Loading...
HomeMy WebLinkAboutTract Map 9833 Lot 8 Hydrology & Hydraulics . , . HYDROLOGY & HYDRAULICS STUDY FOR LOT 8 OF TRACT MAP 9833 PREPARED BY EXCEL ENGINEERING 346 State Place Escondido, CA 92029 (760) 745-8118 SUBMITTED ON November 30, 1999 . \ i. . HYDROLOGY & HYDRAULICS STUDY FOR LOT 8 OF TRACT MAP 9833 OBJECTIVE The purpose of this study is to provide an overview of the drainage characteristics of the project and to determine the amount of 10 and 100 year storm runoff that affects the site and show where this runoff will be collected. LOCATION The site is within the limits of the City ofTemecula, California and is located along Calle de Valardo. See figure below. s/rE~. .~ '\'\ ~~ ~~ ~.. .~.~,~ \ .'~ -" "'/ , ,,',. . .. "\0 .,-~ <, ~, \~- ;l1j.'Ij~""- -~'^-~ ~) \ ',__::~~~r I V icinitv Map PROCEDURE Looking at the Hydrology Map of Tract NO. 9833 prepared by Shaller & Lohr Associates, Inc. dated December, 1997, there is no Q shown for this part of the Map. However, the Map shows that there is a natural charmel that starts from lot 9 and goes through lot 8. It also shows in the Map that the only contributing basin to this charmel is a portion onot 9. Therefore, we can use the whole area of Lot 9 (4.55 acres) in calculating the QIO & Q100. Q 1 00 runoff will also be calculated for the new pads. These Qs will be used to design the brow ditch and riprap. Procedures incorporated into this study are per the Riverside County Flood Control & Water Conservation District Hydrology Manual. v i. . Rational Method: Q'=CIA where C = Based on runoff coefficient I = Rainfall intensity A = Areas in acres. Qill!l BASIN L (feet) H (feet) Tc I C A (acres) Q(10) (cfs) lot 9 580.00 55.00 8.10 2.67 0.81 4.550 9.84 pad lot8 170.00 5.00 6.40 3.12 0.81 0.358 0.90 Qf1001 BASIN L (feet) H (feet) Tc I C A (acres) Q(100) (cis) lot 9 580.00 55.00 8.10 3.94 0.81 4.550 14.52 pad lot8 170.00 5.00 6.40 4.61 0.81 0.358 1.34 CALCULATIONS A) Determine the flood elevations using Eagle Point Software. We will be using the Water Surface Module to:design the culverts and locate the flood plain. See attached printout results. See also the location of the channel sections from the grading plan. From the printouts, it shows that the pad is above the flood plain. Therefore, the proposed improvements along the channel and pad elevations are fine. B) Determine the capacity of the typical Brow ditch using Manning's equation. 