HomeMy WebLinkAboutHydrology
I
I I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
...
HYDROLOGY I HYDRAULIC
REPORT
.,
_:', ,.r~;:W~ __
~;-'~ ..--~r
~~.'.....'.."
).......~.<.." ......"
. c:.. .7:";;'~.' .,,-"
~r :?
.~
"- ..
..:,,-"'-. <;:;..
...
HARVESTON APARTMENTS
Tract 29639 -1, Lol6
Temeada, a
Prepared for:
LENNAR PARTNERS
18401 Von Karman Avenue, Suile 540
lroi.., a 926I2
Project Manager:
James c. Lone, n, P.E.
RCE No. 28781
Prepared by:
FUSCOE ENGINEERING, INC.
16795 Van Karman Avenue, Suile 100
Irvine, a 92606
(949) 474-1960
www.fuscoe.rom
Dale Prepared: July 2003
]N: 444.03.01
.-
III
\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
c:
Lennar Partners
,:~..ij~,,~;',:,<-:~:
Prepared by:
FUSCOE ENGINEERING. INC.
16795 Von Karman Avenue, Suite 100
Irvine, California 92606
(949) 474-1960
Project Number:
444.03
Supervising Engineer:
James C. Lane II
RCE No. 28781
Date Prepared:
Julv 2003
.'."~~
July 2003
~~_'_J
Harveston Apartments
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
.l
Table of Contents
L Introduction .........................................................................1
Geographic Setting ................................................................. 1
Purpose of This Report .............................................................1
References ...................................................................... 1
Location Map- Topographic Setting........................2
IL Existing Topographic & Hydrologic Conditions ................3
Existing Topography................................................................. 3
Existing Drainage Pattem .......................................................3
Existing Storm Drain Facilities..................................................3
IlL Proposed Storm Drain Facilities.........................................3
Line..A..................................................................3
Line..B..................................................................3
Line..C.................................................................3
IV. Hydrology Study (Local Storm Drains) ....................................4
Storm Frequency......................................................................4
Methodology .........................................................................4
V. Hydraulic Report (Analysis of the Main Line Storm Drain) ......... 5
Previous Hydrology Report .....................................................5
VI. Hydraulic Report (Analysis of the Local Storm Drains) .............. 5
Hydrology Report .....................................................................5
Storm Frequency ...................................................................... 5
Methodology ............................................................................ 5
I
Lennar Partners
.._;.~
Harveston Apartments
~
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
~_:_:::":'J
VIL Catch Basin Sizing.............................................................. 5
Storm Frequency ...................................................................... 5
Methodology ............................................................................ 5
VIIL Design Criteria....................................................................6
Excerpts from Riverside County Design Manual................ 6
IX. Results & Conclusions........................................................ 8
X Appendices .......................................................................... 9
Appendix 1 - Storm Water Protection Goals
Appendix 2 - lOO-Year Hydrology Study
Appendix 3 - loa-Year Hydraulic Analysis of the Local Storm
Drain - Line "A", Line "B", Line "C" and Laterals
Appendix 4 - Analysis of Catch Basin Sizing
Appendix 5 - Local Area Drain Pipe Size Calculations
Appendix 6 - Local Hydrology Map (In Pocket)
I
Lennar Partners
:':';:.0. ,._"\~
Harveston Apartments
I I
I
I
I
I
I
I
I
I
II
I
I
II
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
~.:2;::;:::';';,
July 2003
L Introduction
Geographic Setting
The Study Area consists of 15.13 acres and in located in the City of Te-
mecula. It is bordered by Margarita Road to the east, Harveston Way
to the south. To the west is Village Road and to the north is Township
Road.
Purpose of This Report
The purpose of this report is to accomplish the following objectives:
1. To determine the storm water discharges generated within local
drainage areas within the project (see Appendix 2).
2. To support the design of local storm drains, consisting of laterals
and catch basins, as submitted with this report (see Appendix 3)
3. To support the sizing of catch basins and to demonstrate that ade-
quate inlet capacity has been provided to insure that one travel
lane will remain clear on local streets during the 100-year storm.
4. To demonstrate that the "storm water" and "flood" protection goals
as outlined in the Riverside County Hydrology Manual. Design Man-
ual has been met (see Appendix 1 for "Storm Water Protection
Goals").
References
. Riverside County Hydrology Manual
. Riverside County Design Manual
I
Lennar Partners
"::;~.:;':~:.
1
Harveston Apartments
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
I
Lennar Partners
.;,;;..:;::E~'",,:
Location Map - Topographic Setting
VICI N ITV MAP
NTB
2
July 2003
=:=J
!
Harveston Apartments
A..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
II. Existing Topographic & Hydrologic Conditions
Existing Topography
The site was recently rough graded per a plan permitted by RBF Con-
sulting on the site plan for this development.
Existing Drainage Pattern
The site drainage presently sheet flows southeasterly to an existing 36"
storm drain facility.
Existing Storm Drain Facilities
There are no existing storm drain facilities onsite. A 36" RCP storm drain
line designated as Line "J" is stubbed into the site at the northwest
corner of the site.
III. Proposed Storm Drain Facilities
Three (3) local storm drain systems are proposed for this project as fol-
lows:
Line "A"
This system, with its six laterals and seven catch basins, will drain the
southwest portion of the project and outlet into a storm drain system
flowing southerly down an existing storm drain.
Line "B"
This system, with its one lateral and two catch basins, will drain the
middle portion of the project and outlet into Line "A".
Line "c"
This system, with its two laterals and three catch basins, will drain the
northwest portion of the project and outlet into Line "B".
L.......-
Lennar Partners
'-;'-'''f,,"~';-',;,~--
3
Harveston Apartments
~
I
I
I
I
I
I
I
I
'I
I
II
,
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
IV. Hydrology Study (Local Storm Drains)
Storm Frequency
This study is intended to determine "local" discharges for use in the
design of lateral storm drains and catch basins. Because artificial
sumps are created, a frequency of "laO-year" was chosen as the
minimum design criteria. A laO-year frequency was determined to
analyze the street flooding capacity. This option is consistent with
design criteria presented in Section VIII of this report.
Methodology
Hydrologic calculations to determine lOa-year discharges were per-
formed using the Riverside County Rational Method. The Rational
Method is an empirical computation procedure for developing a
peak runoff rate (discharge) for small storm watersheds of a speci-
fied recurrence interval. The Rational Method equation is based on
the assumption that the peak flow rate is directly proportional to the
drainage area, rainfall intensity, and a loss coefficient, which de-
scribes the effects of land use and soil type. The design discharges
were computed by generating a hydrologic "link-node" model,
which divides the area into subareas, each tributary to a concentra-
tion point or hydrologic "node" point determined by the existing ter-
rain or proposed site layout. The following assumptions and/or
guidelines were applied for use of the Rational Method.
1. The Rational Method Hydrology includes the effects of infiltra-
tion caused by soil surface characteristics. The soils map from
the Riverside County Hydrology Manual indicates that the
study area consists of various soil types. Hydrologic soils ratings
are based on a scale of A through D, where A is the most
pervious, providing the least runoff. For this study, Soil Type "B"
was used.
2. The infiltration rate is also affected by the type of vegetation
or ground cover and percentage of impervious surfaces. The
runoff coefficients used for this study were based on a post
construction condition having 80% of the apartments covered
with impervious material.
3. Standard intensity-duration curve data was taken from the
Riverside County Hydrology Manual, dated April, 1978.
I
LenDar Partners
-~'~z:;:r;.'::,:-,_; ""
4
Harveston Apartments
OJ
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
~:},
..J
V. Hydraulic Report (Analysis of the Main Line Storm Drain)
Previous Hydrology Report
Previous hydrology for this lot was part of Tentative Tract 29639-1 and
was prepared by RBF Consulting.
VI. Hydraulic Report (Analysis of the Local Storm Drains)
Hydrology Report
The discharges for this analysis were determined by a hydrology study
included in this report as Appendix 2.
Storm Frequency
Consistent with the design criteria set forth in Section X of this report,
storm frequencies of "100-year" were used.
Methodology
The hydraulic analysis of the main line system was performed using AES
Pipeflow Hydraulics.
VII. Catch Basin Sizing
Storm Frequency
Consistent with the Design Criteria set forth in Section VIII of this report,
a storm frequency of "1 OO-year" was used.
Methodology
Standard curb opening catch basins were analyzed using A.E.S. 2002
"Hydraulic Elements" program. Copies of the computer printouts are
included in Appendix 4 of this report.
~
Lennar Partners
-:;;;;~:!{,-
5
Harveston Apartments
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
::-J
VIII. Design Criteria
The proposed storm drain systems will be designed so as to be consis-
tent with the following goals and guidelines:
A. All buildings shall be protected from flooding during 100-year fre-
quency storm.
B. 1. Onsite design storm is a 1 OO-year frequency. In sump conditions
for catch basins and the connecting storm drains, also use a
lOO-year frequency.
2. Offsite design storm frequency, subject to individual review by
the City and should be in accordance with the Riverside
County Hydrology Manual.
C. 1. Velocity should not exceed 20 FPS in standard wall R.C.P.
2. Where velocity exceeds 20 FPS, a special wall R.C.P. with a mini-
mum of 1 'h-inch steel clearance on the inside surface shall be
used.
3. Maximum velocity in special cover R.C.P. shall be 45 FPS.
D. On arterial highways. one (1) 12' lane each direction should be
clear of water, with a 100-year storm. In sump conditions, 100-year
storm shall be used.
E. On local streets, flow should not exceed top of curb, for a 100-year
storm, and in sump conditions, 1 OO-year storm shall be used.
F. Cross gutter is not allowed at any through street.
G. Catch basins are to be constructed at all four corners of arterial
highway intersections.
H. Open cut is not allowed at any existing arterial highway. Pipe must
be jacked across street.
I. Maximum W.S. in CB's for design conditions shall be 0.5' below inlet
(FL.) elevation.
J. Once water is picked up in a storm drain, it should remain in the sys-
tem.
K. Pipe size may not be decreased downstream without the City's
approval.
L. Branching of flow is not allowed.
M. Provide Hydraulic and energy grade line calculations and plot of
hydraulic grade line on plans with table of appropriate hydraulic
data.
N. The ratio of normal velocity to critical velocity should be less than
0.9 or greater than 1.2.
I
Lennar Partners
:',~~Z1:=::;;,'i
6
Harveston Apartments
<0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
O. All pipes and conduits laid parallel to the roadway shall be placed
at least 30" below the roadway surface. However, when pipe
depth is in excess of 10' (measured from top of pipe to ground sur-
face), the City's approval is required prior to the initial design of the
system.
P. Junction structures should be designed according to the R.C.F.C.D.
"Design Manual" or utilize City of Temecula Standard Plans.
Q. Storm Drain Easement width shall be determined in the following
manner:
1. D = 36" or smaller - Distance from top of pipe to ground level
times 1.5 + diameter of pipe +2.0' (When cover exceeds 10', use
2 below.)
2. D = 39" or greater - a. Distance from bottom of pipe to ground
level times 2.0 + diameter of pipe + 2.0'.
In any case, the width of easement shall not be less than 10.0' in
width.
R. Storm drain shall be located at the center line of the easement.
S. Easement shall be exclusively for storm drain purposes.
T. Storm drain with high fills:
1. Fill Greater than 40 Feet
Storm drains which are installed with cover greater than 40 feet
shall have a diameter a minimum of 12 inches larger than that
required for hydraulic adequacy and shall be constructed using
pre-stressed concrete pipe.'
2. Fill between 30 and 40 Feet
Storm drains which are installed with cover between 30 and 40
feet shall have a diameter a minimum of 12 inches larger than
that required for hydraulic adequacy and shall be constructed
using pre-stressed concrete pipe if the subgrade of the pipe is in
a fill area.' If subgrade is in native soil, reinforced concrete pipe
may be used.
3. Fill Between 20 and 30 Feet
Storm drains which are installed with cover between 20 and 30
feet shall be constructed using reinforced concrete pipe. A
pipe diameter greater than that required for hydraulic ade-
quacy may be required if, in the opinion of the City Engineer's
staff, the particular conditions involved warrant the larger size.
4. Fill Less Than 20 Feet
Normal criteria for storm drain design shall be followed.
I
Lennar Partners
''':~~M".::.,
7
Harveston Apartments
'\
I
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
- . - "-=~'-=-J
· Exceptions may be made for a roadway crossing of a natural
watercourse, which will remain undisturbed with future devel-
opment.
VII. Results and Conclusions
It is concluded, based on the data presented in this report, that the
storm water protection goals (see Appendix 1 ) have been met.
,-
Lennar Partners
8
Harveston Apartments
,0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t";:::-:"""
July}()03. _
~__.._l
Local Hydrology / Hydraulic Report
VIII. Appendices
Appendix 1 - Storm Water Protection Goals
Appendix 2 - Locall 00- Year Hydrology Study
Appendix 3 -lOO-Year Hydraulic Analysis of the Main Lines
Appendix 4 - Catch Basin Sizing Analysis
Appendix 5 - Local Area Drain Pipe Calculations
Appendix 6 - Local Hydrology Map (In Pocket)
c..=
Lennar Partners
~.;T$;io:;.t.r:c~
9
Harveston Apartments
\\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
':::t":"::;'i;"
July 2003
.. :~J
Appendix 1
1'7;;~''"~i>>:r.
Lennar Partners
Harveston Apartments
\~
I
I
I
I
I
I
I
I
I
I
I
I
I
~
*
~.
~
-
-
,
EMA DESIGN MANUAL
ADD~N.oUM #1:
.....
STORM WATER.PROTECTION GOALS
A. STRUCTURES
'the goal 18 to provide 100-year protectiQln for reaidences and otJ1.er
nonfloodproof structures pursuant to Public Services and . Fac:l.lities
Element of the General Plan. - (See attached Flood Protection .Goela.)
Regional flood control fac:Uities shall. be planned' end designed to
meet this goal where feaSible.
ll. STREETS
Street criteria for 100-year' storm flow is shown on the attachsd
Flood Protection Gosls.
1. Arterial Highway
- One 12-foot traffic lane Will be' free from inundation in
each direction in a 10-year storm.
- In a sump condition. one 12-foot traffic lane will be free
from inundation in esch direction in a 2S-year storm.
2. Local Street' .
,
- Storm waters will not exceed top of curb in a 10-year storm.
- In a sump condition, stOX'Dl waters will not exceed top of
. curb in a 25~yearstorm.
3. Arterial Highway and Local S~reet
- Depth times velocity .cannot exceed six; This criter~&'
applies to stoX'Dla. up to 25-y,&ar.
<.,"
\?
.'
I'
~.
I
,
,
,
,
,
I
I
I
I
~
~_..
~
'.
N .";';'.. .
,'.' .
. .-;~ . p~ . '.'
'. .~:l ',:", .
.0
..
..
~
-
.~.
..
..
-
Ul
c:
o
'0.
..
.::5
t:tJ1 .
100-Year..
_ . I Flood Level "_
.. 12'" 12' ] j
. .,~ . .
..' . V . .
- --'-:-"1-1":1-1"';"" .
~ ' . '-
p'oq slev.
rntD: .
. ..
Flnlsh.ed. fioor ot
. '. .
....Iowest hqbltOble roo
. ,fo.r:res/de-nc'es ''G'nd
. . ot.her non-.flood .
*.. . '. . pro.ot.. stru,c:I;Ur.u
')IO-Year Flood,Level '. . '.
l "2.5-Yeor Sump Cond.i.llon .::.:. .
.ARTE.RIAL HIGHWAY
:'{
r."
",-
..
>
..
.J
" '0
'0
0
-. ll..
~
0
. .t.
.;. .
. ,
~ . .......
,"
,<I " ...... .-=..... ~.~ 1'~; ','
, .
I
,
LOCAL STREET"
.,., :,j;;:<::::'.:' r>'rr-JrIT ...-'.
. ~"..' .~.
j' p,ad.~~!e,!~~" . '." _' .-
',' . . : "-. . .' ~.~ ~ .. .
