HomeMy WebLinkAboutTract Map 30264 Geotechnical Investigation & Grading Plan Review•
I'I ~ PACIFIC SOILS ENCa1NEERING, INC.
0 77~ E. PARKRIDGE AVENUE, SUITE 705, CORONA, CA 92879
. ^ TELEPHONE: (909) 582-0770, FAX: (909) 582-0176
STANDARD PACIFIC May 21, 2004
255 East Rincon Sueet, Suite 200 Work Order 700007-C
Corona, California 92879-1330
I•
Attention: Mr. Mike White
Subject: GEOTECHNICAL INVESTIGATION AND
GRADING PLAN REVIEW,
Tract 30264, Wolf Creek Specific Plan
City of Temecula, California
References: See Appendix A
•
Gentlemen:
Pursuant to your request, presented herein is Pacific Soils Engineering, Inc.'s (PSE) geotechnical
investigation and grading plan review of Tract 30264, part of the Wolf Creek Specific Plan. The
~ site, shown on the enclosed 40-scale rough grading plans (Plates I through 19), is located off the
southeast comer of the intersection of Wolf Valley Road and Pechanga Parkway in the City of
Temecula, California.
~ PSE's review of the data and site plan indicates that the proposed development is feasible from a
geotechnical standpoint, provided that the recommendations presented in this report are
incorporated into future plan reviews, the grading plan, and implemented during site
~ development. The major geotechnical issues affecting the site development identified within this
documentinclude:
- Removal of Unsuitable Materials: Removal of the upper portions of the alluvium will
be required in design fill and shallow cut areas.
~ - Seismicallv Induced Settlement: Liquefaction and/or dry sand settlement could occur
onsite during an earthquake. To minimize the effect of the potential settlement, the upper
portions of the alluvium should be removed and replaced with compacted fill and the
single-family structures should be constructed with post-tensioned foundation systems.
• i' Collaase Potential/Hvdro-Consolidation: There is a potential for hydro-collapse in the
onsite soils. Foundation systems should be designed to withstand the potential
differential settlements presented in this report.
~
iPORATE HEADOUARTERS LOS ANGELES COUNTV SOl1TH OFANGE COUNTY SAN OIEGO COUNTY
~ TEIL O`4) 22D-07]C TEL: (310~ 325-7272 or (323) 775-6i]t TEL: 1]141 730-2t.'< TEL IBSfi) 560-1713
FAX: (]tA) 22C~958P FA%: P14) e20-958E FA%: 014) i30-510~ FA%: (058) 560-0380
•
•
•
•
•
•
~
~
~
~
Work Order700007-C
May 21, 2004
Page ii
PSE appreciates the opportunity to provide you with geotechnical consulting services. If you
have any questions or should you require any additional information, please contact the
undersigned at (909) 582-0170.
Respectfully submitted,
PACIFIC SOILS ENGINEERING, INC. Reviewed by: Papess~p,~,~
oe
~ - ~~'~~' ~I~FiZ~,
~ `? m
By: . _
SCOTT A. GRAY JAI1dIES B:,C ;~7- '~ 2 6~.~,~s~ros *
Civil Engineering Associate RCB 30280/Reg. Exp.: 3-3 ^ p~ ~p~p~,P/
Distribution: (6) Addressee
(4) Lohr & Associates Attn: Fred Dcerges
(5)
SAG:IBC:F]E:DCAsm:700007-C Mey 5, 2004 (Wolf Croek 2)
~ /, ~ .~oFCw-`~_:
r` L~ ; '
~L.--
DEAN C. ARMSTRONG/CEG ENG1NEEq~,y
Reg. Exp.: 9-30-04 ti8~``,~ ~" ~sr9 coo
Vice President W a °z ~o
* ~ Cb~<j,~ '~
s, r /
~
• PACIFIG SOILS ENGINEERING, INC.
i•
Work Order 700007-C Page iii
May 21, 2004
TABLE OF CONTENTS
1.0 INTRODUCTI ON ............................................................................ ......................................1
I .1 Background and Purpose ......................................................... ......................................1
~ 1.2 Scope of Study ......................................................................... ......................................1
13 Site Location and Description ................................................. ......................................2
1.4 Report Limitations ................................................................... ......................................2
2.0 PROPOSEDDEVELOPMENT ....................................................... ......................................2
3.0 FIELD AND LABORATORY INVESTIGATION ......................... ......................................3
' ~ 3.1 Previous Site Investigations ..................................................... ......................................3
'' 3.2 Current Site lnvestigation ........................................................ ......................................6
3.2.1 FieldInvestigation ....................................................... ......................................6
3.2.2 Laboratory Investigation .............................................. ......................................6
4.0 GEOLOGIC CONDITIONS ............................................................ ......................................7
~ 4.1 Geologic Structure ................................................................... ......................................7
4.2 Stratigraphy ............................................................................. ......................................7
, 4.2.1 Artificial Fil]-Engineered (afe) .................................. ......................................8
, 4.2.2 Artificial Fill-Engineered (afu) .................................. ......................................8
4.23 Colluvium (Map Symbol Qcol) ................................ ......................................8
r 4.2.4 Alluvium (Map Symbol Qal) .................................... ......................................8
4.2.5 Pauba Formation (Map Symbol Qps) ....................... ......................................9
43 Geologic Structure ................................................................... ......................................9
43.1 Faulting ........................................................................ ......................................9
43.2 Folding ......................................................................... ....................................10
4.4 Groundwater ............................................................................ ....................................10
~ 4.5 Geologic Hazazds .................................................................... ....................................11
4.5.1 Seismicity ................................................................... .....................................11
4.5.2 Liquefaction and Seismic Settlement ......................... .....................................12
4.5.3 Dynamic Settlement ................................................... .....................................13
4.5.4 Seismically-Induced Landsliding ............................... .....................................13
+ 5.0 ENGINEERING ANALYSES ........................................................ .....................................13
5.1 Material Properties ................................................................. .....................................13
5.1.1 Excavation Chazacteristics ......................................... .....................................13
S.1.2 Compressibility ........................................................... .....................................14
5.13 Expansion Potential .................................................... .....................................14
• 5.1.4 Collapse Potential/Hydro-Consolidation .................... .....................................14
5. ] .5 Moisture Content ........................................................ .....................................15
5.1.6 Sheaz Strength Characteristics .................................... ..................................... l5
5.1.7 Earthwork Adjustments .............................................. .....................................16
5.1.8 Pavement Support Chazacteristics .............................. .....................................16
~ 5.1.9 Chemical Test Results ................................................ .....................................16
5.2 Engineering Analysis .............................................................. .....................................17
5.2.1 Bearing Capacity and Lateral Earth Pressures ........... .....................................17
5.2.2 Slope Stability ............................................................. .....................................17
•
3
PAGIFIC SOILS ENGINEEFIING~ INC.
i•
Work Order700007-C
May 21, 2004
I•
TABLE OF CONTENTS
Page iv
53 Settlement ......................................................................... ...........................................17
5.3.1 Grading ................................................................. ...........................................17
• 5.3.2 Structural Loads .................................................... ...........................................17
53.3 Liquefaction and Dynamic Settlement ................. ...........................................18
6.0 GEOTECHNICAL CONCLUSIONS AND RECOMMENDA TIONS ...............................18
6.1 Site Prepazation and Removals ......................................... ...........................................18
6.1.1 Stripping and Deleterious Material Removal ...... ............................................19
~ 6.1.2 Site Prepazation - Unsuitable Soil Removal ....... ............................................19
6.1.2.1 Residential Areas .............................................. ............................................19
6.1.2.2 Commercial Areas ............................................ ............................................20
6.1.23 Existing Trenches ............................................. ............................................20
6.1.2.4 Undocumented Artificial Fil1 ............................ ............................................21
• 6.2 Slope Stability and Remediation ..................................... ............................................21
6.2.1 Cut Slopes ............................................................ ............................................21
6.2.2 Stabilization Fills ................................................. ............................................22
6.23 Fill Slopes ............................................................ ............................................22
6.2.4 Skin CuUSkin Fill Slopes .................................... ............................................22
'i ~ 6.3 Temporary Backcut Stability ........................................... ............................................23
6.4 Subsurface Drainage ........................................................ ............................................24
6.4.1 Subdrains ............................................................. ............................................24
6.4.2 Backdrains ........................................................... ............................................24
6.5 Construction Staking and Survey ................................... .............................................24
6
6 Earthwork Considerations .............................................. .............................................24
~ . 6.6.1 Compaction Standazds ........................................ .............................................24
6.6.2 Documentation of Removals and Drains ............ .............................................24
6.6.3 Treaunent of Removal Bottoms ......................... .............................................25
6.6.4 Fill Placement ..................................................... .............................................25
6.6.5 Benching .............................:............................... .............................................25
~ 6.6.6 Mixing ................
6.6.7 Fill Slope Construction ....................................... .............................................26
6.7 Haul Roads ..................................................................... .............................................26
6.8 Import Materials ............................................................. .............................................27
6.9 Storm Drain Outlet ......................................................... .............................................27
• 7.0 DESIGN CONSIDERATIONS ............................................... .............................................27
7.1 Structural Design-Single Family Structures ................... .............................................27
7.1.1 Foundation Design .............................................. .............................................28
7.1.2 Post-Tensioned Slab/Foundation Design ........... ..............................................28
7. ] 3 Differential Settlement ...................................... ..............................................29
~ 7.1.4 Deepened Footings and Structural Setbacks ..... ..............................................31
7.1.5 Backyazd Improvements .................................... ..............................................31
7. ] .6 Miscellaneous Foundation Recommendations .. ..............................................32
~ 4
PACIFIC 501L5 ENGINEEFiING, INC.
•
•
Work Order 700007-C
May 21, 2004
TABLE OF CONTENTS
•
•
•
~
•
~
^
•
7.2 Retaining Wall Design .............................................
7.2.1 Rankine Earth Pressure Coefficients ...........
7.2.2 Retaining Wall Backfill ...............................
73 Concrete Desigi ......................................................
7.4 Corrosion .................................................................
7.5 Other Design and Construction Recommendations.
7.5.1 Site Drainage ...............................................
7.5.2 Concrete Flatwork and Lot Improvements..
7.5.3 Utility Trench Excavation ...........................
7.5.4 Utility Trench Backfill .................................
7.6 Preliminary Pavement Design .................................
8.0 SLOPE AND LOT MAINTENANCE .............................
8.1 Slope Planting ..........................................................
8.2 Lot Drainage ...........................................................
83 Slope Irrigation .......................................................
8.4 Burrowing Animals ................................................
9.0 FUTURE PLAN REVIEWS ...........................................
10.0 LIMITATIONS .............................................................................................
APPENDIX A:
SELECTED REFERENCES
.38
.38
APPENDIX B:
SUBSURFACEINVESTIGATION
PLATE B- LTNIFIED SOILS CLASSIFICATION SYSTEM
PLATES B-1 THROUGH B-13 - LOGS OF BUCKET AUGER BORINGS (THIS
REPORT)
PLATES B-14 THROUGH B-19 - LOGS OF BUCKET AUGER BORINGS (PSE,
2003)
PLATES B-20 THROUGH B-21- LOGS OF HOLLOW STEM AUGER BORINGS
(PSE, 2001)
PLATES B-22 THROUGH B-24-LOGS OF HOLLOW STEM AUGER BORINGS
(PSE,1998)
PLATE B-25 LOG OF BUCKET AUGER BORING (PSE, 1989)
CPT-1 THROUGH CPT 30 - LOGS OF CONE PENETROMETER SOUNDINGS
(THIS REPORT)
CPT-1:1998 THROUGH CPT-8: 1998 - LOGS OF CONE PENETROMETER
SOiTNDINGS (PSE, 1998)
• ~
PACIFIC SOILS EN6INEEFING, INC.
Page v
..32
..32
...........................................33
...........................................34
...........................................34
........................................... 3 5
..........................................35
...........................................35
........................................... 3 5
_ _ - ......................36
................37
................38
................38
i•
Work Order 700007-C
May 21, 2004
I•
TABLE OF CONTENTS
APPENDIX C:
LABORATORY ANALYSIS
'~ TABLE I- SUMMARY OF LABORATORY TEST DATA
PLATES C-1 THROUGH C-25 - CONSOLIDATION TESTING
PLATES G26 THROUGH C-37 - DIRECT SHEAR TESTING
PLATES G38 THItOUGH G43 - SIEVE ANALYSIS
PLATES C-44 THROUGH C-45 - CHEMICAL ANALYSIS
APPENDIX D:
PROBABILISTIC SEISMIC HAZARD ANALYSIS
PLATES D-1- THROUGH D-3 - HAZARD CURVES
APPENDIX E:
PLATES E-1 THROUGH E-3 - SLOPE STABILITY CALCULATIONS
APPENDIX F:
LIQUEFACTION ANALYSIS
'~ PLATES F-1 THROUGH F-30 - LIQUEFACTION CALCULATIONS
APPENDIX G:
EARTHWORK SPECIFICATIONS
GRADING DETAILS - PLATES G-I THROUGH G-12
~ APPENDIX H:
HOMEOWNERS MAINTENANCE & IMPROVEMENT CONSIDERATIONS
POCKET ENCLOSURES:
PLATES 1 THROUGH 19 - 40-SCALE ROUGH GRADING PLANS
~
•
•
•
Page vi
~o
PACIFIG SOILS ENGINEERING, ING.
i•
~•
Work Order 700007-C
May 21, 2004
1.0 INTRODUCTION
Page 1
I 1.1 Backaround and Puruose
Pacific Soils Engineering, Ina (PSE) has been retained to conduct a geotechnical
~ investigation and perform a grading plan review for the proposed
residentiallcommercial site located southeast of the intersection of Pechanga
Parkway and Wolf Valley Road in the City of Temecula, Califomia. This report
provides geotechnical recommendations for the design and construction of the
project as presented on the enclosed rough grading plans (Plates 1 through 19).
1.2 Scoue of Studv
~ This study is aimed at providing preliminary geotechnical information for the
development of the property, as it relates to: 1) existing site conditions; 2)
remedial grading; 3) engineering and excavation chazacteristics of earth materials;
4) grading recommendations; 5) cut and fill slope stabiliry; 6) preliminary
~ foundation and retaining wall design pazameters; 7) slope and lot maintenance
recommendations, 8) seismic hazazd analysis.
The scope of oiu study included the following tasks
•
-
Reviewing pertinent published and unpublished geologic and geotechnical
literature, maps, and aerial photographs (references).
- Site geologic mapping.
~, ` - Excavating, logging and sampling thirteen (13) bucket auger borings
(Plates B-1 through B-13 in Appendix B).
- Performing thirty (30) cone peneuometer soundings (Appendix B).
- Compiling subsurface and laboratory data from previous reports by PSE
• (references).
- Conducting laboratory testing including consolidation, direct shears,
laboratory maximum density, expansion indices, chemical, grain size, and
moisture/density (Table I, Plates G1 through C-45, in Appendix C).
• i Conducting a geotechnical engineering and geologic analysis of the site
shown on the enclosed 40-scale rough grading plans (Plates 1 through 19)
prepared by Lohr and Associates.
• ~
PACIFIC SOI{.5 EN6INEERING~ INC.
•
Work Order700007-C
May 21, 2004
Page 2
~ - Conducting a limited seismicity analysis.
- Conducting slope stability analyses (Appendix E).
- Conducting liquefaction and dynamic settlement analyses (Appendix F).
• - Preparing preliminary foundation and retaining wall design parameters
and recommendations.
- Preparing grading recommendations.
- Preparing this report with accompanying exhibits.
•
1.3 Site Location and Descriution
The subject site is located in the City of Temecula, in the County of Riverside,
California (Figure 1). The majority of the site's past use is agriculture. The site is
•
bound on the northwest by Wolf Valley Road, on the southwest by Pechanga
Parkway, on the northeast by residential developments, and on the southeast by
undeveloped land. The topography at the site is relatively flat. Total relief over
~ the site is approximately 80 feet with elevations ranging from 1070 to 1150 feet
above sea level. Drainage is by sheet flow to the southwest to an unimproved
drainage channel running pazallel to Pechanga Parkway. Access to the site is
from Wolf Valley Road.
•
1.4 Re~ort Limitations
The conclusions and recommendations in this report aze based on the data
developed during this investiga4ion, review of the referenced reports, and the
. enclosed 40-scale rough grading plans provided by Lohr and Associates. The
materials immediately adjacent to or beneath those observed may have different
characteristics than those observed. No representations are made as to the quality
II • or extent of materials not observed. Any evaluation regarding the presence or
absence of hazardous material is beyond the scope of this firm's services.
I 2.0 PROPOSED DEVELOPMENT
~ It is assumed that mass-grading techniques will be utilized to create approximately 810
single-family residential lots and 3 commercial sites as depicted on Plates 1 through 19.
~
~ PACIFIG SOILB ENGINEEFIING, ING.
i•
I~
I~
~~
I~
I~
•
I~
' .~ -
+ .
~
~ . ~ s-~._~- ;
,
~ t
~ ~ ~ u -_
` i 7~~ -. ; .
'•
~ ~...
Y. ~J
~ ~
.F~
t - ~f
.
~ . ~ '
~ ~
~
S ~
J ~ n
~ ~~~
`~
~
~
~J~ ' f~ / _ _ ~ ~.-.. (
'~:J~l~l ~ . i
\\:~
:~~
, l,;
~,~'eni er~ J .:,.-A ~'
,
l
~C. _ ' ?l q ~
b
.
~
~ , `~ ~,
-
: ~
~L
~ -".-Z '~
.
. 171
~
l
. ~ / i
.,~, s .v ~ ~
l-~
~r !
~
7y ~~~ ~
,
T a . . ~
'~ WoV4elle '
p u q .' ~ ~`
~
'
l '
u l. ~ . ~,~~`
' ,Ji~ 1
~ ~' ~~~ _~ ~
. :,
y ..
t ~
~ \~ /"~
- ~.
~
~ .
y _ . ?h /`
': i ~
"
i > L
L .
4
~' ~ ~
~
~~ ~ `
~„ ~ 41
JD8
~ ~ ~ y
~
.`. I jo t
i ~ 1 ~
I
I' .~
.
~~> 4.J~
~R ~ ~
._
V r
,.
~
~ . /~
r ~~ : ~.
~ ~ .
\
~ F `J ~~ (~ ~
~ . ~ ~
Il~
~ - F .
.
t
' ` t~ ~ ~
1
~ ~,~ .f- ; ..
`
,
°'b
• ~ r ~
'.L~` ~-~ < ~ ~
-~
~l~ ~~
~ ~ ~~. , ~
-
~ ~
; r~ .
~ ~
~
~'
~ ~ ~ .
.
-~~
~ \
-
~
~'
',Y l~ .f jEJ
I
l
~
` y. L. -n
\i~~
~
r ~
.ir~lt ~.
...+~
~
3Q
~~ ~ •
r
~
i
.
` a
~ !/
f .
~P,
_ ~
`~~
~
. .. ~fi ..J
~a
~C . . ~
~'
~ 1
``~
`
~ ~`1S
~ ~ sj
~ ~'~-
i "
?
: j
~
_ I 1
"<
~
` '\ . x
(~ '
...
1 ~
, ~
33•48' . ,. . `
a ,
~
~
' ._ T . f `
~ t _ . ~~ 1 ~
~ ~{7b~~ '~' ~
~ ~
,~
1 ~,
. ~ ~
Lr
.~,,\,'
,~. ~~~
~
v'w 1...~..1\.~;il
,s\ _ i
.y s:.~ ~,O
~c
/ n
. /
~'~ ~~~,~,+~(~~ ~;',- g~
'^r ~
' ~ ~
~
\~ ~
~
~ -_' -
. ~ .
`
~ ~
f `
~~ .,+ 1
'L °
~-
'
~
~ = .
~
. i
"~ --,. . ~
,
y
' V :
~ ! rit~~:r,
J~~
1
~ ~i J~ \,~ ~/
<<
~~ ,l~ ~~
. ~ - ~y..
. ~ / ~, ,
,
~
-
' ~~ \,~
~' ' YJ^1~
'S, ;`L . I '~c /
~ ~ ~ ,~-~ ,
t
._"y , hi ~, ~i
~: ~'' ~] `i~ ~
< ~
~ ~«, ~w11~ :~
~,~~
,
~ ti
,
,~ ~ i . J xG
s , ~ ,.
y
~
, .v
` ~~~
\
,
~
~<
2
. .. ~~' ~ ;'
~ ~lV
d
~
11..` J
'
3 <U~~. -
'
'
r~
~ . J~~ t ~
\ti.R
,
` _ . r
J.
-
~:
F~ C' :M.16?@
~ SITE d';
,
J
rT ~
~/ J ~d ~
~
- ,~/~ ~~ .
-1 k%" ~
~
~
tiY I . .
e
'~ 1\~
p.
~ J~ /
I ~ .~
F ~ ~
T~
~ ~
GJ 0:
A
.' L'v
'~ !
~p
e\ O' ~
, . ~
'4
~ /
' "_r
~
~ {,
~ .
S'TM- '-~" .
~
:~~`\.~~ S
) I ~.>
Y ~
. ~ i .
~ t Y
~ .;
~ '
.• 1 ;~
.. ~
. ~0/
..L '
~*
~i
~~ .. /
~{ )
/ P
~,
J~
~ y
'~ s
~ .~/
~ /~
`J ~l/,~~ t ~'/ .
` 1
~
\~ 1~1t{ 1
-
~~ '~ ~~~
~
~~~ ~.~ ~`
/1
s
L-~
~:1
~~ ~ TKl~ "''t` .. '
ti
~'°
E5$~9ATIDN ~ , '
~ v
\ i.. : ir~
~i
~
' ~ ( ~ Cy~'S ~ 7-
. . .
~ 4n
'r ~ -+ J, ~
y~
'' 0p -v~
' j,~.
. ~ ,p
~ F 1
; ~`
~ .
8 ~ '
s.~~ ` ~.~ y .
} <
r
'
~
~et, ~
~
-~ti~>
\ ~ \ . t
. ~
L F ~~1~/ I ~
~ / ~ .
:
~ I v . .>
0~. ~ <
~.
-
~
~ ~ 2.
Z'".. ~ l~~ c ~ ~~1
__
T
.:_ ~ ,
.',Ly~ 1 _ . ~l~ ~ ~ . r H _, Y~y.
~
lY/~,
, ~ ~
, -^,~ ,~ \ _~ -
,
~ 1
.
~
L~ ~^ I~
< r~
~~r ~ o
`
7
~ ~ ~~, , i i a
( ' c ,/~~''C \.
~' ~~ ,l s . y
f
~~
_ . Y ~ ~
~ 5 ~+ ~~
` i'1'- 'f
1 - ~ i
~~
"
~ u.
~ i
s..,x ~_ '
`
~ i `
, .; .
~ ~ ~
~ S (
~
p~
'
`
\~~ 4 ~
1
4 1 ~ i yy '~
w~,,
' J ~li~ ~
n}
'
y ,`
; Iiy ~ ~% L
~
` ,~
':~-.~
''~ \ ~ ~ ~
3 59 ~
i; .
~ ~1 ~
`^
+ ~ ~ , ~
f.
,
~
4 ~ ~~~' r\~~
/M'il
\ v
. ;\"A
ty
1~~~~ \' J,(~ ~ ~
~
~-
~ i 4~
.c-
'
, \~4J~\ ~fy
~
~ T
.< f~
: 1 2 ~ Ll
I 7~
~ . 1
.
.
. 1 ~' P:. :
I4
>' 1~1
1~ $!~ f
~er!~h ;
~
,
'
t
.~!L.{~' Ut ~,J`~
~
~
ii'~~~ ~
~ i~.
~T N
i
'a~/`y` ~
1~
,
t \ai ~ ~ .~
~ ata ~ ~~ ~
8 ~
I ),• ~ .
.,~ Tw~, t~i..~
~ .F'.X
\
~ III ~`Y~
~
'_~* y-
1
~
~~
~•
~ y
.
fR
~`I ~
~:~.:
c
1~ . ~ `~_.,..:.
.~/
It ./
1 ~
. •..,'.C~. Y'
_ :~
_
~J~ _~
~
r
N
SITE LOCAT90N MAP
~
W
E
S
~
~
FIGURE 1
SOURCE MAP - USGS 7.5 MINUTE QUADRANGLE MAP:
PECHANGA, CALIFORNIA 1965
PHOTOREVISED 1982
SCALE: 1" = 2000'
PACIFIC SOfLS ENGINEERING, INC
710 E. PARKRIDGE AVE.. SUITE 105, CORONA CALIFORNIA 92879
W.0.700007-C DATE:5/21/04
q
~
Work Order 700007-C
May 21, 2004
Page 3
Design depths of cut and fill are on the order of zero (0) to ten (l0) feet. Slope heights
are less than 15 feet.
3.0 FIELD AND LABORATORY INVESTIGATION
•
3.1 Previous Site Investisations
Numerous proprietary geotechnical investigations have been conducted within
and adjacent to the subject site. In the mid- to late-1970's, several regional fault
~ investigations were performed (Kennedy, 1977; Saul, 1978) including Alquist-
Priolo Special Studies zoning (Pechanga quadrangle).
The following brief chronology summarizes pertinent investigations within and
~ adjacent to the Wolf Creek Specific Plan area. Various maps showing faults and
trench locations are given in the cited reports, and they aze referred to, but not
replicated in this document.
~ - Pioneer Consultants (1980)
Pioneer Consultants performed a"Liquefaction Investigation" in 1980 on
the current Red Hawk Specific Plan area that is adjacent to the south and
east Wolf Creek Specific Plan boundaries. T'hat study used methodologies
•
that were consistent with the standazd-of-care at that time, but aze cleazly
dated today. A 50-foot deep boring was excavated south of the Specific
Plan area in the Wolf Valley alluvium on October 1, 19'I9. Groundwater
~ was not encountered to the depths explored.
- Hi¢hland Soils (1988a1
In February of 1988, Highland Soils performed a"Fault Hazard and
` Preliminary Geotechnical lnvestigation" for a 242+ acre parcel adjacent to
the northeast corner of the Wolf Creek Specific Plan area. Highland Soils
identified, in a qualitative sense, susceptibility to liquefaction in the
general Wolf Valley area. Since building types and grading plans were
•
unavailable at the time of that report, specific recommendations to
• PACIFIC BOiLS ENGINEEF7ING, INC. \O
i•
Work Order700007-C
May 21, 2004
I•
Page 4
mitigate liquefaction were not provided. The reader is referred to Section
4.5 of this report for a discussion of site-specific geologic hazards.
- Hiahland Soils (198861
S In August of 1988, Highland Soils performed a"Fault Hazard
Investigation" for a portion of the Red Hawk Specific Plan azea. That
investigation was conducted adjacent to the south and east boundaries of
~ the Wolf Valley Specific Plan. In that study, fault traces believed to be
active were reported at two locations and a 50-foot structural setback from
either side of these faults was recommended. That setback projected into
the southeast corner of the Wolf Valley Specific Plan azea. These faults
~ were the subject of further studies by Earth Research (1987), Pacific Soils
Engineering, Inc. (1989), and Petra Geotechnical (1989).
Additionally, the projected trace of the Wolf Valley fault (Kennedy, 1977)
~ was trenched in the alluvial flood plain of Wolf Valley adjacent to the
southwest comer of the Wolf Valley Specific Plan azea. Faulting was not
observed in the trenches. No evaluation for liquefaction was performed as
~ a part of that study.
- Pacific Soils (1989)
- In April, 1989, PSE published the most current version of the Alquist-
~ Priolo Special Studies zone report for the overall Wolf Creek Specific
Plan. An eazlier version was published for EIR studies and general
planning purposes. As a part of this process, two episodes of subsurface
exploration were undertaken by PSE. The 1989 version contains all
~ pertinent fault trenching information and subsurface investigations by PSE
and others, up to the report date of April 5, 1989.
The findings of PSE's ] 989 fault investigation called for a structural
~ setback from Holocene displacements. This setback was identified in the
1989 PSE study and the Petra study. Although it was not possible to
• PACIFIC SOILS ENOINEEFi1NG, INC. \\
•
Work Order 700007-C Page 5
May 21, 2004
~ determine conclusively if these Holocene displacements were of fault or
mass-wasting origin, a 75-foot structural setback was recommended along
the common boundary with the Red Hawk Specific Plan azea. The
. location of this setback is shown on geologic maps that accompanied
PSE's 1989 report.
- PaciTic Soiis (19981
* In October, 1998, PSE performed a further fault evaluation for the Wolf
Valley Specific Plan (Pacific Soils, 1998). This evaluation reviewed post-
1989 fault data (both published and proprietary) and investigated the
projected trace of the Wolf Valley fault (Kennedy, 1977). As part of the
~ EIR process, this report was reviewed by the County of Riverside
Planning Departrnent on behalf of the City of Temecula. A County of
Riverside review letter was issued (Riverside County, 1998) and PSE
~ addressed their comments (PSE, 1999) in a response report.
Results of this later work support mass-wasting as the most likely origin
for Holocene displacements observed along the offsite azea of the Specific
~ Plan. At this location, the relatively steep dips (50 to 60 degrees) aze
attributed to pre-Pauba folding of the Temecula Arkose rather than to
possible Holocene tectonic movement (Kennedy, 1977; PSE, 1998)
. With regard to the published trace of the Wolf Valley fault that Kennedy
(1977) has mapped along Pechanga Road, PSE used CPT and hollow-stem
auger borings to observe and interpret the contact between the valley
fill/alluvium and the Pauba Formation. This investigation indicated that a
~ depositional contact likely occurs between the alluvium and Pauba
Formation rather than fault separation (PSE, 1998 and 1999).
- PaciTic Soils (2001)
~ In 2001. PSE performed a preliminary geotechnical study for Phase 1 of
the Wolf Creek Specific Plan, Tract 29798, located northwest of Wolf
+ PACIFIC SDILS ENGINEEFi1NG, INC. ~L
t
Work Order700007-C
May 21, 2004
Page 6
Creek Road. Two hollow-stem auger borings were advanced within the
subject project boundary and aze included in this report.
- Pacific Soils (20031
In 2003, PSE performed a geotechnical investigation for the proposed
storm drain channel located along the southern edge of the subject site.
Borings and laboratory data pertinent to the current investigation have
been included in this report.
3.2 Current Site Investi~ation
3.2.1 Field InvestiQation
Site geologic reconnaissance mapping, as well as the subsurface
I~
I~
investigation, were performed in February of 2004. The subsurface work
consisted of drilling, logging, and sampling thirteen (13), 18-inch diameter
bucket auger borings, BA-1 through BA-13, using a truck-mounted bucket
auger drill rig. Thirty (30) cone penetrometer soundings, CPT-1 through
CPT-30, were performad using a CPT rig. The approximate locations of
the exploratory excavations aze shown on Plates 1 through 19. The logs of
borings and a detailed description of our subsurface investigation are
presented in Appendix B of this report.
3.2.2 Laboratorv Investisation
I~
~Q
As part of our investigation, bulk samples were obtained at significant
lithologic changes. Relatively "undisturbed" ring samples were obtained
from the borings at predetermined intervals, as well as at significant
lithologic changes. The ring and bulk samples were transported to Pacific
Soils' laboratory for testing. Laboratory testing procedures and test results
are described in Appendix C of this report.
I~
I~ PACIFIC SOILS ENOINEERING, INC. ~~
•
•
•
.!
c
•
•
[7
A
•
Work Order700007-C
May 21, 2004
4.0 GEOLOGIC CONDITIONS
Page 7
4.1 Geolo~ic Structure
The subject property is located within the Peninsulaz Range Province of southern
California. The province is characterized by elongate ranges and valleys that
extend from Baja Califomia and are abruptly terminated at the Transverse Ranges
north of Los Angeles (Jahns, 1954). The higher parts of the Province are
underlain by pre-Cenozoic igneous and metamorphic rocks, while the less rugged
terrain is typically characterized by sedimentary and volcanic rocks of the late
Mesozoic and Cenozoic age.
Faults in the Province are predominately northwest trending. The subject
property is located within the Elsinore Fault Zone, which sepazates the Santa Ana
Mountains from the Perris block. This fault zone is a right lateral, strike-slip fault
zone, that extends from upper Baja California, to its northem branches (the
Whittier and Chino faults). The specific fault located northwesterly and adjacent
to the site, is referred to as the Wildomar fault. The specific fault located
southeasterly and adjacent to the subject site, is the Wolf Valley fault.
4.2 Strati¢rauhv
Although absent from the site, pre-Cenozoic basement rocks assigned to the
Bedford Canyon Formation, Santiago Peak Volcanics and plutons of the southem
California batholith crop out approximately one (1) mile from the site. These
rocks aze most abundant in the tepographically higher portions to the west (i.e.,
Mount Olympus) and Aqua Tibia Mountain to the east. Unconformably overlying
these basement rocks aze late-Tertiary sedimentary bedrock units and sediments
that range in age from early Pleistocene to Holocene. The geologic units
underlying the Wolf Creek Specific Plan consist of the Pleistocene-age
sedimentary deposits that include the Pauba Formation and Temecula Arkose, as
well as Holocene-age alluvium / colluvium, and artificial fill. The following
briefly describes these units. The nomenclature follows that of Kennedy (1977).
The horizontal distribution of these units is depicted on Plates 1 through 19.
~ PACIFIG SOILS EN61NEEii1NG, INC. \~
n
u
Work Order700007-C
May 21, 2004
~ 4.2.1 Artificial Fill-Enaineered (afe)
Page 8
Locally derived artificial fill exists along the boundaries of the site,
associated with the on-going grading for Tract 29798, as well as
previously developed azeas. The material consists predominately of silty
~~ sand to sandy silt with coarse sand and gravel.
4.2.2 Artificial Fill-Undocumented (aful
Locally derived artificial fill exists on site, associated with dirt roads and
~ one detention pond. The material consists predominately of silty sand to
sandy silt with coazse sand and gravel.
The fill is undocumented and estimated to be a maximum of eight (8) feet
~ thick. Other localized azeas of undocumented fill exist as backfill within
the fault trenches and other previously excavated geotechnical backhoe
trenches. Undocumented and uncompacted fill will require removal and
r recompaction.
4.2.3 Colluvium (Maa Svmbol Ocol)
Holocene-age colluvium consisting of silty sand was observed along the
r northeast boundary of the site, emanating from the drainages located just
off site. This geologic unit is typically light gray to brown and lacks soi]
development that typically characterizes older (Pieistocene) soil deposits.
This material was obseraed to be visibly porous and dry. All colluvium
•
should be removed from siructural. Colluvium is not suitable for support
of structures or cut exposures.
4.2.4 Alluvium (Mau Svmbol Oall
Ia
~ Holocene-age alluviwn consisting of silty sands and sandy silts underlies
most of the study area. The alluvium represents valley fill deposits (i.e.,
distributary-fans) of Wolf Valley, which aze a succession of fluvial
'~ channel and overbank deposits. Accordingly, the stratigraphy of the
alluvium can be characterized as being relatively latera]ly consistent
• PACIFIC SOILS ENGINEEFi1NG, INC. ~~
~ Work Order 700007-C
May 21, 2004
Page 9
~ within this depositional framework. This geologic unit is typically light
gray to brown and lacks soil development that typically characterizes older
(Pleistocene) soil deposits. It is possible that Pleistocene deposits exist at
depth; however, no distinction for older soil units has been made for this
~ study.
4.2.5 Pauba Formation (Map Svmbol Oos
The Pauba Formation occurs on the northeastern boundary on the site.
~ The predominant lithology of the Pauba Formation is a poorly to
moderately well sorted, fine- to coarse-sandstone with some gravel, and
cobbles. Subunits of micaceous siltstone define bedding in the otherwise
~ massive unit. Color is typically reddish brown with lesser hues of olive
brown to tan.
4.3 Geolo¢ic Structure
~ 4.3.1 Faultine
The dominant structural feature associated with the Wolf Creek Specific
Plan is the active Elsinore fault zone. Two main Elsinore fault branches
potentially impact the Woif Creek area; the Wildomaz fault on the east,
~ and the Wolf Valley fault un the west (Kennedy, 1977). Although not
within this study area, eazlier investigations (PSE, 1998; PSE, 1989; Earth
Research, 1987; and Petra, 1989), produced considerable subsurface
~ information to investigate possible faulting along the eastern Specific Plan
area (Wildomaz fault) and the projection of the Wolf Valley fault as
mapped by Kennedy (1977) along the west Specific Plan azea (Pala Road).
These studies have resulted in structural setbacks along the east
~ boundaries (offsite for this report). No other structural setbacks were
recommended for the Wolf Creek Specific Plan area (PSE, ]989 and
Petra, 1989).
~
PACIFIC SOILS ENGINEEqING, ING. ~~P
•
Work Order 700007-C
May 21, 2004
Page 10
~ 4.3.2 Foidine
The Pauba Formation is generally flat-lying where observed in trench and
outcrop exposures immediately east of the study area. However, local
cross-bedding occurs within the Pauba Formation, but reflects original
~ dips of deposition, rather than later tectonic deformation. Eazlier studies
(PSE, 1998) conclude that the Pauba Formation is in angulaz contact with
the Temecula Arkose. This contact exists east of the south portion of the
Specific Plan (offsite of this report) and extends for three (3) miles along
the northwest flank of Agua Tibia Mountain (Kennedy, 1977). Within the
alluvial deposits, there was no evidence of tilting or deformation to the
depths explored.
4.4 Groundwater
Groundwater was not encountered during the current subsurface investigation.
The groundwater elevation measured in a borings during a previous investigation
is shown in Table 4-I. Analysis of current groundwater elevations do not reflect:
1) unusual; or 2) excessively steep gradients that may suggest unrecognized
faulting.
As a part of State of California review process for a proposed high school site
south of Parent Tract 29798, and within the Specific Plan area, a groundwater
study was prepared by EnGEN Corporation (EnGEN, 2000). This study was
conducted to evaluate historic and anticipated future groundwater levels for Wolf
Valley, and concluded that groundwater levels are expected to be maintained to
an average depth of fifty (50) feet. The cited factors that support this conclusion
are: ]) increased overall pumping to meet local demands for water in the
PACIFIC SOILS ENGINEERING, INC. ~~
[7
Work Order700007-C
May 21, 2004
Page 11
• Temecula Valley; 2) increased pumping by the Pechanga Indian Reservation; 3)
increased pumping of the younger alluvium in the valley (Pauba Aquifer); 4)
planned changes in land use which reduce aquifer recharge from irrigation retum
flows; 5) leakage of groundwater vertically downward from the Pauba Aquifer
•
(alluvium) to the Temecula Aquifer; and 6) no current plans by Rancho
California Water District or Pechanga for artificial groundwater rechazge in Wolf
Valley.
•
4.5 Geologic Hazards
4.5.1 Seismici
It is likely that the site will experience strong ground motion and effects
~ from potential earthquakes along active faults. Figure 2 presents a map
showing the active faults in Southern California, and the project site
location.
~ To estimate the potential ground shaking, PSE has performed the
probabilistic seismic hazard analyses (PSHA). To perform this analysis
PSE has utilized FRISKSP, developed from United States Geologic
~ Survey by Blake (1989-2000a, b, c).
Attenuation relationships by Boore et al (1997), Sadigh et.al (1997), and
Campbell & Bozorginia (1997) were used to compute a mean plus one
~ standard deviation peak ground acceleration on rock. Equal weight was
given to all relations. Using the above mentioned attenuation relations,
the maximum acceleration plus or minus one standazd deviation was
determined (FRISK Software) for soil conditions. For alluvium and deep
~ soil, an average PGA of 0.73g was determined for earthquake ground
motions having 10 % probability of exceedance in 50 years. The complete
seismic analysis is presented in Appendix D.
• Our conclusions aze based on many unavoidable geological and statistical
uncertainties, but aze consistent with current standazd-of-practice. As
~ PACIFIC SOILS ENGINEEFi1NG, INC. `,~
~ . ' ; . ~.' / f: .
- /. j l ( : !~~ _ ~
/ ~
~ ~ ~~ .`i ~"' / /~-f. ~ ~ A~~\~ :°~
a `~ ~ ~ . ~ ~ ~, '~ i r -~:c: . I -
N~ J~ - % d -\ , .ri/~ ~ ~I, ~~ ' - ~ ..
~ F.
y ~. f / - ~ l { . ji- :
/ ~ ~ ~ ~ ~-~
,C ~~ . ~ I •~ .i`i~l~ ~~ ~h •r'~R
~ ~~ lI ~' . ,~ 'y `~~' ~ :~ r~ ~`'~"~ ~~J.: ~ ~Ifll~il111~.~1~i71 .' I~ 1
w ~ ~~ . , ..;~ j / C /, :; ~ d ~ t i i ~...+si~~ ~ ~ L j
• QQ ~ ~' ~ ~~ .~`, ~~~ 1 ~~ ry t~f~~' ~ ' ~/~ ~P a
p --~ i/.. / ~,/ J~~ ~{ ~/ + ~ :• . '~ ~ ~$--
V1 ~: G'.~ ~ '~~ ,f / "{ ~ ~ 1 1 ~ :.:' ~ -3' cM~ " ~f ~. ~x / .+
„ y ~ ~9- / :. , ~ \ . ! i ' r ''i ~~ ~ !.
i ~ ~; ~ , i,~` j ~ j~ r ~ ` ~ ,3 ~' , ~:,; f
~h ~ „ ~ ~: ~ ~ k -
~ , i.:~ ~ , r l. ,~r^ dd _ - ; . ~, ~ s~~ ~k
~' .- u ~~ t~ ~ ` '- ~ ~-~-~: _ ~.=.
'Y' ~ , /~ :~ ( 8 ~ A T ~ \~~ ,-~
~ '~ :~ ~ -- ~. f . ~`~, -" ~ ,
` ' ,. ~ ' ~ . ~_.' +~~j
` •~ j .~ m. .._ 1 0 _ _ ' ' ./ ~ . . . ~l O_- ~~ P'".' e// .
\ 4 ..,' ~ ..~ ''v~ ~:•~.. { ~~ _~\...1~1'.~ p
; ~ . . ~ '~ _ ~s r ~~ s Fi ~ ; . ~ ;
• .~ ~ 1. _ .I~( ~~g''~~ f, l~' ~•:/ ~~/r ., ~ 3 . f`M'Q'~ ~I ~ s,~ _ I i'1
, M ~~ l~/"'~L'J ~ I ~.. ~~~ I~~ i f~~ ~~~~ K, ~ ~~
:: ~ ~ Y~ ~~~ ~-'~ r f :. ~ ~ , , ~ ~ ~ ~ ~'~"' ~.d I ~tj)
~/y,9 ~~~ ~/'~~I ',/ 1 ./ y/~ J~" ~ k,~\ ~!E
f + i~ri~ ~. .~ ~.. ~'' ~ '_. .. ~~
/- '.' ~ . r ~ ~U1~ ' ~ '~ ~ ~r.?' ~ I~~/?~~' ~' .~ ~ ° y~ , ~ ~ ~ ~ t
_ . ~~ ~i r~^ ~:/.~ ~ ~ _ _ . . /{(( ./j ~ ~i~ . l,s~ y ~:: l ~I ~ i
4 ( 1! i~ n~ u
~l ~ ~ . S ~ ~ 1 , . ~ . 7~rYt~ fii' e ~, -_ r.~\ r r r- ~ ~ .~ p
~ ' ." s . tt~~+~ i /t. ~~ ' f ~;+' ~ ,a ~~ '-' f . .i j~
t ~a.- ,~ ~ % ~ l . $
~ ai' F'` ; f ;~ ~"~` y~~ ~ e ~. ~..~ ~ -,'~1~~~ ' ~ ~-~ ~; ~ ~ ~~
r i 1 - . , , 7 ~ ~ .:, " ~ .
. . _ L~M{ °t y . - r~ ¢~,~ i ~• ~~ . -~..:~
, ~' d ~Yn.c....i . 1 1 •_ ~_ _. _
~
' .-\ vT _ . 1 ' ' ..1~ . ~ . ~ti ~ ,1
- - „ ~ ~~ '~ ~ --~ ~ r ..1= • ; , ~ ,~~~ .
% ' , ,~~ ' i _ -
~ -' ;:. ' x , ' a~~I'~` ~ ~
~ .... .~` ' ~V ~ ~ >,` ~ ': rf t ~ I r.~ , , . ;_ `~ `+ ~~ y ~ . • ~ \ ~~T i~ -b ~gryj '~
: i ~/~ _u ~ v'''l ~ ~q F $~ /J-/ ~ e " ~ ~~~ Ta~~13~~ e N'~ 6% / .
". ~//,r'" ~ 5 ~~ . __ ~; `"' ~~ `\> ;/•~yD y • ~1~
~ l ,'$5,_,~~ k -, ~. y ~ . ~J /;i,~ ,~~ s~y' ,~,~~
~ j ih' _..-.. -~ ~ ~' j _ t T~-~ ~/T>/i "J ~ ~ ~~~ . f .*" ~,s
:~/ . : tTH' ~ ;;~~'~'i'f0/A"'% ~' ~ ~
.k ~ i •, ~.e: i_ C x-~ . .'-¢ y ~7•-+--^ 7; '-!~ : ~ _ ~.. I 1~
. ~i x 1 ~`~ yt.: ~ ~~ r ~ ~ _ _ ~ .~ ,/ _-+
„b ~ § _1 Fa~ -f-, ~6 .. y
I. .. ..~ ? ' - ~ r3~~ \ i : :~p° tnY~ ~ ~ ~Y'" . '~ '
r;~ ~ ~/
I /~ ':.~~J 6 G `~'`~°.j~`fp` R "~t~~ ' .~'~ ~..yTl~~~' . Q_ ~, ~
~~~ y ~~~ ~ ,t'k~ ~ ~ !,L,.° ~ ~~~.-' ~ ~~a
i ~,,~C ~ ~ N V N
~' Ll N ~`~ e~~A ~ ry~~~. ~ ~ ' r 4
l ~ ._ ~ r ; .: , -_ ; -
~~ `r ~~~,~,• 'T ..a.•~' ~ ~`//y ~ ~ z ~ N
--- - ~ -- ~ ~ ~: ~ ,~'\~'r"i;,~% r~,.; ,~~..1:" i' r' .,~i ~ ~ cai Yf
• ~'j s :i ~ i,,, -~ ; e ~:': t~ U' ~o
~ ' ~ f~S'~i~y.r Q ~ ~~ , ~~ ~ ~' = O V
r
i~ v \ l
;,~,' ~ , \ \~ ~ ~ • ~~e M~~ v~'~ ~ y/ : ' ~ U p ~
'~~a a .~X F~'~ ~~:, Q ~~ i~ r /. pj ui
.
~ ~~ e~ j\` ~~ ; , ~ . ~.~ p ' ; ~~ ~~~ ~~ m V
A ~'.. i s,. ~ ~ ,. /' ~ ~, c~ ~ r
~i. '~ a; R .;~~ ~ F ~,'.' ~ ,7~~'r / \ ~ Z N ~
~ ~~. i ,a y .~, W ~ g
~n/~ ~ ~/ ~~~~ Yz~/y ,' ~ N / .. v ~
.1/.' <_rl ~l`~~~'~~. I ~ ,..a. "'' :~ , _ y~ ~
~F _ '~t" ~"F'~ ,/`-~41~ . • ' ` `~~ • I ~.."' , `~';~ J ¢ 1~
~ ^ ~ ~-! ~< 1 . '~ ly _ `` 'ix , ~, ~ / aF/ ~ ~T y r ~ 9 9
~ i 1.`._t ~ ~ ~, ;i~ ryl / .~' ~~' ~ ~ l0 ~
^~.. ~ ~ ' / t ~ ~ i / ~Y _- ~ , _ a
~ ~IM ' ' ' ~ //' Y S "_i_ " i ~ W ^
• '~t~ f' ' ~~,.~~'~ ''3 ~~fi' '/.~ ~~/` ~~ ~ ,~~ 6 ~ i
~s~J~/y ~ . F .~ ~~~~~ ' ~ h
~ . ~~ _~ ~ ~~'\ ~
1' ~ ~' ~ ' + ~ ~ ~
~ ,, r = , •: , r ,.~ _
.~ _~~~~:1ez~.Ctih' Yi :~V1~ :~ .t~ ~ 3;
I F~= , w ,, "
I~ _
~
~
Work Order700007-C
May 21, 2004
Page 12
• engineering seismology evolves, and as more fault-specific geologicai
data aze gathered, more certainty and different methodologies may also
evolve.
~ 4.5.2 Liquefaction aad Seismic Settlement
Seismic agitation of relatively loose saturated sands and silty sands can
result in a buildup of pore pressure. If the pore pressure exceeds the
li uefaction
ondition known as
i• overbwden stresses, a temporary qwck c 9
can occur. Post liquefaction effects at a site can manifest in several ways,
and may include: I) ground deformations; 2) loss of shear strength; 3)
lateral spread; 4) dynamic settlement; and 5) flow failure.
•
In general, the more recent a sediment has been deposited, the more likely
it is to be susceptible to liquefaction. Further, liquefaction potential is
greatest in loose, poorly graded sands and silty sands with mean grain size
I• in the range of 0.1 to 0.2 mm. Other factors that must be considered are
groundwater, confining stresses, relative density, and the intensity, and
durarion of ground shaking. It is generally held that soils possessing a
I• clay content (particle size < O.OOSmm) greater than fifteen (15) to twenty
(20) percent may be considered non-liquefiable (for example, Martin and
Lew, 1999).
The alluvium onsite is potentially ]iquefiable if fully saturated.
•
Groundwater was encountered at a depth of thirty (30) feet during the
investigation for the neighboring tract. Due to the depth of the
groundwater, the potential for surface manifestation due to liquefaction is
• considered low. Additionally, the potential for lateral spreading is
considered low due to the relatively flat topography. Settlement due to
liquefaction can occur. A liquefaction analysis was performed to analyze
the potential amount of settlement and a description of the analysis and the
•
calculations aze presented in Appendix F. A groundwater level of 25 feet
~ PACIFIC SOILS ENGINEEFING, INC.
2~
.7
,•
Work Order 700007-C
May 21, 2004
Page 13
below grade was assumed; however, groundwater is deeper and is likely to
remain so. The analysis showed that the amount of settlement due to
liquefaction ranges from one-half to three and one-half inches.
~ 4.5.3 Dvnamic Settlement
I Based on the fines content of the alluvium onsite, the potential for dry
sand settlement is considered low. However, isolated clean sand layers
~ may exist in the alluvium that may be susceptible to dry sand settlement.
This potential for settlement can be mitigated by the use of post-tensioned
foundations systems for single-family structures.
~ 4.5.4 Seismicallv-Induced Landslidina
Due to the relatively flat lying topognphy found at the site, upon the
I completion of the grading, the potential for seismically induced
landsliding will be very low at the site.
I~
5.0 ENGINEERING ANALYSES
Presented herein is a general discussion of the geotechnical properties of the various soil
types and the analytic methods used in this report.
