HomeMy WebLinkAboutTract Map 32780 Hydrology Study
e
RIVERSIDE COUNTY FLOOD CONTROL DISTRICT
TENTATIVE TRACT MAP 32780
HYDROLOGY STUDY
August 2005
e
Prepared for:
Walcott Investments
45621 Corte Royal
Temecula, CA 92592
Prepared by:
Van Dell & Associates, Inc.
17801 Cartwright Road
Irvine, CA. 92620
e
\'P
e 1.
2.
3.
4.
5.
6.
e
e
TABLE OF CONTENTS
INTRODUCTION .....................................................................................................1
DETENTION BASIN ANALYSIS .............................................................................1
RATIONAL METHOD ANAL YSIS...........................................................................2
RESULTS ................................................................................................................3
FIGURES ........................................................................... .....................................4
TECHNICAL APPENDICES ....................................................................................5
'Z---".
e
e
.
1.
INTRODUCTION
Tentative Tract No. 32780 (Project) is a proposed single family residential
subdivision located in an unincorporated area in Riverside County, California.
The Project will consist of 35 lots on approximately 22.45-acres of land. The
proposed tract is located north of existing residential Tract 23209, bounded on
the north by an undeveloped area, on the west by Walcott Road and on the east
by the future Butterfield Stage Road alignment, see Figure 1.
The subject site is located downstream portion of drainage Subarea "G" as
defined in the David Evans and Associates' report entitled, "Drainage study for
the CFD and Village Core Portion of Roripaugh Ranch in the City of Temecula"
and dated October 21,2004. The existing culvert, Line "G", collects storm water
runoff from the off-site areas and crosses under Butterfield Stage Road on the
easterly side of the Project. It is proposed to extend the existing culvert Line "G"
through a proposed easement between Lots 7 and 8, and through propoEed
Street "A" to join the existing culvert crossing at Walcott Road.
South of the Project site, a portion of the storm water runoff from Tract No. 23209
will be collected by a catch basin on Walcott Road and junctioned with the
existing Walcott Road culvert crossing.
The tributary area for the hydrology study for Tract No. 32780 includes all of the
lots within the tract boundaries. The proposed Project will include street sections
sized to contain 10-year peak flows within the curbs and the 100-year peak flows
within the street right-of-way. Storm water runoff will be collected by proposed
catch basins and conveyed downstream to a proposed detention basin. The
proposed basin will have a 42-inch outlet conduit, which will serve to peak reduce
the runoff to levels that do not increase peak 100-year flows to the existing
Walcott Road culvert crossing and other downstream properties.
This report contains the proposed developed condition hydrology study for the
subdivisions as well as existing and proposed condition unit hydrograph studies
used for the preliminary design of the detention basin facility.
2. DETENTION BASIN ANALYSIS
The detention basin analysis used the synthetic unit hydrograph method to
compute inflow hydrographs tributary to the proposed detention basin. The HEe-
l Flood Hydrograph Package developed by the U.S. Army Corps of Engineers
was used to route the computed hydrographs through the basin for the 3-hour, 6-
hour, and 24-hour, 100-year storm events. The outflow rating curve for the
detention basin was developed using a 42-inch diameter orifice opening with
inflows assumes to be regulated by inlet control conditions.
A review of the HEC-l analyses indicates that the 100-year, 3-hour event
produces the greatest peak outflow from the detention basin (14 cfs) and the
highest basin water surface elevation (elevation 1279.58 feet). The required
X:\Projects\914_0101\Eng\TechDocs\ReportS\Walcon TIM 32780 hydrology Repon.doc I
:3>
e
.
.
storage volume is about 2.7 acre-feet including volume for freeboard and
emergency spillway flow routing. See Figures 2 and 3 for the unit hydrograph
hydrology maps for the existing and developed conditions. The proposed
detention basin volume also includes 0.5 acre-feet for water quality detention
purpose.
The water quality volume was computed by comparing the existing and proposed
conditions 10-year, 24-hour storm water runoff volumes. The proposed condition
runoff volume in excess of the existing condition runoff volume was used to
establish the required water quality volume to be included in the proposed basin.
The runoff volume was computed in accordance with the Riverside County
Hydrology Manual Synthetic Unit Hydrograph Method. The calculations are
included as an Appendix to this report.
3. RATIONAL METHOD ANALYSIS
The Riverside County Flood Control and Water Conservation District Hydrology
Manual, published in 1978, (Hydrology Manual) provided the guidelines and
procedures for the 10- and 100-year Rational Method analyses. The parameters
used for the rational method are summarized below.
. Hydrologic boundaries were based on street grading plans for the
subdivisions as depicted on Figure 4, Hydrology Map, included in this
report.
. The underlying hydrologic soil group is Type B, C and D as shown on
Plate C-l.42 of the Hydrology Manual. For conservative assumption,
Type 0 was used in calculations.
. The rainfall depths used in the rational method analyses were based on
those reported on Hydrology Manual Plates D-4.3 and D-4.4 for the 2-
year, I-hour and 100-year, I-hour storm events, respectively. These
values were used to calculate the I-hour rainfall intensity. The 10-year
rainfall data was based on values derived from Plate D-4.5, and the slope
of the intensity/duration curve was based on the information provided in
Plate 0-4.6.
· The development density of Tract No. 32780 will be approximately 2
dwelling units per acre which is equivalent to 16-acre lots with 40%
impervious areas per Plate D-5.6.
The rational method analysis was performed with software developed by
CIVILOESIGN Corporation for both the 10- and 100-year storm events. The
software was designed to accept watershed data and perform rational method
analyses in accordance with the Hydrology Manual. The software defines
subareas and routing paths by means of upstream and downstream node
numbers, node elevation, travel distance, soil group, land use and type of
conveyance. The Hydrology Map, Figure 4, shows the location of all no(je
numbers used in the rational method analysis.
X:\Projects\914_0101\Eng'lTechDocs\ReportS\WaJcott TIM 32780 hydrology Report.doc 2
A.
e
4.
RESULTS
The results of the HEC-l flood routing analyses and tile results of the Rational
Method Hydrology Studies are included in the Technical Appendices to this
report. Table 3-1 below summarizes the peak inflow, outflow and maximum water
surface elevation for the proposed basin for the 100-year, 3-, 6- and 24-hour
storm events.
Table 3-1
HEC-l Basin Routing Summary
100-Year, 3-, 6-, and 24-hour Duration
Storm Basin Basin Peak Peak Basin Ex. Condition
Duration Inflow Outflow Basin Storage site runoff
(cfs) (cfs) WSEL (ac-ft) (cfs)
3-Hour 28 14 1279.58 1.3 19
6-Hour 25 13 1279.49 1.2 17
24-Hour 6 3 1278.45 0.8 3
Table 3-2 below summarizes the peak discharges at each of the proposed catch
basins.
Table 3-2
. Rational Method Hydrology
Maximum 10-Year and 100-Year Storm Drain Flow Rates
Node Tributary Maximum Maximum
Drainage Area Number Area lD-Year Q 10D-Year Q
(Ac) (cfs) (cfs)
A-l 102 4.36 7.59 11.57
A-2 106 2.71 4.68 7.14
B.l 202 4.61 6.07 12.35
B-2 204 3.66 6.66 10.16
C-l 302 2.18 3.84 5.65
C-2 306 2.20 3.94 6.00
0-1 402 1.96 5.15 7.64
.
X:\Projects\914_0101\Eng\TechDocs\Repclf1S\Walcott TTM 32780 hydrology Repott.doc 3
-5
e
e
e
5.
FIGURES
Figure 1
Figure 2
Figure 3
Figure 4
Vicinity Map
Existing Condition Unit Hydrograph Hydrology Map
Oeveloped Condition Unit Hydrograph Hydrology Map
Oeveloped Condition Rational Method Hydrology Map
X:\Projects\914_0101\Eng\TechDocs\ReportS\Walcon TIM 32780 hydrology Report.doc 4
~
e
i
,
e
e
I
N
31V:JS 01 LON
0'6
---
08i Zf' l:J'rj~U
31/5 1:J3r08d
cj0'J \\ \ It
'6?,'l;?--- -
)'3~\j\OS
\
o \-Q.I,NtI
tXJK-ttIo (M) tlla 'Q ...._
-........,-
........OM ........
-.....
"011 'SILyPOOSY CJN l1JJ Iff A
:.L8 tJIPIoGW SWW
_ID aJ.W
dVW A.LINOIA
08l~e .10vw.
G--Q
:I:I'IllY
1ClIO-t18
"Of"'"""'
l
~
.
~
~.
.
~
~~----
- -""-,.. ~,---_._....
Riverside County Hydrology Manual
Soil Group and Rainfall
Reference Plates
"\
,Ot.u
~:.~ ",!,
g_ B." ___"~.n~">: ~:Jll
.. ~...."..,._ ... ')l'.
... ".It..:. . "".....,...
.C ... , ,;..;~ "', "'~~J:" p: '''''''~''',''''' ~, ~, ,
",..~"J 1%-i.~~'h:~-'<1t ~.,j, (, b~~ ..lI' ,,~..',J;~'.~\';'$-'V' ~.r n
,Pi'!'L ,,"{"Of' ..',""; ;:r~h!,nl,~~ /". 0 '~ci:."",Z/. V
~i!:il\'! I, ,~(~ ~1IS':~ ' . ~,i\~,O:r ~-ft:'" ,~", - I;>\~ ,B /' . B~~
,,;f'" , ~," . .,". .,. .". .' ~ '
'L.~"'-:~ ,~,~ ' ~ ~""".". . ~~. "",,<'Wi '
~~~, #';;tl'!;;"i(:~.~~W/;~_~~~'<B-"
0~ .,;:r~~~c- t~'i:. . '. >"11..;. ..J~'" ~~"t:$.l;;'21H?1 0, ~"\OB o~ -!':,;;[f
,.....,..,_r:?~'-CA_ ""'\-~ ..' . ,.. ~..
, ",,~ " ".,' ,".. '. ..,l\'! . ,,,
. ,.' " . .~ . -"', , " .",....,
1?1:Tr ~V"':'_~P'+' -;~~~~'tJ ?-.....~.t3 ,~_~,;,"'di9' ~,,~~-$'~.
, . \. . """" ,H ;,~-"" . . """W',,,.,, ~. . ,"". . . ,
~", .. ",,," ~ '" .. '. ,"" ,~.." ~- - ,. ".' .. ,-
_~ "9 B ~O" . rO:}J~='.;,:~-'~ 4.1:..:'.
. . ,,' '.<y-,. -
,~,-' ,~, . ,.' .Q;~r&'~r:t
OO~#'~~~' ~~~' ......~~, ~~ ~;.. : " ~C'" ~"., \,
>f,'~ ,-"I< >>,"",,"'ii: .' - ~:,
7,?,0 ~l0' ..~~~~"oO - OB :~ bO' ~B
. = ,." ,~. " .~. .,.
.~~'17. .:C, ~""''''' ~=;' it:: .....:' ~.. of '-~
__. .C> -.' . -".' .'
:._ OB . """ ~ . W . . ,,' ·
':. ",' .:... . _ (v-.. '"1MI""" . ~~ ,r-~
"" ..." ~.., ~ , '. ~
~~' ~,; ,,' ,~,""'" . 'C.'" " ,,'f0~~~
t... ~~." ,~, ''';;; . ,~, ' =..;;p""'" '. " ,
, . _ " ~ . .' ..,." <0 '
_ .,,$ ~;lI" ft,q- ,-'-" 0 ~CO." """-'nJ/ .,f "'l"'" c'
" ' . ,-' -'~ "," _. .., ,
,. " . ..i'" . 7", ,,-" v' " . ,- . "n ' -",~., J.
:- j;Js' e" '~M"2 't 'r/nt r~~" -~~;UZe- n;~ ~\:~:~(f~1f1o(; ~.~. cf).~ i ~".." . ~,~k.)L.
. "'" ' B,.v ~8 .~.. ~"""~ 1 ",,-. H~'\\)~\"" 'I - ,<5 -",,-
,,/ ",' 'M "...,
, " .. ' ~ ~ , ~ v . ,. "... .' I'
, ,.... , ,,,';. D ~, '0<" '.d:"~~'~ . .~,,""u)ll4- ,I,' i"
, ,.. .'" . " .,~ ,,,' I' ' \ ,",," ,
o~ ' "S'Is1)~"(J~Ft ~ !l:l'l~~' ';'i l~lI'~ ~~o .\,Li. ,:.,"~~2~l',. '~'-'-~~iS4-!/5i !
. ,') .~ YJ I~ (.-;~ ~ 09 .II.' 'IJ ..' . r .",' "~' " l~ l"-
. . ~,.' -..,. .."" .,' . .. '
. ,,' ..., ..,0 , " ..' '"
_ _ . .,\ cO ',B M':"" ) ,', ,,;'~\\,. ,,' ~~'~ ~;;:' , .' " l:"
, . . " .,," '. . " ."'" ' .
~. ~~' ' . ..' ~ . "" .."
;f"~' . ~~~~." .. . 1H,,"o,,<3 'o'o~ ' . . ~" ~ ~,.
, ,'" c, .. ~ " "'''' '" n ~~~~j:~, ~~~ ~' ,'~ <,,1-0
k .. ,U. ,.', """",.; '.' '",,"" '
c,e ,,' , _ , ,.".,., . , '''. ".,A , ,,"'.' ..,
7J;;lftF~.J'l ~. J oB~1. ~7'\~~"- .?Ld:o?'~' :1.[. 1.0.- ~ ~'X. ".~~'1'9;Cil'~
50'." '))d, ~ c ,_'~ I.,,"'..&.I<.OB' ~ ':1"-' rf . '-,' -
.;.....' (. ~ ",~," ,/"" 'c."" ...,.... '0' ..
,._ v, , 0 ~ k ~..... ~~. ~ V .
e'e' . ,,' , ., 'M ,. 'C&. ' . = . ,c-......."" ~...~ ? '
.'+ _>.~. , . ~. . " ~'L,.",j~ ' ,
0~1 '\ "". ;77.31- ,B "'<!I.'.,'o ,.!l.~,,-_-~-" '.>J/"':::" 'B-'
,",' . .,.,' ." . _ .,,' _ ''o. ,r '
,.&,' -, ". '!'< ~ . ~~::'"'--"."., '.
~'.. ,~. . .9"li!31l ,_ ., ." ~'nAo ,_-..... .ff-' sQ,
. " .'Po.." ' ...' ", ' , '._ " . ,;yi" 't ,," ,,' .
_,.:~'("-\'I.>' s:. 0- '::.~ o'f'sccI,..V( 0'w~'" ~~.:;:-)...,' ,~1ilry~ ~,:r.~..-
.\ _ Ql'~ .,' " _"8" , . ',,,' . g ,
",;V, ,,' ". ' ". ", r-'" , ""0/~' '," ..~.' .
f}\''io /;f';rl t..,--O ' .~,' ;:,:,', :::;:O~~~;;j\'''''' .~!1;)o!:) i ~;:: ",-,'.r~'~ .-:6'~
" . F," ",' .".' .",..,;~""" ,~" = ,r.,,,,,<= "''' ,,(.1'.:4.,
I,,' ",.c ,',K..;" ,"'" _' ","-', rf .,' ' . " " "'&[ 0 0 V)r,;::~:""
: ~;''1;'', ";;>' "," ""'" i"'~'J,'" :'o ~..>'- ,""', I~ 0 -. J1Y~ '1
,,;;;, p' .,~" '" .~. ,gf.;",4Jl' ' ",",'. .' ,'- ,.;
,,*])~,l I" R\"''' ,.~, ~7' -. 'r",y."..;..7~f'" (~..~' '1 I ;t'"
'~.' .~. ..' 1~' . ,,{.',Ji:'''''' . w,,' ,&~" "..""". .''" ~ ;v'/''' 'ffjj'"fl I -
1~"l10'~' , ",,0" 'V>s7 ,v,"",'\i' ~;";r'>':B g~o,/",o:l..~-" ,,'~ . . . /d:2 ~ .).:, .., r'
.. ,,_~.Q'~'!: .'" ,\,,'1iJ:)G .~\"'o,,,,,,",,-"Y';.tn.Vo \ ,t-. o~ .., /7i:.>6 0
0' < ," 'v, ~_ <'I~~'~~E K''C'"'' 0 -' ......,,' ~B.\,(.,.,::..e
,. " .. ,.... ' .' 'CT ' -~.
<. _"':.;-i, .' .' Ol-,,~\I' .. .;>}::,QC:;'l"!l :;4" -,I / . ,!?"(j1" :-;i~~.
. 'o..v" q,; ,<"",,,,". ,,~/ 0'''. ,,,,,,'--} ,v ~'
L ~' )),.~". ~ 'v 0 ').' ~ "
Il '."'''''''''''0 ,,~.o i....",...j..' 'P7 -~ '0' , '~,:-;S .';:~' 0 Ii. ~'<1ft
B ~, . ..,', .0 I !n"'" 'Ii
_ 090 ,., -= : 1~:1fi.
~ ,M....~ .....
""
lvnNVJl'i AS010HCiAH
a:>M'8:>.:I::H:I
~
ONIW ~013H:>'if8
~O.:l
d'ifW dnO~9 SllOS :>1901o~aAH
N0I.1VN9IS30 dn0ll9 S110S V
AHvoNnoa dnoHS ~os
ON393'
ooos 133; 0
~-'""--'
Ib
'&.!:f I-;J .:U.V Id
U
11.-
'.!'.
.
~
~\
'g
I
~
~
"iJ
~
;".,
,
,.
,.
o
'/J
~.
n'~
1::~
,
g
\~
.
::""
....'Y:.
'Ii:
.
lti
t
>,
Of.!'"
....-<41
&..1
1>,
~
~
e
-
-'
,
-'
'i
"
.
...
~
~
,.:01
~
t~I"
~
L:.
,~
r .
if
,l
J: ,,'
~
!~.
\'R~
~
<..", /(,
;...L""':{I,
.1)
'(
,
,
'.
t
,
.,"'-,
-;-
"
~
I
rNJr
ti4J.
t~
.
._f?
.
......
1.1
"1
1t
~!fl
,.;
T~
~.
/
"
,
.
..."
y
"<I~/~' ~:'
:/'~ .
~ ~
f": .. '1 ~o,~ "
~ .h~~ ~
..' \ ~ ~
~.. ~Cl\
· ''-ij1i ~~~
/ /., :'=', ~~ ;ik~~
~/ / ~~ "'(,' .' ~
p. :. ~'~V.:;."" '~', ';;' €ls
.,~ ,"""f""FA ,~:s- :1t ~ ~~
. ~'J' \ r" ~ \'\"~"" ,<;:.;-_
.. t f. ~"o,)1' ~"E)r~,,1\) ~~, . "~i
\~r "'*~i ~~ ~~.r
'''{' ..~ .... '7'_\ . ..
,~ ,,(,~ (....' <<'!
~ "f;,. ;Wf;ll.~f,'_", ~;,,~:r.' \, .
::Ii' :/fl~, ....~ .~~~~~ . ~',r.
" /. ;-ll!Iir'''Il'/'. '~,,~,*-l1>\\' .;''''
f It.~ <~.-~~/. :,'j''J t'\......;.~ '" "., ,t, " , '., ','
fI, .. q:,;~~." ~, j'':''', ~~;\,,,;,,, ,';'1" ~ !" ....". ') ~"1
" ,'"., .. .... .,. ,'.. 1 . ~. ,
~ \' - ~ -. '.,
'~_~" t':..., '~. ....... ,_.y" '. ___
".r._ " '.co", 'l .-,; _\/ J ~_ ~
~\. .~ . ~~ <.,~ ~... ,J'~"" ,N,. , 'i(.-; /i,. _ \ 1...._ ra" 'S ~
~.J~" .. ..,.,; ". \ 'I"" 1.-( , '1"'" ,Ie' , ~~ ~ ,.. ~~
,m,j"" -,. .".y ,. .. . ,. 'l. J': .n... -n. :YA.:r
~~2~ ~"~. " ,,''''''' . 1,..\' 1. "". . >~, ~ r:!'\ ~ ~~!'l. J '"
;.. ,::.(~, ~'.~_,...,' ~'f"'\ ' , ,"'$ 0;; ......~ "I. . ~, ~. =-.'
~."'."'~";1}'~),,,,, :,~. '" I ~)i~1"': .., b.\:,' '~'" \ ~ * ~~, ~\1.. ~
';C;'~.'" )>: .>,,'"Ii' . "',,. """, ," .. q~ ' , , JP
'. ;>-~:~:"', 'I;'''~di~':M .' ,,......' ",'.r ...~~ I' , \' ""'~ . . ,r:;:, I ~ -2J Q:~ .
. '..l~ -~. Rf', '" >[v"1 Y." ~,...... _....
I. " T,.--C-';~'" . "",,.,.:, . 'n" "v,V' '" ' , . ~~ .. -, ~""IIM . I'''~''''
.lil.T:';~'.. 'iM'"' 'I<" ~-~ ..'(~.. :n.~Jl.l ~ ~'> ~. i:r' ~ [;, .... ., '-I "'
,"; '0'~_"'- ',' . ,-~ '. .
, '-. - ~.-"r:,.' c' !J::ll' ~'':u ",>. i.~7""3o,' """.,,", ~ r ~~'" _ I' ,l!., .: (
do' .~. -,.... ' - ;,i,.6~_~-' ~~~''""' G'l . rq.,..,r ..
. . - . . ;'5'~:"". ." ,I.". "> "''IY"21". "'''~ '~i:-'i - ......,
. I,.., . ", , ~ r.t.'.. (~',' .,ra ',';:" I' xr...,Q:; ~~.'" ,."1. 'crI \/I wi"~' ~ ':(~~ -' ~~.jl-.:." ~.--,
, ,~,~,., ....':;, ;~:, '. .::. '.:, '. <~~: \~ ~"" .~- ..,,~ '<X~ 1 . '-;'1'- -i-r-" k ,-
. '. ' ,'."" "," '" .' L ~ "C.,'" . _ ~
-I "l~ ,. c.' "" . '. . H> 0 c..: "f ~ I"'l. , , . r ..
!, ,,~.,. '" ." ,::.It, "':'?'~. '~',: _:I. ". . .- ( '<.0 . ~ .
c."'f.,Je! .'...'.,),."".. '.,....Z "., ,- ~~ ~..,......., f V Jr n
"~.,..- . .,' ... ?',~ <>, V. '~R<. . ,-'!
..;.8;."...., I . .,[ .;;../ '""'._ i.~k ~ - ~ _ ~ .. ''\aI . dJ, . ~ ,~~y/
::::"-7""'0,', .."- :.t~':. ."';' . \L.Jl' ~ ,~-J, .,' 'R{D-=~ "" - 11- '"" ~ ,;;../.
~...;-.:.,~.\ '~t .. l:,;i~::~'~'~. ::.i"~.J~.~~'~"-L' If, ,.., It- (i!f"-ii?~ . ~ -' " ",: f-f> i "
1.,:2.:'" "'- U ", .' ".)' l:f:l -"""" . I( (~;~' .' / . "'\. " " "'-T
..~~ "".'-".' 'r' "'?r~f.')\.. ',<I. ,l< >~ ::-U..; ~~. f'- ~~ J. _ _~_
~\'.'~. ".'." ,. . :i),". '. '''''''. lS'.' ~ ~"JA i' A;i,;-I f c.,. -- . ,~ v, .'~ I'
, {.~'t..,;-;;: .'.;!I ~~:,'," ~,-;::. d J 1'7; ~',"1'l., .,". ~ .'.~ ,. l' ......,: "V I~ !at '"
":> ,/,,':'. ': '0.;,'. ~:., '- '~~..i" 'o-'V,;- . - ~ . -J If ;.: ~ :1
L.$:');'";':~'" .....~":...'" ~'" ,. .',., :.... "~~i1:C-V" .,if..;.. ~"~" I 1--J, ~ J
" ' ,j. "'."l;~' '. '~,l:\. \:,.. rT'l ""flli~..~~", '6A'J.li"'t.~ t{ 'Pjr4. ~ \~. ;V;"" ~ I
'. ,. IV ,....}. .".~..... ~ ",.. ~r;." f"' j', ~ ~.. ..' \ "
- " . " ,.. ''''. '/1<' ~ I
'. . '" ,,-,' ;, c: t;~'f". < 1'11- l..-. "':!' l ", '. . ,
. · - ! .,...,,,,, . ( ,
, "~'" . \'. "" ~,;, II.. ., . . . ~! I . I .- ". "I'" ,-.
J;~ /l;-.:V' ~ 't'/, \.~;:'.SI~"" '{h._r ... _ u.~ I - ii' ~ . n..' ); - ;;:tr
." .. , . .' . ,-V"," ......""1"1', '. _..., " ~</'
-li{..' ".;;f~';r~ "'%11"111';~-"~~"'1\'~4~"~d.t'KI~~, '." ,~/~;' ~ l-
t, ,.~ '.,'W. ,', v},U;lil'!:',:" .~,': """..-,.,.t.', \'" \ . J'" ~~." 0 f
~ '.: ,>::~. . ,.-,r.""t(,~ 'c. I'-\lft 1/<.""11\' . . , '~" i I ;' . "" \1, "1,,.-
,~~ l' " ....!..:'I,yiql 1.........~I2>" _...:/.- ..,0'","'.... .. i:o.o \!J.:f ~
J} ,~I, h ~/~~ r~./~ ~j"".,,/:;::f~ ~'~111''i]~:'~~. :~':> I --'~'~II' . Ii ~.:~~~~.JZ
..:. '. ."'1.1. ~. ~'\' ',e>fI.\'~ r~ 1''!!. ... ~. .,1 '"'" .:r;'~ '~~~ 0<' 3......... ' ~
,,/~ "', I , , ~ ~"t- '- " I I . . __' ;J~ '!. '.. ~:r \ . .
-~, .L lire zR:J r;.s _~JS' ~ ~!i,"'1~1,",:;{l'"j \; ~ "'"",l,1~:~~'11LI, 1'-"; ~_._~:z ~ ~ 'I J
'. . ::~Q;h ~1:' ~." ~ I; .r lOt ,;'.... ~ '''(:',i~!-'J(",",., \'M I
.,,' --"!!!f';, ", ;,,:ii" ." ., :i"''''7= ~ H~ .~ '~'.,. I''''' \ '~I"';:~ "
~.~- ' , _ '... 'i.~ ~~'I:~(r(:,,~,~,f \(1,\:, .iw:....{,l-tt~ ; ,.~ ~ ~.,":"'.;'~ . .(~/ i';~ll :I: .~~I.~\J:1."",,~
\, ',' , ~', l "II ~. 1 ('\i~~:,..\..~ t WI' , m ~ l' "";'\....J~ ,'il ....,.. '}'
.- , "'~' tlirl ..,. , 0 ~, ~ < '1'" ..:J. ~
> (, . ~.,..,..?l ~t o. ( 'ntj! I~,,"', $., (. ",~",~",~, ~ ~ iCifO:-p
) ,'. "I" h _ ~, . - ':~/lt:: ~ ... . - ;r, '-.': )': " i
ill' q, " " . ~. J:tii' ':" ,1 '~'o: ~~' i,' .~' ,', ~~ 7., - 7g;,
~ \ , "'~'");r ", -;?f" ~. >' 'I t - "I -
" J ,. '*".. . . ~ '~,'f,.~'I~'( f " .' .;., "!"U. ' . '. .~C~
:~-- ~~, ;-' ,~",: I~i=-, "\'/ \:E~J~ t"~"""');~~.Jl' ;"J -:",,~).,,~-J:.,.~ -'-~ '". i
<;.. 0:0 \~~, .'/~ . , .. f)\ L- ':r .-i..~ ../~ (,. f~i r.
" . . I"' . -'--. ~,~- , .. ~
" . J:" ."" '.~.' ...'( .~r;j~[(2 "~';,. . '~~o,~3I;'~"'J"";":TI1'i.5:(j N t-~.( \. ~
, 'd'J .. '..', "'" "'~' ,.it, ..~~,. \",.~; I, ~....~,yo, g- ci!
.:. ,(;p~,:, ,~' _ '" .I'}'io ~~)6~ ~ ~':.,t~ !"t2jl t ~( ..~ i)J~i ._ \' ' ~ ':.1~ J ... < :=- ~ .f
. ~.:.~ '::'i': ~.,'CJt.i'JJ:' ..J!'" \jy(-' .:;, l'<. to," ,.~J~; .--,,~ It. l.~; "''''',-'/~ . < ..
k.. ~I, c..;;;; ',l~l' I jl ...._, I V::""'- -, {I'" T c. I Ii C~';';:':':!l t.:<;~ ~ ':OJ.! ~ I"
;/,1 ,",t ;{:~:,~jC~*: 1 ~'~lo:~:~~..~["7;~~ ~~,{,:c,,~:,~J1 ,()' . G '
,- - I ., ,,",l;.;.1. ~l~;' ''''-''ill!'~' . '<"1:0:" ,.c~r-"r.~' c'~" (,'. ~. ~',
>..:' l ~ ,., :-:.'....;:i,f' " .-,-.- (:-.. ~7i'''' J) J. , 'j~
'; '~m,:-". . ~~ -i!', "'dc7t"?~ J-" C:~;' '. ~ :\ :-:~"J ~ ...".' - .t -
. ",- ,l ii..'lwr," _' '.~ ,';)fJ';" ::: 'r"-....~~.....~_ - ~'
1'.1' ~~t~" " . 'iU!',!,',% '. "i~'''''-"'' . -:. " I
-:-} {j'~ ,:>:'/;-'&":3:' ,-:;r);B!"~:f' l-'14,~ ~",,""', "'I: ~; ~
'J!::~'{ i/"~'?~;"4V:~?l;;'>~T:~:~_~tf?~.~~. ;., i,1-'~' " ,~J2'VI.I!x:
ft' " ,'" ., .\WI-7:' 'l~""" E." I ,. P ." W'j~ '
"tIr',~ . :;;1) ~ ~ )~ p.t.V~ 'V. _ ... .v /),.. %Ii ~, ~. -,
" ' , 1,~"" , _]WI-, ""11....... )> , , ~ ~
r(~;,~,. J.::';'~:I~.i~l ~:J;,o:L J~ ~~,~~,--< - ,~ '~~?i~\\'lJi.~
1,.1 I"~ "'''''"''''''''11'' ~~J;~ "/.,,,..- I ",
(; ,~..., \;u~\y L ,,.,.......\rl,~. 'i,"";I '''\~,~ IJ (' ..j ... _ J'....... :) ~:t'
~l...~....) ~." -- ~'.~ :~ ~ '? r ,'>' ...!1} .i"J lz. rril'f \!,.MJ ('
~.r;:/ ,.y~ '..,:;-, ,. l' ",' "'...,) \h !2 J}f3. ./"~\' , r, l'i~ I )
~- .r "',T,"(1I"t~~j)r.,," ',' . ~r~" "i' WI' I," I'
, >!',~" ~t ) ~I ->' '.... "t, _~ f7"-!'/f </ r-I _
f, ~~l ~'...- ~~}I . -~I ~ ?.P" . 'i . ;~:d: ~'1...y; I - ~ <. _\
f, _ ,~~'" +'~'I ~g - ,[::;r--< 1'''
o,~ 4~.".., C'.' ~'. ,""-' ''''c' "'Sk' ," 1.c. _ i7 '"\.~, . r' ~. . ~
:v;o ~\~".' ; \ u.{I.','1\', _V;?!~,. ...... '.~~ '~- . '.. l'..."',
r~'";\f,~:J~~.'~'(\ ......';/%..\l~ ~'. .~"";~.~ .,"'~' ~I'. i I
.th':""_~~I' -~_..\'-' . : ,r'},tI.~'" " ~ ::u".i......-'......- ,~-Jt r j"
~'~.~... V!~.": ~":;~~~..' ;9( (/ V.' ,,;-"7~L A~ I"~\ ('!
./r,) "f'Jj"", l'V'~')'!~ '.','y-'{.....,' '~'~':::r:;;
;.<.t];.....,,'~'.l~... f .'~t~' . rr-" d
~ ,.~/. ~ ,,'" ~ ,-"
:~~ \.(l; ...... :: _'~ ..,.. ... ~ 'r;A ),".~ _ 4
I. ,...'~~ \.."..... \., ~. I
,. \.\\-:u,.; .....~, "" ," \
,,' ~b 3:~" Y,,''''.:: _ 7. ~ ~i \~
,,-, '-'. ,l/-!, 'l!:I#'...t:"r-.. ...' ,&(\1\.,,\:
. ",'
~
~,~
('f
..:....,
;;t,
k
,,; ,,~,'
".', "..,~
:>,:',"
\
t.
~
.'f
^
,
~r
,..
~;'.
:
.
~
.,
.-' ~
~
aY.>iJIiI
I~
~ .T,J'
'I> '
1
,
;.iI
-'-,
.
~'lh~'
~f'I~'
~ '~
~l'
.v:
t1~
~.
1-<
:~
1
j
"R'i
~-
~
,
.
\
.
r>f.'~'
_~~1)'J
'.$.l
.t,:-';
.
'\..
~
~
~
~l"'
~
~4,
~J~'1
~~~c:3:!~
, '
.,
"'-
-;J
~
"_1:.
V<
.
::-.-~.
.
";;{i4j,
.,~ ~-
~M:!. .::~-."
~~
''!!L"Jtl
'~
~~
~
. ,>r:--
. I ~
~
-;,Y"
~i~/
~JT.
~~. .~~~.
"""~
d- ' -....~_r~
~7_i3~~~~
~> ::'1'(~i:,'V
--=-.>--.'::4
~~vCX.'--:~:"
,_.~~
0/?"~'~~:
"'<f "
~. ~.
en
~'
~.
~1~~
'~. ~
_..~
~
,"
<
,
f<<i
;/
I~
e,
"
"
f:.\
.
.'
~~:
--.
.1 ;'I
,~ \'
e
-~rI.( ..
~I~"".
~ ~
"
~I'
M1r~
'iJ
~,
,
,
S\~
~~1r
. ,
At
q
\!
~.'. Jll
r~
- I
,
"
-
.
~~.
r
'"
,
~
1;,N
~o
_ l
~
'?'
'"
::E <:
> '"
-< '"
'" ~
'" "
'"
n n
~ 0
IJl c::
'" z
",>-<
<z-<
>0
-< ."
- ~
o 0
Z 0
" "
in n
-< 0
:!l z
n -<
-<. '"
o
~
.;>~
~
:1~1
.,.~"'l
1'I:l
I
"'0-<
:01'Tl
1'Tll>
("):0
~I
~-
- I
o:z:
20
c
:0
p
"
I
!
~
"
.'
~
.11
~
.
;
!
~~,:o . ,
~ ~. \:l ',i..-
~ I - ........~ 'r: 'i."-"J.r.
~~ ,'I '.\ ':....''''~!:' ~
f';; . . "-_, ~"'''!
#~ '" . ',: I" ~~~,J,,~,,~~_~,.
f ' ,j,' '"~ .",.-~ ."" :',~
~ '. ",'-:r, ~ r~...~, _,
--: .;" " ~ ~.r~~'~::-,"V ~ .....
' ... .. , . ~- ~.~ r_.
· ~ ,'i2 ,;. ~< ~ -_.... '~-:;;:L/.. .1
hi \, ~ ~~..:; 't~-'l"r,""v_~_ ,
~~ ',!~.... -'1.A.~ ~J.: , ~ '.....::~<<:i-~~, _ 1'~- ,
h ~""-. .0"~ . ~"'/?'~-"~, . .,3;
n~~t~1 ~-r, ~,"v^ :~ -.~. ~'\.' ..
:-l ", ~ 10;"... ...;:,.."" \" ',J.. ~
h J.:l '" \f,'f'c,",1l p,~ !\~,."" 'j~" _ r ~" ~ '_' ~
~ ':,1rt '':;;:''" ., ~h\- -- ~ \\ I \ ;::,','!I'
,. [~,.' ~ '\ -..; ~1~'~"'- ~~ .1 11~: ~~ '
r' / 1'1 '''?;'l'~ S -\;,-1..'\'!V' " ," ~
:0': ~,p. t,~... ~~ e '\ ~;1t.. :? \ ;" ;;tr ,
- .,,'lie. ,/1 ~.( ,..~~" m", J ',11
VI,..., ) , . \- "'ot"l ~t '" i'I , ;"'<'
~/ '''"., )1#;, :!;K'J: -,:, ,~, (,'~ ". ',Y", " ~,.",>"., .
.,. .' ,fr, ilj".l;~~' ''''"'' ',,,,,, , ". ~ ~r' ,1,,-,
/ t'1t.~:.-:' r.~: i.~ ~~~~ ~_, \, "f ;,..... " . _ iFr. '. \' ';~c;;o~ I
J 0>. ...., ''','", :..... .,.... """', ,
'''''''I~;;"'' ' , ..... ',"
\," ~~ ~ 'r:~" ~".. ,~;, ." .', " ;-:;;>, . . "' .' .,'" _
'" ""'!' -::;p.-" ,~- '1",\'..,,~ ~ '"" I ~ ~
:;~ - ",- ''', ;''1 .'. ;~, < . .' ',i> " Cl ,(, , ! i
INt. :.' .:1:". "'I~~ ~11!/~ :r!'t, 'i"-" ~ '~'oI,;" 'f.", ," . '0 \~
,"l ("J.",~ '1," ~!C'~ .,'. ,I ,,' . '.' -,' ., l~~. . " , ,. /1
;~';:,I.~~~"~"~"'1>"\f';;::;'>"" ',' I,. '\>'.'~ ",' ".,,;;,,<:>. 1 (1' ~
.v _,,,,of"!"""''', \ii~,'1 .I.'. ,,<" " '" ~l'llt '~ _
":.' .. ''''7 ' " , '. J~ -' ~ .i-!i, ',' '" '..." ~ r
",; ..'t:I,." ~"$i>": ~;~: .,'; '.l';:: , ~,.~ . l' ,\1; ,- ~' i~ ,~.~ 'l ",I
~', ~ """,' . v- . ~<. '~''.~'', . r;: ~""' -,>j
. , '':J,,!,':' 1"1,.. "., ,'i;~:, , ,,, , , .
;,z-" ,- ':", ":. "I ~"" :' l't,: i:;
':.",;. ',.1j, .~"",,, . ..~..~' " "~ .. . ''''. _ , ,
" - 20~'. ',,,\ ',.,. < '<h, ...C", ~ ~~ " ',.1,'0. ~ 't.i!'~~' , , '''-b 'M/..~- _ I
' . ~~.. .,,; '" . ", " ~"-I ~""""'" .~ i <:t> >z ",-, .~~. , I
"''';''tr'''-''E~'''':';:- ~ -~1t,{,>::;, ." /i~ ;;i$.... i'''( ,;;.'rl~' <.iI , Ii paD .
- '.",> !:'Ii""'" ':;~',~~o'; ~"!,:. ,g~, ~~"j,~I;~ '"" I ""'" ~r,,' - .', ~ KL, _, ~
. .. l'..... , .."...... ..,',. , , . ~ _, n ,
l ~ '., ", ~~ ,;J;' .- -;>"", :i > > ",',. DY;'~VJ. I' '0 ,A" . , ""!
J.\'b,l"" .iaAt~,:,t'l ';"",'1''';;- "'iJ'.,J,~: ': '" . ~1:..- . 4',"" ..,.~ ~ ~'':;:
1iI!~JI~ '~"'- "',ie<l ~ . . \ "~',i~ . ., ,:. c' ~'1J ',-~ -L +M~ ','.L M'
- 8 '..,;'~ ''''1. ~' " eLf , ~"" . "
'. - hi;;"'" "i.l~" .
"'""';:".........-:;-0: Q '," .'-f.'.< I~', ~ .~- ','. (r- -t; '. \ 'l(~ 'r :""'r~M. t. ....",. , ~ I " "1./ I! t ...~,
...... " 1If'J1,r- ., ~ , ", . ", V"" d,...,
'), ~ ,'1: i:fi\ "l',~, .. ," 'd!'I,,', C,". ' ;... ~ .....C',' ", '"
. +~ ~ .~. ,D,,:o,. .:!',,' ( . ;;,)~ . ~ '-ll.f..., " ." ""'''I"''- 'L,.;
"'> ",', C."," . --':~ .....,', ",,, , .,u. ~:""'j,, I'" .~<- , .
~ '.~- '0 .'7. "', "",0- . ,- _', , ..L.. ~ =-~1:;i" .
" ~" '<'O'!I: :t:l' ~ .\~' '-},1 f, .:L It. "\\l [~,!;~ ~ __ .L1J & II' ~'\ ' ,', (
liE",,' "', c:. . r,' 'Ii. '1 {tml/i{'m\ ", -<..;. _ ~_
C(. ", . , . , I, ... . "<,,, ~ <{"
;' ;....., - f." '.. .;, "i);:.' ''','''-..' 'c>'- :~:.. . _' -';, ,I af..r''\Ii'1l\'" L-
....~.. ,\ """" ~" ",-,1/. . """ ,
' . ,;t~~?~,~! " ;1" \~~I~: ~ ~,%,,]'~~':, ~~'; ~!Ik!,,~~ 51 ~I~ ~1~' ~~~ h~\: ~ J,r~
.,. ",-~~e.'V':'"". ,,:,.~. .",\.j~, """.r .... . """" ~ '" z, ,~. l
" < "e .,'(, ,,. .,.. 'ilK''',. '.1:' ", . I" "" .~, .,
" - . ,.:: --tfl; y." ',~-:", "it":..I'Iff!!,/". '"'~::=.: 1), '\\ '~\:;"\ "....
~~ ~h ' ~. l I ~~. \Y""' 'li\ ,t.. 1 ~1l~!j\ ,,,_ "" ~ ~
tf'. '. '~1'" \ \~ ..~\-1VIM;h;'-'." ~ ~~~rgW~:.Hlc~',," """,' ~~
~>' "m: I' .~. :\~ol: 1",,/11,',: .Q." '':'~I':t:''I''''''1'\\1lf\ -It:'~~:,:t-t;~r(,\.
;- , " f 7 - .,f"'"(.. ~ :.Y!f.;..~1 " . ~,f,!l I :;. '1:~..\' I w~S:r i '" -'g ',i;"l- f).,
, . .t.,' " . ,; "',"', .'.. " _ '''!_ '."J?,- '. "',. "', '"
'~'-" . ...' . 'Iif';"",,"oO -^,,,,1<::-" ".'.', w., !! '''''l,;:'~'''~''d :21 ,~ '~! ~/f
.y- , - '< ," , '" :!.~,,>..,~ " ~ ''''';;';[!); ""'ll'., ~:
\,'" . ' , t ,.., 't) -, \,,;. ~'11~'" "'.'.J.., " m 'b- '''co, VI i - _ LSU
~ I, ~. . J-'" < .,;~ f~ ,"~-, .....) , .. '\.'
J' , ., ~, , i " '," ~.' "n" '" ":,,\,, . _!,., . ~~ . 1 . U'I".
" . ,,' ,..,.~:<.",>. """'""''''. .
I > . f1j''''' " C!~~"~. ,., ./ 7 '}, .
' ':~~";;;'."" c,;;:t;:1/ "~~l\': '\;,.., "';;;U1 --- "II". ".', \~"
~'!j( ", ':tl"'~' 'W..;l:''';::'' ~,., '. '_"""" ..
1 \. ,~- <. "= . I ' .,.. . '", '" ~
". " " r tI. - ... ) , 1 _... ,
'., , '. .t, t. '\~ f~" '''c.''- <'~:..~~ "f, lbiJ~~pl,f~tl'oi-}'" ~ J
;::0:-:\ (:</0"" ' .. '" ',....J ~,_" '1)'. '. ~.Jt~.~
'. ,/.0" , '.", ~. '7 '"1:'1 )~' <, -"';". ,'" ". 0 " Ii',- "0 l f; .,
" *!r;'l~l!'f~}.:(.~rl~[,.;;; ~>'~'j ~;:;.:M r~ ",~~r~J. '., Lt'~"~t\:il!r'ii; ilI1
j.. ;'......' ~ ,1" } '-~~~'\I-1:' ~ ;tJ~~--:.~r:-l-+>-v"~,J'I' <.:' " _.....~Ji}'J.1"~'j'l. '11ll
~ if ':, ....,:' A~': ~~"~Jt/\', l.." ~~~~~..;, l"9...."-r;:Ttj(v;''''-~. /. ~ rJ ~-....L~ ;:j~J'L~'c
,.'?'" "'.,., ..,~.:!t. ,:=, ;~.:. " ,,~..L8t:"'r/-,.'/ 'i}'o,', " ".; b _~."
" "', J .~. ',.J "I;', 'Iii':", c., '. "!r~';," 1'i" '" .~':J" ~
. -i-t, i '.;" .";,,r-.:;>.9(,,!'l!,y '~'E"" <_ ~ =i " . '"
~ ;"'l'P'! ~L! ~~'i~ :,,,,,!f..,,' -" :.,.:.;:;;;"_".~,, .co: ;!:1'j ','. ,~il'<'
' . "',,, "'1 P!"'..IiI:;E'f~"'~:t;., A:i;r'tD'""'"' ~'i.'}I I' ,"
" (I,~' "''''',:'' .;p.." r,;r'.:;;p') "V'i' r 1 "'l; _, _. -1 'l[ i"L, . ,',Oil
"':'1 (" Or! <", 'f' "y- ": ,,- ;"~",J., ,"~,~ . U, I\~ , .,~.".. fir"
1j.!i~! ,r:;~'1~':" ~\' (/:, v'~'!\,\':l ""'h-~~> rj'~'i'\'~ co'. _ '!?,.,jj;, "
"~,~-,, ,. ',!f;, "'l.\ 'j ~/,~ ~U"i""'~i""i(,J):~ "'" a.,~:(,. .... ~.:iI{rl
Or..' " ~ ~ 1,. _ ; \L,~ ~ l. /f -........... f?Q
JX". ";;iIi',,,,' .- fH ~.c' I.ill:, ~,' . -" ~_, '4Qt't.\'~'{!S"
' p. ;r,~ ),'/" ~~~.;\,'~" } '.> d ~I r - Ii" ~, .
r~; 'W.?i'iI""';"~'D1'?> 1" ~,'
r,~",,,,,\ ll:.'"r -,/. ~'"' "".. r \ 't: 0 ;a,Y<\.-1 __,"" ,
I~~ ~'.:.), <,:&\.; J';~~;J ~ . '" , ~"I. _ '.'
