HomeMy WebLinkAboutDrainage Study
:1
II
I
I
:1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f111
RECEIVED
SEP 1 0 1999
CITY OF TEMl:liUi.A
ENGINEER1NG DEPARTMENT
27aJ7
27431 Enterprise Circle West
Temecula, CA 92j90-4833
Tel. (909) 676-7000
Fax (909) 699-7324
e-mail: tpc@pe.net
VAIL RANCH COMMERCIAL CENTER
DRAINAGE STUDY
(Hydrology & Hydraulic Calculations)
Professional Engineering Services Since 1976
\
I
:.
'.
.
.
I
.
.
.
I
I
I
.
.
.
.
.
.
I
SUBJECT:
PROJECT:
SUBMITTED TO:
CLIENT:
FILE:
PREPARED BY:
CHECKED BY:
Drainage Study
. Hydrology and Hydraulic Calculations
Vail Ranch Commercial Center
City ofTemecu1a
Public Works Department
Landgrant Development
12625 High Bluff Drive, Suite 212
San Diego, CA 92130
508-012.00
Joe Reyes
Won Yoo
Z-
I
.
I
.
I
I
.
I
I
I
I
I
.
I
.
I
.
I I
I
TABLE OF CONTENTS
SECTION
PAGE
I. SUMMARY
II. INTRODUCTION
m. MAPS AND PLATES
L Vicinity Map
2, Rainfall Intensities Calculations
3. RCFC & WCD Discussion for 100 Year- 24 Hour Precipitation Overlay
4. Plate E-5.6 with Overlay (100 Year - 24 Hour Precipitation)
5. Pate D-4.3 (2 Year - 1 Hour Precipitation)
6. Plate D-4.6 (Slope ofIntensity Duration Curve)
7. Hydrologic Soils Group Map for Portion of Murrieta
8, Hydrology Map Tract 28924
IV.' RATlONJ\l, HYDROLOGY STUDY (100 YEAR STORM)
V. RATIONAL HYDROLOGY STUDY (10 YEAR STORM)
VI. HYDRAULIC CALCULATIONS
1. Line "A"
2. Line "B"
3. Line "c"
VII. CATCH BASIN CALCULATION
L C.Sasin @ S' L Y Via Rio Temecula
2. C.Sasin @ N' L Y Via Rio Temecula
3. C Basin @ Country Glen Way
3
I
I
I
I
I .
I
I
I
I
I
I
I
I
I
I
I
I .
I.
I
I.
SUMMARY
'\
I
I
I
I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I. SUMMARY'
Vail Ranch Commercial Center Project lies just north of Temecula Creek channel and
east of an existing double 8'x14' box culvert constructed by Assessment District No, 159,
The existing box culvert has been designed and was constructed to handle the Q100
storm runoff generated from the project.
Based from the results of the Hydrology study and hydraulic calculations, the proposed
pipes connected to the existing pipe systems can adequately handle Q1 00 year flows,
The results are presented in Section N, V, and Vl,
5.
I
II
I
I
I
I
I
I
I
I
I
II .
II.
INTRODUCTION
I
II
I
I I
I
I
I
I
I
I
(p
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
II. INTRODUCTION:
1. PROJECT DESCRIPTION:
Vail Ranch Commercial Center is located in the City of Temecula bounded by County
Glen Way to the West, Redhawk Parkway to the east, State Route 79 south to the north,
and Via Rio Temecula to the South.
The project is approximately 33 acres of commercial site and is being developed in three
phases, Existing shops, restaurants, and supermarkets comprises Phase I development of
the project, Phase II comprises the proposed Steinmart and Shop E buildings, Phase III
comprises the remainder of the proposed development.
Phase I development is comprised of drainage basin areas H, I, J, K, L and a portion of
Area B as indicated in the Hydrology Map, Phase I development is currently draining
into an existing private drainage system and is tributary to the existing box culvert, Phase
II development intends to complete the drainage system in anticipation of the remaining
site being graded and improved.
2. PURPOSE OF THE STUDY
The purpose of the study is to verify and identify the amount of drainage flows generated
by Phase II and III development The study is focused on Basin Areas A, B, C, D, E, F,
and G, The results of the Study are presented in Section N and Section V,
3. DESCRIPTION OF ANALYSISIMETHODOLOGY
Hydrology
The 10- and 100-Year storm rational method hydrology was prepared using Civil
CaddlCivil Design: Software, 1992 Version 3.3, The hydrology study control
information, Le, 2-year - 1 hour precipitation, 100-year - 24 hour precipitation, slope
intensity duration curve and hydrologic soils map for Pechanga were obtained from
Riverside County Flood Control and Water Conservation District (RCFC & WCD) 1978
Manual, which is included in Section III of this report.
The rainfall intensities were adjusted to reflect the changes using RCFC & WCD overlay.
Calculations are presented under rainfall intensity calculations in Section III,
Hydraulics
Q 100 flows from the resulting Hydrology Studies were used to analyze the sizes and the
hydraulic grade lines of the proposed storm drain pipe, A value of n=O,014 was used to
determine the HGL, The resulting HGL indicates that the storm drain system can
adequately handle flows using RCP, The analysis were performed utilizing the Los
Angeles Water Surface Profile Program Package, 1997, Ver, 9,7. The resulting figures
are presented in Section Vl,
1.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~
I
I
I
Catch Basin Calculation
Results of the hydrology analysis, the street flows were collected at catch basins using
QI00 flows, City of Los Angeles Department of Public Works formulas (design charts
U-13 and LL-14) were used to design catch basin openings, The results are presented in
Section VII of this report,
~.
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
III.
MAPS AND PLATES
0...
~ /
~
-
~I~ :
!~I ~(~IJI\lH
l!l~~~
i~
(,
I
1- .,
1
\ I
I .
I ..:.....~.
J "l~,~.
-........... .~4.
....--..
~
t""'"
o
n
~
...
o
z
~
;I>
~
z
o
-l
d
en
~
r
m
0'
.....\
;i
!
,
,
,
,
,
I /
\ '
'...-...-,1 (
.. .1 ...-
';f;. :11
--_ ,V
'. 1
.... -I
..<!
,
~
+
I
~
""
~ ...... "C
- '" ,."
;0 '" ;E
:;;: ~ :;::
;:j '" ~
~ ~
.-----
m
X
::r:
l:ll
'=i
......
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
II
I
I
II
I
I
RAINFALL INTENSITIES CALCULATIONS
1 00 Year - 24 Hour (using RCFC overlay on Plate E-S,6) = 6,0"
100 Year- 6 Hour (adjusted per RCFC factor ofO,S7) 6,0 x O,S7 = 3,42"
100 Year - 3 Hour (adjusted per RCFC factor of 0.38) 6,0 x 0.38 = 2.28"
100 Year- 1 Hour (adjusted per RCFC factor of 0.20) 6,0 x 0.20 = 1.20"
2 Year - 1 Hour (Plate D-4.3) = 0,57"
Slope - Intensity Duration (plate D-4,6) = 0,55"
.
\\
I "
I, ,
,J--..\
I
I
I :::
...
85~
..~
I :::
ii.
...
000
....~2.
I .;::::
" ::::
.....1
I ~1~1
I
1"(
I
I
I
I
I
I
I
._J _,
I
50,m
IGO LjCJ>.-t:... \13r~"tJD Co ttQVe... Pc)//'JT T2AIA'FALl-:,UAU;e:, .tvtvtJ
-n\c \:iOfu.-(€'I'" rnl'--PS \(AR-\'C:D :50'06.Tt.-rVTIA\..'--'1 FiGGIVI
i2-GC~ Dl/'J&, .:$'H>-TlOr--i ~t>-~, :DUE: 10 n~ LtM\~ NAOU 1
01=' ~ I-'t0IG\ 'CIJiL/>.TIDtJ DATA AU~ILABLt::: AND SJ.-\OfL' Lc:T0SnlS
cr: fcB:'C)(2. D I \T t,-N.~ DCC.I!::H::..-b 10 VnU2-E:' i2A\70S IQ
.Dt;I\::..r~IN'E' 1131 A"-'JD <6 Iloue U,t?LUL'S.
'!?IX- HDvl?.. p{)INr t2A li,/FflL-L.. /1IIlP t/~t.(,I[.5 C<Joz-c CC/-fr-"/:,e.t'/)
,0 24 \-\oJc... Ai"".. VAUJC-:;'. ~'t;Sc 12AT)~ bl D NeT CC/--1PAp-'Z
FI'o.\!C'U.eL'.1 Wllr\ MD..f' l2..t>..\1~ Q~ ~;;T1'-.\l6Ti(-AL ~A.TI\:)':;'. STtrr I c:
. . I
. '
(2/.',"'/OS PrcCt/c[) 'T?:) COR-E-e-LATC VCiC,? l--1LZ-L- t/U(TJ+ mAP
T2f,T/OS . 11\(: T'..0D Sl"1>..TI()N~ WI~ 1l-\e:: LO",,'G,,-r~
U:: ~~C,,-!,\:::.. or I:;U.O,:c,c;, J (EJ.,:S/AfCi.ff: .sD~ /1;,;u tJJII.,,{H~_-:;'-'"Z-) !/./C12-E:
t:11r~'CAJ f:,..s ~t>.\l.I,t..JG ~c- rnOST R.C.?~-::'CNI'A.TI'.jC !2.ATlC:s
rCL -rt\c :::"1')0"1 !\l=-Cb. II1JCLVDII,J<s l2-ATlCs 6c''T1,....J\:..~
'TI\(, 11.0 AND- ~ +\otJi::. R-.~TlO~, T~ FQLLCUJI"";q
1,31/AND Co H00iC 1ZA.\lC~ 10 \"\-\1;:: 24- HQV~ DOINT
(2.A.I/J Ft>.LL
.20
.38
.57
1:24-
3:Z4-
l.o : 24
.
. \r" '\
, ''''"""",,,,'W; ^~., . ~"""~"~ ....,,~.. '''''''"'''"'K~'"""r-
- ~';, !' 'l~, .... :~~":.(Ct.:--{~ ~;r-1lt:/~.1. f l..-, ftt:',l~';~I\'..:;)fit:.:.. " ~," /~ ~~ ;1\\1;' ~ ,:. .::;.. _ -~ ~l' 1'-' I. -:- '-,1 .ll]:~If;~~
:u ') lr <Y :l'tilZ~:'~,t~ ,~~,.,;~~Ll\!:;'<~:i}:'v'~i~~1.~:rc., ~1),;'~i(,~:"'-~f;')~::~,~k~L': "'IJ11; ~)'M \, ,.-.-' f '111'", --j~1 r~ ""' 1,': 0'1:',:'
...... -- ,. :{~.r~}~~...:2.i.I..:.~. ~l \j':J'''''.'''' 'f..~li:~~l~"..:~" ,,~ "....:u~~li:-."Plf\N < D:;: .... <'\....k-' ~ ~'1' '\ t, ~~ q ,~c~'~.\'(";'
<-J~," "I ,'" J' ',':' '! t "l,.;,f:~' (."'..,.;' ....:,,!' ~~-<t' ~~"'~~ ,'. "'1J~'!I!,l:~"ry'~>~' ~~r:;~,,<' :!,! ",~;;J; ,':.-)'1 ,,'," .~, " ,,"r -." '~j' , 't',",., ,,; ::u'
. ~ "r.... 'I "., lC.. .,...."' ~<", -< - ..c....'1>~..-:O v..' f " j 'Y'..",', ~l.'., l:':!' ' - .". '; L1 .'__ i
-~" '.' ,'.~,.< :',,', '2'7"'y ,,,,' "'-:.::' -~ "".,~'.L'" ::""'1." ,."" '.',,-, ,~, " '" ' " I."_'~"_"
J :--\. 1 .' ,{.,.... h"" J '.. ~,~'4 .':V,,":..-.:: :(1i, '1:';");,< '.f'! N.~' I'" - 1 "'. - '- - . iI ~" ';'"'l
,//,', '-~Bt,:Y~/f:fY'1~r~~,~:~~,,,~~.:];.~~ ';"'1~r\Jf;.~':'~'~: ':,:,I,~~'(,r,;f",~ :: ~ : ~~. 1-;-, ,'-;. 't:-:r."i'Ll {~ffh'~"t"l""~\:~;
.' . ~.'''''';''' ........~,~.;::..l'"l~...\\./ 'i .'" :,f,."., 'i-';.:..1f-.;,L. ~~(.:~.\ ytif ~; ,~~ ,t. y.,1.~) Vy-;.o...: ::u ~1. 'I r ~;. ...: __' ,t '<
' ' '~:.:'~~-~~~"~-:'i~,~-,,,~~~s~; .~!:..~~ ';.':"~~ ~."i'f ~:}t, i.~;:';J r. fi?!'(""" ""ffi\""":.5~'{ ~r 1 .. \ . '~', . '..~. ~_" .~ ~ C Wr .: l, 10" 'I 0 ,: ~:] ,~ ,
' J ,--~,' ',-1. -''''~''~ '. , - "'-~-l' . c:..::l ;,~"C""i!i" ',,' : " ,', " ~" 'r, 'fI'" '--r I' "
I .... '. ~., "" .- __ .. ....,;, .., . . "":::;:1,.",\ " ,.-- , ... ,~ .' ~ I ...f _. ..,
. ~ .J\l.'I>)",,\:,:~<~,..... :1~~",.V\,.JJ:l,~j\'ib,'~"~';!~~ '.':::l)'./,';"f"'; ,,\~"~ ~,~.r.:~",':. LdJ-=~Jl<'" 1"
.... ;$!I f;._.,1 .1::.:..,\... '.11. ;:>(";1,'.\, S.'> -:'-;}.",,"~;-} ;!:!.:,Wf~l:;:," ,,' :-,' ,'., fi:z.,,'-:y '. t~\e. '::. .Il" i~:' ....~;:.: ,.\ ,
"~" ,.',"""',1'." "').'\j,y,j -', t,,,~,,J,~',,\, ":;;;''''~~'i';.~'.4i\,~I'' ,,~Sii.~"~-"Y~-' II": ' ~~iC.'''' 'Il... ~~.~ .. ijl; ~f.""" .,' _.JI;.::I"Jl. 'J
:u. 'I r ,,'" ,-' -., . "';" 'l' hl' ", :~~I'K'!'1""'"'' ,1( ,,,,,~""'1, ' " ;"(1,-" , , '," '.1 "II :u
m ~ ~.o"','" J, :/;.~ ,j ;':.; 'j' . > \~~~f.:!'~ _ 'J"" ~ " ~\ ~1 _~~."~, -, "iii3 li'1~':.Q~'f:-i; ~': t:: rli'" [:'-;;.rJ 1". ,.1 J' ~ . II r.," ,,:; ~t , . ~-.-J : ~ ~ ~,' m
; . .".', ..t' i,", .... \:'~ 'to ~tl:'i:: 'j '~':l,..:, 'r.:~...'~~, ;;:'\.~;' ~ ..' , ,~ ~'~, . . !'~. :'Q:;;' . , 'rr ' . r,: '~_lf!:: ~ ':.:.', '~t '
:;; .':"[~<t:~/,,"~\~;:;\ '''It:'\K\%I~~~~d~~o/l '" ;'~~I'I~,;;~~~, ";.J~,:tl," dt-~.~ "'.'\"" ~ll~~;:'~"-";;'i ~;'-\,~:,J~~{'~ j";~"" '~!~ '.j"'~~\~
. r . ','1. ",., " '. H;~ ' ,.~....:~:..,. :t/1..iJ_;'11 J"'''} . ~,' f.' " Z ~, :J}".J....." I ,~,....\' 1 .' .,I'J~ It. h. IF'l:f l~O ~ ,.~ ;.!~. 3')" 'i
~ " \ I -~" I' , ~,'\:Y' II\."'" _.... ... '. . ,,~_.., hl'\ . T.- lJ,. - ','''. '\'" II ,\ . .,. \
; ",' ",,\.,; "'~"~t'~''i.v''!~\'~'';'' ~'~"11'!:"'I":"""";' ". ' ~ \, ,. '~1i'rf.':;;!:?/j}:"'-'-'"'''' "'" _'. ~ " ~ \, ,I '" ,,~. 'I\.~ _"IL '.~,,:r
'--.-'" '-'"1 -"'<;i\~'1"- ",,"'1i-.,..L~ ' I.;.... ... . :T. 'oJ,."/". ~ .,,~' r ' n;- J ~.
':. '\ ' -.1 ~,'.l:,:\.. '~I.'" J,,\ ~ ,:( ,~-::-~,f; r.:: ' ill . ' ~. ,.-:' '(0.:, "!.: z.. ' '.'. T. 'l .. I II ,i ;
',. ',' " > ,f6:,. <,\""" , -,Vj. ,~, . 13\1;;,. "0 C),;s;' '~ """ _,t' ~m,,~ (;1- ~,:~" d "~' . "',". ~j ,,- ~","-, 1'1-'-'" .
". , . 5' "')'" , """ h, ,'C,,,'j' ' '" " I '>0, "h " :". s-' ,,, \ ..,' d,. .
',: ~.. .', ~ -!I' ,-,"Ii;l' '~r,' ~t.~..;;.....,-,~~,;.~" '- '~I ,~', ,"ll"i-..... II" ~", '--;. '. I <.- ;!:\oICD'i.' I ,r.J'~ ,,:1' '
."'c......-:~ I, .' . '''. '("1 (f Y,,' .cr~r 'l)-.'\'Ill~~ ' 'J J" ." .... (,1' . .':-' 'IL_ t ,Il t I, (
1JI",,,~,,:,"'\I""':,!'~-i'>'c;, t'''''''''' _'4 ,'--'.(S' ',"".!" . ',"j';" )\;:~'-" " J:). "",..., " ,,'v.," .1 "'.,<; ,\.~Ul
'" ~,." .... 'r' '''\ ,. . <,!l'tl ~ l.., ''''~~:'\ '7l\> '1'" ,. ... .'.:::: \;,,11 -,..........~... I'::. II 1'~
~. ..... "It),. ';''S' i' ~l....::.-,~'N ..... >.l','l" '^"""-:~'\ ""~","',!,,, '.. .-;-..... I . ''''':'';i,,=' ~ I, ,. fi.~I.R; "..0::::
t, "" -\: ;;;/1...;" "'::,,~"', Y;~,!~-, 1),'" i,L-'" - ,,~~:H:~_> "~" I i'~I.. 'i.",~" ",J~, s>:R;:lfl~'" :fi~~~lt?i"l: .'
." :...~,.,~I//"i;'~~' Il;;.:;' .0> "~ ~ I .I'll,." ~;-- .~,., 'f,'1-..../ Ihi:~ r... ;:'~.~~4i :':l,..t,
'u;'i;:"-"-~"'~;"'R";->.r'~......'O, i:.!~<~}I,i, -,,,'~,' ~4'" ~.'f.' 'Vj.~'''i~~,'t-;i \ ';,' .\",;\"',~ ,.;. ; """,? ,. 0,1)1",' ~."
\: ~~r- ._,~~~.-.I"'t. j~l ,.-~o/ ....~~ ..,~I\'.".;.::.~....:." ~.... - . ~ 'j :t~ _ . ~ / ~\ . ~,If.:'.;'--..-.'
",t~.;,.~, ",-,'--,"':"" '. ".. p,"",;"",,,,, ",,;,r;; ,~: .' ';;M''. "",', "";;t>:( -;1:-:-1' ,,'" ,r',' . IF:' -..'
~ ('2J::'''~''i~f.J:)~'(~' ,', '. ~l';!>;__,,~1<i:1fl.:') ',~' ;_. ~c i~d 't,':.f..z. 1 :' ~U1 ~<: ," "r,-lr."~~I', " ~1r/J'"
,..._I;i:-~"'\'I,' '4 . ...... 4 "'~ ) f. . .' I .'- IF- -, ,,-, _~ et'~" I, ,5.~.., I ~ _
~l:;' !h'~'i~':"';" ~;/: "",~~\;,>,{:~ , ;~:-,,~:,~,:;Q r ~r" ~~:;~l~'~~~ffEl;;:~r/\:'... le-~I&/Jr,;!~1f.>'~..,.F.iJ' ~i;:~~'~I~~~~:~',~~~..:,MI. ~"~:~~
"'"V:g.,-,.,;, '~),"'1"'-'-~"" '"e,; '- '.i~l;;"";!;-.::""'X,o" " ,"-' _,: '. "":'f;."~;"="I";"I'''{f.i''n1~ ...
->i.1 ;.A.... ~ ~';'I ../r,'IJ,) ~ ~:\"f;"~" ,'~ ," ,'I.. ." ~' ';1 ":Pl";..,:, \ ...~ ~'&.';,~., r:;-.". "', ~".~.-, I,) -;~\ .r/ ' ff~b" h1 !It.;
'I:: JV\~~;~r~~;; <~~~7'\"'i~~, ~~ " . ~ ,;,:,~~:& ~11:~B~;;3,.,.,,:-~~~t~..i. ~j., ".7 ~ r -'I~~.l:(~?~~}18 ~.!~'~.: i'f,~:~ ~ iuf&
""kg'h,,!':I,,' '-~<:" ."~~,:\;~~, '~~~~;'P ,i,lr'"1.~'.~,"- ~~ '_ i or.\~ ~..$:,,~~fI,l1J'lo -:: ~\/:;~f;. . ,f:>:l'
'. ,,)/ "~ ft \\''' ~l',~: '., .'~-, c<>< '10 :;;'--"'~' J' . -,' .' L~f' f "'\6,''''':" , lI'i''''' .,; I,' ~:i\~~:Ii ~\""il{-'
;u:':-~~.~ I;"" J\i.t",-:~ .~.".-~",",:: ~;~~ .r::~........... ~. 'pr':" ,w"'I"~ n)., ~ ..-_'>l:, ~ .. I 1..i"if: ~",. \'~1 ~h!.l~'tr~;"i J~'/_'J;. '-,.' ~'~r~j:'l ':((~'i:~'iJ~
)..t..~: . .... ,...r', ~~ ~ :.,*:\,: . ~~ . -:Y~ " '.. ': ~.'.. . -,,-:;rill .;I~~~, ~.,r.": ."!rl"j l~.. :I'/"~: ~~ .. . b =~ ';:, S ',,": ';--.\, .
~\' ~~' I \]~~,t.~ ~J\~ ~ ,,,, ,:~~,,~ ~q ~~~ :,. t' ,:-,,::-':~I.~ ~~~~ \-1! IW ' ,~~;/~: ~:' ",4, ""W ~i';~~~:' f',i"!'i,:1~J
'," ," '. ",^'ll'J:;:N ~\ ., ," '''"j j"'! -- ..~:s!.'<"- "~~-l' '.' j~ >-'" 'J'i~I"'-""" "-,!,,' ',l.,' d'! ',"'" '",I~~
,. ~ i. ~. ~_ ('1 ~ t :~_'i :;:..., ^~ , ," >-..~J::';'~<('" .' I ..1 r. f~. '.. ,,.,
~)'.J/;';':',!.;-;.,:'l::\.~~~',.,.."~,/,7 '~,r"',~(" l...~'~- ~.!~ ~." ,~;.' t~",~~F= 7.J~:..~7i" ''l1f.!J,,;', Eti~, ~iffj.:;~,~~41:'!
~..~,'i.~_.~ '..~' ."....(,"r.~ 5..'11l.~ .-;::-'.~,--l-. . ~ --'- I~_ ___ . i' -.l-' ~~ \' \.' .~~~ """:<':/~l";l~'''iJ!i'.;.r
.~"t,~ .~,,-~ "..:, '.,,- i'~' _ { . I' ( . :&'.' " r - ..' ~ ~. \., {~-:H;~.. 1\.';'~~'~" [f~:~'" ,;,\.~P~~"I::IoI. ....)0;".
~' ,I. c' ," -:" _ !,~ 'I\,,~'J~'~ J!i~, I, ,':' ~r'~f~~~\mt ,'., __;':, ~c~~p'J'}; ;"},,I ~, 1!~,. ''if''J.:::;.~:, t,!i. 'l:;~~l'I'J~'iZ-::,"::~:
" ,':C" "'''.,01; ,'-....:Xi'i ~k ,~.' ," ~WI!l'~ ,.... .,1. ,1",,<,11, >, Q-Ioh.. "'~"'d; '" "-i"i'':''i' ~~.....,~",.:!('ft:t<""9t"
";~r ",...,:\'.t~'. "i'f.,'" "\ ~.. "pl" \.". ;. .. - .~j.{:'\-~(;t""'-!\" (/.V1>'\O'/ '\: I . .~1.~:)...8it~:il':.'.::~ ......;.-~,J 1""'~l.i~' ~i'*'\;':dll'':(''''\';;1~1
OJ' -...: I ~\..:.. \,1 ',-.' . ;\._1:'."" . j"1 . t ' I . . /' :z~.::.' '1:...,'.....: ',' ~ ~"1 - . " 'r,!- I"" ". d~~~/~. _ "I'};.... ~t" :~y'...)t:J; ~
~,~..;, il.:; ,1.;:,,:,;->'. I. ,,\ ;~'l-.:;iJ\~, ;I> L -' """~ .pl" ;~ ~l",'JiG" j' d ':"~.:Jr;"',1 ;c'i' '" l ':\if,'\;'i,,/"~~;'(~$i{l:~).l~::
'..... -. p ')' '\, ';'. _I" 'i I , ' .". I . ' - ~.\'. ".I'lo .' . _, (' ~,.
'O/'H" ..~rl. (<;' . "~..!oo!.i'." -'ii""'.\B'~ -'/ ., ~. --"'~'rV.',,/ I \,;J, -"', I.!' / " ..... ~ ...,', .' ,'If. \'...J1.1\....:,.
