Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Tract Map 32356 Hydrology
' ' 1 ' ' ' ' ' 1 ' ' _' 1 1 ' ' ~ ' ' RIVERSIDE COUNTY FLOOD CONTROL DISTRICT PA-14 AND PA-15 TENTATIVE TRACT MAP 32356 RORIPAUGH RANCH HYDROLOGY STUDY March 2006 Prepared for. Fiesta Development Company 470 E. Harrison Street Corona, CA 92879 Prepared by: VA Consulting, Inc. Vi~ CO\SULTING \ 1 ' ' 1 , 1 t ' ' 1 1 , ' 1 ' ' ' ' ' TABLE OF CONTENTS 1. INTRODUCTION ............................ 2. RATIONAL METHOD ANALYSIS 3. RESULTS .......................................... 4. FIGURES ........................................... 5. TECHNICAL APPENDICES............ ~ ' 1 1. INTRODUCTION ' PA 14 and PA 15 in Tract No. 32356 is a proposed single family residential subdivisions located in the City of Temecula, Riverside County, California. Tract No. 32356 contains , 196 lots on approximately 28-acres. The proposed tract is bounded on the north by PA 13, proposed habitat open space, on the south by future North Loop Road, and on the west by Butterfield Stage Road and on the east by future PA 18 and PA 19. , The proposed tracts are situated on a rough graded pad within the Long Valley Wash of the Santa Gertrudis Creek watershed. In the existing condition, storm runoff generally ' sheet flows from south to north and collects in the existing Long Valley Channel. Additional hydrology information for the existing condition is contained in the Drainage Study for the CFD and Village Core Portion of Roripaugh Ranch in the City of Temecula ' (Study), by David Evans & Associates, Inc., dated October 28, 2003. The tributary area for the hydrology study for Tract No. 32356 inciudes all of the lots within the tract boundaries. The proposed condition will include the typical street , sections sized to contain the 10-year runoff within the curbs and the 100-year flows within the street right-of-way. A portion of the eastern tract storm water runoff will be collected by two proposed catch basins near the intersection of Street "E" and North ' Loop Road. The remaining portion of the runoff will be coilected by four proposed catch basins on the west of the tract. ' This report contains the proposed developed condition hydrology study for the subdivisions. ' 2. RATIONAL METHOD ANALYSIS ' The Riverside County Flood Control and Water Conservation District Hydrology Manual, published in 1978, (Hydrology Manual) provided the guidelines and procedures for the 10- and 100-year Rational Method analyses. The parameters used for the rational method are summarized below. , • Hydrologic boundaries were based on street grading plans for the subdivisions as depicted on Figure 2, Hydrology Map, included in this report. , • The underlying hydrologic soil group is Type B and C as shown on Plate C-1.53 of the Hydrology Manual. • The rainfall depths used in the rational method analyses were based on those ' reported on Hydrology Manual Plates D-4.3 and D-4.4 for the 2-year, 1-hour and 100-year, 1-hour storm events, respectively. These values were used to calculate the 1-hour rainfall intensity. The 10-year rainfall data was based on ' values derived from Plate D-4.5, and the slope of the intensity/duration curve was based on the information provided in Plate D-4.6. • The development density of Tract No. 32356 will be approximately 7 dwelling t units per acre or approximately 4000 square-feet per lot which is assumed to be equivalent to condominiums with 65% impervious areas per Plate D-5.6. 1 ' %:WrojeCS~B50_01761ENG1DOCV2EP1PA14aiW15TTTA~y[hologyReport_0306.EOC / 1 1 ' ' 1 The rationai method analysis was perFormed with software developed by CIVILDESIGN Corporation for both the 10- and 100-year storm events. The software was designed to accept watershed data and perform rational method analyses in accordance with the Hydrology Manual. The software defines subareas and routing paths by means of ~pstream and downstream node numbers, node elevation, travel distance, soil group, and type of conveyance. The Hydrology Map, Figure 2, shows the location of all node numbers used in the rational method analysis. ' 3. RESULTS The results of the Rational Method Hydrology Study are included in the Technicai 1 Appendices to this report. Table 3-1 below summarizes the peak discharges at each of the proposed catch basins. Table 3-1 ' Rational Method Hydrology Maximum 10- Year and 100-Year Storm Drain F low Rates , Downstream Tributary Maximum Maximum Catch Basins Node Area 10-Year Q 100-Year Q Number (AC) (cfs) (cfs) t Catch Basin #1 176 3.51 4.65 7.52 Catch Basin #2 188 2.91 4.49 7.23 Catch Basin #3 144 2.95 4.16 6.78 ' Catch Basin ii4 162 4.67 5.13 8.49 Catch Basin #5 154 325 4.39 7.12 ' Catch Basin q6 122 2.00 2.93 4.64 Catch Basin #7 734 2.11 3.52 5.65 Catch Basin #8 212 1.30 1.95 3.15 t Catch Basin #9 204 1.89 2.70 4.36 , ' 1 t ' C ~ ' %'.Wrojects~B50_OH6IENG~DOC\REP1PA14arM15TTMhytlrobgyRepM_03WCOc G ' ' 4. FIGURES ~~ , init Ma 1 Vi Fi p gure - c y ' Figure 2- Rational Method Hydrology Map 1 , ' ' 1 t ' ' ' ' 1 ' , ' ' ' %:1P~ojeds18~011GENG\DOC~REP1PA14ana15TTMhytlrolagyRepM_0308dac J `~ i ; ti i i ~ ~~ ~ ~ ~ ~ ~ i ,' i i 1~ i I 'I I ~ I ' I ~ I ' I I I i 'I i ~ 1 i i ~ i I I ,I I I 'I I I ' I ~ ~ ~ ' I i ~ , I I ~ 'I ~ I I ' I ~ I L ' I PROJECT SITE 15 ~~~A 9 ~~~ 15 ~ ~ ~ N~ ~ 7Fi~~ / ruir r~~r ~ A `(~$ ~ ~ CONfENTo ACCE88 }/ 8 ~/ & CfTY OF TE71iECULA ~ ~ "cc~sa ~~~ ~ o ~ , ~~ ~ -N- i m ~ ~ c~'~`"" I I~ ~ ol ~ ~I I I I I I ~ M~ ^ i ~AP N.T.S. THOMAS BROTHERS MAP REFERENCE RIVERSIDE COUNTY 2001 EDITION PAGE 929, E-7 ~ ~o ~ RORIPAUGH RANCH DATE ~ ' VAN DELL AND ASSOCIATES, INC. PA -'I4 & ~ cJ O3/OB e~amn w~z.s survew,. ~o~ = o =, ~,•~•.. ~.. o=.,. TRACT NO. 32356 riwa~ sr~ ~~~oo ~•• v:n~n exs-susa FIGURE n,~u su.. ....v..o.nce.oo VICINITY MAP O~ N:/PR0.1ELT5/B50_OH6/ENL/WSC/VICINITY WP3A19-IS.~GN ~ ' 5. TECHNICAL APPENDICES , ' LJ 1 , ~ ' , 1 ~ ~ ~ , , , ~ ~ ' 1 X~P~ojecis1850_01161ENG1DOC1REPIPA 14 aM 15 TTM hytlrobgy Repp1_030fitloc " ~~ 1 ' ' ! t ' ' 1 ' , ~ 1 ' 1 ' ' ' 1 Riverside County Hydrology Manual Soil Group and Rainfall Reference Plates ~ C p,,: 9' 9 / , - A ___ 6~:a9i'i=s'U . - 5~?;!_~ ='^.r~'.s)ii7 wti:i~;:R;la,,p„ .: r.'G!Ls ~{'Oti"' L`~;_~+c~l;L"rTts)?; :'l i~r '_~ r~ t 9 ~a : '~> ~:;1 `J ~ 1,,, '_; NYGftOLJGY i~/~Ai~IU.=`,L - ~eoo ,=,i~~J}~y~(J~.y~~~-J~4.,,+ ~~~~i~_.a.J ~.f~1-i~~_~! ~ ~!'/LI~ u ~° ~ ~ r r.~..p y:~ 7~e~ ~.~`~'Pil ~. _+.~u i~Ez.Lei: k~~ b d"`a. ' 1 ~ ~ ' ' ' ' ' ' ': ,f;,. ' ' ' 1 ' ' , ' 1 3.5 3.5 3 3 ~ 2.5 = 2.8 U Z Z 2 2 = F - a w 0 J I.5 Q 1•5 l / i _ ~ Q / ,, ~' 2 OC / I~~ _ i .,.F.°' i.o:{ ~.... _!. I ' µ"f ~f '~ ,~ ~ / G'~.` .g s ~~ ~ .5 ~ 0 a g 10 25 50 100 R~TI~~N ~ERIOD 9P9 Y~ARS RSDY~: I. Fes inlevrs+a@SWa P@EWL1 ~4°.88 ~~L' +jA~ ~~~Y~P QA18 Bi01:1 vo~ese Prom waapa,4Ban conn~c4 ~oe g»~ r~ vs~ ta~ @3a~oA ea0uan pt~isd.F'oi asass~~la gJvon 2-Y~+~ ~ bQ++r=.50 and 100- geea o»9 peea=l.6U~.e'°'~'y~ ~ ~T`I.I~~ ~~~:~ ae~ z,~.:~ ffi-cma~:~~,i~a3. ~~i~FALL D~PTP4 !l~~SUS ~~ ~~ ~ ~ ~ REYl1R~ P~FtIOD FOR r1~r~~LO~~ ~>l~~u~.t. ~~~'rs~,L ou~~~s~~ s~~i~s ~ LOCATION 10 15 20 25 30 40 STORM DURATION-MINUTES 80 ~ ~ ~ ~ ~ ~ ~ ~ INTENSITY-DURATION Hr~~~~ ~c~r ~~~lar~uf~~ cuRVEs CALCULATION SHEET ~~ . ._. _. .. . -------- •rm~e-~;~ _ _. ~ ' t ,~ ~~a, . ~b~y'~ x r S(.. ~tj 1' a- f~{bm~ ~ 6~ ~",,,~, 'r'., j d ~~n ~ 7.~~~ - ' o `. .~,• ~~}'R..~?W~~~~~r~~ ^~~('~'M ~F~'~'~i~.~~~1 ~ ~~ X w~.~n,rFk' i u v9~ ~ a"~"~',r `a.o.'f + i t ~" ' r 3 ~ r 1~ ~ V'~~L '~~"~t v':M j~~ ~Y si Fl~d-~ pN~t ~`s~ ,~lr ~la~ Y S PIl M~i.a ~ 1i"`tl ... rk ~i L ~ ~ F,~, , ..-~ ~i..t'~` -T ~.~~ ~ ~3`"~~~3~~,'~¢'~.t~ o.w:,l~6 ;e 1~ir'-'~4'~i~` , ~ ' ~! ~A~~. ~ ~-1inE -a. ${~ ~` ~ YIHy~ ..~a ~'t' t~a. "rt ,i~vw ~; ~ r' e ~ I I ~ e~ . RI ~ ^ ~'~ 1` t _ 4~k' H ~ ~ '~ ' r~~s 'n'~i ~'~itH~a~,R'r ~" ~ L4-. ~ ~ h .. _ ~ ~ '_ ~~/ o~ r ~ aca~a s~^ 1 ". {`> ~ Yy~ ~ v'3~ ~~, ~~ ~ ~' ~ .C ~' a.~j° i J ~^v s Wv-~ ~NP ~i'~'~~57J '~-i '~ r a~ ~ ~' ~ ~~ ,~>~.`` i Y h.' tl V N_ L ~ X n°'aw.~ ~e ~. •~- a1 M M`~'~ v- Ra ~ y,y~ ~ ~ ~ ~ Y ~~~r r i ~ ~ I[ ~ ~ ' :6 'Y~a '~' l'~; ?-.YYSe,V{3/'S?t h ~_ ~ y F~• sr t~~ T ~ a ~~ ~._._ ~~` M`~ r~~f~ R r_ tl ,~~i `~~f~~p. I ka~J ~ ~ ~ . x [ 4~ ^ R ~. a~ °.~ 4~y z _.:~ ,f 4 :,~ t ~Lq -fi ~1 ~- f '~c m.~~ 4y~1 s -~ ~! ~' t~ : 1~ R"qsA~~~+ a ,~ '' +,?~ ,-. r. ,. ~v~f 'F.'. '~4.J~~" % snrdg x _ t. *, w.t~+~ ~. r' fi ~~ ~'1.. qr . a. ~` n °-`~ o j e ii w ~ R ~ ~..~~'4y -.(~r~h 1. ~~w~ 3 s;~. ~ s~ ~~~ ~ y Ji'-,~~'Cl'V~~ ~ v, i o- v +~~.,.. 4~ I ~~ N' u+~n•y st i~ 1~~ ~y ~ ax~~k ~i~'; 1 ~'4. ~'r ~~'~Q~..S"'te,t ~'° ~ i' ~_ 's' dN"'r ~~~~i'°~\d~~.~ . ~ ~ ~io- . ~a ~ a ~~~~c.'a iC "'E`~ `h..l.~~ ~ ~ : - i'`.-+ ~. : ~ Qi ~ ~ ,?~ pM ' ~u.i.t ~" {i ~ ~J~ ~~ ti~_ ... '~~-; !}~ ,: ~ ~ s ~ r ?' ~tR,~~.Tt S ~ ~r ` ~ `'~*~ ~ ° . ° , ~ ""~ ~ ~- y a unem '~^~: ~ 6 • ~ ~._ tea~... . s""qr~pe ri °e. ^y~~~ a.o:- ~Y.~.,f~'i g6 a ~- '".~. ° ~.; ~y~. f ~k .M Ib ~ ( ~~ ~' ' '' )4~ ~ ~_ ~ ~ ~ ~ `t P^Y'}~~ ~ * Y' M( ~ ~ 5 L`i ' } J -i 11 r, ~ . ,yr,t/~4ra ` i,~a{. ~ ~~ 11~..:~ ~ ~~°~.~y ~ /~./ ~~ ~,b„ `.~ ~ ~. af t±. 1 `~ i t~ }~ , ~ ~m,. ~y ~~I ~M~~'~ r.a~.~ ~~~ ~• , ~..'~ n r ~. ~ nr+,~~~ Y ~~ ~~~ 1 x --r i i _ ,~ f"J a '. ' .'' ~~ b` ~$~ _' ~~ ~ {. ' a r „~z No s, Rti.='s~~ h~.~ ~ ~ }, M ~ ~ ~ . ~ ,~ -~~ ~{ r~~ ~ '~ `~~~~ ~5 S ~ _t ~'~1r~~. `1~,~~~ '`Ei~ ~` ~/X~ _ J~AGI ~~~ ~ '~ ~'4/P .~~~ f~4 ~ i/`.~ ~ W(1v1Sw 6 :: ~` l , h ~5 I , ~ ~~' , ~ ,w~~'`~.~r,,,~ `'s , ;. ~ . S Y~ ~. ~' ~ i / i ~~ \fV ~.. Z. 5 qky,. ~3y(f !d -11,~..;. ,yFry 4~; ~ay„~ 7' z ..i~rx ' Y ~ ~P6: { ~'~'e' ~~ I { ~~ 1~ i~~' 1 d ~ ~ 1 ~ '~ ~ ' %^t^' ~_ N~ , f~ ~ a l ~ ~-! s..i.~1 t ~~ ~ X-ei LCL~`f .. {`T r~. r~ .~ . r~~~1 ~~~F FWM uHFI.W SR E: y . j '~5 ~ ~`.: ?v p''f ° $ r .~ ,,{~ ~ . *i w ~' C ~ ' ~ J ~:.. ~~ l f ~ FIi, yr ~ti .. * ~ ~~ ,(Z F~? ~. '~ t i ~ ~ ¢"~ ~ rye ~~ ',a11 - '~ v i i . . ' ~ y T x L ~ ~~r ~~ ^ Iv° o o . ~ . 3 " `j ~ a ~ x . , g . ~ ~= 3 5 F ..1. JL':~N~~ J`.rM' w T~4~N l~"::. ,. .~Y' xS 1~ S . ~1m~~cA,e. ntn.. Or.Mv .~5 I~ "~. ~~t . I~ N a. I n~L ~ ~ ,,[ ~ ~ ~~~lE~r'~ i ~~R r I,i t ~~~ ~BE. ~ 'r ~ ~ a i ,~ ~ ~ ' i '~ +~ . ( ,~s-- T -C- ~ hP ~~ y ~ ~ .-}. ~ ~..-J~ ~ ~,. ~ `^^~` ~ ~ m t[' / r,y xi'9ww~ t i_ r ~ ~ .~iq ~ ~. ~r.C'ry«V', i i ~ -~ IPVY~1W 1 ~ ~ 'S ~ `T L^ ~ ' .. .:~ \~ ~ ~ ~4 '' Y ~~'~1 +,J f S .A~ I t'~2 ~ K , f l'~ \. - ~ ' e ~ P ~ ~ ~ ~ w ' ~ ~ • ~~_.: ~ ~y-.c_ ~ ~~ 1 ~ ~ ..- ,~ { \ =~ ~~A '. `fi ~~ N~~`k'0 r~,~a r M d N v Nr,~ r~r~ S~f~, ~ j ~ f~ . -~ i ~ ~ a'r. L. ~y---fi r, °•y~ ~. r, \ r a.. t ~. vo~ r "f, V : ~r'4-~ r~'t ~--4.~<°i'y"-t~~rt~ ,: sa sr~Ynr~ `s~.. -~ b~ a ki ps~p roq ii ~y+ . i /~.. ~s . , ~~~ ~ '1 650 ;~~~ 61/LyOJNYaM~ hidl, A ~~'~- 6 3 }~~ ~5'J<~. ~ l ~ Q3.S..'.~~3. ~ : • ~.i ~~ ~~~uv i ~~ C1~~~ ~~~FII . _ . ~ 1 4.~} ~~. $ "-. ~~~~ ,~ ~- 1 ~1. - ~~ '~~ -.:~.~. ~ Su„ ~ ~~.,~1,-.~ ' y ~T,,,. r : ~~ . / ~ ~a ~~1 uS ~ ~` .4 ~T~ ~" ) 1" ~r :r ~~- `~ ~i~ ~v ~' ~. t4.r Rtln -' i . . ~t} t' ~~ ~ ~ n. r..~ _ v. ~.. 2S' n;L. .~" .^f . ~ ~<~~ y~~ " '~.~`'v~ ` ~ I ~'~ Na ~ ({' P X .i {J' .`. ~~ J) ~ ILj~ ~' i 3 1 ^~,r J.` \ ~+( ~~ ~ ~ f.~V~ :"~ ~. ~tt ~5, ~ ~ \'^\..../. wT't~"" ~'A' ~~. / ° : ~~y 1-'c~.<. ~ S A \ ~ ` r i~'.~ 95~~ m~~P 9f ~~ ~~T'~~~.. ~ t~. - t. -- in n .-:h~. / ^ _ ~. , `P ' r . no„ e P~~ r ~ v ~~M ~ z-~ E ~ ~ +, n '~ ~ ++•' 1] a xv oH i '~ ~~ ~...,. u ~ i " ~.,?. i !a-;~.-. C f -..~. { `E ~ ~ nc 6z+.Ll. ~ . .. ~eJr+~~s~ , ~ ~~„5, .7 1 ~.. ,s.--~~ ~_ ..S%,.5~=5:.._~Z,1'T-='~~ .1 .::«' r,C,,.~~.,`~....... ' e! - . .... ..- -~. ~ e r, 9? . 42nm; .... ; . . f !~ / a :i V. ' _ -i,, _ tr rv'S I ~g ~ _~- ..-::': .... ~; _ r ,. .€: - ,~ ~;" '~ '_ _a.v: ^ '-`.~i~ ~~~-' 1.~"v'~~' _ ~ .v.P.;(, !. +.'. . ., , ~. . . ~ ..~ ~ > ~ ~ ~:<;'-...~',e. .:.CZ .:J` •a .. ' -~_~ - •.,~ u a':~ "~ " ' . ...n ri:.,~ ,\ ~i ~r-",`S~1 i :~.,.1's _ 'a„~'° 'I,d ~ i:~a~^: I ! ~~ a . . . . ~. . - -. , .t , ., . : :. . ~a~.r ~ " a -7 ~ --e ~...., i 1~i ~ \ ~ - . „ - . . ~ . , . -_ „_ ,,,,_ . .- ~U.:,~ ~§, ,:... ti`---.. -.. :.. . r 3~,_ .s ,.,:~ ~ e.,.':~ _J..a~i' ^~~ .ti F~a:.~ ~n",~~ ±~~.~i- ~.=r,`.•e,!}~-I ~~,~ a~h~u \i .CV~. ' ~ '. - . ne ~._. ~ n h .~ ~\~ .y...~: 1 ...,:_ s" 1 . .~... 'J ,: ~ ''.... ..~ . .- _~o;~, u~.~~~ ~}j.. .5 '\,. ~~."~2. c' i^ ~°'v'- u ~.r,Ft. '...~ y~S f.>~ '~R'~ _ _ y_a . . . e _ -_. . . . ` ..~~. .. ~ ,n~, . ~, • ~ ~ v w ~ , b ~ ., R,.. h. ~. l +'\:: ~.:~+car ~ i +i+~~~ ) ~~ ~ ~} _ . . '~ ~ op.:. .. -• ~, y , t s . y . . ,. l. n,o`. "~`- "' ~ ' n -°.`,',~ ~ - y °"~'^ : \ ~ 5 /C ~ E~~A X~=i ~ L', „~'~•;"..~ ~ 1a' nt~ ~ .~.1~,'-` ~~'.~ i.~ '~ _ ~ - F . . -It ~ .,. j~.'~ii::?. i,~~.-.~.~ ~ ,. ,._''i.:.`. ~ ?;~'. - ~,.m ~ .`Y' m"4- ~~:si s,,f„'q~..~"s',. ~ f- ~i _ ~ ~ ~~' ~ ~ ~ >. ~_.. =S' P ..x ; ..... ~ -s~ z,_.-... A uncu .:: .~:... ~. ~. Rt~-m..~~. ,,- .~....,, ;jF -G:~,~-.. - :1' - r:. `:\~ i t .;L a t ic <.' ~~ ... `~ o ' ~ r.,:Pr ~ f( r.. ~ -.,t.. ~ ~. ~:~~ _ ~/_ ~ ~.. 'l ~ - a.~i :. ~ .. .. . ~ .. brr " ~ . . ~' . xni <. . ,.mm . _ _ \~ 1M1"-+~ qc,-. j~~:l 4~ ~ ~. v x~ ' ? ~ ~ ~ _~~~ ~ l ....:.f_U x ,.:- ,.,. . _ .,.~~ y _-:..:-~ ~~_~.~7_ . s ~„• ../`> ~ ' =af:~fi .r. r~l T ~ Ci~~~:1 "~..~ ~ ~i 6 r ` ......t. . / ' , ~~;. .~. - -~ ,..,lpFb .. . e SAHu .. -~'`> . :-. .. .~e. . ~ . a' . 'D, `~N~ '.Y I ~ ~~ T1 i.{' }~~~1` ' ~.. eny..~ ~ m.. ~x~.~Nde~..~?' ~ ~ ~ i ~'.....,.. ~~ ... .a ; `'-5 ~ , „~'.. _ , , ~ .:. .., ... me, ~::'~, : a 14~ uu~, -:n~. ~i'a;-'' . `~ 9 } i _' r . }~ r-7 ^.~-y :•'i '^i '~ . ..: ~ ~!. :`.~O . 1 . -:<. . .` -... , +- k ..c . ~ ~__ , t . , ". .,.. , .. ; ' ~# : t. ~ , .. ~y _ ,~ , v ~ ~^. ~~' ~ol. ~ f"'` ~ il, .. -- • -, S.. i . • !.~. ,S''~-- 4-. - ; ~.,,so/ .. ~ O ,x . ~ ~ i`-ti.~t.. ~ . .: -w . k ~r, ~' . . . .~' ~`nw a .~+ ',>... `~F' „_a {, . ~ 4 1.. ,. ~ ~~~~ ~. ~.~' r.:_... - ~y "i:-. 9`~ . ., . -z-, : -. . ~ /' ~u.me ~ ,.i i. ~ [ _ ~ f `-^::S . J Y;. ~ iY 'P~ „p~ ~ 4 . ~., .5 ; ' A. - :.,. ,. ~ ~ ~ ~,... , 'C°.v . :. ~ . , ~ . .: r .. .,y: . , - i , .- s~'~ ..+. ~ ~v i . 8 ~ '~" ,..~ 7f`~?--AiB<U P a >9.~~..~ ..:: b '.ba'+^' 1 ~ , n.~.. : i ~, ~ ~. r ; .~ .. . v . ~. 5 - i / ~ C ~~7' ~i:.l . F5 . i _ n9 . .., f. ~ ;. ~ ._ ,,. •. _+rz . . .... _ J . ;-'.' - ~ ~c.,~ , , ,.f: ..: ~.~~ . . ,. o' ~ - J~~ ..1.'32 ~.;_. ,: x ' :P:.,: F~"~~. ~ ' - n.~mH ~ ;,d4!.,, .9 :.,.~ -;~... ,_ .;.. - e_.,... . ,.. . - -..... _,.,... , .:,,t.. . .~ .,. . -_.., ~... ,-. ~ ' .. ''k.^i°" n ~< - ..~ °.-. .~.tG~ #. IY - .?. ~L ~ . . ir. 1~1,. ?'._ :,~~ L, ..<.. .,, .,. ,:.. ,,,..-;, - ~, ...: _,. , . :~~t~o. ~ ounnrv. j!i .~'':~ n ``~ ~. ,.y.., n.b:- ki.~z 1 7 ~ ~ ~~~~ s.r - ~ ,~ ~ . . i . ...t,. ..~ - >...~ . ~ ., ..,.,: , , ..tl ..rs. ..,: ~g _,.~ .:-;:.~. ., ,. ;. .:.., .i ... .;~,,.~ .~ z ~~w'~; &'/,' ~-.. . m~ . n... ta ,..v~ 'i.~ti __5"`~` 5^57 ~S~ i, .~. ~ . ..,~._ d ,N~ .e~ ~FV .`, ~~a~ ~l-. ~~' v:! rd. . 1 ~ i . S ~.(Jx..- < ,~ j ` M ~ j~ ~. ...., ..-1'~: ,. ~., ~• ,~:~ .r._ ,. , _.~-... . .. . ~. ..~,:-~..`, :~.r,,:.. _ ..i:; _ r~ - ~, ~-. ~4-. a~~r N C_ ~ >e~ ~ '. '~i,,.. w~m ' ~ ... ,. .s~ r.- ;~{: - -~ " _ . ~n ' i ' f. -~.~r C._Z.~~ x, ~Fa i.;.1'1s.3 ~.~: ~.e' 4 - ~~,~ l.-; - . .. ,. _~ , .~ '] ~ ro:':- 4\,.::.~. fi .~~ ~ .; ' ~ . .~ 5• ,. ~.._'..C I ~. \LL JQ~ Q..~ 7 ' _ .,. 1..~ .!'~ i-' +rtnb ' ~a - ': ~'.- -'~:~.- ~.~ ~ t .~:. "z..~~ '~z't.~i ,l,,:i .c.~y~ Zad i y~;~ ~,( is 't' 3~ ~rF°um"'"L: 1. ~~.6~.~ , ~ I i d `.i 1 .'.; -_ .. ... <' 1 - - _ ~`{ _ ... f -.. , i ' .' -.. I' , ~. ' - , ," `_ ._ "~; ' . m ° ; ~~. ~~.,.,. .. ~. ,, . -. ': . /. - - ._t,.. ~ !1.- ,u .. . . ,R/ .. ., . .. ' '. .:' ~ ~'r .v.i~h'D }..E"'` i :('! 5,, sk 4~u ~ ., ..:./.,- . ~.~~,;T . '-< ... -..:,c..~ . ~~'~. U.~ .:.,. =e,,a... ~. ..: , ;.. _... ~.N•~~~ --; ~:i. ,rt.• `5`~ :,Y' a, M'l'~' :.F ~~ -4 v. .l `L;.~. ,r . 4, ,- I.-:. 4J~,.~ ,.. ".." n ....::.. $.~R. ,5~.'T ~. ~.~-! : r ;-:.~.- / ¢ r ~ !i!~r. - : ~,~, . i t rj i 1 '~~' _ s~'3 ~ ~ns-soIDii,. ~ ~ 4F _ :~ - ~y ~M ur. p ~ .,_. ~ .; .. ~ . ~ .. , ..t . . . '~'. i -' \ .. - ~ ~ ' 3.~ I ~j~.. ~ .. i. 1 - . d,~. ,.s~i:d:. ^-!tL'€ .~ . , ?. .,. .. ;. . .~ ,rw~. ,.,, , _.._ . k (~..:- a... , i ....c~ .{ J.:~ vV i v~~.r ~.r::~ ~ ' . .E~ , .i _ _ ..y~ _,. ~.: .. .. ~+'` ,.?~.~~( :._v. . _• ~r-. V - : ~. .: a ..;. . `.,. .. , ..,. 4 . . . ; .. f A.k, a . t•` Jy. ~ r !. ~ „II` NCun i ; t...F I ^ .oaatv' . ! ~. ~/. ': . . .. ~e~~i ~ ~.~ . ~_ . . Y r 1 -.e . ... f .... . I ~. . . . _ . , , - , . ~i {.. , .,~: f... ~; . .. . . ~~~~e-.J A .H ~ . == i. , : ~ x I 2.~ .^ ~yf~~ ~,.~.~ ti/SC ~..~, 'a a (l..i ~,~. ~v~i, ~. g.5:~..: . '-r~ .:....~ .~.' -' ~4~'sw~~(nn: e ~l ..~ ..e .xu.~. . ~_ :~.{ l .~ I Nf0\'. f~i . ~' .' : .'~..:.C • . \ ~ ~ . "~ .'. F .~ ~``.~. . ~ f ~~_ ..\' ... - _ ... . ~ . ~ ."*`T- ... ~ . I.. iLA..,~ jy;.:. . .: 7.a' .: ~ ~ ...':: .'~ 4 la ~ - c: .. ~ C~ _.~ G/ pc~.~ ' I G.. ~~..-~ 11L~~'. ' ~~ )J '~ .S\~Q '~.~`a~~ ]n1N~ . .. .. .. 1...3 .. n..e..... .. _. . , .-1. . ~m` .. . .. .. . : . .... . r .~. _ c. . ..«. i ~s~-~. . . 1~n+, ~.- i ~1 _v~ .~ - . sExawfib „ ~ _ ~ ~ . ~ t ana~cV. nYnk~ ..... ;...,_..x ~ . ..~aJ., .'V... .. ... ~ _ .:..... [....' . _ . ~.._ '. . A.;-MO.MS~ .. .i ... ~ .; . l' .~{. \~ ~ ~ 2' - ~i~ ~ - ~rv~erv k ~' ,.,~. ,.,. . .~ ....: .~.~ ,,,~~~.~:... i\..>.., ,. ._, t..,~. : _..., .~ ~_1`: , . ... . .s ys- 4 ~~ - p~s _+ ~ r~.~~ i .`i:>> ~ ;7:~ ,ni. . . I . `( _. . .. .. .. ._.f ... .. ~ .1 . ,.. , , i ~ ' . ~..u~ , , i. x..n... n~i : ~e. ~ ' . -.;J ,?~ . ~'.-.~~." I i ) -. { 4~~. ~.. :, .. , '-:~ ~'. ..:'q~.~=If 1'3}`d(...~ ~:~. .~.. ~. ~ .i. i. ,~, p_ y _ / 1. ~'I. l ~i.~. 4!+ •y~~. ~J ~s ~~ . .. , . . , . < , t, _ 2 , .. ,. .~. w .._,,, , . _ ~ :.~,: , _ ;, , .,., . ,., . „ . , ,- - - - ,t~. ~ .;~, , ~~ fs~~s ~q n NOAV~~. :..~: .~ -:..~i~ . ~ \....-.r: ._~:_, ,._,-., ~s. - >_`. ~.,. ,,.~ ~... F~. . ., n ~:t: - - .-.#rt - ~.~, .:o_ ,.`F,1~ ~..;~.~. '^,~:.., - ,_ ~. ,,, r ~ ?~ ~5t~ a9,.l,x Y~ . v ,~..