HomeMy WebLinkAboutParcel Map 34387 Parcel 2 Hydrology1
1
'
'
,,
1
~
1
,
'
'
t
'
,
'
'
'
'
'
.
~ K&S ENGINEERING
Planning Engineering Surveying
HYDROLOGICAL ANALYSIS
FOR
CREEKSIDE CENTRE
PARCEL 2 OF P.M.30107
IN
CTI'Y OF TEMECULA
~~~g~
s.
No.48592
~P E'30Po6
JN 04-067
June 24, 2005.
6 2.3 ~~
D TE
7801 Mission Center Court, Suite 700 • San Diego, Califomia 92708 •(619) 296-5565 • Fax (619) 296 5564 1
1
,
'
'
,
I '
'
'
'
'
1
,
,
'
'
'
'
'
~
TABLE OF CONTENTS
1. INTRODUCTION
2.HYDROLOGY DESIGN MODELS
3.IIYDROLOGIC CALCULATIONS .......................... APPENDIX A
4.TABLES AND CHARTS ......................................... APPENDIX B
S.HYDROLOGY MAPS ............................................. APPENDIX C
6. REFERENCE AS-BUII,T DRAWINGS ...............APPENDIX D
~
,
I 1. INTRODUCTION
~ ' A. EXISTING CONDITION
THE EXISTING SITE CONSISTS OF ONE VACANT PARCEL (PARCEL 2 OF P.M.
'' No 30107) LOCATED ON THE CORNER OF OVERLAND DRIVE AND NICOLE
LANE IN THE CITY OF TEMECULA. PRESENTLY, THE RUNOFF SHEET-FLOWS
I' SOUTHWEST TOWARDS AN EXISTING CMP RISER LOCATED IN THE
SOUTHWEST CORNER OF THE PARCEL AND THEN INTO THE LONG CANYON
CREEK, THE EXISTING 18" PIPE ALSO CAPTURES THE RLJNOFF GENERATED
' BY THE PARCEL LOCATED EAST OF IVICOLE LANE (PARCEL 3 OF P.M.30107)
AS SHOWN ON THE ATTACHED AS-BUII,T DRAWINGS. THE TOTAL RUNOFF
DISCHARGED BY THE EXISTING 18" PVC INTO THE CREEK IS 16.84 C.F.S
I ~ B. PROPOSED CONDITION
' THE PROPOSED DEVELOPMENT CONSISTS OF THE CONSTRUCTION OF TWO
COMMERCIAL BUILDINGS, WITH DRNE AISLES AND PARKING. STORM
~ RUNOFF WILL BE COLLECTED USING PRNATE INLETS AND CONVEYED
USING PRNATE STORM DRAIN PIPES. APPROXIMATELY 575 LINEAR FEET
OF THE EXISTING 18" PVC LOCATED ACROSS THE PARCEL WILL BE
' RELOCATED TO AVOID CROSSING BELOW THE PROPOSED BUILDINGS;
THEN IT WILL BE RE-CONNECTED TO THE EXISTING 18" PVC BY MEANS OF
A STORM DRAIN CLEANOUT. ALL THE RUNOFF GENERATED BY THE
, PROPOSED PROJECT WILL DRAIN TOWARDS THE EXISTING 18" PVC AND
INTO LONG CANYON CREEK. THE TOTAL RUNOFF DISCHARGED BY THE
EXISTING 18" PVC INTO THE CANYON WILL BE 1734 C.F.S.
'
C. SUMMARY
I THE INCREASED RUNOFF FROM THE EXISTING CONDITION TO THE
PROPOSED CONDITION IS DUE SOLELY TO INCREASING THE RUNOFF INDEX
, Ni.JMBERS OF HYDROLOGIC SOIL COVER, FROM i.INDEVELOPED TO
COMMERCIAL DEVELOPMENT.
THE EXISTING 18" RCP (DOWNSTREAM) WILL HANDLE THE DEVELOPED
' CONDITION RUNOFF FOR THE FOR BOTH PARCELS 2 AND 3 OF P.M. 30107.
THE DEVELOPED CONDITION RUNOFF FROM PARCEL 3 WAS OBTAINED
FROM THE DRAINAGE STUDY FOR ELI LILLY SITE LOT 9 OF TRACT MAP NO.
