Loading...
HomeMy WebLinkAboutTract Map 32780 Hydrology Study e RIVERSIDE COUNTY FLOOD CONTROL DISTRICT TENTATIVE TRACT MAP 32780 HYDROLOGY STUDY August 2005 e Prepared for: Walcott Investments 45621 Corte Royal Temecula, CA 92592 Prepared by: Van Dell & Associates, Inc. 17801 Cartwright Road Irvine, CA. 92620 e \'P e 1. 2. 3. 4. 5. 6. e e TABLE OF CONTENTS INTRODUCTION .....................................................................................................1 DETENTION BASIN ANALYSIS .............................................................................1 RATIONAL METHOD ANAL YSIS...........................................................................2 RESULTS ................................................................................................................3 FIGURES ........................................................................... .....................................4 TECHNICAL APPENDICES ....................................................................................5 'Z---". e e . 1. INTRODUCTION Tentative Tract No. 32780 (Project) is a proposed single family residential subdivision located in an unincorporated area in Riverside County, California. The Project will consist of 35 lots on approximately 22.45-acres of land. The proposed tract is located north of existing residential Tract 23209, bounded on the north by an undeveloped area, on the west by Walcott Road and on the east by the future Butterfield Stage Road alignment, see Figure 1. The subject site is located downstream portion of drainage Subarea "G" as defined in the David Evans and Associates' report entitled, "Drainage study for the CFD and Village Core Portion of Roripaugh Ranch in the City of Temecula" and dated October 21,2004. The existing culvert, Line "G", collects storm water runoff from the off-site areas and crosses under Butterfield Stage Road on the easterly side of the Project. It is proposed to extend the existing culvert Line "G" through a proposed easement between Lots 7 and 8, and through propoEed Street "A" to join the existing culvert crossing at Walcott Road. South of the Project site, a portion of the storm water runoff from Tract No. 23209 will be collected by a catch basin on Walcott Road and junctioned with the existing Walcott Road culvert crossing. The tributary area for the hydrology study for Tract No. 32780 includes all of the lots within the tract boundaries. The proposed Project will include street sections sized to contain 10-year peak flows within the curbs and the 100-year peak flows within the street right-of-way. Storm water runoff will be collected by proposed catch basins and conveyed downstream to a proposed detention basin. The proposed basin will have a 42-inch outlet conduit, which will serve to peak reduce the runoff to levels that do not increase peak 100-year flows to the existing Walcott Road culvert crossing and other downstream properties. This report contains the proposed developed condition hydrology study for the subdivisions as well as existing and proposed condition unit hydrograph studies used for the preliminary design of the detention basin facility. 2. DETENTION BASIN ANALYSIS The detention basin analysis used the synthetic unit hydrograph method to compute inflow hydrographs tributary to the proposed detention basin. The HEe- l Flood Hydrograph Package developed by the U.S. Army Corps of Engineers was used to route the computed hydrographs through the basin for the 3-hour, 6- hour, and 24-hour, 100-year storm events. The outflow rating curve for the detention basin was developed using a 42-inch diameter orifice opening with inflows assumes to be regulated by inlet control conditions. A review of the HEC-l analyses indicates that the 100-year, 3-hour event produces the greatest peak outflow from the detention basin (14 cfs) and the highest basin water surface elevation (elevation 1279.58 feet). The required X:\Projects\914_0101\Eng\TechDocs\ReportS\Walcon TIM 32780 hydrology Repon.doc I :3> e . . storage volume is about 2.7 acre-feet including volume for freeboard and emergency spillway flow routing. See Figures 2 and 3 for the unit hydrograph hydrology maps for the existing and developed conditions. The proposed detention basin volume also includes 0.5 acre-feet for water quality detention purpose. The water quality volume was computed by comparing the existing and proposed conditions 10-year, 24-hour storm water runoff volumes. The proposed condition runoff volume in excess of the existing condition runoff volume was used to establish the required water quality volume to be included in the proposed basin. The runoff volume was computed in accordance with the Riverside County Hydrology Manual Synthetic Unit Hydrograph Method. The calculations are included as an Appendix to this report. 3. RATIONAL METHOD ANALYSIS The Riverside County Flood Control and Water Conservation District Hydrology Manual, published in 1978, (Hydrology Manual) provided the guidelines and procedures for the 10- and 100-year Rational Method analyses. The parameters used for the rational method are summarized below. . Hydrologic boundaries were based on street grading plans for the subdivisions as depicted on Figure 4, Hydrology Map, included in this report. . The underlying hydrologic soil group is Type B, C and D as shown on Plate C-l.42 of the Hydrology Manual. For conservative assumption, Type 0 was used in calculations. . The rainfall depths used in the rational method analyses were based on those reported on Hydrology Manual Plates D-4.3 and D-4.4 for the 2- year, I-hour and 100-year, I-hour storm events, respectively. These values were used to calculate the I-hour rainfall intensity. The 10-year rainfall data was based on values derived from Plate D-4.5, and the slope of the intensity/duration curve was based on the information provided in Plate 0-4.6. · The development density of Tract No. 32780 will be approximately 2 dwelling units per acre which is equivalent to 16-acre lots with 40% impervious areas per Plate D-5.6. The rational method analysis was performed with software developed by CIVILOESIGN Corporation for both the 10- and 100-year storm events. The software was designed to accept watershed data and perform rational method analyses in accordance with the Hydrology Manual. The software defines subareas and routing paths by means of upstream and downstream node numbers, node elevation, travel distance, soil group, land use and type of conveyance. The Hydrology Map, Figure 4, shows the location of all no(je numbers used in the rational method analysis. X:\Projects\914_0101\Eng'lTechDocs\ReportS\WaJcott TIM 32780 hydrology Report.doc 2 A. e 4. RESULTS The results of the HEC-l flood routing analyses and tile results of the Rational Method Hydrology Studies are included in the Technical Appendices to this report. Table 3-1 below summarizes the peak inflow, outflow and maximum water surface elevation for the proposed basin for the 100-year, 3-, 6- and 24-hour storm events. Table 3-1 HEC-l Basin Routing Summary 100-Year, 3-, 6-, and 24-hour Duration Storm Basin Basin Peak Peak Basin Ex. Condition Duration Inflow Outflow Basin Storage site runoff (cfs) (cfs) WSEL (ac-ft) (cfs) 3-Hour 28 14 1279.58 1.3 19 6-Hour 25 13 1279.49 1.2 17 24-Hour 6 3 1278.45 0.8 3 Table 3-2 below summarizes the peak discharges at each of the proposed catch basins. Table 3-2 . Rational Method Hydrology Maximum 10-Year and 100-Year Storm Drain Flow Rates Node Tributary Maximum Maximum Drainage Area Number Area lD-Year Q 10D-Year Q (Ac) (cfs) (cfs) A-l 102 4.36 7.59 11.57 A-2 106 2.71 4.68 7.14 B.l 202 4.61 6.07 12.35 B-2 204 3.66 6.66 10.16 C-l 302 2.18 3.84 5.65 C-2 306 2.20 3.94 6.00 0-1 402 1.96 5.15 7.64 . X:\Projects\914_0101\Eng\TechDocs\Repclf1S\Walcott TTM 32780 hydrology Repott.doc 3 -5 e e e 5. FIGURES Figure 1 Figure 2 Figure 3 Figure 4 Vicinity Map Existing Condition Unit Hydrograph Hydrology Map Oeveloped Condition Unit Hydrograph Hydrology Map Oeveloped Condition Rational Method Hydrology Map X:\Projects\914_0101\Eng\TechDocs\ReportS\Walcon TIM 32780 hydrology Report.doc 4 ~ e i , e e I N 31V:JS 01 LON 0'6 --- 08i Zf' l:J'rj~U 31/5 1:J3r08d cj0'J \\ \ It '6?,'l;?--- - )'3~\j\OS \ o \-Q.I,NtI tXJK-ttIo (M) tlla 'Q ...._ -........,- ........OM ........ -..... "011 'SILyPOOSY CJN l1JJ Iff A :.L8 tJIPIoGW SWW _ID aJ.W dVW A.LINOIA 08l~e .10vw. G--Q :I:I'IllY 1ClIO-t18 "Of"'"""' l ~ . ~ ~. . ~ ~~---- - -""-,.. ~,---_._.... Riverside County Hydrology Manual Soil Group and Rainfall Reference Plates "\ ,Ot.u ~:.~ ",!, g_ B." ___"~.n~">: ~:Jll .. ~...."..,._ ... ')l'. ... ".It..:. . "".....,... .C ... , ,;..;~ "', "'~~J:" p: '''''''~''',''''' ~, ~, , ",..~"J 1%-i.~~'h:~-'<1t ~.,j, (, b~~ ..lI' ,,~..',J;~'.~\';'$-'V' ~.r n ,Pi'!'L ,,"{"Of' ..',""; ;:r~h!,nl,~~ /". 0 '~ci:."",Z/. V ~i!:il\'! I, ,~(~ ~1IS':~ ' . ~,i\~,O:r ~-ft:'" ,~", - I;>\~ ,B /' . B~~ ,,;f'" , ~," . .,". .,. .". .' ~ ' 'L.~"'-:~ ,~,~ ' ~ ~""".". . ~~. "",,<'Wi ' ~~~, #';;tl'!;;"i(:~.~~W/;~_~~~'<B-" 0~ .,;:r~~~c- t~'i:. . '. >"11..;. ..J~'" ~~"t:$.l;;'21H?1 0, ~"\OB o~ -!':,;;[f ,.....,..,_r:?~'-CA_ ""'\-~ ..' . ,.. ~.. , ",,~ " ".,' ,".. '. ..,l\'! . ,,, . ,.' " . .~ . -"', , " .",...., 1?1:Tr ~V"':'_~P'+' -;~~~~'tJ ?-.....~.t3 ,~_~,;,"'di9' ~,,~~-$'~. , . \. . """" ,H ;,~-"" . . """W',,,.,, ~. . ,"". . . , ~", .. ",,," ~ '" .. '. ,"" ,~.." ~- - ,. ".' .. ,- _~ "9 B ~O" . rO:}J~='.;,:~-'~ 4.1:..:'. . . ,,' '.<y-,. - ,~,-' ,~, . ,.' .Q;~r&'~r:t OO~#'~~~' ~~~' ......~~, ~~ ~;.. : " ~C'" ~"., \, >f,'~ ,-"I< >>,"",,"'ii: .' - ~:, 7,?,0 ~l0' ..~~~~"oO - OB :~ bO' ~B . = ,." ,~. " .~. .,. .~~'17. .:C, ~""''''' ~=;' it:: .....:' ~.. of '-~ __. .C> -.' . -".' .' :._ OB . """ ~ . W . . ,,' · ':. ",' .:... . _ (v-.. '"1MI""" . ~~ ,r-~ "" ..." ~.., ~ , '. ~ ~~' ~,; ,,' ,~,""'" . 'C.'" " ,,'f0~~~ t... ~~." ,~, ''';;; . ,~, ' =..;;p""'" '. " , , . _ " ~ . .' ..,." <0 ' _ .,,$ ~;lI" ft,q- ,-'-" 0 ~CO." """-'nJ/ .,f "'l"'" c' " ' . ,-' -'~ "," _. .., , ,. " . ..i'" . 7", ,,-" v' " . ,- . "n ' -",~., J. :- j;Js' e" '~M"2 't 'r/nt r~~" -~~;UZe- n;~ ~\:~:~(f~1f1o(; ~.~. cf).~ i ~".." . ~,~k.)L. . "'" ' B,.v ~8 .~.. ~"""~ 1 ",,-. H~'\\)~\"" 'I - ,<5 -",,- ,,/ ",' 'M "..., , " .. ' ~ ~ , ~ v . ,. "... .' I' , ,.... , ,,,';. D ~, '0<" '.d:"~~'~ . .~,,""u)ll4- ,I,' i" , ,.. .'" . " .,~ ,,,' I' ' \ ,",," , o~ ' "S'Is1)~"(J~Ft ~ !l:l'l~~' ';'i l~lI'~ ~~o .\,Li. ,:.,"~~2~l',. '~'-'-~~iS4-!/5i ! . ,') .~ YJ I~ (.-;~ ~ 09 .II.' 'IJ ..' . r .",' "~' " l~ l"- . . ~,.' -..,. .."" .,' . .. ' . ,,' ..., ..,0 , " ..' '" _ _ . .,\ cO ',B M':"" ) ,', ,,;'~\\,. ,,' ~~'~ ~;;:' , .' " l:" , . . " .,," '. . " ."'" ' . ~. ~~' ' . ..' ~ . "" .." ;f"~' . ~~~~." .. . 1H,,"o,,<3 'o'o~ ' . . ~" ~ ~,. , ,'" c, .. ~ " "'''' '" n ~~~~j:~, ~~~ ~' ,'~ <,,1-0 k .. ,U. ,.', """",.; '.' '",,"" ' c,e ,,' , _ , ,.".,., . , '''. ".,A , ,,"'.' .., 7J;;lftF~.J'l ~. J oB~1. ~7'\~~"- .?Ld:o?'~' :1.[. 1.0.- ~ ~'X. ".~~'1'9;Cil'~ 50'." '))d, ~ c ,_'~ I.,,"'..&.I<.OB' ~ ':1"-' rf . '-,' - .;.....' (. ~ ",~," ,/"" 'c."" ...,.... '0' .. ,._ v, , 0 ~ k ~..... ~~. ~ V . e'e' . ,,' , ., 'M ,. 'C&. ' . = . ,c-......."" ~...~ ? ' .'+ _>.~. , . ~. . " ~'L,.",j~ ' , 0~1 '\ "". ;77.31- ,B "'<!I.'.,'o ,.!l.~,,-_-~-" '.>J/"':::" 'B-' ,",' . .,.,' ." . _ .,,' _ ''o. ,r ' ,.&,' -, ". '!'< ~ . ~~::'"'--"."., '. ~'.. ,~. . .9"li!31l ,_ ., ." ~'nAo ,_-..... .ff-' sQ, . " .'Po.." ' ...' ", ' , '._ " . ,;yi" 't ,," ,,' . _,.:~'("-\'I.>' s:. 0- '::.~ o'f'sccI,..V( 0'w~'" ~~.:;:-)...,' ,~1ilry~ ~,:r.~..- .\ _ Ql'~ .,' " _"8" , . ',,,' . g , ",;V, ,,' ". ' ". ", r-'" , ""0/~' '," ..~.' . f}\''io /;f';rl t..,--O ' .~,' ;:,:,', :::;:O~~~;;j\'''''' .~!1;)o!:) i ~;:: ",-,'.r~'~ .-:6'~ " . F," ",' .".' .",..,;~""" ,~" = ,r.,,,,,<= "''' ,,(.1'.:4., I,,' ",.c ,',K..;" ,"'" _' ","-', rf .,' ' . " " "'&[ 0 0 V)r,;::~:"" : ~;''1;'', ";;>' "," ""'" i"'~'J,'" :'o ~..>'- ,""', I~ 0 -. J1Y~ '1 ,,;;;, p' .,~" '" .~. ,gf.;",4Jl' ' ",",'. .' ,'- ,.; ,,*])~,l I" R\"''' ,.~, ~7' -. 'r",y."..;..7~f'" (~..~' '1 I ;t'" '~.' .~. ..' 1~' . ,,{.',Ji:'''''' . w,,' ,&~" "..""". .''" ~ ;v'/''' 'ffjj'"fl I - 1~"l10'~' , ",,0" 'V>s7 ,v,"",'\i' ~;";r'>':B g~o,/",o:l..~-" ,,'~ . . . /d:2 ~ .).:, .., r' .. ,,_~.Q'~'!: .'" ,\,,'1iJ:)G .~\"'o,,,,,,",,-"Y';.tn.Vo \ ,t-. o~ .., /7i:.>6 0 0' < ," 'v, ~_ <'I~~'~~E K''C'"'' 0 -' ......,,' ~B.\,(.,.,::..e ,. " .. ,.... ' .' 'CT ' -~. <. _"':.;-i, .' .' Ol-,,~\I' .. .;>}::,QC:;'l"!l :;4" -,I / . ,!?"(j1" :-;i~~. . 'o..v" q,; ,<"",,,,". ,,~/ 0'''. ,,,,,,'--} ,v ~' L ~' )),.~". ~ 'v 0 ').' ~ " Il '."'''''''''''0 ,,~.o i....",...j..' 'P7 -~ '0' , '~,:-;S .';:~' 0 Ii. ~'<1ft B ~, . ..,', .0 I !n"'" 'Ii _ 090 ,., -= : 1~:1fi. ~ ,M....~ ..... "" lvnNVJl'i AS010HCiAH a:>M'8:>.:I::H:I ~ ONIW ~013H:>'if8 ~O.:l d'ifW dnO~9 SllOS :>1901o~aAH N0I.1VN9IS30 dn0ll9 S110S V AHvoNnoa dnoHS ~os ON393' ooos 133; 0 ~-'""--' Ib '&.!:f I-;J .:U.V Id U 11.- '.!'. . ~ ~\ 'g I ~ ~ "iJ ~ ;"., , ,. ,. o '/J ~. n'~ 1::~ , g \~ . ::"" ....'Y:. 'Ii: . lti t >, Of.!'" ....-<41 &..1 1>, ~ ~ e - -' , -' 'i " . ... ~ ~ ,.:01 ~ t~I" ~ L:. ,~ r . if ,l J: ,,' ~ !~. \'R~ ~ <..", /(, ;...L""':{I, .1) '( , , '. t , .,"'-, -;- " ~ I rNJr ti4J. t~ . ._f? . ...... 1.1 "1 1t ~!fl ,.; T~ ~. / " , . ..." y "<I~/~' ~:' :/'~ . ~ ~ f": .. '1 ~o,~ " ~ .h~~ ~ ..' \ ~ ~ ~.. ~Cl\ · ''-ij1i ~~~ / /., :'=', ~~ ;ik~~ ~/ / ~~ "'(,' .' ~ p. :. ~'~V.:;."" '~', ';;' €ls .,~ ,"""f""FA ,~:s- :1t ~ ~~ . ~'J' \ r" ~ \'\"~"" ,<;:.;-_ .. t f. ~"o,)1' ~"E)r~,,1\) ~~, . "~i \~r "'*~i ~~ ~~.r '''{' ..~ .... '7'_\ . .. ,~ ,,(,~ (....' <<'! ~ "f;,. ;Wf;ll.~f,'_", ~;,,~:r.' \, . ::Ii' :/fl~, ....~ .~~~~~ . ~',r. " /. ;-ll!Iir'''Il'/'. '~,,~,*-l1>\\' .;'''' f It.~ <~.-~~/. :,'j''J t'\......;.~ '" "., ,t, " , '., ',' fI, .. q:,;~~." ~, j'':''', ~~;\,,,;,,, ,';'1" ~ !" ....". ') ~"1 " ,'"., .. .... .,. ,'.. 1 . ~. , ~ \' - ~ -. '., '~_~" t':..., '~. ....... ,_.y" '. ___ ".r._ " '.co", 'l .-,; _\/ J ~_ ~ ~\. .~ . ~~ <.,~ ~... ,J'~"" ,N,. , 'i(.-; /i,. _ \ 1...._ ra" 'S ~ ~.J~" .. ..,.,; ". \ 'I"" 1.-( , '1"'" ,Ie' , ~~ ~ ,.. ~~ ,m,j"" -,. .".y ,. .. . ,. 'l. J': .n... -n. :YA.:r ~~2~ ~"~. " ,,''''''' . 1,..\' 1. "". . >~, ~ r:!'\ ~ ~~!'l. J '" ;.. ,::.(~, ~'.~_,...,' ~'f"'\ ' , ,"'$ 0;; ......~ "I. . ~, ~. =-.' ~."'."'~";1}'~),,,,, :,~. '" I ~)i~1"': .., b.\:,' '~'" \ ~ * ~~, ~\1.. ~ ';C;'~.'" )>: .>,,'"Ii' . "',,. """, ," .. q~ ' , , JP '. ;>-~:~:"', 'I;'''~di~':M .' ,,......' ",'.r ...~~ I' , \' ""'~ . . ,r:;:, I ~ -2J Q:~ . . '..l~ -~. Rf', '" >[v"1 Y." ~,...... _.... I. " T,.--C-';~'" . "",,.,.:, . 'n" "v,V' '" ' , . ~~ .. -, ~""IIM . I'''~'''' .lil.T:';~'.. 'iM'"' 'I<" ~-~ ..'(~.. :n.~Jl.l ~ ~'> ~. i:r' ~ [;, .... ., '-I "' ,"; '0'~_"'- ',' . ,-~ '. . , '-. - ~.-"r:,.' c' !J::ll' ~'':u ",>. i.~7""3o,' """.,,", ~ r ~~'" _ I' ,l!., .: ( do' .~. -,.... ' - ;,i,.6~_~-' ~~~''""' G'l . rq.,..,r .. . . - . . ;'5'~:"". ." ,I.". "> "''IY"21". "'''~ '~i:-'i - ......, . I,.., . ", , ~ r.t.'.. (~',' .,ra ',';:" I' xr...,Q:; ~~.'" ,."1. 'crI \/I wi"~' ~ ':(~~ -' ~~.jl-.:." ~.--, , ,~,~,., ....':;, ;~:, '. .::. '.:, '. <~~: \~ ~"" .~- ..,,~ '<X~ 1 . '-;'1'- -i-r-" k ,- . '. ' ,'."" "," '" .' L ~ "C.,'" . _ ~ -I "l~ ,. c.' "" . '. . H> 0 c..: "f ~ I"'l. , , . r .. !, ,,~.,. '" ." ,::.It, "':'?'~. '~',: _:I. ". . .- ( '<.0 . ~ . c."'f.,Je! .'...'.,),."".. '.,....Z "., ,- ~~ ~..,......., f V Jr n "~.,..- . .,' ... ?',~ <>, V. '~R<. . ,-'! ..;.8;."...., I . .,[ .;;../ '""'._ i.~k ~ - ~ _ ~ .. ''\aI . dJ, . ~ ,~~y/ ::::"-7""'0,', .."- :.t~':. ."';' . \L.Jl' ~ ,~-J, .,' 'R{D-=~ "" - 11- '"" ~ ,;;../. ~...;-.:.,~.\ '~t .. l:,;i~::~'~'~. ::.i"~.J~.~~'~"-L' If, ,.., It- (i!f"-ii?~ . ~ -' " ",: f-f> i " 1.,:2.:'" "'- U ", .' ".)' l:f:l -"""" . I( (~;~' .' / . "'\. " " "'-T ..~~ "".'-".' 'r' "'?r~f.')\.. ',<I. ,l< >~ ::-U..; ~~. f'- ~~ J. _ _~_ ~\'.'~. ".'." ,. . :i),". '. '''''''. lS'.' ~ ~"JA i' A;i,;-I f c.,. -- . ,~ v, .'~ I' , {.~'t..,;-;;: .'.;!I ~~:,'," ~,-;::. d J 1'7; ~',"1'l., .,". ~ .'.~ ,. l' ......,: "V I~ !at '" ":> ,/,,':'. ': '0.;,'. ~:., '- '~~..i" 'o-'V,;- . - ~ . -J If ;.: ~ :1 L.$:');'";':~'" .....~":...'" ~'" ,. .',., :.... "~~i1:C-V" .,if..;.. ~"~" I 1--J, ~ J " ' ,j. "'."l;~' '. '~,l:\. \:,.. rT'l ""flli~..~~", '6A'J.li"'t.~ t{ 'Pjr4. ~ \~. ;V;"" ~ I '. ,. IV ,....}. .".~..... ~ ",.. ~r;." f"' j', ~ ~.. ..' \ " - " . " ,.. ''''. '/1<' ~ I '. . '" ,,-,' ;, c: t;~'f". < 1'11- l..-. "':!' l ", '. . , . · - ! .,...,,,,, . ( , , "~'" . \'. "" ~,;, II.. ., . . . ~! I . I .- ". "I'" ,-. J;~ /l;-.:V' ~ 't'/, \.~;:'.SI~"" '{h._r ... _ u.~ I - ii' ~ . n..' ); - ;;:tr ." .. , . .' . ,-V"," ......""1"1', '. _..., " ~</' -li{..' ".;;f~';r~ "'%11"111';~-"~~"'1\'~4~"~d.t'KI~~, '." ,~/~;' ~ l- t, ,.~ '.,'W. ,', v},U;lil'!:',:" .~,': """..-,.,.t.', \'" \ . J'" ~~." 0 f ~ '.: ,>::~. . ,.-,r.""t(,~ 'c. I'-\lft 1/<.""11\' . . , '~" i I ;' . "" \1, "1,,.- ,~~ l' " ....!..:'I,yiql 1.........~I2>" _...:/.- ..,0'","'.... .. i:o.o \!J.:f ~ J} ,~I, h ~/~~ r~./~ ~j"".,,/:;::f~ ~'~111''i]~:'~~. :~':> I --'~'~II' . Ii ~.:~~~~.JZ ..:. '. ."'1.1. ~. ~'\' ',e>fI.\'~ r~ 1''!!. ... ~. .,1 '"'" .:r;'~ '~~~ 0<' 3......... ' ~ ,,/~ "', I , , ~ ~"t- '- " I I . . __' ;J~ '!. '.. ~:r \ . . -~, .L lire zR:J r;.s _~JS' ~ ~!i,"'1~1,",:;{l'"j \; ~ "'"",l,1~:~~'11LI, 1'-"; ~_._~:z ~ ~ 'I J '. . ::~Q;h ~1:' ~." ~ I; .r lOt ,;'.... ~ '''(:',i~!-'J(",",., \'M I .,,' --"!!!f';, ", ;,,:ii" ." ., :i"''''7= ~ H~ .~ '~'.,. I''''' \ '~I"';:~ " ~.~- ' , _ '... 'i.~ ~~'I:~(r(:,,~,~,f \(1,\:, .iw:....{,l-tt~ ; ,.~ ~ ~.,":"'.;'~ . .(~/ i';~ll :I: .~~I.~\J:1."",,~ \, ',' , ~', l "II ~. 1 ('\i~~:,..\..~ t WI' , m ~ l' "";'\....J~ ,'il ....,.. '}' .- , "'~' tlirl ..,. , 0 ~, ~ < '1'" ..:J. ~ > (, . ~.,..,..?l ~t o. ( 'ntj! I~,,"', $., (. ",~",~",~, ~ ~ iCifO:-p ) ,'. "I" h _ ~, . - ':~/lt:: ~ ... . - ;r, '-.': )': " i ill' q, " " . ~. J:tii' ':" ,1 '~'o: ~~' i,' .~' ,', ~~ 7., - 7g;, ~ \ , "'~'");r ", -;?f" ~. >' 'I t - "I - " J ,. '*".. . . ~ '~,'f,.~'I~'( f " .' .;., "!"U. ' . '. .~C~ :~-- ~~, ;-' ,~",: I~i=-, "\'/ \:E~J~ t"~"""');~~.Jl' ;"J -:",,~).,,~-J:.,.~ -'-~ '". i <;.. 0:0 \~~, .'/~ . , .. f)\ L- ':r .-i..~ ../~ (,. f~i r. " . . I"' . -'--. ~,~- , .. ~ " . J:" ."" '.~.' ...'( .~r;j~[(2 "~';,. . '~~o,~3I;'~"'J"";":TI1'i.5:(j N t-~.( \. ~ , 'd'J .. '..', "'" "'~' ,.it, ..~~,. \",.~; I, ~....~,yo, g- ci! .:. ,(;p~,:, ,~' _ '" .I'}'io ~~)6~ ~ ~':.,t~ !"t2jl t ~( ..~ i)J~i ._ \' ' ~ ':.1~ J ... < :=- ~ .f . ~.:.~ '::'i': ~.,'CJt.i'JJ:' ..J!'" \jy(-' .:;, l'<. to," ,.~J~; .--,,~ It. l.~; "''''',-'/~ . < .. k.. ~I, c..;;;; ',l~l' I jl ...._, I V::""'- -, {I'" T c. I Ii C~';';:':':!l t.:<;~ ~ ':OJ.! ~ I" ;/,1 ,",t ;{:~:,~jC~*: 1 ~'~lo:~:~~..~["7;~~ ~~,{,:c,,~:,~J1 ,()' . G ' ,- - I ., ,,",l;.;.1. ~l~;' ''''-''ill!'~' . '<"1:0:" ,.c~r-"r.~' c'~" (,'. ~. ~', >..:' l ~ ,., :-:.'....;:i,f' " .-,-.- (:-.. ~7i'''' J) J. , 'j~ '; '~m,:-". . ~~ -i!', "'dc7t"?~ J-" C:~;' '. ~ :\ :-:~"J ~ ...".' - .t - . ",- ,l ii..'lwr," _' '.~ ,';)fJ';" ::: 'r"-....~~.....~_ - ~' 1'.1' ~~t~" " . 'iU!',!,',% '. "i~'''''-"'' . -:. " I -:-} {j'~ ,:>:'/;-'&":3:' ,-:;r);B!"~:f' l-'14,~ ~",,""', "'I: ~; ~ 'J!::~'{ i/"~'?~;"4V:~?l;;'>~T:~:~_~tf?~.~~. ;., i,1-'~' " ,~J2'VI.I!x: ft' " ,'" ., .\WI-7:' 'l~""" E." I ,. P ." W'j~ ' "tIr',~ . :;;1) ~ ~ )~ p.t.V~ 'V. _ ... .v /),.. %Ii ~, ~. -, " ' , 1,~"" , _]WI-, ""11....... )> , , ~ ~ r(~;,~,. J.::';'~:I~.i~l ~:J;,o:L J~ ~~,~~,--< - ,~ '~~?i~\\'lJi.~ 1,.1 I"~ "'''''"''''''''11'' ~~J;~ "/.,,,..- I ", (; ,~..., \;u~\y L ,,.,.......\rl,~. 'i,"";I '''\~,~ IJ (' ..j ... _ J'....... :) ~:t' ~l...~....) ~." -- ~'.~ :~ ~ '? r ,'>' ...!1} .i"J lz. rril'f \!,.MJ (' ~.r;:/ ,.y~ '..,:;-, ,. l' ",' "'...,) \h !2 J}f3. ./"~\' , r, l'i~ I ) ~- .r "',T,"(1I"t~~j)r.,," ',' . ~r~" "i' WI' I," I' , >!',~" ~t ) ~I ->' '.... "t, _~ f7"-!'/f </ r-I _ f, ~~l ~'...- ~~}I . -~I ~ ?.P" . 'i . ;~:d: ~'1...y; I - ~ <. _\ f, _ ,~~'" +'~'I ~g - ,[::;r--< 1''' o,~ 4~.".., C'.' ~'. ,""-' ''''c' "'Sk' ," 1.c. _ i7 '"\.~, . r' ~. . ~ :v;o ~\~".' ; \ u.{I.','1\', _V;?!~,. ...... '.~~ '~- . '.. l'..."', r~'";\f,~:J~~.'~'(\ ......';/%..\l~ ~'. .~"";~.~ .,"'~' ~I'. i I .th':""_~~I' -~_..\'-' . : ,r'},tI.~'" " ~ ::u".i......-'......- ,~-Jt r j" ~'~.~... V!~.": ~":;~~~..' ;9( (/ V.' ,,;-"7~L A~ I"~\ ('! ./r,) "f'Jj"", l'V'~')'!~ '.','y-'{.....,' '~'~':::r:;; ;.<.t];.....,,'~'.l~... f .'~t~' . rr-" d ~ ,.~/. ~ ,,'" ~ ,-" :~~ \.(l; ...... :: _'~ ..,.. ... ~ 'r;A ),".~ _ 4 I. ,...'~~ \.."..... \., ~. I ,. \.\\-:u,.; .....~, "" ," \ ,,' ~b 3:~" Y,,''''.:: _ 7. ~ ~i \~ ,,-, '-'. ,l/-!, 'l!:I#'...t:"r-.. ...' ,&(\1\.,,\: . ",' ~ ~,~ ('f ..:...., ;;t, k ,,; ,,~,' ".', "..,~ :>,:'," \ t. ~ .'f ^ , ~r ,.. ~;'. : . ~ ., .-' ~ ~ aY.>iJIiI I~ ~ .T,J' 'I> ' 1 , ;.iI -'-, . ~'lh~' ~f'I~' ~ '~ ~l' .v: t1~ ~. 1-< :~ 1 j "R'i ~- ~ , . \ . r>f.'~' _~~1)'J '.$.l .t,:-'; . '\.. ~ ~ ~ ~l"' ~ ~4, ~J~'1 ~~~c:3:!~ , ' ., "'- -;J ~ "_1:. V< . ::-.-~. . ";;{i4j, .,~ ~- ~M:!. .::~-." ~~ ''!!L"Jtl '~ ~~ ~ . ,>r:-- . I ~ ~ -;,Y" ~i~/ ~JT. ~~. .~~~. """~ d- ' -....~_r~ ~7_i3~~~~ ~> ::'1'(~i:,'V --=-.>--.'::4 ~~vCX.'--:~:" ,_.~~ 0/?"~'~~: "'<f " ~. ~. en ~' ~. ~1~~ '~. ~ _..~ ~ ," < , f<<i ;/ I~ e, " " f:.\ . .' ~~: --. .1 ;'I ,~ \' e -~rI.( .. ~I~"". ~ ~ " ~I' M1r~ 'iJ ~, , , S\~ ~~1r . , At q \! ~.'. Jll r~ - I , " - . ~~. r '" , ~ 1;,N ~o _ l ~ '?' '" ::E <: > '" -< '" '" ~ '" " '" n n ~ 0 IJl c:: '" z ",>-< <z-< >0 -< ." - ~ o 0 Z 0 " " in n -< 0 :!l z n -< -<. '" o ~ .;>~ ~ :1~1 .,.~"'l 1'I:l I "'0-< :01'Tl 1'Tll> ("):0 ~I ~- - I o:z: 20 c :0 p " I ! ~ " .' ~ .11 ~ . ; ! ~~,:o . , ~ ~. \:l ',i..- ~ I - ........~ 'r: 'i."-"J.r. ~~ ,'I '.\ ':....''''~!:' ~ f';; . . "-_, ~"'''! #~ '" . ',: I" ~~~,J,,~,,~~_~,. f ' ,j,' '"~ .",.-~ ."" :',~ ~ '. ",'-:r, ~ r~...~, _, --: .;" " ~ ~.r~~'~::-,"V ~ ..... ' ... .. , . ~- ~.~ r_. · ~ ,'i2 ,;. ~< ~ -_.... '~-:;;:L/.. .1 hi \, ~ ~~..:; 't~-'l"r,""v_~_ , ~~ ',!~.... -'1.A.~ ~J.: , ~ '.....::~<<:i-~~, _ 1'~- , h ~""-. .0"~ . ~"'/?'~-"~, . .,3; n~~t~1 ~-r, ~,"v^ :~ -.~. ~'\.' .. :-l ", ~ 10;"... ...;:,.."" \" ',J.. ~ h J.:l '" \f,'f'c,",1l p,~ !\~,."" 'j~" _ r ~" ~ '_' ~ ~ ':,1rt '':;;:''" ., ~h\- -- ~ \\ I \ ;::,','!I' ,. [~,.' ~ '\ -..; ~1~'~"'- ~~ .1 11~: ~~ ' r' / 1'1 '''?;'l'~ S -\;,-1..'\'!V' " ," ~ :0': ~,p. t,~... ~~ e '\ ~;1t.. :? \ ;" ;;tr , - .,,'lie. ,/1 ~.( ,..~~" m", J ',11 VI,..., ) , . \- "'ot"l ~t '" i'I , ;"'<' ~/ '''"., )1#;, :!;K'J: -,:, ,~, (,'~ ". ',Y", " ~,.",>"., . .,. .' ,fr, ilj".l;~~' ''''"'' ',,,,,, , ". ~ ~r' ,1,,-, / t'1t.~:.-:' r.~: i.~ ~~~~ ~_, \, "f ;,..... " . _ iFr. '. \' ';~c;;o~ I J 0>. ...., ''','", :..... .,.... """', , '''''''I~;;"'' ' , ..... '," \," ~~ ~ 'r:~" ~".. ,~;, ." .', " ;-:;;>, . . "' .' .,'" _ '" ""'!' -::;p.-" ,~- '1",\'..,,~ ~ '"" I ~ ~ :;~ - ",- ''', ;''1 .'. ;~, < . .' ',i> " Cl ,(, , ! i INt. :.' .:1:". "'I~~ ~11!/~ :r!'t, 'i"-" ~ '~'oI,;" 'f.", ," . '0 \~ ,"l ("J.",~ '1," ~!C'~ .,'. ,I ,,' . '.' -,' ., l~~. . " , ,. /1 ;~';:,I.~~~"~"~"'1>"\f';;::;'>"" ',' I,. '\>'.'~ ",' ".,,;;,,<:>. 1 (1' ~ .v _,,,,of"!"""''', \ii~,'1 .I.'. ,,<" " '" ~l'llt '~ _ ":.' .. ''''7 ' " , '. J~ -' ~ .i-!i, ',' '" '..." ~ r ",; ..'t:I,." ~"$i>": ~;~: .,'; '.l';:: , ~,.~ . l' ,\1; ,- ~' i~ ,~.~ 'l ",I ~', ~ """,' . v- . ~<. '~''.~'', . r;: ~""' -,>j . , '':J,,!,':' 1"1,.. "., ,'i;~:, , ,,, , , . ;,z-" ,- ':", ":. "I ~"" :' l't,: i:; ':.",;. ',.1j, .~"",,, . ..~..~' " "~ .. . ''''. _ , , " - 20~'. ',,,\ ',.,. < '<h, ...C", ~ ~~ " ',.1,'0. ~ 't.i!'~~' , , '''-b 'M/..~- _ I ' . ~~.. .,,; '" . ", " ~"-I ~""""'" .~ i <:t> >z ",-, .~~. , I "''';''tr'''-''E~'''':';:- ~ -~1t,{,>::;, ." /i~ ;;i$.... i'''( ,;;.'rl~' <.iI , Ii paD . - '.",> !:'Ii""'" ':;~',~~o'; ~"!,:. ,g~, ~~"j,~I;~ '"" I ""'" ~r,,' - .', ~ KL, _, ~ . .. l'..... , .."...... ..,',. , , . ~ _, n , l ~ '., ", ~~ ,;J;' .- -;>"", :i > > ",',. DY;'~VJ. I' '0 ,A" . , ""! J.\'b,l"" .iaAt~,:,t'l ';"",'1''';;- "'iJ'.,J,~: ': '" . ~1:..- . 4',"" ..,.~ ~ ~'':;: 1iI!~JI~ '~"'- "',ie<l ~ . . \ "~',i~ . ., ,:. c' ~'1J ',-~ -L +M~ ','.L M' - 8 '..,;'~ ''''1. ~' " eLf , ~"" . " '. - hi;;"'" "i.l~" . "'""';:".........-:;-0: Q '," .'-f.'.< I~', ~ .~- ','. (r- -t; '. \ 'l(~ 'r :""'r~M. t. ....",. , ~ I " "1./ I! t ...~, ...... " 1If'J1,r- ., ~ , ", . ", V"" d,..., '), ~ ,'1: i:fi\ "l',~, .. ," 'd!'I,,', C,". ' ;... ~ .....C',' ", '" . +~ ~ .~. ,D,,:o,. .:!',,' ( . ;;,)~ . ~ '-ll.f..., " ." ""'''I"''- 'L,.; "'> ",', C."," . --':~ .....,', ",,, , .,u. ~:""'j,, I'" .~<- , . ~ '.~- '0 .'7. "', "",0- . ,- _', , ..L.. ~ =-~1:;i" . " ~" '<'O'!I: :t:l' ~ .\~' '-},1 f, .:L It. "\\l [~,!;~ ~ __ .L1J & II' ~'\ ' ,', ( liE",,' "', c:. . r,' 'Ii. '1 {tml/i{'m\ ", -<..;. _ ~_ C(. ", . , . , I, ... . "<,,, ~ <{" ;' ;....., - f." '.. .;, "i);:.' ''','''-..' 'c>'- :~:.. . _' -';, ,I af..r''\Ii'1l\'" L- ....~.. ,\ """" ~" ",-,1/. . """ , ' . ,;t~~?~,~! " ;1" \~~I~: ~ ~,%,,]'~~':, ~~'; ~!Ik!,,~~ 51 ~I~ ~1~' ~~~ h~\: ~ J,r~ .,. ",-~~e.'V':'"". ,,:,.~. .",\.j~, """.r .... . """" ~ '" z, ,~. l " < "e .,'(, ,,. .,.. 'ilK''',. '.1:' ", . I" "" .~, ., " - . ,.:: --tfl; y." ',~-:", "it":..I'Iff!!,/". '"'~::=.: 1), '\\ '~\:;"\ ".... ~~ ~h ' ~. l I ~~. \Y""' 'li\ ,t.. 1 ~1l~!j\ ,,,_ "" ~ ~ tf'. '. '~1'" \ \~ ..~\-1VIM;h;'-'." ~ ~~~rgW~:.Hlc~',," """,' ~~ ~>' "m: I' .~. :\~ol: 1",,/11,',: .Q." '':'~I':t:''I''''''1'\\1lf\ -It:'~~:,:t-t;~r(,\. ;- , " f 7 - .,f"'"(.. ~ :.Y!f.;..~1 " . ~,f,!l I :;. '1:~..\' I w~S:r i '" -'g ',i;"l- f)., , . .t.,' " . ,; "',"', .'.. " _ '''!_ '."J?,- '. "',. "', '" '~'-" . ...' . 'Iif';"",,"oO -^,,,,1<::-" ".'.', w., !! '''''l,;:'~'''~''d :21 ,~ '~! ~/f .y- , - '< ," , '" :!.~,,>..,~ " ~ ''''';;';[!); ""'ll'., ~: \,'" . ' , t ,.., 't) -, \,,;. ~'11~'" "'.'.J.., " m 'b- '''co, VI i - _ LSU ~ I, ~. . J-'" < .,;~ f~ ,"~-, .....) , .. '\.' J' , ., ~, , i " '," ~.' "n" '" ":,,\,, . _!,., . ~~ . 1 . U'I". " . ,,' ,..,.~:<.",>. """'""''''. . I > . f1j''''' " C!~~"~. ,., ./ 7 '}, . ' ':~~";;;'."" c,;;:t;:1/ "~~l\': '\;,.., "';;;U1 --- "II". ".', \~" ~'!j( ", ':tl"'~' 'W..;l:''';::'' ~,., '. '_"""" .. 1 \. ,~- <. "= . I ' .,.. . '", '" ~ ". " " r tI. - ... ) , 1 _... , '., , '. .t, t. '\~ f~" '''c.''- <'~:..~~ "f, lbiJ~~pl,f~tl'oi-}'" ~ J ;::0:-:\ (:</0"" ' .. '" ',....J ~,_" '1)'. '. ~.Jt~.~ '. ,/.0" , '.", ~. '7 '"1:'1 )~' <, -"';". ,'" ". 0 " Ii',- "0 l f; ., " *!r;'l~l!'f~}.:(.~rl~[,.;;; ~>'~'j ~;:;.:M r~ ",~~r~J. '., Lt'~"~t\:il!r'ii; ilI1 j.. ;'......' ~ ,1" } '-~~~'\I-1:' ~ ;tJ~~--:.~r:-l-+>-v"~,J'I' <.:' " _.....~Ji}'J.1"~'j'l. '11ll ~ if ':, ....,:' A~': ~~"~Jt/\', l.." ~~~~~..;, l"9...."-r;:Ttj(v;''''-~. /. ~ rJ ~-....L~ ;:j~J'L~'c ,.'?'" "'.,., ..,~.:!t. ,:=, ;~.:. " ,,~..L8t:"'r/-,.'/ 'i}'o,', " ".; b _~." " "', J .~. ',.J "I;', 'Iii':", c., '. "!r~';," 1'i" '" .~':J" ~ . -i-t, i '.;" .";,,r-.:;>.9(,,!'l!,y '~'E"" <_ ~ =i " . '" ~ ;"'l'P'! ~L! ~~'i~ :,,,,,!f..,,' -" :.,.:.;:;;;"_".~,, .co: ;!:1'j ','. ,~il'<' ' . "',,, "'1 P!"'..IiI:;E'f~"'~:t;., A:i;r'tD'""'"' ~'i.'}I I' ," " (I,~' "''''',:'' .;p.." r,;r'.:;;p') "V'i' r 1 "'l; _, _. -1 'l[ i"L, . ,',Oil "':'1 (" Or! <", 'f' "y- ": ,,- ;"~",J., ,"~,~ . U, I\~ , .,~.".. fir" 1j.!i~! ,r:;~'1~':" ~\' (/:, v'~'!\,\':l ""'h-~~> rj'~'i'\'~ co'. _ '!?,.,jj;, " "~,~-,, ,. ',!f;, "'l.\ 'j ~/,~ ~U"i""'~i""i(,J):~ "'" a.,~:(,. .... ~.:iI{rl Or..' " ~ ~ 1,. _ ; \L,~ ~ l. /f -........... f?Q JX". ";;iIi',,,,' .- fH ~.c' I.ill:, ~,' . -" ~_, '4Qt't.\'~'{!S" ' p. ;r,~ ),'/" ~~~.;\,'~" } '.> d ~I r - Ii" ~, . r~; 'W.?i'iI""';"~'D1'?> 1" ~,' r,~",,,,,\ ll:.'"r -,/. ~'"' "".. r \ 't: 0 ;a,Y<\.-1 __,"" , I~~ ~'.:.), <,:&\.; J';~~;J ~ . '" , ~"I. _ '.' '1'1\/ -', ,~.':,' ',. ';,,}<,' . ..)<' :x~'"' ',~ v...:;..\ l~ I ~. ,/if~;6 ~. ,1;" j;\.,\,-~* 1 ..J _ I ,,_' ( ....< . ,t .. I"'" "^ - .\1 ..., .;.;. !,;,~~"'S\~:t:.;, ,: ,;"" ,,' \" < 1f'~ . ) _ I!:.( /'",.", " ~ cl,~~ ,t"~", ';:i\'. _ "A'-< ,.,' '1,.:,' =', ~, ' , ~.., ; ,. ~., ~ {,'- .:p 'v., '\., _ \ .. ri."/.R~..".l~i . ;".I!( ..'......, Jtf"l'i~;'.,f)";. "., "'~~;~:.::,::: 'A' ~f '(,~. :r.. .~Iit,J' e~'';'W;i'' '::.;$.~/~{< ~'::.'~r::;-"7::L I",::: l'l_b! '," ;.:;; -~~ '",-.:T1~_, Ii'_, ~ ,;;~'t{" ,~l"~;.^_:,,::) -J.,\. ,. _ff .. :,( '.' ;;~, --t i~.?.7a:~~r:~"~'~"'~~.I,ti::,.l~ ~"". ..;\ f V rKr::r}j ~. : . <V ;j, :'11..-, "''-~:;'' ,_. H.. ,_ " " '-.'~'~' !.~:(~;.-;;.ti\"j~:~'y.,f ~:':;;;:1l1 i~ r .' .:n'.!~ <'~ ,,4.;:~~,U'jy,;?~/,. . . , [2',,,,(~';m~: :~?, >t:1 , ~_J!l'y,. ~'\ '1.!.)w 't:; ~~. \'.,' . '01 III _ . ~ ~l"'-': '-;' ~~ . .,-/'~-, ~>!. < A ,. ,0 . ~ "'"' 1W-'" '. ~\~:.r .~~, ~ I .r _t,' <i I. " f'. ...-.,,, " ~ J~ ~ ic ','j,' C' t, I.V. ,,,I .~ " '~, (~. , . "'" ( w ~~, -~~ '?c.' -~, ~ .' "'II. r\,{~\ ~ ~ ~i\ :< . ,.. ;l;i'. . ;;.~: ;,ll t .. ~~'li '. ., n , C' - ~ .; ,. ~ ~ -1\;' ~ ~ l; '<-.. ;:)f, - l ,. ~.~. ';.~ ~-...~. ;e.~' ~ t~; , '1! \ " 'I; Ii" r.. . .~~. ~' " , , , .~ ~~"'- . ...."i f. '..: t4 iir::: ~ "', }, ~~ .. ~~ . .'. J ~ /J ':'~"', ....."\.... I: i (-, W. .1 , 9 ,d;i ~i , , '. I "\- , It . ~tr. r t ~ '. I.. "N' A 1 ii ~ ~. . I _.-;I " lti '~;J. ..... ? c' .~ ;;;""';:;,~ ~~.j;; ~'....,; . IJ ~- ~/~ ':tin;;" - j }" ". ~ 4:)f" ! "' ;~ 'j':li;' , c: " ~ ~, .. Co . .~ ~ \.r."~ ,--:::: il., ,e;;,. ',-' '~ ~. ~ .r~' i-,"l)'V' ,. , II J./;i ,<. '!-JG )1 '-;;# ~ ,.' i ~ i , 'r..- ~t iij !l __Ii ...: .. ).- '} ~\<i . ~ :t)/.'V ,~ f NOll- , )-. ;0 :E <: > liJ ... Vl IT1 - .::a ~ n n o 0 z c: g:j z ;0>'" <z-< >= ... ..., - r- o 0 z 0 c c tii n ... 0 32 z n ... ... es r- ~ ~, :r~~1 o -00 ::0-< /'T1 1"11 n~ ,-0::0 ~ ~ I ill ~ 0' . Z:I: . 0 ! c: 1 ::0 .f .;"" :~~; '>1-" , , ... ~I . I' " -;:; , ( R ~ ~ " ~ '.1' . i (P'JW. ;']1 .\ '\s, ':\, . r~H . ~ ~ .... --,.1 ii' ~ ~;~.il '; r~ ~ ... , , , . , < , , ~ ~I! I ...... H 1.:1 tj T .~': . f >, il' .~ ( ':!. ~, . E J}; !t . " ~~ i .' :;Io~ -~ ~ \ I, ~ ~ i1 ril, , ",. ~. ~ r ~l ~ ~. '" '1J~, .~ ')ii' r',-~ ~'0 :....<'!" ~~ ~~; :t.,~( ".6. 1 i " ~ .. ," ~. 'll~ ~ ~~ "0 b ...... ",0;. ," . ~~ {t ~, i-1 ".; ..-;~ _'I:I ~l ~: '. ':'ii:r.;< '"t,,,!, :.t.,., ", ':' ~ li1i f!J! '-' ' . \' " ~' ~ \~ " r il '"' ..~ . I . , , , ~~, ~\"'~.' 7"'.<7 C--. ""ir~' I . l < , .'" , , ~ r,' OO!! , . ~ ..-:..i' ~t;i , 'J ii- . . \' '-~ ... "j' - , i ! :I . I (ht~ ...:t. :;..'-'....; ,"" ~(J .. ~., ~ ~' .. -~ ,";i.;1 -17>> '~~m' '--:-r- .. '-,' [;(1 ~h ..r~'; ;:..-"" t~ -~l: /;; ,I..':' i' i ~ ~ 1]1 ~?, f!J:,""/,....t". '.-' [jj! , ~ .-- ~ ~~ ...~ ;>- -'~' il ~ .' ~~ ''- _\'1 " :y(' .'\ ,t .' '~ ~. ~ . . " !: . 'S!,1lo ~ '. ~ o 1)/, 'L~ ,.\) /" ; I f , ~ ,.... ~ ,.- ~ ~ I;:; . "I"\~ ~ ~ ;) ~! ~ ~ I: ~ ., .~];f !Ir ] . o ~~ '" ; : I ~ ~ 'l::-, . '. !lf~ ;;1 ,!: ~ '';',i" ':\;' ;:$I; ii4 . II < ~ jL"': [~ l' "- ~ ...J ;z , , . I 11 . ~l .. !" ".,l, Q..= " '" F r ". .. ~ 'l~~ , =<: :> )-..... A :'). ., !, ::c =E ~ )> ::c -I Ul '" - ::c ~ n n o 0 z c: Ul Z "'>-1 ::Cz-( ~c ~ ~ ~ 8 c c ~ 81' J ::tJ Z I -< n -f ~ ~~ -I el ;~. _. ._. r- i :.'!1.. , '\ .A ~f " ..(~l ~/I.- I. ' J . '-., N , -< II rn ::0 1> rn :0 (J ll' I i;! N '-t .:. o I z :I: o C ::0 'l . " & Y'",.!. - ,.'-r I (' 6-.'" I ~'!-- ....~.::u, . , " " . .' ., . I' e: . " " ~ ~, '1 ( 'II " " ,- ,-'. -~ ~~ .,i , r(i ,~'I " ,. .,' , " "i" ," .iit ~.,.-.:: ~, \~ ~* :1,', . ,. J;li ~ ~'/I mr~ R'f;..o; .,~:': t~ ; '- . ,~"- 'g; -I . ,.," '.'\ ~' , . .. ? :;~( " ~z. ,: ~ ~ g: CD " , '1'- ,r r , '~ ~ .. ';,. . ~/.~1'1' .,' .~ ,... .'" /A / t ~. I'" .' ' !, ... . ~ .,. ." # J ~'. '", i:-\ . ",,! ~ ~ ,M,~ ~' . ;z ~~ ;!i~~'" 2:. .rl'.,';;:.... lli%'. '''",,' 1.' ., ..J. _ ./ -.' ~~..'i:l' '7' -~~. . ., '""i:;._'~ . '", ----..:.. . 1. ,', ~'..- O-~._- .~-:..!l.-.,' < l ~.'" ::lIi' I~t..' ~~",,,;;'.~.~~'i".." /;' ?J1~L ~rJ.tm~ TYH',,,, r::J,.. ~'~.. ~':;._' ..:... t,:~~.:&, ~~... , ~ if/::.. ~ ?t;\>'.;~\:.:.~~;'" ~~;;~~ / .. ~ ':V';'J ~., i:tirl ..... ", ,';,: \';:~~"'r'-' ~".. '~,' :",* / ,~l~...f; I') '.~ ':"'- 'I.~;~-:""-_ - ,~. ..?,~ / / hl~'~~!~: 1};~~?{'i.i11 <~'" ~ . -;']', ,;,,' -;", '-'~ . / .' ,.' WA' ' IS""~ ~~',dl;;;:~ "':'~.if.~' ",/.',~ ' ".&~ , - _I I f' "1' 'l'";'- "~:~~", t\i\"". ..."'t~, 'm' \ :1'N.:..~ ,.1Jt 1 ;l;1 ., t:.1',~\.,,~...\} ~,." '1 ~." ' \' ~"~.' ;.j( ; _ ".' ~ i.n .......9 t!; .. ~ 'to, ~ II . ~ .-vI/._ .,.,. I' 't,' rl< ,.... l.~ .~ .... :E/ .;r.' ,:,!.I'), 'l\!..... ,I'; ":,..,, ;'f";'" '....:. ."j . , 't'" " Ii' /'- :1--",~:-",\""" ,.\'~~':.i <iI',I"I. :!}" - i' ):~~;- r.~ I' ....!,... '~ '~^-"l~\' ,'. '" : ~ ~.., . ',~;'P. ,.'t - lEt.;' - , ,. '~~,." '1~'.'" ~'1 ,ry;?'..l\ ., ,'.- ,'''. -..' ,-"':< ,~ .," ri':':~ ",.~'. . ,.~~ /~' '~, ~, ' ~j . \J.. I"'_~I ;1'1- ' ~ (" . ,,' '~"'._ P.:" b~~",' .. ,. 1~'" \r, \ -!_', . ~ <<.; "l~~ .'. s," I 1.. ' ,,;-'>: ,~;' . ,.' r'l"" ~, :;.,. " ~;l"'~..,L-!::' ,~" . q','" , . ,-"" :; I ~ ""'''=: , .,.' d;1i~'.' ~\, "1 .": . .... :' ..~ .,>~~ i~~fi' ,. ." ". . ~"~'\ ~~ y;:>- .~ ~,,~ ":,,,,:-,:~ ',,"~ .I )~7.'~_ .,~ " . ' , '. ,< ~l..... .. VI , (,.L .''';' ,.~~,":'~ I--(~\" ,-' ,{,$f. 3;1!,i. '" -.' !/io ~.w, r"';"~' 'J ';fiJ.:..., y~. .,.{ i1j'''''t ~ "",:":;r:t>l' I{ .. fie, > , . '" ~fY' ,.' I}' .;; '~.:::;,..' .. "p, ';& r.."~ il:' ;;(1 - J.'"'' :'!>I,', /, ~ . - .ti'^~ r...~ ~ '.'.~,~ -I ,~.... " :- '~Ih'~ \ '''-'~ ~ ' ~~'r :1;--;'.; '~1 ~\. ~..'" i~'/l" "~ ," \ ,'I >-' '7"' ,'., \1' . '--'''. " ... ,(~, ~ ' J ...--,;: ~.,' . - . ~...' ~ j \ . . '\fj" \~,,... '~..-, ., ,__,~""~.! ~: '. ''j't.-(1,1,' ,,,l'~~ .J /.... ,,' ,,,,.!-~" ( " ',7 ., ""1;- .~~~;;;.