'1'1\/ -', ,~.':,' ',. ';,,}<,' . ..)<' :x~'"'
',~ v...:;..\ l~ I ~. ,/if~;6 ~. ,1;" j;\.,\,-~* 1 ..J _ I ,,_' (
....< . ,t .. I"'" "^ - .\1 ...,
.;.;. !,;,~~"'S\~:t:.;, ,: ,;"" ,,' \" < 1f'~ . ) _ I!:.( /'",.", "
~ cl,~~ ,t"~", ';:i\'. _ "A'-< ,.,' '1,.:,' =', ~, ' ,
~.., ; ,. ~., ~ {,'- .:p 'v., '\., _ \ ..
ri."/.R~..".l~i . ;".I!( ..'......, Jtf"l'i~;'.,f)";. "., "'~~;~:.::,::: 'A' ~f '(,~. :r.. .~Iit,J'
e~'';'W;i'' '::.;$.~/~{< ~'::.'~r::;-"7::L I",::: l'l_b! '," ;.:;; -~~ '",-.:T1~_,
Ii'_, ~ ,;;~'t{" ,~l"~;.^_:,,::) -J.,\. ,. _ff .. :,( '.' ;;~, --t
i~.?.7a:~~r:~"~'~"'~~.I,ti::,.l~ ~"". ..;\ f V rKr::r}j ~. : . <V ;j,
:'11..-, "''-~:;'' ,_. H.. ,_ "
" '-.'~'~' !.~:(~;.-;;.ti\"j~:~'y.,f ~:':;;;:1l1 i~ r .' .:n'.!~
<'~ ,,4.;:~~,U'jy,;?~/,. . . ,
[2',,,,(~';m~: :~?, >t:1 , ~_J!l'y,.
~'\ '1.!.)w 't:; ~~.
\'.,' . '01 III _ . ~
~l"'-': '-;' ~~ .
.,-/'~-, ~>!. < A ,. ,0 . ~
"'"' 1W-'" '. ~\~:.r .~~,
~ I .r _t,' <i I. "
f'. ...-.,,,
" ~ J~
~ ic ','j,' C'
t, I.V. ,,,I .~ "
'~, (~.
,
.
"'"
(
w
~~,
-~~
'?c.'
-~,
~
.'
"'II.
r\,{~\
~
~
~i\
:<
.
,..
;l;i'.
.
;;.~:
;,ll
t
..
~~'li
'.
., n
, C' -
~ .;
,.
~
~
-1\;'
~
~
l;
'<-..
;:)f,
-
l
,.
~.~.
';.~
~-...~.
;e.~'
~
t~;
,
'1!
\
"
'I;
Ii"
r..
.
.~~.
~'
"
,
,
,
.~
~~"'-
.
...."i
f. '..:
t4
iir:::
~
"',
},
~~
..
~~ .
.'.
J
~
/J
':'~"',
....."\.... I:
i
(-,
W.
.1
,
9
,d;i
~i
,
,
'.
I
"\-
,
It
.
~tr.
r
t
~
'.
I..
"N'
A
1
ii
~
~.
.
I
_.-;I
"
lti
'~;J.
.....
?
c'
.~
;;;""';:;,~
~~.j;;
~'....,;
. IJ
~- ~/~
':tin;;" -
j
}"
".
~
4:)f"
!
"'
;~
'j':li;'
,
c:
"
~
~,
..
Co
.
.~
~
\.r."~
,--::::
il.,
,e;;,.
',-'
'~
~.
~
.r~'
i-,"l)'V' ,.
,
II
J./;i
,<.
'!-JG
)1
'-;;#
~
,.'
i
~
i
,
'r..-
~t
iij
!l
__Ii
...:
..
).-
'}
~\<i . ~
:t)/.'V
,~ f
NOll-
,
)-.
;0
:E <:
> liJ
... Vl
IT1 -
.::a ~
n n
o 0
z c:
g:j z
;0>'"
<z-<
>=
... ...,
- r-
o 0
z 0
c c
tii n
... 0
32 z
n ...
... es
r-
~
~,
:r~~1
o
-00
::0-<
/'T1 1"11
n~
,-0::0
~ ~ I
ill ~
0'
. Z:I:
. 0
! c:
1 ::0
.f .;""
:~~;
'>1-"
, ,
... ~I
. I'
"
-;:;
,
(
R
~
~
"
~
'.1'
.
i
(P'JW.
;']1
.\
'\s,
':\,
.
r~H
.
~
~
....
--,.1
ii'
~
~;~.il
'; r~
~
...
,
,
,
.
,
<
,
,
~
~I!
I
......
H
1.:1
tj
T
.~':
.
f
>,
il'
.~
(
':!.
~,
.
E
J};
!t
.
"
~~
i
.'
:;Io~
-~
~
\
I,
~
~
i1 ril,
,
",.
~.
~
r
~l
~
~.
'"
'1J~,
.~
')ii'
r',-~
~'0
:....<'!"
~~
~~;
:t.,~(
".6.
1
i
"
~
..
,"
~.
'll~
~
~~
"0
b
......
",0;. ,"
.
~~
{t
~,
i-1
".;
..-;~
_'I:I
~l ~:
'.
':'ii:r.;<
'"t,,,!,
:.t.,.,
",
':'
~
li1i
f!J!
'-' '
.
\'
"
~'
~
\~
"
r
il
'"'
..~
.
I
.
,
,
,
~~,
~\"'~.' 7"'.<7 C--.
""ir~'
I .
l <
, .'"
,
,
~
r,'
OO!!
,
.
~
..-:..i'
~t;i
,
'J
ii-
.
.
\'
'-~
...
"j'
-
, i
!
:I
.
I
(ht~
...:t.
:;..'-'....;
,""
~(J
..
~.,
~
~'
..
-~
,";i.;1
-17>>
'~~m'
'--:-r- ..
'-,' [;(1
~h
..r~';
;:..-""
t~
-~l:
/;;
,I..':'
i'
i
~
~
1]1
~?,
f!J:,""/,....t".
'.-' [jj!
, ~
.--
~
~~
...~ ;>-
-'~'
il
~
.'
~~
''-
_\'1
"
:y('
.'\
,t
.'
'~
~.
~
.
.
"
!:
.
'S!,1lo
~
'.
~
o
1)/,
'L~
,.\)
/"
;
I
f
,
~
,....
~ ,.-
~
~
I;:;
.
"I"\~
~
~
;)
~!
~
~
I:
~
.,
.~];f
!Ir
]
.
o
~~
'"
; : I
~
~
'l::-,
.
'.
!lf~
;;1
,!:
~
'';',i"
':\;'
;:$I;
ii4
.
II
<
~
jL"':
[~ l'
"-
~
...J
;z
,
,
.
I
11
.
~l
..
!"
".,l,
Q..=
"
'"
F
r
".
..
~
'l~~
, =<: :> )-.....
A
:').
.,
!,
::c
=E ~
)> ::c
-I Ul
'" -
::c ~
n n
o 0
z c:
Ul Z
"'>-1
::Cz-(
~c
~ ~
~ 8
c
c
~ 81' J
::tJ Z I -<
n -f ~ ~~
-I el ;~. _. ._.
r- i
:.'!1.. ,
'\ .A
~f
"
..(~l
~/I.-
I. '
J
.
'-.,
N
,
-<
II rn
::0 1>
rn :0
(J
ll' I
i;! N
'-t .:.
o I
z :I:
o
C
::0
'l
.
"
&
Y'",.!.
- ,.'-r I
(' 6-.'" I
~'!--
....~.::u,
.
,
"
"
.
.'
.,
.
I'
e:
.
"
"
~
~,
'1
(
'II
"
"
,-
,-'.
-~
~~
.,i
,
r(i
,~'I
"
,.
.,'
, "
"i"
,"
.iit
~.,.-.::
~,
\~
~*
:1,',
.
,.
J;li
~
~'/I
mr~
R'f;..o;
.,~:':
t~ ;
'-
.
,~"-
'g;
-I
.
,.,"
'.'\
~'
,
.
..
?
:;~(
"
~z.
,:
~
~
g:
CD
"
,
'1'-
,r
r
,
'~
~
..
';,.
.
~/.~1'1' .,' .~ ,... .'"
/A / t ~. I'" .' '
!, ... . ~ .,. ."
# J ~'. '", i:-\ . ",,! ~ ~ ,M,~
~' . ;z ~~ ;!i~~'" 2:. .rl'.,';;:.... lli%'.
'''",,' 1.' ., ..J.
_ ./ -.' ~~..'i:l' '7' -~~. . ., '""i:;._'~ . '",
----..:.. . 1. ,', ~'..- O-~._- .~-:..!l.-.,' <
l ~.'" ::lIi' I~t..' ~~",,,;;'.~.~~'i".."
/;' ?J1~L ~rJ.tm~ TYH',,,, r::J,..
~'~.. ~':;._' ..:... t,:~~.:&, ~~... , ~ if/::.. ~ ?t;\>'.;~\:.:.~~;'" ~~;;~~
/ .. ~ ':V';'J ~., i:tirl ..... ", ,';,: \';:~~"'r'-' ~".. '~,' :",*
/ ,~l~...f; I') '.~ ':"'- 'I.~;~-:""-_ - ,~. ..?,~
/ / hl~'~~!~: 1};~~?{'i.i11 <~'" ~ . -;']', ,;,,' -;", '-'~ .
/ .' ,.' WA' ' IS""~ ~~',dl;;;:~ "':'~.if.~' ",/.',~ ' ".&~ , -
_I I f' "1' 'l'";'- "~:~~", t\i\"". ..."'t~, 'm' \ :1'N.:..~ ,.1Jt 1
;l;1 ., t:.1',~\.,,~...\} ~,." '1 ~." ' \' ~"~.' ;.j(
; _ ".' ~ i.n .......9 t!; .. ~ 'to, ~ II . ~
.-vI/._ .,.,. I' 't,' rl< ,.... l.~ .~ ....
:E/ .;r.' ,:,!.I'), 'l\!..... ,I'; ":,..,, ;'f";'" '....:. ."j .
, 't'" " Ii' /'- :1--",~:-",\""" ,.\'~~':.i <iI',I"I. :!}" -
i' ):~~;- r.~ I' ....!,... '~ '~^-"l~\' ,'. '" : ~ ~.., . ',~;'P. ,.'t - lEt.;' -
, ,. '~~,." '1~'.'" ~'1 ,ry;?'..l\ ., ,'.- ,'''. -..' ,-"':<
,~ .," ri':':~ ",.~'. . ,.~~ /~' '~, ~, ' ~j . \J.. I"'_~I
;1'1- ' ~ (" . ,,' '~"'._ P.:" b~~",' .. ,. 1~'" \r,
\ -!_', . ~ <<.; "l~~ .'. s," I 1.. ' ,,;-'>: ,~;' . ,.' r'l"" ~, :;.,. "
~;l"'~..,L-!::' ,~" . q','" , . ,-"" :; I ~
""'''=: , .,.' d;1i~'.' ~\, "1 .": . .... :' ..~
.,>~~ i~~fi' ,. ." ". .
~"~'\ ~~ y;:>- .~ ~,,~ ":,,,,:-,:~ ',,"~ .I )~7.'~_ .,~ " . ' , '. ,< ~l..... .. VI ,
(,.L .''';' ,.~~,":'~ I--(~\" ,-' ,{,$f. 3;1!,i. '" -.' !/io ~.w, r"';"~'
'J ';fiJ.:..., y~. .,.{ i1j'''''t ~ "",:":;r:t>l' I{ .. fie, >
, . '" ~fY' ,.' I}' .;; '~.:::;,..' .. "p, ';& r.."~ il:' ;;(1 - J.'"'' :'!>I,', /, ~ . -
.ti'^~ r...~ ~ '.'.~,~ -I ,~.... " :- '~Ih'~ \ '''-'~ ~ ' ~~'r :1;--;'.; '~1 ~\. ~..'" i~'/l"
"~ ," \ ,'I >-' '7"' ,'., \1' . '--'''. " ... ,(~, ~ ' J
...--,;: ~.,' . - . ~...' ~ j \ . . '\fj" \~,,... '~..-, .,
,__,~""~.! ~: '. ''j't.-(1,1,' ,,,l'~~ .J /.... ,,' ,,,,.!-~" ( " ',7 ., ""1;-
.~~~;;;.(t~"."3'i """" '. r.t.:~J 1'7".':: '. ! ;" ..- .,' ~. . ,'if'lrrn,,--IJ
I. If') ~'" <' c.: \,., ': '",i< .'." f '. :~. 1\' 4>: ( ~
';!' 0 ~ ~ .,.t, '. In; ..-'" -~"'.' '''' G) 1-- - '1" ~ ~ .,l." ," ...
I -~~.f'u,:[, . ': '~', r;,,[(", f>n"., Ie \ .~ ",. t<. :><}'....1 ~ff.i!fJ1
~ '. ~t-l,'" ~,,-l e., . ", > ._..~J.{;,I,'; ;:~f:f '1' I:!~;--,'''. ,~ ~/.. - ~ R"i~'m.. ' - - ,--~ ...
,H~~ ,,):,0; ~ ~"'/;;;~' ';;Z;-:!~ ,>,'::;:;;I:,~.')'", ~..oJ JA ::.tf3. -I&;UV':' ~'l
~.i.'\' ~' '"'~";I'" .~~. ~?;l ..~. '.&C,~ ~". ."..J:'~~J' }tt"..~~ ~'.I '''')1''., .~!i .....,
~~_:'_ ' " ......f' Z .'>'l~~,;.' ~'llt'f ~ 'll II' (. 'J 1
~~[_:- ~i' ' , !i...~"'~: t~ :?\.~,,, .'~ ~....'), ..;'li< "...;:.~, L~. .
,-_, ,>"~ :.., " ,_ \ ,. " ('2./." ~~ ~.' -t {. t;.::: f - -,' ;:;.-'/ ~j ,~;<;
...."-~. _ "":1'~.; Jl,J,~11 .' ~ .c-~!i<'.i"'~~L .., ~ -t.s-...- #l /, ) -~
~"'z: ~ [. ,,~ . .(, " .' .' ';/ "'~. , .' .....' , '" ~
\',~ .... 1~,' '~.~.. ..' ," ' ;: ~:'tI'(,." ,.. I .. .,/ . . " '"
'.> '. L ~'i~" . , ",~',"'h.;,.! ;;;:'_'7. ~,~ ',,:i-rr.-', - '" , " ,-;:' I ~y~~. . .~. .,.,,>(;<:,
_ )0. . ,,.l,~ 11"'; _ 'l~1~.i'.": ' - 1 ",-, l:;:\ I- '" Or J::.
, ~.;t: < ...... "'-,~ /." 1.,;"I~.>J M ,~o~ -'J. yl -r~,,\.\ -'II: " ~
~~. ',' '~'~~;-i~".a..;':~'::"~ ;t ~-"'V'"'~ . I .fP.':'...... ~...~..~',~.' I \,'~' ".;,J~~',t,'TIfI~;;;' .4 Wy"
~ :' lC'ii.o' ..~'~" "r1f":~' '1"JI!!"",... \ ~-"" J '0(:, ~L.' - " >H~f~ .,~,
" .I>~'" .. . . ,I' . '~., Ii:
IJ. .....r'" ~~J """" c~" ';< ':''''.. -"-- - ::-.~ . 1'1-" =, .
."~;I :~"-:.: "1'1' \I~"'~ ''''-,,:6.;;';' .......' p,.'~ / TT - '.' ~['\ ;<., .
_~,~ ~ 0'12 'I~ ~l\:," ,~,_ ". '--1'"' ~__ _ .:.-..:.., ~ ,,(\) .( , ~' ;t'
~ Ii ~ .~ii ~ "i'i . '~, ~ <i~ i\{ft'L ,!!, l):~ {I) .~ 111 _;' f". J"I . }:'. " ~" ~ '- .' '. ~ '
..' .;~ ~ ~ _ l.' ~ ~ \~ 'Jr- 'J.i\~' ~ll"'" \ 1. :'....Lfi.~ M " J ~A"~ ,~~, ~ I i .p~\O) .J I .;~ "2, ~ .1)'
!'~~'1f ,'. II ,.. ,..- ii.."" .~,:~\ ""; 'I j?;.;.J ..... -r. ,....' -" ;;S::,~ ~..- ,',,., 'k-l r/ IJ',-:j;: "" \,.
i,' :6 . "'r~ '" ~-~'~:/'" ~~"'''''l ,"" ~,::......" "A' ,,!l;"'"'S'""Y'I"'r;~'" ~;':- . :!:l,~ ~"i' <;;.. 'ti
"., , ;;1- v. ..... "~t''''''''':~ '.,' ,",<.. I.... '. .' IL OJ' ~ ' ,f
f" " ... s: _i',C,i 0 ~. J,;. ;.""'~ 'I"" ;::"'\'. !,,,,: i~ ',.' I"~ \t~.;;;:f.~ , ~ ,r!'7. .~~~ "
I', """,,. J~~'.' - ,'.' ". ','"""1' .-
~. ,7 !P~L';(t;""""'(i:n~':!'V.,\,, '.'/ ~'l.~ld' "\ ' :.JI.\.~11,,,,1!.~ .ci,i'" ~",. ~':<",...", ":,,' ,.!
'. ,:8 'rdT \.01' ""J:'" _\~' . rl " i-"' . I- ,~';I/...."!J,~' ;-\..('",!JI ' ~~'I':'" '.. \ - I,.~..:i:
1';. ", f. """.. "~:~' ...... ,.. f''h~ . . .~; Clt. ,~- , .... '" ,.
.. -r-.....' ,- . "" ,'~ Ii:!:", ." 'rl~ ~!.\"Irua., :0., ' ::--;;.;., "''b'" :,. ~ rt";
)./,t":":'{r'~. ,,' ":'" . "'c. ; ~\-;f [.i., I'~ " " I' I .~~~J., . I I~ti "~~, >. ,..-~ . - . .fl'
~,' "i"'-; 1.. ~ ' jr I\~ ~" . " , ' -, , n' _"" ~ ~ . oJ. ) of
_ );1 ~~Y::"f,~,~.~lg '::' I ; ~t.~ :"'\(:~~' :~ '",,:: )),' '.: ~j.;St'L" 111 /~rj- . . ~~'Z'J. . M
. "~ti:~~~ilL" l '~'" ;: .'"".. ~ ~."'; ..). ~''11 Il~~~ ..... I,,' ,1'1( ,
. . , .\ ""," ..," . p "" " ) " _ - , ' " -.J~' .
, )'J;, Ij"~~,i0J 9';';',)'~ ., · i"\"" ').. 1"" \-"" ';;'J\." - __J< II) p....-:.,.'t~..r,~ .
.' . k:\ ~"I ! ,'.' r', . 4:.', ~'\"-i. "',' (~, 1t,~{Jfo.;,~~ .. ] ,.
. ':" <<:,.-<. '.;'" .~' (11.: ',j.--,,)', ','~ 1:il':-lTtJ:l'.., . "
,'f~, '.',' ~If.,~j~~l,. ,:.'t.li~!~J ,., .' ,1;:F 1 ..' .' . '''_~"~J,;;;,,',,,?1, ,.., "
, ' '. (: "#--:1 ,-tt,. '~~-~t:~: fl)/"". - ~ ~,l:'-, .., .,'"' :r~,'~ Jt;--.r r. ~
.. ~t:", ';I.~!'-tjJ.lj~.o j~,,. ~ ' ~.." t 'Y'. JAIIIOV..... i ,., ,....,. ~ ..' ""'(",,1 , ...!~:~':t.:Tl( I 7"
-^" 0;0 ''1-.'';1.)'. 4. II. ~.,,,...... ... ~, " ! "".' ,
. ~... ~~:.\~ ~'~Vj;' '~fj~ .~~Fi'.k~;';' "\~ "".. B' "I ~.,.l' ~ -- ~,I{.8..." ...., '."- I I ~ "
'. . ~\fJ: 'I -, --'.- L ~" I ... "' .' 11'11. ~ ~ "" ' . .,~ ,,-. ' .
'!I ,. "' {. ~ .J......... 'j:.' "J.t,. ~J ',.i, ,...........~l". -~l::!, .~."r:~ ~~';;l ,- <' r -"~ !~',' 1 II.,~ ^ .
N ,u.,,'" '1'.", >l1'.N'- b~J:~'l""'~ ,,, .'. . . ,'" ".. ".~ lk,,, . .
~. ~!"./I.I' &r.t'" .. V"-t~'-l" ~{,Ir:V>t,j"';l ~:'~ ':""~ I'~ :ro<<l\),"~U~ ,i':\ ...,
..... 1If~. ':13 I ~..- ~ ~l~' :>'" !;(\..~.:.. I 1'-, A:::S"" <. ,~'
. _ I/'!'[" if, """'.,l I' " , ..... ' -l", ., .....:',~" D';" "/1 'l'. ,.,.,~.I" ~1." ,
II.... .')>; ,.' ~ ~.~ " . ~":J ,~ 0.. 10<.'0.;pf:r'-" )::.........p.r ~:~,,J/;....I .~, ~,7;. .~,~ ,~.~~:", . '., '
~1'" 'I~~ ~~~Rr-.-'~ .~A. '(;::o.i..~'" ) ":. ':"'\"'I'~~~'Jc~"" .4/,I!'. " I J,' " " ..'t.".l~ >.' .~" .
'.'~ (~ l '/. 1 r,& ~ .'_'."): ,"II'" ~....:lt,1 't< :", \,;; " ~, ' "\ ('1 .,.". ;:;
'r :Y :' - , 01 (:'.~ J ::~ _:,,'_{.~ ~~ ~:'\ ~;~.~', ;':\fJ<;;~(J ~tt " -. 1I._~;~f.<I. ~~~ "" ~~'; ~i- ~I.' J f ~-bt,: , ,if...:.. L
,. .' . (;I'C 1i .,.._ - . , - ,.o, '.If'.....' - ''''. . " ,f:I'"~ili . ";,,. ,"
" ' /.. ~\~. ;;::.i..'.... '. ,-"Z--- '... . 'i>I\,!\:..," , ,,' .' W".' . ~lWl!:";t;"'i,,,..," ' i
, . ~ '...... ...... ",".", ~ ." ~~ " '" ..
, "1 " . " _ _ ','" I. ;::..... ..,...j) i' ~ '.0:' ~I J I' .~ ,~ JE' .. ,~
,.-.. " .". ' ...... '"", . >{;.: .1"" '. ,'.'
",.~;y. D, (, ~~ '. . J~ ,J.. . 1\ 'I."'''''' _I~~ !, ,.',"" ".. '.\ ':j)." ,_..It .._ ".'. "'/ I"
."10, ~ . l- ' . c __~" ..'''' ,',;....~ 1'''" ,.,6"_., " ......., ,;".~~"J'." J, '
. ,:~"~,~, \ JI". ~L'i";~A'l r7'~'iVI"~_~;~"" ~Ji!l'];:.,,:".:4..\,...,' ,. ~'.'.:~;;:":', "~. ~.. ....... r ,'.' I . 1\.,-,' .. '.
-", .' ~' \~... ~L' ""'/ ;.-'" , .". .,,!! '.. c ',"'" . ," . ",,,~,,.;>. . . ~.. "'" I"C. .
C- .. - ,. ',,," J' .... .. ,,."'" .. " ,".~...",,-., /.
I'TT:,.~~.:;-~'/... ., '!f'._-' ,~--~r>; ..~,1.....l1.;-1 f " 'r ~h .~.:;~ .; ,rf,~-<~" ;i",', . ../.:' , '".,:.'i~ ./:~~ ~ , .: ,~. '..' r .A' ~
'~,' .. ...... ".".-. .....' . ,~_. ''''......q ...,,;_ 10), ,.,.,., ',.,0' "'.." ','
l,.,,,,,,-,," _,~. ,r,." .','\1" ,;:r,.\^", ::,,/.' ~ I; --"' '\ (rj \',,. ,'"I,J' .., ''. ,,"t," II, \ ., ~ i ' 11
t,';..:;",-:"," '.' ',"', .,:,11' -';"'\':: iJ. :"" ~."'"""':' \-:........ .)1 "I' ~...';'l !,'~~' _<~'i "~d....-:o:: ~ "" . ,,1 f' "', .-
i~,,; I;S",~ ':.~'~ ..1' \~\~.~ ~;~~~ ~ '~.~~$;<",':"t:,>, ",~:N- . - '~'''''.~,., ,,",' 'c; !,~: ,f
~' "~><:C~~. dcf.,.. '~?' .... . ~. .'" ,I ,
.'" ".:".:- ",U;".:'.' 'r. .'":\,'." If"'~ - I' ..' 'S ,-" " ;. ,-,' " ".' ,- . " "
Ii,:....f.,. """. ..:h'....; (:."'".""';\"~";':..o ". .' .' f .,,~. ", ~")~ ,',. ..~.f ..10.<' . ,. ,. . '.""" fl. '. ,'"
~~ ..t ..;.t'.........:~:..~...:.,~!,:,.,?.;<'L:;,;}". 1,~.., ~~\) .1 ~ -c,(' .(', ~ ~@ ; . "'...-'.. ~ - i'';';;'~'r,~.' ,. 'I
~,..,~., . ~"".''";'''' ","'j.~:~\ ,;_ '/., ., \,' '\ ." . ';~"'''',''':ill>.
. ,:;,..:~f\,:,~\~.,.'......i~.. )::~'~i{.;;;y-Y' 'J'! (.,'r. '0 "~;c'<^ 'A, ',0$) ';It&, ._.. .: :'':.' J ..;." fl,,~, .'
:_.~ !:a ~"t~'--"'~ ..' ....\'.':: I" "':: l (\ _'~:::~ .'..... --.:;- 1 '~. 1 .. . '.. Il~.. "" ...~"
.; ., ~~"h:\.~' ,.: : . ': .... ,I, l L L:7..... I 'I ~ , ~~.~.... '", 'I\'~ "J ' , . ....
t";\.':,i;..J;:~,:ll,;:'r ~(';'-l.......';,~' t: ':J" I" ;:"? ..,," .;.v\," .iT', ',", o',' .,. .< fI1
.~'I ~t..., >,'.'-' . .~. \ ...~\~. ., ,. ~~v!: J,' ,. , "',. ' .,..... . ,j;,
.~.~ 1" .,..,:"",,,,,.'~>:,:,.,;' r- ~.... '. ' ".~ .::;i .J;,.'''' , ._' r..., , ,.r;.
_'-: ..' ."". "':'fi'....l'...." \ ~ 'f ~... /',..........,.: J hl,\ ".' ._,~,_ _...~. -. ~~ fJr.\' I JP,">,;' i~ ~.:
:,,'..~,<,.,'.'~\f:'r::''',.1 '~:;'.:~'.d\~ (7' ~..~,~'l ~.';,t(""~~'i..,.. ,:' - 'i-';~ ,.:- ...... .." . -'" ,'- ..... ~~. ,'l~ Ii
'V~y..~:" ;':i.. ,.;..' c" ';:.-~' ."t1l'. '.'i:'" /~ '".~. ;;t .. \l, ..', " .... .' . '. ~"'CI.
"/\."'''''''1 ..... . , '. "',,";;AiA' ,Iy' I ' ",,7 , ~ \" , " " '. " , I -f.. '- 'i
. ~ ~~:~'~\."." :.:', ,~.~:' ,.' :','. '.'.~)i'~(' te;. ,.' ..~:" -~..<h ';'; '.r;:~',:., . '~. ~ ',. " .: i 0 ,,~ ..:-.7'
. ~ ,,,..... ",f . ,'.\t:~(, .J';Ji~."I,~. . _~. . . " , . . '.' . ,.1 \ .
. <.~.;;' '_ . . ":l,\.1L~~"':i "" .,......' "'," ..'.. II" ., - ~:'-; ~, \~....
-.. ..~,....'". .... .'."- " -..., - 1#: ~,,{""
, .J '-r ;.."" ''':.:::'.'''' ~~!~;'.I~,~~ . . <. '"E\ ,iE ',~, . ,; :'-. . .. _"" .-- ~. .- , . !">!of<
~, ':;i!'1'~:ts:.".,,~"'+~}t.'" ~. ,".\1 "",:,::v~;... .;' '.:;' '-,~'_.;1 r ;'!~':~V~'! ,'-~~,~~.. ".ir' .)~~ ...... d. ,."".~",: I V ~'l! ,~/I
'\.l' ",-'.~_"~'\',~";~:~>':'." ""':.,'-"-;':', " '. ~"'__ ~. i'l. ~'r .r: \~~ .,. \ ,_.., .....-...
. 1 v ..1),::""~.,..;i:(,.,,,, '.'r ".... .~~~'}'., ,$Ii t,' 1ii." ~i~'1i;..,',-,,,",, ,,''-oij. .: "'"'~'. ir,... i "~ II
_,' "':~;'.!" '.'..' ~.~; .". ,__ ~', ('~"f..f,J, " '~Zi~,;' i .-:~, .: .-) ~; _~'i .
:'ii' ,J.lJJIJ!jI.' .,.),' "' _ ..., "-,,, '!.:l,~ . <:11'\;1", ' . ~ :,c.'. - 'IIr-
,~,-: .. ~"'J. -,'f"';. ,. t.!, ..- ' ~ =.~ . , .s .. ~. ~ . ,
'-"'.';'!I"'.;'l\.i..;)":..,,~"'r\''''~lr,.._:',, '...:'t',-~;~ '" 't~"l~.'"'' ..~ "':\.) 'tl,.:'." ..-of-- ~
_.,,: "'_, ''."'. :.;_j ", It-':': .:l,~ '-} :~ I) l' .,..Jj":':t.,,' .'. 1j ~ ' ' -. 5,,>'. ~
,,' .' :,." .,','~~ .'~.& f ,;,.,' 1'1- """ \ \ 'r. ( ~....' ~''" . " '. " ',' ~ f7
, : \.. :;.".".'P\i,~.; ~'...#' ,. ~~. ~'\;.../ ~'~ {~~ I' , .'; ~ .$,)t . tr,?t:;,'.J' ~ I.r"'"~ . . . ,!'l~.: . .' ' .;:,
. ~(.~~~~(/' /_ .,.....',., ' '\':r."'"....' J :~ /. ' , " ,;. ~",-">J ,,5 1.<' r: V
:_, "'\~' ;',~"r<, ~ ~i' ~..<:,' .',.... ~':!'< '. . .' l ; ... _..J" ~ ..,~" ' ... ,. . - . _"'Il:). .
, '70, ~r,;,~ ''''~,~ I....' "" I)"" ~'. . z c....'>. ~
, , 't~\~....\I' .' '~~'~~,. ~,..:' -s~. . 'i ' , ~ I,. l:! - '::,;.:--l~.? 11---" ~/"...\ .........--
..' '.'. ."1f'~, if.'" }\,,0., . \.~. '... ". , . -or.:-! I .Vr . }1T1 ~~ f "'. 'T 1$
i "'~o~. , "" /. r ":'.,} .' . . - -'-j"or...t . . I ,.,.'::.,.:......~o\
'..;P , ;~\\.' .."w2~' .... if.~' v ~'. 01- . -.J ,. i_.1 'r.o.f.,::\fJ......-; t~
/."~'B') ><;:'. \; " ,>;" 'il~iI;.~--::1 '. z,'" I' - ( '.... .
.' I .,;,:.,;/ ," ,',:41/ _'" " , :lO I .../.'''' f ,
r';J . ..'""-li ~ i ':"~ *~ '.~.:~ ' ~ , - ~ " . ~. ,:{ ": / r I ( '2 '}: l. ;;.:
, , :.. ~ .'. - :',. , . " " i , i "~"",, /. ">': \ ' . -. .
....no, ~ ....':)".' 01'.,' :r<:.r. '. l '1- .~.. ..~.~ r~' I F'0"
i ' /"""1" . . ~. , " ,~A' ' I.. - \...... V''It
, I . ')~:" , '7 ,~ ~ 1- . ~ "{I.. i )J i / " ~1. ~~/;.; ~s;.l:; -J. ,Ij , "'. j . { .
~ .,1/" ~ ' . '" r/') l' I' So - ~;!.. -." . \ \.; .!
\- Iv i.' . . .l .. ' C! """,,, '.. .' .
, :!! ,:<,,""."" !f! )pJ:. '. ..{~ '. we I .. .
. _ '.' ~'f'1 .. "", . ~., J ,~, .~ ' j ,. , ),:. .
" 0 =E ~ ,'ii.' _ . .. ,~ I;,/~, ,"..:..' . 4 "I I,...{+..~/}j ~ ):' ~.J
! 0 ~ :2 }'" , ,.-:. , .'(/KiY ,? , ....ri'...
. ~ VI.. ' .. '....,~" '~.:J/;/ .. . "
. I I'T1 _. '. I, '. '" <II . -( j. . 1:'"' ,
: -0 -< :0 0 . . . ....._ .,...... "". '~~r..:.J" .,.
. '" .... .. . crr ,j or.. ' .., ~(k' / ", ,.
, ::0.... I'l . " . ,'".." , ,';-<' ~. '-,v-.". ... ( .."
; fTI l> 0 I'l. ",,' . ' ': " ,'? ...7' r 1\0.:' .~4~' /~ i" '.i
:. ("")::0 Z cO ."", H_l' . ~, ~Ic...... ..,j" '~""f.:" '" \ '. v.(o,t; ."
_ CJ) 1_,'0;1.' r, ~"'-- (II ~/, ~"'. '''6,. ,
"t7 i ITI Z 'i" ~ '. -r.. :- '. '~g,-.J:... ,.!J .
r- i -0 I ;0 > -l . ", II .,r~;". " ~l: n - ~~iI;,*~ ~.~:;!,..1qI ,
.)> -' < z -< ".' " ,.,."', l"Ir ~i'" ,,;I" .,.
-t . ::-1 ''';' J' 0' I ,'1- P.."'r.t v . j;!t\~ ,)
'" ,~ ~ N ~ c." ':. :\ , . ~ - " ;~ 101 t ~ '~. ~.. if
::! ~ 0 5 ;~X;It;:' "~'l:: '- i' /, . ~. r^i~%j - r,'
~ 0' Z O~;.... ,;,,' ~Ia -.. ~ Ili'i ~.,jJ;z~~,r:1 I. ~.
or c '.' .( -. .. . , L - Ie ./ I . 'If . .
c. Z J: 52 ':.... .'1""1 ~i. ~.~ i-~ /'~. \~., I.:,
I- 0 lJl I'l ",;,>'llI"" "~ . :..; H"'~ .,. , ~
" . -I 0 . '. oo!': . i =-0 ~ I .. I
. ! C:!! Z ./' ~ ..1. ~ .'~ ~. .::.... ~ ;.~f,.,-,--t'1'
t ~ :::0 n -I l.,.' " o:l ~ ,.. "\Iiir M r""~r'. .-~
I". -l ~ t. __ i;.., ;=;, t:~ f '-'! ";;,.j ~/ ,:
~ .r:.~A. ~~.. /i _ '~. "li ;: 0 "". .,-
~L _L_"d;Z, WIrJ _ :E !MN ^ >
-'
~i
~
..
,.
i"
d~
,',-
-r.
\
"
J2l
.~
....~l'j
.'
:
\
'Or
l! ~,
~,~
Oe~
t~
,
.
{
.-t
.
~:
~ii(;
~
..--...~.
f&.i:l
.,
~'
e
.
-
15 15
--
14 14
--
13 13
--
12 12
" II
".
10 / 10
./_-
en /'
~ -'
::L 9 ./ 9
U
Z ./
,
8 ~ 8
Z v
- ./
/ --
::L 7 7
~ ,./
a. ./
~ --
0 6 / 6
,./
....J --
....J ./
~ 5 ./ 5
"
Z / ,\-.S'"
<{ ./
a::: 4 ...- 4
,
.---.
3 -- 3
...- J
--
2 ---- 2
...-
q
I I
--
0 0
2 !S 10 25 50 100
RETURN PERIOD IN YEARS
NOTE:
I. F.... intermediate return period. plot 2-1_ and IOO-~Of value. from map. far a 'Pacific duration,
tlMln connect paint. and r.ad val.. for d..ired return p.rloJ. For nample given 2-1ear ?'4-haur .
3.'0. and 100-,...r 24-haur :10.40", 25'~ar 24'hour: 7.10
Reference: NOAA Alia' 2, Volume :JI -CaUtornia ,1'73. RAINFALL DEPTH VERSUS
RCFC a WCD RETURN PERIOD FOR
HYDROLOGY ]\J!ANUAL PARTIAL DURATION SERIES \7
PI.ATE E-5.1
e
e
e
AIO.out
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, Ic) 1989 - 2001 Version 6.4
Rational Hydrology Study Date: 08/04/05 File:A10.out
914 0101 Tr 32780
Developed Condition
10-Yr Storm Event
8/4/05 SWL
Hydrology Study Control Information
**********
English (in-lbl Units used in input data file
Van Dell and Associates, Inc., Irvine, CA - SIN 953
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) ~
10.00 Antecedent Moisture Condition
2
Standard intensity-duration curves data (Plate D-4.l)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity ~ 2.360(In/Hr)
10 year storm 60 minute intensity ~ O.BBG(In/Hr)
100 year storm 10 minute intensity 3.4BOIIn/Hr)
100 year storm 60 minute intensity ~ 1.300(In/Hrl
Storm event year ~ 10.0
Calculated rainfall intens1ty data:
1 hour intensity ~ O.BBO(In/Hrl
Slope of intensity duration curve ~ 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
**** INITIAL AREA EVALUATION
100.000 to point/Station
10:~.aoo
Initial area flow distance ~ S56.780IFt.)
Top (of initial area) elevation = l322.B30(Ft.}
Bottom (of initial areal elevation ~ 12B6.600IFt.)
Difference in elevation = 36.230(Ft.J
Slope ~ 0.04229 slpercentl~ 4.23
TC ~ k(0.4201*{(lengthA)J/(elevation change)]^0.2
Initial area time of concentration = Il.7BO min.
Rainfall intensity 2.l54/In/Hr} for a 10.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient ~ 0.808
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 2J
Pervious area fraction ~
Initial subarea runoff ~
Total initial stream area
Pervious area fraction ~ 0.600
A 0.000
B 0.000
C 0.000
o 1.000
75.00
0.600; Impervious fraction
7.586lCFS)
4.360(Ac.)
0.400
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i+~+~+
Process from Point/Station 102.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
10E.OOO
Upstream point/station elevation ~ l2B6.600(Ft.J
Downstream point/station elevation lOBO.600(Ft.J
Pipe length 26.20(Ft.) Manning's N ~ 0.013
No. of pipes = 1 Required pipe flow 7.586(CFSI
Nearest computed pipe diameter 6.00IIn.1
Page 1
~
e
e
e
AID.Qut
Calculated individual pipe flow 7.586(CFSI
Normal flow depth in pipe = 2.94(ln.)
Flow top width inside pipe = 6.00(In.)
Critical depth could not be calculated.
Pipe flow velocity = 79.41(Ft/s)
Travel time through pipe 0.01 ffiln.
Time of concentration (Tel = 11.79 min.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++t'++++++++++++
Process from Point/Station 108.000 to Point/Station
..*. CONFLUENCE OF MINOR STREAMS ****
108.QOO
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 4.360(Ac.)
Runoff from this stream 7.586{CFSI
Time of concentration 11.79 min.
Rainfall intensity = 2.154(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++T+++++
Process from Point/Station
**** INITIAL AREA EVALUATION
104.000 to Point/Station
106.000
Initial area flow distance = 696.720(Ft.l
Top (of initial area) elevation = 1299.900IFt.)
Bottom (of initial area) elevation = 1281.600(Ft.J
Difference in elevation = l8.300(Ft.l
Slope = 0.02627 s(percent) = 2.63
TC = k(0.4201*[ (length^)j/(elevation change)]^0.2
Initial area time of concentration = 11.929 min.
Rainfall intensity 2.140(In/HrJ for a 10.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.807
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 2)
Pervious area fraction = O.
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.600
A 0.000
B 0.000
C 0.000
D 1.000
75.00
600; Impervious fraction
4.680(CFSl
2.710{AC.)
0.400
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++++++++++
Process from Point/Station 106.000 to Point/Station
**** PIPEFLQW TRAVEL TIME (Program eSLimaLed size)
10E.OOO
Upstream point/station elevation = 1281.600(Ft.)
Downstream point/station elevation 108Q.600(Ft.)
Pipe length 18.40(Ft.) Manning'S N = 0.013
No. of pipes = 1 Required pipe flow 4.680(CFSl
Nearest computed pipe diameter 6.0D(In.)
Calculated individual pipe flow 4.680tCFSl
Normal flow depth in pipe = 2.06{In.)
Flow top width inside pipe = 5.69{In.)
Critical depth could not be calculated.
Pipe flow velocity = 78.73(Ft/sJ
Travel time through pipe 0.00 min.
Time of concentration (TC) = 11.93 min.
+++++++++++++++++++++++++++++++++++++++++++++++++~+++++++++++++++~++~-+
Process from Point/Station 108.000 to Point/Station 108.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.710fAc.1
Runoff from this stream 4.680(CFS)
Time of concentration = 11.93 min.
Rainfall intensity ~ 2.139(In/HrJ
Summary of stream data:
Page 2
~
.
e
.
Stream
No.
AID.out
RainEall Intensity
(In!Hr)
Flow rate
(CFS)
TC
(min)
1
2
Largest
Qp =
Qp=
7.586 11.79
4.680 11.93
stream flow has longer or
7.586 ... sum of
Qa Th/Ta
4.680 0.988
12.209
4.622
2.154
2.139
shorter time
of concentration
Total of 2 streams to confluence:
Flow rates before confluence point:
7.586 4.680
Area of streams before confluence:
4.360 2.710
Results of confluence:
Total flow rate = 12.209lCFS)
Time of concentration 11.786 m~n.
Effective stream area after confluence
7.070 (Ac.)
+... +++ ++ +++ ++ +++ + + + ++++ ++ ++++ + + +++ +++ + 't... ++ ++ +++++ ++... ++ ++ +... +... ++ +++..j_"'"" +... +
Process from Point/Station 10B.000 to Point/Station
.... PIPEFLOW TRAVEL TIME lProgram estimated size)
500.000
Upstream point/station elevation = ~280.600jFt.)
Downstream point/station elevation 124B.000lFt.J
Pipe length 390.77{Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow l2.209(CFS)
Nearest computed pipe diameter lS.OO(In.)
Calculated individual pipe flow l2.209fCFSl
Normal flow depth in pipe = B.BSiln.}
Flow top width inside pipe = 14.7611n.)
Critical depth could not be calculated.
Pipe flow velocity = 16.2l(Ft/sJ
Travel time through pipe 0.40 ffiln.
Time of concentration (TCI = 12.19 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
500.000
The following data inside Main Stream is listed;
In Main Stream number: 1
Stream flow area = 7.070(Ac.l
Runoff from this stream 12.209(CFSJ
Time of concentration = 12.19 min.
Rainfall intensity = 2.115iIn/Hrl
Program is now starting with Main Stream No. 2
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++++
Process from Point/Station 200.000 to Point/Station
**** INITIAL AREA EVALUATION ****
202.000
Initial area flow distance = 69B.330{Ft.l
Top jof initial area) elevation = 1303.200fFt.1
Bottom (of initial area) elevation = 12B8.420IFt.
Difference in elevation = 14.780(Ft.l
Slope = 0.02116 s(percent) = 2.12
TC = k(O.420)*[(length^3l/(elevation changeJ)~0.2
Initial area time of concentration = 12.467 min.
Rainfall intensity 2.088fln/HrJ for a 10.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.805
~cimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soiljAMC 2)
Pervious area fraction =
A 0.000
B 0.000
C 0.000
D 1. 000
7S.00
0.600; Impervious fraction
Page 3
0.400
\~
e
e
.
AID.out
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.600
8.0B9fCFSJ
4.810{Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 202.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
204.000
Upstream point/station elevation = 1288.420fFt.J
Downstream point/station elevation 1280.00Q(Ft.J
Pipe length 351.97(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow B.089(CFSI
Nearest computed pipe diameter IS.QOlln.)
Calculated individual pipe flow B.089(CFS)
Normal flow depth in pipe = 10.24(10.)
Flow top width inside pipe = 13.96(ln.'
Critical Depth = 13.43(10.)
Pipe flow velocity = 9.07(Ft/s)
Travel time through pipe = 0.65 min.
Time of concentration (TCI = 13.11 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++
Process from Point/Station 204.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
204.000
Along Main Stream number:
Stream flow area = 4
Runoff from this stream
Time of concentration
Rainfall intensity =
2 in normal stream number 1
.810 (Ac.)
8.089(CFS)
13.11 min.