..:'~." 1.(II't1 \, I . 1 J!!_~", I ."J 11 l ""r ~ .#~1'_.._.t... . r.-t,.' .."..:....Ln 0'\' '" _ ~ Ji'l..1"';'-::
~'.. t.j...I(....',~' ._1, .,~, .J-7;''':'\.~~ J .'. .-'-~ ~I :"-_~~TLi ... -, ". .:t-~~,., 1'll("~'".F. .~,;rf'.fFi":Ill .Lll'~" !.i,l'" '.t.'A ,,~~:.?.:,,~
:' .i<', t : ~':~! ,. ~, ,Iff] I ' 1"1 ' ,~, '\ ~ '. I,' ~:A.. "All' , ~,," "'~. "~ ';. ~ ,";;"'$' ",(," " ," ;;;j'\~,l.' Ii:;;.. ,:;s'~ [I' ~!\~,ij~n~' <-"',>';I'I!!: \;'k')';'':'
" " ~ ~, .. 't f ).r .t.::~ ~ \.:...~ r'. l' -.~ ........'t:,~ I~~,'t~. .~" U .tori.' '.,~ ,)< ~i r.'t'ir.::i I,' r. ':,
'I.:':,' ,I " .:~ " ""'/ '. ,.JI . ~ L-' ~. '. . _......-Iv .~.:.. ~,....-. ~~~~x .". ..t:..:,:.:. :.. (.,1 l \ '\~' ""'~I''''I':~j .I.' ~:;/h ''''''\1.' 1'I
. "':'.. 'I" \I, -: ' ,',Y-" ~ ,." '\. ;: ,"'.... '~(/I .~ ,...... . .;i ,'.. ":.p.~.::,,'''' ,'.' ~""'-.~~~ I,i.~, ..7f7'}"r'\'s~
-I"'. 'I l<I "1,;,'_ :..,. I" i'''' t .. '4- ~,..-.,:~.:::n t; . ~,I,..'..r.'~ -0{ ...../l-. ....-j, :1J.! ;"'.'I''''~ ""1 1"~;r:J:: ',l'u.: 'V.I....... '~
"}ii.",~\~,~"!~,,, '.1",1, :n~.':~""I' \.:;,'1 eV'it' .?:~',~+:I,-;;.' - l).~ - ~"'jf. :~~,,~<r;?;''1f''I_~Qi~i~g~.~]:.uii.\~~. ,r;!mf,::!,'''';'i
.~t'M ,I. r ~,'I/" I. /. " .'., , - \' .....-.... . I ~ b po r. ~ t:- ~ ~ _ ',..~' >,)/'_' '.~i" <f"J'/' l 0 I ~ '. ~~; 'J" ,.~ 'J.\.i4!l;1.'II!~'if';f,~1; f,t;. '"I, ,1 ,
~i,i. G ,:," W, ,I~' 1;/ ' . :,; ','_ \ , "....'~_',' {';'l::.:~\~ ~:::7f.' Yl ~'1\ C i'o;' ;.} '"r, ,tl/,::::,~:: ,~;' ;; ~1-f1 C:;,i' 1.6 ~, l;~,i0 :, ;X+.~ 'ill ~"~ f~ ~~\,. :"$
.., ~ \.'... . ,', -r/'.....:O F - .. :sc. ..l\,Jt....P. : LJrl r" l~l2.. .' - ,I, ,. ,'.,',-u ''',.. _ I't r, ~~.~ . '. lh'..;,l
~J!~~~j~~~(. i~"~~~;~:,~,<~~" t1;~ .,'~~,~~~),~ ,'~ V,;;t;j~:~ft"o/4~ '$1~f:~;;~0~~'~~.; ?1Ii; ;~~~'~~~\lit~;\: ~}~1 jrn~ ;~~'JI*li'~fZ~~X~~:l Xr~i
.fiJ ~4 ,-.Jt;t 1 !P,"'.,'::;;I. '~1' ..... Y~"'I .....~.....J"..~ t:,.,tl.!.<:)-, :l{\~ l;' ;?l;,ll~ ,,1-1 , ;$;~/~/I.ln;l
'(.j...1. .'1') ~.", .~"!" f' ,,,,,;. )(-,.' I '~""; ,~~ I .~,. I.!>:: ~ ~,.:I.':"'; ~ ..~ . - ~)-., ,i.Q~ 'I., }.r:'o'I: .' rl' '/ ,~' .I'~ '.' ~ <:
{'"" {"~'0'" /' 1, ."".",. ',~ >i\"";'''', '- 't; "', , ''"'' "~~W""\"'~''''' i.b" .:.;;:,~, ,', . .~'i,;""'.f'$' :';"':I'",~",~",~!. ',~~1" ii5!,J--}, l
.. d p' r "'c, t I~ .. - ...~. ") ~" ,'~ '............- ')r...._ h J>.I_ '.' ',t f f'll~l;:', :Cti. ;; .'I,~" t1. '1>.1~~~:.c.'.~;' 'v '..... ;t;I\li'~t1t,'" 4;,.... '\~ .-':t., ,I, .I
I- '\1,."1,, '.' j "', -".I .4 '...-;....{I ',.. 51 .=:.;.....l~.~- '2(.... '.}- ... ....~...''-f1~.r.l';5' "I(,;;#:..J.i':::;' 'I'. (.L.loI;;tr.'.\,lrP
il' "~"~~l}lf.~j~' .r~,>:;;..;r\.~~::.~::..;~t~'/.1.r:~:~.~".- ,~"", ':~~~n<:.:~/:rti~.:-!{:1~"7-'~-}/",1~::tL,.... .:: '~-':~mt'.-;.\ :~}~!~ ~~~~ ;'<~.j~",\.~~~!~{"~)f~l\
'-- " r..'L"".... oJ'~,,~ A~~J.:',-:,-.r ~~ ,-' "' M ';0-'1'" ~~ . -r. ..... ~ 7%':-Y ~r.- """1' ',I:. r" J,. ','i;:r. ~ ~;~?' 'r, 11'. 'It! .,~~,~ ;J,:~""\"', r I,
,I ," ',... ... : I ~f, ". .., J' ...,-r .",-;..1 '\'.[.v ' " j:-,., J '" S , " "I 9', /;.",.. , ... , ~. " +,
j1 ,';#: 1'p,-'>:""" ifZ""'./ '~.\:>~G:;' .'~~l>~~~h ." k0t~)'-,'.;;, :,7:)j"~;tt3lf.~':'!}f~", ,"M1' J2~ .*~;k"'ij, !~'..1~_I' ,,~];~1-;~'i~:jj ,.v~~;.\Wft~.m1
,"" , " '~,' ,'_~.-,,"It~(-'..e' ~;). ,'" ,i-,,1..?i " ,'.., .'-l;j""~':I',,:j! :1& '~"~".:,,',~~ ;.,' [i~:J'I('~"",.,"I:.:-t_>_-,~,
.:' '.....~ : ,",,\1, ~.I,~ :-'~ I-"'\,.J";.II~"~ " 'f': n}'';,' ,:.' '>>,':,I''i:~/.~'':';j' ~ ~'~l-f 'X "i,>';"" :1 ,"\~ :~.i.: ,u~' ," i'~'~I;" J "li~h.L~I".-:;'-lJ/'",," ;l
I ..', r I,' 1,'".. ~ " ~-. f' ....! ~:"'... ') 1f-'" '/ " "U '.,1 !(\{o:\, ,.", ~ .;~' '. . ....'" ,i'1, .! '~'.~ ',T. ,.1'. i .1,' '-:. f}'( . iri~,..;;.":.Ii' r:~. . .
?' :,~,.}J '/~~ ~7 ;~; ~~\I~"I~!~/~ :,-' ~~'::'-I1J ::,i1 ~;~r<.~ '." ,,~~: '.'~}:::"~ I?"'" '\..,- -, J~';jiN?-i~~~1. ::~t~13~ :~~:~il'il{)i;
, ..,... " '" ' "" ,:i' ,,~~-" ~"~~')' , " 'Lit. '. , , ."" '~-< ~", Ii:;' : ~ "":', '~' , ,
.,J.fJ E:'" "I'" (- \ _?~t1~~1 .~L ''="'~.~..,1 ..~., ~)"I' ,ij: ',,{ ~ :"', ~,'I''''',,:f,:'~n ::ll~', ~ t~~:' ~ l~',~, :~~., ~'~ .~\~f..,;jl~,.j '~~Ii tv_/...~.t,:. '~i' ~~l'~: ,I~I
" ... ...' ~~, Ii" ~~ . 1",~~"'I' 'I"J .;'l:.," 1,1..I~~.,:\f '~_fl' '::%1 . ~:".' '. ..., 'jo. SJ".'.". . s.;.\.,.....,'4-;'
"i\,:~",:,.,,~~~.i' ,~',~~:~1<',~)-'/i~~\ 'i~~tt}~~~~' ~../ .-)~:'I,~~ "^~: :}f}" ~~ " >2t.<;3 'l'~:"'~~~"'1:.,:~~nl~tt~~f,{;lt'i:;~l?-I,ir~,.til;""~'1
". I", " , ~" ..,', 'II ",,"'Ti"'\'" ':~I~:'~,... ""..i' \"'''/;'''' 1"""1<" ." "'m'
'I"'~~"':'!'\l:~"" ')" ,~/ .J" f.r'lA~.......'" .h ;-':~,~r ,J:~~"? i' '\~', ot!"~:;.-o!" - I', - (._.') ,It I;.?~~;~, .:f~!I"'" ~.'l,f,,'..')ll~' ~~f~'l,l'',..;I\,),,'' r:l,.;;;'
,-. .. ,.- .. ~ J~' I: t, . \ ~,?"'l"',-::; /;:,'... ...., ,-..;f '1..... (, ',~ 'J .~'I .,. "h ......~ 'Jc,
:,~I J;. ~,!:....I~,,\~ '~' ii~1 -I. f2~<~~ '.J. a11"'7~~ ~(~~' 0:, :~f,Q_~ ,,' ~ , -, ~~!Z~,.. .',~ 1~~,?~;~ti:~,'h~;';:;?~:\'~l!;'~~:{I5.e:~~.J'" ,;,,;,'1.
,', ",.'~_...." r, , j~'";,.\.,..........",,,,.-'.'.,':,~<~...., ~c,,'" ^' """'" -'-'f,\:.SH.' 'ii!(ZI:""-~'N: "".':711~"",..,.--I~
II \: i t'-it ~'~:'l .;. ~/::. r;-.' , "~?n' ~:' .;;'h I ',~ r.~~;;!r;:~ ]{,r.,: \,; '~:;;;'lf~ ~ r~~: ..-:~. I ~ ~~, ,. - .\'.t . '" j .:., .' :.... :"'L~i' 5;"~~.:,\ I;L;;:~" ~f~:"!lW0/;;rl' i .~
"1 ,'q 'V'; '- . f ".,." ,;:;;r.~ ....\,~,:\;....:... .'t'~ ~ . _ ~\~"": '~I" i .....-. ~~IO '., .'~~ l"'-l,)".r ,. ,.
i\il ';':<"'~4/1/ ~;,:~;r(, ~:+y /".::,z~.1::1~~:;;"k~:;{".'~'\ii"~::';i:~;;:' "~~ :":~'" Ij.JJt, ~'j\'~>::'~lf,\<;-:~~,";&'\j(1--:fkr;t%~Af"~1
"'-,' II ~"l.: ,..' \ .,:'" .;:.'., '11f'~ \. .',. .... ~~..." l'~'ii,.\..1........., ~ il ~ ~... r j.~'. ..\:~:.~; '. !\~j: /( !~!: -'it_: ;..';'\~ _, "\/ . . .),,;H~,") ~..
L;,,,:.', ",";..,:' ,;':</:' "~'l":).' '/:: '. "'IE bj'P"i;; i~:C'~'~~(~~"" '''":".,;,,,,-,;;%,,1' ", ,'.. '~,.,; 5'.;:",,,t '" '~ll;"'J y::~\. 'iiK{('\:..,,\ i'~ \' :.~:*;,~/-" flit
l ',,, ",,- ~"'" ,~..)i:"."i;;:'';;l.':I'" 'i..Ii0l' C~l.--' p,...., TJ ... f':--lj::Itf:l'.\"'I.~', ," ." '. ,
. ~':I':" >";:::':':1 :~:~~t} ~;... ';:'1~'~U:'! ':j .A~)~j~l~itl,~~i.0~~ . ':~~~i~RiJ.I~:":, .... , ~ I ib:1:,' ': j ~.~~~~t-'~~~ ~~~~,{ ~~J~ '~~~~~i~~~J\.l"':'.)~:;':'>\; ~~:
.-'- '''_..{-L.~ ".:?ft. - 1t"'" . - ,';- --, (fC ',- - . -' -.;. ....;. ":' .~- .~'''''I , f;:.!.+=k"f',~" . .t-Z,: - -~ M'" -..'+....i' I!~~~' ...j:'-;- ,~,!... .\'~,' \~{:', " ::,
,,:':,!'\ .":,::~; 1:- .x, )7,,, (r,? mr';~,' '~~7i~'1;~:: :1".:T"~'~~:-:~'k;; :~! :,;,: JlI\~1~i&:: J5f il! '~,il"" /~~'Fi':' [I ::.~'.'), iJ'fi, t2IC'r~'~:i;,-h ,"\.'U?\'~;j',"" ~1 ;;
......"~"..t" "I(..,,~.J~~"A"'-: ,\,.:,.'.)...:'~", ."il~..J;~~~,,'>;"'.J"."~"\~~" ...~;"'~~.' ~L-~. Vii '1~~1"1":":"j.;~~.\f.""'"''1;(''''' \'
t.,-" \\..~. t ~ ....".::., .. ('.., I-' . "lQ:> r:~l.. A,"(o",:ll:;" W-.I.'} .~ 'It_~ .,' .' Yrr" aft('r".,;~l '~'I'\ -: I >I,... ~"~ I~ ... ':"'1.{_J ~.., '1 .'~'.:' ,[ "JIJ,,;;,~~ '~:,l '.l,' L.. \ :t.,\,\ ~,.' .' I
;': .. '/ .:':.' 'f'l,:I:.~'1,' '. ',( X, If, I \~ l.)}" I'/;,l;d "",1 .~;'<:l':'_ ~::t~~~~.i'::'/.~ ~~h'" 1 i'S"1 H. r;~/... \ .,' ,~.f<~/"0~; ;;t: .~~: ~I'~.~', 7' ."t. .f l;t,,~~.~
~~'. . .,f~ ~ \.... .' .' . ,'11 \;Iolt 'i'!, '-, J""- ..... ~_ r:':;~:'~; \.~. _, ',\ j.l.....~. _ :'t: _' ....,... .." .;,,:\ _..,. ..
,r-:", r ':' ," / 'IJ"r, '~:I~~t""" ! ',".>" if ':'J...!,:r.'i, "':~',. ,,',,', -'p" ,- ," "",: __\" ..,.,"',f'~,',,", """Ii!, , .' ,r",', '! ,- I"N~' '.
," .~, ,,,,,,-, , O~ I" ,. ~ . -,. ">1-,~,.r.~):()1'. , ~ /.l:" .-.....ri /.. .~\.. 's_lt't 'J:w. '0; ,l.~'.., < '-;1-:.." I
!.:;';'I'~ li ,Y{",'", )! ~;'{f I', ~Y::\V\!l "J:'-A j('~' .'l:~i.,;:'r/r;,:i"'x::~,;:!J?h'" ".+~ ~ > '''~:;:;:';''.:r0~<~'; 'I,A/~~:~,#!:;,:,;l~?~, It~t :~.LI \.~,.,,,u 'G .
, 1,'" ~i " )),' ,,' .C:,C, ,~,\' ':""" "~~"'~.l";;'" -'--"---~"'f ---, ~. --I'- , ,~' ,~, ~ :;;'\;"T~:'~:l/""hD' ,~l: '~:- ~\' ",~ -~., ,-
t._ ;''''~-':-I'' . ~'~'~'~i',t':-,-, '~l)'.~ '. I (' nc,J .IJ~.).~ 11rt" f."~",' )~~~rr!~: It ;.1 ;-.,.,~~. ~Z~l rl l , -;,. 1 '} \ ~, i .'l" l'j:- t:~- .:3'~:.: ,~~"., '~:s r.-~' .~j;I:' .._:':,:Ji!.~ _~_:' :''4.. ~,., :1
',,1 '1t(J'I~:\f'?f\ ~'1;.,;'~ \..~.-.', L.'l,~},"''';'''''", }t.~..:,!.1. :,.;{J-~l..:-7i.\.; :;;. / '/',::'.. .!~' . ,,'...T.~t"'."!:,,:,:',>',' ,;r"~l-:~'~~~ ...:.....";.1.",... <'"'"'1
..... if.:r~~.. ,/ J'~'(' I"" '--';'.': . .!.0'::.' I. '~~~.,. :(...,~t,."".LJ,.,.:;", .~ ..,:,.f..~" ,f" ...r -t. ':. :!,,~ ","" " ~)'. . . ./. " ': - ,"~'~;~" I' 1.... .,:~;:8.': ":'~~":', i\ 0)
~ Oi A":I,ii~:JI".(4: ',.,.;: i'~1""1.1,.tl~~..t.,.::~;.'.L:IY'J., ,~~';?f..\,~ ~/ \ ~ I,,'" ,~',\. fJ.:" ~ ,.' ~'l' )1/.;~'"" ~';';..{:;11)~ ~~'>.\;'~"-jf'" r=:~I\'''''';-;--'lt.,: rn
" :::0 1 'j, J' . "'l\,;,...IU-' '. ~/I,,~.:.,'I t' .~/ . ""~':r, r ..... ~ '. I, ~ . ,:-,: ll/I", ( -): ..~.; tn... ';' . ""I '"~' .'. ':'I'r~'" It. . " .
- < =<' . /irJ.....J.{ ,\. ,~,.<tcn'.~ . f J1}..(..."J::~:.~....J \. /,"}r;~,t l I, :1.' \. " ' ~ {'''~ ~~ r.~l '. "";....~4;?,'.~ ~I~~~.., ""(.':..:~"ii{"" JJ... ~y~'~ .-
<: fT1 J' (.'.J Jd . If\d)' ,u, I !: ~ -.. ..:; I~', :.) _'-&_., I -d~ ... ......~' ,'" - '''::I~...:J; . li'l"~:- ~....,;"t~~.."I,/,:" 4-'~\'1",,' \":?i.: I;..
g ::; ~ '.':rf~/~f:,P'T\ gc~~; t~h7f!>?4~~~"'lLJI-."'~'j.~.:z't ~ T, !<'I'''A 'J~71":'. 'S/~~~~ 1\I)~'\<'~~)~;'-I~.~-,~'3: ,r;<I"J~;I,. :1;'1'
I fT1 0 ~,t':'1;rl" .',/71 :~~..."~ '!:.J.;~~ \\Cl~((.~?r ~~0:-'. :.J..'-:'~..~ /~';'~':~\, ~ I' (r,' :~ .~~/[/,~ 'Z,:ie':\i1f'P/~Wt~~i .1....::.: :'iP,-~,J";.,"'~ , : ~~":I" 1 \'.
-0 -< :0 '" ,1,,"1 l' "'g' '". ", I, ~'O'~' ;;' ,. . "/f .,... '" -.- ,. .,r ""'J(: .,'t4 ( ''',,'f.:';' .\ :c ' ''''t;'' "'.~.,IV.' "- ',....~, ;","'",' --- 1
I\C""'I-'I' "'/:.1 1 :""ff" "r.- ";'"'' ~1 , "", ,,",, "H<:: , ,,\,-,. '"",,' I"
:::0 fT1 n n ":n'I"~""'j' 'f ii"l'.: ',,~.,'l':.. "'~ ~T:' "'~- ,A;.-,;..t I .....: !'~~\";";-';"1tI-':";--""'- !~A',~r ..!;;'..\~+"f~j'.;:.\: lZ I a;~,J
~ "," -t.,. \ '/.:.... ..:1.-" I ~~. I I - .' ~ 1''- ~ :xl' ~ , ,-, ,~,. 'f'" ___ .",
~ - Ul Z . I .\ 'I 'f la :::I"l:'~.f~J I , ~t'~ .\",\. 'J.'-? . ' 'I-. ,.:"(\. ~' ",:, J' ';;., '-I'"' I .' r
1--0 I ~>::;! "\;\f:~;!,,~,, :'j\ls;[,,,?,':,1-! ,'""--- '~' ~n' -: '(G.. 12 r~':..i"~ I i,.,.~r1t,~:!ti;" '.::', :z~'T'/'\ .",:.~' :':'J:l!~ :'vi~:\ ':,'~ .: '._
f --I <%' ';"\1 if;.:"l"=t"""\ "o~~ -~ .' ;ij;.. : !*,' ,('~"""'" ,', ~,~,l-' ". "~,, 0'f,5l'J' \.,,'.:;Y.1. \. \ ~.t.'.!, /.,).. . ......~J. :\, :
~:--l ". 0 ''''4' '~I. ". ~ ~.:: _- - ~. ''''=l- ~. ~f .l,....---l,~ . i,' -rOO"'... ". .-...., . '_. - ... . . tJ'"
l> N ::! ~ ?.;,,\'~,,;'~::-:;, ... '2"g,. \ ;;... " ;; ...-lJ, .,;;lI,r;; ) .;-: ":"~:,";I't :"'l'\'~ ',..~, ",t",,,Wi" I\:;"~::']' -.' b1)" -,:-..i ,.,
~ I\. 0 o.l~."&""'(")' '10-'/.. .,', lio"--T"~n""\"''''I''I-<'''''"'/6u, \,-/, .,'j" ':''''0''':'''''-''''1,'''''''1', .
-, ..... ,""'. "" ",' '"" ',,- \ '.1 "'" .. ~' ' ". __
- I Z 0 ' ,.f. o. ':- r.'_'.~ ..__~ ""L"'..._. ._..h~'''' ~...:I, ./,(""g.,..".l\\:'\,.!,.....i "'. iwS"1 !." .1.... _ ,.~~ ^ ..' ;:'/'~"~, ...J'-I ,I:...
fI.""1 ~- '...., -, l -;; .' '" h " \ ,~".\\"-,,, ,~, .1....._ " .... ~ .'~ .. :...tl"'~ . I'
o I 0, ~ ~~ 0' to V'\ .' ,.. "., /: . ~ \", / j ""''';;:'.'',,<, /:".,0 ':I1:'t' C ,. ,,' 1. "',i- j,,,, o,!;f!;, 'JY'1- _, ,,_
Z 52 " c;"'~~ ,-'''-oJ ~1~f .... .~;-.........'~---;- : J } \"....-.. I .',:2j'hf;,rl.l''j;. 'l:~':'.:..J I:" :-m;j \.. .,~"'~-'!l;\ _~\::"~I"j.: 1.2',r:!: ,~:".: 1::0
o ~ 8 ~ ~i' I:JJ' .;l) ~: ....~-:.':~,~.JlA,-',\""t-\/:~,~f>!i;;:i~r;:~~;"~I~~&ffii;r.lp ~~:~~"/'::<)~~\I>i~,,:t:'~H",rt:"!:-\'~7' ~,:-;,,--I. ! co
C :0 Z rn ,-1 ',ji'l ":":r'~!!'~ /..8;:;?>."~ I IJj;<1, """ i.;rt,;;;,<[~,,~,,;, ,:!I:"'..", JI;,1i;lm"~/'?'" ',' 11' "','11."; .~,;d:;'!f"""'ii I I'" ,
:::0 () -I r-' ,J..~. .:.........;_~.~... ,,:..;-:- . :.-~__ - -p~> (.' t,.. {''t~.t'}~~I,I~J';~~':';(:)Y'"'' ,/;;y.:/.+. )'UT./', ': . ~ f,"'I!IIII'l;;i+1II"~"(':f:.4
-; ;:UI~ ,,1 ~'J.I ':!. f if.~::'IO'/.1 ,:;:~~Af'",:.~,,~ .r,,>'3'~~!~:~~~'li;~/:~i;R:< ~~..,,. .,J ./'...~ l: i ol/J;~,I~:,~:~:.""%/~'-:.'.' r
Or \ ~ " .. I ..... \. \. ~-:~';".' t' .... ,',.""''; - .\.1.,._.. .:-...1 ';o-------I'.'L. 0;".-.."", f:J....T,#:---t~c;.;...~- r .., ....' ~.Il....~ .L ~ 1 \....----l. ~'f. ') '\o!';"~~' r. 1".1. .~.L.. .,.::ir l- . _ J
" --...' 1 ,j .~ '. ~.-, \ 1, ..' --'J~~ ,', . .......~...;t~::tt..~;.:-" ~l ,,(.. --, "'I' Or' ~-l ~,l..l "j " .'~
~ I l".U' , o/.,i-.J. L" ~\O>J..:' ..' ,'....\ ot,.,{,'~. ~{. ..,.,," ~\'~J;(~ .' ';.1... 'i......- -............-.Nr'.,.,1 ...':!. f,uj:---i.,'),l. 11 IJ" .
tin ~"'~. I....!'.,;i' J;.l,~. If:A;;&.?"I~i>~,~." Y!fl.?~J'~ f~~~;/'~~,,~~:;;;!, ;'f~~}*\f'ir'7: ',/IJJ'. ';,-I(::,'~!~,);,:;>:.PiB,r),;'~;1i h~~l'TiI
,
j
.
