HomeMy WebLinkAboutTract Map 31946 Drainage Study
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DRAINAGE STUDY
TEMECULA LANE I
TENTATIVE TRACT 31946
City of Temecula
County of Riverside, California
December 2005
I Prepared for:
Temecula Lane, LLC
,41743 Enterprise Circle N, Suite 207
Temecula, Ca. 92590
Date
Report Prepared By:
40810 County Center Drive, Suite 100
T emecula, California 92591-6022
951.676.8042 telephone
c: 0 N S U LTI N G 951.676.7240 fax
Engineer of Work! Contact Person:
Deborah de Chambeau, P.E.
Joseph Daniel Hales, E.I.T.
RBF IN 15-100834
Revision History
Comment
\
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE OF CONTENTS
SECTION 1 - INTRODUCTION."...., ...., ... ...,., .....,.., ... ..... .....,.........,....,.."., .....", ......."...,...,.,.,.,...,....,.,..,1
1.1 Background ......................................................................,......................1
1 '.2 Objective .. ........ ...... ............ .......... ..... ..... ....., ... ... .... ...... ..., ...... ...., ..... .......1
1 '.3 Previous Studies. ... ........ .... .......... ..... ..... ...... ... ... ...,...... .......... ..... ..... .......2
SECTION 2 - HYDROLOGIC DATA ...,...,...,......,.."......",..,..............,..,."..,.....,....,....,...,.............,....,......2
2.1 Hydrologic Analysis and Methodology.....................................................2
2,1.1 Rational Method ...................................................................................................2
2.2 PROPOSED CONDITION HYDROLOGY...............................................4
SECTION 3 - WATER QUALITY SUMMARy..........................................................................................4.
3.1 Non-Structural and Structural BMPs .......................................................4
3.2 Best Management Practices (BMP) Sizing Criteria .................................5
SECTION 4 - HYDRAULIC ANAL YSIS.,......,...,.........."....,.......................,..............................,..,......,..,..6
4.1 Street Hydraulics .....................................,.....................,.........................6
SECTION 5 - CONCLUSiONS...,..... ........,..,...,....,....., .....,......,..,."....,........,.. ............."....,.,.......,............7
SECTION 6 - REFERENCES .............,....,..,..............................,.............................,.."...,..,...,................7
TECHNICAL APPENDICES
A Rational Method - Proposed Condition 10-Year
B Rational Method - Proposed Condition 100-Year
C Water Quality Extended Detention Basin Sizing Calculations
D Street Capacity Calculations
LIST OF FIGURES
Figure-1: Vicinity Map
Figure-2: Soils Map- Proposed Conditions
Figure-3: Hydrology Map- Proposed Conditions
Figure-4: Water Quality Exhibit
'V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
: SECTION 1 - INTRODUCTION
, 1.1 BACKGROUND
. The proposed project, T emecula Lane I, is located in the County of Riverside within the
~ corporate boundary of the City of T emecula. The project site is located at the Northwest
: corner of the intersection of Lorna Linda and Temecula Lane, see location map. The
I project consists of about 47 acres of residential uses, including 21.1 acres for multi-family
. dwelling area, and 15.1 acres single-family dwelling area. The rough grading plans
. accompany this hydrology report. The tract number for this proposed project is TR #
:31946.
. The proposed Temecula Lane project is located within the Santa Margarita Watershed
. and discharges directly to T emecula Creek. Since the site discharges directly to a regional
I facility, no on-site flood attenuation will be provided to mitigate proposed condition storm
I flows to less than existing condition. Approximately 1.3 miles downstream of the project
'site, TemeculaCreek confluences with Murrieta Creek and becomes Santa Margarita River
,which eventually discharges to the Pacific Ocean.
, 1.2 OBJECTIVE
. The primary objective of this report is to provide the technical documentation for the
i Preliminary design and improvements plans for the proposed storm drain facilities and
i include the following:
1. Identify the required storm drain facilities for the tract improvements based upon the
grading plans, and delineate the drainage area tributary to each proposed drainage
inlet/concentration point.
2. Based on drainage patterns, ground slope, land use, soil type, and using the County
of Riverside Rational Method, perform a hydrologic analysis to provide the design
f10wrate used to size the proposed storm drain facilities. No offsite flows enter the
site. This analysis covers the proposed condition hydrology.
3. Perform hydraulic analysis on the proposed storm drain facilities for the tract
improvement.
4. Adhere to the Riverside County Flood Control and Water Conservation District's
(RCFCD&WCD) hydrologic criteria that 1 O-year storm flow and 1 OO-year storm flow
be contained within the curb and street right-of-way, respectively.
5. Provide water quality treatment of the surface runoff per Regional Water Quality
Control Board criteria.
,All assessments and technical analysis in this report are in compliance with the local
. drainage policies and requirements, and the California Environmental Quality Act (CEQA)
:of 1970, as amended.
. Temecula Lane I, Temecula, Riverside County, CA
! Drainage study
1
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
. . .
CONSULTING
HWY 79
8'fJ
;0
("'C..y
:.s'1'Q
:.s';o
-:r 4-;-
NOT TO SCALE
PLANNING
DESIGN CONSTRUCTION
TEMECULA LANE. TTM 31946
FIGURE 1
VICINITY MAP
40810 COUNTY CENTER DRrvE, SUITE 100
lEMECULA, CAUFORNIA 92591-6022
951676.8042 FAX 951.676.7240 wwwRBF.com
E
0..
I'-
n
en
o
'---
N
~
N
o
0:::
o
Z
W
f-
o
J>..
C)
S
o
D-
<(
2
>-
f-
Z
U
;;
"
n
OJ
./
o
0:::
o
>-
I
./
>
-'
o
./
o
z
<(
-'
./
o
o
<(
U
./
"
n
OJ
o
o
~
en
:;:-
<(
f-
<(
o
D-
./
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'1.3 PREVIOUS STUDIES
'No previous studies were included in this analysis.
:SECTION 2 - HYDROLOGIC DATA
: 2.1 HYDROLOGIC ANALYSIS AND METHODOLOGY
I Hydrologic calculations to evaluate surface runoff associated with the 10-year, and 100-
: year hypothetical design storm frequencies from the project watershed were performed
; using the rational method based upon the relative size of the watershed. The rational
I method is a surface hydrology procedure, which allows evaluation of the peak
: discharge generated from a watershed area. This method only evaluates peak
I discharge and does not analyze runoff volumes or the time variation of runoff. The
I watershed subbasin boundaries within the project site were delineated utilizing
I topographic mapping of the area for the proposed grading plan to determine the
I development drainage patterns. Hydrologic parameters used in this analysis such as
I rainfall and soil classification areas presented in Riverside County Hydrology Manual,
I dated April 1978, were identified. A hydrology analysis was performed to evaluate the
; anticipated runoff generated from the proposed residential development. The hydrology
,analysis of the:proposed development included determining a conceptual storm drain
, collection system, which corresponds to the development drainage patterns. The
I drainage areas and subarea boundaries within the study area were delineated based
, on the proposed grading plan. The proposed storm drain facility was designed to not
, exceed the current capacities of the existing drainage facilities at the downstream
project boundary.
2.1.1 Rational Method
. The hydrologic calculations to determine the 10- and 1 OO-year ultimate design discharges
'were performed using the County of Riverside Rational Method from the RCFC&WCD
, Hydrology Manual dated April 1978. The Rational Method is an empirical computation
procedure for developing a peak runoff rate (discharge) for watersheds less than 300 acres
. and storms of a given recurrence interval. This procedure is the most common method for
small area urban drainage design since the peak discharge is generally the only required
parameter for hydraulic design of drainage facilities. The Rational Method equation is
based on the assumption that the peak f10wrate is directly proportional to the drainage
area, rainfall intensity, and a loss coefficient related to land use and soil type. Flows are
computed based on the formula Q=CIA, where:
Q = Discharge in Cubic Feet Per Second;
Temecula Lane I, Temecula, Riverside County, CA
Drainage Study
II,
I
!I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
C = Runoff Coefficient, based on Land Use and Hydrologic Soils Group;
I = Rainfall Intensity, Inches/Hour;
A = Area, Acres.
The peak discharge from a drainage area using the rational method occurs at a critical time
,when the entire drainage area is contributing runoff known as the ''time of concentration"
'for the watershed area. The design discharges were computed by generating a hydrologic
"link-node" model, which divides the analysis area into drainage subareas, each tributary to
:a concentration point or hydrologic "node" point determined by existing terrain.
'The hydrology analysis was performed for the developed condition 10-, and 1 OO-year high
: confidence hydrology. The results ofthe watershed analysis for the proposed development
; generated the resulting peak discharges at the downstream project boundary.
'The following assumptions/guidelines were applied under the Rational Method.
1. The Rational Method hydrology includes the effects of infiltration caused by
soil surface characteristics. Soils maps from Riverside County Flood Control
and Water Conservation District Hydrology Manual indicate the Soil Type "A",
"B" and "C" is representative of the project location. The Manual utilizes the
Soil Conservation Service (SCS) soil classification system, which classifies
soils into four (4) hydrologic groups (HSG): A through D, where "D" is the
least pervious, providing greatest storm runoff. The soils maps (Plate C-1.61
Pechanga) from the Manual and the project site is shown on Exhibit 2,
Hydrologic Soils Group Map.
2. The infiltration rate is also affected by the type of vegetation or ground cover
and percentage of impervious surfaces. The runoff coefficients used were
based on the proposed residential layout for single family and multi-family
residential. "Condo" and "Apartment" were used to represent the single-
family residence with 5,000 square foot lots (65% impervious) and multi-
family residence (80% impervious), respectively.
3. Rainfall data used was taken from the above Manual for the "Murrieta-
Temecula and Rancho California" areas.
4. The initial area is generally less than 10 acres and flow path lengths are less
than 1,000 feet, per RCFC&WCD analysis procedure.
5. The 2-year (1 hour) and the 100-year (1 hour) precipitation values of 0.57
inches and 1.35 inches respectively were obtained from Figures D-4.3 and D-
4.4 of the Manual, respectively. The slope of the Intensity Duration Curve of
0.55 was obtained from Figure D-4.6 of the Manual. The above-mentioned
figures are included in the Technical Appendix.
Temecula Lane I, Temecula, Riverside County, CA
Drainage study
f
(,
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:2.2 PROPOSED CONDITION HYDROLOGY
The developed land use conditions associated with the proposed project will modify the
'hydrologic characteristics of the watershed by (1) increasing the amount of impervious
'area, (2) modifying existing drainage patterns, (3) increasing the hydraulic efficiency of
Ithe drainage conveyance system from natural drainage courses to improved
,underground storm drain systems, (4) reducing the time to peak flow, and (5) increasing
I the peak discharges.
,A hydrologic analysis was prepared for the project watershed reflecting the proposed
I project. The peak runoff f10wrate at various concentration points (nodes) throughout
I the watershed is provided for the 1 O-year and 1 OO-year storm events. Appendix A and
I B contain the 10-year and 100-year hydrologic analysis which are summarized in the
I following tables.
: SECTION 3 - WATER QUALITY SUMMARY
. The water quality program consists of both non-structural and structural Best Management
I Practices (BMPs). The non-structural BMPs consist of: 1) Public Education; and 2)
I Common Area Maintenance Practices. The proposed structural BMPs include water
I quality extended detention basins.
. 3.1 NON-STRUCTURAL AND STRUCTURAL BMPs
. The Maintenance Corporation utilizes both Integrated Pest Management and Integrated
, Vegetation Management to minimize impacts to urban runoff water quality. Also, irrigation
'will be minimized to the maximum extent practicable. The method of irrigation control
. reduces the amount of water used for irrigation and minimizes the potential for overspray
,and nuisance runoff. Additional maintenance pollution prevention practices include
, monthly street sweeping, catch basin signage, and routine trash pick-up.
. Three separate water quality extended detention basins are proposed as structural BMPs
. for the project site. The basin will be constructed at ultimate project discharge locations.
. The extended detention basins will be a flow-through system with only the water quality
volume being detained, no flood attenuation will occur. The water quality volume to be
, treated, based on Regional Water Quality Control Board sizing criteria, for Basin A, Band
, C is 0.56 ac-ft, 0.35 ac-ft, and 1,0 ac-ft, respectively. The water quality calculations are
included in Technical Appendix C, with tributary areas shown on Figure 4. An extended
, detention water quality basin provides a medium removal efficiency for 5 of the 7 pollutants
expected to be generated from a residential site. The removal efficiency of a basin for
bacterialviruses and pesticides, the two remaining pollutants, is unknown.
Temecula Lane I, Temecula, Riverside County, CA
Drainage Study
~'b
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:3.2 BEST MANAGEMENT PRACTICES (BMP) SIZING CRITERIA
The San Diego Regional Water Quality Control Board (SDRWQCB) for the portion of
: Riverside County within the San Diego Region has established numeric sizing criteria for
. post-construction best management practices (BMPs) for new development and significant
'redevelopment under Order No. R9-2004-001. The proposed numeric sizing criteria is
intended to reduce adverse impacts to San Diego regional waters caused by new sources
:of urban pollution and increased volumes of storm water and non-storm water flows
'resulting from new development and significant redevelopment. The numeric sizing criteria
'requirement to'be included in the tentative waste discharge requirements for San Diego
'municipal storm water dischargers will read as follows:
! Post-construction BMPs for a project shall be designed as follows:
1. Volume-based BMPs shall be designed to mitigate (infiltrate, filter, or treat)
either:
i. The volume of runoff produced from a 24-hour 85th percentile storm
rainfall depth, as determined from the local historical rainfall record
(0.6 inch approximate average for the Riverside County area); or
ii. The volume of runoff produced by the 85th percentile 24-hour runoff
event, determined as the maximized capture storm water volume for
the area, from the formula recommended in Urban Runoff Qualitv
ManaQement. WEF Manual of Practice No. 23/ASCE manual of
Practice No. 87. (1998); or
iii. The volume of annual runoff based on unit basin storage volume, to
achieve 90% or more volume treatment by the method recommended
in California Stormwater Best ManaQement Practices Handbook new
Development and Redevelopment (2003); or
iv. The volume of runoff, as determined from the local historical rainfall
record, that achieves approximately the same reduction in pollutant
loads and flows as achieved by mitigation of the 85th percentile 24-
hour runoff event.
2. Flow based BMPs shall be designed to mitigate (infiltrate, filter, or treat) either:
i. The maximum flow rate of runoff produced from a rainfall intensity of
0.2 inch of rainfall per hour, for each hour of a storm event; or
ii. The maximum flow rate of runoff produced by the 85th percentile
hourly rainfall intensity (for each hour of a storm event), as
Temecula Lane I, Temecula, Riverside County, CA
Drainage Study
'0...
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
determined from the local historical rainfall record, multiplied by a
factor of two; or
iiL The maximum flow rate of runoff for each hour of a storm event, as
determined from the local historical rainfall record, that achieves
approximately the same reduction in pollutant loads and flows as
achieved by mitigation of the 85th percentile hourly rainfall intensity
multiplied by a factor of two.
The Co-permittees may develop, as part of the SUSMP, any equivalent method for
calculating the volume or flow which must be mitigated (Le., any equivalent method for
calculating numberic sizing criteria) by post-construction treatment control BMPs. Such
,equivalent sizing criteria may be authorized by the SDRWQCB for use in place of the
.above criteria. In the absence of development and subsequent authorization of such
:equivalent numeric sizing criteria, the above numeric sizing criteria requirement shall be
limplemented.
:SECTION 4 - HYDRAULIC ANALYSIS
14.1 STREET HYDRAULICS
IThe majority of the flows will be conveyed in interior streets with 12.5- or 18-foot half widths
'and 34- and 46-foot R-O-W, respectively. All interior streets within the single-family
residential portion are utilizing 6-inch curbs and have a traditional cross slope of 2.0
percent. Within the multi-family residential portion of the project, a rolled curb is used for
interior streets. The street capacities, as measured to the top of curb and within the R-O-
,W (RCFC&WCD's hydrologic criteria), are summarized in Table 4.1. All supporting
:calculations are included in Technical Appendix D.
Table No. 4.1 - Summary of Street CaDacitv
Slope (%) 12.S-foot half width/34-foot R-O-W 18-foot half width/46-foot R-O-W
Top of Curb (efs) Within R-O-W Top of Curb Within R-O.W
(cfs) (cfs) (cfs)
0.5 11.2 20.1 18.1 31.9
0.6 12.2 22.0 19.8 35.0
0.7 13.2 23.7 21.4 37.8
0.8 14.1 25.4 22.9 40.4
0.9 15.0 26.9 24.3 42.9
1.0 15.8 28.4 25.6 45.2
. Temecula Lane I, Temecula, Riverside County, CA
'Drainage Study
; \<)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
: SECTION 5 - CONCLUSIONS
1. The methodology used in this report is in compliance with the Riverside County
Flood Control and Water Conservation District's criteria.
2. This report accompanies the rough grading plans only. The storm drain
improvement plans, including the water quality basins, will be submitted at a future
date.
: SECTION 6 - REFERENCES
. 1. Riverside Flood Control District and Water Conservation District (RCFC&WCD)
Hydrology Manual, 1978.
: 2. Advanced Engineering Systems Software (AES), Rational Method Hydrology
System Model Version 8.0, 2001.
: 3. The AES Hydraulics Elements I Program Package (HELE-1) Version 6.0, 1999.
,4. Haestad Methods, FlowMaster Software v 6.1
I H :\PDA T A \ 15 to0834\Ad min\reports\Hyd rology report.doc
Temecula Lane I, Temecula, Riverside County, CA
Drainage Study
~ \\
I
I
C:\aes2004\hydrosftlratscx\834D10.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.~~.**.******++*.*...........*............**.........*.......................
RATIONAL HEnlOe HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL &. WATER CONSERVATION DISTRIC!
(RCFC&WCD) 1978 HYDROLOGY r-1ANUAL
{c} Copyright 1982-2004 Advanced Engineering Software (aes)
(Rational Tabling Version 6.00)
Release Date, 01/01/2004 License 10 1264
Analysis prepared by.
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
.............................. DESCRIPTION OF STUDY .,..."*"................",,..
.. Temeeula Lane I IN 15-100834
.. lO-YR Developed Condition
.. dId 12/14/05
.**...***............**....**...***.....................**....................**
FILE NAME, 834DIO.DAT
TIME/DATE OF STUDy, 13,30 12/14/2005
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION,
USER SPECIFIED STORM EVENT(YEARl.. 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) .. 18.00
SPECIFIED PERCENT OF GRADIENTS (DECI~) TO USE FOR FRICTION SLOPE.. 0.90
2-YEAR, I-HOUR PRECIPITATION (INCH) = 0.570
100-YEAR, I-HOUR PRECIPITATION(INCH).. 1.350
COMPUTED RAINFALL INTENSITY DATA,
STORM EVENT.. 10.00 I-HOUR INTENSITY (INCH/HOUR) 0.900
SLOPE OF INTENSITY DURATION CURVE = 0.5500
RCFC..WCD HYDROLOGY MANUAL "C--VALUES USED FOR RATIONAL METHOD
NOTE. CONSIDER ALL CONFLUENCE STREAM COMBINA.TIONS
FOR ALL DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL, CURB Gl1ITER-GEOMETRIES, MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO_ (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (Fr) (Fr) (n)
1 12.5
2 18.0
0.020/0.050/0.020 0.40
0.020/0.050/0.020 0.50
1.000.03130.1670.0150
1.500.03130.1250.0150
'-5
13.0
GLOBAL STREET FLOW-DEPTII CONSTRAINTS,
1. Relative Flow-Depth _ 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top of-Curb)
2. (Depthl*(Ve1ocity) constraint _ 6.0 (Fr*Fr/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO TIlE UPSTREAM TRIBUTARY PIPE.*
+--------------------------------------------------------------------------+
I ~:~~:a F:milY Residence - 6* curb street I
+--------------------------------------------- -------------------------+
**"*************************************************************************
FLOW PROCESS FROM NODE
1.00 TO NODE
2.00 IS CODE.. 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<....
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC _ K*[(LENGTII**3)/(ELEVATION CHANGEl] **.2
INITIAL SUBAREA FLOW-LENGTH(FEET) _ 120.00
UPSTREAM ELEVATION(FEET) .. 32.50
DOWNSTREAM ELEVATION(FEET) = 30.50
ELEVATION DIFFERENCE(FEET) .. 2.00
TC = 0.359*[( l20.00**3)/ ( 2.00lJu.2
10 YEAR RAINFALL INTENSITY (INCH/HOUR) ..
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT
SOIL ClJl.SSIFICATION IS "B"
SUBAREA RUNOFF(CFS) ..
TOTAL AREA(ACRES) ..
5.529
3.339
.. .8248
LOS
0.38
TOTAL RUNOFF(CFS) ..
1.05
FLOW PROCESS FROM NODE
2.00 TO NODE
3.00 IS CODE.. 62
>>>>>C'OMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA..........
>>>>> (STREET TABLE SECTION'" 2 USED) ......<..