''':.' FJ;lIslied' f(.o or of .
. . '":.''' ....: ',,'::'Iowes'(hobltoble. roo,
" .~."\ '.' 'for"rurdencu 'cnd
," "';'~" ",:: :"" ~ : .ath.:e;, ';;-0 n:"fl.oo'd
'* . .:. < ;.;,7.:.::: p~o~~:structuru
{JO-VeCH"FI-Ood .Lever ....
25-Year "$Jmp.. Condillo~'
'. " '. :,' '. -
'f:"
-
-
NOTE
*For Arterial Hwy:and Local Street,
depth times. velocity co.nnol ellceed
.Ix
..... .... ..-..
:.::.' .~:~~!-...~~:~: -~'.
. . :';'fffl'A<<~e:.tC'O\JN 'l'Y . E ,M-:A..
FC.6,O'O' :"P~O:TE CT'j"ON '.'
'.~:;~;)~.PALS \A.::
.... . a. ".'
.~..:. .
.
I
I
I
I
I
I
I I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
;;,;;)::,f."~~::>',
July 2003
.:::...~
Appendix 2
[
Lennar Partners
'-'i::~":'-
Harveston Apartments
\-j"
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(C) Copyright 1982-2002 Advanced Engineering Software (aes)
(Rational Tabling Version 5.9D)
Release Date: 01/01/2002 License ID 1355
Analysis prepared by:
Fuscoe Engineering, Inc.
16795 Von Karman Ave. Suite lOa
Irvine, California 92606
PH: 949-474-1960 FAX: 949-474-5315
************************** DESCRIPTION OF STUDY **************************
* HARVESTON APARTMENTS
* 100 YEAR STORM
* BY CT 5/13/03
*
*
*
**************************************************************************
FILE NAME: C:\AESDATA\HARV\Al002.DAT
TIME/DATE OF STUDY: 09:43 05/13/2003
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 15.00
SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.95
10-YEAR STORM 10-MINUTE INTENSITY (INCH!HOUR) = 2.360
10-YEAR STORM 60-MINUTE INTENSITY(INCH!HOUR) = 0.880
100-YEAR STORM 10-MINUTE INTENSITY (INCH!HOUR) = 3.480
lOa-YEAR STORM 60-MINUTE INTENSITY (INCH!HOUR) = 1.300
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 I-HOUR INTENSITY (INCH!HOUR) = 1.300
SLOPE OF INTENSITY DURATION CURVE = 0.5496
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPE FLOW AND STREET FLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- ! OUT-!PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY 1FT) 1FT) 1FT) 1FT) In)
1
0.018/0.018/0.020
2.00 0.0312 0.167 0.0150
0.67
30.0
20.0
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT!S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE
10.00 TO NODE
40.00 IS CODE = 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC = K*((LENGTH**3)f(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH = 325.00
UPSTREAM ELEVATION = 1116.50
DOWNSTREAM ELEVATION = 1110.50
ELEVATION DIFFERENCE = 6.00
TC ~ 0.323*[( 325.00**3)!( 6.00)]**.2
100 YEAR RAINFALL INTENSITY (INCH!HOUR) :
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT :
7.249
4.153
.8637
\~
I
I
SOIL CLASSIFICATION
SUBAREA RUNOFF(CFS)
TOTAL AREA (ACRES) =
IS "B"
7.89
2.20 TOTAL RUNOFF(CFS) =
7.89
I
****************************************************************************
FLOW PROCESS FROM NODE
40.00 TO NODE
50.00 IS COnE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM(FEET) = 1110.50 DOWNSTREAM (FEET) 1110.00
FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.9 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) 6.39
ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 7.89
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.38
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 50.00 375.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
50.00 TO NODE
50.00 IS CODE = 81
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.112
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8635
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 0.90
TOTAL AREA (ACRES) 3.10
TC(MIN) = 7.38
SUBAREA RUNOFFICFSI
TOTAL RUNOFF (CFS) =
3.20
11. 09
I
****************************************************************************
FLOW PROCESS FROM NODE
50.00 TO NODE
60.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1110.00 DOWNSTREAM (FEET) 1109.40
FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.3 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) 5.91
ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 11.09
PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.63
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 60.00 465.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
60.00 TO NODE
60.00 IS CODE ~ 81
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.037
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8629
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) 1.30
TOTAL AREA(ACRESI 4.40
TC(MIN) = 7.63
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF (CFSI ~
4.53
15.62
I
****************************************************************************
FLOW PROCESS FROM NODE
60.00 TO NODE
70.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1109.40 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.9 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 6.59
ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES
PIPE-FLOW(CFS) = 15.62
PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.89
1108.70
1
I
('\
I
I
I
LONGEST FLOWPATH FROM NODE
10.00 TO NODE
70.00 ~
565.00 FEET.
****************************************************************************
I
FLOW PROCESS FROM NODE
70.00 TO NODE
70.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.965
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8624
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 0.40
TOTAL AREA (ACRES) 4.80
TC(MIN) ~ 7.89
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
1.37
16.98
I
****************************************************************************
FLOW PROCESS FROM NODE
70.00 TO NODE
80.00 IS CODE ~ 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1108.70 DOWNSTREAM (FEET) 1108.00
FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.33
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 16.98
PIPE TRAVEL TIME (MIN.) = 0.18 Tc(MIN.) = 8.07
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 80.00 645.00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
80.00 TO NODE
80.00 IS CODE ~ 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.916
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8620
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 1.70
TOTAL AREA (ACRES) 6.50
TC(MIN) = 8.07
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
5.74
22.72
I
****************************************************************************
FLOW PROCESS FROM NODE
80.00 TO NODE
90.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM(FEET) = 1108.00 DOWNSTREAM (FEET) 1106.20
FLOW LENGTH (FEET) = 195.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.0 INCHES
PIPE-FLOW VELOCITY (FEETf SEC.) 8.07
ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 22.72
PIPE TRAVEL TIME(MIN.) = 0.40 Tc{MIN.) = 8.47
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 90.00 840.00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
90.00 TO NODE
90.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.812
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8612
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 1.30
TOTAL AREA(ACRES) 7.80
TC(MIN) = 8.47
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
4.27
26.99
I
****************************************************************************
FLOW PROCESS FROM NODE
90.00 TO NODE
100.00 IS CODE = 31
I
I
\~
I
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
============================================================================
I
ELEVATION DATA: UPSTREAM (FEET) = 1106.20 DOWNSTREAM (FEET) 1105.40
FLOW LENGTH(FEET) = 45.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES
PIPE-FLOW VELOCITY (FEET/SEC. ) 10.61
ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1
PIPE-FLOWICFS) = 26.99
PIPE TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 8.54
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 100.00 885.00 FEET.
I
I
****************************************************************************
FLOW PROCESS FROM NODE
100.00 TO NODE
100.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
----------------------------------------------------------------------------
-------------------------------------------------------------~--------------
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.795
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8611
SOIL CLASSIFICATION IS RBR
SUBAREA AREA(ACRES) 0.40
TOTAL AREA (ACRES) 8.20
TCIMIN) = 8.54
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF (CFS) =
1. 31
28.30
I
****************************************************************************
FLOW PROCESS FROM NODE
100.00 TO NODE
110.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
--------------------------~-------------------------------------------------
--------------------------------------------------------------------~-------
I
ELEVATION DATA: UPSTREAM{FEET) = 1105.40 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 11.82
ESTIMATED PIPE DIAMETER(INCH) = 24.00
PIPE-FLOW (CFS) = 28.30
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
1100.80
I
NUMBER OF PIPES
1
0.29 Tc(MIN.) =
10.00 TO NODE
8.83
110.00
1090.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
110.00 TO NODE
110.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
============================================================================
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.726
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8605
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 1.70
TOTAL AREA (ACRES) 9.90
TC(MIN) = 8.83
SUBAREA RUNOFF (CFS)
TOTAL RUNOFF (CFS) =
5.45
33.75
****************************************************************************
I
FLOW PROCESS FROM NODE
110.00 TO NODE
120.00 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
========~====================================~==============================
I
ELEVATION DATA: UPSTREAM (FEET) = 1100.80 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 2.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.8 INCHES
PIPE-FLOW VELOCITY (FEET/SEC.) 16.37
ESTIMATED PIPE DIAMETER (INCH) = 21.00
PIPE-FLOW (CFS) = 33.75
PIPE TRAVEL TlME{MIN.) =
LONGEST FLOWPATH FROM NODE
1100.70
I
NUMBER OF PIPES
1
0.00 Tc(MIN.) =
10.00 TO NODE
8.83
120.00
1092.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
120,00 TO NODE
120.00 IS CODE = 10
>>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
I
========~=====================~=============================================
I
,C\
I
I
****************************************************************************
FLOW PROCESS FROM NODE
130.00 TO NODE
140,00 IS CODE = 21
I
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC ~ K*[(LENGTH**3l/(ELEVATION CHANGElJ**.2
INITIAL SUBAREA FLOW-LENGTH = 330.00
UPSTREAM ELEVATION = 1111.90
DOWNSTREAM ELEVATION = 1105.10
ELEVATION DIFFERENCE = 6.80
TC = 0.323*[( 330.00**3)/( 6.80)]**.2 7.135
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.189
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .8640
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) 1.81
TOTAL AREA (ACRES) = 0.50 TOTAL RUNOFF(CFS) = 1.81
I
I
****************************************************************************
I
FLOW PROCESS FROM NODE
140.00 TO NODE
140.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.189
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8640
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) = 0.40
TOTAL AREA (ACRES) 0.90
TC(MIN) = 7.14
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
1. 45
3.26
I
****************************************************************************
FLOW PROCESS FROM NODE
140.00 TO NODE
150.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1105.10 DOWNSTREAMIFEET) 1104.50
FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 15.000
DEPTH OF FLOW IN 15.0 INCH PIPE IS 5.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.7S
ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 3.26
PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.18
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 150.00 350.00 FEET.
I
I
****************************************************************************
FLOW PROCESS FROM NODE
150.00 TO NODE
150.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.175
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8639
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 0.40
TOTAL AREA(ACRES) 1.30
TC(MIN) = 7.18
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
1. 44
4.70
I
****************************************************************************
FLOW PROCESS FROM NODE
150.00 TO NODE
160.00 IS COnE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1104.50 DOWNSTREAMIFEET)
FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 15.000
DEPTH OF FLOW IN 15.0 INCH PIPE IS 6.9 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) = 8.48
1102.60
I
I
zp
I
I
I
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLOWICFS) = 4.70
PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.31
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 160.00 415.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
160.00 TO NODE
160.00 IS CODE = 81
----------------------------------------------------------------------------
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
I
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.135
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8636
SOIL CLASSIFICATION IS "Bn
SUBAREA AREA(ACRES) 0.20
TOTAL AREA(ACRES) 1.50
TC{MIN) ~ 7.31
SUBAREA RUNOFF{CFS)
TOTAL RUNOFF{CFS) =
0.71
5.41
I
****************************************************************************
FLOW PROCESS FROM NODE
160.00 TO NODE
170.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
============================================================================
I
ELEVATION DATA: UPSTREAM(FEET) = 1102.60 DOWNSTREAM (FEET) 1102.30
FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.4 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.61
ESTIMATED PIPE DIAMETER{INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLQW(CFS) = 5.41
PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.34
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 170.00 430.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
170.00 TO NODE
170.00 IS CODE = 81
----------------------------------------------------------------------------
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.125
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8635
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) 0.10
TOTAL AREA(ACRES) 1.60
TC(MIN) = 7.34
SUBAREA RUNOFFICFS)
TOTAL RUNOFF(CFS) =
0.36
5.77
I
****************************************************************************
FLOW PROCESS FROM NODE
170.00 TO NODE
180.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
============================================================================
I
ELEVATION DATA: UPSTREAMIFEET) = 1102.30 DOWNSTREAM (FEET) 1101.60
FLOW LENGTH{FEET) = 30.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.4 INCHES
PIPE-FLOW VELOCITY{FEET/SEC.l 8.20
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 5.77
PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 7.40
LONGEST FLOWPATH FROM NODE 130.00 TO NODE 180.00 460.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
180.00 TO NODE
180.00 IS CODE =
1
----------------------------------------------------------------------------
I
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
-~---------------~~--------------------------~-------------------------~----
--------~~------------------------------------------------------------------
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) 7.40
RAINFALL INTENSITY (INCH/HR) = 4.11
TOTAL STREAM AREA (ACRES) ~ 1.60
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.77
I
I
'J,\
I
I
****************************************************************************
FLOW PROCESS FROM NODE
190.00 TO NODE
200.00 IS CODE ~ 21
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
I
I
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS APARTMENT
TC = K*[(LENGTH**3)/(ELEVATION CHANGEl]**.2
INITIAL SUBAREA FLOW-LENGTH = 50.00
UPSTREAM ELEVATION = 1106.50
DOWNSTREAM ELEVATION = 1106.30
ELEVATION DIFFERENCE = 0.20
TC = 0.323*[{ 50.00**3)/( 0.20lJ**.2 4.656
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.093
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8693
SOIL CLASSIFICATION IS "B"
SUBAREA RUNOFF(CFS) 0.44
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.44
I
I
****************************************************************************
I
FLOW PROCESS FROM NODE
200.00 TO NODE
200.00 IS CODE ~ 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.093
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8693
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRESl 0.90
TOTAL AREA (ACRES) 1.00
TC(MINI ~ 5.00
SUBAREA RUNOFF(CFS}
TOTAL RUNOFF (CFS) =
3.98
4.43
I
****************************************************************************
FLOW PROCESS FROM NODE
200.00 TO NODE
210.00 IS CODE ~ 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
----------------------------------------------------------------------------
--------~~~-----------------------------------------------------------------
I
ELEVATION DATA: UPSTREAM (FEET) = 1106.30 DOWNSTREAM (FEET) 1104.20
FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.l 5.91
ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 4.43
PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 5.51
LONGEST FLOWPATH FROM NODE 190.00 TO NODE 210.00 230.00 FEET.
I
****************************************************************************
I
FLOW PROCESS FROM NODE
210.00 TO NODE
210.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.830
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8679
SOIL CLASSIFICATION IS "B"
SU8AREA AREA (ACRES I 0.40
TOTAL AREA(ACRESl 1.40
TC(MIN) = 5.51
SUBAREA RUNOFF(CFSI
TOTAL RUNOFF(CFSl =
1. 68
6.10
I
****************************************************************************
FLOW PROCESS FROM NODE
210.00 TO NODE
220.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
============================================================================
I
ELEVATION DATA: UPSTREAM (FEET) = 1104.20 DOWNSTREAM (FEET)
FLOW LENGTH{FEET) = 320.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES
PIPE-FLOW VELOCITY (FEET/SEC. ) 5.41
ESTIMATED PIPE DIAMETER (INCH) 18.00 NUMBER OF PIPES
PIPE-FLOW (CFS) = 6.10
1101. 80
1
I
I
2-2--
I
I
II
PIPE TRAVEL TIME (MIN.) =
LONGEST FLOWPATH FROM NODE
0.99 Tc(MIN.) =
190.00 TO NODE
6.49
220.00
5S0.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
220.00 TO NODE
220.00 IS CODE = 81
>>>>>ADDITIQN OF SUBAREA TO MAINLINE PEAK FLQW<<<<<
============================================================================
I
I
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.412
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8655
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 2.10
TOTAL AREA(ACRES) 3.50
TC(MIN) ~ 6.49
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
8.02
14.12
****************************************************************************
FLOW PROCESS FROM NODE
220.00 TO NODE
180.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
============================================================================
I
ELEVATION DATA: UPSTREAM (FEET) = 1101.80 DOWNSTREAM (FEET) 1101.60
FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 7.28
ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 14.12
PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 6.54
LONGEST FLOWPATH FROM NODE 190.00 TO NODE 180.00 570.00 FEET.
