Loading...
HomeMy WebLinkAboutHydrology I I I II I I I I I I I I I I I I I I I J ... HYDROLOGY I HYDRAULIC REPORT ., _:', ,.r~;:W~ __ ~;-'~ ..--~r ~~.'.....'.." ).......~.<.." ......" . c:.. .7:";;'~.' .,,-" ~r :? .~ "- .. ..:,,-"'-. <;:;.. ... HARVESTON APARTMENTS Tract 29639 -1, Lol6 Temeada, a Prepared for: LENNAR PARTNERS 18401 Von Karman Avenue, Suile 540 lroi.., a 926I2 Project Manager: James c. Lone, n, P.E. RCE No. 28781 Prepared by: FUSCOE ENGINEERING, INC. 16795 Van Karman Avenue, Suile 100 Irvine, a 92606 (949) 474-1960 www.fuscoe.rom Dale Prepared: July 2003 ]N: 444.03.01 .- III \ I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report c: Lennar Partners ,:~..ij~,,~;',:,<-:~: Prepared by: FUSCOE ENGINEERING. INC. 16795 Von Karman Avenue, Suite 100 Irvine, California 92606 (949) 474-1960 Project Number: 444.03 Supervising Engineer: James C. Lane II RCE No. 28781 Date Prepared: Julv 2003 .'."~~ July 2003 ~~_'_J Harveston Apartments I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 .l Table of Contents L Introduction .........................................................................1 Geographic Setting ................................................................. 1 Purpose of This Report .............................................................1 References ...................................................................... 1 Location Map- Topographic Setting........................2 IL Existing Topographic & Hydrologic Conditions ................3 Existing Topography................................................................. 3 Existing Drainage Pattem .......................................................3 Existing Storm Drain Facilities..................................................3 IlL Proposed Storm Drain Facilities.........................................3 Line..A..................................................................3 Line..B..................................................................3 Line..C.................................................................3 IV. Hydrology Study (Local Storm Drains) ....................................4 Storm Frequency......................................................................4 Methodology .........................................................................4 V. Hydraulic Report (Analysis of the Main Line Storm Drain) ......... 5 Previous Hydrology Report .....................................................5 VI. Hydraulic Report (Analysis of the Local Storm Drains) .............. 5 Hydrology Report .....................................................................5 Storm Frequency ...................................................................... 5 Methodology ............................................................................ 5 I Lennar Partners .._;.~ Harveston Apartments ~ I II I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 ~_:_:::":'J VIL Catch Basin Sizing.............................................................. 5 Storm Frequency ...................................................................... 5 Methodology ............................................................................ 5 VIIL Design Criteria....................................................................6 Excerpts from Riverside County Design Manual................ 6 IX. Results & Conclusions........................................................ 8 X Appendices .......................................................................... 9 Appendix 1 - Storm Water Protection Goals Appendix 2 - lOO-Year Hydrology Study Appendix 3 - loa-Year Hydraulic Analysis of the Local Storm Drain - Line "A", Line "B", Line "C" and Laterals Appendix 4 - Analysis of Catch Basin Sizing Appendix 5 - Local Area Drain Pipe Size Calculations Appendix 6 - Local Hydrology Map (In Pocket) I Lennar Partners :':';:.0. ,._"\~ Harveston Apartments I I I I I I I I I I II I I II I I I I I I Local Hydrology / Hydraulic Report ~.:2;::;:::';';, July 2003 L Introduction Geographic Setting The Study Area consists of 15.13 acres and in located in the City of Te- mecula. It is bordered by Margarita Road to the east, Harveston Way to the south. To the west is Village Road and to the north is Township Road. Purpose of This Report The purpose of this report is to accomplish the following objectives: 1. To determine the storm water discharges generated within local drainage areas within the project (see Appendix 2). 2. To support the design of local storm drains, consisting of laterals and catch basins, as submitted with this report (see Appendix 3) 3. To support the sizing of catch basins and to demonstrate that ade- quate inlet capacity has been provided to insure that one travel lane will remain clear on local streets during the 100-year storm. 4. To demonstrate that the "storm water" and "flood" protection goals as outlined in the Riverside County Hydrology Manual. Design Man- ual has been met (see Appendix 1 for "Storm Water Protection Goals"). References . Riverside County Hydrology Manual . Riverside County Design Manual I Lennar Partners "::;~.:;':~:. 1 Harveston Apartments ~ I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report I Lennar Partners .;,;;..:;::E~'",,: Location Map - Topographic Setting VICI N ITV MAP NTB 2 July 2003 =:=J ! Harveston Apartments A.. I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 II. Existing Topographic & Hydrologic Conditions Existing Topography The site was recently rough graded per a plan permitted by RBF Con- sulting on the site plan for this development. Existing Drainage Pattern The site drainage presently sheet flows southeasterly to an existing 36" storm drain facility. Existing Storm Drain Facilities There are no existing storm drain facilities onsite. A 36" RCP storm drain line designated as Line "J" is stubbed into the site at the northwest corner of the site. III. Proposed Storm Drain Facilities Three (3) local storm drain systems are proposed for this project as fol- lows: Line "A" This system, with its six laterals and seven catch basins, will drain the southwest portion of the project and outlet into a storm drain system flowing southerly down an existing storm drain. Line "B" This system, with its one lateral and two catch basins, will drain the middle portion of the project and outlet into Line "A". Line "c" This system, with its two laterals and three catch basins, will drain the northwest portion of the project and outlet into Line "B". L.......- Lennar Partners '-;'-'''f,,"~';-',;,~-- 3 Harveston Apartments ~ I I I I I I I I 'I I II , I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 IV. Hydrology Study (Local Storm Drains) Storm Frequency This study is intended to determine "local" discharges for use in the design of lateral storm drains and catch basins. Because artificial sumps are created, a frequency of "laO-year" was chosen as the minimum design criteria. A laO-year frequency was determined to analyze the street flooding capacity. This option is consistent with design criteria presented in Section VIII of this report. Methodology Hydrologic calculations to determine lOa-year discharges were per- formed using the Riverside County Rational Method. The Rational Method is an empirical computation procedure for developing a peak runoff rate (discharge) for small storm watersheds of a speci- fied recurrence interval. The Rational Method equation is based on the assumption that the peak flow rate is directly proportional to the drainage area, rainfall intensity, and a loss coefficient, which de- scribes the effects of land use and soil type. The design discharges were computed by generating a hydrologic "link-node" model, which divides the area into subareas, each tributary to a concentra- tion point or hydrologic "node" point determined by the existing ter- rain or proposed site layout. The following assumptions and/or guidelines were applied for use of the Rational Method. 1. The Rational Method Hydrology includes the effects of infiltra- tion caused by soil surface characteristics. The soils map from the Riverside County Hydrology Manual indicates that the study area consists of various soil types. Hydrologic soils ratings are based on a scale of A through D, where A is the most pervious, providing the least runoff. For this study, Soil Type "B" was used. 2. The infiltration rate is also affected by the type of vegetation or ground cover and percentage of impervious surfaces. The runoff coefficients used for this study were based on a post construction condition having 80% of the apartments covered with impervious material. 3. Standard intensity-duration curve data was taken from the Riverside County Hydrology Manual, dated April, 1978. I LenDar Partners -~'~z:;:r;.'::,:-,_; "" 4 Harveston Apartments OJ I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 ~:}, ..J V. Hydraulic Report (Analysis of the Main Line Storm Drain) Previous Hydrology Report Previous hydrology for this lot was part of Tentative Tract 29639-1 and was prepared by RBF Consulting. VI. Hydraulic Report (Analysis of the Local Storm Drains) Hydrology Report The discharges for this analysis were determined by a hydrology study included in this report as Appendix 2. Storm Frequency Consistent with the design criteria set forth in Section X of this report, storm frequencies of "100-year" were used. Methodology The hydraulic analysis of the main line system was performed using AES Pipeflow Hydraulics. VII. Catch Basin Sizing Storm Frequency Consistent with the Design Criteria set forth in Section VIII of this report, a storm frequency of "1 OO-year" was used. Methodology Standard curb opening catch basins were analyzed using A.E.S. 2002 "Hydraulic Elements" program. Copies of the computer printouts are included in Appendix 4 of this report. ~ Lennar Partners -:;;;;~:!{,- 5 Harveston Apartments 1 I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 ::-J VIII. Design Criteria The proposed storm drain systems will be designed so as to be consis- tent with the following goals and guidelines: A. All buildings shall be protected from flooding during 100-year fre- quency storm. B. 1. Onsite design storm is a 1 OO-year frequency. In sump conditions for catch basins and the connecting storm drains, also use a lOO-year frequency. 2. Offsite design storm frequency, subject to individual review by the City and should be in accordance with the Riverside County Hydrology Manual. C. 1. Velocity should not exceed 20 FPS in standard wall R.C.P. 2. Where velocity exceeds 20 FPS, a special wall R.C.P. with a mini- mum of 1 'h-inch steel clearance on the inside surface shall be used. 3. Maximum velocity in special cover R.C.P. shall be 45 FPS. D. On arterial highways. one (1) 12' lane each direction should be clear of water, with a 100-year storm. In sump conditions, 100-year storm shall be used. E. On local streets, flow should not exceed top of curb, for a 100-year storm, and in sump conditions, 1 OO-year storm shall be used. F. Cross gutter is not allowed at any through street. G. Catch basins are to be constructed at all four corners of arterial highway intersections. H. Open cut is not allowed at any existing arterial highway. Pipe must be jacked across street. I. Maximum W.S. in CB's for design conditions shall be 0.5' below inlet (FL.) elevation. J. Once water is picked up in a storm drain, it should remain in the sys- tem. K. Pipe size may not be decreased downstream without the City's approval. L. Branching of flow is not allowed. M. Provide Hydraulic and energy grade line calculations and plot of hydraulic grade line on plans with table of appropriate hydraulic data. N. The ratio of normal velocity to critical velocity should be less than 0.9 or greater than 1.2. I Lennar Partners :',~~Z1:=::;;,'i 6 Harveston Apartments <0 I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 O. All pipes and conduits laid parallel to the roadway shall be placed at least 30" below the roadway surface. However, when pipe depth is in excess of 10' (measured from top of pipe to ground sur- face), the City's approval is required prior to the initial design of the system. P. Junction structures should be designed according to the R.C.F.C.D. "Design Manual" or utilize City of Temecula Standard Plans. Q. Storm Drain Easement width shall be determined in the following manner: 1. D = 36" or smaller - Distance from top of pipe to ground level times 1.5 + diameter of pipe +2.0' (When cover exceeds 10', use 2 below.) 2. D = 39" or greater - a. Distance from bottom of pipe to ground level times 2.0 + diameter of pipe + 2.0'. In any case, the width of easement shall not be less than 10.0' in width. R. Storm drain shall be located at the center line of the easement. S. Easement shall be exclusively for storm drain purposes. T. Storm drain with high fills: 1. Fill Greater than 40 Feet Storm drains which are installed with cover greater than 40 feet shall have a diameter a minimum of 12 inches larger than that required for hydraulic adequacy and shall be constructed using pre-stressed concrete pipe.' 2. Fill between 30 and 40 Feet Storm drains which are installed with cover between 30 and 40 feet shall have a diameter a minimum of 12 inches larger than that required for hydraulic adequacy and shall be constructed using pre-stressed concrete pipe if the subgrade of the pipe is in a fill area.' If subgrade is in native soil, reinforced concrete pipe may be used. 3. Fill Between 20 and 30 Feet Storm drains which are installed with cover between 20 and 30 feet shall be constructed using reinforced concrete pipe. A pipe diameter greater than that required for hydraulic ade- quacy may be required if, in the opinion of the City Engineer's staff, the particular conditions involved warrant the larger size. 4. Fill Less Than 20 Feet Normal criteria for storm drain design shall be followed. I Lennar Partners ''':~~M".::., 7 Harveston Apartments '\ I I II I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 - . - "-=~'-=-J · Exceptions may be made for a roadway crossing of a natural watercourse, which will remain undisturbed with future devel- opment. VII. Results and Conclusions It is concluded, based on the data presented in this report, that the storm water protection goals (see Appendix 1 ) have been met. ,- Lennar Partners 8 Harveston Apartments ,0 I I I I I I I I I I I I I I I I I I I t";:::-:""" July}()03. _ ~__.._l Local Hydrology / Hydraulic Report VIII. Appendices Appendix 1 - Storm Water Protection Goals Appendix 2 - Locall 00- Year Hydrology Study Appendix 3 -lOO-Year Hydraulic Analysis of the Main Lines Appendix 4 - Catch Basin Sizing Analysis Appendix 5 - Local Area Drain Pipe Calculations Appendix 6 - Local Hydrology Map (In Pocket) c..