(t~"."3'i """" '. r.t.:~J 1'7".':: '. ! ;" ..- .,' ~. . ,'if'lrrn,,--IJ I. If') ~'" <' c.: \,., ': '",i< .'." f '. :~. 1\' 4>: ( ~ ';!' 0 ~ ~ .,.t, '. In; ..-'" -~"'.' '''' G) 1-- - '1" ~ ~ .,l." ," ... I -~~.f'u,:[, . ': '~', r;,,[(", f>n"., Ie \ .~ ",. t<. :><}'....1 ~ff.i!fJ1 ~ '. ~t-l,'" ~,,-l e., . ", > ._..~J.{;,I,'; ;:~f:f '1' I:!~;--,'''. ,~ ~/.. - ~ R"i~'m.. ' - - ,--~ ... ,H~~ ,,):,0; ~ ~"'/;;;~' ';;Z;-:!~ ,>,'::;:;;I:,~.')'", ~..oJ JA ::.tf3. -I&;UV':' ~'l ~.i.'\' ~' '"'~";I'" .~~. ~?;l ..~. '.&C,~ ~". ."..J:'~~J' }tt"..~~ ~'.I '''')1''., .~!i ....., ~~_:'_ ' " ......f' Z .'>'l~~,;.' ~'llt'f ~ 'll II' (. 'J 1 ~~[_:- ~i' ' , !i...~"'~: t~ :?\.~,,, .'~ ~....'), ..;'li< "...;:.~, L~. . ,-_, ,>"~ :.., " ,_ \ ,. " ('2./." ~~ ~.' -t {. t;.::: f - -,' ;:;.-'/ ~j ,~;<; ...."-~. _ "":1'~.; Jl,J,~11 .' ~ .c-~!i<'.i"'~~L .., ~ -t.s-...- #l /, ) -~ ~"'z: ~ [. ,,~ . .(, " .' .' ';/ "'~. , .' .....' , '" ~ \',~ .... 1~,' '~.~.. ..' ," ' ;: ~:'tI'(,." ,.. I .. .,/ . . " '" '.> '. L ~'i~" . , ",~',"'h.;,.! ;;;:'_'7. ~,~ ',,:i-rr.-', - '" , " ,-;:' I ~y~~. . .~. .,.,,>(;<:, _ )0. . ,,.l,~ 11"'; _ 'l~1~.i'.": ' - 1 ",-, l:;:\ I- '" Or J::. , ~.;t: < ...... "'-,~ /." 1.,;"I~.>J M ,~o~ -'J. yl -r~,,\.\ -'II: " ~ ~~. ',' '~'~~;-i~".a..;':~'::"~ ;t ~-"'V'"'~ . I .fP.':'...... ~...~..~',~.' I \,'~' ".;,J~~',t,'TIfI~;;;' .4 Wy" ~ :' lC'ii.o' ..~'~" "r1f":~' '1"JI!!"",... \ ~-"" J '0(:, ~L.' - " >H~f~ .,~, " .I>~'" .. . . ,I' . '~., Ii: IJ. .....r'" ~~J """" c~" ';< ':''''.. -"-- - ::-.~ . 1'1-" =, . ."~;I :~"-:.: "1'1' \I~"'~ ''''-,,:6.;;';' .......' p,.'~ / TT - '.' ~['\ ;<., . _~,~ ~ 0'12 'I~ ~l\:," ,~,_ ". '--1'"' ~__ _ .:.-..:.., ~ ,,(\) .( , ~' ;t' ~ Ii ~ .~ii ~ "i'i . '~, ~ <i~ i\{ft'L ,!!, l):~ {I) .~ 111 _;' f". J"I . }:'. " ~" ~ '- .' '. ~ ' ..' .;~ ~ ~ _ l.' ~ ~ \~ 'Jr- 'J.i\~' ~ll"'" \ 1. :'....Lfi.~ M " J ~A"~ ,~~, ~ I i .p~\O) .J I .;~ "2, ~ .1)' !'~~'1f ,'. II ,.. ,..- ii.."" .~,:~\ ""; 'I j?;.;.J ..... -r. ,....' -" ;;S::,~ ~..- ,',,., 'k-l r/ IJ',-:j;: "" \,. i,' :6 . "'r~ '" ~-~'~:/'" ~~"'''''l ,"" ~,::......" "A' ,,!l;"'"'S'""Y'I"'r;~'" ~;':- . :!:l,~ ~"i' <;;.. 'ti "., , ;;1- v. ..... "~t''''''''':~ '.,' ,",<.. I.... '. .' IL OJ' ~ ' ,f f" " ... s: _i',C,i 0 ~. J,;. ;.""'~ 'I"" ;::"'\'. !,,,,: i~ ',.' I"~ \t~.;;;:f.~ , ~ ,r!'7. .~~~ " I', """,,. J~~'.' - ,'.' ". ','"""1' .- ~. ,7 !P~L';(t;""""'(i:n~':!'V.,\,, '.'/ ~'l.~ld' "\ ' :.JI.\.~11,,,,1!.~ .ci,i'" ~",. ~':<",...", ":,,' ,.! '. ,:8 'rdT \.01' ""J:'" _\~' . rl " i-"' . I- ,~';I/...."!J,~' ;-\..('",!JI ' ~~'I':'" '.. \ - I,.~..:i: 1';. ", f. """.. "~:~' ...... ,.. f''h~ . . .~; Clt. ,~- , .... '" ,. .. -r-.....' ,- . "" ,'~ Ii:!:", ." 'rl~ ~!.\"Irua., :0., ' ::--;;.;., "''b'" :,. ~ rt"; )./,t":":'{r'~. ,,' ":'" . "'c. ; ~\-;f [.i., I'~ " " I' I .~~~J., . I I~ti "~~, >. ,..-~ . - . .fl' ~,' "i"'-; 1.. ~ ' jr I\~ ~" . " , ' -, , n' _"" ~ ~ . oJ. ) of _ );1 ~~Y::"f,~,~.~lg '::' I ; ~t.~ :"'\(:~~' :~ '",,:: )),' '.: ~j.;St'L" 111 /~rj- . . ~~'Z'J. . M . "~ti:~~~ilL" l '~'" ;: .'"".. ~ ~."'; ..). ~''11 Il~~~ ..... I,,' ,1'1( , . . , .\ ""," ..," . p "" " ) " _ - , ' " -.J~' . , )'J;, Ij"~~,i0J 9';';',)'~ ., · i"\"" ').. 1"" \-"" ';;'J\." - __J< II) p....-:.,.'t~..r,~ . .' . k:\ ~"I ! ,'.' r', . 4:.', ~'\"-i. "',' (~, 1t,~{Jfo.;,~~ .. ] ,. . ':" <<:,.-<. '.;'" .~' (11.: ',j.--,,)', ','~ 1:il':-lTtJ:l'.., . " ,'f~, '.',' ~If.,~j~~l,. ,:.'t.li~!~J ,., .' ,1;:F 1 ..' .' . '''_~"~J,;;;,,',,,?1, ,.., " , ' '. (: "#--:1 ,-tt,. '~~-~t:~: fl)/"". - ~ ~,l:'-, .., .,'"' :r~,'~ Jt;--.r r. ~ .. ~t:", ';I.~!'-tjJ.lj~.o j~,,. ~ ' ~.." t 'Y'. JAIIIOV..... i ,., ,....,. ~ ..' ""'(",,1 , ...!~:~':t.:Tl( I 7" -^" 0;0 ''1-.'';1.)'. 4. II. ~.,,,...... ... ~, " ! "".' , . ~... ~~:.\~ ~'~Vj;' '~fj~ .~~Fi'.k~;';' "\~ "".. B' "I ~.,.l' ~ -- ~,I{.8..." ...., '."- I I ~ " '. . ~\fJ: 'I -, --'.- L ~" I ... "' .' 11'11. ~ ~ "" ' . .,~ ,,-. ' . '!I ,. "' {. ~ .J......... 'j:.' "J.t,. ~J ',.i, ,...........~l". -~l::!, .~."r:~ ~~';;l ,- <' r -"~ !~',' 1 II.,~ ^ . N ,u.,,'" '1'.", >l1'.N'- b~J:~'l""'~ ,,, .'. . . ,'" ".. ".~ lk,,, . . ~. ~!"./I.I' &r.t'" .. V"-t~'-l" ~{,Ir:V>t,j"';l ~:'~ ':""~ I'~ :ro<<l\),"~U~ ,i':\ ..., ..... 1If~. ':13 I ~..- ~ ~l~' :>'" !;(\..~.:.. I 1'-, A:::S"" <. ,~' . _ I/'!'[" if, """'.,l I' " , ..... ' -l", ., .....:',~" D';" "/1 'l'. ,.,.,~.I" ~1." , II.... .')>; ,.' ~ ~.~ " . ~":J ,~ 0.. 10<.'0.;pf:r'-" )::.........p.r ~:~,,J/;....I .~, ~,7;. .~,~ ,~.~~:", . '., ' ~1'" 'I~~ ~~~Rr-.-'~ .~A. '(;::o.i..~'" ) ":. ':"'\"'I'~~~'Jc~"" .4/,I!'. " I J,' " " ..'t.".l~ >.' .~" . '.'~ (~ l '/. 1 r,& ~ .'_'."): ,"II'" ~....:lt,1 't< :", \,;; " ~, ' "\ ('1 .,.". ;:; 'r :Y :' - , 01 (:'.~ J ::~ _:,,'_{.~ ~~ ~:'\ ~;~.~', ;':\fJ<;;~(J ~tt " -. 1I._~;~f.<I. ~~~ "" ~~'; ~i- ~I.' J f ~-bt,: , ,if...:.. L ,. .' . (;I'C 1i .,.._ - . , - ,.o, '.If'.....' - ''''. . " ,f:I'"~ili . ";,,. ," " ' /.. ~\~. ;;::.i..'.... '. ,-"Z--- '... . 'i>I\,!\:..," , ,,' .' W".' . ~lWl!:";t;"'i,,,..," ' i , . ~ '...... ...... ",".", ~ ." ~~ " '" .. , "1 " . " _ _ ','" I. ;::..... ..,...j) i' ~ '.0:' ~I J I' .~ ,~ JE' .. ,~ ,.-.. " .". ' ...... '"", . >{;.: .1"" '. ,'.' ",.~;y. D, (, ~~ '. . J~ ,J.. . 1\ 'I."'''''' _I~~ !, ,.',"" ".. '.\ ':j)." ,_..It .._ ".'. "'/ I" ."10, ~ . l- ' . c __~" ..'''' ,',;....~ 1'''" ,.,6"_., " ......., ,;".~~"J'." J, ' . ,:~"~,~, \ JI". ~L'i";~A'l r7'~'iVI"~_~;~"" ~Ji!l'];:.,,:".:4..\,...,' ,. ~'.'.:~;;:":', "~. ~.. ....... r ,'.' I . 1\.,-,' .. '. -", .' ~' \~... ~L' ""'/ ;.-'" , .". .,,!! '.. c ',"'" . ," . ",,,~,,.;>. . . ~.. "'" I"C. . C- .. - ,. ',,," J' .... .. ,,."'" .. " ,".~...",,-., /. I'TT:,.~~.:;-~'/... ., '!f'._-' ,~--~r>; ..~,1.....l1.;-1 f " 'r ~h .~.:;~ .; ,rf,~-<~" ;i",', . ../.:' , '".,:.'i~ ./:~~ ~ , .: ,~. '..' r .A' ~ '~,' .. ...... ".".-. .....' . ,~_. ''''......q ...,,;_ 10), ,.,.,., ',.,0' "'.." ',' l,.,,,,,,-,," _,~. ,r,." .','\1" ,;:r,.\^", ::,,/.' ~ I; --"' '\ (rj \',,. ,'"I,J' .., ''. ,,"t," II, \ ., ~ i ' 11 t,';..:;",-:"," '.' ',"', .,:,11' -';"'\':: iJ. :"" ~."'"""':' \-:........ .)1 "I' ~...';'l !,'~~' _<~'i "~d....-:o:: ~ "" . ,,1 f' "', .- i~,,; I;S",~ ':.~'~ ..1' \~\~.~ ~;~~~ ~ '~.~~$;<",':"t:,>, ",~:N- . - '~'''''.~,., ,,",' 'c; !,~: ,f ~' "~><:C~~. dcf.,.. '~?' .... . ~. .'" ,I , .'" ".:".:- ",U;".:'.' 'r. .'":\,'." If"'~ - I' ..' 'S ,-" " ;. ,-,' " ".' ,- . " " Ii,:....f.,. """. ..:h'....; (:."'".""';\"~";':..o ". .' .' f .,,~. ", ~")~ ,',. ..~.f ..10.<' . ,. ,. . '.""" fl. '. ,'" ~~ ..t ..;.t'.........:~:..~...:.,~!,:,.,?.;<'L:;,;}". 1,~.., ~~\) .1 ~ -c,(' .(', ~ ~@ ; . "'...-'.. ~ - i'';';;'~'r,~.' ,. 'I ~,..,~., . ~"".''";'''' ","'j.~:~\ ,;_ '/., ., \,' '\ ." . ';~"'''',''':ill>. . ,:;,..:~f\,:,~\~.,.'......i~.. )::~'~i{.;;;y-Y' 'J'! (.,'r. '0 "~;c'<^ 'A, ',0$) ';It&, ._.. .: :'':.' J ..;." fl,,~, .' :_.~ !:a ~"t~'--"'~ ..' ....\'.':: I" "':: l (\ _'~:::~ .'..... --.:;- 1 '~. 1 .. . '.. Il~.. "" ...~" .; ., ~~"h:\.~' ,.: : . ': .... ,I, l L L:7..... I 'I ~ , ~~.~.... '", 'I\'~ "J ' , . .... t";\.':,i;..J;:~,:ll,;:'r ~(';'-l.......';,~' t: ':J" I" ;:"? ..,," .;.v\," .iT', ',", o',' .,. .< fI1 .~'I ~t..., >,'.'-' . .~. \ ...~\~. ., ,. ~~v!: J,' ,. , "',. ' .,..... . ,j;, .~.~ 1" .,..,:"",,,,,.'~>:,:,.,;' r- ~.... '. ' ".~ .::;i .J;,.'''' , ._' r..., , ,.r;. _'-: ..' ."". "':'fi'....l'...." \ ~ 'f ~... /',..........,.: J hl,\ ".' ._,~,_ _...~. -. ~~ fJr.\' I JP,">,;' i~ ~.: :,,'..~,<,.,'.'~\f:'r::''',.1 '~:;'.:~'.d\~ (7' ~..~,~'l ~.';,t(""~~'i..,.. ,:' - 'i-';~ ,.:- ...... .." . -'" ,'- ..... ~~. ,'l~ Ii 'V~y..~:" ;':i.. ,.;..' c" ';:.-~' ."t1l'. '.'i:'" /~ '".~. ;;t .. \l, ..', " .... .' . '. ~"'CI. "/\."'''''''1 ..... . , '. "',,";;AiA' ,Iy' I ' ",,7 , ~ \" , " " '. " , I -f.. '- 'i . ~ ~~:~'~\."." :.:', ,~.~:' ,.' :','. '.'.~)i'~(' te;. ,.' ..~:" -~..<h ';'; '.r;:~',:., . '~. ~ ',. " .: i 0 ,,~ ..:-.7' . ~ ,,,..... ",f . ,'.\t:~(, .J';Ji~."I,~. . _~. . . " , . . '.' . ,.1 \ . . <.~.;;' '_ . . ":l,\.1L~~"':i "" .,......' "'," ..'.. II" ., - ~:'-; ~, \~.... -.. ..~,....'". .... .'."- " -..., - 1#: ~,,{"" , .J '-r ;.."" ''':.:::'.'''' ~~!~;'.I~,~~ . . <. '"E\ ,iE ',~, . ,; :'-. . .. _"" .-- ~. .- , . !">!of< ~, ':;i!'1'~:ts:.".,,~"'+~}t.'" ~. ,".\1 "",:,::v~;... .;' '.:;' '-,~'_.;1 r ;'!~':~V~'! ,'-~~,~~.. ".ir' .)~~ ...... d. ,."".~",: I V ~'l! ,~/I '\.l' ",-'.~_"~'\',~";~:~>':'." ""':.,'-"-;':', " '. ~"'__ ~. i'l. ~'r .r: \~~ .,. \ ,_.., .....-... . 1 v ..1),::""~.,..;i:(,.,,,, '.'r ".... .~~~'}'., ,$Ii t,' 1ii." ~i~'1i;..,',-,,,",, ,,''-oij. .: "'"'~'. ir,... i "~ II _,' "':~;'.!" '.'..' ~.~; .". ,__ ~', ('~"f..f,J, " '~Zi~,;' i .-:~, .: .-) ~; _~'i . :'ii' ,J.lJJIJ!jI.' .,.),' "' _ ..., "-,,, '!.:l,~ . <:11'\;1", ' . ~ :,c.'. - 'IIr- ,~,-: .. ~"'J. -,'f"';. ,. t.!, ..- ' ~ =.~ . , .s .. ~. ~ . , '-"'.';'!I"'.;'l\.i..;)":..,,~"'r\''''~lr,.._:',, '...:'t',-~;~ '" 't~"l~.'"'' ..~ "':\.) 'tl,.:'." ..-of-- ~ _.,,: "'_, ''."'. :.;_j ", It-':': .:l,~ '-} :~ I) l' .,..Jj":':t.,,' .'. 1j ~ ' ' -. 5,,>'. ~ ,,' .' :,." .,','~~ .'~.& f ,;,.,' 1'1- """ \ \ 'r. ( ~....' ~''" . " '. " ',' ~ f7 , : \.. :;.".".'P\i,~.; ~'...#' ,. ~~. ~'\;.../ ~'~ {~~ I' , .'; ~ .$,)t . tr,?t:;,'.J' ~ I.r"'"~ . . . ,!'l~.: . .' ' .;:, . ~(.~~~~(/' /_ .,.....',., ' '\':r."'"....' J :~ /. ' , " ,;. ~",-">J ,,5 1.<' r: V :_, "'\~' ;',~"r<, ~ ~i' ~..<:,' .',.... ~':!'< '. . .' l ; ... _..J" ~ ..,~" ' ... ,. . - . _"'Il:). . , '70, ~r,;,~ ''''~,~ I....' "" I)"" ~'. . z c....'>. ~ , , 't~\~....\I' .' '~~'~~,. ~,..:' -s~. . 'i ' , ~ I,. l:! - '::,;.:--l~.? 11---" ~/"...\ .........-- ..' '.'. ."1f'~, if.'" }\,,0., . \.~. '... ". , . -or.:-! I .Vr . }1T1 ~~ f "'. 'T 1$ i "'~o~. , "" /. r ":'.,} .' . . - -'-j"or...t . . I ,.,.'::.,.:......~o\ '..;P , ;~\\.' .."w2~' .... if.~' v ~'. 01- . -.J ,. i_.1 'r.o.f.,::\fJ......-; t~ /."~'B') ><;:'. \; " ,>;" 'il~iI;.~--::1 '. z,'" I' - ( '.... . .' I .,;,:.,;/ ," ,',:41/ _'" " , :lO I .../.'''' f , r';J . ..'""-li ~ i ':"~ *~ '.~.:~ ' ~ , - ~ " . ~. ,:{ ": / r I ( '2 '}: l. ;;.: , , :.. ~ .'. - :',. , . " " i , i "~"",, /. ">': \ ' . -. . ....no, ~ ....':)".' 01'.,' :r<:.r. '. l '1- .~.. ..~.~ r~' I F'0" i ' /"""1" . . ~. , " ,~A' ' I.. - \...... V''It , I . ')~:" , '7 ,~ ~ 1- . ~ "{I.. i )J i / " ~1. ~~/;.; ~s;.l:; -J. ,Ij , "'. j . { . ~ .,1/" ~ ' . '" r/') l' I' So - ~;!.. -." . \ \.; .! \- Iv i.' . . .l .. ' C! """,,, '.. .' . , :!! ,:<,,""."" !f! )pJ:. '. ..{~ '. we I .. . . _ '.' ~'f'1 .. "", . ~., J ,~, .~ ' j ,. , ),:. . " 0 =E ~ ,'ii.' _ . .. ,~ I;,/~, ,"..:..' . 4 "I I,...{+..~/}j ~ ):' ~.J ! 0 ~ :2 }'" , ,.-:. , .'(/KiY ,? , ....ri'... . ~ VI.. ' .. '....,~" '~.:J/;/ .. . " . I I'T1 _. '. I, '. '" <II . -( j. . 1:'"' , : -0 -< :0 0 . . . ....._ .,...... "". '~~r..:.J" .,. . '" .... .. . crr ,j or.. ' .., ~(k' / ", ,. , ::0.... I'l . " . ,'".." , ,';-<' ~. '-,v-.". ... ( .." ; fTI l> 0 I'l. ",,' . ' ': " ,'? ...7' r 1\0.:' .~4~' /~ i" '.i :. ("")::0 Z cO ."", H_l' . ~, ~Ic...... ..,j" '~""f.:" '" \ '. v.(o,t; ." _ CJ) 1_,'0;1.' r, ~"'-- (II ~/, ~"'. '''6,. , "t7 i ITI Z 'i" ~ '. -r.. :- '. '~g,-.J:... ,.!J . r- i -0 I ;0 > -l . ", II .,r~;". " ~l: n - ~~iI;,*~ ~.~:;!,..1qI , .)> -' < z -< ".' " ,.,."', l"Ir ~i'" ,,;I" .,. -t . ::-1 ''';' J' 0' I ,'1- P.."'r.t v . j;!t\~ ,) '" ,~ ~ N ~ c." ':. :\ , . ~ - " ;~ 101 t ~ '~. ~.. if ::! ~ 0 5 ;~X;It;:' "~'l:: '- i' /, . ~. r^i~%j - r,' ~ 0' Z O~;.... ,;,,' ~Ia -.. ~ Ili'i ~.,jJ;z~~,r:1 I. ~. or c '.' .( -. .. . , L - Ie ./ I . 'If . . c. Z J: 52 ':.... .'1""1 ~i. ~.~ i-~ /'~. \~., I.:, I- 0 lJl I'l ",;,>'llI"" "~ . :..; H"'~ .,. , ~ " . -I 0 . '. oo!': . i =-0 ~ I .. I . ! C:!! Z ./' ~ ..1. ~ .'~ ~. .::.... ~ ;.~f,.,-,--t'1' t ~ :::0 n -I l.,.' " o:l ~ ,.. "\Iiir M r""~r'. .-~ I". -l ~ t. __ i;.., ;=;, t:~ f '-'! ";;,.j ~/ ,: ~ .r:.~A. ~~.. /i _ '~. "li ;: 0 "". .,- ~L _L_"d;Z, WIrJ _ :E !MN ^ > -' ~i ~ .. ,. i" d~ ,',- -r. \ " J2l .~ ....~l'j .' : \ 'Or l! ~, ~,~ Oe~ t~ , . { .-t . ~: ~ii(; ~ ..--...~. f&.i:l ., ~' e . - 15 15 -- 14 14 -- 13 13 -- 12 12 " II ". 10 / 10 ./_- en /' ~ -' ::L 9 ./ 9 U Z ./ , 8 ~ 8 Z v - ./ / -- ::L 7 7 ~ ,./ a. ./ ~ -- 0 6 / 6 ,./ ....J -- ....J ./ ~ 5 ./ 5 " Z / ,\-.S'" <{ ./ a::: 4 ...- 4 , .---. 3 -- 3 ...- J -- 2 ---- 2 ...- q I I -- 0 0 2 !S 10 25 50 100 RETURN PERIOD IN YEARS NOTE: I. F.... intermediate return period. plot 2-1_ and IOO-~Of value. from map. far a 'Pacific duration, tlMln connect paint. and r.ad val.. for d..ired return p.rloJ. For nample given 2-1ear ?'4-haur . 3.'0. and 100-,...r 24-haur :10.40", 25'~ar 24'hour: 7.10 Reference: NOAA Alia' 2, Volume :JI -CaUtornia ,1'73. RAINFALL DEPTH VERSUS RCFC a WCD RETURN PERIOD FOR HYDROLOGY ]\J!ANUAL PARTIAL DURATION SERIES \7 PI.ATE E-5.1 e e e AIO.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, Ic) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 08/04/05 File:A10.out 914 0101 Tr 32780 Developed Condition 10-Yr Storm Event 8/4/05 SWL Hydrology Study Control Information ********** English (in-lbl Units used in input data file Van Dell and Associates, Inc., Irvine, CA - SIN 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) ~ 10.00 Antecedent Moisture Condition 2 Standard intensity-duration curves data (Plate D-4.l) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity ~ 2.360(In/Hr) 10 year storm 60 minute intensity ~ O.BBG(In/Hr) 100 year storm 10 minute intensity 3.4BOIIn/Hr) 100 year storm 60 minute intensity ~ 1.300(In/Hrl Storm event year ~ 10.0 Calculated rainfall intens1ty data: 1 hour intensity ~ O.BBO(In/Hrl Slope of intensity duration curve ~ 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION 100.000 to point/Station 10:~.aoo Initial area flow distance ~ S56.780IFt.) Top (of initial area) elevation = l322.B30(Ft.} Bottom (of initial areal elevation ~ 12B6.600IFt.) Difference in elevation = 36.230(Ft.J Slope ~ 0.04229 slpercentl~ 4.23 TC ~ k(0.4201*{(lengthA)J/(elevation change)]^0.2 Initial area time of concentration = Il.7BO min. Rainfall intensity 2.l54/In/Hr} for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient ~ 0.808 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2J Pervious area fraction ~ Initial subarea runoff ~ Total initial stream area Pervious area fraction ~ 0.600 A 0.000 B 0.000 C 0.000 o 1.000 75.00 0.600; Impervious fraction 7.586lCFS) 4.360(Ac.) 0.400 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i+~+~+ Process from Point/Station 102.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 10E.OOO Upstream point/station elevation ~ l2B6.600(Ft.J Downstream point/station elevation lOBO.600(Ft.J Pipe length 26.20(Ft.) Manning's N ~ 0.013 No. of pipes = 1 Required pipe flow 7.586(CFSI Nearest computed pipe diameter 6.00IIn.1 Page 1 ~ e e e AID.Qut Calculated individual pipe flow 7.586(CFSI Normal flow depth in pipe = 2.94(ln.) Flow top width inside pipe = 6.00(In.) Critical depth could not be calculated. Pipe flow velocity = 79.41(Ft/s) Travel time through pipe 0.01 ffiln. Time of concentration (Tel = 11.79 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++t'++++++++++++ Process from Point/Station 108.000 to Point/Station ..*. CONFLUENCE OF MINOR STREAMS **** 108.QOO Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.360(Ac.) Runoff from this stream 7.586{CFSI Time of concentration 11.79 min. Rainfall intensity = 2.154(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++T+++++ Process from Point/Station **** INITIAL AREA EVALUATION 104.000 to Point/Station 106.000 Initial area flow distance = 696.720(Ft.l Top (of initial area) elevation = 1299.900IFt.) Bottom (of initial area) elevation = 1281.600(Ft.J Difference in elevation = l8.300(Ft.l Slope = 0.02627 s(percent) = 2.63 TC = k(0.4201*[ (length^)j/(elevation change)]^0.2 Initial area time of concentration = 11.929 min. Rainfall intensity 2.140(In/HrJ for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.807 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = O. Initial subarea runoff = Total initial stream area Pervious area fraction = 0.600 A 0.000 B 0.000 C 0.000 D 1.000 75.00 600; Impervious fraction 4.680(CFSl 2.710{AC.) 0.400 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++++++++++ Process from Point/Station 106.000 to Point/Station **** PIPEFLQW TRAVEL TIME (Program eSLimaLed size) 10E.OOO Upstream point/station elevation = 1281.600(Ft.) Downstream point/station elevation 108Q.600(Ft.) Pipe length 18.40(Ft.) Manning'S N = 0.013 No. of pipes = 1 Required pipe flow 4.680(CFSl Nearest computed pipe diameter 6.0D(In.) Calculated individual pipe flow 4.680tCFSl Normal flow depth in pipe = 2.06{In.) Flow top width inside pipe = 5.69{In.) Critical depth could not be calculated. Pipe flow velocity = 78.73(Ft/sJ Travel time through pipe 0.00 min. Time of concentration (TC) = 11.93 min. +++++++++++++++++++++++++++++++++++++++++++++++++~+++++++++++++++~++~-+ Process from Point/Station 108.000 to Point/Station 108.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.710fAc.1 Runoff from this stream 4.680(CFS) Time of concentration = 11.93 min. Rainfall intensity ~ 2.139(In/HrJ Summary of stream data: Page 2 ~ . e . Stream No. AID.out RainEall Intensity (In!Hr) Flow rate (CFS) TC (min) 1 2 Largest Qp = Qp= 7.586 11.79 4.680 11.93 stream flow has longer or 7.586 ... sum of Qa Th/Ta 4.680 0.988 12.209 4.622 2.154 2.139 shorter time of concentration Total of 2 streams to confluence: Flow rates before confluence point: 7.586 4.680 Area of streams before confluence: 4.360 2.710 Results of confluence: Total flow rate = 12.209lCFS) Time of concentration 11.786 m~n. Effective stream area after confluence 7.070 (Ac.) +... +++ ++ +++ ++ +++ + + + ++++ ++ ++++ + + +++ +++ + 't... ++ ++ +++++ ++... ++ ++ +... +... ++ +++..j_"'"" +... + Process from Point/Station 10B.000 to Point/Station .... PIPEFLOW TRAVEL TIME lProgram estimated size) 500.000 Upstream point/station elevation = ~280.600jFt.) Downstream point/station elevation 124B.000lFt.J Pipe length 390.77{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow l2.209(CFS) Nearest computed pipe diameter lS.OO(In.) Calculated individual pipe flow l2.209fCFSl Normal flow depth in pipe = B.BSiln.} Flow top width inside pipe = 14.7611n.) Critical depth could not be calculated. Pipe flow velocity = 16.2l(Ft/sJ Travel time through pipe 0.40 ffiln. Time of concentration (TCI = 12.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+ Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 500.000 The following data inside Main Stream is listed; In Main Stream number: 1 Stream flow area = 7.070(Ac.l Runoff from this stream 12.209(CFSJ Time of concentration = 12.19 min. Rainfall intensity = 2.115iIn/Hrl Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++++ Process from Point/Station 200.000 to Point/Station **** INITIAL AREA EVALUATION **** 202.000 Initial area flow distance = 69B.330{Ft.l Top jof initial area) elevation = 1303.200fFt.1 Bottom (of initial area) elevation = 12B8.420IFt. Difference in elevation = 14.780(Ft.l Slope = 0.02116 s(percent) = 2.12 TC = k(O.420)*[(length^3l/(elevation changeJ)~0.2 Initial area time of concentration = 12.467 min. Rainfall intensity 2.088fln/HrJ for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.805 ~cimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soiljAMC 2) Pervious area fraction = A 0.000 B 0.000 C 0.000 D 1. 000 7S.00 0.600; Impervious fraction Page 3 0.400 \~ e e . AID.out Initial subarea runoff = Total initial stream area Pervious area fraction = 0.600 8.0B9fCFSJ 4.810{Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 204.000 Upstream point/station elevation = 1288.420fFt.J Downstream point/station elevation 1280.00Q(Ft.J Pipe length 351.97(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow B.089(CFSI Nearest computed pipe diameter IS.QOlln.) Calculated individual pipe flow B.089(CFS) Normal flow depth in pipe = 10.24(10.) Flow top width inside pipe = 13.96(ln.' Critical Depth = 13.43(10.) Pipe flow velocity = 9.07(Ft/s) Travel time through pipe = 0.65 min. Time of concentration (TCI = 13.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++ Process from Point/Station 204.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 204.000 Along Main Stream number: Stream flow area = 4 Runoff from this stream Time of concentration Rainfall intensity = 2 in normal stream number 1 .810 (Ac.) 8.089(CFS) 13.11 min. 2.031 (In/Hr) ++++++++++++++++++++++~~++++++++++++++++~+++++++++++++++++++++++++t+++ Process from Point/Station **** INITIAL AREA EVALUATION 203.000 to Point/Station 204.000 Initial area flow distance = 704.060(Ft.l Top (of initial area) elevation = 1298.750(Ft.} Bottom (of initial area) elevation 12eO.000IPt. Difference in elevation = 18.750{Ft.l Slope = 0.02663 s (percent) = 2.66 TC = k{0.420) *[ (length~3)/{elevation change)1~0.2 Initial area time of concentration = 11.946 min. Rainfall intensity 2.138{In/Hrl for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.807 Decimal fraction soil group A Decimal fraction soil group B Declmal fraction soil group C Decimal fraction soil group D RI index for soil(AMC 2) Pervious area fraction = O. Initial subarea runoff = Total initial stream area Pervious area fraction = 0.600 0.000 0.000 0.000 1.000 75.00 600; Impervious 6.660 (CFS) 3.8601Ac. fraction 0.400 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~-+~+ Process from Point/Station 204.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 204.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.860{Ac.1 Runoff from this stream 6.6601CFS) Time of concentration = 11.95 min. Rainfall intensity = 2.1381In/Hr) Summary of stream data: Stream No. Flow rate (CFSI TC (min) Rainfall Intensity IIn/Hr) Page 4 \\ e . . 1 2 Largest ~~ AID.out 2.031 2.138 time of concentration ~~ 8.089 13.11 6.660 11.95 stream flow has longer 8.089 + sum of Qb Ia/lb 6.660 0.950 14.416 6.327 Total of 2 streams to confluence: Flow races before confluence point: 8.089 6.660 Area of streams before confluence: 4.810 3.860 Results of confluence: Total flow rate ~ Time of concent~ation Effective stream area 14.416(CFSI 13.114 roili. after confluence 8.670{Ac. ) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~.+~++ Process from Point/Station 204.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 500.000 Upstream point/station elevation = 1280.0001Ft.J Downstream point/station elevation 1248.00Q(Ft.} Pipe length 447.54(Ft.1 Manning's N = 0.013 No. of pipes = 1 Required pipe flow 14.416fCFSl Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 14.4l6(CFS) Normal flow depth in pipe = 10.48(In.} Flow top width inside pipe = 13.77(In.) Critical depth could not be calculated. Pipe flow velocity = 15.75(Ft/s) Travel time through pipe 0.47 min. Time of concentration (Te) = 13.59 min. +++~++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++ Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 50D.OOO The fallowing data inside In Main Stream number: 2 Stream flow area = 8 Runoff from this stream Time of concentration = Rainfall intensity = Program is now starting Main Stream is listed: .67D(Ac. ) l4.4l6(CFSJ 13.59 min. 1.992(In/Hr) with Main Stream No. 3 ++++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++++..+~+++ Process from Point/Station 300.000 to Point/Station **** INITIAL AREA EVALUATION **-* 302.000 Initial area flow distance = 581.0BO(Ft.) Top (of initial area) elevation = l303.2001Ft.) Bottom (of initial area) elevation = 1290.BSO(Ft.) Difference in elevation = 12.350IFt.l Slope = 0.02125 s (percent) = 2.13 TC = kI0.420)*((length^31/(elevation change)]^O.2 Initial area time of concentration = 11.573 min. Rainfall intensity 2.176lIn/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.80B Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1_000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.600; Impervious fraction 0.400 Initial subarea runoff = 3.834(CFSJ Total initial stream area 2.180(AC.) Pervious area fraction = 0.600 Page 5 ~ e e e AID_out +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++ Process from Point/Station 302.000 to Point/Station *~~* PIPEFLOW TRAVEL TIME (Program estimated size) ***. 308.0UO Upstream point/station elevation ~ 1290.850(Ft_l Downstream point/station elevation 1288.100{Ft.J Pipe length 110.97(Ft.) Manning's N ~ 0.013 No. of pipes ~ 1 Required pipe flow 3_834ICFS) Nearest computed pipe diameter 12.0011n.) Calculated individual pipe flow 3.834(CFS) Normal flow depth in pipe ~ 7_28(10.1 Flow top width inside pipe ~ 11_72{In.) Critical Depth = 9_98fln_1 Pipe flow velocity = 7.69(Ft/sl Travel time through pipe = 0.24 min. Time of concentration (TCl = 11.81 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308_000 to Point/Station ***~ CONFLUENCE OF MINOR STREAMS .*.* 303.000 Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2.l80{Ac.) Runoff from this stream 3.834(CFSI Time of concentration 11.81 min. Rainfall intensity = 2.1S1IIn/Hrl ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"-+-~+++ Process from Point/Station 304.000 to Point/Station **** INITIAL AREA EVALUATION **** 30ti.OOO Initial area flow distance = 571.860{Ft_) Top (of initial area) elevation = 1302.400IFt.l Bottom (of initial area) elevation = 1288.710(Ft.J Difference in elevation = 13.690lFt.) Slope = 0.02394 s{percentl= 2_39 TC = k(0.420)*[(length^3)/(elevation change)J^O.2 Initial area time of concentration = 11.229 min. Rainfall intensity 2_2l2IIn/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.810 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.600 A 0.000 8 0_000 C 0.000 D 1.000 75.00 0.600; Impervious 3.940ICFS) 2.200(Ac. fraction 0.400 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306_000 to Point/Station 308.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) .... Upstream point/station elevation = 1288.710{Ft.) Downstream point/station elevation 1288_100IFt.l Pipe length 31.60(Ft.l Manning's N = 0.013 No_ of pipes = 1 Required pipe flow 3.940(CFS) Nearest computed pipe diameter 12.00{In.1 Calculated individual pipe flow 3.9401CFSl Normal flow depth in pipe = 8.09(ln., Flow top width inside pipe = 11_25{In.1 Critical Depth = 10.1I{In.l Pipe flow velocity = 7.00{Ft/sl Travel time through pipe = 0.08 min. Time of concentration lTCl = 11.30 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+.~++ Page 6 ~ e e . AIO.out Process from Point/Station 308.000 to Point/Station ***- CONFLUENCE OF MINOR STREAMS **** 308.000 Along Main Stream number: Stream flow area = 2 Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 3 in normal stream number 2 .2001Ac.) 3.940(CFSl 11.30 min. 2.204 (In/Hrl Stream No. Flow rate (CFSl Rainfall Intensity (InlHrl TC (min) 1 2 Largest Qp= Qp= 3.834 11.81 3.940 11.30 stream flow has longer or 3.940 + sum of Qa Tb/Ta 3.834 0.957 7.609 3.669 2.151 2.204 shorter time of concentration Total of 2 streams to confluence: Flow rates before confluence point: 3.834 3.940 Area of streams before confluence: 2.180 2.200 Results of confluence: Total flow rate = Time of concentration Effective stream area 7.609(CFS) 11.304 min. after confluence 4.380(Ac. J Process from Point/Station 308.000 to Point/Station **** PIPEFLQW TRAVEL TIME (Program estimated size) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 500.000 Upstream point/station elevation = 12BB.IDD(Ft.) Downstrea~ point/station elevation 124B.OOOfFt.) Pipe length 646.88(Ft.l Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.609(CFS) Nearest computed pipe diameter l2.00(In.) Calculated individual pipe flow 7.609(CFS) Normal flow depth in pipe = 8.55 (In.) Flow top width inside pipe = 10.86(1n.) Critical depth could not be calculated. Pipe flow velocity = 12.69(Ft/sl Travel time through pipe 0.85 min. Time of concentration (TCI = 12.15 min. Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+~+++ 500.000 The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.380iAc.l Runoff from this stream 7.609(CFS) Time of concentration = 12.15 min. Rainfall intensity = 2.11B(In/Hr) Program is now starting with Main Stream No. 4 Process from Point/Station 400.000 to Point/Station **** INITIAL AREA EVALUATION **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 402.000 Initial area flow distance = 412.740(Ft.) Top (of initial area) elevation = 1291.300iFt.l Bottom (of initial area) elevation = 1277.860(Ft.) Difference in elevation = 13.440{Ft.) Slope = 0.03256 s (percent) = 3.26 TC = k(D.300)*f(length^3)/(e1evation changelJ^O.2 Page 7 1JJ e e e Initial area time of concentration = RainEall intensity 2.9581InfHrl COMMERCIAL subarea type Runoff Coefficient = 0.888 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 21 Pervious area fraction = 0 Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 AID.out 6.620 min. for a 10.0 year storm A 0.000 B 0.000 C 0.000 o 1. 000 75.00 .100; Impervious fraction 5.150 (CFS) 1. 960 (Ac. ) 0.900 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 500.000 Upstream point/station elevation = 1277.860(Ft.l Downstream point/station elevation 1248.000(Ft.) Pipe length 129.87(Ft.l Manning's N = 0.013 No. of pipes = 1 Required pipe flow S.lSOtCFSl Nearest computed pipe diameter 9.00(ln.) Calculated individual pipe flow 5.1S0(CFSJ Normal flow depth in pipe = 5.28(ln.) Flow top width inside pipe = 8.86(ln.l Critical depth could not be calculated. Pipe flow velocity = 19.11(Ft/s) Travel time through pipe 0.11 min. Time of concentration (TCI = 6.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 50D.uOO The following data inside In Main Stream number: 4 Stre~~ flow area = Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data; Main Stream is listed; 1.9601Ac.) 5.150 (CFSl 6.73 min. 2.931(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 4 Largest Qp = Qp = 12.209 12.19 14.416 13.59 7.609 12.15 5.150 6.73 stream flow has longer 14.416 + sum of Qb Ia/lb 12.209 0.942 Qb Ia/lb 7.609 0.941 Qb Ia/lb 5.150 0.680 36.572 3.500 2.115 1. 992 2.118 2.931 time of concentration 11.500 7.156 Toeal of 4 main streams to confluence: Flow rates before confluence point: 12.209 14.416 7.609 Area of streams before confluence: 7.070 8.670 4.380 5.150 1. 960 Results of confluence: Total flow rate = 36.572fCFS) Time of concentration 13.587 min. Effective stream area after confluence 22.080(Ac.) Page 8 'J,. \. e e . A10.out +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++++ Process from Point/Station 500.000 to Point/Station **** CONFLv~NCE OF MINOR STREAMS **** 500.000 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 22_080(Ac.J Runoff from this stream 36.572(CFS) Time of concentration 13.59 min. Rainfall intensity = 1.992jInfHrl ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT 500.000 Rainfall intensity 2_253(In/Hrl for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lotl Runoff Coefficient = 0.826 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1_000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 User specified values are as follows: TC = 10.86 min. Rain intensity = 2.25(In/Hr) Total area = O.OO(Ac.J Tot31 runoff = 9.9l(CFSJ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++ Process from point/Station 500.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 501)_000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = O.OOQ(Ac.l Runoff from this stream 9.910(CFSl Time of concentration 10.86 min. Rainfall intensity = 2.253(ln/Hr) +++++++++++++++++++++++++++++++++++++-++++++++++++++++++++++++++~.+++t+ Process from Point/Station 36.500 to Point/Station **** USER DEFINED FLOW INFORMATION AT A POINT **** 500.UOO Rainfall intensity = 1.323(In/Hr) for a 10.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.719 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 21 80.00 Pervious area fraction = 1.000; Impervious fraction 0.000 User specified values are as follows: TC = 28.57 min. Rain intensity = 1.32(In/Hrl Total area = O.OO(Ac.) Total runoff = 153.21lCFSJ ++++++++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 500.000 Along Main Stream number: Stream flow area = O. Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 1 in normal stream number 3 OOO(Ac.J 153.205(CFSI 28.57 min. l.323fIn/Hrl Stream No. Flow rate (CFS) TC (min) Rainfall Intensity tIn/Hrl Page 9 ~ . . . 1 36.572 13.59 2 9.910 10.86 3 153.205 28.57 Largest stream flow has longer Qp = 153.205 + sum of Qb IalIb 36.572 0.664 Qb Ia/lb 9.910 0.587 Qp= 183.327 AID.out 1. 992 2.253 1.323 time of concentration 24.301 5.821 Total of 3 streams to confluence: Flow rates before confluence point: 36.572 9.910 153.205 Area of streams before confluence: 22.080 0.000 0.000 Results of confluence: Total flow rate = 183.327(CFSl Time of concentration = 28.570 m1n. Effective stream area after confluence End of computations, total study area = The following figures may be used for a unit hydrograph study of the Area averaged pervious area fraction(Ap} Area averaged RI index number = 75.0 22.0BOlAc. ) 22. DB lAC.) same area. 0.556 Page 10 1,.'? e e e AIDO.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (e} 1989 - 2001 Version 6.4 Ratiol"lal Hydro!og'1' Study Date: 08/04/05 File:AlOO.oul:. 