I
I
****************************************************************************
FLOW PROCESS FROM NODE
180.00 TO NODE
180.00 IS CODE =
1
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
I
================E===========================================================
I
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) 6.54
RAINFALL INTENSITY (INCH/HR) = 4.39
TOTAL STREAM AREA(ACRES) = 3.50
PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.12
I
** CONFLUENCE DATA **
STREAM RUNOFF
NUMBER (CFS)
1 5.77
2 14.12
Tc
(MIN. )
7.40
6.54
INTENSITY
( INCH/HOUR)
4.106
4.395
AREA
(ACRE)
1. 60
3.50
I
*********************************WARNING**********************************
I
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
I
I
** PEAK
STREAM
NUMBER
1
2
FLOW RATE
RUNOFF
(CFSI
19.22
18.97
TABLE **
Tc
(MIN. )
6.54
7.40
INTENSITY
( INCH/HOUR)
4.395
4.106
I
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) =
LONGEST FLOWPATH FROM
ESTIMATES ARE
19.22
5.10
NODE
AS FOLLOWS:
Tc (MIN.) =
6.54
190.00 TO NODE
180.00
570.00 FEET.
****************************************************************************
I
FLOW PROCESS FROM NODE
180.00 TO NODE
230.00 IS CODE = 31
I
Z-~
I
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
============================================================================
I
I
ELEVATION DATA: UPSTREAM (FEET) = 1101.60 DOWNSTREAM (FEET) 1101.20
FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.2 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.} 4.93
ESTIMATED PIPE DIAMETER{INCH) = 30.00 NUMBER OF PIPES 1
PIPE-FLOWICFSl = 19.22
PIPE TRAVEL TlME{MIN.) = 0.47 Tc(MIN.) = 7.01
LONGEST FLOWPATH FROM NODE 190.00 TO NODE 230.00 710.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
230.00 TO NODE
230.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
============================================================================
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.229
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8643
SOIL CLASSIFICATION IS "B"
SUBAREA AREA (ACRES) 0.20
TOTAL AREA (ACRES) 5.30
TC(MIN) = 7.01
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF (CFS) =
0.73
19.95
****************************************************************************
I
FLOW PROCESS FROM NODE
230.00 TO NODE
240.00 IS CODE = 31
>>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
============================================================================
I
ELEVATION DATA: UPSTREAM(FEET) = 1101.20 DOWNSTREAM (FEET) 1100.90
FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) 5.56
ESTIMATED PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 19.95
PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 7.25
LONGEST FLOWPATH FROM NODE 190.00 TO NODE 240.00 790.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
240.00 TO NODE
240.00 IS CODE = 81
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
============================================================================
I
100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.152
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8637
SOIL CLASSIFICATION IS "B"
SUBAREA AREA(ACRES) 1.00
TOTAL AREA(ACRES) 6.30
TCIMIN) = 7.25
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
3.59
23.54
****************************************************************************
I
FLOW PROCESS FROM NODE
240.00 TO NODE
120.00 IS CODE = 31
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
============================================================================
I
ELEVATION DATA: UPSTREAM (FEET) = 1100.90 DOWNSTREAM (FEET) 1100.70
FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.1 INCHES
PIPE-FLOW VELOCITY{FEET!SEC.) 7.06
ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES 1
PIPE-FLOW(CFS) = 23.54
PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 7.32
LONGEST FLOWPATH FROM NODE 190.00 TO NODE 120.00 820.00 FEET.
I
****************************************************************************
FLOW PROCESS FROM NODE
120.00 TO NODE
120.00 IS CODE = 11
>>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMQRY<<<<<
I
I
1--~
I
I
I
** MAIN
STREAM
NUMBER
1
LONGEST
STREAM CONFLUENCE DATA **
RUNOFF Tc INTENSITY
ICFS) (MIN.) (INCH/HOUR)
23.54 7.32 4.129
FLOWPATH FROM NODE 190.00 TO
AREA
(ACRE)
6.30
NODE 120.00
820.00 FEET.
I
** MEMORY
STREAM
NUMBER
1
LONGEST
BANK # 1 CONFLUENCE DATA **
RUNOFF Tc INTENSITY
(CFS) (MIN.) (INCH/HOUR)
33.75 8.83 3.726
FLOWPATH FROM NODE 10.00 TO NODE
AREA
(ACRE)
9.90
120.00
1092.00 FEET.
I
I
*********************************WARNING**********************************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
I
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) IMIN.) ( INCH/HOUR)
1 51. 52 7.32 4.129
2 54.99 8.83 3.726
I
COMPUTED CONFLUENCE
PEAK FLOW RATE(CFS)
TOTAL AREA (ACRES) =
ESTIMATES ARE
54.99
16.20
AS FOLLOWS:
Tc(MIN.) =
8.83
I
****************************************************************************
FLOW PROCESS FROM NODE
120.00 TO NODE
120.00 IS CODE = 12
>>>>>CLEAR MEMORY BANK # 1 <<<<<
I
****************************************************************************
FLOW PROCESS FROM NODE
120.00 TO NODE
2S0.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET) = 1100.70 DOWNSTREAM (FEET)
FLOW LENGTH(FEET) = 315.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.0 INCHES
PIPE-FLOW VELOCITYIFEET/SEC.) 9.32
ESTIMATED PIPE DIAMETER(INCH) = 36.00
PIPE-FLOW (CFS) = 54.99
PIPE TRAVEL TIME(MIN.) =
LONGEST FLOWPATH FROM NODE
1098.20
NUMBER OF PIPES
1
I
0.56 Tc(MIN.) ~
10.00 TO NODE
9.40
250.00
1407.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE
250.00 TO NODE
250.00 IS CODE = 81
I
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
I
100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.601
APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8594
SOIL CLASSIFICATION IS "E"
SUBAREA AREA(ACRES) 1.30
TOTAL AREA (ACRES) 17.50
TC(MIN) = 9.40
SUBAREA RUNOFF(CFS)
TOTAL RUNOFF(CFS) =
4.02
59.01
I
****************************************************************************
FLOW PROCESS FROM NODE
250.00 TO NODE
260.00 IS CODE = 31
I
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<<
I
ELEVATION DATA: UPSTREAM (FEET)
FLOW LENGTH(FEET) = 10.00
1098.20 DOWNSTREAM (FEET)
MANNING'S N = 0.013
1098.10
I
6
I
I
I
DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.9 INCHES
PIPE-FLOW VELOCITY(FEET!SEC.) 10.42
ESTIMATED PIPE DIAMETER (INCH) = 36.00 NUMBER OF PIPES 1
PIPE-FLOW (CFS) = 59.01
PIPE TRAVEL TlME(MIN.) = 0.02 Tc{MIN.) = 9.41
LONGEST FLOWPATH FROM NODE 10.00 TO NODE 260.00 1417.00 FEET.
============================================================================
I
END OF STUDY SUMMARY:
TOTAL AREA{ACRES)
PEAK FLOW RATE(CFS)
17.50 TC(MIN.) =
59.01
9.41
----------------------------------------------------------------------------
----------------------------------------------------------------------------
============================================================================
I
END OF RATIONAL METHOD ANALYSIS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
--- ---,-
'1
"-'~'
Appendix 3
L .,,~""'".
Lennar Partners
Harveston Apartments
1-1,
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
{c} Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Yon Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY
* 100 YEAR HYDRAULIC ANALYSIS
* LINE A
* BY CT 1/25/03
**************************
*
*
*
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPE1.DAT
TIME/DATE OF STUDY: 13:24 01/25/2003
====:========~~============================--==----=============--==============
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER(INCH) = 36.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEYATION c
PIPE FLOW (CFS) ~
1089.290
FOR JUNCTION ANALYSIS
1086.41
58.30
I
=====================--=:::==============z--===========
SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM
NODE 1.00 : HGL= < 1089.410>;EGL= < 1090.466>;FLOWLINE= < 1086.410>
I
--------=
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1086.45
2.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 58.30 CFS PIPE DIAMETER 36.00 INCHES
PIPE LENGTH 7.81 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (I 58.30)/1 666.983))**2 = 0.0076402
HF~L*SF = ( 7.81)*1 0.0076402) ~ 0.060
NODE 2.00 : HGL= < 1089.470>;$GL= < 1090.526>;FLOWLINE= < 1086.450>
I
-~-====--===----==========
I
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 3.00 ELEVATION - 1086.65
3.00 IS CODE ~ 5
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY
1 53.0 36.00 7.069 7.505
2 58.3 36.00 7.069 8.248
3 5.2 18.00 1.767 2.971
4 0.0 0.00 0.000 0.000
5 0.0===Q5 EQUALS BASIN INPUT===
DELTA
27.100
HV
0.875
1. 05 6
90.000
0.000
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY-(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)-
Q4*V4*COSIDELTA4))/I(A1+A2)*16.1)
I
UPSTREAM MANNINGS N ~ 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00633
DOWNSTREAM FRICTION SLOPE = 0.00764
I
I
z$
I
II
I
AVERAGED
JUNCTION
ENTRANCE
JUNCTION
JUNCTION
NODE
FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00698
LENGTH (FEET) = 4.00 FRICTION LOSS = 0.028
LOSSES 0.000
LOSSES = DY+HVI-HV2+{FRICTION LOSS)+(ENTRANCE LOSSES)
LOSSES 0.555+ 0.875- 1.056+1 0.028)+1 0.000) = 0.402
3.00 : HGL= < l090.053>:EGL= < l090.928>:FLOWLINE= < 1086.650>
I
----
PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE
UPSTREAM NODE 4.00 ELEVATION = 1086.76
4.00 IS CODE
1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 53.05 eFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH = 22.49 FEET MANNINGS N = 0.01300
SF=IQ/K) **2 I( 53.05)/( 666.983))**2 = 0.0063262
HF=L*SF = ( 22.49)*( 0.0063262) = 0.142
NODE 4.00 : HGL= < l090.195>;EGL= < l091.070>:FLOWLINE= < 1086.760>
I
====-- ===--=======================.:E:::Z:=========
I
PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE
UPSTREAM NODE 5.00 ELEVATION = 1086.82
5.00 IS CODE = 3
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) :
PIPE FLOW = 53.05 CFS PIPE DIAMETER 36.00 INCHES
CENTRAL ANGLE = 29.950 DEGREES
PIPE LENGTH = 11.76 FEET MANNINGS N 0.01300
PRESSURE FLOW AREA = 7.069 SQUARE FEET
FLOW VELOCITY = 7.51 FEET PER SECOND
VELOCITY HEAD = 0.875 BEND COEFFICIENT(KB) "" 0.1442
HB=KB*(VELOCITY HEAD) = I 0.144)*( 0.875) - 0.126
PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPE(SF) 0.0063262
FRICTION LOSSES - L*SF = I 11.76)*1 0.0063262) = 0.074
NODE 5.00 : HGL= < l090.396>;EGL= < 1091.271>;FLOWLINE= < 1086.820>
I
I
==---==--=====--==::::=================:c
I
PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE
UPSTREAM NODE 6.00 ELEVATION:c 1087.66
6.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 53.05 CFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH = 168.15 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 = I( 53.05)/1 666.983))**2 - 0.0063262
HF=L*SF = ( 168.15)*( 0.0063262) = 1.064
NODE 6.00 : HGL= < 1091.460>;EGL= < 1092.334>;FLOWLINE= < 1087.660>
I
PRESSURE FLOW PROCESS FROM NODE 6.00 TO NODE
UPSTREAM NODE 7.00 ELEVATION - 1087.76
7.00 IS CODE = 3
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) :
PIPE FLOW = 53.05 crs PIPE DIAMETER = 36.00 INCHES
CENTRAL ANGLE = 52.420 DEGREES
PIPE LENGTH = 8.23 FEET MANNINGS N - 0.01300
PRESSURE FLOW AREA = 7.069 SQUARE FEET
FLOW VELOCITY = 7.51 FEET PER SECOND
VELOCITY HEAD - 0.875 BEND COEFFICIENTIKB) = 0.1908
HB=KB*(VELOCITY HEAD) = I 0.191)*1 0.875) = 0.167
PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPEISF) 0.0063262
FRICTION LOSSES = L*SF = ( 8.23)*( 0.0063262) = 0.052
NODE 7.00 : HGL= < 1091.679>;EGL= < 1092.553>;FLOWLINE= < 1087.760>
I
I
PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE
UPSTREAM NODE 8.00 ELEVATION = 1087.87
8.00 IS CODE
3
-------~-------------------------------------------------------------------~
I
CALCULATE PRESSURE FLOW-PIPE-BEND LOSSES (OCEMA) :
I
-z.-q
I
I
I
PIPE FLOW = 53.05 CFS PIPE DIAMETER = 36.00 INCHES
CENTRAL ANGLE 52.420 DEGREES
PIPE LENGTH = 8.23 FEET MANNINGS N = 0.01300
PRESSURE FLOW AREA = 7.069 SQUARE FEET
FLOW VELOCITY = 7.51 FEET PER SECOND
VELOCITY HEAD = 0.875 BEND COEFFICIENT (KB) = 0.1908
HB=KB*(VELOCITY HEAD) = ( 0.191)'( 0.875) = 0.167
PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPE (SF) 0.0063262
FRICTION LOSSES = L*SF = ( 8.23)*( 0.0063262) = 0.052
NODE 8.00 : HGL= < 1091.898>;EGL= < 1092.772>;FLOWLINE= < 1087.870>
I
I
===========-----============================================================
PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE
UPSTREAM NODE 9.00 ELEVATION"" 1088.21
9.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
.PIPE FLOW = 53.05 CFS PIPE DIAMETER = 36.00 INCHES
PIPE LENGTH 67.90 FEET MANNINGS N = 0.01300
SF=(Q/K) **2 {( 53.05)/( 666.983))**2"" 0.0063262
HF=L*SF = ( 67.90)*( 0.0063262) = 0.430
NODE 9.00 : HGL= < 1092.327>;EGL= < 1093.202>;FLOWLINE= < 1088.210>
I
===================- --=====
= ===========
I
PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE
UPSTREAM NODE 10.00 ELEVATION - 1089.20
10.00 IS CODE = 5
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 27.9 24.00 3.142 8.894 0.400
2 53.0 36.00 7.069 7.505
3 6.4 15.00 1.227 5.215 13.100
4 18.7 30.00 4.909 3.816 0.600
5 0.0-==Q5 EQUALS BASIN INPUT-==
HV
1. 228
0.875
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)_
Q4*V4*COSIDELTA4))/(IA1+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.01525
DOWNSTREAM FRICTION SLOPE = 0.00633
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01079
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.043
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HV1-HV2+IFRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES = 0.278+ 1.228- 0.875+( 0.043)+( 0.000) = 0.675
NODE 10.00: HGL: < 1092.648>;EGL= < 1093.876>;FLOWLINE= < 1089.200>
I
I
I
==--========---=====-============
PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE
UPSTREAM NODE 11.00 ELEVATION = 1089.55
11.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 27.94 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH = 13.26 FEET MANNINGS N = 0.01300
SF~(Q/K)**2 ~ (( 27.94)/( 226.224))**2 ~ 0.0152538
HF=L*SF = ( 13.26)*( 0.0152538) = 0.202
NODE 11.00: HGL~ < 1092.851>;EGL= < 1094.079>;FLOWLINE: < 1089.550>
I
I
