Loading...
HomeMy WebLinkAboutTract Map 32104 Drainage (Nov.2005)~ ~ Harveston Ashville II, Tentative Tract No. 32104 Drainage Report City of Temecula Riverside County Prepared by: ^ ~ e e CONSULT~NG 40810 County Center Drive, Suite 100 Temecula, California 92591 (951)676-8042 Revised November 200~/ / \ LOCATION MAP Pro ject Location Map Scale, Date, Job No, N.T.S. ~ 4/13/05 ~ 15101066 z ~ :-: Pu~~~~ . ~~.,.~~ o ~~~~~~ CONSLJLTINO o5i6leeoat•Fn~csSteluTeio•~+~+~wm ~ • Background The project is Tract 32104, included in the Harveston Master Plan of Drainage- Phase 2. The drainage Infrastructure Design Report, Tract 29639-2 for Harveston Master Plan of Drainage- Phase 2 was prepared by RBF in June 2003, and contains the necessary background information for the drainage infrastructure. The site lies to the north of improved Logan Court, the northwest of improved Sarasota Lane, and to the West of improved Lake House Road. There are approximately 5.48 acres included in the drainage portion of the project. Methods The Rational method was used for this project by means of the AES software as described in the RCFC&WCD Manual, dated April 1978. Per the Manual's requirement of using Soil Conservation Services (SCS) soil classification system, soil type "C" was used for the site. The soil type was determined from the Drainage Infrastructure Design Report. Hydraulic Grade line calculations in the pipe were performed using Los Angeles County's WSPG computer program. Results The system includes 2 drainage inlets per Riverside County Standard Details, connected to a 24" diameter free fall outlet. The 10-year storm event produces a total site peak flow rate of 9.81cfs. When distributed to the two inlets in proportion to their tributary area, the inlet flows are 5.21 cfs and 4.60 cfs. The 100-year storm event produces a total site peak flow rate of 15.0 cfs. Using the computed flow rates, the inlet dimensions were checked assuming a ponded water depth of 0.40 feet for the10-year storm and 0.55 feet for the 100 year storm. Both of the inlets required a width less than the 7-foot width of our proposed design size. The WSPG program started at the pipe outlet, and traced the HGL to the junction where the two DI leads meet. The WSPG program then traced the HGL of Line A and Lateral A1 to each associated catch basin. The Water Surface Elevation from WSPG gives an elevation of 0.07 feet above Line A pipe at the catch basin, which corresponds to 1.84' of freeboard to the top of curb. The Water Surface Elevation from WSPG gives an elevation of 0.05 feet above Lateral A1 pipe at the catch basin, which corresponds to 1. 