HomeMy WebLinkAboutTract Map 33891 Hydrology & Hydraulics (Jul.2006)
..1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Hydrology/Hydraulics Report
SILVER OAK
TENTATIVE TRACT 33891
City of Temecula
County of Riverside, California
Prepared for:
Pacific Century Group
1920 Main Street, Suite 800
Irvine, CA. 92614
Date
07-06
Report Prepared By:
9755 Clairemont Mesa Blvd. Suite 100
San Diego, CA. 92124
858.614.5000 telephone
: CON 5 U LTI N G 858.614.5001 fax
Engineer of Work! Contact Person:
James Haughey, P.E.
Sean McCarty, P.E.
RBF IN 25-102051
Revision History
Comment
1 S submit
\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TABLE OF CONTENTS
SECTION 1 - INTRODUCTION.................. ....... ....... ...... ....... ....... ............ ..... ........... ...... ....... ...... ............ 1
1.1 Background .............................................................................................1
1.2 Objective .................................................................................................1
1.3 Previous Studies .....................................................................................2
SECTION 2 - HYDROLOGIC DATA ........................................................................................................2
2.1 Hydrologic Analysis and Methodology.....................................................2
2.1.1 Rational Method ...................................................................................................2
.2.2 PROPOSED CONDITION HYDROLOGY...............................................3
SECTION 3 - WATER QUALITY SUMMARy..........................................................................................4
3.1 Non-Structural and Structural BMPs .......................................................4
.3.2 Best Management Practices (BMP) Sizing Criteria .................................5
SECT'iON 4 - HYDRAULIC ANAL YSIS....................................................................................................6
4.1 Catch basin Sizing... .... ............................... .............................. ................6
4.2 Street Hydraulics ..................................................................................... 7
4.3 Local Stormdrain Hydraulics ................................................................... 7
SECTION 5 - CONCLUSiONS................................................................................................................. 7
SECTION 6 - REFERENCES .................................................................................................................. 8
TECHNICAL APPENDICES
A Rational Method - Proposed Condition 10-Year
B Rational Method - Proposed Condition 100-Year
C Street Capacity Calculations using Flowmaster v6.1
D Catch basin Sizing and Street Hydrualic Calculations using Flowmaster v6.1
E Stormdrain hydraulic calculations using Flowmaster v6.1
F Water Quality Hydrodynamic Separator Sizing Calculations
LIST OF FIGURES
Figure-1: Vicinity Map
Figure-2: Soils Map- Proposed Conditions
Figure-3: Hydrology Map- Proposed Conditions
Figure-4: Water Quality Exhibit
z..,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SECTION 1 - INTRODUCTION
1.1 BACKGROUND
The proposed project, tract 33891/Silver Oak, is located in the County of Riverside within
the corporate boundary of the City of Temecula. The project site is located at the
Northwest corner of the intersection of Dartolo and Margarita Roads. See Figure 1 for
location details. The project consists of approximately 7.5 acres of residential uses. The
proposed Silver Oak project is located within Santa Margarita Watershed and discharges
indirectly into Temecula Creek. Since the site discharges to a regional facility, no on-site
flood attenuation will be provided to mitigate proposed condition storm flows to less than
existing condition. Approximately 1.5 miles downstream of the project site, Temecula Creek
confluences with Murrieta Creek and becomes the Santa Margarita River, which eventually
discharges into the Pacific Ocean.
1:.2 OBJECTIVE
The primary objective of this report is to provide the technical documentation forthe design
and improvements plans for the proposed storm drain facilities and include the following:
1. Identify the required storm drain facilities for the tract improvements based upon the
grading plans, and delineate the drainage area tributary to each proposed drainage
inlet/concentration point.
2. Based on drainage patterns, ground slope, land use, soil type, and using the County
of Riverside Rational Method, perform a hydrologic analysis to provide the design
flowrate used to size the proposed storm drain facilities. This analysis covers the
proposed condition hydrology.
3. Perform hydraulic analysis on the proposed storm drain facilities for the tract
improvement.
4. Adhere to the Riverside County Flood Control and Water Conservation District's
(RCFCD&WCD) hydrologic criteria that 1 O-year storm flow and 1 OO-year storm flow
be contained within the curb and street right-of-way, respectively.
5. Provide water quality treatment of the surface runoff per Regional Water Quality
Control Board criteria.
6. Appropriately size the storm drain facilities by identifying the HGL using Flowmaster
v6.1.
7. Appropriately size all catch basin inlets to control street flooding.
8. Provide street capacity calculations at all catch basins.
All assessments and technical analysis in this report are in compliance with the local
drainage policies and requirements, and the California Environmental Quality Act (CEQA)
of 1970, as amended.
Silver Oak, Temecula, Riverside County, CA
Hydology/Hydraulics Reporl
1
3>
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1.3 PREVIOUS STUDIES
No previous studies are included in this analysis.
SECTION 2 - ,HYDROLOGIC DATA
2.1 HYDROLOGIC ANALYSIS AND METHODOLOGY
Hydrologic calculations to evaluate surface runoff associated with the 10-year, and 100-
year hypothetical design storm frequencies from the project watershed were performed
using the rational method based upon the relative size of the watershed. The rational
method is a surface hydrology procedure, which allows evaluation of the peak
discharge generated from a watershed area. This method only evaluates peak
discharge and does not analyze runoff volumes or the time variation of runoff. The
watershed subbasin boundaries within the project site were delineated utilizing
topographic mapping of the area for the proposed grading plan to determine the
development drainage patterns. Hydrologic parameters used in this analysis such as
rainfall and soil classification areas presented in Riverside County Hydrology Manual,
dated April 1978, were identified. A hydrology analysis was performed to evaluate the
anticipated runoff generated from the proposed residential development. The hydrology
analysis of the proposed development included determining a storm drain collection
system, which corresponds to the development drainage patterns. The drainage areas
and subarea boundaries within the study area were delineated based on the proposed
grading plan. The proposed storm drain facility was designed to not exceed the current
capacities of the existing drainage facilities at the downstream project boundary.
2.1.1 Rational Method
The hydrologic calculations to determine the 10- and 1 OO-year ultimate design discharges
were performed using the County of Riverside Rational Method from the RCFC&WCD
Hydrology Manual dated April 1978. The Rational Method is an empirical computation
procedure for developing a peak runoff rate (discharge) for watersheds less than 300 acres
and storms of a given recurrence interval. This procedure is the most common method for
small area urban .drainage design since the peak discharge is generally the only required
parameter for hydraulic design of drainage facilities. The Rational Method equation is
based on the assumption that the peak f10wrate is directly proportional to the drainage
area, rainfall intensity, and a loss coefficient related to land use and soil type. Flows are
computed based on the formula Q=CIA, where:
Q = Discharge in Cubic Feet Per Second;
C = Runoff Coefficient, based on Land Use and Hydrologic Soils Group;
Silver Oak, Temecula, Riverside County, CA
Hydology/Hydraulics Reporl
2
'\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I = Rainfall Intensity, Inches/Hour;
A = Area, Acres.
The peak discharge from a drainage area using the rational method occurs at a critical time
when the entire drainage area is contributing runoff known as the "time of concentration"
for the watershed area. The design discharges were computed bY generating a hydrologic
"link-node" model, which divides the analysis area into drainage subareas, each tributary to
a concentration point or hydrologic "node" point determined by proposed conditions.
The hydrology analysis was performed for the developed condition 10-, and 100-year
hydrology. The results of the watershed analysis for the proposed development generated
the resulting peak discharges at the downstream project boundary.
The following assumptions/guidelines were applied under the Rational Method.
1. The Rational Method hydrology includes the effects of infiltration caused by
soil surface characteristics. Soils maps from Riverside County Flood Control
and Water Conservation District Hydrology Manual indicate the Soil Type "C"
is representative of the project location. The Manual utilizes the Soil
Conservation Service (SCS) soil classification system, which classifies soils
into four (4) hydrologic groups (HSG): A through D, where "D" is the least
pervious, providing greatest storm runoff. The soils maps (Plate C-1.61
Pechanga) from the Manual and the project site are shown on Figure 2,
Hydrologic Soils Group Map.
2. The infiltration rate is also affected by the type of vegetation or ground cover
and percentage of impervious surfaces. The runoff coefficients used were
based .on the proposed residential layout for multi-family residential. "Condo"
and "Apartment" were used to represent the project with 84% of the site being
impervious.
3. Rainfall data used was taken from the above Manual for the "Murrieta-
Temecula and Rancho California" areas.
4. The initial area is generally less than 10 acres and flow path lengths are less
than 1,000 feet, per RCFC&WCD analysis procedure.
2.2 PROPOSED CONDITION HYDROLOGY
The developed land use conditions associated with the proposed project will modify the
hydrologic characteristics of the watershed by;
1. Increasing the amount of impervious area.
Silver Oak, Temecula, Riverside County, CA
Hydology/Hydraulics Reporl
3
-s'
I
I
I
I
I
I
I
I
I
I
I
I
'.
I
I
I
I
I
I
2. Increasing the hydraulic efficiency of the drainage conveyance system
from natural drainage courses to improved underground storm drain
systems.
3. Reducing the time to peak flow.
4. Increasing the peak discharges.
A hydrologic analysis was prepared for the project watershed reflecting the proposed
project. The peak runoff f10wrate at particular concentration points (nodes) throughout
the watershed is provided for the 1 O-year and 1 OO-year storm events. Appendix A and
B contain the 1 O-year and 1 OO-year hydrologic analysis which are summarized in the
following table below.
Node Q10 tcts\ Q100 (cts)
1 4.79 7.07
2 7.78 11.31
3 5.68 7.63
4 13.46 18.94
5 15.57 22.65
SECTION 3 - WATER QUALITY SUMMARY
The water quality program consists of both non-structural and structural Best Management
Practices (BMPs). The non-structural BMPs consist of:
1. Public Education
2. Common Area Maintenance Practices. The proposed structural BMPs include
water quality bio-swales along with a hydrodynamic separator.
3.1 NON-STRUCTURAL AND STRUCTURAL BMPs
Maintenance will include both Integrated Pest Management and Integrated Vegetation
Management to minimize impacts to urban runoff water quality. Also, irrigation will be
minimized to the'maximum extent practicable. The method of irrigation control reduces the
amount of water used for irrigation and minimizes the potential for overspray and nuisance
runoff. Additional maintenance pollution prevention practices include monthly street
sweeping, catch basin signage, and routine trash pick-up.
Cp
Silver Oak, Temecula, Riverside County, CA
Hydology/Hydraulics Reporl
4
I
I
I
.
I
I
I
I
I
I
I
I
.
I
I
I
I
I
I
A hydrodynamic separator is proposed as structural BMP for the project site. The
separator will be installed at ultimate project discharge location. The separator will be a
flow through system with only the water quality volume being treated. The water quality
volume to be treated based on Regional Water Quality Control Board sizing criteria, are
1 :31 cfs. The water quality calculations are included in Technical Appendix F, with tributary
areas shown on Figure 4. A hydrodynamic separator provides medium removal efficiency
for 5 of the 7 pollutants expected to be generated from a residential site. The removal
efficiency of a basin for bacteria/viruses and pesticides, the two remaining pollutants, is
unknown. Calculations for the Hydrodynamic Separator and supporting documents are
found in Technical Appendix F.
3~2 BEST MANAGEMENT PRACTICES (BMP) SIZING CRITERIA
The San Diego Regional Water Quality Control Board (SDRWQCB) for the portion of
Riverside County within the San Diego Region has established numeric sizing criteria for
post-construction best management practices (BMPs) for new development and significant
redevelopment under Order No. R9-2004-001. The proposed numeric sizing criteria is
intended to reduce adverse impacts to San Diego regional waters caused by new sources
of urban pollution and increased volumes of storm water and non-storm water flows
resulting from new development and significant redevelopment. The numeric sizing criteria
requirement to be included in the tentative waste discharge requirements for San Diego
municipal storm water dischargers will read as follows:
Post-construction BMPs for a project shall be designed as follows:
1. Volume-based BMPs shall be designed to mitigate (infiltrate, filter, or treat)
either:
i. The volume of runoff produced from a 24-hour 85th percentile storm
rainfall depth, as determined from the local historical rainfall record
(0.6 inch approximate average for the Riverside County area); or
ii. The volume of runoff produced by the 85th percentile 24-hour runoff
event, determined as the maximized capture storm water volume for
the area, from the formula recommended in Urban Runoff Qualitv
Manaqement, WEF Manual of Practice No. 23/ASCE manual of
Practice No. 87. (1998); or
iii. The volume of annual runoff based on unit basin storage volume, to
achieve 90% or more volume treatment by the method recommended
in California Stormwater Best Manaqement Practices Handbook new
Development and Redevelopment (2003); or
1
Silver Oak, Temecula, Riverside County, CA
HydologylHydraulics Reporl
5
.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
iv. The volume of runoff, as determined from the local historical rainfall
record, that achieves approximately the same reduction in pollutant
loads and flows as achieved by mitigation of the 85th percentile 24-
hour runoff event.
2. Flow based BMPs shall be designed to mitigate (infiltrate, filter, or treat) either:
i. The maximum flow rate of runoff produced from a rainfall intensity of
0.2 inch of rainfall per hour, for each hour of a storm event; or
ii. The maximum flow rate of runoff produced by the 85th percentile
hourly rainfall intensity (for each hour of a storm event), as
determined from the local historical rainfall record, multiplied by a
factor of two; or
iii. The maximum flow rate of runoff for each hour of a storm event, as
determined from the local historical rainfall record, that achieves
approximately the same reduction in pollutant loads and flows as
achieved by mitigation of the 85th percentile hourly rainfall intensity
multiplied by a factor of two.
The Co-permittees may develop, as part of the SUSMP, any equivalent method for
calculating the volume or flow, which must be mitigated (i.e., any equivalent method for
calculating numberic sizing criteria) by post-construction treatment control BMPs. Such
equivalent sizing criteria may be authorized by the SDRWQCB for use in place of the
above criteria. In the absence of development and subsequent authorization of such
equivalent numeric sizing criteria, the above numeric sizing criteria requirement shall be
implemented.
SECTION 4 - ,HYDRAULIC ANALYSIS
4.1 CATCH BASIN SIZING
The design discharges tributary to each proposed catch basin were taken from the
results of the Rational Method Hydrology calculation. The proposed catch basins have
been designed to intercept the 1 O-year and 1 OO-year flows for on-grade and sump
conditions, respectively. Both, interception (on-grade) and local sump inlets are
proposed to be used to intercept drainage from the street improvements. Since the
interception capacity of the on-grade catch basin is a function of the gutter depth of
street flow, the street flow calculations are included along with the catch basin sizing
calculations.
The street flow hydraulics and catch basin sizing calculations were conducted using the
computer program "Flowmaster v6.1". The program approximates curb inlet capacities
based on The Army Core of Engineers HEC-22 manual for flow-by and sump type
basins. The supporting calculations are included in Appendix D.
%
Silver Oak, Temecula, Riverside County, CA
HydologylHydraulics Reporl
6
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
4.2 STREET HYDRAULICS
The majority of the flows will be conveyed in interior streets with 12 foot half widths and 31
foot R-O-W. The R-O-W in this project is considered to be from back of sidewalk to back of
sidewalk. All interior streets are utilizing modified 4-inch rolled curbs and have a traditional
cross slope of 2.0 percent. In the 1 O-year and 1 OO-year condition forthe development, the
street crown is lower than the Right of Way. The street capacities, as measured to the top
of curb and within the R-O-W, based on RCFC & WCD's hydrologic criteria, are
summarized in Table 1.0. All supporting cross-sectiOns are included in Technical Appendix
C.