PRESSURE FLOW PROCESS FROM NODE 11.00 TO NODE
UPSTRE~ NODE 12.00 ELEVATION = 1089.82
12.00 IS CODE = 3
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) :
PIPE FLOW = 27.94 CFS PIPE DIAMETER = 24.00 INCHES
CENTRAL ANGLE = 26.300 DEGREES
I
:?o
I
I
I
PIPE LENGTH = 10.33 FEET MANNINGS N 0.01300
PRESSURE FLOW AREA = 3.142 SQUARE FEET
FLOW VELOCITY = 8.89 FEET PER SECOND
VELOCITY HEAD = 1.228 BEND COEFFICIENT(KB) = 0.1351
HB-KB*(VELOCITY HEAD) = ( 0.135)*1 1.228) ~ 0.166
PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF} 0.0152538
FRICTION LOSSES - L'SF = ( 10.33)*( 0.0152538) _ 0.158
NODE 12.00: HGL= < l093.174>;EGL= < l094.402>;FLOWLINE= < 1089.820>
I
-----========---=----------= ====
I
PRESSURE FLOW PROCESS FROM NODE 12.00 TO NODE
UPSTREAM NODE 13.00 ELEVATION - 1090.37
13.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDl :
PIPE FLOW - 27.94 CFS PIPE DIAMETER 24.00 INCHES
PIPE LENGTH 21.08 FEET MANNINGS N = 0.01300
SF~(Q/K)'*2 - (I 27.94)/1 226.224))**2 = 0.0152538
HF=L*SF = ( 21.08)*( 0.0152538) = 0.322
NODE 13.00: HGL= < 1093.496>;EGL= < 1094.724>;FLOWLINE= < 1090.370>
I
===========----=========--===========--=======================================
PRESSURE FLOW PROCESS FROM NODE 13.00 TO NODE
UPSTREAM NODE 14.00 ELEVATION - 1090.64
14.00 IS CODE = 3
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSESIOCEMA):
PIPE FLOW = 27.94 CFS PIPE DIAMETER"" 24.00 INCHES
CENTRAL ANGLE = 26.300 DEGREES
PIPE LENGTH = 10.42 FEET MANNINGS N 0.01300
PRESSURE FLOW AREA = 3.142 SQUARE FEET
FLOW VELOCITY"" 8.89 FEET PER SECOND
VELOCITY HEAD = 1.228 BEND COEFFICIENT(KBj = 0.1351
HB=KB*(VELOCITY HEAD) = ( 0.135)*( 1.228) = 0.166
PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) 0.0152538
FRICTION LOSSES = L*SF = ( 10.42)*( 0.0152538) = 0.159
NODE 14.00: HGL= < 1093.821>;EGL= < 1095.049>;FLOWLINE= < 1090.640>
I
I
==---==---===--------=================z:==
PRESSURE FLOW PROCESS FROM NODE 14.00 TO NODE
UPSTREAM NODE 15.00 ELEVATION m 1095.70
15.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 27.94 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH 192.95 FEET MANNINGS N = 0.01300
SF-(Q/K)**2 = (( 27.94)/( 226.224))**2 ~ 0.0152538
HF-L*SF = ( 192.95)*( 0.0152538) - 2.943
NODE 15.00: HGL- < 1096.764>;EGL= < 1097.992>;FLOWLINE~ < 1095.700>
I
----------------------------------------------------------------------------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.94
NODE 15.00: HGL= < 1097.700>;EGL= < 1098.928>;FLOWLINE= < 1095.700>
=--=---=--=--==
-----===--=-======---======
I
PRESSURE FLOW PROCESS FROM NODE 15.00 TO NODE
UPSTREAM NODE 16.00 ELEVATION m 1095.76
16.00 IS CODE = 5
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY
1 21.4 24.00 3.142 6.805
2 27.9 24.00 3.142 8.894
3 6.6 15.00 1.227 5.346
4 0.0 0.00 0.000 0.000
5 0.0-==Q5 EQUALS BASIN INPUT=-=
DELTA
0.000
HV
0.719
1. 228
15.100
0.000
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)
I
I
~\
I
I
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00893
DOWNSTREAM FRICTION SLOPE = 0.01525
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01209
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.048
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES m 0.683+ 0.719- 1.228+( 0.048)+( 0.000) = 0.223
NODE 16.00: HGL= < l098.432>;EGL= < l099.151>jFLOWLINE= < 1095.760>
I
I
=================--==========================----=====--========================
PRESSURE FLOW PROCESS FROM NODE 16.00 TO.NODE
UPSTREAM NODE 17.00 ELEVATION = 1100.42
17.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 21.38 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH 157.97 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 21.38)/( 226.224))*'*2 = 0.0089318
HF-L*SF = ( 1S7.97)'( 0.0089318) - 1.411
NODE 17.00: HGL= < 1099.843>:EGL= < 1100.562>:FLOWLINE= < 1100.420>
I
__~M________________________________________________________________________
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 2.58
NODE 17.00: HGL= < 1102.420>:EGL= < 1103.139>:FLOWLINE= < 1100.420>
======----====================--============-========-=======================
I
PRESSURE FLOW PROCESS FROM NODE 17.00 TO NODE
UPSTREAM NODE 18.00 ELEVATION - 1100.54
18.00 IS CODE = 5
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 16.3 24.00 3.142 S.195 0.800
2 21.4 24.00 3.142 6.805
3 5.1 15.00 1.227 4.123 13.800
4 0.0 0.00 0.000 0.000 0.000
5 D.0===Q5 EQUALS BASIN INPUT=--=
HV
0.419
0.719
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE ~ 0.00520
DOWNSTREAM FRICTION SLOPE = 0.00893
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00707
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.028
ENTRANCE LOSSES = 0.000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES 0.400+ 0.419- 0.719+( 0.028)+( 0.000) = 0.128
NODE 18.00:' HGL= < 1102.848>;EGL- < 1103.267>;FLOWLINE- < 1100.540>
I
I
I
~--
PRESSURE FLOW PROCESS FROM NODE 18.00 TO NODE
UPSTREAM NODE 19.00 ELEVATION - 1101.20
19.00 IS CODE = 3
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) :
PIPE FLOW = 16.32 CFS PIPE DIAMETER = 24.00 INCHES
CENTRAL ANGLE = 90.000 DEGREES
PIPE LENGTH = 65.10 FEET MANNINGS N = 0.01300
PRESSURE FLOW AREA = 3.142 SQUARE FEET
FLOW VELOCITY 5.19 FEET PER SECOND
VELOCITY HEAD 0.419 BEND COEFFICIENT(KB) = 0.2500
HB=KB*(VELOCITY HEAD) = ( 0.250)*( 0.419) = 0.105
PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) 0.0052043
FRICTION LOSSES = L*SF ~ ( 65.10)*( 0.0052043) - 0.339
NODE 19.00: HGL= < 1103.292>:EGL= < 1103.711>:FLOWLINE= < 1101.200>
I
I
I
?Jz-.-
I
I
==--=- --------------------------- -
I
PRESSURE FLOW PROCESS FROM NODE 19.00 TO NODE
UPSTREAM NODE 20.00 ELEVATION - 1102.28
20.00 IS CODE ~ 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 16.32 CFS PIPE DIAMETER = 24.00 INCHES
PIPE LENGTH E 108.50 FEET MANNINGS N = 0.01300
SF~(Q(K)**2 ~ (( 16.32)(( 226.224) )**2 - 0.OU52U43
HF-L*SF : ( 1U8.5U)*( U.UU52043) - 0.S65
NODE 20.00: HGLc < 1103.857>iEGL= < 1104.276>;FLOWLINE= < 1102.280>
I
----------------------------------------------------------------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 20.00: HGL~ < 1104.280>;EGL~ <
HGL AND EGL
0.42
1104.699>;FLOWLINE~
< 1102. 28U>
I
--=======---=--=
PRESSURE FLOW PROCESS FROM NODE 20.00 TO NODE
UPSTREAM NODE 21.00 ELEVATION = 1102.32
21.00 IS CODE = 5
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY
1 11.4 24.00 3.142 3.641
2 16.3 24.UU 3.142 5.195
3 4.9 15.UO 1.227 3.977
4 U.U U.OO U.OOO U.OOO
5 0.0===Q5 EQUALS BASIN INPUT==:
DELTA
O.UUU
HV
U.2U6
U.419
1. 900
0.000
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3l-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)
I
UPSTREAM MANNINGS N - 0.01300
DOWNSTREAM MANNINGS N - U.01300
UPSTREAM FRICTION SLOPE = 0.00256
DOWNSTREAM FRICTION SLOPE - 0.00520
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00388
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS - 0.016
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSSl+(ENTRANCE LOSSES)
JUNCTION LOSSES U.235+ U.206- 0.419+( 0.016)+( O.OUU): 0.037
NODE 21.00: HGL= < 1104.530>:EGL= < 1104.736>;FLOWLINE= < 1102.320>
I
I
====---====--=--==- =--=======--===========E:====--
I
PRESSURE FLOW PROCESS FROM NODE 21.00 TO NODE
UPSTREAM NODE 22.00 ELEVATION = 1103.20
22.00 IS CUDE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 11.44 CFS PIPE DIAMETER - 24.00 INCHES
PIPE LENGTH 88.40 FEET MANNINGS N - 0.01300
SF:(Q(K)**2 - (( 11.44)(( 226.224))**2 = 0.0025573
HF=L*SF: ( 88.40)*( U.00255731: U.226
NODE 22.00: HGL= < 1104.756>:EGL= < 1104.962>:FLOWLINE- < 1103.200>
----------------------------------------------------------------------------
I I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 22.00: HGL= < 1105.200>:EGL= <
HGL AND EGL
0.44
1105. 406>: FLOWLINE=
< 1103.200>
I
-- - ----
-=--======-====---- -----------
PRESSURE FLOW PROCESS FROM NODE 22.00 TO NODE
UPSTREAM NODE 23.00 ELEVATION - 1103.50
23.00 IS COUE = 5
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 7.9 18.UO 1.767 4.465 O.OOU
2 11.4 24.00 3.142 3.641
3 1.8 15.UO 1.227 1.442 1.9UU
HV
0.310
0.206
I
I
~?/
I
I
4
5
1.8 15.00 1.227 1.442
0.0===Q5 EQUALS BASIN INPUT===
3.400
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+AZ)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00564
DOWNSTREAM FRICTION SLOPE - 0.00256
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00419
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.016
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS}+(ENTRANCE LOSSES)
JUNCTION LOSSES 0.017+ 0.310- 0.206+( 0.016)+( 0.000) = 0.137
NODE 23.00: HGL= < 110S.233>iEGL= < 1105.543>;FLQWLINE= < 1103.500>
I
I
=========--=====--===============---------
I
PRESSURE FLOW PROCESS FROM NODE 23.00 TO NODE
UPSTREAM NODE 24.00 ELEVATION = 1103.99
24.00 IS CODE = 1
----------------------------------------------------------------------------
I
! I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDj :
PIPE FLOW = 7.89 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH 49.47 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 - (( 7.89)/( 105.043))**2 = 0.0056418
HF=L*SF = ( 49!47)*( 0.0056418) = 0.279
NODE 24.00: HGL= < 1105.512>;EGL= < 110S.822>;FLOWLINE= < 1103.990>
=====================~=====================_============a===================
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
I
I
I
I
I
I
I
~
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& DCEMA HYDRAULICS CRITERION)
I
(el Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Van Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION
* 100 YEAR HYDRAULIC ANALYSIS
* LAT A-I
* BY CT 1/16/03
OF STUDY. **************************
*
.
*
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEA1.DAT
TIME/DATE OF STUDY: 17:29 01/16/2003
===============--============================================================
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETERIINCHI = 15.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW (CFS) =
1090.780
FOR JUNCTION ANALYSIS
1089.28
6.40
I
============--==========================-=========--===========----==========~
NODE
1.00 : HGL= < 1090.780>;EGL= < 1091.202>;FLOWLINE= < 1089.280>
==================-
-======~=---====----====
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1093.05
2.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 6.40 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 11.06 FEET MANNINGS N = 0.01300
SF=(Q/K)'*2 I( 6.401/( 64.59811**2 = 0.0098158
HF=L*SF = I 11.06)*( 0.0098158) = 0.109
NODE 2.00 : HGL= < 1090.889>;EGL= < 1091.311>;FLOWLINE= < 1093.050>
I
------------------------------------------------------~---------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1094.300>;EGL= <
HGL AND EGL
3.41
1094. 722>;FLOWLINE=
< 1093.050>
I
===-- =~===~ --==----
I
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION ~ 1093.05
2.00 IS CODE = 8
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCDj :
PIPE FLQW{CFS) = 6.40 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD = 0.422
CATCH BASIN ENERGY LOSS = .2*{VELOCITY HEAD) = .2*( 0.422) = 0.084
NODE 2.00 : HGL= < 1094.807>;EGL= < 1094.807>;FLOWLINE= < 1093.050>
====:z===-==-
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
"
3"/
I
I
............................................................................
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
LATERAL A-I
I
------------
PIPE DIAMETER(FEET) ~ 1.250
PIPE SLOPE(FEETIFEET)= 0.3410
PIPEFLOW(CFS) ~ 6.40
MANNINGS FRICTION FACTOR~ 0.012000
I
CRITICAL-DEPTH FLOW INFORMATION:
I
CRITICAL DEPTH(FEET) = 1.02
CRITICAL FLOW AREA(SQUARE FEET) - 1.072
CRITICAL FLOW TOP.W1DTH(FEET) = 0.969
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) ~
CRITICAL FLOW VELOCITY(FEET/SEC.) = 5.970
CRITICAL FLOW VELOCITY HEAIl(FEET) = 0.55
CRITICAL FLOW HYDRAULIC DEPTH(FEET) ~ I. I I
CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 1.57
NORMAL-DEPTH FLOW INFORMATION:
105.25
I
I
I
NORMAL DEPTH(FEET) ~ 0.33
FLOW AREA(SQUARE FEET) ~ 0.26
FLOW TOP-WIDTH(FEET) = U07
FLOW PRESSURE + MOMENTUM(POUNDS) =
FLOW YELOCITY(FEET/SEC.) = 24.250
FLOWYELOCITYHEAIl(FEET)~ 9.13]
HYDRAULIC DEPTH(FEET) ~ 0.24
FROUDENUMBER- 8.751
SPECIFIC ENERGY(FEET) ~ 9.47
303.06
I
I
I
II
II
I
I
i I
I
I
-pfp
I
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
(e) Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License ID 1355
I
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Von Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY
* 100 YEAR HYDRAULIC ANALYSIS
* LAT A-2
* BY CT 1/14/03
**************************
.
*
*
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEA2.DAT
TIME/DATE OF STUDY: 13:33 01/14/2003
===================mm==============================================--========
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER(INCH) = 15.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
1097.180
FOR JUNCTION ANALYSIS
1095.82
6.56
I
=========================================================================~
NODE
1.00 : HGL= < 1097.180>;EGL= < 1097.624>;FLOWLINE= < 1095.820>
==-----===========--=====""'...====--===========:z=::::=======_ _
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION"'" 1098.72
2.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 6.56 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 10.76 FEET MANNINGS N = 0.01300
SF~(Q/K)**2 (( 6.56)/( 64.598)1**2 ~ 0.0103127
HF~L*SF ~ ( 10.761*( 0.0103127) ~ 0.111
NODE 2.00 : HGL= < 1097.291>;EGL~ < 1097.735>:FLOWLINE~ < 1098.720>
I
----------------------------------------------------------------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1099.970>;EGL= <
HGL AND EGL
2.68
1100.414>;FLOWLINE=
< 1098.720>
I
====a-====...~===_-==
- -==-========--===============-=====
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1098.72
2.00 IS CODE = 8
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) :
PIPE FLOW(CFS) = 6.56 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD = 0.444
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.444) = 0.089
NODE 2.00 : HGL= < 1100.502>;EGL= < 1100.502>;FLOWLINE= < 1098.720>
====---=::::-==
=:E=__=====~
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
;,\
I
I
............................................................................
