Loading...
HomeMy WebLinkAboutTract Map 30264 Geotechnical Investigation & Grading Plan Review• I'I ~ PACIFIC SOILS ENCa1NEERING, INC. 0 77~ E. PARKRIDGE AVENUE, SUITE 705, CORONA, CA 92879 . ^ TELEPHONE: (909) 582-0770, FAX: (909) 582-0176 STANDARD PACIFIC May 21, 2004 255 East Rincon Sueet, Suite 200 Work Order 700007-C Corona, California 92879-1330 I• Attention: Mr. Mike White Subject: GEOTECHNICAL INVESTIGATION AND GRADING PLAN REVIEW, Tract 30264, Wolf Creek Specific Plan City of Temecula, California References: See Appendix A • Gentlemen: Pursuant to your request, presented herein is Pacific Soils Engineering, Inc.'s (PSE) geotechnical investigation and grading plan review of Tract 30264, part of the Wolf Creek Specific Plan. The ~ site, shown on the enclosed 40-scale rough grading plans (Plates I through 19), is located off the southeast comer of the intersection of Wolf Valley Road and Pechanga Parkway in the City of Temecula, California. ~ PSE's review of the data and site plan indicates that the proposed development is feasible from a geotechnical standpoint, provided that the recommendations presented in this report are incorporated into future plan reviews, the grading plan, and implemented during site ~ development. The major geotechnical issues affecting the site development identified within this documentinclude: - Removal of Unsuitable Materials: Removal of the upper portions of the alluvium will be required in design fill and shallow cut areas. ~ - Seismicallv Induced Settlement: Liquefaction and/or dry sand settlement could occur onsite during an earthquake. To minimize the effect of the potential settlement, the upper portions of the alluvium should be removed and replaced with compacted fill and the single-family structures should be constructed with post-tensioned foundation systems. • i' Collaase Potential/Hvdro-Consolidation: There is a potential for hydro-collapse in the onsite soils. Foundation systems should be designed to withstand the potential differential settlements presented in this report. ~ iPORATE HEADOUARTERS LOS ANGELES COUNTV SOl1TH OFANGE COUNTY SAN OIEGO COUNTY ~ TEIL O`4) 22D-07]C TEL: (310~ 325-7272 or (323) 775-6i]t TEL: 1]141 730-2t.'< TEL IBSfi) 560-1713 FAX: (]tA) 22C~958P FA%: P14) e20-958E FA%: 014) i30-510~ FA%: (058) 560-0380 • • • • • • ~ ~ ~ ~ Work Order700007-C May 21, 2004 Page ii PSE appreciates the opportunity to provide you with geotechnical consulting services. If you have any questions or should you require any additional information, please contact the undersigned at (909) 582-0170. Respectfully submitted, PACIFIC SOILS ENGINEERING, INC. Reviewed by: Papess~p,~,~ oe ~ - ~~'~~' ~I~FiZ~, ~ `? m By: . _ SCOTT A. GRAY JAI1dIES B:,C ;~7- '~ 2 6~.~,~s~ros * Civil Engineering Associate RCB 30280/Reg. Exp.: 3-3 ^ p~ ~p~p~,P/ Distribution: (6) Addressee (4) Lohr & Associates Attn: Fred Dcerges (5) SAG:IBC:F]E:DCAsm:700007-C Mey 5, 2004 (Wolf Croek 2) ~ /, ~ .~oFCw-`~_: r` L~ ; ' ~L.-- DEAN C. ARMSTRONG/CEG ENG1NEEq~,y Reg. Exp.: 9-30-04 ti8~``,~ ~" ~sr9 coo Vice President W a °z ~o * ~ Cb~<j,~ '~ s, r / ~ • PACIFIG SOILS ENGINEERING, INC. i• Work Order 700007-C Page iii May 21, 2004 TABLE OF CONTENTS 1.0 INTRODUCTI ON ............................................................................ ......................................1 I .1 Background and Purpose ......................................................... ......................................1 ~ 1.2 Scope of Study ......................................................................... ......................................1 13 Site Location and Description ................................................. ......................................2 1.4 Report Limitations ................................................................... ......................................2 2.0 PROPOSEDDEVELOPMENT ....................................................... ......................................2 3.0 FIELD AND LABORATORY INVESTIGATION ......................... ......................................3 ' ~ 3.1 Previous Site Investigations ..................................................... ......................................3 '' 3.2 Current Site lnvestigation ........................................................ ......................................6 3.2.1 FieldInvestigation ....................................................... ......................................6 3.2.2 Laboratory Investigation .............................................. ......................................6 4.0 GEOLOGIC CONDITIONS ............................................................ ......................................7 ~ 4.1 Geologic Structure ................................................................... ......................................7 4.2 Stratigraphy ............................................................................. ......................................7 , 4.2.1 Artificial Fil]-Engineered (afe) .................................. ......................................8 , 4.2.2 Artificial Fill-Engineered (afu) .................................. ......................................8 4.23 Colluvium (Map Symbol Qcol) ................................ ......................................8 r 4.2.4 Alluvium (Map Symbol Qal) .................................... ......................................8 4.2.5 Pauba Formation (Map Symbol Qps) ....................... ......................................9 43 Geologic Structure ................................................................... ......................................9 43.1 Faulting ........................................................................ ......................................9 43.2 Folding ......................................................................... ....................................10 4.4 Groundwater ............................................................................ ....................................10 ~ 4.5 Geologic Hazazds .................................................................... ....................................11 4.5.1 Seismicity ................................................................... .....................................11 4.5.2 Liquefaction and Seismic Settlement ......................... .....................................12 4.5.3 Dynamic Settlement ................................................... .....................................13 4.5.4 Seismically-Induced Landsliding ............................... .....................................13 + 5.0 ENGINEERING ANALYSES ........................................................ .....................................13 5.1 Material Properties ................................................................. .....................................13 5.1.1 Excavation Chazacteristics ......................................... .....................................13 S.1.2 Compressibility ........................................................... .....................................14 5.13 Expansion Potential .................................................... .....................................14 • 5.1.4 Collapse Potential/Hydro-Consolidation .................... .....................................14 5. ] .5 Moisture Content ........................................................ .....................................15 5.1.6 Sheaz Strength Characteristics .................................... ..................................... l5 5.1.7 Earthwork Adjustments .............................................. .....................................16 5.1.8 Pavement Support Chazacteristics .............................. .....................................16 ~ 5.1.9 Chemical Test Results ................................................ .....................................16 5.2 Engineering Analysis .............................................................. .....................................17 5.2.1 Bearing Capacity and Lateral Earth Pressures ........... .....................................17 5.2.2 Slope Stability ............................................................. .....................................17 • 3 PAGIFIC SOILS ENGINEEFIING~ INC. i• Work Order700007-C May 21, 2004 I• TABLE OF CONTENTS Page iv 53 Settlement ......................................................................... ...........................................17 5.3.1 Grading ................................................................. ...........................................17 • 5.3.2 Structural Loads .................................................... ...........................................17 53.3 Liquefaction and Dynamic Settlement ................. ...........................................18 6.0 GEOTECHNICAL CONCLUSIONS AND RECOMMENDA TIONS ...............................18 6.1 Site Prepazation and Removals ......................................... ...........................................18 6.1.1 Stripping and Deleterious Material Removal ...... ............................................19 ~ 6.1.2 Site Prepazation - Unsuitable Soil Removal ....... ............................................19 6.1.2.1 Residential Areas .............................................. ............................................19 6.1.2.2 Commercial Areas ............................................ ............................................20 6.1.23 Existing Trenches ............................................. ............................................20 6.1.2.4 Undocumented Artificial Fil1 ............................ ............................................21 • 6.2 Slope Stability and Remediation ..................................... ............................................21 6.2.1 Cut Slopes ............................................................ ............................................21 6.2.2 Stabilization Fills ................................................. ............................................22 6.23 Fill Slopes ............................................................ ............................................22 6.2.4 Skin CuUSkin Fill Slopes .................................... ............................................22 'i ~ 6.3 Temporary Backcut Stability ........................................... ............................................23 6.4 Subsurface Drainage ........................................................ ............................................24 6.4.1 Subdrains ............................................................. ............................................24 6.4.2 Backdrains ........................................................... ............................................24 6.5 Construction Staking and Survey ................................... .............................................24 6 6 Earthwork Considerations .............................................. .............................................24 ~ . 6.6.1 Compaction Standazds ........................................ .............................................24 6.6.2 Documentation of Removals and Drains ............ .............................................24 6.6.3 Treaunent of Removal Bottoms ......................... .............................................25 6.6.4 Fill Placement ..................................................... .............................................25 6.6.5 Benching .............................:............................... .............................................25 ~ 6.6.6 Mixing ................ 6.6.7 Fill Slope Construction ....................................... .............................................26 6.7 Haul Roads ..................................................................... .............................................26 6.8 Import Materials ............................................................. .............................................27 6.9 Storm Drain Outlet ......................................................... .............................................27 • 7.0 DESIGN CONSIDERATIONS ............................................... .............................................27 7.1 Structural Design-Single Family Structures ................... .............................................27 7.1.1 Foundation Design .............................................. .............................................28 7.1.2 Post-Tensioned Slab/Foundation Design ........... ..............................................28 7. ] 3 Differential Settlement ...................................... ..............................................29 ~ 7.1.4 Deepened Footings and Structural Setbacks ..... ..............................................31 7.1.5 Backyazd Improvements .................................... ..............................................31 7. ] .6 Miscellaneous Foundation Recommendations .. ..............................................32 ~ 4 PACIFIC 501L5 ENGINEEFiING, INC. • • Work Order 700007-C May 21, 2004 TABLE OF CONTENTS • • • ~ • ~ ^ • 7.2 Retaining Wall Design ............................................. 7.2.1 Rankine Earth Pressure Coefficients ........... 7.2.2 Retaining Wall Backfill ............................... 73 Concrete Desigi ...................................................... 7.4 Corrosion ................................................................. 7.5 Other Design and Construction Recommendations. 7.5.1 Site Drainage ............................................... 7.5.2 Concrete Flatwork and Lot Improvements.. 7.5.3 Utility Trench Excavation ........................... 7.5.4 Utility Trench Backfill ................................. 7.6 Preliminary Pavement Design ................................. 8.0 SLOPE AND LOT MAINTENANCE ............................. 8.1 Slope Planting .......................................................... 8.2 Lot Drainage ........................................................... 83 Slope Irrigation ....................................................... 8.4 Burrowing Animals ................................................ 9.0 FUTURE PLAN REVIEWS ........................................... 10.0 LIMITATIONS ............................................................................................. APPENDIX A: SELECTED REFERENCES .38 .38 APPENDIX B: SUBSURFACEINVESTIGATION PLATE B- LTNIFIED SOILS CLASSIFICATION SYSTEM PLATES B-1 THROUGH B-13 - LOGS OF BUCKET AUGER BORINGS (THIS REPORT) PLATES B-14 THROUGH B-19 - LOGS OF BUCKET AUGER BORINGS (PSE, 2003) PLATES B-20 THROUGH B-21- LOGS OF HOLLOW STEM AUGER BORINGS (PSE, 2001) PLATES B-22 THROUGH B-24-LOGS OF HOLLOW STEM AUGER BORINGS (PSE,1998) PLATE B-25 LOG OF BUCKET AUGER BORING (PSE, 1989) CPT-1 THROUGH CPT 30 - LOGS OF CONE PENETROMETER SOUNDINGS (THIS REPORT) CPT-1:1998 THROUGH CPT-8: 1998 - LOGS OF CONE PENETROMETER SOiTNDINGS (PSE, 1998) • ~ PACIFIC SOILS EN6INEEFING, INC. Page v ..32 ..32 ...........................................33 ...........................................34 ...........................................34 ........................................... 3 5 ..........................................35 ...........................................35 ........................................... 3 5 _ _ - ......................36 ................37 ................38 ................38 i• Work Order 700007-C May 21, 2004 I• TABLE OF CONTENTS APPENDIX C: LABORATORY ANALYSIS '~ TABLE I- SUMMARY OF LABORATORY TEST DATA PLATES C-1 THROUGH C-25 - CONSOLIDATION TESTING PLATES G26 THROUGH C-37 - DIRECT SHEAR TESTING PLATES G38 THItOUGH G43 - SIEVE ANALYSIS PLATES C-44 THROUGH C-45 - CHEMICAL ANALYSIS APPENDIX D: PROBABILISTIC SEISMIC HAZARD ANALYSIS PLATES D-1- THROUGH D-3 - HAZARD CURVES APPENDIX E: PLATES E-1 THROUGH E-3 - SLOPE STABILITY CALCULATIONS APPENDIX F: LIQUEFACTION ANALYSIS '~ PLATES F-1 THROUGH F-30 - LIQUEFACTION CALCULATIONS APPENDIX G: EARTHWORK SPECIFICATIONS GRADING DETAILS - PLATES G-I THROUGH G-12 ~ APPENDIX H: HOMEOWNERS MAINTENANCE & IMPROVEMENT CONSIDERATIONS POCKET ENCLOSURES: PLATES 1 THROUGH 19 - 40-SCALE ROUGH GRADING PLANS ~ • • • Page vi ~o PACIFIG SOILS ENGINEERING, ING. i• ~• Work Order 700007-C May 21, 2004 1.0 INTRODUCTION Page 1 I 1.1 Backaround and Puruose Pacific Soils Engineering, Ina (PSE) has been retained to conduct a geotechnical ~ investigation and perform a grading plan review for the proposed residentiallcommercial site located southeast of the intersection of Pechanga Parkway and Wolf Valley Road in the City of Temecula, Califomia. This report provides geotechnical recommendations for the design and construction of the project as presented on the enclosed rough grading plans (Plates 1 through 19). 1.2 Scoue of Studv ~ This study is aimed at providing preliminary geotechnical information for the development of the property, as it relates to: 1) existing site conditions; 2) remedial grading; 3) engineering and excavation chazacteristics of earth materials; 4) grading recommendations; 5) cut and fill slope stabiliry; 6) preliminary ~ foundation and retaining wall design pazameters; 7) slope and lot maintenance recommendations, 8) seismic hazazd analysis. The scope of oiu study included the following tasks • - Reviewing pertinent published and unpublished geologic and geotechnical literature, maps, and aerial photographs (references). - Site geologic mapping. ~, ` - Excavating, logging and sampling thirteen (13) bucket auger borings (Plates B-1 through B-13 in Appendix B). - Performing thirty (30) cone peneuometer soundings (Appendix B). - Compiling subsurface and laboratory data from previous reports by PSE • (references). - Conducting laboratory testing including consolidation, direct shears, laboratory maximum density, expansion indices, chemical, grain size, and moisture/density (Table I, Plates G1 through C-45, in Appendix C). • i Conducting a geotechnical engineering and geologic analysis of the site shown on the enclosed 40-scale rough grading plans (Plates 1 through 19) prepared by Lohr and Associates. • ~ PACIFIC SOI{.5 EN6INEERING~ INC. • Work Order700007-C May 21, 2004 Page 2 ~ - Conducting a limited seismicity analysis. - Conducting slope stability analyses (Appendix E). - Conducting liquefaction and dynamic settlement analyses (Appendix F). • - Preparing preliminary foundation and retaining wall design parameters and recommendations. - Preparing grading recommendations. - Preparing this report with accompanying exhibits. • 1.3 Site Location and Descriution The subject site is located in the City of Temecula, in the County of Riverside, California (Figure 1). The majority of the site's past use is agriculture. The site is • bound on the northwest by Wolf Valley Road, on the southwest by Pechanga Parkway, on the northeast by residential developments, and on the southeast by undeveloped land. The topography at the site is relatively flat. Total relief over ~ the site is approximately 80 feet with elevations ranging from 1070 to 1150 feet above sea level. Drainage is by sheet flow to the southwest to an unimproved drainage channel running pazallel to Pechanga Parkway. Access to the site is from Wolf Valley Road. • 1.4 Re~ort Limitations The conclusions and recommendations in this report aze based on the data developed during this investiga4ion, review of the referenced reports, and the . enclosed 40-scale rough grading plans provided by Lohr and Associates. The materials immediately adjacent to or beneath those observed may have different characteristics than those observed. No representations are made as to the quality II • or extent of materials not observed. Any evaluation regarding the presence or absence of hazardous material is beyond the scope of this firm's services. I 2.0 PROPOSED DEVELOPMENT ~ It is assumed that mass-grading techniques will be utilized to create approximately 810 single-family residential lots and 3 commercial sites as depicted on Plates 1 through 19. ~ ~ PACIFIG SOILB ENGINEEFIING, ING. i• I~ I~ ~~ I~ I~ • I~ ' .~ - + . ~ ~ . ~ s-~._~- ; , ~ t ~ ~ ~ u -_ ` i 7~~ -. ; . '• ~ ~... Y. ~J ~ ~ .F~ t - ~f . ~ . ~ ' ~ ~ ~ S ~ J ~ n ~ ~~~ `~ ~ ~ ~J~ ' f~ / _ _ ~ ~.-.. ( '~:J~l~l ~ . i \\:~ :~~ , l,; ~,~'eni er~ J .:,.-A ~' , l ~C. _ ' ?l q ~ b . ~ ~ , `~ ~, - : ~ ~L ~ -".-Z '~ . . 171 ~ l . ~ / i .,~, s .v ~ ~ l-~ ~r ! ~ 7y ~~~ ~ , T a . . ~ '~ WoV4elle ' p u q .' ~ ~` ~ ' l ' u l. ~ . ~,~~` ' ,Ji~ 1 ~ ~' ~~~ _~ ~ . :, y .. t ~ ~ \~ /"~ - ~. ~ ~ . y _ . ?h /` ': i ~ " i > L L . 4 ~' ~ ~ ~ ~~ ~ ` ~„ ~ 41 JD8 ~ ~ ~ y ~ .`. I jo t i ~ 1 ~ I I' .~ . ~~> 4.J~ ~R ~ ~ ._ V r ,. ~ ~ . /~ r ~~ : ~. ~ ~ . \ ~ F `J ~~ (~ ~ ~ . ~ ~ Il~ ~ - F . . t ' ` t~ ~ ~ 1 ~ ~,~ .f- ; .. ` , °'b • ~ r ~ '.L~` ~-~ < ~ ~ -~ ~l~ ~~ ~ ~ ~~. , ~ - ~ ~ ; r~ . ~ ~ ~ ~' ~ ~ ~ . . -~~ ~ \ - ~ ~' ',Y l~ .f jEJ I l ~ ` y. L. -n \i~~ ~ r ~ .ir~lt ~. ...+~ ~ 3Q ~~ ~ • r ~ i . ` a ~ !/ f . ~P, _ ~ `~~ ~ . .. ~fi ..J ~a ~C . . ~ ~' ~ 1 ``~ ` ~ ~`1S ~ ~ sj ~ ~'~- i " ? : j ~ _ I 1 "< ~ ` '\ . x (~ ' ... 1 ~ , ~ 33•48' . ,. . ` a , ~ ~ ' ._ T . f ` ~ t _ . ~~ 1 ~ ~ ~{7b~~ '~' ~ ~ ~ ,~ 1 ~, . ~ ~ Lr .~,,\,' ,~. ~~~ ~ v'w 1...~..1\.~;il ,s\ _ i .y s:.~ ~,O ~c / n . / ~'~ ~~~,~,+~(~~ ~;',- g~ '^r ~ ' ~ ~ ~ \~ ~ ~ ~ -_' - . ~ . ` ~ ~ f ` ~~ .,+ 1 'L ° ~- ' ~ ~ = . ~ . i "~ --,. . ~ , y ' V : ~ ! rit~~:r, J~~ 1 ~ ~i J~ \,~ ~/ << ~~ ,l~ ~~ . ~ - ~y.. . ~ / ~, , , ~ - ' ~~ \,~ ~' ' YJ^1~ 'S, ;`L . I '~c / ~ ~ ~ ,~-~ , t ._"y , hi ~, ~i ~: ~'' ~] `i~ ~ < ~ ~ ~«, ~w11~ :~ ~,~~ , ~ ti , ,~ ~ i . J xG s , ~ ,. y ~ , .v ` ~~~ \ , ~ ~< 2 . .. ~~' ~ ;' ~ ~lV d ~ 11..` J ' 3 <U~~. - ' ' r~ ~ . J~~ t ~ \ti.R , ` _ . r J. - ~: F~ C' :M.16?@ ~ SITE d'; , J rT ~ ~/ J ~d ~ ~ - ,~/~ ~~ . -1 k%" ~ ~ ~ tiY I . . e '~ 1\~ p. ~ J~ / I ~ .~ F ~ ~ T~ ~ ~ GJ 0: A .' L'v '~ ! ~p e\ O' ~ , . ~ '4 ~ / ' "_r ~ ~ {, ~ . S'TM- '-~" . ~ :~~`\.~~ S ) I ~.> Y ~ . ~ i . ~ t Y ~ .; ~ ' .• 1 ;~ .. ~ . ~0/ ..L ' ~* ~i ~~ .. / ~{ ) / P ~, J~ ~ y '~ s ~ .~/ ~ /~ `J ~l/,~~ t ~'/ . ` 1 ~ \~ 1~1t{ 1 - ~~ '~ ~~~ ~ ~~~ ~.~ ~` /1 s L-~ ~:1 ~~ ~ TKl~ "''t` .. ' ti ~'° E5$~9ATIDN ~ , ' ~ v \ i.. : ir~ ~i ~ ' ~ ( ~ Cy~'S ~ 7- . . . ~ 4n 'r ~ -+ J, ~ y~ '' 0p -v~ ' j,~. . ~ ,p ~ F 1 ; ~` ~ . 8 ~ ' s.~~ ` ~.~ y . } < r ' ~ ~et, ~ ~ -~ti~> \ ~ \ . t . ~ L F ~~1~/ I ~ ~ / ~ . : ~ I v . .> 0~. ~ < ~. - ~ ~ ~ 2. Z'".. ~ l~~ c ~ ~~1 __ T .:_ ~ , .',Ly~ 1 _ . ~l~ ~ ~ . r H _, Y~y. ~ lY/~, , ~ ~ , -^,~ ,~ \ _~ - , ~ 1 . ~ L~ ~^ I~ < r~ ~~r ~ o ` 7 ~ ~ ~~, , i i a ( ' c ,/~~''C \. ~' ~~ ,l s . y f ~~ _ . Y ~ ~ ~ 5 ~+ ~~ ` i'1'- 'f 1 - ~ i ~~ " ~ u. ~ i s..,x ~_ ' ` ~ i ` , .; . ~ ~ ~ ~ S ( ~ p~ ' ` \~~ 4 ~ 1 4 1 ~ i yy '~ w~,, ' J ~li~ ~ n} ' y ,` ; Iiy ~ ~% L ~ ` ,~ ':~-.~ ''~ \ ~ ~ ~ 3 59 ~ i; . ~ ~1 ~ `^ + ~ ~ , ~ f. , ~ 4 ~ ~~~' r\~~ /M'il \ v . ;\"A ty 1~~~~ \' J,(~ ~ ~ ~ ~- ~ i 4~ .c- ' , \~4J~\ ~fy ~ ~ T .< f~ : 1 2 ~ Ll I 7~ ~ . 1 . . . 1 ~' P:. : I4 >' 1~1 1~ $!~ f ~er!~h ; ~ , ' t .~!L.{~' Ut ~,J`~ ~ ~ ii'~~~ ~ ~ i~. ~T N i 'a~/`y` ~ 1~ , t \ai ~ ~ .~ ~ ata ~ ~~ ~ 8 ~ I ),• ~ . .,~ Tw~, t~i..~ ~ .F'.X \ ~ III ~`Y~ ~ '_~* y- 1 ~ ~~ ~• ~ y . fR ~`I ~ ~:~.: c 1~ . ~ `~_.,..:. .~/ It ./ 1 ~ . •..,'.C~. Y' _ :~ _ ~J~ _~ ~ r N SITE LOCAT90N MAP ~ W E S ~ ~ FIGURE 1 SOURCE MAP - USGS 7.5 MINUTE QUADRANGLE MAP: PECHANGA, CALIFORNIA 1965 PHOTOREVISED 1982 SCALE: 1" = 2000' PACIFIC SOfLS ENGINEERING, INC 710 E. PARKRIDGE AVE.. SUITE 105, CORONA CALIFORNIA 92879 W.0.700007-C DATE:5/21/04 q ~ Work Order 700007-C May 21, 2004 Page 3 Design depths of cut and fill are on the order of zero (0) to ten (l0) feet. Slope heights are less than 15 feet. 3.0 FIELD AND LABORATORY INVESTIGATION • 3.1 Previous Site Investisations Numerous proprietary geotechnical investigations have been conducted within and adjacent to the subject site. In the mid- to late-1970's, several regional fault ~ investigations were performed (Kennedy, 1977; Saul, 1978) including Alquist- Priolo Special Studies zoning (Pechanga quadrangle). The following brief chronology summarizes pertinent investigations within and ~ adjacent to the Wolf Creek Specific Plan area. Various maps showing faults and trench locations are given in the cited reports, and they aze referred to, but not replicated in this document. ~ - Pioneer Consultants (1980) Pioneer Consultants performed a"Liquefaction Investigation" in 1980 on the current Red Hawk Specific Plan area that is adjacent to the south and east Wolf Creek Specific Plan boundaries. T'hat study used methodologies • that were consistent with the standazd-of-care at that time, but aze cleazly dated today. A 50-foot deep boring was excavated south of the Specific Plan area in the Wolf Valley alluvium on October 1, 19'I9. Groundwater ~ was not encountered to the depths explored. - Hi¢hland Soils (1988a1 In February of 1988, Highland Soils performed a"Fault Hazard and ` Preliminary Geotechnical lnvestigation" for a 242+ acre parcel adjacent to the northeast corner of the Wolf Creek Specific Plan area. Highland Soils identified, in a qualitative sense, susceptibility to liquefaction in the general Wolf Valley area. Since building types and grading plans were • unavailable at the time of that report, specific recommendations to • PACIFIC BOiLS ENGINEEF7ING, INC. \O i• Work Order700007-C May 21, 2004 I• Page 4 mitigate liquefaction were not provided. The reader is referred to Section 4.5 of this report for a discussion of site-specific geologic hazards. - Hiahland Soils (198861 S In August of 1988, Highland Soils performed a"Fault Hazard Investigation" for a portion of the Red Hawk Specific Plan azea. That investigation was conducted adjacent to the south and east boundaries of ~ the Wolf Valley Specific Plan. In that study, fault traces believed to be active were reported at two locations and a 50-foot structural setback from either side of these faults was recommended. That setback projected into the southeast corner of the Wolf Valley Specific Plan azea. These faults ~ were the subject of further studies by Earth Research (1987), Pacific Soils Engineering, Inc. (1989), and Petra Geotechnical (1989). Additionally, the projected trace of the Wolf Valley fault (Kennedy, 1977) ~ was trenched in the alluvial flood plain of Wolf Valley adjacent to the southwest comer of the Wolf Valley Specific Plan azea. Faulting was not observed in the trenches. No evaluation for liquefaction was performed as ~ a part of that study. - Pacific Soils (1989) - In April, 1989, PSE published the most current version of the Alquist- ~ Priolo Special Studies zone report for the overall Wolf Creek Specific Plan. An eazlier version was published for EIR studies and general planning purposes. As a part of this process, two episodes of subsurface exploration were undertaken by PSE. The 1989 version contains all ~ pertinent fault trenching information and subsurface investigations by PSE and others, up to the report date of April 5, 1989. The findings of PSE's ] 989 fault investigation called for a structural ~ setback from Holocene displacements. This setback was identified in the 1989 PSE study and the Petra study. Although it was not possible to • PACIFIC SOILS ENOINEEFi1NG, INC. \\ • Work Order 700007-C Page 5 May 21, 2004 ~ determine conclusively if these Holocene displacements were of fault or mass-wasting origin, a 75-foot structural setback was recommended along the common boundary with the Red Hawk Specific Plan azea. The . location of this setback is shown on geologic maps that accompanied PSE's 1989 report. - PaciTic Soiis (19981 * In October, 1998, PSE performed a further fault evaluation for the Wolf Valley Specific Plan (Pacific Soils, 1998). This evaluation reviewed post- 1989 fault data (both published and proprietary) and investigated the projected trace of the Wolf Valley fault (Kennedy, 1977). As part of the ~ EIR process, this report was reviewed by the County of Riverside Planning Departrnent on behalf of the City of Temecula. A County of Riverside review letter was issued (Riverside County, 1998) and PSE ~ addressed their comments (PSE, 1999) in a response report. Results of this later work support mass-wasting as the most likely origin for Holocene displacements observed along the offsite azea of the Specific ~ Plan. At this location, the relatively steep dips (50 to 60 degrees) aze attributed to pre-Pauba folding of the Temecula Arkose rather than to possible Holocene tectonic movement (Kennedy, 1977; PSE, 1998) . With regard to the published trace of the Wolf Valley fault that Kennedy (1977) has mapped along Pechanga Road, PSE used CPT and hollow-stem auger borings to observe and interpret the contact between the valley fill/alluvium and the Pauba Formation. This investigation indicated that a ~ depositional contact likely occurs between the alluvium and Pauba Formation rather than fault separation (PSE, 1998 and 1999). - PaciTic Soils (2001) ~ In 2001. PSE performed a preliminary geotechnical study for Phase 1 of the Wolf Creek Specific Plan, Tract 29798, located northwest of Wolf + PACIFIC SDILS ENGINEEFi1NG, INC. ~L t Work Order700007-C May 21, 2004 Page 6 Creek Road. Two hollow-stem auger borings were advanced within the subject project boundary and aze included in this report. - Pacific Soils (20031 In 2003, PSE performed a geotechnical investigation for the proposed storm drain channel located along the southern edge of the subject site. Borings and laboratory data pertinent to the current investigation have been included in this report. 3.2 Current Site Investi~ation 3.2.1 Field InvestiQation Site geologic reconnaissance mapping, as well as the subsurface I~ I~ investigation, were performed in February of 2004. The subsurface work consisted of drilling, logging, and sampling thirteen (13), 18-inch diameter bucket auger borings, BA-1 through BA-13, using a truck-mounted bucket auger drill rig. Thirty (30) cone penetrometer soundings, CPT-1 through CPT-30, were performad using a CPT rig. The approximate locations of the exploratory excavations aze shown on Plates 1 through 19. The logs of borings and a detailed description of our subsurface investigation are presented in Appendix B of this report. 3.2.2 Laboratorv Investisation I~ ~Q As part of our investigation, bulk samples were obtained at significant lithologic changes. Relatively "undisturbed" ring samples were obtained from the borings at predetermined intervals, as well as at significant lithologic changes. The ring and bulk samples were transported to Pacific Soils' laboratory for testing. Laboratory testing procedures and test results are described in Appendix C of this report. I~ I~ PACIFIC SOILS ENOINEERING, INC. ~~ • • • .! c • • [7 A • Work Order700007-C May 21, 2004 4.0 GEOLOGIC CONDITIONS Page 7 4.1 Geolo~ic Structure The subject property is located within the Peninsulaz Range Province of southern California. The province is characterized by elongate ranges and valleys that extend from Baja Califomia and are abruptly terminated at the Transverse Ranges north of Los Angeles (Jahns, 1954). The higher parts of the Province are underlain by pre-Cenozoic igneous and metamorphic rocks, while the less rugged terrain is typically characterized by sedimentary and volcanic rocks of the late Mesozoic and Cenozoic age. Faults in the Province are predominately northwest trending. The subject property is located within the Elsinore Fault Zone, which sepazates the Santa Ana Mountains from the Perris block. This fault zone is a right lateral, strike-slip fault zone, that extends from upper Baja California, to its northem branches (the Whittier and Chino faults). The specific fault located northwesterly and adjacent to the site, is referred to as the Wildomar fault. The specific fault located southeasterly and adjacent to the subject site, is the Wolf Valley fault. 4.2 Strati¢rauhv Although absent from the site, pre-Cenozoic basement rocks assigned to the Bedford Canyon Formation, Santiago Peak Volcanics and plutons of the southem California batholith crop out approximately one (1) mile from the site. These rocks aze most abundant in the tepographically higher portions to the west (i.e., Mount Olympus) and Aqua Tibia Mountain to the east. Unconformably overlying these basement rocks aze late-Tertiary sedimentary bedrock units and sediments that range in age from early Pleistocene to Holocene. The geologic units underlying the Wolf Creek Specific Plan consist of the Pleistocene-age sedimentary deposits that include the Pauba Formation and Temecula Arkose, as well as Holocene-age alluvium / colluvium, and artificial fill. The following briefly describes these units. The nomenclature follows that of Kennedy (1977). The horizontal distribution of these units is depicted on Plates 1 through 19. ~ PACIFIG SOILS EN61NEEii1NG, INC. \~ n u Work Order700007-C May 21, 2004 ~ 4.2.1 Artificial Fill-Enaineered (afe) Page 8 Locally derived artificial fill exists along the boundaries of the site, associated with the on-going grading for Tract 29798, as well as previously developed azeas. The material consists predominately of silty ~~ sand to sandy silt with coarse sand and gravel. 4.2.2 Artificial Fill-Undocumented (aful Locally derived artificial fill exists on site, associated with dirt roads and ~ one detention pond. The material consists predominately of silty sand to sandy silt with coazse sand and gravel. The fill is undocumented and estimated to be a maximum of eight (8) feet ~ thick. Other localized azeas of undocumented fill exist as backfill within the fault trenches and other previously excavated geotechnical backhoe trenches. Undocumented and uncompacted fill will require removal and r recompaction. 4.2.3 Colluvium (Maa Svmbol Ocol) Holocene-age colluvium consisting of silty sand was observed along the r northeast boundary of the site, emanating from the drainages located just off site. This geologic unit is typically light gray to brown and lacks soi] development that typically characterizes older (Pieistocene) soil deposits. This material was obseraed to be visibly porous and dry. All colluvium • should be removed from siructural. Colluvium is not suitable for support of structures or cut exposures. 4.2.4 Alluvium (Mau Svmbol Oall Ia ~ Holocene-age alluviwn consisting of silty sands and sandy silts underlies most of the study area. The alluvium represents valley fill deposits (i.e., distributary-fans) of Wolf Valley, which aze a succession of fluvial '~ channel and overbank deposits. Accordingly, the stratigraphy of the alluvium can be characterized as being relatively latera]ly consistent • PACIFIC SOILS ENGINEEFi1NG, INC. ~~ ~ Work Order 700007-C May 21, 2004 Page 9 ~ within this depositional framework. This geologic unit is typically light gray to brown and lacks soil development that typically characterizes older (Pleistocene) soil deposits. It is possible that Pleistocene deposits exist at depth; however, no distinction for older soil units has been made for this ~ study. 4.2.5 Pauba Formation (Map Svmbol Oos The Pauba Formation occurs on the northeastern boundary on the site. ~ The predominant lithology of the Pauba Formation is a poorly to moderately well sorted, fine- to coarse-sandstone with some gravel, and cobbles. Subunits of micaceous siltstone define bedding in the otherwise ~ massive unit. Color is typically reddish brown with lesser hues of olive brown to tan. 4.3 Geolo¢ic Structure ~ 4.3.1 Faultine The dominant structural feature associated with the Wolf Creek Specific Plan is the active Elsinore fault zone. Two main Elsinore fault branches potentially impact the Woif Creek area; the Wildomaz fault on the east, ~ and the Wolf Valley fault un the west (Kennedy, 1977). Although not within this study area, eazlier investigations (PSE, 1998; PSE, 1989; Earth Research, 1987; and Petra, 1989), produced considerable subsurface ~ information to investigate possible faulting along the eastern Specific Plan area (Wildomaz fault) and the projection of the Wolf Valley fault as mapped by Kennedy (1977) along the west Specific Plan azea (Pala Road). These studies have resulted in structural setbacks along the east ~ boundaries (offsite for this report). No other structural setbacks were recommended for the Wolf Creek Specific Plan area (PSE, ]989 and Petra, 1989). ~ PACIFIC SOILS ENGINEEqING, ING. ~~P • Work Order 700007-C May 21, 2004 Page 10 ~ 4.3.2 Foidine The Pauba Formation is generally flat-lying where observed in trench and outcrop exposures immediately east of the study area. However, local cross-bedding occurs within the Pauba Formation, but reflects original ~ dips of deposition, rather than later tectonic deformation. Eazlier studies (PSE, 1998) conclude that the Pauba Formation is in angulaz contact with the Temecula Arkose. This contact exists east of the south portion of the Specific Plan (offsite of this report) and extends for three (3) miles along the northwest flank of Agua Tibia Mountain (Kennedy, 1977). Within the alluvial deposits, there was no evidence of tilting or deformation to the depths explored. 