HomeMy WebLinkAboutParcel Map 13089 Supplementary Hydrology
ALAN R. SHORT, P.E.
SUPPLEMENTARY
. HYDROLOGY STUDY
FOR
PARCEL MAP 13089
CITY OF TEMECUIA
PREPARED FOR:
THE LEGACY GROUP
43224 ORMSBY ~OAD
TEMECULA, CA. 92592
(95f) ~94-31-20
PREPARED BY:
ALAN R. SHOR , P.E.
RCE 30873, EXPIRES 3/31/04
August 22, 2005
\
~ 25911 Pinewood Lane
Laguna Hills, CA 92653
(949) 586-5200
FAX (949) 586-6987
,.
TABLE OF CONTENTS
Q Introduction & Summary
Q Rational Method Hydrology Calculation
100-Year Storm Event
Q HEC-RAS Analyses
Low "n" Friction Values
High "n" Friction Values
Q Work Map (Cross Sections)
Q Appendices
Table of Permissible Average Velocities
Table of Manning's "n" Values
C:IH&H Fi/eslTemecula PM 13089IHECRAS_082005_PM 13089_City ofTemecula.doc
2-
INTRODUCTION & SUMMARY
This is a supplemental HEC-RAS analySis to the drainage study for Parcel Map
No. 13089, in the City of Temecula. The site is bounded by Pauba Road on the
south, Calle Cedral and Cerezo on the west, and natural/open space areas on
the north and east as shown on the vicinity map.
HEC-RAS, the Hydrologic Engineering Center's River Analysis System is a
computer program developed by the U.S. Army Corps of Engineers that
performs one dimensional steady and unsteady flow water surface calculations,
using energy and momentum equations.
Two streams confluence within the site and flow in a southerly direction towards
Pauba Road. At Pauba Road an existing culvertllateral conveys the flow onto an
existing 120" RCP within the Road. The main natural stream between Parcels 3
and 4 is proposed to be graded as a uniform earthen channel (10 feet wide with
mostly 3:1 side slopes) along with proposed vegetation for erosion control, and
channel bed and slope stability purposes.
The Rational Method hydrology as described in the "Riverside County Flood
Control and Water Conservation District Hydrology Manual" was performed (in
the previous report) to calculate the 100-year peak flow discharges (see
Hydrology Section).
Two HEC-RAS models were prepared, one model assumed lower Manning's "n"
values (n = 0.035 & 0.055 for channel bed and slopes respectively) and another
assumes higher Manning's Un" values (n = 0.045 & 0.075 for channel bed and
slopes respectively). The HEC-RAS results indicate that the maximum average
velocities in the channel are 7.5 and 6.7 fps for the low and high Un" values
respectively.
Attachment No. 1 in the Appendix lists the maximum permissible average
velocities for earthen channels with no vegetation. In accordance with this list,
depending on the type of soil composition of the proposed earthen channel, the
channel should be adequately vegetated in order to prevent future erosions in
the channel.
The HEC-RAS Manual provides a list of "nO values (copy attached in the
Appendices) that correspond to several types of channel lining materials (e.g.
earthen, concrete, etc.). It should be noted that the On" values used in the two
models for this project are both much coarser than the initial "clean, recently
completed' channel designation provided in the Manual. Consequently,
considering the type of proposed channel material and the permissible velocities,
it is prudent and essential that the proposed channel be vegetated immediately
after the grading is completed to allow adequate time for plant establishment
before receiving substantial flows in the channel.
3
SITE
VICINITY MAP
N.T.S.
THOMAS GUIDE: 126 / C-3
A...
Rational Method Hydrology Calculation
100-Year Storm Event
~
-
...",
'."
........
"ClI.'
..~:'I
:~.;.1
'.:
~
.. .
~..-
'iii
~.
.
.
'-.
Z
p
I,
o
-
I'
...
I'
:'0'.
lD.
o.
'c,;"
III.
n'
-4.
o n
:Ii': A
- ;;.
.ft C
.... -
,l!
. ..
" . .It&..
fI" '.,
'C", '.-c.
. ..
. . . .'.
'1:. ..'
I I
, .
of ,':
I ..
~ I
I. .1..
I I.
. I
01 oJ.
.~3
!. !
.
J;\
c
.~~
-
, ~
. ",..,:t.
. '.'1
~
.. !
. ",.
:0
:;.."".1
,,.. '
,'.
._;.. .
:.;jJ .,
;:=
.-
-
:1
:J
"-
~ ,~.
.
.-:
~,
.
,
;,
.~
.:.d
.'1
~.