' 3334, PREPARED BY EXCEL ENGINEERING; WICH HAS BEEN APPROVED BY
THE CITY OF TEMECULA; THEREFORE THERE WILL BE NO NEGATIVE
' IMPACTS ON THE AREA
,
' ~ ~J
'
,
~
'
,
'
I '
I '
'
'
,
'
'
~
'
~
,
'
'
2. HYDROLOGY DESIGN MODELS
A. DESIGNMETHODS
THE RATIONAL METHOD IS USED IN THIS ITYDROLOGY S'I'LJDY; THE RATIONAL
FORNIIJI,A IS AS FOLLOWS:
Q= CIA, WHERE : Q= PEAK DISCHARGE IN CUBIC FEET/SECOND *
C = RUNOFF COEFFICIENT (DIMENSIONLESS)
I= RAINFALL INTENSITY IN INCHES/HOUR
A= TRIBUTARY DRAINAGE AREA IN ACRES
* I ACRI3 INCHES/HOUR = 1.008 CUBIC FEET/SEC
THE INITIAL TIME OF CONCENTRATION WAS DETERMINED USING PLATE D-3,
WHERE:
T~= INITIAL TIME OF CONCENTRATION IN MINUTES
L= LENGTH OF INITIAL AREA IN FEET
H= DIFFERENCE IN ELEVATION BETWEEN ENDS OF IIVITIAL AREA IN FEET
K= DEVELOPMENT FACTOR
B. DESIGN CRITERIA
- FREQLIENCY, 100 YEAR STORM.
- Lt1ND USE PER SPECIFIC PLAN AND TENTATNE MAP.
- RAIN FALL IIVTENSITY PER RNERSIDE COUNTY FLOOS CONTROL AND
WATER CONSERVATION DISTRICT HYDROLOGY MANi JAL.
C.
- COUNTY OF RNERSIDE 1978, HYDROLOGY MANUAL.
- HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION.
~
'
'
LJ
'
1
,
'
'
' APPENDIX A
' (3. HYDROLOGIC CALCULATIONS)
'
'
'
'
'
'
'
'
~ 5
'
'
EXISTINC CONDITION NYDROLOGY (]00 YEAR)
CREEKSIDE CENTRE J.N.04-067UND
' ~ Riverside County Rational Hydrology Program
CIVILCADD/CNILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4
Ra[ional Hydrology Study Date: 06/24/OS File:04067UND.out
' - -------'------------------------------------------------- -------'-
*****'•** Hydrology Study Control Information **"'"*'**
English (in-Ib) Units used in input data file
' --------'-----"----'-------"------------'--'----------'--------
K& S E
i
i
ng
neer
ng, San Diego, CA - SM 868
-
' -------------------------------------------------'-----------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' Storm event (year) = 100.00 Antecedent Moisture Condition = 3
Standard intensity-duration wrves data (Plare D-4.1)
For the [ Murzieta,Tmc,Rnch CaNorco ] area used.
' 10 year s[orm 10 minute intensity = 2.360(In/Hr)
10 year storm 60 minu[e intensity = 0.880(In/Hr)
100 year storm 10 minute intensity = 3.480(InMr)
100 year storm 60 minute intensity = 1300(In/Hr)
, S[orm event year = 100.0
Calculated rainfall intensity data:
I hourintensity= 1.300Qn/Hr)
' Slope of intrnsiry duration curve = 0.5500
++~,T,-.Tn,-rT+++++++++~
Process from PointlStation 1.000 ro PointlStation 2.000
' ***' USER DEFINED FLOW INFORMATION AT A POINT •'**
(FROM APPROVED ORA/tVAGE STUDY FOR ELI L/LLYSITE, LOT 9 TRACT MAP No3334
DEVELOPED COND/TION)
Rainfall intensity= 2.528Qn/Hr) for a 100.0 year s[orm
' USER INPUT of soil data for subarea
Runoff Coetticient = 0.830
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.000
' Decimal fraction soil group C= 0.000
Decimal fraction soil group D= I.000
RI index for soil(AMC 3) = 93.87
Pervious area frac[ion = 0900; Impervious fraction = 0.100
~ User specified values are as (ollows:
TC= 17.90min. Rainintensity= 2.53(In/Hr)
Total area= 4.50(Ac.) Total runoff= 7.50(CFS)
'
~+++++++++n,--r,-,--r~T+++++++++++++F++++++++F++++++++++++++++++++++++
Process from PoinUStation 2.000 [o PoinUStation 3.000
' **Y' pIpEFLOW TRAVEL TIME (User specified size) **•'
Upstream poinUstation elevation = 66.680(Ft.)
. Downsheam poinUstation elevation = 62920(FL)
Pipe length = 160.00(Ft.) Manning's N= 0.013
' No. of pipes = 1 Required pipe Flow = 7.800(CFS)
Given pipe size = I8.00(In.)
Calculared individual pipe Flow = 7.800(CFS)
' Normal flow depth in pipe = 8.84(In.)
, ~
,
' Flow top width inside pipe = I 8.OOQn J
CriticalDepth= 12.98(]n.)
