Loading...
HomeMy WebLinkAboutTract Map 20848 Preliminary Hydrology . PRELIMINARY HYDROLOGY & HYDRAULIC ANAL YSIS FOR NICOLAS ROAD /- IN THE CITY OF TEMECULA, CA . -, PREPARED UNDER THE SUPERVISION OF: ~~"-~ f ~\l.OFESS/~"\\\\ /<fy<;) '" ,,-. B",,} ~ \\\ :; ,</,-4<<> .v,y. ~ I f#/'! ,%\1/ ~ ~ OJ NO. 25167 \:j ~ ~I Exp.12131/05 J IF *1 \\\~'" C/VI \.- o,?-~y \\\ ey: CAL\~ J "-'-'-"-,-,-~ 7~ /J?~Jt7-zJJ Steven E. Barnhart, R.c.E. 25167, Exp. 12/31/05 Date: e. ~ HUNSAKER & ASSOCIATES IRVINE, INC. PLANNING . ENGINEERING .. SURVEYING Three Hughes . Irvine, CA 92618 PH: (714) 583-1010 . fX: (714) 583-0759 IRVINE . RIVERSIDE . SAN DIEGO . LAS VEGAS \ TABLE OF CONT:ENTS . SECTION TITLE 1 INTRODUCTION A DISCUSSION B. LOCATION MAP 2 EXISTING CONDITION HYDROLOGY 3 PROPOSED CONDITION HYDROLOGY 4 HEC-RAS HYDRAULIC STUDY 5 REFERENCES . . . L:\Garrett Group\hydrologilNicolasrpt.doc l' . A. DISCUSSION The project site is Nicolas Road located in the City ofTemecula, County of Riverside (see attached vicinity map for details). The site is bordered by Nicolas Road to the north. The site is situated south of Santa Gertrudis Creek approximately one mile east of the confluence with Tucalota Creek. The topography of the site is typical of the Temecula/Murrieta Valley in that it exhibits gently rolling topography. Within the boundaries of the site there is an mmamed stream traversing from east to west. HYDROLOGY The purpose of this hydrology study is to determine the flow rates produced from the preliminary proposed site. It also serves as the basis for analyzing and designing proposed and required storm drain systems. Detention basins and water quality basins are provided to mitigate peak flow increases due to the development and have storm water treated for environmental concern. . The proposed on-site storm drain facilities are preliminary. The length and size of pipe~:, number of catch basins and inlets as well as the locations of catch basins ;md inlet will be deternlined in the final design based on the proposed rough grading and street improvement plans. Detailed storm drain design and basin routing study will be submitted subsequently. The project site is divided into two drainage areas "A" and "B", refer to the hydrology maps for details. In the existing condition, Area "A" contains an approximate area of 13.7 acres and produces a I OO-year runoff of 48.0cfs. The storm water was then conveyed through existing inlets and 24" pipe to the existing drainage channel along Via Lobo Road. In the proposed condition, Area "A" contains about the same acreage and produces a lOO-year runoff of 42cfs. Because of the improvements, Time of Concentration (Tc) has changed from 7.8 minute (existing) to 10.3 minute (proposed). Water quality basin was provided to treat the first flush storm water. . II ~ . . . Area "B" is a part of the tributary area to the unnamed stream along the south of the project site. In the existing condition, Area "B" contains an approximate area of 19.9 acres and produces a 1 OO-year runoff of 51.6cfs. In the proposed condition, Area "B" contains an approximate area of 20.0 acres and produces a combined 100-year runoff of62cfs. Water quality basin and detention basin was provided. This hydrology study was prepared in accordance with the Riverside County Flood Control and Water Conservation District (RCFC&WCD) criteria and Hydrology Manual. HYDRAULIC HEC-RAS is used to predict the water surface elevations and flow velocities along the unnamed stream. 100-year storm was studied and the 1 OO-year peak discharge is 783cfs, which was from previous study. The Manning's value of 0.04 is used for this study. Refer to Section 4 for detailed study and Section 5 for reference information. . C\ . B. LOCATION MAP o o o N ~ .... .. 489000 . . 6 <.c t11 \.0 ,< In leV: ~~'i5>!. ~i~ ,(:.tr' , ,/~, ~\ " " , , !$ /,:;;; 1 1 \ '- -', ~~ , I~- __"/__ ., / ~l", f.... 0,_ ""-"'- ,g, ..... '. ' , l~ I I....~~ , I~ '" I If; ). @-X I " ~ rtt''''t-){. ....' . --jJ'~ /~dp f.'" -~- _/., ^,-, /....~ -00:1- ~~<; ~'i / /...-:~l ~I ' / , ' , ' , " 1 ' , / 1. \'5. ' /. / ~~ -A--j\~ ~.-"" 'Ai '" -}3~ ~... ~ -)~ ' :E lol >;:~ ,- ':~ , , 1 I , , , , , , '0 \\1 -:t 00 i~ 1- m ~ ,~ ,~ ~~ rz i-l (j ..,., ::r: 00 ;;0 ::z ;--/ .... ~~~ , < ~1 .~;s ~~~ .... <Ja /~ , - , ~\.flJ I I , I , I ,\~l_ '" ~1.11!:!~ti 1Q:;;i!1",t: \ , . "fi-)i\':l ,< \S- r I II! ~!llIAR \ I \ , \ '" -~~ OW""" , \ ~ iJ 9002t ~t- ,<>"i \ ~ ~ ~, J ~~, ~\ --50 ~. "~ ~'l~ 'F, .:f'!ji,'l') ._ at \~ \;S~ 'Z ~ <;~~ ."\<:' / ., .. f?ic..q',.~:- 7 ~ ~ /----...." , nfl8 :. ~-~ .;~~ 11 g' ~ ^ -"{"--2~9'i5:> ~.~ ~' . , - 'I ~ I'" CA_LLf \~ ilB , '" o . . . EXISTING CONDITION HYDROLO(;Y II 1- . Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (el 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 10/09/03 Fi.le: 8XNICOLASA. out Hydrology Study for Nicolas Road Existing Condition Area "An lOa-year Storm October 2003 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Hunsaker & Associates Irvine, Inc. - SIN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition 2 Standard intensity-duration curves data (Plate 0-4.1) For the [ Murrieta,Trnc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity 3.480(In/Hr} 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 240.000(Ft.) Top (of initial areal elevation = 1240.000{Ft.) Bottom (of initial areal elevation = 1174.000(Ft.) Difference in elevation = 66.000(Ft.) Slope = 0.27500 s{percent)= 27.50 TC = k(0.530)*[{length^3l/(elevation change))^0.2 Initial area time of concentration = 6.145 min. Rainfall intensity = 4.553(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.869 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 1.000 A 0.000 B 0.000 CO.OOO D 1. 000 89.00 1.000; Impervious fraction 2.372(CFSl O.600(Ac.) 0.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** . TOp of natural channel elevation = 1174.000(Ft.) End of natural channel elevation = 1141.000(Ft.) Length of natural channel 295.000(Ft.) Estimated mean flow rate at midpoint of channel = 4 _ 943 (CFS) Natural valley channel type used L.A. County flood control district formula for channel ve~ocity: ~ . velocity{ft/s} = (7 + 8 (q(English Units)^.352) (slope^O.S) Velocity using mean channel flow = 6.92(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1119 Corrected/adjusted channel slope = 0.1083 Travel time = 0.71 min. TC = 6.85 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.867 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 89.00 Pervious area fraction = 1.000; Impervious fraction 0.000 Rainfall intensity 4.287{In/Hr) for a 100.0 year storm Subarea runoff 4.830(CFS) for 1.300(Ac.) Total runoff = 7.202(CFS) Total area = 1.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** TOp of natural channel elevation = 1141.000(Ft.) End of natural channel elevation = lI27.000(Ft.l Length of natural channel 365.000(Ft.) Estimated mean flow rate at midpoint of channel = 29.~,611ICFS) . Natural valley channel type used L.A. County flood control district Velocity(ft/s) = (7 + 8{q(English Velocity using mean channel flow = formula for channel velocity: Units)^.352l (slope^D.S) 6.53IFt/sl Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0384 Corrected/adjusted channel slope = 0.0384 Travel time = 0.93 min. TC = 7.79 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.864 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil{AMC 2) 89.00 Pervious area fraction = 1.000; Impervious fraction Rainfall intensity 3.997(In/Hr) for a 100.0 Subarea runoff = 40.764(CFS) for 11.800(Ac.) Total runoff = 47.967 (crs) Total area End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. 0.000 year storm 13.700(AC.l 13.70 (Ac.) Area averaged pervious area fraction (Ap) Area averaged RI index number = 89.0 1. 000 . 0v . Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 19B9 - 2001 version 6.4 Rational Hydrology Study Date: 10/09/03 File:EXNICOLASB.out Hydrology Study for Nicolas Road Existing Condition Area "B" IOO-year Storm October 2003 ********* Hydrology Study Control Information ********,"* English (in-lb) Units used in input data file Hunsaker & Associates Irvine, Inc. - SiN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity 3.480(In/Hr) 100 year storm 60 minute intensity = 1.30Q(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 . +++++++++++++++++++++++++++++++++++++++++++++++++++++++++-t++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 410.000(Ft.) Tap (of initial area) elevation = l209.000(Ft.) Bottom (of initial area) elevation = 1170.000(Ft.) Difference in elevation = 39.000(Ft.) Slope = 0.09512 s(percent)= 9.51 TC = k(0.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.413 min. Rainfall intensity = 3.601(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.861 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 1.000 A 0.000 B 0.000 C 0.000 D 1.000 89.00 1.000; Impervious fraction 6.507(CFS) 2.100(Ac.) 0.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** . TOp of natural channel elevation = 1170.000(Ft.J End of natural channel elevation = 1155.000(Ft.) Length of natural channel 350.000(Ft.) Estimated mean flow rate at midpoint of channel = 1l.155(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: ,\0 . Velocity(ft/s) = (7 + 8 (q(English Units}^.352) (slope^O.5) Velocity using mean channel flow = 5.32(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0429 Corrected/adjusted channel slope = 0.0429 Travel time = 1.10 min. TC = 10.51 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.858 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Rainfall intensity Subarea runoff Total runoff = A 0.000 B 0.000 CO.OOO D 1. 