2.031 (In/Hr)
++++++++++++++++++++++~~++++++++++++++++~+++++++++++++++++++++++++t+++
Process from Point/Station
**** INITIAL AREA EVALUATION
203.000 to Point/Station
204.000
Initial area flow distance = 704.060(Ft.l
Top (of initial area) elevation = 1298.750(Ft.}
Bottom (of initial area) elevation 12eO.000IPt.
Difference in elevation = 18.750{Ft.l
Slope = 0.02663 s (percent) = 2.66
TC = k{0.420) *[ (length~3)/{elevation change)1~0.2
Initial area time of concentration = 11.946 min.
Rainfall intensity 2.138{In/Hrl for a 10.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.807
Decimal fraction soil group A
Decimal fraction soil group B
Declmal fraction soil group C
Decimal fraction soil group D
RI index for soil(AMC 2)
Pervious area fraction = O.
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.600
0.000
0.000
0.000
1.000
75.00
600; Impervious
6.660 (CFS)
3.8601Ac.
fraction
0.400
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~-+~+
Process from Point/Station 204.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
204.000
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 3.860{Ac.1
Runoff from this stream 6.6601CFS)
Time of concentration = 11.95 min.
Rainfall intensity = 2.1381In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFSI
TC
(min)
Rainfall Intensity
IIn/Hr)
Page 4
\\
e
.
.
1
2
Largest
~~
AID.out
2.031
2.138
time of concentration
~~
8.089 13.11
6.660 11.95
stream flow has longer
8.089 + sum of
Qb Ia/lb
6.660 0.950
14.416
6.327
Total of 2 streams to confluence:
Flow races before confluence point:
8.089 6.660
Area of streams before confluence:
4.810 3.860
Results of confluence:
Total flow rate ~
Time of concent~ation
Effective stream area
14.416(CFSI
13.114 roili.
after confluence
8.670{Ac. )
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~.+~++
Process from Point/Station 204.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
500.000
Upstream point/station elevation = 1280.0001Ft.J
Downstream point/station elevation 1248.00Q(Ft.}
Pipe length 447.54(Ft.1 Manning's N = 0.013
No. of pipes = 1 Required pipe flow 14.416fCFSl
Nearest computed pipe diameter 15.00(In.)
Calculated individual pipe flow 14.4l6(CFS)
Normal flow depth in pipe = 10.48(In.}
Flow top width inside pipe = 13.77(In.)
Critical depth could not be calculated.
Pipe flow velocity = 15.75(Ft/s)
Travel time through pipe 0.47 min.
Time of concentration (Te) = 13.59 min.
+++~++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
50D.OOO
The fallowing data inside
In Main Stream number: 2
Stream flow area = 8
Runoff from this stream
Time of concentration =
Rainfall intensity =
Program is now starting
Main Stream is listed:
.67D(Ac. )
l4.4l6(CFSJ
13.59 min.
1.992(In/Hr)
with Main Stream
No. 3
++++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++++..+~+++
Process from Point/Station 300.000 to Point/Station
**** INITIAL AREA EVALUATION **-*
302.000
Initial area flow distance = 581.0BO(Ft.)
Top (of initial area) elevation = l303.2001Ft.)
Bottom (of initial area) elevation = 1290.BSO(Ft.)
Difference in elevation = 12.350IFt.l
Slope = 0.02125 s (percent) = 2.13
TC = kI0.420)*((length^31/(elevation change)]^O.2
Initial area time of concentration = 11.573 min.
Rainfall intensity 2.176lIn/Hr) for a 10.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.80B
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1_000
RI index for soil(AMC 2) 75.00
Pervious area fraction = 0.600; Impervious fraction 0.400
Initial subarea runoff = 3.834(CFSJ
Total initial stream area 2.180(AC.)
Pervious area fraction = 0.600
Page 5
~
e
e
e
AID_out
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++
Process from Point/Station 302.000 to Point/Station
*~~* PIPEFLOW TRAVEL TIME (Program estimated size) ***.
308.0UO
Upstream point/station elevation ~ 1290.850(Ft_l
Downstream point/station elevation 1288.100{Ft.J
Pipe length 110.97(Ft.) Manning's N ~ 0.013
No. of pipes ~ 1 Required pipe flow 3_834ICFS)
Nearest computed pipe diameter 12.0011n.)
Calculated individual pipe flow 3.834(CFS)
Normal flow depth in pipe ~ 7_28(10.1
Flow top width inside pipe ~ 11_72{In.)
Critical Depth = 9_98fln_1
Pipe flow velocity = 7.69(Ft/sl
Travel time through pipe = 0.24 min.
Time of concentration (TCl = 11.81 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 308_000 to Point/Station
***~ CONFLUENCE OF MINOR STREAMS .*.*
303.000
Along Main Stream number: 3 in normal stream number 1
Stream flow area = 2.l80{Ac.)
Runoff from this stream 3.834(CFSI
Time of concentration 11.81 min.
Rainfall intensity = 2.1S1IIn/Hrl
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"-+-~+++
Process from Point/Station 304.000 to Point/Station
**** INITIAL AREA EVALUATION ****
30ti.OOO
Initial area flow distance = 571.860{Ft_)
Top (of initial area) elevation = 1302.400IFt.l
Bottom (of initial area) elevation = 1288.710(Ft.J
Difference in elevation = 13.690lFt.)
Slope = 0.02394 s{percentl= 2_39
TC = k(0.420)*[(length^3)/(elevation change)J^O.2
Initial area time of concentration = 11.229 min.
Rainfall intensity 2_2l2IIn/Hr) for a 10.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.810
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 2)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.600
A 0.000
8 0_000
C 0.000
D 1.000
75.00
0.600; Impervious
3.940ICFS)
2.200(Ac.
fraction
0.400
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 306_000 to Point/Station 308.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ....
Upstream point/station elevation = 1288.710{Ft.)
Downstream point/station elevation 1288_100IFt.l
Pipe length 31.60(Ft.l Manning's N = 0.013
No_ of pipes = 1 Required pipe flow 3.940(CFS)
Nearest computed pipe diameter 12.00{In.1
Calculated individual pipe flow 3.9401CFSl
Normal flow depth in pipe = 8.09(ln.,
Flow top width inside pipe = 11_25{In.1
Critical Depth = 10.1I{In.l
Pipe flow velocity = 7.00{Ft/sl
Travel time through pipe = 0.08 min.
Time of concentration lTCl = 11.30 min.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+.~++
Page 6
~
e
e
.
AIO.out
Process from Point/Station 308.000 to Point/Station
***- CONFLUENCE OF MINOR STREAMS ****
308.000
Along Main Stream number:
Stream flow area = 2
Runoff from this stream
Time of concentration =
Rainfall intensity =
Summary of stream data:
3 in normal stream number 2
.2001Ac.)
3.940(CFSl
11.30 min.
2.204 (In/Hrl
Stream
No.
Flow rate
(CFSl
Rainfall Intensity
(InlHrl
TC
(min)
1
2
Largest
Qp=
Qp=
3.834 11.81
3.940 11.30
stream flow has longer or
3.940 + sum of
Qa Tb/Ta
3.834 0.957
7.609
3.669
2.151
2.204
shorter time
of concentration
Total of 2 streams to confluence:
Flow rates before confluence point:
3.834 3.940
Area of streams before confluence:
2.180 2.200
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
7.609(CFS)
11.304 min.
after confluence
4.380(Ac. J
Process from Point/Station 308.000 to Point/Station
**** PIPEFLQW TRAVEL TIME (Program estimated size)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
500.000
Upstream point/station elevation = 12BB.IDD(Ft.)
Downstrea~ point/station elevation 124B.OOOfFt.)
Pipe length 646.88(Ft.l Manning's N = 0.013
No. of pipes = 1 Required pipe flow 7.609(CFS)
Nearest computed pipe diameter l2.00(In.)
Calculated individual pipe flow 7.609(CFS)
Normal flow depth in pipe = 8.55 (In.)
Flow top width inside pipe = 10.86(1n.)
Critical depth could not be calculated.
Pipe flow velocity = 12.69(Ft/sl
Travel time through pipe 0.85 min.
Time of concentration (TCI = 12.15 min.
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+~+++
500.000
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 4.380iAc.l
Runoff from this stream 7.609(CFS)
Time of concentration = 12.15 min.
Rainfall intensity = 2.11B(In/Hr)
Program is now starting with Main Stream No. 4
Process from Point/Station 400.000 to Point/Station
**** INITIAL AREA EVALUATION ****
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
402.000
Initial area flow distance = 412.740(Ft.)
Top (of initial area) elevation = 1291.300iFt.l
Bottom (of initial area) elevation = 1277.860(Ft.)
Difference in elevation = 13.440{Ft.)
Slope = 0.03256 s (percent) = 3.26
TC = k(D.300)*f(length^3)/(e1evation changelJ^O.2
Page 7
1JJ
e
e
e
Initial area time of concentration =
RainEall intensity 2.9581InfHrl
COMMERCIAL subarea type
Runoff Coefficient = 0.888
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 21
Pervious area fraction = 0
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
AID.out
6.620 min.
for a 10.0 year storm
A 0.000
B 0.000
C 0.000
o 1. 000
75.00
.100; Impervious fraction
5.150 (CFS)
1. 960 (Ac. )
0.900
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 402.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
500.000
Upstream point/station elevation = 1277.860(Ft.l
Downstream point/station elevation 1248.000(Ft.)
Pipe length 129.87(Ft.l Manning's N = 0.013
No. of pipes = 1 Required pipe flow S.lSOtCFSl
Nearest computed pipe diameter 9.00(ln.)
Calculated individual pipe flow 5.1S0(CFSJ
Normal flow depth in pipe = 5.28(ln.)
Flow top width inside pipe = 8.86(ln.l
Critical depth could not be calculated.
Pipe flow velocity = 19.11(Ft/s)
Travel time through pipe 0.11 min.
Time of concentration (TCI = 6.73 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
50D.uOO
The following data inside
In Main Stream number: 4
Stre~~ flow area =
Runoff from this stream
Time of concentration =
Rainfall intensity =
Summary of stream data;
Main Stream is listed;
1.9601Ac.)
5.150 (CFSl
6.73 min.
2.931(In/Hr)
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(In/Hr)
1
2
3
4
Largest
Qp =
Qp =
12.209 12.19
14.416 13.59
7.609 12.15
5.150 6.73
stream flow has longer
14.416 + sum of
Qb Ia/lb
12.209 0.942
Qb Ia/lb
7.609 0.941
Qb Ia/lb
5.150 0.680
36.572
3.500
2.115
1. 992
2.118
2.931
time of concentration
11.500
7.156
Toeal of 4 main streams to confluence:
Flow rates before confluence point:
12.209 14.416 7.609
Area of streams before confluence:
7.070 8.670 4.380
5.150
1. 960
Results of confluence:
Total flow rate = 36.572fCFS)
Time of concentration 13.587 min.
Effective stream area after confluence
22.080(Ac.)
Page 8
'J,. \.
e
e
.
A10.out
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++++
Process from Point/Station 500.000 to Point/Station
**** CONFLv~NCE OF MINOR STREAMS ****
500.000
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 22_080(Ac.J
Runoff from this stream 36.572(CFS)
Time of concentration 13.59 min.
Rainfall intensity = 1.992jInfHrl
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station
**** USER DEFINED FLOW INFORMATION AT A POINT
500.000
Rainfall intensity 2_253(In/Hrl for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lotl
Runoff Coefficient = 0.826
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1_000
RI index for soil(AMC 2) 75.00
Pervious area fraction = 0.500; Impervious fraction 0.500
User specified values are as follows:
TC = 10.86 min. Rain intensity = 2.25(In/Hr)
Total area = O.OO(Ac.J Tot31 runoff = 9.9l(CFSJ
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++
Process from point/Station 500.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
501)_000
Along Main Stream number: 1 in normal stream number 2
Stream flow area = O.OOQ(Ac.l
Runoff from this stream 9.910(CFSl
Time of concentration 10.86 min.
Rainfall intensity = 2.253(ln/Hr)
+++++++++++++++++++++++++++++++++++++-++++++++++++++++++++++++++~.+++t+
Process from Point/Station 36.500 to Point/Station
**** USER DEFINED FLOW INFORMATION AT A POINT ****
500.UOO
Rainfall intensity = 1.323(In/Hr) for a 10.0 year storm
UNDEVELOPED (good cover) subarea
Runoff Coefficient = 0.719
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
RI index for soil(AMC 21 80.00
Pervious area fraction = 1.000; Impervious fraction 0.000
User specified values are as follows:
TC = 28.57 min. Rain intensity = 1.32(In/Hrl
Total area = O.OO(Ac.) Total runoff = 153.21lCFSJ
++++++++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
500.000
Along Main Stream number:
Stream flow area = O.
Runoff from this stream
Time of concentration =
Rainfall intensity =
Summary of stream data:
1 in normal stream number 3
OOO(Ac.J
153.205(CFSI
28.57 min.
l.323fIn/Hrl
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
tIn/Hrl
Page 9
~
.
.
.
1 36.572 13.59
2 9.910 10.86
3 153.205 28.57
Largest stream flow has longer
Qp = 153.205 + sum of
Qb IalIb
36.572 0.664
Qb Ia/lb
9.910 0.587
Qp= 183.327
AID.out
1. 992
2.253
1.323
time of concentration
24.301
5.821
Total of 3 streams to confluence:
Flow rates before confluence point:
36.572 9.910 153.205
Area of streams before confluence:
22.080 0.000 0.000
Results of confluence:
Total flow rate = 183.327(CFSl
Time of concentration = 28.570 m1n.
Effective stream area after confluence
End of computations, total study area =
The following figures may
be used for a unit hydrograph study of the
Area averaged pervious area fraction(Ap}
Area averaged RI index number = 75.0
22.0BOlAc. )
22. DB lAC.)
same area.
0.556
Page 10
1,.'?
e
e
e
AIDO.out
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (e} 1989 - 2001 Version 6.4
Ratiol"lal Hydro!og'1' Study Date: 08/04/05 File:AlOO.oul:.
914_0101 Tr 32780
Developed Condition
lOQ-Yr Storm Evenc
8/4/05 SWL
Hydrology Study Control Information
*"""""."....
English (in-lb} Units used in input data file
Van Dell and Associates, Inc., Irvine, CA - SIN 953
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition 2
Standard intensity-duration curves data {Plate D-4.1}
For the [ Murrieta,Tmc,Rnch CaNorco J area used.
10 year storm 10 minute intensity = 2.360(In/Hrl
10 year storm 60 minute intensity = O.880(In/Hr}
100 year storm 10 minute in~ensity 3.480(In/Hr)
100 year storm 60 minute incensity = 1.300(In/Hr)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.3001In/Hr}
Slope of intensity duration curve = 0.5500
+++++++++++++++++++++++++++++++++++++++++++++++++4++++++++++++++i+~+'~+
Process from Point/Station 100.000 to Point/Station
**** INITIAL AREA EVALUATION ****
10;:.000
Initial area flow distance = 856.7801Ft.)
Top (of initial area) elevation = 1322.830(Ft.}
Bottom (of initial areal elevation = 1286.6001Ft.)
Difference in elevation = 36.230(Ft.}
Slope = 0.04229 slpercent)= 4.23
TC = klO.420l*{ (length^31/(elevation changeIJ~O.2
Initial area time of concentration = 11.780 min.
Rainfall intensity 3.183(In/Hr) for a 100.0 year stann
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.B34
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
RI index for soillAMC 2) 75.00
Pervious area fraction = 0.600; Impervious fraction 0.400
Initial subarea runoff = 11.571(CFSI
Total initial stream area 4.360(Ac.)
Pervious area fraction = 0.600
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 102.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) *..*
108.000
Upstream point/station elevation = l286.600(Ft.l
Downstream point/station elevation l080.6001Ft.)
Pipe length 26.20fFt.l Manning'S N = 0.013
No. of pipes = 1 Required pipe flow 11.57l1CFSI
Nearest computed pipe diameter 6.00IIn.)
Page 1
'lA.
e
e
.
AlOO.out
Calculated individual pipe flow 11.5711CFS)
Normal flow depth in pipe = 3.83{In.)
Flow top width inside pipe = 5.77(ln.)
Critical depth could no~ be calculated.
Pipe flow velocity = 87.601Ft/s)
Travel tL~e through pipe 0.00 min.
Time of concentration (TCl = 11.79 min.
~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++
Process from Point/Station 108.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
108.000
Along Main Stream number:
Stre~~ flow area = 4
Runoff from this s~ream
Time of concentration
Rainfall intensity =
1 in normal stream number 1
.360(Ac.l
ll.571(CFSl
11.79 min.
3.l82{In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
**** INITIAL AREA EVALUATION
104.000 to Point/Station
106.000
Initial area flow distance = 696.720IFt.1
Top (of initial area} elevation = l299.9001Ft.
Bottom (of initial areal elevation = 128l.600(Ft.l
Difference in elevation = 18.300IFt.)
Slope = 0.02627 s(percentl= 2.63
TC = k(0.420)*({length~3)/{elevation change)1~0.2
Initial area time of concentration = 11.929 min.
Rainfall intensity 3.l61(ln/Hr) for a 100.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.833
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
RI index for soi1(AMC 2} 75.00
Pervious area fraction = 0.600; Impervious fraction 0.400
Initial subarea runoff = 7.l39(CFSl
Total initial stream area 2.710(Ac.)
Pervious area fraction = 0.600
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++
Process from Point/Station 106.000 to Paint/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
108.000
Upstream paint/station elevation = 128l.600(Ft.)
Downstream point/station elevation l080.6001Ft.)
Pipe length 18.40(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 7.l391CFSJ
Nearest computed pipe diameter 6.00(1n.)
Calculated individual pipe flow 7.139{CFSI
Normal flow depth in pipe = 2.58(I~.l
Flow top width inside pipe ~ 5.94(ln.1
Critical depth could not be calculated.
Pipe flow velocity = 88.29(Ft/s)
Travel time through pipe 0.00 min.
Time of concentration (Tel = 11.93 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 108.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
108.000
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.710(Ac. I
Runoff from this stream 7.l39lCFS)
Time of concentration = 11.93 min.
Rainfall intensity = 3.1601In/Hrl
Summary of stream data:
Page 2
~
e
e
.
Stream
No
AIDO.out
Rainfall Intensity
(In/Hrl
Flow rat:e
(CFS)
TC
(min)
1
2
Largest
Qpo
Qp 0
11.571 11.79
7.139 11.93
stream flow has longer or
1:.571 + sum of
Qa Tb/Ta
7.139 0.988
18.622
7.051
3.182
3.160
shorter tiIDe
of concentration
Total of 2 streams to confluence:
Flow rates before confluence point:
11.571 7.139
Area of streams before confluence:
4.360 2.710
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
IB.622{CFSJ
11.785 min.
after confluence
7.070{Ac.l
Process from Point/Station 108.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~-+.+++
500.000
Upstream point/station elevation ~ 12BO.600(Ft.J
Downstream point/station elevation l24B.OOOIFt.)
Pipe length 390.77(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 18.622(CFSJ
Nearest computed pipe diameter 15.00(In.)
Calculated individual pipe flow 18.622(CFS)
Normal flow depth in pipe = 12.28(In.)
Flow top width inside pipe = 11.56(In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.33(Ft/s)
Travel time through pipe 0.38 min.
Time of concentration (TCl = 12.16 min.
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++
500.000
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 7.070(Ac.l
Runoff from this stream 18.622(CfS)
Time of concentration = 12.16 min.
Rainfall intensity = 3.127(In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station
**** INITIAL AREA EVALUATION
200.000 to Point/Station
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++++
202.000
Initial area flow distance = 698.330(Ft.)
Top (of initial areal elevation = l303.200{Ft.)
Bottom (of initial area) elevation = 1288.420(Ft.)
Difference in elevation = l4.7801Ft.1
Slope = 0.02116 s(percentl= 2.12
TC = k(0.4201*{ (length^31/(elevation changelJ^0.2
Initial area time of concentration = 12.467 min.
Rainfall intensity 3.085(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.832
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 21
Pervious area fraction =
A 0.000
8 0.000
C 0.000
D 1. 000
75.00
0.600; Impervious fraction
Page 3
0.400
1Jp
e
.
.
AIOO.out
Initial subarea runoff ~
Total initial stream area
Pervious area fraction = 0.600
12.346 {CFS}
4.BIO(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 202.000 to Point/Station
.**~ PIPEFLOW TRAVEL TIME (Program estimated size) ****
204.000
Upstream point/station elevation = 1288.42Q(Ft.)
Downstream point/station elevation I2BO.OOD(Ft.)
Pipe length 3St.971Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 12.346(CFS)
Nearest computed pipe diameter 18.00(In.)
Calculated individual pipe flow 12.346ICFS}
Normal flow depth in pipe = 11.74(In.}
Flow top width inside pipe = 17.14110.)
Critical Depth = 15.93(10.)
Pipe flow velocity = 10.12IFt/sl
Travel time through pipe = 0.58 min.
Time of concentration (TC) = 13.05 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++++
Process from Point/Station 204.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
204.000
Along Main Stream number:
Stream flow area = 4.
Runoff from this strea~
Time of concentration
Rainfall intensity =
2 in normal stream number 1
810{Ac. I
12.346{CFS)
13.05 min.
3.009(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++_.+.~+++
Process from Point/Station 203_000 to Point/Station
**** INITIAL AREA EVALUATION ****
204.000
Initial area flow distance = 704_060(Ft.l
Top (of initial area) elevation = l298.750fFt_1
Bottom (of initial area) elevation = 1280.000(Ft.)
Difference in elevation = 18_750{Ft.1
Slope = 0.02663 s{percent) = 2.66
TC = k(0.420)*[{length^3)/(e1evation change)]^O.2
Initial area time of concentration = 11_946 min_
Rainfall intensity 3.l58(In/Hr} for a 100.
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.833
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 2)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0_600
o year storm
A 0_000
B 0.000
CO.OOO
D 1. 000
75.00
0_600; Impervious fraction
lO_160(CFS)
3_860(Ac. )
0.400
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 204.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
204.000
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 3.860IAc.)
Runoff from this stream lO.160(CFS)
Time of concentration = 11.95 min.
Rainfall intensity = 3.158{In/Hr}
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(minJ
Rainfall Intensity
lIn/Hr)
Page 4
'].'"
e
.
.
1
2
Largest
~=
AIOO.out
3.009
3.158
time of concentration
~=
12.346 13.05
10.160 11.95
stream flow has longer
12.346 + sum or
Qb Ia/lb
10.160 0.953
22.025
9.679
Total of 2 streams to confluence:
Flow rates before confluence point:
12.346 10.160
Area of streams before confluence:
4.810 3.860
Results or confluence:
Total flow rate =
Time of concentration
Effective stream area
22.025{CFS)
13.047 min.
after confluence
8.670lAc.l
Process from Point/Station 204.000 to Point/Station
...* PIPEFLOW TRAVEL TIME (Program estimated size} ***.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++
500.000
Upstream point/station elevation = 1280.00Q(Ft.l
Downstream point/station elevation 124B.OOOfFt.1
Pipe length 447.54iFt.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 22.025fCFSl
Nearest computed pipe diameter 18.00(In.)
Calculated individual pipe flow 22.025(CFSl
Normal flow depth in pipe = 12.0Q{In.)
Flow top width inside pipe = 16.97iIn.)
Critical depth could not be calculated.
Pipe flow velocity = I7.59(Ft/s)
Travel time through pipe 0.42 min.
Time of concentration (Tel = 13.47 min.
Process from Point/Station 500.000 to Point/Station
...* CONFLUENCE OF MAIN STREAMS *.**
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+t+++
500.000
The following data inside Main Stream is listed:
In Main Stream number; 2
Stream flow area = 8.670(Ac.)
Runoff from this stream 22.025(CFSJ
Time of concentration = 13.47 min.
Rainfall intensity = 2.9561In/Hr)
Program is now starting with Main Stream No. 3
Process from Poin~JStation 300.QOO to Point/Station
.*** INITIAL AREA EVALUATION .***
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+.~+++
302.1)00
Initial area flow distance = SaI.0BOIFt.)
Top (of initial areal elevation = 1303.20Q(Ft.J
Bottom iof initial area) elevation = 1290.850(Ft.)
Difference in elevation = 12.350(~t.)
Slope = 0.02125 s (percent) = 2.13
TC = kIO.420)*{(length^3l/(elevation changell^0.2
Initial area time of concentration = 11.573 min.
Rainfall intensity 3.214(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/2 Acre LotI
Runoff Coefficient = 0.B34
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 2)
Pervious area fraction = O.
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.600
A 0.000
B 0.000
C 0.000
D 1.000
75.00
600: Impervious fraction
5.B46(CFS)
2.180tAc.)
0.400
Page 5
~
e
e
e
AIOO.out
++++++++T+++++++++++++++++++++++++++++++++++++~++++++++++++++++~++++++
Process f=om Point/Station 302.000 to Point/Station
.... PIPEFLOW TFAVEL TIME (Program estimated sizel *.*.
308.000
Upstreili~ point/station elevation ~ 1290.850(Ft.)
Downstream point/station elevation 1288.10Q1Ft.l
Pipe lengtn 110.97(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow 5.846(CFS)
Nearest computed pipe diameter 15.00(In.)
Calculated individual pipe flow 5.846(CFSl
Nonmal flow depth in pipe = 8.16(ln.)
Flow top width inside pipe = 14.94(ln.)
Critical Depth = 11.74(10.'
Pipe flow velocity = B.57(Ft/5)
Travel time through pipe = 0.22 min.
Time or concentration (Tel = 11.79 min.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i-+~+-~++
Process from Point/Station J08.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
308.000
Along Main Stream number; 3 in normal stream number 1
Stream flow area ~ 2.180{Ac.l
Runoff from this stream 5.846(CFSI
Time of concentration 11.79 min.
Rainfall intensity ~ 3.181(In/Hr)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++i++++
Process from Point/Station 304.000 to Point/Station
**** INITIAL AREA EVALUATION ****
306.0ClO
Initial area flow distance = 571.860{Ft.)
Top (of initial area) elevation = 1302.400(Ft.1
Bottom (of initial area) elevation = 1288.710(Ft.1
Difference in elevation = 13.690(Ft.J
Slope = 0.02394 5 (percent) = 2.39
TC = k(0.420J*((length~31/(e!evation change)]^0.2
Initial area time of concentration = 11.229 min.
Rainfall intensity 3.268(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/2 Acre Lot)
Runoff Coefficient = 0.835
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
RI index for soil(AMC 2) 75.00
Pervious area fraction = 0.600; Impervious fraction 0.400
Initial subarea runoff = 6.005ICFS)
Total initial stream area 2.200(Ac.)
Pervious area fraction = 0.600
++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++
Process from Point/Station 306.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
3011.000
Upstream point/station elevation = 1288.710(Ft.)
Downstream point/station elevation 1288.100(Ft.1
Pipe length 31.60(Ft.J Manning'S N = 0.013
No. of pipes = 1 Required pipe flow 6.005{CFS)
Nearest computed pipe diameter 15.00(In.)
Calculated individual pipe flow 6.005(CFS)
Normal flow depth in pipe = 8.98(In.)
Flow top width inside pipe = 14.71(In.)
Critical Depth = 11.89(In.)
Pipe flow velocity = 7.84(Ft/s)
Travel time through pipe = 0.07 min.
Time of concentration (TCI = 11.30 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Page 6
~
e
e
.
AIOO.out
Process from point/Station 308.000 to Point/Station
~~.. CONFLUENCE OF MINOR STREAMS ****
308.000
Along Main S~rearn number;
Stream flow area = 2
Runoff from this stream
Time of concentration =
Rainfall intensity =
Summary of stream data:
3 i~ normal stream number 2
.20Q(Ac. )
6.QOS(CFSl
11.30 min.
3.257 (In/Hr)
SCream
No.
Flow rate
{CFS}
TC
(min)
Rainfall Intensity
(In/HrJ
1
2
Largest
Qp =
Qp =
5.846 11.79
6.005 11.30
stream flow has longer
6.005 + sum of
Qa Tb/Ta
5.846 0.958
11.607
5.602
3.181
3_257
or shorter time of concentration
Total of 2 streams to confluence:
Flow rates before confluence point:
5.846 6.005
Area of streams before confluence:
2.180 2.200
Results of confluence:
Total flow rate =
Time of concentration
Effective stream area
11.607 (CFS)
11.296 min.
after confluence
4.380jAc. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+++
Process from Point/Station 308.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
500.000
Upstream point/station elevation = 1288.l00(Ft.l
Downstream point/station elevation l248.000IFt.J
Pipe length 646.88(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow ll.6071CFSl
Nearest computed pipe diameter 15.001In.)
Calculated individual pipe flow 11.607(CFSl
Normal flow depth in pipe = 9.45fln.)
Flow top width inside pipe = 14.49(In.1
Critical depth could not be calculated.
Pipe flow velocity = 14.27(Ft/sl
Travel time through pipe 0.76 min.
Time of concentration (TCl = 12.05 min.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++..++++
Process from Point/Station 500.000 to Point/Station
.**. CONFLUENCE OF MAIN STREAMS **.*
500.000
The following data inside Main Stream is listed:
In Main Stream number; 3
Stream flow area = 4.380(Ac.1
Runoff from this stream 11.607(CFS)
Time of concentration = 12.05 min.
Rainfall intensity = 3.143(In/Hrl
Program is now starting with Main Stream No. 4
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station
**** INITIAL AREA EVALUATION
400.000 to Point/Station
402.000
Initial area flow distance = 412.740{Ft.:
Top (of initial area) elevation = 129l.300(Ft.}
Bottom (of initial area) elevation = 1277.860(Ft.1
Difference in elevation = l3.440(Ft.,
Slope = 0.03256 s(percent)= 3.26
TC = k(O.3001*[(length^3J/(elevation change)J^O.2
Page 7
?P
.
e
--
Initial area time of concentration =
Rainfall incensicy 4.37Q(In/HrJ
COMMERCIAL subarea type
Runoff Coefficient = 0.892
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
Decimal fraction soil group
RI index for soil(AMC 2)
Pervious area fraction =
Initial subarea runoff =
Total initial stream area
Pervious area fraction = 0.100
AIDO.
6.620
for a
.0 year storm
out
m~n.
100
A 0.000
8 0.000
C 0.000
D 1. 000
75.00
0_100; Impervious fraction
7.637 {CFSJ
1.960(Ac.J
0.900
++++++++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 402.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size)
500. .)00
Upstream point/station elevation ~ l277_860(Ft.1
Downstream point/station elevation 1248_000(Ft.)
Pipe length 129_87(Ft.) Manning's N ~ 0.013
No. of pipes ~ 1 Required pipe flow 7.637(CFSl
Nearest computed pipe diameter 9.00(1n.)
Calculated individual pipe flow 7_637fCFS)
Normal flow depth in pipe ~ 7.09(10_)
Flow top width inside pipe ~ 7_36(ln. J
Critical depth could not be calculated.
Pipe flow velocity ~ 20.45(Ft/s)
Travel time through pipe 0.11 ffiln.
Time of concentration (TCI ~ 6.73 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~+~+
Process from Point/Station 500.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
500.000
The following data inside Main Stream is listed:
In Main Stream number: 4
Stream flow area ~ 1.960(Ac.J
Runoff from this stream 7.637(CFS)
Time of concentration ~ 6.73 min.
Rainfall intensity = 4_332(In/Hr)
Summary of stream data:
Stream
No.
Flow rate
(CFS)
TC
(min)
Rainfall Intensity
(1n/Hrl
1
2
3
4
Largest
Qp "
Qp"
18_622 12_16
22.025 13.47
11.607 12.05
7.637 6.73
stream flow has longer
22.025 + sum of
Qb 1a/Ib
18.622 0.945
Qb 1a/lb
11.607 0_941
Qb Ial Ib
7.637 0.682
55.758
5.212
3 _127
2.956
3.143
4.332
time of concentration
17.603
10.918
Total of 4 main streams to confluence:
Flow rates before confluence point:
18.622 22_025 11.607
Area of streams before confluence:
7_070 8.670 4_380
7.637
1. 960
Results of confluence:
Total flow rate = 55.758(CFS)
Time of concentration 13.470 min_
Effective stream area after confluence
22.080(Ac. )
Page 8
'?;1\
e
.
.
AIOO.out
++++++~+++++++~~++++~+++++~+++~+++++++++++++++++++++++++++++++++++++++
Process from Point/Station 500.000 to Point/Station
...* CONFLUENCE OF MINOR STREAMS ...~
500.000
Along Main Stream number:
Strearr, flow area ~ 22
Runoff from this stream
Time of concentration
Rainfall intensity ~
I in nonmal st~eam number 1
.080 (Ac. )
55.758{CFS}
13 .47 min.
2.956(In/Hrl
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 22.000 to Point/Station
.... USER DEFINED FLOW INFORMATION AT A POINT
5GO.OOO
Rainfall intensity 3.328IIn/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient ~ 0.847
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal fraction soil group D 1.000
RI index for soil(AMC 2) 75.00
Pervious area fraction ~ 0.500; Impervious fraction 0.500
User specified values are as follows~
TC ~ 10.86 min. Rain intensity = 3.33{In/Hrl
Total area ~ O.OOIAc.) Total runoff = l5.321CFSl
+++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++++?+++++
Process from Point/Station 500.000 to Point/Station
.... CONFLUENCE OF MINOR STREAMS ....
500.000
Along Main Stream number: 1 in normal stream number 2
Stream flow area = O.OOO(Ac.J
Runoff from this stream l5.320(CFSl
Time of concentration 10.86 min.
Rainfall intensity = 3.328(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++..+.~+++
Process from Point/Station 36.500 to Point/Station
..** USER DEFINED FLOW INFORMATION AT A POINT
500.000
Rainfall intensity = l.955tIn/HrJ for a 100.0 year storm
UNDEVELOPED (good cover) subarea
Runoff Coefficient = 0.769
Decimal fraction soil group A 0.000
Decimal fraction soil group B 0.000
Decimal fraction soil group C 0.000
Decimal f~action soil group D 1.000
RI index for soil(AMC 2) 80.00
Pervious area fraction = 1.000; Impervious fraction 0.000
User specified values are as follows~
TC = 28.57 min. Rain intensity = 1.96/In/Hr)
Total area = O.OO(Ac.) Total runoff = 235.70(CFS)
++++++++++++++++++++++++++~+++++++++~+++++++++++++++++++++++++++++++++
Process from Point/Station 500.000 to Point/Station
..** CONFLUENCE OF MINOR STREAMS .***
500.000
Along Main Stream number: 1 in normal stream number 3
Stream flow area = O.GOOIAc.l
Runoff from this stream 235.700(CFSl
Time of concentration = 28.57 min.
Rainfall intensity ~ 1.955IIn/Hrl
Summary of stream data:
Stream
No.
Flow rate
(CFSJ
TC
{minI
Rainfall Intensity
(In/HrJ
Page 9
~1"
e
.
.
1 55.75B 13.47
2 15.320 10.86
3 235.700 28.57
Largest stream flow has longer
Qp = 235.700 + sum of
Qb Ia/lb
55.758 0.661
Qb Ia/lb
15.320 0.587
Qp = 281. S73
Aloa.out
2.956
3.328
1. 955
time of concentration
36.874
8_999
Total of 3 streams to confluence:
Flow rates before confluence point:
55.758 15.320 235.700
Area of streams before confluence:
22.080 0.000 0.000
Results of confluence:
Total flow rate = 2Bl.573fCFSJ
Time of concentration = 28.570 min.
Effective stream area after confluence
End of computations, total study area =
The following figures may
he used for a unit hydrograph study of the
Area averaged pervious area fraction(Ap)
Area averaged RI index number = 75.0
22.0BO{Ac.}
22.08 (Ac.)
same area.
0.556
Page 10
~'?
.
Basin Routing Existing Condition
.
-
~
BASIC DATA CALCULATION FORM EXISTING CONDITION
TRACT 32780 By: SWL Da te: 7/28/2005
Checked: RTC Date: 7/28/2005
__ CONCENTRATION POINT PHYSICAL DATA
A
PJ AREA DESIGNATION A
13) AREA -- SQ FT 67269Q.9:!
(4) AREA ADJUSTMENT FACTOR 0.0000
[5) AREA -- SQ MILES ([3J*[4)) 0.02
[6) L--FT 1047.95
[7) L ADJUSTMENT FACTOR 0.000"
[SJ L -- MILES ([61*[7]) 0.18
(9) LCA -- FT 349.10
(10) LCA -- MILES ([7)*[9]) 0.06
(III ELEVATION OF HEADWATER 1369
[12) ELEVATION OF CONCENTRATION POINT 1256.0
[13) H -- FEET ([11)-[12]) 113
[14] S -- FEET/MILE ([13V(SJ) 612.47
[15J S^0.5 24.75
(161 L*LCAlS^0.5([8J*[IOJ/[15]) 0.00
[17) AVERAGE MANNINGS "N" (450'@0.025. 2.11 T@0.014. 2.924'@0.035) 0.026
[18) LAG TIME -- HOURS (24*(I7)*[16J'O.38) (PLATE E-3) 0.03
119J LAG TIME -- MINUTES (60*[18]) 2.02
[20) 25'7, OFLAG -- MINUTES (0.25*[19]) 0.50
(21) 40% OF LAG -- MINUTES (0.40*[19]) 0.81
[22) UNIT TIME -- MINUTES (25-40% OF LAG) 5 (3- & 6-HR) 15 (24.HR)
.OURCE RAINFALL DATA
IHydrology Manual
[2] FREQUENCY -- YEARS I 2-YR
(3) DURATION:
3-HOURS . 6-HOURS 24-HOURS
(4) [5] [6) [7J (8] [9J [101 [III (12J (13) [14J [15J
POINT AREA ill A VG PT POINT AREA W A VG PT POINT AREA ill] A VG PT
RAIN SQMI SUM(5J RAIN RAIN SQMI SUM [9) RAIN RAIN SQMI SUM [IIJ RAIN
INCHES INCHES INCHES INCHES INCHES INCHES
1.70 0.02 1.000 1.700
SUM (51- 0 SUM [7J- 0.000 SUM [9J- o SUM[II)~ 0.000 SUM [13) - 0.0208506 SUM [15)- 1.700
[16J AREAL ADJ FACTOR: 0.999 (SEE PLATE E-5.8) 0.999 0.999
(17) ADJ A VG PT RAIN: 0.00 0.00 1.70
.
"Q.{
BASIC DATA CALCULATION FORM ~XISTING CONDITION
TRACT 32780 By: SWL Date: 7/28/2005
Checked: RTC Date: 7/26/2005
. CONCENTRATION POINT PHYSICAL DATA
A
[2] AREA DESIGNATION A
(3) AREA -- SQ IT 672690.92
[4) AREA ADJUSTMENT FACTOR 0.0000
[51 AREA -- SQ MILES ([3]'[4j) 0.02
[6] L-- IT 1047.95
[7] L ADJUSTMENT FACTOR 0.0002
[8J L -- MILES ([6]'[71l 0.18
[9J LCA -- IT 349.10
[10] LCA -- MILES ([7)'[9j) 0.06
[I I) ELEVATION OF HEADWATER 1369
[12J ELEVATION OF CONCENTRATION POINT 1256.0
[13] H--FEET([II)-[12j) 113
[14] S -- FEET/MILE ([13J/[8j) 612.47
[15) S'O.5 24.75
[16) L'LCAlS'O.5 ([8J'[IOJ/[15]) 0.00
[17] AVERAGE MANNINGS "N" (450'@0.025.2.IIT@0.014.2.924'@0.035) 0.026
(18) LAG TIME -- HOURS (24'[l7)'[16J^0.38) (PLATE E-3) 0.03
[l9[ LAG TIME -- MINUTES (60'[18]) 2.02
[20[ 25% OF LAG -- MINUTES (0.25'[ 19j) 0.50
(21) 40%OF LAG -- MINUTES (0.40'[19]) 0.81
[22] UNIT TIME -- MINUTES (25-40';1 OF LAG) 5 (3- & 6-HR) 15 (24-HR)
RAINFALL DATA
SOURCE IHydrology Manual
[2] FREQUENCY -- YEARS I IO-YR
[3] DURATION,
3-HOURS 6-HOURS ?4-HOURS
[4J [5] [6J [7J [8J [9] [10] [I1J [12[ [I3J [141 [15)
POINT AREA l2.I AVG PT POINT AREA l2J AVO PT POINT AREA LUI AVO PT
RAIN SQMI SUM[5J RAIN RAIN SQMI SUM [9[ RAIN RAIN SQMI SUM [131 RAIN
INCHES INCHES INCHES INCHES INCHES INCHES
2.80 0.02 1.000 2.800
SUM [5] ~ 0 SUM [7)- 0.000 SUM [9J - o SUM [II] ~ 0.000 UM[13J- 0.0208506 SUM[15)- 2.800
[16] AREAL ADJ FACTOR, 0.999 (SEE PLATE E-5.8) 0.999 0.999
[171 ADJ AVO PT RAIN, 0.00 0.00 2.80
.
<1?
BASIC DATA CALCULATION FORM EXISTING CONDITION
TRACT 32780 By: SWL Date: 7/28/2005
Checked: RTC Date: 7/28/2005
PHYSICAL DATA
CON CENTRA TlON POINT A
[2] AREA DESIGNATION A
[3] AREA -- SQ FT 672690.92
[41 AREA ADJUSTMENT FACTOR 0.??oo
[5] AREA -- SQ MILES ({3J'[4JJ 0.02
[61 L--FT 1047.95
[71 L ADJUSTMENT FACTOR O.OOO?
[8] L -- MILES ([6]'[7]1 0.18
[9] LCA u FT 349.10
[101 LCA -- MILES ({7J'[9]1 0.06
[II) ELEVATION OF HEADWATER 1369
[12] ELEVATION OF CONCENTRA TIONPOINT 1256.0
[13] H--FEET({II]-[12JI I13
[14J S -, FEET/MILE ([13)/[8]1 612.47
[IS] S^O.5 24.75
[161 L'LCA/S'O.5 ([8]'[IOJI[15j) 0.00
[17] AVERAGE MANNINGS "N" (450'@0.O25.2.117'@0.014.2.924'@0.035) 0.026
[18] LAG TIME -, HOURS (24'[17J'[16J'O.38) (PLATE E-3J 0.03
[19) LAG TIME u MINUTES (60'[18IJ 2.02
[20] 25% OF LAG -- MINUTES (0.25'[19]) 0.50
[21] 40% OF LAG -- MINUTES (0.40'[19]) 0.81
[22J UNIT TIME -- MINUTES (25-40'1 OF LAG) 5 (3- & 6-HRI 15 (24-HR)
RAINFALL DATA
SOURCE Hydrology Manual
[2J FREQUENCY' -- YEARS lOO-YR
[3) DURATION,
3-HOURS 6-HOURS 24-HOURS
[4J [5] [6J 17J [8J [9J [IOJ (III [121 [13J [14] [151
POINT AREA [2] AVG PT POINT AREA I2J AVG PT POINT AREA 1UI AVG PT
RAIN SQMI SUM [5] RAIN RAIN SQMI SUM 191 RAIN RAIN SQMI SUM 113J RAIN
INCHES INCHES INCHES INCHES INCHES INCHES
1.85 O.O? 1.000 1.850 2.50 0.02 1.000 2.500 4.50 0.02 1.0)0 4.500
SUM [5] = 0.0208506 SUM (7J = 1.850 SUM[9J= 0.0208506 SUM[II]= 2.500 lsuM [I3J = 0.0208506 SUM [151 = 4.500
[16] AREALADJFACTOR: 0.999 (SEE PLATE E-5.8J 0.999 0.999
[17] ADJ A VG PT RAIN, 1.85 2.50 4.50
.
~1.
SYNTHETIC UNIT HYDROGRAPH METHOD EXISTING CONDITION (AMC I)
HYDROLOGY BASIC DATA CALCULATION FORM fn-32780EX Loss.xls
MANUAL TRACT 32780 Calced By: SWL 7/28/2005
Checked: RTC 7/28/2005
AVERAGE ADJUSTED LOSS RATE
[II [21 [3] 141 [51 [6] [71 [8[ [91 [IO[
SOlL COVER RI PERVIOUS LAND DECIMAL ADJUSTED AREA [81/SUM[8] AVERAGE
GROUP TYPE NUMBER AREA USE % OF AREA INFL TN SQFr ADJUSTED
(PL.....TEC-Il IPLATEE.6.11 INFL TN lMPERV. RATE-INIHR INA..TN
RA TE-INIHR IPLATEE-6.3J HHI,.9Jhl\ RA TE-IN/HR
IPLA IE E-6.2) (7J.,9]
B CHAP. NARRO\\ 72 0.55 NATURAL 0.0 055 668657.3 099 0.55
D CHAP. NARRO\\ 86 0.34 NATURAL 0.0 0.34 4087.5 0.01 0.00
SUM [8]," 671744.8 SUM [iii) = 055
Fm = Minimum Loss Rate - F/1 = SUM(IOV2 = 0.27 lN/HR
C = (F-Fml/54 =(SUM[IO]- FmJ154 = 0.00508
FT =C(:!'HT/60J)^1.55 + Fro = 0.00508 ( 24 ~ (T/60) )1\ 1.55 + 0.27 IN/HR
Where:
T = Time in minutes. To get an average value for each unit time period. use T=lf2 the unit time for the first time period. T=I I/J unit time
for the second period. etc.
.
