HomeMy WebLinkAboutTract Map 9833 Lot 8 Hydrology & Hydraulics
.
,
.
HYDROLOGY & HYDRAULICS
STUDY FOR
LOT 8 OF TRACT MAP 9833
PREPARED BY
EXCEL ENGINEERING
346 State Place
Escondido, CA 92029
(760) 745-8118
SUBMITTED ON
November 30, 1999
.
\
i.
.
HYDROLOGY & HYDRAULICS
STUDY FOR
LOT 8 OF TRACT MAP 9833
OBJECTIVE
The purpose of this study is to provide an overview of the drainage characteristics of the project and to
determine the amount of 10 and 100 year storm runoff that affects the site and show where this runoff will
be collected.
LOCATION
The site is within the limits of the City ofTemecula, California and is located along Calle de Valardo. See
figure below.
s/rE~.
.~ '\'\
~~ ~~ ~.. .~.~,~
\ .'~ -"
"'/
, ,,',.
. ..
"\0 .,-~ <,
~, \~- ;l1j.'Ij~""-
-~'^-~ ~)
\
',__::~~~r
I
V icinitv Map
PROCEDURE
Looking at the Hydrology Map of Tract NO. 9833 prepared by Shaller & Lohr Associates, Inc. dated
December, 1997, there is no Q shown for this part of the Map. However, the Map shows that there is a
natural charmel that starts from lot 9 and goes through lot 8. It also shows in the Map that the only
contributing basin to this charmel is a portion onot 9. Therefore, we can use the whole area of Lot 9 (4.55
acres) in calculating the QIO & Q100.
Q 1 00 runoff will also be calculated for the new pads. These Qs will be used to design the brow ditch and
riprap.
Procedures incorporated into this study are per the Riverside County Flood Control & Water Conservation
District Hydrology Manual.
v
i.
.
Rational Method:
Q'=CIA where C = Based on runoff coefficient
I = Rainfall intensity
A = Areas in acres.
Qill!l
BASIN L (feet) H (feet) Tc I C A (acres) Q(10) (cfs)
lot 9 580.00 55.00 8.10 2.67 0.81 4.550 9.84
pad lot8 170.00 5.00 6.40 3.12 0.81 0.358 0.90
Qf1001
BASIN L (feet) H (feet) Tc I C A (acres) Q(100) (cis)
lot 9 580.00 55.00 8.10 3.94 0.81 4.550 14.52
pad lot8 170.00 5.00 6.40 4.61 0.81 0.358 1.34
CALCULATIONS
A) Determine the flood elevations using Eagle Point Software. We will be using the Water Surface
Module to:design the culverts and locate the flood plain. See attached printout results. See also the
location of the channel sections from the grading plan.
From the printouts, it shows that the pad is above the flood plain. Therefore, the proposed
improvements along the channel and pad elevations are fine.
B) Determine the capacity of the typical Brow ditch using Manning's equation.
1.49 R1S"
Q(cap)=-A ' ,
n
j JtJ"MIN I
~~,,~<:]y
',)>'
Where: A=cross section area
R=hydraulic radius
S=slope
A = 1.25 sf
R= 3.2 It
5= 1.00 % assuming minimum slope
n= 0.013 for PVC
Therefore
Q(cap)= 31.11 cIs
?J
.
.
Maximum Q(lOO) that a brow ditch will handle is for 1.34 cfs. Therefore proposed brow ditch can handle
the runoffs.
C) Size the ripraps. From the equation Q~A V, we can get V=Q/A
Use Q=1.34 cfs (Area 3)
Therefore V=1.34/1.25 = 1.072 fps
From the "Green Book" Standard Specifications for Public Works Construction" 1988 edition, we get
the size of the riprap.
T=0.6'
Filter B1anket=3/16" 0.6' thick
~
.
.