1.49 R1S" Q(cap)=-A ' , n j JtJ"MIN I ~~,,~<:]y ',)>' Where: A=cross section area R=hydraulic radius S=slope A = 1.25 sf R= 3.2 It 5= 1.00 % assuming minimum slope n= 0.013 for PVC Therefore Q(cap)= 31.11 cIs ?J . . Maximum Q(lOO) that a brow ditch will handle is for 1.34 cfs. Therefore proposed brow ditch can handle the runoffs. C) Size the ripraps. From the equation Q~A V, we can get V=Q/A Use Q=1.34 cfs (Area 3) Therefore V=1.34/1.25 = 1.072 fps From the "Green Book" Standard Specifications for Public Works Construction" 1988 edition, we get the size of the riprap. T=0.6' Filter B1anket=3/16" 0.6' thick ~ . . User Name: msilos Date: 10-12-99 Project: lot 8 Q100 Time: 16: 34: 03 Water Surface Profiling Detailed Report ------------------------------------------------------------------------------------ Section 1 CHANNEL Station 0+01.00 Discharge 14.52 cfs ------------------------------------------------------------------------------------ Q AREA V2L CONVEYANCE n RCH LGTH WET PER.l'1 cfs ft^2 ft/s ft ft Lft Ob 14.52 5.62 2.58 98.85 0.03000 1.00 27.14 Channel 0,00 0.00 0.00 0.00 0.03000 1. 00 0.00 Rgt Ob 0.00 0.00 0.00 0.00 0.03000 1. 00 0.00 ------------------------------------------------------------------------------------ vlater Elevation zas 1190.43 ft Critical Water zc 1190.43 ft cepth Dep 0.33 ft Normal water zn 1190.37 ft Energy Grade Line-EGLas 1190.54 ft Flow CRITICAL FLOW Energy Loss ht 0.00 ft METHOD Average Conveyance Min of Elev Shot zmin 1190.11 ft velocity Head Hv 0.10 ftls Channel Slope Sch 6.29 % velocity Coeff alpha 1. 00 Energy Loss Fr hf 0.02 ft Ofts Lft ~oJater Line x1w -105.74 ft Energy Loss Eddy' ho 0.00 ft Offs Rgt ria ter Line xrw -78.63 ft Wetted rlidth Wwet 27.11 ft Jump Loss hjump N I A [J.ve Reach Lgth Lave 27.11 ft Jump Elevation zjump N / A Station of Jump Ljump N / A Cross Section Groundshots <ft> ------------------------------------------------------------------------------------ 1 -150.0 1203.0 2 -150.0 1203.0 3 -148.7 1202.5 4 -139.9 1199.7 5 -135.8 1198.4 6 -129.9 1196.5 7 -123.1 1194.3 8 -122.1 1194.1 9 -119.7 1193.7 10 -110.6 1191.1 11 -110.0 1191.0 12 -109.0 1190.8 13 -103.1 1190.1 14 -79.5 1190.3 15 -38.7 1195.5 16 -24.7 1197.0 17 -21.9 1197.3 18 -14.5 1196.6 19 -9.2 1196.1 20 -5.9 1195.8 21 -3.5 1195.5 22 -1.9 1195.3 23 -0.7 1195.2 24 0.0 1195.1 25 0.8 1195.0 26 1.2 1194.9 27 1.5 1194.8 28 1.7 1194.8 29 9.5 1195.1 30 34.0 1198.2 31 59.2 1200.0 32 61.1 1200.4 33 121.4 1209.8 34 133.8 1212.1 35 150.0 1214.8 ------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------ Section 2 CH.Zl.NNEL Station 0+02.00 Discharge 14.52 cfs ------------------------------------------------------------------------------------ Q AREA VEL CONVEYANCE n RCH LGTH WET PERM cfs ft^2 ft/s ft ft Lft Ob 14.52 5.48 2.65 98.12 0.03000 50.00 25.77 Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00 Rgt Ob 0.00 0.00 0.00 0.00 0.03000 50.00 0.00 ------------------------------------------------------------------------------------ t'later Elevation zas 1193.61 ft Critical Water zc 1193.61 ft Depth Dep 0.36 ft Normal water zn 1193.55 ft Energy Grade Line-EGLas 1193.72 ft Flow CRITICAL FLOW Energy Loss ht 3.18 ft METHOD Average conveyance Hin