Loading...
HomeMy WebLinkAboutParcel Map 30797 Parcel 2-3 Hydrology Study \ :1 I I I I I ~I I I I I I I I I I I I I l 1m 5tJ7 e- ~ AU(; 0 a 2002 HYDROLOGY & HYDRAULICS STUDY FOR: PARCELS 2 AND 3 OF PARCEL MAP 15977 IN THE CITY OF REMECULA COUNTY OF RIVERSIDE STATE OF CALIFORNIA AUGUST 1, 2K2 LMCO IN. 69-02 PREPARED FOR: RILINGTON BELLA VILLAGGIO, LLC 225 RANCHEROS DRIVE, SUITE 303 SAN MARCOS, CA 92069 TEL: 760-471-5460 FAX: 760-471-5460 PREPARED BY: LANDMARK CONSULTING 9555 GENESEE AVENUE, SUITE 200 SAN DIEGO, CA 92121 TEL: 858-587-8070 FAX: 858-587-8750 BY: DY DAVID H. YEH, R.C.E. 62717, EXP. 06-30-2K6 \ I I II I I I I I I -. . II I I '. . I il I I TABLE OF CONTENTS VICINITY MAP INTRODUCTION METHOD OF ANALYSIS HYDROLOGY HYDRAULICS HYDROLOGY CALCULATIONS 10- YEAR PRE-DEVELOPMENT CONDITIONS 100- YEAR PRE-DEVELOPMENT CONDITIONS 10-YEAR POST-DEVELOPMENT CONDITIONS 100- YEAR POST-DEVELOPMENT CONDITIONS IOO-YEAR HYDRAULIC CALCULATIONS STORM DRAIN CURB OUTLET CURB INLET BROW DITCH RIPRAP ENERGY DISSIPATER IO-YEAR HYDRAULIC CALCULATIONS STREETS CONCLUSIONS APPENDIX STANDARD INTENSITY-DURATION CURVES DATA HYDROLOGIC SOILS GROUP MAP FOR TEMECULA HYDROLOGY MAPS '"/t' I I I I I I I I I I I I I I I I I I I VICINITY MAP RANCHO CALlF.:.fD. OJ c: -i M ::0 2J r 8 (j) --\ )> G) fT1 ~ PAUBA RD. 4ROJECT SITE VICINITY MAP N.T.S. SCALE: '-.NTS 17 I I I I I I I I I I I I I I I I I I I INTRODUCTION The purpose of this report is to detennine the peak runoff volumes and to design an adequate drainage system to handle the flow according to the requirements of the Riverside County Flood Control District without subjecting the project to significant flooding impacts during a design flood event and without adversely affect the surrounding environment due to the proposed development. Parcels 2 and 3 of Parcel Map 15977 is located on the southerly side ofPauba Road, east ofYnez Road, in the City of Temecula, County of Riverside, State of California. The Project sile is consisting of three single family lots with a minimum 1 acre 10t size. The project site is situated near the top of a gentle to steep hillside with existing natural streamlines. Under the pre-development conditions, small portions of the easterly part of the site drains onto the existing development adjacent to the easterly boundary via brow ditches. The small portion at the southerly part of the site drains onto Pauba Road. The remaining portion of the site drains into three existing natural streams on the hillside at the southerly boundary of the site. The runoff from the proposed development will follow the existing drainage pattern, where the small portions on the easterly part will remain undisturbed and still drains into the existmg brow ditches to the adjacent property. The small southerly portion will drain onto the proposed roadway and onto existing Pauba Road. The upper two pads will drain to the back and into a concrete brow ditch that outlets onto the natural hillside downstream. The proposed street will drain into a curb inlet at the end of the cul-de-sac and down the slope via a concrete ditch. The remaining third pad will drain into an existing stream at the southerly boundary of the site. Rip rap energy dissipaters will mitigate the erosion potential from the concentrated flows before they enter the existing stream. ~ I I I I I I I I I I I I I I I I I I I METHOD OF ANALYSIS HYDROLOGY: The hydrologic analysis for this project is consistent with current engineering standards and the requirements of Riverside County Flood Control District. Rainfall intensities for.the roO-year and 10-year stonn frequencies were detennined from the stonn distribution maps and charts in the current Riverside County Flood Control District Hydrology Manual. The Rational Method, as outlined in the current Riverside County Flood Control DistJict Hydrology Manual, was utilized in the hydrologic calculations -see attached instructions. The runoff coefficient was weighted in each basin to reflect the proposed development conditions. Based on the included Hydrologic Soils Group Map for Temecula, a Soils Group "D" designation was used for the entire site. HYDRAULICS: Most of the onsite flow is surface flow into ditches. The capacities of ditches, street and pipes are calculated using Haestad Methods' FlowMaster computer program which utilizes the Marming's Equations. ~ I RATIONAL METHOD I General"- The Rational method is commonly used for determining peak dis- I charge from relatively small drainage areas. For areas in excess of 300 to SOO-acres the Synthetic Unit Hydrograph method should normally be used. I Before attempting to apply the information in this section,the engineer should become thoroughly familiar with sections A, B and C or this manual. I Rational Equation - The Rational method is based on the following equation: I Q = CIA where: I Q = Peak discharge - cfs C = Coefficient of runoff I I = Rainfall intensity (inches/hour) corresponding to the time of concentration I A = Area - acres I Time of Concentration - If rain were to fall continously at a con- I stant rate and be uniformly distributed over an impervious surface, the rate of runoff from that surface would reach a maximum rate equivalent I to the rate of rainfall. This maximum would occur when all parts of the surface were contributing runoff to the concentration point. The time I required to reach the maximum or equilibrium runoff rate is defined as the time of concentration. The time of concentration is a function of I many variables including the length of the flow path from tIle most remote I point of an area to the concentration poL"'lt, the 'slope and c>ther charac- teristics of natural and improved channels in the area, the infiltration I characteristics of the soil, and the degree and type of development. In District Rational tabling, the time of concentration for an initial sub- I area can be estimated from the nomograph on Plate 0-3. The time of con- I centration for the next downstream subarea is computed by adding to the D-l (p I II I initial time, the time required for the computed t~ak flow to travel to the next concentration point. Time of concentration is computed for each I subsequent subarea by computing travel time between subareas and adding the cumulative sum. Travel time may be estimated using the tabling,aids I on Plates D-6 through D-9. I To avoid distortion of travel time large subareas should be avoided. Where extremely large subareas are used, peak flow entering a travel reach I may be much lower than the flow leaving that reach. Velocity normally increases with discharge, therefore travel time computed using the average I flow over a reach may be significantly lower than travel time comput"d using inflow to the reach. Since rainfall intensity is inversely propor- I tional to time, flow rates would be consistantly underestimated by use I of large subareas. Intensity-Duration Curves - Rainfall intensity, "I", is determined I using District intensity-duration curves for the area under study. Stan- dard intensity-duration curves have been prepared for many population I centers in the District. Intensity-duration data for these" standard curves I is given in tabular form on Plate D-4.1. The standard curves for thE!se areas may be reproduced by plotting the 10 and 60.-minute values on Plate I D-4.2,and drawing a straight line through them. For areas where curves have not been published, Plates D-4.3 through D-4.7 should be used to I develop design intensity-duration curves. Plates D-4.3 and D-4.4 are isohyetal maps of the maximum 2-year _ I I-hour and lOa-year - I-hour precipitation respectively. One-hour point I rain for intermediate return periods can be determined from Plate D-4..S. The slope of the intensity duration curve can be obtained from Plate D-4.6. I Intensity duration curves for a particular area can be easily developed using Plate D-4.7, plotting the I-hour point rain value for the desired I I D-2 ~ I I return period, ahd drawing a straight line through the I-hour value parallel to the required slope. I The isohyetal maps and return periOd diagram are bas<!d on NOM Atlas 2 discussed in mQre detail in Section B of this re~)rt. The map I of intensity-duration curve slope is based on District analysis of all I available recording rain gage records in and near the DistIict. This material is also discussed in Section B of this manual. I Coefficient of Runoff Curves - The coefficient of runoff is intended to account for the many factors which influence peak flow rate. The co- I efficient depends on the rainfall intensity, soil type and cover, per- centage of impervious area, antecedent n~isture condition, etc. To I account for the difference-between actual and effective impervious area I it is assumed the maximum runoff rate which can occur from impervious surfaces is 90-percent of the rainfall rate. The runoff from pervious I surfaces is further reduced by infiltration. Runoff coefficient curves can be developed using the relationship: I C = 0.9ti + I-Fp A~ - P I I where: I C = Runoff coefficient I = Rainfall intensity - inches/hour I F P A. J. = Impervious area (actual)" - decimal percent = Infiltration rate for pervious areas - inches/hour I Ap = Pervious area (actual) _. decimal percent I and A p = 1.00 - A. J. I The infiltration rate for pervious areas, "Fp", can be estimated using the methods discussed in Section C of this manual for various I I D-3 ~ I I I I I I I I I I I I I I I I I I I combinations of soil type, cover type and antecedent moisture condition (AMCl. In practice it is not necessary for the engineer to make these computations, as runoff coefficient curve data has been tabulated by the District on Plate D-S.7 for the working range of runoff index (Rr) numbers. Runoff coefficient curves can be developed for any combination of ccrnditions by simply plotting the data from Plate D-S.7 on Plate D-S.8. In addition, for the common case of urban landscaping type covE!r, runoff coefficient curves have been plotted on Plates D-S.l through ll-S.4. D-4 ~ I I INSTRUCTIONS FOR RATIONAL METHOD HYDROLOGY CALCULATIONS (Based on the Rational Formula, Q = CIA) I 1. On map of drainage area, draw drainage system and block off subareas tributary to it. I 2. De"termine the initial time of concentration, "T", using Plate D-3. The initial area should be less than 10 acres, have a flow path of less than 1,000 feet, and be the most upstream subarea. I 3. Using the time of concentration, determine "I", intensity of rain- fall in inches per hour, from the appropriate intensity-duration curve for the particular area under study. For areas where stan- dard curves are available, use Plates [)'-4.l and 0-4.2' to reproduce the standard curve. For areas where curves have not been published by the District, use Plates 0-4.3 through 0-4.7 to develop a suit- able intensity-duration curve. I I 4. Determine "C", the coefficient of runoff, using the runoff coeffi- cient curve which corresponds as closell' as possible with the soil, cover type and develo(Xllent of the drainage area. Standard curves (Plates D-S.l through D-S.4) have been developed by the District for the common case of urban landscaping type cover. Where these curves are not applicable, curves may be developed using Plates D-S.S through D-S.8. I I S. Determine "A", the area of the subarea in acres. I II 6. Compute Q = CIA for the subarea. I 7. Measure the length of flow to the point of inflow of the next sub- area downstream. Determine the velocity of flow in this reach for the peak Q in the type of conveyance being considered (natural channel, street, pipe, or open channel), using the tabling aids on Plates 0-6 through D-9. I Using the reach length and velocity determined above, canpute the travel time, and add this time to the time of concentration for the previous subarea to determine a new time of concentration. I 8. Calculate Q for the new subarea, using steps 3 through 6 and the new time of concentration. Determine "Q~", the peak Q for all sub- areas tributary to the system to this poLnt by adding Q for. the new subarea to the summation of Q for all upstream subarea:;. Deter- mine the time of concentration for the next subarea downstream using Step 7. Continue tabling downstream in similar fashion until a junction with a lateral drain is reached. I I I RCFC '& WeD HYDROLOGY l-.tlANUAL I RATIONAL METHOD INSTRUCTIONS I PLATE 0-1 (I of 2) \0 I I I I I I I I I I I I I I I I I il I 9. Start at the upper end of the lateral and table its Q down to the junction with the main line, using the methods outlined in the previous steps. 10. C9lllpute the peak Q at the junction. Let QA' TA,' IA oorrespond to the tributary area with the longer time of concentration, and Qa, Ta, IB correspond to the tributary area with the shorter time of concentration and Qp, Tp correspond to the peak Q and time of concentration. a. If the tributary areas have the same time of concentration, the tributary Q's are added directly to obtain the combined peak Q. Qp = QA + Qa Tp = TA = TB b. If the tributary areas have different times of concentration, the smaller of the tributary Q's must be corrected as follows: (1) The usual case is where the tributary area with the lon- ger time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the intensities and added to the larger Q ,to obtain the combined peak Q. The tabling is then continued downstream using the longer time of concentration. Qp=QA Qa IA IB = TA + Tp (2) In some cases, the tributary area with the shorter time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the times of concen- tration and added to the larger Q to obtain the combined peak Q. The tabling is then continued downs team using the shorter time of concentration. Qp = Qa +QATB TA TB T = P RCFC a WCD HYDROLOGY j\AANUAL RATIONAL METHOD INSTRUCTIONS \\. PLATE D-I (2 of 2) I i I ********************************************************************~******* I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY ~UfUAL (c) Copyright 1982-2000 Advanced" Engineering Software ("es) Ver. 1. SA Release Date: 01/01/2000 License ID 1503 I Analysis prepared by: I PREPARED BY: LANDMARK CONSill"TING 9555 GENESEE AVENUE, SUITE 200 SAN DIEGO, CA 92121 PHONE: (858) 587-8070, FAX: (858) 587-8750 I ************************** DESCRIPTION OF STUDY *,~*****************~****** I * PAUBA ROAD, TM. , TEMECULA, CALIFORNIA * 10-YEAR HYDROLOGY ANALYSIS (PRE-DEVELOPMENT CONDITIONS) * BY: DY * * * *************************************************1t************************ I FILE NAME: 692EX.DAT TIME/DATE OF STUDY: 08:31 08/01/2002 I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: I USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.90 10-YEARSTORM 10-MINUTE INTENSITY (INCH/HOUR) = :!.360 10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5S05732 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.S495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 I-HOUR INTENSITY (INCH/HOlm) = 0.889 SLOPE OF INTENSITY DURATION CURVE = 0.5506 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY ~lJAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW !liODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT VlIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) I I I I I --- ----- --------- ----------------- ------ ------ ----- ------- --------- ----------------- ------ ------ ------- 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 12.0 7.