914_0101 Tr 32780 Developed Condition lOQ-Yr Storm Evenc 8/4/05 SWL Hydrology Study Control Information *""""".".... English (in-lb} Units used in input data file Van Dell and Associates, Inc., Irvine, CA - SIN 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition 2 Standard intensity-duration curves data {Plate D-4.1} For the [ Murrieta,Tmc,Rnch CaNorco J area used. 10 year storm 10 minute intensity = 2.360(In/Hrl 10 year storm 60 minute intensity = O.880(In/Hr} 100 year storm 10 minute in~ensity 3.480(In/Hr) 100 year storm 60 minute incensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.3001In/Hr} Slope of intensity duration curve = 0.5500 +++++++++++++++++++++++++++++++++++++++++++++++++4++++++++++++++i+~+'~+ Process from Point/Station 100.000 to Point/Station **** INITIAL AREA EVALUATION **** 10;:.000 Initial area flow distance = 856.7801Ft.) Top (of initial area) elevation = 1322.830(Ft.} Bottom (of initial areal elevation = 1286.6001Ft.) Difference in elevation = 36.230(Ft.} Slope = 0.04229 slpercent)= 4.23 TC = klO.420l*{ (length^31/(elevation changeIJ~O.2 Initial area time of concentration = 11.780 min. Rainfall intensity 3.183(In/Hr) for a 100.0 year stann SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.B34 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soillAMC 2) 75.00 Pervious area fraction = 0.600; Impervious fraction 0.400 Initial subarea runoff = 11.571(CFSI Total initial stream area 4.360(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) *..* 108.000 Upstream point/station elevation = l286.600(Ft.l Downstream point/station elevation l080.6001Ft.) Pipe length 26.20fFt.l Manning'S N = 0.013 No. of pipes = 1 Required pipe flow 11.57l1CFSI Nearest computed pipe diameter 6.00IIn.) Page 1 'lA. e e . AlOO.out Calculated individual pipe flow 11.5711CFS) Normal flow depth in pipe = 3.83{In.) Flow top width inside pipe = 5.77(ln.) Critical depth could no~ be calculated. Pipe flow velocity = 87.601Ft/s) Travel tL~e through pipe 0.00 min. Time of concentration (TCl = 11.79 min. ~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++ Process from Point/Station 108.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 108.000 Along Main Stream number: Stre~~ flow area = 4 Runoff from this s~ream Time of concentration Rainfall intensity = 1 in normal stream number 1 .360(Ac.l ll.571(CFSl 11.79 min. 3.l82{In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION 104.000 to Point/Station 106.000 Initial area flow distance = 696.720IFt.1 Top (of initial area} elevation = l299.9001Ft. Bottom (of initial areal elevation = 128l.600(Ft.l Difference in elevation = 18.300IFt.) Slope = 0.02627 s(percentl= 2.63 TC = k(0.420)*({length~3)/{elevation change)1~0.2 Initial area time of concentration = 11.929 min. Rainfall intensity 3.l61(ln/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.833 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soi1(AMC 2} 75.00 Pervious area fraction = 0.600; Impervious fraction 0.400 Initial subarea runoff = 7.l39(CFSl Total initial stream area 2.710(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++ Process from Point/Station 106.000 to Paint/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 108.000 Upstream paint/station elevation = 128l.600(Ft.) Downstream point/station elevation l080.6001Ft.) Pipe length 18.40(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 7.l391CFSJ Nearest computed pipe diameter 6.00(1n.) Calculated individual pipe flow 7.139{CFSI Normal flow depth in pipe = 2.58(I~.l Flow top width inside pipe ~ 5.94(ln.1 Critical depth could not be calculated. Pipe flow velocity = 88.29(Ft/s) Travel time through pipe 0.00 min. Time of concentration (Tel = 11.93 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 108.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.710(Ac. I Runoff from this stream 7.l39lCFS) Time of concentration = 11.93 min. Rainfall intensity = 3.1601In/Hrl Summary of stream data: Page 2 ~ e e . Stream No AIDO.out Rainfall Intensity (In/Hrl Flow rat:e (CFS) TC (min) 1 2 Largest Qpo Qp 0 11.571 11.79 7.139 11.93 stream flow has longer or 1:.571 + sum of Qa Tb/Ta 7.139 0.988 18.622 7.051 3.182 3.160 shorter tiIDe of concentration Total of 2 streams to confluence: Flow rates before confluence point: 11.571 7.139 Area of streams before confluence: 4.360 2.710 Results of confluence: Total flow rate = Time of concentration Effective stream area IB.622{CFSJ 11.785 min. after confluence 7.070{Ac.l Process from Point/Station 108.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~-+.+++ 500.000 Upstream point/station elevation ~ 12BO.600(Ft.J Downstream point/station elevation l24B.OOOIFt.) Pipe length 390.77(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 18.622(CFSJ Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 18.622(CFS) Normal flow depth in pipe = 12.28(In.) Flow top width inside pipe = 11.56(In.) Critical depth could not be calculated. Pipe flow velocity = 17.33(Ft/s) Travel time through pipe 0.38 min. Time of concentration (TCl = 12.16 min. Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++ 500.000 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.070(Ac.l Runoff from this stream 18.622(CfS) Time of concentration = 12.16 min. Rainfall intensity = 3.127(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station **** INITIAL AREA EVALUATION 200.000 to Point/Station +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++++ 202.000 Initial area flow distance = 698.330(Ft.) Top (of initial areal elevation = l303.200{Ft.) Bottom (of initial area) elevation = 1288.420(Ft.) Difference in elevation = l4.7801Ft.1 Slope = 0.02116 s(percentl= 2.12 TC = k(0.4201*{ (length^31/(elevation changelJ^0.2 Initial area time of concentration = 12.467 min. Rainfall intensity 3.085(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.832 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 21 Pervious area fraction = A 0.000 8 0.000 C 0.000 D 1. 000 75.00 0.600; Impervious fraction Page 3 0.400 1Jp e . . AIOO.out Initial subarea runoff ~ Total initial stream area Pervious area fraction = 0.600 12.346 {CFS} 4.BIO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station .**~ PIPEFLOW TRAVEL TIME (Program estimated size) **** 204.000 Upstream point/station elevation = 1288.42Q(Ft.) Downstream point/station elevation I2BO.OOD(Ft.) Pipe length 3St.971Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 12.346(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 12.346ICFS} Normal flow depth in pipe = 11.74(In.} Flow top width inside pipe = 17.14110.) Critical Depth = 15.93(10.) Pipe flow velocity = 10.12IFt/sl Travel time through pipe = 0.58 min. Time of concentration (TC) = 13.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++++ Process from Point/Station 204.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 204.000 Along Main Stream number: Stream flow area = 4. Runoff from this strea~ Time of concentration Rainfall intensity = 2 in normal stream number 1 810{Ac. I 12.346{CFS) 13.05 min. 3.009(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++_.+.~+++ Process from Point/Station 203_000 to Point/Station **** INITIAL AREA EVALUATION **** 204.000 Initial area flow distance = 704_060(Ft.l Top (of initial area) elevation = l298.750fFt_1 Bottom (of initial area) elevation = 1280.000(Ft.) Difference in elevation = 18_750{Ft.1 Slope = 0.02663 s{percent) = 2.66 TC = k(0.420)*[{length^3)/(e1evation change)]^O.2 Initial area time of concentration = 11_946 min_ Rainfall intensity 3.l58(In/Hr} for a 100. SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.833 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0_600 o year storm A 0_000 B 0.000 CO.OOO D 1. 000 75.00 0_600; Impervious fraction lO_160(CFS) 3_860(Ac. ) 0.400 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 204.000 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.860IAc.) Runoff from this stream lO.160(CFS) Time of concentration = 11.95 min. Rainfall intensity = 3.158{In/Hr} Summary of stream data: Stream No. Flow rate (CFS) TC (minJ Rainfall Intensity lIn/Hr) Page 4 '].'" e . . 1 2 Largest ~= AIOO.out 3.009 3.158 time of concentration ~= 12.346 13.05 10.160 11.95 stream flow has longer 12.346 + sum or Qb Ia/lb 10.160 0.953 22.025 9.679 Total of 2 streams to confluence: Flow rates before confluence point: 12.346 10.160 Area of streams before confluence: 4.810 3.860 Results or confluence: Total flow rate = Time of concentration Effective stream area 22.025{CFS) 13.047 min. after confluence 8.670lAc.l Process from Point/Station 204.000 to Point/Station ...* PIPEFLOW TRAVEL TIME (Program estimated size} ***. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++ 500.000 Upstream point/station elevation = 1280.00Q(Ft.l Downstream point/station elevation 124B.OOOfFt.1 Pipe length 447.54iFt.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 22.025fCFSl Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 22.025(CFSl Normal flow depth in pipe = 12.0Q{In.) Flow top width inside pipe = 16.97iIn.) Critical depth could not be calculated. Pipe flow velocity = I7.59(Ft/s) Travel time through pipe 0.42 min. Time of concentration (Tel = 13.47 min. Process from Point/Station 500.000 to Point/Station ...* CONFLUENCE OF MAIN STREAMS *.** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+t+++ 500.000 The following data inside Main Stream is listed: In Main Stream number; 2 Stream flow area = 8.670(Ac.) Runoff from this stream 22.025(CFSJ Time of concentration = 13.47 min. Rainfall intensity = 2.9561In/Hr) Program is now starting with Main Stream No. 3 Process from Poin~JStation 300.QOO to Point/Station .*** INITIAL AREA EVALUATION .*** ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+.~+++ 302.1)00 Initial area flow distance = SaI.0BOIFt.) Top (of initial areal elevation = 1303.20Q(Ft.J Bottom iof initial area) elevation = 1290.850(Ft.) Difference in elevation = 12.350(~t.) Slope = 0.02125 s (percent) = 2.13 TC = kIO.420)*{(length^3l/(elevation changell^0.2 Initial area time of concentration = 11.573 min. Rainfall intensity 3.214(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre LotI Runoff Coefficient = 0.B34 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = O. Initial subarea runoff = Total initial stream area Pervious area fraction = 0.600 A 0.000 B 0.000 C 0.000 D 1.000 75.00 600: Impervious fraction 5.B46(CFS) 2.180tAc.) 0.400 Page 5 ~ e e e AIOO.out ++++++++T+++++++++++++++++++++++++++++++++++++~++++++++++++++++~++++++ Process f=om Point/Station 302.000 to Point/Station .... PIPEFLOW TFAVEL TIME (Program estimated sizel *.*. 308.000 Upstreili~ point/station elevation ~ 1290.850(Ft.) Downstream point/station elevation 1288.10Q1Ft.l Pipe lengtn 110.97(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 5.846(CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 5.846(CFSl Nonmal flow depth in pipe = 8.16(ln.) Flow top width inside pipe = 14.94(ln.) Critical Depth = 11.74(10.' Pipe flow velocity = B.57(Ft/5) Travel time through pipe = 0.22 min. Time or concentration (Tel = 11.79 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i-+~+-~++ Process from Point/Station J08.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 308.000 Along Main Stream number; 3 in normal stream number 1 Stream flow area ~ 2.180{Ac.l Runoff from this stream 5.846(CFSI Time of concentration 11.79 min. Rainfall intensity ~ 3.181(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i++++ Process from Point/Station 304.000 to Point/Station **** INITIAL AREA EVALUATION **** 306.0ClO Initial area flow distance = 571.860{Ft.) Top (of initial area) elevation = 1302.400(Ft.1 Bottom (of initial area) elevation = 1288.710(Ft.1 Difference in elevation = 13.690(Ft.J Slope = 0.02394 5 (percent) = 2.39 TC = k(0.420J*((length~31/(e!evation change)]^0.2 Initial area time of concentration = 11.229 min. Rainfall intensity 3.268(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.835 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.600; Impervious fraction 0.400 Initial subarea runoff = 6.005ICFS) Total initial stream area 2.200(Ac.) Pervious area fraction = 0.600 ++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++ Process from Point/Station 306.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 3011.000 Upstream point/station elevation = 1288.710(Ft.) Downstream point/station elevation 1288.100(Ft.1 Pipe length 31.60(Ft.J Manning'S N = 0.013 No. of pipes = 1 Required pipe flow 6.005{CFS) Nearest computed pipe diameter 15.00(In.) Calculated individual pipe flow 6.005(CFS) Normal flow depth in pipe = 8.98(In.) Flow top width inside pipe = 14.71(In.) Critical Depth = 11.89(In.) Pipe flow velocity = 7.84(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TCI = 11.30 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 6 ~ e e . AIOO.out Process from point/Station 308.000 to Point/Station ~~.. CONFLUENCE OF MINOR STREAMS **** 308.000 Along Main S~rearn number; Stream flow area = 2 Runoff from this stream Time of concentration = Rainfall intensity = Summary of stream data: 3 i~ normal stream number 2 .20Q(Ac. ) 6.QOS(CFSl 11.30 min. 3.257 (In/Hr) SCream No. Flow rate {CFS} TC (min) Rainfall Intensity (In/HrJ 1 2 Largest Qp = Qp = 5.846 11.79 6.005 11.30 stream flow has longer 6.005 + sum of Qa Tb/Ta 5.846 0.958 11.607 5.602 3.181 3_257 or shorter time of concentration Total of 2 streams to confluence: Flow rates before confluence point: 5.846 6.005 Area of streams before confluence: 2.180 2.200 Results of confluence: Total flow rate = Time of concentration Effective stream area 11.607 (CFS) 11.296 min. after confluence 4.380jAc. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++ Process from Point/Station 308.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 500.000 Upstream point/station elevation = 1288.l00(Ft.l Downstream point/station elevation l248.000IFt.J Pipe length 646.88(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow ll.6071CFSl Nearest computed pipe diameter 15.001In.) Calculated individual pipe flow 11.607(CFSl Normal flow depth in pipe = 9.45fln.) Flow top width inside pipe = 14.49(In.1 Critical depth could not be calculated. Pipe flow velocity = 14.27(Ft/sl Travel time through pipe 0.76 min. Time of concentration (TCl = 12.05 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++..++++ Process from Point/Station 500.000 to Point/Station .**. CONFLUENCE OF MAIN STREAMS **.* 500.000 The following data inside Main Stream is listed: In Main Stream number; 3 Stream flow area = 4.380(Ac.1 Runoff from this stream 11.607(CFS) Time of concentration = 12.05 min. Rainfall intensity = 3.143(In/Hrl Program is now starting with Main Stream No. 4 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION 400.000 to Point/Station 402.000 Initial area flow distance = 412.740{Ft.: Top (of initial area) elevation = 129l.300(Ft.} Bottom (of initial area) elevation = 1277.860(Ft.1 Difference in elevation = l3.440(Ft., Slope = 0.03256 s(percent)= 3.26 TC = k(O.3001*[(length^3J/(elevation change)J^O.2 Page 7 ?P . e -- Initial area time of concentration = Rainfall incensicy 4.37Q(In/HrJ COMMERCIAL subarea type Runoff Coefficient = 0.892 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 0.100 AIDO. 6.620 for a .0 year storm out m~n. 100 A 0.000 8 0.000 C 0.000 D 1. 000 75.00 0_100; Impervious fraction 7.637 {CFSJ 1.960(Ac.J 0.900 ++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station **** PIPEFLOW TRAVEL TIME (Program estimated size) 500. .)00 Upstream point/station elevation ~ l277_860(Ft.1 Downstream point/station elevation 1248_000(Ft.) Pipe length 129_87(Ft.) Manning's N ~ 0.013 No. of pipes ~ 1 Required pipe flow 7.637(CFSl Nearest computed pipe diameter 9.00(1n.) Calculated individual pipe flow 7_637fCFS) Normal flow depth in pipe ~ 7.09(10_) Flow top width inside pipe ~ 7_36(ln. J Critical depth could not be calculated. Pipe flow velocity ~ 20.45(Ft/s) Travel time through pipe 0.11 ffiln. Time of concentration (TCI ~ 6.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+~+ Process from Point/Station 500.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 500.000 The following data inside Main Stream is listed: In Main Stream number: 4 Stream flow area ~ 1.960(Ac.J Runoff from this stream 7.637(CFS) Time of concentration ~ 6.73 min. Rainfall intensity = 4_332(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (1n/Hrl 1 2 3 4 Largest Qp " Qp" 18_622 12_16 22.025 13.47 11.607 12.05 7.637 6.73 stream flow has longer 22.025 + sum of Qb 1a/Ib 18.622 0.945 Qb 1a/lb 11.607 0_941 Qb Ial Ib 7.637 0.682 55.758 5.212 3 _127 2.956 3.143 4.332 time of concentration 17.603 10.918 Total of 4 main streams to confluence: Flow rates before confluence point: 18.622 22_025 11.607 Area of streams before confluence: 7_070 8.670 4_380 7.637 1. 960 Results of confluence: Total flow rate = 55.758(CFS) Time of concentration 13.470 min_ Effective stream area after confluence 22.080(Ac. ) Page 8 '?;1\ e . . AIOO.out ++++++~+++++++~~++++~+++++~+++~+++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station ...* CONFLUENCE OF MINOR STREAMS ...~ 500.000 Along Main Stream number: Strearr, flow area ~ 22 Runoff from this stream Time of concentration Rainfall intensity ~ I in nonmal st~eam number 1 .080 (Ac. ) 55.758{CFS} 13 .47 min. 2.956(In/Hrl ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station .... USER DEFINED FLOW INFORMATION AT A POINT 5GO.OOO Rainfall intensity 3.328IIn/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient ~ 0.847 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction ~ 0.500; Impervious fraction 0.500 User specified values are as follows~ TC ~ 10.86 min. Rain intensity = 3.33{In/Hrl Total area ~ O.OOIAc.) Total runoff = l5.321CFSl +++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++?+++++ Process from Point/Station 500.000 to Point/Station .... CONFLUENCE OF MINOR STREAMS .... 500.000 Along Main Stream number: 1 in normal stream number 2 Stream flow area = O.OOO(Ac.J Runoff from this stream l5.320(CFSl Time of concentration 10.86 min. Rainfall intensity = 3.328(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++..+.~+++ Process from Point/Station 36.500 to Point/Station ..** USER DEFINED FLOW INFORMATION AT A POINT 500.000 Rainfall intensity = l.955tIn/HrJ for a 100.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.769 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal f~action soil group D 1.000 RI index for soil(AMC 2) 80.00 Pervious area fraction = 1.000; Impervious fraction 0.000 User specified values are as follows~ TC = 28.57 min. Rain intensity = 1.96/In/Hr) Total area = O.OO(Ac.) Total runoff = 235.70(CFS) ++++++++++++++++++++++++++~+++++++++~+++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station ..** CONFLUENCE OF MINOR STREAMS .*** 500.000 Along Main Stream number: 1 in normal stream number 3 Stream flow area = O.GOOIAc.l Runoff from this stream 235.700(CFSl Time of concentration = 28.57 min. Rainfall intensity ~ 1.955IIn/Hrl Summary of stream data: Stream No. Flow rate (CFSJ TC {minI Rainfall Intensity (In/HrJ Page 9 ~1" e . . 1 55.75B 13.47 2 15.320 10.86 3 235.700 28.57 Largest stream flow has longer Qp = 235.700 + sum of Qb Ia/lb 55.758 0.661 Qb Ia/lb 15.320 0.587 Qp = 281. S73 Aloa.out 2.956 3.328 1. 955 time of concentration 36.874 8_999 Total of 3 streams to confluence: Flow rates before confluence point: 55.758 15.320 235.700 Area of streams before confluence: 22.080 0.000 0.000 Results of confluence: Total flow rate = 2Bl.573fCFSJ Time of concentration = 28.570 min. Effective stream area after confluence End of computations, total study area = The following figures may he used for a unit hydrograph study of the Area averaged pervious area fraction(Ap) Area averaged RI index number = 75.0 22.0BO{Ac.} 22.08 (Ac.) same area. 0.556 Page 10 ~'? . Basin Routing Existing Condition . - ~ BASIC DATA CALCULATION FORM EXISTING CONDITION TRACT 32780 By: SWL Da te: 7/28/2005 Checked: RTC Date: 7/28/2005 __ CONCENTRATION POINT PHYSICAL DATA A PJ AREA DESIGNATION A 13) AREA -- SQ FT 67269Q.9:! (4) AREA ADJUSTMENT FACTOR 0.0000 [5) AREA -- SQ MILES ([3J*[4)) 0.02 [6) L--FT 1047.95 [7) L ADJUSTMENT FACTOR 0.000" [SJ L -- MILES ([61*[7]) 0.18 (9) LCA -- FT 349.10 (10) LCA -- MILES ([7)*[9]) 0.06 (III ELEVATION OF HEADWATER 1369 [12) ELEVATION OF CONCENTRATION POINT 1256.0 [13) H -- FEET ([11)-[12]) 113 [14] S -- FEET/MILE ([13V(SJ) 612.47 [15J S^0.5 24.75 (161 L*LCAlS^0.5([8J*[IOJ/[15]) 0.00 [17) AVERAGE MANNINGS "N" (450'@0.025. 2.11 T@0.014. 2.924'@0.035) 0.026 [18) LAG TIME -- HOURS (24*(I7)*[16J'O.38) (PLATE E-3) 0.03 119J LAG TIME -- MINUTES (60*[18]) 2.02 [20) 25'7, OFLAG -- MINUTES (0.25*[19]) 0.50 (21) 40% OF LAG -- MINUTES (0.40*[19]) 0.81 [22) UNIT TIME -- MINUTES (25-40% OF LAG) 5 (3- & 6-HR) 15 (24.HR) .OURCE RAINFALL DATA IHydrology Manual [2] FREQUENCY -- YEARS I 2-YR (3) DURATION: 3-HOURS . 6-HOURS 24-HOURS (4) [5] [6) [7J (8] [9J [101 [III (12J (13) [14J [15J POINT AREA ill A VG PT POINT AREA W A VG PT POINT AREA ill] A VG PT RAIN SQMI SUM(5J RAIN RAIN SQMI SUM [9) RAIN RAIN SQMI SUM [IIJ RAIN INCHES INCHES INCHES INCHES INCHES INCHES 1.70 0.02 1.000 1.700 SUM (51- 0 SUM [7J- 0.000 SUM [9J- o SUM[II)~ 0.000 SUM [13) - 0.0208506 SUM [15)- 1.700 [16J AREAL ADJ FACTOR: 0.999 (SEE PLATE E-5.8) 0.999 0.999 (17) ADJ A VG PT RAIN: 0.00 0.00 1.70 . "Q.{ BASIC DATA CALCULATION FORM ~XISTING CONDITION TRACT 32780 By: SWL Date: 7/28/2005 Checked: RTC Date: 7/26/2005 . CONCENTRATION POINT PHYSICAL DATA A [2] AREA DESIGNATION A (3) AREA -- SQ IT 672690.92 [4) AREA ADJUSTMENT FACTOR 0.0000 [51 AREA -- SQ MILES ([3]'[4j) 0.02 [6] L-- IT 1047.95 [7] L ADJUSTMENT FACTOR 0.0002 [8J L -- MILES ([6]'[71l 0.18 [9J LCA -- IT 349.10 [10] LCA -- MILES ([7)'[9j) 0.06 [I I) ELEVATION OF HEADWATER 1369 [12J ELEVATION OF CONCENTRATION POINT 1256.0 [13] H--FEET([II)-[12j) 113 [14] S -- FEET/MILE ([13J/[8j) 612.47 [15) S'O.5 24.75 [16) L'LCAlS'O.5 ([8J'[IOJ/[15]) 0.00 [17] AVERAGE MANNINGS "N" (450'@0.025.2.IIT@0.014.2.924'@0.035) 0.026 (18) LAG TIME -- HOURS (24'[l7)'[16J^0.38) (PLATE E-3) 0.03 [l9[ LAG TIME -- MINUTES (60'[18]) 2.02 [20[ 25% OF LAG -- MINUTES (0.25'[ 19j) 0.50 (21) 40%OF LAG -- MINUTES (0.40'[19]) 0.81 [22] UNIT TIME -- MINUTES (25-40';1 OF LAG) 5 (3- & 6-HR) 15 (24-HR) RAINFALL DATA SOURCE IHydrology Manual [2] FREQUENCY -- YEARS I IO-YR [3] DURATION, 3-HOURS 6-HOURS ?4-HOURS [4J [5] [6J [7J [8J [9] [10] [I1J [12[ [I3J [141 [15) POINT AREA l2.I AVG PT POINT AREA l2J AVO PT POINT AREA LUI AVO PT RAIN SQMI SUM[5J RAIN RAIN SQMI SUM [9[ RAIN RAIN SQMI SUM [131 RAIN INCHES INCHES INCHES INCHES INCHES INCHES 2.80 0.02 1.000 2.800 SUM [5] ~ 0 SUM [7)- 0.000 SUM [9J - o SUM [II] ~ 0.000 UM[13J- 0.0208506 SUM[15)- 2.800 [16] AREAL ADJ FACTOR, 0.999 (SEE PLATE E-5.8) 0.999 0.999 [171 ADJ AVO PT RAIN, 0.00 0.00 2.80 . <1? BASIC DATA CALCULATION FORM EXISTING CONDITION TRACT 32780 By: SWL Date: 7/28/2005 Checked: RTC Date: 7/28/2005 PHYSICAL DATA CON CENTRA TlON POINT A [2] AREA DESIGNATION A [3] AREA -- SQ FT 672690.92 [41 AREA ADJUSTMENT FACTOR 0.??oo [5] AREA -- SQ MILES ({3J'[4JJ 0.02 [61 L--FT 1047.95 [71 L ADJUSTMENT FACTOR O.OOO? [8] L -- MILES ([6]'[7]1 0.18 [9] LCA u FT 349.10 [101 LCA -- MILES ({7J'[9]1 0.06 [II) ELEVATION OF HEADWATER 1369 [12] ELEVATION OF CONCENTRA TIONPOINT 1256.0 [13] H--FEET({II]-[12JI I13 [14J S -, FEET/MILE ([13)/[8]1 612.47 [IS] S^O.5 24.75 [161 L'LCA/S'O.5 ([8]'[IOJI[15j) 0.00 [17] AVERAGE MANNINGS "N" (450'@0.O25.2.117'@0.014.2.924'@0.035) 0.026 [18] LAG TIME -, HOURS (24'[17J'[16J'O.38) (PLATE E-3J 0.03 [19) LAG TIME u MINUTES (60'[18IJ 2.02 [20] 25% OF LAG -- MINUTES (0.25'[19]) 0.50 [21] 40% OF LAG -- MINUTES (0.40'[19]) 0.81 [22J UNIT TIME -- MINUTES (25-40'1 OF LAG) 5 (3- & 6-HRI 15 (24-HR) RAINFALL DATA SOURCE Hydrology Manual [2J FREQUENCY' -- YEARS lOO-YR [3) DURATION, 3-HOURS 6-HOURS 24-HOURS [4J [5] [6J 17J [8J [9J [IOJ (III [121 [13J [14] [151 POINT AREA [2] AVG PT POINT AREA I2J AVG PT POINT AREA 1UI AVG PT RAIN SQMI SUM [5] RAIN RAIN SQMI SUM 191 RAIN RAIN SQMI SUM 113J RAIN INCHES INCHES INCHES INCHES INCHES INCHES 1.85 O.O? 1.000 1.850 2.50 0.02 1.000 2.500 4.50 0.02 1.0)0 4.500 SUM [5] = 0.0208506 SUM (7J = 1.850 SUM[9J= 0.0208506 SUM[II]= 2.500 lsuM [I3J = 0.0208506 SUM [151 = 4.500 [16] AREALADJFACTOR: 0.999 (SEE PLATE E-5.8J 0.999 0.999 [17] ADJ A VG PT RAIN, 1.85 2.50 4.50 . ~1. SYNTHETIC UNIT HYDROGRAPH METHOD EXISTING CONDITION (AMC I) HYDROLOGY BASIC DATA CALCULATION FORM fn-32780EX Loss.xls MANUAL TRACT 32780 Calced By: SWL 7/28/2005 Checked: RTC 7/28/2005 AVERAGE ADJUSTED LOSS RATE [II [21 [3] 141 [51 [6] [71 [8[ [91 [IO[ SOlL COVER RI PERVIOUS LAND DECIMAL ADJUSTED AREA [81/SUM[8] AVERAGE GROUP TYPE NUMBER AREA USE % OF AREA INFL TN SQFr ADJUSTED (PL.....TEC-Il IPLATEE.6.11 INFL TN lMPERV. RATE-INIHR INA..TN RA TE-INIHR IPLATEE-6.3J HHI,.9Jhl\ RA TE-IN/HR IPLA IE E-6.2) (7J.,9] B CHAP. NARRO\\ 72 0.55 NATURAL 0.0 055 668657.3 099 0.55 D CHAP. NARRO\\ 86 0.34 NATURAL 0.0 0.34 4087.5 0.01 0.00 SUM [8]," 671744.8 SUM [iii) = 055 Fm = Minimum Loss Rate - F/1 = SUM(IOV2 = 0.27 lN/HR C = (F-Fml/54 =(SUM[IO]- FmJ154 = 0.00508 FT =C(:!'HT/60J)^1.55 + Fro = 0.00508 ( 24 ~ (T/60) )1\ 1.55 + 0.27 IN/HR Where: T = Time in minutes. To get an average value for each unit time period. use T=lf2 the unit time for the first time period. T=I I/J unit time for the second period. etc. . ?/b SYNTHETIC UNIT HYDROGRAPH METHOD EXISTING CONDITION(AMC II) HYDROLOGY BASIC DATA CALCULATION FORM fn~32780EX Loss.xls MANUAL TRACT 32780 Calced By: SWL 7/28/2005 Checked: RTC 7/28/2005 AVERAGE ADJUSTED LOSS RATE {ll [2J [JJ [.} [5J [6J [7J 18} [9J 1101 SOIL COVER RI PERVIOUS LAND DECIMAL ADJUSTED AREA [811 SUM 18{ AVERAGE GROUP TYPE NUMBER AREA USE 'kOF AREA INFL TN SQFT ADJUSTED (PLATEe-l) lPLATEE.6.lj fNR.TN IMPERV. RATE-IN/HR INFL TN RA TE-INIHR (PLATE E.63) 1410-.9161l RA TE-INfHR (PLATEE-6.11 111-191 B CHAP. NARRO\\ 7' O.3~ NATURAL 0.0 0.3-1. 668657.3 '}.99 0.34 D CHAP. NARROW 86 0.18 NATURAL 0.0 D.IE 4087.5 0.01 ODO -= I I SUM [8{ - 6n7~.8 SUM [IDJ- 0.3-1 Fm -= Minimum Loss Rate - FI2 -= SUM{IOY2 = 0.17 IN/HR C::; (F-Fml/54 -= (SUM[IO) - Fmlt5..!.-= 0.D031. IT =CO.HT/60J/^1.55 + Fm-= 0.00314 ( 24 - (T/60) J^ 1.55 + 0.17 IN/HR Where: T = Time in minutes. To get an average value for each unit time peri(xt use T=If1 the unil time for [he fir..l tlmeperioo. T=I 1/2 unit time for the second period. elC. e 1l\ e .FREE ID Van Dell ID WALCOTT TR 32780 ID 1D ......................_........._....____.............______._... ID EXISTING CONDITION ID ..........---............_.......__....__........__...._.__...... "'DIAGRAM ID*NOi...IST IT 5 0000 0000 300 IO 5 KK **3HR** QI 0 KK 3HREX KM IOO-YEAR ]-HOUR EXISTING CONDITION SA .02 LU 0 .34 0 FE 1.85 PI 1.3 1.3 PI 1.6 1.8 PI 3.3 3.1 PI 8.2 5.9 SU .18 0.06 KK **6HR.. QI 0 KK 6 HREX KM IOO-YEAR 6 HOUR EXISTING CONDITION SA .02 LV 0 .34 0 pa 2.50 PI 0.5 0.6 0.6 0.6 PI 0.7 0.8 0.8 0.8 PI 0.8 0.8 0.8 0.9 PI 0.9 0.9 1.0 1.0 PI 1.2 1.3 1.4 1.4 PI 1.9 2.0 2.1 2.1 _1 3.1 3.6 3.9 4.2 I 0.30.2 su .18 0.06 612.47 KK **24HR"* Qr 0 IN 15 KK 24HREX KM IOO-YEAR 24-HOUR EXISTING CONDITION SA 0.02 KM VAR. LOSS=O.34/0.9=O.38 W/IO% IMPERV.FACTOR LU 0 .38 10 PB 4.50 PI 0.2 0.3 0.3 0.4 PI 0.5 0.5 0.5 0.5 PI 0.6 0.7 0.8 0.8 PI 1.2 1.3 1.5 1.5 PI 1.5 1.5 2.0 2.0 PI 2.8 2.9 3.4 3.4 PI 2.4 2.3 1.9 1.9 PI 0.5 0.4 0.4 0.4 PI 0.3 0.3 0.3 0.2 PI 0.2 0.2 0.2 0.2 $U .18 0.06 612.47 ZZ 32780EX. I 1.1 1.5 2.2 2.2 2.9 3.0 2.01.8 612.47 1.51.81.5 2.2 2.0 2.6 3.1 4.2 5.0 1.80.60.0 0.025 11 0 1.8 2.7 3.5 0.0 1.8 2.4 6.8 0.0 1.5 2.7 7.3 0.0 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.6 1.6 1.7 1.8 2.2 2.3 2.' 2.4 2.5 2.6 '.7 5.6 1.9 0.9 0.6 0.5 0.025 11 0 0.3 0.3 0.5 0.6 0.9 0.9 1.61.7 1.9 1.9 2.3 2.3 0.4 0.4 0.3 0.2 0.3 0.2 0.2 0.2 0.025 11 0 0.3 0.6 1.0 1.9 1.7 2.7 0.3 0.3 0.3 D.. 0.7 1.0 2.0 1.8 2.6 0.3 D.. 0.2 D.. 0.7 1.0 2.1 2.5 2.6 0.5 0.3 0.3 0.4 0.8 1.1 2.2 2.6 2.5 0.5 0.2 0.2 . Page 1 4J t**************************************** *************************************** * * * * U.S. ARMY CORPS OF ENGINEERS * * HYDROLOGIC ENGINEERING CENTER * * 609 SECONO STREET * * OAVIS, CALIFORNIA 95616 * * (916) 756-1104 * * * FLOOD HYDROGRAPH PACKAGE IHEC-1) * JUN 199B * e VERSION 4.1 * * RUN OATE 03AUG05 TIME 15:40:16 * . r**************************************** *************************************** x X xxxxxxx XXXXX X X X X X X XX X X X X X xxxxxxx xxxx X xxxxx X X X X X X X X X X X X X X xxxxxxx xxxxx XXX THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS Of HEC-l KNQ\.IN AS HECl (JAN 73), IlEC1GS, HEC1DB, AND HEC1KW. e THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITfl THE 1973-ST'fLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM~CARO WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED' CALCULATION INTERVAL lOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW fINITE DiffERENCE ALGORITHM . 1>....\ LINE ,.e ... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 e 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 . HEC-1 INPUT 10, . . .. .. 1. .. . .. .2. .. . .. .3. .. .. . .4. . .. . .. 5, . .. . ..6.. . . .. .7. . ... . .8.. . . . . .9. .. .. .10 10 Van Del t 10 ~ALCOTT TR 32780 10 10 *****"'*********.*"'***************************.*****.**..........*.*. 10 EXISTING CONDITION 10 ......******."'........***..***.....******.**.......***.....~'....***... *0 I AGRAM 10 .NOLI ST IT 5 0000 0000 300 10 5 KK **3HR"'* QI 0 KK 3HREX KM 100'YEAR 3-HOUR EXISTING CONOITION 8A ,02 LU 0 .34 0 PB 1.85 PI 1.3 1.3 1.1 1.5 1.5 1.8 1.5 1.8 1.8 1.5 PI 1.6 1.8 2.2 2.2 2.2 2,0 2.6 2:1 2.4 2.7 PI 3.3 3.1 2.9 3,0 3.1 4.2 5.0 :1.5 6.8 7.3 PI 8,2 5.9 2.0 1.8 1.8 0.6 0.0 0.0 0.0 0,0 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH UI 139. 14, 2. KK **6HR*. QI 0 KK 6HREX KM 100 - YEAR 6 HOUR EXISTING CONDITION BA .02 LU 0 .34 0 P8 2,50 PI 0,5 0.6 0,6 0.6 0.6 0.7 0.7 0,7 0.7 0.7 PI 0.7 0.8 0.8 0,8 0,8 0.8 0.8 0.8 0.8 0.8 PI 0.8 0.8 0.8 0.9 0.8 0.9 0,9 0.9 0.9 0.9 PI 0.9 0,9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 PI 1.2 1.3 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.8 PI 1.9 2.0 2.1 2.1 2.2 2.3 2,4 2.4 2.5 2,6 PI 3.1 3,6 3,9 4,2 4.7 5.6 1.9 0.9 0,6 0.5 PI 0.3 0,2 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH UI 139. 14. 2. KK**24HR** QI 0 IN 15 PAGE A.rz, HEC-1 INPUT PAGE 2 LINE 10.. . .. .. 1 . _ . . . .. 2. .. .. . .3. .. .. ..4. ,.... ,5.. .. .. .6. . . .. . ,7. . . .. ..8... . . .. 9. .. . . .10 e 43 KK 24HREX 44 KM lOO-YEAR 24-HOUR EXISTING CONDITION 45 8A 0,02 46 KM VAR, lOSS;O,34/0.9;0.38 ~/10% IMPERV.fACTOR 47 lU 0 ,38 10 48 PB 4.50 49 PI 0.2 0,3 0.3 0.4 0.3 0.3 0.3 0.4 0.4 0.4 50 PI 0.5 0.5 0.5 0,5 0.5 0.6 0.6 0.7 0.7 0.8 51 PI 0,6 0.7 0.8 0,8 0.9 0,9 1.0 1.0 1.0 1.1 52 PI 1.2 1.3 1.5 1.5 1.6 1.7 1.9 2,0 2.1 2.2 53 PI 1.5 1.5 2.0 2.0 1.9 1.9 1.7 1.B 2,5 2,6 54 PI 2.8 2.9 3.4 3.4 2,3 2.3 2.7 2,6 2.6 2.5 55 PI 2.4 2.3 1.9 1.9 0.4 0.4 0.3 0.:3 0.5 0.5 56 PI 0.5 0.4 0,4 0.4 0.3 0.2 0.3 0.4 0.3 0,2 57 PI 0.3 0.3 0.3 0.2 0.3 0,2 0,3 o.;~ 0.3 0.2 58 PI 0.2 0,2 0.2 0.2 0.2 0.2 59 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH 60 UI 139. 14. 2. 61 ZZ e e M> SCHEMATIC DIAGRAM OF STREAM NETWORK 'NPUT lit (V) ROUTING (--->) DIVERSION OR PUMP flOW c.) CONNECTOR (<---) RETURN OF DIVERTED OR PUMPED FLOW 12 3HREX 25 6HREX 43 24HREX -**) RUNOFF ALSO COMPUTED AT THIS LOCATION e . A.A.... .....................*...***.*....***.** ...*.**********..**.*.*.*************** . . . flOOD HYDROGRAPH PACKAGE (HEC-l) . . U.S. ARMY CORPS OF ENGINEERS . JUN 1998 . . HYDROLOGIC ENGINEERING CENTER . e VERSION 4.1 . . 609 SECOND STREET . . . DAVIS, CAl! FOllNIA 95616 . RUN DATE 03AUG05 TIME 15:40: 16 . . (916) 756- 1104 . . . . ~**************************..*.********* ** * *********** ** ** ***,.********** ******* *NOlIST 9 10 OUTPUT CONTROL IPRNT {PLOT QSCAL IT HYOROGRAPH TIME DATA NMIN IDATE ITIME NQ NDDA TE NDTIME ICENT e COMPUTATION INTERVAL TOTAL TIME BASE ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH lENGTH, ELEVATION FLOII STORAGE VOLUME SURFACE AREA TEMPERA TURE . Van Dell ~LCOTT TR 32780 ****.************************************..****.***************** EXISTING CONDITION ****.**.**************************.****.*****************.*.*~.** VARIABLES 5 o 0, PR I NT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE 2 5 00 0 0000 300 o 0055 19 MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK .OB HOURS 24.92 HOURS SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT ~ RUNOFF SUMMARY FLOY IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES . PEAK TIME OF AVERAGE FLOY FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF OPERATION STATiON FLOY PEAK 6-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE HYDROGRAPH AT *"'3HR*'" O. ,00 0, O. O. .00 HYDROGRAPH AT 3HREX 19. 2,58 2. O. o. .02 HYDROGRAPH AT **6HR** O. ,00 0, O. O. .02 HYDROGRAPH AT 6HREX 17. 5.50 2. 0, O. .02 HYDROGRAPH AT **24HR** 0, ,00 O. O. o. .02 HYDROGRAPH AT 24HREX 3. 13.25 1. O. O. .02 * NORMAL END OF HEC~1 *** e e At, . Basin Routing Proposed Condition . . A.'