Pipe flow velocity = 9.04(FUs)
' Travel [ime through pipe = 029 min.
Time of concentration (TC) = 18.19 mm.
~ , ++++++++++++~~r~~~T~r+-F++++++++++++++++++++f+++++++++++++++
Process from PoinUS[ation 3.000 ro Point/S[ation 4.000
•*** PIPEFLOW TRAVEL TIME (User speci£ed size)'•'•
~ ' Upstream poinUstation elevation = 62.920(FL)
Downstream poinVstation elevation = 59.000(FL)
Pipe length = 470.00(Ft.) Manning's N= 0.013
~, No. of pipes = I Required pipe Flow = 7.800(CFS)
Given pipe size = I8.00(In.)
Calculated individual pipe Flow = 7.800(CFS)
Normal Flow depth in pipe = 12.33(In.)
' Flow top width inside pipe= 16J2(In.)
CriticalDepth= 12.98(In.)
Pipe Flow velocity= 6A5(Ftls)
Travel [ime through pipe = 1.29 min.
~, Time of concen[ration (TC) = 19.49 min.
++++f+++~~T+++++++F+++++~T+~~.r+++++++++++~-f+~++
' Process from PoinUS[a[ion 4.000 to Point/Sta[ion 5.000
'"** PIPEFLOW TRAVEL TIME (User specified size) ••'*
Upstream poinUstation elevation = 59.000(Ft.)
' Downstream poinUstation elevation = 52.530(FL)
Pipe length = 66.68(FL) Manning's N= 0.013
No. of pipes = I Required pipe Flow = 7.800(CFS)
Given pipe size = 18.00(In.)
' Calculated individual pipe Flow = 7.800(CFS)
Normal Flow depth in pipe = 5.98(In.)
Flow top width inside pipe= 1696(In.)
CriticalDepth= 12.98(InJ
' PipeFlowvelocity= ]5.19(FUs)
Travel time through pipe = 0.07 min.
Time of concenhation (TC) = 19.56 min.
' +++++++++++++++++++~~+++++++++++++++++F+++~~~T++++F++++++++++++++
Process Gom PoinUS[a[ion 4.000 ro PointlS[ation 5.000
'*** SUBAREA FLOW ADDITION ••••
' IJNDEVELOPED (poor cover) subarea
Runoff Coefficient = O.S78
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.000
' Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 1.000
RI index for soil(AMC 3) = 95.60
' Pervious area fraction = 1.000; Impervious Baction = 0.000
Time of concentration = 19.56 min.
Rainfall intensity= 2.408(In/Hr) for a 100.0 year smrm
Subarea runoff= 9.045(CFS) for 4280(Ac.)
, Total runoff= I6.845(CFS) Total area= 8JS0(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' Proccss from Point/Station 5.000 to PoinVStation 6.000
' ~
~
' `•`• PIPEFLOW TRAVEL TIME (User specified size) "'+
Upstream poinUstation elevation = 52.530(FL)
, Downstream poinUstation elevation = 48.200(Ft.)
Pipe length = 49.99(Ft.) Manning's N= 0.013
No. of pipes = I Required pipe Flaw = 16.845(CFS)
Given pipe size = I8.00(In.)
' Calculated individual pipe Flow = 16.845(CFS)
Normal flow depih in pipe = 9.47(In.)
Flow top width inside pipe = U.9S(In.)
' Critical depth could not be calculated.
Pipe flow velociry = 17.87(FVs)
Travel time through pipe = 0.05 min.
Time of concentration (TC) = 19.61 min.
' ++++++++++++
Process from PoinUSta[ion 6.000 to PointlStation 7.000
, •+:. p~pEFLOW TRAVEL TIME (User specifted size)':"
Upstream pomUstation elevation = 48.200(Ft.)
Downstream pointlstation elevation = 45.000(Ft.)
' Pipe length = 70.84(Ft) Manning's N= 0.013
No. of pipes = I Required pipe flow = 16.845(CFS)
Given pipe size = 15.00(In.)
Calculated individual pipe tlow = 16.845(CFS)
' Nortnal Flow depth in pipe = I 1.67(In.)
Flow top width inside pipe = 17.19(In.)
Critical depth could not be calculated.
Pipe flow velocity = 13.SS(FUs)
Travel time through pipe = 0.09 min.
' Time of concentration (TC) = 19.69 min.
End of computations, rotal study area = 8J8 (Ac.)