of Elev Shot zmin 1193.25 ft Velocity Head Hv 0.11 ft/s Channel Slope Sch 6.29 % Velocity Coeff alpha 1.00 Energy Loss Fr hf 1.09 ft Offs Lft Water Line x1w -55.49 ft Energy Loss Eddy ho 0.06 ft Offs Rgt Water Line xrw -29.76 ft Wetted width Wwet 25.73 ft Jump Loss hjump N I A Ave Reach Lgth Lave 25.73 ft Jump Elevation zjump N I A Station of Jump Ljump N I A Cross Section Groundshots <ft> ------------------------------------------------------------------------------------ 1 -150.0 1205.0 2 -130.8 1205.0 3 -129.8 1205.0 4 -125.7 1203.2 5 -122.8 1202.1 6 -120.8 1201. 4 7 -120.0 1201. 2 8 -118.5 1201.1 9 -117.0 1201. 0 10 -113.0 1200.3 11 -105.9 1199.0 12 -105.5 1198.9 13 -104.7 1198.8 14 -98.8 1198.4 15 -89.4 1197.8 16 -80.7 1197.3 17 -74.7 1196.9 18 -70.9 1196.5 19 -67.9 1196.1 20 -66.1 1195.8 21 -63.8 1195.3 22 -53.7 1193.3 23 -30.6 1193.5 24 -19.9 1194.7 25 -10.9 1196.8 26 -8.7 1197.3 27 -8.3 1197.3 28 -5.5 1197.0 29 -3.4 1196.7 30 -1.8 1196.4 31 -0.7 1196.2 32 0.0 1196.1 33 0.7 1195.9 34 1.0 1195.8 35 21.2 1197.0 36 47.0 1200.3 37 60.8 1201.4 38 85.8 1204.8 39 93.7 1206.2 40 135.9 1212.9 41 141. 4 1214.0 42 145.8 1214.8 '5 . . ------------------------------------------------------------------------------------ Section 3 CHANNEL Station 0+03.00 Discharge 14.52 cfs ------------------------------------------------------------------------------------ Q AREA VEL CONVEYANCE n RCH LGTH WET PERM cfs ft^2 ft/s ft ft Lft Ob 5.19 1. 46 3.56 40.91 0.03000 50.00 4.77 Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00 Rgt Ob 9.33 3.30 2.83 73.55 0.03000 50.00 10.93 ------------------------------------------------------------------------------------ vlater Elevation zas 1197.59 ft Critical Water zc 1197.59 ft Depth Dep 0.65 ft Normal water zn 1197.43 ft Energy Grade Line-EGLas 1197.74 ft Flow CRITICAL FLOW Energy Loss ht 4.02 ft METHOD Average Conveyance Min of Elev Shot zmin 1196.94 ft velocity Head Hv 0.15 ft/s Channel Slope Sch 7.37 % velocity Coeff alpha 1. 04 Energy Loss Fr hf 0.80 ft Offs Lft Water Line x1w -4.69 ft Energy Loss Eddy ho 0.07 ft Offs Rgt Water Line xrw 10.91 ft vletted Width Wwet 15.61 ft Jump Loss hjump N I A Ave Reach Lgth Lave 15.61 ft Jump Elevation zjump N I A Station of Jump Ljump N I A Cross Section Groundshots <ft> ------------------------------------------------------------------------------------ 1 -150.0 1205.0 2 -142.1 1205.0 3 -138.9 1205.0 4 -138.6 1205.0 5 -134.6 1205.0 6 -130.1 1205.0 7 -123.5 1205.0 8 -119.6 1205.0 9 -115.9 1205.0 10 -112.4 1205.0 11 -111.4 1205.0 12 -111.1 1205.0 13 -107.2 1205.0 14 -103.7 1205.0 15 -100.3 1205.0 16 -95.7 1205.0 17 -89.1 1205.0 18 -84.5 1205.0 19 -67.5 1205.0 20 -63.2 1205.0 21 -59.5 1205.0 22 -52.0 1205.0 23 -47.4 1205.0 24 -46.8 1205.0 25 -38.2 1200.9 26 -32.8 1198.3 27 -11. 