000 89.00 1.000; Impervious fraction 3.389(In/Hr) for a 100.0 8.726(CFS) for 3.00Q(Ac.) 15.233 (eFS) Total area = 0.000 year storm S.lOO(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t+++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** TOp of natural channel elevation = l155.000(Ft.) End of natural channel elevation = 1150.000(Ft.) Length of natural channel 515.000(Ft.) Estimated mean flow rate at midpoint of channel 24.343 (eFS) . Natural valley channel type used L.A. County flood control district Velocity(ft/s) = (7 + 8(q(English Velocity using mean channel flow = formula for channel velocity: Units}^.352) (slope^0.5) 3.11 (Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate 0-6.2) Normal channel slope = 0.0097 Corrected/adjusted channel slope = 0.0097 Travel time = 2.76 min. TC = 13.27 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.853 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 89.00 Pervious area fraction = 1.000; Impervious fraction 0.000 Rainfall intensity 2.981(In/Hr} for a 100.0 year storm Subarea runoff 15.51l(CFSl for 6.100(AC.) Total runoff = 30.744(CFS) Total area = 1l.200(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t-++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Tap of natural channel elevation = 1150.000(Ft.) End of natural channel elevation = 1140.000(Ft.) Length of natural channel 470.000(Ft.) Estimated mean flow rate at midpoint of channel = 42.684 (eFS) Natural valley channel type used L.A. County flood control district Velocity(ft/s) = (7 + 8(q(English Velocity using mean channel flow = formula for channel ve~'"oci ty: Units)^.352) (slope^0.5) 5.40(Ft/s) . Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0213 "\' e, Corrected/adjusted channel slope = Travel time = 1.45 min. TC = 0.0213 14.72 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.850 Decimal fraction soil group A 0.000 Decimal fraction soil group 8 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group 0 1.000 RI index for soil{AMC 2) 89.00 Pervious area fraction = 1.000; Impervious fraction Rainfall intensity 2.816(In/Hr) for a 100.0 Subarea runoff = 20.830(CFSl for 8.700(Ac.l Total runoff = 51.573(CFSl Total area End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction (Ap) Area averaged RI index number = 89.0 1. 000 . . 0.000 year storm 19.900 (Ac.) 19.90 lAC.) \1-' . . . PROPOSED CONDITION HYDROLOGY . \"7 . Riverside County Rational Hydrology program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2001 version 6.4 Rational Hydrology Study Date: 10/09/03 File:prnicolasa.out Hydrology Study for Nicolas Road Proposed Condition Area "A" 100-year Storm October 2003 ********* Hydrology Study Control Information ****~*/r*** English (in-lb) Units used in input data file Hunsaker & Associates Irvine, Inc. - SIN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition 2 Standard intensity-duration curves data (Plate D-4.l) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 e ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 670.000(Ft.) Top (of initial area) elevation = 1230.000(Ft.) Bottom (of initial area) elevation = l170.000(Ft.) Difference in elevation = 60.000(Ft.) Slope = 0.08955 s(percent)= 8.96 TC = k{0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.533 min. Rainfall intensity 3.800(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.853 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 Initial subarea runoff = 11.021(CFS) Total initial stream area 3.400 (AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11. 000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION j *,,* . Top of street segment elevation = 1170.000(Ft.) End of street segment elevation = 1135.000(Ft.) Length of street segment 450.000(Ft.) Height of curb above gutter flowline 6.0{In.) Width of half street (curb to crown) 15.000(Ft.) Distance from crown to crossfall grade break 10.0(10 {Ft.) Slope from gutter to grade break (v/hz) = 0.020 'A . Slope from grade break to crown (v/hz) 0.020 Street flow is on {2] side(s) of the street Distance from curb to property line 5.000(Ft.) Slope from curb to property line (v/hz) 0.020 Gutter width ~ 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street ~ 17.503(CFS) Depth of flow = 0.345(Ft.), Average velocity = 6.615{Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.937(Ft.) Flow velocity = 6.62(Ft/s) Travel time ~ 1.13 min. TC = 9.67 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil (AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 Rainfall intensity 3.548(In/Hr) for a 100.0 year storm Subarea runoff 12.063(CFS) for 4.000{Ac.) Total runoff ~ 23.084 (CFS) Total area = 7.400 (Ac.) Street flow at end of street = 23.084(CFS) Half street flow at end of street 11.542(CFS) Depth of flow = 0.372(Ft.), Average velocity = 7.058(Ft/s) Flow width (from curb towards crown)= 12.282{Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.000 **** PIPEFLOW TRAVEL TIME (program estimated size) **j'* . Upstream point/station elevation = 1135.000{Ft.) Downstream point/station elevation l127.000(Ft.) Pipe length 380.