Hr) for a 100,0 year storm Subarea runoff 5.529(CFS) for 2.000(Ac.) Total runoff = 6.711(CFS) Total area = 2.300(Ac.) Street flow at end of street = 6.711(CFS) Half street flow at end of street 6.711(CFS) Depth of flow = 0,459(Ft.), Average velocity = 2.323(Ft/s) Flow width (from curb towards crown)= 16.620(Ft.) I I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1049.500(Ft.) End of street segment elevation ~ 1048.100(Ft.) Length of street segment = 280.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 28.000(Ft.) Distance from crown to cross fall grade break 26.00Q(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] siders) of the street I I, ~ I I I Distance from curb to property line = Slope from curb to property line (v/hz) Gutter width = 2.000(Ft,) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0,0150 Manning's N from grade break to crown = 0.0150 ~stimated mean flow rate at midpoint of street = 7,309(CFS) Depth of flow = 0.482(Ft.), Average velocity = 2.230(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 17,750(Ft,) Flow velocity = 2,23(Ft/s) Travel time = 2.09 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1,000 Decimal fraction soil group D 0,000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Rainfall intensity = 2,840(In/Hr) for a 100,0 year storm Subarea runoff = l,040(CFS) for 0.410(Ac.) Total runoff = 7,751(CFS) Total area = Street flow at end of street = 7.751(CFS) Half street flow at end of street 7.751(CFS) Depth of flow = 0,490(Ft,), Average velocity = 2,263(Ft/s) Flow width (from curb towards crown)= 18.164(Ft.) End of computations, total study area The following figures may be used for a unit hydrograph study of the same area, 12.000(Ft.) 0,020 I I I TC = 14 .49 min. I I I 2.710(Ac.) I I 2 . 71 (Ac.) I Area averaged pervious area fraction (Ap) Area averaged RI index number = 69.0 0,100 I I I I I I I 7P I II I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER QIOO FLOWS NORTHERLY SIDE VIA RIO . BASIN B FILE: B ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc" Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) ~ 100,00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity ~ 2.360 (in./hr.) 10 year storm 60 minute intensity ~ 0.880 (in./hr.) 100 year storm 10 minute intensity ~ 3.480 (in./hr,) 100 year storm 60 minute intensity ~ 1.300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity ~ 1.300 (in./hr.) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 5.000 **** INITIAL AREA EVALUATION **** Initial area flow distance ~ 300.000(Ft.) Top (of initial area) elevation ~ 1059.500(Ft.) Bottom (of initial area) elevation ~ 1054.000(Ft.) Difference in elevation ~ 5.500(Ft.) Slope ~ 0.01833 s(percent)~ 1.83 TC ~ k(0.300)*[(length^3)/(elevation change)]^O.2 Initial area time of concentration ~ 6.536 min. Rainfall intensity 4.400(In/Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient ~ 0.895 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soi1(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area year storm I I I A ~ 0.000 B ~ 0.000 C ~ 1.000 D 0.000 84.40 0.100; Impervious fraction = 1.182(CFS) 0.300(Ac.) 0.900 I I I ~ I I I Pervious area fraction = 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I Top of street segment elevation = 1054.000(Ft.) End of street segment elevation = 1052.200(Ft.) Length of street segment 290.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 28.000(Ft.) Distance from crown to crossfall grade break = 26.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width =. 2.000 (Ft. ) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0,0150 Estimated mean flow rate at midpoint of street = 1.655(CFS) Depth of flow = 0,310(Ft,), Average velocity = 1.705(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.186(Ft.) Flow velocity = 1.70(Ft/s) Travel time = 2.83 min. TC = 9.37 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI, index for soil (AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction = 0,900 Rainfall intensity 3.609(In/Hr) for a 100,0 year storm Subarea runoff = O.775(CFS) for O.240(Ac.l Total runoff = L956(CFS) Total area = 0.540(Ac.) Street flow at end of street = 1.956(CFS) Half street flow at end of street = L 956 (CFS) Depth of flow = 0.324(Ft.), Average velocity = 1,771(Ft/s) Flow width (from curb towards crown)= 9.890(Ft.) I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.540(Ac,) Runoff from this stream 1.956(CFS) Time of concentration 9.37 min. Rainfall intensity = 3.609(In/Hr) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 tv I !I I **** INITIAL AREA EVALUATION **** Initial area flow distance = 595,000(Ft.) Top (of initial area) elevation = 1057,200(Ft.) Bottom (of initial area) elevation = 1052.200(Ft.) Difference in elevation = 5,OOO(Ft,) Slope = 0,00840 s(percent)= 0.84 TC = k(0,300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.047 min. Rainfall intensity = 3.474(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) = 84,40 Pervious area fraction = 0.100; Impervious fraction 0.900 Initial subarea runoff = 3.l06(CFS) Total initial stream area 1,000(Ac.) Pervious area fraction = 0.100 I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS **** I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1,000(Ac.) Runoff from this stream 3.106(CFS) Time of concentration = 10.05 min. Rainfall intensity = 3.474(In/Hr) Summary of stream data: I Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I I Qp = 1.956 9.37 3.106 10.05 stream flow has longer 3.106 + sum of Qb Ia/Ib 1.956 * 0.962 = 4,989 3.609 3.474 time of concentration 1 2 Largest Qp = I 1.883 I Total of 2 streams to confluence: Flow rates before confluence point: 1,956 3,106 Area of streams before confluence: 0.540 1.000 Results of confluence: Total flow rate = Time of concentration Effective stream area 4,989(CFS) 10.047 min. after confluence 1.540(Ac.) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION **** I ~ I I I I COMMERCIAL subarea type Runoff Coefficient: 0.894 Decimal fraction soil group A : 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D : 0.000 RI index for soil(AMC 3) : 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration 10.05 min. Rainfall intensity 3.474(In/Hr) for a 100.0 year storm Subarea runoff 1,863(CFS) for 0.600(Ac.) Total runoff: 6.852(CFS) Total area: 2.l40(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 11.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I Top of street segment elevation: 1051.800(Ft.) End of street segment elevation: 1049.360(Ft.) Length of street segment 410.000(Ft.) Height of curb above gutter flowline: 6,0(In.) Width of half street (curb to crown) 28.000(Ft.) Distance from crown to crossfall grade break 26.000(Ft.) Slope from gutter to grade break (v/hz): 0,020 Slope from grade break to crown (v/hz) : 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width: 2.000(Ft,) Gutter hike from flowline: 2.000(In,) Manning's N in gutter: 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street: 7,492(CFS) Depth of flow,: 0.4l3(Ft,), Average velocity: 2.397(Ft/s) Street flow hydraulics at midpoint of street travel: Ha1fstreet flow width: 17.319(Ft,) Flow velocity: 2.40(Ft/S) Travel time: 2,85 min. TC: 12.90 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient: 0.893 Decimal fraction soil group A 0.000 Decimal fraction soil group B : 0,000 Decimal fraction soil group C : 1.000 Decimal .fraction soil group D 0.000 RI index for soi1(AMC 3) : 84.40 Pervious area fraction: 0.100; Impervious fraction: 0.900 Rainfall intensity 3.028(In/Hr) for a 100.0 year storm Subarea runoff 1.082(CFS) for 0.400(Ac,) Total runoff: 7.934(CFS) Total area: 2.540(Ac.) Street flow at end of street: 7.934(CFS) Half street flow at end of street 7.934(CFS) Depth of flow: 0.481(Ft.), Average velocity: 2.430(Ft/s) Flow width (from curb towards crown): 17.714(Ft.) I I I' I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~ I I I Process from Point/Station 9.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 11.000 I Along M.ain Stream number: 1 in normal stream number 1 Stream flow area = 2.540(Ac.) Runoff from this stream 7.934(CFS) Time of concentration 12.90 min. Rainfall intensity = 3.028(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 250,000 (Ft. ) Top (of initial area) elevation = 1053.800(Ft.) Bottom (of initial area) elevation = 1049.360(Ft.) Difference in elevation = 4,440 (Ft.) Slope = 0.01776 s(percent)= 1.78 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.115 min. Rainfall intensity 4,565(In/Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 year storm I I A 0.000 B = 0.000 C 1. 000 DO.OOO 84.40 0,100; Impervious fraction = 2.861 (CFS) 0.700 (Ac.) 0.900 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10,000 to Point/Station 11.000 HH CONFLUENCE OF MINOR STREAMS HH I I Along l1ain Stream number: 1 in normal stream number 2 Stream flow area = O.70Q(Ac.) Runoff from this stream = 2.861(CFS) Time of concentration = 6.12 min. Rainfall intensity = 4.565 (In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity ( In/Hr) I 1 2 Largest Qp = 7.934 12.90 2.861 6.12 stream flow has longer 7.934 + sum of Qb Ia/Ib 2.861 * 0.663 9.832 time of 3.028 4.565 concentration I I 1. 898 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: p I I I 7.934 2,861 Area of streams before confluence: 2.540 0.700 Results of confluence: Total flow rate = Time of concentration Effective stream area 9,832(CFS) 12,898 min. after confluence 3.240(Ac.) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I Top of street segment elevation = 1049.360(Ft,) End of street segment elevation = 1048.l00(Ft.) Length of street segment 270.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 28.000(Ft.) Distance from crown to cross fall grade break = 26.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = l2.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In,) Manning's N in gutter = 0.0150 M~nning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street Depth of flow = 0,546(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 20.976(Ft,) Flow velocity = 2,26(Ft/s) Travel time = 1.99 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0,100; Impervious fraction = 0.900 Rainfall intensity 2,798(In/Hr) for a 100.0 year storm Subarea runoff 0,824(CFS) for 0.330(Ac.) Total runoff = 10.656(CFS) Total area = Street flow at end of street = 10.656(CFS) Half street flow at end of street 10.656(CFS) Depth of flow = 0.552(Ft.), Average velocity = Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property Flow width (from curb towards crown)= 2l.247(Ft.) End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. 10.332(CFS) 2.256(Ft/s) I I I I 2.3l(Ft. ) I TC = 14.89 min. I I I I 3.570(Ac.) I 2.263 (Ft/s) 2.58 (Ft.) I 3.57 (Ac.) I Area averaged pervious area fraction (Ap) = 0.100 ~~ I I II Area averaged RI index number = 69.0 I I I I I I II I I I I I I I I I ~ I I I Riverside County Rational Hydrology Program I CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 08/31/99 Version 3.3 ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL Q100 FLOWS AT COUNTRY GLEN DRIVE BASIN C FILE: C ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc., Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 100.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2,360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity 3,480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in,/hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1,300 (in,/hr,) Slope of intensity duration curve = 0,5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** I "Initial area flow distance = 165.000(Ft.) Top (of initial area) elevation = 1052.900(Ft.) Bottom (of initial area) elevation = 1051,220(Ft.) Difference in elevation = 1.680(Ft.) Slope = 0.01018 s(percent)= 1.02 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.788 min. Rainfall intensity = 4.705(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.896 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1,000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Initial subarea runoff = 0.843(CFS) Total initial stream area = O,200(Ac,) I I I I I ~ I I I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation ~ 105l.220(Ft.) End of street segment elevation = 1048.l00(Ft.) Length of street segment 500.000(Ft.) Height of curb above gutter flowline 6,0(In.) Width of half street (curb to crown) 28.000(Ft.) Distance from crown to cross fall grade break 26.000(Ft,) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line l2.