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 I GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S), *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* I I **************************************************~,************************* I ,z, I I FLOW PROCESS FROM NODE 101.00 TO NODE ------------------------------------------------------------------------------ 102.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ===================================================~================::======= ASSUMED INITIAL SUBAREA UNIFORM " DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 1260.70 DOWNSTREAM ELEVATION = 1183.00 ELEVATION DIFFERENCE = 77.70 TC ~ 0.709*(( 500.00**3)/( 77.70)]**.2 10 YEAR RAINFALL INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = I I I 3.79 2.40 TOTAL RUNOFF(CFS) = 3.79 I COVER 1:2.365 2.121 102.00 TO NODE **************************************************,~*****************~******* 103.00 IS CODE = 52 FLOW PROCESS FROM NODE -------------------------------------------------- -------------------------- I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< -------------------------------------_____________u_________________________ ----------------------------------________________h_________________________ ELEVATION DATA: UPSTREAM (FEET) = 1183.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA(FEET) 248.00 CHANNEL SLOPE ~ CHANNEL FLOW THRU SUBAREA(CFS) = 3.79 FLOW VELOCITY(FEET/SEC) = 5.89 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) = 0.70 Tc(MIN.) 13.07 LONGEST FLOWPATH FROM NODE 101.00 TO NODE I I 1161. 00 0.0887 MANUAL ) 103.00 = 748.00 FEET. I FLOW PROCESS FROM NODE 102.00 TO NODE **************************************************~.************************* 103.00 IS CODE = 81 ---------------------------------------------------.------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ---------------------------------------------------,------------------------- ---------------------------------------------------.------------------------- 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.057 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7401 SOIL CLASSIFICATION IS "D" SUBAREA AREA (ACRES) 1.40 TOTAL AREA(ACRES) 3.80 TC(MIN) = 13.07 I SUBAREA RUNOFF (CF'S) = TOTAL RUNOFF(CFS) = 2.13 5.92 I 201.00 TO NODE **************************************************************************** 202.00 IS CODE ~ 21 FLOW PROCESS FROM NODE ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ----------------------------------------------------.------------------------ ----------------------------------------------------.------------------------ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 375.00 UPSTREAM ELEVATION = 1248.00 DOWNSTREAM ELEVATION = 1185.00 ELEVATION DIFFERENCE = 63.00 TC = 0.709*[( 375.00**3)/( 63.00)]**.2 10 YEAR RAINFALL INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS "D" I I I I COVER 10.850 2.279 \'? I II SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 1.54 0.90 TOTAL RUNOFF(CFS) = 1.54 I ********************************************************************i'******* FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 52 --------------------------------------------------.-------------------------- I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< --------------------------------------------------.-------------------.------- --------------------------------------------------.-------------------.------- I ELEVATION DATA: UPSTREAM (FEET) = 1185.00 DOWNGTREAM(FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 112.00 CHANNEL SLOPE NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA (CFS) = 1.54 FLOW VELOCITY(FEET/SEC) = 5.16 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) 11.21 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 1168.00 0.1518 I MM;'UAL ) 203.00 = 487.00 FEET. I **************************************************,r************************* FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 81 --------------------------------------------------..------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----------------------------______________________u_________________________ ----------------------------------------------------------------------------- I 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.238 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7509 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.50 TOTAL AREA (ACRES) 1.40 TC(MIN) = 11.21 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 0.84 2.38 I **************************************************~,************************* FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 I ---------------------------------------------------.------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ===================================================:==~====================== I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 646.00 UPSTREAM ELEVATION = 1260.70 DOWNSTREAM ELEVATION = 1175.00 ELEVATION DIFFERENCE = 8S.70 TC = 0.709*[( 646.00**3)/( 85.70)]**.2 = 14.140 10 YEAR RAINFALL INTENSITY (INCH/HOUR) 1.970 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = 1. 88 1. 30 TOTAL RUNOFF(CFS) = 1.88 I I I **************************************************************************** FLOW PROCESS FROM NODE 401. 00 TO NODE 402.00 IS CODE = 21 I ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ====================================================:======================== I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 173.00 UPSTREAM ELEVATION = 1230.00 I I V\ I I DOWNSTREAM ELEVATION = 1195.00 ELEVATION DIFFERENCE = 35.00 TC = 0.709*[( 173.00**3)/( 35.00)]**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA "RUNOFF (CFS) TOTAL AREA (ACRES) = I I 0.86" 0.40 TOTAL RUNOFF(CFS) = 0.86 7.672 2.758 I FLOW PROCESS FROM NODE 501.00 TO NODE ********************************************************************~,******* 502.00 IS CODE = 21 ---------------------------------------------------------------------.------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------------------------------------------- ---------------------------------------------------------------------.------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 225.00 UPSTREAM ELEVATION = 1256.60 DOWNSTREAM ELEVATION = 1249.00 ELEVATION DIFFERENCE = 7.60 TC = 0.709*[( 225.00**3)/( 7.60)J**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I 0.64 0.40 TOTAL RUNOFF(CFS) = 0.64 COVER 12 .191 2.137 I FLOW PROCESS FROM NODE 601. 00 TO NODE **************************************************,~*****************~******* 602.00 IS CODE = 21 --------------------------------------------------..------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< --------------------------------------------------.-------------------------- ----------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH = 196.00 UPSTREAM ELEVATION = 1258.20 DOWNSTREAM ELEVATION = 1230.00 ELEVATION DIFFERENCE = 28.20 TC = 0.709*[( 196.00**3)/( 28.20)J**.2 10 YEAR RAINFALL INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS "Dn SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = I I I 0.99 0.50 TOTAL RUNOFF(CFS) = 0.99 cOVlm 0.634 2.584 I +-------------------------------------------------..------------------------+ I END OF RATIONAL METHOD ANALYSIS I I I I I +--------------------------------------------------.------------------------+ I ---------------------------------------------------.------------------------- ---------------------------------------------------.------------------------- END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 0.50 TC(MIN.) = 0.99 I 8.63 END OF RATIONAL METHOD ANALYSIS ---------------------------------------------------.------------------------- ---------------------------------------------------.------------------------- ---------------------------------------------------.------------------------- ---------------------------------------------------.------------------------- I I ,-5 I ; I 1 I I I I I I I II I I I I I I I I I \~ I I I I I I I I I I I I I I I I I I I lOO-YEAR PRE-DEVELOPMENT CONDITIONS \"\ II I ***************************************************T****************jr******* I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1. 5A Release Date: 01/01/2000 License ID 1503 I Analysis prepared by: I PREPARED BY: LANDMARK CONS\JiJTING 9555 GENESEE AVENUE, SUITE :WO SAN DIEGO, CA 92121 PHONE: (858) 587-8070, FAX: (858) 587-8750 I ************************** DESCRIPTION OF STUDY ************************** * PAUBA ROAD, TM. , TEMECULA, CALIFORNIA * * 100-YEAR HYDROLOGY ANALYSIS (PRE-DEVELOPMENT COWJITIONS) * * BY: DY * ************************************************************************** I I FILE NAME: 692EX.DAT TIME/DATE OF STUDY: 14:10 07/31/2002 ----------------------------------------------------------------------------- I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------_________________n_________________________ I USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.90 10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5~;05732 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 I-HOUR INTENSITY(INCH/HOlffi) = 1.300 SLOPE OF INTENSITY DURATION CURVE = 0.5496 RCFC&WCD HYDROLOGY MANUAL "C" -VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSS FALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) I I I I I --------- ----------------- ------ ------ ------- --------- ----------------- ------ ------ ------- 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 12.0 7.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 I GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) ~ I Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* I I **************************************************~************************* I \~ I I FLOW PROCESS FROM NODE 101.00 TO NODE ---------------------------------------------------..----------------..------- 102.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ---------------------------------------------------_________________n_______ ----------------------------------------------------.------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 500.00 UPSTREAM ELEVATION = 1260.70 DOWNSTREAM ELEVATION = 1183.00 ELEVATION DIFFERENCE = 77.70 TC = 0.709*[( 500.00**3)/( 77.70)]**.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = I I I 5.85 2.40 TOTAL RUNOFF (CFS) = 5.85 I COVER 12.365 3.097 102.00 TO NODE **************************************************~************************* 103.00 IS CODE = 52 FLOW PROCESS FROM NODE --------------------------------------------------..------------------------- II I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ----------------------------------------------------------------------------- ---------------------------------------------------.------------------------- ELEVATION DATA, UPSTREAM (FEET) = 1183.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) 248.00 CHANNEL SLOPE = CHANNEL FLOW THRU SUBAREA (CFS) = 5.85 FLOW VELOCITY(FEET/SEC) = 6.52 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) 13.00 LONGEST FLOWPATH FROM NODE 101.00 TO NODE I 1161.00 0.0887 MANUAL) 103.00 = 748.00 FEET. I FLOW PROCESS FROM NODE 102.00 TO NODE **************************************************************************** 103.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ---------------------------------------------------------------------------- ----------------------------------------------------.------------------------ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.013 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7843 SOIL CLASSIFICATION IS "D" SUBAREA AREA (ACRES) 1.40 TOTAL AREA (ACRES) 3.80 TC(MIN) = 13.00 I SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 3.31 9.16 I 201.00 TO NODE ****************************************************,~****************k****** 202.00 IS CODE = 21 FLOW PROCESS FROM NODE ------------------------------------------__________n_______________________ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ---------------------------------------------------------------------.------- -----------------~---------------------------------------------------.------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 375.00 UPSTREAM ELEVATION = 1248.00 DOWNSTREAM ELEVATION = 1185.00 ELEVATION DIFFERENCE = 63.00 TC = 0.709*[( 375.00**3)/( 63.00)]**.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" I I I I COVER 10"850 3.327 \1\ . I SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = 2.38 0.90 TOTAL RUNOFF(CFS) = 2.38 . **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 52 ---------------------------------------------------------------------..------- I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------.-------- ------------------------------------------------------------------------------ . ELEVATION DATA: UPSTREAM (FEET) = 1185.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 112.00 CHANNEL SLOPE NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 2.38 FLOW VELOCITY(FEET/SEC) = 5.65 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) 11.18 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 1168.00 0.J.518 I MANUAL ) 203.00 = 487.00 I'EET" I **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 81 --------------------------------------------------.-------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.273 UNDEVELOPED WATERSHED RUNOFF COEI'FICIENT = .7924 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.50 TOTAL AREA (ACRES) = 1.40 TC(MIN) = 11.18 SUBAREA RUNOFF(CI'S) TOTAL RUNOFF(CFS) = 1. 30 3.67 I **************************************************.,************************* FLOW PROCESS FROM NODE 301. 00 TO NODE 302.00 IS CODE = 21 I ---------------------------------------------------.------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<:< ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 646.00 UPSTREAM ELEVATION = 1260.70 DOWNSTREAM ELEVATION = 1175.00 ELEVATION DIFFERENCE = 85.70 TC = 0.709*[( 646.00**3)/( 85.70)]**.2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = COVER I I. 14.140 2.877 I 2.92 1. 