The following figures may
' be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.949
Area averaged RI index number= 86.8
'
'
'
'
'
'
'
' ~
'
~
'
I~
'
'
,
'
'
~
PROPOSED CONDITION HYDROLOGY (100 YEAR)
CREEKSIDE CENTRE J.N. 04-067DEV
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGNEngineeringSoftware,(c)1989-2001 Version6.4
Rational Hydrology Study Da~e: 06/24/OS File:04067DEV.out
•*•"**"* Hydrology StUdy Contr01 Infortnalton •*******"*
English (in-16) Units used in input data file
K& S Engineering, San Diego, CA - SM 868
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Anrecedent Moisture Condition = 3
Standard intensity-duration curves da[a (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch CaNorco ] area used.
10 year storm 10 minute intensity = 2360(1n/Hr)
10 year storm 60 minute intensity = 0.880(ln/Hr)
100 year storm 10 minute intensity = 3.480Qn/Hr)
100 year stortn 60 minute intensity = 1.300(In/Hr)
Storm event year = 100.0
Calculated rainfall intensity data:
1 hourintensity= 1.300(In/Hr)
Slope of intensity duration curve = 0.5500
++++~T++++~T++++++++++++++++++++++++++++
t Process from PoinVS[ation 1.000 to PoinUStation 2.000
•*'* USER DEFINED FLOW 1NFORMATION AT A POINT ""'
(FROMAPPROVED DRA/NACE STUDY FOR EL/ L7LLYSITE LOT 9 TRACT MAP No 3334J
Rainfall in[cnsity = 2.528(InMr) for a 100.0 year storm
' USER INPUT of soil data for subarea
Runoff CoefTicient = 0.830
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.000
, Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 1.000
A1 indez for soil(AMC 3) = 93.87
, Pervious area fraction = 0.900; Impervious fraction = OJ 00
User specified values are as follows:
TC = 17.90 min. Rain intensiry = 2.53Qn/Hr)
To[al area = 4.50(Ac.) Total runofT= 7.80(CFS)
' '•~
+++++
,T,T;--rT+++F+~T+++++++++++++++++++++++++++++++++++++++++++++++
Process from PoinUStation 2.000 to PoinUStation 3.000
' '*" pIpEFLOW TRAVEL TIME (User specified size) ****
Upstream poinUstation elevation = 66.G80(Ft.)
Downstream poinVstation elevation = 63970(FL)
Pipe length = 1 I5.00(Ft) Manning's N= 0.013
' No. of pipes = I Required pipe ilow = 7.800(CFS)
Given pipe size = 18.OOQn.)
Calculated individual pipe Flow = 7.800(CFS)
' Normal Flow depth in pipc = 8.82Qn.)
, ~
'
'
~
'
~
~
1
'
~
Flow top width inside pipe = IB.OOQn.)
Critical Depth = 12.98(In.)
Pipe Flow velocity = 9.05(FUs)
Travel timc through pipe = 021 min.
Time of concentration (TC) = I8.1 I min.
++++++++++++++++F~r+++++++++++++f++++++++++++++++ "~++++++++++++
Process from PoinUStation 3.000 to Point/Station 4.000
**'* P]PEFLOW TRAVEL TIME (User specified size)'•'*
Upsheam poinVsta[ion elevation = 63.640(FL)
Downstream poinUstation elevation = 62.770(Ft.)
Pipe length = 54.38(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 7.800(CFS)
Given pipe size = 18.00(In.)
Calwlated individual pipe flow = 7.800(CFS)
Normalflowdepthinpipe= 991(InJ
Flow rop width inside pipe= 17.91(In.)
Critical Depth = I298(ln.)
Pipe flow velocity= 7.82(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentra[ion (TC) = 18.23 min.
i- F~~ ~T
Pmcess from PointlStation 4.000 ro PointlStation 5.000
*'** PIPEFLOW TRAVEL TIME (User specified size) **•'
Upstream point/s[ation eleva[ion = 62.440(FL)
' Downstream poinUs[ation elevation = 57.650(Ft.)
Pipe length = 358.27(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe flow = 7.800(CFS)
Given pipe size = I8.00(In.)
' Calwlated individual pipe flow = 7.800(CFS)
Normal Flow dep[h in pipe =] 0.49(In.)
Flaw top width inside pipe = 17J5(In.)
Critical Depth = 1298(In.)
' Pipe flow velocity= 730(FUs)
Travel timc through pipe = 0.82 min.
Time of concentration (TC) = 19.05 min.
,
1
,
'
'
'
+++++++++++++++++++++++~,-,T~T+++++++~T++++~+++++++++++
Process from PoinUStation 4.000 ro PoinUStation 5.000
***' SUBAREA FLOW ADDITION *•**
COMMERCIAL subarea type _
Runoff Coefficient = 0.894
Decimal fraction soil group A= 0.000
Decimal Gaction soil group B= 0.000
Decimal fraction soil group C= 0.000
Decimal (raction soil group D= I.000
RI index for soil(AMC 3) = 88.00 ~
Pervious area fraction = OJ 00; Impervious Gaction = 0.900
Time of concentra[ion = 19.05 min.