>>>>PIPEFLOW HYDRAUUC INPUf INFORMATION<<<<
LATERALA.2
I
PIPE DIAMETER(FEET) = 1.250
PIPE SLOPE(FEETIFEET) ~ 0.2700
PIPEFLOW(CFS) = 6.56
MANNINGS FRICTION FACTOR = 0.012000
I
CRITICAL.DEPTH FLOW INFORMATION:
I
CRITICAL DEPTH(FEET) = 1.03
CRITICAL FLOW AREA(SQUARE FEET) = 1.083
CRITICAL FLOW TOP-WIDTH(FEET) = 0.950
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) ~
CRITICAL FLOW VELOCITY(FEET/SEC.) ~ 6.058
CRITICAL FLOW VELOCITY IIEAD(FEET) = 0.57
CRITICAL FLOW HYDRAUUC DEPTH(FEET) ~ I.l4
CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 1.60
NORMAL.DEPTH FLOW INFORMATION:
108.99
I
I
I
NORMAL DEPTH(FEET) ~ 0.36
FLOW AREA(SQUARE FEET) ~ 0.29
FLOW TOP-WIDTH(FEET) = 1.132
FLOW PRESSURE + MOMENTUM(POUNDS) =
FLOW VELOCITY(FEETISEC.)= 22.469
FLOW VELOCITY IIEAD(FEET) ~ 7.839
HYDRAULIC DEPTH(FEET) = 0.26
FROUDENUMBER= 7.795
SPECIFIC ENERGY(FEET) ~ 820
288.36
I
I
I
I
I
I
I
I
I
I
I
~
,I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
(el Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Von Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY **************************
* 100 YEAR HYDRAULIC ANALYSIS *
* LAT A-3 *
* BY CT 1/14/03 *
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEA3.DAT
TIME/DATE OF STUDY: 13:36 01/14/2003
===C====RC========================-___========-================_============
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
I
DOWNSTREAM PRESSURE PIPE-FLOW
NODE NUMBER = 1.00
PIPE DIAMETER(INCH) = 15.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
1102.270
FOR JUNCTION ANALYSIS
1100.77
5.06
I
==============Z=========================_=========E=========================
NODE
1.00 : HGL= < 1102.270>;EGL= < 1102.534>;FLOWLINE= < 1100.770>
======================--====-====================
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1104.11
2.00 IS CODE = 1
I
----------------------------------------------------------------------------
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDj :
PIPE FLOW = 5.06 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 13.61 FEET MANNINGS N = 0.01300
SF=(Q/Kl**2 (( 5.061/( 64.5981)**2 ~ 0.0061357
HF=L*SF = ( 13.61)*( 0.0061357) = 0.084
NODE 2.00 : HGL~ < 1102.354>;EGL~ < 1102.618>;FLOWLINE~ < 1104.110>
I
I
----------------------------------------------------------------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 3.01
NODE 2.00 : HGL~ < 1105.360>;EGL~ < 1105.624>;FLOWLINE- < 1104.110>
I
==============================------===------=== ---========-====--=======
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1104.11
2.00 IS CODE = 8
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) :
PIPE FLOW{CFSj = 5.06 PIPE DIAHETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD::: 0.264
CATCH BASIN ENERGY LOSS ~ .2* (VELOCITY HEAD 1 ~ .2*( 0.264) = 0.053
NODE 2.00 : HGL= < 1105.677>;EGL= < 110S.677>;FLOWLINE= < 1104.110>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
- =-- --=========--====--====::::====
I
I
I
31:\
I
I
............................................................................
>>>>PIPEFLOW HYDRAULIC INPUI' INFORMATION<<~<
LATERALA.3
I
------------
I
PIPE DIAMETER(FEET) = 1.250
PIPE SLOPE(FEETIFEET) ~ 0.2450
PIPEFLOW(CFS) ~ 5.06
MANNlNGS FRICTION FACTOR~ 0.012000
CRITiCAL-DEl'fH FLOW INFORMATiON:
-------------
I
CRITICAL DEl'fH(FEET) = 0.91
CRITiCAL FLOW AREA(SQUARE FEET) = 0.959
CRITICAL FLOW TOP.WIDTH(FEET) = l.IlO
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) ~
CRITICAL FLOW VELOCITY(FEET/SEC.) ~ 5.274
CRITICAL FLOW VELOCITY HEAD(FEET) = 0.43
CRITICAL FLOW HYDRAULIC DEl'fH(FEET) ~ 0.86
CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 1.34
NORMAL.DEl'fH FLOW INFORMATiON:
76.06
I
I
I
II
NORMAL DEl'fH(FEET) = 0.32
FLOW AREA(SQUARE FEET) ~ 025
FLOW TOP-WlDTH(FEET) ~ 1.094
FLOW PRESSURE + MOMENTUM(POUNDS) =
FLOW VELOCITY(FEET/SEC.) = 20.148
FLOW VELOCITY HEAD(FEET) ~ 6.303
HYDRAULIC DEl'fH(FEET) - 0.23
FROUDENUMBER= 7.411
SPECIFIC ENERGY(FEET) ~ 6.63
199.67
I
I
I
I
I
I
I
I
I
I
t\o
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
(cl Copyright 1982-2002 Advanced Engineering Software (aesl
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Yon Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY **************************
* 100 YEAR HYDRAULIC ANALYSIS *
* LAT A-4 *
* BY CT 1/25/03 *
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEA4.DAT
TIME/DATE OF STUDY: 13:27 01/25/2003
=========================================--===========================-======
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER(INCH) = 15.00
ASSUMED DOWNSTREAM CONTROL HGL =
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
1103.940
FOR JUNCTION ANALYSIS
1102.68
4.88
II
============================================================================
NODE
1.00 : HGL= < 1103.940>;EGL= < 1104. 186>;FLOWLINE= < 1102.680>
----
==--- -----==
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1104.40
2.00 IS CODE
1
------------------~--------------------------------~------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 4.88 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 94.85 FEET MANNINGS N = 0.01300
SF=(Q/K) "2 (( 4.88)/( 64.598))"2 = 0.0057069
HF=L'SF = ( 94.85)'( 0.0057069) = 0.541
NODE 2.00 : HGL= < 1104.481>;EGL= < 1104.727>;FLOWLINE= < 1104.400>
I
----------------------------------------------------------------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1105.650>;EGL= <
HGL AND EGL
1.17
1105. 896>; FLOWLINE=
< 1104.400>
I
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 3.00 ELEVATION = 1104.56
3.00 IS CODE = 3
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMAl :
PIPE FLOW = 4.88 CFS PIPE DIAMETER 15.00 INCHES
CENTRAL ANGLE = 22.390 DEGREES
PIPE LENGTH = 8.80 FEET MANNINGS N 0.01300
PRESSURE FLOW AREA m 1.227 SQUARE FEET
FLOW VELOCITY = 3.98 FEET PER SECOND
VELOCITY HEAD = 0.246 BEND COEFFICIENT(KB) = 0.1247
HB-KB'(VELOCITY HEAD) - ( 0.125)'( 0.246) = 0.031
PIPE CONVEYANCE FACTOR 64.598 FRICTION SLOPE(SF) 0.0057069
FRICTION LOSSES = L'SF = ( 8.80)'( 0.0057009) = 0.050
NODE 3.00 : HGL= < 1105.731>;EGL= < 110S.976>;FLOWLINE= < 1104.560>
I
-------------------------------------------------~----------------~---------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
I
A\
I
I
LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.08
NODE 3.00 : HGL= < 1105.810>;EGL= < 1106.056>;FLOWLINE= < 1104.560>
I
===============--===============================--==
PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE
UPSTREAM NODE 4.00 ELEVATION = 1104.72
4.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 4.88 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH = 8.67 FEET MANNINGS N = 0.01300
SF=(Q/K) **2 ~ (( 4.88)/( 64.598))*'2 ~ 0.0057069
HF=L*SF = ( 8.67)*( 0.0057069) = 0.049
NODE 4.00 : HGL~ < 1105.859>;EGL~ < 1106.105>;FLOWLINE~ <.1104.720>
I
----------------------------------------------------------------------------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.11
NODE 4.00 : HGL= < 1105.970>;EGL= < 1106.216>;FLOWLINE= < 1104.720>
===--====--------- --==--- ==================-------
I
PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE
UPSTREAM NODE 4.00 ELEVATION ~ 1104.72
4.00 IS CODE = 8
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCO) :
PIPE FLOW (CFS) = 4.88 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD = 0.246
CATCH BASIN ENERGY LOSS ~ .2* (VELOCITY HEAD) = .2*1 0.246} = 0.049
NODE 4.00 : HGL= < 1106.265>;EGL= < 1106.265>;FLOWLINE= < 1104.720>
========================================================================-
I
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
I
I
I
I
I
I
I
A.2--
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
I
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Yon Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY
* 100 YEAR HYDRAULIC ANALYSIS
* LAT A-5
* BY CT 1/14/03
**************************
*
*
*
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEA5.DAT
TIME/DATE OF STUDY: 13:47 01/14/2003
============================================================================
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER{INCH) "" 15.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW{CFS) -
1104.780
FOR JUNCTION ANALYSIS
1103.51
1. 77
=======================================m==================_=================
I
NODE
1.00 : HGL= < 1104.780>;EGL= < 1104.812>;FLOWLINE= < 1103.510>
====---=============---==========IC============
I
PRESSURE FLOW PROCESS FROM NOOE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1105.09
2.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDj :
PIPE FLOW = 1.77 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 46.68 FEET MANNINGS N = 0.01300
SF=IQfK) **2 I( 1.77)f( 64.598))**2 = 0.0007508
HF=L*SF = I 46.68)*( 0.0007508) ~ 0.035
NODE 2.00 : HGL~ < 1104.815>;EGL= < 1104.847>;FLOWLINE= < 1105.090>
I
----------------------------------------------------------------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1106.340>;EGL= <
HGL AND EGL
1.52
1106.372>;FLOWLINE=
< 1105.090>
I
""====-==-- -----====-====-======:0:_=--====-======
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION - 1105.09
2.00 IS CODE = 8
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCDj :
PIPE FLOWICFS) = 1.77 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAO = 0.032
CATCH BASIN ENERGY LOSS ~ .2*IVELOCITY HEAD) ~ .2*( 0.032) - 0.006
NODE 2.00 : HGL= < 1106.379>;EGL= < 1106.379>;FLOWLINE= < 1105.090>
====----
-=====-==----==-_====__=======:m==
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
A'??
I
I
............................................................................
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
LATERALA-5
I
I
PIPE D1AMETER(FEET) - 1.250
PIPE SLOPE(FEETIFEET) ~ 0.0338
PIPEFLOW(CFS)~ 1.77
MANNINGS FRICTION FACTOR - 0.012000
CRITICAL-DEPTIJ FLOW INFORMATION:
I
CRITICAL DEPTH(FEET) - 0.53
CRITICAL FLOW AREA(SQUARE FEET) - 0.493
CRITICAL FLOW TOP-WIDTH(FEET) - 1.235
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS)-
CRITICAL FLOW VELOCITY(FEET/SEC.) = 3.587
CRITICAL FLOW VELOCITY HEAD(FEET) ~ 0.20
CRITICAL FLOW HYDRAULIC DEPTH(FEET) - 0.40
CRITICAL FLOW SPECIFIC ENERGY(FEET) - 0.73
NORMAL-DEPTH FLOW INFORMATION:
19.13
I
I
I
NORMAL DEPTIJ(FEET) - 0.3 I
FLOW AREA(SQUARE FEET) - 024
FLOW TOP-WIDTH(FEET) = 1.083
FLOW PRESSURE + MOMENTUM(POUNDS)-
FLOW VELOCITY(FEET/SEC.) - 7.355
FLOW VELOCITY HEAD(FEET) - 0.840
HYDRAULIC DEPTH(FEET) - 0.22
FROUDENUMBER~ 2.750
SPECIFIC ENERGY(FEET) ~ 1.15
27.19
I
I
I
I
I
I
I
I
I
I
I
A."-
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& QCEMA HYDRAULICS CRITERION)
I
(c) Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License 1D 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Van Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY **************************
* 100 YEAR HYDRAULIC ANALYSIS *
* LAT A-6 '*
* BY CT 1/14/03 *
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEA6.DAT
TIME/DATE OF STUDY: 13:50 01/14/2003
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER (INCH) = 15.00
ASSUMED DOWNSTREAM CONTROL HGL =
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION =
PIPE FLOW{CFS) =
1104.810
FOR JUNCTION ANALYSIS
1103.51
1. 77
I
NODE
1.00 : HGL= < 1104.810>;EGL= < 1104.842>;FLOWLINE= < 1103.510>
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1106.28
2.00 IS CODE - 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 1.77 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 47.25 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 1.77)/( 64.598))**2 - 0.0007508
HF=L*SF = ( 47.25)*( 0.0007508) = 0.035
NODE 2.00 : HGL= < 1104.846>;EGL= < 1104.878>;FLOWLINE= < 1106.280>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 2.68
NODE 2.00 : HGL= < 1107.530>;EGL= < 1107.562>;FLOWLINE= < 1106.280>
I
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1106.28
2.00 IS CODE = 8
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) :
PIPE FLOW (CFS) = 1.77 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD = 0.032
CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.032) = 0.006
NODE 2.00 : HGL= < 1107.569>;EGL= < 1107.569>;FLOWLINE= < 1106.280>
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
'\~
I
II
............................................................................