.,
HEC-RAS Analyses
Low "n" Friction Values
1
untitled
HEC-RAS version 3.1.3 May 2005
u.S. Army Corp of Engineers
Hydrologic Engineering Center
6 9 second Street
Davis. california
x X XXXXXX
X X X
X X X
XXXXXXX XXXX
X X X
X X X
X X XXXXXX
xxxx
X X
X
X
X
X X
XXXX
xxxx
X X
X X
XXX XXXX
X X
X X
X X
xx
X X
X X
XXXXXX
X X
X X
X X
xxxx
X
X
XXXX
X
X
XXXXX
PROJECT DATA
pro~ect Title: Temecula PM 13089 Lower Frictions
proJect File : TemeculaLF.prj
Run Date and Time: 8/20/2005 11:53:34 AM
project in English units
project Description:
parcel Map NO. 13089. city of Temecula
This analysis was finalized on
8/20/05
This analysis consists of low "n" values
PLAN DATA
plan Title: plan 01
plan File : c:\H&H Files\Engineering Files\Temecula PM 13089\Final
Runs\TemeculaLF.p01
Geometry Title:
Geometry File :
Runs\TemeculaLF.g01
Flow Title
Flow File
Runs\TemeculaLF.f01
plan summary Information:
Number of: cross sections =
culverts =
Bridges =
Temecula PM 13089
c:\H&H Files\Engineering Files\Temecula PM 13089\Final
Temecula PM 13089
C:\H&H Files\Engineering Files\Temecula PM 13089\Final
8
o
o
Multiple openings =
Inline Structures =
Lateral Structures =
o
o
o
computational Information
water surface calculation tolerance =
critical depth calculation tolerance =
Maximum number of iterations =
Maximum difference tolerance
Flow tolerance factor
0.01
0.01
20
= 0.3
= 0.001
computation options
Critical depth computed only where necessary
Page 1
~
Conveyance calculation Method:
Friction slope Method:
computational Flow Regime:
untitled
At breaks in n values only
Average conveyance
Mixed Flow
FLOW DATA
Flow Title: Temecula PM 13089
Flow File : C:\H&H Files\Engineering Files\Temecula PM 13089\Final
Runs\TemeculaLF.fOl
Flow Data (cfs)
River
Channel
Channel
channe 1
Reach
1
1
1
RS
6
3
1
PF 1
59.9
68.2
72.8
Boundary conditions
River Reach
Downstream
Profile
upstream
channel 1
Normal S = 0.09
PF 1
Critical
GEOMETRY DATA
Geometry Title: Temecula PM 13089
Geometry File: c:\H&H Files\Engineering Files\Temecula PM 13089\Final
RunS\TemeculaLF.gOl
CROSS SECTION
RIVER: Channel
REACH: 1
RS: 6
INPUT
Descri pti on:
Station Elevation Data num= 9
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 19 3 18 9 17 12.4 16 16 15.5
19 16 20.5 17 22.5 18 28.5 19
Manning's n values nUIl1= 3
Sta n val Sta n val Sta n val
0 .055 9 .035 20.5 .055
Bank Sta: Left Right Lengths: Left Channel Right coeff Contr. Expan.
9 2 .5 64 63 62 .1 .3
CROSS SECTION
page 2
C\.
untitled
RIVER: Channel
REACH: 1 RS: 5
INPUT
Description:
Station Elevation Data num= 5
Sta Elev Sta Elev Sta Elev sta Elev Sta Elev
0 16.33 6 14.33 11 13.83 16 14.33 22 16.33
Manning's n Values num= 3
Sta n Val Sta n Val Sta n val
0 .055 6 .035 16 .055
Bank Sta: Left Right Lengths: Left channel Right coeff Contr. Expan.
6 16 71 71 71 .1 .3
CROSS SECTION
RIVER: chan ne 1
REACH: 1 RS: 4
INPUT
Description:
Station Elevation Data num= 5
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 14.15 6 12.15 11 11.65 16 12.15 22 14.15
Manning's n Values num= 3
Sta n Val Sta n Val sta n Val
0 .055 6 .035 16 .055
Bank sta: Left Right Lengths: Left channel Ri~ht Coeff contr. Expan.
6 16 54.8 54.8 5 .8 .1 .3
CROSS SECTION
RIVER: Channel
REACH: 1 RS: 3
INPUT
Description:
Station Elevation Data num= 5
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 12.5 6 10.5 11 10 16 10.5 22 12.5
Manning's n Values num= 3
Sta n val sta n Val Sta n Val
0 .055 6 .035 16 .055
Bank Sta: Left Ri ght Lengths: Left channel Right coeff Contr. Expan.
6 16 56 56 56 .1 .3
CROSS SECTION
RIVER: channel
REACH: 1 RS: 2
INPUT
Description:
page 3
\0
Untitled
station Elevation Data nUIII= 5
Sta Elev sta Elev sta Elev Sta Elev Sta Elev
0 10.75 6 8.75 11 8.25 16 8.75 22 10.75
Manning's n values nUIII= 3
Sta n val Sta n val Sta n val
0 .055 6 .035 16 .055
Bank Sta: Left Right Lengths: Left channel Right coeff Contr. Expan.
6 16 66 66 66 .1 .3
CROSS SECTION
RIVER: Channel
REACH: 1 RS: 1
INPUT
Descri ption:
Station Elevation Data nUIII= 5
Sta Elev sta Elev sta. Elev Sta Elev Sta Elev
0 8.7 6 6.7 11 6.2 16 6.7 22 8.7
Manning's n Values nUIII= 3
Sta n val Sta n val Sta n val
0 .055 6 .035 16 .055
Bank Sta: Left Right Lengths: Left channel Right coeff Contr. Expan.
6 16 54.5 54.4 54 .1 .3
CROSS SECTION
RIVER: channel
REACH: 1 RS: .5
INPUT
Descri ption:
Station Elevation Data nurn= 9
sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 8 3 7 6 6 9 5 14 4.52
19 5 22 6 25 7 28 8
Manning's n Values nurn= 3
Sta n val sta n val Sta n val
0 .055 9 .035 19 .055
Bank sta: Left Right Lengths: Left channel Ri ght Coeff contr. Expan.
9 19 41 40.5 40 .1 .3
CROSS SECTION
RIVER: channel
REACH: 1 RS: 0.25
INPUT
Description:
station Elevation Data nurn= 9
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 7 1.9 6 3.4 5 5.3 4 7.45 3.75
9.6 4 11 5 12.3 6 13.7 7
page 4
\\
untitled
Mann; ng , s n values nUIll= 3
sta n val Sta n val Sta n val
0 .055 3.4 .035 11 .055
Bank Sta: Left R;ght Lengths: Left channel R; ght coeff Contr. Expan.
3.4 11 0 0 0 .3 .5 .