97' of freeboard to the top of curb at catch basin number 2. Therefore, based on this analysis, the size of storm drain piping is adequate to prevent accumulation of water at either of the two catch basins on the subject project during a 100-year event. ~ . ~ ~~ _ i~„`;:. ~ , ,, ~',, i: i ~;; / /%" !/ // / i; ;, '' ~; // ii ji ~~ ~i ~ ~,' ~ ~ ~ ~%' ~~ ,r ,:, ~ j i ~e ~~ ~ ,,';~ t ~ .`~~ ~ ~s ~ ,~ ~~. :;-~-,, i `;' % '^~~' ''~, , / `; ,\\ ; \ ;, - , , ;,, j...._~\ %' i; ,:\ ';:~. ~ ~; ~ ` o ;% 0 c~ ~ D ~ S n ~ O ~ n D f'l ~ O n 0 Z. N C ~ ~ _ ~ Z ~ a D 2 Z _ Z ~ ~ ~ • . ~ a 0 ~ ~~g m ~ ~ ~ a -- ~ .~m ~ m g ~ n ~ o z S e : ~ A 4 ~~~ ~~$ ~ ~Q \ ~~ ~ ~ ~ ~ ~ ~ \~\\\\ f / . ~ ~ ~~~ . ~~ ~ `~ ~ ~~. ~ / ~ '~~~`~ j i / , , , ~~~,~ ; ~ l \ \\,`\~, ~ ~ \(~/ J~ 1 v v ~ `~ ~~.~_ ~ f \'~ ~'~;:`':..... / V~ . , , , ~. ~ ~~ ~ ~ ~ ~~- --~~ -~ , ~ . ~ i 9';:'~ o , ~ _ - _ :~, ,,~ `,,, ~ \ ',. ~ '~`<, \, ~, » A~ \ //~"~ ~i ; O ~'~ ~'p ...... ~~_.. ~ ~ ,o ~, ~ D ~ ' ~`' V / '~ti ~ , ~ C r ~ r rn ~ F ~ ~ D / _ ~---=-~ _ - - - -- = ~- , ~ -- - ~• -~-- - - , ~ ' N ~ ~ \ ~ ~ ~/ ~,; .,. ;~ ~ ~~~ r ~. ~ ~ ~: is, i ~ ~ ~ li ~ t /' m r: ~ a !~ ~/ \ 7 /~ 'N:l~ ~,, -T= - --- N- - ~ ~ ~ _ - ~i . _ ; O O D G7 ~ o ~~ z ~ o m m ~ fTt D D ~0 ~ m D D C~ ~ ~ ~ ~ ~ ~~AI C: 1~ °-R/l' • • 10-YEAR STORM CALCULATIONS 5 ~ ~ ,***.*,,**~..**~***,,,~*.,.*~*.,~x**.,***~~*„*.*««~,**,.*,.~*.,**x*.,*********x*,. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) (Rational Tabling Version 5.9D) Release Date: O1/Ol/2003 License ID 1264 Analysis prepared by: RBF CONSULTING 2101 ARENA BLVD., SUITE 250 SACRAMENTO, CA 95834 *,r***x**x*********,t****t,rx DESCRIPTION OF STUDY ********:r*******:t****+,r*** * xf#xir:F:ki~ftx*,t#~F1f*****/~***ktR***irtr#xxx*tr**xx*~tx*fxte**x***xirx*tr~k,t*r*fk»ir#+*x FILE NAME: ASHVILLE.DAT TIME/DATE OF STUDY: 10:35 04/13/2005 ----------- --------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------- -------- ---------------------------------------- USER SP&CIFIED STORM EVENT(YE1~R) = 10.00 -------- SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRIIDIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTFNSITY(INCH/HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR} = 1.300 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5505732 SLOPE OF 100-YEAR INTENSITY-DURATZON CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 0.889 SLOPE OF INTENSITY DURATION CURVE = 0.5506 RCFC&WCD HYDROLOGY MAN[JAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HAT.,F- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0 020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRISUTARY PIPE.