HomeMy WebLinkAboutParcel Map 30797 Parcel 2-3 Hydrology Study
\
:1
I
I
I
I
I
~I
I
I
I
I
I
I
I
I
I
I
I
I
l
1m 5tJ7 e- ~
AU(; 0 a 2002
HYDROLOGY & HYDRAULICS STUDY FOR:
PARCELS 2 AND 3 OF PARCEL MAP 15977
IN THE
CITY OF REMECULA
COUNTY OF RIVERSIDE
STATE OF CALIFORNIA
AUGUST 1, 2K2
LMCO IN. 69-02
PREPARED FOR:
RILINGTON BELLA VILLAGGIO, LLC
225 RANCHEROS DRIVE, SUITE 303
SAN MARCOS, CA 92069
TEL: 760-471-5460
FAX: 760-471-5460
PREPARED BY:
LANDMARK CONSULTING
9555 GENESEE AVENUE, SUITE 200
SAN DIEGO, CA 92121
TEL: 858-587-8070
FAX: 858-587-8750
BY: DY
DAVID H. YEH, R.C.E. 62717, EXP. 06-30-2K6
\
I
I
II
I
I
I
I
I
I
-.
.
II
I I
'.
.
I
il
I
I
TABLE OF CONTENTS
VICINITY MAP
INTRODUCTION
METHOD OF ANALYSIS
HYDROLOGY
HYDRAULICS
HYDROLOGY CALCULATIONS
10- YEAR PRE-DEVELOPMENT CONDITIONS
100- YEAR PRE-DEVELOPMENT CONDITIONS
10-YEAR POST-DEVELOPMENT CONDITIONS
100- YEAR POST-DEVELOPMENT CONDITIONS
IOO-YEAR HYDRAULIC CALCULATIONS
STORM DRAIN
CURB OUTLET
CURB INLET
BROW DITCH
RIPRAP ENERGY DISSIPATER
IO-YEAR HYDRAULIC CALCULATIONS
STREETS
CONCLUSIONS
APPENDIX
STANDARD INTENSITY-DURATION CURVES DATA
HYDROLOGIC SOILS GROUP MAP FOR TEMECULA
HYDROLOGY MAPS
'"/t'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
VICINITY MAP
RANCHO CALlF.:.fD.
OJ
c:
-i
M
::0
2J
r
8
(j)
--\
)>
G)
fT1
~
PAUBA RD.
4ROJECT
SITE
VICINITY MAP
N.T.S.
SCALE: '-.NTS
17
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
INTRODUCTION
The purpose of this report is to detennine the peak runoff volumes and to design an adequate
drainage system to handle the flow according to the requirements of the Riverside County Flood
Control District without subjecting the project to significant flooding impacts during a design
flood event and without adversely affect the surrounding environment due to the proposed
development.
Parcels 2 and 3 of Parcel Map 15977 is located on the southerly side ofPauba Road, east ofYnez
Road, in the City of Temecula, County of Riverside, State of California. The Project sile is
consisting of three single family lots with a minimum 1 acre 10t size.
The project site is situated near the top of a gentle to steep hillside with existing natural
streamlines. Under the pre-development conditions, small portions of the easterly part of the site
drains onto the existing development adjacent to the easterly boundary via brow ditches. The
small portion at the southerly part of the site drains onto Pauba Road. The remaining portion of
the site drains into three existing natural streams on the hillside at the southerly boundary of the
site.
The runoff from the proposed development will follow the existing drainage pattern, where the
small portions on the easterly part will remain undisturbed and still drains into the existmg brow
ditches to the adjacent property. The small southerly portion will drain onto the proposed
roadway and onto existing Pauba Road. The upper two pads will drain to the back and into a
concrete brow ditch that outlets onto the natural hillside downstream. The proposed street will
drain into a curb inlet at the end of the cul-de-sac and down the slope via a concrete ditch. The
remaining third pad will drain into an existing stream at the southerly boundary of the site. Rip
rap energy dissipaters will mitigate the erosion potential from the concentrated flows before they
enter the existing stream.
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
METHOD OF ANALYSIS
HYDROLOGY:
The hydrologic analysis for this project is consistent with current engineering standards and the
requirements of Riverside County Flood Control District. Rainfall intensities for.the roO-year
and 10-year stonn frequencies were detennined from the stonn distribution maps and charts in
the current Riverside County Flood Control District Hydrology Manual. The Rational Method,
as outlined in the current Riverside County Flood Control DistJict Hydrology Manual, was
utilized in the hydrologic calculations -see attached instructions. The runoff coefficient was
weighted in each basin to reflect the proposed development conditions. Based on the included
Hydrologic Soils Group Map for Temecula, a Soils Group "D" designation was used for the
entire site.
HYDRAULICS:
Most of the onsite flow is surface flow into ditches. The capacities of ditches, street and pipes are
calculated using Haestad Methods' FlowMaster computer program which utilizes the Marming's
Equations.
~
I
RATIONAL METHOD
I
General"- The Rational method is commonly used for determining peak dis-
I
charge from relatively small drainage areas. For areas in excess of 300
to SOO-acres the Synthetic Unit Hydrograph method should normally be used.
I
Before attempting to apply the information in this section,the engineer
should become thoroughly familiar with sections A, B and C or this manual.
I
Rational Equation - The Rational method is based on the following equation:
I
Q = CIA
where:
I
Q = Peak discharge - cfs
C = Coefficient of runoff
I
I = Rainfall intensity (inches/hour) corresponding to the time
of concentration
I
A = Area - acres
I
Time of Concentration - If rain were to fall continously at a con-
I
stant rate and be uniformly distributed over an impervious surface, the
rate of runoff from that surface would reach a maximum rate equivalent
I
to the rate of rainfall. This maximum would occur when all parts of the
surface were contributing runoff to the concentration point. The time
I
required to reach the maximum or equilibrium runoff rate is defined as
the time of concentration. The time of concentration is a function of
I
many variables including the length of the flow path from tIle most remote
I
point of an area to the concentration poL"'lt, the 'slope and c>ther charac-
teristics of natural and improved channels in the area, the infiltration
I
characteristics of the soil, and the degree and type of development. In
District Rational tabling, the time of concentration for an initial sub-
I
area can be estimated from the nomograph on Plate 0-3. The time of con-
I
centration for the next downstream subarea is computed by adding to the
D-l
(p
I
II
I
initial time, the time required for the computed t~ak flow to travel to
the next concentration point. Time of concentration is computed for each
I
subsequent subarea by computing travel time between subareas and adding
the cumulative sum. Travel time may be estimated using the tabling,aids
I
on Plates D-6 through D-9.
I
To avoid distortion of travel time large subareas should be avoided.
Where extremely large subareas are used, peak flow entering a travel reach
I
may be much lower than the flow leaving that reach. Velocity normally
increases with discharge, therefore travel time computed using the average
I
flow over a reach may be significantly lower than travel time comput"d
using inflow to the reach. Since rainfall intensity is inversely propor-
I
tional to time, flow rates would be consistantly underestimated by use
I
of large subareas.
Intensity-Duration Curves - Rainfall intensity, "I", is determined
I
using District intensity-duration curves for the area under study. Stan-
dard intensity-duration curves have been prepared for many population
I
centers in the District. Intensity-duration data for these" standard curves
I
is given in tabular form on Plate D-4.1. The standard curves for thE!se
areas may be reproduced by plotting the 10 and 60.-minute values on Plate
I
D-4.2,and drawing a straight line through them. For areas where curves
have not been published, Plates D-4.3 through D-4.7 should be used to
I
develop design intensity-duration curves.
Plates D-4.3 and D-4.4 are isohyetal maps of the maximum 2-year _
I
I-hour and lOa-year - I-hour precipitation respectively. One-hour point
I
rain for intermediate return periods can be determined from Plate D-4..S.
The slope of the intensity duration curve can be obtained from Plate D-4.6.
I
Intensity duration curves for a particular area can be easily developed
using Plate D-4.7, plotting the I-hour point rain value for the desired
I
I
D-2
~
I
I
return period, ahd drawing a straight line through the I-hour value
parallel to the required slope.
I
The isohyetal maps and return periOd diagram are bas<!d on NOM
Atlas 2 discussed in mQre detail in Section B of this re~)rt. The map
I
of intensity-duration curve slope is based on District analysis of all
I
available recording rain gage records in and near the DistIict. This
material is also discussed in Section B of this manual.
I
Coefficient of Runoff Curves - The coefficient of runoff is intended
to account for the many factors which influence peak flow rate. The co-
I
efficient depends on the rainfall intensity, soil type and cover, per-
centage of impervious area, antecedent n~isture condition, etc. To
I
account for the difference-between actual and effective impervious area
I
it is assumed the maximum runoff rate which can occur from impervious
surfaces is 90-percent of the rainfall rate. The runoff from pervious
I
surfaces is further reduced by infiltration. Runoff coefficient curves
can be developed using the relationship:
I
C
=
0.9ti
+ I-Fp A~
- P
I
I
where:
I
C
=
Runoff coefficient
I
=
Rainfall intensity - inches/hour
I
F
P
A.
J.
=
Impervious area (actual)" - decimal percent
=
Infiltration rate for pervious areas - inches/hour
I
Ap
=
Pervious area (actual) _. decimal percent
I
and A
p
=
1.00 - A.
J.
I
The infiltration rate for pervious areas, "Fp", can be estimated
using the methods discussed in Section C of this manual for various
I
I
D-3
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
combinations of soil type, cover type and antecedent moisture condition
(AMCl. In practice it is not necessary for the engineer to make these
computations, as runoff coefficient curve data has been tabulated by the
District on Plate D-S.7 for the working range of runoff index (Rr) numbers.
Runoff coefficient curves can be developed for any combination of ccrnditions
by simply plotting the data from Plate D-S.7 on Plate D-S.8. In addition,
for the common case of urban landscaping type covE!r, runoff coefficient
curves have been plotted on Plates D-S.l through ll-S.4.
D-4
~
I
I
INSTRUCTIONS FOR RATIONAL METHOD HYDROLOGY CALCULATIONS
(Based on the Rational Formula, Q = CIA)
I
1. On map of drainage area, draw drainage system and block off subareas
tributary to it.
I
2. De"termine the initial time of concentration, "T", using Plate D-3.
The initial area should be less than 10 acres, have a flow path of
less than 1,000 feet, and be the most upstream subarea.
I
3. Using the time of concentration, determine "I", intensity of rain-
fall in inches per hour, from the appropriate intensity-duration
curve for the particular area under study. For areas where stan-
dard curves are available, use Plates [)'-4.l and 0-4.2' to reproduce
the standard curve. For areas where curves have not been published
by the District, use Plates 0-4.3 through 0-4.7 to develop a suit-
able intensity-duration curve.
I
I
4. Determine "C", the coefficient of runoff, using the runoff coeffi-
cient curve which corresponds as closell' as possible with the soil,
cover type and develo(Xllent of the drainage area. Standard curves
(Plates D-S.l through D-S.4) have been developed by the District
for the common case of urban landscaping type cover. Where these
curves are not applicable, curves may be developed using Plates
D-S.S through D-S.8.
I
I
S. Determine "A", the area of the subarea in acres.
I
II
6. Compute Q = CIA for the subarea.
I
7. Measure the length of flow to the point of inflow of the next sub-
area downstream. Determine the velocity of flow in this reach for
the peak Q in the type of conveyance being considered (natural
channel, street, pipe, or open channel), using the tabling aids on
Plates 0-6 through D-9.
I
Using the reach length and velocity determined above, canpute the
travel time, and add this time to the time of concentration for the
previous subarea to determine a new time of concentration.
I
8. Calculate Q for the new subarea, using steps 3 through 6 and the
new time of concentration. Determine "Q~", the peak Q for all sub-
areas tributary to the system to this poLnt by adding Q for. the
new subarea to the summation of Q for all upstream subarea:;. Deter-
mine the time of concentration for the next subarea downstream using
Step 7. Continue tabling downstream in similar fashion until a
junction with a lateral drain is reached.
I
I
I
RCFC '& WeD
HYDROLOGY l-.tlANUAL
I
RATIONAL METHOD
INSTRUCTIONS
I
PLATE 0-1 (I of 2) \0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
il
I
9. Start at the upper end of the lateral and table its Q down to the
junction with the main line, using the methods outlined in the
previous steps.
10. C9lllpute the peak Q at the junction. Let QA' TA,' IA oorrespond to
the tributary area with the longer time of concentration, and Qa,
Ta, IB correspond to the tributary area with the shorter time of
concentration and Qp, Tp correspond to the peak Q and time of
concentration.
a. If the tributary areas have the same time of concentration,
the tributary Q's are added directly to obtain the combined
peak Q.
Qp = QA + Qa
Tp = TA = TB
b.
If the tributary areas have different times of concentration,
the smaller of the tributary Q's must be corrected as follows:
(1) The usual case is where the tributary area with the lon-
ger time of concentration has the larger Q. In this case,
the smaller Q is corrected by a ratio of the intensities
and added to the larger Q ,to obtain the combined peak Q.
The tabling is then continued downstream using the longer
time of concentration.
Qp=QA
Qa IA
IB
= TA
+
Tp
(2) In some cases, the tributary area with the shorter time
of concentration has the larger Q. In this case, the
smaller Q is corrected by a ratio of the times of concen-
tration and added to the larger Q to obtain the combined
peak Q. The tabling is then continued downs team using
the shorter time of concentration.
Qp = Qa
+QATB
TA
TB
T =
P
RCFC a WCD
HYDROLOGY j\AANUAL
RATIONAL METHOD
INSTRUCTIONS
\\.