30 TOTAL RUNOFF(CFS) ~ 2.92 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 'I ------------------------------------------------------.---------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ----------------------------------------------------.------------------------ I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE) ]**.2 INITIAL SUBAREA FLOW-LENGTH = 173.00 UPSTREAM ELEVATION = 1230.00 I I 1P I I DOWNSTREAM ELEVATION = 1195.00 ELEVATION DIFFERENCE = 35.00 TC = 0.709*[( 173.00**3)!( 35.00)]**.2 100 YEAR RAINFALL INTENSITY(INCH!HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = I I 1.31 0.40 TOTAL RUNOFF(CFS) 1.31 7.672 4.026 FLOW PROCESS FROM NODE 501. 00 TO NODE ********************************************************************~,******* 502.00 IS CODE = 21 I --------------------------------------------------.-------------------.------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ------------------------------------------------------------------------------ --------------------------------------------------.-------------------.------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)!(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 225.00 UPSTREAM ELEVATION = 1256.60 DOWNSTREAM ELEVATION = 1249.00 ELEVATION DIFFERENCE = 7.60 TC = 0.709*[( 225.00**3)!( 7.60)]**.2 100 YEAR RAINFALL INTENSITY(INCH!HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA(ACRES) = I I I 0.98 0.40 TOTAL RUNOFF (CFS) = 0.98 COVER 12.191 3.121 FLOW PROCESS FROM NODE 601.00 TO NODE **************************************************,r************************* 602.00 IS CODE = 21 I ----------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------.------------------------- ---------------------------------------------------.------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)!(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 196.00 UPSTREAM ELEVATION = 1258.20 DOWNSTREAM ELEVATION = 1230.00 ELEVATION DIFFERENCE = 28.20 TC = 0.709*[( 196.00**3)!( 28.20)]**.2 100 YEAR RAINFALL INTENSITY (INCH!HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I II I 1. 52 0.50 TOTAL RUNOFF(CFS) = 1.52 COVER EI.634 3.773 I +--------------------------------------------------------------------------+ END OF RATIONAL METHOD ANALYSIS +---------------------------------------------------------------------------+ I ---------------------------------------------------.------------------------- ---------------------------------------------------------------------------- 8.63 END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 0.50 TC(MIN.) = 1. 52 I END OF RATIONAL METHOD ANALYSIS ----------------------------------------------------.------------------------ ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I I '],..0\ I I I I I I I I I I I I I I I I I I I to-YEAR POST-DEVELOPMENT CONDITIONS 1-:t. , I I ***************************************************~************************ I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY ~"UAL (C) Copyright 1982-2000 Advanced Engineeri~g Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1503 I Analysis prepared by: I PREPARED BY: LANDMARK CONSULTING 9555 GENESEE AVENUE, SUITE 200 SAN DIEGO, CA 92121 PHONE: (858) 587-8070, FAX: (858) 587-8750 I ************************** DESCRIPTION OF STUDY ************************** I * PAUBA ROAD, TM. TEMECULA, CALIFORNIA * 10-YEAR HYDROLOGY ANALYSIS (POST-DEVELOPMENT CONDITIONS) * BY: DY * * * ************************************************************************** I FILE NAME: 692POST.DAT TIME/DATE OF STUDY: 11:13 08/02/2002 I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: I USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.90 10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 0.880 100~YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 I-HOUR INTENSITY (INCH/HOUR) = 0.889 SLOPE OF INTENSITY DURATION CURVE = 0.5506 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) I I I I I --------- ----------------- ------ ------ ------- --------- ----------------- ------ ------ ------- 1 30.0 20.0 0.018/0.018/0.020 0.67 2.1J0 0.0313 0.167 0.0150 2 12.0 7.0 0.020/0.020/0.020 0.50 1. 50 0.0313 0.125 0.0150 I GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 5.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* I I **************************************************************************** I 1,;~ I I FLOW PROCESS FROM NODE 101. 00 TO NODE 102.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -----------------------------------------------------.----------------------- -----------------------------------------------------,----------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 1257.90 DOWNSTREAM ELEVATION = 1248.50 ELEVATION DIFFERENCE = 9.40 TC = 0.709*[( 200.00**3)/( 9.40)]**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = COVER I 10.886 2.275 I 0.51 0.30 TOTAL RUNOFF(CFS) = 0.51 I *****************************************************.k********************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ----------------------------------------------------_.----------------------- -----------------------------------------------______0_______________________ I ELEVATION DATA: UPSTREAM (FEET) = 1245.50 DOWNSTREAM (FEET) 1240.80 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.48 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 0.51 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 10.96 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 224.00 FEET. I I **************************************************************************** I FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.96 RAINFALL INTENSITY(INCH/HR) = 2.27 TOTAL STREAM AREA (ACRES) = 0.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.51 I I **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ----------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 145.00 UPSTREAM ELEVATION = 1251.20 DOWNSTREAM ELEVATION 1240.80 ELEVATION DIFFERENCE 10.40 I I 7.A I I I TC = 0.303*[( 145.00**3)/( 10.40)J**.2 = 3.758 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.491 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8898 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 0.31 0.10 TOTAL RUNOFF(CFS) = 0.31 I **************************************************************************** I FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I ----------------------------------------------------------------------------- -----------------------------------------------------..---------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 5.00 RAINFALL INTENSITY (INCH/HR) = 3.49 TOTAL STREAM AREA (ACRES) = 0.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.31 I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 0.51 2 0.31 Tc (MIN. ) 10.96 5.00 INTENSITY ( INCH/HOUR) 2.266 3.491 AREA (ACRE) 0.30 0.10 I I *********************************WARNING*****************************k**** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I *********************************************************************k**** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I * * PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 0.55 0.72 TABLE ** TC (MIN. ) 5.00 10.96 INTENSITY ( INCH/HOUR) 3.491 2.266 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 0.72 Tc (MIN.) = 10.96 TOTAL AREA (ACRES) = 0.40 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 224.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>> (STREET TABLE SECTION # 2 USED) <<<<< I ----------------------------------------------------------------------.------ ----------------------------------------------------------------------------- UPSTREAM ELEVATION (FEET) = 1240.80 DOWNSTREAM ELEVATION(FEET) = 122S.00 STREET LENGTH(FEET) = 247.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 I I ,. 7,.':> I I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 7.00 INSIDE STREET CROSSFALL(DEClMAL) = 0.020 OUTSIDE STREET CROSS FALL (DECIMAL) 0.020 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb-to-curb) Manning'S FRICTION FACTOR for Back-of-Wa1k Flow Section 0.0200 0.0150 I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 2.89 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.02 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.74 STREET FLOW TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) 10 YEAR RAINFALL INTENSITY (INCH/HOUR) 2.157 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8846 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.10 TOTAL AREA (ACRES) = 0.50 0.81 I 11.98 I I SUBAREA RUNOFF (CFS) PEAK FLOW RATE(Cl'S) 0.19 0.91 I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.19 HALFSTREET FLOOD WIDTH(FEET) 3.28 FLOW VELOCITY(FEET/SEC.) = 4.02 DEPTH*VELOCITY(FT*FT/SEC.) LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 471.00 0.'77 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 -----------------------------------------------------..---------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I ------------------------------------------------------.----------------.------ ----------------------------------------------------------------------.------ I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.98 RAINFALL INTENSITY (INCH/HR) = 2.16 TOTAL STREAM AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.91 I **********************************************************************,~***** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 21 ---------------------------------------------------------------------_.<----- I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------______________________________04_____ ------------------------------------------------------------------------------ I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 337.00 UPSTREAM ELEVATION = 1251.20 DOWNSTREAM ELEVATION = 1225.00 ELEVATION DIFFERENCE = 26.20 TC = 0.303*[( 337.00**3)/( 26.20)J**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT SOIL CLASSIFICATION IS liD II SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 5.182 3.423 = .8897 I I I 0.61 0.20 TOTAL RUNOFF(CFS) 0.61 I 1,.fp I I *****************************************************k********************** I FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 5.18 RAINFALL INTENSITY (INCH/HR) = 3.42 TOTAL STREAM AREA (ACRES) = 0.20 PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.61 I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 0.91 2 0.61 Tc (MIN. ) 11.98 5.18 INTENSITY ( INCH/HOUR) 2.157 3.423 AREA (ACRE) O.SO 0.20 I I *********************************WARNING********************************** I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 1. 00 1.29 TABLE * * Tc (MIN.) 5.18 11.98 INTENSITY (INCH/HOUR) 3.423 2.157 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 1.29 Tc (MIN.) ~ 11.9B TOTAL AREA(ACRES) = 0.70 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 471. 00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 105.00 TO NODE 107.00 IS CODE ~ 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< I ----------------------------------------------------------------------------- ----------------------------------------------------------------------.------ I ELEVATION DATA: UPSTREAM (FEET) = 1223.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 75.80 CHANNEL SLOPE CHANNEL BASE(FEET) = 1.00 "Z" FACTOR ~ 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA (CFS) = 1.29 FLOW VELOCITY(FEET/SEC) = 12.49 FLOW DEPTH(FEET) = TRAVEL TIME(MIN.) ~ 0.10 Tc(MIN.) = 12.09 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 1190.00 O.43!54 0.09 I 107.00 546.80 FEgT. *****************************************************~.********************** I FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE ~ 1 I -z.."\ I I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I ============================================================================ TOTAL NUMBER OF STREAMS ~ 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.09 RAINFALL INTENSITY (INCH/HR) ~ 2.15 TOTAL STREAM AREA(ACRES) ~ 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.29 I I 108.00 TO NODE *****************************************************,~********************** 107.00 IS CODE = 21 FLOW PROCESS FROM NODE I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 420.00 UPSTREAM ELEVATION = 1256.00 DOWNSTREAM ELEVATION ~ 1190.00 ELEVATION DIFFERENCE = 66.00 TC = 0.709*[( 420.00**3)/( 66.00)]**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = I I I 2.15 1.30 TOTAL RUNOFF(CFS) = 2.15 I COVER 11.506 2.206 107.00 TO NODE **************************************************************************** 1 FLOW PROCESS FROM NODE I 107.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< --------------_______________________________________u______________________ ----------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.51 RAINFALL INTENSITY(INCH/HR) = 2.21 TOTAL STREAM AREA (ACRES) = 1.30 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.15 I I 'I II ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 1.29 2 2.15 Tc (MIN. ) 12.09 11.51 INTENSITY ( INCH/HOUR) 2.148 2.206 I AREA (ACRE) 0.70 1.30 *********************************WARNING********************************** I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. *********************************************************************:<**** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK FLOW RATE TABLE ** I ~ I I I STREAM NUMBER 1 2 RUNOFF (CFS) 3.38 3.38 Tc (MIN. ) 11.51 12.09 INTENSITY ( INCH/HOUR) 2.206 2.148 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 3.38 Tc(MIN.) = 11.51 TOTAL AREA(ACRES) = 2.00 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 546.80 FEET. I *****************************************************~********************** FLOW PROCESS FROM NODE 107.00 TO NODE 109.00 IS CODE = 52 ---------------------------------------------------------------------------- I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1190.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) 544.00 CHANNEL SLOPE = CHANNEL FLOW THRU SUBAREA (CFS) = 3.38 FLOW VELOCITY(FEET/SEC) = 4.45 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) = 2.04 Tc(MIN.) 13.54 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 1161.00 0.0533 MANUAL) I 109.00 = 1090.80 FEET. **********************************************************************k***** I FLOW PROCESS FROM NODE 107.00 TO NODE 109.00 IS CODE = 81 -----------------------------------------------------..