4.4 Groundwater Groundwater was not encountered during the current subsurface investigation. The groundwater elevation measured in a borings during a previous investigation is shown in Table 4-I. Analysis of current groundwater elevations do not reflect: 1) unusual; or 2) excessively steep gradients that may suggest unrecognized faulting. As a part of State of California review process for a proposed high school site south of Parent Tract 29798, and within the Specific Plan area, a groundwater study was prepared by EnGEN Corporation (EnGEN, 2000). This study was conducted to evaluate historic and anticipated future groundwater levels for Wolf Valley, and concluded that groundwater levels are expected to be maintained to an average depth of fifty (50) feet. The cited factors that support this conclusion are: ]) increased overall pumping to meet local demands for water in the PACIFIC SOILS ENGINEERING, INC. ~~ [7 Work Order700007-C May 21, 2004 Page 11 • Temecula Valley; 2) increased pumping by the Pechanga Indian Reservation; 3) increased pumping of the younger alluvium in the valley (Pauba Aquifer); 4) planned changes in land use which reduce aquifer recharge from irrigation retum flows; 5) leakage of groundwater vertically downward from the Pauba Aquifer • (alluvium) to the Temecula Aquifer; and 6) no current plans by Rancho California Water District or Pechanga for artificial groundwater rechazge in Wolf Valley. • 4.5 Geologic Hazards 4.5.1 Seismici It is likely that the site will experience strong ground motion and effects ~ from potential earthquakes along active faults. Figure 2 presents a map showing the active faults in Southern California, and the project site location. ~ To estimate the potential ground shaking, PSE has performed the probabilistic seismic hazard analyses (PSHA). To perform this analysis PSE has utilized FRISKSP, developed from United States Geologic ~ Survey by Blake (1989-2000a, b, c). Attenuation relationships by Boore et al (1997), Sadigh et.al (1997), and Campbell & Bozorginia (1997) were used to compute a mean plus one ~ standard deviation peak ground acceleration on rock. Equal weight was given to all relations. Using the above mentioned attenuation relations, the maximum acceleration plus or minus one standazd deviation was determined (FRISK Software) for soil conditions. For alluvium and deep ~ soil, an average PGA of 0.73g was determined for earthquake ground motions having 10 % probability of exceedance in 50 years. The complete seismic analysis is presented in Appendix D. • Our conclusions aze based on many unavoidable geological and statistical uncertainties, but aze consistent with current standazd-of-practice. As ~ PACIFIC SOILS ENGINEEFi1NG, INC. `,~ ~ . ' ; . ~.' / f: . - /. j l ( : !~~ _ ~ / ~ ~ ~ ~~ .`i ~"' / /~-f. ~ ~ A~~\~ :°~ a `~ ~ ~ . ~ ~ ~, '~ i r -~:c: . I - N~ J~ - % d -\ , .ri/~ ~ ~I, ~~ ' - ~ .. ~ F. y ~. f / - ~ l { . ji- : / ~ ~ ~ ~ ~-~ ,C ~~ . ~ I •~ .i`i~l~ ~~ ~h •r'~R ~ ~~ lI ~' . ,~ 'y `~~' ~ :~ r~ ~`'~"~ ~~J.: ~ ~Ifll~il111~.~1~i71 .' I~ 1 w ~ ~~ . , ..;~ j / C /, :; ~ d ~ t i i ~...+si~~ ~ ~ L j • QQ ~ ~' ~ ~~ .~`, ~~~ 1 ~~ ry t~f~~' ~ ' ~/~ ~P a p --~ i/.. / ~,/ J~~ ~{ ~/ + ~ :• . '~ ~ ~$-- V1 ~: G'.~ ~ '~~ ,f / "{ ~ ~ 1 1 ~ :.:' ~ -3' cM~ " ~f ~. ~x / .+ „ y ~ ~9- / :. , ~ \ . ! i ' r ''i ~~ ~ !. i ~ ~; ~ , i,~` j ~ j~ r ~ ` ~ ,3 ~' , ~:,; f ~h ~ „ ~ ~: ~ ~ k - ~ , i.:~ ~ , r l. ,~r^ dd _ - ; . ~, ~ s~~ ~k ~' .- u ~~ t~ ~ ` '- ~ ~-~-~: _ ~.=. 'Y' ~ , /~ :~ ( 8 ~ A T ~ \~~ ,-~ ~ '~ :~ ~ -- ~. f . ~`~, -" ~ , ` ' ,. ~ ' ~ . ~_.' +~~j ` •~ j .~ m. .._ 1 0 _ _ ' ' ./ ~ . . . ~l O_- ~~ P'".' e// . \ 4 ..,' ~ ..~ ''v~ ~:•~.. { ~~ _~\...1~1'.~ p ; ~ . . ~ '~ _ ~s r ~~ s Fi ~ ; . ~ ; • .~ ~ 1. _ .I~( ~~g''~~ f, l~' ~•:/ ~~/r ., ~ 3 . f`M'Q'~ ~I ~ s,~ _ I i'1 , M ~~ l~/"'~L'J ~ I ~.. ~~~ I~~ i f~~ ~~~~ K, ~ ~~ :: ~ ~ Y~ ~~~ ~-'~ r f :. ~ ~ , , ~ ~ ~ ~ ~'~"' ~.d I ~tj) ~/y,9 ~~~ ~/'~~I ',/ 1 ./ y/~ J~" ~ k,~\ ~!E f + i~ri~ ~. .~ ~.. ~'' ~ '_. .. ~~ /- '.' ~ . r ~ ~U1~ ' ~ '~ ~ ~r.?' ~ I~~/?~~' ~' .~ ~ ° y~ , ~ ~ ~ ~ t _ . ~~ ~i r~^ ~:/.~ ~ ~ _ _ . . /{(( ./j ~ ~i~ . l,s~ y ~:: l ~I ~ i 4 ( 1! i~ n~ u ~l ~ ~ . S ~ ~ 1 , . ~ . 7~rYt~ fii' e ~, -_ r.~\ r r r- ~ ~ .~ p ~ ' ." s . tt~~+~ i /t. ~~ ' f ~;+' ~ ,a ~~ '-' f . .i j~ t ~a.- ,~ ~ % ~ l . $ ~ ai' F'` ; f ;~ ~"~` y~~ ~ e ~. ~..~ ~ -,'~1~~~ ' ~ ~-~ ~; ~ ~ ~~ r i 1 - . , , 7 ~ ~ .:, " ~ . . . _ L~M{ °t y . - r~ ¢~,~ i ~• ~~ . -~..:~ , ~' d ~Yn.c....i . 1 1 •_ ~_ _. _ ~ ' .-\ vT _ . 1 ' ' ..1~ . ~ . ~ti ~ ,1 - - „ ~ ~~ '~ ~ --~ ~ r ..1= • ; , ~ ,~~~ . % ' , ,~~ ' i _ - ~ -' ;:. ' x , ' a~~I'~` ~ ~ ~ .... .~` ' ~V ~ ~ >,` ~ ': rf t ~ I r.~ , , . ;_ `~ `+ ~~ y ~ . • ~ \ ~~T i~ -b ~gryj '~ : i ~/~ _u ~ v'''l ~ ~q F $~ /J-/ ~ e " ~ ~~~ Ta~~13~~ e N'~ 6% / . ". ~//,r'" ~ 5 ~~ . __ ~; `"' ~~ `\> ;/•~yD y • ~1~ ~ l ,'$5,_,~~ k -, ~. y ~ . ~J /;i,~ ,~~ s~y' ,~,~~ ~ j ih' _..-.. -~ ~ ~' j _ t T~-~ ~/T>/i "J ~ ~ ~~~ . f .*" ~,s :~/ . : tTH' ~ ;;~~'~'i'f0/A"'% ~' ~ ~ .k ~ i •, ~.e: i_ C x-~ . .'-¢ y ~7•-+--^ 7; '-!~ : ~ _ ~.. I 1~ . ~i x 1 ~`~ yt.: ~ ~~ r ~ ~ _ _ ~ .~ ,/ _-+ „b ~ § _1 Fa~ -f-, ~6 .. y I. .. ..~ ? ' - ~ r3~~ \ i : :~p° tnY~ ~ ~ ~Y'" . '~ ' r;~ ~ ~/ I /~ ':.~~J 6 G `~'`~°.j~`fp` R "~t~~ ' .~'~ ~..yTl~~~' . Q_ ~, ~ ~~~ y ~~~ ~ ,t'k~ ~ ~ !,L,.° ~ ~~~.-' ~ ~~a i ~,,~C ~ ~ N V N ~' Ll N ~`~ e~~A ~ ry~~~. ~ ~ ' r 4 l ~ ._ ~ r ; .: , -_ ; - ~~ `r ~~~,~,• 'T ..a.•~' ~ ~`//y ~ ~ z ~ N --- - ~ -- ~ ~ ~: ~ ,~'\~'r"i;,~% r~,.; ,~~..1:" i' r' .,~i ~ ~ cai Yf • ~'j s :i ~ i,,, -~ ; e ~:': t~ U' ~o ~ ' ~ f~S'~i~y.r Q ~ ~~ , ~~ ~ ~' = O V r i~ v \ l ;,~,' ~ , \ \~ ~ ~ • ~~e M~~ v~'~ ~ y/ : ' ~ U p ~ '~~a a .~X F~'~ ~~:, Q ~~ i~ r /. pj ui . ~ ~~ e~ j\` ~~ ; , ~ . ~.~ p ' ; ~~ ~~~ ~~ m V A ~'.. i s,. ~ ~ ,. /' ~ ~, c~ ~ r ~i. '~ a; R .;~~ ~ F ~,'.' ~ ,7~~'r / \ ~ Z N ~ ~ ~~. i ,a y .~, W ~ g ~n/~ ~ ~/ ~~~~ Yz~/y ,' ~ N / .. v ~ .1/.' <_rl ~l`~~~'~~. I ~ ,..a. "'' :~ , _ y~ ~ ~F _ '~t" ~"F'~ ,/`-~41~ . • ' ` `~~ • I ~.."' , `~';~ J ¢ 1~ ~ ^ ~ ~-! ~< 1 . '~ ly _ `` 'ix , ~, ~ / aF/ ~ ~T y r ~ 9 9 ~ i 1.`._t ~ ~ ~, ;i~ ryl / .~' ~~' ~ ~ l0 ~ ^~.. ~ ~ ' / t ~ ~ i / ~Y _- ~ , _ a ~ ~IM ' ' ' ~ //' Y S "_i_ " i ~ W ^ • '~t~ f' ' ~~,.~~'~ ''3 ~~fi' '/.~ ~~/` ~~ ~ ,~~ 6 ~ i ~s~J~/y ~ . F .~ ~~~~~ ' ~ h ~ . ~~ _~ ~ ~~'\ ~ 1' ~ ~' ~ ' + ~ ~ ~ ~ ,, r = , •: , r ,.~ _ .~ _~~~~:1ez~.Ctih' Yi :~V1~ :~ .t~ ~ 3; I F~= , w ,, " I~ _ ~ ~ Work Order700007-C May 21, 2004 Page 12 • engineering seismology evolves, and as more fault-specific geologicai data aze gathered, more certainty and different methodologies may also evolve. ~ 4.5.2 Liquefaction aad Seismic Settlement Seismic agitation of relatively loose saturated sands and silty sands can result in a buildup of pore pressure. If the pore pressure exceeds the li uefaction ondition known as i• overbwden stresses, a temporary qwck c 9 can occur. Post liquefaction effects at a site can manifest in several ways, and may include: I) ground deformations; 2) loss of shear strength; 3) lateral spread; 4) dynamic settlement; and 5) flow failure. • In general, the more recent a sediment has been deposited, the more likely it is to be susceptible to liquefaction. Further, liquefaction potential is greatest in loose, poorly graded sands and silty sands with mean grain size I• in the range of 0.1 to 0.2 mm. Other factors that must be considered are groundwater, confining stresses, relative density, and the intensity, and durarion of ground shaking. It is generally held that soils possessing a I• clay content (particle size < O.OOSmm) greater than fifteen (15) to twenty (20) percent may be considered non-liquefiable (for example, Martin and Lew, 1999). The alluvium onsite is potentially ]iquefiable if fully saturated. • Groundwater was encountered at a depth of thirty (30) feet during the investigation for the neighboring tract. Due to the depth of the groundwater, the potential for surface manifestation due to liquefaction is • considered low. Additionally, the potential for lateral spreading is considered low due to the relatively flat topography. Settlement due to liquefaction can occur. A liquefaction analysis was performed to analyze the potential amount of settlement and a description of the analysis and the • calculations aze presented in Appendix F. A groundwater level of 25 feet ~ PACIFIC SOILS ENGINEEFING, INC. 2~ .7 ,• Work Order 700007-C May 21, 2004 Page 13 below grade was assumed; however, groundwater is deeper and is likely to remain so. The analysis showed that the amount of settlement due to liquefaction ranges from one-half to three and one-half inches. ~ 4.5.3 Dvnamic Settlement I Based on the fines content of the alluvium onsite, the potential for dry sand settlement is considered low. However, isolated clean sand layers ~ may exist in the alluvium that may be susceptible to dry sand settlement. This potential for settlement can be mitigated by the use of post-tensioned foundations systems for single-family structures. ~ 4.5.4 Seismicallv-Induced Landslidina Due to the relatively flat lying topognphy found at the site, upon the I completion of the grading, the potential for seismically induced landsliding will be very low at the site. I~ 5.0 ENGINEERING ANALYSES Presented herein is a general discussion of the geotechnical properties of the various soil types and the analytic methods used in this report. • 5.1 Material Properties ~ 5.1.1 Excavation Characteristics Based on our previous experience with similar projects near the subject ~• site, and the information gathered during our investigation for this report, the onsite soils should be readily excavatable with conventional earth- moving equipment. The need for blasting is not anticipated for native • earth materials. Owing to the variability of the alluvium, mixing and/or discing may be required in order to incorporate the materials into the compacted fill. . vt PACIFIG SCILS ENGINEERING, INC. i• I• I• • • Work Order700007-C May 21, 2004 Page 14 5.1.2 Compressibilitv The undocumented artificial fill and the upper portions of the alluvial deposits are considered highly compressible and unsuitable for support of structures or proposed fills as they presently exist. These materials will require removal from fill areas prior to placement of fill, as well as where exposed in cut areas. Recommended removal depths are presented in Section 6.1, and earthwork adjustment estimates are presented in Section 5.1.5. 5.1.3 Expausion Potential It is anticipated that the expansion potential of the majoriry of onsite materials will vary from "very low" to "low", with minor amounts potentially in the "medium" expansion range. 5.1.4 Collaase PotentiaUHvdro-Consolidation • • • C • PSE's general experience in the Temecula-Murrieta azea indicates that sands and silty sands may have a susceptibility to hydro-collapse if the degree of saturation is less than 85 percent. Laboratory testing indicates that a majority of the partially satwated alluvium at the Wolf Creek Specific Plan has a relatively low (i.e., one-half to one percent) potential for hydro-collapse. One sample showed a five and one-half (5.5) percent collapse (Plate C-] 8). As concluded in Pacific Soils Engineering, Inc. Zone Study (PSE, 1992), differential surface manifestation of hydro- collapse settlements is dependent upon the simultaneous occurrence of several necessary conditions, namely: 1. The presence of partially saturated, hydro-collapse susceptible soils; 2. An increase in stress acting on the susceptible soils: 3. Wetting ofthe susceptible soils; 4. The presence of irregulaz subsurface geologic conditions and/or surface loading patterns. PACIFIC SOILS ENGINEEpING, INC. v~ • Work Order 700007-C Page 15 May 21, 2004 ~ First, although the site soils show some susceptibility to hydro-collapse, the majoriry of data (Plates C-1 through G25) show that this will generally be less than one percent. Second, the fillloads aze generally less ~ than five (5) feet. Accordingly, the stress increase is relatively small and uniform. Third, current groundwater levels are generally more than thirty (30) feet below the present ground surface and they are not expected to rise even with the proposed development. And fourth, no major ~ subsurface geologic discontinuities aze known to underlie the study area. Accordingly, PSE concludes that the potential for deleterious hydro- collapse is low and the potential settlement can be mitigated with the use ~ of post-tensioned foundation systems. 5.1.5 Moisture Content The upper fifty (50) feet of site soils vary from dry to moist. Depending II ~ upon the time of yeaz, neaz surface moisture contents are expected to vary ~ seasonally. Current in-situ moisture contents range between 0.6 and 22.8 percent. It is anticipated that onsite soils will require moisture , conditioning and mixing to meet project specifications. 5.1.6 Shear Streneth Characteristics The following Table 5.] presents a summary of "averaged" shear svength parameters obtained from the data gathered in the subsurface I• ~~ ~~ investigation. _ TABLE 3.1 Shear Strength C6aracteristics (drained parameters) Material Description Cohesion, C (PSF) Residual Friction An le De rees Alluvium (Qal) 150 ~2 Compacted Fill (90%) 300 34 II• PACIFIC SOILS ENGINEEFIING, INC. ~ ~ ~ Work Order700007-C May 21, 2004 Page 16 ' ~ 5.1.7 Earthwork Adiustmeats The following average earthwork adjustment factors have been formulated for this report. I• .`TABLE;S:2 ~^; _- -Eart6work`Adjustments .' f * ' Geologic Unit Adjustment Factor Average Alluvium (Qal) Shrink ]0%to 15% 12% These values may be used in an effort to balance the earthwork quantities. As is the case with every project, contingencies should be made to adjust the earthwork balance when grading is in progress and actual conditions • I• aze better defined. 5.1.8 Pavement Supaort C6aracteristics It is anticipated that the onsite soils will possess poor to good support characteristics. Depending upon the final disVibution of site soils, pavement support chuacteristics could vary. For preliminary design and estimating purposes, an "R"-value of 30 is tecommended unless select grading is accomplished to provide more favorable subgrade conditions. ~• 5.1.9 Chemical Test Results Preliminary soluble sulfate and resistivity testing has been conducted. Laboratory results for soluble sulfates indicate negligible sulfate concentrations in accordance with Table 19-A-4 (UBC 1997). Chemical test results aze presented in Appendix C. Additional chemica] tests should ~w be performed upon the completion of grading. Preliminary resistivity testing indicates that onsite soils are mildly to highly corrosive to metals. Consultation with a conosion engineer is recommended. I• ~ PACIFIC SOILS ENGINEERING, ING. ~ i• Work Order 700007-C Page 17 May 21, 2004 I ~ SZ Enaineerina Analvsis 5.2.1 Bearin¢ Cauacitv and Lateral Earth Pressures Ultimate bearing capacity values were obtained using the graphs and I~ formula presented in NAVFAC DM-7.1. Allowable bearing was determined by applying a Factor of Safety of at least 3 to the ultimate bearing capacity. Static lateral earth pressures were calculated using Rankine methods for active and passive cases. If it is desired to use Coulomb forces, a separate analysis specific to the application can be conducted. 5.2.2 Slope Stabilitv ~ Slope stability analyses were performed using the Modified Bishop , method for circulaz and non-circulaz failure surfaces. Stability calculations were compiled using STEDwin in conjunction with GSTABL 7 computer code. The results of ow analysis aze presented on Plates E-1 through E-2 in Appendix E. Surficial slope stability analysis is presented on Plate E-3. Both static and pseudo-static analyses were performed for fill slope cases. PSE's analysis indicates that 2:1 fill slopes as currently ~ designed will be grossly and surficially stable. 53 Settlement 5.3.1 Gradi°e • Placement of fill on the site will produce a settlement response in the underlying soils. Settlements are estimated at approximately one-quarter (0.25) inch for each one (1) foot of design fill. The majority of that ~ settlement is expected to occur during grading and should be largely complete within one to two months after grading. 5.3.2 Structural Loads • Remedial grading recommendations as presented in Section 6.0 of this report have been formulated to provide specific thickness of compacted • PACIFIC 501L5 ENGINEEqING, INC. V~ • ^ Work Order700007-C May 21, 2004 Page 18 fill for support of structures. Such remedial grading is intended to reduce differential settlements under structural loads to less than one-half (0.5) inch in fifty (50) feet. Foundation plans for the various site uses should be I~ reviewed when available to confirm this conclusion. 5.3.3 Liquefaction and Dvnamic Settlement As discussed in Section 4.5.2, there is a potential for up to three and one- ~~ I~ half inches of settlement to occur due to liquefaction. Structures should be designed for a difFerential settlement component of two (2) inches in fifty (50) feet from this potential source. The magnitude of those settlements can be mitigated to an acceptable level of risk as defined by the State of California by accomplishing the recommended remedial grading and utilization of post-tensioned slab/foundations as currently proposed and discussed in Section 7.l of this report. Differential settlements that should be used in the design of structures are presented in Section 7.1.4. 6.0 GEOTECHNICAL CONCLUSIONS AND RECOMMENDATIONS Development of the subject property as proposed is considered feasible, from a geotechnical standpoint, provided that the conclusions and recommendations presented herein are incorporated into the design and construction of the project. Presented below aze specific issues identified by this study or previous studies as possibly affecting site development. Recommendations to mitigate these issues are presented in the text of this ~ report, with graphic presentation of the recommendations on the enclosed plans, where appropnate. 6.1 Site Preparation and Removals ~ All grading shall be accomplished under the observation and testing of the project soils engineer and engineering geologist or their authorized representative in accordance with the recommendations contained herein, the current ra adi°a ~ ordinance of the Citv of Temecula and PSE's Earthwork Snecircations (Appendix G). All topsoil, undocumented artificial fill and highly compressible ~ PACIFIG 501L5 ENGINEERING, INC. ~ • Work Order 700007-C Page 19 May 21, 2004 • alluvium and colluvium should be removed in fill azeas or where exposed at design cut grade. The exact extent of removals can best be determined in the field during grading ~ when observation and evaluation can be performed by the soil engineer and/or engineering geologist. Removals should extend to competent materials. The intent of the remedial grading is to mitigate the potential for hydro-collapse and to support the various structure types on a defined thickness of compacted fill. The • thickness has been determined as the amount necessary to support the footing stresses lazgely within the fill and minimizing stress increases on the underlying native soils. Removal bottoms should be observed and mapped by the engineering geologist before fill placement. In general, soil removed during remedial grading will be suitable for use as compacted fill, provided it is properly moisture conditioned and does not contain deleterious materials. '~ • 6.1.1 Strianina and Deleterious Material Removal Existing vegetation, trash, debris, and other deleterious materials should be removed and wasted from the site prior to commencing removal of unsuitable soils and placement of compacted fill materials. r 6.1.2 Site Preparation - Unsuitable Soil Removal In general, all undocumented fill and all dry, loose and highly compressible upper native soils will require overexcavation and ~ I recompaction prior to placing design fills and when exposed by design cuts. The required depths of removal will vary depending upon the planned use of the area as discussed below. ~ 6.1.2.1 Residential Areas For shallow cut and all design fill azeas, all existing and the upper five (5) feet of natural soils should be removed and replaced as • compacted fill. In addition, the overexcavation of cut areas should be accomplished to assure that both the above criterion is ~~ f~~ PACIFIG SOILS ENGINEEFIING, INC. I• Work Order 700007-C Page 20 May 21, 2004 f accomplished and a minimum of five (5) feet (vertical) of compacted fill is produced within the building pad envelope. That envelope is defined as being within five (5) feet, horizontally, of the structures or from City mandated setback lines. The required • overexcavation can consist of a combination of overexcavation and processing of a maximum of one (1) foot in-place. If residential building envelopes aze sufficiently defined and I~ survey field control is provided, the above removals can be applied to the building pad envelope defined above. For fills outside of the residential building envelopes, a minimum removal and 'i, ! recompaction of all existing fill and the upper two (2) feet of natural soils is recommended. The lower one (1) foot of removal can be accomplished by scarification and compaction in-place. For cuts greater than two (2) feet outside of the building envelope (i.e., • streets and yard azeas), removals aze not required provided that all existing filts aze so removed. For cuts less than two (2) feet, the two (2) foot removal and recompaction applies. • 6.1.2.2 Commercial Areas Currently plans are unavailable showing the proposed building lo- cations in the commercial azeas. If typical neighborhood commer- ~ cial structures are developed, removals and overexcavation should be accomplished to assure that a minimum of five (5) feet of com- pacted fill is produced within the proposed building pad/envelope. ~ This five (5) foot, vertical envelope should extend five (5) feet horizontally from the edge of the building pad. 6.1.2.3 Existing Trenches ! All uenches that have been previously excavated and backfilled without regazd to compaction will require removal and `~ ~ PACIFIG SOIL6 ENGINEERING, INC. i. Work Order 70000"1-C Page 21 May 21, 2004 ~ recompaction to the base of the prior disturbance. Trench locations are shown on the accompanying Plates 1 through 19. During removals, trenches should be identified and appropriately ~ overexcavated and recompacted to the depths indicated on trench logs. Fills should not be placed until the excavation bottom is observed and approved by the soil engineer and/or geologist. ~ 6.1.2.4 Undocumented Artificial Fill In addition to the undocumented fills existing along Pechanga Road and the unimproved roads onsite, undocumented fill may underlie Lots 12 through 14 and 20 through 23 of Tract 30264-5. ` Comparing the previous topography on the grading plans and the current topography revealed that up to fifteen (l5) feet of the soils in the specified uea has been removed and then replaced to current ~ grade. The latest topography was not available until after the subsurface investigation was accomplished, so this area was not explored. It is anticipated that this undocumented fill will need to be removed prior to fill placement. This area may need to be ~ located by surveying prior to grading. 6.2 Slope Stabilitv and Remediation 6.2.1 Cut Sloues • Cut slopes have been designed using a maximum slope ratio of 2:1 (horizontal to vertical). Due to the variability ofthe alluvium, cut slopes in this unit will need to be replaced with stabilization fills. The majority ~ of the design cut slopes located along the northeastem boundary will be excavated into unsuitable material. These cut slopes are anticipated to require stabilization fills, as depicted on Plates 1 through 19. The project geologisdengineer will detertnine the final extent of these stabilization ~ fills. a 2°~ PAGIFIC SOILS ENGINEEFIING, INC. i• Work Order700007-C May 21, 2004 Page 22 ~ 6.2.2 Stabilization Fills At this time, stabilization fills will be required for cut slopes in the alluvium and colluvium. If stabilization fills aze required, a keyway ~ founded on competent alluvium and tilted into slope, should first be established. A backdrain and outlet system should be constructed at the heel of the keyway as shown on Plate G-3. The keyway width should be at least 15 feet, or half the height of the superjacent fill slope, whichever is ~ greater. Recommendations for stabilization fill backcuts aze presented in Section 63. 6.2.3 Fill Sloaes ~ Fill slopes have been designed using a m~imum slope ratio of 2:1 (horizontal to vertica]). The highest design fill slope onsite is approximately five (5) feet. Stability calculations for a 15 feet high 2:1 fill ~ slope are presented on Plates E-1 and E-2 in Appendix E. Surficial stability analysis is presented on Plate E-3. Fill slopes that aze 2:1 or flatter are considered grossly and surficially ~ stable when properly constructed with onsite materials. Keys should be constructed at the toe of all fill slopes "toeing" on existing or cut grade. Fill keys should have a minimum width of fifteen (15) feet. Unsuitable soil removals below the toe of proposed fil] slopes should extend from the ! catch point of the design toe, outward at a minimum 1:1 projection into approved material, to establish the location of the key. Backcuts to establish that removal geometry should be cut no steeper than 1:1 or as + recommended by the geotechnical engineer. 6.2.4 Skin Cut/Skin Fill Slopes Skin cut slopes are designed along the northeastem boundary of the site. ~ For all such conditions, it is recommended that a backcut and keyway be established such that a minimum fill thickness of fif[een (15) feet is • PACIFIC 5DIL5 ENGINEEFING., ING. %~ • Work Order700007-C May 21, 2004 I• Page 23 provided. If uncompacted fill, topsoil, compressible alluvium, weathered older alluvium, highly weathered bedrock or other unsuitable materials are exposed within a cut slope, overexcavation and replacement with a stabilization fili will be required, as discussed in Section 6.2.2 and shown on Plate G-3. 6.3 Temaorarv Backcut Stabilitv ~ During grading operations, temporary backcuts will be required to accomplish unsuitable soil removals, as discussed in Section 6.1, and, if necessary, to construct stabilization fills and associated keys. Backcuts for removals should be made no steeper than I:l . I~ Stabilization fill backcuts should be made no steeper than 1:1 (horizontal to vertical). Flatter backcuts may be necessary where geologic conditions dictate, and where minimum width dimensions are to be maintained. Caze should be taken during remedial grading operations in order to minimize risk of failure. Should failure occur, complete removal of the disturbed material will be required. • In consideration of the inherent instabiliTy created by temporary construction backcuts for stabilization fills and removals, it is imperative that grading schedules aze coordinated to minimize the unsupported exposure time of these • excavations. Once started these excavations and subsequent fill operations should be maintained to completion without intervening delays imposed by avoidable circwnstances. In cases where five-day workweeks comprise a normal schedule, • grading should be planned to avoid exposing at-grade or near-grade excavations through a non-work weekend. Where improvements may be affected by temporary instability, either on or offsite, further restrictions such as slot cutting, extending work days, implementing weekend schedules, and/or other • requirements considered critical to serving specific circumstances may be imposed. • PACIFIC SOILS ENOINEERING, INC. ~~ i• I• I• • '• • 1 [7 Work Order700007-C May 21, 2004 Page 24 6.4 Subsurface Drainage 6.4.1 Subdrains Due to the relatively flat topography of the site and lack of well-developed drainages, no subdrains are proposed for the site. 6.4.2 Backdrains Backdrains will be required in ALL keyways for any stabilization fills, skin-fill/skin-cut remediation and fill-over-cut keys. Backdrains should be constructed in accordance with the details shown on Plate G-3 (Appendix G). 6.5 Construction Stakine and Survev Removal bottoms, fill keys, stabilization fill keys, and backdrains, should be surveyed by the Civil Engineer prior to final observation and approval by the geotechnica] engineer/engineering geologist in order to verify locations and gradients. 6.6 Earthwork Considerations 6.6.1 Comoaction Standards Fill and processed natural ground shall be compacted to a minimum relative compaction of 90 percent, as determined by AST'M Test Method D 1557. Compaction shall be achieved at slightly above the optimum moisture content, and as generaliy discussed in the attached Earthwork Specifications. Compaction shall be achieved with the use of sheepsfoot rollers or similaz kneading type equipment. Mixing and moisture • conditioning will be required in order to achieve the required moisture conditions. 6.6.2 Documentation of Removals and Drains • Removal bottoms, stabilization keys, fill keys, slope laybacks, backdrains and their outlets should be observed and approved by the engineering • PACIFIC SOILS ENGINEEFING, INC. ~~ ^ Work Order 700007-C Page 25 May 21, 2004 ~~ geologist and/or geotechnical engineer and documented by the civil engineer prior to fill placement. Toe stakes should be provided by the civil engineer in order to verify required key dimensions and locations. ~ 6.6.3 Treatment of Removal Bottoms At the completion of unsuitable soil removals and excavation of stabilization keys, the exposed bottom should be scarified to a minimum ~ depth of eight (8) inches, moisture conditioned to above optimum i conditions, and compacted in-place to the standazds set forth in this report. 6.6.4 Fill Placement ~ After removals, scarification, and compaction of in-place materials aze completed, additional fil] may be placed. Fill should be placed in thin liRs (eight inch bulk), moisture conditioned to slightly above the optimum moisture content, mixed, compacted, and tested as grading progresses until I~ final grades aze attained. 6.6.5 Benchine Where the natural slope is steeper than 5-horizontal to 1-vertical and ~ where designed by the project geotechnical engineer or geologist, compacted fill material shall be keyed and benched into competent bedrock. • 6.6.6 Mixin In order to prevent ]ayering of different soil types and/or different moisture contents, mixing of materials may be necessary. The mixing ~ should be accomplished prior to and as part of the compaction of each fill lifr. Discing may be required when either excessively dry or wet materials aze encountered. I• • PACIFIG SOILS ENC3INEEFIING, INC. ~~ i• Work Order 700007-C Page 26 May 21, 2004 I~ 6.6.7 Fill Sloae Construction The following recommendations should be incorporated into construction of the proposed fill slopes. • - Fili slopes should be overfilled to an extent determined by the contractor, but not less than two (2) feet measured perpendiculaz to the slope face, so that when trimmed back to the compacted core a minimum 90 percent relative compaction is achieved. ~ - Compaction of each fill lift should extend out to the temporary slope face. Backrolling during mass filling at intervals not exceeding four (4) feet in height is recommended, unless more extensive overfilling is undertaken. - As an altemative to ove~lling, fill slopes may be built to the finish • slope face in accordance with the following recommendations: a) Compaction of each fill lift should extend to the face of the slopes. b) Backrolling dwing mass grading should be undertaken at intervals ~ not exceeding four (4) feet in height. Backrolling at more frequent intervals may be required. c) Care should be taken to avoid spillage of loose materials down the face of any slopes during grading. Spill fill will require complete removal before compaction, shaping and grid rolling/track ~ walking. d) At completion of mass filling, the slope surface should be watered, shaped and compacted by track walking with a D-8 bulldozer, or equivalent, such that compaction to project standards is achieved to the slope face. • e) Proper seeding and planting of the slopes should follow as soon as practical to inhibit erosion and deterioration of the slope surfaces. Proper moisture control will enhance the long-term stability of the finish slope surface. • 6.7 Haul Roads Ail haul roads, ramp fills, and tailing areas should be removed before placement of fill. • • PACIFIC SOILS EN6INEEFING, INC. ~ i~ Work Order 700007-C May 21, 2004 I, ~ 6.8 Imaort Materials Page 27 Import materials, if required, should have similaz engineering chazacteristics as the onsite soils and should be approved by the soil engineer at the source before ~ importation to the site. 6.9 Storm Drain Outlet There is a storm drain outlet from a neighboring residential tract on Lots 12, 31, ~ and 32 of Tract 30264-10. A fairly steady flow of water has been observed exiting the outlet. This outlet should be tied into the storm drain system of the subject site. Additional unsuitable soil removals may also be required in the azea around the outlet depending on the amount of water in the underlying soil. • 7.0 DESIGN CONSIDERATIONS 7.1 Structural Desi¢n-Sin¢le Familv Structures It is anticipated that one- and two-story, wood-frame residential structures with • shallow foundations will be constructed at the site. Precise building products, loading conditions and structura] locations are not currently available; however, it can be expected that for typical residential products and loading conditions, post- • tensioned slab/foundations can be used. The design of those systems should be based upon as-graded soil conditions and specific locations. For preliminary design and cost estimating purposes, the following recommendations and procedures can be anticipated, subject to confirmation of assumptions and as- • graded conditions. The following recommendations are for single-family residences only. Recommendations for the commercials sites should be made based on specific loading conditions and structure sitings. • Upon the completion of rough grading, finish grade samples should be collected and tested to provide specific recommendations as they relate to individual lots. These test results and corresponding design recommendations will be presented in ~ a Final Rough Grading Report. Final slab and foundation design ~ 3~ • PACIFIC 501L6 EN6INEEFIING, INC. • Work Order700007-C May 21, 2004 • Page 28 recommendations should be made based upon specific structure-locations, loading conditions, and as-graded soil conditions. It is anticipated that the majoriTy of onsite soils wil] possess "very low" to "low" I~ expansion potential, with some amounts potentially in the "medium" expansion range when tested in accordance with UBC Standazd 18-2 and classified in accordance with UBC Table 18-1-B. For preliminary budgeting purposes, the ~ following foandation design requirements, for the range of potential expansion ' characteristics aze presented. 7.1.1 Foundation Desian ~ Residential suuctures can be supported on conventional shallow foundations and post-tensioned slab/foundation systems. The design of foundation systems should be based on the as-graded conditions as I determined after the completion of grading. The following values may be I~ used in preliminary foundation design. Allowable Bearing: 20001bsJsq.ft. (assuming a minimum hes and a de th of 12 inc embedment p • minimum width of 12 inches). Lateral Bearing: 2501bs./sq.ft. per foot of depth to a maximum of 20001bs./sq.ft. • Sliding Coefficient: 035 The above values may be increased as allowed by Code to resist transient loads such as wind or seismic. Building Code and structural design considerations may govern. Depth and reinforcement requirements should ~ be evaluated by the structural engineer. 