HomeMy WebLinkAboutHydrologyS. '1
~E~CiNEERIM~
VENTIJRES~ INCe
~
LAND PLANNING • CIVIL ENGINEERING • LAfdD $URVEYING
HYDROLOGYSTUDY
(RATIONAL METHOD)
RIVERSIDE COUNTY
TR 25055
EV#401-O1
OWNER/APPLICANT:
~
~,F;u~?~S~ ~t~;l..~~
~4~, r.t ~; . .
~ , ~` ,''.~
~ - ~,
~, F; ,,~;,~ ~ ~ ~ ~ _ :.
~_,.r ,~
_
I c~ .t ,,.r ~.,;..`>- ::~
i ~i~ fdG• C •. ",'
~z ~~ ' ~~°:
\,\T~"~ F;p. (23/~6L l
~ j \C;_~~
Date ~ r „ 1
. ~ ;•~C I v ~ '~\<iC~'' ,
.,:
' ` ~., f~ ., ._ ~ ~~~`
~``'..•,`, '.~._`: :.
JACK HAMRY / TOM TAYLOR
RANCHO BAHAMAS, 1NC.
25141 VIA PIEDRA BLANCA
LAGUNA r1IGEL, CA. 92677
AND/OR
1280 BISON AVE., SUITE#B9-66
NEWPORT BEACH, CA. 92600
Ph.(949)388-7748
PREPARED BY:
Joseph Ross
ENGINEER:
Mr. Randolph F. Fleming
Engineering Ventures, Inc.
43500 Ridge Park Drive
Suite 202
Temecula, CA 92590
(909)699-6450
andolph F. Flemin C.E.
License #45687 Exp. 12/31 /02
~
43500 Ridq@ P21'k DI'fvB, SUItE 202 • T2rT1ECUl2, CA 92590 •(909) 699-6450 F2X: (909) 6993569 • E-Mail: 2ngntent@iitl2t.COm
~:
~ •
V ~C~1~1~~~ _LY-fl.A~
v
~: ;
~'~ ~
} ,f
~ ~
""~
°
~„
~
..,~~~ ~-
~ ~~
sw.
~
c~~~
~
~
~:~~ ~ ~~
~ ~
~~ '
~ ~ ~ ~~~
~ ~„~
~ ~T
,
~' ~ ~ ~ _, ~~ ~w'.
~ i. ~, ~;.~ ~M
~~~ ~-~,M
~v
__~,.,~..,~.,
x'~ ~,3
.q~i 3
i rt j~'7~~q'Ct~~ ~e
~ `~ ('.. .,~~59:{Li"n~~.',~~';~{ `~'~
~
~
r~
iri
~~
~
~~
~~
~
~
~.. ,
;e :c,>S:a'~~i^l;.a`tf't ~ ~t~0t
~
~~'
~~ ~
~~~ ~'
~~~ ~
,~~~ ~ ~
~~~~~ .
~~ ~ .
' ~`
(;~,1
~
~~
o"'"'
e
~"..
~M~
.t~~
3
j' "t • •
II. METFIODOLOGY
RATIONAL METHOD:
Criteria for this analysis are based ~n the latest edition of the RCFC&WCD
Hydrology Manual. In accordance with the manual, since the study area is
less than 500 acres, the Rational Method for determining the runoff
flowrates has been used.
RRIV:
The calculations have been computed using the RRIV computer program,
developed by Joseph E. Bonadiman & Associates; which performs the
rational method analysis in accordance with RCFC&WCD Hydrology Manual
criteria. RRIV Models the study watershed through the application of link-
node modeling. The major onsite and offsite study drainage areas have
been divided into smaller, minor drainage areas- or sub-areas. Node
numbers' have been assigned at the upstream and downstream points of
each sub-area. RRIV begins the analysis at the upstream node of each sub~
area and proceeds towards the downstream node. Hydrology maps showing
the study areas and the node model'ing used tor RRIV input are included
throughout this report.
~
s=
~
~
DEVELOPED CONDITIONS
~
~
~
` ~ 10 ~'EAR S'T'ORM CALC'ULATI~NS
~
::~ ; ~ •
Riverside County Rational Hydrology program
CNILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 09/O1/02
AREA "A"
TR 25055 DEVELOPED HYDROLOGY
EV
401-O1
--------
- --- ---- - - ------ --- -
-------------------
*'"`'~*'*** HydTOloqy Study Contiol Information **********
-------------------------------------------
ENGINEERING VENTURES Inc., Temecula, California - S/N 560
---------------------------------------------
Rational Method Hydrology Program based o^
Riverside County Flood Control & Water Conservation District
1993 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 1
Standard intensity-duration.curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 year storm 60 minute intensity = 0.880 (in./hr-.)
100 year storm 10 minute intensity = 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
Stoxm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in./hr.)
Slope of intensity duration curve = 0.5500
1
i ~
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.~++++
Process ~from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION~****
Initial area flow distance = 912.000(Ft.)
Top~(of initial area) elevation = 98.3D0(Et.)
Bottom (of initial area) elevation = 95.500(Ft.)
Dif£erence in elevatio^ = 2.8D0(Ft.)
Slope = 0.00680 s(pexcent)= 0.68
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.743 min.
Rainfall intensity = 2.392(Tn/Hr) for a 10.0 year stoxm
APARTMENT subaxea type
Runoff Coefficient = 0.810
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious f=action = 0.800
Initial subarea runoff = 1.957(CFS)
Total initial stream area = 1:010(Ac.)
Pervious area fraction = 0.200
~
:. : i •
+i--F+i-i--Fi-i--f~+-F-Et i~+-I-~t-+-F-F+i-~F+i-i~+-F-F i~i-+i-i~i~+-Fi~+i-+i~i-i--I~i-f~-f~+-Fi-+i-t++ti-+~F+++-1~+++++
Process £rom Point/Station 2.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (User specified size) 3.000
~++~
Upstream point/station elevation = 91.00(Et.)
Downstream point/station elevation = 82.12(Ft.)
Pipe length = 15.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 1.957(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 1.957(CFS)
Normal flow depth in pipe = 1.93(In.) -
Flow top width inside pipe = 11.14(In.)
Critical Depth = 6.33(In.)
Pipe flow velocity = 19.19(Ft/s)
Travel time through pipe = O.O:L min.
Time of concentration (TC) = 9.76 min.
~
, ~
~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Pxocess from Point/Station 2.000 to Point/Station 3.000
**** CONFLUENC~ OF MINOR STREAMS ****
Along Main Stream number: 1 in no=mal stream numbex 1~ .