UPSTREAM ELEVATION(FEET).. 30.50 DOWNSTREAM ELEVATION (FEET)
STREET LENGTIl(FEET).. 2.<13.00 CURB REIGHT(INCHES) 6.0
STREETHALFWIDTH(FEET) _18.00
29.50
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET)
INSIDE STREET CROSSFALL (DECIMAL) .. 0.0.<10
OUTSIDE STREET CROSSFALL(DECIMAL} 0.050
13.00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning'B FRICTION FACTOR for StreetflOlt Section(curb-to-curb)
Manning's FRIctION FACTOR for 8ack-of-Walk Flow Section 0.0150
0.0150
UTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
S'I'REETFLOW MODEL RESULTS USING ESTIMATED FLOw,
STREET FLOW DEPTII(FEET). 0.33
HALFSTREET FLOOD WIDTH {FEET} .. 4.88
AVERAGE FLOW VELOCITY(FEET/SEC.). 1.70
.<1.31
A-I
",. 2-
,1/
Printed: 12/14/2005
Page 1 of 13
I
I
C:\aes2004\hydrosftlratscx\834D1 a.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.).. 0.55
STREET FLOW TRAVEL TIME(MIN.) ~ 2.18 Tc(MIN.).. 7.71
10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. :2.781
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .7410
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES).. 1.23 SUBAREA RUNOFF{CFS) 2.53
TOTAL AREA(ACRES} .. 1-61 PEAK FLOW RATE(CFS) 3.58
END.OF SUBAREA STREET FLOW HYDRAULICS.
DEPTH (FEET) .. 0.39 HALFSTREET FLOOD WID'I'H{FEET).. 7.72
FLail VELOCITY(FEET/SEC.).. 1.70 DEP'I'H*VELOCITY{FT*FT/SEC.) 0.65
LONGEST FLQWPATH FROM NODE 1.00 TO NODE 3.00.. 343.00 FEET.
........................*****........................**......"**..**.....***..........
FLOW PROCESS FROM NODE
3.00 TO NODE
4.00 IS CODE", 052
A-3
A-Y
A-5
\7
,.>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREAc:<<<<
"">>:> (STREET TABLE SECTION # 2 USED) <<<<<
......"''''....'''====..=...........--....'''=......=====.................======================"'=.........
UPSTREAM ELEVATION(FEET) = 29 50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET). 650.00 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) .. 1B.00
26.40
I
DISTANCE FROM CROWN TO CROSSFALL GilADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL) .. 0.020
OUTSIDE STREET CROSSF1I.LL(DECIMAL) 0.050
13.00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET P1.RKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to curb) '" 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
"*TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS} 6.14
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) '" 0.45
HALFSTREET FLOOD WIDTH (FEET) .. 10.81
AVERAGE FLOW VELOCITY(FEET/SEC.).. 1.BB
PRODUCT OF DEPTH&VELOCITY(F"I'*FT/SEC.) '" 0.B4
STREET FLOW TRAVEL TIME(MIN.).. 5.75 Tc(MIN.) 13.46
10 YE1.R RAINFALL INTENSITY(INCH/HOUR} z 2_047
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT.. .B2B7
SOIL CLASSIFICATION IS "CO
SUBAREA 1.REA.(ACRES}.. 3.00 SUBAREA. RUNOFF(CFS) 5.09
TOTAL AREA.(ACRES) .. 4.61 PEAX FLOW RATE(CFS) 8.67
END. OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.49 HALFSTREET FLOOD WIDTH (FEET) .. 13.05
FLOW VELOCITY(FEET/SEC.}.. 2.01 DEPTH.VELOCITY(FT.FT/SEC.) 0.99
LONGEST FLOWPATl::I FROM NODE 1.00 TO NODE 4.00.. 993.00 FEET.
"'''''''''''''..'''''''''''''''''''''''''''''''''..'''''''''..............'''''''''''''''~.'''......*....''''''''''''.'''*.."'...."'****"'''''''*'''*''''''.'''
FLOW PROCESS FROM NODE
4.00 TO N9DE
4.50 IS CODE _ 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME Tl::IRU SUBAREA~~<~~
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<~<
ELEVATION DATA, UPSTREAM(FEET)., 23.40 DOWNSTREAM (FEET) 23.20
FLOW LENGTH (FEET) = 20.00 MANNING'S N. 0.013
DEPTH OP PLOW IN 18.0 INCH PIPE IS 13.0 INCHES
PIPE-FLOW VELOCITY(FEBT/SEC.).. 6.35
ESTIMATED PIPE DIAKETER(INCH) .. 18.00 NUMBER OF PIPES
PIFE-FLQW(CFS) .. 8.67
PIPE TRAVEL TIME(MIN.).. 0.05 Tc(MIN.).. 13.51
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.50 _ 1013.00 FEET.
,..,.*..".*"'*"'*.................."'................"''''..................'''........"'........*....."'..*"''''**.*..
FLOW PROCESS FROM NODE
4 .50 TO NODE
4.50 IS CODE ..
>>>>>DESIGNl\.TE INDEPENDENT STREAM FOR CONFLUENCE<<<<~
=====zz========......_..==============..=.======..============================::.
TOTAL NUMBER OF STREA.MS. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 lIRE,
TIME OF CONCENTRATION(MIN.) w 13.51
RAINFALL INTENSITY(INCH/HR).. 2.04
TOTAL STREA.M AREA(ACRES).. 4.61
PEAK. FLOW RATE(CFS) AT CONFLUENCE .. 8.67
"'''''''..............*..********...''''''''''''.'''...........,,**..*'''....................................."''''..''''''..''''''''''''.......
FLOW PROCESS FROM NODE
5.00 TO NODE
6.00 IS CODE.. 21
>>>>>RJl.TIONP.L METHOD INITIAL SUBAREA. AHALYSIS~~~~<
ASSUMED INITIAL SUBi\REA. UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC.. K.!(LENGTH**3)/(ELEVATION CHlillGE)] "'''.2
INITIAL SUBi\REA. FLOW-LENGTH (PEET).. 415.00
UPSTREA.M ELEVATION(FEET) . 32_50
DOWnSTREAM ELEVATION(FEET) . 29.20
ELEVATION DIPFERENCE(FEE'r) .. 3.30
'I'C.. 0.359.{( 415.00**3)/( 3.30)]**.2 10.531
10 YEAR RJl.INFALL INTENSITY(INCH/HOUR) . 2.343
CONDOMINIUM DEVELOPMENT RUNOFP COEFFICIENT. .8027
SOIL CLASSIFICATION IS "aM
SUBAREA RUNOFF(CFS) .. 3.69
TOTAL AREA.(ACRES) . 1.96 TOTAL RUNOFP(CFS) ..
3.69
,**"''''....'''**'''''''''*..*'''..*..**'''.**...'''...'''......"...............''''''........*..............'"
FLOW PROCESS FROM NODE
6 .00 TO NODE
6.00 IS CODE.. 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<~~~
10 YEAR RAINFALL INTENSITY(INCH/HOUR) . 2_343
Printed: 12/14/2005
Page 2 of 13
I
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
COEFFICIENT ., . n76
C:\aes2DD4\hydrosftlratscx\834D10.RES
CONDOMINIUM DEVELOPMENT RUNOFF
SOIL ClASSIFICATION IS ~A.
SUBAREA AREA(ACRES) 1.07
TOTAL AREA (ACRES) ., :3 . 03
TC(MIN.) .. 10.53
SUBAREA RUNOFF (CPS)
TOTAL RUNOFF(CPS} .,
1.8;!
5.51
A-&;
\~
I
Page 3 of 13
..............................**........**....................................."...**..
FLOW PROCESS FROM NODE
6.00 TO NODE
'.00 IS CODE., 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA",,,,,,,,,,,
>>>>>(STREET TABLE SECTION # :2 USED)",,,..,,<
c===ca..wa.................=..........._.........__=__....=..a___......=....
UPSTREAM ELEV1I.TION(FEET)., 29.20 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) ., 548.0Cl CURB HEIGHT (INCHES) 6.0
STREET HALFWIDTB{FEET) ., 18.00
26.40
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEE'r)
INSIDE STREET CROSSFALL (DECIMAL).. 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.050
13.00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DECIMAL} 0.020
Manning'S FRIC'I'ION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning'S FRICTION FACTOR for Back.of-Malk Flow Section 0.0150
*'*TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS) 7.43
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.47
HALFSTREET FLOOD MIOTH(FEET). 11.83
AVERAGE FLOW VELOCITY(FEET/SEC.). 2.00
PRODUCT OF DEPTH&VELOCITY(Fr.Fr/SEC.). 0.94
STREET FLOW TRAVEL TIME(MIN.}. 4.57 Tc(MIN.) 15.10
10 YEAR RAINFALL INTENSITY (INCH/HOUR). 1. 922
CONDOMINIUM DE:VELQPMENT RUNOFF COEFFICIENT. .7123
SOIL CLASSIFICATION IS ~A~
SUBAREA AREA (ACRES) - 2.80 SUBAREA RUNOFF(CFS) 3.83
TOTAL AREA (ACRES) .. 5.83 PEAK FLOW RATE(CFS) 9.34
END OF SUBAREA STREET FLO\Il HYDRAULICS,
DEPTH(FEET) .0.50 HALFSTREET FLOOD WIDTIi(FEET). 13.30
FLOif VELOCITY(FEET/SEC.) . 2.10 DEPTH.VELOCITY(FT.FT/SEC.) 1.04
LONGEST FLOWPATH FROM NODE 5.00 TO NODE 4.00 _ 963.00 FEET.
......*.....*................................................................
FLOif PROCESS FROM NODE
4.00 TO NODE
4.50 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>,.>USING COMPUTER-ESTIMATED PIPE3IZE (NON-PRESSURE FLOM) <<<<:<;
==.......--_..==..====....._--.======.._---==..=.................=.......................--....=..............
ELEVATION DATA, UPSTREAM(FEE'T).. 23.40 OOWNSTREAM(FEET) 23.20
FLOW LENGTH(FEET).. 20.00 MANNING'S N _ 0.013
DEPTH OF FLOW IN 19.0 INCH PIPE IS 13.8 INCHES
PIPE-FLOW VELOCITY(FEE'r/SEC.}.. 6.41
ESTIMATED PIPE DIAMETER (INCH) .. 18.00 NUMBER OF PIPES
PIPE-FLQW(CFS) .. 9.34
PIPE: TRAVEL TIME(MIN.).. 0.05 Tc(MIN.).. 15.15
LONGEST FLOWPATH FROM NODE 5.00 TO NODE 4. So. 983.00 FEET.
..............................................................................
FLOW PROCESS FROM NODE
4.50 TO NODE
4.50 IS CODE
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>J\ND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
................------.........................--..............-..................-..................=..............-.......
TOTAL NUMBER OF STREAMS _ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE,
TIME OF CONCENTRATION(MIN.) . 15.15
RAINFALL INTENSITY(INCH/HR) _ 1.92
TOTAL STREAM AREA (ACRES) = 5 . 83
PEAK FLOW RATE (CFS) AT CONFLUENCE .. 9 34
. * CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFS)
1 8.67
2 9.34
TO
(HIN.)
13.51
15.15
INTENSITY
(INCH/HOUR)
2.043
1.918
AREA
(ACRE)
4.61
5.83
RAINFALL !NTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED F03- 2 STREAMS.
.. PEAK FLOW RATS TABLE ..
STIUWl RUNOFF To INTENSITY
NUMBER (CFS) (HIN.) (INCH/HOUR)
1 17.00 13.51 2.043
2 17.49 15.15 1.918
COMPl.lTED CONFLUENCE ESTIMATES ARE J.S FOLLOWS,
PEAK FLOW RATE(CFS) 17.49 Tc(MIN.) _ 15.15
TOTAL AREA(ACRES) . 10.44
LONGEST FLOWPATH FROM NOOE 1.CO TO NODE 4.50
1013.00 FEET.
............................................................................................................
FLOW PROCESS FROM NODE
4.00 TO NODE
8.00 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
..........................=............_...==....~...................~....~......c~..~...._..........~...
ELEVATION DATA, UPSTREAMIFEET).. 23.20 DOWNSTREAM (FEET) 20.40
FLOW LRNG'l1I(FEET) - 325.00 MANNING'S N _ 0.013
DEPnI OF FLOW IN 24.0 INCH PIPE IS 17.4 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) 7.15
ESTIMATED PIPE DIAMETER (INCH) . 24.00 NUMBER OF PIPES.. 1
Printed: 12/14/2005
I
I
C:\aes2004\hydrosft\ratscx\834D1 O.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PIPE-FLQW(CFS).. 17.49
PIPE TRAVEL TIME(MIN.) z 0.76 Tc{MIN.).. 15.91
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00
1338.00 FEET.
A-l
1\-6
A-'1
\~
I
Page 4 of 13
**............".."*********..****.."""',,...,,**......**....***,,.**.......*********..******.*****
FLOW PROCESS FROM NODE
8.50 TO NODE
8.50 IS CODE.. 1
>>>>>DESIGNA'I'E INDEPENDENT STREAM FOR CONFLUENCE<<<<<
,...--..---=-...-...---......--......-.-----.................---.........--.....-.........-..----..
TOTAL NUMBER OF STREAMS.. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCEN'I'RATION(MIN.) .. 15.91
RAINFALL INTENSITY(INCH/HR).. 1.87
TOTAL STREAM AREA (ACRES) .. 10.44
PEAK FLOW RATE(CFS) AT CONFLUENCE.. 17.49
....**********..***..***..****..***...**...***......................".......****...
FLOW PROCESS FROM NODE
4.00 TO NODE
7.00 IS CODE.. 21
~>~~~RAT!ONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
.c.....................................................ee...........a.....a................=.=.
ASSUMED INITIAL SUBAREA UNI FORM
DEVELOPMENT IS CONDOMINIUM
TC. K.[(LENGTII**3)/(ELEVATION CHANGE))H.2
INITIAL SUBAREA FLOW-LENG'TH(FEET).. 256.00
UPSTREAM ELEVATION(FEET). 27.40
DOWNSTREAM ELEVATION (FEET).. 24.90
ELEVATION DIFFERENCE(FEET) .. 2.50
TC.0.359.[( 256.00H3)/( 2.50)JH.2 8.331
10 YEAR RAINFALL JNTENSITY(INCH/HOUR). 2.665
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8422
SOIL CLASSIFICATION 15 .C'
SUBAREA RUNOFF (CFS) . 2.02
TOTAL AREA.(ACRES) . O.SlO TOTAL RUNOFF(CFS) . 2.02
................................*.*.........................................
FLOW PROCESS FROM NODE
7.00 TO NODE
7.00 IS CODE.. 81
~~~>~A.DDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
....e.......................e..=..........=.=..=...................=e=...=====.
10 YEAR RAINFALL INTENSITY(INCH/HOUR). 2.665
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8422
SOIL CLASSIFICATION IS 'C'
SUBAREA AREA(ACRES) 1. 76 SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) . 2.66 TOTAL RUNOFF(CFS) ..
TC(MIN.)" 8.33
3.95
5.97
.................*..........................................................
FLOW PROCESS FROM. NODE
7.00 TO NODE
8.00 IS CODE. 62
>>>>>COMPUTE STREET FLOW TRAVEL TII~E THRU SUBAREA<<<<<
>>>>> (STREET TABLE SEC"t'ION # 2 USED) <<<<<
.===.==.........e..==.......=_....e....==......==..=.======e....=.....".....
UPSTREAM ELEYATION(FEET). 25.30 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) . 122.00 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH(FEET) . 18.00
24.40
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DEClMALJ .. 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
13 .00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACl'OR for Street flow Section{curb-to-curb)
Manning'S FRIC"rlON FACl'OR for Back-of-Walk Flow Section 0.0150
0.0150
HTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 6.52
STREETF'"....oW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTIi{FEET) e 0.43
HALFSTREET FLOOD WIDTH(FEETl. 9.85
AVERAGE FLOW VELOCITY (FEET/sEC.) . 2.28
PRODUCT OF DEPTH&.VELOCIT'l{Fl'*F"l'/SEC.). 0.98
STREET FLOW TRAVEL TIME(MBl.). 0.89 TC(M!N.) 9.22
10 YEAR RAINFALL INTENSITY(INCH/HOUR). 2.520
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .8395
SOIL CLASSIFICATION IS "C'
SUBAREA AREA(ACRES). 0.52 SUBAREA RUNOFF(CFS) 1.10
TOTAL AREA{ACRES) . 3.18 PEAK FLOW RATE(CFS) 7.07
END OF SUBAREA STREET FLOW HYDRAUL!CS,
DEPTH (PEET) . 0.44 HALFSTREBT FLOOD WIDTH (FEET) 10.36
FLOW VELOCITY{FEET/SEC.} . 2.31 DEPTH.VELOCITY(Fl'''F"l'/SEC.) 1.01
LONGEST FLOWPATH FROM NODE 4.00 TO NODE 8.00. 378.00 FEET.
....*...................*.....................................................
FLOW" PROCESS FROM NODE
8.00 TO NODE
8.50 IS CODE. 31
,.>>>>COMPUTE PIPE-FLOW TRAVEL TIME 'l'RRU SUBAREA<"<",,
,.>>,.>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW") <,,<<<
......."."'....'"ee.".....e.....a...._...==.c.............=........e....e......._...........
ELEVATION DATA, UPSTREAM{FEET). 20.60 OOWNSTREAM(FEET) 20.40
FLOW LENG'tH(FEET). 20.00 MANNING'S N. 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.). 6.12
ESTIMATED PIPE DIAMETEIl.{INCH). Hi .00 NUMEiEIl. OF PIPES
PIPE-FLOW(CFS) . 7.07
PIPE TRAVEL TIME(MIN.).. 0.05 Tc(MIN.). 9.28
LONGEST FLOW"PATH FROM NODE 4.00 TO NODE 8.50. 398.00 FEET.
...............................................................................
FLOW PROCESS FROM NOOE
8.50 TO NODE
8.50 IS CODE e
Printed: 12/14/2005
I
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc",<,,<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES"",,<<
C:\aes2004\hydrosftlratscx\834D1 a.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.__________________...._____________B________.______.______ecc______________
TOTAL NUMBER OF STREAMS", :2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION (HIN.) = 9.28
RAINFALL INTENSITY(INCH/HR)", 2.51
TOTAL STREAM AREJ>.(ACRESl _ 3.16
PEAl( FLOW RATE(CFS} AT CONFLUENCE.. 7.07
** CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CPS)
1 17.00
1 17.49
:2 7.07
Tc
(MIN.)
14.27
15.91
9.28
INTENSITY
( INCH/HOUR)
1.982
1.867
2.512
AREA
(ACRE)
10.44
10-44
3.18
B-1
B-2.,
\~
I
Page 5 of 13
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE ..
STREAM RUNOFF Tc INTENSITY
NUMBER (CPS) (MIN.) ( INCH/HOUR)
1 18.12 9.28 2.512
2 n.se 14.27 1.982
3 22.74 15.91 1.867
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS,
PEAK PLOW RATE (CFS) 22.14 Tc:(MIN.} - 15.91
TOTJ.L AREA(ACRES) - 13.62
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.50 1338.00 FEET_
........................................................"."".."".."................""""""..."""""""""..
PLOW PROCESS FROM NODE
8.50 TO NODE
9.00 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME 'I'HRU SUBAREI..,,,,,,,,,
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) """""
ELEVATION DATA, IJPSTREAM(FEET}", 20.40 DOII'NSTREAMiFEET) 20.00
PLOW LENGTH (FEET) .. 100.00 MANNING'S N.. 0.013
DEPTH OF PLOW IN 30.0 INCH PIPE IS 22. B INCHES
PIPE-FLOW VELOCITY{FEET/SEC.).. 5.69
ESTIMATED PIPE DIAMETER(INCH) .. 30.00 NUMBER OF PIPES
PIPE-FLOW(CFS).. 22.14
PIPE TRAVEL TIMEiMIN.J _ 0.29 Tc:(MIN.).. 16.20
LONGEST FLOWPATH FROM NODE 1. 00 TO NODE 9.00.. 1438.00 FEET.
"".........."............"."....."""""..-......."""""..........."""."..."............"
FLOW PROCESS FROM NODE
9.00 TO NODE
9.00 IS CODE.. 13
>>>>>CLEAR THE MAIN-STREAM MEMORY"""""
+------------------------- .----------------.-- ---------------------------+
I Subarea B
Multi-family units
+---..------ --------------------- -------------------------------- -----+
............"""..................""""."...".."........"..."",,"................................
FLOW PROCESS FROM NODE
30.00 TO NODE
31.00 IS CODE", 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS"""""
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC", K*{(LENGTH**3}/(ELEVATION CHANGE}).....2
INITIAL SUBAREA FLOW-LENGTH(FEET}.. 325.00
UPSTREAM ELEVATION(FEET) .. 30.:;0
DOWNSTREAM ELEVATION{FEET) .. 29.50
ELEVATION DIFFERENCE (FEET) .. 0.80
TC .. 0.359" [( 325.00....3)/ ( O.E>O)] **.2 _
10 YEAR RAINFALL INTENSITY (INCH/HOUR).. 2
CONDOMINIUM DEVELOPMENT R1.mOFF COEFFICIENT "'
SOIL CLASSIFICATION IS MCM
SUBAREA RUNOFF(CFS} ..
TOTAL AREA (ACRES) ..
12.074
.113
.8319
2.53
1.40
TOTAL RUNOFF (CFS) ..
2.53
...."....................................................................................................*......................................