?/b
SYNTHETIC UNIT HYDROGRAPH METHOD EXISTING CONDITION(AMC II)
HYDROLOGY BASIC DATA CALCULATION FORM fn~32780EX Loss.xls
MANUAL TRACT 32780 Calced By: SWL 7/28/2005
Checked: RTC 7/28/2005
AVERAGE ADJUSTED LOSS RATE
{ll [2J [JJ [.} [5J [6J [7J 18} [9J 1101
SOIL COVER RI PERVIOUS LAND DECIMAL ADJUSTED AREA [811 SUM 18{ AVERAGE
GROUP TYPE NUMBER AREA USE 'kOF AREA INFL TN SQFT ADJUSTED
(PLATEe-l) lPLATEE.6.lj fNR.TN IMPERV. RATE-IN/HR INFL TN
RA TE-INIHR (PLATE E.63) 1410-.9161l RA TE-INfHR
(PLATEE-6.11 111-191
B CHAP. NARRO\\ 7' O.3~ NATURAL 0.0 0.3-1. 668657.3 '}.99 0.34
D CHAP. NARROW 86 0.18 NATURAL 0.0 D.IE 4087.5 0.01 ODO
-=
I
I
SUM [8{ - 6n7~.8 SUM [IDJ- 0.3-1
Fm -= Minimum Loss Rate - FI2 -= SUM{IOY2 = 0.17 IN/HR
C::; (F-Fml/54 -= (SUM[IO) - Fmlt5..!.-= 0.D031.
IT =CO.HT/60J/^1.55 + Fm-= 0.00314 ( 24 - (T/60) J^ 1.55 + 0.17 IN/HR
Where:
T = Time in minutes. To get an average value for each unit time peri(xt use T=If1 the unil time for [he fir..l tlmeperioo. T=I 1/2 unit time
for the second period. elC.
e
1l\
e .FREE
ID Van Dell
ID WALCOTT TR 32780
ID
1D ......................_........._....____.............______._...
ID EXISTING CONDITION
ID ..........---............_.......__....__........__...._.__......
"'DIAGRAM
ID*NOi...IST
IT 5 0000 0000 300
IO 5
KK **3HR**
QI 0
KK 3HREX
KM IOO-YEAR ]-HOUR EXISTING CONDITION
SA .02
LU 0 .34 0
FE 1.85
PI 1.3 1.3
PI 1.6 1.8
PI 3.3 3.1
PI 8.2 5.9
SU .18 0.06
KK **6HR..
QI 0
KK 6 HREX
KM IOO-YEAR 6 HOUR EXISTING CONDITION
SA .02
LV 0 .34 0
pa 2.50
PI 0.5 0.6 0.6 0.6
PI 0.7 0.8 0.8 0.8
PI 0.8 0.8 0.8 0.9
PI 0.9 0.9 1.0 1.0
PI 1.2 1.3 1.4 1.4
PI 1.9 2.0 2.1 2.1
_1 3.1 3.6 3.9 4.2
I 0.30.2
su .18 0.06 612.47
KK **24HR"*
Qr 0
IN 15
KK 24HREX
KM IOO-YEAR 24-HOUR EXISTING CONDITION
SA 0.02
KM VAR. LOSS=O.34/0.9=O.38 W/IO% IMPERV.FACTOR
LU 0 .38 10
PB 4.50
PI 0.2 0.3 0.3 0.4
PI 0.5 0.5 0.5 0.5
PI 0.6 0.7 0.8 0.8
PI 1.2 1.3 1.5 1.5
PI 1.5 1.5 2.0 2.0
PI 2.8 2.9 3.4 3.4
PI 2.4 2.3 1.9 1.9
PI 0.5 0.4 0.4 0.4
PI 0.3 0.3 0.3 0.2
PI 0.2 0.2 0.2 0.2
$U .18 0.06 612.47
ZZ
32780EX. I
1.1 1.5
2.2 2.2
2.9 3.0
2.01.8
612.47
1.51.81.5
2.2 2.0 2.6
3.1 4.2 5.0
1.80.60.0
0.025 11 0
1.8
2.7
3.5
0.0
1.8
2.4
6.8
0.0
1.5
2.7
7.3
0.0
0.6 0.7 0.7 0.7 0.7 0.7
0.8 0.8 0.8 0.8 0.8 0.8
0.8 0.9 0.9 0.9 0.9 0.9
1.0 1.0 1.0 1.1 1.1 1.1
1.5 1.5 1.6 1.6 1.7 1.8
2.2 2.3 2.' 2.4 2.5 2.6
'.7 5.6 1.9 0.9 0.6 0.5
0.025 11 0
0.3 0.3
0.5 0.6
0.9 0.9
1.61.7
1.9 1.9
2.3 2.3
0.4 0.4
0.3 0.2
0.3 0.2
0.2 0.2
0.025 11 0
0.3
0.6
1.0
1.9
1.7
2.7
0.3
0.3
0.3
D..
0.7
1.0
2.0
1.8
2.6
0.3
D..
0.2
D..
0.7
1.0
2.1
2.5
2.6
0.5
0.3
0.3
0.4
0.8
1.1
2.2
2.6
2.5
0.5
0.2
0.2
.
Page 1
4J
t****************************************
***************************************
*
* *
* U.S. ARMY CORPS OF ENGINEERS *
* HYDROLOGIC ENGINEERING CENTER *
* 609 SECONO STREET *
* OAVIS, CALIFORNIA 95616 *
* (916) 756-1104 *
* *
FLOOD HYDROGRAPH PACKAGE IHEC-1) *
JUN 199B *
e VERSION 4.1 *
*
RUN OATE 03AUG05 TIME 15:40:16 *
.
r****************************************
***************************************
x X xxxxxxx XXXXX X
X X X X X XX
X X X X X
xxxxxxx xxxx X xxxxx X
X X X X X
X X X X X X
X X xxxxxxx xxxxx XXX
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS Of HEC-l KNQ\.IN AS HECl (JAN 73), IlEC1GS, HEC1DB, AND HEC1KW.
e
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITfl THE 1973-ST'fLE INPUT STRUCTURE.
THE DEFINITION OF -AMSKK- ON RM~CARO WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION
NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED' CALCULATION INTERVAL lOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC WAVE: NEW fINITE DiffERENCE ALGORITHM
.
1>....\
LINE
,.e ...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
e 22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
.
HEC-1 INPUT
10, . . .. .. 1. .. . .. .2. .. . .. .3. .. .. . .4. . .. . .. 5, . .. . ..6.. . . .. .7. . ... . .8.. . . . . .9. .. .. .10
10 Van Del t
10 ~ALCOTT TR 32780
10
10 *****"'*********.*"'***************************.*****.**..........*.*.
10 EXISTING CONDITION
10 ......******."'........***..***.....******.**.......***.....~'....***...
*0 I AGRAM
10 .NOLI ST
IT 5 0000 0000 300
10 5
KK **3HR"'*
QI 0
KK 3HREX
KM 100'YEAR 3-HOUR EXISTING CONOITION
8A ,02
LU 0 .34 0
PB 1.85
PI 1.3 1.3 1.1 1.5 1.5 1.8 1.5 1.8 1.8 1.5
PI 1.6 1.8 2.2 2.2 2.2 2,0 2.6 2:1 2.4 2.7
PI 3.3 3.1 2.9 3,0 3.1 4.2 5.0 :1.5 6.8 7.3
PI 8,2 5.9 2.0 1.8 1.8 0.6 0.0 0.0 0.0 0,0
KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH
UI 139. 14, 2.
KK **6HR*.
QI 0
KK 6HREX
KM 100 - YEAR 6 HOUR EXISTING CONDITION
BA .02
LU 0 .34 0
P8 2,50
PI 0,5 0.6 0,6 0.6 0.6 0.7 0.7 0,7 0.7 0.7
PI 0.7 0.8 0.8 0,8 0,8 0.8 0.8 0.8 0.8 0.8
PI 0.8 0.8 0.8 0.9 0.8 0.9 0,9 0.9 0.9 0.9
PI 0.9 0,9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1
PI 1.2 1.3 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.8
PI 1.9 2.0 2.1 2.1 2.2 2.3 2,4 2.4 2.5 2,6
PI 3.1 3,6 3,9 4,2 4.7 5.6 1.9 0.9 0,6 0.5
PI 0.3 0,2
KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH
UI 139. 14. 2.
KK**24HR**
QI 0
IN 15
PAGE
A.rz,
HEC-1 INPUT PAGE 2
LINE 10.. . .. .. 1 . _ . . . .. 2. .. .. . .3. .. .. ..4. ,.... ,5.. .. .. .6. . . .. . ,7. . . .. ..8... . . .. 9. .. . . .10
e 43 KK 24HREX
44 KM lOO-YEAR 24-HOUR EXISTING CONDITION
45 8A 0,02
46 KM VAR, lOSS;O,34/0.9;0.38 ~/10% IMPERV.fACTOR
47 lU 0 ,38 10
48 PB 4.50
49 PI 0.2 0,3 0.3 0.4 0.3 0.3 0.3 0.4 0.4 0.4
50 PI 0.5 0.5 0.5 0,5 0.5 0.6 0.6 0.7 0.7 0.8
51 PI 0,6 0.7 0.8 0,8 0.9 0,9 1.0 1.0 1.0 1.1
52 PI 1.2 1.3 1.5 1.5 1.6 1.7 1.9 2,0 2.1 2.2
53 PI 1.5 1.5 2.0 2.0 1.9 1.9 1.7 1.B 2,5 2,6
54 PI 2.8 2.9 3.4 3.4 2,3 2.3 2.7 2,6 2.6 2.5
55 PI 2.4 2.3 1.9 1.9 0.4 0.4 0.3 0.:3 0.5 0.5
56 PI 0.5 0.4 0,4 0.4 0.3 0.2 0.3 0.4 0.3 0,2
57 PI 0.3 0.3 0.3 0.2 0.3 0,2 0,3 o.;~ 0.3 0.2
58 PI 0.2 0,2 0.2 0.2 0.2 0.2
59 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH
60 UI 139. 14. 2.
61 ZZ
e
e
M>
SCHEMATIC DIAGRAM OF STREAM NETWORK
'NPUT
lit
(V) ROUTING
(--->) DIVERSION OR PUMP flOW
c.) CONNECTOR
(<---) RETURN OF DIVERTED OR PUMPED FLOW
12 3HREX
25 6HREX
43 24HREX
-**) RUNOFF ALSO COMPUTED AT THIS LOCATION
e
.
A.A....
.....................*...***.*....***.** ...*.**********..**.*.*.***************
. . .
flOOD HYDROGRAPH PACKAGE (HEC-l) . . U.S. ARMY CORPS OF ENGINEERS .
JUN 1998 . . HYDROLOGIC ENGINEERING CENTER .
e VERSION 4.1 . . 609 SECOND STREET .
. . DAVIS, CAl! FOllNIA 95616 .
RUN DATE 03AUG05 TIME 15:40: 16 . . (916) 756- 1104 .
. . .
~**************************..*.********* ** * *********** ** ** ***,.********** *******
*NOlIST
9 10
OUTPUT CONTROL
IPRNT
{PLOT
QSCAL
IT
HYOROGRAPH TIME DATA
NMIN
IDATE
ITIME
NQ
NDDA TE
NDTIME
ICENT
e
COMPUTATION INTERVAL
TOTAL TIME BASE
ENGLISH UNITS
DRAINAGE AREA
PRECIPITATION DEPTH
lENGTH, ELEVATION
FLOII
STORAGE VOLUME
SURFACE AREA
TEMPERA TURE
.
Van Dell
~LCOTT TR 32780
****.************************************..****.*****************
EXISTING CONDITION
****.**.**************************.****.*****************.*.*~.**
VARIABLES
5
o
0,
PR I NT CONTROL
PLOT CONTROL
HYDROGRAPH PLOT
SCALE
2
5
00 0
0000
300
o
0055
19
MINUTES IN COMPUTATION INTERVAL
STARTING DATE
STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
ENDING DATE
ENDING TIME
CENTURY MARK
.OB HOURS
24.92 HOURS
SQUARE MILES
INCHES
FEET
CUBIC FEET PER SECOND
ACRE-FEET
ACRES
DEGREES FAHRENHEIT
~
RUNOFF SUMMARY
FLOY IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES
.
PEAK TIME OF AVERAGE FLOY FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF
OPERATION STATiON FLOY PEAK 6-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE
HYDROGRAPH AT *"'3HR*'" O. ,00 0, O. O. .00
HYDROGRAPH AT 3HREX 19. 2,58 2. O. o. .02
HYDROGRAPH AT **6HR** O. ,00 0, O. O. .02
HYDROGRAPH AT 6HREX 17. 5.50 2. 0, O. .02
HYDROGRAPH AT **24HR** 0, ,00 O. O. o. .02
HYDROGRAPH AT 24HREX 3. 13.25 1. O. O. .02
* NORMAL END OF HEC~1 ***
e
e
At,
.
Basin Routing Proposed Condition
.
.
A.'\
7_,',_
BASIC DATA CALCULATION FORM DEVELOPED CONDITION
TRACT 32180 By: SWL Date: 1/28/2005
Checked: RTC Date: 1/28/2005
PHYSICAL DATA
CONCENTRATION POINT A
[2J AREA DESIGNATION A
[3J AREA -, SQ FT 1060885.8
[4J AREA ADJUSTMENT FACTOR 0.??oo
[5J AREA n SQ MILES (13J*[4JI 0.03
16J LnFT 129"')A2
[1[ L ADJUSTMENT FACTOR 0.000'
[8J L n MILES ([6J*[7)) Q.:!3
19J LCA -- FT 855.]7
[,IOJ LCA n MILES ([1J*[9)) 0.15
[Ill ELEVATION OF HEADWATER 1303.2
[12J ELEVATION OF CONCENTRATION POINT 1276.6
113J H n FEET([II]-[12)) 26.6
[14J S n FEET/MILE (II3V[8)) 116.90
[l5J S^O.5 10.81
116J L*LCNS^O.5 ([8]*[IO)/[15J1 0.00
[I7J AVERAGE MANNINGS "N" (450'@0.025. 2. I 17'@0.014. 2.924'@0.0351 0.026
II8J LAG TIME -- HOURS (24*[I7I*[16J^O.38)(PLATE E-3) 0.07
[19J LAG TIME n MINUTES (60*118)) 4.10
[20J 25% OF LAG n MINUTES (0.25*[19)) 1.05
121J 40,", OF LAG n MINUTES (0.40*[19)) 1.68
[22J UNIT TIME -- MINUTES (25-40% OF LAG) 5 (3- & 6-HRI 15 (24-HR)
RAINFALL DATA
SOURCE IHydrology Manual
[2] FREQUENCY n YEARS I 2.YR
[3J DURATION:
3-HOURS 6-HOURS 24-HOURS
[4J [5J [6J [7J [81 [9[ IIOJ [II] [12] [131 [141 [15J
POINT AREA [5J A VG PT POINT AREA [2] AVG PT POINT AREA lliJ AVG PT
RAIN SQMI SUM!5J RAIN RAIN SQMI SUM[9J RAIN RAIN SQMI SUM[13) RAIN
INCHES INCHES INCHES INCHES INCHES INCHES
1.70 0.D3 1.000 1.700
SUM [5J = 0 SUM [7] = 0.000 SUM [91 = o SUM (11)-- 0.000 SUM[13[-- 0.032883 SUM [151- 1.700
[16J AREALADJ FACTOR: 0.999 (SEE PLATE E-5.8) 0.999 0.999
[17] ADJ A VG PT RAIN: 0.00 0.00 1.70
e
b.."
BASIC DATA CALCULATION FORM ~EVELOPED CONDITION
TRACT 32780 By: SWL Dale: 7/28/2005
Checked: RTC Dale: 7/28/2005
PHYSICAL DATA
CONCENTRATION POINT A
[2J AREA DESIGNATION A
[3J AREA n SQ FT 1060885.8
[4J AREA ADJUSTMENT FACTOR 0.??oo
(5) AREA -- SQ MILES ((3J'[4)) 0.03
[6J LnFT 1292.42
[7) L ADJUSTMENT FACTOR 0.0002
(8J L -- MILES ([6)'(71> 0.23
[9) LCA -- FT 855.27
[1OJ LCA _. MILES ([7J'[91> 0.15
[IIJ ELEVATION OF HEADWATER 1303.2
(I2J ELEVATION OF CONCENTRATION POINT 1276.6
[13J H -- FEET ([11]-[12)) 26.6
[14) S n FEET/MILE ([13V[8)) /16.90
[15J S'O.5 10.81
[16] L'LCNS'O.5 ([8J'[IOJ/[15)) 0.00
(171 AVERAGE MANNINGS "N" (450'@0.02S.2.117'@0.014. o,924'@0.035) 0.026
(18) LAG TIME -- HOURS (24'[ (7)'[16J^0.38) (PLATE E-3) 0.D7
[19J LAG TIME -- MINUTES (60'[18)) 4.20
[20J 25% OF LAG n MINUTES (0.25'[19)) 1.05
[21J 40% OF LAG -- MINUTES <0.40'[19]) 1.68
[22) UNIT TIME _. MINUTES (25-40\< OF LAG) 5 (3- & 6-HR) 15 (2,-HR)
RAINFALL DATA
OURCE IHydrolugy Manual
[2J FREQUENCY -- YEARS I IO-YR
[3] DURATION:
3-HOURS 6-HOURS 24-HOURS
[4J [51 (6J (7J [8J [9) [1OJ (llJ (12J [13J [14J [15J
POINT AREA ill AVG PT POINT AREA l2.I AVG PT POINT AREA ill] A VG PT
RAIN SQMI SUM[SJ RAIN RAIN SQMI SUM [91 RAIN RAIN SQMI SUM[13J RAIN
INCHES INCHES INCHES INCHES INCHES INCHES
2.80 0.03 1.000 2.800
SUM [5J = 0 SUM [7) = 0.000 SUM [9) = o SUM[IIJ= 0.000 SUM [13J = 0.032883 SUM [15} = 2.800
[16] AREAL AD! FACTOR: 0.999 (SEE PLATE E-5.8) 0.999 0.999
[171 AD! AVG PT RAIN: 0.00 0.00 2.80
e
1>.0....
BASIC DATA CALCULATION FORM ,QEVELOPED CONDITION
TRACT 32780 By: SWL Dale: 7/28/2005
Checked: RTC Dale: 7/28/2005
PHYSICAL DATA
CONCENTRATION POINT A
[2J AREA DESIGNATION A
[3J AREA -- SQ FT 1060885.8
[4J AREA ADJUSTMENT FACTOR 0.0000
[5) AREA -- SQ MILES ([31*[4)) 0.03
16J L.. FT 1292.42
[7) L ADJUSTMENT FACTOR 0.0002
[8J L.. MILES ([6)"[7JI 0.23
[9J LCA -- FT 855.27
[10) LCA.. MILES ([7I'19]l 0.15
[II J ELEVATION OF HEADWATER 1303.2
[12J ELEVATION OF CONCENTRATION POINT 1276.6
[131 H -- FEET ([11).[12JI 26.6
[14) S -- FEETIMILE ([13)/[8)) 116.90
[15J S'O.5 10.81
[16J L'LCAiS^O.5 ([8J'[IOJ/[ 15)) 0.00
117J AVERAGE MANNINGS "N" (450'@0.025. 2.117'@0.014. 2.924'@0.035) 0.026
[18J LAG TIME.. HOURS 124'[I7)'[16]^0.38)(PLATE E.3) 0.07
[19J LAG TIME -- MINUTES (60'[18)) 4.20
[20[ 25% OF LAG -- MINUTES (0.25'[19]) 1.05
121] 40% OF LAG -. MINUTES (0.40'[ 19)) 1.68
[22] UNIT TIME -- MINUTES (25-40'.< OF LAG) 5 (3- & 6-HR) 15 (24.HR)
RAINFALL DATA
OURCE I Hydrology Manual
[2] FREQUENCY -- YEARS 100-YR
[3J DURATION,
3-HOURS 6-HOURS 24-HOURS
[4] [5J [6J [7J [8J [91 [10] [III [12J [I3J [14J [151
POINT AREA l2J AVG PT POINT AREA l2J AVG PT POINT AREA [UJ AVO PT
RAIN SQMI SUM [5J RAIN RAIN SQMI SUMI9J RAIN RAIN SQMI SUM (1',] RAIN
INCHES INCHES INCHES INCHES INCHES INCHES
1.85 0.03 1.000 1.850 2.50 0.03 1.000 2.500 4.50 0,03 1.000 4.500
SUM 15J ~ 0.032883 SUM [7J ~ 1.850 SUM [9] ~ 0.032883 SUM [II] ~ 2.500 SUM[13[~ 0.032883 SUM [15J ~ 4.500
[16J AREAL ADJ FACTOR 0.999 (SEE PLATE E-5.8) 0.999 0.999
[17] ADJ AVO PT RAIN, 1.85 2.50 4.50
e
~o
SYNTHETIC UNIT HYDROGRAPH METHOD DEVELOPED CONDITION (AMC I)
HYOROLOGY BASIC DATA CALCULATION FORM In=32780PR Loss.xls
MANUAL TRACT 32780 Calced By: SWL 7/28/2005
Checked: RTC 7/28/2005
AVERAGE ADJUSTED LOSS RATE
[IJ [2} [3J [4] [5] [6] [7] [8J [9[ [IO[
SOIL COVER RI PERVIOUS LAND DECIMAL ADJUSTED AREA [8]/SUM[8] AVERAGE
GROUP TYPE NUMBER AREA USE % OF AREA INFLTN SQFf ADJ USTED
(PLATEC-IJ rPLAlEE-6.11 INR. TN IMPER V. RATE-INIHR INFL TN
RA TE-INIHR (PLATEE-6.]) [4J(l-.9/lilJ RA TE-INIHR
IPLATEE-6.2\ [7'.[9]
B URBAN.. GOOD 56 0.70 RESIDENTIAL 0.4 0.45 1003776.8 0.95 O.,.r~
C URBAN. GOOD 69 0.57 RESIDENTIAL 0.4 0.36 53210,8 0.05 0_02
D URBAN. GOOD 75 0.51 RESIDENTIAL 0.4 0.33 3898.1 0.00 000
SUM [S)~- 1060885.7 SUM [!OJ = 044
fm= Minimum Loss Rate - Ff2 =SUM[lOjf2:::: 0.22 IN/HR
C:::: (F-Fm)/54:::: ISUM(IOJ - FmJ/54:::: O-'lO4ll
IT:::: CC!-HT/60))^1.55 + Fm:::: 0.00411 ( 24 ~ (T/60) )^ 1.55 + 0.22 IN/HR
Where:
T =Time in minutes. To gel an aver:Jge value for each unit time period, use T=111 (he unit time for the firsl time period. T=! 1/2 unit time
for the second period. etc.
.
~\
SYNTHETIC UNIT HYDROGRAPH METHOD OEVELOPED CONDI1 ION (AMC 1/)
HYDROLOGY BASIC DATA CALCULATION FORM fn-32780PR Loss.xls
MANUAL TRACT 32780 Calced By: SWL 7/28/2005
Checked: RTC 7/28/2005
AVERAGE ADJUSTED LOSS RATE
[II I~J 131 [4J 15J 16J [7J 18J [9J /lOJ
SOil COVER RI PER VIQUS LAND DECIMAL ADJUSTED AREA 181/SUM18J AVERAGE
GROUP TYPE NUMBER AREA USE % OF AREA INfl.. TN SQFf ADJUSTED
(PLATEe.1l (PLAlE E.611 INFL TN IMPERV. RA TE-INr<lR I NFL TN
RA TE-INfHR IPLATEE-6.31 14111-.916/1 RA TE-INfHR
(PLATEE-6.!l 111-191
B URBAN. GOOD 56 0.51 RESIDENTIAL 0.4 0.33 100)776.8 0.95 0.31
C URBAN. GOOD 69 0.37 RESIDENTIAL 0.4 O.~4 53~10.8 0.05 0.01
D URBAN. GOOD 75 0.30 RESIDENTIAL 0.4 0.19 3898.1 0.00 O.DO
SUMJ8J= 1060885.7 SUM IIOJ = o.r
Fro = Minimum Loss Rate - f/2 = SUM[IOV2 = 0.16 IN/HR
C = (F-Fm)/5..J = {SUM[lO] - Fm)/5-l. = 0.00298
IT = CC!4-(T/601)^1.55 + Fm = 0.00298 ( 24 - {T/60J ,1'0 1.55 + 0.16 IN/HR
Where:
T = Time in minutes.. To get an average value far each unit lime period. use 1'=1/2 the 1Ulit lime for the first lime period. 1'=1 1/1 unit time
for the second period. etc.
.
?y
e
<II
..
"'
3'
(Jl
<;
il
'"
..
'i.,S;
e
t::J
~.
~
~ ~
~ ...
"",-,
_ ....
c ->
~ QO
:::c C
~ :::
,.. ..
:: ;-
.e... a
~ o.
:::;. ::s
;; 0:>
r) e;
~ S"
~ CIJ
~ 0'
...
'" "
-110
" ..
-
...,
00
!V
...,
1'1
r-
-----.........-- 1'1
NNNNNN~NN <
OOQOQOQCI-...J-...I~-....I-...I 2 >
NN_O\CQO:'-I......O\
NOOOOO'lOO ...,
. . i5
. 2
1--
0
9:-:-:-:-9~:-9 1'1
2 -=
t...)oooo~'Joo ...,
::c
--
ooooooPoo ~ >
o.o.Ut~~Wt......WN " :o:l
.s::..Nl.h\OWC\{::..OUl ~ 1'1
>
--
>
<
0;- C'l
~ >
:o:l
oooooo~oo 1'1
o.UtiJ!:p.WWt......N:"" >
1--. W\OtvUl\OUlf'V-....,JN
<
0;- 0
n r-
2 c
:::
000000900 1'1
:....UtUt~w:....NNa
-- W\ONVl\O_N-..JO
("l
<c
~o:::
"r-L:
f(eC-
~. >
NN---OS::oo ':::':::...,
1'1-
o-Vt\.o~Oo.~NO <
OOUl-.JVlOO -..JO 1'1
0
.... -
....en
_ ,("l
nO'"
~c;;
WWN_ ::o:l
Q\l.JlOOOO-J ~~
OOLnWVtO_Coo
: .
",-
'0 a
=~
'" '0
~ e.
'< "
n 0-
ri "-
"' "-
- ..
" "
,,"-
< "'
g c
c. ~
"or.
..
..
"
<
~.
:;
e
'"
~
'"
o
o
'"
'"
;;
"
"1l
;::
32780PR_ !
~~~REean Dell & Associates, Inc.
~~ ~~~:~;:.;~.:~~~~..**+..***.......+.+.*....*......................
ID DEVELOPED CONDITION 100-Yr 3-, 6-, & 24-Hr Storm
ID ...*******...*...*****.....*****..*..*....*****...***..**.*.*..*.
*DIAGRAM
ID.NOLIST
IT 5 0000 0000 300
10 5
KK **3HR**
Q= 0
KE 3HRPR
KH lOO-YEAR 3-HOUR DEVELOPED CONDITION
B'. .03
LU 0 .32 0
PB 1. 85
PI 1.3 1.3 1.1 1.5 1 .5 1.8 1.5 1.8 1.8 1 .5
PI 1.6 1.8 2.2 2.2 2. 2 2.0 2.6 2.7 2.4 2 .7
PI 3.3 3.1 2.9 3.0 3. 1 4.2 5.0 3.5 6.8 7 .3
PI 8.2 5.9 2.0 1.8 1.8 0.6 0.0 0.0 0.0 0 .0
$U .23 0.15 116.90 0.015 11 0
KK BASIN
KM DETENTION BASIN WITH 42. OUTLET
RS I,ELEV,1277.7
SV 0 0.27 0.50 0_60 1. 00 1. 45 1. 97 2.55 2.68
SE 1276 1277 1277.7 1278 1279 1280 1281 1282 12E2.2
SQ 0 0 0 1 7.6 18.5 28.3 35.5 36.8
KK ..6HR**
QI 0
KK 6HRPR
KM 100-YEAR 6 HOUR DEVELOPED CO~TIITION
BA .03
LU 0 .32 0
PB 2.50
PI 0.5 0.6 0.6 0.6 O. 6 0.7 0.7 0.7 0.7 0.7
-~ 0.7 0.8 0.8 0.8 O. 8 0.8 0.8 0.8 0.8 0.8
0.8 0.8 0.8 0.9 O. 8 0.9 0.9 0.9 0.9 0.9
0.9 0.9 1.0 1.0 1. 0 1.0 1.0 1.1 1.1 1.1
PI 1.2 1.3 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.8
P: 1.9 2.0 2.1 2.1 2.2 2.3 2.4 2.4 2.5 2.6
PI 3.1 3.6 3.9 4.2 4.7 5.6 1.9 0.9 0.6 0.5
PI 0.3 0.2
$1,; .23 0.15 116.90 0 .015 11 0
KK BASIN
KM DETENTION BASIN WITH 42" OUTLET
RS 1,ELEV,1277.7
SV 0 0.27 0.50 0.60 1. 00 1..45 1. 97 2.55 2.68
SE 1276 1277 1277 . 7 1278 1279 1280 1281 1282 1282_2
SQ 0 0 0 1 7.6 18_5 28_3 35_5 36.8
KK .*24HR.*
QI 0
IN 15
KK 24HRPR
KM lOO-YEAR 24-HOUR DEVELOPED CONDITION
BA 0.03
KM VAR. LOSS=0.32;0 .9=0.36 WIlO% IMPERV. FACTOR
LU 0 .36 10
PB 4.50
PI 0.2 0.3 0.3 0.' 0.3 0.3 0.3 0.4 0.4 0.4
PI 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.8
PI 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1
PI 1.2 1.3 1.5 1.5 1.6 1.7 1.9 2.0 2.1 2.2
PI 1.5 1.5 2.0 2.0 1.9 1.9 1.7 1.8 2.5 2.6
PI 2.8 2.9 3.4 3.4 2.3 2.3 2.7 2.6 2.6 2.5
PI 2.4 2.3 1.9 1.9 0.4 0.4 0.3 0.3 0.5 0.5
PI 0.5 0.4 0.4 0.4 0.3 0.2 0.3 0.4 0.3 0.2
PI 0.3 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2
PI 0.2 0.2 0.2 0.2 0.2 0.2
$U .23 0_15 116.90 0.015 11 0
KK BASIN
KM DETENTION BASIN WITH 42- OUTLET
-~ 1,ELEV,1277.7
0 0.27 0.50 0_60 1.00 1 .45 1.97 2.55 2.GB
Page 1
5At
e52
5Q
ZZ
e
.
1276
o
1277 1277.7
o 0
1278
l
1279
7.6
32780PR.I
1280 1281
18. S 28.3
Page 2
1282
35.5
12H2.2
:~6 _ 8
5'5
'****************************************
*********************-*****************
.
. .
. U4S. ARMY CORPS OF ENGINEERS .
. HYDROLOGIC ENGINEERING CENTER .
. 609 SECOND STREET .
. DAVIS, CALIFORNIA 95616 .
. (916) 756.1104 .
. .
FLOOD HYDROGRAPH PACKAGE (HEC-1 ) .
JUN 1998 .
e VERSION 4.1 .
.
RUN OA TE 03AUG05 TIME 15,40,40 .
.
***************************************.
******..**.**********~*.****.********.*
x X XXXXXXX XXXXX X
X X X X X XX
X X X X X
XXXXXXX XXXX X XXXXX X
X X X X X
X X X X X X
X X XXXXXXX XXXXX XXX
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-' KNOIIN AS HECI (JAN 73), IIEC1GS, HEC1D8, AND HEC1K~'.
e
TilE DEFINITIONS OF VARIABLES -RTlMP- AND -RTlOR- HAVE CHANGED FROM THOSE USED YITII THE 1973-STYLE INPU1 STRUCTURE.
THE DEFINITION OF -AMSKK. ON RH-CARD WAS CHANGED !.lITH REVIS(ONS DATED 28 SEP m. THIS IS THE FORTRAN77 VERSION
NEY OPTIONS, DAM8REAK OUTfLOY SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS,WRITE STAGE FREQUENCY,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION
KINEMATIC \oIAVE: NEW FINITE DIFFERENCE ALGORITHM
.
~
HEC-l INPUT PIlGE
LINE 10.......1...... .2...,.. .3...... .4...... .5...... .6.......7... ....8...... .9..... .10
'*e ***
1 ID Van Dell & Associates, Inc.
2 10 ~ALCDTT TR 32780
3 10 ********************************************************.t********
4 ID DEVELOPED CONDITION 100-Yr 3-, 6-, & 24-Hr Storm
5 10 ********************************************************.,********
*0 I AGRAM
6 ID *NOLl S1
7 IT 5 0000 0000 300
8 10 5
9 KK **3HR**
10 QI 0
11 KK 3HRPR
12 KM 100-YEAR 3 - HOUR DEVELOPED COND IT ION
13 8A .03
14 LU 0 .32 0
15 PB 1.85
16 PI 1.3 1.3 1.1 1.5 1.5 1.8 1.5 1.8 1.8 1.5
17 PI 1.6 1.8 2.2 2.2 2.2 2.0 2.6 2.7 2.4 2.7
18 PI 3.3 3.1 2.9 3.0 3.1 4.2 5.0 3,) 6.8 7.3
19 PI 8.2 5,9 2.0 1.8 1.8 0.6 0,0 0.0 0.0 0.0
20 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH
21 UJ 171. 48, 10. 3, 1.
. 22 KK BASIN
23 KM DETENTION BASIN WITH 4211 OUTlET
24 RS 1 ELEV 1277.7
25 SV 0 0.27 0.50 0.60 1.00 1.45 1.97 2,55 2.68
26 SE 1276 1277 1277,7 1278 1279 1280 1281 1"8" 1282.2
27 SO 0 0 0 1 7.6 18.5 28.3 3~i.5 36.8
28 KK **6HR**
29 01 0
30 KK 6HRPR
31 KM 100.YEAR 6 HOUR DEVELOPED CONDITION
32 BA .03
33 LU 0 .32 0
34 PB 2,50
35 PI 0.5 0.6 0.6 0.6 0,6 0.7 0.7 0.7 0.7 0.7
36 PI 0.7 0.8 0,8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
37 PI 0.8 0.8 0.8 0.9 0.8 0.9 0,9 0.9 0.9 0.9
38 PI 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1
39 PI 1.2 1.3 1.4 1.4 1.5 1.5 1.6. 1.6 1.7 1.8
40 PI 1.9 2.0 2,1 2.1 2.2 2.3 2.4 2.4 2.5 2.6
41 PI 3.1 3.6 3.9 4.2 4.7 5.6 1.9 0,9 0.6 0,5
42 PI 0.3 0.2
43 KM UHG FROM AVERAGE FUllERTON - SAN JOSE S. GRAPH
44 UI 171. 48. 10. 3. 1.
.
511
HEC.l INPUT PAGE 2
LINE 10..... ..1...... .2....,. .3.,.... ,4...." .5...,.. .6..,... .7...... .B...... ,9......10
. 45 KK BASIN
46 KM DETENTION BASIN WITH 4211 OUTLET
47 RS 1 ELEV 1277.7
4B SV 0 0.27 0,50 0,60 1.00 1.45 1.97 ;~.S5 2.68
49 SE 1276 1277 1277.7 127B 1279 12BO 1281 12B2 1282,2
50 SO 0 0 0 1 7.6 lB.5 2B.3 :i5..5 36.8
51 I<K**24HR**
52 01 0
53 IN 15
54 KK 24HRPR
55 KM 100-YEAR 24-HOUR OEVELOPEO CONOITION
56 BA 0.03
57 KM VAR. LOSS=O,32/0.9=0.36 "/10% IMPERV.fACTOR
5B LU 0 .36 10
59 PB 4.50
60 PI 0.2 0.3 0,3 0.4 0.3 0.3 0.3 0.4 0.4 0.4
61 PI 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 O.B
62 PI 0.6 0.7 0.8 O.B 0.9 0.9 1.0 1.0 1.0 1.1
63 PI 1.2 1.3 1.5 1.5 1.6 1.7 1.9 2.0 2.1 2.2
64 PI 1.5 1.5 2.0 2.0 1.9 1.9 1.7 1.B 2.5 2.6
65 PI 2.8 2.9 3.4 3.4 2.3 2.3 2.7 2,6 2.6 2,5
66 PI 2,4 2.3 1.9 1.9 0.4 0.4 0.3 03 0.5 0.5
e 67 PI 0.5 0,4 0.4 0.4 0.3 0.2 0.3 0.4 0.3 0.2
68 PI 0.3 0.3 0,3 0.2 0.3 0.2 0.3 0.2 0.3 0,2
69 PI 0.2 0.2 0.2 0,2 0,2 0.2
70 KM UHG FROM AVERAGE FULLERTON - SAN JOSE S-GRAPH
71 UI 171. 4B. 10, 3. 1.
72 KK BASIN
73 KM DETENTION BASIN WITH 42" OUTlET
74 RS 1 ELEV 1277 .7
75 sv 0 0,27 0.50 0.60 1.00 1.45 1.97 2_S~j 2.6B
76 SE 1276 1277 1277.7 1278 1279 12BO 1281 1 (!82 12B2.2
77 SO 0 0 0 1 7.6 18.5 28.3 3~i.5 36.B
78 22
.
61b
SCHEMATIC DIAGRAM OF STREAM NETUORK
NPUT
LINE (V) ROUT! NG
e (,) CONNECTOR
l' 3HRPR
V
V
22 BASIN
30
45
54
72
6HRPR
V
V
BASIN
(.+~>) DIVERSION OR PUMP FLOW
(<---) RETURN OF DIVERTED OR PUMPED FLOW
24HRPR
V
V
BASIN
***) RUNOFF ALSO COMPUTED AT THIS LOCATION
e
.
5A.
<**************************************** ********************~******************
. . *
FLOOD HYDRDGRAPH PACKAGE (HEC-1 ) . . U.S. ARMY CORPS OF ENGINEERS .
JUN 1998 . . HYDROLOGIC ENGI~EERING CENTER *
e VERSION 4.1 . . 609 SECOND STREET *
. . DAVIS, CALIFORNIA 95616 *
RUN DATE 03AUG05 TIME 15:40:40 . . (916) 750,1104 *
* . *
<**************************************** ***************************************
Van Dell & Associates, Inc.
WALCOTT TR 32780
*****************************************************************
*NOll ST
DEVELOPED CONOrTtoN 100-Yr 3-,6-, & 24-Hr Storm
*****************************************************************
810
OUTPUT CONTROL VARIABLES
IPRNT 5
IPLOT 0
aSCAl O.
IT
HYDROGRAPH TIME DATA
NMIN
IDATE
ITlME
Ne
NDDATE
NDTIME
ICENT
e
COMPUTATION INTERVAL
TOTAL TIME BASE
ENGLI SH UN ITS
DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
FlOI./
STORAGE VOLUME
SURFACE AREA
TEMPERATURE
.
PRINT CONTROL
PLOT CONTROL
HYDROGRAPH PLOT
SCALE
2
5
00 0
0000
300
o
0055
19
MINUTES IN COMPUTATION INTERVAL
STARTING DATE
STARTING TIME
NUMBER OF HYDROGRAPH ORDINATES
ENDING DATE
ENDING TIME
CENTURY MARK
,08 HOURS
24.92 HOURS
SCUARE MILES
INCHES
FEET
CUBIC FEET PER SECOND
ACRE. FEET
ACRES
DEGREES FAHRENHEIT
V:>
RUNOFF SUMMARY
FlOll IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES
_ PEAK TIME OF AVERAGE FLO~ FOR MAXIMUM PERIOD BASIN MAX I MUM TIME OF
OPERATION STATION FLO~ PEAK 6-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE
HYOROGRAPH AT .*3HR** O. .OD O. O. D. .OD
HYDROGRAPH AT 3HRPR 28. 2.58 3. 1. 1. .D3
ROUTED TO BASIN 14, 2.75 3. 1. 1. ,03 1279.58 2,75
HYDROGRAPH AT .*6HR*. D, ,OD D, D. D. .03
HYDROGRAPH AT 6HRPR 25. 5.5D 3. 1. 1. .03
ROUTED TO BASIN 13. 5.58 3. 1. 1. .03 1279.49 5.58
HYDROGRAPH AT ..24HR.. O. .00 D. 0, O. .03
HYOROGRAPH AT 24HRPR 6, 13.42 2. 1. 1. .D3
ROUTED TO BASIN 3. 13.58 2. 1. 1. .03 1278,45 13.58
-* NORMAL END OF HEC.l **.
_
_
~\
.
Water Quality Volume Calculation
Existing Condition
.
.
~
..,...,,'--~,:
I
914_0101 TR 32780 I
e EXISTING CONDITION !