SUMMARY OF MANNING'S N VALUES
R;ver:channel
Reach R;ver Sta. n1 n2 n3
1 6 .055 .035 .055
1 5 .055 .035 .055
1 4 .055 .035 .055
1 3 .055 .035 .055
1 2 .055 .035 .055
1 1 .055 .035 .055
1 .5 .055 .035 .055
1 0.25 .055 .035 .055
SUMMARY OF REACH LENGTHS
R;ver: Channel
Reach R;ver Sta. Left channel R;ght
1 6 64 63 62
1 5 71 71 71
1 4 54.8 54.8 54.8
1 3 56 56 56
1 2 66 66 66
1 1 54.5 54.4 54
1 .5 41 40.5 40
1 0.25 0 0 0
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: Channel
Reach R;ver Sta. contr. Expan.
1 6 .1 .3
1 5 .1 .3
1 4 .1 .3
1 3 .1 .3
1 2 .1 .3
1 1 .1 .3
1 .5 .1 .3
1 0.25 .3 .5
page 5
\t.
:I:
m
o
~
'"
."
0;
~
."
0;
~
o
~
;u
~.
o
:r
..
~
~
!!.
;0
CD
..
~
~
~
'"
~
."
-n
~
~ ~ ~ ~ ~ ~ ~ ~
;u
CD
..
n
:r
!" 0. ~ '" '" ... ... CD
N ;0
... ~
~
." ." ." ." ." ." " "
-n -n -n -n -n -n -n -n
~ ~ ~ ~ ~ ~ ~ ~ "
g,
li"
~O
.... .... .... CD CD CD ... CD ~i
N N N CD CD '" '" '"
00 00 00 .. .. io io io
0 0 0 0 0 0 0 0
;:
:;-
~ ~ ~ ~ an
:r
'" ... CD CD 0 ~ '" ... I!!
:.., 0. .. .. 0 0. 00 0.
... N 0 CD 0 ... '" 0
:E
'3~
- ~ ~ ~ -m
CD CD .... '" ~ N ... .... li"
0. ... ... ... ~ 00 00 ~ <
CD 0 '" '" CD '" '"
0
"-
- ~ ~ ~ a~
'" ... .... '" ~ '" ....... in
0. <0 0. 0. '" <0 :""'0
0> - - ~ 0> N o-
m
~Gl
~ ~ ~ - - am
CD CD !" 0 ~ '" ....... li"
.. ill =< :... ~ ... CA. <
CD .... 0 "''''
m
0 0 0 0 0 0 0 0 ~Gl
~ 0 ia 0 0 0 ~ ~ ~ie
t ~ '" '"
CD CD 0 !::l N '" Q
~ s: ~ 0 'iI '" 1ii
l2 IS !::l '"
CD '" '" CD
~;€
e-
O> 0
!" !" ;-< ;-< ;-< !" ;-< ?' _ :r
~ '" 0 ., 0 ~ ...'" =-
'" CD 0 '" '" ....
-n
E[
~ '" ~ ;:; ~ ~ ~ a~
~ '" ~ 0 0 '" 0
\:! .. ill ... ~ 0. 0. :.., ..
CD '" '" .... en
<}
..
~ :;: :;: :;: :;: ~ ~ a~
'" CD '" ~ 0.
.. ... '" 0 0 0 :... ~ S'
'" 0 CD 0 '" en '"
-n
a
"
0.
CD
..
0 0 ~ ~ ~ ~ ~ - 0
<0 ~ .. ~ .. :... .b 2:
'" en '" '" '" ~
~\
\7\
-I
CD
3
CD
o
c
ji)
"U
;:
~
'"
o a
=r Q)
~ CD
" .-
!!. 0
- :E
CD
~
"T1
::!.
!:l-
o'
::>
III
"U
ji)
;:!
"U
ji)
::>
a
~
Q)
N
a
N
a
a
U1
-"-
0>
10
'"
CD
"
a.
-
01
G)
g.
a
~ 2l
"" ""
" "
- -
o
a
""
"Tli
-.
-
...
\"
".
".
\,""'\.
\\,,\\...
\ \.
. \ ".
-
'"
\'"
"
. \
.\ "
\ ....
'\ \
-\\ .\.\....
\.
\
\
\"\
\.
\-""",
EIevalion(fI)
-
o
\
\
\
\"\\.
"
\
..
\.....\
,
\
.........
\\,
\\
\
,
"\'"
"
0>
0>
...
.5
1
2
3
4
5
6
'"
o
...
8-
'"
o
o
o
o
'"
o
o
w
o
o
;:
"
s.
o
=r
"
"
"
!!.
o
![
..
"
g
a
-
co
in
o
i
!I:
o 5-
t~ i ~
.- 0
. ~ en
~ ~ i .....
0I:;a9.0Ul
C/JO.=.
U iiI a
...
-
CD
'"
Elevation (ft)
- - - -
co co ... ... co co
'" in '" in '" in
Elevation (ft)
- - - - -
'" '" '" ... ...
in b in b in
-
'"
b
-
-
in
o
5\
ii1
3
..
2
8 m
tCO iI!
-
'"
o
m
. i
. "
o ::a:J.
t~ ~ ~
co ..
"lJ
iD
~
"lJ
. iD
li: "
co ~
~
~
o
o
co
'"
o
'"
co
"lJ
iD
~
"lJ
iD
"
~
~
~
8
co
t
'"
co
co
1-
co
-
en 0
a
g
a
-
co
'"
o
.-
.!
..
"
a.
:E o;m
f/l ;;;"Gl
" ,,1'"0
" " "
- - -
II' Gl
~. g.
f/l "
if a.
l!:
I""!
..
'i
"
a.