PLATE D-I (2 of 2)
I
i I
********************************************************************~*******
I
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY ~UfUAL
(c) Copyright 1982-2000 Advanced" Engineering Software ("es)
Ver. 1. SA Release Date: 01/01/2000 License ID 1503
I
Analysis prepared by:
I
PREPARED BY: LANDMARK CONSill"TING
9555 GENESEE AVENUE, SUITE 200
SAN DIEGO, CA 92121
PHONE: (858) 587-8070, FAX: (858) 587-8750
I
************************** DESCRIPTION OF STUDY *,~*****************~******
I
* PAUBA ROAD, TM. , TEMECULA, CALIFORNIA
* 10-YEAR HYDROLOGY ANALYSIS (PRE-DEVELOPMENT CONDITIONS)
* BY: DY
*
*
*
*************************************************1t************************
I
FILE NAME: 692EX.DAT
TIME/DATE OF STUDY: 08:31 08/01/2002
I
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
I
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.90
10-YEARSTORM 10-MINUTE INTENSITY (INCH/HOUR) = :!.360
10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 0.880
100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480
100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.300
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5S05732
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.S495536
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 I-HOUR INTENSITY (INCH/HOlm) = 0.889
SLOPE OF INTENSITY DURATION CURVE = 0.5506
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY ~lJAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW !liODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT VlIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
I
I
I
I
I
--- ----- --------- ----------------- ------ ------ ----- -------
--------- ----------------- ------ ------ -------
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
2 12.0 7.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
I
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S),
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
I
I
**************************************************~,*************************
I
,z,
I
I
FLOW PROCESS FROM NODE
101.00 TO NODE
------------------------------------------------------------------------------
102.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
===================================================~================::=======
ASSUMED INITIAL SUBAREA UNIFORM
" DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 500.00
UPSTREAM ELEVATION = 1260.70
DOWNSTREAM ELEVATION = 1183.00
ELEVATION DIFFERENCE = 77.70
TC ~ 0.709*(( 500.00**3)/( 77.70)]**.2
10 YEAR RAINFALL INTENSITY(INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
I
I
I
3.79
2.40
TOTAL RUNOFF(CFS) =
3.79
I
COVER
1:2.365
2.121
102.00 TO NODE
**************************************************,~*****************~*******
103.00 IS CODE = 52
FLOW PROCESS FROM NODE
-------------------------------------------------- --------------------------
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-------------------------------------_____________u_________________________
----------------------------------________________h_________________________
ELEVATION DATA: UPSTREAM (FEET) = 1183.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) 248.00 CHANNEL SLOPE ~
CHANNEL FLOW THRU SUBAREA(CFS) = 3.79
FLOW VELOCITY(FEET/SEC) = 5.89 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) = 0.70 Tc(MIN.) 13.07
LONGEST FLOWPATH FROM NODE 101.00 TO NODE
I
I
1161. 00
0.0887
MANUAL )
103.00 =
748.00 FEET.
I
FLOW PROCESS FROM NODE
102.00 TO NODE
**************************************************~.*************************
103.00 IS CODE = 81
---------------------------------------------------.-------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
---------------------------------------------------,-------------------------
---------------------------------------------------.-------------------------
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.057
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7401
SOIL CLASSIFICATION IS "D"
SUBAREA AREA (ACRES) 1.40
TOTAL AREA(ACRES) 3.80
TC(MIN) = 13.07
I
SUBAREA RUNOFF (CF'S) =
TOTAL RUNOFF(CFS) =
2.13
5.92
I
201.00 TO NODE
****************************************************************************
202.00 IS CODE ~ 21
FLOW PROCESS FROM NODE
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
----------------------------------------------------.------------------------
----------------------------------------------------.------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 375.00
UPSTREAM ELEVATION = 1248.00
DOWNSTREAM ELEVATION = 1185.00
ELEVATION DIFFERENCE = 63.00
TC = 0.709*[( 375.00**3)/( 63.00)]**.2
10 YEAR RAINFALL INTENSITY(INCH/HOUR)
SOIL CLASSIFICATION IS "D"
I
I
I
I
COVER
10.850
2.279
\'?
I
II
SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) =
1.54
0.90 TOTAL RUNOFF(CFS) =
1.54
I
********************************************************************i'*******
FLOW PROCESS FROM NODE
202.00 TO NODE
203.00 IS CODE = 52
--------------------------------------------------.--------------------------
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
--------------------------------------------------.-------------------.-------
--------------------------------------------------.-------------------.-------
I
ELEVATION DATA: UPSTREAM (FEET) = 1185.00 DOWNGTREAM(FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 112.00 CHANNEL SLOPE
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA (CFS) = 1.54
FLOW VELOCITY(FEET/SEC) = 5.16 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) 11.21
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
1168.00
0.1518
I
MM;'UAL )
203.00 =
487.00 FEET.
I
**************************************************,r*************************
FLOW PROCESS FROM NODE
202.00 TO NODE
203.00 IS CODE = 81
--------------------------------------------------..-------------------------
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
----------------------------______________________u_________________________
-----------------------------------------------------------------------------
I
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.238
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7509
SOIL CLASSIFICATION IS "D"
SUBAREA AREA(ACRES) 0.50
TOTAL AREA (ACRES) 1.40
TC(MIN) = 11.21
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
0.84
2.38
I
**************************************************~,*************************
FLOW PROCESS FROM NODE
301.00 TO NODE
302.00 IS CODE = 21
I
---------------------------------------------------.-------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
===================================================:==~======================
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 646.00
UPSTREAM ELEVATION = 1260.70
DOWNSTREAM ELEVATION = 1175.00
ELEVATION DIFFERENCE = 8S.70
TC = 0.709*[( 646.00**3)/( 85.70)]**.2 = 14.140
10 YEAR RAINFALL INTENSITY (INCH/HOUR) 1.970
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
1. 88
1. 30
TOTAL RUNOFF(CFS) =
1.88
I
I
I
****************************************************************************
FLOW PROCESS FROM NODE
401. 00 TO NODE
402.00 IS CODE = 21
I
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
====================================================:========================
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 173.00
UPSTREAM ELEVATION = 1230.00
I
I
V\
I
I
DOWNSTREAM ELEVATION = 1195.00
ELEVATION DIFFERENCE = 35.00
TC = 0.709*[( 173.00**3)/( 35.00)]**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA "RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
0.86"
0.40
TOTAL RUNOFF(CFS) =
0.86
7.672
2.758
I
FLOW PROCESS FROM NODE
501.00 TO NODE
********************************************************************~,*******
502.00 IS CODE = 21
---------------------------------------------------------------------.-------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------------------------------
---------------------------------------------------------------------.-------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 225.00
UPSTREAM ELEVATION = 1256.60
DOWNSTREAM ELEVATION = 1249.00
ELEVATION DIFFERENCE = 7.60
TC = 0.709*[( 225.00**3)/( 7.60)J**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
0.64
0.40
TOTAL RUNOFF(CFS) =
0.64
COVER
12 .191
2.137
I
FLOW PROCESS FROM NODE
601. 00 TO NODE
**************************************************,~*****************~*******
602.00 IS CODE = 21
--------------------------------------------------..-------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
--------------------------------------------------.--------------------------
-----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2
INITIAL SUBAREA FLOW-LENGTH = 196.00
UPSTREAM ELEVATION = 1258.20
DOWNSTREAM ELEVATION = 1230.00
ELEVATION DIFFERENCE = 28.20
TC = 0.709*[( 196.00**3)/( 28.20)J**.2
10 YEAR RAINFALL INTENSITY(INCH/HOUR)
SOIL CLASSIFICATION IS "Dn
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
I
I
I
0.99
0.50
TOTAL RUNOFF(CFS) =
0.99
cOVlm
0.634
2.584
I
+-------------------------------------------------..------------------------+
I END OF RATIONAL METHOD ANALYSIS I
I I
I I
+--------------------------------------------------.------------------------+
I
---------------------------------------------------.-------------------------
---------------------------------------------------.-------------------------
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS)
0.50 TC(MIN.) =
0.99
I
8.63
END OF RATIONAL METHOD ANALYSIS
---------------------------------------------------.-------------------------
---------------------------------------------------.-------------------------
---------------------------------------------------.-------------------------
---------------------------------------------------.-------------------------
I
I
,-5
I
; I 1
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
I
I
\~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
lOO-YEAR PRE-DEVELOPMENT CONDITIONS
\"\
II
I
***************************************************T****************jr*******
I
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2000 Advanced Engineering Software (aes)
Ver. 1. 5A Release Date: 01/01/2000 License ID 1503
I
Analysis prepared by:
I
PREPARED BY: LANDMARK CONS\JiJTING
9555 GENESEE AVENUE, SUITE :WO
SAN DIEGO, CA 92121
PHONE: (858) 587-8070, FAX: (858) 587-8750
I
************************** DESCRIPTION OF STUDY **************************
* PAUBA ROAD, TM. , TEMECULA, CALIFORNIA *
* 100-YEAR HYDROLOGY ANALYSIS (PRE-DEVELOPMENT COWJITIONS) *
* BY: DY *
**************************************************************************
I
I
FILE NAME: 692EX.DAT
TIME/DATE OF STUDY: 14:10 07/31/2002
-----------------------------------------------------------------------------
I
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
---------------------------------_________________n_________________________
I
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.90
10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 2.360
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880
100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5~;05732
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 I-HOUR INTENSITY(INCH/HOlffi) = 1.300
SLOPE OF INTENSITY DURATION CURVE = 0.5496
RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSS FALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
I
I
I
I
I
--------- ----------------- ------ ------ -------
--------- ----------------- ------ ------ -------
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
2 12.0 7.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
I
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) ~ I Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
I
I
**************************************************~*************************
I
\~
I
I
FLOW PROCESS FROM NODE
101.00 TO NODE
---------------------------------------------------..----------------..-------
102.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
---------------------------------------------------_________________n_______
----------------------------------------------------.-------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS, UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 500.00
UPSTREAM ELEVATION = 1260.70
DOWNSTREAM ELEVATION = 1183.00
ELEVATION DIFFERENCE = 77.70
TC = 0.709*[( 500.00**3)/( 77.70)]**.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
I
I
I
5.85
2.40
TOTAL RUNOFF (CFS) =
5.85
I
COVER
12.365
3.097
102.00 TO NODE
**************************************************~*************************
103.00 IS CODE = 52
FLOW PROCESS FROM NODE
--------------------------------------------------..-------------------------
II
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
-----------------------------------------------------------------------------
---------------------------------------------------.-------------------------
ELEVATION DATA, UPSTREAM (FEET) = 1183.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) 248.00 CHANNEL SLOPE =
CHANNEL FLOW THRU SUBAREA (CFS) = 5.85
FLOW VELOCITY(FEET/SEC) = 6.52 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) 13.00
LONGEST FLOWPATH FROM NODE 101.00 TO NODE
I
1161.00
0.0887
MANUAL)
103.00 =
748.00 FEET.
I
FLOW PROCESS FROM NODE
102.00 TO NODE
****************************************************************************
103.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
----------------------------------------------------------------------------
----------------------------------------------------.------------------------
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.013
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7843
SOIL CLASSIFICATION IS "D"
SUBAREA AREA (ACRES) 1.40
TOTAL AREA (ACRES) 3.80
TC(MIN) = 13.00
I
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
3.31
9.16
I
201.00 TO NODE
****************************************************,~****************k******
202.00 IS CODE = 21
FLOW PROCESS FROM NODE
------------------------------------------__________n_______________________
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
---------------------------------------------------------------------.-------
-----------------~---------------------------------------------------.-------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 375.00
UPSTREAM ELEVATION = 1248.00
DOWNSTREAM ELEVATION = 1185.00
ELEVATION DIFFERENCE = 63.00
TC = 0.709*[( 375.00**3)/( 63.00)]**.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
I
I
I
I
COVER
10"850
3.327
\1\
.
I
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
2.38
0.90 TOTAL RUNOFF(CFS) =
2.38
.
****************************************************************************
FLOW PROCESS FROM NODE
202.00 TO NODE
203.00 IS CODE = 52
---------------------------------------------------------------------..-------
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
---------------------------------------------------------------------.--------
------------------------------------------------------------------------------
.
ELEVATION DATA: UPSTREAM (FEET) = 1185.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 112.00 CHANNEL SLOPE
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 2.38
FLOW VELOCITY(FEET/SEC) = 5.65 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) 11.18
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
1168.00
0.J.518
I
MANUAL )
203.00 =
487.00 I'EET"
I
****************************************************************************
FLOW PROCESS FROM NODE
202.00 TO NODE
203.00 IS CODE = 81
--------------------------------------------------.--------------------------
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.273
UNDEVELOPED WATERSHED RUNOFF COEI'FICIENT = .7924
SOIL CLASSIFICATION IS "D"
SUBAREA AREA(ACRES) 0.50
TOTAL AREA (ACRES) = 1.40
TC(MIN) = 11.18
SUBAREA RUNOFF(CI'S)
TOTAL RUNOFF(CFS) =
1. 30
3.67
I
**************************************************.,*************************
FLOW PROCESS FROM NODE
301. 00 TO NODE
302.00 IS CODE = 21
I
---------------------------------------------------.-------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<:<
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 646.00
UPSTREAM ELEVATION = 1260.70
DOWNSTREAM ELEVATION = 1175.00
ELEVATION DIFFERENCE = 85.70
TC = 0.709*[( 646.00**3)/( 85.70)]**.2
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
COVER
I
I.
14.140
2.877
I
2.92
1. 30
TOTAL RUNOFF(CFS) ~
2.92
****************************************************************************
FLOW PROCESS FROM NODE
401.00 TO NODE
402.00 IS CODE = 21
'I
------------------------------------------------------.----------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------------------------------------------
----------------------------------------------------.------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2
INITIAL SUBAREA FLOW-LENGTH = 173.00
UPSTREAM ELEVATION = 1230.00
I
I
1P
I
I
DOWNSTREAM ELEVATION = 1195.00
ELEVATION DIFFERENCE = 35.00
TC = 0.709*[( 173.00**3)!( 35.00)]**.2
100 YEAR RAINFALL INTENSITY(INCH!HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) =
I
I
1.31
0.40
TOTAL RUNOFF(CFS)
1.31
7.672
4.026
FLOW PROCESS FROM NODE
501. 00 TO NODE
********************************************************************~,*******
502.00 IS CODE = 21
I
--------------------------------------------------.-------------------.-------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
------------------------------------------------------------------------------
--------------------------------------------------.-------------------.-------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)!(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 225.00
UPSTREAM ELEVATION = 1256.60
DOWNSTREAM ELEVATION = 1249.00
ELEVATION DIFFERENCE = 7.60
TC = 0.709*[( 225.00**3)!( 7.60)]**.2
100 YEAR RAINFALL INTENSITY(INCH!HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA(ACRES) =
I
I
I
0.98
0.40
TOTAL RUNOFF (CFS) =
0.98
COVER
12.191
3.121
FLOW PROCESS FROM NODE
601.00 TO NODE
**************************************************,r*************************
602.00 IS CODE = 21
I
-----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
---------------------------------------------------.-------------------------
---------------------------------------------------.-------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)!(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 196.00
UPSTREAM ELEVATION = 1258.20
DOWNSTREAM ELEVATION = 1230.00
ELEVATION DIFFERENCE = 28.20
TC = 0.709*[( 196.00**3)!( 28.20)]**.2
100 YEAR RAINFALL INTENSITY (INCH!HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
II
I
1. 52
0.50
TOTAL RUNOFF(CFS) =
1.52
COVER
EI.634
3.773
I
+--------------------------------------------------------------------------+
END OF RATIONAL METHOD ANALYSIS
+---------------------------------------------------------------------------+
I
---------------------------------------------------.-------------------------
----------------------------------------------------------------------------
8.63
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS)
0.50 TC(MIN.) =
1. 52
I
END OF RATIONAL METHOD ANALYSIS
----------------------------------------------------.------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
I
'],..0\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
to-YEAR POST-DEVELOPMENT CONDITIONS
1-:t.