~
......~..~...u...,--..:._.......~__..~,__~_,...._______...._~._.____""'_
- ~,~ J, /;/ " i ~'~. I.....~, Ci:J):..cw"'>o,>.;,,S?:,~ '::.: ","{, '-'?-!;<i!:<~ ,~"W'I' "Yl"J:' ~~p.~;*:~' i~',1 ,V~;;~~" 'J,'t/;'~'I;y.~' 'f}iY.,,~{,!:r ;~X; (0' 'i'i:'f! r 1f,[ ";J II '(tI'f' ,Yf f.=\,. ~1!:;S'--
. ,'/ ,~,' . -j_ ~;~!:.r "1/", 1"'J"n")I':(~'"1'1~'r"'~'f:~.r,..~: '.....: ,~""l,i,:.';'tl ~~~"r.;..r{'.',~L::(/" )'",f"-'#I" _-'1,. 1::O-i "~I- .'1.,
, '. :II 0 """ .. . '. ~'.."" . "'\,:4,.", .. . ..., '\"; ,q...... "'":;:I' 'f ", ' .. . I 1" -j... , fSlL.,. q,,,;
, ' / ~,:,' ;-i,:,>, ,l!- ,:;~:!~","''';;~ -;"'~ I~".' ' ,1~:' ~ ~1'(,r:,lIJ ,1;4 .g!t~., t~'-1" ~~W~ _ , ; ~ I ,~ : ",,'
. ",/ . '-")1<' / '~I' "m ';-, '~""-,{ ~',," ',:.!...., ,~'."..~,~. ':\.':,,~N,tn" '1."" .' "MI.'!;:':;: . "" on' .~ I'
r /~. . \.'l.~:l;'''!~' ./1:.,.z../J'\:.....:f,:'..;lJ:i..,:.:.......~:.r~:l.:..\:.~.t~'...~.~~.~~:;:~(llj:.1'~,~~f,~J:~ ~~\. ~...'~\ \'Ii/~..:....E~J.~ II '.~}.t I
~} ,/i ',::~ [<!tl!~;'v.~~,~I'l1~J ~':~:~~~~fa"~";,~>~'~~~f~;'t~l;~'*~ 1\)'~ ,Y~ dr~r~ _j,l!:,l,::' J~ff,~t~o~:~fr~~~
e -,-..-_:...... /../1 ',/,!:>l!' '" l,,"')"--"'V' ,',~ ,'-, :>,':;'1.':' "~', '~'.~ A'l.\;<:t-.'~\'X' if,', '''''..1 . ~ . '- , 'f ') '. 61,1 "'I' ;';1i: -~ ,-V
'" ".' <",,~, ,'~',l-~,";!' 'elr,~ 'I), 'i''''I.~,,--1C ',' ,,~I'i.".':\: '\~ ::\:l:,_ <; l< ,(, -;"oy, --"""'I-~,.:-", ,. 'J",' 1 '-l"~; "i..' ~\,~,
, .\~'...;:;~~'" (" ,\."...".-e...~",,\.c._~._:"......."? 5':""\..,J,''-''>,f. ~ r::l :;.r... ~ ",. :m_~ :ri.'i ~ ~'...I~ r~M 't "~I"'{'
.' v' ,.~:,~~: ._:..:::1 t.;;;;i,.;:~:~'" ,~~ 'L,{f" -:':':J'~>. ,"'.t .~( ~'i.l~1:" ,r.~" ,r;:;" /tf: "t.4_0 .~~ ~,,:,c \\eJ - ',I, 'f".~' ~r-,,';f -'1" _S: :..
. i'" ... t'~'''''' f"J .~.. '.(.h ,--'\- ..... .~~._~ "",<;' ~ .1"';."' 't~'''11 I .' "'~~ '- ..:0. __.", t... ,...;:..
r. ~L__,J .;1.."" '_--'iJ~j'~'--"'l-j~~J_3 ..".4,;,; cs:~ 1.)J.j , ~~. T'-"'- n ,.1 '" I ,I 'r' 'fa II" I, I
p ....Jt! ,po ~\ \---.';. ""r'1:~ .:~.';4.;'~"'" ~~":-"'~W'~'-""" I ,,::,,[..,.; ~'':''V-'' "'~ ~p-~.! L.:.": ,'~~~O_~ .,.l,....
: "I'S'\.1 .{ ",/,'i, \,' ..............1.... ftJ"",!,(,::---'>~(,.;:-I. ~.{Yo:.~~""~,{..... ~._..' .'" .<Ji.{; )i'.....r.~ '\\- -yipr, :; ,- r~~., ;:.. "'f..t- I,'
. If' _ \. J ,.... '. -!I .. \ :-... -. ".~!.\ ',:--~;.).' . _ J ... . '. .. ,.."'c::oJ;. I \. ii' ~ .. . :. . ::1 \'
.t ..--.,~:,' ",t: ,,/ ,;,;,.:'\\",\. 1 .,' F'l.\,.!-I,,>K~""I~" I, 'c' "'~'" '~1'rt.~:~!t." i\i.'~!"/~MJ>..I;(>t1~!)(1, ;.1:' ~ ! ~'"'''' "%i"~' ~ll~" I.,! L ;~, '(:" ,..t;;t '. -,1 '-I)' ';.,'
u., '. I .. . ',~ ,-." -- ... l"e' ,,,.~~~t1li"C"'C'I~ ,,)i~ ,,~,:~Ys'jr:;;,;..,v . . - ,,{? ~ ,- hi' 0 " I ,~'
n .. '.0';":, ./;.r. J . :j'; \.:~I"' ""':"\~~~,' ~..' ~~,.\''t'''~ '0~.~.!..', .\H~'~I;\~~~~~' ~~':~~~~oI: _'_~~f~...tl . . 1 SJJ;1~;' J r~;- "~:';r;';J: ~. ,I. I' "':_.m
, '. \ ~ \~ ~ 1 . .. I'-~.......,- " .. \~ :-"'V1'" 't: ,~. .. r r;l. ""Ii ~ f ,\ ~....' ,. ., , .
E. ',h::~;~:< '~~I'J'~, :~~,,'{~*~?~i >'~i;)A:h-,~: \:'5j~1i(~~~ ~fl): <" ~'r:~ ?,~:>: 1.1!!:H l~r> ~"~';~ ~l(\~\, ., ,:LV .J ,;,~(' i r~' 1~lu 'lr~'~'~\~\
; .... 1" ....~. \. Xi.1.._.. ,'" ~ ~'.' ...., I. .~ ~~ ;;:.I!',.')._1" . _,'., ","f\.~ " ".. ....~l.:.' ";1\\ . ....,. ~._ [\, _~ .. .__ ..,.r
. . ...,'"tl .,., " .~'. ' . I ~.., . , . ~7~ '4 " __ _... ".' :., .. ."
::"...1,., ~I,';M ._.~~"J:""--J,-..l;\\!T'f'[~', "~ -, .:-- '";ft'~-n~~~ ~J-'';-\-''~',~J. ~:::r'J~~ ~,1<.~'~ './<1 I, 'f){'1~'; ,~I}I ~ I' :
, .', ,.117;, ",,\, r "..I",!"",,~;t \,":~ 1:; "oj:~A1~'~'\J' "'!\'''!I[~::.fl ,"""5I:"'C:,, r;> "", \,~:I'-,' .--, "'''',
..",.1 ,t.... ......~, :,..f/"P1" \'t: ....0) '~.., s......\ ',,~f'(_ 'fi."}.;;"'.", "r~"- llI..O' ,,J'" .Jr'r '...~.. ,\ l' ~ I.~~; "':J
.~/-~:,' J;~,1 ~ ""II:",;l',,'llt,<,~i'i.;"~~;'a....;~~:,;iU" ,~~_;;I l\~,~'\I','i,~,\',I-\ 1.,j):,.';;~\:;j.lt'J' '. ;.~,,"'., :i;',r>;'- \~i1J{'~k"'/;';U'
. "('1 r..t .' , t' jo,1 ,',~:~:..w.:-",~..' '..) V' '. \ (.\li.~. l\..' J .1-.,. -,r..:("';"'1.' 'l~', .:,'. ~ [~ ,,;; "..,
.0'" 'I'. ~~, ,',,'" ;' i..I,If'''-;''' /'~...V'.. ,,~~,:...f!t.:.-.~,-, ;:'t"\ ( . '.~ ')'....)4 ~~)" '-1:.",' r-;-. '..J,'",. '. :.' '.l-..~ .......... ," i I~' ::r.' ~.,01
J1 I~I"".' "\'r:r.~'if'~;;'-'''r ("';.I(:.;",..l'-~\VJl""""/" ,:".~..( d '..' '.;~"'I:r......C"": {"(~"":"\ . ;::,'-.-' -~ " ll; :}]i'~
e of "~', -:";"/r'~:~I)W'..,;::;i{:?JJ!f,"',:,,+", ~}}~;~~[::~....:~" .' 'I",: ,r",,;I..'tr)ifr.'I. ':'~~I'l "l"~ 'If:i~lil,t;.::,,;
:"'(; .... 1~'" ~r,\:~""~~";" \~tt.......:'.~.!~.I!..~~~~;>.~,.,'l-.~~..... ,...:~. ;:,.7:'. I~~ ,r-~r'''li :.~, r. ~,,1-...~."~.:t. ..'~;': ~
" U::ri-'" '~-" ~":'r-;.,>,/j,', -,i.-t, .";l.~,' F :,~ .,L;,~ ,:l ;X'~:p..,,f'; ?~!.' ,i., :f'~'j~t:"1:T~~, '/ \-<:;''f;j" :}:': .. ~..'..:.i ': ,::,~{,\l;. , \: ~,)~ ,\0;; .~-M~. a'~ Y-' "
'.!.~."'_~"""'-'''I 7;;ol..r-J:"':"'-~'c.....c.~f,'~"'~ .":,,... Ol'~'~""r ~y..-=--~...- -~-""''''''m--:~:\:n,'tl~J i;._...., ~;' \ .r..r.. ,1:.~ t* . .,....,:....,..
."lI. 1-/;( ...~ .. .", t. ~.)., r- , .'.r.? "'J) ",." ,.. -\... ..
'-'\'':'!'''''..' '-J""'~""\ j/'-.. ,,'" l' ','t'.. '....l)l=,,'g!." ~.:; ',\,,"':-~if', ~":''''J Lj /4".1--P\.'_.-......:. Jif[...-,,~, , "., ,,'~~ ,.;
~'.' :,:;: " .i>""-',:l~/';:;.' ,\'t,,' ','. \ ,!'n. ,- ':,' ~'." ,f"" c '.,,>:\,; ,.t;~y,' ;", :'t",;l)l_~Ul' '_hc'.~' ",;,:,.' .'j ::11./,"'" ~~. ~", ,~~ l- '- ~ C'}
.IC....).. r'\.1 'j !...\ ,", ,." 6 .... ~ '" ,:y.... ..' ~~ ,-." 1<.1. ~l\.~""'" . 1.'-....1. l, 'U;! ..,~...:,' a.f' : __If I' . ':'
~." 1'( ~"'~." '.' t. . "..,~1..:. _1. .,..ll'.t....~:",~'!.' ;.:.:.:'.t.,-...(I.p..,)..,\'..~.?'.~.\.... ;'---j.r ,;....... .i::r".f~:~;',;~{, :S.~~.'.t~... " ,/:0
1>""" .,'" I ,t ,If,.,. , r ," \ ! ',\": \. "'ld ")\'1 ....1:;.>'... . ,.....,...,.......Q I" ....."....7 f ~ I I... \<_..') t . .Ill" 1.....Colj!Jf I:" ~I
:~I",\ ... ~ ,4 : :':1 ,. ....~. .. ,~~,..., " ,\ ':, ",.... ,.~ _ ~.t', .. f" 1:",,,",,,.,, ..,.' IV... I ". .
~:: . ~,~' ~ :"~i- /. r,};, ~~~~,;;;:, thJ.~~,:, ,,!l;"''.~\' ~,~~ '1)' ~l~ t>\;:,:':j.!~'" ~';,-sr,:'b:~.~.~r\r[f.,}.,,~~,;~f' ,- ~N!;l ;,1. ~]i~~[\(.: :~~;J'~I':"~ ~, ~,:i?"
'~I. ,.', . -".)f . .tl....."........ I =>',.:)...,:. t ....'1-- ", .. \ \ \ 1-1';\' . ~1:~ 1f7~/1 I:' l.~'.~, O' '~'k:~: ~~..fL l"t;... t~~
j.,-"',h.. ,.....,.......;:t._}:....~._t1:-~.'~\~ "",~./t' 'J \~....,..''.I..t .._.,..~.-:.....-r.~ .. ':.~....' ~e_.:P.-~.._- ~ - ~~I_..,...;a5~...:!'I......;.:".'..~.~f "'-;}t;=' f:..b),:
",- " 0, ~' " , "",,' ," ,", ' "I' , " 7. \0'''' I > -'
.' I, ';;," .. .:.t'>' . I "" J. ...~. IF.= I, m;'J .. .~, -\ '--" W I "l'i "...~~.,r~.i......- C r'.'I~' . ;,." . ~ .~ ~ \O~ tjr~'~'
1 .'j ~ '\ .. i' r~ ~.... " '. ..... ,: ",,"t.' . -...., : ......;.....~..L .~ ....I,~ ." '.- -'.-... .; ~I t..:v. .,I'f..,;~.. ~
:o';,-j' ,;/'. \-' ,W ~', It,"" ''1' ' I '/>:?> ,,~'\, r~? hiC/ ~'~~i..I<,~j; ,j,,~v..i'l': \-1J'f.i~?-', -)- 0 f/:Dft~~ (,/~.<" '; . Ji-~~I: ,:I~~~
1-1' .:'l' r.{\~I'\"'~ . ,J ' , -t/L".~ " ..., IiI ~ ..>1TO,- .....1 ~f,,{: I"". --:rl"~ ~ L ~~~l 14;.~; ..1.... ".'}.,,',' f, ~':l.;t. ...II ~ ~~.,. ~t~...,
'?,::! "'I.-;,i~~,: l:y,t "i;,(q<':','::'~,:,~\:~'" h.!(.:;::"-fY:7 "'~j' II ,l:G-/!"~ hl;:- ~:A,\!i~., ',\~":,:;f~ ft;~~ ~ J:,~~:.!?~!t.,,>(!tJ~'j'
.' .:.. .'~' tl /1,' ,-l,,,, .~,.,,"'..'J.~ I ",2<f"'t1 .ft ... 1\~: \'~<::i-...~-..~.~,.I.!f _\, '4~F ,,".t....,~ ....." _.', I'" ,t,). ~(.\I':!i1;-,J
I ..... ~. . 1 . ~. 'l! . .. 0:; !, . ~ ~ .... .. II.; . . -....., . ...... '"'".. ,,,'\II' ,j' ;::. " , \.
1"'\:1. '"", ,~')\ ',,\\ ,J~, ," '. I ~I"J" ,~ J 2.,J-0 ""Q,,\\~), ,\J~ ,\1,,= '1:.'~fitt.li }t~f. "Ff I.!' I "I ~'&1'. ,',;,~l~;:
l'l~" ' - ,;';;\,~ >, ',.l\~/" r."''''.(' ",r,~j~_ ',' f ''', r, , .. .:;\t.,,-.'W;,--- _V,cl.;'l", ' ~__,',':JI. , I.:, ',l.; "';!-', ""~,,,&t'~t..,
...}:)j;:'I~';:ri';f."'rr":,,, ""'~ -ir '--~,"l"'.r-: . _:.,~.- --: ~ I --;-~~ ~-r; +::-- t,\:i, \.":.,!~;"!. ~-~ _', .{:jr!;l~' \j';~" ~,..;.! !J:1~:\':1"\-1 ;~~;'~;~~'~..,
.... .' .i. .' ~.1":t . .".. .. 11 . ',. ' ... , ..,..... ""_ . _ _' , ..:g;..., ,',1. .'''''''~ "\:,,,~'. ~l).....
" Pl,.,.~l .,'. 'Z'..j ,".I:,~: '., ~.,_",'.;'..!.~~ "-. '>" :1 r'l/~1 '1"E., ~',~1l\I'1 ,I '. ~I:!:,~;::"~~(': ("-.....,,:1r..,J'\\-..:~:r-fj~'.i;l~t ~
:0 .1_ I ':... " "?' ':,': . /.. I.. i 1 ''''\~'' ; 0'1 ~,.J ~:,.. ,:' ~"', ) I. : ". r': "~."':'.. .l'~~..": \, I.!';" ";\I:"o14o.;::(':'':'!N~
",1., ':' 1"" L" ,,-I "I, ,.""1"'- ':\.r'V1,. 0' I, '\ ,I' -Il,'lo. pJ ,\~ j.,.",--gY!/('!f~ .;,j "'b/~~V ,""'" ,,>'~, " ',; l:'i'- ; f" '~:"~").\,,JI{~~'~l::;:'{',':,\I).~.....:,
, " .,. ,.", , '", ," .~' . _., _' u,' ," ,,' _;~' ,<,,~ "'~,. " ,'..",'", "~'~',' '.<:,
E,~,r :1': ';-' "",,' ~'.r ,r;"t~\1 If,',,' ,".,,' /).,,,,, '.'< ",,1'": i\....\,,;;, i,'''d J';~~,V-f-A IL'!<<'~t;;'i'~"':'\",'t:,; .(;;f~":\!l'.,~"~"\l'" 'lj;\~:r-)~"...1.'r\>;
, '~:"~~~'", .'.llO'! I.. ,,;;;' ''!" rl)..r;...,t j I .,.(, ~'t .....'\ _" ~::'l't ~~ I "!'tl ......."'\ ,,:;' If' ,., -,:>.. "...:~.I,:;;.\ .j.,;) 'i'" 'Tl,~ ~m'..n'J~ ~~.t1't.~\:<.:'\,~:
'~~!''''!1'''''~ " ;:;..:....\~ 11.;~lilI'\, ~,~ 1.~'1!.1.! .,,-"1-""11 ,l.#-~_~.."" ....r~.~.:::-!...'"'! '\"l/:"'-:;:.fflx~"'t:,;~":",, ,_U~5-,..i.t.~.~.Jj\.l! If{',~';~<,:.,\,~,
"', I' ...;~I' ',1 ':l.i. . .... ''''''.'' /, '.....'( ~I(i .-~ ,\,'. ...1...... .,,~.~.. , lcr"',.;'~~...",.,........., II~I"-\" ~,,. .'J....t":. '!'\I'.:f.'~'......
~ :'i!) ':.1"1l:~" 1 ~~, '. I/'\lo ~;t": ( .\.t...~:... ...~t"- t.~ , .\...~:.t._ _..:~.J.;,.;.tl~/.t...~~_........\.' '-=..:...;.,:,.. , " ;;""!~ _ ..../...--\1 ~ ':'il'~i'~.'.. ~"':,-
',': 'tt' J ",~'",f '-. ",. ,"-'). ....,..Il".- ,I,.., ,J" ~,:,; .,,_.~-T,;,.,~((\',l,b't "'i' - ri~"'~<< .(t-, ,~...",;;t~. F'11 ," ".,'~ t:,,'l. pil'~r!"< "i:':i~, ","~' ~
,,, 1 ' ,\ ' 'I ':' , ' ," t- '!WI,-, " " ~ ",,~,'..;' '"~I 1 "0 L '!I\ \.1., I , 1"" ,,"'1 O),~ ,-' ,ii"" '~I'II"l';I"'n.l I,':" ,'~l"c" 'ij~I"""~~<:~ ,,'" l" "".,
...."1, :,~tl'" ',' I, p'I',"" ~/11 Q..r ' ': L","'~I!!: I"'";''' '.!.::;<lr,. 1;1...' " ","t' .;:.;~ ""II. '"b~i~~':.;/ 'i,1 ~/, 1:~,,';' ',oh.t'1'~',;\" '~I~l~/ ~.;;I!'~3r'l',";
-" Ul H _ " - "I' ~''', . ',-'-li: (,.,~>j" "'" ". 'l' -', ",-,rr.",,~tl-. ~"Jif."~ --"..
....."', :;. \.\': 'i i~ II :. ' ~ (J'I:'" L""l',~: ~~'I.' .' I, . '" . j 01 ~\"'_..t;l{ :~ '7 II ~ ; : ...,..: .' ~i\., .: :~-:;....:,..., ,.,' '-:. '{:.:~':': ",.'~ '~t~ . f ',',' ,.!:-.;;,'iY,:~~~6 {:$-'i~:":':. !:~.
!1,:;?' 1.,:~li 1~,:,,~Cn i1 \f'~~ " ,,~/I' ('l 'i';'J~~,:F;tc:"0:,ci'f~\":' '. jj~ ~1,,!>"{:1;..G1r"{'"'Y'~"F;':S~~:...-r .~~' 'h,~i;.'j,,'~~~0:;~)t'I\[~~r: '>;l1r;~~~i~~'
e',;: '/!'::~ ;~'~{<.J\ "~;r ,.:"" "'il,.", '\'(}l~j',,: yt:f:.'> '.I'j' ;~ \-1 ,~);. "~~{'Fh'I~.:,,-'.,',:",;, \r.i .' ":,:; 'K\':"'L~' ',1:1.:~ ~;.\' ,il~~If':;:'" ',1"",'
.:'q..'1~2;1~,;,..,.- .J/.',.I',/:ti /qP .\- ~J ~~\...\~"", ,- It" (1,.r_~I,;l" 'I.,....'~ ~t :'f:.....:.h.~~".\.\,~.~y..... ,~,'./~... /.'~~\7.)\
~I;fr,;; ,L,~r~'; , '~,: H"J' .' 'i':' en.;' "I !',' ," ..., ,....-.!.:! ~1ij.1 ~n 'l;,' }"~";r;{': "":,;.oi.:;> 1n': '-::Yi/f~1 :);{r\11~~;:~u ,'It' ,'~fY : '~;,
", .~I,.'" I -.\.~.... ;.. I-: ....,....,::-....1.' .'.' ..........~~,."""~ .~ ~o1 ...p 1."'-\'.1, ~...".'::L,"1 .:. r~.. If.' ~!;l' )"/l~' ;.;.J;/'~~/:-'''l'j /f~' ~w...,'~'-(::.'~..
,.,~' '~i:;:' " "'t ,,{., -: -J.~"t"~"'~ ,I,;;:~< ,.\'),' :....;,,-, ,:.~i~:;t ;~;;:;'."-, ..,(.J.- .ll t "-It, ~/.,~ w(~~j7-;;;."~4 . '<'S~ ,d,',:""'" ."!:l:'~~ ~ 'I :?1'",:;,,:\' ~~, :1':'~~,: "~'f,Jjii;~'1 ,;' ,,\,~0'';~:~ '.' ,,'
" ...., 'p, ~^f' J .: ::.;1\"1 '. ."" I .l),.........~ ':"7':( I wS-: -i. :. . ~I!y 1'1 ] ~/"~' , 1.~l.:)' ~::.,:..' r-. '.t' ',~l ~r:v~, -iJ'1tJ1o:.'I'.bll":'l: r:.:..-\'i.~~:tl." 1, i. l iY(..:,>, " ",',
'1.' . , ..,;;. .;..'\.:.:: "')",. . \ ~l' -',,,, "'" '.. ~.\ I- ...1;.'- ;. "'.. . :'IlS, "'tl_' ", ,~.~ ~~.. ~ .., ;:;.,.,'r:.~:""i>\j.;, }" ,." It, . :.}'
l"r~L"",~ " 1~ ',,' >''''- S~'," ,!;~l:l~ '::': ~ <- 1.";1, \ ,\~::;<:i ('Y'0'lk l'::.i-,;;i,j ):, ;..~.-1'" ", "J:' ',' :?;>it'1;;~ =:' )J;~?f,\;\'~;::! <;;;, #I:!~~~<i.',"'{:;,~ '"iI~.: ,~~0
1(': II) } ',"J! f. 'J;;~!/( ",Z,,'t:' 't"~P '--., ):~t{,',:'~" \ ),:~", <~~ "A>',(fb)'Ui ,t I. ));':~,<~_' :'. Li~\.l~\tl.,:, ',,\(-.12.~/:,;:'s. ~~, ~l~~I'il~.':,;'\~r\}~)i~~~n~j
- "Il'-'. ';:, . .~ /1 !, ... '. ~\ 1 ,.I '\'~. .r, .('1:'/. .. <~ \ l! I .1', I' It:r. ...;~;'':''~;'~~', ~...l Ii...;!,"", 'iI.i',)' ~~';,P"I.'>'
'1,/,', '''', ~" 'f' ,<, ~, '""" / q'u',d ,,~ ,'_.-,,,','-, ~!~""2:,,,,:H."~'''j'.'''''I,,,,,,,,,ZJ'"lj'?ln'''~''~(b}]~' L,r!l.
,i , .~.': . -4:\' .. _......' J: ". ""~'~ I ~.-...,- -..... I /;"'~ 1\" \:..~ l:: mtl1i '" .. '.~ 'w .' 0"' ~.li .Ir'}' 6.oJr.'1' .~).
.JI '( .~~,I(:: ,.4'""\1; -.:.., :> ..... t'../ . (.., ...1<& \. -~(lr::~ / VI'~' '/ n. .. . C:::r~':;.......: ~'1'''''' 3~1! _ ;oo~l ~f,1 Jj '.1 ~'~ ,,,.'.~ ,l.; li'j.,' 'r.1';.o::, :fj p:....\~.;./~ 'J.,~~I.,:\ln,
l ,,-d/,,,:,<.' ,:1 :~; ". ,,- r! _,('<,: 'J;' <,>:; ""'~'~'1~-- ~,;i L /":: -/ 7:.!~.if~~C; ~~,~:,-V~~W~i:,~~~< I,~j;', .: bqr~~~~ i'~,:f!~ ~~1.;lJt~~1\i i~~)'~){l
./. ~ . ~ '~.;'/( .: :'f' .:' ,;. \ 1 ~ { l , .' ., .....g.- ,/" U~ 'o:n' /;"I"~\~ ....:[0 (~~.\i ~_~~i,:/..Z:~......f~/~. ,.~:',.; A~lr" '~'~jJi:i;i,.li:; r:,71)'~i~ ~4!~~.<~:J!;,~~;!I.,~'jO'~..~): f'ffJ.1 ;~
~. . .-1......,;.. ~- (. '." ~'" _:,.:>t ~ ,_~ J:: 1"1"." .' J""}'/~ ~\( \.... . ..'J-:1'....h'':t.- .':_~J.,-,..,,,,....:{; ..,1~""" /1.** 't,,~..I:,.;.:'..,' '.V ',.," 1'.
I:' I",~ ",' ,"~"I.~,,:,' p'U"~'''- ,"L'f',','~.iJ;'"'-",,.""'~,. ,,' ...{('/r l..,,1 '.\1' , ~'''''';!l"'['r.:~;:'"Jtg~'~.t;'':::~:P,J":p,~I,,,
, . " ,,' .' - 1 ~ I \,'., Ol~", n" ',~ it' .." 'f ' . > ~ ',,1' " ""~" "'i.(""""'''~'\'' N::~"~'lh~ ~l~ '::U.