7 1198.3 28 -2.2 1197.3 29 -1.4 1197.1 30 -0.9 1196.9 31 0.0 1197.0 32 13.2 1197.7 33 24.3 1198.0 34 37.3 1200.0 35 75.7 1204.8 36 77.2 1205.0 37 77.7 1205.0 38 78.7 1205.2 39 79.8 1205.4 40 127.9 1213.9 41 132.2 1214.6 ------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------ Section 4 CHANNEL Station 0+04.00 Discharge 14.52 cfs ------------------------------------------------------------------------------------ Q ARE.n, VEL CONVEYANCE n RCH LGTH WET PERM cfs ft^2 ft/s ft ft Lft Ob 13.48 4.16 3.24 108.36 0.03000 50.00 11. 25 Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00 Rgt Ob 1. 04 0.63 1. 65 8.36 0.03000 50.00 4.57 --.---------------------------------------------------------------------------------- Water Elevation "as 1199.62 ft Critical Water zc 1199.62 ft Depth Dep 0.61 ft Normal water zn 1199.52 ft Energy Grade Line-EGLas 1199.78 ft Flow CRITICAL FLOW Energy Loss ht 2.04 ft METHOD Average Conveyance Min of Elev Shot zmin 1199.02 ft velocity Head Hv 0.15 ft/s Channel Slope Seh 4.16 % Velocity Coeff alpha 1. 08 Energy Loss Fr hf 0.77 ft Offs Lft Water Line xlw -11.21 ft Energy Loss Eddy ho 0.09 ft Offs Rgt Water Line xrw 4.57 ft Wetted Width WHet 15.77 ft Jump Loss hjump N I A lwe Reach Lgth Lave 15.77 ft Jump Elevation zjump N / A Station of Jump Ljump N I A Cross section Groundshots <ft> ------------------------------------------------------------------------------------ 1 -150.0 1208.4 2 -138.7 1208.6 3 -138.3 1208.9 4 -138.1 1209.0 5 -129.7 1209.4 6 -120.2 1209.7 7 -113.3 1211. 7 8 -109.1 1212.0 9 -106.2 12:2.6 10 -96.8 1213.2 11 -96.3 1213 .1 12 -92.5 1211.7 13 -91.5 1211.5 14 -84.4 1208.7 15 -84.2 1208.6 16 -83.6 1208.3 17 -83.3 1208.3 18 -83.0 1208.3 19 -65.7 1207.5 20 -63.9 1206.7 21 -60.9 1205.2 22 -60.5 1205.0 23 -48.9 1205.0 24 -45.7 1205.0 25 -44.1 1204.2 26 -42.1 1203.2 27 -41. 9 1203.1 28 -41. 5 1203.0 29 -12.4 1199.7 30 -5.5 1199.0 31 0.0 1199.3 32 17.2 1200.4 33 19.8 1200.4 34 23.9 1201.0 35 38.8 1203.2 36 45.5 1204.3 37 64.1 1207.0 38 97.2 1212.5 39 112.7 1215.1 ------------------------------------------------------------------------------------ tv . . ------------------------------------------------------------------------------------ Section 5 CHANNEL Station 0+05.00 Discharge 14.52 cfs ------------------------------------------------------------------------------------ Q AREA VEL CONVEYANCE n RCH LGTH WET PERM cfs ft^2 ft/s it it Lft Ob 0.96 0.73 1. 31 7.62 0.03000 50.00 7.61 Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00 Rgt Db 13.56 4.92 2.76 108.06 0.03000 50.00 17.29 ------------------------------------------------------------------------------------ .Wate= Elevation zas 1205.34 it Critical Water zc 1205.34 it Depth Dep 0.48 it Normal water zn 1205.19 ft Energy Grade Line-EGLas 1205.45 ft Flow CRITICAL FLOW Energy Loss ht 5.67 it METHOD Average Conveyance Min of Elev Shot zmin 1204.85 it Velocity Head Hv 0.11 ft/s Channel Slope Sch 11.67 % Velocity Coeft alpha 1. 