Loading...
HomeMy WebLinkAboutTract Map 33891 Hydrology & Hydraulics (Jul.2006) ..1 I I I I I I I I I I I I I I I Hydrology/Hydraulics Report SILVER OAK TENTATIVE TRACT 33891 City of Temecula County of Riverside, California Prepared for: Pacific Century Group 1920 Main Street, Suite 800 Irvine, CA. 92614 Date 07-06 Report Prepared By: 9755 Clairemont Mesa Blvd. Suite 100 San Diego, CA. 92124 858.614.5000 telephone : CON 5 U LTI N G 858.614.5001 fax Engineer of Work! Contact Person: James Haughey, P.E. Sean McCarty, P.E. RBF IN 25-102051 Revision History Comment 1 S submit \ I I I I I I I I I I I I I I I I I I I TABLE OF CONTENTS SECTION 1 - INTRODUCTION.................. ....... ....... ...... ....... ....... ............ ..... ........... ...... ....... ...... ............ 1 1.1 Background .............................................................................................1 1.2 Objective .................................................................................................1 1.3 Previous Studies .....................................................................................2 SECTION 2 - HYDROLOGIC DATA ........................................................................................................2 2.1 Hydrologic Analysis and Methodology.....................................................2 2.1.1 Rational Method ...................................................................................................2 .2.2 PROPOSED CONDITION HYDROLOGY...............................................3 SECTION 3 - WATER QUALITY SUMMARy..........................................................................................4 3.1 Non-Structural and Structural BMPs .......................................................4 .3.2 Best Management Practices (BMP) Sizing Criteria .................................5 SECT'iON 4 - HYDRAULIC ANAL YSIS....................................................................................................6 4.1 Catch basin Sizing... .... ............................... .............................. ................6 4.2 Street Hydraulics ..................................................................................... 7 4.3 Local Stormdrain Hydraulics ................................................................... 7 SECTION 5 - CONCLUSiONS................................................................................................................. 7 SECTION 6 - REFERENCES .................................................................................................................. 8 TECHNICAL APPENDICES A Rational Method - Proposed Condition 10-Year B Rational Method - Proposed Condition 100-Year C Street Capacity Calculations using Flowmaster v6.1 D Catch basin Sizing and Street Hydrualic Calculations using Flowmaster v6.1 E Stormdrain hydraulic calculations using Flowmaster v6.1 F Water Quality Hydrodynamic Separator Sizing Calculations LIST OF FIGURES Figure-1: Vicinity Map Figure-2: Soils Map- Proposed Conditions Figure-3: Hydrology Map- Proposed Conditions Figure-4: Water Quality Exhibit z.., I I I I I I I I I I I I I I I I I I I I SECTION 1 - INTRODUCTION 1.1 BACKGROUND The proposed project, tract 33891/Silver Oak, is located in the County of Riverside within the corporate boundary of the City of Temecula. The project site is located at the Northwest corner of the intersection of Dartolo and Margarita Roads. See Figure 1 for location details. The project consists of approximately 7.5 acres of residential uses. The proposed Silver Oak project is located within Santa Margarita Watershed and discharges indirectly into Temecula Creek. Since the site discharges to a regional facility, no on-site flood attenuation will be provided to mitigate proposed condition storm flows to less than existing condition. Approximately 1.5 miles downstream of the project site, Temecula Creek confluences with Murrieta Creek and becomes the Santa Margarita River, which eventually discharges into the Pacific Ocean. 1:.2 OBJECTIVE The primary objective of this report is to provide the technical documentation forthe design and improvements plans for the proposed storm drain facilities and include the following: 1. Identify the required storm drain facilities for the tract improvements based upon the grading plans, and delineate the drainage area tributary to each proposed drainage inlet/concentration point. 2. Based on drainage patterns, ground slope, land use, soil type, and using the County of Riverside Rational Method, perform a hydrologic analysis to provide the design flowrate used to size the proposed storm drain facilities. This analysis covers the proposed condition hydrology. 3. Perform hydraulic analysis on the proposed storm drain facilities for the tract improvement. 4. Adhere to the Riverside County Flood Control and Water Conservation District's (RCFCD&WCD) hydrologic criteria that 1 O-year storm flow and 1 OO-year storm flow be contained within the curb and street right-of-way, respectively. 5. Provide water quality treatment of the surface runoff per Regional Water Quality Control Board criteria. 6. Appropriately size the storm drain facilities by identifying the HGL using Flowmaster v6.1. 7. Appropriately size all catch basin inlets to control street flooding. 8. Provide street capacity calculations at all catch basins. All assessments and technical analysis in this report are in compliance with the local drainage policies and requirements, and the California Environmental Quality Act (CEQA) of 1970, as amended. Silver Oak, Temecula, Riverside County, CA Hydology/Hydraulics Reporl 1 3> II I I I I I I I I I I I I I I I I I I 1.3 PREVIOUS STUDIES No previous studies are included in this analysis. SECTION 2 - ,HYDROLOGIC DATA 2.1 HYDROLOGIC ANALYSIS AND METHODOLOGY Hydrologic calculations to evaluate surface runoff associated with the 10-year, and 100- year hypothetical design storm frequencies from the project watershed were performed using the rational method based upon the relative size of the watershed. The rational method is a surface hydrology procedure, which allows evaluation of the peak discharge generated from a watershed area. This method only evaluates peak discharge and does not analyze runoff volumes or the time variation of runoff. The watershed subbasin boundaries within the project site were delineated utilizing topographic mapping of the area for the proposed grading plan to determine the development drainage patterns. Hydrologic parameters used in this analysis such as rainfall and soil classification areas presented in Riverside County Hydrology Manual, dated April 1978, were identified. A hydrology analysis was performed to evaluate the anticipated runoff generated from the proposed residential development. The hydrology analysis of the proposed development included determining a storm drain collection system, which corresponds to the development drainage patterns. The drainage areas and subarea boundaries within the study area were delineated based on the proposed grading plan. The proposed storm drain facility was designed to not exceed the current capacities of the existing drainage facilities at the downstream project boundary. 2.1.1 Rational Method The hydrologic calculations to determine the 10- and 1 OO-year ultimate design discharges were performed using the County of Riverside Rational Method from the RCFC&WCD Hydrology Manual dated April 1978. The Rational Method is an empirical computation procedure for developing a peak runoff rate (discharge) for watersheds less than 300 acres and storms of a given recurrence interval. This procedure is the most common method for small area urban .drainage design since the peak discharge is generally the only required parameter for hydraulic design of drainage facilities. The Rational Method equation is based on the assumption that the peak f10wrate is directly proportional to the drainage area, rainfall intensity, and a loss coefficient related to land use and soil type. Flows are computed based on the formula Q=CIA, where: Q = Discharge in Cubic Feet Per Second; C = Runoff Coefficient, based on Land Use and Hydrologic Soils Group; Silver Oak, Temecula, Riverside County, CA Hydology/Hydraulics Reporl 2 '\ I I I I I I I I I I I I I I I I I I I I = Rainfall Intensity, Inches/Hour; A = Area, Acres. The peak discharge from a drainage area using the rational method occurs at a critical time when the entire drainage area is contributing runoff known as the "time of concentration" for the watershed area. The design discharges were computed bY generating a hydrologic "link-node" model, which divides the analysis area into drainage subareas, each tributary to a concentration point or hydrologic "node" point determined by proposed conditions. The hydrology analysis was performed for the developed condition 10-, and 100-year hydrology. The results of the watershed analysis for the proposed development generated the resulting peak discharges at the downstream project boundary. The following assumptions/guidelines were applied under the Rational Method. 1. The Rational Method hydrology includes the effects of infiltration caused by soil surface characteristics. Soils maps from Riverside County Flood Control and Water Conservation District Hydrology Manual indicate the Soil Type "C" is representative of the project location. The Manual utilizes the Soil Conservation Service (SCS) soil classification system, which classifies soils into four (4) hydrologic groups (HSG): A through D, where "D" is the least pervious, providing greatest storm runoff. The soils maps (Plate C-1.61 Pechanga) from the Manual and the project site are shown on Figure 2, Hydrologic Soils Group Map. 2. The infiltration rate is also affected by the type of vegetation or ground cover and percentage of impervious surfaces. The runoff coefficients used were based .on the proposed residential layout for multi-family residential. "Condo" and "Apartment" were used to represent the project with 84% of the site being impervious. 3. Rainfall data used was taken from the above Manual for the "Murrieta- Temecula and Rancho California" areas. 4. The initial area is generally less than 10 acres and flow path lengths are less than 1,000 feet, per RCFC&WCD analysis procedure. 2.2 PROPOSED CONDITION HYDROLOGY The developed land use conditions associated with the proposed project will modify the hydrologic characteristics of the watershed by; 1. Increasing the amount of impervious area. Silver Oak, Temecula, Riverside County, CA Hydology/Hydraulics Reporl 3 -s' I I I I I I I I I I I I '. I I I I I I 2. Increasing the hydraulic efficiency of the drainage conveyance system from natural drainage courses to improved underground storm drain systems. 3. Reducing the time to peak flow. 4. Increasing the peak discharges. A hydrologic analysis was prepared for the project watershed reflecting the proposed project. The peak runoff f10wrate at particular concentration points (nodes) throughout the watershed is provided for the 1 O-year and 1 OO-year storm events. Appendix A and B contain the 1 O-year and 1 OO-year hydrologic analysis which are summarized in the following table below. Node Q10 tcts\ Q100 (cts) 1 4.79 7.07 2 7.78 11.31 3 5.68 7.63 4 13.46 18.94 5 15.57 22.65 SECTION 3 - WATER QUALITY SUMMARY The water quality program consists of both non-structural and structural Best Management Practices (BMPs). The non-structural BMPs consist of: 1. Public Education 2. Common Area Maintenance Practices. The proposed structural BMPs include water quality bio-swales along with a hydrodynamic separator. 