Table No. 1.0 - Summary of Street CaDacitv
Section Slope ("!o) Q10 Water Surface Q Water Surface
Ie '~l
Icfsl Elev. lin.l cfs Elev. lin.)
A-A 0.6 4.79 3.24 7.07 3.60
B-B 0.5 2.99 2.88 4.24 3.24
C-C 1.0 5.68 3.24 8.38 3.60
D-D 5.6 2.11 1.92 3.11 2.16
4~3 LOCAL STORM DRAIN HYDRAULICS
The hydraulic analysis and design of the local storm drain system associated with the
project was performed using the calculated 1 OO-year flow rates using the normal depth
calculation of the Manning's formula for friction loss between sections in a reach. The
results of the pipe calculations are included in the technical appendix "En. The following
assumptions/guidelines were applied for the use of the Manning Pipe Calculator:
1. Manning's "n" value of 0.010 was used for PVC.
2. Storm drain pipe lengths and elevations were taken from the proposed storm
drain improvements.
3. The design discharges used in the hydraulic analysis for the storm drain were
generated in the 100-year hydrologic analysis included in Technical Appendix B.
SECTION 5. CONCLUSIONS
1. The methodology used in this report is in compliance with the Riverside County
Flood Control and Water Conservation District's criteria.
~
Silver Oak, Temecula, Riverside County, CA
HydologylHydraulics Reporl
7
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
2. This report accompanies the rough grading plans and storm drain improvement
plans.
SECTION 6 - REFERENCES
1. Riverside Flood Control District and Water Conservation District (RCFC&WCD)
Hydrology Manual, 1978.
2. Haestad Methods, FlowMaster Software v 6.1
\0
Silver Oak, Temecula, Riverside County, CA
HydologylHydraulics Reporl
8
I
I
I
I
I
i I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Technical
Appendix
A
\\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
10-Year Rational Method Calculation
Coefficient of Runoff
Soil Group = C (see Hydrologic Soils Group Map for Pechanga, Figure 2)
Pervious Cover: Residential Landscaping in good condition
C = 69 (see Plate D-5.5)
% Area = 16%
Impervious Cover: Condo & Apartments
C =90
% Area = 84%
C = (69)(0.16) + (90)(0.84)
C = 87
Time of Concentration
Time of Concentration Calculations were made by using Plate D-3 (attached) to give
the following table:
Length of Change in Time of
Basin Watercourse Elevation Concentration
(ft) (ft) (min)
A-1 615 5.0 10.5
A-2 405 4.2 8.5
A-3 210 1.2 7.5
A-4 255 1.9 7.7
A-5 190 5.0 5.5
A-6 190 5.5 5.3
A-7 430 3.7 8.7
A-8 400 4.3 9.0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Intensity
The Intensity Calculation was made using the Murrieta - Temecula & Rancho California
Standard Intensity-Duration Curve Data, page 4 of Plate D-4.1 (attached), to yield the
following table:
Time of 10-Year
Basin Concentration Intensity
(min) (in/hr)
A-1 10.5 2.30
A-2 8.5 2.59
A-3 7.5 2.77
A-4 7.7 2.73
A-5 5.5 3.29
A-6 5.3 3.35
A-7 8.7 2.55
A-8 9.0 2.50
Discharge
Peak Discharge calculations were made using the Rational Method equation
(Q = CIA) to give the following table:
Area 10-Year Q10
Intensity
Basin (Acres) (in/hr) (cfs)
A-1 1.71 2.30 3.42
A-2 0.61 2.59 1.37
A-3 0.60 2.77 1.45
A-4 0.65 2.73 1.54
A-5 0.44 3.29 1.26
A-6 0.29 3.35 0.85
A-7 1.51 2.55 3.35
A-8 1.07 2.50 2.33
\1.--
I
I
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II
I
Cover Type (3)
Quality of
Cover (2)
NATURAL COVERS -
I
Barren
(Rockland, eroded and graded land)
I
Chaparrel, Broadleaf
(Manzanita, ceanothus and scrub oak)
Poor
Fair
Good
I
Chaparrel, Narrowleaf
(Chamise and redshank)
Poor
Fair
I
Grass, Annual or Perennial
Poor
Fair
Good
I
Meadows or Cienegas
(Areas with seasonally high water table,
principal vegetation is sod forming grass)
Poor
Fair
Good
I
Open Brush
(Soft wood shrubs - buckwheat, sage, etc.)
Poor
Fair
Good
I
Woodland
(Coniferous or broadleaf trees predominate.
Canopy density is at least 50 percent)
Poor
Fair
Good
I
Woodland, Grass
(Coniferous or broadleaf trees with canopy
density from 20 to 50 percent)
Poor
Fair
Good
I
URBAN COVERS -
I
Residential or Commercial Landscaping
(Lawn, shrubs, etc.)
Good
I
Turf
(Irrigated and mowed grass)
Poor
Fair
Good
I
AGRICULTURAL COVERS -
I
Fallow
(Land plowed but not tilled or seeded)
I
Soil Group
ABC D
78 86 91 93
53 70 80 85
40 63 75 81
31 57 71 78
71 82 88 91
55 72 81 86
67 78 86 89
50 69 79 84
38 61 74 80
63 77 85 88
51 70 80 84
30 58 72 78
62 76 84 88
46 66 77 83
41 63 75 81
45 66 77 83
36 60 73 79
28 55 70 77
57 73 82 86
44 65 77 82
33 58 72 79
32
....-.
56 ~ 75
58 74 83 87
44 65 77 82
33 58 72 79
76 85 90 92
RCFca ,WCD
HYDROLOGY J'v]ANUAL
RUNOFF INDEX NUMBERS
FOR
PERVIOUS AREA
I
I
PLATE 0-5.5 (I of 2)
\'b
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II
Cover Type (3)
Quality of
Cover (2)
Soil Group
ABC D
AGRICULTURAL COVERS (cont.) -
Legumes, Close Seeded
(Alfalfa, sweetc1over, timothy, etc.)
Poor 66 77 85 89
Good 58 72 81 85
See Note 4
Poor 57 73 82 86
Fair 44 65 77 82
Good 33 58 72 79
Poor 67 78 86 89
Fair 50 69 79 84
Good 38 61 74 80
Poor 58 74 83 87
Fair 44 65 77 82
Good 33 58 72 79
Poor 72 81 88 91
Good 67 78 85 89
Poor 65 76 84 88
Good 63 75 83 87
seelNot~ 4 I
'Orchards, Deciduous
(Apples, apricots, pears, walnuts, etc.)
Orchards, Evergreen
(Citrus, avocados, etc.)
'Pasture, Dryland
(Annual grasses)
Pasture, Irrigated
(Legumes and perennial grass)
.Row Crops
(Field crops - tomatoes, sugar beets, etc.)
Small Grain
(Wheat, oats, barley, etc.)
Vineyard
Notes:
1. All runoff index (RI) numbers are for Antecedent Moisture Condition
(AMC) II.
2. Quality of cover definitions:
Poor-Heavily grazed or regularly burned areas. Less than 50 per-
cent of the ground surface is protected by plant cover or brush
and tree canopy.
Fair-Moderate cover with 50 percent to 75 percent of the ground sur-
face protected.
Good-Heavy or dense cover with more than 75 percent of the ground
surface protected.
3. See Plate C-2 for a detailed description of cover types.
4. Use runoff index numbers based on ground cover type. See discussion
under "Cover Type Descriptions" on Plate C-2.
5. Reference Bibliography i tern 17.
RCFC a WCD
HYDROLOGY J'vJANUAL
RUNOFF INDEX NUMBERS
FOR
PERVIOUS AREA
PLATE D-5.5{2of 2)
\A..
I
I Te' LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
~
900 80 ~
~
I .. J:L
70 > 6 ..
" ~
800 0 500 u
" " 400 <t
" ..
" ~ 300 !
60 co " "
I 700 c '> 200 7 ......
c ~ :2 . -
- " .. c
c N 0. '" 100 ..
.. .5 .!: E
E 50 - 80
0. " - - 60 8 0.
.2 0 0 50 .2
I .. 40 ..
> co VI 30 >
..
.. " '0 9 0
'0 - c 20
500 c ..
.. ~
" u
I - 10 'e
'0 35
- .. "
.. 0. ....
.. VI K II
- OJ
400 - 30 ..
I .!: o. Undeveloped 0 C.
- Good Cover c
Ui
" VI
.. 350 .. 25 Undeveloped
~ - 0 ~
::> 0
" c Fair Cover -
I :2 'e "
300 Undeveloped p 15 ..
- 20 0 -
c .!: Poor Cover :>
19 16 c:
I - 18 Single Family ~ 17 'e
0 .~
250 17 (1/4 Acre) 18 c
:J 16
~ 15 19 ~
c Commerci 1
I .c " 20
- +: 14 ~v
co E! c
c 200 13 .~
.. -
..J c: -
.. 12 "
0 ~
I C IJ~/ -
8 c
25 ..
0
- c:
" KEY 0
0
150 9 - ,
I .. L-H-Tc-K-Tc -
E "
j:: 30 ..
8 E
EXAMPLE: j::
I 7 (I) L=550', H =5.0: K=Single Family (1/4 Ac.l 35
Development, Tc = 12.6 min.
6 (2) L =550', H =5.0', K = Commercial
I 100 Development, Tc = 9.7 min. 40
5
I 4 Reference: Bibliography item No. 35.
I RCFC a ,WCD TIME OF CONCENTRATION
HYDROLOGY ~;]ANUAL FOR INITIAL SUBAREA
I i?> C\. ~ "/\
PLATE 0-3 \-5
I --------
I
I Te' LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
900 80 S
~
I ., Ji...
70 > 6 .,
0 ~
800 u 500 u
" " 400 <[
.. .,
" ~ 300 !
60 co 0 "
I 700 c ~ 200 7
c ~ .S! -
- 0 .. c
c N Q. - 100 '"
., .s 'c E
E 50 ~ 80
600 Q. 0 - - 60 8 Q.
I 0 - 0 0 50 .2
a; c ., 40 '"
.. >
:> E co .. 30 .,
'" Q. " ." 9 0
." o " c 20
500 (~ ~ ., '"
:>.
I " ~ u c 10
~ 10 'E
'0 35 cr '"
- '" '" 8 0
'" Q. ~ 6 '-n-"-
., .. IL--. A~
- ~ (I)
30 - .0 .,
I ~ Undeveloped C>
.E o. 0 -
- Good Cover .. 2 c
.2! Cii
" ..
., 350 .. 25 Undeveloped .E 1.0 ~
~ - 0
0 ::J Fair Cover .8h 0
I c .6 14 -
'E ~
"2 J: :! 7 <Jl
300 Undeveloped 15 ..
- 20 0 -
.E Poor Cover c ::J
C .2 .2.~....I 16 .S
19 -
I " E
- 18 Single Family :> -/", ./ 17
0 !:: 17 50.!1 , ."
250 (1/4 Acre) ..' 18 c
'::J 16 ,/
~ 15 ~..,. .- 19 ~
c: 0., ~
I ~ .S! 14 20
- - 0
'" 11 c c:
c: 200 13 .. .2
.. - ~
...J c: ., -
.. 12 - "
I 0 := ~
c: -
8 II 0 c
25 .,
0
c
- 0
0 KEY 0
I 150 - ,
ClI L-H-Tc-K-Tc -
E 0
i= 30 .,
EXAMPLE: E
i=
I 7 (I) L=550', H =5.0~ K=Single Fomily(l/4Ac.) 35
Development I Tc = 12.6 min.
6 (2) L=550', H =5.0', K= Commercial
I 100 Development, Tc= 9.7 inin. 40
5
I 4 Reference: 8ibliography item No. 35.
I RCFC a ,WCD TIME OF CONCENTRATION
I HYDROLOGY NJANUAL FOR INITIAL SUBAREA
&>.s," -'2.
PLATE 0-3 \~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
1000
900
800
700
600
500
-
..
..
...
c
400
o
..
~
o
350
:2
-
c
300
...
o
250
::J
~
c:
01
..J
200
150
100
Commercia
d
,,'l.\ #/
/ /~
,/l,r
;>0'.
,/"
9 ,,/'
,/
84
F~:::f.S
7
Te'
100
90
80
70
60
-
c:
01
E
0.
.Q
01
>
'"
."
50
o
LIMITATIONS:
I. Maximum length = 1000'
2. Maximum area = 10 Acres
-
5
~
..
~ Ji.
u
500
400
300
200
"0
'0
'"
0.
'"
35
:.:: en ~
:I ~
'" 0 0
c '>
.c .. ~
o ~ _
N .s .~
~
o ... ...
o 0
100
80
60
50
40
30
20
~ 30
o.
...
'"
'"
-
"
c
'E
25
c
'"
E
0.
o
(~ ~
~
K
'"
'" ..
o ."
- C
~ '"
~ c
.r ~
~
Ai '"
-..0
10
8
6
.~
c
o
.+:
11
-
c:
'"
u
c
8
...
o
'"
E
i=
6
5
4
Undeveloped
Good Cover
Single Fomily
(I/4 Acre)
-
o
50 i;
~
0",
u
c:
'"
~
'"
...
...
o
KEY
- ,
L-H-Tc-K-Tc
EXAMPLE:
(I) L=550', H ;5.0~ K=Single Fomily(I/4Ac.l 35
Development, Tc = 12_6 min.
(2) L =550', H =5.0', K = Commerciol
Development, Tc = 9.7 min.
Reference: Bibliography item No. 35.
RCFC 8,WCD
HYDROLOGY ~AANUAL
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
13"'-.,,, A - '3,
PLATE 0-3
Tc
5
6
..
~
u
<l:
~
7
...
c
'"
E
a.
.Q
'"
>
..
o
II
12
,.,
E
o
u-
'"
0.
c
Cii
14
15
16
17
18
19
20
~
o
...
..
OIl
-
"
.=
E
c
~
25
c
.!!
...
o
~
-
c
OIl
u
c
o
"
30
...
o
OIl
E
i=
40
\\
I
I Te' LIMITATIONS:
L 100 r. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
900 80 <(
~
~
I OJ .l!..
70 > 6 ..
0 ~
800 - U 500 u
:0: 0 400 <(
.. ..
::l ~ 300 !
60 0' 0 0
I 700 c '> 200 7
'c ~ :2
- .. -
0 c
c N Q. ~ '00 ..
.. .5 .5
E 50 ~ 80 E
600 Q. 0 ... ... 60 8 Q.
I .2 i: 0 0 50 0
40 ..
.. .. .. >
> E 0' .. 30 ..
G> 0 "0 9
"0 Q. - c 20 0
0 c ..
500 (U u ..
'0 u ,.,
I ~ ~ c '0
'0 35 ~ .. 8 E
- .. G> 0
.. Q. ~ 6 ....
.. .. K A' ..
...
30 -1..0 ..
I 400 ~ Undeveloped '5
.5 o. ,
... Good Cover // c
en
0 ..
GI 350 .. 25 U~ 1.0 /
- ~
~ " .8 0
I 0 c ~. rCover .6 ...
~
:2 'E :r .~ / '"
300 Undeveloped 5 :3/'/ ..
- 0 -
c c Poor Cover "
19 - .2 .=
I ... 18 Single Family g/ ,/ E
0 f: 17 50..9!' .
250 (114 Acre) ~G> c
- 16
..J
~ 15 : .- ~
c: Commerci 0..
I .<= 0
- .:;: 14 y u
co g c c
c 200 13 .. .2
.. - ~
..J c .. -
.. 12 1...'1-). ,// ... 0
u ... ~
I c -
8 II 0 c
/"" 25 ..
u
/' c
... 0
0 9,,/ KEY u
I 150 - ,
" L-H-Tc-K-Tc ...