Stream flow area = ~ 1.010(Ac.)
Runoff from this stream = 1.457(CFS)
Time of concentration = 9.76 min.
Rainfall intensity = 2.390(In/Hr)
\~
o •
+++++++++ ~++++++++++++++++++++++++++~~++++++++++++++++++++++++++~_~~+++
Process from Point/Station 3.000 to Point/Station
`*** USER DEFINED FLOW INFORMATION AT A POINT 3.~u~
s«++
Rainfall intensity = 2.358(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.674
Decimal fraction soil group A= G.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
User specified values are as follows:
TC = 10.00 min. Rain intensity = 2.36(In/Hr)
Total area =- 10.00(Ac.) Total runoff =
19.30(CFS)
~~
~
~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-~+
Process from Point/Station 3.000 to Point/Statio^ 3.U00
**** CONFLUENCE OE MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 10.000(Ac.)
Runoff from this stream = 19.300(CPS) ~
Time of concentration = 10.00 min.
Rainfall intensity = 2.358(In/Hr)
Summary of stream data:
Stream F1ow rate TC
No. (CFS) (min)
,
1 1.957 9.76
2 19.300 10.00
Largest stream flow has longer time
Qp = 19.300 + sum of
4b Ia/Ib
1.957 * 0.987 = 1~.
Qp = 21.231
Rainfall Intz~~sity
(In/Hr)
2.390
2.35B
of concentration
931
'.Cotal of 2 streams to confluence:
Flow rates before confluence point:
1.957 19.300
Area of streams be£ore con£luence:
1.010 10.000
Results of confluence:
Total flow rate = 21.231(CFS)
Time o£ concentration = 10.000 min.
Effective stream area after confluence =
11.010(AC.)
~2
~ •
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++1++++++-F+-~-~++
Process from Point/Station , 3.000 to Point/Station ' 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 82.12(Ft.)
Downstream point/station elevation = 8L 80(Ft.)
Pipe length = 20.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 21.231(CFS) ~
Given pipe size = 24.00(In.)
Calculated individual pipe flow = 21.231(CFS)
Normal flow depth in pipe =-15.40(In.)
Flow top width inside pipe = 23.02(In.)
Critical Depth = 19.'78(In.)
Pipe flow velocity = 9.98~Ft/s)
Travel time through pipe = 0.03 min.
Time of concentxation (TC) = 10.03 min.
End of computations, total study area = 11.01 (Ac.J
The following figures may
be used for a unit hydrograph study of the same area.
Axea averaged pexvious area fractionlAp) = 0.472
Area averaged RI index number = 56.0
t'~
~ ~
Riverside County Rational Hydrology program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 09/O1/02
-----------------------------------------
AREA "B"
TR25055 DEVELOPED CONDITION
EV401-O1
-------------- ~
---------------------------
`~~***~*` Hydrology Study Control Infotmation
++++~+~.~+
---------
----------------
-----------------
ENGINEERING VENTURES Inc., Temecula, California - S/N 560
-----------
---------
-----------------------
Rational Method Hydrology Program based on '
Riverside County Flood Control & Water Conservation District
1993 hydrology manual ~
Storm event (year) = 10.00 Antecedent Moisture Condition = 1
Standard intensity-duration curves data (Plate D-4.1;
For the [ Murrieta,Tinc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 yeax storm 60 minute intensity = O.B80 (in./hr.)
100 year storm 10 minute intensity = 3.480 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.)
Storm event year = 10.0
Calculated rainfall intensity datza:
1 hour intensity = 0.880 (in./hr.) ~
Slope of intensity duration curve = 0.5500
~`
o •
+++f+++f++++++++++++++++++++++++++++++++++++++++++++f++f+++++f+++++~+i-+
Process from Point/Station 6.000 to Point/Station 7.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 60.000(Ft.)
Top (of initial area) elevation = 98.200(Ft.) ~
Bottom (of initial area) elevation = 97.600(Ft.)
Difference in elevation = 0.600(Ft.) .
Slope = 0.01000 s(percent)= 1.00
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
47arning: TC computed to be less than 5 min.; p=oqram is assuming the
time of concentration is 5 minutes.
Initial area time of conce~tration = 5.000 min.
Rainfall intensity = 3.452(In/Hr) for a 10.0 year stoxm
APARTMENT subarea type ~
Runoff Coefficient = 0.827
Decimal fraction soil gioup A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000 -
RZ index for soil(AMC 1) = 36.00 ~
Pervious area fraction = 0.200; Impexvious fraction = 0.800 .
Initial subarea runoff = 0.200(CFS)
Total initial stream area = 0.070(Ac.)
Pervious area £raction = 0.200
~~
~
~
+++++++++++++++++++++++f++++++++}t+++++++i-t+++++++++++++++++++++t+++++
Process from Point/Station 6.000 to Point/Station 7.000
**** STREET ZNLET + AREA + plpE TRAVEL TIME ****
Top of street segment elevation = 98.240(Ft.)
End of street segment elevation = 98.190(Ft.)
Length of street segment = 126.000(Ft.)
Height of curb above gutter flowline = 18.0(In.)
Width o£ half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 12.000(Ft.)
Slope from-gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on (1] side(s) of the street
Distance £rom curb to property li~.ne = 1.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = ~2.000(In.) ~
Manning's N in gutter = 0.0250
Manning's N from gutter to grade break = 0.0250
Mannic~g's N from grade break to crown = 0.0250
User-specified maximum inlet flow capacity of 0.250(CFSj
Number of street inlets = 1 ~
Note: Single inlet capacity is greater than 1/2 stxeet flow
Estimated mean £1ow rate at midpoint of street = 0.211(CFS)
Depth of flow = 0.271(Ft.), Average velocity = 0.327(Et/s)
Streetflow hydraulics at midpoint of street txavel:
Halfstreet flow width = 7.198(Ft.)
Flow velocity = 0.33(Ft/s)
Travel time = 6.42 min. TC = 11.42 min.
Adding area flow to.street
APARTMENT subarea type
Runoff Coefficient = 0.806
Decimal fraction soil group A= 0.~00
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000 . ~
RI index for soil(AMC 1) = 36.00
Pervious axea fraction = 0.200; Impervious fraction = 0.800
Rainfall intensity = 2.191(In/Hr) for a 10.0 year storm
Sitbarea runoff = 0.194(CFS) for O.llO(Ac.) .