3.1 NON-STRUCTURAL AND STRUCTURAL BMPs Maintenance will include both Integrated Pest Management and Integrated Vegetation Management to minimize impacts to urban runoff water quality. Also, irrigation will be minimized to the'maximum extent practicable. The method of irrigation control reduces the amount of water used for irrigation and minimizes the potential for overspray and nuisance runoff. Additional maintenance pollution prevention practices include monthly street sweeping, catch basin signage, and routine trash pick-up. Cp Silver Oak, Temecula, Riverside County, CA Hydology/Hydraulics Reporl 4 I I I . I I I I I I I I . I I I I I I A hydrodynamic separator is proposed as structural BMP for the project site. The separator will be installed at ultimate project discharge location. The separator will be a flow through system with only the water quality volume being treated. The water quality volume to be treated based on Regional Water Quality Control Board sizing criteria, are 1 :31 cfs. The water quality calculations are included in Technical Appendix F, with tributary areas shown on Figure 4. A hydrodynamic separator provides medium removal efficiency for 5 of the 7 pollutants expected to be generated from a residential site. The removal efficiency of a basin for bacteria/viruses and pesticides, the two remaining pollutants, is unknown. Calculations for the Hydrodynamic Separator and supporting documents are found in Technical Appendix F. 3~2 BEST MANAGEMENT PRACTICES (BMP) SIZING CRITERIA The San Diego Regional Water Quality Control Board (SDRWQCB) for the portion of Riverside County within the San Diego Region has established numeric sizing criteria for post-construction best management practices (BMPs) for new development and significant redevelopment under Order No. R9-2004-001. The proposed numeric sizing criteria is intended to reduce adverse impacts to San Diego regional waters caused by new sources of urban pollution and increased volumes of storm water and non-storm water flows resulting from new development and significant redevelopment. The numeric sizing criteria requirement to be included in the tentative waste discharge requirements for San Diego municipal storm water dischargers will read as follows: Post-construction BMPs for a project shall be designed as follows: 1. Volume-based BMPs shall be designed to mitigate (infiltrate, filter, or treat) either: i. The volume of runoff produced from a 24-hour 85th percentile storm rainfall depth, as determined from the local historical rainfall record (0.6 inch approximate average for the Riverside County area); or ii. The volume of runoff produced by the 85th percentile 24-hour runoff event, determined as the maximized capture storm water volume for the area, from the formula recommended in Urban Runoff Qualitv Manaqement, WEF Manual of Practice No. 23/ASCE manual of Practice No. 87. (1998); or iii. The volume of annual runoff based on unit basin storage volume, to achieve 90% or more volume treatment by the method recommended in California Stormwater Best Manaqement Practices Handbook new Development and Redevelopment (2003); or 1 Silver Oak, Temecula, Riverside County, CA HydologylHydraulics Reporl 5 . I I I I I I I I I I I I I I I I I I iv. The volume of runoff, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85th percentile 24- hour runoff event. 2. Flow based BMPs shall be designed to mitigate (infiltrate, filter, or treat) either: i. The maximum flow rate of runoff produced from a rainfall intensity of 0.2 inch of rainfall per hour, for each hour of a storm event; or ii. The maximum flow rate of runoff produced by the 85th percentile hourly rainfall intensity (for each hour of a storm event), as determined from the local historical rainfall record, multiplied by a factor of two; or iii. The maximum flow rate of runoff for each hour of a storm event, as determined from the local historical rainfall record, that achieves approximately the same reduction in pollutant loads and flows as achieved by mitigation of the 85th percentile hourly rainfall intensity multiplied by a factor of two. The Co-permittees may develop, as part of the SUSMP, any equivalent method for calculating the volume or flow, which must be mitigated (i.e., any equivalent method for calculating numberic sizing criteria) by post-construction treatment control BMPs. Such equivalent sizing criteria may be authorized by the SDRWQCB for use in place of the above criteria. In the absence of development and subsequent authorization of such equivalent numeric sizing criteria, the above numeric sizing criteria requirement shall be implemented. SECTION 4 - ,HYDRAULIC ANALYSIS 4.1 CATCH BASIN SIZING The design discharges tributary to each proposed catch basin were taken from the results of the Rational Method Hydrology calculation. The proposed catch basins have been designed to intercept the 1 O-year and 1 OO-year flows for on-grade and sump conditions, respectively. Both, interception (on-grade) and local sump inlets are proposed to be used to intercept drainage from the street improvements. Since the interception capacity of the on-grade catch basin is a function of the gutter depth of street flow, the street flow calculations are included along with the catch basin sizing calculations. The street flow hydraulics and catch basin sizing calculations were conducted using the computer program "Flowmaster v6.1". The program approximates curb inlet capacities based on The Army Core of Engineers HEC-22 manual for flow-by and sump type basins. The supporting calculations are included in Appendix D. % Silver Oak, Temecula, Riverside County, CA HydologylHydraulics Reporl 6 I I I I I I I I I I I I I I I I I I I 4.2 STREET HYDRAULICS The majority of the flows will be conveyed in interior streets with 12 foot half widths and 31 foot R-O-W. The R-O-W in this project is considered to be from back of sidewalk to back of sidewalk. All interior streets are utilizing modified 4-inch rolled curbs and have a traditional cross slope of 2.0 percent. In the 1 O-year and 1 OO-year condition forthe development, the street crown is lower than the Right of Way. The street capacities, as measured to the top of curb and within the R-O-W, based on RCFC & WCD's hydrologic criteria, are summarized in Table 1.0. All supporting cross-sectiOns are included in Technical Appendix C. Table No. 1.0 - Summary of Street CaDacitv Section Slope ("!o) Q10 Water Surface Q Water Surface Ie '~l Icfsl Elev. lin.l cfs Elev. lin.) A-A 0.6 4.79 3.24 7.07 3.60 B-B 0.5 2.99 2.88 4.24 3.24 C-C 1.0 5.68 3.24 8.38 3.60 D-D 5.6 2.11 1.92 3.11 2.16 4~3 LOCAL STORM DRAIN HYDRAULICS The hydraulic analysis and design of the local storm drain system associated with the project was performed using the calculated 1 OO-year flow rates using the normal depth calculation of the Manning's formula for friction loss between sections in a reach. The results of the pipe calculations are included in the technical appendix "En. The following assumptions/guidelines were applied for the use of the Manning Pipe Calculator: 1. Manning's "n" value of 0.010 was used for PVC. 2. Storm drain pipe lengths and elevations were taken from the proposed storm drain improvements. 3. The design discharges used in the hydraulic analysis for the storm drain were generated in the 100-year hydrologic analysis included in Technical Appendix B. SECTION 5. CONCLUSIONS 1. The methodology used in this report is in compliance with the Riverside County Flood Control and Water Conservation District's criteria. ~ Silver Oak, Temecula, Riverside County, CA HydologylHydraulics Reporl 7 I I I I I I I I I I I I I I I I I I I 2. This report accompanies the rough grading plans and storm drain improvement plans. SECTION 6 - REFERENCES 1. Riverside Flood Control District and Water Conservation District (RCFC&WCD) Hydrology Manual, 1978. 2. Haestad Methods, FlowMaster Software v 6.1 \0 Silver Oak, Temecula, Riverside County, CA HydologylHydraulics Reporl 8 I I I I I i I ! I I I I I I I I I I I I I I I Technical Appendix A \\ I I I I I I I I I I I I I I I I I I I 10-Year Rational Method Calculation Coefficient of Runoff Soil Group = C (see Hydrologic Soils Group Map for Pechanga, Figure 2) Pervious Cover: Residential Landscaping in good condition C = 69 (see Plate D-5.5) % Area = 16% Impervious Cover: Condo & Apartments C =90 % Area = 84% C = (69)(0.16) + (90)(0.84) C = 87 Time of Concentration Time of Concentration Calculations were made by using Plate D-3 (attached) to give the following table: Length of Change in Time of Basin Watercourse Elevation Concentration (ft) (ft) (min) A-1 615 5.0 10.5 A-2 405 4.2 8.5 A-3 210 1.2 7.5 A-4 255 1.9 7.7 A-5 190 5.0 5.5 A-6 190 5.5 5.3 A-7 430 3.7 8.7 A-8 400 4.3 9.0 I I I I I I I I I I I I I I I I I I I Intensity The Intensity Calculation was made using the Murrieta - Temecula & Rancho California Standard Intensity-Duration Curve Data, page 4 of Plate D-4.1 (attached), to yield the following table: Time of 10-Year Basin Concentration Intensity (min) (in/hr) A-1 10.5 2.30 A-2 8.5 2.59 A-3 7.5 2.77 A-4 7.7 2.73 A-5 5.5 3.29 A-6 5.3 3.35 A-7 8.7 2.55 A-8 9.0 2.50 Discharge Peak Discharge calculations were made using the Rational Method equation (Q = CIA) to give the following table: Area 10-Year Q10 Intensity Basin (Acres) (in/hr) (cfs) A-1 1.71 2.30 3.42 A-2 0.61 2.59 1.37 A-3 0.60 2.77 1.45 A-4 0.65 2.73 1.54 A-5 0.44 3.29 1.26 A-6 0.29 3.35 0.85 A-7 1.51 2.55 3.35 A-8 1.07 2.50 2.33 \1.-- I I RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II I Cover Type (3) Quality of Cover (2) NATURAL COVERS - I Barren (Rockland, eroded and graded land) I Chaparrel, Broadleaf (Manzanita, ceanothus and scrub oak) Poor Fair Good I Chaparrel, Narrowleaf (Chamise and redshank) Poor Fair I Grass, Annual or Perennial Poor Fair Good I Meadows or Cienegas (Areas with seasonally high water table, principal vegetation is sod forming grass) Poor Fair Good I Open Brush (Soft wood shrubs - buckwheat, sage, etc.) Poor Fair Good I Woodland (Coniferous or broadleaf trees predominate. Canopy density is at least 50 percent) Poor Fair Good I Woodland, Grass (Coniferous or broadleaf trees with canopy density from 20 to 50 percent) Poor Fair Good I URBAN COVERS - I Residential or Commercial Landscaping (Lawn, shrubs, etc.) Good I Turf (Irrigated and mowed grass) Poor Fair Good I AGRICULTURAL COVERS - I Fallow (Land plowed but not tilled or seeded) I Soil Group ABC D 78 86 91 93 53 70 80 85 40 63 75 81 31 57 71 78 71 82 88 91 55 72 81 86 67 78 86 89 50 69 79 84 38 61 74 80 63 77 85 88 51 70 80 84 30 58 72 78 62 76 84 88 46 66 77 83 41 63 75 81 45 66 77 83 36 60 73 79 28 55 70 77 57 73 82 86 44 65 77 82 33 58 72 79 32 ....-. 56 ~ 75 58 74 83 87 44 65 77 82 33 58 72 79 76 85 90 92 RCFca ,WCD HYDROLOGY J'v]ANUAL RUNOFF INDEX NUMBERS FOR PERVIOUS AREA I I PLATE 0-5.5 (I of 2) \'b I I I I I I I I I I I I I I I I I I I RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II Cover Type (3) Quality of Cover (2) Soil Group ABC D AGRICULTURAL COVERS (cont.) - Legumes, Close Seeded (Alfalfa, sweetc1over, timothy, etc.) Poor 66 77 85 89 Good 58 72 81 85 See Note 4 Poor 57 73 82 86 Fair 44 65 77 82 Good 33 58 72 79 Poor 67 78 86 89 Fair 50 69 79 84 Good 38 61 74 80 Poor 58 74 83 87 Fair 44 65 77 82 Good 33 58 72 79 Poor 72 81 88 91 Good 67 78 85 89 Poor 65 76 84 88 Good 63 75 83 87 seelNot~ 4 I 'Orchards, Deciduous (Apples, apricots, pears, walnuts, etc.) Orchards, Evergreen (Citrus, avocados, etc.) 