---------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ----------------------------------------------------------------------------- ----------------------------------------------------------------------"------ I 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.017 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7375 SOIL CLASSIFICATION IS "D" SUBAREA AREA (ACRES) 1.60 TOTAL AREA(ACRES) 3.60 TC(MIN) = 13.54 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 2.38 5.76 I **********************************************************************,~***** FLOW PROCESS FROM NODE 201. 00 TO NODE 202.00 IS CODE = 21 ------------------------------------------------------"----------------.------ I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------------------------------------------- -----------------------------------------------------------------------.----- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(I-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 369.00 UPSTREAM ELEVATION = 1237.00 DOWNSTREAM ELEVATION = 1233.30 ELEVATION DIFFERENCE = 3.70 TC = 0.469*[( 369.00**3)/( 3.70)]**.2 12.532 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.105 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .7745 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 1. 47 0.90 TOTAL RUNOFF (CFS) '" 1.47 I I I **********************************************************************~.***** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31 I ----------------------------------------------------.-------------------.----- I 1J\ I I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< I ---------------------------------------------------------------------------- -----------------------------------------------------.----------------------- I ELEVATION DATA, UPSTREAM (FEET) = 1233.30 DOWNSTREAM (FEET) 1228.00 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.82 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 1.47 PIPE TRAVEL TIME(MIN.) = 0.05 TC(MIN.) = 12.58 LONGEST FLOW PATH FROM NODE 201.00 TO NODE 203.00 393.00 FEET. I I **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE, TIME OF CONCENTRATION(MIN.) 12.58 RAINFALL INTENSITY (INCH/HR) = 2.10 TOTAL STREAM AREA (ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.47 I **********************************************************************'k***** FLOW PROCESS FROM NODE 204.00 TO NODE 203.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------______________________________________H______________________ ---------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)J**.2 INITIAL SUBAREA FLOW-LENGTH = 190.00 UPSTREAM ELEVATION = 1239.00 DOWNSTREAM ELEVATION = 1228.00 ELEVATION DIFFERENCE = 11.00 TC = 0.469*[( 190.00**3)/( 11.00)J**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.955 SINGLE-FAMILY(I-ACRE LOT) RUNOFF COEFFICIENT = .8059 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) ~ 6.767 I I II I 0.24 0.10 TOTAL RUNOFF (CFS) ~ 0.24 **********************************************************************~~***** I FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE ~ 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 AL~E, TIME OF CONCENTRATION(MIN.) 6.77 RAINFALL INTENSITY (INCH/HR) = 2.96 TOTAL STREAM AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.24 I I '?P I I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 1.47 2 0.24 TC (MIN. ) 12.58 6.77 INTENSITY (INCH/HOUR) 2.100 2.955 AREA (ACRE) 0.90 0.10 I *********************************WARNING************'~********************* I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ****************************************************,~********************* I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 1. 03 1.64 TABLE ** Tc (MIN.) 6.77 12.58 INTENSITY (INCH/HOUR) 2.955 2.100 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 1.64 Tc(MIN.) = 12.5B TOTAL AREA(ACRES) = 1.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 393.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 203.00 TO NODE 205.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ----------------------------------------------------------------------.------ ----------------------------------------------------------------------.------ I ELEVATION DATA: UPSTREAM (FEET) = 1228.00 DOWNSTREAM (FEET) 1226.00 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 8.24 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 1.64 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 12.64 LONGEST FLOWPATH FROM NODE 201. 00 TO NODE 205.00 422.00 FEIlT. I I **********************************************************************,~***** FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 51 ------------------------------------------------------.----------------.------ I >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1226.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 104.00 CHANNEL SLOPE CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = CHANNEL FLOW THRU SUBAREA (CFS) = 1.64 FLOW VELOCITY(FEET/SEC) = 3.61 FLOW DEPTH (FEET) = TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 13.12 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 122~). 00 0.0096 I 2 _ 00 0.34 206.00 526.00 FEET. I I '?' I I **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< -----------------------------------------------------.----------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.12 RAINFALL INTENSITY(INCH/HR) = 2.05 TOTAL STREAM AREA (ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.64 I **************************************************************************** I FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ---------------------------------------------------------------------------- -----------------------------------------------------.----------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 238.00 UPSTREAM ELEVATION = 1237.00 DOWNSTREAM ELEVATION = 1227.00 ELEVATION DIFFERENCE ~ 10.00 TC ~ 0.469*[( 238.00**3)/( 10.00)]**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 2.715 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .7987 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 7.896 I I 1.73 0.80 TOTAL RUNOFF(CFS) ~ 1. 73 I **********************************************************************k***** FLOW PROCESS FROM NODE 208.00 TO NODE 206.00 IS CODE ~ 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ----------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1227.00 DOWNSTREAM (FEET) 1225.00 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.93 ESTIMATED PIPE DIAMETER(INCH) ~ 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 1.73 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 7.9~ LONGEST FLOWPATH FROM NODE 207.00 TO NODE 206.00 248.00 FEET. I I **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I ------------------------------------------------------.----------------.------ ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 7.92 RAINFALL INTENSITY (INCH/HR) = 2.71 I I ,I TOTAL STREAM AREA (ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1. 73 I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 1.64 2 1.73 Tc (MIN. ) 13 .12 7.92 INTENSITY (INCH/HOUR) 2.052 2.711 AREA (ACRE) 1.00 0.80 I *********************************WARNING************'~********************* IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED 1S BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I ************************************************************************** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 2.72 2.95 TABLE ** Tc (MIN. ) 7.92 13 .12 INTENSITY ( INCH/HOUR) 2.711 2.052 I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = LONGEST FLOWPATH FROM ESTIMATES ARE 2.72 1. 80 NODE AS FOLLOWS: Tc (MIN.) = 7.9:2 I I I 201.00 TO NODE 206.00 526.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 209.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< I I II ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1225.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 56.00 CHANNEL SLOPE CHANNEL BASE (FEET) = 1. 00 "Z" FACTOR = 1. 000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = CHANNEL FLOW THRU SUBAREA (CFS) = 2.72 FLOW VELOCITY(FEET/SEC) = 6.76 FLOW DEPTH(FEET) = TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 8.05 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 1223.00 0.0357 :2.00 0.31 209.00 582.00 FEET. **************************************************************************** I FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 52 >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< I ----------------------------------------------------------------------.------ ----------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1223.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA (CFS) = 2.72 FLOW VELOCITY(FEET/SEC) = 5.81 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME (MIN.) = 0.50 Tc(MIN.) 8.56 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 1168.00 0.31013 MANUAL) I 210.00 = 757.00 FEET. I ?JV I I *****************************************************~~********************* I FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = B1 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ I I 10 YEAR RAINFALL INTENSITY (INCH!HOUR) = 2.597 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .76B5 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.70 TOTAL AREA (ACRES) 2.50 TC(MIN) = B.56 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 1. 40 4.12 I *****************************************************,,********************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) B.56 RAINFALL INTENSITY (INCH!HR) = 2.60 TOTAL STREAM AREA (ACRES) = 2.50 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.12 I **************************************************************************** FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 21 I ------------------------------------------------------.---------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------------------------------------.------ ----------------------------------------------------------------------.------ I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(1!2 ACRE) TC = K*[(LENGTH**3)!(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 265.00 UPSTREAM ELEVATION = 1217.00 DOWNSTREAM ELEVATION = 1214.00 ELEVATION DIFFERENCE = 3.00 TC = 0.422*[( 265.00**3)!( 3.00)]**.2 10 YEAR RAINFALL INTENSITY (INCH!HOUR) = 2.433 SINGLE-FAMILY (1!2 ACRE LOT) RUNOFF COEFFICIENT = .3166 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = 9.637 I I I 0.79 0.40 TOTAL RUNOFF(CFS) = 0.79 **********************************************************************~***** I FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31 ----------------------------------------------------------------------..----- I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ----------------------------------------------------.------------------------- ----------------------------------------------------.------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1214.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 12.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 1B.000 DEPTH OF FLOW IN 1B.0 INCH PIPE IS 2.B INCHES PIPE-FLOW VELOCITY(FEET!SEC.) 4.63 ESTIMATED PIPE DIAMETER(INCH) 1B.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 0.79 1213.00 1 I I ?;'O I I PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 0.04 Tc(MIN.) = 211. 00 TO NODE 9.68 213.00 277.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 213.00 TO NODE 210.00 IS CODE ~ 52 I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- -----------------------------------------------------.----------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1213.00 DOWNSTREAM (FEET) = CHANNEL LENGTH THRU SUBAREA (FEET) ~ 129.00 CHANNEL SLOPE = NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.79 FLOW VELOCITY(FEET/SEC) = 4.74 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) ~ 0.45 Tc(MIN.) 10.13 LONGEST FLOWPATH FROM NODE 211.00 TO NODE 1168.00 0.3488 I MANUAL) I 210.00 = 406.00 FEET. ******************************************************~********************* FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< -----------------------------------------------------.----------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS ~ 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.13 RAINFALL INTENSITY (INCH/HR) = 2.37 TOTAL STREAM AREA (ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.79 I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 4.12 2 0.79 Tc (MIN. ) 8.56 10.13 INTENSITY ( INCH/HOUR) 2.597 2.366 AREA (ACRE) 2.50 0.40 I *********************************WARNING************'~********************* I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I *********************************************************************~**** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 4.79 4.55 TABLE * * TC (MIN. ) 8.56 10.13 INTENSITY ( INCH/HOUR) 2.597 2.366 I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) ~ LONGEST FLOWPATH FROM ESTIMATES ARE 4.79 2.90 NODE AS FOLLOWS: Tc (MIN.) = 8.56 201. 00 TO NODE 210.00 757.00 FEET. I I ~ I I FLOW PROCESS FROM NODE 301.00 TO NODE *****************************************************.k********************** 302.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 214.00 UPSTREAM ELEVATION = 1226.00 DOWNSTREAM ELEVATION = 1170.00 ELEVATION DIFFERENCE = 56.00 TC = 0.709*[( 214.00**3)/( 56.00)]**.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I 0.63 0.30 TOTAL RUNOFF (CFS) = 0.63 COVER 7.934 2.707 FLOW PROCESS FROM NODE 401.00 TO NODE **************************************************************************** 402.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 137.00 UPSTREAM ELEVATION = 1225.00 DOWNSTREAM ELEVATION = 1195.00 ELEVATION DIFFERENCE = 30.00 TC = 0.469*[( 137.00**3)/( 30.00)]**.2 4.550 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.491 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8187 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I I 0.86 0.30 TOTAL RUNOFF(CFS) = 0.86 I 501. 00 TO NODE *****************************************************1r****************k***** 502.00 IS CODE = 21 FLOW PROCESS FROM NODE >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 196.00 UPSTREAM ELEVATION = 1258.00 DOWNSTREAM ELEVATION = 1230.00 ELEVATION DIFFERENCE = 28.00 TC = 0.709*[( 196.00**3)/( 28.00)]**.2 10 YEAR RAINFALL INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS liD" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I 0.79 0.40 TOTAL RUNOFF(CFS) = 0.79 I COVER 8.646 2.582 **************************************************************************** I /' ?~ I I FLOW PROCESS FROM NODE 601.00 TO NODE 602.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -----------------------------------------------------.