•
5.1 Material Properties
~ 5.1.1 Excavation Characteristics
Based on our previous experience with similar projects near the subject
~•
site, and the information gathered during our investigation for this report,
the onsite soils should be readily excavatable with conventional earth-
moving equipment. The need for blasting is not anticipated for native
• earth materials. Owing to the variability of the alluvium, mixing and/or
discing may be required in order to incorporate the materials into the
compacted fill.
. vt
PACIFIG SCILS ENGINEERING, INC.
i•
I•
I•
•
•
Work Order700007-C
May 21, 2004
Page 14
5.1.2 Compressibilitv
The undocumented artificial fill and the upper portions of the alluvial
deposits are considered highly compressible and unsuitable for support of
structures or proposed fills as they presently exist. These materials will
require removal from fill areas prior to placement of fill, as well as where
exposed in cut areas. Recommended removal depths are presented in
Section 6.1, and earthwork adjustment estimates are presented in Section
5.1.5.
5.1.3 Expausion Potential
It is anticipated that the expansion potential of the majoriry of onsite
materials will vary from "very low" to "low", with minor amounts
potentially in the "medium" expansion range.
5.1.4 Collaase PotentiaUHvdro-Consolidation
•
•
•
C
•
PSE's general experience in the Temecula-Murrieta azea indicates that
sands and silty sands may have a susceptibility to hydro-collapse if the
degree of saturation is less than 85 percent. Laboratory testing indicates
that a majority of the partially satwated alluvium at the Wolf Creek
Specific Plan has a relatively low (i.e., one-half to one percent) potential
for hydro-collapse. One sample showed a five and one-half (5.5) percent
collapse (Plate C-] 8). As concluded in Pacific Soils Engineering, Inc.
Zone Study (PSE, 1992), differential surface manifestation of hydro-
collapse settlements is dependent upon the simultaneous occurrence of
several necessary conditions, namely:
1. The presence of partially saturated, hydro-collapse susceptible soils;
2. An increase in stress acting on the susceptible soils:
3. Wetting ofthe susceptible soils;
4. The presence of irregulaz subsurface geologic conditions and/or
surface loading patterns.
PACIFIC SOILS ENGINEEpING, INC.
v~
•
Work Order 700007-C Page 15
May 21, 2004
~ First, although the site soils show some susceptibility to hydro-collapse,
the majoriry of data (Plates C-1 through G25) show that this will
generally be less than one percent. Second, the fillloads aze generally less
~ than five (5) feet. Accordingly, the stress increase is relatively small and
uniform. Third, current groundwater levels are generally more than thirty
(30) feet below the present ground surface and they are not expected to
rise even with the proposed development. And fourth, no major
~ subsurface geologic discontinuities aze known to underlie the study area.
Accordingly, PSE concludes that the potential for deleterious hydro-
collapse is low and the potential settlement can be mitigated with the use
~ of post-tensioned foundation systems.
5.1.5 Moisture Content
The upper fifty (50) feet of site soils vary from dry to moist. Depending
II ~ upon the time of yeaz, neaz surface moisture contents are expected to vary
~ seasonally. Current in-situ moisture contents range between 0.6 and 22.8
percent. It is anticipated that onsite soils will require moisture
, conditioning and mixing to meet project specifications.
5.1.6 Shear Streneth Characteristics
The following Table 5.] presents a summary of "averaged" shear svength
parameters obtained from the data gathered in the subsurface
I•
~~
~~
investigation.
_ TABLE 3.1
Shear Strength C6aracteristics (drained parameters)
Material Description Cohesion, C
(PSF) Residual Friction
An le De rees
Alluvium (Qal) 150 ~2
Compacted Fill (90%) 300 34
II• PACIFIC SOILS ENGINEEFIING, INC. ~
~
~
Work Order700007-C
May 21, 2004
Page 16
' ~ 5.1.7 Earthwork Adiustmeats
The following average earthwork adjustment factors have been formulated
for this report.
I•
.`TABLE;S:2 ~^; _-
-Eart6work`Adjustments .' f * '
Geologic Unit Adjustment Factor Average
Alluvium (Qal) Shrink ]0%to 15% 12%
These values may be used in an effort to balance the earthwork quantities.
As is the case with every project, contingencies should be made to adjust
the earthwork balance when grading is in progress and actual conditions
•
I•
aze better defined.
5.1.8 Pavement Supaort C6aracteristics
It is anticipated that the onsite soils will possess poor to good support
characteristics. Depending upon the final disVibution of site soils,
pavement support chuacteristics could vary. For preliminary design and
estimating purposes, an "R"-value of 30 is tecommended unless select
grading is accomplished to provide more favorable subgrade conditions.
~•
5.1.9 Chemical Test Results
Preliminary soluble sulfate and resistivity testing has been conducted.
Laboratory results for soluble sulfates indicate negligible sulfate
concentrations in accordance with Table 19-A-4 (UBC 1997). Chemical
test results aze presented in Appendix C. Additional chemica] tests should
~w
be performed upon the completion of grading.
Preliminary resistivity testing indicates that onsite soils are mildly to
highly corrosive to metals. Consultation with a conosion engineer is
recommended.
I•
~ PACIFIC SOILS ENGINEERING, ING. ~
i•
Work Order 700007-C Page 17
May 21, 2004
I ~ SZ Enaineerina Analvsis
5.2.1 Bearin¢ Cauacitv and Lateral Earth Pressures
Ultimate bearing capacity values were obtained using the graphs and
I~ formula presented in NAVFAC DM-7.1. Allowable bearing was
determined by applying a Factor of Safety of at least 3 to the ultimate
bearing capacity. Static lateral earth pressures were calculated using
Rankine methods for active and passive cases. If it is desired to use
Coulomb forces, a separate analysis specific to the application can be
conducted.
5.2.2 Slope Stabilitv
~ Slope stability analyses were performed using the Modified Bishop
, method for circulaz and non-circulaz failure surfaces. Stability
calculations were compiled using STEDwin in conjunction with GSTABL
7 computer code. The results of ow analysis aze presented on Plates E-1
through E-2 in Appendix E. Surficial slope stability analysis is presented
on Plate E-3. Both static and pseudo-static analyses were performed for
fill slope cases. PSE's analysis indicates that 2:1 fill slopes as currently
~ designed will be grossly and surficially stable.
53 Settlement
5.3.1 Gradi°e
•
Placement of fill on the site will produce a settlement response in the
underlying soils. Settlements are estimated at approximately one-quarter
(0.25) inch for each one (1) foot of design fill. The majority of that
~ settlement is expected to occur during grading and should be largely
complete within one to two months after grading.
5.3.2 Structural Loads
• Remedial grading recommendations as presented in Section 6.0 of this
report have been formulated to provide specific thickness of compacted
• PACIFIC 501L5 ENGINEEqING, INC. V~
•
^
Work Order700007-C
May 21, 2004
Page 18
fill for support of structures. Such remedial grading is intended to reduce
differential settlements under structural loads to less than one-half (0.5)
inch in fifty (50) feet. Foundation plans for the various site uses should be
I~
reviewed when available to confirm this conclusion.
5.3.3 Liquefaction and Dvnamic Settlement
As discussed in Section 4.5.2, there is a potential for up to three and one-
~~
I~
half inches of settlement to occur due to liquefaction. Structures should be
designed for a difFerential settlement component of two (2) inches in fifty
(50) feet from this potential source. The magnitude of those settlements
can be mitigated to an acceptable level of risk as defined by the State of
California by accomplishing the recommended remedial grading and
utilization of post-tensioned slab/foundations as currently proposed and
discussed in Section 7.l of this report. Differential settlements that should
be used in the design of structures are presented in Section 7.1.4.
6.0 GEOTECHNICAL CONCLUSIONS AND RECOMMENDATIONS
Development of the subject property as proposed is considered feasible, from a
geotechnical standpoint, provided that the conclusions and recommendations presented
herein are incorporated into the design and construction of the project. Presented below
aze specific issues identified by this study or previous studies as possibly affecting site
development. Recommendations to mitigate these issues are presented in the text of this
~ report, with graphic presentation of the recommendations on the enclosed plans, where
appropnate.
6.1 Site Preparation and Removals
~ All grading shall be accomplished under the observation and testing of the project
soils engineer and engineering geologist or their authorized representative in
accordance with the recommendations contained herein, the current ra adi°a
~ ordinance of the Citv of Temecula and PSE's Earthwork Snecircations
(Appendix G). All topsoil, undocumented artificial fill and highly compressible
~ PACIFIG 501L5 ENGINEERING, INC. ~
•
Work Order 700007-C Page 19
May 21, 2004
• alluvium and colluvium should be removed in fill azeas or where exposed at
design cut grade.
The exact extent of removals can best be determined in the field during grading
~ when observation and evaluation can be performed by the soil engineer and/or
engineering geologist. Removals should extend to competent materials. The
intent of the remedial grading is to mitigate the potential for hydro-collapse and to
support the various structure types on a defined thickness of compacted fill. The
•
thickness has been determined as the amount necessary to support the footing
stresses lazgely within the fill and minimizing stress increases on the underlying
native soils. Removal bottoms should be observed and mapped by the
engineering geologist before fill placement. In general, soil removed during
remedial grading will be suitable for use as compacted fill, provided it is properly
moisture conditioned and does not contain deleterious materials.
'~ • 6.1.1 Strianina and Deleterious Material Removal
Existing vegetation, trash, debris, and other deleterious materials should
be removed and wasted from the site prior to commencing removal of
unsuitable soils and placement of compacted fill materials.
r
6.1.2 Site Preparation - Unsuitable Soil Removal
In general, all undocumented fill and all dry, loose and highly
compressible upper native soils will require overexcavation and
~
I recompaction prior to placing design fills and when exposed by design
cuts. The required depths of removal will vary depending upon the
planned use of the area as discussed below.
~
6.1.2.1 Residential Areas
For shallow cut and all design fill azeas, all existing and the upper
five (5) feet of natural soils should be removed and replaced as
• compacted fill. In addition, the overexcavation of cut areas should
be accomplished to assure that both the above criterion is
~~
f~~ PACIFIG SOILS ENGINEEFIING, INC.
I•
Work Order 700007-C Page 20
May 21, 2004
f accomplished and a minimum of five (5) feet (vertical) of
compacted fill is produced within the building pad envelope. That
envelope is defined as being within five (5) feet, horizontally, of
the structures or from City mandated setback lines. The required
•
overexcavation can consist of a combination of overexcavation and
processing of a maximum of one (1) foot in-place.
If residential building envelopes aze sufficiently defined and
I~
survey field control is provided, the above removals can be applied
to the building pad envelope defined above. For fills outside of the
residential building envelopes, a minimum removal and
'i, ! recompaction of all existing fill and the upper two (2) feet of
natural soils is recommended. The lower one (1) foot of removal
can be accomplished by scarification and compaction in-place. For
cuts greater than two (2) feet outside of the building envelope (i.e.,
•
streets and yard azeas), removals aze not required provided that all
existing filts aze so removed. For cuts less than two (2) feet, the
two (2) foot removal and recompaction applies.
•
6.1.2.2 Commercial Areas
Currently plans are unavailable showing the proposed building lo-
cations in the commercial azeas. If typical neighborhood commer-
~ cial structures are developed, removals and overexcavation should
be accomplished to assure that a minimum of five (5) feet of com-
pacted fill is produced within the proposed building pad/envelope.
~ This five (5) foot, vertical envelope should extend five (5) feet
horizontally from the edge of the building pad.
6.1.2.3 Existing Trenches
! All uenches that have been previously excavated and backfilled
without regazd to compaction will require removal and
`~
~ PACIFIG SOIL6 ENGINEERING, INC.
i.
Work Order 70000"1-C Page 21
May 21, 2004
~ recompaction to the base of the prior disturbance. Trench
locations are shown on the accompanying Plates 1 through 19.
During removals, trenches should be identified and appropriately
~ overexcavated and recompacted to the depths indicated on trench
logs. Fills should not be placed until the excavation bottom is
observed and approved by the soil engineer and/or geologist.
~ 6.1.2.4 Undocumented Artificial Fill
In addition to the undocumented fills existing along Pechanga
Road and the unimproved roads onsite, undocumented fill may
underlie Lots 12 through 14 and 20 through 23 of Tract 30264-5.
` Comparing the previous topography on the grading plans and the
current topography revealed that up to fifteen (l5) feet of the soils
in the specified uea has been removed and then replaced to current
~ grade. The latest topography was not available until after the
subsurface investigation was accomplished, so this area was not
explored. It is anticipated that this undocumented fill will need to
be removed prior to fill placement. This area may need to be
~ located by surveying prior to grading.
6.2 Slope Stabilitv and Remediation
6.2.1 Cut Sloues
•
Cut slopes have been designed using a maximum slope ratio of 2:1
(horizontal to vertical). Due to the variability ofthe alluvium, cut slopes
in this unit will need to be replaced with stabilization fills. The majority
~ of the design cut slopes located along the northeastem boundary will be
excavated into unsuitable material. These cut slopes are anticipated to
require stabilization fills, as depicted on Plates 1 through 19. The project
geologisdengineer will detertnine the final extent of these stabilization
~
fills.
a 2°~
PAGIFIC SOILS ENGINEEFIING, INC.
i•
Work Order700007-C
May 21, 2004
Page 22
~ 6.2.2 Stabilization Fills
At this time, stabilization fills will be required for cut slopes in the
alluvium and colluvium. If stabilization fills aze required, a keyway
~ founded on competent alluvium and tilted into slope, should first be
established. A backdrain and outlet system should be constructed at the
heel of the keyway as shown on Plate G-3. The keyway width should be
at least 15 feet, or half the height of the superjacent fill slope, whichever is
~ greater. Recommendations for stabilization fill backcuts aze presented in
Section 63.
6.2.3 Fill Sloaes
~ Fill slopes have been designed using a m~imum slope ratio of 2:1
(horizontal to vertica]). The highest design fill slope onsite is
approximately five (5) feet. Stability calculations for a 15 feet high 2:1 fill
~ slope are presented on Plates E-1 and E-2 in Appendix E. Surficial
stability analysis is presented on Plate E-3.
Fill slopes that aze 2:1 or flatter are considered grossly and surficially
~ stable when properly constructed with onsite materials. Keys should be
constructed at the toe of all fill slopes "toeing" on existing or cut grade.
Fill keys should have a minimum width of fifteen (15) feet. Unsuitable
soil removals below the toe of proposed fil] slopes should extend from the
! catch point of the design toe, outward at a minimum 1:1 projection into
approved material, to establish the location of the key. Backcuts to
establish that removal geometry should be cut no steeper than 1:1 or as
+ recommended by the geotechnical engineer.
6.2.4 Skin Cut/Skin Fill Slopes
Skin cut slopes are designed along the northeastem boundary of the site.
~ For all such conditions, it is recommended that a backcut and keyway be
established such that a minimum fill thickness of fif[een (15) feet is
• PACIFIC 5DIL5 ENGINEEFING., ING. %~
•
Work Order700007-C
May 21, 2004
I•
Page 23
provided. If uncompacted fill, topsoil, compressible alluvium, weathered
older alluvium, highly weathered bedrock or other unsuitable materials are
exposed within a cut slope, overexcavation and replacement with a
stabilization fili will be required, as discussed in Section 6.2.2 and shown
on Plate G-3.
6.3 Temaorarv Backcut Stabilitv
~ During grading operations, temporary backcuts will be required to accomplish
unsuitable soil removals, as discussed in Section 6.1, and, if necessary, to
construct stabilization fills and associated keys. Backcuts for removals should be
made no steeper than I:l .
I~
Stabilization fill backcuts should be made no steeper than 1:1 (horizontal to
vertical). Flatter backcuts may be necessary where geologic conditions dictate,
and where minimum width dimensions are to be maintained.
Caze should be taken during remedial grading operations in order to minimize risk
of failure. Should failure occur, complete removal of the disturbed material will
be required.
•
In consideration of the inherent instabiliTy created by temporary construction
backcuts for stabilization fills and removals, it is imperative that grading
schedules aze coordinated to minimize the unsupported exposure time of these
• excavations. Once started these excavations and subsequent fill operations should
be maintained to completion without intervening delays imposed by avoidable
circwnstances. In cases where five-day workweeks comprise a normal schedule,
• grading should be planned to avoid exposing at-grade or near-grade excavations
through a non-work weekend. Where improvements may be affected by
temporary instability, either on or offsite, further restrictions such as slot cutting,
extending work days, implementing weekend schedules, and/or other
• requirements considered critical to serving specific circumstances may be
imposed.
• PACIFIC SOILS ENOINEERING, INC. ~~
i•
I•
I•
•
'•
•
1
[7
Work Order700007-C
May 21, 2004
Page 24
6.4 Subsurface Drainage
6.4.1 Subdrains
Due to the relatively flat topography of the site and lack of well-developed
drainages, no subdrains are proposed for the site.
6.4.2 Backdrains
Backdrains will be required in ALL keyways for any stabilization fills,
skin-fill/skin-cut remediation and fill-over-cut keys. Backdrains should be
constructed in accordance with the details shown on Plate G-3 (Appendix
G).
6.5 Construction Stakine and Survev
Removal bottoms, fill keys, stabilization fill keys, and backdrains, should be
surveyed by the Civil Engineer prior to final observation and approval by the
geotechnica] engineer/engineering geologist in order to verify locations and
gradients.
6.6 Earthwork Considerations
6.6.1 Comoaction Standards
Fill and processed natural ground shall be compacted to a minimum
relative compaction of 90 percent, as determined by AST'M Test Method
D 1557. Compaction shall be achieved at slightly above the optimum
moisture content, and as generaliy discussed in the attached Earthwork
Specifications. Compaction shall be achieved with the use of sheepsfoot
rollers or similaz kneading type equipment. Mixing and moisture
•
conditioning will be required in order to achieve the required moisture
conditions.
6.6.2 Documentation of Removals and Drains
•
Removal bottoms, stabilization keys, fill keys, slope laybacks, backdrains
and their outlets should be observed and approved by the engineering
• PACIFIC SOILS ENGINEEFING, INC. ~~
^
Work Order 700007-C Page 25
May 21, 2004
~~ geologist and/or geotechnical engineer and documented by the civil
engineer prior to fill placement. Toe stakes should be provided by the
civil engineer in order to verify required key dimensions and locations.
~ 6.6.3 Treatment of Removal Bottoms
At the completion of unsuitable soil removals and excavation of
stabilization keys, the exposed bottom should be scarified to a minimum
~ depth of eight (8) inches, moisture conditioned to above optimum
i conditions, and compacted in-place to the standazds set forth in this report.
6.6.4 Fill Placement
~ After removals, scarification, and compaction of in-place materials aze
completed, additional fil] may be placed. Fill should be placed in thin liRs
(eight inch bulk), moisture conditioned to slightly above the optimum
moisture content, mixed, compacted, and tested as grading progresses until
I~ final grades aze attained.
6.6.5 Benchine
Where the natural slope is steeper than 5-horizontal to 1-vertical and
~ where designed by the project geotechnical engineer or geologist,
compacted fill material shall be keyed and benched into competent
bedrock.
•
6.6.6 Mixin
In order to prevent ]ayering of different soil types and/or different
moisture contents, mixing of materials may be necessary. The mixing
~ should be accomplished prior to and as part of the compaction of each fill
lifr. Discing may be required when either excessively dry or wet materials
aze encountered.
I•
• PACIFIG SOILS ENC3INEEFIING, INC. ~~
i•
Work Order 700007-C Page 26
May 21, 2004
I~ 6.6.7 Fill Sloae Construction
The following recommendations should be incorporated into construction
of the proposed fill slopes.
• - Fili slopes should be overfilled to an extent determined by the
contractor, but not less than two (2) feet measured perpendiculaz to the
slope face, so that when trimmed back to the compacted core a
minimum 90 percent relative compaction is achieved.
~ - Compaction of each fill lift should extend out to the temporary slope
face. Backrolling during mass filling at intervals not exceeding four
(4) feet in height is recommended, unless more extensive overfilling is
undertaken.
- As an altemative to ove~lling, fill slopes may be built to the finish
• slope face in accordance with the following recommendations:
a) Compaction of each fill lift should extend to the face of the slopes.
b) Backrolling dwing mass grading should be undertaken at intervals
~ not exceeding four (4) feet in height. Backrolling at more frequent
intervals may be required.
c) Care should be taken to avoid spillage of loose materials down the
face of any slopes during grading. Spill fill will require complete
removal before compaction, shaping and grid rolling/track
~ walking.
d) At completion of mass filling, the slope surface should be watered,
shaped and compacted by track walking with a D-8 bulldozer, or
equivalent, such that compaction to project standards is achieved to
the slope face.
•
e) Proper seeding and planting of the slopes should follow as soon as
practical to inhibit erosion and deterioration of the slope surfaces.
Proper moisture control will enhance the long-term stability of the
finish slope surface.
•
6.7 Haul Roads
Ail haul roads, ramp fills, and tailing areas should be removed before placement
of fill.
•
• PACIFIC SOILS EN6INEEFING, INC. ~
i~
Work Order 700007-C
May 21, 2004
I, ~ 6.8 Imaort Materials
Page 27
Import materials, if required, should have similaz engineering chazacteristics as
the onsite soils and should be approved by the soil engineer at the source before
~ importation to the site.
6.9 Storm Drain Outlet
There is a storm drain outlet from a neighboring residential tract on Lots 12, 31,
~ and 32 of Tract 30264-10. A fairly steady flow of water has been observed
exiting the outlet. This outlet should be tied into the storm drain system of the
subject site. Additional unsuitable soil removals may also be required in the azea
around the outlet depending on the amount of water in the underlying soil.
•
7.0 DESIGN CONSIDERATIONS
7.1 Structural Desi¢n-Sin¢le Familv Structures
It is anticipated that one- and two-story, wood-frame residential structures with
•
shallow foundations will be constructed at the site. Precise building products,
loading conditions and structura] locations are not currently available; however, it
can be expected that for typical residential products and loading conditions, post-
• tensioned slab/foundations can be used. The design of those systems should be
based upon as-graded soil conditions and specific locations. For preliminary
design and cost estimating purposes, the following recommendations and
procedures can be anticipated, subject to confirmation of assumptions and as-
•
graded conditions. The following recommendations are for single-family
residences only. Recommendations for the commercials sites should be made
based on specific loading conditions and structure sitings.
•
Upon the completion of rough grading, finish grade samples should be collected
and tested to provide specific recommendations as they relate to individual lots.
These test results and corresponding design recommendations will be presented in
~ a Final Rough Grading Report. Final slab and foundation design
~
3~
• PACIFIC 501L6 EN6INEEFIING, INC.
•
Work Order700007-C
May 21, 2004
•
Page 28
recommendations should be made based upon specific structure-locations, loading
conditions, and as-graded soil conditions.
It is anticipated that the majoriTy of onsite soils wil] possess "very low" to "low"
I~ expansion potential, with some amounts potentially in the "medium" expansion
range when tested in accordance with UBC Standazd 18-2 and classified in
accordance with UBC Table 18-1-B. For preliminary budgeting purposes, the
~ following foandation design requirements, for the range of potential expansion
' characteristics aze presented.
7.1.1 Foundation Desian
~ Residential suuctures can be supported on conventional shallow
foundations and post-tensioned slab/foundation systems. The design of
foundation systems should be based on the as-graded conditions as
I determined after the completion of grading. The following values may be
I~ used in preliminary foundation design.
Allowable Bearing: 20001bsJsq.ft. (assuming a minimum
hes and a
de th of 12 inc
embedment p
• minimum width of 12 inches).
Lateral Bearing: 2501bs./sq.ft. per foot of depth to a
maximum of 20001bs./sq.ft.
• Sliding Coefficient: 035
The above values may be increased as allowed by Code to resist transient
loads such as wind or seismic. Building Code and structural design
considerations may govern. Depth and reinforcement requirements should
~ be evaluated by the structural engineer.
7.1.2 Post-Tensioned Slab/Foundation Desian
Table 7.1 presents preliminary design recommendations that may be
~ implemented by the structural engineer when post-tensioned
s~'
I• PACIFIC SOILS ENCi1NEEii1NG, ING.
•
Work Order700007-C
May 21, 2004
u
Page 29
slab/foundation systems aze utilized in the building construction based on
Section 1816 and 1817 of the 1997 UBC.
7.1.3 Differential Settlement
•
- ~namic Settlement
The proposed residential suuctures should be designed in anticipation
of differential settlement as a result of a major seismic event in
~ proximity to the site. Structures should be designed in anticipation of
differentia] settlements from seismic events on the order of 2-inches in
50 feet.
I ~ - Static Settlement
In addition to the potential effects of expansive soils, structures should
be designed in anticipation of differential settlements on the order of
1/2-inch in 50 feet under typica] design loads for residential structures.
I~
Other structure types should be evaluated based on specific sitings and
, loading details.
- Combined Settlement
•
Structwes should be designed in anticipation of a combined (dynamic
I and static) differentia] settlement on the order of 2 inches in 40 feet.
I•
I•
[7
• PAGIFIC SOILS EN6INEERING, ING. ~~
I~
I~
~~
I~
~~
~~
~~
~
~
~
~
~
~
D N
Y N
C cC
3 ~
~
~
°' c
M
M N
a
o
~ E c o ~ ~ ~ a
a ~" ..
~ E ; y
E 5 • o
u~
g ~ m
~, ~
~ ~
C ~ N ~ L ~ C ~
o~ e.i M ~ E
°
A 3 s
U '
v u
d
~ C ~~
w F .
d
0. ~ N O
G C ~O 00 T O 4.. °~i OD
a~ M M ~ ~ p 3 c
~ E o o ~ ~ r ; o
~ ~' 'O 'D ~ o °°•
E O ~ 9 N
s ~ A ~` «
W .
a y y kw
= ~
N
~ N
:;
n y O
~
`~
~ ~
~
M
~`'
~ v e
0
~
~
r
i F N
W ~
E c a
i
y
~/ fa,
•~ ° E m ~
~
W ,
F ~
~ ~
y ~n
t F .p
~ ~
Q C
d ry
~
~ =
~ G
~ ~ 7 ~ « v. Q ~
U ~ ~ ~ ~ ° ° ~ ~"
~ o .. ..
L
~
i ]
u 9 > ° °
o ~
r~ ' ~
. ~ N•O
V
~ C 4~ ~A
N O
V1 A
~ C
d O
s C o
C/1
W 0o E
~' M Ni ~ ~ ~ •o ..
a
.
~ = ti w=
A ~ _ ~ ~ ~
d ~o ~ $ w
z ~
o =_ ~ ~ ~_
m
~ =~
~
F~i 9 E , V C y N>
~..y m y O 2 pq
c
i0 ^~ ~_
Q' E ~ a
i
'> u E w~
A ~ E ° ~ ° ~
s .
~ ~ >, ~ ~ o
E ?. ~
z N , ~ ~3~
~ ~A
, a ~ e •., °'
~" _ a = ~
N
O W v ,°
° .c
~
I o
~' a ° C' L
^
~p 3
c
O u a
i
U t
d N
l
~ c r
~o N
~ y
~ ~ns
D~- y
a w~
d
fs
Z w
, m~E ,-~ e~i n _~ N ;,E
a y o i~
°' ' rv, ~y '~ ~..
° w a~i
p"'~
V] W
F. a
~ ~
d~ y
a~ 3 m
o~o
c
E
o e
v
~
Z, .
V= Y d ~
'
z W a o v> o ~~ E 3c
=
W U ¢ ~ v~ ~ri ~ ~o "
a m ° ~ 'ie a
i
°'
a m o
F+ z a ~ ~~ ~o
v~ o a 3 ~ q ~~ : ~
O Z z a o '- ~ °; ~ =d
/~~ ~
Q I ~~ ~ VI N ~ ~ A lO
I~I i
X O O
~ ~'
~ ~a
~ a~ L
~`e ~ a~
''
~ y V'-'
d ¢
r~ a ~ ~ „ e oo „
- E E ~ c
L
~ y '~ .
~ y
~ ~ ~
C N
~ W+
y t
F ~ ~
f'"
~ C ~ C ..
7
~ $
~
V t
E ~
~ T C
A ~
• ~ y
C U C
A~
} 4~
E n~
1
~ 6 C O 77
~
~
~ o
`" - ~ s~ ~ ..~ ~•A
E
O w ` "
"' L ~ v . Cl~ ~ o ~ ~+ ~ c
~ F R{ ' ~ ,a C N L O O
~ ~ p
V V~ on~ W E ~ ~ a
+ d
y w'° °
`
~ o ~ -.~ 7 R
e o
C
o
~ ~ r
~ v _
`
w
~
:y
O 4~ y
t
~ N
C ~
• ' ..
+ N
C y~
p y ~
~.. G
- sC
_ c o ~
3
PA IF C 9,A ~S NCi ~ 6 . V ~
~
W
ra
~
Q
F
~..
j W- v,
`'
i•
Work Order 700007-C Page 31
May 21, 2004
~
7.1.4 Deepened Footin¢s and Structural Setbacks
It is generally recognized that improvements constructed in proximity to
~ natural slopes or properly constructed, manufactured slopes can, over a
period of time be affected by natural processes including gravity forces,
weathering of surficial soils, and long-term (secondary) settlement. Most
building codes, including the Uniform Building Code (UBC), require that
~ structures be setback or footings deepened, where subject to the influence
ofthese natural processes.
For the subject site, where foundations for residential structures are to
~ exist in proximity to slopes, the footings should be embedded to satisfy the
requirements presented in Figure 3.
~
FIGURE 3
SETBACKSFRONISLOPES
i~CE Of
i00TIN0
~ TOP Of
SLOYE
iRCEOF
I ~~' ' ,
~/ 9~NUCTURE
~
1
TOE Oi HU, NEED NOT E0.CEED ~0 iT
I BuT NOT LESS THI1N 0 FT,
SLOFE
~
Xl2 BUT NffD NOT EYCFE016 FT.~M~II.~
I •
7.1.5 Backvard Imarovements
Backyard improvements, such as patio slabs, pools, and perimeter walls,
~ should also be designed in consideration of potential creep on descending
slopes and in consideration of the as-graded expansive soil characteristics.
~ PACIFIC SOILS ENGINEEFIING, ING. ~
•
Work Order 700007-C Page 32
May 21, 2004
•
Footings for perimeter walls at the top of natural slopes should be founded
in competent material. Walls should be struchually sepazated at 20-feet
(maximum) intervals. Wall footing excavations should be observed by the
~ project soils engineer/engineering geologist.
7.1.6 Miscellaneous Foundation Recommendations
Soils from the footing excavations should not be placed in slab-on-grade
~ azeas unless properly compacted and tested. The excavations should be
I cleaned of all loose/sloughed materials and be neatly trimmed at the time
of concrete placement.
To minimize moisture penetration beneath the slab-on-grade azeas, utility
trenches should be backfilled with compacted fill, lean concrete, or
concrete slurry where they interrupt the perimeter footing (immediately
below perimeter thickened edges).
' 7.2 Retainina Wall Desien
Retaining walls should be founded on compacted fill, competent older alluvium,
, r or bedrock. Foundations may be designed in accordance with the
' recommendations presented in section 7.1.1. In general, conventional walls can
be designed to either retain native materials or select granular backfill, although
the design for non- "free-draining" and expansive native material will produce a
~ relatively costly wall system. It should be anticipated that suitable backfill
material will have to be imported or selectively produced from onsite sources and
should consist of granular very low to low expansive materials.
~ 7.2.1 Rankine Earth Pressure CoefScients
I•
The following earth pressure coefficients are presented for "select" onsite
soils for both level and 2:1 ascending (except where noted) sloping
ground.
~ PACIFIC SOILS EN6INEERING, INC. ~~
i~
Work Order700007-C
May 21, 2004
I•
~S
I~
Page 33
_ ':TABLE 7;3 "
Rsnlnoe EsAti Pressure Coe~cienlslor 9U"/a'Com }iacted F711
. _ {G-200 psf,~,92) -.:-, _, . '<,: '
_
Backtill Ks K Ko
Level 031 3.25 0.47
2:1 0.47 1.23' 0.72
" Descendin slo e condition.
Equivalent fluid pressure can be calculated utilizing a soi] unit weight of
y= 125 pc£ Restrained retaining walls should be designed for "at-resY'
conditions, utilizing Ko.
7.2.2 Retainin¢ Wall Backtill
Retaining walls should be backfilled with free draining materials
(SE >_ 20) within one-half (1/2) the height of the wall, measured
'~ horizontally from the back of the wall, and compacted to project
specifications. The upper twelve (12) inches of backfill should consist of
locally derived soils. Drainage systems should be provided to walls to
~ relieve potential hydrostatic pressure (Figure 4).
- The design loads presented in the above table are to be applied on the
retaining wall in a horizontal fashion and as such, friction between
wall and retained soils should not be allowed in the retaining wall
~ analyses.
- Additional allowances should be made in the retaining wall design to
account for the influence of construction loads, temporary ]oads, and
possible neazby structural footing loads.
~ - A unit weight of 130 pcf may be used to model the wet density of
onsite compacted fill materials.
~ Select backfill should be granular, structural quality backfill with a
Sand Equivalent of 20 or better and an ASCE Expansion Index of 20
or less. The select backfill must extend at least one-half the wal]
~ height behind the wall; otherwise, the values presented in the Native
Backfill columns must be used for the design. Native backfill should
have an ASCE Expansion Index of 50 or less. The upper one-foot of
• PACIFIC SOILS ENGINEEFING, ING.
~
i•
Work Order 700007-C Page 34
May 21, 2004
i
backfill should be comprised of native onsite soils. The recommended
retaining wall backfill and drain system profile is shown on Figure 4.
- The wall design should include waterproofing (where appropriate) and
~. backdrains or weep holes for relieving possible hydrostatic pressures.
The backdrain should be comprised of a 4-inch perForated PVC pipe in
a 2 ft. by 2 ft.,'/<-inch gravel matrix, wrapped with a geofabric. The
backdrain should be installed with a minimum gradient of 2 percent
and should be outletted to an appropriate location. For subterranean
~ walls, this may include drainage by sump pwnps•
- No backfill should be placed against concrete until minimum design
strengths are achieved in compression tests of cylinders.
7.3 Concrete Desi2n
•
Preliminary testing indicates negligible amounts of soluble sulfates aze present in
the site soils; thus, sulfate resistant concrete is not required per current
requirements of the UBC. Chemical testing should be conducted on the final
~ distribution of soils after precise grading operations are complete. It should be
recognized that some fertilizers have been known to leach water-soluble sulfate
compounds into soils otherwise containing "negligible" sulfate concentrations and
increase the sulfate concenVations to potentially detrimental levels. Accordingly,
•
it is suggested that homeowners be advised of their responsibility to maintain
existing conditions. Guidelines for homeowners are presented in Appendix F.
We suggest that the information be provided to homeowners as part of the sales
« information package. Final design should be based upon post-grading testing.
7.4 Corrosion
It is recommended that upon the completion of grading, representative finished
• grade samples should be tested for pH and resistivity. Relatively low resistivity
results can indicate soils may be potentially highly conosive to metals. If these
results are realized then consultation with a corrosion engineer will be prudent.
I•
f PACIFIG SOILS ENOINEERING, INC. ~~
f
RETAINING WALL BACKFILL
N.T.S.
I•
~~
=111- 1=11CIIC ~~//~ F~qT
_ /~~~ TO1 ~
NA71VE ~~~// S~~PF
BACKFILL ~~~/~~~!~~„
PROVIDE DRAINAGE
~ sw,v~E
H!2 MIN
12 IN. MIN.
~~
~~
~~
~~
~~
~•
~ j:.;~ J •'';••;':{.
~~;:
:~i
:
NATIVE OR SELECT ~'~~ • ,
,
.
' ' ` '•':;
~
BACKFILL ~: :' :; '
SELECT
/ 1:•: BACKFILL •;:
DRAIN LATERALLY, ~~~.`~ ~.: •: •- • • • :'• .
OR PROVIDE WEEP 1;, : : :'~~•: `. .'. ~ : ~':''~
~ HOLES I•~: E.I.<_20 ',r.:
~ AS REQUIRED ~ ~.'. ~. qND
TO DRAIN ~..;
~ ; SE?•20 ~: :~:
1' ~\ ~~
;
! ~.'•
~~ ~;
~.: ~ '•`
'
~
~
r. :
~~~ ~ : :-: .
:
: ~
:
.: y'.:
..;:
~~~~ L•: .
;
1
'
'
~i~i I.:
I 1':. • .
~
::
. . •' 3:::}.
`
I 4.,
~ ~ ~~
I I..:
~ r... r.•: •.e
: •~'.~.: `
./~
.~ ..... ' :21J:
•:;:?:;
r :.•;r?.: i.......
.. ....c i. '.'~b.•c'~: ~.•.p~:.,
*
OR AS MODIFIED '~~`: ,~:~:.:..°. `: :'. v: :~::i.'..:~.
;. . ~.. . ..
-•......
BY A SPECIFIC REPOR7
II~III-11!-11!-111=11~1 ~tl~ll
H
O 4 INCH PERFORA7ED PVC, SCHEDULE 40, SDR 35 OR AFPROVED ALTfRNATE, PLACE
PERFORA710NS DOWN AND SURROUND WITH ~ CU. F7. PER FT. OF 314 INCH
ROCK OR APPROVED ALTERNAIE AND MIRAFI 'I40 FIL7ER FABRIC OR APPROVED
EOUIVALEN'f
O pp710NA1 - PLACE DRAIN A~ SHOWN \NHERE tJ~OISTURE IvIIGRA"fION IS UNDESIRABLE
FIGURE 4
I ~ I vE F. <riiG
•
Work Order700007-C
May 21, 2004
I•
7.5 Other Desi¢n and Construction Recommendations
7.5.1 Site Drainaee
Positive drainage away from swctures should be provided and
~ maintained.
7.5.2 Concrete Flatwork and Lot Improvements
Page 35
- In an effort to minimize shrinkage cracking, concrete flatwork should
~ be constructed of uniformly cured, low-slump concrete and should
contain sufficient control/contraction joints (typically spaced at 8 to 10
feet, maximum).
- Additional provisions need to be incorporated into the design and
I~ construction of all improvements exterior to the proposed structures
(pools, spas, walls, patios, walkways, planters, etc.) to account for the
hillside nature of the project. Design considerations on any given lot
may need to include provisions for differential bearing materials
(exposed cut vs. compacted fill), ascending/descending slope
conditions, bedrock structure, perched (irrigation) water, special
~I~ otential ex ansive soil ressure,and
surcharge loading conditions, p p P
differential settlement/heave.
- Exterior improvements should be designed and constructed by
qualified professionals using appropriate design methodologies that
~ account for the onsite soils and geologic conditions. The above
considerations should be used when designing, constructing, and
evaluating long-term performance of the exterior improvements on the
lots.
- The homeowners should be advised of their maintenance
~ responsibilities as well as geotechnical issues that could affect design
and construction of future homeowner improvements. The
information presented in Appendix F should be considered for
inclusion in homeowner packages in order to inform the homeowner of
issues relative to drainage, expansive soils, landscaping, irrigation,
• sulfate exposure, and slope maintenance.
7.5.3 Utilitv Trench Excavation
Utility trenches should be shored or laid back in accordance with
• applicable OSHA standards.
• PACIFIC SOILS EN6INEELi1NG, INC. ~
•
Work Order 700007-C
May 21, 2004
I•
I•
I•
Page 36
7.5.4 Utilitv Trench Backtill
Mainline and lateral utility trench backfill should be compacted to at least
90 percent of maximum dry density as determined by ASTM D-1557.
Onsite soils will not be suitable for use as bedding material but will be
suitable for use in backfill provided oversized materials aze removed. No
surchazge loads should be imposed above excavations. This includes spoil
piles, lumber, concrete trucks, or other construction materials and
equipment. Drainage above excavations should be directed away from the
banks. Caze should be taken to avoid saturation of the soils.
~ Compaction should be accomplished by mechanical means. Jetting of
native soils will not be acceptable. Under-slab trenches should also be
compacted to project specifications. If select granulaz backfill (SE > 30)
is used, compaction by flooding will be acceptable. The soil engineer
''•
should be notified for inspection before placement of the membrane and
slab reinforcement.
7.6 Preliminarv Pavement Desien
•
Final pavement design should be made based upon sampling and testing of post-
grading conditions. For preliminary design and estimating purposes, the
following pavement structural sections can be used for the range of likely Vaffic
• indices. The suuctural sections aze based upon an assumed R-Value of 30.
n
u
~
u
TABLE:7.4 ; -
PAVEMENT DESIGN RECOMMENDATIONS R= 30
Trafl'ic Index Asphaltic Concrete
(inches) Aggregate Base
(inches)
q 3.00 6.00
5 3.00 6.00
6 3.50 7.50
7 4.00 9.50
~r
7
• PACIFIG SOILS ENGINEEqING, INC.
-,
~
Work Order 700007-C Page 37
May 21, 2004
•
Subgrade soils should be recompacted to at least 95 percent of maximum density
as determined by ASTM D-1557. Aggregate base materials should be compacted
to at least 95 percent of maximum density as determined by Califomia Test 216.
I•
S.0 SLOPE AND LOT MAINTENANCE
Maintenance of improvements is essential to the long-term performance of siructures and
slopes. Although the design and construction during mass grading is planned to create
•
slopes that aze both grossly and surficially stable, certain factors ue beyond the control of
the soil engineer and geologist. The homeowners must implement certain maintenance
procedures. :
• ~
The attached "Homeowner Maintenance and Improvement Considerations", presented in
Appendix F, may be included as part of the sales packet to educate the homeowners in
issues related to slopes, maintenance, backyard improvements, etc. The following
I, ~ recommendations should also be implemented.
S.1 Slope Plantin2
Slope planting should consist of ground cover, shrubs, and trees that possess deep,
~ dense root structures and require a minimum of irrigation. The residents or
Homeowner Association should be advised of their responsibility to maintain
such planting.
• 8.2 Lot Drainaee
Roof; pad, and lot drainage should be collected and directed away from structures
and slopes and toward approved disposal areas. Design fine grade elevations
should be maintained through the life of the structure or if design fine grade
•
elevations are altered. adequate area drains should be installed in order to provide
rapid dischazge of water, away frem structures and slopes. Residents should be
made awaze that they aze responsible for maintenance and cleaning of all drai~age
~ terraces, downdrains, and other devices that have been installed to rapidly convey
water offsite and thereby promote structure and slope stability.
~
~ PAGIFIC BOIL3 ENGINEEFING, INC.
•
Work Order 700007-C
May 21, 2004
•
Page 38
8.3 Sloae IrriEation
The resident, owner, and Homeowner Association should be advised of their
responsibility to maintain irrigation systems. Leaks should be repaired
•
immediately. Sprinklers should be adjusted to provide maximum uniform
coverage with a minimum of water usage and overlap. Overwatering with
consequent wasteful run-off and ground saturation should be avoided. If
• automatic sprinkler systems aze installed, their use must be adjusted to account for
natural rainfall conditions.
8.4 Burrowina Animals
• Residents or owners should undertake a program for the elimination of burrowing
animals. This should be an ongoing program in order to maintain slope stability.
9.0 FUTURE PLAN REVIEWS
• This report represents a geotechnical review of the 40-scale rough grading plans. As the
project design progresses, site specific geologic and geotechnical issues need to be
considered in the design and construction of the project. Consequently, future plan
. reviews may be necessary. These may include reviews of:
- Precise grading plans
- Foundation plans
~ - Retaining wall plans
- Infrastructure plans
~ Underground utility plans
~ These plans should be forwarded to the project geotechnical engineer/geologist for
evaluation and comment, as necessary.
10.0 LIMITATIONS
~ The recommendations presented in this report are based on the assumption that an
appropriate level of field review will be provided by geotechnical engineers and
~~
• PACIFIC SOILS ENGINEERING, INC.
i•
Work Order 700007-C Page 39
May 21, 2004
•
engineering geologists who aze familiaz with the design and site geologic conditions.
That field review should be sufficient to confirm that geotechnical and geologic
conditions exposed during grading aze consistent with the geologic representations and
~ corresponding recommendations presented in this report. Pacific Soils Engineering, Inc.
should be notified of any pertinent changes in the project, plans or if subsurface
conditions are found to vary from those described herein. Such changes or variations
,~ may require a re-evaluation of the recommendations contained in this report.
The geologic data presented on Plates 1 through 19 presents selective geologic data,
which PSE considers representative of site conditions. More comprehensive geologic
data is contained within the boring logs and log of trenches contained herein and within
the referenced reports.
The data, opinions, and recommendations of this report aze applicable to the specific
~ design of the subject site as discussed in this report. They have no applicability to any
other project or to any other location and any and all subsequent users accept any and all
liability resulting from any use or reuse of the data, opinions, and recommendations
without the prior written consent of Pacific Soils Engineering, Inc.
•
Pacific Soils Engineering, Inc. has no responsibility for construction means, methods,
techniques, sequences, or procedures, or for safety precautions or programs in connection
with the construction, for the acts or omissions of the CONTRACTOR, or any other
~ person performing any of the construction, or for the failure of any of them to carry out
the construction in accordance with the final design drawings and specifications.
•
^
~ PACIFIC SOILS EN6INEEFING, INC. ~~
•
•
APPENDIX A
Selected References
-,
~.
•
•
•
•
•
•
~ PACIFIC SOILS ENCi1NEERING, ING. ~~
i~
Work Order700007-C
May 21, 2004
I~
APPENDIX A
REFERENCES
Page A-1
1. Blake, T. F., 1989-2000a, EQFAULT; for Windows Version 3.0, computer program for the
~ deterministic prediction of peak horizonta] acceleration from digitized California faults.
2. Blake, T. F., 1989-2000b, EQSEARCH, for Windows Version 3.0, computer program for the
estimation of peak horizontal acceleration from digitized Califomia faults.
3. Blake, T. F., 1989-2000c, FRISKSP, for Windows Version 4.0, proprietary computer source
~ code for probabilistic acceleration determination.
4. Califomia Division of Mines and Geology, 1997, Guidelines for evaluating and mitigating
seismic hazards in California: Deparunent of Conservation, Special Publication 1] 7, 74 p.
5. California Division of Mines and Geology, 1990, Special studies zone, Pechanga quadrangle
~ (124,000).
6. California Division of Mines and Geology, 1986a (revised), Guidelines to geologic and
I seismic reports: Department of Conservation, Note 42, 2 p.
;
'7. Earth Research Associates, Inc., 1987, Evaluation of faulting and liquefaction potential,
• portion of Wolf Valley project, Rancho Califomia, County of Riverside, Califomia: an
independent consultant report, dated November 20, 1987, 7 p.
8. EnGEN Corporation, 2000, Evaluation of historic and anticipated future groundwater levels,
Wolf Valley, Riverside County, Califomia: an independent consultant report, dated January
~ 14, 2000, 8 p. (job no. T1719HGS-GW).
9. EnGEN Corporation, 1999a, Geotechnical engineering study, proposed Wolf Valley High
School (primary site), City of Temecula, Califomia: an independent consultant report, dated
August 2, 1999, 28 p. (project number TI719-HGS).
~ 10. EnGEN Corporation, 1999b, Geotechnical/geologic engineering study, proposed Wolf
Valley Elementary School, City of Temecula, Califomia: an independent consultant report,
dated July 28, 1999, 26 p. (project number T1717-EGS).
11. EnGEN Corporation, 1999c, Geotechnical engineering study, proposed Wolf Valley Middle
School, City of Temecula, California: an independent consultant repon, dated July 26, 1999,
• 28 p. (project number T1718-MGS).
12. EnGEN Corporation, 1999d, Addendum to geotechnica] / geological engineering study, fault
trenching evaluation, proposed Wolf Valley Middle School, City of Temecula, County of
Riverside, California: an independent consultant report, dated August 11, 1999 (project
~ number T1718-MGS).
~ PACIFIC SOILS ENGINEERING, INC. ~O
i•
Work Order 700007-C Page A-2
May 21, 2004
i
13. Hart, E. W. and Bryant, W. A., 1997, Fault-rupture hazazd zones in California, Alquist-Priolo
earthquake fault zoning act with index to earthquake fault zones maps: California Division
of Mines and Geology, special publication 42, 37 p.
~ 14. Highland Soils Engineering, Inc., 1988a, Fault hazard and preliminary geotechnical
investigation, 242+ acres, southwest of the intersection of Mazgarita Road and State Highway
79, Rancho California, Riverside County, Califomia: an independent consultant report, dated
February 3, 1988, 38 p. (job no. 07-6556-010-00-00).
15. Highland Soils Engineering, Inc., 1988b, Fault hazazd investigation, proposed Fairview
~ Avenue area, Red Hawk project, Rancho California Area, Riverside County, California: an
independent consultant report, dated August 29, 1988, 1 I p. (job no. 07-54-003-00-00).
] 6. ICBO, 1997, Uniform Building Code, Whittier, California: International Conference of
Building Officials, 3 volumes.
~ 17. Ishihara, K., 1985, Stability of natural deposits during earthquakes: Proceedings of the
Eleventh lntemational Conference on Soil Mechanics and Foundation Engineering, Balkema
Publication, Rotterdam, Netherlands, vol. I.
18. Jahns, R.H., 1954, Geology of southern California: California Division of Mines and
~ Geology, Bull. 170, 160p.
19. Pacific Soils Engineering, Inc., 2003, Grading Plan Review, Wolf Creek Channel, Tract
29305, City of Temecula, Califomia: an independent consultant report, dated September 30,
2003 (work order 700007-A).
~ 20. Pacific Soils Engineering, Inc., 2001, Preliminary Geotechnical Study, Tentative Tract
29798, Wolf Creek Specific Plan, City of Temecula, California: an independent consultant
report, dated September 20, 2001 (work order 400622).
21. Pacific Soils Engineering, Inc., 1999, Response to County of Riverside Planning Department
review of Wolf Valley Specific Plan (County geologic report no. 974), in the City of
~ Temecula, California: an independent consultant report, dated March 31, 1999, 6 p. (work
order 400622).
22. Pacific Soils Engineering, Inc., 1998, Geologic evaluation of fault issues, Wolf Valley Ranch
Specific Plan, in the Ciry of Temecula, California: an independent consultant report, dated
~ October 30, 1998, 8 p. (work order 400622).
23. Pacific Soils Engineering, Inc., 1992, Murrieta Special Geologic Study Zone report, Murrieta
Califomia: an independent consultant report to the Builders Corporation Associated, dated
April 17, 1999 (work order 400388).
~ 24. Pacific Soils Engineering, Inc., 1989, Alquist-Priolo Special Studies zoning and liquefaction
study, Murdy / Trotter parcel, County of Riverside, California: an independent consultant
report, dated April 5, 1989 (work order 400103).
• PAGIFIC SOILS ENGINEERING, INC. ~ `
•
Work Order700007-C
May 21, 2004
Page A-3
25 Peterson, M. D., Bryant, W. A., Cramer, C. H., Cao, T., Reichie, M. S., Frankel, A. D.,
. Lienkaemper, J. J., McCroty, P. A., and Schwartz, D. P., 1996, Probabilistic seismic hazard
I assessment for the State of Califomia: Califomia Division of Mines and Geology, open-file
report 96-08, 59 p.
