HomeMy WebLinkAboutTract Map 32358 Hydrology Study'
'
'
'
'
,
'
'
,
'
1
'
,
,
1
1
'
,
,
RIVERSIDE COUNTY FLOOD CONTROL DISTRICT
PA-22
TENTATIVE TRACT MAP 32358
RORIPAUGH RANCH
HYDROLOGY STUDY
August 2006
Prepared for.
Fiesta Development Company
470 E. Harrison Street
Corona, CA 92879
Prepared by:
VA Consulting, Inc.
~
~
catvsvL~rnvc
\
TABLE OF CONTENTS
1. INTRODUCTION ......................................................
2. RATIONAL METHOD ANALYSIS .........................
3. RESULTS ...................................................................
4. FIGURES ....................................................................
5. TECHNICAL APPENDICES .....................................
....... 1
....... 1
....... 2
....... 3
....... 4
i Z
'
'
1. INTRODUCTION
, PA 22 in Tract No. 32358 is a proposed single family reside~tial subdivisions located in
the City of Temecula, Riverside County, California. Tract No. 32358 contains 130 lots
' on approximately 20-acres. The proposed tract is bounded on the north by Long Valley
Channel, on the south by future South Loop Road, and on the west by Butte~eld Stage
Road and on the east by future PA 23 and PA 24.
' The proposed tracts are situated on a rough graded pad within the Long Valley Wash of
the Santa Gertrudis Creek watershed. In the existing condition, storm runoff generally
' sheet flows from south to north and collects in the existing Long Valley Channel.
Additional hydrology information for the existing condition is contained in the Drainage
Study for the CFD and Village Core Portion of Roripaugh Ranch in the City of Temecula
(Study), by David Evans & Associates, Inc., dated October 28, 2003.
, The tributary area for the hydrology study for Tract No. 32358 includes all of the lots
within the tract boundaries. The proposed condition will include the typical street
' sections sized to contain the 10-year runoff within the curbs and the 100-year flows
within the street right-of-way. The storm water runoff will be collected by two proposed
catch basins near the end of Street "A" and discharge to Long Valley Channel.
, This report contains the proposed developed condition hydrology study for the
subdivisions.
' 2. RATIONAL METHOD ANALYSIS
' The Riverside County Flood Control and Water Conservation District Hydrology Manual,
published in 1978, (Hydrology Manual) provided the guidelines and procedures for the
10- and 100-year Rational Method analyses. The parameters used for the rational
, method are summarized below.
• Hydrologic boundaries were based on street grading plans for the subdivisions
' as depicted on Figure 2, Hydrology Map, included in this report.
• The underlying hydrologic soil group is Type B, C and D as shown on Plate C-
1.53 of the Hydrology Manual.
t • The rainfall depths used in the rational method analyses were based on those
reported on Hydrology Manual Plates D~.3 and D-4.4 for the 2-year, 1-hour and
100-year, 1-hour storm events, respectively. These values were used to
' calculate the 1-hour rainfall intensity. The 10-year rainfall data was based on
values derived from Plate D-4.5, and the slope of the intensity/duration curve was
based on the information provided in Plate D-4.6.
' • The development density of Tract No. 32358 will be approximately 7 dwelling
units per acre or approximately 4000 square-feet per lot which is assumed to be
equivalent to condominiums with 65% impervious areas per Piate D-5.6.
' The rational method analysis was performed with software developed by CIVILDESIGN
Corporation for both the 10- and 100-year storm events. The software was designed to
' accept watershed data and perform rational method analyses in accordance with the
' X1Pmjedst850_011TENG~DOCU2EPIPA?2TTMMtlivlogyReporLOoc 1 ~
,
t Hydrology Manual. The software defines subareas and routing paths by means of
upstream and downstream node numbers, node elevation, travel distance, soil group,
, and type of conveyance. The Hydrology Map, Figure 2, shows the location of all node
numbers used in the rational method analysis.
' 3. RESULTS
The results of the Rational Method Hydrology Study are included in the Technical
' Appendices to this report. Table 3-1 below summarizes the peak discharges at each of
the proposed catch basins.
I ' Table 3-1
Rational Method Hydrology
Masimum 10- Year and 100-Year Storm Drain Flow Rates
' Downstream TribuGry Maximum Maximum
Catch Basins Node Area 10-Year Q 100-Year ~
~ Number (Ac) (cfs) (cfs)
! ' Calch Basin #1 16 6.19 10.35 16.43
, Catch Basin #2 19 426 7.09 11.1
' Catch Basin #3
Catch Basin #4 36
56 3.54 6.53
4
25 5
96 10.32
9
1
.
. .6
XWeqeUSl950_011TENG1DOCIREPWA22TfMhyEroloQyRepoM1doc 2 ~
1
' 4. FIGURES
I' Figure 1- Vicinity Map
~' Figure 2- Developed Condition Hydrology Map
,
,
'
'
,
,
1
'
'
'
1
'
'
'
' X~Projec[s1850_071TENG~DOC1ftEPWA22TfMhydrdogyReport.aoc ~
/
~
PROJECT SITE
HOT SPRINGS ROAp
~ ~'--~
d~' " . ~ ~ N~ ~
~~ f j~~ ~ GLIE ru i c /
~Y ACCE88 1 °~ ~~~
ACCE88 ~/
~/
anr oF ~cw- ~ ~
~~~~" ~
ACCEBa ~~ w-'~ ~
~I
i m
i~
~„F°~" i
i
~ ~i
i
i
~
~
~
~
VICNTY IIAAP
N.T.S.
THOMAS BROTHERS MAP REFERENCE
RIVERSIDE COUNTY 2001 EDITION
PAGE 929, E-7
~
N-
~
~o
5. TECHNICAL APPENDICES
,
~
JCW~ojerts~850_a11TENGDOCU2EP1PA22TTMhytlrolagyRe(wrt.doc A
w
C
B
e
B
... ___'_~_-.~..,,...~~_~_v _.
~EGEND ~~~~~~~.~~ti~ ~~i~~ ~~o~~ ~~~
-- so~LS ~~ou~ eou~~~a~: ~ ~ ~~~
A SOILS GROUP 6cSiGN~'tIC3AE
~ b r b~~TY ~ 7~~ ~~•<~a71~~b1R iF796f ~d.
i=-;:~;:~~. .~ ..
-HYOZOi o~v i~~lat~~u~! .._. _--- t;-- r-r~-r._, 5oco ~-~_..~_~ ----~~~
~
~.]Y
:l ~
~ ~ ..
~
I
..' 1 Y .
~ ( ;t ~ .
R ~
~
(
j
~
~ `
zi ~~
~,•i
__ ~
~ l ~.
~
~
-~- ~ ~` _~ ~-.
p~
I.
i'~, ., .,~~ ~V~
~~;r.,l'~...~' k'~t
It~~~
~- ~
V!., . :
. ~ 1 3.W.~+ ,~ .. ;.°~'
;`~~ 1 ~~~ ti ~: r7' I
~. i ' . .~ ?..u 1 ~ "
1 /9~
`~ ~~~~~ _~ ,
~-~(~~~# ~:A~ ..~ 1~,~1 ~ ~~ . ~Z. ~ o .. .
, ~~, ~ ~ ,,
' ~'~` ` ~
~~
i: h
~~ ~I,l ~... ~ F ~:
~n'
u ;. ~ ,~ r
e, i
~
:~"= ~ ~`~- ,1 .
~ . ~ ~ ~ ~a
~~ .
~ `/ ~Y c 1 i ~
~ S~ ~! M1 /~, ~
~.. } r :/ . .~ '
~^" T
-~Ia Y /
S~ +
~ ~ ~ ~ i ~
•VY ` _~
~ ~
~ ~ . y~ I a! ~.
~~ ~{ I~ ~
~ d R r' JJ
9~' r Y •~ y
- ~ ..n ~~~ ,~Y ` LS
~~ ~[~~~ ,r
..' I f m al1PA. ~~~,u ~
~ ~t ~~ ..
~ a ~`~
i;~~ ~F ^tiy'~^,.
~ O P '
~ ym.~ F'~~.
I °y
r
~ '
~ ~2' ~, 9~,;;;,'~, ,~~1; r,~ ~f~~~_i-~, .~.4n;~'""T~ J J .I
t .t f` -/ ~. O e ry j._i' I-~- 'r J.w 0 F Q
~ . ~ ` ~ " -.~: - _'K°-rf ~y T~ ' rs -~ F~- U
~j ~ ~ 1 // ~ z < ~ ~t 2 ~ ~
I x' ~. '. 3.rY . ~~, Q F- ~
-;" 1 6 .li ~e ~ ~° a ~~ IY~ U f!) n
'~". ....~ E ~WI,t.~ p o ~ '
"~ ~ : I i E ~ "~ '~` ~ ~,,~ ^ = Q
3 ° ~ -l ~~ r • ' ~ ..[ ~la Cf~ ~ Z 1 p~~
~ ~4~y/~ ~ o. ~_f . ~ '~~- `q~~L\~~r~~`~~ O O Q ~S . ..
_ -Ge ..3' ~0 4 ~ ; :
~~ °/ v. I°¢ ~ ~~ ` ~.,'.~ a~e~,c`;: y ~ > I
.r k~+le N~ ~( y~^'X~°r r~,~ : F a W ~ r
y `
~ p t~~~; ] ~ tn Q„' U d 5 d ~
, ~ y ~~ t l~' . Q Z
: ~~°-~~~ i ~ ~,~~i~ ~ ~~~~,} . ~ ~ Ir! ~
4~~~
.~~ > ~ a ^~ ~ ' W ~ r d
i
A_, I E ~ ~k }rj~ {~X ~~ ''~rnK ~ ' ° W 1
~ e. I ~::y~~~~~~~ ~ Y l~ 3° . ~'e,yb ff 4~ ,.. ~ ((7 !- (V
l ,~/
~ Y S Y ~ ~ ~
~ _,;~1~( #~it r+.~~~`~h 1M1 ~ ~ % ~ ~ ~oµY'~ ~ a
}° k ~ ~ ~ ~
i ~ ~ ~r~ ~'~ ~i -r~~ s tr,r~ ~ ~ . ~~"~` ~ d ~"~ o.
~ ~ ~ b q~` ~ k f : ~ ~
4° ~~+U~ ~t°' P~ e~~ (~~<~~ ~ tl
~~°~.' x~ ~~`' s ~/i~..` ~SGr X' (~- o y~ ~ ~L' i.. ~ ~ ~ ~
~ l3 ~ '¢ ~ ~y'i"l ~ ., .i { L t . t ~ ~ ~ ~~y~,` s ~ i Y J~~ ~ ~ 1
i~h i~+ y , 4 ., i 4 i .., ~,~ ~i-`,` ~h '-'?a1
4C ~ ~~N e '.`~, !,4 . .. ~ < . 1 ~ ~ i~~~~.
'a ?r k ~ i ~ ~i~ iJ y d0 ~ . F ~ ~,.
^~~ e.l ~ s ~(, \S ~~ ~ ~ . ~ at ~+1a~4 ~
~~,~,;..A~ v ~ ~~7. v i -~} f 6 v~.~~f ~.~"a~ x
~~_ ~ ~ , , ~~; ~~~, ~~~ ~ r,~ ~, ~. { ~ ~ ~~
I ~ ~ t~~ ~ d ~t y
~ c~ k : '4. - ~ ~ ( \ K' )~ l . ~ " 1 iie~
.v.ti J L j~ ~ x {1 i ~~ ~' ~ l % ' l/' ~~, a?- K t 58
. I ~~~ ~~~ `~ !~ o-~ ~ ; r '6t ' ~1 ~ j(-~,~ ir.. ~„r 1 ~~t'ti F ~~/ ~~ ,~~ ~ ~~~~~`~~ra~ ~
! ~
t .r T 7-"~~ ~, 5~ ,~' ~i ° ~~ 1 ~ `~ ~'"'* c'f+
'l~jl ~ . L f., a ( a.w `~ ~ ~~3 '~ ~~ lt~ " : j ~e ~ ,~
i ~, ~~ ~ y
'~+' ~ ~ t, g x ,-
~"" s ^~~~yr`~,~ „~.~~~ ~S1~1~ ~ 1 ~~Fi a~~ ~ J~s '' ti ~ .. U~~~~
L ~l~ y~ y~ t,~ ~ l~y\" I ~~ `G ^ ~ r~ Y `I 'v ;~,j ~ , ? ~ ~. I ~~Rf~.
~ a ~ ~".~ r Y`° e `''ti L ti - 5 ~~ ~~. y~r
u~ ^,4 T ~'~`~ ~'~1 ~ `'~,~ ra ' '~,..Y ~a ~,a~z. tiF -: *'a~°.
` ~ ~~ ~ ~ r~~ ~ tt i ~ _n ~ ~ ~ i ~
~ ~. e 1 .,> > Yr~ 4~
s.f ~~~~ ~~~ ~~ ~ x ~ :~1 f~ ~~~ ~ `j~ ~~~~ ~ 2'h, ^~'~i~ S
~ ~ ..l l~a _ ~ ~ ~ '; ~~~~: !
~ ~ ~/ ~ ~~v. F .~.x r /YJ- `ii~ , ,~ g ~rn, . q. ~ ~ t ~/ ^ \
L }~ "~ S ~l ~~ 'i
~ ~ . Y ~~ Y F ~Y N -$ }.E ~ .( ~ h ~ .
Y~ y c^ ~ .y i 1/ r v Pa a~ ~V I`~ ~'z
~ ~ ' ~i ~ '' , f ~ ~ .
] •~ ~ C ~ F ~
~ ~~ ~ L } rvYZr` ~ ~ ~ ~ ~I Y 'S °~ ~ ~fY,~34 ~.
` , ~ e~ y' ' ~ g~~ ~ '~D. ~ ~ i ~ ~ ,
6~ ,y llg' pj y 51 )c s~W~ ! x j'~ 1 ~`~ r ~~. i, n_~:~ 1. .'
~ ~ ~ ~o~ d ~~`r ~ i . .h ~ ~~ ~ ~{~ ~ f ~ ~i ~ ~ ~ ' y
.r ~ a ~ 4~ ~ t ~ ~J"'~ .'L . ,~ k~{.."' ~_~.
~ ,F ,9 i ~ ~f'"~-~ r c ~ ~ ~ ~' ~ ~ ~`~' ~r- r' r ~ 1p~
~ ~ i l? ~~A ~~ (~= i 1 z"ti i r ~~~a a ~ i a/ I f~v ~.
S . fi~ "+Ti ~ ' ~ ~ d I' I' ~ ' ,L ~' ~
~ ~~ ~~~~1~ ~ ~' `" W
°~~/ ~ ~ ~ ~ ' ~ ~ ~q ' ~z `',3~
> t ~,~(y ~.'~i ~ ,{^~ ~~Ty ~'~ f ~ v ~ tj ~ "{~ ~ r;,- i ~1 i ~ { p ~ N:
! r" ~1 ~ ' 4 l ~ ~ I H .. f ''~~~ ~ ~
,,-y'.~/ 1 ~' ~,~q~ T ~ .l~"~
ki:'~6./ 6~'1~'" ~.~~/~D>. 1 /~t_ ~.,~~ iT~'_ ~' ~ ~~56 ~~(~ K~ ~ ~ ( ~
~~i ~S t ~ k ~ ~ ~ ,s / -`d i ~~ i .
~S !~<~ r~ I r'~' r~ li ~~ ti..:n i P; i~ '4~ "t iy A~ ~~ /s °pp~t,i~ W
J l ~'J 4 P :' / o ~~u ~ . J I T ~i~. ! ~ /b l lu ~ ~~5~ 1`'1 ~~~, r- ~ '
{ 3~ 1 . ~ ""-~~ ` ~ 'F ~ x ~ ~
. , ,:-a bq ~,~ ~~ ,-, ~~ o- 9~ ~ ~. ~° r ~~~ ~ , ~,
~ ~ ~ ~t ~~ ~ { e ~ ~i ,~~ ~ R~~~ ,
~tF~ ~ ~/i ,' ..y ~~aaJj.~~ .~ .°'^^ , t ~.~ '~~~ v~ ~ a~yaJ..tl t ~ .