FLOW PROCESS FROM NODE
31. 00 TO NODE
32.00 IS CODE.. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"""""
>>>>> (STREET TABLE SECTION # 1 USED) """""
UPSTREAM ELEVATIONiFEET}.. 29 50 DOWNSTREAM ELEVATION(FEET}
STREET LENGTH(FEET).. 148.00 CURB HEIGHT(INOIES) 4.8
STREET HALFWIDTH(FEET) .. 12.50
28.20
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 50
INSIDE STREET CROSSFALL(DEClMAL).. 0.020
OUTSIDE STREET CROSSFALL{DECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Sec:tion(curb-to-curb) _
Manning's FRICTION FACTOR for Bac:k-of-Walk Flow Sec:tion 0.0150
0.0150
"'!'RAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.39
HALFSTREE'I' FLOOD WIDTH (FEET) _ 4.77
AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.33
3.07
Printed: 12/14/2005
I
I
C:\aes2004\hydrosft\ratscx\834D1 O. RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PRODUCT OP DEPnI&VELOCITY (F'l'''FT/SEC.)" 0.90
STREET FLOW TRAVEL TIME(MIN.) " 1.06 Tc(MIN.) 13.13
10 YEAR RAINFALL Im'ENSITY (INCH/HOUR)" ;2.075
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT" . 8597
SOIL CLASSIFICATION IS "e.
SUBAREA AREA (ACRES) " 0.60 SUBAREA RUNOFF(CFS) 1.07
TOTAL AREA (ACRES) " 2.00 PEAK FLOW RATE(CFSl 3.60
END OF SUBAREA STREET FLOW HYDRA.UL!CS:
DEPTH (FEET) ,,0.41 HALFSTREET FLOOD WIDni(FEET) 5.79
FLOW VELOCITY(FEET/SEC.)" 2.36 DEPTH*VELQCITY(FT"FT!SEC.) 0.96
I.ONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00.. 473.00 PEET.
FLOW PROCESS FROM NODE
32.00 TO NODE
33.00 IS CODE.. 62
B-3
B-1.{
\3-5
\""
I
Page 6 of 13
,,>>>>COMPU'!'E STREET PLOW TRAVEL TIME THRIJ SUBAREA"",",c",
>>>>> (STREET TABLE SECTION, # 1 USED},,<<<<
UPSTREAM ELEVATION(FEET).. 28.20 DOWNSTREAM ELEVATION (FEET)
STREET LENGTH(PEET).. 445.00 CURB HEIGHT(INCHES) 4.8
STREET HALPWIDTH(FEET) .. 12.50
25.80
DIS'I'ANCE FROM CROWN TO CROSS FALL
INSIDE STREET CROSSFALL(DECIMAL)
OUTSIDE STREET CROSSFALL(DECIMAL)
GRADEBREAK(FEET)
0.020
0.050
7.50
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF.. 41
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for StreetflOlol Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
UTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 5.51
STREETFLQW MODEL RESULTS USING ESTIMATED FLOW.
STREET FLOW DEPTH (FEET) .. 0.49
HALFSTREET FLOOD WIDTH (FEET) .. 13.64
AVERAGE FLOW VELOCITY(FEET/SEC.)" 1.81
PRODUCT OF DEPTH&VELQCITY(Fr"FI'/SEC.)" 0.88
STREET FLOW TRAVEL TIME(MIN.)" 4.10 Tc(MIN.) 17.23
10 YEAR RAINFALL INTENSITY (INCH/HOUR) " 1.787
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8548
SOIL CIASSIFICATION IS .C"
SUBAREA AREA (ACRES) " 2.50 SUBAREA RUNOFF(CFS) 3.82
TOTAL AREA(ACRES) .. 4.50 PEAK FLOW RATE(CFS) 7.42
END- OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) ,,0.52 HALFSTREET FLOOD WIDTH (FEET) 16.81
FLOlf VELQCITY{FEET/SEC.).. 1. 85 DEPTH"VELOCITY (FT"FT/SEC 0.96
"NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L '" 445.0 FT WITH ELEVATION-DROP.. 2.4 FT, IS 5 1 CFS,
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 33.00
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 33.00.. 918.00 FEET.
FLOW PROCESS FROM NODE
33.00 TO NODE
33.00 IS CODE.. 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW"""""
10 YEAR RAINFALL INTENSITY(INCR/HOUR).. 1.787
APARnlENT DEVELOPMENT RUNOFF COEFFICIENT .. .8548
SOIL CLASSIFICATION IS "CO
SUBAREA AREA(ACRES) 1.20 SUBAREA RUNOFF{CFS)
TOTAL ARE1I.(ACRESl .. 5.70 TOTAL RUNOFF(CFS) ..
TC(MIN.).. 17.23
1.83
9.25
FLOW PROCESS FROM NODE
33.00 TO NODE
34.00 IS CODE.. 62
>>>,.>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"""""
>>>>> (STREET TABLE SECTION"# 1 USED) """""
UPSTREAM ELEVATION(FEET).. 25.80 DOWNSTREAM ELEVATION(FEETl
STREET LENGTH (FEET) .. 143.00 CURB HEIGHT (INCHES) 4.8
STREET HALFWIDTH(FEET) .12.50
24.60
DISTANCE FROM CROWN TO CROSSFALL
INSIDE STREET CROSSFALL(DEClMAL)
OUTSIDE STREET CROSSFALL(DEClHAL)
GaADEBREAK [FEET}
0.020
0.050
7 SO
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARXWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflolll Section(curb-to-curb)
Manning's FRICTION FACTOR for Back-of-Walk Flol11 Section 0.0150
0.0150
"TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 9.55
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) . 0.52
HALFSTREET FLOOD WIDTH (FEET).. 17.04
AVERAGE FLOW VELOCITY(FEET/SEC.). 2.33
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.). 1.21
STREET FLOW TRAVEL TIME(MIN.). 1.02 Tc(MIN.) 18.26
10 YEAR RAINFALL INTENSITY (INCH/HOUR). 1. 731
APARThlENT DEVELOPMENT RUNOFF COEFFICIENT. .8537
SOIL CLASSIFICATION IS *C"
SUBAREA AREA(ACRES). 0.40 SUBAREA RUNOFF(CFS) 0.59
TOTAL AREA(ACRES) .. 6.10 PEAK FLOW RATE(CFS) 9.84
END.OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.52 HALFSTREET FLOOD WIDTH(FEET). 17.39
FLOW VELOCITY(FEET/SEC.).. 2.34 DEPTH*VELOCITY(FT"Fr/SEC.).. 1.22
LONGEST FLOW PATH FROM NODE 30.00 TO NODE 34..00.. 1061.00 FEET.
Printed: 12/14/2005
I
I
..."*"*****..******......****1'**********.".***...**".************************.***
C:\aes20D4\hydrosffuatscx\834D 1 a.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
FLOW PROCESS FROM NODE
34.00 TO NODE
38.00 IS CODE.. 31
B-(o
&-1
B-5
\~
I
Page 7 of 13
:>:>:>>"COMPtn'E PIPE-FLOW TRAVEL TIME THRU SUBAREA"""""
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ,,<<co<
ELEVATION DATA, UPSTREAM(FEET)" 21.60 DOWNSTREAM (FEET) 18.60
FLOW LENGTH (FEET) " 505.00 MANNING'S N. 0.013
DEPTH OF FLOW IN :21.0 INCH PIPE 13 14.9 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.).. .s.4l
ESTIMATED PIPE DIAMETER(INCHl .. 21.00 NUMBER OF PIPES
PIPE-FLOW(CFS) .. 9.84
PIPE TRAVEL TIME(MIN.).. 1.56 Tc(MIN.).. 19.81
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 38.00.. 1566.00 FEET.
******...*.*************,,***.*****..**..******.*******-**.....*-----*,,*._--*-*
FLOW PROCESS FROM NODE
38.50 TO NODE
38.50 IS CODE ..
>:>:>:>:>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
..............................................................--...."''''............'''...................................."'.........................
TOTAL NUMBER OF STREAMS" 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE,
TIM::: OF CONCENTRATION(MIN.) " 19.91
RAINFALL INTENSITY{INCH/HR).. 1.56
TOTAL STREAM AREA (ACRES) .. 6.U
PEA..';( FLOW RATE (CFS) AT CONFLUENCE.. 9.84
................................""" "".............................. ".."""""..................... ........"..........."""""""."""
FLOW PROCESS FROM NODE
3S.00 TO NODE
36.00 IS CODE.. 21
:>:>:>>:>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARDlENT
TC " K.[(LENGTII..3)/{ELEV1I.TION CHANGE)J...2
INITIAL SUBAREA PLOW-LENGTH(FEET} '" 580.00
UPSTREAM ELEVATION(FEET) .. 31.JO
DOWNSTREAM ELEVATION(FEET) .. 2~.60
ELEVATION DIFPERENCE(FEET) .. 0.40
TC "0.323.[( S80.00""3)/( 6.40)J"".2
10 YEAR RAINFALL INTENSITY{INCH/HOUR) "
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT ..
SOIL CLASSIFICATION 15 "C"
SUBAREA RUNOFF{CFS) '"
TOTAL AREA(ACRES) .
10.130
2.394
.8640
4.14
2.00
TOTAL RUNOFF(CFS)
4.14
..".".""..".............."""................................"".......""........"...........
FLOW PROCESS FROM NODE
36.00 TO NODE
37.00 IS CODE.. 62
>>>>>COMPUTE STREET PLOW TRAVEL TIME THRU SUBAREA<<<<<<<<<<
:>>>>>(STREET TABLE SECTION #- 1 USED)<<<<<
UPSTREAM ELEVATION (FEET).. 24.60 DOWNSTREAM ELEVATION(PEET)
STREET LENGTH(FEET).. 470.00 CURB HEIGHT(INCHES) 4.8
STREET HALPWIDTH(FEET) .. 12.50
21.60
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) 7.50
INSIDE STREET CROSSFALL(DECIMAL) _ 0.020
OUTSIDE STREET CROSSPALL(DECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) _
Manning's FRle"!'ION FACTOR for Back-of-Walk Flow Section 0.0150
""'TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS} 5.42
STREETFLQW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.4.8
HALFSTREET FLOOD WIDTH (FEET) .. 12.59
AVERAIJE FLOW VELOCITY(FEET/SEC.) '" 1.95
PRODDe"!' OF DEPTIl&VELOCITY(FT.FT/SEC.).. 0.93
STREET FLOW TRAVEL TIHE(MIN.).. 4.01 Tc(HIN.) 14..14
10 YEAR RAINFALL INTENSITY (INCH/HOUR) = 1.993
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. . BSB4
SOIL CLASSIFICATION IS "C"
SUBAREA AREA (ACRES) ~ 1.50 SUBAREA RUNOFF(CFS) 2.57
TOTAL AREA(AeRES} .. 3.50 PEAK FLOW RATE(CFS) 6.70
0.0150
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.50 HALFSTREET FLOOD WIDTH(FEET) a 14.81
PLOlf VELOCITY(FEET/SEC.}.. 1.98 DEPTH.VELOCITY(FT"FT/SEC.) O.~~
.NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L. 470.0 FT WITH ELEVATION-DROP... 3.0 FT. IS 3.1 CFS.
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 37.00
LONGEST FLOWPATH FROM NODE 35.00 TO NODE 37.00.. 1050.00 FEET.
.............................."..".."".........................."".."..""".............".........
FLOW PROCESS FRQIII NODE
37.00 TO NODE
3B.00 IS CODE.. 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<<<<
10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 1. 993
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. . B584
SOIL CLASSIFICATION IS ~C"
SUBAREA AREA(ACRES) 2.00 SUBAREA RUNOFF(CFS}
TOTAL AREA (ACRES) .. 5.50 TOTAL RUNOFF(CFS) _
Te(MIN.).. 14.14
3.42
10.12
..."............."...""".................................""""........".".""".."............
FLOW PROCESS FROM NODE
38.00 TO NODE
3B.50 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
Printed: 12/14/2005
I
I
>:>:>>,.USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) "'<""'"
C:\aes2004\hydrosftlratscx\834D1 a.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ELEVATION DATA. UPSTRE:AM(FEET)", 18.70 DOWNSTREAM (FEET) 18.60
FLOW LENGTII(FEET) '" 20.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.4 INCHES
PIPE-FLOW VELOCITY(PEET/SEC.).. 5.03
ESTIMATED PIPE DIAMETER(INCH) .. 21.00 NUMBER OF PIPES 1
PIPE-FLOW(CFSj '" 10.12
PIPE TRAVEL TIME(MIN.)", 0.07 TC(MIN.).. 14.20
LONGEST FLOWPATH FROM NODE 35.00 TO NODE 38.50.. 1070.00 FEET.
.************..**..*..*****....**"..........*******.*****.......ft*...,,,..*,,__..,,__.._.*.***.
FLOW PROCESS FROM NODE
38.50 TO NODE
38.50 IS CODE ..
1:,-9
B-1O
\~
I
Page 8 of 13
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE"".::"",
>>>>>AND COMPUTE VA1UOUS CONFLtrENCED STREAM VALUES"""",,,
TOTAL NUMBER OF STREAMS.. ::i!
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE,
TIME OF CONCENTRATION(MIN.} a 14.20
RAINFALL INTENSITY(INCH/HR} a 1.99
TOTAL STREAM AREA(ACRES) .. 5.50
PEAK FLOW RATE (CFS) AT CONFLUENCE" 10 12
* * CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFS)
1 9.84
2 10.12
To
(MIN. )
19.81
14.20
INTENSITY
( INCH/HOUR)
l.655
1.987
AREA
(ACRE)
6.10
5.50
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMUlA USED FOa 2 STREAMS.
** PEAK FLOW RATE TABLE .*
STREAM RUNOFF TC
NUMBER (CFS) (MIN.)
1 17.18 14.20
2 18.27 19.81
INTENSITY
(INCH/HOUR)
1.987
1.655
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS I
PEAK FLOW RATE(CFS) 18.27 TC(HIN.).. 19_81
TOTAL AREA(ACRES).. 11.60
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 38.50
1566.00 FEET_
*****.*********.*..***...*.*********......*........***..*.**.*****...**.**..
FLOW PROCESS FROM NODE
38.50 TO NODE
39.50 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<......
ELEVATION DATA, UPS'I'REAH{FEET).. 18.60 DOWNSTREAM (FEET) 17.60
FLOW LENGTH (FEET) .. 160.00 MANNING'S N.. 0.013
DEPTH OP FLOw IN 27.0 INCH PIPE IS 18.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.}.. 6.47
ESTIMATED PIPE DIAMETER (INCH) ,,27.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) a 18.27
PIPE TRAVEL TIME (MIN.) .. 0_41 Tc(MIN.).. 20.22
LONGEST FLOWPATH FROM NODE 30 00 TO NODE 39_50 1726.00 FEET.
.....................***....*..........*..***.............*.*.......*..........***
FLOW PROCESS FROM NODE
39.50 TO NODE
39.50 IS CODE.. 1
,,>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS" 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE I
TIME OF CONCENTRATION(MIN.) .. 20.22
RAINFALL INTENSITY(INCH/HR).. 1.64
TOTAL STREAM AREA (ACRES) .. 11.60
PEAK FLOW RATE(CFS) AT CONFLUENCE" 18.27
.*....*.**.............................."..................................**..**....................................................*.
FLOW PROCESS FROM NODE
40.00 TO NODE
41.00 IS CODE
21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<oCoC
ASSUMED INITIAL SUBAREA UNIPORM
DEVELOPMENT IS APARTMENT
TC D K"'[(LENGTH..3)/(ELEVATION CHANGE)] **.2
INI?IAL SUBAREA FLOW-LENGTH(FEET).. 301.00
UPSTREAM ELEVATION(FEET) .. 26.70
DOWNSTREAM ELEVATION(FEET).. 24.30
ELEVATION OIFFERENCE(FEET) .. 2.40
TC.. 0.323*[( 301.00*'*3)/( 2.40)J.......2
10 YEAR RAINFALL INTENSITY (INOI/HOUR) ..
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT D
SOIL CLASSIFICATION IS *S*
SUBAREA RUNOFF(CFS) ..
TOTAL AREA(ACRES) ..
8.316
2_668
.8492
2.72
1.20
TOTAL RUNOFF(CFS}
2.72
*...........*****.*****.****.**.**.....**...........***********...****....*.............
FLOW PROCESS FROM NODE
41.00 TO NODE
42.00 IS CODE.. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIMS THRU SUBAREA<<<<..
>>>>>(STREET TABLE SECTION # 1 USED)<<oCoCoC
UPSTREAM ELEVATION(FEE'T). 24.30 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET). 473.00 CURB HEIGHT(INCHES) 4.8
STREET HALFWIDTH{F'EST) _ 12.50
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK{FEET) 7.50
INSIDE STREST CROSSFALL (DECIMAL). 0.020
21.50
Printed: 12/14/2005
I
I
OUTSIDE STREET CROSSFALL(DEClMAL)
0.050
C:\aes2004\hydrosftlratscx\834D1 a.RES
I
SPECIFIED NUMBER OF HALPSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACl'OR for Street flow Section(curb-to-c:urb).. 0.0150
Manning's FRICTION FACTOR for Baclt-of.Walk Flow Section 0.0150
I
**TRAVEL TIME COMPUTED USING ESTIMATED FLOW (eFS) 4.78
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.47
HALFSTREET FLOOD WIDTH (FEET) .. 11.65
AVERAGE FLOW VELOCITY (FEET/SEC.) .. 1.88
PRODUCT OF DEPTH&VELQCITY(FI'*FTjSEC.).. 0.87
STREET FLOW TRAVEL TIME(MIN.).. 4.20 Tc(MIN.) 12.51
10 YEAR RAINFALL INTENSITY(INCH/HOURj .. 2.131
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8407
SOIL CLASSIFICATION IS "B"
SUBAREA AREA.{ACRES) '" 2.30 SUBAREA RllNOFF(CFS) 4.1;2
TOTAL AREA (ACRES) .. 3.50 PEAK FLOW RATE(CFS) 6.84
I
I
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) '" 0.50 HM.FSTREET FLOOD WIDTH (FEET) .. 15.40
FLOW VELOCITY(FEET/SEC.) .. 1_92 DEPTH"VELOCITY(FI'''FI'/SEC.) 0.97
"NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L.. 473.0 FI' WITH ELEVATION-DROP.. 4.8 FI', IS 4.5 CFS,
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 44.00
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 44.00.. 774.00 FEET_
I
"..................."...""""............."."".""................."......."""."".."""....
FLOW PROCESS FROM NODE
44.00 TO NODE
39.50 IS CODE.. 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUB.AREA<<<<<
>>>>>\JSING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
I
ELEVATION DATA, UPSTREAM (FEET) .. 18.50 DOWNSTREAM (FEET) 17.10
FLOU LENGTH(FEET).. 140.00 MANllING'S N.. 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES
PIPE-FLOW VELQCITY(FEET/SEC.).. 6.08
ESTIMATED PIPE DIAMETER(INCH).. 18.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) .. 6.84
PIPE TRAVEL TIME(MIN.).. 0.38 Tc(MIN.).. 14.90
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 39.50 914.00 FEET.
...""....."""..............*..**..***..**"*..""."""...........*********,,""..""....""""""..".........
FLOW PROCESS FROM NODE
39.50 TO NODE
39.50 IS CODE ..
I
>>>>>DESIGNA'I'E INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS.. 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE,
TIME OF CONCENTRATION(MIN.) .. 12.90
RAINFALL INTENSITY(INCH/HR).. 2.::'0
TOTAL STREAM AREA (ACRES) .. 3.50
PEAK FLOW RA'I'E(CFS) AT CONFLUENCE" 6.84
I
.........."......**........."**"*.***...*.*.,,.....,,,,**....*..***..*****...*...*.*....".".....""
FLOI~ PROCESS FROM NODE
43_00 TO NODE
44.00 IS CODE.. 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC.. K"!(LENGTH"*3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH (FEET) " 260.00
UPSTREAM ELEVATION(FEET).. 22...0
DOWNSTREAM ELEVATION(FEET} .. 21.50
ELEVATION DIFFERENCE(FEET) .. 0.90
TC" 0.323"[( 260.00"*3l/( 0.90)]"*.2 9.267
10 'fEAR RAINFALL INTENSITY (INCH/HOUR) .. 2.514
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT" . 8654
SOIL CLASSIFICATION IS ~C~
SUBAREA RUNOFF(CPS) .. 1.31
TOTAL AREA(ACRES) .. 0.60 TOTAL RUNOFF (CFS) 1.31
I
..."""*..**.*"*"********************<.***,,**..**.""".,,.,,"""****""*""*********
FLOW PROCESS FROM NODE
44.00 TO NODE
39.00 IS CODE.. 62
I
>>>>>COMPI.lTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>> (STREET TABLE SEc."nON # 1 USED) <<<<<
UPS'I'REAM ELEVATION(FEET).. 21.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTIf(FEET).. 108.00 CURB HEIGHT(INCHES) 4.8
STREET RALFWID'I'H(FEET) .. 12.50
21.10
I
DISTANCE FROM CROWN TO CROSSFALL
INSIDE STREET CROSSFALL(DECIMAL)
OUTSIDE STREET CROSSFALL (DECIMAL)
GF.ADEBREAK(FEET)
0.020
0.050
750
I
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning'S FRICTION FACTOR for Street flow Section(curb-to-curb)
Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
0.0150
"TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) " 0.38
HALFSTREET FLOOD WIDTH (FEET) .. 4.55
AVERAGE FLOW VELOCITY (FEET/SEC.) .. 1.48
PRODUCT OF DEPTH&.VELOCITI'(FI'*FT/SEC.).. 0.56
STREET FLOW TRAVEL TIME (MUI.) .. 1.21 Tc(MIN.)