'Pasture, Dryland (Annual grasses) Pasture, Irrigated (Legumes and perennial grass) .Row Crops (Field crops - tomatoes, sugar beets, etc.) Small Grain (Wheat, oats, barley, etc.) Vineyard Notes: 1. All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II. 2. Quality of cover definitions: Poor-Heavily grazed or regularly burned areas. Less than 50 per- cent of the ground surface is protected by plant cover or brush and tree canopy. Fair-Moderate cover with 50 percent to 75 percent of the ground sur- face protected. Good-Heavy or dense cover with more than 75 percent of the ground surface protected. 3. See Plate C-2 for a detailed description of cover types. 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C-2. 5. Reference Bibliography i tern 17. RCFC a WCD HYDROLOGY J'vJANUAL RUNOFF INDEX NUMBERS FOR PERVIOUS AREA PLATE D-5.5{2of 2) \A.. I I Te' LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 ~ 900 80 ~ ~ I .. J:L 70 > 6 .. " ~ 800 0 500 u " " 400 <t " .. " ~ 300 ! 60 co " " I 700 c '> 200 7 ...... c ~ :2 . - - " .. c c N 0. '" 100 .. .. .5 .!: E E 50 - 80 0. " - - 60 8 0. .2 0 0 50 .2 I .. 40 .. > co VI 30 > .. .. " '0 9 0 '0 - c 20 500 c .. .. ~ " u I - 10 'e '0 35 - .. " .. 0. .... .. VI K II - OJ 400 - 30 .. I .!: o. Undeveloped 0 C. - Good Cover c Ui " VI .. 350 .. 25 Undeveloped ~ - 0 ~ ::> 0 " c Fair Cover - I :2 'e " 300 Undeveloped p 15 .. - 20 0 - c .!: Poor Cover :> 19 16 c: I - 18 Single Family ~ 17 'e 0 .~ 250 17 (1/4 Acre) 18 c :J 16 ~ 15 19 ~ c Commerci 1 I .c " 20 - +: 14 ~v co E! c c 200 13 .~ .. - ..J c: - .. 12 " 0 ~ I C IJ~/ - 8 c 25 .. 0 - c: " KEY 0 0 150 9 - , I .. L-H-Tc-K-Tc - E " j:: 30 .. 8 E EXAMPLE: j:: I 7 (I) L=550', H =5.0: K=Single Family (1/4 Ac.l 35 Development, Tc = 12.6 min. 6 (2) L =550', H =5.0', K = Commercial I 100 Development, Tc = 9.7 min. 40 5 I 4 Reference: Bibliography item No. 35. I RCFC a ,WCD TIME OF CONCENTRATION HYDROLOGY ~;]ANUAL FOR INITIAL SUBAREA I i?> C\. ~ "/\ PLATE 0-3 \-5 I -------- I I Te' LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 900 80 S ~ I ., Ji... 70 > 6 ., 0 ~ 800 u 500 u " " 400 <[ .. ., " ~ 300 ! 60 co 0 " I 700 c ~ 200 7 c ~ .S! - - 0 .. c c N Q. - 100 '" ., .s 'c E E 50 ~ 80 600 Q. 0 - - 60 8 Q. I 0 - 0 0 50 .2 a; c ., 40 '" .. > :> E co .. 30 ., '" Q. " ." 9 0 ." o " c 20 500 (~ ~ ., '" :>. I " ~ u c 10 ~ 10 'E '0 35 cr '" - '" '" 8 0 '" Q. ~ 6 '-n-"- ., .. IL--. A~ - ~ (I) 30 - .0 ., I ~ Undeveloped C> .E o. 0 - - Good Cover .. 2 c .2! Cii " .. ., 350 .. 25 Undeveloped .E 1.0 ~ ~ - 0 0 ::J Fair Cover .8h 0 I c .6 14 - 'E ~ "2 J: :! 7 <Jl 300 Undeveloped 15 .. - 20 0 - .E Poor Cover c ::J C .2 .2.~....I 16 .S 19 - I " E - 18 Single Family :> -/", ./ 17 0 !:: 17 50.!1 , ." 250 (1/4 Acre) ..' 18 c '::J 16 ,/ ~ 15 ~..,. .- 19 ~ c: 0., ~ I ~ .S! 14 20 - - 0 '" 11 c c: c: 200 13 .. .2 .. - ~ ...J c: ., - .. 12 - " I 0 := ~ c: - 8 II 0 c 25 ., 0 c - 0 0 KEY 0 I 150 - , ClI L-H-Tc-K-Tc - E 0 i= 30 ., EXAMPLE: E i= I 7 (I) L=550', H =5.0~ K=Single Fomily(l/4Ac.) 35 Development I Tc = 12.6 min. 6 (2) L=550', H =5.0', K= Commercial I 100 Development, Tc= 9.7 inin. 40 5 I 4 Reference: 8ibliography item No. 35. I RCFC a ,WCD TIME OF CONCENTRATION I HYDROLOGY NJANUAL FOR INITIAL SUBAREA &>.s," -'2. PLATE 0-3 \~ I I I I I I I I I I I I I I I I I I I I I I I I L 1000 900 800 700 600 500 - .. .. ... c 400 o .. ~ o 350 :2 - c 300 ... o 250 ::J ~ c: 01 ..J 200 150 100 Commercia d ,,'l.\ #/ / /~ ,/l,r ;>0'. ,/" 9 ,,/' ,/ 84 F~:::f.S 7 Te' 100 90 80 70 60 - c: 01 E 0. .Q 01 > '" ." 50 o LIMITATIONS: I. Maximum length = 1000' 2. Maximum area = 10 Acres - 5 ~ .. ~ Ji. u 500 400 300 200 "0 '0 '" 0. '" 35 :.:: en ~ :I ~ '" 0 0 c '> .c .. ~ o ~ _ N .s .~ ~ o ... ... o 0 100 80 60 50 40 30 20 ~ 30 o. ... '" '" - " c 'E 25 c '" E 0. o (~ ~ ~ K '" '" .. o ." - C ~ '" ~ c .r ~ ~ Ai '" -..0 10 8 6 .~ c o .+: 11 - c: '" u c 8 ... o '" E i= 6 5 4 Undeveloped Good Cover Single Fomily (I/4 Acre) - o 50 i; ~ 0", u c: '" ~ '" ... ... o KEY - , L-H-Tc-K-Tc EXAMPLE: (I) L=550', H ;5.0~ K=Single Fomily(I/4Ac.l 35 Development, Tc = 12_6 min. (2) L =550', H =5.0', K = Commerciol Development, Tc = 9.7 min. Reference: Bibliography item No. 35. RCFC 8,WCD HYDROLOGY ~AANUAL TIME OF CONCENTRATION FOR INITIAL SUBAREA 13"'-.,,, A - '3, PLATE 0-3 Tc 5 6 .. ~ u <l: ~ 7 ... c '" E a. .Q '" > .. o II 12 ,., E o u- '" 0. c Cii 14 15 16 17 18 19 20 ~ o ... .. OIl - " .= E c ~ 25 c .!! ... o ~ - c OIl u c o " 30 ... o OIl E i= 40 \\ I I Te' LIMITATIONS: L 100 r. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 900 80 <( ~ ~ I OJ .l!.. 70 > 6 .. 0 ~ 800 - U 500 u :0: 0 400 <( .. .. ::l ~ 300 ! 60 0' 0 0 I 700 c '> 200 7 'c ~ :2 - .. - 0 c c N Q. ~ '00 .. .. .5 .5 E 50 ~ 80 E 600 Q. 0 ... ... 60 8 Q. I .2 i: 0 0 50 0 40 .. .. .. .. > > E 0' .. 30 .. G> 0 "0 9 "0 Q. - c 20 0 0 c .. 500 (U u .. '0 u ,., I ~ ~ c '0 '0 35 ~ .. 8 E - .. G> 0 .. Q. ~ 6 .... .. .. K A' .. ... 30 -1..0 .. I 400 ~ Undeveloped '5 .5 o. , ... Good Cover // c en 0 .. GI 350 .. 25 U~ 1.0 / - ~ ~ " .8 0 I 0 c ~. rCover .6 ... ~ :2 'E :r .~ / '" 300 Undeveloped 5 :3/'/ .. - 0 - c c Poor Cover " 19 - .2 .= I ... 18 Single Family g/ ,/ E 0 f: 17 50..9!' . 250 (114 Acre) ~G> c - 16 ..J ~ 15 : .- ~ c: Commerci 0.. I .<= 0 - .:;: 14 y u co g c c c 200 13 .. .2 .. - ~ ..J c .. - .. 12 1...'1-). ,// ... 0 u ... ~ I c - 8 II 0 c /"" 25 .. u /' c ... 0 0 9,,/ KEY u I 150 - , " L-H-Tc-K-Tc ... E 0 i= /' 30 " 8 E "I(...:=.:f :=t EXAMPLE: i= I 7 (I) L =550', H =5.0~ K = Single Family (1/4 Ac.) 35 Development, Tc = 12.6 min. 6 (2) L =550', H =5.0', K= Commercial I 100 40 Development, Tc = 9.7 inin. 5 I 4 Reference: Bibliography item No. 35. I RCFC 8,WCD TIME OF CONCENTRATION HYDROLOGY NJANUAL FOR INITIAL SUBAREA I 13a.s', " .\, PLATE 0-3 \CO I I I Tel LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 900 80 S ~ I .. .l:L ~ > 6 70 0 .. ~ 800 ~ u 500 u " 0 400 <t .. .. :> ~ 300 60 co 0 0 I 700 c '> 200 'c ~ .S! - 0 .. c N 0. - .. .E :~ E 50 ~ 600 0. 0 - I 0 c 0 Cii .. .. > E co .. 0 9 "0 0. - 0 c 500 (~ Cii .. ,., "0 u I ~ ~ c 10 'E '0 35 ~ .. - .. .. It .. 0. ;J .. .. K A' .. II - 30 -L<.c .. I 400 ~ Undeveloped "6 - c;, o. c - 2 12 c Good Cover"" ::: (jj 0 .. / - 350 .. 25 ~.;'> 1.0 I .. - Unde.veioped .5 ~ ~ ::J 0 .8 ; 0 I 0 c fair Cover _ .61' 14 - :2 'E ,/;i.... o~i:r ~ .. 300 ,.;/'< Undeveloped 15 .. - 20 - c .5 /' Poor Cover " 19 ",,,.-'" <;- 16 .5:: I ... 18/" Single Fomlly 59':1; . ./ 17 E 0 f: 17 250 ." (1/4 Acre) / .. 18 c :J ~~..' 16 ~ ,:.o/"c: 15 l ._ 19 ~ I .s= -' . 0 0.. - '" '';: 14 u 20 ,y '" ," e c c c -200 13 .. .S! .. - ~ ...J. c .. - .. 12 ... 0 0 := ~ I c - 8 II 0 c 25 .. 0 c - 0 0 KEY 0 I 150 9 - , .. L-H-Tc-K-Tc ... E 0 i= 30 .. EXAMPLE: E i= I (I) L =550', H =5.0; K = Single Family (1/4 Ac.) 35 Development, Tc = 12_6 min. I 100 IL' ~,S (2) L =550', H =5.0', K = Commercial 40 Development, Tc = 9.7 inin. 5 I 4 Reference: Bibliogrophy item No. 35. I RCFC a .wCD TIME OF CONCENTRATION HYDROLOGY ~AANUAL FOR INITIAL SUBAREA I 13<>.&\" PLATE 0-3 \0... I I I I I I I I I I I I I I I I I I I I L 1000 900 800 700 600 500 - .. .. - <:: 400 a .. ~ a 350 ~ - <:: 300 - a ~ ...J ~ 250 150 100 Commerciol ~7av. ....~\ / / KEY EXAMPLE: (I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35 Development, Tc = 12.6 min. ) (2) L=550', H =5.0', K= Commercial , Ttoc ~:~ Development, Tc = 9.7 min. 5 Tel 100 90 80 70 60 - <:: .. E a. a (jj > .. "0 50 o 35 LIMITATIONS: I. Maximum length = 1000' 2. Maximum area = 10 Acres 5 ~ .. > a ~ U ~ III g ::I ~ go 0 a <:: '> C .... "0 ox.;: N S :5 ~ o C .. E a. a (~ (jj ~ K J:L 500 400 300 200 Undeveloped Poor Cover '5 '0 .. a. '" ~ 30 o. ... '" .. - " <:: 'E 25 100 80 60 <:: ~ - o .. E i= 4 - o Undeveloped Good zov Unde,v oped 0 " Cover o / ./ Single Family (1/4 Acre) 30 40 Reference: Bibliogrophy item No. 35. RCFC 8 WCD HYDROLOGY J'vJANUAL TIME OF CONCENTRATION FOR INITIAL SUBAREA 8=s',,, PLATE D-3 Te - 5 6 .. ~ u <t ! 9 - <:: .. E a. o (jj > .. o 10 II ,., E o LL .. c;. .5 CI) 14 15 16 17 18 19 20 ~ o - '" .. - " .5 E <:: ~ ~ 25 <:: .!! - a ~ - <:: .. u <:: o " - o .. E i= ?P I I Te' LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 ~ 900 80 <[ ~ ~ I ., J::L 70 > 6 ., 0 800 u 500 ~ - () " 0 400 <[ .. ., ::> ~ 300 ! 60 co 0 0 I 700 .5 "> 200 7 c ~ .2 ~ - 0 ., c C Q. - ., N .s '" 100 ., E 50 ~ 80 E 600 Q. 0 - - 60 8 Q. I 0 ;; 0 0 50 .2 a; ., 40 Cl) ., > > E co .. 30 Cl) 0 ." 9 ., ." 0 Q. ~ c 20 0 0 c Cl) 500 (~ a; Cl) ~ I c .~ () c 10 ~ 10 '0 35 ~ Cl) 8 E - Cl) Cl) {1. CD Q. ;s 6 CD .. II - ., 400 ~ 30 Cl) I c o. Undeveloped 0 - '" - Good Cover Cl) 2 c .2! Cii 0 .. .. 350 Ql 25 Undeveloped ~ - 0 .S ~ 0 :> Fair Cover 0 I c 14 ~ :2 'E J: .. 300 Undeveloped ~ 15 Ql - 20 0 c - c .5 Poor Cover 0 :> 19 ~ 16 .S I - 18 Single Family 0 17 E 0 t: 50~ .;f'f' 250 17 (1/4 Acre) "!6' 18 c :J 16 ;' ~ 15 .P.- 19 ~ c: Commercia ' 0 ~ I .c 0 CD 20 - '';:: 14 7 () '" 2 c: c: c: 200 - 13 ~. Cl) .2 Cl) c: ," ~ ...J Ql /" ., ~ () 12 ,oz.\7 - 0 - ~ I c: - 8 II // 0 c 25 ., /" () c: .- 0 0 " KEY J" () 150 - , I Cl) ,49\<.-,-, &,.-::r L-H-Tc-K-Tc ~ E 0 i= 30 8 Ql E EXAMPLE: i= I 7 (I) L =550', H =5.0~ K = Single Fomily(I/4 Ac.) 35 Development, Tc = 12.6 min. 6 (2) L =550', H =5.0', K = Commercial I 100 40 Development, Tc = 9.7 min. 5 I 4 Reference: Bibliography item No. 35. I RCFC 8 WCD TIME OF CONCENTRATION HYDROLOGY JvJANUAL FOR INITIAL SUBAREA I &s;~ + PLATE 0-3 'ZA I I I Te' LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 - 900 80 ::!. ~ I .. ...tL 70 > 6 .. 0 800 u 500 ~ u " " 400 <l: .. .. - " ~ 300 ! 60 co 0 0 I 700 I: :;: 200 7 'c ~ .S! - .. - I: 0 0. - I: .. N 1; :~ 100 .. E 50 ~ 80 E 600 0. 0 - >0- 60 8 0. I E E 0 0 50 E .. .. .. 40 CD > E co .. 30 > CD " '0 9 .. '0 0. - I: 20 0 0 I: CD 500 (~ w CD I '0 ~ U I: 10 ~ ~ 10 '0 35 cr CD 8 E - .... .. {L .. 0. -.~ ;0 6 .. .. K II - 400 ~ 30 .<l CD I 0 Undeveloped co .5 - 0 - 2 I: Good Cover CD CD iii >0- " .. .. 350 CD 25 Undeveloped 1.0 ~ - 0 .5 .8 ~ " :> Fair Cover 0 I I: .6 >0- 0 'E :I: :~ .. += 300 Undeveloped 0 .3 ~ CD .5 20 Poor Cover I: - I: 0 .2 ,/" " 19 - .= I - 18 Single Family " // E > 0 -~ 17 50~ 250 (1/4 Acre) I: :J 16 ~- - 15 - I: ~ I .<:. 0 CD - += 14 u co ::! I: I: I: 200 13 .. .2 .. - ~ ...J I: .. - '" 12 2\~ - " I " - ~ I: - 8 II ;/"" 0 I: 25 '" V"'" " - I: 0 KEY 0 ..../ " I 150 - , '" 9 Tc..=-"l L-H-Tc-K-Tc - E 0 j:: 30 '" 8 E EXAMPLE: F I 7 (I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35 Development, Tc = 12_6 min. 6 (2) L =550', H =5.0', K = Commerciol I 100 Development, Tc = 9.7 min. 40 5 I 4 Reference: Bibliogrophy item No. 35. I RCFC Q,WCD TIME OF CONCENTRATION HYDROLOGY wJANUAL FOR INITIAL SUBAREA I 13c.s~'1 PLATE 0-3 zz, I I I 9 JO 1>) 1'1>-0 3.LV1d '111'110 S3M::InJ NOll'i1~nO - A.LISN31N 0~'i10N'i11S ~t I I I. I I I I I I I I I I I I I I A8010HOAH '::0 ~ i2 :on :r> r r I o C ::0 - Z -f fT] Z en -f -< I z () I fT] en -0 fT] ::0 O:>M 9 :>:I:>Y '0 _c Z. O:l(lIl-.t~a- C7>Ul"""'''' ........www NNNNN ...........-- ----.... c. ~ U10VlOUl C>\,ItCJ\JIO 010-"'1\)0 1;100' .."'a <001....17'\11 ,..WN_O >OOll-.,lO'U1 ~~ ~ ~- . 0 ~o ;; ." Z ~ . . ................ ----- ----- ----- ""'\"\lNN ~ ~ ....... .. .... . .... . .... . .... . .... . .... . ~- ~ 0 O>CI'O".......... .....CDtIlCD>D >0000.... ...._NNW ...,..,..\11\11 17'.........OlID ONWUlm .0 . . ~ l.oIUlOlOW "'"eo.....,#" ....01oll7'0 .01:1"''''11' o"'mwm ._lII....CJo l;D.........m... . ~ . " w C 0 ...........-- '" -......._- ...........-- ---NN NNNNN NNNr\H,oI www.,po ~- Z .... . .... .. 0".... .. ........ .. ........ . ~o n 000_.... NNW.. U1\1lO"(J'.... mOl.oO_ NNW.UO O'-..lCD"O.... 1\).......0. .0 ~ OW.........lJI O(7'oNO>o ........N ....1..1 O....IJI...Vl ..........1\10 OONUlO (D.(lIJl....CI:I . '0 .. -C C z. .. Q:llD........O' <1'U'lUl.... WWWWW NNNNN --............ --....-- c. .. ~ UlOUlD,," OUlOUlO (JIO".NO ;;Ilo-.I\I0 .om-.lCl'Ul "'''''1\)_0 >Ol:ll....l7'Ul ~~ z_ ~ "'- n'" 0 ~O .~ . Z o. ~ ---....... n' , -- -.........-.... ----- -NNNN NNNWW ~ . ...... .. ........ .. ........ .. ........ .. ........ .. ....... . ....... .. "'- ~ ~~ ...........,CDlJI CDoO.oo_ --1\)","'1 ....W...Utl7' CI'.......catD .oO_'\H..l Vla-tD_... .0 . -~ ~ 1,01 VI tD...... tD "'""",101 0 101.....0.....0 "'<4)0'1,01_ O'-<J'N<4) a-...W"'''' 0........."'''' . '" ~. " 0'" ~ c .n 0 '" ZC -........-... ---....- ----- _NNNN NNNNIV NWWWlol WW....'" ~- Z -~ ...... .. ...... .. ..... . ..... .. ........ .. mo n .. O"'__N WW"'U1O' O'..........tD.o .00_1\.11.01 4>-IJIO'<J'-.I <D0_1oI. <J',oNO'_ .0 ~ -.1-,"..04>- 00'."'''' ....I\.I<D.O tDa-Ul<J'tD UlI\I 0\0 \0 -D_IJIOtll ..0.._0 . zo _c ----.... z>> tIl(ll-.l....O- o-\IIVI...... WWWWW NtuN"'''' ----- c. ~ UlOUlOIJI OUlOUlO CIlO-.NO CltO'."'Cl -DCIt....,O'U'1 ....WN_co ..oCD....O'IJI ~~ ~ "'- 0 ~o ~ z Z m 0 . . --....-- ----- -...--.... ----- NNIV"'N ~ n ...... .. ...... .. ........ . .... . ....... .. "'- ~ 0 000--.1....-.1 <DCIlCOoD>Q 000__ _NNWW ....U11J10' O'........CPoD 0_101\11.... .0 . ~ ......0"'...., O...tDNf>> ........,OOOW ..."N 00 N.o NO'O\110 O'N.o..,,,, ..,.o.,.w.., . ~ " 0 C 0 ____N '" ----- ----- ----- ~~~~~ NI\lNI\ll\l WWWW. ~- Z ..... . ...... . .... .. .... . mo n 000__ I\lNIoIW. \1IlJIU'lO'-.I ....co.o..oo __NY. "U'IC1'CIl>D -NUl..,_ .0 ~ -.-.I-UI o Ul_.o-.l ....Ul>D..O 17''''0 III CD IoI>DUlNO CDCIl CD 0# 0.0.... >DO' . '0 -C ----- Z. CPCIl.......,CI' 00 UlIJI... IoIWWWI..I NNNNN ----.... c. ~ U10UlOIJI OIJlOIJIO CDO',..NO a.!a-.1\l0 .oCJI..,a>Ul "WN_O .0 IJI.... O'IJI ~~ ~ ~ "'- . 0 ~O ~ . Z . '" ~ . ---....- ----- ----- :--~~~~ NN"'NN wwt..!w# ~ ." ..... . ....... . ..... .. .... .. ....... .. ...... .. "'- ~ . OlIJl(tl,o.o 00...._'" (.H..W..... lJ!a-...,...0I ",ClO_N W.Ula-1JI ClN.IJIN .0 . i ~ NlJltII....Ul o Ul_al.... o..o.>D O'NOID.o IJI_CIllJlw ww......w ....NalOw . m 0 C> .. C ~ 0 -................ m --__N IVNNNN NNNNW w....w....w ww... .UlIJIO<<J' <- Z ........ .. ....... . ...... . ...... .. "'0 n ww."1JI l7'O'....tIIO O_NWW .0''''0.10 _NW.U1 ....(DONUl CIl_IJIO..... .0 ~ _Ul_O'w Q(D(Il.oN ..oUlNO..o .oOI\lO'w ",N",.Q:l NCJl-.ltDN _1JI0'CJ;>00 . '0 -C Z. ." c. ~~ ~ ~- . ~o . z ;;; ~ < ~- ~ . ~o . r . '" ~ " '" c < ~ ~- z ~o n .0 ~ . l\fnN \fV~ ~ N.....N'O..... 0....01 .......O..lJl I I I I I I I I I I I I I I Technical Appendix B .. J "JA I I I I I I I I I I I I I I I I I I I 100-Year Rational Method Calculation Coefficient of Runoff Soil Group = C (see Hydrologic Soils Group Map for Pechanga, Figure 2) Pervious Cover: Residential Landscaping in good condition C = 69 (see Plate D-5.5) % Area = 16% Impervious Cover: Condo & Apartments C = 90 % Area = 84% C = (69)(0.16) + (90)(0.84) C = 87 Time of Concentration Time of Concentration Calculations were made by using Plate D-3 (attached) to give the following table: Length of Change in Time of Basin Watercourse Elevation Concentration 1ft) 1ft) Imin) A-1 615 5.0 10.5 A-2 405 4.2 8.5 A-3 210 1.2 7.5 A-4 255 1.9 7.7 A-5 190 5.0 5.5 A-6 190 5.5 5.3 A-7 430 3.7 8.7 A-8 400 4.3 9.0 # II I I I I I I I I I I I I I I I I I I Intensity The Intensity Calculation was made using the Murrieta - Temecula & Rancho California Standard Intensity-Duration Curve Data, page 4 of Plate D-4.1 (attached), to yield the following table: Time of 100-Year Basin Concentration Intensity (minl (in/hrl A-1 10.5 3.39 A-2 8.5 3.82 A-3 7.5 4.09 A-4 7.7 3.73 A-5 5.5 4.86 A-6 5.3 4.95 A-7 8.7 3.76 A-8 9.0 3.69 Discharge Peak Discharge calculations were made using the Rational Method equation (Q = CIA) to give the following table: Area 100-Year Q100 Intensity Basin (Acres) (in/hr) (cfs) A-1 1.71 3.39 5.04 A-2 0.61 3.82 2.03 A-3 0.60 4.09 2.13 A-4 0.65 3.73 2.11 A-5 0.44 4.86 1.86 A-6 0.29 4.95 1.25 A-7 1.51 3.76 4.94 A-8 1.07 3.69 3.44 1fp I I RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II I Cover Type (3) NATURAL COVERS - I Barren (Rockland, eroded and graded land) I Chaparrel, Broadleaf (Manzonita, ceanothus and scrub oak) I Chaparrel, Narrowleaf (Chamise and redshank) I Grass, Annual or Perennial Quality of Cover (2) Poor Fair Good Poor Fair Poor Fair Good I Meadows -or Cienegas (Areas with seasonally high water table, principal vegetation is sod forming grass) Poor Fair Good I Open Brush (Soft wood shrubs - buckwheat, sage, etc.) I Poor Fair Good Woodland (Coniferous or broadleaf trees predominate. Canopy density is at least 50 percent) Poor Fair Good I Woodland, Grass (Coniferous or broadleaf trees with canopy density from 20 to 50 percent) Poor Fair Good I URBAN COVERS - I Residential or Commercial Landscaping (Lawn, shrubs, etc.) I Turf (Irrigated and mowed grass) I AGRICULTURAL COVERS - I Fallow (Land plowed but not tilled or seeded) I RCFC a ,WCD HYDROLOGY NJANUAL I I Good Poor Fair Good Soil Group ABC D 78 86 91 93 53 70 80 85 40 63 75 81 31 57 71 78 71 82 88 91 55 72 81 86 67 78 86 89 50 69 79 84 38 61 74 80 63 77 85 88 51 70 80 84 30 58 72 78 62 76 84 88 46 66 77 83 41 63 75 81 45 66 77 83 36 60 73 79 28 55 70 77 57 73 82 86 44 65 77 82 33 58 72 79 32 56 ~ 75 58 74 83 87 44 65 77 82 33 58 72 79 76 85 90 92 RUNOFF INDEX NUMBERS FOR PERVIOUS AREA PLATE 0-5.5 (I of 2) -z,\ I I I I I I I I I I I I I I I I I I I RUNOFF INDEX NUMBERS OF HYDROLOGIC SOIL-COVER COMPLEXES FOR PERVIOUS AREAS-AMC II Cover Type (3) Quality of Cover (2) Soil Group ABC D AGRICULTURAL COVERS (cant.) - Legumes, Close Seeded (Alfalfa, sweetclover, timothy, etc.) Poor 66 77 85 89 Good 58 72 81 85 See Note 4 Poor 57 73 82 86 Fair 44 65 77 82 Good 33 58 72 79 Poor 67 78 86 89 Fair 50 69 79 84 Good 38 61 74 80 Poor 58 74 83 87. Fair 44 65 77 82 Good 33 58 72 79 Poor 72 81 88 91 Good 67 78 85 89 Poor 65 76 84 88 Good 63 75 83 87 seelNot~ 4 I Orchards, Deciduous (Apples, apricots, pears, walnuts, etc.) .Orchards, Evergreen (Citrus, avocados, etc.) Pasture, Dryland (Annual grasses) Pasture, Irrigated (Legumes and perennial grass) Row Crops (Field crops - tomatoes, sugar beets, etc.) Small Grain (Wheat, oats, barley, etc.) Vineyard Notes: 1. All runoff index (RI) numbers are for Antecedent Moisture Condition (AMC) II. 2. Quality of cover definitions: Poor-Heavily grazed or regularly burned areas. Less than 50 per- cent of the ground surface is protected by plant cover or brush and tree canopy. Fair-Moderate cover with 50 percent to 75 percent of the ground sur- face protected. Good-Heavy or dense cover with more than 75 percent of the ground surface protected. 3. See Plate C-2 for a detailed description of cover types. 4. Use runoff index numbers based on ground cover type. See discussion under "Cover Type Descriptions" on Plate C-2. 5. Reference Bibliography item 17. RCFC a weD HYDROLOGY J'vJANUAL RUNOFF INDEX NUMBERS FOR PERVIOUS AREA PLATE D-~.~ (2 of 2) -a> I I Te' LIMITATIONS: L 100 I. Maximum length = 1000' Te I I 1000 90 2. Maximum area = 10 Acres 5 <f 900 80 ~ ~ I ., J::L 70 ,. 6 ., 0 800 u soo ~ u " 0 400 <f '" ., " ~ 30a ! 60 co 0 0 700 " '> 200 I 'c :2 7 ~ - - 0 '" " " 0. - ., N ,g :~ 100 ., e 50 ~ 80 E 0. 0 .... .... 60 8 0. I .2 0 0 50 .2 ., 40 ., > co .. 30 > ., 0 "C 9 ., "C - " 20 0 500 " '" '" ~ c u " 10 I ~ 10 '0 35 '" 8 e - '" ., ., 0. 6 0 lL. CD .. K A' '" II .... 30 -1.0 ~ - '" 400 ~ Undeveloped C. I " o. 0 - 12 .... Good Cover '" 2 " .l!! en 0 .. CD 350 '" 25 Undeveloped " 1.0 - ~ ~ ::J 0 .8 0 0 Fair Cover I " ~ .6 .... ~ 'E :I: :~ .. 300 Undeveloped 15 '" - 20 0 .3 - .5 .5 Poor Cover .2 ::J 19 16 .: I ... ~ 18 Single Family 17 E 0 -~ 17 250 (1/4 Acre) 18 " ~ [6 ..J ~ :; ? 19 ~ " I .c 0 20 - +: '" 2 " " 200 - .!:! CI) " ..J Gl - 0 12~"l:, 0 ~ I " - 8 :JJ/ " 25 ., 0 .... " , ' 0 0 Tc., .::: \o,S\,\~.,....... KEY 0 I 150 9 - , '" L-H-Tc-K-Tc .... E 0 j:: 30 '" 8 E EXAMPLE: j:: I 7 (I) L=550', H =5.0~ K=Single Family(I/4Ac.) 35 Development I Tc = 12.6 min. 6 (2) L =550', H =5.0', K= Commercial I 100 40 Development, Tc = 9.7 min. 5 I 4 Reference: Bibliogrophy item No. 35. I RCFC a ,WCD TIME OF CONCENTRATION HYDROLOGY ~;]ANUAL FOR INITIAL SUBAREA I ~",~'.I'\ 1+- PLATE D-3 1-~ I I I I I I I I I I I I I I I I I I I I L 1000 900 800 700 600 500 ... GO GO ... .5 o GO ~ o :2 ... 5: 350 300 Te' 100 90 80 LIMITATIONS: I. Maximum length = 1000' 2. Maximum area = 10 Acres 70 60 ... C GO E a. .2 GO > Q) "0 50 o c .. E a. o (~ ~ ~ - o ~ ...J ~ 250 c '0 Q) a. U> 35 -I< Undeveloped Good Cover .c - 00 c Q) ...J 200 ~ o. ... U> Q) ... ::J c 'E 25 Undeveloped Foir Cover 150 100 .5 20 19 18 17 16 15 14 13 12 II Undeveloped Poor Cover ~ f: Single Family (1/4 Acre) c .2 2 ... c Q) o c 8 ... o ~ ~ .. ~ ..!:L u soo 400 300 200 :w.:: en g :l ~ '" 0 0 .~ >: c ~ 0 o ~ :;: N .5 :E ~ o ... ... o 0 .. '" on o "0 ... C ~ Q) ~ c ~ ~ ~ A' .0 100 80 60 50 40 30 20 10 8 6 >- 10 E o --rl-lL. Q) c. c en II) ~ 2 o -:;; GO ... 0.5 ~ilO ../ _.6 / :I:.~ ,/ o -; :3.Y\..'l-l o .2 .,./ '0 /"~ 50 ~ "".r'. /' 'Q)f"'- . ,.../ Q) E j:: tC: -:: 8.5 KEY - , L-H-Tc-K-Tc EXAMPLE: (I) L =550', H =5.0: K = Single Fomily(l/4 Ac.) 35 Development, Tc = 12.6 min. (2) L =550', H =5.0', K = Commercial 40 Development, Tc = 9.7 min. 7 6 5 4 RCFC a ;WCD HYDROLOGY JVJANUAL Reference: Bibliography item No. 35. TIME OF CONCENTRATION FOR INITIAL SUBAREA &>'i," - '2. PLATE 0-3 Tc 5 6 .. ~ o <( ! 7 8 ... c Q) E 0. o Q) > .. o 9 14 15 16 17 18 19 20 ~ o ... on .. ... ::J .= E c ~ ~ 25 c .2 ... o ~ ... c Q) o c: o o ... o 30 .. E j:: ~ I I Tel LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 900 80 5 ~ I .. J:L 70 > 6 .. 0 800 u 500 ~ 0 " " 400 <t .. .. " ~ 300 !; 60 co " " I 700 " -;; 200 7 C ~ " - .. - " 0 Q. :;:: " .. N .5 :~ 100 Q) E 50 ~ 80 E 600 Q. 0 - - 60 8 Q. I " c 0 0 50 0 Q; Q) .. 40 Q) > E co .. 30 > Q) " .., 9 Q) .., Q. - " 20 0 500 0 c: Q) (~ Q; Q) I "0 ~ 0 " 10 ~ ~ '0 35 ~ Q) 8 'E - Q) Q) Q) Q. ~ 6 (L .. .. K A' .. - 400 ~ 30 -L..c 1 Q) I o. Undeveloped c;. .5 - 0 c: Good Cover Cii " .. .. 350 '" 25 ~ - ~ 0 " 0 I c: 14 - ~ 'E Ul - 300 15 Q) - " .5 " - 16 .S I - ~ " E " Single Family 50li 17 250 (114 Acre) A 18 " :J 16 ~ 15 19 ~ " Commercia 0", I 0 20 :;:: 14 ;r 0 e c c c: 200 13 Q) .. - ~ .!:! ..J " Q) - Q) 12 1...'/.1- - " I 0 - ~ c - 8 II /' 0 c: "'" 25 '" ~ .J,it"" 0 .- " 0 ;;. KEY 0 ,/ 0 I 150 9 ,,.' - , Q) L-H-Tc-K-Tc - E / " .i= 8/ 30 Q) '" EXAMPLE: E I /\(::-=t.S i= 7 (I) L =550', H =5.0~ K = Single Family (1/4 Ad 35 Development, Tc = 12.6 min. 6 (2) L = 550', H =5.0', K = Commercial I 100 40 Development, Tc = 9.7 min. 5 I 4 Reference: Bibliography item No. 35. I RCFC 8 WCD TIME OF CONCENTRATION HYDROLOGY lVJANUAL FOR INITIAL SUBAREA I Ea.,"'" A-3. PLATE 0-3 ~\ I I I I I I I I I I I I I I I I I I I I L 1000 900 800 700 600 500 - CD CD .... c 400 Te' 100 90 LIMITATIONS: I. Maximum length = 1000' 2. Maximum area = 10 Acres ;: .. .. E co UI 0. ~ "0 o C C OJ u .. .. ~~~ K Undew ~FdIr-cover ..,___ Undeveloped c ",...~O Poor Cover 19 18 17 16 15 14 13 12 II 80 70 60 - c .. E a. .Q .. " .. ""C 50 o CD ~ o '0 '';: 350 300 o '0 .. a. UI 35 = .... o ~ ...J ~ 250 ~ o .... 30 .c - '" c .. ...J 200 UI .. - ::J c 'E 25 ISO 100 ~. ~ ~ c: o '';: g - c: .. o c: 8 .... o .. E .i= 6 S 4 RCFca WCD HYDROLOGY f-JJANUAL Undeveloped Good Cover Single Family (1/4 Acre) ........--! rrr# / II / 12 / .6 /.. ~:~ ~ o.~ :~/' ,'Z. - '" 50~/ ,./ ~.: 0.. o c: .. ~ .. .... :: o 5 ~ .. > o _ u .:.::: '" g " ~ co 0 0 .