= Lennar Partners ~.;T$;io:;.t.r:c~ 9 Harveston Apartments \\ I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report ':::t":"::;'i;" July 2003 .. :~J Appendix 1 1'7;;~''"~i>>:r. Lennar Partners Harveston Apartments \~ I I I I I I I I I I I I I ~ * ~. ~ - - , EMA DESIGN MANUAL ADD~N.oUM #1: ..... STORM WATER.PROTECTION GOALS A. STRUCTURES 'the goal 18 to provide 100-year protectiQln for reaidences and otJ1.er nonfloodproof structures pursuant to Public Services and . Fac:l.lities Element of the General Plan. - (See attached Flood Protection .Goela.) Regional flood control fac:Uities shall. be planned' end designed to meet this goal where feaSible. ll. STREETS Street criteria for 100-year' storm flow is shown on the attachsd Flood Protection Gosls. 1. Arterial Highway - One 12-foot traffic lane Will be' free from inundation in each direction in a 10-year storm. - In a sump condition. one 12-foot traffic lane will be free from inundation in esch direction in a 2S-year storm. 2. Local Street' . , - Storm waters will not exceed top of curb in a 10-year storm. - In a sump condition, stOX'Dl waters will not exceed top of . curb in a 25~yearstorm. 3. Arterial Highway and Local S~reet - Depth times velocity .cannot exceed six; This criter~&' applies to stoX'Dla. up to 25-y,&ar. <.," \? .' I' ~. I , , , , , I I I I ~ ~_.. ~ '. N .";';'.. . ,'.' . . .-;~ . p~ . '.' '. .~:l ',:", . .0 .. .. ~ - .~. .. .. - Ul c: o '0. .. .::5 t:tJ1 . 100-Year.. _ . I Flood Level "_ .. 12'" 12' ] j . .,~ . . ..' . V . . - --'-:-"1-1":1-1"';"" . ~ ' . '- p'oq slev. rntD: . . .. Flnlsh.ed. fioor ot . '. . ....Iowest hqbltOble roo . ,fo.r:res/de-nc'es ''G'nd . . ot.her non-.flood . *.. . '. . pro.ot.. stru,c:I;Ur.u ')IO-Year Flood,Level '. . '. l "2.5-Yeor Sump Cond.i.llon .::.:. . .ARTE.RIAL HIGHWAY :'{ r." ",- .. > .. .J " '0 '0 0 -. ll.. ~ 0 . .t. .;. . . , ~ . ....... ," ,<I " ...... .-=..... ~.~ 1'~; ',' , . I , LOCAL STREET" .,., :,j;;:<::::'.:' r>'rr-JrIT ...-'. . ~"..' .~. j' p,ad.~~!e,!~~" . '." _' .- ',' . . : "-. . .' ~.~ ~ .. . ''':.' FJ;lIslied' f(.o or of . . . '":.''' ....: ',,'::'Iowes'(hobltoble. roo, " .~."\ '.' 'for"rurdencu 'cnd ," "';'~" ",:: :"" ~ : .ath.:e;, ';;-0 n:"fl.oo'd '* . .:. < ;.;,7.:.::: p~o~~:structuru {JO-VeCH"FI-Ood .Lever .... 25-Year "$Jmp.. Condillo~' '. " '. :,' '. - 'f:" - - NOTE *For Arterial Hwy:and Local Street, depth times. velocity co.nnol ellceed .Ix ..... .... ..-.. :.::.' .~:~~!-...~~:~: -~'. . . :';'fffl'A<<~e:.tC'O\JN 'l'Y . E ,M-:A.. FC.6,O'O' :"P~O:TE CT'j"ON '.' '.~:;~;)~.PALS \A.:: .... . a. ".' .~..:. . . I I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report ;;,;;)::,f."~~::>', July 2003 .:::...~ Appendix 2 [ Lennar Partners '-'i::~":'- Harveston Apartments \-j" I I I I I I I I I I I I I I I I I I I **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (C) Copyright 1982-2002 Advanced Engineering Software (aes) (Rational Tabling Version 5.9D) Release Date: 01/01/2002 License ID 1355 Analysis prepared by: Fuscoe Engineering, Inc. 16795 Von Karman Ave. Suite lOa Irvine, California 92606 PH: 949-474-1960 FAX: 949-474-5315 ************************** DESCRIPTION OF STUDY ************************** * HARVESTON APARTMENTS * 100 YEAR STORM * BY CT 5/13/03 * * * ************************************************************************** FILE NAME: C:\AESDATA\HARV\Al002.DAT TIME/DATE OF STUDY: 09:43 05/13/2003 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 15.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE 0.95 10-YEAR STORM 10-MINUTE INTENSITY (INCH!HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH!HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY (INCH!HOUR) = 3.480 lOa-YEAR STORM 60-MINUTE INTENSITY (INCH!HOUR) = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 I-HOUR INTENSITY (INCH!HOUR) = 1.300 SLOPE OF INTENSITY DURATION CURVE = 0.5496 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPE FLOW AND STREET FLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- ! OUT-!PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY 1FT) 1FT) 1FT) 1FT) In) 1 0.018/0.018/0.020 2.00 0.0312 0.167 0.0150 0.67 30.0 20.0 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT!S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 40.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC = K*((LENGTH**3)f(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH = 325.00 UPSTREAM ELEVATION = 1116.50 DOWNSTREAM ELEVATION = 1110.50 ELEVATION DIFFERENCE = 6.00 TC ~ 0.323*[( 325.00**3)!( 6.00)]**.2 100 YEAR RAINFALL INTENSITY (INCH!HOUR) : APARTMENT DEVELOPMENT RUNOFF COEFFICIENT : 7.249 4.153 .8637 \~ I I SOIL CLASSIFICATION SUBAREA RUNOFF(CFS) TOTAL AREA (ACRES) = IS "B" 7.89 2.20 TOTAL RUNOFF(CFS) = 7.89 I **************************************************************************** FLOW PROCESS FROM NODE 40.00 TO NODE 50.00 IS COnE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 1110.50 DOWNSTREAM (FEET) 1110.00 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.9 INCHES PIPE-FLOW VELOCITY(FEET!SEC.) 6.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 7.89 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.38 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 50.00 375.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 50.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.112 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8635 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 0.90 TOTAL AREA (ACRES) 3.10 TC(MIN) = 7.38 SUBAREA RUNOFFICFSI TOTAL RUNOFF (CFS) = 3.20 11. 09 I **************************************************************************** FLOW PROCESS FROM NODE 50.00 TO NODE 60.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1110.00 DOWNSTREAM (FEET) 1109.40 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.3 INCHES PIPE-FLOW VELOCITY(FEET!SEC.) 5.91 ESTIMATED PIPE DIAMETER (INCH) = 21.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 11.09 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.63 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 60.00 465.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE ~ 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.037 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8629 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) 1.30 TOTAL AREA(ACRESI 4.40 TC(MIN) = 7.63 SUBAREA RUNOFF (CFS) TOTAL RUNOFF (CFSI ~ 4.53 15.62 I **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 70.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1109.40 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 6.59 ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 15.62 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 7.89 1108.70 1 I ('\ I I I LONGEST FLOWPATH FROM NODE 10.00 TO NODE 70.00 ~ 565.00 FEET. **************************************************************************** I FLOW PROCESS FROM NODE 70.00 TO NODE 70.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.965 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8624 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 0.40 TOTAL AREA (ACRES) 4.80 TC(MIN) ~ 7.89 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 1.37 16.98 I **************************************************************************** FLOW PROCESS FROM NODE 70.00 TO NODE 80.00 IS CODE ~ 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1108.70 DOWNSTREAM (FEET) 1108.00 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.33 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 16.98 PIPE TRAVEL TIME (MIN.) = 0.18 Tc(MIN.) = 8.07 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 80.00 645.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 80.00 TO NODE 80.00 IS CODE ~ 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.916 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8620 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 1.70 TOTAL AREA (ACRES) 6.50 TC(MIN) = 8.07 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 5.74 22.72 I **************************************************************************** FLOW PROCESS FROM NODE 80.00 TO NODE 90.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM(FEET) = 1108.00 DOWNSTREAM (FEET) 1106.20 FLOW LENGTH (FEET) = 195.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.0 INCHES PIPE-FLOW VELOCITY (FEETf SEC.) 8.07 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 22.72 PIPE TRAVEL TIME(MIN.) = 0.40 Tc{MIN.) = 8.47 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 90.00 840.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 90.00 TO NODE 90.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.812 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8612 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 1.30 TOTAL AREA(ACRES) 7.80 TC(MIN) = 8.47 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 4.27 26.99 I **************************************************************************** FLOW PROCESS FROM NODE 90.00 TO NODE 100.00 IS CODE = 31 I I \~ I I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ I ELEVATION DATA: UPSTREAM (FEET) = 1106.20 DOWNSTREAM (FEET) 1105.40 FLOW LENGTH(FEET) = 45.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 18.1 INCHES PIPE-FLOW VELOCITY (FEET/SEC. ) 10.61 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES 1 PIPE-FLOWICFS) = 26.99 PIPE TRAVEL TIME(MIN.) = 0.07 TC(MIN.) = 8.54 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 100.00 885.00 FEET. I I **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- -------------------------------------------------------------~-------------- I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.795 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8611 SOIL CLASSIFICATION IS RBR SUBAREA AREA(ACRES) 0.40 TOTAL AREA (ACRES) 8.20 TCIMIN) = 8.54 SUBAREA RUNOFF (CFS) TOTAL RUNOFF (CFS) = 1. 31 28.30 I **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 110.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< --------------------------~------------------------------------------------- --------------------------------------------------------------------~------- I ELEVATION DATA: UPSTREAM{FEET) = 1105.40 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 205.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 11.82 ESTIMATED PIPE DIAMETER(INCH) = 24.00 PIPE-FLOW (CFS) = 28.30 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 1100.80 I NUMBER OF PIPES 1 0.29 Tc(MIN.) = 10.00 TO NODE 8.83 110.00 1090.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 110.00 TO NODE 110.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ============================================================================ I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.726 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8605 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 1.70 TOTAL AREA (ACRES) 9.90 TC(MIN) = 8.83 SUBAREA RUNOFF (CFS) TOTAL RUNOFF (CFS) = 5.45 33.75 **************************************************************************** I FLOW PROCESS FROM NODE 110.00 TO NODE 120.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ========~====================================~============================== I ELEVATION DATA: UPSTREAM (FEET) = 1100.80 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 2.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) 16.37 ESTIMATED PIPE DIAMETER (INCH) = 21.00 PIPE-FLOW (CFS) = 33.75 PIPE TRAVEL TlME{MIN.) = LONGEST FLOWPATH FROM NODE 1100.70 I NUMBER OF PIPES 1 0.00 Tc(MIN.) = 10.00 TO NODE 8.83 120.00 1092.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 120,00 TO NODE 120.00 IS CODE = 10 >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< I ========~=====================~============================================= I ,C\ I I **************************************************************************** FLOW PROCESS FROM NODE 130.00 TO NODE 140,00 IS CODE = 21 I >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC ~ K*[(LENGTH**3l/(ELEVATION CHANGElJ**.2 INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 1111.90 DOWNSTREAM ELEVATION = 1105.10 ELEVATION DIFFERENCE = 6.80 TC = 0.323*[( 330.00**3)/( 6.80)]**.2 7.135 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.189 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT .8640 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) 1.81 TOTAL AREA (ACRES) = 0.50 TOTAL RUNOFF(CFS) = 1.81 I I **************************************************************************** I FLOW PROCESS FROM NODE 140.00 TO NODE 140.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.189 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8640 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) = 0.40 TOTAL AREA (ACRES) 0.90 TC(MIN) = 7.14 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 1. 45 3.26 I **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 150.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1105.10 DOWNSTREAMIFEET) 1104.50 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 15.000 DEPTH OF FLOW IN 15.0 INCH PIPE IS 5.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.7S ESTIMATED PIPE DIAMETER (INCH) = 15.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 3.26 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.18 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 150.00 350.00 FEET. I I **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 150.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.175 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8639 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 0.40 TOTAL AREA(ACRES) 1.30 TC(MIN) = 7.18 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 1. 44 4.70 I **************************************************************************** FLOW PROCESS FROM NODE 150.00 TO NODE 160.00 IS COnE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1104.50 DOWNSTREAMIFEET) FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 15.000 DEPTH OF FLOW IN 15.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET!SEC.) = 8.48 1102.60 I I zp I I I ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1 PIPE-FLOWICFS) = 4.70 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 7.31 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 160.00 415.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 160.00 IS CODE = 81 ---------------------------------------------------------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.135 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8636 SOIL CLASSIFICATION IS "Bn SUBAREA AREA(ACRES) 0.20 TOTAL AREA(ACRES) 1.50 TC{MIN) ~ 7.31 SUBAREA RUNOFF{CFS) TOTAL RUNOFF{CFS) = 0.71 5.41 I **************************************************************************** FLOW PROCESS FROM NODE 160.00 TO NODE 170.