Loading...
HomeMy WebLinkAboutTract Map 29353 Hydrology(Dec.22,2005)~ /7~ ~•y,~~-'~ i~293~.~ CITY OF TEMECULA COUNTY OF RIVERSIDE BUTTERFIELD STAGE ROAD/ RANCHO CALIFORNIA ROAD INTERSECTION IMPROVEMENT HYDROLOGY AND HYDRAULICS REPORT December 22, 2005 ~ Prepared By: Van Dell and Associates, Inc. 17801 Cartwright Road Irvine, CA 92614 Tei. (949) 474-1400 \ ' ' ' 1 1 , ' ' ' ' 1 ' 1 ' ' ' 1 ' ' Table of Contents I. I ntroduction ..................................................................................................................... 1 il. Rationai Method Analysis ............................................................................................... 1 ill. Catch Basin and Pipe Hydraulic Analyses ...................................................................... 2 IV. Proposed Drainage Improvements ................................................................................. 3 V. Offsite Drainage .............................................................................................................. 3 VI. Figures and Plates .......................................................................................................... 4 VII. Technical Appendices ..................................................................................................... 5 X:Nro7ects~B50_0132~ENG~OOCViEPD850-0137JHytlPepoM1tloc i , ' I. Introduction ' The proposed Project is the signalization of Butterfield Stage Road (BSR) and Rancho California Road (RCR) intersection in the City of Temecula. The improvement consists of construction of curb returns at the northeast and southeast corner of the intersection with ' the curb line located 43 feet from the street centerline, installation of signal system, paving, striping, and instailation of traffic signs. The widening, including the transition to existing pavement, extends to about 550 feet from the centerline intersection to the east ' along Rancho California Road and about 600 feet to the south along the Butterfield Stage Road. ' The eastern segment of Rancho California Road is bounded to the north by a hill. Runoff from this hill is draining to the existing road. With no major drainage facilities in the area, runoff sheet flow to the opposite side of the road and eventually to Empire ' Creek, an existing channel located along the south side of Rancho California Road. Empire Creek crosses Butterfield Stage Road through and existing 10'Wx 6'H reinforced concrete box culvert. ' This report contains the proposed condition hydrology and hydraulic analyses for the proposed improvement of Butterfield Stage Road and Rancho California Road intersection. ' 11. Rational Method Analysis ' The County of Riverside Hydrology Manual, published in 1978, (Hydrology Manual) provided the guidelines and procedures for the 10- and 100-year Rational Method analyses. The parameters used for the rational method are summarized below. • Hydrologic boundaries were based on street grades for the proposed and existing road. The boundaries are depicted on Hydrology Map Nos. 1 and 2, included in this report. Tributary area boundaries (in the Rancho California Road area) are based on existing condition contours provided on the U.S. Geological Survey Quadrangle map of the area while the tributary boundaries along Butterfield Stage Road are based on an aerial topographic map provided by the City of Temecula. • The underlying hydrologic soil group is Type B as shown on Plate C-1.53 of the Hydrology Manual. • The rainfall depths used in the rational method analyses were based on those reported on Hydrology Manual Plate D-4.3 for 2-year, 1-hour and Plate D-4.4 for 100-year, 1-hour storm events. These values were used to calculate the 1-hour rainfall intensity of the intensity/duration curve. • The slope of the intensity duration curve in the Project Site is 0.55 as indicated on Plate D-4.6 of the Hydrology Manual. • The development density of the Project along the north side of Rancho California Road is agricultural land while the ones used for Butterfield Stage Road is a combination of various development as dictated by the estimated pervious factors of each sub-area. Refer to the Rational Method Routing Schematics in this report showing the calculated pervious factors for each tributary area. 2 X:Wrojects~B50_0132~ENG~OCVIEPDBSD-07321HytlFepoh.tlm ~ ' ' The rational method analysis was performed with software developed by CivilDesign, ' Inc. for both the 10- and 100-year storm events. The software was designed to accept watershed data and perform rational method analyses in accordance with the Hydrology Manual. The software defines sub-areas and routing paths by means of upstream and downstream node numbers. The Hydrology Map shows the location of all node numbers ' used in the rational method analysis. Table 1 below, summarizes the results of the hydrology study at significant Project locations. ' Table 1 Rational Method Hydrology ' Maximum 10-Year and 100-Year Storm Drain Flow Rates Downstream Tributary Maximum Maximum ' Node Area 10-Year Q 100-Year ~ Number (Ac) (cfs) (cfs) 25 342 43.0 71.0 , 45 44.5 50.2 832 55 9.7 13.4 21.6 ' 70 58.3 59.1 98.4 120 2.6 4.8 7.6 ' 125 0.5 5.5 8.7 ' III. Catch Basin and Pipe Hydraulic Analyses t Catch basins were analyzed using the Hydraulic Engineering Circular No. 12 (HEC-12) method published by the U.S. Federal Highway Administration. The HEC-12 procedures include considerations for street cross slope, gutter slope, local depression depth, and , inlet length. All curb-opening catch basins were analyzed using a local depression of 3 inches and the Manning's n-value of 0.016. t The Project site has three (3) proposed curb-opening type catch basins (CB) and a riser inlet. Widths of catch basins on continuous grade were analyzed to intercept 100% of ' the 10-year runoff. inlets in sump condition were analyzed for 100-year storm event. Catch basins along continuous grades were also evaluated to determine the interception and the flow-by rates for 100-yr storm event. The 100-yr storm flow-by rates from upstream inlets on continuous grades were then carried over and added to the design ' runoff for inlets in sump condition. The HEC-12 analyses and riser inlet calculations are included in the technical appendices of this Report. ' Pipelines conveying runoff from inlets to its discharge points were analyzed using the Water Surface and Pressure Gradient Hydraulic Analysis Program No. F0515P (WSPG) developed by the Los Angeles County Flood Control District. The computer software is ' based on the principle of pressure and momentum theory (P+M). In this analysis sections are analyzed to balance the P+M thus establishing the hydraulic grade line. ' X:~Projecis1B50_01321ENG~DOCWEPD850.01321HytlReport.doc 2 ~ , ' The pipelines are designed to convey 100-year storm runoff. WSPG calculations are ' found at the technical appendices of this Report. Information regarding existing drainage facilities in the Project area were taken from the plans made by Robert Bein and William Frost & Associates for the Riverside County ' Flood Control and Water Conservation District, Project No. 7-0-405, Drawing No. 7-116, Assessment District 159, dated January 30, 1989. ' IV. Proposed Drainage Improvements The proposed drainage improvements for the site include three (3) curb-opening inlets at ' the intersection of RCR and BSR, a riser inlet along BSR, and connecting pipelines and manholes. The curb-opening inlets will be part of the ultimate development of both the BSR and RCR. These inlets however, will have to be reanalyzed for interception ' capacities at ultimate development of the Project site to determine its performance in relation to inlets and other drainage facilities that may be constructed in the future. The proposed riser inlet along BSR maybe replaced with a 21-foot wide curb-opening inlet for ' ultimate development without affecting the capacity of the downstream inlet at the intersection along BSR. ' The proposed inlets along opposite sides of RCR east of the intersection are arbitrarily sized due to very limited proposed development in the area. Although huge drainage areas are draining to the street from the north side of the roadway, a well-defined drainage system is well beyond the limit of improvement for this Project. The inlet at the ' north of RCR is sized for 14-foot wide opening and is analyzed as an inlet in continuous grade. The one along the south side is a 10-footer inlet in sag condition. Capacity calculations are found in the technical appendices of this Report. , V. Offsite Drainage ' t ' ' ' ' ' As mentioned earlier on this Report, the north side of Rancho California Road is bounded by a hiil with its tributary area draining towards the street. in Tabie 1 also of this Report, 10-year and 100-year runoffs are indicated for Node Nos. 25, 45, 55, and 70. These nodes are located along the north side of RCR and are basically concentration points that future developments will have to consider. Providing drainage facilities at these locations is not within the scope of this Project but is worth mentioning to provide a bird's eye view of what to expect in the future development of Rancho California Road. ' X:NroI~~s~b50_0132~ENG~DO(.WEP~OBSU~01321HytlRepori.da '3 ~ VI. Figures and Plates • Rational Method Hydrology Map No. 1 • Rational Method Hydrology Map no. 2 • Location Map and Vicinity Map . Plate C-1.53 Hydrologic Soils Group Map, Bachelor Mountain • Plate D-4.3 2-Year One-Hour Precipitation • Plate D-4.4100-Year One-Hour Precipitation • Plate D-4.5 Rainfall Depth vs. Return Period for Partial Duration Series . Plate D-4.6 Slope of Intensity-Duration Curve ~~ X:Nrol~~~-01321ENG~W(.'WEPD850~01321HytlReporLtlac 4 ~ ~ ;~ ~. ~ ~ ~ J ffi $ ~~ ~ ~ - :~ r p _Y Fq0 u~ ~~ ~y A~g ~°~~e 6~$ t a~3 ~~ ~~~ ~ ~~~ 8 , ~\ ' E ' C' o- ' e~ c. 1 ' e- C- ' B' t D- B: D; ' ~ ' a- ' BC D- 8- BC , ~ A~ B- ' BL- 8' . ~ BC' ~ , 1 ' ~ B' C ' ' 1 Q c ,f _ 6~ ~.~ w. g t ..<s i~ x: ` .. SITE xu ~n . ~l`lLs . A LEGEND HYDROLOGIC SOILS GROUP MAP - SORS GROUP BOUNDARY ~ FOR A SOILS GROUP DESIGNATION ~ R C F C 8Y W C D BACHELOR MTN. HYDR~L~J6Y J~/IANUAL 0 FEET 5000 ' ' ' ' , ' ' ' ' ' , ~ ~ ' ' ' 1 , ' 3 5 3.3 . 3 3 W 2 5 2.5 2 . U Z Z 2 2 _ ~ ~ C .. W O J J 1 5 Q ~ g ~ / . Z ~ ~ ' Z / ~ r ~ - - o.