----------------------- ----------------------------------------------------_.----------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS, UNDEVELOPED WITH FAIR COVER TC ~ K* [(LENGTH**3)! (ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 166.00 UPSTREAM ELEVATION = 1257.90 DOWNSTREAM ELEVATION = 1252.00 ELEVATION DIFFERENCE = 5.90 TC = 0.709*[( 166.00**3)!( 5.90)]**.2 10.685 10 YEAR RAINFALL INTENSITY(INCH!HOUR) 2.298 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) 0.52 TOTAL AREA (ACRES) = 0.30 TOTAL RUNOFF(CFS) = 0.52 I I I +----------------------------------------------------.----------------------+ I FLOW ENTERS EXISTING PAUBA ROAD I I I +---------------------------------------------------- ----------------------+ ============================================================================= I END OF STUDY SUMMARY, TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 0.30 TC(MIN.) ~ 0.52 10.69 ======================================================================:====== I !I I 'I ======================================================================:====== END OF RATIONAL METHOD ANALYSIS 1 I I I I I I I ,?fc II ,I I I I I I I I I I I I I I I I il I 100- YEAR POST-DEVELOPMENT CONDITIONS ~1 I . **************************************************************************** I RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAl, (C) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1503 I Analysis prepared by: I PREPARED BY: LANDMARK CONSULTING 9555 GENESEE AVENUE, SUITE 200 SAN DIEGO, CA 92121 PHONE: (858) 587-8070, FAX: (858) 587-8750 I ************************** DESCRIPTION OF STUDY ****,~********************* I , PAUBA ROAD, TM. TEMECULA, CALIFORNIA , 100-YEAR HYDROLGY ANALYSIS (POST-DEVELOPMENT CONDITIONS) 'BY: DY , , , ************************************************************************** . FILE NAME: 692POST.DAT TIME/DATE OF STUDY: 11:11 08/02/2002 I USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: I USER SPECIFIED STORM EVENT (YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE (INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY (INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY (INCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505"132 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 l-HOUR INTENSITY (INCH/HOUR) = 1.300 SLOPE OF INTENSITY DURATION CURVE = 0.5496 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES 'USER-DEFINED STREET-SECTrONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL' HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: ~1NNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) I II I !. . --------- ----------------- ------ ------ ----- -------- --------- ----------------- ------ ------ -.------ 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 12.0 7.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 I GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)' (Velocity) Constraint = 5.0 (FT'FT/S) 'SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.' I . **************************************************************************** I ~ I I FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- -----------------------------------------------------.--"--------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 1257.90 DOWNSTREAM ELEVATION = 1248.50 ELEVATION DIFFERENCE = 9.40 TC = 0.709*[( 200.00**3)/( 9.40)]**.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = COVER I 10.886 3.321 I 0.79 0.30 TOTAL RUNOFF (CFS) = 0.79 I *****************************************************k********************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ---------------------------------------------------------------------------- -----------------------------------------------------.----------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1245.50 DOWNSTREAM (FEET) 1240.80 FLOW LENGTH(FEET) = 24.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.25 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 0.79 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 10.95 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 224.00 FEET. I I **************************************************************************** I FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< -----------------------------------------------------,----------------------- ---------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 P~E, TIME OF CONCENTRATION(MIN.) = 10.95 RAINFALL INTENSITY (INCH/HR) = 3.31 TOTAL STREAM AREA(ACRES) = 0.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.79 I I *****************************************************k+********************* FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 145.00 UPSTREAM ELEVATION = 1251.20 DOWNSTREAM ELEVATION 1240.80 ELEVATION DIFFERENCE 10.40 I I I ~ I I I TC = 0.303*[( 145.00**3)/( 10.40)]**.2 = 3.758 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.093 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT ~ .8928 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 0.45 0.10 TOTAL RUNOFF(CFS) ~ 0.45 I *****************************************************.~~********************* I FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE ~ 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I -----------------------------------------------------.----------------------- ----------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 5.00 RAINFALL INTENSITY (INCH/HR) = 5.09 TOTAL STREAM AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.45 I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 0.79 2 0.45 Tc (MIN. ) 10.95 5.00 INTENSITY ( INCH/HOUR) 3.311 5.093 AREA (ACRE) 0.30 0.10 I I *********************************WARNING*****************************k**** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALliE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I ****************************************************~****************k**** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 0.82 1. 09 TABLE ** Tc (MIN. ) 5.00 10.95 INTENSITY (INCH/HOUR) 5.093 3.311 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 1.09 Tc(MIN.) = 10.95 TOTAL AREA(ACRES) = 0.40 LONGEST FLOW PATH FROM NODE 101.00 TO NODE 103.00 224.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 105.00 IS CODE = 62 I >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>> (STREET TABLE SECTION # 2 USED) <<<<< I ----------------------------------------------------------------------.------ ----------------------------------------------------------------------------- UPSTREAM ELEVATION(FEET) = 1240.80 DOWNSTREAM ELEVATION(FEET) = 122!i.00 STREET LENGTH(FEET) = 247.00 CURB HEIGHT (INCHES) ~ 6.0 STREET HALFWIDTH(FEET) = 12.00 I I /vJ I I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 7.00 INSIDE STREET CROSSFALL(DECIMAL} ~ 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.020 I II SPECIFIED NUMBER OF HALF STREETS CARRYING RUNOFF 1 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section (curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0200 0.0150 I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) ~ 0.21 HALFSTREET FLOOD WIDTH(FEET) = 4.26 AVERAGE FLOW VELOCITY(FEET/SEC.) 4.09 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) 0.87 STREET FLOW TRAVEL TIME(MIN.) = 1.01 Tc(MIN.) 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.155 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8889 SOIL CLASSIFICATION IS nDn SUBAREA AREA (ACRES) 0.10 TOTAL AREA (ACRES) = 0.50 1. 23 I 11.96 I I SUBAREA RUNOFF(CFS) PEAK FLOW RATE(CFS) 0.28 1. 37 I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.22 HALFSTREET FLOOD WIDTH (FEET) 4.59 FLOW VELOCITY (FEET/SEC.) = 4.16 DEPTH*VELOCITY(FT*FT/SEC.) = LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 471.00 0.91 FEET. I *****************************************************,~********************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE ~ 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I ============================================================================ I TOTAL NUMBER OF STREAMS ~ 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 11.96 RAINFALL INTENSITY(INCH/HR) ~ 3.15 TOTAL STREAM AREA (ACRES) = 0.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.37 I *****************************************************,~********************** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 21 ------------------------------------r----------------n---------------------- I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< =====================================================:======================= I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 337.00 UPSTREAM ELEVATION = 1251.20 DOWNSTREAM ELEVATION = 1225.00 ELEVATION DIFFERENCE = 26.20 TC ~ 0.303*[( 337.00**3)/( 26.20)]**.2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT SOIL CLASSIFICATION IS "0" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) ~ 5.182 4.994 = .8926 I I I 0.89 0.20 TOTAL RUNOFF(CFS) 0.89 I 1>,\ I I *****************************************************~********************** I FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I =======================================================~===================== I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 5.18 RAINFALL INTENSITY (INCH/HR) = 4.99 TOTAL STREAM AREA (ACRES) = 0.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.89 I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 1.37 2 0.89 Tc (MIN. ) 11. 96 5.18 INTENSITY (INCH/HOUR) 3.155 4.994 AREA. (ACRE) o . ';0 0.:20 I I *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I ************************************************************************** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I * * PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 1.48 1. 93 TABLE ** Tc (MIN. ) 5.18 11.96 INTENSITY (INCH/HOUR) 4.994 3.155 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) 1. 93 Tc (MIN.) = 11.96 TOTAL AREA(ACRES) = 0.70 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 471. 00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 105.00 TO NODE 107.00 IS CODE = 51 >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< I ---------------------------------------------------------------------------- ----------------------------------------------------.------------------------ I ELEVATION DATA: UPSTREAM (FEET) = 1223.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 75.80 CHANNEL SLOPE CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 1.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.93 FLOW VELOCITY (FEET/SEC) = 14.47 FLOW DEPTH (FEET) ~, TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 12.04 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 1190.00 0.4354 0.12 I 107.00 546.80 FEET. ***************************************************~************************ I FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 1 I ~'t; I ,I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< I ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.04 RAINFALL INTENSITY (INCH/HR) = 3.14 TOTAL STREAM AREA(ACRES) = 0.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.93 I I FLOW PROCESS FROM NODE 108.00 TO NODE *****************************************************,~********************** 107.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ----------------------------------------------------------------------------- _____________________________________________________n______________________ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 420.00 UPSTREAM ELEVATION = 1256.00 DOWNSTREAM ELEVATION = 1190.00 ELEVATION DIFFERENCE = 66.00 TC = 0.709*[( 420.00**3)/( 66.00)]**.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I 3.31 1. 30 TOTAL RUNOFF(CFS) = 3.31 I COVER 11.506 3.222 107.00 TO NODE *****************************************************,~********************** 1 FLOW PROCESS FROM NODE I 107.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 11.51 RAINFALL INTENSITY (INCH/HR) = 3.22 TOTAL STREAM AREA(ACRES) = 1.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.31 I I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 1.93 2 3.31 INTENSITY ( INCH/HOUR) 3.142 3.222 Tc (MIN. ) 12.04 11.51 I AREA (ACRE) 0.70 1. 30 *********************************WARNING********************************** I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-l AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK FLOW RATE TABLE ** I A..~ I I STREAM NUMBER 1 2 RUNOFF (CFS) 5.16 5.16 Tc (MIN. ) 11.51 12.04 INTENSITY ( INCH/HOUR) 3.222 3.142 I I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 5.16 Tc(MIN.) = 11.51 TOTAL AREA (ACRES) = 2.00 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 107.00 546.80 FEET. I *****************************************************,~~********************* FLOW PROCESS FROM NODE 107.00 TO NODE 109.00 IS CODE = 52 I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1190.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) 544.00 CHANNEL SLOPE = CHANNEL FLOW THRU SUBAREA (CFS) = 5.16 FLOW VELOCITY(FEET/SEC) = 4.91 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) = 1.85 Tc(MIN.) 13.35 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 1161.00 0.0533 MANUAL) I 109.00 = 1090.80 FEET. **************************************************************************** I FLOW PROCESS FROM NODE 107.00 TO NODE 109.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.969 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .7828 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 1.60 TOTAL AREA(ACRES) 3.60 TC(MIN) = 13.35 SUBAREA RUNOFF (CFS) TOTAL RUNOFF(CFS) = 3.72 8.87 I *****************************************************:~********************** FLOW PROCESS FROM NODE 201. 00 TO NODE 202.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 369.00 UPSTREAM ELEVATION = 1237.00 DOWNSTREAM ELEVATION = 1233.30 ELEVATION DIFFERENCE = 3.70 TC = 0.469*[( 369.00**3)/( 3.70)]**.2 12.532 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.074 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8091 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = 2.24 0.90 TOTAL RUNOFF(CFS) = 2.24 I I I **********************************************************************'k***** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31 I I A."'- I I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1233.30 DOWNSTREAM (FEET) 1228.00 FLOW LENGTH (FEET) = 24.