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ I ELEVATION DATA: UPSTREAM(FEET) = 1102.60 DOWNSTREAM (FEET) 1102.30 FLOW LENGTH(FEET) = 15.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.61 ESTIMATED PIPE DIAMETER{INCH) = 15.00 NUMBER OF PIPES 1 PIPE-FLQW(CFS) = 5.41 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.34 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 170.00 430.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 170.00 IS CODE = 81 ---------------------------------------------------------------------------- I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.125 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8635 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) 0.10 TOTAL AREA(ACRES) 1.60 TC(MIN) = 7.34 SUBAREA RUNOFFICFS) TOTAL RUNOFF(CFS) = 0.36 5.77 I **************************************************************************** FLOW PROCESS FROM NODE 170.00 TO NODE 180.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ I ELEVATION DATA: UPSTREAMIFEET) = 1102.30 DOWNSTREAM (FEET) 1101.60 FLOW LENGTH{FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY{FEET/SEC.l 8.20 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 5.77 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 7.40 LONGEST FLOWPATH FROM NODE 130.00 TO NODE 180.00 460.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 1 ---------------------------------------------------------------------------- I >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< -~---------------~~--------------------------~-------------------------~---- --------~~------------------------------------------------------------------ I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 7.40 RAINFALL INTENSITY (INCH/HR) = 4.11 TOTAL STREAM AREA (ACRES) ~ 1.60 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.77 I I 'J,\ I I **************************************************************************** FLOW PROCESS FROM NODE 190.00 TO NODE 200.00 IS CODE ~ 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< I I ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS APARTMENT TC = K*[(LENGTH**3)/(ELEVATION CHANGEl]**.2 INITIAL SUBAREA FLOW-LENGTH = 50.00 UPSTREAM ELEVATION = 1106.50 DOWNSTREAM ELEVATION = 1106.30 ELEVATION DIFFERENCE = 0.20 TC = 0.323*[{ 50.00**3)/( 0.20lJ**.2 4.656 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.093 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8693 SOIL CLASSIFICATION IS "B" SUBAREA RUNOFF(CFS) 0.44 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.44 I I **************************************************************************** I FLOW PROCESS FROM NODE 200.00 TO NODE 200.00 IS CODE ~ 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.093 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8693 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRESl 0.90 TOTAL AREA (ACRES) 1.00 TC(MINI ~ 5.00 SUBAREA RUNOFF(CFS} TOTAL RUNOFF (CFS) = 3.98 4.43 I **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 210.00 IS CODE ~ 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ---------------------------------------------------------------------------- --------~~~----------------------------------------------------------------- I ELEVATION DATA: UPSTREAM (FEET) = 1106.30 DOWNSTREAM (FEET) 1104.20 FLOW LENGTH(FEET) = 180.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.l 5.91 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 4.43 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 5.51 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 210.00 230.00 FEET. I **************************************************************************** I FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.830 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8679 SOIL CLASSIFICATION IS "B" SU8AREA AREA (ACRES I 0.40 TOTAL AREA(ACRESl 1.40 TC(MIN) = 5.51 SUBAREA RUNOFF(CFSI TOTAL RUNOFF(CFSl = 1. 68 6.10 I **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 220.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ I ELEVATION DATA: UPSTREAM (FEET) = 1104.20 DOWNSTREAM (FEET) FLOW LENGTH{FEET) = 320.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC. ) 5.41 ESTIMATED PIPE DIAMETER (INCH) 18.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 6.10 1101. 80 1 I I 2-2-- I I II PIPE TRAVEL TIME (MIN.) = LONGEST FLOWPATH FROM NODE 0.99 Tc(MIN.) = 190.00 TO NODE 6.49 220.00 5S0.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 220.00 IS CODE = 81 >>>>>ADDITIQN OF SUBAREA TO MAINLINE PEAK FLQW<<<<< ============================================================================ I I 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.412 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8655 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 2.10 TOTAL AREA(ACRES) 3.50 TC(MIN) ~ 6.49 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 8.02 14.12 **************************************************************************** FLOW PROCESS FROM NODE 220.00 TO NODE 180.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ I ELEVATION DATA: UPSTREAM (FEET) = 1101.80 DOWNSTREAM (FEET) 1101.60 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 7.28 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 14.12 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 6.54 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 180.00 570.00 FEET. I I **************************************************************************** FLOW PROCESS FROM NODE 180.00 TO NODE 180.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< I ================E=========================================================== I TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 6.54 RAINFALL INTENSITY (INCH/HR) = 4.39 TOTAL STREAM AREA(ACRES) = 3.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 14.12 I ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 5.77 2 14.12 Tc (MIN. ) 7.40 6.54 INTENSITY ( INCH/HOUR) 4.106 4.395 AREA (ACRE) 1. 60 3.50 I *********************************WARNING********************************** I IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. I I ** PEAK STREAM NUMBER 1 2 FLOW RATE RUNOFF (CFSI 19.22 18.97 TABLE ** Tc (MIN. ) 6.54 7.40 INTENSITY ( INCH/HOUR) 4.395 4.106 I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = LONGEST FLOWPATH FROM ESTIMATES ARE 19.22 5.10 NODE AS FOLLOWS: Tc (MIN.) = 6.54 190.00 TO NODE 180.00 570.00 FEET. **************************************************************************** I FLOW PROCESS FROM NODE 180.00 TO NODE 230.00 IS CODE = 31 I Z-~ I I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ I I ELEVATION DATA: UPSTREAM (FEET) = 1101.60 DOWNSTREAM (FEET) 1101.20 FLOW LENGTH(FEET) = 140.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 22.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.} 4.93 ESTIMATED PIPE DIAMETER{INCH) = 30.00 NUMBER OF PIPES 1 PIPE-FLOWICFSl = 19.22 PIPE TRAVEL TlME{MIN.) = 0.47 Tc(MIN.) = 7.01 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 230.00 710.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 230.00 TO NODE 230.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ============================================================================ I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.229 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8643 SOIL CLASSIFICATION IS "B" SUBAREA AREA (ACRES) 0.20 TOTAL AREA (ACRES) 5.30 TC(MIN) = 7.01 SUBAREA RUNOFF(CFS) TOTAL RUNOFF (CFS) = 0.73 19.95 **************************************************************************** I FLOW PROCESS FROM NODE 230.00 TO NODE 240.00 IS CODE = 31 >>>>>CQMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ============================================================================ I ELEVATION DATA: UPSTREAM(FEET) = 1101.20 DOWNSTREAM (FEET) 1100.90 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) 5.56 ESTIMATED PIPE DIAMETER (INCH) = 30.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 19.95 PIPE TRAVEL TIME(MIN.) = 0.24 Tc(MIN.) = 7.25 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 240.00 790.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 240.00 TO NODE 240.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I ============================================================================ I 100 YEAR RAINFALL INTENSITY(INCH!HOUR) = 4.152 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8637 SOIL CLASSIFICATION IS "B" SUBAREA AREA(ACRES) 1.00 TOTAL AREA(ACRES) 6.30 TCIMIN) = 7.25 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 3.59 23.54 **************************************************************************** I FLOW PROCESS FROM NODE 240.00 TO NODE 120.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ============================================================================ I ELEVATION DATA: UPSTREAM (FEET) = 1100.90 DOWNSTREAM (FEET) 1100.70 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.1 INCHES PIPE-FLOW VELOCITY{FEET!SEC.) 7.06 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES 1 PIPE-FLOW(CFS) = 23.54 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 7.32 LONGEST FLOWPATH FROM NODE 190.00 TO NODE 120.00 820.00 FEET. I **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 11 >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMQRY<<<<< I I 1--~ I I I ** MAIN STREAM NUMBER 1 LONGEST STREAM CONFLUENCE DATA ** RUNOFF Tc INTENSITY ICFS) (MIN.) (INCH/HOUR) 23.54 7.32 4.129 FLOWPATH FROM NODE 190.00 TO AREA (ACRE) 6.30 NODE 120.00 820.00 FEET. I ** MEMORY STREAM NUMBER 1 LONGEST BANK # 1 CONFLUENCE DATA ** RUNOFF Tc INTENSITY (CFS) (MIN.) (INCH/HOUR) 33.75 8.83 3.726 FLOWPATH FROM NODE 10.00 TO NODE AREA (ACRE) 9.90 120.00 1092.00 FEET. I I *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE 0-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** I ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) IMIN.) ( INCH/HOUR) 1 51. 52 7.32 4.129 2 54.99 8.83 3.726 I COMPUTED CONFLUENCE PEAK FLOW RATE(CFS) TOTAL AREA (ACRES) = ESTIMATES ARE 54.99 16.20 AS FOLLOWS: Tc(MIN.) = 8.83 I **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 120.00 IS CODE = 12 >>>>>CLEAR MEMORY BANK # 1 <<<<< I **************************************************************************** FLOW PROCESS FROM NODE 120.00 TO NODE 2S0.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) = 1100.70 DOWNSTREAM (FEET) FLOW LENGTH(FEET) = 315.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 28.0 INCHES PIPE-FLOW VELOCITYIFEET/SEC.) 9.32 ESTIMATED PIPE DIAMETER(INCH) = 36.00 PIPE-FLOW (CFS) = 54.99 PIPE TRAVEL TIME(MIN.) = LONGEST FLOWPATH FROM NODE 1098.20 NUMBER OF PIPES 1 I 0.56 Tc(MIN.) ~ 10.00 TO NODE 9.40 250.00 1407.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 250.00 IS CODE = 81 I >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< I 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.601 APARTMENT DEVELOPMENT RUNOFF COEFFICIENT = .8594 SOIL CLASSIFICATION IS "E" SUBAREA AREA(ACRES) 1.30 TOTAL AREA (ACRES) 17.50 TC(MIN) = 9.40 SUBAREA RUNOFF(CFS) TOTAL RUNOFF(CFS) = 4.02 59.01 I **************************************************************************** FLOW PROCESS FROM NODE 250.00 TO NODE 260.00 IS CODE = 31 I >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< I ELEVATION DATA: UPSTREAM (FEET) FLOW LENGTH(FEET) = 10.00 1098.20 DOWNSTREAM (FEET) MANNING'S N = 0.013 1098.10 I 6 I I I DEPTH OF FLOW IN 36.0 INCH PIPE IS 26.9 INCHES PIPE-FLOW VELOCITY(FEET!SEC.) 10.42 ESTIMATED PIPE DIAMETER (INCH) = 36.00 NUMBER OF PIPES 1 PIPE-FLOW (CFS) = 59.01 PIPE TRAVEL TlME(MIN.) = 0.02 Tc{MIN.) = 9.41 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 260.00 1417.00 FEET. ============================================================================ I END OF STUDY SUMMARY: TOTAL AREA{ACRES) PEAK FLOW RATE(CFS) 17.50 TC(MIN.) = 59.01 9.41 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ============================================================================ I END OF RATIONAL METHOD ANALYSIS I I I I I I I I I I I I I I ~ I II I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 --- ---,- '1 "-'~' Appendix 3 L .,,~""'". Lennar Partners Harveston Apartments 1-1, I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I {c} Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Yon Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY * 100 YEAR HYDRAULIC ANALYSIS * LINE A * BY CT 1/25/03 ************************** * * * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPE1.DAT TIME/DATE OF STUDY: 13:24 01/25/2003 ====:========~~============================--==----=============--============== I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER(INCH) = 36.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEYATION c PIPE FLOW (CFS) ~ 1089.290 FOR JUNCTION ANALYSIS 1086.41 58.30 I =====================--=:::==============z--=========== SOFFIT CONTROL ASSUMED AT BEGINNING OF PIPE SYSTEM NODE 1.00 : HGL= < 1089.410>;EGL= < 1090.466>;FLOWLINE= < 1086.410> I --------= PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1086.45 2.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 58.30 CFS PIPE DIAMETER 36.00 INCHES PIPE LENGTH 7.81 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (I 58.30)/1 666.983))**2 = 0.0076402 HF~L*SF = ( 7.81)*1 0.0076402) ~ 0.060 NODE 2.00 : HGL= < 1089.470>;$GL= < 1090.526>;FLOWLINE= < 1086.450> I -~-====--===----========== I PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 3.00 ELEVATION - 1086.65 3.00 IS CODE ~ 5 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 53.0 36.00 7.069 7.505 2 58.3 36.00 7.069 8.248 3 5.2 18.00 1.767 2.971 4 0.0 0.00 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== DELTA 27.100 HV 0.875 1. 05 6 90.000 0.000 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY-(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COSIDELTA4))/I(A1+A2)*16.1) I UPSTREAM MANNINGS N ~ 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00633 DOWNSTREAM FRICTION SLOPE = 0.00764 I I z$ I II I AVERAGED JUNCTION ENTRANCE JUNCTION JUNCTION NODE FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00698 LENGTH (FEET) = 4.00 FRICTION LOSS = 0.028 LOSSES 0.000 LOSSES = DY+HVI-HV2+{FRICTION LOSS)+(ENTRANCE LOSSES) LOSSES 0.555+ 0.875- 1.056+1 0.028)+1 0.000) = 0.402 3.00 : HGL= < l090.053>:EGL= < l090.928>:FLOWLINE= < 1086.650> I ---- PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE UPSTREAM NODE 4.00 ELEVATION = 1086.76 4.00 IS CODE 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 53.05 eFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 22.49 FEET MANNINGS N = 0.01300 SF=IQ/K) **2 I( 53.05)/( 666.983))**2 = 0.0063262 HF=L*SF = ( 22.49)*( 0.0063262) = 0.142 NODE 4.00 : HGL= < l090.195>;EGL= < l091.070>:FLOWLINE= < 1086.760> I ====-- ===--=======================.:E:::Z:========= I PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE UPSTREAM NODE 5.00 ELEVATION = 1086.82 5.00 IS CODE = 3 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 53.05 CFS PIPE DIAMETER 36.00 INCHES CENTRAL ANGLE = 29.950 DEGREES PIPE LENGTH = 11.76 FEET MANNINGS N 0.01300 PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 7.51 FEET PER SECOND VELOCITY HEAD = 0.875 BEND COEFFICIENT(KB) "" 0.1442 HB=KB*(VELOCITY HEAD) = I 0.144)*( 0.875) - 0.126 PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPE(SF) 0.0063262 FRICTION LOSSES - L*SF = I 11.76)*1 0.0063262) = 0.074 NODE 5.00 : HGL= < l090.396>;EGL= < 1091.271>;FLOWLINE= < 1086.820> I I ==---==--=====--==::::=================:c I PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE UPSTREAM NODE 6.00 ELEVATION:c 1087.66 6.