~.~ .. , : „ -i: ~c ..., ~ _ . ... .. ... .. ;s . Y . ~'` _ii:j'~ ~~`l~.. -.~ ,(~.r~ *-Y.,~.. .~' /. #~).r Y.. I . ~4w:~. s~.~n: ~ eaa.. a . r. ~°~ .I., _. , . r ~t-~:>-.: .. . . J,S,a ~ s. ~ .._, r- ; d .. -_ ~ « ::_.. _ .. ~ .~ v-,.. ., . ~ .. :r-. . i_ C~-:.. . ..~_~!. . _ ._~,, ..~ ,~~~,~,. ~ .~ ~~ .x' ~n... ._. _, .1... . ,....... ..a`,. ~~\~9 t~~ `~• ^ ~ *' ./~a ' -./~ i. ~ ~~~u°3.-. ~~~'~ ~ :T 1 .1'~ ~,nT~~;_. .... . Y~. t. iY~r}G<:S .'U~ .- .... . ~. , ~ 7.. ..~: ~ F: ~y~ ~.n tr ! _ ~4~• l - t .;~~ .e'~ IrQ~FIDFSi~4. ~9~~ ~~1 . . . ~ 4tM - . _ .. .,~ - _ . . ~i ( .. : ..!. ....4,~v ..:a . ti .V '~ `i.. " /ShW.Y".:a I ~. '- :' \.... 1.. ~ . ~ 0 ~.'.: - f'. ~ ~~-t~ ~.e .T....:i. . ~ .::::. ~ . .:.:,,. -. m i . 1.' . ,.4 ~s3 . , .. .s., ~.. . '. ~P.lirv~~ , . i. ~'v .y ~ y>! -_ VrU-.'. . t ~~{. ~.!«,.ri~ -~ v..y' I, lfl 1 ~j. ~. ; , i~ 1 . .' ~_',-': S ~ +.~6'4~ _.~.._ ` ... ,".:. ~:: ~ ,,' ~~.~-' ~ ~w~E. -.~ ~ . v:- „ u .J..~ ¢." -'. =.4ww..a,i ..!~ i . 1. . _. CC . . t: ~~ .a~( J~ ~ d h. ~ . ~..L _ ~-_, ; -. x~ 'J;. - ~, h ..-. : .. ~. _ . S, _ . _. -. . : p. . ...•-. ' _.., i .\ .~. .. y~ =9 ~.. ',.. . ~_..:.~-_~ d, , 'l1~' ~' ..r ~cne:! ~~'m41~Li$GtlvnF, r - F . J iZ ,i~A.,' ` _ .~w '~~~-"?' '-€~~ _. ~,ii ~_.-~'~.-.: „- ., it'yy _Y-y'~v`~,-~y.:.; . ~ t~n .... . _ . ,:.:~ -~.;.~.,'~":~'. ,. '`'?~~' ~.,:..,i->-~~ ..-»~,.-t3~ , .`~., .~._~ -7` -- t i - - °i4„g: .."'MC eas' .a,r,:;''i:- ~. - . ' "- ~. -~ ...~4.> ~~.cx. T .,, ~.:~ :.: . . ,.I, y . ~G. . -~, 1ohUBd.. „ ' I v_ .L i ,~~~`~'C b `'~, .~.Y rt ~y ,.u _-.~. ~i ~ : . ~: : . .... ~ . Lu~av ~ .:~.`. . ;.':" .,. i. a~~ y i ,.'. ~ . _s~v, v..a '3~i .e4'- ~~ ' ~V I ~y \:,;\ ~ c+(. g ir _i N'o~1~rn.e3^y.-..,. . 4'"": _ c~~ ~ 4 S, ,.: -F .:~:._ . -: _. . ) . .cl ~. . _>r . .. i . ~_ ,.n ' l .I t {` 2 ' ~+/ . . Y ~ ~~ }} p~, " _ _ 1~ ...._1 .. .i .i:.:. I.'-:.'-~ .%~-n - .fa• ..,, L ..._ y ..'~~. ..: .`: ~ -. ..,:~.' ~a..:..c '' :: ~ .'v..,.:.~ / _~'i. ' _ ~ ' y:el _:~ - i -. ~ y ~ ....~... :: ~ ~. . .~£..Y ).. f:. i' V. ' ~: ~ .. ry~. I ...~. . r:.. . ..n4 ., . .: . ,` ,uc.I~ . - ~C ~ . J.~ °'( ~ I ~.. . 4' .. .:: ~ , ...vS~l -.l .. /i.i4.,~.,. . . .._::: ~ .....: .. ".. ~....< . _:• Tl , 1 _ - ~_ .~\ ~~,Y !.?t~ ~t.e5."~~~" , ~ x:.~ ~- I~':,_ . ... .. p. eric </. , ~ .n: x ^..^^2 m-... . ~ ;~. . `~ ...~ I - :. . ,.. I , , ...__~. -= ~~. _ 1-?i~' ~~ N,~/ i +` ~~ w"M^~ ~'1 ' S +, ~:: ~,a c . ':' R ~ t " ~Y ~ ,~ Pfi'~ ._ i ~ r / .__::, ; r.,_~ rF r,,....<r~~,,, r:~~. r .> , .. / t. ~. . . F c..,.. .. ..,-~. .. ~- ona .. •_...~...,~ .~ . ~'~r "'i.. ~ ~ ~. . r ~~ _~,~ ix, ~P_ ~ ~. - ~-- _ ...- :r<: ..,. ~ r..::_.:. ,.r , r.r_ -_~ ..<.:..'~ ..5 .,~~... -.~. ...._~- ~ ~. .~ . _•w ~~ ^'?r' f; „~s.~ I. -r , _ {T1 ' . ;' _ _ (...r.: ' • ..Y...: ~ i. .x,_,.h L _... .. v !a. . ~::... ~ 1 . ~'~ . .:ti. . P . "~ .. ~-.~. i: .~ +/ Ta~.O.. .~1'4 .~.. . . .~ ^T . ~ ~~ ~ ~~ ~~~ ~ - : 1 ~`\~- rl::Li- J T _S~'{Ak(rrc ; .: _.a~. ) _. -.~.~ t "''.'~R~. A.Jz:._w^~. _-{_ ...~ .;I:~. . , - . \ ~.e. .P~. ~l ~ . . ~...~..-p.n... . (_ 1 ~. .~.."i.%~ ~:.~~ i.:_ ,: .~ , n . .....~ y .ey F ~.J ^is 4 ~~k:.\ .yP' ..Q H~" -« .r " - ~ .~....:3c S'~ .~_ Te.: ,~. ~ ~~~,..n .' . 3~ : •'n ~ ~ ..~° ..~-.-. ~w+r~ ~lei'~ {t ~ hI/~ n ~p~ rg ~. g~! ..a>. a.a .,:F i ~: YY' ~ , .V?:: .,.. __ -.~ , -i'S'_;_.. ~~; ~ , f . ,.. -„~~ .. ~ , ~-.-..~ ?td'~,° .+' ~f . ..~ ~~i ~ ..~~, :.~" e'i-, V ~-, a~+m+::r_ q . C~>: F., ..- ~i._.. '~ rv.,.. i _~~ . , .i. ..,..'~.._; ,~ ...a. .~ . _, ,.r,:*1:~":. 'Sr~..'1.. r br ~ ' - - . ~~ .~ 1~ ~A7f :-J ~"1;`1t~F.1~ .. ~'~Y• , ~c _ nm.8w~yl ~~ _L. a(y~` .. ~i~FF .: fi ~.ti 'K.ti:'rv i~. ~ .; u, . . _ 34 ~ ~ . ~j~ ~ , ~ F :•S, ° - I ~ ~ . ~ / 4 ~`l~ ~ 6 'a~' ! ~ f ~'1 . ~[., .. s . - . .~-: ._ T _._ 3. it.. l -~l'~.' ~i~. .ial..i. \~. :~ :... ~ w~~m ..4ir ...~' ~. i ~ ~. h... . ~ u-- C1 _..`C. 1 ~~ .fl~ 3 ) h ' ~, l f •'( .. ;~.~r,~<-;. _.; a? ....~~n.f~ . . ~ , n.~. ./ .~~ ' .- ~ , .:. . ' K> cech. `(~ _ 1 c i `'l ` II u ~y , a A -•~'R '•~*::.` ~" 4.~ . •~. 1 ..i~:.../ ~L.I _~~ ' ".....~ ~y]GgSP+U.ree+l .I ' . ~ p~ .. . .~ ' '~ ;4 U'.a.i~- ~.i "~V ~[ I.a Y ~ .Z! - f.s-! ~".I S > .~~£~~t~~ ~E ...~ ~ ~ ~-: .~.,.~G :l.«,.. ~ ;+.}~. '9~a.} > ',}s/ .,_ :.+'a .~i,..~ -r~vn:.n ,:.,~ "_f....c~nqme., .i..wa ~~f:` ..ie n /~ .~~ ::VJ. '\` ~ t ~'>.,y.._ _ .. ~`L.. zc:n.. s.~ ~i....:.w. .y.,.. 1-.~p,e. _.'-.b]::~:.2>-.Y. s-~.=: :.~.i~ .,:~ ~.. :. .. ,':.,, -:..: . , l ~ r-aWre4~ 'Gti;\~P .1J " :~/, ..8:.1'..~'~- \ ~ i~r~, 2' -.R -_... ' ~ ~ , a . . . -(.....m... ~ . ~e, .:;....- n ~ .- ._..-; ,~„~: b~. . ' .r~:.e ;... _:,-. .n .: ; ~_~ . ~~ . :.,. ..~'. < , .,7 . Y I. .:: e .! ~".:~: -_ zL- =--y.,_.c, '`~rr - ,~ ".. . ~?~<... I~_ ,... > %P__:y65:d . .y M SG. ~~ i: ....:-l,_ f~.. ...: . ) ~ .'ro ~T . - • YI \ ~ _e..:m%£ 'Y ' . ~..~.#a-. .i . - .-•-- ~...e.~--c- :.:: . ' . ~-x,--.- , : . `: ..: sew>r , _„ .... ~i.~R. ~:.-. ~ `..`r'~ '~~ nr a3~ce-couN i e~- . r. , \ 4 ~ ... i;iA _°I~~ _ Op `~`ti[ ~. \ ¢ ~ifp~/ ...A " ~_r'~- ~ ~: %` , .. . . .-~ :~.~ . ..~y-m 'ti ~. a ~ _ ~-+': -'. Jp ~~ :t ; !f ~ ~~ OJ,~- _ ' zan~3a.,al~re• -i . s. 'rv..°,z ~.~.:. .i..~ n _ ~c~ :.{_ ',- I . .~ " ~. ~ "' F#~~ - »'~kaA ~u~Eco v = i tl{._ ~ ~`' _ ~. ~ ~.• ^c; ~ _~...j ' ~ . ~~'S _ ~'.•..\ ; rP• ~ _ ....'. .. .'~ ~ J~ . '.a'.: k .?wa, ~ -t~1 a., l n ~.`~~.x . ~ ~___ i ~ 4 - ~ ~I ~, , ,i-,'^~ .,. ., . Y` .r~~, " ,r ~ :_... _e='_:._ .~..-.7; _•, ,s ,_x•o. '~ " -~~ u~-~_ s . t°°.~3~.' ~ ~~ i ~+-• _ - ~ - _.~,;. RIVERSIDE COUNTY~ FLOOD CONTRO'L s \ t: S , 7.. f i . ~ r L~ r-r,: ~ `. -~.'%~ar. e .SR.i ~, ,... ~ ,: . 0"`=5°'~ ~' - ~ ~ „> 5... _ . " ' s s i.wS~' _ . ~' 1-_'?.-.. , -, .' ~' . . . ~ i ~) ' '. .~ ..:, "r- ~ as ....u F :;,a ^iC 1i.~ i ~ i r,,: ~ °`' -~'4.:_~.° ~ .g.: ; .. F 4 ~-~ . .°. A N D .: i.n.M.t,-r - '-~ ''~',~ .. ~'' .: - i I~. ~. ,# %s. , : ~':t i<JV~'i ~''' ~.. ~«. ~a+~+; ..~vy; '~~~ry~y .:~c.ae•T ~ i'. ~ ~..i ~ _ ":~ z ~ ~~:~;• SERVATION DI57RICT ,~ ~ n P~~',LL-+'+~'=9+7 _ ~ :: n ;.~ -~~:.:. x .5.~ .3;.~.r .- ~- J _ .~ ~_ ~~.: . . ~ we _ ` :,r a .r~ -:. WATER CON - -__ i > _ h { y . i. ~, Ilo.a;K ~ ~ _ a ~ S ~. / C'-. ` s ~ 1 ~ `ro~ i ~-" . ~ "~' [ ~'; . \I'~_ r ~"~' G`'?~d ~ t \.~ 6 < Y4\ 7 [ , .'~",, y ~av?J re. ~ , f~~ ~..;- ~ ~1:v',:, rv irrcr•i`~~~ .a~ -ti ~ i 3' ~ ~` r ~~:~._': ' - ~,~ ~;- „~^ ° _~ w..~ ~~j~ ~:~ ~ ~a ~~~ k`<4 ,,,. .~ ~ ;; ~ ~ 'r, ~ ~• 2-YEAR-I-~~tl~2 / ~ . ~~ ~1 ;. b3 °ry-~ i r -,~ i i ~ ~'~ ~ ~~:T~~ 7 i N9.. ~ f ,~w t r ' ~' v ~t u;.-:~ '.s~ a~ r ::,~ a~ ~ ~ ~,`' I. ~ / , ~ai ~ ~i ~ek~ ~ j T '',~;. ' .' ~ . ~~~t , _.' ~~ :, : '. `` ~~-. ~ 1~.. ~ 4j.~~rJ{ ~o.~`w.,. ~ .-`--~ ~f i,c~,:r~ a,A- ica~- _cirt~ w ~}i~e~ ~d. ~_ ' ~ .c~d/i...io Nk ar,a^ `~ .ii~ ~ >:, n~ `\ .,'... .. "•~ •-) F ~~.~ Y ~ NS~E.E,..J .A` . ~'~' ~ ~ ~ a.~i - ~"~n 9 "~" T.~Le' . *~u ~ '~ ' ~: ~re s ~. ra "t.d y .; a 4- , - - P~ECIPiT~ATI~~ - ~., . ~ ~ . ~ .. J ~ .y G 4 /~ ti ~. . y `7. ; ' '~ ~ „ ~_ i _ ~ ~~~n~ JI L • 'Vf.iS'a1L'^ F'P`e~C ~. ~.i o,i'T'~ l.... ~u . ~~. ,_ ~'_S ~, g rJ l~C~ " ~ ~O~ ,nrv ~ :.'- ~ .~ ~. .. . . . _,. . ',1.. . . ~ ~ ..~'~'~- lbbPn S~ r~vel'T I~ 1 J~lu~~.~ ~ ~"1°"'iY~~N i~~~~~v~ ! !'` ~ ~ jak AaM ~ti.~¢:Xi f ~ ///,~ _.v e G'3~, ~ ~t6lN '; F~~~ ., T ~~FlAf ,. F"~ '~ 3.."', ti~. .~-} 1 ~~ •~r ~'rwdf :. ,~_ ~ ., -- b+1 \ '~: .~.~ ,.=a'%" , 1,~t ,. 'R2~AI'; b ,!; "~I ~^4~y ~ ,. >' s~ " ~~ M ~.~- -~-- -- -- '~- `.~=~ , ~,~"-~ s i t ti T , ~e3~. ~t:: R2E ~R ~.3~ rz ~3 ~"' ~c , : tt~, M~ ` _ ~.,.-. ,~4.~s ~. .vsF ~Tr ` ,F ~.~ ~ - R ~ '~~'f ~ ~~; ~',' -T -= , ,. . 9 °"wlmpb~ ( , ~~ . i 9 `i' -- sisa ~ i ~~ J ~ . b . . -v , t py 4 ~-p ~ ~ i~~: y d 'AI~ ~~^ ~ ~s ' ~ I 4 (t: ~ "i ~ 'd '` ` i V .d..w~.N ~'ii~ ~ ~_ . u'- ~~i :~ ~'~ 5~r~-i ti.-A a r F ..~ -,, ~ yy~ xyrd"? 4 ~' Ia v y ~ - I w,Ll I...~1 ~ f '4 1+ r15' 'G. s ~ ~ ' ~ ~ ~ ~. ~_'~r . _~ ~ ~ iaq~a, ~. 4` 4 ~ 2 ~ „~ s~s Mm t ~ ~~ "-N EP p ~ - :=a~ , ~ ~ -, ~ ~ q , .. }~i,r;, ~ ~;' - ~~ --- ---. ... . ,p , , . .. . ..reR . . £ a ~~ ~~~ E+ ',yi~{f YJ ~w..~.~ .3._ .i-•~~~ ~~~~~f*T~'~ ~ n~ueN a~ :T a~~~~ "t1~.., ysq~k ~;_\ ~ _\ Y ~rY ~ i C `~i 'ic 'rt'i.~ y ~. j~34'f~ k ~ t ~~.; c'!r'~. a' ~. ~ t .. _ .. _~~~~yt" _ .'""i *+t~.{'~F+.4. - ~~}y.;:' . ~^ {,.{,~,,:~. ~t. ~%i . c S e " ~ :. . ,'>}' r~ i,..~. :-r i .5 .. ;....1, ~ ;~x =N°,.x s~~-, . ':-:i. .. ;::1 k ,. ~ {a:~~„vL ~ ri"_,- 1. 4-~ r (~~_. ~'.,~ ~z. 3:~:. ~ t,N ~,.~:.,.'S~,. ~.~~'~i. ~ h,::, Y,~j ,~.-_~ .'~T.~~ ,~.....a..4,.,,,, ,,..,...<,•.,a~ _ .1~. .. .... .~ ~ ~ ~ ~;as~ f ~.~ ~ . t{ _ ~ ~' T ~ q-~-- :~.v~.~sFSr-~~-9:s-3, E.W.~, . ~.:..' ~ ,.;`y~ ,w.. ,...: ~' ~..~> ;.. ` ?~1'J ~}*ribn~3 ~-~CN'~Y~ 4 ~}.,~~ °'b ' ~ ~o~~.~~ ~-f. - -'' -.:~:i.~ ~i' .. ,s. -~ ~ ~ r ~ ~ x ..~. . „ h . ~'a's ~,..', t~ S i :: 7~ r +,ty~.t~# } '. v ~ -..~ \(~ ~ r . . + , y ~ ~w . ~ - ~ 4eF-,~YT'~> iah~ _ i~ ^ 1 - S ~ +d -} ~ % rM+m ' A ~, f . . - ~ '. - '~„ , ~ a. .- m. ' '~i5~~ ~~ ~ . a ••~ t '+-"eo ...,rce, ' \ . • r v;< rs ~ee ,.,~o ~ , tu4~{. l , 4i Y ( ~ ~ 7 t ~nw i j .. y. y/ ~ b~ . Ea sua.+ 'w", y~; f'I .nyi.~.,.~4~a t ~ #' ~ ~ y\ ~S 'F'~'. i ~'i. ~Ix ~ 9 ~_ ~. ^ . , • ~3 ,~ / YJ~M~~¢ ~~ 5 ',~e . Y !"_°~~ ~A 4 y 1~ ~ ~~ ~F. ' ~^ Imuw„y T~"'l re_ . t/ ~ ~ ~' ~y... •:. ~ ~ ~ ~.,,~ i~n,fo ~ ° ix::°~, !~ ~f ~~ ~.,~.Z "r ,:wir ... ~~ i / ~y~ .~-0n. ~' r " .~ ... . ~' .~ ~ 3':` ~ i u ~°' - ~ ~ ~ ~ Y r ' ..ry _ s ~. :+ ~l r ~.~: y >., ~ ' :'.. ~ . • / p ~ 'ia t' ~ I- I :` ... , ' . ....-~~ ' ~'y - 4 ~C .~%'.. ~ ~w~` "y5 U~o~`^O r tG.' q. ni ' 4 i'.. x ` ~.. ~ ', ^i+. '~1.~~. sn ,~ • ~ t , : sr ~ ~~. . „ .. ~4 ~ ,~ :~ ` ._~ . .~ .~t P'~'i- -M'~. ~ ..~.,.: i(';r' ' - n`-`bi--~ ~ -?~`~` ( 3.. u~,~-,`~„~ - ~ ~'~.,~/"; ~;~~ _ r:,y. ` ~ >t_, . ' ~c ,~,~. ' ~'.,. :. ' fr ~\ {~+c ~ r S ~.~.. A ~: 'h' ,,,~i>` ~~ V-!yY~.`~`~. A-`-=a, .r _' ~ .~ ~ . ~~ [ _I 9 y ~ ~ -G S ~k Sr-l~`L a- s_~ Y 5 ~..1~ a -, ~,F • ~`~k,-~vw f 6 R _No il a ~t%~ v r'. ,~_' .~~ :. "_f1 ~4 _ 4s" ~ i~ ~ ~, r .hc ~a -e 1 ~u oJ~ r- c4 I `Yf'li .. .N ti l _E~_4, i Pft .}_.' -~'- ~ q~ 1~1. r l~ ~ '~ K~~4o~~Y l~h~ yn ~~ t 1 y ~y~.`~'~ L!' \ ~' :. . . N ~. ' ~ .uG ~. ~. . . _ ~t ~.~ ~..~ _ ~, , . ~ ~_ ~o -.: ~° rv u~0.~;. it~... ' -. ~ , t _ ~ _ , .: i~ ~ i...~ .. ' ~ ~:.,.~ ._. ~,. ~.~•q ~ Nbaw !j ~y6 ` - y,.?'.':~ r1 ~ h , . :'~ . 'A.:. _ '7 , '... ,. ~ ~ . T na .. . ~ n~ ~ .' I . ,,~-.R=~J ~~ a.. - _ ., ~ fi., ' J • t'-. " ".`,. ~ ~ x . . , .... L ..::.-.L--. __* ~ : ~'.~~. ~ ..1!"" j 'l r~~' ~.,::~~w ~rk , J f;~' ~~' t~.If~...~'S \'~.'.. `'`. ~o, 1'+,~ ` •.~~~ , , ~ ,..4 ~~ #'i." ,~eci ~.~,., '-~ - .'.,.- d 'i7'"',~~'~:/ ~~~fs-' ,w J~- ~' ~ t~~.: ~ ~ - ~x? `'-;' . - N , ^ sl'i'~. ~'3,~! `6r . r r_ :, "'l~ ` .' ^^~. , 3a., ^ ~~ _ .~.aJ'~V._ ~.:~ y ~o w ~ no=f' 'r .~ # V. x • 5_t . „~ }_ . . -r,..+~ ~f'a~~'~ - ~ ,;, .. _~:;~ .. ;-~_~..: ..r:.. _a _. ..~', \•~ r` ~.. ' ~" ; z-~' ~~''~l' i / L .U J~ , .' '; , `, . `'~~}~ 'n_p: =:.i '_ ~.b=:.; l . __..._~y.,~ :• rl ` .. ~,.- ~ .. . ... ~ . ..::. /' y j .- .'.., : r . ~~y- .i,, r , , ~~-~ l , _ t . f ~M ',.: . ._ .. _ . _ ._ ~ ' $ ~ " ,.. :: R .. . ~ - .-, ... . r ,~ _,. ~,w: s ... :~. , F .. +... ., .. ~ '+'a:, _:. _ . . :. ::._^ ._'P'~ . f ., _.;. ..~. .1).~~. .. . ^~~~'J' ~F~1. ~~Y 3 1'-"~.:~..~~'R( ~. . „ Z ~ , ~ .. ~:, .~t ~,,.~,,:~5 ~ . _ r . ,., F , ~,,.: '".l ;;m . .. ,.. - .,..r ., w ~ ..~ .:e :`~ ., .~ ~. ~L~- ~ t..~ >y,.c, . ..,3: I ~ . :~dii_ ''1. qa,~: 1 - . ~xx.~. ~ ' 'r` ' r.`. yf -/ :-~4, a.. „ 3 ~ - y„u" _t}'xr~-1) ~y . ~ : r~ Ii~~ 4. ~ } .'~~` ; k ' .. . ~ M . .^ u~ 1 4 ` ~ a r, . , ..~. . . . . :'.:~ •, I - f _ ~ ~ I . ~' f I r~. 'Z( ~ , ~ ~- I ~~ .5 . YE . ~~~ .i:1n ~ .5~.• . ;~ ~ ~ .G ~e,~ f _~ S .; S. t :,::-!w ..;. ~.,. s~. .. . .p; ._ ' .r1. .P`,~ ~..~.. a .~_ ,~ /..r...'~Y'~ -r1,i~24 yc,J %....~~ y -.In' 1;.~:~~} ,r., '- .5:-. ~,..:i .• tc ~:...sr I .._~._. :. ~. ~'°~.~ . -'r~ - ,.!.u ~~i,j.~ - ~~~. i . M,';s'^l~.xt :_"~` ~ . v.'~ ^~ Y .I M~eweb'M uxiAW~ e'F ~I i ~/ :,~` `.tn'fq~~~l ~\"%j. ~~~ (.~~~ ~ ~t ~..:t;~~ i.~ - _ .. ~ J i ~' .j'~ i E. a y~ ~ ./{ 's .r b~~~~ i i - ' y -' . rAu iyy ; C r~ `.` ~' Ez' ~~ 5 ...j.: ~ -: ' .~`~^ ~ ., m. , .... Y4 ., ' ~ ._.~. • .y.. .,,;, ,u. 'd~ ~ ' e .~"- ' \ dt' . 4.. ~,.,..'' {.`~~ ~4 F.~ t~ ,y$}~s ,py~.~{ .3 ~, w ~ ~ 4 „~s . 1 - J.. ,. L..A . c} ~"~ p n-'-F~ f 1 ~ ~~'~ ~ ' ~C 0. ~ a_. '~r ~ ~. ,..~,.~ ~ a ~:~ ~ , 'tF'3 ft'.~ - ~ o{ ~~, i ~ ~ i a `~ ~ ~,~y/ '~"~ 4hrt ~A - ~ -.G "C ~ r.~:. u1~f"rS " ~~' taX _ ~~ ~(A S z S ~ k ~. ~ - ~ Y ,y.l '. [ ~' la.e ~~"\y~- x 5 a . 'S !.r . r ~~t.( ., `y~' ~ 1~ r~'--,1 ~~ _ J ..fi. . r i e, . > • -• . 4 ~ ~ ~`m. M ~ 7 ,~"' ' fY 1 .:=y~+~ a ~ :~5~ ~'~' -r ~ ~ r ' s~ ~„ ,: ~~ ~ ~ ..f ~ ~ t t . ~~ ~ ~~.~ Y yi - ~' ~ , ~ ~a~, . ~„ ~ `~~r i~ ,~ u' .~~x~t~±~ z~,~ ^ ~. .. ~ -. ~ . ' ~ ~ r~-+ , ~ ~ ~ 7 : ,~~ _, ~~zl~r i*. ~ ~ ,~ t ~~~"~` i . ~ ik . i - d, ~~7 v:s'-m_.~ F ~ ~ i ~~. ..:f~ F .. A~ I~.t1~~~ ~~.' ... " ~r o '~ . ~ r ~y~~..J'~fe ~'Sar~ N~ ~z'~" ~' Y t ~, u L. y , {`- wJ°` ~ •.~ ,~l ~ n +, "4.. " , r t+r~h t( ' ~5 { i f I ~-p .~:o ~ ` ~ ~ C h d' A-N p ~ i ~ .~'~ f: s ' ' ' ~~ °l~h~„ ~ ~ '. ~ {`~ ~ . ~. ~ /_ l! ~: j~~,+~• ~ w, \ j ~i i ~ ~.t~ [y("? a~ _ ~ \ _.:. ~ ~ Ya~ . ~ ~~^^- ~ ~ ~ / -. '. .: 1 ^!, `~- 1 ~' .` Q~ u ~1 '. ` / 11 ~ ~ ~ ~. 1. ~y~ J µ1 ':~ ' '~.;~ .' l ~ ~d ~ ~ ~ yy 1 3'~r.i ~~~ r~ei.~~~ . ~ix~,..l ~°' °n~ ~'1~~ ~ < ,: wT ~ ~ ~1'. 8€~NA~'"' t~f~"`-~+i~ly~~r1( ~y[ ry .~~f ~~Y n x f StI > 6^"~~'~~ PJ 2':_ P I!P JNF ~~11 y~°' !{Ic ^.~ ~"~ ~¢ d~ .` S .. 1 t" \4"-. t.'i D~~ W'P2~fJ ', ~~ ~1 f ~,,~.,~r l ~ h5t /.51SI ^~~` 2 1 ~ .r'ii'~Oi ~.,a ~~~" _.. f.. ac :n~ ~ y,.a . ~ ~~9 ~' ,p ~,._ ' t :r~` ~~ Fr ~ ~_~2 ~,`[~ / t-~~ ? ~ .`iS~ ~ }/ f ~b f:'' ,sn.~ ~f b' ~ ~i f1~ ~ i' "' T i4uw' ,.n < ~ z ~. 1 7r f¢ A~J 27~~~ ~ ~~y k~~' o... ~~ ,: ~ t t./ A„,I G C..,+~.., _ l.m ' l i Lv. r~ "~ 1 ' i A Z• ` G i ~..`~'y ''.?~ ~~ 1..'~~~ / : ~W ? .r s~ ~:-' c ~. ~{ `'Y / t.:~ ~ / ~' ~ ..~ '. Al_ -..~~ ~ ` ~~rv , u~-. e ~ , -.+.,1,~_~.. SZ `.c~~ ~ /1 .. ~ fl -. t r "Yrcx[re a.w 1 .'~ ~, . S,'',_~¢ n 'R....: L.. i i ~. i' k ~. N r d:3N~ ~ ~`- .~: ~ F 7r,~;~ ^J !~ .:y-`:' F a . ~ ~ ~~:. lt ~~ ..r. f ~~, i a- i/ a~F .,rt i ~~ ~~ 1 A aiK `. ~ c, ~n".'Ku.stqr i °~ r -~ ~ < E~ s~ ~ ~< C ~~k~,~ /~ ""~j ~it~~.. ~° z ~ ~ W^~ ~ ? ~~~ ~ ,~. ... I ~ . ~~ ~ +~_}' ~.~ ~~ ~ - ~ ~~ :-,IF`~i ~::-~~~ ~.~3~j~i~~"~.~; FI ~,j ~~ F s ~{ i iJ. ,~?`M -'-CP 'LL ~ ~R ~ •I (' ~~ r~ . i ilf '~~ ~ i i.fi ~ _ ~ s'~li ~.;~~ ~g:K ~t,~ ~~-`~ ,~~~jr ~`-~O~nT~ L) `!~ ~~•~riY': $1 < <~ ~~ ~ il ~~' ~ ~ t~~ ~ i ~ ~ ~ x/ ~~` a! ~~ 3~ t i r x a I,~ ~ r r r3'~°~~ i,~n - a 1 ~it" ~ : ~ h ,}ti~ 4~ \ u 1 f^ ~ ~~ .,{~-~. ~ 3 ~~,~ wl < I t ^~ ~ :romt p' % \ a' 4 3^a ~\ j° .'. .r~L - ~ . ~t o.°' ^ < ``_~ y 2. q ~y~y^~- '/ t :;~` ~'Csgr+v. / ~~:,y~.u ~~' .- -~~ rA~. ~ k ? :f: r y^ 5 ' r~ .' "~\ei ql" ~,_;..f i. . ~ . 9 ` ~~/'°'I j~ °L' ! 'f~~+-'J"~... i X 'nii(SiJ¢F~ 1~,e~o v~' 1~~~11'~°r'~e ~. ~$ac~ r~'~i.SAVP~A ~.:& ~~~~~.i T~ E~.,~F j~ .,b, .'tr~ i Y' '~~~a L.~: -.1. ~li~i ~~~ ~ r , ,~„ ~ i~ ~ . ..; {t~ .,<. ~ b '7r . .._.. ...~. .~ . v` S ,I: ..C: . .%SLW~Y~' ~ " . q ='P.hf.l 1 ' ~ . ~- ~ ` ' __ 1 v T~ k (~l ~:_:~~. ... :-e~~-a ( ..3.;.. . .... ... . ...... 1 ~ .-~i :,. ' `_. ~,n,..- 'vdlov ~ ~'~1, aPymw~ic ~ f ~ t - ::,+/~. _ :..~ 3 I , t''; .Et Y .1 K. ~~' . ..~.. ~'^:~.---`~~~--~ - ,ti. ,,.~ ,.~ ,_;.,•,. _, wv,.,.~rr.;:t;. , ~ n :..,.~.-: ;~, ~ - - r , ~.. ~~. ~` ~',.~. ..~ 'T'~:f~ xy. \. e. _ rt ~. ~:~ ~ .c~' ~ -ege. i~}.vo. ~f .~~ F ~ . ~ ..... . `i~R. ~ T ,. ._. v, ,~.~ E-.: . p~r n. #„'_... _ ~ 1. J..~ e '-_- . ,~ ~ v ~ _ .-,~i. ~~_. ~.1_ . i."_T -1.1 ~l ~,.', Reew ~,.. ;_~ -f,. :. ~ Tr`~:"---- ~. ~'`,r ~ ~.. .5l ~,. o, . , ,; ..,>s~'~ _: :~_~ --i ,, - ~ , a 7i --- -- } ~ ; ~ '~'-~~ - , ~ ., ~ ~_ _,.,, _ ~,. . ...~r' :.L ~. '-.~~=.: ~._ .. . .~..~~ , ,:~ y'd- ' i . . t 1 .ns'~ ~ riw.tbid wd'}..:.1. ..o q+n . .. . " T' . ~,.. :,. ~ .~..._ ~i n~:'. -Ar t+.ti.. ... ..`.~. L- ~, "~, i:.'..:. ~~ ~.. " ~~,. •.~:~ J " n ~s.vLrv, r ~~ .1~. ~ ~ j `v' i.~; ' ~ ,~ ~... . ~~ I 1-~ / \~... ~ . ' . , .. . . 2A. ~~ .~. .en:n _, . (~.,..o . ,n,'c."K.4 l,'I~ ~ -. I ).-. .~. ~ .- /.i '.. ~'~:OY y~ ~.'.,~ ._ .=~.. 1e1~.%~A~-~ . . i \ ~1 r1:1.: ~ ~... a .i;Y. •.:.; ~g >.-:. 'n~- . .;' ~ ! ~~3+: ,a. ~ ~,~w ,.~1.f' v - 1i "~'ifj .;.'.~<' , u:'!~ ~^'-: ~. .~- ~..~", ~ ~v~_ :..se..., .c.-"", 1,.,...~i' ~li ..r.,:a~.. ~ '. a,A ',.~.,;_, .:!~ - Z. ~'I .r f - s~ - i.::aF.- i / i } ~ ~~ ~~` I ! -~:,,? ~.~T :: fr~ >.P'r~- ~. r- ..[3 v;', ir G t n ' +~ ~ /'_~. 3 v. . .., T / _ F / ~ EW7 ''~Md+n.. ~ c£/ F / 7~.. 'k' ~_ , `~'.: ~ ~a r i ~(I ~ P,, S. •}'"~--, ae . ~ , ~: 0 ~C em#~~~ r~^ ..~ai sra<~..I >.,.s~Y=o ~ ~' r '~ .s, i1.3.-., $.< i ~. ~ ~ ~ ~' i . r.~,'it l 7' f _ -,`.-`gu~`,. .:V ;~~ w.~~,',~w~ r.''"', ~_ -,~:+. `~~.r ; _ c ~, -~~. - ' ~~i 1 - c . - ~~;~ ~ _ a~z ir' ~. <_'sS,` .J". ~+9 ..1,. ,..;/~ - ~ .~ , _ y'`~. , 'a 1. Y.. '.1 :5s.w 4. ~.P.,4 n r lnK<} S ~ A - \ .•..1' ..2f~~<;Ess_~~_ f. ~"' v,.~x - 1 5a'G'.me~e ~~~s'a~ 4~~ i~'~ ,a ~- ~ ~ 1i.-:-,t ~~ , t _ ~~~' ':=~y'~ {6~.,~4 N?~,~1'~ ~~~~ ~ ' e.~(et iah~ ~ ( ,x r ~ . s / .~ ! . ~ ~ y + o-, `~ i-u y. 1 'm:d., s - `- za ' G,u { r .. ..~ ~ I l~ « ['° _ y ..~ ~: ~" I ',,L Y;*f' ~ 1 ~ .,Y,:u~ l ~,~I M1 ~ I-. ~f.,r ..~' a°. 'Cu.,idR ~-~ - , ~.`~n~ k~ u ~^`^;.,.-t:- .} _'t" - , . ~ . i F.o~N n~-"?{C y~ ..,.. J, l \ - -1-(~ - .r. 20._. ~ _ ;c ' 2 ~ t~~ ' E t ' ^ i . ~ p ~:-a. Fl`.Y ` +ji Il.`i .~ ~ ~ ~ ~ t . J~. . ~ ~~ ~. ( ti~ ~ . ~'~~ .. ~ v.n Y ~ I~ ~ ,._, ~ P! ~LYTCY , .~ ~~~ ed ~ .. ~'Cr 116 ooY't x .~ ~ ! ~~.# ~ .r n _ <ir4~ ~ i~ yw4._ ~ [rK ~~:~i ~ I td ~ . ~ , " t ,` , 5-,!,' a4 ` 7. _ ~ v~, r .., ~" ru~vuo ~J ~, # ~ rt 4.h 'f a.t .-} ~ Z _'• UD.' .. T ~~ f~ P i ~...~ F wl ~ r~ kh,. - ~'. ~ ... ~. 'c1'-.'4 r ~+.'' -. ! r ~^:.'et s• ` _~ ~ ~.~ ? ~ ' i ' "~~~ , . \ u .a, '~ ~ -.'(• ~,a~sr~is'.;2 `h~ ~~~• :~ ~+ ia / r ~ M ; ~~ ~ ~~ ~ ~-+o, ~~s~ ~ Z .` ~ ~e, °i. ~ f ? _ S.'y' a .._._a ..'E s tit ~~C ~ 1 l E 1. t~!' M ~-~ .., ~. ...y,,] .