E 0
i= /' 30 "
8 E
"I(...:=.:f :=t EXAMPLE: i=
I 7 (I) L =550', H =5.0~ K = Single Family (1/4 Ac.) 35
Development, Tc = 12.6 min.
6 (2) L =550', H =5.0', K= Commercial
I 100 40
Development, Tc = 9.7 inin.
5
I 4 Reference: Bibliography item No. 35.
I RCFC 8,WCD TIME OF CONCENTRATION
HYDROLOGY NJANUAL FOR INITIAL SUBAREA
I 13a.s', " .\,
PLATE 0-3 \CO
I
I
I Tel LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
900 80 S
~
I .. .l:L ~
> 6
70 0 ..
~
800 ~ u 500 u
" 0 400 <t
.. ..
:> ~ 300
60 co 0 0
I 700 c '> 200
'c ~ .S!
- 0 ..
c N 0. -
.. .E :~
E 50 ~
600 0. 0 -
I 0 c 0
Cii .. ..
> E co
.. 0 9
"0 0. -
0 c
500 (~ Cii .. ,.,
"0 u
I ~ ~ c 10 'E
'0 35 ~ ..
- .. .. It
.. 0. ;J
.. .. K A' .. II
-
30 -L<.c ..
I 400 ~ Undeveloped "6 - c;,
o.
c - 2 12 c
Good Cover"" ::: (jj
0 .. / -
350 .. 25 ~.;'> 1.0 I
.. - Unde.veioped .5 ~
~ ::J 0 .8 ; 0
I 0 c fair Cover _ .61' 14 -
:2 'E ,/;i.... o~i:r ~ ..
300 ,.;/'< Undeveloped 15 ..
- 20 -
c .5 /' Poor Cover "
19 ",,,.-'" <;- 16 .5::
I ... 18/" Single Fomlly 59':1; . ./ 17 E
0 f: 17
250 ." (1/4 Acre) / .. 18 c
:J ~~..' 16
~ ,:.o/"c: 15 l ._ 19 ~
I .s= -' . 0 0..
- '" '';: 14 u 20
,y
'" ," e c c
c -200 13 .. .S!
.. - ~
...J. c .. -
.. 12 ... 0
0 := ~
I c -
8 II 0 c
25 ..
0
c
- 0
0 KEY 0
I 150 9 - ,
.. L-H-Tc-K-Tc ...
E 0
i= 30 ..
EXAMPLE: E
i=
I (I) L =550', H =5.0; K = Single Family (1/4 Ac.) 35
Development, Tc = 12_6 min.
I 100 IL' ~,S (2) L =550', H =5.0', K = Commercial 40
Development, Tc = 9.7 inin.
5
I 4 Reference: Bibliogrophy item No. 35.
I RCFC a .wCD TIME OF CONCENTRATION
HYDROLOGY ~AANUAL FOR INITIAL SUBAREA
I 13<>.&\"
PLATE 0-3 \0...
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
1000
900
800
700
600
500
-
..
..
-
<::
400
a
..
~
a
350
~
-
<::
300
-
a
~
...J
~
250
150
100
Commerciol
~7av.
....~\
/
/ KEY
EXAMPLE:
(I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35
Development, Tc = 12.6 min.
) (2) L=550', H =5.0', K= Commercial
, Ttoc ~:~ Development, Tc = 9.7 min.
5
Tel
100
90
80
70
60
-
<::
..
E
a.
a
(jj
>
..
"0
50
o
35
LIMITATIONS:
I. Maximum length = 1000'
2. Maximum area = 10 Acres
5
~
..
>
a
~ U
~ III g
::I ~
go 0 a
<:: '>
C .... "0
ox.;:
N S :5
~
o
C
..
E
a.
a
(~ (jj
~
K
J:L
500
400
300
200
Undeveloped
Poor Cover
'5
'0
..
a.
'"
~ 30
o.
...
'"
..
-
"
<::
'E
25
100
80
60
<::
~
-
o
..
E
i=
4
-
o
Undeveloped
Good zov
Unde,v oped 0
" Cover
o
/
./
Single Family
(1/4 Acre)
30
40
Reference: Bibliogrophy item No. 35.
RCFC 8 WCD
HYDROLOGY J'vJANUAL
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
8=s',,,
PLATE D-3
Te
-
5
6
..
~
u
<t
!
9
-
<::
..
E
a.
o
(jj
>
..
o
10
II
,.,
E
o
LL
..
c;.
.5
CI)
14
15
16
17
18
19
20
~
o
-
'"
..
-
"
.5
E
<::
~
~
25
<::
.!!
-
a
~
-
<::
..
u
<::
o
"
-
o
..
E
i=
?P
I
I Te' LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
~
900 80 <[
~
~
I ., J::L
70 > 6 .,
0
800 u 500 ~
- ()
" 0 400 <[
.. .,
::> ~ 300 !
60 co 0 0
I 700 .5 "> 200 7
c ~ .2 ~
- 0 ., c
C Q. -
., N .s '" 100 .,
E 50 ~ 80 E
600 Q. 0 - - 60 8 Q.
I 0 ;; 0 0 50 .2
a; ., 40 Cl)
., >
> E co .. 30
Cl) 0 ." 9 .,
." 0 Q. ~ c 20 0
0 c Cl)
500 (~ a; Cl) ~
I c .~ () c 10
~ 10
'0 35 ~ Cl) 8 E
- Cl) Cl) {1.
CD Q. ;s 6
CD .. II
- .,
400 ~ 30 Cl)
I c o. Undeveloped 0 - '"
- Good Cover Cl) 2 c
.2! Cii
0 ..
.. 350 Ql 25 Undeveloped
~ - 0 .S ~
0 :> Fair Cover 0
I c 14 ~
:2 'E J: ..
300 Undeveloped ~ 15 Ql
- 20 0 c -
c .5 Poor Cover 0 :>
19 ~ 16 .S
I - 18 Single Family 0 17 E
0 t: 50~ .;f'f'
250 17 (1/4 Acre) "!6' 18 c
:J 16 ;'
~ 15 .P.- 19 ~
c: Commercia ' 0 ~
I .c 0 CD 20
- '';:: 14 7 ()
'" 2 c: c:
c: 200 - 13 ~. Cl) .2
Cl) c: ," ~
...J Ql /" ., ~
() 12 ,oz.\7 - 0
- ~
I c: -
8 II // 0 c
25 .,
/" ()
c:
.- 0
0 " KEY
J" ()
150 - ,
I Cl) ,49\<.-,-, &,.-::r L-H-Tc-K-Tc ~
E 0
i= 30
8 Ql
E
EXAMPLE: i=
I 7 (I) L =550', H =5.0~ K = Single Fomily(I/4 Ac.) 35
Development, Tc = 12.6 min.
6 (2) L =550', H =5.0', K = Commercial
I 100 40
Development, Tc = 9.7 min.
5
I 4 Reference: Bibliography item No. 35.
I RCFC 8 WCD TIME OF CONCENTRATION
HYDROLOGY JvJANUAL FOR INITIAL SUBAREA
I &s;~ +
PLATE 0-3 'ZA
I
I
I Te' LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
-
900 80 ::!.
~
I .. ...tL
70 > 6 ..
0
800 u 500 ~
u
" " 400 <l:
.. ..
- " ~ 300 !
60 co 0 0
I 700 I: :;: 200 7
'c ~ .S!
- .. -
I: 0 0. - I:
.. N 1; :~ 100 ..
E 50 ~ 80 E
600 0. 0 - >0- 60 8 0.
I E E 0 0 50 E
.. .. .. 40 CD
> E co .. 30 >
CD " '0 9 ..
'0 0. - I: 20 0
0 I: CD
500 (~ w CD
I '0 ~ U I: 10 ~
~ 10
'0 35 cr CD 8 E
- .... .. {L
.. 0. -.~ ;0 6
.. .. K II
-
400 ~ 30 .<l CD
I 0 Undeveloped co
.5 - 0 - 2 I:
Good Cover CD
CD iii
>0-
" ..
.. 350 CD 25 Undeveloped 1.0
~ - 0 .5 .8 ~
" :> Fair Cover 0
I I: .6 >0-
0 'E :I: :~ ..
+= 300 Undeveloped 0 .3 ~ CD
.5 20 Poor Cover I: -
I: 0 .2 ,/" "
19 - .=
I - 18 Single Family " // E
>
0 -~ 17 50~
250 (1/4 Acre) I:
:J 16 ~-
- 15 -
I: ~
I .<:. 0 CD
- += 14 u
co ::! I: I:
I: 200 13 .. .2
.. - ~
...J I: .. -
'" 12 2\~ - "
I " - ~
I: -
8 II ;/"" 0 I:
25 '"
V"'" "
- I:
0 KEY 0
..../ "
I 150 - ,
'" 9 Tc..=-"l L-H-Tc-K-Tc -
E 0
j:: 30 '"
8 E
EXAMPLE: F
I 7 (I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35
Development, Tc = 12_6 min.
6 (2) L =550', H =5.0', K = Commerciol
I 100 Development, Tc = 9.7 min. 40
5
I 4
Reference: Bibliogrophy item No. 35.
I RCFC Q,WCD TIME OF CONCENTRATION
HYDROLOGY wJANUAL FOR INITIAL SUBAREA
I 13c.s~'1
PLATE 0-3 zz,
I
I
I
9 JO 1>) 1'1>-0 3.LV1d
'111'110 S3M::InJ
NOll'i1~nO - A.LISN31N
0~'i10N'i11S
~t
I
I
I.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
A8010HOAH
'::0
~
i2
:on
:r>
r
r
I
o
C
::0
-
Z
-f
fT]
Z
en
-f
-<
I
z
()
I
fT]
en
-0
fT]
::0
O:>M 9 :>:I:>Y
'0
_c
Z.
O:l(lIl-.t~a- C7>Ul"""'''' ........www NNNNN ...........-- ----.... c.
~ U10VlOUl C>\,ItCJ\JIO 010-"'1\)0 1;100' .."'a <001....17'\11 ,..WN_O >OOll-.,lO'U1 ~~
~ ~- .
0 ~o ;;
." Z
~ .
. ................ ----- ----- ----- ""'\"\lNN ~ ~
....... .. .... . .... . .... . .... . .... . .... . ~- ~ 0
O>CI'O".......... .....CDtIlCD>D >0000.... ...._NNW ...,..,..\11\11 17'.........OlID ONWUlm .0 . .
~ l.oIUlOlOW "'"eo.....,#" ....01oll7'0 .01:1"''''11' o"'mwm ._lII....CJo l;D.........m... . ~ .
"
w C
0 ...........-- '"
-......._- ...........-- ---NN NNNNN NNNr\H,oI www.,po ~- Z
.... . .... .. 0".... .. ........ .. ........ . ~o n
000_.... NNW.. U1\1lO"(J'.... mOl.oO_ NNW.UO O'-..lCD"O.... 1\).......0. .0 ~
OW.........lJI O(7'oNO>o ........N ....1..1 O....IJI...Vl ..........1\10 OONUlO (D.(lIJl....CI:I .
'0 ..
-C C
z. ..
Q:llD........O' <1'U'lUl.... WWWWW NNNNN --............ --....-- c. ..
~ UlOUlD,," OUlOUlO (JIO".NO ;;Ilo-.I\I0 .om-.lCl'Ul "'''''1\)_0 >Ol:ll....l7'Ul ~~ z_
~ "'- n'"
0 ~O .~
. Z o.
~
---....... n'
, -- -.........-.... ----- -NNNN NNNWW ~ .
...... .. ........ .. ........ .. ........ .. ........ .. ....... . ....... .. "'- ~ ~~
...........,CDlJI CDoO.oo_ --1\)","'1 ....W...Utl7' CI'.......catD .oO_'\H..l Vla-tD_... .0 . -~
~ 1,01 VI tD...... tD "'""",101 0 101.....0.....0 "'<4)0'1,01_ O'-<J'N<4) a-...W"'''' 0........."'''' . '" ~.
" 0'"
~ c .n
0 '" ZC
-........-... ---....- ----- _NNNN NNNNIV NWWWlol WW....'" ~- Z -~
...... .. ...... .. ..... . ..... .. ........ .. mo n ..
O"'__N WW"'U1O' O'..........tD.o .00_1\.11.01 4>-IJIO'<J'-.I <D0_1oI. <J',oNO'_ .0 ~
-.1-,"..04>- 00'."'''' ....I\.I<D.O tDa-Ul<J'tD UlI\I 0\0 \0 -D_IJIOtll ..0.._0 .
zo
_c
----.... z>>
tIl(ll-.l....O- o-\IIVI...... WWWWW NtuN"'''' ----- c.
~ UlOUlOIJI OUlOUlO CIlO-.NO CltO'."'Cl -DCIt....,O'U'1 ....WN_co ..oCD....O'IJI ~~
~ "'-
0 ~o
~ z Z
m 0
.
. --....-- ----- -...--.... ----- NNIV"'N ~ n
...... .. ...... .. ........ . .... . ....... .. "'- ~ 0
000--.1....-.1 <DCIlCOoD>Q 000__ _NNWW ....U11J10' O'........CPoD 0_101\11.... .0 .
~ ......0"'...., O...tDNf>> ........,OOOW ..."N 00 N.o NO'O\110 O'N.o..,,,, ..,.o.,.w.., . ~
"
0 C
0 ____N '"
----- ----- ----- ~~~~~ NI\lNI\ll\l WWWW. ~- Z
..... . ...... . .... .. .... . mo n
000__ I\lNIoIW. \1IlJIU'lO'-.I ....co.o..oo __NY. "U'IC1'CIl>D -NUl..,_ .0 ~
-.-.I-UI o Ul_.o-.l ....Ul>D..O 17''''0 III CD IoI>DUlNO CDCIl CD 0# 0.0.... >DO' .
'0
-C
----- Z.
CPCIl.......,CI' 00 UlIJI... IoIWWWI..I NNNNN ----.... c.
~ U10UlOIJI OIJlOIJIO CDO',..NO a.!a-.1\l0 .oCJI..,a>Ul "WN_O .0 IJI.... O'IJI ~~ ~
~ "'- .
0 ~O ~
. Z .
'"
~
. ---....- ----- ----- :--~~~~ NN"'NN wwt..!w# ~ ."
..... . ....... . ..... .. .... .. ....... .. ...... .. "'- ~ .
OlIJl(tl,o.o 00...._'" (.H..W..... lJ!a-...,...0I ",ClO_N W.Ula-1JI ClN.IJIN .0 . i
~ NlJltII....Ul o Ul_al.... o..o.>D O'NOID.o IJI_CIllJlw ww......w ....NalOw . m
0 C>
.. C ~
0 -................ m
--__N IVNNNN NNNNW w....w....w ww... .UlIJIO<<J' <- Z
........ .. ....... . ...... . ...... .. "'0 n
ww."1JI l7'O'....tIIO O_NWW .0''''0.10 _NW.U1 ....(DONUl CIl_IJIO..... .0 ~
_Ul_O'w Q(D(Il.oN ..oUlNO..o .oOI\lO'w ",N",.Q:l NCJl-.ltDN _1JI0'CJ;>00 .
'0
-C
Z. ."
c.
~~ ~
~- .
~o .
z ;;;
~ <
~- ~ .
~o . r
. '" ~
" '"
c <
~
~- z
~o n
.0 ~
.
l\fnN \fV~
~
N.....N'O..... 0....01
.......O..lJl
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Technical
Appendix B
..