\ 7_,',_ BASIC DATA CALCULATION FORM DEVELOPED CONDITION TRACT 32180 By: SWL Date: 1/28/2005 Checked: RTC Date: 1/28/2005 PHYSICAL DATA CONCENTRATION POINT A [2J AREA DESIGNATION A [3J AREA -, SQ FT 1060885.8 [4J AREA ADJUSTMENT FACTOR 0.??oo [5J AREA n SQ MILES (13J*[4JI 0.03 16J LnFT 129"')A2 [1[ L ADJUSTMENT FACTOR 0.000' [8J L n MILES ([6J*[7)) Q.:!3 19J LCA -- FT 855.]7 [,IOJ LCA n MILES ([1J*[9)) 0.15 [Ill ELEVATION OF HEADWATER 1303.2 [12J ELEVATION OF CONCENTRATION POINT 1276.6 113J H n FEET([II]-[12)) 26.6 [14J S n FEET/MILE (II3V[8)) 116.90 [l5J S^O.5 10.81 116J L*LCNS^O.5 ([8]*[IO)/[15J1 0.00 [I7J AVERAGE MANNINGS "N" (450'@0.025. 2. I 17'@0.014. 2.924'@0.0351 0.026 II8J LAG TIME -- HOURS (24*[I7I*[16J^O.38)(PLATE E-3) 0.07 [19J LAG TIME n MINUTES (60*118)) 4.10 [20J 25% OF LAG n MINUTES (0.25*[19)) 1.05 121J 40,", OF LAG n MINUTES (0.40*[19)) 1.68 [22J UNIT TIME -- MINUTES (25-40% OF LAG) 5 (3- & 6-HRI 15 (24-HR) RAINFALL DATA SOURCE IHydrology Manual [2] FREQUENCY n YEARS I 2.YR [3J DURATION: 3-HOURS 6-HOURS 24-HOURS [4J [5J [6J [7J [81 [9[ IIOJ [II] [12] [131 [141 [15J POINT AREA [5J A VG PT POINT AREA [2] AVG PT POINT AREA lliJ AVG PT RAIN SQMI SUM!5J RAIN RAIN SQMI SUM[9J RAIN RAIN SQMI SUM[13) RAIN INCHES INCHES INCHES INCHES INCHES INCHES 1.70 0.D3 1.000 1.700 SUM [5J = 0 SUM [7] = 0.000 SUM [91 = o SUM (11)-- 0.000 SUM[13[-- 0.032883 SUM [151- 1.700 [16J AREALADJ FACTOR: 0.999 (SEE PLATE E-5.8) 0.999 0.999 [17] ADJ A VG PT RAIN: 0.00 0.00 1.70 e b.." BASIC DATA CALCULATION FORM ~EVELOPED CONDITION TRACT 32780 By: SWL Dale: 7/28/2005 Checked: RTC Dale: 7/28/2005 PHYSICAL DATA CONCENTRATION POINT A [2J AREA DESIGNATION A [3J AREA n SQ FT 1060885.8 [4J AREA ADJUSTMENT FACTOR 0.??oo (5) AREA -- SQ MILES ((3J'[4)) 0.03 [6J LnFT 1292.42 [7) L ADJUSTMENT FACTOR 0.0002 (8J L -- MILES ([6)'(71> 0.23 [9) LCA -- FT 855.27 [1OJ LCA _. MILES ([7J'[91> 0.15 [IIJ ELEVATION OF HEADWATER 1303.2 (I2J ELEVATION OF CONCENTRATION POINT 1276.6 [13J H -- FEET ([11]-[12)) 26.6 [14) S n FEET/MILE ([13V[8)) /16.90 [15J S'O.5 10.81 [16] L'LCNS'O.5 ([8J'[IOJ/[15)) 0.00 (171 AVERAGE MANNINGS "N" (450'@0.02S.2.117'@0.014. o,924'@0.035) 0.026 (18) LAG TIME -- HOURS (24'[ (7)'[16J^0.38) (PLATE E-3) 0.D7 [19J LAG TIME -- MINUTES (60'[18)) 4.20 [20J 25% OF LAG n MINUTES (0.25'[19)) 1.05 [21J 40% OF LAG -- MINUTES <0.40'[19]) 1.68 [22) UNIT TIME _. MINUTES (25-40\< OF LAG) 5 (3- & 6-HR) 15 (2,-HR) RAINFALL DATA OURCE IHydrolugy Manual [2J FREQUENCY -- YEARS I IO-YR [3] DURATION: 3-HOURS 6-HOURS 24-HOURS [4J [51 (6J (7J [8J [9) [1OJ (llJ (12J [13J [14J [15J POINT AREA ill AVG PT POINT AREA l2.I AVG PT POINT AREA ill] A VG PT RAIN SQMI SUM[SJ RAIN RAIN SQMI SUM [91 RAIN RAIN SQMI SUM[13J RAIN INCHES INCHES INCHES INCHES INCHES INCHES 2.80 0.03 1.000 2.800 SUM [5J = 0 SUM [7) = 0.000 SUM [9) = o SUM[IIJ= 0.000 SUM [13J = 0.032883 SUM [15} = 2.800 [16] AREAL AD! FACTOR: 0.999 (SEE PLATE E-5.8) 0.999 0.999 [171 AD! AVG PT RAIN: 0.00 0.00 2.80 e 1>.0.... BASIC DATA CALCULATION FORM ,QEVELOPED CONDITION TRACT 32780 By: SWL Dale: 7/28/2005 Checked: RTC Dale: 7/28/2005 PHYSICAL DATA CONCENTRATION POINT A [2J AREA DESIGNATION A [3J AREA -- SQ FT 1060885.8 [4J AREA ADJUSTMENT FACTOR 0.0000 [5) AREA -- SQ MILES ([31*[4)) 0.03 16J L.. FT 1292.42 [7) L ADJUSTMENT FACTOR 0.0002 [8J L.. MILES ([6)"[7JI 0.23 [9J LCA -- FT 855.27 [10) LCA.. MILES ([7I'19]l 0.15 [II J ELEVATION OF HEADWATER 1303.2 [12J ELEVATION OF CONCENTRATION POINT 1276.6 [131 H -- FEET ([11).[12JI 26.6 [14) S -- FEETIMILE ([13)/[8)) 116.90 [15J S'O.5 10.81 [16J L'LCAiS^O.5 ([8J'[IOJ/[ 15)) 0.00 117J AVERAGE MANNINGS "N" (450'@0.025. 2.117'@0.014. 2.924'@0.035) 0.026 [18J LAG TIME.. HOURS 124'[I7)'[16]^0.38)(PLATE E.3) 0.07 [19J LAG TIME -- MINUTES (60'[18)) 4.20 [20[ 25% OF LAG -- MINUTES (0.25'[19]) 1.05 121] 40% OF LAG -. MINUTES (0.40'[ 19)) 1.68 [22] UNIT TIME -- MINUTES (25-40'.< OF LAG) 5 (3- & 6-HR) 15 (24.HR) RAINFALL DATA OURCE I Hydrology Manual [2] FREQUENCY -- YEARS 100-YR [3J DURATION, 3-HOURS 6-HOURS 24-HOURS [4] [5J [6J [7J [8J [91 [10] [III [12J [I3J [14J [151 POINT AREA l2J AVG PT POINT AREA l2J AVG PT POINT AREA [UJ AVO PT RAIN SQMI SUM [5J RAIN RAIN SQMI SUMI9J RAIN RAIN SQMI SUM (1',] RAIN INCHES INCHES INCHES INCHES INCHES INCHES 1.85 0.03 1.000 1.850 2.50 0.03 1.000 2.500 4.50 0,03 1.000 4.500 SUM 15J ~ 0.032883 SUM [7J ~ 1.850 SUM [9] ~ 0.032883 SUM [II] ~ 2.500 SUM[13[~ 0.032883 SUM [15J ~ 4.500 [16J AREAL ADJ FACTOR 0.999 (SEE PLATE E-5.8) 0.999 0.999 [17] ADJ AVO PT RAIN, 1.85 2.50 4.50 e ~o SYNTHETIC UNIT HYDROGRAPH METHOD DEVELOPED CONDITION (AMC I) HYOROLOGY BASIC DATA CALCULATION FORM In=32780PR Loss.xls MANUAL TRACT 32780 Calced By: SWL 7/28/2005 Checked: RTC 7/28/2005 AVERAGE ADJUSTED LOSS RATE [IJ [2} [3J [4] [5] [6] [7] [8J [9[ [IO[ SOIL COVER RI PERVIOUS LAND DECIMAL ADJUSTED AREA [8]/SUM[8] AVERAGE GROUP TYPE NUMBER AREA USE % OF AREA INFLTN SQFf ADJ USTED (PLATEC-IJ rPLAlEE-6.11 INR. TN IMPER V. RATE-INIHR INFL TN RA TE-INIHR (PLATEE-6.]) [4J(l-.9/lilJ RA TE-INIHR IPLATEE-6.2\ [7'.[9] B URBAN.. GOOD 56 0.70 RESIDENTIAL 0.4 0.45 1003776.8 0.95 O.,.r~ C URBAN. GOOD 69 0.57 RESIDENTIAL 0.4 0.36 53210,8 0.05 0_02 D URBAN. GOOD 75 0.51 RESIDENTIAL 0.4 0.33 3898.1 0.00 000 SUM [S)~- 1060885.7 SUM [!OJ = 044 fm= Minimum Loss Rate - Ff2 =SUM[lOjf2:::: 0.22 IN/HR C:::: (F-Fm)/54:::: ISUM(IOJ - FmJ/54:::: O-'lO4ll IT:::: CC!-HT/60))^1.55 + Fm:::: 0.00411 ( 24 ~ (T/60) )^ 1.55 + 0.22 IN/HR Where: T =Time in minutes. To gel an aver:Jge value for each unit time period, use T=111 (he unit time for the firsl time period. T=! 1/2 unit time for the second period. etc. . ~\ SYNTHETIC UNIT HYDROGRAPH METHOD OEVELOPED CONDI1 ION (AMC 1/) HYDROLOGY BASIC DATA CALCULATION FORM fn-32780PR Loss.xls MANUAL TRACT 32780 Calced By: SWL 7/28/2005 Checked: RTC 7/28/2005 AVERAGE ADJUSTED LOSS RATE [II I~J 131 [4J 15J 16J [7J 18J [9J /lOJ SOil COVER RI PER VIQUS LAND DECIMAL ADJUSTED AREA 181/SUM18J AVERAGE GROUP TYPE NUMBER AREA USE % OF AREA INfl.. TN SQFf ADJUSTED (PLATEe.1l (PLAlE E.611 INFL TN IMPERV. RA TE-INr<lR I NFL TN RA TE-INfHR IPLATEE-6.31 14111-.916/1 RA TE-INfHR (PLATEE-6.!l 111-191 B URBAN. GOOD 56 0.51 RESIDENTIAL 0.4 0.33 100)776.8 0.95 0.31 C URBAN. GOOD 69 0.37 RESIDENTIAL 0.4 O.~4 53~10.8 0.05 0.01 D URBAN. GOOD 75 0.30 RESIDENTIAL 0.4 0.19 3898.1 0.00 O.DO SUMJ8J= 1060885.7 SUM IIOJ = o.r Fro = Minimum Loss Rate - f/2 = SUM[IOV2 = 0.16 IN/HR C = (F-Fm)/5..J = {SUM[lO] - Fm)/5-l. = 0.00298 IT = CC!4-(T/601)^1.55 + Fm = 0.00298 ( 24 - {T/60J ,1'0 1.55 + 0.16 IN/HR Where: T = Time in minutes.. To get an average value far each unit lime period. use 1'=1/2 the 1Ulit lime for the first lime period. 1'=1 1/1 unit time for the second period. etc. . ?y e <II .. "' 3' (Jl <; il '" .. 'i.,S; e t::J ~. ~ ~ ~ ~ ... "",-, _ .... c -> ~ QO :::c C ~ ::: ,.. .. :: ;- .e... a ~ o. :::;. ::s ;; 0:> r) e; ~ S" ~ CIJ ~ 0' ... '" " -110 " .. - ..., 00 !V ..., 1'1 r- -----.........-- 1'1 NNNNNN~NN < OOQOQOQCI-...J-...I~-....I-...I 2 > NN_O\CQO:'-I......O\ NOOOOO'lOO ..., . . i5 . 2 1-- 0 9:-:-:-:-9~:-9 1'1 2 -= t...)oooo~'Joo ..., ::c -- ooooooPoo ~ > o.o.Ut~~Wt......WN " :o:l .s::..Nl.h\OWC\{::..OUl ~ 1'1 > -- > < 0;- C'l ~ > :o:l oooooo~oo 1'1 o.UtiJ!:p.WWt......N:"" > 1--. W\OtvUl\OUlf'V-....,JN < 0;- 0 n r- 2 c ::: 000000900 1'1 :....UtUt~w:....NNa -- W\ONVl\O_N-..JO ("l <c ~o::: "r-L: f(eC- ~. > NN---OS::oo ':::':::..., 1'1- o-Vt\.o~Oo.~NO < OOUl-.JVlOO -..JO 1'1 0 .... - ....en _ ,("l nO'" ~c;; WWN_ ::o:l Q\l.JlOOOO-J ~~ OOLnWVtO_Coo : . ",- '0 a =~ '" '0 ~ e. '< " n 0- ri "- "' "- - .. " " ,,"- < "' g c c. ~ "or. .. .. " < ~. :; e '" ~ '" o o '" '" ;; " "1l ;:: 32780PR_ ! ~~~REean Dell & Associates, Inc. ~~ ~~~:~;:.;~.:~~~~..**+..***.......+.+.*....*...................... ID DEVELOPED CONDITION 100-Yr 3-, 6-, & 24-Hr Storm ID ...*******...*...*****.....*****..*..*....*****...***..**.*.*..*. *DIAGRAM ID.NOLIST IT 5 0000 0000 300 10 5 KK **3HR** Q= 0 KE 3HRPR KH lOO-YEAR 3-HOUR DEVELOPED CONDITION B'. .03 LU 0 .32 0 PB 1. 85 PI 1.3 1.3 1.1 1.5 1 .5 1.8 1.5 1.8 1.8 1 .5 PI 1.6 1.8 2.2 2.2 2. 2 2.0 2.6 2.7 2.4 2 .7 PI 3.3 3.1 2.9 3.0 3. 1 4.2 5.0 3.5 6.8 7 .3 PI 8.2 5.9 2.0 1.8 1.8 0.6 0.0 0.0 0.0 0 .0 $U .23 0.15 116.90 0.015 11 0 KK BASIN KM DETENTION BASIN WITH 42. OUTLET RS I,ELEV,1277.7 SV 0 0.27 0.50 0_60 1. 00 1. 45 1. 97 2.55 2.68 SE 1276 1277 1277.7 1278 1279 1280 1281 1282 12E2.2 SQ 0 0 0 1 7.6 18.5 28.3 35.5 36.8 KK ..6HR** QI 0 KK 6HRPR KM 100-YEAR 6 HOUR DEVELOPED CO~TIITION BA .03 LU 0 .32 0 PB 2.50 PI 0.5 0.6 0.6 0.6 O. 6 0.7 0.7 0.7 0.7 0.7 -~ 0.7 0.8 0.8 0.8 O. 8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 O. 8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1. 0 1.0 1.0 1.1 1.1 1.1 PI 1.2 1.3 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.8 P: 1.9 2.0 2.1 2.1 2.2 2.3 2.4 2.4 2.5 2.6 PI 3.1 3.6 3.9 4.2 4.7 5.6 1.9 0.9 0.6 0.5 PI 0.3 0.2 $1,; .23 0.15 116.90 0 .015 11 0 KK BASIN KM DETENTION BASIN WITH 42" OUTLET RS 1,ELEV,1277.7 SV 0 0.27 0.50 0.60 1. 00 1..45 1. 97 2.55 2.68 SE 1276 1277 1277 . 7 1278 1279 1280 1281 1282 1282_2 SQ 0 0 0 1 7.6 18_5 28_3 35_5 36.8 KK .*24HR.* QI 0 IN 15 KK 24HRPR KM lOO-YEAR 24-HOUR DEVELOPED CONDITION BA 0.03 KM VAR. LOSS=0.32;0 .9=0.36 WIlO% IMPERV. FACTOR LU 0 .36 10 PB 4.50 PI 0.2 0.3 0.3 0.' 0.3 0.3 0.3 0.4 0.4 0.4 PI 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8 PI 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 PI 1.2 1.3 1.5 1.5 1.6 1.7 1.9 2.0 2.1 2.2 PI 1.5 1.5 2.0 2.0 1.9 1.9 1.7 1.8 2.5 2.6 PI 2.8 2.9 3.4 3.4 2.3 2.3 2.7 2.6 2.6 2.5 PI 2.4 2.3 1.9 1.9 0.4 0.4 0.3 0.3 0.5 0.5 PI 0.5 0.4 0.4 0.4 0.3 0.2 0.3 0.4 0.3 0.2 PI 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 PI 0.2 0.2 0.2 0.2 0.2 0.2 $U .23 0_15 116.90 0.015 11 0 KK BASIN KM DETENTION BASIN WITH 42- OUTLET -~ 1,ELEV,1277.7 0 0.27 0.50 0_60 1.00 1 .45 1.97 2.55 2.GB Page 1 5At e52 5Q ZZ e . 1276 o 1277 1277.7 o 0 1278 l 1279 7.6 32780PR.I 1280 1281 18. S 28.3 Page 2 1282 35.5 12H2.2 :~6 _ 8 5'5 '**************************************** *********************-***************** . . . . U4S. ARMY CORPS OF ENGINEERS . . HYDROLOGIC ENGINEERING CENTER . . 609 SECOND STREET . . DAVIS, CALIFORNIA 95616 . . (916) 756.1104 . . . FLOOD HYDROGRAPH PACKAGE (HEC-1 ) . JUN 1998 . e VERSION 4.1 . . RUN OA TE 03AUG05 TIME 15,40,40 . . ***************************************. ******..**.**********~*.****.********.* x X XXXXXXX XXXXX X X X X X X XX X X X X X XXXXXXX XXXX X XXXXX X X X X X X X X X X X X X X XXXXXXX XXXXX XXX THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-' KNOIIN AS HECI (JAN 73), IIEC1GS, HEC1D8, AND HEC1K~'. e TilE DEFINITIONS OF VARIABLES -RTlMP- AND -RTlOR- HAVE CHANGED FROM THOSE USED YITII THE 1973-STYLE INPU1 STRUCTURE. THE DEFINITION OF -AMSKK. ON RH-CARD WAS CHANGED !.lITH REVIS(ONS DATED 28 SEP m. THIS IS THE FORTRAN77 VERSION NEY OPTIONS, DAM8REAK OUTfLOY SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS,WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC \oIAVE: NEW FINITE DIFFERENCE ALGORITHM . ~ HEC-l INPUT PIlGE LINE 10.......1...... .2...,.. .3...... .4...... .5...... .6.......7... ....8...... .9..... .10 '*e *** 1 ID Van Dell & Associates, Inc. 2 10 ~ALCDTT TR 32780 3 10 ********************************************************.t******** 4 ID DEVELOPED CONDITION 100-Yr 3-, 6-, & 24-Hr Storm 5 10 ********************************************************.,******** *0 I AGRAM 6 ID *NOLl S1 7 IT 5 0000 0000 300 8 10 5 9 KK **3HR** 10 QI 0 11 KK 3HRPR 12 KM 100-YEAR 3 - HOUR DEVELOPED COND IT ION 13 8A .03 14 LU 0 .32 0 15 PB 1.85 16 PI 1.3 1.3 1.1 1.5 1.5 1.8 1.5 1.8 1.8 1.5 17 PI 1.6 1.8 2.2 2.2 2.2 2.0 2.6 2.7 2.4 2.7 18 PI 3.3 3.1 2.9 3.0 3.1 4.2 5.0 3,) 6.8 7.3 19 PI 8.2 5,9 2.0 1.8 1.8 0.6 0,0 0.0 0.0 0.0 20 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH 21 UJ 171. 48, 10. 3, 1. . 22 KK BASIN 23 KM DETENTION BASIN WITH 4211 OUTlET 24 RS 1 ELEV 1277.7 25 SV 0 0.27 0.50 0.60 1.00 1.45 1.97 2,55 2.68 26 SE 1276 1277 1277,7 1278 1279 1280 1281 1"8" 1282.2 27 SO 0 0 0 1 7.6 18.5 28.3 3~i.5 36.8 28 KK **6HR** 29 01 0 30 KK 6HRPR 31 KM 100.YEAR 6 HOUR DEVELOPED CONDITION 32 BA .03 33 LU 0 .32 0 34 PB 2,50 35 PI 0.5 0.6 0.6 0.6 0,6 0.7 0.7 0.7 0.7 0.7 36 PI 0.7 0.8 0,8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 37 PI 0.8 0.8 0.8 0.9 0.8 0.9 0,9 0.9 0.9 0.9 38 PI 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 39 PI 1.2 1.3 1.4 1.4 1.5 1.5 1.6. 1.6 1.7 1.8 40 PI 1.9 2.0 2,1 2.1 2.2 2.3 2.4 2.4 2.5 2.6 41 PI 3.1 3.6 3.9 4.2 4.7 5.6 1.9 0,9 0.6 0,5 42 PI 0.3 0.2 43 KM UHG FROM AVERAGE FUllERTON - SAN JOSE S. GRAPH 44 UI 171. 48. 10. 3. 1. . 511 HEC.l INPUT PAGE 2 LINE 10..... ..1...... .2....,. .3.,.... ,4...." .5...,.. .6..,... .7...... .B...... ,9......10 . 45 KK BASIN 46 KM DETENTION BASIN WITH 4211 OUTLET 47 RS 1 ELEV 1277.7 4B SV 0 0.27 0,50 0,60 1.00 1.45 1.97 ;~.S5 2.68 49 SE 1276 1277 1277.7 127B 1279 12BO 1281 12B2 1282,2 50 SO 0 0 0 1 7.6 lB.5 2B.3 :i5..5 36.8 51 I<K**24HR** 52 01 0 53 IN 15 54 KK 24HRPR 55 KM 100-YEAR 24-HOUR OEVELOPEO CONOITION 56 BA 0.03 57 KM VAR. LOSS=O,32/0.9=0.36 "/10% IMPERV.fACTOR 5B LU 0 .36 10 59 PB 4.50 60 PI 0.2 0.3 0,3 0.4 0.3 0.3 0.3 0.4 0.4 0.4 61 PI 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 O.B 62 PI 0.6 0.7 0.8 O.B 0.9 0.9 1.0 1.0 1.0 1.1 63 PI 1.2 1.3 1.5 1.5 1.6 1.7 1.9 2.0 2.1 2.2 64 PI 1.5 1.5 2.0 2.0 1.9 1.9 1.7 1.B 2.5 2.6 65 PI 2.8 2.9 3.4 3.4 2.3 2.3 2.7 2,6 2.6 2,5 66 PI 2,4 2.3 1.9 1.9 0.4 0.4 0.3 03 0.5 0.5 e 67 PI 0.5 0,4 0.4 0.4 0.3 0.2 0.3 0.4 0.3 0.2 68 PI 0.3 0.3 0,3 0.2 0.3 0.2 0.3 0.2 0.3 0,2 69 PI 0.2 0.2 0.2 0,2 0,2 0.2 70 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH 71 UI 171. 4B. 10, 3. 1. 72 KK BASIN 73 KM DETENTION BASIN WITH 42" OUTlET 74 RS 1 ELEV 1277 .7 75 sv 0 0,27 0.50 0.60 1.00 1.45 1.97 2_S~j 2.6B 76 SE 1276 1277 1277.7 1278 1279 12BO 1281 1 (!82 12B2.2 77 SO 0 0 0 1 7.6 18.5 28.3 3~i.5 36.B 78 22 . 61b SCHEMATIC DIAGRAM OF STREAM NETUORK NPUT LINE (V) ROUT! NG e (,) CONNECTOR l' 3HRPR V V 22 BASIN 30 45 54 72 6HRPR V V BASIN (.+~>) DIVERSION OR PUMP FLOW (<---) RETURN OF DIVERTED OR PUMPED FLOW 24HRPR V V BASIN ***) RUNOFF ALSO COMPUTED AT THIS LOCATION e . 5A. <**************************************** ********************~****************** . . * FLOOD HYDRDGRAPH PACKAGE (HEC-1 ) . . U.S. ARMY CORPS OF ENGINEERS . JUN 1998 . . HYDROLOGIC ENGI~EERING CENTER * e VERSION 4.1 . . 609 SECOND STREET * . . DAVIS, CALIFORNIA 95616 * RUN DATE 03AUG05 TIME 15:40:40 . . (916) 750,1104 * * . * <**************************************** *************************************** Van Dell & Associates, Inc. WALCOTT TR 32780 ***************************************************************** *NOll ST DEVELOPED CONOrTtoN 100-Yr 3-,6-, & 24-Hr Storm ***************************************************************** 810 OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 aSCAl O. IT HYDROGRAPH TIME DATA NMIN IDATE ITlME Ne NDDATE NDTIME ICENT e COMPUTATION INTERVAL TOTAL TIME BASE ENGLI SH UN ITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FlOI./ STORAGE VOLUME SURFACE AREA TEMPERATURE . PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE 2 5 00 0 0000 300 o 0055 19 MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK ,08 HOURS 24.92 HOURS SCUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE. FEET ACRES DEGREES FAHRENHEIT V:> RUNOFF SUMMARY FlOll IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES _ PEAK TIME OF AVERAGE FLO~ FOR MAXIMUM PERIOD BASIN MAX I MUM TIME OF OPERATION STATION FLO~ PEAK 6-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE HYOROGRAPH AT .*3HR** O. .OD O. O. D. .OD HYDROGRAPH AT 3HRPR 28. 2.58 3. 1. 1. .D3 ROUTED TO BASIN 14, 2.75 3. 1. 1. ,03 1279.58 2,75 HYDROGRAPH AT .*6HR*. D, ,OD D, D. D. .03 HYDROGRAPH AT 6HRPR 25. 5.5D 3. 1. 1. .03 ROUTED TO BASIN 13. 5.58 3. 1. 1. .03 1279.49 5.58 HYDROGRAPH AT ..24HR.. O. .00 D. 0, O. .03 HYOROGRAPH AT 24HRPR 6, 13.42 2. 1. 1. .D3 ROUTED TO BASIN 3. 13.58 2. 1. 1. .03 1278,45 13.58 -* NORMAL END OF HEC.l **. _ _ ~\ . Water Quality Volume Calculation Existing Condition . . ~ ..,...,,'--~,: I 914_0101 TR 32780 I e EXISTING CONDITION ! 2-YR I I SYNTHETIC UNIT HYOROGRAPH METHOD h RCFe & \iCD J I I CONCENTRATION POINT A I AREA DESIGNATION A I I I DRAINAGE AREA (SQUARE MILES) 0.020 I ULTIMATE OI~;CIIARGE 12.9 I I I UNIT TIME IN MINUTES 15 I lAG TIME (MINUTES) 2.02 I : I UNIT TIME PERCENT OF lAG 742.6 I S CURVE FOOTHILL I I I STORM FREQUENCY 2-YEAR DURATION 24. HOUR I TOTAL ADJUSTED STORM RAIN (INCHES) 1.70 I I I VARIABLE lOSS RATE ( INCHES/HOUR) 0.17 I MINIMUM lOSS RATE (INCHES/HOUR) 0.085 I I I CONSTANT lOSS RATE ( INCHES/HOUR) 0.00 I l~ lOSS RATE PERCENT 90 I I I UNIT I TIME I CUMUlA T I VE I OISTRI8 J UNIT I PATTERN I STORM I lOSS RATE EFFEcn VE flOOD I TIME I PERCENT I AVERAGE % OF I GRAPH I HYDRO I PERCENT J RAIN I RAW HYDROGRAPH I PERIOD I OF lAG I Ul TTMATE Q I PERCENT I GRAPH I I I MAX I lOll I I I : : I : I I I 1 I 742.6 I 94.6 I 94.6 I 12.2 I 0.2 I 0_01 I 0.30 I 0.01 O.OCl 0.0 " e 2 J 0.0 I 0.0 J 0.0 I 0.0 I 0.3 I 0.02 I 0.30 I 0.02 O,OCl 0.0 3 I 0.0 I 0.0 I 0.0 I 0,0 I 0,3 J O.O? I 0,29 0.02 o.oc. 0.0 4 I 0,0 I 0.0 I 0,0 I 0.0 I 0.4 I 0.03 0.29 0.02 o.or 0,0 5 I 0,0 J 0.0 I 0.0 I 0.0 I 0.3 I O.O? 0.29 0.02 0.00 0.0 6 I 0.0 I 0.0 0.0 I 0.0 I 0.3 0.02 0.28 0.02 0.00 0.0 7 I 0.0 I 0.0 0.0 I 0.0 I 0.3 0.02 0.28 0.02 0.00 0.0 8 I 0.0 I 0.0 0.0 I 0,0 I 0.4 0.03 0.28 0.02 0.00 0.0 9 I 0.0 I 0.0 0,0 I 0.0 0.4 0.03 0.27 0.02 0.00 0.0 10 I 0.0 I 0.0 0.0 I 0.0 0.4 0.03 0.27 0.02 0.00 0.0 11 J 0,0 I 0.0 0.0 I 0.0 0.5 0.03 0,27 0.03 0.00 0.0 12 I 0.0 0.0 0.0 0.0 0.5 0.03 0.26 0.03 0.00 0.0 13 I 0.0 0.0 0.0 0.0 D,S 0.03 0.26 0.03 0,00 0.0 14 I 0.0 0.0 0.0 0,0 0.5 0.03 0.26 0.03 0.00 0.0 15 I 0.0 0.0 0.0 0,0 0.5 0,03 0.25 0,03 0.00 0.0 16 I 0.0 0.0 0.0 0.0 0.6 0.04 0.25 0.04 0.00 0.0 17 0.0 0,0 0.0 0.0 0.6 0.04 0.25 0.04 0.00 0.0 18 0.0 0.0 0.0 0.0 0.7 0.05 0.24 0,04 0.00 0.1 19 0.0 0.0 0.0 0.0 0.7 0.05 0.24 0.04 0.00 0.1 20 0,0 0.0 0.0 0.0 0.8 0,05 0.24 0.05 0.01 0.1 21 0.0 0.0 0.0 0.0 0.6 0.Cl4 0.23 0.04 0.00 0.0 22 0,0 0.0 0.0 0,0 0.7 0.Cl5 0.23 0.04 0.00 0.1 23 0.0 0.0 0.0 0.0 0.8 0.Cl5 0.23 0.05 0.01 0.1 24 0.0 0,0 0.0 0.0 0.8 0.05 0.23 0.05 0.01 0.1 25 0.0 0.0 0.0 0.0 0,9 0.06 0.22 0,06 J 0.01 0.1 26 0.0 0.0 0.0 0.0 0.9 0.06 0.22 0.06 I 0.01 0.1 27 0.0 0.0 0.0 0.0 1.0 0.07 0.22 0.06 I 0,01 0,1 . 28 0.0 0.0 0.0 0.0 1.0 0.07 0.21 0,06 I 0,01 0.1 29 0.0 0,0 0.0 0.0 1.0 0.07 0.21 0.06 I 0.01 0.1 30 0.0 0.0 0.0 0.0 1.1 0.07 0.21 0.07 I 0.01 0.1 31 0.0 0.0 0,0 0.0 1.2 0.08 0.20 0.07 I 0.01 0.1 32 0.0 0.0 0.0 0.0 1.3 0.09 0.20 0.08 I 0.01 0.1 Ce'J 33 0.0 0.0 0.0 0,0 1.5 0.10 I 0.20 I 0,09 I 0.01 I 0.1 I 34 0.0 0,0 0.0 0,0 1.5 0.10 I 0.20 I 0.09 I 0.01 I 0.1 I 35 0.0 0.0 0,0 0,0 1.6 0.11 I 0.19 I 0.10 I 0,01 I 0,1 I 36 0,0 0.0 0.0 0.0 1.7 0.12 I 0.19 I 0,10 I 0.01 I 0,1 I e 37 0.0 0.0 0,0 0,0 1.9 0.13 I 0.19 I 0.12 I 0.01 I 0.2 I 38 0.0 0.0 0.0 0,0 2.0 0.14 I 0.19 I 0.12 I 0.01 I 0.2 I 39 0.0 0.0 0,0 0.0 2.1 0.14 I 0.18 I 0,13 I 0,01 I 0.2 I 40 0.0 0.0 0.0 0.0 2.2 0.15 I 0.18 I 0.13 I 0.0': I 0.2 I -' UNIT I TIME I CUMULATIVE I OISTRIB UNIT I PATTERN I STORM I LOSS RATE I EFFECllVE FLOOO I TIME I PERCENT I AVERAGE X OF I GRAPH HYORO I PERCENT I RAIN I I RAIN HYOROGRAPH I PERIOD I OF LAG I ULTIMATE Q I PERCENT GRAPH I I I MAX I LOll I I I I I I : I I I I 41 0.0 0.0 I 0.0 0,0 1.5 I 0.10 0.18 0.09 0.01 0.1 42 0.0 0.0 I 0.0 0.0 1.5 I 0.10 0.18 0.09 0.01 0.1 43 0.0 0.0 I 0.0 0.0 2.0 I 0.14 0.17 0,12 0.01 0.2 44 0.0 0.0 I 0.0 0.0 2.0 I 0.14 0.17 0.12 0.01 0.2 45 0,0 0.0 I 0.0. 0.0 1.9 0.13 0.17 0.12 0.01 0.2 46 0.0 0.0 0.0 0.0 1.9 0.13 0.17 0.12 0.01 0.2 47 0.0 0.0 0.0 0.0 1.7 0,12 0.16 0.10 0.01 0.1 48 0.0 0,0 0.0 0.0 1.8 0.12 0.16 0.11 0.01 0.1 49 0.0 0.0 0.0 0.0 2.5 0.17 0.16 0.15 0.01 0.1 50 0.0 0.0 0.0 0.0 2.6 O. 'j8 0.16 0.16 0,02 0.3 51 0.0 0.0 0.0 0.0 2.8 0.0,9 0.15 0.17 0.04 0.5 52 0.0 0.0 0.0 0.0 2.9 0,20 0.15 0.18 0,05 0.6 53 0.0 0.0 0,0 0.0 3.4 0.23 0.15 0.21 0.08 1.0 54 0.0 0.0 0.0 0.0 3.4 0.23 0.15 0.21 0.08 1.0 e 55 0.0 0.0 0.0 I. 0.0 2.3 0.16 0.14 0.14 0.01 0.1 56 0.0 0.0 0.0 I 0.0 2.3 0,16 0.14 0,14 0.01 0,2 57 0.0 0.0 0.0 I 0.0 2.7 0.18 0.14 0,17 0,04 0.5 58 0.0 0.0 0.0 I 0.0 2.6 0.18 0.14 J 0,16 0,04 0.5 59 0.0 0.0 0.0 I 0.0 2.6 0.18 0.14 0.16 I 0.04 0.5 60 I 0.0 0.0 0.0 I 0.0 2.5 0.17 0.13 0.15 0.04 0.4 61 I 0.0 0.0 0.0 I 0.0 2,4 0.16 0.13 0.15 0.03 0.4 62 I 0.0 0.0 0.0 I 0.0 2.3 0.16 0.13 0.14 0.03 0.3 63 I 0.0 0.0 0.0 0.0 1.9 0,13 0.13 0.12 0,00 0.0 64 I 0.0 0,0 0.0 0.0 1.9 0.13 0.13 0.12 0.00 0.0 65 I 0.0 0.0 0.0 0.0 0.4 0.03 I 0.12 0.02 0.00 0.0 66 I 0.0 0.0 0.0 0.0 0.4 0.03 I 0.12 0.02 0.00 0.0 67 I 0.0 0,0 0,0 0.0 0.3 O.O;~ I 0.12 0.02 0.00 0.0 6ll I 0.0 0.0 0,0 0.0 0.3 O.O;~ I 0.12 0.02 0,00 0.0 69 I 0.0 0.0 0.0 0.0 0.5 0.03 I 0.12 0,03 0.00 0.0 70 I 0.0 0,0 0.0 0.0 0.5 0.03 I 0.11 0.03 0.00 0.0 71 I 0.0 0.0 0,0 0.0 0.5 0.0:: 0.11 0.03 0.00 0.0 72 I 0.0 0.0 0.0 0.0 0.4 0.03: 0.11 0,02 0.00 0,0 73 I 0.0 0.0 0.0 0.0 0.4 O.OJ 0.11 0.02 0.00 0.0 74 I 0,0 0.0 0.0 0.0 0.4 0.03 0.11 0.02 0.00 0.0 75 I 0.0 0.0 0,0 0.0 0.3 0.02 0.11 0.02 0.00 0,0 76 I 0.0 0.0 0.0 0.0 0,2 0.01 0,10 0.01 0,00 0.0 77 I 0.0 0.0 0.0 0.0 0.3 0.02 0.10 0.02 0.00 0.0 7B I 0.0 0.0 0.0 0,0 0.4 0,03 0.10 0.02 0.00 0.0 79 I 0.0 0.0 0.0 0.0 0.3 0.02 0.10 J 0.02 0.00 0.0 . 80 J 0.0 0,0 0.0 0.0 0.2 0.01 0.10 I 0.01 0.00 0.0 81 I 0.0 0.0 0.0 0.0 0.3 0.02 0.10 I 0.02 0.00 0.0 82 I 0.0 0.0 0.0 0.0 0,3 0.02 0.10 I 0.02 0.00 0.0 83 I 0.0 0.0 0.0 0.0 0,3 0.02 0.10 I 0.02 0,00 0.0 84 I 0.0 0.0 0.0 0.0 0.2 0.01 0.09 J 0.01 0.00 0.0 85 I 0,0 0,0 0.0 0.0 0.3 0.02 0.09 I 0.02 0.00 0.0 CcA- 86 0.0 I 0.0 0.0 0,0 0.2 0,01 0.09 0.01 0.00 0,0 87 0.0 I 0.0 0.0 0.0 0.3 0.02 0.09 0.02 0.00 0,0 88 0,0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0 89 0.0 I 0.0 0.0 0.0 0.3 0.02 0.09 0.02 0.00 0.0 e 90 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0 91 0,0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0 92 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0 93 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0,0 94 0.0 I 0.0 0.0 0.0 0,2 0.01 0.09 0.01 0.00 0.0 95 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0 96 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0 97 0.0 I 0,0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0 otal Effective RainfalL = 0.234 inches ydrograph VoLune = 0.2 acre feet e . fp5 I 914_0101 TR 32780 I . EXISTING CONDITION I 10-YR I I SYNTHETIC UNIT HYOROGRAPH METHOD -- RCfC & IICO I I I CONCENTRATION POINT A I AREA DESIGNATION A I I I DRAINAGE AREA (SQUARE MILES) 0.020 I ULTIMATE DISCHARGE 12.9 I I I UNIT TIME IN MINUTES 15 I LAG TIME (MINUTES) 2.02 I I I UNIT TIME PERCENT Of LAG 742.6 I S CURVE fOOTHILL I I I STORM fREQUENCY 10-YEAR DURATION 24. HOUR I TOTAL ADJUSTE[' STORM RAIN (INCHES) 2,80 I I I VARIA8LE LOSS RATE (INCHES/HOUR) 0.17 I MINIHUM LOSS RATE (INCHES/HOUR) 0.085 I : I CONSTANT LOSS RATE (INCHES/HOUR) 0.00 I LOll LOSS RATE PERCENT 90 I I I UNIT I TIME I CUMULATIVE I 0lSTRI8 I UNIT I PATTERN I STORM I LOSS RATE I EffECTIVE I fLOOD I TIME I PERCENT I AVERAGE X Of I GRAPH I HYDRO I PERCENT I RAIN ~ I RAIN I HYOROGRAPH I PERIOD I Of LAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I LOll I I I I I I : : I l- I I I I 1 I 742.6 I 94.6 I 94.6 I .12.2 0.2 I 0.02 I 0.30 I 0.02 I 0.00 I 0.0 I . 2 I 0.0 I 0,0 I 0.0 I- 0.0 0,3 I 0.03 I 0.30 I 0_03 0.00 I 0.0 I 3 I 0.0 I 0.0 0.0 I 0,0 0.3 I 0.03 I 0.29 I 0.03 0.00 I 0.0 I 4 I 0.0 0.0 0.0 I 0.0 0.4 I 0.04 I 0.29 I 0.04 0.00 I 0.1 , 5 I 0.0 0,0 0.0 I 0.0 0.3 I O.O:l 0.29 I 0.03 0,00 I 0.0 I 6 I 0.0 0.0 0.0 I 0.0 0.3 I 0.03 0_28 I 0.03 0,00 I 0.0 I 7 I 0.0 0.0 0,0 , 0.0 0.3 I 0.03 0.28 I 0.03 0.00 0.0 I 8 0.0 0,0 0.0 I 0.0 0,4 I D.Oll 0.28 I 0.04 0.00 0,1 I 9 0.0 0.0 0.0 I 0.0 0,4 D.OL, 0.27 I 0.04 0.00 0.1 10 0,0 0.0 0.0 I 0.0 0.4 0.0'. 0.27 0.04 0.00 0.1 11 0.0 0.0 0.0 I 0.0 0.5 0.06 0.27 0_05 0.01 0.1 12 0.0 0.0 0.0 0.0 0.5 0.0/. 0.26 0.05 0.01 0,1 13 0.0 0.0 0.0 0_0 0.5 0.06 0.26 0.05 0.01 0.1 14 0.0 0.0 0.0 0.0 0.5 0,06 0.26 0.05 0.01 0.1 15 0_0 0.0 0.0 0.0 0.5 0.06 0,25 0.05 0.01 0.1 16 0.0 0.0 0.0 0.0 0.6 0.07 0_25 0.06 0.01 0.1 17 0.0 0.0 0.0 0.0 0.6 0.07 0.25 0.06 0.01 0.1 18 0.0 0.0 0.0 0.0 OJ 0,08 0.24 0.07 0.01 0.1 19 0.0 0.0 0.0 0,0 OJ 0.08 0.24 0.07 0.01 0.1 20 0.0 0.0 0.0 0.0 0.8 0.09 0.24 0.08 0.01 0.1 21 0.0 0.0 0.0 0.0 0.6 0.07 0.23 0.06 0.01 0.1 22 0.0 0.0 0.0 0,0 OJ 0.01l 0.23 0.07 0.01 0.1 23 0.0 0.0 0.0 0.0 0.8 0.09 0.23 0.08 0_01 0.1 24 0.0 0.0 0.0 0.0 0.8 0.09 0,23 0.08 0.01 0.1 25 0.0 0.0 0.0 0.0 0.9 0.10 0.22 0.09 , 0.01 0.1 26 0.0 0.0 0.0 0,0 0.9 0.10 0.22 0.09 I 0.01 0.1 . 27 I 0.0 I 0.0 0.0 0,0 1.0 0.11 0.22 0.10 I 0.01 0.1 28 I 0.0 I 0.0 0,0 0.0 1.0 0.11 I 0.21 0.10 I 0.01 0,1 29 I 0.0 I 0,0 0,0 0.0 1.0 0.11 I 0,21 0.10 I 0.01 0.1 30 I 0.0 I 0.0 0,0 0.0 1.1 0,12 I 0.21 0.11 I 0.01 0.2 31 I 0.0 I 0.0 0.0 0.0 1.2 0.13 I 0.20 0.12 I 0.01 0.2 Y;.v, 32 I 0.0 I 0.0 0.0 0.0 1.3 0.15 I 0.20 0.13 I 0,01 0.2 33 0.0 0.0 0.0 0.0 1.5 0.17 I 0.20 I 0.15 I D.Oj! I 0.2 . I 34 0.0 0.0 0.0 0,0 1.5 0.17 I 0.20 I 0.15 I D.O;! I 0.2 I 35 0.0 0.0 0,0 0.0 1.6 0.18 I 0,19 I 0,16 I D.O;! I 0.2 I 36 0,0 0,0 0.0 0.0 1.7 0.19 I 0.19 I 0.17 I 0.0,' I 0.2 I e 37 0,0 0.0 0.0 0,0 1.9 0.21 10,19 I 0.19 I 0.0,' I 0,3 I 38 0.0 0.0 0.0 0,0 2.0 0.22 I 0.19 I 0.20 I O,O( I 0,5 I 39 0.0 0.0 0.0 0.0 2,1 0.24 I 0.18 I 0.21 I 0.05 I 0.6 I 40 0.0 0.0 0.0 0.0 2.2 0.25 I 0.18 I 0.22 I 0.07 I 0.8 I -' UNIT I TIME I CUMULATIVE I OISTRIB I UNIT I PATTERN I STORM I LOSS RATE I EF FECT I VE I F LClOO I TIME I PERCENT I AVERAGE % OF I GRAPH I HYDRO I PERCENT I RAIN I .J RAIN I HYOROGRAPH I PERIOD I OF LAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I LOW I I I I I I I : I -f : : I I 41 0.0 0.0 I 0.0 0.0 1.5 I 0.17 I 0.18 0,15 I 0,02 f 0.2 I 42 0.0 0.0 I 0.0 0.0 1.5 I 0.17 I 0.18 0.15 I 0,02 I 0.2 I 43 0.0 0.0 I 0.0 0.0 2.0 I 0.22 I 0.17 0.20 I 0.05 I 0.6 I 44 0.0 0.0 I 0,0 0.0 2.0 I 0.22 I 0.17 0.20 I 0.05 I 0.7 I 45 0.0 0.0 I 0.0 0.0 1.9 I O.;~l 0.17 0.19 I 0.05 I 0.6 I 46 0.0 0.0 I 0.0 0.0 1.9 I O. ;~1 0.17 0.19 I 0.05 I 0.6 I 47 0.0 0.0 I 0.0 0.0 1.7 I 0.',9 0.16 0.17 I 0.03 I 0.3 I 48 0.0 0.0 I 0.0 0.0 1.8 I O_(~O 0.16 0.18 I 0.04 I 0.5 I 49 0.0 0.0 I 0.0 0.0 2.5 O..(~8 0.16 0,25 I 0,12 I 1.5 50 0.0 0.0 I 0.0 0.0 2.6 O.;;~9 0.16 0.26 I 0.14 I 1.7 51 0.0 0.0 I 0.0 0,0 2.8 031 0.15 0.28 I 0.16 I 2.0 52 0.0 0.0 I 0,0 0.0 2.9 0.32 0.15 0.29 I 0.17 I 2.1 53 0,0 0.0 0.0 0.0 3.4 0.38 0.15 0.34 I 0.23 I 2,8 54 0.0 0.0 0.0 '0.0 3.4 0,38 0,15 0.34 I 0,23 I 2.9 . 55 0.0 0.0 0,0 0.0 2.3 0.26 0.14 0.23 I 0.11 I 1.4 56 0.0 0.0 0.0 0.0 2.3 0.26 0.14 I 0.23 I 0.12 I 1.4 57 0.0 0.0 0,0 0.0 2.7 0.30 0.14 0.27 I 0.16 2.0 58 0.0 0.0 0.0 0.0 2.6 0.29 0.14 0.26 I 0.15 1.9 59 0.0 0.0 0.0 0.0 2.6 0.29 0.14 0.26 I 0.16 1.9 60 0.0 0.0 0.0 0,0 2.5 0.28 0,13 0.25 I 0.15 1.8 61 0.0 0.0 0.0 0.0 2.4 0.27 f 0.13 0.24 I 0.14 1.7 62 I 0.0 0.0 0.0 0.0 2,3 0.26 I 0.13 0.23 I 0,13 1.6 63 I 0.0 0.0 0.0 0.0 1.9 0.21 I 0.13 0.19 I 0.09 1.0 64 I 0.0 0.0 0.0 0.0 1.9 0.21 I 0.13 0.19 I 0.09 1.1 65 I 0.0 0.0 0.0 0.0 0.4 0.0', I 0.12 0.04 0.00 0.1 66 f 0,0 0.0 0.0 0.0 0.4 0.0'. I 0.12 0.04 0.00 0.1 67 I 0.0 0.0 0.0 0.0 0.3 0.0"' I 0.12 0,03 0.00 0.0 68 I 0.0 0.0 0.0 0.0 0.3 0.0;: I 0.12 0.03 0.00 0.0 69 I 0.0 0.0 0.0 0,0 0.5 0.06 I 0.12 0.05 0.01 0.1 70 I 0.0 0.0 0.0 0.0 0.5 0,06 I 0.11 0.05 0.01 0.1 71 I 0.0 0.0 0.0 0.0 0.5 0.06 I 0.11 0.05 0.01 0,1 72 I 0,0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0,00 0.1 73 I 0.0 0,0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1 74 I 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1 75 I 0.0 0.0 f 0.0 0,0 0.3 0.03 0.11 0.03 0.00 0.0 76 I 0.0 0.0 I 0.0 0.0 0.2 0.02 0.10 0.02 0.00 0.0 I 77 I 0.0 0.0 I 0.0 0.0 0.3 0.03 0.10 0,03 0.00 0,0 I 78 I 0.0 0.0 I 0.0 0.0 0.4 0.04 0.10 0.04 0.00 O. I I 79 I 0.0 0.0 I 0.0 0.0 0.3 I 0.03 0,10 0.03 0.00 0.0 I . 80 I 0,0 I 0.0 I 0.0 0.0 0.2 I 0.02 0.10 0.02 0.00 0.0 I 81 I 0.0 I 0.0 I 0.0 0.0 0.3 I 0,03 0.10 0.03 0.00 0.0 I 82 f 0.0 I 0.0 I 0.0 0.0 0.3 I 0.03 0.10 0.03 0.00 0.0 I 83 I 0.0 I 0.0 I 0.0 0.0 0.3 I 0.03 0.10 0.03 I 0.00 0.0 I 84 I 0,0 I 0.0 I 0.0 0.0 0,2 I 0.02 0.09 0,02 I 0.00 0.0 I fe'\ 85 I 0.0 I 0.0 I 0.0 0,0 0.3 f 0.03 0.09 0.03 I 0.00 0.0 I 86 0,0 0.0 0.0 0,0 0.2 I 0.02 I 0,09 I 0.02 O.Ou 0,0 87 0.0 0.0 0.0 0.0 0.3 I 0.03 I 0.09 I 0,03 0.00 0.0 8B 0.0 0.0 0.0 0,0 0.2 I 0.02 I 0.09 I 0.02 0,00 0.0 89 0.0 0.0 0.0 0,0 0,3 I 0.03 I 0.09 I 0.03 0.00 0.0 e 90 0.0 0.0 0,0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0 91 0,0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0 92 0.0 0.0 0,0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0,0 93 0,0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0 94 0.0 0.0 0.0 0.0 0.2 I 0.02 I 0,09 I 0,02 0.00 0.0 95 0.0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0,00 0.0 96 0.0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0 97 0.0 0.0 0.0 0.0 0,0 I 0.00 I 0.00 I 0.00 0.00 0.0 ! otal Effective Rainfall = o. B08 inches ydrograph Volume = 0.9 acre feet e e (Q~ . Water Quality Volume Calculation Proposed Condition . . {J\ I e 914_0101 TR 32780 I PROPOSED CONDITION I 2-YR 24'HR I I SYNTHETIC UNIT HYOROGRAPH METHOQ -- RCFC & WCO I I I CONCENTRATION POINT A I AREA DESIGNATION A I I I DRAINAGE AREA (SQUARE MILES) 0.030 I ULTIMATE DISCHARGE 19.4 I I I UNIT TIME IN MINUTES 15 I LAG TIME (MINUTES) 4.20 I I I UNIT TIME PERCENT OF LAG 357.1 I S CURVE FOOTHILL I I I STORM FREQUENCY 2.YEAR DURATION 24-HOUR I TOTAL ADJUSTED STORM RAIN (INCHES) 1.70 I I I VARIABLE LOSS RATE (INCHES/HOUR) 0.22 I MINIMUM LOSS RATE (INCHES/HOUR) 0.110 I I I CONSTANT LOSS RATE (INCHES/HOUR) 0.00 I LOW LOSS RAIE PERCENT 90 I I I UNIT I TIME I CUMULA Tl VE I OISTRIB I UNIT I PATTERN I STORM I LOSS RATE I EFFECTIVE I FLOOD I TIME I PERCENT I AVERAGE X OF I GRAPH r HYDRO I PERCENT I RAIN I I RAIN I HYDROGRAPH r PER IOD I OF LAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I LOW I I I : : I I : I I I : I r 1 I 357.1 I 73.0 73.0 I . 14.1 I 0.2 I ('.01 0.39 I 0.01 I 0.00 0.0 I '., _ 2 I 714.3 I 98.9 25,9 ~ . 5.0 I 0.3 I (1.02 0.3B I 0.02 I 0.00 0.0 I 3 I 0.0 I 0,0 0.0 0.0 I 0.3 I (1.02 0.38 I 0.02 I 0.00 0.0 I 4 I 0.0 I 0.0 0.0 0.0 I 0,4 I 0.03 0.38 0.02 0.00 0.0 I 5 I 0.0 I 0.0 0.0 0.0 I 0.3 I 0.02 0.37 0.02 O.OD 0.0 6 I 0.0 I 0.0 0.0 0.0 I 0.3 I 0.02 0.37 0.02 0.00 0.0 7 I 0.0 I 0.0 0.0 0.0 0.3 I 0.02 0.36 0.02 0.01l 0.0 8 I 0.0 I 0.0 0.0 0.0 0.4 0.03 0.36 0.02 0.01l 0.0 9 I 0.0 I 0.0 0.0 0.0 0.4 0.03 0,35 0.02 O,OIl 0,1 10 I 0.0 I 0.0 0.0 0.0 0.4 0.03 0.35 0.02 0.01l 0.1 11 I 0.0 I 0.0 0.0 0.0 0.5 0.01 0.34 0.03 O,Oll 0.1 12 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.34 0.03 0.01l 0.1 13 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.34 0.03 0.00 0.1 14 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.33 0.03 0.00 0.1 15 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.33 0.03 O.OC' 0.1 16 I 0.0 I 0.0 I 0.0 0.0 0.6 0.0/. 0.32 0.04 O.OCl 0.1 17 I 0.0 I 0.0 I 0.0 0.0 0.6 0.04 0.32 0.04 0.00 0.1 18 I 0,0 I 0.0 I 0.0 0.0 0.7 0.05 0.32 0.04 0,00 0.1 19 I 0.0 I 0.0 I 0.0 0.0 OJ 0.05 I 0.31 I 0.04 0.00 0.1 20 I 0.0 I 0,0 I 0.0 0.0 0.8 0.05 0.31 0.05 0.01 0.1 21 I 0.0 I 0.0 I 0.0 0.0 0.6 0.04 0.30 0.04 0.00 0.1 22 I 0.0 I 0.0 I 0.0 0.0 OJ 0.05 0.30 0.04 0.00 0.1 23 I 0.0 I 0.0 I 0.0 0.0 0.8 0,05 0.30 0.05 0,01 0.1 24 I 0.0 I 0.0 I 0.0 0.0 0.8 0.05 0.29 0.05 0.01 0.1 25 I 0.0 I 0.0 I 0.0 0.0 0,9 0.06 0.29 0.06 0.01 0.1 26 I 0.0 I 0.0 I 0.0 0.0 0.9 0.06 0.28 0.06 0.01 0.1 _ 27 I 0.0 I 0.0 I 0.0 0.0 1.0 0.07 0.28 0.06 0.01 0.1 28 I 0,0 I 0.0 I 0.0 0.0 1.0 0.07 0.28 0.06 0.01 0.1 29 I 0.0 I 0.0 I 0.0 0.0 1.0 0.07 0.27 0.06 0.01 0.1 30 I 0.0 I 0.0 I 0.0 0,0 1.1 0.07 0.27 0.07 0.01 0.1 31 I 0.0 I 0.0 I 0.0 0.0 1.2 0.08 0.27 0.07 0.01 0.2 32 I 0.0 I 0.0 I 0.0 0.0 1.3 0.09 0.26 0.08 0.01 0.2 ,,\0 33 0.0 0.0 0.0 0,0 1.5 0.10 , 0.26 I 0.09 I 0.('1 0,2 34 0.0 0.0 0.0 0,0 1.5 O. '10 I 0.25 I 0.09 I 0.01 0.2 35 0.0 0.0 0.0 0.0 1.6 0.11 I 0.25 I 0.10 I 0.(11 0.2 . 36 0.0 0.0 0.0 0.0 1.7 0.12 , 0.25 I 0.10 I 0.(11 0.2 37 0.0 0.0 0.0 0,0 1.9 0.13 I 0.24 I 0.12 I 0.01 0,2 38 0,0 0.0 0.0 0.0 2,0 0.14 I 0.24 I 0.12 I D.ell 0.3 39 0.0 0.0 0.0 0.0 2.1 0.14 I 0.24 I 0.13 I 0.(11 0.3 40 0.0 0.0 0.0 0.0 2.2 0,15 , 0.23 I 0.13 I 0,('1 0.3 UNIT I TIME I CUMULATIVE I DISTRI8 I UNIT I PATTERN I SlORM , LOSS RATE I EFFECTIVE , FLOOO TIME I PERCENT , AVERAGE % OF I GRAPH I HYDRO I PERCENT , RAIN I I RAIN I HYDROGRAPH PERIOO I OF LAG I ULTIMATE Q I PERCENT I GRAPH I , 'MAX , LOll I I : : : I : I '1 I : : 41 I 0.0 0,0 , 0.0 I 0.0 I 1.5 ('.10 0.23 0.09 , 0.01 I 0.2 42 I 0.0 0.0 I 0.0 , 0.0 I 1.5 0.10 0.23 0.09 I 0.01 I 0.2 43 I 0.0 0.0 I 0.0 I 0.0 I 2.0 0.14 0.22 0.12 , 0.0'1 I 0.2 44 0,0 0.0 , 0.0 I 0.0 , 2.0 0.14 0.22 0.12 I 0.01 I 0.3 45 0.0 0.0 I 0.0 , 0.0 I 1.9 0.13 0.22 0.12 I 0.01 , 0.3 46 0.0 0.0 , 0.0 I 0.0 , 1.9 0.13 0.21 0.12 I 0.01 I 0,2 47 0.0 0.0 I 0.0 I 0.0 I 1.7 0.12 0.21 0.10 I 0.01 I 0.2 48 0,0 0.0 I 0.0 I 0.0 I 1.8 0,12 0.21 0,11 I 0.01 I 0.2 49 0.0 0.0 I 0.0 , 0.0 2.5 0.17 0.20 0.15 I O.O;~ , 0.3 50 0.0 0.0 I 0.0 I 0.0 2.6 0.18 0.20 0.16 I O.O;~ 0.3 51 0.0 0.0 I 0.0 , 0,0 2.8 0.19 0.20 0.17 I O.O;~ 0.4 52 0.0 0.0 I 0.0 I 0.0 2.9 0.20 0.20 0.18 I 0.00 0.1 53 0.0 0.0 I 0.0 I 0.0 3,4 0.23 0.19 0.21 I 0.0'. 0,6 54 0.0 0.0 I 0.0 , 0.0 3.4 0.23 I 0.19 0.21 I O.O~, 0.8 . 55 0.0 0.0 , 0.0 ~ ' 0.0 2.3 0.16 , 0.19 0.14 D.O;! 