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 53.05 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 168.15 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 = I( 53.05)/1 666.983))**2 - 0.0063262 HF=L*SF = ( 168.15)*( 0.0063262) = 1.064 NODE 6.00 : HGL= < 1091.460>;EGL= < 1092.334>;FLOWLINE= < 1087.660> I PRESSURE FLOW PROCESS FROM NODE 6.00 TO NODE UPSTREAM NODE 7.00 ELEVATION - 1087.76 7.00 IS CODE = 3 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 53.05 crs PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE = 52.420 DEGREES PIPE LENGTH = 8.23 FEET MANNINGS N - 0.01300 PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 7.51 FEET PER SECOND VELOCITY HEAD - 0.875 BEND COEFFICIENTIKB) = 0.1908 HB=KB*(VELOCITY HEAD) = I 0.191)*1 0.875) = 0.167 PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPEISF) 0.0063262 FRICTION LOSSES = L*SF = ( 8.23)*( 0.0063262) = 0.052 NODE 7.00 : HGL= < 1091.679>;EGL= < 1092.553>;FLOWLINE= < 1087.760> I I PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE UPSTREAM NODE 8.00 ELEVATION = 1087.87 8.00 IS CODE 3 -------~-------------------------------------------------------------------~ I CALCULATE PRESSURE FLOW-PIPE-BEND LOSSES (OCEMA) : I -z.-q I I I PIPE FLOW = 53.05 CFS PIPE DIAMETER = 36.00 INCHES CENTRAL ANGLE 52.420 DEGREES PIPE LENGTH = 8.23 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 7.069 SQUARE FEET FLOW VELOCITY = 7.51 FEET PER SECOND VELOCITY HEAD = 0.875 BEND COEFFICIENT (KB) = 0.1908 HB=KB*(VELOCITY HEAD) = ( 0.191)'( 0.875) = 0.167 PIPE CONVEYANCE FACTOR = 666.983 FRICTION SLOPE (SF) 0.0063262 FRICTION LOSSES = L*SF = ( 8.23)*( 0.0063262) = 0.052 NODE 8.00 : HGL= < 1091.898>;EGL= < 1092.772>;FLOWLINE= < 1087.870> I I ===========-----============================================================ PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE UPSTREAM NODE 9.00 ELEVATION"" 1088.21 9.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : .PIPE FLOW = 53.05 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH 67.90 FEET MANNINGS N = 0.01300 SF=(Q/K) **2 {( 53.05)/( 666.983))**2"" 0.0063262 HF=L*SF = ( 67.90)*( 0.0063262) = 0.430 NODE 9.00 : HGL= < 1092.327>;EGL= < 1093.202>;FLOWLINE= < 1088.210> I ===================- --===== = =========== I PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE UPSTREAM NODE 10.00 ELEVATION - 1089.20 10.00 IS CODE = 5 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 27.9 24.00 3.142 8.894 0.400 2 53.0 36.00 7.069 7.505 3 6.4 15.00 1.227 5.215 13.100 4 18.7 30.00 4.909 3.816 0.600 5 0.0-==Q5 EQUALS BASIN INPUT-== HV 1. 228 0.875 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)_ Q4*V4*COSIDELTA4))/(IA1+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.01525 DOWNSTREAM FRICTION SLOPE = 0.00633 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01079 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.043 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HV1-HV2+IFRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.278+ 1.228- 0.875+( 0.043)+( 0.000) = 0.675 NODE 10.00: HGL: < 1092.648>;EGL= < 1093.876>;FLOWLINE= < 1089.200> I I I ==--========---=====-============ PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE UPSTREAM NODE 11.00 ELEVATION = 1089.55 11.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 27.94 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 13.26 FEET MANNINGS N = 0.01300 SF~(Q/K)**2 ~ (( 27.94)/( 226.224))**2 ~ 0.0152538 HF=L*SF = ( 13.26)*( 0.0152538) = 0.202 NODE 11.00: HGL~ < 1092.851>;EGL= < 1094.079>;FLOWLINE: < 1089.550> I I PRESSURE FLOW PROCESS FROM NODE 11.00 TO NODE UPSTRE~ NODE 12.00 ELEVATION = 1089.82 12.00 IS CODE = 3 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 27.94 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 26.300 DEGREES I :?o I I I PIPE LENGTH = 10.33 FEET MANNINGS N 0.01300 PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY = 8.89 FEET PER SECOND VELOCITY HEAD = 1.228 BEND COEFFICIENT(KB) = 0.1351 HB-KB*(VELOCITY HEAD) = ( 0.135)*1 1.228) ~ 0.166 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF} 0.0152538 FRICTION LOSSES - L'SF = ( 10.33)*( 0.0152538) _ 0.158 NODE 12.00: HGL= < l093.174>;EGL= < l094.402>;FLOWLINE= < 1089.820> I -----========---=----------= ==== I PRESSURE FLOW PROCESS FROM NODE 12.00 TO NODE UPSTREAM NODE 13.00 ELEVATION - 1090.37 13.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDl : PIPE FLOW - 27.94 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH 21.08 FEET MANNINGS N = 0.01300 SF~(Q/K)'*2 - (I 27.94)/1 226.224))**2 = 0.0152538 HF=L*SF = ( 21.08)*( 0.0152538) = 0.322 NODE 13.00: HGL= < 1093.496>;EGL= < 1094.724>;FLOWLINE= < 1090.370> I ===========----=========--===========--======================================= PRESSURE FLOW PROCESS FROM NODE 13.00 TO NODE UPSTREAM NODE 14.00 ELEVATION - 1090.64 14.00 IS CODE = 3 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSESIOCEMA): PIPE FLOW = 27.94 CFS PIPE DIAMETER"" 24.00 INCHES CENTRAL ANGLE = 26.300 DEGREES PIPE LENGTH = 10.42 FEET MANNINGS N 0.01300 PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY"" 8.89 FEET PER SECOND VELOCITY HEAD = 1.228 BEND COEFFICIENT(KBj = 0.1351 HB=KB*(VELOCITY HEAD) = ( 0.135)*( 1.228) = 0.166 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) 0.0152538 FRICTION LOSSES = L*SF = ( 10.42)*( 0.0152538) = 0.159 NODE 14.00: HGL= < 1093.821>;EGL= < 1095.049>;FLOWLINE= < 1090.640> I I ==---==---===--------=================z:== PRESSURE FLOW PROCESS FROM NODE 14.00 TO NODE UPSTREAM NODE 15.00 ELEVATION m 1095.70 15.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 27.94 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH 192.95 FEET MANNINGS N = 0.01300 SF-(Q/K)**2 = (( 27.94)/( 226.224))**2 ~ 0.0152538 HF-L*SF = ( 192.95)*( 0.0152538) - 2.943 NODE 15.00: HGL- < 1096.764>;EGL= < 1097.992>;FLOWLINE~ < 1095.700> I ---------------------------------------------------------------------------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.94 NODE 15.00: HGL= < 1097.700>;EGL= < 1098.928>;FLOWLINE= < 1095.700> =--=---=--=--== -----===--=-======---====== I PRESSURE FLOW PROCESS FROM NODE 15.00 TO NODE UPSTREAM NODE 16.00 ELEVATION m 1095.76 16.00 IS CODE = 5 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 21.4 24.00 3.142 6.805 2 27.9 24.00 3.142 8.894 3 6.6 15.00 1.227 5.346 4 0.0 0.00 0.000 0.000 5 0.0-==Q5 EQUALS BASIN INPUT=-= DELTA 0.000 HV 0.719 1. 228 15.100 0.000 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) I I ~\ I I I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00893 DOWNSTREAM FRICTION SLOPE = 0.01525 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01209 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.048 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES m 0.683+ 0.719- 1.228+( 0.048)+( 0.000) = 0.223 NODE 16.00: HGL= < l098.432>;EGL= < l099.151>jFLOWLINE= < 1095.760> I I =================--==========================----=====--======================== PRESSURE FLOW PROCESS FROM NODE 16.00 TO.NODE UPSTREAM NODE 17.00 ELEVATION = 1100.42 17.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 21.38 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH 157.97 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 21.38)/( 226.224))*'*2 = 0.0089318 HF-L*SF = ( 1S7.97)'( 0.0089318) - 1.411 NODE 17.00: HGL= < 1099.843>:EGL= < 1100.562>:FLOWLINE= < 1100.420> I __~M________________________________________________________________________ I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 2.58 NODE 17.00: HGL= < 1102.420>:EGL= < 1103.139>:FLOWLINE= < 1100.420> ======----====================--============-========-======================= I PRESSURE FLOW PROCESS FROM NODE 17.00 TO NODE UPSTREAM NODE 18.00 ELEVATION - 1100.54 18.00 IS CODE = 5 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 16.3 24.00 3.142 S.195 0.800 2 21.4 24.00 3.142 6.805 3 5.1 15.00 1.227 4.123 13.800 4 0.0 0.00 0.000 0.000 0.000 5 D.0===Q5 EQUALS BASIN INPUT=--= HV 0.419 0.719 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE ~ 0.00520 DOWNSTREAM FRICTION SLOPE = 0.00893 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00707 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.028 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES 0.400+ 0.419- 0.719+( 0.028)+( 0.000) = 0.128 NODE 18.00:' HGL= < 1102.848>;EGL- < 1103.267>;FLOWLINE- < 1100.540> I I I ~-- PRESSURE FLOW PROCESS FROM NODE 18.00 TO NODE UPSTREAM NODE 19.00 ELEVATION - 1101.20 19.00 IS CODE = 3 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 16.32 CFS PIPE DIAMETER = 24.00 INCHES CENTRAL ANGLE = 90.000 DEGREES PIPE LENGTH = 65.10 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 3.142 SQUARE FEET FLOW VELOCITY 5.19 FEET PER SECOND VELOCITY HEAD 0.419 BEND COEFFICIENT(KB) = 0.2500 HB=KB*(VELOCITY HEAD) = ( 0.250)*( 0.419) = 0.105 PIPE CONVEYANCE FACTOR = 226.224 FRICTION SLOPE(SF) 0.0052043 FRICTION LOSSES = L*SF ~ ( 65.10)*( 0.0052043) - 0.339 NODE 19.00: HGL= < 1103.292>:EGL= < 1103.711>:FLOWLINE= < 1101.200> I I I ?Jz-.- I I ==--=- --------------------------- - I PRESSURE FLOW PROCESS FROM NODE 19.00 TO NODE UPSTREAM NODE 20.00 ELEVATION - 1102.28 20.00 IS CODE ~ 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 16.32 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH E 108.50 FEET MANNINGS N = 0.01300 SF~(Q(K)**2 ~ (( 16.32)(( 226.224) )**2 - 0.OU52U43 HF-L*SF : ( 1U8.5U)*( U.UU52043) - 0.S65 NODE 20.00: HGLc < 1103.857>iEGL= < 1104.276>;FLOWLINE= < 1102.280> I ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 20.00: HGL~ < 1104.280>;EGL~ < HGL AND EGL 0.42 1104.699>;FLOWLINE~ < 1102. 28U> I --=======---=--= PRESSURE FLOW PROCESS FROM NODE 20.00 TO NODE UPSTREAM NODE 21.00 ELEVATION = 1102.32 21.00 IS CODE = 5 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 11.4 24.00 3.142 3.641 2 16.3 24.UU 3.142 5.195 3 4.9 15.UO 1.227 3.977 4 U.U U.OO U.OOO U.OOO 5 0.0===Q5 EQUALS BASIN INPUT==: DELTA O.UUU HV U.2U6 U.419 1. 900 0.000 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3l- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) I UPSTREAM MANNINGS N - 0.01300 DOWNSTREAM MANNINGS N - U.01300 UPSTREAM FRICTION SLOPE = 0.00256 DOWNSTREAM FRICTION SLOPE - 0.00520 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00388 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS - 0.016 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSSl+(ENTRANCE LOSSES) JUNCTION LOSSES U.235+ U.206- 0.419+( 0.016)+( O.OUU): 0.037 NODE 21.00: HGL= < 1104.530>:EGL= < 1104.736>;FLOWLINE= < 1102.320> I I ====---====--=--==- =--=======--===========E:====-- I PRESSURE FLOW PROCESS FROM NODE 21.00 TO NODE UPSTREAM NODE 22.00 ELEVATION = 1103.20 22.00 IS CUDE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 11.44 CFS PIPE DIAMETER - 24.00 INCHES PIPE LENGTH 88.40 FEET MANNINGS N - 0.01300 SF:(Q(K)**2 - (( 11.44)(( 226.224))**2 = 0.0025573 HF=L*SF: ( 88.40)*( U.00255731: U.226 NODE 22.00: HGL= < 1104.756>:EGL= < 1104.962>:FLOWLINE- < 1103.200> ---------------------------------------------------------------------------- I I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 22.00: HGL= < 1105.200>:EGL= < HGL AND EGL 0.44 1105. 406>: FLOWLINE= < 1103.200> I -- - ---- -=--======-====---- ----------- PRESSURE FLOW PROCESS FROM NODE 22.00 TO NODE UPSTREAM NODE 23.00 ELEVATION - 1103.50 23.00 IS COUE = 5 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 7.9 18.UO 1.767 4.465 O.OOU 2 11.4 24.00 3.142 3.641 3 1.8 15.UO 1.227 1.442 1.9UU HV 0.310 0.206 I I ~?/ I I 4 5 1.8 15.00 1.227 1.442 0.0===Q5 EQUALS BASIN INPUT=== 3.400 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+AZ)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00564 DOWNSTREAM FRICTION SLOPE - 0.00256 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00419 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.016 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS}+(ENTRANCE LOSSES) JUNCTION LOSSES 0.017+ 0.310- 0.206+( 0.016)+( 0.000) = 0.137 NODE 23.00: HGL= < 110S.233>iEGL= < 1105.543>;FLQWLINE= < 1103.500> I I =========--=====--===============--------- I PRESSURE FLOW PROCESS FROM NODE 23.00 TO NODE UPSTREAM NODE 24.00 ELEVATION = 1103.99 24.00 IS CODE = 1 ---------------------------------------------------------------------------- I ! I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDj : PIPE FLOW = 7.89 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH 49.47 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 - (( 7.89)/( 105.043))**2 = 0.0056418 HF=L*SF = ( 49!47)*( 0.0056418) = 0.279 NODE 24.00: HGL= < 1105.512>;EGL= < 110S.822>;FLOWLINE= < 1103.990> =====================~=====================_============a=================== END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I I I I I I I I ~ I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& DCEMA HYDRAULICS CRITERION) I (el Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Van Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION * 100 YEAR HYDRAULIC ANALYSIS * LAT A-I * BY CT 1/16/03 OF STUDY. ************************** * . * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEA1.DAT TIME/DATE OF STUDY: 17:29 01/16/2003 ===============--============================================================ I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETERIINCHI = 15.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW (CFS) = 1090.780 FOR JUNCTION ANALYSIS 1089.28 6.40 I ============--==========================-=========--===========----==========~ NODE 1.00 : HGL= < 1090.780>;EGL= < 1091.202>;FLOWLINE= < 1089.280> ==================- -======~=---====----==== I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1093.05 2.