Rainfall intensiry = 2.444(In/Hr) for a 100.0 year stortn
Subarea runoff= I.ISS(CFS) for 0.530(Ac.)
Total runoff= 8958(CFS)Total area = 5.030(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from PoinUStation 5.000 to Point/Station 6.000
' ~fl
'
~ **'* PIPEFLOW TRAVEL TIME
U
if
d
i
**•*
, (
ser spec
ie
s
ze)
~ Upstream pointls[ation elevation = 57320(Ft.)
Downstream poinUstation elevation = 55320(Ft.)
Pipe length = I 17.66(Ft.) Manning's N= 0.013
No. of pipes= I Required pipe flow = 8.958(CFS)
Civen pipe size = 18.00(In.)
~ Calculated individual pipe Flow = 5958(CFS)
, Normal flow depth in pipe = 10.62(In.)
Flow top width inside pipe = 17.71(In.)
Critical Depth = 13.89(In J
' Pipe flow velociry= 8.26(Ftls)
Travel time through pipe = 0.24 min.
Time of concentration (TC) = 1928 min.
~ ~
++++++F++++++++n,-,--rT+++++++++~,--r+++++Fn,~r+++++++++++~T
Process from PoinVStation 5.000 ro PointlStation 6.000
~ ***' CONFLUENCE OF MWOR STREAMS "**
Along Main Sheam number. I in normal stream number I
Sheam flow area= 5.030(Ac.)
Runoff from this stream = 8.958(CFS)
~ Time of concentration = 19.28 min.
Rainfall intensiry= 2.427(In/Hr)
' +' '~;T ~r++++'~,T +++++++++++++++++++F
Process from PoinUStation 7.000 to PointlStation 8.000
*••• INITIAL AREA EVALUATION "**
~ Initial area flow distance = 469.720(F[.)
Top (of initial area) elevation = 76J00(F[.)
Bottom (of initial area) elevation = 68.810(FL)
DifTerence in elevation = 7.890(Ft.)
~ Slope= 0.01680 s(percent)= 1.68
TC = k(0300)•[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.958 min.
Rainfall intensity= 3949(In/Hr) for a I00.0 year storm
' COMMERCIAL subarea type
Runoff Coefficient = 0.896
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.000
~ Decimal fraction soil group C= 0.000
Decimal frachon soil group D= 1.000
RI index for soil(AMC 3) = 88.00
Pervious area frac[ion = 0.100; Impervious fraction = 0.900
~ Initialsubarearunoff= 7926(CFS)
Total initial stream area = 2.240(Ac.)
Pervious area fraction = 0.100
~
++++++++++++++++++++++++++++++++++++++++++++++++++++f+++++++++++++++++
Process from PoinUStation 8.000 to PoindSta[ion 6.000
' "**PIPEFLOWTRAVELTIME(Userspecifiedsize)'*** "
Upstrcam point/station elcvation = 65.810(Ft.)
Downstrcam poindstation elevation = 55.320(Ft.)
Pipe length = 37.63(Ft.) Manning's N= 0.013
' No. of pipes = I Required pipe Flow = 7926(CFS)
, Givenpipesize= IO.WQn.)
Calculated individual pipe Flow = 7.926(CFS)
~ Normal flow depth in pipe = 6.08Qn.)
'
1
, Flow top width inside pipe = 9.77(ln.)
Critical depth could not be calculated.
Pipe flow velocity = 22.84(FUs)
~ Travel time through pipe = 0.03 min.
Time of concentrahon (TC) = 799 mm.
~ ~-.-~.~~~,--r+++++++++++++++++F+++++++++~r++++++++++++++++++++++++++++++
Process from PoinUStation 8.000 to PoinVStation 6.000
'•'• CONFLUENCE OF MINOR STREAMS "'*
~ Along Main Stream number: 1 in normal sheam nun
S[ream tlow area= 2.240(Ac.)
Runoff from Ihis stream = 7926(CFS)
Time of concentration = 7.99 min.
~ Rainfall intensiry= 3.941(In/Hr)
Summary of stream data:
; S[ream Flow rate TC Rainfall lntensity
No. (CFS) (min) (In/Hr)
, 1 8958 1228 2.427
~ 2 7.926 7.99 3.941
Larges[ stream flow has longer time of concentration
Qp= 5.958+sumof
Qb Ia/Ib
~ 7.926 * 0.616 = 4.881
QP= 13.838
Total of 2 sheams to confluence:
M Flow rates before contluence point
5958 7.926
Area o(streams be(ore conFluence:
5.~3~ Z.Z4~
~ Resul[s of conFluence:
Total flow rate = 13.838(CFS)
Time olconcentration = 19283 min.