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 8.86 ESTIMATED PIPE DIAMETER (INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 2.24 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 12.58 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 393.00 FEET. I I *****************************************************,t********************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ----------------------------------------------------------------------------- ---------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 12.58 RAINFALL INTENSITY (INCH/HR) = 3.07 TOTAL STREAM AREA (ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.24 I **********************************************************************k***** FLOW PROCESS FROM NODE 204.00 TO NODE 203.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------------------------------------------- _____________________________________________________u______________________ I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 190.00 UPSTREAM ELEVATION = 1239.00 DOWNSTREAM ELEVATION = 1228.00 ELEVATION DIFFERENCE = 11.00 TC = 0.469*[( 190.00**3)/( 11.00)]**.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.313 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8327 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 6.767 I I I 0.36 0.10 TOTAL RUNOFF(CFS) = 0.36 **************************************************************************** I FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ----------------------------------------------------------------------.------ ----------------------------------------------------------------------.------ I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 6.77 RAINFALL INTENSITY (INCH/HR) = 4.31 TOTAL STREAM AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.36 II I A-6 I I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 2.24 2 0.36 Tc (MIN. ) 12.58 6.77 INTENSITY (INCH/HOUR) 3.068 4.313 AREA, (ACRE) 0.90 0.10 I *********************************WARNING********************************** I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 1.56 2.49 TABLE ** Tc (MIN. ) 6.77 12.58 INTENSITY (INCH/HOUR) 4.313 3.068 I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 2.49 Tc(MIN.) = 12.58 TOTAL AREA (ACRES) = 1.00 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 393.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 203.00 TO NODE 205.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< I ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1228.00 DOWNSTREAM (FEET) 1226.00 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 9.33 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 2.49 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 12.63 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 422.00 FEET. I I **********************************************************************'W***** FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 51 I >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< ---------------------------------------------------------------------------- -------______________________________________________u______________________ I ELEVATION DATA: UPSTREAM (FEET) = 1226.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 104.00 CHANNEL SLOPE CHANNEL BASE (FEET) = 1. 00 "Z" FACTOR = 1. 000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = CHANNEL FLOW THRU SUBAREA(CFS) = 2.49 FLOW VELOCITY(FEET/SEC) = 4.13 FLOW DEPTH (FEET) = TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 13.05 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 122.5.00 0.0096 2.00 I 0.42 206.00 526.00 FEET. I I />(D I I **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 [S CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 13.05 RAINFALL INTENSITY (INCH/HR) = 3.01 TOTAL STREAM AREA(ACRES) = 1.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.49 I **************************************************************************** I FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ---------------------------------------------------------------------------- -------------------------------------------------__-_0_______________________ I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 238.00 UPSTREAM ELEVATION = 1237.00 DOWNSTREAM ELEVATION = 1227.00 ELEVATION DIFFERENCE = 10.00 TC = 0.469*[( 238.00**3)/( 10.00)]**.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.962 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT = .8274 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 7.896 I I 2.62 0.80 TOTAL RUNOFF(CFS) = 2.62 I **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 206.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURIl FLOW) <<<<< ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1227.00 DOWNSTREAM (FEET) 1225.00 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 8.94 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW (CFS) = 2.62 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 7.91 LONGEST FLOWPATH FROM NODE 207.00 TO NODE 206.00 248.00 FEET. I I **********************************************************************.~***** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I ------------------------------------------------------.---------------------- -----------------------------------___________________---------------_0_____- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 7.91 RAINFALL INTENSITY (INCH/HR) = 3.96 I A1 I I TOTAL STREAM AREA (ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.62 I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 2.49 2 2.62 Tc (MIN. ) 13.05 7.91 INTENSITY (INCH/HOUR) 3.006 3.957 AREA (ACRE) 1. 00 0.80 I * * * * * * * * * * * * * * * * * * * * * * * ** * * * ** * * *WARNING* * * * * * * * * * * * 'k ",. * * * * * * * * * * * * ** * ** * * * IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VlI_LlJE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. I ************************************************************************** I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 4.14 4.49 TABLE ** Tc (MIN. ) 7.91 13.05 INTENSITY (INCH/HOUR) 3.957 3.006 I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = LONGEST FLOWPATH FROM ESTIMATES ARE 4.14 1. 80 NODE AS FOLLOWS: Tc(MIN_) ~ 7.91 I 201. 00 TO NODE 206.00 526.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 209.00 IS CODE = 51 I >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1225.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 56.00 CHANNEL SLOPE CHANNEL BASE (FEET) = 1. 00 " Z" FACTOR = 1. 0 0 0 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00 CHANNEL FLOW THRU SUBAREA(CFS) = 4.14 FLOW VELOCITY(FEET/SEC) ~ 7.58 FLOW DEPTH(FEET) ~ TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 8.04 LONGEST FLOW PATH FROM NODE 201.00 TO NODE 1223.00 0.0357 I 0.39 I 209.00 582.00 FEET. *****************************************************..,********************** I FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 52 >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< I ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) ~ 1223.00 DOWNSTREAM (FEET) CHANNEL LENGTH THRU SUBAREA (FEET) = 175.00 CHANNEL SLOPE NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) ~ 4.14 FLOW VELOCITY(FEET/SEC) ~ 6.38 (PER LACFCD/RCFC&WCD HYDROLOGY TRAVEL TIME(MIN.) ~ 0.46 Tc(MIN.) 8.49 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 1168.00 0.3143 MANUAL) I 210.00 = 757.00 FEET. I A.rc I I **************************************************************************** I FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----------------------------------------------------,------------------------- ---------------------------------------------------------------------------- I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.806 UNDEVELOPED WATERSHED RUNOFF COEFFICIENT = .8059 SOIL CLASSIFICATION IS "D" SUBAREA AREA(ACRES) 0.70 TOTAL AREA(ACRES) 2.50 TC(MIN) = 8.49 SUBAREA RUNOFF(CFE) TOTAL RUNOFF (CFS) = 2.15 6.28 I I *****************************************************k********************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< -----------------------------------------------------,----------------------- ---------------------------------------------------------------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 P~E: TIME OF CONCENTRATION(MIN.) 8.49 RAINFALL INTENSITY(INCH/HR) = 3.81 TOTAL STREAM AREA(ACRES) = 2.50 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.28 I *****************************************************k*.********************* FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ----------------------------------------------------------------------------- ---------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(1/2 ACRE) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 265.00 UPSTREAM ELEVATION = 1217.00 DOWNSTREAM ELEVATION = 1214.00 ELEVATION DIFFERENCE = 3.00 TC = 0.422*[( 265.00**3)/( 3.00)]**.2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.551 SINGLE-FAMILY(1/2 ACRE LOT) RUNOFF COEFFICIENT = .8399 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = 9.637 I I I 1.19 0.40 TOTAL RUNOFF(CFS) = 1.19 *****************************************************~********************** I FLOW PROCESS FROM NODE 212.00 TO NODE 213.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ---------------------------------------------------------------------------- -----------------------------------------------------.----------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1214.00 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 12.00 MANNING'S N = 0.024 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.20 ESTIMATED PIPE DIAMETER(INCH) 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 1.19 1213.00 1 I I /:i(\ I I PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 0.04 Tc(MIN.) = 211.00 TO NODE 9.68 213.00 277.00 FEET. I ***************************************************~.************************ FLOW PROCESS FROM NODE 213.00 TO NODE 210.00 IS CODE = 52 I >>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ====================================================:======================== I ELEVATION DATA: UPSTREAM (FEET) = 1213.00 DOWNSI'REAM (FEET) CHANNEL LENGTH THRU SUBAREA(FEET) = 129.00 CHANNEL SLOPE NOTE: CHANNEL SLOPE OF .1 WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 1.19 FLOW VELOCITY (FEET/SEC) = 4.91 (PER LACFCD/RCFC&,WCD HYDROLOGY TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) 10.11 LONGEST FLOWPATH FROM NODE 211.00 TO NODE 1168.00 0.3488 I MANUAL) 210.00 = 406.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 1 I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUEE<<<<< ---------------------------------------------------------------------------- -----------------------------------------------------.----------------------- I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 10.11 RAINFALL INTENSITY (INCH/HR) = 3.46 TOTAL STREAM AREA (ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.19 I I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 6.28 2 1.19 Tc (MIN. ) 8.49 10.11 INTENSITY ( INCH/HOUR) 3.806 3.458 AREA (ACRE) 2.50 0.40 I *********************************WARNING************'~********************* I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ****************************************************:~********************* I RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFS) 7.28 6.90 TABLE ** Tc (MIN. ) 8.49 10.11 INTENSITY (INCH/HOUR) 3.806 3.458 I I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = LONGEST FLOWPATH FROM ESTIMATES ARE 7.28 2.90 NODE AS FOLLOWS: Tc(MIN.) = 8.49 201.00 TO NODE 210.00 757.00 FEET. I **************************************************************************** I ~ I II FLOW PROCESS FROM NODE 301. 00 TO NODE >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< 302.00 IS CODE = 21 I ----------------------------------------------------------------------------- -------------------------------------------------------.--------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC ~ K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 214.00 UPSTREAM ELEVATION = 1226.00 DOWNSTREAM ELEVATION ~ 1170.00 ELEVATION DIFFERENCE = 56.00 TC ~ 0.709*[( 214.00**3)/( 56.00)]**.2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I 0.96 0.30 TOTAL RUNOFF(CFS) = 0.96 I COVEF, 7.934 3.952 401.00 TO NODE *****************************************************-k********************** 402.00 IS CODE = 21 FLOW PROCESS FROM NODE >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I -----------------------------------------------------.----------------------- -------------------------------------------------------.--------------------- ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS SINGLE FAMILY(l-ACRE LOTS) TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 137.00 UPSTREAM ELEVATION = 1225.00 DOWNSTREAM ELEVATION = 1195.00 ELEVATION DIFFERENCE = 30.00 TC ~ 0.469*[( 137.00**3)/( 30.00)]**.2 4.550 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) ~ 5.093 SINGLE-FAMILY(l-ACRE LOT) RUNOFF COEFFICIENT ~ .8422 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I I I 1. 29 0.30 TOTAL RUNOFF(CFS) = 1.29 I 501.00 TO NODE *****************************************************,~********************** 502.00 IS CODE = 21 FLOW PROCESS FROM NODE >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ---------------------------------------------------------------------------- ----------------------------------------------------------------------------- COVER I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR TC ~ K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 196.00 UPSTREAM ELEVATION = 1258.00 DOWNSTREAM ELEVATION = 1230.00 ELEVATION DIFFERENCE = 28.00 TC = 0.709*[( 196.00**3)/( 28.00)]**.2 100 YEAR RAINFALL INTENSITY (INCH!HOUR) SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) = I I 1. 21 0.40 TOTAL RUNOFF(CFS) ~ 1. 21 8.646 3.770 I 601.00 TO NODE **********************************************************************k***** 602.00 IS CODE ~ 21 FLOW PROCESS FROM NODE I .;\ I I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I -----------------------------------------------------.----------------------- ---------------------------------------------------------------------------- I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS: UNDEVELOPED WITH FAIR COVER TC = K*[(LENGTH**3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH = 166.00 UPSTREAM ELEVATION = 1257.90 DOWNSTREAM ELEVATION = 1252.00 ELEVATION DIFFERENCE = 5.90 TC = 0.709*[( 166.00**3)/( 5.90)]**.2 10.685 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 3.356 SOIL CLASSIFICATION IS "D" SUBAREA RUNOFF (CFS) 0 . 