09 i Energy Loss Fr hf 0.79 ft Offs Lft Water Line x1w -7.58 it 'Energy Loss Eddy ho 0.09 ft Offs Rgt Water Line xrw 17 .26 it Wetted Width tolwet 24.85 it Jump Loss hjump N / A ,Ave Reach Lgth Lave 24.85 ft Jump Elevation zjump N / A Station of Jump Ljump N / A Cross Section Groundshots <ft> ------------------------------------------------------------------------------------ 1 -52.3 1212.8 2 -40.1 1212.7 3 -38.9 1212.7 4 -38.6 1213 .2 5 -37.7 1213.2 6 -37.0 1213.1 7 -27.6 1213.2 8 -25.5 1213.5 9 -24.1 1212.6 10 -19.8 1211.1 11 -7.3 1205.2 12 -1.2 1205.3 13 0.0 1205.2 14 10.9 1204.9 15 11. 4 1204.9 16 12.1 1204.9 17 33.5 1206.7 18 51.1 1207.8 19 127.2 1213.6 20 141. 4 1214.6 ------------------------------------------------------------------------------------ '\ . INSTRUCTIONS FOR RATIONAL ~lliTHOO HYOROLOGY CALCULATIONS (Based on the Rational Formula, Q = CIA) 1. on map of drainage area, draw drainage system and block off subareas tributary to it. 2. Determine the initial time of concentration, liT", using Plate 0-3. ~ne initial area should be less th~~ 10 acres, have a flow path of less than 1,000 feet, and be the most upstream subarea. 3. Using the time of concentration, determine "Ill, intensity of rain- fall in inches per hour, from the appropriate intensity-duration curve for the particular area under study. For areas where stan- dard curves are available, use Plates 0-4.1 and 0-4.2' to reproduce the standard curve. For areas where curves have not been published by the oistrict, use Plates 0-4.3 through 0-4.7 to develop a suit- able intensity-duration curve. 4. Determine "ell I the coefficient of runoff, using the runoff coeffi- cient curve which 'corresponds as closely as possible with the soil, cover type and development of the drainage area. Standard curves (Plates 0-5.1 through 0-5.4) have been developed by the Oistrict for the common case of urban landscaping type cover. Where these curves are not applicable, curves may be developed using Plates 0-5.5 through 0-5.8. 5. Determine "A", the area of the subarea in acres. 6. Compute Q = CIA for the subarea. 7. Measure the length of flow to the point of inflow of the next sub- area downstream. Determine the velocity of flow in this reach for the peak Q in the type of conveyance being considered (natural channel, street, pipe, or open channel), using the tabling aids on Plates 0--6 through 0-9. using the reach length and velocity determined above, compute the travel time, and add this time to the time of concentration for the previous subarea to determine a new time of concentration. 8. 