Total runoff = 0.394(CFS) Total area = 0.180(Ac
Street flow at end of street = 0.394(CFS)
Half street flow at end of street = 0.399(CFS)
D h
ept of flow = 0.319(Ft.), Average velocity = 0.375(Ft/s)
Flow width (from curb towards crown)= 9.621(Ft.) ~
~~
o ~
++++++++++++i-+++++++t++t++++++++-1~+f+++++++++++++++++++++-f-+++++++++++-F+
Process from Point/Station 7.000 to Point/Station ~.000
**** STREET INLET + AREA + PIPE TRAVEL TIME **** ~
Top of street segment elevation = 98.140(Ft.)
End of street segment elevation = 98.040(Ft.)
Length of street segment = 128.000(Ft.)
Heiyht of curb above gutter flowline = 18.0(In.)
Width o£ half street (cuxb to cri~wn) = 15.000(Ft.)
Distance from crown to crossfall grade break = 12.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown ~(v/hz) = 0.020
Street £low is on [1] side(s) of the street
Distance from curb to property line = 1.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N~in gutter = 0.0250
Manning's N from gutter to giade break = 0.0250
Manning's N from grade break to crown = 0.0250 ~
User-specified maximum inlet flow capacity of 0.250(CFS)
Number of street inlets = 1
Pipe calculations for undex street flow rate of 0.250(CFS)
Using a'pipe slope = 1.000 ~
Upstream point/station elevation = 98.14(Ft.)
Downstream point/station elevatiun = 98.04(Ft.)
Pipe length = 128.OO~Ft.) Manning's N= 0.010
No. of pipes = 1 Required pipe flow = 0.250(CFS)
Given pipe size = 6.00(In.)
Calculated individual pipe flow = 0.250(CFS)
Normal flow depth in pipe = 2.42(In.) ~
Elow top width inside pipe = S,gg(In.)
Critical DepL-h = 3.02(Zn.)
Pipe flow velocity = 3.36(Ft/s)
Travel time through pipe = 0.63 min.
Time of concentration (TC) = P2.06 min. ~
Maximum flow rate of street inlet(s) = 0.250(CFS)
Maximum pipe flow capacity = 0.250(CFS)
Remaining flow in street below inlet = 0.149(CFS)
Adding area flow to street ~
RPARTMENT subarea type
Runoff Coefficient = 0.805 "
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000 ~
Decimal fraction soil g=oup C= 0.000 ~
Decimal fraction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious fracLion = 0.800
Rainfall intensity = 2.127(In/Hr) £or a 10.0 yeax storm
Subarea runoff = 0.188(CFS) for 0.110(Ac.)
Total runoff = 0.582(CFS) Total area = . 0.290(Ac.;~
Street flow at end of street = 0.332(CFS)
Half street flow at end of street = 0.332(CFS)
~~
L1J
~
Depth of flow = 0.306(Ft.), Average velocity = 0.358(Ft/s)
Flow width (from curb towards crown)= B.951(Ft.)
~v
o • ~
++++++f+++++++++++++++t+++++++++++++-F+++++++++f+++++f++++++++++++~F+++i-
Process from Point/Station 8.000 to Point/Station 9.000
**** STREET INLET + AREA + PIPE TR1\VEL TIME **** ~
Top of street segment elevation ~= 98.040(Ft.)
End of street segment~elevation = 97.600(Ft.)
Length o£ street segment = 65.000(Et.)
Height of curb above gutter flowline = 18.0(Zn.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 12.000(Ft.)
Slope from gutter to grade break. (v/hz) = 0.020
Slope from~grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 1.000(Ft.)
Slope £rom curb to prope=ty line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning~'s N in qutter = 0.0250
Manning's N from gutter to grade break = 0.0250
Manning's N~from grade break to crown = 0.0250
User-specified maximum inlet flow capacity of 0.250(CES)
Number of street inlets = 1
Pipe calculations for under street flow rate of 0 .500(CFS)
Using a pipe slope = 1.000 $ ~
Upstream point/station elevation = 98.09(Ft.)
Downstream point/station elevation = 97.60(Ft:) .
Pipe length = 65.OQ(Ft.) Manning's N= 0.010
No. of pipes = 1 Required pipe flow = 0.500(CFS)
Given pipe size = 6.00(In.)
Calculated individual pipe flow = 0.500(CFS)
Normal flow depth in pipe = 3:69(In.)
Flow top width inside pipe = 'i.86(In.)
Critical Depth = 9.33(In.) ~
Pipe flow velocity = 4.00(Ft/s)
Travel time through pipe = 0.27 mi~. ~
Time of concentration (TC) = 12.33 min.
Maximum flow rate of street inlet(s) = 0.250(CFS)
Maximum pipe flow capacity = 0.~500(CFS) .
Remaining flow in street below inlet = 0.082(C@'S)
Adding area flow to street
APARTMENT subarea type
Runoff Coefficient = 0.805 ~
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil gxoup D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Rainfall intensity = 2.101(I:n/Hr) for a 7.0.0 year storm
Subarea runoff = 0.085(CFS) for O.OSOjAc.)
Total runoff = 0.667(CES) Total axea = ~- 0.390(Ac.)
Street flow at end of street = 0.167(CFS)
Half street flow at end of street = 0.167(CFS)
~ \
~ ~
Depth of flow = 0.182(Ft.), ~averaye velocity = 0.820(Ft/s)
Flow width (from cu=b towards crown)= 2.7'73(Ft.)
!~
0
•
+++++++++++ ~+++++++++++++++++++++++++++++++++++++++++++++++++++++~_~+++
Process from Point/Station 9.000 to Point/Station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station~elevation = 92.80(Ft.)
Downstream point/station elevation = 91.70(Ft.)
Pipe length = 107.00(Ft.) Manning's N= 0.010
No. of pipes = 1 Required pipe flow = 0.667(CFS)
Given pipe size = 6.00(In.)
Calculated individual pipe flow = 0.667(CFS)
Normal flow depth in pipe = 4.4~5(In.)
Flow top width inside pipe = 5.25(In.)
Critical Depth = 9.96(In.)
Pipe flow velocity = 4.26(Ft/s)
Travel time chrough pipe = ~0.42 min.
Time of concentration (TC) = 12.75 min. ~
~~
0
•
++f+++++++++++++++++++++++++++-I-f++++++++++++++++++++++++++++++i~i-++++++
Process from Point/Station 9.000 to Point/Station 10.00i1
**** SUBAREA FLOW ADDITION ***+ ~
APARTMENT subarea type ~
Runoff Coefficient = 0 .804
~Decimal fxaction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil qroup D= 0.000
RZ index for soil(AMC 1) = 36. 00
Pervious area fraction = 0. 200; Impervious fraction = 0.800
Time of concentration = 1 2.75 min.