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 23.084(CFS) Nearest computed pipe diameter 21.00{In.) Calculated individual pipe flow 23.084{CFS) Normal flow depth in pipe = 17.30(ln.) Flow top width inside pipe = 16.01(ln.) Critical Depth = 19.87(In.) Pipe flow velocity = 10.89(Ft/s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 10.25 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 13.000 **** SUBAREA FLOW ADDITION **** UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.859 Decimal fraction soil group A 0.000 Decimal fraction soil group 8 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 89.00 Pervious area fraction = 1.000; Impervious fraction Time of concentration = 10.25 min. Rainfall intensity 3.436(In/Hr) for a 100.0 Subarea runoff = 18.592(CFS} for 6.300(Ac.) Total runoff = 41.676(CFS) Total area End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. 0.000 year storm D. 700 (Ac.) 13.70 (Ac.) . Area averaged pervious area fraction (Ap) Area averaged RI index number = 81.4 0.730 \'"5'" . Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2u01 Version 6.4 Rational Hydrology Study Date: 10/09/03 File:prnicolasb.out Hydrology Study for Nicolas Road Proposed Condition Area "B" 100-year Storm October 2003 ********* Hydrology Study Control Information ****,,*.~*** English (in-lb) Units used in input data file Hunsaker & Associates Irvine, Inc. - SIN 647 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition 2 Standard intensity-duration curves data (Plate 0-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/HL) 100 year storm 10 minute intensity 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 . +++++++++++++++++++++++++++++++++++++++++++++++++++++++~++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 630.000(Ft.) Top (of initial area) elevation = l230.000(Ft.) Bottom (of initial area) elevation = lI82.000(Ft.) Difference in elevation = 48.000(Ft.) Slope = 0.07619 s{percent)= 7.62 TC = k(0.390)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 8.598 min. Rainfall intensity 3.784(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4. Acre Lot) Runoff Coefficient = 0.853 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal 'fraction soil group D 1.000 RI index for soil {AMC 2} 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 Initial subarea runoff = 13.553(CFS) Total initial stream area 4.200(Ac.} Pervious area fraction = 0.500 +++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** . Upstream point/station elevation = 1182.000(Ft.) Downstream point/station elevation 1167.000(Ft.) Pipe length 350.00{Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow l3.553(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 13.553(CFS) Normal flow depth in pipe = 10.29(In.) ~ . Flow top width inside pipe l7.81(In.) Critical Depth ~ 16.42(In.) Pipe flow velocity ~ 12.97(Ft/s) Travel time through pipe ~ 0.45 min. Time of concentration (TC) ~ 9.05 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++ Process from Point/Station 22.000 to Point/Statioil 22.000 **** SUBAREA FLOW ADDITION **** SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient ~ 0.852 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction ~ 0.500; Impervious fraction 0.500 Time of concentration 9.05 min. Rainfall intensity 3.680(In/Hr) for a 100.0 year storm Subarea runoff 6.580{CFS) for 2.100(Ac.) Total runoff"'" 20.133 (CFS) Total area ~ 6.300 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **~.* . Upstream point/station elevation = l167.000(Ft.) Downstream point/station elevation l166.000(Ft.) Pipe length 20.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 20.l33(CFS) Nearest computed pipe diameter 18.00(In.) Calculated individual pipe flow 20.133{CFS) Normal flow depth in pipe ~ 12.83(In.) Flow top width inside pipe = 16.29{In.) Critical depth could not be calculated. Pipe flow velocity = 14.94(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TCl = 9.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Stati 011 23.000 **** SUBAREA FLOW ADDITION **** SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.851 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 Time of concentration = 9.07 min. Rainfall intensity 3.675(In/Hr) for a 100.0 year storm Subarea runoff 8.761(CFS) for 2.800(Ac.) Total runoff ~ 28.894 (CFS) Total area ~ 9.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** . Upstream point/station elevation = 1166.000(Ft.l Downstream point/station elevation 1164.000(Ft.) Pipe length 35.00(Ft.) Manning's N = 0.013 No. of pipes ~ 1 Required pipe flow 28.894(CFS) Nearest computed pipe diameter 21.00(In.) Calculated individual pipe flow 28.894{CFSl Normal flow depth in pipe = 13.73(In.) Flow top width inside pipe ~ 19.98(In.) Critical depth could not be calculated. Pipe flow velocity = 17.34(Ft/s) Travel time through pipe = 0.03 min. \1.. . Time of concentration (TC) 9.10 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++ Process from Point/Station 24.000 to Point/Station 24.000 **** SUBAREA FLOW ADDITION **** SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.851 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil (AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 Time of concentration = 9.10 min. Rainfall intensity 3.667(1n/Hr) for a 100.0 year storm Subarea runoff 13.73B{CFS) for 4.400(AC.) Total runoff = 42.632 (CFS) Total area = 1:3.500 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 25.000 **** P1PEFLOW TRAVEL TIME (Program estimated size) **** . Upstream point/station elevation = 1164.000{Ft.) Downstream point/station elevation ll51.000(Ft.) Pipe length 530.