~. \ J ~ .., y~;~#~~ _`~` Y.", _%S F L ~ 4.c 41 r..:c> ~ ~._~~, .~:.f"` r" d-~ -~~ --c,-~l~-.€. ~ ~.. i ~~~```~'''...~~~~ r f ~ s-x ~. ~u .~ KZ -+.. 6, ,3.,~y . a,r i..~ ~ c u N3 5~ et ~ "~, :.I e< +,*w t ~~, ` j ~ ~. r. ; x~sc rs,~-rv ~ae"a F`i c i ~` ~ ~\ 3~'+.,K s ~"~+..,~ iu~ Mi., ~~ . ~ .~ v ~`•'e" s l~yt~, sna sr .. ~ r-~4 - v. ~ ~ ~:'~4/ ~.. ~~~} ~ a ~~ ~~ 7~ s ,~ i a V f ~ a:- . ~ ~ r -., + ~,.;.p ~t ~ e3+~. "+~ ~~ __ ~ l:- y `. ' - -_ `~° ~ ,~..,R~4V ~ ~ ~d~J }:.,, ~2U~ r~~ _ F?~l~;~a ~~~z~~~~ ~~~~ ~'~R2E ~ ~~33~, ' ` `°=`vds,x~. ti i{q:,~'~~.'t. ~i- ~.i '~ ' • ~R~E I.`- ~~'~ ~ s. ~ ~ ~{OE ~Trt` ~ ~ .; ~ , ~ ~ i i ~ ~~ Gi ~ ` 4- ) ~ ~ ~ . ~. ~. . r~~ ro ;v~E'~y~~r-T--i ,~~.-.~.:- ~ :a -. _.L ~. . •~._ r u(s ~ ~~ w v .. ~~ a cr~+~ T'~ ~ ~' ~- i :- ..:„~ '.-1 ~E ~f ty;vab r :~ ~~~ ;' ~ ~~ cL~e +r' I u 1 '~` ~ r ~ '~ i t _ i5~i~ ~~~°v ~. ' h. '. 1 i v .i~ i C:- ~ -.~ 1~-'Cr , ~ I ~ ? ~+ r• ~: f -: }`. FM~ ~- ~ i`~` " E, ~~ls ~ .~ .,: l~~ $~k~~A ~~ z~`.~2 ~'E ~!Y A 7`i'0 N:`A ~t ~M 0 N U M E.~l ~, ~ !rtk' . rr'.. \ \ ~ I .Mil " ~ ~ . c 2 ~. ~ \ .x < ~_ ~ ~ ' fou9' M_';. B't~y,! fr.H a'ti, r.. ",''1~4 ~ ~n~ ~-T. U ,~-~] ` n ur ~ ~6j6 '~ J ~ °? f H VEJ l J l ~'~-5~~ ~. ~ #X ~_ ", ~ '~ 3 1 T ~ ~ t { ?~ . :n 5 ~ ~V~UmtWiA~N ~yy~ ~ i.9 ,.~ ~ [:j ~' 1' { y ~ y~~ ~ t6v ae~-~ ~' vslS Y FY 1T M#SI~ 1~ ~~S l~_~ ~ ~ "~ ~.. . ( ~~ .. ~ . ~ 1~'r']C, ~L -~ 1... ~~.... 8 i l~. .7.. ,. i . ~, ~~~ M- .. f .,:_ ... ~. i ~ ..";:r~ ~ ~ . t ~~ . ,~~ z. j`~ .-. . . .~...:.~ -....,...., ._ ... .... ... ... . . . . ._ _ . : , ~~ . . . r ` .a~ , - ,;;, _. ~,,r.~. : : :-. ,._ . ~. ,. ..._ , :. . ._~ _ __. .. , .~ r&-. , ~ . ~~ _ , ~. .-49.'-r~'I r ` k\i -: t ~. _ ~ ~r~ . ~.~ ~s_~..~~, ~,'7~...~~lN,~ •~'`~. { t ~' ~ tia. ~ ~ ' ~.. . .I • ~ , ~ . =g . ~i i ``. r \' .\.,.4~. ~ .. 4., +..':,. ~ °4 g-~ ! ~a ..i ' •. _. ... . . . ~Y . - S . ' ~~ i ~ ? ~~c 2~~ . 1_ ~'.~T '~\e K M. ~ l ~1 :: . .. ..o- . . . . . .•Q . .A .~ . Sv ~G..__.~'S``'- ~.~.~' `~5~~_ ..:~._~ . ~ t~~ ~ 4, , ..,. . r ~'`~~ h ~.i.;, ~~' .\`.' t y R~ n~'~, ^~ x i . ~ L~.- ~~ I T. - ~ 5 ,~F ~ ~..I«. ' !~ \ ~'~ ~„ T~ " .~ ~ ` ~ _ ~~ . t ~"'k- Y : b"sur 1 .. ~"~~ ~ ese '~'. i n h J ..a. ~p.y~ ~ v ~~,~~ ~ 1 n ~.r~ . i n\~~'~? ,~ V9 °~ ~ ~ I ~ ~~ ~~ ) x vY,~.l - n C' a~ ~ ~ w r J, ,r • ~ , r al ~=~a~ ~ G P rblG ~ ..._~l ~-__ ~ ~ ~ 5~:. 4~.~. - s. F k 9e aY % ~. ~1 ~ rv N ~k ' ~ A[~I f.. ''~ .:~`M ,. x.o__ '~~5~w~~ ~ ti '_ ~ .~ " , r~~u-r(.airfd-rt{io,1973~ , ~ i C'`` T~r. "'~~ z- i ~ - ~._'i ~ u.~ , : E l ~ ~~ 4~ ~_~_yC1,~ ' ~f ~__~ I~ ~~~ t h~/ ~~ .~ ~..~~ f L 3•" j ~ li •~~_'_ ..k ~~M( ~ "~~ . ~~d~ V~ ~ ~ ~!- . '-'._t+~ 11 :`-~.s }„r~~' ~.~:.~. '. L -ti .~_ . .~ , , .a . . , ... ,, ~s . _ > ~ . r.~ . ....~ ~. ~~ s : .,k ~T fl . . 0. s';.S e. n 1 Q . q \ ' ncrv ;<S '_. ~, ~ ~1 ` .. f" :, ~:i . ~.~ ' ~ ' ~ ~.. ~ ;.,„~ L'`l ~ 7I~;~'i~f~~~. .,,~' '~" ~, ~ * ^..i --~ ~ k- °~e r l .~ ~ a, \ h q ~-~. . y Z£ _ ~ k+ ~ - `~ ~i ~ Si ~. ~ ~ 4. L `~~ ~~ ~ - ~.~ ~„/(t' t . . . ~'i ., , ` ~ a ~[ny ~.: ~ 8 ~~ ,~.~~'~~,~ RIVERSIDE COUNTY FLOOD CUNTftOL ~~,_ RND . ;: WA7ER CONSER~iATION DISTRICT ~ [ l R~ ~ ' ` 9O~-Y~QR° I-~191~~ ` ,~:~a ` PRECI~i 9ATi(~IU ~v ~5' •s' ~c .. o...,~~ ..~ ~~o ,. ~ ~~t.ss : lTlh"Rl1 : #•.Smsr~}+°." J19.J A ~ ~*Px e ~~h~ Z~ - aa`S/ ' % 7HC ~;S,~n„! ~~ Jx Z[ J ~. -~~~. .t ~ ~~ ~ 1 F~t, `vy ~, n ~ r `~' _ P te 'S R" l I ~w(( ~yF " J /} . ~ -:.~- ~~yt I ~ d~an~. ~i_yy~y p~'yy t l q'ts ~ ~ -f'.h.~l ~I~~p }~s ~^[ ` Y ~- "~': s ~s< >~e' r -.:~ ~ ', /r~.~~, ^ ~ .:~ ~ ; y ~i~a ' \\ \ '~\ ~¢ `..~ ~ ~a~?'a'~' d "f'C~`e~i _ a: m c t s, ~ ~ s ai ae ~g +~~m ~ P~D^CLrf°i~ ~li\. ~`c~`'e1.,:'.~ L~iB{fC~~'~a~?F~a F ~~.,`J-. 9 J. i. ~,. 7 4,' .,t~ ~t.~..~a a ' , •,, .:,i <~ . ,t ~ ~...:-~,j-"' --e ~~1. y I~ ~ ~ r ~ `~-i~ p °e i ~. . ~,.. _ ~ t;'; r ~ 9k~a~~~ 1':-` ~y ~p~ ,I ~~t r~ A =y~ I"i~J ~Yi~~ ' ~~4 _ ~~YO'~A ...i.k `i'I~rY-1P~~ .. _ ~` ~ ~ ~C S ,w~ ~...~~ ~h~~~^~~~e~_ . '*~.~ ~~A;~ t ~4~ ~I S~LMR4 OY ~VT "'.~ P ~ °~'^l . "Y ' - -V+' 1 G : $h T~ qe~ ' * x ~.e' #~- ~..+ ~a o/fCa ~~ ~,,,d5/ + "'ySiw' tk~ x ~ I~. o ~ ~ ~ _ ~_ ~ *7~ ~ r .....~- .Y` 1.. s .. a tsm~'~." 4 ~~ rt~ y ~i' ~~+~,~~,+.~~4 ~~-n1 l".~%i f.s,r~~i 3c p~*~~ S.u+~^3 '~ a~G~~~ N+rtw '~.~.~sc _ g,{~ -. rk i 1< ~ v¢ a -t *a . ']} , i ~~M1 u, ~ S'~. '~ ~. °,. ~ , .;u f`~ ~~ ~ R~ h, y t 1 '° ~: ~ i ~ s ~ ~ ~~ ,~~`f1.~~ ~ ~ `J~J y ~ I ~~ ,~~5 ~' ~ 7 ~ - ~". f 14'" . ~y, y d I~~ Y E4~ q~ t0 Y' u` _~!, ~ _ f~-~.~'_`>, "sa. ~~~"? y~__„s I~ , 513 .-'' E'aq~x r x ~ illl uS IY 'JO y u... t r ~'~M - .K'e . u° r~ ~ Y~i` n p eLt' 4 tt~~l . t . ~~i ~1 ! n; 61 ~1' '-~'~ . a~ F sG -~! ~ `°'L~~'di~ I * ~' 1 .zl ~ Cf5 7~ *ua.r SA /. ~P w :: ~~ ~~ ~ ~ I I v, ~ ~e , -b ~ ~ ~, `s~ ~ ' d `." 4 }. `^' ~~~~ .e+°y.°e°"° """~ _ ,_ ~ , , e ~ & i~~~ _ iLl ~'- r . Fr y.^: ~ "~ " i re~u t ~-'"1 ` ' t~ ~ ~ , \ ''d` ~. - ~ ; ~ "..~k~i ~~ ~ ~~r`fi. i 'Y;'~ ~~. ~~ ~° . ~47f~Lc 'tte)ss'`2~.'~.`"`" 2~ . ;~Y . a.,~ ~ .fi ~ ~ - ~ i~ ~~"` . ~~ ~~ C YJ ~4~+, ~ ~ t ~'~ ~ i~a $~,, £t.~Ctt~ ~ r _ .>s~''-~i,~` ~3"''/~ ~-5 ~~ . ~~.f ..~. __ /~-~.y ~~ H ~ ~ [~ ~ ~ ~ ~ ° ~ t~,J ~ ~t~karl Y ~ k~ :~{C~~~4r~ti-~.. J tk i., ~~_' ~_ e *' ` ~ N}'-~y~S'~ k ~ P 1. ~ u<. ~~ ~ S`{ IJ i-~ ~" U~, F~'~1 b-, ~, jy~-' I ~ ~}r?'~nl.k 'i '( a. \ / ~ ~~*-+~ u~.~ ~ w ~~ ~ ,:, t~ ~ 1.~1, v os.. I~vL... M -~ t~~R; . ~„N'.„,~ l .~.~.` d'~Cti"'~S^":° ~ ~'es ~~ ~ ~~/ , f F r ~~ fC ~C.~ Y . ~ ' ~ B+ ~~S w~ Sa _ ~x,csi ~ ~ r ~ nN ~ ~ C ~ "~ ° ., ~ '~' _ ~d1/ i ' ~ ~~~~ F. iars ~Y i `'~~~f'tiv;r F(~~.~ v~ s w r ~ ~ ~ . ~ ~ ~q~~ _._ ~"" . _- Y \ ~J _ .. f ~... ~~~ J s , ' ~ C~ . i .,~. ., . t~ i ~..i i..~, s I . .f'R1•.'•~~1 .~.a3~f r ~ ~,k-saJ' ~r U -cw ~ [ ~ ~_ _ __u.~~fia...e ~. l .i , 1 ~r~ -'~:1_' . ~ : "cl~~:~i \ . ?~;:~~_ ~#T~:i~:.`a.~'-` . ..m-~"€?..v~~„ ~f ~rX~g~, . , ~f1:. ..~~ 1 . i., c~vir.rw J;T^ .1 ~!WE M UNTI W \ F ' 9 . . Y 'k= Gi ~ M ~ ~~ ~ ~ ! i ' i i rIH-: _ . .. S h i 4-' r ~ .!.r r u ~~ A . ,.d e 9a My}~ ~~ ,w <'~.~R7'~T` 3~ ,..-~ < '~'~+ ' ,X~. e ~" € > ~ r ~ I .~. L ~"'v v ~~ k~Cd 1Rt'sf"~ ~ "` ~ . i"F ~ ~~~~ x ~ ~j o ~ ~I h a ~ . s ~'. v o; ~ { : ~.w f'{~""'~ '' '' j!i' s y~ ~ ~ o ~ w 1 " ~ w+y~ / ~ , ~, ~ ~ r . r f~ s u~o ~' " ~nsn^ x ~'02 ~ i' ~9 ~F'. _ ' d •- Y _i ~'~~. C \~~ ~r fA. ~~l~l ~ i! `~7 ~„ , ~ ~ 1~ t':»,, „~ ' ~ ~~ ~ . ~x ~ ~~s ~ ~ ,. d.ali ~ ~,i++.f ~J-~`~ ,Uay.o~ ~~ •~J~ ~ e ...~(~ ~ ~ ~ ~- ,~,rp ~1hL~ vie j'... o f -- ~J'~~~~Yl i'~ ..~1~ ~ a cI~'yG ~K } ~~ ~q .d ~ ~- ~F., I .Fi . J ~6s~t ~'-'s.~ ~ 4- ) 1~ i„~ ~ 4'~~ . « • :_~ .. T9~ r4L * - ~ ~..,~- t ~~ "~ `n~~•_~ ~ ..e.^ -'~ c iC .~ _ .~ a _:. ', . M '~ 'N y M~ ~ '~+ ` ~"~ .. l ~ n ~~..a'" i,,~ ^~'2L?" \m ~'4'. k„yc :°,(, i~ ~ ~1~ . +I~~M2 €~'~+," y , ~ 45 q ~ ~-~ ' `:~, 1 ` I _: ~r z ~ 4 ' y ~'.~~ r~ : ,~ 5.5~~ j~ ~'_~~' ~~*~ ~~~. ~ r ~ ~ e t` °„ ? +~~ mv '~ ' ~~~ ~ 5 iL~ ~~ ~'7s ~ ~° w ~ . .~ ilr-;~~` '~ ?,~ ,. /.+n ~- u' ~~.;~ wS,w ~i S .~ a J ~ ~ '.. Y ~ r. y ta. . ~ Y _ ~ I~ F ~i 1r ~._~~ 'V'~ . 2 _~ t ~"rvl{ ~ . '3ya , 6 ~> ~ ~ (~~ 4 1 ~~r..ra~4T~- ~°`~T A ~ 1'.. s~~ v ~ t ~ ~ I.4 M' .~ ~ b`14 9 ';,~~°' 1'l~ ~ i~, arzi t,~t' ~.n~~~ ~~ ~E.~~~ Z C ~~ - t~~~ l f ~--~ S~ Y '.'`< . ~ i ~ i -+rv-~~ n t ` `:^z.'C °- i.{~ I°`~ ~'~"~lt ~e«1`~~i`~ •..i~ y k^ .1~r~~'~~ f~.: ~ v ~ i .~` .r -~ 1 1 ~ , ~ ,~ .i (~/ ~ ~ ~ k ~ . a ~ $ ~ 5V '°" k . ~ i ~i'."~-r~ ~ ~ _Yi v f ~ .f i i Z' ~~JB z ! `~A tRnaosk '. fwFU 5O . ~.. ~ ~~ S t ~ . ~"~f - a. . f'~ i ~ } x } •.. ~ ~1 - ~ i a~..r i"~ 1` 1. 1,~ Y ~ ~f^" t'C > _ ~ ~ h .~ 'T ~w r~ Y ( r : ( .75~ ~ ~ . ~~ ~~ t # ~ i -~ sE F b 41~ ~? oi ' h. ~ n I .'r1 ~m i~ F h,~ . 11y,/r ~._ ~ ~ i n ~ ~ 'l: ~;A N Pr .'~J~J~A ~ T~>1 E~U~/r~.. ~~ vW~v ~r r/ !g~ ~y R~ .a F~L-~ Y J al ~-.' y~~ ~1~~.': ~~~ I~°`°-S ..~t` -rr ~~`T~if~~nPl [ \\~ I _..~Ev~~' ~ ~ ~~ ~=i l~ ~LYi • - ~ caH}~ Noq~~va ~Y ~ 1~4-~. \~~}`+ J 1~"~ ~ _.en ~ '~'^- . . "~!t~ _P'F ~ T '~, `r '~ti ~ :~~~ ~ "~ ~:. I t o p Li 9T,A. ;g ..`` . ~. .t -3 ~ e~ / ~ # i . ~ ~ f ~ n ~ 4;~ eM~' ~ ~ ~1_ .a ~~ ~ / i " ~ ~Y.a ~ _' _ ~ "1'r'~ ~ `'y T`./'- ~ . - ~ ~ ~ ~ ~-- ~?2r ~ 1 i - ;;t 1 ^a'~ t ~ u:~ \ 0. i F c ~~ ;~~ - : ~ ~ 3:"~ .~ 4~}~ + ~ w~fr wa~ I•. 'i .. f h. l . _~ _ O \.: ~ .` _ ~',~ 9.., .~ ~ -.•r P ~ ( . ~ ~ i ~~ ~ a ~~~ ,.+. 4 Y ~ 'Y lr ~ n.T 2'~ . p- I~~ p a ~ • . .-.y:,.y J~ yt~ y ..Sa~/k ~ ~ ( .t~ i .~~ J:^yf ` ..~Y.-r;3L .// ;:,~~~.~~.__ ~ ~~., r _>-- }..-. \ _:y..~ ~y:. ,,,a..,. ~ ..s - . ~ _ _ -x . ~ c ~ .. ' ~. d~ ,i;, ' ~cc„.,ca ` : c 51 ~' 1 m I ~;r. ,: ~~~r - ~ ~.,`: _ ~,~.. `i~°~ ~., -''.2 2 _ ' ~ :t ' ~~`-~ _ - _ ' m ~ ' < ~~ . 5 ~ ~5.1 " y'. J'nIF. G~ ~.Of3~~t1.~ .~Y~ : ~`f w ;.yl !'NJ' c'.LL a _~ IIAN y~ .6~11~.'~~)l, .`~ c . . . ' F ^ :, ~.: ..r. :. , .o . ~. . __ t 'v..Fw ~ : . ~ `_. i .k ~/. _ .'~.. ~ Xm1 Y6'. .~ ~ .. ' ~ .~.a,- . .. ~i ' .~_ .. ..-:.. eyun. .. .. . ~~ ._.~ ~: ', K. ,~,~,:,.. . I ws-v „ s s~51 i ; T~1r`...fl~ L. '~ J~.~. ~".J ..~:•.'~ ~a 3:~'::~_ I' ~~. .Y,.. •.i..aNEF51f:I~CO.~ ~;:~.i"`- ~~ . tt '~ '. . Nl /~ Y; :~+....; r .-a. _ '~T'-,4r..1`~..aP,.: ~a ~ c ~' ~ 9tv: u~_r co...~~ ,'^'"','°', :~ ~ V f ~( x ty,a., ..i S 6= "~+ "~F. ~v °, .~R ~-~'-'}- t { ' ~, S 7. < ~^ I ~~-:. 1 ."i ~ ~_ '~ 1 ~..i, y .: ~y`o ~i2~~m. ,.n.^ ' / ~ Y<a. T~ ~ .-~'[ R T~:V 4. 3r'.'x .:c;., t 2 y 6~. ' I : a.. d.. . 1 ~. . . R' .Y il . .l- ..r~ ~ / -~~ _ A .C - . ~y~.S~ 4+ t ln~~; '~ y ~ .+u. '~a`F:_;~ G~ /uui:R.NY.i'~l'fe~L ~F6xE5R „y' Y ~~ ~ ~Prv . ~ °s I 9 , ~~.\ { : ~t ' ~r'a< x}i.:,_ ,.°~"- r . , ' .v~'~„- w r 'X. ~ i_~ ~ ~ ~ r~ ~ J b: .' t u r 116 001~" } f ~ . ~y { u,~. .. ~y ~ ~ ~ ~ . ~ ~ tuc lsu0) ~ k~' 'x.~:_ . : j .~' - f f 1'i~T~~ ~ w ! I ; , t : .w{ ~l ~.~ vx i `a ° -e ~.3 4 ~ ~ . _ . ' x.~ "., ~ ~,~, z Y ~ `l { i ',t ,.^` L•,tYYi~~ ,- I ~ !Y /.r r ~~ + ~ i 4 ~eC~vn~. o~vx Ta ~ za 9 ° ,. ~ i ~ ' ~ e I .~$ r idn v~ u 'a~ i sv rv ~ .~^ t t ~. i` fi P ,a~ ~' 4 ~ w.-a-. L-!t N~NA JtR -Y.. `!ar . .~. +` ~ a ._ ' ~ -~ ~s k ~ ~ r`tT ~ . ,. ~,~ ~, -r5* , ~ `~ t/ ndv ~+cA c .. J . W+ ~rS^t ~ss '~!~ ~~'ki nq `i/t A~.^ \ . vo s _ ~v" r ; ' $ "JI ~ <~ HEU l~n i ~ \, ae l,~~ '~ `7F 9 ~ r ~- ~ ( { .~ . ~.+'~'t 2^~,T ~ ~ .,- ' ~ ~~~''u~»,~Z~'Y ..s~-' ~',...~ ` ~.r~..dSC~n-•' !Jw` 7"~~I~., ~.^,~' ~°,F ~+iai, 4f.,~r:.R.rc~~. ~~~~i!N _ ,' ~~ ,~~~.t14~~ , , _: ~t2,lS~`~- ,~.~ viF~~~i u ~ . r u~r,,:~ :-'i~., `~~~E ~f~3~ '<' r ,5 r i, _ ~ ___ ~ a :Ft" L"<-. .~~ ~.~~E ....~ ' ' ~.- -~ ~ ~~_~ i ~~ `l`y ~^ ~~ ~~Y.~`N _ aN 5~ , ::~ =~ x, ~ ~ l~ F I:,: , ~a~ 3 ~ f~f i_T :'. T R~~~'1~?~_..u.~ 0 ~F:';? -_ '..1..,~ I ~ y. ~ H~~:'~~~5."Q.~~'~'~ ,;~~~ ^Y~i~~.~`.~~? ~m~,~ ~ ~,~:~ . ~:..: -. ata~,.j~ #~Y..i; r ~' . ~ ~.~ `{ ~ ~'~r p..;~+~ S-~ µ~ L ~ ' F~~,..~.r."hf~..y ,. 2':._; :.. ~.-~ s~. ~~~~tr P`~n i Y ~°3•t~..:~~ . . . ~ ,~\~ _ _ ~ ~ ', C tC ~~~CSf'~ ~ ~S-°~~ _S_ :..~ OV C H YEP} B! ~~~,v - .~L.~_ ~Y_4t . \ Ja _ _- Y°~',1: RIVERSIDE COUNTY FLOOD CONTROL r'."' t~ -. . A N D ~" ` WATER CONSERVATIO~ pISTRiCT ~~-> SLOPE OF ~ ~ IN~~f~SI~TY ~URAY106~~ ~. p`' ~'_°b~ CUf'l V ~ ~ ~ I` ., ._. . PLATE D M1~.6 fA %Q3B`55 C09i~~ Rec~nd~d Value d~ind U~~ (1) Fl~nqe-Ferc~nt For mverage C~ditione-PCrcent(2 Hatusel or agricultuse 0- LO o Singl~ F~ily ~~i~cn~iml: (3) 90,000 S, F. (1 d.cs~) Ymt~ 10 - 25 20 20,000 S. P. (4 ~c~) I.a~a 30 - 45 40 ~,aoo - ao,ooo s. F. r~ce as - ss. so t~ultiple Y~i.ly nesiaantiel: Cwod~ini~ d5 - 70 65 7ipartmants . 65 - 90 60 11~i1e Home Paxic 60 - BS 75 C~ercial, Daamtam 80 -100 90 Husinmss or Znduatrial Notea: 1. Lai~d usce ahould be based on ulti.mate develogr~ent of the aaterahed. I.~q sanq~ ma~ter plans for the County and incorporated cities should be reviewed to inaure reasonable land uae assmnptions, 2. R~co~nd@d values ar~ based an average conditions ahich may not a~ly ta a particul~r stu~ ar@a, The percentuqe i~pervious may vasy qs~a~ly evon on ca~~rable sized lots due to differences in dm~llinq ~ia~, impzov~ent3, ~tc. L~ndscape practices should aLso tse ~¢e~ider~ ~e it i~ c~~ac in ea~e sreas to use ornaseental qrav- els ~aasderlain by iaapervious plaatic materials in place of lawns and ~havb~. A field investigation of a study area should always be made, anel m s2vi~aa of ~~rial photo~, rih~s+e available may assist in estima~ inq ~tne p~ea~ntaq~ af isagazviou~ cover in develo~d areas. 3o S~~ t~p~cnl 'HB~~m a~cS~ ~~iveyWions inG~ease impervious area 5 per- c:~ti ~v~eg ~c3ae ar~3u~~ s~ac~~esed~d in ~kee tzble above. ~ ~ ~ ~ ~ ~~~ ~~ ~ 9~v3~~~~5~~9~ ~~Q9~~ ~°1~~.~r~~~~~ A~~~~~~~~.. ~Q ~ ~~P~~~~~ ~ ~~~~~ e~~~~ ~-~.~ , ~ , ' ~ L GI , , ' , ' ' , ' ' , RUNOFF INDE7C NUb~ERS O~' HYDROLOGIC SOIL-C6~/ER C~LEXFS I°Oit PERVIOUS AREAS-AA4C IZ Quality of Soil Group Cover Type (3) Cover (2) A B C D NATURAL COVERS - 78 86 91 93 ~~@n (Rvcklmnd, erod~d and 9rmdad lme~) Gnsparrcl, Hroadl~af Poor 53 70 80 85 (F9~nzanita, ceanothus and scrub o~k) Fair 40 63 75 81 Good 31 57 71 76 (9aaparrel, Narxowl~af Poor 71 82 86 91 (Ch~ise and redeharelc) Fair 55 72 81 86 Grass, Annual or Perennial Poor 67 78 86 89 Fair 50 69 79 84 ~ Good 38 61 74 80 ?ieadar+s or Cienegas Poor 63 77 85~ 88 (Areas with seasonmlly hi~ vater table, Fair 51 70 80 84 principal vegetation ia sod fo:minq qraas) Goocl 30 SS 72 78 Open Brueh Poor 62 76 84 88 (Soft e+ood shnil~s - buckwheat, saqe, etc.} Fair 46 66 77 83 Good 41 63 75 81 W~1~ Poor 45 66 77 63 (COniferoua or broadleaf treea predw~inate. Fair 36 60 73 79 . C871dpy d@lt01~ 19 at least. ~ pC!'CEYIt.~ GOOd 28 55 70 7~ Woodland, Grass Poor 57 73 82 86 (Coniferous or broadleaf treea with canopy Fair 44 65 77 82 density fr~ 20 to 50 percent) Good 33 58 72 79 URBAN COVERS - Residential or C~rcial Landscaping Good 32 56 69 75 (Larm, shruba, etc.) ~~ Poor 58 74 63 87 (irrigated and momed gras~) Eair 44 65 77 82 Good 33 58 72 79 RGR%CULT[JAAL CWERS ° Falla~ 76 85 90 92 (I,as:d plowed but aot tilled or seeded) ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~ ~~~~~ ~~~~~~~ ,7 ~ ~~°1~~~~.~~~ y°~u~a~~~~ ` ~~~~ ~~~~0~ ~ ' , , ' ' ' ' 1 1 i , ' 1 ' , ' ' ' t~ ' , AlO.out Riverside CounGy Rational Hydrology Program CIVILCADD/CNILDESIGN Engineering Software,~c) 1989 - 2001 Version 6.9 ' Rational Hydrology SCUdy Date: 03/17/06 File:AlO.out ~~ ___"____________ ______________"________'___ 850 0116 RORIPAOGH RANCH PA 19 5 15 AREA A 10-YR 1 HOUR STORM ' 3/14/06 SWL _______________'___________________________'___________________'________ *'*"'«" Hydrology 5[udy Control Information *"****"*'* ~ ' English (in-lb) Units used in input da[a file ________________________________________________________________________ Van Dell and Associa[es, Inc., Irvine, CA - S/N 953 ' _______________'_Y_____gY____g ______"___'________________'____________ Rational Method H drolo Pro ram based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (yearl = 10.00 Mtecedent Mois[ure Condition = 2 ' 2 year, 1 hour precipitation = 0.500(In.) 100 Year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 , Calculated rainfall intensity data: 1 hour intensity = 0.768(In/Hr) Slope of intensity duration curve = 0.5500 ' ' +++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 [o Point/Station 122.000 _.: .:. ' INITIAL AREA EVALUATION ' Znitial area flow distance = 896.780~FC.) Top (of initial area) elevation = 266.500(Ft.1 ' Bottom (of initial area) eleva[ion = 249.300~Ft.) Difference in elevation = 17.200(Ft.l Slope = 0.02031 s~percent)= 2.03 TC = k(0.390~*[(length°3~/~elevation change)7°0.2 Initial area time of concentration = 12.607 min. ' Rainfall in[ensity = 1.858(In/Hi) for a 10.0 year Storm SINGLE FAMILY (1/4 Acre Lo[) Runoff Coefficient = 0.789 Decimal fracCion soil group A= 0.000 Decimal fraction soil group H= 0.023 , Decimal fraction soil group C= 0.977 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 68.70 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.933(CFS) , Total initial stream azea = 2.000(AC.I Pervious area fracGion = 0.500 , +++++~++++++++++++++++a+i+++++~+++++++++++++++.+++++++~+++++++++++++++ Process fYOm POin[/StatiOn 122.00~ to Point/StatiOn 100.000 •"* PIPEFLOW TRAVEL TIME (Ptogram es[imated size) •"' Upstream poin[/station elevation = 299.300(Ft.) ' Downstream point/station elevation = 246.650(Ft.) Pipe length 25.39(Ft.) Manning's N= 0.013 No. oP pipes = 1 Required pipe flow = 2.933~CFS) Nearest computed pipe diameter = 9.OOIIn.) - Calculated individual pipe flow 2.933(CFS) ' Normal flow depth in pipe = 9.76(m.) Flow top width inside pipe = 8.99(In.) Critical depth could not be calculated. , Page 1 `~ C~ AlO.out , Pipe flow velocity = 12.38(Ft/s) Travel time through pipe = 0.03 mi~. Time of concentration (TC) = 12.64 min. ' ++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 700.000 to Point/Station 100.000 *•*• CONFLUENCE OF MINOR STREAMS *"* ' Along Main Stream number: 1 in normal stream numbez 1 Stream flow area = 2.000(AC.) RunofE from this stream = 2.9331CFS1 Time of concen[ra[io~ = 12.69 min. ' Rain£all intensity = 1.856(In/HY) ++++++++++++++++++++++++++++++++++++~+++++++++++++++++++++++++++~+++++ ' P*ocess from Point/Station *.130.000 to Point/Station 132.000 a' IffiTIAL AAEA EVALUATION ' Initial azea flow distance = 193.3701Ft.) Top (of initial area) elevation = 266.SOOIFt.) Bottom (of initial area) elevation = 265.200(Ft.) t Difference in elevation = 1.300~Ft.) Slope = 0.00907 s(percentl= 0.91 TC = k(0.390)`[Ilength^3)/(elevation change~]°0.2 Ini[ial area time of concentration = 7.280 min. Aainfall intensity = 2.514(In/Hr) for a 10.0 year stoYm ' SINGLE FAMILY (1/4 AcYe Lo[) Runoff Coefficient = 0.813 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 0.000 Decimal frac[ion soil group C= 1.000 , Decimal fraction soil group O= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious Erac[ion = 0.500 Initial subarea runoff = 0.9091CF5) , Total initial stYeam alea = 0.200~AC.) Pervious area fraction = 0.500 ........~..,. ..............~....~.......~.....................