0.4 56 0.0 0.0 I 0,0 0.0 2.3 0,16 , 0.18 0.14 O.O,~ 0.3 57 0.0 0.0 0.0 0.0 2.7 0.18 I 0.18 0.17 O.OCt 0.1 58 I 0.0 0.0 0.0 0.0 2,6 0.18 I 0.18 , 0.16 O.Ot' 0.3 59 I 0.0 0.0 0.0 0.0 2.6 0.18 I 0.18 0.16 0.0(1 0.1 60 I 0.0 0.0 0.0 0.0 2.5 0.17 I 0.17 0.15 O.Ot 0.2 61 I 0.0 0.0 0.0 0.0 2.4 0.16 I 0,17 0.15 0.01 0.3 62 I 0.0 0,0 0.0 0.0 2.3 0.16 I 0.17 0.14 0.01 0.3 63 I 0.0 0.0 0.0 0.0 I 1.9 0,13 I 0,16 0.12 0.01 0.3 64 I 0.0 0.0 0.0 0.0 I 1.9 0.13 0.16 0.12 0.01 0,2 65 I 0.0 0.0 0.0 0,0 I 0.4 0.03 0.16 0.02 0,00 0.1 66 I 0.0 0.0 0.0 0.0 I 0.4 0.03 0.16 0.02 0.00 0.1 67 , 0.0 0.0 0.0 0.0 I 0.3 0.02 0.16 0.02 0.00 0.0 68 I 0.0 0.0 0.0 0.0 I 0.3 0.02 0,15 0.02 0.00 0.0 69 0.0 0.0 0.0 0.0 I 0.5 0.03 0.15 0.03 0.00 0.1 70 0.0 0.0 0.0 0.0 I 0.5 0.03 0.15 0.03 0.00 0.1 71 0.0 0.0 0.0 0.0 0.5 0,03 0.15 0.03 0.00 0.1 71 0.0 0.0 0.0 I 0.0 0.4 0.03 0.14 0.02 0.00 0.1 73 0.0 0.0 0.0 I 0,0 0,4 0.03 0.14 0.02 0,00 0.1 74 0.0 0.0 0.0 I 0.0 0.4 0.03 0.14 0.02 0.00 0.1 75 0.0 0.0 0.0 I 0.0 0.3 0,01 0.14 0.02 0.00 0.0 76 0.0 0.0 0.0 I 0.0 0.2 0.01 0.14 0.01 0.00 0.0 77 0.0 0.0 0.0 , 0.0 0.3 0.02 0.13 0.02 0,00 0.0 . 78 0.0 0.0 0.0 , 0.0 0.4 0.03 0.13 0.02 0.00 0.0 79 0.0 0,0 0.0 I 0.0 0.3 0.02 0.13 0.02 0,00 0.0 . 80 0.0 0.0 0.0 , 0.0 0.2 0.01 0.13 0.01 0.00 0.0 81 0.0 0.0 0,0 I 0.0 0.3 0.02 0.13 0.01 0.00 0.0 82 0.0 0.0 0.0 I 0.0 0.3 0.02 0.12 0.02 0.00 0,0 83 0.0 0.0 0.0 , 0.0 0.3 0.02 0.12 0.02 0.00 0.0 84 0.0 0.0 0.0 I 0.0 0.2 0.01 0.12 0.01 0.00 0.0 85 0.0 0.0 0.0 I 0.0 0.3 0.02 0.12 0.02 0.00 0.0 ~\ 86 0.0 0,0 0.0 0.0 0.2 0.01 0.12 0.01 0.00 I 0.0 87 0.0 0,0 0.0 0.0 0.3 0.0, 0.12 0.0, 0.00 I 0.0 88 0.0 0.0 0,0 0.0 0.2 0,01 0.12 0.01 0.00 I 0.0 89 0.0 0.0 0.0 0,0 0.3 0,0, 0.12 0.02 0.00 I 0.0 e 90 0.0 0.0 0.0 0.0 0.2 0.01 0.11 0.01 0.00 I 0.0 91 0,0 0.0 0.0 0.0 0.2 0.01 O. " 0.01 0.00 I 0.0 92 0.0 0.0 0.0 0,0 0.2 0.01 O. l' 0.01 0.00 I 0.0 93 0.0 0.0 0.0 0.0 0.2 0.01 0,11 0.01 0.00 I 0.0 94 0,0 0.0 0.0 0.0 0.2 0.01 0.11 0.01 0.00 I 0.0 95 0.0 0.0 0.0 0.0 0.2 0.01 0.11 0.01 0.00 I 0.0 96 0.0 0,0 0,0 0,0 0.2 0.01 0.11 0,01 0.00 I 0.0 97 0,0 0.0 0,0 0.0 0.0 0.00 0.00 0.00 0.00 I 0.0 98 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 I 0,0 otal Effective Rainfall 0.166 inches ydrograph Volume = 0.3 acre feet . . 1'V I e 914_0101 TR 32780 I PROPOSED CONDITION I 10.YR I I SYNTHETIC UNIT HYOROGRAPH METHOD -- RCrC & ~CD I I I CONCENTRATION POINT A I AREA DESIGNATION A I : I DRAINAGE AREA (SQUARE MILES) 0.030 I ULTIMATE DISCHARGE 19,4 I : I UNIT TIME IN MINUTES 15 I lAG TIME (MINUTES) 4.20 I I I UNIT TIME PERCENT OF lAG 357,1 I S CURVE FOOTHILL I I I STORM FREQUENCY 10.YEAR DURATION 24-HOUR I TOTAL ADJUSTED STORM RAIN (INCHES) 2.80 I I I VARIABLE lOSS RATE (INCHES/HOUR) 0.17 I MINIMUM lOSS RATE (INCHES/HOUR) 0.085 I : I CONSTANT lOSS RATE (INCHES/HOUR) 0.00 I lOY lOSS RATE PERCENT 90 I : I UNIT I TIME I CUMULATIVE I DISTRIB I UNIT I PATTERN I STORM I LOSS RATE I EFFECTI VE FLOOD I TIME I PERCENT I AVERAGE X OF I GRAPH I HYDRO I PERCENT I RAlIl ~ I RAIN HYOROGRAPH I PERIOD I OF lAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I lOY I I : : : I I : I : I I 1 I 357.1 I 73.0 I 73.0 I ' 14.1 I 0.2 0.1l2 0.30 0.02 I 0.00 0.0 I e 2 I 714.3 I 98.9 I 25,9 I. 5.0 I 0.3 0,03 0.30 0.03 I 0.00 0.1 I 3 I 0.0 I 0.0 I 0.0 I 0.0 I 0,3 0,03 0.29 0.03 I 0.00 0.1 I 4 I 0.0 I 0.0 I 0.0 I 0.0 I 0.4 0.04 0.29 0.04 I 0,00 0.1 , 5 I 0.0 I 0.0 I 0.0 I 0.0 I 0.3 0.03 0.29 0.03 I 0.00 0.1 6 I 0.0 I 0.0 I 0.0 I 0.0 I 0.3 0.03 0.28 0.03 I 0.00 0.1 7 0.0 I 0.0 I 0.0 I 0.0 I 0.3 0.(13 0.28 0.03 I 0.00 0.1 8 0.0 I 0.0 0.0 I 0.0 I 0.4 0.04 0.28 0.04 I 0.00 0.1 9 0.0 I 0.0 0.0 I 0.0 I 0.4 0.04 0.27 0.04 I 0.00 0.1 10 0,0 , 0.0 0.0 I 0.0 I 0.4 0,04 0,27 0.04 I 0.00 0.1 11 0.0 I 0.0 0.0 I 0.0 I 0.5 0.06 0.27 0.05 I 0.01 0.1 12 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.26 0.05 I 0.01 0.1 13 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.26 0.05 O.Ot 0.1 14 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.26 0,05 0.01 0.1 15 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.25 0.05 0.01 0.1 16 0.0 0.0 0.0 I 0.0 I 0.6 0.07 0.25 0.06 0.01 0.1 17 0.0 0.0 0.0 I 0.0 I 0.6 0.07 0.25 0.06 0.01 0.1 18 0.0 0.0 0.0 0.0 0.7 0.08 0.24 0.07 0.01 0.1 19 0.0 0.0 0.0 0.0 0.7 0.08 0.24 0.07 0.01 0.1 20 0.0 0.0 0.0 0.0 0.8 0.09 0.24 0.08 0.01 0.2 21 0.0 0.0 0.0 0.0 0.6 0.07 I 0.23 0.06 0.01 0.1 22 0,0 0.0 0.0 0.0 OJ 0.011 , 0.23 0.07 0.01 0.1 23 0.0 0.0 0.0 0.0 0.8 0.09 I 0.23 0.08 0.01 0.2 24 0.0 0.0 0.0 0.0 0.8 0.09 , 0.23 0.08 0.01 0.2 25 0.0 0.0 0.0 0.0 0.9 0.10 I 0.22 0.09 0.01 0.2 26 0.0 0.0 0.0 0,0 0.9 0.10 I 0.22 0.09 0.01 0.2 . 27 I 0.0 0.0 0.0 0.0 1.0 0.11 I 0.22 0.10 0.01 0.2 28 , 0.0 0.0 0.0 0.0 1.0 0.11 I 0.21 0.10 0.01 0.2 29 I 0.0 0.0 0.0 0.0 1.0 0.11 I 0.21 0.10 0.01 0.2 30 I 0.0 0.0 0.0 0.0 1.1 0.1, I 0.21 0.11 0.01 0.2 31 I 0.0 0.0 0.0 0.0 1.2 0.13 I 0.20 0.12 0.01 0.3 32 I 0.0 0.0 0.0 0.0 1.3 0.15 I 0.20 0.13 0.01 0.3 \'? 33 0.0 0.0 0,0 0.0 I 15 0.17 10.20 I 0,15 I 0.02 0.3 34 0,0 0.0 0.0 0.0 .1 1.5 0.17 I 0.20 I 0.15 I 0.02 0.3 35 0,0 0.0 0.0 0.0 I 1.6 11.18 I 0.19 I 0.16 I 0,02 0.3 36 0.0 0.0 0.0 0.0 I 1.7 0,19 I 0.19 I 0.17 I 0.02 0,4 e 37 0,0 0.0 0.0 0.0 I 1.9 0.21 I 0.19 I 0.19 I 0.02 0.4 38 0.0 0.0 0,0 0.0 I 2.0 11.;'2 I 0.19 I 0.20 I 0,04 0.7 39 0.0 0.0 0.0 0.0 I 2.1 0.24 I 0.18 I 0.21 I 0,(<5 0.9 40 0.0 0.0 0.0 0.0 I 2.2 0.25 I 0,18 I 0.22 I 0.(17 1.2 . UNIT I TIME I CUMULATIVE I OISTRIB I UNIT I PATTERN I S10RM I LOSS RATE I EFFECTIVE FLOOO I TIME I PERCENT I AVERAGE % OF I GRAPH I HYDRO I PERCENT I RAIN I I RAIN HYOROGRAPH I PERIOD I OF LAG I ULTIMATE C I PERCENT I GRAPH I I I MAX LOW I I : I : I I : : I 41 I 0,0 I 0.0 I 0,0 0.0 1.5 I 0.17 0.18 0.15 0.02 0.6 I 42 I 0.0 I 0.0 I 0.0 0.0 1.5 I 0.17 0.18 0.15 0.02 0.3 I 43 1 0.0 I 0.0 I 0.0 0.0 2.0 I 0.22 0.17 0.20 0.05 0.8 I 44 I 0.0 I 0.0 I 0.0 0.0 2.0 I 0.22 0.17 0.20 0,05 1.0 I 45 I 0.0 1 0.0 I 0.0 0.0 1.9 I 0.21 0.17 0,19 0.05 0.9 46 I 0.0 I 0.0 I 0,0 0.0 1.9 I 0.21 0.17 0.19 0.05 0.9 47 I 0.0 I 0.0 I 0.0 0.0 1.7 I 0.19 0.16 0.17 0.03 0.6 48 I 0.0 I 0.0 I 0.0 0.0 1.8 I 0.20 0.16 0.18 O.Oi. OJ 49 I 0.0 I 0,0 I 0.0 0.0 2.5 I 0.28 0.16 0,25 O. 1;~ 1.9 50 I 0.0 I 0.0 I 0.0 0.0 2.6 I 0.29 0.16 0.26 o. 1~1 2.5 51 I 0.0 I 0,0 I 0.0 0.0 2.8 0.31 0.15 0.28 0.16 2.9 52 I 0,0 I 0.0 I 0.0 0,0 2.9 0.32 0,15 0.29 D.li' 3.3 53 I 0.0 I 0.0 I 0.0 0.0 3.4 0,38 0.15 0.34 O.2~i 4,2 54 I 0.0 I 0.0 I 0.0 0.0 3.4 0.38 0.15 0.34 O_2~, 4.5 . 55 I 0.0 I 0.0 I 0.0 0.0 2.3 0..26 0.14 0.23 0.11 2.8 56 0.0 I 0.0 I 0.0 0.0 2.3 0.26 0.14 0.23 0.';:' 2.2 57 0.0 0.0 I 0.0 0.0 2.7 0.30 0.14 0,27 O.lf 2.9 58 0.0 0.0 I 0.0 0.0 2.6 0.29 I 0.14 0.26 0.15 3.0 59 0,0 0.0 I 0.0 0.0 2.6 0.29 0.14 0.26 0.16 3.0 60 0.0 0,0 I 0.0 0.0 2.5 0.28 0.13 0.25 0.15 2.8 61 0.0 0.0 I 0.0 0.0 2.4 0.27 0.13 0.24 0.14 2.7 62 0,0 0.0 0.0 0.0 2.3 0.26 0.13 0.23 0.13 25 63 0.0 0.0 0.0 0.0 1.9 0.21 0.13 0.19 0.09 1.8 64 0.0 0.0 0.0 0.0 1.9 0.21 0.13 0.19 0.09 1.7 65 0.0 0.0 0.0 0.0 0.4 0.04 0.12 I 0.04 0.00 0.5 66 0.0 0.0 0.0 0.0 0.4 0.04 0.12 0.04 0.00 0.1 67 0.0 0.0 0.0 0.0 0.3 0.03 0.12 0.03 0.00 0,1 68 0.0 0.0 0.0 0.0 0.3 0.03 0.12 0.03 0.00 0.1 69 0.0 0,0 0.0 0.0 0.5 0.06 0.12 0.05 0.01 0.1 70 0.0 0.0 0.0 0.0 0.5 0.06 0.11 0.05 0.01 0.1 71 0.0 0.0 0.0 0.0 0.5 0.06 0.11 0.05 0,01 0.1 72 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1 73 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1 74 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1 75 0.0 0.0 0.0 0.0 0.3 0.03 0.11 0.03 I 0.00 0.1 76 0.0 0.0 0.0 0,0 0.2 0.02 0.10 0.02 I 0.00 0.0 77 0.0 0,0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1 78 0.0 0.0 0.0 0.0 0.4 0.04 0.10 0.04 I 0.00 0.1 79 0.0 0.0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1 . 80 0.0 0.0 0.0 0.0 0.2 0.02 0.10 0.02 I 0.00 0.0 81 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.10 0,03 I 0.00 0.1 82 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1 83 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1 84 I 0.0 I 0.0 0.0 0.0 0.2 0.02 0.09 0.02 I 0.00 0.0 11\. 85 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.09 0.03 I 0.00 0.1 86 0.0 0.0 I 0.0 0.0 I 0.2 O.O,~ I 0.09 0.02 I o.on 0.0 I 67 0.0 0.0 I 0.0 0.0 I 0.3 0.03 I 0.09 0.03 I O.ml 0.1 I 66 0.0 0.0 I 0.0 0.0 I 0.2 0.02 I 0,09 0.02 I 0.00 0.0 I e 69 0.0 0.0 I 0.0 0.0 I 0.3 0.03 0.09 0.03 I 0.00 0.1 I 90 0.0 0.0 I 0,0 0,0 I 0,2 0.02 0.09 0.02 I 0.00 0.0 I 91 0.0 0.0 I 0.0 0.0 I 0.2 0.02 0.09 0.02 I 0.0(1 0.0 I 92 0.0 0.0 I 0.0 0.0 I 0.2 0.02 0.09 0.02 I 0.0(1 0.0 I 93 0.0 0.0 I 0.0 0.0 I 0.2 O.O? 0.09 0.02 I 0.0(1 0.0 I 94 0.0 0.0 I 0.0 0.0 I 0,2 0.02 0.09 0.02 I O.oe, 0.0 I 95 0.0 0.0 I 0.0 0.0 I 0.2 0.02' 0.09 0.02 I 0.0(' 0.0 I 96 0,0 0.0 I 0,0 0.0 I 0.2 0.02 0.09 0.02 I O.Oc- 0.0 I 97 0.0 0.0 I 0.0 0.0 I 0.0 0.00 0.00 0.00 I 0.00 0.0 I 96 0.0 0.0 I 0.0 0.0 I 0.0 0.00 0.00 0.00 I 0.00 0,0 I otal Effective RainfaLL = 0.608 inches ydrograph Vollllle = 1.3 acre feet e e , . ......~ . . . Water Qnality Management Plan (WQMP) Tentative Tract Mop 32780 August, 2005 Appendix D Educational Materials --.., \(p "' e . . Water Quality Management Plan (wQMP) Tentative Tract Map 32780 August, 2005 Appendix E Soils Report ~1 e e e A D17f"\1I..1 A K, INC. Geotechnical Environmental Materials 1<0 e PRELIMINARY GEOTECHNICAL EVALUATION FOR PROPOSED 22-AcRE RESIDENTIAJ~ DEVELOPMENT, WALCOTT LANE TEMECULA, RIvERSIDE COUNTY, CALIFORNIA e PREPARED FOR MR. STEVE GALVEZ 45621 CORTE ROYAL TEMECULA, CALIFORNIA 92592 PREPARED BY GEOTEK, INC. 1384 POINSETTIA A VENUE VISTA, CALIFORNIA 92083 ePROJECT No.: 2550SD3 MARCH 24, 2004 '~--"...':'!I':o..... , "\~ T!J ~ 1C\. e 1384 Poinsettia Ave., Suite A, Vista, CA 92081-8505 (760) 599-0509 FAX (760) 599-0593 Geotechnical Environmental K, INc. Materials March 24, 2004 Project No,: 2S50SD3 Mr. Steve Galvez 45621 Corte Royal Temecula, California 92592 Subject: Preliminary Geotechnical Evaluation Proposed 22-Acre Rcsidential Development Walcott Lane Temecula, Riverside County, California Dear Mr. Galvez: e As requested and authorized, GeoTek, Inc. (GeoTek) has performed a geotechnical evaluation for the proposed 22-acre site located along the east side of Walcott Lane in the City of Walcott Lane Temecula, Riverside County, California. This report presents the results of our investigation, discussion of our findings, and provides geotechnical recommendations for foundation design and construction. In our opinion, the proposed development of the site appears feasible from a geotechnical viewpoint provided that the recommendations included herein are incorporated into the design and construction phases of the project. The opportunity to be of service is sincerely appreciated. If you should have any questions, please do not hesitate to call our office. EIT 116439 Staff Engineer e (5) Addressee G:\DataID300\2J50SD3 Walcotl Lane - Temecula12550SD3 GeoRpI.doc ARIZONA CALIFORNIA ~ I\II=\I^ n^ e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane - TemecuIa Project No.: 2550S03 March 24, 2004 Pal!ei TABLE OF CONTENTS 1. INTENT ........................................,........,....................................,.............................................,............ ...............1 2. PURPOSE AND SCOPE OF SERVICES.............................................,.....,...,..................................................1 3. SITE DESCRIPTION AND PROPOSED DEVELOPMENT .....................,...................................................2 3.1 SITE DESCRIPTION ................................................................. ........................ ........................... .. ............ 2 3.2 PROPOSED DEVELOPMENT ................... ...... ...... .............................. ................ .................................... ............ 2 4. FIELD EXPLORATION AND LAHORA TORY TESTING ................... ...............,.............................,.......... 3 4.1 FlELD EXPLORA TlDN .......................................................................................................................... ............ 3 4.2 LABORATORY TESTING............ ........ ............................... ...... ..... ...... ....................................... ..... ........ ........... 3 5. GEOLOGIC AND SOILS COI\'DITIONS ........................................................................................................3 5.1 GENERAL ............ ....................................................................................... .......................... ....... ..... .............3 5.1.1 Fill (Mapped as Aj) ...... ....,....................................... .................... ...3 5.1.2 Tapsoil (Not mapped).................. .................. ................. .............. .. 4 5.1.3 Alluvium (Mapped as Qal) ....................................... ................... ............... ....... 4 5.1.1 Terrace Deposits (Mapped as Qc) .............................. .................. .................. ............. .. 4 5.2 SURFACE AND GROUND W A TER..................................................................................................... .. ............ 5 5.2. 1 SUlface Water............................. .......... ................... ........................ ................ .......... ...... ....... ...........5 5.2.2 Groundwater .............................. ...... ........................ '" ........ .......... ............... ......., .......... 5 5.3 FAULTING AND SEISMICITY .......... .............................................................. ............................................. ...... 5 5.4 OTHER SEISMIC HAZARDS..... ....................................................................... ... ...................... .............. ............6 6. CONCLUSIONS AND RECOMMENDATIONS...............................,..................................................,..........7 6.1 GENERAL.................................... ........... ....,. ..... .......,............... ...................... ..................................... ... ........ 7 6.2 EARTHWORK CONSIDERA TIO NS ...... ............. ................. ..... .............. .............................................................. 7 6.2.1 Site Clearing..... .........,.. .................... ......................... ..................... ................... ....................... ........... 7 6.2.2 Fills............................................. ......................................... .......................................:..... ....... .......... 7 6.2.3 Removals ........ ..... ...................................................... ........................ ................ .... ................ ... .......... 7 6.2.4 Excavation Characteristics ......... ...................................................... ...................... ... ............... .......... 8 6.2.5 Transition Lots ....... .................................................................. .......... ................. ....... ................ ..... .... 8 6.2.6 Soil Balancing........................ ........... ............. ...... ............................................................................... 8 6.3 DESIGN RECOMMENDATIONS ..... .............. ......... .............. ............................................................................... 9 6.3.1 Foundation Design Criteria..................................................u................h.......h....................... .........9 6.3.2 Settlement..................................... ................... ........................ .................................................. ....... 10 6.3.3 Seismic Design Paranzeters ........h...................h..................___. ........... .... ................................... ....... 10 6.3.4 Foundation Set Backs. .............................................................................................. .................. ....... 10 6.3.5 Slab-an-Grade Constructian ..........................................,......................... ................... ...................... 11 6.3.6 Subgrade Moisture ...... ........................................................................ ............................... ............... 11 6.3.7 Soil Corrosivity ...............................................................................................,.......................... ...... 11 6.4 CONCRETE CONSTRUCTION ......................................................................................................................... 12 6.4.1 General......... .................. .............. ............ .................................................................................. ...... 12 6.4.2 Cement Type...............,................. .........,............................................ ........................................ ...... 12 6.4.3 Concrete Flatwork ........ ........ ....... .................................. .................... ..... ......... ........ ................... ...... 12 6.5 RETAINING WALL DESIGN AND CONSTRUCTION ........................................................................................13 6.5.1 General Design Criteria..... ................................................................ ..................... ..... ............... ...... 13 6.5.2 Wall Backfill and Drainage...............................................................................................................13 , 'y~...,.... i..... ,;- ~:. ~\ e e . MR. STEVE GALVEZ Preliminary Geotechnical Evalnation Walcott Lane - Temecula Project No.: 2550SDJ March 24, 2004 Pae:eii TABLE OF CONTENTS 6.6 POST CONSTRUCTION CONSIDERATIONS........................................................................................14 6.6.1 Landscape Maintenance and Planling.............................................................................. ............... 14 6.6.2 Drainage .................... ..................................... ...... ........... """" ............ .............................. ............... 15 6.7 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS.................................................................... ............... 15 7. LIMIT A nONS .................................................................................................................................................. 17 8. SELECTED REFERENCES ............................................................................................................................18 ENCLOSURES Figure I - Site Location Map Figure 2 - Trench Location Plan Appendix A - Logs of Exploratory Trenches Appendix B - Resnlts of Laboratory Testing Appendix C - Computer Printouts of Seismic Analysis Apoendix D - General Grading Guidelines for Earthwork Construction 'H".-. ..orfu..... '.:'1EtD 'k ~ e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No,: 25508D3 March 24, 2004 Page 1 1. INTENT It is the intent of this repOlt to aid in the design and construction of the proposed development. Implementation of the advice presented in Section 6 of this report is imended to reduce risk associated with construction projects. The professional opinions and geotechnical advice contained in this report are not intended to imply total performance of the project or guarantee that unusual or variable conditions will not be discovered during or after construction. The scope of our evaluatiou is limited to the area explored, which is shown on Figure 2. This evaluation does not and should in no way be construed to encompass any areas beyond the specific area of the proposed construction as indicated to us by the client. Further, no evaluation of any existing site improvements is included, The scope is based on our understanding of the project and the client's needs, and geotechnical engineering standards normally used on similar projects in this region, 2. PURPOSE AND SCOPE OF SERVICES The purpose of this study was to evaluate the overall geotechnical conditions on the site. Services provided for tins study included the following: ~ Research and review of available published data regarding geologic and soil conditions at the site. ~ Site exploration consisting of the excavation, logging, and sampling of 13 exploralory trenches, ~ Laboratory testing on representative samples collected during the field investigation ~ Review and evaluation of site seismicity, and }> Compilation of this geotechnical report which presents our findings, conclusions, and recommendations for site development. ~j',,~.. ...cm ~'fh: ~? e e e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation \Valcott Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 24, 2004 Page 2 3. SITE DESCRIPTION AND PROPOSED DEVELOPMENT 3.1 SITE DESCRIPTION The subject site is located along the east of Walcott Lane, in the City of Temecula, Riverside County, California. The property consists of five adjacent parcels, identified by the Riverside County Assessor's Office as parcel numbers 957-170-032 through 957-170-036 that measure approximately 22 acres. Currently, the site is vacant land covered by medium-sized vegetation. A graded dirt road, accessible from Walcott Lane, exists in the northern pOltion of the subject site and connects to a private road (Vista Del Monte) at the east boundary of the site. The property is bounded to the north by an asphalt road and a vacant lot, to the east by several single-family dwellings and the general alignment of Butterfield Stage Roae!, to the south by an existing residential development, and to the west by Walcott Lane. Further infmmation regarding site layout is shown on Figure 2. The site topography consists of moderately to steeply sloping terrain that is dissected by a main natural drainage in an east-west direction, Ground elevations within the site limits range from approximately 1370 feet above mean sea level (msl) a1 the north boundary to approximately 1260 feet above msl by the existing culvert beneath Walcott Lane. Ground elevation near the southern boundary ofthe site is approximately 1355 feet above ms!. 3.2 PROPOSED DEVELOPMENT Based on the information provided to us, it is our understanding that the subject site will be developed into typical residential lots for the pUlpose of building single-family residences, The proposed residences are expected to consist of typical one- to two-story wood framed structures. No site grading plans are available for review at this time. However, it is anticipated that cut and fill grading will be generally less than 20 feet in height. If the :;ite development differs from the assumptions made herein, the recommendations included in Section 6 of this report should be subject to further review and evaluation. .~'".- \~jE_i:(jJl: '-"'. ttA e e e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Development Project No.: 2550803 March 24, 2004 Page 3 4. FIELD EXPLORATION AND LABORATORY TESTING 4.1 FIELD EXPLORATION The field exploration was conducted on March 3, 2004. The 13 exploratory trenche, were excavated with a rubber tire backhoe (Case 580 Super L) to a maximum depth of 135 feet. The trenches were located as shown on Figure 2, Trench Location Plan, An engineer from our finn logged the trenches and collected samples for laboratory testing. The logs of exploratory trenches and additional information regarding field sampling and testing procedures are included in Appendix A. 4.2 LABORATORY TESTING Laboratory testing was performed on selected disturbed sample:; collected during the field investigations. The purpose of the laboratory testing was to confirm the field classification of the soil materials encountered and to evaluate their physical properties for use in the engineering design and analysis, The results of the laboratory testing along with a brief description and relevant information regarding testing procedures are included in Appendix B. 5. GEOLOGIC AND SOILS CONDITIONS 5.1 GENERAL A brief description of the earth materials encountered is presented in the following sections. A more detailed description of these materials is provided on the exploratory trenching logs included in Appendix A. Based on our site reconnaissance, subsurface excavations, and review of published geologic maps, the overall site is underlain to the depth explored by sedimentary materials. Layers of fill, alluvium, and topsoil materials mantle the different areas of the site. 5.1.1 Fill (Mapped as Ai) Although not explored as a part of this study, artificial fill materials constitute the existing slopes along WaIcott Lane and the southern boundary of the site. 'Dlese materials appear to '."'."...'..'.... ':; .~- . EK ~-5' e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 24, lO04 Page 4 be an engineered fill placed during the construction of Walcott Lane and the existing residential development to the south, 5.1.2 Topsoil (Not mapped) The site is mantled with a layer of topsoil varying in thiclrness between 6 to 24 inches. The topsoil is generally described as brown, moist, loose, clayey to silty fine sand with scattered rootlets. These materials are considered unsuitable for support of settlement-sensitive structures or fill in their current condition and should be subject to complete removal and recompaction. 5.1.3 Alluvium (Mapped as Qal) Alluvial deposits were encountered in the main drainage area in the lower portions ofthe site. The alluvium varies in thickness and was encountered to a depth of 12.5 feet in Trench T.8 and to the maximum depth explored in Trenches T-3 (12,5 feet), T-5 (13.5 feet), and T-9 (12 feet). These materials are generally comprised of brown, damp to moist, clayey to silty sand. Based on the results of the laboratory testing and our experience with similar soils, the onsite materials possess a low expansion potential (EI<51) in accordance with Table 18A-I-B ofthe 2001 California Building Code (CBC). 5.1.4 Terrace Deposits (Mapped as Qc) Quatemary aged Terrace Deposits underlie the site. These sedimentary deposits are considered completely weathered and break into brown, damp to moist, clayey to silty fine- to coarse-grained sand. Near the northem portion of the site, at higher elevations, these materials became difficult to excavate at depths between 5 and 7 feet during our site investigation, In tile central and southem portions of the site, these materials became difficult to excavate at depths between 8 and 12 feel. The Expansion Index (EI) tests were performed on a representative soil sample, The results of the laboratory testing indicate a low expansion potential (EI<51) in accordance with the California Building Code (CBC), The expansion index test results are shown on Plate EI-I, Appendix B. '~ \~L ~ e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Development Project No.: 2550SD3 March 24, 2004 Page 5 5.2 SURFACE AND GROUND WATER 5.2.1 Surface Water Surface water was not encountered during our field investigation. Overall site drainage i~ in a westerly direction through the existing culvert that crosses Walcott Lane. All site drainage should be reviewed and designed by the project civil engineer. 5.2.2 Groundwater Localized groundwater seepage was encountered in our exploratory Trench T-9 at a depth of approximately 7 feet below existing grades. The slow seepage of water may have been caused by perched water resulting from recent rains in the area. Fluctuation in the groundwater level should be anticipated mainly due to variations in rainfall and other factors not evident at the time of our field investigation. In general, groundwater is not anticipated to be a constraint to site development; however, deep removals in the lower portions of the site may encounter groundwater or localized seepage. . 5.3 FAULTINGANDSE1SMICITY The site is in a seismically active region. Based on our review of aerial photos, published geologic maps, and the results of the field investigation no active or potentially active fault is known to exist at this site. The site is not situated within an Alquist-Priolo Earthquake Fault Zone (Special Studies Zone). A county published geologic hazard map (Figure 3) is included to show the site location with respect to local potential faults. The computer program EQFAULT (Blake, 2000a) was used to detelmine the distance to known faults and estimate peak ground accelerations based on a detenninistic analysis. The Elsinore - Temecula Fault located approximately 4.7 miles from the site is considered to represent the highest risk to generate ground shaking. A maximum earthquake magnitude of 6.8 and an estimated peak site acceleration of 0.35g are postulated based on the analysis. Computer printouts of the analyses are included in Appendix C. The computer program FRlSKSP (Blake, 2000) was also used to (~stirnate peak horizontal ground acceleration (PHGA) based on a probabilistic analysis. The results indicate that PHGA values on the order of OAg to 0.5g may be generated at this site. These values correspond to a 10 percent probability of exceedance in 50 yean (or a 475 year return e period). Computer printouts ofthe analyses are included in Appendix C. ....,r".... Ii' ',fuI .~;:k <b1 . . . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 2,1, 2004 Page 6 5.4 OTHER SEISMIC HAZARDS The liquefaction potential on the site is considered to be low due to the dense nature of the subsurface soils and lack of a shallow water table. Evidence of ancient landslides or slope instabilities at this site was not observed during our investigation. Thus, the potential for landslides is considered low at this site, The potential for secondary seismic hazards such as seiche and tswlami is considered to be negligible due site elevation and distance from an open body of water ~_..- .' ~:. ..- 'k ~~ . MR. STEVE GALVEZ Preliminary Geoteclmical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 24, 2004 PI!@.] 6. CONCLUSIONS AND RECOMMENDATIONS 6.1 GENERAL The proposed development of the site appears feasible from a geotechnical viewpoint provided that the following recommendations are incorporated into the design and construction phases of development. 6.2 EARTHWORK CONSIDERATIONS Earthwork and grading should be perfonned in accordance with the appropriate grading ordinances of the City of Temecula and our recommendations contained in this report. The Grading Guidelines included in Appendix D ontline general procedures and do not anticipate all site-specific situations. In the event of conflict, the recommendations presented in the text e of this report should supersede those contained in Appendix D. 6.2.1 Site Clearing In areas of planned grading or improvements, the site should be cleared of vegetation, roots and debris, and properly disposed of offsite. 6.2.2 Fills The onsite materials are considered suitable for reuse as compacted fill provided they are free from vegetation, debris and other deleterious material. The under9ut areas should be brought to final sub grade elevations with fill compacted in accordance with the general grading guidelines presented in Appendix D. 6.2.3 Removals . As encountered, the top 2 to 3 feet of the onsite surficial materials (topsoil/terrace deposits) appear to possess poor engineering characteristics and as such, they are considered unsuitahle for the support of settlement -sensiti ve structures or additional fill in their current condition. Thus, we recommend that these materials be subject to complete removal and recompaction within the limits of grading. If the limits of grading include the creek/natural drainage arl~a, we recommend that the topsoil and top 5 feet of alluvium be completely removed and \~.'.'.'. ~k i&o.. e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 2:i50SD3 March 24, 2004 Page 8 recompacted. Insitu density testing should be perfonned during grading to verify suitability of removal bottoms of the alluvium left in place, The insitu density should meet the criteria of 105 pcf dry density and 85 percent relative compaction. 6.2.4 Excavation Characteristics Our study was not a detailed evaluation of excavation characteristics of the onsite materials, However, excavation in these materials within the depth investigated is expected to be easy to moderately difficult using heavy-duty grading equipment. All temporary excavations for grading pUrposes and installation of underground utilities should be constructed in accordance with OSHA guidelines. Temporary excavations within the onsite formational materials should be stable at I: I inclinations for cuts less than ] 0 feet in height. 6.2.5 Transition Lots The proposed lots are likely to be in a transition cut.fill situation as a result of planned grading, The cut portion of sub grade beneath all settlement-sensitive structures/foundations should be Overexcavated a minimum of 3 feet below finish pad gl"ade or a minimum of ~ feet below bottom of footings and replaced with low expansive soils. It is anticipated that sufficient low expansive soils will be generated during site grading to cap the building pads with a minimum of 3 feet of these materials. 