~ '~"i.. :,1. '/ " \~\. {';-..', ,;-',"It ,V ,;" '~"~. ;!'r~... ~..~ I )~,1.?(.~. '/:.I~!~"'.. :(t;;' ~1'~~~~~~.:~~'f!71" "~./$f'~'" ~,;~:v :';~.:?~"~~r.:",,:~~0~tif.:~J. . '.:~f';;~' '11~'-~
....1'. "'-!,~-'," "1~1"\,(li:r '1 .'''111'''''"., '\~.' I(,'I;-'l \'.(J..\."'.!r[:t~.-l,~J~. 'J\!~'_'~"" ]~'I':.~ ,fi'A~"l,'-:",,'}.i",
~ : ii': ' j . : 'x" ',~,'!", "I!' j~ ~.- ." ':'\"-/! l~,.( f:-~;,t{t"'-~r/-) ,;?'~l'~\ jS",.: -. v~~'~' '~'!/}'~:"~'I S(, '1~' 1,1> (qI~, ;~\~~"')' ~\;!~:l'-1;lll!L~B',~if"I!.1 !\~'~
,--" " '" 1 I','v <;, "'J\-' .Y ,r:l' 1 ",>. ~ 1,)1" ")' , .,- "".":;&,,, ," ~,~ . ",,""C., r,~, ,,~ ,1, .:,,',J"'" .'". 'I, i B~~:;.!, '''''''~J:l'
." '.. \..... *', - . I ..... ~ . '1' I~' tf'1. m ";"'" \':')', '(l ":,l ~" "'1."1 "I,l. ;~... ( ,. ~c:;:,h" y....}. 4\ L'~ ..,' ..) ~.~ ,'v'
" 14..' . l. ,C..[ ." .....;: 'JI'\' IrJ'r' "'$' ,,1.:' ~'~ . .. ,:I.).., '~i~v.0J:!,'C.'r;,IO.. 1~io:~~-o;..'1'_ 's..:\~~'l'~ *"1 II
l,../ '. :,:;:,.', ,,: )f"'i~:\, '\ : '1~,;rL;\ ''']''7;;;'7~::'r~{f(~ff\'.;;..?~f,':~?,'~'1i6~,~ 'tj' ~~""'~';;-~J m':' FLJ-l\ ,~ ~ !l'-~ ~;"~$!;:l~i:;~\~;:,~'~t~~I~I;,':i~j
/_~~' I.... \, ,,:,.' '''''\' '\ _. '1.:, \-..-'\'I:'~~ ~~-~\J- -; ~,;~'! (}i-) ',,'I d,J;~.,~. r: 1]I'i:.,~:~ ..!- ~t~';:Y~ ".\:" )l.~vl. I.~t';:--.~~;~: 'tJ~ ~~;r;r.r,i:~~'!l. 1V"/',f' ;"'%',.' :l:, I,:,' ~\
" ,~., \ 0 . .., '11\ ,.. .). .- "', ..,~' .,,," ..~,,~ ... Ii .,;..1. ,'. " ". .' ." \" "
'\.," ;"",'''''.,,' 01"'[ 1-," ~i' 'I !,\ ,,;jl'~FII"\' ,:,^"JJ",/ ,,-~,,' ':l.;J'~'ie;; :"./".~, '~';t:12 :;'\~:: j'-.- )jf',:,.'~,\~~il'!'('?>',';::r~!;'!,.IJ:,L:;3_.;;i+:.)~'..::-:::;,'i\'
. :,...., ~.... " - I ::'I) t, oCr; 1 J' 4~'" . I.;P , .' tft:~J' ,\ ~.~' r':I ,,f.. t'~l' ''iJr' . :'7'~~ M"':"'~' l"~~\' :'IJ I ,GS\~."';' ':lI'.l .-
:) J...J, ':. / :' '~1':~/ ' ....., , ,g';>' J~.'~.~ ,/.:- ~~r';'- f . L,:,r.;. ...f!' 1\." h'1';", (I....~'_"::~';.'))......r. ,~I. ~ .r~;' ->:'!:...:~TI~~ .1:l,T;:,~~1.}'!;.>..N;~./lt~~:...J,1{:pJ
'.~ , '': , . ," , "'.. ',' . - r. ' -'I'" I~" -. 'I.. ..,' J' .f.. '.... .-
,,".'! " f.t'.' \':;"" T """'--""~.,, ~.... -: ./'. ....~-,.n.;~,. -, . 'A t:~ \! ...~i;"''!'.'"';'',~iN .~-:;.~../;".:,., J~r:,;""'\'I'~'1)I'Y:Ir..r'}1
"i'~' "",, >":'1", ,.~e" ":/"."'i" .jfk;,^''1-::'",o.''.'~~J;;!,~:~:,hi'\'' "Jf)'i:!'::1":'~;:':""'" ,. '~."i0!~, f>.,:{ ""',,,,'?iJ'i\:'i-"'IJ:,r;;"ll":"'~
',' 1:-" " ",0 0'<1( 'i'~I'''''-''; .~"':,\,", /'1.\ .... '. I~.I'\.~,:':""~.'f:'''-:'\''>''''~I;'V ,:t~..,1/ ,.r . H.'; .....', "'./ . ;...,..tJ.~...,,:.;J(i."I(ftlj. . ;',
... . l'.... - .~.-: ."tl/;' , ,;.(. '\ ..' . .J' ..'\..... lh !...i' ,'" '~..~.. ~,.' \J ,,\_, ."l....~:r;a:J- -..' . .:'.:f '" l~,-_ .....~"L-.~M': r1j'~'-'f1 ,,~. .-,.:+;l.'~ ",
"'~." "'-", ',:, ' , - ,:/1 ;'0,_' "': ",II '" ,"/_Le:r,; e' --,~':'::'.', r:_>i~Pf::<;t,~!o-.? .,~ i';;71\;\~'Y~Z7,';aJ:td.~;' .~ ~TitF...:-"f'''''~ " .'ri%>;('i,ql";~.:,,.<~'i\
\, . !, ','" - ,- '", I 1 ,.'f;.." -,' " ." , 11, 't..",<l~"-~lo>l,? ~-'_.,. ':;;'-<..i,.lf~-:'J'" ,I '" '...:. ' .. ,t.~ ,'~o ' 'Ji'- '~" \':V"" 1
'.( .'.1 .I ,\,,.:.:. ,- " f,:, ,(' . . :--......1, .~..-'.';l . .,.1(= ~"'."" ~', _I;J .\(',.. ~(.. I "..~- '0 . , :.'o"ll.......--""". 1'~/: '}}.~'l:~. . !..I'
I",: . :.* . I" t'r.': ,;.~., '1-,-/; ;.lff~"". ,....... 'I r' " 'h.. ~ !....~ _, ') -rll..~I.,J..:,',.". .r.... \.;1.:. ~,.t::r..J~}..:~~~,} :,,', I' r......;i.'",', J. ' ~<\1\.: ,"; ,L~:,. r :l(, :.,
'.1 , .' '"'i". ,;' . .... ('". r . ". '. '.1. ,-.1'" \O'~ .,:,.... ,'- '. i~ ..\ ,,'i:!.~f.- v..... 7 !:t.., ,,'.....,. ~ ~', I ,.f/~ '.., i......' .
g~ ,'I ".'" ,',; '....:; ,:",,~{i/.1'll~"~:';''''t-.. ,: o,f"~2~'-;J)1:~~u~~s" "~~ '>il-,.---'+:::;-t"; 't, I "B' . r' .:~~-- .:-:,,,,>; :""""'-",,.~l,~ :l!.f
.' " 'l "', . . "':" I ->1 \ ... . ~~ :'() ",' 'M"\'~'::"'~ .(.f: '~lr-'l)'" .. 11 r ...1.....". - t;;~~!1 ~ r~ I .~f. I, 'i . (V;.(:::,.., ~~, \., ,'!',. tl ("\ . J 4S1
I.' ". ,. f.,'" r . ~ :i 7: ,~Vl' ".<'1 ".1XJ . --- "';~..''', ,~ \ \".[1'''''' . . /. l ... ~~. J- . I .: ,....... .
..,~,,~" ,,"\ : ',,': i' ""7".-, . '-"'6 ':~"" 'CJn.:c.:,~".._,..._,~.,) """'" ~",vRt' ",' "'~""""'~"'_" -\::.... 'r--'/' ,'j""j', ~"( \~~~~,f"C>ir.' :,1''1-:
'I,"" "'." \ ',' I '., ,- '" v.." i" .. "-l: "'"~:l'_1.- ,...-/', 'C," I' \" '>, ." ." ,
"II'" "'1 '.'~'~~ \.""".' , 1\~1I.";"6'/""{-""~ ~.,(\.rJi.~:~I'J:":'~'''''': ..;:.------r.t:;:~.....-l:~ .~..-' :";;;1," '-:'. ""';,' ,~\~t:.''';'1~:\' ".....:..~\':":;I'/
~:. I .' :'.\ ""'f", .', ,:Ii~ Q ~, I'. J'........, ,".I:'!.l" ,;.., '.'.1:' 'J:;,\, , . . ~ :"Ii ..1' ~1''>.I-;.. ;0,',' 'i,\: ':"""-"'11"411(
,:1.:.: ,:,,, ,,~.-,' ", : A ( .";~-,<('h...- '" 1.7,5\.t.1+"" f'l::::~''''''':'''-;<i::;td _""C~'~"~L~~~~,.)F,lffi1 t -' /J 1 il;c, fU;~ ,~'\:~,,0~~, '" "'(':j~;f ,~~ ,"I .
:.:. .... i.-:.; -,:.~.. t-...;..- /JI:':= "f..~~';. , .1"Cr~ Jr, .~ :.. ...., 'ltli11~~7~;'.)':, > ,\J:\~: '1...~~!.rtt!A',~ ~-<'!: 5~..~1 ,.' ~ i" ':'~! ';1' ;~:~ ~:.t1$~ 'la"'f...'i'~"";\~~"ij~~-~'I" I'}
''';~'.~','', .,,:,-~.,; ':. ,'i.. . 1"'11: ''-1,'/ If II.:WI',\l, ,J~,' ''f:''.n~ ~I,"'." ......)1l..: ~ -,,~~,:'~;O$<'~~t(~&...'''' .~-*.~\~;;,.. ./"-"! ~~""\'i'''~lJ)~,...,.~;.:..,::..H~>...:~~..:l~\); "~~:'\'li ......~~"'i...
.. \ .,,,. t 't . . f' . '~. \, l--1. I -.~'7"i' . 1"/ ' " , .r, . (':' 4,,(,e' .,.:~ -N 1/1 I,;:, ~- . "~(" 'i( I'.;!/ .t!o!'. '>lJ . \ "'I "" .
:..',;'"t',',~:""'",,1.- """,\',: ',:'-:/1 ,),'::i'f:7, \ V'('? (~.-r"'/,/",J,.',.,':f;-:> "'f"t'i'" ;H-[/.fC;"":""L~- ,r'~,: d1""':;;'-J~~"""""I:;,.'~ 'J(,~'(";';l)
''<;., ," "'I'"'' I)' , -."" ~)-. ~-, 19~.:?',.\. 1'1--- "'I~'/J-'-' '-'r:'~iT"-'-C;"''''''.''r. ....:J.I.(}1"
O;l...~...~.~. ,.,'" . :', .. 'i".'1r.::''l.1> :-11 ~~ r'<:' ;!. ~ ..~.' ..,?-'P ''-~' '{.\'<<' -::",' '2"-. 1 ',.-:;- -;"tl 1:-"'" ~Wl~',~tMJt:-~. ~, ~"I~\:::'. I ../(.'-"j ,
~"::'" \~ ,;\ '~"'~ ',"I,'J -,'/11' :"'~"~hb'I(:t' .,-1; 1':~".\,I, i;i1~~t, :J~' ~,'~; i~,~~:J:t:{',,,, -,,' e-' p~t; /:'1 /"T-~ /(~ '. <;,-.i'./ltl'~~~;y0'~<,;;J~'I' ~:,. !~W;[71"~';':' ~;
,'" " ' , 'I' f> ,- ) 1" "'. / ',' ""..>..(.--, ,..<'1." (, r~Y1 I,' W '!}'\'P'" '. '( ,"'" ' ') , I~<
: '.'. '. ;.:~;~ll... {, / ,:~.~..,l?} !:';11rl' ,~"".:...":.J. '''.!''.J1<':.: .~"'f\\J...'~": .....- ,....+-...,~ .', f," /,,~"'" ::'.' ,.r~'it','dt !><\~t'XII'''''''! ~1"~ .
1::",,11 ' ,:"'~ \' , /', '. ",'~ V;" 'i,\""~~>3:.!(.,,I,,' ," l~"," ,'''','kJ, ! " ' I' ~j'" ",~r-;- ,-,'",-V '(\ :;,1, "I':'~"" ~"";I;:: ..,,:' ,<, ')' ,,/ ["
" '. I,' , ,,-, , ,'~:~' -.;:.c...\:.f,,~...,.,.. "!..,L_" .....j " -~"t-'-"""-" _'_~~d ,"""',' '-, -",,~"""" '.".." ".'-" ,'. ;, ,-
, J!. j' .,1... . ,'. '.' ''''''i''''~ ~. _.., . l... ...... * '~~'~"" j,J)>.II'\, ..,f
....1,.:;...-1' ~-7':1t'\',~,):" '\'llt'I>~t.)\.'0l.J.J:'~'i~':' ~~,~~~:",_',~J,:>';,...,-aJll~i'l ')/ li '. . [~. .' ,-=-l:~('~~:";::(i~t.;-:iJ,,::~~.:}-:---;:.J:-~.' ::1
..' . "'. .'.~~ .. '~"." ..I!,~;'~'.~~,'t.n'/': I. '. "e ~><;.:.r;-,;~-",;","\~ .~. I,' ":",' :;".' ,.'"r\.., './v..( ~""'. ,".'..~',11.: '~'..'" I', "
"I "VI '."."<J ~n , ' ' '~"~" .", ,,;..,', ''''J ?",) \ I '- Il';,~ '( · "".',, IjBj 1il v /if (' ,~~, ~ ','" "----J-'L,o" ,
. , . ".~ ..I.....:r~ ,i ,.': f'"'' ,.".\. :.' :"1' r:)" '" ~a,,- '. ),1. JY,.s, ,: \ to ',"", j~ ~ ,,(;-~ .:'~ . 'l"(~~~/ .,' I~lj','\\'r"l.'~ .'" I,. ::0'
:;..('~'''' ' . ,.' ~'~'" ,', .' ). 'r... " ...... ....', ''I.' ,I.... \ t. , f._" > .. ..,,:). 1 .......~..,., II' .~..:i..:/,~ l;:""4'{)" ' ,
,,,.,,,.. ,A):..I'. ""..' . .". '.' . , r - . -"I f, .' :~;.i '.... . " ...........~ ,~::/1 '''.
'" j,! -.~,1..:. ',," , , " I (.. ,( "~,,,J:Jt'(",')' 'I' 0,,' J, ""..sJ ;"" 5? ,,,"".'1,f",,.- , ;. .. .t.,,-,,<..' ..<f'"",:>~~,-, "'JI \.. en
I. r.ti' .J") :\~".t""'f,,~.lt ~:.r"Z~ ,I". .~, "I.")pl.loti'" :,,";'- 0' ~ I' ".:l:':" fUl!;~ ....:__nr,'..c.; "'\~Io.' ~I";(~'- .J,I,~,I. I' -dj\ '..rr1,
i ,: .'( ':..::~ ~ M\~))..'rJ .:~~. \~i~'~~ ,) ,~.~r~;,{.'~",\% t ;1;: '1,,~ J '...~ -~, I, '<"~,.' {'( : ./ ~S1t~J' "~. ~~~ .!:"'~" .' ;~~.~~..: "';'t~~~ '19,;1, / f. ( ~:: \:\
" ::!1 ,:' ,J.1L.s,,~ "~\:.J,1",J;t, J;' ;/:,}ii,',':' ""'~\':1 ".,~l",~, ...j J ) ';'\'~" "",\ ,:",,:>::,,,~.,.., cH", "~rA,o?"""'/<'\~j;~,,,,,.1" L, '..
- < ,}"O~,' 'I ..,"",In, ','"." ".',,:, ",,, ':#t' " ~"'~."" '~'_'''~' ~." ."',,,,1 "}" ',l ,"'h""_
. ot:'..' ) I . .,~' .... rn.O" .' .,)0 L, , '. '-0; ~. " ..".- ;.i;:,"", i: . ~',\'. . ~ ::r./ ....' ._......., .' ~ {:; I ,,'..' ':'.1:".' "" "~''';'''''~I' "
. <: ~ I" 'L I,:::;...... 4'" ".~_" _ __ _ . -.--" "....""-.. . _.....~_ _ .......:_ C-__ .... .;- - . ~., '"-,'':'r''''' .... 1"'f'e.....
: ...,'" ~ ,.,..~'~'~~'-,o, "~"gl~~'" 't.'f~ ,'0", ,:\" ',(~u.':,,~. ~, ,o"'o::~. ,:>"l.., ,'.' .;, \, ..,...:, ,,'I" ',' "\"~ 'I>I~~";'~ :,(\G''i<i:..;cli":,r,..,,..- l'J,<,j,;~' ';}-C \~,I'. '1,.' ~L !
, 'v.... Ul . ", )" '\ ,~r~~", "" ~",. 'nC' ,'" ".. !. ' ','. ~'''.,~' ~ ';'21' " . I
, I - - ""'"}IT '.'Oft, 1 "'~lr'"'' ,~ ,. , ," ',,"" "Q/' 'I '.,';,;',: ,. j ,,1ft" r"':'~:''''''''''~'I''''-rv,.. .',:;.,-, :,", .--)/"'1 ' ""I-'! J'.,
. 1" 0 l'\,-4.' . '!J ~,I ...... "." . '., '" ",.:+-:...,~ ..,~ ,,~-,. - /j '.'; ,'.', ~"",.' : '';;>:l;~~'\'r' ,1.'-:1>' 1,('::; 1;,:.1.;.:1"-[0 ')f ".rI"~\' 'r.:: '...
: lJ -< ::tI fTI 1\,(11 ./rl-':I,. \.' ~"-, i:.'1 Ill' ~':"'+." '.;; . :...(f :~::_. .\: .... . ..., " .,.." / {.':.':~.?t~~,~~...> :~.' ~;~I,';~:.~ . ~ ":J:~: ':~ : !f.':';. ~1.'QJ,\.I\:;(..'7.'~ I'~}' -~-(~~~ I '~.:bll
.t::o () ,.)l"J .\". ,. ~. Ilj.:T ,;"..{ ....:~ ?:::,.- ~ ",,-:r: ~ _ '~::,.~~~,..\ 1.'Il' '., \~..' .-': /..1 . ..' "h~''i ....=r.~ \~rJ""''''~I' .' . :z I oi~
: rrI ~ 0 8 :;;O'!'<)O(,~:;,,~~,.I6-.i"'!":" '~;':;;r~l I tl:=-~,; ; ~h:ii'*tt.:':' :;: :),(.';~':t:"t,/,~~,':"i;:;I4})':.'~I..,:.'6";}~'-!-::i~r"L'7''Em
, 0;:0 21 c~''''''IS'^ "C'l,"'.""" ~""L,L., L\:;",~c~.' :\!.- ""aYr,)/", , """'k""J""'<'-''''''- - ~'''''''12) )""',,1 ,~~,..,
(f) .~y..~ ~ I; r~.o" 'J't'" r. ,.,'1' I 1.1.." 'S:!.',., "l..:'~.!' ^ '1; . 'oj' / 1\' lJ..."......~ I'
~~'! - fTI :. ~ ''''Jl\'~V~' .'.. .,:". 'j-:; .~\ .~~.I ....... -:. . -'''r - .....1 ;.~J. ; ~'I.~,~i: '7.:i{'{ . j.. ' /.. .;: ;: ~' '~/:;1 '. b,J~ \ :,:~. .~'.-. :'l "',:., :~. . '2,1 r ~ .
;, l \) I ::gz-< ~".I;"?..""~'>~':"""f .'a!ib.)' I_i 1':~ -;1 ~I ~T~~~'::/"\"" rl;':;i;:,~,~2{t~:~;V::~'i!i!I ~ti,,:J',J~i'':'\'' I ",
" -' ". c ''''''.J:I~~., " ,~." ',' -, - =i-~~" W-,o/U.~7--~' '. " . -;'T.1' '1f/,!. , .,..,,'" "".'. "J-"- . <,' '1,,"'~'
!. ~ 'TT . '--~;-.. ,,~. - -. \'=. - !::',' '\ if .,,',', ,'.)' .~l ',;";.;'~.' .;"\:,,'. ,A:. . ... 'I: .:~ _1 ':...'l. 1,1 J ,J~
~):,; ::!,.. \!'~;, ':. ,,-" O'B' ", , ,', ," .!,.'';/,!,~<" ,\ ",Ii",:;rrri"I"~~A !'."J,~,~,':"l '",;s.:',,,,,, 1 ,-- '.b>,'" ,1 1
;.. :..; - Oz 0 -1~',r"~"~O' I '-~ ".' I?' "'(~l///f. i'i".rr \,,is''{'~','~';i()''i:I. ,,,~'/ t'?""': '7"-':"",,' 'O~""I' "".)..",~,..,,'" ';' '-f'
...) _ I ,. c. ..' .J.... . ~."'" "' '" 'c7. .' I :l' . " .f~.. . ~ '-....:-.,... ~ . r..' , "It I .~..
'l 0 I 0 ..'" ::t., 'I W. -- 'Oi,..",!L..-_'" t'~~rw 'I :) 1 1';;";'/", ';"""' ',' ,c ,\'5. .-'1','\ I -i5::..:"j..,:': 0 'i":'f~:"~I:i ,
o ! " e~ r-"I ~.' 1~'f '. f~ j / ~r v, ;-:l" ;" \.' I i i'..'r;:.;~ 't. \; 9.'",-.' . (' -, .', <'I ').'~1'':."1' I~ '..,',..-" t,......t'"40".... _ .... l~' 1 ,:,..t t .- ," .-~...
. Z 0 2 I ."\.>",!-,-"'~'- '~'r.. ...A.N.'~-:: ;'ili.~l'~ ~...r/ I 1'-:: :'~I'.~t.'.I'. ~7t:-' ~':J .,;...." If:' .i~:...:'...-J~ ...~~ ;:..\.1.. .Z~:,\'.'~~{.,': * I ~::o
C Ul n ~ J1;i~" 1 :~,,;ol '"" i ~ .jl"'/'-- . ,,\ i'"~,,, t'-:,{,'iI;'C" ';' ".I'~ " f1~ ,,(J ~;,.-: 'i\ ~'d""..J, I' 8,-t:"j-~"'", /'''.'''r 1'_,1 00'
.... 0 00 l:"" .-.', "1-: 01' "b--L"'" "" -.17' ,\ ,.,,,., ",' 'I,'F """'-;'1h: "y;-,!" ," ': ',"'. , , 'II- \"" I, ~ '.r \', )" ,) , ,
'I \ :0 R ~ 'f'l r'; ~r ,I,,' ,- Ul~'i.:ff:;?'~ ~;:;:gl;;;;i', J I I ~Jf"" '?" ,,;"'''' t.A }I""Ii~I,l';.h~"~~r..-~;y,:<;'0!~j:':" O~;;..u'" ': "'" ! ~ "-//'1'" i~.;,:,;/"I'/J",,,,J '1 : fTI I
~ ~,~ '''~:'3 :-"'!:"'- "., ~ot ..'-("'''''--:;;;. . ~ .., ,.:r.~.._...rjft...;:C;r1.:.'t~n\':' ,,". .',.,,' . i ....l~~ I "'l.'.,';Yjh:-.J. I...
".. ---i ..,"., 1 l' I .:.'. ,~' ~ ,,(.-:.-"". ,,\. ,.' ... ',l:~ '~'1."1 ""r......+r....~/.{.J. '," '.,. ol1:J~;,.~..2...',.) ..,. . .
)?- 0 ,-; ',,:, ", ,;' ;~. .:6,' ,-'-"1.,. ~----~,".-l"'~'~ 'J='G,"""-'+" ')F" '. }~""',,..c.' .l .""~ I"'~ .'..." ' ".. ",','." ..I" 1-, .,
'-'Yr' , '" .." ""'~, ,'" ~'-,' ",,,~,,:"hc:\' ".~- 'H'~ ,-' ~ ,II. 01' '....' "f""
.~.,' 'to, :.1 if; -...I.':. t:::..t -i.m:.:.',I..' ::. t..': U'I~"\,;, \\;'.i~{~:::';~.':':~':..'i..: \'...~~;>.~"i\'0J.,~t-...;..._. ..---.....Nl J./, "'i-' t':;.::H:l'\ '.1: /L:'ilu I
'" J . "_ ' . . ' , ...- \.' ~;:" ....~ '.~", . ,. >, . '1 '. ....... . 1," ... ".
p...... f <:1""'~ ';,I,A f.n,!.. ~ ~y)_.JJ.I"~'~;'I~"""')/ .~./':~}.t1.~ A:'f~:/.:\~;:~~~(::~, ~..:;.'':=''~ \rU' \ /...C/).. '.:')":"':~:~..~~i'.:l.i.~~)~:~'ri~ n'r . .~i II
:, .,
'. ,
',"~i:o:
i',,0l
h:
i: ."
('l
o
:z
-<
:u
o
r
::;:
)>
-<
'"
:u
c
Vi
-<
:u
()
-<
z
-;
f'Tl
ZC/)
C/)r
(')-;0
C-<"U
:0 f'Tl
<
f'TlOO
i"
.~
o
z
~
.
I!
~
~
l
I I~ tj.~ J3 P ~y ....' p (8A.,C~-l-OR,:.MTN.) ~C".
