Loading...
HomeMy WebLinkAboutHydrology Ie I , . . HYDROLOGY REPORT FOR I . TRACT 29036 TEMECULA, CA . Prepared For: . H.R. DEVELOPMENT CO. 1725 ORANGETREE LANE, SUITE C REDLANDS, CA 92374 ie Prepared By: . ENGINEERING RESOURCES OF SOUTHERN CALIFORNIA, INC. 3550 E. FLORIDA AVENUE, SUITE B HEMET, CA 92544 I. . . I January 2000 . RECEiVED JAN 242000 en '{ Of- TEMtCtJLA ENGINEERING DEPARTMENT e \ . . HYDROLOGY REPORT FOR . , . TRACT 29036 TEMECULA, CA '. Prepared By: ENGINEERING RESOURCES OF SOUTHERN CALIFORNIA, INC. . 3550 E. FLORIDA AVENUE, SUITE B HEMET, CA 92544 . Under the Supervision of . . . . MichaelJ. Stearns Registered Civil Engineer No. 26406 . 1--. . . . .' . . . ~ =Zl r- z~ ~~ -~ . . . . . . . 1. INTRODUCTION 1.1 SCOPE AND PURPOSE . The purpose of this study is to determine the design flows for on-site drainage systems at the proposed single family housing development in Tract 29036, City of Temecula, CA, and to establish that these flows do not exceed those intended by the design of adjacent facilities. 1.2 SITE LOCATION AND DESCRIPTION . The project is located in the city of Temecula, CA, bounded by Via La Vida to the north, A venida Cima Del Sol to the south and Calle Plamas to the west. The site has been rough graded with 2:1 slopes along its perimeter. There is an existing 24" RCP which enters from Avenida Cima del Sol and carries 26.2 cfs onto the site in the 100-year event. An existing 30" RCP, which enters from Calle Palmas, receives the drainage from the entire site near the southwesterly portion of this tract. . The project consists of the construction of24 single-family houses on approximately 6.3 acres. . 2.DESIGN DISCUSSION 2.1 DRAINAGE STANDARDS . The drainage system was designed to meet or exceed the requirements of the City of Temecula, CA. The Riverside County Hydrology Manual was used to determine the design storm. . The piping system will convey the 100-year storm and must not exceed 59.6 cfs which includes not only the drainage for this tract but the off-site flow from the existing 24" RCP which carries 26.2 cfs, as discussed earlier in this report. These flows were taken from the Storm Drain Improvement Plans for the County of Riverside, Tract 22593 and 20153 respectively. 2.2 PROPOSED DRAINAGE I. Some ofthe flow will be collected at a proposed catch basin at the end ofthe cui de sac on "A" Street and will be conveyed by a proposed storm drain pipe into the existing 30" RCP. The sub- areas denoted "A" will drain via proposed Gunnite V-ditches and be collected in grates. Their locations can be seen on the hydrology map which is attached at the end of this report. . Another grated inlet will be used to collect the flow from sub-area "CI". This grate is to be located at ajunction structure at the join to the existing 30" RCP. . i' A.. . . The remaining water will be carried onto Via La Vida by street gutter flow and travel in a westerly direction. 3. HYDROLOGY . 3.1 DESIGN STORM The 100-year rainfall event was selected as the design storm for this study. 