~ ~:. ~ I ( . ,, t S~ ~ ~' :~~ ~ Am~L~ 1 ~ j
@~ ~.'~vt ~ 1 1 ~~V ~tl~ ~ '~v ~~~ ~ 1 / 0 ~~ ~ `~j
r~ ~+A. ~ i r +,l ti^ i : t'1 iz s~ f t d'" -Jk ^* M1) ~~,y'+#' 1
~f , r , x
R ~ , YY~ a' ~~ J b 1 0~ 'Y. ~ ~~ ~.. ~'" t ~ F r ~ ~'/'`~~Z~i! ~ ~~Y s f ~ '
~( ., ~. ~. . ~. ~ y ~ d,~ Z P r~~, ~ `~ ~ ~r, a ~
~r i
. ~ F Nrw~rN ~ =,.~r ~~ ~ ~r ~~„ , ~~ ,
. ~ ~ ~.,. ~ ~` ,~~ ,~ ~r~~' t, ~ , ~ ,, ,
, 1 `~ `~ r , `~~ t e~ i, r~~ ~ f ~~(i t~ n
,`E ~4~^c ~~!_, aa X-~;a ~L t 1 ~V"`~c S
~ J w . ~Q; S~. , l Zo .'r I ~ f.'.. ,P ~ `l ~ ` ~ ~~
r
~:~ ~ ~~ , ~~ q~ a~(~ ~ .'~ f T11f .
~~ ~_ ,t.,. ~ r aii y }y, -i• m ~' r,~~i~ ~
c~ ~n h YtL",~-r, ~~~ ~ Y ~;. ;` _ %~ \ '~f,..~~~ ,y,^ ``i~ . ~ ~ j ~ `S., . ~ \ ~.~ \R i 4 '~';~i
5 qfY p
~ wY .~l'~ /~.~~~ tl r I ~~~S ~. p }'t 3 v_r ~ ,
~~ ~~_ ~$' A .:~ iy.' l'r~ a
\ ~ ~£ M ~ ~ y_ ~SCJyU' ~1 --~ ' -~~~c~ .,~ ~~
~~ ~ ~~~.:/~~" J ~y,r ~ 1'.a~~xc 4J, ~n\I ~.jr ^-tT ~ ~ ~}~~ f ~ 1~:
i ~ ry, 1 . ~ ~ / \ ~ x t ~r ~.~ 1 d \ . {~ ~ . ~5 p q/ ~ .
k'~'' ~VI ~' I ~~'~ ( Ia ~'C I`q4 i n , ~~ Fa' S :~~/ .
I d ' I ~ V ~ v~ z~ $
i ~ _t, r ~ ~~ ~.a ~.~ ]e ~ '~ ~ 2 2- rJJ ~ll ~ t
~ ~ ~ ~in ~!{ -t .`t
~N' ~ i .~~ ~ "> ~ ~F~ `,~[ v E ~~.. ' F ~ , `~' ~ u- ~"
G ~ ~ •. ~j ~ ~~ iio ~ ~ ~b ~ a ~' ~ F u ~ ~>~ r,~ ~C~ a;
~ A1 e`~ ~{ q °' j V
1 e F~~ ' ~ ~ it r. l F 1. ~ Tc:
~ ~~ 9'i ~; , :. ...~ ~~~ Y^ ~~~'
r ~. ~ ~ ~~~ ~~~ x
~I r ...~~..,.C~ ~.. ~ I #` i " ~I~ .:B ` .l. ~ t~i x ti~ r-' S
~~~ I,
M ; t~ L-FI VS{~~ ~ ~" ° = a~ qNi7 .~' ' ~ / ~. fi `~~~R» . I W ~..
~~ e ,~y ~~. s *~ ~ ..1 yl~ ~~. ' I
G ~.
~r. ~ r 1n . . ~i € .~.~~ *~~~ ~~y ~ t e ~ ~ ~ b ~ ~v +~
~: ~ ~.. ~ fl G^~t, 3 ' /'--w~ ~ ~ ~~ ~?i +I p kt . t
`y~ ti ~ . . ~~ 8 ...~ ~ li~.
~ . ~ {~~ v` 27 , , ` ~ '. ~ ~ ~ ~1 ~ ~ .
~--
a 4 {~v ~ ~ i
~ ~, ~ \1 : t ~~. ~ \~t Fe~^.~ k ._.. "'~ i ~- ~ '
~ \::'~ F~ ~ o" ~ t'~ ~} y+~'y. ~u;, .~ 4 1
s ~-~f ~ ~ I ''t . z ~ t/~ ~~~.r ~ M1~ .2"p :''3~ S5 . ~'t
~ ~;.
~ ~~ .~hr
~
aa~tl_ ~ ~.F.`°`~i ~?i+ :~ 1 { a ~~ $ 4 Q ~l x f ' ~~ax /y'':l 5r~ g23` < ~~ ~
e~.^~~ i q.--r{ -- o '~k r ' -~-. ~ ~ i ~~. i S ~~ Sy\~ .. °~ r - !~~ ~
~~ ~ '~ `~ °j ~4 0 r+~ + ~¢ ` °' f d ~ ~ s i ~~ nt~ ~ f T ~ ~ ~S~ ~~ i ~ %
~y ~ ~ ~ ~ ,_ ty s~ ~ ;! "i ~ ~ (: i ~~ "~ ~~ r ~ . ~ \,:~4 y ~ n. r ~,~,Sy .
~~" i~ ~} . ~. ~ ' i ~ o f. .. & ~r . 'y~ ~,+~~'~a. ~
~'~i,~. 3' la ~ ~.~` - ~ ~ ~ ~ .n ~ ~ , ;€ v~ ~}'~~ ~,1„ •~ A,y,y ~~ ,y
~ ~ y ~~
` ~ , ` ' ~ ` ~ ~ ' ~' ~_"~ f `~' ~" ? .~ s
r~ . ~ !h'"' J 'I, ~rt%° ~ ~s ~ a , r E ~ 5 ~L'~'^ ~ ~=a~,< ~_i- . +~T, .
~ ~ ~ ~//y~~4 L ~ ~ ~ g k ~ ~..i ~ i~ ~ ~ ~ i ~ p ~yl~Z. "~e,` f
~l J' ' 1 ~ ~ c > . ~ ~~ ~ ~ ~~~C ; n Y- ~ ~ ~ $ ; ~ ~ ~t'" a ~ ~.
s\... 5y .. ~ "' i ~ ~~ F~} .f~.6 .::~ ~~~~'~~~:.1~~ p~~~.~ ,
r . rc 5 }, , ~, /,~~v~y ~ ~^
5 ~~,~~,',q,{`jrt o 'C ~ 'r ~~ t e ~~`4 ~ ~~• `! ~ a~ ,s/~~'#," ~ 7 ",A~~#/~~I`~ I ~+~i ~ ,~€~~yy~~.
Y ~ol~{ . I. 4 -`y'1J ,G.~+' h ! ~~. Y,~ `. C S . J ~ rI'yg~ P i~ ~~.d~6 ~1~'M.-.;
w f
t.e~ . i y.,~ r ,~ ~ ii t~ ~ F ~14? E,~~,,,_l~gf~~i, t t~ wi
-y L . ~' ~ 1~^. Y ~ ~e"~ . ~ i "Ai ~ ~ ~ ~ ^., -( '~'~' ~"~.a'~'~'~ -~sk-~ .
~a 1 ; t { ~
~'". lyt£~.3~ . ., i `z ~~~if ,~3 y ~,? \ "4b ~,,,~~ 1.,.
~~~~ t~~:_ i. ~ T. ; r ~ +~~r `2 [ ~+ . ~~^c'~ r ~1]~~~~~ ~~ e"w~n x~ ~ J~~~ ~ ,
~ ~
. ~ ~ rf s, : r ,.,,~ k '~ % ~6, t ~t"J ~ ~, @[4yw<•~. ~<~ dN ` i - '~ .
-- . s R ~.~ x~i y' 1 . R q ~ . t }~ , ~ r ~ .7~
ti ~ - 1 ~i ' ~ ~ ' t ,~~ ,, .+, °,+„ ~ s s m ~t ! qr ~P
} ~ Tr ~ ; i Q~ ., i t J' e ~ l ~ ~ : rY i~; ~ ~ Qi}„~ ". '~' ? . ~ .Sr t' , a ~
~ ~;~ ,M~ FT'' ~ n ib r •r- ~ , . 1 ~ r~~~ .: ~- , .>i`- ~ ' i t ,
~ ~ ; ti ~1+~ J 1 ~~ N~ ' 'i ,
y"'.~ ~ t' ` y, .._ t ~5 KI^r/ 6 ~'4P ~ ~ TI `~ _' :~ ~R. oA /4
' /~ 3_
`€~ 4 ~:+F n / S. '(x ~ ~~Mq ihr~ ~qo.m~7ATj.~,w._ ~e n : j i %~/
~
.7~1 i ~ ° ..~ ~ 4 71yo.~.» m ~ R.P ~~' . ~[ . ~e ~ .
o F ~' ~~ K 5F ~`~ ~{W~ ~ C) ~ fi~ ~° / ~~ : .~` ~r i •.
' ._ .,i~ ~~ ,:~ '"O~.r yP' ~ z~ o~ ~ ~.~~ , c 1'%,~ ~+
;„ '. r 5 ' ~ ~+y ' Y $ , ~~y+. 0 ~~ /~~+k'=°' oi. ,G ; 4 .~ pa,f1 . 8 ~ ' ~y
~:.. ~ ~~ < ~,.,L ~ Jcc, ig7',-~ a ~ ~f~~~T~n ' ~ I ~~..~.. ~` ~ 3 ~ ni! °'.~ 's } m 7 ~ i ;~~
.y. + ~~t - o ~' r ~ ~- s Y ~ ', - -'
y ~~n ~ j'i' ~~i ~ l . ~~ ~ L~'^ ~ tal.~{!.,~, ~~~ A~ ~<., f ,i ,~ '.. ' L
s. ,-.F t"~ ~ ~d'..1~~ ~~ ~ ~~ ~E
>:'. ~ :~ 3 "- `rR i yss ~-^ ~~~ rc/ ~ ~ ~~
~ v i .,i '~, ~ ~- ~ - I ~yb °s e ti ~ 1. ~ ~ i ..
~ . .f . ,.~~ ~ ~~. .:Nry ~ ~ .. iiA;x x~mr'~; , ~; ~'.,y ~
~ .T~ I 1 , Y ~ ~ ~ ~ 1'+RO ~ ~J - ,o ° !~C T i ~,~ .' i
~ y ~ :~ ~ ltf mI ~ 9q - l ° r 'a
~ i F ~ p i
I{~ i~ ~ ~ ~} j ~~'; ~'I i ~ a ~'~' ' y [ ' y~. ^Fl ~.~ >r r. ~ {
~_~ J Ft2a~i~ ~r ~ i +s Y-/ ~ ~ ~~~~i r'~ -~ ~` -0 'F ~n. ~ S
~ I W ,~ 4,~ ~ ~ ~ " ."~~~k~~"~~ i
~ ~` {`"r a " dr v'1'L Z ~' , s /
~ -! o o r > 3 ~ fj ~ j~ ~ ~i 1 i ~ -
~k,~ 131 vJ ~ :. ~ . l {.-~' G1~ ~~ l ~~ y'Y~'~\ ~ ~
f ~ ~'o '~d ° a r
\ ~~ ~
~rf~" ~ ( , y~ + 'i. J .
~~p ~ ~ 4 y ~II ~ ~~ti~. y f S !
'~ ~ ~ 'S f ff~~f~' ~..~ ~ ..,~ „,.' J i
,... ~ 1} '~ t' (:~~ ~ . ~~ . ~ l 1 ~ ~. ~ ~
~ ~{ l ~i ~ t ~ ~ q~5 x ~ ~ ~ ~' r~ ~ 1,
~y~ { i S - ~'~ ~1 ~34 ~`. ` ~ ~ ~~ ~~ J J j ~
~ ZI~ ~ ~~'f" ~ i ,~J n /`,. ~ v.. ~ ~`L r ~
~ i..~-~~,m ~ ~ ; t '~ ~ ~~.~' .
~ 7 ~
.~y'_i 4~ ~ ,-•~{ ~sf~'x,~j~-~'a~.~, ' ~ ~ ,_ r~ , ~4 `f .
t ~r~f ~;: i~~~{~ o 0 4 ~ y 7~i-ti ( T ~~
YtJ ~
' • t "S~ l 1/ ~ ' /' t~l /
~~"',~~I ~ ~~ j', ~ S ~y ,~ ~'~~~~k~ ;~ Z ~~' .. ) (\ ' ~'
}
tit ,~ f : ,~~~F}~. a ~ . `: ~ ' ,~ ~ % x 1
"i ,•~ ~ ~ & ~ ' ,~ .``~SA~ , .. e 1 ~ ! 0 ~
~'.'~ . f. ~ ~ J \ 4. 5 ~ 1 M1 /~. .
'' ;' i i I /l-.~~ ~ ~ N ~:. i ~ Lt '4 ~~,~ / ,
~~ j i'~ - M• r:~°~ pl S !:' r iP' . ~ ~ ~('
_ ~ iwa ~, ~7 - ' Y
. - ~, ! ~:' k~ ~~3 ~' a .r [~ :
~ ~' 1
.l'+ ~T 1 .' / ~I ~!„ ~ d'p ~ ~} ~ ~ ~l`~ ; ~+ i` + l
~ 11 ` ~;~ ~~ ~ N ~ .' / 1 .A,1`~/.'~ E r I V' ~ 'K
t ~
_~ ~,w~~ ~ ~ ~
n
,~ 1 `~ I' r h..uo ~`'~L'°+~p . `Z':` ~i . ~ P. ~'' f ~ . ~ IL~ ~ ~ j ~
b-. '~"' _ x A- y` F ] ~~ ..a'
~ `~~.,-r,~ A _.. ~F.1 i;~ a ... ,~~, . :H.~S._. ;1 . .,Is . "' ,: . ~ ~' .. ~~
I_ I I..L:.:.:5_"e%:,.
y ~~ ~ "~~ ~` ~/.
b' ~ ~` _ ~
~ ~,
il , '~,,~.. /
a'... ~xi i.'~p ~ ~,~ ! ~~" Z_~
'~ ~~,,
}Y~ i ~.f ,~'~4 i ~ / ~~~ -`.
w3
~ ~,~~ "'w~~~t , ~~ X ( & °k~
4~ . J.~ .Yi`~'~ ~K~ ~S '
,
c
„ . `°:~ ~' ~,` ~ a ~ ~' ~
-7 ~ ., r ~ ~ ' ~ ~.`, ~ 'e
a
I f,:,t; -: r i.1-a ~°
i ~~~ti~.••.
y~,~,;,f ~N O /-i q i~. " 6 p ~ i
..~ ' J+;'%~ e ~ j ~ . ~ .~ I OC F- ~
,~5~ r ~~I_ I i -M'pr8-~ ~FIa i ~ ~ ?r Z V ~
i ~°' ~o<I° i Y 'Q~ O F~- o I
rh~ 9 M 2 ~ ~ ., U tn ~ ~
Ji~~, °~~ $~ / ~ E ~"~ E b ~ I ~ ~~~; .~,y o° 'o O d !:
1 °~ ~ _° ~ ' ~~ ~ `Z x~ ~ ~ ~ ^.l~ ~ li 1- Q ~ . a ~.
~/ t .
f ~'~~ £~^:~~f~ r Z 1 I ~ -1
O~ ~ ~~ - ~~ Yf~ ~ .~i ~V ¢ ,
' ~"`i - .=.'~ K ! 1 c e~D~~~ • t~ . ~. a fY ~ ~
1: ` ~ lt~ Z W ~ E 3 ~
~ p' ~ y-~'' ~ ~w~. 41r~ t3 ~K M~'~?{~~a~~"C , O Z Q V
~ y{ d Z ~y
y Y
V f~-`~~~~ `'t~~l~ ~ t~~r*~~ U O ~ LL
` , ~` .:., ~ ~'~ w ~p a
rl~ ~ ~IIp~~C~~s n ~ t~ G 1 fA .. ~ yo ^~ ~ W V
VJ . "+§-'~ jt ' wl i'~ ~'• i~ ~~+ ~~~ Vl H O
~ ~ t 5~ W 3 -
_~~ ~ ~e 'F. ~.. ~i ~r >
~ i
x ~e,- a
i~ ~~~ ~ a r~ y ~.' S 'i ~. x ! ~
a ^ '~i ~ ~ ~ ~rY~~~. ~
i e r " ~'L,~ y } ~ r 1 ~ . . + i ~~ ,~ i
' H ~ ~ € ( xo ~1 a - ~ ~ 4' a f ,.