~ Effective stream area after contluence = 7270(Ac J
+++++++++++~•~Tt+++++++++++++++++++++++++++++~~~~,-;+++++-HF++++F++++f++
~ Process from PoinVSta[ion 6.000 to Point/Station 9.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
,~
~
'
~
~
Upsheam point/station eleva~ion = 55320(Ft)
Downstream poinUstation elevation = 52.530(Ft)
Pipe length = 16398(Ft) Manning's N= 0.013
No. of pipes = I Required pipe flow = 13.838(CFS)
Given pipe size = IB.OOQn.)
Calculated individual pipe flow = 13.838(CFS)
Normal Flow depth in pipe = 14.91 Qn.)
Flow [op width inside pipe = 13.58(In.)
Critical Depth = 16.52(In.)
Pipe Flow velocity = 8.84(FUs)
Travel time through pipe = 031 min.
Time of concentration (TC) = 19.59 min.
Process from PoinVStation 6.000 to PoinVStation 9.000
'*** CONFLUENCE OF MAIN STREAMS •"'
~ ~v
~
, The following data inside Main Stream is listed:
~ In Main Stream number: 1
StreamFlowarea= 7.270(AcJ
M Runoff from this stream = 13 838(CFS)
Time of concentration = 19.59 min.
Rainfall intensity= 2.406(In/Hr)
~ Program is now starting with Main Stream No. 2
++++++++++++~.r++++++++++++++++++++++++++++++++++++++++F+++++i+++
Process from Point/Station 10.000 to Point/Station 1 I.000
, **** INiTIAL AREA EVALUATION'**•
Initial area flow distance = 23.560(FC)
Top (of ini[ial area) elevation= 72950(F[ )
1 Bottom (of initial area) elevation = 72.170(Ft.)
Difference in elevatwn = 0.580(FL)
Slope = 0.02462 s(percent)= 2.46
TC = k(0300)*[(length^3)/(elevation change)]^0.2
~ Waming: TC computed to be less than 5 min.; program is assuming the
time of concentration is 5 minutes.
Ini[ial area time of concentra[ion = 5.000 min.
Rainfall intensity = 5.099(In/Hr) for a 100.0 year srorm
~ COMMERCIAL subarea type
Runoff Coefticient = 0.897
Decimal fraction soil group A= 0.000
, Decimal fraction soil group B= 0.000
~ Decimal fraction soil group C= 0.000
Decimal fraction soil group D= 1.000
RI index for soil(AMC 3) = 88.00
Pervious area frac[ion = 0.100; Impervious fraction = 0.900
' Initial subarea runoff= 0.137(CFS)
Total initial stream area= 0.030(Ac.)
Pervious area fraction = 0.100
~
~,-,--rT+~n++++++++++F~~~,-,--r~+++++++++
Process from PoinUStation 1 I.000 to PoindS[a[ion 12.000
~ ••'• PIPEFLOW TRAVEL TIME (User specified size) ***'
' Upsheam poindstation elevation = 70.170(FL)
Downstream poinUstation eleva[ion = 69.710(F[.)
Pipe length = 45.37(FL) Manning's N= 0.013
; No. of pipes = I Required pipe flow = 0.137(CFS)
Given pipe size = 6.00(In.)
Calculated individual pipe Flow = 0.137(CFS)
Normal Flow depth in pipe = 2.02(In.)
~ Flow top width inside pipe= 5.67(ln.)
Critical Depth = 2.21(In.)
Pipe tlow velocity= 238(Ft/s)
~ Travel time through pipe = 0.32 min.
Time of concentra[ion (TC) = 5.32 min.
++++++++++++++++++++++++++++++++++++++++~~n~,-;+~++++t+++++++++++++++++++
Process from PoinUStation I 1.000 to Point/Station 12.000
-- "`* SUBAREA FLOW ADDITION *'**
COMMERCIAL subarea type
~ Runoff Coe(ficient = 0.897
Decimal fraction soil group A= 0.000
Decimal fraction soil group B= 0.000
~ Decimal fraction soil group C= 0.000
~ ,~
LJ
, Decimal fraction soil group D= 1.000
RI index for soil(AMC 3) = 88.00
~ Pervious area fraction = 0.100; Impervious fraction = 0900
Timeofconcentration= 5.32min.
Rainfall intensity= 4929(In/Hr) for a 100.0 year storm
Subarea runoff = 0.177(CFS) for 0.040(Ac.)
~ Total runoff= 0314(CFS)Total area= 0.070(Ac.)