User Name: msilos
Date: 10-12-99
Project: lot 8 Q100
Time: 16: 34: 03
Water Surface Profiling Detailed Report
------------------------------------------------------------------------------------
Section
1 CHANNEL
Station 0+01.00
Discharge
14.52 cfs
------------------------------------------------------------------------------------
Q AREA V2L CONVEYANCE n RCH LGTH WET PER.l'1
cfs ft^2 ft/s ft ft
Lft Ob 14.52 5.62 2.58 98.85 0.03000 1.00 27.14
Channel 0,00 0.00 0.00 0.00 0.03000 1. 00 0.00
Rgt Ob 0.00 0.00 0.00 0.00 0.03000 1. 00 0.00
------------------------------------------------------------------------------------
vlater Elevation zas 1190.43 ft Critical Water zc 1190.43 ft
cepth Dep 0.33 ft Normal water zn 1190.37 ft
Energy Grade Line-EGLas 1190.54 ft Flow CRITICAL FLOW
Energy Loss ht 0.00 ft METHOD Average Conveyance
Min of Elev Shot zmin 1190.11 ft velocity Head Hv 0.10 ftls
Channel Slope Sch 6.29 % velocity Coeff alpha 1. 00
Energy Loss Fr hf 0.02 ft Ofts Lft ~oJater Line x1w -105.74 ft
Energy Loss Eddy' ho 0.00 ft Offs Rgt ria ter Line xrw -78.63 ft
Wetted rlidth Wwet 27.11 ft Jump Loss hjump N I A
[J.ve Reach Lgth Lave 27.11 ft Jump Elevation zjump N / A
Station of Jump Ljump N / A
Cross Section Groundshots <ft>
------------------------------------------------------------------------------------
1 -150.0 1203.0 2 -150.0 1203.0 3 -148.7 1202.5 4 -139.9 1199.7
5 -135.8 1198.4 6 -129.9 1196.5 7 -123.1 1194.3 8 -122.1 1194.1
9 -119.7 1193.7 10 -110.6 1191.1 11 -110.0 1191.0 12 -109.0 1190.8
13 -103.1 1190.1 14 -79.5 1190.3 15 -38.7 1195.5 16 -24.7 1197.0
17 -21.9 1197.3 18 -14.5 1196.6 19 -9.2 1196.1 20 -5.9 1195.8
21 -3.5 1195.5 22 -1.9 1195.3 23 -0.7 1195.2 24 0.0 1195.1
25 0.8 1195.0 26 1.2 1194.9 27 1.5 1194.8 28 1.7 1194.8
29 9.5 1195.1 30 34.0 1198.2 31 59.2 1200.0 32 61.1 1200.4
33 121.4 1209.8 34 133.8 1212.1 35 150.0 1214.8
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
Section
2 CH.Zl.NNEL
Station 0+02.00
Discharge
14.52 cfs
------------------------------------------------------------------------------------
Q AREA VEL CONVEYANCE n RCH LGTH WET PERM
cfs ft^2 ft/s ft ft
Lft Ob 14.52 5.48 2.65 98.12 0.03000 50.00 25.77
Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00
Rgt Ob 0.00 0.00 0.00 0.00 0.03000 50.00 0.00
------------------------------------------------------------------------------------
t'later Elevation zas 1193.61 ft Critical Water zc 1193.61 ft
Depth Dep 0.36 ft Normal water zn 1193.55 ft
Energy Grade Line-EGLas 1193.72 ft Flow CRITICAL FLOW
Energy Loss ht 3.18 ft METHOD Average conveyance
Hin of Elev Shot zmin 1193.25 ft Velocity Head Hv 0.11 ft/s
Channel Slope Sch 6.29 % Velocity Coeff alpha 1.00
Energy Loss Fr hf 1.09 ft Offs Lft Water Line x1w -55.49 ft
Energy Loss Eddy ho 0.06 ft Offs Rgt Water Line xrw -29.76 ft
Wetted width Wwet 25.73 ft Jump Loss hjump N I A
Ave Reach Lgth Lave 25.73 ft Jump Elevation zjump N I A
Station of Jump Ljump N I A
Cross Section Groundshots <ft>
------------------------------------------------------------------------------------
1 -150.0 1205.0 2 -130.8 1205.0 3 -129.8 1205.0 4 -125.7 1203.2
5 -122.8 1202.1 6 -120.8 1201. 4 7 -120.0 1201. 2 8 -118.5 1201.1
9 -117.0 1201. 0 10 -113.0 1200.3 11 -105.9 1199.0 12 -105.5 1198.9
13 -104.7 1198.8 14 -98.8 1198.4 15 -89.4 1197.8 16 -80.7 1197.3
17 -74.7 1196.9 18 -70.9 1196.5 19 -67.9 1196.1 20 -66.1 1195.8
21 -63.8 1195.3 22 -53.7 1193.3 23 -30.6 1193.5 24 -19.9 1194.7
25 -10.9 1196.8 26 -8.7 1197.3 27 -8.3 1197.3 28 -5.5 1197.0
29 -3.4 1196.7 30 -1.8 1196.4 31 -0.7 1196.2 32 0.0 1196.1
33 0.7 1195.9 34 1.0 1195.8 35 21.2 1197.0 36 47.0 1200.3
37 60.8 1201.4 38 85.8 1204.8 39 93.7 1206.2 40 135.9 1212.9
41 141. 4 1214.0 42 145.8 1214.8
'5
.