:E 0 m
CJJ a: c>
"lJ "lJ "lJ
" " "
- - -
0> Gl
.. ~
~.g.
f/l "
_ a.
..
'"
co
- - - -
0 0 - - '" '" '"
'" '" '" '" '" '" '"
o. . -L -L .. ii1 0-
...- 3
..
0 n
...- c:
co iD
co
t "lJ
co. ;: co.
-
'"
Ii:
CD
0 i 0
f/l 0 en
if '" ... if
co :>.
0" ;Ill!'"
" en g g
a u CI) S
- '" ~ -
co co
"lJ
iD
?
.... "lJ
iD
'" l.... " ~
0 ~
...
It;
'" ~ '"
co - - 0 co
~ 0
0> Glf:E Oim to
.. U> ;;;,iGl
i. g " -ot"
U> " ... "TI! "'II
Dr a. ..... - - a.
ii1
3
..
2
iD
iI!
-
'"
5l
CD
.-
~
o ::;,
~;IIB;
U> 0
II i
co
"lJ
IIr
?
"lJ
iD
"
~
~
~
o
o
'"
en
'"
'"
to
'"
-+-
t
'"
'"
'"
1-
Elevation (ft)
~ ~ - en
to co
0 in 0 '" 0
(ft)
Elevation
I""
..
'"
..
"
a.
:E 0 m
u> ;;;, Gl
"lJ "lJ "lJ
... ... ...
- - -
II' Gl
" ~
". 0 .
u> ~
if a.
~
~
o
~,
T ~
. ..
o g
t ;
. ~
.~.~ :0 ~
1Il !l,
II g
'" ..
"U
"
"
g :.0
.. "
.1 ~
Q)
N
f3
~ ~
ell'
..
"
a.
o
'"
Elevation (ft)
~
Q) <D <D 0
'" 0 '" 0
Q)
o
o
..
'"
o
oj
3
..
g
. ;;;
<> "U
t.... :
i 0
~ 1Il
(:) ~!
+c.><n~~~
.. - ~
'. ..
:!!
~
"U
(:) ~
<n
<n ~
~
g
..
::E o,m
1Il ~ Gl
'1J "j"
"11 "'TI''''TI
~ -0.,.....
g' Gl
~.a.
1Il 5
Ii a.
'"
<n
oj
3
..
g
;;;
"U
;:
~
c.>
o
IE
r
. ~
<> ~
'" ."
<n ~
Ii:: ~
. "
~ ..
"U
;;;
"
o :a
g: ;;;
.1 ~
15
f3
o
o
..
(ft)
0> .... .... Q) Q) <D
'" 0 '" 0 '" 0
0
..
..
~-
.8
..
"
a.
::E 0 m
tn a"Cl
"'tI "1Jl"1J
"TI ,..; "'It
..... .....i.....
g' Gl
i-. a .
1Il 5
Ii a.
c.>
0
g'Glf ::E m lO
~.g ~ 1Il Gl '"
"U "U ..
1Il " " " " ",
Ii a. ~ ~ ~ a.,
Elevation (It)
c.> ... ... .. .. Q) Q) ....
'" 0 '" 0 '" 0 '" 0
<> ~,
'"
-
...
!(! CD
a
0 ~
"
a Q)
~
0
~
N
...
g' Gl~g ~ m lO
Gl
~. g :u "U "U 'i
1Il " " " " "
Ii a. ~ ~ ~ a.
Q)
o
Elevation (ft)
... <n .. Q) 0> .... ....
'" 0 '" 0 '" 0 '"
o.
<n
~
0
1Il
Ii
'" ~
0 <n
"
a
'"
<>
'"
..
~\
Elevation
0>
o
-I <>
..
3
CD
n
c
Ii"
"U
;: ..
~
c.>
~
r
~ 0
~ 1Il
;JJ ~ Ii
rn ~ 6'
DO"
P ~ -=
'" - ~
.. ..
'"
o
'"
..
"U
Ii"
;!
"U
Ii"
"
~
15
~
<>
..
-l
CD
3
~
r::
iii"
-0
;;:
~
'"
o
""
co
r-
~
CD
~
....
::I.
n
~
5'
::>
OJ
-0
iii"
;:!