+++++++++++++++++++++++++++++~-.-.~++++++++++++++++•~T~,-,~
Process from PointlS[a[ion 12.OW [o PointlStation 13.000
~ •••* PIPEFLOW TRAVEL TIME (User specified size)'""*
Upstream pointlstation elevation = 69.710(Ft.)
Downstream point/station elevation = 68.770(Ft.)
~ Pipe length = 94.84(Ft.) Manning's N= 0.013
No. of pipes = I Required pipe flow = 0314(CFS)
Given pipe size = 6.00(ln.)
Calculared individual pipe Oow = 0314(CFS)
~ Normal flowdep[h in pipe= 3.22(In.)
Flow top width inside pipe = 5.98(In.)
CriticalDepth= 3.40(InJ
~ Pipe flow velocity= 2.93(Fds)
Travel time through pipe = 0.54 min.
, Time of concenhation (TC) = 5.86 min.
, ~~~+++++++++++++++++++++F++
`~ Process from PoinUStation 12.000 to PoinUStation 13.000
'*•• SUBAREA FLOW ADDITION ""
~~ COMMERCIAL subarea type
Runoff Coef6cien[ = 0.897
Decimal fraction soil group A= 0.000
, Decimal fraction soil group B= 0.000
~ Decimal fraction soil group C= 0.000
Decimal fraction soil group D= I.000
RI index for soil(AMC 3) = 88.00
Pervious area fraction = 0.100; Impervious frac[ion = 0.900
~ Time of concentration = 5.86 min.
Rainfall intensrty= 4.674(]n/Hr) for a 100.0 year srortn
Subarea runofT= 1.215(CFS) for 0.290(Ac.)
~ Total runoff= 1.529(CFS)Total area= 0360(Ac.)
~~T++++++++~,--r+++++++++++~,T+++++++~,--r++++++F
Process from PoinUStation 13.000 to PoinVStation 14.000
' •••• PIPEFLOW TRAVEL TIME (User specified size) *'•'
~ Upstream poinUstation elevation = 68.770(Ft.)
Downstream poinUstation elevation = 66.650(Ft.)
~ Pipe length = 21 1.59(Ft.) Manning's N= 0.013
No. ofpipes= 1 Required pipe Flow = 1.529(CFS)
Given pipe size = I O.OOQn.)
Calculated individual pipe flow = 1.529(CFS)
~ Normal flow dep[h in pipe = 6.15(In.)
Flow top width inside pipe = 9.73Qn.)
CriticalDepth= 6.65(In.)
, Pipe Flow velociry = 435(Ft/s)
~ Travel time through pipe = 0.81 min.
Time ofconcentration (TC)= 6.67 mfn.
~
~ ~
'
' +
~-~++++~+~++~+~++++++~+~+~+++~+~+~~++,~+~++++++
Process Gom PoinVStation 13.000 ro PoinVStation 14.000
1 *•** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Runoff Coefficient = 0.896
Decimal Baction soil group A= 0.000
~ Decimal fraction soil group B= 0.000
Decimal frac[ion soil group C= 0.000
Decimal fraction soil group D= I.000
RI index for soil(AMC 3) = 88.00
~ Pernous area fraction = 0.100; Impervious frac[ion = 0.900
Time of concentration = 6.67 min.
Rainfall intensity= 4352(In/Hr) for a 100.0 year storm
Subarea runoR = 1287(CFS) for 0330(Ac )
1 Totalrunoff= 2.817(CFS)Totalarea= 0.690(AcJ
~ ~~--n ~ .~,-,--r++++++++++++++++++++++~~T,-r+++F++++++++++
~ Process 6om PoinUStation 14.000 to PoinVS[a[ion I5.000
. *"•* PIPEFLOW TRAVEL TIME (User specified size) ••"
Upstream poinUstation elevation = 66.650(Ft.)
~ Downstream point/station eleva[ion = 64.640(FtJ
Pipe length = 200.40(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe Flow = 2.8I7(CFS)
Given pipe size = 12.00(In.)
' Calculated individual pipe flow = 2.817(CFS)
_ Normal flow depth in pipe = 8.04(In.)
Flow top width inside pipe = 11.29Qn.)
CriticalDepth= 8.63(In.)
~ Pipe flow velocity= 5.03(Ftls)
Travel time through pipe = 0.66 min.
Time of concentration (TC) = 733 min.
~~* ~,-,--rT++++++++++++++++++,~+~~T++++u~m
Process from PoinUS[ation 14.000 to PoinUStation I5.000
; '••' SUBAREA FLOW ADDITION **'*
COMMERCIAL subarea type
Runoff Coefficient = 0.896
Decimal frac[ion soil group A= 0.000
~ Decimal fraction soil group B= 0.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D= I.000
RI index for soil(AMC 3) = 88.00
' Pervious area frachon = 0.100; Impervious fraction = 0900
-~ Time of concentration = 733 min.