I ~:~{6J~~.(,;f€Nr: '~J"~.-'~~k!!4jti~':'~B ~~/, J..J\,~
~ I)~ ~h' f;,fl "",C l~V/ ,;-
1--, ,D '.J"'" <1')(// 7" ~'. ,<;, .~ ,/":> u,~~~~,~~~.l , :: :
~'BC'( B ~ 1 .' l~~ ( 1/ ~\\.~ ')~. 'B'" / ':c::- _ -, ,'--i Be .....
.l -- \\.' V ~ \, (-" j' ~ ~ . ~ .' .
_ . Zt\., , '),. / )< / , ./ ~ \..-. ./
,~ '1. ~ bj;\.. \, ~~~r . .' ~.,}< ',' / ~~ \.,~.
, 3~"" 'Ill'" ~ /' or ~~
< ~l{t~~\";' ~7 v "I:-~
\ ~~,".\~,~iti. ~t\,~ ,l{ ,-::' \y~ \\~\.~~ ,,"Y'~~~
, T~\/~AAY -v~ """~ ~. ~ *.... /' .\~\ \- . . -:-'( \ '\~{""~.". ~,,~'
~~A"8- ~.Y_ ::~:~=i- \ ~\ . ";- -~\ ,'~'''_ r.t~?~ j
~ ~\>""--~' r' F>-Y ~ . \\~, ,^y"'=A.~':~ ,B." .-:lo::~,k'...
'~:'" p ~\\' ~"'" i? ~\ /.:"7 -~:4.- . _g-:::7 ~~..
1P;~\'(jv,'\ \'~~~"" ' - ,.". A-."r, ,/' 0 -'" ';,w:,'At'IF~
'~"\ ~ . . "" C;,'" - ." ~~p
_ ... ~,;,." ~- '>;f ,f:'i ~.,;..
, ' IY , , 0 '1--7 .- ~ . " , '.A", "
\.\\,.1.. ,-" . ~~. .{,);....~...~(..; r. r" ~__..
~~ . ,,,,,,,':"~~'c:'" ""'. . '. .,\ti~ ~
1_ ,'::'~' #~ .-~~, j- ,_-r1 -".., ._~-.:.:;...--tl.. '~'- . ~....,,,:;4:...~_ \ -.-' ~
'r _ '!i ' ~R'@JEtT,SIT "" , ~i':::&:'7~ --"/'~rr- .~ r ~ ' I
..'4...............',- . . ." ':l. .:..:.. -~.~. J-....., ~ ._1
I :r.,z;~r3<i.:'-6/li'-'~' ":, ;..:<- ,'-, ~,'~'S:"",~v'~ , - ...J ~
;,rqfiD'<> : 1/" . ~':) ~~~:.. _ ~ ".' , '8",0 0-'~~ ' .c::. "'- ,\'J
,~~'" '("D S""....'_
'~ ' ,~,k..,_:::,\ - c' . .
I ',~' '. c.=-:::;~'C /,4N,'" ~ ',"':
, ,- ~ /. A , ",,' -;,;\'
I"", -~ --Wv--l[) 'i: I ~: \8~ " :-:lf~;;t.;\,
I (to.?"~? ' '6'/\=
f' ~~ ~B~ f'-' ',-';c:'f(>':i(":J 0:~@:<
, 'I' ~'\1 0 r- r- .-:....i'<<'G':;~,_...' "':;
.... ,. "J;,;,'0-..-:..<:,<':'.;' ,,";", .1'i~;<I, '::::"""i , /. ,-~ ,; .:, . c:;" '"
IC~:;~!;~7,~i;ji~;~i\!:;5~f::::~-' ',,;;j >{t'\.!\) \.. ,E -: ' \," ~ . .
K~:"g~J~12' 'D l ~ B ~ w.:
I~ ,,\, B "~"'k 't Be \ B 11.,' B
AJ ~ ~~B~A~ORTION 6F~~~~~G~,_,,___~.'~ A ~"
II
....
HYDROLOGIC ,SOILS MAP
\Cp
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
IV.
RATIONAL HYDROLOGY STUDY
, (100 YEAR STORM)
\\
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 08/31/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
QI00 FLOWS SOUTHERLY SIDE OF VIA RIO
BASIN A
FILE: A
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc" Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) = 100.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2,360 (in./hr.)
10 year storm 60 minute intensity = 0,880 (in,/hr.)
100 year storm 10 minute intensity 3.480 (in,/hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in./hr,)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 300.000(Ft,)
Top (of initial area) elevation = 1059.500(Ft.)
Bottom (of initial area) elevation = 1054.000(Ft.)
Difference in elevation = 5.500(Ft.)
Slope = 0.01833 s(percent)= 1,83
TC = k(O,300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.536 min.
Rainfall intensity 4,400(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84,40
Pervious area fraction = 0.100; Impervious fraction 0.900
Initial subarea runoff = 1.182(CFS)
Total initial stream area = 0.300(Ac.)
I
I
I
I
I
\~
I
I
I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1054,000(Ft.)
End of street segment elevation ~ 1049.500(Ft.)
Length of street segment 765,000(Ft.)
Height of curb above gutter flowline = 6,O(In.)
Width of half street (curb to crown) 28.000(Ft.)
Distance from crown to cross fall grade break 26.000(Ft,)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) 0,020
Gutter width = 2.000(Ft,)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0,0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 5.121(CFS)
Depth of flow = 0.425(Ft,), Average velocity ~ 2,176(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 14,923(Ft,)
Flow velocity = 2,18(Ft/s)
Travel time = 5.86 min. .TC = 12.40 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0,893
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0,000
Decimal fraction soil group C 1,000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) B4.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Rainfall intensity 3,095(In/Hr) for a 100,0 year storm
Subarea runoff 5.529(CFS) for 2.000(Ac.)
Total runoff = 6.711(CFS) Total area = 2.300(Ac.)
Street flow at end of street = 6.711(CFS)
Half street flow at end of street 6.711(CFS)
Depth of flow = 0,459(Ft.), Average velocity = 2.323(Ft/s)
Flow width (from curb towards crown)= 16.620(Ft.)
I
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation = 1049.500(Ft.)
End of street segment elevation ~ 1048.100(Ft.)
Length of street segment = 280.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 28.000(Ft.)
Distance from crown to cross fall grade break 26.00Q(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] siders) of the street
I
I,
~
I
I
I
Distance from curb to property line =
Slope from curb to property line (v/hz)
Gutter width = 2.000(Ft,)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0,0150
Manning's N from grade break to crown = 0.0150
~stimated mean flow rate at midpoint of street = 7,309(CFS)
Depth of flow = 0.482(Ft.), Average velocity = 2.230(Ft/s)
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = 17,750(Ft,)
Flow velocity = 2,23(Ft/s)
Travel time = 2.09 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1,000
Decimal fraction soil group D 0,000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Rainfall intensity = 2,840(In/Hr) for a 100,0 year storm
Subarea runoff = l,040(CFS) for 0.410(Ac.)
Total runoff = 7,751(CFS) Total area =
Street flow at end of street = 7.751(CFS)
Half street flow at end of street 7.751(CFS)
Depth of flow = 0,490(Ft,), Average velocity = 2,263(Ft/s)
Flow width (from curb towards crown)= 18.164(Ft.)
End of computations, total study area
The following figures may
be used for a unit hydrograph study of the same area,
12.000(Ft.)
0,020
I
I
I
TC =
14 .49
min.
I
I
I
2.710(Ac.)
I
I
2 . 71 (Ac.)
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number = 69.0
0,100
I
I
I
I
I
I
I
7P
I
II
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
QIOO FLOWS NORTHERLY SIDE VIA RIO
. BASIN B
FILE: B
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc" Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) ~ 100,00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity ~ 2.360 (in./hr.)
10 year storm 60 minute intensity ~ 0.880 (in./hr.)
100 year storm 10 minute intensity ~ 3.480 (in./hr,)
100 year storm 60 minute intensity ~ 1.300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity ~ 1.300 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 5.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance ~ 300.000(Ft.)
Top (of initial area) elevation ~ 1059.500(Ft.)
Bottom (of initial area) elevation ~ 1054.000(Ft.)
Difference in elevation ~ 5.500(Ft.)
Slope ~ 0.01833 s(percent)~ 1.83
TC ~ k(0.300)*[(length^3)/(elevation change)]^O.2
Initial area time of concentration ~ 6.536 min.
Rainfall intensity 4.400(In/Hr) for a 100.0
COMMERCIAL subarea type
Runoff Coefficient ~ 0.895
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soi1(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
year storm
I
I
I
A ~ 0.000
B ~ 0.000
C ~ 1.000
D 0.000
84.40
0.100; Impervious fraction =
1.182(CFS)
0.300(Ac.)
0.900
I
I
I
~
I
I
I
Pervious area fraction = 0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 7.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
I
Top of street segment elevation = 1054.000(Ft.)
End of street segment elevation = 1052.200(Ft.)
Length of street segment 290.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) 28.000(Ft.)
Distance from crown to crossfall grade break = 26.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width =. 2.000 (Ft. )
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0,0150
Estimated mean flow rate at midpoint of street = 1.655(CFS)
Depth of flow = 0,310(Ft,), Average velocity = 1.705(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 9.186(Ft.)
Flow velocity = 1.70(Ft/s)
Travel time = 2.83 min. TC = 9.37 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI, index for soil (AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction = 0,900
Rainfall intensity 3.609(In/Hr) for a 100,0 year storm
Subarea runoff = O.775(CFS) for O.240(Ac.l
Total runoff = L956(CFS) Total area = 0.540(Ac.)
Street flow at end of street = 1.956(CFS)
Half street flow at end of street = L 956 (CFS)
Depth of flow = 0.324(Ft.), Average velocity = 1,771(Ft/s)
Flow width (from curb towards crown)= 9.890(Ft.)
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 7.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.540(Ac,)
Runoff from this stream 1.956(CFS)
Time of concentration 9.37 min.
Rainfall intensity = 3.609(In/Hr)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
tv
I
!I
I
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 595,000(Ft.)
Top (of initial area) elevation = 1057,200(Ft.)
Bottom (of initial area) elevation = 1052.200(Ft.)
Difference in elevation = 5,OOO(Ft,)
Slope = 0,00840 s(percent)= 0.84
TC = k(0,300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 10.047 min.
Rainfall intensity = 3.474(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) = 84,40
Pervious area fraction = 0.100; Impervious fraction 0.900
Initial subarea runoff = 3.l06(CFS)
Total initial stream area 1,000(Ac.)
Pervious area fraction = 0.100
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
**** CONFLUENCE OF MINOR STREAMS ****
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1,000(Ac.)
Runoff from this stream 3.106(CFS)
Time of concentration = 10.05 min.
Rainfall intensity = 3.474(In/Hr)
Summary of stream data:
I
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
I
Qp =
1.956 9.37
3.106 10.05
stream flow has longer
3.106 + sum of
Qb Ia/Ib
1.956 * 0.962 =
4,989
3.609
3.474
time of concentration
1
2
Largest
Qp =
I
1.883
I
Total of 2 streams to confluence:
Flow rates before confluence point:
1,956 3,106
Area of streams before confluence:
0.540 1.000
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
4,989(CFS)
10.047 min.
after confluence
1.540(Ac.)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 9.000
**** SUBAREA FLOW ADDITION ****
I
~
I
I
I
I
COMMERCIAL subarea type
Runoff Coefficient: 0.894
Decimal fraction soil group A : 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D : 0.000
RI index for soil(AMC 3) : 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration 10.05 min.
Rainfall intensity 3.474(In/Hr) for a 100.0 year storm
Subarea runoff 1,863(CFS) for 0.600(Ac.)
Total runoff: 6.852(CFS) Total area: 2.l40(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 11.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
I
Top of street segment elevation: 1051.800(Ft.)
End of street segment elevation: 1049.360(Ft.)
Length of street segment 410.000(Ft.)
Height of curb above gutter flowline: 6,0(In.)
Width of half street (curb to crown) 28.000(Ft.)
Distance from crown to crossfall grade break 26.000(Ft.)
Slope from gutter to grade break (v/hz): 0,020
Slope from grade break to crown (v/hz) : 0.020
Street flow is on [lJ side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) 0.020
Gutter width: 2.000(Ft,)
Gutter hike from flowline: 2.000(In,)
Manning's N in gutter: 0.0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street: 7,492(CFS)
Depth of flow,: 0.4l3(Ft,), Average velocity: 2.397(Ft/s)
Street flow hydraulics at midpoint of street travel:
Ha1fstreet flow width: 17.319(Ft,)
Flow velocity: 2.40(Ft/S)
Travel time: 2,85 min. TC: 12.90 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient: 0.893
Decimal fraction soil group A 0.000
Decimal fraction soil group B : 0,000
Decimal fraction soil group C : 1.000
Decimal .fraction soil group D 0.000
RI index for soi1(AMC 3) : 84.40
Pervious area fraction: 0.100; Impervious fraction: 0.900
Rainfall intensity 3.028(In/Hr) for a 100.0 year storm
Subarea runoff 1.082(CFS) for 0.400(Ac,)
Total runoff: 7.934(CFS) Total area: 2.540(Ac.)
Street flow at end of street: 7.934(CFS)
Half street flow at end of street 7.934(CFS)
Depth of flow: 0.481(Ft.), Average velocity: 2.430(Ft/s)
Flow width (from curb towards crown): 17.714(Ft.)
I
I
I'
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
~
I
I
I
Process from Point/Station 9.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
11.000
I
Along M.ain Stream number: 1 in normal stream number 1
Stream flow area = 2.540(Ac.)
Runoff from this stream 7.934(CFS)
Time of concentration 12.90 min.
Rainfall intensity = 3.028(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 250,000 (Ft. )
Top (of initial area) elevation = 1053.800(Ft.)
Bottom (of initial area) elevation = 1049.360(Ft.)
Difference in elevation = 4,440 (Ft.)
Slope = 0.01776 s(percent)= 1.78
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.115 min.
Rainfall intensity 4,565(In/Hr) for a 100.0
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
year storm
I
I
A 0.000
B = 0.000
C 1. 000
DO.OOO
84.40
0,100; Impervious fraction =
2.861 (CFS)
0.700 (Ac.)
0.900
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10,000 to Point/Station 11.000
HH CONFLUENCE OF MINOR STREAMS HH
I
I
Along l1ain Stream number: 1 in normal stream number 2
Stream flow area = O.70Q(Ac.)
Runoff from this stream = 2.861(CFS)
Time of concentration = 6.12 min.
Rainfall intensity = 4.565 (In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
( In/Hr)
I
1
2
Largest
Qp =
7.934 12.90
2.861 6.12
stream flow has longer
7.934 + sum of
Qb Ia/Ib
2.861 * 0.663
9.832
time of
3.028
4.565
concentration
I
I
1. 898
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
p
I
I
I
7.934 2,861
Area of streams before confluence:
2.540 0.700
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
9,832(CFS)
12,898 min.
after confluence
3.240(Ac.)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
I
Top of street segment elevation = 1049.360(Ft,)
End of street segment elevation = 1048.l00(Ft.)
Length of street segment 270.000(Ft.)
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) 28.000(Ft.)
Distance from crown to cross fall grade break = 26.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = l2.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In,)
Manning's N in gutter = 0.0150
M~nning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street
Depth of flow = 0,546(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 20.976(Ft,)
Flow velocity = 2,26(Ft/s)
Travel time = 1.99 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0,100; Impervious fraction = 0.900
Rainfall intensity 2,798(In/Hr) for a 100.0 year storm
Subarea runoff 0,824(CFS) for 0.330(Ac.)
Total runoff = 10.656(CFS) Total area =
Street flow at end of street = 10.656(CFS)
Half street flow at end of street 10.656(CFS)
Depth of flow = 0.552(Ft.), Average velocity =
Warning: depth of flow exceeds top of curb
Distance that curb overflow reaches into property
Flow width (from curb towards crown)= 2l.247(Ft.)
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the same area.
10.332(CFS)
2.256(Ft/s)
I
I
I
I
2.3l(Ft. )
I
TC =
14.89
min.
I
I
I
I
3.570(Ac.)
I
2.263 (Ft/s)
2.58 (Ft.)
I
3.57 (Ac.)
I
Area averaged pervious area fraction (Ap) = 0.100
~~
I
I
II Area averaged RI index number = 69.0
I
I
I
I
I
I
II
I
I
I
I
I
I
I
I
I
~
I
I
I
Riverside County Rational Hydrology Program
I
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 08/31/99
Version 3.3
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL
Q100 FLOWS AT COUNTRY GLEN DRIVE
BASIN C
FILE: C
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc., Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) = 100.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2,360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity 3,480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in,/hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1,300 (in,/hr,)
Slope of intensity duration curve = 0,5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
I
"Initial area flow distance = 165.000(Ft.)
Top (of initial area) elevation = 1052.900(Ft.)
Bottom (of initial area) elevation = 1051,220(Ft.)
Difference in elevation = 1.680(Ft.)
Slope = 0.01018 s(percent)= 1.02
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 5.788 min.
Rainfall intensity = 4.705(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.896
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1,000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Initial subarea runoff = 0.843(CFS)
Total initial stream area = O,200(Ac,)
I
I
I
I
I
~
I
I
I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 15.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation ~ 105l.220(Ft.)
End of street segment elevation = 1048.l00(Ft.)
Length of street segment 500.000(Ft.)
Height of curb above gutter flowline 6,0(In.)
Width of half street (curb to crown) 28.000(Ft.)
Distance from crown to cross fall grade break 26.000(Ft,)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [lJ side(s) of the street
Distance from curb to property line l2.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2,000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.l07(CFS)
Depth of flow = 0.33l(Ft.), Average velocity = 1,805(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.20l(Ft.)
Flow velocity = 1.80(Ft/s)
Travel time = 4.62 min. TC = 10.41 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group A 0,000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C 1.000
Decimal fraction soil group,D 0.000
RI index f?r soil(AMC 3) 84.40
Pervious area fraction = 0,100; Impervious fraction = 0.900
Rainfall intensity 3.407(In/Hr) for a 100.0 year storm
Subarea runoff = 1.828(CFS) for 0.600(Ac.)
Total runoff = 2,670(CFS) Total area = 0.800(Ac.)
Street flow at end of street = 2.670(CFS)
Half street flow at end of street = 2.670(CFS)
Depth of flow = 0,352(Ft.), Average velocity = 1,906(Ft/s)
Flow width (from curb towards crown)= 11.287(Ft.)
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/Station 15.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1044.93(Ft.)
Downstream point/station elevation 1039.56(Ft.)
Pipe length = 30,OO(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 2.670(CFS)
Given pipe size = l8.00(In.)
Calculated individual pipe flow 2.670(CFS)
Normal flow depth in pipe = 2.99(In.)
Flow top width inside pipe = l3,40(In.)
Critical Depth 7,44(In,)
I
I
I
~
I
I
I
Pipe flow velocity = l3.64(Ft/s)
Travel time through pipe 0.04 min.
Time of concentration (Tel 10,44 min.
End of computations, total study area = 0,60 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
Area averaged pervious area fraction (Ap) = 0.100
Area averaged RI index number = 69.0
I
I
I
I
I
I
I
I
I
I
I
I
I
1
~
I
I
, I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/01/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
Q100
BASIN D
FILE: D
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc" Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
I
Standard intensity-duration curves data (Plate D-4.1)
For the { Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity = 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in,/hr,)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 17.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 260,OOO(Ft.)
Top (of initial area) elevation = 1053.200(Ft.)
Bottom (of initial area) elevation = 1050.000(Ft.)
Difference in elevation = 3.200(Ft.)
Slope = 0,01231 s(percent)= 1,23
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.685 min.
Rainfall intensity = 4.346(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
A = 0.000
B = 0.000
C 1.000
D 0.000
84.40
0.100i Impervious fraction
2.334(CFS)
0.600(Ac,)
0.900
I
I
I
I
I
~
I
I
I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/Station 18,000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Time of concentration =
Rainfall intensity
Subarea runoff
Total runoff =
A 0.000
B 0,000
C 1,000
D 0.000
84.40
0,100; Impervious fraction =
6.68 min.
4.346(In/Hr) for a 100.0
7,782(CFS) for 2.000(Ac.)
10,116(CFS) Total area =
0.900
I
I
year storm
I
2.600(Ac.)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 18.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1040.73(Ft.)
Downstream point/station elevation l038.33(Ft.)
Pipe length 52,OO(Ft.) Manning's N = 0,013
No, of pipes = 1 Required.pipe flow 10.116(CFS)
Given pipe size = 48.00(In.)
Calculated individual pipe flow 10.116(CFS)
Normal flow depth in pipe = 5.95(In.)
Flow top width inside pipe = 31.64(In.)
Critical Depth = 11,10(In.)
Pipe flow velocity = 11.28(Ft/s)
Travel time through pipe =. 0.08 min.
Time of concentration (TC) = 6.76 min.
End of computations, total'study area = 2.60 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
I
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number = 69.0
0.100
I
I
I
I
I
~
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/01/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
Q100
BASIN E & F
FILE: E
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc" Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) = 100,00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity 3,480 (in./hr.)
100 year storm 60 minute intensity = 1,300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1,300 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
I
+++++++++++++++++++++++++++++++++++++++++++++++++++~++++++++++++++++++
Process from Point/Station 19.000 to Point/Station 20.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 340.000(Ft.)
Top (of initial area) elevation = 1052.000(Ft.)
Bottom (of initial area) elevation = 1050.890(Ft.)
Difference in elevation = 1.110(Ft.)
Slope = 0,00326 s(percent)= 0.33
TC = k(0.3001*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.704 min.
Rainfall intensity 3.541(In/Hr) for a 100.0
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
year storm
I
I
I
I
A 0.000
B 0.000
C 1,000
D = 0,000
84.40
0.100; Impervious fraction =
2.216(CFS)
0.700(Ac,)
0.900
I
I
~
I
, I
I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 20.000 to Point/Station 21.000
**** SUBAREA FLOW ADDITION ****
I
I
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration 9.70 min.
Rainfall intensity 3,541(In/Hr) for a 100.0 year storm
Subarea runoff 3,799(CFS) for 1.200(Ac.)
Total runoff = 6.015(CFS) Total area = 1.900(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 21.000 to Point/Station 23.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1046.09(Ft,)
Downstream point/station elevation 1043.23(Ft.)
Pipe length 286,OO(Ft,) Manning's N = 0,013
No. of pipes = 1 Required pipe flow 6,015(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 6.015(CFS)
Normal flow depth in pipe = 9.76(In.)
Flow top width inside pipe = 17.94(In.)
Critical Depth = 11.38(In,)
Pipe flow velocity = 6.14(Ft/s)
Travel time through pipe = 0,78 min.
Time of concentration (TC) = 10,48 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 21.000 to Point/Station 23.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = l,900(Ac.)
Runoff from this stream 6.015(CFS)
Time of concentration 10.48 min.
Rainfall intensity = 3,394(In/Hr)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.100 to Point/Station 22.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 135.000(Ft.)
Top (of initial area) elevation = 1052.500(Ft.)
Bottom (of initial area) elevation = 1050.900(Ft.)
Difference in elevation = 1.600(Ft.)
Slope = 0.01185 s(percent)= 1.19
TC = k(O,300)*[(length^3)/(elevation change)]^0.2
~
I
I
I
I
I
Initial area time of concentration =
Rainfall intensity 5.000(In/Hr)
COMMERCIAL subarea type
Runoff Coefficient = 0.896
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
5.182 min.
for a 100.0 year storm
I
A 0,000
B 0,000
C = 1. 000
D = 0.000
84.40
0.100; Impervious fraction
2.239 (CFS)
0.500 (Ac,)
0.900
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station 23,000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation = 1046.07(Ft.)
Downstream point/station elevation = 1043.23(Ft.)
Pipe length = 13,00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 2.239(CFS)
Given pipe size = 18,00(In,)
Calculated individual pipe flow = 2.239(CFS)
Normal flow depth in pipe = 2,62(In.)
Flow top width inside pipe = 12.69(In.)
Critical Depth = 6.78(In.)
Pipe flow velocity = 14.09(Ft/s)
Travel time through pipe = 0,02 min.
Time of concentration (Te) = 5.20 min.
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station 23.000
**** CONFLUENCE.OF MINOR STREAMS ****
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0,500 (Ac.)
Runoff from this stream = 2.239(CFS)
Time of concentration = 5.20 min.
Rainfall intensity = 4.992(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp =
6,015 10.48
2,239 5.20
stream flow has longer
6.015 + sum of
Qb Ia/lb
2.239 * 0.680
7.538
time of
3,394
4,992
concentration
I
1. 523
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
6.015 2.239
Area of streams before confluence:
I
7-5
I
I
I
1,900 0,500
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
7.538 (CFS)
10.480 min.
after confluence
2.400 (Ac,)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 23,000 to Point/Station 23.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1043.23(Ft,)
Downstream point/station elevation 1042.77(Ft.)
Pipe length 46.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 7.538(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 7.538(CFS)
Normal flow depth in pipe = 11.29(In.)
Flow top width inside pipe = 17.41(In.)
Critical Depth = 12,75(In,)
Pipe flow velocity = 6.47(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentration (TC) = 10,60 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 23,100 to Point/Station 23.200
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1042,77(Ft.)
Downstream point/station elevation 1040.92(Ft.)
Pipe length 55.00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 7.538(CFS)
Given pipe size = 42,00(In,)
Calculated individual pipe flow = 7.538(CFS) /
Normal flow depth in pipe = '5.79(In,)
Flow top width inside pipe = '28.97(In.)
Critical Depth = 9.91(In.)
Pipe flow velocity = 9.41(Ft/s)
Travel time through pipe = 0.10 min.
Time of concentration (TC) = 10.70 min. /'
End of computations, total study area = 2.40 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
"'
I
I
I
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number = 69.0
0.100
I
I
I
I
?P
I
II
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/01/99
Version 3.3
I
VAIL RANCH COMMERCIAL CENTER
QlOO
BASIN G & H
FILE: G
I
*********
Hydrology Study Control Information **********
I
RANPAC Inc., Temecula, California - SiN 560
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) = 100.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.l)
For the ( Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2,360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1,300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1,300 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++
Process from Point/Station 24,000 to Point/Station 25.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 190.000(Ft.)