, I
I
***************************************************~************************
I
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY ~"UAL
(C) Copyright 1982-2000 Advanced Engineeri~g Software (aes)
Ver. 1.5A Release Date: 01/01/2000 License ID 1503
I
Analysis prepared by:
I
PREPARED BY: LANDMARK CONSULTING
9555 GENESEE AVENUE, SUITE 200
SAN DIEGO, CA 92121
PHONE: (858) 587-8070, FAX: (858) 587-8750
I
************************** DESCRIPTION OF STUDY **************************
I
* PAUBA ROAD, TM. TEMECULA, CALIFORNIA
* 10-YEAR HYDROLOGY ANALYSIS (POST-DEVELOPMENT CONDITIONS)
* BY: DY
*
*
*
**************************************************************************
I
FILE NAME: 692POST.DAT
TIME/DATE OF STUDY: 11:13 08/02/2002
I
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
I
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.90
10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 2.360
10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 0.880
100~YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480
100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.300
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 I-HOUR INTENSITY (INCH/HOUR) = 0.889
SLOPE OF INTENSITY DURATION CURVE = 0.5506
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
I
I
I
I
I
--------- ----------------- ------ ------ -------
--------- ----------------- ------ ------ -------
1 30.0 20.0 0.018/0.018/0.020 0.67 2.1J0 0.0313 0.167 0.0150
2 12.0 7.0 0.020/0.020/0.020 0.50 1. 50 0.0313 0.125 0.0150
I
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
I
I
****************************************************************************
I
1,;~
I
I
FLOW PROCESS FROM NODE
101. 00 TO NODE
102.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------.-----------------------
-----------------------------------------------------,-----------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 200.00
UPSTREAM ELEVATION = 1257.90
DOWNSTREAM ELEVATION = 1248.50
ELEVATION DIFFERENCE = 9.40
TC = 0.709*[( 200.00**3)/( 9.40)]**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
COVER
I
10.886
2.275
I
0.51
0.30
TOTAL RUNOFF(CFS) =
0.51
I
*****************************************************.k**********************
FLOW PROCESS FROM NODE
102.00 TO NODE
103.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
----------------------------------------------------_.-----------------------
-----------------------------------------------______0_______________________
I
ELEVATION DATA: UPSTREAM (FEET) = 1245.50 DOWNSTREAM (FEET) 1240.80
FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 5.48
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.51
PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 10.96
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 224.00 FEET.
I
I
****************************************************************************
I
FLOW PROCESS FROM NODE
103.00 TO NODE
103.00 IS CODE =
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 10.96
RAINFALL INTENSITY(INCH/HR) = 2.27
TOTAL STREAM AREA (ACRES) = 0.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.51
I
I
****************************************************************************
FLOW PROCESS FROM NODE
104.00 TO NODE
103.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
-----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 145.00
UPSTREAM ELEVATION = 1251.20
DOWNSTREAM ELEVATION 1240.80
ELEVATION DIFFERENCE 10.40
I
I
7.A
I
I
I
TC = 0.303*[( 145.00**3)/( 10.40)J**.2 = 3.758
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.491
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8898
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
0.31
0.10
TOTAL RUNOFF(CFS) =
0.31
I
****************************************************************************
I
FLOW PROCESS FROM NODE
103.00 TO NODE
103.00 IS CODE =
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
-----------------------------------------------------------------------------
-----------------------------------------------------..----------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 5.00
RAINFALL INTENSITY (INCH/HR) = 3.49
TOTAL STREAM AREA (ACRES) = 0.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.31
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 0.51
2 0.31
Tc
(MIN. )
10.96
5.00
INTENSITY
( INCH/HOUR)
2.266
3.491
AREA
(ACRE)
0.30
0.10
I
I
*********************************WARNING*****************************k****
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
I
*********************************************************************k****
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
* * PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
0.55
0.72
TABLE **
TC
(MIN. )
5.00
10.96
INTENSITY
( INCH/HOUR)
3.491
2.266
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 0.72 Tc (MIN.) = 10.96
TOTAL AREA (ACRES) = 0.40
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00
224.00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
103.00 TO NODE
105.00 IS CODE = 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>> (STREET TABLE SECTION # 2 USED) <<<<<
I
----------------------------------------------------------------------.------
-----------------------------------------------------------------------------
UPSTREAM ELEVATION (FEET) = 1240.80 DOWNSTREAM ELEVATION(FEET) = 122S.00
STREET LENGTH(FEET) = 247.00 CURB HEIGHT(INCHES) = 6.0
STREET HALFWIDTH(FEET) = 12.00
I
I
,.
7,.':>
I
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 7.00
INSIDE STREET CROSSFALL(DEClMAL) = 0.020
OUTSIDE STREET CROSS FALL (DECIMAL) 0.020
I
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning'S FRICTION FACTOR for Streetflow Section(curb-to-curb)
Manning'S FRICTION FACTOR for Back-of-Wa1k Flow Section 0.0200
0.0150
I
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) = 0.18
HALFSTREET FLOOD WIDTH(FEET) = 2.89
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.02
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.74
STREET FLOW TRAVEL TIME(MIN.) = 1.03 Tc(MIN.)
10 YEAR RAINFALL INTENSITY (INCH/HOUR) 2.157
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8846
SOIL CLASSIFICATION IS "D"
SUBAREA AREA(ACRES) 0.10
TOTAL AREA (ACRES) = 0.50
0.81
I
11.98
I
I
SUBAREA RUNOFF (CFS)
PEAK FLOW RATE(Cl'S)
0.19
0.91
I
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) 3.28
FLOW VELOCITY(FEET/SEC.) = 4.02 DEPTH*VELOCITY(FT*FT/SEC.)
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 471.00
0.'77
FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
105.00 TO NODE
105.00 IS CODE =
1
-----------------------------------------------------..----------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
I
------------------------------------------------------.----------------.------
----------------------------------------------------------------------.------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 11.98
RAINFALL INTENSITY (INCH/HR) = 2.16
TOTAL STREAM AREA(ACRES) = 0.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.91
I
**********************************************************************,~*****
FLOW PROCESS FROM NODE
106.00 TO NODE
105.00 IS CODE = 21
---------------------------------------------------------------------_.<-----
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------______________________________04_____
------------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 337.00
UPSTREAM ELEVATION = 1251.20
DOWNSTREAM ELEVATION = 1225.00
ELEVATION DIFFERENCE = 26.20
TC = 0.303*[( 337.00**3)/( 26.20)J**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR) =
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT
SOIL CLASSIFICATION IS liD II
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
5.182
3.423
= .8897
I
I
I
0.61
0.20
TOTAL RUNOFF(CFS)
0.61
I
1,.fp
I
I
*****************************************************k**********************
I
FLOW PROCESS FROM NODE
105.00 TO NODE
105.00 IS CODE =
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 5.18
RAINFALL INTENSITY (INCH/HR) = 3.42
TOTAL STREAM AREA (ACRES) = 0.20
PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.61
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 0.91
2 0.61
Tc
(MIN. )
11.98
5.18
INTENSITY
( INCH/HOUR)
2.157
3.423
AREA
(ACRE)
O.SO
0.20
I
I
*********************************WARNING**********************************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
1. 00
1.29
TABLE * *
Tc
(MIN.)
5.18
11.98
INTENSITY
(INCH/HOUR)
3.423
2.157
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 1.29 Tc (MIN.) ~ 11.9B
TOTAL AREA(ACRES) = 0.70
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00
471. 00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
105.00 TO NODE
107.00 IS CODE ~ 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
I
-----------------------------------------------------------------------------
----------------------------------------------------------------------.------
I
ELEVATION DATA: UPSTREAM (FEET) = 1223.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 75.80 CHANNEL SLOPE
CHANNEL BASE(FEET) = 1.00 "Z" FACTOR ~ 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
CHANNEL FLOW THRU SUBAREA (CFS) = 1.29
FLOW VELOCITY(FEET/SEC) = 12.49 FLOW DEPTH(FEET) =
TRAVEL TIME(MIN.) ~ 0.10 Tc(MIN.) = 12.09
LONGEST FLOWPATH FROM NODE 101.00 TO NODE
1190.00
O.43!54
0.09
I
107.00
546.80 FEgT.
*****************************************************~.**********************
I
FLOW PROCESS FROM NODE
107.00 TO NODE
107.00 IS CODE ~
1
I
-z.."\
I
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
I
============================================================================
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 12.09
RAINFALL INTENSITY (INCH/HR) ~ 2.15
TOTAL STREAM AREA(ACRES) ~ 0.70
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.29
I
I
108.00 TO NODE
*****************************************************,~**********************
107.00 IS CODE = 21
FLOW PROCESS FROM NODE
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 420.00
UPSTREAM ELEVATION = 1256.00
DOWNSTREAM ELEVATION ~ 1190.00
ELEVATION DIFFERENCE = 66.00
TC = 0.709*[( 420.00**3)/( 66.00)]**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
I
I
I
2.15
1.30
TOTAL RUNOFF(CFS) =
2.15
I
COVER
11.506
2.206
107.00 TO NODE
****************************************************************************
1
FLOW PROCESS FROM NODE
I
107.00 IS CODE =
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
--------------_______________________________________u______________________
-----------------------------------------------------------------------------
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 11.51
RAINFALL INTENSITY(INCH/HR) = 2.21
TOTAL STREAM AREA (ACRES) = 1.30
PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.15
I
I
'I
II
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 1.29
2 2.15
Tc
(MIN. )
12.09
11.51
INTENSITY
( INCH/HOUR)
2.148
2.206
I
AREA
(ACRE)
0.70
1.30
*********************************WARNING**********************************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
*********************************************************************:<****
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK FLOW RATE TABLE **
I
~
I
I
I
STREAM
NUMBER
1
2
RUNOFF
(CFS)
3.38
3.38
Tc
(MIN. )
11.51
12.09
INTENSITY
( INCH/HOUR)
2.206
2.148
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 3.38 Tc(MIN.) = 11.51
TOTAL AREA(ACRES) = 2.00
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00
546.80 FEET.
I
*****************************************************~**********************
FLOW PROCESS FROM NODE
107.00 TO NODE
109.00 IS CODE = 52
----------------------------------------------------------------------------
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1190.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) 544.00 CHANNEL SLOPE =
CHANNEL FLOW THRU SUBAREA (CFS) = 3.38
FLOW VELOCITY(FEET/SEC) = 4.45 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) = 2.04 Tc(MIN.) 13.54
LONGEST FLOWPATH FROM NODE 101.00 TO NODE
1161.00
0.0533
MANUAL)
I
109.00 =
1090.80 FEET.
**********************************************************************k*****
I
FLOW PROCESS FROM NODE
107.00 TO NODE
109.00 IS CODE = 81
-----------------------------------------------------..----------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
-----------------------------------------------------------------------------
----------------------------------------------------------------------"------
I
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.017
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7375
SOIL CLASSIFICATION IS "D"
SUBAREA AREA (ACRES) 1.60
TOTAL AREA(ACRES) 3.60
TC(MIN) = 13.54
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
2.38
5.76
I
**********************************************************************,~*****
FLOW PROCESS FROM NODE
201. 00 TO NODE
202.00 IS CODE = 21
------------------------------------------------------"----------------.------
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------------------------------
-----------------------------------------------------------------------.-----
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(I-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 369.00
UPSTREAM ELEVATION = 1237.00
DOWNSTREAM ELEVATION = 1233.30
ELEVATION DIFFERENCE = 3.70
TC = 0.469*[( 369.00**3)/( 3.70)]**.2 12.532
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.105
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .7745
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
1. 47
0.90
TOTAL RUNOFF (CFS) '"
1.47
I
I
I
**********************************************************************~.*****
FLOW PROCESS FROM NODE
202.00 TO NODE
203.00 IS CODE = 31
I
----------------------------------------------------.-------------------.-----
I
1J\
I
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
I
----------------------------------------------------------------------------
-----------------------------------------------------.-----------------------
I
ELEVATION DATA, UPSTREAM (FEET) = 1233.30 DOWNSTREAM (FEET) 1228.00
FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.82
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.47
PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 12.58
LONGEST FLOW PATH FROM NODE 201.00 TO NODE 203.00 393.00 FEET.
I
I
****************************************************************************
FLOW PROCESS FROM NODE
203.00 TO NODE
203.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE,
TIME OF CONCENTRATION(MIN.) 12.58
RAINFALL INTENSITY (INCH/HR) = 2.10
TOTAL STREAM AREA (ACRES) = 0.90
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.47
I
**********************************************************************'k*****
FLOW PROCESS FROM NODE
204.00 TO NODE
203.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
---------------______________________________________H______________________
----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)J**.2
INITIAL SUBAREA FLOW-LENGTH = 190.00
UPSTREAM ELEVATION = 1239.00
DOWNSTREAM ELEVATION = 1228.00
ELEVATION DIFFERENCE = 11.00
TC = 0.469*[( 190.00**3)/( 11.00)J**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.955
SINGLE-FAMILY(I-ACRE LOT) RUNOFF COEFFICIENT = .8059
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) ~
6.767
I
I
II
I
0.24
0.10
TOTAL RUNOFF (CFS) ~
0.24
**********************************************************************~~*****
I
FLOW PROCESS FROM NODE
203.00 TO NODE
203.00 IS CODE ~
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AL~E,
TIME OF CONCENTRATION(MIN.) 6.77
RAINFALL INTENSITY (INCH/HR) = 2.96
TOTAL STREAM AREA(ACRES) = 0.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.24
I
I
'?P
I
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 1.47
2 0.24
TC
(MIN. )
12.58
6.77
INTENSITY
(INCH/HOUR)
2.100
2.955
AREA
(ACRE)
0.90
0.10
I
*********************************WARNING************'~*********************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************************************,~*********************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
1. 03
1.64
TABLE **
Tc
(MIN.)
6.77
12.58
INTENSITY
(INCH/HOUR)
2.955
2.100
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 1.64 Tc(MIN.) = 12.5B
TOTAL AREA(ACRES) = 1.00
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00
393.00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
203.00 TO NODE
205.00 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
----------------------------------------------------------------------.------
----------------------------------------------------------------------.------
I
ELEVATION DATA: UPSTREAM (FEET) = 1228.00 DOWNSTREAM (FEET) 1226.00
FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.24
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 1.64
PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 12.64
LONGEST FLOWPATH FROM NODE 201. 00 TO NODE 205.00 422.00 FEIlT.
I
I
**********************************************************************,~*****
FLOW PROCESS FROM NODE
205.00 TO NODE
206.00 IS CODE = 51
------------------------------------------------------.----------------.------
I
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1226.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 104.00 CHANNEL SLOPE
CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
CHANNEL FLOW THRU SUBAREA (CFS) = 1.64
FLOW VELOCITY(FEET/SEC) = 3.61 FLOW DEPTH (FEET) =
TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 13.12
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
122~). 00
0.0096
I
2 _ 00
0.34
206.00
526.00 FEET.
I
I
'?'
