Loading...
HomeMy WebLinkAboutTract Map 31946 Drainage Study I I I I I I I I I I I I I I I I I I I DRAINAGE STUDY TEMECULA LANE I TENTATIVE TRACT 31946 City of Temecula County of Riverside, California December 2005 I Prepared for: Temecula Lane, LLC ,41743 Enterprise Circle N, Suite 207 Temecula, Ca. 92590 Date Report Prepared By: 40810 County Center Drive, Suite 100 T emecula, California 92591-6022 951.676.8042 telephone c: 0 N S U LTI N G 951.676.7240 fax Engineer of Work! Contact Person: Deborah de Chambeau, P.E. Joseph Daniel Hales, E.I.T. RBF IN 15-100834 Revision History Comment \ I II I I I I I I I I I I I I I I I I I TABLE OF CONTENTS SECTION 1 - INTRODUCTION."...., ...., ... ...,., .....,.., ... ..... .....,.........,....,.."., .....", ......."...,...,.,.,.,...,....,.,..,1 1.1 Background ......................................................................,......................1 1 '.2 Objective .. ........ ...... ............ .......... ..... ..... ....., ... ... .... ...... ..., ...... ...., ..... .......1 1 '.3 Previous Studies. ... ........ .... .......... ..... ..... ...... ... ... ...,...... .......... ..... ..... .......2 SECTION 2 - HYDROLOGIC DATA ...,...,...,......,.."......",..,..............,..,."..,.....,....,....,...,.............,....,......2 2.1 Hydrologic Analysis and Methodology.....................................................2 2,1.1 Rational Method ...................................................................................................2 2.2 PROPOSED CONDITION HYDROLOGY...............................................4 SECTION 3 - WATER QUALITY SUMMARy..........................................................................................4. 3.1 Non-Structural and Structural BMPs .......................................................4 3.2 Best Management Practices (BMP) Sizing Criteria .................................5 SECTION 4 - HYDRAULIC ANAL YSIS.,......,...,.........."....,.......................,..............................,..,......,..,..6 4.1 Street Hydraulics .....................................,.....................,.........................6 SECTION 5 - CONCLUSiONS...,..... ........,..,...,....,....., .....,......,..,."....,........,.. ............."....,.,.......,............7 SECTION 6 - REFERENCES .............,....,..,..............................,.............................,.."...,..,...,................7 TECHNICAL APPENDICES A Rational Method - Proposed Condition 10-Year B Rational Method - Proposed Condition 100-Year C Water Quality Extended Detention Basin Sizing Calculations D Street Capacity Calculations LIST OF FIGURES Figure-1: Vicinity Map Figure-2: Soils Map- Proposed Conditions Figure-3: Hydrology Map- Proposed Conditions Figure-4: Water Quality Exhibit 'V I I I I I I I I I I I I I I I I I I I : SECTION 1 - INTRODUCTION , 1.1 BACKGROUND . The proposed project, T emecula Lane I, is located in the County of Riverside within the ~ corporate boundary of the City of T emecula. The project site is located at the Northwest : corner of the intersection of Lorna Linda and Temecula Lane, see location map. The I project consists of about 47 acres of residential uses, including 21.1 acres for multi-family . dwelling area, and 15.1 acres single-family dwelling area. The rough grading plans . accompany this hydrology report. The tract number for this proposed project is TR # :31946. . The proposed Temecula Lane project is located within the Santa Margarita Watershed . and discharges directly to T emecula Creek. Since the site discharges directly to a regional I facility, no on-site flood attenuation will be provided to mitigate proposed condition storm I flows to less than existing condition. Approximately 1.3 miles downstream of the project 'site, TemeculaCreek confluences with Murrieta Creek and becomes Santa Margarita River ,which eventually discharges to the Pacific Ocean. , 1.2 OBJECTIVE . The primary objective of this report is to provide the technical documentation for the i Preliminary design and improvements plans for the proposed storm drain facilities and i include the following: 1. Identify the required storm drain facilities for the tract improvements based upon the grading plans, and delineate the drainage area tributary to each proposed drainage inlet/concentration point. 2. Based on drainage patterns, ground slope, land use, soil type, and using the County of Riverside Rational Method, perform a hydrologic analysis to provide the design f10wrate used to size the proposed storm drain facilities. No offsite flows enter the site. This analysis covers the proposed condition hydrology. 3. Perform hydraulic analysis on the proposed storm drain facilities for the tract improvement. 4. Adhere to the Riverside County Flood Control and Water Conservation District's (RCFCD&WCD) hydrologic criteria that 1 O-year storm flow and 1 OO-year storm flow be contained within the curb and street right-of-way, respectively. 5. Provide water quality treatment of the surface runoff per Regional Water Quality Control Board criteria. ,All assessments and technical analysis in this report are in compliance with the local . drainage policies and requirements, and the California Environmental Quality Act (CEQA) :of 1970, as amended. . Temecula Lane I, Temecula, Riverside County, CA ! Drainage study 1 ~ I I I I I I I I I I I I I I I I I I I . . . CONSULTING HWY 79 8'fJ ;0 ("'C..y :.s'1'Q :.s';o -:r 4-;- NOT TO SCALE PLANNING DESIGN CONSTRUCTION TEMECULA LANE. TTM 31946 FIGURE 1 VICINITY MAP 40810 COUNTY CENTER DRrvE, SUITE 100 lEMECULA, CAUFORNIA 92591-6022 951676.8042 FAX 951.676.7240 wwwRBF.com E 0.. I'- n en o '--- N ~ N o 0::: o Z W f- o J>.. C) S o D- <( 2 >- f- Z U ;; " n OJ ./ o 0::: o >- I ./ > -' o ./ o z <( -' ./ o o <( U ./ " n OJ o o ~ en :;:- <( f- <( o D- ./ I I I I I I I I I I I I I I I I I I I I '1.3 PREVIOUS STUDIES 'No previous studies were included in this analysis. :SECTION 2 - HYDROLOGIC DATA : 2.1 HYDROLOGIC ANALYSIS AND METHODOLOGY I Hydrologic calculations to evaluate surface runoff associated with the 10-year, and 100- : year hypothetical design storm frequencies from the project watershed were performed ; using the rational method based upon the relative size of the watershed. The rational I method is a surface hydrology procedure, which allows evaluation of the peak : discharge generated from a watershed area. This method only evaluates peak I discharge and does not analyze runoff volumes or the time variation of runoff. The I watershed subbasin boundaries within the project site were delineated utilizing I topographic mapping of the area for the proposed grading plan to determine the I development drainage patterns. Hydrologic parameters used in this analysis such as I rainfall and soil classification areas presented in Riverside County Hydrology Manual, I dated April 1978, were identified. A hydrology analysis was performed to evaluate the ; anticipated runoff generated from the proposed residential development. The hydrology ,analysis of the:proposed development included determining a conceptual storm drain , collection system, which corresponds to the development drainage patterns. The I drainage areas and subarea boundaries within the study area were delineated based , on the proposed grading plan. The proposed storm drain facility was designed to not , exceed the current capacities of the existing drainage facilities at the downstream project boundary. 2.1.1 Rational Method . The hydrologic calculations to determine the 10- and 1 OO-year ultimate design discharges 'were performed using the County of Riverside Rational Method from the RCFC&WCD , Hydrology Manual dated April 1978. The Rational Method is an empirical computation procedure for developing a peak runoff rate (discharge) for watersheds less than 300 acres . and storms of a given recurrence interval. This procedure is the most common method for small area urban drainage design since the peak discharge is generally the only required parameter for hydraulic design of drainage facilities. The Rational Method equation is based on the assumption that the peak f10wrate is directly proportional to the drainage area, rainfall intensity, and a loss coefficient related to land use and soil type. Flows are computed based on the formula Q=CIA, where: Q = Discharge in Cubic Feet Per Second; Temecula Lane I, Temecula, Riverside County, CA Drainage Study II, I !I I I I I I I I I I I I I I I I I I C = Runoff Coefficient, based on Land Use and Hydrologic Soils Group; I = Rainfall Intensity, Inches/Hour; A = Area, Acres. The peak discharge from a drainage area using the rational method occurs at a critical time ,when the entire drainage area is contributing runoff known as the ''time of concentration" 'for the watershed area. The design discharges were computed by generating a hydrologic "link-node" model, which divides the analysis area into drainage subareas, each tributary to :a concentration point or hydrologic "node" point determined by existing terrain. 'The hydrology analysis was performed for the developed condition 10-, and 1 OO-year high : confidence hydrology. The results ofthe watershed analysis for the proposed development ; generated the resulting peak discharges at the downstream project boundary. 'The following assumptions/guidelines were applied under the Rational Method. 1. The Rational Method hydrology includes the effects of infiltration caused by soil surface characteristics. Soils maps from Riverside County Flood Control and Water Conservation District Hydrology Manual indicate the Soil Type "A", "B" and "C" is representative of the project location. The Manual utilizes the Soil Conservation Service (SCS) soil classification system, which classifies soils into four (4) hydrologic groups (HSG): A through D, where "D" is the least pervious, providing greatest storm runoff. The soils maps (Plate C-1.61 Pechanga) from the Manual and the project site is shown on Exhibit 2, Hydrologic Soils Group Map. 2. The infiltration rate is also affected by the type of vegetation or ground cover and percentage of impervious surfaces. The runoff coefficients used were based on the proposed residential layout for single family and multi-family residential. "Condo" and "Apartment" were used to represent the single- family residence with 5,000 square foot lots (65% impervious) and multi- family residence (80% impervious), respectively. 3. Rainfall data used was taken from the above Manual for the "Murrieta- Temecula and Rancho California" areas. 4. The initial area is generally less than 10 acres and flow path lengths are less than 1,000 feet, per RCFC&WCD analysis procedure. 5. The 2-year (1 hour) and the 100-year (1 hour) precipitation values of 0.57 inches and 1.35 inches respectively were obtained from Figures D-4.3 and D- 4.4 of the Manual, respectively. The slope of the Intensity Duration Curve of 0.55 was obtained from Figure D-4.6 of the Manual. The above-mentioned figures are included in the Technical Appendix. Temecula Lane I, Temecula, Riverside County, CA Drainage study f (, I II I I I I I I I I I I I I I I I I I :2.2 PROPOSED CONDITION HYDROLOGY The developed land use conditions associated with the proposed project will modify the 'hydrologic characteristics of the watershed by (1) increasing the amount of impervious 'area, (2) modifying existing drainage patterns, (3) increasing the hydraulic efficiency of Ithe drainage conveyance system from natural drainage courses to improved ,underground storm drain systems, (4) reducing the time to peak flow, and (5) increasing I the peak discharges. ,A hydrologic analysis was prepared for the project watershed reflecting the proposed I project. The peak runoff f10wrate at various concentration points (nodes) throughout I the watershed is provided for the 1 O-year and 1 OO-year storm events. Appendix A and I B contain the 10-year and 100-year hydrologic analysis which are summarized in the I following tables. : SECTION 3 - WATER QUALITY SUMMARY . The water quality program consists of both non-structural and structural Best Management I Practices (BMPs). The non-structural BMPs consist of: 1) Public Education; and 2) I Common Area Maintenance Practices. The proposed structural BMPs include water I quality extended detention basins. . 3.1 NON-STRUCTURAL AND STRUCTURAL BMPs . The Maintenance Corporation utilizes both Integrated Pest Management and Integrated , Vegetation Management to minimize impacts to urban runoff water quality. Also, irrigation 'will be minimized to the maximum extent practicable. The method of irrigation control . reduces the amount of water used for irrigation and minimizes the potential for overspray ,and nuisance runoff. Additional maintenance pollution prevention practices include , monthly street sweeping, catch basin signage, and routine trash pick-up. . Three separate water quality extended detention basins are proposed as structural BMPs . for the project site. The basin will be constructed at ultimate project discharge locations. . The extended detention basins will be a flow-through system with only the water quality volume being detained, no flood attenuation will occur. The water quality volume to be , treated, based on Regional Water Quality Control Board sizing criteria, for Basin A, Band , C is 0.56 ac-ft, 0.35 ac-ft, and 1,0 ac-ft, respectively. The water quality calculations are included in Technical Appendix C, with tributary areas shown on Figure 4. An extended , detention water quality basin provides a medium removal efficiency for 5 of the 7 pollutants expected to be generated from a residential site. The removal efficiency of a basin for bacterialviruses and pesticides, the two remaining pollutants, is unknown. Temecula Lane I, Temecula, Riverside County, CA Drainage Study ~'b I I I I I I I I I I I I I I I I I I I :3.2 BEST MANAGEMENT PRACTICES (BMP) SIZING CRITERIA The San Diego Regional Water Quality Control Board (SDRWQCB) for the portion of : Riverside County within the San Diego Region has established numeric sizing criteria for . post-construction best management practices (BMPs) for new development and significant 'redevelopment under Order No. R9-2004-001. The proposed numeric sizing criteria is intended to reduce adverse impacts to San Diego regional waters caused by new sources :of urban pollution and increased volumes of storm water and non-storm water flows 'resulting from new development and significant redevelopment. The numeric sizing criteria 'requirement to'be included in the tentative waste discharge requirements for San Diego 'municipal storm water dischargers will read as follows: ! Post-construction BMPs for a project shall be designed as follows: 1. Volume-based BMPs shall be designed to mitigate (infiltrate, filter, or treat) either: i. The volume of runoff produced from a 24-hour 85th percentile storm rainfall depth, as determined from the local historical rainfall record (0.6 inch approximate average for the Riverside County area); or ii. The volume of runoff produced by the 85th percentile 24-hour runoff event, determined as the maximized capture storm water volume for the area, from the formula recommended in Urban Runoff Qualitv ManaQement. WEF Manual of Practice No. 23/ASCE manual of Practice No. 87. (1998); or iii. The volume of annual runoff based on unit basin storage volume, to achieve 90% or more volume treatment by the method recommended in California Stormwater Best ManaQement Practices Handbook new Development and Redevelopment (2003); or iv. The volume of runoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85th percentile 24- hour runoff event. 2. Flow based BMPs shall be designed to mitigate (infiltrate, filter, or treat) either: i. The maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour, for each hour of a storm event; or ii. The maximum flow rate of runoff produced by the 85th percentile hourly rainfall intensity (for each hour of a storm event), as Temecula Lane I, Temecula, Riverside County, CA Drainage Study '0... I I I I I I I I I I I I I I I I I I I determined from the local historical rainfall record, multiplied by a factor of two; or iiL The maximum flow rate of runoff for each hour of a storm event, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85th percentile hourly rainfall intensity multiplied by a factor of two. The Co-permittees may develop, as part of the SUSMP, any equivalent method for calculating the volume or flow which must be mitigated (Le., any equivalent method for calculating numberic sizing criteria) by post-construction treatment control BMPs. Such ,equivalent sizing criteria may be authorized by the SDRWQCB for use in place of the .above criteria. In the absence of development and subsequent authorization of such :equivalent numeric sizing criteria, the above numeric sizing criteria requirement shall be limplemented. :SECTION 4 - HYDRAULIC ANALYSIS 14.1 STREET HYDRAULICS IThe majority of the flows will be conveyed in interior streets with 12.5- or 18-foot half widths 'and 34- and 46-foot R-O-W, respectively. All interior streets within the single-family residential portion are utilizing 6-inch curbs and have a traditional cross slope of 2.0 percent. Within the multi-family residential portion of the project, a rolled curb is used for interior streets. The street capacities, as measured to the top of curb and within the R-O- ,W (RCFC&WCD's hydrologic criteria), are summarized in Table 4.1. All supporting :calculations are included in Technical Appendix D. Table No. 4.1 - Summary of Street CaDacitv Slope (%) 12.S-foot half width/34-foot R-O-W 18-foot half width/46-foot R-O-W Top of Curb (efs) Within R-O-W Top of Curb Within R-O.W (cfs) (cfs) (cfs) 0.5 11.2 20.1 18.1 31.9 0.6 12.2 22.0 19.8 35.0 0.7 13.2 23.7 21.4 37.8 0.8 14.1 25.4 22.9 40.4 0.9 15.0 26.9 24.3 42.9 1.0 15.8 28.4 25.6 45.2 . Temecula Lane I, Temecula, Riverside County, CA 'Drainage Study ; \<) I I I I I I I I I I I I I I I I I I I : SECTION 5 - CONCLUSIONS 1. The methodology used in this report is in compliance with the Riverside County Flood Control and Water Conservation District's criteria. 