10 YEAR RAINFALL INTENSITY(JNCH/EOUR) .. 2.349
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT. .8445
1.80
I
10.48
Page 9 of 13
I
Printed: 12/14/2005
B-I\
8-12-
1,,0
I
I
C:\aes2004\hydrosft\ratscx\834D1 O. RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
501:' CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) 0.50
TOTAL AREA (ACRES) .. 1.10
SUBAREA RUNOFF(CFS) z
PEAK FLOW RATE (eFS)
0.99
2.30
6-13
c - \
1--\
I
Page 10 of 13
END. OF SUBAREA STREET FLOW HYDRAULICS,
DEPTII(FEET) .. 0.40 HALFSTREET FLOOD WIDTII(FEET).. 5.44
FLOW VELOCITY (FEET/SEC.) " 1-55 DEPTH*VELOCITY(FT*Fr/SEC.).. 0.62
LONGEST FLOWPATH FROM NODE 43.00 TO NODE 39.00.. 368.00 FEET.
..'*********...,*************."."".****"***"*****..********......**"."************.
FLOW PROCESS FROM NODE
39_00 TO NODE
39.00 IS CODE.. 81
>:>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW"""""
10 YEAR RAINFALL INTENSITY{INCH!HOUR).. 2.349
APARnlENT DEVELOPMENT RUNOFF COEFFICIENT .. .8634
5011. CLASSIFICATION IS "e.
SUBAREA AREA(ACRES) 0.50 SUBAREA RUNOFF(CFS) 1.01
TOTAL ARE1I.(ACRES) .. 1.60 TOTAL RUNOFF(CFS) .. 31
TC(MIN.) .. 10.48
**."***".............***......,,.............***..........***************************************
FLOW PROCESS FROM NODE
39.00 TO NODE
39.00 IS CODE.. 1
,.,.,.,.,.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE......"..
,.,.,.,.,.AND COMPI1I'E VARIOUS CONFLUENCE:D STREAM VALUES"""""
TOTAL NUMBER OF STREAMS.. 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE,
TIME OF CONCENTRATION(MIN.).. 10.48
RAINFALL INTENSITY(INCH/HR).. 2.35
TOTAL STREAM AREA(ACRES) .. 1.60
PEA., PLOW RATE(CFS) AT CONFLUENCE.. 3.31
** CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFS)
.1 17.18
1 18.27
'2 6.84
'3 3.31
To
(MIN.)
14 .62
20.22
12.90
10.48
INTENSITY
( INCH/HOUR)
1.956
1.636
2.096
2.349
AREA
(ACRE)
11.60
11.60
3.50
1.60
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR STREAMS.
*. PEAK
STREAM
NUMBER
.1
,
,
"
PLOW RATE TABLE **
RUNOFF Tc
(CFS) (MIN.)
21.18 10.48
24.95 12.90
26.32 14.62
25.92 20.22
INTENSITY
(INCH/HOUR)
2.349
2.096
1.956
1.636
COMPUTED CONFLUENCE ESTIr-tATES ARE AS FOLLOWS,
PEAK FLOW RATE(CFS) 26.32 Tc(HIN.}.. 14.62
TOTAL AREA(ACRES) .. 16.70
LONGEST FLOWPATII FROM NODE 30 00 TO NODE 39.00
1726.00 FEET.
*************..*********..................*.***.........*...........*...*...
FLOW PROCESS FROM NODE
39.50 TO NODE
45.00 IS CODE.. 31
,.,.,.,.,.COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA.."...."
,.,.,.,.,.USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) """<"
ELEVATION DATA: UPSTREAM{FEET).. 17.10 DOWNSTRE1\M(FEET) 16.50
FLOW LENGTII{FEET).. 140.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 33.0 INCH PIPE IS 22.4 INCHES
PIPE-FLOW VELOCITY(FEET/SE:::.).. 6.15
ESTIMATED PIPE DIAMETER (IN::H).. 33.00 NUMBER OF PIPES
PIPE-FLOW(CFS) .. 26.32
PIn TRAVEL TIME(MIN.).. 0.38 Tc(MIN.) = 15.00
LONGEST FLOWPATII FROM NODE 30.00 TO NODE 45.00 1866.00 FEET.
******.***..*****..*...*************".**.*******.*...***********************
FLOW PROCESS FROM NODE
40.00 TO NODE
40.00 IS CODE.. 13
,.,.,.,.,.CLEAR THE r-tAIN-STREAM MEMORY"",,,,,,,
+--------------------------------------------------------------------------+
I~~C I
+----.--------------..-- --------------------------------...-.---. --------+
*.*..**..*************.*************.*****.**....***.*..***.***......*******
FLOW PROCESS FROM NODE
50.00 TO NODE
51.00 IS CODE.. 21
,.,.,.,.,.RATIONAL METHOD INITIAL SUBAREA ANALYSIS"""""
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARThlENT
TC.. K*[(LENGTH"'3}/(ELEVATION CHANGE}]....2
INITIAL SUBAREA FLOW-LENG'I'H(FEET).. 400.00
UPSTREAM ELEVATION (FEBT) .. 30.20
DOWNSTREAM ELEVATION(FEBT) .. 26.00
ELEVATION DIFFERENCE(FBET) .. 4.20
TC.. 0.323*1( 400.00"'3)/( 4.20}]**.2
10 YEAR RAINFALL INTENSITY{INCH/HOUR} ..
APARTMENT DEVELOPMENT RUNOFF COEFFICIENI'
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) ..
8.818
2.583
.8058
3.96
Printed: 12/14/2005
I
I
TOTAL AREA(ACRES} "
3.96
C:\aes2004\hydrosft\ratscx\834D1 a.RES
1.90 TOTAL RUNOFF(CFS} "
I
.***"...............................................................................
FLOW PROCESS FROM NODE
51.00 TO NODE
52.00 IS CODE.. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"<",,,,,,
".,.,.,.,. (STREET TABLE SECTION # 1 USED) <<<:<<
I
........"..........___..__.._...............c..__....______................__.._..........______..__........__
UPSTREAM ELEVATION(FEEr).. 26 00 DOWNSTREAM ELEVATION(FEET}
STREET LENGTII(FEET) " 319.00 CURB HEIGHT{INCHES) 4.9
STREET HALFWIDTH(FEET) .. 12.50
24.10
I
DISTANCE FROM CROWN TO CROSSFALL Gl<.ADEBREAK(FEET) 7. SO
INSIDE STREET CROSSFALL(DEClMAL).. 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF :2
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
I
U-TRAVEL TIME COMPUTED USING ESTIMATED FLOW (eFS) 5.20
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.47
HALFSTREET FLOOD WIDTH (FEET) .. 12.47
AVERAGE FLOW VELOCITY(FEET/SEC.) z 1.89
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.).. 0.90
STREET FLOW TRAVEL TIME(MW.).. 2.80 TC(MIN.) 11.62
10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 2.220
APAR'I1'IENT DEVELOPMENT RUNOFF COEFFICIENT .. .8618
SOIL CLASSIFICATION IS .C.
SUBAREA AREA(ACRES).. 1.30 SUBAREA RUNOFF(CFS) 2.49
TOTAL AREA (ACRES) .. 3.20 PEAK FLOW AATE(CFS) 6.44
I
I
END OP SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.50 HALFSTREET FLOOD WIDTH(PEET).. 14.70
FLOW VELOCITY (FEET/SEC.).. 1. 92 DEPTH*VELOCITY(FT*FT/SEC.)
*NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L"' 318.0 FT WITH ELEVATION-DROP.. 1.9 FT, IS
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00.. 718
0.95
9 CFS,
52.00
.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
52.00 TO NODE
53.00 IS CODE.. 62
I
:>:>:>:>:>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA<<<<<
:>:>:>:>:> (STREET TABLE SECTION'# 1 USED}""",,<
UPSTREAM ELEVATION(FEET).. 24.10 DOWNSTREAM ELEVATION(FEET)
STREET LENG'I'H(FEET).. 170.00 ClJ"RB HEIGHT (INCHES) 4.8
STREET HALFWIPTH (FEET) .. 12.50
23.30
I
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL (DECIMAL).. 0.020
OUTSIDE STREET CROSSFALL (DECIMAL) 0.050
50
I
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
uTRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 6.97
S1~EETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH(FEET) .. 0.52
HALFSTREET FLOOD WIDTH (FEET) .. 16.81
AVERAGE FLOW VELOCITY(FEET/SEC.).. 1.74
PRODUCT OF DEPTH&VELQCITY(FT*FT/SEC.).. 0.90
STREET FLOW TRAVEL TIME(MIN.}.. 1.63 Tc(MIN.} 13.25
10 YEAR RAINFALL INTENSITY (INCH/HOUR) .. :;1:.065
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8595
SOIL CLASSIFICATION IS "Cn
SUBAREA AREA(ACRES}.. 0.60 SUBAREA RUNOFF(CFS) 1.07
TOTAL AREA(ACRES} .. 3.80 PEAK FLOW RATE(CFS} 7.51
I
I
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.53 HALFSTREET FLOOD WIDTH (FEET) .. 17.63
FLOW VELOCITY(FEET/SEC.).. 1.75 DEPTH*VELOCITY(FT*FT/SEC.).. 0.92
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 53.00.. 88S.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
53.00 TO NODE
53.00 IS CODE
S1
>:>:>:>:>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW"""""
I
10 YEAR RAINFALL INTENSITY(INCH/HOUR}.. 2.065
APAR'I1'IENT DEVELOPMENT RUNOFF COEFFICIENT z .8595
SOIL CLASSIFICATION IS .C.
SUBAREA AREA (ACRES) 0.80 SUBAREA RUNOFF(CFS) 1.42
TOTAL ARE:A(ACRES) .. 4.60 TOTAL RUNOFF (CFS) z 93
TC(MIN.}.. 13.25
I
FLOW PROCESS FROM NODE
53.00 TO NODK
55.00 IS CODE.. 31
>>:>:>:>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA"""""
:>:>:>:>:>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW),,<<<<
I
ELEVATION DATA: UPSTREAM(FEET).. 20.30 DOWNSTREAM (FEET) 18.30
FLOW LENGTH(FEET).. 225.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.05
ESTIMATED PIPE DIAMETER(INCH}.. 18.00 NUMBER OF PIPES,", 1
C -7-
c-3
C -Lj
?
I
Printed: 12/1412005
Page 11 of13
I
I
C:\aes2004\hydrosftlratscx\834D1 aoRES
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
~lPE-FLOW(CFS} .. 8.93
PIPE TRAVEL TIME(MIN.) = 0.62 Tc[MIN.}.. 13.87
LONGEST FLOWPATH FROM NODE 50 00 TO NODE 55.00
1113.00 FEET.
(.-5
C-(p
c.-I
#J
I
...................**........................*.........**.....................
FLOI~ PROCESS FROM NODE
55.00 TO NODE
55.00 IS CODE ..
>>>>,.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE""",<"
TOTAL NUMBER OF STREAMS.. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) .. 13.87
RAINFALL INTENSITY(INCH/HR)... 2.01
TOTAL STREAM AREA(ACRES).. 4..60
PEA..';( FLOW RATE (CFS) AT CONFLUENCE.. 8.93
...*...............**.**.....................*.....................................
FLOW PROCESS FROM NODE
53.00 TO NODE
54.00 IS CODE.. 21
>>>>"RATIONAL METHOD INITIAL SUBAREA ANALYSIS"""",,,
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
IT" K*!(LENGTH.*3)/(ELEVATION CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTII(FEET) m 227.00
UPSTREAM ELEVA'I'IOn(FEET).. 25.00
DOWNSTREAM ELEVATION(FEET).. 22.50
ELEVATION DIFFERENCE(FEET) .. 2.50
TC.. 0.323.[( 227.00U3)j( 2.50)J**.2 6.963
10 YEAR RAINF.AI..L INTENSITY(INCH/HOUR).. 2.942
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .B695
SOIL CLASSIFICATION IS "C"
SUBAREA RUNOFF (CFS) .. 1. 2B
TOTAL AREA(ACRES) .. 0.50 TOTAL RUNOFF(CFS) 1.2B
****.**********..........**********************************************.****
FLCrIl' PROCESS FROM NODE
54.00 'TO NODE
55.00 IS CODE.. Bl
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW"""""
10 YEAR RAINF.AI..L INTENSITY(INCHjHOUR).. 2.942
APARnlENT DEVELOPMENT RUNOFF COEFFICIENT .. . B695
SOIL CLASSIFICATION IS .C.
SUBAREA AREA(ACRES) 0.30 SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) "' O.BO TOTAL RUNOFF(CFS) ..
TC(MIN.).. 6.96
0.77
.05
.*****.*************************..*....****..*.*******************************
FLOW PROCESS FROM NODE
54.00 TO NODE
55.00 IS CODE = 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"""""
>>>>>(STREET TABLE SECTION # 1 USED)"""""
UPSTREAM ELEVATION (FEET) 22.50 DOWNSTREAM ELEVATION(FEET)
STREET LENG'I'H(FEET).. 72.00 CURB HEIGHT(INCHES) 4.B
STREET HALFWIDTII (FEET) = 12.50
22.30
DISTANCE FROM CROWN TO CROSSFALL
INSIDE STREET CROSSFALL (DECIMAL)
OUTSIDE STREET CROSSFALL(DECIMAL)
GRADEBREAK (FEET)
0.020
0.050
7.50
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning'S FRICTION FACTOR for StI"eetflow Section(curb-to-c:urb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
uTRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 2.52
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET PLOW DEPTH(PEET) .. 0.44
HALFSTREET FLOOD WIDTH(FEET).. B.72
AVERAGE FLOW VELOCITY(FEET/SEC.)"' 1.29
PRODUCT OF DEPTHr.VELOCITY{FT*FT/SEC.).. 0.56
STREET FLOW TRAVEL TIME(MIN.).. 0.93 Tc(MIN.) 7.B9
10 YEAR RAINFALL INTENSITY(IRCH/HOUR).. 2.746
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. . B67B
SOIL CLASSIFICATION IS "C"
SUBAREA AREA(ACRES).. 0.40 SUBAREA RUNOFF(CFS) 0.95
TOTAL AREA (ACRES) .. 1.20 PEAK FLOW RATE(CFS) 3.00
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.46 HALFSTREET FLOOD WIDTH(FEET) '" 10.71
FLO'II VELOCITY(FEET/SEC.).. 1.2B DEPTH*VELOCITY(FT*FI'/SEC.).. 0.59
LONGEST PLOWPATII FROM NODE 53.00 TO NODE 55.00.. 299.00 FEET.
.***.****.********..*.**.*...".."*."....*".*""..,,.***...***.***.,,***..,,***...*
FLCrIl PROCESS FROM NODE
55.00 TO NODE
55.00 IS CODE "'
1
>>,>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<"""
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES"""""
TOTAL NUMBER OF STREAMS.. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE,
TIME OF CONCENTRATION(MIN.).. 7.a9
RAINFALL INTENSITY(INCHjHR).. 2.75
TOTAL STREAM AREA(ACRES). 1.20
PEAK FLOW RATE(CFS) AT CONFLUENCE .. 3.00
** CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFS)
:1 a.93
.2 3.00
T'
(MIN.)
13.87
7.B9
INTENSITY
( INCH/HOUR)
2.014
2.746
AREA
(ACRE)
4.60
1.20
Printed: 12/14/2005
Page 12 of 13
I
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
C:laes2004\hydrosftlratscx\834D100RES
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR :1: STREAMS.
** PEAK
STRllA>O
.......
1
,
FLOW RATE TABLE H
RUNOFF Tc
(CFS) (MIN.)
9.0B 7.89
11.13 13.87
INTENSITY
( INCH/HOUR)
2.746
2.014
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS I
PEAK FLOW RATE(CFS) 11.13 Tc{MIN.).. 13.97
TOTAL AREA(ACRES) .. 5.90
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 55.00
1113.00 FEET.
..****"."**********************"....***.....**,,.1t*************.....,*******......,,**
FLOW PROCESS FROM NODE
55.00 TO NODE
56.00 IS CODE.. 31
,.,,>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
,.>:>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSUltE FLOW) <<<<<
..--........."..."......==......===..................==..........--...............=====..====....."---,,
ELEVATION DATA: UPSTREAM (FEET) " 18.30 DOWNSTREAM (FEET) 17.50
FLOW LENGTIi(FEETl" 94.00 MANNING'S N _ 0.013
DEPTII OF FLOW IN 21.0 INCH PIPE IS 14.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.).. 6.41
ESTIMATED PIPE DIAMETER(lNCH) .. 21.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) .. 11.13
PIPE TRAVEL TIME(MIN.).. 0.24 Tc(MIN.).. 14.11
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 56.00 1207.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
56.00 TO NODE
56.00 IS CODE.. 13
:>:>:>:>:>CLEAR THE MAIN-STREAM MEMORY<<<<<
END OF STUDY SUMMARY,
ToTAL AREA(ACRES)
PEAK FLOW RATE (CFS)
0.01 TC(MIN.) ..
1.00
5.00
END OF RATIONAL METHOD ANALYSIS
o
1"bt.
Printed: 12/14/2005
Page 13 of 13
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
C:\aes2004\hydrosftlratscx\834D1 DDoRES
****.******..................***.........................""..**.................**........**..
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL" WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
{ei Copyright 1982-2004 Advanced Engineering Software (aes)
(Rational Tabling version 6.00)
Release Date. 01/01/2004 License ID 1264
Analysi6 prepared by:
RBF Consulting
14725 Alton Parkway
Irvine, California 92618
...********.."'*******...*** DESCRIPTION OF STUDY *******************...****
.. Temecula Lane I IN 15-100834
.. IOO-Year Developed Condition
.. dId 12/14/05
*****************..*****.***..***********...*******************************
FILE NAME, 834DIOO.DAT
TIME/DATE OF STUDy, 14,08 12/14/2005
USER SPECIFIED KYDROLQGY AND HYDRAULIC MODEL INFORMATION,
USER SPECIFIED STORM EVEN'I(YEAR).. 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) .. 18.00
SPECIFIED PERCENT OF GRACIENTS(DECIMAL) TO USE FOR FRICTION SLOPE.. 0.90
2-YEAR, I-HOUR PRECIPITATION(INCH) z 0.570
100-YEAR, I-HOUR PRECIPITATION (INCH) z 1.350
COMPUTED RAINFALL INTENSITY DATA,
STORM EVENT.. 100.00 I-HOUR INTENSITY(INCH/HOUR) 1.350
SLOPE OF INTENSITY DURATION CURVE . 0.5500
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE. CONSIDER ALL CONFLUENCE STREAM COMBINATIONS
FOR ALL DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL"
HALF- CROWN TO STREET-CROSSFi\LL, CURB GUTTER-GEOMETRIES, MANNING
WIon! CROSSFALL IN- 1 OUT-/PAR!l> HEIGHT WIon! LIP HIKE FACTOR
NO. (FT) (FT) SIDE 1 SIDEI WAY (PT) (IT) (FT) (FT) (n)
1.12.5
2 18.0
0.020/0.050/0.020 0.40
0.020/0.050/0.020 0.50
1.000.03130.1670.0150
1.500.03130.1250.0150
7.5
13.0
GLOBAL STREET FLOW-DEPTH CONSTRAINTS,
1. Relative Flow-Depth.. 0.50 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of.eurb)
2. (Depth) " (Velocity) Constraint. 6.0 (FT*FT/S)
"SUE PIPE WITH A FLOW CAPACITY GREATER TIiAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. *
+-------------------------------------.------------------------- ----------+
I Subarea A
Single Family Residence - 6" curb street
+--------- --------------------------------------------- ---------------+
*****""*"....,,""""""""***..,,*""""*""*""""""*""""""****""*..""""..""""""*""""""*,,,,
FLOW PROCESS FROM NODE
1.00 '10 NODE
2.00 IS CODE z 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS",,,,,,,,,,,,,
...............~c.........................c.z........=...................z.....=..c...................................:....
ASSUMED INITIAL SUBAREA WIFORM
DEVELOPMENT IS CONDOMINIUM
TC .. K"((LENGTII""3)/(ELEVATION CHANGE)] "".2
INITIAL SUBAREA FLOW-LENG'l'H(FEET): 120 00
UPSTREAM ELEVATION(FEET) m 32.50
DOWNSTREAM ELEVATION(FEET). 30.50
ELEVATION DIFFERENCE (FEET) : 2.00
TC.. 0.359"[( 120.00....3)!( 2.00)).....2 .. 5.529
100 YEAR RAINFALL INTENSITY(INCH!HOUR). 5.010
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8455
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) .. 1.61
TOTAL AREA (ACRES) .. 0.38 TOTAL RUNOFF(CFS) .
f. _\
i'\
1.61
.."..""".."..""........".."....""*.."......"..".."..*.*......"*..........,,......................**.................."".."""