3.2 METHOD OF STUDY . This study was conducted using the modified rational method described in the Riverside County Hydrology Manual. Flows were calculated by the Advanced Engineering Software model. The computer run is included as Appendix B. . The site was divided into a number of subareas, as shown on the hydrology map included with this report, in order to determine flows at critical points. These subareas were classified as commercial land use and soil type "D" was used in the model. These are the most conservative assumptions. I. In addition, the conservative assumption was made that the site has a time of concentration identical to the off site flow from the Avenida Cima Del Sol. The peak Avenida Cima Del Sol flow is therefore treated as a base flow and added linearly to the flow generated by the site. . The computer program computes rainfall intensity based on user input of the slope of the logarithmic time-intensity curve and two points along that curve. The suggested value of 0.6 was used for the slope. The lO-year and 100 year 1 hour intensities were read from Plate D4.l, from the Riverside County Hydrology Manual. A copy ofthis plate can be found in Appendix A of this report. . 4. RESULTS AND CONCLUSIONS 4.1 STUDY OF 100 YEAR EVENT . The 100-year event was studied and it was found that the total flow for this site into existing 30" RCP is 38.3 cfs which is less than the allowable capacity of 59.6 cfs. The flows from the site to the southerly gutter of Via La Visa are minor. I . This preliminary hydrology report shows that existing 24" RCP storm drain line on the southwest comer ofthe project meets the drainage goals and requirements for the flows contributing to that facility. However, the effects of contributing additional flows to Via La Vida have not been studied. . ~ . . . . . . . . . . . (q . . . . I I . APPENDIX A: REFERENCES & FIGURES . . I. . . . . \. . v -'" .;;;I.LV 1.:;1 V.lVO S3M:In::> NOI.lV~nO - A.lISN3.lNI O~VONV.lS \:f 'Of' V <6 AEiOiOHOAH O~M 9 ~:J~Y l'v'nN' 'v'l'~ ) '-- --. --. . . . . ,.---- . - . . ~- ::u l> - Z ~ r r - Z -I rTJ Z en -I -< I z () :I: rTJ en :I: o c ::u "'U rTJ :;0 ..., ii m......... aoUlVl". wwwww NNNNI\I -...-...- ----.... c.. "' "'OVID.... o U"3' "'. .OO.NO ,.00."'0 .........11I ...,,,,...0 .....IJlUl .... r ...- :a 0 ",0 ;; .. Z ... .. . -.......- ----- -...--- ----- "'NNNN .. r ..... . ........ .. ........ .. .. .. .. .. .. ........ .. ........ .. ........ .. ...- ... 0 CIlCllll'...... ........ ..0"_ __NNW .....~'" ........... ONWYIl.. "0 m :a :.. w""..OW ........ ...ow.. ......... o...."'m ..-........ .-....... m ... .. 0 ~ C .. ... ...........-- ----- --,..-- ___NN NNNNN NN"'N'" ............ ..- K ........ .. ....... .. ........ .. ........ .. ........ .. ........ .. .. .. . .. .. .... n 000__ NNW_" ""11ft..... :~~:ut N",W_'" .......- N....O. .... .. OW......'" OO"NO. ",,,,IV"'''' _....NO OaNII'I. ..."'..... .. KO rs ...c: c: s. ... .........,. ~'".... wwwww NNNN'" ----- ----~ c.. .... " \,ftO,,"O,," .,". .....IVO ...."'13' .a........ ...IV_ tGat....\II .... O- r ...- "... 0 ",0 ... .. 0 0" .. " , . ~.;-;- ----- ----- ----- _NNN~ NNNW.... .. . ........ .. ........ .. ........ .. ........ .. ..... .. ...... .. ..- ... r_ ............ ..-- -_NNAI ww..... .......... ...-,. ....CII-. ... . -.. :.. W\IICII-'" ..... 101........ ....1o?ii- .-.IV. ..... ........1\1... ;0 ... .. 0 0'" '" c ." .. ... .c ----- ~--- ----- -NIV"'''' NNNNN NUW~ ""'.........1,IIl ..- ;0 _r ........ .. ........ . ....... . ........ .. ........ .. ...... .. ........ .. '"'.. " .. 0:>>___'" W .UlCJl ........,p .13'_"'1o?ii ."'..... .0_"", ..rv.- .... .. ...-"'.. .. "NN ..."'.".. ..."".. '""'... ._"'0 ......-. ;0 , .0 . Iii .........'" .1,1I1011.. ..""'''"''"'... NNNNN ----- ----- c.. "' ,"",OUlO'" .UI."'. "..NO ....1\1I. ..,......... ."'N_O ......UI .... r ...- 0 ":r 0 .. ... " . . ----... -- --- ----- ----- "'",,""NN . n ....... .. ....... .. ...... .. ...... .. ........ .. ........ .. ........ .. ..- ... " ........... ..... ..--- :=:=t:c: ........... :::::, --..."'