~...~' i Process from Point/Station 132.000 to Point/Station 139.000 :, . *"** STRE6T FLOW TRAVEL TZME + SUBAREA FLOW ADDITZON ` Top oE street segment elevation = 265.2001Ft.) End of street segment elevation = 247.800(Pt.I ' Length of stree[ segme~t 632.160(Ft.) Height of curb above gutter flowline 6.0(In.) Width of halE stree[ (curb to crown) = 18.000(Ft.) Distance from crovm to crossfall gzade break = 16.OOO~Ft.) Slope from gu[[er to grade break (v/hz) = 0.087 ~ Slope from gzade break [o crown (v/hz) 0.020 Street flow is on [SI side(s) of [he street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz1 = 0.020 Gutter width = 2.000(Ft.) ' Gutter hike £rom flowline = 2.OOOIIn.) Manni~g's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade bzeak to crown = 0.0150 ' Estimated mean flow rate at midpoint o£ street = 2.3621CFS1 Depth of flow = 0.280(Ft.), Average velocity = 3.298(Ft/51 Stree[flow hydraulics a[ midpoint of street travel: Halfstreet flow width = 7.677(Ft.) Flow velocity = 3.30(Ft/s) ' Travel time = 3.19 min. TC = 10.97 min. Adding area flow to street SINGLE FAMILY (1/4 ACYe Lot) Runoff Coefficient = 0.791 Decimal fraction soil group A= 0.000 ' Decimal fraction soil group B= 0.166 Decimal fraction soil group C= 0.834 Decimal Eraction soil group D= 0.000 , Pa9e 2 V~ 1 AlO.out t - RI index foz sai11AMC 2) 66.84 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall in[ensi[y = 2.058(In/Hr) for a 10.0 year sCorm Subarea runoff = 3.107(CFS) for 1.910(AC.) ' Total iunoff = 3.516(CFS) Total area = 2.710(AC.) Street flow a[ end of street = 3.5161CFS) Half street flow at end of street = 3.576(CFS) Depth of flow = 0.3ll~Ft.), Average velocity = 3.598(Ft/s) ' Flow width (from curb towards crown)= 9.223~Ft.) +t+++++++++++++++++++a+i+~+++++++++++a+a++++a+++++~+++++++++++++++++++ Process from Point/Station 139.000 [o Point/Sta[ion 100.000 ' •"' PIPEFLOW TRAVEL TIME (Piogram estimated size) ***"' Upstream point/station elevation = 297.BOO~F[.) Downstream point/s[ation elevation = 296.650(Ft.) Pipe length = 14.161Ft.) Manning_s N= 0.013 , No. oE pipes = 1 Required pipe flow 3.516(CFS) Nearest computed pipe diameter 9.00(In.I Calculated individual pipe flow = 3.5161CF5) Normal flow depth in pipe = 5.79(In.) Flow top wid[h inside pipe = 8.62(In.) ' Czitical depth could not be calculated. Pipe flow velocity = 11.70(Ft/s) Travel time throu9h pipe = 0.02 min. Time of concen[ration (TC) = 10.50 min. 1 GI ' 1 1 ~ ' ' ' ' ' +++++++++++++~+++a+++i+++t++++++++++t+++++++++++++t++++i++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 "** CONFLIIENCE OF MINOR STREAMS *`*' Along Main Stream number: 1 in normal s[ream number 2 S[ream flow area = 2.110(AC.) Runoff from this s[ream = 3.516~CFS) Time of concentration = 10.50 min. Rain£all intensity = 2.056~1n/Hi) Summary of stream daCa: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 7 2.933 12.64 1.856 2 3.516 10.50 2.056 Largest stream flow has longer or shorter time of concentration qp= 3.R6+ sum of Qa Tb/Ta 2.933 ' 0.830 = 2.935 qp = 5.951 Total of 2 streams to confluence: Flow rates before confluence point: 2.933 3.516 Area of streams before confluence: z.aoo z.iio Results of confluence: Total flow rate = 5.9571Ce5) Time of concentration = 10.495 min. Effective stream area after confluence = 9.110(AC.) t++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*+~++++ Process from Point/Station 100.000 [o Poin[/Station 102.000 **"" PIPEFLOW TRAVEL TIME (Plogram estimated Size) "" Upstream point/statiort elevation = 296.6501Ft.) Downstream point/Station eleVation = 240.870(Ft.) Pipe length = 298.27(Ft.) Manning's N= 0.073 No. of pipes = 1 Required pipe flow = 5.951~CFS) Nearest computed pipe diameter = 15.OO~1n.) Calculated individual pipe flow = 5.951(CF5) Normal flow depth in pipe = 8.9211n.) Page 3 \~ ' t AlO.out Flow top width inside pipe = 19.73(In.) Critical Dep[h = 11.85(In.) ~ Pipe flow velociCy = 7.83(FC/s) Travel time through pipe = 0.63 min. ' Time of concentration (TC) = 11.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~. P*ocess from Point/Station 102 000 to Point/Station 102.000 t * * CONFLUENCE OF MAIN STREAMS ` The following data inside Mairt Stream is listed: In Main Stream number: 1 Stream flow area = 9.1101AC.) , Runoff from this stream = 5.951~CFS) Time of concentration = 11.13 min. Rainfall intensity = 1.990~1n/Hr) ' Program is now starting with Main Stream No. 2 +i+++++++++++++++++++++++++~++++++++++++++++r++++++++++~++++++++++++++ Process from Point/Station 140.000 to Point/Station 142.000 *•** INITIAL AREA EVALUATION •'•* ' Initial azea flow distanCe = 262.220~Ft.) Top (of initial area) elevation = 266.SOOIFt.) Bottom (of initial area) elevation = 263.900~Ft.) DiEference in elevation = 2.600~Ft.) , Slope = 0.00992 slpercent)= 0.99 TC = k(0.390~'[~length^3~/(elevation change)]°0.2 Initial area [ime of concentration = 9.105 min. Rainfall intensity = 2.22311n/Hr~ for a 10.0 year storm SINGLE FAMILY (1/9 Acre Lot) ' Runoff Coefficient = 0.756 Decimal fraction soil group A= 0.000 Decimal frac[ion soil group B= 1.000 Decimal fraction soil group C= 0.000 , DeCimal EYaCCion Soil group D= 0.000 RI index for soi1~AMC 2) 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.722(CFS) Total initial stream area = 0.930(AC.) ~ Pezvious area fraction = 0.500 •i'~#+~4i+~ii#iY~1Y~~1+1F11#4~~+++it+#~++Y+i#+i4##44~{1~~~~~ii11#+++-F+• Process fzom Point/Sta[ion 192.~00 Co Poin[/Station 199.000 ' k "' STREET FLOW TAAVEL TIME + SUBAREA FLOW ADDITION *** Top of s[reet segment elevation = 263.900(Ft.) End o£ SCIee[ Segment elevaCion = 245.300~Ft.) Leng[h of street segment = 722.970(Ft.) , Height of curb above guttez flowline 6.0(In.) Width of half stree[ (curb to crown) = 18.0001F[.) Distance from crown to czossfall grade break = 16.OOO~Ft.) Slope from gutter to grade break (v/hz) ° 0.087 Slope Erom grade break to crown (v/hzl 0.020 ' Street flow is on [1) side(s) of the street Dis[ance Erom curb to property line = S.SOOIFt.) Slope from curb to property line (v/hz) = 0.020 Gut[er width = 2.000(FL ~ ~ Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N fzom gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estima[ed mean flow rate at midpoint of street = 2.839(CFS) , Depth of flow = 0.297(Ft.), Average velocity = 3.393(Ft/5) Streetflow hydraulics at midpoint oE street travel: Halfstreet flow width = 8.501(Ft.l Flow velocity = 3.34(Ft/s) Travel Cime = 3.60 mi~. TC = 12.71 min. ' Adding area flow to street SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.737 ' Page 4 Y n ~ 1 ' , ' ~ , ' , ' ' ' ' ' , ' AlO.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.850(Zn/Hr) for a 10.0 year s[orm Subarea runoff = 3.438(CFS) for 2.5201AC.) Total runoff = 9.161~CF5) Total area = 2.950(AC.) Street Plow at end of stree[ = 4.1611CFS) Half street flow at end of street = 4.161~CFS) Dep[h of flow = 0.328(Ft.), Average velocity = 3.692(Ft/s) Flow width (fiom curb towards crown)= 10.078~Ft.) ++++++++++f+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 164.000 '•" PIPEFLOW TRAVEL TIME (Progiam estimated size) ""' Ups[ream point/station elevation = 245.300(Ft.) Downstream point/station elevation = 291.8701Ft.) Pipe length = 25.90(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.161(CFS) Nearest computed pipe diameter = 9.001Zn.1 Calculated individual pipe flow = 9.161(CFS) Normal flow depth in pipe = 5.47(In.) Flow Lop width inside pipe = 8.79~1n.1 Critical depth could not be calculaCed. Pipe flow velocity = 19.82(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.79 min. r+.+++++++~++++~++++++++++++~++++++++++i++++++++++++~++.++++++~++aaa++ Process from Point/Station 164.000 to Point/Station 164.000 *"*' CONFLUENCE OF MINOR STREAMS " " Along Main S[zeam number: 2 in normal stream number 7 Stream flow azea = 2.950(AC.) Runoff from this stream = 4.1611CFS1 Time of concentration = 12.74 min. Rainfall intensity = 1.848(In/Hr) ++++++++++++++++++++++++++++++++++i++++t++++++++++++++++++++++++++++++ ProCeSS from Point/Station 150.000 to Point/Station 152.000 "*'• INITIAL AREA EVALUATION •'"• Ini[ial area flow distance = 527.7801Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom IoE initial area) elevation = 2% .1201Ft.1 Dif£erence in elevation = 10.380(Ft.) Slope = 0.01967 s(percenU = 1.97 TC = k10.390)•[Ilength"3 V (elevation changel]^0.2 Initial area time of concentration = 10.503 min. Rainfall intensity = 2.055(In/HZ) for a 10.0 year storm SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A= 0.000 Decimal frac[ion soil group B= 0.953 ~ecimal fraction soil group C= 0.047 Decimal fraction soil group D= 0.000 AI index foz soil(AMC 2) = 56.61 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.3491CF51 Total initial stream area = 1.5201AC.) Pervious area fraction = 0.500 ++++++++a+++++++++++++++++++++++++++++++++++++~+++++++++++++++++++++++ Process from Point/Station 152.000 [o Point/Station 154.000 "*• STREET FLOW TAAVEL TZME + SUBAREA FLOW ADDITION '"" Top of street segmen[ elevation = 256.120~Ft ' Page v~ 1 ~ , ' ' ' ' 1 ' , ' ' ' ' , , ~ ' A~o.out End of street segment elevation = 298.700(Ft.) Length of street segment = 792.080(Ft.) Height of curb above gutter flowline = 6.0(In.) Width o£ half stzeet (curb to crown) = 16.OOOIFt.1 Distance from crown to crossfall grade break = 16. OOO~FL ~ Slope from gutter to grade break 1v/hz1 = 0.067 Slope from grade break Co crown ~v/hz) = 0.020 Street flow is on [1] side~s) of the s[reet Distance from curb to property line = S.SOOIFt.I Slope £rom curb to property line (v/hz) = 0.020 Guttez width = 2.OOOIFt.) Gutter hike Erom flowline = 2.OOO~1n.) Manning's N in gutter = 0.0750 Manning's N Erom gutter to grade break = 0.0150 Manning's N from grade bieak to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.698~CFS) Depth of flow = 0.364~Ft.), Average velocity = 2 .401~FUs) Streetflow hydraulics at midpoint of street travel: Ha1E5tYeet flow width = 11.BSS~Ft.) Flow velocity = 2.90~Ft/s) ~ Travel Gime = 5.50 min. TC = 16.00 min. Adding area flow to street SINGLE FAMILY (1/9 Acre Lot) Ru[~ofE Coefficie[~t = 0.729 Decimal fraction soil group A= 0.000 Decimal fraction soil group e= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soi11~7C 2) = 56.00 Pervious area Eraction = 0.500; Impervious fraction = 0.500 Rainfall intensi[y = 1.630(In/HZ) for a 10.0 year storm Subarea runoff = 2.042(CFS) foz 1.7301AC.1 Total runoff = 9.3861CFS) Total area = 3 .25D(AC.) Street Elow at end of street = 4.386~CF5) HalE street flow at end of street = 4.386(CFS) Depth of flow = 0.382(Ft.), AveYage veloCity = 2 .503(Ft/S) Flow width ~from curb towards crown)= 12.751~Ft.) ++++++++++++++++++++t++++++++++++++ia+++a+++++~+t+++ ++++++++++++++++++ Process from Point/Station 159.000 Co Point/Station 169.000 '**" PIPEFLOW TRAVEL TIME ~Program estimated size) " '• Upstream point/station elevation = 298.700(Ft.) Downstream point/station elevation = 248.170(Ft.) Pipe length = 760.66(FL ~ Manning's N= 0.013 No. of pipes = 7 Required pipe flow = 4.386(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 9.3861CFS) Normal flow depth in pipe = ll.39(In.) Flow top width inside pipe = 17.3511n.) Critical Depth = 9.6311n.) Pipe flow velocity = 3.72(Ft/s) Travel time through pipe = 0.72 min. Time of concentration (TCI = 16.72 min. +++++r+++++++++++++++++++++++++++++r+++++++++~++++++++++++++++++++++++ Process Erom Point/Station 164.000 Go Point/Station 164.000 **"' CONFLUENCE OF MINOR STREAMS `*" Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.2501AC.) Runoff from [his s[ream = 4.386(CFS) Time of concentration = 16.72 min. Rainfall intensity = 1.591(In/Hr) ++++++++a+++++++++++++++++++++++i++ra+++++++++i+++++++++++++++++++++++ Process from Point/SLation 158.000 to Point/Station 160.000 *"* INITIAL AREA EVALUATION «..: Initial area flow distance = 216.720(FC.) Top (of initial area) elevation = 260.500(Ft.) Page 6 2y ' ' ~ ' ' A~o.o~t Bottom (of ini[ial area) elevaCio~ = 259.900(Ft. Difference in elevation = 0.6001Ft.) Slape = 0.00277 s(percent~= 0.28 TC = k(0.390)*[(length^3)/lelevation change~]°0.2 Ini[ial area time of concentration = 10.889 mi~. Rainfall in[ensi[y = 2.019~1n/Hr1 for a 10 SINGLE FAMILY ~1/4 Acre Lot) Runoff Coefficient = 0.746 DeCimal fiaCtioR Soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Zmpervious Initial subarea runoff = 0.8271CF5) Total ini[ial stream area = 0.550(Ac Pervious area fraction = 0.500 0 year s[orm fraction = 0.500 , ~+++~+++++++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Poin[/Station 160.000 to Poin[/Station 162.000 •'"""` STREET FLOW TRAVEL 2IME + SUBAREA FLOW AODITION "" ' ' , ' ' ~ ' ' ~ , ' CII Top of stzeet segment elevation = 259.900(Ft.) End oP street segment elevation = 246.670(Ft.) Length of Street Segment = 1101.9001Ft.) Height of curb above gutter flowline = 6.O~1n.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16. OOO~Ft.) Slope from gutter to grade hzeak ~v/hzI = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.OOO~Ft.) Gut[er hike from flawline = 2.000 Qn.) Manning's N irt guCGer = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break Co crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.686fCF51 Depth of flow = 0.330(F[.), Average velocity = 2 .996(FUs~ Streetflow hydraulics at midpoint of stzeet travel: Halfstreet flow width = 10.1461Ft.I Flow veloCity = 2.SO~Ft/S) Travel time = 7.36 min. TC = 18.25 min. Adding area flow to street SINGLE FAMILY (1/4 ACie Lot) Runoff Ccefficient = 0.716 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 7.000 Decimal fiacCion soil group C= 0.000 Decimal frac[ion soil group D= 0.000 RI index for soi1~AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction - 0.500 Aainfall intensity = 1.5171Zn/Hr) for a 10.0 year s[orm Subarea runoff = 2.976(CFS) for 2.7401AC.) Total runoff = 3.8021CFS1 Total area = 3 .290(AC.1 Street flow at end of stree[ = 3.8021CF5) HalE street flow at end of street = 3.802(CF5) Depth of flow = 0.3551FC.), Average velocity = 2 .661(Ft/s) Flow width (from curb towards crown)= 11.4121FC.) +++++i+++++++++++++++.++++++++++++++++t+++++++++++++++~++++++++i++++~+ Process from Point/Station 156.000 to Point/Station 162.000 ••" STAEET FLOW TRAVEL TZME + SUBAREA FLOW ADDI2ION "`: Top of stree[ segment elevation = 259.700(Ft.l End of street segment elevaCion = 296.670(FC.) Length of street segmen[ = 785.310(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb Co crown) = 18.000(Ft.) Dis[anCe £IOm crown to Clossfall glade break = 16.000(Ft Slope from gutter [o grade break (v/hz) = 0.087 Page 7 ~ ' A~o. out ' _ Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the streeC Distance from curb to property line = 5.500(Ft.) Slope from curb to property line Iv/hz) = 0.020 ' Gutter width = 2.000(FL ) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning'S N from grade break to ciown = 0.0150 ' Es[imated mean flow rate at midpoint of s[reet = 4.606~CFS) Depth of flow = 0.358(FL ~, Average velocity = 3. 150(Ft/s) Streetflow hydraulics at midpoint of street travel: HalEstreet flow width = 11.557(Ft.) Flow velocity = 3.151Ft/sl ' Travel time = 4.16 min. TC = 22.40 min. Adding area flow [o street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Ccefficient = OJ09 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soi11~1C 2) = 56.00 , Pervious area fraction = 0.500; Impervious fraction = 0.500 RainEall intensity = 1.355(Zn/Nr) for a 10.0 year storm Subarea runoff = 1.325(cFS) for 1.3901AC.) Total runoff = 5.128(CFSI Total area = 4. 680(AC.I Stree[ flow at end of stree[ = 5.1281CFS) , Half street flow at end of street = 5.128(CFSI Depth of flow = 0.368(Ft.), Average velocity = 3. 230(Ft/s) Flow wid[h Ifrom curb [owards crownl= 12.086(Ft.) ' ++++++++++++++++++++++++++++++.+++++++++++++++++++++++++++++++++++++++ Process from PoinU Sta[ion 162.000 to Poin[/Station 164.000 `~`x pIpEFLOW TRAVEL TIME (Program estima[ed size) '"** ' Opstream poinUS[ation elevation = 246. 6701FL ) DownsCream poin[/sta[ion elevation = 24 1.870(Ft.) Pipe length = 14.19(FL ~ Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.128(CFS) 9. Neazest computed pipe diameter = 00(In.) , - Calculated individual pipe flow 5. 128(CFS) Normal flow depth in pipe = 9.68~1n.) Flaw top width inside pipe = 8.99(Sn.) Critical depth could not be calculated. Pipe flow velocity = 22.13(Ft/s) , Travel time through pipe = 0.01 min. Time of concentratio~ ITC) = 22.41 min . ' +++++~++a~++++++++++++++++++i++++i++++++++++++++++.+++++++++++++++++++ Process from Point/Station 169.000 to Point/Station 164.000 "'+ CONFLUENCE OF MINOR STREAMS '**` Along Main Stream number: 2 i~ normal stream number 3 Stream flow area = 9.680(AC.) ' Runoff from this stream = 5.1281CFS) Time of concentration = 22.91 min. Rai~fall intensity = 1.35911n/Hrl Summary of stream data: , Stream Flow Yate TC Rainfall Intensity No. (CFS) ~min) (In/Hr) ' I 9.161 12J4 1.848 2 4.386 16.72 1.597 3 5.128 22.91 1.354 Largest stream flow has longer time of concentration ' Qp = 5.128 + sum of Qb Ia/Ib 4.161 " ~.733 = 3.049 Qb Ia/Ib ' Page 8 2°~ ' , 9.386 " 0.851 = 3.733 Qp = 11.910 Total oE 3 streams to co~fluence: , Flow rates before confluence point: 9.161 9.386 5.128 Area of streazns before confluence: 2.950 3.250 4.680 Results of con£luence: ' Total flow rate = 11.910(CFS) Time of concentration = 22.412 min. Effective stream area after confluence = AlO.out 10.880(AC.) ' ++++++++++++++++++++++++++++++++++++++++++++.+++++++++++ Process from Point/Station 169.000 to Point/Station "" pIpEFLOW TRAVEL TIME (PYOgYam estimated Size) "" ' ' , ' 102.000 Upstream point/station elevation = 241.870(Ft.) Downstream point/station elevation = 240.870~Ft.