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
LATERAL A-'
I
PIPE DIAMETER(FEET) = 1.250
PIPE SLOPE(FEETIFEET) = 0.0586
PIPEFLOW(CFS) = 1.77
MANNlNGS FRICTION FACTOR ~ 0.012000
I
CRlTICAL.DEPTH FLOW INFORMATION:
I
CRITICAL DEPfH(FEED = 0.53
CRITICAL FLOW AREA(SQUARE FEET) = 0.493
CRITICAL FLOW TOP.WIDTH(FEET) = 1.235
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) =
CRITICAL FLOW VELOCITY(FEET/SEC.) = 3.587
CRITICAL FLOW VELOCITY HEAD(FEET) = 0.20
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.40
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.73
NORMAL-DEPTH FLOW INFORMATION:
19.13
I
I
~-
I
NORMAL DEPfH(FEET) ~ 0.27
FLOW AREA(SQUARE FEET) = 020
FLOW TOP. W1DTH(FEET) = 1.033
FLOW PRESSURE + MOMENTUM(POUNDS) = 32.07
FLOW VELOCITY(FEET/SEC.) = 8.941
FLOW VELOCITY HEAD(FEET) ~ 1.24 I
HYDRAULIC DEPfH(FEET) = 0.19
FROUDE NUMBER ~ 3.599
SPECIFIC ENERGY(FEET)~ I.51
I
I
I
, I
I
I
I
I
I
I
ACo
I
I
,I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
(c) Copyright 1982-2002 Advanced Engineering Software (aesl
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16195 Von Karman Ave. Suite 100
Irvine, California 92606
PH' 949-474-1960 FAX' 949-474-5315
I
************************** DESCRIPTION OF STUDY **************************
* HARVESTON APARTMENTS-lOa YEAR HYDRAULIC ANALYSIS *
* LINE B *
* BY CT 7/29/03 *
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\2PIPEB,DAT
TIME/DATE OF STUDY: 09:08 07/29/2003
======~====================================================================
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER - 1.00
PIPE DIAMETER (INCHl = 30.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW{CFS) =
1091. 030
FOR JUNCTION ANALYSIS
1088.50
23.54
I
========--===================================================================
NODE
1.00 : HGL= < 1091.030>;EGL= < 1091.387>;FLOWLINE= < 1088.500>
~_===========m========================================m===========m=========
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION - 1088.90
2.00 IS CODE - 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 23.54 CFS PIPE DIAMETER 30.00 INCHES
PIPE LENGTH 12.99 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 23.54)j{ 410.171))**2 = 0.0032937
HF-L*SF = I 12.99)*1 0.0032937) = 0.043
NODE 2.00 : HGL= < 1091.073>;EGL= < 1091.430>;FLOWLINE= < 1088.900>
I
----------------------------------------------------------------------------
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 , HGL~ < 1091.400>;EGL~ <
HGL AND EGL
0.33
1091.757>;FLOWL1NE~
< 1088.900>
I
=~============c===============================================__========--====
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 3.00 ELEVATION = 1089.45
3.00 IS CODE = 1
I
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LQSSES(LACFCDl:
PIPE FLOW = 23.54 CFS PIPE DIAMETER = 30.00 INCHES
PIPE LENGTH = 17.67 FEET MANNINGS N = 0.01300
SF~IQ/KI**2 (I 23.541/1 410.171)1**2 = 0.0032937
HFcL*SF c ( 17.67)*( 0.0032937) c 0.058
NODE 3.00 : HGL= < 1091.458>;EGL= < 1091.815>;FLOWLINE= < 1089.450>
----------------------------------------------------------------------------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 3.00 : HGL= < 1091.950>;EGL= <
HGL AND EGL
0.49
1092.307>;FLOWLINE=
< 1089.450>
I
==================a-====================C===================================
I
A.1
I
I
PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE
UPSTREAM NODE 4.00 ELEVATION = 1089.47
4.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 23.54 CFS PIPE DIAMETER 30.00 INCHES
PIPE LENGTH 0.64 FEET MANNINGS N = 0.01300
SF=(Q/K}**2 (( 23.54)f( 410.171))**2 = 0.0032937
HF~L*SF ~ ( 0.64)*( 0.0032937) ~ 0.002
NODE 4.00 : HGL= < l091.952>;EGL= < l092.309>;FLOWLINE= < 1089.470>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 4.00 : HGL= < l091.970>;EGL= <
HGL AND EGL
0.02
1092. 327>;FLOWLINE=
< 1089.470>
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE
UPSTREAM NODE 5.00 ELEVATION = 1089.67
5.00 IS CODE = 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 20.0 30.00 4.909 4.064 0.570
2 23.5 30.00 4.909 4.796
3 3.6 15.00 1.227 2.925 12.680
4 0.0 0.00 0.000 0.000 0.000
5 0.0===Q5 EQUALS BASIN INPUT===
HV
0.256
0.357
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))f((Al+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00237
DOWNSTREAM FRICTION SLOPE = 0.00329
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00283
JUNCTION LENGTH (FEET) = 4.00 FRICTION LOSS = 0.011
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES 0.136+ 0.256- 0.357+( 0.011)+( 0.000) = 0.047
NODE 5.00 : HGL= < 1092.118>;EGL= < 1092.374>;FLOWLINE= < 1089.670>
I
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 5.00 : HGL= < 1092.170>;EGL= <
HGL AND EGL
0.05
1092. 427>;FLOWLINE=
< 1089.670>
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE
UPSTREAM NODE 6.00 ELEVATION = 1090.43
6.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 19.95 CFS PIPE DIAMETER 30.00 INCHES
PIPE LENGTH 75.35 FEET MANNINGS N ~ 0.01300
SF=(QfK) **2 (( 19.95)f( 410.171))**2 = 0.0023657
HF=L*SF = ( 75.35)*( 0.0023657) = 0.178
NODE 6.00 : HGL= < 1092.348>;EGL= < 1092.605>;FLOWLINE= < 1090.430>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 6.00 : HGL= < 1092.930>;EGL= <
HGL AND EGL
0.58
1093. 187>; FLOWLINE=
< 1090.430>
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 6.00 TO NODE
UPSTREAM NODE 7.00 ELEVATION = 1090.44
7.00 IS CODE = 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY
1 19.2 30.00 4.909 3.915
2 20.0 30.00 4.909 4.064
DELTA
0.570
HV
0.238
0.256
I
~
I
I
3
4
5
0.7 10.00
0.0 0.00
0.0~~~Q5 EQUALS
0.545 1.338
0.000 0.000
BASIN INPUT'="=
17.430
0.000
I
LACFCD AND DCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY= (Q2*V2-Ql*Vl*COS (DELTAl)-Q3*V3*COS (DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)
I
UPSTREAM MANNINGS N ~ 0.01300
DOWNSTREAM MANNINGS N ~ 0.01300
UPSTREAM FRICTION SLOPE = 0.00220
DOWNSTREAM FRICTION SLOPE = 0.00237
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00228
JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = 0.003
ENTRANCE LOSSES o.oao
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES 0.031+ 0.238- 0.256+( 0.003)+( O.OOOl = 0.016
NODE 7.00 : HGL= < l092.964>;EGL= < l093.203>;FLOWLINE= < 1090.440>
I
I
I
PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE
UPSTREAM NODE 8.00 ELEVATION = 1091.65
8.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 19.22 CFS PIPE DIAMETER = 30.00 INCHES
PIPE LENGTH 121.41 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 19.22)/( 410.171))**2 = 0.0021957
HF=L*SF = ( 121.41)*( 0.0021957) = 0.267
NODE 8.00 : HGL= < 1093.231>;EGL= < 1093.469>;FLOWLINE= < 1091.650>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 8.00 : HGL= < 1094.150>;EGL= <
HGL AND EGL
0.92
1094.388>;FLOWLINE=
< 1091. 650>
I
PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE
UPSTREAM NODE 9.00 ELEVATION = 1091.77
9.00 IS CODE ~ 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 19.22 CFS PIPE DIAMETER = 30.00 INCHES
PIPE LENGTH 11.96 FEET MANNINGS N = 0.01300
SF=(Q/K) **2 {( 19.22)/( 410.171))**2 = 0.0021957
HF~L*SF ~ ( 11.96)*( 0.0021957) ~ 0.026
NODE 9.00 : HGL= < 1094. 176>;EGL= < 1094.414>;FLOWLINE= < 1091.770>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 9.00 : HGL= < 1094.270>;EGL= <
HGL AND EGL
0.09
1094.508>;FLOWLINE=
< 1091.770>
I
PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE
UPSTREAM NODE 10.00 ELEVATION = 1092.44
10.00 IS CODE ~ 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 5.8 15.00 1.227 4.702 4.830
2 19.2 30.00 4.909 3.915
3 13.5 18.00 1.767 7.617 0.580
4 0.0 0.00 0.000 0.000 0.000
5 0.0===Q5 EQUALS BASIN INPUT===
HV
0.343
0.238
I
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00798
~C\
I
I
I
DOWNSTREAM FRICTION SLOPE = 0.00220
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00509
JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.020
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS) + (ENTRANCE LOSSES)
JUNCTION LOSSES ~ -0.550+ 0.343- 0.238+( 0.020)+( 0.000) = -0.424
** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE.
** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS.
NODE 10.00: HGL= < l094.165>;EGL= < l094.508>iFLOWLINE= < 1092.440>
I
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE
UPSTREAM NODE 11.00 ELEVATION = 1092.85
11.00 IS CODE ~ 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD}:
PIPE FLOW = 5.77 ers PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 7.64 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 ({ 5.77)/( 64.598))**2: 0.0079784
HF:L*SF : ( 7.64)*( 0.0079784) : 0.061
NODE 11.00: HGL= < 1094.226>;EGL= < 1094.569>;FLOWLINE= < 1092.850>
I
-------~-~~---------------------------~~~---------------------------------~~
----------------------------------------------------------------------------
PRESSURE FLOW PROCESS FROM NODE 11.00 TO NODE
UPSTREAM NODE 12.00 ELEVATION = 1093.64
12.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES{LACFCD):
PIPE FLOW = 5.77 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 14.70 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 5.77)/( 64.598))**2 = 0.0079784
HF=L*SF = ( 14.70)*( 0.0079784) = 0.117
NODE 12.00: HGL= < 1094.343>;EGL= < 1094.686>;FLOWLINE= < 1093.640>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 12.00: HGL= < 1094.890>;EGL= <
HGL AND EGL
0.55
1095.233>;FLOWLINE= < 1093.640>
I
PRESSURE FLOW PROCESS FROM NODE 12.00 TO NODE
UPSTREAM NODE 13.00 ELEVATION = 1093.72
13.00 IS CODE = 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 5.4 15.00 1.227 4.408 4.830
2 5.8 15.00 1.227 4.702
3 0.4 6.00 0.196 1.833 43.830
4 0.0 0.00 0.000 0.000 0.000
5 0.0===Q5 EQUALS BASIN INPUT===
HV
0.302
0.343
I
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00701
DOWNSTREAM FRICTION SLOPE = 0.00798
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00750
JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = 0.011
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS) + (ENTRANCE LOSSES)
JUNCTION LOSSES 0.073+ 0.302- 0.343+( 0.011)+{ 0.000) = 0.043
NODE 13.00: HGL= < 1094.974>;EGL= < 1095.276>;FLOWLINE= < 1093.720>
I
I
PRESSURE FLOW PROCESS FROM NODE 13.00 TO NODE
UPSTREAM NODE 14.00 ELEVATION = 1094.35
14.00 IS CODE = 1
I
I
~
I
I
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 5.41 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 11.49 FEET MANNINGS N = 0.01300
SF=IQ/K) **2 II 5.41)/1 64.598))**2 = 0.0070139
HF=L*SF = ( 11.49)*( 0.0070139) = 0.081
NODE 14.00: HGL= < l095.055>;EGL= < l095.357>iFLOWLINE= < 1094.350>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 14.00: HGL= < l095.600>;EGL= <
HGL AND EGL
0.55
l09S.902>;FLOWLINE= < 1094.350>
I
---------------------------------~------------------------------------------
----------------------------------------------------------------------------
PRESSURE FLOW PROCESS FROM NODE 14.00 TO NODE
UPSTREAM NODE 15.00 ELEVATION = 1094.42
15.00 IS CODE = 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 4.7 15.00 1.227 3.830 4.830
2 5.4 15.00 1.227 4.408
3 0.7 4.00 0.087 8.136 24.040
4 0.0 0.00 0.000 0.000 0.000
5 0.0=~=Q5 EQUALS BASIN INPUT===
HV
0.228
0.302
I
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS (DELTAl)-Q3*V3*COS (DELTA3)-
Q4*V4*COS(DELTA4))/((Al+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00529
DOWNSTREAM FRICTION SLOPE = 0.00701
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00615
JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = 0.009
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES = 0.016+ 0.228- 0.302+{ 0.009)+(.0.000) = -0.049
** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE.
** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS.
NODE 15.00: HGL= < 1095. 674>iEGL= < 1095.902>iFLOWLINE= < 1094.420>
I
I
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
PRESSURE FLOW PROCESS FROM NODE 15.00 TO NODE
UPSTREAM NODE 16.00 ELEVATION = 1097.42
16.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 4.70 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 55.18 FEET MANNINGS N = 0.01300
SF=(Q/K) **2 (( 4.70l/( 64.598)}**2 = 0.0052937
HF=L*SF = ( 55.18)*( 0.0052937) = 0.292
NODE 16.00: HGL= < 1095.966>iEGL= < 1096.194>iFLOWLINE= < 1097.420>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 16.00: HGL= < 1098. 670>iEGL= <
HGL AND EGL
2.70
1098. 898>iFLOWLINE=
< 1097.420>
I
----------------------------------------------------------------------------
----------------------------------------------------------------------------
PRESSURE FLOW PROCESS FROM NODE 16.00 TO NODE
UPSTREAM NODE 17.00 ELEVATION = 1098.24
17.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 4.70 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 15.11 FEET MANNINGS N = 0.01300
SF=IQ/K)**2 II 4.70)/1 64.598))**2 = 0.0052937
HF=L*SF = ( 15.11)*( 0.0052937) = 0.080
NODE 17.00: HGL= < 1098.750>;EGL= < 1098.978>;FLOWLINE= < 1098.240>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.74
I
~\
I
I
NODE
17.00
HGL= < l099.490>;EGL= < l099.71S>;FLOWLINE= < 1098.240>
I
-----------~----------------------------------------------------------------
----------------------------------------------------------------------------
PRESSURE FLOW PROCESS FROM NODE 17.00 TO NODE
UPSTREAM NODE 18.00 ELEVATION = 1098.31
18.00 IS CODE = 5
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY DELTA
1 3.3 15.00 1.227 2.656 4.830
2 4.7 15.00 1.227 3.830
3 1.4 8.00 0.349 4.125 12.520
4 0.0 0.00 0.000 0.000 0.000
5 O.O===Q5 EQUALS BASIN INPUT===
HV
0.110
0.228
I
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Ql*Vl*COS (DELTAlj-Q3*V3*COS (DELTA3)-
Q4*V4*COS(DELTA4))/((A1+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01300
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE = 0.00255
DOWNSTREAM FRICTION SLOPE = 0.00529
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00392
JUNCTION LENGTH (FEET) = 1.50 FRICTION LOSS = 0.006
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS) + (ENTRANCE LOSSES)
JUNCTION LOSSES = 0.090+ 0.110- 0.228+( 0.006)+{ 0.000) = -0.022
** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE.
** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS.
NODE 18.00: HGL~ < 1099.608>;EGL~ < 1099.718>;FLOWLINE~ < 1098.310>
I
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 18.00 TO NODE
UPSTREAM NODE 19.00 ELEVATION = 1098.70
19.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 3.26 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 7.15 FEET MANNINGS N = 0.01300
SF={Q/K) **2 (( 3.26)/( 64.598})**2 = 0.0025468
HF=L*SF = ( 7.15)*( 0.0025468) = 0.018
NODE 19.00: HGL= < 1099.626>;EGL= < 1099.736>;FLOWLINE= < 1098.700>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 19.00: HGL= < 1099.950>;EGL= <
HGL AND EGL
0.32
1100.060>;FLOWLINE=
< 1098.700>
I
============================================================================
PRESSURE FLOW PROCESS FROM NODE 19.00 TO NODE
UPSTREAM NODE 20.00 ELEVATION = 1099.23
20.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 3.26 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 9.84 FEET MANNINGS N = 0.01300
SF~(Q/K)**2 (I 3.26)/( 64.598) )**2 ~ 0.0025468
HF=L*SF = ( 9.84)*( 0.0025468) = 0.025
NODE 20.00: HGL= < 1099.975>;EGL= < 1100.085>;FLOWLINE= < 1099.230>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.51
NODE 20.00: HGL= < 1100.480>:EGL= < 1100.590>;FLOWLINE= < 1099.230>
--------------------------------~------------------------~~-----------------
----------------------------------------------------------------------------
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
~~
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
(el Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License IO 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Von Karman Ave. Suite 100
Irvine, California 92606
PH: 949-474-1960 FAX: 949-474-5315
I
************************** DESCRIPTION OF STUDY **************************
* lOa YEAR HYDRAULIC ANALYSIS *
* LAT B-1 *
* BY CT 7/29/03 *
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEBl.DAT
TIME/DATE OF STUDY: 09:28 07/29/2003
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER (INCH) = 15.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
1091. 990
FOR JUNCTION ANALYSIS
1090.32
2.47
I
NODE
1.00 : HGL= < 1091.990>;EGL= < 1092.053>;FLOWLINE= < 1090.320>
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1094.60
2.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 2.47 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 13.28 FEET MANNINGS N = 0.01300
SF={Q/K)**2 (( 2.47)/( 64.598))**2 = 0.0014620
HF~L*SF ~ ( 13.28)*( 0.0014620) ~ 0.019
NODE 2.00 : HGL= < 1092.009>;EGL= < 1092.072>;FLOWLINE= < 1094.600>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1095.850>;EGL= <
HGL AND EGL
3.84
1095. 913>;FLOWLINE=
< 1094.600>
I
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1094.60
2.00 IS CODE = 8
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) :
PIPE FLOW (CFS) = 2.47 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD = 0.063
CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 0.063) = 0.013
NODE 2.00 : HGL= < 1095.925>;EGL= < 1095.925>;FLOWLINE= < 1094.600>
I
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
.r:j-p
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
*********************.***********.**************************.....*******..**
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
LATERAL B- I
PIPE DIAMETER(FEET) ~ 1.250
PIPE SLOPE(FEET/FEET) = 0.3220
PIPEFLOW(CFS) ~ 2.47
MANNINGS FRICTION FACTOR = 0.012000
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL DEPTH(FEET) ~ 0.63
CRITICAL FLOW AREA(SQUARE FEET) ~ 0.619
CRITICAL FLOW TOP- WIDTH(FEET) = 1.250
CRITICAL FLOW PRESSURE + MOMENTIJM(POUNDS) = 29.41
CRITICAL FLOW VELOCITY(FEET/SEC.) = 3.992
CRITICAL FLOW VELOCITY HEAD(FEET) = 0.25
CRITICAL FLOW HYDRAULIC DEPTH(FEET) ~ 0.49
CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 0.88
NORMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) = 0.21
FLOW AREA(SQUARE FEET) = 0.14
FLOW TOP-WIDTH(FEET) = 0.937
FLOW PRESSURE + MOMENTIJM(POUNDS) = 86.88
FLOW VELOCITY(FEET/SEC.) ~ 17.993
FLOW VELOCITY HEAD(FEET) = 5.027
HYDRAULIC DEPTH(FEET) = O. I 5
FROUDE NUMBER ~ 8.285
SPECIFIC ENERGY(FEET) = 5.24
~l\
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
(c) Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License ID 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Von Karman Ave. Suite 100
Irvine, California 92606
PH: 949-474-1960 FAX: 949-474-5315
I
************************** DESCRIPTION OF STUDY **************************
* lOa YEAR HYDRAULIC ANALYSIS *
* LINE C *
* BY CT 7/29/03
.