Rainfall intensity = 2. 063( In/Hr) for a 10.0 year storm
Subarea runoff = 0.050( CFS) for 0.030(Ac.)
Total runoff = U. 717(CF S) Total area = 0.370(Ac
Zy
. o •
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~++++++ ~+
Pxocess from Point/Station 10.000 to Point/Station 11.000
**** IMPROVED CHANNEL TRAVEL TIME **** .
Upstream point elevation = 96.00(Ft.)
Downstream point elevation = 82.00(Ft.)
Channel length thru subarea = 20.00(Ft.)
Channel base width = O.OUO(Ft.)
Slope or 'Z' of left channel ban}: = 1.000
Slope or 'Z' of riqht channel banY, = 1.000
Manning's 'N' = 0.015 ~
Maximum depth~of channel = 1.500(Ft.)
Flow(q) thru subarea = 0.717(CFSj
Depth of flow = 0.218(Ft.), Average velocity = 15.029(Ft/s)
Channel flow top width = 0.437(Ft.)
Flow Velocity = 15.03(Ft/s)
Travel time = 0.02 min.
Time of concentration = 12.77 min.
Critical depth = 0.509(Ft.)
End of computations, total study area = 0.37 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.200
Area averaged RI index number = 56.0
v
. ~ ~
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 04/Ol/02
AREA "C"
TR25055 DEVELOPED CONDITIONS -
EV901-O1
********* Hydrology Study Control InfOrmation **********
ENGINEERING VENTURES Inc., Temecula, California - S/N 560
Rabional Method Hydrology Px'ogram based o^ ~
Riverside County Flood Control & WaY.er Conservation District
1993 hydrology manual .
Storm event (year) = 10.00 Antecedent Moisture Condition = 1
Standard intensity-duxation curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 yeax storm 60~ minute intensity = 0.880 (in./hr.)
100 year' storm 10 minute intensity = 3.480 (in./hr.)
100 year stoxm 60 minute intensity = 1.300 (in./hr.)
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in./hs.)
51ope of intensity duration cuxve = 0.5500
2°~
~
~
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++iz o00
5.000 to Point/Station
Yrocess from Point/Station ****
**** INITIAL AREA EVALUATION
Initial area ilow distance = 220.000(Ft.)
98.200(Ft.)
Top (of initial area) elevation = 96.000(Ft.)
Bottom (of initial area) elevatio^ _
Difference in elevation = 2.200-(Ft.)
0.01000 s(percent)= 1.00
Slope =
TC = k(0.323)*[(length^3)/(elevaL-ion change)]"0.2
'7.017 min.
Initial area time of concentration =
Rainfall intensity = 2.865(In/Hr) fox' a 10.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.818
Decimal fraction soil gxoup A= 0.000
Decimal fraction soil gxoup 8= 1.000
Decimal fraction soil qroup C= 0.000
Decimal fraction soil group D= 0.000 -
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 0.422(CFS)
0.180(Ac.l
Total initial stream area =
Pervious axea fraction = 0.200
/~
.~ o •
++++++++++++++++++++++++++++++++++++++++++++++~+++++++++++++++++++++++
Pxocess £rom Point/Station 12.000 to Point/Station 13.000
**** IMPROVED CHANNEL TRAVEL TIME **** '
Covered channel
Upstream point elevation = 96.00(Ft.)
Downstream point elevation = 95.87~Et.)
Channel length thru subarea = 12.00(Ft.) -
Channel base width = 2.000(Ft.)
Slope or 'Z' of left channel ban}; = 0.000
Slope or 'Z' of right channel bank = 0.000 .
Manning's 'N' = 0.015
Maximum depth of channel = 0.330(Et.)
Flow(q) thru subarea = 0.422(CFS)
Depth of flow = 0.101(Ft.), Average velocity = 2.099(Ft/s)
Channel flow top width = Z.OOp(Ft.)
Flow Velocity = 2.09(Et/s)
Travel time = 0.10 min.
Time of concentration =. 7.11 min. ~
Critical depth = 0.111(Ft.) -
End of computations, total study area = 0.18 (Ac.)
The following figures may
be used for a unit hydxograph study of the same area. ~
Area averaged pexvious area fracl-ion~Ap) = 0.200
Axea averaged RI index number = 56.0
2~
0
~
100 YEAR STORM CALCULATIONS
Z~
O •
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Softwaxe, (c) 1992 Version 3.3
Rational Hydrology Study Date: 09/O1/02
AREA "A"
TR 25055 DEVELOPED HYDROLOGY
EV
401-01
********* Hydrology Study Control Information **********
ENGINEERING VENTURES Inc., Temecula, California - S/N 560
-------------------------------------------------------
Rational Method Hydrology Program based on ~
Riverside County Flood Control & Y7ater Conservation Distxict
1993 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Conditio^ = 1
Standard intensity-duration curves data (Plate D-4.1) .
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.) -
10 year storm 60 minute intensity = 0.880 (in./hi.) ~
100 year storm 10 minute intensity = 3.480 (in./hr.)
100 year stoxm 60 minute intensity = 1.300 (in./hr.)
Storm event year = 100.0
Calculated rainfall intensity data: ~
1 hour intensity = -1.300 (in./hr.) ~ .
Slope o£ intensity duration curve = 0.5500 ~
~
o ~
i~+-Fi~++i~++i-+i~+++++i-i-+-~-hi~-Fi-i~ i-+ti~+i~+-hi--F+~-+i~+-F-I~i~++i~++-f~+i-t i~++i~+++++i-i-++++i-.I.
Process from Point/Station 1.000 to Point/Station z~~~~
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 412.000(Ft.) ~
Top (oi initial area)~elevation = 98.300(Et.) .
Bottom (of initial axea) elevation = 95.500(Ft.)
Difference in elevation = 2.800(Ft.)
Slope = 0.00680 s(pexcent)= 0.68
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 9.'743 mi~.
Rainfall intensity = 3.533(Zn/Hr) for a 10.0.0 year stotm
APARTMENT subarea type
Runoff Coefficient = 0.828
Decimal fraction soil group A= 0.000
Decimal fraction soil gxoup B= 1.000
Decimal fraction soil group C= 0.000 ~
Decimal £raction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pexvious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 2.954(CFS)
Total initial stream area = 1.010(AC.)
Pervious area fraction = 0.200
2°`
O
~
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++~-
Process from Point/Station 2.000 to Point/Station 3.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 91.00(Ft.)