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 42.632(CFSI Nearest computed pipe diameter 27.00(10.) Calculated individual pipe flow 42.632(CFS) Normal flow depth in pipe = 19.64(1n.) Flow top width inside pipe = 24.05(In.) Critical Depth = 25.46(In.) Pipe flow velocity = 13.76(Ft/S) Travel time through pipe = 0.64 min. Time of concentration (TC) = 9.75 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++ Process from Point/Station 25.000 to Point/Station 25.000 **** SUBAREA FLOW ADDITION **** SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil (AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction 0.500 Time of concentration = 9.75 min. Rainfall intensity 3.532(1n/Hr) for a 100.0 year storm Subarea runoff 11.406(CFSl for 3.BOO(Ac.) Total runoff = 54.038 (CFS) Total area = 1"1.300 (Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++-~+-t++++++++++++++ Process from Point/Station 25.000 to Point/StaL.on 26.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **,,* . Upstream point/station elevation = 1151.000{Ft.) Downstream point/station elevation 1145.000(Ft.) Pipe length 70.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 54.038(CFSl Nearest computed pipe diameter 24.00(ln.) Calculated individual pipe flow 54.038(CFS) Normal flow depth in pipe = 16.48{In.) Flow top width inside pipe = 22.27{In.) Critical depth could not be calculated. Pipe flow velocity = 23.50(Ft/s) Travel time through pipe 0.05 min. Time of concentration (Tel = 9.80 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++....++++++++++++++++ Vo e Process from Point/Station 26.000 to Point/Station **** SUBAREA FLOW ADDITION **** 26.000 COMMERCIAL subarea type Runoff Coefficient = 0.890 Decimal fraction soil group A 0.000 Decimal fraction soil group 8 0.000 Decimal fraction soil group C 0.000 Decimal fraction soil group D 1.000 RI index for soil (AMe 2) 75.00 Pervious area fraction = 0.100; Impervious fraction 0.900 Time of concentration 9.80 min. Rainfall intensity 3.523(In/Hr) for a 100.0 year storm Subarea runoff 2.194(CFS) for O.70Q{Ac.) Total runoff = 56.232(CFSl Total area = 18.00Q(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** . Initial area flow distance = 580.000(Ft.) Top (of initial area) elevation = 1209.00Q(Ft.) Bottom (of initial area) elevation = 1160.000(Ft.) Difference in elevation = 49.000(Ft.) Slope = 0.08448 s(percent)= 8.45 TC = k(O.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.074 min. Rainfall intensity = 3.293{In/Hr) for a 100.0 UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.857 Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group Decimal fraction soil group RI index for soil(AMC 2) Pervious area fraction = Initial subarea runoff = Total initial stream area Pervious area fraction = 1.000 End of computations, total study area = The following figures may be used for a unit hydrograph study of the same area. year storm A 0.000 B 0.000 C 0.000 D 1.000 89.00 1.000; Impervious fraction 5.645(CFS) 2.000 (Ac.) 0.000 20.00 lAC.) Area averaged pervious area fraction(Ap) Area averaged RI index number = 76.4 0.536 . 'vo.., . HEC-RAS HYDRAULIC STUDY . . . 1P . . . ... ... ... ... ... ... ... ... ... ... ... ex> ex> ex> ex> ex> ex> ex> ex> ex> ex> ex> w w w w w w w w w w w '" '" '" '" '" '" '" '" '" '" '" 0 0 0 0 0 0 0 0 0 0 0 ~ '" '" '" ~ "" "" "" :;: "" w w to) ... W <0 ... "" w 0 ex> "" '" N '" '" '" '" '" '" N '" '" 0 0 0 0 0 0 0 0 0 0 0 ~ ~ ~ ~ ~ ~ '" '" '" '" ~ "" "" "" "" "" W "" <0 '" W <0 '" "" to) 0 ex> :,.. '" '"' N :,.. N '" '" N '" W w to) ~ 0 ... '" W to) W '" <0 ~ ~I~ '" '" '" '" "" "" ~I~ w "" <0 ~ ~ <0 '" ex> 0 '" N W to) 0 W <0 to) 0 <0 '" <0 W "" <0 I ~ ~ ~ ~ - - ~ ~ ~ ~ ~ ~ ~ - - - - ~ ~ ~ ~ ~ '" '" '" '" ~ "" "" "" "" "" W "" 0 '" W <0 ... '" W '" '"' N 0 '" '" <0 N W 0 N '"' 0 0 '" '" '" 0 W W <0 W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 to) ~ 0 ~ ~ to) 0- 0 to) 0 ex> w 0 "'... '" '" W "" "" ex> to) '" ex> ~ <0 to) ex> '" ~ ex> '" to) ex> w '" ... ... W to) ... 0 '" ~ ... to) '" W "" '" "" '" '" '" !'> '" ... '" <0 N '"' 0. 0 :,.. '"' N N ~ w to) to) to) ... - '" "" 0> ... ~ 0> to) '" to) '" to) to) W 0 "" ex> !'> ... '" !" '" ex> '" <0 ex> "" '" <0 "1 0 N 0 '" N :,.. '" '" <0 '" "" '" "" 0> '" U; :: :: <0 0> <0 ... ... ... '" W <0 ~ ex> ~ '" ". w ... 0 <0 '"' 0. W '" '"' '"' 0. '" '" 0 0 '" 0 ... 0> ... '" '" "" '" 0 0 0 0 0 0 '" 0 '"' 0 '" 0 0, '"' 0 0. 