~ Pipe length = 283.75{Ft.) Ma~ning's N= 0.013 No. of pipes = 1 Aequired pipe flow = 11.9101CFS) Nearest computed pipe diameter = 24.OOIIn.) Calculated individual pipe flow = 11.910(CF51 Normal flow depth in pipe = 17.58(In.) Flow top width inside pipe = 21.25(In.) Critical Depth = 14.87(In.) Pipe flow velocity = 9.83(FC/s) Travel time [hrough pipe = 0.98 min. Time of concentration ~TC) = 23.39 min. +t++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ProCess from Point/Station 102.000 to POin[/Station 102.000 '••` CONFLUENCE OF MAIN STREAMS " " The following data inside Main Stream is listed: In Main S[ream number: 2 , Stream flow area = 10.880(AC.) Aunoff from Chis stream = 17.910~CFS) Time of concentration = 23.39 min. ' Rainfall intensity = 1.323(In/Rr1 Summary of s[ream data: StYeam Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) t 1 5.951 11.13 1.990 2 11.910 23.39 1.323 Largest s[ream flow has longer time of concentration Qp = 11.910 + sum oE , Qb Ia/Ib 5.951 * 0.665 = 3.956 Qp = 15.865 Total of 2 main streams to confluence: ' Flow rates before confluence point: 5.951 11.910 Area of streams before confluence: 9.110 10.860 ' Aesults oE confluence: Total Elow rate = 15.865(CFS) Time oE concentration = 23.392 min. ' _ Effective stream area after co~fluence 19.990~AC.) ++++++.++++++++++~+++++++++i++++a+++++++++++++++++++++++++++++++++++++ ' Pzocess from Point/Statiort 102.000 to Point/Stae4on 104.000 " PIPEFLOW TRAVEL TIME (Program es[imaCed Size) ' Upstream point/sCation elevation = 290.870(Ft.) ' Page 9 nq,~ Yy , , ' ' ' ' AlO.out ~ownstream poinV station elevation = 239.900(Ft.) Pipe length = 276.91~Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 15.865(CFS) Nearest computed pipe diameter = 24.OOlIn.) Calculated individual pipe flow = 75.8651CFS) Normal flow depth in pipe = 18.89(In.) Flow top width inside pipe = 19.65(In.) Critical Dep[h = 17.2311n.) Pipe flow velocity = 5.98(Ft/s~ Travel time through pipe = 0.77 min. Time of concentration (TC) = 29.16 min. ++++.++++++++++++++++++++++++++++++++++++++++++t++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 109.000 *~"" CONFL[IENCE OF MINOA STREAMS " " , Along Main Stream number: 1 in normal stream number 1 Stream flow area = 14.990(AC.) Runoff from this stream = 15.865(CFS) Time of concentration = 24.16 min. Rainfall intensity = 1.299(In/Hr) , ++++++++++++r+++++++++++++++++++++++~+++++++++++++++~+++++++++++++++++ Process from Point/StaGion 110.000 to Point/Station 112.000 "*`x ZNITIAL AREA EVALUATION " " ' ' ' i , t ~ ' , 1 ' Initial area flow distance = 255.8~0(Ft.) Top Iof initial areal eleva[ion = 275.100(Ft.) Bottom (of initial areal elevation = 273.900(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.00665 slpercent)= 0.66 TC = k(0.390)'[(length^3I/Ielevation changel]^0.2 Initial area time of concentration = 9.766 min. Rainfall intensity = 2.13911n/Hr) for a 10.0 yeaz stocm SINGLE FAMILY (1/4 Acre Lot) Rur~ofE Coefficient = 0.802 Decimal fraction soil group A= 0.000 Decimal frac[ion soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soi1~AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.8741CFS) Total initial stream area = 0.510(AC.I Pervious area fraction = 0.500 +++++i+++++++++++++++++++++++++++++++++++a+++++++++++++++++++++++++~++ Process from Point/Station 112.000 to PoinC/Station 119.000 •~" STRE6T FLOW TRAVEL TIME + SUHAREA FLOW ADDITION '~" Top of street segment elevation = 273.900~Ft.) End of Stree[ Segment elevation = 251.7001Ft.) Length of street segmenC = 591.9001F[.) Heigh[ of curb above gutter flowline = 6.0(In.) Width of halE street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.OOOIFt.) Slope Erom gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 S~reet flow is on (1] sidels) of the street Distance from curb to property line = 5.500(Ft.) Slope Erom curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.l Gutter hike from flowline = 2.OOO~1n.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.860~CFS) Depth of flow = 0.253(Ft.1, Average velocity = 3.5231Ft/s) Street£low hydraulics a[ midpoint oE street travel: Halfstree[ flow width = 6.3351Ft.) Flow veloCity = 3.52~Ft/s) Page 70 Y , ' ' ' , AlO.out Travel time = 2.80 min. TC = 12.57 min. Adding area flow to street l1NDEVELOPED ~pooi cover) subarea Runoff Coefficient = 0.806 Decimal fraction soil group A= 0.000 Decimal £ractiort soil group B= O.D00 Decimal fraction soil group C= 1.000 DeCimal £raCtiOn SOil group D= 0.000 RI indeX £oi Soi11AMC 2) = 86.00 Pervious area fraction = 1.000; Imper vious fraction = 0.000 Rainfall intensity = 1.862(In/Hr) for a 10.0 year storm Subarea ranoff = 1.726(CFS) for 1.1501AC.1 Total runof£ = 2.600~CF5) Total area = 1 .660(AC.) Street flow at end of street = 2. 600(CFS) HalE street flow at end of street = 2.600~CF5) Depth of £low = 0.2771Ft.), Aveiage VeloCity = 3 .769(Ft/5) Flow wid[h (from curb towards crown)= 7.505(Ft.) ' ~+++++++++++t++++++++++++++++++++++++++++++++++++++++++++++++++++~++~+ Process from Point/S[a[ion ll4.000 to Point/Station 116.000 "`• STAEET FLOW TAAVEL TIME + SUBAREA FLOW ADDZTION *""' ~ J ' , ' ' , ' ' ' ' ' ~ Top of s[ree[ segment elevation = 251.700(Pt.) End of street segmen[ elevation = 239.800(Ft.) Length oE street segment = 995.400~Ft.) Height of curb abwe gutter flowline = 6.0(In.) Wid[h of half street (curb to crovml = 18.0~0(Ft.) Distance Erom crown to crossfall grade break = 16.0001Ft.) Slope from gu[ter to grade bzeak (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 S[reet flow is on [1] side(s) of the street Distance from curb to property line = S.SOO~Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gut[er hike from flowli~e = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 EstimaCed mean flow rate at midpoint of s[reet = 9.0991CFS1 nep[h of flow = 0.361(Ft.), Average velocity = 2.696(Ft/s) Stree[flow hydraulics at midpoint of street travel: Halfstreet flow width = 11.727(Ft.l Flow velocity = 2.701Ft/s) Travel time = 6.15 min. TC = 18.72 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficien[ = 0.739 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.570 Decimal fraction soil group C= 0.430 Decimal fraction soil group D= 0.000 RZ index for soil U~7C 2) = 61.59 Pervious area fraction = 0.500; Impervious frac[ion = 0.500 Rainfall intensity = 1.99511n/Hr) for a 50.0 year storm Subarea runoff = 2.095(CFSI for 1.BSOIAC.) Total runoEf = 9.645(CFS) Total area = 3.510(AC.) Street flow aG end of street = 4.695(CFS) Half street Elow at end of street = 4.695(CFS) Depth of flow = 0.375(F[.1, Average velocity = 2.784(£t/s) Flow width Ifrom curb towards crownl= 72.9161Ft.) a++a++a+a++++at+++t«+++++++++++++++++++++++t++++++++t++++t++++++++++t+ Process from Point/Sta[ion ll6.000 to Point/Station 109.000 "•• PZPEFLOW TRAVEL TIME (Piogram estimated size) "'w Upstream point/s[ation elevation = 239.800(Ft.) Downstreazn point/station elevation = 239.4001Ft.) Pipe length = 16.26(Ft.) Manning's N= 0.013 No. oE pipes = 1 Required pipe flow = 9.645~CF5) Nearest computed pipe diameter = 12.00 Un.~ Calculated individual pipe Elow = 9.6951CFS) Normal flow depth in pipe = 8.36(In.l Page ll ~1 ~ ' A~o.ovt Flow Lop width inside pipe = 11.09~1n.) Critical Depth = 10.75~Sn.) Pipe flow velocity = 7.96(Ft/s) TYavel time through pipe = 0.03 min. ' Time of concentration (TC) = 18 JS min. ~++++++++++++++++++++++++++++i++++++++++++++++++++++++++++++++~+++++++ 000 to Poin[/Station 109.000 Process from PoinC/Station 104 ' * *" * CONFLUENCE OF MINOR STREAMS ' Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.510(AC.) Runoff from this stream = 4.645~CF5) , Time oE concentration = 18.75 min. Rainfall intensity = 1.999(In/Hr) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++~++++++++++i++++++++ Process from Point/Station 180.000 to Point/Station 182.000 *•*' INZTIAL AREA EVALUATION `:" Initial area flow distance = 295.9601Ft.) ' Top lof initial area) elevation = 275.100(FC.) Bo[tom (of initial area) elevation = 266.SOOIFL ~ Difference in elevation = 8.6001Ft.) Slope = 0.02906 s(percent)= 2.91 TC = k(0.390)'[(length^3~/(elevation changel]"0.2 ' Initial area time of concentration = 7.707 min. Aainfall i~[ensity = 2.436~1n/Hr) £or a 10.0 year storm SZNGLE FAMILY ~1/4 ACie Lot) Runoff Coefficient = 0.811 DeCimal fraCtion Soil group A= 0.000 ' Decimal fraction soil group B= 0.000 Decimal fraction soil gioup C= 1.000 Decimal fraction soil group D= 0.000 ' RI index for soill/+MC 21 = 69.00 Pezvious area fraction = 0.500; Zmpervious fractiort = 0.500 Znitial subazea rvnoff = O.BSOICFS) Total initial stream area = 0.4301AC.) Pervious area fraction = 0.500 , , ' ' , ' ' ' +++~+++++++++++++++~+i++++++t+++~++++++++++t+++++++++t++++++++++++++++ Process from Poin[/Sta[ion 182.000 to Point/5[ation 189.000 '"" STREET FLOW TRAVEL TIME + SVBAREA FLOW ADDITION "*` Top of street segment elevation = 266.SOO~F[.) End of street segment elevation = 249.300fFt.) Length of street segment = 799.230(Ft.) Height of curb above gatter flowline = 6.O~1n.) Wid[h of half street Icurb to crownl = 18.000(Ft.) Distance from crown to crossfall grade break = 16. OOO~Ft.1 Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown ~v/hz) = 0.020 Street Elow is on (1] side(s1 of [he street Distance from curb to property line = 5.500(Ft.) Slope fzom curb to property line (v/hz) = 0.020 Guttez width = 2.OOO~Ft.) GutGer hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gu[ter [o grade break = 0.0150 Manning's N from grade break [o crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.599(CFS) Depth of flow = 0.297(F[.~, Average velocity = 3 .~57~Ft/s~ Streetflow hydraulics at midpoin[ of street travel: HalEstreet flow width = 8.505(Ft.) Flow velocity = 3.061Ft/s) Travel time = 9.36 min. TC = 12.06 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runof£ CoeEficient = 0.792 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Page 12 ~ ' ' , ' ' AlO.out Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index Eor soil(AMC 21 = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.904(Zn/Hr) for a 70.0 year storm Subarea runoff = 2.670(CFS) for 1.770(AC.I Total rurtoff = 3.5201CFS) Total area = 2.200(AC.) Street flow a[ end of street = 3.5201CF5) Half street flow at end of street = 3.520~CF5) Depth of flow = 0.3221FL ), Average velocity = 3.2721Ft/s1 Flow width (from curb [owards crown)= 9.743(Ft.) :,:i+++..++++++++++++++++t+++++++++++++++++++++++++++++..++++++++++++~ Process from Point/Station 189.000 to Point/Station 186.000 ~ STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ' Top of stree[ segment elevation = 249.300(Ft.) ' End of streeG segment elevation = 245.300(Ft.) Length oE street segmen[ 276.SOO~Ft.) Height of curb above gutter flowline = 6.0(m.) Width of halE street Icurb to crown) = 18.DOOIFt.) Distance from crovm to crossfall grade bzeak = 16. OOO~Ft.) ' Slope from gut[er to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 Stzeet flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb ta property line (v/hzl = 0.020 ' Gutter wid[h = 2.0001Ft.1 Gutter hike from flowline = 2.OOO~In.~ Manning's N in guttez = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ' Estimated mean flow rate at midpoint of street = 3.9281CFS) Depth of £low = 0.399(Ft.), Average velocity = 2 .8801Ft/5) Streetflow hydraulics at midpoint of street travel: , Halfstreet flow width = 11.124(Ft.) Flow velocity = 2.88~Ft/s) Travel time = 1.60 min. TC = 13.66 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lo[) Runof£ Coefficient = 0.798 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.734 Decimal fraction soil group C= 0.266 Decimal fraction soil group D= 0.000 xi index for soi11~1C 2) = 59.46 ~ Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.778(In/Nr) for a 10.0 year storm Subarea runoff = 0.678(CFS) for 0.510(AC.) Total runo£f = 4.198(CFS) Total area = 2 .710(AC.) Street flow at end of street = 9.198~CF5) , Half street flow at end of street = 4.198(CFS) Depth o£ flow = 0.355~Ft.), Average VeloCity = 2 .925~Ft/s) Flow width (from curb towards crownl= 11.9901Ft.) ' ++++++s+++++++++++++++++++++++t++++~a++~+++~++++++++ ++++++++.++++.++++ Process from Point/Station 186.000 to Point/Sta tion 168.000 "•' STREET FLOW TRAV6L TIME + SUHAREA FLOW ADDTTION "'* ' ~ ' ' Top of s[reet segment elevation = 295.300(Ft.l End of street segment elevation = 239.500(FC.) Length O£ Stieet Segmen[ = 289.9201Ft.) Height of curb abwe gutter flowline = 6.0(In.) Wid[h of half street (curb to crown) = 18.OOO~Ft.) Distance from crown [o crossfall grade break = 16.OOO~Ft Slope from gutter [o grade break (v/hz) = 0.087 Slope from grade break to crown iv/hz) = 0.020 Street flow is on [1) sidels) of the street Distance from curb to property line = 5.500(Ft.l Slope from curb to property line (v/hzl = 0.020 Gutter width = 2.OOO~Ft.) Gutter hike from Elowline = 2-000(In.) Page 13 /~ , ' AlO.out Manning's N i~ gutter = 0.0150 Manning's N Erom gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate aC midpoint of street = 4.353~CFS) ' Depth of flow = 0.394~Ft.~, Average velocity = 3.342(Ft/s) Streetflow hydraulics at midpoint of street [ravel: Halfstreet flow width = 10.893(Ft.) Flow velocity = 3.39(Ft/s) Travel time = 1.44 min. TC = 15.11 min. ' Adding area flow to stree[ COPII9ERCIAL SubaYea Cype Runoff Coefficient = 0.665 ' DeCimal fTaCtion Soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pezvious area fraction = 0.100; Impervious fraction = 0.900 ' AainEall intensity = 7.682(In/Hr) for a 10.0 year storm Subarea runoff = 0.291(CFS) for 0.200(AC.I Total runof£ = 9.4891CFS) Total aiea = 2.910~AC.) Street flow a[ end of street = 4.489(CFS) Half street flow at end of street = 4.489~CF5) ' Depth of flow = 0.3961Ft.~, Average velocity = 3.366(Ft/s) Flow wid[h (from curb towards crown)= 10.986~Ft.) +++++++++++++++++++++++++++++++++++~+t++++++++++t+ +++++++++++++++ ' *. PzoCess £rom Point/Station 186.000 to POin[/Sta[iOn 104.000 ..: • PIPEFLOW TRAVEL TIME (Program estimated size) '* Upstream point/station elevation = 239.SOO~Ft.) Downstream point/station elevation = 239.400(F[.1 ' Pipe length 27.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.9891CFS) Nearest compu[ed pipe diame[er = 18.00(In.) , Calculated individual pipe flow = 4.989(CFS) Normal flow depth in pipe = 11.1311n.) Flow [op width inside pipe = 17.49 Qn.~ Critical Depth = 9.7511n.) Pipe flow velociCy = 3.91(FU s) Travel time through pipe = 0.12 min. ' Time of concentra[ion (TC) = 15.22 min. ++++++r++i+a~++++++++.+++++++i++++~+++++++~+~+++++++++++++++++++++++t+ Process from Point/Sta[ion 109.000 to Point/Station 104.000 ' • CONFLUENCE OF MINOR STREAMS •*" Along Main Stream number: 1 in nozmal stream number 3 Stream flow area = 2.910~AC.) Runoff from this stream = 9.9891CFS) ' Time of concentration = 15.22 min. Rainfall intensity = 1.675(In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.865 29.16 1.299 , 2 4.645 18.75 1.494 3 4.989 15.22 1.675 Largest stream flow has longe[ time of concentration qp = 15.865 + sum oE qb Ia/Ib , 9.645 " 0.870 = 4.041 Qb Ia/Ib 9.989 ` 0.776 = 3.482 Qp = 23.398 ' Total of 3 streams to confluence: Flow rates before confluence point: 15.865 4.645 9.989 ' Page 14 / AlO.ouG Area of streams before confluence: 14.990 3.510 2.910 Results of confluence: To[al flow rate = 23.388(CFS) Time of concentra[ion = 24.164 min. Effective stream area after confluence = 21.410(AC.) End of computations, total study area = 21.41 (AC.) The folloWing figuYes may be used for a unit hydrograph study of [he same area. Area averaged pervious area fractionlAp) = 0.523 Area averaged RI index number = 62.1 Page 15 /` 1 ' A100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN EngineeYing Sof[waYe,(C) 1989 - 2001 VeYSion 6.9 ' Aational Hydrology Study Date: 03/17/06 File:Al00.out ______________ ___________'_'_____________'__' 850_0116 RORIPAUGH RANCH PA 14 & 15 AREA A 100-YR 1 HOUR STORM ' 3/19/06 SWL _ _ ___ _______________________________________________________ __ ___ _______ *`**•**** Hydrology Study Control Information " "•" " ' English (in-lb) Units used in input da[a file _______________________________________________"_______________________ Van Dell and Associates, Inc., Irvine, CA - S/N 953 _______________________'_'________________'_'_'_____'__________'"'______ Rational Method Hydrology Program based on ' Riveiside County Flood Control & Water Co~servation District 1978 hydrology manual Storm event (yeaz) = 100.0~ Antecedent MOiSCUYe Condition = 2 ' 2 yeaz, 1 hour precipita[ion = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 ' Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ' +++++++++++.