* ~p ~x****+**,r**,r*:***~~~*:*x***,r*********x*****,rr***************~tt,r******#***• FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« « < ________________________________________________________________ ASSUMED INITIAL SUSAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CFIANGE))**.2 INITZAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 1116.20 DOWNSTREAM ELEVATION(FEET) = 1115.90 ELEVATION DIFFERENCE(FEET) = 0.30 TC = 0.359*[( 80.00**3)/( 0.30)]**.2 = 6.336 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.065 CONDOMINZUM DEVELOPMENT RUNOFF COEFFICIENT = .8485 SOIL CLASSIFICATION IS "C" SUBAREA RUNOFF(CFS) = 0.10 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.10 ~*,rt:rx**********t,rvrrr**,t**,t*x*,r~**,r*xxx,r,rrr*,r****t**n,rttt***tt*+*x********,t*~* FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 61 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA«« < »» >(STANDARD CURS SECTION USED) « « < --_°________________________________________________________________________ UPSTREAM ELEVATION(FEET) = 1115.90 DOWNSTREAM ELEVATION(FEET) = 1110.40 STREET LENGTH(FEET) = 720.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYZNG RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.08 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTA(FEET) = 10.64 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.03 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 5.91 Tc(MIN.) = 12.25 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.132 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8309 SOIL CLASSIFICATION IS "C" SUBAREA AREA(ACRES) = 5.48 SUEAREA RUNOFF(CFS) = 9.71 TOTAL AREA(ACRES) = 5.52 PEAK FLOW RATE(CFS) = 9.81 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.41 HALFSTREfiT FLOOD WIDTH(FSET) = 13.97 FLOW VELOCITY(FEET/SEC.) = 2.37 DEPTH*VELOCITY(FT*FT/SEC.) = 0.96 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = B00.00 FEET. -------------------=-------------------------------------------------------- ---------------------------------------------------------------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 5.52 TC(MIN.) = 12.25 PEAK FLOW RATE(CFS) = 9.81 -------------------------------------------------- ----------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS ~ ea~+w+t~~~~+w~a~~wit~~+~~~i~~~~~~t~ei+iai3~+~~~x~W~+~~s~t~~~t~wr~~~+~~~~:~r~ »»SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 4.60 BASIN OPENING(FEET) = 0.60 DEPTH OF WATER(FEET) = 0.40 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 5.89 ~ ~ • xxxer+w+x:~:eee~swxwe~farn.~~ettwvt~~~f~~+xata~i~~att+ix~aai~~~xe~y~v~xxr.x~~~~ »»SUMP TYPE BASIN INPUT INFORMATION«« Curb Inlet Capacities are approximated based on the Bureau of Public Roads ~omograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 5.20 BASIN OPENING(FEET) = 0.60 DEPTH OF WATER(FEET) = 0.40 »»CALCUTATED ESTIMATED SUMP BASIN WIDTH(FEET) = 6.66 ~ ~ ~ .