= >: C ... 15 o ~ :;: N .s :!'i ~ o .... .... o 0 Ai .. .0 o o KEY - , L-+H-Tc-K-Tc .li.. 500 400 300 200 100 80 60 50 40 30 20 10 8 6 EXAMPLE: (I) L =550', H =5.0: K = Single Fomily(l/4 Ac.) 35 Development, Tc = 12.6 min. (2) L =550', H =5.0', K = Commercial 40 Development, Tc = 9.7 inin. Reference: Bibliogrophy item No. 3S: Te 5 6 .. ~ u <( ~ 7 8 - c: .. E a. .Q .. " .. o 9 '" E o LL .. c;. .5 <Jl 14 15 16 17 18 19 20 ~ o .... UI .. - ::J .= E c ~ ~ 25 c: .2 - o ~ - c .. u c o u 30 .... o CD E i= TIME OF CONCENTRATION FOR INITIAL SUBAREA GO-s',,, , '- PLATE 0-3 1)V I I I I I I I I I I I I I I I I I I I L 1000 900 800 700 600 500 ... .. .. ... c 400 " .,~ c .2 E ... c '" o c 8 Te' 100 90 ... c .. E a. o Q; > .. .., "0 '0 .. a. .. ~ 30 o. ... .. .. - " c 'E 20 19 18/'-' f:P 16 15 14 13 12 II .9 ... o 80 70 60 50 o 35 25 .../< ."...... 9 RCFC a ,WCD HYDROLOGY JvJANUAL o .. ~ a 350 :2 ... !: 300 ... o :J ~ 250 ~ ,,;p"' - ~ ~ "26~ -1. ISO 100 .. E i= 4 LIMITATIONS: I. Maximum length = 1000' 2. Maximum area = 10 Acres s ~ '" ,. o ~ U " .. ~ co 0 .~ "> c ~ o ~ N .E ~ o ... o .lL 500 400 300 200 100 80 60 50 40 30 20 <: .. E a. o (~ U ~ .. co .. o .., - c ~ .. ~ c .r ~ ~ Ai." 4 I) /..0 3 I"~ Undeveloped "0 ... / Good Cover" 2 unde,veiO';:d 0 ~ ~ilO I Fair Cover ~.6 / .,-' 'Undeveloped 0 ;: 13 ,V 'poor Cover i ,~~ /" Single Family ssYli ./ (1/4 Acre) / .. I ._ 0.. o c .. ~ .. ... == a K Te 5 6 .. ~ o <t 10 II ~ E ~ .. 0. c (J) KEY - , L-H-Tc-K-Tc EXAMPLE: (I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35 Development, Tc = 12.6 min. (2) L =550', H =S.O', K= Commercial Development, Tc = 9.7 inin. Reference: Bibliography item No. 35. 40 14 15 16 17 18 19 20 ~ o ... Commercial ~ ,'l-J. / /" j " // l 8 / / ! / lL~ ~.S 5 .. .. ... " .= E c ~ ~ 25 c .2 ... o ~ ... c .. o c: o o 30 ... o '" E i= TIME OF CONCENTRATION FOR INITIAL SUBAREA '5"'s, 'I PLATE 0-3 ~ II I I I I I I I I I I I I I I I I I I L 1000 900 800 700 600 500 - .. .. ... .5 400 o .. ~ o :2 - c 350 300 ... o :J ~ 250 150 100 Tel 100 90 80 70 60 - c .. E Q. o Q; > CD '0 50 LIMITATIONS: . , I. MaXimum length = 1000 2. Maximum area = 10 Acres - 5 ~ .. ~ J:L u 6 f ~o u 400 <( 300 v 200 :p'j. ~ ~OJ> /~ ~ !8,/' 8! 30 ,,/' ii; 20 / 9 0 10,,,.'''/ 10 ; (t II " '0 CD Q. on 35 :.: en ~ :> ~ co 0 0 E ): c: .... ~ o ~ _ ~ ~ :E o ... o '0 .. co on o '0 - C ~ CD U ~ ~ c: .. E Q. o (~ ~ ~ ~ o ... 30 K Undeveloped Good COJ'r'" Unde efoped Ir Cover 1.0 o _ :~/I" J::~ / o :5 ./,3 I",'l- ;:: f' .2 0' ~~ /' I .- 0.. u c CD ~ .. ... ... o on .. - " c 'E 25 Undeveloped Poor Caver Single Fomlly (1/4 Acre) .5 .... o 16 15 14 13 12 I",'l-\ II / ~ KEY - , L-H-Tc-K-Tc EXAMPLE: (I) L =550', H =5.0~ K = Single Fomily(I/4 Ac.) 35 Develapment I Tc = 12_6 min. (2) L =550', H =5.0', K = Commercial Development, Tc = 9.7 inin. 40 Reference: Bibliography item No. 35. RCFca WCD HYDROLOGY ~AANUAL .. E j:: 9 8 :/ /~\ _ t: ? t ~ JI ~ .;0:.. 5 . 4 TIME OF CONCENTRATION FOR INITIAL SUBAREA 80.,$"1'\ PLATE D-3 Te 5 12 .. c;. c en 14 15 16 17 18 19 20 ~ o .... on .. - " .S' E c ~ 25 c .2 - o ~ - c .. u c o u 30 ... o .. E j:: ~ I I Te' LIMITATIONS: L 100 I. Maximum length = 1000' Te I 1000 90 2. Maximum area = 10 Acres 5 - 900 80 S ~ I .. .l:L 70 ,. 6 .. 0 ~ 800 u 500 u >0: " 400 <t "' .. - " ~ 300 :s 60 '" 0 " 700 c -;; 200 7 I c ~ .2 - - 0 .. c c N a. - 100 .. .. .E ~~ E 50 ~ 80 E 600 a. 0 ..... ..... 60 8 a. 0 c: 0 0 50 0 I Q; .. 40 .. .. ,. ,. E '" "' 30 .. .. " '0 9 '0 a. - c 20 0 " c .. 500 (~ Q; .. u ,., I " ~ ~ 10 '0 35 cr E - CIl {1. .. a. .. "' II ..... 400 ~ 30 CIl I c 0 Undeveloped '" ..... Good Cover 2 c rn " "' .. 350 CIl 25 Undeveloped .S ~ - 0 ~ " ::> Fair Cover 0 I c 14 ..... :5! 'E :x: "' 300 Undeveloped ~ 15 CIl - 20 0 c - c c Poor Cover .2 ::> 19 - 16 .= I ..... 18 Single Family 17 E " -~ 17 250 (1/4 Acre) 18 c ::i 16 ~ 15 19 - c Commercia ~ I .r. .2 20 - - 14 Y '" 2 c c 200 - 13 .!! CIl ...J c /.1/ - CIl 12 " u ~ I c - 8 II c #/ 25 .. u ..... c: 0 KEY 0 J" u 150 - , I Cl1 ~ -4'9.,......,- l-H-Tc-K-Tc ..... .~ \<.-= 8'.1- 0 f- 8 30 .. E EXAMPLE: i= I 7 (I) L =550', H =5.0; K = Single Family (1/4 Ac.) 35 Development, Tc = 12.6 min. 6 (2) l=550', H =5.0', K= Commerciol I 100 Development, Tc = 9.7 inin. 40 5 I 4 Reference: Bibliography item No. 35. I RCFCa .wCD TIME OF CONCENTRATION HYDROLOGY J'lJANUAL FOR INITIAL SUBAREA I &s:~ PLATE 0-3 .,p I I I Tel LIMITATIONS: L 100 , Te I. Maximum length = 1000 I 1000 90 2. Maximum area = 10 Acres 5 ~ 900 80 S ~ .. Ji. I > 6 .. 70 0 800 u 500 ~ - u " .. 400 <t on .. ::l ~ 300 ! 60 00 0 0 I 700 .E '> :2 200 7 c: ~ - - 0 .. c: c: N 0. ~ 100 .. .. .s .5 E E 50 ~ 80 600 0. 0 - - 60 8 0. 0 0 I .Q C 0 50 40 .. .. .. .. > > E co on 30 .. .. .. '0 9 '0 0. - c: 20 0 0 0 c: .. 500 (I) ~ .. -0 u c: 10 ~ I -~,_._-~ ~ 10 '0 r .. 8 E - ""'"~.....,._,.GL. .. {t .. 0. ~ 6 .. on 1\ II - 400 30 .0 .. ~ Undeyeloped I .5 0 0 - co - Good Cover .. 2 .5 .. Ul - .. 350 on .. .. 25 Undeveloped 1.0 - .5 ~ ::J 0 .8 .. c: Fair Cover .6 I ~ :2 'f: l: .~ on 300 Undeveloped :3 ~ .. - 20 0 c: - c: .5 Poor Coyer 0 .2/" " 19 - .S I - ~ 18 Single Family g .","/ E 0 !:: 17 ;P' 250 (1/4 Acre) c: :J 16 ~ 15 ~ c: Commercia. 0.. {l I .c 0 - :0= 14 7 u ~ '" 2 c: c: c: 200 - 13 .. .2 .. ~ ...J c: .. - .. 12 ~ - .. u :!: ~ I, c: - 8 II h 0 c: 25 .. // u - c 0 KEY 0 u I 150 - , .. L -H-Tc-K-Tc - E 0 i= 30 .. 8 E EXAMPLE: i= I 7 (I) L =550', H =5.0: K = Single Family (1/4 Ac.) 35 Development, Tc = 12.6 min. 6 (2) L =550', H =5.0', K = Commercial I 100 Development, Tc = 9.7 inin. 40 5 I 4 Reterence: Bibliography item No. 35. I RCFC 8,WCD TIME OF CONCENTRATION HYDROLOGY wJANUAL FOR INITIAL SUBAREA I &c.s',~ ... .. PLATE 0-3 ~ I I I I l\fnN\ffl~ J..'S010HOJ..H OOM 9 O:JO~ 910 p) \'P-O 3.l\11d Ii.Bfa S3^~nJ NOllli~na - A.lISN31N OtlliONlilS \..~ I I I I I I I I I I I I I I I I :::u 1> Z ~ r r - Z -I ITI Z (f) -I ~ I z () I ITI (f) "U ITI :::u :r: o c :::u '0 _c %D 011>>...,....0- 17"\11"'''''. WWWlolW I'\,JI\I 1\1 r\lI'\l ............-.... ...-......... c. '" UtO Ul 0\11 O\llOUlO atO'f""'O lJIO'.rvo >D CD"" "'Ul ......"'...0 ,oCD""O'V! .'" ~ ~- . 0 "'0 ;; " % ~ . , ........ .. ---- ----- ----... ...........-- "'NNNI'\) < ~ ........ .. ........ .. ........ .. ~- ~ 0 CJ'>(J'O' ..,... ~aHXI(>>>ll >0000'" ""_I'UNW ...UlUl (7<.......011..0 Ol'll'-lUlCD .0 " . ;,. WIIlCD"".... 0'0...0.... ...,ewO'\o ..11>.000- O.CD....CD ._01....0- (11_.....01.,. D ~ . " W C 0 .................. m ----- ----- ---1'\)1\1 NNNNN I'\,INNNW W(Olw.... <- % ........ .. ........ .. ........ .. .-..... .. ........ .. mo 0 000__ NI\II....... \1IUl 0' 0'-.1 attD..o<:>_ NN.....U1 00..,1>>..0_ N.....O.... '0 < OW...._U1 OO"NO..o W.."N "",,1..1 O....U1..\Jl ........1\10 OONUlO O"'DIII...OI " '0 ~. _c c ----- %" "" lJICD...,...,O' <7'\IIUI........ ...H....WWW NNNNN ----- c. ." '" U1OVlC>\II OUlOlllO CDO'.NO (JIO'....I'\,JO .tI<.D....O'U1 ........."'_0 ,g"'''''l1'\Il "'. %- ~ m_ om 0 "'0 .~ . z o. m -- ---...... ----- 0' , ----- _NNNN NNNWW < . ........ .. ........ .. ........ .. ...... .. ........ .. m_ ~ ~~ ..........,atCD \JlI..o..oo_ __NNN WW....U1O' O'......CDaJ "'O_Nl,o.l U1l7>CD"". .0 " _m ;,. WU'lCD_. <:DN....WO 101.....0...,0 ...'Ol1'w.... O'-""N,o l1'.........ao 0..........0\1\11 D m ~. 0 om ~ c "0 " ................... ................- m zc ----- _NNN.~ NI~NNN NWWWW 101101,","\11 <- Z -~ .... . .... . .... . .... . .... . .... . mo 0 .. 0......._1\1 I.HoI...\ltl1' "".........11I..0 .00....1'\1101 .,.\lt17'Oo..., 11I0....101'" O'o"ONOO'.... .0 < .........\11..0.,. 00''''''''1\1 .....I\Ic>>.0 <JIIO'\IIC7'lII '-"1\10.0.0 .0'" VI om .0.. ....'0 D '0 -c %" (Il(Z>..........ao O<\IIUI.. IoIl.HoI 101 101 """"1'\11'\1"" -....--- ....---- c. '" ,,"0,," 0 lJ1 OUlO,,"O (Ilao.,."o OI"".""Cl .001.....0'1/1 #-1oI""'-Cl ..001 "",O'.Ul "'~ ~ m_ 0 "'0 " Z % ~ 0 " , --............ -....-....... -........-.... ...---- f\JIVl'\INI'\I < 0 .... . .... . .... . .... . .... . .... . m_ ~ 0 aoO'........... OICOa>.o.o 000....... _NIVWIoI ,..,.U1U10' 0'........=.0 0_1011/1.... '0 " ;,. ...oON.,.... o"'a>I\lGII _WO'ClW .....N a>N .0 IV a> 0 11I0 O'N.o..."" ......0.,.101... " m " 0 c 0 -.......-... .........-- .................. ....___N NNNNN NNNl'\Il'\I <- ~ wwww.,. z .... . .... . .... . .... . .... . mo n 000__ NNWW... UlIIIIIIO'''' ...lJI.o.oo ...._NW.,. .,.lIIl7'm.o -NIJI....... .0 ~ _,....._11I Olll_.o"" _IJI.o.o O'NO(llQIII W..oUlNO lJI lI>(Il 0'" 0.0_.0"" " '0 -c ----- ZD 0)(>>""...."" 0'>U1U1.,.... 101101101(,01101 I\lNI\Il'\Il\I ----.... c. '" UlOlllOIJl OUlOUlO (>>0',.1\10 Oll1',.NO '01ll....aoUl ,.WN....O "OCll....O'\II ~. . ~ m_ . 0 ~o ~ ~ Z . m ~ " ----- ----- --....-- _NNNN NNNNtv t.lIolWW#- . " .... . .... . .... . ... .. .... . m_ ~ '" 11I11I(>>..0..0 00...._1\1 www,.,. 1/Ia>........QIII .oOO_N 101,..\110'01 0"""'11I1\1 .0 " Z :" NIIIQIII-VI OUl_III.... o..o.>t> 0"1\10..0.0 \II_OllUllol WW"""loI -1\l1>>01ol " ~ " '" ~ c '" 0 ----- loIto1WWW loIW,..... m ---_tv NN/lJI'\IN Nf\lNNlo.I .tJlUlO'a" ~- Z .... . .... . .... . .... . ~o n WW......UI 0,a>....1>>0 O_Nl.o>loI ...0"....1>>0 _NW"'UI ""I>> O/IJ \Jl <>>_,-"0-.1 '0 < ....t1l...0'0 W o 0lI1J1 >t>I'\I ,o,-"NO..o ..001'\10'101 NNN..<>> NC>>-.I(IlN _\II00(ll(p> " '0 -c z" " 01(11.........0' O'V'lUt.,.... IoIlo.1lo1lo1to1 Nf\lNN/IJ ----.... ---....- c. '" UtOUlOUl O,,"OUlO QIIIO'".",O (IlC!'''''''O "Olll.....UOV! ......"'_0 'D lII.....UO U' ~~ m ~ m_ '" 0 ~o '" ~ % :;; m " ---- -...--- -....-...- ----- _1'\1 '" NN ~ < .... . .... . .... . .... . m_ ~ . ""0'............. .....0.0...0..0 .000'0_ _"'NNIoI 101......" UlO'>..........a> ..oON.,."" .0 " ~ ~ O'lJIO'l\J1JI O>-UlO'lJl (II 0 (01 C7'O' WQlNOI'" ....-Ul"O. ..olJlN,of;tl a...o.._.. " m ~ " m ~ c < 0 m --- ----- ----- ----- .-rvl\lNN NN""NN I\llo.lw.....toI ~- Z .... . .... . .... . .... . .... . mo n ..0.0000 --NNW ,...,.,.UI\II Cl'O'...f;tI.o >000..-"" NW #>UlO' lIION.,...... .0 < .,.....0.,.(D N....N.o.... O.,.lIIN..... lo.I,oUllotl\l ...NO).,..- ID.....O'...,ID fI'...._C7'CD " I I I I I I I I I I I ! I I I I I I I I ! ! I Technical Appendix C ?J:; . I I I I I I I I I I I I I I I I rl I ,I The IOO-Year flood sholl be contained within street R/w limits. The IO-Year flood sholl be contained within the Top of curbs. Initiate 0 storm drain or channel when either condition is exceeded. '" z w :J .... z '" :J ~ '" ..... a: " a: Iii ..... a: .... .... '" ... '" w a: '" .... :=1 (Il "'I ~ . . TYPICAL I FREE BOARD r , --L- I l ~~- j DWELLING UNIT PAD r"" _ ____ UNDERGROUND \. ;- STORM DRAIN OPEN CHANNEL NOTES: Protection criteria shown are the Districts typical minimum requirments.Special conditions, or other authorities may require stricter controls; ie; for reasons of traffic or pedestrian safety, maintenance problems behind curbs ,etc., lower maximum depths of flow in streets may be required.Also see Riv. Co. Ord. No. 460. RCFC 8 iWCD HYDROLOGY J'V]ANUAL FLOOD PROTECTION CRITERIA PLATE A-2 J ?f\ I I lauue4~ Jeln6aJJI JOJ uonoas SSOJ~ uO!Joas SSOJ~ UOlld!J::lsaa l::>S[OJd I JO,:l eAIOS pOllleV'l luawal3 MOI.::J l€ll::lljS)j,JOM Lndaa 18uue48 elnWJO.:l S,BU[UUBV'l 18UUB48 J81n68J11 f WJOlS JeaA-O~ 'rF'<I uO!l::>as I SJ::> 6L'P aBJell::>S!O Et:"O ~ 01 00"( a6uBt:j UO!lBA613 ij LZ'O ~ A813 roBjJnS Je}BM ij/lj 000900'0 adolS E:~O'O ISPYJ80:) S6U!UUBV'J 8lea uOlpas I I OO'SO+~ OO'OOH OO'O~ SO'O~ o ~'O~ S ~.O~ OC:'O~ SC:'O~ ~- n._u~,. O€'O~ 'S€'O~ I I I I I I I I I I I I OO'O~H OO'S~H OO'OC:+~ OO'SC:+~ SlN ~:H ~O'OZ:^ rjq ~ 3'tlYl') I::) 331~ 'OUI 'SP04lElr-J pe~seeH @ VIId 9f.;:E:O=ZQ 90/0l1LO lWj')jBO J€lAI!S\:6 vsn 90L90 .1:> 'AmqJ6IBM peo~ ep!S)jooJ8 Lf. 6ulllnsuo:) :ISH ~ jO \.