7.1.2 Post-Tensioned Slab/Foundation Desian Table 7.1 presents preliminary design recommendations that may be ~ implemented by the structural engineer when post-tensioned s~' I• PACIFIC SOILS ENCi1NEEii1NG, ING. • Work Order700007-C May 21, 2004 u Page 29 slab/foundation systems aze utilized in the building construction based on Section 1816 and 1817 of the 1997 UBC. 7.1.3 Differential Settlement • - ~namic Settlement The proposed residential suuctures should be designed in anticipation of differential settlement as a result of a major seismic event in ~ proximity to the site. Structures should be designed in anticipation of differentia] settlements from seismic events on the order of 2-inches in 50 feet. I ~ - Static Settlement In addition to the potential effects of expansive soils, structures should be designed in anticipation of differential settlements on the order of 1/2-inch in 50 feet under typica] design loads for residential structures. I~ Other structure types should be evaluated based on specific sitings and , loading details. - Combined Settlement • Structwes should be designed in anticipation of a combined (dynamic I and static) differentia] settlement on the order of 2 inches in 40 feet. I• I• [7 • PAGIFIC SOILS EN6INEERING, ING. ~~ I~ I~ ~~ I~ ~~ ~~ ~~ ~ ~ ~ ~ ~ ~ D N Y N C cC 3 ~ ~ ~ °' c M M N a o ~ E c o ~ ~ ~ a a ~" .. ~ E ; y E 5 • o u~ g ~ m ~, ~ ~ ~ C ~ N ~ L ~ C ~ o~ e.i M ~ E ° A 3 s U ' v u d ~ C ~~ w F . d 0. ~ N O G C ~O 00 T O 4.. °~i OD a~ M M ~ ~ p 3 c ~ E o o ~ ~ r ; o ~ ~' 'O 'D ~ o °°• E O ~ 9 N s ~ A ~` « W . a y y kw = ~ N ~ N :; n y O ~ `~ ~ ~ ~ M ~`' ~ v e 0 ~ ~ r i F N W ~ E c a i y ~/ fa, •~ ° E m ~ ~ W , F ~ ~ ~ y ~n t F .p ~ ~ Q C d ry ~ ~ = ~ G ~ ~ 7 ~ « v. Q ~ U ~ ~ ~ ~ ° ° ~ ~" ~ o .. .. L ~ i ] u 9 > ° ° o ~ r~ ' ~ . ~ N•O V ~ C 4~ ~A N O V1 A ~ C d O s C o C/1 W 0o E ~' M Ni ~ ~ ~ •o .. a . ~ = ti w= A ~ _ ~ ~ ~ d ~o ~ $ w z ~ o =_ ~ ~ ~_ m ~ =~ ~ F~i 9 E , V C y N> ~..y m y O 2 pq c i0 ^~ ~_ Q' E ~ a i '> u E w~ A ~ E ° ~ ° ~ s . ~ ~ >, ~ ~ o E ?. ~ z N , ~ ~3~ ~ ~A , a ~ e •., °' ~" _ a = ~ N O W v ,° ° .c ~ I o ~' a ° C' L ^ ~p 3 c O u a i U t d N l ~ c r ~o N ~ y ~ ~ns D~- y a w~ d fs Z w , m~E ,-~ e~i n _~ N ;,E a y o i~ °' ' rv, ~y '~ ~.. ° w a~i p"'~ V] W F. a ~ ~ d~ y a~ 3 m o~o c E o e v ~ Z, . V= Y d ~ ' z W a o v> o ~~ E 3c = W U ¢ ~ v~ ~ri ~ ~o " a m ° ~ 'ie a i °' a m o F+ z a ~ ~~ ~o v~ o a 3 ~ q ~~ : ~ O Z z a o '- ~ °; ~ =d /~~ ~ Q I ~~ ~ VI N ~ ~ A lO I~I i X O O ~ ~' ~ ~a ~ a~ L ~`e ~ a~ '' ~ y V'-' d ¢ r~ a ~ ~ „ e oo „ - E E ~ c L ~ y '~ . ~ y ~ ~ ~ C N ~ W+ y t F ~ ~ f'" ~ C ~ C .. 7 ~ $ ~ V t E ~ ~ T C A ~ • ~ y C U C A~ } 4~ E n~ 1 ~ 6 C O 77 ~ ~ ~ o `" - ~ s~ ~ ..~ ~•A E O w ` " "' L ~ v . Cl~ ~ o ~ ~+ ~ c ~ F R{ ' ~ ,a C N L O O ~ ~ p V V~ on~ W E ~ ~ a + d y w'° ° ` ~ o ~ -.~ 7 R e o C o ~ ~ r ~ v _ ` w ~ :y O 4~ y t ~ N C ~ • ' .. + N C y~ p y ~ ~.. G - sC _ c o ~ 3 PA IF C 9,A ~S NCi ~ 6 . V ~ ~ W ra ~ Q F ~.. j W- v, `' i• Work Order 700007-C Page 31 May 21, 2004 ~ 7.1.4 Deepened Footin¢s and Structural Setbacks It is generally recognized that improvements constructed in proximity to ~ natural slopes or properly constructed, manufactured slopes can, over a period of time be affected by natural processes including gravity forces, weathering of surficial soils, and long-term (secondary) settlement. Most building codes, including the Uniform Building Code (UBC), require that ~ structures be setback or footings deepened, where subject to the influence ofthese natural processes. For the subject site, where foundations for residential structures are to ~ exist in proximity to slopes, the footings should be embedded to satisfy the requirements presented in Figure 3. ~ FIGURE 3 SETBACKSFRONISLOPES i~CE Of i00TIN0 ~ TOP Of SLOYE iRCEOF I ~~' ' , ~/ 9~NUCTURE ~ 1 TOE Oi HU, NEED NOT E0.CEED ~0 iT I BuT NOT LESS THI1N 0 FT, SLOFE ~ Xl2 BUT NffD NOT EYCFE016 FT.~M~II.~ I • 7.1.5 Backvard Imarovements Backyard improvements, such as patio slabs, pools, and perimeter walls, ~ should also be designed in consideration of potential creep on descending slopes and in consideration of the as-graded expansive soil characteristics. ~ PACIFIC SOILS ENGINEEFIING, ING. ~ • Work Order 700007-C Page 32 May 21, 2004 • Footings for perimeter walls at the top of natural slopes should be founded in competent material. Walls should be struchually sepazated at 20-feet (maximum) intervals. Wall footing excavations should be observed by the ~ project soils engineer/engineering geologist. 7.1.6 Miscellaneous Foundation Recommendations Soils from the footing excavations should not be placed in slab-on-grade ~ azeas unless properly compacted and tested. The excavations should be I cleaned of all loose/sloughed materials and be neatly trimmed at the time of concrete placement. To minimize moisture penetration beneath the slab-on-grade azeas, utility trenches should be backfilled with compacted fill, lean concrete, or concrete slurry where they interrupt the perimeter footing (immediately below perimeter thickened edges). ' 7.2 Retainina Wall Desien Retaining walls should be founded on compacted fill, competent older alluvium, , r or bedrock. Foundations may be designed in accordance with the ' recommendations presented in section 7.1.1. In general, conventional walls can be designed to either retain native materials or select granular backfill, although the design for non- "free-draining" and expansive native material will produce a ~ relatively costly wall system. It should be anticipated that suitable backfill material will have to be imported or selectively produced from onsite sources and should consist of granular very low to low expansive materials. ~ 7.2.1 Rankine Earth Pressure CoefScients I• The following earth pressure coefficients are presented for "select" onsite soils for both level and 2:1 ascending (except where noted) sloping ground. ~ PACIFIC SOILS EN6INEERING, INC. ~~ i~ Work Order700007-C May 21, 2004 I• ~S I~ Page 33 _ ':TABLE 7;3 " Rsnlnoe EsAti Pressure Coe~cienlslor 9U"/a'Com }iacted F711 . _ {G-200 psf,~,92) -.:-, _, . '<,: ' _ Backtill Ks K Ko Level 031 3.25 0.47 2:1 0.47 1.23' 0.72 " Descendin slo e condition. Equivalent fluid pressure can be calculated utilizing a soi] unit weight of y= 125 pc£ Restrained retaining walls should be designed for "at-resY' conditions, utilizing Ko. 7.2.2 Retainin¢ Wall Backtill Retaining walls should be backfilled with free draining materials (SE >_ 20) within one-half (1/2) the height of the wall, measured '~ horizontally from the back of the wall, and compacted to project specifications. The upper twelve (12) inches of backfill should consist of locally derived soils. Drainage systems should be provided to walls to ~ relieve potential hydrostatic pressure (Figure 4). - The design loads presented in the above table are to be applied on the retaining wall in a horizontal fashion and as such, friction between wall and retained soils should not be allowed in the retaining wall ~ analyses. - Additional allowances should be made in the retaining wall design to account for the influence of construction loads, temporary ]oads, and possible neazby structural footing loads. ~ - A unit weight of 130 pcf may be used to model the wet density of onsite compacted fill materials. ~ Select backfill should be granular, structural quality backfill with a Sand Equivalent of 20 or better and an ASCE Expansion Index of 20 or less. The select backfill must extend at least one-half the wal] ~ height behind the wall; otherwise, the values presented in the Native Backfill columns must be used for the design. Native backfill should have an ASCE Expansion Index of 50 or less. The upper one-foot of • PACIFIC SOILS ENGINEEFING, ING. ~ i• Work Order 700007-C Page 34 May 21, 2004 i backfill should be comprised of native onsite soils. The recommended retaining wall backfill and drain system profile is shown on Figure 4. - The wall design should include waterproofing (where appropriate) and ~. backdrains or weep holes for relieving possible hydrostatic pressures. The backdrain should be comprised of a 4-inch perForated PVC pipe in a 2 ft. by 2 ft.,'/<-inch gravel matrix, wrapped with a geofabric. The backdrain should be installed with a minimum gradient of 2 percent and should be outletted to an appropriate location. For subterranean ~ walls, this may include drainage by sump pwnps• - No backfill should be placed against concrete until minimum design strengths are achieved in compression tests of cylinders. 7.3 Concrete Desi2n • Preliminary testing indicates negligible amounts of soluble sulfates aze present in the site soils; thus, sulfate resistant concrete is not required per current requirements of the UBC. Chemical testing should be conducted on the final ~ distribution of soils after precise grading operations are complete. It should be recognized that some fertilizers have been known to leach water-soluble sulfate compounds into soils otherwise containing "negligible" sulfate concentrations and increase the sulfate concenVations to potentially detrimental levels. Accordingly, • it is suggested that homeowners be advised of their responsibility to maintain existing conditions. Guidelines for homeowners are presented in Appendix F. We suggest that the information be provided to homeowners as part of the sales « information package. Final design should be based upon post-grading testing. 7.4 Corrosion It is recommended that upon the completion of grading, representative finished • grade samples should be tested for pH and resistivity. Relatively low resistivity results can indicate soils may be potentially highly conosive to metals. If these results are realized then consultation with a corrosion engineer will be prudent. I• f PACIFIG SOILS ENOINEERING, INC. ~~ f RETAINING WALL BACKFILL N.T.S. I• ~~ =111- 1=11CIIC ~~//~ F~qT _ /~~~ TO1 ~ NA71VE ~~~// S~~PF BACKFILL ~~~/~~~!~~„ PROVIDE DRAINAGE ~ sw,v~E H!2 MIN 12 IN. MIN. ~~ ~~ ~~ ~~ ~~ ~• ~ j:.;~ J •'';••;':{. ~~;: :~i : NATIVE OR SELECT ~'~~ • , , . ' ' ` '•':; ~ BACKFILL ~: :' :; ' SELECT / 1:•: BACKFILL •;: DRAIN LATERALLY, ~~~.`~ ~.: •: •- • • • :'• . OR PROVIDE WEEP 1;, : : :'~~•: `. .'. ~ : ~':''~ ~ HOLES I•~: E.I.<_20 ',r.: ~ AS REQUIRED ~ ~.'. ~. qND TO DRAIN ~..; ~ ; SE?•20 ~: :~: 1' ~\ ~~ ; ! ~.'• ~~ ~; ~.: ~ '•` ' ~ ~ r. : ~~~ ~ : :-: . : : ~ : .: y'.: ..;: ~~~~ L•: . ; 1 ' ' ~i~i I.: I 1':. • . ~ :: . . •' 3:::}. ` I 4., ~ ~ ~~ I I..: ~ r... r.•: •.e : •~'.~.: ` ./~ .~ ..... ' :21J: •:;:?:; r :.•;r?.: i....... .. ....c i. '.'~b.•c'~: ~.•.p~:., * OR AS MODIFIED '~~`: ,~:~:.:..°. `: :'. v: :~::i.'..:~. ;. . ~.. . .. -•...... BY A SPECIFIC REPOR7 II~III-11!-11!-111=11~1 ~tl~ll H O 4 INCH PERFORA7ED PVC, SCHEDULE 40, SDR 35 OR AFPROVED ALTfRNATE, PLACE PERFORA710NS DOWN AND SURROUND WITH ~ CU. F7. PER FT. OF 314 INCH ROCK OR APPROVED ALTERNAIE AND MIRAFI 'I40 FIL7ER FABRIC OR APPROVED EOUIVALEN'f O pp710NA1 - PLACE DRAIN A~ SHOWN \NHERE tJ~OISTURE IvIIGRA"fION IS UNDESIRABLE FIGURE 4 I ~ I vE F. <riiG • Work Order700007-C May 21, 2004 I• 7.5 Other Desi¢n and Construction Recommendations 7.5.1 Site Drainaee Positive drainage away from swctures should be provided and ~ maintained. 7.5.2 Concrete Flatwork and Lot Improvements Page 35 - In an effort to minimize shrinkage cracking, concrete flatwork should ~ be constructed of uniformly cured, low-slump concrete and should contain sufficient control/contraction joints (typically spaced at 8 to 10 feet, maximum). - Additional provisions need to be incorporated into the design and I~ construction of all improvements exterior to the proposed structures (pools, spas, walls, patios, walkways, planters, etc.) to account for the hillside nature of the project. Design considerations on any given lot may need to include provisions for differential bearing materials (exposed cut vs. compacted fill), ascending/descending slope conditions, bedrock structure, perched (irrigation) water, special ~I~ otential ex ansive soil ressure,and surcharge loading conditions, p p P differential settlement/heave. - Exterior improvements should be designed and constructed by qualified professionals using appropriate design methodologies that ~ account for the onsite soils and geologic conditions. The above considerations should be used when designing, constructing, and evaluating long-term performance of the exterior improvements on the lots. - The homeowners should be advised of their maintenance ~ responsibilities as well as geotechnical issues that could affect design and construction of future homeowner improvements. The information presented in Appendix F should be considered for inclusion in homeowner packages in order to inform the homeowner of issues relative to drainage, expansive soils, landscaping, irrigation, • sulfate exposure, and slope maintenance. 7.5.3 Utilitv Trench Excavation Utility trenches should be shored or laid back in accordance with • applicable OSHA standards. • PACIFIC SOILS EN6INEELi1NG, INC. ~ • Work Order 700007-C May 21, 2004 I• I• I• Page 36 7.5.4 Utilitv Trench Backtill Mainline and lateral utility trench backfill should be compacted to at least 90 percent of maximum dry density as determined by ASTM D-1557. Onsite soils will not be suitable for use as bedding material but will be suitable for use in backfill provided oversized materials aze removed. No surchazge loads should be imposed above excavations. This includes spoil piles, lumber, concrete trucks, or other construction materials and equipment. Drainage above excavations should be directed away from the banks. Caze should be taken to avoid saturation of the soils. ~ Compaction should be accomplished by mechanical means. Jetting of native soils will not be acceptable. Under-slab trenches should also be compacted to project specifications. If select granulaz backfill (SE > 30) is used, compaction by flooding will be acceptable. The soil engineer ''• should be notified for inspection before placement of the membrane and slab reinforcement. 7.6 Preliminarv Pavement Desien • Final pavement design should be made based upon sampling and testing of post- grading conditions. For preliminary design and estimating purposes, the following pavement structural sections can be used for the range of likely Vaffic • indices. The suuctural sections aze based upon an assumed R-Value of 30. n u ~ u TABLE:7.4 ; - PAVEMENT DESIGN RECOMMENDATIONS R= 30 Trafl'ic Index Asphaltic Concrete (inches) Aggregate Base (inches) q 3.00 6.00 5 3.00 6.00 6 3.50 7.50 7 4.00 9.50 ~r 7 • PACIFIG SOILS ENGINEEqING, INC. -, ~ Work Order 700007-C Page 37 May 21, 2004 • Subgrade soils should be recompacted to at least 95 percent of maximum density as determined by ASTM D-1557. Aggregate base materials should be compacted to at least 95 percent of maximum density as determined by Califomia Test 216. I• S.0 SLOPE AND LOT MAINTENANCE Maintenance of improvements is essential to the long-term performance of siructures and slopes. Although the design and construction during mass grading is planned to create • slopes that aze both grossly and surficially stable, certain factors ue beyond the control of the soil engineer and geologist. The homeowners must implement certain maintenance procedures. : • ~ The attached "Homeowner Maintenance and Improvement Considerations", presented in Appendix F, may be included as part of the sales packet to educate the homeowners in issues related to slopes, maintenance, backyard improvements, etc. The following I, ~ recommendations should also be implemented. S.1 Slope Plantin2 Slope planting should consist of ground cover, shrubs, and trees that possess deep, ~ dense root structures and require a minimum of irrigation. The residents or Homeowner Association should be advised of their responsibility to maintain such planting. • 8.2 Lot Drainaee Roof; pad, and lot drainage should be collected and directed away from structures and slopes and toward approved disposal areas. Design fine grade elevations should be maintained through the life of the structure or if design fine grade • elevations are altered. adequate area drains should be installed in order to provide rapid dischazge of water, away frem structures and slopes. Residents should be made awaze that they aze responsible for maintenance and cleaning of all drai~age ~ terraces, downdrains, and other devices that have been installed to rapidly convey water offsite and thereby promote structure and slope stability. ~ ~ PAGIFIC BOIL3 ENGINEEFING, INC. • Work Order 700007-C May 21, 2004 • Page 38 8.3 Sloae IrriEation The resident, owner, and Homeowner Association should be advised of their responsibility to maintain irrigation systems. Leaks should be repaired • immediately. Sprinklers should be adjusted to provide maximum uniform coverage with a minimum of water usage and overlap. Overwatering with consequent wasteful run-off and ground saturation should be avoided. If • automatic sprinkler systems aze installed, their use must be adjusted to account for natural rainfall conditions. 8.4 Burrowina Animals • Residents or owners should undertake a program for the elimination of burrowing animals. This should be an ongoing program in order to maintain slope stability. 9.0 FUTURE PLAN REVIEWS • This report represents a geotechnical review of the 40-scale rough grading plans. As the project design progresses, site specific geologic and geotechnical issues need to be considered in the design and construction of the project. Consequently, future plan . reviews may be necessary. These may include reviews of: - Precise grading plans - Foundation plans ~ - Retaining wall plans - Infrastructure plans ~ Underground utility plans ~ These plans should be forwarded to the project geotechnical engineer/geologist for evaluation and comment, as necessary. 10.0 LIMITATIONS ~ The recommendations presented in this report are based on the assumption that an appropriate level of field review will be provided by geotechnical engineers and ~~ • PACIFIC SOILS ENGINEERING, INC. i• Work Order 700007-C Page 39 May 21, 2004 • engineering geologists who aze familiaz with the design and site geologic conditions. That field review should be sufficient to confirm that geotechnical and geologic conditions exposed during grading aze consistent with the geologic representations and ~ corresponding recommendations presented in this report. Pacific Soils Engineering, Inc. should be notified of any pertinent changes in the project, plans or if subsurface conditions are found to vary from those described herein. Such changes or variations ,~ may require a re-evaluation of the recommendations contained in this report. The geologic data presented on Plates 1 through 19 presents selective geologic data, which PSE considers representative of site conditions. More comprehensive geologic data is contained within the boring logs and log of trenches contained herein and within the referenced reports. The data, opinions, and recommendations of this report aze applicable to the specific ~ design of the subject site as discussed in this report. They have no applicability to any other project or to any other location and any and all subsequent users accept any and all liability resulting from any use or reuse of the data, opinions, and recommendations without the prior written consent of Pacific Soils Engineering, Inc. • Pacific Soils Engineering, Inc. has no responsibility for construction means, methods, techniques, sequences, or procedures, or for safety precautions or programs in connection with the construction, for the acts or omissions of the CONTRACTOR, or any other ~ person performing any of the construction, or for the failure of any of them to carry out the construction in accordance with the final design drawings and specifications. • ^ ~ PACIFIC SOILS EN6INEEFING, INC. ~~ • • APPENDIX A Selected References -, ~. • • • • • • ~ PACIFIC SOILS ENCi1NEERING, ING. ~~ i~ Work Order700007-C May 21, 2004 I~ APPENDIX A REFERENCES Page A-1 1. Blake, T. F., 1989-2000a, EQFAULT; for Windows Version 3.0, computer program for the ~ deterministic prediction of peak horizonta] acceleration from digitized California faults. 2. Blake, T. F., 1989-2000b, EQSEARCH, for Windows Version 3.0, computer program for the estimation of peak horizontal acceleration from digitized Califomia faults. 3. Blake, T. F., 1989-2000c, FRISKSP, for Windows Version 4.0, proprietary computer source ~ code for probabilistic acceleration determination. 4. Califomia Division of Mines and Geology, 1997, Guidelines for evaluating and mitigating seismic hazards in California: Deparunent of Conservation, Special Publication 1] 7, 74 p. 5. California Division of Mines and Geology, 1990, Special studies zone, Pechanga quadrangle ~ (124,000). 6. California Division of Mines and Geology, 1986a (revised), Guidelines to geologic and I seismic reports: Department of Conservation, Note 42, 2 p. ; '7. Earth Research Associates, Inc., 1987, Evaluation of faulting and liquefaction potential, • portion of Wolf Valley project, Rancho Califomia, County of Riverside, Califomia: an independent consultant report, dated November 20, 1987, 7 p. 8. EnGEN Corporation, 2000, Evaluation of historic and anticipated future groundwater levels, Wolf Valley, Riverside County, Califomia: an independent consultant report, dated January ~ 14, 2000, 8 p. (job no. T1719HGS-GW). 9. EnGEN Corporation, 1999a, Geotechnical engineering study, proposed Wolf Valley High School (primary site), City of Temecula, Califomia: an independent consultant report, dated August 2, 1999, 28 p. (project number TI719-HGS). ~ 10. EnGEN Corporation, 1999b, Geotechnical/geologic engineering study, proposed Wolf Valley Elementary School, City of Temecula, Califomia: an independent consultant report, dated July 28, 1999, 26 p. (project number T1717-EGS). 11. EnGEN Corporation, 1999c, Geotechnical engineering study, proposed Wolf Valley Middle School, City of Temecula, California: an independent consultant repon, dated July 26, 1999, • 28 p. (project number T1718-MGS). 12. EnGEN Corporation, 1999d, Addendum to geotechnica] / geological engineering study, fault trenching evaluation, proposed Wolf Valley Middle School, City of Temecula, County of Riverside, California: an independent consultant report, dated August 11, 1999 (project ~ number T1718-MGS). ~ PACIFIC SOILS ENGINEERING, INC. ~O i• Work Order 700007-C Page A-2 May 21, 2004 i 13. Hart, E. W. and Bryant, W. A., 1997, Fault-rupture hazazd zones in California, Alquist-Priolo earthquake fault zoning act with index to earthquake fault zones maps: California Division of Mines and Geology, special publication 42, 37 p. ~ 14. Highland Soils Engineering, Inc., 1988a, Fault hazard and preliminary geotechnical investigation, 242+ acres, southwest of the intersection of Mazgarita Road and State Highway 79, Rancho California, Riverside County, Califomia: an independent consultant report, dated February 3, 1988, 38 p. (job no. 07-6556-010-00-00). 15. Highland Soils Engineering, Inc., 1988b, Fault hazazd investigation, proposed Fairview ~ Avenue area, Red Hawk project, Rancho California Area, Riverside County, California: an independent consultant report, dated August 29, 1988, 1 I p. (job no. 07-54-003-00-00). ] 6. ICBO, 1997, Uniform Building Code, Whittier, California: International Conference of Building Officials, 3 volumes. ~ 17. Ishihara, K., 1985, Stability of natural deposits during earthquakes: Proceedings of the Eleventh lntemational Conference on Soil Mechanics and Foundation Engineering, Balkema Publication, Rotterdam, Netherlands, vol. I. 18. Jahns, R.H., 1954, Geology of southern California: California Division of Mines and ~ Geology, Bull. 170, 160p. 19. Pacific Soils Engineering, Inc., 2003, Grading Plan Review, Wolf Creek Channel, Tract 29305, City of Temecula, Califomia: an independent consultant report, dated September 30, 2003 (work order 700007-A). ~ 20. Pacific Soils Engineering, Inc., 2001, Preliminary Geotechnical Study, Tentative Tract 29798, Wolf Creek Specific Plan, City of Temecula, California: an independent consultant report, dated September 20, 2001 (work order 400622). 21. Pacific Soils Engineering, Inc., 1999, Response to County of Riverside Planning Department review of Wolf Valley Specific Plan (County geologic report no. 974), in the City of ~ Temecula, California: an independent consultant report, dated March 31, 1999, 6 p. (work order 400622). 22. Pacific Soils Engineering, Inc., 1998, Geologic evaluation of fault issues, Wolf Valley Ranch Specific Plan, in the Ciry of Temecula, California: an independent consultant report, dated ~ October 30, 1998, 8 p. (work order 400622). 23. Pacific Soils Engineering, Inc., 1992, Murrieta Special Geologic Study Zone report, Murrieta Califomia: an independent consultant report to the Builders Corporation Associated, dated April 17, 1999 (work order 400388). ~ 24. Pacific Soils Engineering, Inc., 1989, Alquist-Priolo Special Studies zoning and liquefaction study, Murdy / Trotter parcel, County of Riverside, California: an independent consultant report, dated April 5, 1989 (work order 400103). • PAGIFIC SOILS ENGINEERING, INC. ~ ` • Work Order700007-C May 21, 2004 Page A-3 25 Peterson, M. D., Bryant, W. A., Cramer, C. H., Cao, T., Reichie, M. S., Frankel, A. D., . Lienkaemper, J. J., McCroty, P. A., and Schwartz, D. P., 1996, Probabilistic seismic hazard I assessment for the State of Califomia: Califomia Division of Mines and Geology, open-file report 96-08, 59 p. • 26 Petra Geotechnical, Inc., 1989, Supplementa] evaluation of faulting, southwest portion of . Redhawk project, Rancho California azea, County of Riverside, California: an independent consultant report, dated March 1, 1989, 15 p., plates. 27 Pioneer Consultants, 1980, Geotechnical evaluation, a portion of the Wildomaz fault zone, . ~ Rancho California area, Riverside County, California: an independent consultant report, dated August, 1980, Riverside County Geologic Report 199 (GR-199), 12 p. 28 Riverside, County of, Planning Department, 1999, Alquist-Priolo Earthquake Fault Zoning . Coun eolo ic re ort no. 974 (update to County Act, Wolf Valley Ranch Specific Plan, ty g g P ~~ geologic report no. 700), City of Temecula, dated Mazch 15, 1999, 2 p. 29 R. B., 1978, Fault evaluation report FER-76, (Elsinore fault zone, south Riverside Saul . , County, California): California Division of Mines and Geology, unpublished report, 14 p. 30 Shlemon, R. J. and Davis, P., 1992, Ground fissures in the Temecula azea, Riverside County, . n ineerin eolo ractice in octor R.J. ed. E g g gY P Califomia: in Pipken, B. W., and Pr , ,( ), ~ • southern Califomia, special publication No. 4, Association of Engineering Geologist, southem Califomia section, P. 275-287. 31 Tokimatsu, K. and Seed, H. B., 1987, Evaluation of settlements in sands due to earthquake . shaking: Journal of the Geotechnica] Engineering Division, ASCE, volume 113, No. 8, ' • August, 1987. I• I~ I• 5~ I~ PAGIFIC 3DIL5 ENOINEERING, INC. • ~. ~ ~ ~ APPENDIX B Subsurface Investigation I~ I~ I• I• I• ~3 I• PACIFIG SOILS ENGINEERING, INC. i• Work Order 700007-C Page B-1 May 21, 2004 i APPENDIX B Current Subsurface Investieation ` PSE's subsurface investigation (February 2004) utilized a truck-mounted bucket auger with an 18-inch diameter bucket and a CPT rig. 'I'he investigation consisted of logging and sampling thirteen (13) bucket auger borings (Plates B-1 through B-13) and performing thirty (30) CPT soundings. Excavations ranged in depth from 26 to 50 feet below existing grades. The ~ approximate locations of the exploratory borings are shown on Plates 1 through 19. Borings and test pits were logged and sampled by a representative of this firm. The cone penetrometer soundings were performed by Gregg Drilling and Testing, Inc. (Gregg Drilling's testing ~ procedure can be provided upon request). Representative bulk and "undisturbed" samples were obtained from the exploratory excavations and delivered to PSE's laboratory for testing and analysis. ~ Undisturbed samples were obtained from the borings by driving a Califomia Modified type sampler into the material. A split barrel-type spoon, having an inside diameter of 2.50 inches (bucket auger), with a tapered cutting tip at the lower end, was used. The barrel is lined with thin ~ brass rings, each I inch in length. The sampler penetrated into the soil approximately 12 inches. The lower portion of the sample was retained for testing. All "undisturbed" samples were sealed in airtight containers and transported to the laboratory. Blow counts were noted for each "undisturbed" sample and are presented in the logs of the borings (Plates B-1 through B-13). • Previous Subsurface Investi ations Previous investigations by PSE onsite include hollow-stem auger borings, bucket auger borings, S backhoe trenches and cone penetrometer soundings. Bucket auger borings BAC-7 through -9, - 11. -13 and -14 (PSE, 2003) are presented as Plates B-14 through B-19. Hollow-stem auger borings HS-17 and HS-18 (PSE, 2001) are presented as Plates B-20 and B-21. Hollow-stem auger borings PSE-1 through PSE-3 (PSE, 1998) are presented as Plates B-22 through B-24. ~ Bucket auger boring B-1 (PSE, 1989) is presented as Plate B-25. Fault ttenches T-1, T-2 and T- , 4 are presented in the referenced report (PSE, 1989). CPT-soundings CPT-1:1998 through CPT- ~~ I• PACIFIG SOILS ENGINEEFING, INC. i~ Work Order 700007-C Page B-2 May 21, 2004 8:1998 (PSE, 1998) aze presented following CPT-1 through CPT-30. Reptesentative bulk and "undisturbed" samples were obtained from the exploratory excavations and delivered to PSE's laboratory for testing and analysis. Undisturbed samples were obtained from the borings by driving a Califomia Modified type sampler into the material. A split barrel-type spoon, having an inside diameter of 2.50 inches • (bucket auger) or 2.42 (hollow-stem), with a tapered cutting tip at the lower end, was used. The barrel is lined with thin brass rings, each i inch in length. The sampler penetrated into the soil approximately 12 inches. The lower portion of the sample was retained for testing. All "undisturbed" samples were sealed in airtight containers and transported to the ]aboratory. Blow ~ counts were noted for each "undisturbed" sample and are presented in the ]ogs of the bonngs (Plates B-14 through B-28). I ~- I• n I• I• ~s I• PACIFIG SOILS EN6INEERING, ING. GEOTECHNICAL BORING LOG SHEET ~ oF ~ s PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 BA-01 DATE STARTED 2/17/04 GROUND ELEV. 1120 BORING DESIG. DATE FINISHED 2/17/04 GW DEPTH (Fn LOGGED BY SSC NOTE o-23'=24001t. DRILLER AI-Rov Drillina " DRIVE WT. See Notes 12 in 23-az' e155016. TYPE OF DRILL RIG Bucket Auaer 18 . DROP ~~ I '~ ~~ ~~ ~~ ~~ '~ ~~ ~~ _ - ~ N } p ~ j~ d'e HF ~i~ ni ~ Z O C N ~ 2 • . ad > w ~ o o °~ GEOTECHNICALDESCRIPTION mZ n rz o ¢ t i) ~i. ~ LLl > F Q ~ O O~ 7 aF ~ V i m I- tn ~ J SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light brown, slightly moist, loose. 5 1175 R z @ 5.0 ft. slightly maist to moist. 4_~ ~OZ ~8 SP @ 7.0 ft. SILTY SAND TO SAND W/ SILT, fine to coarse grained, light brown, slightly moist, medium dense. B DSR, ~• 7 0 1110 3.4 102 14 EI R 3 , HY , CHEM CON, HY 15 7105 SM @ 15.0 ft. SILTY SAND, fine to medium grained, brown, moist, 7.7 109 39 R 2 medium dense. 20 1100 @ 20.0 ft. fine to coarse grained. 25 1095 SP @ 25.0 ft. SAND W/ SILT, fine to coarse grained tan, slightly moist, 9.2 506 44 R ~ medium dense with some gravels. 30 1090 R ~~ @30.0ft.dense. 2.2 1i6 14 TOTAL DEPTH 31.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVEC I ~~o SAMPLETYPES: i GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ ~ ENGINEERING~ INC. ~ SPT (SPLIT SPOON) SAMPLE ~ ~ BULK SAMPLE ~ TUBE SAMPLE PLATE B-1 GEOTECHNICAL BORING LOG SHEET , oF + • 'ROJECT NO. ' 700007-C PROJECT NAME Wolf Creek Phase 2 BA-02 BORING DESIG I ~ATE STARTED 2I76/04 GROUND ELEV. 1108 . LOGGED BY SSC ~ATE FINISHED 2N6/04 GW DEPTH (Fn N tes S NOTE o-23~=24o01b. ~RILLER AI-ROVOrillina o ee DRIVEWT. 23-a2'=i55oin. YPEOFDRILLRIG 18"BucketAuaer DROP 12in ~ \~.5 I~ I~ ~~ ~~ ~~ > J w.. Co U~ ~ O d' N 2.-. a~ ] JW a N o O 7~ o~ GEOTECHNICALDESCRIPTION HF wz ~N rz Ho ¢ 2 N ~w oLL. ~ w ~ ¢~ m p x ~> ~~ ao ~ ~ r h ~ ~ J SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, brown, slightly moist, loose. 4 0 96 15 @ 2.0 ft. medium dense. . t105 R 4 DSR, MAX, EI, 5 HY, CHEM 4 5 105 27 CON @ 6.0 ft. light brown. . , R 2 HY 1100 3 7 110 20 ~~ @ 10.0 R. some small gravels. . R 3 1095 @ 13.0 ft. moist. 7 9 110 48 CON ~ 5 @ 15.0 R. brown, slight porosity, rootlets. . , R 4 HY 1090 SP-SM @ 18.0 k. SAND W/ SILT, fine to coarse greined, tan, slightly moist. di 12 3 113 70 20 SM um @ 20.0 ft. SILTY SAND, fine to coarse grained, brown, me . R 4 medium dense. moist tlense , , 1085 7 8 106 41 z5 @ 25.0 ft. fine to medium grained, medium dense to dense. . R 8 1080 12 3 711 67 30 R 10 @ 30.0 ft. dense. . TOTAL DEPTH 31.0 FT NO GROUNDWATERENCOUNTERED NO CAVING 08SERVED I ~~ SAMPLETYPES: ~ GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ (~ ENGINEERING~ INC. ~ SPT (SPLIT SPOON) SAMPLE ~~ ~ BULK SAMPLE ~TUBE SAMPLE - PLATE B-2 GEOTECHNICAL BORING LOG SHEET , oF , s PROJECT N0. 700007-C PROJECT NAME Wott Creek Phase 2 BORING DESIG BA-03 ~ ~ DATE STARTED 2/16/04 GROUND ELEV. 1120 . LOGGED BY SSC DATE FINISHED 2N6/04 GW DEPTH (F~ f N NOTE o-23'=24001b. DRILLER AI-ROV Drillina o es DRIVE WT. See 23-a2'=155o1e " DROP 12 in . TYPE OF DRILL RIG Bucket Auaer 18 . ~ r ie ~~ ~~ ~~ ~w ~~ ~~ ~w t7 J ~° °~ ~ O ~ v~ S^ ) ~W N o O o ~~ ° ~ 1 GEOTECHNICALDESCRIPTION -l-. atn r !-\ a ~ S t~ wLL ~ ~ w ~} ar m = ~ > oo ~ ~W oo ~ ~ oF ~ y r ~ ~n ~ J SM ALLUVtUM (Qap: SILTY SAND, fine to coarse grained, light brown, slightly moist, loose. @ 3.0 ft. moist. 5 1715 R sh P ~ @ 5.0 ft. moderately dense. 8.7 105 40 HON, u . SP @ 6.5 ft. SAND W! SILT and gravels, fne to coarse greined, tan, slightly moist, moderately dense. 10 1110 :::~ ~~.: 7.9 103 35 R ~ ist d b SM , rown, mo , @ 17.0 ft. SIITY SAND, fne to medium graine moderately dense. 15 1105 @ 15.0 ft. fine to coarse grained, medium dense. 5.8 170 37 R 2 20 1100 7.1 110 37 R 3 25 1095 18.4 101 76 R 5 TOTAL DEPTH 26.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED ~ SAMPLE TYPES: = GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ^ (r.~ ENGINEERING~ INC. ~,gl SPT (SPLIT SPOON) SAMPLE `~7 . ~ BULK SAMPLE ~ TUBE SAMPLE PLATE B-3 , GEOTECHNICAL BORING LOG SHEEf i oF , ! ~ROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 ~ ~ 25 GROUND ELEV BA-04 IG ~ATE STARTED ~ 2/16I04 2116/04 . GW DEPTH (Fn SSC LOGGED BY ' JATE FINISHED AI-Rov Drillinu DRIVE WT. See Notes =290016. NOTE 0-23 ~ 1D I JRILLER .,~ .,~ nou i ain ~R" eucket Auoer DROP 12 ~~~ p3_qp =1550 . • ~ ~ I~ ~~ ~~ ~~ ~~ ~..~_ .-..._ _._ _ ~ J ¢ a ~F i~ ~ O ~tn a~ ~~ } o a o~ GEOTECHNICAL DESCRIPTION u~ iz i z N a o F ° o o ~ o~ w a y ~ m F ~y ~ J SM/SP ALLUVIUM (Qal): SILTY SAND TO SAND W/ SILT, fine to coarse grained, tan, dry to slightly moist, loose. 5 1120 ~ SM @ 5.0 R. SILTY SAND, fine to medium grained, light brown, slightly 5.2 100 21 CON, R Push moist, moderately dense. HY Sp SAND W/ SILT, fine to warse grained, tan-gray, slightly 0 ft @ 9 . . moderately dense, some gravels. moist ZZ g gp 7~ ~0 1115 , R 5 @ 13.0 ft. some wving. 15 1110 SM @ 75.0 ft. SIITY SAND, fne to coarse, brown, moist, medium dense, 67 119 46 R 5 trace gravels. ~ ~ ~ : ~ ~~ ~~~ gp ------ - -------------- SAND W/ SILT, fine to coarse grained, tan-gray, slightly 0 fl @ 18 . . moist, dense, some gravels. 20 1105 2.3 113 13 R 8 25 1100 R ~0 TOTAL DEPTH 26.0 FT NO GROUNDWATER ENCOUNTERED CAVING OBSERVED @ 13.0 FT J"t SAMPLETYPES: i GROUNDWATER ~ pACIFiC SOILS ~ RING (DRIVE) SAMPLE - seePnce: ~ ENGINEERING~ INC. ~ SPT (SPLIT SPOON) SAMPLE PLATE B-4 ~ ~ BULK SAMPLE ~ TUBE SAMPLE GEOTECHNICAL BORING LOG SHEET , oF , • ~ ROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 BORING DESIG BA-05 ~ATE STARTED 2/17104 GROUND ELEV. 1146 . LOGGED BY SSC ~ATE FINISHED 2/17/04 GW DEPTH (FT) Sae Notes DRIVE WT NOTE o-23'=240o1b. ~RILLER AI-Rov Drillina . 