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEC.DAT
TIME/DATE OF STUDY: 09:20 07/29/2003
============================================================================
II
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND aCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER(INCH) = 24.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW (CFS) =
1094.110
FOR JUNCTION ANALYSIS
1092 .10
14.12
I
============================================================================
NODE
1.00 : HGL= < 1094.110>;EGL= < 1094.424>;FLOWLINE= < 1092.100>
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1092.27
2.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 14.12 CFS PIPE DIAMETER 24.00 INCHES
PIPE LENGTH 16.53 FEET MANNINGS N = 0.01300
SF=IQ/KI**2 II 14.12)/( 226.2241)**2 = 0.0038958
HF=L*SF = ( 16.53)*( 0.0038958) = 0.064
NODE 2.00 : HGL= < 1094.174>;EGL= < 1094.488>;FLOWLINE= < 1092.270>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1094.270>;EGL= <
HGL AND EGL
0.10
1094. 584>;FLOWLINE=
< 1092.270>
I
============================================================================
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 3.00 ELEVATION = 1092.94
3.00 IS CODE = 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY
1 6.1 15.00 1.227 4.971
2 14.1 24.00 3.142 4.495
3 8.0 18.00 1.767 4.538
4 0.0 0.00 0.000 0.000
5 0.O===Q5 EQUALS BASIN INPUT===
DELTA
0.000
HV
0.384
0.314
I
4.700
0.000
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)-
Q4 *V4 *COS (DELTA4)) / ( (A1+A2) *16. 1)
I
UPSTREAM MANNINGS N = 0.01300
I
:55'"
I
I
DOWNSTREAM MANNINGS N = 0.01300
UPSTREAM FRICTION SLOPE ~ 0.00892
DOWNSTREAM FRICTION SLOPE = 0.00390
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00641
JUNCTION LENGTH (FEET) = 4.00 FRICTION LOSS = 0.026
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES = -0.045+ 0.384- 0.314+( 0.026)+( 0.000) = 0.051
NODE 3.00 : HGL= < l094.251>;EGL= < l094.635>;FLQWLINE= < 1092.940>
I
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE
UPSTREAM NODE 4.00 ELEVATION = 1093.03
4.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 6.10 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 5.69 FEET MANNINGS N = 0.01300
SF=IQ/K) **2 (I 6.10)/( 64.598))**2 = 0.0089171
HF=L*SF = ( 5.69)*( 0.0089171) = 0.051
NODE 4.00 : HGL= < 1094.302>;EGL= < 1094.686>;FLOWLINE= < 1093.030>
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE
UPSTREAM NODE 5.00 ELEVATION = 1093.30
5.00 IS CODE = 3
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA):
PIPE FLOW = 6.10 CFS PIPE DIAMETER = 15.00 INCHES
CENTRAL ANGLE = 44.730 DEGREES
PIPE LENGTH = 17.57 FEET MANNINGS N = 0.01300
PRESSURE FLOW AREA = 1.227 SQUARE FEET
FLOW VELOCITY = 4.97 FEET PER SECOND
VELOCITY HEAD = 0.384 BEND COEFFICIENT(KB) = 0.1762
HB=KB*(VELOCITY HEAD) = ( 0.176)*( 0.384) = 0.068
PIPE CONVEYANCE FACTOR = 64.598 FRICTION SLOPE(SF) 0.0089171
FRICTION LOSSES = L*SF = ( 17.57)*( 0.0089171) = 0.157
NODE 5.00 : HGL= < 1094.526>;EGL= < 1094.910>;FLOWLINE= < 1093.300>
I
----------------------------------------------------------------------------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 5.00 : HGL= < 1094.550>;EGL= <
HGL AND EGL
0.02
1094. 934>;FLOWLINE=
< 1093.300>
I
============================================================================
PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE
UPSTREAM NODE 6.00 ELEVATION = 1094.86
6.00 IS CODE = 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 6.10 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 99.95 FEET MANNINGS N = 0.01300
SF=(Q/K) **2 (( 6.10)/( 64.598))**2 = 0.0089171
HF=L*SF = ( 99.95)*( 0.0089171) = 0.891
NODE 6.00 : HGL= < 1095.441>;EGL= < 1095.825>;FLOWLINE= < 1094.860>
I
----------------------------------------------------------------------------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 6.00 : HGL= < 1096. 110>;EGL= <
HGL AND EGL
0.67
1096. 494>;FLOWLINE=
< 1094.860>
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 6.00 TO NODE
UPSTREAM NODE 7.00 ELEVATION = 1095.41
7.00 IS CODE = 3
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) :
PIPE FLOW = 6.10 CFS PIPE DIAMETER 15.00 INCHES
CENTRAL ANGLE = 90.000 DEGREES
PIPE LENGTH = 35.34 FEET MANNINGS N 0.01300
PRESSURE FLOW AREA = 1.227 SQUARE FEET
FLOW VELOCITY 4.97 FEET PER SECOND
VELOCITY HEAD = 0.384 BEND COEFFICIENT (KB) 0.2500
I
I
5~
I
I
HB=KB*(VELOCITY HEAD) = ( 0.250)*( O.384} = 0.096
PIPE CONVEYANCE FACTOR ~ 64.598 FRICTION SLOPE(SF) 0.0089171
FRICTION LOSSES = L*SF = ( 35.34)*( 0.0089171) = 0.315
NODE 7.00 : HGL= < l096.521>;EGL= < l096.905>iFLQWLINE= < 1095.410>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 7.00 : HGL= < l096.660>;EGL= <
HGL AND EGL
0.14
l097.044>iFLOWLINE= < 1095.410>
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE
UPSTREAM NODE 8.00 ELEVATION = 1097.55
8.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 6.10 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 137.22 FEET MANNINGS N = 0.01300
SF={Q/Kl**2 (( 6.10)/( 64.598})**2 = 0.0089171
HF=L*SF = ( 137.22)*( 0.0089171) = 1.224
NODE 8.00 : HGL= < 1097.884>;EGL= < 1098.267>;FLOWLINE= < 1097.550>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL 0.92
NODE 8.00 ; HGL= < 1098.800>;EGL= < 1099.184>;FLOWLINE= < 1097.550>
I
============================================================================
PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE
UPSTREAM NODE 9.00 ELEVATION = 1097.59
9.00 IS CODE = 5
I
CALCULATE PRESSURE FLOW JUNCTION LOSSES:
NO. DISCHARGE DIAMETER AREA VELOCITY
1 4.4 15.00 1.227 3.610
2 6.1 15.00 1.227 4.971
3 1.7 15.00 1.227 1.361
4 0.0 0.00 0.000 0.000
5 0.0===Q5 EQUALS BASIN INPUT===
DELTA
0.000
HV
0.202
0.384
I
4.180
0.000
I
LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)-
Q4*V4*COS(DELTA4))/({A1+A2)*16.1)
I
UPSTREAM MANNINGS N = 0.01200
DOWNSTREAM MANNINGS N = 0.01200
UPSTREAM FRICTION SLOPE = 0.00401
DOWNSTREAM FRICTION SLOPE = 0.00760
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00580
JUNCTION LENGTH (FEET) = 4.00 FRICTION LOSS = 0.023
ENTRANCE LOSSES 0.000
JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES)
JUNCTION LOSSES 0.305+ 0.202- 0.384+( 0.023)+( 0.000) ~ 0.147
NODE 9.00 : HGL= < 1099.129>;EGL= < 1099.331>;FLOWLINE= < 1097.590>
I
I
-----------------------------------------~---------------------------------
----------------------------------------------------------------------------
PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE
UPSTREAM NODE 10.00 ELEVATION = 1097.72
10.00 IS CODE = 1
I
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 4.43 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 11.78 FEET MANNINGS N = 0.01200
SF=(Q/K) **2 {( 4.43)/( 69.981))**2 = 0.0040073
HF=L*SF = ( 11.78)*{ 0.0040073) = 0.047
NODE 10.00: HGL= < 1099.176>;EGL= < 1099.378>;FLOWLINE= < 1097.720>
I
----------------------------------------------------------------------------
----------------------------------------------------------------------------
PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE
UPSTREAM NODE 11.00 ELEVATION = 1098.12
11.00 IS CODE = 3
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) :
I
SI
I
I
I
PIPE FLOW = 4.43 CFS PIPE DIAMETER 15.00 INCHES
CENTRAL ANGLE 90.000 DEGREES
PIPE LENGTH = 35.34 FEET MANNINGS N 0.01200
PRESSURE FLOW AREA = 1.227 SQUARE FEET
FLOW VELOCITY = 3.61 FEET PER SECOND
VELOCITY HEAD = 0.202 BEND COEFFICIENT(KB) = 0.2500
HB=KB*(VELOCITY HEAD) = ( 0.250)*( 0.202) = 0.051
PIPE CONVEYANCE FACTOR 69.981 FRICTION SLOPE{SF) 0.0040073
FRICTION LOSSES = L*SF = ( 35.34)*( 0.0040073) = 0.142
NODE 11.00: HGL= < l099.368>;EGL= < l099.570>;FLOWLINE= < 1098.120>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 11.00: HGL= < l099.370>;EGL= <
HGL AND EGL
0.00
1099. 572>;FLOWLINE=
< 1098.120>
---------------------~-----------------------------------------~------------
----------------------------------------------------------------------------
I
PRESSURE FLOW PROCESS FROM NODE 11.00 TO NODE
UPSTREAM NODE 12.00 ELEVATION = 1098.34
12.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD):
PIPE FLOW = 4.43 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 20.36 FEET MANNINGS N = 0.01200
SF=(Q/K)**2 ({ 4.43)/{ 69.981))**2 = 0.0040073
HF=L*SF = ( 20.36)*( 0.0040073) = 0.082
NODE 12.00: HGL= < 1099.452>iEGL= < 1099.654>iFLOWLINE= < 1098.340>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 12.00: HGL= < 1099.590>iEGL= <
HGL AND EGL
0.14
1099.792>iFLOWLINE=
< 1098.340>
I
PRESSURE FLOW PROCESS FROM NODE 12.00 TO NODE
UPSTREAM NODE 13.00 ELEVATION = 1098.74
13.00 IS CODE = 3
I
I
CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (QCEMA) :
PIPE FLOW = 4.43 CFS PIPE DIAMETER 15.00 INCHES
CENTRAL ANGLE = 90.000 DEGREES
PIPE LENGTH = 35.34 FEET MANNINGS N 0.01200
PRESSURE FLOW AREA = 1.227 SQUARE FEET
FLOW VELOCITY = 3.61 FEET PER SECOND
VELOCITY HEAD = 0.202 BEND COEFFICIENT(KB) = 0.2500
HB=KB*(VELOCITY HEAD) = ( 0.250)*( 0.202) = 0.051
PIPE CONVEYANCE FACTOR 69.981 FRICTION SLOPE(SF) 0.0040073
FRICTION LOSSES = L*SF = ( 35.34)*( 0.0040073) = 0.142
NODE 13.00: HGL= < 1099.782>iEGL= < 1099.985>;FLOWLINE= < 1098.740>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 13.00: HGL= < 1099.990>iEGL= <
HGL AND EGL
0.21
1100. 192>iFLOWLINE=
< 1098.740>
I
PRESSURE FLOW PROCESS FROM NODE 13.00 TO NODE
UPSTREAM NODE 14.00 ELEVATION = 1099.23
14.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 4.43 CFS PIPE DIAMETER = 15.00 INCHES
PIPE LENGTH 44.00 FEET MANNINGS N = 0.01200
SF=(Q/K) **2 (( 4.43)/( 69.981))**2 = 0.0040073
HF=L*SF = ( 44.00)*( 0.0040073) = 0.176
NODE 14.00: HGL= < 1100.166>iEGL= < 1100.369>;FLOWLINE= < 1099.230>
I
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL
LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.31
NODE 14.00: HGL= < 1100.480>;EGL= < 11DO.682>;FLOWLINE= < 1099.230>
I
PRESSURE FLOW PROCESS FROM NODE
14.00 TO NODE
14.00 IS CODE = 8
I
~
I
I
UPSTREAM NODE
14.00
ELEVATION = 1099.23
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES{LACFCD):
PIPE FLOW(CFS) = 4.43 PIPE DIAMETER(INCH) 15.00
PRESSURE FLOW VELOCITY HEAD = 0.202
CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 0.202) = 0.040
NODE 14.00: HGL= < 1100.723>;EGL= < 1100.723>;FLOWLINE= < 1099.230>
I
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
I
I
I
I
I
I
I
I
I
I
I
I
~
I
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFO,LACRD,& OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License 10 1355
I
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Von Karman Ave. Suite 100
Irvine, California 92606
PH: 949-474-1960 FAX: 949-474-5315
I
************************** DESCRIPTION OF STUDY **************************
* 100 YEAR HYDRAULIC ANALYSIS *
* LAT C-1 *
* BY CT 7/29/03 *
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPECl.DAT
TIME/DATE OF STUDY: 09:31 07/29/2003
============================================================================
I
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER (INCH) = 18.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW(CFS) =
1094.180
FOR JUNCTION ANALYSIS
1092.49
10.17
----------------------------------------------------------------------------
----------------------------------------------------------------------------
I
NODE
1.00 : HGL= < 1094.180>:EGL= < 1094.694>:FLOWLINE= < 1092.490>
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1093.61
2.00 IS CODE = 1
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW = 10.17 CFS PIPE DIAMETER 18.00 INCHES
PIPE LENGTH 12.60 FEET MANNINGS N = 0.01300
SF~IQ/K)**2 I( 10.17)/( 105.04311**2 ~ 0.0093736
HF=L*SF = ( 12.60)*( 0.0093736) = 0.118
NODE 2.00 : HGL= < 1094.298>;EGL= < 1094.812>:FLOWLINE= < 1093.610>
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1095.110>:EGL= <
HGL AND EGL
0.81
1095. 624>;FLOWLINE=
< 1093.610>
I
============================================================================
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1093.61
2.00 IS CODE ~ 8
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) :
PIPE FLOW (CFS) = 10.17 PIPE DIAMETER{INCH) 18.00
PRESSURE FLOW VELOCITY HEAD = 0.514
CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 0.514) = 0.103
NODE 2.00 : HGL= < 1095.727>:EGL= < 1095.727>:FLOWLINE= < 1093.610>
I
============================================================================
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
I
I
~o
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
****************************************************************************
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
LATERAL C-l
PIPE DIAMETER(FEET) ~ 1.500
PIPE SLOPE(FEETIFEET) ~ 0.0890
PIPEFLOW(CFS) ~ 10.17
MANNINGS FRICTION FACTOR = 0.012000
CRITICAL-DEPTH FLOW INFORMATION:
CRITICAL DEPTH(FEET) ~ 1.23
CRITICAL FLOW AREA(SQUARE FEET) = 1.548
CRITICAL FLOW TOP-WIDTH(FEET) ~ 1.156
CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 183.77
CRITICAL FLOW VELOCITY(FEET/SEC) = 6.568
CRITICAL FLOW VELOCITY HEAD(FEET) ~ 0.67
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.34
CRITICAL FLOW SPECIFIC ENERGY(FEET) = 1.90
NORMAL-DEPTH FLOW INFORMATION:
NORMAL DEPTH(FEET) ~ 0.56
FLOW AREA(SQUARE FEET) ~ 0.61
FLOW TOP- WIDTH(FEET) = 1.453
FLOW PRESSURE + MOMENTUM(POUNDS) ~
FLOW VELOCITY(FEET/SEC.) ~ 16.787
FLOW VELOCITY HEAD(FEET) = 4.376
HYDRAULIC DEPTH(FEET) ~ 0.42
FROUDE NUMBER ~ 4.581
SPECIFIC ENERGY(FEET) ~ 4.94
339.70
~\
I
I
****************************************************************************
I
PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION)
I
(c) Copyright 1982-2002 Advanced Engineering Software (aes)
Ver. 8.0 Release Date: 01/01/2002 License ID 1355
Analysis prepared by:
I
Fuscoe Engineering, Inc.