•
26
Petra Geotechnical, Inc., 1989, Supplementa] evaluation of faulting, southwest portion of
. Redhawk project, Rancho California azea, County of Riverside, California: an independent
consultant report, dated March 1, 1989, 15 p., plates.
27 Pioneer Consultants, 1980, Geotechnical evaluation, a portion of the Wildomaz fault zone,
.
~ Rancho California area, Riverside County, California: an independent consultant report,
dated August, 1980, Riverside County Geologic Report 199 (GR-199), 12 p.
28 Riverside, County of, Planning Department, 1999, Alquist-Priolo Earthquake Fault Zoning
. Coun eolo ic re ort no. 974 (update to County
Act, Wolf Valley Ranch Specific Plan, ty g g P
~~ geologic report no. 700), City of Temecula, dated Mazch 15, 1999, 2 p.
29 R. B., 1978, Fault evaluation report FER-76, (Elsinore fault zone, south Riverside
Saul
. ,
County, California): California Division of Mines and Geology, unpublished report, 14 p.
30 Shlemon, R. J. and Davis, P., 1992, Ground fissures in the Temecula azea, Riverside County,
. n ineerin eolo ractice in
octor R.J. ed. E g g gY P
Califomia: in Pipken, B. W., and Pr , ,( ), ~
•
southern Califomia, special publication No. 4, Association of Engineering Geologist,
southem Califomia section, P. 275-287.
31 Tokimatsu, K. and Seed, H. B., 1987, Evaluation of settlements in sands due to earthquake
.
shaking: Journal of the Geotechnica] Engineering Division, ASCE, volume 113, No. 8,
' • August, 1987.
I•
I~
I•
5~
I~ PAGIFIC 3DIL5 ENOINEERING, INC.
•
~.
~
~
~
APPENDIX B
Subsurface Investigation
I~
I~
I•
I•
I•
~3
I• PACIFIG SOILS ENGINEERING, INC.
i•
Work Order 700007-C Page B-1
May 21, 2004
i
APPENDIX B
Current Subsurface Investieation
` PSE's subsurface investigation (February 2004) utilized a truck-mounted bucket auger with an
18-inch diameter bucket and a CPT rig. 'I'he investigation consisted of logging and sampling
thirteen (13) bucket auger borings (Plates B-1 through B-13) and performing thirty (30) CPT
soundings. Excavations ranged in depth from 26 to 50 feet below existing grades. The
~ approximate locations of the exploratory borings are shown on Plates 1 through 19. Borings and
test pits were logged and sampled by a representative of this firm. The cone penetrometer
soundings were performed by Gregg Drilling and Testing, Inc. (Gregg Drilling's testing
~ procedure can be provided upon request).
Representative bulk and "undisturbed" samples were obtained from the exploratory excavations
and delivered to PSE's laboratory for testing and analysis.
~ Undisturbed samples were obtained from the borings by driving a Califomia Modified type
sampler into the material. A split barrel-type spoon, having an inside diameter of 2.50 inches
(bucket auger), with a tapered cutting tip at the lower end, was used. The barrel is lined with thin
~ brass rings, each I inch in length. The sampler penetrated into the soil approximately 12 inches.
The lower portion of the sample was retained for testing. All "undisturbed" samples were sealed
in airtight containers and transported to the laboratory. Blow counts were noted for each
"undisturbed" sample and are presented in the logs of the borings (Plates B-1 through B-13).
•
Previous Subsurface Investi ations
Previous investigations by PSE onsite include hollow-stem auger borings, bucket auger borings,
S backhoe trenches and cone penetrometer soundings. Bucket auger borings BAC-7 through -9, -
11. -13 and -14 (PSE, 2003) are presented as Plates B-14 through B-19. Hollow-stem auger
borings HS-17 and HS-18 (PSE, 2001) are presented as Plates B-20 and B-21. Hollow-stem
auger borings PSE-1 through PSE-3 (PSE, 1998) are presented as Plates B-22 through B-24.
~ Bucket auger boring B-1 (PSE, 1989) is presented as Plate B-25. Fault ttenches T-1, T-2 and T-
, 4 are presented in the referenced report (PSE, 1989). CPT-soundings CPT-1:1998 through CPT-
~~
I• PACIFIG SOILS ENGINEEFING, INC.
i~
Work Order 700007-C Page B-2
May 21, 2004
8:1998 (PSE, 1998) aze presented following CPT-1 through CPT-30.
Reptesentative bulk and "undisturbed" samples were obtained from the exploratory excavations
and delivered to PSE's laboratory for testing and analysis.
Undisturbed samples were obtained from the borings by driving a Califomia Modified type
sampler into the material. A split barrel-type spoon, having an inside diameter of 2.50 inches
• (bucket auger) or 2.42 (hollow-stem), with a tapered cutting tip at the lower end, was used. The
barrel is lined with thin brass rings, each i inch in length. The sampler penetrated into the soil
approximately 12 inches. The lower portion of the sample was retained for testing. All
"undisturbed" samples were sealed in airtight containers and transported to the ]aboratory. Blow
~
counts were noted for each "undisturbed" sample and are presented in the ]ogs of the bonngs
(Plates B-14 through B-28).
I ~-
I•
n
I•
I•
~s
I• PACIFIG SOILS EN6INEERING, ING.
GEOTECHNICAL BORING LOG SHEET ~ oF ~
s
PROJECT NO.
700007-C
PROJECT NAME Wolf Creek Phase 2
BA-01
DATE STARTED 2/17/04 GROUND ELEV. 1120 BORING DESIG.
DATE FINISHED 2/17/04 GW DEPTH (Fn LOGGED BY SSC
NOTE o-23'=24001t.
DRILLER AI-Rov Drillina
" DRIVE WT. See Notes
12 in 23-az' e155016.
TYPE OF DRILL RIG Bucket Auaer
18 .
DROP
~~
I '~
~~
~~
~~
~~
'~
~~
~~
_
-
~
N }
p ~
j~ d'e
HF ~i~
ni
~ Z
O C N
~
2
•
.
ad > w
~
o
o
°~
GEOTECHNICALDESCRIPTION
mZ n
rz o
¢ t
i)
~i. ~
LLl >
F
Q
~
O
O~
7 aF
~ V
i m I- tn ~
J
SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light
brown, slightly moist, loose.
5 1175 R z @ 5.0 ft. slightly maist to moist. 4_~ ~OZ ~8
SP @ 7.0 ft. SILTY SAND TO SAND W/ SILT, fine to coarse grained,
light brown, slightly moist, medium dense.
B DSR,
~•
7 0 1110 3.4 102 14 EI
R 3 ,
HY
,
CHEM
CON,
HY
15 7105 SM @ 15.0 ft. SILTY SAND, fine to medium grained, brown, moist, 7.7 109 39
R 2
medium dense.
20 1100 @ 20.0 ft. fine to coarse grained.
25 1095 SP @ 25.0 ft. SAND W/ SILT, fine to coarse grained tan, slightly moist, 9.2 506 44
R ~ medium dense with some gravels.
30 1090 R ~~ @30.0ft.dense. 2.2 1i6 14
TOTAL DEPTH 31.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVEC
I ~~o
SAMPLETYPES: i GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~
~ ENGINEERING~ INC.
~ SPT (SPLIT SPOON) SAMPLE ~
~ BULK SAMPLE ~ TUBE SAMPLE PLATE B-1
GEOTECHNICAL BORING LOG SHEET , oF +
•
'ROJECT NO.
'
700007-C
PROJECT NAME Wolf Creek Phase 2
BA-02
BORING DESIG
I
~ATE STARTED 2I76/04 GROUND ELEV. 1108 .
LOGGED BY SSC
~ATE FINISHED 2N6/04 GW DEPTH (Fn
N
tes
S NOTE o-23~=24o01b.
~RILLER AI-ROVOrillina o
ee
DRIVEWT. 23-a2'=i55oin.
YPEOFDRILLRIG 18"BucketAuaer DROP 12in
~
\~.5
I~
I~
~~
~~
~~
>
J w..
Co
U~ ~
O
d' N
2.-.
a~ ] JW
a N
o O 7~
o~
GEOTECHNICALDESCRIPTION HF
wz ~N
rz Ho
¢ 2 N
~w
oLL. ~
w ~
¢~ m p
x ~> ~~ ao ~ ~ r
h ~ ~
J
SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, brown,
slightly moist, loose.
4
0 96 15
@ 2.0 ft. medium dense. .
t105 R 4 DSR,
MAX,
EI,
5 HY,
CHEM
4
5 105 27 CON
@ 6.0 ft. light brown. . ,
R 2 HY
1100
3
7 110 20
~~ @ 10.0 R. some small gravels. .
R 3
1095 @ 13.0 ft. moist.
7
9 110 48 CON
~ 5 @ 15.0 R. brown, slight porosity, rootlets. . ,
R 4 HY
1090 SP-SM @ 18.0 k. SAND W/ SILT, fine to coarse greined, tan, slightly moist.
di 12
3 113 70
20 SM um
@ 20.0 ft. SILTY SAND, fine to coarse grained, brown, me .
R 4
medium dense.
moist
tlense
,
,
1085
7
8 106 41
z5 @ 25.0 ft. fine to medium grained, medium dense to dense. .
R 8
1080
12
3 711 67
30 R 10 @ 30.0 ft. dense. .
TOTAL DEPTH 31.0 FT
NO GROUNDWATERENCOUNTERED
NO CAVING 08SERVED I
~~
SAMPLETYPES: ~ GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~
(~ ENGINEERING~ INC.
~ SPT (SPLIT SPOON) SAMPLE
~~
~ BULK SAMPLE ~TUBE SAMPLE - PLATE B-2
GEOTECHNICAL BORING LOG SHEET , oF ,
s
PROJECT N0. 700007-C PROJECT NAME Wott Creek Phase 2
BORING DESIG BA-03 ~
~ DATE STARTED 2/16/04 GROUND ELEV. 1120 .
LOGGED BY
SSC
DATE FINISHED 2N6/04 GW DEPTH (F~
f
N NOTE o-23'=24001b.
DRILLER AI-ROV Drillina o
es
DRIVE WT. See 23-a2'=155o1e
" DROP 12 in .
TYPE OF DRILL RIG Bucket Auaer
18 .
~
r
ie
~~
~~
~~
~w
~~
~~
~w
t7 J ~° °~ ~ O ~ v~
S^ ) ~W N
o O
o ~~
°
~ 1
GEOTECHNICALDESCRIPTION -l-. atn
r !-\
a
~ S t~
wLL
~ ~
w ~}
ar
m
= ~
> oo
~ ~W
oo ~
~ oF
~ y r ~
~n ~
J
SM ALLUVtUM (Qap: SILTY SAND, fine to coarse grained, light
brown, slightly moist, loose.
@ 3.0 ft. moist.
5 1715 R sh
P ~ @ 5.0 ft. moderately dense. 8.7 105 40 HON,
u .
SP @ 6.5 ft. SAND W! SILT and gravels, fne to coarse greined, tan,
slightly moist, moderately dense.
10 1110 :::~ ~~.: 7.9 103 35
R ~
ist
d
b
SM ,
rown, mo
,
@ 17.0 ft. SIITY SAND, fne to medium graine
moderately dense.
15 1105 @ 15.0 ft. fine to coarse grained, medium dense. 5.8 170 37
R 2
20 1100 7.1 110 37
R 3
25 1095 18.4 101 76
R 5
TOTAL DEPTH 26.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
~
SAMPLE TYPES: = GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ^
(r.~ ENGINEERING~ INC.
~,gl SPT (SPLIT SPOON) SAMPLE
`~7
.
~ BULK SAMPLE ~ TUBE SAMPLE PLATE B-3 ,
GEOTECHNICAL BORING LOG SHEEf i oF ,
! ~ROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2
~ ~ 25
GROUND ELEV BA-04
IG
~ATE STARTED
~ 2/16I04
2116/04 .
GW DEPTH (Fn SSC
LOGGED BY
'
JATE FINISHED
AI-Rov Drillinu
DRIVE WT. See Notes =290016.
NOTE 0-23
~
1D
I JRILLER
.,~ .,~ nou i ain
~R" eucket Auoer
DROP 12 ~~~ p3_qp
=1550
.
•
~
~
I~
~~
~~
~~
~~
~..~_ .-..._ _._ _ ~ J ¢ a ~F i~ ~ O ~tn
a~ ~~ } o a o~ GEOTECHNICAL DESCRIPTION u~ iz i z N a o F
° o o ~
o~ w a
y ~ m F ~y ~
J
SM/SP ALLUVIUM (Qal): SILTY SAND TO SAND W/ SILT, fine to coarse
grained, tan, dry to slightly moist, loose.
5 1120
~ SM @ 5.0 R. SILTY SAND, fine to medium grained, light brown, slightly 5.2 100 21 CON,
R Push moist, moderately dense. HY
Sp SAND W/ SILT, fine to warse grained, tan-gray, slightly
0 ft
@ 9
.
.
moderately dense, some gravels.
moist ZZ g gp 7~
~0 1115 ,
R 5
@ 13.0 ft. some wving.
15 1110 SM @ 75.0 ft. SIITY SAND, fne to coarse, brown, moist, medium dense, 67 119 46
R 5 trace gravels.
~
~
~
:
~ ~~
~~~
gp ------ - --------------
SAND W/ SILT, fine to coarse grained, tan-gray, slightly
0 fl
@ 18
.
.
moist, dense, some gravels.
20 1105 2.3 113 13
R 8
25 1100
R ~0
TOTAL DEPTH 26.0 FT
NO GROUNDWATER ENCOUNTERED
CAVING OBSERVED @ 13.0 FT
J"t
SAMPLETYPES: i GROUNDWATER
~ pACIFiC SOILS
~ RING (DRIVE) SAMPLE - seePnce: ~ ENGINEERING~ INC.
~ SPT (SPLIT SPOON) SAMPLE PLATE B-4 ~
~ BULK SAMPLE ~ TUBE SAMPLE
GEOTECHNICAL BORING LOG SHEET , oF ,
•
~ ROJECT NO.
700007-C
PROJECT NAME Wolf Creek Phase 2
BORING DESIG
BA-05
~ATE STARTED 2/17104 GROUND ELEV. 1146 .
LOGGED BY
SSC
~ATE FINISHED 2/17/04 GW DEPTH (FT)
Sae Notes
DRIVE WT NOTE o-23'=240o1b.
~RILLER AI-Rov Drillina .
12 10 23-92'=15501b.
~ voo nr nou I Rid 1A" Rucket Auaef .
DROP
f
~
I a
~
~~
~f
~~
x W
~ ~ ~
o a~
~ ?e
~~- ~~ ,
m O
r w rN-
n
~
~~ ~ w o ~
0~ GEOTECHNICAL DESCRIPTION v
, r
W o
a x ~
oLL J
w ~Y
~~
m 0
~
~a _
o
~~ ~
oo ~
~ o F
i
J
SP ALLUVIUM (Qal): SAND W/ SILT, fine to coarse grained, tan, dry
~ 145 to slightly moist, loose.
Z
~ 92 9
5 @ 5.0 ft. moderately dense. .
R ~
1140
SM @ 7.0 ft. SILTY SAND, fne to coarse grained, brown, slightly moist
to moist, moderately tlense, some gravels.
g DSR,
~,
8
1 102 35
10 . E
R 3
HY,
7 735 CHEM
CON,
SC
@ 13.0 ft. CLAYEY SAND, fine to coarse grained, orange brown wdh HY
white specks, moist, dense.
11
7 119 80
15 R 10 .
1130
SM @ 77.0 tt. SILTY SAND & GRAVELS, fine to coarse grained, light
brown, moist, dense, cobbles.
20
R 70
7125
TOTAL DEPTH 21.0 fT
NO GROUNDWATER ENCOUNTERED
I NO CAVING OBSERVED
~8~
SAMPLETYPES: = GROUNDWATER pACIFIC SOILS
~$I RING (DRIVE) SAMPLE - SEEPAGE ~
~ ENGINEERING~ INC. ..
~ SPT (SPLIT SPOON) SAMPLE
~@J BULK SAMPLE ~ TUBE SAMPLE PLATE B-5
GEOTECHNICAL BORING LOG SHEET , oF ,
•
PROJECT NO. 700007-C PROJECT NAME WoH Creek Phase 2 BA-06
DATE STARTED 2/17l04 GROUND ELEV. 1725 BORING DESIG.
DATE FINISHED 2/17/04 GW DEPTH (F'n LOGGED BY SSC
DRILLER AI-Rov Drillinq DRIVE WT. See Notes NOTE 0-23'=29001b.
1'YPE OF DRILL RIG 18" BucketAuaer DROP 12 in. 23-42'=15501b.
~~
I S
~
~
S
~
~
~
~
u
~
~d
~ W
aa ~
3 ~
~ a~
~m ~o
~~ ~i~
-°v~ Z
~F ~ ~n
ia
wLL
W
QF
o
=
~~
GEOTECHNICALDESCRIPTION
u~z
~W e
¢ i
~,w
~" m m ~ ~tn o
~U o0 ~
7 O~
J
SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light
brown, slightly moist, loose.
R 2 6.5 82 17
5 1120
R 3 @ 6.0 ft. moderately dense, some small gravels. 2.4 102 10
10 1115 R 5 @ 10.0 ft. some porosity. 3.6 111 19 DS,
HY
@ 12.0 k. moist.
~ 5 1110 R 3 @ 15A ft. grevels. 4.9 110 26 CON,
HY
20 1705
R
5 4.9 112 28
25 1700 R 13 @ 25.0 ft. dense. 5.6 115 34
TOTAL DEPTH 26.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
W~
SAMPLETYPES: i GROUN4WATER ~ PACIFIC SOILS
~ RING (DRIVE) SAMPIE - SEEPAGE
~
~
INC.
ENGINEERING
~SPT(SPLITSPOON)SAMPLE ~
~ BULK SAMPLE ~ TUBE SAMPLE PLATE B-6
GEOTECHNICAL BORING LOG SHEET ~ oF ,
~
~ROJECT NO. 700007-C PROJECT NAME Wolt Creek Phase 2 BA-07
~ATE STARTED 2I77/04 GROUND ELEV. 1110 BORING DESIG.
JATE FINISHED 7J17/04 GW DEPTH (F'n LOGGED BY SSC
~
~RILLER AI-Rov Drillina DRIVE WT. See Notes NOTE =2aoo.te.
o-23
iYPE OF DRILL RIG 18" Bucket Auaer OROP 12 in. 23-92'=15501b.
~~
~~
~
~
~
L
~
~
~
_^
J
y y
O
a0 w .-.
j°e
~r ,
O
w~
~" ~ ~} o o °~ GEOTECHNICALDESCRIPTION Nz >z a° ~w
am
oLL
W
~
m
r ¢
y O
~ ~w
oo ~ r
~
N c~ ~ ~
J
SM ALLUVIUM (Qal): SILTY SAND, 5ne to coarse grained, brown,
, slighNy moist, loose, some gravels.
@ 1.0 ft. moist.
5 1105 R ~ @ 5.0 @. moderately dense. 9.0 106 43
10 1100 10.4 171 56 CON,
R HY
SM/SP @ 14.0 R. SILTY SAND TO SAND W! SILT, fine to coarse greined,
15 1095 light brown, moist, moderetely dense, some gravels. 5.6 105 26
R 3
@ 19.0 ft. trece gravels and cobbles.
20 1090 3 @ 20.0 ft. tan. 7.5 171 40 CON,
R HY
@ 24.0 ft. dense.
25 1085 8.7 122 66
R 25
TOTAL DEPTH 26.0 FT
NO GROUNDWATERENCOUNTERED
NO CAVING OBSERVED
(~v
SAMPLETYPES: 1 GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPIE - SEEPAC~E ~
~,j. ENGINEERING~ INC.
,~$,J SPT (SPLIT SPOON) SAMPLE ~~
~@I BULK SAMPLE ~TUBE SAMPLE I PLATE B-7
GEOTECHNICAL BORING LOG SHEET , oF ,
~
PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2
I
DATE STARTED 2/17/04 GROUND ELEV. 1764 BORING DESIG. BA-OS
~ DATE FINISHED 2/17/04 GW DEPTH (Fn LOGGED BY SSC
DRILLER AI-Rov Drillina DRIVE WT. See Notes NOTE o-23'=24oo1b.
TYPE OF DRILL RIG 18" Bucket Auger DROP 12 in. 23-az'=15501b.
~
~
~
~
~
~
~
~
~
~
F~ ~ aW 3 p ~m j° a~ ,o wF
v = ~g GEOTECHNICALDESCRIPTION oo W ~= OF
Q w ¢~
N m f
J ~h ~V ~
~0 ~
SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light
brown, dry to slightly moist, loose.
7100 B DSR,
5 R q @ 5.0 ft. moderat^ly dense. 4.0 96 15 E~'
HY,
CHEM
@ 8.0 ft. slightly moist.
1095
10
R
3
32
114
19
CON,
Y
H
SP @ 72.0 ft. SAND W/ SILT, fine to coarse greined, tan, slightly moist,
moderately dense.
1090
15 R 3 SM @ 15.0 ft. SILTY SAND, fine to coarse grained, brown, moist 62 110 33
' ~~ ~' l
n
d
t
d
mo
era
y
e
e
se.
SP @ 18.0 ft. SAND W/ SILT, fine to coarse greined, tan, slightly moist,
1085 moderately dense, some gravels.
20
R
8
3.4
110
18
1080 SM @ 24.0 ft. SILTY SAND, fine to coarse grained brown, moist
25 m
r
l
n
tl
t
d
y
o
e
a
e
e
se.
R g 10.8 112 59 CON,
HY
TOTAL DEPTH 26.0 FT
NO GROUNOWATER ENCOUNTERED
NO CAVING OBSERVED
I I ~3
SAMPLETYPES: = GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~
QSPT(SPLITSPOON)SAMPLE ~ ~ ENGINEERING~ INC.
~ BULK SAMPLE ~ TUBE SAMPLE - PLATE B-H
GEOTECHNICAL BORING LOG SHEET , oF ,
~
'ROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 ~
BA'~9
>ATE STARTED 2I16I04 GROUND ELEV. 1086 BORING DESIG.
JATE FINISHED 2/16/04 GW DEPTH (Fn LOGGED BY SSC
~RILLER AI-Rov Drillinq DRIVE WT. See Notes NOTE 0-23' ~290016.
(YPE OF DRILL RIG 18" Bucket Auaer DROP 12 in. 23-42'=155o1t.
~~
~~
~
~
~
~
~
~
~
~
x,-.
~w
N
O
j0 w..
j° y
~~ z
,O
W~-
wLL ~ ~} o o ~~ GEOTECHNICALDESCRIPTION yo ~W ~= r~
o-- W y~ m ~ c~~', ~o 00 ~ o
J
ML ALLUVIUM (Qal): SANDY SILT, fine to medium greined, brown,
1085 slightly moist, soft, some porosity.
i
5 R 2 @ 5.0 ft. firm. 6.9 94 24
7080 DSR,
MAX,
EI,
HY,
CHEM
~~ no porosity observed.
@ 10.0 ft. brown 9~~ 9~ ~
R 3 ,
1075
15 R Z @ 75.0 R. slight porosity. 8.4 97 31 CON,
iW0 HY
@ 19.5 ft. fine to coarse grained, tan.
20 6.9 100 28
R 4
1065
zs SP @ 25.0 ft. SAND W/ SILT, fine to coarse grained, tan, slightly moist, 2.5 708 t3
1060 R 16
dense, some gravels.
30 SM @ 30.0 ft. SILTY 5AND, fine to coarse grained, light brown, slightly 5.7 108 29
R 75
moist to moist dense
1055 .
TOTAL DEPTH 37.0 Ff
NO GROUNDWATER ENCOUNTERED ~
NO CAVING OBSERVED
~`
SAMPLETYPES: i GROUNDWATER PACIFIC SOILS
~61 RING (DRIVE) SAMPLE - SEEPAGE ~
(~ ENGINEERING~ INC.
~ SPT (SPLIT SPOON) SAMPLE ~~
~ BULK SAMPLE 0 TUBE SAMPLE PLATE B-9 '
GEOTECHNICAL BORING LOG SHEET , oF ,
~
PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2
DATE STARTED 2176/04 GROUND ELEV. 1090 BORING DESIG. BA-10
DATE FINISHED 2116/04 GW DEPTH (Ff) LOGGED BY SSC
DRILLER AI-RovDrillino ORIVEVJT. SeeNOtes NOTE o-z3~=zaooin.
TYPE OF DRILL RIG 18" BucketAuaer DROP 12 in. 23-4z'=is5olb.
I~
I~
~
~
~
~
~
~
~
~m
> w
aa m
3 ~
~ a-'
~m ~e
~ ~iF
a Z
'~ ~ m
v
W
=
GEOTECHNICALDESCRIPTION ~ ~n a =a,
o NF m ~N oo ~W ~ o~
J ~U ^0 7
SM ALLUVIUM (Qal): SILTY SAND, fne to coarse grained, brown,
slighily moist, loose.
B
DSR,
5 1085 R Push '. @ 5.0 ft. moderately dense. 7.0 103 31 E~'
HY,
CHEM
CON,
HY
10 7080 R Push .~ @ 10.0 ft. moist, some porosiry, some small gravels. 8.6 108 43 CON,
HY
15 1075
R
2
6.9
712
38
20 1070
R
1 10.2 102 44 CON,
HY
25 7065
R
~q
:
SP - - - - -
@ 25.0 R. SAND W/ SILT, fine to coarse grained, light brown, slightly
i
d
t
l
t
d
2.8
108
14
mo
, mo
era
e
y
ense.
s
30 1060
R
6
3.6
92
12
~ SM @ 32.0 ft. SILTY SAND, fine to coarse greined brown, moist
:~.
~ ~:~ moderatelydense.
r'. .- i
35 1055
R
6
18.6
106
88
TOTAL DEPTH 36.0 FT
NO GROUNGWATER ENCOUNTERED
NO CAVING OBSERVED
~
SAMPLETYPES: i GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~
~SPT(SPLITSPOON)SAMPLE ~ ENGINEERING~ INC.
~ BULK SAMPLE ~ TUBE SAMPLE PLATEB-10
GEOTECHNICAL BORING LOG SHEET , oF ,
~
PROJECT NO. 700007-C PROJECT NAME WoH Creek Phase 2 .
BA'~ ~
DATE STARTED 2/16I04 GROUND ELEV. 7702 BORING DESIG.
DATE FINISHED 2/16/04 GW DEPTH (Fn LOGGED BY SSC
DRILLER AI-ROV Drillino DRIVE WT. See Notes NOTE o-23~=2a0aln.
TYPE OF DRILL RIG 18" Bucket Auaer DROP 12 in. 23-az'=15501b.
~~
I~
•
~
~
~
~
~
~
W y c}7 a~ Ke ~i~ Z K~n
= d
a d ~
~ a W
y 3
o ~ ~ m
°
GEOTECHNICAL DESCRIPTION ~ r-
v, z a~n
> z ~e
a .Wi w
W
o`= "' ~
N~ m o
~ ~
~~ ~~ oo ~ ~
o r
~
J
SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, brown,
slightly moist, loose.
1100
5 5.5 98 27 DS,
R 1
HY
1095
@ 8.0 ft. moderately dense, some porosity.
~~ 12.3 109 63 CON,
R 1
HY
~ oso
@ 13.0 k. fine to medium grained.
15
R
1 12.9 107 53 CON,
HY
1085
20 R 3 @ 20.0 ft. fine to coarse grained. 11.7 112 66
1080
25
R
4 19.5 95 70
TOTAL DEPTH 26.0 FT
NO GROUNDWATER ENCOUNTERED ~
NO CAVING OBSERVED
~~ ~
SAMPLETYPES: i GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~ INC.
ENGINEERING
~ SPT (SPLIT SPOON) SAMPLE ~
~I BULK SAMPLE ~TUBE SAMPLE I PLATEB-11
GEOTECHNICAL BORING LOG
~
PROJECT NO. 700007-C PROJECT NAME WoH Creek Phase 2
DATE STARTED 2116/04 GROUND ELEV. 7086 BORING DESIG
DATE FINISHED 2/16/04 GW DEPTH (FT) LOGGED BY
DRILLER AI-Rov Drillina ORIVE WT. See Notes NOTE
TYPE OF DRILL RIG 18" Bucket Auger DROP 12 in.
I~
~
~~
~
~
~
~
~
~
SHEET 1 OF 1
BA-12
SSC
0-23'=24001b.
23-92'=755016.
~m
~
w
aa
N
3 >
~
~
a-'
~m w .-.
~=
~~
u~
am
Z
~~
~ m
=
~
V
w
~
=
~
GEOTECHNICALDESCRIPTION
o ~
= v
i
~
Q N m N ~ QQ ? o
J
SM ALLWIUM (Qaq: SILTY SAND, fine lo coarse grained, brown,
7085 slightly moist, loose.
5 R 8 @ 5.0 ft. moderetely dense. 3.9 103 77
1080
@ 8.0 ft. orange brown, some porosity, some small gravels.
~~
R
4 3.7 107 18 CON,
1075 HY
SM/SP @ 14.0 ft. SILTY SAND TO GRAVELLY SAND, light brown, gravels
and cobbles
~ 5 . 4 ~ ~~6 Z9
R 6
1070
20 R g SM @ 20.0 ft. SILTY SAND, light brown, slightly moist, motlerately dense 6.5 118 42
1065 with gravels and cobbles.
25 R P5 @ 25.0 ft. brown orenge, slightly moist, dense with gravels. 8.4 714 49
1060
TOTAL DEPTH 26.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
`~~
SAMPLETYPES: = GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE
~
~
INC.
ENGINEERING
~SPT(SPLITSPOON)SAMPLE ~
~ BULK SAMPLE ~ TUBE SAMPLE ~ PLATEB-~ Z
GEOTECHNICAL BORING LOG
~
PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2
DATE STARTED 2l16/04 GROUND ELEV. 1078 BORING DESIG.
DATE FINISHED 2/i6/04 GW DEPTH (Fn LOGGED BY
DRILLER AI-Rov Drillina DRIVE WT. See Noles NOTE
TYPE OF DRILL RIG 18" Bucket Auaer DROP 12 in
~~
~~
I~
~
~
~
~
~
~
~
SHEET 1 OF 7
BA-13
SSC
0-23'=24001b.
23-42'=15501b.
x~ ~ a' O ap ~° ~f ~O w~
~" W aa 3 J om GEOTECHNICALDESCRIPTION ~z >z ¢° Fw
o~ w ~~ m ~ ~N pO
~ oo ~ o~
J
SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light
brown, dry, loose, some 9ravels.
22 107 11
R 3
7075
5
h
P ~ @ 6.0 ft. brown, slightly moist to moist, moderately dense, some 9.8 105 46 CON,
R us . porosity HY
.
1070
~~ R 3 @ 10.0 ft. moist. 8.3 116 52
7065
~ 5 R Push ~ @ 15.0 ft. no porosity observed. 13.8 107 68
7060
20 R z @ 20.0 ft. fine to medium greined. 14.4 89 45
1055
25 17.1 106 81
R 4
1050
30 R 8 11.0 100 45 CON,
HY
7045
~
35 R ~ 21.0 98 80
TOTAL DEPTH 36.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
i `~~
SAMPLETYPES: 1 GROUNDWATER ' PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~
~ ENGINEERING~ INC.
0 SPT (SPLIT SPOON) SAMPLE ~ `=7
~$I BULK SAMPLE ~LI TUBE SAMPLE ( PLATEB-13 .
GEOTECHNICAL BORING LOG SHEET , oF ,
~
PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2
BAC-07
DATE STARTED 8/14/03 GROUND ELEV. 1070 BORING DESIG.
DATE FINISHED 8/14l03 GW DEPTH (F'T) LOGGED BY JG
DRILLER AI-Rov Drillina DRIVE WT. See Notes NOTE Q-24'=21501b.
TYPE OF DRILL RIG 18" BucketAuaer DROP 12 in. ze-ai'=i35aic.
~~
~
u
~
~
~
^
~
S..
aa°'i
wLL
o-~
>
W
JW
aa
Q~
N
cn
3
o
m
O
J
o
~
J
~O
m
~~
c~y
EOTECHNICALDESCRIPTION
~°
r~
wz
~~ c~
a-
v~
~w
oo z
~O
ra
~
~
W~
xvi
~w
o~
ALLUVIUM (Qal): SILTY SAND, light brown, slightly moist,
moderately dense.
R 5 @ 3.0 ft trace rootlets. 3.8 106 17
5 1065
~
__________________ _-_--_
R q @ 8.0 k SANDY SILT, light brown, slightly moist, firm. 4.8 700 19
10 7060
B @ 12.0 k SILTY SAND, fine-grained, light brown, slightly moist,
dense; trece carbonates
moderatel DSR,
H
R 3 .
y 9.0 103 38 ~
EI,
15 1055 CHEM
@ 17.0 ft POORLY GRADED SAND, fine- to metlium-grained, gray,
medium dense
moist
l
h
~
R
5 .
,
s
g
y
@ 18.0 ft SILTY SAND, fine-greined, yellowish brown, slightly moist, 2 2 ~ ~ ~ ~ ~
moderately dense.
20 1050
R 9 @ 23.0 ft POORLY GRADED SAND, coarse-grained, gray, slightly
moist
medium dense 0.6 172 3
.
,
25 1045
R ~ @ 28.0 ft SILTY SAND, medium brown, slightly moist, medium
dense: micaceous 9.4 104 41 CON,
HY
.
30 1040
R ~2 @ 33.0 ft POORLY GRADED SAND, medium-grained, grayish
medium dense; micaceous
brown
sli
hti
moist 2.0 108 70
.
,
g
y
,
35 1035
TOTAL DEP7H 35.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
BORING BACKFILLED
~`
SAMPLETYPES: i GROUNDWATER PACIFIC SOILS
~ RING(DRIVE)SAMPLE
0 SPT (SPLIT SPOON) SAMPLE - SEEPAGE ~ ENGINEERING~ INC.
.
~ BULK SAMPLE ~ TUBE SAMPLE PLATEB-14
GEOTECHNICAL BORING LOG SHEET , oF ,
~
PROJECT N0. 700007-C PROJECT NAME Wolf Creek Phase 2
BAC-08
DATE STARTED 8/14/03 GROUND ELEV. 1120 BORING DESIG.
DATE FINISHED 8/14/03 GW DEPTH (F~ LOGGED BY GAG
DRI~LER AI-Rov Drillina DRIVE WT. See Notes NOTE a-za'~2isoic.
TYPE OF DRILL RIG 18" Bucket Auaer DROP 12 ifl. 29-41' =13501b.
I~
'~
~
~
~
~
~
~
~
W
~ >
~
a~ w .-.
se
~~
~o
~ v,
x~ W aa 3
o p ~m
GEOTECHNICAL DESCRIPTION ~~ -°w F,e
¢
= i y
wLL
- W Q~ = ~~
c~ oo ~W ~ o F
o y m r y ~~ oo ~
J
ALLUVIUM (~al): POORLY GRADED SAND, fine-grained,
. . yellowish brown, dry, loose.
-----------------------------
@ 3.0 ft SILTY SAND, fine-greined, brown, dry, loose.
5 1715 R 3 @ 5.0 ft slightly moist, motlerately dense; trace pinhole-sized voids. 4.2 102 17
10 1110 R 3 @ 10.0 ft trace carbonales. 7.9 96 Z8
@ 14.0 ft POORLY GRADED SAND, fine-grainetl, light brown, moist,
15 1105 moderately dense.
R 4
R z @ 16.0 ft SILTY SAND, finet~rained, medium brown, moist, 8.3 108 40
moderately dense
.
20 1700
R
3 g.3 106 43 CON,
HY
25 1095 R 6 @ 25.0 ft trace of clay. 11.5 113 63
30 1090 R 8 @ 30.0 ft POORLY GRADED SAND, fine•grained, yellowish brown, 3.5 100 14
dense; trace gravel up to 1/2" in diameter
moist
moderatel
.
y
,
35 1085
R
10 4.5 708 22
TOTAL DEPTH 36.0 FT
NO GROUN~WATER ENCOUNTERED
NO CAVING OBSERVED
BORING BACKFILLED ^0
~
SAMPLETYPES: 1 GROUNDWP.TER PACIFIC SOILS
~HI RING (DRIVE) SAMPLE
- - SEEPAGE ~
~ INC.
ENGINEERING
SJ SPT (SPLIT SPOON) SAMPLE
C ~
~ BULK SAMPLE ~TUBE SAMPLE PLATEB-15
GEOTECHNICAL BORING LOG SHEET , oF ,
• PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 BAC-09
DATE STARTED 8I15/03 GROUND ELEV. 1115 BORING DESIG.
DA7E FINISHED 8/15/03 GW DEPTH (FT} LOGGED BY JG
DRILLER AI-Rov Drillina DRIVE WT. See Notes NOTE o-2a ~=2i5a1b.
TYPE OF DRILL RIG 18" Bucket Auger DROP 12 Ifl. 29-91'=73501b.
~
I~
I~
I~
~~
~~
~~
~~
W
y
('f
J
a W ~.
K e
..
U Y
~
Z
,O
K (n
~~, W aa 3 ° o m
GEOTECHNICALDESCRIPTION ~ ~
~ r
nz a
~n
>z r-e
q = u~i
W
oLL u' N~ m = ~ ~ oo ~ ~
o r
N ~ ~
J
ALLUVIUM (Qal): SILTY SAND, fne-grained, yellowish brown,
dry, loose.
5 1110 R 2 @ 5.0 ft lighl brown, slightly moist, moderately dense. 4.5 103 19
10 1105 R 3 @ 10.0 ft trace carbonates. 8.9 107 42 CON,
HY
B
15 1100 R 5 @ 75.0 ft POORLY GR4DED SAND, fne-to medium-grained, 2.0 '112 11
moderately dense.
slightly moist
yellowish brown
,
,
@ 18.0 ft SANDY SILT, light brown, slightly moist, firm.
20 1095 R z @ Z0.0 ft SILTY SAND, fine-grained, light brown, slightly moist, 11.3 102 47
moderately dense
.
25 1090 R 4 @ 25.0 ft trece carbonates. 13.4 104 58
30 1085 R ~ @ 30.0 ft grayish brown. 6.3 106 29
35 1080 R 6 @ 35.0 ft yellowish brown. 9.8 104 43 CON,
HY
TOTAL DEPTH 36.0 FT
NO GROUNDWATERENCOUNTERED
NO CAVING OBSERVED
BORING BACKFILLED ^`
«
SAMPLETYPES: .~ GROUNDWATER PACIFIC SOILS
~ RING(DRIVE)SAMPLE - SEEPAGE ^
~ ENGINEERING~ INC.
Q SPT (SPLIT SPOON) SAMPLE
~ BULK SAMPLE ~ TUBE SAMPLE PLATEB-16
GEOTECHNICAL BORING LOG SHEET , oF ,
•
~ROJECT N0.
700007-C
PROJECT NAME Wott Creek Phase 2
BORING DESIG
BAC-11
)ATE STARTED 8/15/03 GROUND ELEV. 1179 .
LOGGED BY GAG
' ~ATE FINISHED 8/15/03 GW DEPTH (Fn
t
N NOTE D-2a'=21501b.
7RILLER AI-ROV Drillinu o
es
DRIVE WT. See
12 10 24-91' ~13501b.
rvoC nF f1R1i I RIC: 18" BOGkBt AUQ~ .
DROP
~~
~~ ~
~~
~~
~~
~~
I~
~
~ ~ ~e ~i~ Z K N
2,-. ] ~W ~
o O j~ F
GEOTECHNICALDESCRIPTION f =-H
nz ~fA
r Oe
a = N
~
wLL
.~ J
w ~}
¢r
m = o~
~ o
~c~ ~W
oo ~
~ F
~
o N F N
J
ALLUVIUM (Qal): SILTY SAND, fineyrained, brown, dry, loose.
@ 3.0 ft slightly moist, moderately dense.
1175
i
h
l 0
6 114 34
5 g
t
y
@ 5.0 ft POORLY GRADED SAND, fine-grained, light brown, sl .
R 3 moist, moderately dense; trace subangular gravel up to t!8" in
diameter.
1170
2
3 102 51 DS
~~ @ 10.0 ft SILTY SAND, (ine-grained, light brown, moist, moderately 1
. ,
R 2 dense;trace carbonates. HY
1165
707 21
~5 @ 15.0 k POORLY GRADED SAND, fine-grained, light brown, 4.4
R 5 slightly moist, moderetely dense.
1160
4
5 107 25
20 0 ft moist.
@ 20 .
R 4 .
TOTAL DEPTH 21.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
BORING BAGKFILLED
"`2
SAMPLETYPES: = GROUNDWATER PACIFIC SOILS
~$I RING (DRIVE) SAMPLE - SEEPAGE ~
(~ ENGINEERING~ INC.
Q SPT (SPLIT SPOON) SAMPLE ~ `47
~@J BULK SAMPLE ~ TUBE SAMPLE PLATEB-17
GEOTECHNICAL BORING LOG SHEET , oF ,
•
PROJECT NO. 700007-C PROJECT NAME Wolt Creek Phase 2
BAC-13
DATE STARTED BI15I03 GROUND ELEV. 1101 BORING DESIG.
DATE FINISHED 8l15/03 GW DEPTH (F~ LOGGED BY GAG
DRILLER AI-RovDrillina DRIVEVJT. SeeNOtes NOTE 0-29'=21501b.
TYPE OF DRILL RIG 18" Bucket Auqer DROP 12 ifl. 24-91'=13501b.
I~
I~
r'~
u
~
r~
~
~
~
rd
~ W
aa N
3 (,~9
~ a~
~m K~
r
- u~
°in Z
~F K y
_~
wLL W ar p p ~~ GEOTECHNICAL DESCRIPTION r
v~ o ~ W ~
~° r w
0" tn m 1=- ~cn ~U ~O ~ ~~
J
ALLUVIUM (~ap: SILTY SAND, fine-grained, brown, slightly
1100 moist, moderately dense.
5
R
2
8.4
104
37
1095
10
R
~
10.2
103
43
1090
15 R ~ @ 15.0 ft SANDY SILT, brown, moist, firm; trace carbonates 17.3 100 68
1085
Z~
R q @ 20.0 ft trace pinhole-sized voids. 10.7 106 49
1080
TOTAL DEPTH 21.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
BORING BACKFILLED
~ ~
~3
SAMPLETYPES: = GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE
~SPT(SPLITSPOON)SAMPLE
; . ~ ~
~
ENGINEERING~ INC.
~ BULK SAMPLE 0 TUBE SAMPLE PLATEB-18
GEOTECHNICAL BORING LOG SHEET , oF ,
~
PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 gqC-14
DATE STARTED 8l15l03 GROUND ELEV. 1111 BORING DESIG.
DATE FINISHED 8/15/03 GW DEPTH (Fn LOGGED BY GAG
~
DRILLER AI-Rov Drillinq DRIVE WT. See Notes NOTE ~2i5ait.
o-za
TYPE OF DRILL RIG 18" BucketAuaer DROP 121f1. 29-91'=13501b.
~`
~~ ~
~~
~~
I~
~
~
W
~1 Y
~
a J ~o
~~ ~'Fi~
n- ~O ~ N
w 1-
aa", ~ g> o o °~ GEOTECHNICALDESCRIPTION o,z iz a= ~w
pLL
w
y~'
m
F ~
C~y o
~U ¢w
^O ~
7 ~
~
J
ALLUVIUM (Qal): POORLY GR4DED SAND, fne-grained, light
~ ~ ~ p
..~. brown, dry, loose.
-----------------------------
@ 2.0 ft SILTY CLAY, dark brown, soft, moist.
5 @ 5.0 ft POORLY GRADED SAND, medium- to coarse-greined 2.6 107 12
1105 R 3 yellowish brown, slightly moist, moderetely dense.
~~ @ 10.0 ft SILTY SAND, fine-grained, brown, moist, moderately 9.8 105 44
R ~
7100 dense.
`
~
' R ~ @15.Ofttracecarbonates. 16.1 103 68
1095
20 R Push .~ @ 20.0 ft trace pinhole-sized voids. 19.6 104 85
1090
25 R g @ 25.0 ft moist, medium dense. 14.1 102 58
1085
TOTAL DEPTH 26.0 FT
NO GROUNDWATER ENCOUNTERED
NO CAVING OBSERVED
BORING BACKFILLED
~`~
SAMPLETYPES: ~i GROUNDWATER PACIFIC SOILS
~ RING (DRIVE) SAMPLE - SEEPAGE ~
~ ENGINEERIldG~ INC.
~ SPT (SPLIT SPOON) SAMPLE
~ BULK SAMPLE 0 TUBE SAMPIE PLATEB-19
GEOTECHNICAL BORiNG LOG. `t~ r 2 oF `
+
~~E~. ~~
aoo622 pRQ1ECE NAME MurW Faneh
BORING DESIG.
1073.0
EV
GROlJh'DF1
HS-iE
DA7'E SfAR'fED 10/01/95
~-- .
.
Lp~~IDBY
- Gv1 DEPfH (FI) PDT
DA7'EAT~7S}ff.D _-~--
2" - DR7VEWT. iao ~
~
DRiI]F3t
7'YPEOFDRILI-RIG -~
Halbw~ - ie
! DROP
If
p ¢ ~E
u
c1~- . O
W
>
B~pyy ~
GFOUF
GEOTECHNICAL DESCRIPTION
o
Q
?`F 0 F
n m ~ a Ta ~p~p~7 o SYMBOI ~ o
~LL W. N r f
J
SM 9LLSJ~(1SleE IOaI): Continued: Silty Fine Sanq brown, very moisL
modeia~ey derse; rrxcaceous; minor carbonatee. I
f
1045
~
SP-SM @ 30.0 tt. Silty Fine 1o Medium Sand, brown, rrolsl, moderatery ?. 9 108 48
30 p 5/g/71 tlense; micaceous; Vace ot coarse sand.
TOTAL DEPTH 31.5 FT.
NO WATER
~
~~
~~
~~
cAMPLE"1YPE5: '~r~~~qT K
~ c G-FOL'~.'~ r-
y ~ DR7Vp fRr•G;~. _A~9PLE I
~ ~I SPT (SPL17 SPOO'~~) SAMF'L.E '.
~iFli1..~~.4r~pi,~ ~~~~n~E=_~~r,~~:-~_
FACIFIC SOIL~ ENGINEERING, INC.
7itE Gonvco Gouc.Son DIEQG. CAEGIII
tE5B1 560-~i1~
PLATE 8-21 _
GEOTECHNICAL BORING LOG sr~T , oF a
~ ,
OJECTNO. 400622 PROJECTNAME Woli Vallev Ranch
7083.0
GROlTNUELEV ~
BORINGDESIG.~ PSE-~
~~~~7P,D 70/1198
t Oft l98 .
GW DEPTH (FT) LOGGED BY PDT
~TE Fp 7T5}gD 2-A Drillinq DRNE WT. NORTHWG
tIl.LER
~F nP DRIl1 RIG Hollow Stem Auaer DROP ~~G
~
,.
~
~
~
.
~
~
~~
~LL
w
j~
w a
N
~
r
w
~
a
~
~
3
G
m
t~7
0
~
J
ap
~ g
t~N w .-
j~
GEOTECHNICAL DESCRIPTION oo
~V
nf .
¢ W
O~
O
Q~
7
w F
o F
:~~.::{ ARTIFICIAL FILL I~afL' SILTY SAND, tine- to
~ coarse-grained, light tan, dry, dense.
~.~;j ALLWIUM I~aIC SILTY SAND, Sine- to medium-grained,
~ - brown, slightly moist, moderately dense.
~
080 ~
5 ~
J
075
10
070 @ 13.0 ft. becomes darker brown; micaceous.
15
. ~
i
I ~:~~`
~~
:
. ~~~~.~.::
.~~:~. ~. :
:
_
_
I I
-~i
; :
` I
- ,
~I
~
@ 77A ft. become=_ te:e sifty, moist.
-~t065-
I i
I I ~.~:~ ~`i
~
zo
~,
~
;
I
~
I
;
I
I
I
I
i
I
~:.
~.l
~ i
:'i
~i ~
i
~ i I
~
Ii
-h060
I
i
-~
I
j
~
;
~
I~
~
~
I
i
.~~
.
'~
I
i
a:~
,
1!
I.~~
j_!
! j
I
I ,
i I I ~ 'I
I ~
~ '
I i
- -~
'
I
I I-:
~.
I
~ ~ ~
~
~ i
I I I~ qI
~ ~ , 1
,
I I , ~ : : . continuee. ~
I I ~ . Ir~ .. w~~r~~ r~~u n
SAM°LE 1YYt~:
~I DRT'E (1LI!~G) ~AMnLE
`ISPT (SFLIT SPOO?~n 5?NrLr
`!BUiK 5<r9PiE ~~ 7'UBE cANri r
• GrcG'tT?~TD~P.~F.
O
rr+~..n ~v vv~...+
ENGINEERING, INC.
PLATE B-22
GEOTECHNICAL BORING LOG s~T 2 oF 3
• ROjECTNO. 400622 PROJECINAME WoIS Va11ev Ranch
ATESTART'ED 10/1/9E GROLTNDELEV. 1083.0 BORINGDFSIG. PSE-t
ATEFINISHED 70/t/98 GWDEPTH(FT) LOGGEDBY PDT
,Rn i F7Z 2-p Drillina DRNE W7. NORTHII9G
YPE OF DRILI- RIG Hollow Stem Auoer DROP ~ST~G
I~
~
~
e
~
~
~
~
w . w ~ (~.'J n p j ~ plY_- ~ O w~
~ m w na a ~' ~ o°' GEOTECHNICAL DESCRIPTION v~ i~' `~ ~~ _"'
WLL
~ W Q1- Q O O c7~ O O
U p0 ~ ~~-
O t n N J f Vi ~
O] J
ALLUVIUM I~all: Cominued.
@ 26.0 it. SILTY SAND, fine- to coarse-grained, light
hrown, moist, moderately dense; micaceous.
@ 27.0 ft. becomes coarser-grained; very few silty and
tine sands; minor gravel.
055
30
050
35 35.0 ft. GRAVELLY SAND, fine- to coarse-grained,
orangish brown, moist, loose.
045
40 @ 40.0 it. START OF CONTINUOUS SAMPLING.
@ 41 .0 ft. SILTY SAND, tine- to medium-grained, orangish
_ i
i
..~.~;. brown, sliehtly moist, tlense; micaceou<_; Pinhole porosity.
I
I @ 42.5 tt. SIL7Y SAND to SANDY SILT, tine- to
040- ~ medium-Qrained, brown, slightly moist, dense; miceceous;
~
~
I some structure; minor coarse sand.
l i ,.
~ 7 { ~al 44A ft. SILTY SAND, tine- to coarse-grainetl, moist.
J ~ ` ~ `~ l dense.
45 I ~ ~ 45.0 ft SAND, medium- to coarse-grained, tan, sliQhtly
~
~
_~
_I
~
II
I'
'
I ~
~ ~
il~ ~~~
~'
~,I ~
moist, moderately dense.