,y~ :d ~ sz ~K' i .id j v `` ) '~~ f! r., ~" o ~o
k•, ~ ~~~~ ~ ~s~ ~'+~n.. ~/"~ ~` ~sF d e~ ~~ c ~I, ~e~ .
t,J ~'G ~^r~ ~ . ~rn t /r~~ 1 _n ( ~~.~ ~~ C r
`i..- . r ., r ft . ~: ~ ~~t~~~~
1 k /
qZ;Y ~" ~~'" ~~ ti3y~/;#'~fiyu, ~v~'~j ~;~~i ~;~~~~~`r ~ ~~~~
~ f 5~~~ I
r ~
~~/ M1~ ~ ~ , ~~~ I ~~ ~1~ ~~~ ~j~ 1 ~ ~ (~Mi ~y"'~~
~ !N~ 1 ~ ~ ~ Y (`1/~~ G ~ ,. ~ ~ h
~fF 1 l" \! ~ [ I 5~ ,J
~~y- f ~~~"2'f K~7 \'il ~ ~ I~'._. ~ iY ( `S t ~~I~_y.~~ ~}~4 ~~~w
'a 2:NC~ ,"~, • i Xx t` :. s i[~ ' ;` 4 L~ ~ ~~'r-` ,~ ~ r ~ ~ ~8~~ ~T Kry
~ ~ ~o a
~;' 3 `~` ~~ ~ ~~4' , 3^-~d i..~ %"
~r ',x'. ~§d~' h~y; vt I ~ ~~ ~~('~ . l ~'~ h ~ r ~j ~ ,, ~ ~~
~ e S SW i ~ ~ r ~ f .:i.~ 's-1,~ -0~ /.
~~~~~~ t ffi~~ ~ °~~ ,.,t"l ~S » /~~x ~:i t .: .' ~ ~~"
- u ~CJ ;F Sh.~ ~'` ~t ~~ ~ ' ~ ' + ai ~'i4 m i r
s~ i y~~ , ~~ .~ai ~1n ~' .( r.. f ~v.{+l~ o T~-' qd qv~
a u°~. ~ 4 4 ° .- 'H ) ~l a: ~ .
~ ,~ ~~ F . 1 ~i' '~ ~,4 i .~~ / ,.~ 4 a'-.. {~j4~ . . Y~Y~,a~ ;
a~' g~ ~ ~ '~sa ~~ ..i ~~r F:.' l ~~~'~T ~~' ~ s ~ . i
~y~~" wsx..`~2 ~ ~`' ~ v / ~ ` r f'~ f e~ Y ~~° v5l i ~
i ~. ,`~'~`~v ti ~ F ~ -`~ys--a^-S~ z _ i ''-!a"ik'~ ~` ~ :
'}~i ~~ A'.~"! .. ~. _i ~ 7,~'~n' ~} y,' `~ '~P' ~~'~nn I
1 ~ ~ ti i `p~= t -4 ~ . U f .~ n / .'~2 I/rl ~
~~^ 1 elr \s '~' ~~a „ s i 1, q ~.,J -0 ~ . ~ S ~a~ i ~r. } ~~ ~ 3
ti~~ ~t < ~ ~ t ~~ ~~ {~ " ~ ~~ [i'~ i ; ~ i
l.r: o~ ~i s ~ ayfr w_~ i .fS ~t4~ ~h k*i,~ga~~ •
~ / i
~~4~; , Dlyl q~-,wY~i ~~ 1~~~ 14~.-1 4~r` `r ~ C~ ~Wti'., ~
~ ) +. ... ~~ii~ La ~ ~ ~ ~ ~i ~ ~ ~.S~.ur .`S,y [ I ~it . ~ ~ `
4 M1~ l
s ~ ~ ~ ~ '-~~y o ~ 4 f~~ALr ~'- Y'~s¢',-'~~ K~ ...
~ii Jti s ~ ~ ~' r i ~ z f ( ~ p ` ,~ I .y1
r ~~tF, 6 ~` f ~, ~ ~~ ~ ' ~~~ ~ <}+ < ` .~, f" ~~^,.'
l~ 40Q _(' ~ ~ ~ y y ~ ': 1 ~ ~a s \ ~ ~ i //'' ' f+
-~ f ~ ~ S.y; i ~~ ~ ~ t .~ l .. „j~ ~~ .w.
t~~ ! ~ r v' i ~ ~': ~ j ~,- ri~
~ ' f~ 'SV ~`l~ ~°~ .~ V ~ ~ Y~ / 1 ~ ~wP~ ~ ti ~ ~/',?p ~~i~ 1 ~' :
'~' _ ¢ /~ ~ ~ l~~ ~,-.,{~:,~' j '!- 1 ~ !k ! ~Jt' r :
~ ~ ~ -7 L; c . ~,r t , u ~.~ ~ ~ .;, . ..5. _ rv .~• / ~f"~ . ~ 1 t`.
~a ; 1 ~.,.[~' ~ ~ w' , i~ 3 4t , ~ ~~t ~/~`, ~ t ,fiS
e . J lS i¢,6 ~~ '-. 1'^ I~~~-~--~+ L-yl~l...~ r1 t.'-~ S{f -~~Jp :
~`S _~ ~~ . Y....1' i~_--"^ b' 7 .;r~ f~~ a~`s T s
~
a~.. ) w~inP.y~ ~"a.~ ~~~ S..`~ d~i F`t~~~~~~ ~
~ i ~ ~ ~~ ' 1 0 ~ ~ t~i,,%-'~p,' n~3~ ~yE~ Y ~7~~~ ' ~
" ~ ' ~~.g.1 ~ ( -eo 1a~ '¢ ~ ~ 1? yi< ~~fi1 ~ ! 'i
w~~r ~ ~ P,. `r y=..i,l~j~y~ ~ ~ y &'~,I ~.,rp '~"` ~` j
~~'' .~ .~ 6 .~ fi {~', ~ ~ ~y,fM; ~~ :. s~~~ii.. ~ `~ri ~~:.. ~`y~ ~ ~,' ~- &~ ~
_'~~ ~ w Nv,a~d K'"ty - " ~`''-~-w r~ h".', o,~uN',7~ ~~~f~f; k~ d
~ .y~
~ ' ~~ S ,~.- ~ .. .~~ i , ~~ ' h e i °o` ~ f ~µr _ ~< A
~ 4 Y' vJ { i J i +~~ .
' l ~ ~nr~-~ J • IT'r ~~~~+ /
r }` \ i S'~` ~~~~''.r s ~r)+~~~ ~ ~ ,r~~} ~~, {y` ~
x ~ ~_._ ~~ a 1' s~ :i~ ~k '1 j i. a~ ku; ~,.,~, '
,.„~~ .z 7 'iK ~` o~ 1,.~~~':~R ~~~I ~ §#"~~~m.~~ ~i~/i
\ ~ a I g .: b.'^~c'''.~ } i ~,~ ¢ i - i~t /~.. ` ~~„ ~[- g~~~, ~g~'`~ ' .
`~ ~ ~..~ a--'~ ~-~''~~,. ~ ~yr ~ ~ P ;
' ~ l;' } J ,y ~~E ]~, ~e tn 4 '~ z ~~ ~i lA,~i s ~~_,,,~~~rrr~~~'{~ ~
l _I ~~, i ~+~ ~ ~ i ~~ ~ .,. ~, ~ ~ Q'i ~ ~' A ~~ ~ ~ ~ :
w ~~ ' +~ ~'~ I / { ..¢ ' ~ o !
'~ ~ ^^F sg, e r . 4,.,,~~ ~ i kr~ t'q" ,, a
p r.L.
F~ 1 s~ ~.~ ~ ~~bf_ ~~ Y 1d~a51iry- a~'~~ri
a~ ~ ~ ~ ~ ~ , Y ,~
+.~ ~~5~~~ ~ ' t ~ _ _ .~~ ~ ~-
qd ~ ~ i ~
f a ' ij e €~:.;' ~~~"-~i~a~_ P s ~ ~ €L° -'.%~ ~~', )
~/~ ~ ~/ ~. C, ~ r ~ I ~~~., / 9~~~~ ~-1 ~ ~
~I 7 " v ~ . ~~ ~~~~~`` ~yT F r .
t '' `j;f: ~'
.. ~ a-fF `a w t ~.. b ~ ~ r ~ ~, .
~.,' 1~ •` e z 4i t ~ ~ ~ .
! \ .' l. ~ ~ q \ ( .. ' K
~ $~
;.~ y ~ ,
~ ° ~ "~ ~~ ~ ~ i , ~~~'a V , ~ ~.
~, ~
~ ~ , ` ~ ~y, : ~~ i ~ ~~~s& ~~-- ~-, '
~. ~'.. s{ ~j~ A~,~~ '%ia ~ ~*.;. g r,s. U ~
~ ~. } ~ ~ ~
: r ~€. ` ~~: ~ ~' --~,n~'i-
~ ~ , , '. ~i , ~ ~ g ~g~ i u -lI- s
`.~' ~i1} ~~~ ~ ~` r 2;~ r~ cn~~~~ gx n~ , ~64r ;
. '~.° 5 ~Mru ,,, a ~j ~ `"t, ; ~~~ { _ .ti ~ g^ a }g ` ~71
. .~ Y J"~ lY ~ 1 C e ~ 0~ d.- (. S 1
P, \ 2 ` V '"ro l yy
~ ~' ~. f. ~r~i ~ ~ 1 ~
:/ ~l~, ~ ~, zz h $ (~a ~ t .-'1~~ -'~f f ^ r ~ -8 i
. ~ ~ ~~ /J ~ +~ .. i ~r , ,'. '. -i.ur ~~~.a~.a~ ~ ~ ~
.,~ i~. ' ~ t ~v ~ ~ E :~ ~ ~ 7,t -~ i A i~ ~f ~ ~r' ~ ~ i
Qx• r~- < ~ i n..~'" ~~.-E,7i'~e'r•~'-~-~c,.'~-'` ~~` ~~`~ F,~
~+ ~~w 4K°~ , ~ i~ ~ ~ vf ~ ^.,~,~i~,r;~ ~ ~ lw~f'-e
'~:i~,. ~ ' ~~`a. ~ ;~ ~{ <~ 4;.r~~.~e~~k! ~~ v~ .
~"' : ~ r • ~ .- ~~'~,[~, y~ '~ ,,, -.` n ~ ~s . ` .
, ~. 'S .~ . ~ [ ' ~ ' ^ .~ ~' ;, h~ !t ~y" ^ 4 :~ i } ~u~~,~ 1 K7
l ~ i ~ `~ a
~- E ~ I, ,~ ~ ~~ s z -~*~,.'h, f7~' "7 a~ ~' ~ p~; ~ ~ a °~tidq<~..
`'~ L~~~ ~ ~~~h ~'~F ~~' ~~/l~ .~'~~~at.
G ~: (~ p
/ , , ~ Y i LL , ~ ~` ~ ~ C(l ~ ~T AS~ ~ r ~ ~ ~' $F
.' } i t ' + A \ „ a ~ r "* ..
~l r 1'1 ~~ ~ `S ~ .F
¢ . ~ N~ A ~ ~ . &!r~'^j .. ~~`..k~i{ \~~k Pm '~5~ ~~ ~~; ~
27
~ ~ ~" a'~ 4'i~c '~ ty~'~,~ ~.~ ~ ) ~r ~3
:S~ ~~~ ~~ ~ 3 Rv .~ i d~+
s ,. ~ . ~ L . , ~ .«~"'+ ''y.~. .~ fi v~' ~ ='"~~.°' lO
~~ ~: i ~~' i ...~x °~S~'' `°" ~~~ ~~aS0. ~
~h~ i~~,a i t~{~~ µ~ i ~~ 'r ~- ~ w a
1 =
~ P J a °fy :, f~ ~. ~~•o, ~ U \ £ € apH' . .
+y 4 3~ / Ci 'F ~ / ~ l~~ '`h . * ~
;~. SS k +~°" '~11 W ~JaM> p~w~~ n ~ / ~~
~...~ C~;. ~~ ~..~t l~ ~' ~\,.p l F '~~ G ' i, i
. 'y}, T~ ` ~ ~! ~ ~ .
. ~ t'~ ~~ ~' ~F~ ~y~~ , ~1 l
° ~ 1 a! /o ~ .C
\ .s. -A. Y~ / ~ ~
F., Ja ~ ~ 4 ~{~ ~m~.§k'~ Ir}~ N t ~ ~ ~ ~y S:~'iµ ~, ~ i ' ~~
t r ~ ~ ~ 'P/ ° ~ ,
~ T ,° f ~ & ; u ~,, y~` a~ ~ ~ r v ~" ~ ~" ~'
~ .s t'ZF,L = . ,~ ~ ~r-.z~.~-n ~' /"=i-' +~~' x E ~ '~ .
3 JiSY n' ~ rt / /,
~ : ~1~' °.~ I t. , I i A~ ~.
~3~,~' . ~~, " .\ ~ ~`~~Ln ~~.I F';. • ~ ~ ~"'~ !~
' ~.(' ~! t.:~~~~` a~ ~`e y' ~~ Ol
~~~.a~~ '~.w~il~'~.~ ..~:~e: ~ .
1° 1 I~.-::~..,
N'.._ -''` ~~i~'~"~ y~ ~ `«+ ~.,~1~ ~~ .~qt}~4 , I ~~~~ •r ~~ ~' _!I--•r~ ~~"' . ~< J J (1~
b ~~' '~ .. 1 . r fi ~~./ ~ u o i ~ ~_„~,11 ~~i, _. r~~ ,si ~ V Z ^ I .o ~
~ I
e~ ~
~: u i1~ Y~ z~ O ~
~ r {~ ; ~ ,~ >~' - ~ ~ r- ~
§ ~\ '~~ I( ('~ ~~^` ~,'~q `
~~~ ~ ,:'~ ~ 71r~` : µ ~4r ~~"~5..~ i" ~ 6 ~m.- =M o°v x l',kz~ y~'~ ~ Q "~ • ,
y~'~~~ ~~ I R i ~'.~~ S~ / x.w~. , I .li E ..'IZU N~ ul~ .. ~ I""
') i ~.~ t~ ~~ ~ ~~IC~ ~ ~ ~ r ~. w A ~~ O~ ~m NN~' ~ Q
` F ~l,'~ ,._1 't~ °1 ~ °~?~ . ~ ~ i ~ ` ~ ~ ~ I . ~ R' ~,~ ,7 : O Z LL ~
o i . ~ 1 °'a / v ~y d ~.~~~/~o~u ~~~ 4 u ~ ~y,~' }~r ~~'.' ~~ ~ ~ ~ ~d.~ , d
'~ ~ , y- ~ V+ 1X t'~CS .. ~ 14. i o ~ f i \ 7jw"F~M. ¢~4 ~~. IL 1- > m s' i. '
bJ; 1,'1 ~i i ?~.t ,...r l , - v;;.~.
°f~ ~ ~ ~ 2 < r<.c ~r rr(' ii ~..j. - o ° r~ - j~~ o{r ~., - Y ~ ~ ~6J ~ .
~ . ~ ~ ,, ~,_, ~ _ ,~, ~ ,;;~. ,, y~ Z < W ~ r ~ a 3 :
~ ~ l : ~S \ ~u'~ , S; ` j - f ~C ~ ~ ~ . A''~ ~~ r~• Q Z O ~ V
~ ~';"W
i )1 :.~ ~t..~" 41t ` r q~~ ~ 'S . JSJ/ '_ ~ ~ ~'1~~`F<qy~ '~~~1 ' U Q VJD
~ 1 . -~3 a~' ~~~~~ ~ ~ ? _ ~_ C ~ y i //~ I~ ~ W .. ~ Z
~ ~F t t ,{M 5Fl _ S~l ~,~ I~ ~.n (. 7„' . ~,,qy, ,.' p W I.L~ ~
~iYS..~~y ~,7 t ~ ,~';~r o- (. M1~/~~ith ~ ~1 a I ~. .~ ,. ~ Q L
p ~ ~9 r' _" ; ^ . .. ; 3 z
' ~ c, ~ . '~ ~ -~:; ~4 ~i ... Y , ~: >
a ~+,r" ~ u.l~s ~` ~ ~ 1 ~ i~ ~, 9~$~ Y~G'r ~s . "t '9 ~~~ d'
~ ~ Z` v~ , .~~ `'~' o A, a t~ nF;. ~ ~. ~ ~ ... ..1 .