-0
iii"
::>
o
~
""
i3
~
o
o
01
L\
t ~ ~lli
en :::J "TI :s
liD._Do
HEC-RAS Analyses
High "n" Friction Values
\~
untitled
HEC-RAS version 3.1.2 April 2004
U.s. Army Corp of Engineers
Hydrologic Engineering Center
609 Second Street
Davis, california
x x XXXXXX xxxx xxxx xx xxxx
x x x x x x x x x x
x x x x x x x x x
XXXXXXX xxxx x xxx xxxx XXXXXX xxxx
x x x x x x x x x
x x x x x x x x x x
x x XXXXXX XXXX x x x x XXXXX
PROJECT DATA
project Title: Temecula PM 13089 High Frictions
ProJect File : TemeculaHF.prj
Run Date and Time: 8/20/2005 7:39:55 PM
project in English units
project Description:
parcel Map NO. 13089. City of Temecula
This analysis was finalized on
8/20/05
This analysis consists of high "n" values
PLAN DATA
plan Title: plan 01
plan File : c:\Khosrow\AKI civil Engineering\othter Alan projects\Temecula PM
13089\Final Runs\TemeculaHF.p01
Geometry Title: Temecula PM 13089
Geometry File : C:\Khosrow\AKI civil Engineering\Othter Alan
projects\Temecula PM 13089\Final Runs\TemeculaHF.g01
Flow Title : Temecula PM 13089
Flow File : c:\Khosrow\AKI Civil Engineering\othter Alan
projects\Temecula PM 13089\Final Runs\TemeculaHF.f01
plan summary Information:
Number of: Cross Sections =
Culverts
Bridges
computational Information
water surface calculation tolerance =
Critical depth calculation tolerance =
Maximum number of iterations =
Maximum difference tolerance =
Flow tolerance factor =
=
8
o
o
Multiple openings =
Inline Structures =
Lateral Structures =
o
o
o
=
0.01
0.01
20
0.3
0.001
computation options
critical depth computed only where necessary
page 1
\~
conveyance calculation Method:
Friction Slope Method:
computational Flow Regime:
Untitled
At breaks in n values only
Average conveyance
Mixed Flow
FLOW DATA
Flow Title: Temecula PM 13089
Flow File : C:\Khosrow\AKI civil Engineering\Othter Alan projects\Temecula PM
13089\Final Runs\TemeculaHF.f01
Flow oata (cfs)
River
channel
channel
channe 1
Reach
1
1
1
RS
6
3
1
PF 1
59.9
68.2
72.8
Boundary conditions
River Reach
Downstream
profil e
upstream
channel 1
Normal S = 0.09
PF 1
critical
GEOMETRY DATA
Geometry Title: Temecula PM 13089
Geomet~ File : c:\Khosrow\AKI civil Engineering\Othter Alan projects\Temecula PM
13089\Flnal Runs\TemeculaHF.g01
CROSS SECTION
RIVER: channel
REACH: 1
INPUT
Description:
Station Elevation
Sta Elev
o 19
19 16
RS: 6
oata
Sta
3
20.5
num=
Elev
18
17
9
Sta Elev Sta Elev Sta Elev
9 17 12.4 16 16 15.5
22.5 18 28.5 19
3
Sta n val
20.5 .075
Manning's
Sta
o
n values
n val
.075
Sta
9
num=
n val
.045
Lengths: Left Channel
64 63
Right
62
Coeff Contr.
.1
Expan.
.3
Bank Sta: Left
9
Right
20.5
CROSS SECTION
page 2
zp
untitled
RIVER: channel
REACH: 1 RS: 5
INPUT
Description:
station Elevation Data num= 5
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 16.33 6 14.33 11 13.83 16 14.33 22 16.33
Manning's n values num= 3
Sta n val Sta n val Sta n val
0 .075 6 .045 16 .075
Bank Sta: Left Right Lengths: Left channel Right coeff Contr. Expan.
6 16 71 71 71 .1 .3
CROSS SECTION
RIVER: channel
REACH: 1 RS: 4
INPUT
Description:
Station Elevation Data num= 5
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 14.15 6 12.15 11 11.65 16 12.15 22 14.15
Manning's n values num= 3
Sta n val Sta n val Sta n val
0 .075 6 .045 16 .075
Bank Sta: Left Right Lengths: Left channel Right coeff contr. Expan.
6 16 54.8 54.8 54.8 .1 .3
CROSS SECTION
RIVER: Channel
REACH: 1 RS: 3
INPUT
Description:
station Elevation Data num= 5
sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 12.5 6 10.5 11 10 16 10.5 22 12.5
Manning's n values nUIll= 3
sta n val sta n val Sta n val
0 .075 6 .045 16 .075
Bank Sta: Left Ri ght Lengths: Left channel Right coeff Contr. Expan.
6 16 56 56 56 .1 .3
CROSS SECTION
RIVER: channel
REACH: 1 RS: 2
INPUT
oescription:
Page 3
2,.\
untitled
station Elevation Data nUIII= 5
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
0 10.75 6 8.75 11 8.25 16 8.75 22 10.75
Manning's n values nUIII= 3
sta n val Sta n val sta n val
0 .075 6 .045 16 .075
Bank sta: Left Right Lengths: Left Channel Right coeff Contr. Expan.
6 16 66 66 66 .1 .3
CROSS SECTION
RIVER: channel
REACH: 1 RS: 1
INPUT
Description:
station Elevation Data nUIII= 5
Sta Elev Sta Elev Sta Elev Sta Elev sta Elev
0 8.7 6 6.7 11" 6.2 16 6.7 22 8.7
Manning's n Values nUIII= 3
sta n val Sta n val sta n val
0 .075 6 .045 16 .075
Bank sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
6 16 54.5 54.4 54 .1 .3
CROSS SECTION
RIVER: Channel
REACH: 1 RS: .5
INPUT
Description:
Station Elevation Data nUIII= 9
Sta Elev Sta Elev Sta Elev sta Elev sta Elev
0 8 3 7 6 6 9 5 14 4.52
19 5 22 6 25 7 28 8
Manning's n values nUIlI= 3
Sta n val Sta n val Sta n val
0 .075 9 .045 19 .075
Bank sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
9 19 41 40.5 40 .1 .3
CROSS SECTION
RIVER: Channel
REACH: 1 RS: 0.25
INPUT
Description:
Station Elevation Data nUIII= 9
sta Elev sta Elev sta Elev sta Elev sta Elev
0 7 1.9 6 3.4 5 5.3 4 7.45 3.75
9.6 4 11 5 12.3 6 13.7 7
page 4
1P'
untitled
Manning's n values num= 3
Sta n val Sta n val Sta n val
0 .075 3.4 .045 11 .075
Bank Sta: Left Right Lengths: Left channel Right Coeff Cont r . Expan.