2. This report accompanies the rough grading plans only. The storm drain improvement plans, including the water quality basins, will be submitted at a future date. : SECTION 6 - REFERENCES . 1. Riverside Flood Control District and Water Conservation District (RCFC&WCD) Hydrology Manual, 1978. : 2. Advanced Engineering Systems Software (AES), Rational Method Hydrology System Model Version 8.0, 2001. : 3. The AES Hydraulics Elements I Program Package (HELE-1) Version 6.0, 1999. ,4. Haestad Methods, FlowMaster Software v 6.1 I H :\PDA T A \ 15 to0834\Ad min\reports\Hyd rology report.doc Temecula Lane I, Temecula, Riverside County, CA Drainage Study ~ \\ I I C:\aes2004\hydrosftlratscx\834D10.RES I I I I I I I I I I I I I I I I I .~~.**.******++*.*...........*............**.........*....................... RATIONAL HEnlOe HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL &. WATER CONSERVATION DISTRIC! (RCFC&WCD) 1978 HYDROLOGY r-1ANUAL {c} Copyright 1982-2004 Advanced Engineering Software (aes) (Rational Tabling Version 6.00) Release Date, 01/01/2004 License 10 1264 Analysis prepared by. RBF Consulting 14725 Alton Parkway Irvine, California 92618 .............................. DESCRIPTION OF STUDY .,..."*"................",,.. .. Temeeula Lane I IN 15-100834 .. lO-YR Developed Condition .. dId 12/14/05 .**...***............**....**...***.....................**....................** FILE NAME, 834DIO.DAT TIME/DATE OF STUDy, 13,30 12/14/2005 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION, USER SPECIFIED STORM EVENT(YEARl.. 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) .. 18.00 SPECIFIED PERCENT OF GRADIENTS (DECI~) TO USE FOR FRICTION SLOPE.. 0.90 2-YEAR, I-HOUR PRECIPITATION (INCH) = 0.570 100-YEAR, I-HOUR PRECIPITATION(INCH).. 1.350 COMPUTED RAINFALL INTENSITY DATA, STORM EVENT.. 10.00 I-HOUR INTENSITY (INCH/HOUR) 0.900 SLOPE OF INTENSITY DURATION CURVE = 0.5500 RCFC..WCD HYDROLOGY MANUAL "C--VALUES USED FOR RATIONAL METHOD NOTE. CONSIDER ALL CONFLUENCE STREAM COMBINA.TIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL, CURB Gl1ITER-GEOMETRIES, MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO_ (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (Fr) (Fr) (n) 1 12.5 2 18.0 0.020/0.050/0.020 0.40 0.020/0.050/0.020 0.50 1.000.03130.1670.0150 1.500.03130.1250.0150 '-5 13.0 GLOBAL STREET FLOW-DEPTII CONSTRAINTS, 1. Relative Flow-Depth _ 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top of-Curb) 2. (Depthl*(Ve1ocity) constraint _ 6.0 (Fr*Fr/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO TIlE UPSTREAM TRIBUTARY PIPE.* +--------------------------------------------------------------------------+ I ~:~~:a F:milY Residence - 6* curb street I +--------------------------------------------- -------------------------+ **"************************************************************************* FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE.. 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<.... ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC _ K*[(LENGTII**3)/(ELEVATION CHANGEl] **.2 INITIAL SUBAREA FLOW-LENGTH(FEET) _ 120.00 UPSTREAM ELEVATION(FEET) .. 32.50 DOWNSTREAM ELEVATION(FEET) = 30.50 ELEVATION DIFFERENCE(FEET) .. 2.00 TC = 0.359*[( l20.00**3)/ ( 2.00lJu.2 10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT SOIL ClJl.SSIFICATION IS "B" SUBAREA RUNOFF(CFS) .. TOTAL AREA(ACRES) .. 5.529 3.339 .. .8248 LOS 0.38 TOTAL RUNOFF(CFS) .. 1.05 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE.. 62 >>>>>C'OMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA.......... >>>>> (STREET TABLE SECTION'" 2 USED) ......<.. UPSTREAM ELEVATION(FEET).. 30.50 DOWNSTREAM ELEVATION (FEET) STREET LENGTIl(FEET).. 2.<13.00 CURB REIGHT(INCHES) 6.0 STREETHALFWIDTH(FEET) _18.00 29.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET) INSIDE STREET CROSSFALL (DECIMAL) .. 0.0.<10 OUTSIDE STREET CROSSFALL(DECIMAL} 0.050 13.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning'B FRICTION FACTOR for StreetflOlt Section(curb-to-curb) Manning's FRIctION FACTOR for 8ack-of-Walk Flow Section 0.0150 0.0150 UTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) S'I'REETFLOW MODEL RESULTS USING ESTIMATED FLOw, STREET FLOW DEPTII(FEET). 0.33 HALFSTREET FLOOD WIDTH {FEET} .. 4.88 AVERAGE FLOW VELOCITY(FEET/SEC.). 1.70 .<1.31 A-I ",. 2- ,1/ Printed: 12/14/2005 Page 1 of 13 I I C:\aes2004\hydrosftlratscx\834D1 a.RES I I I I I I I I I I I I I I I I PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.).. 0.55 STREET FLOW TRAVEL TIME(MIN.) ~ 2.18 Tc(MIN.).. 7.71 10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. :2.781 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .7410 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES).. 1.23 SUBAREA RUNOFF{CFS) 2.53 TOTAL AREA(ACRES} .. 1-61 PEAK FLOW RATE(CFS) 3.58 END.OF SUBAREA STREET FLOW HYDRAULICS. DEPTH (FEET) .. 0.39 HALFSTREET FLOOD WID'I'H{FEET).. 7.72 FLail VELOCITY(FEET/SEC.).. 1.70 DEP'I'H*VELOCITY{FT*FT/SEC.) 0.65 LONGEST FLQWPATH FROM NODE 1.00 TO NODE 3.00.. 343.00 FEET. ........................*****........................**......"**..**.....***.......... FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE", 052 A-3 A-Y A-5 \7 ,.>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREAc:<<<< "">>:> (STREET TABLE SECTION # 2 USED) <<<<< ......"''''....'''====..=...........--....'''=......=====.................======================"'=......... UPSTREAM ELEVATION(FEET) = 29 50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET). 650.00 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) .. 1B.00 26.40 I DISTANCE FROM CROWN TO CROSSFALL GilADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) .. 0.020 OUTSIDE STREET CROSSF1I.LL(DECIMAL) 0.050 13.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET P1.RKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to curb) '" 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 "*TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS} 6.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) '" 0.45 HALFSTREET FLOOD WIDTH (FEET) .. 10.81 AVERAGE FLOW VELOCITY(FEET/SEC.).. 1.BB PRODUCT OF DEPTH&VELOCITY(F"I'*FT/SEC.) '" 0.B4 STREET FLOW TRAVEL TIME(MIN.).. 5.75 Tc(MIN.) 13.46 10 YE1.R RAINFALL INTENSITY(INCH/HOUR} z 2_047 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT.. .B2B7 SOIL CLASSIFICATION IS "CO SUBAREA 1.REA.(ACRES}.. 3.00 SUBAREA. RUNOFF(CFS) 5.09 TOTAL AREA.(ACRES) .. 4.61 PEAX FLOW RATE(CFS) 8.67 END. OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.49 HALFSTREET FLOOD WIDTH (FEET) .. 13.05 FLOW VELOCITY(FEET/SEC.}.. 2.01 DEPTH.VELOCITY(FT.FT/SEC.) 0.99 LONGEST FLOWPATl::I FROM NODE 1.00 TO NODE 4.00.. 993.00 FEET. "'''''''''''''..'''''''''''''''''''''''''''''''''..'''''''''..............'''''''''''''''~.'''......*....''''''''''''.'''*.."'...."'****"'''''''*'''*''''''.''' FLOW PROCESS FROM NODE 4.00 TO N9DE 4.50 IS CODE _ 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME Tl::IRU SUBAREA~~<~~ >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<~< ELEVATION DATA, UPSTREAM(FEET)., 23.40 DOWNSTREAM (FEET) 23.20 FLOW LENGTH (FEET) = 20.00 MANNING'S N. 0.013 DEPTH OP PLOW IN 18.0 INCH PIPE IS 13.0 INCHES PIPE-FLOW VELOCITY(FEBT/SEC.).. 6.35 ESTIMATED PIPE DIAKETER(INCH) .. 18.00 NUMBER OF PIPES PIFE-FLQW(CFS) .. 8.67 PIPE TRAVEL TIME(MIN.).. 0.05 Tc(MIN.).. 13.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.50 _ 1013.00 FEET. ,..,.*..".*"'*"'*.................."'................"''''..................'''........"'........*....."'..*"''''**.*.. FLOW PROCESS FROM NODE 4 .50 TO NODE 4.50 IS CODE .. >>>>>DESIGNl\.TE INDEPENDENT STREAM FOR CONFLUENCE<<<<~ =====zz========......_..==============..=.======..============================::. TOTAL NUMBER OF STREA.MS. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 lIRE, TIME OF CONCENTRATION(MIN.) w 13.51 RAINFALL INTENSITY(INCH/HR).. 2.04 TOTAL STREA.M AREA(ACRES).. 4.61 PEAK. FLOW RATE(CFS) AT CONFLUENCE .. 8.67 "'''''''..............*..********...''''''''''''.'''...........,,**..*'''....................................."''''..''''''..''''''''''''....... FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE.. 21 >>>>>RJl.TIONP.L METHOD INITIAL SUBAREA. AHALYSIS~~~~< ASSUMED INITIAL SUBi\REA. UNIFORM DEVELOPMENT IS CONDOMINIUM TC.. K.!(LENGTH**3)/(ELEVATION CHlillGE)] "'''.2 INITIAL SUBi\REA. FLOW-LENGTH (PEET).. 415.00 UPSTREA.M ELEVATION(FEET) . 32_50 DOWnSTREAM ELEVATION(FEET) . 29.20 ELEVATION DIPFERENCE(FEE'r) .. 3.30 'I'C.. 0.359.{( 415.00**3)/( 3.30)]**.2 10.531 10 YEAR RJl.INFALL INTENSITY(INCH/HOUR) . 2.343 CONDOMINIUM DEVELOPMENT RUNOFP COEFFICIENT. .8027 SOIL CLASSIFICATION IS "aM SUBAREA RUNOFF(CFS) .. 3.69 TOTAL AREA.(ACRES) . 1.96 TOTAL RUNOFP(CFS) .. 3.69 ,**"''''....'''**'''''''''*..*'''..*..**'''.**...'''...'''......"...............''''''........*..............'" FLOW PROCESS FROM NODE 6 .00 TO NODE 6.00 IS CODE.. 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<~~~ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) . 2_343 Printed: 12/14/2005 Page 2 of 13 I I I I I I I I I I I I I I I I I I I I COEFFICIENT ., . n76 C:\aes2DD4\hydrosftlratscx\834D10.RES CONDOMINIUM DEVELOPMENT RUNOFF SOIL ClASSIFICATION IS ~A. SUBAREA AREA(ACRES) 1.07 TOTAL AREA (ACRES) ., :3 . 03 TC(MIN.) .. 10.53 SUBAREA RUNOFF (CPS) TOTAL RUNOFF(CPS} ., 1.8;! 5.51 A-&; \~ I Page 3 of 13 ..............................**........**....................................."...**.. FLOW PROCESS FROM NODE 6.00 TO NODE '.00 IS CODE., 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA",,,,,,,,,,, >>>>>(STREET TABLE SECTION # :2 USED)",,,..,,< c===ca..wa.................=..........._.........__=__....=..a___......=.... UPSTREAM ELEV1I.TION(FEET)., 29.20 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) ., 548.0Cl CURB HEIGHT (INCHES) 6.0 STREET HALFWIDTB{FEET) ., 18.00 26.40 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEE'r) INSIDE STREET CROSSFALL (DECIMAL).. 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.050 13.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL} 0.020 Manning'S FRIC'I'ION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning'S FRICTION FACTOR for Back.of-Malk Flow Section 0.0150 *'*TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS) 7.43 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.47 HALFSTREET FLOOD MIOTH(FEET). 11.83 AVERAGE FLOW VELOCITY(FEET/SEC.). 2.00 PRODUCT OF DEPTH&VELOCITY(Fr.Fr/SEC.). 0.94 STREET FLOW TRAVEL TIME(MIN.}. 4.57 Tc(MIN.) 15.10 10 YEAR RAINFALL INTENSITY (INCH/HOUR). 1. 922 CONDOMINIUM DE:VELQPMENT RUNOFF COEFFICIENT. .7123 SOIL CLASSIFICATION IS ~A~ SUBAREA AREA (ACRES) - 2.80 SUBAREA RUNOFF(CFS) 3.83 TOTAL AREA (ACRES) .. 5.83 PEAK FLOW RATE(CFS) 9.34 END OF SUBAREA STREET FLO\Il HYDRAULICS, DEPTH(FEET) .0.50 HALFSTREET FLOOD WIDTIi(FEET). 13.30 FLOif VELOCITY(FEET/SEC.) . 2.10 DEPTH.VELOCITY(FT.FT/SEC.) 1.04 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 4.00 _ 963.00 FEET. ......*.....*................................................................ FLOif PROCESS FROM NODE 4.00 TO NODE 4.50 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>,.>USING COMPUTER-ESTIMATED PIPE3IZE (NON-PRESSURE FLOM) <<<<:<; ==.......--_..==..====....._--.======.._---==..=.................=.......................--....=.............. ELEVATION DATA, UPSTREAM(FEE'T).. 23.40 OOWNSTREAM(FEET) 23.20 FLOW LENGTH(FEET).. 20.00 MANNING'S N _ 0.013 DEPTH OF FLOW IN 19.0 INCH PIPE IS 13.8 INCHES PIPE-FLOW VELOCITY(FEE'r/SEC.}.. 6.41 ESTIMATED PIPE DIAMETER (INCH) .. 18.00 NUMBER OF PIPES PIPE-FLQW(CFS) .. 9.34 PIPE: TRAVEL TIME(MIN.).. 0.05 Tc(MIN.).. 15.15 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 4. So. 983.00 FEET. .............................................................................. FLOW PROCESS FROM NODE 4.50 TO NODE 4.50 IS CODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>J\ND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ................------.........................--..............-..................-..................=..............-....... TOTAL NUMBER OF STREAMS _ 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION(MIN.) . 15.15 RAINFALL INTENSITY(INCH/HR) _ 1.92 TOTAL STREAM AREA (ACRES) = 5 . 83 PEAK FLOW RATE (CFS) AT CONFLUENCE .. 9 34 . * CONFLUENCE DATA STREAM RUNOFF NUMBER (CFS) 1 8.67 2 9.34 TO (HIN.) 13.51 15.15 INTENSITY (INCH/HOUR) 2.043 1.918 AREA (ACRE) 4.61 5.83 RAINFALL !NTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED F03- 2 STREAMS. .. PEAK FLOW RATS TABLE .. STIUWl RUNOFF To INTENSITY NUMBER (CFS) (HIN.) (INCH/HOUR) 1 17.00 13.51 2.043 2 17.49 15.15 1.918 COMPl.lTED CONFLUENCE ESTIMATES ARE J.S FOLLOWS, PEAK FLOW RATE(CFS) 17.49 Tc(MIN.) _ 15.15 TOTAL AREA(ACRES) . 10.44 LONGEST FLOWPATH FROM NOOE 1.CO TO NODE 4.50 1013.00 FEET. ............................................................................................................ FLOW PROCESS FROM NODE 4.00 TO NODE 8.00 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ..........................=............_...==....~...................~....~......c~..~...._..........~... ELEVATION DATA, UPSTREAMIFEET).. 23.20 DOWNSTREAM (FEET) 20.40 FLOW LRNG'l1I(FEET) - 325.00 MANNING'S N _ 0.013 DEPnI OF FLOW IN 24.0 INCH PIPE IS 17.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) 7.15 ESTIMATED PIPE DIAMETER (INCH) . 24.00 NUMBER OF PIPES.. 1 Printed: 12/14/2005 I I C:\aes2004\hydrosft\ratscx\834D1 O.RES I I I I I I I I I I I I I I I I PIPE-FLQW(CFS).. 17.49 PIPE TRAVEL TIME(MIN.) z 0.76 Tc{MIN.).. 15.91 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 1338.00 FEET. A-l 1\-6 A-'1 \~ I Page 4 of 13 **............".."*********..****.."""',,...,,**......**....***,,.**.......*********..******.***** FLOW PROCESS FROM NODE 8.50 TO NODE 8.50 IS CODE.. 1 >>>>>DESIGNA'I'E INDEPENDENT STREAM FOR CONFLUENCE<<<<< ,...--..---=-...-...---......--......-.-----.................---.........--.....-.........-..----.. TOTAL NUMBER OF STREAMS.. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCEN'I'RATION(MIN.) .. 15.91 RAINFALL INTENSITY(INCH/HR).. 1.87 TOTAL STREAM AREA (ACRES) .. 10.44 PEAK FLOW RATE(CFS) AT CONFLUENCE.. 17.49 ....**********..***..***..****..***...**...***......................".......****... FLOW PROCESS FROM NODE 4.00 TO NODE 7.00 IS CODE.. 21 ~>~~~RAT!ONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< .c.....................................................ee...........a.....a................=.=. ASSUMED INITIAL SUBAREA UNI FORM DEVELOPMENT IS CONDOMINIUM TC. K.[(LENGTII**3)/(ELEVATION CHANGE))H.2 INITIAL SUBAREA FLOW-LENG'TH(FEET).. 256.00 UPSTREAM ELEVATION(FEET). 27.40 DOWNSTREAM ELEVATION (FEET).. 24.90 ELEVATION DIFFERENCE(FEET) .. 2.50 TC.0.359.[( 256.00H3)/( 2.50)JH.2 8.331 10 YEAR RAINFALL JNTENSITY(INCH/HOUR). 2.665 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8422 SOIL CLASSIFICATION 15 .C' SUBAREA RUNOFF (CFS) . 2.02 TOTAL AREA.(ACRES) . O.SlO TOTAL RUNOFF(CFS) . 2.02 ................................*.*......................................... FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE.. 81 ~~~>~A.DDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ....e.......................e..=..........=.=..=...................=e=...=====. 10 YEAR RAINFALL INTENSITY(INCH/HOUR). 2.665 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8422 SOIL CLASSIFICATION IS 'C' SUBAREA AREA(ACRES) 1. 76 SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) . 2.66 TOTAL RUNOFF(CFS) .. TC(MIN.)" 8.33 3.95 5.97 .................*.......................................................... FLOW PROCESS FROM. NODE 7.00 TO NODE 8.00 IS CODE. 62 >>>>>COMPUTE STREET FLOW TRAVEL TII~E THRU SUBAREA<<<<< >>>>> (STREET TABLE SEC"t'ION # 2 USED) <<<<< .===.==.........e..==.......=_....e....==......==..=.======e....=....."..... UPSTREAM ELEYATION(FEET). 25.30 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) . 122.00 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH(FEET) . 