6.2.6 Soil Balancing Several factors will impact earthwork balancing on the site, including shrinkage, buUcing, subsidence, trench spoil from utilities and footing excavations, and final pavement section thickness as well as the accuracy oftopography. Shrinkage, bulking and subsidence are primarily dependent upon the degree of compactive effort achieved during construction. For planning purposes, a shrinkage factor of 10 % to 15% may be applied for the upper surficial materials requiring removal as described in Section 6.2.3 above. The above estimates are intended as an aid for project engineers in determining earthwork quantities, It is recommended that site development be planned to include an area that could be raised or lowered to accommodate final site balancing. (~~i..',"".'.."'. 't~:\:0.~E() . ., L'iEK f\O e tit tit MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Development Project No.: 2550SD3 March 24, 2004 Page 9 6.3 DESIGN RECOMMENDATIONS 6.3.1 Foundation Design Criteria Foundation design criteria for conventional foundation system are presented herein. These are typical design criteria and are not intended to supersede the design by the stmctural engineer. Based on the results of this investigation and our past experience, the majority of the onsite soils may be classified as having a low expansion potential (0<EI<51) with a Plasticity Index (PI) of less than 15. However, testing of soils near finish grade should be perfonned at the completion of site grading to verify the actual conditions. Thus, we recommend that drawings be prepared for the soil conditions presented in Table 6.3.1 below. Actual as graded conditions will determine the applicable foundation design criteria. TABLE 6.3.1 - MINIMUM DESIGN REQUIREMENTS DESIGN PARAMETER E.I. < 21 E.I. > 20 P.I. ~ IS P.I. ~ IS !Foundation Depth or Minimum I-floor Stmcture - 12 I-floor Structure - Perimeter Beam depth (inches 2-floor Structure -18 2-fIoor Structure- below lowest adiacent grade) Foundation Width (Inches) I-floor Structure - 12 I-floor Structure- 2-f100r Structure - 15 2.floor Structure .- Maximwn Beam Spacing NA 25 (feell Cantilevered length soil NA 0 function (I ,) Minimum Slab Thickness 4 4 (inches) Minimum slab Reinforcing No.3 Rebar, 24 inch No.3 Rebar, 24 II centers, two ways centers, two waj Two No.4 reinforcing Two No.4 reinfore Footing Reinforcement bars, one top one bottom bars, one top one bo Presaturation of subgrade soil Subgrade to be well (Percent of Optimum/Depth wetted before pouring 100/12 in inches) concrete E.I. > 20 IS ~ P.I. ~ 20 12 18 I-floor Structure -- 1 i 2-floor Stmcture.- 18 ]2 I-floor Structure -- 12 15 2-floor Structure"- ]5 22 2 4 lch No.4 Rebar, 24 inch '5 centers, two ways ing Two No.5 reinforcing ttom bars, one top one bottom 110/12 Notes: 1) Equivalent steel reinforcing may be substituted in all cases. 2) All footing widths are as per 2001 CBC minimums, 3) Reinforcing to be mid height in slab. "Hooking" as method of positioning is not recommended. 4) Post-tensinned foundations may be used in all cases. Design criteria can be provided upon request. Based on the above, an allowable bearing capacity of 2000 poundH per square foot (pst), inclUding both dead and live loads, may be used if footings are designed in accordance with ~.."..... ~h 0...\ e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 255IJSD3 March 24, 2004 Page 10 the above criteria. The allowable bearing value may be increased by one-third when considering short-term live loads (e,g. seismic and wind loads). The passive resistance may be computed as an equivalent fluid pressure having a density of 200 psf per foot of depth, to a maximum earth pressure of 2,500 psf. A coefficient of friction between soil and concrete of 0.35 may be used with dead load forces. When combining passive pressure and frictional resistance, the passive pressure component should be reduced by one-third. 6.3.2 Settlement Based on our evaluation of settlement characteristics at this site, the total settlement is expected to be less than one inch based on the loading conditions described in Section 3.2 of tlus report. Differential settlement is expected to be less than one..half of the total settlement based on known conditions. Final settlement evaluation should be performed upon issuance of site grading plans. 6.3.3 Seismic Design Parameters Seismically resistant structural design in accordance with local building ordinances should be followed during the design of all structures. Building Codes have been developed to minimize structural damage. However, some level of damage as the result of ground shaking generated by nearby earthqualces is considered likely in this general area. For the purpose of seismic design a Type B seismic source located approximately 7.6 km from the site may be used. Table below presents seismic design factors in keeping with the criteria presented in the 2001 CBC, Division IV & V, Chapter 16. TABLE 6,2.4 - SEISMIC DESIGN PARAMETERS Soil ProfIle Parameters Type C. Cv N. Source Table 16A-J 16A-Q 16A-R 16A-S 1 Value Sc 0.40 0.62 1.0 Seismic v Source Type -T 16A-V .1 B N 6A 1 6.3.4 Foundation Set Backs Where applicable, the following setbacks should apply to all foundations. Any improvements not conforming to these setbacks may be subject to lateral movements and/or differentl.al settlements: .~..... \~~.' '~.~'(g).'_.-f ," iEK a.,rv e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential DeveIooment Project No.: 2550~m3 March 24, 2004 Page 11 )> The outside bottom edge of all footings should be set back a minimum ofH/3 (where H. is the slope height) from the face of any descending slope. The setback should be at least 7 feet and need not exceed 20 feet. > The bottom of all footings for structures near retaining walls should be deepened so as to extend below a 1: 1 projection upward from the bottom inside edge of the wall stem. )> The bottom of any existing foundations for structures should be deepened so as to exl end below a 1:1 projection upward from the bottom of the nearest excavation. 6.3.5 Slab-on-Grade Construction Concrete slabs should follow the criteria presented in Table 6,3.1 above. Where moisture condensation is undesirable, all slabs should be underlain with a minimum 6.mil polyvinyl chloride membrane, sandwiched between two layers of clean sand (SE above 25) each being at least two inches thick. Care should be taken to adequately seal all seams and not puncture or tear the membrane. The sand should be proof rolled. It should be noted that the above recommendation is based on soil support characteris tics only. The structural engineer should design the actual slab and beam reinforcement based. on . actual loading conditions and possible concrete shrinkage. 6.3.6 Subgrade Moistnre Moisture conditioning of subgrade should follow the criteria presented in Table 6,:U. Moisture conditioning can require an extended period of time to achieve. Our representative should verify moisture content prior to placing the vapor barrier or reinforcing steel. If the sub grade is not reasonably sealed within 24 hours by placing the vapor barrier or concrete or the concrete is not poured within 96 hours of testing, the moisture tests should be considered invalid unless evaluated otherwise by this office. The foundation contractor should be responsible to request additional verification/testing. 6.3.7 Soil CorTOsivity The soil resistivity at this site was tested in the laboratory on a representative sample collected during the field investigation. The results of the testing are included in Appendix B. It is recommended that a corrosion engineer be consulted to provide recommendations for proper protection of buried metal pipes at this site. e ~~.' ~k C\'? e e e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Development Project No.: 2550SD3 March 24, 2004 Page 12 6.4 CONCRETE CONSTRUCTION 6.4.1 General Concrete construction should follow the 2001 CBC and ACI guidelines regarding design, mix placement and curing of the concrete. If desired, we could provide quality control testing of the concrete during construction. 6.4.2 Cement Type The sulfate content was detennined in the laboratory for a representative onsite soil sample. The results indicate that the water-soluble sulfate is 0.003 percent by weight, which is considered negligible as per Table 19-A-4 of the CBC. Based upon the test results, typl) II cement or an equivalent may be used. 6.4.3 Concrete Flatwork Exterior concrete flatwork (patios, walkways, driveways, etc,) is often some of the most visible aspects of site development. They are typically given the least level of quality control, being considered "non-structural" components, Cracking of these features is fairly common due to various factors. While cracking is not usually detrimental, it is unsightly. We suggest that the same standards of care be applied to these features as to the structure itself. One of the simplest means to control cracking is to provide weakened joints for cracking to occur along. These do not prevent cracks from developing; they simply provide a relief point for the stresses that develop. These joints are widely accepted means to control cracks but are not always effective. Control joints are more effective the more closely spaced. We would suggest that control joints be placed in two directions spaced the numeric equivalent of Iwo times the thicknes~ of the slab in inches changed to feet (e.g. a 4 inch slab would have control joints at 8 feet centers), As a practical matter, this is not always possible nor is it a widely applied standard. ....~ "'..:..'...... ....E ':c;.. .:;< . iEK 0..,1>{ e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 24-, 2004 Page 13 6.5 RETAINING WALL DESIGN AND CONSTRUCTION 6.5.1 General Design Cl"iteria Recommendations presented herein may apply to typical masonry or concrete vertical retaining walls to a maximum height of 10 feet. Additional review and recommendations should be requested for higher walls. Retaining walls embedded a minimum of 18 inches into compacted fill or dense formational materials should be designed using a net allowable bearing capacity of2,OOO psf. An increase of one-third may be applied when considering short-term live loads (e.g. seismic and wind loads). The passive earth pressure may be computed as an equivalent fluid having a density of 200 psf per foot of depth, to a maximum earth pressure of 2,500 psf. A coefficient of friction between soil and concrete of 0.30 may be used with dead load forces. When combining passive pressure and frictional resistance, the passive pressure component should be reduced by one-third. e An equivalent fluid pressure approach may be used to compute the horizontal active pressure against the wall. The appropriate fluid unit weights are given in Table 6.5.1 below for specific slope gradients of retained materials. Surface Slope of Retained Materials Equivalent Flu- (H:V) (PCF Level 35 2:1 50 TABLE 6.5.1 - ACTIVE EARTH PRESSURES Id Pressure ) The above equivalent fluid weights do not include other superimposed loading conditions such as expansive soil, vehicular traffic, structures, seismic conditions or adverse geologic conditions. 6.5.2 Wall Backfill and Drainage e The onsite low expansive soils are suitable for backfill provided they are screened of greater than 3.inch size gravels. Presence of other materials might necessitate revision to the parameters provided and modification of wall designs. The backfill materials should be placed in lifts no greater than 8-inches in thickness and compacted at 90% relative compaction in "~'----~--. \; ,~iE(jp -'n , 0..."0 MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 24, 2004 P"ge 14 - accordance with ASTM Test Method DI557.00. Proper surface drainage needs to be provided and maintained. Retaining walls should be provided with an adequate pipe and !,'Tavel back drain system to prevent build up of hydrostatic pressnres. Back drains should consist of a 4-inch diameter perforated collector pipe embedded in a minimum of one cubic foot per lineal foot of 3/8 to one inch clean crushed rock or equivalent, wrapped in filter fabric. The drain system should be connected to a suitable outlet. A minimum of two outlets should be provided for each drain section. Walls from 2 to 4 feet in height may be drained using localized gravel packs behind weep holes at 10 feet maximum spacing (e.g. approximately 1.5 cubic feet of gravel in a Woven plastic bag), Weep holes should be provided or the head joints omitted in the first course of block extended above the ground surface. However, nuisance water may still collect in iront of wall. 6.6 POST CONSTRUCTION CONSIDERATIONS e 6.6.1 Landscape Maintenance and Planting Water has been shown to weaken the inherent strength of soil, and slope stability is significantly reduced by overly wet conditions. Positive surface drainage away from graded slopes should be maintained and only the amount of irrigation necessary to sustain plant life should be provided for planted slopes. Controlling surface drainage and runoff, and maintaining a suitable vegetation cover can minimize erosion, Plants selected for landscaping should be lightweight, deep-rooted types that require little water and are capable of surviving the prevailing climate. Overwatering should be avoided. The soils should be maintained in a solid to semi-solid state as defined by the materials Atterberg Limits. Care should be taken when adding soil amendments to avoid excessive watering. Leaching as a method of soil preparation prior 1:0 planting is not recommended. An abatement program to control ground.burrowing rodents should be implemented and maintained, This is critical as burrowing rodents can decreased the long-ternl performance of slopes. e , <\(0 e e e MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walco~ Lane. 22-Acre Residential Develooment Project No.: 2550SD3 March 24, 2004 P age 15 It is common for planting to be placed. adjacent to stmctures in planter or lawn areal:. This will result in the introduction of water into the ground adjacent to the foundation. This type oflandscaping should be avoided. !fused, then extreme care should be exercised with regard to the irrigation and drainage in these areas. Watetproofmg of the foundation and/or sub drains may be warranted and advisable, We could discuss these issues, if desired, when plans are made available. 6.6.2 Drainage The need to maintain proper surface drainage and subsurface systems cannot be overly emphasized, Positive site drainage should be maintained at all times. Drainage should not flow uncontrolled down any descending slope. Water should be directed away from foundations and not allowed to pond or seep into the ground. Pad drainage should be directed toward approved area(s). Positive drainage should not be blocked by other improvements. Even apparently minor changes or modifications can cause problems. It is the owner's responsibility to maintain and clean drainage devices on or contiguou:; to their lot. In order to be effective, maintenance should be conducted on a regular and roUl ine schedule and necessary corrections made prior to each rainy season. 6.7 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS We recommend that site grading, specifications, and foundation plans be reviewed by this office prior to construction to check for conformance with the recommendations of this report. We also recommend that GeoTek representatives be present during site grading and foundation construction to check for proper implementation of the geotechnical recommendations. These representatives should perform at least the following duties: . Observe site clearing and grubbing operations for proper removal of all unsuitable materials. · Observe and test bottom of removals prior to fill placement. · Evaluate the suitability of on-site and import materials for fill placement, and collect soi I samples for laboratory testing where necessary. · Observe the fill for uniformity during placement including utility trenches. Also, test the fill for field density and relative compaction. '.........,'... ", Bl3I '~ik <\\ e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22.Acre Residential DevelODmcnt Project No.: 2550SD3 March 24, 2004 PagUji · Observe and probe foundation matelials to confillU suitability of bearing materials and proper footing dimensions. If requested, GeoTek will provide a construction observation and compaction report to comply with the requirements of the governmental agencies having jurisdiction over the project. We recommend that these agencies be notified prior to corrunencement of construction so that necessary grading pellUits can be obtained, ''R'.- 'Vi~,'::t:.:,__: , '!h C\'O e e . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Development Project No.: 2550SD3 March 24, 2004 Page 17 7. LIMITATIONS The materials observed on the project site appear to be representative of the area; however, soil and bedrock materials vary in character between excavation:; and natural outcrops or conditions exposed during site construction. Site conditions may vary due to seasonal changes or other factors. GeoTek, Inc. assumes no responsibility or liability for work, tfsting or recommendations performed or provided by others. Since our recommendations are based the site conditions obsetved and encountered, and laboratory testing, our conclusion and recommendations are professional opinions that are limited to the extent of the available data. Observations during construction are important to allow for any change in recommendations found to be warranted. These opiruons have been derived in accordance with current standards of practice and no warranty is expressed or implied. Standards of practice are subject to change with time. r~'~.,~..,..,.... I \,?U!Q) "',h <\0.. e . . MR. STEVE GALVEZ Preliminary Geotechnical Evaluation Walcott Lane. 22-Acre Residential Development Project No.: 2550SD3 March 24, 2004 Page 18 8. SELECTED REFERENCES Afrouz, A., 1992, "Practical Handbook of Rock Mass Classifications Systems and Modes of Ground Failure," CRC Press, January 1992. ASTM, 200, "Soil and Rock: American Society for Testing and Materials," vol. 4.08 for ASTM test methods D-420 to D-49l4, 153 standards, 1,026 pages; and vol. 4,fJ9 for ASTM test method D-4943 to highest number. Blake, T., 2000a, "EQF AUL T, version 3.00," a Computer Program for Deterministic Estimation of Maximwn Earthquake Event and Peak Ground Acceleration. Blake, T., 2000, "FRISKSP, version 4.00," a Computer Program for Probabilistic Estimation of Peak Acceleration and Ulliform Hazard Spectra Using 3-D Faults as Earthquake Sources. Bowels, J., 1982, "Foundation Analysis and Design," McGraw-Hill, Third Edition. California Code of Regulations, Title 24,2001 "Califomia Building Code," 3 volumes. CaIiforrua Division of Mines and Geology (CDMG), 1997, "Guidelines for Evaluating and Mitigating Seismic Hazards in Califorrua," Special Publication 117. Califomia Division of Mines and Geology (CDMG), 1998, Maps of Known Active Fault Near-Source Zones in Califomia and Adjacent Portions of Nevada: Intemational Conference of Building Officials. GeoTek, Inc., In-house proplietary information. Ishihara, K., 1985, "Stability of Natural Deposits During Earthquakes," Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, Volwne I. Seed, H.B., and Idriss, LM., 1982, "Ground Motions And Soil Liquefaction During Earthquakes," Earthquake Engineering Research Institute. US Army Corps of Engineers, No.9, "Settlement Analysis," Technical Guidelines, ASCE Press, 1994 Youd, T. Leslie and Idriss, Izzmat M., 1997, Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Center for Earthquake Engineering Research, Technical Report NCEER-97-0022. ,n-~...~., \' '.7...... - ':'EK \& e . STEVE GALVEZ lere Residential Development .1 Lane la, CA 92592 4 Fil!ure 1 Site Location Map ~K' INC. 1384 Poinsettia A venue, Suite A Vista, Califomia 92081-8505 v) Tek Project Number: 2550SD3 Thomas Guide Digital Edition 5.0.3.0 o VJ' .,(1 )> r m ." '" 1'1 .., on >0 O-{Z co-{ ;;t:'Q c: -;:0 .VI -, ~:Z m-l >m Z;o < VI> mr >,.,. r'iI mm < mm ,r -; l}~ - '" '" '" <=>..'" ">1" ~{; .... ' l:: ::" '" - .... '" !;) ........v; ..~ -. .....i} '0 Oo~ :'-1.... " ~ "0 ;,.. c .~ c ::? '\'i 0% .... .,e " ;:,.. n' ~ "6 ~ .... ~ Q g" '" .'0 ~ .v, ::" ",. .~ ~::;: ~ ;::l ~ ""'t ....... -. . ~ g en ~ ~ - ~ ~ "' SJ:-< " . "' n'" p:l ~ ~ ~ '" ......, - ~N~ ::1 N N ~ . S' ~ \Og NO ~t:I NO <: o 0' 'tJ ~ CD '" - Q '" Cl ~ ".. "0 .. <.2 ",' r-, ~ ~. " c:J- '" :-< '" v, v, "" ~ "" ",,0\ .4f-~ ,0 '" o o ~ . . . . ~ o ~ ""''0 00'0 o .., o 0 -;>< o ~, qg. S " '" '" - -0 " ~ o 0 ~ " ~ ~ '" ~. " 0 ~ ~ .. o .0 o o o ~, ~ ~ ~ !;! ~: '... ~::: '" .~ t~ . El to ~ - to n ---.'1:1 " ~ ~. 0 .., ~, " en ~ - o 0 0." o ::;: ~ ::TO ~ Z o 0 ere ~ d -, '" (Il ~. o.~ ~O >- -. ~ 5 8, e'. EJ == ==< "'"'~- ...... '~j l - ~ _. o ('1) ~ n == c:: tr ~ (') ~ -0;=-('1) .... 0 _. == N c:l rrq - i'( Z () ..J . ~ <'->> ~, 00 en .p,. ~ J" "0 o () ~, ::l een ........ (D Q>~ - _. d PJ S' ~ <: \00 f,,)::l 0': 00 .0 ';'"[/J 00- VI ~. o~ <..nO ~ e . , , c-- .L '-'-'" J 'l'..L~B~C f~~.'J~! i i ___--t. - '~) , ~- ! i -------- "~ t-.... ,-"~--' ., -- ~'-.... ._.S '-"""'( "<-- i '- " , ----r~. i ----~ -.'\.- 00*' Q...,"""'", ~ tIl ~., ""'i " S - '" to! ~g8'g<: ~C::l~tr1 ~_ n> ""'Iv J>> r; Q.. G") ~. ':r1t:J ~> l'tl ""-. Ol I t"'" ~ ~ > ~ ~ ~ n ~ ~o.: ;;N :! <> ::0 g-n ~ .., 0 _. .. = c. ",,, n> v,':; " v,' ~ ~ n jO' v"' - l..o.i::;-: '=' ~ ~ 11, S "' "C S n> " ~ cn >-lcn<, '" <' .., S en OJ> (1) g gf E. ~. ~ ~. Jl) cr" P' = '('):::.:g.., ...... ..... n> ~q ~w i3' ~.e ::J '" 2 t=. "0 0-4 PJ'" Cti t:(.Q \ e en c: ;. n Rl "TI III c: ;:; ;0 c: "tJ .... c: .. Rl en c: en o Rl "tJ .... ~ .... ';::' s: III "tJ -i Rl 3 Rl n c: F I~- , , o !. a' .. :3 iii' '" n o . if ~ ~ .. ~ ... w w 0. o o ... ~ g " . c '" . !:l IIII! /./ {I ffff;~~l'!f : ~;... 11 ~3 : ~,~-.> !L$ ~ .3 ::i o ~ l I 00 > n . . J ~ . Jj Ii _J___ < . . ~ g ~ <:w _,00 i(i~&J - 0 Q ~' ~tIl S'~ ~;. "" "' g.;.. ~ ' ., . 'On> H tv" Z 0" ~s~ () . '" . 00" Ul ;:;: 0<> V>;.. e T APPENDIX A e . ~ !' .~ 'i; K, INC. \&t e APPENDIX A LOGS OF EXPLORATORY TRENCHES (Trenches T-l to T-13) e Proposed 22-Acre Residential Development Walcott Lane Temecula, Riverside Connty, California Project No.: 2550SD3 . ~K \ f).s e . e MR. STEVE GALVEZ Preliminary Geoleclmical Evaluation Walcott Lane. 22-Acre Residential Develooment APPENDIX A March 24, :'004 PaQe A-I LEGEND TO FIELD TESTING AND SAM))LlNG A - FIELD TESTING AND SAMPLING PROCEDURES Large Bulk Samples These samples are nDlmally cloth bags of representative earth materials over 20 pounds in weight collected from the field by means of hand digging or exploratory cuttings. Small Bulk Samples These samples are normally airtight plastic bags that are typically less than 5 pounds in weight of representative earth materials collected from the field by means of hand digging or exploratory cuttings, These samples are primarily used for determining natural moislure content and classifica tion indices. T - TRENCHING LOG LEGEND The following abbreviations and symbols often appear in the classification and description of soil and rock on the trenching logs: SOILS USCS f-c f-Ill Unified Soil Classification System Fine to coarse Fine to medium GEOLOGIC B: Attitudes J: Attitudes C: Bedding: strike/dip Joint: strike/dip Contacl line Dashed line denotes approximate depth of USCS material change Solid Line denotes approximate depth of unit / formational change Thick solid line denotes cnd of boring (Additional denotations and symbols are provided on the trenching logs) \~ ~:tK \00 GeoTek, Inc_ LOG OF EXPLORATORY TRENCH e 'ROJECT NO,: 'ROJECT NAME: :UENT: .oCATION: 2550503 Walcott Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 3/3/2004 . SAMPLES Laboratory Testing '6 E g '. n u ~ TRENCH NO.: T-1 . '" ~ . ~ E ''; ~ ~ I- -. "' 0_ Cc 1i D.n . . E E "' U$. . 0 . 0 S ~ 0 a. ro 0 U ~ - is E U)z U) . i<' ro ::J -- ~ 0 U) MATERIAL DESCRIPTION AND COMMENTS , Topsoil: ~' n-1 SM Brown, moist. loose, silty t-m SAND; trace clay & organics 12.3 ~'" 111 T1-2 SM Terrace Deposits: 1.5 - Completely weathered; breaks into light brown, damp, silty t-m ~;AND __n.. ..h............... ......--....... ...-...............................-.................... ................................................................................ ._-.-.............. ....-....... .........---.... ...................-.............-....... SC Becomes brown, moist, dense, clayey f~m SAND , ~, n-3 -Same 5.3 5 ~ . - ... .. ......UUm...... m.............. ........-........................-.................................._....nn......._..._......................_......__.........____....... ---........... ............... ----........... ......................-..................... SP Becomes reddish brown, moist. dense. tine SAND with clay ~ T1-4 Same 8.6 0 - . -HOLE TERMINATED AT 12.5 FEET - Hole backfilled with soil cuttings 5. No groundwater encountered . Sam ole Tvoe: III Small Plastic Bag ~ - Large Bulk Sample SZ Waler Table Cl LaboratotV Testlna: AL ::: Atterberg Limits EI - ExpanSion Index MD - Maximum Density SA - Sieve Analysis W ...J SR = Sulfate/Resistivity Test SH = Shear Testing RV: R-Value Test CO: Consohdation \01. GeoTek, Inc. lOG OF EXPLORATORY TRENCH e ROJECT NO.: ROJECT NAME: ;L1ENT: OCA TlON: e SAMPLES Laboratory Testing " 10 15: .. "' ~ "- E TRENCH NO.: T-2 .. ~ ~ ~ ~ c ';;; m ~ I- -~ "' 0_ Ce :;; 1i "-"' "' U<F. ~ 0 ~ E E ~ ~ " ro ~ 0 ~- o~ i5 0 E "'z "' ~ '" ro => -- ~ 0 "' MATERIAL DESCRIPTION AND COMMENTS X Topsoil: T2-1 SM Brown, moist, loose, silty f.m SAND; trace clay & organics ~... T2.2 8 - :@ ~ Terrace Deposits: T2.3 SM Completely weathered; breaks into brown, damp, dense, silty f-m SAt 1.8 - F T2.4 Becomes dark brown. damp, silty f.m SAND; trace clay 3.4 . 5 - . ....... .......m.._..... ...........-..... .......................................................................................................-........ ............................................. .............. m............ ......................... ............... SC Becomes brown, moist. dense. clayey f-m SAND 0 at 10 feet becomes hard to excavate . ~ T2-5 Same ." 4.5 ~ -HOLE TERMINATED AT 12 FEET , - Hole backfilled with soil cuttings - No groundwater encountered 5 - - - al!U!tefu~: III -- Small Plastic Bag ~- Large Bulk Sample ..sz. --Water T ahle laboratorv Testina: At :: Atterberg Limits EI :: Expansion Index MD = Maximum Density SA = Sieve Analysis ~l SR = Sulfate/Resistivity Test SH :: Shear Testing RV = R-VaJue TElst CO = Consolidetion 2550SD3 Walcon Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 3/312004 \~ GeoTek,lnc, LOG OF EXPLORATORY TRENCH e ROJECT NO,: ROJECr NAME: LIE NT: OCATION: 2550SD3 Walcott Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super l (4X4) 3/3/2004 e SAMPLES Laboratory T esling " '" n C g 0 E TRENCH NO.: T-3 m '" 2~ ~ C ." ~ i'=' '" 00 o~ Ce- o 1i on '" Ocft. " u " m E E 0-" ~ 0 "- . 0 U " ~ 6 E "'z if) m ~ ro :0 -- ~ 0 '" MATERIAL DESCRIPTION AND COMMENTS SM Topsoil: '~r Brown, moist, silly fine SAND 9.8 '# .. T3-1 ~; Alluvium r- T3-2 SC Brown, moist. silty f-c SAND with seams of clayey I-m SAND - ~ - - P'~ T3-3 -Same 2.9 ;;g. - = 5 . ......... ............ ............. ,.... Br;;;;;~:'m;;jst,'(je~se:.i:c'sANDwiiii-sjii.". ..............................-............................... ..-............ .............. ....... 'h"ou.. .....m.............. SW 0, , - -Same ..">.., T3-4 8.4 -HOLE TERMINATED AT 12.5 FEET - Hole backfilled with soil cuttings 5 . No groundwater encountered - - a'!!Q!e .Im.e; ., - Small Plastic Bag [g) large Bulk Sample "\:7 ~--Water Table , Laboratorv Testina: At ::: Atterberg Limits El ::: Expansion Index MD ::: Maximum Density SA::: Sieve Analysis U .J SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value T!lst CO =: Consolidation \d\ GeoTek, Inc. LOG OF EXPLORATORY TRENCH aOJECT NO.: 'ROJECT NAME: :UENT: OCATION: e SAMPLES Laboratory Te:;ting " c g .. .0 '" E TRENCH NO.: T-4 m ~ m' ~ C ... ~ w ~ t- _ m '" o~ ee- l;; a. 0..0 '" U;f. m 0 m . E E "" ~ " a. m " U l;;- a E "'2: '" ~ ?: . :J " '" MATERIAL DESCRIPTION AND COMMENTS Topsoil: ~ T4-1 SM Brown. moist, loose, silty I-m SAND; trace clay & organics 9.8 ;:t~: Terrace Deoosits: , ~ T4-2 SC Completely weathered: breaks into brown, damp, dense, clayey I-m 6.7 ,''I-~ ~ SAND MD. SH . T4-3 -Same 5 T4-4 Becomes brown, moist, dense, clayey fine SAND 7 8 -HOLE TERMINATED AT 10 FEET . . Hole backfilled with soil cuttings No groundwater encountered - , - Samole Tvoe: III - Small Plastic Bag ~ Large Bulk Sample .s::z ---Water Table l Laboratorv Testina: Al = Atterberg Umits EI = Expansion Index MD = Maximum Density SA - Sieve Ar,alysis J J SR = Sulfate/Resistivity Tes! SH = Shear Testing RV = R-Value Test CO = Consolidation 2550503 Walcott Lane Steve Galvez Temecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 3/312004 \\() GeoTek,lnc, LOG OF EXPLORATORY TRENCH eROJECT NO,: 'ROJECT NAME: :lIENT: OCATION: 2550SD3 Walcott Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: . DATE: AC Case 580 Super L (4X4) 3/3/2004 e SAMPLES Laboratory TEsting "0 g '. D C Q E TRENCH NO,: T-5 ID '" ~ ~ ID ~ ~ c .w ~ _ ID "' I- QD a~ Oe- m 1'[ ID E E "' O;#. ID U ~ ID 0. ro 0 0 " - o~ 0 0 E <nz "' ID e;- rn :J ro 0 "' MATERIAL DESCRIPTION AND COMMENTS S ~ Topsoil: . .-$;; T5-1 SM Brown. moist, silty fine SAND Alluvium "'" T5-2 SC Brown, moisl clayey fine SAND ~ - . Brown, moist, clayey f-m SAND; CaC03 spottings T5-3 6.8 - 5- - . ~ Brown, moist, dense, clayey fine SAND "1Zi T5-4 11.7 0 , . .......-........... .b......__..... Br~w;:;:.mo;;;Cd'e;:;se:-i=c.sAN'Dw;'ih.ci-;;y;.s(;jiie;ed"CObbie................., .. ........... .......... m. ...................... ................ . T5-5 SW 7.6 ;;'(.~ X T5-<5 -Same -HOLE TERMINATED AT 13.5 FEET 5 Hole backfilled with soil cuttings No groundwater encountered Samole Tyee: . Small Plastic Bag IS] Large Bulk Sample .sz -Water T.lble J ~ Laboratorv Testina: AL :: Atterberg Umits EI - Expansion Index MD - Maximum Density SA = Sieve Analysis J J SR = Sulfate/Resistivity Test SH :: Shear Testing RV:: R-VaJue Test CO = Consolidation \\\ GeoTek,lnc, LOG OF EXPLORATORY TRENCH _OJECT NO,: ROJECT NAME: L1ENT: OCATION: SAMPLES Laboratory T esling '6 g .. D 1" ~ E TRENCH NO.: T-6 ~ z, ~ ~ . ~ ~ 1" ." " -~ U) I- ~D o~ Ceo ID li . E E U) u*, . u ~ 0-" ~ 0 0. ro ~ U ~- 6 E U)z U) . c . ::> ~ 0 '" MATERIAL DESCRIPTION AND COMMENTS ~ Topsail: hd T6-1 SC Brown, moist, clayey fine SAND 19.8 ;~ T6-2 SC Terrace Deposits: ~ Completely weathered: breaks into brown, damp, dense, clayey f.m 13.4 SAND with CaC03 spotting . . ~ Becomes brown, damp. dense. clayey f-m SAND 1\;'$ T6-3 5,6 - F 5- . ~ T6-4 -Same . -HOLE TERMINATED AT 7 FEET - Hole backfilled with soil cullings . No groundwater encountered ) . . ) Samole Tvoe: 11I.- Small Plastic Bag [gJ Large Bulk Sample ~ --Water Ti:lble J ) Laboratorv Testina: Al = Atterberg Limits El = Expansion Index MD = Maximum Density SA = Sieve Analysis J J SR = Sulfate/Resistivity Test SH = Shear Testing RV = RNalue Test CO = ConsoliCiation 2550SD3 Walcott Lane Steve Galvez Temecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 313/2004 \\1.-- GeoTek, Inc. LOG OF EXPLORATORY TRENCH eOJECT NO,; ROJECT NAME: L1ENT: DCA TION: e SAMPLES laboratory Testing " S o. n C ~ E TRENCH NO,: T-7 w a ~ . ~ ~ c .. . c >- _ w '" 0_ Ce 0 a. ~~ . E E '" O<ft. w u c w 0. 0 ~ u ~ ~ oe 6 ::l E "'2 '" w e- o ::> ~ 0 '" MATERIAL DESCRIPTION AND COMMENTS ~ Topsoil: T7-1 SC Brown, moist, clayey fine SAND: trace organics 20.5 ,.,:.. Terrace Deposits: T7-2 SC Completely weathered: breaks into brown, damp, dense, clayey fine SAND with CaC03 spotting , . 6 ...............-.. .._.m......... ....--.-..........-............................ ...............-..................-...........-......................................................-. ......m...... . ....m.... .............. ........................ ,It:,: Tl-3 SM Becomes brown, damp, dense, silty fine SAND. micaceous 7,5 5 I' - - ) ~ ~ Tl-4 Becomes light brown, moist. dense, silty fine SAND, micaceous 7 "'" -HOLE TERMINATED AT 11 FEET . Hole backfilled with soil cuttings No groundwater encountered ; - - . - amnle Tvne: . Small Plastic Bag ~ large Bulk Sample :sz -Water Table ) Laboratorv Testina: AL - Atterberg Limits EI = Expansion Index MD - Maximum Density SA = Sieve Ar,alysis II SR :: SulfateIResistivity Test SH = Shear Testing RV = R-Value Test CO = Consofdation 2550S03 Walcott Lane Steve Galvez Temecula LOGGED BY: EQUIPMENT; DATE: AC Case 580 Super L (4X4) 3/3/2004 \\'? GeoTek, Inc. LOG OF EXPLORATORY TRENCH eOJECT NO.: ROJECT NAME: L1ENT: DCA TION: e SAMPLES Laboratory Te,;ling '5 c g ;, D 20 U E TRENCH NO.: T-B ill ~ . ~ ~ c .~ ~ c I- _ ill Ul o~ Ce- o. UD ill ill E E Ul U<!' ill 0 ~ ill 03 0 0. m ~ U :;;- 0 E UlZ Ul ~ i": m :J -- 0 Ul MATERIAL DESCRIPTION AND COMMENTS I Toosoil: T8-1 SP Browm, mois/, f-m SAND; trace organics 12.1 . Alluvium SP Brown, moist, I-m SAND , "'_Om..___.. -......-.-..- .....-.......-........................................................