... ... . . ......,N.... ..."'. -..,...., ""'.OUlO ........... .. '" .. 0 . .!ii . --......- ----- ----- ____N """'NNN NN...NN ......."".... ..- " ........ .. .... It.... ....... .. .. . .. . .. ....... .. ....... . ...... .. .... ...-- N",..,..,. ~:::= ::a:: _-NW" .."'... _NUl"'''' ... . _.......WI .....-..... ....U1N. ....... ..-... . "'NNIVN a ......... ."'11I.. ==~::;~ ...---- ...---- c.. '" "'."'.Y' ....._"'- ...."'. ......'" ...,N-_ ..~.~ ~.. . r "'- .. l '":r r . " . ----- ...---- ----- -fUNNN NNNl'UN wwww" .. .. ....... .. ...... .. ....... . . .. . .. .. .. .. .. .. .. ........ . ....... .. ...- ... . ::::=:1 ..--IV 101""'...... t......... ~..-N "'.."'.. .N".N ... . :.. .11I-.... ..... N.... -....'" ............. -N".'" . ... I: 0 . .!ii "' . ----- ----N ruNNNN IVNNN.... www....... WI........ "UII""OO. ..- " ........ .. ..... .. ........ .. ....... .. ..... .. ..... .. ...... .. "'. ww...... ::::: :;~=:e: ::.\:1: ;;~~:~ :1::1:: :;t:: ... . _l,II_.W . ii ........... ."""*". WWWW"'" N"''''fUN ----- ----- c. . .. ""."'.'" .UlG... .....""- ....."'. .......... ....,N__ ....~..... "1 .. r ...- >> ! ":r ;0 - '" . ----- ----- ----- -NNNN .. . ........ .. ....... .. ..... .. ........ .. ........ .. ........ .. ........ .. ..- . . .U"......... ::::IS ....... ...._NNW .......'" ::~::I: ..N..... ... . r ~ GO.._N'" ....... W_N.. "'-Vl.. ...-.. . ... r D '= 1 ~ .. ----- ----- '" --- ----- _ru"".,.,,, NNNN'" "'.......'"'1o?ii ..- . ........ .. ........ .. ........ .. ....... .. ....... .. ~:...~:.... ....... .. .... n .u..__ ;;:;=~~ ...."'UI ::~:: .___IV f.N.... ... . ......... ......... ...ru..._ ......... --.. . ) 4 0" o ~~ :. 6' . B' ill . !i' 9' L' . '--.... . t, . (i' . Z' . r z m ;q~';1. ~ (i ~ ~3Wd.O~~~',3,"1 l"t',' .. r;; 9 II -' 4 n 0 fTI .." .." n - IT1 Z -t 0 .." ::0 C Z 0 ..". .." 0" 6' S' J.: 9 !i to (i Z ~~.i !. I I L" r .: I' to g .;I..LV IQ 9 ~ HiL ~38v.1nN X30Nl ~~ONnH'l II-:>v.lV ~N'dV:>SONVl NV8~n-3d.u ~3^O::> O-dnmm 110S S3^~n:J .lN31:J1.;j.;j30::> :J.:iONn~ l'v'nN''v'fI~ AeOl0H'OAH tt oOM ,. ~~Oy ~ ~ttt.:a'~nOH: I ~'~~ I! ~~'~~Ni' 'NI' 'AliSN3.lNI T1V:lNIV~ P.J . o o z (i 'P !Ij-Y . REFERENCES . . 1, "Rational Method Hydrology Computer Program Package (RA TSC2);" Advanced Engineering Software; March, 1992. 2, " Storm Drain Plans Line 'r, Tract "593 County of Riverside"; To-Mac Engineering; approved by Road Commissioners for Riverside County, CA; April, 1988, 3, "Storm Drain Improvement Plans for Avenida Cima Del Sol, Tract 20153 County of Riverside"; Psomas & Associates; approved by Road Commissioners for Riverside County, CA; August 1985, . . '. , , . '. . . . . . . . . I ! . APPENDIX B: . RATIONAL METHOD HYDROLOGY . I i' . . . . \0 .. . RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c)copyright 1982-92 Advanced Engineering Software (aes) Ver. 1.3A Release Date: 3/06/92 License ID 1233 . Analysis prepared by: ENGINEERING RESOURCES OF CALIFORNIA, INC, 3550 E, FLORIDA AVENUE, SUITE B HEMET, CA 92544 . FILE NAME: 62385R4,DAT TIME/DATE OF STUDY: 9:01 1/21/2000 . USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: . USER SPECIFIED STORM EVENT(YEAR) 100,00 SPECIFIED MINIMUM PIPE SIZE(INCH) 12,00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE= ,90 10-YEAR STORM lO-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-Y@ STORM 60-MINUTE INTENSITY(INCHlHOUR) = ,880 100-YEAR STORM IO-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300 SLOPE OF IO-YEAR INTENSITY-DURATION CURVE =.5505732 SLOPE OF laO-YEAR INTENSITY-DURATION CURVE =,5495536 COMPUTED RAINFALL INTENSITY DATA: . I. STORM EVENT = 100,00 I-HOUR INTENSITY(INCH/HOUR) = 1.3000 SLOPE OF INTENSITY DURATION CURVE = .5496 RCFC&WCD HYDROLOGY MANUAL 'IC"-V ALUES USED NOTE: COMPUTECONFLUENCEVALUESACCORDINGTORCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES . FLOW PROCESS FROM NODE 111.00 TO NODE 526,00 IS CODE = 21 I '. >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< . \\ ., .. .... ........... .... ...................... ....... ... ... '" .... ...... ......... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)1(ELEV ATION CHANGE)]**,2 INITIAL SUBAREA FLOW-LENGTH = 200,00 UPSTREAM ELEVATION = 1132.80 DOWNSTREAM ELEVATION = 1114,70 ELEVATION DIFFERENCE = 18,10 . . TC = .303*[( 200,OO**3)1( 18,10)]**,24,080 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.093 SOIL CLASSIFICATION IS ill" . COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8928 SUBAREA RUNOFF(CFS) ,91 TOTAL AREA(ACRES) ,20 TOTAL RUNOFF(CFS) ,91 FLOW PROCESS FROM NODE 526,00 TO NODE 526.00 IS CODE . >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< . TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION(MIN,) = 5,00 RAINFALL INTENSITY(INCH/HR) = 5,09 TOTAL STREAM AREA(ACRES) = .20 ; . PEAK FLOW RATE(CFS) AT CONFLUENCE ,91 i. FLOW PROCESS FROM NODE 121.00 TO NODE 526,00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEV ATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 225,00 UPSTREAM ELEVATION = 1135,70 DOWNSTREAM ELEVATION = 1114,70 ELEVATION DIFFERENCE = 21.00 . . \ -z.,. . . TC = .303*[( 225.00**3)/( 21.00)]**,2 4,251 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5,093 SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8928 SUBAREA RUNOFF(CFS) 1.36 TOTAL ARF-A(ACRES) ,30 TOTAL RUNOFF(CPS) 1.36 . FLOW PROCESS FROM NODE 526,00 TO NODE 526,00 IS CODE I . >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM V ALUES<<<<< . TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5,00 RAINFALL INTENSITY(INCH/HR) = 5,09 TOTAL STREAM AREA(ACRES) = .30 . PEAK FLOW RATE(CFS) AT CONFLUENCE 1.36 CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA . ER (eFS) (MIN.) (INCH/HOUR) 1 ,91 5,00 5,093 .20 2 1.36 5.00 5,093 .30 (ACRE) . IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW, . RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS, . ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 2,27 5,00 5.093 2 2,27 5,00 5.093 . \~ e, . COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 2.27 Tc(MIN,) 5,00 TOTAL AREA(ACRES) ,50 . .... .., ....... ... ... .... ... .... ... ...... ... ............................ ... ... . FLOW PROCESS FROM NODE 526,00 TO NODE 526,00 IS CODE 10 ........ ... .,. ....... ... ........... ...... ... ... .... ... ... ... .... .,........ ..... >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # I <<<<< ....... ... ...... ... ... .... ... ............. ...... ... ... ... .... ... ....... '" .... . ... ......... ............. ... ... .., ...... ... ... ............... ............ .,... FLOW PROCESS FROM NODE 211.00 TO NODE 525,00 IS CODE = 21 ........ ... ... ...... ... ....... ... ... ...... ...... ... .,. ..... ... .... ... ... ...... >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< ....... ... .,.... ... ... .... ...... ... ... ..,.. ... ......... ......... ... ...... ..... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3)/(ELEV ATION CHANGE)]**,2 INITIAL SUBAREA FLOW-LENGTH = 695.00 UPSTREAM ELEVATION = 1127,00 DOWNSTREAM ELEVATION = 1118.40 ELEVATION DIFFERENCE = 8,60 , ! ' . . TC = .303*[( 695,00**3)/( 8,60)]**,2 9,997 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.481 SOIL CLASSIFICATION IS I'D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8898 SUBAREA RUNOFF(CFS) 6,81 TOTALAREA(ACRES) 2,20 TOTALRUNOFF(CFS) 6,81 . . ... ..... ... ......... ..........., ... ... ... ... ......... ................... ..... FLOW PROCESS FROM NODE 525,00 TO NODE 525.00 IS CODE = 1 ............. ... .......... ... ..................... ..... ..... ... ... ... ..... .... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< i. ... ... ..... ... '" ....... ... ... ........... ....... ... ....... ... ... .............. . TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN,) = 10,00 RAINFALL INTENSITY (INCH/HR) = 3.48 TOTAL STREAM AREA (ACRES) = 2,20 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6,81 . \A. .. ................ ...... ..... .... ................... .................... .... .... . FLOW PROCESS FROM NODE 521.00 TO NODE 525,00 IS CODE 21 ............... ... ....... ................ ...... .... ....... ... ............. .... >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< ... .... ... .... ...... ....... .... ........... ... .... .... ... ... ... ......... ... .... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEV ATION CHANGE)]**,2 INITIAL SUBAREA FLOW-LENGTH = 380,00 UPST ELEVATION = 1126,50 DOWNSTREAM ELEVATION = 1118.40 ELEVATION DIFFERENCE = 8,10 . . TC = .303*[( 380.00**3)/( 8.10)]**.2 7.043 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4,219 SOIL CLASSIFICATION IS "DI' COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8914 SUBAREARUNOFF(CFS) 4,14 TOTAL AREA(ACRES) 1.10 TOTAL RUNOFF(CFS) 4.14 .. .... ... ............... .......... ..... ... ...... ... ......... ..... ..... ... ..... . FLOW PROCESS FROM NODE 525.00 TO NODE 525,00 IS CODE ... .... ... ................ ...... ... .............. ... ....... ..... ..... ......... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE V ARlOUS CONFLUENCED ST V ALUES<<<<< ....................... ... .... ... ..... ......... ... ... ... ... ..... ..... ... ... ... . 1 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN,) = 7,04 RAINFALL INTENSITY(INCH/HR) = 4,22 TOTAL STREAM AREA(ACRES) = 1.10 , ' !. . PEAK FLOW RATE(CFS) AT CONFLUENCE 4,14 ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) (MIN,) 1 6,81 10.00 3.481 2,20 2 4.14 7,04 4,219 1.10 INTENSITY AREA (INCH/HOUR) (ACRE) . .... ............ .......... ... ........ ..... ....... ... ........ ..... '" ......... . IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-I AS DEFAULT VALUE, THIS FORMULA ... ..... ......... ... ............ ... ... ... ... .... ....... ...... ...... .... .... ... . ~ . WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. . RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS, . ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN,) 1 8,94 7,04 4,219 2 10,23 10,00 3.481 INTENSITY (INCH/HOUR) . COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW P-ATE(CFS) 10.23 Tc(MIN,) 10,00 TOTAL ARFA(ACP-ES) 3.30 . FLOW PROCESS FROM NODE 525,00 TO NODE 526,00 IS CODE = 3 >>>>>COMPLTTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< . DEPTH OF FLOW IN 12,0 INCH PIPE IS 9.2 INCHES PIPEFLOW VELOCITY(FEET/SEC,) = 15,9 UPSTREAM NODE ELEVATION = 1118.40 DOWNSTREAM NODE ELEVATION = 1114,70 FLOWLENGTH(FEET) = 35,00 MANNING'S N = ,013 ESTIMATED PIPE DIAMETER(INCH) = 12,00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 10,23 TRAVEL TIME(MIN,) .04 TC(MIN,) = 10.03 . . FLOW PROCESS FROM NODE 526,00 TO NODE 526,00 