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2,000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.l07(CFS) Depth of flow = 0.33l(Ft.), Average velocity = 1,805(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.20l(Ft.) Flow velocity = 1.80(Ft/s) Travel time = 4.62 min. TC = 10.41 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group A 0,000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C 1.000 Decimal fraction soil group,D 0.000 RI index f?r soil(AMC 3) 84.40 Pervious area fraction = 0,100; Impervious fraction = 0.900 Rainfall intensity 3.407(In/Hr) for a 100.0 year storm Subarea runoff = 1.828(CFS) for 0.600(Ac.) Total runoff = 2,670(CFS) Total area = 0.800(Ac.) Street flow at end of street = 2.670(CFS) Half street flow at end of street = 2.670(CFS) Depth of flow = 0,352(Ft.), Average velocity = 1,906(Ft/s) Flow width (from curb towards crown)= 11.287(Ft.) I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 15.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1044.93(Ft.) Downstream point/station elevation 1039.56(Ft.) Pipe length = 30,OO(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 2.670(CFS) Given pipe size = l8.00(In.) Calculated individual pipe flow 2.670(CFS) Normal flow depth in pipe = 2.99(In.) Flow top width inside pipe = l3,40(In.) Critical Depth 7,44(In,) I I I ~ I I I Pipe flow velocity = l3.64(Ft/s) Travel time through pipe 0.04 min. Time of concentration (Tel 10,44 min. End of computations, total study area = 0,60 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I Area averaged pervious area fraction (Ap) = 0.100 Area averaged RI index number = 69.0 I I I I I I I I I I I I I 1 ~ I I , I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/01/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER Q100 BASIN D FILE: D ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc" Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 100.00 Antecedent Moisture Condition = 3 I Standard intensity-duration curves data (Plate D-4.1) For the { Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in,/hr,) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 260,OOO(Ft.) Top (of initial area) elevation = 1053.200(Ft.) Bottom (of initial area) elevation = 1050.000(Ft.) Difference in elevation = 3.200(Ft.) Slope = 0,01231 s(percent)= 1,23 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.685 min. Rainfall intensity = 4.346(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area A = 0.000 B = 0.000 C 1.000 D 0.000 84.40 0.100i Impervious fraction 2.334(CFS) 0.600(Ac,) 0.900 I I I I I ~ I I I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18,000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Time of concentration = Rainfall intensity Subarea runoff Total runoff = A 0.000 B 0,000 C 1,000 D 0.000 84.40 0,100; Impervious fraction = 6.68 min. 4.346(In/Hr) for a 100.0 7,782(CFS) for 2.000(Ac.) 10,116(CFS) Total area = 0.900 I I year storm I 2.600(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 18.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1040.73(Ft.) Downstream point/station elevation l038.33(Ft.) Pipe length 52,OO(Ft.) Manning's N = 0,013 No, of pipes = 1 Required.pipe flow 10.116(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow 10.116(CFS) Normal flow depth in pipe = 5.95(In.) Flow top width inside pipe = 31.64(In.) Critical Depth = 11,10(In.) Pipe flow velocity = 11.28(Ft/s) Travel time through pipe =. 0.08 min. Time of concentration (TC) = 6.76 min. End of computations, total'study area = 2.60 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I I Area averaged pervious area fraction (Ap) Area averaged RI index number = 69.0 0.100 I I I I I ~ I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/01/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER Q100 BASIN E & F FILE: E ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc" Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 100,00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity 3,480 (in./hr.) 100 year storm 60 minute intensity = 1,300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1,300 (in./hr.) Slope of intensity duration curve = 0.5500 I I I +++++++++++++++++++++++++++++++++++++++++++++++++++~++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 340.000(Ft.) Top (of initial area) elevation = 1052.000(Ft.) Bottom (of initial area) elevation = 1050.890(Ft.) Difference in elevation = 1.110(Ft.) Slope = 0,00326 s(percent)= 0.33 TC = k(0.3001*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.704 min. Rainfall intensity 3.541(In/Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area year storm I I I I A 0.000 B 0.000 C 1,000 D = 0,000 84.40 0.100; Impervious fraction = 2.216(CFS) 0.700(Ac,) 0.900 I I ~ I , I I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** SUBAREA FLOW ADDITION **** I I COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration 9.70 min. Rainfall intensity 3,541(In/Hr) for a 100.0 year storm Subarea runoff 3,799(CFS) for 1.200(Ac.) Total runoff = 6.015(CFS) Total area = 1.900(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1046.09(Ft,) Downstream point/station elevation 1043.23(Ft.) Pipe length 286,OO(Ft,) Manning's N = 0,013 No. of pipes = 1 Required pipe flow 6,015(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 6.015(CFS) Normal flow depth in pipe = 9.76(In.) Flow top width inside pipe = 17.94(In.) Critical Depth = 11.38(In,) Pipe flow velocity = 6.14(Ft/s) Travel time through pipe = 0,78 min. Time of concentration (TC) = 10,48 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = l,900(Ac.) Runoff from this stream 6.015(CFS) Time of concentration 10.48 min. Rainfall intensity = 3,394(In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.100 to Point/Station 22.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 135.000(Ft.) Top (of initial area) elevation = 1052.500(Ft.) Bottom (of initial area) elevation = 1050.900(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.01185 s(percent)= 1.19 TC = k(O,300)*[(length^3)/(elevation change)]^0.2 ~ I I I I I Initial area time of concentration = Rainfall intensity 5.000(In/Hr) COMMERCIAL subarea type Runoff Coefficient = 0.896 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 5.182 min. for a 100.0 year storm I A 0,000 B 0,000 C = 1. 000 D = 0.000 84.40 0.100; Impervious fraction 2.239 (CFS) 0.500 (Ac,) 0.900 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23,000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation = 1046.07(Ft.) Downstream point/station elevation = 1043.23(Ft.) Pipe length = 13,00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 2.239(CFS) Given pipe size = 18,00(In,) Calculated individual pipe flow = 2.239(CFS) Normal flow depth in pipe = 2,62(In.) Flow top width inside pipe = 12.69(In.) Critical Depth = 6.78(In.) Pipe flow velocity = 14.09(Ft/s) Travel time through pipe = 0,02 min. Time of concentration (Te) = 5.20 min. I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** CONFLUENCE.OF MINOR STREAMS **** I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0,500 (Ac.) Runoff from this stream = 2.239(CFS) Time of concentration = 5.20 min. Rainfall intensity = 4.992(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp = 6,015 10.48 2,239 5.20 stream flow has longer 6.015 + sum of Qb Ia/lb 2.239 * 0.680 7.538 time of 3,394 4,992 concentration I 1. 523 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 6.015 2.239 Area of streams before confluence: I 7-5 I I I 1,900 0,500 Results of confluence: Total flow rate = Time of concentration Effective stream area 7.538 (CFS) 10.480 min. after confluence 2.400 (Ac,) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23,000 to Point/Station 23.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1043.23(Ft,) Downstream point/station elevation 1042.77(Ft.) Pipe length 46.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.538(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 7.538(CFS) Normal flow depth in pipe = 11.29(In.) Flow top width inside pipe = 17.41(In.) Critical Depth = 12,75(In,) Pipe flow velocity = 6.47(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 10,60 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23,100 to Point/Station 23.200 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1042,77(Ft.) Downstream point/station elevation 1040.92(Ft.) Pipe length 55.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 7.538(CFS) Given pipe size = 42,00(In,) Calculated individual pipe flow = 7.538(CFS) / Normal flow depth in pipe = '5.79(In,) Flow top width inside pipe = '28.97(In.) Critical Depth = 9.91(In.) Pipe flow velocity = 9.41(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 10.70 min. /' End of computations, total study area = 2.40 (Ac.) The following figures may be used for a unit hydrograph study of the same area. "' I I I I Area averaged pervious area fraction (Ap) Area averaged RI index number = 69.0 0.100 I I I I ?P I II I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/01/99 Version 3.3 I VAIL RANCH COMMERCIAL CENTER QlOO BASIN G & H FILE: G I ********* Hydrology Study Control Information ********** I RANPAC Inc., Temecula, California - SiN 560 I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 100.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.l) For the ( Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2,360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1,300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1,300 (in./hr.) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24,000 to Point/Station 25.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 190.000(Ft.) Top (of initial area) elevation = 1053.270(Ft.) Bottom (of initial area) elevation = 105l.590(Ft.) Difference in elevation = 1.680(Ft.) Slope = 0.00884 s(percent)= 0.88 TC = k(0,300)*[(length^3)/(elevation change)J^0.2 Initial area time of concentration = 6.300 min. Rainfall intensity 4.49l(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D 0,000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100i Impervious fraction = 0.900 Initial subarea runoff = 4.825(CFS) Total initial stream area 1.200 (Ac.) I I I I I ~\ I I I Pervious area fraction 0,100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 26.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0,895 Decimal fraction soil group A = 0,000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Time of concentration = 6.30 min. Rainfall intensity 4.491(In/Hr) for a 100.0 year storm Subarea runoff 6.835(CFS) for 1,700(Ac.) Total runoff = 11,660(CFS) Total area = 2.900(Ac.) I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 29.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1046,OO(Ft,) Downstream point/station elevation 1043.70(Ft.) Pipe length 180.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 11,660(CFS) Given pipe size = 21,OO(In.) Calculated individual pipe flow 11,660(CFS) Normal flow depth in pipe = l2.35(In.) Flow top width inside pipe = 20.67(In.) Critical Depth = 15.27(In,) Pipe flow velocity = 7.93(Ft/s) Travel time through pipe = 0.38 min. Time of concentr~tion (TC) = 6.68 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 29.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.900(Ac.) Runoff from this stream 11,660(CFS) Time of concentration = 6.68 min, Rainfall intensity = 4.349(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 27.000 **** INITIAL AREA EVALUATION **** I I Initial area flow distance = 285.00Q(Ft.) Top (of initial area) elevation = 1053.800(Ft.) Bottom (of initial area) elevation = 1050.870(Ft.) Difference in elevation = 2.930(Ft.) Slope = 0.01028 s(percent)= 1.03 TC = k(0.300)*[(length^3)/(elevation change))^0.2 ~ I I I I Initial area time of concentration = 7.189 min. Rainfall intensity 4.176(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Initial subarea runoff = 5.233(CFS) Total initial stream area 1,400(Ac,) Pervious area fraction = 0.100 I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 28,000 **** SUBAREA FLOW ADDITION **** I I COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A = 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Time of concentration 7.19 min. Rainfall intensity 4.176(In/Hr) for a 100.0 year storm Subarea runoff 6.728(CFS) for 1.800(Ac.) Total runoff = 11,960(CFS) Total area = 3.200(Ac.) I I I ++++++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28,000 to Point/Station 29.