---.........-.............-...-.....-......-..-...................-.....-........... ................. m........ ............................................ to. T8-2 SM Dark brown, moist, medium dense, silly I-m SAND, micaceous; trace 4.9 clay - - 5- - At 7 feet becomes dark brown, moist, dense, silty f-m SAND, micaceous; trace clay . - J . ~ T8-3 -Same 10 ~ l~ T8-4 SC Terrace Deposits: 11 .... Dark brown, moist, dense, clayey I-m SAND , -HOLE TERMINATED AT 13 FEET 5. Hole backfilled with soil cuttings No groundwater encountered amole Tvoe: II . Small Plastic Bag 0 Large Bulk Sample ..sz. - Water Table , Laboratorv Testina: AL = Atterberg Umits Ef = Expansion Index MD = Maximum Density SA = Sieve Analysis ~ I SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value Test CO = Consoldation 25508D3 Walcott Lane Steve Galvez Temecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 313/2004 \\6.. GeoTek, Inc. LOG OF EXPLORATORY TRENCH eOJECT NO,: ROJECT NAME: L1ENT: OCA TlON: SAMPLES Laboratory Testing " '. ~ E is ~ E TRENCH NO,: T-9 . '" ~ . :v ~ E '~ - ~ I- n.o U) 0_ Ce " n . E E U) 0* . u ~ . n m ~ 0 ,,- De 6 0 E U)z U) ~ i:' . ::> 0 U) MATERIAL DESCRIPTION AND COMMENTS Topsoil: SP Brown, moist, t-m SAND; trace organics Alluvium ~ T9-1 SP Brown, moist, t-m SAND with seams of silt ~ ~. ..-..-.-....... .--,.....---.. .....-.........-.................._..........._..........~._._............._._...._........._............H.............. ..._...................... ....~......... ...m'"n''' ........................................... f.' . T9-2 SM Brown, moist. medium dense, silty t-m SAND ~ ~-T'9:3 ......---..... .................._-...............................-..-..................................................--.................................................. .m........... ............... m.................... ................ SP Brown, damp, medium dense, t-rn SAND 2.3 ::iA 5. e: SZ - At 7 feet slow water seepage 0 T9-4 Brown, moist, medium dense, t-m SAND 5,2 ~ T9-5 -Same . "I., -HOLE TERMINATED AT 12 FEET - - Hole backfilled with soil cuttings Water seeping in at 7 feet below ground surface 5 . Samole Tvoe: 11I1-- Small Plastic Bag [g] Large Bulk Sample SZ_ Water Table , Laboratory Testina: Al - Atterberg Umits EI = Expansion Index MD - Maximum Density SA = Sieve Analysis ~I SR = SulfatefResistivity Test SH = Shear Testing RV= R.Value Test CO= Consolidation 2550503 Walcott Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: OATE: AC Case 580 Super L (4X4) 3/312004 \\-5 GeoTek, Inc. LOG OF EXPLORATORY TRENCH ttOJECT NO,: ROJECT NAME: L1ENT: OCAnON: SAMPLES Laboratory Testing <5 . .a C S . E TRENCH NO,: T-tO . '" a. ~ . - ~ c "' f" ~ t- - " "' 0_ Cc- 0. a.'" " . E E "' u# . u ~ . 0. m ~ U " ~ 0", 15 0 E ",z "' . iO . ::> -- ~ 0 "' MATERIAL DESCRIPTION AND COMMENTS ~ Topsoil: T10-1 SM Brown, moist, siity f-m SAND; trace organics ~' ~ Terrace Deposits: T10-2 SC Completely weathered: breaks into brown, damp, dense. clayey f-m SR . F SAND - 5. b:;;-- T10-3 -Same ~' - -HOLE TERMINATED AT 7 FEET . - Hole backfilled with soil cuttings No groundwater encountered ) , . ; - . amole lvtle: . Small Plastic Bag ~ Large Bulk Sample ..s:z --Water Table I Laboratorv Testina: AL = Atterberg Limits El :: Expansion Index MD - Maximum Density SA - Sieve Amllysis I I SR = Sulfate/Resistivity Test SH = Shear Testing RV:: R-Value Test CO:: Consolidation 2550503 Walcott Lane Steve Galvez Temecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 3/312004 \\fD GeoTek, Inc. LOG OF EXPLORATORY TRENCH _OJECT NO,: ~OJECT NAME: L1ENT: )CATION: . SAMPLES laboratory Testing " S ;, D C a. E TRENCH NO.: T-tt . ?> ~ o ~ ~ c '. m -0 '" a. I- a.D o~ .'" '" . 0 E E '" U;f'. 0.'0 ~ 0. ro ~ U ~~ is 0 E "'z '" . ~ m :0 ;; 0 '" MATERIAL DESCRIPTION AND COMMENTS 3: Topsoil: ~ T11-1 SM Brown, moist, loose, silty t-m SAND; trace organics ~, . r='- - ~ Terrace Deposits: T11-2 SC Completely weathered: breaks into brown, moist, dense, clayey t.m 6.9 P"" SAND 5- .- T11-3 Becomes brown, moist. dense, clayey t-m SAND with CaC03 - X 1=1 spotting ~ . ~ T11-4 Becomes brown, moist, very dense, clayey tine SAND 8.9 - -HOLE TERMINATED AT 9 FEET ). . Hole backfilled with soit cuttings No groundwater encountered . ) Samole Tvee: .. Small Plastic Bag ~ Large Bulk Sample .s:z. --Water Table I Laboratorv Testina: AL = Alterberg Limits EI - Expansion Index MD - Maximum Density SA - Sieve Analysis I I SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value Test CO = Consoridation 2550503 Walcott lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (liX4) 3/3/2004 \\1. GeoTek, Inc, LOG OF EXPLORATORY TRENCH eROJECT NO,: 'ROJECT NAME: :UENT: .OCATION: e SAMPLES Laboratory Te"ting 0 C '. .0 g u E TRENCH NO.: T-12 . z, ~ . ~ >- c '. " " . '" l- on 0_ Ce . 1i '" UfF. . u ~ ~ E E os " 0 0 m 0 U .- i5 E "'2 '" ro ~ m ::J -- 0 '" MATERIAL DESCRIPTION AND COMMENTS :;: Topsoil: ti T12-1 SP Brown, moist. f-c SAND; trace organics -, . '...., .-.-............ ..--.-.....--...-..............................................--...........-.................... ............... .........-...-_.......... n....._, m........... ............-. ................ ......... ..............- T12-2 SM Brown, moist. silty t-m SAND Terrace Deposits: .~ T12-3 SM Completely weathered: breaks into brown, damp, dense, silly t-c SAN _"0 5 ....... ...........--.-.. ................. ..............-...........................___........................n_.......................................................... ......m....._......... .....m............ ......... .....-.................... ............ SC Becomes brown, moist, very dense, clayey f-m SAND , ~" T12-4 -Same ~~, -HOLE TERMINATED AT 7 FEET . Hole backfilled with soil cuttings No groundwater encountered 0 . . , - 5 . SamDle TVDe: . - Small Plastic Bag IR] Large Bulk Sample ..:s:z --Water Table ~ Laboratorv Testina: AL = Atterberg limits EI - Expansion Index MD = Maximum Density SA =: Sieve Analysis U ~ SR = Sulfate/Resistivity Test SH :: Shear Testing RV= R~Value Test CO: Consolidation 2550SD3 Walcott Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 3/312004 \\1'6 GeoTek,lnc, LOG OF EXPLORATORY TRENCH 4Il0JECT NO,: ROJECT NAME: lIENT: ::lCA TION: SAMPLES Laboratory Testing <; g .$ D " 0. E TRENCH NO,: T-t3 " ~ ~ $ ~ ~ " .~ . L _ $ <n o ~ Cc ~ 15. 0..0 $ E E <n U<f!. $ 0 L $ De 0 0. rn ~ U lo- a E <nz <n ~ '" rn :J 0 "' MATERIAL DESCRIPTION AND COMMENTS Topsoil: SM Brown, moist, silty f-m SAND; trace organics - . T13-1 -Same 9.3 > . ~ Terrace Deposits: '", T13-2 SM Completely weathered: breaks into brown, damp, very dense, silly f-c 4.5 lib: SAND 5, ~ Becomes brown, damp, very dense, silty f-c SAND r.. T13-3 . -HOLE TERMINATED AT 5,5 FEET .- Hole backfilled with soil cuttings No groundwater encounlered , 0 - . , 5. - . amole Tvoe: 11I.-. Small Plastic Bag ~ Large Bulk Sample s:z.. Water Table ~ Laboratorv Testina: AL = Atterberg Limits EI = Expansion Index MD = Maximum Density SA = Sieve Analysis U .J SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value Test CO = Consol.dation 2550S03 Walcott Lane Steve Galvez T emecula LOGGED BY: EQUIPMENT: DATE: AC Case 580 Super L (4X4) 3/3/2004 \\<\ e T APPENDIX B e e \1P e APPENDIX B RESULTS OF LABORATORY TESTING e Proposed 22-Acre Residential Development Walcott Lane Temecnla, Riverside County, California Project No.: 2SS0SD3 . ~K \,,1...\ e e . MR. STEVE GALVEZ Preliminary Geolechnical Evaluation Walcott Lane. 22-Acre Residence Devclooment APPENDIX B March 24, 2004 Pag, B-1 SUMMARY OF LABORATORY TESTING Classification Soils were classified visually according to the Unified Soil Classification System (ASTM Test Method D2487), The soil classifications are shown on the trenching logs in Appendix A, In Situ Moisture The field moisture content was measured in the laboratory on selected samples collected during the field investigation, The field moisture content is deternlined as a percentage of the dry unit weight. Results of these tests are presented on the trenching logs in Appendix A. Sulfate Content Analysis to determine the water-soluble sulfate content was perfOlmed in accordance with California Test No, 417. Results of the testing indicated 0,003% SuIf:lte which is considered negligible as per Table 19-A-4 of the CBC. The results of the testing are included herein (see Plate SR-l), Resistivity Representative surficial soil samples were collected and tested for resistivity in accordance with California Test 643, The results of the testing are included herein (see Plate SR-l), Expansion Index Expansion Index testing was performed on a representative near-surface sample, Testing was performed in general accordance with ASTM Test Method D4829, The results indicate an Expansion Index (El) is 42 for the soil tested. TillS is considered a low expansion potential in accordance with Table l8AI-B of the 2001 CBC, The results are shown on Plate El-I. Direct SheaI' Shear testing was performed in a direct shear machine of the strain-control type in general accordance with ASTM Test Method D3080. The rate of deformation is approximately 0.03 inches per minute, The sample was sheared under varying confining loads in order to determine the coulomb shear strength parameters, angle of internal fi'iction and cohesion, The tests were perfonned on ling samples collected during our subsurface exploration, The shear test results are presented on Plate SH-I. t~>,"~,; , ',,'., ib< \7J.- LIQUID AND PLASTIC LIMITS TEST REPORT 60 Dashed line indicates the approximate upper limit boundary for natural soils 10- I ____ ~ = =- ?'~////A,0///:-:; I I 10 i -- /' , j /....;" IIi -t----/ / ~---~-+ O~ ~ i--- - ~----- //" 1 cy..o'< 1 I i /-=~~ / --t-------I----u--~-- -~-~~-~ ---~~~--rl-~-t-- I ./! i I _ : . -' "I' // i i:: / / ... ~:Jr -'+~-l- - Ln_ MH or OH j , 1 I 90 e 50 - i;) 40 u o z >- !::: 30- o ;::: (f) <( ~ 20-- ML l' OL , 30 50 LIQUID LIMIT 70 110 30.2 +- j 29.6 -. ---.---- _.~.- n 1--------- >- ::: -=t==J- ~ 28 6 ~~-j~- --+ - ---j-- o I, u 28.2 ----~- -'1----- a::: I: I I I 26.6 l' , , - - --J,:___L.L- i : ; ---r---:-L--~ I I : , -+i--:-L- _~. U.. ,~_ ,,_.. J 26,25 10 20 25 30 40 NUMBER OF BLOWS MATERIAL DESCRIPTION . Lt brown silty clayey SAND LL 28 PL 20 PI 8 %<#40 %<#200 USCS Project No, 2550-S03 Project: Walcott Lane Client: Steve Galvez Remarks: . · Location: TlI-3 @5' e LIQUID AND PLASTIC LIMITS TEST REPORT GeoTek, Inc. Plate AT-l \1> ,.has ~ ..... ". :j~ e e m >< "'0 )> Z en - o z z o m >< -f m en -f 11 11 11 -, ., '" .E. -2. ~. ." ." ." " " " - - - r- :c: :c: o " .. " " " ~ 0- I'D o' CD '. ::! :"1 '" ~ '" .. g; () . >!. m - o [;;' '" " CD ;u :;' lC c: ;u :;' lC o or I .... ;U :;' lC I~ r o III C. :;' o " " o' ~ '" '" ~ Ol o~ m III Z 3 m '" =i -< o m -I m ;U ~ Z ~ -I o Z m 0,0 lD ~ o ~ ~ ~ ~ ~ CD .-+ !!!. ~. - lClC OO~"3-:::r ~~tC.;;;; ~.(I):T__ f.'-'-"o .-<"0:]"0 -. -co 3 C" cr en -0 ....... _ In III ;::to ;::::J! 3 0 c..> C".) "Q.. CD ';:; _ (J) C. !2 () In ........ m '0 3 i.2J W "P- o (J) i oi l>> ......... .::!. " lC ... '" ..., ~ ~ ~ Ol co ~ '" '" <0 '" w ... w ex. ~ 0 ..., '" '" '" I m ~ -I C ~ -I o Z o m -I m :u ;;: Z ~ -I o Z - ::r Gl ." Qm -, ~ m ;;: <::: '" 2; . 0 :.. Ol .2J in' II . ..., e- re ~ iD '" 0 ;f? '" ~ 0 m " III m e- .3- ~ ;f? o' " ~ '" '" 0 '" ~ ..., 0 Co ;", Ol 0 0. ~ '" ,,, ... w 0 ^ '- o:Z;~ ~ .... (I) =: '< - III III _ iD ~:z;;;: lC <C 0 .... .... ~ ~ ~ c OJ .:.. CJ1 CD . ~ <n ... . . ... '" N '" 0> ~ o '" ;f? \11.,\ '> en -I ;;: '" ... co '" ~ ~ ~ ~ ;t)i :3 :3 CD ~ b 'lJ -I Cb (D m I'D ~ I::) en ~ 0 CD 0 Q) ::,. lI) c: Q. I'D o ""\ '. 0 .,,, '" ..;::, CD m ~ '. Q. o' to ~ "::; ^ ^ ~ o =< " ~ ~~ ~. ~ ~ 1[;;' ....... (.0.) ___ cr ~ ~ Z 3" 0 0 CD ~ .t:>- en }> z o ~ " w ~ ~ co en '" '" '" '" '" N N N N N 0 '" '" '" '" '" ::; N N N N N 0 0 0 0 0 m 0 0 0 0 0 ... ... ... ... ... ;U m ..., en en en co ::! }> i0 :.;. W W i0 ;;: ~ ... '" '" ..., ..., m Z Gl en ;U p C) C) m p p }> ~ ~ ~ ~ 0 '" '" ... ..., (J) '" <0 '" Z G) ~. ~ ~ '" ~ 0 ;U 3 ~. 3 "00_-::1__ -- ::J ::J ~ " " a. ~ ~ III 0 0 - 3 ~ !2. -< ~ ~ ~ ~ ~ g N ~ ~ en co ~ '" III 3 1? " ~ " <8 ~ " .t.. Qo 0 ~ -::." . ill ~- 01 "'.-:1 Z 01 CD -..;; )> ",r 3;;: 1'Q "m --I C :u m ~ -I ... III ... iD ;f? ~ ;;: , 0 w -, ~ '" o e- I liD m X "U :t> z en o z z o m X " -1>0 I\) - 'jj; '" o '" Ul l> ;:! :u l> -I .') .;0 'll r ~ m m , ~ MAXIMUM DENSITY CURVE Curve No.: A Project No,: 2550-SD3 Project: Walcott Lane Date: Location: T4-3 Elev.lDepth: 2-4' Remarks: MATERIAL DESCRIPTION Description: Classifications - Nat, Moist. = Liquid Limit = % > No.4 = % USCS: AASHTO: Sp.G. = Plasticity Index = % < No.200 = TEST RESULTS ~ Maximum dry density = 130 pef Optimum mOl sture = 9.5 % , -;--......---.......,-- Test specification: ASTM D 1557-00 Procedure A Modilied 120 . .;____..n ~- _l.__ ----J--:-- ' __ ! : I--L I!!' 130 -r--i"! I -to! ' I _L~ ! j Iii -'--J~:- -----r---T " I ---,..- t-- - -J--l--+-_..!-- -- - 1 . ___~-_-,_-1. ~ _ _~i_ 1..- --,-r-- ii' I I I- i e , ---....--.-..--- , i __~.__._ I I .-.:-------r---, i; . - ;---t .i._.__L_ I I I I -t-H I Iii i-- , '. ., ! .--; -; -""7.~~T==-1.-~--:_1-:- 100% SATURATION CURVES FOR. SPEC. GRAV. EQUAL TO: 2,8 2.7 2.6 --~ -Li ~ 110 b 'in c '" D C o 100 ! I I ---:-u.n----l __.___.4. ; , . . -..,..------j- f i -T-;'" --;._------,.-.--:-- ~'_..;~ --1-+ : ...J,_L' -I'..L!..., . +' --I--~ I -c-_-=- ~ -._~ I ! 0 . : 1 I!! -L ----r-, I' ,', I '," ! : J -Ir-j- --1 "-r-...L----. I - i : ._.~-+- - _~_.L ~.- ~ - -i-1~-. - ~. -+---~-+ ~~~_T-r i l .roo !--~-=~:-;=q~ -'-l.-i-~; ! 80 . I 1 ", ' , '" i -L...LL.. ; ;! I! I I --.7"--il ~j ] ~ I: =H: I -..--.--'.---<-----. i 1~ i~, -j -~ j j ---+-~-~--~....:--i--------=--~ ~ __~ t ---.-----. __1.__;_u_;..! ---:--:-~-~----J~_~__~ ~-J+ -I-L , . , I -tLi-~.-- :-t- "1 ! ; J r ..L1 i i I ill J I ! 1 j-il-'-L' j I ! i ~-T- E..1- -r---<--.....-!---+- -+--~-~ -~ ~-L-- . ,. (' -, .-+-:-~.____ ___-1_..-!__ __-{_+-+__ , ' ,-_.-:'--~ 90 _u I ---,-~--_.,.- -- ---._"'!-: e 70 o 5 10 15 20 Water con lent, % 25 30 :35 40 GeoTek, Inc. Plate rJ\ V - \ \z;} Particle Size Distribution Report - - [~i111 , 'Ii II ! I ; I , I II I III I; .~ II , I I , , I I I I WI ! ' I . . 1\ 1 I . . \, : 1 +f- : , I \ 11 t I : 'I , f-- - I ., : : : :' , Ili\ I : : : : , : : : : : : : II I 11 ) I I I i rl+_L_- : , I I I 'I; 111 I I , : , , : I ~ I : I , I I I : \ I I I N II II . I I I I I: Nil I I 1I1I1 I I i: , I , : I I , ,. e,oo .~ N " " " . .s .s ~ ~ 90 80 70 60 50 40 30 20 10 e I o SOD 100 % COBBLES 0.0 0;., GRAVEL 0.2 SIEVE PERCENT SPEC: PASS? SIZE FINER PERCENT (X=NO) .375 in. 100.0 #4 99.8 #8 96.8 #10 94.4 #16 81.0 #30 45.6 #40 27.5 #50 15.0 #100 5.3 #200 3.3 . (no specificatioll provided) Source of Sample: T9-3 @5' Sample No.: location: 1'9-3 @ 5' o . ~ g ~ . . . o 0 C o . c _ _ N . . . o . . , GRAIN SIZE - mm 0,1 0.01 0.001 -JoSAND 96.5 1:== 3.3 % SilT I=Y.CLAY I Soil Description Brown poorly graded SAND PL= AtlerberQ limits LL" PI= 085= 1.32 030= 0.448 Cu= 3,24 Coefficients 060= 0,771 050= 0,648 01!;= 0.300 010= 0.238 Cc" LID Classification -- AASHTO= A-I-b USCS= SP Bemarks Wi~3,O Date: 3/23/04 Elev.lDepth: -- :J Plate \?1P GeoTek, Inc. Client: Steve Galvez Project: Walcott Lane Pro'ect No: 2550-SD3 e ~ . ~K, INC. DIRECT SHEAR TEST Project Name: Project Number: Walcott Laue Sample Source: Date Tested: 2550-SDJ Soil Descriptioll: Brown, clayey [-m SAND 5.5 5 4,' I 4 3,' e i I 2,5 I i I 2 1., 0.' .. "..--,- 0 0 0.5 ~ . j,,- .. "Y='O~45x+'1.26 1., NORMAL STRESS (ksf) 2 1,5 Shear Strenqth: c= 1.26 k~ <<11= o 23,7 , Water Content Dry Density Test No, Load (ton (%) (pel) 1 0.7 9.8 117 2 1.4 9.8 117 3 2.8 9.8 117 Notes: I . The soil specimen used in the sbw box were "ring" samples remolded to 90% of 130.0@9.8%. 2 - Shear strength calculated at maximum load. 3 - The tests were ran al a shear mle orO.03 in/min. e T4-3 @2-4' 03/17104 ~ eo '" '" w '" 0- '" '" .. W :I: '" PLATE SH-1 \'Z,.'\ ~Eij> e.l{,tN:Cc. SOIL RESISTIVITY & SULFATE TEST 1384 Poinsettia Ave" Suite A, Vista, CA 92083 (760) 599-0509 FAX (760) 599-0593 (California Test 643 & 417) "roject Name: "roject Number: "roject Location: Walcott Lane 2550-SD3 Tested/ Checked By: Date Tested: Sample Source: Sample Description: DC Lab No 1188 3/19/2004 T10-3 @ 5' Lt brown silty medium to fine SAND Determing the soil's pH 7,1 I - Measured Res Water Added from Nil. 400 (mL) (ohms-em) 100 2100 50 1800 20 1550 20 1350 20 1450 Minimum Resistivity = I 1350 I 21,0 years to perforation for a 18 gauge metal culvert. 27.3 years to perforation for a 16 gauge metal culvert. 33.6 years to perforation for a 14 gauge metal culvert, 46.2 years to perforation for a 12 gauge metal culvert. 58.9 years to perforation for a 10 gauge metal culvert. 71.5 years to perforation for a 8 gauge metal culvert. Water Soluble Sulfate (California Test 417) = I 0.003% . SR-1 \'Z2> e T APPENDIX C e . "K,INe. \-z.,~ . APPENDIX C COMPUTER PRINTOUTS OF SEISMIC ANALYSIS e Walcott Lane, Proposed 22-Acre Residential Development Walcott Lane Temecula, Riverside Connt)', Califomia Project No.: 2550SD3 . .K \~ 2550SD3,OUT e *********************** * * * E Q f A U L T * * * * Version 3.00 * * * *********************** DETERMINISTIC ESTIMATION Of PEAK ACCELERATION fROM DIGITIZED fAULTS JOB NUMBER: 2550SD3 DATE: 03-18-2004 JOB NAME: Walcott Lane CALCULATION NAME: Test Run Analysis fAULT-DATA-fILE NAME: CDMGfLTE,DAT SITE COORDINATES: SITE LATITUDE: 33.5349 SITE LONGITUDE: 117.1029 . SEARCH RADIUS: 100 mi ATTENUATION RELATION: 12) Bozorgnia Campbell Niazi (1999) Hor.-Soft Rock-Cor- UNCERTAINTY (M=Median, S=Sigma): M DISTANCE MEASURE: cdist SCOND: 0 Basement Depth: 5.00 km Campbell COMPUTE PEAK HORIZONTAL ACCELERATION Number of Sigmas: 0.0 SSR: 1 Campbell SHR: o fAULT-DATA fILE USED: CDMGfLTE-DAT MINIMUM DEPTH VALUE (km): 3.0 . \"?\ Page 1 2550SD3.0UT e EQFAULT SUMMARY DETERMINISTIC SITE PARAMETERS Page 1 IESTIMATED MAX. EARTHQUAKE EVENT APPROXIMATE 1------------------------------- ABBREVIATED DISTANCE 1 MAXIMUM I PEAK lEST, SITE FAULT NAME mi (km) IEARTHQUAKEI SITE IINTENSITY 1 1 MAG, (Mw) I ACCEL. g IMOD,MERC. ================================1==============1==========1==========1========= ELSINORE-TEMECULA I ELSINORE-JULIAN I ELSINORE-GLEN IVY I SAN JACINTO-SAN JACINTO VALLEY 1 .SAN JACINTO-ANZA 1 NEWPORT-INGLEWOOD (Of fshore) I ROSE CANYON I CHINO-CENTRAL AVE, (Elsinore) I SAN JACINTO-SAN BERNARDINO \ SAN JACINTO-COYOTE CREEK 1 SAN ANDREAS - San Bernardino I SAN ANDREAS - Southern 1 WHITTIER I EARTHQUAKE VALLEY 1 PINTO MOUNTAIN I SAN ANDREAS - Coachella I NEWPORT-INGLEWOOD (L,A.Basin) 1 CORONADO BANK I NORTH FRONTAL FAULT ZONE (West) 1 BURNT MTN. I CUCAMONGA I NORTH FRONTAL FAULT ZONE (East) 1 PALOS VERDES I ELYSIAN PARK THRUST I CLEGHORN I SAN JOSE 1 EUREKA PEAK 1 COMPTON THRUST I SIERRA MADRE 1 SAN JACINTO - BORREGO 1 ELSINORE-COYOTE MOUNTAIN 1 LANDERS 1 SAN ANDREAS - 1857 Rupture 1 ~SAN ANDREAS - Mojave 1 ~ELENDALE - S. LOCKHARDT 1 4.7 ( 12.2( 16,1( 17,8( 17.8( 31,3( 33.6( 33,9( 34.2 ( 34.7( 35,4( 35,4( 37,9( 38,7( 42.3( 45.3( 47.6( 48.3( 49.3 ( 50.6( 50,6( 51,1( 51.3( 51,8( 51.9( 52.9( 53.4( 53.7( 55.7( 57.3( 58.1( 58.7( 59.0( 59.0( 59.3( Page 2 7,6) I 19,7) I 25.9)1 28.7)\ 28.7)1 50,3)1 54.1) 1 54,5) 1 55,1)1 55,9)1 56,9)1 56,9)1 61.0) 1 62.3) 1 68.1)1 72.9) I 76.6)1 77.7) I 79.4)1 81.4)1 81.4)1 82.2)1 82.5)1 83.3)1 83.5) 1 85.2)1 85.9)1 86.4)1 89.6)1 92.2)1 93.5)1 94.5)1 94.9)1 94.9)1 95.5)1 6.8 7.1 6.8 6,9 7.2 6.9 6.9 6.7 6.7 6.8 7.3 7.4 6-8 6,5 7.0 7,1 6.9 7.4 7.0 6.4 7.0 6,7 7,1 6.7 6.5 6.5 6.4 6.8 7.0 6.6 6.8 7.3 7.8 7,1 7.1 0-353 0.203 0.130 0.126 0.153 0.071 0.066 0.080 0,056 0'059 0.082 0.088 0.054 0.043 0,055 0.055 0-046 0.064 0.067 0.031 0,065 0.052 0.049 0.052 0.032 0.044 0.029 0,053 0.059 0.031 0.035 0.049 0.070 0.042 0.042 IX VIII VIII VIn VIII VI VI VII VI VI VII VII VI VI VI VI VI VI VI V VI VI VI VI V VI V VI VI V V VI VI VI VI \~V' 2550SD3,OUT ~LENWOOD-LOCKHART-OLD WOMAN SPRGSI 62.7( 100.9) 1 7,3 0.0~5 VI JOHNSON VALLEY (Northern) I 66.o( 106.2) 1 6.7 0,028 V CLAMSHELL-SAWPIT 1 66.7( 107.3) 1 6,5 0.03~ V EMERSON So. - COPPER MTN, I 67.7( 109.0) 1 6,9 0.032 V RAYMOND I 68.~( 110- 0) I 6,5 0.034 V DETERMINISTIC SITE PARAMETERS Page 2 I ESTIMATED MAX. EARTHQUAKE EVENT I APPROXIMATE ----------. -------------------- ABBREVIATED 1 DISTANCE MAXIMUM PEAK lEST, SITE FAULT NAME I mi (km) EARTHQUAKE SITE IINTENSITY I MAG. (Mw) ACCEL. g MOD.MERC. ================================1============== ========== ========== ========= VERDUGO I 73-3( 117.9) 6.7 0.036 V CALICO - HIDALGO I 74,7( 120.2) 7,1 0.033 V PISGAH-BULLION MTN.-MESQUITE LK I 75.2( 121.1) 7.1 0,032 V HOLLYWOOD I 76-9( 123.8) 6,4 0,028 V SUPERSTITION MTN, (San Jacinto) I 77,7( 125,0) 6.6 0.022 IV ELMORE RANCH 1 80,0 ( 128.7>1 6.6 0.022 IV SUPERSTITION HILLS (San Jacinto) I 81.3( 130.9) I 6,6 0,021 IV BRAWLEY SEISMIC ZONE I 81,5( 131-1)1 6-4 0.019 IV SANTA MONICA I 84.6( 136.1>1 6.6 0.029 V ASAN GABRIEL I 86.7( 139.6)1 7-0 0.026 V .SIERRA MADRE (San Fernando) I 86.9( 139.8>1 6-7 0,030 V MALIBU COAST 1 89-4( 143.8) 1 6.7 0,029 V LAGUNA SALADA I 89.9( 144.7)1 7.0 0,025 V NORTHRIDGE (E. Oak Ridge) 1 9o.8( 146.2)1 6.9 0,033 V GRAVEL HILLS - HARPER LAKE I 93.o( 149,7)1 6.9 0.023 IV SANTA SUSANA I 97.7( 157-3)1 6.6 0.025 V ANACAPA-DUME I 98.1( 157.8) I 7.3 0.040 V IMPERIAL I 98.3( 158-2) I 7.0 I 0,023 I IV .******************************************************************************* -END OF SEARCH- 58 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS, THE ELSINORE-TEMECULA FAULT IS CLOSEST TO THE SITE. IT IS ABOUT 4.7 MILES (7.6 km) AWAY. LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0-3529 g . \~~ Page 3 e 100 70 ~ ;!?, 0 ~ >, 60 ~ e~ .Q 0 50 '-- 0.. (j) u c Ol 40 "'0 (j) (j) u x w 30 . , PROBABILITY OF EXCEEDANCE BOZ. ET AL.(1999)HOR SR COR 1 o m m [TI 25 rs 50 rs 75 rs 100 rs 90 80 20 10 o 0,00 0,25 0.50 0,75 1.00 Acceleration (g) 1,25 1.50 ,0/\ e 100 90 80 70 ~ ~ 0 ~ >- 60 ='== e~ 0 50 '- a.. Ql (,) C t1l 40 '0 Ql Ql (,) X ill 30 20 10 . PROBABILITY OF EXCEEDANCE BOZ_ ET AL.(1999)HOR SR COR 2 ~ IT] m [TI 25 rs 50 rs 75 rs 100 rs o 0.00 0.25 0,50 0,75 1.00 Acceleration (g) 1.25 1,50 r \'?::> e T APPENDIX D ,e . "',i....'. 9},. ";, i;, , INC. \-ZJ> e APPENDIX D GENERAL GRADING GUIDELINES FOR EARTHWORK CONSTRUCTION e 'Valcott Lane, Pl'Oposed 22-Acre Residential Del'elopment Walcott Lane Temecula, Riverside Couuty, California Project No.: 2550SD3 . ~'T,'fuO,. . I. ,~ " iEK \,?1 I e e e \~ e e e GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Developmeul Walcott Lane, Temecula, California APPENDIX D 2550SD3 Page I GENERAL GRADING GUIDELINES Guidelines presented herein are intended to address general construction procedures for earthwork construction, Specific situations and conditions often arise which carmot reasonably be di.;cussed in general guidelines, when anticipalcd these are discussed in the lext of the report. Often unanticipated conditions are encountered which may necessitate modification or changcs to these guidelines, It is our hope that these will assist the contractor to more efficiently complete the project by plOviding a reasonable understanding of the procedures that would be expected during earthwork and the tesling and observation used to evaluate those procedures, General Grading should be performed to at least the minimum requiremenls of governing agencies, Chapters 18 and 33 of the Unifonn Building Code and the guidelines presented below. Preconstrnction Meeting A preconstruction meeting should be held prior to site earthwork, Any questions the contractor has regarding our recommendations, general site conditions, apparent dic:crepancies belween reported and actual conditions and/or differences in procedures the contractor intends to use should be brought up at thaI meeting. The contractor (including the main onsite representative) ,;hould review our report and these guidelines in advance of the meeting. Any commenls the contractor may have regarding Ihese guidelines should be brought up at that meeting. Grading Observalion and Testing 1. Observation of the fill placement should be provided by our representative during grading, Verbal communication during the course of each day will be used to infOlm the contract or of test results. The Contractor should receive a copy of the "Daily field Report" indicating )-esults of field density tests that day. If our representative does not provide the conlractor with these reports, our office should be notified, 2, Testing and observation procedures are, by their nature, specific to the work or area observed and location of the tests taken, variability may occur in other locations. The contractor is re~'ponsible for the uniformity of the grading operations, our observatiom: and test results are intended to evaluate the contractor's overall level of efforts during grading, The contractor's personnel are the only individuals parlicipating in all aspect of site work. Compaclion testing and observation should not be considered as relieving the contractor's responsibility to properly compact the fill. 3, Cleanouts, processed ground to receive fill, key excavations, and subdrains should be IJbserved by our representative prior to placing any fill. It will be the Contractor's responsibility to notify our representative or office when such areas are ready for observation. 4, Density tests may be made on the surface material to receive fill, as considered warranted by this firm, 5, In general, density tests would be made at maximum intervals of two feet of fill height or every 1,000 cubic yards of fill placed, Criteria will vaty depending on soil conditions and size of the fill. More frequent testing may be perfonned, In any case, an adequate number of field density lests should be made to evaluate the required compaction and moisture contenl is generally being obtained, Laboratory testing to support field test procedures will be performed, as considered warranted, based on conditions encountered (e,g. change of material sources, types, etc.) Every effort will be i$ ~iK \~ 6, e e . GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Development Walcott Lane, Temecula, California APPENDIX D 25505D3 Page 2 7. made to process samples in the laboratory as quickly as possible and in progress construction projects are our first priority, However, laboratory workloads may cause in delays and some soils may require a minimum of 48 to 72 hours to complete test procedures. Whenev"r possible, our representative(s) should be informed in advance of operatioual changes that might result in different source areas for materials, Procedures for testing of fill slopes are as follows: a) Density tests should be taken periodically during grading on the flat surface of Ihe fill three to five feet horizontally from the face of the slope. b) If a method other than over building and cutting back to the compacted core is to be employed, slope compaction testing during constructiou should include testing the outer six inches to three feet in the slope face to detennine if the required compaclion is being achieved, Finish grade testing of slopes and pad surfaces should be perfOlmed after construction is complete, 8. Site Clearing I. All vegetation, and other deleterious materials, should be removed from the sile, If material is not immediately removed from the site it should be stockpiled in a, designated area(s) well outside of all current work areas and delineated with flagging or other means, Site clearing should be perfOlmed in advance of any grading in a specific area, Efforts should be made by the contractor to remove all organic or other deleterious malerial from the fill, as even the most diligent efforts may result in the incorporation of some materials, This is especially important when grading is occurring near the natural grade. All equipment operators should be aware of these efforts. Laborers may be required as root pickers, Nonorganic debris or concrete may be placed in deeper fill areas provided the procedures used are observed and found acceptable by our representative, Typical procedures are similar to those indicated on Plate G-4, 2, 3. Treatment of Existing Ground I. Following site clearing, all surficial deposits of alluvium and colluvium as well as weathered or creep effected bedrock, should be removed (see Plates G-l, G-2 and G-3) unless otherwise specifically indicated in the text of this report. 2. In some cases, removal may be recommended to a specified depth (e.g. fIat sites where partial alluvial removals may be sufficient) the contractor should not exceed these depths unless directed otherwise by our representative, 3. Groundwater existing in alluvial areas may make excavation difj]cult. Deeper removals than indicated in the text of the report may be necessary due to saturalion during winter months, 4, Subseqnent to removals, the natural ground should be processed to a depth of six inches, moistened to near optimum moisture conditions and compacted to fill standards, 5, Exploratory back hoe or dozer trenches still remaining after "ite removal should be excavated and filled with compacted fill if they can be located, \~~~ ~ Vi-tK \t>p e . . GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Development Walcott Lane, Temecula, California APPENDIX D 2550SD3 Page 3 Subdrainage I, Subdrainage systems should be provided in canyon bottoms prior to placing fill, and behind huttress and stabilization fills and in other areas indicated in the report. Subdrains should conform to schematic diagrams G-I and G-5, and be acceptable to our representative. 2, For canyon subdrains, runs less than 500 feet may use six-inch pipe, Typically, runs in excess of 500 feet should have the lower end as eight-inch minimum. 3, Filter malerial should be clean, 112 to I-inch gravel wrapped in a suitable filter fabric. Class 2 permeable filter material per California Department of Tram;portation Standards tesJed by this office to verifY its suitability, may be used without filter fabric, A sample of the material should be provided to the Soils Engineer by the contractor at least two working days before it is delivered to the site, The filter should be clean with a wide range of sizes. 4, Approximale delineation of anticipated subdrain locations may be offered at 40-scale plan review stage, During grading, this office would evaluate the necessity of placing additional drains, 5, All subdrainage systems should be observed by our representative during construction and prior to covering with compacted fill. 6. Subdrains should outlet inlo storm drains where possible. Outlets should be located and protected, The need for backflow preventers should be assessed during construction, 7, Consideration should be given to having subdrains located by the project surveyors. Fill Placement I. Unless otherwise indicated, all site soil and bedrock may be reused for compacted fill; however, some special processing or handling may be required (see text ofreport). Material used in the compacting process should be evenly spread, moisture conditioned, processed, and compacted in thin lifts six (6) to eight (8) inche:; in compacted thickness to obtain a uniformly dense layer. The fill should be placed and compacled on a nearly horizontal plane, unless otherwise found acceptable by our representative. If the moisture content or relative density varies from that reconunended by this finn , the Contractor should rework the fill until it is in accordance with the following: a) Moistme content of the fill should be at or above optimu1l11110isture, Moisture :;hould be evenly distributed without wet and dry pockets, Pre-watering of cut or removal areas should be considered in addition to watering during fill placement, particularly in clay or dry surficial soils, The ability of the contractor 10 obtain the proper moisture content will control production rates, b) Each six-inch layer should be compacted to at least 90 percent of the maximum dlY density in compliance with the testing method specified by the controlling govemmental agency, In most cases, the testing method is ASTM Test Designation D-1557, Rock fragments less than eight inches in diameter may be utilized in the fill, provided: a) They are not placed in concentrated pockets; b) There is a sufficient percentage of fine-grained material to surround the rocks; c) The distribution of the rocks is observed by and acceptable to our representative, Rocks exceeding eight (8) inches in diameter should be taken off site, broken into smaller fragments, or placed in accordance with recommendations of this firm in areas designated suitable for rock disposal (See Plale G-4). On projects where significant large quantities of oversized materials are anticipated, altemate guidelines for placement may be included. If 2, 3. 4, 5, '~"., y~:;' fiK \A.