18.00 24.40 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DEClMALJ .. 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 13 .00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACl'OR for Street flow Section{curb-to-curb) Manning'S FRIC"rlON FACl'OR for Back-of-Walk Flow Section 0.0150 0.0150 HTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 6.52 STREETF'"....oW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTIi{FEET) e 0.43 HALFSTREET FLOOD WIDTH(FEETl. 9.85 AVERAGE FLOW VELOCITY (FEET/sEC.) . 2.28 PRODUCT OF DEPTH&.VELOCIT'l{Fl'*F"l'/SEC.). 0.98 STREET FLOW TRAVEL TIME(MBl.). 0.89 TC(M!N.) 9.22 10 YEAR RAINFALL INTENSITY(INCH/HOUR). 2.520 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .8395 SOIL CLASSIFICATION IS "C' SUBAREA AREA(ACRES). 0.52 SUBAREA RUNOFF(CFS) 1.10 TOTAL AREA{ACRES) . 3.18 PEAK FLOW RATE(CFS) 7.07 END OF SUBAREA STREET FLOW HYDRAUL!CS, DEPTH (PEET) . 0.44 HALFSTREBT FLOOD WIDTH (FEET) 10.36 FLOW VELOCITY{FEET/SEC.} . 2.31 DEPTH.VELOCITY(Fl'''F"l'/SEC.) 1.01 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 8.00. 378.00 FEET. ....*...................*..................................................... FLOW" PROCESS FROM NODE 8.00 TO NODE 8.50 IS CODE. 31 ,.>>>>COMPUTE PIPE-FLOW TRAVEL TIME 'l'RRU SUBAREA<"<",, ,.>>,.>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW") <,,<<< ......."."'....'"ee.".....e.....a...._...==.c.............=........e....e......._........... ELEVATION DATA, UPSTREAM{FEET). 20.60 OOWNSTREAM(FEET) 20.40 FLOW LENG'tH(FEET). 20.00 MANNING'S N. 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.). 6.12 ESTIMATED PIPE DIAMETEIl.{INCH). Hi .00 NUMEiEIl. OF PIPES PIPE-FLOW(CFS) . 7.07 PIPE TRAVEL TIME(MIN.).. 0.05 Tc(MIN.). 9.28 LONGEST FLOW"PATH FROM NODE 4.00 TO NODE 8.50. 398.00 FEET. ............................................................................... FLOW PROCESS FROM NOOE 8.50 TO NODE 8.50 IS CODE e Printed: 12/14/2005 I I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc",<,,< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES"",,<< C:\aes2004\hydrosftlratscx\834D1 a.RES I I I I I I I I I I I I I I I I .__________________...._____________B________.______.______ecc______________ TOTAL NUMBER OF STREAMS", :2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (HIN.) = 9.28 RAINFALL INTENSITY(INCH/HR)", 2.51 TOTAL STREAM AREJ>.(ACRESl _ 3.16 PEAl( FLOW RATE(CFS} AT CONFLUENCE.. 7.07 ** CONFLUENCE DATA STREAM RUNOFF NUMBER (CPS) 1 17.00 1 17.49 :2 7.07 Tc (MIN.) 14.27 15.91 9.28 INTENSITY ( INCH/HOUR) 1.982 1.867 2.512 AREA (ACRE) 10.44 10-44 3.18 B-1 B-2., \~ I Page 5 of 13 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE .. STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) ( INCH/HOUR) 1 18.12 9.28 2.512 2 n.se 14.27 1.982 3 22.74 15.91 1.867 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS, PEAK PLOW RATE (CFS) 22.14 Tc:(MIN.} - 15.91 TOTJ.L AREA(ACRES) - 13.62 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.50 1338.00 FEET_ ........................................................"."".."".."................""""""...""""""""".. PLOW PROCESS FROM NODE 8.50 TO NODE 9.00 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME 'I'HRU SUBAREI..,,,,,,,,, >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) """"" ELEVATION DATA, IJPSTREAM(FEET}", 20.40 DOII'NSTREAMiFEET) 20.00 PLOW LENGTH (FEET) .. 100.00 MANNING'S N.. 0.013 DEPTH OF PLOW IN 30.0 INCH PIPE IS 22. B INCHES PIPE-FLOW VELOCITY{FEET/SEC.).. 5.69 ESTIMATED PIPE DIAMETER(INCH) .. 30.00 NUMBER OF PIPES PIPE-FLOW(CFS).. 22.14 PIPE TRAVEL TIMEiMIN.J _ 0.29 Tc:(MIN.).. 16.20 LONGEST FLOWPATH FROM NODE 1. 00 TO NODE 9.00.. 1438.00 FEET. "".........."............"."....."""""..-......."""""..........."""."..."............" FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE.. 13 >>>>>CLEAR THE MAIN-STREAM MEMORY""""" +------------------------- .----------------.-- ---------------------------+ I Subarea B Multi-family units +---..------ --------------------- -------------------------------- -----+ ............"""..................""""."...".."........"..."",,"................................ FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE", 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS""""" ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC", K*{(LENGTH**3}/(ELEVATION CHANGE}).....2 INITIAL SUBAREA FLOW-LENGTH(FEET}.. 325.00 UPSTREAM ELEVATION(FEET) .. 30.:;0 DOWNSTREAM ELEVATION{FEET) .. 29.50 ELEVATION DIFFERENCE (FEET) .. 0.80 TC .. 0.359" [( 325.00....3)/ ( O.E>O)] **.2 _ 10 YEAR RAINFALL INTENSITY (INCH/HOUR).. 2 CONDOMINIUM DEVELOPMENT R1.mOFF COEFFICIENT "' SOIL CLASSIFICATION IS MCM SUBAREA RUNOFF(CFS} .. TOTAL AREA (ACRES) .. 12.074 .113 .8319 2.53 1.40 TOTAL RUNOFF (CFS) .. 2.53 ...."....................................................................................................*...................................... FLOW PROCESS FROM NODE 31. 00 TO NODE 32.00 IS CODE.. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA""""" >>>>> (STREET TABLE SECTION # 1 USED) """"" UPSTREAM ELEVATIONiFEET}.. 29 50 DOWNSTREAM ELEVATION(FEET} STREET LENGTH(FEET).. 148.00 CURB HEIGHT(INOIES) 4.8 STREET HALFWIDTH(FEET) .. 12.50 28.20 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 50 INSIDE STREET CROSSFALL(DEClMAL).. 0.020 OUTSIDE STREET CROSSFALL{DECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Sec:tion(curb-to-curb) _ Manning's FRICTION FACTOR for Bac:k-of-Walk Flow Sec:tion 0.0150 0.0150 "'!'RAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.39 HALFSTREE'I' FLOOD WIDTH (FEET) _ 4.77 AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.33 3.07 Printed: 12/14/2005 I I C:\aes2004\hydrosft\ratscx\834D1 O. RES I I I I I I I I I I I I I I I I PRODUCT OP DEPnI&VELOCITY (F'l'''FT/SEC.)" 0.90 STREET FLOW TRAVEL TIME(MIN.) " 1.06 Tc(MIN.) 13.13 10 YEAR RAINFALL Im'ENSITY (INCH/HOUR)" ;2.075 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT" . 8597 SOIL CLASSIFICATION IS "e. SUBAREA AREA (ACRES) " 0.60 SUBAREA RUNOFF(CFS) 1.07 TOTAL AREA (ACRES) " 2.00 PEAK FLOW RATE(CFSl 3.60 END OF SUBAREA STREET FLOW HYDRA.UL!CS: DEPTH (FEET) ,,0.41 HALFSTREET FLOOD WIDni(FEET) 5.79 FLOW VELOCITY(FEET/SEC.)" 2.36 DEPTH*VELQCITY(FT"FT!SEC.) 0.96 I.ONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00.. 473.00 PEET. FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE.. 62 B-3 B-1.{ \3-5 \"" I Page 6 of 13 ,,>>>>COMPU'!'E STREET PLOW TRAVEL TIME THRIJ SUBAREA"",",c", >>>>> (STREET TABLE SECTION, # 1 USED},,<<<< UPSTREAM ELEVATION(FEET).. 28.20 DOWNSTREAM ELEVATION (FEET) STREET LENGTH(PEET).. 445.00 CURB HEIGHT(INCHES) 4.8 STREET HALPWIDTH(FEET) .. 12.50 25.80 DIS'I'ANCE FROM CROWN TO CROSS FALL INSIDE STREET CROSSFALL(DECIMAL) OUTSIDE STREET CROSSFALL(DECIMAL) GRADEBREAK(FEET) 0.020 0.050 7.50 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF.. 41 STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for StreetflOlol Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 UTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 5.51 STREETFLQW MODEL RESULTS USING ESTIMATED FLOW. STREET FLOW DEPTH (FEET) .. 0.49 HALFSTREET FLOOD WIDTH (FEET) .. 13.64 AVERAGE FLOW VELOCITY(FEET/SEC.)" 1.81 PRODUCT OF DEPTH&VELQCITY(Fr"FI'/SEC.)" 0.88 STREET FLOW TRAVEL TIME(MIN.)" 4.10 Tc(MIN.) 17.23 10 YEAR RAINFALL INTENSITY (INCH/HOUR) " 1.787 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8548 SOIL CIASSIFICATION IS .C" SUBAREA AREA (ACRES) " 2.50 SUBAREA RUNOFF(CFS) 3.82 TOTAL AREA(ACRES) .. 4.50 PEAK FLOW RATE(CFS) 7.42 END- OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) ,,0.52 HALFSTREET FLOOD WIDTH (FEET) 16.81 FLOlf VELQCITY{FEET/SEC.).. 1. 85 DEPTH"VELOCITY (FT"FT/SEC 0.96 "NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L '" 445.0 FT WITH ELEVATION-DROP.. 2.4 FT, IS 5 1 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 33.00 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00.. 918.00 FEET. FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE.. 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW""""" 10 YEAR RAINFALL INTENSITY(INCR/HOUR).. 1.787 APARnlENT DEVELOPMENT RUNOFF COEFFICIENT .. .8548 SOIL CLASSIFICATION IS "CO SUBAREA AREA(ACRES) 1.20 SUBAREA RUNOFF{CFS) TOTAL ARE1I.(ACRESl .. 5.70 TOTAL RUNOFF(CFS) .. TC(MIN.).. 17.23 1.83 9.25 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE.. 62 >>>,.>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA""""" >>>>> (STREET TABLE SECTION"# 1 USED) """"" UPSTREAM ELEVATION(FEET).. 25.80 DOWNSTREAM ELEVATION(FEETl STREET LENGTH (FEET) .. 143.00 CURB HEIGHT (INCHES) 4.8 STREET HALFWIDTH(FEET) .12.50 24.60 DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL(DEClMAL) OUTSIDE STREET CROSSFALL(DEClHAL) GaADEBREAK [FEET} 0.020 0.050 7 SO SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARXWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflolll Section(curb-to-curb) Manning's FRICTION FACTOR for Back-of-Walk Flol11 Section 0.0150 0.0150 "TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 9.55 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) . 0.52 HALFSTREET FLOOD WIDTH (FEET).. 17.04 AVERAGE FLOW VELOCITY(FEET/SEC.). 2.33 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.). 1.21 STREET FLOW TRAVEL TIME(MIN.). 1.02 Tc(MIN.) 18.26 10 YEAR RAINFALL INTENSITY (INCH/HOUR). 1. 731 APARThlENT DEVELOPMENT RUNOFF COEFFICIENT. .8537 SOIL CLASSIFICATION IS *C" SUBAREA AREA(ACRES). 0.40 SUBAREA RUNOFF(CFS) 0.59 TOTAL AREA(ACRES) .. 6.10 PEAK FLOW RATE(CFS) 9.84 END.OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.52 HALFSTREET FLOOD WIDTH(FEET). 17.39 FLOW VELOCITY(FEET/SEC.).. 2.34 DEPTH*VELOCITY(FT"Fr/SEC.).. 1.22 LONGEST FLOW PATH FROM NODE 30.00 TO NODE 34..00.. 1061.00 FEET. Printed: 12/14/2005 I I ..."*"*****..******......****1'**********.".***...**".************************.*** C:\aes20D4\hydrosffuatscx\834D 1 a.RES I I I I I I I I I I I I I I I I FLOW PROCESS FROM NODE 34.00 TO NODE 38.00 IS CODE.. 31 B-(o &-1 B-5 \~ I Page 7 of 13 :>:>:>>"COMPtn'E PIPE-FLOW TRAVEL TIME THRU SUBAREA""""" >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ,,<<co< ELEVATION DATA, UPSTREAM(FEET)" 21.60 DOWNSTREAM (FEET) 18.60 FLOW LENGTH (FEET) " 505.00 MANNING'S N. 0.013 DEPTH OF FLOW IN :21.0 INCH PIPE 13 14.9 INCHES PIPE-FLOW VELOCITY(FEET!SEC.).. .s.4l ESTIMATED PIPE DIAMETER(INCHl .. 21.00 NUMBER OF PIPES PIPE-FLOW(CFS) .. 9.84 PIPE TRAVEL TIME(MIN.).. 1.56 Tc(MIN.).. 19.81 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 38.00.. 1566.00 FEET. ******...*.*************,,***.*****..**..******.*******-**.....*-----*,,*._--*-* FLOW PROCESS FROM NODE 38.50 TO NODE 38.50 IS CODE .. >:>:>:>:>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ..............................................................--...."''''............'''...................................."'......................... TOTAL NUMBER OF STREAMS" 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE, TIM::: OF CONCENTRATION(MIN.) " 19.91 RAINFALL INTENSITY{INCH/HR).. 1.56 TOTAL STREAM AREA (ACRES) .. 6.U PEA..';( FLOW RATE (CFS) AT CONFLUENCE.. 9.84 ................................""" "".............................. ".."""""..................... ........"...........""""""".""" FLOW PROCESS FROM NODE 3S.00 TO NODE 36.00 IS CODE.. 21 :>:>:>>:>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARDlENT TC " K.[(LENGTII..3)/{ELEV1I.TION CHANGE)J...2 INITIAL SUBAREA PLOW-LENGTH(FEET} '" 580.00 UPSTREAM ELEVATION(FEET) .. 31.JO DOWNSTREAM ELEVATION(FEET) .. 2~.60 ELEVATION DIFPERENCE(FEET) .. 0.40 TC "0.323.[( S80.00""3)/( 6.40)J"".2 10 YEAR RAINFALL INTENSITY{INCH/HOUR) " APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. SOIL CLASSIFICATION 15 "C" SUBAREA RUNOFF{CFS) '" TOTAL AREA(ACRES) . 10.130 2.394 .8640 4.14 2.00 TOTAL RUNOFF(CFS) 4.14 ..".".""..".............."""................................"".......""........"........... FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE.. 62 >>>>>COMPUTE STREET PLOW TRAVEL TIME THRU SUBAREA<<<<<<<<<< :>>>>>(STREET TABLE SECTION #- 1 USED)<<<<< UPSTREAM ELEVATION (FEET).. 24.60 DOWNSTREAM ELEVATION(PEET) STREET LENGTH(FEET).. 470.00 CURB HEIGHT(INCHES) 4.8 STREET HALPWIDTH(FEET) .. 12.50 21.60 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) 7.50 INSIDE STREET CROSSFALL(DECIMAL) _ 0.020 OUTSIDE STREET CROSSPALL(DECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) _ Manning's FRle"!'ION FACTOR for Back-of-Walk Flow Section 0.0150 ""'TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS} 5.42 STREETFLQW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.4.8 HALFSTREET FLOOD WIDTH (FEET) .. 12.59 AVERAIJE FLOW VELOCITY(FEET/SEC.) '" 1.95 PRODDe"!' OF DEPTIl&VELOCITY(FT.FT/SEC.).. 0.93 STREET FLOW TRAVEL TIHE(MIN.).. 4.01 Tc(HIN.) 14..14 10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.993 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. . BSB4 SOIL CLASSIFICATION IS "C" SUBAREA AREA (ACRES) ~ 1.50 SUBAREA RUNOFF(CFS) 2.57 TOTAL AREA(AeRES} .. 3.50 PEAK FLOW RATE(CFS) 6.70 0.0150 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.50 HALFSTREET FLOOD WIDTH(FEET) a 14.81 PLOlf VELOCITY(FEET/SEC.}.. 1.98 DEPTH.VELOCITY(FT"FT/SEC.) O.~~ .NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L. 470.0 FT WITH ELEVATION-DROP... 3.0 FT. IS 3.1 CFS. WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 37.00 LONGEST FLOWPATH FROM NODE 35.00 TO NODE 37.00.. 1050.00 FEET. ..............................".."..""..........................""..".."""............."......... FLOW PROCESS FRQIII NODE 37.00 TO NODE 3B.00 IS CODE.. 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<<<< 10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 1. 993 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. . B584 SOIL CLASSIFICATION IS ~C" SUBAREA AREA(ACRES) 2.00 SUBAREA RUNOFF(CFS} TOTAL AREA (ACRES) .. 5.50 TOTAL RUNOFF(CFS) _ Te(MIN.).. 14.14 3.42 10.12 ..."............."...""".................................""""........".".""".."............ FLOW PROCESS FROM NODE 38.00 TO NODE 3B.50 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< Printed: 12/14/2005 I I >:>:>>,.USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) "'<""'" C:\aes2004\hydrosftlratscx\834D1 a.RES I I I I I I I I I I I I I I I I ELEVATION DATA. UPSTRE:AM(FEET)", 18.70 DOWNSTREAM (FEET) 18.60 FLOW LENGTII(FEET) '" 20.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.4 INCHES PIPE-FLOW VELOCITY(PEET/SEC.).. 5.03 ESTIMATED PIPE DIAMETER(INCH) .. 21.00 NUMBER OF PIPES 1 PIPE-FLOW(CFSj '" 10.12 PIPE TRAVEL TIME(MIN.)", 0.07 TC(MIN.).. 14.20 LONGEST FLOWPATH FROM NODE 35.00 TO NODE 38.50.. 1070.00 FEET. .************..**..*..*****....**"..........*******.*****.......ft*...,,,..*,,__..,,__.._.*.***. FLOW PROCESS FROM NODE 38.50 TO NODE 38.50 IS CODE .. 1:,-9 B-1O \~ I Page 8 of 13 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE"".::"", >>>>>AND COMPUTE VA1UOUS CONFLtrENCED STREAM VALUES"""",,, TOTAL NUMBER OF STREAMS.. ::i! CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION(MIN.} a 14.20 RAINFALL INTENSITY(INCH/HR} a 1.99 TOTAL STREAM AREA(ACRES) .. 5.50 PEAK FLOW RATE (CFS) AT CONFLUENCE" 10 12 * * CONFLUENCE DATA STREAM RUNOFF NUMBER (CFS) 1 9.84 2 10.12 To (MIN. ) 19.81 14.20 INTENSITY ( INCH/HOUR) l.655 1.987 AREA (ACRE) 6.10 5.50 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMUlA USED FOa 2 STREAMS. ** PEAK FLOW RATE TABLE .* STREAM RUNOFF TC NUMBER (CFS) (MIN.) 1 17.18 14.20 2 18.27 19.81 INTENSITY (INCH/HOUR) 1.987 1.655 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS I PEAK FLOW RATE(CFS) 18.27 TC(HIN.).. 19_81 TOTAL AREA(ACRES).. 11.60 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 38.50 1566.00 FEET_ *****.*********.*..***...*.*********......*........***..*.**.*****...**.**.. FLOW PROCESS FROM NODE 38.50 TO NODE 39.50 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<...... ELEVATION DATA, UPS'I'REAH{FEET).. 18.60 DOWNSTREAM (FEET) 17.60 FLOW LENGTH (FEET) .. 160.00 MANNING'S N.. 0.013 DEPTH OP FLOw IN 27.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.}.. 6.47 ESTIMATED PIPE DIAMETER (INCH) ,,27.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) a 18.27 PIPE TRAVEL TIME (MIN.) .. 0_41 Tc(MIN.).. 20.22 LONGEST FLOWPATH FROM NODE 30 00 TO NODE 39_50 1726.00 FEET. .....................***....*..........*..***.............*.*.......*..........*** FLOW PROCESS FROM NODE 39.50 TO NODE 39.50 IS CODE.. 1 ,,>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS" 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE I TIME OF CONCENTRATION(MIN.) .. 20.22 RAINFALL INTENSITY(INCH/HR).. 1.64 TOTAL STREAM AREA (ACRES) .. 11.60 PEAK FLOW RATE(CFS) AT CONFLUENCE" 18.27 .*....*.**.............................."..................................**..**....................................................*. FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<oCoC ASSUMED INITIAL SUBAREA UNIPORM DEVELOPMENT IS APARTMENT TC D K"'[(LENGTH..3)/(ELEVATION CHANGE)] **.2 INI?IAL SUBAREA FLOW-LENGTH(FEET).. 301.00 UPSTREAM ELEVATION(FEET) .. 26.70 DOWNSTREAM ELEVATION(FEET).. 24.30 ELEVATION OIFFERENCE(FEET) .. 