J
"JA
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
100-Year Rational Method Calculation
Coefficient of Runoff
Soil Group = C (see Hydrologic Soils Group Map for Pechanga, Figure 2)
Pervious Cover: Residential Landscaping in good condition
C = 69 (see Plate D-5.5)
% Area = 16%
Impervious Cover: Condo & Apartments
C = 90
% Area = 84%
C = (69)(0.16) + (90)(0.84)
C = 87
Time of Concentration
Time of Concentration Calculations were made by using Plate D-3 (attached) to give
the following table:
Length of Change in Time of
Basin Watercourse Elevation Concentration
1ft) 1ft) Imin)
A-1 615 5.0 10.5
A-2 405 4.2 8.5
A-3 210 1.2 7.5
A-4 255 1.9 7.7
A-5 190 5.0 5.5
A-6 190 5.5 5.3
A-7 430 3.7 8.7
A-8 400 4.3 9.0
#
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Intensity
The Intensity Calculation was made using the Murrieta - Temecula & Rancho California
Standard Intensity-Duration Curve Data, page 4 of Plate D-4.1 (attached), to yield the
following table:
Time of 100-Year
Basin Concentration Intensity
(minl (in/hrl
A-1 10.5 3.39
A-2 8.5 3.82
A-3 7.5 4.09
A-4 7.7 3.73
A-5 5.5 4.86
A-6 5.3 4.95
A-7 8.7 3.76
A-8 9.0 3.69
Discharge
Peak Discharge calculations were made using the Rational Method equation
(Q = CIA) to give the following table:
Area 100-Year Q100
Intensity
Basin (Acres) (in/hr) (cfs)
A-1 1.71 3.39 5.04
A-2 0.61 3.82 2.03
A-3 0.60 4.09 2.13
A-4 0.65 3.73 2.11
A-5 0.44 4.86 1.86
A-6 0.29 4.95 1.25
A-7 1.51 3.76 4.94
A-8 1.07 3.69 3.44
1fp
I
I
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II
I
Cover Type (3)
NATURAL COVERS -
I
Barren
(Rockland, eroded and graded land)
I
Chaparrel, Broadleaf
(Manzonita, ceanothus and scrub oak)
I
Chaparrel, Narrowleaf
(Chamise and redshank)
I
Grass, Annual or Perennial
Quality of
Cover (2)
Poor
Fair
Good
Poor
Fair
Poor
Fair
Good
I
Meadows -or Cienegas
(Areas with seasonally high water table,
principal vegetation is sod forming grass)
Poor
Fair
Good
I
Open Brush
(Soft wood shrubs - buckwheat, sage, etc.)
I
Poor
Fair
Good
Woodland
(Coniferous or broadleaf trees predominate.
Canopy density is at least 50 percent)
Poor
Fair
Good
I
Woodland, Grass
(Coniferous or broadleaf trees with canopy
density from 20 to 50 percent)
Poor
Fair
Good
I
URBAN COVERS -
I
Residential or Commercial Landscaping
(Lawn, shrubs, etc.)
I
Turf
(Irrigated and mowed grass)
I
AGRICULTURAL COVERS -
I
Fallow
(Land plowed but not tilled or seeded)
I
RCFC a ,WCD
HYDROLOGY NJANUAL
I
I
Good
Poor
Fair
Good
Soil Group
ABC D
78 86 91 93
53 70 80 85
40 63 75 81
31 57 71 78
71 82 88 91
55 72 81 86
67 78 86 89
50 69 79 84
38 61 74 80
63 77 85 88
51 70 80 84
30 58 72 78
62 76 84 88
46 66 77 83
41 63 75 81
45 66 77 83
36 60 73 79
28 55 70 77
57 73 82 86
44 65 77 82
33 58 72 79
32 56 ~ 75
58 74 83 87
44 65 77 82
33 58 72 79
76 85 90 92
RUNOFF INDEX NUMBERS
FOR
PERVIOUS AREA
PLATE 0-5.5 (I of 2)
-z,\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II
Cover Type (3)
Quality of
Cover (2)
Soil Group
ABC D
AGRICULTURAL COVERS (cant.) -
Legumes, Close Seeded
(Alfalfa, sweetclover, timothy, etc.)
Poor 66 77 85 89
Good 58 72 81 85
See Note 4
Poor 57 73 82 86
Fair 44 65 77 82
Good 33 58 72 79
Poor 67 78 86 89
Fair 50 69 79 84
Good 38 61 74 80
Poor 58 74 83 87.
Fair 44 65 77 82
Good 33 58 72 79
Poor 72 81 88 91
Good 67 78 85 89
Poor 65 76 84 88
Good 63 75 83 87
seelNot~ 4 I
Orchards, Deciduous
(Apples, apricots, pears, walnuts, etc.)
.Orchards, Evergreen
(Citrus, avocados, etc.)
Pasture, Dryland
(Annual grasses)
Pasture, Irrigated
(Legumes and perennial grass)
Row Crops
(Field crops - tomatoes, sugar beets, etc.)
Small Grain
(Wheat, oats, barley, etc.)
Vineyard
Notes:
1. All runoff index (RI) numbers are for Antecedent Moisture Condition
(AMC) II.
2. Quality of cover definitions:
Poor-Heavily grazed or regularly burned areas. Less than 50 per-
cent of the ground surface is protected by plant cover or brush
and tree canopy.
Fair-Moderate cover with 50 percent to 75 percent of the ground sur-
face protected.
Good-Heavy or dense cover with more than 75 percent of the ground
surface protected.
3. See Plate C-2 for a detailed description of cover types.
4. Use runoff index numbers based on ground cover type. See discussion
under "Cover Type Descriptions" on Plate C-2.
5. Reference Bibliography item 17.
RCFC a weD
HYDROLOGY J'vJANUAL
RUNOFF INDEX NUMBERS
FOR
PERVIOUS AREA
PLATE D-~.~ (2 of 2)
-a>
I
I Te' LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I I 1000 90 2. Maximum area = 10 Acres 5
<f
900 80 ~
~
I ., J::L
70 ,. 6 .,
0
800 u soo ~
u
" 0 400 <f
'" .,
" ~ 30a !
60 co 0 0
700 " '> 200
I 'c :2 7
~ -
- 0 '" "
" 0. -
., N ,g :~ 100 .,
e 50 ~ 80 E
0. 0 .... .... 60 8 0.
I .2 0 0 50 .2
., 40 .,
> co .. 30 >
., 0 "C 9 .,
"C - " 20 0
500 " '"
'" ~
c u " 10
I ~ 10
'0 35 '" 8 e
- '" .,
., 0. 6 0
lL.
CD .. K A' '" II
....
30 -1.0 ~ - '"
400 ~ Undeveloped C.
I " o. 0 - 12
.... Good Cover '" 2 "
.l!! en
0 ..
CD 350 '" 25 Undeveloped " 1.0
- ~
~ ::J 0 .8 0
0 Fair Cover
I " ~ .6 ....
~ 'E :I: :~ ..
300 Undeveloped 15 '"
- 20 0 .3 -
.5 .5 Poor Cover .2 ::J
19 16 .:
I ... ~ 18 Single Family 17 E
0 -~ 17
250 (1/4 Acre) 18 "
~ [6
..J
~ :; ? 19 ~
"
I .c 0 20
- +:
'" 2 "
" 200 - .!:!
CI) "
..J Gl -
0 12~"l:, 0
~
I " -
8 :JJ/ "
25 .,
0
.... "
, ' 0
0 Tc., .::: \o,S\,\~.,....... KEY 0
I 150 9 - ,
'" L-H-Tc-K-Tc ....
E 0
j:: 30 '"
8 E
EXAMPLE: j::
I 7 (I) L=550', H =5.0~ K=Single Family(I/4Ac.) 35
Development I Tc = 12.6 min.
6 (2) L =550', H =5.0', K= Commercial
I 100 40
Development, Tc = 9.7 min.
5
I 4 Reference: Bibliogrophy item No. 35.
I RCFC a ,WCD TIME OF CONCENTRATION
HYDROLOGY ~;]ANUAL FOR INITIAL SUBAREA
I ~",~'.I'\ 1+-
PLATE D-3 1-~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
1000
900
800
700
600
500
...
GO
GO
...
.5
o
GO
~
o
:2
...
5:
350
300
Te'
100
90
80
LIMITATIONS:
I. Maximum length = 1000'
2. Maximum area = 10 Acres
70
60
...
C
GO
E
a.
.2
GO
>
Q)
"0
50
o
c
..
E
a.
o
(~ ~
~
-
o
~
...J
~
250
c
'0
Q)
a.
U>
35
-I<
Undeveloped
Good Cover
.c
-
00
c
Q)
...J
200
~
o.
...
U>
Q)
...
::J
c
'E
25
Undeveloped
Foir Cover
150
100
.5
20
19
18
17
16
15
14
13
12
II
Undeveloped
Poor Cover
~
f:
Single Family
(1/4 Acre)
c
.2
2
...
c
Q)
o
c
8
...
o
~
~
..
~ ..!:L
u
soo
400
300
200
:w.:: en g
:l ~
'" 0 0
.~ >:
c ~ 0
o ~ :;:
N .5 :E
~
o ... ...
o 0
..
'" on
o "0
... C
~ Q)
~ c
~ ~
~
A'
.0
100
80
60
50
40
30
20
10
8
6
>-
10 E
o
--rl-lL.
Q)
c.
c
en
II)
~
2
o -:;;
GO
...
0.5 ~ilO ../
_.6 /
:I:.~ ,/
o -; :3.Y\..'l-l
o .2 .,./
'0 /"~
50 ~ "".r'. /'
'Q)f"'- .
,.../
Q)
E
j::
tC: -:: 8.5
KEY
- ,
L-H-Tc-K-Tc
EXAMPLE:
(I) L =550', H =5.0: K = Single Fomily(l/4 Ac.) 35
Development, Tc = 12.6 min.
(2) L =550', H =5.0', K = Commercial 40
Development, Tc = 9.7 min.
7
6
5
4
RCFC a ;WCD
HYDROLOGY JVJANUAL
Reference: Bibliography item No. 35.
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
&>'i," - '2.
PLATE 0-3
Tc
5
6
..
~
o
<(
!
7
8
...
c
Q)
E
0.
o
Q)
>
..
o
9
14
15
16
17
18
19
20
~
o
...
on
..
...
::J
.=
E
c
~
~
25
c
.2
...
o
~
...
c
Q)
o
c:
o
o
...
o
30
..
E
j::
~
I
I Tel LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
900 80 5
~
I .. J:L
70 > 6 ..
0
800 u 500 ~
0
" " 400 <t
.. ..
" ~ 300 !;
60 co " "
I 700 " -;; 200 7
C ~ "
- .. -
" 0 Q. :;:: "
.. N .5 :~ 100 Q)
E 50 ~ 80 E
600 Q. 0 - - 60 8 Q.
I " c 0 0 50 0
Q; Q) .. 40 Q)
> E co .. 30 >
Q) " .., 9 Q)
.., Q. - " 20 0
500 0 c: Q)
(~ Q; Q)
I "0 ~ 0 " 10 ~
~
'0 35 ~ Q) 8 'E
- Q) Q)
Q) Q. ~ 6 (L
.. .. K A' ..
-
400 ~ 30 -L..c 1 Q)
I o. Undeveloped c;.
.5 - 0 c:
Good Cover Cii
" ..
.. 350 '" 25
~ - ~
0 " 0
I c: 14 -
~ 'E Ul
- 300 15 Q)
-
" .5 "
- 16 .S
I - ~ " E
" Single Family 50li 17
250 (114 Acre) A 18 "
:J 16
~ 15 19 ~
" Commercia 0",
I 0 20
:;:: 14 ;r 0
e c c
c: 200 13 Q)
.. - ~ .!:!
..J " Q) -
Q) 12 1...'/.1- - "
I 0 - ~
c -
8 II /' 0 c:
"'" 25 '"
~ .J,it"" 0
.- "
0 ;;. KEY 0
,/ 0
I 150 9 ,,.' - ,
Q) L-H-Tc-K-Tc -
E / "
.i= 8/ 30 Q)
'" EXAMPLE: E
I /\(::-=t.S i=
7 (I) L =550', H =5.0~ K = Single Family (1/4 Ad 35
Development, Tc = 12.6 min.
6 (2) L = 550', H =5.0', K = Commercial
I 100 40
Development, Tc = 9.7 min.
5
I 4
Reference: Bibliography item No. 35.
I RCFC 8 WCD TIME OF CONCENTRATION
HYDROLOGY lVJANUAL FOR INITIAL SUBAREA
I Ea.,"'" A-3.
PLATE 0-3 ~\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
1000
900
800
700
600
500
-
CD
CD
....
c
400
Te'
100
90
LIMITATIONS:
I. Maximum length = 1000'
2. Maximum area = 10 Acres
;:
.. ..
E co UI
0. ~ "0
o C C
OJ u .. ..
~~~
K
Undew
~FdIr-cover
..,___ Undeveloped
c ",...~O Poor Cover
19
18
17
16
15
14
13
12
II
80
70
60
-
c
..
E
a.
.Q
..
"
..
""C
50
o
CD
~
o
'0
'';:
350
300
o
'0
..
a.
UI
35
=
....
o
~
...J
~
250
~
o
....
30
.c
-
'"
c
..
...J
200
UI
..
-
::J
c
'E
25
ISO
100
~.
~
~
c:
o
'';:
g
-
c:
..
o
c:
8
....
o
..
E
.i=
6
S
4
RCFca WCD
HYDROLOGY f-JJANUAL
Undeveloped
Good Cover
Single Family
(1/4 Acre)
........--!
rrr# / II
/ 12
/
.6 /..
~:~ ~
o.~ :~/' ,'Z.
- '"
50~/ ,./
~.:
0..
o
c:
..
~
..
....
::
o
5
~
..
>
o
_ u
.:.::: '" g
" ~
co 0 0
.= >:
C ... 15
o ~ :;:
N .s :!'i
~
o .... ....
o 0
Ai ..
.0
o
o
KEY
- ,
L-+H-Tc-K-Tc
.li..
500
400
300
200
100
80
60
50
40
30
20
10
8
6
EXAMPLE:
(I) L =550', H =5.0: K = Single Fomily(l/4 Ac.) 35
Development, Tc = 12.6 min.
(2) L =550', H =5.0', K = Commercial 40
Development, Tc = 9.7 inin.
Reference: Bibliogrophy item No. 3S:
Te
5
6
..
~
u
<(
~
7
8
-
c:
..
E
a.
.Q
..
"
..
o
9
'"
E
o
LL
..
c;.
.5
<Jl
14
15
16
17
18
19
20
~
o
....
UI
..
-
::J
.=
E
c
~
~
25
c:
.2
-
o
~
-
c
..
u
c
o
u
30
....
o
CD
E
i=
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
GO-s',,, , '-
PLATE 0-3
1)V
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
1000
900
800
700
600
500
...
..
..
...
c
400
"
.,~ c
.2
E
...
c
'"
o
c
8
Te'
100
90
...
c
..
E
a.
o
Q;
>
..
..,
"0
'0
..
a.
..
~ 30
o.
...
..
..
-
"
c
'E
20
19
18/'-'
f:P
16
15
14
13
12
II
.9
...
o
80
70
60
50
o
35
25
.../<
."......
9
RCFC a ,WCD
HYDROLOGY JvJANUAL
o
..
~
a
350
:2
...
!:
300
...
o
:J
~
250
~ ,,;p"'
- ~
~ "26~
-1.
ISO
100
..
E
i=
4
LIMITATIONS:
I. Maximum length = 1000'
2. Maximum area = 10 Acres
s
~
'"
,.
o
~ U
" ..
~
co 0
.~ ">
c ~
o ~
N .E
~
o ...
o
.lL
500
400
300
200
100
80
60
50
40
30
20
<:
..