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.40 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 11.06 FEET MANNINGS N = 0.01300 SF=(Q/K)'*2 I( 6.401/( 64.59811**2 = 0.0098158 HF=L*SF = I 11.06)*( 0.0098158) = 0.109 NODE 2.00 : HGL= < 1090.889>;EGL= < 1091.311>;FLOWLINE= < 1093.050> I ------------------------------------------------------~--------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1094.300>;EGL= < HGL AND EGL 3.41 1094. 722>;FLOWLINE= < 1093.050> I ===-- =~===~ --==---- I PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION ~ 1093.05 2.00 IS CODE = 8 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCDj : PIPE FLQW{CFS) = 6.40 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD = 0.422 CATCH BASIN ENERGY LOSS = .2*{VELOCITY HEAD) = .2*( 0.422) = 0.084 NODE 2.00 : HGL= < 1094.807>;EGL= < 1094.807>;FLOWLINE= < 1093.050> ====:z===-==- END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I " 3"/ I I ............................................................................ >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< LATERAL A-I I ------------ PIPE DIAMETER(FEET) ~ 1.250 PIPE SLOPE(FEETIFEET)= 0.3410 PIPEFLOW(CFS) ~ 6.40 MANNINGS FRICTION FACTOR~ 0.012000 I CRITICAL-DEPTH FLOW INFORMATION: I CRITICAL DEPTH(FEET) = 1.02 CRITICAL FLOW AREA(SQUARE FEET) - 1.072 CRITICAL FLOW TOP.W1DTH(FEET) = 0.969 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) ~ CRITICAL FLOW VELOCITY(FEET/SEC.) = 5.970 CRITICAL FLOW VELOCITY HEAIl(FEET) = 0.55 CRITICAL FLOW HYDRAULIC DEPTH(FEET) ~ I. I I CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 1.57 NORMAL-DEPTH FLOW INFORMATION: 105.25 I I I NORMAL DEPTH(FEET) ~ 0.33 FLOW AREA(SQUARE FEET) ~ 0.26 FLOW TOP-WIDTH(FEET) = U07 FLOW PRESSURE + MOMENTUM(POUNDS) = FLOW YELOCITY(FEET/SEC.) = 24.250 FLOWYELOCITYHEAIl(FEET)~ 9.13] HYDRAULIC DEPTH(FEET) ~ 0.24 FROUDENUMBER- 8.751 SPECIFIC ENERGY(FEET) ~ 9.47 303.06 I I I II II I I i I I I -pfp I I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (e) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 I Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Von Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY * 100 YEAR HYDRAULIC ANALYSIS * LAT A-2 * BY CT 1/14/03 ************************** . * * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEA2.DAT TIME/DATE OF STUDY: 13:33 01/14/2003 ===================mm==============================================--======== I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER(INCH) = 15.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW(CFS) = 1097.180 FOR JUNCTION ANALYSIS 1095.82 6.56 I =========================================================================~ NODE 1.00 : HGL= < 1097.180>;EGL= < 1097.624>;FLOWLINE= < 1095.820> ==-----===========--=====""'...====--===========:z=::::=======_ _ I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION"'" 1098.72 2.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.56 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 10.76 FEET MANNINGS N = 0.01300 SF~(Q/K)**2 (( 6.56)/( 64.598)1**2 ~ 0.0103127 HF~L*SF ~ ( 10.761*( 0.0103127) ~ 0.111 NODE 2.00 : HGL= < 1097.291>;EGL~ < 1097.735>:FLOWLINE~ < 1098.720> I ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1099.970>;EGL= < HGL AND EGL 2.68 1100.414>;FLOWLINE= < 1098.720> I ====a-====...~===_-== - -==-========--===============-===== PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1098.72 2.00 IS CODE = 8 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW(CFS) = 6.56 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD = 0.444 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.444) = 0.089 NODE 2.00 : HGL= < 1100.502>;EGL= < 1100.502>;FLOWLINE= < 1098.720> ====---=::::-== =:E=__=====~ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I ;,\ I I ............................................................................ >>>>PIPEFLOW HYDRAUUC INPUf INFORMATION<<<< LATERALA.2 I PIPE DIAMETER(FEET) = 1.250 PIPE SLOPE(FEETIFEET) ~ 0.2700 PIPEFLOW(CFS) = 6.56 MANNINGS FRICTION FACTOR = 0.012000 I CRITICAL.DEPTH FLOW INFORMATION: I CRITICAL DEPTH(FEET) = 1.03 CRITICAL FLOW AREA(SQUARE FEET) = 1.083 CRITICAL FLOW TOP-WIDTH(FEET) = 0.950 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) ~ CRITICAL FLOW VELOCITY(FEET/SEC.) ~ 6.058 CRITICAL FLOW VELOCITY IIEAD(FEET) = 0.57 CRITICAL FLOW HYDRAUUC DEPTH(FEET) ~ I.l4 CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 1.60 NORMAL.DEPTH FLOW INFORMATION: 108.99 I I I NORMAL DEPTH(FEET) ~ 0.36 FLOW AREA(SQUARE FEET) ~ 0.29 FLOW TOP-WIDTH(FEET) = 1.132 FLOW PRESSURE + MOMENTUM(POUNDS) = FLOW VELOCITY(FEETISEC.)= 22.469 FLOW VELOCITY IIEAD(FEET) ~ 7.839 HYDRAULIC DEPTH(FEET) = 0.26 FROUDENUMBER= 7.795 SPECIFIC ENERGY(FEET) ~ 820 288.36 I I I I I I I I I I I ~ ,I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I (el Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Von Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDRAULIC ANALYSIS * * LAT A-3 * * BY CT 1/14/03 * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEA3.DAT TIME/DATE OF STUDY: 13:36 01/14/2003 ===C====RC========================-___========-================_============ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I I DOWNSTREAM PRESSURE PIPE-FLOW NODE NUMBER = 1.00 PIPE DIAMETER(INCH) = 15.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW(CFS) = 1102.270 FOR JUNCTION ANALYSIS 1100.77 5.06 I ==============Z=========================_=========E========================= NODE 1.00 : HGL= < 1102.270>;EGL= < 1102.534>;FLOWLINE= < 1100.770> ======================--====-==================== PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1104.11 2.00 IS CODE = 1 I ---------------------------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDj : PIPE FLOW = 5.06 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 13.61 FEET MANNINGS N = 0.01300 SF=(Q/Kl**2 (( 5.061/( 64.5981)**2 ~ 0.0061357 HF=L*SF = ( 13.61)*( 0.0061357) = 0.084 NODE 2.00 : HGL~ < 1102.354>;EGL~ < 1102.618>;FLOWLINE~ < 1104.110> I I ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 3.01 NODE 2.00 : HGL~ < 1105.360>;EGL~ < 1105.624>;FLOWLINE- < 1104.110> I ==============================------===------=== ---========-====--======= PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1104.11 2.00 IS CODE = 8 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW{CFSj = 5.06 PIPE DIAHETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD::: 0.264 CATCH BASIN ENERGY LOSS ~ .2* (VELOCITY HEAD 1 ~ .2*( 0.264) = 0.053 NODE 2.00 : HGL= < 1105.677>;EGL= < 110S.677>;FLOWLINE= < 1104.110> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM - =-- --=========--====--====::::==== I I I 31:\ I I ............................................................................ >>>>PIPEFLOW HYDRAULIC INPUI' INFORMATION<<~< LATERALA.3 I ------------ I PIPE DIAMETER(FEET) = 1.250 PIPE SLOPE(FEETIFEET) ~ 0.2450 PIPEFLOW(CFS) ~ 5.06 MANNlNGS FRICTION FACTOR~ 0.012000 CRITiCAL-DEl'fH FLOW INFORMATiON: ------------- I CRITICAL DEl'fH(FEET) = 0.91 CRITiCAL FLOW AREA(SQUARE FEET) = 0.959 CRITICAL FLOW TOP.WIDTH(FEET) = l.IlO CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) ~ CRITICAL FLOW VELOCITY(FEET/SEC.) ~ 5.274 CRITICAL FLOW VELOCITY HEAD(FEET) = 0.43 CRITICAL FLOW HYDRAULIC DEl'fH(FEET) ~ 0.86 CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 1.34 NORMAL.DEl'fH FLOW INFORMATiON: 76.06 I I I II NORMAL DEl'fH(FEET) = 0.32 FLOW AREA(SQUARE FEET) ~ 025 FLOW TOP-WlDTH(FEET) ~ 1.094 FLOW PRESSURE + MOMENTUM(POUNDS) = FLOW VELOCITY(FEET/SEC.) = 20.148 FLOW VELOCITY HEAD(FEET) ~ 6.303 HYDRAULIC DEl'fH(FEET) - 0.23 FROUDENUMBER= 7.411 SPECIFIC ENERGY(FEET) ~ 6.63 199.67 I I I I I I I I I I t\o I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I (cl Copyright 1982-2002 Advanced Engineering Software (aesl Ver. 8.0 Release Date: 01/01/2002 License 10 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Yon Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDRAULIC ANALYSIS * * LAT A-4 * * BY CT 1/25/03 * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEA4.DAT TIME/DATE OF STUDY: 13:27 01/25/2003 =========================================--===========================-====== I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER(INCH) = 15.00 ASSUMED DOWNSTREAM CONTROL HGL = L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW(CFS) = 1103.940 FOR JUNCTION ANALYSIS 1102.68 4.88 II ============================================================================ NODE 1.00 : HGL= < 1103.940>;EGL= < 1104. 186>;FLOWLINE= < 1102.680> ---- ==--- -----== I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1104.40 2.00 IS CODE 1 ------------------~--------------------------------~------------------------ I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 4.88 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 94.85 FEET MANNINGS N = 0.01300 SF=(Q/K) "2 (( 4.88)/( 64.598))"2 = 0.0057069 HF=L'SF = ( 94.85)'( 0.0057069) = 0.541 NODE 2.00 : HGL= < 1104.481>;EGL= < 1104.727>;FLOWLINE= < 1104.400> I ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1105.650>;EGL= < HGL AND EGL 1.17 1105. 896>; FLOWLINE= < 1104.400> I PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 3.00 ELEVATION = 1104.56 3.00 IS CODE = 3 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMAl : PIPE FLOW = 4.88 CFS PIPE DIAMETER 15.00 INCHES CENTRAL ANGLE = 22.390 DEGREES PIPE LENGTH = 8.80 FEET MANNINGS N 0.01300 PRESSURE FLOW AREA m 1.227 SQUARE FEET FLOW VELOCITY = 3.98 FEET PER SECOND VELOCITY HEAD = 0.246 BEND COEFFICIENT(KB) = 0.1247 HB-KB'(VELOCITY HEAD) - ( 0.125)'( 0.246) = 0.031 PIPE CONVEYANCE FACTOR 64.598 FRICTION SLOPE(SF) 0.0057069 FRICTION LOSSES = L'SF = ( 8.80)'( 0.0057009) = 0.050 NODE 3.00 : HGL= < 1105.731>;EGL= < 110S.976>;FLOWLINE= < 1104.560> I -------------------------------------------------~----------------~--------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL I A\ I I LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.08 NODE 3.00 : HGL= < 1105.810>;EGL= < 1106.056>;FLOWLINE= < 1104.560> I ===============--===============================--== PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE UPSTREAM NODE 4.00 ELEVATION = 1104.72 4.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 4.88 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH = 8.67 FEET MANNINGS N = 0.01300 SF=(Q/K) **2 ~ (( 4.88)/( 64.598))*'2 ~ 0.0057069 HF=L*SF = ( 8.67)*( 0.0057069) = 0.049 NODE 4.00 : HGL~ < 1105.859>;EGL~ < 1106.105>;FLOWLINE~ <.1104.720> I ---------------------------------------------------------------------------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.11 NODE 4.00 : HGL= < 1105.970>;EGL= < 1106.216>;FLOWLINE= < 1104.720> ===--====--------- --==--- ==================------- I PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE UPSTREAM NODE 4.00 ELEVATION ~ 1104.72 4.00 IS CODE = 8 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCO) : PIPE FLOW (CFS) = 4.88 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD = 0.246 CATCH BASIN ENERGY LOSS ~ .2* (VELOCITY HEAD) = .2*1 0.246} = 0.049 NODE 4.00 : HGL= < 1106.265>;EGL= < 1106.265>;FLOWLINE= < 1104.720> ========================================================================- I END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I I I I I I I I A.2-- I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1355 I Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Yon Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY * 100 YEAR HYDRAULIC ANALYSIS * LAT A-5 * BY CT 1/14/03 ************************** * * * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEA5.DAT TIME/DATE OF STUDY: 13:47 01/14/2003 ============================================================================ I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER{INCH) "" 15.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW{CFS) - 1104.780 FOR JUNCTION ANALYSIS 1103.51 1. 77 =======================================m==================_================= I NODE 1.00 : HGL= < 1104.780>;EGL= < 1104.812>;FLOWLINE= < 1103.510> ====---=============---==========IC============ I PRESSURE FLOW PROCESS FROM NOOE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1105.09 2.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCDj : PIPE FLOW = 1.77 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 46.68 FEET MANNINGS N = 0.01300 SF=IQfK) **2 I( 1.77)f( 64.598))**2 = 0.0007508 HF=L*SF = I 46.68)*( 0.0007508) ~ 0.035 NODE 2.00 : HGL~ < 1104.815>;EGL= < 1104.847>;FLOWLINE= < 1105.090> I ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1106.340>;EGL= < HGL AND EGL 1.52 1106.372>;FLOWLINE= < 1105.090> I ""====-==-- -----====-====-======:0:_=--====-====== PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION - 1105.09 2.00 IS CODE = 8 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCDj : PIPE FLOWICFS) = 1.77 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAO = 0.032 CATCH BASIN ENERGY LOSS ~ .2*IVELOCITY HEAD) ~ .2*( 0.032) - 0.006 NODE 2.00 : HGL= < 1106.379>;EGL= < 1106.379>;FLOWLINE= < 1105.090> ====---- -=====-==----==-_====__=======:m== END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I A'?? I I ............................................................................ >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< LATERALA-5 I I PIPE D1AMETER(FEET) - 1.250 PIPE SLOPE(FEETIFEET) ~ 0.0338 PIPEFLOW(CFS)~ 1.77 MANNINGS FRICTION FACTOR - 0.012000 CRITICAL-DEPTIJ FLOW INFORMATION: I CRITICAL DEPTH(FEET) - 0.53 CRITICAL FLOW AREA(SQUARE FEET) - 0.493 CRITICAL FLOW TOP-WIDTH(FEET) - 1.235 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS)- CRITICAL FLOW VELOCITY(FEET/SEC.) = 3.587 CRITICAL FLOW VELOCITY HEAD(FEET) ~ 0.20 CRITICAL FLOW HYDRAULIC DEPTH(FEET) - 0.40 CRITICAL FLOW SPECIFIC ENERGY(FEET) - 0.73 NORMAL-DEPTH FLOW INFORMATION: 19.13 I I I NORMAL DEPTIJ(FEET) - 0.3 I FLOW AREA(SQUARE FEET) - 024 FLOW TOP-WIDTH(FEET) = 1.083 FLOW PRESSURE + MOMENTUM(POUNDS)- FLOW VELOCITY(FEET/SEC.) - 7.355 FLOW VELOCITY HEAD(FEET) - 0.840 HYDRAULIC DEPTH(FEET) - 0.22 FROUDENUMBER~ 2.750 SPECIFIC ENERGY(FEET) ~ 1.15 27.19 I I I I I I I I I I I A."- I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& QCEMA HYDRAULICS CRITERION) I (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 1D 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Van Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDRAULIC ANALYSIS * * LAT A-6 '* * BY CT 1/14/03 * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEA6.DAT TIME/DATE OF STUDY: 13:50 01/14/2003 I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER (INCH) = 15.00 ASSUMED DOWNSTREAM CONTROL HGL = L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION = PIPE FLOW{CFS) = 1104.810 FOR JUNCTION ANALYSIS 1103.51 1. 