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation = 1046.32(Ft.) Downstream point/station elevation = 1043.95(Ft.) Pipe length = 45.00(Ft.l Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 11.960(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 11.960(CFS) Normal flow depth in pipe = 8.96(In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 15.75(In.) Pipe flow velocity = 13.62(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 7.24 min. I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28,000 to Point/Station 29.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.200(Ac.) Runoff from this stream 11.960(CFS) Time of concentration = 7.24 min. Rainfall intensity = 4.159(In/Hr) I ~ I I I Summary of stream data: I Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp ; 11.660 6.68 11.960 7,24 stream flow has longer 11.960 + sum of Qb Ia/lb 11.660 * 0,956 ; 23.109 time of 4.349 4,159 concentration I 11.149 Qp ; I Total of 2 streams to confluence: Flow rates before confluence point: 11.660 11.960 Area of streams before confluence: 2.900 3.200 Results of confluence: Total flow rate; 23.109(CFS) Time of concentration 7.244 min. Effective stream area after confluence 6.100(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation; 1043.70(Ft.) Downstream point/station elevation 1042.87(Ft.) Pipe length 55.00(Ft,) Manning's N ; 0.013 No, 'of pipes; 1 Required pipe flow 23.109 (CFS) Given pipe size; 21,00(In,) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 2.490(Ft.) at the headworks or inlet Pipe friction loss; 1.l70(Ft.) Minor friction loss; 2.l50(Ft.) Pipe flow velocity = 9.6l(Ft/s) Travel time through pipe 0.10 min. Time of concentration (TC); 7,34 min. End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. selected pipe size. the pipe invert is of the pipe(s) I I K-factor = 1.50 I 6.10 (Ac.) I Area averaged pervious area fraction (Ap) Area averaged RI index number; 69.0 0,100 I I I I }.{J I I I II Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/01/99 Version 3.3 I VAIL RANCH COMMERCIAL CENTER Q100 BASIN I,J, & K FILE: I ********* Hydrology Study Control Information ********** I RANPAC Inc., Temecula, California - SiN 560 I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) : 100.00 Antecedent Moisture Condition: 3 I Standard intensity-duration curves data (Plate 0-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity: 2.360 (in./hr.) 10 year storm 60 minute intensity: 0.880 (in,/hr.) 100 year storm 10 minute intensity 3.480 lin./hr.) 100 year storm 60 minute intensity: 1.300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity: 1,300 (in./hr.) Slope of intensity duration curve: 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 30.000 **** INITIAL AREA EVALUATION **** Initial area flow distance: 345.000(Ft.) Top (of initial area) elevation: l057.200(Ft.) Bottom (of initial area) elevation: 1054.300(Ft.) Difference in elevation: 2.900(Ft.) Slope: 0.00841 s(percent): 0.84 TC: k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration: 8.079 min. Rainfall intensity 3.916(In/Hr) for a 100.0 COMMERCIAL subarea type Runoff Coefficient: 0.895 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area = year storm I I I I A: 0.000 B: 0.000 C : 1. 000 D 0.000 84.40 0.100; Impervious fraction: 3.504 (CFS) 1.000(Ac.) 0.900 I I A.\ I I I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 32.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient ~ 0.895 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) ~ 84.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Time of concentration = 8.08 min. Rainfall intensity 3.916(In/Hr) for a 100.0 year storm Subarea runoff 20.323(CFS) for 5,800(Ac.) Total runoff ~ 23.827(CFS) Total area ~ 6,800(Ac.) I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area ~ 6.800(Ac.) Runoff from this stream 23.827(CFS) Time of concentration 8.08 min. Rainfall intensity ~ 3.916(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.100 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance ~ 130,000(Ft.) Top (of initial area) elevation ~ 1053.800(Ft.) Bottom (of initial area) elevation ~ 1052,600(Ft.) Difference in elevation ~ l.200(Ft.) Slope ~ 0.00923 s(percent)~ 0.92 TC ~ k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.366 min. Rainfall intensity ~ 4.905(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient ~ 0.896 Decimal fraction soil group A ~ 0.000 Decimal fraction soil group B ~ 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) ~ 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff ~ l,757(CFS) Total initial stream area ~ 0.400(Ac.) Pervious area fraction = 0.100 I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ~ I I II I I Upstream point/station elevation = 1049.50(Ft.) Downstream point/station elevation 1043.49(Ft.) Pipe length 420.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 1. 757 (CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow 1.757(CFS) Normal flow depth in pipe = 5.37(In.) Flow top width inside pipe = 11.93(In.) Critical Depth = 6.77(In.) Pipe flow velocity = 5.16(Ft/s) Travel time through pipe = 1.36 min. Time of concentration (TC) = 6.72 min. i I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.400(Ac.) Runoff from this stream 1.757(CFS) Time of concentration = 6.72 min. Rainfall intensity = 4.333(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp = 23.827 8,08 1.757 6,72 stream flow has longer 23.827 + sum of Qb Ia/lb 1. 757 * 0.904 25.415 time of 3.916 4.333 concentration I 1.588 I Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 23,827 1,757 Area of streams before confluence: 6.800 0.400 Results of confluence: Total flow rate = 25.415(CFS) Time of concentration 8.079 min. Effective stream area after confluence 7.200(Ac. ) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation = l043.49(Ft.) Downstream point/station elevation = 1043.13(Ft.) Pipe length 75.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 25.415(CFS) Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is A?J I I II I 2.lll(Ft.) at the Pipe friction 105s = Minor friction 1055 = Pipe flow velocity = Travel time through pipe Time of concentration (TC) = headworks or inlet of the pipets) 0.946(Ft.) 1.524(Ft.) 8.09(Ft/s) 0.15 min. 8.23 min. K-factor = 1. 50 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32,000 to Point/Station 34.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 7.200 (Ac. ) Runoff from this stream = 25.415(CFS) Time of concentration 8.23 min. Rainfall intensity = 3,876(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.100 to Point/Station 33.000 **** INITIAL AREA EVALUATION **** I I Initial area flow distance = 310.000(Ft.) Top (of initial area) elevation = 1054.300(Ft.) Bottom (of initial area) elevation = 1049.650(Ft.) Difference in elevation = 4.650(Ft,) Slope = 0,01500 s(percent)= 1.50 TC = k(0,300)*[(length^3)/(elevation change)J^O,2 Initial area time of concentration = 6.894 min. Rainfall intensity 4.273(In/Hr) for a 100,0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A = 0.000 Decimal fraction soil group B 0.000 Decimal .fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soi1(AMC 3) 84.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Initial subarea runoff = 3.443(CFS) Total initial stream area = 0.900(Ac.) Pervious area fraction = 0.100 I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1046.16(Ft.) Downstream point/station elevation = 1043.13(Ft.) Pipe length 60.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 3.443(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.443(CFS) Normal flow depth in pipe = 4.65(In.) Flow top width inside pipe = 15.75(In.) Critical Depth = 8.48(In.) Pipe flow velocity = 9.53(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 7.00 min. ~ I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.900(Ac.) Runoff from this stream 3.443(CFS) Time of concentration = 7.00 min. Rainfall intensity = 4.238(In/Hr) Summary of stream data: I Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I I 1 2 Largest Qp = 25,415 8,23 3.443 7,00 stream flow has longer 25.415 + sum of Qb Ia/Ib 3.443 * 0,915 28.563 time of 3.876 4.238 concentration I 3.148 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 25.415 3.443 Area of streams before confluence: 7.200 0.900 Results of confluence: Total flow rate = 28.563(CFS) Time of concentration 8.233 min. Effective stream area after confluence = , 8.100(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1043.13(Ft.) Downstream point/station elevation l042.87(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 28.563(CFS) Given pipe size = 24,00(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 2.462(Ft,) at the headworks or inlet Pipe friction loss = 0.797(Ft.) Minor friction loss = 1.925(Ft.) Pipe flow velocity = 9.09(Ft/s) Travel time through pipe 0.09 min. Time of concentration (Te) 8.32 min. End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. selected pipe size. the pipe invert is of the pipe(s) I I K-factor = 1.50 I 8.10 (Ac.) I Area averaged pervious area fraction (Ap) = 0.100 Area averaged RI index number = 69.0 ~ I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/01/99 Version 3.3 I VAIL RANCH COMMERCIAL CENTER QIOO BASIN G & H, I,J,K, & L FILE: L I ********* Hydrology Study Control Information ********** I RANPAC Inc., Temecula, California - SiN 560 I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 100.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in,/hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in,/hr.) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** I Rainfall intensity 4.129(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 User specified values are as follows: TC = 7.34 min. Rain intensity = 4.13(In/Hr) Total area = 6.10(Ac.) Total runoff = 23.11(CFS) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** I I ~ I I I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.100(Ac.) Runoff from this stream 23.109(CFS) Time of concentration 7.34 min. Rainfall intensity = 4,129(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 35.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** I Rainfall intensity = 3.854(In/Hr) for a 100,0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0,000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 User specified values are as follows: TC = 8.32 min. Rain intensity = 3.85(In/Hr) Total area = 8.10(Ac,) Total runoff = 28.56(CFS) I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 8,100(Ac.) Runoff from this stream 28.563(CFS) Time of concentration = 8.32 min. Rainfall intensity = 3.854(In/Hr) Summary of stream data: I I Stream Flow rate TC Rainfall Intensity No, (CFS) (min) (In/Hr) 1 23.109 7.34 4.129 2 28.563 8.32 3.854 Largest stream flow has longer time of concentration Qp = 28.563 + sum of Qb Ia/Ib 23.109 * 0.933 = 21.570 Qp = 50.133 I I I Total of 2 streams to confluence: Flow rates before confluence point: 23.109 28.563 Area of streams before confluence: 6.100 8.100 Results of confluence: Total flow rate = 50.133(CFS) Time of concentration 8.320 min. Effective stream area after confluence 14.200(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~ I I I Process from Point/Station 35.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 39.000 I I Upstream point/station elevation = 1042.87(Ft.) Downstream point/station elevation = 1040.98(Ft.) Pipe length = 380.