\ . e e GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Developmenl Walcott Lane, Temecula, California APPENDIX D 2550SDJ Page 4 6, significant oversize malerials are encountered during construction, these guidelines should be requested, In clay soil dry or large chunks or blocks are common; if in excess of eight (8) inche:; minimum dimension then they are considered as oversized. Sheepsfoot compactors or other suilable methods should be used to break up blocks, When dry they should be moisture conditioned to provide a uniform condition with the sunounding fill. Slope Construction I, The Contractor should obtain a minimum relative compaction of 90 percent out to the finished slope face of fill slopes, This may be achieved by either overbuilding the slope and cutting back to the compacted core, or by direct compaction of the slope face with suitable equipment. 2, Slopes trimmed to the compacted core should be overbuilt by at least three (3) feet with compaction efforts out to the edge of the false slope, Failure to properly compact the outer edge results in trimming not exposing the compacted core and additional compaction after trimming may be necessary, 3, If fill slopes are built "at grade" using direct compaction methods then the slope construction should be performed so that a constant gradient is maintained throughout construction. Soil should not be "spilled" over the slope face nor should slopes be "pushed out" to obtain grades, Compaclion equipment should compact each lift along the immediate top of slopE'. Slopes should be bacle rolled or otherwise compacted at approximately every 4 feet vertically as the slope is built. 4. Corners and bends in slopes should have special attention during construction as these are the mosl difficult areas to obtain proper compaction. S, Cut slopes should be cut to the finished surface, excessive undercutting and smoothing of the face with fill may necessitale stabilization, Keyways, Buttress and Stabilization Fills Keyways are needed to provide support for fill slope and various conective procedures, 1. Side-hill fills should have an equipment-width key at their toe excavated through all surficial soil and into competent material and tilted back into the hill (Plates G-2, G-3), As the fill is elevated, it should be benched through surficial soil and slopewash, and into competent bedrock or other material deemed suitable by our representatives (See Plates G-l, G-2, and G-3). Fill over cut slopes should be construcled in the following manner: a) All surficial soils and weathered rock materials should be removed at the cut-fill interface. b) A key at least one (I) equipment width wide (or as needed for compaction) and tipped at least one (I) foot into slope should be excavated into competent materials and observed by our representative. c) The cut portion of tbe slope should be excavated prior to fill placement to evaluate if stabilization is necessary, the contractor should be responsible for any additional earthwork created by placing fill prior to cut excavation. (See Plate G-3 for schematic details.) Daylight cut lots above descending natural slopes may require removal and replacement of the outer portion of the lot. A schematic diagram for this condition is presented on Plate G-2. 2. 3. ~,~ ~~K \4.Z-- e e GENERAL GRADING GUIDELINES Propased 22-Acre Residential Developmenl Walcott Lane, Temecula, California APPENDIX D 2550SD3 Page 5 4. A basal key is needed for fill slopes extending over natural slc,pcs. A schematic diagram for this condilion is presented on Plate G-2. All fill slopes should be provided with a key unless within the body of a larger overall fill mass. Please refer to Plate G-3, for specific guidelines, 5, Anticipated buttress and stabilization fills are discussed in the text of the report, The need 10 stabilize other proposed cut slopes will be evaluated during construction, Plate G-5 is shows a schematic of buttress construction, I. All backcuts should be excavated at gradients of I: I or flatter. The backcuI configuration should be determined based on the design, exposed conditions and need to maintain a minimum fill width and provide working room for the equipment. 2, On longer slopes backcuts and keyways should be excavated in maximum 250 feet long segment. The specific configurations will be determined during construction. 3, All keys should be a minimum of two (2) feet deep at the toe and slope toward the heel al least one foot or two (2%) percent whichever is grealer. 4. Subdrains are to be placed for all stabilization slopes exceeding 10 feet in height. Lower slopes are subject to review, Drains may be required. Guidelines for subdrains are presented on Plate G-5, 5. Benching of backcuts during fill placement is required. Lot Capping L When practical, the upper three (3) feel of material placed below finish grade ,;hould be comprised of Ihe least expansive material available. Preferably, highly and very highly expansive materials should not be used. We will attempt to offer advise based on visual evaluations of the materials during grading, but it must be realized that laboralory testing is needed to evaluate the expansive potential of soil. Minimally, this testing lakes two (2) to four (4) days to complete. Transition lots (cut and fill) both per plan and those created by remedial grading (e,g. lots above stabilization fills, along daylight lines, above natural slope, etc.) should be capped with a three foot Ihick compacted fill blanket. Cut pads should be observed by our representative(s) to evaluate the need for overexca\ation and replacemenl with fill. This may be necessary to reduce water infiltration into highly fractured bedrock or other permeable zones, and/or due to differing expansive potential of materials beneath a structure, The overexcavation should be at least tbree feet. Deeper overe'lcavation may be recommended in some cases, 2. 3, ROCK PLACEMENT AND ROCK FILL CillDELlNES It is anticipated that large quantities of oversize material would be generated during grading. It's likely that such materials may require special handling for burial. Although alternatives may be developed in the field, the following methods of rock disposal are reconunended on a preliminary basis. . Limited Larger Rock When materials encountered are principally soil with limited quantities of larger rock fragments or boulders, placement in windrows is recommended, The following procedures should be applied: 1. Oversize rock (greater than 8 inch) should be placed in windrows. (~ ~ii1lK \~ e e GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Development Walcolt Lane, Temecula, California APPENDIX D 2550SD3 Page 6 2. a) Windrows are rows of single file rocks placed to avoiclnesting or clusters of rock, b) Each adjacent rock should be approximately the same size (within -one foot III diameter), c) The maximum rock size allowed in windrows is four feet A minimum vertical distance of three feet between lifts should be maintained. Also, the windrows should be offsel from lift to lift, Rock windrows should not be closer Ihan 15 feet to the face of fill slopes and sufficient space must be maintained for proper slope construction (see Plale G-4), Rocks greater than eight inches in diameter should not be placed within seven feet of the finished subgrade for a roadway or pads and should be held below the depth of the lowest utility. This will allow easier trenching for utility lines. Rocks greater than four feet in diameter should be broken down, if possible, or they may be placed in a dozer trench. Each trench should be excavated into the compacted fill a minimum of one foot deeper than the largest diameter of rock, a) The rock should be placed in the trench and granular fill materials (SE>30) should be flooded into the trench to fill voids around Ihe rock, b) The over size rock trenches should be no closer together than 15 feet from any slope face, c) Trenches at higher elevation should be staggered and there should be a minimum of four feet of compacled fill between the top of the one trench and the bottom of the nexl higher trench. d) It would be necessary to verify 90 percent relative compaction in these pits. A 24 to 72 hour delay to allow for water dissipation should be anticipated prior to additional fill placement. 3. 4, Structural Rock Fills If the materials generated for placement in structural fills contains a significant percentage of material more than six (6) inch in one dimension, then placement using conventional soil fill methods with isolated windrows would not be feasible, In such cases the following could be considered. 1. Mixes of large of rock or boulders may be placed as rock fill, They should be below the depth of all utilities both on pads and in roadways and below any proposed swinuning pools or other excavations. If these fills are placed within seven (7) feet of finished grade they may effect foundation design, 2. Rock fills are required to be placed in horizontal layers that should not exceed two feet in thickness, or the maximum rock size present, which ever is IllSS, All rocks exceeding two feet should be broken down to a smaller size, windrowed (see above), or disposed of in non ,structural fill areas, Localized larger rock up to 3 feet in largest dimension may be placed in rock fill as follows: a) individual rocks are placed in a given lift so as to be roughly 50% exposed above the typical surface of the fill , b) loaded rock trucks or alternate compactors are worked around the rock on all Sides to the satisfaction of the soil engineer, c) the porlion of the rock above grade is covered with a second lift. 3, Material placed in each lift should be well graded, No unfilled spaces (voids) should be permitted in the rock fill. e ,,-~ :In ~ ~,U;K \ t1co\ e e e GENERAL GRADING GUIDELfNES Proposed 22-Acre Residential Development Walcott Lane, Temecula, California APPENDIX D 2550503 Page 7 Compaction procedures: Compaction of rock fills is largely procedural. The following procedures have been found to generally produce satisfactory compaction. 1, Provisions for routing of construction traffic over the fill should be implemented, aJ Placement should be by rock trucks crossing the lift being placed and dumping at its edge, b) The bucks should be routed so thaI each pass across Ihe fill is via a different palh and that all areas are uniformly traversed, c) The dumped piles should be knocked down and spread by a large dozer (D-8 or larger suggested), (Water should be applied before and during spreading,) 2, Rock fill should be generously watered (sluiced) a) Water should be applied by water ttucks to Ihe: i) dump piles, ii) front face of the lift being placed and, iii) surface of the fill prior to compaction. b) No material should be placed without adequate water. c) The number of water tt'ucks and water supply should be sufficient to provide constant water. d) Rock fill placement should be suspended when water trucks are unavailable: i) for more Ihan 5 minules straight, or, ii) for more than 10 minules/hour. In. addition to the truck pattern and at the discretion of the soil engineer, large, rubber tired compactors may be required. a) The need for this equipment will depend largely on the ability of the operators 10 provide complete and uniform coverage by wheel rolling with the trucks. b) Other large compactors will also be considered by the soil engineer provided that required compaction is achieved, 3. 4, Placement and compaction of the rock fill is largely procedural. Observation by trenching should be made to check: a) the general segregation of rock size, b) for any unfilled spaces between the large blocks, and c) the matrix compaction and moisture content. 5. Test fills may be required to evaluate relative compaction of rmer grained zones or as deemed appropriate by the soil engineer. a)' A lift should be constructed by the methods proposed as proposed 6. Frequency of the test trenching is to be at Ihe discretion of the soil engineer. Control areas may be used to evaluate the contractors procedures, 7, A minimum horizontal distance of 15 feet should be maintained from the faee of the rock fill and any finish slope face. At least the outer 15 feet should be built of conventional fill materials, Pipinl! Potential and Filter Blankets: Where conventional fill is placed over rock fill, the potential for piping (migration) of the fine grained malerial from the conventional fill into rock fills will need to be addreSBed, The potenlial for particle migration is related 10 the grain size comparisons of Ihe materials present and in contact with each other. Provided that 15 percent of the finer soil is larger than the effective pore size of :.K \A6 e e . GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Development Walcott Lane, Temecula, California APPENDIX D 2550SD3 Page 8 the coarse soil, then particle migration is substantially mitigated, This can be accomplished with a well- graded matrix material for the rock fill and a zone of fill similar to the matrix above it. The specific gradation of the fill materials placed during grading must be known 10 evaluate the need for any type of filter that may be necessary to cap the rock fills. This, unfortunately, can only be accurately determined during construction. In the event thaI poorly graded matrix is used in the rock fills, properly graded filter blankets 2 to 3 feet thick separating rock fills and convenlional fill may be needed, As an alternative, use of Iwo layers of filter fabric (Mirafi 700 x or equivalent) could be employed on top of the rock fill. In order to mitigate excess puncturing, the surface of the rock fill should be well broken down and smoothed prior to placing the filter fabric, The first layer of Ihe fabric may then be placed and covered with relatively permeable fill material (with respect to overlying material) I to 2 feet thick, The relative permeable material should be compacted to fill standards, The second layer of fabric should he placed and conventional fill placement conlinued. Subdrainage Rock fill areas should be tied to a subdrainage system, If conventional fill is placed thaI separates the rock from the main canyon subdrain then a secondary system should be installed. A system consisting of an adequalely graded base (3 to 4 percent to the lower side) with a collector system and outlets may suffice. Additionally, at approximately every 25 foot vertical interval, a collector system with outlets should be placed at the interface of the rock fill and the conventional fill blanketing a fill slope Monitoring Depending upon the depth of the rock fill and olher factors, monitoring for settlement of thE fill areas may be needed following completion of grading, Typically, if rock fill depths exceed 40 feet, monitoring would be reconunend prior to construction of any settlement sensitive improvements, Delays of 3 to 6 months or longer can be expecled prior to Ihe start of construction. UTILITY TRENCH CONSTRUCTION AND BACKFILL Utility trench excavation and backfill is the contractors responsibility. The geoteclmical consultant typically provides periodic observation and testing of these operatiom:, Wbile, efforts are made to make sufficient observalions and tests to verify that the conlractors' methods and procedures are adequate to achieve proper compaction, it is typically impractical to observe all backfill procedures. As such, it is critical that the contractor use consistent backfill procedures, Compaction methods vary for trench compaction and experience indicates many methods can be successful. However, procedures that "worked" on previous projects mayor may not prove effective on a given site, The contractor(s) should outline the procedures proposed, so that we may discuss tllem prior to construction, We will offer conunents based on our knowledge of site conditions and experience. I, Utility trench backfill in slopes, structural areas, in stTeets and beneath flat work or hardscape should be brought to at least optimum moisture and compacted to at least 90 percenl of the laboratory standard. Soil should be moisture conditioned prior to placing the trench, 2, Flooding and jetting are not typically recommended or acceptable for native soils. Flooding or jetting may be used with selecl sand having a Sand Equivalent (SE) of 30 or higher. This is typically limited to the following uses: ~ ~iK \/J(p GENERAL GRADfNG GUfDELfNES Proposed 22-Acre Residential Development Walcott Lane, Temecula, Califomia APPENDIX D 2550SDJ Page 9 e 3, a) shallow (12 + inches) under slab interior trenches and, b) as bedding in pipe zone. The water should be allowed to dissipate prior to pouring slabs or completing trench compaction. Care should be taken not to place soils at high moisture content within the upper tluee feet ofthe trench backfill in street areas, as overly wel soils may impact subgrade preparation. Moisture may be reduced 10 2% below optimum moisture in areas to be paved within the upper Ihree feet below sub grade, Sand backfill should not be allowed in exterior trenches adjacent to and within an area extending below a I: I projection from the outside bottom edge of a footing, unless it is similar to the surrounding soil. Trench compaction testing is generally at the discrelion of the geotechnical consultant. Testing frequency will be based on trench depth and the contractors procedures, A probing rod would be used to assess the consistency of compaction between tested areas and untesled area:,. If zones are found that are considcred less compact than other areas, this would be broul~ht to Ihe contractors attention, 4. 5. JOB SAFETY . General Personnel safety is a primary concern on all job sites. The following summaries our safety considerations for use by all our employees on multi-employer conslruction sites, On ground personnel are al highest risk of injury and possible fatality on grading construction projects. The company recognizes that construction activities will vary on each site and that job site safety is the contractor's responsibility. However, it is, imperative that all persormel be safety conscious to avoid accidenls and potential injury, In an effort 10 mmmuze risks associated with geoteclmical testing and observation, the following precaulions are to be implemenled for the safety of our field persormel on grading and construction projects, I, Safety Meetings: Our field personnel are directed to attend the contractor's regularly ,cheduled safety meetings. 2, Safety Vests: Safety vests are provided for and are to be worn by our personnel while on the job site, 3, Safety Flags: Safety flags are provided to our field technicians; one is to be affixed to the vehicle when on site, the other is to be placed atop the spoil pile on alliest pits, In the event that the contractor's representative observes any of our personnel not following the above, we request that it be brought to the attention of our office. . Test Pits Location, Orientation and Clearance The technician is responsible for selecting test pit locations. The primary concern is the tedmician's safety, However, it is necessary to take sufficient tests at various locations to obtain a representative sampling of the fill, As such, effOlts will be made to coordinate locations with the grading contractors authorized representatives (e.g, dump man, operator, supervisor, grade checker, etc,), and to select locations following or behind the established traffic pattern, preferable outside of current traffic. The contractors authorized representative should direct excavation of the pit and safety during the test period. Again, safety is the paramount concern. " \A,1 e . . GENERAL GRADING GUIDELINES Proposed 22-Acre Residential Developmenl \Valcott Lane, Temecula, California APPENDIX D 2550SD3 Page 10 Test pits should be excavated so that the spoil pile. is placed away from oncoming tratfic. The technician's vehicle is to be placed next 10 Ihe test pit, opposite Ihe spoil pile, This necessilates that Ihe fill be maintained in a drivable condilion, Alternatively, the contractor may opt to park a piece of equipment in front of lest pils, particularly in small fill areas or those with limited access, A zone of non-encroacIunent should be established for all test pits (see diagram below) No grading equipment should enter this zone during the test procedure, The zone ,hould extend outward to the sides apprOl(imately 50 feet from the center of the test pit and 100 feet in the direclion of traffic flow, This zone is established bolh for safety and 10 avoid excessive ground vibration, which typically decreases tesl results, TEST PIT SAFETY PLAN I~ ~ SIDE VIEW I i\ ] Test Pit ~ \ / pile __ - ----- 50 It Zone of T raffie Direction Non~Encroachment . 7 Vehicle TesfPit Spoil parked here pile .. 10 o ft Zone of I Non-Encroachment 50 ft Zone of Non-Encroachment PLAN VIEW , Slope Tests When taking slope tests, the teclmician should park their vehicle directly above or below the tesl localion on the slope. The contractor's representative should effectively keep all equipment al a safe operation distance (e,g. 50 feet) away from the slope during testing, The technician is directed to withdraw from the active portion of the fill a,; soon as possible following testing. The technician's vehicle should be parked at the perimeter of the fill in a highly visible location. Trench Safety: It is the contractor's responsibility to provide safe access into trenches where compaction testing is nceded, Trenches for all utilities should be excavated in accordance with CAL-OSHA and any other applicable safety standards. Safe conditions will be required to enable compaction testing of the trench backfill. All utility trench excavations in excess of 5 feet deep, which a person enters, are to be shored or laid back. Trench access should be provided in accordance wilh OSHA standards, Our personnel are cdrected not to enter any trench by being lowered or "riding down" on the equipment. , \l\~ ..-....~~-==--=_. ,\ \-. .t.,L TERNA TE I ~ \;":c>:c>"'"~. ~<",,, [<<, i:< I ~ "''-''.. .....<>.. /-:: ,.::::;;:0/& i ~'~iS<,;>~~O"G"AC"O~'~....2"~Ji'.""">/~zr :~;~,~~,~~-lt'jlti;I~~TI1~_~":'~~:~'~ -. ~'c" "''''''''~~' -" ....., w~ 3' 6'" PERFOP.A1ED PIPE IN 9 CUBIC FEET FER LINEAL FOOT CLEAN GR<\VEL WITH FIl.TER FABRIC TO COVER SURFACE OR COMPLETE 1-3' -I WRAP PER FEILD CONDITIONS BOTTOM OF CLEANOUT TO BE PT LEAST 1.5 TIMES THE WIDTH OF COMPACTION EQUIPMENT ALTERNATE -- .. ...-:-:-. s -. .. :::-:~:::~~~~~.... ~ \~.:_~_.:,':;, ...', , '.. ,.., ~ ~:c>>:c>,_ ORIGINAL GROUND ~ "'<:.. &&,>-1 .---<-~~ '?>-~7'" .:::~ R>X~~~X _ ~--~_"_ ..... ...._ __. _. ... >:.:_:-:_:-:.:.:_:_>". _. ::......_ CONSTRUCT 8ENCHES~ XI, ,"<:.:,..;.... ',' '.':: '.' '.::":' ....::.......::.:. '~>.- SUITABLE ---~ ',., . " :.', .. ,_-",-'~'~-o7..0"& MATERIAL WHERE SLOPE EXCEEDS 5:1 -__'__"~~--:-:j-- ~;~~- -. ~:a::' , ""~ - -': 6'" PERFOP.ATEO PIPE IN 9 CUBIC FEET BOTTOM OF CLEAN OUT TO BE AT PER LINEAL FOOT CLEAN GRWEL LEAST 1.5 TIMES THE WIOTH OF WR"-PPED IN FILTER FABRIC COMPACTION EQUIPMENT FINISH Gf'\P.DE .' /~(-.: ..r.0::-:::-:'" ~r'.... .:.... ......-.i ....:":'::~~~::~~:: :-::.:::::.. ..-~ "., ,,_~"":~0</">F-~ ;,.'{::'.' '.'~D>;F~ 4 FT TYPICAL .STANDARD GR.1J)ING GUIDELINES GeoTek Insite, Inc_ TYPICAL CANYON CLEANOUT PL1i~TE G-1 \ b,,'\ ~,... TYPICAL FILL SLOPE OVE~ ~JATIIR"U n>=C:Ct::~lnu.,IG C:I not:: 1'1 1'-' '\.F""""\.i- W'1-U L..l~'-'II'I VL..\..JI 6, FINISH GPADE <:MIN.36" -COMPACTED FILL Cft? " ~ Hm;~;;;;\:g~~~~~~, .. """"''''"",-.""" .. """"""""'''''''''' ... "-""""""""""'" : ::::SEDROCK :::::::: ... """... ""..."""''''' .. ,,,.,-..,,,,,.,..,,,,,,,, '" .. """"""""'-""'" .. """"'-""""'."", ... "'-'",.".....,..."......."", ,,' .. ",.",,,,,,,,,,...,,,,, .. """,."".........",.... .. .",..,.",..".."."., ... ,'.."..,,,,,....,,,...,.....,, ... """""""""""'" .. ,.,.",,,.,,,,,,,.....,,.. .. ,......."".".",'............." ... """""'''''''''''''''''''''' 'n ~ ~~~~~~~~:~~~~::~~:::::: .. .,.".,..,.,..."......,...", ,,' ... .".,...,,,,,.,,,,,,,.....,,... .. ,.",.,,,,,,.,,,,,,,.,, .. ,~~~~~~~...~...~~...~~,~~...~~, "~ ,...~~,...,,~~,...,,',...~""~~ , ~""""'~"~"""'~''''~ , "'" ~, ", " ""'" ~ "'" , "" ~ '.. ~""""" ~" "" , "''''''''''~'~'''~''''~~'''''''' , ...,',..~~",'~~,...,...~,...,~... ~ ...,"~,,",~,,""',~~" ~ '...~~,""~"~~"...,'..."~ , ",'~,,','~,...,~~...~""~ ". ~ ,...,. ~, "", ~" '" ,~,...," ... '.'~~,'~,....~"~.~""" , ,~, " ~""""~"""" '" ..., '.' "" '" """"" ~ ~" , ''-'~'''''''''' ~~~, ,...", , ,~~~",",~""~",...,'~ , ,~~",.~~,,',,",""~~ , , , '" , " ~,... ~,~ ~ """'" ,... , , , ,~"~,..,,"~~"'~,...~"~ ( FILL SLOPE '. '.>::j:opsoiL........ . . , . . . . .(;r)r,~WIP:!~~~~~iqNE , "--TOE-OFFice SLOPE PER i PLAN PROJECT ---/---- REMOVALA1 . . " _1 TO 1 .. /7 .....<~0~ -. . . . . . - . . . .. ........ '" ,... ~" ., '" "~" ,~, ,. "......"...,~, ~~~" "~ ,...." ,~""~.~""~,~~""'~ "..."" ~.,'" ~. ~" ,. '." ., ...,..."~,,...~ ~...... ,~,~. ~""'~'~'" ,.....,~,., ~,,~, ~'~""~" ,,'..., "" ,'... ,...", '" ~'" """""" ~"" ,~... """, "~ ~ ~ """'" ,,'~,~, '" ~~ ~~~ ~~ ~~~ ~ ~ BEDROCK :~~~~~~~: ~~ ~ ,; ~,~ ~~~~::~~~~~;~{~~;~{~~~~;~~~~~~~~~~~~~~~' "..."",..., ~"~"" ~,~'" ,~... ""''''''''''''''''' '... "'''''''''' ,...... ~ ~,' ...', "'" ,~,..., ...",... ,...... , , '''' "~,~...,~,~~,...,""~"",...,...,""...,..~,...~, " . :::::::::::::~:::::::::::::::::;::::::::...... 2' MIIN_ ..:::.~;;:~~:.:.<.::.,.......,,:,....,....,'...,. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,~ ~ ,,- ~ . """, ~"...~ ~"""""" ,',' "'" ~,~ "", ~"'" ......'",..." ~" ,,,. - ~: ~:~: ~ ~ ~~~: ~ ~ ~ ~~:~ ~~:: ~~~~: :~~~::~ :::~~::: ~~~ .... ., ~...,' ,~, ~.:;; ~ ::~ ~ ~ ~~~ ~:~ ~ ~ ~:::~ ~~ ~~:.~:~ ~ ~~~ ~~ ~ ~ ~ ~~ ~ ~~ ~ ~~~~ ~~~ ~~ ~m~ ~~g~ ~~~~~ ~~~ ~ ~ ~~~~ g ~ ~~ ~ ~ ~~ ~ ~ ~N' 'i~liijii~I)M 'j ~ '~'r' 2i:~~~": ~ :::::::: :::::::::: :::::::::::::::::::: ::::::::::: :::::::: :::::: OR 1.5 EQUIF MENT ::: ::::: ::::::::::::::::::::i::::::::::::::::::::: :::: :::: ::;:: WIDTHS FJR :: -." """~""""~ ""'~~, "," ~,"," ~~~"" ,..." '" "" ,..., ~~, ,',' "." ,','~"",'" ~" "......""... """" ~" "'~ "~,~"""~"",,~,,,~......~,, "'~,,' """'" "'," "', """"" ", ,..." ,..."..... '..., ~~"'''''' ,...,...", ,..." """ '''''','''~..., """""","""" "'" ~...""" "". ~, ','.' ~ ~,,,,.,.. e , STRUCTURAL I , SETBACK WITHOUT 'I' , CORRECTIVE WORK, DAYLIGHT CUT AREA OVEF~ NATURAL DESCENDING SLOI~E i DAYLlGHTCUTi I LINE PER PLAN j ~ PROJECT REMOVi'.L AT 1/01 ... ~ .....,. /,! FINISH GR~DE :=:= MIN. 36" COI~~~~~~~:;;~~I "'<"V.:=:::.::::2..:::::=::::>>,._ ..,......'.... I ~.'"....,.,...,..'..TOPSQll.,.........,...,...,-~ "~, """" ''''''''~''''''''~ ~" " . ._.:.........-..... . .'. . .'. . ..... ...... ........... .'.-. . . " , , ~... , '" ~ ~"""""""" '" " , .... -'....... .."."."...........................-........"......-" . '.'" ::::::::::::,,:,::::::::::: 2' MIIN_ :::::::"~~.'...::=<:::::.:<:=:=::::::::.CQl:i:.uwjii::->.'., .... mEm~~~~~~:EmEE ~: \ .."......7,:~:;jWjjj;mm~~~EHr:,~k>::=::~ ............... ..,....., ,.. ..... ...., ':\j" ......... ......... ................ ..,..., .~::->(;~~E:i?:~QNE::=,' :: ~: ~ ~ i~: ~ ~; ~ ~ ~ ~~ ~ ~~ ~~ g ~ ~ ~ ~ ~ ~ ~ ~:; ~ ~ ~~ ~ ~i~ ~;:;; ~:M]lt~iMUM 'i 5jT'CLEAROR i;~ ~ g; ~ ~;;;;; ~;~ ~;~ ~~ i:: :~<> ...... ...........,.. ........... ..,.,....,.. ....... 1,5 EQUIPMeNT WIDTHS '........,.. ............,.......,..,...~ :::::: :::::' :::::::: :::: :::::::: ::: :::: ::::: :::: FOR COMPACTION::::::::::::::: :::::::::i::::::: ::::::::::: ::::: ::: ::: ::::::::: :::: ::::: :::::::::::: :::::::: :::::,'~:~:,~:::::: : :::: i::::: ':::: :::::::8E:'OROCK .:: ::::: ':::::': ~~"" ~"", ~"'.,', ~","'~ ~"~'.'" ",... ,..., ". ~~, "", ~""""~~" , "~~,~," ~,~, ~",' ,~" '.. ... -. ..." '" ~ ~ '-,~ ,...... ~,~"" '" ~,..... ,~"~~,,, ~" "...,..""" """'",.", '.""" '" ,'" , ,,~'".~""'" ,...", "~-'''''' '~""., ,., -."~",,, ,,-,,, ''-'' ,," ".''''" "~,~, ,,"',,, """''''''' ~'" ~~, ~...," ",~,~ """',', , """""'" ''-'" ",..., """'" "." ,,~, "'~.." .""" ".'.-., ". "-""""""'" '." "" ""'~" ...,""~,'~,,',', , ~"..., ',"',".""'" '" '" "~"." ,'." ""'" ""., ~"'~.. ,,,..,,,~, ""'.,.,,~ ,..." ~...,,,,,.,,~.,, ,. ,-, "", .""" ,', -, ",.~, ".' ~~",'.", """"""'" ,,' ~,,~ ~ ,~, "'.\' e STANDA.BD GR.ADING GUIDELINES TREATMENT ABOVE N."~TURAL SLOPES Geo Tek 1nsite, 1nc, PLATE G - 2 \'50 "-"''''f: ^ I ....1" SLOP~ ~\{~~ I !.I~A_ r LL, . t:: U~t:K. PROPOSED CUT SLOPE e I I ;- 10,= OF FILL SLOPE PER PLf;N TOE OF F1LL SLOPE AFTER REMOVAL OF UNSUITABLE MATERIALS, -~ e TYPICAL FILL SLOPE ..................":,.....u.,..,.....................,...'..~ "~;;;:,,1:;~;,~,;;[,;":;~~~!":~~'" :::;:~::;:::;::::::::::;;:::::::::::':::::::::::::;:::;;:::::::..:::::::::::::::;:;:;;;:.....m ._......h_..................._.......... :~!;;;j~m~!~;!j![ili;i~~jj!~fm;~j!j~j~;~!m!j~~~j~:~!~~j~jij!~ij~ji~:;~;;~~~;iiijiE;;::;:;;:::::~:!~~miji~if:::::jmHH1j~jWi~ji~1~!!j~i:: ?{J~~jj~I~jm lj~mj~1111j!jlr~111~j~1~11!~illlll~ii11j1~~jjmjjmjm~1mmJmI~jmljijii!~j)!jjii1jii1Hiiii!jij~iHHHlimijiIjj1imj~jij~~~i~jjJi~;: ~ "'i[;:t.;:'~;.::,:.'T: /' :<:}: :~I~;t!~:::Q8i~~~;:~Ei:fjlP~~Q~i~~~; .[ :.' ,. . . ... ;.., . '. ': . ..TI2] , .." '..' .. . ..... ...,.':...... ..' IQP.R-OIIIDE'di.'!ctE!lJ\k SliI'P.0in."..,.,.:..,:" '1::'. ""C'., ....,".."...'. ,... ".., , ::::U:, . "," " '.'."~'i'iliilijliITTh1~~~mmi~~Th~~m;I:. ;;.';,:!t;'...,:;.;':~j..~~ '1m ';';';i~a :00 ~.~W";:" ~;LClPE HEIGHT 1v1INIMUI"j KEY WIDTH 7 10 15 15 25 15 >25 SEE TEXT C;ONTPAC70R TO VERIFY WITH ~ ENGINEER PRIOR TO CONSTRU::llON '10 MINIMUM 1-"1:"..... DEPTH 1 1.5 'i5 2 20 2.5 3 ..w" . . STANDiillD GRillING GUIDELINES COMIVION FILL SLO PE hLYS I PLATE G-3~ \':5\ GeoTek Insite, Inc. I I CROSS SECTiONAL VIEvV ~ FINISH GPADE ~',..J.', ". ..,...,.,........'.',." .r., ",..,...',..'.'.'."-_ ..., >.>SEE NO~El<> ......>..................'.;tf;~~):~@>,,'- ,/FILL SLOPE ....:.,.....I",::.......::.:.>:...........::.~ '.':'.",....:,>.,......... ,...:,..:::.:.:~(..::::..>.<. :.:.>Z~>'- ,cw_ - - - - - " - - , - - - .. '3: -jl"ll; - , , -. . . . - " -. _. ., ~ - ;Zt( >:CJI~;' ...>..,~ I .......... . ..:. :::::-:::~>~>-- . - - - -.. - - - . _ _ . . . . J: _ . _ . . , _ . . . , '," ' . . _ . . , ,_ _ . . _ _ _ _ . . . _ ,. ..::>: , ,. , ,. "':.>,... ~;~;~uuu-;+uu uu~ ,<(C~ ................ - -- , - -- . -- . - '-- , . .. -- , , -- - , , - - , , . - . __ __ _ . _ f <!l'll-I'.," . -- --. .~,.:;l'- \!!l'd,ill", ' -:~ \ 1>:-. '--- MIINiMUM 15 FT CLEAR OR 1.5 EQUIPMENT WIDTHS FOR COMP ACTION ~l'l":-\,*i\- ~ . PLAN VEIW e )\ FILL SLOPE ) \ \ J. I MIINIMUM 15 FT CLE."R OR 1.5 EQUIPMENT WIDTHS FOR COMPACTION PL"CE ROCKS END TO END. I DO NDT PILE OR STI\CK. i!,'l&"'''oM'''~.'.."''.l!!H.'~~ .r ~("iim~!;\,".~,;~V'-,">J;,'_'_,',. ~,~ 'l.,',~..,.~,....."',. _,'-' WlIIW",.'4i""'I"", ~!!!iID~,',"~~ !~,',:,',,"i ~~ ~-.~,-. ~ ~i~~ ~~~~~~ ~~ --~- ~-_,,,~HI-<=F~. ~ MIINIMUM 15 h CLEAR OR 1.5 SOIL TO BE PL",CED AROUND AND OVER ROCKS EQUIPMENT WIDTHS FOR COMPACTION HID FLOODED INTO VOIDS. COMPACT AROUND I AND DVER'E.~CH WINDROW _.~1: .....~...8_.. .~._. / ,DTES: I) MININUM SOIL FILL OVER WINDROWS SHOULD BE 7 FEET AND SUFFICIENT FOR FUTURE EXCAVATIONS (e.g. SWIMMIING POOLS) TO AVOID ROCKS. ') MAXIMUM ROCK SIZE IN WINDROWS IS 4 FEET MINIMUM DIAMETER. 'I SOIL AROUND WINDROWS TO BE SANDY MATERIAL SUBJECT TD ACCEPTANCE BY SOIL ENGINEER ,) ALL SPACING AND CLEARl;NCES MUST BE SUFFICIENT TO ALLOW FOR PROPER COMPACTION. . STA...l\iD_4RD GRillING GlJIDELINES ROCK BURIAL DETAILS GeoTek Insite. Ine, , PLATE G - 4 \~z.. GHADE TO DPAIN ... :'1' ?>, .' ""j . :.:.:...,)-" .. .' <::<:::::>:>.. ...... .'. .,::::::::::::"-., .,.....,. ..".,A ..-...... .. .... ........... I INIMUM 36" OMPACTED iLL BLANKET /"' TERf(ACE DRAIN AS I REQUIRED ( :.:::>~..:=- ..~~j~~t~fG?J: ::::::.::::::::)", ...-.........-:-:.:. ::::::::::::<>~~}>" ~::::: 10,' . . . . . . . . . . . . . . . . - '. ... .......... / .............. .............. . . . . . . . . . . . . . . .............. -L I BACK DRAINS I SEE DETAIL " -..' GF"".DE TO DRAIN -1 I I .._--.--,-----.. ................ ................ r:~;;<< ' I I ) iKEY TO BE MINIMUM 15FT PLUS WIDTH ~/ 10FTERRACE DRAINS OR 1.5 EQUIPMENT i [WIDTH USED FOR COMPACTION I ."<'::rT: I . , r"-- '\ __... 1_ iKEYTO BE MINIMUM, : 2 FT DEEP OR PER L_~EP?Ri _._. ~ i . !KEY TO FALL TO HEEU , MINIMUM 1 FT j e 2% MINIMUM FALL 4" DIAMETER PERFOR~TED DP.AlN PIPE PVC SCH. 4D OR EQUIVALENT IN 6 CUBIC FT DRAIN ROCK WRAPPED IN FILTER FABRIC 4" DIAMETER SOLID OUTLET LATEP.ALS TO SLOPE FACE OR STORM DRAIN SYSTEM AT MAXIMUM 100 FT INTERVALS NOTE: ADDITIONP.L BACKDRAINS MAY BE RECOMMENDED .... ] BUTTRESS AND STABILIZATION SLOPES e STA.NDARD GRADING GUIDELIl\'ES GeoTek Insite, Inc. PI.A~E' _ __~l G- 5 ~ \"5~ e . . Water Quality Management Plan (wQMP) Tentative Tract Map 32780 Appendix F Treatment Control BMP Sizing Calculations and Design Details August, 2005 \ -SA.. ~ -- e e Water Quality Management Plan (WQMP) Tentative Tract Map 32780 Appendix G AGREEMENTS - CC&Rs, COVENANT AND AGREEMENTS AND/OR OTHER MECHANISMS FOR ENSURING ONGOING OPERATION, MAINTENANCE, FUNDING AND TRANSFER OF REQUIREMENTS FOR THIS PROJECT-SPECIFIC WQMP Augus~ 2005 ,... ,-5'? e . . Water Quality Management Plan (WQMP) Tentative Tract Map 32780 Appendix H PHASE 1 ENVIRONMENTAL SITE ASSESSMENT - SUMMARY OF SITE REMEDIATION CONDUCTED AND USE RESTRICTION August, 2005 \qo