77 I NODE 1.00 : HGL= < 1104.810>;EGL= < 1104.842>;FLOWLINE= < 1103.510> I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1106.28 2.00 IS CODE - 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 1.77 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 47.25 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 1.77)/( 64.598))**2 - 0.0007508 HF=L*SF = ( 47.25)*( 0.0007508) = 0.035 NODE 2.00 : HGL= < 1104.846>;EGL= < 1104.878>;FLOWLINE= < 1106.280> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 2.68 NODE 2.00 : HGL= < 1107.530>;EGL= < 1107.562>;FLOWLINE= < 1106.280> I PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1106.28 2.00 IS CODE = 8 I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW (CFS) = 1.77 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD = 0.032 CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.032) = 0.006 NODE 2.00 : HGL= < 1107.569>;EGL= < 1107.569>;FLOWLINE= < 1106.280> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I '\~ I II ............................................................................ >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< LATERAL A-' I PIPE DIAMETER(FEET) = 1.250 PIPE SLOPE(FEETIFEET) = 0.0586 PIPEFLOW(CFS) = 1.77 MANNlNGS FRICTION FACTOR ~ 0.012000 I CRlTICAL.DEPTH FLOW INFORMATION: I CRITICAL DEPfH(FEED = 0.53 CRITICAL FLOW AREA(SQUARE FEET) = 0.493 CRITICAL FLOW TOP.WIDTH(FEET) = 1.235 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = CRITICAL FLOW VELOCITY(FEET/SEC.) = 3.587 CRITICAL FLOW VELOCITY HEAD(FEET) = 0.20 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.40 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 0.73 NORMAL-DEPTH FLOW INFORMATION: 19.13 I I ~- I NORMAL DEPfH(FEET) ~ 0.27 FLOW AREA(SQUARE FEET) = 020 FLOW TOP. W1DTH(FEET) = 1.033 FLOW PRESSURE + MOMENTUM(POUNDS) = 32.07 FLOW VELOCITY(FEET/SEC.) = 8.941 FLOW VELOCITY HEAD(FEET) ~ 1.24 I HYDRAULIC DEPfH(FEET) = 0.19 FROUDE NUMBER ~ 3.599 SPECIFIC ENERGY(FEET)~ I.51 I I I , I I I I I I I ACo I I ,I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I (c) Copyright 1982-2002 Advanced Engineering Software (aesl Ver. 8.0 Release Date: 01/01/2002 License 10 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16195 Von Karman Ave. Suite 100 Irvine, California 92606 PH' 949-474-1960 FAX' 949-474-5315 I ************************** DESCRIPTION OF STUDY ************************** * HARVESTON APARTMENTS-lOa YEAR HYDRAULIC ANALYSIS * * LINE B * * BY CT 7/29/03 * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\2PIPEB,DAT TIME/DATE OF STUDY: 09:08 07/29/2003 ======~==================================================================== I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER - 1.00 PIPE DIAMETER (INCHl = 30.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW{CFS) = 1091. 030 FOR JUNCTION ANALYSIS 1088.50 23.54 I ========--=================================================================== NODE 1.00 : HGL= < 1091.030>;EGL= < 1091.387>;FLOWLINE= < 1088.500> ~_===========m========================================m===========m========= I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION - 1088.90 2.00 IS CODE - 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 23.54 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH 12.99 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 23.54)j{ 410.171))**2 = 0.0032937 HF-L*SF = I 12.99)*1 0.0032937) = 0.043 NODE 2.00 : HGL= < 1091.073>;EGL= < 1091.430>;FLOWLINE= < 1088.900> I ---------------------------------------------------------------------------- PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 , HGL~ < 1091.400>;EGL~ < HGL AND EGL 0.33 1091.757>;FLOWL1NE~ < 1088.900> I =~============c===============================================__========--==== PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 3.00 ELEVATION = 1089.45 3.00 IS CODE = 1 I ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LQSSES(LACFCDl: PIPE FLOW = 23.54 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH = 17.67 FEET MANNINGS N = 0.01300 SF~IQ/KI**2 (I 23.541/1 410.171)1**2 = 0.0032937 HFcL*SF c ( 17.67)*( 0.0032937) c 0.058 NODE 3.00 : HGL= < 1091.458>;EGL= < 1091.815>;FLOWLINE= < 1089.450> ---------------------------------------------------------------------------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 3.00 : HGL= < 1091.950>;EGL= < HGL AND EGL 0.49 1092.307>;FLOWLINE= < 1089.450> I ==================a-====================C=================================== I A.1 I I PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE UPSTREAM NODE 4.00 ELEVATION = 1089.47 4.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 23.54 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH 0.64 FEET MANNINGS N = 0.01300 SF=(Q/K}**2 (( 23.54)f( 410.171))**2 = 0.0032937 HF~L*SF ~ ( 0.64)*( 0.0032937) ~ 0.002 NODE 4.00 : HGL= < l091.952>;EGL= < l092.309>;FLOWLINE= < 1089.470> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 4.00 : HGL= < l091.970>;EGL= < HGL AND EGL 0.02 1092. 327>;FLOWLINE= < 1089.470> I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE UPSTREAM NODE 5.00 ELEVATION = 1089.67 5.00 IS CODE = 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 20.0 30.00 4.909 4.064 0.570 2 23.5 30.00 4.909 4.796 3 3.6 15.00 1.227 2.925 12.680 4 0.0 0.00 0.000 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== HV 0.256 0.357 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))f((Al+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00237 DOWNSTREAM FRICTION SLOPE = 0.00329 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00283 JUNCTION LENGTH (FEET) = 4.00 FRICTION LOSS = 0.011 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES 0.136+ 0.256- 0.357+( 0.011)+( 0.000) = 0.047 NODE 5.00 : HGL= < 1092.118>;EGL= < 1092.374>;FLOWLINE= < 1089.670> I I I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 5.00 : HGL= < 1092.170>;EGL= < HGL AND EGL 0.05 1092. 427>;FLOWLINE= < 1089.670> ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE UPSTREAM NODE 6.00 ELEVATION = 1090.43 6.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 19.95 CFS PIPE DIAMETER 30.00 INCHES PIPE LENGTH 75.35 FEET MANNINGS N ~ 0.01300 SF=(QfK) **2 (( 19.95)f( 410.171))**2 = 0.0023657 HF=L*SF = ( 75.35)*( 0.0023657) = 0.178 NODE 6.00 : HGL= < 1092.348>;EGL= < 1092.605>;FLOWLINE= < 1090.430> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 6.00 : HGL= < 1092.930>;EGL= < HGL AND EGL 0.58 1093. 187>; FLOWLINE= < 1090.430> I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 6.00 TO NODE UPSTREAM NODE 7.00 ELEVATION = 1090.44 7.00 IS CODE = 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 19.2 30.00 4.909 3.915 2 20.0 30.00 4.909 4.064 DELTA 0.570 HV 0.238 0.256 I ~ I I 3 4 5 0.7 10.00 0.0 0.00 0.0~~~Q5 EQUALS 0.545 1.338 0.000 0.000 BASIN INPUT'="= 17.430 0.000 I LACFCD AND DCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Ql*Vl*COS (DELTAl)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N ~ 0.01300 DOWNSTREAM MANNINGS N ~ 0.01300 UPSTREAM FRICTION SLOPE = 0.00220 DOWNSTREAM FRICTION SLOPE = 0.00237 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00228 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = 0.003 ENTRANCE LOSSES o.oao JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES 0.031+ 0.238- 0.256+( 0.003)+( O.OOOl = 0.016 NODE 7.00 : HGL= < l092.964>;EGL= < l093.203>;FLOWLINE= < 1090.440> I I I PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE UPSTREAM NODE 8.00 ELEVATION = 1091.65 8.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 19.22 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH 121.41 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 19.22)/( 410.171))**2 = 0.0021957 HF=L*SF = ( 121.41)*( 0.0021957) = 0.267 NODE 8.00 : HGL= < 1093.231>;EGL= < 1093.469>;FLOWLINE= < 1091.650> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 8.00 : HGL= < 1094.150>;EGL= < HGL AND EGL 0.92 1094.388>;FLOWLINE= < 1091. 650> I PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE UPSTREAM NODE 9.00 ELEVATION = 1091.77 9.00 IS CODE ~ 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 19.22 CFS PIPE DIAMETER = 30.00 INCHES PIPE LENGTH 11.96 FEET MANNINGS N = 0.01300 SF=(Q/K) **2 {( 19.22)/( 410.171))**2 = 0.0021957 HF~L*SF ~ ( 11.96)*( 0.0021957) ~ 0.026 NODE 9.00 : HGL= < 1094. 176>;EGL= < 1094.414>;FLOWLINE= < 1091.770> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 9.00 : HGL= < 1094.270>;EGL= < HGL AND EGL 0.09 1094.508>;FLOWLINE= < 1091.770> I PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE UPSTREAM NODE 10.00 ELEVATION = 1092.44 10.00 IS CODE ~ 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 5.8 15.00 1.227 4.702 4.830 2 19.2 30.00 4.909 3.915 3 13.5 18.00 1.767 7.617 0.580 4 0.0 0.00 0.000 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== HV 0.343 0.238 I I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00798 ~C\ I I I DOWNSTREAM FRICTION SLOPE = 0.00220 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00509 JUNCTION LENGTH(FEET) = 4.00 FRICTION LOSS = 0.020 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES ~ -0.550+ 0.343- 0.238+( 0.020)+( 0.000) = -0.424 ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 10.00: HGL= < l094.165>;EGL= < l094.508>iFLOWLINE= < 1092.440> I I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE UPSTREAM NODE 11.00 ELEVATION = 1092.85 11.00 IS CODE ~ 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD}: PIPE FLOW = 5.77 ers PIPE DIAMETER 15.00 INCHES PIPE LENGTH 7.64 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 ({ 5.77)/( 64.598))**2: 0.0079784 HF:L*SF : ( 7.64)*( 0.0079784) : 0.061 NODE 11.00: HGL= < 1094.226>;EGL= < 1094.569>;FLOWLINE= < 1092.850> I -------~-~~---------------------------~~~---------------------------------~~ ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 11.00 TO NODE UPSTREAM NODE 12.00 ELEVATION = 1093.64 12.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES{LACFCD): PIPE FLOW = 5.77 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 14.70 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 5.77)/( 64.598))**2 = 0.0079784 HF=L*SF = ( 14.70)*( 0.0079784) = 0.117 NODE 12.00: HGL= < 1094.343>;EGL= < 1094.686>;FLOWLINE= < 1093.640> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 12.00: HGL= < 1094.890>;EGL= < HGL AND EGL 0.55 1095.233>;FLOWLINE= < 1093.640> I PRESSURE FLOW PROCESS FROM NODE 12.00 TO NODE UPSTREAM NODE 13.00 ELEVATION = 1093.72 13.00 IS CODE = 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 5.4 15.00 1.227 4.408 4.830 2 5.8 15.00 1.227 4.702 3 0.4 6.00 0.196 1.833 43.830 4 0.0 0.00 0.000 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== HV 0.302 0.343 I I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00701 DOWNSTREAM FRICTION SLOPE = 0.00798 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00750 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = 0.011 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES 0.073+ 0.302- 0.343+( 0.011)+{ 0.000) = 0.043 NODE 13.00: HGL= < 1094.974>;EGL= < 1095.276>;FLOWLINE= < 1093.720> I I PRESSURE FLOW PROCESS FROM NODE 13.00 TO NODE UPSTREAM NODE 14.00 ELEVATION = 1094.35 14.00 IS CODE = 1 I I ~ I I I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 5.41 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 11.49 FEET MANNINGS N = 0.01300 SF=IQ/K) **2 II 5.41)/1 64.598))**2 = 0.0070139 HF=L*SF = ( 11.49)*( 0.0070139) = 0.081 NODE 14.00: HGL= < l095.055>;EGL= < l095.357>iFLOWLINE= < 1094.350> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 14.00: HGL= < l095.600>;EGL= < HGL AND EGL 0.55 l09S.902>;FLOWLINE= < 1094.350> I ---------------------------------~------------------------------------------ ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 14.00 TO NODE UPSTREAM NODE 15.00 ELEVATION = 1094.42 15.00 IS CODE = 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 4.7 15.00 1.227 3.830 4.830 2 5.4 15.00 1.227 4.408 3 0.7 4.00 0.087 8.136 24.040 4 0.0 0.00 0.000 0.000 0.000 5 0.0=~=Q5 EQUALS BASIN INPUT=== HV 0.228 0.302 I I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS (DELTAl)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00529 DOWNSTREAM FRICTION SLOPE = 0.00701 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00615 JUNCTION LENGTH(FEET) = 1.50 FRICTION LOSS = 0.009 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = 0.016+ 0.228- 0.302+{ 0.009)+(.0.000) = -0.049 ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 15.00: HGL= < 1095. 674>iEGL= < 1095.902>iFLOWLINE= < 1094.420> I I ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I PRESSURE FLOW PROCESS FROM NODE 15.00 TO NODE UPSTREAM NODE 16.00 ELEVATION = 1097.42 16.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 4.70 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 55.18 FEET MANNINGS N = 0.01300 SF=(Q/K) **2 (( 4.70l/( 64.598)}**2 = 0.0052937 HF=L*SF = ( 55.18)*( 0.0052937) = 0.292 NODE 16.00: HGL= < 1095.966>iEGL= < 1096.194>iFLOWLINE= < 1097.420> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 16.00: HGL= < 1098. 670>iEGL= < HGL AND EGL 2.70 1098. 898>iFLOWLINE= < 1097.420> I ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 16.00 TO NODE UPSTREAM NODE 17.00 ELEVATION = 1098.24 17.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 4.70 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 15.11 FEET MANNINGS N = 0.01300 SF=IQ/K)**2 II 4.70)/1 64.598))**2 = 0.0052937 HF=L*SF = ( 15.11)*( 0.0052937) = 0.080 NODE 17.00: HGL= < 1098.750>;EGL= < 1098.978>;FLOWLINE= < 1098.240> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.74 I ~\ I I NODE 17.00 HGL= < l099.490>;EGL= < l099.71S>;FLOWLINE= < 1098.240> I -----------~---------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 17.00 TO NODE UPSTREAM NODE 18.00 ELEVATION = 1098.31 18.00 IS CODE = 5 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA 1 3.3 15.00 1.227 2.656 4.830 2 4.7 15.00 1.227 3.830 3 1.4 8.00 0.349 4.125 12.520 4 0.0 0.00 0.000 0.000 0.000 5 O.O===Q5 EQUALS BASIN INPUT=== HV 0.110 0.228 I I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS (DELTAlj-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1) I UPSTREAM MANNINGS N = 0.01300 DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE = 0.00255 DOWNSTREAM FRICTION SLOPE = 0.00529 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00392 JUNCTION LENGTH (FEET) = 1.50 FRICTION LOSS = 0.006 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HV1-HV2+(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = 0.090+ 0.110- 0.228+( 0.006)+{ 0.000) = -0.022 ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. NODE 18.00: HGL~ < 1099.608>;EGL~ < 1099.718>;FLOWLINE~ < 1098.310> I I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 18.00 TO NODE UPSTREAM NODE 19.00 ELEVATION = 1098.70 19.