E
a.
o
(~ U
~
..
co ..
o ..,
- c
~ ..
~ c
.r ~
~
Ai." 4 I)
/..0 3 I"~
Undeveloped "0 ... /
Good Cover" 2
unde,veiO';:d 0 ~ ~ilO I
Fair Cover ~.6 /
.,-' 'Undeveloped 0 ;: 13 ,V
'poor Cover i ,~~ /"
Single Family ssYli ./
(1/4 Acre) / ..
I ._
0..
o
c
..
~
..
...
==
a
K
Te
5
6
..
~
o
<t
10
II
~
E
~
..
0.
c
(J)
KEY
- ,
L-H-Tc-K-Tc
EXAMPLE:
(I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35
Development, Tc = 12.6 min.
(2) L =550', H =S.O', K= Commercial
Development, Tc = 9.7 inin.
Reference: Bibliography item No. 35.
40
14
15
16
17
18
19
20
~
o
...
Commercial
~
,'l-J. /
/"
j
"
//
l
8 /
/
!
/ lL~ ~.S
5
..
..
...
"
.=
E
c
~
~
25
c
.2
...
o
~
...
c
..
o
c:
o
o
30
...
o
'"
E
i=
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
'5"'s, 'I
PLATE 0-3
~
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L
1000
900
800
700
600
500
-
..
..
...
.5
400
o
..
~
o
:2
-
c
350
300
...
o
:J
~
250
150
100
Tel
100
90
80
70
60
-
c
..
E
Q.
o
Q;
>
CD
'0
50
LIMITATIONS:
. ,
I. MaXimum length = 1000
2. Maximum area = 10 Acres
-
5
~
..
~ J:L
u
6 f
~o u
400 <(
300 v
200 :p'j. ~
~OJ> /~ ~
!8,/' 8!
30 ,,/' ii;
20 / 9 0
10,,,.'''/ 10 ;
(t
II
"
'0
CD
Q.
on
35
:.: en ~
:> ~
co 0 0
E ):
c: .... ~
o ~ _
~ ~ :E
o ...
o '0
..
co on
o '0
- C
~ CD
U
~
~
c:
..
E
Q.
o
(~ ~
~
~
o
...
30
K
Undeveloped
Good COJ'r'"
Unde efoped
Ir Cover
1.0
o _ :~/I"
J::~ /
o :5 ./,3 I",'l-
;:: f' .2
0'
~~ /'
I .-
0..
u
c
CD
~
..
...
...
o
on
..
-
"
c
'E
25
Undeveloped
Poor Caver
Single Fomlly
(1/4 Acre)
.5
....
o
16
15
14
13
12 I",'l-\
II /
~
KEY
- ,
L-H-Tc-K-Tc
EXAMPLE:
(I) L =550', H =5.0~ K = Single Fomily(I/4 Ac.) 35
Develapment I Tc = 12_6 min.
(2) L =550', H =5.0', K = Commercial
Development, Tc = 9.7 inin.
40
Reference: Bibliography item No. 35.
RCFca WCD
HYDROLOGY ~AANUAL
..
E
j::
9
8
:/
/~\ _ t: ?
t ~ JI ~ .;0:..
5 .
4
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
80.,$"1'\
PLATE D-3
Te
5
12
..
c;.
c
en
14
15
16
17
18
19
20
~
o
....
on
..
-
"
.S'
E
c
~
25
c
.2
-
o
~
-
c
..
u
c
o
u
30
...
o
..
E
j::
~
I
I Te' LIMITATIONS:
L 100 I. Maximum length = 1000' Te
I 1000 90 2. Maximum area = 10 Acres 5
-
900 80 S
~
I .. .l:L
70 ,. 6 ..
0 ~
800 u 500 u
>0: " 400 <t
"' ..
- " ~ 300 :s
60 '" 0 "
700 c -;; 200 7
I c ~ .2 -
- 0 .. c
c N a. - 100 ..
.. .E ~~
E 50 ~ 80 E
600 a. 0 ..... ..... 60 8 a.
0 c: 0 0 50 0
I Q; .. 40 ..
.. ,.
,. E '" "' 30 ..
.. " '0 9
'0 a. - c 20 0
" c ..
500 (~ Q; ..
u ,.,
I " ~ ~ 10
'0 35 cr E
- CIl {1.
.. a.
.. "' II
.....
400 ~ 30 CIl
I c 0 Undeveloped '"
..... Good Cover 2 c
rn
" "'
.. 350 CIl 25 Undeveloped .S
~ - 0 ~
" ::> Fair Cover 0
I c 14 .....
:5! 'E :x: "'
300 Undeveloped ~ 15 CIl
- 20 0 c -
c c Poor Cover .2 ::>
19 - 16 .=
I ..... 18 Single Family 17 E
" -~ 17
250 (1/4 Acre) 18 c
::i 16
~ 15 19 -
c Commercia ~
I .r. .2 20
- - 14 Y
'" 2 c
c 200 - 13 .!!
CIl
...J c /.1/ -
CIl 12 "
u ~
I c -
8 II c
#/ 25 ..
u
..... c:
0 KEY 0
J" u
150 - ,
I Cl1 ~ -4'9.,......,- l-H-Tc-K-Tc .....
.~ \<.-= 8'.1- 0
f- 8 30 ..
E
EXAMPLE: i=
I 7 (I) L =550', H =5.0; K = Single Family (1/4 Ac.) 35
Development, Tc = 12.6 min.
6 (2) l=550', H =5.0', K= Commerciol
I 100 Development, Tc = 9.7 inin. 40
5
I 4 Reference: Bibliography item No. 35.
I RCFCa .wCD TIME OF CONCENTRATION
HYDROLOGY J'lJANUAL FOR INITIAL SUBAREA
I &s:~
PLATE 0-3 .,p
I
I
I Tel LIMITATIONS:
L 100 , Te
I. Maximum length = 1000
I 1000 90 2. Maximum area = 10 Acres 5
~
900 80 S
~
.. Ji.
I > 6 ..
70 0
800 u 500 ~
- u
" .. 400 <t
on ..
::l ~ 300 !
60 00 0 0
I 700 .E '> :2 200 7
c: ~ -
- 0 .. c:
c: N 0. ~ 100 ..
.. .s .5 E
E 50 ~ 80
600 0. 0 - - 60 8 0.
0 0
I .Q C 0 50
40 ..
.. .. .. >
> E co on 30 ..
.. .. '0 9
'0 0. - c: 20 0
0 0 c: ..
500 (I) ~ ..
-0 u c: 10 ~
I -~,_._-~ ~ 10
'0 r .. 8 E
- ""'"~.....,._,.GL. .. {t
.. 0. ~ 6
.. on 1\ II
-
400 30 .0 ..
~ Undeyeloped
I .5 0 0 - co
- Good Cover .. 2 .5
.. Ul
-
.. 350 on
.. .. 25 Undeveloped 1.0
- .5
~ ::J 0 .8
.. c: Fair Cover .6
I ~
:2 'f: l: .~ on
300 Undeveloped :3 ~ ..
- 20 0 c: -
c: .5 Poor Coyer 0 .2/" "
19 - .S
I - ~ 18 Single Family g .","/ E
0 !:: 17 ;P'
250 (1/4 Acre) c:
:J 16
~ 15 ~
c: Commercia. 0.. {l
I .c 0
- :0= 14 7 u ~
'" 2 c: c:
c: 200 - 13 .. .2
.. ~
...J c: .. -
.. 12 ~ - ..
u :!: ~
I, c: -
8 II h 0 c:
25 ..
// u
- c
0 KEY 0
u
I 150 - ,
.. L -H-Tc-K-Tc -
E 0
i= 30 ..
8 E
EXAMPLE: i=
I 7 (I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35
Development, Tc = 12.6 min.
6 (2) L =550', H =5.0', K = Commercial
I 100 Development, Tc = 9.7 inin. 40
5
I 4 Reterence: Bibliography item No. 35.
I RCFC 8,WCD TIME OF CONCENTRATION
HYDROLOGY wJANUAL FOR INITIAL SUBAREA
I &c.s',~ ... ..
PLATE 0-3 ~
I
I
I
I
l\fnN\ffl~ J..'S010HOJ..H
OOM 9 O:JO~
910 p) \'P-O 3.l\11d
Ii.Bfa S3^~nJ
NOllli~na - A.lISN31N
OtlliONlilS
\..~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:::u
1>
Z
~
r
r
-
Z
-I
ITI
Z
(f)
-I
~
I
z
()
I
ITI
(f)
"U
ITI
:::u
:r:
o
c
:::u
'0
_c
%D
011>>...,....0- 17"\11"'''''. WWWlolW I'\,JI\I 1\1 r\lI'\l ............-.... ...-......... c.
'" UtO Ul 0\11 O\llOUlO atO'f""'O lJIO'.rvo >D CD"" "'Ul ......"'...0 ,oCD""O'V! .'"
~ ~- .
0 "'0 ;;
" %
~ .
, ........ .. ---- ----- ----... ...........-- "'NNNI'\) < ~
........ .. ........ .. ........ .. ~- ~ 0
CJ'>(J'O' ..,... ~aHXI(>>>ll >0000'" ""_I'UNW ...UlUl (7<.......011..0 Ol'll'-lUlCD .0 " .
;,. WIIlCD"".... 0'0...0.... ...,ewO'\o ..11>.000- O.CD....CD ._01....0- (11_.....01.,. D ~ .
"
W C
0 .................. m
----- ----- ---1'\)1\1 NNNNN I'\,INNNW W(Olw.... <- %
........ .. ........ .. ........ .. .-..... .. ........ .. mo 0
000__ NI\II....... \1IUl 0' 0'-.1 attD..o<:>_ NN.....U1 00..,1>>..0_ N.....O.... '0 <
OW...._U1 OO"NO..o W.."N "",,1..1 O....U1..\Jl ........1\10 OONUlO O"'DIII...OI "
'0 ~.
_c c
----- %" ""
lJICD...,...,O' <7'\IIUI........ ...H....WWW NNNNN ----- c. ."
'" U1OVlC>\II OUlOlllO CDO'.NO (JIO'....I'\,JO .tI<.D....O'U1 ........."'_0 ,g"'''''l1'\Il "'. %-
~ m_ om
0 "'0 .~
. z o.
m
-- ---...... ----- 0'
, ----- _NNNN NNNWW < .
........ .. ........ .. ........ .. ...... .. ........ .. m_ ~ ~~
..........,atCD \JlI..o..oo_ __NNN WW....U1O' O'......CDaJ "'O_Nl,o.l U1l7>CD"". .0 " _m
;,. WU'lCD_. <:DN....WO 101.....0...,0 ...'Ol1'w.... O'-""N,o l1'.........ao 0..........0\1\11 D m ~.
0 om
~ c "0
" ................... ................- m zc
----- _NNN.~ NI~NNN NWWWW 101101,","\11 <- Z -~
.... . .... . .... . .... . .... . .... . mo 0 ..
0......._1\1 I.HoI...\ltl1' "".........11I..0 .00....1'\1101 .,.\lt17'Oo..., 11I0....101'" O'o"ONOO'.... .0 <
.........\11..0.,. 00''''''''1\1 .....I\Ic>>.0 <JIIO'\IIC7'lII '-"1\10.0.0 .0'" VI om .0.. ....'0 D
'0
-c
%"
(Il(Z>..........ao O<\IIUI.. IoIl.HoI 101 101 """"1'\11'\1"" -....--- ....---- c.
'" ,,"0,," 0 lJ1 OUlO,,"O (Ilao.,."o OI"".""Cl .001.....0'1/1 #-1oI""'-Cl ..001 "",O'.Ul "'~
~ m_
0 "'0
" Z %
~ 0
"
, --............ -....-....... -........-.... ...---- f\JIVl'\INI'\I < 0
.... . .... . .... . .... . .... . .... . m_ ~ 0
aoO'........... OICOa>.o.o 000....... _NIVWIoI ,..,.U1U10' 0'........=.0 0_1011/1.... '0 "
;,. ...oON.,.... o"'a>I\lGII _WO'ClW .....N a>N .0 IV a> 0 11I0 O'N.o..."" ......0.,.101... " m
"
0 c
0 -.......-... .........-- .................. ....___N NNNNN NNNl'\Il'\I <- ~
wwww.,. z
.... . .... . .... . .... . .... . mo n
000__ NNWW... UlIIIIIIO'''' ...lJI.o.oo ...._NW.,. .,.lIIl7'm.o -NIJI....... .0 ~
_,....._11I Olll_.o"" _IJI.o.o O'NO(llQIII W..oUlNO lJI lI>(Il 0'" 0.0_.0"" "
'0
-c
----- ZD
0)(>>""...."" 0'>U1U1.,.... 101101101(,01101 I\lNI\Il'\Il\I ----.... c.
'" UlOlllOIJl OUlOUlO (>>0',.1\10 Oll1',.NO '01ll....aoUl ,.WN....O "OCll....O'\II ~. .
~ m_ .
0 ~o ~
~ Z .
m
~
" ----- ----- --....-- _NNNN NNNNtv t.lIolWW#- . "
.... . .... . .... . ... .. .... . m_ ~ '"
11I11I(>>..0..0 00...._1\1 www,.,. 1/Ia>........QIII .oOO_N 101,..\110'01 0"""'11I1\1 .0 " Z
:" NIIIQIII-VI OUl_III.... o..o.>t> 0"1\10..0.0 \II_OllUllol WW"""loI -1\l1>>01ol " ~
" '"
~ c '"
0 ----- loIto1WWW loIW,..... m
---_tv NN/lJI'\IN Nf\lNNlo.I .tJlUlO'a" ~- Z
.... . .... . .... . .... . ~o n
WW......UI 0,a>....1>>0 O_Nl.o>loI ...0"....1>>0 _NW"'UI ""I>> O/IJ \Jl <>>_,-"0-.1 '0 <
....t1l...0'0 W o 0lI1J1 >t>I'\I ,o,-"NO..o ..001'\10'101 NNN..<>> NC>>-.I(IlN _\II00(ll(p> "
'0
-c
z" "
01(11.........0' O'V'lUt.,.... IoIlo.1lo1lo1to1 Nf\lNN/IJ ----.... ---....- c.
'" UtOUlOUl O,,"OUlO QIIIO'".",O (IlC!'''''''O "Olll.....UOV! ......"'_0 'D lII.....UO U' ~~ m
~ m_ '"
0 ~o '"
~ % :;;
m
" ---- -...--- -....-...- ----- _1'\1 '" NN ~ <
.... . .... . .... . .... . m_ ~ .
""0'............. .....0.0...0..0 .000'0_ _"'NNIoI 101......" UlO'>..........a> ..oON.,."" .0 " ~
~ O'lJIO'l\J1JI O>-UlO'lJl (II 0 (01 C7'O' WQlNOI'" ....-Ul"O. ..olJlN,of;tl a...o.._.. " m ~
" m
~ c <
0 m
--- ----- ----- ----- .-rvl\lNN NN""NN I\llo.lw.....toI ~- Z
.... . .... . .... . .... . .... . mo n
..0.0000 --NNW ,...,.,.UI\II Cl'O'...f;tI.o >000..-"" NW #>UlO' lIION.,...... .0 <
.,.....0.,.(D N....N.o.... O.,.lIIN..... lo.I,oUllotl\l ...NO).,..- ID.....O'...,ID fI'...._C7'CD "
I
I
I
I
I
I
I
I
I
I
I
! I
I
I
I
I
I
I
I
!
! I
Technical
Appendix C
?J:;
.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
rl
I
,I
The IOO-Year flood sholl be contained within street R/w limits.
The IO-Year flood sholl be contained within the Top of curbs.