FLOW PROCESS FROM NODE
2.00 TO NODE
3.00 IS CODE.. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA",,,,,,,,,,,,,
>>>>> (STREET TABLE SECTION" #I- :I USED) <<<"'<
.................................................................................................
UPSTREAM ELEVATION(FEET). 30.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) . 223.00 CURB HEIGHT(lNCHES} 6.0
STREET HALFWIDnl(FEET) . 18.00
29.50
p..-1--
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL{DECIMAL). 0.020
OUTSIDE STREET CROSSFALL(OECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL(DECIMALl 0.020
Manning'S FRIc."I'ION FACTOR for Street flow Section(eurb-to-eurb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
13.00
""TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTII(FEET) . 0.39
HALFSTREET FLOOD WIDTH (FEET) . 7 72
AVERAGE FLOW VELOCITY(FEET/SEC.). 1.70
3.60
1/fJ
Printed: 12/14/2005
Page 1 of 13
I
I I
C:\aes2004\hydrosft\ralscx\834D1 OO.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PRODUCT OF DEPTH&VELOCITI(Fr*FT/SEC.)" 0.66
STREET FLOW TRAVEL TIME (MIN.) " 2.18 Tc(MIN.).. 7.71
100 YEAR RAINFALL INTENSITY(INCH!HOUR) " 4.173
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT" . 7726
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES).. 1.23 SUBAREA RUNOFF(CFS) 3.97
TOTAL AREA(ACRES) .. 1.61 PEAK FLOW RATE(CFS) 5.58
END"OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.44 HALFSTREET FLOOD WIDTH (FEET) .. 10.41
FLOW VELOCITY(FEET/SEC.).. 1.81 DEPTH*VELOCITY(FT*Fr/SEC.)" 0.79
LONGEST FLQWPATH FROM NODE 1.00 TO NODE 3.00" 343.00 FEET.
......**......."*"".".***..."****........**."*............"..,,.....................***.
FLOlf PROCESS FROM NODE
4.00 IS CODE.. 62
3.00 TO NODE
:>:>>>:>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA",<<<<
>>>>> (STREET TABLE SECTION # 2 USED) c<<<'"
UPSTREAM ELEVATION (FEET) " 29 50 DOWNSTREAM ELEVATlON(FEET)
STREET LENGTH(FEET).. 650.0Cl CURB HEIGHT(INCHES) 6.11
STREET RALFWIDTH (FEET) . IB .llll
26.40
DISTANCE FROM CROWN TO CROSSFALL
INSIDE; STREET CROSSFALL (DECIMAL)
OUTSIDE STREET CROSSFALL (DECIMAL)
GRADEBREAK (FEET)
0.020
0.050
13.00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning'S FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning'S FRICTION FACTOR for Back~of~Wa.lk Flow Section 0.0150
UTRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 9.59
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.51
HALFSTREET FLOOD WIDTH (FEE:'I').. 13.98
AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.05
PRODUCT OF DEP'rn&VELOCITY(n"n/SEC.). 1.04
STREET FLOW TRAVEL TIME (MIN.).. 5 .29 Tc (MIN.) 13.00
10~ YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.131
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .8494
SOIL CLASSIFICATION IS .C.
SUBAREA AREA(ACRES).. 3.00 SUBAREA RUNOFF(CFS) 7.9B
TOTAL AREA(ACRES) . 4.61 PEAK FLOW RATE(CFS} 13 56
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.55 HALFSTREET FLOOD WIDTH (FEET) 18.75
FLO",; VELOCITY(FEET/SEC.) .. 2.17 DEPTH"VELQCITY(FT"FT/SEC.}.. 1.20
LONGEST FLOW PATH FROM NODE 1.00 TO NODE 4.00.. 993.00 FEET.
.......................................................................................................................................................
FLOW PROCESS FROM NODE
4.00 TO NODE
4.50 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
ELEVATION DATA, UPSTREAM(FEET).. 23.40 DOWNSTREAM (FEET) 23.20
FLO',; LENGTH(FEET).. 20.00 MANNING'S N.. 0.023
DEP'rn OF FLOW IN 21.0 INCH PIPE IS 15.6 INCHES
PIPE-FLOW VELOCITY (FEET/SEe.). 7.07
ESTIMATED PIPE DIAMETER(IRCH} .. 21.00 NUMEER OF PIPES
PIPE-FLOW(CFS).. 13.56
PIPE TRAVEL TIME(MIN.).. 0.05 Tc(MIN.). 13.04
LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.50.. 1013.00 FEET.
...***...................**....**..........*..............*................*.........................................................
FLOW PROCESS FROM NODE
4.50 TO NODE
4.50 IS CODE ..
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
......................................................................:..............................................:..........=...
TOTAL NUMBER OF STREAMS.. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE,
TIMB OF CONCENTRATION(MIN.) .. 13.04
RAINFALL INTENSITY {INCH./HR}. 3 .13
TOTAL STREAM AREA(.ACRES) ~ 4.61
PEAK FLOW RATE(CFS) AT CONFLUENCE. 13.56
.......**....***.....*..**.................*.....................****................*......................**............
FLOW PROCESS FROM NODE
5.00 TO NODE
6.00 IS CODE... 21
>>>>>RATIONAL METHOD INITIJIL SUBAREA ANALYSIS<<<<<
..................................................................................................~....*...............................
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC.. K*{(LENG'I'H""3)/(ELEVATION OiANGE)J.....2
INITIAL SUBAREA FLOW~LENG'I'H(FEET).. 415.00
UPSTREAM ELEVATION (FEET) .. 32.50
DOWNSTRE1\M ELEVATION (FEET) .. 29.20
ELEVATION DIFFERENCE(FEET) .. 3.30
TC.. 0.359.[( 415.00**3)/( 3.30)]**.2
100 YEAR RAINFALL INTENSITY(INCH/HOUR) ..
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT
SOIL CLASSIFICATION IS "E"
SUBAREA. RUNOFF(CFS} .
TOTAL AREA. (ACRES) .
10.531
3.515
. .8277
5.70
1.96
TOTAL RUNOFF(CFS} ..
5.70
......*..............................*********........................****..*....................*......*...*....*.........*.
FLOW PROCESS FROM NODE
6.00 TO NODE
6.00 IS CODE.. 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
.....................................................................................................=..~~..~..~..................
100 YEAR RAINFALL INTENSITY(INCR/aOUR} .. 3.515
t>,-'?
!\:~
'lJP
Printed: 12/14/2005
Page 2 of 13
I
I
C:\aes2004\hydrosftlratscx\834D1 00. RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .7594
SOIL CLASSIFICATION IS nA"
SUBAREA AREA(ACRES) 1.07 SUBAREA RUNOFF (CFS)
TOTAL AREA (ACRES) .. 3.03 TOTAL RUNOFF(CFS) =
TC(MIN.) . 10.53
:2.86
8.56
...."....................................."...........................,,-.......-..........
FLOW PROCESS FROM NODE
4.00 IS CODE.. 62
6.00 TO NODE
>,.,.,.,.COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<",,,,,,,
>>>>> (STREET TABLE SECTION #I 2 USED) <<<<<
UPSTREAM ELEVATION(FEET).. 29.20 DOWNSTREAM ELEVATION (FEET)
STREET LENGTH(FEET).. 543.00 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDnI(FEET) .. 19.00
26.40
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL (DECIMAL).. 0.020
OUTSIDE STREET CROSSFALL (DECIMAL) 0.050
13.00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning' B FRICTION FAcroR for Streetflow Section (curb-to-curbl 0.0150
Manning's FRICTION FAcroR for Back-of-Walk. Plow Section 0.0150
*.*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 11.62
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW:
STREET FLOW DEPTIi(FEET).. 0.53
HALFSTREET FLOOD WIDTH (FEET) .. 16.11
AVERAGE FLOW VELOCITI(FEET/SEC.).. 2.19
PRODUCT OF DEPTH&VELOCITI(FT*FT/SEC.).. 1.15
STREET FLOW TRAVEL TIME(MIN.) c 4.18 TC(MIN.) 14.71
100 YEAR RAINFALL INTENSITY(INCH/KOUR) .. 2.925
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .7450
SOIL CLASSIFICATION IS "Aft
SUBAREA AREA (ACRES) .. 2.80 SUBAREA RUNOFF(CFSl 6.10
TOTAL AREA(ACRES) .. 5.83 PEAK FLOW RATE(CFS) 14.66
END OF SUBAREA STREET PLOW HYDRAULICS:
DEP'l'H(FEET) . 0.56 RALPSTREET FLOOD WIDTR(FEET) .. 19.36
FLOW VELOCITY(FEET/SEC.).. 2.26 DEPTH*VELOCITY(FT*FT/SEC.) 1.27
LONGEST FLOWPATH FROM NODE 5.00 TO NODE 4.00.. 963.00 FEET.
*******.*....................*.....*.......****..*...................................*
FLOW PROCESS FROM NODE
4.50 IS CODE.. 31
4.00 TO NODE
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
ELEVATION DATA: UPSTREAM(FEETJ _ 23.40 DOWNSl'REAM(FEET) 23.20
FLOW LENGI'H{FEET}.. 20.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 21. 0 INCH PIPE 13 16.8 lNCKES
PIPE-PLOW VELOCITY (FEET/SEC. ).. 1.12
ESTIMATED PIPE DIAMETER (1NCH) .. 21.00 NUMBER OF PIPES
PIPE-FLOW(CFS). 14.66
PIPE TRAVEL TIME(MIN.l.. 0.05 Tc(MIN.).. 14.76
LONGEST FLOWPATH FROM NODE 00 TO NODE 4.50 983.00 FEET.
...................................****.***.******.*******..*...****.*...****........*.**.***.
FLOW PROCESS FROM NODE
4.50 TO NODE
4.50 IS CODE. 1
>>>>>DESIGWl.TE INDEPENDENT STREAM FOR CONFLUENCE<c<c<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESc<c<<
TOTAL NUMBER OF STREAMS. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONC'ENTRATION(MIN. 1 "' 14.76
RAINFALL INTENSITY (INCK/HRl.. 2.92
TOTAL STREAM AREA(ACRES} .. 5.83
PEAK FLOW RATE (CFS) AT CONFLUENCE", 14.66
* * CONFLUENCE DATA
STREAM RUNOFF
NUMBER (eFS)
1 13.56
2 14.66
INTENSITY
( INCH/HOUR)
3.125
2.919
AREA
(ACRE)
4.61
5.83
TO
(MIN.)
13 .04
14.76
RAINFALL INTENSITY AND TIME OP CONCEm'RATION RATIO
CONFLUENCE FORMUL1l. USED FOR 2 STREAMS.
** -PEAK
STREAM
NUMBER
1
,
FLOW RATE TABLE **
RUNOFP Tc
(CFS) (MIN.)
26.51 13.04
27.32 14.76
INTENSITY
( INCH/HOUR)
3.125
2.919
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS,
PEAK PLOW RATE(CFS) 27.32: TC(MIN.). 1476
TOTAL AREA (ACRES) .. 10.44
LONGEST FLOWPATH PROM NODE 1.00 TO NODE 4.50
1013.00 FEET.
...*************....****************....**********......******"",,******..*******
FLOW PROCESS FROM NODE
4.00 TO NODE
8.00 15 CODE. 31
>:>>>,.CQMPUTE PIPE-PLOW TRAVEL TIME THRU SUBAREA",<ccc
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) cc<c<
......~.....=.............-...._.._.._."'.....=............__.._.._.==.===========..........--...........
ELEVATION DATA: UPSTREAM (FEET) .. 23.20 DQWNSTREAM(FEET} 20.40
FLOW LENGTH (FEET) .. 325.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.5 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) 8.09
ESTIMATED PIPE DIAMETER(INCH).. 30.00 NUMBER OF PIPES.. 1
A-5
jAJ.9
t\
Printed: 12/14/2005
Page 3 of 13
I
il
C:\aes2004\hydrosftlratscx\834D100.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I.>IPE-FLOW(CFS) '" 27.32
PIPE TRAVEL TIME{MIN.).. 0.67 Tc(MIN.).. 15.43
LONGEST FLOWPATH FROM NODE 1.00 TO NODE B . 00
1338.00 FEET.
***."'..."*******"..................."..."**..,,,,..*******************.**....".....******
FLO\f PROCESS FROM NODE
8.50 IS CODE ..
8.50 TO NODE
,.,.,.,."OESIGNATE INDEPENDENT STREAM FOR CONFLUENCE"""",,,
TOTAL NUMBER OF STREAMS.. :2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE,
TIME OF CONCENTRATlON(MIN.l '" 15.-13
RAINFALL IN'I'ENSITY(INCH/HR) '" 2.35
TOTAL STREAM AREA(ACRES) '" 10.4,1
PEA.l{ FLOW RATE(CFS} AT CONFLUENCE.. 27.32
******"0-"*",,*************..*******,,..*************,,0-,,0-,,...****.........***********
FLOW PROCESS FROM NODE
4.00 TO NODE
21
7.00 IS CODE
,.,.,.,.>RATIONJIL METHOD INITIAL SUBAREA ANALYSIS".:<<.:
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC '" K*[(LENGTHuJ)!(ELEVATION CHANGE)]u.2
INITIAL SUBAREA FLOW-LENGTH{FEET) ~ 256.00
UPSTREAM ELEVATION(FEET) .. 27.40
DOWNSTREAM ELEVATION{FEET) .. 24.90
ELEVATION DIFFERENCE(FEIIT) .. 2.50
TC .. 0.359.[( 256.00U3)/( 2.50)]u.2 8.331
100 YEAR RAINFALL INTENSITY{INCH/HOUR).. .999
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .8590
SOIL CLASSIFICATION IS "C"
SUBAREA RUNOFF(CFS) .. 3.09
TOTAL" AREA (ACRES) .. 0.90 TOTAL RUNOFF(CFS} .. 3.09
.............................................................................
FLOW PROCESS FROM NODE
7.00 TO NODE
7.00 IS CODE.. 81
>>>>>ADDITION OF st.rBJ\REA TO MAINLINE PEAK FLOW"""""
100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.999
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT .. .6590
SOIL CLASSIFICATION IS .C.
SUBAREA AREA(ACRES) 1.76 SUBAREA RUNOFF(CFS)
TOTAL AREA(ACRES) .. 2.66 TOTAL RUNOFF (CFS) ..
TC(MIN.).. B.33
6.05
9.14
....****.*****.......*.......*******...*******.*.*....**...**....***........
FLOW PROCESS FROM NODE
7.00 TO NODE
B.OO IS CODE.. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME ntRU SUBAREA""",,,,,
>>>>>(STREET TABLE SECTION:If 2 USED) """""
UPSTREAM ELEVATION (FEET) .. 25.30 DOWNSTREAM ELEVATION(FEET)
STREET LENQTH(FEET).. 122.00 CURB HEIGHT(INCHES) 6.0
STREET HALFWIDTH (FEET) a 18.00
24.40
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET)
INS.IDE STREET CROSSFALL(DECIMAL) a 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
13.00
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Street flow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
UTRAVEL TIME COMPUTED USING ESTIMATED FLOW (CFS) 9.98
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPT1l(FEET}.. 0.4B
HALFSTREET FLOOD WIDTH (FEET).. 12 .54
AVERAGE FLOW VELOCITY(FEET/SEC.). 2.46
PRODUCT OF DEPT1l&VELOCITY(FT.FT/SEC.) a 1.18
STREET FLOW TRAVEL TIME(MIN.).. 0.83 Tc(MIN.} 9.U
100 YEAR RAINFALL INTENSITY (INCH/HOUR) . 3.796
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT.. .8571
SOIL CLASSIFICATION IS "C.
SUBAREA AREA(ACRES).. 0.52 SUBAREA RUHOFFlCFS) .69
TOTAL AREA(ACRES) .. 3.18 PEAK FLOW RATE(CFS} 10.83
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.49 HALFSTREET FLOOD WIDTH (FEET) .. D.05
FLOW VELOCITY(FEET/SEC.)" 2.50 DEPTII.VELOCITY(FT*FT/SEC.).. 1.23
LONGEST FLOWPATH FROM NODE 4.00 TO NODE 8.00.. 37B.00 FEET.
....**...*..........*.*...............**.........................*..............
FLOW PROCESS FROM NODE
6.00 TO NODE
6.50 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THaU SUBAREA"""""
>>>>>USING COMPtrI'ER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ,,"",,"
ELEVATION DATA, UPSTREAM (FEET) .. 20.60 DOWNSTREAM (FEET) 20.40
PLOW LENGTH(FEET).. 20.00 MANNING'S N.. 0.013
DEPTH OF PLOW IN 21.0 INCH PIPE IS 13.2 INCHES
PIPE-PLOW VELOCITY (FEET/SEC.).. 6.80
ESTIMATED PIPE DIAMETER (INCH) .. 21.00 NUMBER OF PIPES 1
PIPE-FLQW(CFS) _ 10.83
PIPE '!RAVEL TIME{MIN.) _ 0.05 Tc{HIN.).. 9.21
LONGEST F!.OWPATH FROM NODE 4.00 TO NODE 6.50.. 398.00 FEET.
.....*...****.*......................*.**.....**.........................***...*...
FLOW PROCESS FROM NODE
8.50 TO NODE
B.SO IS CODE = 1
~/\
I\./Q
1\,0)
~
Printed: 12/14/2005
Page 4 of 13
I
I
,.,.,.,.>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE",,,,,..,,
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<"..<..
C:\aes2004\hydrosftlratscx\834D1000RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TOTAL NUMBER OF STREAMS '" 2:
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2. ARE,
TIME OF CONCENTRATION(MIN.J.. 9.21
RAINFALL INTENSITY(INCH/HR}.. 3.78
TOTAL S'I'REAM AREA (ACRES) .. 3.18
PEAK FLOW RATE(CFS) AT CON&'LUENCE D 10.83
H CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFSl
1 26.51
1 27.32
2 10.83
INTENSITY
( INCH/HOUR)
3.037
2.849
3.785
AREA
IACRE)
10.44
10.44
3.19
To
(MIN.)
13.74
15.43
9.21
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc
NUMBER (CFS) (MIN.)
1 28.60 9.21
.2 35.20 13.74
.3 35.47 15.43
INTENSITY
( INCH/HOUR)
3.785
3.037
2.849
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEA,.'2;; FLOW RATE(CFS) 35.47 Tc(MIN.).. 1543
TOTAL AREA(ACRES} .. 13 .62
LONGEST FLOWPATI! FROM NODE 1 00 TO NODE 8.50
1338.00 FEET.
*************************************************************.........**....
FLO'.4 PROCESS FROM NODE
ILSO TO NODE
9.00 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA"""""
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) """""
.___"'"'"'".."'""..................."".".."'c""""""""""........"....."""""""""""""""
ELE'VATION DATA: UPSTREAM(FEET}. 20.40 DOWNSTRFJ\M(FEET) 20.00
FLCrIl LENGTH(FEET).. 100.00 MANNING'S N" 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.).. 6.39
ESTIMATED PIPE DIAMETER(INCH) _ 36.00 NUMBER OF PIPES
PIPE-FLOW(CFS) . 35.47
PIPE TRAVEL TIME(MIN.). 0.26 Tc(MIN.)" 15.69
LONGEST FLOWPATB FROM NODE 1.00 TO NODE 9.00 1438.00 FEET.
........**.*...*.......*.*..........*......*.........*...........**.........
FLOW PROCESS FROM NODE
9.00 IS CODE
13
9.00 TO NODE
>>>>>CLEAR THE MAIN-STREAM MEMORY"""""
""""""""."...---....."'''''''''''".".."...---------.----..''"'''''''''""""""""....._----_.".".
+------------------- --------------------------,---------------------------+
I Subarea B
Multi-family units
+-------------------------- --------------------------- -------------------+
**.......*.....***...**********..****..****************"''''*'''***.********...**
FLOW PROCESS FROM NODE
30.00 TO NODE
31.00 IS CODE", 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS"""""
....-...""""."""....------..----..."""""..""""""".--.--...."."""""""""""""""""
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS CONDOMINIUM
TC . K*[(LENGTH**3)/(ELE'VATION CHANGE)]".2
INITIAL SUBAREA FLOW-LENGTH (FEET) _ 325.00
UPSTREAM ELEVATION(FEET) _ 30.30
DOWNSTREAM ELE'VATION(FEET) " 29.50
ELEVATION DIFFERENCE(FEET) .. 0.80
TC _ 0.359*[( 325.00**3}/( 0.80)]**.2.. 12.074
100 YEAR RAINFALL INTENSITY(INCH!HOUR} "' 3.261
CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT. .8511
SOIL CLASSIFICATION IS .C.
SUB.AREA RUNOFF(CFS) " 3.89
TOTAL AREA(ACRES) " 1.40 TOTAL RUNOFF(CFS) _
3.89
.*...*.**.******...*****.***......**********"'''''''*..*..************************
FLOW PROCESS FROM NODE
32.00 IS CODE
"
31. 00 TO NODE
>>>>>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA"""""
>>>>> (STREET TABLE SECTION # 1 USED) ""co::"
""~.~8~_~__K........._.___.____~___...a."...""""""..._._______.K.......""~.""",,.