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 50.l33(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 50.l33(CFS) Normal flow depth in pipe = 32.44(In.) Flow top width inside pipe = 2l.50(In.) Critical Depth = 27.65(In.) Pipe flow velocity = 7.48(Ft/s) Travel time through pipe = 0.85 min. Time of concentration (TC) = 9.17 min. I II I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = l4.200(Ac.) Runoff from this stream 50.133(CFS) Time of concentration 9.17 min. Rainfall intensity = 3,653(In/Hr) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.000 to Point/Station 37.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 295,OOO(Ft.) Top (of initial area) elevation = 1053,900(Ft.) Bottom (of initial area) elevation = 1052.400(Ft.) Difference in, elevation = 1,500(Ft.) Slope = 0.00508 s(percent)= 0.51 TC = k(O,300)*[(length^3)/(elevation change)]^0.2' Initial area time of concentration = 8.391 min. ,Rainfall intensity = 3.836(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.7l6(CFS) Total initial stream area 0,500(Ac.) Pervious area fraction = 0.100 I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 38.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0.895 Decimal fraction soil group A 0.000 ~ I I I I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Time of concentration = 8.39 min. Rainfall intensity = 3.836(In/Hr) for a 100.0 year storm Subarea runoff 10.980(CFS) for 3.200(Ac.) Total runoff = 12.696(CFS) Total area = 3.700(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 39.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation - 1047.80(Ft.) Downstream point/station elevation = 1040.98(Ft.) Pipe length 15,00(Ft,) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 12.696(CFS) Given pipe size = 18,00(In,) Calculated individual pipe flow 12.696(CFS) Normal flow depth in pipe = 5.16(In.) Flow top width inside pipe = 16.28(In,) Critical Depth = 16.09(In,) Pipe flow velocity = 30.34(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.40 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.700(Ac.)' Runoff from this stream = 12.696(CFS) Time of concentration = 8.40 min. Rainfall intensity = 3.834(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity '(In/Hr) I 1 2 Largest Qp = 50.133 9.17 12.696 8.40 stream flow has longer 50.133 + sum of Qb Ia/Ib 12.696 * 0.953 = 62.232 time of 3.653 3.834 concentration I 12.099 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 50.133 12.696 Area of streams before confluence: 14.200 3.700 Results of confluence: Total flow rate = 62.232(CFS) Time of concentration = 9.167 min. ~ I I I I I Effective stream area after confluence = l7.900(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 40.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation = 1040.98(Ft.) Downstream point/station elevation = 1040.9l(Ft.) Pipe length = 10.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 62.232(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow 62.232(CFS) Normal flow depth in pipe = 24.52(In.) Flow top width inside pipe = 47.99(In.) Critical Depth = 28.54(In.) Pipe flow velocity = 9.65(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 9.18 min. End of computations, total study area = 17.90 (Ac.) The following figures may be used for a unit hydrograph study of the same area, I I I Area averaged pervious area fraction (Ap) Area averaged RI index nUmber = 69.0 0.100 I I I I I I I I I I ~ II I I,," ..... I ~, I I I I I I I I I I I I I I I v. RATIONAL HYDROLOGY STUDY (10 YEAR STORM) ~\ I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 I VAIL RANCH COMMERCIAL CENTER QIO FLOWS SOUTHERLY SIDE OF VIA RIO BASIN A FILE: A10 I ********* Hydrology Study Control Information ********** I RANPAC Inc., Temecula, California - SiN 560 I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4,1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr,) 10 year storm 60 minute intensity = 0,880 (in./hr.) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I Storm event year = 10,0 Calculated rainfall intensity data: 1 hour intensity = 0,880 (in,/hr,) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1,000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1059.500(Ft.) Bottom (of initial area) elevation = 1054.000(Ft.) Difference in elevation = 5.500(Ft,) Slope = 0,01833 s(percent)= 1,83 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.536 min. Rainfall intensity 2.979(In/Hr) for a 10.0 COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area year storm I I I A = 0,000 B = 0.000 C = 1.000 D 0.000 84,40 0.100; Impervious fraction = O,798(CFS) 0.300(Ac,) 0.900 I I I ?~ I I I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1054,000(Ft.) End of street segment elevation = 1049.500(Ft.) Length of street segment 765.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 28.000(Ft.) Distance from crown to cross fall grade break 26.000(Ft.) Slope from gutter to grade break (v/hzl = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 2,000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.459(CFS) Depth of flow = O,38l(Ft,), Average velocity = 1.981(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = l2.725(Ft,) Flow velocity = l,98(Ft/s) Travel time = 6.44 min, TC = 12.97 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.890 Decimal fraction soil group A ~ 0.000 Decimal fraction soil group B 0,000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84,40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity 2,043(In/Hr) for a 10.0 year storm Subarea runoff = 3.638(CFS) for 2.000(Ac.) Total runoff = 4.436(CFS) Total area = 2.300(Ac.) Street flow at end of street = 4.436(CFS) Half street flow at end of street 4.436(CFSI Depth of flow = 0.408(Ft,), Average velocity = 2.102(Ft/s) Flow width (from curb towards crown)= l4.084(Ft.) I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1049.500(Ft.) End of street segment elevation = 1048.l00(Ft.) Length of street segment 280,OOO(Ft.) Height of curb above gutter flowline = 6,O(In.) Width of half street (curb to crown) = 28.000(Ft.) Distance from crown to cross fall grade break 26.00Q(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [lJ side(s) of the street ~~ I I I I I Distance from curb to property line Slope from curb to property line (v/hz) Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.832(CFS) Depth of flow = 0,428(Ft.), Average velocity = 2.017(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15,061(Ft.) Flow velocity = 2.02(Ft/s) Travel time = 2.31 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.890 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.867IIn/Hr) for a 10.0 year storm Subarea runoff 0.681(CFS) for 0.410(Ac,) Total runoff = 5,l17(CFS) Total area = Street flow at end of street = 5,117(CFS) Half street flow at end of street 5,117(CFS) Depth of flow = 0,435(Ft.), Average velocity = 2.045(Ft/s) Flow width (from curb towards crown)= 15,411(Ft.) End of computations, total study area The following figures may be used for a unit hydrograph study of the same area. 12.000(Ft. ) 0.020 I I I TC = 15.29 min. I I I 2,710(Ac.) I I 2.71 lAc,) I Area averaged pervious area fraction (Ap) Area averaged RI index number = 69.0 0.100 I I I I I I I 9\ I II I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER QIO FLOWS NORTHERLY SIDE VIA RIO BASIN B FILE: BI0 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc., Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition = 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2,360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr,) 100 year storm 60 minute intensity = 1.300 (in./hr,) I I Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr.) Slope of intensity duration curve = 0.5500 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station ' 5.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1059.500(Ft.) Bottom (of initial area) elevation = 1054.000(Ft.) Difference in elevation = 5.500(Ft.) Slope = 0.01833 s(percent)= 1.83 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.536 min. Rainfall intensity = 2.979(In/Hr) for a 10.0 COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area = year storm I I I A 0,000 B = 0.000 C = 1.000 D 0.000 84,40 0.100; Impervious fraction = 0.798(CFS) 0.300(Ac.) 0.900 I I I ~ I I I Pervious area fraction 0.100 I II , ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation ~ 10S4.000(Ft.) End of street segment elevation = 10S2.200(Ft.) Length of street segment = 290.000(Ft,) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 28.000(Ft,) Distance from crown to cross fall grade break 26.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2,000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.117(CFS) Depth of flow = O,280(Ft,), Average velocity = 1.565(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.664(Ft.) Flow velocity = l,S6(Ft/s) Travel time = 3.09 min. TC = 9.62 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0,892 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0,000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity 2.408(In/Hr) for a 10.0 year storm Subarea runoff O.SlS(CFS) for 0.240(Ac.) Total runoff ~ 1.3l3(CFS) Total area = 0.S40(Ac.) Street flow at end of street = 1.313(CFS) Half street flow at end of street 1.313(CFS) Depth of flow = 0.292(Ft.), Average velocity = 1.620(Ft/s) Flow width (from curb towards crown)= 8.270(Ft.) I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.S40(Ac.) Runoff from this stream 1.3l3(CFS) Time of concentration 9.62 min. Rainfall intensity = 2.408(In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 I ~ I I I **** INITIAL AREA EVALUATION **** Initial area flow distance = 595.000(Ft.) Top (of initial area) elevation = 1057.200(Ft.) Bottom (of initial area) elevation = 1052.200(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.00840 s(percent)= 0.84 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.047 min. Rainfall intensity = 2.352(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.891 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Initial subarea runoff = 2,096(CFS) Total initial stream area 1.000(Ac.) Pervious area fraction = 0.100 I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** CONFLUENCE OF MINOR STREAMS ***~ I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.000(Ac.) Runoff from this stream = 2.096(CFS) Time of concentration = 10.05 min. Rainfall intensity = 2.352(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (minl Rainfall Intensity (In/~r) I I Qp = 1.313 9.62 2.096 10.05 stream flow has longer 2,096 + sum of Qb Ia/lb 1,313 * 0,977 3,379 time of 2,408 2.352 concentration I 1 2 Largest Qp = 1.283 I Total of 2 streams to confluence: Flow rates before confluence point: 1.313 2.096 Area of streams before confluence: 0,540 1.000 Results of confluence: Total flow rate = Time of concentration Effective stream area 3.379(CFS) = 10.047 min. after confluence 1.540(Ac,) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION **** I ~ I I I I COMMERCIAL subarea type Runoff Coefficient = 0.891 Decimal fraction soil group A = 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Time of concentration = 10.05 min. Rainfall intensity = 2.352(In/Hr) for a 10.0 year storm Subarea runoff 1,258(CFS) for 0.600(Ac.) Total runoff = 4.637(CFS) Total area = 2.140(Ac.) I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 11.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1051,800(Ft,) End of street segment elevation = 1049.360(Ft.) Length of street segment 410.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 28.000(Ft.) Distance from crown to cross fall grade break 26.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.070(CFS) Depth of flow = 0.423(Ft.), Average velocity = 2.l80(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = l4.828(Ft.) Flow velocity = 2.l8(Ft/s) Travel time = 3.13 min, TC = 13.18 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.890 Decimal fraction soil group A 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 1,000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Rainfall intensity 2.025(In/Hr) for a 10.0 year storm Subarea runoff = 0.72l(CFS) for 0.400(Ac.) Total runoff = 5.358(CFS) Total area = 2.540(Ac.) Street flow at end of street = 5.358(CFS) Half street flow at end of street 5.358(CFS) Depth of flow = 0.430(Ft.), Average velocity = 2.209(Ft/s) Flow width (from curb towards crown)= 15.160(Ft.) I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~ I I I Process from Point/Station 9.