Initiate 0 storm drain or channel when either condition is
exceeded.
'"
z w
:J .... z
'" :J
~ '"
..... a: "
a: Iii .....
a:
.... ....
'" ...
'" w
a: '"
.... :=1
(Il "'I
~
.
. TYPICAL
I FREE BOARD
r
, --L-
I l
~~- j
DWELLING
UNIT PAD
r"" _ ____ UNDERGROUND
\. ;- STORM DRAIN
OPEN CHANNEL
NOTES:
Protection criteria shown are the Districts typical minimum requirments.Special conditions,
or other authorities may require stricter controls; ie; for reasons of traffic or pedestrian
safety, maintenance problems behind curbs ,etc., lower maximum depths of flow in streets
may be required.Also see Riv. Co. Ord. No. 460.
RCFC 8 iWCD
HYDROLOGY J'V]ANUAL
FLOOD PROTECTION
CRITERIA
PLATE A-2
J
?f\
I
I
lauue4~ Jeln6aJJI JOJ uonoas SSOJ~
uO!Joas SSOJ~
UOlld!J::lsaa l::>S[OJd
I
JO,:l eAIOS
pOllleV'l
luawal3 MOI.::J
l€ll::lljS)j,JOM
Lndaa 18uue48
elnWJO.:l S,BU[UUBV'l
18UUB48 J81n68J11
f WJOlS JeaA-O~ 'rF'<I uO!l::>as
I
SJ::> 6L'P aBJell::>S!O
Et:"O ~ 01 00"( a6uBt:j UO!lBA613
ij LZ'O ~ A813 roBjJnS Je}BM
ij/lj 000900'0 adolS
E:~O'O ISPYJ80:) S6U!UUBV'J
8lea uOlpas
I
I
OO'SO+~ OO'OOH
OO'O~
SO'O~
o ~'O~
S ~.O~
OC:'O~
SC:'O~
~- n._u~,. O€'O~
'S€'O~
I
I
I
I
I
I
I
I
I
I
I
I
OO'O~H
OO'S~H
OO'OC:+~
OO'SC:+~
SlN
~:H
~O'OZ:^
rjq
~ 3'tlYl') I::) 331~
'OUI 'SP04lElr-J pe~seeH @ VIId 9f.;:E:O=ZQ 90/0l1LO
lWj')jBO J€lAI!S\:6
vsn 90L90 .1:> 'AmqJ6IBM peo~ ep!S)jooJ8 Lf.
6ulllnsuo:) :ISH
~ jO \.- aBed 999\.--SSL (EOl)
[oNgl \.- '9A J61SBV\lMOI.:::l
ulsl)l: lned :Jaau!6U3 pafOJd
:10 ('jCI.L"t'?oi 110::\
5NOI.,L'")-;J S
I
I
Cross Section
Cross Section for Irregular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
I
Section A~A 1 QO- Year Storm
Irregular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coefficiel
Slope
Water Surface Elev
Elevation Range
Discharge
I
0.013
0.006000 Wit
10.30 It
1.00 to 10.33
7.07 efs
I
I
I
10.35,~
10.30
10.25
10.20
10.15~-
10.10
10.05
10.00
1+00.00
I
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/20106 02:00:58 PM
EJ
1+05.00
1+10.00
1+15.00
1+20.00
1 +25.00
V:20.0~
H:1
NTS
A.\
RBF Consulting
@ Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
I
I
Cross Section
Cross Section for Irregular Channel
Project Description
Worksheet
Flow Element
Method
Solve For
I
Section B-B 10-Year Storm j
Irregular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coefficiel
Slope
Water Surface Elev
Elevation Range
Discharge
I
0.013
0.005000 Wit
10.24 It
1.00 to 10.33
2.99 cfs
I
I
I
10.35,
10.30 _.. ----~---
10.25
10.20
10.15
10.10
10.05 -
10.00
1+00.00 1+05.00
I
I
I
I
I
I
I
I
I
";
1+10.00
1+15.00
1+20.00
1 +25.00
V:20.0~
H:1
NTS
~
I
Project Engineer: Paul Klein
g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 16140]
07/20/06 02:09:31 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755~1666 Page 1 of 1
I
Cross Section
Cross Section for Irregular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
Section B-B 10Q-Year Storm
Irregular Channel
Manning's Formula
Channel Depth
I
I
I
Section Data
Mannings Coefficiel 0.013
Slope 0.005000 ftlfl
Water Surface Elev. 10.27 ft
Elevation Range 1.00 to 10.33
Discharge 4.24 cfs
I
I
I
I
I
10.35C
10.30 ---------~~~
10.25
10.20
10.15----
10.10
10.05
10.00
1+00nO 1+05nO
1 +20.00
I
I
1+10.00
1+15.00
I
I
I
I
I
I
.v
1+25.00
V:20.0~
H:1
NTS
b..?/
I
Project Engineer: Paul Klein
g:\silver oak.fm2 RBF Consulting FtowMaster v6.1 [6140]
07/20/06 02:08:54 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
I
Cross Section
Cross Section for Irregular Channel
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
Section C-C 1Q-YearStorm,
Irregular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coefficiel 0.013
Slope 0.010000 Wit
Water Surface Elev 10.27 ft
Elevation Range 1.00 to 10.33
Discharge 5.68 cfs
I
I
I
I
10.35,~
10.30
10.25
10.20
10.15
10.10
10.05
10.00
1+00.00
I
I
I
1+05.00
1+10.00
1+15.00
1+20.00
1 +25.00
I
V:20.0~
H:1
NTS
I
I
I
I
I
*'
I
g:\silver oak.fm2
07/20/06 02:11:08 PM
@ Haestad Methods, Inc.
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
I
Cross Section
Cross Section for Irregular Channel
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
Section C.C 10Q-Year Storm
Irregular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coefficiel 0.013
Slope 0.010000 Nfl
Water Surface Elev 10.30 ft
Elevation Range 1.00 to 10.33
Discharge 8.38 efs
I
I
I
I
10.35
10.30
10.25
10.20
10.15.---
10.10
10.05
10.00
1 +00 .00
.')
I
I
I
1+05.00
1+10.00
1+15.00
1+20.00
1 +25.00
I
V:20.0~
H:1
NTS
I
I
I
I
I
~~
I
Project Engineer: Paul Klein
g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 (6140]
07/20/06 02:10:32 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
I
I
Cross Section
Cross Section for Irregular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
Section 0-0 10-Year Storm,
Irregular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coefficiel 0.013
Slope 0.056000 fVft
Water Surface Elev 10.16 ft
Elevation Range 1.00 to 10.33
Discharge 2.11 cfs
I
I
I
I
10.35
10.30
10.25
10.20
10.15--
10.10
10.05
10.00
1+00.00
8
I
I
I
1+05.00
1+10.00
1+15.00
1+20.00
1 +25.00
I
V:20_0~
H:1
NTS
I
I
I
I
I
~
I
Project Engineer: Paul Klein
g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 [6140)
07/20/06 02:12:32 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
II
I
Cross Section
Cross Section for Irregular Channel
I
Project Description
Worksheet
Flow Element
Method
Solve For
Section 0-0 10Q-Year Storm
Irregular Channel
Manning's Formula
Channel Depth
I
I
Section Data
Mannings Coefficiel 0.013
Slope 0.056000 ft/ft
Water Surface Elev 10.18 ft
Elevation Range 1.00 to 10.33
Discharge 3.11 cfs
I
I
I
I
10.35
10.30
10.25
10.20
10.15 .-
10.10
10.05
10.00
1+00.00
~
~
I
I
I
1 +05.00
1+10.00 1+15.00
1+20.00
1+25.00
I
V:20.0~
H:1
NTS
I
I
I
I
I
A."\
I
Project Engineer: Paul Klein
g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 [6140]
07/20/06 02:12:01 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Technical
Appendix 0
A'b
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
:Grated Inlet SizinQ Summary Table
Inlet# Inlet Type Q100 Inlet Capacity
(cfs) (cfs)
3 24"x24" C.B. 4.94 4.36
on Grade
4 24"x24" C.B. 3.44 3.27
on Grade
5 24"x24" C.B. 2.13 4.24
in Sump
6 24"x24" C.B. 2.11 4.24
in Sump
8 36"x36" C.B. 5.04 6.36
in Sump
Curb Inlet SizinQ Summary Table
Inlet # Inlet Type Q100 Required Length
(cfs) (ft)
4' Curb Inlet .
1 on Grade 1.83 3.3
4' Curb Inlet 1.88 ..
2 on Grade 3.4
7 4' Curb Inlet 2.03 3.0
on Grade
1. Inlet 1 will receive the excess flow of 0.58 cfs from Inlet 3.
2. Inlet 2 will receive the excess flow of 0.17 cfs from Inlet 4.
~o..
I
I
I
I
I
I
I
I
I
I
I-
I
I
I
I
I
I
I
I
24" x 24" Catch Basin (Sar:1l
Weir Calculation
Cw = 3.0
D = 0.5'
CI = 0.50
P =8'
Grate Constant
Height of Curb
Clogging
Perimeter of Grate
Pe = (1-CI)P
Pe = (1-0.50)(8)
Pe = 4'
Ow = (Cw)(Pe)(D3/2)
Ow = (3.0)(4)(0.53/2)
Ow = 4.24 cfs
Orifice Calculation
Co = 0.67 Grate Constant
D = 0.5' Height of Curb
CI = 0.50 Clogging
g = 32.2 ftls2 Gravitational Constant
A = 2.25 ft2 Area of Grate
Ae = (1-CI)A
Ae = (1-0.50)(2.25)
Ae = 1.13 ft2
Qo = (Co)(Ae)(2gD)1/2
Qo = (0.67)(1.13)((2)(32.2)(0.5))1/2
Qo = 4.27cfs
Ow < 00 use Ow = 4.24 cfs
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
36" x 36" Catch Basin (SaQ)
Weir Calculation
Cw = 3.0
D = 0.5'
CI = 0.50
P = 12'
Grate Constant
Height of Curb
Clogging
Perimeter of Grate
Pe = (1-CI)P
Pe = (1-0.50)(12)
Pe = 6'
Qw = (Cw)(Pe)(D3/2)
Ow = (3.0)(6)(0.53/2)
Ow = 6.36 cfs
Orifice Calculation
Co = 0.67 Grate Constant
D = 0.5' Height of Curb
CI = 0.50 Clogging
g = 32.2 ftls2 Gravitational Constant
A = 6.25 fe Area of Grate
Ae = (1-CI)A
Ae = (1-0.50)(6.25)
Ae=3.13ft2
Qo = (Co)(Ae)(2gD)1/2
Qo = (0.67)(3.13)((2)(32.2)(0.5))1/2
00 = 11.88cfs
Qw < Qo use Ow = 6.36 cfs
6'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Inlet 1 - 4' Curb Inlet (on Grade)
0100 = 1.25 cfs + 0.58 cfs = 1.83 cfs
0.58 cfs is bypass from Inlet 3
Slope = 5.6%
Depth of Water (y) = 0.18' from Flow line
Depth of Depression (a) = 0.67'
Q = Q100
L T = Required Length of opening
Q/LT= 0.7 (a+y )3/2
1.83/LT = 0.7 ( 0.67+0.18 )3/2
LT=3.3'
< 4' ok
Inlet 2 - 4' Curb Inlet (on Grade)
Q100 = 1.86 cfs + 0.17 cfs = 1.88 cfs
0.17 cfs is bypass from Inlet 4
Slope = 5.6%
Depth of Water (y) = 0.18' from Flow line
Depth of Depression (a) = 0.67'
Q = 0100
L T = Required Length of opening
Q/LT = 0.7 (a+y )3/2
1.88/LT = 0.7 ( 0.67+0.18 )3/2
LT= 3.4'
< 4' ok
,.~
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Inlet 7 - 4' Curb Inlet (on Grade)
0100 = 2.03 cfs
Slope = 0.6%
Depth of Water (y) = 0.30' from Flow line
Depth of Depression (a) = 0.67'
Q = 0100
LT= Required Length of opening
O/LT= 0.7 (a+y )3/2
2.03/LT= 0.7 (0.67+0.30 )3/2
LT= 3.0'
< 4' ok
Inlet 3 & 4 - 24" x 24" Catch Basin (on Grade)
See attached Haestad Methods, Inc worksheets that utilizes the Hec-22 design for
grated inlets on grade
?'?
I
I
Project Description
Worksheet
Type
Solve For
INLET 3
Grate Inlet On Gr
Efficiency
I
I Input Data
Discharge
Slope
Gutter Width
Gutter Cross Slo(
Road Cross Slop
Mannings Coeffie
Grate Width
Grate Length
Grate Type
Clogging
4.94 cis
0.010000 fUft
4.00 ft
0.063500 fUft
0.020000 fUft
0.013
2.00 ft
2.00 ft
J mm (P-1-7/8")
50.0 %
I
I
I
Options
I Grate Flow Op ;Iude None
I
Results
I
Efficiency 0.88
Intercepted Flow 4.36 cfs
Bypass Flow 0.58 cfs
Spread 9.46 ft
Depth 0.36 ft
Flow Area 1.2 ft2
Gutter Depressio 2.1 in
Total Depression 2.1 in
Velocity 3.97 Ws
Splash Over Vele 5.66 Ws
Frontal Flow Facl1.00
Side Flow Factor 0.01
Grate Flow Ratio 0.88
Active Grate Len! 1.00 ft
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/21/06 10:01 :59 AM
@ Haestad Methods. Inc.
Worksheet
Worksheet for Grate Inlet On Grade
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
5'\
Project Engineer: Paul Klein
FlowMaster v6.1 [6140}
(203) 755-1666 Page 1 of 1
I
I
Project Description
Worksheet
Type
Solve For
INLET 4
Grate Inlet On Gr
Efficiency
I
I
Input Data
Discharge
Slope
Gutter Width
Gutter Cross Sial
Road Cross Slop
Mannings Coeffic
Grate Width
Grate Length
Grate Type
Clogging
3.44 cfs
0.010000 ft/fl
4.00 ft
0.063500 ft/fl
0.020000 ft/ft
0.013
2.00 ft
2.00 ft
) mm (P-1-7/8")
50.0 %
I
I
I
Options
I Grate Flow ap :Iude None
Results
I
Efficiency 0.95
Intercepted Flow 3.27 cfs
Bypass Flow 0.17 cfs
Spread 7.46 ft
Depth 0.32 ft
Flow Area 0.9 ft2
Gutter Oepressio 2.1 in
Total Depression 2.1 in
Velocity 3.81 fUs
Splash Over Vele 5.66 ft/s
Frontal Flow Facl1.00
Side Flow Factor 0.01
Grate Flow Ratio 0.95
Active Grate Len! 1.00 ft
I
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/20/06 03:05:12 PM
@ Haestad Methods. Inc.