UPSTREAM ELEVATION(FEBT) K 29.50 DOWNSTREAM ELEVATIQN(FEET)
STREET LENGTH (FEET) . 148.00 CURB HEIGHT(INCHES) 4.8
STREET HALFWIDTH(FEET) . 12.50
28.20
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET) 7.50
INSIDE STREET CROSSFALL(DECIMAL). 0.020
OUTSIDE STREET CROSSFALL (DECIMAL) 0.050
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb)
Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) -. 0.44
HALFSTREET FLOOD WIDTH (FEET) . 9.31
AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.29
4.70
B -\
~ .1--
~
Printed: 12/14/2005
Page 5 of 13
I
I
C:\aes2004\hydrosftlratscx\834D1 00 oRES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PRODUcr OF DEPTH&VELOCITY(FT*FT!SEC.}.. 1.01
STREET FLOW TRAVEL TIME (MIN.).. 1.08 Tc (MIN.) 13 .15
100 YEAR RAINFALL INTENSITY(INCHjHOUR) _ 3.111
APARTMENT DEVlUoOPMENT RUNOFF COEFFICIENT .. .8709
SOIL CLASSIFICATION IS "CO
SUBAREA AREA(ACRES)", 0.60 SUBAREA RUNOFF(CPS} 1.63
TOTAL AREA(ACRES} .. 2.00 PEAK FLOW RATE(CFS) 5.51
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) .. 0.46 HALFSTREET FLOOO WIDTH (FEET) .. 11.06
FLO\'l VELOCITY(FEET/SEC.).. :2.28 DEPTH*nwCITY(F1'o-FT/SEC.) 1.05
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 32.00.. 473.00 FEET.
***".........*........**...****....**...."...**..**........,,,",...................*.....
FLOW PROCESS FROM NODE
32.00 TO NODE
33.00 IS CODE _ 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA"""""
>>>>> (STREET TABLE SECTION # 1 USED}<.:<<"
UPSTREAM ELEVATIQN(FEET}.. 28.20 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) .. 445.00 CURB HEIGHT(INCHES) 4.8
STREET HALFWIDTH(FEET) a 12.50
25.80
DISTANCE FROM CROWN TO CROSSFALL
INSIDE STREET CROSSFALL (DECIMAL)
OUTSIDE STREET CROSSPALL (DECIMAL)
GRADEBREAX (PEET)
0.020
0.050
7.50
SPECIPIED NUMBER OP HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflo.,., Section(curb-to-curb)
Hamling's FRIC"rION FACTOR for Back-of-Walk PIa.,., Section 0.0150
0.0150
.:"TRAVEL TIME COMPtn'ED USING ESTIMATED FLOW(CFS) 8.43
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH(PEET).. 0.53
HALFSTREET FLOOD WIDTH(FEET).. 18.10
AVERAGE FLOW VELOCIT'/(FEET/SEC.).. 1.89
PRODUCT OF DEPTHr.VELOCITY(FT.FT/SEC.)" 1.00
STREET FLOW TRAVEL TIME(MIN.).. 3.93 Tc(MIN.) 17.08
100 YEAR RAINFALL INTENSITY(INCH/HOUR) .. 2.695
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8673
SOIL CLASSIPICATION IS "C"
SUBAREA AREA(ACRES).. 2.50 SUBAREA RUNOFF(CFS) 5.84
TOTAL AREA(ACRES) .. 4.50 PEAK FLOW RATE(CFS) 11.35
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.56 HALFSTREET FLOOD WIDTH (FEET) "' 20.49
FLOW VELOCITY(FEET/SEC.).. 2.02 DEPTH.VELOCITY(Fr.FT/SEC.) 1.13
.NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L.. 445.0 F7 WITH ELEVATION-DROP.. 2.4 FT, IS 7.7 CFS,
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACIT'/ AT NODE 33.00
LONGEST FLOWPA'I'H FROM NODE 30.00 TO NODE 33.00 a 918.00 FEET.
.................................................***........................*.....
FLOW PROCESS FROM NODE
33.00 TO NODE
33.00 IS CODE" 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW,,<<<<
100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 2.695
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8673
SOl[, CLASSIFICATION IS "C.
SUBAAEA AREA (ACRES) 1.20 SUBAREA RUNOFF(CFS) 2.80
TOTAL AREA(ACRES) .. 5.70 TOTAL RUNOFF(CFS) c 14.16
TC(MIN.) .. 17.08
*....*....*...........................*.*..*.....**.......*.*...............
FLQi'I PROCESS FROM NODE
34.00 IS CODE.. 62
33.00 'TO NODE
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>(STREET TABLE SECTION # 1 USED)<<<<<
UPSTREAM ELEVATION(FEET).. 25.80 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET).. 143.00 CURB HEIGHT(INCHES) 4.8
STREET HALFWIDTH(FEET) .. 12.50
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX(FEET) 7.50
INSIDE STREET CROSSFALL (DECIMAL)" 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
24.60
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRIC"rION FACTOR for Streetflow Sectlon(curb-to-curb)
Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
0.0150
..TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 14 .61
..*STREET FLOWING FULL*.. '
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET PLOW DEPTH(FEET).. 0.56
HALFSTREET FLOOD WIDTH (FEET) .. 20.68
AVERAGE FLOW VELOCITY(FEET/SEC.).. 2.53
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.).. 1.43
STREET FLOW TRAVEL TIME(MIN.).. 0.94 Tc(MIN.) 18.02
100 YEAR RAINFALL INTENSIT'/(INCH/HOUR) .. 2.616
APARTMENT DEVELOPMENT RUNOFF COEPFICIENT .. .8665
SOIL ClASSIFICATION IS .C.
SUBAREA AREA(ACRES}.. 0.40 SUBAREA RUNOFF(CFS) 0.91
TOTAL AREA(ACRES) .. 6.10 PEAK FLOW RATE(CFS) 15.06
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) '"' 0.57 HALFSTREET FLOOD WIDTH (FEET) .. 20.80
FLOW VELOCIT'/(FEET/SEC.)"' :2.56 DEP'I'H.VELOCITY(FT.FT/SEC.) 1.45
LONGEST FLQWPATH FROM NODE 30.00 TO NODE 34.00.. 1061.00 FEET.
6-)
\3A
lJ-~
?;P
Printed: 12/14/2005
Page 6 of 13
I
I
C:\aes2004\hydrosftlratscx\834D100.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
....*........****............****..*****.......**...****....................................".
FLOW PROCESS FROM NODE
34.00 TO NODE
38.00 IS CODE a 31
>>>>>COMPUTE PIPE.FLOW TRAVEL TIME THRU SUBAREA<c<<<
>>>,,>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<:<<
-------------------------..===-=---..------.-------------...------...---------
ELEVATION DATA, UPSTREAM (FEET) " 21.60 DOWNSTREAM(FEET) 18.60
FLOW LBNGTH(FEET).. 505.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.0 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.).. 5.97
ESTIMATED PIPE DIAMETER(INCH).. 24.00 NUMBER OF PIPES 1
PIPE-FLQW(CPS).. 15.06
PIPE TRAVEL TIHE(MIN.).. 1.41 Tc(MIN.).. 19.43
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 38.00.. 1566.00 FEET.
.....................**......***.................*...................................................................
FLOW PROCESS FROM NODE
38.50 TO NODE
38.50 IS CODE.
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
..cc==c===.~...~~__......_____._.___=.________..==._=...._c====.____.___.___
TOTAL NUMBER OF STREAMS ~ 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE,
TIME OF CONCENTRATION(MIN.) _ 19.~3
RAInFALL INTENSITY(INCH/HR) _ 2.51
TOTAL STREAM AREA(ACRES) _ 6.10
PEAK FLOW RATE(CFS) AT CONFLUENCE _ 15.06
*****.*******************..*..********-**-***********..*******.******....********
FLOW PROCESS FROM NODE
35.00 TO NODE
36.00 IS CODE.. 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
-----.--...--------------.----.---..--===.-----...---------------.-----.....
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARThlENT
TC.. K*[(LENG'nI"*3)/(ELEVATION CHANGE))"'.2
INITIAL SUBAREA FLOW-LENGTH(FEET) - 590.00
UPSTREAM ELEVATION{FEET) . 31.00
DOWNSTREAM ELEVATION(FEET) _ 24.60
ELEVATION DIFFERENCE(FEET) .. 6.40
TC = 0.323* I( 580_00"'3}/( 6.40)]"'.2 10 130
100 YEAR RAINFALL INTENSITY (INCH/HOUR) _ 3.591
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT" .9743
SOIL CLASSIFICATION IS .C"
SUBAREA RUNOFF(CFS) _ 6.28
TOTAL AREA(ACRES) .. 2.00 TOTAL RUNOFF(CFS) 6.28
.......*....*..**...................................**....*...................*......................................
FLO'/f PROCESS FROM NODE
36.00 TO NODE
37.00 IS CODE. 62
>>>>>COMPUTE STREET FLOW TRJl.VEL TIME THRU SUBAREA<<<<<
>>>>> (STREET TABLE SECTION" 1 USED) <<<<<
_..=..====_===___..._____=________._~_....._."c_==_______._..____===_____.___
UPSTREAM ELEVATION(FEET}. 24 60 DOWNSTREAM ELEVATION (FEET)
STREET LENG'I'H(FEET) _ ~70.00 CURB HEIGHT (INCHES) 4.8
STREET HALFWIDTH(FEET) ~ 12.50
DISTANCE FROM CROWN TO CROSSF.ALL GRADEBREAK(FEET) 7.50
INSIDE STREET CROSSF.ALL(DECIMAL) _ 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
21.60
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRICTION FACTOR for St:reet:t1ow Section(curb-t:o-curb) 0.0150
Manning's FRICTION FACTOR for Back-at-Walk Flow Section 0.0150
..TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 8.24
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) _ 0.52
H,M,FSTREET FLOOD WIDTH (FEET) .. 16.92
AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03
PRODUCT OF DEPTII;.VELOCITY(FT"FT/SEC.) _ :1..05
STREET FLOW TRAVEL TIME(MIN.) _ 3.85 Tc(MIN.) :1.3.98
100 YEAR RAINFALL INTENSITI(INCH/HOUR) _ 3.008
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT _ .870:1.
SOIL CLASSIFICATION IS "CO
SUBAREA AREA(ACRES) _ 1.50 SUBAREA RUNOFF(CFS) 3.93
TOTAL AREA (ACRES) .. 3_50 PEAK FLOW RATE(CFS) :1.0.20
END OF SUBAREA STREET FLOW HYDRAULICS.
DEPTH (FEET) _ 0.54 HALFSTREET FLOOD WIDTH (FEET) .. 19.27
FLOW VELOCITY(FEET/SEC.) _ 2.08 DEPTH*VELQCITY(FT*FT/SEC.) 1.13
.NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L _ 470.0 FT WITH ELEVATION-DROP" 3.0 FT, IS 4.6 CFS,
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 37.00
LONGEST FLOWPATH FROM NODE 35.00 TO NODE 37.00. 1050.00 FEET.
.................................................................................*.......................*..............
FLOW PROCESS FROM NODE
37.00 'IO NODE
38.00 IS CODE _ 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
._-_.~.----_..._.._...__.._~-~_._.._.._---=_.._~-_.---_._,,_.._-----~---_..__._----
100 YEAR RAINF.ALL INTENSITY (INCH/HOUR) _ 3.008
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .870:1.
SOIL CLASSIFICATION IS .C"
SUBAREA AREA(ACRES) 2.00 SUBAREA RUNOFF(CFS) 5.23
TOTAL AREA(ACRES) _ 5.50 TOTAL RUNOFF(CFS). 15.44
TC(MIN.) _ J.3.98
.......................................*.....................*..................................................*.........*...*.
FLOW PROCESS FROM NODE
38.00 'IO NODE
38.50 IS CODE. 31
g-w
b.1
\j-'6
'7"
Printed: 12/14/2005
Page 7 of 13
I
I
>>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<",,,,,,,<<
>>>>>USING COMPUTER-ESTIMATED PtPESIZE (NON-PRESSURE FLOW) c<<:<<
C:\aes2004\hydrosft\ratscx\834D1 000 RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ELEVATION DATA. UPSTREAM (FEET) .. 18.70 DOWNSTREAM (FEET) 18.60
FLOW LENGTB(FEET).. 20.00 MANNING'S N.. 0.013
DEP'nI OF FLOW IN 27.0 INCH PIPE IS 17.3 INCHES
PIPE-FLOW VELQCITY(FEET/SEC.l.. 5.73
ESTIMATED PIPE DIAMETER(INOl).. 2".00 NUMBER OF PIPES 1
PIPE-FLOW{CFS).. 15.44
PIPE TRAVEL TIME(MIN.}.. 0.06 Te(HIN.).. 14.04
LONGEST FLQWPATB PROM NODE 35.00 TO NODE 38.50 1070.00 FEET.
*******......***...*....................,,*****...**.***.........*.."....,...,..."..""...
FLOU PROCESS FROM NODE
38.50 TO NODE
38.50 IS CODE ..
>>>>>OESIGNATE INDEPENDENT STRE1\M FOR CONFLUENCE""",,,,<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES",,,,,,,,,
TOTAL NUMBER OF STREAMS.. :2
CON?'LUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.).. 14.04
RAINFALL INTENSITY(INCH/HR) c 3.00
TOTAL STREAM AREA(ACRES).. 5.50
PEA.., FLOW RATE(CFS) AT CONFLUENCE.. 15.44
*. CONFLUENCE DATA
STREAM RUNOFF
NUMSER (CFS)
.1 15.06
2 15.44
INTENSITY
( INCH/HOUR)
2.510
3.001
AREA
(ACRE)
6.10
5.50
To
(MIN.)
19.43
14.04
RAINFALL INTENSITY AND TIME: OF CONCENTRATION RATIO
CONFLUENCE FORMUlA USED FOR 2 STRlYIMS.
** PEAK
STREAM
NUMBER
.l
,
FLOW RATE TABLE **
RUNOFF Tc:
(CFS) (MIN.)
26.32 14.04
27.9B 19.43
INTENSITY
(INCH/HOUR)
3.001
2.510
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS,
PEAK FLOW RATE(CFS) 27.9B Te(MIN.).. 19.43
TOTAL AREA(ACRES).. 11.60
LONGEST FLQWPAnI FROM NODE 30.00 TO NODE 3B.50
1566.00 FEET.
..***.............*..*......*..........*..**...........................................*.........**.......**...**............................
FLOW PROCESS FROM NODE
39.50 IS CODE.. 31
38.50 TO NODE
,.,.,.,.,.COMPU'!'E PIPE-FLOW TRAVEL TIME THRU SUBAREA<,,<<<
,.,.,.,.,.USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
ELEVATION DATA, UPSTREAM(FEET).. 18.60 DOWNSTREAM (FEE'r) 17.60
FLOW LENGTH(FEET).. 160.00 MANNING'S N.. 0.013
DEPTI! OF FLOW IN 30.0 INCH PIPE IS 22.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.).. 7.10
ESTIMATED PIPE DIAMETER(INCH).. 30.00 NUMBER OF PIPES
PIPE-FLOW (CPS).. 27.98
PIPE TRAVEL TIME(MIN.).. 0.3B TC:(MIN.).. 19.81
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 39.50 1726.00 FEET.
............................................**..*............................................**......******....**..........
FLOW PROCESS FROM NODE
39.50 IS CODE ..
39.50 TO NODE
,.,.,.,.,.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS.. .3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION (MIN .).. 19.81
RAINFALL Im'ENSITY(INCH/HR).. 2.48
TO'J'M, STREAM AREA (ACRES) c 11.60
PEAK FLOW RATE (CFS) AT CONFLUENCE.. 27.98
..****....**....***..*...........................................*..*..****....................................***......**..*.
FLOW PROCESS FROM NODE
41.00 IS CODE.. 21
40.00 TO NODE
,.,.,.,.,.RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC.. X" [(LENGTII""3)/(ELEVATION CHANGE) 1"*.2
INITIAL SUBAREA P'LOW-LENG'I'H(FEET}.. 301.00
UPSTREAM ELEVATION(FEET) .. 26.70
DOWNSTREAM ELEVATION(FEET).. 24.30
ELEVATION DIFFERENCE(FEET) .. 2.40
TC.. 0.323*[( 301.00""3)/( 2.40)}"".2
100 YEAR RAINFALL INTENSITY(INCH/HOUR) ..
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT ..
SOIL CI.ASSIFICATION IS "S.
SUBAREA RUNOFF(CFS) ..
TOTAL AREA (ACRES) ..
8.316
4.003
.8627
4.14
1.20
TOTAL RUNOFF (CFS)
4.14
....*............*...*********.............................*..........*..**********......*.................................
FLOW PROCESS FROM NODE
42.00 IS CODE.. 62
41.00 TO NODE
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA..<<<<
>,.,.,.,.(STREET TABLE SECTION # 1 USED)<<<....
UPSTREAM ELEVATION[FEET).. 24.30 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) .. 473.00 CURB HEIGHT(INCHES) 4.8
STREET HALFWIDTH(FEET) .. 12.50
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) 7.50
21.50
\3-0)
'O-\D
~
Printed: 12/14/2005
Page 8 of 13
I
I
INSIDE STREET CROSSFALL(DECIMAL).. 0.020
OUTSIDE STREET CROSSFALL(DEClMAL) 0.050
C:\aes2004\hydrosftlratscx\834D1000RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SPECIFIED NUMBER OF HALFSTREE'I'S CARRYING RUNOFF 2
STREET PARXWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACTOR for StreetflO'ol Section(curb-to curb}.. 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
""*TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) 7.32
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.51
HALFSTREET FLOOD WIDTH (FEET) .. 16.10
AVERAGE FLOW VELOCITY(PEET/SEC.).. 1.93
PRODUCT OF DEPTII&VELOCITY(F'I'*F'I'jSEC.l" 0.99
STREET FLOW TRAVEL TIME(MIN.).. ~.07 TC(MIN.) 12.39
100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.215
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .B55B
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) .. 2.30 SUBAREA RUNOFF(CPS) 6.33
TOTAL AREA(ACRES) .. 3.50 PEAK FLOW RATE(CFS) 10.47
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) .. 0.55 HALFSTREET FLOOD WIDTH(FEET).. 19.94
FLOW VELOCITY(FEET!SEC.}.. 2.02 DEPTH.VELOCITY(FT.FT!SEC.) 1.11
"NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L.. 473.0 FT WITH ELEVATION~DROP.. 2.8 FT, IS .9 CFS,
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE 42.00
LONGEST FLOWPATH FROM NODE 40.00 TO NODE 42.00.. 774.00 FEET.
........................................................................................................................................
FLO'" PROCESS FROM NODE
-42.00 TO NODE
39.50 IS CODE"' 31
B-ID
\)-, \
.'l_I"J...-
o
?fr
I
>>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA....",,,,,,,
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) "'''''''''''''
ELEVATION DATA, UPSTREAM (FEET) .. 18.50 DOWNSTREAM (FEET) 17.10
FLQ'" LENGTH(FEET).. 140.00 MANNING'S N.. 0.013
DEPTII OF FLOW IN 21. 0 INCH PIPE IS 12.9 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.).. 6.75
ESTIMATED PIPE DIAMETER(INCH).. 21.00 NUMBER OF PIPES
PIPE-FLOW(CFS) .. 10.47
PIPE TRAVEL TIME(MIN.)", 0.35 Tc(MIN.).. 12.7-4
LONGEST FLOWPATH FROM NODE 40 00 TO NODE 39.50 91-4.00 FEET.
.................*****....*****..*********..*.*.................................................*......*.
FLOW PROCESS FROM NODE
39.50 IS CODE = 1
39.50 TO NODE
>>>>>DESIGNA.TE INDEPENDENT STREAM FOR CONFLUENCE....",....
TOTAL NUMBER OF STREAMS.. 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE,
TIME OF CONCENTRATION(MIN.).. 12.7-4
RAINFALL INTENSITY (INCH!HR).. 3.17
TOTAL STREAM AREA (ACRES) .. 3.50
PEAK FLOW RATE(CFS) AT CONFLUENCE.. 10.47
FLOW PROCESS FROM NODE
43.00 Tv NODE
-44.00 IS CODE.. 21
>>,.>,.RATIONAL METHOD INITIAL SUBAREA ANALYSIS",,,,,,,,,,<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC.. K*[(LENGTH*"'3)/(ELEVATION CHANGE)J*"'.2
INITIAL SUBAREA FLOW-LENGl1{(FEET).. 260.00
UPSTREAM ELEVATION(FEET).. 22.40
DOWNSTREAM ELEVATION(FEET).. 21.50
ELEVATION DIFFERENCE(FEET) = 0.90
TC.. 0.323*!( 260.00*"'3)/( 0.90)J*"'.2 9 267
100 YEAR RAINFALL INTENSITY (INCH/HOUR) .. 3.771
ApARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8753
SOIL CLASSIFICATION IS "C.