~, F c i ~ . l . ~ [ ~ , ,g ~. , 3
~~~ ~~~~ ~ ~~ ~ ~ ~~~~~ ~'~~~~~ ~~f ~~ ~~~~v ~~
~ ~ i .A ~ I(~ 1~e ~~\ l(15~L~ l~ rl 1 ~~l w'iti~ y A ~~ .
~'^'~ ~~ A. ~ ro 1 ~ ~~ l o r ~ , v ~' ~~~ " ~b` ~~r l+. ~~~ ~K S ~ ~ L~ 7 `~ '~/ F ~ n ~ ~ ~
E~ J~ x ~ ,~, ..~ s ~(/~~, ~.j C l." i' ~ f f'i ~` y~ ^~[{ ~ / ea ~~ . '
? `Y~ I"2ti ,. ~ ~ N \ ~ ~ C`~"+~,:I 4 (i.' ~.f 'a . ~i.~ .~~crv~ y .E 't ~i _> I
f P F ~Y.~ ~r q ~ ~ 1 <. ~~' ~ I ~ ' ~ ~,+1 ~.f ! . N r } yG~ '~11 A ~,°'`,,~ 1 ~ y~~ 7 . ;
~.,~ ~ F~J ~~ ~. rd, ... ~ ~/- )f~,.dyiv ~ ~S' 1 ~ ( ~i ~ /~ .~ 4y~ ~ ir~~~ n~ ,
.t+dw-~~.... .'1))) ~t r~ Y~ / ~ ~~ '.. ~ Db -? X ~`h i ~` ~ 1 ~j,~~t'c ~% l, '~y ~ ~~/ ~_ .,.4 ~
n~ Tr M ~j~~ ''n>r ..Y ~ i °. ~~.e .7~u.r 2C, °" '!~'.,q~~~~.~~`"~ ' ~i~~/~~3~ °N~~~y~~( C ' /~
s k G r . t I Y ~ ~ 'W ~~ ( ~q~~ ~ y~ . !"~ > Ja+
t,y~.~~ i ~ ~ ~ ~u y < t ~ z ~ ~~ .. t ~~~ t+ ~ ~ T*~'~, ~'~/ `'~ ~w '~'d"~ ~~
„~ ~ ~,f' iC.=, ~~ ~y,~ ~. , ai,~- ~ Er rY ,i ~. , 9 ~ i . za~ 4
~s "'.et {y~~' m ~ ~,-;~" . ~,fi` . ++~ . ~*' 'Ir , , {"~~ 4i if a~` ~J~ q~'~~ r,,,,. .
~~ ~ / 6S~ " ~ ' ~'7 ~~ ~ i1 < L~ ~ ~ J v X l i ~ h~' ~ '~ 7 r ,~. ,~ '1~` ~ l~. ti -a+~y ~~ ~ :
`~~'3 " ~ - .-~ f s3 'r t S, F ed~hf x i~: r'~~ ~E t' ~'
~ ~ g Y^ a ' 8 i ~ a ~ j i n ~ fz.2 ~~ ~ ~ ~~d s ~ ~+...f+ ~/'*
~( ~ ~ ~ '1~ ?~ ~~ :-F, n ~ y .jl,,. ~ t.'H~ ~e
+~ y ~ J~ ~ S f/ t a;§ ~ a' L-~.. a t -i "' ~ Ts 1~ s~ f r n k ` Sos s i j c~, `~ ~~-" +~
i ~ a .1 ~ ry c, ~, :. ~ ~ z .~:.,r<. ' ~[11 r~~` ~~'~{~ ~y- ~d'-1• t ~'~'•( ~'r ~'..y;:. ',.
'' .~ ~ ~~ s o v.. ~9"fn1 v~i~ ~~ f~$~~ tv tQAt` ~ kkv ,1' I ,.y~,: t~ '`4 Sl f~l' ~~ S S1rr~ .
~~:I~ ~ • I ~ti ! ~' l ^~ fi~ i.~ / '`~t -,"'+3 '~YI ~~ /A ~ .~-+.~ 4~ ~'l, f hi,f'a r ~f ~1~A c :
r r +, 1 ~
'* ~h7 ~ ~ ~- l ~ { ~ . ~ ~F~ . '~ ~ c r a
'~ :,Yi.. c I.~: ~ t`...' <C . (C/ ~ ` i~n . r. ~ ~-Sti-t~Z ~. ~,/Zi~ ~ ~~Rr,.~l'~' J ~'a ~ i
x ~o ~ i T ~ i~ i ~~ ~ e ~ ~~~-ar sy ~, 4 ~~; ~~'k yz~ ~ ~ '~i C~^ ~~~s ~ {~ ~ } ~ ~
` -r ~k' , ` ~ '~a'~ ~ ~ .~ Z r'~~+~~ ~~~~i' . z~ .~ ,t~ti~ ~ G; i
{ t ~ ~ I / J
- o . I a~ ~ ~ ~„ - s ~ ~ S e~ S d °~ ~ ~,1 {'°`S
li ' f \ "f '~,F ~ u ~ z Si r . T°~ ! . ~ 9 5.~ y I n- y}' ],~,~y ~f;~~ t~
~ ~ Y~ . .~ '~' s -~ ~ ~
w l d I * ;_r' $ ~ ~
~' ~ ~ s 4 ~ e ' ~ s"' ~ F'i`~„ /' y ' ~l' ~ ! ~ ~dW a ,~ . h ~ ~~? ~~~?u ~ .
~ ^' "~:: ~ ~' E9 ~ ~ ,: ~ r -. .._ ~ ~,gd., ~ ..' k' ~ J ~ \•+ ~~ ; r f l I~ y.{~ ~- ~ ~
': ~ .. ~ ~ . ~ ~~_~ + , 1,` ~ ~yn ~_ ?~ Y -~l fi~"'~ ~ ~~ ~Y~"~ S~s,~~s,1ew ~. .
% L~'t` ~4 r r li J ~ ~ ~ .s a / y~~_~ ~ (~ ~'~ C~ .FhIi C'+i ~v~-'
y ~' ~~'' ~ ~~ 6 s"9.''°`1 w. `h ~"r ~; \ t7 1~r b .•~~~\..in t~ ~& ~~J~~~~'""~, ~ , ~ ,~- 1 'F4',~~f~.~
Si.! f _ yyy
$ L J
/ v.~~ ~ ~ ' ~ ~~ ~~"~ ~D(~i~ '~ ~t ~ ~-K~ a~~. _ ~ 1 u~.
't M ~~ ~'`~ ~Y , n ~1 ~, ~ s )' v a 63' ~ ~ 4 ~ ~ ~ ..r 2x~ ~ ~ti '`
F z ~i'~ ~ p~.. U! . y ^`V -~J-v-. -.~~~`-a ~.,, il 1~~., c~~--
~- ~a ~a ur, ~ .' s,~' ~`,~jY o i ~~~ ~1~t$7 + , >> ~ ~q~
~ ~q 9 .'TT ~ ~~ ~ ~ ~ 4
~* ~ ~ ~ S . ! /H C r r ~ ~ . N( T~1
f 1 ~ tk ~ ~, Q~~,/y i ~ ~f 1~ ',~~ .~
~ ~ ~* .~ ~~ ~ ~ 4~ ~ ~'~e-4 . ~~ ~ ~ ~ i P ~,Q ~~ ~~~r- ~ ~ r . .~
~ ~ f ! ~ ~ `~: ~T ~j~ ` u i da b ^~°~7r{~,~} ' '~ I x ~':~:1) ~ (~ T'` ~ q~~.•-~. ~~ / ~ ~ N
.IA~i f. I , E.~ > + ~. ' ~ r~(@T ~}Y-~ `hi^ r`i i rd ~ "'ti-`~i 1 ` ~~ '' I ~ r ryti,` s `
~
r ~ .is "~n.~3 ~ h ~~c,~ y ~ `~' 1 ,'~~'~~ (`/l2 ~~ .~ ~J~~ -1 ~ ! ~, ./~ n~~ ~ J~ ~ r. .
~ s ~y,
' b . ~"' r~ e 1d ~ ~ x f ~ ~~~ I tr ~ ~~ ..('~v-E C / 1 '~rr . ~ y ~ ;
, ~ ~~I I ~ ` Y V y-/rr1 ~~Y ~ ~~ ~ ~~ ~~ ~~' ../L~ i 11 y ~ r7 ~' -h ~~£~ F ~i . ~ ,
, ~~ ,~ , .~.r~,L~' ; ~ ~~ s: r ~ , v > ~. .~ t~) ;
: I t ! ~ ~ ~. '. j~l L n d~5 < ... a . `~`` . iT r ~~ ~te 7 F( Q 1.~1~ '7 ~ f~' ~ ! ~~
,~tl" ~ ,: ~i ~!' , w.', i+u° r~. ` ~ r r~ ~-~`iY ~ L~~ 6-k .E ~ ~!'' f( _, i ~j °~g i % uu na y~~~L'l y~11 ~k~` ' 8 ~-~jf~ ~ t ,~ 4'S .
Jm , ~n
+7 a n y : ~ ~Y 9 ~ ryy, 7 /r Nr y '- y l . ~ ... ^ ~ { ~J ~F~ ~ ~
isl. ~ ~ ~`''44 , A k ,~~ ~ 'r- ~ ~~Fg ~~ ~A Y r ~ ~..~. ~ . ~S~T 1 .S~*~ g~ . ~ :tw"! C~~(u.. ~ , i
,'~`" ~ r~J~, ti: ~ {i ~!?. ~ 0 "~ `~ " ~, ~) ' ~ 2 s ~ '.7 I ° ~ ~ .i- '
1 4 ~w ~,:..ef .' ~? "r` . h - ~ ; ~ u. 9 ~„ :u ~ ~5 ~ ~ ~., J: ( . ~ .
~ -f9~~ a t ,i.~~'~ „ ~ > ~ 6 ! ~s. . . .~~y 4~i f ~~:~,..r ~ ~ty k/y~J'r, ~'
~ v~ 'F} ! '1 J, i Y.a.-^q ~ h t ~ ,~.3~' "~", c ~
uC ~ ~ ~i ~:. (yyY~ ~ } ~.i ~ -y ~ li ~ 'Y, ~ i f Cr d ^{ 1'O' c
H~ fl, a~,,s a_~ Yfr• ~>h ~ _ E A 4i wnF ~.. ~,.'V~ C xM'i° ~,~f~~r:
"`+`-T;' ~ 3 ' ~ €"s V' ~ '°,d , ~ _ ~~ ~" r '~tix ~ ~ S i
e~` li 'f^ ,. aR'?'=Y..~ rpQi ~'. i i '~ i 1 ~„ ~! ~e- ~' ~'^$ ~ .1 ~ r ~f~Q ~ .~~~ ~p~y'~. ~ l .
S i a 'm, ..i- ~,~~~ ~ ~i. '~ ~ I ) , ~ '~ ~ l n n \,r,.3 ~Y .E h . '& it :.
~ ~.,~ ~ ~
~~ ti~-m~ r ,~~t ~~ !_ ~) 1 ~ ~ ri,~~~ti ~ ~ rs ~ T ~ Y~ut ~ ~ i ~i
J ';~ ~. ,} , ~ ~ ~~ ~ ~ ~~y(.,~~`~° st~.~ ~1 q ~ '~ . i ,~ ~ ~ ~ ~ ~
t~ . ,' 2 ` '~ ~.'~~ ^.,~,~ ~l^ ~ /~~~_r i'.'~~ ~,q{ `hy,~ ~ i~y ti.~f~ c2~1 '~i ` ~~i$ '~~ ~~ ~N' /
~i t ~' ~,. ' ~. l a .~ ~ y S~ ~ ~'7t o ~ ~,.. ~'~ ~ r e~ ~.`,/ s 1.
~~_ ~ ~ ~ '` ~ ' ~ ~~ ~p ~ ~ . x ~-~ 3 r p o y ~ . 4~ i 4~~h~ j~ >a +
flCl i~ ~ ~° ' ~G Y 9{~ L f.. ~'~..~-f i/ L 7.,,~ 1~ i. ~y x y * s 1
+f~ J ee ~. .i~._ -~ ~~,..& ~ ~~~-F -~-~,~°~ ~ _1Gi.~ -'~ Tv- ~~~• ,~ ~ ~ ~ -
"k L, u 1~~ r m~U/ -Ci:` 4 i.w3~~
~ r ~ ~1 : ~ S . - § a e ~ ~ . ~ ~ ! ~i ~ i ~ '
~ ~ ~ i~ i ~ ~ . , , ~~ ~ t z~ a ~ ~ ~
~ .. ~ . i~ s. ~ ~,; . ~ ~ ~ ~a i. ~ ~ ~ ~ . , 7 ~ < J ~ ~ . $ a
s..,.~ u/ 4~'g) ~ ~~~~ t ii"~ ~~ M1.~~ 91 ~'-~ .'~~~ I.,¢I I~~~ ~ I °S> T~
„- ~ '~ <.~ r i ~ x I~ia> I~ liY l ~°~ag1°~° -
lm~, y i~l, ~'~ ~.*t ~ ~ih ~~ s~~~~~ ' P ~.'F-" ~', c~ ~.:. ~ Cs'~ ~~~ ~ 6 . I ~ ~'',e, _~~[~y 1 ~ .'L ."~ ~
k ~ 4. . ~ ~ t ~~ i I. ~ "F"" , ~ a ~.. 4 ' ~ ~ 7' f ~' ~ ~ ~~ ~ a + ~ .
>.. ' ~ i I c d ° ~' ~j d< ~~° 3 w~ /~ J r l~ ~.
~u l°,~;: ~~~.~ ~1=~~~~ _ ' , ,~: °,~~"I~`s rl.~i c _ ',~. ~i'~~;`~,la .. _~~,~. I~;.-'~~ ,`,~
i~ c^. 7y,~ i ~ til ~4~ '~ ,. .~ ~> 4 ° ~..~ {~y ~ ~ k~4~" 3 t, '~`a ~,~y ¢
y s v w F ~. .. ~g %/~ S' i,.i1
~> ~ ~~ I n a ni # ~ .= e ( . . 3 ~tF ~. ~`~~ Y (l . [ y ~~r'\ ` ~~ ~ _.~~ v
~f. ~ r~.~. ~i y`~,,~ P L„v~: i.n :l~ $ ~I'' 4 7~~'~ :~tr & ° C
~' i ], " ~. f ~9 ~ . + ',~a .c..s ~S ~.
~~-, _'~ ~ Irj ~~ .'~ °n~' ., a '@ 1 `~4~;.. ~~'... ~d i tS~I~..~..
° f 4 ~ ! ~ ~ ~ Y I {-
._r~ , ~ i~ ~ >x . P c ] byi ~'t ~~f k'`~ ~ 1A ~~.-~j ~a'^'g,'a;. ~ ~c `T ""~~ ~ I
/ ~a k ~~ s~ . r i:-,_`'C y,a 7~],~ T _. ~ c~ &., ,~t ~l ~ a&A.~' i~ ,'-3~ ~a
° ~ ~~ ~ ~ v ' ~ ~ ~~~i ~ ~ ~~s ~4 t "~c ~ ~,1r ~ ni x J ~ ~ ~ ~ hl j
~c._ ~ seYa,..g` oo *£x ` (y ~~~ `si ~I~. ~" ~'~t~~ i~~J~ S ~e^r
~ - ~~ , . ~'~ , ~`'t'~' ~~ v ~
p >l ~i 1 ~z ~,~ t . ~ fc " ~'°'~~y~ k~
'~ ' i i ~ ~ ~~ Y~ ' u ~ '~ . ' ¢ 'S ~ '~~ 7 ~ ~ r i C ~
'~ .. ~ ~ ~ ^~ ' ~~ ~ „~e ~ ~,~/~,`~ '~ ~
' T'c Y ~ 't (O / ,r ~ c 1. ~r ~" ~ ~
~ p ~~~ a7 ~? ~a , 1 ~ ~f ( r ~ ~a' { .7 ~ '~ ~ ~ ~ ~ 9 i ~~ I rJ sf4ti ~P
~ ~ . ~ ``~r- ~.~~ a ji i ~ ~ -~ r ;• 6 r ~. ; ~ r s ~y~{~ ~ .... ~ ~ ~ f~, ~: ,~ . ~
1 ~ 1 . .l. 1 I ~ j Y ~ ~ Q / I ~~Y ~ .Y ~/ ia f. ~' 1~~~ ~ ~ f .n ~ Y ~ .
tJ ;, ~y ,+ }. , 1 ~t .R~~ 'l *y8 v ~ ~ ~~'~ . S ~i~Y^~tiv.~,C/ Y~ ~~ ' ( 4t
~ Y / * r "^/ r ._~l / +- t ~ ~i ai~Y ~ Q wal
~( ~' f ~ ~ ~ i: ~, l ,.~ ; " _.. o ~~~~~ ~S~ r 1 ~ s,~xf'~-ry/ ~..,~ ~
~ ~ S . f i ~ ~ I ) '~ ~~ ~ ~ ~ r l ~ ~ ! lr' Y.'~~( ~~ '~ ~ ~d~~'~ ~
\. ~47 A s~ ''4 r i ~. ~.5'~ ~ y~~ r S~ it~ 1~ ~ Lj'r F 1 ~
`s ' - (5 Il .~r i~ ' ,'~~~i~a~ ~'~~hJ^e z ~ t~~~ ',i~?~i ~~~~g ~ q'/ S +L y .