IS CODE 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< . MAIN STREAM CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN,) (INCH/HOUR) (ACRE) 1 10,23 10,03 3.474 3.30 . MEMORY BANK # I CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 2,27 5,00 5,093 ,50 . \(, ., . IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-I AS DEFAULT VALUE, THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW, . PEAK FLOW RATE TABLE . STREAM NUMBER I 7.37 2 11.78 RUNOFF Tc (eFS) (MIN,) 5,00 5,093 10,03 3.474 INTENSITY (INCH/HOUR) COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 11.78 Tc(MIN,) 10m TOTAL AREA(ACRES) 3,80 . FLOW PROCESS FROM NODE 526,00 TO NODE 526,00 IS CODE 12 >>>>>CLEAR MEMORY BANK <<<<< . FLOW PROCESS FROM NODE 526,00 TO NODE 615,00 IS CODE 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< . DEPTH OF FLOW IN 36,0 INCH PIPE IS 25.3 INCHES PIPEFLOW VELOCITY(FEET/SEC,) = 2,2 UPSTREAM NODE ELEVATION = 1114,70 DOWNSTREAM NODE ELEVATION = 1114,60 FLOWLENGTH(FEET) = 205,00 MANNING'S N ,013 ESTIMATED PIPE DIAMETER(INCH) = 36,00 NUMBER OF PIPES PIPEFLOW THRU SUBAREA(CFS) 11.78 TRAVEL TIME(MIN,) 1.54 TC(MIN.) = 11.58 1 . . FLOW PROCESS FROM NODE 615,00 TO NODE 615,00 IS CODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< . TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN,) = 11.58 RAINFALL INTENSITY(INCH/HR) = 3,21 TOTAL STREAM AREA(ACRES) = 3,80 . \"\ .. PEAK FLOW RATE(CFS) AT CONFLUENCE 11,78 . .. ... ...... .... ................... ............ ... ........... .... ........ ...... FLOW PROCESS FROM NODE 611.00 TO NODE 615,00 IS CODE = 21 .... ... ... ........... ......... ... .... .................... .... .... ..... ... ..... >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< ....... ... ... .... ... ... ............ ............................ .... ....... .... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEV ATION CHANGE)]**,2 . INITIAL SUBAREA FLOW-LENGTH 140,00 UPSTREAM ELEVATION = 1123.30 DOWNSTREAM ELEVATION = 1114,60 ELEVATION DIFFERENCE = 8,70 , I ! . . . TC = ,303*[( 140,00**3)/( 8,70)]**,2 3,814 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN, 100 YEAR RAINFALL INTENSITY(INCHlHOUR) = 5,093 SOIL CLASSIFICATION IS I'D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8928 SUBAREA RUNOFF(CFS) ,45 TOTAL AREA(ACRES) .10 TOTAL RUNOFF(CFS) .45 ... ... ... ... .... ... '" ... ........ .... ... ... .... ..... ... ...... ... ... ... ... ...., FLOW PROCESS FROM NODE 615.00 TO NODE 615,00 IS CODE !. .... ... ... .......... ... .... ..... ... .... .,. ............ .... ...., ...... ... ... ... >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM V ALUES<<<<< . ..... ... .,. .......... ... ... ..... .... ... ... .... ..... ... ... ... ... ... ... ..... ... I. I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN,) = 5,00 RAINFALL INTENSTT (TNrw/mi?) = y TOTAL STREAM AREA(ACRES) ,10 PEAK FLOW RATE(CFS) AT CONFLUENCE .45 . ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (eFS) (MIN,) 1 11.78 11.58 3,211 3.80 2 .45 5,00 5,093 ,10 INTENSITY AREA (INCHlHOUR) (ACRE) . IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED . \'b ., . ON THE RCFC&WCD FORMULA OF PLATE D-I AS DEFAULT VALUE, THIS FORMULA WILL NOT NECESSARlL Y RESULT IN THE MAXIMUM VALUE OF PEAK FlOW, . RA1NF ALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS, . ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN,) (INCH/HOUR) I 5,54 5,00 5,093 2 12,06 11.58 3,211 .- . COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 12,06 Tc(MIN,) 11.58 TOTAL AREA(ACRES) 3,90 1- ....... .... ...... ....... ... ... ... ..... ..... ............... .... ... ..... ... ..... FLOW PROCESS FROM NODE 311,00 TO NODE 313,00 IS CODE 21 ., ...... .... .... ....... ... ... ... ..... ..... ... ........ ... .......... ... ... ...... . >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< ....... ....... ... ........ .......... ...... ..... ... ... ... ... .... ... ... .......... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH** 3)/(ELEV ATION CHANGE)]**,2 INITIAL SUBAREA FLOW-LENGTH = 450,00 UPSTREAM ELEVATION = 1126.50 DOWNSTREAM ELEVATION = 1112.40 ELEVATION DIFFERENCE = 14,10 . TC = ,303*[( 450,OO**3)1( 14.10)]**,2 6,977 100 YEAR RAINFALL INTENSITY(INCHlHOUR) = 4,241 SOIL CLASSIFICATION IS "DI COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8915 SUBAREA RUNOFF(CFS) 6,05 TOTAL AREA(ACRES) 1,60 TOTAL RUNOFF(CFS) 6,05 . .. ... .... ... .... ..... ... ..... ... ..... .................,............. ....,..... FLOW PROCESS FROM NODE 212,00 TO NODE 227,00 IS CODE = 21 .... ... .......... .,............ .... ...... ..... ... ..... .... .............. ..,... . >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< ASSUMED INITIAL SUBAREA RUNOFF DEVELOPMENT IS COMMERCIAL . \~ .0 . TC = K*[(LENGTH**3)/(ELEV ATION CHANGE)]** ,2 INITIAL SUBAREA FLOW-LENGTH = 310.00 UPSTREAM ELEVATION = 1122,20 DOWNSTREAM ELEVATION = 1111.20 ELEVATION DIFFERENCE = 11.00 . TC = .303*[( 310.00**3)/( 11.00)]**,25,863 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4,667 SOIL CLASSIFICATION IS "DI COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8922 SUBAREA RUNOFF(CFS) 2,50 TOTAL AREA(ACRES) ,60 TOTAL RUNOFF(CFS) 2,50 I I. ... ........... ...... ... ........ .., ... ... ................ ... ...... ... ..... ..... FLOW PROCESS FROM NODE 411.00 TO NODE 425,00 IS CODE = 21 .. ..... ... ......... ... ..... ... ... .,. ... ... ..... ........... ... ...... ..... ...... . I ' >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< . ..... ..,..................., ... ... ...... ... ......... ... .... ... ....... ... .,... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*C(LENGTH**3)/(ELEV ATION CHANGE)]**,2 INITIAL SUBAREA FLOW-LENGTH = 270,00 UPSTREAM ELEVATION = 1127,20 DOWNSTREAM ELEVATION = 1106.50 ELEVATION DIFFERENCE = 20,70 . TC = .303*[( 270,00**3)/( 20,70)]** ,2 4,756 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN, 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5,093 SOIL CLASSIFICATION IS "DI' . COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8928 SUBAREA RUNOFF(CFS) .45 TOTAL AREA(ACRES) ,10 TOTAL RUNOFF(CFS) .45 . ...... ... ......... -.. ........... ... ... .... ........... ... ... ... .......... ....,. FLOW PROCESS FROM NODE 421.00 TO NODE 425,00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANAL YSIS<<<<< .... .., ..... .... ...............,....... ...... ... ...................... ..... ... . ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEV ATION CHANGE)]**,2 INITIAL SUBAREA FLOW-LENGTH = 365,00 . 2fJ I.: '. UPSTREAM ELEVATION = DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 1123.30 1106,50 16,80 . I TC = .303*[( 365,00**3)/( 16,80)]**,25,942 100 YEAR RAINFALL INTENSITY(INCHlHOUR) = 4,633 SOIL CLASSIFICATION IS I'D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = ,8921 SUBAREA RUNOFF(CFS) =,83 TOTAL AREA (ACRES) =,20 TOTAL RUNOFF (CFS) =,83 . END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) =,83 Tc(MIN,) =5,94 TOTAL AREA(ACRES) =,20 I. END OF RATIONAL METHOD ANALYSIS . . . . . 'Z;\ .