Downstream point/station elevation = 82.12(Ft.)
Pipe lenqth = 15.00(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 2.954(CFS)
Given pipe size = 18.00(In.)
Cal~culated individual pipe flow = 2.954(CFS)
Normal~flow depth in pipe = 2.35(In.)
Flow top width inside pipe = 12.14(In.)
Critica~l Depth = 7.83(In.)
Pipe flow velocity = 21.71(Ft/s)
Travel time through pipe = 0.01 min.
Time of concentration (TC) = 9.75 min.
~
O •
++++++++++++++++++++++++++++++++++++ ~+++++++++++++++++++++++++++ ~ ~ ~+1 +
Process from Point/Station 2.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS 3~a~0
++++
Along Main Stream number:
Stream flow area = 1
Runo£f from this.stream =
Time of concentration =
Rainfall intensity =
1 in normal stream number 1
.010(Ac.)
2.954(CFS)
9.75 min.
3:531(Zn/Hr)
J\
. ~ ~
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++a-++++++r++
Process from Point/Statio^ 3.000 to Point/Station 3.U(lU
**** USER DEFINED FLOW INFORMATION AT A POIiJT ****
Rainfall intensity = 3.483(In/Hr) fox a 100.0 year storm
SIIdGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.718
Decimal fraction soil group A=- 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil'group D= 0.000
RI index fox' soil(AMC 1) = 36.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
User specified values aie as follows:
TC = 10.00 min. Rain intensity = 3.98(In/Hr)
Total area = 10.00(Ac.) Total runoff = 34.30(CFS)
3~
O
C~
++++++++++++++++++++~++++++++++++++++++++++++++++~+++++++++++~ i i +~ ++++
Process from Point/Station . 3.000_to Point/Station 3.OOU
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 10.000(Ac.) ~
Runoff from this stream = 34.300(CFS)
Time of concentration = 10.00 min.
Rainfal,l,intensity.= 3.483(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 2.954 9.75 3.531
2 34.300 10.00 3.483
Largest stream flow has longer time of concentration
Qp = 34.300 + sum of
Qb Za/Zb
~ 2.959 * 0.986 = 2.914
Qp = 37.214
Total of 2 streams to.confluence:
Flow rates before confluence point:
2.959 34.300
Area of streams before confluence:
1.010 10.000
Results of confluence:
Total flow rate = 37.214(CI?S)
Time of concentration = 10.000 min.
Effective stream area after confluence =
11.010(Ac.)
~
~ •
++++++++++-I-+++++++++++++t+++++f+++++++t+++++++++++++++++t+++++++-h~Fi~+++
Process from Point/Station 3.000 to Point/Station ~ 9.000
**** PIPEFLOW TRAVEL TIME (Usei: specified size) ****
Upstream point/station elevation = 82.12(Ft.)
Downstream point/station elevation = 81.80(Ft.)
Pipe length = 20.00(Et.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 37.214(CFS)
Given pipe size = 24.00(In.)
NOTE: Normal flow is pressure £low in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
3.489(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 0.591(Ft.)
Minor friction loss = 3.268(Ft.) K-factor ="1.50
Pipe flow velocity = 11.65(Et/s)
Travel time through pipe = 0.03 min.
Time of concentration (TC) = 10.03 min. ~
End of computations, total study area = 11.01 (Ac.)
The following fiqures may
be used for a unit hydrogxaph study of the same area.
Area averaged pervious area fraction(Ap) = 0.972
Area averaged RI index number = 56.0
~
~
~
Riverside County Rational Hydrology Pxogram
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 version 3.3
Rational Hydrology Study Date: 04/O1/02
----------------------------------------------
AREA „B"
TR25055 DEVELOPED CONDITION
EV901-O1
--------------------------------------------
.~~~~~..+ ~++«~.«~..
Hydrology Study Control Information
--------------------------------------
ENGINEERING VENTURES Inc., Temecula, California - S/N 560
------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1993 hydroloqy manual
Storm event (yeai) = 100.00 Antecedent Moisture Condition = 1
Standard intensity-duration curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr.)
10 year storm 60 minute intensi.ty = 0.880 (in./hr.)
100 year stoxm 10 minute intensity = 3.980 (in./hr.)
100 year storm 60 minute intensity = 1.300 (in./hr.) ~
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in./hr.)
51ope of intensity duration cuLVe = 0.5500
`,~
3
~ •
+++++++++++++++++++++++i-i~++++++++++++++++++++++++++++++++++++++-F++++++
Process from Point/Statio^ 6.000 to Point/Statio^ ~ 7.000
**** INITIAL AREA EVALUATZON **** ~
Initial area flow distance = 60.000(Ft.)
Top (of initial area) elevation = 98.200(Ft.)
Bottom (of initial area) elevation =' 97.600(Ft.)
Difference in elevation = 0.600(Ft.)
Slope = 0-.01000, s(percent)= 1.00
TC = k(0.323)*[(length^3)/(elevation change)]^0.2
Warning: 'PC computed to be less tlzan 5 min.; program is assuminy the
time of concentration is 5 minutes.
Znitial area time of concentration = 5.000 min.
Rainfall intensity = 5.095(In/Hr) for a 100.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.843 ,
Decimal fraction soil group A= 0.000
Decimal fraction soil qroup B- 1.000
Decimal fractio^ soil group C= 0.000 , .
Decimal fraction soil group D= 0.000 '
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Znitial subarea runoff = 0.301(CFS)
Total initial stream area = 0.070(AC.)
Pervious area fraction = 0.200
d'
~J
~
++++++++++++-h++++}+++++++++++t+tt+++}+++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
**** STREET INLET + AREA + PIPE TRAVEL TIME ****
Top of street segment elevation = 98.240(Ft.)
End of street segment elevation = 98.140(Ft.)
Length of street segment = 126.000~(Ft.)
Heiqht of curb above gutter f-lowline = 18.0(In.)
Width of hal£ street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 12.000(Ft.)
51ope from guttex to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) .= 0.020
Street flow is on [1] side(s) oT the street
Distance from curb to property line = 1.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0250
Manning's N fxom qutter to gxaae break = 0.0250
Manning's N from grade break to crown = 0.0250
Usex-specified maximum inlet flow capacity of 0. 250-(CFS)
Number of street inlets = 1
Note: Single inlet capacity is greater than 1/2 street flow
Estimated mean flow rate at midpoint of street = 0.317(CFS)
Depth of flow = 0.301(Ft.), Average velocity = 0. 357(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.~34(Ft.)