~
I I
I
I
-
i
-I ~I
~
i°.~, -.°,~,
c
,i I i
i@ 47.0 ft. SAND, cos~se-orained, loose I
I
~ F
~~~
I
~
~
`C
-
~-
~
~
@ 4E.0 ft. GRAVEL bed.
IS A FINING UPWARD SE~UENCE. I
4E
O tt
42
0
I
'
I i
l
I j ~
.- .
; I
.
.
~
.
-
~
i ~ (' FAUBA PORMATION I~os): SANDS70NE, predomenently !
~ ' i
' ~' ' I~:
~ I
'i
~ coar.e-oralned, some iine- to medium-orained, tannish I
'
'
~i, I
I
~ ~ `
~ `:i
;
.~ i oranae, sliohtly moisl, hard; minor aravel. ~I I
: . , i
'~ i~
~.
<„~,,,nLEnTES:
~
! PACIFIC SOILS
~in~,E~~,;c~~4Mr~ schoi.m~nv~~:~~ ~ ENGINEERING, INC
e
~ LISP7 (SPLIT SPOOI~'? cSMPLc I
i i~IbiiLR S.AN,r7_ ~`i TUEE ~:iM:~~- . P
LATE B-22
_ _.
GEOTECHNICAL BORING LOG SHEET 3 oF 3
~ O ECT NO. 400622 PRO]ECTNAME WoN Vallev Ranch
~~n~7p,D 10/1/98 GROLTNDELEV. 7083.0 BORINGDESIG. PSE-1
~7"E FWISHED 70li /98 GW DEPTH (F7) LOGGED BY PDT
;n T FR 2-R Drillina DRNE WT. NOR7I~IG
PE OF DRII.L RIG Hollow Stem Auqer DROP EASTAIG
~~
~~
I~
li
f
`
•
m
JLL
~-
w
W
yl
aa
Qr
v>
w
a
Q
~n
u
`~
O
~
G1
~
~
O
r I
J
aJ
o°'
¢~
~v, w
j
GEOTECHNICAL DESCRIPTION m
O
~ ~
~
~'
O
v ~>
uF ~
nV'
¢i"
~~ z
O
~'~
¢
~
R 1n
_'~„
O~-
TOTAL DEPTH 50.0 FT.
~
~
NO WATER, NO CAVING
'
;
'i
;
~
I
i
i
I
I '
I
'
~
I
~'~~
!
i I
I
~
'
~
~I
'!
j
~~ i
~
;
I
~
''
~i
i
; ~
~
;
i
%
'
;
~~, I
I
j
I
I
!
i i
I
;
'
I
'I
I
~
I
~
~,
j
'
I
I
~
~
I
I
~
I
i
~
~
I
i
I
I
I
!
I
i
i ~~
iShMPLEn'PES: , jl ~ I PACIFIC SOILS
~D~nxrvFrr.~~c;sFMPL `-ekO'~'~'~`~~==" ENGINEERING, INC.
<icrr ISPLI? SPOONI S?T4PL ;
~ ; =;~L~h~,~MnLE ~~-U~r~A~~,-~ ; PLATE 8-22
GEOTECHNICAL BORING LOG SHEET , oF 4
` .OJEC'TNO. 400622 PROJEC'TNAME Wolf Vallev Fanch
7085.0 BORLNGDESIG.
GROUNDElF\'
P
SE-2
~~ ~~~ 7p~7~gg
10/1 /98 .
G~ DEPTH (F7) 62.00 LOGGED BY PDT
~.TE FIIJISHED
2-R Drillina NORTHIIdG
DRTVE wT.
~~R
fPE OF DRILI. R1
G Hollow S~em A~-°e~ EASTWG
DROP
~
J
r
~
O
J
~ w-
~O
~
UH
°(n
.O ¢ N
~
? S
~
C~
~ >
~ W -'
~ ~
~
o ~
o
~
GEOTECHNICAL DESCRIPTION ~
o o
Q w ~
v
i
¢_ o~
~ J ~ ~ ~~ 7
~LL w a
N r a
N O F c7N ~U
(O J
ARTIfICIAL FILL I~ati: SILTY SAND, tine- to
coarse-greined. Iight brown, dry, dense. I
i
d
b
rown,
ne
,
ALLUVIUM I~all: SANDY SILT, tine-gra
~ I slightty moist. I
I r
5
@ 6.0 ft. becomes slightly micaceoue.
1
I~
15 ~1070
very stifl; some tine sand.
. ~ ~ i ,~ il~I~i~ll~l~~ i
I ~ I ~i ii~'j~lj
~ I . i ~lil~lli ~ COfdI0UE0
~AMPL~TYPES: •
~! DRNE (~C) CP-MPLE ~, r GnCi.~'T'\ti c-Ek
( ~ isnT ;srLrr rnoor~ sp Mr-;~
• ~ ~IBliiKSAMPir ~!Zli9~~4Mr~r ;
i
i ' 'I
i I
:
'I I
~; !I ~i ~~
PACIFIC SOILS
ENGINEERING, INC.
PLATE B-23
GEOTECHNICAL BORING LOG sr~r z oF a
I~
O)ECTNO.
4p~ PRO ECENAME WoN Vallev Ranch
GR UNDELE\r. 10850 BORINGDESIG.
PS
E-2
~
I 1'TE STAR7'ED ~- G~ D~ ~ 62.00 LOGGED BY PDT
1TE FWISHED ~ O
~- D~,E ~ NORTI-III~7G
iIl,LER 2-R~~"° EASfII~7G
DROP
.'PE OF DRI111~1G Hollow S~?e~^ A~Oef
Y
= C'
a0 ¢ ~ U !- ~ O ¢ tn
~ w w ~ GEOTECHNICAL DESCRIPTION NZ w ¢~
L~ J~Y ~ 3 ~m
00 Q
00
~ o~
_LL w QF G O ~ c7N ~U
N N m _
I I ALLUVIUM IQall: Continued.
i ~
I I - @ 27A ft. SILTY SAND, tine- to coarse-grained, orangish
I 1 ~ ?~:1.-.~.~ r. brown, slightly moist, dense; micaceous.
IG
I ~'
I~
~~
@ 33.0 ft. GRAVELY SILTY SAND, tine- to coarse
orangish brown, slightly moist, dense; miceceous.
045 i I i..:l!..
-I
, I, , ;~
~~
~ i, j ~ ~ I I I
I , I i I(a~ 45.0 ft. START OF CONTINUWS SAMPLING. I
~ i
I I
'. ~ i I i. C 46.0 ft. ~AND" SIL7, fine-graineC. browr, sliohtly I .~I ~,I
~ ~'~ ~"!'~ '. moist, den=_e; monied; some structure; miceceo~s pinhole
~i~~i~!.~ .i I i~
I !,~~ I I I I' ~ I ~ I' . Porosity. I I I i
, j '~I'I~I'~'~ ~j I j 'I
' i Illil,l~. I I ~
, ' ~ li ~ ~.. ~ ~
I I
~ i , i~ 43A ft. 9L7Y SA~G, Sine-ar~inec.
. ~-: jl '~I I ~~ ~
~ continuec. i ,
~zMr "~rE<_: '
~DI DR1VE (W!`G) SPMPLE ' F GkC~T`D~:%F'SE~
I ~,<^i cT: ?-cP T ~SMJ'_- -
~ : _ ('. L_ 1 OO. Ti ... ' . .
`iEV, ~ snMn~= ;~! r~~~ <F?~n;-L-
i -
PACIFIC SOILS
ENGINEERING, INC.
PLATE 8-23
GEOTECHNICAL BORING LOG SHEET ~ OF s
`
)JECTNO. 400622 PROJECTNAME WoIiVallevRanch BORINGDESIG. PSE-2
GROUND ELEV. 1085 0
~ S.f.~.~ ~ p~_
LOGGED BY PDT
1011 /98 GW DEPTH (Ff) 62.00
I'E FIN~SHED
NORTHING
2-R Drillina DRI~'E WT.
'
l 7 FR
II~1G
EAS7
'E OF DRII11tIG Hollow Stem Auaer DROP
I ~ t'~ J
o ~~I U~.O Q(n
w~
- > a a a cn ~ o°' GEOTECHNICAL DESCRIPTION c~i~Z >z Q~ ~ w
LL W H Q O = ~ OO I Q~ ~ O F
Q N N t7
N ~
m J
ALLUVIUM I~aq: Continued.
f
I
• ome
i
d
ne
. s
@ 54.5 Tt. SAND, predomonately coarse-ara
i5 030 fine- to medium-grained, tan, loose, slightly moist;
micaceous.
~ @ 55 0 ft minor gravel. ~
~ @ 56.0 ft. SILTY SAND, fine- to medwm-gramed, brown,
moist, dense; micaceous.
~
i
st,
@ 58.0 it. SAND, coarse-grained, orengish tan, mo
moderately dense.
60 025 ~
+
@ 62.0 ft. water.
`
@ 64.5 ft. SAND, coarse-prained; minor gravel; rare
65 020 ~cobblee.
~ - ~ ~- ~~1 I@ 67A fl. SILTY SAND, tine- tc medium-or~ined, rare I~ I I
II
I I I I
coarse-orain=_; brown, dense.
~
- ~i @ 69A ft. orades into SAND, coarse-orained.
~ I PWARD SEQUENCES~
~ 70 015 - ~.
` ~ i I
70.0 - 75 0 h. 2 MORE FINING U
I
I I ~, I- ~I , from SILTY SAND to coarse SAND; finer prained is moist, . I I
;
I
I _
i
~ ~I
~
~ j
I i-. ~ ~-
I
~ I
~
~~~ ~ coarser arained i=_ szturotec. i ; ', i
i ~
~ i
~ i
~ I I
~
~ I ~~I,
_ I
-I II~ ,
I~ ~} ~~~
'1~ I II
j ,
-I'
~
~
I
I
',.
i
~
'
I:
i . .
~-
i
;
~', ; ~ 'i 'I ~
I ; ~ I ~O
i
~ PACIFIC SOILS
PES
.
:
.
s.v.~n~.
'
~~n~rvFtRr:~cis.An~r;.z
~ ~eke~°:~~:;- ~r" ' ~ ENGINEERING. INC.
~
~~ ,
'
i CISP? (SPLTt Snpp7~*) cq~vlPiE I
: F,~~:,~<oMr,_ T,~,gx«~h~-= ~ PLATE B-23
GEOTECHNICAL BORING LOG SHEET 4 OF 4
• 'ROJECTNO. 400622 PROJECTNAME Wolf Vallev Ranch
)A7'ESTAR7'ED 10/7/96 GROlJNDE1EV. 1085.0 BORINGDESIG. PSE-2
~A7E gp.715};gD 10/7 /98 GW DEPTH (F'I) 62.00 LOGGED BY P DT
)an i cR 2-R Drillino DRNE WT. NOR77~1G
fYPE OF DRII.L RIG Hollow Stem Auaer DROP ~s~G
~ ~ ~
a ¢
= ~
- uf
' O ¢ W
~ x.-.
a~ > a'u
~ a in G
0 m
~
I
GEOTECHNICAL DESCRIPTION
N
z ?- -~ w~-
oLL ~
"' ~
N~ g
N 3
°
F ~
~m
~
o ¢ W
oo Q
~ o~
I c
i
~ _,
~,~,:ri MORE FINING UPWARD SE~UENCES: Fine-grained is
moist; coarse-grained is saturated.
~
1
~
WATEP AS NOTED
NO CAVING
I~
~
~
~
~
~
ISSMPLE TYPES:
~ ,r~Dl DRTVE (RLn'Gl S~P~ r
~ `~~rT rrn;_rr moo*~~) s~Nri=
~ i ~iBU~~?MPig ~ilT.icES~i~qP=E
I,
~ SGKOI.'?~vwiF?FF,
~~ I
PACIFIC SOILS
ENGINEERING, ING.
PLATE B-23
GEOTECHNICAL BORING LOG SHEET 1 OF 4
• ROJEC7N0. 400622 PROJECTNAME Woli Vellev Rench BORINGDESIG
PSE-3
10/1 /95 GROUWD ELE\%. 1 7 10.0 .
)A~ ~AR7F,]~
10/1 /98
GW DEP7'H (Fn
70.00 LOGGED BY PDT
~p~ pp~i1S}7ED 2-R Drillino DRNE WT. NOR7}IING
I >xn t FR
-vnc nF DRILS. R1G Hollow Stem Auuer DROP EASTA7G
I~
I~
.~
i
~
A
•
•
~
~ m
am
wu.
O
w
~
u, w
aa
f>
Nr w
a
~
~ ~
O1
3
o,
m ~
~
~
F
J a~
o~
¢~
~u>i 7a-
GEOTECHNICAL DESCRIPTION w Z
00
~V aH ~
~ z
¢u'
o~ O
a~
¢
~ w 1,~-
~ w
p~'
,~
.~-{ ARTIFICIAL FILL IDaiC SILTY SAND, fine- to
'
~ coarse-grained, light brown, dry, dense.
I ALLUVIUM I~all: SILTY SAND, tine- to medium-orained,
brown, slightly moist, moderately dense.
5 105
@ 6.0 ft. grade=_ into SILTY SAND, tine- to coarse-grained,
brown, slightly moist; some gravel; micaceous.
10 700
@'I 1.0 ft. SILTY SAND, tine- to medium-grained, brown,
slightly moist; micaceous.
15 095
-
_
]
~,
I
~_~~-
~
'~
J ~
I@ 17.0 tt. becames moist, rsre toer~e-areins.
I,~
zo ~
1
~oso-
_j
~
~
I
~'
-
~
I
,i
!
,
~
'~ 1
,.
1
~
~~
' ' I
1
,
:~
:
,'
'' I
_ ;
I I I
~ I i ~ I
' ; ' I ~~
''
i
~
;,
~
~
;
,
~
~
,
',
;
; ;
,
i
,
i
~
'
~
~
;
f:
i I ~
i'
~ ~
i:i
~
~~'
;
I ~' I
,
i I; I, '~
,
, ; i
i 6
I C
~ Continued I~
1~
i I
~ .. i
', i i
I
~h~,r ~nFS:
i
Y PACIFIC SOILS
~'Dru"Echn`'ci`-P-r`~P'_` ' ~~n°`~'~.;'.<"T``' ' ~ ENGINEERING, INC
CISPT (SPLR SPO01~~ S.p-MPL~ , j
I ;~, BUiR SSMPiE ~i TtibE 5A~4Pi= , ._ ' P
3
LATE B-24
GEOTECHNICAL BORING LOG s~ET 2 oF 4
~
.OJECTNO. 40062'[ PROJEC'fNAME Woft Valley Ranch
GROUND ELE\'. t 1 t 0.G
BORING DESIG. PSE-3 ~
1TE57'ARTED 10/t /9E 70.00
GWDEpTH(F'I) LOGGEDBY PDT
1TEFII~~`ISHED 10/il9E
DRNE WT NOR7}IWG
~~R 2-R Drillina .
DROP Eq$CING
IPE OF DRIl.L 1 t1G H oliow Stem Auaer
,
I
u ~
ap
I w-
j~ ~-y Z
aF .O
w H
I w
~_ , ~w
°-a w
~
a o
`"
o~'
GEOTECHNICAL DESCF3IPTION ~r
Nz ~n F~
w x ~n
- a I w
~ p
~° ~
¢
oo ~ o~
~= I"' ~ m m ~ c~w
@ 26.0 ft. CLAYEY SILTY SAND, Tine- to
brown, moist; rare toarse Qrains.
~ ~ I ;~~/~i @ 32.0 tt. SII.TY CLAY, brown, moist,
~ 1 I I %~ some tine-greined sand.
~
35~1075
~ I i I I I r,~/i I@ 39A ft. minor medium- to coarse-grains.
~
~ 45-Ii065 ~, I ~ ~'~/j?~
% ! ,
r~/r o%-:
I _ ~ fii%%%:
~ ~
~ '
'
' %. /.;~
I~:~'
~ I
; ~
; ~
~ -
i
I
~ ~ i
' I ~ ~ :'
^
.~ .
i i
ca~/~Pi :PEE-~
-
I ri DRNE (RT?~G; cAMnL,c
D
• ~',cPT ;CPi i'j $PQO?~`i ~,~Ti=
~ .t,EU~k Sk.T9t`'lt ,_:_~ l Vn` 5 -~%?-t
@ 43.0 it SANDY CLAY, tine- to
moist, stiH; =_ome <_iN; mic~ceous.
;@ G7,p ft SI! Tv ~AND, fine- tc medium-orained, some
, co~r<_e-cr~irs brcwr, ncist, dense; some cky; miCZCeou:.
i
centinu=c.
r C nO UNL\:' F TF «,
(:J ~ I
PACIFIC SOILS
ENGINEERING, INC. I
PLATE B-24
GEOTECHNICAL BORING LOG SHEET a oF 4
~
;OJECTNO. 400622
t 0/1 /9& PROJECENAME WoItValleyRench
GROUND ELEV. 111 D.0
BORING DESIG.
PSE-3
q7E npA7ED
. ~ p~7 ~gg GW DEPTH (F7) 70.00 LOGGED BY PDT
fE FIN~StIED
4 2-R Drillina DRNE WT. NOR'I'HII~IG
an i FR
fPf OF DRII.L R1G Hollow Stem Auae~ DROP ~S~G
~
~
r ~
~ ~
~
~ w-
~~
H I
o~ ,o ¢ ~n
nN
N
L- ~W
~ J~~ ~ 3 o ~
~ GEOTECHNICAL DESCRIPTION 1-
o ¢w f 2
Q~
F
~
~u w QI- Q O ~ Q
c7N o
~V O~ ~ o
N ~ m
=
ALLWIUM I~all: Continued.
~
i @ 52.0 ft. increase in coarse sand.
I~
@ 57A ft. GRAVELLY SILTY SAND, fine- ~o
• ~ coarse-grained, brown, moist, dense; micaceous.
60 050 @ 60.0 it. START OF CONTINUOUS SAMPLING.
• I
@ 61 .0 ft. SANDY SILT, fine- to medium-grained, brown,
slightly moist, stiff.
@ 62.0 tt. SANDY SILTY CLAY to SAND, coarse-grained;
some gravel.
• I
h l
ht
65 045---
I III
I
I ~~ ~ ig
IZ~ 65A ft. GFAVELLY SAND, coarse-prained, tanms
i brown, mofst, loose. 1
•
_
-
-i
-
~
i
~ I
1
~ I, I I
i
~
~ J
i
~ I
~ ~
~ 70 I040
i
I i
I
' I
!
~ °- ~;-~ °
~I;~ `;. ~
;~~
i i 70A h. SAND, fine- to coarse-orained, w~t loose; ~ I
i minor arvei. ' ~, I
!
i I
-I i i
i I
i
I I.: ~.
d c
~ i
'; .
i I
~ ~ I
i
~
~
j
I
C. 4,
!i I
~ j
:
I
'
, i i ~
~- ~i
~ ~
I a 72 E ft. Izc GFAVELS, setur~tec. ~,
i I I
•
!
I ~ ~
'
'~
i---
~'~
; i
~ 73.0 it. SILTY SAND, line- to medium-areined, browr~
~ ~ i
~ . wEt, oEncE. ('~i ~I . i
a 73.E tt CFAVELLY SFND, iine- tc coarse-orcined ter, : ' ~, ^~
~
~
r
i i ~
I ~I I
~ s~tur~tea, IoosE. ~
~ ~
(7
~ . I continuec.
~AMP = nES: ! PACIFIC SOILS
) t . < i r C.TICiIT~tvGTF4. ~
,~,DRI~E(RI!~C) AMr•-f ~. _ ~ ENGINEERING, INC.
I
~ C;<rr tsrz;T ~noon~~ s~.MrLF
I ifiBUiBSSMPiE ~~NEE54Mnip ' I PLATE B-24
GEOTECHNICAL BORING LOG SHEE7 4 oF 4
• ']EC7N0. 400622 PROJEC'TNAME Woli Vallev Rench BORINGDESIG. PSE-3 ~
10/1/9E GROl7ND ELEV. 1170 0
'
E STAR7FD
.7
10ltl98 GV7 DEP'I'ti (F7) 70.00 LOGGED BY PDT
.~ ~5~7~
2-R Drillina DRNE W'f. NORTHWG
n ~ FR
PE OF DRII.I.1tIG Hollow Stem Auaer DROP EASTING
LL ~ a~ N
~a- nH ~O w
~ ~
d u
~ '
aa w
a
°J
~
~
o'~
~ 1
-
GEOTECHNICAL DESCRIPTION mZ >z ¢~ ~ w
i~ ~
w ~r
QF- ~
Q 3
O
F ~
(7y oo ¢w ¢ o ~
~~7 O~ 7
N N m _
J ALLUVIUM IQali: Continued.
~ 1
I
~ @ 79.5 ft. sharp coniact between overlying unit and 0.2
tine- to coarse-grained
Y SAND
E
,
,
LL
fl. thick SILTY GRAV
~ 'iorange. wet, dense; sharp contact between underlying unit
~ ~ ~SIL7Y SAND, fine- to medium-greined, brown, dense;
WATER AS NOTED
NO CAVING
~
~
r
~
~
i i
i I~ i i ! ,, ..
i i I ~ i
~ ~ i
I ! i •, ! I
I ~ I ~
~ ~ II ~ '.
• j ~ I ~ i I
I i j I I
~~SIdPLt'Tl'7't`:
_. ~I DR?VE (RLnG; c ~MpLr r GkOLT~Dl`rR'r~ n
• `~cP7 (SPL?T SPOONi Sp ~9PLE ,
~ i c u : TJEt ~ ~~^P_t ~
'~,=1bli-R _R.MPic
' I i '~ ~
~
PACIFIC SOILS
ENGIfVEERING, INC.
PLATE B-24
I • PAC/F/G SO/LS E/VG//1/EER//VG, /NC.
LOG OF BOR/lVG No. 1
I•
~~
I~
•
~
~
•
•
~
~ATE Q9SERVED 6/29/87 METHOD OF OR/LL/NG Hollowstem Auger
OGGED BY TCS GROUND ELEV,4TlON WORK Of70ER
-
~ ~
~ ~d
a
~ ~i ~
~
o~ m
~
~
Descriplion ond Remarks
y o o
~ h m ~ j~ o\
0
ARTIFICIAL FILL (~af): Gravelly clayey san ,
GC medium brown, dry, dense
WIUM (Qal): Silty sand, dark brown,
SM ALL
moist, medium dense
@5.0 ft. brown
5 SP 5
10
SP ---
SM ------ ----- ----------------------------------------------
Very silty sand, brown, moist, meCium
dense, porous, occasional white nrecipitate
15
9
---
------
----- ------------------
---------------------------
Cla e sand, brown/light brown, moist,
SP SC loose to medium dense
20
SP
5
~L F
Clayev =_i1t, clivE, moist, ~ir*r~
~~
zS ~ ,.,~.-.. ,,-.,,cr nr. r~ex ~ n2ce
400103
PLATt 13-z~
• PAC/F/G SO/LS E/VG//1/EER//VG, //1/C.
LOG OF BORIIVG No. 1 ~°nt.
~ATE OBSERVED 6J2918 % METNOD OF DR/LL/NG Hollowsten Auger
•
, TCS 6ROUND ELE~.4T/ON tyORK ORDER No. 400103
_06GE0 BY
I•
•
~
•
•
~
~
~
•
,
~
~
~
~
o
~n
ti
\
o
m
a
ul
Q
~ . ~
3ti
~ J
o N
J ~
~
y
~
°~
escriplion ond Remarks
5
gp
12
SM
Silty sand, tan, moist to very moist,
slightly micaceous, occasional tan sand
lenses
30
PT
20
SP1
SM ------ ----- ----------------------------------------------
Sand, medium to coarse arained, sliahtly
silty, tan, sliahtly moist, medium dense
35
90
SP
26
~F
_LJ~
~
~
I __ _- --__ - _- ---
~
~ I ~
(
., I I ~ I ,.`.~.a.. ~...~.~. ~.r. r.c~rr .,aCF
iJ
PLATE B-2~
• PAC/F/C SD/LS ENG/IVEER/NG, /NC.
LOCi OF BOR/IV~'J IIIO. 1 ~ont.
I•
~~
~•
~~
~•
I~
~•
I~
''~
~
pqTE OBSERVED.
l nGGED BY TCS GROUND ELEV•4TlON
WORK ORDER No. 400103
^
C
04i
~
m
'
p
h `
3
N
O
0 ~
a
~
~ ~ `
~
~~
O ~
~n
j~ ~
"
~
o\°
Descrip>ion and Remarks
'0
SP
29
SP/
SM @50.0 =t. occasional gravel to 1/4"
i5
60
SP
39
SP/
SM
TOTAL DEPTH 61.0 ft.
No Water
~
i ~
6/29187 METHOD OF OR/LL//VG Hollowstem Auger
~
PLATE B-25
i.
•
al I
J
m
J G ~
II •
Ll C
'
~
•
•
•
~
~
v z ~ ~ ~ O
rt R
N
fi
N N
R
QI
/~ .~. Q1
S _ W_ _ r n 9_
t C N ~ N n O' 6
N
~ n N N ' V~ N N N J 7 U ~ /i V N
N ~
N ~ J , j
& ~. 6 _ J l
D P ~ Z' ~ P C F M1~
~ a _
rt C
T ~ ~(
N rt T m T N
'
N _
N N YI
N
11~ ~
R
N y~ ~
t^. N V~ N N J~ ~
V N N N Ji If~ U U N U ll N t~ N N 1
J ~ ~ ~ : ~' ~ S
'~ ~. i '~. . ''. :
: ~ ' I
.. . .._... Q
~Q
~
]
~ F
L7 G'
.. ~r ~
QI .. ti
~ ~i
~
Qi ~ ~
~ T
O C ~
~
O ~
m
N
N
~fj I
" ,
W ; ,
k
~, , ;
'
¢
_ ~,
~ _.: : ~
K __...._ ,
_ _
~
~
a
,
_ _..
~. ,
i
,.
~~ ~ ~
~ ~
~
W~ o ,
c~
~~
~
~..
~~
O ~
~ ~
~
Qi ~ ti
~'
_ p
U1 J ~
N
~
~
w
~
/ ~
v s
~
k.~
b< "
'~ ` `
r
.
~' O
~
~
f'' f~ I ' '
`
Y ~!'~ a
_ 'F ~ , - , ~O ~U
i~
i ~ ~
i
~ ~
r~ ~ ~ '
~
I F
~ ~ . . _ . . . . ..i _ ..
....... .....___ ....... ......_..._. . ...
...
. ...
.~ i ... ... ..._...._ ....... . ~ - i_ ~
_._.........
~
i ~
.
.
.
~
< '
.
.' .:.,
.". i .i C
~ °, , .-
~
L
:=-~ ,
, ~
-~ ~ ~ ~
,
T
~ ~"
-
~ `
~
L
~
_ ,~ -._
~ - _-~-__- `
~ ~ G G p G n O O Q Q G O O
O
,n
V~i G ~~ O ~n p ~r. Lf.~ G lT.~
~ I ~. CJ C,: m r,r~ ~T ~T lP.
i i i
+c. UlOo~
YO
~
i~
I •
I •
I~
I •
~~
-~ lfl
Q~ ~ ~
Y Li
.. 0
N i ^
w
~
y
N
~
~
L 9 T ^
v P L [ C ry rt m C
C R A ~ 4 N Q~
C R N N
N N
N v~ N N ~ \ - C ~ C C ~ Q~
r
C C ' ~ C ~ N 1/i -~ ~ R N
T R N B 4
N
~ N N
~ q ~
N /i N N ~ N N
N ~ C
N N 1!. t . 6 h~ '
S O
.
'J 9 D O
[~
C J L
R ~ T A ~!I
, P rt ~ A T ~
~ ~ R F F
N
N l
1Ii
N
N U (fi U N N V
Vi
N N
/i
N
~
N N N N N If. V. U~ i
S'
N .
i i
'
- _ O
N
~ ~ H
m ~. _.
:... ~ .....__ ;
~ i~
I `.
_
~ Q~
_ a
J Q Q T.
O ~
n C
.. ~i
W ..
N O
N
~ ~ ~
> N
O G
~
~
.~ ~-
m
N
N ~fj
~
W
N ~
!
'.
Q
_ ~
,~
.
..._.._
_ ....._...
_
. ._.... . .. ...
..._.... _ .._... . '
.....__..
y
_......_
.... .
v Q ~
y
L N
~
=~~ ~ O I
¢ ~
U Ci
L'
~ ..
J C
O ~ N ~
v ~
' ~
~ i~
~
I• ~
1~
1~~ I'
I
~
~ p ~~
~.~ ~.
/ ~
V
' ~ '~
' . .
- .
.
F
I !~1 r
i
~ C~ ~L
L% ; : ' : ~' . O -
~
~ i G
L
i ~ r-~
F+~ I ~. ~. . '
~
...
.... . ... . ..
._..~
~
M-s .~
~ i :
..
.....___. _..... -
........._... ......_... ._....._..
_.. .__...
... ..._. . ... .._._..... ._
' r
I _
_. I~ ,
~ ~
`°'
~ V;
I ~ . .
.
'. f.^ u C
~~p. ~
~
~
I
~ ~.
'
.
~
~. '. Ir1
1 1 : M
~
. ~ J
i ~ II
I ~
c
~ ! 1/
,; ,; e
"
' ~ r,:
~ ~-_, ~
^ ~
^
~, ~ I
n i C. O O G - r~ G r O O O G
V
/~ ~'i i
v
; ~~ LC'~ C
I
~' L i G
c~
~' ~ LO
f.J
~ G
[T?
~ lf•
[''?
I G
v
I IP.
c
I C'
~Ii
I
I
i
; ~
i
!°:1;
~;da~:
~,~
~
i•
I •
~~
I~
C.1
~
" ~
J m
~ ~ ~
V c G
r.
~r~ rd
.. O
Qi ..
~ N
N `
a ~
4~ .
> ~G
O G ~
~
I ~-
T 9 P
^
~
C ` ~ 6 ry 4 4 A ~
N N 1l R h N N 1/~ N N Q~
N If~ N V. N N ` ~
~ , - ' ° ~
C C' r + rt _ _° c _'_'
N/i N N i e a
~ ~
R
~ N ~ N h N N N N V V
~ UI
~
~ N N 1I~ C
N l/~ N N ~ 1 ~ p ] P -)
,,
~ >
' ~
L
T _
' P
_ q ~ r a L
l 9_ P _ _ T rt T n F rt R T N !
`
ry F R rt T N N T
N l~ N U N N V. N N N V 41 N N
JI N N U~
v, ~ Vi U. ~ Lr N N If f /
'S
k ' ' j ~
=
E._ . n
~ . ~~ j
_, - i a
c
~
~
~
m
N
i ~ N tfJ i
~ ;
W k
' ~
~, ;
¢
_ .-.
,.~
~ ~
_ .._
_
_..... _.
_ _ _..._ _
_. .. , _..._ ~
~
~
~ a f
`~ ~
i
„
W C~ J k
O ~' ~
o ~ G I
u a
u
~ ..
J ~
p G
_ ~
~ m ti i
^ ~ ~ I
_ 0
o (0 ! ~
~
~ .
i
.~ _....._. _.... _.......
_ _.
_ _~
~ F ,
~
L ~,~ i-~
r
'
^
~~ ~
i .~
.
:
.~_.,~-~ ~
O
O '~ I
ti~
F~-~ I
Y
.
^ p Y
~' ' O , . . ~ i_ "
~~ ~ ~ ., ~ .,
IfJ p
~ I ~f~ ~~
~ .
;
~ i e -'
H` ~ i
~
~ IN O
~ ~
° ~ :
'
~
' '.
~. ~ ~
-
..
-
.._._. - __ ............ : .
' . _.......I ~ • ..
.
!
`
i ~
.
~~ _ .__....... ........._...
._.....
...... ._....._..... ... _ _.....
.
._...._... .._. - - - . .
_ .
. ~
in~
C I v. _ _
% a -
~ ~ _ - _ '~ ;
~ J" "
i t .
. .
~ ~
^` L
~
~-'
~ i ~
'' _ . r'"_ ~ ~' ~~ ~ ' . .
~
- '
`
~ 'v i .~ y.
~
~~,-'~~ ~ , .
' -
'
~
~'
/ -
~- C
0
,n ~ G p
O O C, ~ ~ r, p C. -
.
. . . .
r n
~
V
/B ~
V
~W
; I
~
~ . .
~' II
i .
. .
O ~n ~~ LG G lD G tfi
~,, ~,~ ro ~-~ v
~' ~ , ~ ~ ~ ~ C'
u;
~
~
~ ,
I
;.~~; ~~~~`
c~v
•
i•
I~
CJ
.--i
~
v
~ m
Q7 UJ
O O
O r,
Q
Q
~
0
~
~
0
A
z h rt~- ~ ~
~, -.
P
~ R R V~ N 1/i ,
1/~ N
N ~
N N N N
• ~ N
P -
. o
_ -
- ° '
c - ~
= i
fl 9
n ~ -
~ m =
~ ~ m -
~
^
• N
'
q
N
N
N ~j,
N
V~
N
tn
N
(r~ ~
i/'
/
_
N
, ]
}
' P L L
J
L
L i ~
'' i~ P'~ t ~
9 l _ D 9 rt
T 2 ~
rt
_ rt_ If
m R n 6 rt rt r
[
.
~
N N U ~ N N
T
N
N
V~ N
N N N t~
U
U.
Vi
N N N N N N
ILL
~i
C
iU
C
io
I~
~d
~Q
I ° ° ~.. T ~ G
9 m Q7
c N N _ - ~
I ~ a _ q _ a
_ ~
~ ' _ " ' _ n ' _ _ _ '
N N~ Ifi N ~ r
o-
` T Y
N '
J T
N ~ ~ tJ ~. J1
I Vr ~ N ~ N T
~ i T
rv
• J~
Y 3 [
" T p. , tr
• P ~ ? •
T L U J ~
S O ] ~ ~ S ['
_ C t _ m n 2 [ R _ _
• n p~ R O~ l~
I e
I = -
R- C - % F re _ V~ N N Ui N N N U N V N U LJ N
~ N N N N N N N t 1
CJ i 1~
ti
~
~
~L` . ; ~ ! ' I O
f'~~
H
ti
.
-
~
.
~
._._
,.:. i.
.
~ i... ... .
. ..
i
Q
i .. m ... ....
. . ......._ ~"
,~
- R~ ~ r
~
~. L ~
~ -r O ~
C ~
Vi G
.. ~: I
4i ..
G
N
i ~
~
> m
O G
~
~
m
N
I O N ~ri
~ ~ ~
~
'
~~, F
; ;
~ --~ k
- .,~
_ _._.. .
_
_
~, , _.._
_.. ,
.... . _
' a
" E
.,
W
L;
J F
~ e ~ ~
F
U u
' L,
LL C
G ~
~
~
0
Q
- Ilj
4i m `i
U
~ B
Ui _ ~
~
a~
~
~
O
If I
~
~ I
~, o
`~' I
O ,
~'
~ ;
F
.
~ ~
L
~
i I
+e l
~
~
- . ~
'r.... . ..........
_...._ .... .............
~ ~
C i ~ '
~ i } _
I
V
I ~ . . . _ _. . i'
'n i i ~ G C C C
V 1 .
/!~ ~ i G lf. G L:
~ I ~ , ~
j
i
i ` ~.
I rl Q
~G ~L
i~ ~
~ .
: i
' i ~~ ~:
i. ' ,
i .
___. ...____..... ._.._.
._._. ;
__..
....._-_. ..
....._.. _ .. ..........
.
- i ~:
C C
~
I
iia~
~" ~
.
"- ~' _
/"~: ~ I T. f
`~ .~i~.. . _ -.,~/ _ _ C
~
r~ O r~ O O G G
p Lr, C LO G ID G
c~
i c~, cr,
, m v
~ ~* ~n
r~_ ~!'~,da_
~~
~
i•
I a r e a r~ a ~~
a °
^ n n m a ~~
[ y
i N N N N ~l~ ~~
n
m
n
,
C t ~ ~ r _
_
-J
_ n
~
N
Q ~ N N N ~A N N
VI C
° z c~ r' ' e " e; c r ~~
~ n " c ' c= c= c ~ rt- m a "'
U N N N N N Y N If. N N N U~ `
fJ ( ~
`ti ,
'
..a
Y,
.
: r
:
..+
1-
:: ..__ ..:
..._........ ~
._. ..:.. - _
,
._~n
W .. m
L ~
~ '
G ~ i~
~
i, v O ~
O ti
UI O
.. r~ O I 0
m
.. ,~
i ;
O
ul .. i '. rt'
'
L N ^
~ . L
.-
~
'
_..._..... i
. _.___.... v
~
O ~ _._... . .._... .... . _.......__ ..
....... .___... _.........
~ 47
O O
w _
~
~j
r
~ i Q
N ~ ~ `~
v~^~ i
~ ~~n
o ..
~
m
N
4 N
W
m
¢
_ .:~
a ~,
~
Y
W ~D
~
O W I
~ H
U n
U
~ ..
J ~
O ~
3 ~
~
v m ~-+
.. U
.. 0
~ N J
y
~
~
w
~
Q rn
V 5
1~
F-~ti .. ..
~
~~ p
~ . . . . - i~ ~
k
~
;
u ~ ~
~.:
i ~~ -
o ~ k ~~ ~
~
~ ,
_
_ __ __ __ .. ..
__ _ _ ,
~
~
r_ _ .
_ ~,
~
iv
~ y~
_
~
1~ ~
~ _
r
+' ''~ r' ' ' _
~
' ' _ '. L
r i q• 9
~1 . . . '= p
~ /B I
~ G G O O O `
G ~. O G O
\/ I
~
p
Lfi O ~~ O
I CJ
I
ID
CJ ("
I
Lfi LO C.
[T.~ ~T ~T lD
I I I I
I
~
. : _' ~'
l,! i d 2 `
.
~~
~
•
I~
I `J
~
~m
~
~:. m
~ ~ ~ ~
o ~ ~.
, c G
C
f O
r~i
Q
^ C
Ui ,.
a•
a ~
_
p ,m
l ~.
~
~
v
u a
~
~~
~ ~
_ .
,
~ ~,
~
~~ r, _
u -~ ~
c ~
U G
~ .
J ~
O
_ ~'
~ ~
~
4~ ~~
Ui J ~
~
c T P rt' m~ D C'
0
~
n n ~ ;, m a : _
I `
r
- _ - _
" " - m m y in ~ J
I c
N m
,
N -
N w _
U U. Vi 1/i
N
~
~~ V~ ~n YI J • O
~ SI S ~ J
~ C
I ' T, 9[ C 2 R ~ ~f
rt rt n fi R. rt.
N ~
N t] N U
I N V~ N N N N 1l~ N N /~ /i N N ~ ~
U, IQ
~ , ,
~ ,
~ '
i ~
! ~
_
..... , I'~1,~~
~
'~ .
h ~ ~ .. a
~ ~
I
~~, ~~~ ~
~
o
~
m
~
~
y
~
~
U ~.l~
~
~
0
`
:~' o ~
~f: n i i
r !n v
I i ° ~c'
- ,
~ I c c'
~- r !
r !
~ i ~ .. ..
„e
-
, ~
- _...._
_... ...
__._ __.
.
_.._... _ ..___...,.~_
~
/
~ ~
~1
~~~, i ~ • ' :
1 M~.'
/ti~
~
~1 i
I
~
~ i~
;
-
~ +~
- ! ~~~ ~'1
~ °~_
- -
_
~ _ _
~ '
'
~= - _ ; T 7
~ ~- ~ c
.
!
r,
V I C
~ ~: C/ G ~ ` r.
r ~ ' p O G C
.
i
~
~
I i
~ p L~i G L~ r": L'" O
~ ~ C-J ~'~ ~ ~'
~~ ~ (?~i Q Q1
I i I lfi
I
, ~ ,_' u:;~er ~~
~
~u
iu
~u
V
U
~
~
~
~
W~ m
~~ ~
o~
U P O'
0
~ m
.. (V Q.
W .. .ti
N O
i v ~
W -
> N
O O ~
K
O
N I
W
N
Q ~
S ~
a ~
w m ~
u i
a ~
u a
U
~ ..
J ~
O ~
~ ~
~ N ti
.. U
~ O
N i r.
w
~
~
h
w
~
m
~
~ ~
I-~-i
1--~t
~
Q ~
~~ O
~ ~~ `
~
Im P
~~ '" ~
,
_
~ ~,
~ !`~ °
•
~. .-, ~ __ . __
_ _ __ _...._ _.. _
,
l1
~
_.
r_
_ _ _......_ `.
.
_
~
}
I~ '
. . . :.I
. . ; ~ ~
I L=a. v ~ ~. - ~ ~`', . ~ =
,
~ +,
~ : .
~ ,
: ~.` . , .
%
~ . ~
.
I .
~
~
~
-~ ~ ~i!- '
"~. . ., _
~
~
.
r~ ~-~ ` T 1~
_
•.
~
~ _ L
~ G ~ r~ G G r~ r~
~ C C O
~
! ' ~
G L: ~r ~ Lf~ C,
O ' ' l.n p ~n
~
n C~
IIi
u I .-i -, C-J Cil Cn
I I I I (
V
I I I I
.~i L~Qdu
~~
~
i•
I •
I r
~
[ [ [ [ [ a n G
~ ~ 41 ro
N ~
I y
F
^ `
Y N _ y - ~
I T L _ ^ - P
fi D
q ~ R
N J
I ~ ' '
~ ~ ¢ N U' ~ ~ ~~. -
N In N ~
N
N ~ ~
N
I Vr J~ N ~' V: ~ /r V~ i/i •i V ~. t ~ 1 ~ :
I ~ O Q
I t ~. t. ~ ~ _ t a L - _ - ~ _ C' m ' J'
0 a ~ 9 _ N
~ 2 ~ m
° _ ~ - . _ a _ _ _ ~
- n e q m
_ rt _ @ _
' = ,
, _
U U
V
~ rt
/~ -
Y: Vi U _ _
N
1Ii
U
N N U N
N
N
Vi
V N If
1f
;
CJ V ~' N V. L
~ Y: / U. U ~ ~
~
~
~ I
~ S
J
~ i
I ~
~ H [ :
.
......
......
-~ .
.. .... . ~ ...i. ~
_
Q
.
..i. m . __.. ~
~`. ~ E ~ ~
0 0 ' m
_ ~
~~ ;' G ~
C' ti
U~ O
.. ri
~~ ..
~ p
bl
e ~
4 .-
0
O ^
~
~
I
m
V!
r
r
~
,
•
f. ~f
n
W
,r~
~ ..I
Cl ~
v ~
~
W ~: ~
u i p
C F-
u n
~
~ ..
~ ~
G ~
-~ ~ Lf7
Q m ' .~
~'
~
u~ - ~
~
~
~
~
O
i !'' I
~
~
" O
~' O
f I n F
_ . I f
F~ I I. ~. . ~.
~ I r.
_ . ... _i... ...._ _......i___.
Iw -'
~/ ~ U
\ ~
-
~ I }
~ G i
~ ~~ ~ j , .
~ ~~
I~ i ~ ~ ~ ~~ ~~
'~ ~ ~ ~ o~ - Lr
W ' , ~
i I
i
I '
j - I
~^; a
I G ~'
10 -
i~~ p
............ _..... ...._.._. ; ._ . ; ~
c L
~ ~,
I
~ I f
~ ~
~
~ ~ ~
C ~~ ~,
,r-'_c . ~-~~ ='~'.'
Q G G O ~'
G ~r G tfi O
rr~ (-~ v v ~~'
, I I ~
\~/
~
i•
( •
I~
I~
I+
I~
~
~
~
~
~
~
~ r
L tl.. m
~ ~
=j P O
O
(7~ U
.. N O
W .. .y
~ O
i v ~
W « ~
> N
O ^ ~
~
O
a
a ~
<
<
~,
4 A R ry N /~ C!
~ N N N N C T
V 9 C m
~ C ~ '
~ ~ N ~ i
~ J C C
~ N ~ N ~
> N N N i
V
N N N U N N N If 1/~ ~
~ N J ~
~ '
i
] ~
T o- J ~
C J ] L. - L 9 - P'- L l'~
~ L
~ , ~ rt T 2 R rt lfl
C m A _ ___
rt m T rt _ R
F
V
N N
N V1 U~ ~
N R
N N N N N U. N V t~ N N N J N t N V. N N 1Ii . 1
I ~'
~
: ~
~
V~
~
~
~ K ~
~
~~
9~ ~ c
_ _ _ _. f
'
,i' ~
I~~~~~
~ Y
~ I
~'
'~~`
} ~..
:
~- f
~F =
'l
~ I
4
~,
I ~J!!'
I !~~' ' +
; ~
~I~ !k r~
:
~ : e~
a
~
F
m
~
I` v
I~1 T
~e ~c
!o -
i ~~~ G
i
...._.._._
... ... .. ..
...._._.._.. ~, . _......._.. .... ....__....i r
~
'
' ' ~r'?. ' G.
.
i V . , . ,
,
_
i .
' r
. r~- _ C
~
~~. _
~ - G
r.
C~ p r~ p p C,
p ~: G
(~"' L•; G C l~~
-
~_i CJ
: i i
i ~
"! G' c~
U
}
t
,
~.
. ~~
i.
•
•
~
,~
L
~ 9
~ C ~ A ~
C
c R ~
~
rt ~' h
N ~ N ~
Q~
N IP L r
~~ n ~ ~ ~
C ~~ T N V N N N N 6 y
ry f N N
I /` J ] V] 9 b~ ll
I?o C i• - ~ _ [ _ ~ i Cn~i:~ s a~ li
«
U N
n
t _ n _ V ~
: U~ Y NNNNNN N
CJ Iv v v, N
r
~ '
I p
L:
i F ~, Q
-
Cn m
:~ ~
~'
U~
\ :{ a~
'
r C '. ., .. ~
' F p 7
= ~ r
U: U~
~ ~
. iv O
~~ .. ti . ~
F Im
¢ ~; k ~ ~r
~ a
~ ;
__
__
__..... _.... __
_..._. _
_..
~
~
..
~ k r ~
~ .~..~ ~
~
L
I . -~~.-.
r,~~ ~~
r~N : i
~^, ~~-'~.~'-^-~ Icn
'"/
I O f ~
~
~ rn tD
n
u
~,
~
z -~
~
_ a
N
- ~
• J ^
a ~ O
~ n
~
~ •
i L
~ ~
- N
4 ~ ei
.. l
_ 0
~ ~r~ i
~
y
V.~
w
C
• ~~5 I
~
/~, G
.~ o :
(T n ~
_'
b^°.
.
~
: ~ :
.~
i
i
'~
• W~° l '. . . i ! :
I
~~
~ I .
..__... i '
.._ ........ .........
..._......_..
_.......
.
. __...._._._ .
_.
. . _
-. ......._.....
...
.
_
.4-"
~ ~.....
'
~~f
~~
~~
~ ~. '
~
V
' '~i~"~,`f~i
.
' I t .
G - -
. fr
~
,,.~
~ G
•~
' ~i
- . .
' ~ .~
•
F ; .. ~.~:i :
i
L
~i
~ ~~ O O C ~ O O O
~
I
C~ O
. .
~ i ~' Q ~; ~
' L4
~..~ O
(r~ ~'
(r~ C'
C
~
j i
i ~. .: Ci i ~ ~
~ ~
I ~.-"
: Jc~,
~.~~n
I •
O
Lfi
Q
I
m
~n
~
~IIO P
iN ~
~ _
I ~1 ~i
f T G
O L
U~
`Q \
•
~ =-,
t _ € z h Q,
~ ~ _.. m
R ~' R G!
N 'U _ N
_ m ` D ~'
(/ ~ N . ~ N
• = rt ~ C i ~ = , = O ~
/i N ~ L ~ h ' <~ ~
~ a o ~.
i P- 6 P~ 9 C O N
i ~ .~ ~ - R u `. ~ _ _ rt _ T Oi ~
N U YI N/. U U L
CJ N ~ N N N ' i Q.
.-i _ n
^ r : i . '~ : _ ..:.. . .._.d;... __ ....~C
r _. I
m __
~ .. m ~ ;. ~ ' - :
- O U1 ~ a,
• _ ..
Q
; ~ O F.
C
n Q1 ~ ~~
• N O
v .. ti ~ ~
« .. ' -
.. ~
N~ ~ . . ~~ '~. r ~^. i i a~
m .. ~ ~ ~ _.....r 1 _. .~l ._._.. _ . ..... ~'.~ m
~ _... A f I ~ ~
__.._..
• ~ ° ~ , ~ Il' ~ f~~ ~ ~` ~~rl~ ~ ~ ~!i`I '1! d I: ,:~~ i e
~ F t„~f : ~n
~~
o ~
m
:n
~ N ~n ~
~
W ;
~~ „ ; ! , ` , ! ! i :
Q ', _ ....._.. _.:. ..
~, _. : _...... .
_ - _.-_ . - "~ J/-. ;
~ _....._ _......_.
,
c a ~ ;
v w
W ~ J
y (*~ . ~~ ~ '~ 1..~---~_ .~
~ W ~ ~
~ F
L1 a
u
~ ..
J ~
O ~
3 ~ N I
~ ti ti i
V
~ ~
~ ~ ~ ^ ~ ~ ~ ~ ~~~ I
~ ~ ' .. .__...... . __~ ..i
...... .__.....
..._. _.... ..._..
~ ~ . _. _...._ r r 1 ~ ~~ / ,\ ~''^~n ~`r ; I~
~ ~ ~ ~ ~~ ~~~ ~~ ~,% ~'~„ i~ ;~ ~ ~ ~ ~ i
~ ~ ,~
~, f.% ~` ~~ ~~, ~ ~
F ~__.~--'
0
• r~5
~
b~
~\ ~ 1'~ ~
~`I ~ - ~
lf! ° ~ ~V.,, /~ ',i Ic c
!'Y \/ v' ' . , ~ O ~f,
~' ~ `'~ ' _
i '. '. ! -. ~ :
. ~ ' . : , . , . 'r; ~,
~ r ; ___~.
__ _ _ _ ~ :
, . __ ~
~ _ _ _ ~.
.~ .-. _ ; _
- ,~ = -
'~ : ~~ ~ ~ ~ _
~
:~-`. [ ~ ~ ~ r' i !' ,r~ ~ ~ ~ ~ ~ =
V
II C r ~' ~~ ,_.t- . . . ~ . ~ ~ `.
~~
•
C~ p G G C C C
~ ~ `' ~~ C~ ~~
,^ ~ I p lT.~ C tT,~ C{ C`~', G ,~-'. C ~ lf.'
V i I ~' ~' i : ~~ i i I
~, '~ I t+=. ~-r'~O~
~ `av
I•
I .
I •
I •
I •
I •
•
.
•
•
•
a
t c t ~ G
~ ~ n
N
Q~
I rt i T
N ^ = _ j Q ' Q.
' C
- = =
/ n N /~ ~ rt
` P _ rt -
J m !