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 3.26 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 7.15 FEET MANNINGS N = 0.01300 SF={Q/K) **2 (( 3.26)/( 64.598})**2 = 0.0025468 HF=L*SF = ( 7.15)*( 0.0025468) = 0.018 NODE 19.00: HGL= < 1099.626>;EGL= < 1099.736>;FLOWLINE= < 1098.700> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 19.00: HGL= < 1099.950>;EGL= < HGL AND EGL 0.32 1100.060>;FLOWLINE= < 1098.700> I ============================================================================ PRESSURE FLOW PROCESS FROM NODE 19.00 TO NODE UPSTREAM NODE 20.00 ELEVATION = 1099.23 20.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 3.26 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 9.84 FEET MANNINGS N = 0.01300 SF~(Q/K)**2 (I 3.26)/( 64.598) )**2 ~ 0.0025468 HF=L*SF = ( 9.84)*( 0.0025468) = 0.025 NODE 20.00: HGL= < 1099.975>;EGL= < 1100.085>;FLOWLINE= < 1099.230> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.51 NODE 20.00: HGL= < 1100.480>:EGL= < 1100.590>;FLOWLINE= < 1099.230> --------------------------------~------------------------~~----------------- ---------------------------------------------------------------------------- END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I ~~ I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I (el Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License IO 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Von Karman Ave. Suite 100 Irvine, California 92606 PH: 949-474-1960 FAX: 949-474-5315 I ************************** DESCRIPTION OF STUDY ************************** * lOa YEAR HYDRAULIC ANALYSIS * * LAT B-1 * * BY CT 7/29/03 * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEBl.DAT TIME/DATE OF STUDY: 09:28 07/29/2003 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER (INCH) = 15.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW(CFS) = 1091. 990 FOR JUNCTION ANALYSIS 1090.32 2.47 I NODE 1.00 : HGL= < 1091.990>;EGL= < 1092.053>;FLOWLINE= < 1090.320> I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1094.60 2.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 2.47 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 13.28 FEET MANNINGS N = 0.01300 SF={Q/K)**2 (( 2.47)/( 64.598))**2 = 0.0014620 HF~L*SF ~ ( 13.28)*( 0.0014620) ~ 0.019 NODE 2.00 : HGL= < 1092.009>;EGL= < 1092.072>;FLOWLINE= < 1094.600> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1095.850>;EGL= < HGL AND EGL 3.84 1095. 913>;FLOWLINE= < 1094.600> I PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1094.60 2.00 IS CODE = 8 I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW (CFS) = 2.47 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD = 0.063 CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 0.063) = 0.013 NODE 2.00 : HGL= < 1095.925>;EGL= < 1095.925>;FLOWLINE= < 1094.600> I END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I .r:j-p I I I I I I I I I I I I I I I I I I I *********************.***********.**************************.....*******..** >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< LATERAL B- I PIPE DIAMETER(FEET) ~ 1.250 PIPE SLOPE(FEET/FEET) = 0.3220 PIPEFLOW(CFS) ~ 2.47 MANNINGS FRICTION FACTOR = 0.012000 CRITICAL-DEPTH FLOW INFORMATION: CRITICAL DEPTH(FEET) ~ 0.63 CRITICAL FLOW AREA(SQUARE FEET) ~ 0.619 CRITICAL FLOW TOP- WIDTH(FEET) = 1.250 CRITICAL FLOW PRESSURE + MOMENTIJM(POUNDS) = 29.41 CRITICAL FLOW VELOCITY(FEET/SEC.) = 3.992 CRITICAL FLOW VELOCITY HEAD(FEET) = 0.25 CRITICAL FLOW HYDRAULIC DEPTH(FEET) ~ 0.49 CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 0.88 NORMAL-DEPTH FLOW INFORMATION: NORMAL DEPTH(FEET) = 0.21 FLOW AREA(SQUARE FEET) = 0.14 FLOW TOP-WIDTH(FEET) = 0.937 FLOW PRESSURE + MOMENTIJM(POUNDS) = 86.88 FLOW VELOCITY(FEET/SEC.) ~ 17.993 FLOW VELOCITY HEAD(FEET) = 5.027 HYDRAULIC DEPTH(FEET) = O. I 5 FROUDE NUMBER ~ 8.285 SPECIFIC ENERGY(FEET) = 5.24 ~l\ I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Von Karman Ave. Suite 100 Irvine, California 92606 PH: 949-474-1960 FAX: 949-474-5315 I ************************** DESCRIPTION OF STUDY ************************** * lOa YEAR HYDRAULIC ANALYSIS * * LINE C * * BY CT 7/29/03 . ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEC.DAT TIME/DATE OF STUDY: 09:20 07/29/2003 ============================================================================ II I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND aCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER(INCH) = 24.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW (CFS) = 1094.110 FOR JUNCTION ANALYSIS 1092 .10 14.12 I ============================================================================ NODE 1.00 : HGL= < 1094.110>;EGL= < 1094.424>;FLOWLINE= < 1092.100> ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1092.27 2.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 14.12 CFS PIPE DIAMETER 24.00 INCHES PIPE LENGTH 16.53 FEET MANNINGS N = 0.01300 SF=IQ/KI**2 II 14.12)/( 226.2241)**2 = 0.0038958 HF=L*SF = ( 16.53)*( 0.0038958) = 0.064 NODE 2.00 : HGL= < 1094.174>;EGL= < 1094.488>;FLOWLINE= < 1092.270> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1094.270>;EGL= < HGL AND EGL 0.10 1094. 584>;FLOWLINE= < 1092.270> I ============================================================================ PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 3.00 ELEVATION = 1092.94 3.00 IS CODE = 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 6.1 15.00 1.227 4.971 2 14.1 24.00 3.142 4.495 3 8.0 18.00 1.767 4.538 4 0.0 0.00 0.000 0.000 5 0.O===Q5 EQUALS BASIN INPUT=== DELTA 0.000 HV 0.384 0.314 I 4.700 0.000 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4 *V4 *COS (DELTA4)) / ( (A1+A2) *16. 1) I UPSTREAM MANNINGS N = 0.01300 I :55'" I I DOWNSTREAM MANNINGS N = 0.01300 UPSTREAM FRICTION SLOPE ~ 0.00892 DOWNSTREAM FRICTION SLOPE = 0.00390 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00641 JUNCTION LENGTH (FEET) = 4.00 FRICTION LOSS = 0.026 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = -0.045+ 0.384- 0.314+( 0.026)+( 0.000) = 0.051 NODE 3.00 : HGL= < l094.251>;EGL= < l094.635>;FLQWLINE= < 1092.940> I I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 3.00 TO NODE UPSTREAM NODE 4.00 ELEVATION = 1093.03 4.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.10 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 5.69 FEET MANNINGS N = 0.01300 SF=IQ/K) **2 (I 6.10)/( 64.598))**2 = 0.0089171 HF=L*SF = ( 5.69)*( 0.0089171) = 0.051 NODE 4.00 : HGL= < 1094.302>;EGL= < 1094.686>;FLOWLINE= < 1093.030> I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 4.00 TO NODE UPSTREAM NODE 5.00 ELEVATION = 1093.30 5.00 IS CODE = 3 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 6.10 CFS PIPE DIAMETER = 15.00 INCHES CENTRAL ANGLE = 44.730 DEGREES PIPE LENGTH = 17.57 FEET MANNINGS N = 0.01300 PRESSURE FLOW AREA = 1.227 SQUARE FEET FLOW VELOCITY = 4.97 FEET PER SECOND VELOCITY HEAD = 0.384 BEND COEFFICIENT(KB) = 0.1762 HB=KB*(VELOCITY HEAD) = ( 0.176)*( 0.384) = 0.068 PIPE CONVEYANCE FACTOR = 64.598 FRICTION SLOPE(SF) 0.0089171 FRICTION LOSSES = L*SF = ( 17.57)*( 0.0089171) = 0.157 NODE 5.00 : HGL= < 1094.526>;EGL= < 1094.910>;FLOWLINE= < 1093.300> I ---------------------------------------------------------------------------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 5.00 : HGL= < 1094.550>;EGL= < HGL AND EGL 0.02 1094. 934>;FLOWLINE= < 1093.300> I ============================================================================ PRESSURE FLOW PROCESS FROM NODE 5.00 TO NODE UPSTREAM NODE 6.00 ELEVATION = 1094.86 6.00 IS CODE = 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.10 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 99.95 FEET MANNINGS N = 0.01300 SF=(Q/K) **2 (( 6.10)/( 64.598))**2 = 0.0089171 HF=L*SF = ( 99.95)*( 0.0089171) = 0.891 NODE 6.00 : HGL= < 1095.441>;EGL= < 1095.825>;FLOWLINE= < 1094.860> I ---------------------------------------------------------------------------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 6.00 : HGL= < 1096. 110>;EGL= < HGL AND EGL 0.67 1096. 494>;FLOWLINE= < 1094.860> ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 6.00 TO NODE UPSTREAM NODE 7.00 ELEVATION = 1095.41 7.00 IS CODE = 3 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) : PIPE FLOW = 6.10 CFS PIPE DIAMETER 15.00 INCHES CENTRAL ANGLE = 90.000 DEGREES PIPE LENGTH = 35.34 FEET MANNINGS N 0.01300 PRESSURE FLOW AREA = 1.227 SQUARE FEET FLOW VELOCITY 4.97 FEET PER SECOND VELOCITY HEAD = 0.384 BEND COEFFICIENT (KB) 0.2500 I I 5~ I I HB=KB*(VELOCITY HEAD) = ( 0.250)*( O.384} = 0.096 PIPE CONVEYANCE FACTOR ~ 64.598 FRICTION SLOPE(SF) 0.0089171 FRICTION LOSSES = L*SF = ( 35.34)*( 0.0089171) = 0.315 NODE 7.00 : HGL= < l096.521>;EGL= < l096.905>iFLQWLINE= < 1095.410> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 7.00 : HGL= < l096.660>;EGL= < HGL AND EGL 0.14 l097.044>iFLOWLINE= < 1095.410> I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 7.00 TO NODE UPSTREAM NODE 8.00 ELEVATION = 1097.55 8.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.10 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 137.22 FEET MANNINGS N = 0.01300 SF={Q/Kl**2 (( 6.10)/( 64.598})**2 = 0.0089171 HF=L*SF = ( 137.22)*( 0.0089171) = 1.224 NODE 8.00 : HGL= < 1097.884>;EGL= < 1098.267>;FLOWLINE= < 1097.550> I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL 0.92 NODE 8.00 ; HGL= < 1098.800>;EGL= < 1099.184>;FLOWLINE= < 1097.550> I ============================================================================ PRESSURE FLOW PROCESS FROM NODE 8.00 TO NODE UPSTREAM NODE 9.00 ELEVATION = 1097.59 9.00 IS CODE = 5 I CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY 1 4.4 15.00 1.227 3.610 2 6.1 15.00 1.227 4.971 3 1.7 15.00 1.227 1.361 4 0.0 0.00 0.000 0.000 5 0.0===Q5 EQUALS BASIN INPUT=== DELTA 0.000 HV 0.202 0.384 I 4.180 0.000 I LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS (DELTA1)-Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/({A1+A2)*16.1) I UPSTREAM MANNINGS N = 0.01200 DOWNSTREAM MANNINGS N = 0.01200 UPSTREAM FRICTION SLOPE = 0.00401 DOWNSTREAM FRICTION SLOPE = 0.00760 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00580 JUNCTION LENGTH (FEET) = 4.00 FRICTION LOSS = 0.023 ENTRANCE LOSSES 0.000 JUNCTION LOSSES = DY+HVI-HV2+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES 0.305+ 0.202- 0.384+( 0.023)+( 0.000) ~ 0.147 NODE 9.00 : HGL= < 1099.129>;EGL= < 1099.331>;FLOWLINE= < 1097.590> I I -----------------------------------------~--------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 9.00 TO NODE UPSTREAM NODE 10.00 ELEVATION = 1097.72 10.00 IS CODE = 1 I I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 4.43 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 11.78 FEET MANNINGS N = 0.01200 SF=(Q/K) **2 {( 4.43)/( 69.981))**2 = 0.0040073 HF=L*SF = ( 11.78)*{ 0.0040073) = 0.047 NODE 10.00: HGL= < 1099.176>;EGL= < 1099.378>;FLOWLINE= < 1097.720> I ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PRESSURE FLOW PROCESS FROM NODE 10.00 TO NODE UPSTREAM NODE 11.00 ELEVATION = 1098.12 11.00 IS CODE = 3 I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (OCEMA) : I SI I I I PIPE FLOW = 4.43 CFS PIPE DIAMETER 15.00 INCHES CENTRAL ANGLE 90.000 DEGREES PIPE LENGTH = 35.34 FEET MANNINGS N 0.01200 PRESSURE FLOW AREA = 1.227 SQUARE FEET FLOW VELOCITY = 3.61 FEET PER SECOND VELOCITY HEAD = 0.202 BEND COEFFICIENT(KB) = 0.2500 HB=KB*(VELOCITY HEAD) = ( 0.250)*( 0.202) = 0.051 PIPE CONVEYANCE FACTOR 69.981 FRICTION SLOPE{SF) 0.0040073 FRICTION LOSSES = L*SF = ( 35.34)*( 0.0040073) = 0.142 NODE 11.00: HGL= < l099.368>;EGL= < l099.570>;FLOWLINE= < 1098.120> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 11.00: HGL= < l099.370>;EGL= < HGL AND EGL 0.00 1099. 572>;FLOWLINE= < 1098.120> ---------------------~-----------------------------------------~------------ ---------------------------------------------------------------------------- I PRESSURE FLOW PROCESS FROM NODE 11.00 TO NODE UPSTREAM NODE 12.00 ELEVATION = 1098.34 12.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 4.43 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 20.36 FEET MANNINGS N = 0.01200 SF=(Q/K)**2 ({ 4.43)/{ 69.981))**2 = 0.0040073 HF=L*SF = ( 20.36)*( 0.0040073) = 0.082 NODE 12.00: HGL= < 1099.452>iEGL= < 1099.654>iFLOWLINE= < 1098.340> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 12.00: HGL= < 1099.590>iEGL= < HGL AND EGL 0.14 1099.792>iFLOWLINE= < 1098.340> I PRESSURE FLOW PROCESS FROM NODE 12.00 TO NODE UPSTREAM NODE 13.00 ELEVATION = 1098.74 13.00 IS CODE = 3 I I CALCULATE PRESSURE FLOW PIPE-BEND LOSSES (QCEMA) : PIPE FLOW = 4.43 CFS PIPE DIAMETER 15.00 INCHES CENTRAL ANGLE = 90.000 DEGREES PIPE LENGTH = 35.34 FEET MANNINGS N 0.01200 PRESSURE FLOW AREA = 1.227 SQUARE FEET FLOW VELOCITY = 3.61 FEET PER SECOND VELOCITY HEAD = 0.202 BEND COEFFICIENT(KB) = 0.2500 HB=KB*(VELOCITY HEAD) = ( 0.250)*( 0.202) = 0.051 PIPE CONVEYANCE FACTOR 69.981 FRICTION SLOPE(SF) 0.0040073 FRICTION LOSSES = L*SF = ( 35.34)*( 0.0040073) = 0.142 NODE 13.00: HGL= < 1099.782>iEGL= < 1099.985>;FLOWLINE= < 1098.740> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 13.00: HGL= < 1099.990>iEGL= < HGL AND EGL 0.21 1100. 192>iFLOWLINE= < 1098.740> I PRESSURE FLOW PROCESS FROM NODE 13.00 TO NODE UPSTREAM NODE 14.00 ELEVATION = 1099.23 14.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 4.43 CFS PIPE DIAMETER = 15.00 INCHES PIPE LENGTH 44.00 FEET MANNINGS N = 0.01200 SF=(Q/K) **2 (( 4.43)/( 69.981))**2 = 0.0040073 HF=L*SF = ( 44.00)*( 0.0040073) = 0.176 NODE 14.00: HGL= < 1100.166>iEGL= < 1100.369>;FLOWLINE= < 1099.230> I I PRESSURE FLOW ASSUMPTION USED TO ADJUST HGL AND EGL LOST PRESSURE HEAD USING SOFFIT CONTROL = 0.31 NODE 14.00: HGL= < 1100.480>;EGL= < 11DO.682>;FLOWLINE= < 1099.230> I PRESSURE FLOW PROCESS FROM NODE 14.00 TO NODE 14.00 IS CODE = 8 I ~ I I UPSTREAM NODE 14.00 ELEVATION = 1099.23 I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES{LACFCD): PIPE FLOW(CFS) = 4.43 PIPE DIAMETER(INCH) 15.00 PRESSURE FLOW VELOCITY HEAD = 0.202 CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 0.202) = 0.040 NODE 14.00: HGL= < 1100.723>;EGL= < 1100.723>;FLOWLINE= < 1099.230> I END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I I I I I I I I I I I I I ~ I I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFO,LACRD,& OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License 10 1355 I Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Von Karman Ave. Suite 100 Irvine, California 92606 PH: 949-474-1960 FAX: 949-474-5315 I ************************** DESCRIPTION OF STUDY ************************** * 100 YEAR HYDRAULIC ANALYSIS * * LAT C-1 * * BY CT 7/29/03 * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPECl.DAT TIME/DATE OF STUDY: 09:31 07/29/2003 ============================================================================ I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER (INCH) = 18.