3.4 11 0 0 0 .3 .5
SUMMARY OF MANNING'S N VALUES
Ri ver: Channel
Reach River Sta. n1 n2 n3
1 6 .075 .045 .075
1 5 .075 .045 .075
1 4 .075 .045 .075
1 3 .075 .045 .075
1 2 .075 .045 .075
1 1 .075 .045 .075
1 .5 .075 .045 .075
1 0.25 .075 .045 .075
SUMMARY OF REACH LENGTHS
River: Channel
Reach Ri ver Sta. Left channel Ri ght
1 6 64 63 62
1 5 71 71 71
1 4 54.8 54.8 54.8
1 3 56 56 56
1 2 66 66 66
1 1 54.5 54.4 54
1 .5 41 40.5 40
1 0.25 0 0 0
SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS
River: channel
Reach River Sta. Contr. Expan.
1 6 .1 .3
1 5 .1 .3
1 4 .1 .3
1 3 .1 .3
1 2 .1 .3
1 1 .1 .3
1 .5 .1 .3
1 0.25 .3 .5
page 5
~
\;Z
:I:
m
o
~
-0
or
;!
-0
or
=>
~
'"
".
~
o
:T
..
=>
=>
!!.
'"
"
..
n
;!"
~
-0
g,
~
-0
-n
~
~ ~ ~ ~ ~ ~ ~ ~
2'
..
9-
!=> a. ~ N '" . '" '"
N '"
'" ~
~
'"
ID
-0 -0 -0 -0 -0 -0 -0 -0
-n -n -n -n -n -n .., ..,
~ - ~ ~ ~ ~ ~ ~ -0
a
'"
iD
_0
;:j " " '" '" to 1Il to gg
N N '" 0> <0 <0 !!!.
.. .. .. N N '" '" '"
<> <> <> <> <> <> <> co
!:
_5"
~ ~ ~ ao
0 :T
'" . 0> 0> ~ '" to !!!
~ a. N N 0 '" ~ a.
N <> to <> to <>
:E
3 it>
~ ~ ~ ~ m
!" !" ,.. !l> ,. !" !" ,.. [
to g: to to N g: <> <>
0> to <0 <0 <0 ~
0
3 a
~ ~ ~ - :E
'" '" .... <0 N ~ " it>
c. is ~ '" ~ '" '"
0> ~ N <> ~
m
a !;l
~ ~ ~ ~ ~ m
0> 0> 0> <> ~ '" '" " iD
N :.. :. is .. '" 8: ... <
0> '" N '" ., .,
m
<> <> <> <> <> <> <> <> ~ !;l
2 8 E '" 0 ~ 2 E '"
N ~ 0"
Cl ~ .. 0> 0> N
'" f:l ~ .... ., i
N i ., I1l '"
. N '" '" '" '"
<
-"
e-
.. 0
!" !" !" !" !" !" '" !" _ :T
'" '" N 0> N 0> "'''' 2-
'" 0> '" 0> . '" "'''
..,
!"~
~ N ~ ~ ;:;; ~ ~ 0 a~
~ '" '" '" ~ ~
i:l :. :. g N '" 8l :.. ..
., ., ~ '" 0>
-<
3 f8
~ ~ ~ ~
., a; ~ to .. .. .. ~
~ '" b :.. '" a. ~ g
'" ~ '" N '" ....
-n
a
a
"
..
!=> !=> ,. !=> ,. ,. !=> ,. 0
1Il . <> ., li: ~ <0 <> ;;t
.... '" ., <0 ~
~
~
3
CD
o
c
or
"\J
s:
~
'"
o
CD
co
:r
liS.
=>"
"
~
cl"
-
ci"
:::I
en
"\J
or
;:!
"\J
or
:::I
o
~
~
..,
~
o
o
'"
c>> c:
'it<
o
~
ID
"
"
!!.
:;;:
\
\
...
\,
'\,
.,
\
\.
.".....\
\""
\
,
\".
\.
.,
.,
\
.......\
\..........
''\''\
\.
Elevation (ft)
~
~
o
\
\
\"
'\
\
\
,
\,
...
...
'.
\
\.
'.
.,
,
,
,
\,
'.
\.....
...
.5
4
5
6
2
3
1
'"
o
'"
o
o
""
o
o
~
o
o
'"
o
o
~
ID
S.
o
~
ID
"
"
!!.
c
...
or
"
s
a
'"
~
"
a.
o ::E m
3: en Gl
." ." ."
... ... ...
~ ~ ~
Cl
~.
"
a.
'"
o
o
Elevation (ft)
- ..... - ..... ..... .... ....
~ m m ~ ~ m m m
~ 0 ~ 0 ~ b ~ 0
0- ~ ~
CD
3
CD
" g
o iD
CD .... "II
tCD ~
~
~ m
o ~
<ii"
=r
"T1
" :>.
.... 0 ;;U @;
CD +~~~
'" :!!
o CD
?
."
iD
" "
'" !:l 0
CD CD ~
00
j;J
l5
o
o
CD
;;J
3
" CD
!:l g
tCD ~
m
~
Iii
" =r
~~.. ;U i ~
'" 0 0
. " :>
.. -
.. a
."
iD
?
o ."
.... -
CD CD
~ g
l1i
l5
o
o
CD
Elevation (ft)
~ ;;:; ~ ~ ~ ~
'" '" '" ..
0 '" 0 '" <> '"
~
~
'"
o
'"
~
o
~
CD
'"
o
!'.!
a
0"
"
a
dfZ
I;
..
CD
"
0.
::E 0 m
en a:'(i)
-0 "tJ!"tJ
"T1 "T1 "T1
~ ~ ~
II\' Cl
~.g.
'" :>
or 0.
l!:
I;
..
II
"
0.
::E o:m
'" =.Cl
"V'Vl'lJ
~ "TI;"'I1
~ ~ ~
Elevation (ft)
lD Cl
!ll. Cl.
"" <:
m a
CD
'"
CD
Elevalion (ft)
~ ~ ~ c;;
CD CD
0 '" 0 '" <>
;;J
3
l'l
<:
iD
."