I
I
****************************************************************************
FLOW PROCESS FROM NODE
206.00 TO NODE
206.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-----------------------------------------------------.-----------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.12
RAINFALL INTENSITY(INCH/HR) = 2.05
TOTAL STREAM AREA (ACRES) = 1.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.64
I
****************************************************************************
I
FLOW PROCESS FROM NODE
207.00 TO NODE
208.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
----------------------------------------------------------------------------
-----------------------------------------------------.-----------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 238.00
UPSTREAM ELEVATION = 1237.00
DOWNSTREAM ELEVATION = 1227.00
ELEVATION DIFFERENCE ~ 10.00
TC ~ 0.469*[( 238.00**3)/( 10.00)]**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 2.715
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .7987
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
7.896
I
I
1.73
0.80
TOTAL RUNOFF(CFS) ~
1. 73
I
**********************************************************************k*****
FLOW PROCESS FROM NODE
208.00 TO NODE
206.00 IS CODE ~ 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
-----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1227.00 DOWNSTREAM (FEET) 1225.00
FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.93
ESTIMATED PIPE DIAMETER(INCH) ~ 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 1.73
PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 7.9~
LONGEST FLOWPATH FROM NODE 207.00 TO NODE 206.00 248.00 FEET.
I
I
****************************************************************************
FLOW PROCESS FROM NODE
206.00 TO NODE
206.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
------------------------------------------------------.----------------.------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 7.92
RAINFALL INTENSITY (INCH/HR) = 2.71
I
I
,I
TOTAL STREAM AREA (ACRES) = 0.80
PEAK FLOW RATE(CFS) AT CONFLUENCE =
1. 73
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 1.64
2 1.73
Tc
(MIN. )
13 .12
7.92
INTENSITY
(INCH/HOUR)
2.052
2.711
AREA
(ACRE)
1.00
0.80
I
*********************************WARNING************'~*********************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED 1S BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
I
**************************************************************************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
2.72
2.95
TABLE **
Tc
(MIN. )
7.92
13 .12
INTENSITY
( INCH/HOUR)
2.711
2.052
I
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) =
LONGEST FLOWPATH FROM
ESTIMATES ARE
2.72
1. 80
NODE
AS FOLLOWS:
Tc (MIN.) =
7.9:2
I
I I
201.00 TO NODE
206.00
526.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
206.00 TO NODE
209.00 IS CODE = 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
I I
II
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1225.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 56.00 CHANNEL SLOPE
CHANNEL BASE (FEET) = 1. 00 "Z" FACTOR = 1. 000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
CHANNEL FLOW THRU SUBAREA (CFS) = 2.72
FLOW VELOCITY(FEET/SEC) = 6.76 FLOW DEPTH(FEET) =
TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 8.05
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
1223.00
0.0357
:2.00
0.31
209.00
582.00 FEET.
****************************************************************************
I
FLOW PROCESS FROM NODE
209.00 TO NODE
210.00 IS CODE = 52
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
I
----------------------------------------------------------------------.------
-----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1223.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA (CFS) = 2.72
FLOW VELOCITY(FEET/SEC) = 5.81 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME (MIN.) = 0.50 Tc(MIN.) 8.56
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
1168.00
0.31013
MANUAL)
I
210.00 =
757.00 FEET.
I
?JV
I
I
*****************************************************~~*********************
I
FLOW PROCESS FROM NODE
209.00 TO NODE
210.00 IS CODE = B1
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
I
I
10 YEAR RAINFALL INTENSITY (INCH!HOUR) = 2.597
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .76B5
SOIL CLASSIFICATION IS "D"
SUBAREA AREA(ACRES) 0.70
TOTAL AREA (ACRES) 2.50
TC(MIN) = B.56
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
1. 40
4.12
I
*****************************************************,,**********************
FLOW PROCESS FROM NODE
210.00 TO NODE
210.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) B.56
RAINFALL INTENSITY (INCH!HR) = 2.60
TOTAL STREAM AREA (ACRES) = 2.50
PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.12
I
****************************************************************************
FLOW PROCESS FROM NODE
211.00 TO NODE
212.00 IS CODE = 21
I
------------------------------------------------------.----------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------------------------------------.------
----------------------------------------------------------------------.------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(1!2 ACRE)
TC = K*[(LENGTH**3)!(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 265.00
UPSTREAM ELEVATION = 1217.00
DOWNSTREAM ELEVATION = 1214.00
ELEVATION DIFFERENCE = 3.00
TC = 0.422*[( 265.00**3)!( 3.00)]**.2
10 YEAR RAINFALL INTENSITY (INCH!HOUR) = 2.433
SINGLE-FAMILY (1!2 ACRE LOT) RUNOFF COEFFICIENT = .3166
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
9.637
I
I
I
0.79
0.40
TOTAL RUNOFF(CFS) =
0.79
**********************************************************************~*****
I
FLOW PROCESS FROM NODE
212.00 TO NODE
213.00 IS CODE = 31
----------------------------------------------------------------------..-----
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
----------------------------------------------------.-------------------------
----------------------------------------------------.-------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1214.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 12.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 1B.000
DEPTH OF FLOW IN 1B.0 INCH PIPE IS 2.B INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) 4.63
ESTIMATED PIPE DIAMETER(INCH) 1B.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 0.79
1213.00
1
I
I
?;'O
I
I
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
0.04 Tc(MIN.) =
211. 00 TO NODE
9.68
213.00
277.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
213.00 TO NODE
210.00 IS CODE ~ 52
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
----------------------------------------------------------------------------
-----------------------------------------------------.-----------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1213.00 DOWNSTREAM (FEET) =
CHANNEL LENGTH THRU SUBAREA (FEET) ~ 129.00 CHANNEL SLOPE =
NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 0.79
FLOW VELOCITY(FEET/SEC) = 4.74 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) ~ 0.45 Tc(MIN.) 10.13
LONGEST FLOWPATH FROM NODE 211.00 TO NODE
1168.00
0.3488
I
MANUAL)
I
210.00 =
406.00 FEET.
******************************************************~*********************
FLOW PROCESS FROM NODE
210.00 TO NODE
210.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
-----------------------------------------------------.-----------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 10.13
RAINFALL INTENSITY (INCH/HR) = 2.37
TOTAL STREAM AREA (ACRES) = 0.40
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.79
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 4.12
2 0.79
Tc
(MIN. )
8.56
10.13
INTENSITY
( INCH/HOUR)
2.597
2.366
AREA
(ACRE)
2.50
0.40
I
*********************************WARNING************'~*********************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
I
*********************************************************************~****
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
4.79
4.55
TABLE * *
TC
(MIN. )
8.56
10.13
INTENSITY
( INCH/HOUR)
2.597
2.366
I
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) ~
LONGEST FLOWPATH FROM
ESTIMATES ARE
4.79
2.90
NODE
AS FOLLOWS:
Tc (MIN.) =
8.56
201. 00 TO NODE
210.00
757.00 FEET.
I
I
~
I
I
FLOW PROCESS FROM NODE
301.00 TO NODE
*****************************************************.k**********************
302.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 214.00
UPSTREAM ELEVATION = 1226.00
DOWNSTREAM ELEVATION = 1170.00
ELEVATION DIFFERENCE = 56.00
TC = 0.709*[( 214.00**3)/( 56.00)]**.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
0.63
0.30
TOTAL RUNOFF (CFS) =
0.63
COVER
7.934
2.707
FLOW PROCESS FROM NODE
401.00 TO NODE
****************************************************************************
402.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 137.00
UPSTREAM ELEVATION = 1225.00
DOWNSTREAM ELEVATION = 1195.00
ELEVATION DIFFERENCE = 30.00
TC = 0.469*[( 137.00**3)/( 30.00)]**.2 4.550
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.491
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8187
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
I
0.86
0.30
TOTAL RUNOFF(CFS) =
0.86
I
501. 00 TO NODE
*****************************************************1r****************k*****
502.00 IS CODE = 21
FLOW PROCESS FROM NODE
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 196.00
UPSTREAM ELEVATION = 1258.00
DOWNSTREAM ELEVATION = 1230.00
ELEVATION DIFFERENCE = 28.00
TC = 0.709*[( 196.00**3)/( 28.00)]**.2
10 YEAR RAINFALL INTENSITY(INCH/HOUR)
SOIL CLASSIFICATION IS liD"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
0.79
0.40
TOTAL RUNOFF(CFS) =
0.79
I
COVER
8.646
2.582
****************************************************************************
I
/'
?~
I
I
FLOW PROCESS FROM NODE
601.00 TO NODE
602.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------.-----------------------
----------------------------------------------------_.-----------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS, UNDEVELOPED WITH FAIR COVER
TC ~ K* [(LENGTH**3)! (ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 166.00
UPSTREAM ELEVATION = 1257.90
DOWNSTREAM ELEVATION = 1252.00
ELEVATION DIFFERENCE = 5.90
TC = 0.709*[( 166.00**3)!( 5.90)]**.2 10.685
10 YEAR RAINFALL INTENSITY(INCH!HOUR) 2.298
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS) 0.52
TOTAL AREA (ACRES) = 0.30 TOTAL RUNOFF(CFS) = 0.52
I
I
I
+----------------------------------------------------.----------------------+
I FLOW ENTERS EXISTING PAUBA ROAD
I
I
I
+---------------------------------------------------- ----------------------+
=============================================================================
I
END OF STUDY SUMMARY,
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS)
0.30 TC(MIN.) ~
0.52
10.69
======================================================================:======
I
!I
I
'I
======================================================================:======
END OF RATIONAL METHOD ANALYSIS
1
I
I
I
I
I
I
I
,?fc
II
,I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
il
I
100- YEAR POST-DEVELOPMENT CONDITIONS
~1
I
.
****************************************************************************
I
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAl,
(C) Copyright 1982-2000 Advanced Engineering Software (aes)
Ver. 1.5A Release Date: 01/01/2000 License ID 1503
I
Analysis prepared by:
I
PREPARED BY: LANDMARK CONSULTING
9555 GENESEE AVENUE, SUITE 200
SAN DIEGO, CA 92121
PHONE: (858) 587-8070, FAX: (858) 587-8750
I
************************** DESCRIPTION OF STUDY ****,~*********************
I
, PAUBA ROAD, TM. TEMECULA, CALIFORNIA
, 100-YEAR HYDROLGY ANALYSIS (POST-DEVELOPMENT CONDITIONS)
'BY: DY
,
,
,
**************************************************************************
.
FILE NAME: 692POST.DAT
TIME/DATE OF STUDY: 11:11 08/02/2002
I
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
I
USER SPECIFIED STORM EVENT (YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 2.360
10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 0.880
100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480
100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.300
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505"132
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 l-HOUR INTENSITY (INCH/HOUR) = 1.300
SLOPE OF INTENSITY DURATION CURVE = 0.5496
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
'USER-DEFINED STREET-SECTrONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL'
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: ~1NNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
I
II
I
!.
.
--------- ----------------- ------ ------ ----- --------
--------- ----------------- ------ ------ -.------
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
2 12.0 7.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150
I
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)' (Velocity) Constraint = 5.0 (FT'FT/S)
'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.'
I
.
****************************************************************************
I
~
I
I
FLOW PROCESS FROM NODE
101.00 TO NODE
102.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
----------------------------------------------------------------------------
-----------------------------------------------------.--"---------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 200.00
UPSTREAM ELEVATION = 1257.90
DOWNSTREAM ELEVATION = 1248.50
ELEVATION DIFFERENCE = 9.40
TC = 0.709*[( 200.00**3)/( 9.40)]**.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
COVER
I
10.886
3.321
I
0.79
0.30
TOTAL RUNOFF (CFS) =
0.79
I
*****************************************************k**********************
FLOW PROCESS FROM NODE
102.00 TO NODE
103.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
----------------------------------------------------------------------------
-----------------------------------------------------.-----------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1245.50 DOWNSTREAM (FEET) 1240.80
FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.25
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 0.79
PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 10.95
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 224.00 FEET.
I
I
****************************************************************************
I
FLOW PROCESS FROM NODE
103.00 TO NODE
103.00 IS CODE =
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-----------------------------------------------------,-----------------------
----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 P~E,
TIME OF CONCENTRATION(MIN.) = 10.95
RAINFALL INTENSITY (INCH/HR) = 3.31
TOTAL STREAM AREA(ACRES) = 0.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.79
I
I
*****************************************************k+*********************
FLOW PROCESS FROM NODE
104.00 TO NODE
103.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 145.00
UPSTREAM ELEVATION = 1251.20
DOWNSTREAM ELEVATION 1240.80
ELEVATION DIFFERENCE 10.40
I
I
I
~
I
I
I
TC = 0.303*[( 145.00**3)/( 10.40)]**.2 = 3.758
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.093
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ~ .8928
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
0.45
0.10
TOTAL RUNOFF(CFS) ~
0.45
I
*****************************************************.~~*********************
I
FLOW PROCESS FROM NODE
103.00 TO NODE
103.00 IS CODE ~
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
-----------------------------------------------------.-----------------------
-----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 5.00
RAINFALL INTENSITY (INCH/HR) = 5.09
TOTAL STREAM AREA(ACRES) = 0.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.45
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 0.79
2 0.45
Tc
(MIN. )
10.95
5.00
INTENSITY
( INCH/HOUR)
3.311
5.093
AREA
(ACRE)
0.30
0.10
I
I
*********************************WARNING*****************************k****
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALliE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
I
****************************************************~****************k****
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
0.82
1. 09
TABLE **
Tc
(MIN. )
5.00
10.95
INTENSITY
(INCH/HOUR)
5.093
3.311
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 1.09 Tc(MIN.) = 10.95
TOTAL AREA(ACRES) = 0.40
LONGEST FLOW PATH FROM NODE 101.00 TO NODE 103.00
224.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
103.00 TO NODE
105.00 IS CODE = 62
I
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>> (STREET TABLE SECTION # 2 USED) <<<<<
I
----------------------------------------------------------------------.------
-----------------------------------------------------------------------------
UPSTREAM ELEVATION(FEET) = 1240.80 DOWNSTREAM ELEVATION(FEET) = 122!i.00
STREET LENGTH(FEET) = 247.00 CURB HEIGHT (INCHES) ~ 6.0
STREET HALFWIDTH(FEET) = 12.00
I
I
/vJ
I
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 7.00
INSIDE STREET CROSSFALL(DECIMAL} ~ 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.020
I
II
SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section (curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200
0.0150
I
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTH(FEET) ~ 0.21
HALFSTREET FLOOD WIDTH(FEET) = 4.26
AVERAGE FLOW VELOCITY(FEET/SEC.) 4.09
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.87
STREET FLOW TRAVEL TIME(MIN.) = 1.01 Tc(MIN.)
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.155
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8889
SOIL CLASSIFICATION IS nDn
SUBAREA AREA (ACRES) 0.10
TOTAL AREA (ACRES) = 0.50
1. 23
I
11.96
I
I
SUBAREA RUNOFF(CFS)
PEAK FLOW RATE(CFS)
0.28
1. 37
I
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) = 0.22 HALFSTREET FLOOD WIDTH (FEET) 4.59
FLOW VELOCITY (FEET/SEC.) = 4.16 DEPTH*VELOCITY(FT*FT/SEC.) =
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 471.00
0.91
FEET.