80 TOTAL AREA(ACRES) = 0.30 TOTAL RUNOFF(CFS) = 0.80 I I I +----------------____________________________________n_____________________+ FLOW ENTERS EXISTING PAUBA ROAD I +---------------------------------------------------------------------------+ -----------------------------------------------------~----------------------- ----------------------------------------------------------------------------- I END OF STUDY SUMMARY: TOTAL AREA (ACRES) PEAK FLOW RATE(CFS) 0.30 TC(MIN.) = 0.80 10.69 ----------------------------------------------------------------------------- ------------------------------------------------------.---------------------- ----------------------------------------------------------------------._----- ----------------------------------------------------------------------.------ I END OF RATIONAL METHOD ANALYSIS 1 I I I I I I I I I ~z; I I I I I I I I I I I I I il I I II I I I I HYDRAULIC CALCULA nONS ?~ I I I I I I I I I I II I II i I I I I I I lOO-YEAR HYDRAULIC CALCULATIONS 6-\ I I STORM DRAIN SD1 CAPACITY Worksheet for Circular Channel I Project Description Worksheet Flow Element Method Solve For SD1. NODE 10: Circular Chanm Manning's Fom Full Flow Capa( I Input Data Mannings Goaffie l024 Slope 19.60 % Diameter 12 in I I I Results Depth 12.0 in Discharge 8.54 efs Flow Area 0.8 ft2 Wetted Perime 3.14 ft Top Width 0.00 ft Critical Depth 0.99 ft Percent Full 100.0 % Critical Slope 17.96 % Velocity 10.88 IVs Veiocity Head 1.84 ft Specific Energ: 34.1 in Froude Numbe 0.00 Maximum Disc 9.19 ets Discharge Full 8.54 efs Slope Full 19.60 % Flow Type N/A I I I I I I I I I I I I g:\projeds\69-2\hydro\sd.fm2 landmark Consulting 08/02102 01:38:02 PM @HaestadMethods. Inc. 37 Brookside Road Waterbury, CT 06700 USA (203) 755-1666 Project Engineer: David Yeh FlowMaster v6.1 {614k] Page 1 of 1 ~ I I I Project Description Worksheet Flow Element Method Solve For I SD1. NODE 1( Circular Chann Manning's Fon Channel Depth I Input Data Mannings Coeffic ),024 Slope 19.60 % Diameter 12 in Discharge 0.80 efs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 2.5 in 0.1 It' 0.94 It 0.81 It 0.37 It 20.7 % 1.94 % 6.82 fils 0.72 It 11.2 in 3.16 9.19 cfs 8.54 cfs 0.17 % )upercritical I I I I I I I I STORM DRAIN ACTUAL FLOW Worksheet for Circular Channel I g:\projects\69-2\hydro\sd.fm2 08/02/02 01 :37:27 PM @Haestad Methods. Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh A.' FiowMaster v6.1 [614k] c./''&> (203) 755-1666 Page 1 of 1 I I Cross Section Cross Section for Circular Channel I Project Description Worksheet Flow Element Method Solve For I 8D1. NODE 1( Circular Chaon Manning's Fan Channel Deptn Section Data I Mannings Coaffie ),024 Slope 19.60 % Depth 2.5 in Diameter 12 in Discharge 0.80 cfs I I I I I I I II I I I I I t 2.5 in -L__ I g;\projects\69-2\hydro\sd.fm2 08/02102 01 :37:35 PM @Haestad Methods. Inc. landmark Consulting 37 Brookside Road Wateroury. CT 06708 USA 12 in V:1~ H:1 NTS Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 51 I I STORM DRAIN SD2 CAPACITY Worksheet for Circular Channel Project Description Worksheet Flow Element Method Solve For 502, NODE 20: Circular Chann~ Manning's Fom Full Flow Caps( I I I Input Data Mannings Coefficl024 Slope 22.00 % Diameter 12 in I Results Depth 12.0 in Discharge 9.05 efs Flow Area 0.8 ft2 Wetted Perime 3.14 ft Top Width 0.00 ft Critical Depth 0.99 ft Percent Full 100.0 % Critical Slope 20.33 % Velocity 11.52 fVs Velocity Head 2.06 ft Specific Energ: 36.8 in Froude Numbe 0.00 Maximum Disc 9.74 efs Discharge Full 9.05 efs Slope Full 22.00 % Flow Type N/A I I I I I I I I I I I I I g:\projects\69-2\hydro\sd.fm2 Landmark ConsulUng 08/02102 01 :40:05 PM @ Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 0670n USA (203) 755-1666 Project Engineer: David Yeh FlowMaster v6. 1 {614k} Page 1 of 1 ':J1t(; I I I Project Description Worksheet Flow Element Method Solve For 502. NODE 2( Circular Chaon Manning's Farr Channel Depth I I Input Data Mannings Coeffic ),024 Slope 22.00 % Diameter 12 in Discharge 2.20 efs I Results Depth 4.0 in Flow Area 0.2 ft' Wetted Perime 1.24 ft Top Width 0.94 ft Critical Depth 0.63 ft Percent Full 33.6 % Critical Slope 2.44 % Velocity 9.50 ft/s Velocity Head 1.40 ft Specific Energ: 20.9 in Fraude Numbe 3.38 Maximum Disc 9.74 cfs Discharge Full 9.05 cfs Slope FuJI 1.30 % Flow Type ~upercritical I I I I I I I I I I I I I STORM DRAIN SD2 ACTUAL FLOW Worksheet for Circular Channel g:\projects\69-2\hydro\sd.fm2 08/02102 01 :40:29 PM @Haestad Methods, Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06700 USA Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 ~ I I Cross Section Cross Section for Circular Channel I Project Description Worksheet Flow Element Method Solve For I SD2, NODE 2( Circular Chann Manning's Fan Channel Depth Section Data I Mannings Coaffie ).024 Slope 22.00 %. Depth 4.0 in Diameter 12 in Discharge 2.20 cfs I I I I I I I I I I I I I I 1__ I g:\projects\69-2\hydro\sd.fm2 08/02102 01 :40:38 PM @Haestad Methods. Inc. Landmark Consutting 37 Brookside Road Waterbury, CT 06700 USA 12 in V:1~ H:1 NTS Project Engineer: David Yeh FlowMasterv6.1 {614k] (203) 755-1666 Page 1 of 1 I STORM DRAIN SD3 CAPACITY Worksheet for Circular Channel I I Project Description Worksheet Flow Element Method Solve For SD3, NODE 20: Circular Chanm Manning's FOnT Full Flow Capa( I Input Data Mannings Coeffie ).024 Slope 6.90 % Diameter 12 in I I I Results Depth 12.0 in Discharge 5.07 cfs Flow Area 0.8 ft' Wetted Perime 3.14 ft Top Width 0.00 ft Critical Depth 0.92 ft Percent Full 100.0 % Critical Slope 5.99 % Velocity 6.45 ftIs Velocity Head 0.65 ft Specific Energ: 19.8 in Fraude Numbe 0.00 Maximum Disc 5.45 cfs Discharge Full 5.07 cfs Slope Full 6.90 % Flow Type N/A I I I I I I I I I I I I g:\projects\69-2\hydro\sd.fm2 08/02102 01:42:41 PM @HaestadMethods. Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh FlowMasterv6.1 [614k] r.p (203) 755-1666 Page 1 of 1 'I I STORM DRAIN SD3 ACTUAL FLOW Worksheet for Circular Channel I Project Description Worksheet Flow Element Method Solve For I 803, NODE 2( Circular Chann Manning's Forr Channel Depth I Input Data Mannings Coeffie ).024 Slope 6.90 % Diameter 12 in Discharge 2.50 efs I Results I Depth Flow Area Wetted Peri me Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Frauds Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 6.0 in 0.4 ff~ 1.56 ft 1.00 ft 0.68 ft 49.6 % 2.61 % 6.43 It's 0.64 ft 13.7 in 1.82 5.45 cfs 5.07 cfs 1.68 % )upercritical I I I I I I I I I Projecl Engineer: David Yeh g:\projects\69-2\hydro\sd.fm2 Landmark Consulting FlowMaster v6.1 [614k] ~ 08/02102 01 :42:13 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I I Cross Section Cross Section for Circular Channel I Project Description Worksheet Flow Element Method Solve For 803. NODE 2( Circular Chann Manning's Forr Channel Depth I Section Data Mannings Coeffic ).024 Slope 6.90 % Depth 6.0 in Diameter 12 in Discharge 2.50 cfs I I I I I I II I I I I I I I 1 6.0 in 1__ I g:\projects\69-2\hydro\sd.fm2 08102/02 01 :42:22 PM @ Haestad Methods, Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06700 USA (203) 755-1666 12 in V:1b,. H:1 NTS Project Engineer. David Yeh FlowMaster v6.1 [614k] Page 1 of 1 ~ I I I I I I I I I I I I II I I I I I I STORM DRAIN SD4 CAPACITY Worksheet for Circular Channel Project Description Worksheet Flow Element Method Solve For SD4. NODE 21: Circular Channf Manning's Forn Full Flow Capa( Input Data Mannings Coeffie ).024 Slope 8.33 % Diameter 12 in Results Depth 12.0 in Discharge 5.57 cfs Flow Area 0.8 ft2 Wetted Perime 3.14 ft Top Width 0.00 ft Critical Depth 0.94 ft Percent Full 100.0 % Critical Slope 7.20 % Velocity 7.09 fUs Velocity Head 0.78 ft Specific Energ: 21.4 in Fraude Numbe 0.00 Maximum Disc 5.99 efs Discharge Full 5.57 cfs Slope Full 8.33 % Flow Type N/A Projec1 Engineer: David Yeh (p~ g:\projects\69-2\hydro\sd.fm2 Landmark Consulting FlowMaster v6.1 [614k] 08102102 01:48:20 PM @HaestadMethods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For I 604. NODE 21 Circular Chann Manning's Fan Channel Depth I Input Data Mannings Coeffic ).024 Slope 8.33 % Diameter 12 in Discharge 1.20 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I I 3.8 in 0.2 If' 1.19 It 0.93 It 0.46 It 31.5 % 2.03 % 5.65 ftIs 0.50 It 9.7 in 2.09 5.99 cIs 5.57 cIs 0.39 % ;upercritical I I I I I I I I STORM DRAIN SD4 ACTUAL FLOW Worksheet for Circular Channel g:\projects\69-2\hydro\sd. fm2 08102102 01 :48:40 PM @ Haestad Methods. Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh FlowMasterv6.1 [614k] (203) 755-1666 Page 1 of 1 f,.~ I II Cross Section Cross Section for Circular Channel I Project Description Worksheet Flow Element Method Solve For 804. NODE 21 Circular Chann Manning's Fan Channel Depth I Section Data Mannings Coeffie l024 Slope 8.33 % Depth 3.8 in Diameter 12 in Discharge 1.20 cfs I I I I I I I I I I I I I I I I 3.8 in ~-- g:\projects\69-2\hydro\sd.fm2 08/02102 01 :48:50 PM @Haestad Methods. Inc. Landmark COnsulting 37 Brookside Road Waterbury, CT 06708 USA 12 in V:1~ H:1 NTS Project Engineer: David Yeh ,. / FlowMasterv6.1 [614k] ~ (203) 755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I I Project Description Worksheet Flow Element Method Solve For CURB OUTLET Rectangular Chc Manning's Forml Discharge Input Data Mannings Coeffie ).013 Slope 2.00 % Depth 3.0 in Bottom Width 3.00 It Results Discharge 4.34 cfs Flow Area 0.8 ft:l Wetted Perifnl 3.50 ft Top Width 3.00 It Critical Depth 0.40 It Critical Slope 0.46 % Velocity 5.79 IV. Velocity Head 0.52 It Specific Eners; 9.2 in Fraude Numb 2.04 Flow Type )upercritical g:\projects\69-2\hydro\sd.fm2 08/01/02 02:58:43 PM @ Haestad Methods, Inc. CURB OUTLET CAPACITY Worksheet for Rectangular Channel Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh FlowMaster v6.1 [614~1 (~ (203) 755-1666 Page 1 of rc.p I I Project Description Worksheet Flow Element Method Solve For CURB OUTLET Rectangular Ch< Manning's Forml Channel Depth I I Input Data Mannings eoeffic ).013 Slope 2.00 % Bottom Width 3.00 ft Discharge 0.80 cfs I I Results Depth 1.0 in Flow Area 0.3 ft2 Wetted Periml 3.17 ft Top Width 3.00 ft Critical Depth 0.13 ft Critical Slope 0.54 % Velocity 3.06 IVs Velocity Head 0.15 ft Specific Enerf 2.8 in Froude Numb< 1.83 Flow Type )upercritical I I I I I I I I I I I I CURB OUTLET ACTUAL FLOW Worksheet for Rectangular Channel I g:\projects\69-2\hydro\sd.fm2 Landmark Consulting 08/01/02 02:59:06 PM @HaestadMethods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Project Engineer: David Yeh FlowMasterv6.1 [614k] Page 1 Of~, I I Project Description Worksheet Flow Element Method Solve For CURB OUTLET Rectangular Chc Manning's Forml Channel Depth I I Section Data Mannings Coeffie ).013 Slope 2.00 % Depth 1.0 in Bottom Width 3.00 ft Discharge 0.80 cfs I I I I I I Cross Section Cross Section for Rectangular Channel ~ I I 'I I I I I I I g:\projects\69-2\hydro\sd.fm2 08101/02 02:59:12 PM @Haestad Methods. Inc. 3.00 ft Landmark Consulting 37 Brookside Road Waterbury. CT 06708 USA ITIIn I V:1 b,. H:1 NTS Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 C:8. () m ?> "" " " -< " " " v Q m Q. ~ " -< 'tJ'tJ m)> ;:0;:0 'tJo :S::m .....r cnC/) COli.) :::lw ~ '" Q z ~ 0 z ~ 0 0 0 '" m m z 0 0 r " 0 0 0 c ~ r 6 6 m z en ;I> ." 0 r 0 ~ (flOO ~ C;o c-< ?(j]o s: " Co -0 " ~~ " " " " " " " (fl " v _r " , >'1.0 ~o ~-o m 0." ." " ..... 000 wr :E'< 0-:( _"0 0'" X + "en ;1>. ~en xtl 0-<0 :;;:': . . 0 . . m 'w '" ---0 ::1\5 0 ~~-i ~~I w X r qCi5 -~z .m . ~G>hi Om --i-i "'z I 0 -i m r ~ ~ (fl_~z w ~21G)hi ..... --i-i -0 I ro _~m '" ~Gl~ --iGl IZ ~ ~ -0 m -0 ~ m ;u (fl m c s: s: ;I> -0 ;u :>; z o -i m '!? ~~ -i-i II mm q~ ;;;; rr cc mm (fl(fl II ~~ mm 0000 mm mm ZZ -iO ;l>m :>;-i mm Z;U "s: ;U- oiii s:o ;1>00 ::j:': ;l>Z O-i Im m;U 0-0 Oc I!t: ;I>-i ;U- -i0 _Z s:." S:;U mQ OS: ~~ moo rr -<m "" 00 rr rr 00 :;;::;;: Zz GlGl -i-i II m- (fl(fl m-o 0;1> ;l>Gl rm O' c ~ 6 Z '!? Q ~ .... () , " ~ b~ I I I Project Description Worksheet Flow Element Method Solve For I BROW DITCH BDl N( Circular Channel Manning's Formula Channel Depth I Input Data Mannings Coeffie ).015 Slope 13.70 % Diameter 24 in Discharge 3.30 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velodty Head Specific Energ: Fraude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 3.5 in 0.3 fl2 1.56 ft 1.41 ft 0.64 ft 14.5 % 0.59 % 11.70 IUs 2.13 ft 29.0 in 4.61 78.06 cfs 72.57 cfs 0.03 % )upercritical I I I I I I I I I g:\projects\69-2\hydro\sd.fm2 08/02/02 02:00:23 PM @ Haestad Methods. Inc. BROW DITCH BD1 ACTUAL FLOW Worksheet for Circular Channel Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh 10 FrowMaster v6.1 [614kJ (203) 755-1666 Page 1 of 1 I II Cross Section Cross Section for Circular Channel I Project Description Worksheet Flow Element Method Solve For BROW DITCH BD1 N( Circular Channel Manning's Fonnula Channel Depth I Section Data I Mannings Coefficl015 Slope 13.70 % Depth 3.5 in Diameter 24 in Discharge 3.30 cfs I I I I I I 24 in I -T 3.5 in I I I V:1~ H:1 NTS I I I I g:\projects\69-2\hydro\sd.fm2 08/02/02 02:00:30 PM @Haestad Methods, Inc. Landmark Consulting 37 Brookside Road Waterbury. CT 0670B USA Project Engineer: David Yeh FiowMaster v6.1 (614kJ (203) 755-1666 Page 1 of 1 1\ I I I Project Description Worksheet Flow Element Method Solve For I BROW DITCH BD1 N( Circular Channel Manning's Formula Channel Depth I Input Data Mannings Coeffic).015 Slope 13.70 % Diameter 24 in Discharge 3.30 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 3.5 in 0.3 IP 1.56 It 1.41 It 0.64 It 14.5 % 0.59 % 11.70 fils 2.13 It 29.0 in 4.61 78.06 cfs 72.57 cfs 0.03 % )upercritical I I I I I I I I I g:\projects\69-2\hydro\sd.fm2 08/02/02 02:08:45 PM @ Haestad Methods. Inc. BROW DITCH BD1 ACTUAL FLOW Worksheet for Circular Channel Landmark Consulting 37 Brookside Road Waterbury. CT 06708 USA Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 1v I I Cross Section Cross Section for Circular Channel Project Description Worksheet Flow Element Method Solve For BROW DITCH BD1 NC Circular Channel Manning's Fonnula Channel Depth I I Section Data Mannings Coeffic).015 Slope 13.70 % Depth 3.5 in Diameter 24 in Discharge 3.30 efs I I I I I I I 24 in I --T 3.5 in I I I V:1~ H:1 NTS I I I I g:\projects\69-2\hydro\sd.fm2 08/02102 02:08:52 PM @ Haestad Methods. Inc. Landmark Consutting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 \~ I I I Project Description Worksheet Flow Element Method Solve For BROW DITCH BD2 NC Circular Channel Manning's Formula Channel Depth I Input Data Mannings Coeffie ).015 Slope 5.80 % Diameter 24 in Discharge 0.40 efs I I Results Depth 1.6 in Flow Area 0.1 ft' Wetted Perime 1.03 ft Top Width 0.99 ft Critical Depth 0.22 ft Percent Full 6.5 % Critical Slope 0.69 % Velocity 4.59 IVs Velocity Head 0.33 ft Specific Energ: 5.5 in Fraude Numbe 2.72 Maximum Disc 50.79 cfs Discharge Full 47.22 cfs Slope Full 4.160-4 % Flow Type ~upercritical I I I I I I I I I I I I I g:\projects\69-2\hydro\sd. fm2 08/02102 02:04:37 PM @Haestad