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 11.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.540(Ac.) Runoff from this stream 5.358(CFS) Time of concentration = 13.18 min. Rainfall intensity = 2.025(In/Hr) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1053.800(Ft.) Bottom (of initial area) elevation = 1049.360(Ft.) Difference in elevation = 4.440(Ft.) Slope = 0,01776 s(percent)= 1.78 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.115 min. Rainfall intensity 3.090(In/Hr) for a 10.0 COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soi1(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 year storm I I I A = 0.000 B = 0.000 C 1.000 D 0.000 .84.40 0.100; Impervious fraction = 1.932(CFS) 0.700(Ac.) 0.900 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** CONFLUENCE OF MINOR STREAMS **** I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.700(Ac.) Runoff from this stream 1,932(CFS) Time of concentration = 6.12 min. Rainfall intensity = 3.090(In/Hrl Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp = 5.358 13.18 1.932 6.12 stream flow has longer 5.358 + sum of Qb Ia/Ib 1,932 * 0,655 6.624 time of 2.025 3.090 concentration I I 1.267 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: ~ I I' I 5.358 1.932 Area of streams before confluence: 2.540 0.700 Results of confluence: Total flow rate = Time of concentration Effective stream area 6.624 (CFS) 13.181 min. after confluence 3.240 (Ac.) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I I Top of street segment elevation = 1049.360(Ft.) End of street segment elevation = 1048,100(Ft.) Length of street segment 270.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 28.000(Ft.) Distance from crown to crossfall grade break = 26.000(Ft.) Slope from gutter to grade break (v/hz) = 0,020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.962(CFS) Depth of flow = 0,480(Ft.), Average velocity = 2.147(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 17.651(Ft.) Flow velocity = 2.15(Ft/s) Travel time =' 2.10 min. TC = 15.28 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.890 Decimal fraction soil group A 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity 1.867(In/Hr) for a 10.0 year storm Subarea runoff 0.548(CFS) for 0,330(Ac.) Total runoff = 7.173(CFS) Total area = 3.570(Ac.) Street flow at end of street = 7.173(CFS) Half street flow at end of street 7.173(CFS) Depth of flow = 0,484(Ft.), Average velocity = 2,163(Ft/s) Flow width (from curb towards crown)= 17.859(Ft.) End of computations, total study area = 3.57 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I I I I I I I I I Area averaged pervious area fraction (Ap) = 0.100 Area averaged RI index number = 69.0 I fiP , I I I Riverside County Rational Hydrology Program I CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL QlO FLOWS AT COUNTRY GLEN DRIVE BASIN C FILE: ClO ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc., Temecula, California - SIN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.l) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2,360 (in./hr,) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in,/hr.) 100 year storm 60 minute intensity = 1.300 (in,/hr.) I Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr.) Slope of intensity duration curve = 0.5500 I I I +++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++++++++ Process from Point/Station 13,000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = l65.000(Ft,) Top (of initial area) elevation = 1052.900(Ft.) Bottom (of initial area) elevation = 105l.220(Ft.) Difference in elevation = 1.680(Ft.) Slope = 0,01018 s(percent)= 1.02 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.788 min. Rainfall intensity 3.l85(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group A 0,000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1,000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Initial subarea runoff = 0.569(CFS) Total initial stream area 0.200(Ac.) I I I I I I ~\ I I I , I Pervious area fraction 0,100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 15.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1051.220(Ft.) End of street segment elevation = 1048.100(Ft.) Length of street segment 500,000(Ft.) Height of curb above gutter flowline = 6,0(In.) Width of half street (curb to crown) = 28.000(Ft.) Distance from crown to cross fall grade break 26.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0,020 Street flow is on [1] side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width = 2,OOO(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.423(CFS) Depth of flow = 0,298(Ft.), Average velocity = 1.652(Ft/s) Street flow hydraulics at midpoint of street travel: Halfstreet flow width = 8.570(Ft,) Flow velocity = l,65(Ft/s) Travel time = 5.04 min. TC = 10.83 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0,891 Decimal fraction soil group A = 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil.(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Rainfall intensity 2.256(In/Hr) for a 10.0 year storm Subarea runoff = 1.206(CFS) for O.600(Ac.) Total runoff = 1.775(CFS) Total area = O.800(Ac.) Street flow at end of street = 1.775(CFS) Half street flow at end of street 1.775(CFS) Depth of flow = 0,316(Ft,), Average velocity = 1.736(Ft/s) Flow width (from curb towards crown)= 9.467(Ft.) I I I I I I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 15.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1044.93(Ft.) Downstream' point/station elevation 1039.56(Ft.) Pipe length 30.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 1.775(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 1.775(CFS) Normal flow depth in pipe = 2.46(In.) Flow top width inside pipe = 12,36(In.) Critical Depth 6,OO(In,) (p't-- I I I I I I Pipe flow velocity = l2.26(Ft/s) Travel time through pipe 0.04 min. Time of concentration (Te) = 10.87 min. End of computations, total study area = 0,80 (Ac.) The following figures may be used for a unit hydro graph study of the same area. I I Area averaged pervious area fraction (Ap) 0,100 Area averaged RI index number. = 69,0 I I I I I I I I I I I I I I (j!; I I I Riverside County Rational Hydrology Program I CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER Q10 BASIN D FILE: D10 ------------------------------------------------------------------------ ********* Hydrology Study Control Information **~******* I ------------------------------------------------------------------------ RANPAC Inc., Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition = 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr,) 10 year storm 60 minute intensity = 0,880 (in./hr.) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I Sto~rn event year = 10.0 Calculated rainfall intensity data: 1 hour intensity ~ 0.880 (in,/hr.) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 260.000(Ft.) Top (of initial area) elevation = 1053.200(Ft.) Bottom (of initial area) elevation = 1050.000(Ft,) Difference in elevation = 3,200(Ft.) Slope = 0.01231 s(percent)= 1.23 TC = k{0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.685 min. Rainfall intensity 2.942(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0,893 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Initial subarea runoff = 1.577(CFS) Total initial stream area = O,600(Ac.) I I I I I I ~ ,I I I Pervious area fraction = 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0,893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction ~ Time of concentration = Rainfall intensity Subarea runoff Total runoff = A = 0,000 B = 0.000 C = 1.000 D 0.000 84.40 0.100; Impervious fraction = 6.68 rnin, 2,942(In/Hr) for a 10.0 5.255(CFS) for 2,000(Ac.) 6.832(CFS) Total area = 0.900 I I year storm I 2.600(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 18.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1040.73(Ft.) Downstream point/station elevation = 1038.33(Ft.) Pipe length = 52,00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 6.832(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow 6.832(CFS) Normal flow depth in pipe = 4.93(In.) Flow top width inside pipe = 29.l5(In.) Critical Depth = 9.07(In.) Pipe flow velocity = 10.02(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) 6.77 min. End of computations, 'total study area = 2.60 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I I I Area averaged pervious area fraction (Ap) = 0.100 Area averaged RI index number = 69.0 I I I I I o ,I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology study Date: 09/02/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER QlO E FILE: ElO ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc" Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4,1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr,) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3,480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I I Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in,/hr,) Slope of intensity duration curve = 0.5500 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19,000 to Point/Station 20,000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 340,000(Ft.) Top (of initial area) elevation = 1052.000(Ft.) Bottom (of initial area) elevation = 1050.890(Ft.) Difference in elevation = 1,110(Ft.) Slope = 0,00326 s(percent)= 0,33 TC = k(0,3001*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.704 min. Rainfall intensity 2,397(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.892 Decimal fraction soil group A = 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0,000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Initial subarea runoff = 1.496(CFS) Total initial stream area 0,700(Ac.) I I I I I ~ I II ,I Pervious area fraction 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.892 Decimal fraction soil group A = 0,000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Time of concentration = 9.70 min. Rainfall intensity = 2.397{In/Hr) for a 10.0 year storm Subarea runoff = 2,564{CFS) for 1.200(Ac,) Total runoff = 4.060(CFS) Total area = 1.900{Ac,) I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1046.09{Ft.) Downstream point/station elevation = 1043.23(Ft,) Pipe length 286.00{Ft,) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 4.060(CFS) Given pipe size = 18,00{In.) Calculated individual pipe flow 4.060(CFS) Normal flow depth in pipe = 7.77{In.) Flow top width inside pipe = 17.83{In,) Critical Depth = 9.26{In,) Pipe flow velocity = 5.56{Ft/s) Travel time through pipe = 0,86 min. Time of concentration (TC) = 10.56 min. / I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21,000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1,900{Ac.) Runoff from this stream = 4,060{CFS) Time of concentration = 10.56 min. Rainfall intensity = 2,288{In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.100 to point/Station 22,000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 135.000(Ft.) Top (of initial area) elevation = 1052.500(Ft.) Bottom (of initial area) elevation = 1050.900(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0,01185 s{percent)= 1.19 TC = k{0,300)*[{length^3)/(elevation change)]^0,2 ~ I I I I I Initial area time of concentration = Rainfall intensity 3,384(In/Hr) COMMERCIAL subarea type Runoff Coefficient = 0.894 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 5.182 for a min. 10.0 year storm I A 0.000 B 0,000 C 1. 000 DO.OOO 84,40 0.100; Impervious fraction = 1. 513 (CFS) 0.500(Ac, ) 0.900 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1046.07(Ft,) Downstream point/station elevation l043.23(Ft.) Pipe length 13,00(Ft,) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 1.513(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 1.513(CFS) Normal flow depth in pipe = 2.17(In.) Flow top width inside pipe = 11.71(In.) Critical Depth = 5.53(In.) Pipe flow velocity = 12.53(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.20 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = O,500(Ac,) Runoff from this stream = 1.513(CFS) Time of concentration = 5.20 min. Rainfall intensity = 3.378(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp = 4.060 10.56 1.513 5,20 stream flow has longer 4,060 + sum of Qb Ia/Ib 1.513 * 0.677 5.085 time of 2.288 3.378 concentration I 1.024 Qp = I I, Total of 2 streams to confluence: Flow rates before confluence point: 4,060 1,513 Area of streams before confluence: (O~ I I I 1.900 0.500 Results of confluence: Total flow rate = Time of concentration Effective stream area 5.085(CFS) 10.561 min. after confluence 2.400(Ac.) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/station 23.100 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1043.23(Ft.) Downstream point/station elevation = 1042.77(Ft,) Pipe length = 46.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.085(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.085(CFS) Normal flow depth in pipe = 8.83(In.) Flow top width inside pipe = 18,00(In.) Critical Depth = 10.42(In.) Pipe flow velocity = 5.90(Ft/s) Travel time through pipe = 0,13 min. Time of concentration (TC) = 10,69 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.100 to Point/Station 23.200 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1042,77(Ft.) Downstream point/station elevation = 1040.92(Ft.) Pipe length = 55.00(Ft~) Manning's N = 0.013 No.'of pipes = 1 Required pipe flow = 5.085(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow 5,085(CFS) Normal flow depth in pipe = ,4.79(In.) Flow top width inside pipe = '26.71(In.) Critical Depth = 8.10(In.) Pipe flow velocity = 8,36(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) 10.80 min. End of computations, total study area = 2.40 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I I I Area averaged pervious area fraction (Ap) Area averaged RI index number = 69.0 0.100 I I I I ~ I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER Q10 BASIN G & H FILE: G10 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc., Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr,) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) I Storm event year = 10.0 Calculated rainfall intensity.data: 1 hour intensity = 0.880 (in./hr.) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station ' 24.000 to Point/Station 25.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 190.000(Ft.) Top (of initial area) elevation = 1053.270(Ft.) Bottom (of initial area) elevation = 1051.590(Ft.) Difference in elevation = 1.680(Ft.) Slope = 0.00884 s(percent)= 0.88 TC = k(0,300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration ~ 6.300 min. Rainfall intensity 3.040(In/Hr) for a 10.0 COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction ; Initial subarea runoff = Total initial stream area year storm I I A 0.000 B = 0.000 C 1. 000 D 0.000 84.40 0.100; Impervious fraction = 3.258 (CFS) 1.200(Ac. ) 0.900 I I I ,\0 I I I Pervious area fraction = 0.100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 26.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0,893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Time of concentration Rainfall intensity Subarea runoff Total runoff = A 0,000 B 0.000 C 1.000 D 0.000 84,40 0.100; Impervious fraction = 6.30 min. 3.040(In/Hr) for a 10.0 4.6l6(CFS) for 1.700(Ac.) 7.874(CFS) Total area = 0.900 I I year storm I 2.900(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 29.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1046,00(Ft,) Downstream point/station elevation 1043.70(Ft.) Pipe length = lSO,OO(Ft.1 Manning's N = 0.013 No, of pipes = 1 . Required pipe flow = 7.874(CFS) Given pipe size = 2l.00(In.) Calculated individual pipe flow = 7.874(CFS) Normal flow depth in pipe = 9.75(In.) Flow top width inside pipe = 20.95(In.) Critical Depth = l2,49(In,) Pipe flow velocity = 7.2l(Ft/s) Travel time through pipe = 0,42 min, Time of concentration (TC) = 6.72 min, I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 29.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.900(Ac.) Runoff from this stream 7.874(CFS) Time of concentration = 6.72 min. Rainfall intensity = 2.935(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 27.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 285.000(Ft.) Top (of initial area) elevation = 1053.800(Ft.) Bottom (of initial area) elevation = 1050.870(Ft,) Difference in elevation = 2.930(Ft.) Slope = 0.01028 s(percent)= 1.03 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 I I ~ I I I I Initial area time of concentration = Rainfall intensity = 2.827(In/Hr) COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 7.189 for a min. 10.0 year storm I A 0,000 B = 0.000 C = 1.000 D = 0.000 84.40 0.100i Impervious fraction 3.533(CFS) 1. 400 (Ac.) 0.900 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27,000 to Point/Station 28.000 **** SUBAREA FLOW ADDITION **** I I COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Time of concentration Rainfall intensity Subarea runoff Total runoff = A 0.000 B 0.000 C = 1. 000 DO.OOO 84.40 0.100; Impervious fraction = 7.19 min. 2,827(In/Hr) for a 10,0 4.543(CFS) for 1.800(Ac.) 8,076(CFS) Total area = 0.900 I year storm I 3,200 (Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28.000 to Point/Station 29.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1046.32(Ft.) Downstream point/station elevation = 1043.95(Ft,) Pipe length 45.00(Ft,) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 8.076(CFS) Given pipe size = 18.0Q(In.) Calculated individual pipe flow 8.076(CFS) Normal flow depth in pipe = 7.18(In.) Flow top width inside pipe = 17.63(In,) Critical Depth = 13.20(In.) Pipe flow velocity = 12.29(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 7.25 min. I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28.000 to Point/Station 29.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.200(Ac,) Runoff from this stream = 8.076(CFS) Time of concentration = 7.25 min. Rainfall intensity = 2.814(In/Hr) I ,\1/ I I I Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qp = 7.874 6.72 8.076 7.25 stream flow has longer 8.076 + sum of Qb Ia/lb 7.874 * 0.959 15.626 2.935 2.814 time of concentration I 1 2 Largest Qp = I 7.550 I Total of 2 streams to confluence: Flow rates before confluence point: 7,874 8,076 Area of streams before confluence: 2.900 3.200 Results of confluence: Total flow rate = l5.626(CFS) Time of concentration 7.250 min. Effective stream area after confluence = 6.l00(Ac, ) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1043.70(Ft.) Downstream point/station elevation 1042.87(Ft.) Pipe length = 55.00(Ft.) Manning's N = 0.013 No,: of pipes = 1 Required pipe flow = 15.626 (CFS) Given pipe size = 21.00 (In.) . , Calculated individual pipe flow l5.626(CFS) Normal flow depth in pipe = l4.25(In.) Flow top width inside pipe = 19.62(In,) Critical Depth = l7,52(In:) Pipe flow velocity = 9.00(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) 7,35 min. End of computations, total study area = 6.10 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I I I Area averaged pervious area fraction (Ap) = 0,100 Area averaged RI index number = 69.0 I I I I '\7 I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 I VAIL RANCH COMMERCIAL CENTER QlO BASIN I,J, & K FILE: 110 I ********* Hydrology Study Control Information ********** I RANPAC Inc" Temecula, California - SiN 560 I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition 3 I Standard intensity-duration curves data (Plate D-4,l) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr,) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr,) I Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0,880 (in./hr.) Slope of intensity duration curve = 0.5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 30.000 ' **** INITIAL AREA EVALUATION **** I Initial area flow distance = 345.000(Ft.) Top (of initial area) elevation = 1057.200(Ft.) Bottom (of initial area) elevation = 1054,300(Ft.) Difference in elevation = 2.900(Ft.) Slope = 0,00841 s(percent)= 0.84 TC = k(0.300)*[(length^3)/(elevation change))^O,2 Initial area time of concentration = 8.079 min. Rainfall intensity 2.65l(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.892 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 3) Pervious area fraction = Initial subarea runoff = Total initial stream area = A 0.000 B 0.000 C = 1.000 D 0.000 84.40 0.100i Impervious fraction 2,366(CFS) 1,000(Ac.) 0.900 I I I I I ~ I I I Pervious area fraction 0,100 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 32.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0,892 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 Time of concentration = 8.08 min. Rainfall intensity = 2.651(In/Hr) for a 10.0 year storm Subarea runoff 13.721{CFS) for 5.800(Ac.) Total runoff = 16.087(CFS) Total area = 6.800(Ac.) I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 32.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.800{Ac.) Runoff from this stream 16,087(CFS) Time of concentration 8.08 min. Rainfall intensity = 2,651(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31,100 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 130.000(Ft.) Top (of initial area) elevation = 1053.800(Ft.) Bottom (of initial area) elevation = 1052.600(Ft.) Difference in elevation = 1,200(Ft.) Slope = 0.00923 s(percent)= 0.92 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.366 min. Rainfall intensity = 3.320(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0,894 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) = 84,40 Pervious area fraction = 0.100i Impervious fraction 0.900 Initial subarea runoff = 1.187(CFS) Total initial stream area = 0.400{Ac.) Pervious area fraction = 0.100 I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I ~ I I I I Upstream point/station elevation = 1049.50(Ft.) Downstream point/station elevation 1043.49(Ft.) Pipe length = 420.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow = 1.187(CFS) Given pipe size = 12,00(In.) Calculated individual pipe flow 1,187(CFS) Normal flow depth in pipe = 4.33(In.) Flow top width inside pipe = 11.53(In.) Critical Depth = 5,50(In.) Pipe flow velocity = 4.65(Ft/s) Travel time through pipe = 1.51 min. Time of concentration (TC) = 6.87 min. I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 32.000 .... CONFLUENCE OF MINOR STREAMS .... I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.400(Ac.) Runoff from this stream 1.187(CFS) Time of concentration = 6.87 min. Rainfall intensity = 2.898(In/Hr) Summary of stream data: I Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I I 1 2 Largest Qp = 16.087 8.08 1,187 6,87 stream flow has longer 16,087 + sum of Qb Ia/Ib 1.187' 0.915 17.173 2.651 2,898 time of concentration 1. 086 Qp = I I Total of 2 streams to confluence: Flow rates before confluence point: 16,087 1,187 Area of streams before confluence: 6.800 0.400 Results of confluence: Total flow rate = 17,173(CFS) Time of concentration = 8.079 min. Effective stream area after confluence 7.200(Ac.) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1043.49(Ft.) Downstream point/station elevation = 1043.13(Ft.) Pipe length 75.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.173(CFS) Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is I I <\~ I I I 0.768(Ft.) at the Pipe friction loss = Minor friction loss = Pipe flow velocity ~ Travel time through pipe Time of concentration (TC) = headworks or inlet of the pipe(s) 0.432(Ft.) 0.696(Ft.) 5.47(Ft/s) 0.23 min, 8.31 min. K-factor = 1,50 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 34.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 7.200(Ac.) Runoff from this stream 17.173(CFS) Time of concentration = 8.31 min. Rainfall intensity = 2.611(In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.100 to Point/Station 33.