~~ i 5 .5 • 0 ~ 2 5 10 25 50 100 RETURN PERIOD IN YEARS NOTE: 1. For intermediute return perbds pbt 2-year and i0p-yeor one hour values from maps,iher~ connect . points cnd read value for dasired return period. For ezample qlvan 2-rsa ane hour=.50 and I00- yeor one ho~~=1.60°,25-ysor one hou~=l.l8° Reference:NOAA Atlas 2,VOl~me~-California,l973. RAINFALL DEPTH VERSUS .L R C FC ~ W C D RETURN PERIOD FOR ~ r~YDROLOGY 1~/~ANUAL PARTIAL DURATION SERIES ~ e~ wrc n-w c ' ' , ' ' ' ' , 1 ' , , , ' ' , , ' ' ' VII. Technical Appendices • 100-Yr Storm Hydrology Calculations • 10-Yr Storm Hydrology Calculations • HEC-12 Catch Basin Caiculations • WSPG Calculations %:~rol~~~_0132~ENCa~DOCViEP~O85o-01321HytlReport.doe CJ ~~ Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/OS File:085D0132RUNA.out RANCHO CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS ALONG RPNCHO CALIFORNIA ROAD FILENAME: 09500132RUNA BY: E M RUIZ 100-YEAR STORM ANALYSIS --------------------------- - --- --------------------------------- - ---- *****'*** HydYOlOgy Study COntr01 IRfOYmdtiOri ********** English (in-lb) Units used in input data file -- - ----------------- - ----- - --------------------- - --- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 740.000(Ft.) Top (of initial area) elevation = 1430.000(Ft.) Bottom (of initial area) elevation = 1340.000(Ft.) Difference in elevation = 90.000(Ft.) Slope = 0.12162 s(percent)= 12.16 TC = k(0.530)*[(length''3)/(elevation change)]~0.2 Initial area time of concentration = 11.349 min. Rainfall intensity = 2.999(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.800 Decimal fraction soil group 7a = 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 12.686(CFS) Total initial stream area = 5.290(AC.) Pervious area fraction = 1.000 ~~ ' X:~Projects\850_0132~ENG~DOCVtEP\08500132RIJNA-(OO.DOC Page I of3 ' ' +++++++++++++++++,-+++++++++,-++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 20.000 ' **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 32.434(CFS) Depth of flow = 1.017(Ft.), Average velocity = 6.333(Ft/s) ' ******* Irregular Channel Data *********** - ---------------------------------------------------- Information entered for subchannel number 1: Point number 'X' coordinate 'Y' coordinate ' 1 0.00 3.00 2 6.00 0.00 ' 3 9.00 0.00 4 15.00 3.00 Manning's 'N' friction factor = 0.025 ------------------------------- - -- - -------- - -------------- - -- Sub-Channel flow = 32.434(CFS) , ' ' flow top width = 7.069(Ft.) ' ' velocity= 6.333(Ft/s) ' ' area = 5.121(Sq.Ft) ' ' ' Froude number = 1.311 Upstream point elevation = 1340.000(Ft.) Downstream point elevation = 1320.000(Ft.) , Flow length = 1050.000(Ft.) Travel time = 2.76 min. Time of concentration = 14.11 min. Depth of flow = 1.017(Ft.) ' Average velocity = 6.333(Ft/s) Total irregular channel flow = 32.434(CFS) ' Irregular channel normal depth above invert elev. = 1.017(Ft.) Average velocity of channel(s) = 6.333(Ft/s) Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.789 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.660(In/Hr) for a 100.0 year storm ' Subarea runoff = 34.546(CFS) for 16.470(Ac.) Total runoff = 47.231(CFS) Total area = 21.760(AC.) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 25.000 ' **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 60.689(CFS) Depth of flow = 1.567(Ft.), Average velocity = 6.313(Ft/s) ~ ******* Irregular Channel Data *********** ----------------------------- Information entered for subchannel number 1: Point number 'X' coordinate ~Y~ coordinate ' 1 0.00 3.00 ~~ ' X:~Projects\850_01321ENG~DOC~REP~08500132RUNA-IOO.DOC Page 2 of 3 ' ' 2 6.00 0.00 3 9.00 0.00 ' 4 15.00 3.00 Manning's 'N' friction factor = 0.025 ------- ' ------------------------ - -------- - --------- Sub-Channel flow = 60.689(CFS) ' ' flow top width = 9.268(Ft.) ---------- - - ' velocity= 6.313(Ft/s) ' ' area = 9.613(Sq.Ft) ' ' ' Froude number = 1.092 Upstream point elevation = 1320.000(Ft.) Downstream point elevation = 1310.000(Ft.) , Flow length = 840.000(Ft.) Travel time = 2.22 min. Time of concentration = 16.33 min. Depth of flow = 1.567(Ft.) , Average velocity = 6.313(Ft/s) Total irregular channel flow = 60.689(CFS) Irregular channel normal depth above invert elev. = 1.567(Ft.) ~ Average velocity of channel(s) = 6.313(Ft/s) Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.780 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Rainfall intensity = 2.455(In/Hr) for a 100.0 Subarea runoff = 23.757(CFS) for 12.400(AC.) year storm Total runoff = 70.986(CFS) Total area = 34.160(AC.) End of computations, total study area = 34. 16 (AC.) The following figures may ' be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 ' Area averaged RI index number = 78.0 ' 1 1 1 ' ~~ ' X:~Projects\S50_0132~ENG~DOC~REP\08500132RL1NA-100.DOC Page 3 of 3 1 ' ' Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1969 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/O5 File:08500132RUNB.out ' -------------------------------------------------------------- - ----- RANCHO CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS ALONG RANCHO CALIFORNIA ROAD, NORTH SIDE ' FILENAME: 08500132RUNB BY: E M RUIZ 100-YEAR STORM ANALYSIS ********* Hydrology Study Control Information ********** , English (in-lb) Units used in input data file ---------------------------- - ----------------------- , Van Dell and Associates, Inc., Irvine, CA - S/N 953 ----------------------------------------------------- Rational Method Aydrology Program based on Riverside County Flood Control & Water Conservation District ' 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 , 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) ' Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 35.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 850.000(Ft.) Top (of initial area) elevation = 1430.000(Ft.) ' Bottom (of initial area) elevation = 1380.000(Ft.) Difference in elevation = 50.000(Ft.) Slope = 0.05882 s(percent)= 5.88 ' TC = k(0.530)*[(length~3)/(elevation change)]~0.2 Initial area time of concentration = 13.872 min. Rainfall intensity = 2.685(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 ' Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea rvnoff = 11.977(CFS) Total initial stream area = 5.650(AC.) Pervious area fraction = 1.000 ' ~~ ' X:~Projects\850_0132~ENG~DOCU2EP~08500132RUNB-100.DOC Page 1 of3 ' ' +.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 40.000 , **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** _ Top of natural channel elevation = 1380.000(Ft.) ' End of natural channel elevation = 1320.000(Ft.) Length of natural channel 1380.000(Ft.) Estimated mean flow rate at midpoint of channel = 37.946(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)~.352)(slope~0.5) Velocity using mean channel flow = 7.46(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0435 Corrected/adjusted channel slope = 0.0435 Travel time = 3.08 min. TC = 16.96 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.778 Decimal fraction soil group A= 0.000 Decimal fraction soil group a= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.405(In/Hr) for a 100.0 year storm Subarea runoff = 45.851(CFS) for 24.500(Ac.) Total runoff = 57.828(CFS) Tota1 area = 30.150(AC.) . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 45.000 **** NATURA2, CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1320.000(Ft.) End of natural channel elevation = 1300.000(Ft.) ' Length of natural channel = 700.000(Ft.) Estimated mean flow rate at midpoint of channel = 71.580(CFS) Natural valley channel type used ' L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)~.352)(slope"0.5) Velocity using mean channel flow = 7.26(Ft/s) , Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0266 ' Corrected/adjusted channel slope = 0.0286 Travel time = 1.61 min. TC = 18.56 min. ' Adding area flow to channel ' X:~Projects\850_0132~ENG~DOC~REP\08500132RL7NB-]OO.DOC Page 2 of 3 \~ ' ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.773 ' . Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.286(In/Hr) for a 100.0 year storm Subarea runoff = 25.359(CFS) for 14.340(AC.) ' Total runoff = 83.167(CFS) Total area = 44.490(Ac.) End of computations, total study area = 44. 49 (AC.) ' The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 ' Area averaged RI index number = 78.0 ' ' ' ' ' ' CI ' , ' ' ~ ' X:~Projects\850_0132~ENG~DOC~REP\08500132RtJNB-]OO.DOC Page3oF3 ' ' ' ' 1 ~ 1 ' ' ' ' ' , Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/OS File:08500132RUNC.out RANCHO CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS LAONG RANCHO CALIFORNIA ROAD, NORTH SIDE FILENAME: 08500132RUNC BY: E M RUIZ 100-YR STORM ANALYSIS ***~***** Hydrology Study Control information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------- - ------------------------- - ----- - ------ - -------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 55.000 **** INITIAL AREA EVALUATION **** , Initial area flow distance = 940.000(Ft.) Top (of initial area) elevation = 1405.000(Ft.) sottom (of initial area) elevation = 1300.ooo(Ft.) Difference in elevation = 105.000(Ft.) Slope = 0.11170 s(percent)= 11.17 TC = k(0.530)*[(length~3)/(elevation change)]~0.2 Initial area time of concentration = 12.703 min. Rainfall intensity = 2.818(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.794 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = ' Initial subarea runoff = 21.641(CFS) Total initial stream area = 9.670(AC.) Pervious area fraction = 1.000 End of computations, total study area = 9.67 ' The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 ' X:~Projects\850_0132~ENG~DOCU2EP\08500132RilNC-100.DOC 0.000 (Ac.) Page 1 of 1 2~ ' ' ' Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/OS File:06500132RUND.out ' --------------------------------------------------------------------- R1~7CH0 CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS ALONG RANCAO CALIFORNIA ROAD, NORTA SIDE ' FILENAME: 08500132RUND BY: E M RUIZ '------------------------------------------ ---------------------------- ********* Hydrology Study Control Information ********** ' English (in-lb) Units used in input data file ' ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District ' 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 ' 2 year, 1 hour precipitation = 0.500(In.) . 100 year, 1 hour precipitation = 1.200(In.) ' Storm event year = 100.0 Calculated rainfall intensity data: ~. 1 hour intensity = 1.200(In/Hr) ~ Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 55.000 to Point/Station 60.000 , ~*** INITIAL AREA EVALUATION •*** Initial area flow distance = 935.000(Ft.) Top (of initial area) elevation = 1425.000(Ft.) ' Bottom (Of initidl drea) elevdtiOn = 1400.000(Ft.) Difference in elevation = 25.000(Ft.) Slope = 0.02674 s(percent)= 2.67 ' TC = k(0.530)*[(length~3)/(elevation change)]~0.2 Initial area time of concentration = 16.872 min. Rainfall intensity = 2.411(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.779 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 ' Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 17.758(CFS) Total initial stream area = 9.460(AC.) Pervious area fraction = 1.000 , Zy ' X:~Projects\850_0132~ENG~DOC~REP\08500132RUND-100.DOC Page 1 of 3 ' ' ++++++++++++++++++++++++++++++++++++++++++++++,+++++++++++++++++++++++ ' Process from Point/Station 60.000 to Point/Station 65.000 **** NATURAL CAADRQEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1400.000(Ft.) ' End of natural channel elevation = 1380.000(Ft.) Length of natural channel 1035.000(Ft.) Estimated mean flow rate at midpoint of channel = 44.715(CFS) , Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)~.352)(slope~0.5) ' Velocity using mean channel flow = 5.21(Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0193 Corrected/adjusted channel slope = 0.0193 Travel time = 3.31 min. TC = 20.18 min. ' Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.768 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.185(In/Hr) for a 100.0 year storm ~ Subarea runoff = 48.181(CFS) for 28.720(AC.) Total runoff = 65.939(CFS) Total area = 38.180(Ac ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 65.000 to Point/Station 70.000 ' ~*** NATURAL CHPSINEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1380.000(Ft.) End of natural channel elevation = 1290.000(Ft.) , Length of natural channel = 1065.000(Ft.) Estimated mean flow rate at midpoint of channel = 83.331(CFS) ' Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)".352)(slope~0.5) Velocity using mean channel flow = 13.07(Ft/s) ' Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) , Normal channel slope = 0.0845 Corrected/adjusted channel slope = 0.0845 Travel time = 1.36 min. TC = 21.54 min. ' Adding area flow to channel ' X:~Projects\850_0132~ENG~DOC\REP\08500132RUND-IOO.DOC Page 2 of 3 23 UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.764 Decimal fraction soil group A= 0.000. Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.108(In/Hr) for a 100.0 year storm Subarea runoff = 32.424(CFS) for 20 .140(AC.) Total runoff = 98.364(CFS) Total a rea = 58.320(AC.) End of computations, total study area = 58.32 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 2°~ 1 X~Projects\850_0132~ENG~DOC~REP\08500132RilND-IOO.DOC Page 3 of 3 ' ~ VAN DELL AND ASSOCIATES, INC. ,~ U801 CARTWRIGHT ROAD ' IRVINE, CALIFORNIA 92614 949-474-1400 PROJECT O. ~g5~~ 'd~3y BY ~ ~L DATE Ii -V~j•D~ CHK DATE PAGE OF ' r~~ ~I-I~(~~1~-- ~Ct,TT~IZ~[6LD STt~ER-D ~ y~Z~~2S~T~o r~ ~ m P2~~~rw~T n~;Ttoa~~ Ivt,t~`~t9b ~e,t,Ti ~~ SG~t-~/vt~i ~cs ' 1a~~.Z 'qa 13~'i '~', 13`~ ~RI. ~z~i ', ~~~ _____~~ ~r ~0 ~~_ 35°/ I'a S~T -~~/ IIS ' ~ \ 0 ~~ ~ ~i ' N ' ~~~ ~I~~ ,.~~~1 ~~ I~ ~~~ CR. ~sc~> ~~ C~-~ M~ ~° Z ~ 1 ° ~r 1 ~ ~~ 'E~ ~~., ~--~ ~ ~ m ~~ ,,~, ~ ~ 1 ~~~ I ~ ~' ~Zs -zs~ ~ I~a s-~-r ~Gp~ Ib~ cc~) ~ ~ ~D 13 I$ .2 t ~~o~ - NoPE N~, & ~LGV-A'C~o~J sro' _p~r~~T~ot~ ~~ ~~c~ ~ ~~oV~ I.~-~c~T}~ I ~E _~ (~-~.~~~ ~~ cq C.e ~J V i~ Y1~~ ~ ~~~ - GRIbuT~ic..`( ~-t~-E"t~ , ~-c~t~ s I ~D ~ - ~~~v ~DC~S ~~-TafL ' ~~~~ - ~-r~ ~r~--s ~ ~J/ R~ S~r~ ~ 2 1 ' ' Riverside County Rational xydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/19/O5 File:Ranchol.out ' --------------------------------------------------------------------- RANCHO CALIFORNIA-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132 - INTERSECTION IMPROVEMENT WZTH SIGNAL LIGHT FILENAME: RANCHOI BY: E M RUIZ ' 100-YEAR STORM ANAI,YSIS --------------------------------------------------------------------- - - ********* Hydrology Study Control Information ********** ' English (in-lb) Units used in input data file ' ------------------------------ - ---------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------------------------------------------------------- - -------------- Rational Method Hydrology Program based on , Riverside County Flood Control & Water Conservation District 1978 hydrology manual `Storm event (year) = 100.00 Antecedent moisture Condition = 2 ' 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) ~ Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 105.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 520.000(Ft.) Top (of initial area) elevation = 1318.200(Ft.) ' Bottom (of initial area) elevation = 1309.000(Ft.) Difference in elevation = 9.200(Ft.) Slope = 0.01769 s(percent)= 1.77 TC = k(0.300)*[(length~3)/(elevation change)]~0.2 ' Initial area time of concentration = 8.203 min. Rainfall intensity = 3.585(In/Hr) for a 100.0 year storm , COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 ' Initial subarea runoff = 3.090(CFS) Total initial stream area = 0.980(AC.) Pervious area fraction = 0.100 1 ' X:~Projects\850_0132~ENG~DOCU2EPH-Iydro-Calcs~Ranchol-IOO.DOC Page 1 of 5 !l~ ' ' ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1309.000(Ft.) End of street segment elevation = 1300.000(Ft.) ' Length of street segment = 405.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = a8.000(Ft.) t Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) ' Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ' Estimated mean flow rate at midpoint of street = 4.273(CFS) Depth of flow = 0.338(Ft.), Average velocity = 3.424(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.589(Ft.) ' Flow velocity = 3.42(Ft/s) Travel time = 1.97 min. TC = 10.17 min. Adding area flow to street ' APARTMENT subarea type Runoff Coefficient = 0.855 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 ' Pervious area fraction = 0.200; Impervious fraction = 0.800 Rainfall intensity = 3.184(In/Hr) for a 100.0 year storm Subarea runoff = 2.043(CFS) for 0.750(Ac.) Total runoff = 5.134(CFS) Total area = 1.730(AC.) , Street flow at end of street = 5.134(CFS) Half street flow at end of street = 5.134(CFS) Depth of flow = 0.355(Ft.), Average velocity = 3.576(Ft/s) , Flow width (from curb towards crown)= 11.441(Ft.) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 115.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1300.000(Ft.) ' End of street segment elevation = 1281.000(Ft.) Length of street segment = 440.000(Ft.) Height of curb above gutter flowline = 8.0(In.) ' Width of half street (curb to crown) 48.000(Ft.) Distance from crown to crossfall grade break 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side(s) of the street q~ (/ ' X:~Projuts\850_0132~ENG~DOCU2EP~I-Iydm-Calcsutanchol-100.DOC Page 2 of 5 ' 1 , 1 ' ' ' 1 1 ' ' ' , ' ' ~ Distance from curb to property line = 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.484(CFS) Depth of flow = 0.346(Ft.), Average velocity = 4 .670(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.976(Ft.) Flow velocity = 4.87(Ft/s) Travel time = 1.51 min. TC = 11.68 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.952(In/Hr) for a 100.0 year storm Subarea runoff = 2.037(CFS) for 0.910(AC.) Total runoff = 7.171(CFS) Total area = 2.640(AC. Street flow at end of street = 7.171(CFS) Half street flow at end of street = 7.171(CFS) Depth of flow = 0.356(Ft.), Average velocity = 4. 987(Ft/s) Flow width (from curb towards crown)= 11.451(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 120.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 1281.000(Ft.) Downstream point elevation = 1267.000(Ft.) Channel length thru subarea = 140.000(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z~ of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.024 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 7.415(CFS) Depth of flow = 0.272(Ft.), Average velocity = Channel flow top width = 4.633(Ft.) FlOw Velocity = 7.14(Ft/5) Travel time = 0.33 min. Time of concentration = 12.01 min. ' Sub-Channel No. 1 Critical depth = 0.484(Ft ' ' ' Critical flow top width = ~ ' Critical flow velocity= ~ ' ' Critical flow area = , Adding area flow to channel 7.415(CFS) 7.137(Ft/s) 5.906(Ft 3.438(Ft/s) 2.157(Sq.Ft) v- ' X:~Projects\850_0132~ENG~DOC~REPV-Iydro-Ca1cs~Ranchol-100.DOC Page 3 of 5 ~ ' ' 1 ' ' ' ' 1 1 ' ' ~'~ ' ' , ' , SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.757 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.907(In/Hr) for a 100.0 year storm Subarea runoff = 0.396(CFS) for 0.180(Ac.) Total runoff = 7.567(CFS) Total area = 2.820(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 125.000 '*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1267.000(Ft.) End of street segment elevation = 1254.000(Ft.) Length of street segment = 370.000(Ft.) Height of curb above gutter flowline = B.0(zn.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 18. 000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.198(CFS) Depth of flow = 0.379(Ft.), Average velocity = 4 .761(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.630(Ft.) Flow velocity = 4.76(Ft/s) Travel time = 1.30 min. TC = 13.30 min. Adding area flow to street APARTMENT subarea type Runoff Coefficient = 0.850 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.200; Impervious £raction = 0.800 Rainfall intensity = 2.748(In/Hr) for a 100.0 year storm Subarea runof£ = 1.098(CFS) for 0.470(AC.) Total runoff = 8.665(CFS) Total area = 3.290(AC. Street flow at end of street = 8.665(CFS) Aalf street flow at end of street = 6.665(CFS) Depth of flow = 0.385(Ft.), Average velocity = 4 .825(Ft/s) F1ow width (from curb towards crown)= 12.920(Ft.) 2°~ ' X:~Projects~850_0132~ENG~DOCVtEPV-Iydro-Calcs~Ranchol-IOO.DOC Page4of5 1 1 +++++++++++++++++++++++++++++++++++++++++++++++++++++.++++++++++++++++ ' Process from Point/Station 125.000 to Point/Station 130.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1254.000(Ft.) I End of street segment elevation = 1252.000(Ft.) , ' Length of street segment = 116.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 48.000(Ft.) ' Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) ' Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ' Estimated mean flow rate at midpoint of street = 8.863(CFS) Depth of flow = 0.428(Ft.), Average velocity = 3'.705(Ft/s) Streetflow hydraulics at midpoint of street travel: ~ Halfstreet flow width = 15.052(Ft.) ' Flow velocity = 3.70(Ft/s) Travel time = 0.52 min. TC = 13.82 min. Adding area flow to street ' COhS7ERCIAL subarea type Runoff Coefficient = 0.875 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 ~ Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.690(In/Hr) for a 100.0 year storm Subarea runoff = 0.353(CFS) for 0.150(AC.) .TOta1 runoff = 9.018(CFS) Total area = 3.440(AC. ' Street flow at end of street = 9.018(CFS) Half street flow at end of street = 9.018(CFS) Depth of flow = 0.430(Ft.), Average velocity = 3.720(Ft/s) Flow width (from curb towards crown)= 15.157(Ft.) ' End of computations, total study area = 3.44 (AC.) The following figures may t be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.294 Area averaged RI index number = 56.0 , ' ' ~ ' X:~Projects\850_0132~ENG~DOC~REPV-lydro-Ca1cs~Ranchol-100.DOC Page5of5 , ' , Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/OS File:08500132RUNA.out ' --- - -- ---------------------- - ---------------------------------------- RANCHO CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS ALONG RANCHO CALIFORNIA ROAD FILENAME: 08500132RUNA BY: E M RUIZ 1 ----------- - ---------------- ------------------- - ------ - ********* Hydrology Study Control Information *****•**** ' English (in-lb) Units used in input data file ' ---------------------------- -------- -------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------------------- - ------------- - - ---------------------- - -------- Rational Method Hydrology Program based on ' Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 ' 2 year, 1 hour precipitation = 0.500(in.) 100 year, 1 hour precipitation = 1.200(In.) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) ' Slope of intensity duration curve = 0.5500 ' t ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 740.000(Ft.) Top (of initial area) elevation = 1430.000(Ft.) ' Bottom (of initial area) elevation = 1340.000(Ft.) Difference in elevation = 90.000(Ft.) Slope = 0.12162 s(percent)= 12.16 ' TC = k(0.530)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 11.349 min. Rainfall intensity = 1.969(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.756 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' Decimal £raction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Initial subarea runoff = 7.872(CFS) 3~ ' X:~Projects\850_0132~ENG~DOC~REP\08500132RUNA.DOC Page 1 of 3 L! ~- ~ Total initial stream area = 5.290(AC.) ' Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ , Process from Point/Station 15.000 to Point/Station 20.000 ***~ IRREGULAR CHANNEL FLOW TRAVEL TIME "'** , Estimated mean flow rate at midpoint of channel = 20.125(CFS) Depth of flow = 0.792(Ft.), Average velocity = 5.541(Ft/s) ~~x~~** Irregular Channel Data **~*~~~~~~~ '___'_______'_____'_______ " ______'________'___________________'_ ' Information entered for subchannel number 1: Point number 'X' coordinate 'Y' coordinate 1 0.00 3.00 2 6.00 0.00 ' 3 9.00 0.00 4 15.00 3.00 Manning's 'N' friction factor = 0.025 ' ---------------------- --------------------------------- - ------- Sub-Channel flow = 20.125(CFS) ~ ~ flow top width = 6.169(Ft.) ~ ' velocity= 5.541(Ft/s) t ~ ' area = 3.632(Sq.Ft) ~ ' Froude number = 1.273 Upstream point elevation = 1340.000(Ft.) ' Downstream point elevation = 1320.000(Ft.) Flow length = 1050.000(Ft.) Travel time = 3.16 min. Time of concentration = 14.51 min. ' Depth of flow = 0.792(Ft.) Average velocity = 5.541(Ft/s) Total irregular channel flow = 20.125(CFS) ' _ Irregular channel normal depth above invert elev. 0.792(Ft.) Average velocity of channel(s) = 5.541(Ft/s) Adding area flow to channel UNDEVELOPED (poor cover) subarea , Runoff Coefficient = 0.739 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' Decimal fraction soil group C= D.