2.40 TC.. 0.323*[( 301.00*'*3)/( 2.40)J.......2 10 YEAR RAINFALL INTENSITY (INOI/HOUR) .. APARTMENT DEVELOPMENT RUNOFF COEFFICIENT D SOIL CLASSIFICATION IS *S* SUBAREA RUNOFF(CFS) .. TOTAL AREA(ACRES) .. 8.316 2_668 .8492 2.72 1.20 TOTAL RUNOFF(CFS} 2.72 *...........*****.*****.****.**.**.....**...........***********...****....*............. FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE.. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIMS THRU SUBAREA<<<<.. >>>>>(STREET TABLE SECTION # 1 USED)<<oCoCoC UPSTREAM ELEVATION(FEE'T). 24.30 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET). 473.00 CURB HEIGHT(INCHES) 4.8 STREET HALFWIDTH{F'EST) _ 12.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK{FEET) 7.50 INSIDE STREST CROSSFALL (DECIMAL). 0.020 21.50 Printed: 12/14/2005 I I OUTSIDE STREET CROSSFALL(DEClMAL) 0.050 C:\aes2004\hydrosftlratscx\834D1 a.RES I SPECIFIED NUMBER OF HALPSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACl'OR for Street flow Section(curb-to-c:urb).. 0.0150 Manning's FRICTION FACTOR for Baclt-of.Walk Flow Section 0.0150 I **TRAVEL TIME COMPUTED USING ESTIMATED FLOW (eFS) 4.78 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.47 HALFSTREET FLOOD WIDTH (FEET) .. 11.65 AVERAGE FLOW VELOCITY (FEET/SEC.) .. 1.88 PRODUCT OF DEPTH&VELQCITY(FI'*FTjSEC.).. 0.87 STREET FLOW TRAVEL TIME(MIN.).. 4.20 Tc(MIN.) 12.51 10 YEAR RAINFALL INTENSITY(INCH/HOURj .. 2.131 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8407 SOIL CLASSIFICATION IS "B" SUBAREA AREA.{ACRES) '" 2.30 SUBAREA RllNOFF(CFS) 4.1;2 TOTAL AREA (ACRES) .. 3.50 PEAK FLOW RATE(CFS) 6.84 I I END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) '" 0.50 HM.FSTREET FLOOD WIDTH (FEET) .. 15.40 FLOW VELOCITY(FEET/SEC.) .. 1_92 DEPTH"VELOCITY(FI'''FI'/SEC.) 0.97 "NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L.. 473.0 FI' WITH ELEVATION-DROP.. 4.8 FI', IS 4.5 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 44.00 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 44.00.. 774.00 FEET_ I "..................."..."""".............".""."".................".......""".""..""".... FLOW PROCESS FROM NODE 44.00 TO NODE 39.50 IS CODE.. 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUB.AREA<<<<< >>>>>\JSING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< I ELEVATION DATA, UPSTREAM (FEET) .. 18.50 DOWNSTREAM (FEET) 17.10 FLOU LENGTH(FEET).. 140.00 MANllING'S N.. 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES PIPE-FLOW VELQCITY(FEET/SEC.).. 6.08 ESTIMATED PIPE DIAMETER(INCH).. 18.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) .. 6.84 PIPE TRAVEL TIME(MIN.).. 0.38 Tc(MIN.).. 14.90 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 39.50 914.00 FEET. ...""....."""..............*..**..***..**"*..""."""...........*********,,""..""...."""""".."......... FLOW PROCESS FROM NODE 39.50 TO NODE 39.50 IS CODE .. I >>>>>DESIGNA'I'E INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS.. 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION(MIN.) .. 12.90 RAINFALL INTENSITY(INCH/HR).. 2.::'0 TOTAL STREAM AREA (ACRES) .. 3.50 PEAK FLOW RA'I'E(CFS) AT CONFLUENCE" 6.84 I .........."......**........."**"*.***...*.*.,,.....,,,,**....*..***..*****...*...*.*...."."....."" FLOI~ PROCESS FROM NODE 43_00 TO NODE 44.00 IS CODE.. 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC.. K"!(LENGTH"*3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH (FEET) " 260.00 UPSTREAM ELEVATION(FEET).. 22...0 DOWNSTREAM ELEVATION(FEET} .. 21.50 ELEVATION DIFFERENCE(FEET) .. 0.90 TC" 0.323"[( 260.00"*3l/( 0.90)]"*.2 9.267 10 'fEAR RAINFALL INTENSITY (INCH/HOUR) .. 2.514 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT" . 8654 SOIL CLASSIFICATION IS ~C~ SUBAREA RUNOFF(CPS) .. 1.31 TOTAL AREA(ACRES) .. 0.60 TOTAL RUNOFF (CFS) 1.31 I ..."""*..**.*"*"********************<.***,,**..**.""".,,.,,"""****""*""********* FLOW PROCESS FROM NODE 44.00 TO NODE 39.00 IS CODE.. 62 I >>>>>COMPI.lTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>> (STREET TABLE SEc."nON # 1 USED) <<<<< UPS'I'REAM ELEVATION(FEET).. 21.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTIf(FEET).. 108.00 CURB HEIGHT(INCHES) 4.8 STREET RALFWID'I'H(FEET) .. 12.50 21.10 I DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL(DECIMAL) OUTSIDE STREET CROSSFALL (DECIMAL) GF.ADEBREAK(FEET) 0.020 0.050 750 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning'S FRICTION FACTOR for Street flow Section(curb-to-curb) Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 0.0150 "TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) " 0.38 HALFSTREET FLOOD WIDTH (FEET) .. 4.55 AVERAGE FLOW VELOCITY (FEET/SEC.) .. 1.48 PRODUCT OF DEPTH&.VELOCITI'(FI'*FT/SEC.).. 0.56 STREET FLOW TRAVEL TIME (MUI.) .. 1.21 Tc(MIN.) 10 YEAR RAINFALL INTENSITY(JNCH/EOUR) .. 2.349 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT. .8445 1.80 I 10.48 Page 9 of 13 I Printed: 12/14/2005 B-I\ 8-12- 1,,0 I I C:\aes2004\hydrosft\ratscx\834D1 O. RES I I I I I I I I I I I I I I I I 501:' CLASSIFICATION IS "B" SUBAREA AREA(ACRES) 0.50 TOTAL AREA (ACRES) .. 1.10 SUBAREA RUNOFF(CFS) z PEAK FLOW RATE (eFS) 0.99 2.30 6-13 c - \ 1--\ I Page 10 of 13 END. OF SUBAREA STREET FLOW HYDRAULICS, DEPTII(FEET) .. 0.40 HALFSTREET FLOOD WIDTII(FEET).. 5.44 FLOW VELOCITY (FEET/SEC.) " 1-55 DEPTH*VELOCITY(FT*Fr/SEC.).. 0.62 LONGEST FLOWPATH FROM NODE 43.00 TO NODE 39.00.. 368.00 FEET. ..'*********...,*************."."".****"***"*****..********......**"."************. FLOW PROCESS FROM NODE 39_00 TO NODE 39.00 IS CODE.. 81 >:>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW""""" 10 YEAR RAINFALL INTENSITY{INCH!HOUR).. 2.349 APARnlENT DEVELOPMENT RUNOFF COEFFICIENT .. .8634 5011. CLASSIFICATION IS "e. SUBAREA AREA(ACRES) 0.50 SUBAREA RUNOFF(CFS) 1.01 TOTAL ARE1I.(ACRES) .. 1.60 TOTAL RUNOFF(CFS) .. 31 TC(MIN.) .. 10.48 **."***".............***......,,.............***..........*************************************** FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE.. 1 ,.,.,.,.,.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE......".. ,.,.,.,.,.AND COMPI1I'E VARIOUS CONFLUENCE:D STREAM VALUES""""" TOTAL NUMBER OF STREAMS.. 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE, TIME OF CONCENTRATION(MIN.).. 10.48 RAINFALL INTENSITY(INCH/HR).. 2.35 TOTAL STREAM AREA(ACRES) .. 1.60 PEA., PLOW RATE(CFS) AT CONFLUENCE.. 3.31 ** CONFLUENCE DATA STREAM RUNOFF NUMBER (CFS) .1 17.18 1 18.27 '2 6.84 '3 3.31 To (MIN.) 14 .62 20.22 12.90 10.48 INTENSITY ( INCH/HOUR) 1.956 1.636 2.096 2.349 AREA (ACRE) 11.60 11.60 3.50 1.60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR STREAMS. *. PEAK STREAM NUMBER .1 , , " PLOW RATE TABLE ** RUNOFF Tc (CFS) (MIN.) 21.18 10.48 24.95 12.90 26.32 14.62 25.92 20.22 INTENSITY (INCH/HOUR) 2.349 2.096 1.956 1.636 COMPUTED CONFLUENCE ESTIr-tATES ARE AS FOLLOWS, PEAK FLOW RATE(CFS) 26.32 Tc(HIN.}.. 14.62 TOTAL AREA(ACRES) .. 16.70 LONGEST FLOWPATII FROM NODE 30 00 TO NODE 39.00 1726.00 FEET. *************..*********..................*.***.........*...........*...*... FLOW PROCESS FROM NODE 39.50 TO NODE 45.00 IS CODE.. 31 ,.,.,.,.,.COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA.."...." ,.,.,.,.,.USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) """<" ELEVATION DATA: UPSTREAM{FEET).. 17.10 DOWNSTRE1\M(FEET) 16.50 FLOW LENGTII{FEET).. 140.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.4 INCHES PIPE-FLOW VELOCITY(FEET/SE:::.).. 6.15 ESTIMATED PIPE DIAMETER (IN::H).. 33.00 NUMBER OF PIPES PIPE-FLOW(CFS) .. 26.32 PIn TRAVEL TIME(MIN.).. 0.38 Tc(MIN.) = 15.00 LONGEST FLOWPATII FROM NODE 30.00 TO NODE 45.00 1866.00 FEET. ******.***..*****..*...*************".**.*******.*...*********************** FLOW PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE.. 13 ,.,.,.,.,.CLEAR THE r-tAIN-STREAM MEMORY"",,,,,,, +--------------------------------------------------------------------------+ I~~C I +----.--------------..-- --------------------------------...-.---. --------+ *.*..**..*************.*************.*****.**....***.*..***.***......******* FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE.. 21 ,.,.,.,.,.RATIONAL METHOD INITIAL SUBAREA ANALYSIS""""" ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARThlENT TC.. K*[(LENGTH"'3}/(ELEVATION CHANGE}]....2 INITIAL SUBAREA FLOW-LENG'I'H(FEET).. 400.00 UPSTREAM ELEVATION (FEBT) .. 30.20 DOWNSTREAM ELEVATION(FEBT) .. 26.00 ELEVATION DIFFERENCE(FBET) .. 4.20 TC.. 0.323*1( 400.00"'3)/( 4.20}]**.2 10 YEAR RAINFALL INTENSITY{INCH/HOUR} .. APARTMENT DEVELOPMENT RUNOFF COEFFICIENI' SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) .. 8.818 2.583 .8058 3.96 Printed: 12/14/2005 I I TOTAL AREA(ACRES} " 3.96 C:\aes2004\hydrosft\ratscx\834D1 a.RES 1.90 TOTAL RUNOFF(CFS} " I .***"............................................................................... FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE.. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"<",,,,,, ".,.,.,.,. (STREET TABLE SECTION # 1 USED) <<<:<< I ........"..........___..__.._...............c..__....______................__.._..........______..__........__ UPSTREAM ELEVATION(FEEr).. 26 00 DOWNSTREAM ELEVATION(FEET} STREET LENGTII(FEET) " 319.00 CURB HEIGHT{INCHES) 4.9 STREET HALFWIDTH(FEET) .. 12.50 24.10 I DISTANCE FROM CROWN TO CROSSFALL Gl<.ADEBREAK(FEET) 7. SO INSIDE STREET CROSSFALL(DEClMAL).. 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF :2 STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 I U-TRAVEL TIME COMPUTED USING ESTIMATED FLOW (eFS) 5.20 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.47 HALFSTREET FLOOD WIDTH (FEET) .. 12.47 AVERAGE FLOW VELOCITY(FEET/SEC.) z 1.89 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.).. 0.90 STREET FLOW TRAVEL TIME(MW.).. 2.80 TC(MIN.) 11.62 10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 2.220 APAR'I1'IENT DEVELOPMENT RUNOFF COEFFICIENT .. .8618 SOIL CLASSIFICATION IS .C. SUBAREA AREA(ACRES).. 1.30 SUBAREA RUNOFF(CFS) 2.49 TOTAL AREA (ACRES) .. 3.20 PEAK FLOW AATE(CFS) 6.44 I I END OP SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.50 HALFSTREET FLOOD WIDTH(PEET).. 14.70 FLOW VELOCITY (FEET/SEC.).. 1. 92 DEPTH*VELOCITY(FT*FT/SEC.) *NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L"' 318.0 FT WITH ELEVATION-DROP.. 1.9 FT, IS WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00.. 718 0.95 9 CFS, 52.00 .00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE.. 62 I :>:>:>:>:>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA<<<<< :>:>:>:>:> (STREET TABLE SECTION'# 1 USED}""",,< UPSTREAM ELEVATION(FEET).. 24.10 DOWNSTREAM ELEVATION(FEET) STREET LENG'I'H(FEET).. 170.00 ClJ"RB HEIGHT (INCHES) 4.8 STREET HALFWIPTH (FEET) .. 12.50 23.30 I DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL (DECIMAL).. 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) 0.050 50 I SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 uTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 6.97 S1~EETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH(FEET) .. 0.52 HALFSTREET FLOOD WIDTH (FEET) .. 16.81 AVERAGE FLOW VELOCITY(FEET/SEC.).. 1.74 PRODUCT OF DEPTH&VELQCITY(FT*FT/SEC.).. 0.90 STREET FLOW TRAVEL TIME(MIN.}.. 1.63 Tc(MIN.} 13.25 10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. :;1:.065 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8595 SOIL CLASSIFICATION IS "Cn SUBAREA AREA(ACRES}.. 0.60 SUBAREA RUNOFF(CFS) 1.07 TOTAL AREA(ACRES} .. 3.80 PEAK FLOW RATE(CFS} 7.51 I I END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.53 HALFSTREET FLOOD WIDTH (FEET) .. 17.63 FLOW VELOCITY(FEET/SEC.).. 1.75 DEPTH*VELOCITY(FT*FT/SEC.).. 0.92 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00.. 88S.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE S1 >:>:>:>:>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW""""" I 10 YEAR RAINFALL INTENSITY(INCH/HOUR}.. 2.065 APAR'I1'IENT DEVELOPMENT RUNOFF COEFFICIENT z .8595 SOIL CLASSIFICATION IS .C. SUBAREA AREA (ACRES) 0.80 SUBAREA RUNOFF(CFS) 1.42 TOTAL ARE:A(ACRES) .. 4.60 TOTAL RUNOFF (CFS) z 93 TC(MIN.}.. 13.25 I FLOW PROCESS FROM NODE 53.00 TO NODK 55.00 IS CODE.. 31 >>:>:>:>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA""""" :>:>:>:>:>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW),,<<<< I ELEVATION DATA: UPSTREAM(FEET).. 20.30 DOWNSTREAM (FEET) 18.30 FLOW LENGTH(FEET).. 225.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.05 ESTIMATED PIPE DIAMETER(INCH}.. 18.00 NUMBER OF PIPES,", 1 C -7- c-3 C -Lj ? I Printed: 12/1412005 Page 11 of13 I I C:\aes2004\hydrosftlratscx\834D1 aoRES I I I I I I I I II I I I I I I I ~lPE-FLOW(CFS} .. 8.93 PIPE TRAVEL TIME(MIN.) = 0.62 Tc[MIN.}.. 13.87 LONGEST FLOWPATH FROM NODE 50 00 TO NODE 55.00 1113.00 FEET. (.-5 C-(p c.-I #J I ...................**........................*.........**..................... FLOI~ PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE .. >>>>,.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE""",<" TOTAL NUMBER OF STREAMS.. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) .. 13.87 RAINFALL INTENSITY(INCH/HR)... 2.01 TOTAL STREAM AREA(ACRES).. 4..60 PEA..';( FLOW RATE (CFS) AT CONFLUENCE.. 8.93 ...*...............**.**.....................*..................................... FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE.. 21 >>>>"RATIONAL METHOD INITIAL SUBAREA ANALYSIS"""",,, ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT IT" K*!(LENGTH.*3)/(ELEVATION CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTII(FEET) m 227.00 UPSTREAM ELEVA'I'IOn(FEET).. 25.00 DOWNSTREAM ELEVATION(FEET).. 22.50 ELEVATION DIFFERENCE(FEET) .. 2.50 TC.. 0.323.[( 227.00U3)j( 2.50)J**.2 6.963 10 YEAR RAINF.AI..L INTENSITY(INCH/HOUR).. 2.942 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .B695 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF (CFS) .. 1. 2B TOTAL AREA(ACRES) .. 0.50 TOTAL RUNOFF(CFS) 1.2B ****.**********..........**********************************************.**** FLCrIl' PROCESS FROM NODE 54.00 'TO NODE 55.00 IS CODE.. Bl >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW""""" 10 YEAR RAINF.AI..L INTENSITY(INCHjHOUR).. 2.942 APARnlENT DEVELOPMENT RUNOFF COEFFICIENT .. . B695 SOIL CLASSIFICATION IS .C. SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) "' O.BO TOTAL RUNOFF(CFS) .. TC(MIN.).. 6.96 0.77 .05 .*****.*************************..*....****..*.******************************* FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA""""" >>>>>(STREET TABLE SECTION # 1 USED)""""" UPSTREAM ELEVATION (FEET) 22.50 DOWNSTREAM ELEVATION(FEET) STREET LENG'I'H(FEET).. 72.00 CURB HEIGHT(INCHES) 4.B STREET HALFWIDTII (FEET) = 12.50 22.30 DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL (DECIMAL) OUTSIDE STREET CROSSFALL(DECIMAL) GRADEBREAK (FEET) 0.020 0.050 7.50 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning'S FRICTION FACTOR for StI"eetflow Section(curb-to-c:urb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 uTRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.52 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET PLOW DEPTH(PEET) .. 0.44 HALFSTREET FLOOD WIDTH(FEET).. B.72 AVERAGE FLOW VELOCITY(FEET/SEC.)"' 1.29 PRODUCT OF DEPTHr.VELOCITY{FT*FT/SEC.).. 0.56 STREET FLOW TRAVEL TIME(MIN.).. 0.93 Tc(MIN.) 7.B9 10 YEAR RAINFALL INTENSITY(IRCH/HOUR).. 2.746 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. . B67B SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES).. 0.40 SUBAREA RUNOFF(CFS) 0.95 TOTAL AREA (ACRES) .. 1.20 PEAK FLOW RATE(CFS) 3.00 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.46 HALFSTREET FLOOD WIDTH(FEET) '" 10.71 FLO'II VELOCITY(FEET/SEC.).. 1.2B DEPTH*VELOCITY(FT*FI'/SEC.).. 0.59 LONGEST PLOWPATII FROM NODE 53.00 TO NODE 55.00.. 299.00 FEET. .***.****.********..*.**.*...".."*."....*".*""..,,.***...***.***.,,***..,,***...* FLCrIl PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE "' 1 >>,>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<""" >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES""""" TOTAL NUMBER OF STREAMS.. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION(MIN.).. 7.a9 RAINFALL INTENSITY(INCHjHR).. 2.75 TOTAL STREAM AREA(ACRES). 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE .. 3.00 ** CONFLUENCE DATA STREAM RUNOFF NUMBER (CFS) :1 a.93 .2 3.00 T' (MIN.) 13.87 7.B9 INTENSITY ( INCH/HOUR) 2.014 2.746 AREA (ACRE) 4.60 1.20 Printed: 12/14/2005 Page 12 of 13 I I I I. I I I I I I I I I I I I I I I C:laes2004\hydrosftlratscx\834D100RES RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR :1: STREAMS. ** PEAK STRllA>O ....... 1 , FLOW RATE TABLE H RUNOFF Tc (CFS) (MIN.) 9.0B 7.89 11.13 13.87 INTENSITY ( INCH/HOUR) 2.746 2.014 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS I PEAK FLOW RATE(CFS) 11.13 Tc{MIN.).. 13.97 TOTAL AREA(ACRES) .. 5.90 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 55.00 1113.00 FEET. ..****"."**********************"....***.....**,,.1t*************.....,*******......,,** FLOW PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE.. 31 ,.,,>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< ,.