I
*****************************************************,~**********************
FLOW PROCESS FROM NODE
105.00 TO NODE
105.00 IS CODE ~
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
I
============================================================================
I
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 11.96
RAINFALL INTENSITY(INCH/HR) ~ 3.15
TOTAL STREAM AREA (ACRES) = 0.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.37
I
*****************************************************,~**********************
FLOW PROCESS FROM NODE
106.00 TO NODE
105.00 IS CODE = 21
------------------------------------r----------------n----------------------
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
=====================================================:=======================
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 337.00
UPSTREAM ELEVATION = 1251.20
DOWNSTREAM ELEVATION = 1225.00
ELEVATION DIFFERENCE = 26.20
TC ~ 0.303*[( 337.00**3)/( 26.20)]**.2
100 YEAR RAINFALL INTENSITY(INCH/HOUR) =
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT
SOIL CLASSIFICATION IS "0"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) ~
5.182
4.994
= .8926
I
I
I
0.89
0.20
TOTAL RUNOFF(CFS)
0.89
I
1>,\
I
I
*****************************************************~**********************
I
FLOW PROCESS FROM NODE
105.00 TO NODE
105.00 IS CODE =
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
=======================================================~=====================
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 5.18
RAINFALL INTENSITY (INCH/HR) = 4.99
TOTAL STREAM AREA (ACRES) = 0.20
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.89
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 1.37
2 0.89
Tc
(MIN. )
11. 96
5.18
INTENSITY
(INCH/HOUR)
3.155
4.994
AREA.
(ACRE)
o . ';0
0.:20
I
I
*********************************WARNING**********************************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
I
**************************************************************************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
* * PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
1.48
1. 93
TABLE **
Tc
(MIN. )
5.18
11.96
INTENSITY
(INCH/HOUR)
4.994
3.155
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE (CFS) 1. 93 Tc (MIN.) = 11.96
TOTAL AREA(ACRES) = 0.70
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00
471. 00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
105.00 TO NODE
107.00 IS CODE = 51
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
I
----------------------------------------------------------------------------
----------------------------------------------------.------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1223.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 75.80 CHANNEL SLOPE
CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
CHANNEL FLOW THRU SUBAREA(CFS) = 1.93
FLOW VELOCITY (FEET/SEC) = 14.47 FLOW DEPTH (FEET) ~,
TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 12.04
LONGEST FLOWPATH FROM NODE 101.00 TO NODE
1190.00
0.4354
0.12
I
107.00
546.80 FEET.
***************************************************~************************
I
FLOW PROCESS FROM NODE
107.00 TO NODE
107.00 IS CODE =
1
I
~'t;
I
,I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
I
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 12.04
RAINFALL INTENSITY (INCH/HR) = 3.14
TOTAL STREAM AREA(ACRES) = 0.70
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.93
I
I
FLOW PROCESS FROM NODE
108.00 TO NODE
*****************************************************,~**********************
107.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
-----------------------------------------------------------------------------
_____________________________________________________n______________________
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 420.00
UPSTREAM ELEVATION = 1256.00
DOWNSTREAM ELEVATION = 1190.00
ELEVATION DIFFERENCE = 66.00
TC = 0.709*[( 420.00**3)/( 66.00)]**.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
3.31
1. 30
TOTAL RUNOFF(CFS) =
3.31
I
COVER
11.506
3.222
107.00 TO NODE
*****************************************************,~**********************
1
FLOW PROCESS FROM NODE
I
107.00 IS CODE =
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 11.51
RAINFALL INTENSITY (INCH/HR) = 3.22
TOTAL STREAM AREA(ACRES) = 1.30
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.31
I
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 1.93
2 3.31
INTENSITY
( INCH/HOUR)
3.142
3.222
Tc
(MIN. )
12.04
11.51
I
AREA
(ACRE)
0.70
1. 30
*********************************WARNING**********************************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK FLOW RATE TABLE **
I
A..~
I
I
STREAM
NUMBER
1
2
RUNOFF
(CFS)
5.16
5.16
Tc
(MIN. )
11.51
12.04
INTENSITY
( INCH/HOUR)
3.222
3.142
I
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 5.16 Tc(MIN.) = 11.51
TOTAL AREA (ACRES) = 2.00
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00
546.80 FEET.
I
*****************************************************,~~*********************
FLOW PROCESS FROM NODE
107.00 TO NODE
109.00 IS CODE = 52
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1190.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) 544.00 CHANNEL SLOPE =
CHANNEL FLOW THRU SUBAREA (CFS) = 5.16
FLOW VELOCITY(FEET/SEC) = 4.91 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) 13.35
LONGEST FLOWPATH FROM NODE 101.00 TO NODE
1161.00
0.0533
MANUAL)
I
109.00 =
1090.80 FEET.
****************************************************************************
I
FLOW PROCESS FROM NODE
107.00 TO NODE
109.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.969
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7828
SOIL CLASSIFICATION IS "D"
SUBAREA AREA(ACRES) 1.60
TOTAL AREA(ACRES) 3.60
TC(MIN) = 13.35
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF(CFS) =
3.72
8.87
I
*****************************************************:~**********************
FLOW PROCESS FROM NODE
201. 00 TO NODE
202.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 369.00
UPSTREAM ELEVATION = 1237.00
DOWNSTREAM ELEVATION = 1233.30
ELEVATION DIFFERENCE = 3.70
TC = 0.469*[( 369.00**3)/( 3.70)]**.2 12.532
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.074
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8091
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
2.24
0.90
TOTAL RUNOFF(CFS) =
2.24
I
I
I
**********************************************************************'k*****
FLOW PROCESS FROM NODE
202.00 TO NODE
203.00 IS CODE = 31
I
I
A."'-
I
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1233.30 DOWNSTREAM (FEET) 1228.00
FLOW LENGTH (FEET) = 24.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.86
ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 2.24
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 12.58
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 393.00 FEET.
I
I
*****************************************************,t**********************
FLOW PROCESS FROM NODE
203.00 TO NODE
203.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 12.58
RAINFALL INTENSITY (INCH/HR) = 3.07
TOTAL STREAM AREA (ACRES) = 0.90
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.24
I
**********************************************************************k*****
FLOW PROCESS FROM NODE
204.00 TO NODE
203.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------------------------------
_____________________________________________________u______________________
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 190.00
UPSTREAM ELEVATION = 1239.00
DOWNSTREAM ELEVATION = 1228.00
ELEVATION DIFFERENCE = 11.00
TC = 0.469*[( 190.00**3)/( 11.00)]**.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.313
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8327
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
6.767
I
I
I
0.36
0.10
TOTAL RUNOFF(CFS) =
0.36
****************************************************************************
I
FLOW PROCESS FROM NODE
203.00 TO NODE
203.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
----------------------------------------------------------------------.------
----------------------------------------------------------------------.------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 6.77
RAINFALL INTENSITY (INCH/HR) = 4.31
TOTAL STREAM AREA(ACRES) = 0.10
PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.36
II
I
A-6
I
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 2.24
2 0.36
Tc
(MIN. )
12.58
6.77
INTENSITY
(INCH/HOUR)
3.068
4.313
AREA,
(ACRE)
0.90
0.10
I
*********************************WARNING**********************************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
1.56
2.49
TABLE **
Tc
(MIN. )
6.77
12.58
INTENSITY
(INCH/HOUR)
4.313
3.068
I
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) 2.49 Tc(MIN.) = 12.58
TOTAL AREA (ACRES) = 1.00
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00
393.00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
203.00 TO NODE
205.00 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
I
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1228.00 DOWNSTREAM (FEET) 1226.00
FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 9.33
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 2.49
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 12.63
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 422.00 FEET.
I
I
**********************************************************************'W*****
FLOW PROCESS FROM NODE
205.00 TO NODE
206.00 IS CODE = 51
I
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
----------------------------------------------------------------------------
-------______________________________________________u______________________
I
ELEVATION DATA: UPSTREAM (FEET) = 1226.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 104.00 CHANNEL SLOPE
CHANNEL BASE (FEET) = 1. 00 "Z" FACTOR = 1. 000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) =
CHANNEL FLOW THRU SUBAREA(CFS) = 2.49
FLOW VELOCITY(FEET/SEC) = 4.13 FLOW DEPTH (FEET) =
TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 13.05
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
122.5.00
0.0096
2.00
I
0.42
206.00
526.00 FEET.
I
I
/>(D
I
I
****************************************************************************
FLOW PROCESS FROM NODE
206.00 TO NODE
206.00 [S CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 13.05
RAINFALL INTENSITY (INCH/HR) = 3.01
TOTAL STREAM AREA(ACRES) = 1.00
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49
I
****************************************************************************
I
FLOW PROCESS FROM NODE
207.00 TO NODE
208.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
----------------------------------------------------------------------------
-------------------------------------------------__-_0_______________________
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 238.00
UPSTREAM ELEVATION = 1237.00
DOWNSTREAM ELEVATION = 1227.00
ELEVATION DIFFERENCE = 10.00
TC = 0.469*[( 238.00**3)/( 10.00)]**.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.962
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8274
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
7.896
I
I
2.62
0.80
TOTAL RUNOFF(CFS) =
2.62
I
****************************************************************************
FLOW PROCESS FROM NODE
208.00 TO NODE
206.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURIl FLOW) <<<<<
----------------------------------------------------------------------------
-----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1227.00 DOWNSTREAM (FEET) 1225.00
FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 8.94
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW (CFS) = 2.62
PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 7.91
LONGEST FLOWPATH FROM NODE 207.00 TO NODE 206.00 248.00 FEET.
I
I
**********************************************************************.~*****
FLOW PROCESS FROM NODE
206.00 TO NODE
206.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
------------------------------------------------------.----------------------
-----------------------------------___________________---------------_0_____-
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 7.91
RAINFALL INTENSITY (INCH/HR) = 3.96
I
A1
I
I
TOTAL STREAM AREA (ACRES) = 0.80
PEAK FLOW RATE(CFS) AT CONFLUENCE =
2.62
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 2.49
2 2.62
Tc
(MIN. )
13.05
7.91
INTENSITY
(INCH/HOUR)
3.006
3.957
AREA
(ACRE)
1. 00
0.80
I
* * * * * * * * * * * * * * * * * * * * * * * ** * * * ** * * *WARNING* * * * * * * * * * * * 'k ",. * * * * * * * * * * * * ** * ** * * *
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VlI_LlJE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
I
**************************************************************************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
4.14
4.49
TABLE **
Tc
(MIN. )
7.91
13.05
INTENSITY
(INCH/HOUR)
3.957
3.006
I
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) =
LONGEST FLOWPATH FROM
ESTIMATES ARE
4.14
1. 80
NODE
AS FOLLOWS:
Tc(MIN_) ~
7.91
I
201. 00 TO NODE
206.00
526.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
206.00 TO NODE
209.00 IS CODE = 51
I
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1225.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 56.00 CHANNEL SLOPE
CHANNEL BASE (FEET) = 1. 00 " Z" FACTOR = 1. 0 0 0
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
CHANNEL FLOW THRU SUBAREA(CFS) = 4.14
FLOW VELOCITY(FEET/SEC) ~ 7.58 FLOW DEPTH(FEET) ~
TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 8.04
LONGEST FLOW PATH FROM NODE 201.00 TO NODE
1223.00
0.0357
I
0.39
I
209.00
582.00 FEET.
*****************************************************..,**********************
I
FLOW PROCESS FROM NODE
209.00 TO NODE
210.00 IS CODE = 52
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
I
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) ~ 1223.00 DOWNSTREAM (FEET)
CHANNEL LENGTH THRU SUBAREA (FEET) = 175.00 CHANNEL SLOPE
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) ~ 4.14
FLOW VELOCITY(FEET/SEC) ~ 6.38 (PER LACFCD/RCFC&WCD HYDROLOGY
TRAVEL TIME(MIN.) ~ 0.46 Tc(MIN.) 8.49
LONGEST FLOWPATH FROM NODE 201.00 TO NODE
1168.00
0.3143
MANUAL)
I
210.00 =
757.00 FEET.
I
A.rc
I
I
****************************************************************************
I
FLOW PROCESS FROM NODE
209.00 TO NODE
210.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
----------------------------------------------------,-------------------------
----------------------------------------------------------------------------
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.806
UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8059
SOIL CLASSIFICATION IS "D"
SUBAREA AREA(ACRES) 0.70
TOTAL AREA(ACRES) 2.50
TC(MIN) = 8.49
SUBAREA RUNOFF(CFE)
TOTAL RUNOFF (CFS) =
2.15
6.28
I
I
*****************************************************k**********************
FLOW PROCESS FROM NODE
210.00 TO NODE
210.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-----------------------------------------------------,-----------------------
----------------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 P~E:
TIME OF CONCENTRATION(MIN.) 8.49
RAINFALL INTENSITY(INCH/HR) = 3.81
TOTAL STREAM AREA(ACRES) = 2.50
PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.28
I
*****************************************************k*.*********************
FLOW PROCESS FROM NODE
211.00 TO NODE
212.00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(1/2 ACRE)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 265.00
UPSTREAM ELEVATION = 1217.00
DOWNSTREAM ELEVATION = 1214.00
ELEVATION DIFFERENCE = 3.00
TC = 0.422*[( 265.00**3)/( 3.00)]**.2
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.551
SINGLE-FAMILY(1/2 ACRE LOT) RUNOFF COEFFICIENT = .8399
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
9.637
I
I
I
1.19
0.40
TOTAL RUNOFF(CFS) =
1.19
*****************************************************~**********************
I
FLOW PROCESS FROM NODE
212.00 TO NODE
213.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
----------------------------------------------------------------------------
-----------------------------------------------------.-----------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1214.00 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 12.00 MANNING'S N = 0.024
ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 5.20
ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 1.19
1213.00
1
I
I
/:i(\
I
I
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
0.04 Tc(MIN.) =
211.00 TO NODE
9.68
213.00
277.00 FEET.
I
***************************************************~.************************
FLOW PROCESS FROM NODE
213.00 TO NODE
210.00 IS CODE = 52
I
>>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA<<<<<
====================================================:========================
I
ELEVATION DATA: UPSTREAM (FEET) = 1213.00 DOWNSI'REAM (FEET)
CHANNEL LENGTH THRU SUBAREA(FEET) = 129.00 CHANNEL SLOPE
NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION
CHANNEL FLOW THRU SUBAREA(CFS) = 1.19
FLOW VELOCITY (FEET/SEC) = 4.91 (PER LACFCD/RCFC&,WCD HYDROLOGY
TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) 10.11
LONGEST FLOWPATH FROM NODE 211.00 TO NODE
1168.00
0.3488
I
MANUAL)
210.00 =
406.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
210.00 TO NODE
210.00 IS CODE =
1
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUEE<<<<<
----------------------------------------------------------------------------
-----------------------------------------------------.-----------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 10.11
RAINFALL INTENSITY (INCH/HR) = 3.46
TOTAL STREAM AREA (ACRES) = 0.40
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.19
I
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 6.28
2 1.19
Tc
(MIN. )
8.49
10.11
INTENSITY
( INCH/HOUR)
3.806
3.458
AREA
(ACRE)
2.50
0.40
I
*********************************WARNING************'~*********************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
****************************************************:~*********************
I
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFS)
7.28
6.90
TABLE **
Tc
(MIN. )
8.49
10.11
INTENSITY
(INCH/HOUR)
3.806
3.458
I
I
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) =
LONGEST FLOWPATH FROM
ESTIMATES ARE
7.28
2.90
NODE
AS FOLLOWS:
Tc(MIN.) =
8.49
201.00 TO NODE
210.00
757.00 FEET.
I
****************************************************************************
I
~
I
II
FLOW PROCESS FROM NODE
301. 00 TO NODE
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
302.00 IS CODE = 21
I
-----------------------------------------------------------------------------
-------------------------------------------------------.---------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC ~ K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 214.00
UPSTREAM ELEVATION = 1226.00
DOWNSTREAM ELEVATION ~ 1170.00
ELEVATION DIFFERENCE = 56.00
TC ~ 0.709*[( 214.00**3)/( 56.00)]**.2
100 YEAR RAINFALL INTENSITY(INCH/HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
0.96
0.30
TOTAL RUNOFF(CFS) =
0.96
I
COVEF,
7.934
3.952
401.00 TO NODE
*****************************************************-k**********************
402.00 IS CODE = 21
FLOW PROCESS FROM NODE
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
-----------------------------------------------------.-----------------------
-------------------------------------------------------.---------------------
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS)
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 137.00
UPSTREAM ELEVATION = 1225.00
DOWNSTREAM ELEVATION = 1195.00
ELEVATION DIFFERENCE = 30.00
TC ~ 0.469*[( 137.00**3)/( 30.00)]**.2 4.550
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 5.093
SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT ~ .8422
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
I
I
1. 29
0.30
TOTAL RUNOFF(CFS) =
1.29
I
501.00 TO NODE
*****************************************************,~**********************
502.00 IS CODE = 21
FLOW PROCESS FROM NODE
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
----------------------------------------------------------------------------
-----------------------------------------------------------------------------
COVER
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR
TC ~ K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 196.00
UPSTREAM ELEVATION = 1258.00
DOWNSTREAM ELEVATION = 1230.00
ELEVATION DIFFERENCE = 28.00
TC = 0.709*[( 196.00**3)/( 28.00)]**.2
100 YEAR RAINFALL INTENSITY (INCH!HOUR)
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) =
I
I
1. 21
0.40
TOTAL RUNOFF(CFS) ~
1. 21
8.646
3.770
I
601.00 TO NODE
**********************************************************************k*****
602.00 IS CODE ~ 21
FLOW PROCESS FROM NODE
I
.;\
I
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
-----------------------------------------------------.-----------------------
----------------------------------------------------------------------------
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH = 166.00
UPSTREAM ELEVATION = 1257.90
DOWNSTREAM ELEVATION = 1252.00
ELEVATION DIFFERENCE = 5.90
TC = 0.709*[( 166.00**3)/( 5.90)]**.2 10.685
100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.356
SOIL CLASSIFICATION IS "D"
SUBAREA RUNOFF (CFS) 0 . 80
TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 0.80
I
I
I
+----------------____________________________________n_____________________+
FLOW ENTERS EXISTING PAUBA ROAD
I
+---------------------------------------------------------------------------+
-----------------------------------------------------~-----------------------
-----------------------------------------------------------------------------
I
END OF STUDY SUMMARY:
TOTAL AREA (ACRES)
PEAK FLOW RATE(CFS)
0.30 TC(MIN.) =
0.80
10.69
-----------------------------------------------------------------------------
------------------------------------------------------.----------------------
----------------------------------------------------------------------._-----
----------------------------------------------------------------------.------
I
END OF RATIONAL METHOD ANALYSIS
1
I
I
I
I
I
I
I
I
I
~z;
I
I
I
I
I
I
I
I
I
I
I
I
I
il
I
I
II
I
I
I
I
HYDRAULIC CALCULA nONS
?~
I
I
I
I
I
I
I
I
I
I
II
I
II
i
I
I
I
I
I
I
lOO-YEAR HYDRAULIC CALCULATIONS
6-\
I
I
STORM DRAIN SD1 CAPACITY
Worksheet for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
SD1. NODE 10:
Circular Chanm
Manning's Fom
Full Flow Capa(
I
Input Data
Mannings Goaffie l024
Slope 19.60 %
Diameter 12 in
I
I
I
Results
Depth 12.0 in
Discharge 8.54 efs
Flow Area 0.8 ft2
Wetted Perime 3.14 ft
Top Width 0.00 ft
Critical Depth 0.99 ft
Percent Full 100.0 %
Critical Slope 17.96 %
Velocity 10.88 IVs
Veiocity Head 1.84 ft
Specific Energ: 34.1 in
Froude Numbe 0.00
Maximum Disc 9.19 ets
Discharge Full 8.54 efs
Slope Full 19.60 %
Flow Type N/A
I
I
I
I
I
I
I
I
I
I
I
I
g:\projeds\69-2\hydro\sd.fm2 landmark Consulting
08/02102 01:38:02 PM @HaestadMethods. Inc. 37 Brookside Road Waterbury, CT 06700 USA (203) 755-1666
Project Engineer: David Yeh
FlowMaster v6.1 {614k]
Page 1 of 1
~
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
SD1. NODE 1(
Circular Chann
Manning's Fon
Channel Depth
I
Input Data
Mannings Coeffic ),024
Slope 19.60 %
Diameter 12 in
Discharge 0.80 efs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
2.5 in
0.1 It'
0.94 It
0.81 It
0.37 It
20.7 %
1.94 %
6.82 fils
0.72 It
11.2 in
3.16
9.19 cfs
8.54 cfs
0.17 %
)upercritical
I
I
I
I
I
I
I
I
STORM DRAIN ACTUAL FLOW
Worksheet for Circular Channel
I
g:\projects\69-2\hydro\sd.fm2
08/02/02 01 :37:27 PM @Haestad Methods. Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh A.'
FiowMaster v6.1 [614k] c./''&>
(203) 755-1666 Page 1 of 1
I
I
Cross Section
Cross Section for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
8D1. NODE 1(
Circular Chaon
Manning's Fan
Channel Deptn
Section Data
I
Mannings Coaffie ),024
Slope 19.60 %
Depth 2.5 in
Diameter 12 in
Discharge 0.80 cfs
I
I
I
I
I
I
I
II
I
I
I
I
I
t
2.5 in
-L__
I
g;\projects\69-2\hydro\sd.fm2
08/02102 01 :37:35 PM @Haestad Methods. Inc.
landmark Consulting
37 Brookside Road Wateroury. CT 06708 USA
12 in
V:1~
H:1
NTS
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
51
I
I
STORM DRAIN SD2 CAPACITY
Worksheet for Circular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
502, NODE 20:
Circular Chann~
Manning's Fom
Full Flow Caps(
I
I
I
Input Data
Mannings Coefficl024
Slope 22.00 %
Diameter 12 in
I
Results
Depth 12.0 in
Discharge 9.05 efs
Flow Area 0.8 ft2
Wetted Perime 3.14 ft
Top Width 0.00 ft
Critical Depth 0.99 ft
Percent Full 100.0 %
Critical Slope 20.33 %
Velocity 11.52 fVs
Velocity Head 2.06 ft
Specific Energ: 36.8 in
Froude Numbe 0.00
Maximum Disc 9.74 efs
Discharge Full 9.05 efs
Slope Full 22.00 %
Flow Type N/A
I
I
I
I
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2 Landmark ConsulUng
08/02102 01 :40:05 PM @ Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 0670n USA (203) 755-1666
Project Engineer: David Yeh
FlowMaster v6. 1 {614k}
Page 1 of 1
':J1t(;
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
502. NODE 2(
Circular Chaon
Manning's Farr
Channel Depth
I
I
Input Data
Mannings Coeffic ),024
Slope 22.00 %
Diameter 12 in
Discharge 2.20 efs
I
Results
Depth 4.0 in
Flow Area 0.2 ft'
Wetted Perime 1.24 ft
Top Width 0.94 ft
Critical Depth 0.63 ft
Percent Full 33.6 %
Critical Slope 2.44 %
Velocity 9.50 ft/s
Velocity Head 1.40 ft
Specific Energ: 20.9 in
Fraude Numbe 3.38
Maximum Disc 9.74 cfs
Discharge Full 9.05 cfs
Slope FuJI 1.30 %
Flow Type ~upercritical
I
I
I
I
I
I
I
I
I
I
I
I
I
STORM DRAIN SD2 ACTUAL FLOW
Worksheet for Circular Channel
g:\projects\69-2\hydro\sd.fm2
08/02102 01 :40:29 PM @Haestad Methods, Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06700 USA
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
~
I
I
Cross Section
Cross Section for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
SD2, NODE 2(
Circular Chann
Manning's Fan
Channel Depth
Section Data
I
Mannings Coaffie ).024
Slope 22.00 %.
Depth 4.0 in
Diameter 12 in
Discharge 2.20 cfs
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1__
I
g:\projects\69-2\hydro\sd.fm2
08/02102 01 :40:38 PM @Haestad Methods. Inc.
Landmark Consutting
37 Brookside Road Waterbury, CT 06700 USA
12 in
V:1~
H:1
NTS
Project Engineer: David Yeh
FlowMasterv6.1 {614k]
(203) 755-1666 Page 1 of 1
I
STORM DRAIN SD3 CAPACITY
Worksheet for Circular Channel
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
SD3, NODE 20:
Circular Chanm
Manning's FOnT
Full Flow Capa(
I
Input Data
Mannings Coeffie ).024
Slope 6.90 %
Diameter 12 in
I
I
I
Results
Depth 12.0 in
Discharge 5.07 cfs
Flow Area 0.8 ft'
Wetted Perime 3.14 ft
Top Width 0.00 ft
Critical Depth 0.92 ft
Percent Full 100.0 %
Critical Slope 5.99 %
Velocity 6.45 ftIs
Velocity Head 0.65 ft
Specific Energ: 19.8 in
Fraude Numbe 0.00
Maximum Disc 5.45 cfs
Discharge Full 5.07 cfs
Slope Full 6.90 %
Flow Type N/A
I
I
I
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02102 01:42:41 PM @HaestadMethods. Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh
FlowMasterv6.1 [614k] r.p
(203) 755-1666 Page 1 of 1
'I
I
STORM DRAIN SD3 ACTUAL FLOW
Worksheet for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
803, NODE 2(
Circular Chann
Manning's Forr
Channel Depth
I
Input Data
Mannings Coeffie ).024
Slope 6.90 %
Diameter 12 in
Discharge 2.50 efs
I
Results
I
Depth
Flow Area
Wetted Peri me
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Frauds Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
6.0 in
0.4 ff~
1.56 ft
1.00 ft
0.68 ft
49.6 %
2.61 %
6.43 It's
0.64 ft
13.7 in
1.82
5.45 cfs
5.07 cfs
1.68 %
)upercritical
I
I
I
I
I
I
I
I
I
Projecl Engineer: David Yeh
g:\projects\69-2\hydro\sd.fm2 Landmark Consulting FlowMaster v6.1 [614k] ~
08/02102 01 :42:13 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
I
I
Cross Section
Cross Section for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
803. NODE 2(
Circular Chann
Manning's Forr
Channel Depth
I
Section Data
Mannings Coeffic ).024
Slope 6.90 %
Depth 6.0 in
Diameter 12 in
Discharge 2.50 cfs
I
I
I
I
I
I
II
I
I
I
I
I
I
I
1
6.0 in
1__
I
g:\projects\69-2\hydro\sd.fm2
08102/02 01 :42:22 PM @ Haestad Methods, Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06700 USA (203) 755-1666
12 in
V:1b,.
H:1
NTS
Project Engineer. David Yeh
FlowMaster v6.1 [614k]
Page 1 of 1
~
I
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
STORM DRAIN SD4 CAPACITY
Worksheet for Circular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
SD4. NODE 21:
Circular Channf
Manning's Forn
Full Flow Capa(
Input Data
Mannings Coeffie ).024
Slope 8.33 %
Diameter 12 in
Results
Depth 12.0 in
Discharge 5.57 cfs
Flow Area 0.8 ft2
Wetted Perime 3.14 ft
Top Width 0.00 ft
Critical Depth 0.94 ft
Percent Full 100.0 %
Critical Slope 7.20 %
Velocity 7.09 fUs
Velocity Head 0.78 ft
Specific Energ: 21.4 in
Fraude Numbe 0.00
Maximum Disc 5.99 efs
Discharge Full 5.57 cfs
Slope Full 8.33 %
Flow Type N/A
Projec1 Engineer: David Yeh (p~
g:\projects\69-2\hydro\sd.fm2 Landmark Consulting FlowMaster v6.1 [614k]
08102102 01:48:20 PM @HaestadMethods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
604. NODE 21
Circular Chann
Manning's Fan
Channel Depth
I
Input Data
Mannings Coeffic ).024
Slope 8.33 %
Diameter 12 in
Discharge 1.20 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
I
3.8 in
0.2 If'
1.19 It
0.93 It
0.46 It
31.5 %
2.03 %
5.65 ftIs
0.50 It
9.7 in
2.09
5.99 cIs
5.57 cIs
0.39 %
;upercritical
I
I
I
I
I
I
I
I
STORM DRAIN SD4 ACTUAL FLOW
Worksheet for Circular Channel
g:\projects\69-2\hydro\sd. fm2
08102102 01 :48:40 PM @ Haestad Methods. Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh
FlowMasterv6.1 [614k]
(203) 755-1666 Page 1 of 1
f,.~
I
II
Cross Section
Cross Section for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
804. NODE 21
Circular Chann
Manning's Fan
Channel Depth
I
Section Data
Mannings Coeffie l024
Slope 8.33 %
Depth 3.8 in
Diameter 12 in
Discharge 1.20 cfs
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
3.8 in
~--
g:\projects\69-2\hydro\sd.fm2
08/02102 01 :48:50 PM @Haestad Methods. Inc.
Landmark COnsulting
37 Brookside Road Waterbury, CT 06708 USA
12 in
V:1~
H:1
NTS
Project Engineer: David Yeh ,. /
FlowMasterv6.1 [614k] ~
(203) 755-1666 Page 1 of 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
CURB OUTLET
Rectangular Chc
Manning's Forml
Discharge
Input Data
Mannings Coeffie ).013
Slope 2.00 %
Depth 3.0 in
Bottom Width 3.00 It
Results
Discharge 4.34 cfs
Flow Area 0.8 ft:l
Wetted Perifnl 3.50 ft
Top Width 3.00 It
Critical Depth 0.40 It
Critical Slope 0.46 %
Velocity 5.79 IV.