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Rainfall intensity = 1.720(In/Hr) for a 10.0 year storm Subarea runoff = 20.927(CFS) for 16.470(AC.) Total runoff = 28.798(CFS) Total area = 21.760(AC.) t ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 25.000 ' **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 37.004(CFS) Depth of flow = 1.226(Ft.), Average velocity = 5 .534(Ft/s) ' ******* Irregular Channel Data *********** ~ ' X:~Projects\850_0t32~ENG~DOC~REP\08500132RUNA.DOC Page2of3 , , ---------------------------------------------------- ------------- Information entered for subchannel number 1: Point number 'X' coordinate 'Y' coordinate . ' 1 0.00 3.00 2 6.00 0.00 3 9.00 0.00 ' 4 15.00 3.00 Manning's 'N' friction factor = 0.025 ----- Sub-Channel flow = 37.004(CFS) --- -- t ' ' flow top width = 7.905(Ft.) ' ' velocity= 5.534(Ft/s) ' ' area = 6.687(Sq.Ft) , ' ' Froude number = 1.060 Upstream point elevation = 1320.000(Ft.) Downstream point elevation = 1310.000(Ft.) , Flow length = 840.000(Ft.) Travel time = 2.53 min. Time of concentration = 17.04 min. Depth of flow = 1.226(Ft.) ' Average velocity = 5.534(Ft/s) Total irregular channel flow = 37.004(CFS) Irregular channel normal depth above invert elev. = 1.226(Ft.) ' Average velocity of channel(s) = 5.534(Ft/s) Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.727 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.575(In/Hr) for a 10.0 year storm ' Subarea runoff = 14.187(CFS) for 12.400(Ac.) Total runoff = 42.985(CFS) Total area = 34.160(Ac.) End of computations, total study area = 34 .16 (Ac.) ' The following figures may be used for a unit hydrograph study of the same area . ' Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 ' ' ' ' , XiProjects\850_0132\ENG~DOC~REP\08500132RUNA.DOC Page 3 of 3 3~ ' , ' ' ' L ~ ' t ' , , ' ' ' ' Riverside County Rational Hydrology Program CIVILCADD/CZVZLDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Aydrology Study Date: 12/16/O5 File:08500132RUNB.out -------- - - - ---------------------------------------------------------- RANCHO CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS ALONG RANCHO CALIFORNIA ROAD, NORTH SZDE FILENAME: 08500132RUNB BY: E M RUIZ ***++*•~* HydrOlogy Study Control InfoTmation ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - 5/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intenaity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 35.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 850.000(Ft.) Top (of initial area) elevation = 1430.000(Ft.) Bottom (of initial area) elevation = 1380.000(Ft. Difference in elevation = 50.000(Ft.) Slope = 0.05882 s(percent)= 5.88 TC = k(0.530)*[(length~3)/(elevation change)]~0.2 Initial area time of concentration = 13.872 min. Rainfall intensity = 1.763(In/Hr) for a 10 UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.742 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 0 year storm Pervious ared fraction = 1.000; Impervious fraction = 0.000 ~ Initial subarea runoff = 7.390(CFS) Total initial stream area = 5.650(AC.) Pervious area fraction = 1.000 ' ~ ' X:~Projects\850_0132~ENG~DOC~REP\08500132RLJNB.DOC Page 1 of3 , , ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,++,++++++ ' Process from Point/Station 35.000 to Point/Station 40.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1390.000(Ft.) , End of natural channel elevation = 1320.000(Ft.) Length of natural channel 1380.000(Ft.) Estimated mean flow rate at midpoint of channel = 23.413(CFS) , ' ' C~'~ ' ' ~ ~ ' ' Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 6(q(English Units)~.352)(slope~0.5) velocity using mean channel flow = 6.52(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0435 Corrected/adjusted channel slope = 0.0435 Travel time = 3.53 min. TC = 17.40 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.725 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.557(In/Hr) for a 10.0 year storm Subarea runoff = 27.647(CFS) for 24.500(AC.) Total runoff = 35.037(CFS) Total area = 30.150(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 45.000 **** NATCTRAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1320.000(Ft.) End of natural channel elevation = 1300.000(Ft.) Length of natural channel = 700.000(Ft.) Estimated mean flow rate at midpoint of channel = 43.370(CFS) ' Natural valley channel type used L.A. Covnty flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(g(English Units)~.352)(slope~0.5) Velocity using mean channel flow = 6.28(Ft/s) , Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) , Normal channel slope = 0.0286 Corrected/adjusted channel slope = 0.0286 Travel time = 1.86 min. TC = 19.26 min. ' Adding area flow to channel ' X:~Projects\850_0132~ENG~DOCV2EP\08500132RiJNB.DOC Page 2 af 3 3~ 1 t UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.717 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 ' RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.472(In/Hr) for a 10.0 year storm ' Subarea runoff = 15.135(CFS) for 14.340(AC.) Total runoff = 50.172(CFS) Total area = 44.490(AC.) End of computations, total study area = 44. 49 (AC.) The following figures may ' be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 ' Area averaged RI index number = 78.0 ' ' 1 ' 1 ' ' , ' ' 1 ~ ' X:~Projects~850_0132~ENG~DOCVtEP\08500132R1JNB.DOC Page 3 of 3 1 ' xiverside County Rational Hydrology Program "' CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/OS File:08500132RUNC.out ' -- ----- - -----------------------------------------------------,--------- RANCHO CALIFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS LAONG RANCHO CALIFORNIA ROAD, NORTH SIDE FILENAME: 08500132RUNC BY: E M RUIZ ' ------------------ - ---------------------- - ---------------------------- ********* H d l y ro ogy Study Control Information ******_*** ' English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ' ________________________________________________________________________ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District ' 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(in.) ' 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 , Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = D.5500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 55.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 940.000(Ft.) Top (of initial area) elevation = 1405.000(Ft.) ' Bottom (of initial area) elevation = 1300.000(Ft.) Difference in elevation = 105.000(Ft.) Slope = 0.11170 s(percent)= 11.17 TC = k(0.530)*[(length"3)/(elevation change)1~0.2 Initial area time of concentration = 12.703 min. t Rainfall intensity = 1.851(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.748 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 ' RI index for soil(AMC 2) 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 13.387(CFS) ' Total initial stream area = 9.670(AC.) Pervious area fraction = 1.000 End of computations, total study area = 9.67 (Ac.) The following figures may ' be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 ' Area averaged RI index number = 78.0 ~ ~ ' X:~Projects~850_0132~ENG~DOCViEP\08500132RUNC.DOC Page I of 1 , ' ... ' ' ' , 1 1 ' Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/16/OS File:08500132RUND.out RANCHO CALZFORNIA ROAD-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132, ANALYSIS ALONG RANCHO CALIFORNIA ROAD, NORTH SIDE FILENAME: 08500132RUND BY: E M RUIZ ----------- -------------------- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., irvine, CA - S/N 953 - -------- ----------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) ' Storm event year = 10.0 Calculated rain£all intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 55.000 to Point/Station 60.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 935.000(Ft.) Top (of initial area) elevation = 1425.000(Ft.) Bottom (of initial area) elevation = 1400.000(Ft.) Difference in elevation = 25.000(Ft.) Slope = 0.02674 s(percent)= 2.67 TC = k(0.530)*[(length~3)/(elevation change)]"0.2 Initial area time of concentration = 16.872 min. Rainfall intensity = 1.583(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.727 Decimal fraction soil group A= 0.000 Decimal fraction soil group B.= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 10.893(CFS) Total initial stream area = 9.460(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ d Process from Point/Station 60.000 to Point/Station 65.000 3D ' X:~Projects\850_0132~ENG~DOCVtEP\08500132RIJND.DOC Page 1 of 3 ' ' **** NA'I'[JRAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ~ ' Top of natural channel elevation = 1400.000(Ft.) End of natural channel elevation = 1380.000(Ft.) Length of natural channel = 1035 .000(Ft.) ' Estimated mean flow rate at midpoint of channel = 27.427(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: ' Velocity(ft/s) _ (7 + 8(q(English Units)".352)(slope~0.5) Velocity using mean channel flow = 4.54(Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0193 Corrected/adjusted channel slope = 0.0193 , Travel time = 3.80 min. TC = 20.67 min. Adding area flow to channel ' UNDEVELOPED (poor cov er) subarea Runoff Coefficient = 0.711 Decimal Eraction soil group A= 0.000 ' Decimal fraction soil Decimal fraction soil group B= group C= 1.000 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78. 00 ' Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.416( In/Hr) £or a 10.0 year storm Subarea runoff = 28.919(CFS) for 28.720(AC.) ' Total runoff = 39 .812(CFS) Total area = 38.160(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 65.000 to Point/Station 70.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1380.000(Ft.) , End of natural channel elevation = 1290.000(Ft.) Length of natural channel = 1065.000(Ft.) Estimated mean flow rate at midpoint o£ channel = 50.312(CFS) ' Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)~.352)(slope~0.5) ' Velocity using mean channel flow = 11.27(Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0845 Corrected/adjusted channel slope = 0.0845 Travel time = 1.57 min. TC = 22.25 min. ' Adding area flow to channel ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.705 ' X:~Projects\850_0132~ENG~DOCVtEP\08500132RUND.DOC Page 2 of 3 !/ ` ' '._ Decimal fraction soil group A= 0.000 ' Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Rainfall intensity = 1.360(In/Ar) for a 10.0 year storm Subarea runoff = 19.310(CFS) for 20.140(AC.) Total runoff = 59.121(CFS) Total area = 58.320(AC.) ' End of computations, total study area = 58. 32 (AC.) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 ' ' ' I , ' ' ~ ' ' ' ' ' ' X:~Projects\850_0132~ENG~DOC~REP~08500132Ri.iND.DOC Page 3 of 3 ~~ , ' Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 12/19/DS File:Ranchol.out ' ----- - ---------------------- - ----------------------------------------- RANCHO CALIFORNIA-BUTTERFIELD STAGE ROAD PROJECT JN 0850.0132 - INTERSECTION IMPROVEMENT WITH SIGNAL LIGHT FILENAME: RANCHOI BY: E M RUIZ , 10-YR STORM ANALYSIS ---------------------------------------------- ********* Hydrology Study Control Information ********** ' English (in-lb) Units used in input data file ' ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------- - ---------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District ' 1978 hydrology manual .~Storm event (year} = 10.00 Antecedent Moisture Condition = 2 ' 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ' ' ' 1 ' ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 105.