.
------------------------------------------------------------------------------------
Section
3 CHANNEL
Station 0+03.00
Discharge
14.52 cfs
------------------------------------------------------------------------------------
Q AREA VEL CONVEYANCE n RCH LGTH WET PERM
cfs ft^2 ft/s ft ft
Lft Ob 5.19 1. 46 3.56 40.91 0.03000 50.00 4.77
Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00
Rgt Ob 9.33 3.30 2.83 73.55 0.03000 50.00 10.93
------------------------------------------------------------------------------------
vlater Elevation zas 1197.59 ft Critical Water zc 1197.59 ft
Depth Dep 0.65 ft Normal water zn 1197.43 ft
Energy Grade Line-EGLas 1197.74 ft Flow CRITICAL FLOW
Energy Loss ht 4.02 ft METHOD Average Conveyance
Min of Elev Shot zmin 1196.94 ft velocity Head Hv 0.15 ft/s
Channel Slope Sch 7.37 % velocity Coeff alpha 1. 04
Energy Loss Fr hf 0.80 ft Offs Lft Water Line x1w -4.69 ft
Energy Loss Eddy ho 0.07 ft Offs Rgt Water Line xrw 10.91 ft
vletted Width Wwet 15.61 ft Jump Loss hjump N I A
Ave Reach Lgth Lave 15.61 ft Jump Elevation zjump N I A
Station of Jump Ljump N I A
Cross Section Groundshots <ft>
------------------------------------------------------------------------------------
1 -150.0 1205.0 2 -142.1 1205.0 3 -138.9 1205.0 4 -138.6 1205.0
5 -134.6 1205.0 6 -130.1 1205.0 7 -123.5 1205.0 8 -119.6 1205.0
9 -115.9 1205.0 10 -112.4 1205.0 11 -111.4 1205.0 12 -111.1 1205.0
13 -107.2 1205.0 14 -103.7 1205.0 15 -100.3 1205.0 16 -95.7 1205.0
17 -89.1 1205.0 18 -84.5 1205.0 19 -67.5 1205.0 20 -63.2 1205.0
21 -59.5 1205.0 22 -52.0 1205.0 23 -47.4 1205.0 24 -46.8 1205.0
25 -38.2 1200.9 26 -32.8 1198.3 27 -11. 7 1198.3 28 -2.2 1197.3
29 -1.4 1197.1 30 -0.9 1196.9 31 0.0 1197.0 32 13.2 1197.7
33 24.3 1198.0 34 37.3 1200.0 35 75.7 1204.8 36 77.2 1205.0
37 77.7 1205.0 38 78.7 1205.2 39 79.8 1205.4 40 127.9 1213.9
41 132.2 1214.6
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
Section
4 CHANNEL
Station 0+04.00
Discharge
14.52 cfs
------------------------------------------------------------------------------------
Q ARE.n, VEL CONVEYANCE n RCH LGTH WET PERM
cfs ft^2 ft/s ft ft
Lft Ob 13.48 4.16 3.24 108.36 0.03000 50.00 11. 25
Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00
Rgt Ob 1. 04 0.63 1. 65 8.36 0.03000 50.00 4.57
--.----------------------------------------------------------------------------------
Water Elevation "as 1199.62 ft Critical Water zc 1199.62 ft
Depth Dep 0.61 ft Normal water zn 1199.52 ft
Energy Grade Line-EGLas 1199.78 ft Flow CRITICAL FLOW
Energy Loss ht 2.04 ft METHOD Average Conveyance
Min of Elev Shot zmin 1199.02 ft velocity Head Hv 0.15 ft/s
Channel Slope Seh 4.16 % Velocity Coeff alpha 1. 08