>:>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSUltE FLOW) <<<<< ..--........."..."......==......===..................==..........--...............=====..====....."---,, ELEVATION DATA: UPSTREAM (FEET) " 18.30 DOWNSTREAM (FEET) 17.50 FLOW LENGTIi(FEETl" 94.00 MANNING'S N _ 0.013 DEPTII OF FLOW IN 21.0 INCH PIPE IS 14.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.).. 6.41 ESTIMATED PIPE DIAMETER(lNCH) .. 21.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) .. 11.13 PIPE TRAVEL TIME(MIN.).. 0.24 Tc(MIN.).. 14.11 LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 1207.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE.. 13 :>:>:>:>:>CLEAR THE MAIN-STREAM MEMORY<<<<< END OF STUDY SUMMARY, ToTAL AREA(ACRES) PEAK FLOW RATE (CFS) 0.01 TC(MIN.) .. 1.00 5.00 END OF RATIONAL METHOD ANALYSIS o 1"bt. Printed: 12/14/2005 Page 13 of 13 I I I I I I I I I I I I I I I I I I I C:\aes2004\hydrosftlratscx\834D1 DDoRES ****.******..................***.........................""..**.................**........**.. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL" WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL {ei Copyright 1982-2004 Advanced Engineering Software (aes) (Rational Tabling version 6.00) Release Date. 01/01/2004 License ID 1264 Analysi6 prepared by: RBF Consulting 14725 Alton Parkway Irvine, California 92618 ...********.."'*******...*** DESCRIPTION OF STUDY *******************...**** .. Temecula Lane I IN 15-100834 .. IOO-Year Developed Condition .. dId 12/14/05 *****************..*****.***..***********...******************************* FILE NAME, 834DIOO.DAT TIME/DATE OF STUDy, 14,08 12/14/2005 USER SPECIFIED KYDROLQGY AND HYDRAULIC MODEL INFORMATION, USER SPECIFIED STORM EVEN'I(YEAR).. 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) .. 18.00 SPECIFIED PERCENT OF GRACIENTS(DECIMAL) TO USE FOR FRICTION SLOPE.. 0.90 2-YEAR, I-HOUR PRECIPITATION(INCH) z 0.570 100-YEAR, I-HOUR PRECIPITATION (INCH) z 1.350 COMPUTED RAINFALL INTENSITY DATA, STORM EVENT.. 100.00 I-HOUR INTENSITY(INCH/HOUR) 1.350 SLOPE OF INTENSITY DURATION CURVE . 0.5500 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE. CONSIDER ALL CONFLUENCE STREAM COMBINATIONS FOR ALL DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL" HALF- CROWN TO STREET-CROSSFi\LL, CURB GUTTER-GEOMETRIES, MANNING WIon! CROSSFALL IN- 1 OUT-/PAR!l> HEIGHT WIon! LIP HIKE FACTOR NO. (FT) (FT) SIDE 1 SIDEI WAY (PT) (IT) (FT) (FT) (n) 1.12.5 2 18.0 0.020/0.050/0.020 0.40 0.020/0.050/0.020 0.50 1.000.03130.1670.0150 1.500.03130.1250.0150 7.5 13.0 GLOBAL STREET FLOW-DEPTH CONSTRAINTS, 1. Relative Flow-Depth.. 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of.eurb) 2. (Depth) " (Velocity) Constraint. 6.0 (FT*FT/S) "SUE PIPE WITH A FLOW CAPACITY GREATER TIiAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * +-------------------------------------.------------------------- ----------+ I Subarea A Single Family Residence - 6" curb street +--------- --------------------------------------------- ---------------+ *****""*"....,,""""""""***..,,*""""*""*""""""*""""""****""*..""""..""""""*""""""*,,,, FLOW PROCESS FROM NODE 1.00 '10 NODE 2.00 IS CODE z 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS",,,,,,,,,,,,, ...............~c.........................c.z........=...................z.....=..c...................................:.... ASSUMED INITIAL SUBAREA WIFORM DEVELOPMENT IS CONDOMINIUM TC .. K"((LENGTII""3)/(ELEVATION CHANGE)] "".2 INITIAL SUBAREA FLOW-LENG'l'H(FEET): 120 00 UPSTREAM ELEVATION(FEET) m 32.50 DOWNSTREAM ELEVATION(FEET). 30.50 ELEVATION DIFFERENCE (FEET) : 2.00 TC.. 0.359"[( 120.00....3)!( 2.00)).....2 .. 5.529 100 YEAR RAINFALL INTENSITY(INCH!HOUR). 5.010 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8455 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) .. 1.61 TOTAL AREA (ACRES) .. 0.38 TOTAL RUNOFF(CFS) . f. _\ i'\ 1.61 .."..""".."..""........".."....""*.."......"..".."..*.*......"*..........,,......................**..................""..""" FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE.. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA",,,,,,,,,,,,, >>>>> (STREET TABLE SECTION" #I- :I USED) <<<"'< ................................................................................................. UPSTREAM ELEVATION(FEET). 30.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) . 223.00 CURB HEIGHT(lNCHES} 6.0 STREET HALFWIDnl(FEET) . 18.00 29.50 p..-1-- DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL{DECIMAL). 0.020 OUTSIDE STREET CROSSFALL(OECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL(DECIMALl 0.020 Manning'S FRIc."I'ION FACTOR for Street flow Section(eurb-to-eurb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 13.00 ""TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTII(FEET) . 0.39 HALFSTREET FLOOD WIDTH (FEET) . 7 72 AVERAGE FLOW VELOCITY(FEET/SEC.). 1.70 3.60 1/fJ Printed: 12/14/2005 Page 1 of 13 I I I C:\aes2004\hydrosft\ralscx\834D1 OO.RES I I I I I I I I I I I I I I I I I PRODUCT OF DEPTH&VELOCITI(Fr*FT/SEC.)" 0.66 STREET FLOW TRAVEL TIME (MIN.) " 2.18 Tc(MIN.).. 7.71 100 YEAR RAINFALL INTENSITY(INCH!HOUR) " 4.173 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT" . 7726 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES).. 1.23 SUBAREA RUNOFF(CFS) 3.97 TOTAL AREA(ACRES) .. 1.61 PEAK FLOW RATE(CFS) 5.58 END"OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.44 HALFSTREET FLOOD WIDTH (FEET) .. 10.41 FLOW VELOCITY(FEET/SEC.).. 1.81 DEPTH*VELOCITY(FT*Fr/SEC.)" 0.79 LONGEST FLQWPATH FROM NODE 1.00 TO NODE 3.00" 343.00 FEET. ......**......."*"".".***..."****........**."*............"..,,.....................***. FLOlf PROCESS FROM NODE 4.00 IS CODE.. 62 3.00 TO NODE :>:>>>:>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA",<<<< >>>>> (STREET TABLE SECTION # 2 USED) c<<<'" UPSTREAM ELEVATION (FEET) " 29 50 DOWNSTREAM ELEVATlON(FEET) STREET LENGTH(FEET).. 650.0Cl CURB HEIGHT(INCHES) 6.11 STREET RALFWIDTH (FEET) . IB .llll 26.40 DISTANCE FROM CROWN TO CROSSFALL INSIDE; STREET CROSSFALL (DECIMAL) OUTSIDE STREET CROSSFALL (DECIMAL) GRADEBREAK (FEET) 0.020 0.050 13.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning'S FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning'S FRICTION FACTOR for Back~of~Wa.lk Flow Section 0.0150 UTRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 9.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.51 HALFSTREET FLOOD WIDTH (FEE:'I').. 13.98 AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.05 PRODUCT OF DEP'rn&VELOCITY(n"n/SEC.). 1.04 STREET FLOW TRAVEL TIME (MIN.).. 5 .29 Tc (MIN.) 13.00 10~ YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.131 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .8494 SOIL CLASSIFICATION IS .C. SUBAREA AREA(ACRES).. 3.00 SUBAREA RUNOFF(CFS) 7.9B TOTAL AREA(ACRES) . 4.61 PEAK FLOW RATE(CFS} 13 56 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.55 HALFSTREET FLOOD WIDTH (FEET) 18.75 FLO",; VELOCITY(FEET/SEC.) .. 2.17 DEPTH"VELQCITY(FT"FT/SEC.}.. 1.20 LONGEST FLOW PATH FROM NODE 1.00 TO NODE 4.00.. 993.00 FEET. ....................................................................................................................................................... FLOW PROCESS FROM NODE 4.00 TO NODE 4.50 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA, UPSTREAM(FEET).. 23.40 DOWNSTREAM (FEET) 23.20 FLO',; LENGTH(FEET).. 20.00 MANNING'S N.. 0.023 DEP'rn OF FLOW IN 21.0 INCH PIPE IS 15.6 INCHES PIPE-FLOW VELOCITY (FEET/SEe.). 7.07 ESTIMATED PIPE DIAMETER(IRCH} .. 21.00 NUMEER OF PIPES PIPE-FLOW(CFS).. 13.56 PIPE TRAVEL TIME(MIN.).. 0.05 Tc(MIN.). 13.04 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.50.. 1013.00 FEET. ...***...................**....**..........*..............*................*......................................................... FLOW PROCESS FROM NODE 4.50 TO NODE 4.50 IS CODE .. >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ......................................................................:..............................................:..........=... TOTAL NUMBER OF STREAMS.. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE, TIMB OF CONCENTRATION(MIN.) .. 13.04 RAINFALL INTENSITY {INCH./HR}. 3 .13 TOTAL STREAM AREA(.ACRES) ~ 4.61 PEAK FLOW RATE(CFS) AT CONFLUENCE. 13.56 .......**....***.....*..**.................*.....................****................*......................**............ FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE... 21 >>>>>RATIONAL METHOD INITIJIL SUBAREA ANALYSIS<<<<< ..................................................................................................~....*............................... ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC.. K*{(LENG'I'H""3)/(ELEVATION OiANGE)J.....2 INITIAL SUBAREA FLOW~LENG'I'H(FEET).. 415.00 UPSTREAM ELEVATION (FEET) .. 32.50 DOWNSTRE1\M ELEVATION (FEET) .. 29.20 ELEVATION DIFFERENCE(FEET) .. 3.30 TC.. 0.359.[( 415.00**3)/( 3.30)]**.2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) .. CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT SOIL CLASSIFICATION IS "E" SUBAREA. RUNOFF(CFS} . TOTAL AREA. (ACRES) . 10.531 3.515 . .8277 5.70 1.96 TOTAL RUNOFF(CFS} .. 5.70 ......*..............................*********........................****..*....................*......*...*....*.........*. FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE.. 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< .....................................................................................................=..~~..~..~.................. 100 YEAR RAINFALL INTENSITY(INCR/aOUR} .. 3.515 t>,-'? !\:~ 'lJP Printed: 12/14/2005 Page 2 of 13 I I C:\aes2004\hydrosftlratscx\834D1 00. RES I I I I I I I I I I I I I I I I I CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .7594 SOIL CLASSIFICATION IS nA" SUBAREA AREA(ACRES) 1.07 SUBAREA RUNOFF (CFS) TOTAL AREA (ACRES) .. 3.03 TOTAL RUNOFF(CFS) = TC(MIN.) . 10.53 :2.86 8.56 ...."....................................."...........................,,-.......-.......... FLOW PROCESS FROM NODE 4.00 IS CODE.. 62 6.00 TO NODE >,.,.,.,.COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<",,,,,,, >>>>> (STREET TABLE SECTION #I 2 USED) <<<<< UPSTREAM ELEVATION(FEET).. 29.20 DOWNSTREAM ELEVATION (FEET) STREET LENGTH(FEET).. 543.00 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDnI(FEET) .. 19.00 26.40 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL (DECIMAL).. 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) 0.050 13.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning' B FRICTION FAcroR for Streetflow Section (curb-to-curbl 0.0150 Manning's FRICTION FAcroR for Back-of-Walk. Plow Section 0.0150 *.*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 11.62 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTIi(FEET).. 0.53 HALFSTREET FLOOD WIDTH (FEET) .. 16.11 AVERAGE FLOW VELOCITI(FEET/SEC.).. 2.19 PRODUCT OF DEPTH&VELOCITI(FT*FT/SEC.).. 1.15 STREET FLOW TRAVEL TIME(MIN.) c 4.18 TC(MIN.) 14.71 100 YEAR RAINFALL INTENSITY(INCH/KOUR) .. 2.925 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .7450 SOIL CLASSIFICATION IS "Aft SUBAREA AREA (ACRES) .. 2.80 SUBAREA RUNOFF(CFSl 6.10 TOTAL AREA(ACRES) .. 5.83 PEAK FLOW RATE(CFS) 14.66 END OF SUBAREA STREET PLOW HYDRAULICS: DEP'l'H(FEET) . 0.56 RALPSTREET FLOOD WIDTR(FEET) .. 19.36 FLOW VELOCITY(FEET/SEC.).. 2.26 DEPTH*VELOCITY(FT*FT/SEC.) 1.27 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 4.00.. 963.00 FEET. *******.*....................*.....*.......****..*...................................* FLOW PROCESS FROM NODE 4.50 IS CODE.. 31 4.00 TO NODE >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEETJ _ 23.40 DOWNSl'REAM(FEET) 23.20 FLOW LENGI'H{FEET}.. 20.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 21. 0 INCH PIPE 13 16.8 lNCKES PIPE-PLOW VELOCITY (FEET/SEC. ).. 1.12 ESTIMATED PIPE DIAMETER (1NCH) .. 21.00 NUMBER OF PIPES PIPE-FLOW(CFS). 14.66 PIPE TRAVEL TIME(MIN.l.. 0.05 Tc(MIN.).. 14.76 LONGEST FLOWPATH FROM NODE 00 TO NODE 4.50 983.00 FEET. ...................................****.***.******.*******..*...****.*...****........*.**.***. FLOW PROCESS FROM NODE 4.50 TO NODE 4.50 IS CODE. 1 >>>>>DESIGWl.TE INDEPENDENT STREAM FOR CONFLUENCE<c<c< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESc<c<< TOTAL NUMBER OF STREAMS. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONC'ENTRATION(MIN. 1 "' 14.76 RAINFALL INTENSITY (INCK/HRl.. 2.92 TOTAL STREAM AREA(ACRES} .. 5.83 PEAK FLOW RATE (CFS) AT CONFLUENCE", 14.66 * * CONFLUENCE DATA STREAM RUNOFF NUMBER (eFS) 1 13.56 2 14.66 INTENSITY ( INCH/HOUR) 3.125 2.919 AREA (ACRE) 4.61 5.83 TO (MIN.) 13 .04 14.76 RAINFALL INTENSITY AND TIME OP CONCEm'RATION RATIO CONFLUENCE FORMUL1l. USED FOR 2 STREAMS. ** -PEAK STREAM NUMBER 1 , FLOW RATE TABLE ** RUNOFP Tc (CFS) (MIN.) 26.51 13.04 27.32 14.76 INTENSITY ( INCH/HOUR) 3.125 2.919 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS, PEAK PLOW RATE(CFS) 27.32: TC(MIN.). 1476 TOTAL AREA (ACRES) .. 10.44 LONGEST FLOWPATH PROM NODE 1.00 TO NODE 4.50 1013.00 FEET. ...*************....****************....**********......******"",,******..******* FLOW PROCESS FROM NODE 4.00 TO NODE 8.00 15 CODE. 31 >:>>>,.CQMPUTE PIPE-PLOW TRAVEL TIME THRU SUBAREA",<ccc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) cc<c< ......~.....=.............-...._.._.._."'.....=............__.._.._.==.===========..........--........... ELEVATION DATA: UPSTREAM (FEET) .. 23.20 DQWNSTREAM(FEET} 20.40 FLOW LENGTH (FEET) .. 325.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.5 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) 8.09 ESTIMATED PIPE DIAMETER(INCH).. 30.00 NUMBER OF PIPES.. 1 A-5 jAJ.9 t\ Printed: 12/14/2005 Page 3 of 13 I il C:\aes2004\hydrosftlratscx\834D100.RES I I I I I I I I I I I I I I I I I I.>IPE-FLOW(CFS) '" 27.32 PIPE TRAVEL TIME{MIN.).. 0.67 Tc(MIN.).. 15.43 LONGEST FLOWPATH FROM NODE 1.00 TO NODE B . 00 1338.00 FEET. ***."'..."*******"..................."..."**..,,,,..*******************.**....".....****** FLO\f PROCESS FROM NODE 8.50 IS CODE .. 8.50 TO NODE ,.,.,.,."OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE"""",,, TOTAL NUMBER OF STREAMS.. :2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE, TIME OF CONCENTRATlON(MIN.l '" 15.-13 RAINFALL IN'I'ENSITY(INCH/HR) '" 2.35 TOTAL STREAM AREA(ACRES) '" 10.4,1 PEA.l{ FLOW RATE(CFS} AT CONFLUENCE.. 27.32 ******"0-"*",,*************..*******,,..*************,,0-,,0-,,...****.........*********** FLOW PROCESS FROM NODE 4.00 TO NODE 21 7.00 IS CODE ,.,.,.,.>RATIONJIL METHOD INITIAL SUBAREA ANALYSIS".:<<.: ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC '" K*[(LENGTHuJ)!(ELEVATION CHANGE)]u.2 INITIAL SUBAREA FLOW-LENGTH{FEET) ~ 256.00 UPSTREAM ELEVATION(FEET) .. 27.40 DOWNSTREAM ELEVATION{FEET) .. 24.90 ELEVATION DIFFERENCE(FEIIT) .. 2.50 TC .. 0.359.[( 256.00U3)/( 2.50)]u.2 8.331 100 YEAR RAINFALL INTENSITY{INCH/HOUR).. .999 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .8590 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) .. 3.09 TOTAL" AREA (ACRES) .. 0.90 TOTAL RUNOFF(CFS} .. 3.09 ............................................................................. FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE.. 81 >>>>>ADDITION OF st.rBJ\REA TO MAINLINE PEAK FLOW""""" 100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.999 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .6590 SOIL CLASSIFICATION IS .C. SUBAREA AREA(ACRES) 1.76 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) .. 2.66 TOTAL RUNOFF (CFS) .. TC(MIN.).. B.33 6.05 9.14 ....****.*****.......*.......*******...*******.*.*....**...**....***........ FLOW PROCESS FROM NODE 7.00 TO NODE B.OO IS CODE.. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME ntRU SUBAREA""",,,,, >>>>>(STREET TABLE SECTION:If 2 USED) """"" UPSTREAM ELEVATION (FEET) .. 25.30 DOWNSTREAM ELEVATION(FEET) STREET LENQTH(FEET).. 122.00 CURB HEIGHT(INCHES) 6.0 STREET HALFWIDTH (FEET) a 18.00 24.40 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET) INS.IDE STREET CROSSFALL(DECIMAL) a 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 13.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 UTRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 9.98 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPT1l(FEET}.. 0.4B HALFSTREET FLOOD WIDTH (FEET).. 12 .54 AVERAGE FLOW VELOCITY(FEET/SEC.). 2.46 PRODUCT OF DEPT1l&VELOCITY(FT.FT/SEC.) a 1.18 STREET FLOW TRAVEL TIME(MIN.).. 0.83 Tc(MIN.} 9.U 100 YEAR RAINFALL INTENSITY (INCH/HOUR) . 3.796 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT.. .8571 SOIL CLASSIFICATION IS "C. SUBAREA AREA(ACRES).. 0.52 SUBAREA RUHOFFlCFS) .69 TOTAL AREA(ACRES) .. 3.18 PEAK FLOW RATE(CFS} 10.83 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.49 HALFSTREET FLOOD WIDTH (FEET) .. D.05 FLOW VELOCITY(FEET/SEC.)" 2.50 DEPTII.VELOCITY(FT*FT/SEC.).. 1.23 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 8.00.. 37B.00 FEET. ....**...*..........*.*...............