12 10 23-92'=15501b. ~ voo nr nou I Rid 1A" Rucket Auaef . DROP f ~ I a ~ ~~ ~f ~~ x W ~ ~ ~ o a~ ~ ?e ~~- ~~ , m O r w rN- n ~ ~~ ~ w o ~ 0~ GEOTECHNICAL DESCRIPTION v , r W o a x ~ oLL J w ~Y ~~ m 0 ~ ~a _ o ~~ ~ oo ~ ~ o F i J SP ALLUVIUM (Qal): SAND W/ SILT, fine to coarse grained, tan, dry ~ 145 to slightly moist, loose. Z ~ 92 9 5 @ 5.0 ft. moderately dense. . R ~ 1140 SM @ 7.0 ft. SILTY SAND, fne to coarse grained, brown, slightly moist to moist, moderately tlense, some gravels. g DSR, ~, 8 1 102 35 10 . E R 3 HY, 7 735 CHEM CON, SC @ 13.0 ft. CLAYEY SAND, fine to coarse grained, orange brown wdh HY white specks, moist, dense. 11 7 119 80 15 R 10 . 1130 SM @ 77.0 tt. SILTY SAND & GRAVELS, fine to coarse grained, light brown, moist, dense, cobbles. 20 R 70 7125 TOTAL DEPTH 21.0 fT NO GROUNDWATER ENCOUNTERED I NO CAVING OBSERVED ~8~ SAMPLETYPES: = GROUNDWATER pACIFIC SOILS ~$I RING (DRIVE) SAMPLE - SEEPAGE ~ ~ ENGINEERING~ INC. .. ~ SPT (SPLIT SPOON) SAMPLE ~@J BULK SAMPLE ~ TUBE SAMPLE PLATE B-5 GEOTECHNICAL BORING LOG SHEET , oF , • PROJECT NO. 700007-C PROJECT NAME WoH Creek Phase 2 BA-06 DATE STARTED 2/17l04 GROUND ELEV. 1725 BORING DESIG. DATE FINISHED 2/17/04 GW DEPTH (F'n LOGGED BY SSC DRILLER AI-Rov Drillinq DRIVE WT. See Notes NOTE 0-23'=29001b. 1'YPE OF DRILL RIG 18" BucketAuaer DROP 12 in. 23-42'=15501b. ~~ I S ~ ~ S ~ ~ ~ ~ u ~ ~d ~ W aa ~ 3 ~ ~ a~ ~m ~o ~~ ~i~ -°v~ Z ~F ~ ~n ia wLL W QF o = ~~ GEOTECHNICALDESCRIPTION u~z ~W e ¢ i ~,w ~" m m ~ ~tn o ~U o0 ~ 7 O~ J SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light brown, slightly moist, loose. R 2 6.5 82 17 5 1120 R 3 @ 6.0 ft. moderately dense, some small gravels. 2.4 102 10 10 1115 R 5 @ 10.0 ft. some porosity. 3.6 111 19 DS, HY @ 12.0 k. moist. ~ 5 1110 R 3 @ 15A ft. grevels. 4.9 110 26 CON, HY 20 1705 R 5 4.9 112 28 25 1700 R 13 @ 25.0 ft. dense. 5.6 115 34 TOTAL DEPTH 26.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED W~ SAMPLETYPES: i GROUN4WATER ~ PACIFIC SOILS ~ RING (DRIVE) SAMPIE - SEEPAGE ~ ~ INC. ENGINEERING ~SPT(SPLITSPOON)SAMPLE ~ ~ BULK SAMPLE ~ TUBE SAMPLE PLATE B-6 GEOTECHNICAL BORING LOG SHEET ~ oF , ~ ~ROJECT NO. 700007-C PROJECT NAME Wolt Creek Phase 2 BA-07 ~ATE STARTED 2I77/04 GROUND ELEV. 1110 BORING DESIG. JATE FINISHED 7J17/04 GW DEPTH (F'n LOGGED BY SSC ~ ~RILLER AI-Rov Drillina DRIVE WT. See Notes NOTE =2aoo.te. o-23 iYPE OF DRILL RIG 18" Bucket Auaer OROP 12 in. 23-92'=15501b. ~~ ~~ ~ ~ ~ L ~ ~ ~ _^ J y y O a0 w .-. j°e ~r , O w~ ~" ~ ~} o o °~ GEOTECHNICALDESCRIPTION Nz >z a° ~w am oLL W ~ m r ¢ y O ~ ~w oo ~ r ~ N c~ ~ ~ J SM ALLUVIUM (Qal): SILTY SAND, 5ne to coarse grained, brown, , slighNy moist, loose, some gravels. @ 1.0 ft. moist. 5 1105 R ~ @ 5.0 @. moderately dense. 9.0 106 43 10 1100 10.4 171 56 CON, R HY SM/SP @ 14.0 R. SILTY SAND TO SAND W! SILT, fine to coarse greined, 15 1095 light brown, moist, moderetely dense, some gravels. 5.6 105 26 R 3 @ 19.0 ft. trece gravels and cobbles. 20 1090 3 @ 20.0 ft. tan. 7.5 171 40 CON, R HY @ 24.0 ft. dense. 25 1085 8.7 122 66 R 25 TOTAL DEPTH 26.0 FT NO GROUNDWATERENCOUNTERED NO CAVING OBSERVED (~v SAMPLETYPES: 1 GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPIE - SEEPAC~E ~ ~,j. ENGINEERING~ INC. ,~$,J SPT (SPLIT SPOON) SAMPLE ~~ ~@I BULK SAMPLE ~TUBE SAMPLE I PLATE B-7 GEOTECHNICAL BORING LOG SHEET , oF , ~ PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 I DATE STARTED 2/17/04 GROUND ELEV. 1764 BORING DESIG. BA-OS ~ DATE FINISHED 2/17/04 GW DEPTH (Fn LOGGED BY SSC DRILLER AI-Rov Drillina DRIVE WT. See Notes NOTE o-23'=24oo1b. TYPE OF DRILL RIG 18" Bucket Auger DROP 12 in. 23-az'=15501b. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ F~ ~ aW 3 p ~m j° a~ ,o wF v = ~g GEOTECHNICALDESCRIPTION oo W ~= OF Q w ¢~ N m f J ~h ~V ~ ~0 ~ SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light brown, dry to slightly moist, loose. 7100 B DSR, 5 R q @ 5.0 ft. moderat^ly dense. 4.0 96 15 E~' HY, CHEM @ 8.0 ft. slightly moist. 1095 10 R 3 32 114 19 CON, Y H SP @ 72.0 ft. SAND W/ SILT, fine to coarse greined, tan, slightly moist, moderately dense. 1090 15 R 3 SM @ 15.0 ft. SILTY SAND, fine to coarse grained, brown, moist 62 110 33 ' ~~ ~' l n d t d mo era y e e se. SP @ 18.0 ft. SAND W/ SILT, fine to coarse greined, tan, slightly moist, 1085 moderately dense, some gravels. 20 R 8 3.4 110 18 1080 SM @ 24.0 ft. SILTY SAND, fine to coarse grained brown, moist 25 m r l n tl t d y o e a e e se. R g 10.8 112 59 CON, HY TOTAL DEPTH 26.0 FT NO GROUNOWATER ENCOUNTERED NO CAVING OBSERVED I I ~3 SAMPLETYPES: = GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ QSPT(SPLITSPOON)SAMPLE ~ ~ ENGINEERING~ INC. ~ BULK SAMPLE ~ TUBE SAMPLE - PLATE B-H GEOTECHNICAL BORING LOG SHEET , oF , ~ 'ROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 ~ BA'~9 >ATE STARTED 2I16I04 GROUND ELEV. 1086 BORING DESIG. JATE FINISHED 2/16/04 GW DEPTH (Fn LOGGED BY SSC ~RILLER AI-Rov Drillinq DRIVE WT. See Notes NOTE 0-23' ~290016. (YPE OF DRILL RIG 18" Bucket Auaer DROP 12 in. 23-42'=155o1t. ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ x,-. ~w N O j0 w.. j° y ~~ z ,O W~- wLL ~ ~} o o ~~ GEOTECHNICALDESCRIPTION yo ~W ~= r~ o-- W y~ m ~ c~~', ~o 00 ~ o J ML ALLUVIUM (Qal): SANDY SILT, fine to medium greined, brown, 1085 slightly moist, soft, some porosity. i 5 R 2 @ 5.0 ft. firm. 6.9 94 24 7080 DSR, MAX, EI, HY, CHEM ~~ no porosity observed. @ 10.0 ft. brown 9~~ 9~ ~ R 3 , 1075 15 R Z @ 75.0 R. slight porosity. 8.4 97 31 CON, iW0 HY @ 19.5 ft. fine to coarse grained, tan. 20 6.9 100 28 R 4 1065 zs SP @ 25.0 ft. SAND W/ SILT, fine to coarse grained, tan, slightly moist, 2.5 708 t3 1060 R 16 dense, some gravels. 30 SM @ 30.0 ft. SILTY 5AND, fine to coarse grained, light brown, slightly 5.7 108 29 R 75 moist to moist dense 1055 . TOTAL DEPTH 37.0 Ff NO GROUNDWATER ENCOUNTERED ~ NO CAVING OBSERVED ~` SAMPLETYPES: i GROUNDWATER PACIFIC SOILS ~61 RING (DRIVE) SAMPLE - SEEPAGE ~ (~ ENGINEERING~ INC. ~ SPT (SPLIT SPOON) SAMPLE ~~ ~ BULK SAMPLE 0 TUBE SAMPLE PLATE B-9 ' GEOTECHNICAL BORING LOG SHEET , oF , ~ PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 DATE STARTED 2176/04 GROUND ELEV. 1090 BORING DESIG. BA-10 DATE FINISHED 2116/04 GW DEPTH (Ff) LOGGED BY SSC DRILLER AI-RovDrillino ORIVEVJT. SeeNOtes NOTE o-z3~=zaooin. TYPE OF DRILL RIG 18" BucketAuaer DROP 12 in. 23-4z'=is5olb. I~ I~ ~ ~ ~ ~ ~ ~ ~ ~m > w aa m 3 ~ ~ a-' ~m ~e ~ ~iF a Z '~ ~ m v W = GEOTECHNICALDESCRIPTION ~ ~n a =a, o NF m ~N oo ~W ~ o~ J ~U ^0 7 SM ALLUVIUM (Qal): SILTY SAND, fne to coarse grained, brown, slighily moist, loose. B DSR, 5 1085 R Push '. @ 5.0 ft. moderately dense. 7.0 103 31 E~' HY, CHEM CON, HY 10 7080 R Push .~ @ 10.0 ft. moist, some porosiry, some small gravels. 8.6 108 43 CON, HY 15 1075 R 2 6.9 712 38 20 1070 R 1 10.2 102 44 CON, HY 25 7065 R ~q : SP - - - - - @ 25.0 R. SAND W/ SILT, fine to coarse grained, light brown, slightly i d t l t d 2.8 108 14 mo , mo era e y ense. s 30 1060 R 6 3.6 92 12 ~ SM @ 32.0 ft. SILTY SAND, fine to coarse greined brown, moist :~. ~ ~:~ moderatelydense. r'. .- i 35 1055 R 6 18.6 106 88 TOTAL DEPTH 36.0 FT NO GROUNGWATER ENCOUNTERED NO CAVING OBSERVED ~ SAMPLETYPES: i GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ ~SPT(SPLITSPOON)SAMPLE ~ ENGINEERING~ INC. ~ BULK SAMPLE ~ TUBE SAMPLE PLATEB-10 GEOTECHNICAL BORING LOG SHEET , oF , ~ PROJECT NO. 700007-C PROJECT NAME WoH Creek Phase 2 . BA'~ ~ DATE STARTED 2/16I04 GROUND ELEV. 7702 BORING DESIG. DATE FINISHED 2/16/04 GW DEPTH (Fn LOGGED BY SSC DRILLER AI-ROV Drillino DRIVE WT. See Notes NOTE o-23~=2a0aln. TYPE OF DRILL RIG 18" Bucket Auaer DROP 12 in. 23-az'=15501b. ~~ I~ • ~ ~ ~ ~ ~ ~ W y c}7 a~ Ke ~i~ Z K~n = d a d ~ ~ a W y 3 o ~ ~ m ° GEOTECHNICAL DESCRIPTION ~ r- v, z a~n > z ~e a .Wi w W o`= "' ~ N~ m o ~ ~ ~~ ~~ oo ~ ~ o r ~ J SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, brown, slightly moist, loose. 1100 5 5.5 98 27 DS, R 1 HY 1095 @ 8.0 ft. moderately dense, some porosity. ~~ 12.3 109 63 CON, R 1 HY ~ oso @ 13.0 k. fine to medium grained. 15 R 1 12.9 107 53 CON, HY 1085 20 R 3 @ 20.0 ft. fine to coarse grained. 11.7 112 66 1080 25 R 4 19.5 95 70 TOTAL DEPTH 26.0 FT NO GROUNDWATER ENCOUNTERED ~ NO CAVING OBSERVED ~~ ~ SAMPLETYPES: i GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ INC. ENGINEERING ~ SPT (SPLIT SPOON) SAMPLE ~ ~I BULK SAMPLE ~TUBE SAMPLE I PLATEB-11 GEOTECHNICAL BORING LOG ~ PROJECT NO. 700007-C PROJECT NAME WoH Creek Phase 2 DATE STARTED 2116/04 GROUND ELEV. 7086 BORING DESIG DATE FINISHED 2/16/04 GW DEPTH (FT) LOGGED BY DRILLER AI-Rov Drillina ORIVE WT. See Notes NOTE TYPE OF DRILL RIG 18" Bucket Auger DROP 12 in. I~ ~ ~~ ~ ~ ~ ~ ~ ~ SHEET 1 OF 1 BA-12 SSC 0-23'=24001b. 23-92'=755016. ~m ~ w aa N 3 > ~ ~ a-' ~m w .-. ~= ~~ u~ am Z ~~ ~ m = ~ V w ~ = ~ GEOTECHNICALDESCRIPTION o ~ = v i ~ Q N m N ~ QQ ? o J SM ALLWIUM (Qaq: SILTY SAND, fine lo coarse grained, brown, 7085 slightly moist, loose. 5 R 8 @ 5.0 ft. moderetely dense. 3.9 103 77 1080 @ 8.0 ft. orange brown, some porosity, some small gravels. ~~ R 4 3.7 107 18 CON, 1075 HY SM/SP @ 14.0 ft. SILTY SAND TO GRAVELLY SAND, light brown, gravels and cobbles ~ 5 . 4 ~ ~~6 Z9 R 6 1070 20 R g SM @ 20.0 ft. SILTY SAND, light brown, slightly moist, motlerately dense 6.5 118 42 1065 with gravels and cobbles. 25 R P5 @ 25.0 ft. brown orenge, slightly moist, dense with gravels. 8.4 714 49 1060 TOTAL DEPTH 26.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED `~~ SAMPLETYPES: = GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ ~ INC. ENGINEERING ~SPT(SPLITSPOON)SAMPLE ~ ~ BULK SAMPLE ~ TUBE SAMPLE ~ PLATEB-~ Z GEOTECHNICAL BORING LOG ~ PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 DATE STARTED 2l16/04 GROUND ELEV. 1078 BORING DESIG. DATE FINISHED 2/i6/04 GW DEPTH (Fn LOGGED BY DRILLER AI-Rov Drillina DRIVE WT. See Noles NOTE TYPE OF DRILL RIG 18" Bucket Auaer DROP 12 in ~~ ~~ I~ ~ ~ ~ ~ ~ ~ ~ SHEET 1 OF 7 BA-13 SSC 0-23'=24001b. 23-42'=15501b. x~ ~ a' O ap ~° ~f ~O w~ ~" W aa 3 J om GEOTECHNICALDESCRIPTION ~z >z ¢° Fw o~ w ~~ m ~ ~N pO ~ oo ~ o~ J SM ALLUVIUM (Qal): SILTY SAND, fine to coarse grained, light brown, dry, loose, some 9ravels. 22 107 11 R 3 7075 5 h P ~ @ 6.0 ft. brown, slightly moist to moist, moderately dense, some 9.8 105 46 CON, R us . porosity HY . 1070 ~~ R 3 @ 10.0 ft. moist. 8.3 116 52 7065 ~ 5 R Push ~ @ 15.0 ft. no porosity observed. 13.8 107 68 7060 20 R z @ 20.0 ft. fine to medium greined. 14.4 89 45 1055 25 17.1 106 81 R 4 1050 30 R 8 11.0 100 45 CON, HY 7045 ~ 35 R ~ 21.0 98 80 TOTAL DEPTH 36.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED i `~~ SAMPLETYPES: 1 GROUNDWATER ' PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ ~ ENGINEERING~ INC. 0 SPT (SPLIT SPOON) SAMPLE ~ `=7 ~$I BULK SAMPLE ~LI TUBE SAMPLE ( PLATEB-13 . GEOTECHNICAL BORING LOG SHEET , oF , ~ PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 BAC-07 DATE STARTED 8/14/03 GROUND ELEV. 1070 BORING DESIG. DATE FINISHED 8/14l03 GW DEPTH (F'T) LOGGED BY JG DRILLER AI-Rov Drillina DRIVE WT. See Notes NOTE Q-24'=21501b. TYPE OF DRILL RIG 18" BucketAuaer DROP 12 in. ze-ai'=i35aic. ~~ ~ u ~ ~ ~ ^ ~ S.. aa°'i wLL o-~ > W JW aa Q~ N cn 3 o m O J o ~ J ~O m ~~ c~y EOTECHNICALDESCRIPTION ~° r~ wz ~~ c~ a- v~ ~w oo z ~O ra ~ ~ W~ xvi ~w o~ ALLUVIUM (Qal): SILTY SAND, light brown, slightly moist, moderately dense. R 5 @ 3.0 ft trace rootlets. 3.8 106 17 5 1065 ~ __________________ _-_--_ R q @ 8.0 k SANDY SILT, light brown, slightly moist, firm. 4.8 700 19 10 7060 B @ 12.0 k SILTY SAND, fine-grained, light brown, slightly moist, dense; trece carbonates moderatel DSR, H R 3 . y 9.0 103 38 ~ EI, 15 1055 CHEM @ 17.0 ft POORLY GRADED SAND, fine- to metlium-grained, gray, medium dense moist l h ~ R 5 . , s g y @ 18.0 ft SILTY SAND, fine-greined, yellowish brown, slightly moist, 2 2 ~ ~ ~ ~ ~ moderately dense. 20 1050 R 9 @ 23.0 ft POORLY GRADED SAND, coarse-grained, gray, slightly moist medium dense 0.6 172 3 . , 25 1045 R ~ @ 28.0 ft SILTY SAND, medium brown, slightly moist, medium dense: micaceous 9.4 104 41 CON, HY . 30 1040 R ~2 @ 33.0 ft POORLY GRADED SAND, medium-grained, grayish medium dense; micaceous brown sli hti moist 2.0 108 70 . , g y , 35 1035 TOTAL DEP7H 35.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED BORING BACKFILLED ~` SAMPLETYPES: i GROUNDWATER PACIFIC SOILS ~ RING(DRIVE)SAMPLE 0 SPT (SPLIT SPOON) SAMPLE - SEEPAGE ~ ENGINEERING~ INC. . ~ BULK SAMPLE ~ TUBE SAMPLE PLATEB-14 GEOTECHNICAL BORING LOG SHEET , oF , ~ PROJECT N0. 700007-C PROJECT NAME Wolf Creek Phase 2 BAC-08 DATE STARTED 8/14/03 GROUND ELEV. 1120 BORING DESIG. DATE FINISHED 8/14/03 GW DEPTH (F~ LOGGED BY GAG DRI~LER AI-Rov Drillina DRIVE WT. See Notes NOTE a-za'~2isoic. TYPE OF DRILL RIG 18" Bucket Auaer DROP 12 ifl. 29-41' =13501b. I~ '~ ~ ~ ~ ~ ~ ~ ~ W ~ > ~ a~ w .-. se ~~ ~o ~ v, x~ W aa 3 o p ~m GEOTECHNICAL DESCRIPTION ~~ -°w F,e ¢ = i y wLL - W Q~ = ~~ c~ oo ~W ~ o F o y m r y ~~ oo ~ J ALLUVIUM (~al): POORLY GRADED SAND, fine-grained, . . yellowish brown, dry, loose. ----------------------------- @ 3.0 ft SILTY SAND, fine-greined, brown, dry, loose. 5 1715 R 3 @ 5.0 ft slightly moist, motlerately dense; trace pinhole-sized voids. 4.2 102 17 10 1110 R 3 @ 10.0 ft trace carbonales. 7.9 96 Z8 @ 14.0 ft POORLY GRADED SAND, fine-grainetl, light brown, moist, 15 1105 moderately dense. R 4 R z @ 16.0 ft SILTY SAND, finet~rained, medium brown, moist, 8.3 108 40 moderately dense . 20 1700 R 3 g.3 106 43 CON, HY 25 1095 R 6 @ 25.0 ft trace of clay. 11.5 113 63 30 1090 R 8 @ 30.0 ft POORLY GRADED SAND, fine•grained, yellowish brown, 3.5 100 14 dense; trace gravel up to 1/2" in diameter moist moderatel . y , 35 1085 R 10 4.5 708 22 TOTAL DEPTH 36.0 FT NO GROUN~WATER ENCOUNTERED NO CAVING OBSERVED BORING BACKFILLED ^0 ~ SAMPLETYPES: 1 GROUNDWP.TER PACIFIC SOILS ~HI RING (DRIVE) SAMPLE - - SEEPAGE ~ ~ INC. ENGINEERING SJ SPT (SPLIT SPOON) SAMPLE C ~ ~ BULK SAMPLE ~TUBE SAMPLE PLATEB-15 GEOTECHNICAL BORING LOG SHEET , oF , • PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 BAC-09 DATE STARTED 8I15/03 GROUND ELEV. 1115 BORING DESIG. DA7E FINISHED 8/15/03 GW DEPTH (FT} LOGGED BY JG DRILLER AI-Rov Drillina DRIVE WT. See Notes NOTE o-2a ~=2i5a1b. TYPE OF DRILL RIG 18" Bucket Auger DROP 12 Ifl. 29-91'=73501b. ~ I~ I~ I~ ~~ ~~ ~~ ~~ W y ('f J a W ~. K e .. U Y ~ Z ,O K (n ~~, W aa 3 ° o m GEOTECHNICALDESCRIPTION ~ ~ ~ r nz a ~n >z r-e q = u~i W oLL u' N~ m = ~ ~ oo ~ ~ o r N ~ ~ J ALLUVIUM (Qal): SILTY SAND, fne-grained, yellowish brown, dry, loose. 5 1110 R 2 @ 5.0 ft lighl brown, slightly moist, moderately dense. 4.5 103 19 10 1105 R 3 @ 10.0 ft trace carbonates. 8.9 107 42 CON, HY B 15 1100 R 5 @ 75.0 ft POORLY GR4DED SAND, fne-to medium-grained, 2.0 '112 11 moderately dense. slightly moist yellowish brown , , @ 18.0 ft SANDY SILT, light brown, slightly moist, firm. 20 1095 R z @ Z0.0 ft SILTY SAND, fine-grained, light brown, slightly moist, 11.3 102 47 moderately dense . 25 1090 R 4 @ 25.0 ft trece carbonates. 13.4 104 58 30 1085 R ~ @ 30.0 ft grayish brown. 6.3 106 29 35 1080 R 6 @ 35.0 ft yellowish brown. 9.8 104 43 CON, HY TOTAL DEPTH 36.0 FT NO GROUNDWATERENCOUNTERED NO CAVING OBSERVED BORING BACKFILLED ^` « SAMPLETYPES: .~ GROUNDWATER PACIFIC SOILS ~ RING(DRIVE)SAMPLE - SEEPAGE ^ ~ ENGINEERING~ INC. Q SPT (SPLIT SPOON) SAMPLE ~ BULK SAMPLE ~ TUBE SAMPLE PLATEB-16 GEOTECHNICAL BORING LOG SHEET , oF , • ~ROJECT N0. 700007-C PROJECT NAME Wott Creek Phase 2 BORING DESIG BAC-11 )ATE STARTED 8/15/03 GROUND ELEV. 1179 . LOGGED BY GAG ' ~ATE FINISHED 8/15/03 GW DEPTH (Fn t N NOTE D-2a'=21501b. 7RILLER AI-ROV Drillinu o es DRIVE WT. See 12 10 24-91' ~13501b. rvoC nF f1R1i I RIC: 18" BOGkBt AUQ~ . DROP ~~ ~~ ~ ~~ ~~ ~~ ~~ I~ ~ ~ ~ ~e ~i~ Z K N 2,-. ] ~W ~ o O j~ F GEOTECHNICALDESCRIPTION f =-H nz ~fA r Oe a = N ~ wLL .~ J w ~} ¢r m = o~ ~ o ~c~ ~W oo ~ ~ F ~ o N F N J ALLUVIUM (Qal): SILTY SAND, fineyrained, brown, dry, loose. @ 3.0 ft slightly moist, moderately dense. 1175 i h l 0 6 114 34 5 g t y @ 5.0 ft POORLY GRADED SAND, fine-grained, light brown, sl . R 3 moist, moderately dense; trace subangular gravel up to t!8" in diameter. 1170 2 3 102 51 DS ~~ @ 10.0 ft SILTY SAND, (ine-grained, light brown, moist, moderately 1 . , R 2 dense;trace carbonates. HY 1165 707 21 ~5 @ 15.0 k POORLY GRADED SAND, fine-grained, light brown, 4.4 R 5 slightly moist, moderetely dense. 1160 4 5 107 25 20 0 ft moist. @ 20 . R 4 . TOTAL DEPTH 21.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED BORING BAGKFILLED "`2 SAMPLETYPES: = GROUNDWATER PACIFIC SOILS ~$I RING (DRIVE) SAMPLE - SEEPAGE ~ (~ ENGINEERING~ INC. Q SPT (SPLIT SPOON) SAMPLE ~ `47 ~@J BULK SAMPLE ~ TUBE SAMPLE PLATEB-17 GEOTECHNICAL BORING LOG SHEET , oF , • PROJECT NO. 700007-C PROJECT NAME Wolt Creek Phase 2 BAC-13 DATE STARTED BI15I03 GROUND ELEV. 1101 BORING DESIG. DATE FINISHED 8l15/03 GW DEPTH (F~ LOGGED BY GAG DRILLER AI-RovDrillina DRIVEVJT. SeeNOtes NOTE 0-29'=21501b. TYPE OF DRILL RIG 18" Bucket Auqer DROP 12 ifl. 24-91'=13501b. I~ I~ r'~ u ~ r~ ~ ~ ~ rd ~ W aa N 3 (,~9 ~ a~ ~m K~ r - u~ °in Z ~F K y _~ wLL W ar p p ~~ GEOTECHNICAL DESCRIPTION r v~ o ~ W ~ ~° r w 0" tn m 1=- ~cn ~U ~O ~ ~~ J ALLUVIUM (~ap: SILTY SAND, fine-grained, brown, slightly 1100 moist, moderately dense. 5 R 2 8.4 104 37 1095 10 R ~ 10.2 103 43 1090 15 R ~ @ 15.0 ft SANDY SILT, brown, moist, firm; trace carbonates 17.3 100 68 1085 Z~ R q @ 20.0 ft trace pinhole-sized voids. 10.7 106 49 1080 TOTAL DEPTH 21.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED BORING BACKFILLED ~ ~ ~3 SAMPLETYPES: = GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~SPT(SPLITSPOON)SAMPLE ; . ~ ~ ~ ENGINEERING~ INC. ~ BULK SAMPLE 0 TUBE SAMPLE PLATEB-18 GEOTECHNICAL BORING LOG SHEET , oF , ~ PROJECT NO. 700007-C PROJECT NAME Wolf Creek Phase 2 gqC-14 DATE STARTED 8l15l03 GROUND ELEV. 1111 BORING DESIG. DATE FINISHED 8/15/03 GW DEPTH (Fn LOGGED BY GAG ~ DRILLER AI-Rov Drillinq DRIVE WT. See Notes NOTE ~2i5ait. o-za TYPE OF DRILL RIG 18" BucketAuaer DROP 121f1. 29-91'=13501b. ~` ~~ ~ ~~ ~~ I~ ~ ~ W ~1 Y ~ a J ~o ~~ ~'Fi~ n- ~O ~ N w 1- aa", ~ g> o o °~ GEOTECHNICALDESCRIPTION o,z iz a= ~w pLL w y~' m F ~ C~y o ~U ¢w ^O ~ 7 ~ ~ J ALLUVIUM (Qal): POORLY GR4DED SAND, fne-grained, light ~ ~ ~ p ..~. brown, dry, loose. ----------------------------- @ 2.0 ft SILTY CLAY, dark brown, soft, moist. 5 @ 5.0 ft POORLY GRADED SAND, medium- to coarse-greined 2.6 107 12 1105 R 3 yellowish brown, slightly moist, moderetely dense. ~~ @ 10.0 ft SILTY SAND, fine-grained, brown, moist, moderately 9.8 105 44 R ~ 7100 dense. ` ~ ' R ~ @15.Ofttracecarbonates. 16.1 103 68 1095 20 R Push .~ @ 20.0 ft trace pinhole-sized voids. 19.6 104 85 1090 25 R g @ 25.0 ft moist, medium dense. 14.1 102 58 1085 TOTAL DEPTH 26.0 FT NO GROUNDWATER ENCOUNTERED NO CAVING OBSERVED BORING BACKFILLED ~`~ SAMPLETYPES: ~i GROUNDWATER PACIFIC SOILS ~ RING (DRIVE) SAMPLE - SEEPAGE ~ ~ ENGINEERIldG~ INC. ~ SPT (SPLIT SPOON) SAMPLE ~ BULK SAMPLE 0 TUBE SAMPIE PLATEB-19 GEOTECHNICAL BORiNG LOG. `t~ r 2 oF ` + ~~E~. ~~ aoo622 pRQ1ECE NAME MurW Faneh BORING DESIG. 1073.0 EV GROlJh'DF1 HS-iE DA7'E SfAR'fED 10/01/95 ~-- . . Lp~~IDBY - Gv1 DEPfH (FI) PDT DA7'EAT~7S}ff.D _-~-- 2" - DR7VEWT. iao ~ ~ DRiI]F3t 7'YPEOFDRILI-RIG -~ Halbw~ - ie ! DROP If p ¢ ~E u c1~- . O W > B~pyy ~ GFOUF GEOTECHNICAL DESCRIPTION o Q ?`F 0 F n m ~ a Ta ~p~p~7 o SYMBOI ~ o ~LL W. N r f J SM 9LLSJ~(1SleE IOaI): Continued: Silty Fine Sanq brown, very moisL modeia~ey derse; rrxcaceous; minor carbonatee. I f 1045 ~ SP-SM @ 30.0 tt. Silty Fine 1o Medium Sand, brown, rrolsl, moderatery ?. 9 108 48 30 p 5/g/71 tlense; micaceous; Vace ot coarse sand. TOTAL DEPTH 31.5 FT. NO WATER ~ ~~ ~~ ~~ cAMPLE"1YPE5: '~r~~~qT K ~ c G-FOL'~.'~ r- y ~ DR7Vp fRr•G;~. _A~9PLE I ~ ~I SPT (SPL17 SPOO'~~) SAMF'L.E '. ~iFli1..~~.4r~pi,~ ~~~~n~E=_~~r,~~:-~_ FACIFIC SOIL~ ENGINEERING, INC. 7itE Gonvco Gouc.Son DIEQG. CAEGIII tE5B1 560-~i1~ PLATE 8-21 _ GEOTECHNICAL BORING LOG sr~T , oF a ~ , OJECTNO. 400622 PROJECTNAME Woli Vallev Ranch 7083.0 GROlTNUELEV ~ BORINGDESIG.~ PSE-~ ~~~~7P,D 70/1198 t Oft l98 . GW DEPTH (FT) LOGGED BY PDT ~TE Fp 7T5}gD 2-A Drillinq DRNE WT. NORTHWG tIl.LER ~F nP DRIl1 RIG Hollow Stem Auaer DROP ~~G ~ ,. ~ ~ ~ . ~ ~ ~~ ~LL w j~ w a N ~ r w ~ a ~ ~ 3 G m t~7 0 ~ J ap ~ g t~N w .- j~ GEOTECHNICAL DESCRIPTION oo ~V nf . ¢ W O~ O Q~ 7 w F o F :~~.::{ ARTIFICIAL FILL I~afL' SILTY SAND, tine- to ~ coarse-grained, light tan, dry, dense. ~.~;j ALLWIUM I~aIC SILTY SAND, Sine- to medium-grained, ~ - brown, slightly moist, moderately dense. ~ 080 ~ 5 ~ J 075 10 070 @ 13.0 ft. becomes darker brown; micaceous. 15 . ~ i I ~:~~` ~~ : . ~~~~.~.:: .~~:~. ~. : : _ _ I I -~i ; : ` I - , ~I ~ @ 77A ft. become=_ te:e sifty, moist. -~t065- I i I I ~.~:~ ~`i ~ zo ~, ~ ; I ~ I ; I I I I i I ~:. ~.l ~ i :'i ~i ~ i ~ i I ~ Ii -h060 I i -~ I j ~ ; ~ I~ ~ ~ I i .~~ . '~ I i a:~ , 1! I.~~ j_! ! j I I , i I I ~ 'I I ~ ~ ' I i - -~ ' I I I-: ~. I ~ ~ ~ ~ ~ i I I I~ qI ~ ~ , 1 , I I , ~ : : . continuee. ~ I I ~ . Ir~ .. w~~r~~ r~~u n SAM°LE 1YYt~: ~I DRT'E (1LI!~G) ~AMnLE `ISPT (SFLIT SPOO?~n 5?NrLr `!BUiK 5<r9PiE ~~ 7'UBE cANri r • GrcG'tT?~TD~P.~F. O rr+~..n ~v vv~...+ ENGINEERING, INC. PLATE B-22 GEOTECHNICAL BORING LOG s~T 2 oF 3 • ROjECTNO. 400622 PROJECINAME WoIS Va11ev Ranch ATESTART'ED 10/1/9E GROLTNDELEV. 1083.0 BORINGDFSIG. PSE-t ATEFINISHED 70/t/98 GWDEPTH(FT) LOGGEDBY PDT ,Rn i F7Z 2-p Drillina DRNE W7. NORTHII9G YPE OF DRILI- RIG Hollow Stem Auoer DROP ~ST~G I~ ~ ~ e ~ ~ ~ ~ w . w ~ (~.'J n p j ~ plY_- ~ O w~ ~ m w na a ~' ~ o°' GEOTECHNICAL DESCRIPTION v~ i~' `~ ~~ _"' WLL ~ W Q1- Q O O c7~ O O U p0 ~ ~~- O t n N J f Vi ~ O] J ALLUVIUM I~all: Cominued. @ 26.0 it. SILTY SAND, fine- to coarse-grained, light hrown, moist, moderately dense; micaceous. @ 27.0 ft. becomes coarser-grained; very few silty and tine sands; minor gravel. 055 30 050 35 35.0 ft. GRAVELLY SAND, fine- to coarse-grained, orangish brown, moist, loose. 045 40 @ 40.0 it. START OF CONTINUOUS SAMPLING. @ 41 .0 ft. SILTY SAND, tine- to medium-grained, orangish _ i i ..~.~;. brown, sliehtly moist, tlense; micaceou<_; Pinhole porosity. I I @ 42.5 tt. SIL7Y SAND to SANDY SILT, tine- to 040- ~ medium-Qrained, brown, slightly moist, dense; miceceous; ~ ~ I some structure; minor coarse sand. l i ,. ~ 7 { ~al 44A ft. SILTY SAND, tine- to coarse-grainetl, moist. J ~ ` ~ `~ l dense. 45 I ~ ~ 45.0 ft SAND, medium- to coarse-grained, tan, sliQhtly ~ ~ _~ _I ~ II I' ' I ~ ~ ~ il~ ~~~ ~' ~,I ~ moist, moderately dense. ~ I I I I - i -I ~I ~ i°.~, -.°,~, c ,i I i i@ 47.0 ft. SAND, cos~se-orained, loose I I ~ F ~~~ I ~ ~ `C - ~- ~ ~ @ 4E.0 ft. GRAVEL bed. IS A FINING UPWARD SE~UENCE. I 4E O tt 42 0 I ' I i l I j ~ .- . ; I . . ~ . - ~ i ~ (' FAUBA PORMATION I~os): SANDS70NE, predomenently ! ~ ' i ' ~' ' I~: ~ I 'i ~ coar.e-oralned, some iine- to medium-orained, tannish I ' ' ~i, I I ~ ~ ` ~ `:i ; .~ i oranae, sliohtly moisl, hard; minor aravel. ~I I : . , i '~ i~ ~. <„~,,,nLEnTES: ~ ! PACIFIC SOILS ~in~,E~~,;c~~4Mr~ schoi.m~nv~~:~~ ~ ENGINEERING, INC e ~ LISP7 (SPLIT SPOOI~'? cSMPLc I i i~IbiiLR S.AN,r7_ ~`i TUEE ~:iM:~~- . P LATE B-22 _ _. GEOTECHNICAL BORING LOG SHEET 3 oF 3 ~ O ECT NO. 400622 PRO]ECTNAME WoN Vallev Ranch ~~n~7p,D 10/1/98 GROLTNDELEV. 7083.0 BORINGDESIG. PSE-1 ~7"E FWISHED 70li /98 GW DEPTH (F7) LOGGED BY PDT ;n T FR 2-R Drillina DRNE WT. NOR7I~IG PE OF DRII.L RIG Hollow Stem Auqer DROP EASTAIG ~~ ~~ I~ li f ` • m JLL ~- w W yl aa Qr v> w a Q ~n u `~ O ~ G1 ~ ~ O r I J aJ o°' ¢~ ~v, w j GEOTECHNICAL DESCRIPTION m O ~ ~ ~ ~' O v ~> uF ~ nV' ¢i" ~~ z O ~'~ ¢ ~ R 1n _'~„ O~- TOTAL DEPTH 50.0 FT. ~ ~ NO WATER, NO CAVING ' ; 'i ; ~ I i i I I ' I ' ~ I ~'~~ ! i I I ~ ' ~ ~I '! j ~~ i ~ ; I ~ '' ~i i ; ~ ~ ; i % ' ; ~~, I I j I I ! i i I ; ' I 'I I ~ I ~ ~, j ' I I ~ ~ I I ~ I i ~ ~ I i I I I ! I i i ~~ iShMPLEn'PES: , jl ~ I PACIFIC SOILS ~D~nxrvFrr.~~c;sFMPL `-ekO'~'~'~`~~==" ENGINEERING, INC. <icrr ISPLI? SPOONI S?T4PL ; ~ ; =;~L~h~,~MnLE ~~-U~r~A~~,-~ ; PLATE 8-22 GEOTECHNICAL BORING LOG SHEET , oF 4 ` .OJEC'TNO. 400622 PROJEC'TNAME Wolf Vallev Fanch 7085.0 BORLNGDESIG. GROUNDElF\' P SE-2 ~~ ~~~ 7p~7~gg 10/1 /98 . G~ DEPTH (F7) 62.00 LOGGED BY PDT ~.TE FIIJISHED 2-R Drillina NORTHIIdG DRTVE wT. ~~R fPE OF DRILI. R1 G Hollow S~em A~-°e~ EASTWG DROP ~ J r ~ O J ~ w- ~O ~ UH °(n .O ¢ N ~ ? S ~ C~ ~ > ~ W -' ~ ~ ~ o ~ o ~ GEOTECHNICAL DESCRIPTION ~ o o Q w ~ v i ¢_ o~ ~ J ~ ~ ~~ 7 ~LL w a N r a N O F c7N ~U (O J ARTIfICIAL FILL I~ati: SILTY SAND, tine- to coarse-greined. Iight brown, dry, dense. I i d b rown, ne , ALLUVIUM I~all: SANDY SILT, tine-gra ~ I slightty moist. I I r 5 @ 6.0 ft. becomes slightly micaceoue. 1 I~ 15 ~1070 very stifl; some tine sand. . ~ ~ i ,~ il~I~i~ll~l~~ i I ~ I ~i ii~'j~lj ~ I . i ~lil~lli ~ COfdI0UE0 ~AMPL~TYPES: • ~! DRNE (~C) CP-MPLE ~, r GnCi.~'T'\ti c-Ek ( ~ isnT ;srLrr rnoor~ sp Mr-;~ • ~ ~IBliiKSAMPir ~!Zli9~~4Mr~r ; i i ' 'I i I : 'I I ~; !I ~i ~~ PACIFIC SOILS ENGINEERING, INC. PLATE B-23 GEOTECHNICAL BORING LOG sr~r z oF a I~ O)ECTNO. 4p~ PRO ECENAME WoN Vallev Ranch GR UNDELE\r. 10850 BORINGDESIG. PS E-2 ~ I 1'TE STAR7'ED ~- G~ D~ ~ 62.00 LOGGED BY PDT 1TE FWISHED ~ O ~- D~,E ~ NORTI-III~7G iIl,LER 2-R~~"° EASfII~7G DROP .'PE OF DRI111~1G Hollow S~?e~^ A~Oef Y = C' a0 ¢ ~ U !- ~ O ¢ tn ~ w w ~ GEOTECHNICAL DESCRIPTION NZ w ¢~ L~ J~Y ~ 3 ~m 00 Q 00 ~ o~ _LL w QF G O ~ c7N ~U N N m _ I I ALLUVIUM IQall: Continued. i ~ I I - @ 27A ft. SILTY SAND, tine- to coarse-grained, orangish I 1 ~ ?~:1.-.~.~ r. brown, slightly moist, dense; micaceous. IG I ~' I~ ~~ @ 33.0 ft. GRAVELY SILTY SAND, tine- to coarse orangish brown, slightly moist, dense; miceceous. 045 i I i..:l!.. -I , I, , ;~ ~~ ~ i, j ~ ~ I I I I , I i I(a~ 45.0 ft. START OF CONTINUWS SAMPLING. I ~ i I I '. ~ i I i. C 46.0 ft. ~AND" SIL7, fine-graineC. browr, sliohtly I .~I ~,I ~ ~'~ ~"!'~ '. moist, den=_e; monied; some structure; miceceo~s pinhole ~i~~i~!.~ .i I i~ I !,~~ I I I I' ~ I ~ I' . Porosity. I I I i , j '~I'I~I'~'~ ~j I j 'I ' i Illil,l~. I I ~ , ' ~ li ~ ~.. ~ ~ I I ~ i , i~ 43A ft. 9L7Y SA~G, Sine-ar~inec. . ~-: jl '~I I ~~ ~ ~ continuec. i , ~zMr "~rE<_: ' ~DI DR1VE (W!`G) SPMPLE ' F GkC~T`D~:%F'SE~ I ~,<^i cT: ?-cP T ~SMJ'_- - ~ : _ ('. L_ 1 OO. Ti ... ' . . `iEV, ~ snMn~= ;~! r~~~ <F?~n;-L- i - PACIFIC SOILS ENGINEERING, INC. PLATE 8-23 GEOTECHNICAL BORING LOG SHEET ~ OF s ` )JECTNO. 400622 PROJECTNAME WoIiVallevRanch BORINGDESIG. PSE-2 GROUND ELEV. 1085 0 ~ S.f.~.~ ~ p~_ LOGGED BY PDT 1011 /98 GW DEPTH (Ff) 62.00 I'E FIN~SHED NORTHING 2-R Drillina DRI~'E WT. ' l 7 FR II~1G EAS7 'E OF DRII11tIG Hollow Stem Auaer DROP I ~ t'~ J o ~~I U~.O Q(n w~ - > a a a cn ~ o°' GEOTECHNICAL DESCRIPTION c~i~Z >z Q~ ~ w LL W H Q O = ~ OO I Q~ ~ O F Q N N t7 N ~ m J ALLUVIUM I~aq: Continued. f I • ome i d ne . s @ 54.5 Tt. SAND, predomonately coarse-ara i5 030 fine- to medium-grained, tan, loose, slightly moist; micaceous. ~ @ 55 0 ft minor gravel. ~ ~ @ 56.0 ft. SILTY SAND, fine- to medwm-gramed, brown, moist, dense; micaceous. ~ i st, @ 58.0 it. SAND, coarse-grained, orengish tan, mo moderately dense. 60 025 ~ + @ 62.0 ft. water. ` @ 64.5 ft. SAND, coarse-prained; minor gravel; rare 65 020 ~cobblee. ~ - ~ ~- ~~1 I@ 67A fl. SILTY SAND, tine- tc medium-or~ined, rare I~ I I II I I I I coarse-orain=_; brown, dense. ~ - ~i @ 69A ft. orades into SAND, coarse-orained. ~ I PWARD SEQUENCES~ ~ 70 015 - ~. ` ~ i I 70.0 - 75 0 h. 2 MORE FINING U I I I ~, I- ~I , from SILTY SAND to coarse SAND; finer prained is moist, . I I ; I I _ i ~ ~I ~ ~ j I i-. ~ ~- I ~ I ~ ~~~ ~ coarser arained i=_ szturotec. i ; ', i i ~ ~ i ~ i ~ I I ~ ~ I ~~I, _ I -I II~ , I~ ~} ~~~ '1~ I II j , -I' ~ ~ I I ',. i ~ ' I: i . . ~- i ; ~', ; ~ 'i 'I ~ I ; ~ I ~O i ~ PACIFIC SOILS PES . : . s.v.~n~. ' ~~n~rvFtRr:~cis.An~r;.z ~ ~eke~°:~~:;- ~r" ' ~ ENGINEERING. INC. ~ ~~ , ' i CISP? (SPLTt Snpp7~*) cq~vlPiE I : F,~~:,~<oMr,_ T,~,gx«~h~-= ~ PLATE B-23 GEOTECHNICAL BORING LOG SHEET 4 OF 4 • 'ROJECTNO. 400622 PROJECTNAME Wolf Vallev Ranch )A7'ESTAR7'ED 10/7/96 GROlJNDE1EV. 1085.0 BORINGDESIG. PSE-2 ~A7E gp.715};gD 10/7 /98 GW DEPTH (F'I) 62.00 LOGGED BY P DT )an i cR 2-R Drillino DRNE WT. NOR77~1G fYPE OF DRII.L RIG Hollow Stem Auaer DROP ~s~G ~ ~ ~ a ¢ = ~ - uf ' O ¢ W ~ x.-. a~ > a'u ~ a in G 0 m ~ I GEOTECHNICAL DESCRIPTION N z ?- -~ w~- oLL ~ "' ~ N~ g N 3 ° F ~ ~m ~ o ¢ W oo Q ~ o~ I c i ~ _, ~,~,:ri MORE FINING UPWARD SE~UENCES: Fine-grained is moist; coarse-grained is saturated. ~ 1 ~ WATEP AS NOTED NO CAVING I~ ~ ~ ~ ~ ~ ISSMPLE TYPES: ~ ,r~Dl DRTVE (RLn'Gl S~P~ r ~ `~~rT rrn;_rr moo*~~) s~Nri= ~ i ~iBU~~?MPig ~ilT.icES~i~qP=E I, ~ SGKOI.'?~vwiF?FF, ~~ I PACIFIC SOILS ENGINEERING, ING. PLATE B-23 GEOTECHNICAL BORING LOG SHEET 1 OF 4 • ROJEC7N0. 400622 PROJECTNAME Woli Vellev Rench BORINGDESIG PSE-3 10/1 /95 GROUWD ELE\%. 1 7 10.0 . )A~ ~AR7F,]~ 10/1 /98 GW DEP7'H (Fn 70.00 LOGGED BY PDT ~p~ pp~i1S}7ED 2-R Drillino DRNE WT. NOR7}IING I >xn t FR -vnc nF DRILS. R1G Hollow Stem Auuer DROP EASTA7G I~ I~ .~ i ~ A • • ~ ~ m am wu. O w ~ u, w aa f> Nr w a ~ ~ ~ O1 3 o, m ~ ~ ~ F J a~ o~ ¢~ ~u>i 7a- GEOTECHNICAL DESCRIPTION w Z 00 ~V aH ~ ~ z ¢u' o~ O a~ ¢ ~ w 1,~- ~ w p~' ,~ .~-{ ARTIFICIAL FILL IDaiC SILTY SAND, fine- to ' ~ coarse-grained, light brown, dry, dense. I ALLUVIUM I~all: SILTY SAND, tine- to medium-orained, brown, slightly moist, moderately dense. 5 105 @ 6.0 ft. grade=_ into SILTY SAND, tine- to coarse-grained, brown, slightly moist; some gravel; micaceous. 10 700 @'I 1.0 ft. SILTY SAND, tine- to medium-grained, brown, slightly moist; micaceous. 15 095 - _ ] ~, I ~_~~- ~ '~ J ~ I@ 17.0 tt. becames moist, rsre toer~e-areins. I,~ zo ~ 1 ~oso- _j ~ ~ I ~' - ~ I ,i ! , ~ '~ 1 ,. 1 ~ ~~ ' ' I 1 , :~ : ,' '' I _ ; I I I ~ I i ~ I ' ; ' I ~~ '' i ~ ;, ~ ~ ; , ~ ~ , ', ; ; ; , i , i ~ ' ~ ~ ; f: i I ~ i' ~ ~ i:i ~ ~~' ; I ~' I , i I; I, '~ , , ; i i 6 I C ~ Continued I~ 1~ i I ~ .. i ', i i I ~h~,r ~nFS: i Y PACIFIC SOILS ~'Dru"Echn`'ci`-P-r`~P'_` ' ~~n°`~'~.;'.<"T``' ' ~ ENGINEERING, INC CISPT (SPLR SPO01~~ S.p-MPL~ , j I ;~, BUiR SSMPiE ~i TtibE 5A~4Pi= , ._ ' P 3 LATE B-24 GEOTECHNICAL BORING LOG s~ET 2 oF 4 ~ .OJECTNO. 40062'[ PROJEC'fNAME Woft Valley Ranch GROUND ELE\'. t 1 t 0.G BORING DESIG. PSE-3 ~ 1TE57'ARTED 10/t /9E 70.00 GWDEpTH(F'I) LOGGEDBY PDT 1TEFII~~`ISHED 10/il9E DRNE WT NOR7}IWG ~~R 2-R Drillina . DROP Eq$CING IPE OF DRIl.L 1 t1G H oliow Stem Auaer , I u ~ ap I w- j~ ~-y Z aF .O w H I w ~_ , ~w °-a w ~ a o `" o~' GEOTECHNICAL DESCF3IPTION ~r Nz ~n F~ w x ~n - a I w ~ p ~° ~ ¢ oo ~ o~ ~= I"' ~ m m ~ c~w @ 26.0 ft. CLAYEY SILTY SAND, Tine- to brown, moist; rare toarse Qrains. ~ ~ I ;~~/~i @ 32.0 tt. SII.TY CLAY, brown, moist, ~ 1 I I %~ some tine-greined sand. ~ 35~1075 ~ I i I I I r,~/i I@ 39A ft. minor medium- to coarse-grains. ~ ~ 45-Ii065 ~, I ~ ~'~/j?~ % ! , r~/r o%-: I _ ~ fii%%%: ~ ~ ~ ' ' ' %. /.;~ I~:~' ~ I ; ~ ; ~ ~ - i I ~ ~ i ' I ~ ~ :' ^ .~ . i i ca~/~Pi :PEE-~ - I ri DRNE (RT?~G; cAMnL,c D • ~',cPT ;CPi i'j $PQO?~`i ~,~Ti= ~ .t,EU~k Sk.T9t`'lt ,_:_~ l Vn` 5 -~%?-t @ 43.0 it SANDY CLAY, tine- to moist, stiH; =_ome <_iN; mic~ceous. ;@ G7,p ft SI! Tv ~AND, fine- tc medium-orained, some , co~r<_e-cr~irs brcwr, ncist, dense; some cky; miCZCeou:. i centinu=c. r C nO UNL\:' F TF «, (:J ~ I PACIFIC SOILS ENGINEERING, INC. I PLATE B-24 GEOTECHNICAL BORING LOG SHEET a oF 4 ~ ;OJECTNO. 400622 t 0/1 /9& PROJECENAME WoItValleyRench GROUND ELEV. 111 D.0 BORING DESIG. PSE-3 q7E npA7ED . ~ p~7 ~gg GW DEPTH (F7) 70.00 LOGGED BY PDT fE FIN~StIED 4 2-R Drillina DRNE WT. NOR'I'HII~IG an i FR fPf OF DRII.L R1G Hollow Stem Auae~ DROP ~S~G ~ ~ r ~ ~ ~ ~ ~ w- ~~ H I o~ ,o ¢ ~n nN N L- ~W ~ J~~ ~ 3 o ~ ~ GEOTECHNICAL DESCRIPTION 1- o ¢w f 2 Q~ F ~ ~u w QI- Q O ~ Q c7N o ~V O~ ~ o N ~ m = ALLWIUM I~all: Continued. ~ i @ 52.0 ft. increase in coarse sand. I~ @ 57A ft. GRAVELLY SILTY SAND, fine- ~o • ~ coarse-grained, brown, moist, dense; micaceous. 60 050 @ 60.0 it. START OF CONTINUOUS SAMPLING. • I @ 61 .0 ft. SANDY SILT, fine- to medium-grained, brown, slightly moist, stiff. @ 62.0 tt. SANDY SILTY CLAY to SAND, coarse-grained; some gravel. • I h l ht 65 045--- I III I I ~~ ~ ig IZ~ 65A ft. GFAVELLY SAND, coarse-prained, tanms i brown, mofst, loose. 1 • _ - -i - ~ i ~ I 1 ~ I, I I i ~ ~ J i ~ I ~ ~ ~ 70 I040 i I i I ' I ! ~ °- ~;-~ ° ~I;~ `;. ~ ;~~ i i 70A h. SAND, fine- to coarse-orained, w~t loose; ~ I i minor arvei. ' ~, I ! i I -I i i i I i I I.: ~. d c ~ i '; . i I ~ ~ I i ~ ~ j I C. 4, !i I ~ j : I ' , i i ~ ~- ~i ~ ~ I a 72 E ft. Izc GFAVELS, setur~tec. ~, i I I • ! I ~ ~ ' '~ i--- ~'~ ; i ~ 73.0 it. SILTY SAND, line- to medium-areined, browr~ ~ ~ i ~ . wEt, oEncE. ('~i ~I . i a 73.E tt CFAVELLY SFND, iine- tc coarse-orcined ter, : ' ~, ^~ ~ ~ r i i ~ I ~I I ~ s~tur~tea, IoosE. ~ ~ ~ (7 ~ . I continuec. ~AMP = nES: ! PACIFIC SOILS ) t . < i r C.TICiIT~tvGTF4. ~ ,~,DRI~E(RI!~C) AMr•-f ~. _ ~ ENGINEERING, INC. I ~ C;<rr tsrz;T ~noon~~ s~.MrLF I ifiBUiBSSMPiE ~~NEE54Mnip ' I PLATE B-24 GEOTECHNICAL BORING LOG SHEE7 4 oF 4 • ']EC7N0. 400622 PROJEC'TNAME Woli Vallev Rench BORINGDESIG. PSE-3 ~ 10/1/9E GROl7ND ELEV. 1170 0 ' E STAR7FD .7 10ltl98 GV7 DEP'I'ti (F7) 70.00 LOGGED BY PDT .~ ~5~7~ 2-R Drillina DRNE W'f. NORTHWG n ~ FR PE OF DRII.I.1tIG Hollow Stem Auaer DROP EASTING LL ~ a~ N ~a- nH ~O w ~ ~ d u ~ ' aa w a °J ~ ~ o'~ ~ 1 - GEOTECHNICAL DESCRIPTION mZ >z ¢~ ~ w i~ ~ w ~r QF- ~ Q 3 O F ~ (7y oo ¢w ¢ o ~ ~~7 O~ 7 N N m _ J ALLUVIUM IQali: Continued. ~ 1 I ~ @ 79.5 ft. sharp coniact between overlying unit and 0.2 tine- to coarse-grained Y SAND E , , LL fl. thick SILTY GRAV ~ 'iorange. wet, dense; sharp contact between underlying unit ~ ~ ~SIL7Y SAND, fine- to medium-greined, brown, dense; WATER AS NOTED NO CAVING ~ ~ r ~ ~ i i i I~ i i ! ,, .. i i I ~ i ~ ~ i I ! i •, ! I I ~ I ~ ~ ~ II ~ '. • j ~ I ~ i I I i j I I ~~SIdPLt'Tl'7't`: _. ~I DR?VE (RLnG; c ~MpLr r GkOLT~Dl`rR'r~ n • `~cP7 (SPL?T SPOONi Sp ~9PLE , ~ i c u : TJEt ~ ~~^P_t ~ '~,=1bli-R _R.MPic ' I i '~ ~ ~ PACIFIC SOILS ENGIfVEERING, INC. PLATE B-24 I • PAC/F/G SO/LS E/VG//1/EER//VG, /NC. LOG OF BOR/lVG No. 1 I• ~~ I~ • ~ ~ • • ~ ~ATE Q9SERVED 6/29/87 METHOD OF OR/LL/NG Hollowstem Auger OGGED BY TCS GROUND ELEV,4TlON WORK Of70ER - ~ ~ ~ ~d a ~ ~i ~ ~ o~ m ~ ~ Descriplion ond Remarks y o o ~ h m ~ j~ o\ 0 ARTIFICIAL FILL (~af): Gravelly clayey san , GC medium brown, dry, dense WIUM (Qal): Silty sand, dark brown, SM ALL moist, medium dense @5.0 ft. brown 5 SP 5 10 SP --- SM ------ ----- ---------------------------------------------- Very silty sand, brown, moist, meCium dense, porous, occasional white nrecipitate 15 9 --- ------ ----- ------------------ --------------------------- Cla e sand, brown/light brown, moist, SP SC loose to medium dense 20 SP 5 ~L F Clayev =_i1t, clivE, moist, ~ir*r~ ~~ zS ~ ,.,~.-.. ,,-.,,cr nr. r~ex ~ n2ce 400103 PLATt 13-z~ • PAC/F/G SO/LS E/VG//1/EER//VG, //1/C. LOG OF BORIIVG No. 1 ~°nt. ~ATE OBSERVED 6J2918 % METNOD OF DR/LL/NG Hollowsten Auger • , TCS 6ROUND ELE~.4T/ON tyORK ORDER No. 400103 _06GE0 BY I• • ~ • • ~ ~ ~ • , ~ ~ ~ ~ o ~n ti \ o m a ul Q ~ . ~ 3ti ~ J o N J ~ ~ y ~ °~ escriplion ond Remarks 5 gp 12 SM Silty sand, tan, moist to very moist, slightly micaceous, occasional tan sand lenses 30 PT 20 SP1 SM ------ ----- ---------------------------------------------- Sand, medium to coarse arained, sliahtly silty, tan, sliahtly moist, medium dense 35 90 SP 26 ~F _LJ~ ~ ~ I __ _- --__ - _- --- ~ ~ I ~ ( ., I I ~ I ,.`.~.a.. ~...~.~. ~.r. r.c~rr .,aCF iJ PLATE B-2~ • PAC/F/C SD/LS ENG/IVEER/NG, /NC. LOCi OF BOR/IV~'J IIIO. 1 ~ont. I• ~~ ~• ~~ ~• I~ ~• I~ ''~ ~ pqTE OBSERVED. l nGGED BY TCS GROUND ELEV•4TlON WORK ORDER No. 400103 ^ C 04i ~ m ' p h ` 3 N O 0 ~ a ~ ~ ~ ` ~ ~~ O ~ ~n j~ ~ " ~ o\° Descrip>ion and Remarks '0 SP 29 SP/ SM @50.0 =t. occasional gravel to 1/4" i5 60 SP 39 SP/ SM TOTAL DEPTH 61.0 ft. No Water ~ i ~ 6/29187 METHOD OF OR/LL//VG Hollowstem Auger ~ PLATE B-25 i. • al I J m J G ~ II • Ll C ' ~ • • • ~ ~ v z ~ ~ ~ O rt R N fi N N R QI /~ .~. Q1 S _ W_ _ r n 9_ t C N ~ N n O' 6 N ~ n N N ' V~ N N N J 7 U ~ /i V N N ~ N ~ J , j & ~. 6 _ J l D P ~ Z' ~ P C F M1~ ~ a _ rt C T ~ ~( N rt T m T N ' N _ N N YI N 11~ ~ R N y~ ~ t^. N V~ N N J~ ~ V N N N Ji If~ U U N U ll N t~ N N 1 J ~ ~ ~ : ~' ~ S '~ ~. i '~. . ''. : : ~ ' I .. . .._... Q ~Q ~ ] ~ F L7 G' .. ~r ~ QI .. ti ~ ~i ~ Qi ~ ~ ~ T O C ~ ~ O ~ m N N ~fj I " , W ; , k ~, , ; ' ¢ _ ~, ~ _.: : ~ K __...._ , _ _ ~ ~ a , _ _.. ~. , i ,. ~~ ~ ~ ~ ~ ~ W~ o , c~ ~~ ~ ~.. ~~ O ~ ~ ~ ~ Qi ~ ti ~' _ p U1 J ~ N ~ ~ w ~ / ~ v s ~ k.