Energy Loss Fr hf 0.77 ft Offs Lft Water Line xlw -11.21 ft
Energy Loss Eddy ho 0.09 ft Offs Rgt Water Line xrw 4.57 ft
Wetted Width WHet 15.77 ft Jump Loss hjump N I A
lwe Reach Lgth Lave 15.77 ft Jump Elevation zjump N / A
Station of Jump Ljump N I A
Cross section Groundshots <ft>
------------------------------------------------------------------------------------
1 -150.0 1208.4 2 -138.7 1208.6 3 -138.3 1208.9 4 -138.1 1209.0
5 -129.7 1209.4 6 -120.2 1209.7 7 -113.3 1211. 7 8 -109.1 1212.0
9 -106.2 12:2.6 10 -96.8 1213.2 11 -96.3 1213 .1 12 -92.5 1211.7
13 -91.5 1211.5 14 -84.4 1208.7 15 -84.2 1208.6 16 -83.6 1208.3
17 -83.3 1208.3 18 -83.0 1208.3 19 -65.7 1207.5 20 -63.9 1206.7
21 -60.9 1205.2 22 -60.5 1205.0 23 -48.9 1205.0 24 -45.7 1205.0
25 -44.1 1204.2 26 -42.1 1203.2 27 -41. 9 1203.1 28 -41. 5 1203.0
29 -12.4 1199.7 30 -5.5 1199.0 31 0.0 1199.3 32 17.2 1200.4
33 19.8 1200.4 34 23.9 1201.0 35 38.8 1203.2 36 45.5 1204.3
37 64.1 1207.0 38 97.2 1212.5 39 112.7 1215.1
------------------------------------------------------------------------------------
tv
.
.
------------------------------------------------------------------------------------
Section
5 CHANNEL
Station 0+05.00
Discharge
14.52 cfs
------------------------------------------------------------------------------------
Q AREA VEL CONVEYANCE n RCH LGTH WET PERM
cfs ft^2 ft/s it it
Lft Ob 0.96 0.73 1. 31 7.62 0.03000 50.00 7.61
Channel 0.00 0.00 0.00 0.00 0.03000 50.00 0.00
Rgt Db 13.56 4.92 2.76 108.06 0.03000 50.00 17.29
------------------------------------------------------------------------------------
.Wate= Elevation zas 1205.34 it Critical Water zc 1205.34 it
Depth Dep 0.48 it Normal water zn 1205.19 ft
Energy Grade Line-EGLas 1205.45 ft Flow CRITICAL FLOW
Energy Loss ht 5.67 it METHOD Average Conveyance
Min of Elev Shot zmin 1204.85 it Velocity Head Hv 0.11 ft/s
Channel Slope Sch 11.67 % Velocity Coeft alpha 1. 09
i Energy Loss Fr hf 0.79 ft Offs Lft Water Line x1w -7.58 it
'Energy Loss Eddy ho 0.09 ft Offs Rgt Water Line xrw 17 .26 it
Wetted Width tolwet 24.85 it Jump Loss hjump N / A
,Ave Reach Lgth Lave 24.85 ft Jump Elevation zjump N / A
Station of Jump Ljump N / A
Cross Section Groundshots <ft>
------------------------------------------------------------------------------------
1 -52.3 1212.8 2 -40.1 1212.7 3 -38.9 1212.7 4 -38.6 1213 .2
5 -37.7 1213.2 6 -37.0 1213.1 7 -27.6 1213.2 8 -25.5 1213.5
9 -24.1 1212.6 10 -19.8 1211.1 11 -7.3 1205.2 12 -1.2 1205.3
13 0.0 1205.2 14 10.9 1204.9 15 11. 4 1204.9 16 12.1 1204.9
17 33.5 1206.7 18 51.1 1207.8 19 127.2 1213.6 20 141. 4 1214.6
------------------------------------------------------------------------------------
'\
.