'Calculate Q for the new subarea, using steps 3 through 6 and the 'new time of concentration. Detennine "QJ?'" the peak Q for all sub- areas tributary to the system to this po~nt by adding Q for the 'new subarea to the summation of Q for all upstream subareas. Oeter- "mine the time of concentration for the next subarea downstream using step 7. Continue tabling downstream in similar fashion until a junction with a lateral drain is reached. RCFC 8 WCD HYDROLOGY rvJANUAL RATIONAL METHOD INSTRUCTIONS eo PLATE 0-1 (I of 2) L 1000 900 :800 700 -600 '500 - CI) .. - 400 c: o .. ~ o 350 "0 - 300 c: - o 250 ':J ~ - c: ., E Q, ., > ., '0 "0 '0 CI) Q, .. .s= - co c: CI) ..J 150 100 Te' 100 90 80 70 60 50 o 35 ~ o - 30 LIMITATIONS: I. Maximum iength = 1000' 2. Maximum area = 10 Acres t..OT0 ~ :I ~ ., ~J:L u '" '" ::l co .Q c: > c: ~ 0 o ~ '; N ,g .!: ~ o _ ~ o c: ., ., E '" .. g.~-g (t) o;~., ~~ K Commerciol 7 '2-\ c: co ., ~ A' ~ '.0 / o ~ co - o .!: ~ :r: o c: o '0 50; .. KEY - , L -tj-Tc-K-Tc o co " 50a 400 300 200 ,,0.. r1fJ/'7 .r;..j'/ -' .' " Undeveloped Good Cover " / Undeveloped Foir/COYer / 20 /undeveloped 19/ Poor CoVIf I ~ Single Fomily : (1/'\ Acre) 5 14 13 12 II .. ~ ::> c: 25 100 80 ~8 ~ 20 " '" 10,/ e' /6 // / /' E .!: ~ - o II) E i= 9 8 2 1.0 .8 .6 .~ ,3 ~ .2/ .. " c: ., ~ ., - - Cl EXAMPLE: (Il L =550', H =5.0', K = Single Fomilyll/4 Ac.l 35 Development, Tc = 12.6 min. (2) L=550', H =5,0', K= Commerciol 40 Development, Tc = 9.7 min. RCFC a WCD HYDROLOGY ~'1jANUAL 7 6 5 4 Reference: Bibliography item No. 35. Te 5 6 ~ .. ~ " <{ ~ c ., E .8_ Q, .Q ., > co Cl 9 10 II 12 -'=' E c LL ., 0' .!: i4 15 16 17 18 19 20 ~ c - '" .. - ::l .~ E c: ~ 25 c: .!? '0 ~ C .. " c: o " - o 30 .. E i= TIME OF CONCENTRATION FOR INITIAL SUBAREA PLATE 0-3 '\ 10::: :D o ::c 0::: W CL CJ) w ::c u z I >- I- CJ) Z W I- Z ..J ..J .~ Z <( 0::: > ~ ~ ~ ~ > ~ > u z ~ " a ~ a ~ = D~ D~ - > Cl,o --4' ,....."'Oe ~~~ .~N NNNNl'\.I ..I>N....o- .....,..,C)II'I .....---- N'",........ lf1NOCl'" .... . .........1"')1'"1 M,......I"'lt"l .z:..c.........., .... . NNNNN o_l\jM... ----- ..,0 CI;l CDlIJ C1'CI;l.c\I'J'" .... . I,,,'.NN'" "'....CI"N>D ""co....,..'" .... . ----- 0_1\11'"1.... ....---- CI;lolfl....O" ..,t"l_IOCC .... . ~"'M"'N "'..",....'" MN_OCl' .... . NNNN- o_f\l"'''' ----- o>l'lNOO _O'C,...cI .... . I"lNNNN ,o,..C1-'" 0-.0....,..'" .... . ----- RCFC 6 WeD NJANUAL a a ~ " x o~ -~ >> ~" ax ,,- ex "'1'"ll'"lI'"lN a D~ -~ > ..........00" >D"'''''O. .... . NNNN_ ~ " x > u x ~ " a ~ a ~ _...CD""'" ",_oc>eP" NNNN- 4'0011\....1"- \1'1.........,., "'I'"l"""'''' O'cc,.."'''' .... . ..........--- ...CIlNe,., t"lNN-- . . ----- ,..Na:l.O !J':II\......... . . ----- o.o..,OC _OoOCl" .., . ,",,0""_= OOCl"CCl.... ~N 11:...0...... OClOo:P'O' a " ~ z ~ ~ " x o~ -~ ~ ~ ~" ax ,,- ex ""NO"'" ...,..,.."'''' ., . .".oI"-CCCl" o_",M... 1I'l",,..CI;lO' 0"'....0= oN....cCIJ 0....0\1'10 \/'10....0.... _____ _____ NNNNN ,.,MMMM ......