~ b< " '~ ` ` r . ~' O ~ ~ f'' f~ I ' ' ` Y ~!'~ a _ 'F ~ , - , ~O ~U i~ i ~ ~ i ~ ~ r~ ~ ~ ' ~ I F ~ ~ . . _ . . . . ..i _ .. ....... .....___ ....... ......_..._. . ... ... . ... .~ i ... ... ..._...._ ....... . ~ - i_ ~ _._......... ~ i ~ . . . ~ < ' . .' .:., .". i .i C ~ °, , .- ~ L :=-~ , , ~ -~ ~ ~ ~ , T ~ ~" - ~ ` ~ L ~ _ ,~ -._ ~ - _-~-__- ` ~ ~ G G p G n O O Q Q G O O O ,n V~i G ~~ O ~n p ~r. Lf.~ G lT.~ ~ I ~. CJ C,: m r,r~ ~T ~T lP. i i i +c. UlOo~ YO ~ i~ I • I • I~ I • ~~ -~ lfl Q~ ~ ~ Y Li .. 0 N i ^ w ~ y N ~ ~ L 9 T ^ v P L [ C ry rt m C C R A ~ 4 N Q~ C R N N N N N v~ N N ~ \ - C ~ C C ~ Q~ r C C ' ~ C ~ N 1/i -~ ~ R N T R N B 4 N ~ N N ~ q ~ N /i N N ~ N N N ~ C N N 1!. t . 6 h~ ' S O . 'J 9 D O [~ C J L R ~ T A ~!I , P rt ~ A T ~ ~ ~ R F F N N l 1Ii N N U (fi U N N V Vi N N /i N ~ N N N N N If. V. U~ i S' N . i i ' - _ O N ~ ~ H m ~. _. :... ~ .....__ ; ~ i~ I `. _ ~ Q~ _ a J Q Q T. O ~ n C .. ~i W .. N O N ~ ~ ~ > N O G ~ ~ .~ ~- m N N ~fj ~ W N ~ ! '. Q _ ~ ,~ . ..._.._ _ ....._... _ . ._.... . .. ... ..._.... _ .._... . ' .....__.. y _......_ .... . v Q ~ y L N ~ =~~ ~ O I ¢ ~ U Ci L' ~ .. J C O ~ N ~ v ~ ' ~ ~ i~ ~ I• ~ 1~ 1~~ I' I ~ ~ p ~~ ~.~ ~. / ~ V ' ~ '~ ' . . - . . F I !~1 r i ~ C~ ~L L% ; : ' : ~' . O - ~ ~ i G L i ~ r-~ F+~ I ~. ~. . ' ~ ... .... . ... . .. ._..~ ~ M-s .~ ~ i : .. .....___. _..... - ........._... ......_... ._....._.. _.. .__... ... ..._. . ... .._._..... ._ ' r I _ _. I~ , ~ ~ `°' ~ V; I ~ . . . '. f.^ u C ~~p. ~ ~ ~ I ~ ~. ' . ~ ~. '. Ir1 1 1 : M ~ . ~ J i ~ II I ~ c ~ ! 1/ ,; ,; e " ' ~ r,: ~ ~-_, ~ ^ ~ ^ ~, ~ I n i C. O O G - r~ G r O O O G V /~ ~'i i v ; ~~ LC'~ C I ~' L i G c~ ~' ~ LO f.J ~ G [T? ~ lf• [''? I G v I IP. c I C' ~Ii I I i ; ~ i !°:1; ~;da~: ~,~ ~ i• I • ~~ I~ C.1 ~ " ~ J m ~ ~ ~ V c G r. ~r~ rd .. O Qi .. ~ N N ` a ~ 4~ . > ~G O G ~ ~ I ~- T 9 P ^ ~ C ` ~ 6 ry 4 4 A ~ N N 1l R h N N 1/~ N N Q~ N If~ N V. N N ` ~ ~ , - ' ° ~ C C' r + rt _ _° c _'_' N/i N N i e a ~ ~ R ~ N ~ N h N N N N V V ~ UI ~ ~ N N 1I~ C N l/~ N N ~ 1 ~ p ] P -) ,, ~ > ' ~ L T _ ' P _ q ~ r a L l 9_ P _ _ T rt T n F rt R T N ! ` ry F R rt T N N T N l~ N U N N V. N N N V 41 N N JI N N U~ v, ~ Vi U. ~ Lr N N If f / 'S k ' ' j ~ = E._ . n ~ . ~~ j _, - i a c ~ ~ ~ m N i ~ N tfJ i ~ ; W k ' ~ ~, ; ¢ _ .-. ,.~ ~ ~ _ .._ _ _..... _. _ _ _..._ _ _. .. , _..._ ~ ~ ~ ~ a f `~ ~ i „ W C~ J k O ~' ~ o ~ G I u a u ~ .. J ~ p G _ ~ ~ m ti i ^ ~ ~ I _ 0 o (0 ! ~ ~ ~ . i .~ _....._. _.... _....... _ _. _ _~ ~ F , ~ L ~,~ i-~ r ' ^ ~~ ~ i .~ . : .~_.,~-~ ~ O O '~ I ti~ F~-~ I Y . ^ p Y ~' ' O , . . ~ i_ " ~~ ~ ~ ., ~ ., IfJ p ~ I ~f~ ~~ ~ . ; ~ i e -' H` ~ i ~ ~ IN O ~ ~ ° ~ : ' ~ ' '. ~. ~ ~ - .. - .._._. - __ ............ : . ' . _.......I ~ • .. . ! ` i ~ . ~~ _ .__....... ........._... ._..... ...... ._....._..... ... _ _..... . ._...._... .._. - - - . . _ . . ~ in~ C I v. _ _ % a - ~ ~ _ - _ '~ ; ~ J" " i t . . . ~ ~ ^` L ~ ~-' ~ i ~ '' _ . r'"_ ~ ~' ~~ ~ ' . . ~ - ' ` ~ 'v i .~ y. ~ ~~,-'~~ ~ , . ' - ' ~ ~' / - ~- C 0 ,n ~ G p O O C, ~ ~ r, p C. - . . . . . r n ~ V /B ~ V ~W ; I ~ ~ . . ~' II i . . . O ~n ~~ LG G lD G tfi ~,, ~,~ ro ~-~ v ~' ~ , ~ ~ ~ ~ C' u; ~ ~ ~ , I ;.~~; ~~~~` c~v • i• I~ CJ .--i ~ v ~ m Q7 UJ O O O r, Q Q ~ 0 ~ ~ 0 A z h rt~- ~ ~ ~, -. P ~ R R V~ N 1/i , 1/~ N N ~ N N N N • ~ N P - . o _ - - ° ' c - ~ = i fl 9 n ~ - ~ m = ~ ~ m - ~ ^ • N ' q N N N ~j, N V~ N tn N (r~ ~ i/' / _ N , ] } ' P L L J L L i ~ '' i~ P'~ t ~ 9 l _ D 9 rt T 2 ~ rt _ rt_ If m R n 6 rt rt r [ . ~ N N U ~ N N T N N V~ N N N N t~ U U. Vi N N N N N N ILL ~i C iU C io I~ ~d ~Q I ° ° ~.. T ~ G 9 m Q7 c N N _ - ~ I ~ a _ q _ a _ ~ ~ ' _ " ' _ n ' _ _ _ ' N N~ Ifi N ~ r o- ` T Y N ' J T N ~ ~ tJ ~. J1 I Vr ~ N ~ N T ~ i T rv • J~ Y 3 [ " T p. , tr • P ~ ? • T L U J ~ S O ] ~ ~ S [' _ C t _ m n 2 [ R _ _ • n p~ R O~ l~ I e I = - R- C - % F re _ V~ N N Ui N N N U N V N U LJ N ~ N N N N N N N t 1 CJ i 1~ ti ~ ~ ~L` . ; ~ ! ' I O f'~~ H ti . - ~ . ~ ._._ ,.:. i. . ~ i... ... . . .. i Q i .. m ... .... . . ......._ ~" ,~ - R~ ~ r ~ ~. L ~ ~ -r O ~ C ~ Vi G .. ~: I 4i .. G N i ~ ~ > m O G ~ ~ m N I O N ~ri ~ ~ ~ ~ ' ~~, F ; ; ~ --~ k - .,~ _ _._.. . _ _ ~, , _.._ _.. , .... . _ ' a " E ., W L; J F ~ e ~ ~ F U u ' L, LL C G ~ ~ ~ 0 Q - Ilj 4i m `i U ~ B Ui _ ~ ~ a~ ~ ~ O If I ~ ~ I ~, o `~' I O , ~' ~ ; F . ~ ~ L ~ i I +e l ~ ~ - . ~ 'r.... . .......... _...._ .... ............. ~ ~ C i ~ ' ~ i } _ I V I ~ . . . _ _. . i' 'n i i ~ G C C C V 1 . /!~ ~ i G lf. G L: ~ I ~ , ~ j i i ` ~. I rl Q ~G ~L i~ ~ ~ . : i ' i ~~ ~: i. ' , i . ___. ...____..... ._.._. ._._. ; __.. ....._-_. .. ....._.. _ .. .......... . - i ~: C C ~ I iia~ ~" ~ . "- ~' _ /"~: ~ I T. f `~ .~i~.. . _ -.,~/ _ _ C ~ r~ O r~ O O G G p Lr, C LO G ID G c~ i c~, cr, , m v ~ ~* ~n r~_ ~!'~,da_ ~~ ~ i• I a r e a r~ a ~~ a ° ^ n n m a ~~ [ y i N N N N ~l~ ~~ n m n , C t ~ ~ r _ _ -J _ n ~ N Q ~ N N N ~A N N VI C ° z c~ r' ' e " e; c r ~~ ~ n " c ' c= c= c ~ rt- m a "' U N N N N N Y N If. N N N U~ ` fJ ( ~ `ti , ' ..a Y, . : r : ..+ 1- :: ..__ ..: ..._........ ~ ._. ..:.. - _ , ._~n W .. m L ~ ~ ' G ~ i~ ~ i, v O ~ O ti UI O .. r~ O I 0 m .. ,~ i ; O ul .. i '. rt' ' L N ^ ~ . L .- ~ ' _..._..... i . _.___.... v ~ O ~ _._... . .._... .... . _.......__ .. ....... .___... _......... ~ 47 O O w _ ~ ~j r ~ i Q N ~ ~ `~ v~^~ i ~ ~~n o .. ~ m N 4 N W m ¢ _ .:~ a ~, ~ Y W ~D ~ O W I ~ H U n U ~ .. J ~ O ~ 3 ~ ~ v m ~-+ .. U .. 0 ~ N J y ~ ~ w ~ Q rn V 5 1~ F-~ti .. .. ~ ~~ p ~ . . . . - i~ ~ k ~ ; u ~ ~ ~.: i ~~ - o ~ k ~~ ~ ~ ~ , _ _ __ __ __ .. .. __ _ _ , ~ ~ r_ _ . _ ~, ~ iv ~ y~ _ ~ 1~ ~ ~ _ r +' ''~ r' ' ' _ ~ ' ' _ '. L r i q• 9 ~1 . . . '= p ~ /B I ~ G G O O O ` G ~. O G O \/ I ~ p Lfi O ~~ O I CJ I ID CJ (" I Lfi LO C. [T.~ ~T ~T lD I I I I I ~ . : _' ~' l,! i d 2 ` . ~~ ~ • I~ I `J ~ ~m ~ ~:. m ~ ~ ~ ~ o ~ ~. , c G C f O r~i Q ^ C Ui ,. a• a ~ _ p ,m l ~. ~ ~ v u a ~ ~~ ~ ~ _ . , ~ ~, ~ ~~ r, _ u -~ ~ c ~ U G ~ . J ~ O _ ~' ~ ~ ~ 4~ ~~ Ui J ~ ~ c T P rt' m~ D C' 0 ~ n n ~ ;, m a : _ I ` r - _ - _ " " - m m y in ~ J I c N m , N - N w _ U U. Vi 1/i N ~ ~~ V~ ~n YI J • O ~ SI S ~ J ~ C I ' T, 9[ C 2 R ~ ~f rt rt n fi R. rt. N ~ N t] N U I N V~ N N N N 1l~ N N /~ /i N N ~ ~ U, IQ ~ , , ~ , ~ ' i ~ ! ~ _ ..... , I'~1,~~ ~ '~ . h ~ ~ .. a ~ ~ I ~~, ~~~ ~ ~ o ~ m ~ ~ y ~ ~ U ~.l~ ~ ~ 0 ` :~' o ~ ~f: n i i r !n v I i ° ~c' - , ~ I c c' ~- r ! r ! ~ i ~ .. .. „e - , ~ - _...._ _... ... __._ __. . _.._... _ ..___...,.~_ ~ / ~ ~ ~1 ~~~, i ~ • ' : 1 M~.' /ti~ ~ ~1 i I ~ ~ i~ ; - ~ +~ - ! ~~~ ~'1 ~ °~_ - - _ ~ _ _ ~ ' ' ~= - _ ; T 7 ~ ~- ~ c . ! r, V I C ~ ~: C/ G ~ ` r. r ~ ' p O G C . i ~ ~ I i ~ p L~i G L~ r": L'" O ~ ~ C-J ~'~ ~ ~' ~~ ~ (?~i Q Q1 I i I lfi I , ~ ,_' u:;~er ~~ ~ ~u iu ~u V U ~ ~ ~ ~ W~ m ~~ ~ o~ U P O' 0 ~ m .. (V Q. W .. .ti N O i v ~ W - > N O O ~ K O N I W N Q ~ S ~ a ~ w m ~ u i a ~ u a U ~ .. J ~ O ~ ~ ~ ~ N ti .. U ~ O N i r. w ~ ~ h w ~ m ~ ~ ~ I-~-i 1--~t ~ Q ~ ~~ O ~ ~~ ` ~ Im P ~~ '" ~ , _ ~ ~, ~ !`~ ° • ~. .-, ~ __ . __ _ _ __ _...._ _.. _ , l1 ~ _. r_ _ _ _......_ `. . _ ~ } I~ ' . . . :.I . . ; ~ ~ I L=a. v ~ ~. - ~ ~`', . ~ = , ~ +, ~ : . ~ , : ~.` . , . % ~ . ~ . I . ~ ~ ~ -~ ~ ~i!- ' "~. . ., _ ~ ~ . r~ ~-~ ` T 1~ _ •. ~ ~ _ L ~ G ~ r~ G G r~ r~ ~ C C O ~ ! ' ~ G L: ~r ~ Lf~ C, O ' ' l.n p ~n ~ n C~ IIi u I .-i -, C-J Cil Cn I I I I ( V I I I I .~i L~Qdu ~~ ~ i• I • I r ~ [ [ [ [ [ a n G ~ ~ 41 ro N ~ I y F ^ ` Y N _ y - ~ I T L _ ^ - P fi D q ~ R N J I ~ ' ' ~ ~ ¢ N U' ~ ~ ~~. - N In N ~ N N ~ ~ N I Vr J~ N ~' V: ~ /r V~ i/i •i V ~. t ~ 1 ~ : I ~ O Q I t ~. t. ~ ~ _ t a L - _ - ~ _ C' m ' J' 0 a ~ 9 _ N ~ 2 ~ m ° _ ~ - . _ a _ _ _ ~ - n e q m _ rt _ @ _ ' = , , _ U U V ~ rt /~ - Y: Vi U _ _ N 1Ii U N N U N N N Vi V N If 1f ; CJ V ~' N V. L ~ Y: / U. U ~ ~ ~ ~ ~ I ~ S J ~ i I ~ ~ H [ : . ...... ...... -~ . .. .... . ~ ...i. ~ _ Q . ..i. m . __.. ~ ~`. ~ E ~ ~ 0 0 ' m _ ~ ~~ ;' G ~ C' ti U~ O .. ri ~~ .. ~ p bl e ~ 4 .- 0 O ^ ~ ~ I m V! r r ~ , • f. ~f n W ,r~ ~ ..I Cl ~ v ~ ~ W ~: ~ u i p C F- u n ~ ~ .. ~ ~ G ~ -~ ~ Lf7 Q m ' .~ ~' ~ u~ - ~ ~ ~ ~ ~ O i !'' I ~ ~ " O ~' O f I n F _ . I f F~ I I. ~. . ~. ~ I r. _ . ... _i... ...._ _......i___. Iw -' ~/ ~ U \ ~ - ~ I } ~ G i ~ ~~ ~ j , . ~ ~~ I~ i ~ ~ ~ ~~ ~~ '~ ~ ~ ~ o~ - Lr W ' , ~ i I i I ' j - I ~^; a I G ~' 10 - i~~ p ............ _..... ...._.._. ; ._ . ; ~ c L ~ ~, I ~ I f ~ ~ ~ ~ ~ ~ C ~~ ~, ,r-'_c . ~-~~ ='~'.' Q G G O ~' G ~r G tfi O rr~ (-~ v v ~~' , I I ~ \~/ ~ i• ( • I~ I~ I+ I~ ~ ~ ~ ~ ~ ~ ~ r L tl.. m ~ ~ =j P O O (7~ U .. N O W .. .y ~ O i v ~ W « ~ > N O ^ ~ ~ O a a ~ < < ~, 4 A R ry N /~ C! ~ N N N N C T V 9 C m ~ C ~ ' ~ ~ N ~ i ~ J C C ~ N ~ N ~ > N N N i V N N N U N N N If 1/~ ~ ~ N J ~ ~ ' i ] ~ T o- J ~ C J ] L. - L 9 - P'- L l'~ ~ L ~ , ~ rt T 2 R rt lfl C m A _ ___ rt m T rt _ R F V N N N V1 U~ ~ N R N N N N N U. N V t~ N N N J N t N V. N N 1Ii . 1 I ~' ~ : ~ ~ V~ ~ ~ ~ K ~ ~ ~~ 9~ ~ c _ _ _ _. f ' ,i' ~ I~~~~~ ~ Y ~ I ~' '~~` } ~.. : ~- f ~F = 'l ~ I 4 ~, I ~J!!' I !~~' ' + ; ~ ~I~ !k r~ : ~ : e~ a ~ F m ~ I` v I~1 T ~e ~c !o - i ~~~ G i ...._.._._ ... ... .. .. ...._._.._.. ~, . _......._.. .... ....__....i r ~ ' ' ' ~r'?. ' G. . i V . , . , , _ i . ' r . r~- _ C ~ ~~. _ ~ - G r. C~ p r~ p p C, p ~: G (~"' L•; G C l~~ - ~_i CJ : i i i ~ "! G' c~ U } t , ~. . ~~ i. • • ~ ,~ L ~ 9 ~ C ~ A ~ C c R ~ ~ rt ~' h N ~ N ~ Q~ N IP L r ~~ n ~ ~ ~ C ~~ T N V N N N N 6 y ry f N N I /` J ] V] 9 b~ ll I?o C i• - ~ _ [ _ ~ i Cn~i:~ s a~ li « U N n t _ n _ V ~ : U~ Y NNNNNN N CJ Iv v v, N r ~ ' I p L: i F ~, Q - Cn m :~ ~ ~' U~ \ :{ a~ ' r C '. ., .. ~ ' F p 7 = ~ r U: U~ ~ ~ . iv O ~~ .. ti . ~ F Im ¢ ~; k ~ ~r ~ a ~ ; __ __ __..... _.... __ _..._. _ _.. ~ ~ .. ~ k r ~ ~ .~..~ ~ ~ L I . -~~.-. r,~~ ~~ r~N : i ~^, ~~-'~.~'-^-~ Icn '"/ I O f ~ ~ ~ rn tD n u ~, ~ z -~ ~ _ a N - ~ • J ^ a ~ O ~ n ~ ~ • i L ~ ~ - N 4 ~ ei .. l _ 0 ~ ~r~ i ~ y V.~ w C • ~~5 I ~ /~, G .~ o : (T n ~ _' b^°. . ~ : ~ : .~ i i '~ • W~° l '. . . i ! : I ~~ ~ I . ..__... i ' .._ ........ ......... ..._......_.. _....... . . __...._._._ . _. . . _ -. ......._..... ... . _ .4-" ~ ~..... ' ~~f ~~ ~~ ~ ~. ' ~ V ' '~i~"~,`f~i . ' I t . G - - . fr ~ ,,.~ ~ G •~ ' ~i - . . ' ~ .~ • F ; .. ~.~:i : i L ~i ~ ~~ O O C ~ O O O ~ I C~ O . . ~ i ~' Q ~; ~ ' L4 ~..~ O (r~ ~' (r~ C' C ~ j i i ~. .: Ci i ~ ~ ~ ~ I ~.-" : Jc~, ~.~~n I • O Lfi Q I m ~n ~ ~IIO P iN ~ ~ _ I ~1 ~i f T G O L U~ `Q \ • ~ =-, t _ € z h Q, ~ ~ _.. m R ~' R G! N 'U _ N _ m ` D ~' (/ ~ N . ~ N • = rt ~ C i ~ = , = O ~ /i N ~ L ~ h ' <~ ~ ~ a o ~. i P- 6 P~ 9 C O N i ~ .~ ~ - R u `. ~ _ _ rt _ T Oi ~ N U YI N/. U U L CJ N ~ N N N ' i Q. .-i _ n ^ r : i . '~ : _ ..:.. . .._.d;... __ ....~C r _. I m __ ~ .. m ~ ;. ~ ' - : - O U1 ~ a, • _ .. Q ; ~ O F. C n Q1 ~ ~~ • N O v .. ti ~ ~ « .. ' - .. ~ N~ ~ . . ~~ '~. r ~^. i i a~ m .. ~ ~ ~ _.....r 1 _. .~l ._._.. _ . ..... ~'.~ m ~ _... A f I ~ ~ __.._.. • ~ ° ~ , ~ Il' ~ f~~ ~ ~` ~~rl~ ~ ~ ~!i`I '1! d I: ,:~~ i e ~ F t„~f : ~n ~~ o ~ m :n ~ N ~n ~ ~ W ; ~~ „ ; ! , ` , ! ! i : Q ', _ ....._.. _.:. .. ~, _. : _...... . _ - _.-_ . - "~ J/-. ; ~ _....._ _......_. , c a ~ ; v w W ~ J y (*~ . ~~ ~ '~ 1..~---~_ .~ ~ W ~ ~ ~ F L1 a u ~ .. J ~ O ~ 3 ~ N I ~ ti ti i V ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ ~~~ I ~ ~ ' .. .__...... . __~ ..i ...... .__..... ..._. _.... ..._.. ~ ~ . _. _...._ r r 1 ~ ~~ / ,\ ~''^~n ~`r ; I~ ~ ~ ~ ~ ~~ ~~~ ~~ ~,% ~'~„ i~ ;~ ~ ~ ~ ~ i ~ ~ ,~ ~, f.% ~` ~~ ~~, ~ ~ F ~__.~--' 0 • r~5 ~ b~ ~\ ~ 1'~ ~ ~`I ~ - ~ lf! ° ~ ~V.,, /~ ',i Ic c !'Y \/ v' ' . , ~ O ~f, ~' ~ `'~ ' _ i '. '. ! -. ~ : . ~ ' . : , . , . 'r; ~, ~ r ; ___~. __ _ _ _ ~ : , . __ ~ ~ _ _ _ ~. .~ .-. _ ; _ - ,~ = - '~ : ~~ ~ ~ ~ _ ~ :~-`. [ ~ ~ ~ r' i !' ,r~ ~ ~ ~ ~ ~ = V II C r ~' ~~ ,_.t- . . . ~ . ~ ~ `. ~~ • C~ p G G C C C ~ ~ `' ~~ C~ ~~ ,^ ~ I p lT.~ C tT,~ C{ C`~', G ,~-'. C ~ lf.' V i I ~' ~' i : ~~ i i I ~, '~ I t+=. ~-r'~O~ ~ `av I• I . I • I • I • I • • . • • • a t c t ~ G ~ ~ n N Q~ I rt i T N ^ = _ j Q ' Q. ' C - = = / n N /~ ~ rt ` P _ rt - J m ! L ~ „ i _ yi ~ I V' v' ui ' ~ U~ N N S U ~ J U C N L~ U. N L p P 7 B J J ~ P i. U i~ L 9 c ~ ~ I J ~ r T _ _ ~ rt ~ L _ m ~ I~ R__ ' _ ' rt _ « . r ~ - - _ o _ c ' - a ' _ m m - _ n _ _ _ _ ' ' ' V N _ " N U _ . ._ . ' 1~ U N 111 N N V « N U~ ~ N N N L U~ L il y r . . . '. '. . . . ~ i 1 ~03 i• I • ~. ~. ~~ ~~ I~ I T IN T = n N N 9 _ L T m N N CJ ti o r 0 ~o ~ ) P O G ] ~ • N O i .. ,--~ ~ f ~ m ^ L « ~ , ~ ._. _ . _. ~o ~ ~ O v U7 n ~ n ~ ~ = y ~ a Y ~f~ ~ W ^ u i p ¢ r U G U ~ .. J ~ O O _ ^ ~~ Qi '~i `y - ~ ~ G r U1 J ~ F ~ ~ ,., r _...,......._.... w f ~ - s ~ 2 A h ~~ N ~ N ~ rj• ~ _ . ry. _ _ _ _ r ' _ v. 7 ~, m D m u. _ ~e ~ . ~, _ - ~ J: J~ N t U / N • ~ _ ^ V _ Q'~ P ' _ ~` _ C~~ t C• _ - ~ 0 " ry " _ _ n " ' _ _ = a _ n m rt _ _ " lr~ P rt ~ i N N N U y~ Y J. N U V+ V~ V~ V N N N r V N U U. i, ' . ' , y' ~ ~. i : C . ~~ i la _ c ~ ~ ~'~ ~~~ ~ ~ i a, ~ ~ u ~ 0 Im : I~ _.._. __ I.~ r~,~, ~~..~ n1: __ ~~ - ~.~' , ~ ~ ^~ ~_ /I ~ ~ ~~, , N ~rN /~ . j \ \ `iv ' `' _ i . ~^'~,./~ . . . . . . tn ~ m N ~ i~ f'? I ~ ~ ~ O - O I` ~ (f~ n ~ ~! v ~ i C ~~ ~G ~ • ~ ~ ILi p ~ ~ . ~ 1 ._. .....i _ .. ~ ~ ~ ~ ~ ;~_.. !. . . . ._....._. . ......._. . .. _.._.......... ..._ .... ._. _........ .. _ ...... ...... . .... . _ i ~ ~ ~ L C C jv !`_ ' ~ ° r ~ j I a- i I ~ r. ~ . ... ~ _ ~ . - ` ~ C ~ ~~ ~ ~ ' ' ' -'' ~ ' ~ . F . , . ~ . .. ~ _ ~ ~ v • I ~ C~ ~- p O C G ~' ~ ~, ; r r. p O . . . ~ , ~, ~ ~-, Lr. . G ~~' C~i i J ('r ~' ~ ~` LD r~ ' ~ i i I C I I I I I ~ ~ ~, ~ '-~` y'~d~n . ' ~~ i• I • C.1 ti r L~ m _ 0'• CO ~ ~ + ~~ c O C N G, .. r: p u~ .. .y ^ ~• tn _ il• ~ (~ _ ~ G C ~ ~ ~ 0 ~ R ~ Q i ~ ~ ~ ~ Q ~ r _ M1 u N T ~ ~ N O ~ a ' u ~ m ~ ' ~c ~' ~ ~ ~ . I N V N L J N N l J U ] N ' ~ 3 L ' P~ • C h ~. 0 ~ ~ ~ ' L _ N R R 0 ( ~~ n L C I rt, N ~ rt h _ ^ rt u rt N U N N N U ~ ' . . U N V If L l` V N V V~ N U N N N V~ N . ~ N N Ili U . L S IY F ' ~ c I . . ~~ .. __.. . ~ ~ : ~ ~ _ ' I ~ ~ ~ ..I ~ I .. ._ - , ' r < -._ € ~- ~ . ~ , = . . ~ U : .. r F m N ~ ~b's • T T ~ T' a. ~ ~ P q n h R ry L N VI Cn N l~ N ~ \ ~. ° ~ ~ - - _ : : ~ .. S ^ i ~ m m ° = = m ~ ~ • ~ T ~ " _ ' _ ' ' ~ i, R " N _ ` a i LI ' N Vi J N ~~ yl N N N N N. V V ~ ~ ~ ~ , J ~ ~ ~ ~ - C L T ~ -~ C ~ P C ~ ~ G y a D ~ L~ t ~ L _ t ~~ ~ R R~ rt m rt ~ ~ ~ lf C' ~ ~ R rt N T O rt 2 ~ U If. U Y N VI Yi Vi V. ta / / N VI N N/~ N /~ N Y N /. N N N. 1Ii U N V N V~ V. U V i N y ' ti ~ I ~ ~ ~ ~ ~ ~ ~ ~ • ~p ' I 0 N H _ .. _... ..... IQ ~ m Cl U7 ..;~ fr ~.. .. . '. ,~ ~ i ~ 4' ] i `° Cl 7• F 0 m L v ~i G N H m N ~ I G ~ .. ~ ~' 0 I I ~ Lr ~ ~' ' ''. ' W ~ ~ ~ r ~ G% ~ ~ ~ i c, ~. ~ ~ ' ~ ~ .. .. . ... _ ......... _.._..._...... .....:. _ ' .. .. _.. .i - ^. ,i ~ -......... L.... . ..._...... ...._ _. _ :...._._....... .._......_. ._ . ..._.. ~ . j- .' ~ I ~ ~ : I' . : u' C ~ 1 ' IL r / ~ ~ ~ c ~ ` F , _ ". ' ~ ~' ~`' - -- - ~- ' -~' ~ -- ,. - o _. _ . -- I ~' ~ o 0 0 0 o c o c` o ~! I I i ~; ~o i o ~r o u: c~ c~.~ i ~e o ~r; ~-~ r ~ c i o u~~ I i i i I (,~; ~;~~;: , ~06 i~ ~ I • I~ ~. I • '~ . . • ~ <. < < _ - _ = ~ ~ ~ Ji m `:' _ _ ~ I - r . z _ M1 _ _ ' - n _ ~ G ' " ' ' ir. " ' ' ~ - ~ ` ,n m u . ~ _ ~ I v v. `~ ~~ ~ ~ ~ ~ ~ °' ~ a, ~ ~ ; > > a . ~ i ~ C ~ L i C L ~ ~ T _ D rj T - F T ~ I M1 rt T _ _ R _ _ rt _ rt _ _ _ _ _ / rt _ ~~ ~ fi _ ~ N N - R ~ N _ _ V~ N N I/i l V' N N 1P N N U N U/i N ~f~ N J N N N N V ~ 1 ~ Y r ~ Y [ ~ _ _.... .. . IC Q W S~ m F Ul F I r ~ ~;~ ~ . ~ G' ~ ~ ~ F v ~; c n O a F U C Q, . ~ ' ~ ~ ~ i.. Ui _ [~ « 4 > N O G a~ ~ I m ~ /~ `~' \y ... . . . m ...._... ~ ......._ -...._... . _... ... ._ ........_..... _ . Q' _ ..._.. ', . ~y - IV p I/~,\, . ~'. . I~ ~.._ . . /~ ~ I I ~ w ~ , ~~ ~ ' `~~ r ll / V ~ ~ ~ - -~ ; ~ ~ , o , k , - : ~ ,,,~ ~,,~ ; ~.-~..1~~-~-- ~---~- ~~ ~ 0 ~ m N N ~, ~ i ~ N ~ ~ ~ : '' ' - ' . i ¢ _ ~ :~ k _ , ~ . _ ___ _ _ ._ .. __.; ~ _ __. _.... _ __ , " a ~ .. Q w - k ~ - a ~ ~ o ~ I ~ .. ~ J [ ~ G I ~ Q rt ~ U U] ~ I I 4 ~ I n ~ L7 J ~ I F ~ ~ ~ iJ ~ . ............... ~. ......... ~' .. ....... . ~' ....... I ' ......... ~ _ . ........ ~ .......... ........_ _. ~ k_. _ ~ w ; ; ; ~~ L ~~. ~ ~~. ~.r _, ~rf ~-~---J~~~'V.~.~~_~-; I ~ (~ II ~ ~ ~ I i C - _ T~- V I G I ~ ~ '', . ~~" ` ~ 'f"1 c ~~ ~~ II F '~ . ,' ' Il_ b ~ C~ ~ ~ I ' . . . . ' i~ O ~ ~ P-~. i . ~~ C ~. . .. .....; •• .. _ ' . ...__..._..... _............ I .-. '. I t~ L_._ . : .......... .._........... ......... _....._..._ _._....._.._ . _.._..__..... i~ . _ i : i ~`. i n [ ' ~ i.~ i_ ~ i ~ ~~ l, . . . , , . ~ V = I c ;. _ ; ~ f ~ T ~_ . . , . i~ ' ' . . ~-=:'h-~-_~ '. ~ /~. ~ . ~---'- _ y ~ . ~. /!f i C G C G G C C C G O O O V ~~ ~ C ~L ~ G U; ~~ U. ~ tf_~ ~~ ~f.• O Lf~ G ~ I - -. C, i C-:. (T,, (T.: V C' Ifi V` ~'~ ~ ~., i ~. ~ ~102~. I ~'`" • ~~~ i• I • CJ ti n O ~ ,1 .. m _ U1 • I ~~ I • I • ~~ ~• I~ I• ~ - z z = _ < , < R t ry [ ° u N n u, ~ " • ~ ~ - - ~ -r ~ . - t ~ ~ - : + ' ~' v = m - m 4 ~ N U ` ` . ~ + ~ N I ~ N N V. N ~ N ~f. + ~ tr 4 Z ~r ~ ~ J ' ~ J . O T _ _ i ' _ _ r = r ~ _ fi _ a a _ - R - n rt ~ _ _ ' _ _ _ _ ' ' N m N c V _ _ _ ' N _ Y: " ~f. ' ' N _ N N N ~ v. v, . N ~ ' ~ ! . ~ . i II I ~ ~~I~ ~~~~~~ ~ ,,i, ~I II ...1... - ~~~,4~;~~,, ~~_ _ _ ~.. n 7i N U' e ~ Q~ ti 0 "> m t m m 'o i~ ~ m ~ , P O ~ fl G c~ o v .. ~, Ui G ' ' ~ ._ ~, v .. ~ . ~. , , . . ~ .. - '_.. ......_. > m O G " ' ._...... _ ....... ..... ~ _ . . I ~ r ~ L V f~'~-`. ~~~J ~: ' ~ \ ~/ ^i . / L ~ o ~ ~ N ~ n w ~ Q _ ~ . ~ % ; ' ! _._.. __...... _.__ __..... __...... .. ~ a `J ~1 W ~ ~ LJ I ~ ~ ~ c~ n 0 ~ .. ~ ~ o ~ ? ~ ~ m ~' ~ I r N J ~ f ~ r ; ' _ _..........i._ ...._._._....._I......._.....__...:.. _.._.._.._....... ., ~...._ ......._...._._......._.......,.... _....._ , ~ . k ; ~~ ! ~ ` , ~ ~~ ~.~.~~.. r ^ ° _ r i ` ° C / ~ V _: ^ I L=' ~ i 1~ ~ ~ ~I ' . . . ~ '. ~ ~ .-~ ......... .........__...:. ' .. ._ .-.- ~ . . .. .._ ._...__ .. _ _ ...... ....... ....... ......... . .. ... ' ~ I ~ i U ;.. . . . . .: Q ~ ~y= ' . . . .~. ..,. ' ` ~' ' . " } c I . . ., i _ ~ i ~ ~ ~ ~ ~----' - IN C I~: ~ ~G i~ O -~~1 ° ~, c o ` ~ - ~. o c c, c, o /vp '~ ~ C IIi G, Li O LL~ G Ln G ~~ ~ r I ~ CJ C'.~ fri Oj C C j ~ ~' I I ~ (.~':' ~;~den ' i ~~g i. I~ ~~ I,~ • ~ ~ • ~ ~ . ~' ~ = ry z. n ~. L C N N ~ C R ' N V U ' ' _ _ P. ' ` i rt ~ r ~ ~ " e R ~ F ' _ ~ N _ «. - Ji F n l~i N I ; N V N N _ N U N~ V. N fl~ N , t C ' I 6 c ' J c ~ = c. - ' _ ~~ : e° _ i. : T~~ _ - _ c a _ G Z' ~ i_ T e L. a 7 m P a [i lp ~ ~ - rz _ m _ a _ 2 _ N ~ _ m _ N l _ _ ' _ V ~~ .' V~ " l V~ V~ V~ l V: ~ CJ N V N N N ~ . iL u: "+ t I n ~ 0 g'~ H C ' ' _... _. . _.._ ._......_ ..... . ;... Q. ~ ~ M m (JJ ~... F t _ . ; . . . ~. . - ~ ~ ` ~. .r _ i N U P O ~. C r l0 Cr .. r: O e a~ .. -1 ~ u c' k ' : : : ' m ~ N Q « ~ ~ f ._... ... . . I ~ . N ~ ~ ~. ,~ ...... . .. __ ._.... _._..... ... . i -... ~` ~ !'~n, ~ n . ~ m I_ ~ ~ `~ ~ ,, J ~ ~~ , ; ~- ~~ ~ ~ ~, ~ ~ o F ~ ~,~ ^.. -- ~ ~ o ~ m ~ N If) ~ ~ ~ 1 W ~ ~ i~ •'i ......._ _...._. ._.. _ ..._ ._........'. ...._ i ; !.. . .. i L v, a v ~ C. _ _ _...._ ~ ~ _~ o j- ~i w ra ~ u ` G L L' ~ .. i C O ~ _ ^ ~, ~ N ~-+ _ V .. 0 Vi -~ ~ U y ~ ~ C~ I ~ ~. 5 ~ b~~ I ~ . C ~ G I , '•` " ~~ n , v v i I r ~ ~ I O ~ ~, i ~ '. . . . . . G - ~s ~ I I~ ~ . . . . . ~ ~ ~ p ' ~ _ ' I ~ . . ._.... . ...__ : - ......_..... ..__.... _.... .. . .... ..... _ ... . ... ...._ . .._. . _......... . .__ .......... ._ •• .. . _ - , ~ . r i ~ I~ = i. e ;~ ~ ; - ~ ~~~ -., ~~ ~ ~ - . NLC I" - ' . . . ~ . .` i 1L r ~ C ' ' ~ ~ ~ n i ~_` , -- "- - . . . . . ~ . . ._~.~- ~ -~ . _ L G i ' O G G O O r ~ ~ ~, p O G ~Q~ O O V~~~ ~ C' tf G tT.. " ~~ ~` `r., U~ ni v :Ti ~ ` <<1G-C • `~~ i• • ~` _ c ~~ ~ ~ m ~; ~~ • ~; P C G U1 G . r~, [ v .. . ~ ~ ~ . v v ~ ~ • > m 0 0 ~ ~ i I I_ C N ~ N = N o ^ . t .~ ^ ~ v " _ V. ~ L ~ P ' C u = ~ N ~ V r i c ~ (n N - , Jr m . N ' a_ J. /. n i m _ _ Y~ ~ k T ~ Q N ' ' /. t a ~f. _ ry P N ' _ ~ _ ~ /i p _ m ' N N ~ ~ ~ ~ I 1I~e I ~'~ ~ ~ . ~ ~ ~ ~~ - ~ z - ~ ~I ~ ~ ~~~~~~~~~~~~ , ~~ , ~ ~ ~~ ~- T 0 ~n LL' L ~ 4 a F- e m a m Ic i U, m N Y\~ I • i• . I~ '~ I~ ~~ I • CJ ti ~r~ r L~ ~ J ^ ~ ~ ~ r O ~v ' c ri c .. c'~ G v .. ti O N .. L d ~ W .• > N O O ~ ~ O N iTi . n W N Q .~ = V1 Q Q v N W N ~ W ' O ¢ r U a l• ~ .. J ~ O ~ _ ~ ~ ~ ti ~~ ~ G UI J ~ ~ ~ ~ I~ m ~ ~ 'f h~ 1--c ~ ~ G 'J'~; O h I . ~ ., i . ~ ~ ~ ~ ' - O ~ i', . . ~~ ' ~ , iC J 1 ~ ~ '. . . . I lfl Q ~ r - ~ F+~. ~ ' . ~' ~ . .. ._.._. . _.... . ' ~ ~ I ~. . _ ._...._.. .._..._ :...._..... ......... _....._... ~_._.......... . ........ : ... __..._.__.... _.._. ., ~ ~~ I U ~ ~r~, ~ i i C /; . i . i ~ ` ~ I v _ . \ ~~ = + I \ ~.; I l. ~ ` y - _/~ ~~ ~. .~~. ~ ~~ _ ti/~ ~ T, n~ _;~~~.~ ., G ~ ~ ~" c ~, . C C C ~ C C. ' ' r~ G O C ' i . D C~ ~r p lTi G ~ O /A I V O L, O. l I i' i ~'` ~r, (r: Q ~ I I ~ ~I (,"r~~ ..1 :i}Ccr; ~ L P P !+ L rt m a ,^ ~ r ~ m ~ ~ _ " " - r _ _ tii ' c - u. - m ~ ' T /i II. N N ~~ N v v L~ UI + + ~ I v~ J U ~. tl -. ? , ~ Q 4 Q ' ~ ] _ } _ D Q rt ^ _ • n ~ lfl IP T ry m= ry- ' _ _ N N l _ _ V~ ~. f N [ ~ ' n ' _ _ ~' V. l. ~ N U N V~ N N J~ U. , ~f V . ' u ~ ~ i r ~ ' : ~ ! ; ~ ~ - ._..._._. _._. ..... .... .. . ~ ' _ ~- ~. - IQ C \~~ i• I • ~~ ~. ~~ ~~ I • ~~ D C ~' ~ P L c ~ n C n rt (fi N ~n fi LO N~ N V. ., C _ _ _ _ ~~ D r 9 ' ' N A If~ ~ N N N ~ v ~i~ fi N [ N h N v. . N N U~/. R J. V. ; N V+ ~] 4 J~ P ~ T : [i 9?~i ~ P - J F a~ m n n R _ rt R l!i T~ . 2 C: ~ m n rt N N JI N N / ~ /~ J~ J N V U N LJ N n N J ~ /i N N N If~ t/i ' V~ . ~ ' CJ ' ~ ti ~ g ` ~' ~ ~' ~ ~' ~ i i i ~ ', . a .... _ ;_. . .. . ~¢ m ~ j ~~lj~~ ~ I I~e ~~. j c~ i~ ~ ~' _ y :, P ~ O ~ ~ C ri fG . G O ~ o L • ~ ~ ~ ry . . ~. . im Vi C; L ~ - ~ _._.. ._ ... ......._. (.~ ' ~ •.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ...._..._. ........_ ._ ....._ I , ~ I~ r , ~, ~ 1 II N / ' . i~ \ N . ~~ ~~ Cn ~, .. , i p ~ ~ m ~r N lJ] n W N ~ S ..~ ~ y a w ~ ~ u i a r p ~~ n u ~ .. ~ ~ 0 0 - - ' ~ ~n T_ ti ; a ~ _ ~ I o ~ ~ ~ ~ N J ~ ~ ~ I ' ', ''. ! '', .. i ~ ' (~ ~ . i i i : ...j.. . _ . _.... -- ~ i • ..... .. . .......... . ' .... .. ... _..... ... ........... ; ....... .. ......... . . . ; : : : ~ F . ' ~ .. . . ~-~~~-~ : .. ~/:~`r..-~-~-~v~-~:/~~/~/-~~^~ 0 ~ I • t9f~~ -.~~; ::7G~c ~ ~`Z • I • I~ '• I • ~~ ~~ N ~ ~ ,~ ~~ m ~ ~ ~ ~ C T P p C L C ~ t I ( < < f ~4 1[ ~ Q) C ~ V N U+ M1 N ~ ~ ~ N t Q i I V~ h N r , ~ _ i ~ ~ ~ ' ~ 9 - T - ~ ~ ~ - L ~ ~ ' ~ ~ N q N ~ ~ _ ~ ~ ~ R Ji U N R N . ~ N ~ N N ~ i / N v N V N l _ L , rt n ~ I _ _ _ _ rt rt ~ M1' rt ' ' a ~ ~ ` ~ 2 _ F R rt ~ rt N N N Y+ U N N. N N , N N N l ~. i~~ ~ N N N N N Vi IIi N J: N . N ~ S ~1 IC _ ~ a ~ I : 'a ~ ~ P G G U~ n' ~• O G a .. ~ _ rv ^ ~, a . L a ~ m ~ > m 0 o w ~ 0 N w Ul ¢ ..i = V, ~ C Y F W N uJ I a ~ ~~ a 0 ~ .. J ~ p G ~ ~ ~ a R, ~ « ~% ,. 0 Ul _~ ^ ~ ~ N ~ O ~ ~~ ~°~~ c o o e o o c ~ c. i~ i I ~ ~r c ~~• ~`~~ C n_ ~~ Q~ I i: : c`,~ c~ °( i i i I __ JiC2~~. ~ ~ m ~ i~ ~ i ~. `. i ~ K~ ~ I C~ ~ ~ L. ~ ~~~ e i .. .. ~ u n ~ ;~~_ AL ~ 1', ~ f T ~ = G O ° i ~~~1 P Z C C ` c m `m ,~ n '!' R ~' Y~ m N u~ v, v ' _ " _ _ r R? r ^ q ' _ _ ' ~ ' ' _ v m _ ~ _ R ~ _ ~ N ~ v~ ~ t~ ~ N i U N N N v N ~ _ N N ~ N r I v J [~ J T - c L _ C S J L ~? L ~-. m C C c w x i ~' m n n v ~ rt C _ L _ ~ = m [. l0 m N _ u~ _ = _ V. Ifi U N N N U N V. /~ L ~ V~ _ __ N. L N N i~. « i OJ ti ~ ~ ' ~ u' -J M L~ ~ . . ' ....~-.r _..... _. i 0 in ~ .. m ~ E O U7 - O -' .. . ~L~ ~ i 4~ U ~ ~ a O ~ N N •• O O i 0 W . .-I ~ ry i~ ~ ~ '',, '. Im L v •-~ 3E ' ~ r ' _ j ~ ... ` ... ....._.. _._. ... _._. A... _ _ .......h ......._. . ......... _ .... '. !~ ~ ~ 7i 0 ^ ~ . ~ , ^ 1 .. I~/~ I 1 i~~ ~ :~~ ~. ~ ~_ ~ ~ ~~ '1 ~ ~ ~' ~-/ I"~ . ~ j~, : f~/ ~~ 'J ' ~_~ '~',/~% ~i Vi ~ O H m N \`~ i. z M1' ~ G R ry N R Ql I ~ • ~ I P ^ N- 9 4~ If. v~ U~ R V/ U N N N N U~ ~ I I V Vi i `C t i`~ C + _ ~ ~^ . a . d. ~ a> J ~ ~ ~ _ i c c - ~ ' = r. ry _ m _ ' - _ rz - : - i _ ' m C' I_ _ - ' m ' . _ _" a _ _ ' ' _ ' ' " ' _ pi CJ ~ l. . V: . V N. /i IJ . u' N t~ [I N N /. U N N N 1/~ N ~~ N N .~ ~ u' !v C i ~~ ~ ': ~ ~ I 0 : . _. ..> ._ ..: r F- , , '~. .. ....._ : ~ , - L~ m ti . . , ..._. : .._. ._.. , .- ra.~ ~ id U7 . ~~ ~.. ~ ~~ ~ ' _ 2~7' ~. j ~ u v G ?. _ ti ;~i ~ ~ je ~i .: ti ~ _ ~ c ~ i ~m _ ~. ^ r ~ Q, _ d2 l i`; __ .. ~Ql > m ~_ _.. _.__. __.... __.._ ~N 0 0 ~ ~ /v ~ / ~ ~ '~~ ~- ~ ~ ('i ~ ~ n ~ ~ ~ ~ ~~`~i~~ - L ic ~.~ ~,~..~~._i ,-~:,,,~/'/ ~J 1 ~' \_i..~ ~'~,..~ . ~' , cn O ~ ~ m U.~ I ~` ~~ ~ il `~ ~ ~ \lJ ~r L L _ ~ C G L C r. N R ( ~ T N N h ry N N Q~ y _ _ V~ c I!~ V~ c ` c o _ ' ` ` a G - ~ N r ~ q N N ~ 4 n~ ~ N R C N ^ ~ VI _ _ ~ h. ln N " ' _ ~ N~ 2 J! N N V N ~~ ~ ~ .• J N V~ U N ~ J ~ , ~ 4 N + 4 _~. ' _ ~ C 9 J ' C _ [ a m 4 n A ~ F' R R rt Ui ^ rt rt _ m rt N U N V V N V. _ . _ U V N N N N . N ~- , N N N N N N / N Il~ N lf~ N ~ ~ L ~ ~ r1 ~ 4' C ! ~L i m ~ " ~~ W m ~ ;. . , ~ " ^ i`. O C ' ~ 4r I U ~ o n o J ~ N N L w ~ 10 ~ N ~ f. ~ N ~ N ~ y ~ is m ~ ~w > ~ ~-- _. _ _ _. _ . _.. .... ._. _ _ ___ ~ ~ ~ O O '~ i~~ ~1 ~ /~ . I ~~~~ ~ `~~ r ~ . ., M ~ ~',. ~ `I ~ ~ ~ I ~ ~ \~ ~ ~ ~ ~ ~. ~\ ~ ~ w ~" . Y ~ i / N O m ~ ~'~ I~ ~~ I~ I~ _ ' II` v ~~ ~ ~O ~ ~ `~~D i~ i s- li Z ~ • • • a ~.~I ',•~_, '~ice~~ ~ t~~ i~ ~ - ~ - ~: r - - - - =- P • _ = rt = «.___ = N :_. L .;. ., _ =, ~, N N Vi ~ N N N~ , V N 1~ Q. ~.Q. ] ~ ~ + ~ 0~. 0' C T. 9 T.. L+ - ' i_ C 9 T rtrt T R~ C C ry~ h ~ ~ n n _ T - R _ _ _ _ _ _ _ _ _ _ _ l9 N N N ~ V. U N U/i ~f N. N N N U ~ ~` U V~ N N/i L ~~ ~~ ~.~ ~ i ~ i u~ m ~L (~ ~ i . . . : ...J.. .i... . . .:._ ~ 0 ' _ ~. .._.~~ :. .. .. ...._... ~ .. J ry m ~Y:. . . . I ~~I ~ _ ~ .. -., . ~ ~ ~ i 4~ J p ~ ~ G F ri oi ~ N ~ ~. .. ', . t 0 .. i - ~ ~ I m . ~ : ` m a ~ i n F m i '. ._.._. _. ., .. -. - > N ~-' . ._.._ ' ._.... . ......... i,S~ _.__._.. .. 'V o ~ ~ , ;r-~1n , r~I`~~ , ~~ ~~ ~ ~ ~~-, ~ f~ ~~ .,~~~,ti~ G ~; ,~~~;~ i(P O F- m N i~ P 9 c c ~ ~ ~ rt n rt rt m ~ ~ I N ~ v. _ ~ Q~ I~ O T _ _ - ' _ - = 10 H N i N - rt ' m • I«i ~ L rt~ V~ ? Vr ~ e T , . ,~ ~~ N N U Y 4 ~ r R m " ~ C 0 N I t ~ m R - = 2 n 9 == = = h = n = T ry m / V N V~ N N V U N N N lJ N N ~ W m m N N N YI N ~1 ~y ~ ' ' : ~ '. TJ f ~ i I h r m ~ !: ._ .......... . ~ .. ~ ~ ... ~ T J C ( ~~ ~ ' ~ ~ • - . . ~ a, ~-. m G ?. - r- F- r~ f~i e 0 o T- i . ~ ~ ~~ ~' i ': " ra . ~ ~ -• " ~ ' l m ~ ° ~ a ~ , ' ^' ~ .... . ....__. C _ .. .. .. ...._._._ ...... _. _. _ _.. : - ~ i r ~ _._._. . _ . n.~ '"" m ~ _~ ~ L ~ ' v~~ ~ ~~ ~n~~r~I V~f V~'~~ ~~ ~ ti~ ~ ,,, ~ J o " m ~ ~ ~ a U) n W l0 C ~ L ~ ~ a C LI Pi J • w I p u ~ L~ L ~ I _ J ~ p 0 - Q, m v ~ ~ ~ e ~ ~ - ~ ~ y ~ w • ~ II ~~ I _ _ ~ ~ C' e: G I ~ 4 I - ., ~' ~ r f jP V ~ ~.~ ~ ' I I r • I-s r~ I ~ ; ,,. '~ . : _ ~ C. ~ _.~P• .. ' i ^ . i ~ ., ...._. ~ . ' __. ..... .. _.. .~.........._. . _.... _ . . ....... .......... .. _._....... __....._..... . , __._. . . , . . ~ . ;- if ~i ~c" ~ I V,. ~ ' . ~ ~ ~ j LL y ~ ~ ~ !L ~-e I y . ~. ~ _ ' _ /:. ~ f I - ` --~ I C' ' „ ~'_ - ~ .~~ : q n ~ ~ ' `_~-/ . ~ . .,. . . , i ~ ~ . . ~ . . . _ ~, ~ ~, ~ C, C r C G C. C~ C G O O ~ ~ f ~ I p IP,~ C ~~' ~ CJ ~ r II.~ G lJ~ C,~i f~ [r. Q Q ~ O tD ~ I ;~. ~ . ~;=..ar ~ I `~~ • • ~ I~ I • I• I• - - I= ~= l 3 ? 3 3 $ I= ~ ~ e ; T i fi L T ~~' _ ' 'l 3 ~ _ _ '~ ' '~ ~ ~ ~ :3 _ ' j~~ ~ : y ° n o~, ~~~ • _ : _ v) - a = - _ _ _ o ~i rtn' o ir. . '. ~ ~ CJ •-~ ~ ~ I ~:. . '' ' ~ ... _. -~ ° e . U ..._..._.. . ~ ~ ~ ' ~ k '~ !m S ~ ~ ^ i~ I ~ I y ~ I '" O I O v ~ .. I LD F . N I ~ P .+ i~ 32 , I ~ _ ' . ... .. ...... ~ ...... . . ~ _ a ~ Y 1 O ~ ~ ~~J \ /~~„J ' J~`M ~ ~ ,. ~~f ~ " ~ i , ~ . ~--- ~-~ ~, , ~ s ° ~ ~ o I ~ ~ ~ ~ N ~ T ~• ~ ~' Q ~ a J F- ~ U U 7 W I W i ~ 0 ~~ ~ O ~ U l! 1 ,. 0 U1 J ~ N ~ I N i " ~ o ~ ~I o ~r I Q o ~ ~~ I ~ rl ~ I ~ ^ ~ ~ i ^ i ' ~ h . ,~~ r~ ~, ~ ~ . T' ~., • I1 II I1 . '~1 l , , ~ ~ , ~... i.. ~ L: . _- ~J ~ ~ ~/~ r~ ~ 1 I I I T ' ..:...._ . . I '.f ' - ~~ ~ ' ~ . ( I 't/ Iq i ~ y j ~1 ~ I ~ lr . l f `, a i _ ~ I ~1 ~~ ~ i-~ 1 ~ ~^/~ ~ ~. ~ . ~ ' S ! ~ i Q \ -'. ~ . . - : ~ ~ ' ~ o \~i' ~ _ : ~ ` ` O ~. -: . ~ ~ O Q ~; o ~ ~~i o ~ ~, y~ , ~-, :~ o ~ m m Q J ~ ~ ? i I ~ ^ , , I `~ W ~~ ~ ro ~~ Liru2n ,+~~ I \~ I. ~ ~ '~ ~ ,~ • s • - I e ^ ~ ;~ ` ; ~ - e 3" = ~ __ _ ~ = n" ~ - \ = n - ., ~.n'n n ~ ~ ~ ~ ~ ~ ~ T _ ~,r_ ! Y - _ _ ';.,..,i'_ _ ~ _ -t':~a_ i _ -aa~.' _ - ~ ~ ~ ?~ ~ =~' ~? ~ sa,.~ - a ydn ;~ ~ ~, _ fG ^J ,r r ~ .. ' S i ~. , ~ ; ~ ..... ..... ... ~ ~ ` T ~ ~ ~ ~ ~~ ~ ~ -~ ~ ~. i ' , O .. , ' " O _ ll I N ti .. , ' ~~ ! _ , .. L , - j ~ rn.. i 8E ~ ' ~ ~` i . ~ . . . . 7. I~ f7 ~ ...... : ... r , ........ . ... _. I ~ n i~ I~ 1 I ~ ~ I/~` ' (~ ~ `1 I i ~ i ' ti ~ I 1 ~ 'l . ~ / u `~ ! , ~ ^ i-,~ `. ~ ~ : ~~ ~~ ' :~ ~ ~J 0 ' ., . .~ ~ o 'I ~ ~ ~ OJ ~ N "i ~ ~ I J ~- a ~ a O iJ C i ~ W ' •• ~i _ ~ ~ I ~ ~~ O ~ ~ U ~ .. O 'J7 J w ~ ~ v N I l~ I p = 3 U n ~ ~ ~ 2 c:' .a ~ ~ m ~ !~ ~i O ~ I ~ I ~ o ; (f ~ ~ ° ~ l J ~ ~~ : ~ . ~ I ~ ~,~ ~ S ~' 1 ^:~ I ' ; m ? ~ ~ ,..e ~~ .-. ~ I 1 , : I ....._.. _....._ ' _.....__ .~ . . __.... . . .. ... _. ~ ` ~ j } i 1 ~'. ~,~r ' 1 : i + . ti n ; ~, ~ . ~ ~'~ - . ; ~~~ ~ ' J ~ G .: ~ , o ' ' ~ ~; ; ~ ~, ,;J ' ' " ~ > '~- --- ---= - ~ Q lJ ~ •J O J 'J O G O ~ ~ p lf7 ~ ~ ~ i W , O n ~I u'7 O tf7 O -, ., c~ : ~ m t*i v ~ ~ ~ ~ ~ ~ ~ ID ~ v in i ' I ~ ~ ~, ;; ;-r~cc \~ • • ~ I • ~~ ~~ ~~ I~ ~ • ~ = T ~ ~ I:;i~~l~llil il ~ ~ Allllll r ~Ili ~:~~ i ~~~'~ ¢~~: ~ J :J - ? a n i ~ C 9 T 7 .~ E J ~ ? rn ~ m e * ~ ~ ~ ~ ' ~ o, t Y ~ e'~1. N ~ 6 Y ~ C ~~ I I ' ;';i U1C2~. i• j • ~ ~ '. J ~ i ~ r~ I CJ _ ,y W r ~ . ~ I N I ~ 1 f~ ~ O T. I ~ ~ I O N ., ~ U~ ~ N = i T.- ~ a° ~ ~ ~~ ~ v W O ~ I~ i i O i ~ I ~ op u7 ~ N ~ r 5 ~ I ~ J ~ a O F- U a v O W U ~ , • i " ~ W I _ [ 0 • ~ 0 ~ U lll .. O • U1 J ~ ~ N t-` ~ IL i O I . ~ ~ I o ~ I O I o ~ i o U i • '-' ~ ~ ~r~ `/ I N i ~ ' •~ F~. I~ i'" ~ ~ • '^ O V W ~~ t ~ • ~ i~ ' == = = i = A= ; r _ " ~ = $„~~ ~~~~~~~~,~~~a~~, ~ Ii =~j ~ ~ I~ I~II -= i,il~l = Ilil' IIIIII~iI;AI A i t ~ ' y 3 ._ _ ~~ ~ +y. _e' ; . ~ : a ,~ ~ . .. ...............................:.................................. ~..................................i.....'"'""'"'"""'""'""...........~......"'"""'"' "'..... _...........i.......""""...................... f ir:) Uzoa~ a ~ ~ ~ ~ z ~ 5 J ~ 0 .= `v m .~ ~ Q~ ri J ~ ` L ~ ~ k a ~ o ~Z~ i• ~~ ~~ ~~ I~ ~ ~ ~ • • • ~ u~ i ) -• i , T ' cJ [ ~ ~ '" ~ +~ ! m _ ,T I ~ i r. ; .. j o .• ~ ~ ti ~ I ~ N .. ~ tn C ~ i ~ ~ I ~ i_ N ~ W O . ~ 1~ ~ o I o ao u~ Q) PJ O~ u7 ""~ Q I a ~ a vo U U I ~ W " i W ~ i H 0 .. ~ O ~ U u7 ., 0 (n J w y ~-+ h ~ i O r~ I O 1---1 ~ ~ O ~ i O v ~ ~ ~ II y.i.{ I ~ , u ~- , ~ ~ ~~~ II y ~ I' O ~,^ O V w~ i ~'- ~ ~ 3 ' 3 2 - ' ~ y _~ ] _ ' __ ~ _ ' ~ 3 ~ 3 ~''3~~ii~~ ~ Z ~ ., ~ ~ ii£iii~Zi.c`?iii~iii-ii~i ' = i a.i 3 .. iiGN~- n =n i ii ~ ~~ ~'i ~ i n~~il~i~iii m ~ r ' ~i~dlwr.3l~il~lniiii ~~~ioll ~ 91 .. . .. ~ _ . ~ ~ ._, ~ i... 9 ~ ..~s~ -; i~3 -. (~~j u,d=a a 3 ~ n v ~ ~ 0 .~ a s :R ~ ~ _ N N .° ~ `. =; ~ = L ~ ) ) y ~ i• I• I~ I~ ~ ~ • • ~ • ~ ~ , ~ ' a lil~iiiii ~ irii~i~iili~iil a ~ ~13/ u1d°0 ~ ~ a 9 C C s V m n v L 0 G L1 T ~ S a Y m ~ ~ L: m N .~.+ .~ ~ ~ C ~ ~ ~ U G C d - ~ t x ~ c 7 ) i ~~ i• I • ~ ~ ~ ~ ~ ~ • J C1 ~ ('] s ~ 7 ~ T ~ ~ a r~ .. ~ ~ p ~ QI .. ~ .~ Q~ ~ / ~ ~ W O 3 3 ~ ~p ` ~ 3 9 ? 4 ' 4 ~ ~ Z ~ 7 3 ~ = ~_. ~~ _~ N ~ i y~ i n `~ _ _ T -~ a T 31 n o~ ~T ~+ ~~ ~ ~ '~..~9~i ~a_3 ~~i~iRi l ~ ~ n = „3i~~ 3 i y~ ~ ~iii..iiii~i..~ 3 :i. ~~ s ytlrll~~r ~ al~l y~~f~~ll„ A I-~a~ 6iSHA a~I :~ „,s ll , Ili ~~ . c ~,~ ti ~ m .... "~ 3 - ~ ~ y ~~ . . y~ '~. } .. .+ '~. O O ~ ~ w I ~ I ~ ; O ~ ~ ~ N O~ r ~ ~ Q I ~ J ~ a ~ p, V O U U 7 W L •• W r ~ 0 ~~ ;~ o °' u v; ., o Ul J w N ~-+ ~ L~ i O ~ O 1---I ~ ~ O (~ I Q ~ li b~--1 ~ ~ ~ ~ ~ i n ~ F.r~ I Y d v O W ll.~j ~;1dap 3 Y y i n a 0 C. L ~ c-~ ~J .S• m `m ~ ~n° c: ~ ~ 1 o y' ~ :~ ~ u o . Y. ~ a y ~ ~ ) i ~ `~ i• ~ ' J ~S~ _~ D I ~ ~~ N u ~ ~ L+ F- _ ~ ' .'~ ~'~ ' ~ 1 r. ~ .. ~~ i r~ o ~ i a, .. i vi ~ ~ ~ T !~ ~ m ~ ~ i ~ W O I ~ ~ ~ r ~ ~ ~ ~ ~I ~ ~ ~~ ' ~ ~ ~ ~ '~ r' ~ ~_ ' _ _ ' . ., =- -~ -=s = „„ ~ m =r=n==° ~_ . ~ _ ~, r =' 3 = p + P: n ~ ~ h -;, r'e_"j=_3..uRui&~:+n_ ; .A~in~ ~iGi~i~in' A~' ' .,~3i~ ~R..u~i~gn~i;isaf$: nA~fii4~~RG''ni~~Ainn~~G~n~~rR~r9l~fia Y, i .~uiu3i9 y e n~~~~~~v9~+i3~v ii7+~ a w~'7 ~ 5 e" A~~~dlrflA~ii~Ri~Lu~~a i a m +~raw n yA ~ 9v+. ~ ~~ i ~ ~ ~ ..` . ~ ~z ..'Y .'.......q, ; . a ; ~ ~ :. . :_.: , . . '' . :... y 9 ; . ~ . ~ ~~1 ~ e.' . ~ ' ~ y$ q 8 2 ~ ~~. ~ [ ~ f : ~ ~ V~l ~ ~ i ~ i ~ ~ ~ Cd ~ .~ S ~ ~ J~ a ~ a '" o ~~ u ~ ~ w w ~~ I - c ', ~ I •• ^ i ~ O ~ U I u~ ~ 0 I ^ ln J ~ ~~ y ~ 1 LL ~1,) 41da0 O -_ I ~ ~f1 ~ O F-1 ~ ~ I I ~ ~ ~ ~ ^ O J ' l I T Y~-1 '' ~(~I ' ~/ fl ~ ~ I V ~ i ~= ~ O ~ O W ~ `- , ~ F S m m ~ c m •'^• - m = c o ~ r ~ J I a ~ c m ^s c 1 7 i ~ ~2`I, i• i• APPENDIX C • • • • ~ • • Laboratory Analysis PACIFIG SGILS ENGINEERING~ INC. ~~ i• Work Order700007-C Page C-1 May 21, 2004 • APPENDIX C LABORATORY ANALYSES _ The results of laboratory testing performed during this study and from previous studies are enclosed within this Appendix. Table I presents a summary of laboratory test results. The following laboratory tests were performed on representative samples from the current study in accordance with the applicable latest standazds or methods from the ASTM, Uniform Building • Code (UBC) and California DeparUnent of Transportation. Details of laboratory tests from previous studies are presented in the referenced reports. Moisture/Deasitv Determinations • Moisture and density determinations were made by direct measurements on "undisturbed" samples to provide in-situ information on the various materials. The results of these tests are shown on the boring ]ogs (Plates B-1 through B-13 in Appendix B). • Consolidation Tests Consolidation characteristics were determined for relatively "undisturbed" samples. The samples were laterally restrained and a~cially loaded in successively doubled increments from • approximately 1/2 tons per square foot (ts~ up to approximately 4 ts£ Each load was maintained for approximately 24 hours, after which loading was continued. In order to determine rebound characteristics, final ioads were decreased to approximately 1/4 tsf. Test Results aze presented on Plates C-1 through C-25. • Direct Shear Tests Direct sheaz tests were performed on relatively "undisturbed" samples and samples that were . remolded to 90 percent of the laboratory maximum density. Samples were tested after inundation and confinement for 24 hours. Tests were made under various norma] loads at a constant rate of strain of 0.05 inches per minute. Shear test data is presented in Table I and on Plates C-26 through C-37. • ~ PACIFIG 501L5 ENGINEERING, INC. `~ i• Work Order700007-C May 21, 2004 I• Page G2 Eaaansion Tests Expansion index tests were performed on selected samples in accordance with the expansion index UBC Standazd No. 18-2. Results are presented in Table I. • Comaaction Characteristics Maximum densities and optimtun moistures were determined for selected samples in accordance I~ with ASTM:D 1557. Results aze presented in Table I. Particle Size Analvsis Modified hydrometer grain size analyses (AST'M D 2442-72) were conducted to aid in ~ classification of the soils. The results of the hydrometer particle size analysis aze presented in Table I. Corrosivitv Testine ~ Conosivity tests were performed to analyze the corrosion potential of the on-site soils on ferrous metals and concrete. Sulfate contents were determined and are shown on Plates G44 and G45. The pH and electrical resistivity were also determined and are summarized in the following ~ table. ~ • ~ ,Y 'n,si u ~ "~~~"~'~~~ ~ ~,~'~,h~~: - vxn 3J+ ~lec[nca ~, , ~ .. . § .~ r ,~m: r'~( af'~ ~`i5--~~ x-3t -: l Resi$~5 an ~pH„~ '"~ " '~ ' r; M-- ~, K.~-.~ . '^ z""{ ,~-~ ~ x -,~»a ~ ,, Boring No. Depth Electrical Resistivity ohms-cm PH BA-1 9 8410 7.6 BA-2 3 4490 7.4 BA-5 9 1580 7.4 BA-8 4 2750 7.4 BA-9 6 2300 7.0 BA-10 4 9130 7.0 ~ PACIFIG 501L5 ENQINEERING, INC. `~~ i• ~~ I~ I • Q ~"' a O H ~ W F ~U _ O O Q ~ I • Q O O ~JO LL ~ ~ } ~ • a ~C G ~ ~ ~ • ' • N N~ $ o ci P ~ u ci ef u u b ~i ' T c u I~ ~ c~i N ti m ^ 01 ^ O 4 4 Y q 4 = v n m m = v n O 'x 0 n O m ~O m ~= n O m O w ~0 W O e ~- h G d U Y U 0 U 0 U m U O m q~ d m q~ 6 6 6 6 m qm 6 6 6 6 y1y F6' q 6 q w n w 6C ~ C 6$ C c c C 6~ C c C C 0 ~ a ~y W a • a ~ a • a ~ a ~ a ~ ~ q II o W ~ A ~ o '~ 0 A 0 0 0 4 • A b o ~W 0 4 0 9 V S ~ 0 O m 6 P 0 U~ D V 2.' 9 ' C V 9 V~i` 9 9 9 9 0 m _ _ _ m _ E> m m E> ~" o ! 0 A 5 a o a E' m~' o a 0 e 0 w 0 a N N N N N N U m O U p O O O O U e O O O O ~ U ~ U U Cl U ~ U V l.l U Z ~ ~ Q 0~ O T b Z m X ~ W E E ~OO- JOX ~ N h 1~ ~ ~ O O O m H O O h O U w ~ C E E E 0 _q~ v ry ry m a m ~ ~r,~ rv n m H n o ~n ~ yE 0 0 E N Oo $ '~ R e y N N q O 1') ~O 1'1 tll O N h tl b OI ry Q y E N Yl I~ h N 10 ~O 10 !