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 520.000(Ft.) Top (of initial area) elevation = 131a.zoo(Ft.) Bottom (of initial area) elevation = 1309.000(Ft.) Difference in elevation = 9.200(Ft.) Slope = 0.01769 s(percent)= 1.77 TC = k(0.300)*[(length~3)/(elevation change)]~0.2 Initial area time of concentration = 8.203 min. Rainfall intensity = 2.354(In/Hr) for a 10. COMMERCIAL subarea type Runoff Coefficient = 0.872 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 0 year storm Pervious area fraction = 0.100; Impervious fraction = 0.900 ' Initial subarea runoff = 2.012(CFS) Total initial stream area = 0.980(AC.) Pervious area fraction = 0.100 , ' X:~Projects\850_0132~ENG~DOCVtEP~I-Iydro-Calcs~Rancho].DOC Page 1 ofS ~\ ' ~ l ~ ' t ' ' , ' ' ~ 1 ' ' ' L L 1 ++++++++++++++++++++++++++++++++++,-+++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1309.000(Ft.) End of street segment elevation = 1300.000(Ft.) Length of street segment = 405.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 18. 000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.782(CFS) Depth of flow = 0.302(Ft.), Average velocity = 3 .101(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.779(Ft.) Flow velocity = 3.10(Ft/s) Travel time = 2.18 min. TC = 10.38 min. Adding area flow to street APARTMENT subarea type Runoff Coefficient = 0.839 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Rainfall intensity = 2.068(In/Hr) for a 10.0 year storm Subarea runoff = 1.302(CFS) for 0.750(AC.) Total runoff = 3.315(CFS) Total area = 1.730(AC.) Street flow at end of street = 3.315(CFS) Half street flow at end of street = 3.315(CFS) Depth of flow = 0.316(Ft.), Average velocity = 3 .227(Ft/s) Flow width (from curb towards crown)= 9.489(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 115.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** TOp of stYeet segment elevdtiOn = 1300.000(Ft.) End of street segment elevation = 1281.000(Ft.) Length of street segment = 440.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' X:~Projects~850_0132~ENG~DOC~REP\Hydro-Calcs~Ranc6o1.DOC Page 2 of 5 ~ ~~~ 1 t ' , ~ ' , , ' ' ' ' 1 ~ ~ Distance from curb to property line = 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = D.0150 manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.186(CFS) Depth of flow = 0.308(Ft.), Average velocity = 4.398(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.084(Ft.) FlOw VE10Clty = 4.40(Ft/5) Travel time = 1.67 min. TC = 12.05 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.706 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= O.OOD Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.906(In/Hr) for a 10.0 year storm Subarea runoff = 1.228(CFS) for 0.910(AC.) Total runoff = 4.543(CFS) Total area = 2.640(Ac. Street flow at end of street = 4.543(CFS) Half street flow at end of street = 4.543(CFS) Depth of flow = 0.315(Ft.), Average velocity = 4.481(Ft/s) Flow width (from curb towards crown)= 9.416(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 120.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 1281.000(Ft.) Downstream point elevation = 1267.000(Ft.) Channel length thru subarea = 140.000(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.024 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 4.698(CFS) Depth of flow = 0.2i0(Ft.), Average velocity = Channel flow top width = 4.261(Ft.) Flow Velocity = 6.16(Ft/s) Travel time = 0.38 min. Time of concentration = 12.43 min. Sub-Channel No. 1 Critical depth = 0.371(Ft , ' ' ' Critical flow top width = ' ' ' Critical flow velocity= ' ' ' Critical flow area = ' Adding area flow to channel ' X:~Projects\850_0132~ENG~DOCViEPQ-Iydro-Ca1csU2anchol.DOC 4.698(CFS) 6.156(Ft/s) 5.227(Ft 3.078(Ft/s) 1.526(Sq.Ft) Page 3 of 5 l,~3 ' ' SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.706 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 ' RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.873(In/Hr) for a 10.0 year storm , Subarea runoff = 0.238(CFS) for 0.180(Ac.) Tota1 runoff = 4.781(CFS) Total area = 2.820(Ac.) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 125.000 ~ **** STREET FLOW TRAVEL TIME + SUSAREA FLOW ADDITION **** ' Top of street segment elevation = 1267.000(Ft.) End of street segment elevation = 1254.000(Ft.) ' Length of street segment = 370.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 15.000(Ft.) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0160 ' Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.180(CFS) ' Depth of flow = 0.335(Ft.), Average velocity = 4. 269(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.425(Ft.) ' Flow velocity = 4.27(Ft/s) Travel time = 1.44 min. TC = 13.87 min. Adding area flow to street APARTMENT subarea type Runoff Coefficient = 0.833 ' Decimal fraction soil group A= 0.000 Decimal £raction soil group B= 1.000 Decimal fraction soil group C= 0.000 ' Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Rainfall intensity = 1.763(In/Hr) for a 10.0 year storm ' Subarea runoff = 0.690(CFS) for 0.470(AC.) Total runoff = 5.471(CFS) Total area = 3.290(AC.) Street flow at end of street = 5.471(CFS) ' Aalf street flow at end of street = 5.471(CFS) Depth of flow = 0.340(Ft.), Average velocity = 4. 324(Ft/s) Flow width (from curb towards crown)= 10.671(Ft.) ' 1 X~Projects\850_0132~ENG~DOC~REPQIydro-CalcsVtanchol DOC Page 4 of 5 ~~ ' , ' +++++++++++++++++++++++++++++++++++++++++++++++++++++++++,++++++++++,+ Process from Point/Station 125.000 to Point/Station 130.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1254.000(Ft.) End of street segment elevation = 1252.000(Ft.) ' Length of street segment 116.000(Ft.) Height of curb above gutter flowline = 8.0(In.) Width of half street (curb to crown) = 48.000(Ft.) Distance from crown to crossfall grade break = 18.0 00(Ft.) , Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line 15.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.0oo(In.) ' Manning's N in gutter = 0.0160 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 , Estimated mean flow rate at midpoint of street = 5.596(CFS) Depth of flow = 0.377(Ft.), Average velocity = 3. 314(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.497(Ft.) t Flow velocity = 3.31(Ft/s) Travel time = 0.58 min. TC = 14.45 min. Adding area flow to street ' COMMERCIAL subarea type Runoff Coefficient = 0.866 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 ~ Rainfall intensity = 1.724(In/Hr) for a 10.0 year storm Subarea runoff = 0.224(CFS) for 0.150(AC.) , Total runoff = 5.695(CFS) Total area = Street flow at end of street = 5.695(CFS) 3.440(AC. xalf street flow at end of street = 5.695(CFS) Depth of flow = 0.378(Ft.), Average velocity = 3. 328(Ft/s) Flow width (from curb towards crown)= 12.588(Ft.) ' End of computations, total study area = 3. 44 (AC.) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 0.294 Area averaged RI index number = 56.0 ' ' ~ 4's , X:~Projects\850_0132~ENG~DOC~REP~Fiydro-Ca1cs~Ranchol.DOC Page 5 of 5 I ~ VAN DELL AND ASSOCIATES, INC. ,~ 17801 CARTWRICHT ROAD ' IRVINE, CALIFORNIA 92614 949-474-1400 PROJECT O. ~~ %~ - ~ «Y BY ~~~ DATE ~7' ~l~ '~5 CHK DATE PAGE _OF ~ ~~.-~h ~, ~~~~ $ ~~ ~s 1 . 3 ' ~~ ~~~ ' ,._._.._ 4 ~ 7 p ~ ~Ct,~tR ~c.~ ~,c-~.~, ' . l~a ~~ ~-~htu-a-- ' _ ~ °1 _~~ _-_ /~ ~ ' t ~~r ! L ~ ~~~~5~"'"~1/ ~.~: 1 `';, ~~` ~ ti, ' i ~' ~ (~~ ~ ~~~ ~~ ~ ~`~ ~ ~~`~Q-~- N a~.~ i zs ~ ~ 11~~~~ ~Q., t~;~ ~ ~~ x ~ ' ~'-$ N~ 3. , ~u= l~ So = I.og~~ ~ ' C~-~ ~•~t,~, C~- [oo ~~.~ c.n~Qe.c,,, = 7, o a~ 5 J -"' ~ 13,R7 ~ ~~, a~ ~-e.~ ~'-~~( ) , ~ sc-,}--u('" `~D ~~ cL~ V ' C"- U I c~, d~~a ~ , ~ ~ ~ 1 ~ ~ I~~~ ~ ~~ _ ~3' - 'I' ~ ~{eo~ ~_e.c~.~~ --~z.'/ ~ -~ --~ ~ _"f - O 45~ , ' ~ _-v---- ¢-- i , ~_, ~-~'-~ ' ~ ~--~' ~ ~`t~s ~ ~ CL~ 3(Y y yJ .' /' p ~\ ~ '~~3~y l / ~ w~-~.~~ ~.,, ~ ~ t,~,,,~ ~,~e.,,,~ _ q .~.~~ 4~ 1 , --------------------------- ------------------------ INLET NUMBER LENGTH 14.0 ~ STATION IG~'8 } Q'i.~j7 ==D= I ,~~ ~,~1~, '~ TOTAL PEAK DISCHARGE = 7.00 (cfs) ,~UTTER SLOPE = 0.0108 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT SPREAD W W/T SW SW/SX Eo a S'W SE ' 13.97 4.0 0.29 0.0833 4.2 0.75 6.0 0.126 0.114 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH= 15.4 EFFICIENCY= 0.99 -~ Iq~ / ' CFS INTERCEPTED= 6.91 CFS CARRYOVER= 0.09 ~ ~ ~~J ~ ~~~~.-c~u-~ ~ F~ T ~ ~ I.t ZY.C$ ~ ~~ ' U 1 ' ~ ' 1 , 1 ' ' ~ a~ ~ . i 1 '___-=o_______________e==_______________-=c____=o==_____=c=_____-____________ 'INLET NUMBER LENGTH 21.0 STATION 140+75 -~ TOTAL PEAK DISCHARGE = 4.78 (Cfs) ~~D-'~y' S~~(L~YI~ U 'GUTTER SLOPE = 0.0629 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT SPREAD W W/T SW SW/SX Eo a S'W SE ' 7.88 4.0 0.51 0.0833 4.2 0.95 6.0 0.126 0.140 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX ' REQUIRED LENGTH= 19.7 EFFICIENCY= 1.00 CFS INTERCEPTED= 4.78 CFS CARRYOVER= 0.00 ' ' ~ ~of~G ~uTTq2~i~D 57~~ (~~ 1 1 ' ' t , ' ' ' ' ~c+rj 1 1 ' ____________________________________________________________________________ 'INLET NUMBER LENGTH 21.0 STATION 140+75 ~i'r TOTAL PEAK DISCHARGE = 7.57 (cfs) C~pp-~~, S~"p~) 'GUTTER SLOPE = 0.0629 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT SPREAD W W/T SW SW/SX Eo a S'W SE I' 9.84 4.0 0.41 0.0833 4.2 0.89 6.0 0.126 0.132 XXXXXXXXXX CURB INLET ON A CONTINUOUS GRADE XXXXXXXXXX REQUIRED LENGTH= 24.7 EFFICIENCY= 0.97 ' CFS INTERCEPTED= 7.33 CFS CARRYOVER= 0.24 ~+11.6 NG T~uTTE2.P~ E~-p S Tit~,ti ~ofrD ' ' ~ ' t ' 1 ' ' ' ~ L i ____________________________________________________________________________ 'INLET NUMBER Node 125 LENGTH 7.0 STATION ~ TOTAL PEAK DISCHARGE = 1.34 (cfs) ~I 'GUTTER SLOPE = 0.0207 FT/FT PAVEMENT CROSS SLOPE = 0.0200 FT/FT , SPREAD AT A SLOPE OF .021 (ft./ft.) IS 5.22 (ft.) XXXXXXXXXX CURB INLET IN A SUMP XXXXXXXXXX P EFFEC. LENGTH = 14.20 H= 0.833 I' DEPTH OF WATER = 0.12 SPREAD = 5.94 t ~ ~~3 C~ .~,cMP C~ ~pr i r a~ - A-c~ ~~ , ~ ~Ct TT~~I ~p ST~ ~ ,~~i-D 1 r ~~ ~ ~ ~ ~ ~ ~ 50 ~ ,'~ VAN DELL AND ASSOCIATES, INC. 17801 CARTWRIGHT ROAD IRVINE, CALIFORNIA 92614 949-474-1400 PROJECTNO. ~8~- ~ I3Z BY ~~~Z- DATE 12 ' ~q • OS CHK DATE PAGE OF 1~~ R b tJ (.,~ I G~f'ft ~-t TY ~~5 `D~,~iC.~ t~ l~t5G61~2~5 C~ ~t~p~ ~?~? l~ Q~o = ~'~~B c.~s ~~ - ~.~ ~ +~ '1~~=Gb & ~~ ST,p r~a ~l3log C`~ ~-e~„ C~`~` ;` '"G.~~ e~ ~v "K 1Z ~` sse.-c~ ~~ ~.~. ~S ~ C~'M~' l ~ ~~ ~ ~ _ ~L-~f '~~ ~ C = ~, a ~ j~-- _ ~.~, L = I ~ 3 ~,l ~-s /z. J _ ~, OC~ ~ ~, <n SLo T~S , 6~- = I~OG x CQ `~ ra- 3~v ~s ~~ ~~~,~ G$ QJ~.,iJ-{...e~- c~.~.~ ~~ ~~ -~ ~~ ,~~ ~k ~~..~., ~. ~, ~~~ -~- 3 = ~ ~ ~.S ~ = cc~. ~ ~.~V ~ c = c~' . G ~ ~ = o -~ ~~) = o _ s- S-~ ~ ~ D.& ~D ~5~ ~~~ ~ ~ ~~~ ~ ~ ~ ~, ~ T = (. 7 +~ ~ - ~a.z ~ ».~~ U I , ., ,', 6-~ ,k fZ SI.aT 6~~N 11.7G~s' lft(~ ~{-[ c.<-~.~-`~ f~PO~~ ~'~T~ ~S ~r~~--r~ C~o~.°-y~._-- ~~5~ ~~- ~ ~ ~.,~:T i ~a 1~~ ~~Ts (oo "~ ~' ~ ~oa C! t~ T~1z-i m Ca-~D ~i, ~ n~) ~` , ' ' ' ' ~ ~ ' ' ' ~ ' 1 , ' 1 ' ' , ' GRATE (or cAeckered t optional) See Standad Drarinp C B 107~ s °a q - - -I ~ I ,•. ~o:Q ~ ~, PLAN SEE DETAIL~B~~ a Grode /1 / L 3~~x 2~ft"x3/e~ -~ RODDED END- LUG~/4~¢ x ~~~2~ ~ ~ PUNCH IuHOLE IN `~ ~ PIPE TO RECEIVE I LUG. lq~~ CLEAR I 2'•~ 3 ~~I 3 ~x ~/p~~ BARS DETAIL ~~8~~ Grade 6~Min. Circle around intet where posaible. 6 Opaninys at L-12" - NOTE : 36'~ C. M.P. Openings are optional. Use 36~~ TMICKNES3=0.109~ C.M.P. ThiCkne5S=0.064 wbEfl openings are omitted. = VARIABLE -V DEPTH ~ NOTED ON PLANS. io~ y :e'~ o':.. •\~ai~~i • R.\: • .O 18" R.C.P. 18°C.M. or C.M.P. ~ rx~cKr~s THICKNESS ' v0.064 ~ •0.061~ ' ~ . .a : --p :°n°.o 9n + °e• e~~ ~ ~..,.... 0 9t~.~.d'~ a~: e~v.'m. UNLESS OTHERWISE ~p ~ NOTED ON PLANS .. S ECTION A-A NOTES: I. PLACE GRATE BARS BARALLEL TO FLOW. P. 6RATE AND FRAAAE SHALL BE GALVANI2ED. ~v FEVISIONS lIVfP51DF CWNTY FtOOU COMTYOI ' PFOIECT N0. ANO W>tF0. COMSERVATION DISTpICT '~ pp~EO ~,_ INLET TYP meewi»c ro. - xvc~rcve.~ (6RATE DETAILS) '+ on[v~ryi~x: ~nor xcwo[w n.[. ~eii SNEET Mo. REF o[scxnnox ~~Pw+o~i[ c.ECVCVn: wrc: 6-l-7! STAND0.RD DRAWING NUYBFR CB108 ~ ' , VAN DELL AND ASSOCIATES, INC. 1~ 17801 CARTWRIGHT ROAD ' IRVINE, CALIFORNIA 92614 949-474-1400 1 PROJE~TI~ O,~.