2-YR I
I
SYNTHETIC UNIT HYOROGRAPH METHOD h RCFe & \iCD J
I
I
CONCENTRATION POINT A I AREA DESIGNATION A I
I I
DRAINAGE AREA (SQUARE MILES) 0.020 I ULTIMATE OI~;CIIARGE 12.9 I
I I
UNIT TIME IN MINUTES 15 I lAG TIME (MINUTES) 2.02 I
: I
UNIT TIME PERCENT OF lAG 742.6 I S CURVE FOOTHILL I
I I
STORM FREQUENCY 2-YEAR DURATION 24. HOUR I TOTAL ADJUSTED STORM RAIN (INCHES) 1.70 I
I I
VARIABLE lOSS RATE ( INCHES/HOUR) 0.17 I MINIMUM lOSS RATE (INCHES/HOUR) 0.085 I
I I
CONSTANT lOSS RATE ( INCHES/HOUR) 0.00 I l~ lOSS RATE PERCENT 90 I
I I
UNIT I TIME I CUMUlA T I VE I OISTRI8 J UNIT I PATTERN I STORM I lOSS RATE EFFEcn VE flOOD I
TIME I PERCENT I AVERAGE % OF I GRAPH I HYDRO I PERCENT J RAIN I RAW HYDROGRAPH I
PERIOD I OF lAG I Ul TTMATE Q I PERCENT I GRAPH I I I MAX I lOll I
I I : : I : I I I
1 I 742.6 I 94.6 I 94.6 I 12.2 I 0.2 I 0_01 I 0.30 I 0.01 O.OCl 0.0
"
e 2 J 0.0 I 0.0 J 0.0 I 0.0 I 0.3 I 0.02 I 0.30 I 0.02 O,OCl 0.0
3 I 0.0 I 0.0 I 0.0 I 0,0 I 0,3 J O.O? I 0,29 0.02 o.oc. 0.0
4 I 0,0 I 0.0 I 0,0 I 0.0 I 0.4 I 0.03 0.29 0.02 o.or 0,0
5 I 0,0 J 0.0 I 0.0 I 0.0 I 0.3 I O.O? 0.29 0.02 0.00 0.0
6 I 0.0 I 0.0 0.0 I 0.0 I 0.3 0.02 0.28 0.02 0.00 0.0
7 I 0.0 I 0.0 0.0 I 0.0 I 0.3 0.02 0.28 0.02 0.00 0.0
8 I 0.0 I 0.0 0.0 I 0,0 I 0.4 0.03 0.28 0.02 0.00 0.0
9 I 0.0 I 0.0 0,0 I 0.0 0.4 0.03 0.27 0.02 0.00 0.0
10 I 0.0 I 0.0 0.0 I 0.0 0.4 0.03 0.27 0.02 0.00 0.0
11 J 0,0 I 0.0 0.0 I 0.0 0.5 0.03 0,27 0.03 0.00 0.0
12 I 0.0 0.0 0.0 0.0 0.5 0.03 0.26 0.03 0.00 0.0
13 I 0.0 0.0 0.0 0.0 D,S 0.03 0.26 0.03 0,00 0.0
14 I 0.0 0.0 0.0 0,0 0.5 0.03 0.26 0.03 0.00 0.0
15 I 0.0 0.0 0.0 0,0 0.5 0,03 0.25 0,03 0.00 0.0
16 I 0.0 0.0 0.0 0.0 0.6 0.04 0.25 0.04 0.00 0.0
17 0.0 0,0 0.0 0.0 0.6 0.04 0.25 0.04 0.00 0.0
18 0.0 0.0 0.0 0.0 0.7 0.05 0.24 0,04 0.00 0.1
19 0.0 0.0 0.0 0.0 0.7 0.05 0.24 0.04 0.00 0.1
20 0,0 0.0 0.0 0.0 0.8 0,05 0.24 0.05 0.01 0.1
21 0.0 0.0 0.0 0.0 0.6 0.Cl4 0.23 0.04 0.00 0.0
22 0,0 0.0 0.0 0,0 0.7 0.Cl5 0.23 0.04 0.00 0.1
23 0.0 0.0 0.0 0.0 0.8 0.Cl5 0.23 0.05 0.01 0.1
24 0.0 0,0 0.0 0.0 0.8 0.05 0.23 0.05 0.01 0.1
25 0.0 0.0 0.0 0.0 0,9 0.06 0.22 0,06 J 0.01 0.1
26 0.0 0.0 0.0 0.0 0.9 0.06 0.22 0.06 I 0.01 0.1
27 0.0 0.0 0.0 0.0 1.0 0.07 0.22 0.06 I 0,01 0,1
. 28 0.0 0.0 0.0 0.0 1.0 0.07 0.21 0,06 I 0,01 0.1
29 0.0 0,0 0.0 0.0 1.0 0.07 0.21 0.06 I 0.01 0.1
30 0.0 0.0 0.0 0.0 1.1 0.07 0.21 0.07 I 0.01 0.1
31 0.0 0.0 0,0 0.0 1.2 0.08 0.20 0.07 I 0.01 0.1
32 0.0 0.0 0.0 0.0 1.3 0.09 0.20 0.08 I 0.01 0.1 Ce'J
33 0.0 0.0 0.0 0,0 1.5 0.10 I 0.20 I 0,09 I 0.01 I 0.1 I
34 0.0 0,0 0.0 0,0 1.5 0.10 I 0.20 I 0.09 I 0.01 I 0.1 I
35 0.0 0.0 0,0 0,0 1.6 0.11 I 0.19 I 0.10 I 0,01 I 0,1 I
36 0,0 0.0 0.0 0.0 1.7 0.12 I 0.19 I 0,10 I 0.01 I 0,1 I
e 37 0.0 0.0 0,0 0,0 1.9 0.13 I 0.19 I 0.12 I 0.01 I 0.2 I
38 0.0 0.0 0.0 0,0 2.0 0.14 I 0.19 I 0.12 I 0.01 I 0.2 I
39 0.0 0.0 0,0 0.0 2.1 0.14 I 0.18 I 0,13 I 0,01 I 0.2 I
40 0.0 0.0 0.0 0.0 2.2 0.15 I 0.18 I 0.13 I 0.0': I 0.2 I
-'
UNIT I TIME I CUMULATIVE I OISTRIB UNIT I PATTERN I STORM I LOSS RATE I EFFECllVE FLOOO I
TIME I PERCENT I AVERAGE X OF I GRAPH HYORO I PERCENT I RAIN I I RAIN HYOROGRAPH I
PERIOD I OF LAG I ULTIMATE Q I PERCENT GRAPH I I I MAX I LOll I I
I I I I : I I I I
41 0.0 0.0 I 0.0 0,0 1.5 I 0.10 0.18 0.09 0.01 0.1
42 0.0 0.0 I 0.0 0.0 1.5 I 0.10 0.18 0.09 0.01 0.1
43 0.0 0.0 I 0.0 0.0 2.0 I 0.14 0.17 0,12 0.01 0.2
44 0.0 0.0 I 0.0 0.0 2.0 I 0.14 0.17 0.12 0.01 0.2
45 0,0 0.0 I 0.0. 0.0 1.9 0.13 0.17 0.12 0.01 0.2
46 0.0 0.0 0.0 0.0 1.9 0.13 0.17 0.12 0.01 0.2
47 0.0 0.0 0.0 0.0 1.7 0,12 0.16 0.10 0.01 0.1
48 0.0 0,0 0.0 0.0 1.8 0.12 0.16 0.11 0.01 0.1
49 0.0 0.0 0.0 0.0 2.5 0.17 0.16 0.15 0.01 0.1
50 0.0 0.0 0.0 0.0 2.6 O. 'j8 0.16 0.16 0,02 0.3
51 0.0 0.0 0.0 0.0 2.8 0.0,9 0.15 0.17 0.04 0.5
52 0.0 0.0 0.0 0.0 2.9 0,20 0.15 0.18 0,05 0.6
53 0.0 0.0 0,0 0.0 3.4 0.23 0.15 0.21 0.08 1.0
54 0.0 0.0 0.0 0.0 3.4 0.23 0.15 0.21 0.08 1.0
e 55 0.0 0.0 0.0 I. 0.0 2.3 0.16 0.14 0.14 0.01 0.1
56 0.0 0.0 0.0 I 0.0 2.3 0,16 0.14 0,14 0.01 0,2
57 0.0 0.0 0.0 I 0.0 2.7 0.18 0.14 0,17 0,04 0.5
58 0.0 0.0 0.0 I 0.0 2.6 0.18 0.14 J 0,16 0,04 0.5
59 0.0 0.0 0.0 I 0.0 2.6 0.18 0.14 0.16 I 0.04 0.5
60 I 0.0 0.0 0.0 I 0.0 2.5 0.17 0.13 0.15 0.04 0.4
61 I 0.0 0.0 0.0 I 0.0 2,4 0.16 0.13 0.15 0.03 0.4
62 I 0.0 0.0 0.0 I 0.0 2.3 0.16 0.13 0.14 0.03 0.3
63 I 0.0 0.0 0.0 0.0 1.9 0,13 0.13 0.12 0,00 0.0
64 I 0.0 0,0 0.0 0.0 1.9 0.13 0.13 0.12 0.00 0.0
65 I 0.0 0.0 0.0 0.0 0.4 0.03 I 0.12 0.02 0.00 0.0
66 I 0.0 0.0 0.0 0.0 0.4 0.03 I 0.12 0.02 0.00 0.0
67 I 0.0 0,0 0,0 0.0 0.3 O.O;~ I 0.12 0.02 0.00 0.0
6ll I 0.0 0.0 0,0 0.0 0.3 O.O;~ I 0.12 0.02 0,00 0.0
69 I 0.0 0.0 0.0 0.0 0.5 0.03 I 0.12 0,03 0.00 0.0
70 I 0.0 0,0 0.0 0.0 0.5 0.03 I 0.11 0.03 0.00 0.0
71 I 0.0 0.0 0,0 0.0 0.5 0.0:: 0.11 0.03 0.00 0.0
72 I 0.0 0.0 0.0 0.0 0.4 0.03: 0.11 0,02 0.00 0,0
73 I 0.0 0.0 0.0 0.0 0.4 O.OJ 0.11 0.02 0.00 0.0
74 I 0,0 0.0 0.0 0.0 0.4 0.03 0.11 0.02 0.00 0.0
75 I 0.0 0.0 0,0 0.0 0.3 0.02 0.11 0.02 0.00 0,0
76 I 0.0 0.0 0.0 0.0 0,2 0.01 0,10 0.01 0,00 0.0
77 I 0.0 0.0 0.0 0.0 0.3 0.02 0.10 0.02 0.00 0.0
7B I 0.0 0.0 0.0 0,0 0.4 0,03 0.10 0.02 0.00 0.0
79 I 0.0 0.0 0.0 0.0 0.3 0.02 0.10 J 0.02 0.00 0.0
. 80 J 0.0 0,0 0.0 0.0 0.2 0.01 0.10 I 0.01 0.00 0.0
81 I 0.0 0.0 0.0 0.0 0.3 0.02 0.10 I 0.02 0.00 0.0
82 I 0.0 0.0 0.0 0.0 0,3 0.02 0.10 I 0.02 0.00 0.0
83 I 0.0 0.0 0.0 0.0 0,3 0.02 0.10 I 0.02 0,00 0.0
84 I 0.0 0.0 0.0 0.0 0.2 0.01 0.09 J 0.01 0.00 0.0
85 I 0,0 0,0 0.0 0.0 0.3 0.02 0.09 I 0.02 0.00 0.0 CcA-
86 0.0 I 0.0 0.0 0,0 0.2 0,01 0.09 0.01 0.00 0,0
87 0.0 I 0.0 0.0 0.0 0.3 0.02 0.09 0.02 0.00 0,0
88 0,0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0
89 0.0 I 0.0 0.0 0.0 0.3 0.02 0.09 0.02 0.00 0.0
e 90 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0
91 0,0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0
92 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0
93 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0,0
94 0.0 I 0.0 0.0 0.0 0,2 0.01 0.09 0.01 0.00 0.0
95 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0
96 0.0 I 0.0 0.0 0.0 0.2 0.01 0.09 0.01 0.00 0.0
97 0.0 I 0,0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.0
otal Effective RainfalL = 0.234 inches
ydrograph VoLune = 0.2 acre feet
e
.
fp5
I
914_0101 TR 32780 I
. EXISTING CONDITION I
10-YR I
I
SYNTHETIC UNIT HYOROGRAPH METHOD -- RCfC & IICO I
I
I
CONCENTRATION POINT A I AREA DESIGNATION A I
I I
DRAINAGE AREA (SQUARE MILES) 0.020 I ULTIMATE DISCHARGE 12.9 I
I I
UNIT TIME IN MINUTES 15 I LAG TIME (MINUTES) 2.02 I
I I
UNIT TIME PERCENT Of LAG 742.6 I S CURVE fOOTHILL I
I I
STORM fREQUENCY 10-YEAR DURATION 24. HOUR I TOTAL ADJUSTE[' STORM RAIN (INCHES) 2,80 I
I I
VARIA8LE LOSS RATE (INCHES/HOUR) 0.17 I MINIHUM LOSS RATE (INCHES/HOUR) 0.085 I
: I
CONSTANT LOSS RATE (INCHES/HOUR) 0.00 I LOll LOSS RATE PERCENT 90 I
I I
UNIT I TIME I CUMULATIVE I 0lSTRI8 I UNIT I PATTERN I STORM I LOSS RATE I EffECTIVE I fLOOD I
TIME I PERCENT I AVERAGE X Of I GRAPH I HYDRO I PERCENT I RAIN ~ I RAIN I HYOROGRAPH I
PERIOD I Of LAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I LOll I I I
I I I : : I l- I I I I
1 I 742.6 I 94.6 I 94.6 I .12.2 0.2 I 0.02 I 0.30 I 0.02 I 0.00 I 0.0 I
. 2 I 0.0 I 0,0 I 0.0 I- 0.0 0,3 I 0.03 I 0.30 I 0_03 0.00 I 0.0 I
3 I 0.0 I 0.0 0.0 I 0,0 0.3 I 0.03 I 0.29 I 0.03 0.00 I 0.0 I
4 I 0.0 0.0 0.0 I 0.0 0.4 I 0.04 I 0.29 I 0.04 0.00 I 0.1 ,
5 I 0.0 0,0 0.0 I 0.0 0.3 I O.O:l 0.29 I 0.03 0,00 I 0.0 I
6 I 0.0 0.0 0.0 I 0.0 0.3 I 0.03 0_28 I 0.03 0,00 I 0.0 I
7 I 0.0 0.0 0,0 , 0.0 0.3 I 0.03 0.28 I 0.03 0.00 0.0 I
8 0.0 0,0 0.0 I 0.0 0,4 I D.Oll 0.28 I 0.04 0.00 0,1 I
9 0.0 0.0 0.0 I 0.0 0,4 D.OL, 0.27 I 0.04 0.00 0.1
10 0,0 0.0 0.0 I 0.0 0.4 0.0'. 0.27 0.04 0.00 0.1
11 0.0 0.0 0.0 I 0.0 0.5 0.06 0.27 0_05 0.01 0.1
12 0.0 0.0 0.0 0.0 0.5 0.0/. 0.26 0.05 0.01 0,1
13 0.0 0.0 0.0 0_0 0.5 0.06 0.26 0.05 0.01 0.1
14 0.0 0.0 0.0 0.0 0.5 0,06 0.26 0.05 0.01 0.1
15 0_0 0.0 0.0 0.0 0.5 0.06 0,25 0.05 0.01 0.1
16 0.0 0.0 0.0 0.0 0.6 0.07 0_25 0.06 0.01 0.1
17 0.0 0.0 0.0 0.0 0.6 0.07 0.25 0.06 0.01 0.1
18 0.0 0.0 0.0 0.0 OJ 0,08 0.24 0.07 0.01 0.1
19 0.0 0.0 0.0 0,0 OJ 0.08 0.24 0.07 0.01 0.1
20 0.0 0.0 0.0 0.0 0.8 0.09 0.24 0.08 0.01 0.1
21 0.0 0.0 0.0 0.0 0.6 0.07 0.23 0.06 0.01 0.1
22 0.0 0.0 0.0 0,0 OJ 0.01l 0.23 0.07 0.01 0.1
23 0.0 0.0 0.0 0.0 0.8 0.09 0.23 0.08 0_01 0.1
24 0.0 0.0 0.0 0.0 0.8 0.09 0,23 0.08 0.01 0.1
25 0.0 0.0 0.0 0.0 0.9 0.10 0.22 0.09 , 0.01 0.1
26 0.0 0.0 0.0 0,0 0.9 0.10 0.22 0.09 I 0.01 0.1
. 27 I 0.0 I 0.0 0.0 0,0 1.0 0.11 0.22 0.10 I 0.01 0.1
28 I 0.0 I 0.0 0,0 0.0 1.0 0.11 I 0.21 0.10 I 0.01 0,1
29 I 0.0 I 0,0 0,0 0.0 1.0 0.11 I 0,21 0.10 I 0.01 0.1
30 I 0.0 I 0.0 0,0 0.0 1.1 0,12 I 0.21 0.11 I 0.01 0.2
31 I 0.0 I 0.0 0.0 0.0 1.2 0.13 I 0.20 0.12 I 0.01 0.2 Y;.v,
32 I 0.0 I 0.0 0.0 0.0 1.3 0.15 I 0.20 0.13 I 0,01 0.2
33 0.0 0.0 0.0 0.0 1.5 0.17 I 0.20 I 0.15 I D.Oj! I 0.2 .
I
34 0.0 0.0 0.0 0,0 1.5 0.17 I 0.20 I 0.15 I D.O;! I 0.2 I
35 0.0 0.0 0,0 0.0 1.6 0.18 I 0,19 I 0,16 I D.O;! I 0.2 I
36 0,0 0,0 0.0 0.0 1.7 0.19 I 0.19 I 0.17 I 0.0,' I 0.2 I
e 37 0,0 0.0 0.0 0,0 1.9 0.21 10,19 I 0.19 I 0.0,' I 0,3 I
38 0.0 0.0 0.0 0,0 2.0 0.22 I 0.19 I 0.20 I O,O( I 0,5 I
39 0.0 0.0 0.0 0.0 2,1 0.24 I 0.18 I 0.21 I 0.05 I 0.6 I
40 0.0 0.0 0.0 0.0 2.2 0.25 I 0.18 I 0.22 I 0.07 I 0.8 I
-'
UNIT I TIME I CUMULATIVE I OISTRIB I UNIT I PATTERN I STORM I LOSS RATE I EF FECT I VE I F LClOO I
TIME I PERCENT I AVERAGE % OF I GRAPH I HYDRO I PERCENT I RAIN I .J RAIN I HYOROGRAPH I
PERIOD I OF LAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I LOW I I I
I I I I : I -f : : I I
41 0.0 0.0 I 0.0 0.0 1.5 I 0.17 I 0.18 0,15 I 0,02 f 0.2 I
42 0.0 0.0 I 0.0 0.0 1.5 I 0.17 I 0.18 0.15 I 0,02 I 0.2 I
43 0.0 0.0 I 0.0 0.0 2.0 I 0.22 I 0.17 0.20 I 0.05 I 0.6 I
44 0.0 0.0 I 0,0 0.0 2.0 I 0.22 I 0.17 0.20 I 0.05 I 0.7 I
45 0.0 0.0 I 0.0 0.0 1.9 I O.;~l 0.17 0.19 I 0.05 I 0.6 I
46 0.0 0.0 I 0.0 0.0 1.9 I O. ;~1 0.17 0.19 I 0.05 I 0.6 I
47 0.0 0.0 I 0.0 0.0 1.7 I 0.',9 0.16 0.17 I 0.03 I 0.3 I
48 0.0 0.0 I 0.0 0.0 1.8 I O_(~O 0.16 0.18 I 0.04 I 0.5 I
49 0.0 0.0 I 0.0 0.0 2.5 O..(~8 0.16 0,25 I 0,12 I 1.5
50 0.0 0.0 I 0.0 0.0 2.6 O.;;~9 0.16 0.26 I 0.14 I 1.7
51 0.0 0.0 I 0.0 0,0 2.8 031 0.15 0.28 I 0.16 I 2.0
52 0.0 0.0 I 0,0 0.0 2.9 0.32 0.15 0.29 I 0.17 I 2.1
53 0,0 0.0 0.0 0.0 3.4 0.38 0.15 0.34 I 0.23 I 2,8
54 0.0 0.0 0.0 '0.0 3.4 0,38 0,15 0.34 I 0,23 I 2.9
. 55 0.0 0.0 0,0 0.0 2.3 0.26 0.14 0.23 I 0.11 I 1.4
56 0.0 0.0 0.0 0.0 2.3 0.26 0.14 I 0.23 I 0.12 I 1.4
57 0.0 0.0 0,0 0.0 2.7 0.30 0.14 0.27 I 0.16 2.0
58 0.0 0.0 0.0 0.0 2.6 0.29 0.14 0.26 I 0.15 1.9
59 0.0 0.0 0.0 0.0 2.6 0.29 0.14 0.26 I 0.16 1.9
60 0.0 0.0 0.0 0,0 2.5 0.28 0,13 0.25 I 0.15 1.8
61 0.0 0.0 0.0 0.0 2.4 0.27 f 0.13 0.24 I 0.14 1.7
62 I 0.0 0.0 0.0 0.0 2,3 0.26 I 0.13 0.23 I 0,13 1.6
63 I 0.0 0.0 0.0 0.0 1.9 0.21 I 0.13 0.19 I 0.09 1.0
64 I 0.0 0.0 0.0 0.0 1.9 0.21 I 0.13 0.19 I 0.09 1.1
65 I 0.0 0.0 0.0 0.0 0.4 0.0', I 0.12 0.04 0.00 0.1
66 f 0,0 0.0 0.0 0.0 0.4 0.0'. I 0.12 0.04 0.00 0.1
67 I 0.0 0.0 0.0 0.0 0.3 0.0"' I 0.12 0,03 0.00 0.0
68 I 0.0 0.0 0.0 0.0 0.3 0.0;: I 0.12 0.03 0.00 0.0
69 I 0.0 0.0 0.0 0,0 0.5 0.06 I 0.12 0.05 0.01 0.1
70 I 0.0 0.0 0.0 0.0 0.5 0,06 I 0.11 0.05 0.01 0.1
71 I 0.0 0.0 0.0 0.0 0.5 0.06 I 0.11 0.05 0.01 0,1
72 I 0,0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0,00 0.1
73 I 0.0 0,0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1
74 I 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1
75 I 0.0 0.0 f 0.0 0,0 0.3 0.03 0.11 0.03 0.00 0.0
76 I 0.0 0.0 I 0.0 0.0 0.2 0.02 0.10 0.02 0.00 0.0 I
77 I 0.0 0.0 I 0.0 0.0 0.3 0.03 0.10 0,03 0.00 0,0 I
78 I 0.0 0.0 I 0.0 0.0 0.4 0.04 0.10 0.04 0.00 O. I I
79 I 0.0 0.0 I 0.0 0.0 0.3 I 0.03 0,10 0.03 0.00 0.0 I
. 80 I 0,0 I 0.0 I 0.0 0.0 0.2 I 0.02 0.10 0.02 0.00 0.0 I
81 I 0.0 I 0.0 I 0.0 0.0 0.3 I 0,03 0.10 0.03 0.00 0.0 I
82 f 0.0 I 0.0 I 0.0 0.0 0.3 I 0.03 0.10 0.03 0.00 0.0 I
83 I 0.0 I 0.0 I 0.0 0.0 0.3 I 0.03 0.10 0.03 I 0.00 0.0 I
84 I 0,0 I 0.0 I 0.0 0.0 0,2 I 0.02 0.09 0,02 I 0.00 0.0 I fe'\
85 I 0.0 I 0.0 I 0.0 0,0 0.3 f 0.03 0.09 0.03 I 0.00 0.0 I
86 0,0 0.0 0.0 0,0 0.2 I 0.02 I 0,09 I 0.02 O.Ou 0,0
87 0.0 0.0 0.0 0.0 0.3 I 0.03 I 0.09 I 0,03 0.00 0.0
8B 0.0 0.0 0.0 0,0 0.2 I 0.02 I 0.09 I 0.02 0,00 0.0
89 0.0 0.0 0.0 0,0 0,3 I 0.03 I 0.09 I 0.03 0.00 0.0
e 90 0.0 0.0 0,0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0
91 0,0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0
92 0.0 0.0 0,0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0,0
93 0,0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0
94 0.0 0.0 0.0 0.0 0.2 I 0.02 I 0,09 I 0,02 0.00 0.0
95 0.0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0,00 0.0
96 0.0 0.0 0.0 0.0 0.2 I 0.02 I 0.09 I 0.02 0.00 0.0
97 0.0 0.0 0.0 0.0 0,0 I 0.00 I 0.00 I 0.00 0.00 0.0
!
otal Effective Rainfall = o. B08 inches
ydrograph Volume = 0.9 acre feet
e
e
(Q~
.
Water Quality Volume Calculation
Proposed Condition
.
.
{J\
I
e 914_0101 TR 32780 I
PROPOSED CONDITION I
2-YR 24'HR I
I
SYNTHETIC UNIT HYOROGRAPH METHOQ -- RCFC & WCO I
I
I
CONCENTRATION POINT A I AREA DESIGNATION A I
I I
DRAINAGE AREA (SQUARE MILES) 0.030 I ULTIMATE DISCHARGE 19.4 I
I I
UNIT TIME IN MINUTES 15 I LAG TIME (MINUTES) 4.20 I
I I
UNIT TIME PERCENT OF LAG 357.1 I S CURVE FOOTHILL I
I I
STORM FREQUENCY 2.YEAR DURATION 24-HOUR I TOTAL ADJUSTED STORM RAIN (INCHES) 1.70 I
I I
VARIABLE LOSS RATE (INCHES/HOUR) 0.22 I MINIMUM LOSS RATE (INCHES/HOUR) 0.110 I
I I
CONSTANT LOSS RATE (INCHES/HOUR) 0.00 I LOW LOSS RAIE PERCENT 90 I
I I
UNIT I TIME I CUMULA Tl VE I OISTRIB I UNIT I PATTERN I STORM I LOSS RATE I EFFECTIVE I FLOOD I
TIME I PERCENT I AVERAGE X OF I GRAPH r HYDRO I PERCENT I RAIN I I RAIN I HYDROGRAPH r
PER IOD I OF LAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I LOW I I I
: : I I : I I I : I r
1 I 357.1 I 73.0 73.0 I . 14.1 I 0.2 I ('.01 0.39 I 0.01 I 0.00 0.0 I
'.,
_ 2 I 714.3 I 98.9 25,9 ~ . 5.0 I 0.3 I (1.02 0.3B I 0.02 I 0.00 0.0 I
3 I 0.0 I 0,0 0.0 0.0 I 0.3 I (1.02 0.38 I 0.02 I 0.00 0.0 I
4 I 0.0 I 0.0 0.0 0.0 I 0,4 I 0.03 0.38 0.02 0.00 0.0 I
5 I 0.0 I 0.0 0.0 0.0 I 0.3 I 0.02 0.37 0.02 O.OD 0.0
6 I 0.0 I 0.0 0.0 0.0 I 0.3 I 0.02 0.37 0.02 0.00 0.0
7 I 0.0 I 0.0 0.0 0.0 0.3 I 0.02 0.36 0.02 0.01l 0.0
8 I 0.0 I 0.0 0.0 0.0 0.4 0.03 0.36 0.02 0.01l 0.0
9 I 0.0 I 0.0 0.0 0.0 0.4 0.03 0,35 0.02 O,OIl 0,1
10 I 0.0 I 0.0 0.0 0.0 0.4 0.03 0.35 0.02 0.01l 0.1
11 I 0.0 I 0.0 0.0 0.0 0.5 0.01 0.34 0.03 O,Oll 0.1
12 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.34 0.03 0.01l 0.1
13 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.34 0.03 0.00 0.1
14 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.33 0.03 0.00 0.1
15 I 0.0 I 0.0 0.0 0.0 0.5 0.03 0.33 0.03 O.OC' 0.1
16 I 0.0 I 0.0 I 0.0 0.0 0.6 0.0/. 0.32 0.04 O.OCl 0.1
17 I 0.0 I 0.0 I 0.0 0.0 0.6 0.04 0.32 0.04 0.00 0.1
18 I 0,0 I 0.0 I 0.0 0.0 0.7 0.05 0.32 0.04 0,00 0.1
19 I 0.0 I 0.0 I 0.0 0.0 OJ 0.05 I 0.31 I 0.04 0.00 0.1
20 I 0.0 I 0,0 I 0.0 0.0 0.8 0.05 0.31 0.05 0.01 0.1
21 I 0.0 I 0.0 I 0.0 0.0 0.6 0.04 0.30 0.04 0.00 0.1
22 I 0.0 I 0.0 I 0.0 0.0 OJ 0.05 0.30 0.04 0.00 0.1
23 I 0.0 I 0.0 I 0.0 0.0 0.8 0,05 0.30 0.05 0,01 0.1
24 I 0.0 I 0.0 I 0.0 0.0 0.8 0.05 0.29 0.05 0.01 0.1
25 I 0.0 I 0.0 I 0.0 0.0 0,9 0.06 0.29 0.06 0.01 0.1
26 I 0.0 I 0.0 I 0.0 0.0 0.9 0.06 0.28 0.06 0.01 0.1
_ 27 I 0.0 I 0.0 I 0.0 0.0 1.0 0.07 0.28 0.06 0.01 0.1
28 I 0,0 I 0.0 I 0.0 0.0 1.0 0.07 0.28 0.06 0.01 0.1
29 I 0.0 I 0.0 I 0.0 0.0 1.0 0.07 0.27 0.06 0.01 0.1
30 I 0.0 I 0.0 I 0.0 0,0 1.1 0.07 0.27 0.07 0.01 0.1
31 I 0.0 I 0.0 I 0.0 0.0 1.2 0.08 0.27 0.07 0.01 0.2
32 I 0.0 I 0.0 I 0.0 0.0 1.3 0.09 0.26 0.08 0.01 0.2 ,,\0
33 0.0 0.0 0.0 0,0 1.5 0.10 , 0.26 I 0.09 I 0.('1 0,2
34 0.0 0.0 0.0 0,0 1.5 O. '10 I 0.25 I 0.09 I 0.01 0.2
35 0.0 0.0 0.0 0.0 1.6 0.11 I 0.25 I 0.10 I 0.(11 0.2
. 36 0.0 0.0 0.0 0.0 1.7 0.12 , 0.25 I 0.10 I 0.(11 0.2
37 0.0 0.0 0.0 0,0 1.9 0.13 I 0.24 I 0.12 I 0.01 0,2
38 0,0 0.0 0.0 0.0 2,0 0.14 I 0.24 I 0.12 I D.ell 0.3
39 0.0 0.0 0.0 0.0 2.1 0.14 I 0.24 I 0.13 I 0.(11 0.3
40 0.0 0.0 0.0 0.0 2.2 0,15 , 0.23 I 0.13 I 0,('1 0.3
UNIT I TIME I CUMULATIVE I DISTRI8 I UNIT I PATTERN I SlORM , LOSS RATE I EFFECTIVE , FLOOO
TIME I PERCENT , AVERAGE % OF I GRAPH I HYDRO I PERCENT , RAIN I I RAIN I HYDROGRAPH
PERIOO I OF LAG I ULTIMATE Q I PERCENT I GRAPH I , 'MAX , LOll I I
: : : I : I '1 I : :
41 I 0.0 0,0 , 0.0 I 0.0 I 1.5 ('.10 0.23 0.09 , 0.01 I 0.2
42 I 0.0 0.0 I 0.0 , 0.0 I 1.5 0.10 0.23 0.09 I 0.01 I 0.2
43 I 0.0 0.0 I 0.0 I 0.0 I 2.0 0.14 0.22 0.12 , 0.0'1 I 0.2
44 0,0 0.0 , 0.0 I 0.0 , 2.0 0.14 0.22 0.12 I 0.01 I 0.3
45 0.0 0.0 I 0.0 , 0.0 I 1.9 0.13 0.22 0.12 I 0.01 , 0.3
46 0.0 0.0 , 0.0 I 0.0 , 1.9 0.13 0.21 0.12 I 0.01 I 0,2
47 0.0 0.0 I 0.0 I 0.0 I 1.7 0.12 0.21 0.10 I 0.01 I 0.2
48 0,0 0.0 I 0.0 I 0.0 I 1.8 0,12 0.21 0,11 I 0.01 I 0.2
49 0.0 0.0 I 0.0 , 0.0 2.5 0.17 0.20 0.15 I O.O;~ , 0.3
50 0.0 0.0 I 0.0 I 0.0 2.6 0.18 0.20 0.16 I O.O;~ 0.3
51 0.0 0.0 I 0.0 , 0,0 2.8 0.19 0.20 0.17 I O.O;~ 0.4
52 0.0 0.0 I 0.0 I 0.0 2.9 0.20 0.20 0.18 I 0.00 0.1
53 0.0 0.0 I 0.0 I 0.0 3,4 0.23 0.19 0.21 I 0.0'. 0,6
54 0.0 0.0 I 0.0 , 0.0 3.4 0.23 I 0.19 0.21 I O.O~, 0.8
. 55 0.0 0.0 , 0.0 ~ ' 0.0 2.3 0.16 , 0.19 0.14 D.O;! 0.4
56 0.0 0.0 I 0,0 0.0 2.3 0,16 , 0.18 0.14 O.O,~ 0.3
57 0.0 0.0 0.0 0.0 2.7 0.18 I 0.18 0.17 O.OCt 0.1
58 I 0.0 0.0 0.0 0.0 2,6 0.18 I 0.18 , 0.16 O.Ot' 0.3
59 I 0.0 0.0 0.0 0.0 2.6 0.18 I 0.18 0.16 0.0(1 0.1
60 I 0.0 0.0 0.0 0.0 2.5 0.17 I 0.17 0.15 O.Ot 0.2
61 I 0.0 0.0 0.0 0.0 2.4 0.16 I 0,17 0.15 0.01 0.3
62 I 0.0 0,0 0.0 0.0 2.3 0.16 I 0.17 0.14 0.01 0.3
63 I 0.0 0.0 0.0 0.0 I 1.9 0,13 I 0,16 0.12 0.01 0.3
64 I 0.0 0.0 0.0 0.0 I 1.9 0.13 0.16 0.12 0.01 0,2
65 I 0.0 0.0 0.0 0,0 I 0.4 0.03 0.16 0.02 0,00 0.1
66 I 0.0 0.0 0.0 0.0 I 0.4 0.03 0.16 0.02 0.00 0.1
67 , 0.0 0.0 0.0 0.0 I 0.3 0.02 0.16 0.02 0.00 0.0
68 I 0.0 0.0 0.0 0.0 I 0.3 0.02 0,15 0.02 0.00 0.0
69 0.0 0.0 0.0 0.0 I 0.5 0.03 0.15 0.03 0.00 0.1
70 0.0 0.0 0.0 0.0 I 0.5 0.03 0.15 0.03 0.00 0.1
71 0.0 0.0 0.0 0.0 0.5 0,03 0.15 0.03 0.00 0.1
71 0.0 0.0 0.0 I 0.0 0.4 0.03 0.14 0.02 0.00 0.1
73 0.0 0.0 0.0 I 0,0 0,4 0.03 0.14 0.02 0,00 0.1
74 0.0 0.0 0.0 I 0.0 0.4 0.03 0.14 0.02 0.00 0.1
75 0.0 0.0 0.0 I 0.0 0.3 0,01 0.14 0.02 0.00 0.0
76 0.0 0.0 0.0 I 0.0 0.2 0.01 0.14 0.01 0.00 0.0
77 0.0 0.0 0.0 , 0.0 0.3 0.02 0.13 0.02 0,00 0.0
.
78 0.0 0.0 0.0 , 0.0 0.4 0.03 0.13 0.02 0.00 0.0
79 0.0 0,0 0.0 I 0.0 0.3 0.02 0.13 0.02 0,00 0.0
. 80 0.0 0.0 0.0 , 0.0 0.2 0.01 0.13 0.01 0.00 0.0
81 0.0 0.0 0,0 I 0.0 0.3 0.02 0.13 0.01 0.00 0.0
82 0.0 0.0 0.0 I 0.0 0.3 0.02 0.12 0.02 0.00 0,0
83 0.0 0.0 0.0 , 0.0 0.3 0.02 0.12 0.02 0.00 0.0
84 0.0 0.0 0.0 I 0.0 0.2 0.01 0.12 0.01 0.00 0.0
85 0.0 0.0 0.0 I 0.0 0.3 0.02 0.12 0.02 0.00 0.0 ~\
86 0.0 0,0 0.0 0.0 0.2 0.01 0.12 0.01 0.00 I 0.0
87 0.0 0,0 0.0 0.0 0.3 0.0, 0.12 0.0, 0.00 I 0.0
88 0.0 0.0 0,0 0.0 0.2 0,01 0.12 0.01 0.00 I 0.0
89 0.0 0.0 0.0 0,0 0.3 0,0, 0.12 0.02 0.00 I 0.0
e 90 0.0 0.0 0.0 0.0 0.2 0.01 0.11 0.01 0.00 I 0.0
91 0,0 0.0 0.0 0.0 0.2 0.01 O. " 0.01 0.00 I 0.0
92 0.0 0.0 0.0 0,0 0.2 0.01 O. l' 0.01 0.00 I 0.0
93 0.0 0.0 0.0 0.0 0.2 0.01 0,11 0.01 0.00 I 0.0
94 0,0 0.0 0.0 0.0 0.2 0.01 0.11 0.01 0.00 I 0.0
95 0.0 0.0 0.0 0.0 0.2 0.01 0.11 0.01 0.00 I 0.0
96 0.0 0,0 0,0 0,0 0.2 0.01 0.11 0,01 0.00 I 0.0
97 0,0 0.0 0,0 0.0 0.0 0.00 0.00 0.00 0.00 I 0.0
98 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 I 0,0
otal Effective Rainfall 0.166 inches
ydrograph Volume = 0.3 acre feet
.
.
1'V
I
e 914_0101 TR 32780 I
PROPOSED CONDITION I
10.YR I
I
SYNTHETIC UNIT HYOROGRAPH METHOD -- RCrC & ~CD I
I
I
CONCENTRATION POINT A I AREA DESIGNATION A I
: I
DRAINAGE AREA (SQUARE MILES) 0.030 I ULTIMATE DISCHARGE 19,4 I
: I
UNIT TIME IN MINUTES 15 I lAG TIME (MINUTES) 4.20 I
I I
UNIT TIME PERCENT OF lAG 357,1 I S CURVE FOOTHILL I
I I
STORM FREQUENCY 10.YEAR DURATION 24-HOUR I TOTAL ADJUSTED STORM RAIN (INCHES) 2.80 I
I I
VARIABLE lOSS RATE (INCHES/HOUR) 0.17 I MINIMUM lOSS RATE (INCHES/HOUR) 0.085 I
: I
CONSTANT lOSS RATE (INCHES/HOUR) 0.00 I lOY lOSS RATE PERCENT 90 I
: I
UNIT I TIME I CUMULATIVE I DISTRIB I UNIT I PATTERN I STORM I LOSS RATE I EFFECTI VE FLOOD I
TIME I PERCENT I AVERAGE X OF I GRAPH I HYDRO I PERCENT I RAlIl ~ I RAIN HYOROGRAPH I
PERIOD I OF lAG I ULTIMATE Q I PERCENT I GRAPH I I I MAX I lOY I I
: : : I I : I : I I
1 I 357.1 I 73.0 I 73.0 I ' 14.1 I 0.2 0.1l2 0.30 0.02 I 0.00 0.0 I
e 2 I 714.3 I 98.9 I 25,9 I. 5.0 I 0.3 0,03 0.30 0.03 I 0.00 0.1 I
3 I 0.0 I 0.0 I 0.0 I 0.0 I 0,3 0,03 0.29 0.03 I 0.00 0.1 I
4 I 0.0 I 0.0 I 0.0 I 0.0 I 0.4 0.04 0.29 0.04 I 0,00 0.1 ,
5 I 0.0 I 0.0 I 0.0 I 0.0 I 0.3 0.03 0.29 0.03 I 0.00 0.1
6 I 0.0 I 0.0 I 0.0 I 0.0 I 0.3 0.03 0.28 0.03 I 0.00 0.1
7 0.0 I 0.0 I 0.0 I 0.0 I 0.3 0.(13 0.28 0.03 I 0.00 0.1
8 0.0 I 0.0 0.0 I 0.0 I 0.4 0.04 0.28 0.04 I 0.00 0.1
9 0.0 I 0.0 0.0 I 0.0 I 0.4 0.04 0.27 0.04 I 0.00 0.1
10 0,0 , 0.0 0.0 I 0.0 I 0.4 0,04 0,27 0.04 I 0.00 0.1
11 0.0 I 0.0 0.0 I 0.0 I 0.5 0.06 0.27 0.05 I 0.01 0.1
12 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.26 0.05 I 0.01 0.1
13 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.26 0.05 O.Ot 0.1
14 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.26 0,05 0.01 0.1
15 0.0 0.0 0.0 I 0.0 I 0.5 0.06 0.25 0.05 0.01 0.1
16 0.0 0.0 0.0 I 0.0 I 0.6 0.07 0.25 0.06 0.01 0.1
17 0.0 0.0 0.0 I 0.0 I 0.6 0.07 0.25 0.06 0.01 0.1
18 0.0 0.0 0.0 0.0 0.7 0.08 0.24 0.07 0.01 0.1
19 0.0 0.0 0.0 0.0 0.7 0.08 0.24 0.07 0.01 0.1
20 0.0 0.0 0.0 0.0 0.8 0.09 0.24 0.08 0.01 0.2
21 0.0 0.0 0.0 0.0 0.6 0.07 I 0.23 0.06 0.01 0.1
22 0,0 0.0 0.0 0.0 OJ 0.011 , 0.23 0.07 0.01 0.1
23 0.0 0.0 0.0 0.0 0.8 0.09 I 0.23 0.08 0.01 0.2
24 0.0 0.0 0.0 0.0 0.8 0.09 , 0.23 0.08 0.01 0.2
25 0.0 0.0 0.0 0.0 0.9 0.10 I 0.22 0.09 0.01 0.2
26 0.0 0.0 0.0 0,0 0.9 0.10 I 0.22 0.09 0.01 0.2
. 27 I 0.0 0.0 0.0 0.0 1.0 0.11 I 0.22 0.10 0.01 0.2
28 , 0.0 0.0 0.0 0.0 1.0 0.11 I 0.21 0.10 0.01 0.2
29 I 0.0 0.0 0.0 0.0 1.0 0.11 I 0.21 0.10 0.01 0.2
30 I 0.0 0.0 0.0 0.0 1.1 0.1, I 0.21 0.11 0.01 0.2
31 I 0.0 0.0 0.0 0.0 1.2 0.13 I 0.20 0.12 0.01 0.3
32 I 0.0 0.0 0.0 0.0 1.3 0.15 I 0.20 0.13 0.01 0.3 \'?
33 0.0 0.0 0,0 0.0 I 15 0.17 10.20 I 0,15 I 0.02 0.3
34 0,0 0.0 0.0 0.0 .1 1.5 0.17 I 0.20 I 0.15 I 0.02 0.3
35 0,0 0.0 0.0 0.0 I 1.6 11.18 I 0.19 I 0.16 I 0,02 0.3
36 0.0 0.0 0.0 0.0 I 1.7 0,19 I 0.19 I 0.17 I 0.02 0,4
e 37 0,0 0.0 0.0 0.0 I 1.9 0.21 I 0.19 I 0.19 I 0.02 0.4
38 0.0 0.0 0,0 0.0 I 2.0 11.;'2 I 0.19 I 0.20 I 0,04 0.7
39 0.0 0.0 0.0 0.0 I 2.1 0.24 I 0.18 I 0.21 I 0,(<5 0.9
40 0.0 0.0 0.0 0.0 I 2.2 0.25 I 0,18 I 0.22 I 0.(17 1.2
.
UNIT I TIME I CUMULATIVE I OISTRIB I UNIT I PATTERN I S10RM I LOSS RATE I EFFECTIVE FLOOO I
TIME I PERCENT I AVERAGE % OF I GRAPH I HYDRO I PERCENT I RAIN I I RAIN HYOROGRAPH I
PERIOD I OF LAG I ULTIMATE C I PERCENT I GRAPH I I I MAX LOW I I
: I : I I : : I
41 I 0,0 I 0.0 I 0,0 0.0 1.5 I 0.17 0.18 0.15 0.02 0.6 I
42 I 0.0 I 0.0 I 0.0 0.0 1.5 I 0.17 0.18 0.15 0.02 0.3 I
43 1 0.0 I 0.0 I 0.0 0.0 2.0 I 0.22 0.17 0.20 0.05 0.8 I
44 I 0.0 I 0.0 I 0.0 0.0 2.0 I 0.22 0.17 0.20 0,05 1.0 I
45 I 0.0 1 0.0 I 0.0 0.0 1.9 I 0.21 0.17 0,19 0.05 0.9
46 I 0.0 I 0.0 I 0,0 0.0 1.9 I 0.21 0.17 0.19 0.05 0.9
47 I 0.0 I 0.0 I 0.0 0.0 1.7 I 0.19 0.16 0.17 0.03 0.6
48 I 0.0 I 0.0 I 0.0 0.0 1.8 I 0.20 0.16 0.18 O.Oi. OJ
49 I 0.0 I 0,0 I 0.0 0.0 2.5 I 0.28 0.16 0,25 O. 1;~ 1.9
50 I 0.0 I 0.0 I 0.0 0.0 2.6 I 0.29 0.16 0.26 o. 1~1 2.5
51 I 0.0 I 0,0 I 0.0 0.0 2.8 0.31 0.15 0.28 0.16 2.9
52 I 0,0 I 0.0 I 0.0 0,0 2.9 0.32 0,15 0.29 D.li' 3.3
53 I 0.0 I 0.0 I 0.0 0.0 3.4 0,38 0.15 0.34 O.2~i 4,2
54 I 0.0 I 0.0 I 0.0 0.0 3.4 0.38 0.15 0.34 O_2~, 4.5
. 55 I 0.0 I 0.0 I 0.0 0.0 2.3 0..26 0.14 0.23 0.11 2.8
56 0.0 I 0.0 I 0.0 0.0 2.3 0.26 0.14 0.23 0.';:' 2.2
57 0.0 0.0 I 0.0 0.0 2.7 0.30 0.14 0,27 O.lf 2.9
58 0.0 0.0 I 0.0 0.0 2.6 0.29 I 0.14 0.26 0.15 3.0
59 0,0 0.0 I 0.0 0.0 2.6 0.29 0.14 0.26 0.16 3.0
60 0.0 0,0 I 0.0 0.0 2.5 0.28 0.13 0.25 0.15 2.8
61 0.0 0.0 I 0.0 0.0 2.4 0.27 0.13 0.24 0.14 2.7
62 0,0 0.0 0.0 0.0 2.3 0.26 0.13 0.23 0.13 25
63 0.0 0.0 0.0 0.0 1.9 0.21 0.13 0.19 0.09 1.8
64 0.0 0.0 0.0 0.0 1.9 0.21 0.13 0.19 0.09 1.7
65 0.0 0.0 0.0 0.0 0.4 0.04 0.12 I 0.04 0.00 0.5
66 0.0 0.0 0.0 0.0 0.4 0.04 0.12 0.04 0.00 0.1
67 0.0 0.0 0.0 0.0 0.3 0.03 0.12 0.03 0.00 0,1
68 0.0 0.0 0.0 0.0 0.3 0.03 0.12 0.03 0.00 0.1
69 0.0 0,0 0.0 0.0 0.5 0.06 0.12 0.05 0.01 0.1
70 0.0 0.0 0.0 0.0 0.5 0.06 0.11 0.05 0.01 0.1
71 0.0 0.0 0.0 0.0 0.5 0.06 0.11 0.05 0,01 0.1
72 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1
73 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1
74 0.0 0.0 0.0 0.0 0.4 0.04 0.11 0.04 0.00 0.1
75 0.0 0.0 0.0 0.0 0.3 0.03 0.11 0.03 I 0.00 0.1
76 0.0 0.0 0.0 0,0 0.2 0.02 0.10 0.02 I 0.00 0.0
77 0.0 0,0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1
78 0.0 0.0 0.0 0.0 0.4 0.04 0.10 0.04 I 0.00 0.1
79 0.0 0.0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1
. 80 0.0 0.0 0.0 0.0 0.2 0.02 0.10 0.02 I 0.00 0.0
81 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.10 0,03 I 0.00 0.1
82 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1
83 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.10 0.03 I 0.00 0.1
84 I 0.0 I 0.0 0.0 0.0 0.2 0.02 0.09 0.02 I 0.00 0.0 11\.
85 I 0.0 I 0.0 0.0 0.0 0.3 0.03 0.09 0.03 I 0.00 0.1
86 0.0 0.0 I 0.0 0.0 I 0.2 O.O,~ I 0.09 0.02 I o.on 0.0 I
67 0.0 0.0 I 0.0 0.0 I 0.3 0.03 I 0.09 0.03 I O.ml 0.1 I
66 0.0 0.0 I 0.0 0.0 I 0.2 0.02 I 0,09 0.02 I 0.00 0.0 I
e 69 0.0 0.0 I 0.0 0.0 I 0.3 0.03 0.09 0.03 I 0.00 0.1 I
90 0.0 0.0 I 0,0 0,0 I 0,2 0.02 0.09 0.02 I 0.00 0.0 I
91 0.0 0.0 I 0.0 0.0 I 0.2 0.02 0.09 0.02 I 0.0(1 0.0 I
92 0.0 0.0 I 0.0 0.0 I 0.2 0.02 0.09 0.02 I 0.0(1 0.0 I
93 0.0 0.0 I 0.0 0.0 I 0.2 O.O? 0.09 0.02 I 0.0(1 0.0 I
94 0.0 0.0 I 0.0 0.0 I 0,2 0.02 0.09 0.02 I O.oe, 0.0 I
95 0.0 0.0 I 0.0 0.0 I 0.2 0.02' 0.09 0.02 I 0.0(' 0.0 I
96 0,0 0.0 I 0,0 0.0 I 0.2 0.02 0.09 0.02 I O.Oc- 0.0 I
97 0.0 0.0 I 0.0 0.0 I 0.0 0.00 0.00 0.00 I 0.00 0.0 I
96 0.0 0.0 I 0.0 0.0 I 0.0 0.00 0.00 0.00 I 0.00 0,0 I
otal Effective RainfaLL = 0.608 inches
ydrograph Vollllle = 1.3 acre feet
e
e
, .