- .~ ~. r ~~.•i ! ~ ~ .a_ is '~ '~~f 1 ~ ~r~~ ~! r ~libt ~~ d ~ ° ~~4..-~~~.
r - s. 4' " r ~;-~,~ s a 7 a( 5~ ' i`z 3''~
. ~ r~._ \ al i~ , aD: .a^~ :,i~?~ ~,. x. ~ ~..,. ~ _~.:_ d ~~N..-t.1! 9~~ _~. ~ .
`~ S,~T, _ s}'r e' ,n} "r-.P~ r k'~ "' ~ ~.°Ft\" ° ~ ~,41 /f) . ,: ;7
*, r y ~''i`y~ Ki P,~ b~ ~~\,~ ~~,~s r}~`:C~~ fJ~'
) 1~1i;-i ° `~ ~ '~ ' -W P ~ '°y~ [ ;?~' ~
~
n ~ Y k,} a ,n ~ p ~,. a r a ./
~ ' ~~ = ~,~
~ ~~" .' ~ "'~s~,-~r ~ a / ~ ~z ~, } , ~ ~~ s InN ~ ii 4 ,~„" g r ~
, • ~ w ~,. ._ t a i
' . '' S fl .' ~~'~1 4 'c~ic: ~Y; .- ' ~, ~ F~ 'b . F.. ~ .
~ i
1 In _ ' ~,5iy ~k'i ~'n A ~~3 rl"~" ~' ~ SG ~ ~ ~ b ~ ~ ~,7 ~ i Y .
~~ '~` fr'"~ a i~ 1 i~.~~ r 7~b`„~~ ~i~" ~ ,~4y.~~x~`. ;~~ t~r a, ~.~s ~,/ u ~'~r
~~ ~ ~~ ~~ ~ ~~~~ ~~~ ~ ~,~~fl~'~~ , £j~`~~-,~
; -~,/~ ~ t ~:. .,. ~ q . ,,. <,* 3, i ; ~ ~
.~ c~~ ~ ~ ~ "' ~ '~'~ ~- r ~ r ~ 1 un y. ~ ,s
~ ~'~ r~ ~ ~ ~ ~. ,. ~ 4.~°ti ~ .. ~ Ut(~ a ~ ;. ~ ~ y~` ~4 / ~ .~g // i ~ . '~s
~ ~wra ~Y l~. o s"w -c ~fi.* ~ rq~,~( ~ r e/'/ ~! ~;.;~
yu ! ~~ ~ n~ 5,~~ /a~^F~~. ~ 14~r+ir ^~F,~..ry4~~~+it~,.'.Y. ~R~~ p/E ~ /'.
f ~yy+
_ ~~'~~ - ~ ~ ~ ~" `~so~ e ~i,._ 1 +, rn ~ r {e / i ; ,
' i: ~, t - £ :~ ni I s ~t_`~v . ,~l
. -~a3: * ~~ . i~~.. ~~~,~~~~wr_~ . i // ~~ ~
'
'
'
,
'
'
1
~ '
t
~
1
'
,
1
,
'
'
~
'
3.5
3
N
= 2.5
U
2
2
S 2
a
w
0
J
Q 1.3
~
a
a
~
t
i
o.~s
/ 0.6~5
.3
3.5
3
2.5
2
1.5
_\
ll. 2
~
.5
S ~~ I I I 1 ~ ~
2 3 10 25 50 100
RETURN PERIOD IN YEARS
1dOTE:
I. Fo~ inltrn~e6iaN r~hrn Qavicds pbt 2'por a~d !00'yaar on~ hour volu~s from maps,th¢n connact
poMfa a~~ noA vsW fo~ OasMad ralmre Perbd. For tcaa~pN yvm 2'Y~ ~~r=.50 and 100-
yex ma poar =1.~0~.23'1px aa I~er =1.18"
n•ro~.:woa~e Anoo z,~ a-coaea„~.ies3. RAINFALL DEPTH VERSUS
R C FC ~ D RETURPI PERioo FoR ~v
r)YDROLDGY ~`~AMUAL RARTIAL DURATIOM SERIES
1
~a
' 1
' ~ ~
. '
.
.
.
.~
.
•,, 1 ry
y
.LV4QI ~(/.~
~M5) ~
.
J
~ ~ N ~ ~t {QUR PRECIPITATION~ ..
' , ~ 7
'
~ -YRi
o (PLAT~ U-
..
_. . ,, ' , . .. . . . . . . . :- . , _ , ~ .. : . IOf}-YR . . er. PIAT~ D.~
~. 5'Y .: (PLAT~~; D'
' Q~YR : , (pLA - ft+,
, ~.'~~ 5'.~ R : '- (RLATE'~ D=!
~
~ ~ ~O =YR . , ~ ( LAFE D,~
'~- ~ ~ q -,~ SEf 3P E 0F. ~~INTEN SIT Y QU R ~-~N- RV~~~•$
~
,
' CH€CKED ;l
~
~ .~:, ..
t;., . e
' ..
'
~
1
1_
io
STORM DURATION-NIINUTES
~~~~ ~ ~~~
rl~r~fia~ ~~~r 1~/)AN~JAL
` '
ia.
P
7 s
~ :
s
A):
5 )'
~L~N1~lNG AK~A 22
(~o(Zi Pq v GH R14NCN
INTENSITY-DURAT(ON
CURVES `~
CALCULATION SHEET
'
,
'
'
,
,
,
,
~
'i
~-
1
'
'
1
I1
'
'
,,
a~ x~ cav~a~
Recommended Value
I~d U~e (1) Ranqe-Percent For Averaqe
Conditione-Percent(2
27atural os Agri.culture 0- 10 ~
Sinqle F~ily ~eai8mntial: (3)
40,000 S. F. (1 Acsml ~~ 10 - 25 ~'~ .~ 20
••
~
1
Ac.
:.
20,000 S. F. (~f Aas'~) Lotm 30 - 45 40
3g8 V~
7,200 - 10,i)00 S. F. Lots 45 - 55 , ---°--- 50
I~m•q ~+~
Multiple la~ily Aesidential:
C~initima 4b - 70 65
apart~snt~ 65 - 90 80
Mobile Hom~ Pnrk 60 - 85 75
Ca~ercial, Dawntwn 80 -100 90
~ueinesa or Induatrial
Plotes :
1. Land use should be based on ultimate development of the watershed.
Lanq range master plans for the County and incorporated cities
should be revievred to insure reasonable land use assumptions.
2. Rec~anded values are based on average conditions which may not
ap~ly to m particular study as~a. The percentaqe impervious may
vary qreatly even on c~parable sized lota due to differe:-ces i.n
daellinq size, improv~ents, etc. Landscape practices should also
be ooersidesed as it ia c~n in some areas to uee ornamental grav-
els vrderlain by i.mpervious plastic materials in place of lawns and
shrube. A field investigation of a study area should always be made,
and a r~vi~a of serial photo~, ~~re available may aasist in estimat-
ing the p~rcentaqe of iaeparvious cover in developed areas.
3. Far typic~l horse ranch subdivisions increase impervious area 5 per-
ceveY owea' the valu~s r@c~~nded in the table above.
~ ~ ~ ~ ~ I~~~~~~~~~ ~d~~
~o~ ~~
ri~~~~~~~~ ~~~v,~~
~~~~o~~~ ~~~~~
P~~~~ D-~.~
1
1
'
,
,
,
'
,
'
~~
'
1
i
1
1
,
,
')
RUNOEF INDEX NOMBERS CII' HYDROLOGIC SOIL-COVER-COl~LEXES~FOR PERVIOUS AREAS-AMC II
e (3)
Covar 7~+ Quality of Soil Group
p Cover (2) A H C D
T77~1RJR7-L COVERS -
Barnn 78 86 91 93
(ROCkland, eroded and qraded luid)
Chaparrel, Broadleaf Poor 53 70 80 85
(M~nzonita, ceaaothus and acrub oak) Fair 40 63 75 81
Good 31 57 71 78
Chaparrel, 2larzwleaf Poor 71 82 88 91
(Cha~iae'and x+~d~hank) Fair 55 72 81 86
Grass, 7-nnual or Perennial Poor 67 78 86 89
Fair 50 69 79 84
Good 3B 61 74 80
19eadows os Cieneqas Poor 63 77 85- 88
(1lreaa with seasanally high vater table, Fair 51 70 60 84
principal vcqetation is sod tosaing qrass) Good 30 58 72 78
Open Brush Poor 62 76 84. 88
(SOft wood ahxvbs - buckwheat, saqe, etc.) Fair 46 66 77 83
Good 41 63 75 81
woodland Poor 45 66 77 63
(COniferous or broadleaf trees predminate. Fair 36 60 73 79
Cenopy deaaitY ie at least 50 percent) Good 28 55 70 77
Woodland, Grass Poor 57 73 82 86
(Coniferous or broadleaf trees with canopy Fair 44 65 77 82
density fra~ 20 to 50 percent) Goo~l 33 58 72 79
UttBAN CdVERS -
Residentiai or Co~ercial Landscapinq Good 32 56 69 75
(Lawn, shzvbs, etc.)
Turf Poor 58 74 83 87
(irriqated and ma+ed grass) Fair 44 65 77 82
Good 33 58 72 79
AGRICULT~TRAL COVERS -
Fallw 76 85 90 92
(Land plowed but not tilled or seeded)
~ ~ ~ ~ ~ ~ RUPI~FF IRIDEX IVUMBERS
rIYDROLOrY I~/JANUAL
~
~
R
p~~yOO S
AREA
'
ni -erC= nza c /~ es ~l
'
' PA2210.out
Riverside County Rational Hydzology Program
, CIVILCADD/CNILDESIGN Engineering Software,(c) 1969 - 2001 Version 6.9
Rational Hydrology Study Date: OS/09/06 File:PA2210.out
_________________ _______________________________
850_0117 TRACT 32358
PA 22
' 10-YEAR 1-HO[~2 STORM
8/3/06 SWL
________________________________________________________________________
"`•""` Hydrology Stssdy Control Infoianation *'*'*"`*'
, English (in-lbl Units used in input data file
________________________________________________________________________
Van Dell and Associates, Inc., Irvine, CA - S/N 953
______________________________________________________'_________________
' ~ Rational Method Hydzology PYOgram based On
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' S[osm event (year) = 10.00 Antecedent Moisture Condi[ion = 2
2 year, 1 hour precipitation = 0.500(In.)
100 year, 1 hour precipitation = 1.200~In.)
' Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.786(In/Hr)
Slope oE intensity duration curve = 0.5500
'
' ±~'++++++r+++++++++++++++++++++.++++++++++++++++++++~++++t+++++++++++++
Process from Point/Station 10.000 to Point/Station 12.000
" INITIAL AREA EVALUATION *
Initial area Elow distance = 280.100(Ft.~
, Top (of initial area) elevation = 252.000(Ft.)
Hottom (of initial area) elevation = 245.200~FL )
Difference in elevation = 6.800~Ft.)
Slope = 0.02926 slpercentl= 2.43
TC = k(0.370)"((length^3)/(elevation change)]°0.2
' Initial area time of concentra[ion = 7.415 min.
Rainfall intensity = 2.489(In/Hr) for a 10.0 year storm
CONDOMINIUM SubaYea Cype
- Runoff Coefficient = 0.843
Decimal fraction soil group A= 0.000
1 Decimal fraction soil group B= 0 230
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.770
RI index for soil(AMC 2) = 70.63
, Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 1.216(CFS1
Total initial stream area = 0.580(AC.)
~ Pervious area fraction = 0.350
' +++++++++++++++++++++++++++++.++++++++++++++++++++++++++++++++++++++++
Process fros Point/Station 12.000 to Point/Station 14.000
•**• STREET FLOW TAAVEL TIME + SUBAREA FLOW ADDITION w**•
, Top of street segment elevation = 295.2001Ft.)
End of street segment elevation = 236.400~Ft.)
Length of street segment 446.910(Ft.)
H~ight of curb abwe gutter flowline = 6.OIIn.)
Wid[h of half street (curb to crown) = 16.000(Ft.)
' Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hzI = 0.063
Slope from grade break to crown iv/hz) = 0.020
Street flow is on [17 side(s) of the street
, Page 1
\W
'
' - PA2210.out
Distance fros curb to property line 5.500(Ft
Slope £rom curb Co property line (v/hz) = 0.020
Gutter widtri = 2.OOOIFL )
Gutter hike Erom flowline = 2.000(In.)
' Manning'S N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 3.3551CFS)
Depth of floW = 0.321(Ft.~, Average veloCity = 3 .127(Ft/S)
' Streetflow hydraulics at midpoint of street travel:
Hal£StYeet flow width = 9.728(Ft.)
Flow velocity = 3.13(Ft/s)
Travel time = 2.38 min. TC = 9.80 min.
Adding area flow Co street
' CONDOMINIUM Subalea type
Runoff Coefficient = 0.645
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.020
' Decimal fraction soil group C= 0.000
Decimal fraction soil gzoup D= 0.980
RI index for soil(AMC 2) = 74.62
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall inCensity = 2.13511n/Hr) for a 10.0 year storm
' Subarea runoff = 3.680~CF5) for 2.040~AC.)
Total runoff = 4.8961CFS) Total area = 2 .620(AC.)
Street flow at end of street = 4.896(CFS)
Half street flow at end oE street = 4.696(CFS)
Depth of £low = 0.355(Ft.), Average velOCity = 3 .912(Ft/s)
, Flow width (from curb towards crown)= 11.438(Ft.)
' ;*++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++
Process from Point/Station 14.000 to Point/Station 16.000
"" STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION :.:
*
Top of street segmwt elevation = 236.400(Ft.)
' End of street segment elevation = 232.400~Ft.)
Length o£ street segment 527.540~Ft.)
Height of curb above gutter flowline 6~.0(In.)
Width of halE street (curb to crown) = 16.0001Ft.)
Distance from crown to crossfall grade break = 14.OOO~Ft.)
Slope from gutter to grade break (v/hz) = 0.063
' Slope fros grade break to crown (v/hz) 0.020
Street flow is on [1] side(s) of the street
Distance Erom curb to property line = S.SOOIFt.1
Slope from cuzb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.l
' Gutter hike from flowline = 2.000(In.)
Manning'S N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning'S N Erom grade break to crown = 0.0150
Estimated mean £low Tate aC midpoint of Stleet = 8.231~CFS)
, Depth of flow = 0.465(Ft.1, Average velocity = 2. 7601Ft/s)
Note: depth of flow exceeds top of stzeet crown.
Streetflow hydraulics at midpoint of street [ravel:
' Halfstreet flow width = 16.000(Ft.)
Flow velocity = 2.76(Ft/s)
Travel time = 3.19 min. TC = 12.96 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.835
' Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.070
Decimal fraction soil group C= 0.010
Decimal fraction soil group D= 0.920
RI index for soil(AMC 2) = 73.61
' Pervious area fraction = 0.350; Ispervious Eraction = 0.650
Rain£all intensity = 1.829~In/Hr) for a 10.0 year storm
Subarea runoff = 5.950~CFS) for 3.570(AC.)
Total runoff = 10.346(CFS) Total area = 6. 190(AC.)