INSTRUCTIONS FOR RATIONAL ~lliTHOO HYOROLOGY CALCULATIONS
(Based on the Rational Formula, Q = CIA)
1. on map of drainage area, draw drainage system and block off subareas
tributary to it.
2. Determine the initial time of concentration, liT", using Plate 0-3.
~ne initial area should be less th~~ 10 acres, have a flow path of
less than 1,000 feet, and be the most upstream subarea.
3. Using the time of concentration, determine "Ill, intensity of rain-
fall in inches per hour, from the appropriate intensity-duration
curve for the particular area under study. For areas where stan-
dard curves are available, use Plates 0-4.1 and 0-4.2' to reproduce
the standard curve. For areas where curves have not been published
by the oistrict, use Plates 0-4.3 through 0-4.7 to develop a suit-
able intensity-duration curve.
4. Determine "ell I the coefficient of runoff, using the runoff coeffi-
cient curve which 'corresponds as closely as possible with the soil,
cover type and development of the drainage area. Standard curves
(Plates 0-5.1 through 0-5.4) have been developed by the Oistrict
for the common case of urban landscaping type cover. Where these
curves are not applicable, curves may be developed using Plates
0-5.5 through 0-5.8.
5. Determine "A", the area of the subarea in acres.
6. Compute Q = CIA for the subarea.
7. Measure the length of flow to the point of inflow of the next sub-
area downstream. Determine the velocity of flow in this reach for
the peak Q in the type of conveyance being considered (natural
channel, street, pipe, or open channel), using the tabling aids on
Plates 0--6 through 0-9.
using the reach length and velocity determined above, compute the
travel time, and add this time to the time of concentration for the
previous subarea to determine a new time of concentration.
8. 'Calculate Q for the new subarea, using steps 3 through 6 and the
'new time of concentration. Detennine "QJ?'" the peak Q for all sub-
areas tributary to the system to this po~nt by adding Q for the
'new subarea to the summation of Q for all upstream subareas. Oeter-
"mine the time of concentration for the next subarea downstream using
step 7. Continue tabling downstream in similar fashion until a
junction with a lateral drain is reached.
RCFC 8 WCD
HYDROLOGY rvJANUAL
RATIONAL METHOD
INSTRUCTIONS eo
PLATE 0-1 (I of 2)
L
1000
900
:800
700
-600
'500
-
CI)
..
-
400
c:
o
..
~
o
350
"0
-
300
c:
-
o
250
':J
~
-
c:
.,
E
Q,
.,
>
.,
'0
"0
'0
CI)
Q,
..
.s=
-
co
c:
CI)
..J
150
100
Te'
100
90
80
70
60
50
o
35
~
o
-
30
LIMITATIONS:
I. Maximum iength = 1000'
2. Maximum area = 10 Acres
t..OT0
~
:I
~
.,
~J:L
u
'" '"
::l
co .Q
c: >
c: ~ 0
o ~ ';
N ,g .!:
~
o _ ~
o
c:
., .,
E '" ..
g.~-g
(t) o;~.,
~~
K
Commerciol
7
'2-\
c:
co
.,
~
A'
~ '.0
/
o ~
co
-
o .!:
~
:r:
o c:
o
'0
50;
..
KEY
- ,
L -tj-Tc-K-Tc
o
co
"
50a
400
300
200
,,0..
r1fJ/'7
.r;..j'/
-'
.'
"
Undeveloped
Good Cover "
/
Undeveloped
Foir/COYer
/
20 /undeveloped
19/ Poor CoVIf
I ~ Single Fomily
: (1/'\ Acre)
5
14
13
12
II
..
~
::>
c:
25
100
80
~8
~
20
"
'"
10,/
e'
/6
//
/
/'
E
.!:
~
-
o
II)
E
i=
9
8
2
1.0
.8
.6
.~
,3 ~
.2/
..
"
c:
.,
~
.,
-
-
Cl
EXAMPLE:
(Il L =550', H =5.0', K = Single Fomilyll/4 Ac.l 35
Development, Tc = 12.6 min.
(2) L=550', H =5,0', K= Commerciol 40
Development, Tc = 9.7 min.
RCFC a WCD
HYDROLOGY ~'1jANUAL
7
6
5
4
Reference: Bibliography item No. 35.