......~
.
.
.
Water Qnality Management Plan (WQMP)
Tentative Tract Mop 32780
August, 2005
Appendix D
Educational Materials
--..,
\(p
"'
e
.
.
Water Quality Management Plan (wQMP)
Tentative Tract Map 32780
August, 2005
Appendix E
Soils Report
~1
e
e
e
A D17f"\1I..1 A
K, INC.
Geotechnical
Environmental
Materials
1<0
e
PRELIMINARY GEOTECHNICAL EVALUATION
FOR
PROPOSED 22-AcRE RESIDENTIAJ~
DEVELOPMENT, WALCOTT LANE
TEMECULA, RIvERSIDE COUNTY, CALIFORNIA
e
PREPARED FOR
MR. STEVE GALVEZ
45621 CORTE ROYAL
TEMECULA, CALIFORNIA 92592
PREPARED BY
GEOTEK, INC.
1384 POINSETTIA A VENUE
VISTA, CALIFORNIA 92083
ePROJECT No.: 2550SD3
MARCH 24, 2004
'~--"...':'!I':o.....
, "\~
T!J ~
1C\.
e
1384 Poinsettia Ave., Suite A, Vista, CA 92081-8505
(760) 599-0509 FAX (760) 599-0593
Geotechnical
Environmental
K, INc.
Materials
March 24, 2004
Project No,: 2S50SD3
Mr. Steve Galvez
45621 Corte Royal
Temecula, California 92592
Subject:
Preliminary Geotechnical Evaluation
Proposed 22-Acre Rcsidential Development
Walcott Lane
Temecula, Riverside County, California
Dear Mr. Galvez:
e
As requested and authorized, GeoTek, Inc. (GeoTek) has performed a geotechnical
evaluation for the proposed 22-acre site located along the east side of Walcott Lane in the City
of Walcott Lane
Temecula, Riverside County, California. This report presents the results of our investigation,
discussion of our findings, and provides geotechnical recommendations for foundation
design and construction. In our opinion, the proposed development of the site appears feasible
from a geotechnical viewpoint provided that the recommendations included herein are
incorporated into the design and construction phases of the project.
The opportunity to be of service is sincerely appreciated. If you should have any questions, please
do not hesitate to call our office.
EIT 116439
Staff Engineer
e (5) Addressee
G:\DataID300\2J50SD3 Walcotl Lane - Temecula12550SD3 GeoRpI.doc
ARIZONA
CALIFORNIA
~
I\II=\I^ n^
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane - TemecuIa
Project No.: 2550S03
March 24, 2004
Pal!ei
TABLE OF CONTENTS
1. INTENT ........................................,........,....................................,.............................................,............ ...............1
2. PURPOSE AND SCOPE OF SERVICES.............................................,.....,...,..................................................1
3. SITE DESCRIPTION AND PROPOSED DEVELOPMENT .....................,...................................................2
3.1 SITE DESCRIPTION ................................................................. ........................ ........................... .. ............ 2
3.2 PROPOSED DEVELOPMENT ................... ...... ...... .............................. ................ .................................... ............ 2
4. FIELD EXPLORATION AND LAHORA TORY TESTING ................... ...............,.............................,.......... 3
4.1 FlELD EXPLORA TlDN .......................................................................................................................... ............ 3
4.2 LABORATORY TESTING............ ........ ............................... ...... ..... ...... ....................................... ..... ........ ........... 3
5. GEOLOGIC AND SOILS COI\'DITIONS ........................................................................................................3
5.1 GENERAL ............ ....................................................................................... .......................... ....... ..... .............3
5.1.1 Fill (Mapped as Aj) ...... ....,....................................... .................... ...3
5.1.2 Tapsoil (Not mapped).................. .................. ................. .............. .. 4
5.1.3 Alluvium (Mapped as Qal) ....................................... ................... ............... ....... 4
5.1.1 Terrace Deposits (Mapped as Qc) .............................. .................. .................. ............. .. 4
5.2 SURFACE AND GROUND W A TER..................................................................................................... .. ............ 5
5.2. 1 SUlface Water............................. .......... ................... ........................ ................ .......... ...... ....... ...........5
5.2.2 Groundwater .............................. ...... ........................ '" ........ .......... ............... ......., .......... 5
5.3 FAULTING AND SEISMICITY .......... .............................................................. ............................................. ...... 5
5.4 OTHER SEISMIC HAZARDS..... ....................................................................... ... ...................... .............. ............6
6. CONCLUSIONS AND RECOMMENDATIONS...............................,..................................................,..........7
6.1 GENERAL.................................... ........... ....,. ..... .......,............... ...................... ..................................... ... ........ 7
6.2 EARTHWORK CONSIDERA TIO NS ...... ............. ................. ..... .............. .............................................................. 7
6.2.1 Site Clearing..... .........,.. .................... ......................... ..................... ................... ....................... ........... 7
6.2.2 Fills............................................. ......................................... .......................................:..... ....... .......... 7
6.2.3 Removals ........ ..... ...................................................... ........................ ................ .... ................ ... .......... 7
6.2.4 Excavation Characteristics ......... ...................................................... ...................... ... ............... .......... 8
6.2.5 Transition Lots ....... .................................................................. .......... ................. ....... ................ ..... .... 8
6.2.6 Soil Balancing........................ ........... ............. ...... ............................................................................... 8
6.3 DESIGN RECOMMENDATIONS ..... .............. ......... .............. ............................................................................... 9
6.3.1 Foundation Design Criteria..................................................u................h.......h....................... .........9
6.3.2 Settlement..................................... ................... ........................ .................................................. ....... 10
6.3.3 Seismic Design Paranzeters ........h...................h..................___. ........... .... ................................... ....... 10
6.3.4 Foundation Set Backs. .............................................................................................. .................. ....... 10
6.3.5 Slab-an-Grade Constructian ..........................................,......................... ................... ...................... 11
6.3.6 Subgrade Moisture ...... ........................................................................ ............................... ............... 11
6.3.7 Soil Corrosivity ...............................................................................................,.......................... ...... 11
6.4 CONCRETE CONSTRUCTION ......................................................................................................................... 12
6.4.1 General......... .................. .............. ............ .................................................................................. ...... 12
6.4.2 Cement Type...............,................. .........,............................................ ........................................ ...... 12
6.4.3 Concrete Flatwork ........ ........ ....... .................................. .................... ..... ......... ........ ................... ...... 12
6.5 RETAINING WALL DESIGN AND CONSTRUCTION ........................................................................................13
6.5.1 General Design Criteria..... ................................................................ ..................... ..... ............... ...... 13
6.5.2 Wall Backfill and Drainage...............................................................................................................13
, 'y~...,....
i.....
,;- ~:.
~\
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evalnation
Walcott Lane - Temecula
Project No.: 2550SDJ
March 24, 2004
Pae:eii
TABLE OF CONTENTS
6.6 POST CONSTRUCTION CONSIDERATIONS........................................................................................14
6.6.1 Landscape Maintenance and Planling.............................................................................. ............... 14
6.6.2 Drainage .................... ..................................... ...... ........... """" ............ .............................. ............... 15
6.7 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS.................................................................... ............... 15
7. LIMIT A nONS .................................................................................................................................................. 17
8. SELECTED REFERENCES ............................................................................................................................18
ENCLOSURES
Figure I - Site Location Map
Figure 2 - Trench Location Plan
Appendix A - Logs of Exploratory Trenches
Appendix B - Resnlts of Laboratory Testing
Appendix C - Computer Printouts of Seismic Analysis
Apoendix D - General Grading Guidelines for Earthwork Construction
'H".-. ..orfu.....
'.:'1EtD
'k
~
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No,: 25508D3
March 24, 2004
Page 1
1. INTENT
It is the intent of this repOlt to aid in the design and construction of the proposed
development. Implementation of the advice presented in Section 6 of this report is imended
to reduce risk associated with construction projects. The professional opinions and
geotechnical advice contained in this report are not intended to imply total performance of
the project or guarantee that unusual or variable conditions will not be discovered during or
after construction.
The scope of our evaluatiou is limited to the area explored, which is shown on Figure 2. This
evaluation does not and should in no way be construed to encompass any areas beyond the
specific area of the proposed construction as indicated to us by the client. Further, no
evaluation of any existing site improvements is included, The scope is based on our
understanding of the project and the client's needs, and geotechnical engineering standards
normally used on similar projects in this region,
2. PURPOSE AND SCOPE OF SERVICES
The purpose of this study was to evaluate the overall geotechnical conditions on the site.
Services provided for tins study included the following:
~ Research and review of available published data regarding geologic and soil conditions at
the site.
~ Site exploration consisting of the excavation, logging, and sampling of 13 exploralory
trenches,
~ Laboratory testing on representative samples collected during the field investigation
~ Review and evaluation of site seismicity, and
}> Compilation of this geotechnical report which presents our findings, conclusions, and
recommendations for site development.
~j',,~..
...cm
~'fh:
~?
e
e
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
\Valcott Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 24, 2004
Page 2
3. SITE DESCRIPTION AND PROPOSED DEVELOPMENT
3.1 SITE DESCRIPTION
The subject site is located along the east of Walcott Lane, in the City of Temecula, Riverside
County, California. The property consists of five adjacent parcels, identified by the Riverside
County Assessor's Office as parcel numbers 957-170-032 through 957-170-036 that measure
approximately 22 acres. Currently, the site is vacant land covered by medium-sized
vegetation. A graded dirt road, accessible from Walcott Lane, exists in the northern pOltion
of the subject site and connects to a private road (Vista Del Monte) at the east boundary of
the site. The property is bounded to the north by an asphalt road and a vacant lot, to the east
by several single-family dwellings and the general alignment of Butterfield Stage Roae!, to
the south by an existing residential development, and to the west by Walcott Lane. Further
infmmation regarding site layout is shown on Figure 2.
The site topography consists of moderately to steeply sloping terrain that is dissected by a
main natural drainage in an east-west direction, Ground elevations within the site limits range
from approximately 1370 feet above mean sea level (msl) a1 the north boundary to
approximately 1260 feet above msl by the existing culvert beneath Walcott Lane. Ground
elevation near the southern boundary ofthe site is approximately 1355 feet above ms!.
3.2 PROPOSED DEVELOPMENT
Based on the information provided to us, it is our understanding that the subject site will be
developed into typical residential lots for the pUlpose of building single-family residences,
The proposed residences are expected to consist of typical one- to two-story wood framed
structures. No site grading plans are available for review at this time. However, it is
anticipated that cut and fill grading will be generally less than 20 feet in height. If the :;ite
development differs from the assumptions made herein, the recommendations included in
Section 6 of this report should be subject to further review and evaluation.
.~'".-
\~jE_i:(jJl:
'-"'.
ttA
e
e
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Development
Project No.: 2550803
March 24, 2004
Page 3
4. FIELD EXPLORATION AND LABORATORY TESTING
4.1
FIELD EXPLORATION
The field exploration was conducted on March 3, 2004. The 13 exploratory trenche, were
excavated with a rubber tire backhoe (Case 580 Super L) to a maximum depth of 135 feet.
The trenches were located as shown on Figure 2, Trench Location Plan, An engineer from
our finn logged the trenches and collected samples for laboratory testing. The logs of
exploratory trenches and additional information regarding field sampling and testing
procedures are included in Appendix A.
4.2 LABORATORY TESTING
Laboratory testing was performed on selected disturbed sample:; collected during the field
investigations. The purpose of the laboratory testing was to confirm the field classification of
the soil materials encountered and to evaluate their physical properties for use in the
engineering design and analysis, The results of the laboratory testing along with a brief
description and relevant information regarding testing procedures are included in Appendix
B.
5. GEOLOGIC AND SOILS CONDITIONS
5.1 GENERAL
A brief description of the earth materials encountered is presented in the following sections.
A more detailed description of these materials is provided on the exploratory trenching logs
included in Appendix A. Based on our site reconnaissance, subsurface excavations, and
review of published geologic maps, the overall site is underlain to the depth explored by
sedimentary materials. Layers of fill, alluvium, and topsoil materials mantle the different
areas of the site.
5.1.1 Fill (Mapped as Ai)
Although not explored as a part of this study, artificial fill materials constitute the existing
slopes along WaIcott Lane and the southern boundary of the site. 'Dlese materials appear to
'."'."...'..'....
':; .~-
. EK
~-5'
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 24, lO04
Page 4
be an engineered fill placed during the construction of Walcott Lane and the existing
residential development to the south,
5.1.2 Topsoil (Not mapped)
The site is mantled with a layer of topsoil varying in thiclrness between 6 to 24 inches. The
topsoil is generally described as brown, moist, loose, clayey to silty fine sand with scattered
rootlets. These materials are considered unsuitable for support of settlement-sensitive
structures or fill in their current condition and should be subject to complete removal and
recompaction.
5.1.3 Alluvium (Mapped as Qal)
Alluvial deposits were encountered in the main drainage area in the lower portions ofthe site.
The alluvium varies in thickness and was encountered to a depth of 12.5 feet in Trench T.8
and to the maximum depth explored in Trenches T-3 (12,5 feet), T-5 (13.5 feet), and T-9 (12
feet). These materials are generally comprised of brown, damp to moist, clayey to silty sand.
Based on the results of the laboratory testing and our experience with similar soils, the onsite
materials possess a low expansion potential (EI<51) in accordance with Table 18A-I-B ofthe
2001 California Building Code (CBC).
5.1.4 Terrace Deposits (Mapped as Qc)
Quatemary aged Terrace Deposits underlie the site. These sedimentary deposits are
considered completely weathered and break into brown, damp to moist, clayey to silty fine- to
coarse-grained sand. Near the northem portion of the site, at higher elevations, these
materials became difficult to excavate at depths between 5 and 7 feet during our site
investigation, In tile central and southem portions of the site, these materials became difficult
to excavate at depths between 8 and 12 feel.
The Expansion Index (EI) tests were performed on a representative soil sample, The results of
the laboratory testing indicate a low expansion potential (EI<51) in accordance with the
California Building Code (CBC), The expansion index test results are shown on Plate EI-I,
Appendix B.
'~
\~L
~
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Development
Project No.: 2550SD3
March 24, 2004
Page 5
5.2 SURFACE AND GROUND WATER
5.2.1 Surface Water
Surface water was not encountered during our field investigation. Overall site drainage i~ in a
westerly direction through the existing culvert that crosses Walcott Lane. All site drainage
should be reviewed and designed by the project civil engineer.
5.2.2 Groundwater
Localized groundwater seepage was encountered in our exploratory Trench T-9 at a depth of
approximately 7 feet below existing grades. The slow seepage of water may have been
caused by perched water resulting from recent rains in the area. Fluctuation in the
groundwater level should be anticipated mainly due to variations in rainfall and other factors
not evident at the time of our field investigation. In general, groundwater is not anticipated to
be a constraint to site development; however, deep removals in the lower portions of the site
may encounter groundwater or localized seepage.
. 5.3 FAULTINGANDSE1SMICITY
The site is in a seismically active region. Based on our review of aerial photos, published
geologic maps, and the results of the field investigation no active or potentially active fault is
known to exist at this site. The site is not situated within an Alquist-Priolo Earthquake Fault
Zone (Special Studies Zone). A county published geologic hazard map (Figure 3) is included
to show the site location with respect to local potential faults.
The computer program EQFAULT (Blake, 2000a) was used to detelmine the distance to
known faults and estimate peak ground accelerations based on a detenninistic analysis. The
Elsinore - Temecula Fault located approximately 4.7 miles from the site is considered to
represent the highest risk to generate ground shaking. A maximum earthquake magnitude of
6.8 and an estimated peak site acceleration of 0.35g are postulated based on the analysis.
Computer printouts of the analyses are included in Appendix C.
The computer program FRlSKSP (Blake, 2000) was also used to (~stirnate peak horizontal
ground acceleration (PHGA) based on a probabilistic analysis. The results indicate that
PHGA values on the order of OAg to 0.5g may be generated at this site. These values
correspond to a 10 percent probability of exceedance in 50 yean (or a 475 year return
e period). Computer printouts ofthe analyses are included in Appendix C.
....,r"....
Ii' ',fuI
.~;:k
<b1
.
.
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 2,1, 2004
Page 6
5.4 OTHER SEISMIC HAZARDS
The liquefaction potential on the site is considered to be low due to the dense nature of the
subsurface soils and lack of a shallow water table.
Evidence of ancient landslides or slope instabilities at this site was not observed during our
investigation. Thus, the potential for landslides is considered low at this site,
The potential for secondary seismic hazards such as seiche and tswlami is considered to be
negligible due site elevation and distance from an open body of water
~_..-
.' ~:. ..-
'k
~~
.
MR. STEVE GALVEZ
Preliminary Geoteclmical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 24, 2004
PI!@.]
6. CONCLUSIONS AND RECOMMENDATIONS
6.1 GENERAL
The proposed development of the site appears feasible from a geotechnical viewpoint
provided that the following recommendations are incorporated into the design and
construction phases of development.
6.2 EARTHWORK CONSIDERATIONS
Earthwork and grading should be perfonned in accordance with the appropriate grading
ordinances of the City of Temecula and our recommendations contained in this report. The
Grading Guidelines included in Appendix D ontline general procedures and do not anticipate
all site-specific situations. In the event of conflict, the recommendations presented in the text
e of this report should supersede those contained in Appendix D.
6.2.1 Site Clearing
In areas of planned grading or improvements, the site should be cleared of vegetation, roots
and debris, and properly disposed of offsite.
6.2.2 Fills
The onsite materials are considered suitable for reuse as compacted fill provided they are free
from vegetation, debris and other deleterious material. The under9ut areas should be brought
to final sub grade elevations with fill compacted in accordance with the general grading
guidelines presented in Appendix D.
6.2.3 Removals
.
As encountered, the top 2 to 3 feet of the onsite surficial materials (topsoil/terrace deposits)
appear to possess poor engineering characteristics and as such, they are considered unsuitahle
for the support of settlement -sensiti ve structures or additional fill in their current condition.
Thus, we recommend that these materials be subject to complete removal and recompaction
within the limits of grading. If the limits of grading include the creek/natural drainage arl~a,
we recommend that the topsoil and top 5 feet of alluvium be completely removed and
\~.'.'.'.
~k
i&o..
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 2:i50SD3
March 24, 2004
Page 8
recompacted. Insitu density testing should be perfonned during grading to verify suitability
of removal bottoms of the alluvium left in place, The insitu density should meet the criteria
of 105 pcf dry density and 85 percent relative compaction.
6.2.4 Excavation Characteristics
Our study was not a detailed evaluation of excavation characteristics of the onsite materials,
However, excavation in these materials within the depth investigated is expected to be easy to
moderately difficult using heavy-duty grading equipment.
All temporary excavations for grading pUrposes and installation of underground utilities
should be constructed in accordance with OSHA guidelines. Temporary excavations within
the onsite formational materials should be stable at I: I inclinations for cuts less than ] 0 feet
in height.
6.2.5 Transition Lots
The proposed lots are likely to be in a transition cut.fill situation as a result of planned
grading, The cut portion of sub grade beneath all settlement-sensitive structures/foundations
should be Overexcavated a minimum of 3 feet below finish pad gl"ade or a minimum of ~ feet
below bottom of footings and replaced with low expansive soils. It is anticipated that
sufficient low expansive soils will be generated during site grading to cap the building pads
with a minimum of 3 feet of these materials.
6.2.6 Soil Balancing
Several factors will impact earthwork balancing on the site, including shrinkage, buUcing,
subsidence, trench spoil from utilities and footing excavations, and final pavement section
thickness as well as the accuracy oftopography.
Shrinkage, bulking and subsidence are primarily dependent upon the degree of compactive
effort achieved during construction. For planning purposes, a shrinkage factor of 10 % to 15%
may be applied for the upper surficial materials requiring removal as described in Section
6.2.3 above.
The above estimates are intended as an aid for project engineers in determining earthwork
quantities, It is recommended that site development be planned to include an area that could
be raised or lowered to accommodate final site balancing.
(~~i..',"".'.."'.
't~:\:0.~E()
. .,
L'iEK
f\O
e
tit
tit
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Development
Project No.: 2550SD3
March 24, 2004
Page 9
6.3 DESIGN RECOMMENDATIONS
6.3.1 Foundation Design Criteria
Foundation design criteria for conventional foundation system are presented herein. These are
typical design criteria and are not intended to supersede the design by the stmctural engineer.
Based on the results of this investigation and our past experience, the majority of the onsite
soils may be classified as having a low expansion potential (0<EI<51) with a Plasticity Index
(PI) of less than 15. However, testing of soils near finish grade should be perfonned at the
completion of site grading to verify the actual conditions. Thus, we recommend that drawings
be prepared for the soil conditions presented in Table 6.3.1 below. Actual as graded
conditions will determine the applicable foundation design criteria.
TABLE 6.3.1 - MINIMUM DESIGN REQUIREMENTS
DESIGN PARAMETER E.I. < 21 E.I. > 20
P.I. ~ IS P.I. ~ IS
!Foundation Depth or Minimum I-floor Stmcture - 12 I-floor Structure -
Perimeter Beam depth (inches 2-floor Structure -18 2-fIoor Structure-
below lowest adiacent grade)
Foundation Width (Inches) I-floor Structure - 12 I-floor Structure-
2-f100r Structure - 15 2.floor Structure .-
Maximwn Beam Spacing NA 25
(feell
Cantilevered length soil NA 0
function (I ,)
Minimum Slab Thickness 4 4
(inches)
Minimum slab Reinforcing No.3 Rebar, 24 inch No.3 Rebar, 24 II
centers, two ways centers, two waj
Two No.4 reinforcing Two No.4 reinfore
Footing Reinforcement bars, one top one bottom bars, one top one bo
Presaturation of subgrade soil Subgrade to be well
(Percent of Optimum/Depth wetted before pouring 100/12
in inches) concrete
E.I. > 20
IS ~ P.I. ~ 20
12
18
I-floor Structure -- 1 i
2-floor Stmcture.- 18
]2 I-floor Structure -- 12
15 2-floor Structure"- ]5
22
2
4
lch No.4 Rebar, 24 inch
'5 centers, two ways
ing Two No.5 reinforcing
ttom bars, one top one bottom
110/12
Notes:
1) Equivalent steel reinforcing may be substituted in all cases.
2) All footing widths are as per 2001 CBC minimums,
3) Reinforcing to be mid height in slab. "Hooking" as method of positioning is not recommended.
4) Post-tensinned foundations may be used in all cases. Design criteria can be provided upon request.
Based on the above, an allowable bearing capacity of 2000 poundH per square foot (pst),
inclUding both dead and live loads, may be used if footings are designed in accordance with
~..".....
~h
0...\
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 255IJSD3
March 24, 2004
Page 10
the above criteria. The allowable bearing value may be increased by one-third when
considering short-term live loads (e,g. seismic and wind loads).
The passive resistance may be computed as an equivalent fluid pressure having a density of
200 psf per foot of depth, to a maximum earth pressure of 2,500 psf. A coefficient of friction
between soil and concrete of 0.35 may be used with dead load forces. When combining
passive pressure and frictional resistance, the passive pressure component should be reduced
by one-third.
6.3.2 Settlement
Based on our evaluation of settlement characteristics at this site, the total settlement is
expected to be less than one inch based on the loading conditions described in Section 3.2 of
tlus report. Differential settlement is expected to be less than one..half of the total settlement
based on known conditions. Final settlement evaluation should be performed upon issuance of
site grading plans.
6.3.3 Seismic Design Parameters
Seismically resistant structural design in accordance with local building ordinances should be
followed during the design of all structures. Building Codes have been developed to
minimize structural damage. However, some level of damage as the result of ground shaking
generated by nearby earthqualces is considered likely in this general area.
For the purpose of seismic design a Type B seismic source located approximately 7.6 km
from the site may be used. Table below presents seismic design factors in keeping with the
criteria presented in the 2001 CBC, Division IV & V, Chapter 16.
TABLE 6,2.4 - SEISMIC DESIGN PARAMETERS
Soil ProfIle
Parameters Type C. Cv N.
Source Table 16A-J 16A-Q 16A-R 16A-S 1
Value Sc 0.40 0.62 1.0
Seismic
v Source Type
-T 16A-V
.1 B
N
6A
1
6.3.4 Foundation Set Backs
Where applicable, the following setbacks should apply to all foundations. Any improvements
not conforming to these setbacks may be subject to lateral movements and/or differentl.al
settlements:
.~.....
\~~.' '~.~'(g).'_.-f
," iEK
a.,rv
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential DeveIooment
Project No.: 2550~m3
March 24, 2004
Page 11
)> The outside bottom edge of all footings should be set back a minimum ofH/3 (where H. is
the slope height) from the face of any descending slope. The setback should be at least 7
feet and need not exceed 20 feet.
> The bottom of all footings for structures near retaining walls should be deepened so as to
extend below a 1: 1 projection upward from the bottom inside edge of the wall stem.
)> The bottom of any existing foundations for structures should be deepened so as to exl end
below a 1:1 projection upward from the bottom of the nearest excavation.
6.3.5 Slab-on-Grade Construction
Concrete slabs should follow the criteria presented in Table 6,3.1 above. Where moisture
condensation is undesirable, all slabs should be underlain with a minimum 6.mil polyvinyl
chloride membrane, sandwiched between two layers of clean sand (SE above 25) each being
at least two inches thick. Care should be taken to adequately seal all seams and not puncture
or tear the membrane. The sand should be proof rolled.
It should be noted that the above recommendation is based on soil support characteris tics
only. The structural engineer should design the actual slab and beam reinforcement based. on
. actual loading conditions and possible concrete shrinkage.
6.3.6 Subgrade Moistnre
Moisture conditioning of subgrade should follow the criteria presented in Table 6,:U.
Moisture conditioning can require an extended period of time to achieve. Our representative
should verify moisture content prior to placing the vapor barrier or reinforcing steel. If the
sub grade is not reasonably sealed within 24 hours by placing the vapor barrier or concrete or
the concrete is not poured within 96 hours of testing, the moisture tests should be considered
invalid unless evaluated otherwise by this office. The foundation contractor should be
responsible to request additional verification/testing.
6.3.7 Soil CorTOsivity
The soil resistivity at this site was tested in the laboratory on a representative sample
collected during the field investigation. The results of the testing are included in Appendix B.
It is recommended that a corrosion engineer be consulted to provide recommendations for
proper protection of buried metal pipes at this site.
e
~~.'
~k
C\'?
e
e
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Development
Project No.: 2550SD3
March 24, 2004
Page 12
6.4 CONCRETE CONSTRUCTION
6.4.1 General
Concrete construction should follow the 2001 CBC and ACI guidelines regarding design,
mix placement and curing of the concrete. If desired, we could provide quality control testing
of the concrete during construction.
6.4.2 Cement Type
The sulfate content was detennined in the laboratory for a representative onsite soil sample.
The results indicate that the water-soluble sulfate is 0.003 percent by weight, which is
considered negligible as per Table 19-A-4 of the CBC. Based upon the test results, typl) II
cement or an equivalent may be used.
6.4.3 Concrete Flatwork
Exterior concrete flatwork (patios, walkways, driveways, etc,) is often some of the most
visible aspects of site development. They are typically given the least level of quality control,
being considered "non-structural" components, Cracking of these features is fairly common
due to various factors. While cracking is not usually detrimental, it is unsightly. We suggest
that the same standards of care be applied to these features as to the structure itself.
One of the simplest means to control cracking is to provide weakened joints for cracking to
occur along. These do not prevent cracks from developing; they simply provide a relief point
for the stresses that develop. These joints are widely accepted means to control cracks but are
not always effective.
Control joints are more effective the more closely spaced. We would suggest that control
joints be placed in two directions spaced the numeric equivalent of Iwo times the thicknes~ of
the slab in inches changed to feet (e.g. a 4 inch slab would have control joints at 8 feet
centers), As a practical matter, this is not always possible nor is it a widely applied standard.
....~
"'..:..'......
....E
':c;.. .:;<
. iEK
0..,1>{
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 24-, 2004
Page 13
6.5 RETAINING WALL DESIGN AND CONSTRUCTION
6.5.1 General Design Cl"iteria
Recommendations presented herein may apply to typical masonry or concrete vertical
retaining walls to a maximum height of 10 feet. Additional review and recommendations
should be requested for higher walls.
Retaining walls embedded a minimum of 18 inches into compacted fill or dense formational
materials should be designed using a net allowable bearing capacity of2,OOO psf. An increase
of one-third may be applied when considering short-term live loads (e.g. seismic and wind
loads). The passive earth pressure may be computed as an equivalent fluid having a density
of 200 psf per foot of depth, to a maximum earth pressure of 2,500 psf. A coefficient of
friction between soil and concrete of 0.30 may be used with dead load forces. When
combining passive pressure and frictional resistance, the passive pressure component should
be reduced by one-third.
e An equivalent fluid pressure approach may be used to compute the horizontal active pressure
against the wall. The appropriate fluid unit weights are given in Table 6.5.1 below for
specific slope gradients of retained materials.
Surface Slope of Retained Materials Equivalent Flu-
(H:V) (PCF
Level 35
2:1 50
TABLE 6.5.1 - ACTIVE EARTH PRESSURES
Id Pressure
)
The above equivalent fluid weights do not include other superimposed loading conditions
such as expansive soil, vehicular traffic, structures, seismic conditions or adverse geologic
conditions.
6.5.2 Wall Backfill and Drainage
e
The onsite low expansive soils are suitable for backfill provided they are screened of greater
than 3.inch size gravels. Presence of other materials might necessitate revision to the
parameters provided and modification of wall designs. The backfill materials should be placed
in lifts no greater than 8-inches in thickness and compacted at 90% relative compaction in
"~'----~--.
\; ,~iE(jp
-'n
,
0..."0
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 24, 2004
P"ge 14
-
accordance with ASTM Test Method DI557.00. Proper surface drainage needs to be provided
and maintained.
Retaining walls should be provided with an adequate pipe and !,'Tavel back drain system to
prevent build up of hydrostatic pressnres. Back drains should consist of a 4-inch diameter
perforated collector pipe embedded in a minimum of one cubic foot per lineal foot of 3/8 to
one inch clean crushed rock or equivalent, wrapped in filter fabric. The drain system should
be connected to a suitable outlet. A minimum of two outlets should be provided for each
drain section.
Walls from 2 to 4 feet in height may be drained using localized gravel packs behind weep
holes at 10 feet maximum spacing (e.g. approximately 1.5 cubic feet of gravel in a Woven
plastic bag), Weep holes should be provided or the head joints omitted in the first course of
block extended above the ground surface. However, nuisance water may still collect in iront
of wall.
6.6 POST CONSTRUCTION CONSIDERATIONS
e 6.6.1 Landscape Maintenance and Planting
Water has been shown to weaken the inherent strength of soil, and slope stability is
significantly reduced by overly wet conditions. Positive surface drainage away from graded
slopes should be maintained and only the amount of irrigation necessary to sustain plant life
should be provided for planted slopes. Controlling surface drainage and runoff, and
maintaining a suitable vegetation cover can minimize erosion, Plants selected for landscaping
should be lightweight, deep-rooted types that require little water and are capable of surviving
the prevailing climate.
Overwatering should be avoided. The soils should be maintained in a solid to semi-solid state
as defined by the materials Atterberg Limits. Care should be taken when adding soil
amendments to avoid excessive watering. Leaching as a method of soil preparation prior 1:0
planting is not recommended.
An abatement program to control ground.burrowing rodents should be implemented and
maintained, This is critical as burrowing rodents can decreased the long-ternl performance of
slopes.
e
,
<\(0
e
e
e
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walco~ Lane. 22-Acre Residential Develooment
Project No.: 2550SD3
March 24, 2004
P age 15
It is common for planting to be placed. adjacent to stmctures in planter or lawn areal:. This
will result in the introduction of water into the ground adjacent to the foundation. This type
oflandscaping should be avoided. !fused, then extreme care should be exercised with regard
to the irrigation and drainage in these areas. Watetproofmg of the foundation and/or
sub drains may be warranted and advisable, We could discuss these issues, if desired, when
plans are made available.
6.6.2 Drainage
The need to maintain proper surface drainage and subsurface systems cannot be overly
emphasized, Positive site drainage should be maintained at all times. Drainage should not
flow uncontrolled down any descending slope. Water should be directed away from
foundations and not allowed to pond or seep into the ground. Pad drainage should be directed
toward approved area(s).
Positive drainage should not be blocked by other improvements. Even apparently minor
changes or modifications can cause problems.
It is the owner's responsibility to maintain and clean drainage devices on or contiguou:; to
their lot. In order to be effective, maintenance should be conducted on a regular and roUl ine
schedule and necessary corrections made prior to each rainy season.
6.7 PLAN REVIEW AND CONSTRUCTION OBSERVATIONS
We recommend that site grading, specifications, and foundation plans be reviewed by this
office prior to construction to check for conformance with the recommendations of this
report. We also recommend that GeoTek representatives be present during site grading and
foundation construction to check for proper implementation of the geotechnical
recommendations. These representatives should perform at least the following duties:
. Observe site clearing and grubbing operations for proper removal of all unsuitable
materials.
· Observe and test bottom of removals prior to fill placement.
· Evaluate the suitability of on-site and import materials for fill placement, and collect soi I
samples for laboratory testing where necessary.
· Observe the fill for uniformity during placement including utility trenches. Also, test the
fill for field density and relative compaction.
'.........,'...
", Bl3I
'~ik
<\\
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22.Acre Residential DevelODmcnt
Project No.: 2550SD3
March 24, 2004
PagUji
· Observe and probe foundation matelials to confillU suitability of bearing materials and
proper footing dimensions.
If requested, GeoTek will provide a construction observation and compaction report to
comply with the requirements of the governmental agencies having jurisdiction over the
project. We recommend that these agencies be notified prior to corrunencement of
construction so that necessary grading pellUits can be obtained,
''R'.-
'Vi~,'::t:.:,__:
,
'!h
C\'O
e
e
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Development
Project No.: 2550SD3
March 24, 2004
Page 17
7. LIMITATIONS
The materials observed on the project site appear to be representative of the area; however,
soil and bedrock materials vary in character between excavation:; and natural outcrops or
conditions exposed during site construction. Site conditions may vary due to seasonal
changes or other factors. GeoTek, Inc. assumes no responsibility or liability for work, tfsting
or recommendations performed or provided by others.
Since our recommendations are based the site conditions obsetved and encountered, and
laboratory testing, our conclusion and recommendations are professional opinions that are
limited to the extent of the available data. Observations during construction are important to
allow for any change in recommendations found to be warranted. These opiruons have been
derived in accordance with current standards of practice and no warranty is expressed or
implied. Standards of practice are subject to change with time.
r~'~.,~..,..,....
I \,?U!Q)
"',h
<\0..
e
.
.
MR. STEVE GALVEZ
Preliminary Geotechnical Evaluation
Walcott Lane. 22-Acre Residential Development
Project No.: 2550SD3
March 24, 2004
Page 18
8. SELECTED REFERENCES
Afrouz, A., 1992, "Practical Handbook of Rock Mass Classifications Systems and Modes of
Ground Failure," CRC Press, January 1992.
ASTM, 200, "Soil and Rock: American Society for Testing and Materials," vol. 4.08 for
ASTM test methods D-420 to D-49l4, 153 standards, 1,026 pages; and vol. 4,fJ9 for
ASTM test method D-4943 to highest number.
Blake, T., 2000a, "EQF AUL T, version 3.00," a Computer Program for Deterministic
Estimation of Maximwn Earthquake Event and Peak Ground Acceleration.
Blake, T., 2000, "FRISKSP, version 4.00," a Computer Program for Probabilistic Estimation
of Peak Acceleration and Ulliform Hazard Spectra Using 3-D Faults as Earthquake
Sources.
Bowels, J., 1982, "Foundation Analysis and Design," McGraw-Hill, Third Edition.
California Code of Regulations, Title 24,2001 "Califomia Building Code," 3 volumes.
CaIiforrua Division of Mines and Geology (CDMG), 1997, "Guidelines for Evaluating and
Mitigating Seismic Hazards in Califorrua," Special Publication 117.
Califomia Division of Mines and Geology (CDMG), 1998, Maps of Known Active Fault
Near-Source Zones in Califomia and Adjacent Portions of Nevada: Intemational
Conference of Building Officials.
GeoTek, Inc., In-house proplietary information.
Ishihara, K., 1985, "Stability of Natural Deposits During Earthquakes," Proceedings of the
Eleventh International Conference on Soil Mechanics and Foundation Engineering, San
Francisco, CA, Volwne I.
Seed, H.B., and Idriss, LM., 1982, "Ground Motions And Soil Liquefaction During
Earthquakes," Earthquake Engineering Research Institute.
US Army Corps of Engineers, No.9, "Settlement Analysis," Technical Guidelines, ASCE
Press, 1994
Youd, T. Leslie and Idriss, Izzmat M., 1997, Proceeding of the NCEER Workshop on
Evaluation of Liquefaction Resistance of Soils, National Center for Earthquake
Engineering Research, Technical Report NCEER-97-0022.
,n-~...~.,
\'
'.7...... -
':'EK
\&
e
. STEVE GALVEZ
lere Residential Development
.1 Lane
la, CA 92592
4
Fil!ure 1
Site
Location
Map
~K' INC.
1384 Poinsettia A venue, Suite A
Vista, Califomia 92081-8505
v)
Tek Project Number: 2550SD3
Thomas Guide Digital
Edition 5.0.3.0
o
VJ'
.,(1
)>
r
m
."
'"
1'1
..,
on
>0
O-{Z
co-{
;;t:'Q
c:
-;:0
.VI
-,
~:Z
m-l
>m
Z;o
<
VI>
mr
>,.,.
r'iI
mm
<
mm
,r -;
l}~
- '"
'" '"
<=>..'"
">1"
~{;
.... '
l:: ::"
'" -
.... '"
!;)
........v;
..~ -.
.....i}
'0
Oo~
:'-1....
"
~
"0
;,..
c
.~
c
::?
'\'i
0%
....
.,e
"
;:,..
n'
~
"6
~
....
~
Q
g"
'"
.'0
~
.v,
::"
",.
.~
~::;: ~
;::l ~ ""'t
....... -. .
~ g en
~ ~ -
~ ~ "'
SJ:-<
" . "'
n'"
p:l ~ ~
~ '"
......, -
~N~
::1 N N
~ .
S' ~
\Og
NO
~t:I
NO
<:
o
0'
'tJ
~
CD
'"
-
Q
'"
Cl
~
"..
"0
..
<.2
",'
r-,
~
~.
"
c:J-
'"
:-<
'"
v,
v,
""
~
""
",,0\
.4f-~
,0
'"
o
o
~
.
.
.
.
~
o ~
""''0
00'0
o ..,
o 0
-;><
o ~,
qg. S
" '"
'" -
-0
" ~
o 0
~ "
~ ~
'" ~.
" 0
~ ~
..
o
.0
o
o
o
~,
~
~
~
!;!
~:
'...
~:::
'"
.~
t~ .
El
to
~
-
to
n
---.'1:1
" ~
~. 0
.., ~,
" en
~ -
o 0
0."
o
::;: ~
::TO
~ Z
o 0
ere
~ d
-, '"
(Il ~.
o.~
~O
>-
-.
~
5
8,
e'.
EJ
==
==<
"'"'~-
...... '~j
l - ~ _.
o ('1)
~ n == c::
tr ~ (') ~
-0;=-('1)
.... 0 _.
== N
c:l
rrq
-
i'(
Z
()
..J
.
~
<'->>
~, 00
en .p,.
~
J" "0
o
() ~,
::l
een
........ (D
Q>~
- _.
d PJ
S' ~
<:
\00
f,,)::l
0':
00 .0
';'"[/J
00-
VI ~.
o~
<..nO
~
e
.
,
,
c--
.L '-'-'"
J
'l'..L~B~C
f~~.'J~!
i
i
___--t.
-
'~)
,
~-
!
i
--------
"~
t-....
,-"~--'
.,
--
~'-....
._.S '-"""'(
"<--
i
'-
" ,
----r~.
i
----~
-.'\.-
00*'
Q...,"""'",
~ tIl ~., ""'i
" S - '" to!
~g8'g<:
~C::l~tr1
~_ n>
""'Iv J>> r; Q.. G")
~. ':r1t:J ~>
l'tl ""-. Ol I t"'"
~ ~ > ~
~ ~ n ~
~o.: ;;N
:! <> ::0
g-n ~
.., 0 _.
.. = c.
",,, n>
v,':; "
v,' ~
~ n jO'
v"' -
l..o.i::;-: '='
~ ~
11, S
"' "C
S
n>
"
~
cn
>-lcn<,
'" <' ..,
S en OJ>
(1) g gf
E. ~. ~ ~.
Jl) cr" P' =
'('):::.:g..,
...... ..... n>
~q ~w
i3' ~.e
::J '" 2
t=. "0 0-4
PJ'" Cti
t:(.Q \
e
en
c:
;.
n
Rl
"TI
III
c:
;:;
;0
c:
"tJ
....
c:
..
Rl
en
c:
en
o
Rl
"tJ
....
~
....
';::'
s:
III
"tJ
-i
Rl
3
Rl
n
c:
F
I~-
,
,
o
!.
a'
..
:3
iii'
'"
n
o .
if
~
~ ..
~
...
w
w 0.
o
o
...
~
g
"
.
c
'"
.
!:l
IIII! /./ {I
ffff;~~l'!f
: ~;... 11 ~3 :
~,~-.> !L$ ~
.3 ::i
o
~
l
I
00
> n
. .
J ~
.
Jj
Ii
_J___
<
.
.
~
g
~
<:w
_,00
i(i~&J
- 0
Q ~'
~tIl
S'~
~;. "" "'
g.;.. ~ '
., .
'On> H
tv" Z
0"
~s~ ()
. '" .
00"
Ul ;:;:
0<>
V>;..
e
T
APPENDIX A
e
.
~ !'
.~ 'i; K, INC.
\&t
e
APPENDIX A
LOGS OF EXPLORATORY TRENCHES
(Trenches T-l to T-13)
e
Proposed 22-Acre Residential Development
Walcott Lane
Temecula, Riverside Connty, California
Project No.: 2550SD3
.
~K
\ f).s
e
.
e
MR. STEVE GALVEZ
Preliminary Geoleclmical Evaluation
Walcott Lane. 22-Acre Residential Develooment
APPENDIX A
March 24, :'004
PaQe A-I
LEGEND TO FIELD TESTING AND SAM))LlNG
A - FIELD TESTING AND SAMPLING PROCEDURES
Large Bulk Samples
These samples are nDlmally cloth bags of representative earth materials over 20 pounds in weight
collected from the field by means of hand digging or exploratory cuttings.
Small Bulk Samples
These samples are normally airtight plastic bags that are typically less than 5 pounds in weight of
representative earth materials collected from the field by means of hand digging or exploratory
cuttings, These samples are primarily used for determining natural moislure content and classifica tion
indices.
T - TRENCHING LOG LEGEND
The following abbreviations and symbols often appear in the classification and description of soil and
rock on the trenching logs:
SOILS
USCS
f-c
f-Ill
Unified Soil Classification System
Fine to coarse
Fine to medium
GEOLOGIC
B: Attitudes
J: Attitudes
C:
Bedding: strike/dip
Joint: strike/dip
Contacl line
Dashed line denotes approximate depth of USCS material change
Solid Line denotes approximate depth of unit / formational change
Thick solid line denotes cnd of boring
(Additional denotations and symbols are provided on the trenching logs)
\~
~:tK
\00
GeoTek, Inc_
LOG OF EXPLORATORY TRENCH
e
'ROJECT NO,:
'ROJECT NAME:
:UENT:
.oCATION:
2550503
Walcott Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
3/3/2004
.
SAMPLES Laboratory Testing
'6 E
g '. n
u ~ TRENCH NO.: T-1 . '"
~ . ~ E ''; ~
~ I- -. "' 0_ Cc
1i D.n .
. E E "' U$. . 0
. 0 S ~
0 a. ro 0 U ~ - is
E U)z U) . i<'
ro ::J -- ~ 0
U) MATERIAL DESCRIPTION AND COMMENTS
, Topsoil:
~' n-1 SM Brown, moist. loose, silty t-m SAND; trace clay & organics 12.3
~'"
111 T1-2 SM Terrace Deposits: 1.5
-
Completely weathered; breaks into light brown, damp, silty t-m ~;AND
__n.. ..h............... ......--....... ...-...............................-.................... ................................................................................ ._-.-.............. ....-....... .........---.... ...................-.............-.......
SC Becomes brown, moist, dense, clayey f~m SAND
,
~, n-3 -Same 5.3
5 ~
.
-
... .. ......UUm...... m.............. ........-........................-.................................._....nn......._..._......................_......__.........____....... ---........... ............... ----........... ......................-.....................
SP Becomes reddish brown, moist. dense. tine SAND with clay
~ T1-4 Same 8.6
0
-
.
-HOLE TERMINATED AT 12.5 FEET
- Hole backfilled with soil cuttings
5. No groundwater encountered
.
Sam ole Tvoe: III Small Plastic Bag ~ - Large Bulk Sample SZ Waler Table
Cl LaboratotV Testlna: AL ::: Atterberg Limits EI - ExpanSion Index MD - Maximum Density SA - Sieve Analysis
W
...J SR = Sulfate/Resistivity Test SH = Shear Testing RV: R-Value Test CO: Consohdation
\01.