0 <0 ~ 0 0 '" ~ to) ... ~ <0 0 \"1, . '" '" . c;;t 3 m o c OID iD"U ~s: <0 ..... OC> W ~ o o ...!: ~ ~ o - ~ o N o o w ~ '" C> '" '" '" C> Elevation (ft) ~ .. ~ ~ .. C> '" ~ ~ '" C> C>~ ,zt ~ ,_n, '" C>~~ <> _13 ~-t---c <> . 14 '"'U. ~ \ 50: . . u~__ .~m~... . - , ~ i i 00: u.. - . 50: 'lO: 50: ..., --,-- )0: . . . . . . . . - - : - - , lO ....j..,. ..,...:..,..,. 10: ] -+-~ . . . I~ ~.116 <> "'~ <> <> +-2~' c>> : <>~ <> 8t;7 7 0> <>~ <> _1 ~.122 <> <> :>:.124' <> <> s: " S' o ". " :> :> ~ o ... n; :> S a . b ca <D :> Co ~ ~ C> C> ..:, " ~ ~ ~ C> C> ..:, " ~ . G) a co :> Co . Elevation (ft) ~ '" '" q;t, ~ "" N '" ~ "" o ~ '" '" -~ ~ ~ ~ "'-1-- o ~-+-- . --I "' 3 "' o c: or "U s: . <D o ..... """,<Xl en'" II ~~ 00 00 o~ ~ ~ o - ~ o - N o o '" o~ o ju~< en [ 0' => .....3 N~- o . OJ ~ ~ " Gl ~ => - ~ :;.t"eg 0 0 en => 0 0 .. or a. -< -< => " " Co ~ ~ : -- ~ ,,"- o ~ "'- o . GO o ~ '" '" Elevation (ft) ~ ,.. '" '" 0 ~ ,.. o . ;ol 3 m o c or -0 :;:: o CD ,.. -.J ;00> en'" " -~ ~O <nO o-.\: ~ ~ o - ~ o N o o '" ~ '"' , <n C;~ o Vb , <n- o 0- ~-<-- ~ 0_ o en ~ cr ~ C; la <n o '" o o . "- r .. CD .. ::J Co o ~ g> Glt= ~ ~ eO 0 0 '" c: 0 0 en :J ...::: ...::: ..... a. CD (I) " "" - - . ~ m o '" '" '" . -i CD 3 ~ c: ID -c s: <0 ...., ;0'" en'" " ~~ ",0 00 0' '< , ~ o - ~ o N o o '" _____n_______ n___ Elevation (ft) ~ '" o ~ ... '" -~ ~ ... o o+-- ;'2. ~ o ... _no- ~ un__ g;~ oj o en !r cr ~ ;:;; '" - ~ ~ '" o '" o o . r- .. '" .. " Co i.\' Glf~ ~ " ~ ~ ",.g 0 0 g?a~<? ll) m ~ ~ !: '" "'~ o . . cri 3 <D o c: iil -0 s: <0 ..... ,,0> en'" " ~~ ..0 ",0 0-< , ~ o - ~ o ;;:; o o '" ~ .. m un___ u____ ....---.------- ____n........ ..__n_'_._.. _______, ----- .------,------. ------ un__._ _____n_ nn_______.. u_. _ __.____.._n__ .-------------- ____.__u____ _________n___ ___n__n.. -------------- -------~- ._-- n__...'____n_ li-' n___________ -. ____n_'____n _____..'_____n u_____..__.... n_ __~__n___ ___00__'...____ __n_...______ -------r-___. ;t _______'__nn -------,----_.. - nn____._._ -------~- .--- ______ '__nn. u__ .__~_ ._. ------~------- .--...------- _u________ _n_n_ _u_ n n_'___..__ ______n_ __u n_____ -------,----- _______n_____ >>"(7 _______'.n___ ___n__'_______ ______;_u___ uu___,__ _n____'______ kl:... ___u__;__ - ------,--- .--- _n__n ___n_ ______...n___ un...'_____ .._----.--- --- __u___, ______ n _______un ......, _.n. .-----.,.---.. -------,------- J7 - - - - - - .' - - - - - - __ __n'._____ __n___ __00__ n_____'_____ __________ .n .------, --.--. -----, ------ ----...,..-.-.- 7 /. : ..-----.-- ---- ._.___.J___n__ _u _________. ..n__.._______ -------, ------ ____nn _____ -. -----,-- ---- ~ --.--- .,------- ------,---... -------,---- ..... ., . ...- .---.-...----.. ________n ____ -.-----.------- ___n_h______ : n_____._______ -------,- mm7 , 0 __.nn -------.-- --- "00"__'_'_00_ ------------- __.....1_00____ --------------- _____..:__n__.A : : : ... ------ __n__ " ------ -----._~--.._- .--- ---.------ _______~__ .n ____n_._ _____ -------~ ----- ____. _L_ -.. .....-----. : ... ___on ----- -------- __._...____n_ --------------- ------------- ..____._00__._ n_ ._____ ______'____n ..._-_.~-_. --- -------,- --- - - - -----~...._. n__u_, ______ -------,-_....- ___00....._____ ------~----. ______. ____n n___.. u__ -------,------ _____n'.______ ________ ____n .__ ___'-___n_ -----.-, - ..-- ~ ...-:-- ____n ,______ ----- --~ -.--- .00__..'_____._ ----- -~ ----- -------,- ----- -------. ------ ----.--,..._--- n____._______ _.___n'._____ n_____"___ __ ------.,-.----- -------,------ - ----.------ --00-- n__n_ \f.. -------------- _____n_______ _______, _.__n -------------- ____n_________ --------.---- __n__________ _______~ --00- _______. .--"-- _____ .~.n_n n_____.n.n. ..------------ '__e__n__ __00___ ..__ m..f~\ n___._'_______ ..--------... ...un_______ ---------.-- .- .-.-., .- .-- ___.______n__ -------~. --.-- b - _____.~_n_._ ----------.. ....n..___.___ nn_..'____.__ -----.------- __. ---- _________.n__ -------.--.--- ___n_.____ _.n______ -._n'_r'__'___ ----.-,------ -- .----- ----.-- -----. .......,--_. .'___,_n.___ : ~ m o ~ '" '" - '" m '" .. Elevation (ft) - ~ ~ ~ '" '" o '" ~ .. '" ~ .. .. ~ ~;t"i o -l-- o "'~ o o~ o~ o ~ "'~ o '" 0_ o g)~ en [ 1r " "'IE .;fi . r ~ CD ~ " a. g> Glf~ " ~ ",.0 0 en c 0 - " , " c. '< " !!! '" "'- o . . . - Elevation (ft:) ~ ~ ~ ~ ~ - :;: ;; ;; ~ C;; ... ... '" '" '" ...... '" '" 0 N ... '" 0> 0 0 . : , ... _ ____.. un_no oo-- . -------~------ . ___HU_" ______ ..__nn no_____ uu_u '" : ./ . 0 I . . __ __.___L ._______ I~.uu. mu _uuu__u____ __________n_n __n_.._:-_______ u. nnn 0> . 0 1/ · . _______rnn__. mmul? ___n___' ____nO n_n__'_u____ n__nur __un uu_n_ __" . . ~ . 0 . . 0 -l . CD ---. r ____u_ uu___ I~mu __n__ -- ------~-------- _______L______ ___un_ unu__ _____n_.______ 3 . CD 0 : c: ~ ill N 0 : -U en s: !t CO o' . . ~ --i------ ______n_ n_____ un_________ ___n_________ _______n___n ..., " . . ;U ()) a . : S<cnW " ~ . . ~ ... -0 0 : . ~O 0' '< ~ __nu_ ____.n.___ ._n ___n__"_______ --.~------- ~ 0 . - ~ m . 