Te
5
6
~
..
~
"
<{
~
c
.,
E
.8_ Q,
.Q
.,
>
co
Cl
9
10
II
12
-'='
E
c
LL
.,
0'
.!:
i4
15
16
17
18
19
20
~
c
-
'"
..
-
::l
.~
E
c:
~
25
c:
.!?
'0
~
C
..
"
c:
o
"
-
o
30
..
E
i=
TIME OF CONCENTRATION
FOR INITIAL SUBAREA
PLATE 0-3 '\
10:::
:D
o
::c
0:::
W
CL
CJ)
w
::c
u
z
I
>-
I-
CJ)
Z
W
I-
Z
..J
..J
.~
Z
<(
0:::
>
~
~
~
~
>
~
>
u
z
~
"
a
~
a
~
=
D~
D~
- >
Cl,o --4'
,....."'Oe
~~~
.~N
NNNNl'\.I
..I>N....o-
.....,..,C)II'I
.....----
N'",........
lf1NOCl'"
.... .
.........1"')1'"1
M,......I"'lt"l
.z:..c..........,
.... .
NNNNN
o_l\jM...
-----
..,0 CI;l CDlIJ
C1'CI;l.c\I'J'"
.... .
I,,,'.NN'"
"'....CI"N>D
""co....,..'"
.... .
-----
0_1\11'"1....
....----
CI;lolfl....O"
..,t"l_IOCC
.... .
~"'M"'N
"'..",....'"
MN_OCl'
.... .
NNNN-
o_f\l"''''
-----
o>l'lNOO
_O'C,...cI
.... .
I"lNNNN
,o,..C1-'"
0-.0....,..'"
.... .
-----
RCFC 6 WeD
NJANUAL
a
a
~
"
x
o~
-~
>>
~"
ax
,,-
ex
"'1'"ll'"lI'"lN
a
D~
-~
>
..........00"
>D"'''''O.
.... .
NNNN_
~
"
x
>
u
x
~
"
a
~
a
~
_...CD""'"
",_oc>eP"
NNNN-
4'0011\....1"-
\1'1.........,.,
"'I'"l"""''''
O'cc,.."''''
.... .
..........---
...CIlNe,.,
t"lNN--
. .
-----
,..Na:l.O
!J':II\.........
. .
-----
o.o..,OC
_OoOCl"
.., .
,",,0""_=
OOCl"CCl....
~N
11:...0......
OClOo:P'O'
a
"
~
z
~
~
"
x
o~
-~
~ ~
~"
ax
,,-
ex
""NO"'"
...,..,.."''''
., .
.".oI"-CCCl" o_",M... 1I'l",,..CI;lO' 0"'....0= oN....cCIJ 0....0\1'10 \/'10....0....
_____ _____ NNNNN ,.,MMMM ......\f'I\I'J.c .c,.........
a
,,~
D.~
->
.cllJ",lfI-
,..Cl.n_C1
o
u
a
o
x
>
u
x
~
"
a
~
a
~
'O.cll'll/'l....
,a
D~
-~
>
Moa::N_
NCl....NO
.... .
......I"'lMM
x
o~
-~
~>
~"
ax
,,-
ox
~~
~-
"X
ua
~e
Z~
~-
~~
~
,u
~o
~x
~u
-x
a~
aa
"
x~
>
u
X
~
"
o
~
a
~
11''''....1100'
a
D~
D~
->
.00'_0'0
",,"'lI'N-
x
O~
-~
~~
~"
ax
,,-
ox
~
x
o
~
~
a
x
>
u
X
~
"
a
~
a
~
.... t"ll"'lI"')I'"I
a
D~
-~
>
....,..,.0'....
...IfIM_Cl
x
o~
-~
>~
~"
ax
,,-
ox
NNNNN
If'l,,,,....C10'
a
O~
O~
->
0............. CI'
_.oNO'.o
.... .
11\##........
a
D~
-~
>
II\N"''''C
#_c.eU"l
.....I'"'lNNN
oJ"~"'€O'
a
O~
O~
->
c...o/lll'C
#C"'#N
.... .
..,.,,.,.....
a
D~
-~
>
....._c
e~.....NO
. . . ~ .