~ o ~n N ~ ^ x a m m Y ~ ~ Y~ N :~ N ~ N a g „ M E 0 ~ a r ~d N (V ~ Z M h~ N ri Q N a a a „ ~ ~ ~ ^ W W ° V r .. in a N ~ p Gl IC ~ H U w o p p d N ~ a [+ U F ~ ~ ~ ~ a ~f ~ .i ~i n ~ ~+ H R pj E ~ H M N N O O ~ ~ R ~ ~ F R a as a a C ~ m i ~ i ° a z m m m M M M N ~-I tr nl o ~ ~ ° ° ° ~ z z Z N ry ~ 2 ~ ~ ° '" ~ w a a a a p y ~ a ° z z ~ ~~ ~ ~' ~ ~ ~ 2 O W 4 n N M • ~ x o ~ w ~ F o w o u o p ~ h 61 O ~ O N ~l. O p R ~ ry O H • ~ 0 3 '~ O N O p a° ~ ° i W o W o G ~ ~ T ~ a a 0 M F ~ w Fyy'' • ~ H ~+1 N a z o O m o a N Oo ~~ M r • p] • Fl F U.i V.~ [. U.i2m w m m ti m m Z m Z 22 •~ • F p~ o ~ K r~ H ~ ~ ~ M N ~ O . + O .~ r1 .a x F ; • z O i Z P Z V Ng M O N p H Y 6 tll O ~ h~ ~N~ ~ ~ i 4Ui- ~ 0 & W ~Cl ~ ~ ~ ~ ~ F F F G ~ y~ ~ ~ O F ~ F ~ q S~ \ N~ a G b a 1. ~ W. L I ~ a o . N W N U~ JI H M M ri ~v n ~ W w 0.' O{D oz ~ ° ° ~ ° z z z ~~ ~ ~ ~ w ~ ~ ~s~ w m m p : a ~ ~~ ~. a o 0 0 0 0 0 m ~ o- o 0 0 0 0 • > « o 0 0 0 0 0 K • r a . Z H ~ e o 0 0 0 0 w • • 0 0 0 0 0 0 0 0 0 0 0 N N 4 0 0 0 0 0 0 0 0 0 0 0 ~ o 0 0 0 0 0 0 0 0 0 0 « ~ z + o 0 0 0 0 0 q o 0 0 0 0 0 ~ H + i \ • N N N N N Y~I ~a . x a : .. ., ., ,. N .. . . . dl i o 0 0 0 0 C~ YI N Il1 N N I M ri rl '1 ri M O • ~ z~ . m m ~ m m W . o 0 0 0 0 0 M ~ N N N IV N C1 !'~ Q ~ ri ei rl ri '1 rl V • • p~ « O O O O O O D~ Y O O O O O O N i # O~ 1(~ N N N 1+1 'T~ ' i V M 1p r A1 O 1~1 1p q d N IX~ ~~ 0 O m O N ry M O ~i b O ~~ 'y' • 1~ O 1~ O f~ O m O m O N • o 0 0 0 o O w ri H M .-I M .-I O .i .-~ n '1 .-1 ei . m, q r1 • p q 0 M !1 N 0 N 1~ O m r~ R 4~ ~D N Y1 O~ ul 1~ O .i d V V P1 m P ~ m m 'y' C~ : O O O O O O O o o O O N O O O O O 1 i rpi • Y ri m N N N > ~ f N b N YI N ~(1 i i • • • (O 0 b m 0 m • CI Y 01 01 O1 N N 01 • ? 1 ~ a i 0 IV ul 1~1 r~ N tV F ~p~'~ s N t~ V ~0 1~ N N b Y1 $ 61 i o O o o O o H~\ f .-I M M .1 r1 .y ~~.m s y .a K U a ~~ ~ O r u~i n o b • tV lV 1~1 O N b O W i M rl .~ .~ .i .~ O • a • F s o m .i m u~ m m m ro m .i pi ~ : O N O N O T ei O~ M q 1~ i O M 1p O b O 1p O N O b O V L W~ o 0 o O O O O O O O O N • .1 M ~4 M ri e1 f .i O rl O ei O-.i O M O A • • ~ • O b 0 N nl VI m N 1~ T ~O ~: O 0 0 Ol C m N f~ 1~1 O V M • O ri ri 0 O N b 1~ V 0 fV f~ ~ I O O ei (V i+l p q V N n\l ~ •oi .~i .~a .~i .~j .~i Z F N a ~ O a n V W ~ % N S ~ ~ 100-YEAR STORM CALCULATIONS • \ti ~ • ~ *******~********************~**************~************~******************* RATIONAL METAOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANtJAL (c) Copyright 1982-2003 Advanced Engineering Software (aes) (Rational Tabling Version 5.9D) Release Date: O1/O1/2003 License ID 1264 Analysis prepared by: RBF CONSULTING 2101 ARENA BLVD., SUITE 250 SACRAMENTO, CA 95834 *****+****+*************** DESCRIPTION OF STUDY *~t*+**~*,t*t******tx****** * t * * * * ~***x***t,r,r**x*******~***********:r*****,r**~t*~~*********t*******,r+******t* FILE NAME: ASHVILLE.DAT TIME/DATE OF STUDY: 14:12 06/29/2005 ----------------------------------------------------------------- USER SPECIFIED AYDROLOGY