~ 10 N I~ h 10 O n ' w ~ E oi E <~ ^ dX o 0 0 0 0 0 0 0 0 o n m o 0 i w N ? J~ a Q Q g g ~~ ~, ~ N N K= WU ydjU yajU WU O~ W N W N W ~/! W N ~d'2 > > W ~ fr~~ O N O a a _ A oo O~U ~~ ~mV a ~o v rv m ~ Qa ~ ~ ~ ~ ~ O m ~ ~ U J ~ N 6 N N ~ 'L E ~i ~ 2 ~ E ~ i E 2 L ~~ y y N E N 6 N p p N N N N V1 N N N N N N N N V. y Iq N N 0 _ ~ ~ .~ ... ~ ' _ .~ .-. .~ ~ ~ ~ f a R I O i o Q I I d A O R a I = I ry I Q R' ~ ~ I I o I o I A I O R I O I O o I' R O A O R O R O O O a I rc U c [ e c ~ I q = y c c - N O - N = N I s C a c a C o c v c a C c C a c a C a c a C a c o i q (Q W R N N N r ~ A N T 9 q 3 3 A N N iq A N N N N N N A W 4 N R N A N N N N ~ ~ 2 i. a ~' °c ~/+ c °c ( 2` L` i~` 2' 2` ?~` 2' 2` 2 2' L' 2` 2' p H H V U N N y N N N 41 HN N f/1 Vl N N tll N N N N I . ~ F ~ ~ I ~ I ~ ~ ~ ~ W W Y' I ~ N 1 'I I O N tD O~ YI 10 N N N ~ LL- ~ 2 ~ ' ' ~ ~ ~ ~ Q O O O O Cl O O 4 O 4 O O ~ 41 RI I m m m m IO QI m Q Q Q Q Q 0 Q m Q 0] Q m Q Cl Q m Q 0 Q m Q RI m m Ol m m V C \~~ i• . ~ a ~ Q ~ r • w F ~U W ~ J ~ O • am~ F' J O LL ~ ~ ~ ~ • ~ ~ ~ ~ ~ ~ ~~ i • V. O ~ ~. N O A y N 10 1~ m N O N !f O 1~ ~ u S ~ U U N v o i ~ U m 1~ ~ o 2 ~ U m ~ U m ~ U ~ U m ~ ti m ~ G m ~ U m N ti m N V m lV V o N U N U m y V 4 m 6 m W V 4 A V 4 W N m 6 W V V 9 A 9 W m W W f u1y p qo u 6 6 q qo o 6 p qe 6 1 6 6 6 6 6 6 p L 6 6 Q d.N , C , C dry C dq c C C c C C C C C C C C W~ q ~ o o W ~~ o _ o 0 0 ? o 0 0 0 0 0 0 0 0 Frc -°~ v v ~~ e =~ a v' a' i a v° a c' a a a a 0 m ' S o m ' o m ' o 0 0 0 5 0 0 0 0 0 0 0 a L N N W a L N r. L N W b N N Ol N 0 IA W N W V~y C C (~ h C V y~ C C C C C C C C C C C C ~ U U ~ U ~ U U U (.1 U (.1 1.1 (.) V V U V Z O ~ N X ' a 0 U ~ n O V ~ a~a+ x ~ w E E 0 ~ O N 19 1~ N N N O I 1~ JOe U N ~ W H H ~ N A m m n c E E E 0 0 _ q u n o H u n o u n o m n m m ~ n m rv n N E X N O V V! N e0 h N 1'1 N E n a E E e 00 2 ~ Q Q y E ` r+ N n 1~ ~o Ip m H p e n ~o b m N rv b in 10 Y rv V w W o 10 N m b m Ip m 1p n N ur 1~ 10 n N m ° >_ E h a ~^ ~ ° ?' o n e o 0 0 0 0 0 o e o 0 0 0 0 0 0 o e o 0 i . ~ H ~ n J~ a f ~ w F w w ~ w w w F w UQ O g~ Q ~~ N g~ a17 ~~ QQ ~~ N g~ aN ~~ ~= w~ w~ w~ w~ w~ w~ w~ ON W N W N W N W fA W N W M W N ~ W F C w ~F ... ~~ m O n a ~ N FNZ~. ai N m O ~ ~ E > JF ~ r a 'LNV ~G N ~ N W N n N n O ~ Q W C ~ 1 1 ~ I d J I l Qm ~ 41 ~ tll ~ ~/1 J `~ J `L ~ fq ~ N E N f 4 ~ N ~ N ~ N ~ E ~ E ~ E ~ ~ ~ ~ '. ' ~~ t7 ! I h N 41 N I N i N N N N N y z p = ~ _ ^ ^ ~ ~ ~ ~ _ _ i _ ... ,.. i ~ _ .-. .-. _ .-. a O O O O O O O O O O O O O I O O O ~ d O O O O O ~ U v C s c a c n c a c c c a c a c a c v c a c a c c c o a a a t a c N N N y ~ c c ~ C C C c c W M a, a N N N f!> Vl N M N N a'. N M N iq iq N N I ~ _ 2_.' ~.' C C _ _ ~_.' ~ ~_.' ~ ~ ~~.' Z' ~' ~' ~_.' ~_.' ~.' ?.' _ ?.' I 0 N N N N N N N N N N N N N N N 41 N 41 h W N N N I I ~ I , I ~ P ' i N i ~ ~ ~ N C G N O N O ~ i~ N ~ ~ p . LL ~~ ~ I ~ I I I I i I i n I I I I ? O O o e O ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ O O O O I 4 ~ ~ I I I ' m m f0 m m m [0 m N ~ C m m m m m 61 m m I m m m 61 2 f.1 __ \3v i• I~ I~ I . Q F a 0 ~ ~ W F ~U Q ~ _F-O J ~ p ~ Q00o ~ Q ~ J LL ~ O ~N 1.1~ . ~ ~C C ~ ~ ~ • ~ • r V N W y m d r~ ' o rc E WW _ Frc v' O o w c 0 U Z Q N m = W O m p ? X 7 W E E °o ¢ " JO~ n m U m ~ c E E n °o =0 ~p N a E w n ni - E n 0 E E w Oo Q 4 ' v ° . ~n E ` E v w ~ E ~' u i E a~ ^ ~ °- eo 0 i N = J n 6 U F Q Ww C 2 g~ a" W (~ O ~/1 y~ N ~Wf K > W > f f f ~ F2+Z~- O00 f f~ ~ ~HU awa ~ E a~ ~~ N N ~ N 2 p .- .- I ~ a O O U c ~ I W ~ N ~. 41 I T I J Q N N N y W o WW ~ i O~ I a m C O 2 S m U C 4~3 i• ~~ ~ t • • • e ~ ~ • -2.0 -1.0 0.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 r 1.0 x ~ w x z 2.0 w c~ z ¢ U 3.0 t- z w U W 4.0 a 5.0 6.0 7.0 8.0 boring depth (ft.) dry density (pc~ in sit o moist. (/o) in sit o satur. (/o) -2000 sieve (/o) group symbol typical names BA-01 10.0 102 3.4 14 25 SM Silty Sand (~al) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. ~~ W.O. 700007 C PLATE C 1 i• I~ I• ~ • ~ • • N ~ ~ -2.0 -1.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 B 9 1 2 3 4 5 6 7 8 91~ 0.0 F 1.0 x c9 w x z 2.0 w c9 z a V 3.0 ~ z w U ~ 4.0 w a 7.0 8.0 5.0 6.0 boring depth (ft.) dry density (pc~ in situ moist. (%) in situ satur. (%) -200 9roup sieve (%) symbol typical names BA-02 6.0 105 4.5 21 31 SM Silty Sand (Qat) REMARKS: WATER ADDED AT 0.5 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. ` W.O. 700007-C PLATE C-2 i• I~ • • • • • • ~ ~ ~- 0.0 E- 1.0 x ~ w S ? 2.0 w C~ Z Q V 3.0 H z w U W 4.0 a 5.0 6.0 7.0 8.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9'10 -2.C -1.C boring depth (ft.) dry density (pc~ in sita moist. (/o) in sita satur. (/o) -200o sieve (/o) group symbol typical names 8A-02 15.0 170 9.7 48 37 SM Silly Sand (~al) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. `~ W.O. 700007-C PLATE C-3 i• I~ ~ ''! ~ • • ~ , ~ • COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 -2.0 --- -- --------,------•- --- , -- - --- -- -- -- --- . ~_ _. - --- - -- - - -- =- 1 0 .. .__. . -- _ _. . ; , .- _., __ : ..._ _.- --.... -- --- •- - - --- ~ __-_ - -- ----- - •--- ..._._ _._._ _:_ ^.- 00 ~ _ F- 1.0 x c7 w x ? 2.0 w c9 Z Q U 3.0 r z w U W 4.0 d 6.0 7.0 8.0 5.0 - - ,- - - _ _ , - -- - -- - _ _^_-, _ _; - ---~ ' - - _ boring depth (ft.) dry densit (pc~ in situ moist. (%) in situ satur. (%) -200 sieve (%) grou symbol typical names BA-03 5.0 105 8.7 40 37 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 0.5 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. \~j~ W.O. 700007 C PLATE C 4 i• • -2.0 -1.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 0.0 • ~ ~ r 1.0 x C7 w x Z 2.0 w c9 z ¢ v 3.0 F- z w U W 4.0 a 5.0 ~ • ~ ~ • 8.0 6.0 7.0 oorin9 depth (ft.) dry density (pc~ in si~ o moisL (/o) in sico satuc (/o) -zooo sieve (/o) 9rouP symbol t ical names YP BA-04 5.0 100 5.2 21 REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. `~j$ W.O. 700007-C P~P,TE G5 i• ~ ~ '• • • ~ ~ ~ ~ • COMPRESSIVE STRESS IN TSF ~.1 2 3 4 5 6 7 891 2 3 4 5 6 7 891~ -2A --- --_ -- ,_ - _T;_ ~ - - - --.._ --- -- -~ ~._. -1 0 . _.. _.--~- , , - _ ~-_ - .._.- - -- - __ - _ -- --- --- -- - --- -- - 0.0 _ - - -- - --- - . ~ ..:- --` ~ 1.0 x ~ w x Z 2.0 w c9 Z Q v 3.0 ~ z w U ~ 4.0 w a 5.0 6.0 7.0 8.0 borin 9 tle th ft. P( ~ dry densiry (pc~ in sit 0 moist. (/o) in sita satur. (/o) -200 sieve (/o) group symbol typical names BA-OS 10.0 102 8.1 35 43 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 0.5 TSF PACIF~C SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. ~3q W.O. 700007-C PLATE C-6 • I r ~• I• I• • ~ ~ COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 -2.0 -- -- --- --- - ---- -- -- - -- - - - --- - - ---- - - --- ` - - - - -1.0 -- - _ : ~ -- --- -__._ _.__.. : :._ . ~ ... _...... - --- -- __ -_ -- --- -- - -- ---- - '- • - 0.0 -_ _ _ . ' -- -- -- -- - : :.. . _ . F- 1.0 x ~ w x Z 2.0 w C7 Z Q v 3.0 ~ z w U W 4.0 a 5.0 6.0 7.0 8.0 ~ borin 9 de th (ft. P ~ dry tlensity (pc~ in situ~ moist (/o) in situ~ satuc (/o) -200o sieve (/o) group symbol rypical names BA-O6 15.0 710 4.9 26 19 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS `~~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-7 • i~ I~ -2.0 -1.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 0.0 • • • ~ • ~ ~ t- 1.0 _ ~ w x ? 2.0 w C~ Z Q v 3.0 r z w U W 4.0 a 6.0 7.0 8.0 5.0 boring depth (ft.) dry density (pc~ in sic o moisL (/o) ~n s~ta satur. (/o) -zooo sieve (/) 9rouP symbol t ical names yP BA-07 10.0 117 10.4 56 32 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS '4~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-8 i i• ~ ~ • • • • ~ ~ ~ ~ COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 -2.0 --- ----- - - - ---- ----- _._. -- __ ,. - - .. . - -- -- •. _ _.. . _ -1 0 . _ _ _.- -- _ -__- - -__ ---- - -- - 0.0 F- 1.0 x c7 w x ? 2.0 w c9 z ¢ V 3.0 H z w U W 4.0 a 5.0 6.0 7.0 8.0 borin 9 de th (ft. P ~ dry density (pc~ in situ~ moist. (/o) in sito satur. (/o) -200o sieve (/o) group symbol typical names BA-07 20.0 111 7.5 40 18 SM Silty Sand (Qap REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS ~~2, CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-9 • f ~ • • • • • ~ ~ • -2.0 -1.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 0.0 r 1.0 x c~ w x z 2.0 w C~ z a U 3.0 r z w U W 4.0 n_ 5.0 6.0 7.0 8.0 borin 9 de th ft. P( ~ dry density (pc~ in situ~ moist. (/o) in situ~ satur. (/o) -200a sieve (/o) group symbol typical names BA-08 70.0 114 3.2 19 24 SM Silty Sand (Qal) REMARKS: WATER ADDED AT ~.0 TSF ` PACIFIC SOILS ~~?j CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-10 i• ~~ ~• ~• ~~ I• '• ~ ~ ~ COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 -2.0 =::--- - ----- --_- ---- --_ -- - _... - -__ _ __ - -_ _ ._.. __ --- - '- -- - -- _.._ _. -1 0 _- '- -- -- - - --.. __.._ __ . ~ ._ . , _ . ~- - . -- -- -_~ -- -- -- -- ~- ---~ - -;- ~ -- --- --- --- --- ,.- - -- -__ _ _. _ -- -... -- --- --- - -- -. .-- -- 0.0 -- _ ' - __ _- --_.._ _ ; ..- __ _ _ _... H 1.0 x ~ w x ? 2.0 w c~ z Q V 3.0 r- z w U ~ 4.0 w a 5.0 6.0 7.0 8.0 boring depth (ft.) tl~ densit (pc~ in sit(o) moist. / in si(o ) satur. /o z0(o ~ sieve / 9~~~P s mbol t ical names Yp BA-08 25.0 112 10.8 59 40 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 2.0 TSF PACIFIC SOILS '~ CONSOLIDATION CURVE ~ ENGINEERING, INC. ~ W.O. 700007-C PLATE C-11 • i• ~ + ~ • r • • ~ ~ ~ -2.0 -1.0 0.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 r 1.0 x c9 w x Z 2.0 w c9 Z Q V 3.0 ~ z w U w 4.0 a 5.0 6.0 ~.o s.o boring depth (ft.) dry density (pcf) in situ~ moist. (/o) in situ~ satur. (/o) -200o sieve (/o) group symbol typical names BA-09 15.0 97 8.4 3'I 58 ML Sandy Silt (~al) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. ~~~ W.O. 700007-C PLATE C-12 i• ~~ ~ I~ • 1 r ~ ~ ! -2.0 -1.0 0.0 ~ 1.0 x ~ w x ? 2.0 w c9 z a v 3.0 ~ z w U w 4.0 a 5.0 6.0 7.0 8.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 91 O borin9 deplh (ftJ ary density (pc~ in sifu moist. (°/ ) in si~u satuc (°/ ) -zoo sieve (%) group t ical names symbol YP BA-10 5.0 103 7.0 31 45 SM Silty Sand (Qap REMARKS: WATER ADDED AT 0.5 TSF PACIFIC SOILS t~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-13 i• I~ '~ • ~ ~ ~ ~ ~ ~ -2.0 -1.0 0.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 910 t- 1.0 x c9 w x Z 2.0 w ~ z a U 3.0 F z w U ~ 4.0 w a 5.0 6.0 7.0 8.0 borin 9 de th R. P~ ~ dry densit (pc~ in situ moist. (%) in situ •2000 satur. (%) sieve (/o) group symbol typical names BA-10 10.0 108 S.6 43 I 42 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS `~.~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-14 ! i• ~ ~ • ~ ~ ~ ~ ~ ~ • -2.0 -1.0 0.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 i- 1.0 x ~ w x ? 2.0 w c9 Z Q V 3.0 H z w U W 4.0 a 6.0 7.0 8.0 5.0 , . -- - -- ---- -- -- --- ~...- _... _.. __. --- -- --';_ ,- _..~... _~ ' -- -- -- .- . . , _ --- -- bonn 9 depih (ft. ~ dry density (pc~ in sa o moist. (/o) ~~ sno satuc (/o) -zooo sieve (/o) yrouP symbol ical names tYP BA-70 20.0 102 702 44 49 SM Silty Sand (Qaq REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS ,~8 CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-15 i• I~ I• • • ~ ~ ~ ~ ~ • -2.0 -1.0 0.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 910 ~- 1.0 x c~ w x z 2.0 w ~ z a U 3.0 ~ z w U ~ 4.0 w a 6.0 7.0 8.0 5.0 boring depth (ft.) dry density (pc~ in situ moist. (%) in situ satur. (°/,) -200 group sieve (°/ ) symbol typical names BA-11 10.0 709 12.3 63 57 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 'I.0 TSF PACIFIC SOILS ~e~~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-16 i• ,~ I• • ` • • • ~ ~ • -2.0 -1.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 0.0 F- 1.0 x c~ w x ? 2.0 w ~ z a V 3.0 ~ z w U W 4.0 a 5.0 6.0 7.0 8.0 borin 9 de th ft. P~~ dry density (pc~ in situ~ moisL (/o) in situ~ satuc (/o) -2000 sieve (~) grou symbol typical names BA-11 15.0 101 12.9 53 58 SM Silty Sand (~al) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS ~.~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007 C PLATE C 17 • I ` ~i ~ ` ~ • ~ ~ ~ 0.0 1.0 2.0 COMPRESSIVE STRESS IN TSF Q 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 ~ 3.0 _ c7 w x Z 4.0 w c7 z a v S.O ~ z w U W 6.0 a 8.0 9.0 10.0 7.0 boring depth (ft.) dry density (pc~ in sit u moist. (/o) in situ satur. (%) -200o sieve (/o) group symbol t ical names yp BA-12 70.0 107 3.7 18 35 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS ~~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE G18 s If COMPRESSIVE STRESS IN TSF Q 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 I ` I• • • • • ~ ~ ~ • -2.~ -1.0 0.0 ~ 1.0 x c~ w x z 2.0 w c9 z a V 3.0 ~ z w U ~ 4.0 w a 5.0 6.0 7.0 8.0 boring depth (ft.) dry density (pc~ in situ moist. (%) in situ satur. (%) -200 sieve (%) group s mbol t ical names YP BA-13 6.0 105 9.8 46 40 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 0.5 TSF PACIFIC SOILS ~ `~2 CONSOLIDATION CURVE ~ ENGINEERING, INC. ~ W.O. 700007-C PLATE C-19 i• , + r ~ a • ~ ~ i ~ ~ COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 -2.0 __ - --_ ~......... . ------- '---- - -' -- -- --- - , -_ _ . - '- _. _ _... __- _,_ _ - - _. _ _- - -- 1 0 _ _._. _ _ . _. -- - -. ._._ _ . --- --. , ._ _ ___ _ .~ ._,_ _._. -- -- - -_ . __ - -- ~-- -- 0.0 _ _ _. ~ 1.0 x ~ w 2 Z 2.0 w c~ z ¢ U 3.0 ~ z w U w 4.0 a 5.0 6.0 7.0 8.0 9 borin P ~ de th (ft. ary densit (pc~ m sa~ moist. (%) m sa~ satur. (%) -zoo sieve (%) group symbol t ical names YP BA-73 30.0 100 11.0 45 48 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 2.0 TSF PACIFIC SOILS ,~~j CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-20 i• ~~ I• I• I~ • -2.0 -1.0 COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 o.o ~ 1.0 x c~ w x Z 2.0 w c9 Z Q V 3.0 H z w U ~ 4.0 w a 5.0 ~ • ~ ~ • 6.0 7.0 8.0 borin 9 de th (ft. P ~ dry density (pc~ in sito moist. (/o) in sito satur. (/o) -200 sieve (/o) group symbol typica~ names BAC-07 28.0 104 9.4 41 37 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS ~~4 CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE G21 i• I~ I~ ~ • • • ~ ~ ~ • COMPRESSIVE STRESS IN TSF ~.1 2 3 4 5 6 7 891 2 3 4 5 6 7 8910 -2.0 - - - ---.--- ------ • - '-- ---- -------- - '- -- --- - --- -- --.._ ------ - ,-_ _ _.. _ ..--- --- -- _- ---- -,_T`. _. -1 0 -- - - ~ _, __ _:_.~ ; -- 0 0 _-....__.. _ ... - _ -- - -_ . : _.._.._..---- ---•-- F- 1.0 _ C~ w _ Z 2.0 w c~ z a V 3.0 ~ z w U ~ 4.0 w a 6.0 7.0 S.0 5.0 boring depih (ftJ tlry density (pc~ in sita moist. ( /o) in sita satur. ( / ) -2000 sieve ( / ) group symbol t ical names YP BAC-08 20.0 706 9.3 43 41 SM Silty Sand (Qap REMARKS: WATER ADDED AT 1.0 TSF PACIFIC SOILS CONSOLIDATION CURVE ~ ENGINEERING, INC. ~ W.O. 700007-C PLATE C-22 i• Q ~ • -2.~ -1.0 '~ 0.0 , ~ 1.0 ~ ~ x ~ c~ w x z 2.0 w c9 z ~ ¢ V 3.0 r z w U ~ 4.0 w a • 5.0 6.0 • 7.0 ~ 8.0 ~ ~ • COMPRESSIVE STRESS IN TSF ~ 3 a 5 6 7 8 9 1 2 3 4 5 6 7 8 910 boring depth (ft.) dry densiry (pc~ +r, 5n~ moist. (%) ~n s~w satuc (%) -20o sieve (°/a) group symbol t ical names YP BAC-09 10.0 107 8.9 42 43 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 1.0 TSF ~ PACIFIC SOILS CONSOLIDATION CURVE Y ENGINEERING, INC. ~ W.O. 700007-C PLATE C-23 i• ~ ~ • ~ • • • ~ ~ • COMPRESSIVE STRESS IN TSF 0.1 2 3 4 5 6 7 6 91 2 3 4 5 6 7 8 910 2 0 _ _- _,- _ _~_ -- -- , --- _ - - - -' =:~~: 'r _ - - -- - --- - --- - -- - - _ ~_ ---_-- -1 0 _._ ._ _ . _. - -- ---- - '---- -°--- -- - •- - __._ ~ _ - - ~ -- ._ ~ ._.. D 0 -° ---- . :-• --- ------. _~ . - -_ H 1.0 x ~ w _ Z 2.0 w c9 Z Q U 3.0 F z w U ~ 4.0 w a 6.0 7.0 8.0 5.0 boring depth (ft.) dry density (pc~ in situ moist. (%) in situ satur. (%) -'e00 sieve (%) group symbol typical names BAC-09 35.0 104 9.8 43 25 SM Silty Sand (Qal) REMARKS: WATER ADDED AT 2.0 TSF PACIFIC SOILS ~~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C-24 i• I~ I• '• ,• • • • ~ ~ • COMPRESSIVE STRESS IN TSF ~.1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 910 :.-._. --~ ~..~.-> - `- ----- - - -'- -~ . __-- .._.; ---- - - --- -- - .'- ~~ - '--- ' -- . _. ,-. -- - -- . ; ...___. . __--- • •--; ,...... -1 0 __. --- -- • _.. -- _- - ._ _ - -- - -- - •- -- - - 0 0 _ . ,_...._ __~ . .._; ; ~ 1.0 x c9 w x Z 2.0 w c9 Z Q v 3.0 H z w U ~ 4.0 w a 5.0 6.0 7.0 8.0 borin9 depth (fl.) ary densiiy (pc~ ~0 5~c~ moist. (%) ~~ sa~ satur. (%) -zoo sieve (%) group symbol t ical names YP HS-18 10.0 116 7.0 44 40 SM Silty Sand (Qaq REMARKS: WATER ADDED AT 0.53 TSF ' ~ PACIFIC SOILS ~ CONSOLIDATION CURVE ~ ENGINEERING, INC. W.O. 700007-C PLATE C 25 • DIRECT SHEAR TEST Remolded at 90% Relative Compaction I• ~~ I~ I• ~ • • ~ ~ • a,ooo , . , 3,800 ---~_.. .__ ..........._ _- ---- ---!- .-.._._ --- 3,600 . _ ._. . '- - - -:-- -- -- ; --- 3,400 -. ~.._ '--_ __:_ __._ ~. - =_- ----._ _. __._ 3,200 '- 3,000 2,800 - _.;._ . . _ _ . -. . . ._ . -- --- • --- - -- -.- 2,600 ~ ~ _ _.. :- - - . - - - - - ,: ---'- • -- N i y 2,4~~ ' ;, ~' , . ' : ~~ ~ : ~ ,-C . _._.. _. ~_ ~~. ~ ~: ' '~. ~ "_":'- ..--~__.; ,._". ___.._..:.'_. ____~.-'_ . '- __ ~ 2,2~~ _. .. W . _ __ _. __ ,_ _ . , - : - - ~ 2,000 ~ • :-- ~ -= '--- -; ,.;_ . _ :._. ;.__. . ._ ..._ _ ~ 1,800 ,.. _... _ ;._ . ,_- +--. _ a .._... ,- -- Q ' ' - -= • -- - --- '_ w ' _.. ._ . '~_ ~ 1,600 ; - . _._. ;....._ 1,400 ` -- -- -- .. . .:... ,.__ . ~.__ _ ~ ~.._, . !~ 1,200 - - -, ---- - - - -- - -- 1,000 800 - - - - -- - - - - - , - - -- - -- ~- -- -- ---', - . -- --• --- - - 600 - •i __ _ _ - -- - ~-- -'- ---- 400 _ ~.- ~___... ; : -_. _ . _-._,_ +-- 200 - -- - - - ~- --- -+ - - -- ...... ,__ ,._ _ _ _ __..._ _ -- -- ---- - -- p _- , 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs.lft 2 borina depth (ftJ dry tlensity (pc~ in situ moist (%) -200 sieve (%) group symbol typical names BA-01 9.0 21 SM Silty Sand (Qal) COHESION 200 psf. FRICTION ANGLE 35.0 degrees ~ PACIFIC SOILS ~~"j DIRECT SHEAR TEST ENGINEERING, INC. W.O. 700007-C PLATE G26 ~ • • ~ I• I• ~~ DIRECT SHEAR TEST Remolded at 90% Relative Compaction 4,000 3,800 3,600 3,400 3,200 3, 000 2,800 N z,soo y 2,aoo ~ ~ 2,zoo W ~ 2,000 ~ a 1,800 w ~ 1,600 1,400 1,200 1, 000 800 600 400 200 0 ~ p 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft z ~~ ~• I~ COHESION 350 psf. FRICTION ANGLE 34.0 degrees ~ PACIFIC SOILS `~~ DIRECT SHEAR TEST ENGINEERING, INC. W.O. 700007-C PLATE C-27 boring depth (ft.) dry density (pc~ in situ~ moist. (/o) -200a sieve (/o) group s mbol t ical names YP BA-02 3.0 47 SM Silty Sand (Qal) ~ DIRECT SHEAR TEST Remolded at 90% Relative Compaction 4,000 • 3, 800 ~ 3,600 3,400 ~ • 3,200 ' 3,000 , 2,800 ~ N 2,600 N 2,400 I ~ ~ 2,200 w ~ 2,000 ~ ~ ' Q 1,800 w ~ 1,600 1,400 w 1,200 1, 000 SOC ' ~ 60C 40C ~ ~I r ~• I~ p 500 1,000 1,500 2,000 2,500 :i,uuu s,ovv Y,v00 NORMAL STRESS Ibs.lft 2 dry in situ -200 group I t iC81 n8me5 boring depth (ft.) density (pc~ moist (%) sieve (°/a) symbol YP BA-05 9.0 34 SM Silty Sand (Qal) COHESION 350 psf. FRICTION ANGLE 37.0 degrees ~ PACIFIC SOILS ~(~1 DIRECT SHEAR TEST i ENGINEERING, INC. W.O. 7Q0007-C PLATE C-28 • • • • '• I• • I~ ~~ ~• ~~ 4,000 3,800 3,600 3,400 3,200 3,000 2, 800 N 2,600 N 2,400 a ~ 2,200 w ~ 2,000 ~ Q 1,800 ~ 1,600 ~,aoo i,zoo 1, 000 80C 60C 40C ~nr COHESION 300 psf. FRICTION ANGLE 34.0 degrees ~ PACIFIC SOILS ,~Z. DIRECT SHEAR TEST ENGINEERING, INC. W.O. 700007-C PLATE C-29 DIRECT SHEAR TEST Undisturbed ~ ~ - _ -- ; -- ---- - --- -- - - -- ~ _ --- _ _._ _. ; ;.... _ , ._. --- :-~ - +- - _ ...__ . __.. , , , ---~ - ..- - ~_ _ ~._ - -.-. ~ , - •-. _.._. -- ---- . _. _. - - ~ - - ~ - ;, ~ ; , ,, :, , ~- - ---- -i - - - --- - T - ,- -- - -- - -- -- -- - - - --- ; ~ , . _ 0 500 1,000 1,500 2,000 2,500 :i,VUU :s,~uu v,v00 NORMAL STRESS Ibs./ft 2 boring depth (ft.) dry density (pc~ in situ moist. (%) -20o sieve (%) group symbol t ical names yp BA-06 10.0 111 3.6 23 SM Silty Sand (Qal) ~ I DIRECT SHEAR TEST Remolded at 90% Relative Compaction • ~ ~ • ~ • ~ ~ • a,ooo s,soo - - '-- -- -- - - - 3,600 - - - - - - - - - --- 3,400 ;_ _.__ ._. ~- _ . -~- '-- --- '..._ ~i 3,200 - -- , - - - - - - - 3,000 2~800 '''. . - - - - - ''- - . _ . ', ' T '. i _ _ _ -- ' - -- --- - N 2,600 - ;- - -- --- - - '-~ N 2,400 -- - - -- - - -- -- --~ - ~ - ' - -__ ._ . . i-- • ° '- - ~ --- - -: _ ~ ~_ .~-__ ~ 2,200 - -- - - - - - - - w ~ ~ ---~ . ..;.. . .... --~-- --=- ~- 'r--- ---- . -.,:. . :.--- ~ 2,000 , u~ i : - - - - - - Q 1,800 i :.~ ~_ __ --- - , - ~ ~.. - -- . _ ~. _ .-- -- - ~ 1,600 -, ~- - - - - Q - - - -- 1,400 ~ - - -- -- - - -- -- -- 1,200 - -- ~ - - - 1,000 i , 800 - ' , !- - -_-- --- , - ' o - - - - - 600 - - - - - - - - - -- - 400 __- -- - ' - _- _-, ~ - - T. ~_ 200 - -..: , --,-- - ~ . ~ ~- -=--- - - -, -~-- ; ~ ; --- - -+__. __. __ _ _, _ -'--- --- - --_ 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs.lft 2 boring depth (ft.) dry density (pc~ ~n sic o moist. (/o) -zoo sieve (%) group symbol t ical names Yp BA-08 4.0 47 SM Silty Sand (~alj COHESION 350 psf. ~ FRICTION ANGLE 33.0 degrees I ~ PACIFIC SOILS I63 DIRECT SHEAR TEST ENGINEERING, INC. W.O. 700007-C PLATE G30 i • DIRECT SHEAR TEST Remolded at 90% Relative Compaction I• I• ~ • ~ ~ ~ a • • a,ooo ' s,soo ' -- '-= - - -- - - -- 3,600 - - , - - -- ~ -- --- -- --~ -- 3,400 r ~ ------- - - -- - - - - - 3,200 i . ._ , i - _ - - - _ - -- - - - - -- __.. . .__ _ _. ~_. __. . , ___ _ . _._ _ -; :- . 3,000 ; i , -T-; i ;--. . .... __ .. ~ ~- -- -- - ' 2,800 : ... -- -=-- ~ -- '- -- - --• _.__. . N 2,600 ; • - ------ - - - - - - -- : --,- --, - - x , ~; 2,400 . .. . . - .:_- . . ._ :---,-- ---- ---- ;_ ~ _;.. . _ _. - . . . . :-_ - --- _ . . _--e __[_ . ~ 2,200 : ' , _ - -.. , ' , ;..- -- - -.... ;_ : ,_ .._._. w - •- . ._. _.... _ . ~ 2,000 u~ - - - - - - - Q 1,800 ;.. : _. ,. - __ ,._ ;_ - • •_ ~ e .__ _ . , -- - - ~ 1,600 - - . . ._ ' . ;_ ' __ ,- - - - ,- , 1,400 -,- . -~~_...._~ . ,..._ _ . ~._ ----- - '•-- - : - - -- ~ ' "_' -'_ ! __- __ r t'_" . :..." ' y- ' "_'_ _'"'.. "' __""_' . _"__' 1,200 - ; --- -- - - - - - _ ~ ;-_; : - e. ; 4- , _._ _.... . - ---- 1,000 ~ ; 800 i -- a_ - ~ . - - -,-- -- -- - - - -a- = - ~ -- - -• ,- -- 600 T ----- - - - -, - - - ; 400 ' '- - -- -- -- - - - - - -- - 200 - ~ --- ----- =--- '- . _ -_ __ _ .: . .__. .. . : ----.._ ._. . :_ ..... __ ._.... ------ ---- , ~----.._. , 0 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft z boring depth (ft.) d~ densit (pc~ in sit p moisi. (/o) -200~ sieve (/a) group symbol t ical names YP BA-09 6.0 62 ML Sandy Silt (Qal) COHESION 450 psf. FRICTION ANGLE 30.0 degrees ~ PACIFIC SOILS DIRECT SHEAR TEST ^ ENGINEERING, INC. ~G~ W.O. 700007-C PLATE C-31 • DIRECT SHEAR TEST Remolded at 90% Relative Compaction ~ a,ooo ~ 3,800 3,600 3,400 ~ 3,200 3,000 2,800 • N 2,600 x y 2,400 ~ ~ 2,200 w ~ 2,000 ~ ~ a 1,800 w ~ 1,600 1,400 ~ 1,200 1,000 800 ~ 600 400 200 0 ~ 0 500 1,000 ~,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft z ~ boring depth (R.) dY densii (pc~ ~n s~i o moist. (/o) -zoop sieve (/o) yro~P symbol t ical names YP BA-10 4.0 26 SM Silty Sand (Qal) COHESION 250 psf. FRICTION ANGLE 34.0 degrees ~ Ke ~ PACIFIC SOILS DIRECT SHEAR TEST ENGINEERING, INC. ~ W.O. 700007-C PLATE C-32 i• DIRECT SHEAR TEST Undisturbed ~ a,ooo 3, 800 3,600 3,400 ~ 3,200 3,000 2, 800 ~ N Z,6OO ~ 2,400 ~ ~ 2,200 w ~ 2,000 • v~ Q 1,800 w ~ 1,600 1,400 ~ 1,200 1, 000 ' 800 ' ~ 600 400 200 0 ~I ~ 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft 2 ~ boring depth (ft.) dry densif (pc~ in situ moist. (%) -200 sieve (%) group symbol t ical names YP BA-11 5.0 98 5.5 35 SM Silty Sand (Qal) COHESION 200 psf. • FRICTION ANGLE 35.0 degrees `~ ~ PACIFIC SOILS DIRECT SHEAR TEST ENGINEERING, INC. ~ W.O. 700007-C PLATE C-33 i. I• ~• I~ ~ • ~ ~ ~ DIRECT SHEAR TEST Remolded at 90% Relative Compaction a,ooo ~ . , - - - - - - - -- - r--~ - - 3,800 - - - ---- ; - - -- 3,600 - --- -- - - - - -- - - 3,400 ~- ' - - -- ~-- - . ~_ . '-- -- - --= 3,200 _ . -- -- - - -;-- ~ -- ;--- -- ~_ 3,000 ; ~ 2,800 '- ----- ' :._. ' - '; - -;.-- , __ .._. _.. . ;....- --- --- N _ '_ _ '_' 2,600 ;._ - . - :_ . :.- -.-. :- - ,i ~; 2,400 ; -- ,, ..- -- ' '-- ;_ -- = --- - ~ -- ~ - . :-.._ _ _ . . . ~ ...._ __ , i - s -- - - ,, -- ~ 2,200 - . •-_ _ _ :- _ . T._ ;. ._ _.__. ..- _ _ ' _ _...._ ~...,._ _ ~__• :_ w ~ 2,000 , ~ . . . -- -. . __ - ------- _._: . -- . ..-- ---• -- Q 1,800 , ;__ . __ i ~- w .._ _.... ._._ . . _ - ~ 1,600 . -- - __ . :_ ;.._. ; :-. ~__ ' 1,400 = -- --- -- .... ~ ..._ . . :.- '-- • • - • '- -- '-'- - i-.. 1,200 -- ---- -- =-- - - ; - - - - -e=-- • - - ' '- - - - - ----- 1,000 ~ ~ , 800 - -- - - - - - - - - . -- - 600 - -'-- -- - = - ~.. _ .._~_ ~.-- - --- -~ ,- ---- - 400 ' - --~ - - -- - - -- -- --' - - -- -= 200 -~- - - -- __ -. . !_ _~. . ._~ . ~ - -'-- - ; - - ---- -- --- - - ---:.._ Q , -- -, -- ---- - 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft Z boring depth (R.) d~ densit (pc~ ~n s~c o moist (/o) -zooo sieve (/o) group t ical names symbol YP BAC-07 12.0 42 SM Silty Sand (Qal) COHESION 500 psf. • FRICTION ANGLE 37.0 degrees \~'~ ~ PACIFIC SOILS DIRECT SHEAR TEST ~ ENGINEERING, INC. W.O. 700007-C PLATE C-34 • i• ~• ~~ ,~ • • ~ • ~ DIRECT SHEAR TEST Undisturbed 4,000 ~ ; !. ; ', ; ; ' -- -- -- - -~ ---: -- - --_ .-_,_ . .. _ ___ - - , ~ 3,800 - - ---- - - -- -- - -- ,----- --- ---- 3,600 _ -- . -- -- _ 3,400 -_ --- r----_ ._._ _;-- ------- - ~..._.. _...._.. __-. - --_ 3,200 ;- -- •-- -- • __. __ _ _ -,- ---. - _ _;.. ' _ =- - - -- __ . _ -- • ° '- _ , i 3, 000 2,800 - '- !..... . .__._ . '- - .--- -_ --- ----~ --- 2,600 ~ :- ._._ ----. ,__ . , ,- _ ~--- - -_ ; ;__.._. _ _...- - '-- N ~ . . . . ~ ~ ~ . : ~. ~. N 2,400 , ;- r _ _......._ . . ..--- -- -- -- __._.. . _._.._ - -:-- ~ 9 _. - . ,-- ._._ _ - _; _. _ _._ . __... _ _ __ --- ~ 2,200 •- _- -- •- -- , _ -- ;- ~ _ ....._ _ . .__ . __ W • •- - - -- ~ 2,000 , , , ; ~ • _ _.- :-- - _. _= - ,- --_ . _. . . ._..__ , - i ~ Q 1,800 -r ... -- - - -- - - - - -- W ... -- - - - - _- -- . . - i ' . -, ~-- . `.- `-- ~ 1,600 - - - - - ~ - - - 1,400 - - -- _.. ._- ~-- - -- -'-- t___ _- --- ._ . _;..... . ._ ._._ . _. __ --. _... ,.- •- _. 1,200 - - - • -- - - , -- - - - -- - - _ _ _ ..-- 1,000 ~ ~ -- - - - 800 -- -' -- - ;- -- -- 600 ' ' -• ' --- - - - - - - -- - 400 - - - -- - ,- - 200 - ----, - - _ -._,_ :.._. __ _ _ . - _..._:.- ... - - - - -. .- ---- ~ -; 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs.lft 2 boring depth (ft.) dY lP~ densit in situ~ ) moist. (/o -20(o sieve /) group s mbol t ical names yp BAC-11 10.0 102 12.3 39 SM Silty Sand (Qap COHESION 150 psf. • FRICTION ANGLE 38.0 degrees `` PACIFIC SOILS DIRECT SHEAR TEST ~ ENGINEERING, INC. ~ W.O. 700007-C PLATE C-35 !~ I• • ~ 'i~ • • ~ ~ DIRECT SHEAR TEST Remolded at 90% Relative Compaction 4,000 3,800 - - ~- - - - - - ---- -- i ,. . _ .._ --- -+ - - __, __ ; ~ - - -- - - 3,600 - _._ T- T 3,400 _i . :... 1__ __ :__ _ '.. __ ; ' 3,200 ; i - - - - - - -- 3,000 - . ~. . _ . . . , ~ -- 2,800 . - -- - - • - -- - ' 2,600 :. ,_ _ ._. -. _.. . i_ , _ ----- i ; N - __ ~; 2~4~~ ' - _ __"____ - __ __ _ __ '__ - ~ . ` _ . - -' - --- - - - -- _ • --- . _: . : _ _ - i_ ; ~ 2,200 ' ;.. :__ . ;_ ,.... - - - _- *- -.- w ' -' ;- ---- ;- - ---- - ,.._ ;...... ..._..; '_ ~ 2,000 , ~ , . i_ ._---- - - -: '- -- - __~ . _...s- -- Q 1,800 :... . .__ ..- __; _ ~ _l.._ --._.. _ ~ _..-- ---,.._ _... _ ..---- _; . - -- . . __. w ~ 1,600 . _ . . . - . . ,.--. 1,400 ' ~ :_ _..__ . ;_ . !- - ..._ ', 1,200 ' ---..- ~- -- ~ --- --~-- - ! : 1,000 -- - 800 - - -o - - - - --- ; ~ - -- ,-- - - - - - -- ~ 600 - --- - -- - - - 400 - ------- - ~- 200 '. : ;, _ _.. . . _. ; _ ,. ' ' __. -, - ~- - - - ;._ _.._. ,._.. ._._.:.. ..._ . _.:._.. ,.-- ~ -- _ _;_.. 0 0 500 'I,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft 2 boring depth (ft.) dry density (pc~ in situ~ moist. (/o) -200o sieve (/~) group t ical names symbol YP HS-77 3.0 43 SM Silty Sand (Qal) , COHESION 100 psf. FRICTION ANGLE 33.0 degrees `~o` • ~ PACIFIC SOILS DIRECT SHEAR TEST ENGINEERING, INC. W.O. 700007-C PLATE C-36 ~ i• I• I• ~~ ~ • • r ~ ~ ~ DIRECT SHEAR TEST Undisturbed a,ooo ~ , , ; : s,soo ~ _~- - ~ - - ~ -- --_ , ~ ~ ~ : s,soo ~- i - -- - - - - - - - ~ ;; 3,400 -=- '--- - - '_ I :...__ _. _........ ;.._.. _ - _ ~- -- ---. , _ . __ . :_ _ ';__ 3,200 - - ,- --- - - - - --• -- --- 3,000 ~ j - - -- - - - - - -- -- - __ __ _._ .__. . ._ .. ---- - ,_ :_ ~ 2,800 ; - - - • - - . _ __ _ _ _ r . _.. . __. __~ :__; .._ ___'~ - . ! N 2,600 - i r - : --- -_ . ,- ~ ; ~. T . ~ ~ ; :. N 2,400 ; ---- - - - - - - -- -- - ._. ._... .. -- - ~ 2,200 ~--- - : i--- - -- - -- - - ~ 2,000 , ' - ---- ,- - - - - ~ - - - -- - v~ _ ~ ~ ~ - -- - - ,_ - Q 1,800 i ;_ . . ...._. :_ _- +_ _- . - ;-- i ~ -_ . ._ ~- - -- . ~ 1,600 ~ . • ;;-' • :; - --- - ~- - - ; -.. . ;. _ 1,400 =, ` - i----i - -- -- - - , 1,200 ~i '_I ! ' ~ - - - - _ -- - -- ~ .- i i ' ' I I ' ,,, ' . , ~ . ~~.. ~ - -- 7- - ' - - --- -- - .- , - 1,000 ~ ; : ~ ,,, ~ I_. --~ ~ ,= •--- - -- ~- -- -- 800 - ~ ~ ,, - ~; - - - i r ----- j -- , -i-=- - - - - 600 - -- , - -- - --- - 400 - - - - -- - - -- 200 -- -- - - - - - - - - ' - ---.- ;._ _.___. ;..._ . ._ . -..._ ~..- -----'- -- 0 - 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 NORMAL STRESS Ibs./ft z borin 9 depth (k.) dry densit (pc~ in situ~ moist. (/o) -200o sieve (/oi group s mbol typical names HS-78 7.0 106 102 49 SM Silty Sand (Qal) COHESION 25 psf. FRICTION ANGLE 33.0 degrees ~0 \ ~ PACIFIC SOILS DIRECT SHEAR TEST ENGINEERING, INC. W.O. 700007-C PLATE C-37 I• I~ ~~ I• I~ i` ~ ` ~ ~ . eaw~v: ~t :kaaaac u a ~ U~ ~ M t s, , I m~ U ~~ ~ w ¢ ~ ~' Q ~ < Q ~ 6 ° W Z ~ ~ ~ ~~ ~ ~ ~ ~ L ~; ~c U LL ~. LL Q c~oo a~ 3 ~~ ~BI~~ ; i ~ v I ~. N ~ ~ I ~ ; ': I I W I ~ ~ ~ I i I, ! I~ I v~ ~ ~ ~ ! i . ~ i _ ~ i~ I I ~ I ~ i I < ~I I II f~ 'i ~~i ~~i JII i 4 ~ ~~' ! I i- ` I I '~ -_- ~ cOi ! f GI ~ - ~ I - f _I ~'. ~ ~: ~; '-.. ,---_!I ~ ~I :- - '~: ' ~~ `~ ,.~ '~~ _, , . _ ____'_.-____._____ .___._.____.._.__.___.__.:- . . a .; ' , i_ ~ :, -.c..c.:. j __.-..=m.>~.~.rsa+~- . •~.--•-~-••^ Aanm~.vwwee+~ar.ew. J ~ Z a ~,; L I v+ N ~- E 0 c ~ o ` 031t~t'13t~ 1Ni~tlz i• ~~ • ~ ~ ~ ~ ~ ~ • w ol ~ ~ 'Iz ~~i Gi Q :al ~ I v, zI ~ ~' c ~ c 0 u ~ ~ ~ F- V , rn U - ;~ M ~ '.~ ~ U , ~ ~ ~ ~~ w < ~ ~~~a u ~ J < < a- ~° u? ~ ~ ~~~ ~ ~ ~ ` ¢ ~ C ~o U 4 C~ u Q c p ~ a ~ i ~~y ! , , _ , , : : ,. • ~•k~£; .. . . __ ~ ~ _ i• I,~ ~ ~ ~ ~ ~ ~ ~ 03MtIY13k' 1N?JNse c 0 ~; ~ +~ ~ ~~'c U I• I~ ~ ~ ~ ~ f ~ ~ ~ ~ a3MIti3Y 1K3~Nz _ ~ J ~ ~I oi c ^i L <! ?~ ~~ ~7I C ~i v, LL Z L' ~ ~ `~ cl ~ U z o ~ ~~ ~ ~ ,, Q ~ I w m ~ ~ u`' ~ G ¢ ~~ ~ f ~ ~ ~ ~ l~ ~ u; i w= ~ a ~ ~ ~f W ~ J ~. ~ ~ N ~ I I (~ _ `J ~ O ~ ~ ~ L Z ~ a ~ ~ ~ ~ ~ ( ~{ N Y E c c O V 'a ~ I• ~ ~ ~ ~ ~ ~ ~ ~ 03M/fKiif' 1li3'J!-i'' ~, ~ O U w a ~ ~ oI ~ U~ I G ~~~ ~I 'y! ~ C ~~ W I `r I Z~ Y v ~-i E c I c I p ~ U I a T I ~~ n~ J ~~I ~i U ``' _`' i ''~~ ~ `~ e U i Iq Y r, c~ ~ ~ ~ W z ~ L ~ t h ~ ~ ~ ~' ` ~ ~ 0] Z Q ~ ~ ~ ~ C ° ~i ~ LL ~; = ~, - ; ~r e ~~i I W' J ~ - r f N v fk ~ `~ . - G ; ~ LL P l Z LL ~ O i ~! ~ 4 ~ s 7 ~~ ~ ~ LL1 ! ~ ~ i I 1 c^ i c i. c - - .. ~ qht:"s:~~tr ..k'i._:d;-.- i~ ia s M: KYH COMPPo`I1' PHOh~ NO• ~ 714 549 8375 Mar. 02 2004 10:42f~l1 P3 KYH Co. Analy tical Laboratory 3621 N'. MacAr~hur Blvd., # 11~, ,SnaroAnn, CA 92~D4 Tel: ~/(4J 549-5824 Faac: ~l14J ANALYTICAL REPORT Client Name: Paafic 5oils Engiueering, Tnc. Report Number. 245679R Address: 710 E. Packridge Avem~e, S~ite 105 PSE W.O. Plumber: 700007C Corona, CA 92E79 Contact Person: Mx. Duane Irwin P.O. Number. 'He~bsi Sample Results ~ ~ 1 ~ • ~ Client ID Lab ID Date Requesled qnalysis Method ResuR (96 wt) MDL (% w[) BA-2 (3) 19592 OZ-27-21w4 Ghloride Contem Ca1Tra~w 422 d1.001 0.001 BA-2 (3) 19592 02-27-2004 Sulfatc Coatent CalTrans 417 e0.00] O.Obl BA-2 (3) 19592 02-27-2004 Alkalinity EPA 310.1 0.001 0,001 BA-10(4) 195y3 03-0]•2004 Chlo7ide Con[e~n Ce1'I`rans 422 ~O.W] 0.001 BA-] 0(4) 19593 03-01-2004 Sulfate Contern CalTrans 417 0.001 0.001 gp_7 0(4) 19593 03-01-2004 Alkalinity EPA 310.1 0.001 0.001 BA-`6 (4) 19594 03-0]-2004 Chloxide Content Ca117ans 422 0.0(12 0.001 BA-8 (4) 19594 03-O1-2D04 Sulfete Content Ca17Yans 419 <0.001 0.001 BA•Q (4) 19594 03-01-2004 . Allsaliniry EPA 310.1 O.OU4 O.OOI BA-1 (9) ]9595 p3-O1-2004 Chloride Content CaPlYavs 422 <0.001 0.001 BA-1 (9) 19545 03-0]-20p4 Sulfate Contatt Ca1TYws 417 N.001 0.001 BA-1 (9) 195')5 U3-0]-2004 Alkalinity EPA310.1 O.W3 O.ODI , ~; ~~1 ~ ~,~Q^~/ ~ MarcL 2; 2004 • Aut o'ied Signature RepaA Date Pege ] nE 1 ~ PLATE C-44 i• ~. PHO~ N0. : ~14 549 8375 Mar. 04 2004 0B:S1FlM P2 KYH Co. Analytical Laboratory 362/ W. MacA,thur Bh+d.. #ll R, Santn Ana, (:it 92704 Tel: (714) 549-58?4 Far: ~/14) 549-8375 ANALYTICAL REPORT i OM : KYH COhfr'RNY Clierrt Name: Pacific Soils ~~ing,lnc- Report Number: 2456891t Address: ~10 E. Padc:idge Avenue, Strite 105 Corona, CA 92879 pSE W.O. Numbe~ 700007C Contad Person: Mr. Duane Irwin P.O. Number: Veibal Sample Results • ~ • ~ ~ ~' Clierrt ID Lab ID Date Requested Analysis Method Result (% wU MDL (% wq gp,- y(6) 19610 03-01-2004 Chloride Cantcni CalTrans 422 0.003 0.001 BA - Q(6) 19610 03-O1-2004 Stiilfabe Content CalTrans 417 0.002 0.001 BA-9 (6) 19G10 03-01-2004 Alkalinity EPA31U.1 0.001 0.001 BA - 5(9) 1961 I 03-02-200A Chloride C4ment Ca1'n8ns 422 G0.001 0.001 BA - 5(9)' 19611 03-02-2004 Sulfate Cmue,nt CalTrans 417 0.003 0.001 BA - 5(9) 19611 03-02•2004 Allc~linity EPA 31U.1 0.001 0.001 March 4, 2U04 Aut a'zed Signature Report Daie `~~ Page i. of 1 PLATE C-45 i• ~s APPENDIX D ~~ Probabilistic Peak Ground Acceleration Assessment Iw • s ~ • `~~ S PACIFIC SOILS ENGINEEFi1NG, INC. ,~ Work Order700007-C May 21, 2004 ,~ APPENDIX D PROBABILISTIC SEISMIC HAZARD ASSESSMENT ~i Introduction Page D-1 The 1933 Long Beach, 1971 San Femando, 1992 Landers, and 1994 Northridge earthquakes particulazly illustrate both regional seismicity and the need to incorporate seismic considerations ~i into project design. Current standazds of practice and regulatory agencies dictate such [for example, the State of California Seismic Hazards Mapping Act (SHMA) of 1990 (Division 2, Chapter 7.8, Public Resources Code)]. PSE therefore provides herein probabilistic estimates of free-field peak horizontal ground accelerations (PGA) that hypothetically could be generated by i earthquakes along regional and local seismogenic faults, that aze essential to assessment of hypothetical site effects such as liquefaction and dynamic settlement, and that may also be useful to some dynamic structural design methods. The PGA estimates given in this appendix are based • on guidelines set forth in the 2001 California Building Code (CBC; ICBO, 2001), CDMG (1993, 1997), Martin and Lew (1999), and the California Geological Survey Note 48 (CGS, 2003). Selection of the appropriate design seismic pazameters depends upon the kinds of geotechnical or ~ structural analyses (for example, static or dynamic), the kind and sensitivity (for example, schools, hospitals, essential services facilities vs. normal-risk) of proposed structures, and the level of "acceptable risk" deemed suitable for the project. Normal-risk structures usually include those where the UBC (ICBO, 1997) concern is primarily life and safety during rather than i structural performance after a major earthquake. Accordingly, the study site requires the estimation of the Design-Basis Earthquake (DBE) that is the PGA that has a 10-percent chance of being exceeded in 50-years. • This firm reviewed published and unpublished literature about regional active faults, and about the potential for and possible magnitudes of future seismic events along those faults. Also, articles that empirically relate proximity of postulated earthquakes to possible on-site PGA were r reviewed. In this appendix, principal regional active faults and earthquakes are briefly described, and the probabilistic methodology used to estimate PGA is then spelled out. ~~ i~ PACIFIC SOILS ENGINEERING, INC. i• Work Order 700007-C May 21, 2004 Ii Page D-2 Active Faults Several definitions of an active fault--in this case seismogenically active--have evolved over the yeazs (Ziony and Yerkes, 1985). For this discussion, an active fault as defined by the Califomia ~' Code of Regulations (Title 14, Sec. 3601 a) is: "A fault that has had swface displacement in the Holocene (about the last 11,000 years hence constituting a potential hazard to structures..." ~ Further, for this seismic hazards assessment, faults that have little or no potential for surface rupture ("blind" faults), but aze yet deemed capable of generating at least moderate earthquakes, are included. Examples of same include the Elysian Pazk • system of blind thrusts that gave rise to the 1987 Whittier Narrows earthquake and the Northridge system of blind thrusts that produced the 1994 Northridge earthquake. Re¢ional Faults ~ Because the site is located in a seismically active region, numerous active faults capable of generating moderate to large earthquakes lie within ] 00-kilometers (Jennings, 1994; Dolan, et al., 1995; Petersen, et al., 1996; Blake, 1998, 2000; Cao, et al., 2003). Those faults, listed in ~ Table A are taken from Petersen, et al. al. (1996) and Blake (2000) as recommended by Martin and Lew (1999); and possess both proximity and potential to give rise to moderate to lazge earth- quakes, hence inducement of long-duration ground motion at the study site. Table A is taken i from a search of the Blake (2000) fault file that is based on the generally accepted Petersen, et al. ~~ (1996) list of active California faults. The differing distances to the faults shown in the table stem from inherent differences in the methods used by the authors of the various attenuation relationships (Boore, et al., 1997; Campbell, 1997 Rev., and Sadigh, et al., 199'7). I• `~\ S~ PACIFIC BOILB ENGINEERING, INC. is • i ~ I~ ~~ I~ ~~ Work Order700007-C May 21, 2004 TABLE A CLOSEST DISTANCES BETWEEN SITE AND FAULT RUPNRES NO. FAULT NAME _'__'___'_ 0ooxe et al. _'____'___'__ Campbell "__'_'______ Sadigh et al. _'_"_'___"'_' '_'_ 1 '___"__'______'______'_ ELSINORE-TEMECULA 0.6 0.6 0. 