+++++++++++++++w*++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 Co Point/Station 122.000 ' ... ' INITIAL AREA EVALUATION * " Initial area £low distance = 846 J80~FL ~ Top (of initial areal elevation = 266.500(Ft.) ' Bottom (of initial area) elevation = 249.300~Ft.) Differe~ce in elevation = 17.200~Ft.) Slope = 0.02031 s(percent~= 2.03 TC = k(0.3901`[(length"3 V lelevation change)]^0.2 Initial area time of concentration = 12.607 min. t Rainfall intensity = 2.830~1n/Hr) for a 100.0 year storm SINGLE FAMILY (1/9 Acre Lot) Aunoff Ccefficient = 0.820 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.023 t Decimal fraction soil group C= 0.977 ~ecimal Eraction soil group D= 0.000 RI index for soi71ANC 2) = 68.70 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 9.6941CF5) ' Total initial stream area = 2.OOO~AC.) Pervious area fractio~ = 0.500 ' ++++++++++~++++++++++++++++++++++i+++++++~++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 100.000 "^• PIPEFLOW TRAVEL TIME (Program estimated size) •'•' Upstream poinUstation elevation = 299.300~Ft.) ' DOwnStleam poinU station eleVatiOrt = 296.650(Ft.) Pipe length 25.39~Ft.) Manning's N= 0.013 No. of pipes = 7 Required pipe Elow = 4.694(CFS) Nearest computed pipe diameter = 9.00(In.) Calcula[ed individual pipe flow = 4.6941CFS) ' Normal flow depth in pipe = 6.49~1n.) Flow top width inside pipe = B.OB(In.) Critical depth could not be calculated. ' Page 1 Y ' ' , , ~ 1 1 ASOO.out Pipe flow velocity = 13.631Ft/s) Travel time [hrough pipe = 0.03 min. Time of concentratio~ (TC) = 12.64 min. +++++++++++++++++++++++++++++++++++++i++++++++++++++++++++++++++++++a+ ProCess from Point/StatiOn 100.000 to POint/Station 100.000 **** CONFWENCE OF MINOA STREAMS "•` Along Mai^ Stream niunber: 1 in normal stream number 1 Stream flow azea = 2.OOOIAC.) Runoff from this stream = 4.694(CF5) Time of concentration = 12.64 min. Rainfall intensity = 2.826(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Statio~ 730.000 to Point/Station 132.000 *"** IffiTIAL AREA EVALUATION " " Initial area flow distance = 193.3701Ft.) Top (oE i~itial area) elevation = 266.SOOIFC.1 Hottom (of initial area) elevation = 265.200~Ft Difference in elevation = 1.300(Ft.) Slope = 0.00907 slperce~tl= 0.91 TC = k10.3901'f(length^3)/(elevation change)]"0.2 Initial area time o£ concentration = 7.280 min. Rainfall intensity = 3.828~In/Hr) for a 100.0 year storm ' SINGLE FAMILY (1/4 ACIe LOt) Rumff Coefficient = 0.839 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 ' Decimal fraction soil group D= 0.000 RI index for soi11~C 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Znitial subarea runofE = 0.692(CFS~ ' ToLal initial s[ream area = 0.200(AC.) Pervious area fraction = 0.500 +aa+++++++++++++++++++++++++++++++++++++++++~~+++++++ ++++~++++++++ ~ * Process from Point/Station 132.000 to Point/Station 139.000 ..: • STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *'* Top of street segment elevation = 265.200~Ft.) End of stree[ segment elevation = 247.8001FL ) ' Length of s[ree[ segmen[ 632.1601Ft.) Heigh[ of curb above gutter flowline 6.OIIn.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.OOOIFt.) Slope fzom gut[ez to grade break (v/hz) = 0.087 , Slope from grade break to crown ~v/hz) 0.020 Stree[ Elow is on [1] sidelsl of the street Distance from curb [o property line = S.SOO~Ft.) Slope from curb to property line (v/hz) = 0.020 GutteY wid[h = 2.OOO~FL ~ ' Gutter hike fram Elowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 , Estima[ed mean flow rate at midpoint of street = 3.710(CFS) Depth of flow = 0.316(Ft.), Average velocity = 3.641~Ft/s) Streetflow hydraulics at midpoint of street travel: Nalfstreet flow width = 9.445(Ft.l Flow velocity = 3.691Ft/s) ' Travel time = 2.89 min. TC = 10.17 min. Adding area flow to street SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A= 0.000 ' Decimal fraction soil group B= 0.166 Decimal frac[ion soil group C= 0.839 Decimal frac[ion soil gronp D= 0.000 ' Page 2 ~~ ' , ' ' 1 ' 1 ~ 1 , , 1 ' ' ' u ' ' A100.out RI index for soil(AMC 2) = 66.84 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.185(In/Hr) for a 100.0 year storm Subarea runoff = 5.0041CF5) for 1.9101AC.) Total iunoff = 5.6461CF5) Total area = 2.110~AC.) Stree[ flow a[ end of street = 5.646(CFS) Half street flow at end of street = 5.6961CFS) Depth of flow = 0.353(Ft.1, Average velocity = 9.010(F[/s) Flow width (from curb towards crown)= 11.319~FC.1 +++++++++++++++++++++i~~+++++++++++++++++++++++++++.+++.++t+++++++++r+ Process from Point/Station 134.000 to Poi~t/Station 100.000 .+«+ pIpEFLOW TRAVEL TIME (Piogiam estimated size) **** Upstream point/sCation elevation = 247.8001Ft.) Downstream point/station elevation = 246.650(Ft.) Pipe length = 14.16~Ft.) Manning'S N= 0.013 No. of pipes = 1 Aequired pipe flow = 5.696~CF5) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.646(CFS) Normal flow depth in pipe = 6.3911n.) Flow top wid[h inside pipe = 11.97(In.) Critical Depth = 11.3311n.) Pipe flow velocity = 13.27~Ft/s) Travel Lime Chrough pipe = 0.02 min. Time of concentration (TG = 10.19 sin. +++s++++++.++++++++..+++++++++.+.++++++++a~+++a++++a++++~+++++++++++++ Process from Point/Sta[ion 700.000 to Point/Station 100.000 •'*• CONFLUENCE OF MZNOA STREAMS *'•' Along Main StYeam nUmber. 1 in [lOrmal stream numbel 2 Stream flow area = 2.110(AC.) Aunoff from [his stream = 5.646(CFS) Time o£ concentration = 10.19 min. Rainfall intensi[y = 3.18211n/Hr) Sw~unary of stream data: Stream Flow rate TC RainEall Intensity No. (CFS) (min) (In/Hr) 1 4.699 12.69 2.826 2 5.646 10.19 3.182 Largest stream flow has longer or shorter time of concentration Qp = 5.646 i sum af Qa Tb/Ta 9.699 * 0.806 = 3.795 Qp = 9.391 To[al of 2 streams to confluence: Flow rates before confluence point: 9.694 5.696 Area of streams before confluence: 2.000 2.110 Results of confluence: To[al flow rate = 9.391~CF5) Time of concentration = 10.191 min. Effective stream area after confluence = 4.110(AC.I r+++.+++++++++++++++++++++++a+ia++++++++++++i++ai++++++a+a++++++++++++ Process from Poirtt/Station 100.000 Co Point/Station 102.000 "'« pIpEFLOW TRAVEL TIME (Program estimated Size) '•'• Upstream point/station elevation = 296.6501Ft.1 Downstream point/station elevation = 290.870(Ft.l Pipe length = 298.27(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.391(CFS) Nearest computed pipe diameter = 16.OO~1n.) Calculated iRdiVidual pipe flow = 9.391~CFS) Normal flow depth in pipe = 10.49(In.) Page 3 ~~ ' ' A100.out Flow top width inside pipe = 17 JS Un.) Critical Depth = 19.22~1n.) Pipe flow velocity = 8.78~Ft/s) Travel time through pipe = 0.57 min. ' Time of concen[ration (TC) = 10.76 min. f4#+i~fi~?#~t~i+li#+~+~14i'+#114~~+aali#~~i+t~++4~4~4~}i'~~++i~f~#!#~~iFi Process from Point/Station 102 000 to Point/Station 102.000 ' * *"* CONFLUENCE OF MAIN STREAMS «.x The following data inside Main Stream is listed: In Main Stream number: 1 Stream £loW aLea = 4.110(AC.) ' Runoff from this stream = 9.391(CFS) Time of concentration = 10.76 min. Rain£all intensity = 3.0881Zn/HY) ' Program is now starting with Main Stream No. 2 ++++.+a++i++++++++++++++++++++.+i+++++++++++++++++++t+++r+++++++++++++ PYOCess £YOm Point/Statio~ 190.000 to Point/StatiOn 142.000 "•' INITIAL AREA EVALUATION " " ' Initial azea flow distance = 262.220(Ft.1 Top (of initial area) eleva[ion = 266.500(FL ) eottom (of iniCial area) elevation = 263.900(Ft.) Difference in elevation = 2.600~Ft.) , Slope = 0.00992 s(percentl= 0.99 TC = k(0.390)*((lengih"3)/(elevation change)7^0.2 Initial area time of concentration = 9.105 min. Rainfall intensity = 3.385~1n/Hr) Eor a 500.0 year storm SINGLE FAMILY (1/4 ACre Lot) ' Runoff Coefficient = 0.794 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 t DeCimal fraCtiOn soil grOUp D= 0.000 RI index foY Soil(AMC 2) 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.155(CFS) Total initial stieam area = 0.430~AC.) ' Peivious aYea fYaCtion = 0.500 ++++++++++++++++++++++++++++++++++++++++++++t~a+++a++++++++++~++++++++ P:oCess fLOm Point/Station 142.000 to Point/Sta[ion 199.000 ' { ' STREET FLOW TRAVEL TIME + SOBAREA FLOW ADDITION ^" Top of street segment elevation = 263.900(Ft.) End of street segment elevation = 295.300(Ft.) Length of street segment = 722.9701Ft.) , Height of curb above gutter flowline = 6.0(In.) Wid[h of half stree[ (curb to crown) 18.000(Ft.) DisGance from crown Lo crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) 0.087 = Slope from grade break to crown ~v/hz) 0.020 ' Stree[ flow is on (1] side(sl of [he street Dis[ance from curb [o property line = S.SOOIFt.) Slope from curb Co property line (v/hz) = 0.020 , Gutter width = 2.0001Ft.) Gutter hike from flawline = 2.000(In.) Martning'S N in gutteY = 0.0150 Manning's N£YOm gUttei to grade break = 0.0150 Manning's N Erom grade 6reak to crown = 0.0150 Estimated mean flow rate at midpoirtt of street = 9.5401CF5) ' Dep[h of flow = 0.336(Ft.1, Average velocity = 3.716(Ft/sI Streetflow hydraulics at midpoint of street [ravel: Halfstreet flow width = 10.9651Ft.1 Flow Velocity = 3.72(Ft/s) Travel time = 3.24 min. TC = 12.35 sin. , Adding area flow Co SCreet SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.779 , Page 4 ~~ ' , ' ' , ' ' , ' ' ' 1 , ' ' ' aioo.o„e Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Aainfall intensity = 2.86311n/Hr) for a 100.0 year storm Subarea runofE = 5.624(CF51 for 2.520(AC.) Total runoff = 6.7791CF5) Total area = 2.9501AC.1 Street £low at end of street = 6.779(CFS) Half street flow at end of sCree[ = 6.7791CF5) DepLh of flow = 0.374~FC.), Average velocity = 9.061(Ft/s) Flow width (from curb towards crownl= 72.3881Ft.1 +++++++++++i+++++++++++~+++++++++t+++++t+++++++++++++++t+t++++++++++++ ProCess fiom Point/Station 194.000 to Point/Station 164.000 "" PIPEFLOW TRAVEL TIME (Progiam estimated size) '**' Ups[ream poin[/sta[ion elevation = 295.300(Ft.) Downstream point/sCation elevation = 291.870~Ft.) Pipe length = 25.40~FL ~ Manning's N= 0.013 Na. of pipes = 1 Required pipe flow = 6.7791CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.779(CFS) Normal flow depCh in pipe = 6.13(In.) Flow top width inside pipe = 12.00(I~.) CriCical depCh could not be calculated. Pipe flow velocity = 16.82(Ft/s) Travel [ime through pipe = 0.03 min. Time of concentration (TC) = 12.37 min. Process from Point/Station 169.000 to Point/Station **•' CONFLUENCE OF MINOR STAEAMS "*' Alwg Main Stream number: 2 in normal stream number 1 Stream flow area = 2.9501AC.) RunofE from this stream = 6.7791CFS1 Time of concentration = 12.37 min. Rainfall intensity = 2.860(In/Hrl ++++++++ 164.000 a+++++++++++++++++t+.++++++.+++++++++++++++++++++++++++++++++++~f++r++ Process flom POint/Station 150.000 to Poin[/StaCion 152.000 :«i+ INITIAL AREA EVALUATION "•' IniCial area flow distance = 527.780(Ft.) Top (of initial azea) elevation = 266.SOO~Ft.) Bottom (o£ initial area) elevation = 256.120~FL ) Difference in elevation = 10.380~Ft.1 Slope = 0.01967 5(percentl= 1.97 TC = k(0.390)*[(length^3)/~elevatio~ change~]^0.2 Initial area time o£ concentration = 10.503 min. Rainfall intensity = 3.129(In/xr1 for a 100.0 year storm SINGLE FAMILY ~1/4 Acre Lot) Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group e= 0.953 Decimal fraction soil group C= 0.047 Decimal fraction soil group D= 0.000 RI index Eor soi11~1C 2) = 56.61 Pervious area fraction = 0.500; Impervious frac[ion = 0.500 Initial subarea runoff = 3.754(CFS) Total initial stream azea = 1.5201AC.) Pezvious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' P*ocess £rom Point/Station 152.000 to Point/Station; 154.000 ' STR£ET FLOW TRAVEL TSME + SUBAREA FLOW ADDITION '* Top of street segment elevation = 256.120~Ft.) ' Page 5 v ' , , A100.ou[ End of street segment elevation = 298.700(Ft.) Length of street segment = 792.080(Ft.) Height of curb above gutter flowline = 6.011n.) Width of half street (curb to crown) = 18.OOOIFt.) , Distance from crown to crossfall grade break 16.000(Ft.) Slope from gutter [o grade break (v/hz) = 0.067 Slope from grade bzeak to crown (v/hz) = 0.020 Stree[ flow is on !17 sidels) of the street Distance from curb [o property line = S.SOO~FC.) ' Slope from curb to property line (v/hz) = 0.020 Gut[er width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 ' Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.890(CFS) Depth of flow = 0.419(Ft.), Average velocity = 2.685(F[/s1 ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.377(Ft.) Flow velocity = 2.691et/s) Travel time = 9.92 min. TC = 15.92 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.768 Decimal fraction soil group A= 0.000 ~ecimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 ' RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.500; Impervious £raction = 0.500 Rainfall intensity = 2.53911n/Hr) for a 100.0 year storm Subarea runoff = 3.368(CFS) for 1.730~AC.1 Total runo£f = 7.122(CFS) Total aYea = 3.250~AC.) , Street flow at end of street = 7.122(CFS) Half street flow at end oE s[reet = 7.122(CFS) Depth o£ flow = 0.937~Ft.), Average velocity = 2.811~Ft/5) ' Flow width (from curb towards crown~= 15.519(FC.) +++++++++++++++++++++a++++r++++++++++++++++++++++i++++++++++++++++++++ Pmcess Prom PoinG/$Ca[ion 154.000 to PoinUStation 164.000 ' x.«. pIpEFLOW TRAVEL TIME (Piogram estimated size) *'*` Upstzeam poinUstation elevation = 248.700(FL ) Downstream point/s[ation elevation = 248.1701Ft.) Pipe length = 160.66~Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.722~CF5) ' Nearest compu[ed pipe diameter 21.OO~1n.) Calculated individual pipe flow 7.1221CFS) Normal flow depth in pipe = 13.9911n.) Flow top wid[h inside pipe = 19.80 Un.) Cri[ical Depth = 11.BSlIn.) , Pipe flow velocity = 9.19(Ft/s) Travel time [hrough pipe = 0.69 min. Time of concentration (TC) = 16.06 min. ' ++++++++++++++++++r++++++++++++++++r+++.++++++++++++++++++++s+++~+++++ Pzocess from Point/Station 164.000 to Point/Station 164.000 *"' CONFLOENCE OF MINOR STREAMS '**' , Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.2501AC.) RunOf£ £rom thi5 Stieam = 7.122~CFS) Time of concentration = 16.06 min. ' Rainfall intensity = 2.978(In/Hr) +++++a~++++++++++++++++++++t+++++++++++t+++++++++++++++++++++++~++++++ Process from Point/Station 158.000 to Point/SGation 160.000 , «"•' SNITIAL AAEA EVALUATION " " Initial area flow distance = 216.720(Ft.) Top (of initial area) elevation = 260.500(Ft.l ' Page 6 ~~ , , I~ ,~ ~~ A100.out Bottom (oE initial area) elevation = 259.900(FC.) Difference in elevation = 0.6001Ft.1 Slope = 0.00277 slpercent)= 0.26 TC = k(0.390)"[(length^31/(elevation change)]^0.2 Initial area time of concentration = 10.989 min. Rainfall intensity = 3.068(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.785 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 21 = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.325(CFS) Total initial stream area = O.SSOIAC.) Pezvious area fraction = 0.500 ' ++++++i+++++++++++++++++++++++++++++a+++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 762.000 **"" STAEET FLOW TRAVEL TZMH + SUBAREA FLOW ADDITION ***' ' ~~ ' ' ' ' l__1 ' ' ' , i] Top of street se9ment elevation = 259.900~F[.) End of 5[ieet Segment elevation = 246.670~FG.~ Length of street segment = 1101.900(Ft.) Height of curb abwe gutter flowline = 6.O~1n.) Width of half street Icurb to crownl = 16.OOOIFt.1 ~istance from crown to crossfall grade break = 16. 000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Stree[ flow is on [1] side~s) of [he street Distance from curb [o property line = S.SOO~Ft.~ Slope fmm curb [o property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.OOOIIn.) Manning's N in gutter = 0.0150 Manning's N fYOm gutteY to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estima[ed mean Elow rate at midpoint of street = 9.626(CFS) Dep[h of flow = 0.379~Ft.), Average veloci[y = 2 .786(Ft/s1 Streetflow hydraulics at midpoint of street travel: Halfs[reet Elow width = 12.384~Ft.) Flow velocity = 2.79(Ft/s) Travel [ime = 6.59 min. TC = 17.96 min. Adding area flow to stree[ SINGLE FAMILY (1/9 Acre Lot) ftunoff Coefficient = 0.762 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 1.000 DeCimal fraction soil gLOUp C= 0.000 Decimal fraction soil group D= 0.000 RI index for 5oi1~AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.365(In/Hr) for a 100.0 year storm Subarea runoff = 4.9361CFS) for 2.7901AC.) Total runoff = 6.261~CFS) Total area = 3 .290(AC.) Street flow a[ end of street = 6.2611CF5) Half street flow at end of street = 6.2611CF5) Depth of flow = 0.407(Ft.~, Average velocity = 2 .999(FC/s) Flow width (from curb Cowards crown~= 14.015(Ft.) +++++++++~+++++++++++++++++ia++r+++++++++t+++++++.+++++.+++++~+++++~++ Process Erom Point/Station 156.000 to Point/Station 162.000 *R" STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *'"' Top of street segment eleva[ion = 259.700~Ft.) End of street segmen[ elevation = 296.6701Ft.) Length of street segment = 785.310(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb Co crownl = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft Slope from gutter to grade break ~v/hz) = 0.087 Page 7 ~ ' ' ' ' , ' ' ' '~ ' ' , ' A100.out Slope from grade break to crown iv/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from c~rb to propezty line = 5.500(Ft.1 Slape from curb to property line (v/hz) = 0.020 GutteY wid[h = 2.000(Ft.) Gutter hike from flowline = 2.OOO~Sn.) Manning's N in gutter = 0.0150 Manning's N Erom gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow iate at midpoin[ oE street = 7.589~CF5) Depth of flow = 0.910(Ft.~, Average velocity = 3.546~Ft/s) Streetflow hydraulics at midpoint of street travel: Nalfstree[ flow width = 14.186~Ft.) Flow veloci[y = 3.SSIFt/sl Travel time = 3.69 min. TC = 21.17 min. Adding area Elow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficien[ = 0.752 Decimal fraction soil group A= 0.000 Decimal fracGion soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soi117~1C 21 = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.128~1n/Hr) for a 100.0 year storm Subarea runofE = 2.223(CFS) for 1.390(AC.) Total runoff = 8.485~CF5) Total area = 4.680~AC.) Stree[ flow at end oE s[reet = 8.485(CFS) Half street flow at end of street = 8.985~CF5) Depth of flow = 0.923(Ft.), Average velocity = 3.642~Ft/s) Flow width (from curb towards crow~)= 14.841~Ft.) +++++++++++++++++++++++++++++++r++++++++++++++++++++++++++++++++++++++ Process from PoinC/Station 162.000 to Point/Station 164.000 "*' PIPEFLOW TRAVEL TIME (Program estimated size) "" Upstream point/station elevation = 296.670(Ft.) Downs[ream poinC/station eleva[ion = 241.870(Ft.) Pipe length = 19.191Ft.) Manning's N= 0.013 No. oE pipes = 1 Required pipe flow = 8.9651CF51 Nearest computed pipe diameter = 9.OO~1n.) Calculated individual pipe Elow = 8.985(CFS) No:mal flow depth in pipe = 6.56(In.) Flow Cop width inside pipe = 8.00(In.