Velocity Head 0.52 It
Specific Eners; 9.2 in
Fraude Numb 2.04
Flow Type )upercritical
g:\projects\69-2\hydro\sd.fm2
08/01/02 02:58:43 PM @ Haestad Methods, Inc.
CURB OUTLET CAPACITY
Worksheet for Rectangular Channel
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh
FlowMaster v6.1 [614~1 (~
(203) 755-1666 Page 1 of rc.p
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
CURB OUTLET
Rectangular Ch<
Manning's Forml
Channel Depth
I
I
Input Data
Mannings eoeffic ).013
Slope 2.00 %
Bottom Width 3.00 ft
Discharge 0.80 cfs
I
I
Results
Depth 1.0 in
Flow Area 0.3 ft2
Wetted Periml 3.17 ft
Top Width 3.00 ft
Critical Depth 0.13 ft
Critical Slope 0.54 %
Velocity 3.06 IVs
Velocity Head 0.15 ft
Specific Enerf 2.8 in
Froude Numb< 1.83
Flow Type )upercritical
I
I
I
I
I
I
I
I
I
I
I
I
CURB OUTLET ACTUAL FLOW
Worksheet for Rectangular Channel
I
g:\projects\69-2\hydro\sd.fm2 Landmark Consulting
08/01/02 02:59:06 PM @HaestadMethods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
Project Engineer: David Yeh
FlowMasterv6.1 [614k]
Page 1 Of~,
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
CURB OUTLET
Rectangular Chc
Manning's Forml
Channel Depth
I
I
Section Data
Mannings Coeffie ).013
Slope 2.00 %
Depth 1.0 in
Bottom Width 3.00 ft
Discharge 0.80 cfs
I
I
I
I
I
I
Cross Section
Cross Section for Rectangular Channel
~
I
I
'I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08101/02 02:59:12 PM @Haestad Methods. Inc.
3.00 ft
Landmark Consulting
37 Brookside Road Waterbury. CT 06708 USA
ITIIn
I
V:1 b,.
H:1
NTS
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1 C:8.
()
m
?>
""
"
"
-<
"
"
"
v
Q
m
Q.
~
"
-<
'tJ'tJ
m)>
;:0;:0
'tJo
:S::m
.....r
cnC/)
COli.)
:::lw
~
'"
Q z
~ 0
z
~ 0
0 0
'" m
m
z
0
0 r
" 0
0 0
c ~
r 6
6
m z
en
;I> ."
0 r
0
~
(flOO
~ C;o c-<
?(j]o s: "
Co -0 "
~~ "
" "
" "
" "
(fl " v
_r "
, >'1.0 ~o
~-o
m 0."
." " .....
000 wr
:E'< 0-:(
_"0
0'" X +
"en ;1>.
~en xtl
0-<0 :;;:':
. .
0 . . m 'w
'" ---0 ::1\5
0 ~~-i
~~I w
X
r qCi5
-~z .m
. ~G>hi Om
--i-i "'z
I 0
-i
m
r ~
~ (fl_~z
w ~21G)hi
..... --i-i
-0 I
ro
_~m
'" ~Gl~
--iGl
IZ
~ ~
-0
m -0
~ m
;u
(fl m
c s:
s: ;I>
-0 ;u
:>;
z
o
-i
m
'!?
~~
-i-i
II
mm
q~
;;;;
rr
cc
mm
(fl(fl
II
~~
mm
0000
mm
mm
ZZ
-iO
;l>m
:>;-i
mm
Z;U
"s:
;U-
oiii
s:o
;1>00
::j:':
;l>Z
O-i
Im
m;U
0-0
Oc
I!t:
;I>-i
;U-
-i0
_Z
s:."
S:;U
mQ
OS:
~~
moo
rr
-<m
""
00
rr
rr
00
:;;::;;:
Zz
GlGl
-i-i
II
m-
(fl(fl
m-o
0;1>
;l>Gl
rm
O'
c
~
6
Z
'!?
Q
~
....
()
,
"
~
b~
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
BROW DITCH BDl N(
Circular Channel
Manning's Formula
Channel Depth
I
Input Data
Mannings Coeffie ).015
Slope 13.70 %
Diameter 24 in
Discharge 3.30 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velodty Head
Specific Energ:
Fraude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
3.5 in
0.3 fl2
1.56 ft
1.41 ft
0.64 ft
14.5 %
0.59 %
11.70 IUs
2.13 ft
29.0 in
4.61
78.06 cfs
72.57 cfs
0.03 %
)upercritical
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02/02 02:00:23 PM @ Haestad Methods. Inc.
BROW DITCH BD1 ACTUAL FLOW
Worksheet for Circular Channel
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh 10
FrowMaster v6.1 [614kJ
(203) 755-1666 Page 1 of 1
I
II
Cross Section
Cross Section for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
BROW DITCH BD1 N(
Circular Channel
Manning's Fonnula
Channel Depth
I
Section Data
I
Mannings Coefficl015
Slope 13.70 %
Depth 3.5 in
Diameter 24 in
Discharge 3.30 cfs
I
I
I
I
I
I
24 in
I
-T
3.5 in
I
I
I
V:1~
H:1
NTS
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02/02 02:00:30 PM @Haestad Methods, Inc.
Landmark Consulting
37 Brookside Road Waterbury. CT 0670B USA
Project Engineer: David Yeh
FiowMaster v6.1 (614kJ
(203) 755-1666 Page 1 of 1
1\
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
BROW DITCH BD1 N(
Circular Channel
Manning's Formula
Channel Depth
I
Input Data
Mannings Coeffic).015
Slope 13.70 %
Diameter 24 in
Discharge 3.30 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
3.5 in
0.3 IP
1.56 It
1.41 It
0.64 It
14.5 %
0.59 %
11.70 fils
2.13 It
29.0 in
4.61
78.06 cfs
72.57 cfs
0.03 %
)upercritical
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02/02 02:08:45 PM @ Haestad Methods. Inc.
BROW DITCH BD1 ACTUAL FLOW
Worksheet for Circular Channel
Landmark Consulting
37 Brookside Road Waterbury. CT 06708 USA
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
1v
I
I
Cross Section
Cross Section for Circular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
BROW DITCH BD1 NC
Circular Channel
Manning's Fonnula
Channel Depth
I
I
Section Data
Mannings Coeffic).015
Slope 13.70 %
Depth 3.5 in
Diameter 24 in
Discharge 3.30 efs
I
I
I
I
I
I
I
24 in
I
--T
3.5 in
I
I
I
V:1~
H:1
NTS
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02102 02:08:52 PM @ Haestad Methods. Inc.
Landmark Consutting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
\~
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
BROW DITCH BD2 NC
Circular Channel
Manning's Formula
Channel Depth
I
Input Data
Mannings Coeffie ).015
Slope 5.80 %
Diameter 24 in
Discharge 0.40 efs
I
I
Results
Depth 1.6 in
Flow Area 0.1 ft'
Wetted Perime 1.03 ft
Top Width 0.99 ft
Critical Depth 0.22 ft
Percent Full 6.5 %
Critical Slope 0.69 %
Velocity 4.59 IVs
Velocity Head 0.33 ft
Specific Energ: 5.5 in
Fraude Numbe 2.72
Maximum Disc 50.79 cfs
Discharge Full 47.22 cfs
Slope Full 4.160-4 %
Flow Type ~upercritical
I
I
I
I
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd. fm2
08/02102 02:04:37 PM @Haestad Methods, fne.
BROW DITCH BD2 ACTUAL FLOW
Worksheet for Circular Channel
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
1'"
I
I
Cross Section
Cross Section for Circular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
BROW DITCH BD2 NC
Circular Channel
Manning's Formula
Channel Depth
Section Data
Manning5 Coeffic ),015
Slope 5.80 %
Depth 1.6 in
Diameter 24 in
Discharge 0.40 cfs
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02/02 02:04:43 PM @Haestad Methods, Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06700 USA
24 in
1. in
V:1~
H:1
NTS
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
,-
1"1:>
I
I
BROW DITCH BD3 ACTUAL FLOW
Worksheet for Circular Channel
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
BROW DITCH BD3 N(
Circular Channel
Manning's Formula
Channel Depth
I
Input Data
Mannings Coeffie ).015
Slope 12.50 %
Diameter 24 in
Discharge 4.10 efs
I
I
I
I
I
Results
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
4.0 in
0.3 ft2
1.67 ft
1.48 ft
0.71 ft
16.5 %
0.60 %
12.09 fils
2.27 ft
31.2 in
4.46
74.56 cfs
69.31 cfs
0.04 %
)upercritical
I
I
I
I
I
I
I
I
Prajeel Engineer: David Yeh
FlowMaster v6.1 [614k)
Page 1 of 1
1~
I
g:\projects\69-2\hydro\sd.fm2 Landmark Consulting
08/02102 02:06:34 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06700 USA (203) 755-1666
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
I
BROW DITCH' BD3 NC
Circular Channel
Manning's Formula
Channel Depth
Section Data
Mannings Coeffic ).015
Slope 12.50 %
Depth 4.0 in
Diameter 24 in
Discharge 4.10 cfs
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08/02102 02:06:40 PM @ Haestad Methods. Inc.
Cross Section
Cross Section for Circular Channel
-T
4.0 in
24 in
V:1 b"
H:1
NTS
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
Projec1 Engineer. David Yeh
FlowMaster v6.1 {614k]
Page 1 of 1
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
BROW DITCH BD4 ACTUAL FL.OW
Worksheet for Circular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
BROW DITCH BD4 N(
Circular Channel
Manning's Formula
Channel Depth
Input Data
Mannings Coeffic).015
Stope ~3.50 %.
Diameter 24 in
Discharge 1.30 efs
Results
Depth 1.7 in
Flow Area 0.1 ft,
Wetted Perime 1.08 ft
Top Width 1.03 ft
Critical Depth 0.39 ft
Percent Full 7.1 %
Critical Slope 0.61 %
Velocity 13.24 IVs
Velocity Head 2.72 ft
Specific Energ: 34.4 in
Fraude Numbe 7.54
Maximum Disc 139.09 cfs
Discharge Full 129.30 cis
Slope FuJi 4.4e-3 %
Flow Type ~upercritjcal
Project Engineer: David Yeh "'" C)
g:\projects\69-2\hydro\sd.fm2 landmark Consulting FlowMaster v6.1 [614k] VQ
08102102 02:07:50 PM @Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 0670n USA (203) 755-1666 Page 1 of 1
I
I
Cross Section
Cross Section for Circular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
BROW DITCH BD4 N(
Circular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coaffie ),015
Slope ~3.50 %
Depth 1.7 in
Diameter 24 in
Discharge 1.30 cfs
I
I
I
I
I
I
I
24 in
I
-~[;n
I
I
I
V:l~
H:l
NTS
I
I
I
I
g:\projects\69-2\hydro\sd.fm2
08102102 02:07:57 PM @ Haestad Methods. Inc.
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
1l\
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,
.
2000 REGIONAl! SUPPLEMENT AMENDMENTS
individual pi~ces of any class of rock slope protection shall be determined by the ratio of the
number of individual pieces larger than the smallest size listed in the table for that class also
pertaining to 200-1. 7
200-1.6.3 Qualil)' Requirements
Page 45 - First paragraph. second sentence change "60 days- to "30 days".
200-1.7 Selection of Riprap and Filter Blanket Material
Add Section 200-1.7 "Selection of Rip Rap and Filter Blanket Material"
shall be per Table 200-1.7
Table 200-1.7
-
Rip Filter Blanket Upper Laver(s)
Velocity Rock Class Rap (3)
Meters/See (2) Thic Option 1 Optio
. (FtlSec) k- Sect. 200 n2 Option 3 Lower
(I) Nes (4) Sec:t.4 (5) Layer
s 00 (6)
. "r" ('!L
.
2 (6-7) No.3 Backing 0.15 5 mm (3/16") C2 D.G. -
2.2 (7-8) No.2 Backing 1.0 6 mm (1/4") B3 D.G. -
I, 2.6 (8-9.5) Facing 1.4. 9.5 mm (3/8") -- D.G. --
3(9.5-11) Light 2.0 12.5 mm (\1,") --- 25mm (3/4"- 1-1(2") --
3.5 (11-13) 220 kg (1/4 Ton) 2.7 19 mm (3/4") -- 25mm (3/4"- 1-1(2") SAND
4 (13-15) 45Qkg..('.6--T.on)_ 3A. 2S mm{l'" ~5mrni3f4"-i--l12 }
4.5 (15-17) 900 kg (I Ton) 4.3 37.5 mm (1-112") -,- TYPE B SAND
5.5 (17-20) 1.8Tonne (2 Ton) 5.4 50 mm (2") --- TYPE B SAND
-
See Section 200-1.6. see also Table 200-1.6 (A)
Practical use of this table is limited to situations where "T" is less than inside diameter.
(1)
(2)
(3)
, Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater.
If desired rip rap and filter blanket class is not available, use next larger class.
..
Filter blanket thickness = 0.3 Meter (I Foot) or "T", whichever is less.
So
~
.."
~
~~~ 6
Z
-NN 0
0-0 .....
'-lW\O v
tT:I
~
~:-,./>.Q,o
WN-OO
'-"
~
- -'Tj
W~N..,,<
NO\"""'c:n
'-"
~~
./>../>../>.::11::l
. >-J
'-"::c:
l"'
~tT:I
0\0\0\::1~
'-">-J
::c:
>-J
::c:
.....
~~pSlR
-l::o.O\-.J-..-z
tT:I
VJ
VJ
'Tj
-
l"'
t;J
~
0;1
l"'
~
Ww ~
--- tI1
~-I:: >-J
: - e
.."
.."
tT:I
~
l"'
>
-<
tT:I
~
l"'
o
VJ VJ ~
~ : ~ ~
I::l I::l ~
-<
tT:I
~
\'3
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
lO-YEARHYDRAULlC CALCULATIONS
$40'
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
STREET FLm
Irregular Cham
Manning's Fan
Channel Depth
I
Input Data
Slope 5.00 %
Dischargl 1.30 cfs
I
I
Options
Current Roughness Mathe Jved Lotter's Method
Open Channel Weighting wed Lotter's Method
Closed Channel Weightin! Horton's Method
I
I
Results
Mannings Coefficiel 0.015
Water Surface Elev. -5.8 in
Elevation Range l58 to 0.00
Flow Area 0.5 ft2
Wetted Perimeter 9.71 ft
Top Width 9.52 ft
Actual Depth 0.10 ft
Critical Elevation -0.45 ft
Critical Slope 0.83 %
Velocity 2.87 fUs
Velocity Head 0.13 ft
Specific Energy -4.3 in
Froude Number 2.32
Flow Type iupercritical
I
I
I
I
Calculation Messages:
Flow is divided.