**.........................*.............. FLOW PROCESS FROM NODE 6.00 TO NODE 6.50 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THaU SUBAREA""""" >>>>>USING COMPtrI'ER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ,,"",," ELEVATION DATA, UPSTREAM (FEET) .. 20.60 DOWNSTREAM (FEET) 20.40 PLOW LENGTH(FEET).. 20.00 MANNING'S N.. 0.013 DEPTH OF PLOW IN 21.0 INCH PIPE IS 13.2 INCHES PIPE-PLOW VELOCITY (FEET/SEC.).. 6.80 ESTIMATED PIPE DIAMETER (INCH) .. 21.00 NUMBER OF PIPES 1 PIPE-FLQW(CFS) _ 10.83 PIPE '!RAVEL TIME{MIN.) _ 0.05 Tc{HIN.).. 9.21 LONGEST F!.OWPATH FROM NODE 4.00 TO NODE 6.50.. 398.00 FEET. .....*...****.*......................*.**.....**.........................***...*... FLOW PROCESS FROM NODE 8.50 TO NODE B.SO IS CODE = 1 ~/\ I\./Q 1\,0) ~ Printed: 12/14/2005 Page 4 of 13 I I ,.,.,.,.>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE",,,,,..,, >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<"..<.. C:\aes2004\hydrosftlratscx\834D1000RES I I I I I I I I I I I I I I I I I TOTAL NUMBER OF STREAMS '" 2: CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2. ARE, TIME OF CONCENTRATION(MIN.J.. 9.21 RAINFALL INTENSITY(INCH/HR}.. 3.78 TOTAL S'I'REAM AREA (ACRES) .. 3.18 PEAK FLOW RATE(CFS) AT CON&'LUENCE D 10.83 H CONFLUENCE DATA STREAM RUNOFF NUMBER (CFSl 1 26.51 1 27.32 2 10.83 INTENSITY ( INCH/HOUR) 3.037 2.849 3.785 AREA IACRE) 10.44 10.44 3.19 To (MIN.) 13.74 15.43 9.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 28.60 9.21 .2 35.20 13.74 .3 35.47 15.43 INTENSITY ( INCH/HOUR) 3.785 3.037 2.849 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEA,.'2;; FLOW RATE(CFS) 35.47 Tc(MIN.).. 1543 TOTAL AREA(ACRES} .. 13 .62 LONGEST FLOWPATI! FROM NODE 1 00 TO NODE 8.50 1338.00 FEET. *************************************************************.........**.... FLO'.4 PROCESS FROM NODE ILSO TO NODE 9.00 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA""""" >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) """"" .___"'"'"'".."'""..................."".".."'c""""""""""........".....""""""""""""""" ELE'VATION DATA: UPSTREAM(FEET}. 20.40 DOWNSTRFJ\M(FEET) 20.00 FLCrIl LENGTH(FEET).. 100.00 MANNING'S N" 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.).. 6.39 ESTIMATED PIPE DIAMETER(INCH) _ 36.00 NUMBER OF PIPES PIPE-FLOW(CFS) . 35.47 PIPE TRAVEL TIME(MIN.). 0.26 Tc(MIN.)" 15.69 LONGEST FLOWPATB FROM NODE 1.00 TO NODE 9.00 1438.00 FEET. ........**.*...*.......*.*..........*......*.........*...........**......... FLOW PROCESS FROM NODE 9.00 IS CODE 13 9.00 TO NODE >>>>>CLEAR THE MAIN-STREAM MEMORY""""" """"""""."...---....."'''''''''''".".."...---------.----..''"'''''''''""""""""....._----_.".". +------------------- --------------------------,---------------------------+ I Subarea B Multi-family units +-------------------------- --------------------------- -------------------+ **.......*.....***...**********..****..****************"''''*'''***.********...** FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE", 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS""""" ....-...""""."""....------..----..."""""..""""""".--.--....".""""""""""""""""" ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC . K*[(LENGTH**3)/(ELE'VATION CHANGE)]".2 INITIAL SUBAREA FLOW-LENGTH (FEET) _ 325.00 UPSTREAM ELEVATION(FEET) _ 30.30 DOWNSTREAM ELE'VATION(FEET) " 29.50 ELEVATION DIFFERENCE(FEET) .. 0.80 TC _ 0.359*[( 325.00**3}/( 0.80)]**.2.. 12.074 100 YEAR RAINFALL INTENSITY(INCH!HOUR} "' 3.261 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8511 SOIL CLASSIFICATION IS .C. SUB.AREA RUNOFF(CFS) " 3.89 TOTAL AREA(ACRES) " 1.40 TOTAL RUNOFF(CFS) _ 3.89 .*...*.**.******...*****.***......**********"'''''''*..*..************************ FLOW PROCESS FROM NODE 32.00 IS CODE " 31. 00 TO NODE >>>>>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA""""" >>>>> (STREET TABLE SECTION # 1 USED) ""co::" ""~.~8~_~__K........._.___.____~___...a."...""""""..._._______.K.......""~.""",,. UPSTREAM ELEVATION(FEBT) K 29.50 DOWNSTREAM ELEVATIQN(FEET) STREET LENGTH (FEET) . 148.00 CURB HEIGHT(INCHES) 4.8 STREET HALFWIDTH(FEET) . 12.50 28.20 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET) 7.50 INSIDE STREET CROSSFALL(DECIMAL). 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) 0.050 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) -. 0.44 HALFSTREET FLOOD WIDTH (FEET) . 9.31 AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.29 4.70 B -\ ~ .1-- ~ Printed: 12/14/2005 Page 5 of 13 I I C:\aes2004\hydrosftlratscx\834D1 00 oRES I I I I I I I I I I I I I I I I I PRODUcr OF DEPTH&VELOCITY(FT*FT!SEC.}.. 1.01 STREET FLOW TRAVEL TIME (MIN.).. 1.08 Tc (MIN.) 13 .15 100 YEAR RAINFALL INTENSITY(INCHjHOUR) _ 3.111 APARTMENT DEVlUoOPMENT RUNOFF COEFFICIENT .. .8709 SOIL CLASSIFICATION IS "CO SUBAREA AREA(ACRES)", 0.60 SUBAREA RUNOFF(CPS} 1.63 TOTAL AREA(ACRES} .. 2.00 PEAK FLOW RATE(CFS) 5.51 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) .. 0.46 HALFSTREET FLOOO WIDTH (FEET) .. 11.06 FLO\'l VELOCITY(FEET/SEC.).. :2.28 DEPTH*nwCITY(F1'o-FT/SEC.) 1.05 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00.. 473.00 FEET. ***".........*........**...****....**...."...**..**........,,,",...................*..... FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE _ 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA""""" >>>>> (STREET TABLE SECTION # 1 USED}<.:<<" UPSTREAM ELEVATIQN(FEET}.. 28.20 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) .. 445.00 CURB HEIGHT(INCHES) 4.8 STREET HALFWIDTH(FEET) a 12.50 25.80 DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL (DECIMAL) OUTSIDE STREET CROSSPALL (DECIMAL) GRADEBREAX (PEET) 0.020 0.050 7.50 SPECIPIED NUMBER OP HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflo.,., Section(curb-to-curb) Hamling's FRIC"rION FACTOR for Back-of-Walk PIa.,., Section 0.0150 0.0150 .:"TRAVEL TIME COMPtn'ED USING ESTIMATED FLOW(CFS) 8.43 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH(PEET).. 0.53 HALFSTREET FLOOD WIDTH(FEET).. 18.10 AVERAGE FLOW VELOCIT'/(FEET/SEC.).. 1.89 PRODUCT OF DEPTHr.VELOCITY(FT.FT/SEC.)" 1.00 STREET FLOW TRAVEL TIME(MIN.).. 3.93 Tc(MIN.) 17.08 100 YEAR RAINFALL INTENSITY(INCH/HOUR) .. 2.695 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8673 SOIL CLASSIPICATION IS "C" SUBAREA AREA(ACRES).. 2.50 SUBAREA RUNOFF(CFS) 5.84 TOTAL AREA(ACRES) .. 4.50 PEAK FLOW RATE(CFS) 11.35 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.56 HALFSTREET FLOOD WIDTH (FEET) "' 20.49 FLOW VELOCITY(FEET/SEC.).. 2.02 DEPTH.VELOCITY(Fr.FT/SEC.) 1.13 .NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L.. 445.0 F7 WITH ELEVATION-DROP.. 2.4 FT, IS 7.7 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACIT'/ AT NODE 33.00 LONGEST FLOWPA'I'H FROM NODE 30.00 TO NODE 33.00 a 918.00 FEET. .................................................***........................*..... FLOW PROCESS FROM NODE 33.00 TO NODE 33.00 IS CODE" 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW,,<<<< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 2.695 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8673 SOl[, CLASSIFICATION IS "C. SUBAAEA AREA (ACRES) 1.20 SUBAREA RUNOFF(CFS) 2.80 TOTAL AREA(ACRES) .. 5.70 TOTAL RUNOFF(CFS) c 14.16 TC(MIN.) .. 17.08 *....*....*...........................*.*..*.....**.......*.*............... FLQi'I PROCESS FROM NODE 34.00 IS CODE.. 62 33.00 'TO NODE >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< UPSTREAM ELEVATION(FEET).. 25.80 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET).. 143.00 CURB HEIGHT(INCHES) 4.8 STREET HALFWIDTH(FEET) .. 12.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET) 7.50 INSIDE STREET CROSSFALL (DECIMAL)" 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 24.60 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRIC"rION FACTOR for Streetflow Sectlon(curb-to-curb) Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 0.0150 ..TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 14 .61 ..*STREET FLOWING FULL*.. ' STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET PLOW DEPTH(FEET).. 0.56 HALFSTREET FLOOD WIDTH (FEET) .. 20.68 AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.53 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.).. 1.43 STREET FLOW TRAVEL TIME(MIN.).. 0.94 Tc(MIN.) 18.02 100 YEAR RAINFALL INTENSIT'/(INCH/HOUR) .. 2.616 APARTMENT DEVELOPMENT RUNOFF COEPFICIENT .. .8665 SOIL ClASSIFICATION IS .C. SUBAREA AREA(ACRES}.. 0.40 SUBAREA RUNOFF(CFS) 0.91 TOTAL AREA(ACRES) .. 6.10 PEAK FLOW RATE(CFS) 15.06 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) '"' 0.57 HALFSTREET FLOOD WIDTH (FEET) .. 20.80 FLOW VELOCIT'/(FEET/SEC.)"' :2.56 DEP'I'H.VELOCITY(FT.FT/SEC.) 1.45 LONGEST FLQWPATH FROM NODE 30.00 TO NODE 34.00.. 1061.00 FEET. 6-) \3A lJ-~ ?;P Printed: 12/14/2005 Page 6 of 13 I I C:\aes2004\hydrosftlratscx\834D100.RES I I I I I I I I I I I I I I I I I ....*........****............****..*****.......**...****....................................". FLOW PROCESS FROM NODE 34.00 TO NODE 38.00 IS CODE a 31 >>>>>COMPUTE PIPE.FLOW TRAVEL TIME THRU SUBAREA<c<<< >>>,,>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<:<< -------------------------..===-=---..------.-------------...------...--------- ELEVATION DATA, UPSTREAM (FEET) " 21.60 DOWNSTREAM(FEET) 18.60 FLOW LBNGTH(FEET).. 505.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.).. 5.97 ESTIMATED PIPE DIAMETER(INCH).. 24.00 NUMBER OF PIPES 1 PIPE-FLQW(CPS).. 15.06 PIPE TRAVEL TIHE(MIN.).. 1.41 Tc(MIN.).. 19.43 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 38.00.. 1566.00 FEET. .....................**......***.................*................................................................... FLOW PROCESS FROM NODE 38.50 TO NODE 38.50 IS CODE. >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ..cc==c===.~...~~__......_____._.___=.________..==._=...._c====.____.___.___ TOTAL NUMBER OF STREAMS ~ 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE, TIME OF CONCENTRATION(MIN.) _ 19.~3 RAInFALL INTENSITY(INCH/HR) _ 2.51 TOTAL STREAM AREA(ACRES) _ 6.10 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 15.06 *****.*******************..*..********-**-***********..*******.******....******** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE.. 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -----.--...--------------.----.---..--===.-----...---------------.-----..... ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARThlENT TC.. K*[(LENG'nI"*3)/(ELEVATION CHANGE))"'.2 INITIAL SUBAREA FLOW-LENGTH(FEET) - 590.00 UPSTREAM ELEVATION{FEET) . 31.00 DOWNSTREAM ELEVATION(FEET) _ 24.60 ELEVATION DIFFERENCE(FEET) .. 6.40 TC = 0.323* I( 580_00"'3}/( 6.40)]"'.2 10 130 100 YEAR RAINFALL INTENSITY (INCH/HOUR) _ 3.591 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT" .9743 SOIL CLASSIFICATION IS .C" SUBAREA RUNOFF(CFS) _ 6.28 TOTAL AREA(ACRES) .. 2.00 TOTAL RUNOFF(CFS) 6.28 .......*....*..**...................................**....*...................*...................................... FLO'/f PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE. 62 >>>>>COMPUTE STREET FLOW TRJl.VEL TIME THRU SUBAREA<<<<< >>>>> (STREET TABLE SECTION" 1 USED) <<<<< _..=..====_===___..._____=________._~_....._."c_==_______._..____===_____.___ UPSTREAM ELEVATION(FEET}. 24 60 DOWNSTREAM ELEVATION (FEET) STREET LENG'I'H(FEET) _ ~70.00 CURB HEIGHT (INCHES) 4.8 STREET HALFWIDTH(FEET) ~ 12.50 DISTANCE FROM CROWN TO CROSSF.ALL GRADEBREAK(FEET) 7.50 INSIDE STREET CROSSF.ALL(DECIMAL) _ 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 21.60 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRICTION FACTOR for St:reet:t1ow Section(curb-t:o-curb) 0.0150 Manning's FRICTION FACTOR for Back-at-Walk Flow Section 0.0150 ..TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 8.24 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) _ 0.52 H,M,FSTREET FLOOD WIDTH (FEET) .. 16.92 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03 PRODUCT OF DEPTII;.VELOCITY(FT"FT/SEC.) _ :1..05 STREET FLOW TRAVEL TIME(MIN.) _ 3.85 Tc(MIN.) :1.3.98 100 YEAR RAINFALL INTENSITI(INCH/HOUR) _ 3.008 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT _ .870:1. SOIL CLASSIFICATION IS "CO SUBAREA AREA(ACRES) _ 1.50 SUBAREA RUNOFF(CFS) 3.93 TOTAL AREA (ACRES) .. 3_50 PEAK FLOW RATE(CFS) :1.0.20 END OF SUBAREA STREET FLOW HYDRAULICS. DEPTH (FEET) _ 0.54 HALFSTREET FLOOD WIDTH (FEET) .. 19.27 FLOW VELOCITY(FEET/SEC.) _ 2.08 DEPTH*VELQCITY(FT*FT/SEC.) 1.13 .NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L _ 470.0 FT WITH ELEVATION-DROP" 3.0 FT, IS 4.6 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 37.00 LONGEST FLOWPATH FROM NODE 35.00 TO NODE 37.00. 1050.00 FEET. .................................................................................*.......................*.............. FLOW PROCESS FROM NODE 37.00 'IO NODE 38.00 IS CODE _ 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ._-_.~.----_..._.._...__.._~-~_._.._.._---=_.._~-_.---_._,,_.._-----~---_..__._---- 100 YEAR RAINF.ALL INTENSITY (INCH/HOUR) _ 3.008 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .870:1. SOIL CLASSIFICATION IS .C" SUBAREA AREA(ACRES) 2.00 SUBAREA RUNOFF(CFS) 5.23 TOTAL AREA(ACRES) _ 5.50 TOTAL RUNOFF(CFS). 15.44 TC(MIN.) _ J.3.98 .......................................*.....................*..................................................*.........*...*. FLOW PROCESS FROM NODE 38.00 'IO NODE 38.50 IS CODE. 31 g-w b.1 \j-'6 '7" Printed: 12/14/2005 Page 7 of 13 I I >>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<",,,,,,,<< >>>>>USING COMPUTER-ESTIMATED PtPESIZE (NON-PRESSURE FLOW) c<<:<< C:\aes2004\hydrosft\ratscx\834D1 000 RES I I I I I I I I I I I I I I I I I ELEVATION DATA. UPSTREAM (FEET) .. 18.70 DOWNSTREAM (FEET) 18.60 FLOW LENGTB(FEET).. 20.00 MANNING'S N.. 0.013 DEP'nI OF FLOW IN 27.0 INCH PIPE IS 17.3 INCHES PIPE-FLOW VELQCITY(FEET/SEC.l.. 5.73 ESTIMATED PIPE DIAMETER(INOl).. 2".00 NUMBER OF PIPES 1 PIPE-FLOW{CFS).. 15.44 PIPE TRAVEL TIME(MIN.}.. 0.06 Te(HIN.).. 14.04 LONGEST FLQWPATB PROM NODE 35.00 TO NODE 38.50 1070.00 FEET. *******......***...*....................,,*****...**.***.........*.."....,...,..."..""... FLOU PROCESS FROM NODE 38.50 TO NODE 38.50 IS CODE .. >>>>>OESIGNATE INDEPENDENT STRE1\M FOR CONFLUENCE""",,,,<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES",,,,,,,,, TOTAL NUMBER OF STREAMS.. :2 CON?'LUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.).. 14.04 RAINFALL INTENSITY(INCH/HR) c 3.00 TOTAL STREAM AREA(ACRES).. 5.50 PEA.., FLOW RATE(CFS) AT CONFLUENCE.. 15.44 *. CONFLUENCE DATA STREAM RUNOFF NUMSER (CFS) .1 15.06 2 15.44 INTENSITY ( INCH/HOUR) 2.510 3.001 AREA (ACRE) 6.10 5.50 To (MIN.) 19.43 14.04 RAINFALL INTENSITY AND TIME: OF CONCENTRATION RATIO CONFLUENCE FORMUlA USED FOR 2 STRlYIMS. ** PEAK STREAM NUMBER .l , FLOW RATE TABLE ** RUNOFF Tc: (CFS) (MIN.) 26.32 14.04 27.9B 19.43 INTENSITY (INCH/HOUR) 3.001 2.510 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS, PEAK FLOW RATE(CFS) 27.9B Te(MIN.).. 19.43 TOTAL AREA(ACRES).. 11.60 LONGEST FLQWPAnI FROM NODE 30.00 TO NODE 3B.50 1566.00 FEET. ..***.............*..*......*..........*..**...........................................*.........**.......**...**............................ FLOW PROCESS FROM NODE 39.50 IS CODE.. 31 38.50 TO NODE ,.,.,.,.,.COMPU'!'E PIPE-FLOW TRAVEL TIME THRU SUBAREA<,,<<< ,.,.,.,.,.USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA, UPSTREAM(FEET).. 18.60 DOWNSTREAM (FEE'r) 17.60 FLOW LENGTH(FEET).. 160.00 MANNING'S N.. 0.013 DEPTI! OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.).. 7.10 ESTIMATED PIPE DIAMETER(INCH).. 30.00 NUMBER OF PIPES PIPE-FLOW (CPS).. 27.98 PIPE TRAVEL TIME(MIN.).. 0.3B TC:(MIN.).. 19.81 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 39.50 1726.00 FEET. ............................................**..*............................................**......******....**.......... FLOW PROCESS FROM NODE 39.50 IS CODE .. 39.50 TO NODE ,.,.,.,.,.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS.. .3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN .).. 19.81 RAINFALL Im'ENSITY(INCH/HR).. 2.48 TO'J'M, STREAM AREA (ACRES) c 11.60 PEAK FLOW RATE (CFS) AT CONFLUENCE.. 27.98 ..****....**....***..*...........................................*..*..****....................................***......**..*. FLOW PROCESS FROM NODE 41.00 IS CODE.. 21 40.00 TO NODE ,.,.,.,.,.RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC.. X" [(LENGTII""3)/(ELEVATION CHANGE) 1"*.2 INITIAL SUBAREA P'LOW-LENG'I'H(FEET}.. 301.00 UPSTREAM ELEVATION(FEET) .. 26.70 DOWNSTREAM ELEVATION(FEET).. 24.30 ELEVATION DIFFERENCE(FEET) .. 2.40 TC.. 0.323*[( 301.00""3)/( 2.40)}"".2 100 YEAR RAINFALL INTENSITY(INCH/HOUR) .. APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. SOIL CI.ASSIFICATION IS "S. SUBAREA RUNOFF(CFS) .. TOTAL AREA (ACRES) .. 8.316 4.003 .8627 4.14 1.20 TOTAL RUNOFF (CFS) 4.14 ....*............*...*********.............................*..........*..**********......