SUBAREA RUNQFF(CFS) .. 1.98
TOTAL AREA(ACRES) .. 0.60 TOTAL RUNOPF(CPS) 1.98
.........*.........****....**.....**.**.*...*...........................................*..*********
FLOW PROCESS FROM NODE
39.00 IS CODE = 62
44.00 TO NODE
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<",<
>>>>>(STREET TABLE SECTION # 1 USED) <<<<<
UPSTREAM ELEVATION (FEET) .. 21 50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET).. 108.00 CURB HEIGHT(INCHES) .. 4.8
STREET HALFWIDTH(FEET} .. 12.50
21.10
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL).. 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
7.50
SPECIFIED NllMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSPALL(OECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Plow Section 0.0150
"."TRAVEL TIME COMPUTED USING ESTIMATED FLOW (CPS)
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.43
HALFSTREET FLOOD WIDTH (FEET).. 8.02
AVERAGE FLOW VELOCITY(PEET/SEC.) '"
PRODUCT OF DEPTH&VELOCITY(FT"FT/SEC.)
STREET FLOW TRAVEL TlME(MIN.).. 1.20
100 YEAR RAINFALL INTENSITY (INCH/HOUR)
2.74
1.50
0.64
Tc(MIN.)
3.526
10.47
Printed: 12/14/2005
Page 9 of 13
I
I
C:\aes2004\hydrosfllratscx\834D100.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8588
SOIl. CLASSIFlCA.TION IS ~B.
SUBAREA AREA(ACRES}.. 0.50 SUBAREA RUNOFF(CFS}
TOTAL AREA(ACRB.S) = 1.10 PEAK FLOW RATE(CFS)
1.51
3.49
13 -\ 2.
1? .- I:?
?i'
I
END OF SUBAREA STREET FLOW HYDRAULICS:
DEPTH (FEET) .. 0.46 HALFSTREET FLOOD WIDTH (FEET) .. 10.83
FLOU VELOCITY(FEET/SEC.)" 1.48 DEPTH*VELOCITY(F"I'*FT/SEC.).. 0.68
LONGEST FLQWPATH FROM NODE 43.00 TO NODE 39.00.. 36B.00 FEET.
..........**............*****..............****.........****...."...**.....**..
FLOW PROCESS FROM NODE
39.00 TO NODE
39.00 IS CODE c 81
>>>>>ADDITION OF SUBAREA TO MAINLIIl'E PEAK FLOW"""""
100 YEAR RAINFALL INTENSITY (INCH/HOUR).. 3.526
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8739
SOIL CLASSIFlCA.TION IS .C.
SUBAREA AREA(ACRES) 0.50 SUBAREA R1,JNOFF(CFS)
TOTAL AREA(ACRES) .. 1.60 TOTAL RUNOFF(CFS) =
TC(HIN.) .. 10.47
1.54
.04
..**...**.......................*.,......,,,,,.....................*............*...
FLOlf PROCESS FROM NODE
39.00 TO NODE
39.00 IS CODE
>>>>>DESIGN1>.TE INDEPENDENT STREAM FOR CONFLUENCE<<<c<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STRElIM VALUES"""""
TOTAL NUMBER OF STREAMS.. 3
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE,
TIME OF CONCENTRATION(MIN.) " 10.-17
RAINFALL INTENSITY (INCH/HR) .. 3.53
TOTAL STREAM AREA(ACRES) .. 1.60
PEAK FLOW RATE (CFS) AT CONFLUENCE.. 5.04
U CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFS)
1 26.32
1 27.98
2 10.47
3 5.04
Tc
(MIN.)
14.42
19.81
12.74
10.47
INTENSITY
( INCH/HOUR)
2.957
2.484
3.166
3.526
AREA
(ACRE)
11.60
11.60
3.50
1-60
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOll. 3 STREAMS.
.. PEAK
STREAM
NUMBER
1
"
"
,
FLOW RATE TABLE ..
RUNOFF Tc
(CFS) (MIN.)
32.76 10.47
38.24 12.74
40.33 14.42
39.74 19.81
INTENSITY
( INCH/HOUR)
3.526
3.166
2.957
2.484
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS,
PEAK FLOW RATE(CFS) 40.33 Tc(MIN.) "
'I'OTJU. AREA(ACRES) '"' 16.70
LONGEST FLQWPA'm FROM NODE 30.00 TO NODE
14 .42
39.00
1726.00 FEET.
FLOW PROCESS FROM NODE
39.50 TO NODE
45.00 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME 'mRU SUBAREA"""""
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<"
ELEVATION DATA, UPSTREAM (FEET) .. 17.10 DOWNSTREAM (FEET) 16.50
FLOl~ LENGTH (FEET) '"' 140.00 MANlHNG'S N '"' 0.013
DEPnI OF FLOW IN 36.0 INC:-{ FIPE IS 28.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.).. 6.68
ESTIMATED PIPE DIAMETER(INCH) .. 36.00 NUMBER OF PIPES l'
PIPE-FLQW(CFS).. 40.33
PIPE TRAVEL TIME(MIN.) '"' 0.35 TC(MIN.) " 14.77
LONGEST FLOWPATH FROM NODE 30.00 TO NODE 45.00 1866.00 FEET.
FLOI'l PROCESS FROM NODE
40.00 TO NODE
40.00 IS CODE.. 13
>>>>>CLEAR nIE MAIN-STREAM MEMORY""",,<
+--------------------------------------------------------------------------+
I subarea C
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ - ~. - -. ~ - - - --. *... - - - ~ - - - -. - ~ ~ ~ ~ ~ - ~ - ~ ~ ~ - +
....................................".,......................,................
FLOli PROCESS FROM NODE
51-DO IS CODE.. 21
50.00 TO NODE
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS"""""
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC.. j{.[{LENGTH..3)/(ELEVATION CHANGE) '...2
INITIAL SUBAREA FLOW-LENG'I'H(FEET) D 400.00
UPSTREAM In.eVA'rION(PEET).. 30.:l0
DOWNSTREAM ELEVATION(FEET} .. 26.00
ELEVATION DIFFERENCE{FEET) .. 4.20
TC .. 0.323.[{ 400.00**3)/( 4.20)]u.2
100 YEAR RAINFALL INTENSITY (INCH/HOUR) ..
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT ..
SOIL CL1l.SSIFICATION IS "A"
B.818
3.876
.8240
Printed: 12/14/2005
Page 10 of 13
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
6.07
1.90
C:\aes2004\hydrosftlratscx\834D1 00. RES
C. -I
SUBAREA RUNOFF(CFSl ..
TOT>.L AREA (ACRES) ..
TOTAL RUNOFF(CFS} ..
6.07
c. - 1.-
c.'''?
c-' 1-\
~
I
FLOW PROCESS FROM NODE
51.00 TO NODE
5;2.01) IS CODE = 62
>>:>",.COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA"....<",
>>>>>(STREET TABLE SECTION # 1 U530)<<<<<
UPSTREAM ELEVATION(FEET).. 26.00 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH (FEET) .. 318.00 CURB HEIGHT(INCHES) 4.8
STREET HALFWIDTH(FEET) .. 12.50
24.10
DISTANCE FROM CROWN TO CROSSFALL
INSIDE STREET CROSSFALL{DEClMAL)
OUTSIDE STREET CROSSFALL(DEClMAL)
Gll.ADEBREAX(FEET)
0.020
0.050
7.50
SPECIFIED NUMBER OF IV.LFSTREETS CARRYING RUNOFF
STREET PARKWAY CROSSFALL(DEClMAL) 0.020
Manning's FRICTION FACI'OR for Streetflow Section (curb-to-curb) O. 01S0
Manning's FRICTION FACTOR for Back-of-Walk Plow Section 0.0150
**TRAVEL TIME COMPUTED USING ESTIMATED FLQW(CFS) 7.97
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET).. 0.52
HALFSTREET FLOOD WIDTH (FEET).. 16.92
AVERAGE FLOW VEWCITY(FEET/SEC.).. 1.97
PRODUC"I' OF DEPTH&VELOCITY(FT*FT/BEC.).. 1.02
STREET FLOW TRAVEL TIME(MIN.}.. 2.70 Tc(MIN.) 11.51
100 YEAR RAINFALL INTENSITY(INCH/HOUR) .. 3.347
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8727
SOIL CLASSIFICATION IS fiC.
SUBAREA AREA (ACRES) " 1.30 SUBAREA RUNOFF(CFS) 3.80
TOTAL AREA(ACRES) .. 3.20 PEAK FLOW RATE(CFS} 9.86
END OP SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) .. 0.54 HALFSTREET FLOOD WIDTH (FEET) .. 19.27
FLOW VELOCITY(PEET/SEC.) .. 2_01 DEPTH*VELOCITY(FT*FT/SEC.)
*NOTE, INITIAL SUBAREA NOMOGRAPH WITH SUBAREA PARAMETERS,
AND L.. 318.0 FT WITH ELEVATION-DROP.. 1.9 FT, IS
WHICH EXCEEDS THE TOP-OF-CURB STREET CAPACITY AT NODE
LONGEST FLOWPATH FROM NODE 50.00 TO NODE 52.00.. 718
1.09
4.4 CFS,
52.00
00 FEET.
PLOlf PROCESS FROM NODE
52.00 TO NODE
53.00 IS CODE.. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME 'I'HRU SUBAREA",,,,,,,,,,,,,
>>>>> (STREET TABLE SECTION" 1 USED) <<<<<
UPSTREAM ELEVATION(FEET).. 24.10 DOWNSTREAM ELEVATION(FEET}
STREET LENGTH (FEET) .. 170.00 CUl<B HEIGHT(1NCHES) 4.8
STREET HALFWIDTII(FEET) .. 12.50
23.30
DISTANCE PROM CROWN TO CROSSFALL
INSIDE STREET CROSSFALL (DECIMAL)
OUTSIDE STREET CROSSFALL (DECIMAL)
GRADEBREAX (FEET)
0.020
0_050
7.50
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFP 2
STREET PARKWAY CROSSFALL(DECIMAL) 0.020
Manning's FRIC"I'ION FACTOR for Streetf10w Section(curb-to-curb} 0.0150
Manning's FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
UTRAVEL TIME COMPUTED USING ESTIMATED PLOW(CFS) 10.68
"""STREET FLOWING FULL"".
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) .. 0.56
HALFSTREET FLOOD WIDTH (FEET)., 20.55
AVERAGE PLOW VELOCITY(PEET/SEC.)" 1.88
PRODUCT OF DEPTH&VELOCITY(FT.FT/SEC.}.. 1.06
STREET FLOW TRAVEL TIME(MIN.).. 1.50 Tc(MIN.) 13.02
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = .3 .128
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .. .8711
SOIL CLASSIFICATION IS "C"
SUBAREA AREA(ACRES).. 0.60 SUBAREA RUNOFF(CFS) 1 63
TOTAL AREA(ACRES) .. 3.80 PEAK FLOW RATE(CFS) 11.50
END OF SUBAREA STREET FLOW HYDRAULICS,
DEP'I'H(FEET) .. 0.57 HALFSTREET FLOOD WIDTII(FEET).. 20.86
FLO~ VELOCITY (FEET/SEC.) .. 1.94 DEPTH*VELOCITY (FT.FT/SSC.) 1.10
LONGEST FLCWPATH FROM NODE 50.GO TO NODE 53.00.. 888.00 FEET.
PLOH PROCESS FROM NODE
53.00 TO NODE
53.00 IS CODE.. 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW",,,,,,,<,,,
lOG YEAR RAINFALL INTENSITY (lNCH/HOUR) .. 3.128
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8711
SOIL CLASSIFICATION IS .C.
SUBAREA AREA(ACRES) 0.80 SUBAREA RUNOFF(CFS) 2_18
TOTAL ARE14.(ACRES) .. 4.60 TOTAL RUNOFF(CFS).. 13.68
TC(MIN.),. 13.02
PLQ"fi' PROCESS FROM NODE
53.00 TO NODE
55.00 IS CODE.. 31
>>>>>COMPUTE PIPE-PLOW TRAVEL TIME 'I'HRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE PLQW)<<",<<
ELEVATION DATA, UPSTREAM (FEET) . 20.30 DOWNSTREAM (FEET)
FLOW LENGTH(FEET} 225.00 MANNING'S N.. 0.013
DEPTH OF PLOW IN 21.0 INCH PIPE IS 16.6 INCHES
18.30
Printed: 12/14/2005
Page 11 of13
I
I
C:\aes2004\hydrosftlratscx\834D100.RES
I
I
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
PIPE-FLOW VELOCITY(FEET/SEC.l" 6.71
ESTIMATED PIPE DIAMETER(INCH) ., 21.00 NUMBER OF PIPES
PIPE-FLQW(CFS) ., 13.68
PIPE TRAVEL TIME(MIN.).. 0.56 Tc(MIN.).. 13.58
LONGEST FLOWPA'I1I FROM NODE 5000 TO NODE 55.00 1113.00 FEET.
**"........................................................*"........................................""..................
FLO'i1 PROCESS FROM NODE
55.00 TO NODE
55.00 IS CODE ..
",,>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE..""""
TOTAL NUMBER OF STREAMS.. :2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE,
TIME OF CONCENTRATION(MIN.).. 13.58
RAINFALL INTENSITY(INCHfHR).. 3.06
TOTAL STREAM AREA(ACRES}.. 4.60
PEAK FLOW RATE (CFS) AT CONFLUENCE.. 13.68
...............",....."...................................................................**.."'..............
FLOli PROCESS FROM NODE
53.00 TO NODE
54.00 IS CODE.. 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<cc
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT 15 APARTMENT
TC.. K.[(LENGTH**3)!(ELEVATlON CHANGE)] **.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 227.00
UPSTREAM ELEVATION(FEET) . 25.00
DOWNSTREAM ELEVATION(FEET)" 22.50
ELEVATION DIFFERENCE{PEET) " 2.50
TC,. 0.323.!( 227.00**3)!( 2.S0)}**.2 6.963
10-) YEAR RAINFALL INTENSITY(INCH!HOUR) . 4.413
APA.'l.TMEN'I' DEVELOPMENT RUNOFF COEFFICIENT. .8785
SOIL CLASSIFICATION IS "C.
SUBAREA RUNOPF(CPS) . 1.94
TOTAL AREA(ACRES) .. 0.50 TOTAL RUNOFF(CFS) 1.94
.........................................................................................
PLO~ PROCESS FROM NODE
55.00 IS CODE.. 81
54.00 TO NODE
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK PLOWccccc
====..............--............=...............----....===...=-=====.-.....--....-
100 YEAR RAINFALL INTENSITY(INCH!HOUR) . 4.413
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT. .8785
SOIL CLASSIFICATION IS .C.
SUBAREA AREA(ACRES) 0.30 SUBAREA RUHOFF(CFS) 1.16
TOTAL AREA(ACRES) . 0.80 TOTAL RUNOFF(CFS) .. 10
TC(MIN.). 6.96
...................................................................................
FLOii PROCESS FROM NODE
54.00 TO NODE
55.00 IS CODE. 62
>>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREAccccc
>>>>> (STREET TABLE SECTION #I 1 USED) <<<<<
UPSTREAM ELEVATION(FEET) 22.50 DOWNSTREAM ELEVATION(FEET)
STREET LENGTH(FEET).. 72.00 CURB HEIGHT(INCHES) 4.8
STREET llALFWID'I'H (FEET) .. 12.50
22.30
DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET)
INSIDE STREET CROSSFALL(DECIMAL). 0.020
OUTSIDE STREET CROSSFALL(DECIMAL) 0.050
50
SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF 2
STREET PARKWAY CROSSFALL (DECIMAL) 0.020
Manning's FRICTION FACTOR for Streetflow Section (curb-to-curb) 0.0150
Manning'S FRICTION FACTOR for Back-of-Walk Flow Section 0.0150
UTRAVEL TIME COMPUTED USING ESTIMATED FLOW{CFS) 3.82
STREETFLOW MODEL RESULTS USING ESTIMATED FLOW,
STREET FLOW DEPTH (FEET) . 0.48
HALFSTREST FLOOD WIDTH(FEET). 13.29
AVERAGE FLOW VELOCITY (FEET!SEC.). 1. 29
PRODUcr OF DEPTIi'VELOCITY(Fr.Fr/SEC.).. 0.62
STREET FLOW TRAVEL TIME{MIN.).. 0.93 TclMIN.) 7.89
100 YEAR RAINFALL INTENSITY(INCH!HOUR) . 4.120
APAR'IMENT DEVELOPMENT RUNOFF COEFFICIENT.. .8772
SOIL CLASSIFICATION IS .C'
SUBAREA AREA (ACRES) . 0.40 SUBAREA RUNOFF(CFS) 1.45
TOTAL AREA(ACRES) . 1.20 PEAK FLOW RATE(CFS) 4.55
END OF SUBAREA STREET FLOW HYDRAULICS,
DEPTH (FEET) . 0.50 HALFSTREET FLOOD WIDTH (FEET) . 15.05
FLOW VELQCITY(FEET/SEC.).. 1.32 DEPTH*VELOCITY{FT.FT!SEC.) _ 0.66
LONGEST FLOWPA'I'H FROM NODE 53.00 TO NODE 55.00 _ 299.00 FEET.
..........*.........*.**.*..................................**.*.*.*.............
FLOW PROCESS FROM NODE
55.00 IS CODE.
55.00 TO NODE
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<:<<<<
>>>>>1\ND COM~ VARIOUS CONFLUENCED STREAM VALUES<<<<:<
...-----..........-..--=--.................-...=......-=-........--....-.------=-
TOTAL NUMBER OF STREAMS. 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE,
TIME OF CONCENTRATION (MIN. ). 7.89
RAINFALL INTENSITY (INCH!HR) _ 4.12
TOTAL STREAM AREA(ACRES) "' 1.20
PEAK FLOW RATE(CFS) AT CONFLUENCE _ 4.55
.. CONFLUENCE DATA
STREAM RUNOFF
NUMBER (CFS)
INTENSITY
( INCH/HOUR)
AREA
(ACRE)
Tc
(MIN.)
c-s
e-LP
vi
;fP
Printed: 12/14/2005
Page 12 of 13
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
C:\aes2004\hydrosftlratscx\834D1000RES
1
,
13.68
4.55
4.60
1.20
13.58
7.89
3.057
4.120
RAH,'F'ALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA IISED FOR ;2 STREAMS.
0-.. PEAK
STREAM
NUMllE"
1
,
FLOW RATE TABLE U
RUNOFF Tc
{CFSl (MIN.}
12.50 7.89
17.05 13.58
INTENSITY
( INCH/HOUR)
4.120
3.057
COMPUTED CONFLUENCE ESTIMATES ARE M FOLLOWS,
PEAl: FLOW RATE(CFS} 17.05 Tc(MIN.).. 13.58
TOTJ..L AREA (ACRES) c 5.80
LONOEST FLOWPATH FROM NODE 50.00 TO NODE 55.00
1113.00 FEET.
****...****************..**0-********"".***"...*..******.........****............
FLO'i1 PROCESS FROM NODE
55.00 TO NODE
56.00 IS CODE.. 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
,.,.>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
...........====c..==.____..................................._____....__..==..========..-..____==_____====
ELEVATION DATA: UPSTREAM (FEET) .. 18.30 DOWNSTREAM (FEET) 17.50
FLO~I LENG7H(FEET).. 94.00 MANNING'S N.. 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.}.. 7.09
ESTIMATED PIPE DIAMETER(INCH). 24.00 NUMBER OF PIPES
PIPE-FLOW(CFS} . 17.05
PIPE TRAVEL TIME(MIN.). 0.22 Tc{MIN.). 13.80
LONGEST FLQWPATH FROM NODE 5000 TO NODE 56.00 1207.00 FEET.
***........................*****..*................................*........**......*........................*..*........****....*..
FLOW PROCESS FROM NODE
56.00 TO NODE
56.00 IS CODE
13
>>>>>CLEAR THE MAIN-STREAM MEMORY<<<<<
....=............---..-..-..==..=====........................--..............................................-.................=....
....................-.........=......=....................-..........==.........................................-..-................
END OF STUDY SUMMARY:
TOTAL AREA(ACRES)
PEAK FLOW RATE(CFS)
0.01 TC{MIN.) ..
1.00
5.00
...........................-...............=................................................====.....................................
........................................................==........=......................._..===......======..........................
END OF RATIONAL METHOD ANALYSIS
o
'?'"
Printed: 12/14/2005
Page 13 of 13
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Worksheet 1
Design Procedure for BMP Design Volume
85th percentile runoff event
Designer: Deborah de Cham beau
Company: RBF Consulting, Inco
Date: 12i8i2005
Project: Temecula Lane I JN 15-100834
Location: Basin 1 Volume Single Family area near street L and X
1. .Create Unit Storage Volume Graph
;a. Site iocation (Township, Range, and Section)
,b. Slope value from the Design Volume
Curve in Appendix A,
,c. Plot this value on the Unit Storage
Volume Graph shown on Figure 2.