0 - '" 0 ~ , u'uuuu 0 0 W . un 0-- ___________ ___n________.. . n______'_______ ~ \ . . 0> . . 0 __n mmjul.. . ____u_;__ ----_._-.------- un_u_, n_____ : Fi-- --.- . N 0 0 . . ~ ..;.- ~~ __u_.. ___00_ n____n'_n__n ____.n u__u_"___ ___ ________L_._____ . t--i- . - N . . N 0 OJ Gl g ~ r- " ~ .. " ~ A.g 0 0 CD 0 '? .. en " , " 0;- 0- '< '< 0- " " !!l !!l ... "\,1. . ~ 0> o ~ '" CO ~ '" 0> ~ ~ Elevation (ft '" '" .~ '" '" -'- .. co .. ,0> "'-'-- o <a1. . ~ ;ol 3 CD o c: iil -0 s: <0 ..... "ex> en"" " -~ ...0 ",0 o , '< ~ ~ Q ~ o N o o "" .n_ n_ u__ -y , . . . . ~mJ_ ~___ : : . . ~- u'_ -- 0__ . . .Ui :: : , ..~ ,---. , ~ ~ . -- 4__< . . . , . , . ~---1 '-1 ~-. ~ . ~ -'---~----'--- :----:--- , , , . ,----,-- .,-"~. .. . .. . , , . , . .. '" __4___ . " .~ , .- ,--- ... _____. --- ---~---,- ... o+----.-; '" : o-r---: en i ..... ci' 0--,----+ " 0 . s; 0> - -------- . , gt- '" o -<--'- o . ~t o . . ,... m '" m " Co Ii? Gltg ~ ~.a ;:; 0 en 5 ? 0 ii)o.(ii-< " co ~ !!! . . . -i (J) 3 (J) o c: ill -0 s: CD ..... ;0'" "'w " ~~ . ",0 000 ,,"0' '< ~ ~ o - ~ o - '" o o w ~ "" o r " lC " ~ Co OJ t ~ " Gl W => ~ A.a 0 ~ 3 <? " c. '< " !!1 ~ 0> '" ~ 0> o Elevation (ft) .". ~ '" '" ~- -- ~ '" o ~ "" '" o -+-- '" o~ o '" "'~ o g:- ~ 0_ o "'- o '" !!: 0' => OlE \,'2 . ~ ~ o ~ 0> 0> Elevation (ft) ~ 0> o ~ 0> 0> ~ 0> , 0 0-'- o G~ . -i <D 3 <D o C or -U 5: <0 .... ,,00 ",'" " "'~ _0 0>0 0' "< ~ ~ o - ~ o ;;:; o o '" , O>~ o 0- i::> .. ------ -' ---, g;- 0>_ o 0_ o '" a o' " Is; .. - -~ '" 0_ o . r- .. '" .. " Co :;; '" o '? '< " ~ OJ ~fg '" "' ~ ~.g ? '" " '< - 0. " '" ~ '" 0>- o . . . ;;; 3 <D o c: iil "U s: '" .... ;uex> C/l'" " "'~ ",0 00 0-.< ~ ~ o - ~ o N o o '" ~ -.j o ..em. ~u..u IU:U'. .::.. . U.: .U.. n____ ___u ----- ----- .:_- -------. ------ __ _u_L__ m'mT mm+' . mm' ......,. .m ~ '. mm.,.... .. .'~.. : ...u. u...,.~. . ~.. . ~.... m ~m.' . .. .~: ~ m . . .. .u.,. ~ ~: .....:. ... ....' ".u" .. ...:.u . m.' .. .u.,. : ..... U . ; ~'m~ ~u..:.... . _ , T ~... .,... .. ..; ~ ~ . ""u.u u. j : ..,.., .. .0....1.. : ..... . ~........; .. .,... ...~, ... ... .:. .. . ...m;.... u.u. ;J ::: : uum' uu'", mm~L . u . '. . : / .' . "', . U .... y:' uu., "uu . uu :. _u --f------ :, : U .... . ..:.:::~ui. ~ u,u"", u .. ..u.;.uu · ~ u~~u . ...::.::: ..... . u. '0 . u ~.::::: ::.. . " :::j .~ ~ ~~ u 0... ... . ...1... u~ .u... u' um u..!~ ~ : . :u.u. i,mmFrr:m:m ..'. .. , : i ---:-------------'---------- n_'______ . :." . u uu.~.... ~~ 0 ~ OJ ~ '" Gl '" lD " ~ ~ ~ ,,-g 0 0 '" 0 0 CD C/l " -< -< " 0; Co CD CD Co e: '" :~ ~ ~ m CD ~ m m ~ ~ Elevation (ft.) ~ ~ ~ - m m o '" ~ m CD ~ m m ~ m "" ~ ~ m .'" m+- o 0_ 8- C/l 0; ::::; ....>. o 0_ " 0 '" '" - ~ m_ o '" o~ o '" m~ o \ct. . - 0> '" - ~ - - 0> o Elevation (ft) - ~ '" - ~ '" - - ~ "" 0-1- ~ . " ;ni 3 CD o c iil "U s: . <0 o "" ... ()) Slc.> " "'~ ...0 g? '< ~ ~ o - ~ e '" o o w -- -- ~- o~ o "'~ o U> ![ cr " s N - . 0 :E OJ Q - U> '" r- " ' - C; .. "".g 0 (Q U> " 0 '? .. or Co ... '< " .. .. Co ~ ~ N o~ o N "'~ o . ~ <>> <>> - '" '" Elevation (ft) - - <>> ... - <>> '" -~ - <>> '" <n+.- o - 0_ o ~ . . CD' 3 (\) () c iil -0 s: o CD ... ..... ,,'" U>'^' " "'~ ..,0 00 o , "< ~ ~ o - ~ ~ o o '^' K: <n- o U> g 0' " ,. - - -- '" 0_ o () ~ i6' ~ Gl "" :; " ~ - ~ ",eO 0 CD U> 5 0 0 .. iD 0. * -< " .. 0. e: e: -~ '" <n- o '" 0- o . . . HEe-RAS September 1998 Version 2.2 u.s. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616-4687 (916) 756-1104 x X xxxxxx xxxx xxxx XX XXXx X X X X X X X X X X X X X X X X X X X xxxxxxx xxxx X XXX xxxx xxxxxx XXXX X X X X X X X X X X X X X X X X X X " X X xxxxxx xxxx X X X X xxxxx PROJECT DATA Project Title: Temecula PM 9783 Project File PM9783.prj Run Date and Time: 10/10/2003 9:18:47 AM Project in English units Project Description: PLAN DATA Plan Title: lOQ-yr Plan File H:\hecras\PM9783\PM9783.pOl Geometry Title: Creek Geometry File H:\hecras\PM9783\PM9783.g01 Flow Title Flow File flow H:\hecras\PM9783\PM9783.fOl Plan Summary Information: Number of: Cross Sections Culverts Bridges 11 o o Mulitple Openings Inline weirs o o Computational Information Water surface calculation tolerance Critical depth calculaton tolerance Maximum number of ihterations Maximum difference tolerance Flow tolerance factor 0.01 0.01 20 0.3 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values only Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed Flow FLOW DATA Flow Title: flow Flow File H:\hecras\PM9783\PM9783.fOl Flow Data (cfs) River RIVER Reach Creek 2-year 300 IOO-year 783 RS 2700 '":A . Boundary Conditions River Downstream Reach Profile Upstream RIVER Critical Creek 2-year NODClal S .02 GEOMETRY DATA Geometry Title: Creek Geometry File H:\hecras\PM9783\PM9783.g01 CROSS SECTION RIVER: RIVER REACH: Creek RS: 2700 INPUT Description: Station Elevation Data num"" 9 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 57 1166 72 1165 98 1164 100 1162 120 1162 147 1163 230 1164 269 1165 290 1166 Manning's n Values num"" 3 Sta n Val Sta n Val Sta n Val 57 .04 57 .04 290 