Worksheet
Worksheet for Grate Inlet On Grade
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
~
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
u
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Technical
Appendix E
~
I
I
I
Project Description
. Worksheet
Flow Element
Method
Solve For
I
Pipe #1
Circular Chann
Manning's Fon
Channel Depth
I
Input Data
Mannings Coeffie 0.010
Slope 010000 ftIft
Diameter 12 in
Discharge 2.03 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ'
Fraude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
0.46 ft
0.4 fF
1.50 ft
1.00 ft
0.61 ft
46.3 %
0.004087 ftIft
5.70 ftIs
0.51 ft
0.97 ft
1.68
4.98 cfs
4.63 efs
0.001921 ftIft
)upercritical
I
I
I
I
I
I
I
I
I
g:\silver oak. fm2
07/26/06 09:59:45 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
-5,
Project Engineer: Paul Klein
FlowMaster vS.1 [6140]
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow-Element
Method
Solve For
I
Pipe #2
Circular Chann
Manning's Fon
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ft/It
Diameter 18 in
Discharge 5.04 cfs
I
Results
I
Depth
Flow Area
.Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ'
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
0.63 It
0.7 ft2
2.12 It
1.48 It
0.86 It
42.1 %
0.003430 ft/It
7.14 ft/s
0.79 It
1.42 It
1.82
14.69 cIs
13.65 cfs
0.001362 ft/It
>upercritical
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:00:18 AM
@ Haestad Methods. Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
~
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755~1666 Page 1 of 1
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
I
Pipe #3
Circular Chann
Manning's Forr
Channel Depth
I
Input Data
Mannings Coeffie 0.010
Slope 010000 fUlt
Diameter 18 in
Discharge 7.07 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
I
I
I
I
I
I
I
I
0.77 ft
0.9 fe
2.39 ft
1.50 ft
1.03 ft
51.0 %
0.004028 ftIft
7.79 ftIs
0.94 ft
1.71 ft
1.77
14.69 cfs
13.65 cfs
0.002681 ftIft
>upercritical
I
g:\silver oak.fm2
07/26/06 10:00:53 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
~
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
Pipe #4
Circular Chann
Manning's Fan
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ruft
Diameter 12 in
Discharge 2.13 cfs
I
Results
I
Depth
Flow Area
Wetted Peri me
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
0.48 ft
0.4 ft2
1.52 ft
1.00 ft
0.62 ft
47.6 %
0.004168 IUft
5.77 ftls
0.52 ft
0.99 ft
1.67
4.98 cIs
4.63 cfs
0.002115 IUft
>upercritical
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:01:26 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
(pO
Project Engineer: Paul Klein
FlowMaster v6.1 (6140]
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
Pipe #5
Circular Chann
Manning's Forr
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 flIlt
Diameter 12 in
Discharge 2.11 cfs
I
I
I
Results
Depth 0.47 It
Flow Area 0.4 It'
Wetted Perime 1.52 It
Top Width 1.00 It
Critical Depth 0.62 It
Percent Full 47.4 %
Critical Slope 0.004149 flIfl
Velocity 5.76 flIs
Velocity Head 0.52 It
Specific Energ: 0.99 It
Fraude Numbe 1.68
Maximum Disc 4.98 cIs
Discharge Full 4.63 cfs
Slope Full 0.002076 flIlt
Flow Type >upercriticaf
I
I
I
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:01:56 AM
@"Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
fv\
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
Pipe #6
Circular Chann
Manning's Fan
Channel Depth
I
Input Data
Mannings Coeffie 0.010
Slope 010000 Nfl
Diameter 18 in
Discharge 11.31 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Fraude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
! I
!
I
I
I
I
I
I
I
1.04 fl
1.3 ft2
2.95 fl
1.38 fl
1.28 fl
69.4 %
0.006390 Nfl
8.64 Ns
1.16 fl
2.20 fl
1.56
14.69 efs
13.65 cfs
0.006860 Nfl
;upercritical
I
g:\silver oak.fm2
07/26/06 10:02:25 AM
@Haestad Methods. Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
1.p7/
Project Engineer: Paul Klein
FlowMaster v6.1 [6140J
(203) 755~1666 Page 1 of 1
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
I
Pipe #7
Circular Chann
Manning's Forr
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ftlft
Diameter 12 in
Discharge 3.44 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ'
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
0.64 ft
0.5 ft2
1.86 ft
0.96 ft
0.79 ft
64.2 %
0.005874 ftlft
6.46 ftls
0.65 ft
1.29 ft
1.53
4.98 cIs
4.63 cIs
0.005517 ftlft
)upercritical
I
I
I
I
I
I
I
I
I
g:\sitver oak.fm2
07/26/06 10:03:10 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
le'?
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
Pipe #8
Circular Chann
Manning's FOri
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ftlft
Diameter 12 in
Discharge 4.94 cfs
I
I
I
Results
Depth 0.90 ft
Flow Area 0.7 ft'
Wetted Perime 2.50 ft
Top Width 0.60 ft
Critical Depth 0.91 ft
Percent Full 90.2 %
Critical Slope 0.009911 ftlft
Velocity 6.63 ftls
Velocity Head 0.68 ft
Specific Energ: 1.58 ft
Froude Numbe 1.04
Maximum Disc 4.98 cIs
Discharge Full 4.63 cIs
Slope Full 0.011377 ftlft
Flow Type lupercritical
I
I
I
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:03:36 AM
@ Haestad Methods. Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury. CT 06708 USA
r./"
Project Engineer: Paul Klein
FlowMasterv6.1 [6140]
(203) 755~1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
Pipe #9
Circular Chann
Manning's Forr
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ft/fl
Diameter 18 in
Discharge 8.38 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Stope
Velocity
Velocity Head
Specific Energ'
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
0.85 fl
1.0 ft2
2.56 fl
1.49 fl
1.12 fl
56.6 %
0.004563 ft/fl
8.12 ft/s
1.02 It
1.87 fl
1.72
14.69 cfs
13.65 cis
0.003766 ft/fl
)upercritical
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:04:04 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
v,-6
Project Engineer: Paul Klein
FlowMaster v6.1 (6140)
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
Pipe #10
Circular Chann
Manning's Fan
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ftlft
Diameter 24 in
Discharge 19.69 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
1.20 ft
2.0 ft2
3.54 It
1.96 ft
1.59 It
59.9 %
0.004724 ftlft
10.03 ftls
1.56 ft
2.76 ft
1.77
31.63 cIs
29.41 cfs
0.004483 ftlft
)upercritical
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:04:33 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
(jp
Project Engineer: Paul Klein
FtowMaster v6.1 [6140]
(203) 755~1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
Pipe #11
Circular Chann
Manning's FaIT
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ft/It
Uiameter 12 in
Discharge 1.88 cfs
I
I
Results
I
Deplh
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ:
Froude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
0.44 It
0.3 ft2
1.46 It
0.99 It
0.58 It
44.3 %
0.003961 ft/ft
5.59 ft/s
0.49 It
0.93 It
1.69
4.98 cIs
4.63 cfs
0.001648 fUft
~upercritical
I
I
I
I
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:05:05 AM
@ Haestad Methods. Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
(g ."
Project Engineer: Paul Klein
FlowMaster v6.1 [6140J
(203) 755-1666 Page 1 of 1
I
I
Project Description
Worksheet
Flow:Element
Method
Solve For
I
I
Pipe #12
Circular Chann
Manning's Fan
Channel Depth
I
Input Data
Mannings Coeffic 0.010
Slope 010000 ft/ft
Diameter 12 in
Discharge 1.83 cfs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ'
Fraude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
0.44 ft
0.3 ft2
1.44 ft
0.99 ft
0.58 ft
43.7 %
0.003923 ft/ft
5.55 ft/s
0.48 ft
0.92 ft
1.70
4.98 cfs
4.63 cfs
0.001561 ft/ft
;upercritical
I
I
I
I
I
I
I
I
I
g:\silver oak. fm2
07/26/06 10:05:31 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
(qfb
Project Engineer: Paul Klein
FlowMaster v6.1 [6140]
(203) 755-1666 Page 1 of 1
I
I
I
Project Description
Worksheet
Flow Element
Method
Solve For
I
Pipe #13
Circular Chann
Manning's Fon
Channel Deptl1
I
Input Data
Mannings Coeffic 0.010
Slope 010000 fUft
Diameter 24 in
Discharge 23.40 efs
I
Results
I
Depth
Flow Area
Wetted Perime
Top Width
Critical Depth
Percent Full
Critical Slope
Velocity
Velocity Head
Specific Energ'
Fraude Numbe
Maximum Disc
Discharge Full
Slope Full
Flow Type
I
I
I
I
1.35 ft
2.3 ft2
3.85 ft
1.88 ft
1.72 ft
67.4 %
0.005872 fUft
10.39 fUs
1.68 ft
3.03 ft
1.67
31.63 efs
29.41 cfs
0.006332 fUft
iupercritical
I
I
I
I
I
I
I
I
g:\silver oak.fm2
07/26/06 10:05:57 AM
@ Haestad Methods, Inc.
Worksheet
Worksheet for Circular Channel
RBF Consulting
37 Brookside Road Waterbury, CT 06708 USA
~
Project Engineer: Paul Klein
FlowMaster v6.1 {614o]
(203) 755-1666 Page 1 of 1
I
I
I
!I
,I
I
I
I
I I
I
I
I
I
I
I
I
I
I
I
I
Technical
Appendix F
10
I
I
I
I
I
I
I
I
I
I
I
II
I
I
I
I
I
I
I
Water Qualitv Calculation
Flow based BMPs shall be designed to mitigate (infiltrate, filter or treat) the maximum
flow rate of runoff produced from a rainfall intensity of 0.2 inches of rainfall per hour for
each hour of the storm event.
C = 0.87
I = 0.2 in/hr
A = 6.88 acres
Q=C IA
Q = (0.87)(0.2)(6.88)
Q = 1.2 cfs
Use CDS Model PMSU10_25 with Capacity of 1.6 cfs or approved equal.
\\
I
:1
: I
I
I
I
I
I
I
I
I
I
I
I
I
I
I I
I
I
Figure 1
'"\1--
II
'1
"
~ I
,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DE PORTOLO
DARTOLO RD.
HWY. 79 S.
RO~D
VICINITY MAP
NOT TO SCALE
PROJECT
SITE
~ ",L.......'.... .. DEBI"'N. CC....T..UCTIC..
I7SS~/.eS,A.BOU..EVAAD.SUlEl0D
. . . SIlHDEOO.CAI...FOI'NA.ll2124-1324
CONSULTING e&.8K5000. FA!leMOI4.:iOO1. ____com
\~
II
I
I
, I
I
I
I
I
I
I
I
I
I
Figure 2
1bt..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I
I,)
I
I
U'u'so"
RCFC a WCD
H~DROLOGY l'lIANUAL
~
HYDROLOGIC SOILS GROUP MAP
FOR
PECHANGA
LEGEND
- SOILS GROUP BOUNDARY
A SOILS GROUP DESIGNATION
r'"FEE~OO I
1,6
PLATE C-I.61
! I
I
I
, I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Figure 3
,,\c,
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
--
--
f MH FRAME & COVER
a-I
o TOP SLAB:
/ TYP. WT.=3,000-lbs
CDS UNIT ASSEMBLY
(CUTAWAY VIEW)
(LEF'T-HANDF'[') UNIT !=iHOWN)
ACCESS RISER:
/ (HEIGHTS VARY AS REQ'D)
/' TYP. WT.=1,300 Ibs/LF
/ FIBERGLASS
/' OIL BAFFLE
/ FIBERGLASS SEPARATION
/ CYLINDER & INLET
/"
/ SEPARATOIN
/ SCREEN
STORM DRAIN "-
INLET (UPSTREAM) PIPE \
\ STORM DRAIN
OUTLET (DOWNSTREAM) PIPE
\ SEPARATION CHAMBER:
(HEIGHTS VARY AS REQ'D)
TYP. WT.=10,OOO-lbs
MH BASE (SUMP): ~
(HEIGHTS VARY AS REO'D)
TYP. WT.=5,000-lbs
.\\\~\ TM
~~I
CDS MODEL PMSD20_25
STORMWATER TREATMENT UNIT
JOBH
N.T.S.
SHEET
PROJECT NAME
CITY LOCATION
DATE:
DRAWN:
APPROV.
TEL: (888) 535-7559
1
16360 MONTEREY RD. SUITE 250 MORGAN HILL, CA 95037
FAX: (408) 782-0721
"\'\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
PLAN VIEW
60";>) ID MH.
(72" aD lYP)\
CDS INLET
24";>) MH COVER
AND FRAME
OIL BAFFLE
FLOW
--;;;..
- It CDS
LSD
OUTLET
24";>) MH COVER
AND FRAME
NOTE:
CDS UNIT IS SHIPPED COMPLETE WITH FIBERGlASS INLET/OIL
BAFFLE AND SEPARATION SCREEN ASSEMBLY PRE-INSTAllED.
CDS MODEL PMSU20_25
STORMWATER TREATMENT UNIT
.\. JM
~~~
PROJECT NAME
CITY LOCATION
JOB#
DATE:
DRAWN:
APPROV.
TEL: (888) 535-7559
16360 MONTEREY RD. SUITE 250 MORGAN Hill, CA 95037
1"=24"
SHEET
2
FAX: (408) 782-0721
1~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SECTION B- B
60"\ll ID MH.
(72" OD TYP)
t CDS MH &
i PIPE INLET
: t CHAMBER AND
I SUMP ACCESS
FLOW
:::>
CORES PROVIDED
BY PRECASTER
INLET FLANGES FASTENED
WITH 316SS EXPANSION
ANCHORS
SD INLET
rSD OUTLET
o
-----t CDS MH &
~ PIPE INLET
~-~~ t CHAMBER AND
'. . SUMP ACCESS
. SEPARATION SCREEN ATTACHED
WITH 316SS EXPANSION
ANCHORS
OIL BAFFLE FASTENED TO
MH WI 316SS ANCHORS
, ,
-j 1-3"
NOTE:
CDS UNIT IS SHIPPED COMPLETE WITH FIBERGLASS INLET lOlL
BAFFLE AND SEPARATION SCREEN ASSEMBLY PRE-INSTALLED.
CDS MODEL PMSU20_25
STORMWATER TREATMENT UNIT
A1J\\i TM
GRI
JOB#
DATE:
DRAWN:
APPROV.
TEL: (888) 535-7559
'"=24"
SHEET
PROJECT NAME
CITY LOCATION
3
16360 MONTEREY RD. SUITE 250 MORGAN HILL, CA 95037
FAX: (408) 782-0721
"1<\
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
24"1ll MH COVER AND
FRAME. ONE OF TWO
GRADE RINGS AND/OR
GROUT AS NEEDED \
RIM EL=TBD -;- \
.~.
$-
FLOW
~
IE IN/OUT=TBD
SD INLET
BASE EL=TBD
NOTES:
SECTION A -A
PROFILE VIEW
tt CDS MH
I tt SEPARATION
i I CHAMBER
)":.l"~
'" '. ,.
" .
.
, 5'-0"(1)
FIBERGLASS
SEPARATION
CYLINDER
..... FLOW
CDS 'r--- ~
INLET I
L___
... 25"(1) SS316 ~.
3 " SEPARATION
; SCREEN . ,
..
.
4
..,6"
.. VARIES,
24" TYP SUMP
"-.
, .' 9" Trf?,:
,"4.' i ~: . .. ..
. .'
I. 6'-0"(1) TYP . I
;:.'~
* 4', ,& .~
1()" TYP
...." .
1
TO BE
DETERMINED
SD OUTLET
5'-11" TYP
DEPTH BELOW
OUTLET INVERT
1. OVERSIZED CORES ARE PROVIDED TO ACCOUNT FOR DIFFERENT
PIPEWAll THICKNESSES-ENSURE SUFFICIENT EXCAVATION DEPTH
TO ATTAIN INDICATED (EXTERNAL) SUMP INVERT ELEVATION.
2. CDS UNIT IS TYPICAllY DELIVERED W/ FIBERGlASS INLET/DIVERSION
STRUCTURE, Oil BAFFLE AND SCREEN CYLINDER PRE-INSTAllED. FOR
FIELD ASSEMBLY OF INTERNAL COMPONENTS, THE GREEN FLANGE OF
THE SCREEN CYLINDER SHAll FACE UP.
A!J\\' ™
.~~~
PROJECT NAME
CITY LOCATION
16360 MONTEREY RD. SUITE 250 MORGAN Hill, CA 95037
CDS MODEL
PMSU20 25
STRMWTR TRTMNT UNIT
JOB
1"=24"
SHEET
DATE:
DRAWN:
APPROV.