;;:
~
'"
o
CD
CD
:J:
Iii
=r
g ;l'
'" ;u a
rn 0
"
" ..
'"
."
iD
?
."
iD
:>
o
~
13
l5
o
o
'"
~
CD
'"
+
+
o
....
CD
~
~
'"
'"
o
CD
~
o
~
'"
'"
o
;;J
3
" l'l
!:3 5-
t- ;
Iii
" =r
i1 "T1 rn
01 ::!. if
;u a '"
'" 0 0
" " "
CD -
'" a
r'
.z
II
"
0.
::E Olm
en ~!(i)
"tI "'Q1"'O
"TI "'I11"T1
.... .....,....
lD Cl
CD ~
i. g.
re &.
'"
'"
."
a;
;'!
."
a;
"
o
~
l1i
l5
o
o
CD
~
'"
'"
~
'"
o
~
~
'"
~
~
<>
~
o
'"
~
o
o
o
'"
~
o
~
CD
'"
o
'"
a
0"
"
a
i
II
il.
::E 0 m
en a: (i)
." "II ."
"T1 "T1 "T1
~ ~ ~
II\' Cl
i. g.
'" "
or 0.
'"
'"
Elevation (ft)
~ ~
... <D CD 0 !"
U. '" U. '" '"
~(fI)
L:Z
~
3
CD
. "
~ 5-
'" ..
t ;
i5
. ::t
~ ~
;0 g
UI 0
11 il
'"
"
iD
~
"
iD
:J
o
~
...
N
!2
'"
o
o
'"
~
'"
-r
'"
...
'"
~
...
'"
o
'"
'"
o
...
CD
3
CD
g
. iD
!:l "
+" i _
'go 0
" UI
'" :0. a
. g-
+<n~~i~
'" '"
Jl
CD
~
"
. iD
o =>
~ ~
~
o
lil
...
'"
...
u.
...
'"
...
u.
...
'"
'"
u.
'"
'"
.
u.
o
'"
~
o
~
- ~
o '"
:J
a
'"
o
'"
'"
r-
..
ID
..
:J
a.
::;; 0 m
UI ~,G>
"tI "V 1 ""0
"TI .":.,,
~ ~ ~
1IJ G>
.. ~
i-. g .
(J) &.
Ii
'"
to
'"'
'Ii
:J
a.
o ::;; m
~ en G>
" " "
" " "
~ ~ ~
1IJ G>
!!l. Cl.
x- "
UI :J
_ a.
CD
'"
o
~
~
g
iD
"
;;::
~
'"
o
...
'"
::r
i5
::t
~
;o!i
en cr
11 =>
~ '"
"
iD
~
"
iD
:J
o
~
...
N
~
o
o
'"
'"
~
o
...
'"
4-
+
'"
...
'"
~
~
'"
Elevation (ft)
...
'"
....
u.
....
'"
'"
u.
'"
'"
... o.
CD
3
CD
"
c:
iD
"
;;:: on.
~
~
...
'"
::r
i5 ~
::t 0
" UI
;0 :0. ![
(J) g 0
a g ~
OatS
N -....
<n '"
"
iD
~
"
iD '"
=> 0
~
lti
~
o
o
'"
Elevation(ft)
'"
u.
o
N
.
UI '"
![
o
:J
~
a ...
~
o
~
'"
r,;-
ID
CD
::I
a.
::;; 0 m
(J) ~ G>
" " "
" " "
~ ~ ~
f G>
=> ~
;:11I;. o.
(J) S
Ii a.
'"
'"
r-
..
'i
::I
a..
o ::;; m
~ UI G>
" " "
" " "
~ ~ ~
f G>
*_0,
(J) S
Ii a.
~
.
-l
(1)
3
lD
(")
c:
or
"1J
s:
~
""
o
0>
CD
:I:
cO'
::;J"
"11
:J.
(")
C!:
o
:J
0>
"1J
or
::!
"1J
or
::J
o
~
~
15
o
o
U1
<at
r-
..
'"
..
::J
Q.
:E
en
"0,
"Tl,
~,
lD
.. G>
::J -
,..00
en "
Ii a.
Work Map (Cross Sections)
'2A
Appendices
JP
Table of Permissible Average Velocities
?\
A 7 I A4It4EtVr Nd. t
a.Earth Sections
Type of Material in Excavation Section
Permissible Velocity
(Feet per Second)
Intermittent
Flow
sustained
Flow
Fine Sand (Noncolloidal)
Sandy Loam (Non colloidal)
Silt Loam (Noncolloidal)
Fine Loam . . . . . . .
Fine Gravel . . . . . , .
Stiff Clay (Colloidal). .
Graded Material (Noncolloidal)
Loam to Gravel
Silt to Gravel
Gravel . . . .
Coarse Gravel.
Gravel to Cobbles (Under 6 inches)
Gravel and Cobbles (Over 8 inches)
2.5
2.5
3.0
3.5
4.0
5.0
2.5
2.5
3.0
3.5
3.5
4.0
6.5
7.0
7.5
8.0
9.0
10.0
5.0
5.5
6.0
6.5
7.0
8.0
Table 5-5
Recommended Maximum Permissible Velocities
for Unlined Channels
.