~ ~~~~y~-~~~~ BY -r-J""2 ~ DATE Iz ~ l~•nC~ CHK DATE PAGE _OF f~~T ~o~~ ~zs , ~.,c.r~ ~lJTaIT~oF! C~2. ~= R.(~~ ~ ~~- r-~ ~.1~' K.,~.ez~-J• ~~) ~. ~3 c -~. ~~ o ~~~~t ~ ~ 40 -~-~5 ~~ 3~+ ~~s - N~-~ GZ ~~o C, Iti-~--k-L 12s- t~ -Le ~C e~ ; ~j '-e-e~~ ~ ~',u.~-~-~- ~..(.~Jc.2-~ _ - S,7 ~ b,~ l' s~/ O ~~~~_~ ~. f~_~'/~ 5,) ~ ~~ ~~~~ ,~.~- , ~6 = (s, - s, ~ -~ s, `~ 1~~.~.~:u, ~~ ~.,~ c. ~c~ G, ~ _ ~ ~~~ ~--~ ~6 = o - ~ (~ c~-~-~) So = ~ . s- -1- o- 3 ( s. ~¢ -+ o - s ~ = 2,a7'/ ~Sc?~ G~.i~~ e,~ ;' t~.~-~ ~3 ~ ~ , Due to the effects of momentum on the velxity of water, the design slope (So) ~ should be based on the distance of the inlet fran a vertical curve. The ~~ foilwinq focmula and nccompanying qraph ahall be used. ~ ~ so = sl + b (sZ - sl) ~ ~ 0.3 ~ ~ ~ ~ U ~ .o Q2 ~ lil ~ ~ 0.! j ~ ~ ~ ~ ~ 0 0./L,K 0.2L,.~ ^ 0.3L,.~ 0.4L~~ ~ rhere ^ T ' Lv~ ~ length of vertical eurve ,( = distance downstream of B.V.C. ~'~C -9- ~ O 0 N O N \ N ry 0 .~ ~ q F N o ti r q m a ~ m r ~ N m N ~ N c ~ r z ~ F m n H a ~ z 0 H N F H ~ z ~ w w ~ G N a W o w > w o N y a o h H Q ~ U ~ a W N a H W O W N W Wa W E o p a Q o cn w 3 .i W .i a' Q E F o 0 3 5 ~ [~ ~ N N W N Y L~ 0.' ~x o aq a > 3 Q C N oa w o °zw m ~ N N d' U E uo .+c W $ N m w O U O O z ~ R a d N ~ N 0 W m H R z a ~ F O N U E N ~ N ~ h a N a ~ d O o w N m a .i H Q N a N Z ~ 0 m . ] W O .. H • (L m ~ W E o W a ~ ~ w [n cn m H H H ry rv m ° ° ° z z z W W W z z z a a a z z z H ~ H ~ H ~ 0 00 a U O m ~ ~~ x x z x s m z o o o o o o o N ~ ~ ~ ~ ~ ~ ~ 2 E o E o H o m o E o E o m o F o F o a o a o a o o a o a o o a o a o W . . . H . . . H . . . (J O U' O CJ O w O (~ O fJ O ~ O U' O (J O ~ R C Z a C R C C Q k • [x~ O W 0 W O t~l O W O G] I~ t~l O W O GI N a o a~ a o o a o a m o a o a m ~'y O ~'y ('1 ~'y O 'S' O ~y' O ~'j~ 01 .Ti ul ~'y O ~'j~ ~1 Q ~i N RC GY ~O cC K T LY m R R N fA O N O VJ o C O N O fA o C o Ul O N o O O O O O O O O O H (j O H L~ O N [] O F ~ O H [] O H C] O E ~ O I"I Ca O P H Cj O {K 4 w P w W fa fa + • W m riti n~o n ~o ao a W a cv p W m W a VI N N ~ i N i N ^j f M ' N 0 0 0 0 m m a a m • ti m a 0 • n m a > o ru a w o $ . r~ m r~ n r+i m n~ r+ n o .i .i ,y .i ,y N .i N ,y o ~. Z O Z a ~Ti ~ Z O 'Jv O 'Jy O 'L O 'j+ O Z O w N ' F. o 0 0 0 0 0 0 0 0 0 ~ ~ N N m a o 0 ~ ~ ~ ' ,y ~ r ~ + ti N a a ~ ~ o z ~ ~ W ~ + + x ~ y • + + • + t + W F F H E F F E E E F E H a u m c~ w c~ a u m u m c~ a c~ a u a u a c~ .r c~ N u~ , pI W N W N M(V W cv W N W N Gl N W N fL N W N W W t9 U1 N UI V1 fq U] Ul N fA UI lA Y 4 i # ~ i # • Y # W F o E o F o E f+ F.i E a~ E in N b E ~ E o F o F o r] N. O Y. N C C IK ~O C 1~ N. V' W' fY N. ~O {K ~-1 C N fX N ~i N W H ~ . ~ O ~1 . ? O . ~ O W • ~ O Gl ~ ~ O W • 'i '-I W • ~ N hl ~ ~ N W • ~ ? W . ~ N W • ~ N ' W . > N L O m L m a a' a r a a a v m a a 1 p: H N H N H N M N H N M N H N Fi N N N H N N N M N CL ri 'V M ri ri rl 'i ri ei ri ei ri W O N N VI ri C ~O M ~O 'i 'i ~i U k O • 6l # 'i # p • 'i i ri • t'1 i~ O i (`l • ri rl ri a z• z• z~ z• z~ z• z• z~ z• z~ z• z~ m Oo H O O~ H O Oa N'i O m H N Oa H rl Oe+ H~O O m H O O m H'i Oo I-I t"1 O cv M d' Otv H V~ O~v N C ' Eo Ho Eo Fo Ho Fo E.~I F'+ F.i Nti W E.i Eti cn a~ a~ a~ a~ a.+ a.+ a~ a.+ a~ a.. ua~ a~ E F F F F E H E F F E F O F m w m m w m m ~n m ~ ~ m m w a ~ 3 O~t 4 4 ~2 z FC RC 4 2 RC ~2 Q W Q x~S E F E F O E F N O E F F F H , E Q 4 rtr Q H W~ 0. A'i H rC Q 1i W E S W q X C] 5 L1 ~ A U Q U~ U Q U Q U~ U Q a Q E Q y N S N 4 N /1 U] z U1 r j N f1I 4 $ [n Q UJ Q U1 ~] R W Ul U1 ~ a a W ' a [ +~ [~ a W ' a 3 D N~ [ ll ~ 5 ~ 0. P ~J ] (K a fk 5 ~J ~ R ~ ] a a a a a a a a a a a a ' fA N [n N V1 U1 U1 fA (II N fl~ UI H H M H H H H H H H H H rvI N f~1 C 1I1 ~D h 0 01 O fi N ri M .i ' o z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z 0 z w w w ~ trZ w r~ rzn w ~ w w S E E £ i £ S ~ E E E E ~ W G] W W W W W W G] W W a a a a a a a a a a a a ' w w w m w r~ w w w w w m I ' U ~ >+ Z H ' W a W 3 N^ X ~ z H z 0 F > w a w F a m> Z H M N~] C~ Q z a 2 F W ~ a o a q ~ [~ E y N W W H H ~~Zz H H m f~'J G' ~^G H ~U H > wza w'O w a'aQ 4 E ~ 3 O m a C 4 ~ 3 z` G] N N • a o oz a ~ wz H .~ E ~ H N [~ W 3 0 W 2 + h O N W ~ 0 ~ G J / " N a o 0 0 0 0 0 0 0 0 0 0 a r o 0 0 0 0 0 0 0 0 0 0 ~ « . . . . . . . . . . . « o 0 0 0 0 0 0 0 0 0 0 Q • ~ s ~ ~ • a z N ~ o 0 0 0 0 0 0 0 0 0 0 a + . r o o a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a K i o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N + . . . . . . . . . . . . . . . . . . . . . . 4 O O o O O O o o O O O o o O O O O O O O O o Y Y Y O O O O O O O O O O O \ O • O O O O O O O O O O O y O « o 0 0 0 0 0 0 0 0 0 0 F( m H • 4 • y O O O O O O O O O O O \ O O O O O O O O O O O E Q r . . . . . . . . . . . ~ HQ ; N fV N N N N N N N N N .T # d Y O O C O f~l O O O O RI # ~O C ul O O r'1 ~i H 'i ^# O O O O O N tp ~(1 N Y ~} '{ r{ '{ 'i 'i O O O O x O~ 2 s } ~p lp ~O b O O O l0 b b l0 ~ ~ U 5 • .~ .i .i .i ~n e ~o m m rn m M F + N Ul N N C d' d~ O O O O H W • . . . . . . . . . . . H W + rl .1 .i .i ri 'i .i 'i .i 'i .i a ^ • u + + . a + o 0 0 0 0 0 0 0 0 0 0 ~ W> • o 0 0 0 0 0 0 0 0 0 0 p~ W • N "~J r] # O O O O O O O O O O O E VJ W + y • .~j x m m .i o r .i r a o .i m >+ + m ~o ~n e ~ ~n tv 'rn .i m o r+ m cv m ~n .-~ o t~ o t~ o W ~9 .~ + c~ o m o w o ~n o e ~+ m rv o o m o c o a o m o a a m w. . . . . . . . . . . . . . . . . . . . . . . H G1 .T. + N O 1(1 O N O 1I1 O N O N O b O 10 O l0 O ~p O ~p O LL W 2^ # O e~ C a C a a~ a a a a ifl O W CG # ~Y N N N N N N N fV [V N ti a c~ + ,. ~ ti „ ~ ., ~ ., ., ~ ., ~ a m + O M i W [i1 fA G] Y (~1 N ("1 N I'1 N (~1 m f~l N (~1 I(1 R1 N 01 I~ 01 O G~ N 1~1 1n [J ~ [~ '~i # O1 N OI N A N O~ 0 N N N 1(1 N O~ (~1 N f"1 "I 1~1 O VI l0 .~' a Q Q i C ri C ri d~ ri C l0 d~ N C N C~ d' ri l~ rl l~ 'i ~O rl 1(1 D ~ G] W + . \o . ~O • l0 ~ u1 ~ N . ~(1 • m . ry • rl • .i . .i > x W+ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N• o O o O o O o o O O O V! # • • • • • t a t W E O N m n m r+ H N ~` m a °~ <' Qi G] N'J W • b ~O ~O ~O N [Y (V 01 O~ O~ ri $ 1-] µ' '~ N N Ifl V1 N 1(1 N N N [V t`t o a '+ xrE * m o . o w • p'i .. + n r ~ r m a m w m o v ~ ~ , N i. ~ ~ i. ~o ~p ~o m m m m x ~ w a ., ~ ., ., „ ~ ., « w r~ * c~ z t ~ ~ : e.aw . m z * ttl H i~ O O m r~ C m C' N ~(1 N O O ri .] . o e ~u r~ m n r m ~ m ~ ~] '{ .'~ # q1 G O~ O 'i t'1 ~O N N N N W O .. u] W # U] H . W • rl Y V' C C 1(1 1(1 I(1 N b N N l0 W w o g 3 w + a m a o v a o m m a o F N. /1 Q + N N N N N N N N N N (V H E o W * .i .a ,y .i .i .i N .i .i .i .i u ~ a * ~ 'L H .'t • O O m f'I d~ 0 d~ 1I1 N O V~ [/] ~q FJ [y '~y' p # O ~O b N oJ t'1 N m O O 'i fA F rl # W b N C d~ O\ d~ Y1 ri o m r2 G~ W # . . . . . . . . . . . h] i C C d~ C d~ (~1 t`t ~'1 N N ri ~ Q W # z O * S + : + o .i o 0 o m ,y ~ N o a in ~n m ~o r~ n ~o m ~n ~n e .] E a a> . o ri ~v ~n m ri ~o a ~ m a e rv ~ e .+ .+ e N ~ a ~o w [a r • o • .i • o • .i • o • o • ~ • ~ ~ n • n • n Q ~ i.] Q i O N O N O N O N O N '-1 N N m N 0 C m C m W 0 W UJ 4 d~ O C O C O d~ O V~ O d~ O V~ O W O W O p O V~ O 'y H • [V ' fY • N • N ' N • N • N • (V • N ' N ~ N ~ Q M f-I O 'i O r1 O fi O rl O f-I O 'i O rl O r'i O 'i O 'i O ~ ~ • y O N V1 O N O ifl C fi t~l d~ N ~O (K !'1 l`t ~O 0 C 01 r1 h W 2 • o m m m .+ m o F N o .i c~ ri E o m m cv ~o m ~o 0 W O . . . . . . . ~ . . . . . N . . . . . . . . N H ~# O C1 O~ m O1 O m C N O~ 01 c0 M t~ o 'i rY ~-1 ~ .1 ,$ F .] * o o .i .i rt F m m ~ ri o E .+ ~ M m m ~ ~Q W+ o 0 0 o U o o .i V ti N N ti ~ ~ a: ti ti „ ti z~ „ ti „ ~ ti ~ ,, ti a . 5 r ~. v w a ~ Q C. a 5y N a o o a o 0 0 0 0 0 0 0 a + o 0 0 0 0 0 0 0 0 0 0 ~ r . . . . . . . . . . . • o 0 0 0 0 0 0 0 0 0 0 a . ~ , ~ a x ~ z H # o 0 0 0 0 0 0 0 0 0 0 w r + r o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a C• o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N + . . . . . . . . . . . . . . . . . . . . . . Y O o o O O o O O o 0 o O O o o O o 0 0 o O O ~ k # O O O O O O O O O O O \~ Y O O O O O O O O O O O mz . . . . . . . . . . . . « o 0 0 o a o 0 0 0 0 0 `~ A . ~ + . + o 0 0 0 0 0 0 0 0 0 0 ~ r o 0 0 0 0 0 0 0 0 0 0 E Q • . . . . . . . . . . . C~ H • ry (V N N N N N N N N N x ra x« F • a ~ o 0 0 0 0 0 0 0 0 0 W r .i .i .i .i ti .y N .i .i .i ^ ~ N N VI N N u1 N ~(1 II1 N y . . . . . . . . . . ~ M O O O O O O O O O O O * z. Y b ~O b ~O ~D ~D V b ~O l0 lD '$~' M O~ O~ 01 O~ O1 O~ O~ O~ T 01 01 ~ * ~+ E + o 0 0 0 0 0 0 0 0 0 0 E W • . . . . . . . . . . . H fz1 i 'i `i r-1 r1 rl ei 'i ri 'i ri ri ~'. C~ i U + f t a + o 0 0 0 0 0 0 0 0 0 0 ~ W> r o 0 0 0 0 0 0 0 0 0 0 z a m + . . . . . . . . . . . ra 5 a + o 0 0 0 0 0 0 0 0 0 0 F ~n G1 • N # H ~ ~.] • N l0 O (~1 0~ W T M I~ d' O1 'N N O [V O r+f p O C t`t l~ N O~ r'I O 'i ri rY N fl N O fx] U' r] i C O d~ O W b O l0 O t0 O l0 O h O t~ O h O h O a a m w. . . . . . . . . . . . . . . . . . . . . ~.{ ~x] 'j~ * ~p p ~p p ~p ~O O N O l0 O b O ~O O b O ~D O ~O O Oi IL ~L V~ C C P C C P C P C C 1(1 Q W~ ~ N N N N N N N N N N N fl 6: f7 # 'i rl fi 'i ri 'i ri 'i rl fi ri N W V1 • O H [y [V UJ ~+ m fi N f"I O ~O C C ul m O V1 m O 0 1~1 C C W f~l O V '„ (~ # b O~ 0 OI O~ t0 m lO 111 ? f"1 C O N d lU N m O ri l0 S ~.] nJ 0.~ /J'. i r-I lO ri h ~-1 N O N h e-1 f'1 O N O~ (`t m l~ !~ I'1 h O W ~y W W x . .i . ~y • . .i . m . n . ~n . m . .i • o . m a y p x w+ o 0 0 0 o ri rv .i N .+ .+ .i .i o .i o .~ o ~ o 0 Q u~ t o 0 0 0 0 0 0 0 0 0 y ~ ~ . . . . . . • a m H O N + ~ ~n o m ~t o o ~v ut .i m RC W N~'J W 4 N C' N O O l0 [V m C ri h 3 y a p i m m rvr m m m m c~ t~ t~ ~o O Ik • ars a o + o W +~ Q r{ .. # d~ C d' C C d~ d' C C C d' A~ + p~`~ a p~ p~ p~ m m m m m m m m a~m a + r m o-~ c~ z : Q H fl E .] W y z + N H « r r+ o n ~n ~o m m a o e ca ~, a . ~ m w ~ m N m ~ ~ o .+ .] .y •> • ~t N rv m m in ~o ~ m m o W o .. uJ w Ul H • W • rl Y ~O ~D ~O N N 111 ~(1 N 1I1 N ~O ~ W o£ 3 W t a w a e~ a a m m a a c E C Ul S Y ry N N N N N N N N N N i-Qi F o W * .i .i .y .i ti ti .i .i N .i ,y U ~ r] • 0 Z H '3 • b m N N N l ~D <' C~ N m fn RI ~J W 5 O • o .+ m m r~ N m .i a t~ O fp f+ Fl k P ~U N P P P P m Ol m 01 a a w s . . . . . . . . . . . q w • ,y ~y ,y o 0 0 0 0 0 0 0 5 Q O ~ : Q ~ ~] E + 1(1 l0 N ~O C W N t(1 lO h ~O b t0 C l0 r~ ~O L~ b 'i l0 a fk 7 + ul ~o ~o ~n ~o ~o ~o ~o \o h ~o m ~o m ~o o ~O o ~o .1 ~o W W + . t~ . r . • r . r . r . r . r ~ t~ . r . r ^ ~ r7 O+ C m V~ W tl~ C m C m [ m C ol ? m N c0 N m In 0 ~ %(p UJ • C O V~ O C~ W d~ O T O C O p O C O W O V~ O C O H + ry N N € N 1V fV N N ' fY N N f 'i O rl O ~i iJ "1 O 'i O ~-I O fi O M O 'i O rl O '-1 O ~ ~ ~~ • O ~'1 l'1 N 0 U 0 O~ l~ ri m ~O ~1 ~D N N L~ O~ ~O O # {~ O> I(1 N h H h O fD t'1 "I O N O~ ~-1 l~ O1 b N C O C W ~ f k . . . . . . . . . . . . . . . . . . . . . VJ H W i C O Vl O N ~ ul O N 'i h ry 0 O O1 O O~ O O O fi O z F .] « n m r~ r~ ri ri m ri m ri o c W Q W • .i 'i .i fx .i .i .i .i ~i .i ri .i H tn Fl i ~i rl ry ~ 'i fi 'i fi ri 'i rl fl J s ~ v m w d ~ Q ['I~ a / ' m y~ o 0 0 0 0 0 a + o 0 0 0 0 0 Ip • . . . . . . ~ M o 0 0 o O O q~' # W * a « + o 0 0 0 0 0 a °z a ~ . r o 0 0 0 0 0 0 0 0 0 0 ,.~ a. o 0 0 0 0 0 0 0 0 0 0 N N • . . . . . . . . . . . + O o O o O O O o O O o # + # O O O O O O ~Q # O O O O O O h1 2i i • • • • • • Q Q r o 0 0 0 0 ~ • [q H • • • # O O O O O O ~ ~ p p p O O O F K + . . . . . [~ M 4 N N (`1 Id N N x o « ~+ i+ o 0 0 0 Q * ~(1 N N N i L' # O O ~ O P~ ~ p + 2 + . e ~o ~o ~o ~o rv x ~ m p~ p~ m m o ~ * ~y E y o 0 0 0 o rvf E W + . . . . . . N W t r~l rl ri 'i ei O a o • u * . + a • o 0 0 0 0 0 y O O O O O O ~ L4 G1 • H a~.] • O O O O O O E y w * fA * H k a + rl N t~ t~ m m N + ri o n o n o m o m a ~ ~,.j + r o ~ o ~ o r o n m a a w w f . . . . . . . ~ ~ ~.q [~ ~ Z' ~p O 10 O ~D O b O # C C~ C d T C • N N N N N N .Nd p.' W C7 • 'i .i M ri ri rl N lL U1 W W [~/1 hl 4 m Ot O~ N ~0 l0 h O N V1 ~ ~ '~ # d~ tO m e'I f'l l~ 0 C C O '] ~] ~ µ' * l0 N YI O N r1 C T C O W .