GeoTek, Inc.
lOG OF EXPLORATORY TRENCH
e
ROJECT NO.:
ROJECT NAME:
;L1ENT:
OCA TlON:
e
SAMPLES Laboratory Testing
" 10
15: .. "' ~
"- E TRENCH NO.: T-2 ..
~ ~ ~ ~ c ';;; m
~ I- -~ "' 0_ Ce :;;
1i "-"' "' U<F. ~ 0
~ E E ~
~ " ro ~ 0 ~- o~ i5
0 E "'z "' ~ '"
ro => -- ~ 0
"' MATERIAL DESCRIPTION AND COMMENTS
X Topsoil:
T2-1 SM Brown, moist, loose, silty f.m SAND; trace clay & organics
~... T2.2 8
- :@
~ Terrace Deposits:
T2.3 SM Completely weathered; breaks into brown, damp, dense, silty f-m SAt 1.8
- F
T2.4 Becomes dark brown. damp, silty f.m SAND; trace clay 3.4
.
5
-
. ....... .......m.._..... ...........-..... .......................................................................................................-........ ............................................. .............. m............ ......................... ...............
SC Becomes brown, moist. dense. clayey f-m SAND
0
at 10 feet becomes hard to excavate
. ~ T2-5 Same
." 4.5
~
-HOLE TERMINATED AT 12 FEET
,
- Hole backfilled with soil cuttings
- No groundwater encountered
5 -
-
-
al!U!tefu~: III -- Small Plastic Bag ~- Large Bulk Sample ..sz. --Water T ahle
laboratorv Testina: At :: Atterberg Limits EI :: Expansion Index MD = Maximum Density SA = Sieve Analysis
~l SR = Sulfate/Resistivity Test SH :: Shear Testing RV = R-VaJue TElst CO = Consolidetion
2550SD3
Walcon Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
3/312004
\~
GeoTek,lnc,
LOG OF EXPLORATORY TRENCH
e
ROJECT NO,:
ROJECr NAME:
LIE NT:
OCATION:
2550SD3
Walcott Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super l (4X4)
3/3/2004
e
SAMPLES Laboratory T esling
"
'" n C
g 0 E TRENCH NO.: T-3 m '"
2~ ~ C ."
~ i'=' '" 00
o~ Ce- o
1i on '" Ocft. " u
" m E E 0-" ~
0 "- . 0 U " ~ 6
E "'z if) m ~
ro :0 -- ~ 0
'" MATERIAL DESCRIPTION AND COMMENTS
SM Topsoil:
'~r Brown, moist, silly fine SAND 9.8
'# .. T3-1
~; Alluvium
r- T3-2 SC Brown, moist. silty f-c SAND with seams of clayey I-m SAND
- ~
-
-
P'~ T3-3 -Same 2.9
;;g.
- =
5
. ......... ............ ............. ,.... Br;;;;;~:'m;;jst,'(je~se:.i:c'sANDwiiii-sjii.". ..............................-............................... ..-............ .............. ....... 'h"ou.. .....m..............
SW
0,
, - -Same
..">.., T3-4 8.4
-HOLE TERMINATED AT 12.5 FEET
-
Hole backfilled with soil cuttings
5 . No groundwater encountered
-
-
a'!!Q!e .Im.e; ., - Small Plastic Bag [g) large Bulk Sample "\:7 ~--Water Table
, Laboratorv Testina: At ::: Atterberg Limits El ::: Expansion Index MD ::: Maximum Density SA::: Sieve Analysis
U
.J SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value T!lst CO =: Consolidation
\d\
GeoTek, Inc.
LOG OF EXPLORATORY TRENCH
aOJECT NO.:
'ROJECT NAME:
:UENT:
OCATION:
e
SAMPLES Laboratory Te:;ting
" c
g .. .0 '"
E TRENCH NO.: T-4 m
~ m' ~ C ...
~ w
~ t- _ m '" o~ ee- l;;
a. 0..0 '" U;f. m 0
m . E E "" ~
" a. m " U l;;- a
E "'2: '" ~ ?:
. :J "
'" MATERIAL DESCRIPTION AND COMMENTS
Topsoil:
~ T4-1 SM Brown. moist, loose, silty I-m SAND; trace clay & organics 9.8
;:t~:
Terrace Deoosits:
, ~ T4-2 SC Completely weathered: breaks into brown, damp, dense, clayey I-m 6.7
,''I-~
~ SAND MD. SH
. T4-3 -Same
5
T4-4 Becomes brown, moist, dense, clayey fine SAND 7
8
-HOLE TERMINATED AT 10 FEET
.
. Hole backfilled with soil cuttings
No groundwater encountered
-
,
-
Samole Tvoe: III - Small Plastic Bag ~ Large Bulk Sample .s::z ---Water Table
l Laboratorv Testina: Al = Atterberg Umits EI = Expansion Index MD = Maximum Density SA - Sieve Ar,alysis
J
J SR = Sulfate/Resistivity Tes! SH = Shear Testing RV = R-Value Test CO = Consolidation
2550503
Walcott Lane
Steve Galvez
Temecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
3/312004
\\()
GeoTek,lnc,
LOG OF EXPLORATORY TRENCH
eROJECT NO,:
'ROJECT NAME:
:lIENT:
OCATION:
2550SD3
Walcott Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT: .
DATE:
AC
Case 580 Super L (4X4)
3/3/2004
e
SAMPLES Laboratory TEsting
"0
g '. D C
Q E TRENCH NO,: T-5 ID '"
~ ~ ID ~ ~ c .w ~
_ ID "'
I- QD a~ Oe- m
1'[ ID E E "' O;#. ID U ~
ID 0. ro 0 0 " - o~ 0
0 E <nz "' ID e;-
rn :J ro 0
"' MATERIAL DESCRIPTION AND COMMENTS S
~ Topsoil:
. .-$;; T5-1 SM Brown. moist, silty fine SAND
Alluvium
"'" T5-2 SC Brown, moisl clayey fine SAND
~
-
. Brown, moist, clayey f-m SAND; CaC03 spottings
T5-3 6.8
-
5-
-
. ~ Brown, moist, dense, clayey fine SAND
"1Zi T5-4 11.7
0
,
.
.......-........... .b......__..... Br~w;:;:.mo;;;Cd'e;:;se:-i=c.sAN'Dw;'ih.ci-;;y;.s(;jiie;ed"CObbie................., .. ........... .......... m. ...................... ................
. T5-5 SW 7.6
;;'(.~
X T5-<5 -Same
-HOLE TERMINATED AT 13.5 FEET
5
Hole backfilled with soil cuttings
No groundwater encountered
Samole Tyee: . Small Plastic Bag IS] Large Bulk Sample .sz -Water T.lble
J
~ Laboratorv Testina: AL :: Atterberg Umits EI - Expansion Index MD - Maximum Density SA = Sieve Analysis
J
J SR = Sulfate/Resistivity Test SH :: Shear Testing RV:: R-VaJue Test CO = Consolidation
\\\
GeoTek,lnc,
LOG OF EXPLORATORY TRENCH
_OJECT NO,:
ROJECT NAME:
L1ENT:
OCATION:
SAMPLES Laboratory T esling
'6
g .. D 1"
~ E TRENCH NO.: T-6 ~ z,
~ ~ . ~ ~ 1" ." "
-~ U)
I- ~D o~ Ceo ID
li . E E U) u*, . u
~ 0-" ~
0 0. ro ~ U ~- 6
E U)z U) . c
. ::> ~ 0
'" MATERIAL DESCRIPTION AND COMMENTS
~ Topsail:
hd T6-1 SC Brown, moist, clayey fine SAND 19.8
;~ T6-2 SC Terrace Deposits:
~
Completely weathered: breaks into brown, damp, dense, clayey f.m 13.4
SAND with CaC03 spotting
.
. ~ Becomes brown, damp. dense. clayey f-m SAND
1\;'$ T6-3 5,6
- F
5-
. ~ T6-4 -Same
. -HOLE TERMINATED AT 7 FEET
- Hole backfilled with soil cullings
. No groundwater encountered
)
.
.
)
Samole Tvoe: 11I.- Small Plastic Bag [gJ Large Bulk Sample ~ --Water Ti:lble
J
) Laboratorv Testina: Al = Atterberg Limits El = Expansion Index MD = Maximum Density SA = Sieve Analysis
J
J SR = Sulfate/Resistivity Test SH = Shear Testing RV = RNalue Test CO = ConsoliCiation
2550SD3
Walcott Lane
Steve Galvez
Temecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
313/2004
\\1.--
GeoTek, Inc.
LOG OF EXPLORATORY TRENCH
eOJECT NO,;
ROJECT NAME:
L1ENT:
DCA TION:
e
SAMPLES laboratory Testing
"
S o. n C
~ E TRENCH NO,: T-7 w a
~ . ~ ~ c .. .
c >- _ w '" 0_ Ce 0
a. ~~
. E E '" O<ft. w u c
w 0. 0 ~ u ~ ~ oe 6
::l E "'2 '" w e-
o ::> ~ 0
'" MATERIAL DESCRIPTION AND COMMENTS
~ Topsoil:
T7-1 SC Brown, moist, clayey fine SAND: trace organics 20.5
,.,:..
Terrace Deposits:
T7-2 SC Completely weathered: breaks into brown, damp, dense, clayey fine
SAND with CaC03 spotting
,
.
6 ...............-.. .._.m......... ....--.-..........-............................ ...............-..................-...........-......................................................-. ......m...... . ....m.... .............. ........................
,It:,: Tl-3 SM Becomes brown, damp, dense, silty fine SAND. micaceous 7,5
5
I'
-
-
) ~
~ Tl-4 Becomes light brown, moist. dense, silty fine SAND, micaceous 7
"'"
-HOLE TERMINATED AT 11 FEET
. Hole backfilled with soil cuttings
No groundwater encountered
;
-
-
.
-
amnle Tvne: . Small Plastic Bag ~ large Bulk Sample :sz -Water Table
) Laboratorv Testina: AL - Atterberg Limits EI = Expansion Index MD - Maximum Density SA = Sieve Ar,alysis
II SR :: SulfateIResistivity Test SH = Shear Testing RV = R-Value Test CO = Consofdation
2550S03
Walcott Lane
Steve Galvez
Temecula
LOGGED BY:
EQUIPMENT;
DATE:
AC
Case 580 Super L (4X4)
3/3/2004
\\'?
GeoTek, Inc.
LOG OF EXPLORATORY TRENCH
eOJECT NO.:
ROJECT NAME:
L1ENT:
DCA TION:
e
SAMPLES Laboratory Te,;ling
'5 c
g ;, D 20
U E TRENCH NO.: T-B ill
~ . ~ ~ c .~ ~
c I- _ ill Ul o~ Ce-
o. UD ill
ill E E Ul U<!' ill 0 ~
ill 03
0 0. m ~ U :;;- 0
E UlZ Ul ~ i":
m :J -- 0
Ul MATERIAL DESCRIPTION AND COMMENTS
I Toosoil:
T8-1 SP Browm, mois/, f-m SAND; trace organics 12.1
. Alluvium
SP Brown, moist, I-m SAND
, "'_Om..___.. -......-.-..- .....-.......-........................................................---.........-.............-...-.....-......-..-...................-.....-........... ................. m........ ............................................
to. T8-2 SM Dark brown, moist, medium dense, silly I-m SAND, micaceous; trace 4.9
clay
-
-
5-
-
At 7 feet becomes dark brown, moist, dense, silty f-m SAND,
micaceous; trace clay
.
-
J .
~ T8-3 -Same 10
~
l~ T8-4 SC Terrace Deposits: 11
.... Dark brown, moist, dense, clayey I-m SAND
, -HOLE TERMINATED AT 13 FEET
5. Hole backfilled with soil cuttings
No groundwater encountered
amole Tvoe: II . Small Plastic Bag 0 Large Bulk Sample ..sz. - Water Table
, Laboratorv Testina: AL = Atterberg Umits Ef = Expansion Index MD = Maximum Density SA = Sieve Analysis
~ I SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value Test CO = Consoldation
25508D3
Walcott Lane
Steve Galvez
Temecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
313/2004
\\6..
GeoTek, Inc.
LOG OF EXPLORATORY TRENCH
eOJECT NO,:
ROJECT NAME:
L1ENT:
OCA TlON:
SAMPLES Laboratory Testing
"
'. ~ E
is ~ E TRENCH NO,: T-9 . '"
~ . :v ~ E '~ -
~ I- n.o U) 0_ Ce "
n . E E U) 0* . u ~
. n m ~ 0 ,,- De 6
0
E U)z U) ~ i:'
. ::> 0
U) MATERIAL DESCRIPTION AND COMMENTS
Topsoil:
SP Brown, moist, t-m SAND; trace organics
Alluvium
~ T9-1 SP Brown, moist, t-m SAND with seams of silt
~
~. ..-..-.-....... .--,.....---.. .....-.........-.................._..........._..........~._._............._._...._........._............H.............. ..._...................... ....~......... ...m'"n''' ...........................................
f.' . T9-2 SM Brown, moist. medium dense, silty t-m SAND
~
~-T'9:3 ......---..... .................._-...............................-..-..................................................--.................................................. .m........... ............... m.................... ................
SP Brown, damp, medium dense, t-rn SAND 2.3 ::iA
5.
e: SZ
- At 7 feet slow water seepage
0
T9-4 Brown, moist, medium dense, t-m SAND 5,2
~ T9-5 -Same
.
"I.,
-HOLE TERMINATED AT 12 FEET
-
- Hole backfilled with soil cuttings
Water seeping in at 7 feet below ground surface
5 .
Samole Tvoe: 11I1-- Small Plastic Bag [g] Large Bulk Sample SZ_ Water Table
, Laboratory Testina: Al - Atterberg Umits EI = Expansion Index MD - Maximum Density SA = Sieve Analysis
~I SR = SulfatefResistivity Test SH = Shear Testing RV= R.Value Test CO= Consolidation
2550503
Walcott Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
OATE:
AC
Case 580 Super L (4X4)
3/312004
\\-5
GeoTek, Inc.
LOG OF EXPLORATORY TRENCH
ttOJECT NO,:
ROJECT NAME:
L1ENT:
OCAnON:
SAMPLES Laboratory Testing
<5
. .a C
S . E TRENCH NO,: T-tO . '"
a.
~ . - ~ c "' f"
~ t- - " "' 0_ Cc-
0. a.'" "
. E E "' u# . u ~
. 0. m ~ U " ~ 0", 15
0 E ",z "' . iO
. ::> -- ~ 0
"' MATERIAL DESCRIPTION AND COMMENTS
~ Topsoil:
T10-1 SM Brown, moist, siity f-m SAND; trace organics
~'
~ Terrace Deposits:
T10-2 SC Completely weathered: breaks into brown, damp, dense. clayey f-m SR
. F SAND
-
5. b:;;-- T10-3 -Same
~'
-
-HOLE TERMINATED AT 7 FEET
.
- Hole backfilled with soil cuttings
No groundwater encountered
)
,
.
;
-
.
amole lvtle: . Small Plastic Bag ~ Large Bulk Sample ..s:z --Water Table
I Laboratorv Testina: AL = Atterberg Limits El :: Expansion Index MD - Maximum Density SA - Sieve Amllysis
I
I SR = Sulfate/Resistivity Test SH = Shear Testing RV:: R-Value Test CO:: Consolidation
2550503
Walcott Lane
Steve Galvez
Temecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
3/312004
\\fD
GeoTek, Inc.
LOG OF EXPLORATORY TRENCH
_OJECT NO,:
~OJECT NAME:
L1ENT:
)CATION:
.
SAMPLES laboratory Testing
"
S ;, D C
a. E TRENCH NO.: T-tt . ?>
~ o ~ ~ c '. m
-0 '"
a. I- a.D o~ .'" '"
. 0 E E '" U;f'. 0.'0 ~
0. ro ~ U ~~ is
0 E "'z '" . ~
m :0 ;; 0
'" MATERIAL DESCRIPTION AND COMMENTS 3:
Topsoil:
~ T11-1 SM Brown, moist, loose, silty t-m SAND; trace organics
~,
. r='-
-
~ Terrace Deposits:
T11-2 SC Completely weathered: breaks into brown, moist, dense, clayey t.m 6.9
P"" SAND
5- .- T11-3 Becomes brown, moist. dense, clayey t-m SAND with CaC03
- X 1=1
spotting
~
.
~ T11-4 Becomes brown, moist, very dense, clayey tine SAND 8.9
- -HOLE TERMINATED AT 9 FEET
).
. Hole backfilled with soit cuttings
No groundwater encountered
.
)
Samole Tvee: .. Small Plastic Bag ~ Large Bulk Sample .s:z. --Water Table
I Laboratorv Testina: AL = Alterberg Limits EI - Expansion Index MD - Maximum Density SA - Sieve Analysis
I
I SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value Test CO = Consoridation
2550503
Walcott lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (liX4)
3/3/2004
\\1.
GeoTek, Inc,
LOG OF EXPLORATORY TRENCH
eROJECT NO,:
'ROJECT NAME:
:UENT:
.OCATION:
e
SAMPLES Laboratory Te"ting
0 C
'. .0
g u E TRENCH NO.: T-12 . z,
~ . ~ >- c '. "
" . '"
l- on 0_ Ce .
1i '" UfF. . u
~ ~ E E os "
0 0 m 0 U .- i5
E "'2 '" ro ~
m ::J -- 0
'" MATERIAL DESCRIPTION AND COMMENTS :;:
Topsoil:
ti T12-1 SP Brown, moist. f-c SAND; trace organics
-,
. '...., .-.-............ ..--.-.....--...-..............................................--...........-.................... ............... .........-...-_.......... n....._, m........... ............-. ................ ......... ..............-
T12-2 SM Brown, moist. silty t-m SAND
Terrace Deposits:
.~ T12-3 SM Completely weathered: breaks into brown, damp, dense, silly t-c SAN
_"0
5 ....... ...........--.-.. ................. ..............-...........................___........................n_.......................................................... ......m....._......... .....m............ ......... .....-.................... ............
SC Becomes brown, moist, very dense, clayey f-m SAND
,
~" T12-4 -Same
~~,
-HOLE TERMINATED AT 7 FEET
.
Hole backfilled with soil cuttings
No groundwater encountered
0
.
.
,
-
5 .
SamDle TVDe: . - Small Plastic Bag IR] Large Bulk Sample ..:s:z --Water Table
~ Laboratorv Testina: AL = Atterberg limits EI - Expansion Index MD = Maximum Density SA =: Sieve Analysis
U
~ SR = Sulfate/Resistivity Test SH :: Shear Testing RV= R~Value Test CO: Consolidation
2550SD3
Walcott Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
3/312004
\\1'6
GeoTek,lnc,
LOG OF EXPLORATORY TRENCH
4Il0JECT NO,:
ROJECT NAME:
lIENT:
::lCA TION:
SAMPLES Laboratory Testing
<;
g .$ D "
0. E TRENCH NO,: T-t3 " ~
~ $ ~ ~ " .~ .
L _ $ <n o ~ Cc ~
15. 0..0
$ E E <n U<f!. $ 0 L
$ De
0 0. rn ~ U lo- a
E <nz <n ~ '"
rn :J 0
"' MATERIAL DESCRIPTION AND COMMENTS
Topsoil:
SM Brown, moist, silty f-m SAND; trace organics
- . T13-1 -Same 9.3
> .
~ Terrace Deposits:
'", T13-2 SM Completely weathered: breaks into brown, damp, very dense, silly f-c 4.5
lib: SAND
5, ~ Becomes brown, damp, very dense, silty f-c SAND
r.. T13-3
. -HOLE TERMINATED AT 5,5 FEET
.- Hole backfilled with soil cuttings
No groundwater encounlered
,
0
-
.
,
5.
-
.
amole Tvoe: 11I.-. Small Plastic Bag ~ Large Bulk Sample s:z.. Water Table
~ Laboratorv Testina: AL = Atterberg Limits EI = Expansion Index MD = Maximum Density SA = Sieve Analysis
U
.J SR = Sulfate/Resistivity Test SH = Shear Testing RV = R-Value Test CO = Consol.dation
2550S03
Walcott Lane
Steve Galvez
T emecula
LOGGED BY:
EQUIPMENT:
DATE:
AC
Case 580 Super L (4X4)
3/3/2004
\\<\
e
T
APPENDIX B
e
e
\1P
e
APPENDIX B
RESULTS OF LABORATORY TESTING
e
Proposed 22-Acre Residential Development
Walcott Lane
Temecnla, Riverside County, California
Project No.: 2SS0SD3
.
~K
\,,1...\
e
e
.
MR. STEVE GALVEZ
Preliminary Geolechnical Evaluation
Walcott Lane. 22-Acre Residence Devclooment
APPENDIX B
March 24, 2004
Pag, B-1
SUMMARY OF LABORATORY TESTING
Classification
Soils were classified visually according to the Unified Soil Classification System (ASTM
Test Method D2487), The soil classifications are shown on the trenching logs in Appendix A,
In Situ Moisture
The field moisture content was measured in the laboratory on selected samples collected
during the field investigation, The field moisture content is deternlined as a percentage of the
dry unit weight. Results of these tests are presented on the trenching logs in Appendix A.
Sulfate Content
Analysis to determine the water-soluble sulfate content was perfOlmed in accordance with
California Test No, 417. Results of the testing indicated 0,003% SuIf:lte which is considered
negligible as per Table 19-A-4 of the CBC. The results of the testing are included herein (see
Plate SR-l),
Resistivity
Representative surficial soil samples were collected and tested for resistivity in accordance
with California Test 643, The results of the testing are included herein (see Plate SR-l),
Expansion Index
Expansion Index testing was performed on a representative near-surface sample, Testing was
performed in general accordance with ASTM Test Method D4829, The results indicate an
Expansion Index (El) is 42 for the soil tested. TillS is considered a low expansion potential in
accordance with Table l8AI-B of the 2001 CBC, The results are shown on Plate El-I.
Direct SheaI'
Shear testing was performed in a direct shear machine of the strain-control type in general
accordance with ASTM Test Method D3080. The rate of deformation is approximately 0.03
inches per minute, The sample was sheared under varying confining loads in order to
determine the coulomb shear strength parameters, angle of internal fi'iction and cohesion, The
tests were perfonned on ling samples collected during our subsurface exploration, The shear
test results are presented on Plate SH-I.
t~>,"~,;
, ',,'., ib<
\7J.-
LIQUID AND PLASTIC LIMITS TEST REPORT
60
Dashed line indicates the approximate
upper limit boundary for natural soils
10-
I ____
~ = =- ?'~////A,0///:-:;
I I
10
i -- /' ,
j /....;" IIi
-t----/ / ~---~-+ O~ ~ i--- - ~-----
//" 1 cy..o'< 1 I
i /-=~~ / --t-------I----u--~--
-~-~~-~ ---~~~--rl-~-t--
I ./! i I _ :
. -' "I'
// i i::
/ / ... ~:Jr -'+~-l- - Ln_
MH or OH j ,
1 I
90
e
50 -
i;) 40 u
o
z
>-
!::: 30-
o
;:::
(f)
<(
~ 20--
ML l' OL
,
30
50
LIQUID LIMIT
70
110
30.2 +- j
29.6 -. ---.---- _.~.- n 1---------
>- ::: -=t==J-
~ 28 6 ~~-j~- --+ - ---j--
o I,
u 28.2 ----~- -'1-----
a::: I: I
I I
26.6
l' , ,
- - --J,:___L.L-
i : ;
---r---:-L--~
I I : ,
-+i--:-L-
_~. U.. ,~_ ,,_..
J
26,25
10
20
25
30
40
NUMBER OF BLOWS
MATERIAL DESCRIPTION
.
Lt brown silty clayey SAND
LL
28
PL
20
PI
8
%<#40
%<#200
USCS
Project No, 2550-S03
Project: Walcott Lane
Client: Steve Galvez
Remarks:
.
· Location: TlI-3 @5'
e
LIQUID AND PLASTIC LIMITS TEST REPORT
GeoTek, Inc.
Plate
AT-l
\1>
,.has
~
.....
".
:j~
e
e
m
><
"'0
)>
Z
en
-
o
z
z
o
m
><
-f
m
en
-f
11 11 11
-, ., '"
.E. -2. ~.
." ." ."
" " "
- - -
r- :c: :c:
o " ..
" " "
~ 0- I'D
o' CD '.
::! :"1
'" ~
'" ..
g; ()
. >!.
m -
o [;;'
'" "
CD
;u
:;'
lC
c:
;u
:;'
lC
o
or
I
....
;U
:;'
lC
I~
r
o
III
C.
:;'
o
"
"
o'
~
'"
'"
~
Ol
o~
m III
Z 3
m '"
=i
-<
o
m
-I
m
;U
~
Z
~
-I
o
Z
m 0,0 lD ~
o ~ ~ ~ ~
~ CD .-+ !!!. ~.
- lClC
OO~"3-:::r
~~tC.;;;;
~.(I):T__
f.'-'-"o
.-<"0:]"0
-. -co 3
C" cr en -0
....... _ In III
;::to ;::::J! 3 0
c..> C".) "Q.. CD
';:; _ (J) C.
!2 () In
........ m
'0 3
i.2J W "P-
o (J)
i oi l>>
......... .::!.
"
lC
... '" ...,
~ ~ ~ Ol co
~ '" '" <0 '"
w ... w ex. ~
0 ..., '" '" '"
I
m
~
-I
C
~
-I
o
Z
o
m
-I
m
:u
;;:
Z
~
-I
o
Z
- ::r Gl ."
Qm -, ~ m ;;:
<::: '" 2; . 0
:.. Ol .2J in'
II . ..., e-
re ~ iD
'" 0
;f? '"
~ 0
m "
III m
e- .3-
~ ;f?
o'
"
~
'" '" 0 '" ~
..., 0 Co ;", Ol 0
0. ~ '" ,,, ... w
0
^ '-
o:Z;~
~ .... (I) =:
'< - III
III _
iD ~:z;;;:
lC <C 0
.... .... ~
~ ~ c
OJ .:.. CJ1 CD
. ~ <n
... . .
... '" N
'" 0>
~
o
'"
;f?
\11.,\
'>
en
-I
;;:
'"
...
co
'"
~
~ ~ ~ ;t)i
:3 :3 CD ~
b 'lJ -I Cb
(D m I'D ~
I::) en ~ 0
CD 0 Q) ::,.
lI) c: Q. I'D
o ""\ '. 0
.,,, '"
..;::, CD m
~ '. Q.
o' to
~ "::;
^
^
~
o
=<
"
~
~~
~. ~ ~ 1[;;'
....... (.0.) ___ cr
~ ~ Z
3" 0 0
CD ~ .t:>-
en
}>
z
o
~
"
w
~
~
co
en
'" '" '" '" '"
N N N N N 0
'" '" '" '" '" ::;
N N N N N
0 0 0 0 0 m
0 0 0 0 0
... ... ... ... ...
;U
m
..., en en en co ::! }>
i0 :.;. W W i0 ;;: ~
... '" '" ..., ..., m Z
Gl
en
;U
p C) C) m
p p }>
~ ~ ~ ~ 0
'" '" ...
..., (J) '" <0 '" Z
G)
~.
~
~
'" ~ 0
;U 3 ~. 3
"00_-::1__
-- ::J ::J ~ "
" a. ~ ~
III 0 0
- 3 ~ !2. -<
~
~ ~
~ ~ g
N ~ ~
en co ~
'"
III
3
1?
"
~
"
<8
~ "
.t.. Qo 0
~ -::."
. ill ~-
01 "'.-:1 Z
01 CD -..;; )>
",r
3;;:
1'Q
"m
--I
C
:u
m
~ -I
... III
... iD
;f?
~ ;;:
, 0
w -,
~ '"
o e-
I liD
m
X
"U
:t>
z
en
o
z
z
o
m
X
"
-1>0
I\)
-
'jj;
'"
o
'"
Ul
l>
;:!
:u
l>
-I
.')
.;0
'll
r
~
m
m
,
~
MAXIMUM DENSITY CURVE
Curve No.: A
Project No,: 2550-SD3
Project: Walcott Lane
Date:
Location: T4-3
Elev.lDepth: 2-4'
Remarks:
MATERIAL DESCRIPTION
Description:
Classifications -
Nat, Moist. =
Liquid Limit =
% > No.4 = %
USCS:
AASHTO:
Sp.G. =
Plasticity Index =
% < No.200 =
TEST RESULTS
~
Maximum dry density = 130 pef
Optimum mOl sture = 9.5 %
,
-;--......---.......,--
Test specification:
ASTM D 1557-00 Procedure A Modilied
120
. .;____..n ~- _l.__ ----J--:-- ' __
! : I--L I!!'
130 -r--i"! I -to! ' I
_L~
! j Iii
-'--J~:- -----r---T " I
---,..- t-- - -J--l--+-_..!-- -- -
1 . ___~-_-,_-1. ~ _ _~i_ 1..-
--,-r-- ii'
I I I-
i
e
,
---....--.-..---
,
i __~.__._
I I
.-.:-------r---,
i; .
- ;---t
.i._.__L_
I I I I
-t-H I
Iii i--
, '. ., !
.--; -; -""7.~~T==-1.-~--:_1-:-
100% SATURATION CURVES
FOR. SPEC. GRAV. EQUAL TO:
2,8
2.7
2.6
--~
-Li
~ 110
b
'in
c
'"
D
C
o 100
! I I
---:-u.n----l
__.___.4. ;
, .
. -..,..------j-
f i
-T-;'"
--;._------,.-.--:-- ~'_..;~
--1-+ : ...J,_L' -I'..L!..., . +'
--I--~ I -c-_-=- ~ -._~ I
! 0 . : 1 I!! -L
----r-, I' ,', I ',"
! : J
-Ir-j- --1 "-r-...L----. I
- i : ._.~-+- - _~_.L ~.- ~ - -i-1~-. - ~. -+---~-+
~~~_T-r i l .roo !--~-=~:-;=q~ -'-l.-i-~; !
80 . I 1 ", ' , '" i
-L...LL.. ; ;! I! I I
--.7"--il ~j ] ~ I: =H: I
-..--.--'.---<-----. i 1~ i~, -j -~ j j
---+-~-~--~....:--i--------=--~ ~ __~ t
---.-----. __1.__;_u_;..! ---:--:-~-~----J~_~__~ ~-J+
-I-L
, .
, I
-tLi-~.-- :-t-
"1 ! ; J r
..L1 i i I ill J I ! 1
j-il-'-L' j I ! i ~-T-
E..1- -r---<--.....-!---+-
-+--~-~ -~ ~-L--
. ,. ('
-, .-+-:-~.____ ___-1_..-!__ __-{_+-+__
, '
,-_.-:'--~
90
_u I
---,-~--_.,.- -- ---._"'!-:
e
70
o
5
10
15
20
Water con lent, %
25
30
:35
40
GeoTek, Inc.
Plate rJ\ V - \
\z;}
Particle Size Distribution Report
- - [~i111 , 'Ii II ! I
; I , I II I III I; .~ II , I
I , , I
I I I WI
! ' I . . 1\ 1 I
. .
\, : 1 +f-
:
,
I \ 11 t I
: 'I
, f-- -
I .,
: : : :'
, Ili\ I
: : :
: , : : :
: : : :
II I 11 ) I I
I i rl+_L_-
: ,
I I I 'I; 111 I I ,
:
, , : I ~ I
: I
, I
I I : \ I I
I N
II II . I I I I I: Nil I I
1I1I1 I I i: , I
, : I I
, ,.
e,oo
.~
N
"
"
"
.
.s .s
~ ~
90
80
70
60
50
40
30
20
10
e
I
o
SOD 100
% COBBLES
0.0
0;., GRAVEL
0.2
SIEVE PERCENT SPEC: PASS?
SIZE FINER PERCENT (X=NO)
.375 in. 100.0
#4 99.8
#8 96.8
#10 94.4
#16 81.0
#30 45.6
#40 27.5
#50 15.0
#100 5.3
#200 3.3
.
(no specificatioll provided)
Source of Sample: T9-3 @5'
Sample No.:
location: 1'9-3 @ 5'
o
.
~ g ~
. . .
o 0 C
o . c
_ _ N
. . .
o
.
.
,
GRAIN SIZE - mm
0,1
0.01
0.001
-JoSAND
96.5
1:==
3.3
% SilT
I=Y.CLAY I
Soil Description
Brown poorly graded SAND
PL=
AtlerberQ limits
LL" PI=
085= 1.32
030= 0.448
Cu= 3,24
Coefficients
060= 0,771 050= 0,648
01!;= 0.300 010= 0.238
Cc" LID
Classification
-- AASHTO= A-I-b
USCS= SP
Bemarks
Wi~3,O
Date: 3/23/04
Elev.lDepth:
-- :J
Plate \?1P
GeoTek, Inc.
Client: Steve Galvez
Project: Walcott Lane
Pro'ect No: 2550-SD3
e
~
. ~K, INC.
DIRECT SHEAR TEST
Project Name:
Project Number:
Walcott Laue
Sample Source:
Date Tested:
2550-SDJ
Soil Descriptioll:
Brown, clayey [-m SAND
5.5
5
4,'
I 4
3,'
e i
I 2,5
I
i
I 2
1.,
0.' .. "..--,-
0
0 0.5
~
. j,,-
.. "Y='O~45x+'1.26
1.,
NORMAL STRESS (ksf)
2
1,5
Shear Strenqth:
c= 1.26 k~
<<11=
o
23,7 ,
Water Content Dry Density
Test No, Load (ton (%) (pel)
1 0.7 9.8 117
2 1.4 9.8 117
3 2.8 9.8 117
Notes:
I . The soil specimen used in the sbw box were "ring" samples remolded to 90% of 130.0@9.8%.
2 - Shear strength calculated at maximum load.
3 - The tests were ran al a shear mle orO.03 in/min.
e
T4-3 @2-4'
03/17104
~
eo
'"
'"
w
'"
0-
'"
'"
..
W
:I:
'"
PLATE SH-1
\'Z,.'\
~Eij>
e.l{,tN:Cc.
SOIL RESISTIVITY & SULFATE TEST
1384 Poinsettia Ave" Suite A, Vista, CA 92083
(760) 599-0509 FAX (760) 599-0593
(California Test 643 & 417)
"roject Name:
"roject Number:
"roject Location:
Walcott Lane
2550-SD3
Tested/ Checked By:
Date Tested:
Sample Source:
Sample Description:
DC Lab No 1188
3/19/2004
T10-3 @ 5'
Lt brown silty medium to fine SAND
Determing the soil's pH
7,1 I
-
Measured Res
Water Added from Nil. 400
(mL) (ohms-em)
100 2100
50 1800
20 1550
20 1350
20 1450
Minimum Resistivity =
I 1350 I
21,0 years to perforation for a 18 gauge metal culvert.
27.3 years to perforation for a 16 gauge metal culvert.
33.6 years to perforation for a 14 gauge metal culvert,
46.2 years to perforation for a 12 gauge metal culvert.
58.9 years to perforation for a 10 gauge metal culvert.
71.5 years to perforation for a 8 gauge metal culvert.
Water Soluble Sulfate (California Test 417) = I
0.003%
.
SR-1 \'Z2>
e
T
APPENDIX C
e
.
"K,INe.
\-z.,~
.
APPENDIX C
COMPUTER PRINTOUTS OF SEISMIC ANALYSIS
e
Walcott Lane, Proposed 22-Acre Residential Development
Walcott Lane
Temecula, Riverside Connt)', Califomia
Project No.: 2550SD3
.
.K
\~
2550SD3,OUT
e
***********************
* *
* E Q f A U L T *
* *
* Version 3.00 *
* *
***********************
DETERMINISTIC ESTIMATION Of
PEAK ACCELERATION fROM DIGITIZED fAULTS
JOB NUMBER: 2550SD3
DATE: 03-18-2004
JOB NAME: Walcott Lane
CALCULATION NAME: Test Run Analysis
fAULT-DATA-fILE NAME: CDMGfLTE,DAT
SITE COORDINATES:
SITE LATITUDE: 33.5349
SITE LONGITUDE: 117.1029
. SEARCH RADIUS: 100 mi
ATTENUATION RELATION: 12) Bozorgnia Campbell Niazi (1999) Hor.-Soft Rock-Cor-
UNCERTAINTY (M=Median, S=Sigma): M
DISTANCE MEASURE: cdist
SCOND: 0
Basement Depth: 5.00 km Campbell
COMPUTE PEAK HORIZONTAL ACCELERATION
Number of Sigmas: 0.0
SSR: 1
Campbell SHR:
o
fAULT-DATA fILE USED: CDMGfLTE-DAT
MINIMUM DEPTH VALUE (km): 3.0
.
\"?\
Page 1
2550SD3.0UT
e
EQFAULT SUMMARY
DETERMINISTIC SITE PARAMETERS
Page 1
IESTIMATED MAX. EARTHQUAKE EVENT
APPROXIMATE 1-------------------------------
ABBREVIATED DISTANCE 1 MAXIMUM I PEAK lEST, SITE
FAULT NAME mi (km) IEARTHQUAKEI SITE IINTENSITY
1 1 MAG, (Mw) I ACCEL. g IMOD,MERC.
================================1==============1==========1==========1=========
ELSINORE-TEMECULA I
ELSINORE-JULIAN I
ELSINORE-GLEN IVY I
SAN JACINTO-SAN JACINTO VALLEY 1
.SAN JACINTO-ANZA 1
NEWPORT-INGLEWOOD (Of fshore) I
ROSE CANYON I
CHINO-CENTRAL AVE, (Elsinore) I
SAN JACINTO-SAN BERNARDINO \
SAN JACINTO-COYOTE CREEK 1
SAN ANDREAS - San Bernardino I
SAN ANDREAS - Southern 1
WHITTIER I
EARTHQUAKE VALLEY 1
PINTO MOUNTAIN I
SAN ANDREAS - Coachella I
NEWPORT-INGLEWOOD (L,A.Basin) 1
CORONADO BANK I
NORTH FRONTAL FAULT ZONE (West) 1
BURNT MTN. I
CUCAMONGA I
NORTH FRONTAL FAULT ZONE (East) 1
PALOS VERDES I
ELYSIAN PARK THRUST I
CLEGHORN I
SAN JOSE 1
EUREKA PEAK 1
COMPTON THRUST I
SIERRA MADRE 1
SAN JACINTO - BORREGO 1
ELSINORE-COYOTE MOUNTAIN 1
LANDERS 1
SAN ANDREAS - 1857 Rupture 1
~SAN ANDREAS - Mojave 1
~ELENDALE - S. LOCKHARDT 1
4.7 (
12.2(
16,1(
17,8(
17.8(
31,3(
33.6(
33,9(
34.2 (
34.7(
35,4(
35,4(
37,9(
38,7(
42.3(
45.3(
47.6(
48.3(
49.3 (
50.6(
50,6(
51,1(
51.3(
51,8(
51.9(
52.9(
53.4(
53.7(
55.7(
57.3(
58.1(
58.7(
59.0(
59.0(
59.3(
Page 2
7,6) I
19,7) I
25.9)1
28.7)\
28.7)1
50,3)1
54.1) 1
54,5) 1
55,1)1
55,9)1
56,9)1
56,9)1
61.0) 1
62.3) 1
68.1)1
72.9) I
76.6)1
77.7) I
79.4)1
81.4)1
81.4)1
82.2)1
82.5)1
83.3)1
83.5) 1
85.2)1
85.9)1
86.4)1
89.6)1
92.2)1
93.5)1
94.5)1
94.9)1
94.9)1
95.5)1
6.8
7.1
6.8
6,9
7.2
6.9
6.9
6.7
6.7
6.8
7.3
7.4
6-8
6,5
7.0
7,1
6.9
7.4
7.0
6.4
7.0
6,7
7,1
6.7
6.5
6.5
6.4
6.8
7.0
6.6
6.8
7.3
7.8
7,1
7.1
0-353
0.203
0.130
0.126
0.153
0.071
0.066
0.080
0,056
0'059
0.082
0.088
0.054
0.043
0,055
0.055
0-046
0.064
0.067
0.031
0,065
0.052
0.049
0.052
0.032
0.044
0.029
0,053
0.059
0.031
0.035
0.049
0.070
0.042
0.042
IX
VIII
VIII
VIn
VIII
VI
VI
VII
VI
VI
VII
VII
VI
VI
VI
VI
VI
VI
VI
V
VI
VI
VI
VI
V
VI
V
VI
VI
V
V
VI
VI
VI
VI
\~V'
2550SD3,OUT
~LENWOOD-LOCKHART-OLD WOMAN SPRGSI 62.7( 100.9) 1 7,3 0.0~5 VI
JOHNSON VALLEY (Northern) I 66.o( 106.2) 1 6.7 0,028 V
CLAMSHELL-SAWPIT 1 66.7( 107.3) 1 6,5 0.03~ V
EMERSON So. - COPPER MTN, I 67.7( 109.0) 1 6,9 0.032 V
RAYMOND I 68.~( 110- 0) I 6,5 0.034 V
DETERMINISTIC SITE PARAMETERS
Page 2
I ESTIMATED MAX. EARTHQUAKE EVENT
I APPROXIMATE ----------. --------------------
ABBREVIATED 1 DISTANCE MAXIMUM PEAK lEST, SITE
FAULT NAME I mi (km) EARTHQUAKE SITE IINTENSITY
I MAG. (Mw) ACCEL. g MOD.MERC.
================================1============== ========== ========== =========
VERDUGO I 73-3( 117.9) 6.7 0.036 V
CALICO - HIDALGO I 74,7( 120.2) 7,1 0.033 V
PISGAH-BULLION MTN.-MESQUITE LK I 75.2( 121.1) 7.1 0,032 V
HOLLYWOOD I 76-9( 123.8) 6,4 0,028 V
SUPERSTITION MTN, (San Jacinto) I 77,7( 125,0) 6.6 0.022 IV
ELMORE RANCH 1 80,0 ( 128.7>1 6.6 0.022 IV
SUPERSTITION HILLS (San Jacinto) I 81.3( 130.9) I 6,6 0,021 IV
BRAWLEY SEISMIC ZONE I 81,5( 131-1)1 6-4 0.019 IV
SANTA MONICA I 84.6( 136.1>1 6.6 0.029 V
ASAN GABRIEL I 86.7( 139.6)1 7-0 0.026 V
.SIERRA MADRE (San Fernando) I 86.9( 139.8>1 6-7 0,030 V
MALIBU COAST 1 89-4( 143.8) 1 6.7 0,029 V
LAGUNA SALADA I 89.9( 144.7)1 7.0 0,025 V
NORTHRIDGE (E. Oak Ridge) 1 9o.8( 146.2)1 6.9 0,033 V
GRAVEL HILLS - HARPER LAKE I 93.o( 149,7)1 6.9 0.023 IV
SANTA SUSANA I 97.7( 157-3)1 6.6 0.025 V
ANACAPA-DUME I 98.1( 157.8) I 7.3 0.040 V
IMPERIAL I 98.3( 158-2) I 7.0 I 0,023 I IV
.*******************************************************************************
-END OF SEARCH- 58 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS,
THE ELSINORE-TEMECULA FAULT IS CLOSEST TO THE SITE.
IT IS ABOUT 4.7 MILES (7.6 km) AWAY.
LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0-3529 g
.
\~~
Page 3
e
100
70
~
;!?,
0
~
>, 60
~
e~
.Q
0 50
'--
0..
(j)
u
c
Ol 40
"'0
(j)
(j)
u
x
w 30
.
, PROBABILITY OF EXCEEDANCE
BOZ. ET AL.(1999)HOR SR COR 1
o m m [TI
25 rs 50 rs 75 rs 100 rs
90
80
20
10
o
0,00
0,25
0.50 0,75 1.00
Acceleration (g)
1,25
1.50
,0/\
e
100
90
80
70
~
~
0
~
>- 60
='==
e~
0 50
'-
a..
Ql
(,)
C
t1l 40
'0
Ql
Ql
(,)
X
ill 30
20
10
.
PROBABILITY OF EXCEEDANCE
BOZ_ ET AL.(1999)HOR SR COR 2
~ IT] m [TI
25 rs 50 rs 75 rs 100 rs
o
0.00
0.25
0,50 0,75 1.00
Acceleration (g)
1.25
1,50
r
\'?::>
e
T
APPENDIX D
,e
.
"',i....'.
9},.
";, i;, , INC.
\-ZJ>
e
APPENDIX D
GENERAL GRADING GUIDELINES
FOR EARTHWORK CONSTRUCTION
e
'Valcott Lane, Pl'Oposed 22-Acre Residential Del'elopment
Walcott Lane
Temecula, Riverside Couuty, California
Project No.: 2550SD3
.
~'T,'fuO,.
. I. ,~
" iEK
\,?1
I
e
e
e
\~
e
e
e
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Developmeul
Walcott Lane, Temecula, California
APPENDIX D
2550SD3
Page I
GENERAL GRADING GUIDELINES
Guidelines presented herein are intended to address general construction procedures for earthwork
construction, Specific situations and conditions often arise which carmot reasonably be di.;cussed in
general guidelines, when anticipalcd these are discussed in the lext of the report. Often unanticipated
conditions are encountered which may necessitate modification or changcs to these guidelines, It is our
hope that these will assist the contractor to more efficiently complete the project by plOviding a
reasonable understanding of the procedures that would be expected during earthwork and the tesling and
observation used to evaluate those procedures,
General
Grading should be performed to at least the minimum requiremenls of governing agencies, Chapters 18
and 33 of the Unifonn Building Code and the guidelines presented below.