- aBed 999\.--SSL (EOl) [oNgl \.- '9A J61SBV\lMOI.:::l ulsl)l: lned :Jaau!6U3 pafOJd :10 ('jCI.L"t'?oi 110::\ 5NOI.,L'")-;J S I I Cross Section Cross Section for Irregular Channel Project Description Worksheet Flow Element Method Solve For I Section A~A 1 QO- Year Storm Irregular Channel Manning's Formula Channel Depth I I Section Data Mannings Coefficiel Slope Water Surface Elev Elevation Range Discharge I 0.013 0.006000 Wit 10.30 It 1.00 to 10.33 7.07 efs I I I 10.35,~ 10.30 10.25 10.20 10.15~- 10.10 10.05 10.00 1+00.00 I I I I I I I I I I g:\silver oak.fm2 07/20106 02:00:58 PM EJ 1+05.00 1+10.00 1+15.00 1+20.00 1 +25.00 V:20.0~ H:1 NTS A.\ RBF Consulting @ Haestad Methods. Inc. 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 I I Cross Section Cross Section for Irregular Channel Project Description Worksheet Flow Element Method Solve For I Section B-B 10-Year Storm j Irregular Channel Manning's Formula Channel Depth I I Section Data Mannings Coefficiel Slope Water Surface Elev Elevation Range Discharge I 0.013 0.005000 Wit 10.24 It 1.00 to 10.33 2.99 cfs I I I 10.35, 10.30 _.. ----~--- 10.25 10.20 10.15 10.10 10.05 - 10.00 1+00.00 1+05.00 I I I I I I I I I "; 1+10.00 1+15.00 1+20.00 1 +25.00 V:20.0~ H:1 NTS ~ I Project Engineer: Paul Klein g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 16140] 07/20/06 02:09:31 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755~1666 Page 1 of 1 I Cross Section Cross Section for Irregular Channel I Project Description Worksheet Flow Element Method Solve For Section B-B 10Q-Year Storm Irregular Channel Manning's Formula Channel Depth I I I Section Data Mannings Coefficiel 0.013 Slope 0.005000 ftlfl Water Surface Elev. 10.27 ft Elevation Range 1.00 to 10.33 Discharge 4.24 cfs I I I I I 10.35C 10.30 ---------~~~ 10.25 10.20 10.15---- 10.10 10.05 10.00 1+00nO 1+05nO 1 +20.00 I I 1+10.00 1+15.00 I I I I I I .v 1+25.00 V:20.0~ H:1 NTS b..?/ I Project Engineer: Paul Klein g:\silver oak.fm2 RBF Consulting FtowMaster v6.1 [6140] 07/20/06 02:08:54 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I Cross Section Cross Section for Irregular Channel I I Project Description Worksheet Flow Element Method Solve For Section C-C 1Q-YearStorm, Irregular Channel Manning's Formula Channel Depth I I Section Data Mannings Coefficiel 0.013 Slope 0.010000 Wit Water Surface Elev 10.27 ft Elevation Range 1.00 to 10.33 Discharge 5.68 cfs I I I I 10.35,~ 10.30 10.25 10.20 10.15 10.10 10.05 10.00 1+00.00 I I I 1+05.00 1+10.00 1+15.00 1+20.00 1 +25.00 I V:20.0~ H:1 NTS I I I I I *' I g:\silver oak.fm2 07/20/06 02:11:08 PM @ Haestad Methods, Inc. RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 I Cross Section Cross Section for Irregular Channel I I Project Description Worksheet Flow Element Method Solve For Section C.C 10Q-Year Storm Irregular Channel Manning's Formula Channel Depth I I Section Data Mannings Coefficiel 0.013 Slope 0.010000 Nfl Water Surface Elev 10.30 ft Elevation Range 1.00 to 10.33 Discharge 8.38 efs I I I I 10.35 10.30 10.25 10.20 10.15.--- 10.10 10.05 10.00 1 +00 .00 .') I I I 1+05.00 1+10.00 1+15.00 1+20.00 1 +25.00 I V:20.0~ H:1 NTS I I I I I ~~ I Project Engineer: Paul Klein g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 (6140] 07/20/06 02:10:32 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I I Cross Section Cross Section for Irregular Channel I Project Description Worksheet Flow Element Method Solve For Section 0-0 10-Year Storm, Irregular Channel Manning's Formula Channel Depth I I Section Data Mannings Coefficiel 0.013 Slope 0.056000 fVft Water Surface Elev 10.16 ft Elevation Range 1.00 to 10.33 Discharge 2.11 cfs I I I I 10.35 10.30 10.25 10.20 10.15-- 10.10 10.05 10.00 1+00.00 8 I I I 1+05.00 1+10.00 1+15.00 1+20.00 1 +25.00 I V:20_0~ H:1 NTS I I I I I ~ I Project Engineer: Paul Klein g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 [6140) 07/20/06 02:12:32 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 II I Cross Section Cross Section for Irregular Channel I Project Description Worksheet Flow Element Method Solve For Section 0-0 10Q-Year Storm Irregular Channel Manning's Formula Channel Depth I I Section Data Mannings Coefficiel 0.013 Slope 0.056000 ft/ft Water Surface Elev 10.18 ft Elevation Range 1.00 to 10.33 Discharge 3.11 cfs I I I I 10.35 10.30 10.25 10.20 10.15 .- 10.10 10.05 10.00 1+00.00 ~ ~ I I I 1 +05.00 1+10.00 1+15.00 1+20.00 1+25.00 I V:20.0~ H:1 NTS I I I I I A."\ I Project Engineer: Paul Klein g:\silver oak.fm2 RBF Consulting FlowMaster v6.1 [6140] 07/20/06 02:12:01 PM @Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 I I I I I I I I I I I I I I I I I I I Technical Appendix 0 A'b I I I I I I I I I I I I I I I I I I I :Grated Inlet SizinQ Summary Table Inlet# Inlet Type Q100 Inlet Capacity (cfs) (cfs) 3 24"x24" C.B. 4.94 4.36 on Grade 4 24"x24" C.B. 3.44 3.27 on Grade 5 24"x24" C.B. 2.13 4.24 in Sump 6 24"x24" C.B. 2.11 4.24 in Sump 8 36"x36" C.B. 5.04 6.36 in Sump Curb Inlet SizinQ Summary Table Inlet # Inlet Type Q100 Required Length (cfs) (ft) 4' Curb Inlet . 1 on Grade 1.83 3.3 4' Curb Inlet 1.88 .. 2 on Grade 3.4 7 4' Curb Inlet 2.03 3.0 on Grade 1. Inlet 1 will receive the excess flow of 0.58 cfs from Inlet 3. 2. Inlet 2 will receive the excess flow of 0.17 cfs from Inlet 4. ~o.. I I I I I I I I I I I- I I I I I I I I 24" x 24" Catch Basin (Sar:1l Weir Calculation Cw = 3.0 D = 0.5' CI = 0.50 P =8' Grate Constant Height of Curb Clogging Perimeter of Grate Pe = (1-CI)P Pe = (1-0.50)(8) Pe = 4' Ow = (Cw)(Pe)(D3/2) Ow = (3.0)(4)(0.53/2) Ow = 4.24 cfs Orifice Calculation Co = 0.67 Grate Constant D = 0.5' Height of Curb CI = 0.50 Clogging g = 32.2 ftls2 Gravitational Constant A = 2.25 ft2 Area of Grate Ae = (1-CI)A Ae = (1-0.50)(2.25) Ae = 1.13 ft2 Qo = (Co)(Ae)(2gD)1/2 Qo = (0.67)(1.13)((2)(32.2)(0.5))1/2 Qo = 4.27cfs Ow < 00 use Ow = 4.24 cfs ~ I I I I I I I I I I I I I I I I I I I 36" x 36" Catch Basin (SaQ) Weir Calculation Cw = 3.0 D = 0.5' CI = 0.50 P = 12' Grate Constant Height of Curb Clogging Perimeter of Grate Pe = (1-CI)P Pe = (1-0.50)(12) Pe = 6' Qw = (Cw)(Pe)(D3/2) Ow = (3.0)(6)(0.53/2) Ow = 6.36 cfs Orifice Calculation Co = 0.67 Grate Constant D = 0.5' Height of Curb CI = 0.50 Clogging g = 32.2 ftls2 Gravitational Constant A = 6.25 fe Area of Grate Ae = (1-CI)A Ae = (1-0.50)(6.25) Ae=3.13ft2 Qo = (Co)(Ae)(2gD)1/2 Qo = (0.67)(3.13)((2)(32.2)(0.5))1/2 00 = 11.88cfs Qw < Qo use Ow = 6.36 cfs 6' I I I I I I I I I I I I I I I I I I I Inlet 1 - 4' Curb Inlet (on Grade) 0100 = 1.25 cfs + 0.58 cfs = 1.83 cfs 0.58 cfs is bypass from Inlet 3 Slope = 5.6% Depth of Water (y) = 0.18' from Flow line Depth of Depression (a) = 0.67' Q = Q100 L T = Required Length of opening Q/LT= 0.7 (a+y )3/2 1.83/LT = 0.7 ( 0.67+0.18 )3/2 LT=3.3' < 4' ok Inlet 2 - 4' Curb Inlet (on Grade) Q100 = 1.86 cfs + 0.17 cfs = 1.88 cfs 0.17 cfs is bypass from Inlet 4 Slope = 5.6% Depth of Water (y) = 0.18' from Flow line Depth of Depression (a) = 0.67' Q = 0100 L T = Required Length of opening Q/LT = 0.7 (a+y )3/2 1.88/LT = 0.7 ( 0.67+0.18 )3/2 LT= 3.4' < 4' ok ,.~ ~ I I I I I I I I I I I I I I I I I I I Inlet 7 - 4' Curb Inlet (on Grade) 0100 = 2.03 cfs Slope = 0.6% Depth of Water (y) = 0.30' from Flow line Depth of Depression (a) = 0.67' Q = 0100 LT= Required Length of opening O/LT= 0.7 (a+y )3/2 2.03/LT= 0.7 (0.67+0.30 )3/2 LT= 3.0' < 4' ok Inlet 3 & 4 - 24" x 24" Catch Basin (on Grade) See attached Haestad Methods, Inc worksheets that utilizes the Hec-22 design for grated inlets on grade ?'? I I Project Description Worksheet Type Solve For INLET 3 Grate Inlet On Gr Efficiency I I Input Data Discharge Slope Gutter Width Gutter Cross Slo( Road Cross Slop Mannings Coeffie Grate Width Grate Length Grate Type Clogging 4.94 cis 0.010000 fUft 4.00 ft 0.063500 fUft 0.020000 fUft 0.013 2.00 ft 2.00 ft J mm (P-1-7/8") 50.0 % I I I Options I Grate Flow Op ;Iude None I Results I Efficiency 0.88 Intercepted Flow 4.36 cfs Bypass Flow 0.58 cfs Spread 9.46 ft Depth 0.36 ft Flow Area 1.2 ft2 Gutter Depressio 2.1 in Total Depression 2.1 in Velocity 3.97 Ws Splash Over Vele 5.66 Ws Frontal Flow Facl1.00 Side Flow Factor 0.01 Grate Flow Ratio 0.88 Active Grate Len! 1.00 ft I I I I I I I I I g:\silver oak.fm2 07/21/06 10:01 :59 AM @ Haestad Methods. Inc. Worksheet Worksheet for Grate Inlet On Grade RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA 5'\ Project Engineer: Paul Klein FlowMaster v6.1 [6140} (203) 755-1666 Page 1 of 1 I I Project Description Worksheet Type Solve For INLET 4 Grate Inlet On Gr Efficiency I I Input Data Discharge Slope Gutter Width Gutter Cross Sial Road Cross Slop Mannings Coeffic Grate Width Grate Length Grate Type Clogging 3.44 cfs 0.010000 ft/fl 4.00 ft 0.063500 ft/fl 0.020000 ft/ft 0.013 2.00 ft 2.00 ft ) mm (P-1-7/8") 50.0 % I I I Options I Grate Flow ap :Iude None Results I Efficiency 0.95 Intercepted Flow 3.27 cfs Bypass Flow 0.17 cfs Spread 7.46 ft Depth 0.32 ft Flow Area 0.9 ft2 Gutter Oepressio 2.1 in Total Depression 2.1 in Velocity 3.81 fUs Splash Over Vele 5.66 ft/s Frontal Flow Facl1.00 Side Flow Factor 0.01 Grate Flow Ratio 0.95 Active Grate Len! 1.00 ft I I I I I I I I I I g:\silver oak.fm2 07/20/06 03:05:12 PM @ Haestad Methods. Inc. Worksheet Worksheet for Grate Inlet On Grade RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA ~ Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 u I I I I I I I I I I I I I I I I I I I Technical Appendix E ~ I I I Project Description . Worksheet Flow Element Method Solve For I Pipe #1 Circular Chann Manning's Fon Channel Depth I Input Data Mannings Coeffie 0.010 Slope 010000 ftIft Diameter 12 in Discharge 2.03 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ' Fraude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 0.46 ft 0.4 fF 1.50 ft 1.00 ft 0.61 ft 46.3 % 0.004087 ftIft 5.70 ftIs 0.51 ft 0.97 ft 1.68 4.98 cfs 4.63 efs 0.001921 ftIft )upercritical I I I I I I I I I g:\silver oak. fm2 07/26/06 09:59:45 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA -5, Project Engineer: Paul Klein FlowMaster vS.1 [6140] (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow-Element Method Solve For I Pipe #2 Circular Chann Manning's Fon Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ft/It Diameter 18 in Discharge 5.04 cfs I Results I Depth Flow Area .Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ' Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 0.63 It 0.7 ft2 2.12 It 1.48 It 0.86 It 42.1 % 0.003430 ft/It 7.14 ft/s 0.79 It 1.42 It 1.82 14.69 cIs 13.65 cfs 0.001362 ft/It >upercritical I I I I I I I I I g:\silver oak.fm2 07/26/06 10:00:18 AM @ Haestad Methods. Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA ~ Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755~1666 Page 1 of 1 I I Project Description Worksheet Flow Element Method Solve For I I Pipe #3 Circular Chann Manning's Forr Channel Depth I Input Data Mannings Coeffie 0.010 Slope 010000 fUlt Diameter 18 in Discharge 7.07 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I I I I I I I I I 0.77 ft 0.9 fe 2.39 ft 1.50 ft 1.03 ft 51.0 % 0.004028 ftIft 7.79 ftIs 0.94 ft 1.71 ft 1.77 14.69 cfs 13.65 cfs 0.002681 ftIft >upercritical I g:\silver oak.fm2 07/26/06 10:00:53 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA ~ Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For I Pipe #4 Circular Chann Manning's Fan Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ruft Diameter 12 in Discharge 2.13 cfs I Results I Depth Flow Area Wetted Peri me Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 0.48 ft 0.4 ft2 1.52 ft 1.00 ft 0.62 ft 47.6 % 0.004168 IUft 5.77 ftls 0.52 ft 0.99 ft 1.67 4.98 cIs 4.63 cfs 0.002115 IUft >upercritical I I I I I I I I I g:\silver oak.fm2 07/26/06 10:01:26 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA (pO Project Engineer: Paul Klein FlowMaster v6.1 (6140] (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For Pipe #5 Circular Chann Manning's Forr Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 flIlt Diameter 12 in Discharge 2.11 cfs I I I Results Depth 0.47 It Flow Area 0.4 It' Wetted Perime 1.52 It Top Width 1.00 It Critical Depth 0.62 It Percent Full 47.4 % Critical Slope 0.004149 flIfl Velocity 5.76 flIs Velocity Head 0.52 It Specific Energ: 0.99 It Fraude Numbe 1.68 Maximum Disc 4.98 cIs Discharge Full 4.63 cfs Slope Full 0.002076 flIlt Flow Type >upercriticaf I I I I I I I I I I I I g:\silver oak.fm2 07/26/06 10:01:56 AM @"Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA fv\ Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For I Pipe #6 Circular Chann Manning's Fan Channel Depth I Input Data Mannings Coeffie 0.010 Slope 010000 Nfl Diameter 18 in Discharge 11.31 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Fraude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I ! I ! I I I I I I I 1.04 fl 1.3 ft2 2.95 fl 1.38 fl 1.28 fl 69.4 % 0.006390 Nfl 8.64 Ns 1.16 fl 2.20 fl 1.56 14.69 efs 13.65 cfs 0.006860 Nfl ;upercritical I g:\silver oak.fm2 07/26/06 10:02:25 AM @Haestad Methods. Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA 1.p7/ Project Engineer: Paul Klein FlowMaster v6.1 [6140J (203) 755~1666 Page 1 of 1 I I Project Description Worksheet Flow Element Method Solve For I I Pipe #7 Circular Chann Manning's Forr Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ftlft Diameter 12 in Discharge 3.44 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ' Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 0.64 ft 0.5 ft2 1.86 ft 0.96 ft 0.79 ft 64.2 % 0.005874 ftlft 6.46 ftls 0.65 ft 1.29 ft 1.53 4.98 cIs 4.63 cIs 0.005517 ftlft )upercritical I I I I I I I I I g:\sitver oak.fm2 07/26/06 10:03:10 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA le'? Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For Pipe #8 Circular Chann Manning's FOri Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ftlft Diameter 12 in Discharge 4.94 cfs I I I Results Depth 0.90 ft Flow Area 0.7 ft' Wetted Perime 2.50 ft Top Width 0.60 ft Critical Depth 0.91 ft Percent Full 90.2 % Critical Slope 0.009911 ftlft Velocity 6.63 ftls Velocity Head 0.68 ft Specific Energ: 1.58 ft Froude Numbe 1.04 Maximum Disc 4.98 cIs Discharge Full 4.63 cIs Slope Full 0.011377 ftlft Flow Type lupercritical I I I I I I I I I I I I g:\silver oak.fm2 07/26/06 10:03:36 AM @ Haestad Methods. Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury. CT 06708 USA r./" Project Engineer: Paul Klein FlowMasterv6.1 [6140] (203) 755~1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For I Pipe #9 Circular Chann Manning's Forr Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ft/fl Diameter 18 in Discharge 8.38 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Stope Velocity Velocity Head Specific Energ' Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 0.85 fl 1.0 ft2 2.56 fl 1.49 fl 1.12 fl 56.6 % 0.004563 ft/fl 8.12 ft/s 1.02 It 1.87 fl 1.72 14.69 cfs 13.65 cis 0.003766 ft/fl )upercritical I I I I I I I I I g:\silver oak.fm2 07/26/06 10:04:04 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA v,-6 Project Engineer: Paul Klein FlowMaster v6.1 (6140) (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For I Pipe #10 Circular Chann Manning's Fan Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ftlft Diameter 24 in Discharge 19.69 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 1.20 ft 2.0 ft2 3.54 It 1.96 ft 1.59 It 59.9 % 0.004724 ftlft 10.03 ftls 1.56 ft 2.76 ft 1.77 31.63 cIs 29.41 cfs 0.004483 ftlft )upercritical I I I I I I I I I g:\silver oak.fm2 07/26/06 10:04:33 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA (jp Project Engineer: Paul Klein FtowMaster v6.1 [6140] (203) 755~1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For Pipe #11 Circular Chann Manning's FaIT Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ft/It Uiameter 12 in Discharge 1.88 cfs I I Results I Deplh Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ: Froude Numbe Maximum Disc Discharge Full Slope Full Flow Type 0.44 It 0.3 ft2 1.46 It 0.99 It 0.58 It 44.3 % 0.003961 ft/ft 5.59 ft/s 0.49 It 0.93 It 1.69 4.98 cIs 4.63 cfs 0.001648 fUft ~upercritical I I I I I I I I I I I I g:\silver oak.fm2 07/26/06 10:05:05 AM @ Haestad Methods. Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA (g ." Project Engineer: Paul Klein FlowMaster v6.1 [6140J (203) 755-1666 Page 1 of 1 I I Project Description Worksheet Flow:Element Method Solve For I I Pipe #12 Circular Chann Manning's Fan Channel Depth I Input Data Mannings Coeffic 0.010 Slope 010000 ft/ft Diameter 12 in Discharge 1.83 cfs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ' Fraude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I 0.44 ft 0.3 ft2 1.44 ft 0.99 ft 0.58 ft 43.7 % 0.003923 ft/ft 5.55 ft/s 0.48 ft 0.92 ft 1.70 4.98 cfs 4.63 cfs 0.001561 ft/ft ;upercritical I I I I I I I I I g:\silver oak. fm2 07/26/06 10:05:31 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA (qfb Project Engineer: Paul Klein FlowMaster v6.1 [6140] (203) 755-1666 Page 1 of 1 I I I Project Description Worksheet Flow Element Method Solve For I Pipe #13 Circular Chann Manning's Fon Channel Deptl1 I Input Data Mannings Coeffic 0.010 Slope 010000 fUft Diameter 24 in Discharge 23.40 efs I Results I Depth Flow Area Wetted Perime Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energ' Fraude Numbe Maximum Disc Discharge Full Slope Full Flow Type I I I I 1.35 ft 2.3 ft2 3.85 ft 1.88 ft 1.72 ft 67.4 % 0.005872 fUft 10.39 fUs 1.68 ft 3.03 ft 1.67 31.63 efs 29.41 cfs 0.006332 fUft iupercritical I I I I I I I I g:\silver oak.fm2 07/26/06 10:05:57 AM @ Haestad Methods, Inc. Worksheet Worksheet for Circular Channel RBF Consulting 37 Brookside Road Waterbury, CT 06708 USA ~ Project Engineer: Paul Klein FlowMaster v6.1 {614o] (203) 755-1666 Page 1 of 1 I I I !I ,I I I I I I I I I I I I I I I I I Technical Appendix F 10 I I I I I I I I I I I II I I I I I I I Water Qualitv Calculation Flow based BMPs shall be designed to mitigate (infiltrate, filter or treat) the maximum flow rate of runoff produced from a rainfall intensity of 0.2 inches of rainfall per hour for each hour of the storm event. C = 0.87 I = 0.2 in/hr A = 6.88 acres Q=C IA Q = (0.87)(0.2)(6.88) Q = 1.2 cfs Use CDS Model PMSU10_25 with Capacity of 1.6 cfs or approved equal. \\ I :1 : I I I I I I I I I I I I I I I I I I Figure 1 '"\1-- II '1 " ~ I , I I I I I I I I I I I I I I I I DE PORTOLO DARTOLO RD. HWY. 79 S. RO~D VICINITY MAP NOT TO SCALE PROJECT SITE ~ ",L.......'.... .. DEBI"'N. CC....T..UCTIC.. I7SS~/.eS,A.BOU..EVAAD.SUlEl0D . . . SIlHDEOO.CAI...FOI'NA.ll2124-1324 CONSULTING e&.8K5000. FA!leMOI4.:iOO1. ____com \~ II I I , I I I I I I I I I I Figure 2 1bt.. I I I I I I I I I I I I I I 1 I I,) I I U'u'so" RCFC a WCD H~DROLOGY l'lIANUAL ~ HYDROLOGIC SOILS GROUP MAP FOR PECHANGA LEGEND - SOILS GROUP BOUNDARY A SOILS GROUP DESIGNATION r'"FEE~OO I 1,6 PLATE C-I.61 ! I I I , I I I I I I I I I I I I I I I I I Figure 3 ,,\c, II I I I I I I I I I I I I I I I I I I -- -- f MH FRAME & COVER a-I o TOP SLAB: / TYP. WT.=3,000-lbs CDS UNIT ASSEMBLY (CUTAWAY VIEW) (LEF'T-HANDF'[') UNIT !=iHOWN) ACCESS RISER: / (HEIGHTS VARY AS REQ'D) /' TYP. WT.=1,300 Ibs/LF / FIBERGLASS /' OIL BAFFLE / FIBERGLASS SEPARATION / CYLINDER & INLET /" / SEPARATOIN / SCREEN STORM DRAIN "- INLET (UPSTREAM) PIPE \ \ STORM DRAIN OUTLET (DOWNSTREAM) PIPE \ SEPARATION CHAMBER: (HEIGHTS VARY AS REQ'D) TYP. WT.=10,OOO-lbs MH BASE (SUMP): ~ (HEIGHTS VARY AS REO'D) TYP. WT.=5,000-lbs .\\\~\ TM ~~I CDS MODEL PMSD20_25 STORMWATER TREATMENT UNIT JOBH N.T.S. SHEET PROJECT NAME CITY LOCATION DATE: DRAWN: APPROV. TEL: (888) 535-7559 1 16360 MONTEREY RD. SUITE 250 MORGAN HILL, CA 95037 FAX: (408) 782-0721 "\'\ I I I I I I I I I I I I I I I I I I I I PLAN VIEW 60";>) ID MH. (72" aD lYP)\ CDS INLET 24";>) MH COVER AND FRAME OIL BAFFLE FLOW --;;;.. - It CDS LSD OUTLET 24";>) MH COVER AND FRAME NOTE: CDS UNIT IS SHIPPED COMPLETE WITH FIBERGlASS INLET/OIL BAFFLE AND SEPARATION SCREEN ASSEMBLY PRE-INSTAllED. CDS MODEL PMSU20_25 STORMWATER TREATMENT UNIT .\. JM ~~~ PROJECT NAME CITY LOCATION JOB# DATE: DRAWN: APPROV. TEL: (888) 535-7559 16360 MONTEREY RD. SUITE 250 MORGAN Hill, CA 95037 1"=24" SHEET 2 FAX: (408) 782-0721 1~ I I I I I I I I I I I I I I I I I I I SECTION B- B 60"\ll ID MH. (72" OD TYP) t CDS MH & i PIPE INLET : t CHAMBER AND I SUMP ACCESS FLOW :::> CORES PROVIDED BY PRECASTER INLET FLANGES FASTENED WITH 316SS EXPANSION ANCHORS SD INLET rSD OUTLET o -----t CDS MH & ~ PIPE INLET ~-~~ t CHAMBER AND '. . SUMP ACCESS . SEPARATION SCREEN ATTACHED WITH 316SS EXPANSION ANCHORS OIL BAFFLE FASTENED TO MH WI 316SS ANCHORS , , -j 1-3" NOTE: CDS UNIT IS SHIPPED COMPLETE WITH FIBERGLASS INLET lOlL BAFFLE AND SEPARATION SCREEN ASSEMBLY PRE-INSTALLED. CDS MODEL PMSU20_25 STORMWATER TREATMENT UNIT A1J\\i TM GRI JOB# DATE: DRAWN: APPROV. TEL: (888) 535-7559 '"=24" SHEET PROJECT NAME CITY LOCATION 3 16360 MONTEREY RD. SUITE 250 MORGAN HILL, CA 95037 FAX: (408) 782-0721 "1<\ II I I I I I I I I I I I I I I I I I I 24"1ll MH COVER AND FRAME. ONE OF TWO GRADE RINGS AND/OR GROUT AS NEEDED \ RIM EL=TBD -;- \ .~. $- FLOW ~ IE IN/OUT=TBD SD INLET BASE EL=TBD NOTES: SECTION A -A PROFILE VIEW tt CDS MH I tt SEPARATION i I CHAMBER )":.l"~ '" '. ,. " . . , 5'-0"(1) FIBERGLASS SEPARATION CYLINDER ..... FLOW CDS 'r--- ~ INLET I L___ ... 25"(1) SS316 ~. 3 " SEPARATION ; SCREEN . , .. . 4 ..,6" .. VARIES, 24" TYP SUMP "-. , .' 9" Trf?,: ,"4.' i ~: . .. .. . .' I. 6'-0"(1) TYP . I ;:.'~ * 4', ,& .~ 1()" TYP ...." . 1 TO BE DETERMINED SD OUTLET 5'-11" TYP DEPTH BELOW OUTLET INVERT 1. OVERSIZED CORES ARE PROVIDED TO ACCOUNT FOR DIFFERENT PIPEWAll THICKNESSES-ENSURE SUFFICIENT EXCAVATION DEPTH TO ATTAIN INDICATED (EXTERNAL) SUMP INVERT ELEVATION. 2. CDS UNIT IS TYPICAllY DELIVERED W/ FIBERGlASS INLET/DIVERSION STRUCTURE, Oil BAFFLE AND SCREEN CYLINDER PRE-INSTAllED. FOR FIELD ASSEMBLY OF INTERNAL COMPONENTS, THE GREEN FLANGE OF THE SCREEN CYLINDER SHAll FACE UP. A!J\\' ™ .~~~ PROJECT NAME CITY LOCATION 16360 MONTEREY RD. SUITE 250 MORGAN Hill, CA 95037 CDS MODEL PMSU20 25 STRMWTR TRTMNT UNIT JOB 1"=24" SHEET DATE: DRAWN: APPROV. TEL: (888) 535-7559 4 FAX: (408) 782-0721 ?>o II I I I I I I I I I I I I I I I I I I HDPF HYDRAUliC SHEAR PI ATE @) 'l. RISER SECTIONS I 't SEPARATION SECTIONS I ~ ~ 5'-0'. ([) TO BE DETERMINED PLACE 2x CONTINUOUS BANDS OF MASTIC ROPE ON VERTICAL AND HORIZONTAL SUR- FACES OF SUMP (MH BASE) T&G JOINT; GROUT EXTERIOR MH JOINT IF NECESSARY. FIBERGLASS SEPARATION CYLINDER 'r-- .1 3 . 25". 5S316 i SEPARATION SCREEN 2.d." S'-11"lYP DEPTH BELOW OUTLET INVERT @/ SUMP ~ I CONSTRUCTION NOTES: 6' -O.f TYP A. ENSURE THAT INTERNALS ARE SECURED TO THE CONCRETE BEFORE STACKING MANHOLE STRUCTURES. B. APPLY BUTYL MASTIC AND/OR GROUT TO SEAL JOINTS OF MANHOLE STRUCTURE. APPLY LOAD TO MASTIC SEAL IN JOINTS OF MH SECTIONS TO COMPRESS SEALANT IF NECESSARY. UNIT MUST BE WATER TIGHT, HOLDING WATER UP TO FLOWLINE INVERT (MINIMUM). C. BEFORE PLACING MORE PRECAST COMPONENTS OR BACK-FILLING, ENSURE FIBERGLASS INLET AND PIPE INVERT ELEVATIONS MATCH. D. IF INTERNALS ARE NOT PRE-INSTALLED. THE FIBERGLASS INLET. OIL BAFFLE & SEPARATION SCREEN NEEDS TO BE FASTENED TO THE CONCRETE USING STEEL CLIPS & 3/8" X 3 3/4" SS EXPANSION BOLTS @ 12' O.C. E. SEAL FIBERGLASS TO CONCRETE USING CONCRETE REPAIR OR EQUIVALENT. F. GROUT PIPE CONNECTIONS TO SEAL JOINTS. G. USE GRADE RINGS, BLOCKS AND lOR GROUT TO ENSURE PROPER GRADE (RIM) ELEVATION. SEAL AS NECESSARY. GENERAL NOTES: 1. CDS UNIT TYPICALLY DELIVERED WITH FIBERGLASS INLET/OIL BAFFLE & SEPARATION SCREEN ASSEMBLY PRE-INSTALLED. OIL BAFFLE MAY HAVE TO BE REMOVED FOR DELIVERY AND RE-INSTALLED BY THE CONTRACTOR. 