6 km 2 ELSINORE-JULIAN 12.7 12.7 12. 7 lan 3 ELSINORE-GLEN IVY 30.3 30.3 30. 3 ]an 9 SAN JACINTO-ANZA 35.3 35.3 35. 3 lan 5 SAN JACINTO-SAN JACZNTO VALLEY 35.6 35.8 35. 8 km 6 NEWPORT-SNGLEW00~ (Offsnore~ 94.9 99.9 99~ 9 ~ 7 ROSE CANYON 97.0 97.0 9'7. 0 km 8 SAN JACINTO-COYOTE CREEK 55.6 55.6 55. 6 lan 9 EARTAQUARE VALLEY 57.'7 57.'7 57. 7 km 10 CHZNO-CENTRAL AVE. IElsinore) 59.2 59.2 59. 2 ]an 11 SAN SACINTO-SAN BERNARDINO 63.1 63.7 63. 1 km 12 SAN ANDREAS - San Bernazdino 69.6 69.6 69. 6 km 13 SAN ANDREAS - Southern 69.6 64.6 69. 6 I~n 19 WHITTIER 65.9 65.9 65. 9 lvn 15 CORONADO BANK 72.0 72.0 72 .0 lan 16 PINTO MOUNTAIN 75.5 75.5 75 .5 lan 17 NEWPORT-INGLEWOOD (L.A.Hasin) 77.6 77.6 77 .6 ]rn~ 18 SAN ANDREAS - Coachella 78.9 78.9 78 .9 km 19 PALOS VERDES '79.6 79.6 '79 .6 lan 20 CUCAMONGA 86.1 8fi.1 86 .1 km 21 BURNT MTN. 86.7 86.7 86 .7 km 22 ELYSIAN PARR THROST 86.E 86.5 87 .2 km 23 ELSINORE-COYOTE MOUNTAIN 88.? 88.3 88 .3 lan 29 SAN JACINTO - HORREGO B9.`_ 89.5 89 .5 km 25 SAN JOSE 90.9 90.9 90 .9 km 26 EUREICA PEAR 91.2 91.2 91 .2 km 27 CLEGHOAN 91.7 91.7 91 .7 km 28 COMPTON THRUST 91.9 88.'7 89 .3 km 29 SIERAA MADRE 99.3 99.3 99 .3 km 30 _'_ NOATH FRONTAL FAULT ZONE (West) _'_'___"_'_____"____'___'_'___'_ 95.6 ____'________ 86.7 __'_____ 67 _____ .6 km ___'____"____' Page D-3 \~~ I~ PACIFIC SOILS ENGINEERING, INC. i~ ~ Work Order700007-C Page D-4 May 21, 2004 • Local Faults As spelled out in Section 4.1 and 43.1 of the main text, the Elsinore Fault Zone is the nearest mapped active fault to the site. The two main fault branches in the Wolf Creek area; are the I'• Wildomar fault on the northeast of the site, and the Wolf Valley fault on the southwest of the site (Kennedy, 1977). Soil Profile Types ~ The underlying soil profiles are important variables used in typical ground acceleration attenuation formulae (Boore, et al., 1997). Usually the chazacteristics of the upper 30-m of the underlying soil/bedrock are estimated based on either Tables 3 and 4 from Boore, et al. (1997) or subjectively judged when employing the Campbell (1997, revised) and Sadigh, et al. (1997) methodologies. Based on the results of the subject site investigation, PSE judges that the subsurface soil in the II ~ site vicinity, corresponds generally to the Boore, et al. site class D(shear wave velocity of about 250 m/sec), and would fit in the Campbell (1997, revised) alluvium and Sadigh, et al. (1997) deep soii categories. . Probabilistic Peak Horizontal Ground Acceleration (PGA) In recent years, particulazly since 1998, the standard for seismic hazazd (in this case PGA) assessment has increasingly become probabilistic-driven for both "normal" and for at least some "high-risk" structures. That is, the State of California (for example, Petersen et al., 1996; Martin ~ and Lew, 1999; R. Sydnor, personal communication, 2000), and the California Building Code of 2001 (ICBO, 2001) have directed the industry towazd or required probabilistic ground motion analyses. The rationale and basis for that direction is beyond the scope of this document; the I~ reader is so referred to the listed investigators. Probabilistic methods of seismic risk determination attempt to account for uncertainties or likelihood in recurrence intervals, sizes, and locations of hypothetical earthquakes; and are ~ increasingly being used for engineering analyses (Blake, 2000; Martin and Lew, 1999). Probabilistic analyses thus provide levels of hypothetical free-field ground acceleration for a finite ~gJ~ I S` PACIFIG SOILS ENGINEEFING, INC. • • Work Order~00007-C May 21, 2004 Page D-5 exposure period. For example, a commonly accepted ]evel of risk is the aforementioned DBE. That is, a PGA with, statistically, a 10-percent chance of being exceeded in 50-years. That PGA estimate is sufficient for most geotechnical or structural engineering analyses. However, the State ~ of California (Califomia Division of Mines and Geology, 1993; Califomia Geological Survey; CBC, 2001) requires that the more conservative UBE (10-percent chance of exceedance in 100- years) also be derived for analyses of critical structures such as schools, hospitals, etc. '~ One useful probabilistic method is FRISKSP that was derived from public domain USGS software by Blake (1998, 2000). Details of the mechanics for FRISKSP can be obtained from i Blake, and are not recited herein. The fault inventory used to calculate hypothetical free-field ', ~ probabilistic ground motions by FRISKSP for the subject site is in essence the same as derived by the State of California for use in their seismic hazards mapping program and by Petersen, et al., (1996), except as revised by deletion of the Compton thrust. FRISKSP selected 39 such faults within a 100-km radius (Table A). • For comparison, three attenuation relationships, Boore, et al. (1997), Campbell (1997, revised), and Sadigh, et al. (1997), were used to compute probabilistic horizontal free-field peak ground accelerations (Plates D-2 through D-4). Table B presents the calculated horizontal ground I~ accelerations representing the ] 0-percent chance of exceedance in 50- and 100-years (DBE and UBE). I• ~• TABLE B lnvesti ators DBE BOORE, ET AL., 1997 0.75e Cam bell, 1997, 0.67 Sadigh, et al., 1997 0.77g Avera e OJ3 I~ It should be noted that these hypothetical numbers are based on recent standards of practice (for ' example, Martin and Lew, 1999, Petersen, et al., 1996; Cao, et al., 2003) and thus differ from ~~~ ~ PACIFIC SOILS ENOINEERING, INC. i,~ ~ PROBABILITY OF EXCEEDANCE BOORE ET AL(1997) NEHRP D(250)1 ~ • • 0 ~ 0 yrs 50 rs ~^ ~ A J A /1 ~ ~~~ 90 • .-. 80 ~ 0 `~ ~ 70 ~ ~ ~ 60 c~ ~ ° 50 a • °' U 40 C a 30 a~ ~ ~ 20 X W 10 • • • 0 0.00 4`~~' PLATE D-2 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration (g) I• PROBABILITY OF EXCEEDANCE CAMP. & BOZ. (1997 Rev.) AL 1 ~• ~ 0 0 yrs 50 yrs 0 ~ ,. . ,. ,. 100 90 • .-. 80 ~ 0 T 70 ~ • ~ 60 c~ ~ ° 50 a • °; 40 ~ ~ 30 a~ U • ~ 20 X W 10 • • • 0 0.00 ~a~ PLATE D-3 0.25 0.50 0.75 1.00 1.25 1.50 Acceleration (q) • • PROBABILITY OF EXCEEDANCE SADIGH ET AL. (1997) DEEP SOIL 1 • ~ 0 0 yrs 50 yrs 0^ ~ _ . ,.,. _ - • • • • • • • • 100 90 ~. 80 ~ 0 T 70 ~ ~ 60 ~ ° 50 a °' 40 U C -`~0 30 a~ ~ 20 X W 10 0 0.00 0.25 0.50 0.75 1.00 1.25 Acceleration (q) 1.50 ~~,1 PLATE D-4 • Work Order 700007-C May 21, 2004 Page D-6 • numbers derived from past standazds of practice. Owing to abundant knowledge gained from recent earthquakes, as well as from recent and ongoing geological and seismological investigations, the sciences aze expanding so rapidly that in some cases industry and govemment ~ generated seismic guidelines can be obsolete afrer only a few yeazs. The ma~cimum free-field PGA should not necessazily be used in empirical engineering formulas currently in use to determine earthquake-resistant enaineerina design. Page and others (1972) I~ also noted that a single peak of intense motion (maximum or peak acceleration) might contribute less to cumulative damage potential than multiple cycles of less intense shaking. Further, the Califomia Division of Mines and Geology (1997) cautions that the seismic coefficient "k" is not I~ equivalent to peak ground acceleration, and that peak ground acceleration should not be used in pseudostatic slope stability analyses. Design of future improvements should be based on current design practices for similar works in the azea. It is the purview of the engineer, based upon information presented herein, to select suitable seismic pazameters. • Closure The PGA results aze based upon many unavoidable geological and statistical uncenainties, but yet are consistent with current standard-of-practice (Petersen, et al., ] 996; Martin and Lew, II ~ 1999). As engineering seismology evolves, as more fault-specific geological data aze gathered; and as legislative action continues, increased certainty and different methodologies may also evolve. Further, predictions of times of occurrence, locations and magnitudes of as well as ~ ground response to, future earthquakes are tenuous and subjective. Only probabilities and/or possibilities can be assessed on the basis of the existing geologic data, limited historical and seismic records; and empirical relationships among fault lengths, distances between the faults and the study site, and ground acceleration. However, enough seismic events of magnitude 6.0 ~ or greater have occurred regionally to indicate that such events could recur within the life of the subject development. I• `~ ~ PACIFIC SOILS ENGINEERING~ INC. i• Work Order 700007-C Page D-7 May 21, 2004 • Aaaendix D References 1. Abrahamson, N.A., and Somerville, P.G., 1996, Effects of the hanging wall and footwall ~ on ground motions recorded during the Northridge earthquake: Seis. Soc. Amer. Bull v. 86, n. 1B, p. 593-599. 2. Blake, T.F., 1998, 2000, FRISKSP: A computer program for the probabilistic estimation of peak acceleration and uniform hazard spectra using 3-D faults as earthquake sources, ~ v.4.00: Thomas F. Blake, Newbury Park, California, 199 p. 3. Boore, D.M., Joyner, W.B., and Fumal, T.E., 1997, Equations for estimating horizontal response spectra and peak acceleration from westem North American earthquakes: A summary of recent work: Seis. Res. Let. v. 68, n. l, p. 128-153. ~ 4. Bullard, T.F., and Lettis, W.R., 1993, Quaternary fold deformation associated with blind thrust faulting, Los Angeles, Basin, Califomia: Jour. Geophys. Res., v. 98, n. B5, p. 5. California Division of Mines and Geology, 1993, Prepazation and review of engineering geologic/seismic reports for hospital and school sites in California: • Seminar at Newport Beach, February 27, ] 993, unpaginated. 6. Califomia Division of Mines and Geology, 1997, Guidelines for evaluating and mitigating seismic hazards in Califomia: Spec. Pub. 117. 7. California Division of Mines and Geology (CDMG), 2001, Seismic hazard zones, ~ official map, Prado Dam quadrangle: Map scale: 1:24,000. 8. Califomia Geological Survey (CGS), 2003, Checklist for the review of engineering geology and seismology reports for Califomia public schools, hospitals, and essentia] services buildings: Calif. Geol. Surv. Note 48, 2p. ~ 9. Campbell, K.W., 1997 Rev., Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra: Seis. Res. Let. v. 68, n. 1, p. 154- 179. ~ ] 0. Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C.J., 2003, The revised 2002 California probabilistic seismic hazards maps, June 2003: Cali£ Geol. Surv. Web Page. 11. Crook. Jr., R., Allen, C.R.. Kamb, B., Payne, C.M., and Proctor, R.J., 1987, Quatemary geology and seismic hazazd of the Sierra Madre and associated faults, western San • Gabriel Mountains in Recent reverse faulting in the Transverse Ranges, California: U.S. Geol. Surv. Pro£ Paper 1339. ~~~ ~ PAGIFIC 501L5 ENGINEEiiING, INC. • Work Order700007-C Page D-8 May 21, 2004 • 12. Davis, T.L. Namson, J., and Yerkes, R.F., 1989, A cross section of the Los Angeles area: Seismically active fold and thrust belt, the 1987 Whittier Narrows earthquake, and , earthquake hazazd: Journal of Geophysical Reseazch, v. 94, n. B7, p. 9644-9664. ~ 13. Dolan, J.F., Sieh, K., Rockwell, T.K., Yeats, R.S., Shaw, J., Suppe, J., Huftile, G.J., and Gath, E.M., 1995, Prospects for lazger or more frequent earthquakes in the Los Angeles metropolitan region: Science, v. 267, p.199-205. 14. Hauksson, E., 1992, Seismicity, faults and earthquake potential in Los Angeles, southern • California, in Pipkin, B.W., and Proctor, R.J., editors, Engineering geology practice in southem California: Assoc. Eng. Geol. Spec. Pub. no. 4. ] 5. Intemational Conference of Building Officials (ICBO), 2001, 2001 Califomia Building Code, Volume 2, sttuctural engineering design provisions: p. 2-30-2-35. • 16. Jennings, C.W., 1994, Fault activity map of Califomia and adjacent areas, with locations and ages of recent volcanic eruptions: Cali£ Div. Mines and Geol. Geologic Map No. 6, 1:750,000. 17. Martin, G.R., and Lew, M., (editors) 1999, Recommended procedures for implementation of DMG SP117 guidelines for analyzing and mitigating seismic hazazds in California, ~ Committee organized through SCEC, Mazch, 1999, 63 p. 18. Mueller, K.J., 1997, Recency of folding along the Compton-Los Alamitos trend: Implications for seismic risk in the Los Angeles basin: EOS Transactions of the American Geophys. Union, v. 78, p. F702. ~ 19. Page, R.A., Boore, D.M., Joyner, W.B., and Coulter, H.W., 1972, Ground motion values for use in the seismic design of the Trans-Alaska pipeline system: U.S. Geol. Survey Circular 672. 20. Petersen, M.D., and eight others, 1996, Probabilistic seismic hazard assessment for the State of California: Cali£ Div. Mines and Geol. Open-File Rpt. 96-08, 33p. • 2l . Sadigh, K., Chang, Y., Egan, J.A., Makdisi, F., and Youngs, R.R., 1997, Attenuation relationships for shallow crustal earthquakes based on Califomia strong motion data: Seis. Res. Let. v. 68, n.l. • 22. Shaw, J.H., and Shearer, P.M., 1999, An elusive blind thrust fault beneath metropolitan Los Angeles: Science, v. 283, p. 1516-1518. 23. Shaw, J.H., and Suppe, J., 1996, Earthquake hazards of active blind-thrust faults under ihe central Los Angeles basin, California: Jour. Geophys. Res.; v. 101, n. B4. p.8623- 8642. ., ~ ~~ • PACIFIC 501L3 ENGINEERING, ING. i• Work Order 700007-C Page D-9 May 21, 2004 24. Somerville, P., Saikia, C., Wald, D., and Graves, R., 1996, Implications of the Northridge earthquake for strong ground motions from thrust faults: Seis. Soc. Amer. Bull. v. 86, n. ] B, p. 9115-9125. ~ 25. Suppe, J., ] 983, Geometry and kinematics of fault-bend folding: Amer. Jour. Sci., v. 283, p. 684-721. 26. Working Group on California Earthquake Probabilities, 1995, Seismic hazatds in southern Califomia: probable earthquakes 1994 to 2024: Seism. Soc. Amer. Bull., v.85, no. 2, p. 379-439. • 27. Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E., and Vedder, J.G., 1965, Geology of the Los Angeles Basin Califomia -- an introduction: U.S. Geol. Surv. Prof. Paper 420-A. 28. Ziony, J.I., & Yerkes, R.F., 1985, Evaluating earthquake and surface faulting potential, in Ziony, J.I., editor, Evaluating earthquakes hazards in the Los Angeles region -- an earth- • science perspective: U.S. Geol. Surv. Prof. Paper 1360, p. 43-92. • • • • • ~ql~ ~ PACIFIC BOILB ENGINEERING, ING. s Work Order700007-C May 21, 2004 UNIFORM BUILDING CODE 1997 Edition, Seismic Parameters Page D-10 ~ The closest fault to the subject site is the Wildomaz fault (Kennedy, ] 977) or the Temecula segment of the Elsinore fault zone (Blake, 2000), which is classified as B type fault for the , Uniform Building Code. This fault is predominantly right lateral/strike slip. It has a maximum magnitude of 6.8 and a slip rate of 5.00 mm/yr. Presented in the table below are the 1997 ~ Uniform Building Code Seismic Design Parameters for the subject site, for soil profile Sp. SOIL PROFILE: Sp (alluvium/fill) • ~ ~ r J ~ TABLE'D-1 -. £ w SEISMICDESIGN PARA_METERS (Soil Type SD) _ Seismic Parameter Recommended Value UBC -1997 Chapter 16 ab e Seismic Zone Factor (Z) 0.4 16-1 Soil Profile Type So ~ ~-J Seismic Coefficient (Ca) 0.44Na 16-Q Seismic Coefficient (C„) 0.64N~. 16-R NearvSource Factors (N,) 13 16-5 NearvSource Factors (N,) 1.6 16-T Seismic Source Type B 16-U ~q9i ~ PACIFIC 501L5 ENGINEEFING, INC. i• i• ~• APPENDIX E ~ Slope Stability Calculations • • • • ~ • \~'~ ~ PACIFIC SOILS ENCdINEERING, INC. i• --- - - 0 `r ~ i i ~ • i ~ ' !, ' 0 . . . _.. _._.. _ . . _ _ .. ~ _._ N I ~ ~I oI o~ , I ~ o. ~I ~ , O ~ ~! _. . . ..- --~------------------- - .~. . . ... ~. ... .. .. . . _ v ~ o L . -- o d .. _ N! ~ ~ ., ~ ~ ' - ~ O 10 ~, !, '. . ' L ~ .` N Q ~ m C ~ ~a C~ rn ~ ~ .p d \ w '-'~'° W I ~ = ~ f 6 . ~+ H ~' . ~ .. ___ .. \' _ _ _._._ .. . . _.. _>_ ... .. ~.. ._ .. . ._ O M ~ N N r ~ C ~ G1 ~ \ ~C d L Q.U : m ; ~ a ~ ~~ ~ y h- LL ~ fn m ~ ~~ ~. N Ia ~` ~ c, ~ m LL~: ` Jm • ~ N ~ ____ _ .. J!'~ U ' , m ~ O Q U , _ . .. _ ... . . . .... . . .. a ~,. ~ o . . . _. . . . . . . . . ~i;d~z° __ , <o C U _ . it! 9 T LLI N ~ U~I ~i O d p~ O . . I Q U o I I. = c a m' . ~~ ' ~~~ ~ r Q, ' LL Q.. ~ , i. 0 ~ o O~~ioa . ' ~ ~ O i ~; ~~wo. ', LL O U:I td ao . . W ~~ o ~ . _ ._ _ _ .. . .. ._ . .__.. . ti ~ . . . .. . . .. ... .... . . ~ o ~ a rv . ~ w i O ; , ~ ~ ~ , m ~ ~ , w I: ~3~0~ ~ ' ~ Z I~ UN ~7aN 3 'm ' . W . «V ~ U ~ ~~ UJ ' tN n~~ F~- U !~~ ~ , il_m . .. .. .. . _ . : .. o . _. .. . . . . -.0 QO~ "N~Z N _ ~ _ • i ~ y ^ ti fn~~~~~~~~~om . LL(~ M C'I C') t'i M C> [7 C'i th ,~.. . ~IOJ]U9CI~OIL~-.~ h. ~__ _.____.___"_ _._ ____- , ~'--_- _ _ _- -__._ " _--'-_"' _-'-'__-~"" _ __ ' __ "__ _ O N O W f~0 V Cl N I¢ I • ~ ~ + y ~ I ~q~ ~ PLATE E-1 i. 0 ---- -- ~ ~ . 0 _ _ __ _ _ ~ ~ ~ . ~ 0 e 0 y° ' v ~ . •N N , . . .. . i ~ ~ ~ o .c ._ _ . . . ... .... ... ...._~....._ . _ . . .. _ . . ._. _ ~ o m ~ _ ~ ~ ~ . ; ~ ,' ~ ~ ~ , Q °' ; . . ~ ~, c V - R ir ~ '. ! ~ ~ ~0 S ~~ ' . ~p y q. I d ~ C ' W O W' ~. ~ !? ~ a I~ ~v°,__ -. °a~ NE d o c N ul ~ ' - __ ~ •E y ~ a ~ ~, t d>. i i m oP ~ LL T G_ro ?o: Nm ~ ~ ~i >r'.~ ~ ~ » ~ ~ ' ~ n r ~ ~ J ~, P. , m ~ ~ d :. ~W. ..... .... .. . ... ... .. __ . _ . . ._._ ' . ....__. ' O a O ~ a', JN; ..__, ~p y A ~ . o ~ U nj LL =: i a U I = _- . ~ ~ ^O ~, Fj m . . ~ i r O. N.` 00 ~ w . Z U o,' a f'n ~ in w r ~ ,~ `o°~ mo . ~ : I ~ m 0 ~ U c~c~c L O w i;_'~Qam . . . .... .. . . ...... .... . _ .. _ . . __. O p ~ a ;! LL ~ . .. . ..._.. . ~ O~ i~l p n o' ....-~ ~6 I~ fn ~~ ~ U N O ~ LL , Z III L d a~ " . ~ ~ C ~ p :j ~- W ' a . F ~' m3~o N U U) C) ~~°~ ~7 ~'. ~ . .. . _ O N 0 i ~3 ~N O `- n N r~~~ ~ ~ _ a, . pao~ fnFZ = ti N ~~Q LL~ I n `-'_.____.. -_- ___ - _. ___-__' -_-.._ -__-_._" __. _ . . _~ O ~ • N O a~0 t~D __~ __"_"_-"-_- N ~ ~ r h ~ \~ ~ PLATE E-2 i• SURFICIAL SLOPE STABILITY I• • • • SLOPE SURFACE--. ~-~- - Pw __ _ Fd < z < -__-~- _ _ - ~ _ - ^ -- Ws-Ww v-~______-~- ~ ---~ -- - <- _ ~; ~~ _ " Fr ~> ~ - ,-; _ _ __ - a ~~''',~ FAILURE PATH + ~y; FLOW LINES Assume: (1) Saturation To Slope Surface (2) Sufficient Permeability To Establish Water Flow ~ Pw = Water Pressure Head=(z)(cos^2(a)) Ws = Saturated Soil Unit Weight Ww = Unit Weight of Water (62.4 Ib/cu.ft.) u = Pore Water Pressure=(Ww)(z)(cos^2(a)) z = Layer Thickness • a = Angle of Slope phi = Angle of Friction c = Cohesion Fd = (0.5)(z)(Ws)(sin(2a)) Fr = (z)(Ws-Ww)(cos^2(a))(tan(phi)) + c Factor of Safety (FS) = Fr/Fd • ~ ~ Given: Ws z a phi c Calculations: Pw u Fd Fr FS 3.20 199.68 200.00 435.12 2.18 ~`~~P ~ Pacific Soils Engineering, ~~~. PLATE E-3 li I• '• APPENDIX F ~~ s Liquefaction Calculations • ! • ~ • ~ ~q~~ • PACIFIC SDILS ENOINEERING, ING. i• Work Order700007-C May 21, 2004 APPENDIX F LIOUEFACTION ANALYSIS Page F-1 I~ A liquefaction analysis was performed for the site based on data gathered from cone penetrometer (CPT) soundings. The raw data from the CPT's was inputted into a computer program called LiquefyPro by Civiltech. Data from the CPT soundings is presented in Appendix B(CPT-1 through CPT-30). The program uses the Robertson and Wride method to analyze liquefaction and the Tokimatsu and Seed method to analyze dynamic settlement. The program generated Plates F-1 through F-30. The calculations used the following constants: 0.73g for site acceleration (Appendix D), 6.8 for the magnitude of the earthquake (Appendix D), and a groundwater depth of 25 feet below existing grade (Section 4.4). The calculations assumed that five of the upper soils was removed and replaced with non-liquefiable fill. Per Special Publication 117, a factor of safety of 1.0 was used for settlement based on the Ni~bo~ values. w ~ r • O `~~ ~ PACIF~C SOtLB EN6INEEFING, INC. ~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 s Hole No.=CPT-1 Water Depth=25 ft Raw Unit Fines ShearSt2ssRatio qc fc Weight % p 28.020.14 105 '105.8 0.69 '105 84.970.72 105 ~ 67.99 0.61 '105 37.520.49 105 ' 42.09 0.55 105 ~ 41.630.65 105 4'1.31 0.63 105 42.370.51 705 33.280.33 105 34.7 0.39 105 38.11 0.4 105 j . 31.47 0.43 '105 26.98 0.53 "105 28 0.53 105 35.430.35 105 59.180.65 105 '122.91.09 105 78.680.79 105 39.070.5 105 35.950.52 105 33.760.7 105 41.620.47 105 ~~i ~ 41.790.86 105 . 53.350.79 105 70.961.03 '105 . 51.480.79 105 36.61 1.08 705 20.68 0.92 '105 29.971.17 105 ' 32.011.37 '105 39.031.44 105 28.431.47 t05 3'1.151.4'I 105 I~ A 39.711.65 105 129.61.37 '105 15022.01 '105 146.22.39 105 75.362.08 105 37.811.7 105 i 44.011.95 105 52.151.7 105 62.422.07 105 148.7 7.75 105 ~ 110.62.63 105 145.32.27 105 269.82.32 105 326.4 3.26 105 192.1 2.06 105 87.542.38 105 ~ Shaded Zone has Liquelaction Potential ~ ) ~ ~ CIFIC SOILS ENGINEERING Work Order 700007-C ~ Magnitude=6.8 Acce/eration=.73g Factoro(Satety Settlement 2 01 5 0(inJ f0 S = 1.30 in. Piate F-1 ~~ I~' ` LIQUEFACTION ANALYSIS i Wolf Creek Phase 2 - th=25 ft Magnitude=6.8 ~ Hole No.-CPT-2 WaterDep Acceleration=.73g Raw Unit Fines Shear Stress Ratio Facfor of Sa/ety Settlement c (c Weight % 0 2 0 7 5 0(in.) 10 4 I ~ I ~ ~05 105 105 105 105 105 105 ~ 705 105 105 105 5 10 105 105 105 ~ 105 t05 C 105 ~ ~ 105 105 • 105 C C 105 105 105 ~ 105 ~ ~ ~105 I 705 105 105 105 l ~ Shaded Zone has Liquefacfion Potential ~ ~ ) ~ 7 CIFIC SOILS ENGINEERING Work Order 700007-C ! $ = 2.24 Il1. ~ Plate F-2 ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-3 Water Depth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unft Fines Shear Stress Ratio Factoro( Safety Settlement qc /c Weight % 0 2 D 1 5 0(in.) 10 azw o.a ~os uo~c e>as aa3 ~os raw • 5p.1~ 2889 013 009 1p5 10.5 NOLp No~p 158] ~Oa 165 Noty 3C.39 01t 105 WLp 2].Ot O.II IDS Wl0 fi8.13 025 f05 NO~p 29]B 0.11 105 Nalp ]29 ~ 01< 1p5 NoLO fl515 O.Q 105 NoLd BB.BB 0~1 105 NOIq • 1CB.6 13a.3 O51 O.fi] 105 10.5 NoLy NoLd lae ] p.fi6 105 NoL4 118~ OA9 105 NOLQ ]]<0 03] 105 NOLq 6G5 OtJ 105 NOLQ 53 B3 0.38 105 NoL4 J305 O<J 105 NoLa ' 29 H OA~ 105 NoL4 3895 0.0.5 10.5 NOIA 8)3 068 105 NoLp • 5358 ~63 105 NoLp ~888 ~55 1p5 NoLp 198 ] 0.9] 10.5 Nola 162.0 LI] ID5 3.8 110.] 1.OI 105 fi.8 IDt! 0.86 IDS B.5 ]J.BB O.Y5 105 13! ~ fi]0] 0.& 105 16.3 36.% 1.t8 f65 01] fi935 136 105 1I.5 ~ ~183 185 105 90.5 &S.CB 1.W f05 3L1 t55a 209 IDS Be Rt8] 3! 1p5 5.5 101.B 1]B 105 SB 181.5 1.11 105 ].1 395.8 t 6] ~05 ] ) 32].1 SOB 105 •5 131.8 f] 105 8 i 6] 92 192 1M 23 ~ ~, . 141.5 I.B) W5 12.1 32<.5 3 105 1.1 I 199A 1.9 105 63 1114 1)5 105 1] d t13i 233 105 t5.3 ~ 01.P8 23fi tCfi 33.5 tOG.3 2.6] 105 18.6 ) 1fi6.5 3.61 t05 133 1 ~' CRR - CSR - Shaded Zone has Liquefacfion Potential ~ ) ~ ) ,~ S = 2.61 in. ~\ CIFIC SOILS ENGINEERING Work Order 700007-C Plate F-3 • ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-4 Water Depth=25 ft Magnitude=6.8 Acce/eration=.73g Raw Unit Fines ShearStressRatio FactorofSalety Settlement ' qc /c Weight % p 2 0 1 5 0(in.) 70 105 ~ i I 105 105 ~ , 105 105 105 105 705 , 105 I 705 105 • 105 105 05 1 105 I I I 105 ~ i 05 1 ~ 105 105 105 105 ' 105 i 105 ! 105 ~ ~ ~ 105 105 ~ 705 105 105 i 105 ~ ~ 105 ~ ~ 105 I 105 105 ~ 105 j 705 Wet- Dry- . Shaded Zone has Liquelaction Pofential S= 2.59 in. ~ ,~ ~ • ~ n~ rr CIFIC SOILS ENGINEERING Work Order 700007-C Plate F-4 • ' LIQUEFACTION ANALYSIS ~ Wolf Creek Phase 2 'I ~ Hole No.=CPT-5 Water Depth=25 ft Raw Unit Fines Shear Sfress Rafio qc lc Weight % p 2.94 0.03 105 59.8 0.24 105 82.660.32 105 ~ 77.33 0.36 105 25.770.18 105 14.330.22 105 21.51 0.17 105 29.63 026 105 25.81 0.21 105 , 29.93021 ~OS 31230.3 '105 31.890.33 105 31.330.33 105 • 15.15 0.35 '105 13.39 0.33 '105 30.080.33 105 56.8 0.49 105 54.350.47 105 64.5 0.36 105 44.13 0.28 '105 ' 18730.72 105 55.780.61 105 73.560.58 105 32.2 0.68 105 ~ 26.02 0.88 105 44.680.55 105 5823 0.88 105 55.881.1 105 54.61 1.17 105 55.141.'I 105 ' i 58.521.62 105 136.61.4'I 105 ~ 189.61.52 105 ~ 179.97.45 105 ~ I ~ 18527.66 705 232.9 2.34 '105 ~ 241.82.14 105 226.7'1.84 '105 70.761.09 105 32.71 1.17 105 i 28.311.02 105 ~ 47721.52 105 . 52.291.56 105 ~. • 41.09t55 ~05 ~ 65.091.32 105 ~. 50231.79 105 ~ 37.'181.64 105 ~ 25.09122 105 ~ 28.091.05 105 ~ 112.0172 105 i Shaded Zone has Liquefaction Potential ~ ~ ~ ~ ) ~ CIFIC SOILS ENGINEERING Work Order 700007-C • Magnitude=6.8 Acceleration=.73g Factorof Safety Settlement 2 O1 5 I i Wet- DN- S = 2.2< (J"~ Plate F•5 ' LIQUEFACTION ANALYSIS ~ Wolf Creek Phase 2 I• ~~ I~ ~ ~ ~ ~ Hole No.=CPT-6 Water Depth=25 ft Raw Unit Fines ShearStressRatio qc fc Weight % p 97.150.39 105 174.81.59 105 531.45.56 105 51528.53 105 395.73.14 105 128.31.41 105 59.160.48 105 34.43 027 105 30.950.16 105 36.070.19 105 ~ 41.64 023 105 30.520.28 105 3'1.91 025 105 43.61 0.'16 105 62.370.4 105 ' S8.92026 105 6224 0.35 105 76.550.56 105 85.440.6 105 103.60.71 105 ~ 85.590.64 105 57.850.7 705 86.7 0.62 105 140.1 0.97 105 144.60.97 105 > 125.4 7.79 105 120.21.05 105 150.91.86 105 ~ 119.92.14 105 109.32.17 105 ) i CIFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceleration=.73g Factoro/Safety Settlement 2 0 1 5 0(in.) 1 5=0.47in. ~ Plate F-6 • Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS Woif Creek Phase 2 ~ Hole No.=CPT-7 Water Depth=25 ft Raw Unif Fines Shear Stress Ratio qc fc Weight % p 23.150.17 105 97.81 1.09 105 • 79.55 0.9'I 105 72.650.56 105 63.360.54 105 49.650.34 105 73.730.6 105 78.440.58 105 95.920.59 105 82.51 0.6 '105 24.450.39 105 20.920.47 105 3628 0.48 105 ~ 91.340.84 105 68.61 0.66 105 29.930.45 105 49.660.59 105 134.11.47 105 157.61.76 105 150.'11.45 105 66.98 0.82 t 05 25.590.93 105 23.190.85 105 ~ 29.421.01 105 18260.71 '105 52.72 1.06 '105 100.61.39 105 t332125 105 147.6 1.99 105 193.6229 105 ~ 210.1 2.33 105 218.82.55 105 227.4 2.32 105 258.92.6 105 ~ 191.52.06 'I05 192.51.86 105 243.'I 2.36 105 274.93.59 105 296.9429 105 329.24.17 105 ~ 3197427 105 17823.52 105 222.22.73 105 280.52.84 105 ~ 274.0 2.65 105 253.8 224 105 187.21.84 105 48.841.89 105 54241.75 105 62.992.33 '105 r Shaded Zone has Liquefaction Poten~ial ~ 7 ~ 7 ~ CIFIC SOILS ENGINEERING Work Order 700007-C • Magnitude=6.8 Accelerafion=.73g Factorof Safery Settlement 2 0 1 5 0(in.J 1 S=0.64in. ~ Plate F-7 ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-8 Water Depth=25 ft Magnitude=6.8 Accelerafion=.73g Raw Unit Fines Shear Stress Rafio factor of Sa/ety Setllement qc fc Weight % p 2 0 1 5 0(in.) 10 13.980.02 105 43.980.08 105 43.630.11 105 ~ ~ 50.240.13 105 42.860.14 105 3925 0.1 105 ~ 44.660.17 105 63.48 0.34 105 ~ 62 0.22 105 ' 81.830.33 105 106.50.58 105 , 137.30.86 105 ~ 120.30.82 105 • ~ 70.67 0.44 105 , 43.71 022 105 30.170.25 105 ~ 26.41 0.43 105 36.970.5 105 18.060.44 105 . 65.67 0.46 105 '~ 21.650.4 105 - - 132.30.99 105 20121.47 105 . • 184.51.41 105 - 237. t 'I .73 105 - 245.01.95 105 ~~~ 184.71.37 105 56.361.24 105 59.57 1-'12 105 47.65 7.05 105 ~ 54.031.29 105 68.361.43 105 101.81.67 105 ~ 87.471.74 105 5 34.8 1.37 10 18.380.83 105 14.91 0.72 105 . 13.990.71 t05 ~. 19.930.91 105 30.571.15 105 i 52.81 '1.36 105 ~ 48.187.69 105 • 59.641.7 105 ~ '100.3 1.72 105 113.92.55 105 ~ 106 7.74 105 59.142.32 105 196 0 3.23 106 ~ ~ Shaded Zone has Liquelaction Potential ~ r ) ) ~ CIFIC SOILS ENGINEERING Work Order 700007-C • vvei- u S = 1.98 in. ~ Plate F-8 i• I• ~~ ~~ ~~ ~~ I~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-9 Water Depth=25 ft Raw Unil Fines qc ic Weight % ShearStressRatio p 12.37 0.04 105 28.87 0.14 '105 23.62 0.14 '105 40.090.25 105 73.760.39 105 104 0.53 105 79.590.47 105 29.83 026 105 28.3 0.19 105 54.170.32 105 62.950.42 '105 42.760.33 105 56.170.47 105 78.750.66 105 36.340.43 '105 24.970.55 705 21.090.66 '105 68.190.49 105 188.41.37 105 199.51.72 105 ' 168.11.87 105 59.141.37 105 53.270.82 105 38.821.03 105 39.830.95 105 29.261.17 105 22.150.93 105 28.871.04 ~ 05 44.961.56 105 52.851.63 105 ~ 56251.88 105 72.251.8 105 89.661.78 105 48.38 1.64 105 59.022.06 105 141.62.58 105 72.982.25 105 39.681.62 105 90.91 2.63 "105 76.422.25 105 i 123.9 272 105 '165.7 3.78 105 220.64.19 'ID5 142.53.29 105 170.2 3.98 105 82.92 3.14 '105 139.6324 105 228.1 3.88 105 246.63.06 105 '185.51.84 105 ~ ~ i ~ ~ ~ CIFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acce/eration=.73g Factorof Safety Settlement 2 0 1 5 0(in.) 1 S = 0.51 in. ~1 Plate F-9 ~ Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-10 Water Depth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unit Fines Shear Stress Ratio Factor of Sa/ety Sett/ement qc lc Weight % 0 2 0 1 5 0(inJ 10 105 ~ 105 ~ '105 105 '105 105 ~ CIFIC SOILS ENGINEERING Work Order 700007-C • S = 1.08 L~ Plate F-10 Shaded Zone has Liquefaction Potential i~ I• ~~ ~~ ~~ ~~ ~ ~ t ~ 7 ~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-11 Water Depth=25 ft Raw Unit Fines Shear St2ss Ratio qc ic Weight % 0 1 1 1 1 CIFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceleration=.73g FactorofSafety Settlement 2 01 5 0(in.) f0 S = 1.99 fn. ~ Plate F-11 '! Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-12 Water Depth=25 ft Raw f/nit Fines Shear S[ress Rafio qc !c Weight % 0 ~ss o.ae ~os waa ».ee ow ios rvow ~21J 0.03 105 NMp • 55.18 OW f05 NoLp SBB) 008 10.5 NoW 60.81 O.lfi 105 Nolp 05,{6 OA2 1p5 NoLp 9~59 O.CB 105 1'bLG BI.S] OOB 165 Nolq ~ 01.58 00> 1~5 lb~4 188.9 03B 105 Nalq 2~BS 1.Z2 165 Nolq ~mz zn ~os 'ww • Z91.8 1.BJ 105 Nolq 158.8 1.fe 1D5 NoLV f05.3 OA2 105 Nolq IOB.2 OS 1D5 NoLV 12B.B 1.Ofi 105 MoLO 1~2.0 142 105 Nolq ' 1585 159.0 139 ].1J 105 105 NoLV NoLV 1fi8.0 2)5 105 NoLV 3i9.] 3]~ 105 Nolp • Y]ZB 1B) 105 NoLp NB.) 2.05 165 NoL-0 R50.) 3.3J t05 NoLO 1W.1 22] 105 >.] 1~.5 3.OB 105 5.] 13B.8 t.Bfi 105 J.1 2W.8 1.5I IDS 9.t ) t2C.5 1 B 105 2.fi 3103 2.11 105 25 I&5.5 2.35 1M 2.5 ~ 20B 8 J01 1 3.38 3&5 105 1M 1.5 3 . 383.8 2.BB 105 3.) ]18.9 0.81 1Q5 58 ZJ5.0 5.59 105 10] 1)].1 lJ2 ~OS II.e 1/OA 89D 165 206 ) f19.B l86 IDS 1~ 155.1 lW t05 1] ue.e as~ ~os ~u , sa.s ieu ~.33 szs ios ios ii.i n.z 206.1 S.1B 105 II.6 300A B.OB tp5 119 180.1 5% 105 tfi 1&d fiAfi 105 19.6 155.1 ).AS 10$ T3.) ) 108.5 8 ~9 105 303 ~~ ~~ ~~ Magnitude=6.8 Acceleration=.73g FactorolSa/ery SetNement 2 0 1 5 0(in. ) 1 Shaded Zone has Liquefaction Potential ) ) CIFIC SOILS ENGINEERING Work Order 700007-C ~ l Wet- 5 = 0.07 in. v'~ Piate F-12 • i~ I• ~~ ~~ ~~ ~~ I r ~~ ~~ I~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-13 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc (c Weighf % 0 78.970.1t 105 90.8 0.78 '105 60.2 0.59 ~05 57.240.55 105 75.540.8 105 88.141.01 105 121.2'1.12 105 242.93.55 705 122.93.63 105 773.34.83 105 ~ 88.34 2.53 105 66.52 2.'19 105 96.'153.3 105 108.75.16 105 83.463.81 'I05 ' 292.87.65 105 185.35.1 705 223.2 6.77 '105 240.37.8 705 97.574.7 105 ~ 206.8 6.86 105 238.75.82 105 54.452.48 105 92.633.15 105 78.183.33 105 ~ 467.4 7.03 '105 616.87.45 105 611.75.53 105 573.56.13 105 596.4 9.76 105 7 5 CIFIC SOILS ENGINEERING Work Order 700007-C , Magnitude=6.8 Acceleration=.73g Factoro/Safety Settlemenf 2 0 1 5 0(inJ 1 S=O.OOin. 2`~ Plate F-13 • Shaded Zone has Liquefacfion Potential i• I• ~ ` ~~ ~ ' ~~ ~ ~ ~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-14 WaterDepth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unit Fines ShearStressRatio FactorofSafety Settlement pc fc Weight % 0 2 0 1 5 0(in.) 1 CIFIC SOILS ENGINEERING Work Order 700007-C S = 0.63 in. v,v Plate F-14 ~ Shaded Zone has Liquefaction Potential i• I• ~~ ~ ~ ~ I ~ ~ ~ ) LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-15 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc fc Weight % p 105 ) CIFIC SOILS ENGINEERING Work Order 700007-C Magnifude=6.8 Acceleration=.73g FacforofSafety Sett/ement 2 O 1 5 0/inJ 7( S = 1.03 in. 2\! Plate F-15 • Shaded Zone has Liquefaciion Potential i• li ~ ` ~~ ~~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-16 Water Depth=25 ft Raw Unit Fines Shear Stress Rafio qc lc Weight % p I • i 1 1 1 1 1 1 ~ 1 1 1 ~ j 1 1 1 1 1 ~ ~ ) ~ CIFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceleration=.73g Factoro/Safety Settlement 2 0 1 5 0(inJ 10 S = 1.09 in. Z~~` Plate F-1 6 • Shaded Zone has Liquefaction Pofential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-17 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc ic Weighf % p 33>J 0.1] 105 WLp 1034 1 W 1p5 NOLp ' SB.t5 tW 105 NoLO . 39.88 082 f05 NaLQ 45.B9 062 105 NoLa ~J.)) 0)B 105 NOLQ S6J3 t3J 105 NoLp SSBb Ofi9 105 NoLq ~803 OBJ 1p5 NoLq 353] Ofi5 105 NoLp C156 ~62 105 NoLp 80.45 0.95 105 NoLO ~fi66 ~.85 105 NaLp . 61)9 O)1 iM Nalp fi1.B6 0)] 105 NaLp 30.&5 0.$ 10$ NOL4 <216 0.63 1p5 NaL4 62 Z3 108 105 Nalq ]BM O81 105 NoLy ]]38 ~i] IDS NaLa sa.ea o>e ios rwW as.zi a.ee ~os No~u 825) 116 10.5 NoLp ~ 1fi8.0 2]a 105 NoLp 308.6 3.)3 105 NoLp 16R 3 1.5 105 NoLp 53~8 1.39 105 335 35.W Lt8 105 31] 2<.tfi 1.11 105 @6 3].91 1 dd 105 ~a ~ 31 2) 13C 1Q5 36.1 2a5] 133 105 ~a.9 3333 153 105 3i.1 ~ 36.R t83 t05 3].6 B3we tSt 1a5 15.B 2]3B 39fi 1C5 ] PS.t 3.33 105 L9 t3~b 2.t2 tM15 tl •f.83 1.61 105 15 )3.8 f.88 10.5 u 6533 23] 105 3]3 65.1i Rd] 105 96] 53.~t 3.43 105 Ja.1 B1 BB 3St t05 22.6 ~ . ien zs ios za iaes zn ios n.~ B5.R2 P.6] 105 33.t a9.89 L5~ 105 29.8 ~933 2.06 105 35.5 80.66 2.2 1~5 Re.6 150.0 3.Sa 105 tf.9 ~~ ~~ ~ Magnitude=6.8 Acceleration=.73g Facforo(Sa(ety Settlement 2 0 1 5 0(inJ 1 Shaded Zone has Liquefaction Potential ;IFIC SOILS ENGINEERING Work Order 700007-C 5=0.57in. 2~~' Plate F-17 • i• I~ ~~ ~~ I~ ~ ~ ~ ~ ) ~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-18 Water Depth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unif FMes Shear St2ss Rafio Facforof Safery Settlement qc /c Weight % 0 2 01 5 0(in.) f0 1 1 t CIFIC SOILS ENGINEERING Work Order 700007-C vve~- u S = 1.02 in. ~\~P Plate F-1 8 t Shaded Zone has Liquefaction Potential i• I• LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-19 Water Depth=25 ft Raw Unit Fines Shear Stiess Ratio qc lc Weight % p L9 001 105 NoLp 00.09 0~5 105 NoLa 101.0 O88 ID5 NoLp . )OAa O.Sfi 105 NoLp C935 038 105 NoLp 25dB 039 105 NolO 40.5~ 0.93 1p5 NoLp ]tW 0.]t 1M NoLp 33 Bt 0.31 105 NoLp ~131 0.38 105 No~a 6<91 Oi9 105 NoLd ~5& 059 105 NoLO ~t I9 0.83 105 Ntt0 • 6859 O.bi 105 NoLa Q5] 0.5 105 NoLO .o~e o~a ~os rvo~o 5981 oa5 IDS rvotp 1186 081 1M NoLy 1390 1.4 105 NoLp fl8.9 0.8) tp5 NpLp ~ 85.p5 O.6C tp5 NoLp 10I.9 116 1 W NoLp SBIt 1.11 1p5 NoLO • BI.W 1.23 t0.5 NDLp 1882 1A1 1p5 NoLp 1]]0 L56 105 NOLp 19]2 1 ]5 105 ~ 2 '1~~A 3P 105 55 R26.5 1]a 105 2B 1533 IJE 1W 5] ~ ifi19 l~B 105 5.6 211.R 1B2 105 ~3 1~2.J 196 10.5 ].t 2350 1.5 WS 26 A tH] iP fM •~ 2208 081 1M u.6 1B.83 Ofi9 105 IS za.te osa ID5 ne ~~.t] t]3 145 38] <3a] 1l9 f05 91.9 ) 3B]] 1.63 IDS 068 ~0.08 1.5 105 316 ]1.98 19 105 20S ~ 6]BB R.W t05 2~.9 ]BBC 1U6 tW 21.fi 1130 P.1R 105 1]2 1iB? VB WS II.5 t8i3 291 105 N.i 1233 26t 105 f5.6 tJ83 ?O t05 133 ~ 3P 9 201 105 51 ~ ) ~ 7 ~ • Magnitude=6.8 Acceleration=.73g Facforo/Sa/ety Settlement 2 0 1 5 0(in.) 10 1~1~ Shaded Zone has Liquefacfion Potential CIFIC SOILS ENGINEERING Work Order 700007-C S = 1.05 in. 2~1 Plate F-19 ! LIQUEFACTION ANALYSIS Wolf Creek Phase 2 t, Hole No.