~ Critical dep[h could not be calculated. Pipe flow velocity = 29.58(Ft/5) Travel time Chrough pipe = 0.01 min. Time of concentration (TC) = 21.18 min. ++i++++++++++++++++++++++++++++++++++a+a++++++++++t++++++++++++++++it+ Process from Point/Station 164.000 to Point/Station 164.000 "'• CONFLIIENCE OF MINOR STREAMS " " ' Along Main S[ream numbez: 2 in normal stream number 3 Stream flow area = 9.680(AC.) Runoff from [his stream = 8.4851CF51 Time of concen[ration = 21.18 min. Rainfall intensity = 2.128~1n/Nr) ' , , Summary of stream data: StYeam FlOw rate TC No. (CFS) (mi[~) 1 6.779 12.37 2 7.122 16.06 3 8.985 21.18 Largest stream Elow has longer qp = 8.985 + sum of Qb Ia/Ib 6.779 ` 0.794 = Qb Ia/Zb Rainfall Intensity (INHr~ 2.860 2.478 2.128 time of concen[ration 5.093 ' Page 8 ~~ 1 ' A100.out 7.122 ` 0.859 = 6.116 4p = 79.694 ' Total of 3 streams to confluence: Flow rates before confluence point: 6.779 7.122 8.485 Area of streams beEore confluence: 2.950 3.250 4.680 ' Results af conflue~ce: Total flow ra[e = 19.6941CF5) Time of concentration = 21.181 min. Effec[ive stream area after confluence = 10.8801AC.) 1 ++++++++++++~++++++++++++++++++++++++++..++++++++++++++++++++++++++++a Process from Point/Station 169.000 to Point/S[ation 102.000 '•'* PIPEFLOW TAAVEL TIME (Program estimated size) *'"• ' Upstream point/station elevation = 241. 8701Ft.~ Downstream point/station elevation = 24 0.870(Ft.l Pipe length = 283.75(FC.) Manning's N= 0.013 No. of pipes = 1 Aequired pipe flow = 19.699(CFS) Neares[ compu[ed pipe diameter = 30. 00(In.) t Calculated individual pipe flow = 19. 6491CF5) Noimal flow depth in pipe = 20.4411n.1 Flow top width inside pipe = 27.96~1n.) Critical Depth = 18.05(In.) Pipe flow velocity = 5.52~Ft/s) ' Travel time through pipe = 0.86 min. Time of concentration (TC) = 22.09 min . 1 •+++t+++++++++r+++++++++++++~++++:..++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 *x'" CONFLUENCE OF MAIN STREAMS ' , The Eollowing data inside Main Stream is listed: Sn Main S[ream number: 2 Stream flow area = 10.880(AC.) Runoff from [his stream = 19.6991CFS) Time of concentration = 22.04 min. Rainfall intensi[y = 2.08211n/Hr1 ' Sununary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 9.391 10.76 3.088 2 19.694 22.09 2.082 Largest stream flow has longer time of concentration 4p = 19.699 + sum of ' Qb Ia/Ib 9.391 * 0.674 = 6.330 QP = 25.979 ' Total of 2 main streams [o confluence: Flow rates before confluence point: 9.391 19.694 Area of streazns before confluence: ' 9.110 10.880 Aesults of ConElueRCe: Total flow rate = 25.9791CF5I Time of concentration = 22.038 min. ' - Effective s[ream area after conEluence 19.990(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ , Ptocess fzom Point/Station 102.000 to Point/Staiion 109.000 "`" pIpEFLOW TRAVEL TIME ~Program estimated size) Upstream poin[/station elevation = 290.870(Ft.) ' Page 9 ~~ ' ' , A100.out Downstream point/station elevation = 239.400(Ft.) Pipe length = 276.91(Ft.) Man~i~g's N= 0.013 No. of pipes = 1 Aequired pipe flow = 25.974(CFS) , Nearest compuGed pipe diazneter =- 30.OOIIn.) Calculated individual pipe flow 25.974(CFS) Normal flow depth in pipe = 21.61~1n.) Flow tap width inside pipe = 26.93(In.) Critical Depth = 20.64(In.) ' Pipe flow velocity = 6.86(F[/s) Travel time [hrough pipe = 0.67 min. Time of co~cen[ration (TC) = 22.71 min. ' ++*+++++++++++++++++++++++++++++++++++.+++++++++++++++++++++++++++++++ PYOCess from POirtt/Station 109.000 to Poin[/Station 109.000 ** ` CONFLOENCE OF MINOR STREAMS " " ' Along Main Stream number: 1 ia normal StYeam numbeZ 1 Stream flow area = 19.9901AC.) Runoff Prom this stream = 25.974(CFS) Time of concentra[ion = 22.71 min. Rainfall intensity = 2.04811n/Hr1 1 ' ' 1 ' , , t ~ 1 1 ~ +++a++~+++++++++++++++++++++++++++++++++++++++++i+++++++++++++++++++++ Process from PoinL/Station 110.000 to Point/Station 112.000 •"~ INITIAL AREA EVALUATION *'*' Initial area tlow distance = 255.800(Ft.) Top (of initial azeal eleva[ion = 275.100~Ft.) Bottom (o£ ini[ial area) elevation = 273.4001Ft.1 Difference in elevation = 1.700(FL ~ Slope = 0.00665 s(percentl= 0.66 TC = k(0.390)*[~length^3)/lelevation change)]°0.2 Initial azea time of concentration = 9 J66 min. Rainfall intensity = 3.257~In/HY) for a 500.0 year Storm SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fiaction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fracCion = 0.500; Impervious fraction = 0.500 Initial subarea runo£f = 1.379(CFS) Total initial stieam area = 0.510(AC.) Pervious area fraction = 0.500 +++++++t++++~++++++++++t+++++++++++++++++++++~+++++++++i++++++++++++++ Process from Point/Station 112.000 to Point/S[ation 119.000 *~** STREET FLOW TRAVEL TIME + SUBAR6A FLOW ADDITION "*"* Top of street segmenC elevation = 273.400~F[.) End of street segment eleva[ion = 251.700(Ft.~ Length of street segment = 591.9001Ft.) Height of curb above gutter flowline = 6.0(In.~ Width of half s[reet (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16. Slope from gutter to grade break Iv/hz) = 0.087 Slope Erom grade break to croxm (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to proper[y line = 5.5001FC.) Slope from curb to property line Iv/hz) = 0.020 Gutter width = 2.000(FC.) Gutter hike from flowline = Z.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to czown = 0.0150 Estimated mean flow rate at midpoint of stree[ _ Depth of flow = 0.286(Ft.), Average velocity = 3 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.950~Ft.) Flow velocity = 3.871Ft/s) Page 10 ooocec 2.9331CF5) 867~Ft/5) ~~ ' , A~oo. out Travel time = 2.55 min. TC = 12.32 min. Adding area flow [o street UNDEVELOPED (pooz covez) subarea Runoff Coefficient = 0.837 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soillAMC 21 = 86.00 ' Pervious area fraction = 1.000; Impe rvious fraction = 0.000 Rainfall intensity = 2.86711n/HY) foL a 100.0 yeaY 5torm Subarea runoff = 2.7581CF51 £or 1.1501AC.1 Total runoYf = 9.1371CFS) Total area = 1. 660~AC.) Street flow a[ end of street = 4. 1371CFS) ' Half stree[ flow at end of street = 9.137(CFS) Depth of flow = 0.3131Ft.), Average velocity = 9. 170(Ft/sl Flow wid[h (from curb towards crown)= 9.3031Ft.) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 116.000 "" STAEET FLOW TRAVEL TZME + SUBAREA FLOW ADDITION "" ' 1 , ' , ' ' ' , ' ' ' Top of s[reet segment elevation = 251.700~Ft.) End of street segmenC elevation = 239.800(Ft.) Length of street segment = 995.900(Ft.) Height of curb abwe gutter flowline = 6.D~1n.) Width of half street (curb to crown) = 18.000(Ft.) DisCance from crown Co crossfall grade break = 16.OOO~FL ~ Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] sidels) of the stree[ DistanCe £iom Curb to propeYty line = 5.500(Ft.) Slope from curb to property line Iv/hzl = 0.020 Gutter width = 2.000(Ft.) Gut[er hike from flowline = 2.000(In.) Manning's N in gu[ter = 0.0150 Manning's N fzom gutter Co grade break = 0.0150 Manning's N Yrom grade break Co crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.942(CFS) ~epth of flow = 0.910(FL 1, Average velocity = 3.010(FV s) Streetflow hydraulics at midpoint of stzeet travel: Halfstreet flow width = 14.190~Ft.) Flow veloCity = 3.O11Ft/S) Travel time = 5.51 min. TC = 17.83 min. Adding area flow Co street SZNGLE FAMILY (l/9 ACie Lot) Runoff Coefficient = 0.782 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.570 Decimal fraction soil group C= 0.430 Decimal fraction soil group D= 0.000 RI index for soi11~7C 2) = 61.59 Pervious area £raction = 0.500; Imperviovs fraction = 0.500 Rainfall intensity = 2.339~1n/Hr) for a 100.0 year storm Subarea rano£f = 3.384(CFS) Eor 1.850(AC.) Total runoff = 7.521(CFS) Total area = 3.S10~AC.) Street flow at end of street = 7.521(CFS) Half street flow a[ end of street = 7.521(CFS) Depth of flow = 0.429(Ft.), Average velocity = 3.124~Ft/s) Flow width (from curb towards crown~= 15.102(Ft.) ++s++a++++++t++++++++++++++++++++++~~+++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 104.000 *"** PIPEFLOW TRAVEL TIME (PiogYam es[imated SiZe) '•" Upstream point/station elevation = 239.800~Ft.) Downstream point/staCion elevation = 239.400(Ft.) Pipe length = 16.26(Ft.l Manning's N= 0.073 No. of pipes = 1 Required pipe Ylow = 7.5211CF5) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe Elow = 7.521~CF5) Nonnal tlow depth in pipe = 9.6211n.1 Page 11 ~ 1 ~ 1 , A100.out Flow [op width inside pipe = 14.39~In.) Critical Depth = 13.0911n.) Pipe flaw velocity = 9.04(Ft/sl Travel time through pipe = 0.03 min. Time of concentration (TC1 = 17.86 min. +++++.++++++++++++++~++++++++++i++++++++++++++++++++++++++++++++++++++ Piocess from Point/Station 104.000 [o Point/Station 104.000 •"` CONFLUENCE OF MINOR STREAMS "'a Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.5101AC.) , Aunoff from this stzeam = 7.521~CFS) Time of concentration = 17.86 min. Rainfall intensity = 2.337(In/Hr) , +++++++a++++~++++i++++++++++++x..+++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 182.000 *'"' INITIAL AREA EVALUATION * Initial area flow distance = 295.960(Ft.~ ' Top (of initial area) elevation = 275.100(FL ) Bottom (of initial area) elevation = 266.500(Ft.) Difference in eleva[ion = 8.6001Ft.) Slope = 0.02906 s(percentl= 2.91 TC = k10.390)*[Ilength^3I/(elevation changel]^0.2 , Ini[ial area time of concentration = 7.707 min. Aainfall intensity = 3.710(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/9 Acre Lot) Runoff Ccefficien[ = 0.837 Decimal EYaCtion soil group A= 0.000 ' Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RZ index for soil(AMC Z) = 69.00 Pervious area fraction = O.SDO; Zmpervious fraction = 0.500 , Initial subarea runoff = 1.3% ~CFS) To[al initial s[ream area = 0.4301AC.) Pervious area Eraction = 0.500 ' ii++++++++t+t++++++a~~+~++.+++++++++a+++++++++++i+.+++++++++++++++++++ Process from Point/S[ation 182.000 to Point/Station 184.000 "^ STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "*" ' ~ ' ' ' ' ' Top Of Stleet segment eleVation = 266.SOO~Ft.) End of stree[ segment elevation = 249.300~Ft.) Length oE street segment = 799.2301Ft.) HeighC of curb above gutter flowline = 6.O~In.) Width of half street (curb to crownl = 18.000(Ft.) Distance from crown to crossEall grade break = 16. 000(Ft.) Slope from gutter to grade bzeak (v/hz) = 0.087 Slope from grade break to crown ~v/hz) = 0.020 Stree[ Flow is on [1] side(s) of the street Distance from curb to pzoperty line = S.SOOIFC.) Slope from curb to property line (v/hz) _ ~.020 Gutter width = 2.000(Ft.l Gut[er hike from flowline = 2.000(In.) Manning'S N in gutter = 0.0150 Manning's N from gutter [o grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Es[imated mean flow rate at midpoint of street = 9.086(CFS) Depth of flow = 0.335~FL ), Average velocity = 3 .385~Ft/s) Streetflow hydraulics at midpoint of street travel: Halfs[reet flow width = 10.399(Ft.1 Flow velocity = 3.39(Ft/sl Travel time = 3.99 min. TC = 11.64 min. Adding area flow to street SZNGLE FAMILY (1/4 ACYe LOt) RunofE Coefficient = 0.824 Decimal fraction soil group A= ~.000 Decimal fractiort Soil group B= 0.000 Page 12 ~~ , ' ' , A100.out Decimal fraction soil group C= 1.000 Decimal frac[ion soil group D= 0.000 xI index for soi111~1C 2) = 69.00 Pervious area fraction = 0.500; Zmpervious fraction = 0.500 Rainfall inCensity = 2.957(In/Hr) for a 100.0 year storm Subarea runoff = 9.3141CF5) for 1.7701AC.) Total runoff = 5.6501CF5) Total area = 2.200~AC.) Street flow at end of street = i 6501CF5) xal£ street flow at end of street = 5.650(CFS) Depth of flow = 0.365(Ft.), Average velocity = 3.650(Ft/sl Flow width (from curb towazds crownl= 11.921(Ft.l ' ++*++++t++++++++++++++++++t++~++++++++++t++.++.+++++++++*+++++++++++++ Process from Point/Station 189.000 to Point/Station 786.000 ** ' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "' ' ' ' ~ ' 1 ' ' Top of street segment elevation = 299.300(Ft.) End of street segment elevation = 295.300(Ft.) Length of street segment = 276.500(Ft.) Height of curb above gutter flowline = 6.0(I~.) Width oP half street (cuzb to crown) = 18.OOO~Ft.) Distance from crown to crossfall grade break = 16. 000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to czown (v/hz) = 0.020 SGreet flow is on [1] side(s) of the street Distance from curb to properry line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.1 GutCer hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate a[ midpoint of street = 6.304(CFS) Depth of floW = 0.397(Ft.), AveYage velOCitY = 3 .220(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.533(Ft.) Flow velocity = 3.22~Ft/s) Travel time = 1.93 min. TC = 13.07 min. Adding area flow to stree[ SINGLE FAMILY (1/9 Acre LoC) Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group e= 0.734 Decimal fraction soil group C= 0.266 Decimal frac[ion soil group D= 0.000 RI index for soi11~7C 2) = 59.46 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall inCensi[y = 2.7741m/Hr) for a 100.0 year storm Subarea runoff = 1.116~CF5) for O.S10lAC.) Total runoff = 6.7661CF5) Total area = 2 .710(AC.) S[reet flow a[ end of street = 6.766~CF5) Half street flow at end of s[reet = 6.7661CF5) Dep[h of Elow = 0.4051Ft.1, Average velocity = 3 .2751Ft/s) Flow width (Erom curb towards crownl= 13.926~Ft.) ' ++++++++++++++++t+++++++++++++++++++++++++a++++++a++i+++++++++++++++++ Process from Point/Station 186.000 to Point/Station 188.000 ***` STREET FLOW TRAVEL TIME + S[1BAREA FLOW ADDITION "" ' ' 1 ' Top of street segment elevation = 295.300(Ft.) End of stree[ segment elevation = 239.SOOIFt.1 Length of Street segment = 289.420~Ft.) Height oE curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.OOO~Ft.) Distance Erom crown to crossfall grade break = 16.OOOIFt Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown iv/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gut[er width = 2.000(Ft.1 Gu[ter hike fram flowline = 2.OOO~1n.~ Page 13 ' ' A100.out Manning's N in guLter = 0.0150 Manning'S N from gutter to grade break = 0.0150 Manning'S N fiom grade bieak to crown = 0.0150 Estimated mean flow rate at midpoint of stieet = 7.O151CF5) , Depth of flow = ~.3911Ft.), Average velocity = 3 .739(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.227(Ft.) Flow velocity = 3.791Ft/s) Travel time = 1.29 min. TC = 14.36 min. ' Adding area flow to street COFII4EACIAL SubaYea type Runoff Coefficient = 0.879 Decimal fraction soil group A= 0.000 Decimal fzaction soil group B= 1.000 ' Decimal Erac[ion soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soi11~7C 21 = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 ' Rai~fall intensity = 2.634(In/Hr) for a 100.0 year storm SubaYea runoff = 0.9611CF5) for 0.200(AC.~ Total runoff = 7.2261CFS) Total area = 2 .9101AC.) Street flow at end of street = 7.226~CFSI Half street flow at end of s[reet = 7.2261CFS) , Depth of flow = 0.394~Ft.), Average velocity = 3 .766~Ft/s) Flow width (fzom curb towards crownl= 13.388(Ft.) ++++++++.~+++++++++++++++++r++++++++++++++++++++++++ +++++++++++++++ ' Process from Point/Station 188.000 to Point/Station 104.000 "** PZPEFLOW TRAVEL TZME (Progzam es[imated size) ' .:. opstream point/s[ation eleva[ion = 239 .5001Ft.) Downstream point/station elevation = 2 39.900(FL ~ ' Pipe length 27.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.226~CFS) Nearest computed pipe diameter = 21 .OO~In.) Calculated individual pipe flow = 7 -226(CFS) ' Normal flow depth in pipe = 13.5911~.) Flow top width inside pipe = 20.07(In.) Cri[ical Depth = 11.93(In.) Pipe flow velocity = 9.391Ft/s) Travel time [hrough pipe = 0.10 min. ' Time of concentration (TC) = 14.97 mi n. +++++~+++++++++++t+++++++++++++++~~+++++++++a+++~a++~+++++i+++++++++++ ' P:ocess from Point/Station 109*000 to Point/Station 104.000 ' CONFLUENCE OF MINOR STREAMS ^* Along Main S[ream number: 1 in normal stream number 3 Stream flow area = 2.910(AC.) RunofE from this stream = 7.226(CFS) , Time of concentration = 14.47 min. Rainfall intensity = 2.624(In/Hr) Summary of stream data: ' Stzeam Flow ra[e TC Rainfall Eatensity No. (CFS) (min) (In/Hr~ , ' , ' 1 25.979 22.71 2.096 2 7.521 17.96 2.337 3 7.226 14.47 2.624 Largest stream flow has longer time of concentration Qp = 25.979 + sum of qb Ia/Ib 7.521 ' 0.876 = 6.590 4b Za/Ib 7.226 ' 0.780 = 5.639 4P = 38.202 Total of 3 streams to confluence: Flow rates before confluence point: 25.979 7.521 7.226 Page 14 ~~ ASOO.out Area of streams before confluence: 14.990 3.510 2.910 Results of confluence: Total flow rate = 38.2021CFS) Time of concentra[ion = 22.711 min. Effec[ive stream area aEter confluence = 21.910(AC.) End of computa[ions, total study area = 21.91 (AC.) The folloWing £igUreS may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction~Ap) = 0.523 Area aveYaged RI index number = 62.1 Page 15 ~~ , ' ~ 1 1 1 , ' II , ' , ~ , ' ' ' ' , ' AREA B FLOWCHART 2~~ ~EL=275.1 ZOH EL=275.1 L=146.1 2~2 EL=2742 ~EL=274.5 L=583.4 L=616.5 2~4 EL=257.7 212 ~EL=257.7 L=27.13 I 206 I v~ ' ' , B~o.out Riverside County Rational Hydrology Program CSVILCADD/CIVILDESIGN Engineering Software,~c) 1989 - 2001 Version 6.4 ' Rational Nydiology Study Date~ 03/14/06 File:BlO.out ________ ________________'__________ B50_0116 RORIPAUGH RANCH PA 14 & 15 AREA B 10-YR 1 HOUR STORM , 3/14/06 SWL ________________________________________________________________________ •"'**`**" Hydrology Study Control Snformation ***~**"'* ' English (in-lb) Vnits used in input data file ___________________________'________________________________________'___ Van Dell and Associates, Inc., Irvine, CA - S/N 953 , __________________________________________________________________'_____ Rational Method Hydrology Program based on Riverside CounCy Flood Control fi Watet Conservatio~ District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Mois[ure Condition = 2 , 2 year, 1 hour precipita[ion = 0.500(In.) 100 year, 1 hour precipitaCion = 7.200~1n.) Storm event year = 10.0 , Calculated rainfall intensity da[a: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ' ' +++++++++++++++++++++++++++++++++++++ f*+++++++++++++++++++++++++++. Process from Point/S[ation 200.000 to Point/S[aLion 202.000 ..: *' INITIAL AREA EVALUATION ' Initial area flow distance = 222.OOO~Ft.) Top (of initial area) elevation = 275.1001Ft.) , Bottom (oE initial area) elevation = 279.200~Ft.) DiEference in elevation = 0.900(Ft.1 Slope = 0.00405 slpercentl= 0.41 TC = k(0.390)'[(length°3)/Ielevation change)]^0.2 Initial area time of concentration = 10.187 min. ~ Rainfall intensity = 2.090(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lat) Aunoff Coefficient = 0.800 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 ' Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soi11P.MC 2) = 69.00 , Pervious area fracCion = 0.500; Impervious fraction = 0.500 IniCial subarea runofP = 0.7691CF5) Total initial stream area = 0.9601AC.) Pervious area fraction = 0.500 ' +.