Top (of initial area) elevation = 1053.270(Ft.)
Bottom (of initial area) elevation = 105l.590(Ft.)
Difference in elevation = 1.680(Ft.)
Slope = 0.00884 s(percent)= 0.88
TC = k(0,300)*[(length^3)/(elevation change)J^0.2
Initial area time of concentration = 6.300 min.
Rainfall intensity 4.49l(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D 0,000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100i Impervious fraction = 0.900
Initial subarea runoff = 4.825(CFS)
Total initial stream area 1.200 (Ac.)
I
I
I
I
I
~\
I
I
I
Pervious area fraction
0,100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 25.000 to Point/Station 26.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0,895
Decimal fraction soil group A = 0,000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Time of concentration = 6.30 min.
Rainfall intensity 4.491(In/Hr) for a 100.0 year storm
Subarea runoff 6.835(CFS) for 1,700(Ac.)
Total runoff = 11,660(CFS) Total area = 2.900(Ac.)
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 26.000 to Point/Station 29.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1046,OO(Ft,)
Downstream point/station elevation 1043.70(Ft.)
Pipe length 180.00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 11,660(CFS)
Given pipe size = 21,OO(In.)
Calculated individual pipe flow 11,660(CFS)
Normal flow depth in pipe = l2.35(In.)
Flow top width inside pipe = 20.67(In.)
Critical Depth = 15.27(In,)
Pipe flow velocity = 7.93(Ft/s)
Travel time through pipe = 0.38 min.
Time of concentr~tion (TC) = 6.68 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 26.000 to Point/Station 29.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 2.900(Ac.)
Runoff from this stream 11,660(CFS)
Time of concentration = 6.68 min,
Rainfall intensity = 4.349(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8.000 to Point/Station 27.000
**** INITIAL AREA EVALUATION ****
I
I
Initial area flow distance = 285.00Q(Ft.)
Top (of initial area) elevation = 1053.800(Ft.)
Bottom (of initial area) elevation = 1050.870(Ft.)
Difference in elevation = 2.930(Ft.)
Slope = 0.01028 s(percent)= 1.03
TC = k(0.300)*[(length^3)/(elevation change))^0.2
~
I
I
I
I
Initial area time of concentration = 7.189 min.
Rainfall intensity 4.176(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Initial subarea runoff = 5.233(CFS)
Total initial stream area 1,400(Ac,)
Pervious area fraction = 0.100
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 27.000 to Point/Station 28,000
**** SUBAREA FLOW ADDITION ****
I
I
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A = 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Time of concentration 7.19 min.
Rainfall intensity 4.176(In/Hr) for a 100.0 year storm
Subarea runoff 6.728(CFS) for 1.800(Ac.)
Total runoff = 11,960(CFS) Total area = 3.200(Ac.)
I
I
I
++++++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 28,000 to Point/Station 29.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation = 1046.32(Ft.)
Downstream point/station elevation = 1043.95(Ft.)
Pipe length = 45.00(Ft.l Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 11.960(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 11.960(CFS)
Normal flow depth in pipe = 8.96(In.)
Flow top width inside pipe = 18.00(In.)
Critical Depth = 15.75(In.)
Pipe flow velocity = 13.62(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 7.24 min.
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 28,000 to Point/Station 29.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 3.200(Ac.)
Runoff from this stream 11.960(CFS)
Time of concentration = 7.24 min.
Rainfall intensity = 4.159(In/Hr)
I
~
I
I
I
Summary of stream data:
I
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp ;
11.660 6.68
11.960 7,24
stream flow has longer
11.960 + sum of
Qb Ia/lb
11.660 * 0,956 ;
23.109
time of
4.349
4,159
concentration
I
11.149
Qp ;
I
Total of 2 streams to confluence:
Flow rates before confluence point:
11.660 11.960
Area of streams before confluence:
2.900 3.200
Results of confluence:
Total flow rate; 23.109(CFS)
Time of concentration 7.244 min.
Effective stream area after confluence
6.100(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation; 1043.70(Ft.)
Downstream point/station elevation 1042.87(Ft.)
Pipe length 55.00(Ft,) Manning's N ; 0.013
No, 'of pipes; 1 Required pipe flow 23.109 (CFS)
Given pipe size; 21,00(In,)
NOTE: Normal flow is pressure flow in user
The approximate hydraulic grade line above
2.490(Ft.) at the headworks or inlet
Pipe friction loss; 1.l70(Ft.)
Minor friction loss; 2.l50(Ft.)
Pipe flow velocity = 9.6l(Ft/s)
Travel time through pipe 0.10 min.
Time of concentration (TC); 7,34 min.
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the same area.
selected pipe size.
the pipe invert is
of the pipe(s)
I
I
K-factor =
1.50
I
6.10 (Ac.)
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number; 69.0
0,100
I
I
I
I
}.{J
I
I
I
II
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/01/99
Version 3.3
I
VAIL RANCH COMMERCIAL CENTER
Q100
BASIN I,J, & K
FILE: I
*********
Hydrology Study Control Information **********
I
RANPAC Inc., Temecula, California - SiN 560
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) : 100.00 Antecedent Moisture Condition: 3
I
Standard intensity-duration curves data (Plate 0-4.1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity: 2.360 (in./hr.)
10 year storm 60 minute intensity: 0.880 (in,/hr.)
100 year storm 10 minute intensity 3.480 lin./hr.)
100 year storm 60 minute intensity: 1.300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity: 1,300 (in./hr.)
Slope of intensity duration curve: 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 30.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance: 345.000(Ft.)
Top (of initial area) elevation: l057.200(Ft.)
Bottom (of initial area) elevation: 1054.300(Ft.)
Difference in elevation: 2.900(Ft.)
Slope: 0.00841 s(percent): 0.84
TC: k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration: 8.079 min.
Rainfall intensity 3.916(In/Hr) for a 100.0
COMMERCIAL subarea type
Runoff Coefficient: 0.895
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area =
year storm
I
I
I
I
A: 0.000
B: 0.000
C : 1. 000
D 0.000
84.40
0.100; Impervious fraction:
3.504 (CFS)
1.000(Ac.)
0.900
I
I
A.\
I
I
I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 32.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient ~ 0.895
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) ~ 84.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Time of concentration = 8.08 min.
Rainfall intensity 3.916(In/Hr) for a 100.0 year storm
Subarea runoff 20.323(CFS) for 5,800(Ac.)
Total runoff ~ 23.827(CFS) Total area ~ 6,800(Ac.)
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area ~ 6.800(Ac.)
Runoff from this stream 23.827(CFS)
Time of concentration 8.08 min.
Rainfall intensity ~ 3.916(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 31.100 to Point/Station 31.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance ~ 130,000(Ft.)
Top (of initial area) elevation ~ 1053.800(Ft.)
Bottom (of initial area) elevation ~ 1052,600(Ft.)
Difference in elevation ~ l.200(Ft.)
Slope ~ 0.00923 s(percent)~ 0.92
TC ~ k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 5.366 min.
Rainfall intensity ~ 4.905(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient ~ 0.896
Decimal fraction soil group A ~ 0.000
Decimal fraction soil group B ~ 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) ~ 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff ~ l,757(CFS)
Total initial stream area ~ 0.400(Ac.)
Pervious area fraction = 0.100
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
~
I
I
II
I
I
Upstream point/station elevation = 1049.50(Ft.)
Downstream point/station elevation 1043.49(Ft.)
Pipe length 420.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 1. 757 (CFS)
Given pipe size = 12.00(In.)
Calculated individual pipe flow 1.757(CFS)
Normal flow depth in pipe = 5.37(In.)
Flow top width inside pipe = 11.93(In.)
Critical Depth = 6.77(In.)
Pipe flow velocity = 5.16(Ft/s)
Travel time through pipe = 1.36 min.
Time of concentration (TC) = 6.72 min.
i I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 31.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.400(Ac.)
Runoff from this stream 1.757(CFS)
Time of concentration = 6.72 min.
Rainfall intensity = 4.333(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp =
23.827 8,08
1.757 6,72
stream flow has longer
23.827 + sum of
Qb Ia/lb
1. 757 * 0.904
25.415
time of
3.916
4.333
concentration
I
1.588
I
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
23,827 1,757
Area of streams before confluence:
6.800 0.400
Results of confluence:
Total flow rate = 25.415(CFS)
Time of concentration 8.079 min.
Effective stream area after confluence
7.200(Ac. )
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 34.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation = l043.49(Ft.)
Downstream point/station elevation = 1043.13(Ft.)
Pipe length 75.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 25.415(CFS)
Given pipe size = 24.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
A?J
I
I
II
I
2.lll(Ft.) at the
Pipe friction 105s =
Minor friction 1055 =
Pipe flow velocity =
Travel time through pipe
Time of concentration (TC) =
headworks or inlet of the pipets)
0.946(Ft.)
1.524(Ft.)
8.09(Ft/s)
0.15 min.
8.23 min.
K-factor =
1. 50
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32,000 to Point/Station 34.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 7.200 (Ac. )
Runoff from this stream = 25.415(CFS)
Time of concentration 8.23 min.
Rainfall intensity = 3,876(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.100 to Point/Station 33.000
**** INITIAL AREA EVALUATION ****
I
I
Initial area flow distance = 310.000(Ft.)
Top (of initial area) elevation = 1054.300(Ft.)
Bottom (of initial area) elevation = 1049.650(Ft.)
Difference in elevation = 4.650(Ft,)
Slope = 0,01500 s(percent)= 1.50
TC = k(0,300)*[(length^3)/(elevation change)J^O,2
Initial area time of concentration = 6.894 min.
Rainfall intensity 4.273(In/Hr) for a 100,0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A = 0.000
Decimal fraction soil group B 0.000
Decimal .fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soi1(AMC 3) 84.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Initial subarea runoff = 3.443(CFS)
Total initial stream area = 0.900(Ac.)
Pervious area fraction = 0.100
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/Station 34.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1046.16(Ft.)
Downstream point/station elevation = 1043.13(Ft.)
Pipe length 60.00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 3.443(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 3.443(CFS)
Normal flow depth in pipe = 4.65(In.)
Flow top width inside pipe = 15.75(In.)
Critical Depth = 8.48(In.)
Pipe flow velocity = 9.53(Ft/s)
Travel time through pipe = 0.10 min.
Time of concentration (TC) = 7.00 min.
~
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/Station 34.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.900(Ac.)
Runoff from this stream 3.443(CFS)
Time of concentration = 7.00 min.
Rainfall intensity = 4.238(In/Hr)
Summary of stream data:
I
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
I
1
2
Largest
Qp =
25,415 8,23
3.443 7,00
stream flow has longer
25.415 + sum of
Qb Ia/Ib
3.443 * 0,915
28.563
time of
3.876
4.238
concentration
I
3.148
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
25.415 3.443
Area of streams before confluence:
7.200 0.900
Results of confluence:
Total flow rate = 28.563(CFS)
Time of concentration 8.233 min.
Effective stream area after confluence =
,
8.100(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1043.13(Ft.)
Downstream point/station elevation l042.87(Ft.)
Pipe length 50.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 28.563(CFS)
Given pipe size = 24,00(In.)
NOTE: Normal flow is pressure flow in user
The approximate hydraulic grade line above
2.462(Ft,) at the headworks or inlet
Pipe friction loss = 0.797(Ft.)
Minor friction loss = 1.925(Ft.)
Pipe flow velocity = 9.09(Ft/s)
Travel time through pipe 0.09 min.
Time of concentration (Te) 8.32 min.
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the same area.
selected pipe size.
the pipe invert is
of the pipe(s)
I
I
K-factor =
1.50
I
8.10 (Ac.)
I
Area averaged pervious area fraction (Ap) = 0.100
Area averaged RI index number = 69.0
~
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/01/99
Version 3.3
I
VAIL RANCH COMMERCIAL CENTER
QIOO
BASIN G & H, I,J,K, & L
FILE: L
I
*********
Hydrology Study Control Information **********
I
RANPAC Inc., Temecula, California - SiN 560
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) = 100.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in,/hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in,/hr.)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
I
Rainfall intensity 4.129(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
User specified values are as follows:
TC = 7.34 min. Rain intensity = 4.13(In/Hr)
Total area = 6.10(Ac.) Total runoff = 23.11(CFS)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
I
I
~
I
I
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 6.100(Ac.)
Runoff from this stream 23.109(CFS)
Time of concentration 7.34 min.
Rainfall intensity = 4,129(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29.000 to Point/Station 35.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
I
Rainfall intensity = 3.854(In/Hr) for a 100,0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0,000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
User specified values are as follows:
TC = 8.32 min. Rain intensity = 3.85(In/Hr)
Total area = 8.10(Ac,) Total runoff = 28.56(CFS)
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 8,100(Ac.)
Runoff from this stream 28.563(CFS)
Time of concentration = 8.32 min.
Rainfall intensity = 3.854(In/Hr)
Summary of stream data:
I
I
Stream Flow rate TC Rainfall Intensity
No, (CFS) (min) (In/Hr)
1 23.109 7.34 4.129
2 28.563 8.32 3.854
Largest stream flow has longer time of concentration
Qp = 28.563 + sum of
Qb Ia/Ib
23.109 * 0.933 = 21.570
Qp = 50.133
I
I
I
Total of 2 streams to confluence:
Flow rates before confluence point:
23.109 28.563
Area of streams before confluence:
6.100 8.100
Results of confluence:
Total flow rate = 50.133(CFS)
Time of concentration 8.320 min.
Effective stream area after confluence
14.200(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
~
I
I
I
Process from Point/Station 35.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
39.000
I
I
Upstream point/station elevation = 1042.87(Ft.)
Downstream point/station elevation = 1040.98(Ft.)
Pipe length = 380.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 50.l33(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 50.l33(CFS)
Normal flow depth in pipe = 32.44(In.)
Flow top width inside pipe = 2l.50(In.)
Critical Depth = 27.65(In.)
Pipe flow velocity = 7.48(Ft/s)
Travel time through pipe = 0.85 min.
Time of concentration (TC) = 9.17 min.
I II
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 35.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = l4.200(Ac.)
Runoff from this stream 50.133(CFS)
Time of concentration 9.17 min.
Rainfall intensity = 3,653(In/Hr)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 36.000 to Point/Station 37.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 295,OOO(Ft.)
Top (of initial area) elevation = 1053,900(Ft.)
Bottom (of initial area) elevation = 1052.400(Ft.)
Difference in, elevation = 1,500(Ft.)
Slope = 0.00508 s(percent)= 0.51
TC = k(O,300)*[(length^3)/(elevation change)]^0.2'
Initial area time of concentration = 8.391 min.
,Rainfall intensity = 3.836(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Initial subarea runoff = 1.7l6(CFS)
Total initial stream area 0,500(Ac.)
Pervious area fraction = 0.100
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 37.000 to Point/Station 38.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0.895
Decimal fraction soil group A
0.000
~
I
I
I
I
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Time of concentration = 8.39 min.
Rainfall intensity = 3.836(In/Hr) for a 100.0 year storm
Subarea runoff 10.980(CFS) for 3.200(Ac.)
Total runoff = 12.696(CFS) Total area = 3.700(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38.000 to Point/Station 39.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation - 1047.80(Ft.)
Downstream point/station elevation = 1040.98(Ft.)
Pipe length 15,00(Ft,) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 12.696(CFS)
Given pipe size = 18,00(In,)
Calculated individual pipe flow 12.696(CFS)
Normal flow depth in pipe = 5.16(In.)
Flow top width inside pipe = 16.28(In,)
Critical Depth = 16.09(In,)
Pipe flow velocity = 30.34(Ft/s)
Travel time through pipe = 0.01 min.
Time of concentration (TC) = 8.40 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 3.700(Ac.)'
Runoff from this stream = 12.696(CFS)
Time of concentration = 8.40 min.
Rainfall intensity = 3.834(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
'(In/Hr)
I
1
2
Largest
Qp =
50.133 9.17
12.696 8.40
stream flow has longer
50.133 + sum of
Qb Ia/Ib
12.696 * 0.953 =
62.232
time of
3.653
3.834
concentration
I
12.099
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
50.133 12.696
Area of streams before confluence:
14.200 3.700
Results of confluence:
Total flow rate = 62.232(CFS)
Time of concentration = 9.167 min.
~
I
I
I
I
I
Effective stream area after confluence =
l7.900(Ac.)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 40.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation = 1040.98(Ft.)
Downstream point/station elevation = 1040.9l(Ft.)
Pipe length = 10.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 62.232(CFS)
Given pipe size = 48.00(In.)
Calculated individual pipe flow 62.232(CFS)
Normal flow depth in pipe = 24.52(In.)
Flow top width inside pipe = 47.99(In.)
Critical Depth = 28.54(In.)
Pipe flow velocity = 9.65(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 9.18 min.
End of computations, total study area = 17.90 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area,
I
I
I
Area averaged pervious area fraction (Ap)
Area averaged RI index nUmber = 69.0
0.100
I
I
I
I
I
I
I
I
I
I
~
II
I
I,,"
.....
I ~,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
v.
RATIONAL HYDROLOGY STUDY
(10 YEAR STORM)
~\
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
I
VAIL RANCH COMMERCIAL CENTER
QIO FLOWS SOUTHERLY SIDE OF VIA RIO
BASIN A
FILE: A10
I
*********
Hydrology Study Control Information **********
I
RANPAC Inc., Temecula, California - SiN 560
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4,1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr,)
10 year storm 60 minute intensity = 0,880 (in./hr.)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
Storm event year = 10,0
Calculated rainfall intensity data:
1 hour intensity = 0,880 (in,/hr,)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1,000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1059.500(Ft.)
Bottom (of initial area) elevation = 1054.000(Ft.)
Difference in elevation = 5.500(Ft,)
Slope = 0,01833 s(percent)= 1,83
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.536 min.
Rainfall intensity 2.979(In/Hr) for a 10.0
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
year storm
I
I
I
A = 0,000
B = 0.000
C = 1.000
D 0.000
84,40
0.100; Impervious fraction =
O,798(CFS)
0.300(Ac,)
0.900
I
I
I
?~
I
I
I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation = 1054,000(Ft.)
End of street segment elevation = 1049.500(Ft.)
Length of street segment 765.000(Ft.)
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) 28.000(Ft.)
Distance from crown to cross fall grade break 26.000(Ft.)
Slope from gutter to grade break (v/hzl = 0.020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) 0.020
Gutter width = 2,000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 3.459(CFS)
Depth of flow = O,38l(Ft,), Average velocity = 1.981(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = l2.725(Ft,)
Flow velocity = l,98(Ft/s)
Travel time = 6.44 min, TC = 12.97 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.890
Decimal fraction soil group A ~ 0.000
Decimal fraction soil group B 0,000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 84,40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity 2,043(In/Hr) for a 10.0 year storm
Subarea runoff = 3.638(CFS) for 2.000(Ac.)
Total runoff = 4.436(CFS) Total area = 2.300(Ac.)
Street flow at end of street = 4.436(CFS)
Half street flow at end of street 4.436(CFSI
Depth of flow = 0.408(Ft,), Average velocity = 2.102(Ft/s)
Flow width (from curb towards crown)= l4.084(Ft.)
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation = 1049.500(Ft.)
End of street segment elevation = 1048.l00(Ft.)
Length of street segment 280,OOO(Ft.)
Height of curb above gutter flowline = 6,O(In.)
Width of half street (curb to crown) = 28.000(Ft.)
Distance from crown to cross fall grade break 26.00Q(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [lJ side(s) of the street
~~
I
I
I
I
I
Distance from curb to property line
Slope from curb to property line (v/hz)
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4.832(CFS)
Depth of flow = 0,428(Ft.), Average velocity = 2.017(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 15,061(Ft.)
Flow velocity = 2.02(Ft/s)
Travel time = 2.31 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.890
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity = 1.867IIn/Hr) for a 10.0 year storm
Subarea runoff 0.681(CFS) for 0.410(Ac,)
Total runoff = 5,l17(CFS) Total area =
Street flow at end of street = 5,117(CFS)
Half street flow at end of street 5,117(CFS)
Depth of flow = 0,435(Ft.), Average velocity = 2.045(Ft/s)
Flow width (from curb towards crown)= 15,411(Ft.)
End of computations, total study area
The following figures may
be used for a unit hydrograph study of the same area.
12.000(Ft. )
0.020
I
I
I
TC =
15.29
min.
I
I
I
2,710(Ac.)
I
I
2.71 lAc,)
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number = 69.0
0.100
I
I
I
I
I
I
I
9\
I II
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
QIO FLOWS NORTHERLY SIDE VIA RIO
BASIN B
FILE: BI0
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc., Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
= 3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2,360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity = 3.480 (in./hr,)
100 year storm 60 minute intensity = 1.300 (in./hr,)
I
I
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station ' 5.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1059.500(Ft.)
Bottom (of initial area) elevation = 1054.000(Ft.)
Difference in elevation = 5.500(Ft.)
Slope = 0.01833 s(percent)= 1.83
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.536 min.
Rainfall intensity = 2.979(In/Hr) for a 10.0
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area =
year storm
I
I
I
A 0,000
B = 0.000
C = 1.000
D 0.000
84,40
0.100; Impervious fraction =
0.798(CFS)
0.300(Ac.)
0.900
I
I
I
~
I
I
I
Pervious area fraction
0.100
I
II
,
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 7.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation ~ 10S4.000(Ft.)
End of street segment elevation = 10S2.200(Ft.)
Length of street segment = 290.000(Ft,)
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) 28.000(Ft,)
Distance from crown to cross fall grade break 26.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2,000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1.117(CFS)
Depth of flow = O,280(Ft,), Average velocity = 1.565(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7.664(Ft.)
Flow velocity = l,S6(Ft/s)
Travel time = 3.09 min. TC = 9.62 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0,892
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0,000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity 2.408(In/Hr) for a 10.0 year storm
Subarea runoff O.SlS(CFS) for 0.240(Ac.)
Total runoff ~ 1.3l3(CFS) Total area = 0.S40(Ac.)
Street flow at end of street = 1.313(CFS)
Half street flow at end of street 1.313(CFS)
Depth of flow = 0.292(Ft.), Average velocity = 1.620(Ft/s)
Flow width (from curb towards crown)= 8.270(Ft.)
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 7.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.S40(Ac.)
Runoff from this stream 1.3l3(CFS)
Time of concentration 9.62 min.
Rainfall intensity = 2.408(In/Hr)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
I
~
I
I
I
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 595.000(Ft.)
Top (of initial area) elevation = 1057.200(Ft.)
Bottom (of initial area) elevation = 1052.200(Ft.)
Difference in elevation = 5.000(Ft.)
Slope = 0.00840 s(percent)= 0.84
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 10.047 min.
Rainfall intensity = 2.352(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.891
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Initial subarea runoff = 2,096(CFS)
Total initial stream area 1.000(Ac.)
Pervious area fraction = 0.100
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
**** CONFLUENCE OF MINOR STREAMS ***~
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 1.000(Ac.)
Runoff from this stream = 2.096(CFS)
Time of concentration = 10.05 min.
Rainfall intensity = 2.352(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(minl
Rainfall Intensity
(In/~r)
I
I
Qp =
1.313 9.62
2.096 10.05
stream flow has longer
2,096 + sum of
Qb Ia/lb
1,313 * 0,977
3,379
time of
2,408
2.352
concentration
I
1
2
Largest
Qp =
1.283
I
Total of 2 streams to confluence:
Flow rates before confluence point:
1.313 2.096
Area of streams before confluence:
0,540 1.000
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
3.379(CFS)
= 10.047 min.
after confluence
1.540(Ac,)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 9.000
**** SUBAREA FLOW ADDITION ****
I
~
I I
I
I
COMMERCIAL subarea type
Runoff Coefficient = 0.891
Decimal fraction soil group A = 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Time of concentration = 10.05 min.
Rainfall intensity = 2.352(In/Hr) for a 10.0 year storm
Subarea runoff 1,258(CFS) for 0.600(Ac.)
Total runoff = 4.637(CFS) Total area = 2.140(Ac.)
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 11.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation = 1051,800(Ft,)
End of street segment elevation = 1049.360(Ft.)
Length of street segment 410.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 28.000(Ft.)
Distance from crown to cross fall grade break 26.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [lJ side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 5.070(CFS)
Depth of flow = 0.423(Ft.), Average velocity = 2.l80(Ft/s)
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = l4.828(Ft.)
Flow velocity = 2.l8(Ft/s)
Travel time = 3.13 min, TC = 13.18 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.890
Decimal fraction soil group A 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C 1,000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Rainfall intensity 2.025(In/Hr) for a 10.0 year storm
Subarea runoff = 0.72l(CFS) for 0.400(Ac.)
Total runoff = 5.358(CFS) Total area = 2.540(Ac.)
Street flow at end of street = 5.358(CFS)
Half street flow at end of street 5.358(CFS)
Depth of flow = 0.430(Ft.), Average velocity = 2.209(Ft/s)
Flow width (from curb towards crown)= 15.160(Ft.)
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
~
I
I
I
Process from Point/Station 9.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
11.000
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 2.540(Ac.)
Runoff from this stream 5.358(CFS)
Time of concentration = 13.18 min.
Rainfall intensity = 2.025(In/Hr)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 250.000(Ft.)
Top (of initial area) elevation = 1053.800(Ft.)
Bottom (of initial area) elevation = 1049.360(Ft.)
Difference in elevation = 4.440(Ft.)
Slope = 0,01776 s(percent)= 1.78
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.115 min.
Rainfall intensity 3.090(In/Hr) for a 10.0
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soi1(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
year storm
I
I
I
A = 0.000
B = 0.000
C 1.000
D 0.000
.84.40
0.100; Impervious fraction =
1.932(CFS)
0.700(Ac.)
0.900
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** CONFLUENCE OF MINOR STREAMS ****
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.700(Ac.)
Runoff from this stream 1,932(CFS)
Time of concentration = 6.12 min.