16795 Van Karman Suite 100
Irvine, California 92606
I
************************** DESCRIPTION OF STUDY **************************
I
* 100 YEAR HYDRAULICS
* LAT C-2
* BY CT 1/25/03
*
*
*
**************************************************************************
I
FILE NAME: C:\AESDATA\HARV\PIPEC2.DAT
TIME/DATE OF STUDY: 13:48 01/25/2003
I
============================================================================
NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
I
DOWNSTREAM PRESSURE PIPE FLOW
NODE NUMBER = 1.00
PIPE DIAMETER (INCH) ~ 15.00
ASSUMED DOWNSTREAM CONTROL HGL
L.A. THOMPSON'S EQUATION IS USED
CONTROL DATA:
FLOWLINE ELEVATION
PIPE FLOW (CFS) ~
1099.020
FOR JUNCTION ANALYSIS
1097.77
2.42
I
============================================================================
I
NODE
1.00 : HGL~ < 1099.020>;EGL= < 1099.080>;FLOWLINE~ < 1097.770>
I
I
============================================================================
PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1098.79
2.00 IS CODE ~ 1
----------------------------------------------------------------------------
I
CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) :
PIPE FLOW ~ 2.42 CFS PIPE DIAMETER 15.00 INCHES
PIPE LENGTH 14.11 FEET MANNINGS N = 0.01300
SF=(Q/K)**2 (( 2.42)/( 64.598))**2 ~ 0.0014034
HF=L*SF ~ ( 14.11)*( 0.0014034) = 0.020
NODE 2.00 : HGL= < 1099.040>;EGL~ < 1099.100>;FLOWLINE= < 1098.790>
----------------------------------------------------------------------------
I
PRESSURE FLOW ASSUMPTION USED TO ADJUST
LOST PRESSURE HEAD USING SOFFIT CONTROL
NODE 2.00 : HGL= < 1100.040>;EGL= <
HGL AND EGL
1.00
1100.100>;FLOWLINE~
< 1098.790>
I
============================================================================
I
PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE
UPSTREAM NODE 2.00 ELEVATION = 1098.79
2.00 IS CODE ~ 8
Co'/;---
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) :
PIPE FLOW{CFS) ~ 2.42 PIPE DIAMETER (INCH) 15.00
PRESSURE FLOW VELOCITY HEAD ~ 0.060
CATCH BASIN ENERGY LOSS ~ .2* (VELOCITY HEAD) ~ .2*( 0.060) ~ 0.012
NODE 2.00: HGL= < 1100.113>;EGL= < 1100.113>;FLOWLINE~ < 1098.790>
----------------------------------------------------------------------------
----------------------------------------------------------------------------
END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
***...***......****......**..********.**********...**....*******...***..***.
>>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<<
LATERALC-2
----------------------------------------------------------------
PIPE DIAMETER(FEET) ~ 1.250
PIPE SLOPE(FEET/FEET) = 0.0730
PIPEFLOW(CFS) ~ 2.42
MANNINGS FRICTION FACTOR = 0.012000
CRITICAL-DEPTH FLOW INFORMATION:
-----------------------------------------------------------------
CRITICAL DEPTH(FEET) = 0.62
CRITICAL FLOW AREA(SQUARE FEET) ~ 0.610
CRITICAL FLOW TOP-WIDTH(FEET) ~ 1.250
CRITICAL FLOW PRESSURE + MOMENTIJM(pOUNDS) = 28.64
CRITICAL FLOW VELOCITY(FEET/SEC.) ~ 3.965
CRITICAL FLOW VELOCITY HEAD(FEET) ~ 0.24
CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.49
CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 0.87
NORMAL-DEPTH FLOW INFORMATION:
-----------------------------------------------------------
NORMAL DEPTH(FEET) ~ 0.30
FLOW AREA(SQUARE FEET) = 0.23
FLOW TOP- WIDTH(FEET) = 1.070
FLOW PRESSURE + MOMENTIJM(POUNDS) = 51.44
FLOWVELOCITY(FEET/SEC.) = 10.586
FLOW VELOCITY HEAD(FEET) = 1.740
HYDRAULIC DEPTH(FEET) = 0.21
FROUDE NUMBER = 4.036
SPECIFIC ENERGY(FEET) = 2.04
~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
--1
Appen . IX 4
I
Lennar Partners
Harveston Apartments
(O~
I
I.
I
I
I
I
I
I
.
I
I
.
I
I
I
I
I
I
I
Catch Basin #1
*******************************.*********************.**********************
>>>>SUMP TYPE BASIN INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 3.63
BASIN OPENING(FEET) = 0.46
DEPTH OF W A TER(FEET) ~ 0.67
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) ~ 2.48
Used W=7.0'
Catch Basin #2
****************************************************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
STREETFLOW(CFS) = 4.00
GUTIER FLOWDEPTH(FEET) ~ 0.50
BASIN LOCAL DEPRESSION(FEET) = O. I 7
FLOWBY BASIN ANALYSIS RESULTS:
BASIN WIDTH FLOW INTERCEPTION
1.04 0.74
1.50 1.02
2.00 1.33
2.50 1.63
3.00 1.89
3.50 2.14
4.00 2.37
4.50 2.60
5.00 2.82
5.50 3.01
6.00 3.18
6.50 3.33
7.00 3.46
7.50 3.58
8.00 3.68
8.50 3.77
9.00 3.84
9.50 3.91
10.00 3.96
G,f,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
'I
10.42 4.00
Used W=14.0'
Catch Basin #3
****************************************************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
STREETFLOW(CFS) = 4.79
GUTTER FLOWDEPTH(FEET) ~ 0.50
BASIN LOCAL DEPRESSION(FEET) = 0.17
FLOWBY BASIN ANALYSIS RESULTS:
BASIN WIDTH FLOW INTERCEPTION
1.25 0.88
1.50 1.04
2.00 1.35
2.50 1.66
3.00 1.96
3.50 2.22
4.00 2.47
4.50 2.71
5.00 2.94
5.50 3.16
6.00 3.38
6.50 3.57
7.00 3.75
7.50 3.91
8.00 4.05
8.50 4.18
9.00 4.29
9.50 4.39
10.00 4.48
10.50 4.56
11.00 4.63
11.50 4.69
12.00 4.74
12.48 4.79
I
I
I
I
Used W=14.0'
Catch Basin #4
*************************************..*************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Co1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
STREETFLOW(CFS) = 3.41
GUTIER FLOWDEPTH(FEET) ~ 0.50
BASIN LOCAL DEPRESSION(FEET) ~ 0.\7
FLOWBY BASIN ANALYSIS RESULTS:
BASIN WIDTH FLOW INTERCEPTION
0.89 0.63
1.00 0.70
1.50 1.01
2.00 I.3 I
2.50 1.59
3.00 1.83
3.50 2.06
4.00 2.29
4.50 2.50
5.00 2.67
5.50 2.83
6.00 2.96
6.50 3.07
7.00 3.17
7.50 3.25
8.00 3.32
8.50 3.37
8.89 3.4\
Used W=IO.O'
Catch Basin #S
****************************************************************************
>>>>SUMP TYPE BASIN INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) ~ 2.45
BASIN OPENING(FEET) = 0.46
DEPTH OF W A TER(FEET) ~ 0.67
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.68
Used W=3.S'
e..&
I
I
I
I
Catch Basin #6
*********.***********************..******************.**********************
>>>>SUMP TYPE BASIN INPUT INFORMATION<<<<
Curb Inlet Capacities arc approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
I
I
I
I
BASIN INFLOW(CFS) = 1.42
BASIN OPENING(FEET) ~ 0.46
DEPTH OF W A TER(FEET) ~ 0.67
>>>>CALCULATED ESTIMATED SUMP BASIN W1DTH(FEET) ~ 0.97
Used W=3.S'
Catch Basin #7
****************************************************************************
>>>>SUMP TYPE BASIN INPUT INFORMATION<<<<
I
I
I
I
I
I
I
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 1.42
BASIN OPENING(FEET) = 0.46
DEPTH OF W A TER(FEET) = 0.67
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 0.97
Used W=3.S'
Catch Basin #8
*****..*.*******************************************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Curb In let Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
I
I
I
I
STREETFLOW(CFS) = 0.74
GUTTER FLOWDEPTH(FEET) = 0.50
BASIN LOCAL DEPRESSION(FEET) = 0.17
FLOWBY BASIN ANALYSIS RESULTS:
BASIN WIDTH FLOW INTERCEPTION
~
I
I
I
I
I
I
0.19 0.14
0.50 0.32
1.00 0.55
1.50 0.68
1.93 0.74
Used W=3.5'
Catch Basin #9
***************..***********************************************************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
I
I
I
I
I
I
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
STREETFLOW(CFS) = 1.76
GUTTER FLOWDEPTH(FEET) = 0.50
BASIN LOCAL DEPRESSION(FEET) = 0.17
FLOWBY BASIN ANALYSIS RESULTS:
BASIN WIDTH FLOW INTERCEPTION
0.46 0.32
0.50 0.35
1.00 0.66
1.50 0.92
2.00 1.15
2.50 1.35
3.00 1.50
3.50 1.61
4.00 1.70
4.50 1.75
4.59 1.76
I
I
I
I
I
Used W=7.0'
Catch Basin # I 0
****************************************************************************
>>>>SUMP TYPE BASIN INPUT INFORMATlON<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for flowby basins and sump basins.
BASIN INFLOW(CFS) = 6.37
BASIN OPENING(FEET) = 0.46
DEPTH OF WATER(FEET) ~ 0.67
I
I
10
I
I
I
I
I
II
I
II
I
, I
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) ~ 4.36
Used W=7.0'
Catcb Basin #11
******.**......************************************...**********************
>>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for tIowby basins and sump basins.
STREETFLOW(CFS) ~ 1.68
GUTTER FLOWDEPTH(FEET) = 0.50
BASIN LOCAL DEPRESSION(FEET) ~ 0.17
FLOWBY BASIN ANALYSIS RESULTS:
I
I
I
I
I
I
I
I
I
BASIN WIDTH FLOW INTERCEPTION
0.44 0.31
0.50 0.35
1.00 0.65
1.50 0.91
2.00 1.14
2.50 1.33
3.00 1.47
3.50 1.57
4.00 1.64
4.38 1.68
Used W=7.0'
Catcb Basin #12
***************************...**********************************************
>>>>SUMP TYPE BASIN INPUT INFORMATION<<<<
Curb Inlet Capacities are approximated based on the Bureau of
Public Roads nomograph plots for tIowby basins and sump basins.
BASIN INFLOW(CFS) = 0.44
BASIN OPENING(FEET) ~ 0.46
DEPTH OF W A TER(FEET) = 0.67
>>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 0.30
Used W=3.S'
\\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
---.::~.,-- -
:J
Appendix 5
I""~~~-"'
Lennar Partners
Harveston Apartments 11...-
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
II
Project Description
WOrXsheet Circular
Channel
Flow Element Circular
Channel
Method Manning's
Fonnula
Solve For Discharge
Input Data
Mannings 0.012
Coefficient
Slope 0.010 ftIft
000
Depth 0.33 ft
Diameter 4 in
Results
Discharge 0.21 cfs
Flow Area 0.1 ft2
Wetted 1.05 ft
Perimeter
Top Width 6.67e-5 ft
Craical Depth 0.26 ft
Percent Full 100.0 %
Critical Slope 0.01140 ftIft
3
Velocity 2.36 fils
Velocity Head 0.09 ft
Specific 0.42 ft
Energy
Froude 0.01
Number
Maximum 0.22 cfs
DiScharge
Discharge Full 0.21 cfs
Slope Full 0.01000 ftIft
1
Flow Type Subcritic
al
unt~led.fm2
11812003 4:56 PM
Fuscoe Engineering
C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
Worksheet
Worksheet for Circular Channel
,\3
Project Engineer: JT
FlowMaster 116.0 [614bJ
Page 1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Project Description
Worksheet Circular
Channel
Flow Element Circular
Channel
Method Manning's
Formula
Solve For Discharge
Input Data
Mannings 0.012
Coefficient
Slope 0.010 filII
000
Depth 0.50 II
Diameter 6 in
Results
Discharge 0.61 cfs
Flow Area 0.2 fF
Wetted 1.57 II
Perimeter
Top Width 1.49e-8 tl
Critical Depth 0.40 tl
Petcent Full 100.0 %
Critical Slope 0.01064 filII
3
Velocity 3.10 fils
Velocity Head 0.15 tl
Specific 0.65 tl
Ener9Y
Froude 1.5&4
Number
Maximum 0.65 cts
Discharge
Discharge Fun 0.61 cts
Slope Full 0.01000 ftItl
0
Flow Type Subcritic
al
untttled.fm2
11812003 4:56 PM
Fuscoe Engineering
e Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
Worksheet
Worksheet for Circular Channel
1,At.
Project Engineer: JT
FlowMasler v6.0 [614b]
Page 2
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Worksheet
Worksheet for Circular Channel
Project Description
Worksheet Circular
Channel
Flow Bement Circular
Channel
Method Manning's
Fonnula
Solve For Discharge
Input Data
Mannings 0.012
Coefficient
Slope 0.010 fIItl
000
Depth 0.67 II
Diameter 8 in
Results
Discharge 1.31 cfs
Flow Area 0.3 II'
Wetted 2.09 II
Perimeter
Top Width 4.22&-4 II
Critical Depth 0.54 II
Percent Full 100.0 %
Critical Slope 0.01021 filII
0
Velocity 3.75 fils
Velocity Head 0.22 II
Specific 0.89 II
Energy
Froude 0.02
Number
Maximum 1.41 cfs
Discharge
Discharge Full 1.31 cfs
Slope Full 0.01000 filII
3
Flow Type Subcritic
al
unt~led.fm2
1/812003 4:56 PM
Fuscoe Engineering
e Haestad Methods,lnc. 37 Brooksida Road Waterbury, CT 06708 USA (203) 755-1666
/'
1~
Project Engineer: JT
FlowMaster vB.O [614b]
Page 3
I I
I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Project Description
Worksheet Circular
Channel
Flow Bement Circular
Channel
Method Manning's
Fonnula
Solve For Discharge
Input Data
Mannings 0.012
Coefficient
Slope 0.010 fIIlt
000
Depth 0.83 It
Diameter 10 in
Resu~s
Discharge 2.44 ets
Flow Area 0.5 ft2
Welled 2.51 It
Perimeter
Top Width 0.11 It
Crttical Depth 0.69 It
Percent Full 99.6 %.
Crttical Slope 0.01024 fIIlt
2
Velocity 4.47 fils
Velocity Head 0.31 It
Specific 1.14 It
Energy
Froude 0.35
Number
Maximum 2.55 cfs
Discharge
Discharge Full 2.37 cfs
Slope Full 0.01054 ftIft
9
Flow Type Subcritic
al
untttled.fm2
11812003 4:56 PM
Fuscoe Engineering
C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666
Worksheet
Worksheet for Circular Channel
,Go
Project Engineer: JT
FlowMaster \16.0 [614b]
Page 4
,I
II
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Local Hydrology / Hydraulic Report
July 2003
-.J
Appendix 6
Local Hydrology Map
4,1
I
Lennar Partners
--. ...;.-_.:.~-
Harveston Apartments