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 310.000(Ft.) Top (of initial area) elevation = 1054.300(Ft.) Bottom (of initial area) elevation = 1049.650(Ft.) Difference in elevation = 4.650(Ft.) Slope = 0.01500 s(percent)= 1.50 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.894 min. Rainfall intensity 2.893(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0,000 Decimal fraction soil group C = 1,000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84,40 Pervious area fraction = 0,100; Impervious fraction 0.900 Initial subarea runoff = 2.325(CFS) Total initial stream area O.900(Ac.) Pervious area fraction = 0.100 I I I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1046.l6(Ft,) Downstream point/station elevation 1043.l3(Ft.) Pipe length 60.00(Ft,) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 2.325(CFS) Given pipe size = l8.00(In.) Calculated individual pipe flow = 2.325(CFS) Normal flow depth in pipe = 3,81(In.) Flow top width inside pipe = l4.71(In.) Critical Depth = 6,92(In.) Pipe flow velocity = 8.50(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 7.01 min. I I I I ~ I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.900 (Ac, ) Runoff from this stream 2.325(CFS) Time of concentration = 7.01 min. Rainfall intensity = 2.866(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I I 1 2 Largest Qp = 17.173 8.31 2,325 7.01 stream flow has longer 17,173 + sum of Qb Ia/Ib 2,325 * 0.911 = 19,291 2.611 2.866 time of concentration , I I 2,118 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 17.173 2,325 Area of streams before confluence: 7.200 0,900 Results of confluence: Total flow rate = 19,291(CFS) Time of concentration 8.307 min.. Effective stream area after confluence = , 8.100(Ac.) I I I +++++++++++++++++++++++++++++++++++++++++++++++f++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1043,13(Ft.) Downstream point/station elevation = 1042.87(Ft.) Pipe length 50,00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 19.291(CFS) Given pipe size = 24,OO(In.) NOTE: Normal flow is pressure flow in user The approximate hydraulic grade line above 0,982(Ft.) at the headworks or inlet Pipe friction loss = 0.363(Ft.) Minor friction loss = 0.878(Ft.) Pipe flow velocity = 6.14(Ft/s) Travel time through pipe = 0.14 min, Time of concentration (TC) 8.44 min. End of computationst total study area = The following figures may be used for a unit hydrograph study of the same area. selected pipe size. the pipe invert is of the pipets) I I K-factor = 1.50 I 8.10 (Ac.) I Area averaged pervious area fraction (Ap) Area averaged RI index number = 69.0 0.100 I ~ I I I I I I i I I I I I I ' I I I I I I I '1.l\. I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Rational Hydrology Study Date: 09/02/99 Version 3.3 I ------------------------------------------------------------------------ I VAIL RANCH COMMERCIAL CENTER Q10 BASIN G & H, I,J,K, & L FILE: L10 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** I ------------------------------------------------------------------------ RANPAC Inc., Temecula, California - SiN 560 ------------------------------------------------------------------------ I Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual I Storm event (year) = 10.00 Antecedent Moisture Condition = 3 I Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2,360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in,/hr.) I Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr.) Slope of intensity duration curve = 0,5500 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** I Rainfall intensity 2.795(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.893 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D 0.000 RI index for soil(AMC 3) 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 User specified values are as follows: TC = 7,34 min, Rain intensity = 2.79(In/Hr) Total area = 6.10(Ac.) Total runoff = 23.11(CFS) I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** I ~ I I I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.l00(Ac.) Runoff from this stream = 23.109(CFS) Time of concentration 7.34 min. Rainfall intensity = 2.795(In/Hr) I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 35.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** I I Rainfall intensity 2.609(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0,892 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1,000 Decimal fraction soil group D = 0,000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100; Impervious fraction 0.900 User specified values are as follows: TC = 8,32 min, Rain intensity = 2,61(In/Hr) Total area = 8,10(Ac,) Total runoff = 28,56(CFS) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 8.100(Ac.) Runoff from this stream = 28.563(CFS) Time of concentration = 8.32 min. Rainfall intensity = 2.609(In/Hr) Summary of stream data: I I Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp = 23.109 7.34 28,563 8,32 stream flow has longer 28,563 + sum of Qb Ia/lb 23.109 * 0.933 50.133 time of 2.795 2.609 concentration I 21.570 Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 23.109 28.563 Area of streams before confluence: 6.100 8.100 Results of confluence: Total flow rate = 50.133(CFS) Time of concentration 8.320 min. Effective stream area after confluence 14.200(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~ I I I Process from Point/Station 35.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** 39.000 I Upstream point/station elevation = 1042.87(Ft.) Downstream point/station elevation = 1040.98(Ft.) Pipe length 380.00(Ft.) Manning's N = 0.013 No, of pipes = 1 Required pipe flow 50.l33(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 50.l33(CFS) Normal flow depth in pipe = 32.44(In.) Flow top width inside pipe = 2l.50(In,) Critical Depth = 27.65(In.) Pipe flow velocity = 7.48(Ft/s) Travel time through pipe = 0,85 min. Time of concentration (TC) = 9.17 min. II I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = l4,200(Ac,) Runoff from this stream = 50,133(CFS) Time of concentration = 9.17 min. Rainfall intensity = 2,473(In/Hr) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.000 to Point/Station 37.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 295.000(Ft,) Top (of initial area) elevation = 1053.900(Ft.) Bottom (of initial area) elevation = 1052.400(Ft.) Difference in elevation = 1.500(Ft.) Slope = 0.00508 s(percent)= 0.51 TC = k(0,300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.391 min. Rainfall intensity 2.596(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.892 Decimal fraction soil group A = 0,000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) . 84.40 Pervious area fraction = 0,100; Impervious fraction 0.900 Initial subarea runoff = 1.158(CFS) Total initial stream area 0.500 (Ac. ) Pervious area fraction = 0.100 I I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37,000 to Point/Station 38.000 **** SUBAREA FLOW ADDITION **** I COMMERCIAL subarea type Runoff Coefficient = 0.892 Decimal fraction soil group A 0.000 I ~t-' I I I Decimal fraction soil group B 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.100i Impervious fraction 0.900 Time of concentration 8.39 min. Rainfall intensity 2.596(In/Hr) for a 10.0 year storm Subarea runoff 7.413(CFS) for 3.200(Ac.) Total runoff = 8,571(CFS) Total area = 3.700(Ac.) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38,000 to Point/Station 39.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation = 1047.80(Ft.) Downstream point/station elevation = 1040.98(Ft.) Pipe length 15.00(Ft,) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 8.571(CFS) Given pipe size = 18,00(In.) Calculated individual pipe flow 8.571(CFS) Normal flow depth in pipe = 4,23(In.) Flow top width inside pipe = 15.26(In.) Critical Depth = 13.60(In.) Pipe flow velocity = 27.09(Ft/s) Travel time through pipe = 0,01 min. Time of concentration (TC) = 8,40 min, I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 39.000 **** CONFLUENCE OF MINOR STREAMS **** I I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.700(Ac.)' Runoff from this stream 8.571(CFS) Time of concentration = 8.40 min. Rainfall intensity = 2.595(In/Hr) Summary of stream data: I Stream No, Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) I 1 2 Largest Qp = 50,133 9.17 8.571 8.40 stream flow has longer time of 50,133 + sum of Qb Ia/Ib 8.571 * 0.953 = 8.169 58,302 2.473 2.595 concentration I Qp = I Total of 2 streams to confluence: Flow rates before confluence point: 50,133 8,571 Area of streams before confluence: 14.200 3,700 Results of confluence: Total flow rate = 58.302(CFS) Time of concentration = 9.167 min. I I ~7 I I I Effective stream area after confluence. 17.900(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 40.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I I Upstream point/station elevation = 1040.98(Ft.) Downstream point/station elevation 1040.91(Ft.) Pipe length = 10.00(Ft,) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 58.302(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow 58.302(CFS) Normal flow depth in pipe = 23.58(In.) Flow top width inside pipe = 47.99(In.) Critical Depth = 27.56(In.) Pipe flow velocity = 9.49(Ft/s) Travel time through pipe = 0,02 min. Time of concentration (TC) 9.18 min. End of computations, total study area = 17,90 (Ac.) The following figures may be used for a unit hydrograph study of the same area. I I I Area averaged pervious area fraction (Ap) = 0.100 Area averaged RI index number = 69.0 I I I I I I I I I I ~ I .3. I I I I I I I I I I I I I I I I I VI. . HYDRAULIC CALCULATIONS ,; ~-5 II I FILE: AB.WSW - EDIT LISTING.- Ver~1on 9.7 PROFILS _ CHANNEL DSFINITION ZL ZR tIN Y(l} Y(2) DROP I CAP.D SECT am NO OF AVE PIER OOOE NO TYPE PIER/PIP WIDTH W 5 P G W WATER SURFACE HEIGHT 1 B;\sS DIAMETER WIDTH I CD 1 . 1 I.S00 CD 2 3 0 .000 7.340 3.170 .000 .000 .000 CD 3 . 1 1.500 CD . 3 0 .000 7.210 3.1"10 .000 .000 .000 w s P G W WATER SURFACE PROFILE TITLE CARD LISTING HEADING LINE NO 1S I HEAOING LINE NO 2 IS - HEADING LINE NO 3 IS I w S P G W WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U!S DATA STATION INVEIl.T SECT 1000.000 1040.140 1 I ELEMENT NO 2 IS A REACH U/S DATA STATION INVERT SECT N 1007.820 1040.260 1 .Oll ELEMENT NO 3 IS A REACH U/S DATA STATION INVERT SECT N 1079.730 104.1.370 1 .014 ELEMENT NO . 13 A WALL ENTAANCE ll/S DAtA STATION INVERT SECT FP 1079.730 1041.370 2 .500 I ELEMENt NO 5 IS A JUNCTION U!S DATA STATION INVERT SECT LAT-l LAT-2 N 03 1082.900 1041.500 . 3 0 .Oll 7.750 ELEMENT NO 6 IS A SYSTEM HEADWORKS U/S DATA STATION INVERT SECT 1082.900 10t1.500 . I I I I I I I I I I I Date: 9- 8-1999 Tillie: 8:27:13 P},GE 1 Y(8) Yl91 Y{lO) LISTING ye31 Yet) Y(5) Y(6) Y(1) PAGE NO PAGE NO 2 W S ELEV 1041.640 RADIUS ANGLE ANG PT MAN H .000 .000 .000 0 RADIUS MiGLE ANG PT MAN H t5.830 89.900 .000 0 2t INVERT-3 INVERT-t PHI 3 PHI .000 10tl.500 .000 90.000 RADIUS ANGLE .000 .000 .000 W S ELEV 10tl.500 ~G I I I I I I I I I I I I I . I I I I I I I I I .. WARNING NO.2.. - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV - INV + DC [] FILE: AB.WSW W S P G W - CIVILDESIGN Ver" 9.7 PAGE For: Trans-Pacific: ~ultant", Tem8cula, Califol:nia - SIN 560 WATER SURFACE PROFILE LISTING Date: 9- 8-1999 Time: 8:27;18 LINE: A AND B VIA RIO TEHEaJL1I. FILE: "'B .......................................................................................................................... ........ I Invert I Depth I Water I Q I V.l V.l Energy I Super ICriticll.llFlow ToplHeight/IBll."8 Wtl INo Wth Station I Elav I (FT) I Slav I (CrS) I IFPS) Head I Grd.El.1 Slev I Depth I Width IDiI:I..-FTlor 1.0.1 ZL IPr"/Pip -I- -I- -I- -1- -1- -I- -1- -1- -I- -1- -I- -1- -I- -I L/Elem lCh Slope I 1 I 1 SF.Avel HF ISE OpthlFroude N1Norm Dp I "N" I I ZR I Type Ch .........j.........,........,.........I.........I.......1.......1.........1.......1........1........1.......,.......1..... I....... I 1 I I I 1000.000 104.0.140 1.500 1041.640 18.41 10.42 1.69 1043.33 ,00 1.46 ,00 1.500 .000 ,00 1 ,0 -1- -1- -1- -1- -1- -1- -1- . -I- -1- -1- -1- -1- -I- I- 7.S20 .01534 .03562 ," 1.50 ,00 1.50 .014 ,00 PIPE I I I 1 I I I 1007.820 1040.260 1.659 1041.919 18.41 10.42 1.69 1043.60 ,00 1.46 ,00 1.500 .000 ,00 1 ,0 -1- -I- -1- -1- -1- -I- -I- -1-, -I- -I- -1- -I- -I- I- 71.910 .01544 .03562 2.56 ,00 ,00 1.50 .014 ,00 PIPE I I 1 1 I I I 1 1079.730 1041.370 3.U7 10U.817 18.41 10.42 1.69 1045.50 ,00 1.46 ,00 1.500 .000 ,00 1 ,0 -1- -I- -I- -I- -I- -I- -I- -1- -I- -1- -1- -I- -I- 1- WALL ENTRANCE I I I 1 I 1079.730 1041.370 5.961 1047.331 lS.n ," ,Ol 1047.35 ,00 1.02 3.17 7.340 3.170 ,00 0 ,0 -1- -1- -1- -1- -1- -1- -I- -I- -I- -1- -1- -I- -I- I- JUNCT STA. .04101 .0000. ,00 5.96 ," .014 ,00 BOX I I I I I I 1082.900 1041.500 5.850 1047.350 10.66 ," ,Ol 1047.36 ,00 ,71 3.17 7.210 3.170 ,00 0 ,0 -I- -1- -1- -1- -I- -1- -1- -I- -I- -I- -1- -1- -I- I- e ~1 I II I I I I I I I I I I I I I I I I I FILE; LINEe. WSW w S P G W - EDIT LISTING - Version 9.7 Date: ,- 8-1999 TiJne: 1:34:26 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE 'L ,. nlV Y(l) Y(2) Y(3) \'(4) Y(5) Y(6) Y(7) '1(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIOTH DROP CD 1 . 