Flow velocity = 0.36(Ft/s) ~
Travel time = 5.89 min. 'PC = 10.89 min.
Addinq area flow to street
APARTMENT subarea type
Runoff Coefficient = 0.825
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
intensity = 3.329(In/Hr) for a 100.0
Rainfall year storm
,
Subarea runoff = 0.302(CFS) for 0.110(Ac.)
Total runoff = 0.603(CFS) Total area = 0.180~Ac.j
Street flow at end of street = 0.603(CFS)
Half street flow at end of street = 0.603(CFS)
Depth of flow = 0.358(Et.), Average velocity = 0 .413(Ft/s) -
Flow width (from curb towards crown)= ll.542(Ft.) ,
U~
O ~
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** STREET INLET + AREA + PIPC TRAVEL TIME **** ~
Top of street segme~t elevation = 98.190(Ft.)
End of street segment elevation = 98.040(Ft.)
Length of street segment = 17_8.000(Ft.)
Height of curb above gutter flowline = 18.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 12.000(Ft.)
Slope from guttex to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 1.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.025U
Manning's N from gutter to grade break = 0.0250
Manning's N Lrom grade break to crown = 0.0250
User-specified maximum inlet flow capacity of 0.250(CFS)
Number of street inlets = 1
Pipe calculations for under street flow rate of 0.250(CFS)
Using a pipe slope = 1.000 8
Upstream point/station elevation = 98.19(Ft.)
Downstream point/station elevation = 98.04(Ft.) ~
Pipe length = 128.00(Ft.) Manning's N= 0.010
No. of pipes = 1 Required pipe flow = 0.250(CES)
Given pipe size = 6.00(In.) .
Calculated individual pipe flow = 0.250(CFS)
Normal flow depth in pipe = 2.42(In.) .
Flow top width inside pipe = 5.89(In.)
Critical Depth = 3.02(In.)
Pipe flow velocity = 3.36(Pt/s)
Travel time thxough pipe = 0.63 min.
Time of concentration (TC) = 11.52 min. .
Maximum flow rate of street inlet(s) = 0.250(CFS)
Maximum pipe flow capacity = 0.250(CFS)
Remaining flow in street below inlet = 0.353(CFS)
Adding ax'ea flow to street -
APARTMENT subarea type
Runoff Coefficient = 0.824
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil gioup C= 0.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impervious fraction = 0.800
Rainfall intensity = 3.222~(Zn/Hr) for a 100.0 year stoxm
Subax'ea runoff = 0.292(CFS) for 0.110(AC.)
Total runoff = 0.894(CFS) Total area = 0.290(Ac.)
Street flow at end o£ street = 0.649(CFS)
Hal£ street flow at end of sT.reet = 0.644(CFS)
d
O
•
Depth of flow = 0.365(Ft.), Average velocity = 0.417(Ft/s)
Flow width (£mm curb towards crown)= 11.910(Ft.)
~~
.. o •
++++i-+++++++++++++++++++-F+++++-r+++++++++++++++++++++++++++++++i++++-r++
Process from Point/Station 8.000 to Point/Station 9.000
**** STREET INLET + AREA + PIPE TRAVEL TIME ****
Top of street segment elevation = 98.040(Ft.)
End of street segment elevation = 97.600(Ft.)
Length of street segment = 65.000(Ft.)~
Height of curb above gutter flowline = 18.0(In.)
Width of half street (curb to crown) = 15.000(Ft.)
Distance from crown to crossfall grade break = 12.OOO~Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Stieet flow is~on (1] side(s) of the street
Distance from curb to propexty line = 1.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0250
Manning's N from gutter to grade break = 0.0250
Manning's N from grade break to crown = 0.0250
User-specified maximum inlet flow capacity of 0.2501CES)
Number of street inlets = 1
Pipe calculations for under street flow rate of 0 .500(CFS)
Using a pipe slope = 1.000 8
Upstream point/station elevation = 98.09(Ft.)
Downstream point/station elevation = 97.60(Ft.)
Pipe length = 65.00(Ft.) Manning's N= 0.010
No. of pipes = 1 Required pipe flow = 0.500(CFS)
Given pipe size = 6.00(In.)
Calculated individual pipe flow = 0.500(CFS)
Normal flow depth i^ pipe = 3.69(In.) ~ ~
F1ow top width inside pipe = 5.86(In.)
Critical Depth = ~4.33(In.)
Pipe flow velocity = 4.00(Ft/s)
Travel time thxough pipe = 0.27 min.
Time of concentration (TC) = 11.79 min.
Maximum flow rate of street inlet(s) = 0.250(CFS)
Maximum pipe flow capacity = 0.500(CFS)
Remaining flow in street below inlet = 0.394(CFS)
Adding area flow to street
APARTMENT subarea type "
Runoff Coefficient = 0.823
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 0.000
RI index for soil(AMC 1) = 36.00
Pexvious area fraction = 0.200; Impervious fraction = 0.800
Rainfall intensity = 3.181(In/Hr) for a 100.0 year storm
Subarea runo£f = 0.131~CFS) for 0.050(Ac.)
Total runoff = 1.025(CFS) Tota1 area = 0.390~Ac
Street flow at end of street = 0.525(CES)
Half street flow at end of street = 0.525(CFS)
~
~.. o •
Depth of £low =~ 0.260(Ft.), Averaqe velocity = 0.925(Ft/s)
Flow width (from curb towards crown)= 6.645(Ft.)
... o •
++i~++-F+++++i-++-I-+++++-I-t+-F+++i~ i-i-t-F+t+++++4+-I-i++t++-h+i--I~-F++i--F+++++++++++++
Process from Point/Station 9.000 to Point/Station 10.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 92.80(Ft.)
Downstream point/station elevation = 91.70(Ft.)
Pipe length = 107.OO~Ft.) Manning's N= 0.010
No. of pipes = 1 Required pipe flow = 1.025(CFS)
Given pipe size = 6.00(In.)
NOTE: Normal flow is pressut'e fl.ow in user selected pipe size.
The approximate hydraulic grade line above the pipe invert is
1.649(Ft.) at the headworks or inlet of the pipe(s)
Pipe friction loss = 2.119(Ft.)
Minor friction loss = 0.635(Ft.) K-factor = 1.50
Pipe flow velocity = 5.22(Ft/s)
Txavel time thxough pipe =~ 0.34 min.
Time of concentration (TC) = 12.13 min.