~' L~'I • P ~ P ~ b V~ ~ ^J,~ ~'y' W# O O O O O O O O O O R~ fA # O O O O N f s + m F O N ~o ~o t~ o m a r C 'f m ~n n ~n '~ o a a > } b b N N N O arf « a o + o w * ,y + m w a m m a • p.yi + m m m m ~ m a.+m a • + w ~ • * . a ~ ., . H a w • ~n z * N H # N ~ 'i O l0 l"1 Q ~+f ~] Y GO P O VI 01 T ~] ~y .'> # O rl N N N ~ N H ~ Wg ~ i.Wj • . . . . . . • lp b b N ~O b F K u~i 1 3 W • a a m m w m • N N N N N n' # rl fl rl rl ri r1 M F o W * • O ~~ N 3 + rv r c rv~ ~o m ~ ~y W E a + e~ t~ N ~n m a ~ m m o 0 o r Q a w . . . . . . . q W . o o .i .+ .i .i ,z. Q O + E~ + + ~ y~ e ~ e m ~o o e o 0 a a > + ~ ~o ~ ~o ~ ~o N ~o N N + . ~ • r ~ r A W> a o. ~ m~ m~ m~ m~ w~ Z W cn r m o a o m o m o m u w ~y H # N • ry . (V • ry • ry y N Q i 'i O ei O ~i O fi O rl ? ri ~ # R.4. } l0 O l0 O b N m ~'1 rl Z N # y~ t+f h N 01 ri O O 'i W "I ry H GI i H O "I O fi O N O N N F a+ w a a c m a~] o U [n W 4 fl N rl rl fi 4[ 'i .. v~ a . ~ a * ~ 4. v W ~ ~ ^ ~y G ~ 7~ x m 0 0 N o m N ri ~ ~ r Z ~ z F o F o wo a~o a Q a U' 0 57 o O ~ '~ '~ a a + ~ m a o . l o N ~ z o 5 o n 2 Q ~ W ~ o W ~ ] o ~ H • ~ O M • (] O N 3 ~ 0 ~' W ~ W o ~ , y W o N W N R1 O ~ N ~ N N U1 ~ N g 3 ~ ~ z ~ ~, ~ o > a a H w N N 2 H ~! C ~ a ~ `" ~ • z r ~ W ~ ~ o „ ~a r Q ° `0 m ri o ~ ~' x vl 2 zo zo ~ u°+ a W' o 2 i-Qi ~ Q F o 0 o W W j 'F.j~ W , ~ O ~ ~ ~ 1(1 .T. Q a H 0 ~ a O U 'j W ' N a Fi O .i ~ ~ ~ ~ .~ a ., m .+ 5 H ~ ~ ~ ti N a W W] w • i r ~ + "7 LL .] N . H ~ o ~ W E F U ~ F U V~ E i U F Ur U'i 2 UI ~ ~y ul (] r] [[~ U Y ~(V d N N N N . N N M H ~ O ~z [~.. m F o o a 7 ~ O W ~ E.i ~ Eo ~ Eo F o W F oU> ~ C ~ E „ C t~ W m ~ m 0.' m W m~~ y ~ H W a VI w W > o > m > a a > a a O F .7 ~t O 2a za 20 0 2~m32 W ~„~ a. a ~y ~ '{ [y' H N H N M N H N H ry Q O ' F W o o W ~A U H W rl M 'i r1 .i /. E ~ W ~ '~' ~ m N ry Q Q W Cl C # 4 O C ~ C C N w H " w o o n o o a om ~ W ~ ~ M M z ~ Q ~ O ~ [Y~ H O ~ H O ~ M rl ~ H ri ~ Uy1~ H fi O W ~ ~ g oi Q Q 4 U4 a'Q E W ~ m E 3 w H H ~ am m m ~ u i am i- ix o w p E q Q a[G Q o Q~ U fs F E W W ~ 3 O Q 1 Q W 4 S Q O 3 A o a w A o ~ r~ o x A m a u i H .] UI N fA Lti EC y 1 U! U 4 U1 l N /L 3 3 ~ W 9 p a D K 5 ~ N P E o i ~ ~ za H H H a a a a a o4 f~ rA UJ N UI U• w ~y N M H H M H I-I ~i 4] N ~ N p ~ ' rl N t'1 C N O F ~'4 Zi ji a o N N y Z O O O O O 2 O ~ ~ E w° "N 2 a a a z z z z z ~z ~ N N z ~ z ~ ~ z i -~ Z i Z F ~ • , W W W f~a W W IQa 3 ~ O O 4 rt R W a a W W V A 5 S 5 .] [ .] f 2 r A E ~ 0 ~ m Pr U A Q Q a ~O ti a o 0 0 0 0 0 0 0 0 0 0 a • o 0 0 0 0 0 0 0 0 0 0 ? + . . . . . . . . . . . + o 0 0~, o 0 0 0 0 0 0 0 Q + + x . o 0 0 0 0 0 0 0 0 0 0 m °z~ t a . : o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a• o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N + . . . . . . . . . . . . . . . . . . . . . . • o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + • r o 0 0 0 0 0 0 0 0 0 0 ~ p f o 0 0 0 0 0 0 0 0 0 0 w z . . . . . . . . . y o 0 0 0 0 0 0 0 0 0 0 Q Q • {tj H • r 4 y O O O O O O O O O O O ~ } O O O O O O O O O O O F K • . . . . . . . . 5 HQ } N N N ~`1 N N N N N (V N t '~y' # E * a r o 0 0 0 0 0 0 0 0 0 0 W~ p o 0 0 0 0 0 0 0 ~ r [~ t ,y .i r+ .+ .i .i .i ,y ,~ ,y ,y ~ i o 0 0 0 0 0 0 0 0 0 0 ~ O * z+ + d~ O d' C d~ C~ C V T C' d~ ~a # U S + m rn m m m m ~ ~ m m m ~..~ E. ~ M M M m m m m ri ri n m F F w a • • • • ' ' ' w ~ Q # o 0 0 0 0 0 0 0 0 0 0 E U * + 4 ~ p~' # O O O O O O O O O O O O O O O O O O O O O O 2 W H N d W t ~ . . . . . . . FHN'~] f~AM y O O O O O O O O O O O N ~7 W' ~' Y ~~] [y ~y E ~ • t~l ~+f N N N N '-1 N N (`1 N '~.~ f~ + ri O fl O ri O 'i O fi O ri O '-I O 'i O fl O 'i O 'i O a ~.{ p] ~ W w* 'i O rl O 'i O 'i O rl O f1 O rl O e4 O "I O 'i O ri O ~.{ ^ ~ .. [i] 'y' + N O 1(1 O 1l1 O N O ifl O N O Ifl O Ill O V1 O N O N O LL W S O.N -7i ~ • C af~ a C C C C P a C C 111 O O E Cl W i N N [V N lV N N N N l`1 N ri fYi (Yi N [~ M 'i rl ri rl .i .i .i .i rl ~-I 'i N G i o ~ K + w fal N aC /2 • m m rl o M o m rf a in a m a a in m ~n a ~n .i ~o m a Z~~ a p Q« o m o ri o M o ri o m o m o 0 o a o ur o ~o o ~o iti q o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ o W ~ i . o . o . o . o • o ~ o • o 0 0 . o . o 0.' m o a p 5 W t o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '~] H O!2 ~ [!J • O O O O O O O O O O O u1 e~f a . . . . . . . . . . . m , f# - E * W N cC • M .i m ~O m o t'1 ~+1 m 0 ~'1 y y~ yi yi y~ p 1(1 N N V1 b b 2 S.y ~ W # . . . . 3 U o 2 > • o 0 0 0 0 0 0 0 0 o a . ry # O RE ~ m ~ x p o~ * n m m ri rvi ri rv~ m m m ri ~ z r .i ,y .i '+ .y .v .+ .i .y ~ N ah0 O~ r E + W a. y Q.p] Q r m U F ~ o o m m m m t~ n ~u t~ ~o W t ,~ .y o 0 0 0 0 0 0 0 0 ~ w • > w .i .+ .i .i .i ,y .a .~ .i ,y ti W F ~• ~A W • CA H W • ~] # Ifl Vl N I(1 111 N N N N N 1I1 E M' O~ 3 W • a a~ a w v a a~ C a a w + N N N N N N N N N N N i ri 'i 'i fi 'V ~'1 rl 'i rl rl fl H H i~ W # + U H t-i 3 * o o a ~o m o o ~o e t~ m NUJ RI U 6~ .'Ci O • O o rl O rl W r O C O N Q LL W Y W O ~ t~ l0 N W C~ f'1 1~1 N N • C lV ri 'i 'i '-1 '-I 'i `i 'i ri ~ Q ~ k • # + 'i N rl N O VI O N ~ N h 1(1 d' N O 1(1 ~O Ifl O l`t t(1 t`t a a> + r m ,y m m m a m w rn in m ~o m r m r m m m m m w ~ m + . ~ . n • m . y~ . y~ . a . p . c • c r ~ q .] O+ o w m o ri m ri a m m In a m m m m m a ri .+ ri ti W Ul • C m c m a~ m e~ m c m a m c m C m c m a~ 'i m 'i "Z H # N • N • (y ' N ' (V ' N ~ N ~ N ~ N ~ N ~ N ~ ~ 4 rl O 'i O fl O rl O r1 O rl O ri O '-I O 'i O fl O fl O ~ * + s r.i y~ r o r r+ m m ~- m in m r~ ~ o ~o ~o a o a v N # l~ N N N C N N O ~0 O t~ O m O 01 O O~ O O W C d~ W O E i . . . . . . . . . (/J N G] i 'i N C O C O C O d O W O T O P O d~ O 111 O N O z E .~ • o 0 0 0 0 0 0 0 0 0 0 W EC W • .i .i ri ri .a ri 'i ri .i 'i .i U E ~+ H ~ .l • a + ~ O N ~ -M11 U Ca Q F ~ l~i ry a O O O O O O O O O O O d i O O O O O O O O O O O ~ i . . . . . . . . . . . r o 0 0 0 0 0 0 0 0 0 0 ~ + ~ * + Y O O O O O O O O O O O a 2 w ~ « . o 0 0 0 0 0 0 0 0 0 0 o a o 0 0 0 0 0 0 0 0 a a• o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N « . . . . . . . . . . . . . . . . . . . . . . w o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 « r o 0 0 0 0 0 0 0 0 0 0 ~ p x o 0 0 0 0 0 0 0 0 0 0 w z . . . . . . . . . . . . u] + o 0 0 0 0 0 0 0 0 0 0 a o . ~ ., + . + r o 0 0 0 0 0 0 0 0 0 0 ~ + o 0 0 0 0 0 0 0 0 0 0 H aC • . . . . . . . . . . . ~ Hn R N fV N N N N N N N N N • x• E * y. o 0 0 0 0 0 0 0 0 0 0 m« ~ r r r ~ ~ r c~ r r n ^ « ,y .a .i .i .i .i .i .i .i .i ,y y . . . . . . . . . . . g± o 0 0 0 0 0 0 0 0 0 0 O~ z+ . a a m v w a v o m v a x + m m m m m m rn m m m m ~ ; ti E • m rf M m m m rv~ r~ m rvf m z E M • . . . . . . . . . . . M W M O O O O O O O O O O O W W O E U W * # p ~y o 0 0 0 0 0 o O o 0 0 [9 a m w> * o 0 0 0 0 0 0 0 0 0 0 H~ y H 5 a « o 0 0 0 0 0 0 0 0 0 0 NH~a mw « H i.] [..i 'y ~ e (~1 N IN 1~1 t~l t~l t"1 t~l N t`t t~l L L '~af rl o fi O 'i O ei o 'i O ri O f-I O 'i O 'i o 'i O ri o a H GI ~ W ~# N O ri O r'1 O ri O rl O 'i O rl O 'i O 'i O rl O ri O M [j ~ •• G1 q 5 + N O 1(1 O N O 1(1 O N O 1(1 O N O If1 O N O V1 O Il1 O N O O~H ¢t W Ik Y w c a~ W w a~ v w m a~ a 4 N N N N N N N N N N N .. a a w c~ + ~ ti „ ., ,, ., ,, ~ ,, ti ti in a o Q da ~ w W ig..i 4 w r ~ r c~ m m m rv o r N m rv a m e m ,y ~o .i r in Q rk N.i a~ Q x o r o m o m o .+ .+ rv ,-r m ti ~o N m ,y N .i v .i r O O O O O O O 'i O e~l O 'i O fi O ~-I O N O N O (V ~y p (}] # • O • O • O • O ~ O • O • O • O O • O • O rL a, o~ > x w+ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ M O N t o O o O o O O o O o O 0.' ~ . F . . . . + W ry~ y ~p N C1 b O m h N b rl b H O m .W] + ~ e ~` ~ m m m m m o 0 3 U o Z > • o 0 0 0 0 0 0 0 o f+ .i ~ N O Q ~ N ~ ~ 0 0 • (~ O k 1~1 f'1 1~1 M l~l f~1 f7 ~'1 f~t f~l f`1 ~ ~ ~ ~ ti ~ ti ti ~ ~ ~ o z ~a ' xno a x E • r~ ~ w E ~W Ny r ~a in in a m n .1 o m c~ ~o • o 0 0 0 0 0 0 o m m m Cl S.l r ,y ,y ,y ,y ,y ,y ~y ,y o 0 0 W E ~~ uJ W i N H G£1 • n7 + N N N N Ill Vf u1 Ill U1 u1 U1 F K O a 3[G a o a a a w m m m o a w # N (V N N N N N N N N N Q W '/r + rl ri 'i ri 'i 'i rl . 'V 'i ri 'i H F ?~ W • V ~+F.] ~ O N ti 3 • c t~ en fi .i m r nt m r t~ U] LO U LV .Z' O i O N ri l~ ~'f O~ N N m N N ~/] W W y N '-I '-I O O Of C~ 01 m 0 0 ~(~' ~ • '{ r{ '{ fl '1 O O O O O O ~ 0. Q O ; i # O (~1 N t~l 01 nl t`t t~l h t+l 'i IN C (~1 W ~'f 'i t`l d~ rl h nl i-] K.~ # O~ O~ N 01 O~ O~ O O~ O Ol ri O~ 'i O1 ri O~ N O~ N N N Ot m ~.1 W r . t~ . c~ ~ r . r • t~ . n . c~ • t~ • r . n . h q .] O+ ri .i n .i m .y a .i o ,-~ m r~ u .i a ti a n a .i v .i ~ L w U] • a 'i a .i C .i a .i .a~ .i C .i V~ 'i a ri w 'i V~ rl d~ 'i H • N ' N N N • N N N N ~ N • N ~ N • • '-I O 'i O ri O ri O ~i O 'i O 'i O 'i O ri O 'i O ri O > * . # ~O O l0 ~D N Vl h C fl rl N O N (G O I~ r \D 1"1 C I~ d~ # m C ry nl lO I~1 O~ '+1 rl ("1 ~D ~'1 T N N (V V' N I~ [V O~ N W O S • . . . . . . . . . . . . . . . . . . . . . . (q H W+ N O b O l0 O l0 O h O l~ O l~ O m O 0 O m O m O Z F .7 • o 0 0 0 0 0 0 0 0 0 0 W Rt W • .i .-~ .i .i .i .i .i .+ 'i .i .i H m a: a • ~ O N ~ a U O/'~ 1--1 ¢ ~"y Q .] ~~ m a o 0 0 0 0 0 0 0 0 0 0 a t o 0 0 0 0 0 0 0 0 0 0 ? . . . . . . . . . . . . . _ f o 0 0~ o 0 0 0 0 0 0 0 q « w * + « o 0 0 0 0 0 0 0 0 0 0 a °z ~ t w : + o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a• o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 0 0 N N s . . . . . . . . . . . . . . . . . . . . . . ~ o O O o o O o o O o o O o o O O O o 0 0 0 0 M • O O O O O O O O O O O \O r O O O O O O O O O O O w z . . . . . . . . . . . . rn r o 0 0 0 0 0 0 0 0 0 0 a a « ~q H x * + o 0 0 0 0 0 0 0 0 0 0 ~ • o 0 0 0 0 0 0 0 0 0 0 E 2 + . . . . . . . . . . . U' H ~ N N N N N N N N N N N .Y'i ^ # y • H • c, r o 0 0 0 0 0 0 0 0 0 m• r ~ r ~ ~ ~ r r r ~- ^ + .i ti ,i .i ~+ ,y .i ,-~ ,v .a t . . . . . . . . . . £+ o 0 0 0 0 0 0 0 0 0 a + ~ Y '7y # # C P C Y d' C' d~ d' C' V d~ 5 a m m m m m m m m m m m i.q F + m ri m ri m m rv~ m n ri r+ Z F W • . . . . . . . . . . . H W ~ o 0 0 0 0 0 0 0 0 0 0 R] 0.' C~ + £ U r a p a « o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o a o 0 0 0 2 W H N W W x . . . ' ' ' ~y g y~y p.a + o 0 0 0 0 0 0 0 0 0 0 F ti N b Ul W * cd i7 K f + H # t1 ~'1 1~1 t'1 t~l d~ V t+f N 'i I~1 ~' ~. + .i o ,-~ o N o ,y o .+ o r+ o ,~ o .a o .a m .i m .i a iy ~ W ~~ W* ,y o ,y o .i o r+ o .i o .i o f+ o .i o .i cv o rv o ~.{ O ~•• W '.;' • V1 O N O N O N O N O l(1 O 1l1 O N O I(1 Ill O 1I1 O [L W Q O'il ~'i O 4 C O C P C C C C C C C in O O F W ~ o: • N N (V N N N N N N N N .i C tK m U' t .y .y N .i ri .i .i .i .i .i .i in w * p°~ U i-4i ~/j 4 Gl + m n '+ t~ m t~ in a m o N o a o r o ti a vr n c~ [Q (] '~ x .i ~-1 N v) N o N ~O ly m rt o m m m O~ C m ~o N n a~'ry ~y i.] E( Q k O !+1 O rf O P O C O I(1 O l0 O ~0 O h O N ("1 1(1 m [y Q ~i] Rl # • O • O ' O • O • O • O • O • O ~ ~ 1~1 ~ 0 ~ p, a ~ 5 W* o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o n o rv I-I O N• O o O o O O o o O O (q `I Y . . . . . . . . . fG • W •E + W ry y' y rl b N m C 'i m N 1'1 t"1 O • fi 'i N N ~'1 C~ d' N l0 ri 0 Q~ N a W 4 ~ . . S U O $ , • ri 'i 'i 'i ri ri ~-i 'i fl ~D N • H ~ o r1 x ~ d w m q + q o~ * m n rvi m m rv~ m r+i ri rvi m ~2 • .i .i rl ,y .4 .1 rl .1 .i fi f1 a°~,o a +~ F * W -N + C! ~ E ti • N F * C~ wF. ~ + d~ N O m ~II t~l O 10 ei l~ O k P Ol 01 W 0 0 m h I~ O ~O + o 0 0 0 0 0 0 0 o r r W E •• cn W • [IJ H W • rl ul N N Vl N N ul N N C @ G] W W $ ~ W # c d w a m a w o v c c [y p~ Q Q i N N N N N N N IV (V [V N • 'i 'i `1 'i 'i 'i 'i 'i e~l ft ~i N E !~ W • U F F .] + U~i ~ U W ~ O Y m o m m r+ m ~o p ri m n # 01 h W 'i O1 ~O C [V O l'1 tT u] F.] • h h h h ~o ~O ~n ~o ~D N tV ry' LL W h . . . . . . . . . . . W • o 0 0 0 0 0 0 0 0 0 0 q q W ~ 7 ~ } 0. + x o m rv rv~ in m ~ ~n m m r~ ri m n in ri r n m .i ri a a> * rr m m m ri m m m ri m m m m m m m w c m in m m w W # • ~ ~ t~ • n . r • ~ . n . r . n . . r . i. o ~ a o a ~ o .+ a „ e~ ~ c „ v ~ a .+ e~ ~ o o .+ o .+ w ~n + v ,~ a ,~ o .