*................................. FLOW PROCESS FROM NODE 42.00 IS CODE.. 62 41.00 TO NODE >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA..<<<< >,.,.,.,.(STREET TABLE SECTION # 1 USED)<<<.... UPSTREAM ELEVATION[FEET).. 24.30 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) .. 473.00 CURB HEIGHT(INCHES) 4.8 STREET HALFWIDTH(FEET) .. 12.50 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 7.50 21.50 \3-0) 'O-\D ~ Printed: 12/14/2005 Page 8 of 13 I I INSIDE STREET CROSSFALL(DECIMAL).. 0.020 OUTSIDE STREET CROSSFALL(DEClMAL) 0.050 C:\aes2004\hydrosftlratscx\834D1000RES I I I I I I I I I I I I I I I I SPECIFIED NUMBER OF HALFSTREE'I'S CARRYING RUNOFF 2 STREET PARXWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACTOR for StreetflO'ol Section(curb-to curb}.. 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 ""*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 7.32 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.51 HALFSTREET FLOOD WIDTH (FEET) .. 16.10 AVERAGE FLOW VELOCITY(PEET/SEC.).. 1.93 PRODUCT OF DEPTII&VELOCITY(F'I'*F'I'jSEC.l" 0.99 STREET FLOW TRAVEL TIME(MIN.).. ~.07 TC(MIN.) 12.39 100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.215 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .B55B SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) .. 2.30 SUBAREA RUNOFF(CPS) 6.33 TOTAL AREA(ACRES) .. 3.50 PEAK FLOW RATE(CFS) 10.47 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) .. 0.55 HALFSTREET FLOOD WIDTH(FEET).. 19.94 FLOW VELOCITY(FEET!SEC.}.. 2.02 DEPTH.VELOCITY(FT.FT!SEC.) 1.11 "NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L.. 473.0 FT WITH ELEVATION~DROP.. 2.8 FT, IS .9 CFS, WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 42.00 LONGEST FLOWPATH FROM NODE 40.00 TO NODE 42.00.. 774.00 FEET. ........................................................................................................................................ FLO'" PROCESS FROM NODE -42.00 TO NODE 39.50 IS CODE"' 31 B-ID \)-, \ .'l_I"J...- o ?fr I >>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA....",,,,,,, >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) "''''''''''''' ELEVATION DATA, UPSTREAM (FEET) .. 18.50 DOWNSTREAM (FEET) 17.10 FLQ'" LENGTH(FEET).. 140.00 MANNING'S N.. 0.013 DEPTII OF FLOW IN 21. 0 INCH PIPE IS 12.9 INCHES PIPE-FLOW VELOCITY(FEET!SEC.).. 6.75 ESTIMATED PIPE DIAMETER(INCH).. 21.00 NUMBER OF PIPES PIPE-FLOW(CFS) .. 10.47 PIPE TRAVEL TIME(MIN.)", 0.35 Tc(MIN.).. 12.7-4 LONGEST FLOWPATH FROM NODE 40 00 TO NODE 39.50 91-4.00 FEET. .................*****....*****..*********..*.*.................................................*......*. FLOW PROCESS FROM NODE 39.50 IS CODE = 1 39.50 TO NODE >>>>>DESIGNA.TE INDEPENDENT STREAM FOR CONFLUENCE....",.... TOTAL NUMBER OF STREAMS.. 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION(MIN.).. 12.7-4 RAINFALL INTENSITY (INCH!HR).. 3.17 TOTAL STREAM AREA (ACRES) .. 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE.. 10.47 FLOW PROCESS FROM NODE 43.00 Tv NODE -44.00 IS CODE.. 21 >>,.>,.RATIONAL METHOD INITIAL SUBAREA ANALYSIS",,,,,,,,,,< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC.. K*[(LENGTH*"'3)/(ELEVATION CHANGE)J*"'.2 INITIAL SUBAREA FLOW-LENGl1{(FEET).. 260.00 UPSTREAM ELEVATION(FEET).. 22.40 DOWNSTREAM ELEVATION(FEET).. 21.50 ELEVATION DIFFERENCE(FEET) = 0.90 TC.. 0.323*!( 260.00*"'3)/( 0.90)J*"'.2 9 267 100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.771 ApARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8753 SOIL CLASSIFICATION IS "C. SUBAREA RUNQFF(CFS) .. 1.98 TOTAL AREA(ACRES) .. 0.60 TOTAL RUNOPF(CPS) 1.98 .........*.........****....**.....**.**.*...*...........................................*..********* FLOW PROCESS FROM NODE 39.00 IS CODE = 62 44.00 TO NODE >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<",< >>>>>(STREET TABLE SECTION # 1 USED) <<<<< UPSTREAM ELEVATION (FEET) .. 21 50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET).. 108.00 CURB HEIGHT(INCHES) .. 4.8 STREET HALFWIDTH(FEET} .. 12.50 21.10 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL).. 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 7.50 SPECIFIED NllMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSPALL(OECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Plow Section 0.0150 "."TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CPS) STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.43 HALFSTREET FLOOD WIDTH (FEET).. 8.02 AVERAGE FLOW VELOCITY(PEET/SEC.) '" PRODUCT OF DEPTH&VELOCITY(FT"FT/SEC.) STREET FLOW TRAVEL TlME(MIN.).. 1.20 100 YEAR RAINFALL INTENSITY (INCH/HOUR) 2.74 1.50 0.64 Tc(MIN.) 3.526 10.47 Printed: 12/14/2005 Page 9 of 13 I I C:\aes2004\hydrosfllratscx\834D100.RES I I I I I I I I I I I I I I I I APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8588 SOIl. CLASSIFlCA.TION IS ~B. SUBAREA AREA(ACRES}.. 0.50 SUBAREA RUNOFF(CFS} TOTAL AREA(ACRB.S) = 1.10 PEAK FLOW RATE(CFS) 1.51 3.49 13 -\ 2. 1? .- I:? ?i' I END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) .. 0.46 HALFSTREET FLOOD WIDTH (FEET) .. 10.83 FLOU VELOCITY(FEET/SEC.)" 1.48 DEPTH*VELOCITY(F"I'*FT/SEC.).. 0.68 LONGEST FLQWPATH FROM NODE 43.00 TO NODE 39.00.. 36B.00 FEET. ..........**............*****..............****.........****...."...**.....**.. FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE c 81 >>>>>ADDITION OF SUBAREA TO MAINLIIl'E PEAK FLOW""""" 100 YEAR RAINFALL INTENSITY (INCH/HOUR).. 3.526 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8739 SOIL CLASSIFlCA.TION IS .C. SUBAREA AREA(ACRES) 0.50 SUBAREA R1,JNOFF(CFS) TOTAL AREA(ACRES) .. 1.60 TOTAL RUNOFF(CFS) = TC(HIN.) .. 10.47 1.54 .04 ..**...**.......................*.,......,,,,,.....................*............*... FLOlf PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE >>>>>DESIGN1>.TE INDEPENDENT STREAM FOR CONFLUENCE<<<c< >>>>>AND COMPUTE VARIOUS CONFLUENCED STRElIM VALUES""""" TOTAL NUMBER OF STREAMS.. 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE, TIME OF CONCENTRATION(MIN.) " 10.-17 RAINFALL INTENSITY (INCH/HR) .. 3.53 TOTAL STREAM AREA(ACRES) .. 1.60 PEAK FLOW RATE (CFS) AT CONFLUENCE.. 5.04 U CONFLUENCE DATA STREAM RUNOFF NUMBER (CFS) 1 26.32 1 27.98 2 10.47 3 5.04 Tc (MIN.) 14.42 19.81 12.74 10.47 INTENSITY ( INCH/HOUR) 2.957 2.484 3.166 3.526 AREA (ACRE) 11.60 11.60 3.50 1-60 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOll. 3 STREAMS. .. PEAK STREAM NUMBER 1 " " , FLOW RATE TABLE .. RUNOFF Tc (CFS) (MIN.) 32.76 10.47 38.24 12.74 40.33 14.42 39.74 19.81 INTENSITY ( INCH/HOUR) 3.526 3.166 2.957 2.484 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS, PEAK FLOW RATE(CFS) 40.33 Tc(MIN.) " 'I'OTJU. AREA(ACRES) '"' 16.70 LONGEST FLQWPA'm FROM NODE 30.00 TO NODE 14 .42 39.00 1726.00 FEET. FLOW PROCESS FROM NODE 39.50 TO NODE 45.00 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME 'mRU SUBAREA""""" >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<" ELEVATION DATA, UPSTREAM (FEET) .. 17.10 DOWNSTREAM (FEET) 16.50 FLOl~ LENGTH (FEET) '"' 140.00 MANlHNG'S N '"' 0.013 DEPnI OF FLOW IN 36.0 INC:-{ FIPE IS 28.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.).. 6.68 ESTIMATED PIPE DIAMETER(INCH) .. 36.00 NUMBER OF PIPES l' PIPE-FLQW(CFS).. 40.33 PIPE TRAVEL TIME(MIN.) '"' 0.35 TC(MIN.) " 14.77 LONGEST FLOWPATH FROM NODE 30.00 TO NODE 45.00 1866.00 FEET. FLOI'l PROCESS FROM NODE 40.00 TO NODE 40.00 IS CODE.. 13 >>>>>CLEAR nIE MAIN-STREAM MEMORY""",,< +--------------------------------------------------------------------------+ I subarea C + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - ~. - -. ~ - - - --. *... - - - ~ - - - -. - ~ ~ ~ ~ ~ - ~ - ~ ~ ~ - + ....................................".,......................,................ FLOli PROCESS FROM NODE 51-DO IS CODE.. 21 50.00 TO NODE >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS""""" ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC.. j{.[{LENGTH..3)/(ELEVATION CHANGE) '...2 INITIAL SUBAREA FLOW-LENG'I'H(FEET) D 400.00 UPSTREAM In.eVA'rION(PEET).. 30.:l0 DOWNSTREAM ELEVATION(FEET} .. 26.00 ELEVATION DIFFERENCE{FEET) .. 4.20 TC .. 0.323.[{ 400.00**3)/( 4.20)]u.2 100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. SOIL CL1l.SSIFICATION IS "A" B.818 3.876 .8240 Printed: 12/14/2005 Page 10 of 13 I I I I I I I I I I I I I I I I I I 6.07 1.90 C:\aes2004\hydrosftlratscx\834D1 00. RES C. -I SUBAREA RUNOFF(CFSl .. TOT>.L AREA (ACRES) .. TOTAL RUNOFF(CFS} .. 6.07 c. - 1.- c.'''? c-' 1-\ ~ I FLOW PROCESS FROM NODE 51.00 TO NODE 5;2.01) IS CODE = 62 >>:>",.COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"....<", >>>>>(STREET TABLE SECTION # 1 U530)<<<<< UPSTREAM ELEVATION(FEET).. 26.00 DOWNSTREAM ELEVATION(FEET) STREET LENGTH (FEET) .. 318.00 CURB HEIGHT(INCHES) 4.8 STREET HALFWIDTH(FEET) .. 12.50 24.10 DISTANCE FROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL{DEClMAL) OUTSIDE STREET CROSSFALL(DEClMAL) Gll.ADEBREAX(FEET) 0.020 0.050 7.50 SPECIFIED NUMBER OF IV.LFSTREETS CARRYING RUNOFF STREET PARKWAY CROSSFALL(DEClMAL) 0.020 Manning's FRICTION FACI'OR for Streetflow Section (curb-to-curb) O. 01S0 Manning's FRICTION FACTOR for Back-of-Walk Plow Section 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS) 7.97 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET).. 0.52 HALFSTREET FLOOD WIDTH (FEET).. 16.92 AVERAGE FLOW VEWCITY(FEET/SEC.).. 1.97 PRODUC"I' OF DEPTH&VELOCITY(FT*FT/BEC.).. 1.02 STREET FLOW TRAVEL TIME(MIN.}.. 2.70 Tc(MIN.) 11.51 100 YEAR RAINFALL INTENSITY(INCH/HOUR) .. 3.347 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8727 SOIL CLASSIFICATION IS fiC. SUBAREA AREA (ACRES) " 1.30 SUBAREA RUNOFF(CFS) 3.80 TOTAL AREA(ACRES) .. 3.20 PEAK FLOW RATE(CFS} 9.86 END OP SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) .. 0.54 HALFSTREET FLOOD WIDTH (FEET) .. 19.27 FLOW VELOCITY(PEET/SEC.) .. 2_01 DEPTH*VELOCITY(FT*FT/SEC.) *NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS, AND L.. 318.0 FT WITH ELEVATION-DROP.. 1.9 FT, IS WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00.. 718 1.09 4.4 CFS, 52.00 00 FEET. PLOlf PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE.. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA",,,,,,,,,,,,, >>>>> (STREET TABLE SECTION" 1 USED) <<<<< UPSTREAM ELEVATION(FEET).. 24.10 DOWNSTREAM ELEVATION(FEET} STREET LENGTH (FEET) .. 170.00 CUl<B HEIGHT(1NCHES) 4.8 STREET HALFWIDTII(FEET) .. 12.50 23.30 DISTANCE PROM CROWN TO CROSSFALL INSIDE STREET CROSSFALL (DECIMAL) OUTSIDE STREET CROSSFALL (DECIMAL) GRADEBREAX (FEET) 0.020 0_050 7.50 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFP 2 STREET PARKWAY CROSSFALL(DECIMAL) 0.020 Manning's FRIC"I'ION FACTOR for Streetf10w Section(curb-to-curb} 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 UTRAVEL TIME COMPUTED USING ESTIMATED PLOW(CFS) 10.68 """STREET FLOWING FULL"". STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) .. 0.56 HALFSTREET FLOOD WIDTH (FEET)., 20.55 AVERAGE PLOW VELOCITY(PEET/SEC.)" 1.88 PRODUCT OF DEPTH&VELOCITY(FT.FT/SEC.}.. 1.06 STREET FLOW TRAVEL TIME(MIN.).. 1.50 Tc(MIN.) 13.02 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = .3 .128 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8711 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES).. 0.60 SUBAREA RUNOFF(CFS) 1 63 TOTAL AREA(ACRES) .. 3.80 PEAK FLOW RATE(CFS) 11.50 END OF SUBAREA STREET FLOW HYDRAULICS, DEP'I'H(FEET) .. 0.57 HALFSTREET FLOOD WIDTII(FEET).. 20.86 FLO~ VELOCITY (FEET/SEC.) .. 1.94 DEPTH*VELOCITY (FT.FT/SSC.) 1.10 LONGEST FLCWPATH FROM NODE 50.GO TO NODE 53.00.. 888.00 FEET. PLOH PROCESS FROM NODE 53.00 TO NODE 53.00 IS CODE.. 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW",,,,,,,<,,, lOG YEAR RAINFALL INTENSITY (lNCH/HOUR) .. 3.128 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8711 SOIL CLASSIFICATION IS .C. SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) 2_18 TOTAL ARE14.(ACRES) .. 4.60 TOTAL RUNOFF(CFS).. 13.68 TC(MIN.),. 13.02 PLQ"fi' PROCESS FROM NODE 53.00 TO NODE 55.00 IS CODE.. 31 >>>>>COMPUTE PIPE-PLOW TRAVEL TIME 'I'HRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE PLQW)<<",<< ELEVATION DATA, UPSTREAM (FEET) . 20.30 DOWNSTREAM (FEET) FLOW LENGTH(FEET} 225.00 MANNING'S N.. 0.013 DEPTH OF PLOW IN 21.0 INCH PIPE IS 16.6 INCHES 18.30 Printed: 12/14/2005 Page 11 of13 I I C:\aes2004\hydrosftlratscx\834D100.RES I I I I I I I I I I I I I II I I I PIPE-FLOW VELOCITY(FEET/SEC.l" 6.71 ESTIMATED PIPE DIAMETER(INCH) ., 21.00 NUMBER OF PIPES PIPE-FLQW(CFS) ., 13.68 PIPE TRAVEL TIME(MIN.).. 0.56 Tc(MIN.).. 13.58 LONGEST FLOWPA'I1I FROM NODE 5000 TO NODE 55.00 1113.00 FEET. **"........................................................*"........................................"".................. FLO'i1 PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE .. ",,>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE.."""" TOTAL NUMBER OF STREAMS.. :2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE, TIME OF CONCENTRATION(MIN.).. 13.58 RAINFALL INTENSITY(INCHfHR).. 3.06 TOTAL STREAM AREA(ACRES}.. 4.60 PEAK FLOW RATE (CFS) AT CONFLUENCE.. 13.68 ...............",....."...................................................................**.."'.............. FLOli PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE.. 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<cc ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT 15 APARTMENT TC.. K.[(LENGTH**3)!(ELEVATlON CHANGE)] **.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 227.00 UPSTREAM ELEVATION(FEET) . 25.00 DOWNSTREAM ELEVATION(FEET)" 22.50 ELEVATION DIFFERENCE{PEET) " 2.50 TC,. 0.323.!( 227.00**3)!( 2.S0)}**.2 6.963 10-) YEAR RAINFALL INTENSITY(INCH!HOUR) . 4.413 APA.'l.TMEN'I' DEVELOPMENT RUNOFF COEFFICIENT. .8785 SOIL CLASSIFICATION IS "C. SUBAREA RUNOPF(CPS) . 1.94 TOTAL AREA(ACRES) .. 0.50 TOTAL RUNOFF(CFS) 1.94 ......................................................................................... PLO~ PROCESS FROM NODE 55.00 IS CODE.. 81 54.00 TO NODE >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK PLOWccccc ====..............--............=...............----....===...=-=====.-.....--....- 100 YEAR RAINFALL INTENSITY(INCH!HOUR) . 4.413 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT. .8785 SOIL CLASSIFICATION IS .C. SUBAREA AREA(ACRES) 0.30 SUBAREA RUHOFF(CFS) 1.16 TOTAL AREA(ACRES) . 0.80 TOTAL RUNOFF(CFS) .. 10 TC(MIN.). 6.96 ................................................................................... FLOii PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE. 62 >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREAccccc >>>>> (STREET TABLE SECTION #I 1 USED) <<<<< UPSTREAM ELEVATION(FEET) 22.50 DOWNSTREAM ELEVATION(FEET) STREET LENGTH(FEET).. 72.00 CURB HEIGHT(INCHES) 4.8 STREET llALFWID'I'H (FEET) .. 12.50 22.30 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL). 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) 0.050 50 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2 STREET PARKWAY CROSSFALL (DECIMAL) 0.020 Manning's FRICTION FACTOR for Streetflow Section (curb-to-curb) 0.0150 Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150 UTRAVEL TIME COMPUTED USING ESTIMATED FLOW{CFS) 3.82 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW, STREET FLOW DEPTH (FEET) . 0.48 HALFSTREST FLOOD WIDTH(FEET). 13.29 AVERAGE FLOW VELOCITY (FEET!SEC.). 1. 29 PRODUcr OF DEPTIi'VELOCITY(Fr.Fr/SEC.).. 0.62 STREET FLOW TRAVEL TIME{MIN.).. 0.93 TclMIN.) 7.89 100 YEAR RAINFALL INTENSITY(INCH!HOUR) . 4.120 APAR'IMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8772 SOIL CLASSIFICATION IS .C' SUBAREA AREA (ACRES) . 0.40 SUBAREA RUNOFF(CFS) 1.45 TOTAL AREA(ACRES) . 1.20 PEAK FLOW RATE(CFS) 4.55 END OF SUBAREA STREET FLOW HYDRAULICS, DEPTH (FEET) . 0.50 HALFSTREET FLOOD WIDTH (FEET) . 15.05 FLOW VELQCITY(FEET/SEC.).. 1.32 DEPTH*VELOCITY{FT.FT!SEC.) _ 0.66 LONGEST FLOWPA'I'H FROM NODE 53.00 TO NODE 55.00 _ 299.00 FEET. ..........*.........*.**.*..................................**.*.*.*............. FLOW PROCESS FROM NODE 55.00 IS CODE. 55.00 TO NODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<:<<<< >>>>>1\ND COM~ VARIOUS CONFLUENCED STREAM VALUES<<<<:< ...-----..........-..--=--.................-...=......-=-........--....-.------=- TOTAL NUMBER OF STREAMS. 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE, TIME OF CONCENTRATION (MIN. ). 7.89 RAINFALL INTENSITY (INCH!HR) _ 4.12 TOTAL STREAM AREA(ACRES) "' 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 4.55 .. CONFLUENCE DATA STREAM RUNOFF NUMBER (CFS) INTENSITY ( INCH/HOUR) AREA (ACRE) Tc (MIN.) c-s e-LP vi ;fP Printed: 12/14/2005 Page 12 of 13 I I I I I I I I I I I I I I I I I I I C:\aes2004\hydrosftlratscx\834D1000RES 1 , 13.68 4.55 4.60 1.20 13.58 7.89 3.057 4.120 RAH,'F'ALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA IISED FOR ;2 STREAMS. 0-.. PEAK STREAM NUMllE" 1 , FLOW RATE TABLE U RUNOFF Tc {CFSl (MIN.} 12.50 7.89 17.05 13.58 INTENSITY ( INCH/HOUR) 4.120 3.057 COMPUTED CONFLUENCE ESTIMATES ARE M FOLLOWS, PEAl: FLOW RATE(CFS} 17.05 Tc(MIN.).. 13.58 TOTJ..L AREA (ACRES) c 5.80 LONOEST FLOWPATH FROM NODE 50.00 TO NODE 55.00 1113.00 FEET. ****...