1 1.500 CD 2 3 0 .000 5.710 3.170 .000 .000 .000 W S P G W PAGE NO WATER SURFACE PROFILE - TITLE o.RD LISTING HEADING LINE NO 1 IS LINB "C" HEADING LINE N02 IS COUNTRY GLEN WAY HEADING LINE NO 3 IS- FILE: LINEe w 5 P G W PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET U/S DATA STATION INVERT SECT W S ELEV 1000.000 1039.280 1 1046.300 ELEMENT NO 2 IS A REACH VIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1014.710 1041.260 1 .014 .000 .000 .000 0 ELEMENT NO 3 IS A REACH VIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1024..920 1043.000 1 .014 .000 .000 .000 0 ELEHENT NO "S A WALL ENTRANCE U!S DATA STATION INVERT SECT FP 1024.920 1043.000 2 .500 ELEMENT NO 5 IS A SYSTEM HEArlWORKS U!S OATA STATION INVERT SECT W S ELEV 1024.920 1043.000 2 1043.000 ~ II I .. WARNING NO. 2 [] FILE: LINse. WSW I WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, w.S.ELEV - INV + Dc: w 5 P G W - CIVILDESIGN Veci5 9.7 PAGE For: Trans-Pacific Consultants, Temecula, California _ SIN 560 WATER SURFACE PROFILE LISTING Date: 9- 8-1999 Time: 1:34:32 LINS "C" COUNTRY GLEN WAY FILE: LINSe .....................++.............++.................................................................................... J Invert I Depth I Water I Q I Vel Vel J Energy I Super I Critical I Flow ToplHeight/JBase Wtl Station I Slav I (FT) J Slav I (CFS) I (FFS) Head J Grd.El.l Elav I Depth I Width IDia.-FTJor 1.0. J ZL -1- -1- -J- -1- -1- -1- -1- -1- -1- -1- -1- -1- -I- t/Slam ICh Slope I I 1 I SF Avel HE 15E DpthlFroude NINorm Dp I "Nn 1 1 ZR .........I.........I........I.........J.........I*...***1***.**.1*********1******.1........1......**1******.1*******1***** I I I [ I 1000.000 1039.280 7.020 1016.300 2.67 1.51 .01 1016.34 .00 .62 .00 1.500 .000 -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- 14.710 .13460 .00075 .01 7.02 .00 .28 .011 I I I I I 1011.710 1041.260 5.051 1046.311 2.67 1.51 .04 1046.35 .00 -1- -1- -1- -1- -1- -1- -1- -J- -1- 10.210 .17042 .00075 .01 5.05 I I J I J 1024.920 1043.000 3.319 1016.319 2.67 1.51 .01 1046.35 .00 -1- -1- -1- -1- -j- -1- -1- -1- -1- WALL ENTRANCE 1 1024.920 1043.000 -1- -1- I I I I o I I I I I I I I I I I I ,62 1 .000 -1- ,00 1.500 -1- -1- .014 -I- ,00 ,26 ,62 1 .000 -1- ,00 1.500 -1- -1- -1- 1 3.371 1016.371 -1- -1- 1 2.67 -I- 1 .00104.6.37 -1- ," 5.710 -1- -1- 1 3.170 -I- ,25 -1- ,00 -I- 3.17 -I- -I- ,00 INo Wth IPnl/Pip -I I Type Ch 1***.**. 1 " 1- PIPE 1 1 " 1- PIPE I 1 " 1- , " 1- ,00 ,00 ,00 ,00 ,00 e'\ I I I I I I I I I I I I I I I I- I I I I ) VII. CATCH BASIN CALCULATIONS ap I I I I I I I I I I I I I I I I I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** ****e:*~~~**~e7}tl*~**~~r*'i-**x:!e*~l2:Wu* *~*~*~~*)***** This software prepared for: Ranpac Corporation ~~I~ ~ **************************************************** *~************** ****** CALCULATE DEPTH OF Channel Slope ~ Gi yen Flow Rate FLOW GIVEN: .005000 (Ft./Ft,) ~ 7,75 Cubic Feet/Second .5000 % *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft./Ft.) ~ .0050 Mannings "nil value for street = .015 Curb Height (In.) ~ 6, Street Halfwidth (Ft.) ~ 32.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) ~ Slope from Grade Break to Crown (Ft./Ft.) ~ Number of Halfstreets Carrying Runoff ~ 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft.) Depth of flow ~ .456 (Ft.) Average Velocity ~ 2,26 (Ft./Sec.) Channel flow top width ~ 18.28 (Ft.) (Ft.) ~ .065 .020 30.00 12.00 ,020 Street flow Hydraulics : Halfstreet Flow Width(Ft.) ~ 18,28 Flow Velocity(Ft./Sec,) ~ 2.26 Depth*Velocity Flow rate of street channel (CFS) ~ 7.75 1. 03 CRITICAL FLOW CALCULATIONS Subchannel Critical Flow Subchannel Critical Flow Subchannel Critical Flow Froude Number Calculated Sub channel Critical Depth ~ FOR CHANNEL NO.1: Top Width(Ft.) ~ Velocity(Ft./Sec,) ~ Area(Sq.' Ft.) - 1. 001 17.64. 2.419 3.20 .443 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ --------------------------------------------------------------------------- o *********************** CHANNEL CROSS-SECTION PLOT ************************ Depth of flow ~ .46 Feet ,= "w" STREET FLOW HALF-WIDTH CROSS SECTION Critical depth for Channel No,l~ .44 Feet "e" X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .6 .7 --------------------------------------------------------------------------- .00 1. 00 2,00 ,74 .72 .70 x X I X I C\\ I I I I I I I I I I I I I I I I I t7:: I ClI1~) = I VJ o. ~7 - 3.00 .66 I I 4.00 .66 I I 5.00 ,64 I I 6.00 ,62 I I 7.00 .60 I I 6,00 ,56 I I 9.00 ,56 I I 10,00 ,54 I I 11.00 ,52 I I 12,00 .50 I I 13.00 ,07 X I I cW 14.00.13 X I I cW 15,00 .15 X I I cW 16,00 .17 XI I cW 17,00 .19 X I cW 16.00 .21 IX I cW 19,00 ,23 I X I cW 20.00 ,25 I X I cW 21.00 ,27 I X I cW 22,00 .29 I X I cW 23,00 ,31 I X I cW 24,00 .33 I X I cW 25.00 .35 I X I cW 26,00 ,37 X cW 27,00 ,39 IX cW 26,00 .41 I XcW 29.00 .43 I XW 30,00 .45 I X 31,00 .47 I X 32,00 .49 I X 33.00 ,51 I X 34.00 .53 I X I 35.00 .55 I XI 36,00 .57 I X 37.00 ,59 I IX 36.00 ,61 I I X 39,00 .63 I I X 40.00 ,65 I I X 41.00 .67 I I X 42.00 ,69 I I X 43,00 .71 I I X 44.00 .73 I I I I X I . +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ (Q -=- &- vJ o. er? c:/c; Q ~ T 17 cr5 I I I I I X IX X XI X I X X X X X \N -=- II I (,t, U0e:- 14 \ C.@, )..h_ e...:.;:. ".. ~.\~ 1) . 40~ o.~? \1''5 ~,I~ (w) (f),4~V) 8.01 c:i.,/l/ I I I I I I I I I I 'I I I I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** *************************************************************************** ***~~:C~**f?e~.'t\*~*1:\~~:::f.**~'i.l!::*(~~*~*~t;2~\~~*** This software prepared for: Ranpac Corporation ~~~l~ ~ ************************************************** **************** ********* CALCULATE DEPTH OF FLOW GIVEN: Channel Slope = .005000 (Ft./Ft.) = .5000 % Given Flow Rate 10,66 Cubic Feet/Second *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft,/Ft.) = .0050 Mannings nnll value for street = .015 Curb Height (In.) = 6, Street Ha1fwidth (Ft.) ~ 32.00 Distance From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) Slope from Grade Break to Crown (Ft./Ft,) = Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft,) = Depth of flow = .504 (Ft.) Average Velocity 2.43 (Ft,/Sec.) Channel flow top width 20.94 (Ft.) (Ft.) = .065 .020 30.00 12,00 .020 WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB Distance that curb overflow reaches into property is = .220 (Ft.) Streetflow Hydraulics : , Halfstreet Flow Width(Ft,) = 20.72 Flow Velocity(Ft,/Sec,) = 2,43 Depth*Velocity = Flow 'rate of street channel (CFS) = 10,66 1.23 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO, 1: Subchannel Critical Flow Top Width(Ft.) = Sub channel Critical Flow Velocity(Ft./Sec.) Subchannel Critical Flow Area(Sq. Ft.) Froude Number Calculated = 1.000 Sub channel Critical Depth = .492 20,12 2.574 4.14 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ o --------------------------------------------------------------------------- *********************** CHANNEL CROSS-SECTION PLOT ************************ Depth of flow =' .50 Feet , = "W" II STREET FLOW HALF-WIDTH CROSS SECTION I II Critical depth for Channel No,l= .49 Feet, = "e" X (Feet) Y(Feet) Y-Axis-->O. .2 .4 .6 .7 <\? I I I --------------------------------------------------------------------------- .00 .74 I I I X 1. 00 .72 I I I X I 2.00 .70 I I I X I I 3,00 .68 I I I X I 4.00 .66 I I I X I 5,00 .64 I I I X I 6.00 .62 I I I X I I 7.00 ,60 I I I X I 8,00 ,58 I I IX I 9.00 .56 I I X I I 10.00 .54 I I XI I 11,00 ,52 I I X I I 12.00 .50 I I X I I 13.00 .07 X I I cW I I I 14,00 ,13 X I I cW I I 15,00 ,15 X I I cW I I 16,00 ,17 XI I cW I I 17.00 .19 X I cW I I I 18,00 ,21 IX I cW I I 19,00 ,23 I X I cW I I 20,00 .25 I X I cW I I 21.00 ,27 I X I cW I I I 22.00 ,29 I X I cW I I 23,00 ,31 I X I cW I I 24.00 ,33 I X I cW I I I 25.00 .35 I X I cW I I 26,00 ,37 I X cW I I 27,00 .39 I IX cW I I 28.00 .41 I I X cW I I I 29,00 .43 I I X cW I I 30.00 .45 I I X cW I I 31. 00 .47 I I XcW I I 32,00 ,49 I I XW I I I 33.00 .51 I I X I I 34.00 .53 I I X I I 35,00 ,55 I I XI I 36.00 .57 I I X I I 37.00 .59 I I IX I 38.00 ,61 I I I X I 39.00 .63 I I I X I I 40.00 .65 I I I X I 41.00 ,67 I I I X I 42.00 .69 I I I X I 43.00 .71 I I I X I I 44,00 ,73 I I I I XI +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Q~ ? ..) o.BS '9Lf7 W o.B'7 :: &'j, q17 Q - IO.(,v w-: 8,1'2 - I ~ - ?I'2 LA 7P-:-- lA-I ?(? I 9 -=-(). 1?O4- ( ) O.5~ I.~ 10./;(; ~. \1. vJ ~,00~ I '\'\ I I I I I I I I I I I I I I I I I I I *************************************************************************** ****** CHANNEL FLOW CALCULATIONS ****** ***************************************~**************************~*l~**** ~-rCH ~AS.lt.-L r;J /~Il'JTl2:-Y!_ ~'~N.-.O~\Vb ****************~~*********~**~******** **[~~******************* This software prepared for: Ranpac Corporation ~~~I~ /\ ************************************************** **********~~********** CALCULATE DEPTH OF Channel Slope = Given Flow Rate FLOW GIVEN: .005000 (Ft./Ft.) = 2.67 Cubic Feetlsecond .5000 % *** OPEN CHANNEL FLOW - STREET FLOW *** Street Slope (Ft,/Ft.) = .0050 Mannings "n" value for street = .015 Curb Height (In.) = 6, Street Halfwidth (Ft,) = 32.00 Dist~nce From Crown to Cross fall Grade Break Slope from Gutter to Grade Break (Ft./Ft.) Slope from Grade Break to Crown (Ft./Ft.) Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft.) = Slope from curb to property line (Ft./Ft,) = Depth of flow = .330 (Ft.) Average Velocity 1. 74 (Ft, ISec. ) Channel flow top width = 12.00 (Ft.) (Ft.) = .065 .020 30.00 12.00 .020 Street flow Hydraulics : Halfstreet Flow Width(Ft.) = 12,00 Flow Velocity(Ft./Sec,) = 1.74 Depth*Velocity = Flow rate of street channel (CFS) = 2.67 .58 CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1: Subchannel Critical Flow Top Width(Ft.) =, Subchannel Critical Flow Velocity(Ft./Sec.) = Subcnannel Critical Flow Area(Sq. Ft,) = Froude Number Calculated = 1.000 Subchannel Critical Depth = .315 11. 25 1. 969 1. 35 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ o --------------------------------------------------------------------------- *********************** CHANNEL CROSS-SECTION PLOT ************************ Depth of flow = .33 Feet , = "WI1 STREET FLOW HALF-WIDTH CROSS SECTION Critical depth for Channel No.l= .31 Feet = "e" X (Feet) Y(Feet) Y-Axis-->O, .2 .4 .6 .7 --------------------------------------------------------------------------- ,00 LOO 2.00 ,74 .72 ,70 x X I X I Q6 I I 3,00 .68 I I I X I I 4.00 .66 I I I X I 5.00 ,64 I I I X I 6,00 .62 I I I X I 7.00 .60 I I I I X I I 8,00 ,58 I I I IX I 9.00 ,56 I I I X I 10.00 .54 I I I XI I I 11. 00 .52 I I I X I I 12,00 .50 I I I X I I 13,00 .07 I X I w I I I 14.00 .13 I X I w I I I I 15,00 ,15 I X I w I I I 16.00 .17 I XI w I I I 17,00 .19 I X w I I I 18.00 ,21 I IX w I I I I 19,00 ,23 I I X w I I I 20.00 ,25 I I X w I I I 21. 00 .27 I I X w I I I 22.00 .29 I I X w I I I I 23,00 ,31 I I XW I I I 24.00 .33 I I X I I I 25.00 ,35 . I I X I I I I 26,00 ,37 I I X I I 27,00 .39 I I IX I I 28.00 ,41 I I I X I I 29,00 .43 I I I X I I I 30.00 .45 I I I X I I 31. 00 ,47 I I I X I I 32,00 ,49 I I I X I I 33,00 ,51 I I I X I I I 34,00 .53 I I I X I I 35.00 .55 I I I XI I 36.00 .57 I I I X I 37,00 ,59 I I I , IX I I 38.00 .61 I I I I X I 39.00 ,63 I I I I X I 40,00 ,65 I I I I X I I 41. 00 ,67 I I I I X I 42.00 ,69 I I I I X I 43.00 .71 I I I I X I 44,00 ,73 . I I I I XI I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ q:: & W O,&~ l7"'? I (!;(-::: 't:.(p 1 I c - "?I'l 1/: I o. ~'? I ( ) o,B~-0 ~1'7 'Z.(,1 - '7,1'2. w 0'1? - I V\J o. 'bC';7 :- 4'17 \ I w 7,t;8 . W1~ I <\~ - 1 c../1.