++++++++++..++.++++~++++++++++++++++++++++++++++++++++.++.++++++++++ Pzocess from Point/Statio~ 202.000 to Point/Station 209.000 *'** STREET FLOW TRAVEL TIME + SUBAAEA FLOW ADDITION ••*' Top of s[ree[ segment elevation = 274.2001Ft.) ' End oE sCYee[ Seynent elevaCion = 257.700(Ft.) Length of s[reet segmen[ 583.400(Ft.) Height of curb above gutter flowline = 6.OIIn.1 Width oE half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break 16.0001Ft.) ' Slope from gutter to grade break (v/hz) _ ~.087 Slope from grade break m crown iv/hzl = 0.020 Street flow is on [1] side(s) of the street ' Page 1 ~ , ' ' C t t ' ' ' , ' ~ L~ C , ' ' ' B10.out Distance from curb to pcOperty line = 5.500(FL ) Slope from curb to property line Iv/hz) = 0.020 Gut[er width = 2.000(Ft.) Gutter hike from flowline = 2.000(m.) Manning's N in gutter = 0.0150 Manning's N from gutter [o grade break = 0.0150 Manning's N from grade break to crown = 0.0150 EsGimated mean flow rate at midpoint of street = 1.9641CFS1 DepGh of flow = 0.2661Ft.~, Average velocity = 3. 209~Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstree[ flow width = 6.966(Ft.) Flow velocity = 3.21(Ft/s) Travel time = 3.03 min. TC = 13.22 min. Adding area flow to street SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.747 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.780 Decimal fraction soil group C= 0.220 Decimal fracLion soil group D= 0.000 RI index for soi11AMC 2) = 58.86 Pervious area fracCion = 0.500; Zmpervious fraction = 0.500 RainEall intensity = 1.811(In/Hr) for a 10.0 year storm Subarea runoff = 1.935(CFS) for 1.930(AC.) Total zunoff = 2.7031CFS1 Total area = 1. 6901AC.) S[reet Elow at end o£ street = 2.703(CFS) Half stzeet flow at end of street = 2-703(CFS) Depth of flow = 0.2891FC.), Average VeloCity = 3. 431~Ft/s) Flow width (from curb towards crown)= 8.131(Ft.l +++++++++++++++++++++++++++++++++++~++++++++++++++++++++++++++++++++++ Process from Poi~t/Station 204.000 [o Point/S[ation 206.OOD *"` PIPEFLOW TRAVEL TIME (Progtam estimated size) "'*^ Upstream point/station elevation = 257.7001Ft.) Downstream point/station elevation = 256.700(Ft.) Pipe length = 27.13(Ft.) Manning's N= 0.013 No. of pipes = 1 RequiYed pipe flow = 2.703~CF5) Nearest computed pipe diame[er = 9.00(In.) Calculated individual pipe £low = 2.703~CF5) Normal flow dep[h in pipe = 6.38(In.) Flow top width inside pipe = 8.1811n.) Critical Depth = 8.47(In.) Pipe flow velocity = 8.071Ft/sl Travel time through pipe = 0.06 min. Time of concentration (TC) = 13.27 min. +++++++++++++++++++++++++a++++++s+++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 Lo Point/Station 206.000 •••` CONFLOENCE OF MINOR STREAMS "** Along Main Stream number: 1 in nosmal stream number 1 Stream flow area = 1.8901AC.) Runoff from this stream = 2.703~CF51 Time of concentra[ion = 13.27 min. Rainfall intensity = 1.807~1n/Hr) a++~+++++++++++++++++++++++++++++++++.++++++++++++++++++++++++++++++.+ Process from Point/S[ation 208.000 to Point/Station 210.000 *"*` INITIAL AAEA EVALUATION " " Initial area flow distance = 146.1001Ft.) Top (of initial area) elevation = 275.100~F[.) Bottom (of initial area) elevation = 279.SOO~Ft.) DifEerence in elevation = 0.6001Ft.) Slope = 0.00911 slpercent)= 0.91 TC = k(0.390)`[Ilength^3)/(elevation change~7^0.2 Initial area time of concentration = 8.595 min. Rainfall intensity = 2.299(Zn/Hr) Eor a 10.0 year storm SINGLE FAMILY (1/9 Acze Lot) Runoff CoefEicient = 0.807 Page ~ ' ' ' ' , , 1 1 ' ' ' ' 1 ' ' ' 1 ' ~ aio.o„c Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 0.000 Decimal Eraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runofE = 0.370~CF51 Total initial stream area = 0.200(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++i+~++++++++++++++++++++~++++++++++++++++++ Process from Poin[/Station 210.000 to Point/Station 212.000 '*•` STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *"' Top of stree[ segment elevation = 274.500(Ft.) End of street segment elevation = 257.700(Ft.) LengCh of street segment = 616.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 76.000(FL ) Slope from gu[ter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance fzom curb to property line = 5.SOOIFt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.~ Manning's N in gutter = 0.0150 Manni~g's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint oE street = 1.3881CF5) Depth of flow = 0.299(Ft.), Average velocity = 2.957(Ft/s) Streetflow hydraulics at midpoint of stree[ tzavel: Halfstreet flow width = 5.856~FC.) Flow velocity = 2.96(Ft/s) Travel time = 3.97 min. TC = 12.07 min. Adding area flow to street SINGLE FAMILY (1/9 ACYe Lot) Runoff Ccefficient = 0.756 ~ecimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.715 Decimal fraction soil group C= 0.285 Decimal fraction soil group D= 0.~00 RI index for soil(AMC 2) = 59J0 Pervious area fraction = 0.500; Ispervious fraction = 0.500 Rainfall intensity = 1.909(In/Hi) for a 10.0 year stoim Subarea runoff = 1.582(CFSI for 1.1001AC.) Total runoff = 1.9521CF5) Total area = 1.300~AC.) Street flow at end of street = 1.9521CF5) Nalf street Elow at end of street = 1.952(CFS) Depth of flow = 0.267(Ft.I, Average velocity = 3.1581Ft/s) Flow width (from curb Cowards crown)= 7.0111Ft.) +++++++++++++++++++++++++++++++++++~++++++++++i+++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 206.000 ***' PIPEFLOW TRAVEL TIME (Program estimated size) "*' Upstream point/sta[ion elevation = 257.700~Ft.) Downstream point/station elevation = 256 J 00(Ft.) Pipe length = 16.30(Ft.) Manning's N= 0.013 No. of pipes = 7 Required pipe flow = 1.952(CFS) Nearest computed pipe diameter = 9.00(In.l Calculated individual pipe flow = 1.9521CFS1 Normal flow depth in pipe = 9.38(In.) Flow top width inside pipe = 9.0011n.) Critical Depth = 7.63(In.) Pipe flow veloci[y = 9.17(FC/s) Travel time through pipe = 0.03 min. Time of concentration ITCI = 12.10 min. s+i+a+++++++++++++++++++++a+++++++++++++++++r+++++++~+++++++++++++++++ Page 3 ~„1 ~1 ' B10.ou[ Process fros Point/S[ation 206.000 to Point/Station x^`" CONFLUENCE OF MZNOR STREAMS '*" 206.000 ~ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.300~AC.) Aunoff from this stream = 1.952(CFS) Time of concentration = 12.10 min. Rainfall intensity = 1.901(In/Hr) ' Suimnary oE stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) IIn/Hr~ 1 2.703 13.27 1. 807 2 1.952 12.10 1. 901 Largest stream Elow has longe[ time of concentration qp = 2.703 + sum of Qb Ia/Ib 1.952 * 0.950 = 1.855 qp = 9.559 Total of 2 streams to confluence: Flow rates before confluence point: 2.703 1.952 Area of streams beEore confluence: 1.890 1.300 Resul[s of confluence: Total flow rate = 4.559(CFS) Time oE concentration = 13.273 min. Effective stream area af[er confluence = 3.190(AC.) End of computations, total study area = 3.79 IAC.) The following figures may be used for a unit hydrograpri study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RZ index number = 61.2 Page 4 ~ ~ ' H~oo.ou~ Aiverside County Rational Hydrology Program CIVZLCADD/CIVILDESIGN Engineering SoEtware,(c) 1989 - 2001 Version 6.4 , Rational Hydzology Study Date: 03/19/06 File:B100.out 85~_0116 RORIPAUGH RANCH PA 14 & 15 AREA 8 100-YR 1 HOUR STORM ' 3/14/06 SWL _____________________________________________"_________________________ ....+.w.= Hydrology Study Control Information *"*•****** ' English (in-lb) UniCS used in input data file __________"_______________'______________________'___________________" Van Dell and Associates, Inc., Irvine, CA - S/N 953 t ___________'__________________________'____________'____'_______________ Rational Method Hydrology Program based on Riverside County Flood Control 6 Water Conservation District 1978 hydrology manual ' Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipita[ion = 1.200~1n.) Seozm event year = 100.0 ' Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope oE intensity dura[ion curve = 0.5500 ' +++++++++i+++++++++++a+++++++++++~~++ ++++++.+++..t++.+++++++++++ ' Piocess Erom Point/StaCion 200.000 to Point/Station 202.000 :.: :.: ` INITIAL AREA EVALUATION ` Znitial area flow distance = 222.OOO~Ft.) Top ~of initial azea) elevation = 275.100(Ft.) ' Bot[om (of initial areal elevation = 279.200(Ft.) Difference in elevation = 0.900(Ft.) Slope = 0.00405 s(percent)= 0.91 TC = k(0.390)*[~length^3)/(elevation change)]°0.2 Initial area time of concentration = 10.187 min. ' Rainfall intensity = 3.162(In/Hr) for a 100.0 year storm SINGLE FAMILY ~1/4 Acre Lot) Runoff Coefficient = 0.829 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 ' Decimal fraction soil group C= 1.000 Decimal fractio~ soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 , Initial subarea runoff = 7.2731CF5~ Total ini[ial stream area = 0.960(AC.I Pervious area fraction = 0.500 , ++++++++++++t+.+~++++++++++++++++++++++++a+++~+++++++++++++++~++++~++• Process from Point/Station 202.000 to Point/Station 209.000 r~xx STREET FLOW TRAVEL TIME t SUHAREA FLOW ADDITSON ""• Top of street segment elevation = 279.2001Ft.) ' End oE street segment elevation = 257.7001FC.) Length of street secpnent 583.9001FC.) Height of curb above gutter flowline = 6.0(In.l Width of half s[reet (curb to crovm) = 78.000(Ft.) Distance from crown Co crossfall grade break 16.000(Ft.) ' Slope from gutter to grade break (v/hz) = 0.08'1 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side~s) of the street , Page 1 W- \ ' ' B~oo.aut _ DisGance from curb to properCy line 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.OOOIIn.) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N trom grade break to crown = 0.0150 Estimated mean flow rate at midpoint of stree[ = 3.099~CF5) Depth of flow = 0.3001Ft.), Average velocity = 3.5351Ft/s) ' S[reetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.6601Ft.) Flow veloCity = 3.59~£t/S) ' Travel time = 2.75 min. TC = 12.94 min. Adding aiea flow to StYeet SINGLE FAMILY (1/4 ACie Lot) Runoff Coefficient = 0.787 Decimal fraction soil group A= 0.000 ~ecimal fraction soil group B= 0.780 ' Decimal frac[ion soil group C= 0.220 ~ecimal fraction soil group D= 0.000 RI index for soi11PS1C 2) = 58.86 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.790(In/Hr) for a 100.0 year s[orm ' Subarea runoff = 3.1421CF5) for 1.4301AC.) Total runo£f = 9.3551CF51 Total aiea = 1.890(AC.) Stzeet flow at end of street = 9.355(CFS) Half street flow at end of street = 4.355~CF5) Depth of flow = 0.328(Ft.), AVerage veloCity = 3.816(Ft/s) ' Flow width (from curb towards crown)= 10.072(Ft.) +r++++++++++++i++++++++++++++++++++++++++++++++++++ +++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 ' :::: '""` PIPEFLOW TAAVEL TIME (Program estimated SiZe) IIpsGream point/station eleva[ion = 257.700(Ft.) 256.700~Ft.) DownStYeam point/station elevatiOn = ~ Pipe length 27.131Ft.) Manning's N= 0.013 - No. of pipes = 1 Required pipe flow 9.355~CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.3% (CFSI Normal flow dep[h in pipe = 6.96(In.) ' Flow top width inside pipe = 11.85~1n.) Czi[ical Depth = 10.5111n.1 Pipe flow velocity = 9.23~Ft/s) Tzavel time through pipe = 0.05 min. , Time of concentration (TCI = 12.99 min. +++++++++++++++++++a++++++t++s+t+++~+++++++++++++t++++++++++++++++++++ ProCess fYOm Point/Station 206.000 to Point/Station 206.000 ' "*" CONFLUENCE OF MINOR STREAMS *"* Along Main 5[ream number: 7 in nOrmal stream number 1 Stream flow area = 1.890(AC.) , RunoEf from this stream = 4.355(CFSI Time of concentration = 12.99 min. Rainfall intensity = 2.785(In/Hr) 1 ++++.+++++++++++++++++++++++++^++++++++t++~++++++++++++++++++++++++++ Process from PoinC/Station 208.000 to Point/Station 210.000 '*** INITIAL AREA EVALUATION * " Initial area flow distance = 196.100(Ft.) ' Top (of initial area) elevation = 275.100~Ft.) Bottom (of initial area) elevation = 279.SOOIFt.) DifEerence in elevation = 0.600(Ft.) Slope = 0.00911 slpercentl= 0.41 ' TC = k(0.390)•[(length"3)/(elevation change)1"~.2 Initial area [ime of concentration = 8.595 min. Rainfall intensity = 3.999(In/Hr~ for a 500.0 year storm SINGLE FAMILY (1/9 ACre Lot) Rur~off CoefEicient = 0.839 ' Page 2 ~ 1 , , ' ' ' ' ' , ' ' ' , ' , ' ' ' B100.out Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 0.000 Decimal fraction soil group C= 1.000 Decimal £raction soil group D= 0.000 AI index for soi117u~7C 2) = 69.00 Pervious area fractio~ = 0.500; Impervious frac[ion = 0.500 Initial subarea runoff = 0.583(CFS~ Total initial stream area = 0.2001AC.) Pervious area fraction = 0.500 ++++++t+++++f+++++++++++++++++++++++++++++++a++++++i+a++++++++++++++++ Process from Point/Station 210.000 to Poin[/Station 212.000 "** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "*'• Top of s[reet segment elevation = 279.SOO~FL ~ End of 5[Yeet Se9ment elevation = 257.700(F[.) Ge~gth af street segment = 616.500(Ft.) Height of curb above gutter flowline = 6.OIIn.) Width of half street (curb to crown) = 18.OOO~Ft.) Distance from crown to crossfall grade break = 16.0001Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hzl = 0.020 Street flow is on [1] side(s) of [he sireet Dis[ance from curb to propezty line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Guttez width = 2.000(FC.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter Co grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.1861CFS) Depth of flow = 0.275~Ft.~, Average velocity = 3.2321Ft/s) Streetflow hydraulics at midpoint of street travel: HalfStreeC flow width = 7.914~Ft.) Flow velocity = 3.23(Ft/s) Travel Cime = 3 18 min. TC = 11.77 min. Adding area flow to s[reet SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficien[ = 0.795 Decimal fzaction soil group A= 0.000 Decimal fraction soil group B= 0.715 Decimal £raction soil group C= 0.285 Decimal fraction soil group D= 0.000 RI index Por soi1~AMC 2) = 59.70 Pervious area Eraction = 0.500; Impervio~s fraction = 0.500 Rainfall in[ensity = 2.93911n/Hr) Eor a 100.0 year storm Subarea rvnoff = 2.568(CFS) for 1.100~AC.) Total runoff = 3.151~CF5) Total area = 1.300(AC.) Street flow at end of street = 3.151~CF5) Half street £low at end of street = 3.151(CFS) Depth of flow = 0.303(Ft.~, Average velociGy = 3.997(F[/s) Flow width (from curb towards crown)= 8.800(Ft.) ++++++++++++++++++++++++++++++++~++++++++++++.~++++~++++++++++++++++++ Process from Point/StaCion 212.000 to Point/Station 206.000 '•"* PIPEFLOW TRAVEL TIME (Program estimated size) ""* Upstream point/station elevation = 257.7001Ft.) Downstream point/station elevation = 256.700(Ft.) Pipe length = 16.3~(Ft.) Manning's N= 0.013 Na. of pipes = 1 Required pipe flow = 3.151(CFS) Neares[ computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.i511CFS1 Normal flow dep[h in pipe = 5.9211n.) Flow top width inside pipe = 8.59(In.) Critical depth could not be calculated. Pipe flow velocity = 10.23(Ft/s) Travel time Chrough pipe = 0.03 min. Time of concentration (TG = 11.60 min. aa+t+++++~++t+++++++++t++t+++++++++++++++i++~++++++++t Page 3 ~~ , B100.out , Process from Point/Station 206.OOD to Point/S[ation 206.000 •t'* CONFLUENCE OF MINOR STAEAMS *'"* Along Main Stream number: 1 in normal stieam number 2 , Stream flow area = 1.300(AC.) Runoff from this stream = 3.1511CF5) . Time of concentration = 17.80 min. Rainfall intensity = 2.935(In/tir) ' Summary of stream data: S[ream flow rate TC Rainfall Intensity No. (CFS) (mirt) (In/HY) , 1 4.355 12.99 Z.~85 2 3.151 11.80 2.935 Lar9est stream flow has longer time of concentration qp = 4.355 + sum of ' 4b Ia/Ib 3.151 " 0.949 = 2.990 Qp = 7.394 Total of 2 s[reams to confluence: ' Flow rates before confluence point: 9.355 3.151 Azea of streams before confluence: 1.890 1.300 Results of confluence: , Total flow rate = 7.3491CF5) Time of concentration = 12.986 min. Effective stream area aEter confluence = 3.1901AC.) End of computations, total sCUdy area = 3.19 (AC.) The following figures may , be used for a unit hydrograph study of the same area. Area averaged pervious area fractionlAp) = 0.500 ' Area averaged RI index number = 61.2 , , , , 1 1 ' ' Page 9 V~