L
~ „ i _ yi
~
I V' v' ui '
~ U~ N N S U ~ J U C
N L~ U. N
L p P 7
B J J
~ P i. U i~ L 9
c
~ ~
I J ~
r T _ _ ~ rt ~
L _ m ~ I~ R__
'
_
'
rt _ «
. r
~ - -
_ o _ c '
- a
' _ m m
- _ n _
_ _ _ ' ' '
V N _ "
N
U _ . ._
. '
1~ U N 111 N N V «
N U~ ~ N N N L U~ L
il
y r . . . '. '. . . . ~ i 1
~03
i•
I •
~.
~.
~~
~~
I~
I T
IN T =
n
N
N
9 _ L
T m
N N
CJ
ti
o r
0
~o ~
) P O
G
] ~
• N O
i .. ,--~ ~
f ~
m ^
L « ~
, ~ ._. _ .
_.
~o ~
~
O
v U7
n
~
n
~ ~
= y
~ a
Y ~f~ ~
W ^
u i p
¢ r
U G
U
~ ..
J ~
O O
_ ^ ~~
Qi '~i `y
- ~ ~
G r
U1 J ~ F
~ ~
,., r
_...,......._....
w f
~ - s ~
2 A h ~~
N ~ N ~ rj•
~ _ . ry. _ _ _ _ r
' _ v. 7 ~, m D m u. _ ~e ~ . ~, _ -
~ J: J~ N t U / N • ~ _ ^
V _ Q'~ P ' _ ~` _ C~~ t C•
_ - ~ 0 " ry " _ _ n " ' _ _ = a _ n m rt _ _ " lr~
P rt ~ i N N N U
y~ Y J. N U V+ V~ V~ V N N N r V N U U.
i,
' . ' , y' ~ ~. i : C
.
~~
i
la _ c
~ ~
~'~ ~~~ ~ ~ i a,
~ ~ u
~
0
Im
: I~
_.._. __ I.~ r~,~, ~~..~ n1: __ ~~ -
~.~' , ~ ~ ^~ ~_
/I ~ ~ ~~, ,
N ~rN /~ . j \ \ `iv ' `'
_ i . ~^'~,./~ . . . . . . tn
~
m
N
~ i~ f'? I
~
~
~ O -
O I` ~
(f~ n ~ ~! v
~
i C ~~
~G
~
• ~
~ ILi p
~ ~ .
~ 1 ._. .....i _
..
~
~
~ ~
~
;~_.. !. . . .
._....._. . ......._.
.
.. _.._.......... ..._
.... ._. _........ ..
_ ...... ...... . ....
.
_
i ~
~
~ L C
C jv !`_
' ~
° r
~ j
I a-
i I
~ r.
~
. ... ~ _
~ . - `
~ C ~ ~~ ~
~
' ' '
-''
~
'
~ .
F . ,
.
~ . ..
~
_
~ ~
v
• I
~
C~ ~-
p O
C G ~' ~ ~,
; r
r. p O
. . .
~
,
~, ~ ~-, Lr. .
G ~~'
C~i i J ('r ~' ~ ~` LD
r~ '
~
i
i
I C
I I I I
I ~
~
~, ~
'-~`
y'~d~n
. ' ~~
i•
I •
C.1
ti
r
L~ m
_ 0'• CO
~ ~
+
~~ c O
C
N G,
.. r: p
u~ .. .y
^ ~•
tn
_ il• ~
(~ _
~
G C
~
~
~ 0
~
R ~ Q
i
~ ~ ~ ~ Q
~ r _
M1 u
N T ~ ~
N O ~
a ' u ~ m ~ '
~c ~' ~ ~ ~
.
I
N V
N L J N N l J U ] N '
~ 3 L ' P~ • C h ~. 0 ~ ~ ~
' L _ N R R 0
( ~~ n L C
I rt, N
~ rt h _ ^ rt u
rt
N U N N N U
~
' . . U N V If L l` V N V V~ N U N N N
V~ N .
~ N N Ili U
.
L S
IY
F '
~
c
I
. .
~~ .. __..
.
~ ~ : ~ ~ _
'
I ~
~
~ ..I ~
I
.. ._
- , '
r
< -._
€ ~- ~
.
~ , = . . ~ U
: .. r
F
m
N
~ ~b's
•
T T
~ T' a.
~ ~
P q n h R ry
L N VI Cn
N l~ N ~ \ ~.
° ~ ~ - -
_ : : ~ .. S ^ i ~
m m
° =
= m ~ ~
• ~ T ~
"
_ ' _ ' '
~ i, R
"
N _
`
a i
LI ' N Vi J N
~~
yl N N N N N. V V ~ ~
~ ~
,
J ~ ~ ~ ~ -
C L T
~ -~ C ~ P
C ~ ~ G
y a D ~ L~ t ~ L _ t ~~
~
R R~ rt m rt ~ ~ ~ lf
C' ~ ~ R rt N T O rt
2 ~
U If. U Y N VI Yi Vi V. ta /
/ N VI
N N/~ N
/~ N
Y N
/.
N N
N. 1Ii U N V N V~ V. U V
i
N y
'
ti ~
I ~
~
~
~
~
~
~
~
•
~p ' I 0
N H _ .. _... ..... IQ
~ m
Cl U7 ..;~ fr ~.. .. . '. ,~ ~ i ~ 4'
] i `° Cl
7•
F
0
m
L
v
~i
G
N
H
m
N
~ I
G ~ ..
~
~' 0 I I
~
Lr
~ ~' ' ''. '
W
~
~
~ r ~
G%
~
~
~ i
c,
~.
~ ~ '
~ ~
.. .. . ... _
......... _.._..._...... .....:. _
' .. ..
_..
.i
-
^.
,i ~
-.........
L.... . ..._......
...._ _. _ :...._._....... .._......_.
._ . ..._..
~ .
j- .'
~ I ~ ~ : I' . : u' C
~
1
' IL r
/
~ ~ ~ c
~ ` F , _ ". '
~ ~' ~`'
- -- - ~- '
-~'
~
-- ,.
- o
_.
_ .
--
I ~' ~ o
0 0 0 o c o c` o
~!
I
I
i ~; ~o
i o ~r o u:
c~ c~.~
i ~e o ~r;
~-~ r ~ c
i o
u~~
I i i i
I (,~; ~;~~;:
, ~06
i~ ~
I •
I~
~.
I •
'~
.
.
•
~
<. < < _ - _ =
~ ~ ~ Ji
m `:' _ _ ~
I - r . z _ M1 _ _ ' - n
_ ~ G '
" ' ' ir. " '
' ~
-
~
`
,n m
u .
~ _
~
I v v. `~ ~~ ~ ~ ~ ~ ~ °' ~
a,
~
~ ;
> >
a
. ~
i ~
C
~ L i C L ~ ~ T _ D rj T - F T ~
I M1 rt T _ _
R _ _ rt _ rt _ _ _ _ _ /
rt _ ~~ ~ fi _ ~
N N - R
~ N _
_
V~ N N I/i l V' N N 1P N N U N U/i N ~f~ N
J N N N N V ~ 1
~
Y r
~ Y
[
~ _ _.... .. .
IC
Q
W
S~ m
F
Ul F I
r
~ ~;~ ~
.
~ G' ~ ~
~
F v
~; c
n O a
F
U C
Q, .
~ ' ~ ~ ~
i..
Ui
_ [~
«
4
> N
O G
a~
~ I m
~ /~
`~' \y ... . . . m
...._... ~ ......._ -...._... . _... ... ._ ........_..... _ . Q'
_ ..._.. ', . ~y -
IV p I/~,\,
. ~'.
. I~
~.._ . .
/~ ~
I
I
~
w
~ ,
~~
~
'
`~~ r ll / V
~
~ ~
-
-~
;
~ ~
,
o
,
k ,
-
: ~ ,,,~ ~,,~
; ~.-~..1~~-~-- ~---~- ~~
~
0
~
m
N
N
~, ~
i
~
N ~
~ ~ : '' ' - ' . i
¢
_
~ :~ k _ , ~
. _ ___ _ _ ._ .. __.;
~ _ __. _.... _
__ ,
" a ~
.. Q
w - k
~ -
a ~ ~ o
~ I
~ .. ~
J [
~ G I
~
Q rt
~ U U]
~ I I
4 ~
I
n ~
L7 J
~ I
F
~
~
~
iJ ~ . ............... ~. ......... ~' .. ....... . ~' ....... I
' .........
~ _ . ........ ~ ..........
........_ _. ~
k_. _
~
w ;
; ; ~~
L ~~. ~ ~~. ~.r _, ~rf ~-~---J~~~'V.~.~~_~-;
I
~
(~ II
~
~ ~
I
i C - _
T~-
V I G
I ~ ~ '', . ~~" `
~ 'f"1 c
~~
~~ II F '~ . ,' ' Il_ b
~ C~
~ ~
I ' . . . . ' i~ O
~
~
P-~.
i .
~~
C ~. . .. .....; •• ..
_ ' . ...__..._..... _............
I .-. '.
I t~ L_._ . : .......... .._........... ......... _....._..._ _._....._.._ . _.._..__.....
i~ .
_ i :
i ~`. i n [
'
~
i.~ i_
~ i ~ ~~ l, . . . , , . ~ V =
I c ;. _ ; ~
f ~ T ~_
. . , . i~ ' ' .
. ~-=:'h-~-_~ '. ~ /~.
~
. ~---'- _
y
~
.
~.
/!f i C G C G G C C C G O O O
V
~~
~ C ~L
~ G U; ~~ U. ~ tf_~ ~~ ~f.• O Lf~ G
~ I - -. C, i C-:. (T,, (T.: V C' Ifi
V` ~'~ ~ ~., i ~. ~ ~102~.
I ~'`"
• ~~~
i•
I •
CJ
ti
n
O ~
,1 .. m
_ U1
• I
~~
I •
I •
~~
~•
I~
I•
~
- z z
= _ <
, < R
t ry
[ ° u N n u, ~
" •
~ ~ - - ~ -r
~ . - t ~ ~ - : + ' ~' v
= m - m
4 ~
N
U
`
` .
~
+
~
N
I ~ N N V. N ~ N ~f. + ~
tr 4 Z
~r ~
~
J
' ~ J . O
T
_
_ i ' _ _ r = r ~
_
fi _ a a _ - R - n
rt ~ _ _ ' _ _ _ _ ' '
N m N
c
V _ _
_
' N _
Y: "
~f. ' '
N _
N N N ~ v. v,
. N
~
'
~
!
. ~
. i II
I ~ ~~I~
~~~~~~ ~
,,i,
~I II ...1... -
~~~,4~;~~,, ~~_ _ _
~..
n
7i
N
U'
e
~
Q~
ti
0
">
m
t
m
m
'o
i~
~
m
~
, P
O ~
fl G
c~ o
v .. ~,
Ui G
'
'
~
._ ~,
v .. ~ .
~.
, ,
.
. ~ .. - '_..
......_.
> m
O G " '
._......
_
....... ..... ~
_ . .
I
~ r
~
L V
f~'~-`.
~~~J ~:
'
~ \
~/
^i
. /
L ~
o ~ ~
N ~
n
w
~
Q
_ ~
.
~ % ; ' !
_._..
__...... _.__ __.....
__...... ..
~ a
`J ~1
W ~
~
LJ I ~
~ ~
c~ n
0
~ ..
~ ~
o ~
? ~
~ m
~' ~ I
r
N J ~ f
~ r ; ' _ _..........i._ ...._._._....._I......._.....__...:..
_.._.._.._....... .,
~...._ ......._...._._......._.......,.... _....._ ,
~ .
k ;
~~ !
~ `
,
~
~~
~.~.~~..
r
^
°
_
r i
`
°
C
/ ~
V _: ^ I
L=' ~
i
1~
~
~ ~I ' . . . ~ '.
~ ~
.-~ ......... .........__...:.
' .. ._ .-.-
~ . . .. .._ ._...__ ..
_ _ ...... ....... ....... ......... .
.. ...
'
~ I
~
i U
;.. . . . .
.:
Q
~ ~y= ' . . . .~. ..,. '
` ~' ' .
" }
c I . . ., i
_ ~
i ~ ~ ~
~ ~----' -
IN C
I~: ~
~G
i~ O
-~~1 ° ~, c o ` ~ - ~. o c c, c, o
/vp '~ ~ C IIi G, Li O LL~ G Ln G ~~ ~
r I ~ CJ C'.~ fri Oj C C
j ~ ~' I
I
~ (.~':' ~;~den
' i
~~g
i.
I~
~~
I,~
•
~
~
•
~
~
.
~' ~ =
ry z.
n
~.
L C N N ~
C R
' N V U ' ' _ _ P.
' `
i rt ~ r
~ ~ " e
R ~ F ' _
~ N _
«. - Ji F n l~i
N
I ;
N V N N _
N U N~ V. N fl~ N ,
t C
'
I
6 c
' J
c ~
= c. - '
_ ~~ : e°
_ i. : T~~
_ - _ c a _
G Z' ~
i_ T
e L.
a 7 m P
a [i
lp
~ ~ - rz _ m _ a _ 2 _
N
~ _ m _
N
l _ _ ' _
V ~~ .'
V~ "
l V~
V~
V~ l
V:
~
CJ N V N N N
~ . iL
u:
"+
t I n
~ 0
g'~
H
C
'
'
_... _.
.
_.._
._......_ .....
. ;...
Q.
~
~ M
m
(JJ
~...
F
t
_
.
;
.
. .
~. .
-
~ ~
`
~. .r _ i N
U P O ~.
C r
l0 Cr
.. r: O e
a~ .. -1 ~
u c' k ' : : : ' m
~
N
Q «
~
~
f
._...
...
.
.
I
~
. N
~ ~
~.
,~
...... .
..
__
._....
_._.....
...
.
i
-...
~`
~ !'~n, ~ n
.
~ m
I_
~
~ `~
~ ,,
J
~
~~
,
;
~- ~~ ~ ~
~,
~
~ o
F
~ ~,~ ^.. -- ~ ~
o ~
m
~
N If) ~
~ ~ 1
W
~ ~
i~
•'i
......._
_...._.
._.. _ ..._
._........'. ...._ i
; !..
. .. i
L
v,
a
v
~
C.
_
_
_...._
~
~
_~ o j- ~i
w ra ~
u ` G
L
L'
~ ..
i C
O ~
_ ^
~,
~ N ~-+
_ V
.. 0
Vi -~ ~
U
y
~
~
C~
I
~ ~.
5
~
b~~ I
~ .
C
~ G
I , '•` "
~~
n
, v v
i
I r ~ ~
I
O ~
~, i
~ '. . . . . .
G -
~s
~ I I~ ~ . . . . . ~ ~ ~ p
'
~
_ '
I ~
. .
._....
.
...__ :
-
......_.....
..__....
_.... ..
. ....
..... _ ...
. ... ...._ .
.._. . _.........
. .__ .......... ._ •• ..
. _
- , ~
.
r
i ~ I~ = i.
e ;~
~ ; - ~
~~~ -., ~~
~
~
-
.
NLC I" -
'
.
.
.
~
.
.`
i 1L r
~ C ' ' ~ ~
~ n
i ~_` ,
-- "- - .
. . .
. ~
. . ._~.~- ~ -~ . _
L
G
i '
O G G O O r ~
~ ~, p
O G
~Q~ O
O
V~~~ ~ C' tf G tT.. "
~~ ~` `r., U~
ni v :Ti
~ ` <<1G-C
•
`~~
i•
•
~`
_
c
~~ ~
~ m
~; ~~
•
~; P C
G
U1 G
. r~, [
v .. .
~ ~
~
. v
v ~ ~
• > m
0 0 ~
~
i
I
I_
C
N
~
N
=
N
o
^
.
t
.~
^
~
v
"
_
V.
~
L
~
P
'
C
u
=
~
N
~
V
r
i
c
~
(n
N
-
,
Jr
m
.
N
'
a_
J. /.
n
i
m
_
_
Y~
~
k
T
~
Q
N
'
'
/.
t
a
~f. _
ry
P
N
'
_ ~
_
~
/i
p
_ m
'
N N
~ ~
~
~ I 1I~e I ~'~ ~
~ . ~
~ ~
~~ -
~ z -
~ ~I
~
~ ~~~~~~~~~~~~
, ~~ , ~
~ ~~ ~-
T
0
~n
LL'
L
~
4
a
F-
e
m
a
m
Ic
i U,
m
N
Y\~
I •
i•
.
I~
'~
I~
~~
I •
CJ
ti
~r~ r
L~ ~
J ^ ~
~ ~
r O
~v
' c
ri c
.. c'~ G
v .. ti
O
N ..
L d ~
W .•
> N
O O ~
~
O
N iTi .
n
W
N
Q .~
= V1
Q Q
v N
W N ~
W ' O
¢ r
U a
l•
~ ..
J ~
O ~
_ ~
~ ~ ti
~~
~ G
UI J ~
~
~
~
I~
m
~
~ 'f
h~
1--c ~
~
G
'J'~; O
h
I
. ~
.,
i .
~ ~ ~
~
' - O ~
i',
. .
~~ ' ~ , iC J
1
~
~ '.
. . . I lfl Q
~ r
-
~
F+~. ~
' . ~' ~ . ..
._.._. . _.... .
'
~
~ I ~. . _
._...._..
.._..._ :...._.....
......... _....._...
~_._.......... .
........ :
... __..._.__.... _.._.
.,
~
~~ I U
~ ~r~, ~ i
i C
/;
. i
. i ~ `
~ I v _ .
\ ~~ =
+ I \ ~.;
I l.
~ ` y -
_/~
~~ ~. .~~. ~
~~ _ ti/~ ~ T, n~
_;~~~.~ ., G
~
~ ~"
c ~,
. C C C
~ C C.
' ' r~ G O C
'
i .
D
C~ ~r p lTi G ~ O
/A I
V O L, O. l
I i'
i ~'` ~r, (r: Q ~
I I
~
~I
(,"r~~ ..1
:i}Ccr;
~
L P P
!+
L rt m
a ,^ ~
r ~ m
~ ~ _
" " - r _
_
tii ' c -
u. -
m ~
'
T /i II. N N ~~ N v v L~ UI + + ~
I v~ J U ~. tl -. ? , ~ Q 4 Q '
~ ] _ } _ D
Q
rt
^
_
• n ~
lfl
IP T ry m= ry- ' _ _
N N l _ _
V~ ~. f N
[ ~
' n
' _ _
~' V. l. ~ N U N
V~
N N
J~ U.
,
~f V
. '
u
~
~ i
r ~ ' : ~ ! ; ~
~ -
._..._._.
_._. ..... ....
.. .
~
' _ ~- ~.
- IQ
C
\~~
i•
I •
~~
~.
~~
~~
I •
~~
D C ~'
~ P L
c ~ n C
n rt (fi
N
~n fi
LO
N~ N V.
., C _ _ _ _ ~~
D r 9 ' '
N A If~
~
N N N ~
v ~i~ fi
N [
N h
N v. . N
N U~/.
R
J. V. ; N
V+ ~]
4 J~ P ~
T
:
[i
9?~i ~ P -
J
F a~ m n n R _ rt R l!i
T~ .
2 C: ~
m n rt
N N JI N N / ~ /~ J~ J N V U N LJ N
n
N J ~ /i N N N If~ t/i ' V~ . ~
'
CJ ' ~
ti
~
g
` ~'
~ ~' ~ ~'
~ i
i i
~ ', .
a .... _ ;_. . .. . ~¢
m ~ j
~~lj~~ ~ I I~e ~~.
j c~ i~
~ ~'
_ y :,
P
~ O ~
~
C
ri fG
. G
O ~ o
L • ~
~
~ ry . . ~. . im
Vi C; L
~ -
~ _._..
._ ... ......._. (.~
'
~
•..
~
~
~ ~
~ ~
~ ~ ~ ...._..._. ........_ ._ ....._ I
,
~
I~
r
, ~,
~ 1 II
N
/
' .
i~ \
N
. ~~ ~~
Cn
~, ..
, i
p ~ ~
m
~r
N lJ]
n
W
N
~
S ..~
~ y
a
w ~ ~
u i
a r p
~~ n
u
~ ..
~ ~
0 0
- -
'
~ ~n T_
ti ;
a
~
_ ~ I
o ~ ~ ~ ~
N J ~
~ ~
I
'
',
''.
! '',
..
i
~
'
(~ ~ . i i i : ...j.. . _
.
_.... --
~
i
• ..... .. .
..........
.
' ....
.. ...
_.....
... ........... ;
.......
.. .........
. .
. ; :
: :
~ F
.
'
~ .. . .
~-~~~-~ : ..
~/:~`r..-~-~-~v~-~:/~~/~/-~~^~
0 ~
I •
t9f~~ -.~~; ::7G~c
~ ~`Z
•
I •
I~
'•
I •
~~
~~
N
~
~
,~ ~~ m
~ ~ ~
~ C
T P p
C
L C ~
t
I ( < < f ~4 1[ ~ Q)
C ~ V N U+ M1
N ~ ~ ~ N
t Q
i
I V~ h N r ,
~ _
i ~
~
~
'
~ 9 - T -
~ ~ ~ - L
~ ~
'
~ ~
N q
N
~
~ _ ~ ~ ~ R
Ji
U
N R
N .
~
N ~ N N ~
i
/ N v N
V N
l
_ L , rt n ~
I
_
_
_
_
rt rt ~ M1' rt
' '
a ~
~ `
~ 2 _ F R rt ~ rt
N N N Y+ U N N. N N ,
N
N N l
~. i~~ ~ N N N N N Vi IIi N J: N .
N ~
S
~1
IC
_ ~
a ~ I
:
'a
~
~ P G
G
U~ n'
~• O G
a .. ~
_ rv
^ ~,
a .
L a ~
m ~
> m
0 o w
~
0
N
w
Ul
¢ ..i
= V,
~ C
Y F
W N
uJ I
a ~
~~ a
0
~ ..
J ~
p G
~ ~ ~
a R, ~
« ~%
,. 0
Ul _~ ^
~
~
N
~
O
~ ~~ ~°~~ c o o e o o c ~ c.
i~ i I ~ ~r c ~~• ~`~~ C n_ ~~ Q~
I i: : c`,~ c~ °( i i i
I __ JiC2~~.
~
~
m
~
i~ ~
i ~. `.
i
~ K~ ~
I C~ ~
~ L.
~ ~~~ e
i .. ..
~ u
n ~
;~~_
AL ~
1',
~ f T ~
= G
O
°
i
~~~1
P Z C C `
c m `m ,~ n
'!' R
~'
Y~
m
N u~ v, v
' _ " _ _
r R?
r ^ q ' _ _ ' ~ ' ' _
v m _ ~ _ R
~ _
~ N ~
v~ ~ t~
~
N i U N N N v
N
~
_
N N
~ N
r
I v
J [~ J T -
c L _ C S J L ~? L ~-. m C C
c w x i ~' m
n n
v ~
rt C _ L _
~ = m [.
l0
m
N _
u~ _ =
_
V. Ifi U N N N U N V. /~ L ~ V~ _
__
N. L N N i~. «
i
OJ
ti
~
~ '
~ u'
-J
M
L~ ~ . . '
....~-.r
_..... _. i 0
in
~ .. m ~
E O U7
-
O -' .. . ~L~ ~ i 4~
U ~ ~ a
O ~
N N
•• O O i 0
W . .-I
~ ry i~
~ ~ '',, '. Im
L
v •-~
3E
' ~ r
' _
j ~ ... ` ...
....._.. _._. ... _._. A... _
_ .......h
......._. . .........
_ ....
'. !~ ~ ~ 7i
0 ^ ~ . ~
, ^
1
.. I~/~ I 1 i~~
~ :~~ ~. ~ ~_
~ ~
~~
'1
~ ~ ~' ~-/ I"~
. ~ j~, :
f~/ ~~
'J '
~_~
'~',/~% ~i Vi
~
O
H
m
N
\`~
i.
z M1' ~ G
R ry N R Ql
I ~ • ~
I P ^ N- 9 4~
If. v~ U~ R V/ U N N N N U~
~ I I V Vi i `C t i`~ C + _
~ ~^ . a . d. ~ a> J ~ ~
~ _ i c c - ~ ' = r. ry _ m _ ' - _ rz - : - i _ ' m C'
I_ _ - ' m ' . _ _" a _ _ ' ' _ ' ' " ' _ pi
CJ ~ l. . V: . V N. /i IJ . u' N t~ [I N N /. U N N N 1/~ N ~~ N N
.~ ~ u'
!v C i ~~ ~ ': ~ ~ I 0
: . _. ..> ._ ..:
r F- , , '~. .. ....._ : ~ ,
- L~ m ti . . , ..._. :
.._. ._.. , .- ra.~ ~ id
U7 . ~~ ~.. ~ ~~
~ ' _ 2~7' ~. j ~
u v G ?.
_ ti
;~i ~
~ je
~i .: ti ~ _
~ c ~ i ~m
_ ~. ^ r
~ Q, _ d2 l i`; __ .. ~Ql
> m ~_ _.. _.__. __.... __.._ ~N
0 0 ~ ~ /v ~ / ~ ~ '~~ ~-
~ ~ ('i ~ ~ n ~ ~ ~ ~ ~~`~i~~ -
L ic
~.~ ~,~..~~._i ,-~:,,,~/'/ ~J 1 ~' \_i..~ ~'~,..~ . ~' , cn
O ~ ~
m
U.~
I ~`
~~
~
il `~
~
~
\lJ
~r
L L _ ~
C
G L C
r.
N R ( ~ T
N N h ry
N N Q~
y
_
_ V~
c I!~ V~
c ` c
o
_ ' ` `
a
G
-
~
N r
~
q
N
N ~
4 n~ ~
N R C
N
^ ~ VI _ _
~ h. ln
N " ' _
~ N~ 2
J!
N N V N ~~
~ ~
.•
J
N
V~
U N
~ J ~ , ~
4 N +
4 _~. ' _ ~
C
9 J
' C _ [ a m 4 n A ~ F' R R
rt Ui
^ rt rt _ m
rt N U N
V V
N V. _ .
_
U V N N N N . N ~-
, N N N N N N / N Il~ N lf~ N ~ ~ L
~
~
r1 ~ 4'
C
! ~L
i
m ~
" ~~
W m ~ ;. . , ~ "
^ i`.
O C ' ~ 4r
I U ~ o n
o J
~
N N
L
w ~ 10
~ N ~ f.
~
N ~ N
~ y ~ is
m ~ ~w
> ~ ~-- _. _ _ _. _ . _.. ....
._. _ _ ___
~
~
~
O
O
'~
i~~
~1
~ /~
.
I ~~~~
~ `~~
r
~ .
., M
~
~',.
~ `I
~
~ ~ I
~
~
\~ ~
~
~
~
~. ~\
~
~
w
~" .
Y
~
i
/
N
O
m
~
~'~
I~
~~
I~
I~
_ '
II` v
~~ ~
~O ~
~ `~~D
i~
i s-
li
Z
~
•
•
•
a
~.~I ',•~_, '~ice~~
~ t~~
i~
~ -
~ -
~:
r - - - - =- P
• _ = rt = «.___ = N :_. L .;. ., _ =, ~,
N N Vi ~ N N N~ , V N
1~ Q. ~.Q. ] ~
~ + ~ 0~. 0' C T. 9 T.. L+ - ' i_ C
9 T rtrt T R~ C C ry~ h ~ ~ n
n _ T - R _ _ _ _ _ _ _ _ _ _ _ l9
N N N ~ V. U N U/i ~f N. N N N U ~ ~` U V~ N N/i L ~~ ~~
~.~ ~ i
~ i u~
m ~L
(~ ~ i . . . : ...J.. .i... . . .:._ ~ 0
' _ ~. .._.~~
:. .. .. ...._... ~ ..
J ry m ~Y:. . . . I
~~I ~ _ ~ .. -., . ~ ~ ~ i 4~
J p ~ ~
G F
ri oi
~ N ~ ~. .. ', . t 0
.. i -
~ ~ I m
. ~ :
` m a ~ i n F m
i '. ._.._. _. ., .. -. -
> N ~-' . ._.._ ' ._.... . ......... i,S~
_.__._.. .. 'V
o ~ ~ , ;r-~1n , r~I`~~ , ~~ ~~ ~ ~ ~~-,
~ f~ ~~ .,~~~,ti~ G ~; ,~~~;~
i(P
O
F-
m
N
i~
P 9 c
c ~
~ ~
rt n rt rt
m
~ ~
I N ~ v.
_
~ Q~
I~
O T
_ _ - ' _
-
=
10 H N
i N
-
rt
' m
• I«i
~ L rt~
V~
? Vr
~
e T
,
.
,~ ~~ N N U Y 4 ~
r
R
m
"
~ C
0
N
I
t ~
m
R - =
2 n 9
==
=
= h = n
= T ry
m
/ V N V~ N N V U N N N lJ N N ~
W m m N N N YI N ~1
~y ~ ' ' : ~ '. TJ
f ~ i I
h r
m ~ !: ._ ..........
. ~ ..
~
~ ...
~
T
J C ( ~~ ~
'
~ ~
•
- .
.
~
a,
~-. m G ?.
- r- F-
r~ f~i
e
0 o T-
i . ~ ~
~~
~'
i
':
"
ra . ~
~ -•
"
~
'
l m
~ °
~ a ~
,
' ^' ~
.... . ....__.
C _ .. ..
.. ...._._._
......
_.
_. _
_.. : -
~
i r
~
_._._. . _ .
n.~
'"" m
~
_~ ~ L
~ ' v~~
~
~~
~n~~r~I V~f V~'~~
~~
~ ti~
~
,,,
~ J
o "
m
~
~ ~
a U)
n
W
l0
C ~
L
~ ~
a
C
LI Pi J
• w I p
u ~
L~ L
~ I
_
J ~
p 0
-
Q, m
v ~
~
~ e
~ ~ - ~
~
y
~
w
• ~ II
~~ I _ _
~ ~ C'
e:
G I ~ 4
I - .,
~' ~ r f jP V
~ ~.~
~ ' I I r
• I-s
r~ I ~ ; ,,. '~
. :
_
~ C.
~
_.~P• ..
'
i ^ .
i
~
., ...._.
~ .
'
__. .....
..
_.. .~.........._. .
_....
_
. .
....... ..........
.. _._....... __....._.....
. ,
__._. .
. ,
. .
~ .
;-
if ~i
~c"
~ I
V,.
~ ' . ~
~
~ j LL
y ~
~
~ !L
~-e
I y
.
~. ~
_ ' _ /:.
~ f
I -
`
--~
I C' ' „ ~'_ -
~ .~~ : q
n
~
~
' `_~-/ .
~ . .,.
. . , i ~
~ . .
~ . . . _ ~,
~ ~,
~ C, C r C G C. C~ C G O O
~ ~ f
~
I
p IP,~
C
~~'
~
CJ
~ r II.~ G lJ~
C,~i f~ [r. Q Q
~ O
tD
~
I
;~. ~
. ~;=..ar
~ I `~~
•
•
~
I~
I •
I•
I•
- - I=
~=
l 3 ? 3 3 $ I=
~ ~ e
; T i fi L
T
~~' _ '
'l
3 ~
_
_ '~ ' '~
~ ~ ~ :3 _
' j~~ ~ : y
° n o~,
~~~
• _
:
_
v)
- a =
- _
_
_ o ~i rtn' o
ir.
. '.
~ ~ CJ
•-~
~
~ I
~:. .
''
'
~ ... _.
-~ ° e . U
..._..._.. . ~
~
~
' ~ k '~
!m
S
~
~ ^
i~ I ~
I y
~ I '"
O I O v
~ .. I LD F
. N I ~
P .+ i~ 32
,
I
~
_
' . ...
.. ...... ~ ...... . . ~
_ a
~
Y
1 O
~ ~ ~~J \ /~~„J ' J~`M ~
~ ,. ~~f ~
" ~
i ,
~ .
~---
~-~
~, , ~
s
°
~ ~
o
I ~
~ ~
~ N
~
T
~• ~
~'
Q ~
a
J F- ~
U U 7
W I
W i
~
0
~~ ~ O
~ U l! 1
,. 0
U1 J
~
N
~
I
N
i "
~ o
~ ~I o
~r I
Q o ~
~~ I ~ rl ~
I ~ ^
~
~ i
^ i '
~ h .
,~~
r~ ~,
~
~
.
T'
~.,
• I1
II
I1
.
'~1
l ,
,
~
~ ,
~...
i.. ~ L: . _-
~J ~
~
~/~
r~
~
1 I I
I T ' ..:...._ .
.
I '.f '
- ~~
~ ' ~ .
(
I
't/ Iq
i
~ y
j ~1 ~ I
~ lr
.
l f
`, a
i
_ ~
I
~1 ~~ ~ i-~ 1
~ ~^/~
~
~. ~ .
~ '
S !
~
i Q
\ -'. ~ . . - : ~ ~
'
~ o \~i'
~ _ :
~ ` ` O
~. -: . ~ ~ O Q
~; o
~
~~i o
~
~,
y~ , ~-, :~ o
~ m m Q
J ~ ~
? i
I ~ ^
, , I
`~
W
~~
~ ro ~~ Liru2n
,+~~
I
\~
I.
~
~
'~
~
,~
•
s
•
-
I
e ^ ~ ;~ ` ; ~
- e
3" = ~ __ _ ~
= n" ~ -
\ =
n
- .,
~.n'n n ~
~ ~ ~ ~
~ ~
T _ ~,r_
! Y
-
_ _ ';.,..,i'_ _
~ _ -t':~a_ i _ -aa~.' _
- ~ ~ ~ ?~
~ =~'
~? ~ sa,.~
- a
ydn ;~ ~ ~,
_ fG ^J
,r r ~
.. ' S i ~.
, ~ ; ~ ..... ..... ... ~ ~ `
T ~ ~ ~ ~
~~ ~
~
-~ ~ ~. i '
, O
.. , '
" O
_
ll I N
ti .. ,
' ~~
!
_ ,
.. L ,
-
j
~
rn.. i 8E
~ ' ~ ~`
i
. ~ .
. .
.
7.
I~
f7
~
......
:
...
r ,
........
.
... _. I
~ n i~ I~ 1
I
~ ~ I/~`
' (~
~
`1 I
i ~
i
'
ti
~ I 1
~
'l
. ~
/
u `~ !
, ~ ^
i-,~ `.
~
~ : ~~ ~~
' :~ ~ ~J
0
'
.,
.
.~
~ o
'I
~ ~
~ OJ
~
N "i
~
~ I
J ~- a
~ a O
iJ C i ~
W
' ••
~i
_
~
~ I
~
~~ O
~
~ U ~
.. O
'J7 J
w
~
~
v
N
I
l~
I p
=
3
U
n
~
~
~
2
c:'
.a
~
~
m
~
!~ ~i O
~ I
~ I
~
o
;
(f ~ ~ ° ~
l
J ~ ~~ : ~
.
~ I
~ ~,~ ~ S ~' 1
^:~ I
'
; m
?
~
~ ,..e ~~ .-.
~
I
1 ,
: I ....._.. _....._
' _.....__ .~ . . __.... . . .. ...
_. ~
`
~
j } i 1 ~'. ~,~r ' 1 :
i +
. ti
n ; ~,
~ .
~ ~'~ -
.
; ~~~ ~
'
J ~ G
.:
~
, o
' ' ~ ~; ; ~ ~,
,;J
'
' " ~ >
'~- ---
---= -
~ Q lJ
~ •J O J 'J O G O ~ ~
p lf7
~
~ ~ i
W
, O n ~I u'7 O tf7 O
-, ., c~ : ~ m t*i v
~ ~ ~ ~ ~ ~ ~ ID ~
v in
i '
I ~ ~
~, ;; ;-r~cc
\~
•
•
~
I •
~~
~~
~~
I~
~
•
~
= T
~ ~ I:;i~~l~llil il
~ ~ Allllll r ~Ili
~:~~ i ~~~'~ ¢~~:
~
J
:J -
?
a
n
i
~
C
9
T
7
.~
E
J
~
?
rn
~
m
e *
~ ~
~ ~
' ~
o, t
Y ~
e'~1.
N ~
6 Y
~ C
~~
I I '
;';i U1C2~.
i•
j • ~ ~ '.
J ~ i
~ r~ I CJ
_ ,y
W r
~ . ~
I N
I ~ 1 f~
~ O
T. I
~ ~ I O
N ., ~ U~
~ N
= i
T.- ~ a°
~ ~ ~~ ~ v
W O ~
I~
i
i O
i ~
I
~ op u7
~ N
~
r
5 ~ I ~
J ~ a
O F-
U a v O
W U ~
, • i
" ~
W I
_ [
0
• ~ 0
~ U
lll
.. O
• U1 J ~
~
N
t-`
~
IL
i O
I .
~ ~ I o
~ I
O I o
~ i o
U i
• '-'
~ ~
~r~
`/ I N
i
~ ' •~
F~. I~ i'"
~ ~
• '^ O
V
W ~~
t
~
•
~
i~ '
== = = i = A=
; r _ " ~ = $„~~ ~~~~~~~~,~~~a~~, ~
Ii =~j ~ ~ I~ I~II -= i,il~l = Ilil' IIIIII~iI;AI A i
t ~
' y 3
._ _ ~~ ~ +y. _e' ; . ~ : a ,~ ~ . ..
...............................:.................................. ~..................................i.....'"'""'"'"""'""'""...........~......"'"""'"' "'..... _...........i.......""""......................
f
ir:) Uzoa~
a
~
~
~
~
z
~
5
J
~
0
.=
`v
m
.~
~
Q~
ri J
~ `
L ~
~
k
a
~ o
~Z~
i•
~~
~~
~~
I~
~
~
~
•
•
•
~ u~ i
) -• i
, T ' cJ
[ ~ ~ '"
~ +~ ! m
_ ,T I ~
i r. ;
.. j o
.• ~ ~
ti ~ I ~
N .. ~ tn
C ~ i
~ ~ I ~
i_ N ~
W O . ~
1~
~ o
I o
ao u~
Q) PJ
O~
u7 ""~
Q I a
~ a vo
U U I ~
W
" i
W ~ i
H
0
.. ~ O
~ U u7
., 0
(n J
w
y
~-+
h
~
i O
r~ I O
1---1
~ ~ O
~ i O
v
~ ~
~ II
y.i.{ I ~
, u ~-
, ~ ~
~~~
II y
~ I' O
~,^ O
V
w~
i ~'-
~
~ 3 '
3
2 -
'
~ y _~
] _ ' __ ~ _
' ~
3
~ 3 ~''3~~ii~~ ~ Z ~ .,
~ ~ ii£iii~Zi.c`?iii~iii-ii~i
'
= i a.i 3
..
iiGN~- n
=n i
ii ~
~~ ~'i ~ i n~~il~i~iii m ~ r ' ~i~dlwr.3l~il~lniiii
~~~ioll
~
91
.. .
.. ~
_ . ~ ~ ._, ~ i... 9
~ ..~s~ -; i~3 -.
(~~j u,d=a
a
3
~
n
v
~
~
0
.~
a
s
:R
~
~ _
N
N .°
~ `.
=; ~
=
L ~
)
)
y
~
i•
I•
I~
I~
~
~
•
•
~
•
~
~
,
~
' a lil~iiiii ~ irii~i~iili~iil
a ~
~13/ u1d°0
~
~
a
9
C
C
s
V
m
n
v
L
0
G
L1
T
~
S
a
Y
m
~
~
L:
m
N
.~.+ .~
~ ~
C ~
~ ~
U
G C
d -
~ t
x
~ c
7
)
i
~~
i•
I •
~
~
~
~
~
~
•
J C1
~ (']
s ~
7 ~
T ~
~
a r~
.. ~
~ p
~
QI ..
~
.~ Q~
~ /
~ ~
W O
3 3
~ ~p
` ~ 3 9 ? 4 ' 4
~
~
Z ~ 7 3 ~ =
~_. ~~
_~ N
~ i
y~ i n
`~ _ _
T
-~
a T 31 n o~ ~T ~+
~~
~
~
'~..~9~i ~a_3 ~~i~iRi
l
~ ~
n
= „3i~~ 3 i
y~
~
~iii..iiii~i..~ 3 :i.
~~ s ytlrll~~r ~ al~l y~~f~~ll„ A I-~a~
6iSHA a~I :~ „,s ll
, Ili
~~
. c
~,~
ti
~
m
....
"~ 3 - ~ ~ y ~~
.
. y~
'~. } .. .+ '~.
O
O
~
~
w
I ~
I ~
; O
~ ~
~ N
O~
r
~ ~
Q I ~
J ~ a
~ p, V O
U U 7
W
L ••
W
r ~
0
~~ ;~ o
°' u v;
., o
Ul J
w
N
~-+
~
L~
i O
~ O
1---I
~ ~ O
(~ I Q
~ li
b~--1
~ ~
~ ~ ~
i n ~
F.r~ I Y
d
v O
W
ll.~j ~;1dap
3
Y
y
i
n
a
0
C.
L
~
c-~
~J
.S•
m
`m
~
~n°
c:
~
~
1
o y'
~
:~ ~
u
o .
Y. ~
a y
~ ~
)
i
~ `~
i•
~ '
J ~S~
_~ D I
~ ~~ N
u ~ ~
L+ F-
_ ~ ' .'~
~'~
' ~ 1 r. ~
.. ~~
i
r~ o
~ i
a, .. i vi
~
~ ~
T
!~
~ m ~ ~
i ~ W O I ~
~
~
r
~
~
~
~
~I ~
~ ~~
'
~
~
~ ~
'~
r'
~
~_
' _ _ ' . .,
=- -~ -=s =
„„
~ m =r=n==° ~_
. ~ _
~, r
=' 3
=
p
+
P:
n
~ ~ h
-;,
r'e_"j=_3..uRui&~:+n_ ;
.A~in~
~iGi~i~in'
A~'
'
.,~3i~ ~R..u~i~gn~i;isaf$:
nA~fii4~~RG''ni~~Ainn~~G~n~~rR~r9l~fia Y, i
.~uiu3i9 y e
n~~~~~~v9~+i3~v
ii7+~ a w~'7 ~
5 e"
A~~~dlrflA~ii~Ri~Lu~~a i
a
m
+~raw
n
yA ~ 9v+.
~
~~ i ~
~ ~
..` . ~ ~z
..'Y .'.......q, ; . a ; ~
~
:. . :_.: , .
. '' .
:... y
9
; .
~ . ~ ~~1 ~ e.' . ~ ' ~ y$ q
8 2 ~ ~~. ~ [ ~ f : ~ ~ V~l
~ ~
i ~
i
~ ~
~ Cd
~ .~
S ~ ~
J~ a
~ a '" o
~~ u ~ ~
w
w ~~ I
- c ',
~ I
•• ^ i
~ O
~ U I u~
~ 0 I ^
ln J
~
~~
y
~
1 LL
~1,) 41da0
O
-_ I ~
~f1 ~ O
F-1 ~
~ I
I
~ ~ ~
~ ^ O
J
' l I
T
Y~-1 ''
~(~I '
~/ fl ~
~ I V
~ i
~=
~ O
~ O
W
~ `- ,
~
F
S
m
m
~
c
m
•'^• -
m =
c
o ~
r ~
J I
a ~
c
m
^s c
1
7
i
~ ~2`I,
i•
i•
APPENDIX C
•
•
•
•
~
•
•
Laboratory Analysis
PACIFIG SGILS ENGINEERING~ INC.
~~
i•
Work Order700007-C Page C-1
May 21, 2004
•
APPENDIX C
LABORATORY ANALYSES
_ The results of laboratory testing performed during this study and from previous studies are
enclosed within this Appendix. Table I presents a summary of laboratory test results.
The following laboratory tests were performed on representative samples from the current study
in accordance with the applicable latest standazds or methods from the ASTM, Uniform Building
•
Code (UBC) and California DeparUnent of Transportation. Details of laboratory tests from
previous studies are presented in the referenced reports.
Moisture/Deasitv Determinations
•
Moisture and density determinations were made by direct measurements on "undisturbed"
samples to provide in-situ information on the various materials. The results of these tests are
shown on the boring ]ogs (Plates B-1 through B-13 in Appendix B).
•
Consolidation Tests
Consolidation characteristics were determined for relatively "undisturbed" samples. The samples
were laterally restrained and a~cially loaded in successively doubled increments from
• approximately 1/2 tons per square foot (ts~ up to approximately 4 ts£ Each load was maintained
for approximately 24 hours, after which loading was continued. In order to determine rebound
characteristics, final ioads were decreased to approximately 1/4 tsf. Test Results aze presented
on Plates C-1 through C-25.
•
Direct Shear Tests
Direct sheaz tests were performed on relatively "undisturbed" samples and samples that were
. remolded to 90 percent of the laboratory maximum density. Samples were tested after
inundation and confinement for 24 hours. Tests were made under various norma] loads at a
constant rate of strain of 0.05 inches per minute. Shear test data is presented in Table I and on
Plates C-26 through C-37.
•
~ PACIFIG 501L5 ENGINEERING, INC. `~
i•
Work Order700007-C
May 21, 2004
I•
Page G2
Eaaansion Tests
Expansion index tests were performed on selected samples in accordance with the expansion
index UBC Standazd No. 18-2. Results are presented in Table I.
•
Comaaction Characteristics
Maximum densities and optimtun moistures were determined for selected samples in accordance
I~ with ASTM:D 1557. Results aze presented in Table I.
Particle Size Analvsis
Modified hydrometer grain size analyses (AST'M D 2442-72) were conducted to aid in
~ classification of the soils. The results of the hydrometer particle size analysis aze presented in
Table I.
Corrosivitv Testine
~ Conosivity tests were performed to analyze the corrosion potential of the on-site soils on ferrous
metals and concrete. Sulfate contents were determined and are shown on Plates G44 and G45.
The pH and electrical resistivity were also determined and are summarized in the following
~ table.
~
•
~
,Y 'n,si u
~ "~~~"~'~~~
~ ~,~'~,h~~: - vxn 3J+
~lec[nca
~, , ~ .. . § .~ r ,~m: r'~( af'~ ~`i5--~~ x-3t -:
l Resi$~5 an ~pH„~ '"~ " '~ ' r;
M-- ~, K.~-.~ . '^ z""{ ,~-~ ~ x -,~»a ~ ,,
Boring No. Depth Electrical Resistivity
ohms-cm PH
BA-1 9 8410 7.6
BA-2 3 4490 7.4
BA-5 9 1580 7.4
BA-8 4 2750 7.4
BA-9 6 2300 7.0
BA-10 4 9130 7.0
~ PACIFIG 501L5 ENQINEERING, INC. `~~
i•
~~
I~
I •
Q
~"'
a
O
H
~ W
F
~U
_ O O
Q
~
I • Q O O
~JO
LL ~
~
}
~
• a
~C
G
~
~
~
•
'
•
N N~
$ o
ci P
~ u
ci ef
u
u b
~i '
T c
u I~
~
c~i N
ti
m ^ 01
^ O
4
4
Y q
4 =
v n m
m =
v n O
'x 0
n O
m ~O
m ~=
n O
m O
w ~0
W O
e
~-
h G
d U
Y U
0 U
0 U
m U
O m
q~
d m
q~
6
6
6
6 m
qm
6
6
6
6
y1y
F6' q 6 q w n w 6C
~ C 6$ C c c C 6~ C c C C
0
~ a
~y W a
• a
~ a
• a
~ a
~ a
~ ~
q II o
W ~
A ~ o
'~ 0
A 0
0 0
4 •
A b o
~W 0
4 0
9 V
S
~ 0 O m 6 P 0 U~ D V 2.' 9
' C V 9 V~i` 9 9 9 9
0 m _ _ _ m _ E>
m m E>
~" o
! 0
A 5
a o
a E'
m~' o
a 0
e 0
w 0
a
N N N N N N U m O U p O O O O U e O O O O
~ U ~ U U Cl U ~ U V l.l U
Z
~ ~
Q 0~ O T b
Z m
X ~
W
E
E
~OO-
JOX
~
N
h
1~
~ ~
O
O
O
m
H
O
O
h
O
U w
~
C
E
E
E
0
_q~
v ry ry m a m ~ ~r,~ rv n m H n o ~n ~
yE
0
0
E
N
Oo
$ '~
R e
y
N
N
q
O
1')
~O
1'1
tll
O
N
h
tl
b
OI
ry
Q
y E N Yl I~ h N 10 ~O 10 !~ 10 N I~ h 10 O
n
'
w
~ E
oi E
<~
^
dX o 0 0 0 0 0 0 0 0 o n m o 0
i
w
N ?
J~
a
Q Q g g
~~ ~, ~ N N
K= WU ydjU yajU WU
O~ W
N W
N W
~/! W
N
~d'2
>
> W ~
fr~~ O N O
a
a
_ A
oo
O~U
~~
~mV
a ~o v
rv m
~
Qa
~
~ ~ ~ ~
O m ~ ~ U J ~ N 6 N N ~ 'L E ~i ~ 2 ~ E ~ i E 2 L
~~ y y N E N 6 N p p N N N N V1 N N N N N N N N
V. y Iq N N
0 _
~ ~ .~ ...
~ '
_ .~ .-. .~ ~ ~ ~
f
a R
I O i
o Q
I I
d A
O R
a I
= I ry
I Q R'
~ ~ I
I o I
o I A
I O R
I O
I O
o I' R
O A
O R
O R
O
O
O
a I
rc
U c
[ e
c ~ I
q =
y c
c -
N O -
N =
N I s
C a
c a
C o
c v
c a
C c
C a
c a
C a
c a
C a
c o i
q
(Q
W R
N
N N
r
~ A
N
T 9
q
3
3 A
N
N
iq A
N N
N
N N
N A
W 4
N R
N A
N N
N
N
~ ~ 2 i. a ~' °c ~/+ c °c ( 2` L` i~` 2' 2` ?~` 2' 2` 2 2' L' 2` 2'
p H H V U N N y N N N 41 HN N f/1 Vl N N tll N N N
N
I
.
~ F
~
~ I
~
I
~
~
~
~
W W Y' I ~ N 1
'I I O N tD O~ YI 10 N N N
~ LL- ~
2 ~
'
' ~ ~ ~ ~ Q O O O O Cl O O 4 O 4 O O
~ 41 RI
I m m m m IO QI m Q Q Q Q Q
0 Q
m Q
0] Q
m Q
Cl Q
m Q
0 Q
m Q
RI
m m Ol m m
V
C
\~~
i•
.
~
a
~
Q
~
r
• w
F
~U
W ~
J
~ O
• am~
F' J O
LL ~
~
~
~
• ~
~
~
~
~
~
~~
i
•
V. O
~ ~. N O A y N 10 1~ m N O N !f O
1~
~ u
S ~
U
U N
v o
i ~
U
m 1~
~ o
2 ~
U
m ~
U
m ~
U ~
U
m ~
ti
m ~
G
m ~
U
m N
ti
m N
V
m lV
V
o N
U N
U
m
y V
4 m
6 m
W V
4 A V
4 W N m
6 W V V 9 A 9 W m
W W
f
u1y p
qo
u 6 6 q
qo
o 6 p
qe 6 1 6 6 6 6 6 6 p L 6 6
Q d.N ,
C ,
C dry C dq c C C c C C C C C C C C
W~ q ~ o o W ~~ o _ o 0 0 ? o 0 0 0 0 0 0 0 0
Frc -°~ v v ~~ e =~ a v' a' i a v° a c' a a a a
0 m
' S o m
' o m
' o 0 0 0 5 0 0 0 0 0 0 0
a
L N N W a
L N r.