AND HYDRAULIC MODEL INFORMATION: --------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTZON SLOPE = 0.95 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.360 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 0.880 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 3.480 100-YEAR STORM 60-MINU'i'E INTENSITY(INCH/HOUR) = 1.300 SLOPE OF 10-YEAR INTENSZTY-DURATION CURVE = 0.5505732 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5495536 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.300 SLOPE OF INTENSITY DURATION CURVE = 0.5496 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) ~n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2 00 0 0313 0.167 0 0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* \~ *********x+*******************~*:r********+*~**:*~+*,r*****+******~******+**** FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ------------------------------------------------------------ » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< ________________________~________________________~ _____________________ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS CONDOMINIUM TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 1116.20 DOWNSTREAM ELEVATION(FEET) = 1115.90 ELEVATION DIFFERENCE(FEET) = 0.30 TC = 0.359*(( 80.00**3)/( 0.30)]**.2 = 6.336 100 YEAR RAZNFALL INTENSITY(INCH/HOUR) = 4.472 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8628 SOIL CLASSIFICATION IS "C" SUBAREA RITNOFF(CFS) = 0.15 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.15 *****+*+****:r+*******~**~********+***********x*****+~*+********************+ FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 61 ------------------------------------------------------------ »>»COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STANDARD CURB SECTION USED) « « < UPSTREAM ELEVATION(FEET) = 1115.90 DOWNSTREAM ELEVATION(FEET) = 1110 40 STREET LENGTH(FEET) = 720.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) _ ~•~5 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38 HALFSTREET FLOOD WIDTH(FEET) = 12.67 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2•25 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.85 STREET FLOW TRAVEL TIME(MIN.) = 5.33 Tc(MIN.) = 11.67 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.197 CONDOMINIUM DEVELOPMENT RUNOFF COEFFICIENT = .8503 SOIL CLASSIFZCATION IS "C" gUgp.REA AREA(ACRES) = 5.48 SUBAREA RUNOFF(CFS) = 14.90 TOTAL AREA(ACRES) = 5.52 PEAK FLOW RATE(CFS) = 15.05 END OF SUBARFII STREET FLOW DEPTH(FEET) = 0.46 HALFS' FLOW VELOCITY(FEET/SEC.) _ LONGEST FLOWPATH FROM NODE ---------------------- END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) _ HYDRAULICS: CREET FLOOD WIDTH(FEET) = 16.57 2.63 DEPTH*VELOCITY(FT*FT/SEC.) = 1.20 1.00 TO NODE 3.00 = 