' Street flow at end of street = 10.396(CFSI
HalE street flow at end of street = 70.346(CFS)
Depth of flow = 0.493~FL ), Average velocity = 3. 023(Ft/s)
Note: depth of flow exceeds top of street crown.
' Page 2
V `
'
, PA2210.out
Flow width (from curb towards crown)= 16.000(Ft.)
' ++++++++++++++++++++++a+++++++++++++~t++++++++++++++++*+++++++++++++++
Process from Point/Station 16.000 to Point/Station 20.000
•x.x pIpEFLOW TRAVEL TIME (Piogras e5timated size) "'
Upstream poin[/s[ation elevation = 232.400~Ft.)
' Downstream poi~t/station elevation = -230.0001Ft.)
Pipe length 50.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow 10.346(CFS)
Nearest compnted pipe diameter = 15.00(In.)
Calculated individual pipe flow = 10.346(CFS)
' Normal flow depth in pipe = 9.52(In.)
Flow top width inside pipe = 14.95(In.)
Critical depth could not be calculated.
Pipe EloW VeloCity = 12.59(Ft/s)
, Travel tise through pipe = 0.07 min.
Time of concentration (TC) = 13.05 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
t ~ Process from Point/Station 20.000 to Point/Station 20.000
***" CONFLUENCE OF MINOA STREAMS "*'
Along Main Stream number: 1 in noTmal stream ntunber 1
Stream flow area = 6.190(AC.)
~ Runoff EIOm this stream = 10.346~CF5)
Time of concentration = 13.05 min.
Rainfall intensity = 1.824(In/Hr)
, ++++~++~+++++++++++~++++++++++:+.++++++++++++++++++++++++++++++
PYOCe55 £YOm Point/Station 17.000 to Point/Station
**"* INITIAL AREA EVALUATION •
initial area flow distance = 700.610(Ft.)
Top (of initial azea) elevation = 248.300(Ft.~
' Bot[om (of initial area) elevation = 229.300(Ft.)
Difference in elevation = 19.OOO~Ft.)
Slope = 0.02712 s(percent)= 2.71
' TC = k(0.370)"[Ilength^31/lelevation change)]^0.2
Initial area time of concentration = 10.965 min.
Rainfall intensity = 2.059(Ea/Hr1 for a 10.0 year storm
CONDOMZNIUM subarea type
Aunoff Ccefficient = 0.828
Decimal fraction soil group A= 0.000
, Decimal fraction soil group H= 0.314
Decimal fractio~ soil group C= 0.040
Decimal fraction soil group D= 0.646
RI index for soil(AMC 2) = 68.79
Pervious area fraction = 0.350; Impervious fraction = 0.650
' Initial subarea runoff = 3.565(CFS)
Total initial stream area = 2.090~AC.)
Pervious area fraction = 0.350
18.000
' ++++++++++++++++++++++a+++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 18.000 to Point/Station 79.000
"*`* STREET FLOW TRAVEL TIME + SUHAREA FLOW ADDITION ""'
'
'
~1
'
Top of stree[ segment elevation = 229.300(F[.)
End of street segment elevation = 222.200(Ft.1
Length of street segment = 231.620(Ft.)
Height of curb above gutter flowline = 6.Olin.)
Width of half street (curb to crown) = 16.000(F[.)
Distance from crown to crossfall grade break = 19.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = S.SOO~Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.OOOIFt.)
Gutter hike from flowline = 2.000(In.)
Page 3
1 v
'
, PA2210.out
Manning's N in gutter = 0.0150
Manning's N fzom gutter to grade break = 0.0750
Manning's N from grade break to crown = 0.0150
, Estimated mean flow rate at midpoint of street = 5.416(CFS)
Depth o£ flow = 0.344(Ft.), Average velocity = 4.139(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstree[ £low width = 10.671(Ft.)
Flow velocity = 4.14~Ft/s)
' Travel time = 0.93 min. TC = 11.40 min.
Adding area flow to street
CONDOMZNSUM subarea type
Runoff Coefficient = 0.827
Decimal fraction soil group A= 0.000
' Decimal fraction soil group B= 0.300
Decimal £raction soil group C= 0.000
Decimal fraction soil group D= 0.700
RI index for soil(AMC 2) = 69.30
, Pervious area fraction = 0.350; Impervious £raction = 0.650
Rainfall intensity = 1.965(In/Hrl for a 10.0 year storm
Subarea runoff = 3.526(CFS) for 2.170(AC.)
Total runoff = 7.091(CFS) Total area = 4.260(AC.)
Street flow at end of street = 7.097(CFS)
, Half street flow at end of street = 7.091(CFS)
Depth of flow = 0.370(Ft.), Average velocity = 4.409~Ft/s)
Flow width (from curb towards crown)= 12.173(Ft.)
~ ++++++++++++++++++++++++++++~++++++++++++++++++++.++*+++++++++++++++++
Process from Point/Station 19.000 to Point/Station 20.000
'*** PIPEFLOW TRAVEL TZME (Program estimated size) **'
'
'
'
t
Upstream point/station elevation = 222.200(Ft.~
Dovmstream point/station elevation = 220.OOOIFt.1
Pipe length = 15.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 7.0911CF5)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 7.091(CFS)
Normal flow depth in pipe = 6.14~In.)
Flow top width inside pipe = 12.00(In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.54(Ft/s)
Travel time through pipe = 0.01 min.
Time of concentration ~TC) = 11.41 min.
+++++++++++++++++++a++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 20.000 to Point/Station 20.000
**** CONFLUENCE OF MINOR STREAMS `***
Along Main Stream number: 7 in normal streas number 2
Stream flow area = 4.260(AC.)
, Runoff from this stream = 7.091(CF5)
Time oE concentration = 11.91 min.
Rainfall intensity = 1.96311n/Hr)
Summary of stream data:
, Stream Flow rate TC Aainfall Intensity
No. (CFS) ~min) ~In/Hr)
, 1 10.346 13.05
2 7.091 11.41 1.824
1.963
Largest stream flow has longer time of coacentration
qp = 10.346 + sum of
qb Ia/Ib
7.091 * 0.929 = 6.588
, 4p = 16.933
Total of 2 streams to confluence:
Flow rates before confluence point:
10.346 7.091
' Area of streams before confluence:
6.190 9.260
Results of confluence:
, Page 4
\ `
'
'
~
~
'
'
PA2210.oUt
Total flow rate = 16.933(CFS)
Time of concentration = 13.048 min.
Effective streas area aEter confluence = 10.450(AC.)
+++++++++++++i++++++++++++++++++++++++++++++++++++++++++~
Process from Point/Station 20.000 to Point/Station
t"• PIPEFLOW TRAVEL TIME (ProgTam estimated Size) "'**'
Upstream point/station elevation = 220.OOO~Ft.)
Downs[ream point/staCion elevation = 217.000(F[.)
Pipe length = 80.00(Ft.1 Manning's N= 0.013
No. of pipes = 1 Required pipe E1ow = 16.933(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow = 16.9331CFS)
NoYmal flow depth in pipe = 12.5911n.)
Flow top width inside pipe = 16.SSIIn.)
Critical depth could not be calculated.
Pipe flow velocity = 12.88(Ft/s)
Travel time Chrough pipe = 0.30 sin.
Time of concentration (TC) = 13.15 min.
+++++++
40.000
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 40.000 to Point/Station 40.000
`t*• CONFLUENCE OF MINOR STREAMS "**
, Along Main StYeam number: 1 in normal StYeam number 1
Stzeam flow area = 10.950~AC.)
Runoff from this stream = 16.933~CF5)
Time of concentraiion = 13.15 min.
Rainfall intensity = 1.816~In/Hr)
'
,
'
,
'
'
,
'
,
,
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 32.000
*"* INITIAL AREA EVALUATION `t"'
Initial area flow distance = 287 J90~Ft.)
Top (of initial area) elevation = 297.400(Ft.)
Bottom (of initial area) elevation = 234.SOO~Ft.)
Difference in elevation = 12.900(Ft.)
Slope = 0.04482 s(percent)= 9.48
TC = k~0.370)*((length^3)/(elevation change)7^0.2
Initial area time of concentration = 6.630 min.
Rainfall intensity = 2.646(In/Hr) for a 10.0 year storm
CONDOMINIUM subarea [ype
Runoff Coefficient = 0.842
Decimal fraction soil group A= 0.0~0
Decimal fraction soil group B= 0.000
Decimal fraction soil group C= 1.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 2) = 69.00
Pervious area Eraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 1.6931CF5)
Total initial stream area = 0.760(AC.)
Pervious area fraction = 0.350
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/Station 39.000
'•** STREET FLOW TAAVEL TIME + SUBAREA FLOW ADDITION "x*`
Top of street segment elevation = 234.500(Ft.)
End oE street segment elevation = 228.500(Ft.)
Length of street segment = 355.620~FC.)
Height of curb above gut[er flowline = 6.0(In.)
Width of half street (curb to crown) = 76.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [27 side(s) of the street
Distance from curb to property line = S.SOOIFt.)
Slope from curb to property line (v/hz) = 0.020
Page 5
Z~
'
PA2270.out
, Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(Sn.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
, Manning's N from gYade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 3.331(CFS)
Depth of flOw = 0.273(Ft.1, AVelage veloCity = 2 .526(Ft/s1
Street£low hydraulics at sidpoint of street travel:
Halfstreet flow width = 7.298(Ft.)
' Flow velocity = 2.53(Ft/s)
Travel time = 2.35 min. TC = 8.98 min.
Adding area flow to street
CONDOMZNIUM subarea type
Runoff Coefficient = 0.834
' Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.090
DeCimal fzaction Soil group C= 0.710
Decimal frac[ion soil group D= 0.200
RI index for soil(AMC 2) = 69.03
, Pervious area fraction = 0.350; impervious fraction = 0.650
Rain£all intensity = 2.240(In/HY) £or a 10.0 year Storm
Subazea runoff = 2.745(CFS) for 1.470(AC.)
' Total runoff = 4.4381CF5) Total area = 2.
Street flow at end of street = 9.438(CFS) 230(AC.1
Half street flow at end of street = 2.219(CFS)
Dep[h of flow = 0.294(Ft.), Average velocity = 2. 686(Ft/s)
Flow width (from curb towards crown)= 8.365(Ft.)
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++++i+++++++
Process from Point/Station 34.000 to Point/Station 36.000
**`* STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **"
~
J
'
'
,
'
,
'
~
,
Top of street segment elevation = 228.SOO~Ft.)
End of street segment elevation = 220.600(Ft.)
Length of street segment = 497.050(Ft.)
Height of curb above gutter flowline = 6.O~1n.)
Width of half street (curb to crown) = 16.000(Ft.1
Distance from crown to crossfall grade break = 74. 000(Ft.)
Slope £rom gut[er to grade break (v/hz) = 0.063
Slope from grade break to crown (v/hz~ = 0.020
Street flow is on (2] side(s) of the street
DisCance from curb to property line = 5.500(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(m.)
Manning's N in gutter = D.0150
Manning's N from gutter to grade break = 0.0150
Manning's N fros grade break to crown = 0.0150
Estimated mean flow rate at midpoint o£ street = 5.792(CFS)
Depth of flow = 0.313(Ft.l, Average velocity = 2 .895(Ft/s)
Streetflow hydraulics at sidpoint of street travel:
Halfstreet flow width = 9.301(Ft.)
Flow velocity = 2.90(Ft/s)
Travel time = 2.57 min. TC = 11.55 min.
Adding area flow to street
CONDOMINI[1M subarea type
Runoff Coefficient = 0.819
Decimal frac[ion soil group A= 0.000
Decimal fraction soil group H= 0.950
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.550
RI index for soil(AMC 2) = 66.95
Pervious area fraction = 0.350; Impervious fraction = 0.650
AaiREall intensity = 1.950(In/Hr) £oY a 10.0 yeaY Storm
Subarea runoff = 2.093(CF51 for 1.310(AC.)
Total runoff = 6.531(CFS) Total area = 3 .540(AC.)
Street flow at end of street = 6.531(CFS)
Half street flow at end of street = 3.266(CFS)
Depth of flow = 0.324(Ft.~, Average velocity = 2 .981(Ft/s)
Flow width (from curb towards crown)= 9.844(Ft.)
Page 6
++++++++++++++++++~+
~
~
' PA2210.out
Process from Point/S[ation 36.000 to Point/Station 40.000
"~' PIPEFLOW TRAVEL TIME (PYOgYam estima[ed Size) "'•
' Upstreas point/station elevation = 220.600~Ft.)
Downstreazn point/station elevation = 217.000(Ft.)
Pipe length = 30.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 6.5311CFS)
Nearest computed pipe diameter = 12.00(In.)
, Calculated individual pipe flow = 6.531(CFS)
Noxmal flow depth in pipe = 6.21(In.)
Flow top width inside pipe = 11.99(In.1
Critical depth could not be calculated.
' Pipe Elow velocity = 15.94(Ft/s)
Travel time through pipe = 0.03 min.
Tise of concentration ITC) = 11.58 min.
, ++++++++++++++++++++++++++++++++++::.+++++++++++++++++++++++++++++++++
Process from Point/Station 90.000 to Point/Station 90.000
't" CONFLUENCE OF MINOR STREAMS '
'
'
Along Main Stream number: 1 in nonnal stream number 2
Stream flow area = 3.5401AC.)
Runoff from this stream = 6.531(CFS)
Time of concentration = 11.58 min.
Rainfall intensity = 1.947(In/Hr)
SummaYy of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hi)
~ 1 16.933 13.15 1.816
2 6.531 11.58 1.947
Laigest stream flow has longer time of concentration
Qp = 16.933 + sum of
' Qb Ia/Ib
fi.531 * 0.932 = 6.090
Qp = 23.023
Total of 2 streams Co confluence:
' Flow rates before confluence poin[:
16.933 6.531
Area of streams before confluence:
10.450 3.590
Aesults af conEluence:
' Total flow rate = 23.023(CFS)
Time of concentration = 13.152 min.
Effective stream area after confluence = 13.990(AC.)
' ...++++++++++++++++++++++++++++++++++~a+++++++++++++...++++++++++++++
Process from Point/Station 90.000 to Point/Sta[ion 60.000
` PIPEFLOW TRAVEL TIME (Program estimated size) '
'
'
,
'
'
Upstream point/station elevation = 217.000(Ft.)
Downstream point/station elevation = 215.000(Ft.)
Pipe length = 30.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 23.023(CFSI
Nearest computed pipe diameter = 18.OO~1n.)
Calculated individual pipe flow = 23.023(CFS)
NoYmal flow depth in pipe = 12.73(Zn.)
Flow top width inside pipe = 16.38(In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.22(Ft/sl
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 13.16 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++r+++++++++++++++++
Process from Point/Station 60.000 to Point/Station 60.000
•"" CONFLUENCE OF MINOR STREAMS "**
Along Main Stream number: 1 in normal streas number 1
Page 7
Zv
'
' PA2210.out
Stream flow area = 13.990(AC.)
Runoff from this stzeam = 23.023(CFS)
Time of concentra[ion = 13.18 min.
' Rainfall intensity = 1.814(In/Hr)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 50.000 to Point/Sta[ion 52.000
, '*^` INITIAL AREA EVAGUATION "~•
Initial area flow distance = 275.560(Ft.)
Top (of ini[ial area) elevation = 249.OOOIPL ~
' Bottom (of initial area) elevation = 245.000(Ft.l
DifEerence in elevation = 4.000(Ft.)
Slope = 0.01952 s(percent)= 1.95
TC = k(0.3701'[(length^3)/lelevation change)]^0.2
initial area tise of concentration = 8.169 min.
Rain£all intensity = 2.360(In/Hr) £or a 10.0 yeaY Stoim
' CONDOMINZUM subarea type
Runoff Ccefficient = 0.605
Decimal fraction soil group A= 0.000
Decisal fraction soil group H= 0.960
Decisal fzaction soil group C= 0.000
' Decimal fzacCion soil group D= 0.040
RI index for soil(AMC 2) 56.76
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 0.969(CFS)
Total initial stream area = 0.510(AC.)
' Pervious area fraction = 0.350
++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++
`
, *
Process from Point/Station 52.000 to PoinC/Station 54.000
~
..«
** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION '
~ Top of street segmen[ elevation = 245.000(Ft.)
End of street segment elevation = 231.900(Ft.)
' Length of street segment 882.510(Ft.)
Height oE curb above gutter flowline 6.0(In.)
Width of half street lwrb to crownl = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hz1 = 0.063 .