L N W b N N Ol N 0 IA W N W
V~y C C (~ h C V y~ C C C C C C C C C C C C
~ U U ~ U ~ U U U (.1 U (.1 1.1 (.) V V U V
Z
O ~
N X '
a 0
U ~ n O V ~
a~a+
x ~
w
E
E
0
~
O
N
19
1~
N
N
N
O
I
1~
JOe
U N
~ W H H ~ N A m m n
c
E
E
E
0
0
_ q
u
n
o
H
u
n
o
u
n
o
m
n
m
m
~
n
m
rv
n
N E X N O V V! N e0 h N 1'1 N
E
n
a
E
E
e
00
2 ~
Q Q
y E ` r+
N n
1~ ~o
Ip m H
p e
n ~o
b m
N rv
b in
10
Y rv
V w
W o
10
N m
b m
Ip m
1p n
N ur
1~
10 n
N
m
°
>_
E
h
a ~^
~
° ?'
o
n
e
o
0
0
0
0
0
o
e
o
0
0
0
0
0
0
o
e
o
0
i
.
~
H
~ n
J~
a
f ~ w
F w w
~ w w w
F w
UQ O
g~ Q
~~ N
g~ a17
~~ QQ
~~ N
g~ aN
~~
~= w~ w~ w~ w~ w~ w~ w~
ON W
N W
N W
N W
fA W
N W
M W
N
~ W F
C
w
~F
...
~~ m
O n a ~ N
FNZ~.
ai N
m
O ~ ~
E
>
JF
~
r
a
'LNV
~G
N
~
N
W
N n
N n
O
~
Q W C
~
1
1
~ I
d J I l
Qm ~
41 ~
tll ~
~/1 J
`~ J
`L ~
fq ~
N E
N f
4 ~
N ~
N ~
N ~ E ~ E ~ E ~ ~ ~ ~ '.
'
~~
t7 ! I h N 41 N I
N i N N N N N
y
z
p
=
~
_
^
^
~
~
~
~
_
_ i
_
...
,..
i ~
_
.-.
.-.
_
.-.
a O O O O O O O O O O O O O I O O O ~ d O O O O O
~
U v
C s
c a
c n c a
c c
c a
c a
c a
c v
c a
c a
c c c o a a a t a c
N
N N y ~ c c ~ C C C c c
W M a, a N N N f!> Vl N M N N a'. N M N iq iq N N I
~ _ 2_.' ~.' C C _ _ ~_.' ~ ~_.' ~ ~ ~~.' Z' ~' ~' ~_.' ~_.' ~.' ?.' _ ?.'
I
0 N N N N N N N N N N N N N N N 41 N 41 h W N N
N I I
~ I
, I
~
P
' i
N i
~
~
~
N
C
G
N
O
N
O
~
i~
N
~
~
p
.
LL
~~ ~ I ~ I I I I i I i n I I
I I
? O O o e O ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ O O O O
I 4 ~ ~
I I I '
m m f0 m m m [0 m N ~ C m m m m m 61 m m I m m m 61 2
f.1
__
\3v
i•
I~
I~
I .
Q
F
a
0
~
~ W
F
~U
Q ~
_F-O
J ~ p
~ Q00o
~ Q ~
J
LL ~
O
~N
1.1~
. ~
~C
C
~
~
~
•
~
•
r
V
N
W y m
d
r~ '
o
rc E
WW _
Frc v'
O o
w
c
0
U
Z
Q N
m
= W
O
m
p ?
X 7
W
E
E
°o
¢ "
JO~
n
m
U m
~
c
E
E
n
°o
=0
~p
N
a
E w n
ni
-
E
n
0
E
E
w
Oo
Q 4
'
v
°
.
~n E `
E
v
w
~ E
~'
u
i E
a~
^ ~
°-
eo
0
i
N =
J n
6
U F
Q
Ww
C 2 g~
a"
W (~
O ~/1 y~
N
~Wf
K
>
W
>
f f f ~
F2+Z~-
O00
f
f~
~
~HU
awa
~
E
a~
~~ N N
~ N
2
p
.-
.-
I
~
a O O
U c ~ I
W
~ N
~. 41 I
T I
J
Q
N
N
N
y W o
WW ~ i
O~
I a m
C
O
2
S
m
U
C
4~3
i•
~~
~
t
•
•
•
e
~
~
•
-2.0
-1.0
0.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
r 1.0
x
~
w
x
z 2.0
w
c~
z
¢
U 3.0
t-
z
w
U
W 4.0
a
5.0
6.0
7.0
8.0
boring depth (ft.) dry
density (pc~ in sit o
moist. (/o) in sit o
satur. (/o) -2000
sieve (/o) group
symbol
typical names
BA-01 10.0 102 3.4 14 25 SM Silty Sand (~al)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. ~~
W.O. 700007 C PLATE C 1
i•
I~
I•
~
•
~
•
•
N
~
~
-2.0
-1.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 B 9 1 2 3 4 5 6 7 8 91~
0.0
F 1.0
x
c9
w
x
z 2.0
w
c9
z
a
V 3.0
~
z
w
U
~ 4.0
w
a
7.0
8.0
5.0
6.0
boring
depth (ft.) dry
density (pc~ in situ
moist. (%) in situ
satur. (%) -200 9roup
sieve (%) symbol
typical names
BA-02 6.0 105 4.5 21 31 SM Silty Sand (Qat)
REMARKS: WATER ADDED AT 0.5 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. `
W.O. 700007-C PLATE C-2
i•
I~
•
•
•
•
•
•
~
~
~-
0.0
E- 1.0
x
~
w
S
? 2.0
w
C~
Z
Q
V 3.0
H
z
w
U
W 4.0
a
5.0
6.0
7.0
8.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9'10
-2.C
-1.C
boring depth (ft.) dry
density (pc~ in sita
moist. (/o) in sita
satur. (/o) -200o
sieve (/o) group
symbol
typical names
8A-02 15.0 170 9.7 48 37 SM Silly Sand (~al)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. `~
W.O. 700007-C PLATE C-3
i•
I~
~
''!
~
•
•
~
,
~
•
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
-2.0 --- -- --------,------•- --- ,
-- - --- -- -- -- --- . ~_ _.
- --- - -- - - -- =-
1 0 .. .__. . -- _ _. . ; , .- _., __ : ..._ _.-
--.... -- --- •- - - --- ~ __-_
- -- ----- - •--- ..._._ _._._ _:_ ^.-
00 ~ _
F- 1.0
x
c7
w
x
? 2.0
w
c9
Z
Q
U 3.0
r
z
w
U
W 4.0
d
6.0
7.0
8.0
5.0
- - ,- - - _ _ , - -- - --
- _ _^_-, _ _; - ---~ ' - - _
boring
depth (ft.) dry
densit (pc~ in situ
moist. (%) in situ
satur. (%) -200
sieve (%) grou
symbol
typical names
BA-03 5.0 105 8.7 40 37 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 0.5 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. \~j~
W.O. 700007 C PLATE C 4
i•
•
-2.0
-1.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
0.0
•
~
~
r 1.0
x
C7
w
x
Z 2.0
w
c9
z
¢
v 3.0
F-
z
w
U
W 4.0
a
5.0
~
•
~
~
•
8.0
6.0
7.0
oorin9 depth (ft.) dry
density (pc~ in si~ o
moisL (/o) in sico
satuc (/o) -zooo
sieve (/o) 9rouP
symbol t ical names
YP
BA-04 5.0 100 5.2 21
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. `~j$
W.O. 700007-C P~P,TE G5
i•
~
~
'•
•
•
~
~
~
~
•
COMPRESSIVE STRESS IN TSF
~.1 2 3 4 5 6 7 891 2 3 4 5 6 7 891~
-2A --- --_ -- ,_ - _T;_ ~
- - - --.._ --- -- -~ ~._.
-1 0 . _.. _.--~- , , - _ ~-_ - .._.-
- -- - __ - _
-- --- --- -- - --- -- -
0.0 _ - - -- - --- - . ~ ..:- --`
~ 1.0
x
~
w
x
Z 2.0
w
c9
Z
Q
v 3.0
~
z
w
U
~ 4.0
w
a
5.0
6.0
7.0
8.0
borin
9 tle th ft.
P( ~ dry
densiry (pc~ in sit 0
moist. (/o) in sita
satur. (/o) -200
sieve (/o) group
symbol
typical names
BA-OS 10.0 102 8.1 35 43 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 0.5 TSF
PACIF~C SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. ~3q
W.O. 700007-C PLATE C-6
•
I r
~•
I•
I•
•
~
~
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
-2.0 -- -- --- --- - ---- --
-- - -- - - -
--- -
- ---- - - --- ` - - - -
-1.0 -- - _ : ~ -- --- -__._ _.__.. : :._ . ~ ...
_...... - --- -- __ -_
-- --- -- - -- ---- - '- • -
0.0 -_ _ _ . ' -- -- -- -- - : :.. . _ .
F- 1.0
x
~
w
x
Z 2.0
w
C7
Z
Q
v 3.0
~
z
w
U
W 4.0
a
5.0
6.0
7.0
8.0
~
borin
9 de th (ft.
P ~ dry
tlensity (pc~ in situ~
moist (/o) in situ~
satuc (/o) -200o
sieve (/o) group
symbol
rypical names
BA-O6 15.0 710 4.9 26 19 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS `~~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-7
•
i~
I~
-2.0
-1.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
0.0
•
•
•
~
•
~
~
t- 1.0
_
~
w
x
? 2.0
w
C~
Z
Q
v 3.0
r
z
w
U
W 4.0
a
6.0
7.0
8.0
5.0
boring depth (ft.) dry
density (pc~ in sic o
moisL (/o) ~n s~ta
satur. (/o) -zooo
sieve (/) 9rouP
symbol t ical names
yP
BA-07 10.0 117 10.4 56 32 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS '4~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-8
i
i•
~
~
•
•
•
•
~
~
~
~
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
-2.0 --- ----- - - - ---- -----
_._. -- __ ,. - - .. .
- -- -- •. _ _.. . _
-1 0 . _ _ _.- -- _ -__- - -__ ---- - -- -
0.0
F- 1.0
x
c7
w
x
? 2.0
w
c9
z
¢
V 3.0
H
z
w
U
W 4.0
a
5.0
6.0
7.0
8.0
borin
9 de th (ft.
P ~ dry
density (pc~ in situ~
moist. (/o) in sito
satur. (/o) -200o
sieve (/o) group
symbol
typical names
BA-07 20.0 111 7.5 40 18 SM Silty Sand (Qap
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS ~~2,
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-9
•
f
~
•
•
•
•
•
~
~
•
-2.0
-1.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
0.0
r 1.0
x
c~
w
x
z 2.0
w
C~
z
a
U 3.0
r
z
w
U
W 4.0
n_
5.0
6.0
7.0
8.0
borin
9 de th ft.
P( ~ dry
density (pc~ in situ~
moist. (/o) in situ~
satur. (/o) -200a
sieve (/o) group
symbol typical names
BA-08 70.0 114 3.2 19 24 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT ~.0 TSF
` PACIFIC SOILS ~~?j
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-10
i•
~~
~•
~•
~~
I•
'•
~
~
~
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
-2.0 =::--- - ----- --_- ---- --_ -- -
_... - -__ _ __ - -_ _ ._..
__ --- - '- -- - -- _.._ _.
-1 0 _- '- -- -- - - --.. __.._ __ . ~ ._ . , _ . ~- - .
-- -- -_~ -- -- -- -- ~-
---~ - -;- ~ -- --- --- --- --- ,.-
- -- -__ _ _. _ -- -...
-- --- --- - -- -. .-- --
0.0 -- _ ' - __ _- --_.._ _ ; ..- __ _ _ _...
H 1.0
x
~
w
x
? 2.0
w
c~
z
Q
V 3.0
r-
z
w
U
~ 4.0
w
a
5.0
6.0
7.0
8.0
boring depth (ft.) tl~
densit (pc~ in sit(o)
moist. / in si(o )
satur. /o z0(o ~
sieve / 9~~~P
s mbol t ical names
Yp
BA-08 25.0 112 10.8 59 40 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 2.0 TSF
PACIFIC SOILS '~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
~ W.O. 700007-C PLATE C-11
•
i•
~
+
~
•
r
•
•
~
~
~
-2.0
-1.0
0.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
r 1.0
x
c9
w
x
Z 2.0
w
c9
Z
Q
V 3.0
~
z
w
U
w 4.0
a
5.0
6.0
~.o
s.o
boring depth (ft.) dry
density (pcf) in situ~
moist. (/o) in situ~
satur. (/o) -200o
sieve (/o) group
symbol
typical names
BA-09 15.0 97 8.4 3'I 58 ML Sandy Silt (~al)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. ~~~
W.O. 700007-C PLATE C-12
i•
~~
~
I~
•
1
r
~
~
!
-2.0
-1.0
0.0
~ 1.0
x
~
w
x
? 2.0
w
c9
z
a
v 3.0
~
z
w
U
w 4.0
a
5.0
6.0
7.0
8.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 91 O
borin9
deplh (ftJ ary
density (pc~ in sifu
moist. (°/ ) in si~u
satuc (°/ ) -zoo
sieve (%) group t ical names
symbol YP
BA-10 5.0 103 7.0 31 45 SM Silty Sand (Qap
REMARKS: WATER ADDED AT 0.5 TSF
PACIFIC SOILS t~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-13
i•
I~
'~
•
~
~
~
~
~
~
-2.0
-1.0
0.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 910
t- 1.0
x
c9
w
x
Z 2.0
w
~
z
a
U 3.0
F
z
w
U
~ 4.0
w
a
5.0
6.0
7.0
8.0
borin
9 de th R.
P~ ~ dry
densit (pc~ in situ
moist. (%) in situ •2000
satur. (%) sieve (/o) group
symbol
typical names
BA-10 10.0 108 S.6 43 I 42 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS `~.~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-14
!
i•
~
~
•
~
~
~
~
~
~
•
-2.0
-1.0
0.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
i- 1.0
x
~
w
x
? 2.0
w
c9
Z
Q
V 3.0
H
z
w
U
W 4.0
a
6.0
7.0
8.0
5.0
, . -- -
-- ---- -- -- --- ~...- _... _.. __.
--- -- --';_ ,- _..~... _~ ' -- -- -- .- . . , _ --- --
bonn
9 depih (ft.
~ dry
density (pc~ in sa o
moist. (/o) ~~ sno
satuc (/o) -zooo
sieve (/o) yrouP
symbol ical names
tYP
BA-70 20.0 102 702 44 49 SM Silty Sand (Qaq
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS ,~8
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-15
i•
I~
I•
•
•
~
~
~
~
~
•
-2.0
-1.0
0.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 910
~- 1.0
x
c~
w
x
z 2.0
w
~
z
a
U 3.0
~
z
w
U
~ 4.0
w
a
6.0
7.0
8.0
5.0
boring
depth (ft.) dry
density (pc~ in situ
moist. (%) in situ
satur. (°/,) -200 group
sieve (°/ ) symbol
typical names
BA-11 10.0 709 12.3 63 57 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 'I.0 TSF
PACIFIC SOILS ~e~~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-16
i•
,~
I•
•
`
•
•
•
~
~
•
-2.0
-1.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
0.0
F- 1.0
x
c~
w
x
? 2.0
w
~
z
a
V 3.0
~
z
w
U
W 4.0
a
5.0
6.0
7.0
8.0
borin
9 de th ft.
P~~ dry
density (pc~ in situ~
moisL (/o) in situ~
satuc (/o) -2000
sieve (~) grou
symbol
typical names
BA-11 15.0 101 12.9 53 58 SM Silty Sand (~al)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS ~.~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007 C PLATE C 17
•
I `
~i
~
`
~
•
~
~
~
0.0
1.0
2.0
COMPRESSIVE STRESS IN TSF
Q 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
~ 3.0
_
c7
w
x
Z 4.0
w
c7
z
a
v S.O
~
z
w
U
W 6.0
a
8.0
9.0
10.0
7.0
boring depth (ft.) dry
density (pc~ in sit u
moist. (/o) in situ
satur. (%) -200o
sieve (/o) group
symbol t ical names
yp
BA-12 70.0 107 3.7 18 35 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS ~~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE G18
s
If
COMPRESSIVE STRESS IN TSF
Q 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
I `
I•
•
•
•
•
~
~
~
•
-2.~
-1.0
0.0
~ 1.0
x
c~
w
x
z 2.0
w
c9
z
a
V 3.0
~
z
w
U
~ 4.0
w
a
5.0
6.0
7.0
8.0
boring
depth (ft.) dry
density (pc~ in situ
moist. (%) in situ
satur. (%) -200
sieve (%) group
s mbol t ical names
YP
BA-13 6.0 105 9.8 46 40 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 0.5 TSF
PACIFIC SOILS
~ `~2
CONSOLIDATION CURVE ~ ENGINEERING, INC. ~
W.O. 700007-C PLATE C-19
i•
, +
r
~
a
•
~
~
i
~
~
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
-2.0 __ - --_ ~......... . ------- '---- - -' -- -- --- - , -_ _ . - '-
_. _ _... __- _,_
_ - - _. _ _- - --
1 0 _ _._. _ _ . _. -- - -. ._._ _ .
--- --. , ._ _ ___ _ .~ ._,_
_._. -- -- - -_ . __ - -- ~-- --
0.0 _ _ _.
~ 1.0
x
~
w
2
Z 2.0
w
c~
z
¢
U 3.0
~
z
w
U
w 4.0
a
5.0
6.0
7.0
8.0
9
borin P ~
de th (ft. ary
densit (pc~ m sa~
moist. (%) m sa~
satur. (%) -zoo
sieve (%) group
symbol t ical names
YP
BA-73 30.0 100 11.0 45 48 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 2.0 TSF
PACIFIC SOILS ,~~j
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-20
i•
~~
I•
I•
I~
•
-2.0
-1.0
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
o.o
~ 1.0
x
c~
w
x
Z 2.0
w
c9
Z
Q
V 3.0
H
z
w
U
~ 4.0
w
a
5.0
~
•
~
~
•
6.0
7.0
8.0
borin
9 de th (ft.
P ~ dry
density (pc~ in sito
moist. (/o) in sito
satur. (/o) -200
sieve (/o) group
symbol
typica~ names
BAC-07 28.0 104 9.4 41 37 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS ~~4
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE G21
i•
I~
I~
~
•
•
•
~
~
~
•
COMPRESSIVE STRESS IN TSF
~.1 2 3 4 5 6 7 891 2 3 4 5 6 7 8910
-2.0 - - - ---.--- ------ • - '-- ---- -------- - '-
-- --- - --- -- --.._ ------ - ,-_ _
_.. _ ..--- --- -- _- ---- -,_T`. _.
-1 0
-- - - ~ _, __ _:_.~ ; --
0 0 _-....__.. _ ... - _ -- - -_ . : _.._.._..---- ---•--
F- 1.0
_
C~
w
_
Z 2.0
w
c~
z
a
V 3.0
~
z
w
U
~ 4.0
w
a
6.0
7.0
S.0
5.0
boring depih (ftJ tlry
density (pc~ in sita
moist. ( /o) in sita
satur. ( / ) -2000
sieve ( / ) group
symbol t ical names
YP
BAC-08 20.0 706 9.3 43 41 SM Silty Sand (Qap
REMARKS: WATER ADDED AT 1.0 TSF
PACIFIC SOILS
CONSOLIDATION CURVE ~ ENGINEERING, INC. ~
W.O. 700007-C PLATE C-22
i•
Q ~
•
-2.~
-1.0
'~
0.0
, ~ 1.0
~ ~ x
~ c~
w
x
z 2.0
w
c9
z
~ ¢
V
3.0
r
z
w
U
~ 4.0
w
a
•
5.0
6.0
•
7.0
~ 8.0
~
~
•
COMPRESSIVE STRESS IN TSF
~ 3 a 5 6 7 8 9 1 2 3 4 5 6 7 8 910
boring
depth (ft.) dry
densiry (pc~ +r, 5n~
moist. (%) ~n s~w
satuc (%) -20o
sieve (°/a) group
symbol t ical names
YP
BAC-09 10.0 107 8.9 42 43 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 1.0 TSF
~ PACIFIC SOILS
CONSOLIDATION CURVE Y ENGINEERING, INC. ~
W.O. 700007-C PLATE C-23
i•
~
~
•
~
•
•
•
~
~
•
COMPRESSIVE STRESS IN TSF
0.1 2 3 4 5 6 7 6 91 2 3 4 5 6 7 8 910
2 0 _ _- _,- _ _~_ --
-- , --- _ - - - -' =:~~: 'r
_ - - -- - --- - ---
- -- - - _ ~_ ---_--
-1 0 _._ ._ _ . _. - -- ---- - '---- -°--- --
- •- - __._ ~
_ - - ~ -- ._ ~ ._..
D 0 -° ---- . :-• --- ------. _~ . - -_
H 1.0
x
~
w
_
Z 2.0
w
c9
Z
Q
U 3.0
F
z
w
U
~ 4.0
w
a
6.0
7.0
8.0
5.0
boring
depth (ft.) dry
density (pc~ in situ
moist. (%) in situ
satur. (%) -'e00
sieve (%) group
symbol
typical names
BAC-09 35.0 104 9.8 43 25 SM Silty Sand (Qal)
REMARKS: WATER ADDED AT 2.0 TSF
PACIFIC SOILS ~~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-24
i•
I~
I•
'•
,•
•
•
•
~
~
•
COMPRESSIVE STRESS IN TSF
~.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910
:.-._. --~ ~..~.->
- `- ----- - - -'- -~ . __-- .._.; ----
- - --- -- -
.'- ~~ - '--- ' -- . _. ,-.
-- - --
. ; ...___. . __--- • •--; ,......
-1 0 __. --- -- • _.. --
_- - ._ _
- -- - -- - •-
-- - -
0 0 _ . ,_...._ __~ . .._; ;
~ 1.0
x
c9
w
x
Z 2.0
w
c9
Z
Q
v 3.0
H
z
w
U
~ 4.0
w
a
5.0
6.0
7.0
8.0
borin9
depth (fl.) ary
densiiy (pc~ ~0 5~c~
moist. (%) ~~ sa~
satur. (%) -zoo
sieve (%) group
symbol t ical names
YP
HS-18 10.0 116 7.0 44 40 SM Silty Sand (Qaq
REMARKS: WATER ADDED AT 0.53 TSF
' ~ PACIFIC SOILS ~
CONSOLIDATION CURVE ~ ENGINEERING, INC.
W.O. 700007-C PLATE C 25
•
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
I•
~~
I~
I•
~
•
•
~
~
•
a,ooo , . ,
3,800 ---~_.. .__ ..........._ _- ---- ---!- .-.._._ ---
3,600 . _ ._. . '- - - -:-- -- -- ; ---
3,400 -. ~.._ '--_ __:_ __._ ~. - =_- ----._ _. __._
3,200 '-
3,000
2,800 - _.;._ . . _ _ . -. . . ._ . -- --- • --- - -- -.-
2,600 ~ ~ _ _.. :- - - . - - - - - ,: ---'- • --
N i
y 2,4~~ ' ;, ~' , . ' : ~~ ~ : ~ ,-C . _._.. _. ~_ ~~.
~ ~: ' '~. ~ "_":'- ..--~__.; ,._". ___.._..:.'_. ____~.-'_
. '- __
~ 2,2~~ _. ..
W . _ __ _. __ ,_ _ . , - : - -
~ 2,000
~ • :-- ~ -= '--- -; ,.;_ . _ :._. ;.__.
. ._
..._ _
~ 1,800 ,.. _... _ ;._ .
,_- +--. _ a .._...
,- --
Q ' ' - -= • -- - --- '_
w
' _.. ._ . '~_
~ 1,600 ; - . _._. ;....._
1,400 ` -- -- -- .. . .:... ,.__ . ~.__ _ ~ ~.._, . !~
1,200 - - -, ---- - - - -- - --
1,000
800 - - - - -- - - - - - , - - -- - --
~- -- -- ---', - . -- --• --- - -
600 - •i __ _ _ - -- - ~-- -'- ----
400 _ ~.- ~___... ; : -_. _ . _-._,_ +--
200 - -- - - - ~- ---
-+ - - -- ...... ,__ ,._ _ _ _ __..._ _ -- -- ---- - --
p _- ,
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs.lft 2
borina
depth (ftJ dry
tlensity (pc~ in situ
moist (%) -200
sieve (%) group
symbol
typical names
BA-01 9.0 21 SM Silty Sand (Qal)
COHESION 200 psf.
FRICTION ANGLE 35.0 degrees
~ PACIFIC SOILS ~~"j
DIRECT SHEAR TEST ENGINEERING, INC.
W.O. 700007-C PLATE G26
~
•
•
~
I•
I•
~~
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
4,000
3,800
3,600
3,400
3,200
3, 000
2,800
N z,soo
y 2,aoo
~
~ 2,zoo
W
~ 2,000
~
a 1,800
w
~ 1,600
1,400
1,200
1, 000
800
600
400
200
0
~ p 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft z
~~
~•
I~
COHESION 350 psf.
FRICTION ANGLE 34.0 degrees
~ PACIFIC SOILS `~~
DIRECT SHEAR TEST ENGINEERING, INC.
W.O. 700007-C PLATE C-27
boring depth (ft.) dry
density (pc~ in situ~
moist. (/o) -200a
sieve (/o) group
s mbol t ical names
YP
BA-02 3.0 47 SM Silty Sand (Qal)
~
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
4,000
•
3, 800
~ 3,600
3,400
~ • 3,200
' 3,000
, 2,800
~ N 2,600
N 2,400
I ~
~ 2,200
w
~ 2,000
~ ~
' Q 1,800
w
~
1,600
1,400
w 1,200
1, 000
SOC
' ~ 60C
40C
~
~I r
~•
I~
p 500 1,000 1,500 2,000 2,500 :i,uuu s,ovv Y,v00
NORMAL STRESS Ibs.lft 2
dry in situ -200 group I t iC81 n8me5
boring depth (ft.) density (pc~ moist (%) sieve (°/a) symbol YP
BA-05 9.0 34 SM Silty Sand (Qal)
COHESION 350 psf.
FRICTION ANGLE 37.0 degrees
~ PACIFIC SOILS ~(~1
DIRECT SHEAR TEST i ENGINEERING, INC.
W.O. 7Q0007-C PLATE C-28
•
•
•
•
'•
I•
•
I~
~~
~•
~~
4,000
3,800
3,600
3,400
3,200
3,000
2, 800
N 2,600
N 2,400
a
~ 2,200
w
~ 2,000
~
Q 1,800
~ 1,600
~,aoo
i,zoo
1, 000
80C
60C
40C
~nr
COHESION 300 psf.
FRICTION ANGLE 34.0 degrees
~ PACIFIC SOILS ,~Z.
DIRECT SHEAR TEST ENGINEERING, INC.
W.O. 700007-C PLATE C-29
DIRECT SHEAR TEST
Undisturbed
~ ~
- _
-- ; -- ---- - ---
-- -
-
--
~ _
--- _ _._ _.
;
;.... _ ,
._. ---
:-~
-
+-
- _ ...__ . __..
,
,
,
---~
- ..-
- ~_
_ ~._
-
-.-.
~ ,
-
•-.
_.._.
--
---- . _. _.
-
- ~ - - ~ -
;,
~
; ,
,,
:,
,
~-
- ----
-i - -
- --- -
T - ,-
-- -
-- - --
-- -- - - - ---
; ~ , . _
0 500 1,000 1,500 2,000 2,500 :i,VUU :s,~uu v,v00
NORMAL STRESS Ibs./ft 2
boring
depth (ft.) dry
density (pc~ in situ
moist. (%) -20o
sieve (%) group
symbol t ical names
yp
BA-06 10.0 111 3.6 23 SM Silty Sand (Qal)
~
I DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
•
~
~
•
~
•
~
~
•
a,ooo
s,soo - - '-- -- -- - - -
3,600 - - - - - - - - - ---
3,400 ;_ _.__ ._. ~- _ . -~- '-- --- '..._ ~i
3,200 - -- , - - - - - - -
3,000
2~800 '''. . - - - - - ''- - . _ . ', ' T '. i
_ _ _ -- ' - -- --- -
N 2,600 - ;- - -- --- - - '-~
N 2,400 -- - - -- - - -- -- --~ -
~ - ' - -__ ._ . . i-- • ° '- - ~ --- - -: _ ~ ~_ .~-__
~ 2,200 - -- - - - - - - -
w ~ ~ ---~ . ..;.. . .... --~-- --=- ~- 'r--- ---- . -.,:. . :.---
~ 2,000 ,
u~ i : - - - - - -
Q 1,800 i :.~ ~_ __ --- - , -
~ ~.. - -- . _ ~. _ .-- -- -
~ 1,600 -, ~- - - - - Q - - - --
1,400 ~ - - -- -- - - -- -- --
1,200 - -- ~ - - -
1,000 i ,
800 - ' , !- - -_-- --- , - '
o - - - - -
600 - - - - - - - - - -- -
400 __- -- - ' - _- _-, ~ - - T. ~_
200 - -..: , --,-- - ~ . ~ ~- -=--- - - -, -~--
; ~ ; --- - -+__. __. __ _ _, _ -'--- --- - --_
0
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs.lft 2
boring depth (ft.) dry
density (pc~ ~n sic o
moist. (/o) -zoo
sieve (%) group
symbol t ical names
Yp
BA-08 4.0 47 SM Silty Sand (~alj
COHESION 350 psf. ~
FRICTION ANGLE 33.0 degrees I
~ PACIFIC SOILS I63
DIRECT SHEAR TEST ENGINEERING, INC.
W.O. 700007-C PLATE G30
i
•
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
I•
I•
~
•
~
~
~
a
•
•
a,ooo '
s,soo ' -- '-= - - -- - - --
3,600 - - , - - -- ~ -- --- -- --~ --
3,400 r ~ ------- - - -- - - - - -
3,200 i . ._ , i - _ - - - _ - -- - - - -
-- __.. . .__
_ _. ~_. __. . , ___ _ . _._ _ -; :- .
3,000 ; i ,
-T-; i ;--. . .... __ ..
~ ~- -- -- - '
2,800 : ... -- -=-- ~ -- '- -- - --• _.__. .
N 2,600 ; • - ------ - - - - - - -- : --,- --, - -
x ,
~; 2,400 . .. . . - .:_- . . ._ :---,-- ---- ---- ;_
~ _;.. . _ _. - . . . . :-_ - --- _ . . _--e __[_ .
~ 2,200 : ' , _ - -..
, ' , ;..- -- - -.... ;_ : ,_ .._._.
w - •- . ._. _.... _ .
~ 2,000
u~ - - - - - - -
Q 1,800 ;.. : _.
,. - __ ,._
;_ - • •_ ~ e .__ _ . , -- - -
~ 1,600 - - . . ._ ' . ;_ ' __
,- - - - ,- ,
1,400 -,- . -~~_...._~ . ,..._ _ . ~._ ----- - '•-- - : - - --
~ ' "_' -'_ ! __- __ r t'_" . :..." ' y- ' "_'_ _'"'.. "' __""_' . _"__'
1,200 - ; --- -- - - - - -
_ ~ ;-_; : - e. ; 4- , _._ _.... . - ----
1,000 ~ ;
800 i -- a_ - ~ . - - -,-- -- --
- - - -a- = - ~ -- - -• ,- --
600 T ----- - - - -, - - -
;
400 ' '- - -- -- -- - - - - - -- -
200 - ~ --- ----- =--- '- . _ -_ __ _ .: . .__. .. .
: ----.._ ._. . :_ ..... __ ._.... ------ ----
, ~----.._. ,
0
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft z
boring depth (ft.) d~
densit (pc~ in sit p
moisi. (/o) -200~
sieve (/a) group
symbol t ical names
YP
BA-09 6.0 62 ML Sandy Silt (Qal)
COHESION 450 psf.
FRICTION ANGLE 30.0 degrees
~ PACIFIC SOILS
DIRECT SHEAR TEST ^ ENGINEERING, INC. ~G~
W.O. 700007-C PLATE C-31
•
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
~
a,ooo
~
3,800
3,600
3,400
~ 3,200
3,000
2,800
• N 2,600
x
y
2,400
~
~ 2,200
w
~ 2,000
~ ~
a 1,800
w
~ 1,600
1,400
~ 1,200
1,000
800
~ 600
400
200
0
~ 0 500 1,000 ~,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft z
~
boring depth (R.) dY
densii (pc~ ~n s~i o
moist. (/o) -zoop
sieve (/o) yro~P
symbol t ical names
YP
BA-10 4.0 26 SM Silty Sand (Qal)
COHESION 250 psf.
FRICTION ANGLE 34.0 degrees
~ Ke
~ PACIFIC SOILS
DIRECT SHEAR TEST ENGINEERING, INC.
~ W.O. 700007-C PLATE C-32
i•
DIRECT SHEAR TEST
Undisturbed
~ a,ooo
3, 800
3,600
3,400
~ 3,200
3,000
2, 800
~ N Z,6OO
~ 2,400
~
~ 2,200
w
~ 2,000
• v~
Q 1,800
w
~
1,600
1,400
~ 1,200
1, 000
' 800
' ~ 600
400
200
0
~I ~ 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft 2
~
boring depth (ft.) dry
densif (pc~ in situ
moist. (%) -200
sieve (%) group
symbol t ical names
YP
BA-11 5.0 98 5.5 35 SM Silty Sand (Qal)
COHESION 200 psf.
• FRICTION ANGLE 35.0 degrees `~
~ PACIFIC SOILS
DIRECT SHEAR TEST ENGINEERING, INC.
~ W.O. 700007-C PLATE C-33
i.
I•
~•
I~
~
•
~
~
~
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
a,ooo ~ . ,
- - - - - - - -- - r--~ - -
3,800 - - - ---- ; - - --
3,600 - --- -- - - - - -- - -
3,400 ~- ' - - -- ~-- - . ~_ . '-- -- - --=
3,200 _ . -- -- - - -;-- ~ -- ;--- -- ~_
3,000 ; ~
2,800 '- ----- ' :._. '
- '; - -;.-- , __ .._. _.. . ;....- --- ---
N _ '_ _ '_'
2,600 ;._ - . - :_ . :.- -.-. :- - ,i
~; 2,400 ; -- ,, ..- -- ' '-- ;_ -- = --- -
~ -- ~ - . :-.._ _ _ . . . ~ ...._ __ , i
- s -- - - ,, --
~ 2,200 - . •-_ _ _ :- _ . T._
;. ._ _.__. ..-
_ _ ' _ _...._ ~...,._ _ ~__• :_
w
~ 2,000 ,
~ . . . -- -. . __ - ------- _._: . -- . ..-- ---• --
Q 1,800 , ;__ . __ i ~-
w .._ _.... ._._ . . _ -
~ 1,600 . -- - __ . :_ ;.._. ; :-. ~__ '
1,400 = -- --- -- .... ~ ..._ . . :.- '-- • • - • '- -- '-'- - i-..
1,200 -- ---- -- =-- - - ; -
- - - -e=-- • - - ' '- - - - - -----
1,000 ~ ~ ,
800 - -- - - - - - - - - . -- -
600 - -'-- -- - = - ~.. _ .._~_ ~.-- - --- -~ ,- ---- -
400 ' - --~ - - -- - - -- -- --' - - -- -=
200 -~- - - -- __ -. . !_ _~. . ._~ . ~ - -'-- -
; - - ---- -- --- - - ---:.._
Q , -- -, -- ---- -
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft Z
boring depth (R.) d~
densit (pc~ ~n s~c o
moist (/o) -zooo
sieve (/o) group t ical names
symbol YP
BAC-07 12.0 42 SM Silty Sand (Qal)
COHESION 500 psf.
• FRICTION ANGLE 37.0 degrees \~'~
~ PACIFIC SOILS
DIRECT SHEAR TEST ~ ENGINEERING, INC.
W.O. 700007-C PLATE C-34
•
i•
~•
~~
,~
•
•
~
•
~
DIRECT SHEAR TEST
Undisturbed
4,000 ~ ; !. ; ', ; ; '
-- -- -- - -~ ---: -- - --_ .-_,_ . .. _ ___ - -
, ~
3,800 - - ---- - - -- -- - -- ,----- --- ----
3,600 _ -- . -- -- _
3,400 -_ --- r----_ ._._ _;-- ------- - ~..._.. _...._.. __-. - --_
3,200 ;- -- •-- -- • __. __ _ _ -,- ---. - _
_;.. ' _ =- - - -- __ . _ -- • ° '- _
, i
3, 000
2,800 - '- !..... . .__._ . '- - .--- -_ --- ----~ ---
2,600 ~ :- ._._ ----. ,__ . , ,- _ ~--- - -_ ; ;__.._. _ _...- - '--
N
~ . . . . ~ ~ ~ . : ~. ~.
N 2,400 , ;- r _ _......._ . . ..--- -- -- -- __._.. . _._.._ - -:--
~
9 _. - . ,-- ._._ _ - _; _. _ _._ . __...
_
_ __ ---
~ 2,200 •- _- -- •- -- ,
_ -- ;-
~
_ ....._ _ . .__ . __
W • •- - - --
~ 2,000 , , , ;
~ • _ _.- :-- - _. _= - ,- --_ . _. . . ._..__ , -
i ~
Q 1,800 -r ... -- - - -- - - - - --
W ... -- - -
- - _- -- . . -
i ' . -, ~-- . `.- `--
~ 1,600 - - - - - ~ - - -
1,400 - - -- _.. ._- ~-- - -- -'-- t___ _- --- ._ . _;.....
. ._ ._._ . _. __ --. _... ,.- •- _.
1,200 - - - • -- - - , --
- - - -- - - _ _ _ ..--
1,000 ~
~ -- - - -
800 -- -' -- - ;- -- --
600 ' ' -• ' --- - - - - - - -- -
400 - - - -- - ,- -
200 - ----, - - _
-._,_ :.._. __ _ _
. - _..._:.- ... - - - - -. .- ----
~ -;
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs.lft 2
boring depth (ft.) dY lP~
densit in situ~ )
moist. (/o -20(o
sieve /) group
s mbol t ical names
yp
BAC-11 10.0 102 12.3 39 SM Silty Sand (Qap
COHESION 150 psf.
• FRICTION ANGLE 38.0 degrees ``
PACIFIC SOILS
DIRECT SHEAR TEST ~ ENGINEERING, INC.
~ W.O. 700007-C PLATE C-35
!~
I•
•
~
'i~
•
•
~
~
DIRECT SHEAR TEST
Remolded at 90% Relative Compaction
4,000
3,800 - - ~- - - - - - ---- -- i ,.
. _ .._ --- -+ - - __, __ ;
~ - - -- - -
3,600 - _._ T- T
3,400 _i . :... 1__ __ :__ _ '.. __ ; '
3,200 ; i - - - - - - --
3,000 -
. ~. . _ . . . , ~ --
2,800 . - -- - - • - -- - '
2,600 :. ,_ _ ._. -. _.. . i_ , _ ----- i ;
N - __
~; 2~4~~ ' - _ __"____ - __ __ _ __ '__ -
~ . ` _ . - -' - --- - - - -- _ • --- . _: . : _ _
- i_ ;
~ 2,200 ' ;.. :__ . ;_ ,.... - - - _- *- -.-
w ' -'
;- ---- ;- - ---- - ,.._ ;...... ..._..; '_
~ 2,000 ,
~ , . i_ ._---- - - -: '- -- - __~ . _...s- --
Q 1,800 :... . .__ ..- __; _ ~ _l.._
--._.. _ ~ _..-- ---,.._
_... _ ..---- _; . - -- . . __.
w
~ 1,600 . _ . . . - . . ,.--.
1,400 ' ~ :_ _..__ . ;_ . !- - ..._ ',
1,200 ' ---..- ~- -- ~ --- --~-- - ! :
1,000 -- -
800 - - -o - - - -
--- ; ~ - -- ,-- - - - - - --
~
600 - --- - -- - - -
400 - ------- - ~-
200 '. : ;, _ _.. . . _. ; _ ,. ' ' __. -, - ~- - -
- ;._ _.._. ,._.. ._._.:.. ..._ . _.:._.. ,.-- ~ -- _ _;_..
0
0 500 'I,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft 2
boring depth (ft.) dry
density (pc~ in situ~
moist. (/o) -200o
sieve (/~) group t ical names
symbol YP
HS-77 3.0 43 SM Silty Sand (Qal) ,
COHESION 100 psf.
FRICTION ANGLE 33.0 degrees `~o`
•
~ PACIFIC SOILS
DIRECT SHEAR TEST ENGINEERING, INC.
W.O. 700007-C PLATE C-36
~
i•
I•
I•
~~
~
•
•
r
~
~
~
DIRECT SHEAR TEST
Undisturbed
a,ooo ~ , , ; :
s,soo ~ _~- - ~ - - ~ -- --_
, ~ ~ ~ :
s,soo ~- i - -- - - - - - - -
~
;;
3,400 -=- '--- - - '_ I
:...__ _. _........ ;.._..
_ - _ ~- -- ---. , _ . __ . :_ _ ';__
3,200 - - ,- --- - - - - --• -- ---
3,000 ~ j - - -- - - - - - -- -- -
__ __ _._ .__.
. ._ .. ---- - ,_ :_ ~
2,800 ; - - - • - - .
_ __ _ _ _
r . _.. . __. __~ :__; .._ ___'~ - . !
N 2,600 - i r - : --- -_ . ,-
~ ; ~. T . ~ ~ ; :.
N 2,400 ; ---- - - - - - - -- -- -
._. ._... .. -- -
~ 2,200 ~--- - : i--- - -- - -- - -
~ 2,000 , ' - ---- ,- - - - -
~ - - - -- -
v~ _ ~ ~ ~ - -- - -
,_ -
Q 1,800 i ;_ . . ...._. :_ _- +_ _- . - ;--
i
~ -_ . ._
~- - -- .
~ 1,600 ~ . • ;;-' • :; - --- - ~- - - ; -.. . ;. _
1,400 =, ` - i----i - -- -- - - ,
1,200 ~i '_I ! ' ~ - - - - _ -- - --
~ .-
i i ' ' I I ' ,,, ' . , ~ . ~~..
~ - -- 7- - ' - - --- -- - .- , -
1,000 ~ ; : ~ ,,, ~
I_. --~ ~ ,= •--- - -- ~- -- --
800 - ~ ~ ,, - ~; - - -
i r ----- j -- , -i-=- - - - -
600 - -- , - -- - --- -
400 - - - - -- - - --
200 -- -- - - - - - - - - ' -
---.- ;._ _.___. ;..._ . ._ . -..._ ~..- -----'- --
0 -
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
NORMAL STRESS Ibs./ft z
borin
9 depth (k.) dry
densit (pc~ in situ~
moist. (/o) -200o
sieve (/oi group
s mbol
typical names
HS-78 7.0 106 102 49 SM Silty Sand (Qal)
COHESION 25 psf.
FRICTION ANGLE 33.0 degrees ~0
\
~ PACIFIC SOILS
DIRECT SHEAR TEST ENGINEERING, INC.
W.O. 700007-C PLATE C-37
I•
I~
~~
I•
I~
i`
~
`
~
~
.
eaw~v: ~t :kaaaac
u
a
~
U~ ~ M
t s, , I
m~ U
~~ ~ w
¢ ~ ~' Q
~ < Q ~
6 °
W Z
~
~ ~ ~~ ~
~ ~
~ L ~;
~c
U LL ~.
LL Q
c~oo
a~ 3
~~ ~BI~~ ; i ~
v I ~.
N ~
~ I ~ ; ': I
I W I ~ ~ ~ I
i I, !
I~ I v~ ~ ~ ~ ! i
. ~ i _ ~ i~
I I ~
I ~ i I
< ~I I II f~ 'i ~~i ~~i
JII i 4 ~ ~~' ! I
i-
` I I '~
-_- ~
cOi ! f
GI ~ - ~
I - f
_I ~'. ~
~: ~; '-.. ,---_!I
~ ~I :- - '~: ' ~~ `~ ,.~ '~~
_, ,
. _
____'_.-____._____ .___._.____.._.__.___.__.:- . . a .;
' , i_
~ :, -.c..c.:.
j
__.-..=m.>~.~.rsa+~- . •~.--•-~-••^ Aanm~.vwwee+~ar.ew.
J
~
Z
a
~,;
L I v+
N
~- E
0
c
~ o
` 031t~t'13t~ 1Ni~tlz
i•
~~
•
~
~
~
~
~
~
•
w
ol ~
~
'Iz
~~i
Gi Q
:al
~
I v,
zI ~
~' c
~ c
0
u
~ ~
~
F-
V
, rn
U - ;~ M
~ '.~ ~ U
,
~ ~ ~
~~ w
< ~
~~~a
u ~ J
< < a-
~°
u?
~ ~ ~~~
~
~
~ `
¢ ~ C
~o
U 4 C~
u Q
c p
~ a ~
i
~~y !
, , _ , , : : ,. •
~•k~£; .. . . __ ~ ~ _
i•
I,~
~
~
~
~
~
~
~
03MtIY13k' 1N?JNse
c
0
~; ~ +~ ~
~~'c U
I•
I~
~
~
~
~
f
~
~
~
~
a3MIti3Y 1K3~Nz
_ ~
J
~
~I
oi c
^i L
<!
?~
~~
~7I C
~i
v,
LL
Z
L'
~ ~
`~ cl
~ U
z
o ~ ~~
~ ~ ,,
Q ~
I
w
m ~
~
u`' ~
G ¢
~~ ~ f
~ ~ ~ ~
l~ ~ u; i
w=
~
a ~ ~ ~f
W
~ J ~.
~ ~
N
~ I
I (~ _ `J
~ O
~
~ ~
L
Z ~ a ~
~ ~ ~ ~ (
~{
N
Y
E
c
c
O
V
'a
~
I•
~
~
~
~
~
~
~
~
03M/fKiif' 1li3'J!-i''
~,
~
O
U
w
a
~
~
oI ~
U~
I G
~~~
~I
'y! ~ C
~~
W
I `r I
Z~ Y
v
~-i E
c
I c
I p
~ U
I a
T
I
~~ n~
J
~~I ~i
U ``' _`'
i ''~~
~
`~ e U
i Iq
Y r,
c~ ~
~
~
W
z
~ L
~ t
h ~ ~
~
~'
`
~ ~
0]
Z
Q ~
~
~ ~ C
°
~i ~
LL ~;
=
~, -
; ~r e ~~i
I
W' J
~ - r
f
N
v
fk ~
`~ .
-
G
; ~ LL P
l
Z LL ~ O
i
~! ~
4
~ s
7
~~ ~ ~
LL1 !
~ ~ i I
1 c^ i
c i. c - -
.. ~ qht:"s:~~tr ..k'i._:d;-.-
i~
ia
s
M: KYH COMPPo`I1' PHOh~ NO• ~ 714 549 8375 Mar. 02 2004 10:42f~l1 P3
KYH Co. Analy tical Laboratory
3621 N'. MacAr~hur Blvd., # 11~, ,SnaroAnn, CA 92~D4 Tel: ~/(4J 549-5824 Faac: ~l14J
ANALYTICAL REPORT
Client Name: Paafic 5oils Engiueering, Tnc. Report Number. 245679R
Address: 710 E. Packridge Avem~e, S~ite 105
PSE W.O. Plumber:
700007C
Corona, CA 92E79
Contact Person: Mx. Duane Irwin P.O. Number. 'He~bsi
Sample Results
~
~
1
~
•
~
Client ID Lab ID Date
Requesled qnalysis Method ResuR
(96 wt) MDL
(% w[)
BA-2 (3) 19592 OZ-27-21w4 Ghloride Contem Ca1Tra~w 422 d1.001 0.001
BA-2 (3) 19592 02-27-2004 Sulfatc Coatent CalTrans 417 e0.00] O.Obl
BA-2 (3) 19592 02-27-2004 Alkalinity EPA 310.1 0.001 0,001
BA-10(4) 195y3 03-0]•2004 Chlo7ide Con[e~n Ce1'I`rans 422 ~O.W] 0.001
BA-] 0(4) 19593 03-01-2004 Sulfate Contern CalTrans 417 0.001 0.001
gp_7 0(4) 19593 03-01-2004 Alkalinity EPA 310.1 0.001 0.001
BA-`6 (4) 19594 03-0]-2004 Chloxide Content Ca117ans 422 0.0(12 0.001
BA-8 (4) 19594 03-O1-2D04 Sulfete Content Ca17Yans 419 <0.001 0.001
BA•Q (4) 19594 03-01-2004 . Allsaliniry EPA 310.1 O.OU4 O.OOI
BA-1 (9) ]9595 p3-O1-2004 Chloride Content CaPlYavs 422 <0.001 0.001
BA-1 (9) 19545 03-0]-20p4 Sulfate Contatt Ca1TYws 417 N.001 0.001
BA-1 (9) 195')5 U3-0]-2004 Alkalinity EPA310.1 O.W3 O.ODI
, ~; ~~1
~ ~,~Q^~/ ~ MarcL 2; 2004
• Aut o'ied Signature RepaA Date Pege ] nE 1
~
PLATE C-44
i•
~.
PHO~ N0. : ~14 549 8375 Mar. 04 2004 0B:S1FlM P2
KYH Co. Analytical Laboratory
362/ W. MacA,thur Bh+d.. #ll R, Santn Ana, (:it 92704 Tel: (714) 549-58?4 Far: ~/14) 549-8375
ANALYTICAL REPORT
i
OM : KYH COhfr'RNY
Clierrt Name: Pacific Soils ~~ing,lnc- Report Number: 2456891t
Address: ~10 E. Padc:idge Avenue, Strite 105
Corona, CA 92879 pSE W.O. Numbe~ 700007C
Contad Person: Mr. Duane Irwin P.O. Number: Veibal
Sample Results
•
~
•
~
~
~'
Clierrt ID Lab ID Date
Requested Analysis Method Result
(% wU MDL
(% wq
gp,- y(6) 19610 03-01-2004 Chloride Cantcni CalTrans 422 0.003 0.001
BA - Q(6) 19610 03-O1-2004 Stiilfabe Content CalTrans 417 0.002 0.001
BA-9 (6) 19G10 03-01-2004 Alkalinity EPA31U.1 0.001 0.001
BA - 5(9) 1961 I 03-02-200A Chloride C4ment Ca1'n8ns 422 G0.001 0.001
BA - 5(9)' 19611 03-02-2004 Sulfate Cmue,nt CalTrans 417 0.003 0.001
BA - 5(9) 19611 03-02•2004 Allc~linity EPA 31U.1 0.001 0.001
March 4, 2U04
Aut a'zed Signature Report Daie
`~~
Page i. of 1
PLATE C-45
i•
~s
APPENDIX D
~~ Probabilistic Peak Ground Acceleration Assessment
Iw
•
s
~
•
`~~
S PACIFIC SOILS ENGINEEFi1NG, INC.