Methods, fne. BROW DITCH BD2 ACTUAL FLOW Worksheet for Circular Channel Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 1'" I I Cross Section Cross Section for Circular Channel I Project Description Worksheet Flow Element Method Solve For I BROW DITCH BD2 NC Circular Channel Manning's Formula Channel Depth Section Data Manning5 Coeffic ),015 Slope 5.80 % Depth 1.6 in Diameter 24 in Discharge 0.40 cfs I I I I I I I I I I I I I I I g:\projects\69-2\hydro\sd.fm2 08/02/02 02:04:43 PM @Haestad Methods, Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06700 USA 24 in 1. in V:1~ H:1 NTS Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 ,- 1"1:> I I BROW DITCH BD3 ACTUAL FLOW Worksheet for Circular Channel I I Project Description Worksheet Flow Element Method Solve For BROW DITCH BD3 N( Circular Channel Manning's Formula Channel Depth I Input Data Mannings Coeffie ).015 Slope 12.50 % Diameter 24 in Discharge 4.10 efs I I I I I Results Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type 4.0 in 0.3 ft2 1.67 ft 1.48 ft 0.71 ft 16.5 % 0.60 % 12.09 fils 2.27 ft 31.2 in 4.46 74.56 cfs 69.31 cfs 0.04 % )upercritical I I I I I I I I Prajeel Engineer: David Yeh FlowMaster v6.1 [614k) Page 1 of 1 1~ I g:\projects\69-2\hydro\sd.fm2 Landmark Consulting 08/02102 02:06:34 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06700 USA (203) 755-1666 I I Project Description Worksheet Flow Element Method Solve For I I BROW DITCH' BD3 NC Circular Channel Manning's Formula Channel Depth Section Data Mannings Coeffic ).015 Slope 12.50 % Depth 4.0 in Diameter 24 in Discharge 4.10 cfs I I I I I I I I I I I I I I I g:\projects\69-2\hydro\sd.fm2 08/02102 02:06:40 PM @ Haestad Methods. Inc. Cross Section Cross Section for Circular Channel -T 4.0 in 24 in V:1 b" H:1 NTS Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Projec1 Engineer. David Yeh FlowMaster v6.1 {614k] Page 1 of 1 ~ I I I I I I I I I I I I I I I I I I I BROW DITCH BD4 ACTUAL FL.OW Worksheet for Circular Channel Project Description Worksheet Flow Element Method Solve For BROW DITCH BD4 N( Circular Channel Manning's Formula Channel Depth Input Data Mannings Coeffic).015 Stope ~3.50 %. Diameter 24 in Discharge 1.30 efs Results Depth 1.7 in Flow Area 0.1 ft, Wetted Perime 1.08 ft Top Width 1.03 ft Critical Depth 0.39 ft Percent Full 7.1 % Critical Slope 0.61 % Velocity 13.24 IVs Velocity Head 2.72 ft Specific Energ: 34.4 in Fraude Numbe 7.54 Maximum Disc 139.09 cfs Discharge Full 129.30 cis Slope FuJi 4.4e-3 % Flow Type ~upercritjcal Project Engineer: David Yeh "'" C) g:\projects\69-2\hydro\sd.fm2 landmark Consulting FlowMaster v6.1 [614k] VQ 08102102 02:07:50 PM @Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 0670n USA (203) 755-1666 Page 1 of 1 I I Cross Section Cross Section for Circular Channel Project Description Worksheet Flow Element Method Solve For BROW DITCH BD4 N( Circular Channel Manning's Formula Channel Depth I I Section Data Mannings Coaffie ),015 Slope ~3.50 % Depth 1.7 in Diameter 24 in Discharge 1.30 cfs I I I I I I I 24 in I -~[;n I I I V:l~ H:l NTS I I I I g:\projects\69-2\hydro\sd.fm2 08102102 02:07:57 PM @ Haestad Methods. Inc. Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: David Yeh FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 1l\ II I I I I I I I I I I I I I I I I I I , . 2000 REGIONAl! SUPPLEMENT AMENDMENTS individual pi~ces of any class of rock slope protection shall be determined by the ratio of the number of individual pieces larger than the smallest size listed in the table for that class also pertaining to 200-1. 7 200-1.6.3 Qualil)' Requirements Page 45 - First paragraph. second sentence change "60 days- to "30 days". 200-1.7 Selection of Riprap and Filter Blanket Material Add Section 200-1.7 "Selection of Rip Rap and Filter Blanket Material" shall be per Table 200-1.7 Table 200-1.7 - Rip Filter Blanket Upper Laver(s) Velocity Rock Class Rap (3) Meters/See (2) Thic Option 1 Optio . (FtlSec) k- Sect. 200 n2 Option 3 Lower (I) Nes (4) Sec:t.4 (5) Layer s 00 (6) . "r" ('!L . 2 (6-7) No.3 Backing 0.15 5 mm (3/16") C2 D.G. - 2.2 (7-8) No.2 Backing 1.0 6 mm (1/4") B3 D.G. - I, 2.6 (8-9.5) Facing 1.4. 9.5 mm (3/8") -- D.G. -- 3(9.5-11) Light 2.0 12.5 mm (\1,") --- 25mm (3/4"- 1-1(2") -- 3.5 (11-13) 220 kg (1/4 Ton) 2.7 19 mm (3/4") -- 25mm (3/4"- 1-1(2") SAND 4 (13-15) 45Qkg..('.6--T.on)_ 3A. 2S mm{l'" ~5mrni3f4"-i--l12 } 4.5 (15-17) 900 kg (I Ton) 4.3 37.5 mm (1-112") -,- TYPE B SAND 5.5 (17-20) 1.8Tonne (2 Ton) 5.4 50 mm (2") --- TYPE B SAND - See Section 200-1.6. see also Table 200-1.6 (A) Practical use of this table is limited to situations where "T" is less than inside diameter. (1) (2) (3) , Average velocity in pipe or bottom velocity in energy dissipater, whichever is greater. If desired rip rap and filter blanket class is not available, use next larger class. .. Filter blanket thickness = 0.3 Meter (I Foot) or "T", whichever is less. So ~ .." ~ ~~~ 6 Z -NN 0 0-0 ..... '-lW\O v tT:I ~ ~:-,./>.Q,o WN-OO '-" ~ - -'Tj W~N..,,< NO\"""'c:n '-" ~~ ./>../>../>.::11::l . >-J '-"::c: l"' ~tT:I 0\0\0\::1~ '-">-J ::c: >-J ::c: ..... ~~pSlR -l::o.O\-.J-..-z tT:I VJ VJ 'Tj - l"' t;J ~ 0;1 l"' ~ Ww ~ --- tI1 ~-I:: >-J : - e .." .." tT:I ~ l"' > -< tT:I ~ l"' o VJ VJ ~ ~ : ~ ~ I::l I::l ~ -< tT:I ~ \'3 I I I I I I I I I I I II I I I I I I I lO-YEARHYDRAULlC CALCULATIONS $40' I I I Project Description Worksheet Flow Element Method Solve For STREET FLm Irregular Cham Manning's Fan Channel Depth I Input Data Slope 5.00 % Dischargl 1.30 cfs I I Options Current Roughness Mathe Jved Lotter's Method Open Channel Weighting wed Lotter's Method Closed Channel Weightin! Horton's Method I I Results Mannings Coefficiel 0.015 Water Surface Elev. -5.8 in Elevation Range l58 to 0.00 Flow Area 0.5 ft2 Wetted Perimeter 9.71 ft Top Width 9.52 ft Actual Depth 0.10 ft Critical Elevation -0.45 ft Critical Slope 0.83 % Velocity 2.87 fUs Velocity Head 0.13 ft Specific Energy -4.3 in Froude Number 2.32 Flow Type iupercritical I I I I Calculation Messages: Flow is divided. I Roughness Segments Start Station End Station Mannings Coefficient I 0+00 0+32 0.Q15 Natural Channel Points I Station (II) 0+00 0+04 0+04 0+16 0+28 0+28 0+32 Elevation (ft) 0.00 -0.08 .0.58 -0.34 -0.58 -0.08 0.00 I I I I g:\projects\69-2\hydro\sd. fm2 08102102 01 :49:51 PM @ Haestad Methods, Inc. Project Summary Report Project Engineer: David Yeh FlowMaster v6.1 [614k] Page 1 of 1 Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 89 I I I Project Description Worksheet Flow Element Method Solve For I STREET FLOV Irregular Cham Manning's Fan Channel Depth Section Data Mannings Coefficiel 0.015 Slope 5.00 % Water Surface Elev -5.8 in Elevation Range ).58 to 0.00 Discharge 1.30 cfs I I I I I I I .8:gsc " 0+00 I I I I I I I ..."__,,n'j"'"-V-"" 0+05 0+10 I g:\projects\6g..2\hydro\sd.fm2 08/02102 01 :50:02 PM @Haestad Methods, Inc. Cross Section Cross Section for Irregular Channel 0+15 0+20 DU- ."""n, __..___.L. O'~:'::'::'::'::-.:::.J 0+25 0+30 0+35 Landmark Consulting 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 V:1~ H:1 NTS Project Engineer: David Yeh FlowMaster v6.1 [614k] Page 1 of 1 gA.' I I I I ! I I I I I I I I I I I I I I I CONCLUSION Based on the hydrology and hydraulic calculations, the proposed storm drainage system is sufficient to handle the anticipated peak discharge due to the proposed development. Flows from the site will not adversely affect the surrounding environment. 'if' -. I I I I I I I I I I I I I I I I I I APPENDIX Wo I I I A9010H<iAH OOM 9 O.:lO~ l\fnN\fV~ 910 v) I"V-O 3.LVld VolVO S3^~n::> NOllv~no - A1ISN3olNI O~VON'i11S \..~ I I I I I I I I I I I I I I I I ::0 l> Z ~ r r - Z -i fTI Z (f) -i -< I z () :r: fTI (f) \ -0 fTI ::0 :r: o C ::0 n. -c ,n, a.at~~go. OOU'IlIl. . wwwww 1\11'''\,1 """ ............- ----.... c. .. U'GUlQ,"" OUlG"'O GlOO."'O litO- .""00 .oat....aoUl .....1\1_0 >OlIt....O'UI .... ... ~- z 0 "0 ;; .. z '" . . ---- ----- ----- ----- "''''NNN .. ... ........ .. .. .. .. .. .. ....... .. ........ .. ........ .. .. .. .. .. .. ........ .. ~- ... 0 0' 0"<'-....... ....cacaca.o .0000_ --NNW ...U'lUt CJ'I........at. ONWUllat .0 .. z :.. """"lltOW 0-0... ....OWCJlO .(11..00- O....caWllt ._G....o- o........ca. .. ~ . 0 ... c 0 ~ --.......- -...--... -...--- "''''-'''Ni NNNNN NNNNW WWW.. ..- Z ........ .. ........ .. .. .. .. .. .. ........ .. ........ .. ........ .. ........ .. ~o n GOO__ NNW.. U"'''CI'''' .... ~ca.oo_ NNW""UI 0-....0...0_ "'.....0. .0 .. 01,01.......11I OO'NO...,. W..."'....W O....Vl.UlI -....."'0 OOf\,lUto ...Ut....CD .. Zo pz ,.. ,.... -c c Z.. .... ClI at........'" I ~ \It..,.,.. . WWWWW NNNNN ----- ;:::;;:; OOCIt....OO\..,. c. ... .. \1110...011I ,"0\110 llt lJ'. ""'0 "oo#NO ..0 ca.... O'Ut .... Z_ ... "'- n", 0 "0 X" .. Z o. ~ n I . -,- ----- ----- ----- :-'~:-~~ NNNW~ .. . ........ .. ........ '. ........ .. ........ .. .. .. .. .. .. ...... .. "'- ... r-... ............1It1OWl I~ .-.00.- --IVIVIV W....lltO" o-........caca -.OO",,;~W \IIo-~_ .0 .. -'" . WVIlca_. ~N""W':>> ~""O..o .-.00-1,01_ 0--0-"". 0-......0- 0........'" .. '" ...z .. '" 0'" '" c ..n 0 '" ZC ----- =- :--;-;-~- ----- -I\INIV..., "''''IVI\IIV ~~~~~ WW..\II ..- Z _r- .... . .... . .... . .... . .... . ~.. n .. 0-__", ~~::~:: o-~""~.o .O-I\IW .11I0-0'0... caO"";~. 0'-.01"10-_ .0 .. "'-"".0. ...1\1".0 taO'UU"ta U1NO<O.o -.0_\11 ta -.0..-0 .. - ..... zO -c Z.. ..ca......o, O<""UII...... ""...,WWW "'''''''NN ----- ....---- .:0....."'''" c. .. UloUlOUl o ,,"OUl':I g:t",.",0 ""'''NO -.0...."''''' .WN_O ..~ ... ~- 0 "0 .. Z Z '" 0 .. . ----- ----- ----- ----- I\I"'NNN ~ n .... . ...... . .... . . . . . . .... . .... . .... . ~- ... 0 0000......... cacgca..o.o 000__ -"'N""W ..""UlOO "'......ta.a 0_""U1'" ... .. :.. .....aN... O.cal'\l'. -""OOOW ...."'ooN.a "'00 0 UII0 "'N.a...", ....a.1oI... .. '" 0 .. c 0 '" ----- ----... ----- ----IV IVIVNIVIV NNIVNN WWloIW. ..- Z .... . .....' . .... . .... . . . . . . .... . .... . ~O n 000__ NN'...W.... UHIHIIo-... "'CIJ.a.aO --NW"" .U1o-",.o -NUI..._ .0 .. -.....-"" 0""....0.. -Ul.o.o o-NOCIJca W.oUlNO CltCIJClto. 0.0_000- .. . ZO -C Z.. 010........0- o-UlIJI"'.. WWWWW NI'\INNN ----- ----- c. .. UlOUlOUl OUlQUlC> o.o-"'NO GlO'.Na .aca...",UI ....,N_O .aCD....o-..,. .... .. r- "'- . 0 "0 r- .. z z ~ ~ . --........., ----- ----- -fUNfUN NNNN'" WWlolW", .. .. ....... . ..... . .... . .... . .... . .... . .... . "'- ... .. Qt(loCl.a. OO"._N WlolW"'. t..n........ca oOOO_N W.U1O<(Io ON.GI'" .0 .. - . NUlca_Ul OUl"'CIJ... o..a.-o lP'N 0 'oD'oD Ul-GlUlW WW....W -NIDOW .. ~ Z '" '" '" .. c .. 0 WWWWW '" ----- --"'-N NfU!\INN NNNNW WW... . UII III 0-0> ..- Z .... . .... . .... . .... . ..... . .... . .... . "'0 n WW."'UI 0"00"'GlI0 O_I\IWW "'0-"'''0 _NW."" """0 NUl (Io_UlO", ... .. -U1-OOW O!>>'CII.oN .aUll'lfO-o .aO'\HP'W NNN"'ca Nca...caN -1,1I"'010> .. zo -c Z.. 00....... 0-"""'''. WW,,",WW NNf\JNN ----- ----- c. .. .. ,,",OUlO,," OUlOUlO 01"'."'0 laO>."'O .0......0>'" "'''''N_O ICICI....O<"" ~~ ~ r- "'- >> 0 "0 .. .. Z - '" ~ . ---- ----- ----- --...-- -NNNN .. < .... . .... . .... . . . . . . .... . .... . .... . "'- ... . 0>0>........ ........0. >CIOOO_ --NI\IW w...."" """'......... ..00"'.0> .0 .. r- . "'caONUt ea_U10"" Ooowooa weal\l." "-\11.0,,, -.oUl"'<oea ea<o._. .. '" ... . '" '" .. c .. 0 --- ----- -NN"'I\I '" ----- ----- N"'NNN "'wwww ..- Z .... . .... . . . . .. . . . . . . .... . ... .. ...... . ~o n ..a..oOOO --NNW ...."""" O<o>...ca..o -.oao_N "'1,01..1,1I00 caa"'..... .0 .. .....0..11I "'..."'..... a..",.. W.""W'" "''''01.... .0....,......0 "'--0<1>> .. II :1 I I I I I I I I I I I I I I I ,I II 13->>' C lMURRlETAJ C ~C .,." A Be . . \":~~ ~~~~:~J~~~?!t~.~~ : ,~~~"',~j~~; ~. ' .'~, ~~.<< ;~ffP:'~~ ~~ ~f . \~~ J-~C ;G \..... ':,.~~ W:l~ :-:,:.,..,_\:."\3 ;~~'TIl c {~~J~\k: ~~. '}~~~. "" iX.'i X <'. ;'~:~; , ~~". - . CJ'"7'!. ii:l1",,~Y,:{,JgJ1 ~, ".0 . ~1 ,", V~ '. .' ." J~ ...ff 1''1t;' 1:')' 1/@};(IP/(\-:!I..J,~~' 'iiL/ f." '~)i,~~ ' . ~;1(' '~:;..~. _~V~~"HL'"":'":; ?~ . c r~;:c-'';;1'\t~~'Kr~. /'~ [~'n5\~.~,jB .I.~ , J',<<J:4~:... CJ .. ,,,,". i ~ I ",.,~ /'~>~ ~J ,~(J if( ;,", '" .".' ~~'If:-, '"'\:(F~-~l~.'(:'(~,.: ~ ,l \'--'1 - ~-Jj-:.'N;,j ~'~i v' ~ ~ ~D ',I~: - i.....:;; ~ , ,- 0, . re ~.:j., L r';.~ .,$Jf ,J. ..' 0..~..'i.J "t~'".:~ ~ ~;~:~'i !i~~, .~ :i5?,};?~ l> ~~~n, ~~.~..:~:~ .... "~{' , ..... '1\~~~V('Ii~~~f1 ' " \.:~r~i,'Q<l~i(\;~' '. .<:': -<. . ...:".:. '~"<.-,,. ",~ ....' ~~.~""'_"~ ".,;':-' ...... ,.../>r . ,VU];.i\!. ..' ... ....' "'::~(--dl': ^'-- ,- -,-, , " _:~;>:.t '.-:~;:~;:.:,.~;: -.t /~ ,,,.' ~l'~) ,~; :; II ~;< d' I . '" y,<? n(, r~.' ~ 00: ~~~~ ~ . &;. ., 'Jr.' ~.. An ',~" _. . : ~~ :. '~~'~i;B .'. ..' 'r-"" liS~-:' ~.j~i"-~~~~~'~ ~l~c;;~~-""'i' ;1'" -. , ,\~.' ~Uj...r .' , "tf<~ ~"~, ; j; -'IIi' ...,.::!'~ ; WJi/Y,." i. , s::> .>; . ..J ,. /( ,"rlJ '( j " '~f" -.Ji ' ..1M" '. . ! \0.. " ~ ""'" __". 1 u'j: : '. . ""-', . '..,~ \.. ;., "- ; f .< .... -:p-"'. . I~...,. .< . ,;.; :dtili.: To' _ ' r,:. . "m ": , " . -, ,,,.",, "".'d _" ..,. !j, , " r.. [" f .. ~"J:.~~'~ if"",-", -.:. , '-- .-$' ~~ I :@~~~. ,,~/: ',(' .~(..',\.~. !y ~ "'. . ?t~~ .,y~~~i~i::'~<s.i.." I.. D . v.. 1..1 ..' " "iL?,>J.:.~ J:. . 01 ..,p, ;r" \ O. ~'" '':If: .....,' . 'f~ .o=z\"~' .', ,:'P."::;}j.;"" fA ':', .... ?;...:~ :7~ () . . - ~~ i'F'" '~'!'~EN'" . 11 I.j i ,~~: f>.q. ~ I'l.r ":" .r'G," ,-. .' "'Y1;:j ''1-,'' ' I~~ - . I,? .' 'w '.s. t -f,),-l.P .~ ~r" ..." ''''~\'< ))~ . ':fiiKij ~') ~l-' . I~( 'r!. ',(^'.WD~'<t,~\,\.?,,::\'!\v ~ ~_I' (,ii_.., I?" 1-l.,1.1l\"f.~~.",,,,,.~~, ''l, c.,0~U~~'~~N\ "'!>t\~,,;) \1,1 \Y.,;/f r~.. ~II.. .' , < 4:~.1~.3(;;r:f~~ 1;";'-'..)' C::;',~ ,,' . oAf.' . ~ ,\ r ""f!' , 'i.~ -. ..'n,:.; ',"<.1i,., "'f"" ,~~"i.' ~~ IF c<;w' ,;." !!:;..L:; ! i../t.: :'. ~ . ~)? [.rw' ..'i~::}i I '. "'ill..:-':-iL. "-'''1''''''''- i ';' . .' . . . " . -,;Pi <<;.~~ .r:;,' ~.9,"r+-' " .. ).~ ;;'l.;Ii:W(' i7~; ;y ,. :.~ ~ ',J;;. (:..,-:, .'.1 'i'7.'v,-;;,. ;../.)1J.'..'l;'~'~ ,~:~! . ~'IJ" ~.. ;,1i;;tM'~~~S\~"'A~:~:"~'o ..')" ;,' ,'<1),;,,"- f~~',!~'::~r:'1[~.iiE..):..f'P~,"'":""0I/,,~~j~ .r", ~V.'ld;'K(~{Mt".t ~5S"'i'J'~>~:" "'. . 1'-", . .,.. "~" ,l:.lr':"..' '1:""'7,'\<!.:~../ '.-, '" .i. .. ;,! 't-!. . '. J. . ... ~ . ~.:p r::.c.. _ -riLi.' - ~~ .J '~.,. "1' -- ;, ,,' ",,'. . ::.':\.' ,~:'''!.,.';:''....: J '~.~l~~,~\,.:iA(o;~~~f~~<;:I'~L' ,<'l ..... .' , ....-. -. " ~-" ,-" /!,,", j":1 " ,I,' fl" '-t- ~.;.:;. ~, :,; -j", 0/-' : \~t~ ~;~ ' ,::-.', T: :,'J-. rot "c. '. / ~i~~~:~-'~ , ......;~ .". .:'::t ~~:,:-~~,;I :i--i:nJ;lH~ ~~I~ ,,~... LEGEND . - SOILS GROUP BOUNDARY A SOILS GROUP DESIGNATION .~ . I HYDROLOGIC SOILS GROUP MAP FOR TEMECULA RCFcaWCD HYDROLOGY MANUAL r-..-~-.r-"I o FEET 5000 ~ C-1.60 ~ PLATE I I I I I I I I I I I I I I I I I I I HYDROLOGY MAP ~