=CPT-20 Water Depth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unit Fines Shear Sfress Ratio Factorof Safety Settlement qc /c Weight % 0 2 0 1 5 0(in.) 10 ~~ ~~ ~~ ~~ ~ ~ ~ t 1 1 1 t t t t 1 ;.IFIC SOILS ENGINEERING Work Order 700007-C Wet- D S = 1.40 in. ~~ Plate F-20 • Shaded Zone has Lique~action Potential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 I• ~~ ~~ ~~ ~~ ~ ~ a r Hole No.=CPT-21 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc ic Weight ' :,IFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceleration=.73g Fac[orofSafety Settlement 01 5 0(in.) f0 Wef - D S=2.24in. ~~q Plate F-21 I• Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-22 Water Depth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unit Fines ShearSt2ssRatio Facforo/Sa/ety Settlement qc fc Weight % 0 2 0 7 5 0(in.) f0 ~OS 105 ~ 105 105 105 105 ~05 105 ~ 105 105 105 105 105 ~ 105 105 105 105 105 ~ 105 105 105 105 105 105 105 105 105 ~ i05 ~ 105 105 105 105 ~ 105 ~ I ~ 105 105 105 ~ 105 105 i ` Shaded Zone has Liquefaction Potential ~ ~ ) ~ CIFIC SOILS ENGINEERING Work Order 700007-C ~ vvet- u S = 1.91 in. ~ Plate F-22 • '• '',~ ~ ~ 1.5 1.44 1.41 1.58 o.~a o.sa 0.66 1.02 1 1.41 1.76 1.51 1.66 • lJ`J.i5l.J4 -I 103.6 7.29 1 102.71.45 1 94.4 1.32 1 63.12124 1 56.171.5 1 36.88 1.36 1 22.160.97 1 44.081.71 1 21271.08 1 ~ 7664125 1 96.111.68 1 8'i.6 1.72 1 32.941.49 1 33.861.37 1 72.07 1.58 1 ~ ~ ~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-23 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc fc Weight % p CIFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acce/eration=.73g FactorofSa/ety Settlement 2 0 1 5 0(in.) 90 S = 3.50 in ~ Piate F-23 • Shaded Zone has Liquefaction Potenfial LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-24 Water Depth=25 ft Raw Unif fines ShearSt2ssRatio qc fc Weight % p Magnitude=6.8 Acceleration=.73g FactorofSafety Settlement 2 0 7 5 0(in.) 70 S=2.22in. l CIFIC SOILS ENGINEERING Work Order 700007-C ~ Plate F-24 Shaded Zone has Liquefaction Potential I' LIQUEFACTION ANALYSIS I• ~ ~~ I~ r ~ Wolf Creek Phase 2 Hole No.=CPT-25 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc ic Weight % p 105 105 105 i 105 105 105 81.751.3 105 88.4 2.13 105 104.61.8 105 147.32.32 105 186.2 5.48 '105 '166.5 2.64 '105 144.0 2.19 105 ~ • i ~ CIFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceferation=.73g FactorolSafety Settlement 2 0 1 5 0(in.) 70 ~T I ~ ~ Plate F-25 S=2.72in. • Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 ~ Hole No.=CPT-26 Water Depth=25 ft Magnitude=6.8 Acceleration=.73g Raw Unit Fines Shear Stress Ratio Facfor of Safety Sett/ement qc /c Weight % 0 2 0 1 5 0(in.) >0 ~~ ~ ~ • ~~ ~~ ~ ` ~~ ~~ ~~ ~IFIC SOILS ENGINEERING Work Order 700007-C S = 1.88 in. ~ Plate F-26 I~ Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS Wolf Creek Phase 2 I• ~~ ~~ ~~ ~~ ~ Hole No.=CPT-27 Water Depth=25 ft Raw Unit Fines Shear St2ss Rafio qc (c Weight % p 25.770.03 105 88.54 0.14 105 69 0.16 105 70.370.19 ~05 7826027 105 33.780.17 105 14.760.07 105 17.340.02 105 29.650.07 105 44.890.16 105 65.64 023 105 11'1.50.42 105 50.57 0.19 105 22.4 0.2'I 105 1.23 1.57 1.67 2.17 1.73 1.7 1.54 1.71 ~.64 225 1.43 5 = 3.16 in. ~ ~ :,IFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceleration=.73g Factoro/Sa/ety Settlement 2 O 1 5 0(in.) 1( ^q~~ `~ Plate F-27 • Shaded Zone has Liquefaction Potential ' LIQUEFACTION ANALYSIS I Wolf Creek Phase 2 'I ~ Ho/e No.=CPT-28 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc fc Weight % p I~ ~~ I~ ~ ~ ~ ~ ~ 105 105 105 105 Magnitude=6.8 Acceleration=.73g FactorofSafety Sett/ement 2 01 5 0(in.) f0 5=2.53in. Y :.IFIC SOILS ENGINEERING Work Order 700007-C Plate F-28 • Shaded Zone has Liquefacfion Potential i• I• ~~ I~ I~ r ~ ~ ~ ~ LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-29 Water Depth=25 ft Raw Unit Fines Shear Stress Ratio qc fc Weight % 0 31.140.15 105 70.940.99 105 56.041.5"I 105 51.750.87 105 45.340.66 105 48.850.56 105 53.9 0.74 105 54.5 0.88 105 49.86 0.8'I 105 45.730.79 105 43.420.73 105 41.550.63 105 42.3 0.57 105 64.770.79 105 71.821.02 105 69.'17 0.84 105 83.3 0.88 105 129.5 "1.26 105 78.660.76 105 42.660.53 105 49.'i 7 0.63 105 26.330.56 105 21.680.52 105 '19.380.77 105 28.130.8 105 54.090.96 105 43.81 0.82 105 92.151.4 105 '191.'I 1.63 105 235.01.97 105 208.52.02 '105 80.741.49 '105 65.19 1.74 '105 94.171.71 105 a2.04 7.55 '105 26.551.12 105 22.81 0.93 105 21.570.88 105 47.9 '1.62 105 46.541.98 105 34.28 1.72 105 47.361.78 105 59.54 1.95 105 43.621.98 105 69.142.34 105 82.492.06 105 60.362.34 105 136.32.84 105 8 .3 2 05 3 .12 1 :,IFIC SOILS ENGINEERING Work Order 700007-C Magnitude=6.8 Acceleration=.73g Facto~o/Safety Settlement 2 0 1 5 0(in.) 10 ~ I ~ S = 1.35 in. 2~'^ Plate F-29 • Shaded Zone has Liquefaction Potential LIQUEFACTION ANALYSIS Wolf Creek Phase 2 Hole No.=CPT-30 Water Depth=25 ft Raw Unit Fines ShearSf2ssRatio qc /c Weight % p Magnitude=6.8 Acceleration=.73g FactorofSafety Settlement 2 0 1 5 0(in.) 10 S=3.OOin. CIFIC SOILS ENGINEERING Work Order 700007-C ~ Plate F-30 Shaded Zone has Liquefacfion Potential • '• Is APPENDIX G • Earthwork Specifications & Grading Details I• I• I• I• • ~~ I~ PACIFIC SOILS EN6INEEFlING, INC._ • PACIFIC SOILS ENGINEERING, INC. • EARTHWORK SPECIFICATIONS These specifications present generally accepted standards and minimum earthwork requirements • for the development of the project. These specifications shall be the project guidelines for earthwork except where specifically superceded in preliminary geology and soils reports, grading plan review reports or by prevailing grading codes or ordinances of the controlling agency. ~ I. GENERAL A. The contractor shall be responsible for the satisfactory completion of all earthwork in accordance with the project plans and specifications. B. The project Soil Engineer and Engineering Geologist or their reptesentatives shall . provide testing services, and Geotechnical consultation during the duration of the project. C. All clearing, grubbing, stripping and site preparation for the project shall be accomplished by the Contractor to the satisfaction of the Soil Engineer. ~ D. It is the Contractor's responsibility to prepare the ground surface to receive the fills to the satisfaction of the Soii Engineer and to place, spread, mix and compact the fill in accordance with the job specifications and as required by the Soil Engineer. The Contractor shall also remove all material considered by the Soil Engineer to be unsuitable for use in the construction of compacted fill. • E. The Contractor shall have suitable and sufficient equipment in operation to handle the amount of fill being placed. When necessary, equipment will be shut down temporarily in order to permit proper compaction of fills. ~ II. SITE PREPARATION A. Excessive vegetation and all deleterious material should be disposed of offsite as required by the Soi] Engineer. Existing fill, soii, alluvium or rock materials determined by the Soil Engineer as being unsuitable for placement in compacted fills shall be removed and wasted from the site. Where applicable, the Contractor • may obtain the approval of the Soil Engineer and the controlling authorities for the project to dispose of the above described materials, or a portion thereoF; in designated azeas onsite. Afrer removals as described above have been accomplished, earth materials ~ deemed unsuitable in their natural, in-place condition, shall be removed as recommended by the Soil Engineer/Engineering Geoloeist. ~ 2 I• PACIFIC SOILS ENGINEEFi1NG, INC. i• Earthwork Specifications Page 2 ~• B. After the removals as delineated in Item II, A above, the exposed surfaces shall be disced or bladed by the Contractor to the satisfaction of the Soil Engineer. The prepared ground surfaces shall then be brought to the specified moisture ~ condition, mixed as required, and compacted and tested as specified. In areas where it is necessary to obtain the approval of the controlling agency, prior to placing fill, it will be the contractor's responsibitity to notify the proper authorities. ~ C. Any underground structures such as cesspools, cisterns, mining shafts, tunnels, septic tanks, wells, pipelines or others not located prior to grading are to be removed or treated in a manner prescribed by the Soil Engineer and/or the controlling agency for the project. ~ III. COMPACTED FILLS A. Any materials imported or excavated on the property may be utilized in the fill, provided each material has been determined to be suitable by the Soil Engineer. Deleterious material not disposed of during clearing or demolition shall be • removed from the fill as directed by the Soil Engineer. B. Rock or rock fragments less than eight inches in the largest dimension may be utilized in the fill, provided they aze not placed in concentrated pockets and the distribution of the rocks is approved by the Soil Engineer. ~ C. Rocks greater than eight inches in the largest dimension shall be taken offsite, or placed in accordance with the recommendations of the Soil Engineer in areas designated as suitable for rock disposal. D. All fills, including onsite and import materials to be used for fill, shall be tested in ~ the laboratory by the Soil Engineer. Proposed import materials shall be approved prior to importation. E. The fill materials shall be placed by the Contractor in layers that when compacted shall not exceed six inches. Each layer shal] be spread evenly and shall be thoroughly mixed during the spreading to obtain a neaz uniform moisture • condition and a uniform biend of materials. Al] compaction shal] be achieved at optimum moisture content, or above, as determined by the applicable laboratory standard. No upper limit on the moisture content is necessary; however, the Contractor must achieve the necessary ~ compaction and wil] be alerted when the material is too wet and compaction cannot be attained. 2g\ I• PAGIFIC 501LS ENGINEEFIING, INC. ^ Earthwork Specifications Page 3 • • F. Where the moisture content of the fill material is below the limit specified by the Soil Engineer, water shall be added and the materials shall be blended until a uniform moisture content, within specified limits, is achieved. Where the ~ moisture content of the fill material is above the limits specified by the Soil Engineer, the Fill materials shall be aerated by discing, blading or other satisfactory methods until the moisture content is within the limits specified. G. Each fill layer shall be compacted to minimum project standards, in compliance ~ with the testing methods specified by the controlling govemmental agency and in accordance with recommendations of the Soil Engineer. In the absence of specific recommendations by the Soil Engineer to the contrary, the compaction standard shall be ASTM:D 1557-91. ~ H. Where a slope receiving fil] exceeds a ratio of five-horizontal to one-vertical, the fill shall be keyed and benched through all unsuitable topsoil, colluvium, alluvium, or creep material, into sound bedrock or firm material, in accordance with the recommendations and approval of the Soil Engineer. • I. Side hill fills shall have a minimum kev width of 15 feet into bedrock of firm materials, unless otherwise specified in the soil report and approved by Ihe Soil Engineer in the field. 7. Drainage terraces and subdrainage devices shal] be constructed in compliance ~ with the ordinances of the controlling governmental agency and/or with the recommendations of the Soil Engineer and Engineering Geologist. K. The contractor shall be required to maintain the specified minimum relative compaction out to the finish slope face of fill slopes, buttresses, and stabilization fills as directed by the Soil Engineer and/or the goveming agency for the project. ~ This may be achieved by either overbuilding the slope and cutting back to the compacted core, or by direct compaction of eh slope face with suitable equipment, or by any other procedure which produces the designated result. L. Fill-over-cut slopes shall be properly keyed through topsoil, colluvium or creep ~ material into rock or firm material; and the transition shall be stripped of all soil or unsuitable materials prior to placing fill. The cut portion should be made and evaluated by the Engineering Geologist prior to placement of fill above. ~ M. Pad azeas in natural gound and cut shall be approved by the Soil Eneineer. Finished surfaces of these pads may require scarification and recompaction. Z~v ~'• PACIFIC SOILS ENGINEERING, INC. • I• Ear[hwork Specifications Page 4 IV. CUT SLOPES A. The Engineering Geologist shal] inspect al] cut slopes and shall be notified by the ~ Contractor when cut slopes aze started. B. If, during the course of grading, unforeseen adverse or potentially adverse geologic conditions aze encountered, the Engineering Geologist and Soil Engineer shall investigate, analyze and make recommendations to treat these problems. • C. Non-erodible interceptor swales shall be placed at the top of cut slopes that face the same direction as the prevailing drainage. D. Unless otherwise specified in soil and geological reports, no cut slopes shall be excavated higher or steeper than that allowed by the ordinances of controlling ~ governmental agencies. E. Drainage terraces shall be constructed in compliance with the ordinances of the controlling govemmental agencies, and/or in accordance with the recommendations of the Soil Engineer or Engineering Geologist. I• V. GRADING CONTROL A. Fill placement shall be observed by the Soil Engineer and/or his representative during the progress of grading. ~ Field density tests shall be made by the Soil Engineer and/or his representative to evaluate the compaction and moisture compliance of each layer of fill. Density tests shall be performed at intervals not to exceed rivo feet of fill height. Where sheepsfoot rollers are used, the soil may be disturbed to a depth of several inches. Density determinations shall be taken in the compacted material below the ~ disturbed surface at a depth determined by the Soil Engineer or his representative. B. Where tests indicate that the density of any layer of fill, or portion thereof, is below the required relative compaction, or improper moisture is in evidence, the particular layer or portion shall be reworked until the required density and/or moisture content has been attained. No additional fill shall be placed over an area • until the last placed lifr of fil] has been tested and found to meet the density and moisture requirements and that lifr approved by the Soil Engineer. C. Where the work is interrupted by heavy rains, fill operations shall not be resumed until field observations and tests by the Soi1 Engineer indicate the moisture ~ content and density of the fil] aze within the limits previously specified. 2~~ • PACIF~C SOILS ENGINEEFING, ING. ''• Earthwork Specifications Page 5 I• D. During construction, the Contractor shall properly grade all surfaces to maintain good drainage and prevent ponding of water. The Contractor shall take remedial measures to control surface water and to prevent erosion of graded azea until such ~ time as permanent drainage and erosion measures have been installed. E. Observation and testing by the Soi] Engineer shal] be conducted during the filling and compacting operations in order that he wil] be able to state in his opinion all cut and filled areas are graded in accordance with the approved specifications. F. After completion of grading and afrer the Soil Engineer and Engineering Geologist have finished their observations of the work, final reports shall be submitted. No further excavation or filling shall be undertaken without prior notification of the Soil Engineer and/or Engineering Geologist. I• VI. SLOPE All finished cut and fill slopes shat] be planted and/or protected from erosion in accordance with the project specifications and/or recommended by a landscape azchitect. ~• I• I• I• I• Z`~ ` I• PACIFIC SOILS ENGINEERING, INC. • N SUBDRAIN DETA ~ ~• ~• I~ I~ ~ NATURALGROUND . / ~ PROPOSED COMPACTED FILL ,~ / ~ ,!G •••~• COLLUVIUM AND ALLUVIUM (REMOVE) •~•• - .~ . I '• .'~~ i i_ •., ~ e-.,J"Tl ~' ' ~ ~ ~T-LB ~ ~ ,• r •. .• I ~ ~~'~~~~.~..~~• TYPICAL BENCHING BEDROCK SEE DETAIL (PLATE G-2) I~ I• '~,f • ti~ ~ PACIF(C SOILS ENGWEcRlNG. INC. vj VER. i/00 PL,4TE G-? • CANYON SUBDRAIN ALTERNATIVES ALTERNATIVE 'A' I• ~~ ~~ Qo« ~ ~e aa~ c~ 12"MIN. oDCOo~c~ ~~~po~e~pG~ r p ~ G, I I I 8 DB~~~ ~ v~L.ID I oD 6"MIN. ~o op~c~ o~gQP LD ~ ~ I~ ~-~'`'I~'I-~ ~ ~-~ ~,~. \ ~~ ~ 6 MIN. PIPE AND FILTER MATERIAL ~~ ~~ I~ I• I• • FILTER MATERIAL: MIN. VOLUME OF 9 FT. / LINEAL FT. OF CALTRANS CLASS 2 PERMEABLE MATERIAL PIPE: 6 IN. ABS OR PVC PIPE OR APPROVED SUBSTITUTE W ITH A MINIMUM OF 8 PERFORATIONS (1/4-IN. DIA.) PER LINEAL FT. IN BOTTOM HALF OF PIPE ASTM D2751, SDR 35, OR ASTM D3034 OR ASTM D1527, SCHD. 40 ASTM D1785, SCHD. 40 NOTE: FOR CONTINUOUS RUN IN EXCESS OF 500 FT. USE 8 IN. DIA. PIPE ALTERNATIVE 'B' FILTER MATERIAL 6 " MIN. ROCK PERFORATED PIPE SURROUNDED WITH ROCK AND FILTER FABRIC FILTER MATERIAL: MIN. VOLUME OF 9 FT3/ LINEAR FT. OF 3/4 IN. MAX. ROCK PIPE: 6 IN. ABS PVC PIPE OR APPROVED SUBSTITUTE WITH A MINIMUM OF 8 PERFORATIONS (114-IN. DIA.) PER LINEAL FT. IN BOTTOM HALF OF PIPE ASTM D2751, SDR 35, OR ASTM D3034 OR ASTM D1527,SCHD.4G ASTN1 D1785,SCHD.40 FILTER FABRIC: MIRAFI 140 FILTER FABRIC OR APPROVED EQUIVALENT NOTE: FOR CONTINUOUS RUN IN EXCESS OF 500 FT. USE 8 IN. DIA. PIPE ~ PACIFIC SOILS ENGINEERING, lNC. \=j' VER.9/9E Z~ PLATE G-2 6 " MIN. OVERLAP • ~ I~ I~ I• ~~ I~ I• ~• ~~ I • M ~ ~ ~ }~ ~ u. a?gw~ wo Q ° ~~o~o ~J a w ~ ~ui wi-r~ ~~ ~ Zrn~z ?~O=LL C7 ~ ~J~a ~~mm~ ~~ x ao~o ~~zoz ~o ~ Uwow ~aF=w ¢~ Q p]F-~Q 2~O~Q ~Z V U+ LLYQO..• Z~JWC~ I LLU~ ~ QJ m H H J W °o~r ~~w~~ I ww-- o °p J F W W W 0 ~'m?~~ 1'~Z U U~ ~ ~ ~LLa~ Ot~~p? I Q~~ Q ~2 ~ ° cnw~a ~ wz~ I m<n~ ^ a~- w x a ^a Q w wm (f~ .~ F I = m LL dZlnz W Oa W 1- Z ~ W V! m U ~~ p ~ ~ a Z~~ ~ I m a Z~ W~~ ~O O~OW ~aa~~ ~ ac~~ LL ~00 Z~O ~w~W NWZaz~ ~ '/ U wwO ~' wZ ~ooW xap Fw ~n m ~ ~ ~z cW>mWO LLjaa~a ~ ~~ o~~ m wQ w~Z~ c~a~ a II ~O~ z J - ~ Q N w Q U' O Q~~ O F W 11 d W W S 7 ~ O = 2 Z= U O~ LL~ J II Z w ~ L ~z ru~wv~ amaW.a~~ ~~ ~JZ W OI vi v ~Qm2OO NII ~ ?pz ~ O ii ii V J W Y ~ o z NIW,£ ii ii z Q WW N z o ~ IF---~ ~ o i i ~ e o~ d n C D/zC~ Z ' N;; [~ J ooc~ Z DD~- ~ " ~~ -~I - = z~ W ~' - n u m O~~N Q ~ ~L~.G~^\ N II ~I MmLLZ Z N ~~G`~ j li ~ Q O ~ J II ~.I ~ I I o~o~ W ~ ~. ~ ~ _ '^ ~ ~}~ J C~ ~ W~ NII J ~ \J! ~ a ~ ~ a_ ~~ w ~~j0 I I a~ II = ~ ~n~w~ i ~ u > a a ii ~ 1 Oo~W w z Z v>a i~ ~ ~ ~`~-,pOa I ;n z ~xaz V ~ ~`~mo N NIW,Z g ~ Z ~n N ~ Y O ,~ ~~ iv _ C~ N ~ rn Q Z :. -~ E-~ '- -~ Z oorco w ~~C;%G ~ w ~~ J LL ~ ~ C ~ . 2 J H H~~ Q ~' ~\~ 1 ~ ~ ~ N (A(D~W ~Z ~' i~L~~L~~ ~ ~ (q ~ r aQ~d W ''\ ' C' U ~ p ' I I .- Z r oi Q _'~G'% I I a~ v U~ ~ 1 ~~ Z ~ > ~ ~ ~ ~ N ~ y3~ • CUT LOT ~~ ~• ~. ~~ i• I! I• ~~ ^ ... . .. • i • 5' MIN. ~ ORIGINAL GR~UN~ ..... • ........ ....~••••••• " ••'•• ........ 5' MIN OVEREXCAVATE AND RECOMPACT UNWEATHERED BEDROCK CUT-FILL LOT (TRANSITION) ~ 7 * MIN. T vND ... GR~ ~~,.• ~ ~i o~y~~~NP~' , . • . ~ 5' MIN. I W ~•••••• '' ••'' ~ ~~ y ~ COMPACTED FILL ,, • •' ~~ i~ * ~ .•~~~. ~i MIN. . J\~~ ~ IR~MoiEl ~~i ~i'~'~~i~ ' G~~~~oRpG ~ ~~i~i OVEREXCAVATE AND RECOMPAC~ ~~pS~N~RE~e ~~i~~, UNWEATHERED BEDROCK ~EP * NOTE: SEE REPORT AND PLATE G-13 FOR CUT-FILL TRANSITION SLOPE RATIOS DEEPER OVEREXCAVATION MAY BE REQUIRED BY THE SOILS ENGINEER IN STEEP CUT-FILL TRANSITION AREAS ~ PACIFIC SOILS ENGWEERING, INC. L' j) VER.9/98 PLA TE G-4 ~~ ,• I• ~~ I• I• ~• ~A ~~ ~~ I• ~ N /^~ J ~ v ~ o W ~ ~ ~ ~ ° o~~ Q ~ J a . ` ¢ ~p a a ~~r ~ ~ ~• O ~ . U ? O Y • _ ~ w U • ` z U Q • Qlaim ~ U1 m L Z~U ~ ~~ , ~ ~ Q O Z • ~~m ' y~ ` `r ~ • J ~ ~ o , ~ ~ J ,,_, ~ ' Q ~ (l~ . , Q a . c~ . ~, ~ ~ p Q • ~ 2 • z ~• o W W r- . . ~ ~ ~ W m o ~ ~~ ~ ` !~I ~. Ln c~oo ~ \ . ~ ~~ = J fn ~=o °o o y: ~~ , II~III o ,J ~ ~~> ?o ~ • v ` u~- ~ ~ Q wo~ ~~ c~ ; ~ p Wwa wo o . ~` J~ W W ~ N (p X m p u_ O ~ 0- , ~ ~ ~ ~ ~O~ ~° ~ ~ ~ ` IIIIII = ~ pWZ ~O a ~ I ` IIIIII- w.~ ~=O ~w ~ 1 ~ ~ ~ ui U H ~ ~ Q Q Z Z ~ ` ~~/~ Z t-~~Z ~a • , X VJ ~~ Z d W p ~ • W Q~ ~ 0 • ` Z N ~a~ ~a Z • ` ~ ~ ~ C~Ow Om O ` `~' a~~ ~W a~ `~ ~ °QQ oZ ~°~ ` z ~~w~ ~c7 ~z \\ W Q~U~Z ^w Op } ~` Z ~ 2 ~Z ~ o~ W~ w ~`` ~ r ~ WOW aJ O~ C'Ju- ~~` `~ 1, U' ZI-~J W ~ ~tn~ • Z K W W O W W 7 W W ~ W ~~acn z= g~0 w ~~ w ` 2 = O= _> / ~~cnF- r-m ~~~ tG- / , 2 W _= ` ~ c~i QZdO C~- 0 ~ y w~~ O~~ ~ VO~ ~ ~ oU~ uJioLL ~ ` p~c v~ m Z ~w0 JttJ` U~ pa~ U o~i OOu! ~~O<~ Yw ` ZwQF U ~ aa~ awo m> ~?o~ d > z~v . 1 ~~ I• ~• ~• ~~ ~~ ~• ~` ~~ ~~ ~ -~--+ 0 ~ .~ O ~ Q ~ ~ L ~ z a ~ d ~ Z O ¢ ~ ~ Z O z O _ ~ ~ a W d O J ~ LL ~ W O r J J ~ 0 w H U Q a ~ O U w a O ~ ~ J LL O W F- U ¢ a ~ 0 U ~i J J LL 0 oF Q ~- ~O ~7 U OF ~~ ~ O C~ ~ QO Z ~ ~w _~ ~ W 0 m w U Q LL ~ ~ ~ ~ ~ O ~ Z ~ ~ ~ ~ ~ ~ ~ ~ J Q J • O ~ Z • ~ w . ww c~ . ~ z ~ • ~ C7 o ~ ~w ~ / J ~ J J T QO • ~ ~ . ~ ~ w . a a . • U = H W • Z ~ ¢~ \ \ ~ ~ ~ ~ -~ w a~ ~ z ~ N o=z ~a~ I Q 0 ^ J Z ~ ~jU ~~Q ~ LL W U ~ ~ ~ J ~ W ~ z p~zo ~~a~ ~ZO~ ( LL ~ N W ~ W O ~ - ~Q• H O~Ow ~ I a~w~a ZZ~-I~i rG J ~ W ~U' F I Q ? ~ U W~=~ >~a~ ~z°o aov~~ ~ = I ~~ i~ J~` \ ~~ 1 ~\\/ ~~%\~i\\T / ~~ \ \ I~~ Ir J II ~~ =~i = I' ~ Z ~ r ~w~ -~dW awo OF~ Z W~O ~~U Z w W H wow °aa ~ ~ ~ ~ w ~ ~`°7O ~ ~ LL w~v, ~oa Q S ~ ~ ~ ~ ~ H ~ ~ ~. U U ~ Y Y Z UUQ aa= nc~~ cc ~ ~ J a z U'~ 2 W 2 C~ 2 W ~ ~ O w x U °~' ~ o> U ~ ¢Q. > ~ /f ` ~ ~ III `I I ` i, ^ ^ ~ l~ ~~ I• ~• ~~ I• ~~ ~~ ~~ ~ W ~ ~ ~ O J J a J ~ ° z J J~ o Q Ll. ~ ~ Y o ( , ~ U -~ W Z v ~ ~ W ~~ ~~U' O ~ • ; ~ m Q ~ ~ Q ~ J ~ : N ~~ WO ~~a 00 O ~ Q Z ~ NQ \ ~W pww ~~- `L ~ 11= w~ w~ W wU N ~ ; y ~ ~~, ~~ c?Q~? LL~ "J ~- • ~ ~ I~~~' Wa ww~ Na • r m ~ • Z I-III11 ~~ ~~o =~ ~ ~ ~ ~ Z Ililll wwa cnm= ~ . ~ 111= ~ia rnoz ~ . { _III O~p ~W= ~ Z ' IIIII~ wo~ _~~ ~ Q ', ~ IIIIII ^ Fo~ wWw u- w ; Ililll z m~~ W Www O o J ~ • =11~-III ~ paW LL aWm • Y r c~ ~ m ' Q ~ ;• I~~III m ~UU ~ ~Q~I w X ° ~~J `~ w : LL ~~~Ti ~ ozw w o`~~ Q • O -III~~ UQ~ -' ~~W J ~ • w ~ ~ ~ ~ ~ " ~ rn Z ~ F- W Z H~ V~ O a LL~ Q o ~ W O Z N U, • O I = 2~NQ LL Q~ ~ • U N ,-i Q 2 Z • N W Q F- 4 ~ Q ~ • `L I I I ~ ~ ~" a ~' C7 ¢ • ~v 1= ~ `. ~ ~ ~ o Ur c z . ~ -Ti 1 aw~ C • ~ I~- i W w F- O •~ r~ -111 ~ Q wwC9 U ~ J • ' ~, ~ m~~ z m ~. '~~ j ¢ a~w c~ ~- • I I~i ~ i ~ x W z Z U Q ~ ~III ~ m ~p(7 ~ ~- 2~ ~ili ~ ~ ~ vi w Z . ~ .- cV Z • W W/~Z ~ ~1J ~ ~~ S-~'- W J • ~' O O • z v~ ~ U ~ ~ ~ a W • v ` i• is ~~ ~~ I• I• ~~ ~ a ~~ ~~ • ~ . . , c~ . . ~ ~ ~ ~ W ~ • ~ W I m V Y ~ Q ~ • ~! Z pU Z m Z J a : ~ ~ ~o a • Zw w ms • Q U w LL O Z O p • ~~ mW tn C7 Z~ Z • OQ a~~ _ ~ ~ J ~ ^ LL J ~ ~ • z ~ ~ Q. LLZ O O J ~ Q • ~ • ~ ~ LL Z ~ ~ O 7 L ~ ~ ~ ~ W ~ ~ d' O ~ • O a LLJ ~ [0 (~ O • • N ~ O Z ~ L.L • • Q ~ ~ ! n ~' ~ v J • ~ ww Z°LL Q . ~• ~ . . ~ ~ . Z ~ Q ~/ ~ . "' Z w / . Q ~ . ~ ~ x Z ~ C7 . • ~ (y O J a • x z ' ~ J LL ~ • . Z o J . • ~ z (.L • w o ~ ~ z . • . > w ~ Y ~ z • ? • ~ U' • 2 ' W • W Z ~ ~ 2 ~ ~ 2 N • • W ~ ~ J • O ~ • ~ a'i U °~' • LL o~ ' Cj K > • ~ • . . ~ • ~ v~v • ~ I~ I• I~ ~~ ~~ I~ ~ ~ t~ ~ J Q J ~ `~ a ~ J W LL F- Q J a dZ U ~ ~ -,II- ~ Z } Q II~III~I'~ a J Q a I1i=11 Z~ Q J o 0 o Illll~lli z u~i ~ U LL ~~ w IIiII~IiI w x ~ W > ~ w a ( n J ~ O ~ ~~~~~II~~ J ~ `~ LL • ~ ~~i~~~~~~ (6 (~ ' /~~ • VJ z ° • m IIIII,II~ ~1 U' ~ ~ Q :~ ~ III~~~!II ~ _ ~_ ~ . II~ ~ J ~ . ~~ ~ III~~,III X -J ~ ; ~~ U' 111=111 V W~ Q . .K o~ ~ III ~I I'~_' Z III- O OI Z p • > \ ~ I1i=111 w ~ o ~ ~ `~` IIIIIIIIII~ ~ v ~-~-- z Q ~ W \\ lillllll Y Q ~ z Q o ~ m m~ III, i'~. o ~ C~ ~ w(~ p • d~ ~I.~/ II~~!! o o ~ o U (~ o ~ ~ ~'i Ilillllll m ~ ~ z a . % III~~III~ v Q J ~7 z ~I ~ i~ IIIIIIi~ill ~ Q Q O V • / ~ II'' I!I U V -o III- .~ Q -) :~ ~' 111=i11 Q ~ ~ ~ 111- ~ ~ J Q ~ ~ II''~-111 ~ Q ~ ~ Iliii'lll o \ ~ Q Ilill'III ¢ / ~ C O • ~ .v I~~~IIIi.I. z U • ~LL~ =1Ii~. v 2 ~ • I I'~ I I • - I 111= ~ ~ . w 111=1li a Z • ~ Ii', w ~ ~ . ~ ~11-'~'_ ~ w _i~'_ p Z w . Ill-il LL w ~ . -. i= p~ z ~' LL ~ ~ w L C ~ y !~ J ~ ~ Q z ~% ~ ~ ~ C; U ~ L ~ V x ~ w LL' • ~J • Ii I• Is FINISH GRADE ROCK DISPOSAL DE ~ AREA CLEAR OF ROCK FOR FOUNDATIONS, UTILITIES, AND SWIMMING POOLS 10'* fINISH SLOPE SURfACE 1 ~ ~ g `. .~ 1 ~ ~ ``~~.f 15' 4' ~- ~ 5' --~~ `~• ~ 8 ~ ~• ~TYPICA~L~ ~`. NOTE: IF NECESSARY, OVERSIZED MATERIAL SHOULD BE REMOVED AS~A ROCK~ RAKOOTPRIORETO I PLACPNGI THE NEXMEFILL LI~ TH *VARIANCES TO T~iE ABOVE UBC-CONSISTANT ROCK HOLD DOWN MAY BE GRANTED SUBJECT TO APPROVAL OF THE OWNER, GEOTECHNICAL ENGINEER, AND THE GOVERNING AGENCY TYPICAL WINDROW DETAIL (END VIEW~ HORIZONTALLY PLACED GRANULAR SOIL FLOODED I• I• I~ ~. ~. . PROFILE VIEW .... ... _ . _ ... ...... .......:......:........ . :,.. :~Q:O~~~. .O:Q:: OQ00.': ~ a ~ ~ ~:. . . : : . , : : .: . . . . ..~0:~ . - - ::0~:...:~0:~00:: ~. ..: 0, PACIFIC SOILSENGINEERING, INC. ~~ VER. 12/03 PLATE G-10 ~" _ NOTE: CO~IPACTED flLl SHALL BE BROUGHT UP AT A HIGHER ELEVATION ALONG WINDROW SO GRANULAR SOIL CAN BE FLOODED IN A"TRENCH CONDITION", • .~ If I~ I~ v ~~ I~ I~ • . ~- . •- . ~ . ~ • W . ~ . Q J • J ~ ~^ LL • ~i ~ ~ W ~ \ W • 07 ~ ~ , ~ W ~ • ~ Z ~ ~ i- ~ O ~ U y z =WC~a ~~~0 ~ ~ wrWJ _ • u~ ~ ~ am~w U • ~ ~ ~oox Z : a 1 u~~`n~ w mw . y > =au~,Z F=a . ~ ~ ~~ ~VO ~~`G, illl Y ZwO~ ~I LL Q~ ~ 7 ~ ~~~~~ ~ ~~~~ ~ ~~ Z ~~j ; II~= = H Z Z ~ III F- ~a~0 ?~" ' O\ 111~11=11i= o ~oZ~ W ~~o ; u 1 ur-Ti-lii ~ ~~W° ~ zzw • ~ ~ IIIIII ~~w~ az a~o •. o` IIIIII x ~wwa ~ ~u~~ r \ 111= !, III N ~_~ ; Ill~llllllilll! r' ~ ~ 1 W ; ~ III p > ; ~ III z z O z • ~ III „' ° J • , ~ ~ ~ a • _ } a ~ ` III Y JI z ~ ~ III z ~ ^ m . \~~ ~~~ ~ ~ ~ ~ ~ \\\ \\ a ~Q . '~ ~ z zz ~~~y w~ O zO z~ ~ `\~~ ~ p~ U2 ~ ~~ • \~~~~ a~ .J ~ p z ~ ~~~, d Q (~ LL • -II~ a ~ ~ ~ v~ ~n ~ 11= ~ Z UI ~ c~ ~ • =111 ~ O w ~ ~ I~~!'~, U Q ? Q • li O o ~ z . =~ii ~ z w ~" ~w • w0 ~ ~ a • 0] LL J Q ~ • ~ ~ J ~ ~ cn U rn ~ ~L ~ U a > ~ ~ ^ ~~ i• SETTLEMENT PLATE DETAIL ~~ ~~ I~ I~ ~~ i VERTICAL CLEARANCE OF HEAW EQUIPMENT. PACT IN 2' VERTICAL INCREMENTS OR VE SUITABLE TO AND ACCEPTED BY THE SOILS ENGINEER. PACT INITIAL 5' (VERTICAL) WITHIN 10' HORI20NTAL PLACE AND HAND COMPACT INITIAL 2' OF FILL PRIOR TO ESTABLISHING INITIAL READING :LEANOUT PROVIDE A MIN. 1' THICKNESS OF SAND/GRAVEL BEDDING NOTES: 1) LOCATIONS OF SETTLEMENT PLATES SHALL BE CLEARLY MARKED AND READILY VISIBLE (RED FLAGGED) TO EQUIPMENT OPERATORS. 2) CONTRACTOR SHALL MAINTAIN 10' HORIZONTAL CLEAR4NCE FOR HEAVY EQUIPMENT WITHIN 5' (VERTICAL) OF PLATE BASE. FILL WITHIN CLEAR4NCE AREA SHALI BE HAND COMPACTED TO PROJECT SPECIFICATIONS OR COMPACTED BY ALTERNATIVE APPROVED BY THE SOILS ENGINEER. 3) AFTER 5' (VERTICAL) OF FILL IS IN PLACE, CONTRACTOR SHALL MAINTAIN 5' HORIZONTAL E~UIPMENT CLEARANCE. FILL IN CLEARANCE AREA SHALL BE HAND COMPACTED (OR APPROVED ALTERNATIVE) IN VERTICAL INCREMENTS NOT TO EXCEED 2 FEET. 4) IN THE EVENT OF DAMAGE TO SETTLEMENT PLl+TE OR EXTENSION RESULTING FROM EQUIPMENT OPERATING WITHIN PRESCRIBED CLEARANCE AREA, CONTRACTOR SHALL IMMEDIATELY NOTIFY SOILS ENGINEER AND SHALL 8E RESPONSIBLE FOR RESTORING THE SETTLEMENT PLATES TO WORKING ORDEP.. PACIFIC SOILS ENGINEERING, INC. PLATE G-12 VEk. 9/98 2' X 2' X tl4" STEEL PLATE STANDARD 3l4" PIPE NIPPLE, WELDED TOP AND UNDERSIDE OF PLATE. 3/4" DIA. X 5' LONG GALVANIZED PIPE, STANDARD PIPE THREADS TOP AND BOTTOM. EXTENSIONS THREADED BOTH ENDS AND ADDED IN 5' INCREMENTS. 3" DIA. SCHEDULE 40 PVC, ADD IN 5' INCREMENTS WITH GLUE JOINTS. v ~ FINAL GRADE • Finished ~~ ~~ I~ I~ ~~ PVC Cap SURFACE SETTLEMENT MONUMENT DETAIL i• i. s PACIFIC SOILS ENGINEERlNG, INC. VER. 9/98 6" Approx 6"embedment into compacted fill PLATE G-12A ~~,~ • If I~ I• I~ I r Y 2 a ~ c~ 0 a O ~ Z ~ LlJ Q ~YU >mW ~ Q ~ ~JO~ Q J J ~ aa~w ~~JD OZQ w~z ~a~ ac~w J ~ LL ~ ~ ~ Q a c7 Z C J ~ m ~ a 0 ~" a x W ~ =w U Y LL O a ¢ oz ~ m ,~o ~a I W J O Q m m ~ X Q J ~ ~ x W Q y zw ~o ~ a ~ a °°a ~ ~ oa ° ~ ~z 2 W w j o 2 J I 2 2 ~!/ m LL O Z X O U LL ~ 2 a LL wr w~ Ww ~o LL O LL~ m W ~ ~ o U ~ W Q O ~l jm~j < , p W ~~ H 2 R i =~l _ "_'__,~ mW ~O NLL~ ~ ~a' `$N GOW I i J U~ ~ O a~ U a i V3 a~ 3Q O~~ a ~ M ~ -~1 _ m Z YO J~ J~ LL Z d' 0 J Q >> 2 ~ ~ J Z ~ J Z ra m~c ~ V a~ U h Q~ Z N ~ ~ lV M 0 //// \ \ . ~ ~ ~~~~ _ \ ~ ` ~, \ ~ '` ~/~~ ` ~ \ \ ~ ~~ ~%/ ` .` ~F- a~ ~ ~ w '~ e // ~~ ~ o ~ ! ~ ~ - ~~ G W ~ ~ \ : ~ ~% a ~~ O ~ ;.;. a ~ ,,~ ~ ~ ~ C9 ~ J a U 2 ~ 2 W Z ~ 2 W ~ J ~ ~ U LL U Q a ~ m ~ ~ W > ir ~ I• I• APPENDIX H I• I• I• Homeowners Maintenance and Improvement Considerations ~~ ~ PACIFIG SOILS ENGINEERING, ING. is Work Order700007-C May 21, 2004 ~ 7` Page H-1 HOMEOWNER MAINTENANCE AND IMPROVEMENT CONSIDERATIONS • General Homeowners purchasing property must assume a certain degree of responsibility for homeowner improvements and for maintaining conditions azound their home. Of primary importance are maintaining drainage pattems and minimizing the soil moisture variation below all lot improvements. Such design, construction and homeowner maintenance provisions may include: - Employing contractors for homeowner improvements who design and build in recognition of loca] building codes and specific site soils conditions. ~ - Establishing and maintaining positive drainage away from all foundations, walkways, driveways, patios, and other landscape improvements. - Avoiding the construction of planters adjacent to structural improvements. Altematively, planter sides/bottoms can be sealed with an impermeable membrane and drained away from ~ the improvements via subdrains into approved disposal azeas. - Sealing and maintaining construction/control joints within concrete slabs and walkways to reduce the potential for moisture infiluation into the subgrade soils. - Utilizing landscaping schemes with vegetation that requires minimal watering. Watering ~ should be done in a uniform manner, as equally as possible on all sides of the foundation, keeping the soil "moist" but not allowing the soil to become saturated. - Maintaining positive drainage away from structures and providing roof gutters on all structures with downspouts that are designed to carry roof runoff directly into area drains or discharged well away from the foundation areas. ~. - Avoiding the placement of trees closer to the proposed structures than a distance of one-half the mature height of the Vee. - Observation of the soil conditions azound the perimeter of the structure during extremely hobdry or unusually wet weather conditions so that modifications can be made in irrigation • programs to maintain relatively uniform moisture conditions. Sulfates During mass grading operations for the project, the soils being used as compacted fill should be • tested for the presence of soluble sulfates. The samples tested during this study were found to have sulfate concentrations, which fell into the negligible range of sulfate exposure as classified Il" • PACIFIC BOILS ENGINEERING, INC. i~ Work Order700007-C May 21, 2004 ~~ Page H-2 in accordance with Table 19-A-4 of the 1997 UBC. The preliminary foundation system design has been designed in consideration of that condition. ~~ Homeowners should be cautioned against the import and use of certain inorganic fertilizers, soil amendments, and/or other soils from offsite soutces in the absence of specific information relating to their chemical composition. Some fertilizers have been known to leach sulfate compounds into soils othenvise containing "negligible" sulfate concentrations and increase the i sulfate concentrations to potentially deVimental levels. In some cases, concrete improvements constructed in soils containing high levels of soluble sulfates may be affected by crystalline growth or mineral accumulation, which may, in the long term, result in deterioration and loss of strengih. Site Draina~e - The homeowners should be made awaze of the potential problems that may develop when ~ drainage is altered through construction of retaining walls, swimming poois, paved walkways, patios or other hardscape improvements. Ponded water, drainage over the slope face, leaking irrigation systems, overwatering or other conditions which could lead to ground saturation must be avoided. - No water should be allowed to flow over the slopes. No alteration of pad gradients should be ~ allowed that would prevent pad and roof runoff from being directed to approved disposal areas. - As part of site maintenance by the resident, all roof and pad drainage should be directed away from slopes and around structures to approved disposal azeas. All berms were constructed and compacted as part of fine grading and should be maintained by the resident. ~ Drainage patterns have been established at the time of the fine grading should be maintained throughout the life of the structure. No alterations to these drainage patterns should be made unless designed by qualified professionals in compliance with local code requirements and site-specific soil conditions. ~ Slope Draina¢e - Residents should be made aware of the importance of maintaining and cleaning all interceptor ditches, drainage tenaces, downdrains, and any other drainage devices, which have been installed to promote slope stabiliri~. s ~~ ~ PACIFIC 501L3 EN6INEERING, INC. i• Work Order 700007-C May 21, 2004 . .._ Page I~-3 - Subsurface drainage pipe outlets may protrude through slope surfaces and/or wall faces. These pipes, in conjunction with the graded features, are essential to slope and wall stability and must be protected in-place. They should not be altered or damaged in any way. ~ Plantine and Irrieation of Slopes - Seeding and planting of the slopes should be planned to achieve, as rapidly as possible, a well-established and deep-rooted vegetal cover requiring minimal watering. - It is the responsibility of the landscape azchitect to provide such plants initially and of the • residents to maintain such planting. Alteration of such a planting scheme is at the residenYs risk. i The resident is responsible for proper irrigation and for maintenance and repair of properly installed imgation systems. Leaks should be fixed immediately. • - Sprinklers should be adjusted to provide maximum uniform coverage with a minimum of water usage and overlap. Overwatering with consequent wasteful runoff and serious ground saturation must be avoided. - If automatic sprinkler systems are installed, their use must be adjusted to account for ~ seasonal and natural rainfall conditions. Burrowina Animals - Residents must undertake a program to eliminate burrowing animals. This must be an ongoing program in order to promote slope stabiliTy. I• Homeowner Imarovement Homeowner improvements (pools, spas, patio slabs, retaining walls, planters, etc.) should be designed to account for the terrain of the project, as well as expansive soil conditions and ~ chemical characteristics. Design considerations on any given lot may need to include provisions for differential bearing materials, ascending/descending slope conditions, bedrock structure, perched (irrigation) water, special geologic surcharge loading conditions, expansive soil stresses, I ~ and long-term creep/settlement. All homeowner improvements should be designed and constructed by qualified professionals utilizing appropriate design methodologies, which account for the onsite soils and geologic conditions. Each lot and proposed improvement should be evaluated on an individual basis. ~~ I~ PAGIFIG SOILS ENOINEEFING, INC. i~ Work Order 700007-C May 21, 2004 I• Page H-4 Setback Zones Manufactured slopes may be subject to long-term settlement and creep that can manifest itself in the form of both horizontal and vertical movement. These movements typically aze produced as I~ a result of weathering, erosion, gravity forces, and other natural phenomenon. A setback adjacent to slopes is required by most building codes, including the Uniform Building Code. This:zone is intended to locate and support the residential structures away from these slopes and I~ onto soils that are not subject to the potential adverse effects of these natural phenomena. The homeowner may wish to construct patios, walls, walkways, planters, swimming pools, spas, etc. within this zone. Such facilities may be sensitive to settlement and creep and should not be ~ constructed within the setback zone unless properly engineered. It is suggested that plans for such improvements be designed by a professional engineer who is familiar with hillside grading ordinances and design and construction requirements associated with hillside conditions. In addition, we recommend that the designer and contractor familiazize themselves with the site I~ specific geologic and geotechnical conditions on the specific lot. I• I• IA I[ 7 ` v~ I~, • PACIFIG SOILS ENGINEERING, INC.