****************..**0-********"".***"...*..******.........****............ FLO'i1 PROCESS FROM NODE 55.00 TO NODE 56.00 IS CODE.. 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< ,.,.>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ...........====c..==.____..................................._____....__..==..========..-..____==_____==== ELEVATION DATA: UPSTREAM (FEET) .. 18.30 DOWNSTREAM (FEET) 17.50 FLO~I LENG7H(FEET).. 94.00 MANNING'S N.. 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.}.. 7.09 ESTIMATED PIPE DIAMETER(INCH). 24.00 NUMBER OF PIPES PIPE-FLOW(CFS} . 17.05 PIPE TRAVEL TIME(MIN.). 0.22 Tc{MIN.). 13.80 LONGEST FLQWPATH FROM NODE 5000 TO NODE 56.00 1207.00 FEET. ***........................*****..*................................*........**......*........................*..*........****....*.. FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE 13 >>>>>CLEAR THE MAIN-STREAM MEMORY<<<<< ....=............---..-..-..==..=====........................--..............................................-.................=.... ....................-.........=......=....................-..........==.........................................-..-................ END OF STUDY SUMMARY: TOTAL AREA(ACRES) PEAK FLOW RATE(CFS) 0.01 TC{MIN.) .. 1.00 5.00 ...........................-...............=................................................====..................................... ........................................................==........=......................._..===......======.......................... END OF RATIONAL METHOD ANALYSIS o '?'" Printed: 12/14/2005 Page 13 of 13 I I I I I I I I I I I I I I I I I I I Worksheet 1 Design Procedure for BMP Design Volume 85th percentile runoff event Designer: Deborah de Cham beau Company: RBF Consulting, Inco Date: 12i8i2005 Project: Temecula Lane I JN 15-100834 Location: Basin 1 Volume Single Family area near street L and X 1. .Create Unit Storage Volume Graph ;a. Site iocation (Township, Range, and Section) ,b. Slope value from the Design Volume Curve in Appendix A, ,c. Plot this value on the Unit Storage Volume Graph shown on Figure 2. . d. Draw a straight line from this point to the origin, to create the graph T 8S &R2W Section 17 (1) Slope = 1.2 (2) Is this graph attached? Yes !Xl No 0 2, : Determine Runoff Coeffcient 'a. Determine total impervious area Ampervious = 8.16 acres (5) .b. Determ ine total tributary area A.otal 13.6 acres (6) ,c. Determine Impervious fraction I = (5) I (6) i= 0.6 (7) d, Use (7) in Figure 1 to find Runoff OR C = .858i3 - ,78i2 + ,774i + .04 C= 0.41 (8) 3.: Determine 85% Unit Storage Volume : Draw a Vertical line from (8) to the . graph, then a Horizontal line to the : desired V u value Vu = O.4g in-acre acre (9) 4.: Determine Design Storage Volume : a. VBMP = (9) x (6) [in-acres] I b. VBMP = (10) /12 [ft-acres] 'c, VBMP = (11) x 43560 [ft1 6,67 in-acre 0.56 ft-acre 24,226 ft3 (10) (11) (12) VBMP = VBMP = VBMP = Notes: Basin A volume,xls ;fO I I I I I I I I I I I I I I I I I I I Worksheet 1 Design Procedure for BMP Design Volume 85th percentile runoff .event Designer: Deborah de Chambeau Company: RBF Consulting, Inc. Date: 12/8/2005 Project Temecula Lane I JN 15-100834 Location: Basin 2 Voiume Multi Family area near street I and J 1. : Create Unit Storage Volume Graph 'a. Site location (Township, Range, and Section) ,b. Slope value from the Design Volume Curve in Appendix A. ,C. Plot this value on the Unit Storage Volume Graph'shown on Figure 2. ,d. Draw a straight line from this point to the origin, to create the graph T 8S &R2W Section 17 (1) (2) 1.2 Slope = Is this graph attached? Yes 5ZI No 0 2. : Determine Runoff Coeffcient a, Determine total impervious area : b. Determine total tributary area : c. Determine Impervious fraction I = (5) / (6) d, Use (7) in Figure 1 to find Runoff OR C = .858i3 - .78i2 + .774i + .04 AmpeNiOUS = 4,64 acres (5) A",tal 5.8 acres (6) i= 0.8 (7) C= 0.60 (8) 3.1 Determine 85% Unit Storage Volume ! Draw a Vertical line from (8) to the ! graph, then a Horizontal line to the , desired V u value Vu = 0.72 in-acre acre (9) 4.1 Determine Design Storage Volume ; a. VaMP = (9) x (6) [in-acres] I b, VaMP = (10) /12 [It-acres] 'c. VaMP = (11) X 43560 [It"] 4.17 in-acre 0.35 It-acre 15,141 1t3 (10) (11) (12) VBMP = VBMP = VBMP = Notes: H:/pdata/91000/Strmwtr ManagementlWater Quality/bmp design/volume.xls ,?C\ I I I I I I I I I I I I I I I I I I I Worksheet 1 Design Procedure for BMP Design Volume 85th percentile runoff event Designer: Deborah de Cham beau Company: RBF Consulting, Inc. Date: 12/8/2005 Project: Temecula Lane I IN 15-100834 Location: Basin 3 Volume Multi Family area near street G and I 1. :Create Unit Storage Volume Graph :a, Site location (Township, Range, and Section) T 8S &R2W ,b. Slope value from the Design Volume Section 17 (1) Curve in Appendix A. Slope = 1,2 (2) :c. Plot this value on the Unit Storage Volume Graph shown on Figure 20 :d. Draw a straight line from this point to Is this graph the origin, to create the graph attached? Yes Ii] No 0 2. "Determine RunoffCoeffcient 'a. Determine total impervious area ~mpervious = 13.36 acres (5) :b. Determine total tributary area A,otal 16.7 acres (6) ,c. Determine Impervious fraction I = (5) / (6) i= 0.8 (7) d. Use (7) in Figure 1 to find Runoff OR C = .858i3 - ,78i2 + .774i + .04 C= 0.60 (8) 3. : Determine 85% Unit Storage Volume : Draw a Vertical line from (8) to the : graph, then a Horizontal line to the . desired V u value Vu = 0,72 in-acre acre (9) 4, : Determine Design Storage Volume : a. V.MP = (9) x (6) [in-acres] VBMP = 12.01 in-acre (10) : b. V.MP = (10) /12 [ft-acres] VBMP = 1.00 ft-acre (11) : c. V.MP = (11) x 43560 [ftl VBMP = 43,596 ft3 (12) Notes: Basin B volume.xls AP ~ SCA,Ir-. ~ --" o ~o '~-.. ( G) ;u )> -0 I ~ - n -" o Ul n )> ,- rrl N <Xl o .., ',,~. 5 ~ r- Z ~ ;:0 ~ -" -N o ~l'" - . ~TR~Et"t , [,;,0> i~~ " "'; ''',V ~ .;" 'j"j, ~;. ~~ ~- i' ',I ~, ~ " _._~i /"'., .~. ..~:i . . ...... .~. < . ..-:)' Cl.l - ~../f.}7 Z;i ..J;.. ,-f:r~ .("'~(.". . ":t;- .~'" ~ ~' " ' ,,,". :J^ ~h 'en:. ~f TREET:9" 9 ~jj I "" :: ~l~~:, '" _~~~ ',,(; J.' ~::<~! '. , d" . [i =~ sTREET.,.. ~ ',-,' ""b'" . it.>;:">... 1 = \:"1 r~~~;if-- ~ -"'~._, STR~~OV" _ ",l "~.i', - - ;;."'" "",' ';'~ L ,;;,; t:."),. "" - - '-"'ii'- - T- "..,'" "~1.~ '''':'11'- ~(;.H ~i!" ~~. -\- . 'i. ,. ,." 2-'1 >\~~;'i'., .';C '~i ~;/ ~ -' :.r;' ".~ .'-. ~'.-" ~; .;;.} ,(; ~'" ~;I ~ I 4m ,~ J"C".' .," ~ c::::, -~- ";ii." ~;: '''' ~ ;j, - , , I . r >> z <0 Z '" - 0; z ;;: . .. ~ ~ . . iiI 0 0 "TH:: 0 l"I l> mOm x 0 c _ ID C ~ ~ ~ s: =< ~ 0 0 . '" m ;;J I: ~ 0 112l:IJ 0 . ~ ~ ~ ~ ~ ~ ~ ~ f\) (I) c: ~ ()l C n ~-fi!--:j o ~.... 0 ~ ~ 8 z - - - - I '\..., " ';, -I m s:: m () c r )> r )> z m ..... :E o m X I ffi =I ~ 0,52 om 2/15/05 DTENORIO ~ - Hj \PDA TA \15100834 \CADD\LAND\DLV\HYDRO\834WQ.DWG I I I Project Description , Worksheet . Flow Element Method : Solve For Rolled Curb Street Se Irregular Channel Manning's Formula Channel Depth I I Input Data Slope 005000 ftIft Dischargl 6.89 cfs I Options Current Roughness Mathe wed Lotter's Method Open Channel Weighting lved Lotter's Method Closed Channel Weightin! Horton's Method I Results I Mannings Coefficiel 0.015 Water Surface Elev. 9.95 ft Elevation Range 60 to 10.10 Flow Area 3_6 ft2 Wetted Perimeter 24.896 ft TopWidth 24.738 ft Actual Depth 0.35 ft Critical Elevation 9.94 ft Cotical, Slope 0.006456 ftIft Velocity 1.92 Ws Velocity Head 0.06 ft Specific Energy 10.01 ft Fraude Number 0.89 Flow Type Subcritical I I I I Roughness Segments Start End Mannings Station Station Coefficient I 0+00.00 0+35.00 0.015 I Natural Channel Points Station (ft) 0+00.00 0+05.00 0+05.83 0+06.00 0+07.00 0+07.08 0+17.50 0+27.92 0+28.00 0+29.00 0+29.17 0+30.00 0+35.00 Elevation (It) 10.100 10.000 9.688 9.604 9.688 9.719 9.929 9.719 9.688 9.604 9.688 10.000 10.100 I I I I I h:\...\calcs\hydro\flowmaster\rol1ed curb.fm2 12/14/05 04:49:42 PM @Haestad Methods. Inc. Worksheet Worksheet for Irregular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA I>.,,"V Project Engineer: RBF Consulting FlowMaster v6.1 [614k] (203) 755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I I Table Rating Table for Irregular Channel Project Description . Worksheet . Flow Element Method . Solve For Rolled Curb Street Se Irregular Channel Manning's Fonnula Discharge Options Current Roughness Mathe wed Lotter's Method Open Channel Weighting lVed Lotter's Method Closed: Channel Weightin! Horton's Method Attribute Minimum Maximum Increment . Slope (ftIft) 0.005000 0.020000 0.000500 Water Surface Eleva110.00 10.10 0.10 Slope Water pischarg Velocity Flow Wetted Top (IVff) Surface (cis) (IVs) Area Perimete Width Elevation (ft') (ff) (ff) (ff) J.005000 10.00 11.17 2.32 4.8 25.175 25.000 J,005500 10.00 11.71 2.44 4.8 25.175 25.000 J.006000 10.00 12.23 2.54 4.8 25.175 25.000 J.006500 10.00 12.73 2.65 4.8 25.175 25.000 J.007000 10.00 13.21 2.75 4.8 25.175 25.000 J.007500 10.00 13.68 2.84 4.8 25.175 25.000 J.008000 10.00 14.13 2.94 4.8 25.175 25.000 J.008500 10.00 14.56 3.03 4.8 25.175 25.000 J.009000 10.00 14.98 3.12 4.8 25.175 25.000 J.009500 10.00 15.39 3.20 4.8 25.175 25.000 J.Ol0000 10.00 15.79 3.29 4.8 25.175 25.000 J.Ol0500 10.00 16.18 3.37 4.8 25.175 . 25.000 J.Oll000 10.00 16.56 3.45 4.8 25.175 25.000 J.011500 10.00 16.94 3.52 4.8 25.175 25.000 J.012000 10.00 17.30 3.60 4.8 25.175 25.000 J.012500 10.00 17.66 3.67 4.8 25.175 25.000 J.013000 10.00 18.01 3.75 4.8 25.175 25.000 J.013500 10.00 18.35 3.82 4.8 25.175 25.000 J.014000 10.00 18.69 3.89 4.8 25.175 25.000 J.014500 10.00 19.02 3.96 4.8 25.175 25.000 J.015000 10.00 19.34 4.02 4.8 25.175 25.000 J.015500 10.00 19.66 4.09 4.8 25.175 25.000 J.016000 10.00 19.98 4.16 4.8 25.175 25.000 J.016500 10.00 20.29 4.22 4.8 25.175 25.000 J.017000 10.00 20.59 4.28 4.8 25.175 25.000 J.017500 10.00 20.89 4.35 4.8 25.175 25.000 J.018000 10.00 21.19 4.41 4.8 25.175 25.000 J.018500 10.00 21.48 4.47 4.8 25.175 25.000 J.019000 10.00 21.77 4.53 4.8 25.175 25.000 J.019500 10.00 22.05 4.59 4.8 25.175 25.000 J.020000 10.00 22.33 4.65 4.8 25.175 25.000 J.005000 10.10 20.05 2.57 7.8 35.177 35.000 J.005500 10.10 21.03 2.69 7.8 35.177 35.000 J.006000 10.10 21.96 2.81 7.8 35.177 35.000 J.006500 10.10 22.86 2.93 7.8 35.177 35.000 J.007000 10.10 23.72 3.04 7.8 35.177 35.000 1>,."7 Project Engineer: RBF Consulting h:\...\calcs\hydro\f1owmaster\rolled curb.fm2 RBF Consulting FlowMaster v6.1 [614k] 12/14/05 09:04:52 AM @Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 2 I I I I I I I I I I I I I I I I I I I Table Rating Table for Irregular Channel Slope Water pischar9 Velocity Flow Wetted Top (MI) Surface (cis) (l1Is) Area Perimete Width Elevation (IP) (ft) (ft) (ft) ).007500 10.10 24.55 3.14 7.8 35.177 35.000 ).008000 10.10 25.36 3.25 7.8 35.177 35.000 ).008500 10.10 26.14 3.35 7.8 35.177 35.000 ).009000 10.10 26.90 3.45 7.8 35.177 35.000 ).009500 10.10 27.63 3.54 7.8 35.177 35.000 ).010000 10.10 28.35 3.63 7.8 35.177 35.000 ).010500 10.10 29.05 3.72 7.8 35.177 35.000 ).011000 10.10 29.74 3.81 7.8 35.177 35.000 ).011500 10.10 30.40 3.89 7.8 35.177 35.000 ).012000 10.10 31.06 3.98 7.8 35.177 35.000 ).012500 10.10 31.70 4.06 7.8 35.177 35.000 ).013000 10.10 32.33 4.14 7.8 35.177 35.000 ).013500 10.10 32.94 4.22 7.8 35.177 35.000 ).014000 10.10 33.55 4.30 7.8 35.177 35.000 ).014500 10.10 34.14 4.37 7.8 35.177 35.000 ).015000 10.10 34.72 4.45 7.8 35.177 35.000 ).015500 10.10 35.30 4.52 7.8 35.177 35.000 ).016000 10.10 35.86 4.59 7.8 35.177 35.000 ).016500 10.10 36.42 4.66 7.8 35.177 35.000 ).017000 10.10 36.97 4.73 7.8 35.177 35.000 ).017500 10.10 37.51 4.80 7.8 35.177 35.000 3.018000 10.10 38.04 4.87 7.8 35.177 35.000 3.018500 10.10 38.56 4.94 7.8 35.177 35.000 3.019000 10.10 39.08 5.01 7.8 35.177 35.000 3.019500 10.10 39.59 5.07 7.8 35.177 35.000 ).020000 10,10 40.10 5.14 7.8 35.177 35.000 t+. Project Engineer: RBF Consulting h:\...\calcs\hydro\f1owmaster\rolled curb.fm2 RBF Consulting FlowMaster v6.1 [614k} .12/14/05 09:04:52 AM @ Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 2 of 2 I I Street Capacity 18' Half width; 46' R-O-W; 6" curb; 2% cross fall Worksheet for Irregular Channel I I . Project Description Worksheet Flow Element Method Solve For Irregular Channel Irregular Channel Manning's Formul Discharge I Input Data Slope 005000 ftlft Water Surface Elev 10.00 ft I Options Current Roughness Mathe )ved Lotter's Method Open Channel Weighting >ved Lotter's Method Closed Channel Weightin! Horton's Method I Results I I I I Mannings Coeffic 0.015 Elevation Range 40 to 10.00 Discharge Flow Area Wetted Perimetel Top Width Actual Depth Critical Elevation Critical Slope Velocity Velocity Head Specific Energy Fraude Number Flow Type 31.94 cfs 11.6 ft2: 47.08 ft 46.00 ft 0.60 ft 9.99 ft 0.005377 ftIft 2.75 ftls 0.12 ft 10.12 ft om Subcritical I I Roughness Segments Start End Mannings Station Station Coefficient 0+00 0+46 0.Q15 I Natural Channel Points I I I Station (ft) : 0+00 10+05 10+05 : 0+07 10+07 10+23 10+39 '0+39 10+41 , 0+41 0+46 Elevation (ft) 10.00 9.90 9.40 9.53 9.56 9.88 9.56 9.53 9.40 9.90 10.00 I t>6 I h:\...\calcs\hydro\f1owmaster\streetcap.fm2 RBF Consulting 12/14/05 04:48:16 PM @Haestad Methods. Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Project Engineer: RBF Consulting FlowMaster vG.1 [614k] Page 1 of 1 I I I I I I I I I I I I I I I I I I I Table Rating Table for Irregular Channel . Project Description Worksheet : Flow Element Method Solve For Irregular Channel Irregular Channel Manning's Fonnul Discharge . Options Current Roughness Mathe wed Lotter's Method Open Channel Weighting )ved Lotter's Method Closed Channel Weightinl Horton's Method Attribute Minimum Maximum Increment Slope (ftllt) 0.005000 0.020000 0.000500 Water Surface Eleval 9.90 10.00 0.10 Slope. Water ischarge Velocity Flow Wetted Top (ftllt) Surface (cis) (ftls) Area Perimete Width . Elevation (ff') (It) (It) (It) J.005000 9.90 18.10 2.41 7.5 37.07 36.00 J.005500 9.90 18.99 2.53 7.5 37.07 36.00 J.006000 9.90 19.83 2.64 7.5 37.07 36.00 J.006500 9.90 20.64 2.75 7.5 37.07 36.00 J.007000 9.90 21.42 2.86 7.5 37.07 36.00 J.007500 9.90 22.17 2.96 7.5 37.07 36.00 J.008000 9.90 22.90 3.05 7.5 37.07 36.00 J.008500 9.90 23.60 3.15 7.5 37.07 36.00 J.009000 9.90 24.29 3.24 7.5 37.07 36.00 J.009500 9.90 24.95 3.33 7.5 37.07 36.00 J.010000 9.90 25.60 3.41 7.5 37.07 36.00 ).Q10500 9.90 26.24 3.50 7.5 37.07 36.00 J.011000 9.90 26.85 3.58 7.5 37.07 36.00 J.011500 9.90 27.46 3.66 7.5 37.07 36.00 J.012000 9.90 28.05 3.74 7.5 37.07 36.00 J.012500 9.90 28.62 3.82 7.5 37.07 36.00 J.013000 9.90 29.19 3.89 7.5 37.07 36.00 J.013500 9.90 29.75 3.97 7.5 37.07 36.00 J.014000 9.90 30.29 4.04 7.5 37.07 36.00 J.014500 9.90 30.83 4.11 7.5 37.07 36.00 J.015000 9.90 31.36 4.18 7.5 37.07 36.00 ).015500 9.90 31.88 4.25 7.5 37.07 36.00 J.016000 9.90 32.39 4.32 7.5 37.07 36.00 J.016500 9.90 32.89 4.38 7.5 37.07 36.00 J.017000 9.90 33.38 4.45 7.5 37.07 36.00 ).017500 9.90 33.87 4.52 7.5 37,07 36.00 J.018000 9.90 34.35 4.58 7.5 37.07 36.00 J.018500 9.90 34.82 4.64 7.5 37.07 36.00 J.019000 9.90 35.29 4,71 7.5 37.07 36.00 J.019500 9.90 35.75 4.77 7.5 37.07 36.00 J.020000 9.90 36.21 4.83 7.5 37.07 36.00 J.005000 10.00 31.94 2.75 11.6 47.08 46.00 J.005500 10,00 33.49 2.89 11.6 47.08 46.00 J.006000 10.00 34.98 3.02 11.6 47.08 46.00 J.006500 10.00 36.41 3.14 11.6 47.08 46.00 J.007000 10.00 37.79 3.26 11.6 47.08 46.00 No Project Engineer. RBF Consulting h:\...\calcs\hydro\f1owmaster\streetcap.fm2 RBF Consulting FlowMaster v6.1 [614k] 12/14/05 04:48:09 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 2 I I I I I I I I I I I I I I I I I I I Table Rating Table for Irregular Channel Slope Water pischar9 Velocity Flow Wetted Top (ftIh) Surface (cfs) (ftIs) Area Perimete Width Elevation (ff') (h) (h) (It) 3.007500 10.00 39.11 3.37 11.6 47.08 46.00 3.008000 10.00 40.40 3.48 11.6 47.08 46.00 3.008500 10.00 41.64 3.59 11.6 47.08 46.00 3.009000 10.00 42.85 3.69 11.6 47.08 46.00 3.009500 10.00 44.02 3.79 11.6 47.08 46.00 3.010000 10.00 45.16 3.89 11.6 47.08 46.00 3.010500 10.00 46.28 3.99 11.6 47.08 46.00 3.011000 10.00 47.37 4.08 11.6 47.08 46.00 3.011500 10.00 48.43 4.18 11.6 47.08 46.00 3.012000 10.00 49.48 4.27 11.6 47.08 46.00 3.012500 10.00 50.50 4.35 11.6 47.08 46.00 3.013000 10.00 51.50 4.44 11.6 47.08 46.00 3.013500 10.00 52.48 4.52 11.6 47.08 46.00 3.014000 10.00 53.44 4.61 11.6 47.08 46.00 3.014500 10.00 54.39 4.69 11.6 47.08 46.00 3.015000 10.00 55.31 4.77 11.6 47.08 46.00 3.015500 10.00 56.23 4.85 11.6 47.08 46.00 3.016000 10.00 57.13 4.92 11.6 47.08 46.00 3.016500 10.00 58.01 5.00 11.6 47.08 46.00 3.017000 10.00 58.89 5.08 11.6 47.08 46.00 3.017500 10.00 59.75 5.15 11.6 47.08 46.00 3.018000 10.00 60.59 5.22 11.6 47.08 46.00 3.018500 10.00 61.43 5.30 11.6 47.08 46.00 3.019000 10.00 62.25 5.37 11.6 47.08 46.00 3.019500 10.00 63.07 5.44 11.6 47.08 46.00 3.020000 10.00 63.87 5.51 11.6 47.08 46.00 ~'\ Project Engineer: ReF Consulting h:\...\calcs\hydro\flowmastenstreetcap.fm2 RBF Consulting FlowMaster v6.1 [614k] 12/14/05 04:48:09 PM @Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 2 of 2