Preconstrnction Meeting
A preconstruction meeting should be held prior to site earthwork, Any questions the contractor has
regarding our recommendations, general site conditions, apparent dic:crepancies belween reported and
actual conditions and/or differences in procedures the contractor intends to use should be brought up at
thaI meeting. The contractor (including the main onsite representative) ,;hould review our report and
these guidelines in advance of the meeting. Any commenls the contractor may have regarding Ihese
guidelines should be brought up at that meeting.
Grading Observalion and Testing
1. Observation of the fill placement should be provided by our representative during grading,
Verbal communication during the course of each day will be used to infOlm the contract or of test
results. The Contractor should receive a copy of the "Daily field Report" indicating )-esults of
field density tests that day. If our representative does not provide the conlractor with these
reports, our office should be notified,
2, Testing and observation procedures are, by their nature, specific to the work or area observed and
location of the tests taken, variability may occur in other locations. The contractor is re~'ponsible
for the uniformity of the grading operations, our observatiom: and test results are intended to
evaluate the contractor's overall level of efforts during grading, The contractor's personnel are
the only individuals parlicipating in all aspect of site work. Compaclion testing and observation
should not be considered as relieving the contractor's responsibility to properly compact the fill.
3, Cleanouts, processed ground to receive fill, key excavations, and subdrains should be IJbserved
by our representative prior to placing any fill. It will be the Contractor's responsibility to notify
our representative or office when such areas are ready for observation.
4, Density tests may be made on the surface material to receive fill, as considered warranted by this
firm,
5,
In general, density tests would be made at maximum intervals of two feet of fill height or every
1,000 cubic yards of fill placed, Criteria will vaty depending on soil conditions and size of the
fill. More frequent testing may be perfonned, In any case, an adequate number of field density
lests should be made to evaluate the required compaction and moisture contenl is generally being
obtained,
Laboratory testing to support field test procedures will be performed, as considered warranted,
based on conditions encountered (e,g. change of material sources, types, etc.) Every effort will be
i$
~iK
\~
6,
e
e
.
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Development
Walcott Lane, Temecula, California
APPENDIX D
25505D3
Page 2
7.
made to process samples in the laboratory as quickly as possible and in progress construction
projects are our first priority, However, laboratory workloads may cause in delays and some soils
may require a minimum of 48 to 72 hours to complete test procedures. Whenev"r possible,
our representative(s) should be informed in advance of operatioual changes that might result in
different source areas for materials,
Procedures for testing of fill slopes are as follows:
a) Density tests should be taken periodically during grading on the flat surface of Ihe fill
three to five feet horizontally from the face of the slope.
b) If a method other than over building and cutting back to the compacted core is to be
employed, slope compaction testing during constructiou should include testing the outer
six inches to three feet in the slope face to detennine if the required compaclion is being
achieved,
Finish grade testing of slopes and pad surfaces should be perfOlmed after construction is
complete,
8.
Site Clearing
I.
All vegetation, and other deleterious materials, should be removed from the sile, If material is not
immediately removed from the site it should be stockpiled in a, designated area(s) well outside of
all current work areas and delineated with flagging or other means, Site clearing should be
perfOlmed in advance of any grading in a specific area,
Efforts should be made by the contractor to remove all organic or other deleterious malerial from
the fill, as even the most diligent efforts may result in the incorporation of some materials, This
is especially important when grading is occurring near the natural grade. All equipment
operators should be aware of these efforts. Laborers may be required as root pickers,
Nonorganic debris or concrete may be placed in deeper fill areas provided the procedures used
are observed and found acceptable by our representative, Typical procedures are similar to those
indicated on Plate G-4,
2,
3.
Treatment of Existing Ground
I. Following site clearing, all surficial deposits of alluvium and colluvium as well as weathered or
creep effected bedrock, should be removed (see Plates G-l, G-2 and G-3) unless otherwise
specifically indicated in the text of this report.
2. In some cases, removal may be recommended to a specified depth (e.g. fIat sites where partial
alluvial removals may be sufficient) the contractor should not exceed these depths unless
directed otherwise by our representative,
3. Groundwater existing in alluvial areas may make excavation difj]cult. Deeper removals than
indicated in the text of the report may be necessary due to saturalion during winter months,
4, Subseqnent to removals, the natural ground should be processed to a depth of six inches,
moistened to near optimum moisture conditions and compacted to fill standards,
5, Exploratory back hoe or dozer trenches still remaining after "ite removal should be excavated
and filled with compacted fill if they can be located,
\~~~
~
Vi-tK
\t>p
e
.
.
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Development
Walcott Lane, Temecula, California
APPENDIX D
2550SD3
Page 3
Subdrainage
I, Subdrainage systems should be provided in canyon bottoms prior to placing fill, and behind
huttress and stabilization fills and in other areas indicated in the report. Subdrains should
conform to schematic diagrams G-I and G-5, and be acceptable to our representative.
2, For canyon subdrains, runs less than 500 feet may use six-inch pipe, Typically, runs in excess of
500 feet should have the lower end as eight-inch minimum.
3, Filter malerial should be clean, 112 to I-inch gravel wrapped in a suitable filter fabric. Class 2
permeable filter material per California Department of Tram;portation Standards tesJed by this
office to verifY its suitability, may be used without filter fabric, A sample of the material should
be provided to the Soils Engineer by the contractor at least two working days before it is
delivered to the site, The filter should be clean with a wide range of sizes.
4, Approximale delineation of anticipated subdrain locations may be offered at 40-scale plan review
stage, During grading, this office would evaluate the necessity of placing additional drains,
5, All subdrainage systems should be observed by our representative during construction and prior
to covering with compacted fill.
6. Subdrains should outlet inlo storm drains where possible. Outlets should be located and
protected, The need for backflow preventers should be assessed during construction,
7, Consideration should be given to having subdrains located by the project surveyors.
Fill Placement
I.
Unless otherwise indicated, all site soil and bedrock may be reused for compacted fill; however,
some special processing or handling may be required (see text ofreport).
Material used in the compacting process should be evenly spread, moisture conditioned,
processed, and compacted in thin lifts six (6) to eight (8) inche:; in compacted thickness to obtain
a uniformly dense layer. The fill should be placed and compacled on a nearly horizontal plane,
unless otherwise found acceptable by our representative.
If the moisture content or relative density varies from that reconunended by this finn , the
Contractor should rework the fill until it is in accordance with the following:
a) Moistme content of the fill should be at or above optimu1l11110isture, Moisture :;hould be
evenly distributed without wet and dry pockets, Pre-watering of cut or removal areas
should be considered in addition to watering during fill placement, particularly in clay or
dry surficial soils, The ability of the contractor 10 obtain the proper moisture content will
control production rates,
b) Each six-inch layer should be compacted to at least 90 percent of the maximum dlY
density in compliance with the testing method specified by the controlling govemmental
agency, In most cases, the testing method is ASTM Test Designation D-1557,
Rock fragments less than eight inches in diameter may be utilized in the fill, provided:
a) They are not placed in concentrated pockets;
b) There is a sufficient percentage of fine-grained material to surround the rocks;
c) The distribution of the rocks is observed by and acceptable to our representative,
Rocks exceeding eight (8) inches in diameter should be taken off site, broken into smaller
fragments, or placed in accordance with recommendations of this firm in areas designated
suitable for rock disposal (See Plale G-4). On projects where significant large quantities of
oversized materials are anticipated, altemate guidelines for placement may be included. If
2,
3.
4,
5,
'~".,
y~:;' fiK
\A.\
.
e
e
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Developmenl
Walcott Lane, Temecula, California
APPENDIX D
2550SDJ
Page 4
6,
significant oversize malerials are encountered during construction, these guidelines should be
requested,
In clay soil dry or large chunks or blocks are common; if in excess of eight (8) inche:; minimum
dimension then they are considered as oversized. Sheepsfoot compactors or other suilable
methods should be used to break up blocks, When dry they should be moisture conditioned to
provide a uniform condition with the sunounding fill.
Slope Construction
I, The Contractor should obtain a minimum relative compaction of 90 percent out to the finished
slope face of fill slopes, This may be achieved by either overbuilding the slope and cutting back
to the compacted core, or by direct compaction of the slope face with suitable equipment.
2, Slopes trimmed to the compacted core should be overbuilt by at least three (3) feet with
compaction efforts out to the edge of the false slope, Failure to properly compact the outer edge
results in trimming not exposing the compacted core and additional compaction after trimming
may be necessary,
3, If fill slopes are built "at grade" using direct compaction methods then the slope construction
should be performed so that a constant gradient is maintained throughout construction. Soil
should not be "spilled" over the slope face nor should slopes be "pushed out" to obtain grades,
Compaclion equipment should compact each lift along the immediate top of slopE'. Slopes
should be bacle rolled or otherwise compacted at approximately every 4 feet vertically as the
slope is built.
4. Corners and bends in slopes should have special attention during construction as these are the
mosl difficult areas to obtain proper compaction.
S, Cut slopes should be cut to the finished surface, excessive undercutting and smoothing of the
face with fill may necessitale stabilization,
Keyways, Buttress and Stabilization Fills
Keyways are needed to provide support for fill slope and various conective procedures,
1.
Side-hill fills should have an equipment-width key at their toe excavated through all surficial soil
and into competent material and tilted back into the hill (Plates G-2, G-3), As the fill is elevated,
it should be benched through surficial soil and slopewash, and into competent bedrock or other
material deemed suitable by our representatives (See Plates G-l, G-2, and G-3).
Fill over cut slopes should be construcled in the following manner:
a) All surficial soils and weathered rock materials should be removed at the cut-fill
interface.
b) A key at least one (I) equipment width wide (or as needed for compaction) and tipped at
least one (I) foot into slope should be excavated into competent materials and observed
by our representative.
c) The cut portion of tbe slope should be excavated prior to fill placement to evaluate if
stabilization is necessary, the contractor should be responsible for any additional
earthwork created by placing fill prior to cut excavation.
(See Plate G-3 for schematic details.)
Daylight cut lots above descending natural slopes may require removal and replacement of the
outer portion of the lot. A schematic diagram for this condition is presented on Plate G-2.
2.
3.
~,~
~~K
\4.Z--
e
e
GENERAL GRADING GUIDELINES
Propased 22-Acre Residential Developmenl
Walcott Lane, Temecula, California
APPENDIX D
2550SD3
Page 5
4.
A basal key is needed for fill slopes extending over natural slc,pcs. A schematic diagram for this
condilion is presented on Plate G-2.
All fill slopes should be provided with a key unless within the body of a larger overall fill mass.
Please refer to Plate G-3, for specific guidelines,
5,
Anticipated buttress and stabilization fills are discussed in the text of the report, The need 10 stabilize
other proposed cut slopes will be evaluated during construction, Plate G-5 is shows a schematic of
buttress construction,
I. All backcuts should be excavated at gradients of I: I or flatter. The backcuI configuration should
be determined based on the design, exposed conditions and need to maintain a minimum fill
width and provide working room for the equipment.
2, On longer slopes backcuts and keyways should be excavated in maximum 250 feet long segment.
The specific configurations will be determined during construction.
3, All keys should be a minimum of two (2) feet deep at the toe and slope toward the heel al least
one foot or two (2%) percent whichever is grealer.
4. Subdrains are to be placed for all stabilization slopes exceeding 10 feet in height. Lower slopes
are subject to review, Drains may be required. Guidelines for subdrains are presented on Plate
G-5,
5. Benching of backcuts during fill placement is required.
Lot Capping
L
When practical, the upper three (3) feel of material placed below finish grade ,;hould be
comprised of Ihe least expansive material available. Preferably, highly and very highly expansive
materials should not be used. We will attempt to offer advise based on visual evaluations of the
materials during grading, but it must be realized that laboralory testing is needed to evaluate the
expansive potential of soil. Minimally, this testing lakes two (2) to four (4) days to complete.
Transition lots (cut and fill) both per plan and those created by remedial grading (e,g. lots above
stabilization fills, along daylight lines, above natural slope, etc.) should be capped with a three
foot Ihick compacted fill blanket.
Cut pads should be observed by our representative(s) to evaluate the need for overexca\ation and
replacemenl with fill. This may be necessary to reduce water infiltration into highly fractured
bedrock or other permeable zones, and/or due to differing expansive potential of materials
beneath a structure, The overexcavation should be at least tbree feet. Deeper overe'lcavation
may be recommended in some cases,
2.
3,
ROCK PLACEMENT AND ROCK FILL CillDELlNES
It is anticipated that large quantities of oversize material would be generated during grading. It's likely
that such materials may require special handling for burial. Although alternatives may be developed in
the field, the following methods of rock disposal are reconunended on a preliminary basis.
.
Limited Larger Rock
When materials encountered are principally soil with limited quantities of larger rock fragments or
boulders, placement in windrows is recommended, The following procedures should be applied:
1. Oversize rock (greater than 8 inch) should be placed in windrows.
(~
~ii1lK
\~
e
e
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Development
Walcolt Lane, Temecula, California
APPENDIX D
2550SD3
Page 6
2.
a) Windrows are rows of single file rocks placed to avoiclnesting or clusters of rock,
b) Each adjacent rock should be approximately the same size (within -one foot III
diameter),
c) The maximum rock size allowed in windrows is four feet
A minimum vertical distance of three feet between lifts should be maintained. Also, the
windrows should be offsel from lift to lift, Rock windrows should not be closer Ihan 15 feet to
the face of fill slopes and sufficient space must be maintained for proper slope construction (see
Plale G-4),
Rocks greater than eight inches in diameter should not be placed within seven feet of the finished
subgrade for a roadway or pads and should be held below the depth of the lowest utility. This
will allow easier trenching for utility lines.
Rocks greater than four feet in diameter should be broken down, if possible, or they may be
placed in a dozer trench. Each trench should be excavated into the compacted fill a minimum of
one foot deeper than the largest diameter of rock,
a) The rock should be placed in the trench and granular fill materials (SE>30) should be
flooded into the trench to fill voids around Ihe rock,
b) The over size rock trenches should be no closer together than 15 feet from any slope
face,
c) Trenches at higher elevation should be staggered and there should be a minimum of four
feet of compacled fill between the top of the one trench and the bottom of the nexl higher
trench.
d) It would be necessary to verify 90 percent relative compaction in these pits. A 24 to 72
hour delay to allow for water dissipation should be anticipated prior to additional fill
placement.
3.
4,
Structural Rock Fills
If the materials generated for placement in structural fills contains a significant percentage of material
more than six (6) inch in one dimension, then placement using conventional soil fill methods with
isolated windrows would not be feasible, In such cases the following could be considered.
1. Mixes of large of rock or boulders may be placed as rock fill, They should be below the depth of
all utilities both on pads and in roadways and below any proposed swinuning pools or other
excavations. If these fills are placed within seven (7) feet of finished grade they may effect
foundation design,
2. Rock fills are required to be placed in horizontal layers that should not exceed two feet in
thickness, or the maximum rock size present, which ever is IllSS, All rocks exceeding two feet
should be broken down to a smaller size, windrowed (see above), or disposed of in non ,structural
fill areas, Localized larger rock up to 3 feet in largest dimension may be placed in rock fill as
follows:
a) individual rocks are placed in a given lift so as to be roughly 50% exposed above the
typical surface of the fill ,
b) loaded rock trucks or alternate compactors are worked around the rock on all Sides to the
satisfaction of the soil engineer,
c) the porlion of the rock above grade is covered with a second lift.
3, Material placed in each lift should be well graded, No unfilled spaces (voids) should be
permitted in the rock fill.
e
,,-~ :In
~
~,U;K
\ t1co\
e
e
e
GENERAL GRADING GUIDELfNES
Proposed 22-Acre Residential Development
Walcott Lane, Temecula, California
APPENDIX D
2550503
Page 7
Compaction procedures:
Compaction of rock fills is largely procedural. The following procedures have been found to generally
produce satisfactory compaction.
1, Provisions for routing of construction traffic over the fill should be implemented,
aJ Placement should be by rock trucks crossing the lift being placed and dumping at its
edge,
b) The bucks should be routed so thaI each pass across Ihe fill is via a different palh and
that all areas are uniformly traversed,
c) The dumped piles should be knocked down and spread by a large dozer (D-8 or larger
suggested), (Water should be applied before and during spreading,)
2, Rock fill should be generously watered (sluiced)
a) Water should be applied by water ttucks to Ihe:
i) dump piles,
ii) front face of the lift being placed and,
iii) surface of the fill prior to compaction.
b) No material should be placed without adequate water.
c) The number of water tt'ucks and water supply should be sufficient to provide constant
water.
d) Rock fill placement should be suspended when water trucks are unavailable:
i) for more Ihan 5 minules straight, or,
ii) for more than 10 minules/hour.
In. addition to the truck pattern and at the discretion of the soil engineer, large, rubber tired
compactors may be required.
a) The need for this equipment will depend largely on the ability of the operators 10 provide
complete and uniform coverage by wheel rolling with the trucks.
b) Other large compactors will also be considered by the soil engineer provided that
required compaction is achieved,
3.
4, Placement and compaction of the rock fill is largely procedural. Observation by trenching should
be made to check:
a) the general segregation of rock size,
b) for any unfilled spaces between the large blocks, and
c) the matrix compaction and moisture content.
5. Test fills may be required to evaluate relative compaction of rmer grained zones or as deemed
appropriate by the soil engineer.
a)' A lift should be constructed by the methods proposed as proposed
6. Frequency of the test trenching is to be at Ihe discretion of the soil engineer.
Control areas may be used to evaluate the contractors procedures,
7, A minimum horizontal distance of 15 feet should be maintained from the faee of the rock fill and
any finish slope face. At least the outer 15 feet should be built of conventional fill materials,
Pipinl! Potential and Filter Blankets:
Where conventional fill is placed over rock fill, the potential for piping (migration) of the fine grained
malerial from the conventional fill into rock fills will need to be addreSBed,
The potenlial for particle migration is related 10 the grain size comparisons of Ihe materials present and in
contact with each other. Provided that 15 percent of the finer soil is larger than the effective pore size of
:.K
\A6
e
e
.
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Development
Walcott Lane, Temecula, California
APPENDIX D
2550SD3
Page 8
the coarse soil, then particle migration is substantially mitigated, This can be accomplished with a well-
graded matrix material for the rock fill and a zone of fill similar to the matrix above it. The specific
gradation of the fill materials placed during grading must be known 10 evaluate the need for any type of
filter that may be necessary to cap the rock fills. This, unfortunately, can only be accurately determined
during construction.
In the event thaI poorly graded matrix is used in the rock fills, properly graded filter blankets 2 to 3 feet
thick separating rock fills and convenlional fill may be needed, As an alternative, use of Iwo layers of
filter fabric (Mirafi 700 x or equivalent) could be employed on top of the rock fill. In order to mitigate
excess puncturing, the surface of the rock fill should be well broken down and smoothed prior to placing
the filter fabric, The first layer of Ihe fabric may then be placed and covered with relatively permeable
fill material (with respect to overlying material) I to 2 feet thick, The relative permeable material should
be compacted to fill standards, The second layer of fabric should he placed and conventional fill
placement conlinued.
Subdrainage
Rock fill areas should be tied to a subdrainage system, If conventional fill is placed thaI separates the
rock from the main canyon subdrain then a secondary system should be installed. A system consisting of
an adequalely graded base (3 to 4 percent to the lower side) with a collector system and outlets may
suffice.
Additionally, at approximately every 25 foot vertical interval, a collector system with outlets should be
placed at the interface of the rock fill and the conventional fill blanketing a fill slope
Monitoring
Depending upon the depth of the rock fill and olher factors, monitoring for settlement of thE fill areas
may be needed following completion of grading, Typically, if rock fill depths exceed 40 feet, monitoring
would be reconunend prior to construction of any settlement sensitive improvements, Delays of 3 to 6
months or longer can be expecled prior to Ihe start of construction.
UTILITY TRENCH CONSTRUCTION AND BACKFILL
Utility trench excavation and backfill is the contractors responsibility. The geoteclmical consultant
typically provides periodic observation and testing of these operatiom:, Wbile, efforts are made to make
sufficient observalions and tests to verify that the conlractors' methods and procedures are adequate to
achieve proper compaction, it is typically impractical to observe all backfill procedures. As such, it is
critical that the contractor use consistent backfill procedures,
Compaction methods vary for trench compaction and experience indicates many methods can be
successful. However, procedures that "worked" on previous projects mayor may not prove effective on a
given site, The contractor(s) should outline the procedures proposed, so that we may discuss tllem prior
to construction, We will offer conunents based on our knowledge of site conditions and experience.
I, Utility trench backfill in slopes, structural areas, in stTeets and beneath flat work or hardscape
should be brought to at least optimum moisture and compacted to at least 90 percenl of the
laboratory standard. Soil should be moisture conditioned prior to placing the trench,
2, Flooding and jetting are not typically recommended or acceptable for native soils. Flooding or
jetting may be used with selecl sand having a Sand Equivalent (SE) of 30 or higher. This is
typically limited to the following uses:
~
~iK
\/J(p
GENERAL GRADfNG GUfDELfNES
Proposed 22-Acre Residential Development
Walcott Lane, Temecula, Califomia
APPENDIX D
2550SDJ
Page 9
e
3,
a) shallow (12 + inches) under slab interior trenches and,
b) as bedding in pipe zone.
The water should be allowed to dissipate prior to pouring slabs or completing trench compaction.
Care should be taken not to place soils at high moisture content within the upper tluee feet ofthe
trench backfill in street areas, as overly wel soils may impact subgrade preparation. Moisture
may be reduced 10 2% below optimum moisture in areas to be paved within the upper Ihree feet
below sub grade,
Sand backfill should not be allowed in exterior trenches adjacent to and within an area extending
below a I: I projection from the outside bottom edge of a footing, unless it is similar to the
surrounding soil.
Trench compaction testing is generally at the discrelion of the geotechnical consultant. Testing
frequency will be based on trench depth and the contractors procedures, A probing rod would be
used to assess the consistency of compaction between tested areas and untesled area:,. If zones
are found that are considcred less compact than other areas, this would be broul~ht to Ihe
contractors attention,
4.
5.
JOB SAFETY
.
General
Personnel safety is a primary concern on all job sites. The following summaries our safety
considerations for use by all our employees on multi-employer conslruction sites, On ground personnel
are al highest risk of injury and possible fatality on grading construction projects. The company
recognizes that construction activities will vary on each site and that job site safety is the contractor's
responsibility. However, it is, imperative that all persormel be safety conscious to avoid accidenls and
potential injury,
In an effort 10 mmmuze risks associated with geoteclmical testing and observation, the following
precaulions are to be implemenled for the safety of our field persormel on grading and construction
projects,
I, Safety Meetings: Our field personnel are directed to attend the contractor's regularly ,cheduled
safety meetings.
2, Safety Vests: Safety vests are provided for and are to be worn by our personnel while on the job
site,
3, Safety Flags: Safety flags are provided to our field technicians; one is to be affixed to the vehicle
when on site, the other is to be placed atop the spoil pile on alliest pits,
In the event that the contractor's representative observes any of our personnel not following the above,
we request that it be brought to the attention of our office.
.
Test Pits Location, Orientation and Clearance
The technician is responsible for selecting test pit locations. The primary concern is the tedmician's
safety, However, it is necessary to take sufficient tests at various locations to obtain a representative
sampling of the fill, As such, effOlts will be made to coordinate locations with the grading contractors
authorized representatives (e.g, dump man, operator, supervisor, grade checker, etc,), and to select
locations following or behind the established traffic pattern, preferable outside of current traffic. The
contractors authorized representative should direct excavation of the pit and safety during the test period.
Again, safety is the paramount concern.
"
\A,1
e
.
.
GENERAL GRADING GUIDELINES
Proposed 22-Acre Residential Developmenl
\Valcott Lane, Temecula, California
APPENDIX D
2550SD3
Page 10
Test pits should be excavated so that the spoil pile. is placed away from oncoming tratfic. The
technician's vehicle is to be placed next 10 Ihe test pit, opposite Ihe spoil pile, This necessilates that Ihe
fill be maintained in a drivable condilion, Alternatively, the contractor may opt to park a piece of
equipment in front of lest pils, particularly in small fill areas or those with limited access,
A zone of non-encroacIunent should be established for all test pits (see diagram below) No grading
equipment should enter this zone during the test procedure, The zone ,hould extend outward to the sides
apprOl(imately 50 feet from the center of the test pit and 100 feet in the direclion of traffic flow, This
zone is established bolh for safety and 10 avoid excessive ground vibration, which typically decreases tesl
results,
TEST PIT SAFETY PLAN
I~ ~ SIDE VIEW
I i\ ] Test Pit
~ \ / pile __
- -----
50 It Zone of
T raffie Direction Non~Encroachment
.
7
Vehicle TesfPit Spoil
parked here pile
.. 10 o ft Zone of I
Non-Encroachment 50 ft Zone of
Non-Encroachment
PLAN VIEW ,
Slope Tests
When taking slope tests, the teclmician should park their vehicle directly above or below the tesl localion
on the slope. The contractor's representative should effectively keep all equipment al a safe operation
distance (e,g. 50 feet) away from the slope during testing,
The technician is directed to withdraw from the active portion of the fill a,; soon as possible following
testing. The technician's vehicle should be parked at the perimeter of the fill in a highly visible location.
Trench Safety:
It is the contractor's responsibility to provide safe access into trenches where compaction testing is
nceded, Trenches for all utilities should be excavated in accordance with CAL-OSHA and any other
applicable safety standards. Safe conditions will be required to enable compaction testing of the trench
backfill.
All utility trench excavations in excess of 5 feet deep, which a person enters, are to be shored or laid
back. Trench access should be provided in accordance wilh OSHA standards, Our personnel are cdrected
not to enter any trench by being lowered or "riding down" on the equipment.
,
\l\~
..-....~~-==--=_.
,\
\-.
.t.,L TERNA TE
I ~ \;":c>:c>"'"~. ~<",,, [<<, i:<
I ~ "''-''.. .....<>.. /-:: ,.::::;;:0/&
i ~'~iS<,;>~~O"G"AC"O~'~....2"~Ji'.""">/~zr
:~;~,~~,~~-lt'jlti;I~~TI1~_~":'~~:~'~ -. ~'c"
"''''''''~~' -" ....., w~
3' 6'" PERFOP.A1ED PIPE IN 9 CUBIC FEET FER
LINEAL FOOT CLEAN GR<\VEL WITH FIl.TER
FABRIC TO COVER SURFACE OR COMPLETE
1-3' -I WRAP PER FEILD CONDITIONS
BOTTOM OF CLEANOUT TO BE PT
LEAST 1.5 TIMES THE WIDTH OF
COMPACTION EQUIPMENT
ALTERNATE
--
.. ...-:-:-.
s -. .. :::-:~:::~~~~~....
~ \~.:_~_.:,':;, ...', , '.. ,.., ~
~:c>>:c>,_ ORIGINAL GROUND
~ "'<:..
&&,>-1 .---<-~~ '?>-~7'" .:::~
R>X~~~X _ ~--~_"_ ..... ...._ __. _. ... >:.:_:-:_:-:.:.:_:_>". _. ::......_
CONSTRUCT 8ENCHES~ XI, ,"<:.:,..;.... ',' '.':: '.' '.::":' ....::.......::.:. '~>.- SUITABLE
---~ ',., . " :.', .. ,_-",-'~'~-o7..0"& MATERIAL
WHERE SLOPE EXCEEDS 5:1 -__'__"~~--:-:j--
~;~~- -. ~:a::'
, ""~ - -': 6'" PERFOP.ATEO PIPE IN 9 CUBIC FEET
BOTTOM OF CLEAN OUT TO BE AT PER LINEAL FOOT CLEAN GRWEL
LEAST 1.5 TIMES THE WIOTH OF WR"-PPED IN FILTER FABRIC
COMPACTION EQUIPMENT
FINISH Gf'\P.DE
.'
/~(-.:
..r.0::-:::-:'"
~r'....
.:.... ......-.i
....:":'::~~~::~~:: :-::.:::::.. ..-~
"., ,,_~"":~0</">F-~
;,.'{::'.' '.'~D>;F~
4 FT
TYPICAL
.STANDARD GR.1J)ING GUIDELINES
GeoTek Insite, Inc_
TYPICAL CANYON
CLEANOUT
PL1i~TE G-1
\ b,,'\
~,...
TYPICAL FILL SLOPE OVE~
~JATIIR"U n>=C:Ct::~lnu.,IG C:I not::
1'1 1'-' '\.F""""\.i- W'1-U L..l~'-'II'I VL..\..JI 6,
FINISH GPADE
<:MIN.36"
-COMPACTED
FILL Cft?
" ~ Hm;~;;;;\:g~~~~~~,
.. """"''''"",-."""
.. """"""""''''''''''
... "-""""""""""'"
: ::::SEDROCK ::::::::
... """... ""..."""'''''
.. ,,,.,-..,,,,,.,..,,,,,,,,
'" .. """"""""'-""'"
.. """"'-""""'."",
... "'-'",.".....,..."......."",
,,' .. ",.",,,,,,,,,,...,,,,,
.. """,."".........",....
.. .",..,.",.."..".".,
... ,'.."..,,,,,....,,,...,.....,,
... """""""""""'"
.. ,.,.",,,.,,,,,,,.....,,..
.. ,......."".".",'............."
... """""''''''''''''''''''''''
'n ~ ~~~~~~~~:~~~~::~~::::::
.. .,.".,..,.,..."......,...",
,,' ... .".,...,,,,,.,,,,,,,.....,,...
.. ,.",.,,,,,,.,,,,,,,.,,
.. ,~~~~~~~...~...~~...~~,~~...~~,
"~ ,...~~,...,,~~,...,,',...~""~~
, ~""""'~"~"""'~''''~
, "'" ~, ", " ""'" ~ "'"
, "" ~ '.. ~""""" ~" ""
, "''''''''''~'~'''~''''~~''''''''
, ...,',..~~",'~~,...,...~,...,~...
~ ...,"~,,",~,,""',~~"
~ '...~~,""~"~~"...,'..."~
, ",'~,,','~,...,~~...~""~
". ~ ,...,. ~, "", ~" '" ,~,...,"
... '.'~~,'~,....~"~.~"""
, ,~, " ~""""~""""
'" ..., '.' "" '" """"" ~ ~"
, ''-'~'''''''''' ~~~, ,...",
, ,~~~",",~""~",...,'~
, ,~~",.~~,,',,",""~~
, , , '" , " ~,... ~,~ ~ """'" ,... , ,
, ,~"~,..,,"~~"'~,...~"~
( FILL SLOPE
'. '.>::j:opsoiL........
. . , . . . . .(;r)r,~WIP:!~~~~~iqNE ,
"--TOE-OFFice
SLOPE PER
i PLAN PROJECT
---/---- REMOVALA1
. . " _1 TO 1
.. /7
.....<~0~
-. . . . . . - . . .
.. ........
'" ,... ~" ., '" "~" ,~, ,.
"......"...,~, ~~~" "~ ,...."
,~""~.~""~,~~""'~
"..."" ~.,'" ~. ~" ,. '."
., ...,..."~,,...~ ~...... ,~,~. ~""'~'~'"
,.....,~,., ~,,~, ~'~""~" ,,'..., ""
,'... ,...", '" ~'" """""" ~""
,~... """, "~ ~ ~ """'" ,,'~,~, '"
~~ ~~~ ~~ ~~~ ~ ~ BEDROCK :~~~~~~~: ~~ ~ ,; ~,~
~~~~::~~~~~;~{~~;~{~~~~;~~~~~~~~~~~~~~~'
"..."",..., ~"~"" ~,~'" ,~... ""'''''''''''''''''
'... "'''''''''' ,...... ~ ~,' ...', "'" ,~,..., ...",... ,...... , , ''''
"~,~...,~,~~,...,""~"",...,...,""...,..~,...~, " .
:::::::::::::~:::::::::::::::::;::::::::...... 2' MIIN_ ..:::.~;;:~~:.:.<.::.,.......,,:,....,....,'...,.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,~ ~ ,,- ~ .
""", ~"...~ ~"""""" ,',' "'" ~,~ "", ~"'" ......'",..." ~" ,,,. -
~: ~:~: ~ ~ ~~~: ~ ~ ~ ~~:~ ~~:: ~~~~: :~~~::~ :::~~::: ~~~ .... ., ~...,' ,~, ~.:;; ~ ::~ ~ ~ ~~~ ~:~ ~ ~ ~:::~ ~~ ~~:.~:~ ~
~~~ ~~ ~ ~ ~ ~~ ~ ~~ ~ ~~~~ ~~~ ~~ ~m~ ~~g~ ~~~~~ ~~~ ~ ~ ~~~~ g ~ ~~ ~ ~ ~~ ~ ~ ~N' 'i~liijii~I)M 'j ~ '~'r' 2i:~~~": ~
:::::::: :::::::::: :::::::::::::::::::: ::::::::::: :::::::: :::::: OR 1.5 EQUIF MENT
::: ::::: ::::::::::::::::::::i::::::::::::::::::::: :::: :::: ::;:: WIDTHS FJR ::
-." """~""""~ ""'~~, "," ~,"," ~~~"" ,..." '" "" ,..., ~~, ,',' "." ,','~"",'" ~" "......""...
"""" ~" "'~ "~,~"""~"",,~,,,~......~,, "'~,,' """'" "'," "', """"" ", ,..." ,...".....
'..., ~~"'''''' ,...,...", ,..." """ '''''','''~..., """""","""" "'" ~...""" "". ~, ','.' ~ ~,,,,.,..
e
, STRUCTURAL I
, SETBACK WITHOUT 'I'
, CORRECTIVE WORK,
DAYLIGHT CUT AREA OVEF~
NATURAL DESCENDING SLOI~E
i DAYLlGHTCUTi
I LINE PER PLAN j
~ PROJECT
REMOVi'.L AT
1/01
... ~
.....,. /,!
FINISH GR~DE :=:=
MIN. 36"
COI~~~~~~~:;;~~I "'<"V.:=:::.::::2..:::::=::::>>,._
..,......'.... I ~.'"....,.,...,..'..TOPSQll.,.........,...,...,-~
"~, """" ''''''''~''''''''~ ~" " . ._.:.........-..... . .'. . .'. . ..... ...... ........... .'.-. . .
" , , ~... , '" ~ ~"""""""" '" " , .... -'....... .."."."...........................-........"......-" .
'.'" ::::::::::::,,:,::::::::::: 2' MIIN_ :::::::"~~.'...::=<:::::.:<:=:=::::::::.CQl:i:.uwjii::->.'.,
.... mEm~~~~~~:EmEE ~: \ .."......7,:~:;jWjjj;mm~~~EHr:,~k>::=::~
............... ..,....., ,.. ..... ...., ':\j" ......... ......... ................ ..,..., .~::->(;~~E:i?:~QNE::=,'
:: ~: ~ ~ i~: ~ ~; ~ ~ ~ ~~ ~ ~~ ~~ g ~ ~ ~ ~ ~ ~ ~ ~:; ~ ~ ~~ ~ ~i~ ~;:;; ~:M]lt~iMUM 'i 5jT'CLEAROR i;~ ~ g; ~ ~;;;;; ~;~ ~;~ ~~ i:: :~<>
...... ...........,.. ........... ..,.,....,.. ....... 1,5 EQUIPMeNT WIDTHS '........,.. ............,.......,..,...~
:::::: :::::' :::::::: :::: :::::::: ::: :::: ::::: :::: FOR COMPACTION::::::::::::::: :::::::::i::::::: ::::::::::: :::::
::: ::: ::::::::: :::: ::::: :::::::::::: :::::::: :::::,'~:~:,~:::::: : :::: i::::: ':::: :::::::8E:'OROCK .:: ::::: ':::::':
~~"" ~"", ~"'.,', ~","'~ ~"~'.'" ",... ,..., ". ~~, "", ~""""~~" , "~~,~," ~,~, ~",' ,~" '.. ... -. ..." '" ~ ~ '-,~ ,......
~,~"" '" ~,..... ,~"~~,,, ~" "...,..""" """'",.", '.""" '" ,'" , ,,~'".~""'" ,...", "~-'''''' '~""., ,., -."~",,, ,,-,,,
''-'' ,," ".''''" "~,~, ,,"',,, """''''''' ~'" ~~, ~...," ",~,~ """',', , """""'" ''-'" ",..., """'" "." ,,~, "'~.."
.""" ".'.-., ". "-""""""'" '." "" ""'~" ...,""~,'~,,',', , ~"..., ',"',".""'" '" '" "~"." ,'." ""'" "".,
~"'~.. ,,,..,,,~, ""'.,.,,~ ,..." ~...,,,,,.,,~.,, ,. ,-, "", .""" ,', -, ",.~, ".' ~~",'.", """"""'" ,,' ~,,~ ~ ,~, "'.\'
e STANDA.BD GR.ADING GUIDELINES
TREATMENT ABOVE
N."~TURAL SLOPES
Geo Tek 1nsite, 1nc,
PLATE G - 2
\'50
"-"''''f: ^ I ....1" SLOP~ ~\{~~
I !.I~A_ r LL, . t:: U~t:K.
PROPOSED CUT SLOPE
e
I
I
;- 10,= OF FILL
SLOPE PER
PLf;N
TOE OF F1LL SLOPE
AFTER REMOVAL OF
UNSUITABLE MATERIALS,
-~
e
TYPICAL FILL SLOPE
..................":,.....u.,..,.....................,...'..~
"~;;;:,,1:;~;,~,;;[,;":;~~~!":~~'"
:::;:~::;:::;::::::::::;;:::::::::::':::::::::::::;:::;;:::::::..:::::::::::::::;:;:;;;:.....m ._......h_..................._..........
:~!;;;j~m~!~;!j![ili;i~~jj!~fm;~j!j~j~;~!m!j~~~j~:~!~~j~jij!~ij~ji~:;~;;~~~;iiijiE;;::;:;;:::::~:!~~miji~if:::::jmHH1j~jWi~ji~1~!!j~i::
?{J~~jj~I~jm lj~mj~1111j!jlr~111~j~1~11!~illlll~ii11j1~~jjmjjmjm~1mmJmI~jmljijii!~j)!jjii1jii1Hiiii!jij~iHHHlimijiIjj1imj~jij~~~i~jjJi~;:
~ "'i[;:t.;:'~;.::,:.'T: /' :<:}: :~I~;t!~:::Q8i~~~;:~Ei:fjlP~~Q~i~~~; .[ :.' ,. . . ... ;.., . '. ': . ..TI2]
, .." '..' .. . ..... ...,.':...... ..' IQP.R-OIIIDE'di.'!ctE!lJ\k SliI'P.0in."..,.,.:..,:" '1::'. ""C'., ....,".."...'. ,... ".., , ::::U:,
. "," " '.'."~'i'iliilijliITTh1~~~mmi~~Th~~m;I:. ;;.';,:!t;'...,:;.;':~j..~~
'1m
';';';i~a
:00
~.~W";:"
~;LClPE
HEIGHT
1v1INIMUI"j
KEY WIDTH
7
10
15
15
25 15
>25 SEE TEXT
C;ONTPAC70R TO VERIFY WITH ~
ENGINEER PRIOR TO CONSTRU::llON
'10
MINIMUM
1-"1:"..... DEPTH
1
1.5
'i5
2
20
2.5
3
..w" .
. STANDiillD GRillING GUIDELINES
COMIVION FILL
SLO PE hLYS
I
PLATE G-3~
\':5\
GeoTek Insite, Inc.
I
I
CROSS SECTiONAL VIEvV
~ FINISH GPADE
~',..J.', ". ..,...,.,........'.',." .r., ",..,...',..'.'.'."-_
..., >.>SEE NO~El<> ......>..................'.;tf;~~):~@>,,'- ,/FILL SLOPE
....:.,.....I",::.......::.:.>:...........::.~ '.':'.",....:,>.,......... ,...:,..:::.:.:~(..::::..>.<. :.:.>Z~>'-
,cw_ - - - - - " - - , - - - .. '3: -jl"ll; - , , -. . . . - " -. _. ., ~ - ;Zt( >:CJI~;' ...>..,~
I .......... . ..:. :::::-:::~>~>--
. - - - -.. - - - . _ _ . . . . J: _ . _ . . , _ . . . , '," ' . . _ . . , ,_ _ . . _ _ _ _ . . . _ ,. ..::>: , ,. , ,. "':.>,...
~;~;~uuu-;+uu uu~ ,<(C~ ................
- -- , - -- . -- . - '-- , . .. -- , , -- - , , - - , , . - . __ __ _ . _ f
<!l'll-I'.," . -- --. .~,.:;l'-
\!!l'd,ill", ' -:~ \ 1>:-.
'--- MIINiMUM 15 FT CLEAR OR 1.5
EQUIPMENT WIDTHS FOR COMP ACTION
~l'l":-\,*i\-
~
.
PLAN VEIW
e
)\
FILL SLOPE
)
\
\
J.
I
MIINIMUM 15 FT CLE."R OR 1.5
EQUIPMENT WIDTHS FOR COMPACTION PL"CE ROCKS END TO END.
I DO NDT PILE OR STI\CK.
i!,'l&"'''oM'''~.'.."''.l!!H.'~~ .r ~("iim~!;\,".~,;~V'-,">J;,'_'_,',. ~,~ 'l.,',~..,.~,....."',. _,'-' WlIIW",.'4i""'I"", ~!!!iID~,',"~~ !~,',:,',,"i
~~ ~-.~,-. ~ ~i~~ ~~~~~~ ~~ --~- ~-_,,,~HI-<=F~. ~
MIINIMUM 15 h CLEAR OR 1.5 SOIL TO BE PL",CED AROUND AND OVER ROCKS
EQUIPMENT WIDTHS FOR COMPACTION HID FLOODED INTO VOIDS. COMPACT AROUND
I AND DVER'E.~CH WINDROW
_.~1: .....~...8_.. .~._.
/
,DTES:
I) MININUM SOIL FILL OVER WINDROWS SHOULD BE 7 FEET AND SUFFICIENT FOR FUTURE EXCAVATIONS (e.g. SWIMMIING POOLS) TO
AVOID ROCKS.
') MAXIMUM ROCK SIZE IN WINDROWS IS 4 FEET MINIMUM DIAMETER.
'I SOIL AROUND WINDROWS TO BE SANDY MATERIAL SUBJECT TD ACCEPTANCE BY SOIL ENGINEER
,) ALL SPACING AND CLEARl;NCES MUST BE SUFFICIENT TO ALLOW FOR PROPER COMPACTION.
.
STA...l\iD_4RD GRillING GlJIDELINES
ROCK BURIAL
DETAILS
GeoTek Insite. Ine,
,
PLATE G - 4
\~z..
GHADE TO DPAIN
...
:'1' ?>,
.' ""j . :.:.:...,)-"
.. .' <::<:::::>:>..
......
.'. .,::::::::::::"-.,
.,.....,. ..".,A
..-...... .. .... ...........
I
INIMUM 36"
OMPACTED
iLL BLANKET
/"' TERf(ACE DRAIN AS
I REQUIRED
(
:.:::>~..:=-
..~~j~~t~fG?J:
::::::.::::::::)",
...-.........-:-:.:. ::::::::::::<>~~}>"
~:::::
10,'
. . . . . . . . . .
. . . . . . - '. ...
..........
/
..............
..............
. . . . . . . . . . . . . .
..............
-L
I
BACK DRAINS I
SEE DETAIL
" -..'
GF"".DE TO
DRAIN
-1
I
I
.._--.--,-----..
................
................
r:~;;<< '
I I
)
iKEY TO BE MINIMUM 15FT PLUS WIDTH ~/
10FTERRACE DRAINS OR 1.5 EQUIPMENT i
[WIDTH USED FOR COMPACTION
I
."<'::rT:
I . ,
r"-- '\
__... 1_
iKEYTO BE MINIMUM,
: 2 FT DEEP OR PER
L_~EP?Ri _._.
~
i .
!KEY TO FALL TO HEEU
, MINIMUM 1 FT j
e
2% MINIMUM FALL
4" DIAMETER PERFOR~TED
DP.AlN PIPE PVC SCH. 4D OR
EQUIVALENT IN 6 CUBIC FT
DRAIN ROCK WRAPPED IN
FILTER FABRIC
4" DIAMETER SOLID OUTLET
LATEP.ALS TO SLOPE FACE OR
STORM DRAIN SYSTEM AT
MAXIMUM 100 FT INTERVALS
NOTE: ADDITIONP.L BACKDRAINS MAY BE RECOMMENDED
....
]
BUTTRESS AND
STABILIZATION SLOPES
e STA.NDARD GRADING GUIDELIl\'ES
GeoTek Insite, Inc.
PI.A~E'
_ __~l
G- 5
~
\"5~
e
.
.
Water Quality Management Plan (wQMP)
Tentative Tract Map 32780
Appendix F
Treatment Control BMP Sizing Calculations and Design Details
August, 2005
\ -SA..
~
--
e
e
Water Quality Management Plan (WQMP)
Tentative Tract Map 32780
Appendix G
AGREEMENTS - CC&Rs, COVENANT AND AGREEMENTS AND/OR
OTHER MECHANISMS FOR ENSURING ONGOING
OPERATION, MAINTENANCE, FUNDING AND TRANSFER
OF REQUIREMENTS FOR THIS PROJECT-SPECIFIC
WQMP
Augus~ 2005
,...
,-5'?
e
.
.
Water Quality Management Plan (WQMP)
Tentative Tract Map 32780
Appendix H
PHASE 1 ENVIRONMENTAL SITE ASSESSMENT - SUMMARY OF SITE REMEDIATION
CONDUCTED AND USE RESTRICTION
August, 2005
\qo