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 57 290 300 300 300 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 2400 . INPUT Description: Station Elevation Data nurn= 7 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 17 1162 86 1158 100 1157.2 121 1158 145 1159 184 1160 232 1162 Manning's n Values nurn= 3 Sta n Val Sta n Val Sta n Val 17 .04 17 .04 232 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 17 232 200 200 200 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 2200 INPUT Description: Station Elevation Data num= 11 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -40 1158 18 1156 88 1155 92 1154 100 1153 141 1153 148 1155 161 1156 193 1157 208 1160 245 1170 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -40 .04 -40 .04 245 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -40 245 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 2150 INPUT . Description: Station Elevation Data num= 13 Sta Elev Sta Elev Sta Elev Sta Elev Sta E1ev -70 1160 8 1155 24 1154 56 1153 78 1152 ~-5 . 100 1151 110 1151 135 1152 138 1153 153 1154 169 1154.3 181 1160 202 1170 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -70 .04 -70 .04 202 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -70 202 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 1900 INPUT Description: Station Elevation Data num= 9 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 44 1155 96 1152 100 1149 149 1149 153 1150 175 1151 193 1152 215 1160 235 1170 Manning's n Values num:::: 3 Sta n Val Sta n Val Sta n Val 44 .04 44 .04 235 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 44 235 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Cree k RS: 1750 INPUT Description: Station Elevation Data num= 9 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -29 1155 58 1150 92 1149 100 1147 136 1147 138 1148 171 1149 198 1150 216 1160 . Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -29 .04 -29 .04 216 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -29 216 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 1600 INPUT Description: Station Elevation Data num= 11 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 51 1150 68 1149 89 1148 97 1147 98 1145 100 1144.5 162 1145 173 1147 . 190 1147.5 196 1150 216 1160 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 51 .04 51 .04 216 .04 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 51 216 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 1450 INPUT Description: Station Elevation Data num= 12 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -74 1155 30 1150 73 1147 89 1146 97 1145 100 1143 172 1143 177 1146 197 1147 217 1148 228 1150 248 1160 . Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -74 .04 -74 .04 248 .04 ~ . Bank Sta: Left Right Lengths: Left Channel Right Coeff ':'ontr. Expan. -74 248 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 1300 INPUT Description: Station Elevation Data num= 11 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 28 1146 72 1144 89 1143 96 1141 100 1140.2 161 1141 164 1144 173 1145 196 1146 215 1150 235 1160 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 28 .04 28 .04 196 .04 Bank Sta: Left Right Lengths: Left Channel Right Coefj' Contr. Expan. 28 196 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 1150 INPUT Description: Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -71 1150 14 1144 51 1143 81 1143 100 1138 144 1138 154 1144 180 1144 196 1150 216 1160 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val -71 .04 -71 .04 216 .04 . Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -71 216 150 150 150 .1 .3 CROSS SECTION RIVER: RIVER REACH: Creek RS: 1000 INPUT Description: Station Elevation Data num= 7 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 66 1142 88 1140 100 1134 112 1135 128 1140 132 1141 154 1142 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 66 .04 66 .04 154 .04 Bank Sta: Left Right Lengths: Left Channel Right Caeff Cantr. Expan. 66 154 0 0 0 .1 .3 SUMMARY OF MANNING'S N VALUES River:RIVER Reach River Sta. n1 n2 n3 Creek 2700 .04 .04 .04 Creek 2400 .04 .04 .04 Creek 2200 .04 .04 .04 Creek 2150 .04 .04 .04 Creek 1900 .04 .04 .04 Creek 1750 .04 .04 .04 Creek 1600 .04 .04 .04 Creek 1450 .04 .04 .04 . Creek 1300 .04 .04 .04 Creek 1150 .04 .04 .04 Creek 1000 .04 .04 .04 ,,?'1 . SUMMARY OF REACH LENGTHS River: RIVER Reach River Sta. Left Channel Right Creek 2700 300 300 300 Creek 2400 200 200 200 Creek 2200 150 150 150 Creek 2150 150 150 150 Creek 1900 150 150 150 Creek 1750 150 150 150 Creek 1600 150 150 150 Creek 1450 150 150 150 Creek 1300 150 150 150 Creek 1150 150 150 150 Creek 1000 0 0 0 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: RIVER Reach River Sta. Contr. Expan. . Creek Creek Creek Creek Creek Creek Creek Creek Creek Creek Creek 2700 2400 2200 2150 1900 1750 1600 1450 1300 1150 1000 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 . ~ . . . A. HYDROLOGY CALCULATIONS . ?J\. e . 'e B. STORM DRAIN . 4,0