From Highway Design Manual, California Department of Transportation, 1983
~
Table of Manning's "n" Values
-?P
~-f lflc...fI"'c.-.",
T\tl/. ~
Chapter 3 Basic Data Requirements
Table 3.1
Manning's 'n' Values
Type of Channel and Description Minimnm Normal Masimum
A. Natural Streams
. I. Main Channels
a. Clean. straight. full, DO rifts or deep pools 0.025 0.030 0.033
b. Same as above, but more stones and weeds 0.030 0.035 0.040
c. Clean. winding, some pools and shoals 0.033 0.040 0.045
d. Same as above, but some weeds and stones 0.035 0.045 0.050
e. Same as above, lower stageS, more ineffective 0.040 0.048 0.055
slopes and sections
f. Same as "dO but more stones 0.045 0.050 0.060
g. Sluggish reaches, weedy. deep pools 0.050 0.070 0.080
h. Very weedy reaches, deep pools, or floodways 0.070 0.100 0.150
with heavy stands of timber and brush
2. Flood Plains
a. Pasture no brush
1. Short grass 0.025 0.030 0.035
2. High grass 0.030 0.035 0.050
b. Cultivated areas
1. No crop 0.020 0.030 0.040
2. Mature row crops 0.025 0.035 0.045
3. Mature field crops 0.030 0.040 0.050
c. Brosh
1. Scattered brush, heavy weeds 0.035 0.050 0.070
2. Light brush and trees, in winter 0.035 0.050 0.060
3. Light brush and trees, in sununer 0.040 0.060 0.080
4. Mediwn to dense brush, in winter 0.045 0.070 0.110
5. Mediwn to dense brush, in suuuner 0.070 0.100 0.160
d. Trees
1. Cleared land with tree stumpS, DO sprouts 0.030 0.040 0.050
2. Same as above, but heavy sprouts 0.050 0.060 0.080
3. Heavy stand of timber, few down trees, 0.080 0.100 0.120
tittle undergrowth, flow below branches
4. Same as above, but with flow inID 0.100 0.120 0.160
branches
5. Dense willows. summer, slraight 0.110 0.150 0.200
3. Mountain Streams, DO vegelatiOll in cUnneI,
banks usually steep, witb trees and brush on
banks submerpd
a. Bottom: gmvels, cobbles, and few boulders 0.030 0.040 0.050
b. Bottom: cobbles with large boulders 0.040 0.050 0.070
3-13
Y\
Chapter 3 Basic Data Requirements
Table 3.1 (Continued)
Manning's 'n' Values
Type of Channel and Description Miaim.m Normal Ma,.imum
B. Lined or Built-Up Channels
I. Concrete
a. Trowel finish 0.011 0.013 0.015
b. Float Finish 0.013 0.015 0.016
c. Finished, with gravel bottom 0.015 0.017 0.020
d. Unfinished 0.014 0.017 0.020
e. GUDile, good section 0.016 0.019 0.023
f. Gunile, wavy section 0.018 0.022 0.025
g. On good excavated rock 0.017 0.020
h. On irregular excavated rock 0.022 0.027
2. Concrete bottom float finished willi sides of:
a. Dressed s10De in mortar 0.015 0.017 0.020
b. Random stone in mortar 0.017 0.020 0.024
c. Cement rubble masoDIY. plastered 0.016 0.020 0.024
d. Cement rubble masonry 0.020 0.025 0.030
e. Dry rubble on riprap 0.020 0.030 0.035
3. Gravel bottom with sides of:
a. Funned concrete 0.017 0.020 0.025
b. Random stone in mortar 0.020 0.023 0.026
c. Dry rubble or riprap 0.023 0.033 0.036
4. Brick
a. Glazed 0.011 0.013 0.015
b. In cement mortar 0.012 0.015 0.018
5. Metal
a. Smooth steel surfuces 0.011 0.012 0.014
b. Corrugated metal 0.021 0.025 0.030
6. Asphalt
a. Smooth 0.013 0.013
b. Rough 0.016 0.016
7. Vegetal lining 0.030 0.500
3-14
7:>->
Chapter 3 Basic Data Requirements
Table 3.1 (Continned)
Manning's 'n' Values
Type ofCbannel and Descriptio. Minimum Normal Ma:oimum
C. Excavated or Dredged Channels
I. Earth, straight and ..ifo....
a. Clean, recently completed 0.016 0.018 0.020
b. Clean, after weathering 0.018 0.022 0.025
c. Gmvel, unifonn section, clean 0.022 0.025 0.030
d. With short grass. few weeds 0.022 0.027 0.033
2. Earth, winding and slnggish
a. No vegetation 0.023 0.025 0.030
b. Grass, some weeds 0.025 0.030 0.033
c. Dense weeds or aquatic plan1s in deep. 0.030 0.035 0.040
channels
d. Earth bottom and rubble side 0.028 0.030 0.035
e. Slony bottom and weedy banks 0.025 0.035 0.040
f. Cobble bottom and clean sides 0.030 0.040 0.050
3. Dragline-e:ocavated or dredged
a. No vegetation 0.025 0.028 0.033
b. Light brush on banks 0.035 0.050 0.060
4. Rock cuts
a. Smooth and unifunn 0.025 0.035 0.040
b. Jagged and iITegular 0.035 0.040 0.050
5. Channels not maintained, weeds and brusb
a. Clean bottom, brush on sides 0.040 0.050 0.080
b. Same as above, highest stage of flow 0.045 0.070 0.110
c. Dense weeds, high as flow depth 0.050 0.080 0.120
d. Dense brush, high stage 0.080 0.100 0.140
Other sources that include pictures of selected streams as a guide to n value
detennination are available (Fasken, 1963; Barnes, 1967; and Hicks and
Mason, 1991). In general, these references provide color photos with tables
of calibrated n values for a range of flows.
Although there are many factors that affect the selection of the n value for the
channel, some of the most important factors are the type and size of materials
that compose the bed and banks of a channel, and the shape of the channel.
Cowan (1956) developed a procedure for estimating the effects of these
factors to detennine the value of Manning's n of a channel. In Cowan's
procedure, the value of n is computed by the following equation:
3.15
?/i?