800.00 FEET. 5.52 TC(MIN.) = 11.67 15.05 END OF RATIONAL METHOD ANALYSIS \~ 4 • ~ ^ ~ II R # • # t ^ i II x • ~ + ^ ~ II # ^ ~ ~ ^ ~ I I • * ~ ~ ^ i 11 ~ # # R ^ i I I ~ • ~ ~ ^ ~ I I ~ • + R ^ ~ I I ~ • ~ # ^ i I I • ~ R K N ^ i II # ~ t ~ N ^ ~ II x # # . ro ^ ~ u e ~ . + ~- w ^ ~ n + s r ~ ~o ^ i n r r • R N N ^ i II ~ Y • « s~ ~ ^ ~ n ~ . . ~ ii ~ * ~ 3 fa O ~ • JJ H ^ i II ~ ~ • • W O N ^ i II ~ ~ * • C~ vl m ^ i n ~ ~ ~ * ~ F' ^ ~ 11 ~ # * G U O ii . + + + U ~ x FC ~.1 ~rl ^ i 11 t ~ ~ ~ a ~, a ^ ~ n ~ ~ . « w ^ i n e ~ o ~ ii q ~ : ~ ~ q o ?, A ?~ ~ C7 b~ o ' N 3~ O i ii F ~ + ~ o q n~ ro a~ x ~o ^ i n cn ~ ~ ~ aw~ v m s,N^ ~ n + « ~ a ~ s~ ~a ro m^ ~ n w ~ + . ro o ro o a ^ ~ n o ~ ~ v r a1 ~ a o ^ ~ n ~ ~ v Y H U N N W F' R( ^ i II ,7. # ~ V R (~' O ?i N O U^ ~ ul II O K Y V Y i ttl (l~ f~ yJ ^ i O II H t Y `,Z r ~ •• ,-i . ^ ~ o II E ~ ~ O ~ ~n ro w m .a ~C a~ ^ ~ N n a . . ~ + E RC +~ ~H C^ ~~ n i-+ . ~ E * z ro m w u, ~.~ ^ i m n a * « r.C # W O[a ~r W N~^ i N 11 U • ~ ~ e £ o rl W' h ^ i~ 11 [n * ~ a % [s] O W ftl d~ H^ 1 O 11 W i~ i~ O x i-7 cV m ri ^ ~ rl II Q # ~ W ~ w~ ro ^ ~ n ^ ~ z # N U/ ^ ~ ul II ~ # # H ~ U m'-I ^ i rl II • ~ k e H Ol N ^ ~ •• II ~ k % E ~ ,] ~ a o ~ o ii « ~ ~ a P ry' k W' ,C O ^ i • II Y Y # H ~ q b1 • ^ i N II Y ~ % . a~ -.~ m ^ ~ ~~ . . ~ z . x u ^ ~~ ~~ ~ « R H • ~. . ^ i n ~ ~ • (A ~ a s+ ^ ~ ~n u . u « . ~ ~ o a~ ^ ~ u . ~ « ~ w ~ u> ^ ~ w u . v + + e p i° ii ~ w ~ + a ~ U ^ i W II K Y • ~ ~ ~ ^ ~ E n e ~t x + F . ^ i r1 n s ro s . + ^ ~ [a n ~ v ~ ~ a # ^ i\ II ~ N N ~ M ~ . ^ ~ W n r sc ~ r ~ ~ ^ i ~ n ~ o « ~ m ~ ^ I H II i~ (Q O M • A # ^ ~ F II ~ U N ~ ~ n k ^ i II k # i~ A # ^ i II # ~ • k A • W F' o -~ 7 ~ roA N W ~ E P7 ~ N ~ro ro O N a ro ~., W m m ro rt A A ~ a~i 3 ~+ o E w _~{ ~ ~ Nw a N ~ O H (L N ~ N W v ~ a~ trl U ~ w~ U w b u rt ~ a° G H U A ~ ~A u a N O o ul O 10 • m o ~ n F E W .-. W W U1 W W w w -- U ~ W .~l 7. 3 z a w H O O zzx H H E ~ ~ A ~ r~ ~ ~ \~ ~ • • • ~ . . . ~ ~ ~ ~ ~ . . . k Y • ~ x ~ i r ~ ~ ~ ~ r N ~a E ~ W O z O H H a H U m W R «~. ~ ~ ~ « ~ ~ ~ . ~ . . . . ~ « ~ . ~ « ~ . ~ . ~ . ~ ~ * i~ + r ~ M . ~ + e • ~ t # x • x + x • ^ ~ x + x . x « ~ + r + r . ~ ~ ~ + ~ + ~ x « ~ v ~ ~ v . ~ ~ + ~ v ~ + z + ~ O x # H + ~ E Y • s • ~ x x ~ * O s • W ~ x z # k H Y # * • ~ ~ x ~ r a ~ ~ z Y k N ~ a ~ ~ z ~ # H ~ # Ul t~ ~ x r.~ q ~ * P] N ~ * ~ ~ x W w ~ + a r . ~ N * * E ro ~ . w ~ . a ~+ ~. « . ~ ~ ~ . . o ~ ~ m Cq o r x n U ~ ~ ~ n x . n • « x x n ~ W~ o .., ~ '~ ~ m.4 N ~+ a 7 E LA ~ N W xro a~ C N C O m C ro ~.+ v m m ro N A A ~ 'O A N 3 L O rt~ E w X ~+ O O Nw a ~ ~n roa~ ooin O o io • a1 ,~ • o ~ 1a a t o ro ,L.' II m a n % ~ S I II -~H ~ b~ H W -., o -, w w u E cnWw roo ww~- m C w ~ c~ U H 'O r1 O O W W 3 W a H q p O H ~ zzx A ti H N H w ~~ aa c~a wroq ~ ~ N r~ \~