~~
~
C~
+++-F-F+++++i-+++++++++++++++++++++++++++++:k~++++++++++++++++++++++++++i-++
Process from Point/Station 9.000 to Point/Station 10.00U
**** SUBAREA FLOW ADDITION ****
APARTMENT subarea type
Runoff Coefficient = 0.822
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fraction soil qroup D= 0.000
RI index for soil(AMC 1) = 36.00
Pervious area fraction = 0.200; Impex'vious
Time of concentration = 12.13 min.
fraction = 0.800
Rainfall intensity = 3.132(In/Hx') for a 100
Subarea runoff = 0.077(CFS) for 0.030(Ac
Total runoff = 1.103(CFS) Tota1 area =
0 yeax storm
)
0.370(Ac
~~
:~.. o •
++++++++++++++++++++++++++++++ ~+++++++++++++++++++++++++++++++ ~ ~+i ++++
Process from Point/Station 10.000 to Point/Station 11.000
~*** IMPROVED CHANNEL TRAVEL TIME **** ' '
Upstream point elevation = 96.00(Ft.)
Downstream point elevation = 82.00(Ft.)
Channel length thru subarea = 20.00(Ft.)
Channel base width = 0.000(Ft.)
Slope or 'Z' of left channel bank = 1.000
Slope ox 'Z' of right channel.bank = 1.000
Manning's 'N' = 0.015
Maximum depth of channel = 1.500(Ft.)
Flow(q) thru subarea = 1.103(CFS)
Depth of flow = 0.257(Ft.), Average velocity = 16.733(Ft/s)
Channel~flow top width = 0.513(Ft.)
F1ow Velocity = 16.74(Ft/s)
Travel time = 0.02 min.
Time of concentration = 12.15 min.
Critical depth = 0.598(Ft.)
End of computations, total study area = 0.37 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction~Ap) = 0.200
Area averaged RI index number = 56.0
~
..:. o •
Riverside County Rational Hydrology Program
CZVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 09/O1/02
-------------------------------------------------
AREA "C"
TR25055 DEVELOPED CONDITIONS
EV401-O1
-------------------------------------------------
********* Hydrology Study Contro,l Information **********
--------------------------=------
ENGINEERING VENTURES Znc., Temecula, California - S/N 560
------------------------------------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1993 hydrology manual
Stozm event (year) = 100.00 Antecedent Moisture Condition = 1
Standard intensity-duration curves data (Plate D-9.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2.360 (in. /hr.)
10 year storm 60 minute intensity = 0.880 (in. /hr.)
100 year storm 10 minute intensity = 3.480 (in ./hr.)
100 year storm 60 minute intensity = 1.300 (in ./hr.)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in./hr.)
Slope of intensity duration curve = 0.5500
~`
.... o •
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 12.OU0
**** INI'I'IAL AREA EVALUATION ****
Initial area £low distance = 220.000(Ft.)
Top (of initial area) elevation = 98.200(Ft.) '
Bottom (o£ initial axea) elevation = 96.000(Ft.)
Difference in elevation = 2.200(Ft.)
Slope = 0.01000 s(percent)= 1.00
TC = k(0.323)*[(length^3)/(elevation changel]^0.2
Initial area time of concentrat.ion = 7.017 min.
Rainfall intensity = 4.232(In/Hr) for a 100.0 year storm
APARTMENT subarea type
Runoff Coefficient = 0.835
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 1.000
Decimal fraction soil group C= 0.000
Decimal fractio^ soil group D= 0.000
RI index for soil(AMC 1) = 36.00
PeLVious area fraction = 0.200; Impervious fraction = 0.800
Initial subarea runoff = 0.636(CFS)
Total initial stream area = 0.180~Ac.)
Pervious area fraction = 0.200
~~
. ~. . ~ •
+f++f++++++++++++++++++++-F++t+++++++++++++i-+++t++f+++++++++++++-I-+i-i-+++
Process from Point/Station 12.000 to Point/Station 13.000
'`*** IMPROVED CHANNEL TRAVEL TIME ****
Covered channel -
Upstream point elevation = 96.00(Ft.)
Downstream point elevation = 95.87(Ft.)
Channel length thru subarea = 12.00(Ft.)
Channel base width = 2.OG0(Ft.)
Slope or '2' of-left channel bank = 0.000
Slope or 'Z' of right channel bank = 0.'000
Manning's 'N' = 0.015
Maximum depth of channel = 0.330(Ft.)
Fl~ow(qJ thru subarea = 0.636(CFS)
Depth of flow = 0.130(Ft.), Average velocity = 2.492(Ft/s)
Channel flow top width = 2.000(Ft.)
Flow Velocity = 2.49(Ft/s)
Travel time - 0.08 min.
Time of concentration = 7.10 min.
Critical depth = 0.196(Ft.)
End of computations, total study area = 0.18 (AC.)
The followiny figures may '
be used for a unit hydrograph study of the same axea.
Area averaged pervious area fract.ion~Ap) = 0.200
Area averaged RI index number = 56.0
{'f`t'
.... o - •
REFERENCE
~,1
~- ~
n
-B
~
u
`~ 6
~~
s`t., ~
---- i_~c~r~c>'--__..._.~._~~.~ -- HY~ROLaGIC SOILS ~:F~t:~IJI' ~~iAP
- SOILS GROUP 130UNUARY ~
A SOILS GfiOUP L[SI6PoA~I~IO~d F't~~
Fd C(~ ~C F~ VY ~ C~ 'fEMECUL~ a~
~_ ~
l~YDF;CII J~iY 1~/~,=\14U.=1L~~ ~~ pEEI" 5000
~ ~ u~ n~v-c „ ~ , ..
, . ~,
C m~O~+~~O Pt~qFP rti~oNt~ N17V1P1~1 rN0~f0 M1PNf-N Wo01~•
o~[ 1~ :NOm ~DInd1~11U N OP PWFb~O InNOO• 1~1(VN.+N oPP
Il O W • • • • • • • • • • •
W ^ ~'1 I'1 1'1 ~~1 N N N N N N N N N N.-r r ti H~.+ ..~ e.r .y ~a ~y .y ~y ~y ~y rn
J P
W
J IC o6 bANOP 01~I~OY1 IIIO~~f~t1~~1 I~INNN~+ ~OOOP UPt001~ 1~1~I~~p~O '
¢ 4 .y W s • •
• • ~ • • • • • • • • • ~ ~ • • • ~ ~ • •
S T N N N N .Y ~n ry rn ~n ti rv .u ry .y ti ~y ~y .y ~r ~y ~y ti N ~y • • • • • • • • • • 11.