2. HOPE HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYliNDER. REMOVE AND REPLACE AS NECESSARY DURING CLEANING. 3. THE INTERNAL COMPONENTS ARE SHOWN IN THE RIGHT-HAND CONFIGURATION. THE GREEN FLANGE ON THE SCREEN SHOULD BE INSTALLED FACE UP. 4. INSTALL CDS UNIT PER CDS INSTALLATION SPECIFICATIONS. 5. CONTRACTOR TO BE EQUIPPED TO HANDLE THE HEAVIEST PICK SECTION (APPROX. 10,000 LBS, TYPICAL). 6. OVERSIZED CORES ARE PROVIDED TO ACCOUNT FOR DIFFERENT PIPE WALL THICKNESSES. 7. CONTRACTOR TO ENSURE SUFFICIENT EXCAVATION DEPTH TO ATTAIN EXTERNAL SUMP INVERT ELEVATION. (g'" PMSU20 25 JOB N.T.S. INST ALLA TION SHEET .fjR~ DATE: INSTRUCTIONS & DRAWN: 5 MISCELLANEOUS NOTES APPROV. 16360 MONTEREY RD. SUITE 250 MORGAN HILL. CA 95037 TEL: (888) 535-7559 FAX: (408) 782-0721 ~\ I I I I I I I I I I I I I I I I I I I STORM WATER TREATMENT UNIT Performance & Design Specifications The Contractor shall install a precast storm water treatment unit (SWTU) in accordance with the notes and details shown on the Drawings and in conformance with these Specifications. The precast storm water treatment units shall be a continuous deflective separator (CDS@) unit, model PMSU20_25 unit as manufactured by CDS Technologies or proven equivalent. Acceptable SWTU unit(s) shall be non-mechanical and gravity driven, requiring no external power requirements. The SWTU unit shall be capable of capturing and permanently retaining settleable, floatable, and neutrally buoyant particles and contaminants in accordance with the sizing criteria of these specifications. The SWTU unit shall be equipped with a stainless steel expanded metal screen having a screen opening of 4700 microns (4.7 mm or 0.185 inches). The separation screen shall be self-cleaning and non- blocking for all flows diverted to it, even when flows within the storm drain pipeline exceed the SWTU unit's design treatment flow capacity. A bypass structure shall be provided to allow conveyance of design flows in excess of the SWTU treatment capacity. Alternative SWTUs shall only be considered equivalent when all conditions of the Storm Water Treatment BMP Equivalency Approval Process portion of these specifications listed below have been satisfied and subject to the complete submittal, review and approved process. Storm Water Treatment Unit Desiqn Solids RemovalPerformance Requirements: The SWTU shall remove oil and sediment from storm water during frequent wet weather events. The SWTU shall treat a minimum of 75 to 90 percent of the annual runoff volume and be capable of removing 80 percent of the total suspended sediment load (TSS) and greater than 90 percent of the floatable free oil. The SWTU must be capable of trapping silt and clay size particles in addition to large particles. The SWTU units shall capture 100% of the f10atables and 100% of all particles equal to or greater than 4.7 millimeter (mm) for all flow conditions up to unit's design treatment flow capacity, regardless of the particle's specific gravity. The SWTU unit shall capture 100% ora II neutrally buoyant material greater than 4.7 mm for all flow conditions up to its design treatment flow capacity. There shall be no flow conditions up to the design treatment flow capacity of the SWTU unit in which a flow path through the SWTU unit can be identified that allows the passage of a 4.7-mm or larger neutrally buoyant object. The SWTU unit shall permanently retain all captured material for all flow conditions of the storm drains to include flood conditions. The SWTU unit shall not allow materials that have been captured within the unit to be flushed tl1rough or out of the unit during any flow condition to include flood and/or tidal influences. ~ I I I I I I I I I I I I I I I I I I I SWTU Performance & Design Specifications Minimum Treatment Flow Capacity: The Model PMSU20_25 storm water treatment unit shall have a minimum treatment flow capacity of 1.6-cfs (45.3-liters/sec). This treatment capacity shall be achieved without any flow bypassing the overflow weir of the treatment unit. The hydraulic loading rate (gpm/fl") of the unit shall not exceed recommended loadings when calculated using the peak runoff rate of the water quality storm event. Storm Water Treatment Unit Structure: The structure shall be designed to withstand H20 traffic and earth loadings to be experienced during the life of the treatment unit. Minimum Sump Design: The Model PMSU20_25 shall be furnished with a sump that has a minimum volume of 1.1 cubic yards (0.8 cubic meters) for storage of sediment, organic solids, and other settleable trash and debris. This sump zone shall be separated from the swirl chamber by a constricting access-way for both physical and hydraulic shear separation. The storm water filtration unit shall be furnished with a sump to store settleable materials and pollutants. The sump shall be below the invert of the separation swirl concentrating or vortexing zone or chamber. Units without sumps or units in which settleable material is deposited within the separation or vortexing chamber shall not be allowed. The unit shall have the volumetric sump capacities list above which is materially separated from the separation or vortex chamber to ensure that settled material does not reside in the treatment flow path and thus subject to re-suspension. Oil and Grease Removal Performance: The SWTU unit is equipped with a conventional oil baffle to capture and retain oil and grease and Total Petroleum Hydrocarbons (TPH) pollutants as they are transported through the storm drain system during dry weather (gross spills) and wet weather flows. The conventional oil baffle within a unit assures satisfactory oil and grease removal from typical urban storm water runoff. Minimum Oil Storage Capacity: The Model PMSU20_25 shall be furnished with a baffle that provides a minimum gross oil storage volume of 143 gallons (544-liters). The SWTUs shall be equipped with a conventional oil baffle to capture and retain oil and grease and Total Petroleum Hydrocarbons (TPH) pollutants as they are transported through the storm drain system during dry weather (gross spills) and wet weather flows. The SWTU units shall also be capable of receiving and retaining the addition of Oil Sorbents within their separation chambers. The addition of the oil sorbents can ensure the permanent removal of 80% to 90% of the free oil and grease from the storm water runoff. The addition of sorbents enables increased oil and grease capture efficiencies beyond that obtainable by conventional oil baffle systems. Sorbent material shall be added in accordance with the "USE OF OIL SORBENTS" specifications provided by CDS Technologies. 2 ~ SUO!le:J!Jpads u6!saa '!I a:JuewJojJad nJMS aleO!!!tJao aouewJo,JJad sJampe!nuel/ll 'aAoqe pa!Jpads Alpede:J MOl! lUeWleeJl wnw!u!w eLll 01 dn eseeJ:JU! MOl! eLll se A:Juepwa leAoweJ !O uOllenualle ou Lll!M l!un nJMS eLll Aq pesse:JoJd MOl! lUeWleeJl eJ!lua eLlllnOLl6noJLll peAe!Ll:Je eq lIeLls A:Juepwe leAOWeJ pelS!l eLll leLll elelS Alle:JOA!nbeun pue Apeep lIeLls sepuepwa leAOWeJ JO uO!le:J!J!j.le:) e:JueWJojJed S,JaJnpeJnueVIJ S!Ll1 'SUO!le:J!Jpeds eseLll U! pelS!1 sepuepwe leAOWeJ pe!Jpeds eLll eAe!Ll:Je lIeLls I!Un nJMS eLllleLll 6u!AJ!j.le:J "ele:J!J1j.la:) e:JueWJojJed SJeJnpeJnueVIJ" e l!wqns lIeLls JeJnpeJnuew eLll 'AlleUO!l!PP'V 'suo!lepuewwo:JeJ pee:Jxe IOU seop U! Lll!M S! lueAa WJ01S Al!lenb JeleM eLll !O JJounJ )jeed eLllle eleJ 6u!peOI :J!lneJpALl eLllleLll pue ww L'v ueLll JaleeJ6 pefqo ue JO e6essed aLll MOlle PlnoM leLllls!xe sLlled MOil elqel!eAe ou leLll WJ!Juo:J 01 JeaU!6U3 eLll JOJ I!elep luapwns Jos6U!MeJp dOllS pue sl!elap l!wqns lIeLls l!un nJMS aLll JO JaJnpeJnuew aLl1 AlUeJJeM 'pau6!sap Alle:J!Jpads seM I! Ll:J!LlM JO! uO!le:J!ldde Jeln:J!j.led aLll U! AIUO pasn pue pallelSu! aq lIeLls JaJnpeJnuew aLll Aq pa!lddns lUawd!nb3 'uollellelSu! 6u!MOIIOJ JeaA auo pO!Jad e JOJ d!LlSuew)jJoM pue Sle!Jalew U! spaJap WOJJ aaJ! l!un UO!leJ11!J aLll aalUeJen6 lIeLls I!Un nJMS aLll JO JaJnl:JeJnuew aLl1 ssaOOJd leAOJddv ,(oualeA!nb3 dll\l8 JuawJeaJJ. JaJeM WJoJS :6u!MOIIOJ leLll sapnpu! leLll j.lodatjluaWleaJ1 dVIJ8 padwels e ap!AoJd lIeLls pJo:Jatj JO Jaau!6U3 I!A!:) pafoJd aLll 'SdVIJ8 10JluO:J luaWleaJl uOIl:JnJ1SUm -lsod paAoJdde AISnO!AaJd JO sapUaleA!nba 6u!Japlsuo:J uaLlM .sUO!le:J!Jpads a:JuewJojJad pue pnpoJd esaLll I!Un lUeWleeJl JeleM WJ01S 01 SWJoJuo:J leLll welsAs dVIJ8 10Jluo:J lueWleeJl UO!pnJ1Suo:J-1Sod e u6!sep 01 JaeU!6U3 I!A!:) pefOJd eLll JO Al!l!q!suodseJ eLll S! II a:JueAaAUOO pue A:Jua!O!U3 JuawJeaJ1 JO! I!Un lUaWleaJ1 JaleM WJOlS bU!Z!S :6u!MOII0! eLlI JO JeLlI!a LlI!M a:JuewJoJuo:J U! pez!s uaaq sell nJMS pesodoJd eLllleLll elels AIIP!ldxa leLll SUO!lelmle:J 6u!z!s nJMS :J!Jpeds pefoJd pedwels I!wqns :A:Jual:J!JJ.3 JuawJea.ll 'I!Un aLlI!O eeJe lU!JdIOO! lelol eLlllou 'JeqweLl:J UO!IBJedes Xej.lOA eLll U!LlI!M euoz JOIBJBdes eLlI JO eeJe ueld (leluoz!JoLl) aLll S! S!Ll1 '(s)LldeJ6eJed 6u!MOIIOJ eLll U! palS!1 AJI:Jede:) Nlold JuawJea.ll wnwlulW u6!sap aLlI JO )jead aLlllB BaJe JaqweLl:J JOleJedas JO 100J aJBnbs/suolle6 -vZ paa:Jxa IOU saop aleJ 6u!peOI :J!lneJpALl IUaWleaJI S,I!un aA!IBUJalIB aLl1 . ~ AJI:Jede:) Nlold JuawJea.ll wnwlulW u6!sap aLlI JO )jead aLllle lU!JdIOO! JaqwBLl:J JOleJedas JO 100! aJenbs/suolle6-z paa:Jxa IOU saop aleJ 6u!peOI :J!lneJpALl IUaWleaJl s.l!un a41 uaLlM lualBA!nba paJep!suo:J aq AIUO lIeLls S)juel JO SIIneA U! 6u!lllaS ap!j.led uo paseq Alew!Jd S! ssa:JoJd lUaWleaJI aSOLlM SJOleJedas P!lOS aA!leUJall'V 'Z f: ~% I I I I I I I I I I I I I I I I I I I SWTU Performance & Design Specifications listed in the SWTU performance specifications. This is the (horizontal) internal area of the settling tank or vault, not the total footprint area of the unit. This portion of the submittal shall also include an explicit listing of design criteria and/or methodology used to develop the minimum flow-based treatment capacities. Hydraulic Analysis: Submit stamped project specific hydraulic calculations stamped by professional engineer registered with the state where the project is located. This Hydraulic Analysis shall provide the following. 1. The Hydraulic Gradeline (HGL) through the diversion structure and proposed storm water treatment system for the water quality storm event shall be calculated and plotted on a detail of the storm water treatment system. This hydraulic analysis shall explicitly show that the water quality volume or water quality runoff flow rate calculated in accordance with the best practices of hydraulic analysis performed by civil engineers. 2. The HGL for the design flood event (e.g., Q10, Q15, Q25, etc.) shall also be calculated and plotted through the Treatment Control BMP. Reference: Section 5.5 BMP Design Criteria for Flow and Volume of the California Stormwater Best Management Practice Handbook New Development and Redevelopment published by California Stormwater Quality Association (CASQA) Stormwater Best Management P~actice Handbook for New Development and Redevelopment. 4 ~~