\f'I\I'J.c .c,......... a ,,~ D.~ -> .cllJ",lfI- ,..Cl.n_C1 o u a o x > u x ~ " a ~ a ~ 'O.cll'll/'l.... ,a D~ -~ > Moa::N_ NCl....NO .... . ......I"'lMM x o~ -~ ~> ~" ax ,,- ox ~~ ~- "X ua ~e Z~ ~- ~~ ~ ,u ~o ~x ~u -x a~ aa " x~ > u X ~ " o ~ a ~ 11''''....1100' a D~ D~ -> .00'_0'0 ",,"'lI'N- x O~ -~ ~~ ~" ax ,,- ox ~ x o ~ ~ a x > u X ~ " a ~ a ~ .... t"ll"'lI"')I'"I a D~ -~ > ....,..,.0'.... ...IfIM_Cl x o~ -~ >~ ~" ax ,,- ox NNNNN If'l,,,,....C10' a O~ O~ -> 0............. CI' _.oNO'.o .... . 11\##........ a D~ -~ > II\N"''''C #_c.eU"l .....I'"'lNNN oJ"~"'€O' a O~ O~ -> c...o/lll'C #C"'#N .... . ..,.,,.,..... a D~ -~ > ....._c e~.....NO . . . ~ . NNNNt\I c#NNN II'#,.,N- ,.,1"'1"'1"'1'" M\I'ICl-\I'I N_OOO' . ~ ~ ~ . NNNN.... \I'I.o""CO' CN\I'IO'I'"I #MN__ I\jNNNN CIf\O~N 'OiJ"l\f\.... .,. . ----- lfl.o...a:lO' ----- CP'CP'CNII'I ... ..o-lH/'. .... . NNNNN O'N.o_.o ClCl......'O . .., ----- \I'I.o...ClO' ----- ON"'''''- ""...,.,NN .... . NNNNN CI'"ICl"'O \I'I\f\......... .... . ----- M.oNOO' oc...'O... ... . ,.,t\jNNN O'O'ON.o Cl.......'O\l'l .... . ----- ON...'OC NNNNN GJGJON.o oO'CP'GJ,... .... . N____ CP'N.oNI'- 1'"\,.,1\1"'- . . . ----- ON...'Oa:l NNNNN CoC:lI'l.oCl l'"lN_OO' .... . fl.NNN_ _1'"1.00'''' .0""'" <""1M .... . ----- ON."'Cl NNNNN \I'l...\I'I....O _0 0' ClGJ .. . NN___ ..00'...10... t"'lNN-- .... . ----- O'ONlI1Cl' t"lt"lN_O NNNNN 0"...0-...0 ......M,.,M .... . ----- ON....'OCl MMMMI'"I 0#0'11I- .....0 1I1 lfIlfI MO.oM'" __000 . ----- ON...'Oo:e MMt"l,.,,., O...ClN.... o,a:,......'O .... . ----- 0'....0...,., NNN_.... ~ . . . . ----- ON....oe ,.,,.,,.,,...,., NO'ceo 0""""'.0 .... . 1'.;...........- ""C:"'IIIO N........OO . . ---.....- 0\1101,1I0 .......\1'1\11'" ""0"_"'0 ...,.,MNN ClNCl...O O'O"ClII)C ... . 0\110\110 ....,"'\11.0 C\H'.'" "'0 .0"'.,.......... 0"''''1\111: _00'0'11: . olt'Or,l'lC ..,..,""""...: ,.,,... N"'1""l O'ON.oQ ",,"'''''''U''I ....,.....l\IN . ~ . .. . ... ----- ---...- ,.,.0.....11'\- 1I'l.,...MM .... . ....---- 1I1...a:ll/'lN O'O'a:lCC l/'lOll'lOl/'l ..o,...,...Ca:l "'-.......- _...000 . . ----- ,......NCP'... ...,.......0.0 . \1'10 U"I Q\I'I .or-,...ClCl ...CP'\I'I_"" N___o ----- ......elf'll'"' cec,..,...... . ... W'loIf\OW'l ",r-r-cll: 11'I....,...,.,0 ....._000 .... . ----- 0..01"'101'- "'0'..,0..0 _0000' CP'a:lClC"" . .,. ,.,oel",,'" ....,.....o..o..c ., .. 1f\..or-cCP' O_N"'''' r,I'l..o,...CCP' ON.....cC ON...oCl OU"lOU"lO II'IOr,l'lOU"l _____ _____ NNNNN ,.,,.,,.,,.,M ......U"Ir,I'l'O ..o,......ClCl HYDROLOGY D ~ 4 ~ " o ~ ~ o ~ ~ . ~ " o ~ ~ " o ~ ~ " o ~ ~ D ~ ~ ~ " o ~ ~ o ~ ~ ~ " o ~ ~ STANDARD INTENSITY - DURATION CURVES DATA \0 PLATE 0-4.1(4 of 6) .1 . ~- . , , ~ I , I , , -,- I -,- , , , , , , , , , , -- I i , t<\t.\ , , , , , , , ! , I U~ I ..... , , I I , , , , , , -:/ ,.,. r>. , , , ~ I , .r ~ , , / I , i ,