Rainfall intensity = 3.090(In/Hrl
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp =
5.358 13.18
1.932 6.12
stream flow has longer
5.358 + sum of
Qb Ia/Ib
1,932 * 0,655
6.624
time of
2.025
3.090
concentration
I
I
1.267
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
~
I
I'
I
5.358 1.932
Area of streams before confluence:
2.540 0.700
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
6.624 (CFS)
13.181 min.
after confluence
3.240 (Ac.)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
I
Top of street segment elevation = 1049.360(Ft.)
End of street segment elevation = 1048,100(Ft.)
Length of street segment 270.000(Ft.)
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) = 28.000(Ft.)
Distance from crown to crossfall grade break = 26.000(Ft.)
Slope from gutter to grade break (v/hz) = 0,020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [lJ side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 6.962(CFS)
Depth of flow = 0,480(Ft.), Average velocity = 2.147(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 17.651(Ft.)
Flow velocity = 2.15(Ft/s)
Travel time =' 2.10 min. TC = 15.28 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0.890
Decimal fraction soil group A 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction = 0.900
Rainfall intensity 1.867(In/Hr) for a 10.0 year storm
Subarea runoff 0.548(CFS) for 0,330(Ac.)
Total runoff = 7.173(CFS) Total area = 3.570(Ac.)
Street flow at end of street = 7.173(CFS)
Half street flow at end of street 7.173(CFS)
Depth of flow = 0,484(Ft.), Average velocity = 2,163(Ft/s)
Flow width (from curb towards crown)= 17.859(Ft.)
End of computations, total study area = 3.57 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
I
I
I
I
I
I
I
I
I
Area averaged pervious area fraction (Ap) = 0.100
Area averaged RI index number = 69.0
I
fiP
, I
I
I
Riverside County Rational Hydrology Program
I
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL
QlO FLOWS AT COUNTRY GLEN DRIVE
BASIN C
FILE: ClO
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc., Temecula, California - SIN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.l)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2,360 (in./hr,)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity = 3.480 (in,/hr.)
100 year storm 60 minute intensity = 1.300 (in,/hr.)
I
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
I
+++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++++++++
Process from Point/Station 13,000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = l65.000(Ft,)
Top (of initial area) elevation = 1052.900(Ft.)
Bottom (of initial area) elevation = 105l.220(Ft.)
Difference in elevation = 1.680(Ft.)
Slope = 0,01018 s(percent)= 1.02
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 5.788 min.
Rainfall intensity 3.l85(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group A 0,000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1,000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Initial subarea runoff = 0.569(CFS)
Total initial stream area 0.200(Ac.)
I
I
I
I
I
I
~\
I
I I
, I
Pervious area fraction
0,100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 15.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation = 1051.220(Ft.)
End of street segment elevation = 1048.100(Ft.)
Length of street segment 500,000(Ft.)
Height of curb above gutter flowline = 6,0(In.)
Width of half street (curb to crown) = 28.000(Ft.)
Distance from crown to cross fall grade break 26.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) 0,020
Street flow is on [1] side(s) of the street
Distance from curb to property line 12.000(Ft.)
Slope from curb to property line (v/hz) 0.020
Gutter width = 2,OOO(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1.423(CFS)
Depth of flow = 0,298(Ft.), Average velocity = 1.652(Ft/s)
Street flow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.570(Ft,)
Flow velocity = l,65(Ft/s)
Travel time = 5.04 min. TC = 10.83 min.
Adding area flow to street
COMMERCIAL subarea type
Runoff Coefficient = 0,891
Decimal fraction soil group A = 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil.(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Rainfall intensity 2.256(In/Hr) for a 10.0 year storm
Subarea runoff = 1.206(CFS) for O.600(Ac.)
Total runoff = 1.775(CFS) Total area = O.800(Ac.)
Street flow at end of street = 1.775(CFS)
Half street flow at end of street 1.775(CFS)
Depth of flow = 0,316(Ft,), Average velocity = 1.736(Ft/s)
Flow width (from curb towards crown)= 9.467(Ft.)
I
I
I
I
I
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/Station 15.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1044.93(Ft.)
Downstream' point/station elevation 1039.56(Ft.)
Pipe length 30.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 1.775(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 1.775(CFS)
Normal flow depth in pipe = 2.46(In.)
Flow top width inside pipe = 12,36(In.)
Critical Depth 6,OO(In,)
(p't--
I
I
I
I
I
I
Pipe flow velocity = l2.26(Ft/s)
Travel time through pipe 0.04 min.
Time of concentration (Te) = 10.87 min.
End of computations, total study area = 0,80 (Ac.)
The following figures may
be used for a unit hydro graph study of the same area.
I
I
Area averaged pervious area fraction (Ap) 0,100
Area averaged RI index number. = 69,0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
(j!;
I
I
I
Riverside County Rational Hydrology Program
I
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
Q10
BASIN D
FILE: D10
------------------------------------------------------------------------
*********
Hydrology Study Control Information **~*******
I
------------------------------------------------------------------------
RANPAC Inc., Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition = 3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr,)
10 year storm 60 minute intensity = 0,880 (in./hr.)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
Sto~rn event year = 10.0
Calculated rainfall intensity data:
1 hour intensity ~ 0.880 (in,/hr.)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 17.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 260.000(Ft.)
Top (of initial area) elevation = 1053.200(Ft.)
Bottom (of initial area) elevation = 1050.000(Ft,)
Difference in elevation = 3,200(Ft.)
Slope = 0.01231 s(percent)= 1.23
TC = k{0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.685 min.
Rainfall intensity 2.942(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0,893
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Initial subarea runoff = 1.577(CFS)
Total initial stream area = O,600(Ac.)
I
I
I
I
I
I
~
,I
I
I
Pervious area fraction = 0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 17.000 to Point/Station 18.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0,893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction ~
Time of concentration =
Rainfall intensity
Subarea runoff
Total runoff =
A = 0,000
B = 0.000
C = 1.000
D 0.000
84.40
0.100; Impervious fraction =
6.68 rnin,
2,942(In/Hr) for a 10.0
5.255(CFS) for 2,000(Ac.)
6.832(CFS) Total area =
0.900
I
I
year storm
I
2.600(Ac.)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 18.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1040.73(Ft.)
Downstream point/station elevation = 1038.33(Ft.)
Pipe length = 52,00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 6.832(CFS)
Given pipe size = 48.00(In.)
Calculated individual pipe flow 6.832(CFS)
Normal flow depth in pipe = 4.93(In.)
Flow top width inside pipe = 29.l5(In.)
Critical Depth = 9.07(In.)
Pipe flow velocity = 10.02(Ft/s)
Travel time through pipe = 0.09 min.
Time of concentration (TC) 6.77 min.
End of computations, 'total study area = 2.60 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
I
I
I
Area averaged pervious area fraction (Ap) = 0.100
Area averaged RI index number = 69.0
I
I
I
I
I
o
,I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology study Date: 09/02/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
QlO
E
FILE: ElO
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc" Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4,1)
For the [ Murrieta,Trnc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr,)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity = 3,480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
I
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in,/hr,)
Slope of intensity duration curve = 0.5500
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 19,000 to Point/Station 20,000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 340,000(Ft.)
Top (of initial area) elevation = 1052.000(Ft.)
Bottom (of initial area) elevation = 1050.890(Ft.)
Difference in elevation = 1,110(Ft.)
Slope = 0,00326 s(percent)= 0,33
TC = k(0,3001*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.704 min.
Rainfall intensity 2,397(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.892
Decimal fraction soil group A = 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0,000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Initial subarea runoff = 1.496(CFS)
Total initial stream area 0,700(Ac.)
I
I
I
I
I
~
I
II
,I
Pervious area fraction
0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 20.000 to Point/Station 21.000
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.892
Decimal fraction soil group A = 0,000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Time of concentration = 9.70 min.
Rainfall intensity = 2.397{In/Hr) for a 10.0 year storm
Subarea runoff = 2,564{CFS) for 1.200(Ac,)
Total runoff = 4.060(CFS) Total area = 1.900{Ac,)
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 21.000 to Point/Station 23.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1046.09{Ft.)
Downstream point/station elevation = 1043.23(Ft,)
Pipe length 286.00{Ft,) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 4.060(CFS)
Given pipe size = 18,00{In.)
Calculated individual pipe flow 4.060(CFS)
Normal flow depth in pipe = 7.77{In.)
Flow top width inside pipe = 17.83{In,)
Critical Depth = 9.26{In,)
Pipe flow velocity = 5.56{Ft/s)
Travel time through pipe = 0,86 min.
Time of concentration (TC) = 10.56 min.
/
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 21,000 to Point/Station 23.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1,900{Ac.)
Runoff from this stream = 4,060{CFS)
Time of concentration = 10.56 min.
Rainfall intensity = 2,288{In/Hr)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.100 to point/Station 22,000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 135.000(Ft.)
Top (of initial area) elevation = 1052.500(Ft.)
Bottom (of initial area) elevation = 1050.900(Ft.)
Difference in elevation = 1.600(Ft.)
Slope = 0,01185 s{percent)= 1.19
TC = k{0,300)*[{length^3)/(elevation change)]^0,2
~
I
I
I
I
I
Initial area time of concentration =
Rainfall intensity 3,384(In/Hr)
COMMERCIAL subarea type
Runoff Coefficient = 0.894
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
5.182
for a
min.
10.0 year storm
I
A 0.000
B 0,000
C 1. 000
DO.OOO
84,40
0.100; Impervious fraction =
1. 513 (CFS)
0.500(Ac, )
0.900
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station 23.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1046.07(Ft,)
Downstream point/station elevation l043.23(Ft.)
Pipe length 13,00(Ft,) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 1.513(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow 1.513(CFS)
Normal flow depth in pipe = 2.17(In.)
Flow top width inside pipe = 11.71(In.)
Critical Depth = 5.53(In.)
Pipe flow velocity = 12.53(Ft/s)
Travel time through pipe = 0.02 min.
Time of concentration (TC) = 5.20 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station 23.000
**** CONFLUENCE OF MINOR STREAMS ****
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = O,500(Ac,)
Runoff from this stream = 1.513(CFS)
Time of concentration = 5.20 min.
Rainfall intensity = 3.378(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp =
4.060 10.56
1.513 5,20
stream flow has longer
4,060 + sum of
Qb Ia/Ib
1.513 * 0.677
5.085
time of
2.288
3.378
concentration
I
1.024
Qp =
I
I,
Total of 2 streams to confluence:
Flow rates before confluence point:
4,060 1,513
Area of streams before confluence:
(O~
I
I
I
1.900 0.500
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
5.085(CFS)
10.561 min.
after confluence
2.400(Ac.)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 23.000 to Point/station 23.100
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1043.23(Ft.)
Downstream point/station elevation = 1042.77(Ft,)
Pipe length = 46.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 5.085(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 5.085(CFS)
Normal flow depth in pipe = 8.83(In.)
Flow top width inside pipe = 18,00(In.)
Critical Depth = 10.42(In.)
Pipe flow velocity = 5.90(Ft/s)
Travel time through pipe = 0,13 min.
Time of concentration (TC) = 10,69 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 23.100 to Point/Station 23.200
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1042,77(Ft.)
Downstream point/station elevation = 1040.92(Ft.)
Pipe length = 55.00(Ft~) Manning's N = 0.013
No.'of pipes = 1 Required pipe flow = 5.085(CFS)
Given pipe size = 42.00(In.)
Calculated individual pipe flow 5,085(CFS)
Normal flow depth in pipe = ,4.79(In.)
Flow top width inside pipe = '26.71(In.)
Critical Depth = 8.10(In.)
Pipe flow velocity = 8,36(Ft/s)
Travel time through pipe = 0.11 min.
Time of concentration (TC) 10.80 min.
End of computations, total study area = 2.40 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
I
I
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number = 69.0
0.100
I
I
I
I
~
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
Q10
BASIN G & H
FILE: G10
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc., Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr,)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
I
Storm event year = 10.0
Calculated rainfall intensity.data:
1 hour intensity = 0.880 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station ' 24.000 to Point/Station 25.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 190.000(Ft.)
Top (of initial area) elevation = 1053.270(Ft.)
Bottom (of initial area) elevation = 1051.590(Ft.)
Difference in elevation = 1.680(Ft.)
Slope = 0.00884 s(percent)= 0.88
TC = k(0,300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration ~ 6.300 min.
Rainfall intensity 3.040(In/Hr) for a 10.0
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction ;
Initial subarea runoff =
Total initial stream area
year storm
I
I
A 0.000
B = 0.000
C 1. 000
D 0.000
84.40
0.100; Impervious fraction =
3.258 (CFS)
1.200(Ac. )
0.900
I
I
I
,\0
I
I
I
Pervious area fraction = 0.100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 25.000 to Point/Station 26.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0,893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Time of concentration
Rainfall intensity
Subarea runoff
Total runoff =
A 0,000
B 0.000
C 1.000
D 0.000
84,40
0.100; Impervious fraction =
6.30 min.
3.040(In/Hr) for a 10.0
4.6l6(CFS) for 1.700(Ac.)
7.874(CFS) Total area =
0.900
I
I
year storm
I
2.900(Ac.)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 26.000 to Point/Station 29.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1046,00(Ft,)
Downstream point/station elevation 1043.70(Ft.)
Pipe length = lSO,OO(Ft.1 Manning's N = 0.013
No, of pipes = 1 . Required pipe flow = 7.874(CFS)
Given pipe size = 2l.00(In.)
Calculated individual pipe flow = 7.874(CFS)
Normal flow depth in pipe = 9.75(In.)
Flow top width inside pipe = 20.95(In.)
Critical Depth = l2,49(In,)
Pipe flow velocity = 7.2l(Ft/s)
Travel time through pipe = 0,42 min,
Time of concentration (TC) = 6.72 min,
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 26.000 to Point/Station 29.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 2.900(Ac.)
Runoff from this stream 7.874(CFS)
Time of concentration = 6.72 min.
Rainfall intensity = 2.935(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8.000 to Point/Station 27.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 285.000(Ft.)
Top (of initial area) elevation = 1053.800(Ft.)
Bottom (of initial area) elevation = 1050.870(Ft,)
Difference in elevation = 2.930(Ft.)
Slope = 0.01028 s(percent)= 1.03
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
I
I
~
I
I I
I
Initial area time of concentration =
Rainfall intensity = 2.827(In/Hr)
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
7.189
for a
min.
10.0 year storm
I
A 0,000
B = 0.000
C = 1.000
D = 0.000
84.40
0.100i Impervious fraction
3.533(CFS)
1. 400 (Ac.)
0.900
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 27,000 to Point/Station 28.000
**** SUBAREA FLOW ADDITION ****
I
I
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Time of concentration
Rainfall intensity
Subarea runoff
Total runoff =
A 0.000
B 0.000
C = 1. 000
DO.OOO
84.40
0.100; Impervious fraction =
7.19 min.
2,827(In/Hr) for a 10,0
4.543(CFS) for 1.800(Ac.)
8,076(CFS) Total area =
0.900
I
year storm
I
3,200 (Ac.)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 28.000 to Point/Station 29.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1046.32(Ft.)
Downstream point/station elevation = 1043.95(Ft,)
Pipe length 45.00(Ft,) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 8.076(CFS)
Given pipe size = 18.0Q(In.)
Calculated individual pipe flow 8.076(CFS)
Normal flow depth in pipe = 7.18(In.)
Flow top width inside pipe = 17.63(In,)
Critical Depth = 13.20(In.)
Pipe flow velocity = 12.29(Ft/s)
Travel time through pipe = 0.06 min.
Time of concentration (TC) = 7.25 min.
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 28.000 to Point/Station 29.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 3.200(Ac,)
Runoff from this stream = 8.076(CFS)
Time of concentration = 7.25 min.
Rainfall intensity = 2.814(In/Hr)
I
,\1/
I
I
I
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
Qp =
7.874 6.72
8.076 7.25
stream flow has longer
8.076 + sum of
Qb Ia/lb
7.874 * 0.959
15.626
2.935
2.814
time of concentration
I
1
2
Largest
Qp =
I
7.550
I
Total of 2 streams to confluence:
Flow rates before confluence point:
7,874 8,076
Area of streams before confluence:
2.900 3.200
Results of confluence:
Total flow rate = l5.626(CFS)
Time of concentration 7.250 min.
Effective stream area after confluence =
6.l00(Ac, )
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1043.70(Ft.)
Downstream point/station elevation 1042.87(Ft.)
Pipe length = 55.00(Ft.) Manning's N = 0.013
No,: of pipes = 1 Required pipe flow = 15.626 (CFS)
Given pipe size = 21.00 (In.) .
,
Calculated individual pipe flow l5.626(CFS)
Normal flow depth in pipe = l4.25(In.)
Flow top width inside pipe = 19.62(In,)
Critical Depth = l7,52(In:)
Pipe flow velocity = 9.00(Ft/s)
Travel time through pipe = 0.10 min.
Time of concentration (TC) 7,35 min.
End of computations, total study area = 6.10 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
I
I
I
Area averaged pervious area fraction (Ap) = 0,100
Area averaged RI index number = 69.0
I
I
I
I
'\7
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
I
VAIL RANCH COMMERCIAL CENTER
QlO
BASIN I,J, & K
FILE: 110
I
*********
Hydrology Study Control Information **********
I
RANPAC Inc" Temecula, California - SiN 560
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
3
I
Standard intensity-duration curves data (Plate D-4,l)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr,)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr,)
I
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0,880 (in./hr.)
Slope of intensity duration curve = 0.5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 30.000 '
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 345.000(Ft.)
Top (of initial area) elevation = 1057.200(Ft.)
Bottom (of initial area) elevation = 1054,300(Ft.)
Difference in elevation = 2.900(Ft.)
Slope = 0,00841 s(percent)= 0.84
TC = k(0.300)*[(length^3)/(elevation change))^O,2
Initial area time of concentration = 8.079 min.
Rainfall intensity 2.65l(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.892
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 3)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area =
A 0.000
B 0.000
C = 1.000
D 0.000
84.40
0.100i Impervious fraction
2,366(CFS)
1,000(Ac.)
0.900
I
I
I
I
I
~
I
I
I
Pervious area fraction
0,100
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 32.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0,892
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
Time of concentration = 8.08 min.
Rainfall intensity = 2.651(In/Hr) for a 10.0 year storm
Subarea runoff 13.721{CFS) for 5.800(Ac.)
Total runoff = 16.087(CFS) Total area = 6.800(Ac.)
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 32.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 6.800{Ac.)
Runoff from this stream 16,087(CFS)
Time of concentration 8.08 min.
Rainfall intensity = 2,651(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 31,100 to Point/Station 31.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 130.000(Ft.)
Top (of initial area) elevation = 1053.800(Ft.)
Bottom (of initial area) elevation = 1052.600(Ft.)
Difference in elevation = 1,200(Ft.)
Slope = 0.00923 s(percent)= 0.92
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 5.366 min.
Rainfall intensity = 3.320(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0,894
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) = 84,40
Pervious area fraction = 0.100i Impervious fraction 0.900
Initial subarea runoff = 1.187(CFS)
Total initial stream area = 0.400{Ac.)
Pervious area fraction = 0.100
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 31.000 to Point/Station 32.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
~
I
I
I
I
Upstream point/station elevation = 1049.50(Ft.)
Downstream point/station elevation 1043.49(Ft.)
Pipe length = 420.00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow = 1.187(CFS)
Given pipe size = 12,00(In.)
Calculated individual pipe flow 1,187(CFS)
Normal flow depth in pipe = 4.33(In.)
Flow top width inside pipe = 11.53(In.)
Critical Depth = 5,50(In.)
Pipe flow velocity = 4.65(Ft/s)
Travel time through pipe = 1.51 min.
Time of concentration (TC) = 6.87 min.
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 31.000 to Point/Station 32.000
.... CONFLUENCE OF MINOR STREAMS ....
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.400(Ac.)
Runoff from this stream 1.187(CFS)
Time of concentration = 6.87 min.
Rainfall intensity = 2.898(In/Hr)
Summary of stream data:
I
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
I
1
2
Largest
Qp =
16.087 8.08
1,187 6,87
stream flow has longer
16,087 + sum of
Qb Ia/Ib
1.187' 0.915
17.173
2.651
2,898
time of concentration
1. 086
Qp =
I
I
Total of 2 streams to confluence:
Flow rates before confluence point:
16,087 1,187
Area of streams before confluence:
6.800 0.400
Results of confluence:
Total flow rate = 17,173(CFS)
Time of concentration = 8.079 min.
Effective stream area after confluence
7.200(Ac.)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 34.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1043.49(Ft.)
Downstream point/station elevation = 1043.13(Ft.)
Pipe length 75.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 17.173(CFS)
Given pipe size = 24.00(In.)
NOTE: Normal flow is pressure flow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
I
I
<\~
I
I
I
0.768(Ft.) at the
Pipe friction loss =
Minor friction loss =
Pipe flow velocity ~
Travel time through pipe
Time of concentration (TC) =
headworks or inlet of the pipe(s)
0.432(Ft.)
0.696(Ft.)
5.47(Ft/s)
0.23 min,
8.31 min.
K-factor =
1,50
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 34.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 7.200(Ac.)
Runoff from this stream 17.173(CFS)
Time of concentration = 8.31 min.
Rainfall intensity = 2.611(In/Hr)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.100 to Point/Station 33.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 310.000(Ft.)
Top (of initial area) elevation = 1054.300(Ft.)
Bottom (of initial area) elevation = 1049.650(Ft.)
Difference in elevation = 4.650(Ft.)
Slope = 0.01500 s(percent)= 1.50
TC = k(0.300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.894 min.
Rainfall intensity 2.893(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0,000
Decimal fraction soil group C = 1,000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84,40
Pervious area fraction = 0,100; Impervious fraction 0.900
Initial subarea runoff = 2.325(CFS)
Total initial stream area O.900(Ac.)
Pervious area fraction = 0.100
I
I
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/Station 34.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 1046.l6(Ft,)
Downstream point/station elevation 1043.l3(Ft.)
Pipe length 60.00(Ft,) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 2.325(CFS)
Given pipe size = l8.00(In.)
Calculated individual pipe flow = 2.325(CFS)
Normal flow depth in pipe = 3,81(In.)
Flow top width inside pipe = l4.71(In.)
Critical Depth = 6,92(In.)
Pipe flow velocity = 8.50(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentration (TC) = 7.01 min.
I
I
I
I
~
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 33.000 to Point/Station 34.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.900 (Ac, )
Runoff from this stream 2.325(CFS)
Time of concentration = 7.01 min.
Rainfall intensity = 2.866(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
I
1
2
Largest
Qp =
17.173 8.31
2,325 7.01
stream flow has longer
17,173 + sum of
Qb Ia/Ib
2,325 * 0.911 =
19,291
2.611
2.866
time of concentration
, I
I
2,118
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
17.173 2,325
Area of streams before confluence:
7.200 0,900
Results of confluence:
Total flow rate = 19,291(CFS)
Time of concentration 8.307 min..
Effective stream area after confluence =
,
8.100(Ac.)
I
I
I
+++++++++++++++++++++++++++++++++++++++++++++++f++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
Upstream point/station elevation = 1043,13(Ft.)
Downstream point/station elevation = 1042.87(Ft.)
Pipe length 50,00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 19.291(CFS)
Given pipe size = 24,OO(In.)
NOTE: Normal flow is pressure flow in user
The approximate hydraulic grade line above
0,982(Ft.) at the headworks or inlet
Pipe friction loss = 0.363(Ft.)
Minor friction loss = 0.878(Ft.)
Pipe flow velocity = 6.14(Ft/s)
Travel time through pipe = 0.14 min,
Time of concentration (TC) 8.44 min.
End of computationst total study area =
The following figures may
be used for a unit hydrograph study of the same area.
selected pipe size.
the pipe invert is
of the pipets)
I
I
K-factor =
1.50
I
8.10 (Ac.)
I
Area averaged pervious area fraction (Ap)
Area averaged RI index number = 69.0
0.100
I
~
I
I
I
I
I
I
i I
I
I
I
I
I '
I
I
I
I
I
I
I
'1.l\.
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992
Rational Hydrology Study Date: 09/02/99
Version 3.3
I
------------------------------------------------------------------------
I
VAIL RANCH COMMERCIAL CENTER
Q10
BASIN G & H, I,J,K, & L
FILE: L10
------------------------------------------------------------------------
*********
Hydrology Study Control Information **********
I
------------------------------------------------------------------------
RANPAC Inc., Temecula, California - SiN 560
------------------------------------------------------------------------
I
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
I
Storm event (year) =
10.00 Antecedent Moisture Condition
= 3
I
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2,360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr.)
100 year storm 10 minute intensity 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in,/hr.)
I
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in./hr.)
Slope of intensity duration curve = 0,5500
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
I
Rainfall intensity 2.795(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.893
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D 0.000
RI index for soil(AMC 3) 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
User specified values are as follows:
TC = 7,34 min, Rain intensity = 2.79(In/Hr)
Total area = 6.10(Ac.) Total runoff = 23.11(CFS)
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
I
~
I
I
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 6.l00(Ac.)
Runoff from this stream = 23.109(CFS)
Time of concentration 7.34 min.
Rainfall intensity = 2.795(In/Hr)
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29.000 to Point/Station 35.000
**** USER DEFINED FLOW INFORMATION AT A POINT ****
I
I
Rainfall intensity 2.609(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0,892
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1,000
Decimal fraction soil group D = 0,000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100; Impervious fraction 0.900
User specified values are as follows:
TC = 8,32 min, Rain intensity = 2,61(In/Hr)
Total area = 8,10(Ac,) Total runoff = 28,56(CFS)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 29.000 to Point/Station 35.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 8.100(Ac.)
Runoff from this stream = 28.563(CFS)
Time of concentration = 8.32 min.
Rainfall intensity = 2.609(In/Hr)
Summary of stream data:
I
I
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp =
23.109 7.34
28,563 8,32
stream flow has longer
28,563 + sum of
Qb Ia/lb
23.109 * 0.933
50.133
time of
2.795
2.609
concentration
I
21.570
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
23.109 28.563
Area of streams before confluence:
6.100 8.100
Results of confluence:
Total flow rate = 50.133(CFS)
Time of concentration 8.320 min.