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW(CFS) = 1094.180 FOR JUNCTION ANALYSIS 1092.49 10.17 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- I NODE 1.00 : HGL= < 1094.180>:EGL= < 1094.694>:FLOWLINE= < 1092.490> ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1093.61 2.00 IS CODE = 1 I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW = 10.17 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH 12.60 FEET MANNINGS N = 0.01300 SF~IQ/K)**2 I( 10.17)/( 105.04311**2 ~ 0.0093736 HF=L*SF = ( 12.60)*( 0.0093736) = 0.118 NODE 2.00 : HGL= < 1094.298>;EGL= < 1094.812>:FLOWLINE= < 1093.610> I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1095.110>:EGL= < HGL AND EGL 0.81 1095. 624>;FLOWLINE= < 1093.610> I ============================================================================ PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1093.61 2.00 IS CODE ~ 8 I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW (CFS) = 10.17 PIPE DIAMETER{INCH) 18.00 PRESSURE FLOW VELOCITY HEAD = 0.514 CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2*( 0.514) = 0.103 NODE 2.00 : HGL= < 1095.727>:EGL= < 1095.727>:FLOWLINE= < 1093.610> I ============================================================================ END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM I I ~o I I I I I I I I I I I I I I I I I I I I **************************************************************************** >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< LATERAL C-l PIPE DIAMETER(FEET) ~ 1.500 PIPE SLOPE(FEETIFEET) ~ 0.0890 PIPEFLOW(CFS) ~ 10.17 MANNINGS FRICTION FACTOR = 0.012000 CRITICAL-DEPTH FLOW INFORMATION: CRITICAL DEPTH(FEET) ~ 1.23 CRITICAL FLOW AREA(SQUARE FEET) = 1.548 CRITICAL FLOW TOP-WIDTH(FEET) ~ 1.156 CRITICAL FLOW PRESSURE + MOMENTUM(POUNDS) = 183.77 CRITICAL FLOW VELOCITY(FEET/SEC) = 6.568 CRITICAL FLOW VELOCITY HEAD(FEET) ~ 0.67 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 1.34 CRITICAL FLOW SPECIFIC ENERGY(FEET) = 1.90 NORMAL-DEPTH FLOW INFORMATION: NORMAL DEPTH(FEET) ~ 0.56 FLOW AREA(SQUARE FEET) ~ 0.61 FLOW TOP- WIDTH(FEET) = 1.453 FLOW PRESSURE + MOMENTUM(POUNDS) ~ FLOW VELOCITY(FEET/SEC.) ~ 16.787 FLOW VELOCITY HEAD(FEET) = 4.376 HYDRAULIC DEPTH(FEET) ~ 0.42 FROUDE NUMBER ~ 4.581 SPECIFIC ENERGY(FEET) ~ 4.94 339.70 ~\ I I **************************************************************************** I PRESSURE PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD,LACRD,& OCEMA HYDRAULICS CRITERION) I (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1355 Analysis prepared by: I Fuscoe Engineering, Inc. 16795 Van Karman Suite 100 Irvine, California 92606 I ************************** DESCRIPTION OF STUDY ************************** I * 100 YEAR HYDRAULICS * LAT C-2 * BY CT 1/25/03 * * * ************************************************************************** I FILE NAME: C:\AESDATA\HARV\PIPEC2.DAT TIME/DATE OF STUDY: 13:48 01/25/2003 I ============================================================================ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. I DOWNSTREAM PRESSURE PIPE FLOW NODE NUMBER = 1.00 PIPE DIAMETER (INCH) ~ 15.00 ASSUMED DOWNSTREAM CONTROL HGL L.A. THOMPSON'S EQUATION IS USED CONTROL DATA: FLOWLINE ELEVATION PIPE FLOW (CFS) ~ 1099.020 FOR JUNCTION ANALYSIS 1097.77 2.42 I ============================================================================ I NODE 1.00 : HGL~ < 1099.020>;EGL= < 1099.080>;FLOWLINE~ < 1097.770> I I ============================================================================ PRESSURE FLOW PROCESS FROM NODE 1.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1098.79 2.00 IS CODE ~ 1 ---------------------------------------------------------------------------- I CALCULATE PRESSURE FLOW FRICTION LOSSES (LACFCD) : PIPE FLOW ~ 2.42 CFS PIPE DIAMETER 15.00 INCHES PIPE LENGTH 14.11 FEET MANNINGS N = 0.01300 SF=(Q/K)**2 (( 2.42)/( 64.598))**2 ~ 0.0014034 HF=L*SF ~ ( 14.11)*( 0.0014034) = 0.020 NODE 2.00 : HGL= < 1099.040>;EGL~ < 1099.100>;FLOWLINE= < 1098.790> ---------------------------------------------------------------------------- I PRESSURE FLOW ASSUMPTION USED TO ADJUST LOST PRESSURE HEAD USING SOFFIT CONTROL NODE 2.00 : HGL= < 1100.040>;EGL= < HGL AND EGL 1.00 1100.100>;FLOWLINE~ < 1098.790> I ============================================================================ I PRESSURE FLOW PROCESS FROM NODE 2.00 TO NODE UPSTREAM NODE 2.00 ELEVATION = 1098.79 2.00 IS CODE ~ 8 Co'/;--- I I I I I I I I I I I I I I I I I I I I CALCULATE PRESSURE FLOW CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW{CFS) ~ 2.42 PIPE DIAMETER (INCH) 15.00 PRESSURE FLOW VELOCITY HEAD ~ 0.060 CATCH BASIN ENERGY LOSS ~ .2* (VELOCITY HEAD) ~ .2*( 0.060) ~ 0.012 NODE 2.00: HGL= < 1100.113>;EGL= < 1100.113>;FLOWLINE~ < 1098.790> ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM ~ I I I I I I I I I I I I I I I I I I I ***...***......****......**..********.**********...**....*******...***..***. >>>>PIPEFLOW HYDRAULIC INPUT INFORMATION<<<< LATERALC-2 ---------------------------------------------------------------- PIPE DIAMETER(FEET) ~ 1.250 PIPE SLOPE(FEET/FEET) = 0.0730 PIPEFLOW(CFS) ~ 2.42 MANNINGS FRICTION FACTOR = 0.012000 CRITICAL-DEPTH FLOW INFORMATION: ----------------------------------------------------------------- CRITICAL DEPTH(FEET) = 0.62 CRITICAL FLOW AREA(SQUARE FEET) ~ 0.610 CRITICAL FLOW TOP-WIDTH(FEET) ~ 1.250 CRITICAL FLOW PRESSURE + MOMENTIJM(pOUNDS) = 28.64 CRITICAL FLOW VELOCITY(FEET/SEC.) ~ 3.965 CRITICAL FLOW VELOCITY HEAD(FEET) ~ 0.24 CRITICAL FLOW HYDRAULIC DEPTH(FEET) = 0.49 CRITICAL FLOW SPECIFIC ENERGY(FEET) ~ 0.87 NORMAL-DEPTH FLOW INFORMATION: ----------------------------------------------------------- NORMAL DEPTH(FEET) ~ 0.30 FLOW AREA(SQUARE FEET) = 0.23 FLOW TOP- WIDTH(FEET) = 1.070 FLOW PRESSURE + MOMENTIJM(POUNDS) = 51.44 FLOWVELOCITY(FEET/SEC.) = 10.586 FLOW VELOCITY HEAD(FEET) = 1.740 HYDRAULIC DEPTH(FEET) = 0.21 FROUDE NUMBER = 4.036 SPECIFIC ENERGY(FEET) = 2.04 ~ I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 --1 Appen . IX 4 I Lennar Partners Harveston Apartments (O~ I I. I I I I I I . I I . I I I I I I I Catch Basin #1 *******************************.*********************.********************** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.63 BASIN OPENING(FEET) = 0.46 DEPTH OF W A TER(FEET) ~ 0.67 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) ~ 2.48 Used W=7.0' Catch Basin #2 **************************************************************************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.00 GUTIER FLOWDEPTH(FEET) ~ 0.50 BASIN LOCAL DEPRESSION(FEET) = O. I 7 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.04 0.74 1.50 1.02 2.00 1.33 2.50 1.63 3.00 1.89 3.50 2.14 4.00 2.37 4.50 2.60 5.00 2.82 5.50 3.01 6.00 3.18 6.50 3.33 7.00 3.46 7.50 3.58 8.00 3.68 8.50 3.77 9.00 3.84 9.50 3.91 10.00 3.96 G,f, I I I I I I I I I I I I I I 'I 10.42 4.00 Used W=14.0' Catch Basin #3 **************************************************************************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 4.79 GUTTER FLOWDEPTH(FEET) ~ 0.50 BASIN LOCAL DEPRESSION(FEET) = 0.17 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 1.25 0.88 1.50 1.04 2.00 1.35 2.50 1.66 3.00 1.96 3.50 2.22 4.00 2.47 4.50 2.71 5.00 2.94 5.50 3.16 6.00 3.38 6.50 3.57 7.00 3.75 7.50 3.91 8.00 4.05 8.50 4.18 9.00 4.29 9.50 4.39 10.00 4.48 10.50 4.56 11.00 4.63 11.50 4.69 12.00 4.74 12.48 4.79 I I I I Used W=14.0' Catch Basin #4 *************************************..************************************* >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Co1 I I I I I I I I I I I I I I I I I I I Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 3.41 GUTIER FLOWDEPTH(FEET) ~ 0.50 BASIN LOCAL DEPRESSION(FEET) ~ 0.\7 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 0.89 0.63 1.00 0.70 1.50 1.01 2.00 I.3 I 2.50 1.59 3.00 1.83 3.50 2.06 4.00 2.29 4.50 2.50 5.00 2.67 5.50 2.83 6.00 2.96 6.50 3.07 7.00 3.17 7.50 3.25 8.00 3.32 8.50 3.37 8.89 3.4\ Used W=IO.O' Catch Basin #S **************************************************************************** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) ~ 2.45 BASIN OPENING(FEET) = 0.46 DEPTH OF W A TER(FEET) ~ 0.67 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 1.68 Used W=3.S' e..& I I I I Catch Basin #6 *********.***********************..******************.********************** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< Curb Inlet Capacities arc approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. I I I I BASIN INFLOW(CFS) = 1.42 BASIN OPENING(FEET) ~ 0.46 DEPTH OF W A TER(FEET) ~ 0.67 >>>>CALCULATED ESTIMATED SUMP BASIN W1DTH(FEET) ~ 0.97 Used W=3.S' Catch Basin #7 **************************************************************************** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< I I I I I I I Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 1.42 BASIN OPENING(FEET) = 0.46 DEPTH OF W A TER(FEET) = 0.67 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 0.97 Used W=3.S' Catch Basin #8 *****..*.******************************************************************* >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Curb In let Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. I I I I STREETFLOW(CFS) = 0.74 GUTTER FLOWDEPTH(FEET) = 0.50 BASIN LOCAL DEPRESSION(FEET) = 0.17 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION ~ I I I I I I 0.19 0.14 0.50 0.32 1.00 0.55 1.50 0.68 1.93 0.74 Used W=3.5' Catch Basin #9 ***************..*********************************************************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< I I I I I I Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.76 GUTTER FLOWDEPTH(FEET) = 0.50 BASIN LOCAL DEPRESSION(FEET) = 0.17 FLOWBY BASIN ANALYSIS RESULTS: BASIN WIDTH FLOW INTERCEPTION 0.46 0.32 0.50 0.35 1.00 0.66 1.50 0.92 2.00 1.15 2.50 1.35 3.00 1.50 3.50 1.61 4.00 1.70 4.50 1.75 4.59 1.76 I I I I I Used W=7.0' Catch Basin # I 0 **************************************************************************** >>>>SUMP TYPE BASIN INPUT INFORMATlON<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 6.37 BASIN OPENING(FEET) = 0.46 DEPTH OF WATER(FEET) ~ 0.67 I I 10 I I I I I II I II I , I >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) ~ 4.36 Used W=7.0' Catcb Basin #11 ******.**......************************************...********************** >>>>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for tIowby basins and sump basins. STREETFLOW(CFS) ~ 1.68 GUTTER FLOWDEPTH(FEET) = 0.50 BASIN LOCAL DEPRESSION(FEET) ~ 0.17 FLOWBY BASIN ANALYSIS RESULTS: I I I I I I I I I BASIN WIDTH FLOW INTERCEPTION 0.44 0.31 0.50 0.35 1.00 0.65 1.50 0.91 2.00 1.14 2.50 1.33 3.00 1.47 3.50 1.57 4.00 1.64 4.38 1.68 Used W=7.0' Catcb Basin #12 ***************************...********************************************** >>>>SUMP TYPE BASIN INPUT INFORMATION<<<< Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for tIowby basins and sump basins. BASIN INFLOW(CFS) = 0.44 BASIN OPENING(FEET) ~ 0.46 DEPTH OF W A TER(FEET) = 0.67 >>>>CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 0.30 Used W=3.S' \\ I I I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 ---.::~.,-- - :J Appendix 5 I""~~~-"' Lennar Partners Harveston Apartments 11...- I I I I I I I I I I I I I I I I I I II Project Description WOrXsheet Circular Channel Flow Element Circular Channel Method Manning's Fonnula Solve For Discharge Input Data Mannings 0.012 Coefficient Slope 0.010 ftIft 000 Depth 0.33 ft Diameter 4 in Results Discharge 0.21 cfs Flow Area 0.1 ft2 Wetted 1.05 ft Perimeter Top Width 6.67e-5 ft Craical Depth 0.26 ft Percent Full 100.0 % Critical Slope 0.01140 ftIft 3 Velocity 2.36 fils Velocity Head 0.09 ft Specific 0.42 ft Energy Froude 0.01 Number Maximum 0.22 cfs DiScharge Discharge Full 0.21 cfs Slope Full 0.01000 ftIft 1 Flow Type Subcritic al unt~led.fm2 11812003 4:56 PM Fuscoe Engineering C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Worksheet Worksheet for Circular Channel ,\3 Project Engineer: JT FlowMaster 116.0 [614bJ Page 1 I I I I I I I I I I I I I I I I I I I Project Description Worksheet Circular Channel Flow Element Circular Channel Method Manning's Formula Solve For Discharge Input Data Mannings 0.012 Coefficient Slope 0.010 filII 000 Depth 0.50 II Diameter 6 in Results Discharge 0.61 cfs Flow Area 0.2 fF Wetted 1.57 II Perimeter Top Width 1.49e-8 tl Critical Depth 0.40 tl Petcent Full 100.0 % Critical Slope 0.01064 filII 3 Velocity 3.10 fils Velocity Head 0.15 tl Specific 0.65 tl Ener9Y Froude 1.5&4 Number Maximum 0.65 cts Discharge Discharge Fun 0.61 cts Slope Full 0.01000 ftItl 0 Flow Type Subcritic al untttled.fm2 11812003 4:56 PM Fuscoe Engineering e Haeslad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Worksheet Worksheet for Circular Channel 1,At. Project Engineer: JT FlowMasler v6.0 [614b] Page 2 I I I I I I I I I I I I I I I I I I I Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Bement Circular Channel Method Manning's Fonnula Solve For Discharge Input Data Mannings 0.012 Coefficient Slope 0.010 fIItl 000 Depth 0.67 II Diameter 8 in Results Discharge 1.31 cfs Flow Area 0.3 II' Wetted 2.09 II Perimeter Top Width 4.22&-4 II Critical Depth 0.54 II Percent Full 100.0 % Critical Slope 0.01021 filII 0 Velocity 3.75 fils Velocity Head 0.22 II Specific 0.89 II Energy Froude 0.02 Number Maximum 1.41 cfs Discharge Discharge Full 1.31 cfs Slope Full 0.01000 filII 3 Flow Type Subcritic al unt~led.fm2 1/812003 4:56 PM Fuscoe Engineering e Haestad Methods,lnc. 37 Brooksida Road Waterbury, CT 06708 USA (203) 755-1666 /' 1~ Project Engineer: JT FlowMaster vB.O [614b] Page 3 I I I II I I I I I I I I I I I I I I I I Project Description Worksheet Circular Channel Flow Bement Circular Channel Method Manning's Fonnula Solve For Discharge Input Data Mannings 0.012 Coefficient Slope 0.010 fIIlt 000 Depth 0.83 It Diameter 10 in Resu~s Discharge 2.44 ets Flow Area 0.5 ft2 Welled 2.51 It Perimeter Top Width 0.11 It Crttical Depth 0.69 It Percent Full 99.6 %. Crttical Slope 0.01024 fIIlt 2 Velocity 4.47 fils Velocity Head 0.31 It Specific 1.14 It Energy Froude 0.35 Number Maximum 2.55 cfs Discharge Discharge Full 2.37 cfs Slope Full 0.01054 ftIft 9 Flow Type Subcritic al untttled.fm2 11812003 4:56 PM Fuscoe Engineering C Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Worksheet Worksheet for Circular Channel ,Go Project Engineer: JT FlowMaster \16.0 [614b] Page 4 ,I II I I I I I I I I I I I I I I I I I Local Hydrology / Hydraulic Report July 2003 -.J Appendix 6 Local Hydrology Map 4,1 I Lennar Partners --. ...;.-_.:.~- Harveston Apartments