NNNNt\I
c#NNN
II'#,.,N-
,.,1"'1"'1"'1'"
M\I'ICl-\I'I
N_OOO'
. ~ ~ ~ .
NNNN....
\I'I.o""CO'
CN\I'IO'I'"I
#MN__
I\jNNNN
CIf\O~N
'OiJ"l\f\....
.,. .
-----
lfl.o...a:lO'
-----
CP'CP'CNII'I
... ..o-lH/'.
.... .
NNNNN
O'N.o_.o
ClCl......'O
. ..,
-----
\I'I.o...ClO'
-----
ON"'''''-
""...,.,NN
.... .
NNNNN
CI'"ICl"'O
\I'I\f\.........
.... .
-----
M.oNOO'
oc...'O...
... .
,.,t\jNNN
O'O'ON.o
Cl.......'O\l'l
.... .
-----
ON...'OC
NNNNN
GJGJON.o
oO'CP'GJ,...
.... .
N____
CP'N.oNI'-
1'"\,.,1\1"'-
. . .
-----
ON...'Oa:l
NNNNN
CoC:lI'l.oCl
l'"lN_OO'
.... .
fl.NNN_
_1'"1.00''''
.0""'" <""1M
.... .
-----
ON."'Cl
NNNNN
\I'l...\I'I....O
_0 0' ClGJ
.. .
NN___
..00'...10...
t"'lNN--
.... .
-----
O'ONlI1Cl'
t"lt"lN_O
NNNNN
0"...0-...0
......M,.,M
.... .
-----
ON....'OCl
MMMMI'"I
0#0'11I-
.....0 1I1 lfIlfI
MO.oM'"
__000
.
-----
ON...'Oo:e
MMt"l,.,,.,
O...ClN....
o,a:,......'O
.... .
-----
0'....0...,.,
NNN_....
~ . . . .
-----
ON....oe
,.,,.,,.,,...,.,
NO'ceo
0""""'.0
.... .
1'.;...........-
""C:"'IIIO
N........OO
. .
---.....-
0\1101,1I0
.......\1'1\11'"
""0"_"'0
...,.,MNN
ClNCl...O
O'O"ClII)C
... .
0\110\110
....,"'\11.0
C\H'.'" "'0
.0"'.,..........
0"''''1\111:
_00'0'11:
.
olt'Or,l'lC
..,..,""""...:
,.,,... N"'1""l O'ON.oQ
",,"'''''''U''I ....,.....l\IN
. ~ . .. . ...
----- ---...-
,.,.0.....11'\-
1I'l.,...MM
.... .
....----
1I1...a:ll/'lN
O'O'a:lCC
l/'lOll'lOl/'l
..o,...,...Ca:l
"'-.......-
_...000
. .
-----
,......NCP'...
...,.......0.0
.
\1'10 U"I Q\I'I
.or-,...ClCl
...CP'\I'I_""
N___o
-----
......elf'll'"'
cec,..,......
. ...
W'loIf\OW'l
",r-r-cll:
11'I....,...,.,0
....._000
.... .
-----
0..01"'101'- "'0'..,0..0
_0000' CP'a:lClC""
. .,.
,.,oel",,'"
....,.....o..o..c
., ..
1f\..or-cCP' O_N"'''' r,I'l..o,...CCP' ON.....cC ON...oCl OU"lOU"lO II'IOr,l'lOU"l
_____ _____ NNNNN ,.,,.,,.,,.,M ......U"Ir,I'l'O ..o,......ClCl
HYDROLOGY
D
~
4
~
"
o
~
~
o
~
~
.
~
"
o
~
~
"
o
~
~
"
o
~
~
D
~
~
~
"
o
~
~
o
~
~
~
"
o
~
~
STANDARD
INTENSITY - DURATION
CURVES DATA
\0
PLATE 0-4.1(4 of 6)
.1
. ~- .
, ,
~ I , I
, ,
-,- I -,-
, , , ,
, , , , ,
, --
I i ,
t<\t.\ , , , ,
, , ,
! ,
I U~ I ..... , ,
I I , , , , , ,
-:/ ,.,. r>. , ,
, ~ I ,
.r ~
, ,
/ I , i ,