Effective stream area after confluence
14.200(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
~
I
I
I
Process from Point/Station 35.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) ****
39.000
I
Upstream point/station elevation = 1042.87(Ft.)
Downstream point/station elevation = 1040.98(Ft.)
Pipe length 380.00(Ft.) Manning's N = 0.013
No, of pipes = 1 Required pipe flow 50.l33(CFS)
Given pipe size = 36.00(In.)
Calculated individual pipe flow = 50.l33(CFS)
Normal flow depth in pipe = 32.44(In.)
Flow top width inside pipe = 2l.50(In,)
Critical Depth = 27.65(In.)
Pipe flow velocity = 7.48(Ft/s)
Travel time through pipe = 0,85 min.
Time of concentration (TC) = 9.17 min.
II
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 35.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS ****
I
Along Main Stream number: 1 in normal stream number 1
Stream flow area = l4,200(Ac,)
Runoff from this stream = 50,133(CFS)
Time of concentration = 9.17 min.
Rainfall intensity = 2,473(In/Hr)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 36.000 to Point/Station 37.000
**** INITIAL AREA EVALUATION ****
I
Initial area flow distance = 295.000(Ft,)
Top (of initial area) elevation = 1053.900(Ft.)
Bottom (of initial area) elevation = 1052.400(Ft.)
Difference in elevation = 1.500(Ft.)
Slope = 0.00508 s(percent)= 0.51
TC = k(0,300)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.391 min.
Rainfall intensity 2.596(In/Hr) for a 10.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.892
Decimal fraction soil group A = 0,000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) . 84.40
Pervious area fraction = 0,100; Impervious fraction 0.900
Initial subarea runoff = 1.158(CFS)
Total initial stream area 0.500 (Ac. )
Pervious area fraction = 0.100
I
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 37,000 to Point/Station 38.000
**** SUBAREA FLOW ADDITION ****
I
COMMERCIAL subarea type
Runoff Coefficient = 0.892
Decimal fraction soil group A
0.000
I
~t-'
I
I
I
Decimal fraction soil group B 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil(AMC 3) = 84.40
Pervious area fraction = 0.100i Impervious fraction 0.900
Time of concentration 8.39 min.
Rainfall intensity 2.596(In/Hr) for a 10.0 year storm
Subarea runoff 7.413(CFS) for 3.200(Ac.)
Total runoff = 8,571(CFS) Total area = 3.700(Ac.)
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38,000 to Point/Station 39.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation = 1047.80(Ft.)
Downstream point/station elevation = 1040.98(Ft.)
Pipe length 15.00(Ft,) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 8.571(CFS)
Given pipe size = 18,00(In.)
Calculated individual pipe flow 8.571(CFS)
Normal flow depth in pipe = 4,23(In.)
Flow top width inside pipe = 15.26(In.)
Critical Depth = 13.60(In.)
Pipe flow velocity = 27.09(Ft/s)
Travel time through pipe = 0,01 min.
Time of concentration (TC) = 8,40 min,
I
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 38.000 to Point/Station 39.000
**** CONFLUENCE OF MINOR STREAMS ****
I
I
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 3.700(Ac.)'
Runoff from this stream 8.571(CFS)
Time of concentration = 8.40 min.
Rainfall intensity = 2.595(In/Hr)
Summary of stream data:
I
Stream
No,
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
I
1
2
Largest
Qp =
50,133 9.17
8.571 8.40
stream flow has longer time of
50,133 + sum of
Qb Ia/Ib
8.571 * 0.953 = 8.169
58,302
2.473
2.595
concentration
I
Qp =
I
Total of 2 streams to confluence:
Flow rates before confluence point:
50,133 8,571
Area of streams before confluence:
14.200 3,700
Results of confluence:
Total flow rate = 58.302(CFS)
Time of concentration = 9.167 min.
I
I
~7
I
I
I
Effective stream area after confluence.
17.900(Ac.)
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 39.000 to Point/Station 40.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
I
I
Upstream point/station elevation = 1040.98(Ft.)
Downstream point/station elevation 1040.91(Ft.)
Pipe length = 10.00(Ft,) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 58.302(CFS)
Given pipe size = 48.00(In.)
Calculated individual pipe flow 58.302(CFS)
Normal flow depth in pipe = 23.58(In.)
Flow top width inside pipe = 47.99(In.)
Critical Depth = 27.56(In.)
Pipe flow velocity = 9.49(Ft/s)
Travel time through pipe = 0,02 min.
Time of concentration (TC) 9.18 min.
End of computations, total study area = 17,90 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
I
I
I
Area averaged pervious area fraction (Ap) = 0.100
Area averaged RI index number = 69.0
I
I
I
I
I
I
I
I
I
I
~
I
.3.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
VI.
. HYDRAULIC CALCULATIONS
,;
~-5
II
I
FILE: AB.WSW
- EDIT LISTING.- Ver~1on 9.7
PROFILS _ CHANNEL DSFINITION
ZL ZR tIN Y(l} Y(2)
DROP
I
CAP.D SECT am NO OF AVE PIER
OOOE NO TYPE PIER/PIP WIDTH
W 5 P G W
WATER SURFACE
HEIGHT 1 B;\sS
DIAMETER WIDTH
I
CD 1 . 1 I.S00
CD 2 3 0 .000 7.340 3.170 .000 .000 .000
CD 3 . 1 1.500
CD . 3 0 .000 7.210 3.1"10 .000 .000 .000
w s P G W
WATER SURFACE PROFILE TITLE CARD LISTING
HEADING LINE NO
1S
I
HEAOING LINE NO 2 IS -
HEADING LINE NO 3 IS
I
w S P G W
WATER SURFACE PROFILE - ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET
U!S DATA STATION INVEIl.T SECT
1000.000 1040.140 1
I
ELEMENT NO 2 IS A REACH
U/S DATA STATION INVERT SECT N
1007.820 1040.260 1 .Oll
ELEMENT NO 3 IS A REACH
U/S DATA STATION INVERT SECT N
1079.730 104.1.370 1 .014
ELEMENT NO . 13 A WALL ENTAANCE
ll/S DAtA STATION INVERT SECT FP
1079.730 1041.370 2 .500
I
ELEMENt NO 5 IS A JUNCTION
U!S DATA STATION INVERT SECT LAT-l LAT-2 N 03
1082.900 1041.500 . 3 0 .Oll 7.750
ELEMENT NO 6 IS A SYSTEM HEADWORKS
U/S DATA STATION INVERT SECT
1082.900 10t1.500 .
I
I
I
I
I
I
I
I
I
I
I
Date: 9- 8-1999
Tillie: 8:27:13
P},GE 1
Y(8) Yl91 Y{lO)
LISTING
ye31 Yet)
Y(5) Y(6) Y(1)
PAGE NO
PAGE NO 2
W S ELEV
1041.640
RADIUS ANGLE ANG PT MAN H
.000 .000 .000 0
RADIUS MiGLE ANG PT MAN H
t5.830 89.900 .000 0
2t INVERT-3 INVERT-t PHI 3 PHI
.000 10tl.500 .000 90.000
RADIUS ANGLE
.000 .000
.000
W S ELEV
10tl.500
~G
I
I
I
I
I
I
I
I
I
I
I I
I .
I
I
I I
I
I
I
I
I
.. WARNING NO.2.. - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, W.S.ELEV - INV + DC
[] FILE: AB.WSW W S P G W - CIVILDESIGN Ver" 9.7 PAGE
For: Trans-Pacific: ~ultant", Tem8cula, Califol:nia - SIN 560
WATER SURFACE PROFILE LISTING Date: 9- 8-1999 Time: 8:27;18
LINE: A AND B
VIA RIO TEHEaJL1I.
FILE: "'B
.......................................................................................................................... ........
I Invert I Depth I Water I Q I V.l V.l Energy I Super ICriticll.llFlow ToplHeight/IBll."8 Wtl INo Wth
Station I Elav I (FT) I Slav I (CrS) I IFPS) Head I Grd.El.1 Slev I Depth I Width IDiI:I..-FTlor 1.0.1 ZL IPr"/Pip
-I- -I- -I- -1- -1- -I- -1- -1- -I- -1- -I- -1- -I- -I
L/Elem lCh Slope I 1 I 1 SF.Avel HF ISE OpthlFroude N1Norm Dp I "N" I I ZR I Type Ch
.........j.........,........,.........I.........I.......1.......1.........1.......1........1........1.......,.......1..... I.......
I 1 I I I
1000.000 104.0.140 1.500 1041.640 18.41 10.42 1.69 1043.33 ,00 1.46 ,00 1.500 .000 ,00 1 ,0
-1- -1- -1- -1- -1- -1- -1- . -I- -1- -1- -1- -1- -I- I-
7.S20 .01534 .03562 ," 1.50 ,00 1.50 .014 ,00 PIPE
I I I 1 I I I
1007.820 1040.260 1.659 1041.919 18.41 10.42 1.69 1043.60 ,00 1.46 ,00 1.500 .000 ,00 1 ,0
-1- -I- -1- -1- -1- -I- -I- -1-, -I- -I- -1- -I- -I- I-
71.910 .01544 .03562 2.56 ,00 ,00 1.50 .014 ,00 PIPE
I I 1 1 I I I 1
1079.730 1041.370 3.U7 10U.817 18.41 10.42 1.69 1045.50 ,00 1.46 ,00 1.500 .000 ,00 1 ,0
-1- -I- -I- -I- -I- -I- -I- -1- -I- -1- -1- -I- -I- 1-
WALL ENTRANCE
I I I 1 I
1079.730 1041.370 5.961 1047.331 lS.n ," ,Ol 1047.35 ,00 1.02 3.17 7.340 3.170 ,00 0 ,0
-1- -1- -1- -1- -1- -1- -I- -I- -I- -1- -1- -I- -I- I-
JUNCT STA. .04101 .0000. ,00 5.96 ," .014 ,00 BOX
I I I I I I
1082.900 1041.500 5.850 1047.350 10.66 ," ,Ol 1047.36 ,00 ,71 3.17 7.210 3.170 ,00 0 ,0
-I- -1- -1- -1- -I- -1- -1- -I- -I- -I- -1- -1- -I- I-
e
~1
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FILE; LINEe. WSW w S P G W - EDIT LISTING - Version 9.7 Date: ,- 8-1999 TiJne: 1:34:26
WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE 'L ,. nlV Y(l) Y(2) Y(3) \'(4) Y(5) Y(6) Y(7) '1(8) Y(9) Y(10)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIOTH DROP
CD 1 . 1 1.500
CD 2 3 0 .000 5.710 3.170 .000 .000 .000
W S P G W PAGE NO
WATER SURFACE PROFILE - TITLE o.RD LISTING
HEADING LINE NO 1 IS
LINB "C"
HEADING LINE N02 IS
COUNTRY GLEN WAY
HEADING LINE NO 3 IS-
FILE: LINEe
w 5 P G W PAGE NO 2
WATER SURFACE PROFILE - ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET
U/S DATA STATION INVERT SECT W S ELEV
1000.000 1039.280 1 1046.300
ELEMENT NO 2 IS A REACH
VIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
1014.710 1041.260 1 .014 .000 .000 .000 0
ELEMENT NO 3 IS A REACH
VIS DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
1024..920 1043.000 1 .014 .000 .000 .000 0
ELEHENT NO "S A WALL ENTRANCE
U!S DATA STATION INVERT SECT FP
1024.920 1043.000 2 .500
ELEMENT NO 5 IS A SYSTEM HEArlWORKS
U!S OATA STATION INVERT SECT W S ELEV
1024.920 1043.000 2 1043.000
~
II
I
.. WARNING NO. 2
[] FILE: LINse. WSW
I
WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HDWKDS, w.S.ELEV - INV + Dc:
w 5 P G W - CIVILDESIGN Veci5 9.7 PAGE
For: Trans-Pacific Consultants, Temecula, California _ SIN 560
WATER SURFACE PROFILE LISTING Date: 9- 8-1999 Time: 1:34:32
LINS "C"
COUNTRY GLEN WAY
FILE: LINSe
.....................++.............++....................................................................................
J Invert I Depth I Water I Q I Vel Vel J Energy I Super I Critical I Flow ToplHeight/JBase Wtl
Station I Slav I (FT) J Slav I (CFS) I (FFS) Head J Grd.El.l Elav I Depth I Width IDia.-FTJor 1.0. J ZL
-1- -1- -J- -1- -1- -1- -1- -1- -1- -1- -1- -1- -I-
t/Slam ICh Slope I I 1 I SF Avel HE 15E DpthlFroude NINorm Dp I "Nn 1 1 ZR
.........I.........I........I.........J.........I*...***1***.**.1*********1******.1........1......**1******.1*******1*****
I I I [ I
1000.000 1039.280 7.020 1016.300 2.67 1.51 .01 1016.34 .00 .62 .00 1.500 .000
-1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1- -1-
14.710 .13460 .00075 .01 7.02 .00 .28 .011
I I I I I
1011.710 1041.260 5.051 1046.311 2.67 1.51 .04 1046.35 .00
-1- -1- -1- -1- -1- -1- -1- -J- -1-
10.210 .17042 .00075 .01 5.05
I I J I J
1024.920 1043.000 3.319 1016.319 2.67 1.51 .01 1046.35 .00
-1- -1- -1- -1- -j- -1- -1- -1- -1-
WALL ENTRANCE
1
1024.920 1043.000
-1- -1-
I
I
I
I
o
I
I
I
I
I
I
I
I
I
I
I
I
,62
1
.000
-1-
,00
1.500
-1- -1-
.014
-I-
,00
,26
,62
1
.000
-1-
,00
1.500
-1- -1-
-1-
1
3.371 1016.371
-1- -1-
1
2.67
-I-
1
.00104.6.37
-1-
,"
5.710
-1- -1-
1
3.170
-I-
,25
-1-
,00
-I-
3.17
-I-
-I-
,00
INo Wth
IPnl/Pip
-I
I Type Ch
1***.**.
1 "
1-
PIPE
1
1 "
1-
PIPE
I
1 "
1-
, "
1-
,00
,00
,00
,00
,00
e'\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
)
VII.
CATCH BASIN CALCULATIONS
ap
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
****e:*~~~**~e7}tl*~**~~r*'i-**x:!e*~l2:Wu* *~*~*~~*)*****
This software prepared for: Ranpac Corporation ~~I~ ~
**************************************************** *~************** ******
CALCULATE DEPTH OF
Channel Slope ~
Gi yen Flow Rate
FLOW GIVEN:
.005000 (Ft./Ft,) ~
7,75 Cubic Feet/Second
.5000 %
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft./Ft.) ~ .0050
Mannings "nil value for street = .015
Curb Height (In.) ~ 6,
Street Halfwidth (Ft.) ~ 32.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.) ~
Slope from Grade Break to Crown (Ft./Ft.) ~
Number of Halfstreets Carrying Runoff ~ 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft.)
Depth of flow ~ .456 (Ft.)
Average Velocity ~ 2,26 (Ft./Sec.)
Channel flow top width ~ 18.28 (Ft.)
(Ft.) ~
.065
.020
30.00
12.00
,020
Street flow Hydraulics :
Halfstreet Flow Width(Ft.) ~ 18,28
Flow Velocity(Ft./Sec,) ~ 2.26 Depth*Velocity
Flow rate of street channel (CFS) ~ 7.75
1. 03
CRITICAL FLOW CALCULATIONS
Subchannel Critical Flow
Subchannel Critical Flow
Subchannel Critical Flow
Froude Number Calculated
Sub channel Critical Depth ~
FOR CHANNEL NO.1:
Top Width(Ft.) ~
Velocity(Ft./Sec,) ~
Area(Sq.' Ft.) -
1. 001
17.64.
2.419
3.20
.443
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
---------------------------------------------------------------------------
o
*********************** CHANNEL CROSS-SECTION PLOT ************************
Depth of flow ~
.46 Feet ,= "w"
STREET FLOW HALF-WIDTH CROSS SECTION
Critical depth for Channel No,l~
.44 Feet
"e"
X (Feet)
Y(Feet)
Y-Axis-->O.
.2
.4
.6
.7
---------------------------------------------------------------------------
.00
1. 00
2,00
,74
.72
.70
x
X I
X I
C\\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I t7::
I ClI1~) =
I VJ o. ~7 -
3.00 .66 I I
4.00 .66 I I
5.00 ,64 I I
6.00 ,62 I I
7.00 .60 I I
6,00 ,56 I I
9.00 ,56 I I
10,00 ,54 I I
11.00 ,52 I I
12,00 .50 I I
13.00 ,07 X I I cW
14.00.13 X I I cW
15,00 .15 X I I cW
16,00 .17 XI I cW
17,00 .19 X I cW
16.00 .21 IX I cW
19,00 ,23 I X I cW
20.00 ,25 I X I cW
21.00 ,27 I X I cW
22,00 .29 I X I cW
23,00 ,31 I X I cW
24,00 .33 I X I cW
25.00 .35 I X I cW
26,00 ,37 X cW
27,00 ,39 IX cW
26,00 .41 I XcW
29.00 .43 I XW
30,00 .45 I X
31,00 .47 I X
32,00 .49 I X
33.00 ,51 I X
34.00 .53 I X I
35.00 .55 I XI
36,00 .57 I X
37.00 ,59 I IX
36.00 ,61 I I X
39,00 .63 I I X
40.00 ,65 I I X
41.00 .67 I I X
42.00 ,69 I I X
43,00 .71 I I X
44.00 .73 I I I I X I
. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(Q -=- &- vJ o. er? c:/c;
Q ~ T 17 cr5
I
I
I
I
I X
IX
X
XI
X I
X
X
X
X
X
\N -=- II I (,t,
U0e:- 14 \ C.@,
)..h_
e...:.;:. "..
~.\~
1) . 40~
o.~? \1''5
~,I~ (w) (f),4~V)
8.01
c:i.,/l/
I
I
I
I
I
I
I
I
I
I
'I
I
I
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************************************************
***~~:C~**f?e~.'t\*~*1:\~~:::f.**~'i.l!::*(~~*~*~t;2~\~~***
This software prepared for: Ranpac Corporation ~~~l~ ~
************************************************** **************** *********
CALCULATE DEPTH OF FLOW GIVEN:
Channel Slope = .005000 (Ft./Ft.) = .5000 %
Given Flow Rate 10,66 Cubic Feet/Second
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft,/Ft.) = .0050
Mannings nnll value for street = .015
Curb Height (In.) = 6,
Street Ha1fwidth (Ft.) ~ 32.00
Distance From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.)
Slope from Grade Break to Crown (Ft./Ft,) =
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft,) =
Depth of flow = .504 (Ft.)
Average Velocity 2.43 (Ft,/Sec.)
Channel flow top width 20.94 (Ft.)
(Ft.) =
.065
.020
30.00
12,00
.020
WARNING: DEPTH OF FLOW EXCEEDS TOP OF CURB
Distance that curb overflow reaches into property is =
.220 (Ft.)
Streetflow Hydraulics : ,
Halfstreet Flow Width(Ft,) = 20.72
Flow Velocity(Ft,/Sec,) = 2,43 Depth*Velocity =
Flow 'rate of street channel (CFS) = 10,66
1.23
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO, 1:
Subchannel Critical Flow Top Width(Ft.) =
Sub channel Critical Flow Velocity(Ft./Sec.)
Subchannel Critical Flow Area(Sq. Ft.)
Froude Number Calculated = 1.000
Sub channel Critical Depth = .492
20,12
2.574
4.14
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
o
---------------------------------------------------------------------------
*********************** CHANNEL CROSS-SECTION PLOT ************************
Depth of flow =' .50 Feet , = "W"
II STREET FLOW HALF-WIDTH CROSS SECTION
I
II
Critical depth for Channel No,l=
.49 Feet, = "e"
X (Feet)
Y(Feet)
Y-Axis-->O.
.2
.4
.6
.7
<\?
I
I
I ---------------------------------------------------------------------------
.00 .74 I I I X
1. 00 .72 I I I X I
2.00 .70 I I I X I
I 3,00 .68 I I I X I
4.00 .66 I I I X I
5,00 .64 I I I X I
6.00 .62 I I I X I
I 7.00 ,60 I I I X I
8,00 ,58 I I IX I
9.00 .56 I I X I
I 10.00 .54 I I XI I
11,00 ,52 I I X I I
12.00 .50 I I X I I
13.00 .07 X I I cW I I
I 14,00 ,13 X I I cW I I
15,00 ,15 X I I cW I I
16,00 ,17 XI I cW I I
17.00 .19 X I cW I I
I 18,00 ,21 IX I cW I I
19,00 ,23 I X I cW I I
20,00 .25 I X I cW I I
21.00 ,27 I X I cW I I
I 22.00 ,29 I X I cW I I
23,00 ,31 I X I cW I I
24.00 ,33 I X I cW I I
I 25.00 .35 I X I cW I I
26,00 ,37 I X cW I I
27,00 .39 I IX cW I I
28.00 .41 I I X cW I I
I 29,00 .43 I I X cW I I
30.00 .45 I I X cW I I
31. 00 .47 I I XcW I I
32,00 ,49 I I XW I I
I 33.00 .51 I I X I I
34.00 .53 I I X I I
35,00 ,55 I I XI I
36.00 .57 I I X I
I 37.00 .59 I I IX I
38.00 ,61 I I I X I
39.00 .63 I I I X I
I 40.00 .65 I I I X I
41.00 ,67 I I I X I
42.00 .69 I I I X I
43.00 .71 I I I X I
I 44,00 ,73 I I I I XI
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I Q~ ? ..) o.BS '9Lf7 W o.B'7 :: &'j, q17
Q - IO.(,v w-: 8,1'2
-
I ~ - ?I'2 LA 7P-:-- lA-I ?(?
I 9 -=-(). 1?O4-
( ) O.5~ I.~
10./;(; ~. \1. vJ ~,00~
I '\'\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***************************************************************************
****** CHANNEL FLOW CALCULATIONS ******
***************************************~**************************~*l~****
~-rCH ~AS.lt.-L r;J /~Il'JTl2:-Y!_ ~'~N.-.O~\Vb
****************~~*********~**~******** **[~~*******************
This software prepared for: Ranpac Corporation ~~~I~ /\
************************************************** **********~~**********
CALCULATE DEPTH OF
Channel Slope =
Given Flow Rate
FLOW GIVEN:
.005000 (Ft./Ft.) =
2.67 Cubic Feetlsecond
.5000 %
*** OPEN CHANNEL FLOW - STREET FLOW ***
Street Slope (Ft,/Ft.) = .0050
Mannings "n" value for street = .015
Curb Height (In.) = 6,
Street Halfwidth (Ft,) = 32.00
Dist~nce From Crown to Cross fall Grade Break
Slope from Gutter to Grade Break (Ft./Ft.)
Slope from Grade Break to Crown (Ft./Ft.)
Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft.) =
Slope from curb to property line (Ft./Ft,) =
Depth of flow = .330 (Ft.)
Average Velocity 1. 74 (Ft, ISec. )
Channel flow top width = 12.00 (Ft.)
(Ft.) =
.065
.020
30.00
12.00
.020
Street flow Hydraulics :
Halfstreet Flow Width(Ft.) = 12,00
Flow Velocity(Ft./Sec,) = 1.74 Depth*Velocity =
Flow rate of street channel (CFS) = 2.67
.58
CRITICAL FLOW CALCULATIONS FOR CHANNEL NO.1:
Subchannel Critical Flow Top Width(Ft.) =,
Subchannel Critical Flow Velocity(Ft./Sec.) =
Subcnannel Critical Flow Area(Sq. Ft,) =
Froude Number Calculated = 1.000
Subchannel Critical Depth = .315
11. 25
1. 969
1. 35
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
o
---------------------------------------------------------------------------
*********************** CHANNEL CROSS-SECTION PLOT ************************
Depth of flow =
.33 Feet , = "WI1
STREET FLOW HALF-WIDTH CROSS SECTION
Critical depth for Channel No.l=
.31 Feet
= "e"
X (Feet)
Y(Feet)
Y-Axis-->O,
.2
.4
.6
.7
---------------------------------------------------------------------------
,00
LOO
2.00
,74
.72
,70
x
X I
X I
Q6
I
I
3,00 .68 I I I X I
I 4.00 .66 I I I X I
5.00 ,64 I I I X I
6,00 .62 I I I X I
7.00 .60 I I I I X I
I 8,00 ,58 I I I IX I
9.00 ,56 I I I X I
10.00 .54 I I I XI I
I 11. 00 .52 I I I X I I
12,00 .50 I I I X I I
13,00 .07 I X I w I I I
14.00 .13 I X I w I I I
I 15,00 ,15 I X I w I I I
16.00 .17 I XI w I I I
17,00 .19 I X w I I I
18.00 ,21 I IX w I I I
I 19,00 ,23 I I X w I I I
20.00 ,25 I I X w I I I
21. 00 .27 I I X w I I I
22.00 .29 I I X w I I I
I 23,00 ,31 I I XW I I I
24.00 .33 I I X I I I
25.00 ,35 . I I X I I I
I 26,00 ,37 I I X I I
27,00 .39 I I IX I I
28.00 ,41 I I I X I I
29,00 .43 I I I X I I
I 30.00 .45 I I I X I I
31. 00 ,47 I I I X I I
32,00 ,49 I I I X I I
33,00 ,51 I I I X I I
I 34,00 .53 I I I X I I
35.00 .55 I I I XI I
36.00 .57 I I I X I
37,00 ,59 I I I , IX I
I 38.00 .61 I I I I X I
39.00 ,63 I I I I X I
40,00 ,65 I I I I X I
I 41. 00 ,67 I I I I X I
42.00 ,69 I I I I X I
43.00 .71 I I I I X I
44,00 ,73 . I I I I XI
I +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
q:: & W O,&~ l7"'?
I (!;(-::: 't:.(p 1
I c - "?I'l
1/: I
o. ~'?
I ( ) o,B~-0 ~1'7
'Z.(,1 - '7,1'2. w 0'1?
-
I V\J o. 'bC';7 :- 4'17 \
I w 7,t;8 . W1~ I <\~
- 1 c../1.