~ W
~ 6
a om o
a w
W ¢~.. N~OhmT ..~~(~Id 11~I~mQ• N.Iy1m mNA'~Om. pY101110 IIlON0111 N
LL 7 ~v ti ti..~ ~r .v ..~ .~ N N N N N 1~11~1 f'1 f7 •~I YI N~O ~O 1~ t~ m m
K 2
J r~
0 2
2`~O~OII~^ NmPWN tOdNNN o~DNeP PeNY~P~ NPm.rDe ~p.-iN~+
T o0 Q h 1I1 .+ QI 1(1 N O l0 1` N J f~l N ti (0 ~" ~O f 1'1 1'1 N r+ O o 0 t~ ~p ~p N f O 1~1 1'1
V W •
W ^~ T ~O ~p yl 1l1 • .1 d t 1~1 17 I~1 1~11~1 I+11~1 ~'1 N N N N N N N N N N.r .+..~ r .r ..~ ..~ .y .n
h ~ m
U' O N
Z W ~ f'1 O cO N.~ 1~11~ •Y I~1 1~1 Iry N V.~ N N P O N~O O~ t O~ d O F m.n YI o N.-~ m In N
¢ e< N0~1N0 m~pYld~`l NtieeP mI+1~~ON <ll~ll~ll~l N.~.+ee P6~mrpm
~ Y r W • •
• • • ~ • . . . . . • • . ~ •
N Y Jrlr'1~'1~ NNNNN NNNN~+ ~tirr.+r .+ti.+.+.+ .r.n.~.n..~ ~••• II
~ ~ 6
J O vl Q
a w J
4 1-1- I(1.pI~0P ~aNRI.f III.qFWP ONO~Um ONO~pW O1I1OI(1O IAONOUI ~ VI
Q J ^^.r r.+ .y .r .w .~ N N N N N r'11~1 ~'1 1~11'1 d W N ~I1 ~O ~O 1~ 1~ m ti
K 2
Jr~
~ Z
4~
~
O
~
~
L^iJ
l.i~.
V I
W
2
U
~
I
~
~
~/ /
~
W
~
~r
~
~
2 NP.+Pe doWtOW oNNUn t00oN~0 odTV).-r 1~P-rNe Vl.~nd
.~ '
T
~ o<
ow 1~1(IN~.
..... O~m~ONY
.... 11'IN~~+
..... oPPml~-
. I~~pY1NN <~'l1~INN o
W ~+Y dl~If~11~11~1 NNNNN NNNNN N.-~,r~+.~+ .+.+ti.+r+ .+tirrrn .~.~.y.~.+
O
~
~ N
W Q FI~Id~•1~ ~pM1PIV~O OI(IO~ON PIVWNF 1'IO
~+ mN0A0 1~~1'NPF
O ¢
4 04
-~ W :YtI~1.n
• ~ Pmi~r~D .pi(IYIiO t'li'INNti OO PPmWm :::.0.0
V - t N N N N N. .~ .n .y .Y .~ ti .r .n .y .+ ... .v ..~ .y .~ .r .+ .r .~ .~
~~
R
d
W
Z Z ~
O VI .
O
W
tiF N~01~0P q.+Nf~l~d 1n~p1~mP oN~~ON ONdJW oN01(lo IIIOV10U1 VI
Q J .n ..~ ..~ .y'.~ .-~ ^r ti.-~ .~ N N N N N t~l i'1 ~'1 t'1 t'1 3 J N Yl ~O ~O I` 1~ (0 ~O
¢2
~ i
~ ~~.' .+J~AP mOII1nP".UPONN ~OhN~Om O.fQINA NNd~00 ~lPN~+F
~~O N(f ~9 .} 1~1 .~ o~D' . 1~ .O ~O V~ J t'1 N.~ o P P m :: N ~O 11~ d t'1 !. N.a
J~ 42 ti Nddl'IA1 m1+In11~1N~ IVNNNN I~iNNN
~ 2 SW .. .~ .v ~ .~ ..~ ..n .-~ ~r ..~ ~+ .r .Y .-i .~ ..~
U ¢ ~J
W O O
£ LL IJ .~ R ` ~O A 1~1 ! ~ P N~O ~n ~9 ti 1'1 ~4 m q P d O t- in 1~1 1~ N CJ Q.~ 0 1l~ rl
Fl~+ Q' oY .+m.1~pV~ 19NtioPi WmhP~O .pNA 1~1 NNN.+ oPPm Wmh1~P
J I~ .+y ~i • • ~ • • • e •
' u ~ ('1 M IU N N N N N N ~+ .r .n ...r .+.r ..~ ~~ ..I ~.r ..~ .a ,v r ~y ti ,v ~y • • • • ~ ~ •
~. z,~
F ~ O~
W U H W ~ (
~a ~~~~ II~~OP~WP N~NPIJ~ In~pPmP NJ~-2 ONO~OO ON 1I10 I(IONON.
~ ~~ ..r .~ r .n..~ .~
~~ Q 7 . N N N N N ~I ~~1 r1 1'~ 1~1 d d N 111 ~O ~O 1~. 1~ m m
Y.O S
¢
T o <
V O W
Z .~>
4J
0
w ¢
F R O Q
O LL .+ W
J T
~ 2
o ~n
£ W
F ti
4 ~
J ~-r
~S
o • ~
~ONPm oNN'Op ON11~~+ NQd1(Ih0 1'1FNM11!1 PON~00 N~oOO
• ri~N~ .-rP9 :.p NdnNN Pmm' :~p.p10N ~I~fa1NN
A ~ I~1 f~l ~~ 1~~ N N IY N N N N N N IV N.~+ ti.~ .~r .+ .+ .+ ..~ .r .n .., ..1 ..~ r-~ ..~ ..~ ~y H
amr-..m ~rm..a ~~mao ma~ma emnor aaae'm wemmm
mIlIP1NO PmPP~p I(1N~I1.1 f~INN.y:n eP~ PmmmN FP.O~qd
N N N N M ~-i .-. ~ r+.r n .y .-~ .~ .n .+ .r .-~ H.r .-r~a .r .n • • ~ ~ • • . • ~ .
IN~GI~mP OtiNl~l• y1~p1~m.P ON~1~O0 ONf~ON 011101//0 V10NON
^^' ^^~ ~+ ti'+,+ ~+ N N N N N (~f RI 1'1 1~11~1 O J N N~O ~O I~ F N ~O
~ ~ ~ ~ ~. ~ ~ ~
rJYDf{OI cJ' ~Y 1~/~ANUAL
N
II
41
a
N
m
~
I
W
n
N
~~
PLATE 0-4.1 (~ of 61