,~
Work Order700007-C
May 21, 2004
,~
APPENDIX D
PROBABILISTIC SEISMIC HAZARD ASSESSMENT
~i
Introduction
Page D-1
The 1933 Long Beach, 1971 San Femando, 1992 Landers, and 1994 Northridge earthquakes
particulazly illustrate both regional seismicity and the need to incorporate seismic considerations
~i into project design. Current standazds of practice and regulatory agencies dictate such [for
example, the State of California Seismic Hazards Mapping Act (SHMA) of 1990 (Division 2,
Chapter 7.8, Public Resources Code)]. PSE therefore provides herein probabilistic estimates of
free-field peak horizontal ground accelerations (PGA) that hypothetically could be generated by
i
earthquakes along regional and local seismogenic faults, that aze essential to assessment of
hypothetical site effects such as liquefaction and dynamic settlement, and that may also be useful
to some dynamic structural design methods. The PGA estimates given in this appendix are based
• on guidelines set forth in the 2001 California Building Code (CBC; ICBO, 2001), CDMG (1993,
1997), Martin and Lew (1999), and the California Geological Survey Note 48 (CGS, 2003).
Selection of the appropriate design seismic pazameters depends upon the kinds of geotechnical or
~ structural analyses (for example, static or dynamic), the kind and sensitivity (for example,
schools, hospitals, essential services facilities vs. normal-risk) of proposed structures, and the
level of "acceptable risk" deemed suitable for the project. Normal-risk structures usually include
those where the UBC (ICBO, 1997) concern is primarily life and safety during rather than
i
structural performance after a major earthquake. Accordingly, the study site requires the
estimation of the Design-Basis Earthquake (DBE) that is the PGA that has a 10-percent chance of
being exceeded in 50-years.
•
This firm reviewed published and unpublished literature about regional active faults, and about
the potential for and possible magnitudes of future seismic events along those faults. Also,
articles that empirically relate proximity of postulated earthquakes to possible on-site PGA were
r reviewed. In this appendix, principal regional active faults and earthquakes are briefly described,
and the probabilistic methodology used to estimate PGA is then spelled out.
~~
i~ PACIFIC SOILS ENGINEERING, INC.
i•
Work Order 700007-C
May 21, 2004
Ii
Page D-2
Active Faults
Several definitions of an active fault--in this case seismogenically active--have evolved over the
yeazs (Ziony and Yerkes, 1985). For this discussion, an active fault as defined by the Califomia
~' Code of Regulations (Title 14, Sec. 3601 a) is:
"A fault that has had swface displacement in the Holocene (about the last 11,000
years hence constituting a potential hazard to structures..."
~
Further, for this seismic hazards assessment, faults that have little or no potential for
surface rupture ("blind" faults), but aze yet deemed capable of generating at least
moderate earthquakes, are included. Examples of same include the Elysian Pazk
• system of blind thrusts that gave rise to the 1987 Whittier Narrows earthquake and the
Northridge system of blind thrusts that produced the 1994 Northridge earthquake.
Re¢ional Faults
~ Because the site is located in a seismically active region, numerous active faults capable of
generating moderate to large earthquakes lie within ] 00-kilometers (Jennings, 1994; Dolan, et
al., 1995; Petersen, et al., 1996; Blake, 1998, 2000; Cao, et al., 2003). Those faults, listed in
~ Table A are taken from Petersen, et al. al. (1996) and Blake (2000) as recommended by Martin
and Lew (1999); and possess both proximity and potential to give rise to moderate to lazge earth-
quakes, hence inducement of long-duration ground motion at the study site. Table A is taken
i from a search of the Blake (2000) fault file that is based on the generally accepted Petersen, et al.
~~ (1996) list of active California faults. The differing distances to the faults shown in the table
stem from inherent differences in the methods used by the authors of the various attenuation
relationships (Boore, et al., 1997; Campbell, 1997 Rev., and Sadigh, et al., 199'7).
I•
`~\
S~ PACIFIC BOILB ENGINEERING, INC.
is
•
i
~
I~
~~
I~
~~
Work Order700007-C
May 21, 2004
TABLE A
CLOSEST DISTANCES BETWEEN SITE AND FAULT RUPNRES
NO. FAULT NAME
_'__'___'_ 0ooxe et al.
_'____'___'__ Campbell
"__'_'______ Sadigh et al.
_'_"_'___"'_'
'_'_
1 '___"__'______'______'_
ELSINORE-TEMECULA 0.6 0.6 0. 6 km
2 ELSINORE-JULIAN 12.7 12.7 12. 7 lan
3 ELSINORE-GLEN IVY 30.3 30.3 30. 3 ]an
9 SAN JACINTO-ANZA 35.3 35.3 35. 3 lan
5 SAN JACINTO-SAN JACZNTO VALLEY 35.6 35.8 35. 8 km
6 NEWPORT-SNGLEW00~ (Offsnore~ 94.9 99.9 99~ 9 ~
7 ROSE CANYON 97.0 97.0 9'7. 0 km
8 SAN JACINTO-COYOTE CREEK 55.6 55.6 55. 6 lan
9 EARTAQUARE VALLEY 57.'7 57.'7 57. 7 km
10 CHZNO-CENTRAL AVE. IElsinore) 59.2 59.2 59. 2 ]an
11 SAN SACINTO-SAN BERNARDINO 63.1 63.7 63. 1 km
12 SAN ANDREAS - San Bernazdino 69.6 69.6 69. 6 km
13 SAN ANDREAS - Southern 69.6 64.6 69. 6 I~n
19 WHITTIER 65.9 65.9 65. 9 lvn
15 CORONADO BANK 72.0 72.0 72 .0 lan
16 PINTO MOUNTAIN 75.5 75.5 75 .5 lan
17 NEWPORT-INGLEWOOD (L.A.Hasin) 77.6 77.6 77 .6 ]rn~
18 SAN ANDREAS - Coachella 78.9 78.9 78 .9 km
19 PALOS VERDES '79.6 79.6 '79 .6 lan
20 CUCAMONGA 86.1 8fi.1 86 .1 km
21 BURNT MTN. 86.7 86.7 86 .7 km
22 ELYSIAN PARR THROST 86.E 86.5 87 .2 km
23 ELSINORE-COYOTE MOUNTAIN 88.? 88.3 88 .3 lan
29 SAN JACINTO - HORREGO B9.`_ 89.5 89 .5 km
25 SAN JOSE 90.9 90.9 90 .9 km
26 EUREICA PEAR 91.2 91.2 91 .2 km
27 CLEGHOAN 91.7 91.7 91 .7 km
28 COMPTON THRUST 91.9 88.'7 89 .3 km
29 SIERAA MADRE 99.3 99.3 99 .3 km
30
_'_ NOATH FRONTAL FAULT ZONE (West)
_'_'___"_'_____"____'___'_'___'_ 95.6
____'________ 86.7
__'_____ 67
_____ .6 km
___'____"____'
Page D-3
\~~
I~ PACIFIC SOILS ENGINEERING, INC.
i~
~ Work Order700007-C Page D-4
May 21, 2004
•
Local Faults
As spelled out in Section 4.1 and 43.1 of the main text, the Elsinore Fault Zone is the nearest
mapped active fault to the site. The two main fault branches in the Wolf Creek area; are the
I'•
Wildomar fault on the northeast of the site, and the Wolf Valley fault on the southwest of the site
(Kennedy, 1977).
Soil Profile Types
~
The underlying soil profiles are important variables used in typical ground acceleration
attenuation formulae (Boore, et al., 1997). Usually the chazacteristics of the upper 30-m of the
underlying soil/bedrock are estimated based on either Tables 3 and 4 from Boore, et al. (1997)
or subjectively judged when employing the Campbell (1997, revised) and Sadigh, et al. (1997)
methodologies.
Based on the results of the subject site investigation, PSE judges that the subsurface soil in the
II ~ site vicinity, corresponds generally to the Boore, et al. site class D(shear wave velocity of about
250 m/sec), and would fit in the Campbell (1997, revised) alluvium and Sadigh, et al. (1997)
deep soii categories.
. Probabilistic Peak Horizontal Ground Acceleration (PGA)
In recent years, particulazly since 1998, the standard for seismic hazazd (in this case PGA)
assessment has increasingly become probabilistic-driven for both "normal" and for at least some
"high-risk" structures. That is, the State of California (for example, Petersen et al., 1996; Martin
~ and Lew, 1999; R. Sydnor, personal communication, 2000), and the California Building Code of
2001 (ICBO, 2001) have directed the industry towazd or required probabilistic ground motion
analyses. The rationale and basis for that direction is beyond the scope of this document; the
I~ reader is so referred to the listed investigators.
Probabilistic methods of seismic risk determination attempt to account for uncertainties or
likelihood in recurrence intervals, sizes, and locations of hypothetical earthquakes; and are
~ increasingly being used for engineering analyses (Blake, 2000; Martin and Lew, 1999).
Probabilistic analyses thus provide levels of hypothetical free-field ground acceleration for a finite
~gJ~
I S` PACIFIG SOILS ENGINEEFING, INC.
•
•
Work Order~00007-C
May 21, 2004
Page D-5
exposure period. For example, a commonly accepted ]evel of risk is the aforementioned DBE.
That is, a PGA with, statistically, a 10-percent chance of being exceeded in 50-years. That PGA
estimate is sufficient for most geotechnical or structural engineering analyses. However, the State
~ of California (Califomia Division of Mines and Geology, 1993; Califomia Geological Survey;
CBC, 2001) requires that the more conservative UBE (10-percent chance of exceedance in 100-
years) also be derived for analyses of critical structures such as schools, hospitals, etc.
'~ One useful probabilistic method is FRISKSP that was derived from public domain USGS
software by Blake (1998, 2000). Details of the mechanics for FRISKSP can be obtained from
i Blake, and are not recited herein. The fault inventory used to calculate hypothetical free-field
', ~ probabilistic ground motions by FRISKSP for the subject site is in essence the same as derived
by the State of California for use in their seismic hazards mapping program and by Petersen, et
al., (1996), except as revised by deletion of the Compton thrust. FRISKSP selected 39 such
faults within a 100-km radius (Table A).
•
For comparison, three attenuation relationships, Boore, et al. (1997), Campbell (1997, revised),
and Sadigh, et al. (1997), were used to compute probabilistic horizontal free-field peak ground
accelerations (Plates D-2 through D-4). Table B presents the calculated horizontal ground
I~ accelerations representing the ] 0-percent chance of exceedance in 50- and 100-years (DBE and
UBE).
I•
~•
TABLE B
lnvesti ators DBE
BOORE, ET AL., 1997 0.75e
Cam bell, 1997, 0.67
Sadigh, et al., 1997 0.77g
Avera e OJ3
I~ It should be noted that these hypothetical numbers are based on recent standards of practice (for
' example, Martin and Lew, 1999, Petersen, et al., 1996; Cao, et al., 2003) and thus differ from
~~~
~ PACIFIC SOILS ENOINEERING, INC.
i,~
~ PROBABILITY OF EXCEEDANCE
BOORE ET AL(1997) NEHRP D(250)1
~ • •
0 ~
0 yrs 50 rs
~^ ~
A J A /1
~ ~~~
90
• .-. 80
~
0
`~
~ 70
~
~ ~ 60
c~
~
° 50
a
• °'
U 40
C
a 30
a~
~ ~ 20
X
W
10
•
•
•
0
0.00
4`~~'
PLATE D-2
0.25 0.50 0.75 1.00 1.25 1.50
Acceleration (g)
I•
PROBABILITY OF EXCEEDANCE
CAMP. & BOZ. (1997 Rev.) AL 1
~• ~ 0
0 yrs 50 yrs
0 ~
,. . ,. ,.
100
90
• .-. 80
~
0
T 70
~
• ~ 60
c~
~
° 50
a
• °; 40
~
~ 30
a~
U
• ~ 20
X
W
10
•
•
•
0
0.00
~a~
PLATE D-3
0.25 0.50 0.75 1.00 1.25 1.50
Acceleration (q)
•
•
PROBABILITY OF EXCEEDANCE
SADIGH ET AL. (1997) DEEP SOIL 1
• ~ 0
0 yrs 50 yrs
0^ ~
_ . ,.,. _ -
•
•
•
•
•
•
•
•
100
90
~. 80
~
0
T 70
~
~ 60
~
° 50
a
°' 40
U
C
-`~0 30
a~
~ 20
X
W
10
0
0.00 0.25 0.50 0.75 1.00 1.25
Acceleration (q)
1.50
~~,1
PLATE D-4
•
Work Order 700007-C
May 21, 2004
Page D-6
•
numbers derived from past standazds of practice. Owing to abundant knowledge gained from
recent earthquakes, as well as from recent and ongoing geological and seismological
investigations, the sciences aze expanding so rapidly that in some cases industry and govemment
~ generated seismic guidelines can be obsolete afrer only a few yeazs.
The ma~cimum free-field PGA should not necessazily be used in empirical engineering formulas
currently in use to determine earthquake-resistant enaineerina design. Page and others (1972)
I~ also noted that a single peak of intense motion (maximum or peak acceleration) might contribute
less to cumulative damage potential than multiple cycles of less intense shaking. Further, the
Califomia Division of Mines and Geology (1997) cautions that the seismic coefficient "k" is not
I~ equivalent to peak ground acceleration, and that peak ground acceleration should not be used in
pseudostatic slope stability analyses. Design of future improvements should be based on current
design practices for similar works in the azea. It is the purview of the engineer, based upon
information presented herein, to select suitable seismic pazameters.
•
Closure
The PGA results aze based upon many unavoidable geological and statistical uncenainties, but
yet are consistent with current standard-of-practice (Petersen, et al., ] 996; Martin and Lew,
II ~ 1999). As engineering seismology evolves, as more fault-specific geological data aze gathered;
and as legislative action continues, increased certainty and different methodologies may also
evolve. Further, predictions of times of occurrence, locations and magnitudes of as well as
~ ground response to, future earthquakes are tenuous and subjective. Only probabilities and/or
possibilities can be assessed on the basis of the existing geologic data, limited historical and
seismic records; and empirical relationships among fault lengths, distances between the faults
and the study site, and ground acceleration. However, enough seismic events of magnitude 6.0
~ or greater have occurred regionally to indicate that such events could recur within the life of the
subject development.
I•
`~
~ PACIFIC SOILS ENGINEERING~ INC.
i•
Work Order 700007-C Page D-7
May 21, 2004
•
Aaaendix D
References
1. Abrahamson, N.A., and Somerville, P.G., 1996, Effects of the hanging wall and footwall
~ on ground motions recorded during the Northridge earthquake: Seis. Soc. Amer. Bull v.
86, n. 1B, p. 593-599.
2. Blake, T.F., 1998, 2000, FRISKSP: A computer program for the probabilistic estimation
of peak acceleration and uniform hazard spectra using 3-D faults as earthquake sources,
~ v.4.00: Thomas F. Blake, Newbury Park, California, 199 p.
3. Boore, D.M., Joyner, W.B., and Fumal, T.E., 1997, Equations for estimating horizontal
response spectra and peak acceleration from westem North American earthquakes: A
summary of recent work: Seis. Res. Let. v. 68, n. l, p. 128-153.
~ 4. Bullard, T.F., and Lettis, W.R., 1993, Quaternary fold deformation associated with
blind thrust faulting, Los Angeles, Basin, Califomia: Jour. Geophys. Res., v. 98, n. B5,
p.
5. California Division of Mines and Geology, 1993, Prepazation and review of
engineering geologic/seismic reports for hospital and school sites in California:
• Seminar at Newport Beach, February 27, ] 993, unpaginated.
6. Califomia Division of Mines and Geology, 1997, Guidelines for evaluating and
mitigating seismic hazards in Califomia: Spec. Pub. 117.
7. California Division of Mines and Geology (CDMG), 2001, Seismic hazard zones,
~ official map, Prado Dam quadrangle: Map scale: 1:24,000.
8. Califomia Geological Survey (CGS), 2003, Checklist for the review of engineering
geology and seismology reports for Califomia public schools, hospitals, and essentia]
services buildings: Calif. Geol. Surv. Note 48, 2p.
~ 9. Campbell, K.W., 1997 Rev., Empirical near-source attenuation relationships for
horizontal and vertical components of peak ground acceleration, peak ground velocity,
and pseudo-absolute acceleration response spectra: Seis. Res. Let. v. 68, n. 1, p. 154-
179.
~ ] 0. Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C.J., 2003, The revised
2002 California probabilistic seismic hazards maps, June 2003: Cali£ Geol. Surv. Web
Page.
11. Crook. Jr., R., Allen, C.R.. Kamb, B., Payne, C.M., and Proctor, R.J., 1987, Quatemary
geology and seismic hazazd of the Sierra Madre and associated faults, western San
• Gabriel Mountains in Recent reverse faulting in the Transverse Ranges, California: U.S.
Geol. Surv. Pro£ Paper 1339.
~~~
~ PAGIFIC 501L5 ENGINEEiiING, INC.
•
Work Order700007-C Page D-8
May 21, 2004
•
12. Davis, T.L. Namson, J., and Yerkes, R.F., 1989, A cross section of the Los Angeles area:
Seismically active fold and thrust belt, the 1987 Whittier Narrows earthquake, and
, earthquake hazazd: Journal of Geophysical Reseazch, v. 94, n. B7, p. 9644-9664.
~ 13. Dolan, J.F., Sieh, K., Rockwell, T.K., Yeats, R.S., Shaw, J., Suppe, J., Huftile, G.J., and
Gath, E.M., 1995, Prospects for lazger or more frequent earthquakes in the Los Angeles
metropolitan region: Science, v. 267, p.199-205.
14. Hauksson, E., 1992, Seismicity, faults and earthquake potential in Los Angeles, southern
• California, in Pipkin, B.W., and Proctor, R.J., editors, Engineering geology practice in
southem California: Assoc. Eng. Geol. Spec. Pub. no. 4.
] 5. Intemational Conference of Building Officials (ICBO), 2001, 2001 Califomia Building
Code, Volume 2, sttuctural engineering design provisions: p. 2-30-2-35.
• 16. Jennings, C.W., 1994, Fault activity map of Califomia and adjacent areas, with locations
and ages of recent volcanic eruptions: Cali£ Div. Mines and Geol. Geologic Map No. 6,
1:750,000.
17. Martin, G.R., and Lew, M., (editors) 1999, Recommended procedures for implementation
of DMG SP117 guidelines for analyzing and mitigating seismic hazazds in California,
~ Committee organized through SCEC, Mazch, 1999, 63 p.
18. Mueller, K.J., 1997, Recency of folding along the Compton-Los Alamitos trend:
Implications for seismic risk in the Los Angeles basin: EOS Transactions of the
American Geophys. Union, v. 78, p. F702.
~ 19. Page, R.A., Boore, D.M., Joyner, W.B., and Coulter, H.W., 1972, Ground motion values
for use in the seismic design of the Trans-Alaska pipeline system: U.S. Geol. Survey
Circular 672.
20. Petersen, M.D., and eight others, 1996, Probabilistic seismic hazard assessment for the
State of California: Cali£ Div. Mines and Geol. Open-File Rpt. 96-08, 33p.
•
2l . Sadigh, K., Chang, Y., Egan, J.A., Makdisi, F., and Youngs, R.R., 1997, Attenuation
relationships for shallow crustal earthquakes based on Califomia strong motion data:
Seis. Res. Let. v. 68, n.l.
• 22. Shaw, J.H., and Shearer, P.M., 1999, An elusive blind thrust fault beneath metropolitan
Los Angeles: Science, v. 283, p. 1516-1518.
23. Shaw, J.H., and Suppe, J., 1996, Earthquake hazards of active blind-thrust faults under
ihe central Los Angeles basin, California: Jour. Geophys. Res.; v. 101, n. B4. p.8623-
8642.
.,
~
~~
• PACIFIC 501L3 ENGINEERING, ING.
i•
Work Order 700007-C Page D-9
May 21, 2004
24. Somerville, P., Saikia, C., Wald, D., and Graves, R., 1996, Implications of the Northridge
earthquake for strong ground motions from thrust faults: Seis. Soc. Amer. Bull. v. 86, n.
] B, p. 9115-9125.
~ 25. Suppe, J., ] 983, Geometry and kinematics of fault-bend folding: Amer. Jour. Sci., v. 283,
p. 684-721.
26. Working Group on California Earthquake Probabilities, 1995, Seismic hazatds in
southern Califomia: probable earthquakes 1994 to 2024: Seism. Soc. Amer. Bull., v.85,
no. 2, p. 379-439.
•
27. Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E., and Vedder, J.G., 1965, Geology of
the Los Angeles Basin Califomia -- an introduction: U.S. Geol. Surv. Prof. Paper 420-A.
28. Ziony, J.I., & Yerkes, R.F., 1985, Evaluating earthquake and surface faulting potential, in
Ziony, J.I., editor, Evaluating earthquakes hazards in the Los Angeles region -- an earth-
• science perspective: U.S. Geol. Surv. Prof. Paper 1360, p. 43-92.
•
•
•
•
•
~ql~
~ PACIFIC BOILB ENGINEERING, ING.
s
Work Order700007-C
May 21, 2004
UNIFORM BUILDING CODE
1997 Edition, Seismic Parameters
Page D-10
~ The closest fault to the subject site is the Wildomaz fault (Kennedy, ] 977) or the Temecula
segment of the Elsinore fault zone (Blake, 2000), which is classified as B type fault for the
, Uniform Building Code. This fault is predominantly right lateral/strike slip. It has a maximum
magnitude of 6.8 and a slip rate of 5.00 mm/yr. Presented in the table below are the 1997
~ Uniform Building Code Seismic Design Parameters for the subject site, for soil profile Sp.
SOIL PROFILE: Sp (alluvium/fill)
•
~
~
r
J
~
TABLE'D-1 -.
£ w SEISMICDESIGN PARA_METERS (Soil Type SD) _
Seismic Parameter Recommended Value UBC -1997 Chapter 16
ab e
Seismic Zone Factor (Z) 0.4 16-1
Soil Profile Type So ~ ~-J
Seismic Coefficient (Ca) 0.44Na 16-Q
Seismic Coefficient (C„) 0.64N~. 16-R
NearvSource Factors (N,) 13 16-5
NearvSource Factors (N,) 1.6 16-T
Seismic Source Type B 16-U
~q9i
~ PACIFIC 501L5 ENGINEEFING, INC.
i•
i•
~•
APPENDIX E
~ Slope Stability Calculations
•
•
•
•
~
•
\~'~
~ PACIFIC SOILS ENCdINEERING, INC.
i•
--- - - 0
`r
~
i
i ~
• i
~ '
!,
' 0
. . . _.. _._.. _ . . _
_ ..
~
_._ N
I
~ ~I
oI
o~
,
I
~
o.
~I ~
, O
~ ~!
_. . . ..- --~------------------- - .~. . . ... ~. ... .. .. . .
_
v ~ o L
. -- o d
..
_
N! ~
~
.,
~ ~
'
-
~ O
10 ~,
!, '. . ' L
~ .` N
Q ~ m
C ~ ~a
C~ rn ~ ~ .p
d
\
w
'-'~'°
W I ~ =
~ f
6
.
~+ H ~' . ~ .. ___ .. \' _
_ _._._ .. . . _.. _>_ ... ..
~.. ._ .. . ._ O M ~
N N
r ~ C ~
G1 ~ \ ~C d
L
Q.U :
m ;
~ a ~
~~ ~ y h-
LL
~
fn m ~ ~~ ~.
N Ia
~`
~ c,
~ m
LL~: ` Jm
• ~ N ~ ____ _
.. J!'~ U
' , m ~
O Q U
,
_ . .. _ ... . . . .... . . ..
a ~,. ~ o . . . _. . . . . . . . .
~i;d~z° __
, <o
C
U
_ .
it! 9
T LLI N ~
U~I ~i O d p~ O . . I Q
U o I I. = c a m' . ~~
' ~~~ ~
r Q,
' LL Q.. ~ , i. 0
~
o
O~~ioa . ' ~
~
O i ~; ~~wo. ', LL
O U:I td ao . .
W ~~ o ~ . _ ._ _ _ ..
. .. ._ . .__.. .
ti
~ . . . .. . . .. ... .... . . ~ o
~
a rv
. ~ w
i
O
; , ~
~ ~
, m
~
~
,
w I: ~3~0~ ~
' ~
Z
I~ UN
~7aN
3
'm
'
. W
.
«V ~ U
~ ~~
UJ
'
tN
n~~
F~-
U !~~
~
,
il_m . .. .. ..
. _ .
: .. o
. _. .. . . . .
-.0 QO~
"N~Z N
_ ~ _
• i
~ y ^ ti
fn~~~~~~~~~om
.
LL(~ M C'I C') t'i M C> [7 C'i th ,~..
. ~IOJ]U9CI~OIL~-.~
h.
~__ _.____.___"_ _._ ____- ,
~'--_- _ _ _- -__._ " _--'-_"' _-'-'__-~"" _ __ ' __ "__ _ O
N O W f~0 V Cl
N I¢
I
• ~ ~ +
y
~ I
~q~
~ PLATE E-1
i.
0
---- -- ~
~
.
0
_ _ __ _ _ ~ ~
~
. ~
0
e
0
y° ' v
~
. •N N , . . .. . i ~
~ ~ o .c
._ _ . . . ... .... ... ...._~....._ . _ . . .. _ . . ._. _ ~ o m
~ _ ~ ~ ~ . ; ~ ,' ~ ~
~
, Q °' ; . . ~ ~, c
V - R
ir ~ '. ! ~
~ ~0 S ~~ ' . ~p
y q. I d
~ C ' W
O W' ~.
~ !? ~ a
I~ ~v°,__ -. °a~ NE
d o c N
ul ~ ' - __ ~ •E y
~ a ~ ~, t
d>. i i m oP ~ LL T
G_ro ?o: Nm
~ ~ ~i >r'.~ ~ ~ »
~ ~ ' ~ n r
~ ~ J ~, P. , m ~
~ d :. ~W. ..... .... .. . ... ... .. __ . _ . . ._._ ' . ....__. ' O a O
~ a', JN; ..__, ~p y A
~ . o ~ U
nj LL =: i a
U I = _- . ~
~ ^O ~, Fj m . . ~ i r
O. N.` 00 ~ w
. Z
U o,' a f'n ~ in
w
r ~ ,~ `o°~ mo . ~ : I
~ m 0
~ U c~c~c L
O w i;_'~Qam . . . .... .. . . ...... .... . _ .. _ . . __. O p
~ a ;! LL ~ . .. . ..._.. . ~
O~ i~l p n o' ....-~ ~6
I~ fn ~~ ~ U N O ~ LL
, Z III L d a~ " .
~ ~ C
~ p :j ~-
W ' a .
F ~' m3~o
N U U)
C) ~~°~
~7
~'. ~ . .. . _ O
N
0
i ~3 ~N
O `- n N
r~~~
~ ~
_ a, .
pao~
fnFZ
= ti
N
~~Q LL~
I n
`-'_.____..
-_- ___ - _. ___-__' -_-.._ -__-_._" __. _ . . _~ O ~
• N O a~0 t~D __~ __"_"_-"-_- N ~
~ r
h
~
\~
~
PLATE E-2
i•
SURFICIAL SLOPE STABILITY
I•
•
•
•
SLOPE SURFACE--.
~-~-
- Pw
__ _ Fd < z
< -__-~- _ _ - ~ _
- ^ -- Ws-Ww v-~______-~-
~ ---~ -- -
<- _ ~; ~~ _ " Fr ~>
~ - ,-; _
_ __ - a
~~''',~ FAILURE PATH
+
~y;
FLOW LINES
Assume: (1) Saturation To Slope Surface
(2) Sufficient Permeability To Establish Water Flow
~
Pw = Water Pressure Head=(z)(cos^2(a))
Ws = Saturated Soil Unit Weight
Ww = Unit Weight of Water (62.4 Ib/cu.ft.)
u = Pore Water Pressure=(Ww)(z)(cos^2(a))
z = Layer Thickness
• a = Angle of Slope
phi = Angle of Friction
c = Cohesion
Fd = (0.5)(z)(Ws)(sin(2a))
Fr = (z)(Ws-Ww)(cos^2(a))(tan(phi)) + c
Factor of Safety (FS) = Fr/Fd
•
~
~
Given: Ws z a phi c
Calculations:
Pw u Fd Fr FS
3.20 199.68 200.00 435.12 2.18
~`~~P
~ Pacific Soils Engineering, ~~~. PLATE E-3
li
I•
'•
APPENDIX F
~~ s Liquefaction Calculations
•
!
•
~
•
~
~q~~
• PACIFIC SDILS ENOINEERING, ING.
i•
Work Order700007-C
May 21, 2004
APPENDIX F
LIOUEFACTION ANALYSIS
Page F-1
I~ A liquefaction analysis was performed for the site based on data gathered from cone
penetrometer (CPT) soundings. The raw data from the CPT's was inputted into a computer
program called LiquefyPro by Civiltech. Data from the CPT soundings is presented in Appendix
B(CPT-1 through CPT-30). The program uses the Robertson and Wride method to analyze
liquefaction and the Tokimatsu and Seed method to analyze dynamic settlement. The program
generated Plates F-1 through F-30. The calculations used the following constants: 0.73g for site
acceleration (Appendix D), 6.8 for the magnitude of the earthquake (Appendix D), and a
groundwater depth of 25 feet below existing grade (Section 4.4). The calculations assumed that
five of the upper soils was removed and replaced with non-liquefiable fill. Per Special
Publication 117, a factor of safety of 1.0 was used for settlement based on the Ni~bo~ values.
w
~
r
•
O
`~~
~ PACIF~C SOtLB EN6INEEFING, INC.
~ LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
s Hole No.=CPT-1 Water Depth=25 ft
Raw Unit Fines ShearSt2ssRatio
qc fc Weight % p
28.020.14 105
'105.8 0.69 '105
84.970.72 105
~ 67.99 0.61 '105
37.520.49 105
' 42.09 0.55 105
~ 41.630.65 105
4'1.31 0.63 105
42.370.51 705
33.280.33 105
34.7 0.39 105
38.11 0.4 105
j . 31.47 0.43 '105
26.98 0.53 "105
28 0.53 105
35.430.35 105
59.180.65 105
'122.91.09 105
78.680.79 105
39.070.5 105
35.950.52 105
33.760.7 105
41.620.47 105
~~i ~ 41.790.86 105
. 53.350.79 105
70.961.03 '105
. 51.480.79 105
36.61 1.08 705
20.68 0.92 '105
29.971.17 105
' 32.011.37 '105
39.031.44 105
28.431.47 t05
3'1.151.4'I 105
I~ A 39.711.65 105
129.61.37 '105
15022.01 '105
146.22.39 105
75.362.08 105
37.811.7 105
i 44.011.95 105
52.151.7 105
62.422.07 105
148.7 7.75 105
~ 110.62.63 105
145.32.27 105
269.82.32 105
326.4 3.26 105
192.1 2.06 105
87.542.38 105
~
Shaded Zone has Liquelaction Potential
~
)
~
~
CIFIC SOILS ENGINEERING Work Order 700007-C
~
Magnitude=6.8
Acce/eration=.73g
Factoro(Satety Settlement
2 01 5 0(inJ f0
S = 1.30 in.
Piate F-1
~~
I~' ` LIQUEFACTION ANALYSIS
i
Wolf Creek Phase 2
- th=25 ft Magnitude=6.8
~ Hole No.-CPT-2 WaterDep
Acceleration=.73g
Raw Unit Fines Shear Stress Ratio Facfor of Sa/ety Settlement
c (c Weight % 0 2 0 7 5 0(in.) 10
4
I ~
I
~ ~05
105
105
105
105
105
105
~ 705
105
105
105
5
10
105
105
105
~ 105
t05 C
105
~
~ 105
105
• 105 C
C
105
105
105
~ 105 ~
~ ~105 I
705
105
105
105
l ~
Shaded Zone has Liquefacfion Potential
~
~ )
~ 7
CIFIC SOILS ENGINEERING Work Order 700007-C
!
$ = 2.24 Il1.
~
Plate F-2
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-3 Water Depth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unft Fines Shear Stress Ratio Factoro( Safety Settlement
qc /c Weight % 0 2 D 1 5 0(in.) 10
azw o.a ~os uo~c
e>as aa3 ~os raw
• 5p.1~
2889 013
009 1p5
10.5 NOLp
No~p
158] ~Oa 165 Noty
3C.39 01t 105 WLp
2].Ot O.II IDS Wl0
fi8.13 025 f05 NO~p
29]B 0.11 105 Nalp
]29
~ 01< 1p5 NoLO
fl515 O.Q 105 NoLd
BB.BB 0~1 105 NOIq
• 1CB.6
13a.3 O51
O.fi] 105
10.5 NoLy
NoLd
lae ] p.fi6 105 NoL4
118~ OA9 105 NOLQ
]]<0 03] 105 NOLq
6G5 OtJ 105 NOLQ
53 B3 0.38 105 NoL4
J305 O<J 105 NoLa
'
29 H OA~ 105 NoL4
3895 0.0.5 10.5 NOIA
8)3 068 105 NoLp
• 5358 ~63 105 NoLp
~888 ~55 1p5 NoLp
198 ] 0.9] 10.5 Nola
162.0 LI] ID5 3.8
110.] 1.OI 105 fi.8
IDt! 0.86 IDS B.5
]J.BB O.Y5 105 13!
~ fi]0] 0.& 105 16.3
36.% 1.t8 f65 01]
fi935 136 105 1I.5
~ ~183 185 105 90.5
&S.CB 1.W f05 3L1
t55a 209 IDS Be
Rt8] 3! 1p5 5.5
101.B 1]B 105 SB
181.5 1.11 105 ].1
395.8 t 6] ~05 ]
) 32].1 SOB 105 •5
131.8 f] 105 8 i
6] 92 192 1M 23 ~
~, . 141.5 I.B) W5 12.1
32<.5 3 105 1.1
I 199A 1.9 105 63
1114 1)5 105 1] d
t13i 233 105 t5.3
~ 01.P8 23fi tCfi 33.5
tOG.3 2.6] 105 18.6
) 1fi6.5 3.61 t05 133 1 ~'
CRR - CSR -
Shaded Zone has Liquefacfion Potential
~
)
~
)
,~
S = 2.61 in.
~\
CIFIC SOILS ENGINEERING Work Order 700007-C Plate F-3
•
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-4 Water Depth=25 ft Magnitude=6.8
Acce/eration=.73g
Raw Unit Fines ShearStressRatio FactorofSalety Settlement
' qc /c Weight % p 2 0 1 5 0(in.) 70
105 ~ i
I 105
105
~
, 105
105
105
105
705 ,
105 I
705
105
• 105
105
05
1
105 I
I I
105 ~ i
05
1
~ 105
105
105
105 '
105 i
105 !
105 ~
~
~ 105
105 ~
705
105
105 i
105
~ ~
105 ~
~ 105 I
105
105 ~
105 j
705
Wet- Dry-
. Shaded Zone has Liquelaction Pofential S= 2.59 in. ~
,~
~
•
~ n~
rr
CIFIC SOILS ENGINEERING Work Order 700007-C Plate F-4
•
' LIQUEFACTION ANALYSIS
~ Wolf Creek Phase 2
'I ~ Hole No.=CPT-5 Water Depth=25 ft
Raw Unit Fines Shear Sfress Rafio
qc lc Weight % p
2.94 0.03 105
59.8 0.24 105
82.660.32 105
~ 77.33 0.36 105
25.770.18 105
14.330.22 105
21.51 0.17 105
29.63 026 105
25.81 0.21 105
, 29.93021 ~OS
31230.3 '105
31.890.33 105
31.330.33 105
• 15.15 0.35 '105
13.39 0.33 '105
30.080.33 105
56.8 0.49 105
54.350.47 105
64.5 0.36 105
44.13 0.28 '105
' 18730.72 105
55.780.61 105
73.560.58 105
32.2 0.68 105
~ 26.02 0.88 105
44.680.55 105
5823 0.88 105
55.881.1 105
54.61 1.17 105
55.141.'I 105
' i 58.521.62 105
136.61.4'I 105
~ 189.61.52 105 ~
179.97.45 105 ~
I ~ 18527.66 705
232.9 2.34 '105 ~
241.82.14 105
226.7'1.84 '105
70.761.09 105
32.71 1.17 105
i 28.311.02 105 ~
47721.52 105 .
52.291.56 105 ~.
• 41.09t55 ~05 ~
65.091.32 105 ~.
50231.79 105 ~
37.'181.64 105 ~
25.09122 105 ~
28.091.05 105 ~
112.0172 105
i
Shaded Zone has Liquefaction Potential ~
~
~
~
)
~
CIFIC SOILS ENGINEERING Work Order 700007-C
•
Magnitude=6.8
Acceleration=.73g
Factorof Safety Settlement
2 O1 5
I
i
Wet- DN-
S = 2.2<
(J"~
Plate F•5
' LIQUEFACTION ANALYSIS
~ Wolf Creek Phase 2
I•
~~
I~
~
~
~
~
Hole No.=CPT-6 Water Depth=25 ft
Raw Unit Fines ShearStressRatio
qc fc Weight % p
97.150.39 105
174.81.59 105
531.45.56 105
51528.53 105
395.73.14 105
128.31.41 105
59.160.48 105
34.43 027 105
30.950.16 105
36.070.19 105
~ 41.64 023 105
30.520.28 105
3'1.91 025 105
43.61 0.'16 105
62.370.4 105
' S8.92026 105
6224 0.35 105
76.550.56 105
85.440.6 105
103.60.71 105
~ 85.590.64 105
57.850.7 705
86.7 0.62 105
140.1 0.97 105
144.60.97 105
> 125.4 7.79 105
120.21.05 105
150.91.86 105 ~
119.92.14 105
109.32.17 105
)
i
CIFIC SOILS ENGINEERING
Work Order 700007-C
Magnitude=6.8
Acceleration=.73g
Factoro/Safety Settlement
2 0 1 5 0(in.) 1
5=0.47in.
~
Plate F-6
•
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
Woif Creek Phase 2
~ Hole No.=CPT-7 Water Depth=25 ft
Raw Unif Fines Shear Stress Ratio
qc fc Weight % p
23.150.17 105
97.81 1.09 105
• 79.55 0.9'I 105
72.650.56 105
63.360.54 105
49.650.34 105
73.730.6 105
78.440.58 105
95.920.59 105
82.51 0.6 '105
24.450.39 105
20.920.47 105
3628 0.48 105
~ 91.340.84 105
68.61 0.66 105
29.930.45 105
49.660.59 105
134.11.47 105
157.61.76 105
150.'11.45 105
66.98 0.82 t 05
25.590.93 105
23.190.85 105
~ 29.421.01 105
18260.71 '105
52.72 1.06 '105
100.61.39 105
t332125 105
147.6 1.99 105
193.6229 105
~ 210.1 2.33 105
218.82.55 105
227.4 2.32 105
258.92.6 105
~ 191.52.06 'I05
192.51.86 105
243.'I 2.36 105
274.93.59 105
296.9429 105
329.24.17 105
~ 3197427 105
17823.52 105
222.22.73 105
280.52.84 105
~ 274.0 2.65 105
253.8 224 105
187.21.84 105
48.841.89 105
54241.75 105
62.992.33 '105
r
Shaded Zone has Liquefaction Poten~ial
~
7
~
7
~
CIFIC SOILS ENGINEERING Work Order 700007-C
•
Magnitude=6.8
Accelerafion=.73g
Factorof Safery Settlement
2 0 1 5 0(in.J 1
S=0.64in.
~
Plate F-7
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-8 Water Depth=25 ft Magnitude=6.8
Accelerafion=.73g
Raw Unit Fines Shear Stress Rafio factor of Sa/ety Setllement
qc fc Weight % p 2 0 1 5 0(in.) 10
13.980.02 105
43.980.08 105
43.630.11 105 ~
~ 50.240.13 105
42.860.14 105
3925 0.1 105 ~
44.660.17 105
63.48 0.34 105 ~
62 0.22 105 '
81.830.33 105
106.50.58 105 ,
137.30.86 105 ~
120.30.82 105 •
~ 70.67 0.44 105 ,
43.71 022 105
30.170.25 105 ~
26.41 0.43 105
36.970.5 105
18.060.44 105 .
65.67 0.46 105 '~
21.650.4 105 -
-
132.30.99 105
20121.47 105 .
• 184.51.41 105 -
237. t 'I .73 105 -
245.01.95 105 ~~~
184.71.37 105
56.361.24 105
59.57 1-'12 105
47.65 7.05 105
~ 54.031.29 105
68.361.43 105
101.81.67 105
~ 87.471.74 105
5
34.8 1.37 10
18.380.83 105
14.91 0.72 105 .
13.990.71 t05 ~.
19.930.91 105
30.571.15 105
i 52.81 '1.36 105 ~
48.187.69 105 •
59.641.7 105
~
'100.3 1.72 105
113.92.55 105 ~
106 7.74 105
59.142.32 105
196 0 3.23 106 ~
~ Shaded Zone has Liquelaction Potential
~
r )
)
~
CIFIC SOILS ENGINEERING Work Order 700007-C
•
vvei- u
S = 1.98 in.
~
Plate F-8
i•
I•
~~
~~
~~
~~
I~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-9 Water Depth=25 ft
Raw Unil Fines
qc ic Weight % ShearStressRatio
p
12.37 0.04 105
28.87 0.14 '105
23.62 0.14 '105
40.090.25 105
73.760.39 105
104 0.53 105
79.590.47 105
29.83 026 105
28.3 0.19 105
54.170.32 105
62.950.42 '105
42.760.33 105
56.170.47 105
78.750.66 105
36.340.43 '105
24.970.55 705
21.090.66 '105
68.190.49 105
188.41.37 105
199.51.72 105
' 168.11.87 105
59.141.37 105
53.270.82 105
38.821.03 105
39.830.95 105
29.261.17 105
22.150.93 105
28.871.04 ~ 05
44.961.56 105
52.851.63 105
~ 56251.88 105
72.251.8 105
89.661.78 105
48.38 1.64 105
59.022.06 105
141.62.58 105
72.982.25 105
39.681.62 105
90.91 2.63 "105
76.422.25 105
i 123.9 272 105
'165.7 3.78 105
220.64.19 'ID5
142.53.29 105
170.2 3.98 105
82.92 3.14 '105
139.6324 105
228.1 3.88 105
246.63.06 105
'185.51.84 105
~
~
i
~
~
~
CIFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acce/eration=.73g
Factorof Safety Settlement
2 0 1 5 0(in.) 1
S = 0.51 in.
~1
Plate F-9
~
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-10 Water Depth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unit Fines Shear Stress Ratio Factor of Sa/ety Sett/ement
qc lc Weight % 0 2 0 1 5 0(inJ 10
105 ~
105
~ '105
105
'105
105 ~
CIFIC SOILS ENGINEERING Work Order 700007-C
•
S = 1.08
L~
Plate F-10
Shaded Zone has Liquefaction Potential
i~
I•
~~
~~
~~
~~
~
~
t
~
7
~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-11 Water Depth=25 ft
Raw Unit Fines Shear St2ss Ratio
qc ic Weight % 0
1
1
1
1
CIFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acceleration=.73g
FactorofSafety Settlement
2 01 5 0(in.) f0
S = 1.99 fn.
~
Plate F-11
'!
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-12 Water Depth=25 ft
Raw f/nit Fines Shear S[ress Rafio
qc !c Weight % 0
~ss o.ae ~os waa
».ee ow ios rvow
~21J 0.03 105 NMp
• 55.18 OW f05 NoLp
SBB) 008 10.5 NoW
60.81 O.lfi 105 Nolp
05,{6 OA2 1p5 NoLp
9~59 O.CB 105 1'bLG
BI.S] OOB 165 Nolq
~ 01.58 00> 1~5 lb~4
188.9 03B 105 Nalq
2~BS 1.Z2 165 Nolq
~mz zn ~os 'ww
• Z91.8 1.BJ 105 Nolq
158.8 1.fe 1D5 NoLV
f05.3 OA2 105 Nolq
IOB.2 OS 1D5 NoLV
12B.B 1.Ofi 105 MoLO
1~2.0 142 105 Nolq
' 1585
159.0 139
].1J 105
105 NoLV
NoLV
1fi8.0 2)5 105 NoLV
3i9.] 3]~ 105 Nolp
• Y]ZB 1B) 105 NoLp
NB.) 2.05 165 NoL-0
R50.) 3.3J t05 NoLO
1W.1 22] 105 >.]
1~.5 3.OB 105 5.]
13B.8 t.Bfi 105 J.1
2W.8 1.5I IDS 9.t
) t2C.5 1 B 105 2.fi
3103 2.11 105 25
I&5.5 2.35 1M 2.5
~ 20B 8
J01
1 3.38
3&5 105
1M 1.5
3
.
383.8 2.BB 105 3.)
]18.9 0.81 1Q5 58
ZJ5.0 5.59 105 10]
1)].1 lJ2 ~OS II.e
1/OA 89D 165 206
) f19.B l86 IDS 1~
155.1 lW t05 1]
ue.e as~ ~os ~u
, sa.s
ieu ~.33
szs ios
ios ii.i
n.z
206.1 S.1B 105 II.6
300A B.OB tp5 119
180.1 5% 105 tfi
1&d fiAfi 105 19.6
155.1 ).AS 10$ T3.)
) 108.5 8 ~9 105 303
~~
~~
~~
Magnitude=6.8
Acceleration=.73g
FactorolSa/ery SetNement
2 0 1 5 0(in. ) 1
Shaded Zone has Liquefaction Potential
)
)
CIFIC SOILS ENGINEERING Work Order 700007-C
~
l
Wet-
5 = 0.07 in.
v'~
Piate F-12
•
i~
I•
~~
~~
~~
~~
I r
~~
~~
I~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-13 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc (c Weighf % 0
78.970.1t 105
90.8 0.78 '105
60.2 0.59 ~05
57.240.55 105
75.540.8 105
88.141.01 105
121.2'1.12 105
242.93.55 705
122.93.63 105
773.34.83 105
~ 88.34 2.53 105
66.52 2.'19 105
96.'153.3 105
108.75.16 105
83.463.81 'I05
' 292.87.65 105
185.35.1 705
223.2 6.77 '105
240.37.8 705
97.574.7 105
~ 206.8 6.86 105
238.75.82 105
54.452.48 105
92.633.15 105
78.183.33 105
~ 467.4 7.03 '105
616.87.45 105
611.75.53 105
573.56.13 105
596.4 9.76 105
7
5
CIFIC SOILS ENGINEERING Work Order 700007-C
, Magnitude=6.8
Acceleration=.73g
Factoro/Safety Settlemenf
2 0 1 5 0(inJ 1
S=O.OOin.
2`~
Plate F-13
•
Shaded Zone has Liquefacfion Potential
i•
I•
~ `
~~
~ '
~~
~
~
~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-14 WaterDepth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unit Fines ShearStressRatio FactorofSafety Settlement
pc fc Weight % 0 2 0 1 5 0(in.) 1
CIFIC SOILS ENGINEERING Work Order 700007-C
S = 0.63 in.
v,v
Plate F-14
~
Shaded Zone has Liquefaction Potential
i•
I•
~~
~
~
~
I
~
~
~
)
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-15 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc fc Weight % p
105
)
CIFIC SOILS ENGINEERING Work Order 700007-C
Magnifude=6.8
Acceleration=.73g
FacforofSafety Sett/ement
2 O 1 5 0/inJ 7(
S = 1.03 in.
2\!
Plate F-15
•
Shaded Zone has Liquefaciion Potential
i•
li
~ `
~~
~~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-16 Water Depth=25 ft
Raw Unit Fines Shear Stress Rafio
qc lc Weight % p
I • i
1
1
1
1
1
1
~ 1
1
1
~ j
1
1
1
1
1
~
~
)
~
CIFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acceleration=.73g
Factoro/Safety Settlement
2 0 1 5 0(inJ 10
S = 1.09 in.
Z~~`
Plate F-1 6
•
Shaded Zone has Liquefaction Pofential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-17 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc ic Weighf % p
33>J 0.1] 105 WLp
1034 1 W 1p5 NOLp
' SB.t5 tW 105 NoLO
. 39.88 082 f05 NaLQ
45.B9 062 105 NoLa
~J.)) 0)B 105 NOLQ
S6J3 t3J 105 NoLp
SSBb Ofi9 105 NoLq
~803 OBJ 1p5 NoLq
353] Ofi5 105 NoLp
C156 ~62 105 NoLp
80.45 0.95 105 NoLO
~fi66 ~.85 105 NaLp
. 61)9 O)1 iM Nalp
fi1.B6 0)] 105 NaLp
30.&5 0.$ 10$ NOL4
<216 0.63 1p5 NaL4
62 Z3 108 105 Nalq
]BM O81 105 NoLy
]]38 ~i] IDS NaLa
sa.ea o>e ios rwW
as.zi a.ee ~os No~u
825) 116 10.5 NoLp
~ 1fi8.0 2]a 105 NoLp
308.6 3.)3 105 NoLp
16R 3 1.5 105 NoLp
53~8 1.39 105 335
35.W Lt8 105 31]
2<.tfi 1.11 105 @6
3].91 1 dd 105 ~a ~
31 2) 13C 1Q5 36.1
2a5] 133 105 ~a.9
3333 153 105 3i.1
~ 36.R t83 t05 3].6
B3we tSt 1a5 15.B
2]3B 39fi 1C5 ]
PS.t 3.33 105 L9
t3~b 2.t2 tM15 tl
•f.83 1.61 105 15
)3.8 f.88 10.5 u
6533 23] 105 3]3
65.1i Rd] 105 96]
53.~t 3.43 105 Ja.1
B1
BB 3St t05 22.6
~ .
ien zs ios za
iaes zn ios n.~
B5.R2 P.6] 105 33.t
a9.89 L5~ 105 29.8
~933 2.06 105 35.5
80.66 2.2 1~5 Re.6
150.0 3.Sa 105 tf.9
~~
~~
~
Magnitude=6.8
Acceleration=.73g
Facforo(Sa(ety Settlement
2 0 1 5 0(inJ 1
Shaded Zone has Liquefaction Potential
;IFIC SOILS ENGINEERING Work Order 700007-C
5=0.57in.
2~~'
Plate F-17
•
i•
I~
~~
~~
I~
~
~
~
~
)
~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-18 Water Depth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unif FMes Shear St2ss Rafio Facforof Safery Settlement
qc /c Weight % 0 2 01 5 0(in.) f0
1
1
t
CIFIC SOILS ENGINEERING Work Order 700007-C
vve~- u
S = 1.02 in.