+ m ~ a r+ a ~ a .. m ,~. a a m ,~ o ~ $ H + N • N • (V • (V • N • N • N • N • N ~ N ~ (V • ~ # 'i O fi O ri O 'i O 'i O `i O 'i O rl O rl '-I O 'i O 7 • 'J i 'i N 1'1 'i C 01 (~1 O~ N 0 O 4~ I~ b (~1 W h U I~ 0 VI f+1 • N N W N ~O "1 0 ei O fi N rl t`l rl N 'i N M ~U t'1 O p W O ~ + ~.] UJ H W• 01 O O~ O O~ O 01 O O O O O O O O O O i'J ~ O f1 O z H a • o 0 0 0 .i ri '+ ri .i ti .i U F ~ ± •y •i 'i .i N .i n .i .i ~ 'i .i H Ul i-] t rYi a b W O 7 m Cy U ~ Q Q ¢ a ~3 , ' C a o 0 0 0 0 0 0 0 0 0 0 a . + o 0 0 0 0 0 0 0 0 0 0 ' . , ~ x t o 0 0 0 0 0 0 0 0 0 0 W • C~ K + o 0 0 0 0 0 0 0 0 0 0 ~ 5 H * ~ + + ~ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ~ ~ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N* . . . . . . . . . . . . . . . . a r o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • • o 0 0 0 0 0 0 0 0 0 0 ~ O * a o 0 0 0 0 0 0 0 0 0 ~z : ' o 0 0 0 0 0 0 0 0 0 0 . (y M 4 # # # O O O O O O O O O O O \ # O O O O O O O O O O O ' ~ H * N N N N N N N N N N N ~ '.I'. + H • m+ o o a o 0 0 0 0 0 0 0 w. r r r r ~ r ~ ~ t~ r r C~ « .i .i .i ,y ,y .i .i .i .i .i .y ' + ~ Y O O O O O O O O O O O ~ # z+ x ~ • m m a a a m m c v m a 5 + m m m m m m rn m rn m m H[+ + r~ ri m m m rvi ri m r~ ri m ' H W # O O O O O O O O O O O Q £ U * 7 . o a o 0 0 0 0 0 0 0 0 0 0 CJ (K N W~ # O O O O O O O O O O O Z ' I -I '~" y H i'J rJ + O O O O O O O O O O O Hr ~nw N a * a' £ N ; ONi l O i N i N O N O N O N O N O N O f~l O t1 O j~ Q G] H W (J a Y N r O 1'1 ' O (+I f O f+l O f~l O (~1 O f'1 O f~l O f~l O l~l O (~1 O , ~] I-I •• Q~ M (1 GI # .T. Y 1(1 . O . N O . N O . V1 O N r O . 1(1 . O . N O 1(1 O . N . O . N . O . 1I1 . O N 2~ O T~ Z p d~ C~ C C N d~ N T N C N C N Y N P (V C N N O O F LO r4 L~'i P~i VI G] C C~ Y • N 'i N ei N `i ri 'i ri '1 'i 'i ri e~i 1I1 [y + o c( w' W W M~' fS • ~ V1 l~ W ri O C' O1 0 O L~ N m N ~(1 N h N 10 O~ N l~ O t~ ri ~D C C d~ d' N N N O N O V1 t+1 W m ~-1 T U [p W~'N ri rJ ~ • Q# h C r1 (V nt W O (~f N I~1 h ("1 N N f~ N N N (~ N If1 N C ri d~ ' [u O W W + . N . N O~ lO • N • N . 'i 01 . T . h N (~ IL O '~] M O ~~Yi ~L + (A # O N O O- N O O 'i O O e'I O O e1 O O 'i O O 'i O O O O O O O O O O O O O UJ ~l N U Y ~ . . . . . . . . . . . .N 0.' ~ N R w rn m a o m ~o r ~n m .i m m a R 5 W + ~n ~v o m in r~ .i m c~ ~o n ' r i 3 U o,'2 '~ + Y1 N N C d~ C~ C m rv1 m rvf ~H O 0.' + i Yl P~ + m q # ' q o a ~ a r + ri ~ ri ,, m ~ m ~ ri ~ m ,, m ti ri „ m ~ ~ ~ m ~ , o E * W . ~n + ~ F ~ * ' N U F £ F( * # # O 1~1 f~ P i O ~D l~ 01 O~ ry W V1 C 0 h O W N t~ C ~ i~ ~ N m m ' m rn m o 0 o N N .i ~ F N } U! H G] •~] # C d' C C C V1 N N V1 Ill N W W W 3 W • c d d~ e~ a c d~ c c e~ c ~ F 0: O * N N [V N N N N N N N N a E W Y fi fi 'i 'i 'i rl fi 'i fi fi ri i i- i~ x ' U F F .] O 'J H M '3 k 10 C ~'1 N rl e"I fl N N d~ N UI Cl U W .Yi O ~ + + 1(1 N 10 N h N m N O~ N O ~'1 'i t~l N t"1 t~l t'1 C !'1 N ('1 fq (j E r G~ ~+ 1 . . . . . . . . . . . [~] • O o o O O o O O o O O ~ Q O # # ' .l E ~ • ~p r~ ,a m ui r~ m ri .a m m m in rn ~o m m ri m ri m ri .] 0.' > • v~ m 1p m \o rn ~o m h m t~ m h m h m r m r m h m ru m + . ~ . r . r . ~ . n . r . t~ • ~ . ~ • n . n q ~ a o. w .i m .i c N a N a .i v N c ,y o ., a .i a ,y m .i m W s m .-i m .i m .i a N a .a a ,-~ a .+ a .+ a .i a .i a ,y ^/~ q H • ~ N .i • o N .i • o N .+ • o IV ,y • o N .i • o N .i • o N N • o N ti ' o N N • o ry .i • o N ,y • o ' > • . f m m ~o n m r vr n m a r ~o m n ~c ,y ~ ~ m n .a m ; y~ f~l Ol (+1 M N C N b "I W r1 O 'i 'i ri N O (~1 O C O W O £ + . . . . . . . . . . . . . . . . . . . . . . fq H W Y ~-1 O 'i O N O N O ry O N O t~t O t~l O M O t+l O ~+1 O 2 F .] s .i .i ,-~ N ti .i .i ,y .1 ~ .y U E ~ i rl .1 ri .1 ,y rl .1 ry .~ N .1 ' N Ul Fl * a I ' ~ w O h 00 ro G4 U O Q ¢ Q ~ ~` N p~' O O O O aW : o 0 0 0 > i o 0 0 0 a ~ . . . o 0 0 0 W 7. H • a • x 0 0 0 0 0 0 0 a a* o 0 0 0 0 0 0 N N x • ~ • ~ • • ' 4 o O o o O o O • F 4 O O O O \ ~ i O O O O rWn Z + o 0 o r Q p + (q H • + + Y O O O O ~ • O O O O E 4 • . . . . ~ Hn x N N N UI # 'j~' 1 F * 0~ • o 0 ~ ~ r c~ Ca s .i .+ y £ + o 0 a+ o+ z+ # C d~ d~ N « m m rn o ~ Y ti H * m m r~ N [y E W « . . • ' H W • o 0 0 0 w a ^ • f U Y W ~ • O p~ F O o O O O O O O 2 d H N W W ~ . ' E H~] ~~ Y o 0 0 0 m ~ a * H * aHZ~s ~ ~ ti ~ N a H W ~ W w* r'^i o m o m r~i Fa p ra' •• m x f in o in o ~n ~n ~ ~ ~ N ~ ~ ~ + N N N N •i ri 'i fi in a * o ~2 (K * "' V~ W hi OQ > i e r uNi m n o w O~~ w W `~ i `i v~oi `i m .i o a W o~ , 5 W i o 0 0 0 0 0 o i+o N+ o 0 N ~] fl ~ . . + tK U - Ea * F O m.] .] • m n t~ .+ • N ,y m n + r1 ' 3UO2 s r~ ri rv o ~H * O Q • N d f Gt 0 • p o~ * r~ rvi M m S g + .+ N N .i Ch0 O~ • F * R1 • N i ~ i cEp E + w ~ a m a o ~p r m m • .i .i .i ri W E •• N W + W R~i W W k W . w c a ~ • N N ~`1 N + rl 'i ri 'i i-~i FO W * U E E '] • O p H H S + l~ O C O Ul W V W S O + b w rn m N H~] + m m t~l N Q w w + . . . . y w r o 0 0 0 Q Q ~ ; : r o m o m o 0 ~.'~j a 7 • m m m m m m N W W r . t~ . t~ > • Q Z W V~i x a N a r~i c U C ~ H ~ N • (V • N '/y N Y ey O ri O 'i FG N , # 0. • f N N 1~ rl 0 m G] O ~ i C O d~ O V O z E~-~ a : .m-i ° .mi ° ,~mi a ,~'. w a w • ti ~ ~ ~ •+ H m a: a a ~ ~ ~ b m ~ a ~~ ~ Q 6 F .~-1 ~~ 0 N ~ •i N N N rv m ri E £ O E ti o N r w ~ a m m r m r ~ N b N N N C ~ N z N N m H a r ~ H N z ~ H A ~ a „ [x~ O a > a o .~i Z a o 1(1 H (] O U W i ~ ~] N d W N ~ w w H °o mo N ~ ~ o Q E E o 0 3 ~ ~ ~ rv W t~ 5 0 ~ x o W E q o W H 9 3 Q W uJ o a w o Z a y W 'i~ N V S ~ U N m°z '"N y ~ U O 0 ~ O z ~ w d ~ ri N 0 W W £ w ~ W o ~ a a E H w H a~ m a F Z Na a q °rc a o N a ry' H z~ N ~ E w ~ H o o ri N W U 2 ~ • N ti 0 a Gt ~ ~ W ^ N O fE a °a w ~ q a ~ F ^ U W w ~ a ~ tWi w0.' w E O W ~ z ~ ~ w w H m H m M ti °z N °z rI °z a a a U Q H Hp q Hp a ~ a ~ 5 ~ a ~(/ O 2 W Q m a ~ N 0 Q~ x x 0 0 zq E ~ E o F o a o a o U ~ o ~ o ^ z z q Q + a o ~ a o Z Z o a o a II ~ m ° o w o a a H • q O H • q O y a a 3 m N a o ~ a W N ~ O ~ C N N ~ z ~ 3 N z O N F ~ W a W E a . ~ H m m o m ~ ° 2 o zo wu i a 0 0 o W 0.' O ~ E N N ~ * ; R k # U C V d U P U rl V ri 'Zi Vl W N W N G] N W W H H UJ fA UI N N Z z + Y } W ~ F~o E o E o F o E o > xe xo aw a~ aww~ ~ ~ ~ ~ ~ N (V (`I N N O O ., ~ ~ ., ~ z E O O N N N N Q ~I1 # # l0 • h t~ h H w Z z Z Z Z o.+ o~ oM om o~+za H O H t~l 1-I 0 H W VJ M 0 Q W ~ ~ ~ ~ ~ F E U F O E 4 U F F 7.~ a N N N i2 Ul 3I] ~] ~ W E 4 a 0.' o m oo x t a a a , a E E F F F U 4 A A o iw wA w x x a c W W q ~ 3~ N~ W 3 N~ ~ W ~n ~ fK ',~ Ix ~ ~ t!i 5 F a a a a a o } m m m m m u« H H H H N Z W tV 'i N t`t ? I(1 y • 0.' O O 2 ° ° ° ° ° z z z z z ~ z z z ~ z z F~y W W W W G] ti IG W w ~ W tr] W 3 i -l -1 i -l w m m w w z: M w O N N ~ R a U A ~ Q .a (01 ' ' ~ a o 0 0 0 0 0 0 0 a~y + ~ o 0 0 0 0 0 0 0 ' > • o 0 0 0 0 0 0 0 a . ` ~ x r2 o w ~ o 0 0 0 0 0 0 0 a z ~+ • o~ • + , + o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a+ o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N N + . . . . . . . . . . . . . . . + + o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 z 4 # O o O 0 O 0 O 0 O 0 O 0 O 0 O 0 W * ' m o 0 0 0 0 0 0 0 w O ; `i • • # O O O O O O O O \ • O O O O O O O O E Q + ' ~ H Y N N N N N N N VI n x+ N + a• o 0 0 0 0 0 Gt + C] • • m N n N .~ Gt .i N .i m .i OJ ' ~ Y O O O O O O ~ Y z• « + m m m m m m m m ~ r m m m m m ri ri y~ N F * m m m m m rn m t~ ' E H W t w a W * o 0 0 0 0 0 0 0 n W U * > • O [9 a K ra > + * o o 0 0 o 0 O 0 o 0 O 0 o 0 0 0 ' E z a a i i- m x o 0 0 0 0 0 0 0 E i-i ti fA [~ • fA N • H ~ N Y .] F.] + t~ m r m rn o re r+f 5 4 N• r m m ~o o ~o rv m ti rn .i .i o .i o GI H~L a W O O O O O O O O O O ~4 O ri N r` w# ' d H ^ N W F( N ~ W 'j.~ q 5• b P O b O O lp O O 1p C O lp C O lp P O b P ~U C t(1 O O ~J Lzl C ~ N (Y N N N N N N ~ xaoa c~ + ., .. .. ., ~ ,, „ ti o °i ~ + E a w W t-i U y fL W ' y ' C] ] Q m+ r~ M Q+ r h o m ? m r h o o N m n 1~ o o l~ m in m o t~ ~D m m O1 o o T m r+~ O i m m m a O 1 rv O 0 ' ry . ry W O i. W W + • O • O O O O ' • O . • • R~ LV O'~ '~i 'j~ W Y O O O O O O O O O O O O O O H (Q UI O O O O O O N ~ * C U ~ QJ • h] N i 4 I+1 1~1 t~l d' N h O~ 01 F O ~'1 rl ~] • N N N I"1 C vl vf m ~ O i.] ~ U 'J 4 N N N N N N N O 'Z~ µ O fY i fXm F ~ ~ o~ t + o 0 0 0 0 0 0 0 ' O 2 r r t~ r r ~ t~ t~ t~ fK h C~ d + N * W ` ~ F i ~r i , N E W Q ] + # o ~o .i m o m m o ~o 0 n 0 m 0 .i 0 O . ~ ~'.~ # O1 O~ 01 O O O O ry W E •• mtu • W H W ~~] 4 N Ifl N b 10 lO ~D b W fc h. £ 3 GI f c v v a~ a V a c E P.' O Q • N N N N N N N N N x ~i .i rl fi .i fi .i .y E i~ W , U O E E.] a t+ i-+ 3 * 0 0 o m in t~ m i m W U W X O + o o m fa o ti o . 0 U~ F.] * n o m m c~ w ~o m 2 a w . . . . . . . . . m c~ ,y N .i .i ,y .i O ~i Q ~ W ~ ~ • ~ ' a F i • ~ w m c o m m m o m m m o 0 a [G > t ~ ~ m r o m ,y m r~ m ri m a m w W w r . .-i . ,y . n . r . r . r . . p > a 2 W o f [n + N m o m a m o a c o o a c o o m m o o e~ c a o a a w U o m H # • a N 'i • O N 'i • O N ri • O N ri • O N ri • O N ~-I • O N rl ~ N ~Y , > + 4 + O t~ h t~l O C W O\ t'1 1~ O N N N W 'L + N Ot (~1 N ~O t~ t~l O1 t+l 'i VI N f~ GI h O UI W # e4 fi 1+1 O !~1 1~1 h (~1 ei ~-1 N "1 l~l ('1 z H a. o m M n n ~n ti ~ ti m m a m W RC W r .i .1 ,~ .i ,y .i ,~ .7 ,-~ ' H H \ 3 u j . .1+ a « ' ~(! M 4. O 0~0 a U 1M~1 W Q a 5 0 •i O M N '/y ~ 2 ~ O Gl z ,Ti F o ~ a ^ m ~ ~ a o U' o ~ Cl r w 3 + a m o ~ m a o H ~' Z o a II ~ w ~ O W „ H o ~ ~ 3 ~ r w > o W 0 m o W ~ W o o ~ ~ r 'i H ~ g 3 ~ ~ H z z ~' E a ~ E~. .. > E ~ ~ ~ ~0.' m W ~ ~. j a a~ ~ ~ .. w Z ~ ~ ~ H O "~ V ~ E z a ~ z ~ ~' N ~ ~ H ~ ~ .. ° ~ Q = ~ o ~ "' .y o y ~ Z ~ a [t~ a O o U~ z H A ~+ C w W ~ ~ N O O IG ~ °a o N ?' w H a Q v~ H A a H a w a O w U N a ~y ~ ] o O rl a H R. N C] LC ~i. ~ ~ ~ 'i . U . 'i µ C! F' W "~ N ~ ~ ~ N . o ~n N ~ 0 5 r i .i in + 0 F 2 N ~ w U o m W E + • + r .W-1 a N F M ~ o .i W F E E ~ F U' ~ m F 0 W G1 N W N W H H W p o ~ m m m W 2 2 Q a 7 N ~ ~ E~r ~ E o E+o F o~~ ~ Qq m ~ a aN a o ao aow~ ' ~n tq3 W ~ uFJ 6. j ~ W >m ; m ~ m(LU a o a o z~ z~ z~o ~az W ~ a a ~y H W H N H N M N H(V O O ' E G1 O O G U1 FC W ri ri rl ri Z H Q ~ F F o o ~ ~ w ~ H ~ o 0 0 o u~ Q ' fJ ~ V) N U Fl W U t ~(1 i I(1 N 1I1 M J H a w F a 4 z• z• z• z• w ' (xl H S(~ W H [4 C~ Z H W O N N O O ~O M O O b M O O b Ti r] UJ F~ O W ~ ° ~ a'" a'" u a'" a w a a H w m m m ~rEn °a uFi o x ~ ~ .cn. ~ a p ~w a W U IX Q [. 2 q a E A W o 4 g S P 02 4 W Q W P xRC Ocn 3 F E F F U Q wA A A iw wo x a [ F U ~~ .7 H f4 E~ ~ r. \ ~ `3 ~~ o i i ~ ~ ilP J a' O mP z Z d N U] ~A R Q ~ Q h H H H ~ ~ y N U] N U+ W ~ '{ ry t+~ H H H M '~.~ W N yy. E ~~ •i N m a p U 7. 2 2 ~ z 2 z O O O O °a z , .i ~ ~~ E U 2 ~ rv a a ~ Z 2 2 2 m 2 N ~ t U N . ] ~Z z z ~ ' ' z z z w r~ m H~ W w H Hq Hq W W ~ W W 3 ~ O q ~ ~ w W a W W Q H W x] f 2 x N 0 W a. U O C] d ~ ~ ~ ' ' N w o o 0 0 0 0 ' m ~ ; # o 0 0 Q ~ ~i p ~ ~ M # O O O y 'y H M p • ; ' Y o o O O o a a+ o 0 0 0 0 N N* • O Q . O . O O # Y O O O ~ ~ # O O O ' w z + s o o n ~ ^ • # t i O O O ~ • O O O , ~ * N N N 5 Q x« F. a + o W • p . r M ' + ~ + + o O Z • M # O O C' • m m m (/f M E 4 O~ Of N , N H E. a H W • Y O O O W a 0.' f] * E ~ V K W + # O o O 0 a y W ~w y o 0 ' z - i i O HE n • oa O O H h GI * ~ ~ m a 'i N ~O Z'~ N # O~ O 01 f~ ~ ..' a ~ w M % a~ Q1 w Y S• O t~ O O l~ O h N ~ 0~ y [~ ~ • N N ~ N .+ tiaam c~ + ~ vi a * ' o a w~ w n"~ta W~ 0 p a * m. ,* Q .. m o m rv ~ ~ m o ~ .i 0 ~[.i m (~ p~ o a [ ~] W ~ x ~ W x o 0 0 0 N ~ N~].i W f Q • ~ U ry p H O + W ~ + N C N a N m I ' ~ $~ O q m 7 + r N N . O o N + N • Q p E + # b ~O ~0 n ' N . ~ r Kh O~ • w W •E • + p F U Q + * , W Y O O N O U1 ~O F N W ± . . y ~ 2 G] W W H .l . S[zl o 0 0 # 4 N fl N rl N rl E F ~ , ? ~11 V [4 + O tl~ W U Pi ~Ti O Y O b • vi m m ~' w W 1~ 1~1 N N Q q Q O Y ~ ' a E. # « rr o 0 0 a y' ~ # N Ill O O W Q ~' a o: r m m w m h1 VJ i ~D fl ~O U b ~y 4C N * N .i O N .i '/y G N H ' 7 f 0 0 0 LK ~ o ~ 2 # N O 1l1 G1 u1 y ~ W+ N T b ~D F W + .~i r~i ~a-l oti , m ~• K a ~] # 3 ' N O N GD C U ~ Q {~ ~ F4 ~O