TEL: (888) 535-7559
4
FAX: (408) 782-0721
?>o
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
HDPF HYDRAUliC SHEAR PI ATE
@)
'l. RISER SECTIONS
I 't SEPARATION
SECTIONS
I
~
~
5'-0'.
([) TO BE
DETERMINED
PLACE 2x CONTINUOUS BANDS OF MASTIC
ROPE ON VERTICAL AND HORIZONTAL SUR-
FACES OF SUMP (MH BASE) T&G JOINT;
GROUT EXTERIOR MH JOINT IF NECESSARY.
FIBERGLASS
SEPARATION
CYLINDER
'r--
.1
3 .
25". 5S316 i
SEPARATION
SCREEN 2.d."
S'-11"lYP
DEPTH BELOW
OUTLET INVERT
@/
SUMP
~
I
CONSTRUCTION NOTES:
6' -O.f TYP
A. ENSURE THAT INTERNALS ARE SECURED TO THE CONCRETE
BEFORE STACKING MANHOLE STRUCTURES.
B. APPLY BUTYL MASTIC AND/OR GROUT TO SEAL JOINTS OF MANHOLE STRUCTURE. APPLY LOAD TO
MASTIC SEAL IN JOINTS OF MH SECTIONS TO COMPRESS SEALANT IF NECESSARY. UNIT MUST BE
WATER TIGHT, HOLDING WATER UP TO FLOWLINE INVERT (MINIMUM).
C. BEFORE PLACING MORE PRECAST COMPONENTS OR BACK-FILLING, ENSURE FIBERGLASS INLET AND
PIPE INVERT ELEVATIONS MATCH.
D. IF INTERNALS ARE NOT PRE-INSTALLED. THE FIBERGLASS INLET. OIL BAFFLE & SEPARATION SCREEN NEEDS TO BE FASTENED
TO THE CONCRETE USING STEEL CLIPS & 3/8" X 3 3/4" SS EXPANSION BOLTS @ 12' O.C.
E. SEAL FIBERGLASS TO CONCRETE USING CONCRETE REPAIR OR EQUIVALENT.
F. GROUT PIPE CONNECTIONS TO SEAL JOINTS.
G. USE GRADE RINGS, BLOCKS AND lOR GROUT TO ENSURE PROPER GRADE (RIM) ELEVATION. SEAL AS
NECESSARY.
GENERAL NOTES:
1. CDS UNIT TYPICALLY DELIVERED WITH FIBERGLASS INLET/OIL BAFFLE & SEPARATION SCREEN ASSEMBLY
PRE-INSTALLED. OIL BAFFLE MAY HAVE TO BE REMOVED FOR DELIVERY AND RE-INSTALLED BY THE
CONTRACTOR.
2. HOPE HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYliNDER.
REMOVE AND REPLACE AS NECESSARY DURING CLEANING.
3. THE INTERNAL COMPONENTS ARE SHOWN IN THE RIGHT-HAND CONFIGURATION. THE GREEN FLANGE
ON THE SCREEN SHOULD BE INSTALLED FACE UP.
4. INSTALL CDS UNIT PER CDS INSTALLATION SPECIFICATIONS.
5. CONTRACTOR TO BE EQUIPPED TO HANDLE THE HEAVIEST PICK SECTION (APPROX. 10,000 LBS, TYPICAL).
6. OVERSIZED CORES ARE PROVIDED TO ACCOUNT FOR DIFFERENT PIPE WALL THICKNESSES.
7. CONTRACTOR TO ENSURE SUFFICIENT EXCAVATION DEPTH TO ATTAIN EXTERNAL SUMP INVERT ELEVATION.
(g'" PMSU20 25 JOB N.T.S.
INST ALLA TION SHEET
.fjR~ DATE:
INSTRUCTIONS & DRAWN: 5
MISCELLANEOUS NOTES APPROV.
16360 MONTEREY RD. SUITE 250 MORGAN HILL. CA 95037 TEL: (888) 535-7559 FAX: (408) 782-0721
~\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
STORM WATER TREATMENT UNIT
Performance & Design Specifications
The Contractor shall install a precast storm water treatment unit (SWTU) in accordance
with the notes and details shown on the Drawings and in conformance with these
Specifications. The precast storm water treatment units shall be a continuous deflective
separator (CDS@) unit, model PMSU20_25 unit as manufactured by CDS Technologies or
proven equivalent.
Acceptable SWTU unit(s) shall be non-mechanical and gravity driven, requiring no external
power requirements. The SWTU unit shall be capable of capturing and permanently
retaining settleable, floatable, and neutrally buoyant particles and contaminants in
accordance with the sizing criteria of these specifications. The SWTU unit shall be
equipped with a stainless steel expanded metal screen having a screen opening of 4700
microns (4.7 mm or 0.185 inches). The separation screen shall be self-cleaning and non-
blocking for all flows diverted to it, even when flows within the storm drain pipeline exceed
the SWTU unit's design treatment flow capacity. A bypass structure shall be provided to
allow conveyance of design flows in excess of the SWTU treatment capacity.
Alternative SWTUs shall only be considered equivalent when all conditions of the Storm
Water Treatment BMP Equivalency Approval Process portion of these specifications listed
below have been satisfied and subject to the complete submittal, review and approved
process.
Storm Water Treatment Unit Desiqn
Solids RemovalPerformance Requirements: The SWTU shall remove oil and sediment
from storm water during frequent wet weather events. The SWTU shall treat a minimum of
75 to 90 percent of the annual runoff volume and be capable of removing 80 percent of the
total suspended sediment load (TSS) and greater than 90 percent of the floatable free oil.
The SWTU must be capable of trapping silt and clay size particles in addition to large
particles. The SWTU units shall capture 100% of the f10atables and 100% of all particles
equal to or greater than 4.7 millimeter (mm) for all flow conditions up to unit's design
treatment flow capacity, regardless of the particle's specific gravity. The SWTU unit shall
capture 100% ora II neutrally buoyant material greater than 4.7 mm for all flow conditions
up to its design treatment flow capacity.
There shall be no flow conditions up to the design treatment flow capacity of the SWTU
unit in which a flow path through the SWTU unit can be identified that allows the passage
of a 4.7-mm or larger neutrally buoyant object. The SWTU unit shall permanently retain all
captured material for all flow conditions of the storm drains to include flood conditions. The
SWTU unit shall not allow materials that have been captured within the unit to be flushed
tl1rough or out of the unit during any flow condition to include flood and/or tidal influences.
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SWTU Performance & Design Specifications
Minimum Treatment Flow Capacity: The Model PMSU20_25 storm water treatment unit
shall have a minimum treatment flow capacity of 1.6-cfs (45.3-liters/sec). This treatment
capacity shall be achieved without any flow bypassing the overflow weir of the treatment
unit. The hydraulic loading rate (gpm/fl") of the unit shall not exceed recommended
loadings when calculated using the peak runoff rate of the water quality storm event.
Storm Water Treatment Unit Structure: The structure shall be designed to withstand
H20 traffic and earth loadings to be experienced during the life of the treatment unit.
Minimum Sump Design: The Model PMSU20_25 shall be furnished with a sump that has
a minimum volume of 1.1 cubic yards (0.8 cubic meters) for storage of sediment, organic
solids, and other settleable trash and debris. This sump zone shall be separated from the
swirl chamber by a constricting access-way for both physical and hydraulic shear
separation.
The storm water filtration unit shall be furnished with a sump to store settleable materials
and pollutants. The sump shall be below the invert of the separation swirl concentrating or
vortexing zone or chamber. Units without sumps or units in which settleable material is
deposited within the separation or vortexing chamber shall not be allowed. The unit shall
have the volumetric sump capacities list above which is materially separated from the
separation or vortex chamber to ensure that settled material does not reside in the
treatment flow path and thus subject to re-suspension.
Oil and Grease Removal Performance: The SWTU unit is equipped with a conventional
oil baffle to capture and retain oil and grease and Total Petroleum Hydrocarbons (TPH)
pollutants as they are transported through the storm drain system during dry weather
(gross spills) and wet weather flows. The conventional oil baffle within a unit assures
satisfactory oil and grease removal from typical urban storm water runoff.
Minimum Oil Storage Capacity: The Model PMSU20_25 shall be furnished with a baffle
that provides a minimum gross oil storage volume of 143 gallons (544-liters).
The SWTUs shall be equipped with a conventional oil baffle to capture and retain oil and
grease and Total Petroleum Hydrocarbons (TPH) pollutants as they are transported
through the storm drain system during dry weather (gross spills) and wet weather flows.
The SWTU units shall also be capable of receiving and retaining the addition of Oil
Sorbents within their separation chambers. The addition of the oil sorbents can ensure the
permanent removal of 80% to 90% of the free oil and grease from the storm water runoff.
The addition of sorbents enables increased oil and grease capture efficiencies beyond that
obtainable by conventional oil baffle systems. Sorbent material shall be added in
accordance with the "USE OF OIL SORBENTS" specifications provided by CDS
Technologies.
2
~
SUO!le:J!Jpads u6!saa '!I a:JuewJojJad nJMS
aleO!!!tJao aouewJo,JJad sJampe!nuel/ll
'aAoqe pa!Jpads
Alpede:J MOl! lUeWleeJl wnw!u!w eLll 01 dn eseeJ:JU! MOl! eLll se A:Juepwa leAoweJ
!O uOllenualle ou Lll!M l!un nJMS eLll Aq pesse:JoJd MOl! lUeWleeJl eJ!lua eLlllnOLl6noJLll
peAe!Ll:Je eq lIeLls A:Juepwe leAOWeJ pelS!l eLll leLll elelS Alle:JOA!nbeun pue Apeep
lIeLls sepuepwa leAOWeJ JO uO!le:J!J!j.le:) e:JueWJojJed S,JaJnpeJnueVIJ S!Ll1 'SUO!le:J!Jpeds
eseLll U! pelS!1 sepuepwe leAOWeJ pe!Jpeds eLll eAe!Ll:Je lIeLls I!Un nJMS eLllleLll 6u!AJ!j.le:J
"ele:J!J1j.la:) e:JueWJojJed SJeJnpeJnueVIJ" e l!wqns lIeLls JeJnpeJnuew eLll 'AlleUO!l!PP'V
'suo!lepuewwo:JeJ pee:Jxe IOU seop U! Lll!M S! lueAa WJ01S Al!lenb JeleM eLll !O JJounJ
)jeed eLllle eleJ 6u!peOI :J!lneJpALl eLllleLll pue ww L'v ueLll JaleeJ6 pefqo ue JO e6essed
aLll MOlle PlnoM leLllls!xe sLlled MOil elqel!eAe ou leLll WJ!Juo:J 01 JeaU!6U3 eLll JOJ I!elep
luapwns Jos6U!MeJp dOllS pue sl!elap l!wqns lIeLls l!un nJMS aLll JO JaJnpeJnuew aLl1
AlUeJJeM
'pau6!sap Alle:J!Jpads seM I! Ll:J!LlM JO!
uO!le:J!ldde Jeln:J!j.led aLll U! AIUO pasn pue pallelSu! aq lIeLls JaJnpeJnuew aLll Aq pa!lddns
lUawd!nb3 'uollellelSu! 6u!MOIIOJ JeaA auo pO!Jad e JOJ d!LlSuew)jJoM pue Sle!Jalew
U! spaJap WOJJ aaJ! l!un UO!leJ11!J aLll aalUeJen6 lIeLls I!Un nJMS aLll JO JaJnl:JeJnuew aLl1
ssaOOJd leAOJddv ,(oualeA!nb3 dll\l8 JuawJeaJJ. JaJeM WJoJS
:6u!MOIIOJ leLll sapnpu! leLll j.lodatjluaWleaJ1 dVIJ8 padwels
e ap!AoJd lIeLls pJo:Jatj JO Jaau!6U3 I!A!:) pafoJd aLll 'SdVIJ8 10JluO:J luaWleaJl uOIl:JnJ1SUm
-lsod paAoJdde AISnO!AaJd JO sapUaleA!nba 6u!Japlsuo:J uaLlM .sUO!le:J!Jpads a:JuewJojJad
pue pnpoJd esaLll I!Un lUeWleeJl JeleM WJ01S 01 SWJoJuo:J leLll welsAs dVIJ8 10Jluo:J
lueWleeJl UO!pnJ1Suo:J-1Sod e u6!sep 01 JaeU!6U3 I!A!:) pefOJd eLll JO Al!l!q!suodseJ eLll S! II
a:JueAaAUOO pue A:Jua!O!U3 JuawJeaJ1 JO! I!Un lUaWleaJ1 JaleM WJOlS bU!Z!S
:6u!MOII0!
eLlI JO JeLlI!a LlI!M a:JuewJoJuo:J U! pez!s uaaq sell nJMS pesodoJd eLllleLll elels AIIP!ldxa
leLll SUO!lelmle:J 6u!z!s nJMS :J!Jpeds pefoJd pedwels I!wqns :A:Jual:J!JJ.3 JuawJea.ll
'I!Un aLlI!O eeJe lU!JdIOO! lelol eLlllou
'JeqweLl:J UO!IBJedes Xej.lOA eLll U!LlI!M euoz JOIBJBdes eLlI JO eeJe ueld (leluoz!JoLl)
aLll S! S!Ll1 '(s)LldeJ6eJed 6u!MOIIOJ eLll U! palS!1 AJI:Jede:) Nlold JuawJea.ll
wnwlulW u6!sap aLlI JO )jead aLlllB BaJe JaqweLl:J JOleJedas JO 100J aJBnbs/suolle6
-vZ paa:Jxa IOU saop aleJ 6u!peOI :J!lneJpALl IUaWleaJI S,I!un aA!IBUJalIB aLl1 . ~
AJI:Jede:) Nlold JuawJea.ll wnwlulW u6!sap aLlI JO )jead aLllle lU!JdIOO! JaqwBLl:J
JOleJedas JO 100! aJenbs/suolle6-z paa:Jxa IOU saop aleJ 6u!peOI :J!lneJpALl IUaWleaJl
s.l!un a41 uaLlM lualBA!nba paJep!suo:J aq AIUO lIeLls S)juel JO SIIneA U! 6u!lllaS
ap!j.led uo paseq Alew!Jd S! ssa:JoJd lUaWleaJI aSOLlM SJOleJedas P!lOS aA!leUJall'V 'Z
f:
~%
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SWTU Performance & Design Specifications
listed in the SWTU performance specifications. This is the (horizontal) internal area
of the settling tank or vault, not the total footprint area of the unit.
This portion of the submittal shall also include an explicit listing of design criteria and/or
methodology used to develop the minimum flow-based treatment capacities.
Hydraulic Analysis: Submit stamped project specific hydraulic calculations stamped by
professional engineer registered with the state where the project is located. This Hydraulic
Analysis shall provide the following.
1. The Hydraulic Gradeline (HGL) through the diversion structure and proposed storm
water treatment system for the water quality storm event shall be calculated and
plotted on a detail of the storm water treatment system.
This hydraulic analysis shall explicitly show that the water quality volume or water
quality runoff flow rate calculated in accordance with the best practices of hydraulic
analysis performed by civil engineers.
2. The HGL for the design flood event (e.g., Q10, Q15, Q25, etc.) shall also be
calculated and plotted through the Treatment Control BMP.
Reference:
Section 5.5 BMP Design Criteria for Flow and Volume of the California Stormwater Best
Management Practice Handbook New Development and Redevelopment published by
California Stormwater Quality Association (CASQA) Stormwater Best Management
P~actice Handbook for New Development and Redevelopment.
4
~~