. d. Draw a straight line from this point to
the origin, to create the graph
T 8S &R2W
Section 17 (1)
Slope = 1.2 (2)
Is this graph
attached? Yes !Xl No 0
2, : Determine Runoff Coeffcient
'a. Determine total impervious area Ampervious = 8.16 acres (5)
.b. Determ ine total tributary area A.otal 13.6 acres (6)
,c. Determine Impervious fraction
I = (5) I (6) i= 0.6 (7)
d, Use (7) in Figure 1 to find Runoff
OR C = .858i3 - ,78i2 + ,774i + .04 C= 0.41 (8)
3.: Determine 85% Unit Storage Volume
: Draw a Vertical line from (8) to the
. graph, then a Horizontal line to the
: desired V u value
Vu =
O.4g in-acre
acre
(9)
4.: Determine Design Storage Volume
: a. VBMP = (9) x (6) [in-acres]
I b. VBMP = (10) /12 [ft-acres]
'c, VBMP = (11) x 43560 [ft1
6,67 in-acre
0.56 ft-acre
24,226 ft3
(10)
(11)
(12)
VBMP =
VBMP =
VBMP =
Notes:
Basin A volume,xls
;fO
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Worksheet 1
Design Procedure for BMP Design Volume
85th percentile runoff .event
Designer: Deborah de Chambeau
Company: RBF Consulting, Inc.
Date: 12/8/2005
Project Temecula Lane I JN 15-100834
Location: Basin 2 Voiume Multi Family area near street I and J
1. : Create Unit Storage Volume Graph
'a. Site location (Township, Range, and Section)
,b. Slope value from the Design Volume
Curve in Appendix A.
,C. Plot this value on the Unit Storage
Volume Graph'shown on Figure 2.
,d. Draw a straight line from this point to
the origin, to create the graph
T 8S &R2W
Section 17
(1)
(2)
1.2
Slope =
Is this graph
attached? Yes 5ZI No 0
2. : Determine Runoff Coeffcient
a, Determine total impervious area
: b. Determine total tributary area
: c. Determine Impervious fraction
I = (5) / (6)
d, Use (7) in Figure 1 to find Runoff
OR C = .858i3 - .78i2 + .774i + .04
AmpeNiOUS = 4,64 acres (5)
A",tal 5.8 acres (6)
i= 0.8 (7)
C= 0.60 (8)
3.1 Determine 85% Unit Storage Volume
! Draw a Vertical line from (8) to the
! graph, then a Horizontal line to the
, desired V u value
Vu =
0.72 in-acre
acre
(9)
4.1 Determine Design Storage Volume
; a. VaMP = (9) x (6) [in-acres]
I b, VaMP = (10) /12 [It-acres]
'c. VaMP = (11) X 43560 [It"]
4.17 in-acre
0.35 It-acre
15,141 1t3
(10)
(11)
(12)
VBMP =
VBMP =
VBMP =
Notes:
H:/pdata/91000/Strmwtr ManagementlWater Quality/bmp design/volume.xls
,?C\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Worksheet 1
Design Procedure for BMP Design Volume
85th percentile runoff event
Designer: Deborah de Cham beau
Company: RBF Consulting, Inc.
Date: 12/8/2005
Project: Temecula Lane I IN 15-100834
Location: Basin 3 Volume Multi Family area near street G and I
1. :Create Unit Storage Volume Graph
:a, Site location (Township, Range, and Section) T 8S &R2W
,b. Slope value from the Design Volume Section 17 (1)
Curve in Appendix A. Slope = 1,2 (2)
:c. Plot this value on the Unit Storage
Volume Graph shown on Figure 20
:d. Draw a straight line from this point to Is this graph
the origin, to create the graph attached? Yes Ii] No 0
2. "Determine RunoffCoeffcient
'a. Determine total impervious area ~mpervious = 13.36 acres (5)
:b. Determine total tributary area A,otal 16.7 acres (6)
,c. Determine Impervious fraction
I = (5) / (6) i= 0.8 (7)
d. Use (7) in Figure 1 to find Runoff
OR C = .858i3 - ,78i2 + .774i + .04 C= 0.60 (8)
3. : Determine 85% Unit Storage Volume
: Draw a Vertical line from (8) to the
: graph, then a Horizontal line to the
. desired V u value Vu = 0,72 in-acre
acre (9)
4, : Determine Design Storage Volume
: a. V.MP = (9) x (6) [in-acres] VBMP = 12.01 in-acre (10)
: b. V.MP = (10) /12 [ft-acres] VBMP = 1.00 ft-acre (11)
: c. V.MP = (11) x 43560 [ftl VBMP = 43,596 ft3 (12)
Notes:
Basin B volume.xls
AP
~
SCA,Ir-.
~
--"
o
~o
'~-..
(
G)
;u
)>
-0
I
~ -
n -"
o
Ul
n
)>
,-
rrl
N
<Xl
o
..,
',,~.
5
~
r-
Z
~
;:0
~
-"
-N
o
~l'"
- .
~TR~Et"t ,
[,;,0>
i~~
"
"';
''',V
~
.;" 'j"j,
~;.
~~
~-
i'
',I ~,
~ "
_._~i
/"'., .~. ..~:i
. . ...... .~.
< . ..-:)' Cl.l -
~../f.}7 Z;i
..J;.. ,-f:r~
.("'~(.". .
":t;- .~'" ~
~'
" '
,,,".
:J^
~h
'en:.
~f
TREET:9" 9 ~jj I ""
:: ~l~~:, '" _~~~
',,(; J.'
~::<~! '. ,
d" .
[i =~ sTREET.,..
~ ',-,'
""b'" .
it.>;:">... 1 =
\:"1
r~~~;if--
~
-"'~._,
STR~~OV"
_ ",l "~.i',
- -
;;."'"
"",'
';'~
L ,;;,;
t:."),.
""
-
-
'-"'ii'-
- T-
"..,'"
"~1.~ '''':'11'-
~(;.H
~i!"
~~. -\-
. 'i. ,.
,."
2-'1
>\~~;'i'.,
.';C
'~i ~;/ ~
-'
:.r;'
".~
.'-. ~'.-"
~; .;;.}
,(; ~'"
~;I ~ I
4m
,~
J"C".'
.,"
~
c::::,
-~-
";ii."
~;:
''''
~
;j,
-
,
,
I
.
r
>>
z
<0 Z
'" -
0; z
;;: .
..
~ ~ .
. iiI 0 0
"TH:: 0 l"I
l> mOm
x 0 c _
ID C ~ ~
~ s: =<
~ 0 0 .
'" m
;;J I: ~ 0
112l:IJ 0
. ~ ~ ~
~ ~ ~ ~
~ f\) (I) c:
~ ()l C n
~-fi!--:j
o ~.... 0
~ ~ 8 z
- -
-
-
I
'\...,
"
';,
-I
m
s::
m
()
c
r
)>
r
)>
z
m
.....
:E
o
m
X
I
ffi
=I
~
0,52 om
2/15/05
DTENORIO
~
-
Hj \PDA TA \15100834 \CADD\LAND\DLV\HYDRO\834WQ.DWG
I
I
I
Project Description
, Worksheet
. Flow Element
Method
: Solve For
Rolled Curb Street Se
Irregular Channel
Manning's Formula
Channel Depth
I
I
Input Data
Slope 005000 ftIft
Dischargl 6.89 cfs
I
Options
Current Roughness Mathe wed Lotter's Method
Open Channel Weighting lved Lotter's Method
Closed Channel Weightin! Horton's Method
I
Results
I
Mannings Coefficiel 0.015
Water Surface Elev. 9.95 ft
Elevation Range 60 to 10.10
Flow Area 3_6 ft2
Wetted Perimeter 24.896 ft
TopWidth 24.738 ft
Actual Depth 0.35 ft
Critical Elevation 9.94 ft
Cotical, Slope 0.006456 ftIft
Velocity 1.92 Ws
Velocity Head 0.06 ft
Specific Energy 10.01 ft
Fraude Number 0.89
Flow Type Subcritical
I
I
I
I
Roughness Segments
Start End Mannings
Station Station Coefficient
I
0+00.00 0+35.00 0.015
I
Natural Channel Points
Station
(ft)
0+00.00
0+05.00
0+05.83
0+06.00
0+07.00
0+07.08
0+17.50
0+27.92
0+28.00
0+29.00
0+29.17
0+30.00
0+35.00
Elevation
(It)
10.100
10.000
9.688
9.604
9.688
9.719
9.929
9.719
9.688
9.604
9.688
10.000
10.100
I
I
I
I
I
h:\...\calcs\hydro\flowmaster\rol1ed curb.fm2
12/14/05 04:49:42 PM @Haestad Methods. Inc.
Worksheet
Worksheet for Irregular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
I>.,,"V
Project Engineer: RBF Consulting
FlowMaster v6.1 [614k]
(203) 755-1666 Page 1 of 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table
Rating Table for Irregular Channel
Project Description
. Worksheet
. Flow Element
Method
. Solve For
Rolled Curb Street Se
Irregular Channel
Manning's Fonnula
Discharge
Options
Current Roughness Mathe wed Lotter's Method
Open Channel Weighting lVed Lotter's Method
Closed: Channel Weightin! Horton's Method
Attribute
Minimum Maximum Increment
. Slope (ftIft) 0.005000 0.020000 0.000500
Water Surface Eleva110.00 10.10 0.10
Slope Water pischarg Velocity Flow Wetted Top
(IVff) Surface (cis) (IVs) Area Perimete Width
Elevation (ft') (ff) (ff)
(ff)
J.005000 10.00 11.17 2.32 4.8 25.175 25.000
J,005500 10.00 11.71 2.44 4.8 25.175 25.000
J.006000 10.00 12.23 2.54 4.8 25.175 25.000
J.006500 10.00 12.73 2.65 4.8 25.175 25.000
J.007000 10.00 13.21 2.75 4.8 25.175 25.000
J.007500 10.00 13.68 2.84 4.8 25.175 25.000
J.008000 10.00 14.13 2.94 4.8 25.175 25.000
J.008500 10.00 14.56 3.03 4.8 25.175 25.000
J.009000 10.00 14.98 3.12 4.8 25.175 25.000
J.009500 10.00 15.39 3.20 4.8 25.175 25.000
J.Ol0000 10.00 15.79 3.29 4.8 25.175 25.000
J.Ol0500 10.00 16.18 3.37 4.8 25.175 . 25.000
J.Oll000 10.00 16.56 3.45 4.8 25.175 25.000
J.011500 10.00 16.94 3.52 4.8 25.175 25.000
J.012000 10.00 17.30 3.60 4.8 25.175 25.000
J.012500 10.00 17.66 3.67 4.8 25.175 25.000
J.013000 10.00 18.01 3.75 4.8 25.175 25.000
J.013500 10.00 18.35 3.82 4.8 25.175 25.000
J.014000 10.00 18.69 3.89 4.8 25.175 25.000
J.014500 10.00 19.02 3.96 4.8 25.175 25.000
J.015000 10.00 19.34 4.02 4.8 25.175 25.000
J.015500 10.00 19.66 4.09 4.8 25.175 25.000
J.016000 10.00 19.98 4.16 4.8 25.175 25.000
J.016500 10.00 20.29 4.22 4.8 25.175 25.000
J.017000 10.00 20.59 4.28 4.8 25.175 25.000
J.017500 10.00 20.89 4.35 4.8 25.175 25.000
J.018000 10.00 21.19 4.41 4.8 25.175 25.000
J.018500 10.00 21.48 4.47 4.8 25.175 25.000
J.019000 10.00 21.77 4.53 4.8 25.175 25.000
J.019500 10.00 22.05 4.59 4.8 25.175 25.000
J.020000 10.00 22.33 4.65 4.8 25.175 25.000
J.005000 10.10 20.05 2.57 7.8 35.177 35.000
J.005500 10.10 21.03 2.69 7.8 35.177 35.000
J.006000 10.10 21.96 2.81 7.8 35.177 35.000
J.006500 10.10 22.86 2.93 7.8 35.177 35.000
J.007000 10.10 23.72 3.04 7.8 35.177 35.000
1>,."7
Project Engineer: RBF Consulting
h:\...\calcs\hydro\f1owmaster\rolled curb.fm2 RBF Consulting FlowMaster v6.1 [614k]
12/14/05 09:04:52 AM @Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table
Rating Table for Irregular Channel
Slope Water pischar9 Velocity Flow Wetted Top
(MI) Surface (cis) (l1Is) Area Perimete Width
Elevation (IP) (ft) (ft)
(ft)
).007500 10.10 24.55 3.14 7.8 35.177 35.000
).008000 10.10 25.36 3.25 7.8 35.177 35.000
).008500 10.10 26.14 3.35 7.8 35.177 35.000
).009000 10.10 26.90 3.45 7.8 35.177 35.000
).009500 10.10 27.63 3.54 7.8 35.177 35.000
).010000 10.10 28.35 3.63 7.8 35.177 35.000
).010500 10.10 29.05 3.72 7.8 35.177 35.000
).011000 10.10 29.74 3.81 7.8 35.177 35.000
).011500 10.10 30.40 3.89 7.8 35.177 35.000
).012000 10.10 31.06 3.98 7.8 35.177 35.000
).012500 10.10 31.70 4.06 7.8 35.177 35.000
).013000 10.10 32.33 4.14 7.8 35.177 35.000
).013500 10.10 32.94 4.22 7.8 35.177 35.000
).014000 10.10 33.55 4.30 7.8 35.177 35.000
).014500 10.10 34.14 4.37 7.8 35.177 35.000
).015000 10.10 34.72 4.45 7.8 35.177 35.000
).015500 10.10 35.30 4.52 7.8 35.177 35.000
).016000 10.10 35.86 4.59 7.8 35.177 35.000
).016500 10.10 36.42 4.66 7.8 35.177 35.000
).017000 10.10 36.97 4.73 7.8 35.177 35.000
).017500 10.10 37.51 4.80 7.8 35.177 35.000
3.018000 10.10 38.04 4.87 7.8 35.177 35.000
3.018500 10.10 38.56 4.94 7.8 35.177 35.000
3.019000 10.10 39.08 5.01 7.8 35.177 35.000
3.019500 10.10 39.59 5.07 7.8 35.177 35.000
).020000 10,10 40.10 5.14 7.8 35.177 35.000
t+.
Project Engineer: RBF Consulting
h:\...\calcs\hydro\f1owmaster\rolled curb.fm2 RBF Consulting FlowMaster v6.1 [614k}
.12/14/05 09:04:52 AM @ Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 2 of 2
I
I
Street Capacity 18' Half width; 46' R-O-W; 6" curb; 2% cross fall
Worksheet for Irregular Channel
I
I
. Project Description
Worksheet
Flow Element
Method
Solve For
Irregular Channel
Irregular Channel
Manning's Formul
Discharge
I
Input Data
Slope 005000 ftlft
Water Surface Elev 10.00 ft
I
Options
Current Roughness Mathe )ved Lotter's Method
Open Channel Weighting >ved Lotter's Method
Closed Channel Weightin! Horton's Method
I
Results
I
I
I
I
Mannings Coeffic 0.015
Elevation Range 40 to 10.00
Discharge
Flow Area
Wetted Perimetel
Top Width
Actual Depth
Critical Elevation
Critical Slope
Velocity
Velocity Head
Specific Energy
Fraude Number
Flow Type
31.94 cfs
11.6 ft2:
47.08 ft
46.00 ft
0.60 ft
9.99 ft
0.005377 ftIft
2.75 ftls
0.12 ft
10.12 ft
om
Subcritical
I
I
Roughness Segments
Start End Mannings
Station Station Coefficient
0+00 0+46 0.Q15
I
Natural Channel Points
I
I
I
Station
(ft)
: 0+00
10+05
10+05
: 0+07
10+07
10+23
10+39
'0+39
10+41
, 0+41
0+46
Elevation
(ft)
10.00
9.90
9.40
9.53
9.56
9.88
9.56
9.53
9.40
9.90
10.00
I
t>6
I
h:\...\calcs\hydro\f1owmaster\streetcap.fm2 RBF Consulting
12/14/05 04:48:16 PM @Haestad Methods. Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666
Project Engineer: RBF Consulting
FlowMaster vG.1 [614k]
Page 1 of 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table
Rating Table for Irregular Channel
. Project Description
Worksheet
: Flow Element
Method
Solve For
Irregular Channel
Irregular Channel
Manning's Fonnul
Discharge
. Options
Current Roughness Mathe wed Lotter's Method
Open Channel Weighting )ved Lotter's Method
Closed Channel Weightinl Horton's Method
Attribute
Minimum Maximum Increment
Slope (ftllt) 0.005000 0.020000 0.000500
Water Surface Eleval 9.90 10.00 0.10
Slope. Water ischarge Velocity Flow Wetted Top
(ftllt) Surface (cis) (ftls) Area Perimete Width
. Elevation (ff') (It) (It)
(It)
J.005000 9.90 18.10 2.41 7.5 37.07 36.00
J.005500 9.90 18.99 2.53 7.5 37.07 36.00
J.006000 9.90 19.83 2.64 7.5 37.07 36.00
J.006500 9.90 20.64 2.75 7.5 37.07 36.00
J.007000 9.90 21.42 2.86 7.5 37.07 36.00
J.007500 9.90 22.17 2.96 7.5 37.07 36.00
J.008000 9.90 22.90 3.05 7.5 37.07 36.00
J.008500 9.90 23.60 3.15 7.5 37.07 36.00
J.009000 9.90 24.29 3.24 7.5 37.07 36.00
J.009500 9.90 24.95 3.33 7.5 37.07 36.00
J.010000 9.90 25.60 3.41 7.5 37.07 36.00
).Q10500 9.90 26.24 3.50 7.5 37.07 36.00
J.011000 9.90 26.85 3.58 7.5 37.07 36.00
J.011500 9.90 27.46 3.66 7.5 37.07 36.00
J.012000 9.90 28.05 3.74 7.5 37.07 36.00
J.012500 9.90 28.62 3.82 7.5 37.07 36.00
J.013000 9.90 29.19 3.89 7.5 37.07 36.00
J.013500 9.90 29.75 3.97 7.5 37.07 36.00
J.014000 9.90 30.29 4.04 7.5 37.07 36.00
J.014500 9.90 30.83 4.11 7.5 37.07 36.00
J.015000 9.90 31.36 4.18 7.5 37.07 36.00
).015500 9.90 31.88 4.25 7.5 37.07 36.00
J.016000 9.90 32.39 4.32 7.5 37.07 36.00
J.016500 9.90 32.89 4.38 7.5 37.07 36.00
J.017000 9.90 33.38 4.45 7.5 37.07 36.00
).017500 9.90 33.87 4.52 7.5 37,07 36.00
J.018000 9.90 34.35 4.58 7.5 37.07 36.00
J.018500 9.90 34.82 4.64 7.5 37.07 36.00
J.019000 9.90 35.29 4,71 7.5 37.07 36.00
J.019500 9.90 35.75 4.77 7.5 37.07 36.00
J.020000 9.90 36.21 4.83 7.5 37.07 36.00
J.005000 10.00 31.94 2.75 11.6 47.08 46.00
J.005500 10,00 33.49 2.89 11.6 47.08 46.00
J.006000 10.00 34.98 3.02 11.6 47.08 46.00
J.006500 10.00 36.41 3.14 11.6 47.08 46.00
J.007000 10.00 37.79 3.26 11.6 47.08 46.00
No
Project Engineer. RBF Consulting
h:\...\calcs\hydro\f1owmaster\streetcap.fm2 RBF Consulting FlowMaster v6.1 [614k]
12/14/05 04:48:09 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Table
Rating Table for Irregular Channel
Slope Water pischar9 Velocity Flow Wetted Top
(ftIh) Surface (cfs) (ftIs) Area Perimete Width
Elevation (ff') (h) (h)
(It)
3.007500 10.00 39.11 3.37 11.6 47.08 46.00
3.008000 10.00 40.40 3.48 11.6 47.08 46.00
3.008500 10.00 41.64 3.59 11.6 47.08 46.00
3.009000 10.00 42.85 3.69 11.6 47.08 46.00
3.009500 10.00 44.02 3.79 11.6 47.08 46.00
3.010000 10.00 45.16 3.89 11.6 47.08 46.00
3.010500 10.00 46.28 3.99 11.6 47.08 46.00
3.011000 10.00 47.37 4.08 11.6 47.08 46.00
3.011500 10.00 48.43 4.18 11.6 47.08 46.00
3.012000 10.00 49.48 4.27 11.6 47.08 46.00
3.012500 10.00 50.50 4.35 11.6 47.08 46.00
3.013000 10.00 51.50 4.44 11.6 47.08 46.00
3.013500 10.00 52.48 4.52 11.6 47.08 46.00
3.014000 10.00 53.44 4.61 11.6 47.08 46.00
3.014500 10.00 54.39 4.69 11.6 47.08 46.00
3.015000 10.00 55.31 4.77 11.6 47.08 46.00
3.015500 10.00 56.23 4.85 11.6 47.08 46.00
3.016000 10.00 57.13 4.92 11.6 47.08 46.00
3.016500 10.00 58.01 5.00 11.6 47.08 46.00
3.017000 10.00 58.89 5.08 11.6 47.08 46.00
3.017500 10.00 59.75 5.15 11.6 47.08 46.00
3.018000 10.00 60.59 5.22 11.6 47.08 46.00
3.018500 10.00 61.43 5.30 11.6 47.08 46.00
3.019000 10.00 62.25 5.37 11.6 47.08 46.00
3.019500 10.00 63.07 5.44 11.6 47.08 46.00
3.020000 10.00 63.87 5.51 11.6 47.08 46.00
~'\
Project Engineer: ReF Consulting
h:\...\calcs\hydro\flowmastenstreetcap.fm2 RBF Consulting FlowMaster v6.1 [614k]
12/14/05 04:48:09 PM @Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 2 of 2