' Slope from grade break to crown (v/hz) 0.020
Street tlow is on (1] side(s) of the street
Distance from curb to property line = 5.500(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.OOO~Ft.~
, Gutter hike from £lowline = 2.000(In.)
Manning'S N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break Co crown = 0.0150
Estimated mean flow ra[e a[ midpoint of stzeet = 2.955(CFS)
, Depth of flow = 0.322~Ft.), Average velocity = 2 J29(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 9.769~Ft.)
, Flow velocity = 2.72(Ft/s)
Travel time = 5.40 sin. TC = 13.56 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.787
Decimal fraction soil group A= 0.000
' Decimal fraction soil group B= 0.930
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.070
~RI index for soil(AMC 2) = 57.33
Pervious area fraction = 0.350; Zmpervious fraction = 0.650
, Rainfall intensity = 1.785(In/Hr) for a 10.0 year s[ocm
Subarea runoff = 2.938(CFS) for 2.0901AC.)
Total runoff = 3.907(CFS) Total azea = 2.6~OIAC.)
' Street flow at end of street = 3.907(CFS)
Half street flow at end of street = 3.907(CF5)
Depth of flow = 0.397(Ft.), Average velocity = 2.905(Ft/s)
Flow width (from curb towards crown)= 11.039(Ft.)
' Page 8
2''
'
,
1
'
'
'
'
'
'
,
,
~
,
,
,
,
'
'
PA2210.out
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++t
Process from Point/Station 54.000 to Point/Station 56.000
*"** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *':•
Top oE screet segment elevation = 231.900(Ft.)
End of street segment elevation = 220.600(Ft.)
Length of street segment = 602.BSO~FC.)
Height of curb above 9utter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14. OOOIFt.1
Slope from gutter to grade break (v/hz) = 0.063
Slope Erom grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the stree[
DistanCe from CuYb to propeYty line = 5.500(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 5.147~CFS)
Depth of flow = 0.3631Ft.1, Average velocity = 3 .3871Ft/s)
S[reetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.802(Ft.)
Flow velocity = 3.39(Ft/sl
Travel time = 2.97 min. TC = 16.53 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.775
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
DeCimal fractiOn Soil group D= 0.000
RI index for soil(AMC 2) = 56.00
Pervious area Eraction = 0.350; Impervious fraction = 0.650
Rainfall in[ensity = 1.601(In/Hr) for a 10.0 year storm
Subarea runoff = 2.049~CF5) for 1.650(AC.)
Total runoff = 5.956(CFS) Total area = 9.250(AC.~
Street flow at end of street = 5.956(CFS)
ftal£ street flow at end of street = 5.956~CF5)
Depth of flow = 0.377(Ft.), Average velocity = 3.506(Ft/s)
Flow width (from curb towards crown)= 12.538(Ft.)
+++++++++++++++++++++++++++++++++++++++++++++++++.++++++++++++++++++++
Process from Point/Station 56.000 to PoinL/Station 60.000
"" PIPEFLOW TRAVEL TIME (Program estima[ed size) x*'*
Upstream point/station elevation = 220.6001Ft.)
Downs[ream point/station elevation = 215.000(Ft.)
Pipe length = 20.D0(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe Elow = 5.956(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 5.956(CFS)
Normal £low depth in pipe = 5.44(In.)
Flow top width inside pipe = 8.80(In.)
Critical depth could not be calculated.
Pipe flOw veloCity = 21.31(Ft/S)
Travel time through pipe = 0.02 min.
Time oE concentration (TCI = 16.55 min.
++++++++++++++++++f++++++++++++++++++++++++++.+++++++++++++++++++++++
Process from Point/Station 60.000 to Point/Station 60.000
**** CONFLUENCE OF MINOR STREAMS *'**
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 4.250(AC.)
Runoff from this stream = 5.956(CFS)
Time of concentration = 16.55 sin.
Rainfall intenSitY = 1.600(In/Hr)
Swnmary of sCream data:
Page 9
2~
'
' PA2210.out
Stream Flow rate TC Rainfall intensity
No. (CFS) (min) (In/Hr)
' 1 23.023 13.18 1.819
2 5.956 16.55 1.600
Largest stream flow has longer or shorter time of concentration
4p = 23.023 + sum of
' Qa Tb/Ta
5.956 * 0.797 = 9.745
QP = 27.768
To[al of 2 streams to conflnence:
' Flow rates before confluence point:
23.023 5.956
Area of streams before confluence:
13.990 9.250
, Results of confluence:
Total flOw Yate = 27 J68(CFS)
Time of concentration = 13.181 min.
Effective stream area after confluence = 18.240(AC.)
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 60.000 to Point/Station 70.000
**"* PIPEFLOW TRAVEL TIME (Progzam estimated size) "*'
'
,
'
~
'
'
1
'
'
J
Upstream point/station elevation = 215.OOO~Ft.)
Downstream point/station elevation = 213.000(Ft.)
Pipe length = 100.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 27 J66(CFS)
Nearest computed pipe diameter = 24.00(In.~
Calculated individual pipe flow = 27.768(CFS)
Normal flow depth in pipe = 77.27(In.)
Flaw top width inside pipe = 21.56~1n.)
Critical Depth = 21.88(In.~
Pipe flow velocity = 11.47(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 13.33 min.
End of computations, Cotal study area = 18.29 (AC.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction~Ap) = 0.350
Area averaged RI index number = 67.6
' Page 10
~
L~
, PA22100.out
Riverside County Rational Hydrology Program
CIVILCADD/CNILDESIGN EngineeYing So£twaze,(C) 1989 - 2001 VeisiOn 6.4
, Rational Hydrology Study Date: OS/04/06 File:PA22100.out
______'________
__________'____________________'_________
850_0117 TRACT 32358
PA 22
100-YEAR 1-HOUR STORM
, 8/3/06 SWL
_____________________________________________________'__________________
*"*"*"' Hydrology Study Control Information "'*********
' English (in-lb) Units used in input data file
'_____________________'______________________' _
Van Dell and Associates, Inc., Irvine, CA - S/N 953
~ _'____'_'___________________________'___________________________________
Rational Method Hydrology Program based on
' Riverside County Flood Control & Water Conservation District
~ 1978 hydrology manual
' Storm event (year) = 700.00 Antecedent Moisture Condition = 2
2 year, 7 hour precipitation = 0.500(In.)
, 100 year, 1 hour precipiGation = 1.200~In.)
Storm event year = 700.0
, Calculated rainfall intensity data:
1 hour intensity = 1.200~1n/Hr)
~ Slope of intensity duration curve = 0.5500
'
+++++++++++++++++++++++++.++++++++++++++++++++++++++++++++++++++++++++
P*ocess from Point/Station
10.000 to Point/Station 12.000
, **
' ZNITIAL AAEA EVALUATION '
Initial ared flow distance = 280.100(Ft.)
Top (of initial area) elevation = 252.000(Ft.)
' Bottom (of initial area) elevation = 245.200(Ft.)
DifEerence i~ elevation = 6.800(Ft.~
Slope = 0.02428 s(percent)= 2.43
TC = k(0.370)"'((length^3)/~eleva[ion change)]^0.2
Initial area time of concentration = 7.415 min.
' Rainfall intensity = 3.790~1n/Hr) for a 100.0 year storm
CONDOMINIUM subarea type
Runoff Coefficient = 0.860
Decimal fraction soil group A= 0.000
~ Decimal fraction soil group B= 0.230
' Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.770
RZ index for soil(AMC 2) = 90.63
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial SubaYea runo££ = 1.890(CFS)
' Total initial stream area = 0.580(AC.)
Pervious area fraction = 0.350
' +++++++++++++++++f++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 14.000
•"' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ~"'
t Top of street Segment eleVation = 245.200(Ft.)
End of street se9ment elevation = 236.400(Ft.)
Length of street segment 946.910(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 16.000(Ft.)
, Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Slope from grade break to crown (v/hz1 = 0.020
Street flow is on [1j side~s) o£ the street
, Page 1
~
'
I~
'
'
'
'
'
,
PA22100.out
Distance from curb to property line = 5.500(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.0001Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estisated mean flow rate at sidpoint of street = 5.219~CF51
Depth of flow = 0.3621Ft.), Average velocity = 3. 462(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.743(Ft.)
Flow velocity = 3.46(Ft/s)
Travel time = 2.15 min. TC = 9.57 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.862
Decimal fraction soil group A= 0.000
Decimal fraction soil gzoup B= 0.020
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.980
RI index for soil(AMC 2) = 74.62
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 3.294(In/Hr) for a 100.0 year storm
Subarea runoff = 5.792(CFS) for 2.0401AC.)
Total runoff = 7.682(CFS) Total area = 2. 620~AC.)
Street flow at end of street = 7.682(CFS)
xalf street Elow at end of street = 7.682(CF51
Depth of flow = 0.402(Ft.), Average velocity = 3. 796(Ft/s)
Flow width (fros curb towards crown)= 13.774(Ft.)
' .:.++++++++++++++++++++++++++++++++++++~++++++++~+++++'+~+++++++++++++
Process from Point/Station 14.000 to Point/Station 16.000
• STREET FGOW TRAVEL TIME + SUBAREA FLOW ADDITION ««
Top of street segment elevation = 236.400(Ft.)
' End of street segment elevation = 232.400(Ft.)
Length of s[reeC segment 527.540(Ft.)
Height of curb above gutter flowline 6.0(In.)
Width o£ half street (curb to crown) = 16.000(Ft.)
Distance from crown to crossfall grade break = 14.OOOIFt.)
~
,
'
,
'
'
,
1
Slope from gutter to grade break (v/hzl = 0.063
Slope from grade break to crown (v/hz) = 0.020
street flow is on [17 side(s) of the street
Distance from curb to property line = 5.500(Ft.1
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
Depth of flow = 0.531(Ft.), Average velocity = 3
Warning: depth of flow exceeds top of curb
Note: depth of flow exceeds top oE street crown.
Distance that curb overflow reaches into property =
Streetflow hydzaulics at midpoint of street travel:
Halfstreet flow width = 16.000(Ft.)
Flow velocity = 3.191Ft/s)
Travel time = 2.76 min. TC = 12.32 min.
Adding area flow to street
CONDOMIffiUM SUbaYea type
Runoff Coefficient = 0.855
Decisal fraction soil group A= 0.000
Decisal fzaction soil gzoup B= 0.070
Decimal fraction soil group C= 0.010
Decimal fraction soil group D= 0.920
RI index for soil(AMC 2) = 73.61
Pervious area fraction = 0.350; Impervious fraction
Rainfall intensity = 2.866~1n/Hr) for a 100.0
Subarea ru~off = 8.747(CF51 £or 3.570(AC.I
Total runo£f = 16.429(CFS) Total area = 6
Street £1ow at end of street = 16.4291CFS)
Half street flow at end of street = 16.429(CFS)
Pa4e 2
12.916(CFS)
168(Ft/s)
1.531FL)
= 0.650
year storm
190(AC.)
2`~
'
' PA22100.out
Depth of flow = 0.577(Ft.), Average velocity = 3.345(Ft/s)
Warning: depth of flow exceeds top of curb
No[e: depth of flow exceeds top of street crown.
' Distance that curb overflow reaches into property = 3.831Ft.)
Flow width (£rom curb towards crown)= 16.000(Ft.)
++~++++++++++++++++++++r++++++++++++++++++++.+.++.++++++++++++++++++++
' Process from Point/Station 16.000 to Point/Statfon 20.000
'~'• PIPEFLOW TRAVEL TIME (PLOgYam estimated size) `
Upstream point/station elevation = 232.400~Ft.)
t Downstream point/station elevation = 230.OOOlFC.)
Pipe length SO.OO~Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 16.429~CF5)
Nearest computed pipe diameter = 18.OO~1n.)
Calcula[ed individual pipe flow = 16.429(CFS)
' Normal flow depth in pipe = 11.25(In.)
Flow top width inside pipe = 17.93(In.)
Critical depth could not be calculated.
Pipe £low velocity = 14.15(Ft/5)
Travel time through pipe = 0.06 min.
, Time of wncentration 1TC1 = 12.38 min.
~++++++++++++++++++++~a~++++~++++++++++++~++++++++++++++++++++++++++++
Process fzom Point/Station 20.000 to Point/Station 20.000
' *"` CONFLUENCE OF MINOR STREAMS ***"
Along Main Stieam number: 1 in noxmal stream number 1
Stream flow area = 6.190(AC.)
Runoff from this stream = 16.4291CF5)
' Time of concentration = 12.38 min.
Rainfall intensity = 2.856(In/Hr)
' ++*+++++++++++++++++++++++++++~.:+++++++++++++++++++++++a+++++++++++++
Process from Point/Station 17.000 to Point/Station 18.000
' * INITIAL AREA EVALUATZON *
Initial area flow distance = 700.610(FL )
' Top (of initial area) elevation = 248.300(Ft.)
Bottom (of initial area) elevation = 229.300(Ft.)
Difference in elevation = 19.000(F[.)
Slope = 0.02712 s(percent~= 2.71
TC = k10.370)*[(length"3)/(elevation change)7^0.2
' Initial area time of concentration = 10.465 min.
Rainfall intensity = 3.13611n/Hr) for a 100.0 year storm
CONDOMZNIUM subarea type
Runoff Coef£icient = 0.649
Decimal fraction soil group A= 0.000
' Decimal fraction soil group B= 0.314
Decimal fraction soil group C= 0.040
Decisal fraction soil group D= 0.646
RI index for soi1~AMC 2) = 68.79
1 Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 5.5641CFS1
Total initial stream area = 2.090(AC.)
Pervious area fraction = 0.350
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process fros Point/Station 18.000 to Point/Sta[ion 19.000
**'* STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "'*
' Top of street segment elevation = 229.300(Ft.)
End of street segment elevation = 222.200(Ft.)
Length of street segment 231.620(Ft.)
Height of curb above gutter flowline = 6.0(In.~
Width of half street (curb to crown) = 16.OOOIFt.1
' Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Slope from grade break to croc.m (v/hz) = 0.020
Street flow is an [1] side(s) of the street
' Page 3
~
'
' PA22100.out
-
Distance from curb to proper[y line S.SOOIFt.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.OOO~1n.)
' Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.453(CFS)
Depth of flow = 0.388(Ft.), Average velocity = 4. 596(Ft/s)
, Streetflow hydraulics at midpoint of s[reet travel:
Halfstreet flow width = 13.086(Ft.)
Flow velacity = 4.60~Ft/s)
' Travel time = 0.84 min. TC = ll.30 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.848
DeCimal £iaCtion Soil gYOUp A= 0.000
Decimal fraction soil group B= 0.300
' Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0 J00
RI index for soil(AMC 2) = 69.30
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 3.005(In/Hr) for a 500.0 year storm
, Subarea runoff = 5.532(CFS) for 2.170(AC.)
Total runof£ = 11.096(CFS) Total azea = 4. 260~AC.)
Street flow at end of street = 11.096(CFS)
Half street flow at end of street = 17.096(CFS)
Depth of flow = 0.419(Ft.1, Average velocity = 9. 905~Ft/s)
' Flow width (fzom curb towards crown)= 14.613(Ft.)
' +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++a++
Process from Point/Station 19.000 to Point/Station 20.000
""'* PIPEFLOW TRAVEL TZME (Program estimated size) ****
1
'
'
,
'
'
'
,
Upstream point/sta[ion elevation = 222.200(FL ~
Downstieam point/station elevation = 220.000(Ft.)
Pipe length = 15.OOIFt.I Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 11.096(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 11.096~CFS)
Normal flow depth in pipe = 8.2111n.)
Flow top width inside pipe = 11.15(In.)
Critical depth could no[ be calculated.
Pipe floW velOCity = 19.36(Ft/S)
Travel time through pipe = 0.01 min.
Time of concentration (TC) = 11.32 min.
++++++++++++++++++++++++++++++.+++++++++++++++++++++++++++++++++++++++
PYOCess from Point/Station 20.000 to Point/Station 20.000
**** CONFLUINCE OF MZNOR STREAMS `*"
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 4.260(AC.)
RunoEf from this stream = ll.096(CFS)
Time of concentration = 11.32 min.