I
Roughness Segments
Start
Station
End
Station
Mannings
Coefficient
I
0+00
0+32
0.Q15
Natural Channel Points
I
Station
(II)
0+00
0+04
0+04
0+16
0+28
0+28
0+32
Elevation
(ft)
0.00
-0.08
.0.58
-0.34
-0.58
-0.08
0.00
I
I
I
I
g:\projects\69-2\hydro\sd. fm2
08102102 01 :49:51 PM @ Haestad Methods, Inc.
Project Summary Report
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
Page 1 of 1
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
89
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
STREET FLOV
Irregular Cham
Manning's Fan
Channel Depth
Section Data
Mannings Coefficiel 0.015
Slope 5.00 %
Water Surface Elev -5.8 in
Elevation Range ).58 to 0.00
Discharge 1.30 cfs
I
I
I
I
I
I
I
.8:gsc "
0+00
I
I
I
I
I
I
I
..."__,,n'j"'"-V-""
0+05
0+10
I
g:\projects\6g..2\hydro\sd.fm2
08/02102 01 :50:02 PM @Haestad Methods, Inc.
Cross Section
Cross Section for Irregular Channel
0+15 0+20
DU- ."""n, __..___.L. O'~:'::'::'::'::-.:::.J
0+25 0+30 0+35
Landmark Consulting
37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
V:1~
H:1
NTS
Project Engineer: David Yeh
FlowMaster v6.1 [614k]
Page 1 of 1
gA.'
I
I
I
I
! I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CONCLUSION
Based on the hydrology and hydraulic calculations, the proposed storm drainage system is
sufficient to handle the anticipated peak discharge due to the proposed development. Flows from
the site will not adversely affect the surrounding environment.
'if'
-.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APPENDIX
Wo
I
I
I
A9010H<iAH
OOM 9 O.:lO~
l\fnN\fV~
910 v) I"V-O 3.LVld
VolVO S3^~n::>
NOllv~no - A1ISN3olNI
O~VON'i11S
\..~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
::0
l>
Z
~
r
r
-
Z
-i
fTI
Z
(f)
-i
-<
I
z
()
:r:
fTI
(f)
\
-0
fTI
::0
:r:
o
C
::0
n.
-c
,n,
a.at~~go. OOU'IlIl. . wwwww 1\11'''\,1 """ ............- ----.... c.
.. U'GUlQ,"" OUlG"'O GlOO."'O litO- .""00 .oat....aoUl .....1\1_0 >OlIt....O'UI ....
... ~- z
0 "0 ;;
.. z
'" .
. ---- ----- ----- ----- "''''NNN .. ...
........ .. .. .. .. .. .. ....... .. ........ .. ........ .. .. .. .. .. .. ........ .. ~- ... 0
0' 0"<'-....... ....cacaca.o .0000_ --NNW ...U'lUt CJ'I........at. ONWUllat .0 .. z
:.. """"lltOW 0-0... ....OWCJlO .(11..00- O....caWllt ._G....o- o........ca. .. ~ .
0
... c
0 ~
--.......- -...--... -...--- "''''-'''Ni NNNNN NNNNW WWW.. ..- Z
........ .. ........ .. .. .. .. .. .. ........ .. ........ .. ........ .. ........ .. ~o n
GOO__ NNW.. U"'''CI'''' .... ~ca.oo_ NNW""UI 0-....0...0_ "'.....0. .0 ..
01,01.......11I OO'NO...,. W..."'....W O....Vl.UlI -....."'0 OOf\,lUto ...Ut....CD ..
Zo pz
,.. ,.... -c c
Z.. ....
ClI at........'" I ~ \It..,.,.. . WWWWW NNNNN ----- ;:::;;:; OOCIt....OO\..,. c. ...
.. \1110...011I ,"0\110 llt lJ'. ""'0 "oo#NO ..0 ca.... O'Ut .... Z_
... "'- n",
0 "0 X"
.. Z o.
~ n I
. -,- ----- ----- ----- :-'~:-~~ NNNW~ .. .
........ .. ........ '. ........ .. ........ .. .. .. .. .. .. ...... .. "'- ... r-...
............1It1OWl I~ .-.00.- --IVIVIV W....lltO" o-........caca -.OO",,;~W \IIo-~_ .0 .. -'"
. WVIlca_. ~N""W':>> ~""O..o .-.00-1,01_ 0--0-"". 0-......0- 0........'" .. '" ...z
.. '" 0'"
'" c ..n
0 '" ZC
----- =- :--;-;-~- ----- -I\INIV..., "''''IVI\IIV ~~~~~ WW..\II ..- Z _r-
.... . .... . .... . .... . .... . ~.. n ..
0-__", ~~::~:: o-~""~.o .O-I\IW .11I0-0'0... caO"";~. 0'-.01"10-_ .0 ..
"'-"".0. ...1\1".0 taO'UU"ta U1NO<O.o -.0_\11 ta -.0..-0 ..
- .....
zO
-c
Z..
..ca......o, O<""UII...... ""...,WWW "'''''''NN ----- ....---- .:0....."'''" c.
.. UloUlOUl o ,,"OUl':I g:t",.",0 ""'''NO -.0...."''''' .WN_O ..~
... ~-
0 "0
.. Z Z
'" 0
..
. ----- ----- ----- ----- I\I"'NNN ~ n
.... . ...... . .... . . . . . . .... . .... . .... . ~- ... 0
0000......... cacgca..o.o 000__ -"'N""W ..""UlOO "'......ta.a 0_""U1'" ... ..
:.. .....aN... O.cal'\l'. -""OOOW ...."'ooN.a "'00 0 UII0 "'N.a...", ....a.1oI... .. '"
0
.. c
0 '"
----- ----... ----- ----IV IVIVNIVIV NNIVNN WWloIW. ..- Z
.... . .....' . .... . .... . . . . . . .... . .... . ~O n
000__ NN'...W.... UHIHIIo-... "'CIJ.a.aO --NW"" .U1o-",.o -NUI..._ .0 ..
-.....-"" 0""....0.. -Ul.o.o o-NOCIJca W.oUlNO CltCIJClto. 0.0_000- ..
.
ZO
-C
Z..
010........0- o-UlIJI"'.. WWWWW NI'\INNN ----- ----- c.
.. UlOUlOUl OUlQUlC> o.o-"'NO GlO'.Na .aca...",UI ....,N_O .aCD....o-..,. .... ..
r- "'- .
0 "0 r-
.. z z
~
~
. --........., ----- ----- -fUNfUN NNNN'" WWlolW", .. ..
....... . ..... . .... . .... . .... . .... . .... . "'- ... ..
Qt(loCl.a. OO"._N WlolW"'. t..n........ca oOOO_N W.U1O<(Io ON.GI'" .0 .. -
. NUlca_Ul OUl"'CIJ... o..a.-o lP'N 0 'oD'oD Ul-GlUlW WW....W -NIDOW .. ~ Z
'" '" '"
.. c ..
0 WWWWW '"
----- --"'-N NfU!\INN NNNNW WW... . UII III 0-0> ..- Z
.... . .... . .... . .... . ..... . .... . .... . "'0 n
WW."'UI 0"00"'GlI0 O_I\IWW "'0-"'''0 _NW."" """0 NUl (Io_UlO", ... ..
-U1-OOW O!>>'CII.oN .aUll'lfO-o .aO'\HP'W NNN"'ca Nca...caN -1,1I"'010> ..
zo
-c
Z..
00....... 0-"""'''. WW,,",WW NNf\JNN ----- ----- c. ..
.. ,,",OUlO,," OUlOUlO 01"'."'0 laO>."'O .0......0>'" "'''''N_O ICICI....O<"" ~~ ~
r- "'- >>
0 "0 ..
.. Z -
'" ~
. ---- ----- ----- --...-- -NNNN .. <
.... . .... . .... . . . . . . .... . .... . .... . "'- ... .
0>0>........ ........0. >CIOOO_ --NI\IW w...."" """'......... ..00"'.0> .0 .. r-
. "'caONUt ea_U10"" Ooowooa weal\l." "-\11.0,,, -.oUl"'<oea ea<o._. .. '" ...
. '" '"
.. c ..
0 --- ----- -NN"'I\I '"
----- ----- N"'NNN "'wwww ..- Z
.... . .... . . . . .. . . . . . . .... . ... .. ...... . ~o n
..a..oOOO --NNW ...."""" O<o>...ca..o -.oao_N "'1,01..1,1I00 caa"'..... .0 ..
.....0..11I "'..."'..... a..",.. W.""W'" "''''01.... .0....,......0 "'--0<1>> ..
II
:1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
,I
II
13->>' C lMURRlETAJ C ~C .,." A Be
. . \":~~ ~~~~:~J~~~?!t~.~~ : ,~~~"',~j~~;
~. ' .'~, ~~.<< ;~ffP:'~~ ~~ ~f . \~~ J-~C ;G \..... ':,.~~ W:l~
:-:,:.,..,_\:."\3 ;~~'TIl c {~~J~\k: ~~. '}~~~. "" iX.'i X <'. ;'~:~;
, ~~". - . CJ'"7'!. ii:l1",,~Y,:{,JgJ1 ~, ".0 . ~1 ,", V~
'. .' ." J~ ...ff 1''1t;' 1:')' 1/@};(IP/(\-:!I..J,~~' 'iiL/ f." '~)i,~~ ' .
~;1(' '~:;..~. _~V~~"HL'"":'":; ?~ . c r~;:c-'';;1'\t~~'Kr~. /'~ [~'n5\~.~,jB .I.~ ,
J',<<J:4~:... CJ .. ,,,,". i ~ I ",.,~ /'~>~ ~J ,~(J if( ;,", '" .".' ~~'If:-,
'"'\:(F~-~l~.'(:'(~,.: ~ ,l \'--'1 - ~-Jj-:.'N;,j ~'~i v' ~ ~ ~D
',I~:
- i.....:;; ~
, ,-
0, . re
~.:j., L r';.~ .,$Jf ,J. ..' 0..~..'i.J "t~'".:~ ~ ~;~:~'i !i~~,
.~ :i5?,};?~ l>
~~~n, ~~.~..:~:~ .... "~{' , ..... '1\~~~V('Ii~~~f1 ' " \.:~r~i,'Q<l~i(\;~'
'. .<:': -<. . ...:".:. '~"<.-,,. ",~ ....' ~~.~""'_"~ ".,;':-' ...... ,.../>r . ,VU];.i\!. ..'
... ....' "'::~(--dl': ^'-- ,- -,-, , " _:~;>:.t '.-:~;:~;:.:,.~;: -.t /~
,,,.' ~l'~) ,~; :;
II ~;< d' I
. '" y,<? n(,
r~.' ~ 00:
~~~~ ~ . &;. ., 'Jr.' ~.. An ',~" _.
. : ~~ :. '~~'~i;B .'. ..' 'r-"" liS~-:' ~.j~i"-~~~~~'~ ~l~c;;~~-""'i' ;1'" -. ,
,\~.' ~Uj...r .' , "tf<~ ~"~, ; j; -'IIi'
...,.::!'~ ; WJi/Y,." i. , s::> .>; . ..J ,. /( ,"rlJ '(
j " '~f" -.Ji ' ..1M" '. . ! \0.. " ~ ""'" __".
1 u'j: : '. . ""-', . '..,~ \.. ;., "- ; f .< .... -:p-"'. .
I~...,. .< . ,;.; :dtili.: To' _ ' r,:. . "m ":
, " . -, ,,,.",, "".'d _" ..,. !j, , " r.. [" f
.. ~"J:.~~'~ if"",-", -.:. , '-- .-$' ~~ I
:@~~~. ,,~/: ',(' .~(..',\.~. !y ~ "'. . ?t~~ .,y~~~i~i::'~<s.i.."
I.. D . v.. 1..1 ..' " "iL?,>J.:.~ J:. . 01 ..,p, ;r" \
O. ~'" '':If: .....,' . 'f~ .o=z\"~' .', ,:'P."::;}j.;""
fA ':', .... ?;...:~ :7~ () . . - ~~ i'F'" '~'!'~EN'"
. 11 I.j i ,~~: f>.q. ~ I'l.r ":" .r'G," ,-. .' "'Y1;:j ''1-,'' '
I~~ - . I,? .' 'w '.s. t -f,),-l.P .~ ~r" ..." ''''~\'< ))~ . ':fiiKij ~') ~l-' .
I~( 'r!. ',(^'.WD~'<t,~\,\.?,,::\'!\v ~ ~_I' (,ii_..,
I?" 1-l.,1.1l\"f.~~.",,,,,.~~, ''l, c.,0~U~~'~~N\ "'!>t\~,,;) \1,1 \Y.,;/f
r~.. ~II.. .' , < 4:~.1~.3(;;r:f~~ 1;";'-'..)' C::;',~ ,,' . oAf.'
. ~ ,\ r ""f!' , 'i.~ -. ..'n,:.; ',"<.1i,., "'f"" ,~~"i.' ~~ IF c<;w'
,;." !!:;..L:; ! i../t.: :'. ~ . ~)? [.rw' ..'i~::}i I '. "'ill..:-':-iL. "-'''1''''''''- i ';' . .' . .
. " . -,;Pi <<;.~~ .r:;,' ~.9,"r+-' " .. ).~ ;;'l.;Ii:W(' i7~; ;y
,. :.~ ~ ',J;;. (:..,-:, .'.1 'i'7.'v,-;;,. ;../.)1J.'..'l;'~'~ ,~:~! . ~'IJ" ~..
;,1i;;tM'~~~S\~"'A~:~:"~'o ..')"
;,' ,'<1),;,,"- f~~',!~'::~r:'1[~.iiE..):..f'P~,"'":""0I/,,~~j~ .r", ~V.'ld;'K(~{Mt".t ~5S"'i'J'~>~:"
"'. . 1'-", . .,.. "~" ,l:.lr':"..' '1:""'7,'\<!.:~../ '.-, '" .i. .. ;,! 't-!. . '. J. .
... ~ . ~.:p r::.c.. _ -riLi.' - ~~ .J '~.,. "1' -- ;, ,,' ",,'. .
::.':\.' ,~:'''!.,.';:''....: J '~.~l~~,~\,.:iA(o;~~~f~~<;:I'~L' ,<'l ..... .' ,
....-.
-. "
~-" ,-"
/!,,",
j":1 "
,I,'
fl"
'-t-
~.;.:;.
~,
:,;
-j",
0/-'
: \~t~
~;~ '
,::-.',
T: :,'J-.
rot
"c. '. /
~i~~~:~-'~
, ......;~
.". .:'::t
~~:,:-~~,;I
:i--i:nJ;lH~
~~I~
,,~...
LEGEND .
- SOILS GROUP BOUNDARY
A SOILS GROUP DESIGNATION
.~
. I
HYDROLOGIC SOILS GROUP MAP
FOR
TEMECULA
RCFcaWCD
HYDROLOGY MANUAL
r-..-~-.r-"I
o FEET 5000
~
C-1.60 ~
PLATE
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
HYDROLOGY MAP
~