~\~P
Plate F-1 8
t
Shaded Zone has Liquefaction Potential
i•
I•
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-19 Water Depth=25 ft
Raw Unit Fines Shear Stiess Ratio
qc lc Weight % p
L9 001 105 NoLp
00.09 0~5 105 NoLa
101.0 O88 ID5 NoLp
. )OAa O.Sfi 105 NoLp
C935 038 105 NoLp
25dB 039 105 NolO
40.5~ 0.93 1p5 NoLp
]tW 0.]t 1M NoLp
33 Bt 0.31 105 NoLp
~131 0.38 105 No~a
6<91 Oi9 105 NoLd
~5& 059 105 NoLO
~t I9 0.83 105 Ntt0
• 6859 O.bi 105 NoLa
Q5] 0.5 105 NoLO
.o~e o~a ~os rvo~o
5981 oa5 IDS rvotp
1186 081 1M NoLy
1390 1.4 105 NoLp
fl8.9 0.8) tp5 NpLp
~ 85.p5 O.6C tp5 NoLp
10I.9 116 1 W NoLp
SBIt 1.11 1p5 NoLO
• BI.W 1.23 t0.5 NDLp
1882 1A1 1p5 NoLp
1]]0 L56 105 NOLp
19]2 1 ]5 105 ~ 2
'1~~A 3P 105 55
R26.5 1]a 105 2B
1533 IJE 1W 5]
~ ifi19 l~B 105 5.6
211.R 1B2 105 ~3
1~2.J 196 10.5 ].t
2350 1.5 WS 26
A tH] iP fM •~
2208 081 1M u.6
1B.83 Ofi9 105 IS
za.te osa ID5 ne
~~.t] t]3 145 38]
<3a] 1l9 f05 91.9
) 3B]] 1.63 IDS 068
~0.08 1.5 105 316
]1.98 19 105 20S
~ 6]BB R.W t05 2~.9
]BBC 1U6 tW 21.fi
1130 P.1R 105 1]2
1iB? VB WS II.5
t8i3 291 105 N.i
1233 26t 105 f5.6
tJ83 ?O t05 133
~ 3P 9 201 105 51
~
)
~
7
~
•
Magnitude=6.8
Acceleration=.73g
Facforo/Sa/ety Settlement
2 0 1 5 0(in.) 10
1~1~
Shaded Zone has Liquefacfion Potential
CIFIC SOILS ENGINEERING
Work Order 700007-C
S = 1.05 in.
2~1
Plate F-19
! LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
t, Hole No.=CPT-20 Water Depth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unit Fines Shear Sfress Ratio Factorof Safety Settlement
qc /c Weight % 0 2 0 1 5 0(in.) 10
~~
~~
~~
~~
~
~
~
t
1
1
1
t
t
t
t
1
;.IFIC SOILS ENGINEERING Work Order 700007-C
Wet- D
S = 1.40 in.
~~
Plate F-20
•
Shaded Zone has Lique~action Potential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
I•
~~
~~
~~
~~
~
~
a
r
Hole No.=CPT-21 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc ic Weight '
:,IFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acceleration=.73g
Fac[orofSafety Settlement
01 5 0(in.) f0
Wef - D
S=2.24in.
~~q
Plate F-21
I•
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-22 Water Depth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unit Fines ShearSt2ssRatio Facforo/Sa/ety Settlement
qc fc Weight % 0 2 0 7 5 0(in.) f0
~OS
105
~ 105
105
105
105
~05
105
~ 105
105
105
105
105 ~
105
105
105
105
105
~ 105
105
105
105
105
105
105
105
105
~ i05 ~
105
105
105
105
~ 105 ~
I ~ 105
105
105 ~
105
105
i `
Shaded Zone has Liquefaction Potential
~
~
)
~
CIFIC SOILS ENGINEERING Work Order 700007-C
~
vvet- u
S = 1.91 in.
~
Plate F-22
•
'•
'',~
~
~
1.5
1.44
1.41
1.58
o.~a
o.sa
0.66
1.02
1
1.41
1.76
1.51
1.66
• lJ`J.i5l.J4 -I
103.6 7.29 1
102.71.45 1
94.4 1.32 1
63.12124 1
56.171.5 1
36.88 1.36 1
22.160.97 1
44.081.71 1
21271.08 1
~ 7664125 1
96.111.68 1
8'i.6 1.72 1
32.941.49 1
33.861.37 1
72.07 1.58 1
~
~
~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-23 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc fc Weight % p
CIFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acce/eration=.73g
FactorofSa/ety Settlement
2 0 1 5 0(in.) 90
S = 3.50 in
~
Piate F-23
•
Shaded Zone has Liquefaction Potenfial
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-24 Water Depth=25 ft
Raw Unif fines ShearSt2ssRatio
qc fc Weight % p
Magnitude=6.8
Acceleration=.73g
FactorofSafety Settlement
2 0 7 5 0(in.) 70
S=2.22in.
l
CIFIC SOILS ENGINEERING Work Order 700007-C
~
Plate F-24
Shaded Zone has Liquefaction Potential
I' LIQUEFACTION ANALYSIS
I•
~
~~
I~
r
~
Wolf Creek Phase 2
Hole No.=CPT-25 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc ic Weight % p
105
105
105
i 105
105
105
81.751.3 105
88.4 2.13 105
104.61.8 105
147.32.32 105
186.2 5.48 '105
'166.5 2.64 '105
144.0 2.19 105
~
•
i
~
CIFIC SOILS ENGINEERING
Work Order 700007-C
Magnitude=6.8
Acceferation=.73g
FactorolSafety Settlement
2 0 1 5 0(in.) 70
~T
I ~
~
Plate F-25
S=2.72in.
•
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
~ Hole No.=CPT-26 Water Depth=25 ft Magnitude=6.8
Acceleration=.73g
Raw Unit Fines Shear Stress Ratio Facfor of Safety Sett/ement
qc /c Weight % 0 2 0 1 5 0(in.) >0
~~
~ ~ •
~~
~~
~ `
~~
~~
~~
~IFIC SOILS ENGINEERING Work Order 700007-C
S = 1.88 in.
~
Plate F-26
I~
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
I•
~~
~~
~~
~~
~
Hole No.=CPT-27 Water Depth=25 ft
Raw Unit Fines Shear St2ss Rafio
qc (c Weight % p
25.770.03 105
88.54 0.14 105
69 0.16 105
70.370.19 ~05
7826027 105
33.780.17 105
14.760.07 105
17.340.02 105
29.650.07 105
44.890.16 105
65.64 023 105
11'1.50.42 105
50.57 0.19 105
22.4 0.2'I 105
1.23
1.57
1.67
2.17
1.73
1.7
1.54
1.71
~.64
225
1.43
5 = 3.16 in.
~
~
:,IFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acceleration=.73g
Factoro/Sa/ety Settlement
2 O 1 5 0(in.) 1(
^q~~
`~
Plate F-27
•
Shaded Zone has Liquefaction Potential
' LIQUEFACTION ANALYSIS
I Wolf Creek Phase 2
'I ~ Ho/e No.=CPT-28 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc fc Weight % p
I~
~~
I~
~
~
~
~
~
105
105
105
105
Magnitude=6.8
Acceleration=.73g
FactorofSafety Sett/ement
2 01 5 0(in.) f0
5=2.53in.
Y
:.IFIC SOILS ENGINEERING Work Order 700007-C Plate F-28
•
Shaded Zone has Liquefacfion Potential
i•
I•
~~
I~
I~
r
~
~
~
~
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-29 Water Depth=25 ft
Raw Unit Fines Shear Stress Ratio
qc fc Weight % 0
31.140.15 105
70.940.99 105
56.041.5"I 105
51.750.87 105
45.340.66 105
48.850.56 105
53.9 0.74 105
54.5 0.88 105
49.86 0.8'I 105
45.730.79 105
43.420.73 105
41.550.63 105
42.3 0.57 105
64.770.79 105
71.821.02 105
69.'17 0.84 105
83.3 0.88 105
129.5 "1.26 105
78.660.76 105
42.660.53 105
49.'i 7 0.63 105
26.330.56 105
21.680.52 105
'19.380.77 105
28.130.8 105
54.090.96 105
43.81 0.82 105
92.151.4 105
'191.'I 1.63 105
235.01.97 105
208.52.02 '105
80.741.49 '105
65.19 1.74 '105
94.171.71 105
a2.04 7.55 '105
26.551.12 105
22.81 0.93 105
21.570.88 105
47.9 '1.62 105
46.541.98 105
34.28 1.72 105
47.361.78 105
59.54 1.95 105
43.621.98 105
69.142.34 105
82.492.06 105
60.362.34 105
136.32.84 105
8
.3 2 05
3
.12 1
:,IFIC SOILS ENGINEERING Work Order 700007-C
Magnitude=6.8
Acceleration=.73g
Facto~o/Safety Settlement
2 0 1 5 0(in.) 10
~
I ~
S = 1.35 in.
2~'^
Plate F-29
•
Shaded Zone has Liquefaction Potential
LIQUEFACTION ANALYSIS
Wolf Creek Phase 2
Hole No.=CPT-30 Water Depth=25 ft
Raw Unit Fines ShearSf2ssRatio
qc /c Weight % p
Magnitude=6.8
Acceleration=.73g
FactorofSafety Settlement
2 0 1 5 0(in.) 10
S=3.OOin.
CIFIC SOILS ENGINEERING Work Order 700007-C
~
Plate F-30
Shaded Zone has Liquefacfion Potential
•
'•
Is
APPENDIX G
• Earthwork Specifications &
Grading Details
I•
I•
I•
I•
•
~~
I~ PACIFIC SOILS EN6INEEFlING, INC._
•
PACIFIC SOILS ENGINEERING, INC.
• EARTHWORK SPECIFICATIONS
These specifications present generally accepted standards and minimum earthwork requirements
• for the development of the project. These specifications shall be the project guidelines for
earthwork except where specifically superceded in preliminary geology and soils reports, grading
plan review reports or by prevailing grading codes or ordinances of the controlling agency.
~ I. GENERAL
A. The contractor shall be responsible for the satisfactory completion of all earthwork
in accordance with the project plans and specifications.
B. The project Soil Engineer and Engineering Geologist or their reptesentatives shall
. provide testing services, and Geotechnical consultation during the duration of the
project.
C. All clearing, grubbing, stripping and site preparation for the project shall be
accomplished by the Contractor to the satisfaction of the Soil Engineer.
~ D. It is the Contractor's responsibility to prepare the ground surface to receive the
fills to the satisfaction of the Soii Engineer and to place, spread, mix and compact
the fill in accordance with the job specifications and as required by the Soil
Engineer. The Contractor shall also remove all material considered by the Soil
Engineer to be unsuitable for use in the construction of compacted fill.
•
E. The Contractor shall have suitable and sufficient equipment in operation to handle
the amount of fill being placed. When necessary, equipment will be shut down
temporarily in order to permit proper compaction of fills.
~ II. SITE PREPARATION
A. Excessive vegetation and all deleterious material should be disposed of offsite as
required by the Soi] Engineer. Existing fill, soii, alluvium or rock materials
determined by the Soil Engineer as being unsuitable for placement in compacted
fills shall be removed and wasted from the site. Where applicable, the Contractor
• may obtain the approval of the Soil Engineer and the controlling authorities for
the project to dispose of the above described materials, or a portion thereoF; in
designated azeas onsite.
Afrer removals as described above have been accomplished, earth materials
~ deemed unsuitable in their natural, in-place condition, shall be removed as
recommended by the Soil Engineer/Engineering Geoloeist. ~
2
I• PACIFIC SOILS ENGINEEFi1NG, INC.
i•
Earthwork Specifications
Page 2
~•
B. After the removals as delineated in Item II, A above, the exposed surfaces shall be
disced or bladed by the Contractor to the satisfaction of the Soil Engineer. The
prepared ground surfaces shall then be brought to the specified moisture
~ condition, mixed as required, and compacted and tested as specified. In areas
where it is necessary to obtain the approval of the controlling agency, prior to
placing fill, it will be the contractor's responsibitity to notify the proper
authorities.
~ C. Any underground structures such as cesspools, cisterns, mining shafts, tunnels,
septic tanks, wells, pipelines or others not located prior to grading are to be
removed or treated in a manner prescribed by the Soil Engineer and/or the
controlling agency for the project.
~ III. COMPACTED FILLS
A. Any materials imported or excavated on the property may be utilized in the fill,
provided each material has been determined to be suitable by the Soil Engineer.
Deleterious material not disposed of during clearing or demolition shall be
• removed from the fill as directed by the Soil Engineer.
B. Rock or rock fragments less than eight inches in the largest dimension may be
utilized in the fill, provided they aze not placed in concentrated pockets and the
distribution of the rocks is approved by the Soil Engineer.
~ C. Rocks greater than eight inches in the largest dimension shall be taken offsite, or
placed in accordance with the recommendations of the Soil Engineer in areas
designated as suitable for rock disposal.
D. All fills, including onsite and import materials to be used for fill, shall be tested in
~ the laboratory by the Soil Engineer. Proposed import materials shall be approved
prior to importation.
E. The fill materials shall be placed by the Contractor in layers that when compacted
shall not exceed six inches. Each layer shal] be spread evenly and shall be
thoroughly mixed during the spreading to obtain a neaz uniform moisture
• condition and a uniform biend of materials.
Al] compaction shal] be achieved at optimum moisture content, or above, as
determined by the applicable laboratory standard. No upper limit on the moisture
content is necessary; however, the Contractor must achieve the necessary
~ compaction and wil] be alerted when the material is too wet and compaction
cannot be attained.
2g\
I• PAGIFIC 501LS ENGINEEFIING, INC.
^
Earthwork Specifications
Page 3 •
•
F. Where the moisture content of the fill material is below the limit specified by the
Soil Engineer, water shall be added and the materials shall be blended until a
uniform moisture content, within specified limits, is achieved. Where the
~ moisture content of the fill material is above the limits specified by the Soil
Engineer, the Fill materials shall be aerated by discing, blading or other
satisfactory methods until the moisture content is within the limits specified.
G. Each fill layer shall be compacted to minimum project standards, in compliance
~ with the testing methods specified by the controlling govemmental agency and in
accordance with recommendations of the Soil Engineer.
In the absence of specific recommendations by the Soil Engineer to the contrary,
the compaction standard shall be ASTM:D 1557-91.
~ H. Where a slope receiving fil] exceeds a ratio of five-horizontal to one-vertical, the
fill shall be keyed and benched through all unsuitable topsoil, colluvium,
alluvium, or creep material, into sound bedrock or firm material, in accordance
with the recommendations and approval of the Soil Engineer.
• I. Side hill fills shall have a minimum kev width of 15 feet into bedrock of firm
materials, unless otherwise specified in the soil report and approved by Ihe Soil
Engineer in the field.
7. Drainage terraces and subdrainage devices shal] be constructed in compliance
~ with the ordinances of the controlling governmental agency and/or with the
recommendations of the Soil Engineer and Engineering Geologist.
K. The contractor shall be required to maintain the specified minimum relative
compaction out to the finish slope face of fill slopes, buttresses, and stabilization
fills as directed by the Soil Engineer and/or the goveming agency for the project.
~ This may be achieved by either overbuilding the slope and cutting back to the
compacted core, or by direct compaction of eh slope face with suitable equipment,
or by any other procedure which produces the designated result.
L. Fill-over-cut slopes shall be properly keyed through topsoil, colluvium or creep
~ material into rock or firm material; and the transition shall be stripped of all soil
or unsuitable materials prior to placing fill.
The cut portion should be made and evaluated by the Engineering Geologist prior
to placement of fill above.
~ M. Pad azeas in natural gound and cut shall be approved by the Soil Eneineer.
Finished surfaces of these pads may require scarification and recompaction.
Z~v
~'• PACIFIC SOILS ENGINEERING, INC.
•
I•
Ear[hwork Specifications
Page 4
IV. CUT SLOPES
A. The Engineering Geologist shal] inspect al] cut slopes and shall be notified by the
~ Contractor when cut slopes aze started.
B. If, during the course of grading, unforeseen adverse or potentially adverse
geologic conditions aze encountered, the Engineering Geologist and Soil Engineer
shall investigate, analyze and make recommendations to treat these problems.
• C. Non-erodible interceptor swales shall be placed at the top of cut slopes that face
the same direction as the prevailing drainage.
D. Unless otherwise specified in soil and geological reports, no cut slopes shall be
excavated higher or steeper than that allowed by the ordinances of controlling
~ governmental agencies.
E. Drainage terraces shall be constructed in compliance with the ordinances of the
controlling govemmental agencies, and/or in accordance with the
recommendations of the Soil Engineer or Engineering Geologist.
I•
V. GRADING CONTROL
A. Fill placement shall be observed by the Soil Engineer and/or his representative
during the progress of grading.
~ Field density tests shall be made by the Soil Engineer and/or his representative to
evaluate the compaction and moisture compliance of each layer of fill. Density
tests shall be performed at intervals not to exceed rivo feet of fill height. Where
sheepsfoot rollers are used, the soil may be disturbed to a depth of several inches.
Density determinations shall be taken in the compacted material below the
~ disturbed surface at a depth determined by the Soil Engineer or his representative.
B. Where tests indicate that the density of any layer of fill, or portion thereof, is
below the required relative compaction, or improper moisture is in evidence, the
particular layer or portion shall be reworked until the required density and/or
moisture content has been attained. No additional fill shall be placed over an area
• until the last placed lifr of fil] has been tested and found to meet the density and
moisture requirements and that lifr approved by the Soil Engineer.
C. Where the work is interrupted by heavy rains, fill operations shall not be resumed
until field observations and tests by the Soi1 Engineer indicate the moisture
~ content and density of the fil] aze within the limits previously specified.
2~~
• PACIF~C SOILS ENGINEEFING, ING.
''•
Earthwork Specifications
Page 5
I•
D. During construction, the Contractor shall properly grade all surfaces to maintain
good drainage and prevent ponding of water. The Contractor shall take remedial
measures to control surface water and to prevent erosion of graded azea until such
~ time as permanent drainage and erosion measures have been installed.
E. Observation and testing by the Soi] Engineer shal] be conducted during the filling
and compacting operations in order that he wil] be able to state in his opinion all
cut and filled areas are graded in accordance with the approved specifications.
F. After completion of grading and afrer the Soil Engineer and Engineering
Geologist have finished their observations of the work, final reports shall be
submitted. No further excavation or filling shall be undertaken without prior
notification of the Soil Engineer and/or Engineering Geologist.
I•
VI. SLOPE
All finished cut and fill slopes shat] be planted and/or protected from erosion in
accordance with the project specifications and/or recommended by a landscape azchitect.
~•
I•
I•
I•
I•
Z`~ `
I• PACIFIC SOILS ENGINEERING, INC.
•
N SUBDRAIN DETA
~
~•
~•
I~
I~
~
NATURALGROUND
. / ~ PROPOSED COMPACTED FILL
,~ /
~ ,!G
•••~• COLLUVIUM AND ALLUVIUM (REMOVE) •~•• -
.~
.
I '• .'~~ i
i_ •., ~
e-.,J"Tl ~' ' ~ ~ ~T-LB
~ ~ ,• r
•. .• I
~ ~~'~~~~.~..~~•
TYPICAL BENCHING
BEDROCK
SEE DETAIL (PLATE G-2)
I~
I•
'~,f
•
ti~
~ PACIF(C SOILS ENGWEcRlNG. INC.
vj VER. i/00
PL,4TE G-?
•
CANYON SUBDRAIN ALTERNATIVES
ALTERNATIVE 'A'
I•
~~
~~
Qo«
~ ~e aa~ c~
12"MIN. oDCOo~c~
~~~po~e~pG~
r p ~ G,
I I I 8 DB~~~
~ v~L.ID I oD
6"MIN. ~o op~c~
o~gQP LD
~ ~ I~ ~-~'`'I~'I-~ ~ ~-~ ~,~.
\ ~~ ~
6 MIN.
PIPE AND FILTER MATERIAL
~~
~~
I~
I•
I•
•
FILTER MATERIAL: MIN. VOLUME OF 9 FT. / LINEAL FT. OF CALTRANS CLASS 2 PERMEABLE
MATERIAL
PIPE: 6 IN. ABS OR PVC PIPE OR APPROVED SUBSTITUTE W ITH A MINIMUM
OF 8 PERFORATIONS (1/4-IN. DIA.) PER LINEAL FT. IN BOTTOM HALF OF PIPE
ASTM D2751, SDR 35, OR ASTM D3034 OR
ASTM D1527, SCHD. 40 ASTM D1785, SCHD. 40
NOTE: FOR CONTINUOUS RUN IN EXCESS OF 500 FT. USE 8 IN. DIA. PIPE
ALTERNATIVE 'B'
FILTER
MATERIAL
6 " MIN.
ROCK
PERFORATED PIPE SURROUNDED WITH ROCK AND FILTER FABRIC
FILTER MATERIAL: MIN. VOLUME OF 9 FT3/ LINEAR FT. OF 3/4 IN. MAX. ROCK
PIPE: 6 IN. ABS PVC PIPE OR APPROVED SUBSTITUTE WITH A MINIMUM
OF 8 PERFORATIONS (114-IN. DIA.) PER LINEAL FT. IN BOTTOM HALF OF PIPE
ASTM D2751, SDR 35, OR ASTM D3034 OR
ASTM D1527,SCHD.4G ASTN1 D1785,SCHD.40
FILTER FABRIC: MIRAFI 140 FILTER FABRIC OR APPROVED EQUIVALENT
NOTE: FOR CONTINUOUS RUN IN EXCESS OF 500 FT. USE 8 IN. DIA. PIPE
~ PACIFIC SOILS ENGINEERING, lNC.
\=j' VER.9/9E
Z~
PLATE G-2
6 " MIN. OVERLAP
•
~
I~
I~
I•
~~
I~
I•
~•
~~
I •
M
~
~
~ }~ ~
u. a?gw~ wo Q
° ~~o~o ~J a
w ~ ~ui wi-r~ ~~
~ Zrn~z ?~O=LL C7
~ ~J~a ~~mm~ ~~
x ao~o ~~zoz ~o
~ Uwow ~aF=w ¢~
Q p]F-~Q 2~O~Q ~Z V
U+ LLYQO..• Z~JWC~ I LLU~ ~ QJ
m H H J
W °o~r ~~w~~ I ww-- o °p J
F W W W 0 ~'m?~~ 1'~Z U U~ ~
~ ~LLa~ Ot~~p? I Q~~ Q ~2 ~
° cnw~a ~ wz~ I m<n~ ^ a~-
w x a ^a Q w wm (f~
.~ F I = m
LL dZlnz W Oa W 1- Z ~ W V!
m U ~~ p ~ ~ a Z~~ ~ I m a Z~ W~~
~O O~OW ~aa~~ ~ ac~~ LL
~00
Z~O ~w~W NWZaz~ ~ '/ U wwO ~'
wZ ~ooW xap Fw ~n
m ~ ~
~z cW>mWO LLjaa~a ~ ~~ o~~ m
wQ w~Z~ c~a~ a II ~O~
z J - ~
Q N w Q U' O Q~~ O F W 11 d W W S 7
~ O = 2 Z= U O~ LL~ J II Z w ~ L
~z ru~wv~ amaW.a~~ ~~ ~JZ W OI
vi v ~Qm2OO NII ~ ?pz ~
O ii ii V J W Y ~
o z NIW,£ ii ii z Q
WW N
z o ~ IF---~ ~ o i i ~
e o~ d n C D/zC~ Z ' N;; [~ J
ooc~ Z DD~- ~ " ~~ -~I -
= z~ W ~' - n u m
O~~N Q ~ ~L~.G~^\ N II ~I
MmLLZ Z N ~~G`~ j li ~ Q
O ~ J II ~.I
~ I I
o~o~ W ~ ~. ~ ~ _ '^
~ ~}~ J C~ ~ W~ NII J ~ \J!
~ a ~ ~ a_ ~~ w
~~j0 I I a~ II = ~
~n~w~ i ~ u >
a a ii ~
1
Oo~W w z Z
v>a i~ ~ ~
~`~-,pOa I ;n z
~xaz V ~
~`~mo N NIW,Z g ~ Z
~n N ~ Y O ,~ ~~ iv _ C~
N ~ rn Q Z :. -~ E-~ '- -~ Z
oorco w ~~C;%G ~ w
~~ J LL ~ ~ C ~ . 2 J
H H~~ Q ~' ~\~ 1 ~ ~ ~
N (A(D~W ~Z ~' i~L~~L~~ ~ ~ (q ~
r aQ~d W ''\ ' C' U ~
p ' I I .-
Z r oi Q _'~G'% I I a~ v U~
~ 1 ~~ Z ~ >
~ ~ ~ ~
N ~
y3~
•
CUT LOT
~~
~•
~.
~~
i•
I!
I•
~~
^
... .
..
• i • 5' MIN.
~
ORIGINAL GR~UN~ ..... •
........ ....~••••••• " ••'•• ........
5' MIN
OVEREXCAVATE AND RECOMPACT
UNWEATHERED BEDROCK
CUT-FILL LOT (TRANSITION)
~
7 *
MIN.
T
vND ...
GR~ ~~,.• ~ ~i
o~y~~~NP~' , . • . ~
5' MIN. I
W ~•••••• ''
••'' ~
~~ y
~
COMPACTED FILL ,, • •' ~~ i~ *
~ .•~~~. ~i MIN.
. J\~~ ~ IR~MoiEl ~~i ~i'~'~~i~
' G~~~~oRpG ~ ~~i~i OVEREXCAVATE AND RECOMPAC~
~~pS~N~RE~e ~~i~~, UNWEATHERED BEDROCK
~EP
* NOTE: SEE REPORT AND PLATE G-13 FOR CUT-FILL TRANSITION SLOPE RATIOS
DEEPER OVEREXCAVATION MAY BE REQUIRED BY THE
SOILS ENGINEER IN STEEP CUT-FILL TRANSITION AREAS
~ PACIFIC SOILS ENGWEERING, INC.
L' j) VER.9/98
PLA TE G-4
~~
,•
I•
~~
I•
I•
~•
~A
~~
~~
I•
~
N /^~
J ~ v
~ o W
~ ~ ~ ~
° o~~ Q
~ J
a
. `
¢ ~p a
a ~~r
~ ~ ~•
O ~ .
U ? O Y • _
~ w U • ` z
U Q •
Qlaim ~ U1 m L
Z~U ~ ~~ , ~ ~ Q
O Z •
~~m ' y~ ` `r ~
• J ~
~
o , ~ ~ J ,,_,
~ ' Q ~ (l~
.
, Q
a .
c~ . ~, ~ ~ p
Q • ~
2 •
z ~• o W W r-
. .
~ ~
~ W m o ~ ~~ ~ ` !~I ~. Ln
c~oo ~ \ . ~ ~~ = J fn
~=o °o o y: ~~ , II~III o ,J ~
~~> ?o ~ • v ` u~- ~ ~ Q
wo~ ~~ c~ ; ~ p
Wwa wo o . ~` J~
W W ~ N
(p X m p u_ O ~ 0- , ~ ~ ~ ~
~O~ ~° ~ ~ ~ ` IIIIII = ~
pWZ ~O a ~ I ` IIIIII- w.~
~=O ~w ~ 1 ~ ~ ~
ui U H ~
~ Q Q Z Z ~ ` ~~/~ Z
t-~~Z ~a • , X VJ ~~
Z d W p ~ •
W Q~ ~ 0 • ` Z N
~a~ ~a Z • ` ~ ~ ~
C~Ow Om O ` `~'
a~~ ~W a~ `~ ~
°QQ oZ ~°~ ` z
~~w~ ~c7 ~z \\ W
Q~U~Z ^w Op } ~` Z ~ 2
~Z ~ o~ W~ w ~`` ~ r
~ WOW aJ O~ C'Ju- ~~` `~ 1, U'
ZI-~J W ~ ~tn~ • Z K
W W O W W 7 W W ~ W
~~acn z= g~0 w
~~ w ` 2
= O= _> /
~~cnF- r-m ~~~ tG- / , 2
W
_= `
~ c~i QZdO C~- 0 ~
y w~~ O~~ ~ VO~ ~
~ oU~ uJioLL ~ ` p~c v~ m
Z ~w0 JttJ` U~ pa~ U o~i
OOu! ~~O<~ Yw ` ZwQF U ~
aa~ awo m> ~?o~ d >
z~v .
1
~~
I•
~•
~•
~~
~~
~•
~`
~~
~~
~
-~--+
0
~
.~
O
~
Q
~
~
L
~
z
a
~
d
~
Z
O
¢
~
~
Z
O
z
O
_
~
~
a
W
d
O
J
~
LL
~
W
O
r
J
J
~
0
w
H
U
Q
a
~
O
U
w
a
O
~
~
J
LL
O
W
F-
U
¢
a
~
0
U
~i
J
J
LL
0
oF
Q ~-
~O
~7 U
OF
~~
~ O
C~ ~
QO
Z ~
~w
_~
~ W
0 m
w
U
Q
LL
~
~ ~
~ ~
O ~
Z ~
~ ~
~
~
~ ~
~
J
Q
J • O ~
Z • ~ w
. ww
c~ . ~ z
~ • ~ C7
o ~ ~w
~
/ J ~
J J
T QO
• ~ ~
. ~ ~
w
. a a
.
• U =
H
W
• Z
~ ¢~
\ \
~ ~
~ ~
-~ w
a~
~
z
~ N
o=z
~a~ I
Q 0 ^
J Z
~
~jU
~~Q ~
LL W U
~ ~ ~
J
~ W ~
z
p~zo
~~a~
~ZO~ (
LL ~ N W
~ W O ~
- ~Q• H
O~Ow
~ I
a~w~a
ZZ~-I~i
rG J ~ W
~U' F I
Q ? ~ U
W~=~
>~a~
~z°o
aov~~
~ = I
~~
i~
J~` \
~~ 1
~\\/
~~%\~i\\T
/ ~~
\
\
I~~
Ir
J II
~~
=~i
= I'
~
Z
~
r
~w~
-~dW
awo
OF~
Z
W~O
~~U
Z
w W H
wow
°aa
~ ~ ~
~ w ~
~`°7O
~ ~ LL
w~v,
~oa
Q S ~
~ ~ ~
~ H
~ ~ ~.
U U ~
Y Y Z
UUQ
aa=
nc~~
cc
~
~
J
a
z
U'~
2
W
2
C~
2
W
~
~
O
w x
U °~'
~ o>
U ~
¢Q. >
~
/f `
~
~ III
`I I `
i,
^
^
~
l~
~~
I•
~•
~~
I•
~~
~~
~~
~
W ~
~ ~
O J
J a
J ~ °
z J
J~ o Q
Ll. ~ ~ Y o
( , ~ U -~ W
Z v ~ ~ W ~~ ~~U'
O ~ • ; ~ m Q ~ ~ Q ~ J
~ : N ~~ WO ~~a 00
O ~
Q Z ~ NQ \ ~W pww ~~-
`L ~ 11= w~ w~ W wU
N ~ ; y ~ ~~, ~~ c?Q~? LL~
"J ~- • ~ ~ I~~~' Wa ww~ Na
• r
m ~ • Z I-III11 ~~ ~~o =~
~ ~ ~ ~ Z Ililll wwa cnm=
~ . ~ 111= ~ia rnoz
~ . { _III O~p ~W=
~ Z ' IIIII~ wo~ _~~
~ Q ', ~ IIIIII ^ Fo~ wWw
u- w ; Ililll z m~~ W Www
O o
J ~ • =11~-III ~ paW LL aWm
• Y r c~ ~ m '
Q ~ ;• I~~III m ~UU ~ ~Q~I
w X ° ~~J `~
w : LL ~~~Ti ~ ozw w o`~~
Q • O -III~~ UQ~ -' ~~W
J ~ • w ~ ~ ~ ~ ~ " ~
rn Z ~ F- W Z H~
V~ O a LL~ Q o ~ W O
Z N U, • O I = 2~NQ
LL
Q~ ~ • U N ,-i Q 2 Z
• N W Q F-
4
~ Q ~ • `L I I I ~ ~ ~" a ~' C7
¢ • ~v 1= ~ `. ~ ~ ~ o
Ur c z . ~ -Ti 1 aw~
C • ~ I~- i W w F- O
•~ r~ -111 ~ Q wwC9 U
~ J • ' ~, ~ m~~ z
m ~. '~~ j ¢ a~w c~
~- • I I~i ~ i ~ x W z Z
U Q ~ ~III ~ m ~p(7 ~
~- 2~ ~ili ~ ~ ~ vi w Z
. ~ .- cV Z
• W
W/~Z ~
~1J ~ ~~ S-~'- W J
• ~' O O
• z v~ ~
U ~
~ ~
a W
•
v `
i•
is
~~
~~
I•
I•
~~
~ a
~~
~~
•
~
.
. ,
c~
.
.
~ ~ ~
~
W
~
• ~ W
I m V
Y ~
Q
~
•
~! Z pU
Z m
Z J
a
: ~ ~ ~o a
• Zw w
ms
• Q U
w LL O Z
O
p •
~~
mW tn
C7
Z~
Z • OQ a~~
_ ~ ~ J
~ ^ LL J
~
~
• z
~ ~
Q.
LLZ
O O J
~
Q • ~
• ~ ~
LL Z ~ ~
O 7
L
~ ~
~ ~ W ~ ~
d'
O ~
• O a LLJ
~ [0 (~ O
•
• N
~ O Z ~ L.L
•
•
Q ~ ~ ! n
~'
~ v
J
•
~ ww
Z°LL Q
.
~• ~
.
. ~
~
. Z
~ Q
~/ ~
. "' Z
w / .
Q
~
.
~
~
x Z
~
C7 .
•
~ (y O
J
a
• x
z
' ~
J
LL ~
•
. Z
o
J
.
•
~ z
(.L
• w
o
~ ~
z
.
•
. >
w
~ Y ~ z
• ?
• ~ U'
• 2
' W
• W
Z ~
~ 2
~
~ 2
N •
• W
~
~ J
• O
~
• ~ a'i
U °~'
• LL o~
' Cj K
>
• ~
•
.
.
~
•
~
v~v
•
~
I~
I•
I~
~~
~~
I~
~
~
t~
~
J Q
J ~
`~ a
~ J
W LL
F-
Q J a
dZ U
~ ~ -,II- ~ Z
} Q II~III~I'~ a
J Q a I1i=11 Z~ Q
J o 0 o Illll~lli z u~i ~ U
LL ~~ w IIiII~IiI w x ~ W
> ~ w a
( n J ~ O ~ ~~~~~II~~ J ~
`~ LL • ~ ~~i~~~~~~ (6 (~ ' /~~
• VJ
z ° • m IIIII,II~ ~1 U' ~
~ Q :~ ~ III~~~!II ~
_ ~_ ~
. II~
~ J ~ . ~~ ~ III~~,III
X -J ~ ; ~~ U' 111=111 V
W~ Q . .K o~ ~ III ~I I'~_' Z
III- O
OI Z p • > \ ~ I1i=111 w
~ o ~ ~ `~` IIIIIIIIII~ ~ v
~-~-- z Q ~ W \\ lillllll Y Q ~
z Q o ~ m m~ III, i'~. o ~ C~ ~
w(~ p • d~ ~I.~/ II~~!! o o ~ o
U (~ o ~ ~ ~'i Ilillllll m ~ ~
z a . % III~~III~ v
Q J
~7 z ~I ~ i~ IIIIIIi~ill ~ Q
Q O V • / ~ II'' I!I U V
-o III- .~
Q -) :~ ~' 111=i11 Q ~
~ ~ 111- ~ ~
J Q ~ ~ II''~-111 ~
Q ~ ~ Iliii'lll o
\ ~ Q Ilill'III ¢
/ ~ C
O • ~ .v I~~~IIIi.I. z U
• ~LL~ =1Ii~. v 2
~ • I I'~ I I
• - I 111= ~ ~
.
w 111=1li a Z
• ~ Ii', w ~
~ . ~ ~11-'~'_ ~ w
_i~'_ p Z
w . Ill-il LL
w
~ . -. i= p~ z
~' LL ~ ~ w
L C ~
y !~ J
~ ~ Q
z ~% ~ ~
~ C; U ~
L ~
V
x ~ w
LL'
•
~J
•
Ii
I•
Is
FINISH GRADE ROCK DISPOSAL DE
~
AREA CLEAR OF ROCK FOR
FOUNDATIONS, UTILITIES, AND
SWIMMING POOLS
10'* fINISH SLOPE SURfACE
1
~ ~ g `.
.~
1 ~ ~ ``~~.f 15'
4' ~- ~ 5' --~~ `~• ~
8 ~ ~•
~TYPICA~L~ ~`.
NOTE: IF NECESSARY, OVERSIZED MATERIAL SHOULD BE REMOVED
AS~A ROCK~ RAKOOTPRIORETO I PLACPNGI THE NEXMEFILL LI~ TH
*VARIANCES TO T~iE ABOVE UBC-CONSISTANT ROCK HOLD DOWN
MAY BE GRANTED SUBJECT TO APPROVAL OF THE OWNER,
GEOTECHNICAL ENGINEER, AND THE GOVERNING AGENCY
TYPICAL WINDROW DETAIL (END VIEW~
HORIZONTALLY PLACED GRANULAR SOIL FLOODED
I•
I•
I~
~.
~.
.
PROFILE VIEW
.... ... _ . _
... ...... .......:......:........ . :,..
:~Q:O~~~. .O:Q:: OQ00.': ~ a ~ ~ ~:. . . : : . , : : .:
. . . . ..~0:~ . - - ::0~:...:~0:~00:: ~. ..:
0, PACIFIC SOILSENGINEERING, INC.
~~ VER. 12/03
PLATE G-10
~" _
NOTE: CO~IPACTED flLl SHALL BE BROUGHT UP AT A HIGHER ELEVATION ALONG WINDROW
SO GRANULAR SOIL CAN BE FLOODED IN A"TRENCH CONDITION",
•
.~
If
I~
I~
v
~~
I~
I~
•
. ~-
. •-
. ~
. ~
• W
. ~
. Q
J •
J ~ ~^
LL • ~i
~ ~
W ~ \
W
• 07
~ ~ , ~ W ~
• ~ Z
~ ~ i- ~ O ~
U y z =WC~a
~~~0 ~ ~ wrWJ
_ • u~ ~ ~ am~w
U • ~ ~ ~oox
Z : a 1 u~~`n~
w
mw . y > =au~,Z
F=a . ~ ~ ~~
~VO ~~`G, illl Y ZwO~ ~I
LL Q~ ~ 7 ~ ~~~~~ ~ ~~~~ ~
~~ Z ~~j ; II~= = H Z Z ~
III F- ~a~0
?~" ' O\ 111~11=11i= o ~oZ~ W
~~o ; u 1 ur-Ti-lii ~ ~~W° ~
zzw • ~ ~ IIIIII ~~w~
az
a~o •. o` IIIIII x ~wwa ~
~u~~ r \ 111= !,
III N ~_~
; Ill~llllllilll! r' ~ ~
1 W
; ~ III p >
; ~ III z z O
z • ~ III „' ° J
• , ~ ~ ~
a • _ }
a ~ ` III Y JI
z ~ ~ III z ~
^ m . \~~ ~~~ ~
~ ~ ~ ~ \\\ \\
a ~Q . '~ ~
z zz ~~~y w~
O zO z~ ~ `\~~ ~ p~ U2
~ ~~ • \~~~~ a~
.J ~ p z ~ ~~~, d Q (~
LL • -II~ a ~ ~
~ v~ ~n ~ 11= ~ Z
UI ~ c~ ~ • =111 ~ O w
~ ~ I~~!'~, U Q ?
Q • li O o ~
z . =~ii ~ z w
~" ~w • w0 ~
~ a • 0] LL J
Q ~ • ~ ~
J ~ ~
cn U rn
~ ~L ~
U
a >
~ ~
^
~~
i•
SETTLEMENT PLATE DETAIL
~~
~~
I~
I~
~~
i VERTICAL CLEARANCE OF HEAW EQUIPMENT.
PACT IN 2' VERTICAL INCREMENTS OR
VE SUITABLE TO AND ACCEPTED BY THE SOILS ENGINEER.
PACT INITIAL 5' (VERTICAL) WITHIN 10' HORI20NTAL
PLACE AND HAND COMPACT INITIAL 2' OF FILL PRIOR
TO ESTABLISHING INITIAL READING
:LEANOUT
PROVIDE A MIN. 1' THICKNESS OF SAND/GRAVEL BEDDING
NOTES:
1) LOCATIONS OF SETTLEMENT PLATES SHALL BE CLEARLY MARKED AND READILY VISIBLE
(RED FLAGGED) TO EQUIPMENT OPERATORS.
2) CONTRACTOR SHALL MAINTAIN 10' HORIZONTAL CLEAR4NCE FOR HEAVY EQUIPMENT WITHIN 5'
(VERTICAL) OF PLATE BASE. FILL WITHIN CLEAR4NCE AREA SHALI BE HAND COMPACTED TO
PROJECT SPECIFICATIONS OR COMPACTED BY ALTERNATIVE APPROVED BY THE SOILS ENGINEER.
3) AFTER 5' (VERTICAL) OF FILL IS IN PLACE, CONTRACTOR SHALL MAINTAIN 5' HORIZONTAL
E~UIPMENT CLEARANCE. FILL IN CLEARANCE AREA SHALL BE HAND COMPACTED (OR
APPROVED ALTERNATIVE) IN VERTICAL INCREMENTS NOT TO EXCEED 2 FEET.
4) IN THE EVENT OF DAMAGE TO SETTLEMENT PLl+TE OR EXTENSION RESULTING FROM
EQUIPMENT OPERATING WITHIN PRESCRIBED CLEARANCE AREA, CONTRACTOR SHALL
IMMEDIATELY NOTIFY SOILS ENGINEER AND SHALL 8E RESPONSIBLE FOR RESTORING THE
SETTLEMENT PLATES TO WORKING ORDEP..
PACIFIC SOILS ENGINEERING, INC.
PLATE G-12
VEk. 9/98
2' X 2' X tl4" STEEL PLATE
STANDARD 3l4" PIPE NIPPLE, WELDED TOP AND
UNDERSIDE OF PLATE.
3/4" DIA. X 5' LONG GALVANIZED PIPE, STANDARD PIPE
THREADS TOP AND BOTTOM. EXTENSIONS THREADED
BOTH ENDS AND ADDED IN 5' INCREMENTS.
3" DIA. SCHEDULE 40 PVC, ADD IN 5' INCREMENTS
WITH GLUE JOINTS.
v
~
FINAL GRADE
•
Finished
~~
~~
I~
I~
~~
PVC Cap
SURFACE SETTLEMENT MONUMENT DETAIL
i•
i.
s
PACIFIC SOILS ENGINEERlNG, INC.
VER. 9/98
6"
Approx 6"embedment
into compacted fill
PLATE G-12A
~~,~
•
If
I~
I•
I~
I r
Y
2
a
~
c~
0
a
O
~
Z
~
LlJ Q
~YU
>mW
~ Q ~
~JO~
Q J J ~
aa~w
~~JD
OZQ
w~z
~a~
ac~w
J ~
LL
~ ~
~
Q
a
c7
Z
C
J
~
m
~
a
0
~" a x
W ~ =w
U Y LL O
a ¢ oz
~ m ,~o
~a
I W J O Q
m m ~ X
Q J ~ ~
x
W Q
y zw
~o
~ a
~ a °°a
~ ~ oa
° ~ ~z
2
W w j o
2
J
I 2 2 ~!/
m
LL O Z X
O U LL ~ 2
a LL wr
w~ Ww ~o
LL O LL~ m W
~
~ o U
~ W Q
O ~l
jm~j
<
, p W
~~ H 2 R i
=~l
_ "_'__,~ mW ~O NLL~
~ ~a' `$N GOW
I i J U~ ~ O a~ U
a
i V3 a~ 3Q O~~
a ~
M ~
-~1
_
m Z
YO J~
J~
LL Z d'
0 J
Q
>> 2
~
~
J Z ~
J Z ra m~c
~ V a~ U h Q~ Z
N
~ ~ lV M
0
////
\
\
.
~ ~
~~~~
_
\
~
`
~, \
~
'` ~/~~
`
~ \
\
~
~~
~%/
` .`
~F- a~ ~ ~
w '~
e //
~~
~ o
~ !
~
~
- ~~
G
W
~
~
\ :
~ ~%
a ~~
O
~ ;.;.
a ~
,,~
~
~
~
C9
~
J
a
U
2
~
2
W
Z
~
2
W
~
J
~
~
U
LL
U
Q
a
~
m
~
~
W
>
ir ~
I•
I•
APPENDIX H
I•
I•
I•
Homeowners Maintenance and
Improvement Considerations
~~
~ PACIFIG SOILS ENGINEERING, ING.
is
Work Order700007-C
May 21, 2004
~ 7`
Page H-1
HOMEOWNER MAINTENANCE AND IMPROVEMENT CONSIDERATIONS
• General
Homeowners purchasing property must assume a certain degree of responsibility for homeowner
improvements and for maintaining conditions azound their home. Of primary importance are
maintaining drainage pattems and minimizing the soil moisture variation below all lot
improvements. Such design, construction and homeowner maintenance provisions may include:
- Employing contractors for homeowner improvements who design and build in recognition of
loca] building codes and specific site soils conditions.
~ - Establishing and maintaining positive drainage away from all foundations, walkways,
driveways, patios, and other landscape improvements.
- Avoiding the construction of planters adjacent to structural improvements. Altematively,
planter sides/bottoms can be sealed with an impermeable membrane and drained away from
~ the improvements via subdrains into approved disposal azeas.
- Sealing and maintaining construction/control joints within concrete slabs and walkways to
reduce the potential for moisture infiluation into the subgrade soils.
- Utilizing landscaping schemes with vegetation that requires minimal watering. Watering
~ should be done in a uniform manner, as equally as possible on all sides of the foundation,
keeping the soil "moist" but not allowing the soil to become saturated.
- Maintaining positive drainage away from structures and providing roof gutters on all
structures with downspouts that are designed to carry roof runoff directly into area drains or
discharged well away from the foundation areas.
~.
-
Avoiding the placement of trees closer to the proposed structures than a distance of one-half
the mature height of the Vee.
- Observation of the soil conditions azound the perimeter of the structure during extremely
hobdry or unusually wet weather conditions so that modifications can be made in irrigation
• programs to maintain relatively uniform moisture conditions.
Sulfates
During mass grading operations for the project, the soils being used as compacted fill should be
• tested for the presence of soluble sulfates. The samples tested during this study were found to
have sulfate concentrations, which fell into the negligible range of sulfate exposure as classified
Il"
• PACIFIC BOILS ENGINEERING, INC.
i~
Work Order700007-C
May 21, 2004
~~
Page H-2
in accordance with Table 19-A-4 of the 1997 UBC. The preliminary foundation system design
has been designed in consideration of that condition.
~~ Homeowners should be cautioned against the import and use of certain inorganic fertilizers, soil
amendments, and/or other soils from offsite soutces in the absence of specific information
relating to their chemical composition. Some fertilizers have been known to leach sulfate
compounds into soils othenvise containing "negligible" sulfate concentrations and increase the
i sulfate concentrations to potentially deVimental levels. In some cases, concrete improvements
constructed in soils containing high levels of soluble sulfates may be affected by crystalline
growth or mineral accumulation, which may, in the long term, result in deterioration and loss of
strengih.
Site Draina~e
- The homeowners should be made awaze of the potential problems that may develop when
~ drainage is altered through construction of retaining walls, swimming poois, paved
walkways, patios or other hardscape improvements. Ponded water, drainage over the slope
face, leaking irrigation systems, overwatering or other conditions which could lead to ground
saturation must be avoided.
- No water should be allowed to flow over the slopes. No alteration of pad gradients should be
~ allowed that would prevent pad and roof runoff from being directed to approved disposal
areas.
- As part of site maintenance by the resident, all roof and pad drainage should be directed
away from slopes and around structures to approved disposal azeas. All berms were
constructed and compacted as part of fine grading and should be maintained by the resident.
~ Drainage patterns have been established at the time of the fine grading should be maintained
throughout the life of the structure. No alterations to these drainage patterns should be made
unless designed by qualified professionals in compliance with local code requirements and
site-specific soil conditions.
~ Slope Draina¢e
- Residents should be made aware of the importance of maintaining and cleaning all
interceptor ditches, drainage tenaces, downdrains, and any other drainage devices, which
have been installed to promote slope stabiliri~.
s
~~
~ PACIFIC 501L3 EN6INEERING, INC.
i•
Work Order 700007-C
May 21, 2004
. .._
Page I~-3
- Subsurface drainage pipe outlets may protrude through slope surfaces and/or wall faces.
These pipes, in conjunction with the graded features, are essential to slope and wall stability
and must be protected in-place. They should not be altered or damaged in any way.
~ Plantine and Irrieation of Slopes
- Seeding and planting of the slopes should be planned to achieve, as rapidly as possible, a
well-established and deep-rooted vegetal cover requiring minimal watering.
- It is the responsibility of the landscape azchitect to provide such plants initially and of the
• residents to maintain such planting. Alteration of such a planting scheme is at the residenYs
risk.
i The resident is responsible for proper irrigation and for maintenance and repair of properly
installed imgation systems. Leaks should be fixed immediately.
• - Sprinklers should be adjusted to provide maximum uniform coverage with a minimum of
water usage and overlap. Overwatering with consequent wasteful runoff and serious ground
saturation must be avoided.
- If automatic sprinkler systems are installed, their use must be adjusted to account for
~ seasonal and natural rainfall conditions.
Burrowina Animals
- Residents must undertake a program to eliminate burrowing animals. This must be an
ongoing program in order to promote slope stabiliTy.
I•
Homeowner Imarovement
Homeowner improvements (pools, spas, patio slabs, retaining walls, planters, etc.) should be
designed to account for the terrain of the project, as well as expansive soil conditions and
~ chemical characteristics. Design considerations on any given lot may need to include provisions
for differential bearing materials, ascending/descending slope conditions, bedrock structure,
perched (irrigation) water, special geologic surcharge loading conditions, expansive soil stresses,
I ~ and long-term creep/settlement.
All homeowner improvements should be designed and constructed by qualified professionals
utilizing appropriate design methodologies, which account for the onsite soils and geologic
conditions. Each lot and proposed improvement should be evaluated on an individual basis.
~~
I~ PAGIFIG SOILS ENOINEEFING, INC.
i~
Work Order 700007-C
May 21, 2004
I•
Page H-4
Setback Zones
Manufactured slopes may be subject to long-term settlement and creep that can manifest itself in
the form of both horizontal and vertical movement. These movements typically aze produced as
I~ a result of weathering, erosion, gravity forces, and other natural phenomenon. A setback
adjacent to slopes is required by most building codes, including the Uniform Building Code.
This:zone is intended to locate and support the residential structures away from these slopes and
I~ onto soils that are not subject to the potential adverse effects of these natural phenomena.
The homeowner may wish to construct patios, walls, walkways, planters, swimming pools, spas,
etc. within this zone. Such facilities may be sensitive to settlement and creep and should not be
~ constructed within the setback zone unless properly engineered. It is suggested that plans for
such improvements be designed by a professional engineer who is familiar with hillside grading
ordinances and design and construction requirements associated with hillside conditions. In
addition, we recommend that the designer and contractor familiazize themselves with the site
I~ specific geologic and geotechnical conditions on the specific lot.
I•
I•
IA
I[ 7
` v~
I~, • PACIFIG SOILS ENGINEERING, INC.