Rainfall intensity = 3.003(In/Hr)
Susmnary of stream data:
St[eam Flow rate TC Rainfall Intensity
No. (CFS) ~min) (In/Hr)
1 16.929 12.38 2.858
2 ll.096 ll.32 3.003
Largest stream flow has longer time of concentration
Qp = 16.929 + sum of
4b Ia/Ib
11.096 * 0.952 = 10.560
4p = 26.990
Total of 2 streass to confluence:
Flow rates before confluence point:
' Page 4
~
,
' PA22100.out
16.429 11.096
Area of streams be£ore conEluence:
6.190 4.260
' Results of confluence:
'fotal flow rate = 26.9901CF51
Time of concentration = 12.383 min.
Effective stream area a£ter confluence = 10.450~AC.)
' +++++++++++++++++++t+++++++++++++++++++++++++++++t++++++++++++++++++++
Process £rom Point/Station 20.000 to POin[/Station 90.000
"*" PIPEFLOW TRAVEL TZME (Program estimated size) "*'*
Upstream point/station elevation = 220.000(Ft.)
, Downstream point/station elevation = 217.000(Ft.)
Pipe length = B0.00(Ft.) Manning's N= 0.013
Na. oE pipes = 1 Required pipe flow = 26.990(CFS)
' Nearest cosputed pipe diameter =- 21.00(In.)
Calculated individual pipe flow 26.990(CFSI
Normal Elow depth in pipe = 15.28(In.)
Flow top width inside pipe = 18.7011n.)
Critical depth could not be calculated.
Pipe flow velocity = 14.39~Ft/s)
' Travel time through pipe = 0.09 min.
Time of concentration ITC) = 12.48 min.
++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++
, Process from Point/Station 40.000 to Point/Station 40.000
...
+x«« CONFLUENCE OF MINOR STREAMS '
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 10.450(AC.)
' Runoff from this stream = 26.990(CF5)
Time of mncentration = 12.48 min.
. Raiafall intensity = 2.897(In/Hr)
' ++++++++~+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 30.000 to Point/Station 32.000
*~*' INITIAL AREA EVALUATION *•**
'
,
'
,
'
,
,
C
Initial area flow distance = 287.790(Ft.)
Top (of initial area) elevation = 247.400(Ft.) -
Bottom (of initial area) elevation = 234.500(FL ~
Difference in elevation = 12.900(Ft.)
Slope = 0.04482 s~percent)= 4.48
TC = k(0.370)*((length^3)/~elevation change~]°0.2
Initial area time of concentration = 6.630 min.
Rainfall intensity = 4.030(In/Hr) for a 100.0 year storm
CONDOMINIUM subaYea type
Runoff Coefficient = 0.859
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.000
Decimal fraction soil group C= 1.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 2) = 69.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 2.6321CFS)
Total initial stream area = 0.7601AC.1
Pervious area fraction = 0.350
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 32.000 to Point/SCation 34.000
**'* STREET FLOW TAAVEL TIME + SUBAREA FLOW ADDZTION **`*
Top of street segment elevation = 234.SOOIFt.)
End of sCree[ segment elevation = 228.500(Ft.)
Length of stree[ segment = 355.620(Ft.)
Height of curb above gutter flowline = 6.0 Un.)
Width of half street ~curb to crown) = 16.000(Ft.)
Distance fros crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Page 5
/
,
' ~ razzioo.o~c
Slope from grade break to crown (v/hz) 0.020
S[reet flow is on [27 side(s) of the street
Distance from curb to property line = S.SOO~Ft.)
Slope from curb to property line (v/hzl = 0.020
' Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
' Estimated mean flow rate at midpoint of street = 5.177(CFS)
Depth of flow = 0.306(Ft.), Average velocity = 2. 976(Ft/s)
Streetflow hydraulics at midpoint of street travel:
' Halfstreet flow width = 8.972(Ft.)
Flow velocity = 2.78(Ft/s)
Travel time = 2.13 sin. TC = 8.76 min.
Adding area flow to street
CONDOMIMUM subarea type
Runoff Coefficient = 0.854
' Decimal fraction soil group A= 0.000
Decimal fraction soil group H= 0.090
Decimal fraction soil group C= 0.710
Decimal fraction soil group D= 0.200
RI index for soil(AMC 2) = 69.03
' Pervious area fraction = 0.350; Impervious fraction = 0.650
Rain£all intensity = 3.957(in/Hr) for a 100.0 year storm
Subarea zunoff = 4.337(CFS) for 1.4701AC.)
Total runoff = 6.9691CF51 Total area = 2. 230(AC.)
Street flow at end of street = 6.969~CFS)
, Half street flow at end of street = 3.4851CFS)
Depth of flow = 0.331~Ft.), Average velocity = 2. 972(Ft/s)
Flow width (from curb towaids crown)= 10.227(Ft.)
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 34.000 to Point/Station 36.000
"" STREET FLOW TAAVEL TIME + SUBAREA FLOW ADDITION *x*"~
'
~
,
,
,
,
,
'
CI
Top of street segment elevation = 228.500(Ft.)
End of street segment elevation = 220.600(Ft.)
Length of street segment = 947.050(Ft.)
Height of curb above gutter flowline = 6.0(Ea.)
width oE half street (curb to crown) = 16.OOO~Ft.)
Distance from crown to crossfall grade break = 14. 000(Ft.)
Slope from gutter to grade break Iv/hz) = 0.063
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 5.500(Ft.)
Slope from curb to praperty line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike fram flowline = 2.OOO~1n.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 9.Olfi(CFS)
Depth of flow = 0.353(Ft.), Average velocity = 3 .2ll~Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.302(Ft.)
Flow velocity = 3.21~Ft/s)
Travel time = 2.32 min. TC = 11.06 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.843
DeCimal fraCtion Soil group A= 0.000
Decimal fraction soil group B= 0.450
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.550
RI index for soi1~AMC 2) = 66.45 '
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 3.038(In/Hr) for a 100.0 year storm
Subarea runoff = 3.354(CFS) for 1.310(AC.)
Total runoff = 10.323(CFS) Total area = 3 .540(AC.)
Street flow at end of street = 70.323(CFS)
Half street flow at end of street = 5.162(CFS)
Depth of flow = 0.366(Ft.), Average velocity = 3 .314(Ft/s)
Page 6
~~
,
' PA22100.out
Flow width (from curb towards crown)= 11.962(Ft.)
' ++++++++++++++++++++++++++++++++++++++++++++++++++++~++++++++++++++++++
Process Erom Point/Station 36.000 Co Point/Station 40.000
""' PIPEFLOW TRAVEL TIME (Program estimated Size) '**
Upstream point/station elevation = 220.600(Ft.)
, Downstream point/station elevation = 217.000(F[.1
Pipe length = 30.00(Ft.1 Manning'S N= 0.013
No. of pipes = 1 Required pipe flow - 10.323(CFS)
Nearest computed pipe diameter = 12.00(In.)
' Calculated individual pipe Elow = 10.323(CFS)
Normal flow depth in pipe = 8.39(In.)
Flow top width inside pipe = 11.01(In.)
Critical depth could not be calculated.
Pipe flow velocity = 17.59(Ft/s)
' Travel time through pipe = 0.03 min.
Tise of concentration (TC) = 11.11 min.
++++++++++++++++++++++a++++++++++++++++++++++~a+++++++++++++++++++++++
Process from Point/Station 40.000 to Point/Station 90.000
, "•* CONFLUENCE OF MINOR STREAMS **'*
A1ong Main Stream numbel: 1 in normal Stream numbeY 2
Stream flow area = 3.540(AC.)
Aunoff from this stream = 10.323(CFS)
' Time of concentration = 11.11 min.
Rainfall intensity = 3.034(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
, No. (CFS) (min) (In/Hr)
~
~' 1 26.990 12.48 2.897
2 10.323 1L ll 3.034
Largest stream flow has longer time of concentration
Qp = 26.990 + sum of
Qb Ia/Ib
10.323 ' 0.938 = 9.687
' Qp = 36.677
Total of 2 streams to confluence:
Flow rates beEore confluence point:
26.990 10.323
' Area of streams before confluence:
10.450 3.540
Results of canfluence:
Total flow rate = 36.677(CFS)
Time of concentration = 12.476 min. '
, Effective stream area after confluence = 13.990(AC.)
, ++++++++++++++++++++++++++++++++++++++++++++++++++++++*+++++++++++++++
Process from Point/Station 40.000 to Poi~t/Station 60.000
***• PIPEFLOW TRAVEL TIME (Program es[imated size) `*'
Upstream point/station elevation = 217.OOOIFt.)
, Downstream point/station elevation = 215.000(Ft.)
Pipe length - 30.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 36.677(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 36.677~CF5)
' Normal flow depth in pipe = 15.52(Zn.)
Flow top width inside pipe = 18.45(In.)
Critical depth could not be calculated.
Pipe flow velocity = 19.24(Ft/s)
' Travel time through pipe = 0.03 min.
Time of concentration (TC) = 12.50 min.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' Page 7
3ti
,
' PA22100.OUt
Process from Point/Station 60.000 to Point/Station 60.000
w'"* CONFLUENCE OF MINOR STREAMS '••*
' Along Main Stream number: 1 in normal stzeam number 1
Stream flow area = 13.990(AC.)
Runoff fros this streas = 36.677(CFS)
Time of concenCration = 12.50 min.
Rainfall intensity = 2.893(In/Hr)
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 50.000 to Point/Station 52.000
' ~'** INITIAL AREA EVALUATION "•*
Initial area flow distance = 275.560(Ft.l
Top (of initial area) elevation = 249.000(Ft.)
aottom ~of initial area) elevation = 245.OOOIFt.)
' Difference in elevation = 4.OOOIFt.1
Slope = 0.01452 s(percentl= 1.45
TC = k(0.3701*[(length^3)/(elevation change)7^0.2
Initial area time of concentration = 8.164 min.
Rainfall intensity = 3.594(In/Hr) for a 100.0 year storm
, CONDOMINIUM subarea type
Runoff Coefficient = 0.831
Decisal fraction soil group A= D.000
Decisal fraction soil group B= 0.960
Decimal fraction soil group C= 0.000
' Decimal fraction soil group D= 0.040
RI index for soil(AMC 21 56.76
Pervious area fzaction = 0.350; Impervious fraction = 0.650
Initial subarea runoff = 1.523(CF5)
, Total initial stream area = 0.510(AC.)
Pervious area fraction = 0.350
+++++++++++++++++++++++++++++++++++++++~++++++++++++++++++++++++++++++
' Process from Point/Station 52.000 to Point/Station 54.000
*'"*"` STAEET FLOW TRAVEL TIME + SUBAREA FLOW A~DITION •*'
Top of street segment elevation = 245.000(Ft.)
~ End of street segment elevatio~ = 231.900~Ft.)
, Length of street segment = 882.510(Ft.)
Height of curb above gutter flowline 6.0(In.)
Width of half street (curb to crown) 76.0001Ft.)
Distance from crown to crossfall grade break = 14.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
~. Distance from curb to property line = 5.500(Ft.)
Slope from curb to property line (v/hz1 = 0.020
Gutter width = 2.000(Ft.)
, Gutter hike from Elowline = 2.000(In.)
Macuiing's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
' Estimated mean flow rate at midpoint of street = 4.6421CFS1
Depth of flow = 0.364(Ft.), Average velocity = 3.024~FC/s)
S[reetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.868(Ft.)
Flow velocity = 3.02~Ft/s)
~ Travel [ime = 4.86 min. TC = 13.03 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Coefficient = 0.817
Decisal fraction soil group A= 0.000
' Decimal fraction soil group B= 0.930
Decimal fraction soil group C= 0.000
DeCimal fYaCtion Soil gTOUp D= 0.070
RI index for soil(AMC 2) = 57.33
, Pezvious area fraction = 0.350; Impervious frac[ion = 0.650
Rainfall intensity = 2.780(In/Hr) for a 100.0 year storm
Subarea runoff = 4.747(CFS) for 2.090(AC.)
Total runoff = 6.2691CFS1 Total area = 2.600(AC.)
Street flow at end of stzeet = 6.269(CFS)
' Page 6
~
,
'
LJ
'
'
,
'
'
,
'
,
,
'
t
'
'
'
CI
PA22100.out
Half street flow at end oE street = 6.269(CFS)
Depth of flow = 0.395(Ft.), Average velocity = 3.247~Ft/s)
Flow width (trom curb Cowards crow[t)= 13.432(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 54.000 to Point/Sta[ion 56.000
"`• STAEET FLOW TRAVEL TIME + SUBAREA FLOW AIIDITZON •`**
Top of street segment elevation = 231.900(Ft.)
End of street segment elevation = 220.600(Ft.)
Length of street segment = 602.850(Ft.)
Height of curb above gutter flowline = 6.011n.1
Width of half street (curb to crown) = 16.OOOIFt.)
Distance from crown to crossEall grade break = 14.OOO~Ft.)
Slope from gutter to grade break (v/hz) = 0.063
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 5.500(Ft.)
Slope from cuzb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
GuCter hike from flowline = 2.OOO~1n.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 8.259~CF5)
Depth of flow = 0.413(Ft.), Average velocity = 3.790(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 14.3251Ft.)
Flow velocity = 3.791Ft/s)
Travel time = 2.65 min. TC = 15.68 min.
Adding area flow to street
CONDOMINIUM subarea type
Runoff Caefficient = ~.807
Decimal fraction soil group A= 0.000
Decimal fraction soil group H= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000
AS index for soi117N1C 2) = 56.00
Pervious area fraction = 0.350; Impervious fraction = 0.650
Rainfall intensity = 2.S10~1n/Hr) for a 100.0 year storm
Subarea runofE = 3.3441CFS1 for 1.650(AC.)
Total runoff = 9.613(CFS) Total area = 4.250~AC.~
Street £low at end of street = 9.613~CF5)
Hal£ street flow at end of street = 9.613(CFS)
Dep[h of flow = 0.9311Ft.), Average velocity = 3.932(Ft/s~
Flow width (from curb [owards crown)= 15.226~Ft.)
r+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 56.000 to Point/Station 60.000
..xx pipEFLOW TRAVEL TIME (Program estimated size) *`*'
Upstream point/station elevation = 220.600(Ft.)
DoWnStLeam point/Station eleVation = 215.000(Ft.)
Pipe length = 20.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 9.613(CFS)
Neares[ computed pipe diameter = 12.00(In.)
Calwlated individual pipe flow = 9.613(CFS)
Normal flow depth in pipe = 6.07(In.)
Flow top width inside pipe = 12.00(In.)
Critical depth could not be calculated.
Pipe flow velocity = 24.12~Ft/s)
Travel time through pipe = 0.01 min.
Time of concentra[ion 1TC) = 15.69 sin.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process fros Point/Station 60.000 to Point/Station 60.000
***` CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in norsal stream number 2
Stream flow area = 9.250(AC.)
Runoff from this stream = 9.613(CF51
Page 9
~
'
, PA22100.out
Time of concentration = 15.69 min.
Rainfall in[ensity = 2.509~in/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
' 1 36.677 12.50 2.843
2 9.613 15.69 2.509
Largest stream flow has longer or shorter time of concentration
Qp = 36.677 + sum of
, 4a Tb/Ta
9.613 ' 0.797 = 7.658
Qp = 94.335
Total of 2 sCreazrts to confluence:
' Flow rates before confluence point:
36.677 9.613
Area of streams before confluence:
13.990 4.250
Results of confluence:
' Total flow rate = 44.335(CFS)
Time oE concentration = 12.502 min.
Effective stream area after confluence = 18.290(AC.)
t
'
'
'
'
,
~~
'
~
'
++++++++++++++++++++++++++++++++++i+++++++++++++++++++++++++++++++++++
Process from Point/Station 60.000 Co Point/Station 70.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) *"'
Upstream Point/station elevation = 215.000(Ft.)
Downstream point/station elevation = 213.000(Ft.)
Pipe length = 100.00(Ft.) Manning'S N= 0.013
No. oE pipes = 1 Required pipe Elow = 49.335(CFS)
NearesC computed pipe diameter = 27.00(Sn.)
Calculated individual pipe flow = 44.335(CFS)
Normal flow depth in pipe = 22.45~1n.)
Flow top width inside pipe = 20.21(In.)
Critical depth could not be calculated.
Pipe flow velocity = 12.55(Ft/s)
Travel time [hrough pipe = 0.13 min.
Time of concentration ~TC) = 12.63 min.
End of computations, total study area = 18.24 (AC.)
The following figures may
be used for a unit hydrograph s[udy o£ Che same area.
Area averaged pervious area fraction(Ap) = 0.350
Area averaged ffi index number = 67.6
' Page SO
~