Rainfall intensity = 4.131(In/Hr) for a I00.0 year s[orm
Subarearunoff= I.037(CFS)for 0.280(AcJ
~ Total runoff= 3.853(CFS)Total area = 0.970(Ac.)
+++~~T+++++++++++++++++++++++++++++++++++++++++++++++++++++++++
~ Process from PointlStation 15.000 to PoinUStation 16.000
**'* PIPEFLOW TRAVEL TIME (User specified size) **'*
Upstream pomt/station elevation = 64 640(Ft )
1 Downstream point/station elevation = 60.240(Ft.)
Pipe length = 101.08(Ft.) Manning's N= 0.013
No. of pipes= 1 Required pipe Oow = 3.853(CFS)
' Givenpipesize= I2.OOQn.)
/
1 ~'
~
~
Calculated individual pipe (low = 3.853(CFS)
Normal flow depth in pipe = 7.03(In.)
Flow top width inside pipe = 9.14(In.)
~ Critical depth could not be calculated.
Pipe flow velocity = 939(Ft/s)
Travel time through pipe = 0.18 min.
~ Timeofconcentration(TC)= 7.Slmin.
+++++t~,-,--r ~,~-r~++-f+,~,-,--r++++++++++++++++~,T,--r+++++++++++++++
~ Process from PoinUStation I5.000 [o PoinUStation 16.000
`•** CONFLUENCE OF MINOR STREAMS **••
Along Main Stream number. 2 in normal stream number 1
Stream flow area = 0970(Ac.)
~ Runoff from this stream = 3.853(CFS)
. Time of concentration = 7.51 min.
Rainfall intensity= 4.076(InMr)
~ +
~~T++++++++++,-r~T+++++++++++++++++++++++++++++++~~+++++
Process from Point/Station U.000 to Point/Station I8.000
*•*" INITIAL AREA EVALUATION'•*•
~ Imtial area flow distance = 203.000(FL)
Top (of initial area) elevation = 70.880(F[.)
Botrom (of initial area) elevation = 64.850(Ft.)
~ Difference in elevation = 6.030(Ft.)
. Slope= 0.02970 s(percent)= 2.97
TC= k(0300)*[(length^3)/(elevation change)]^0.2
Initial area time of concenhation = 5 076 min.
1 Rainfall intensity = 5.057(In/Hr) for a 100.0 year storm
COMMERCIAL subarea type
Runoff Coefficient = 0.897
Decimal fraction soil group A= 0.000
' Decimal fraction soil group B= 0.000
Decimal fraction soil group C= 0.000
Decimal fraction soil group D=].000
RI indez for soil(AMC 3) = 88.00
; Pervious area 6action = 0.100; Impervious fraction = 0.900
Initial subarea mnoff= 2.494(CFS)
Total initial stream area = 0.550(Ac.) ~
' Pervious area fraction = 0.100
+ + + F , - . T , - , - - r + + + + + + + + ~ , - , - , - . T + + + + + + + + + f + + + + + + + ~ + + + + + + + + + + + + + + + + + + + + + + +
' Process from PoindStation 18.000 to PoinUStation 16.000
*'•• PIPEFLOW TRAVEL TIME (User specifted size) *•**
Upsheam poinUstation elevation = GI.I SO(Ft.)
Downstream poinUstation elevation = 60240(Ft.)
~ Pipe length = 93.82(Ft.) Manning's N= 0.013
No. of pipes = 1 Required pipe Flow = 2.494(CFS)
Given pipe size = 12.OOQn.)
Calcula[ed individual pipe Flow = 2.494(CFS)
' Normal flow depth in pipe = 739(In.)
Flow rop width inside pipe = 1 1.67(In.)
CriticalDepth= 8.12(In.)
Pipeflowvelocity= 491(FUs)
~ Travel time through pipe = 0.32 min.
Time of concentration (TC) = 539 min.
'
, ~W
~
~ +~~++~~+~+~~~++~~~+,~-~++++++.++,-+++~~~~+~~-~+
Process from PoinUStation 18.000 to PoinUStation 1G.000
1 *"'* CONFLUENCE OF MINOR STREAMS *'•'
Along Mam Stream numbec 2 in nortnal stream number 2
Stream flow area= 0.550(Ac.) ~
, Runoff from this stream = 2.494(CFS)
Time of concentration = 5.39 min.
Rainfall intensity= 4.890(ln/Hr)
Summary of stream data:
~ Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) Qn/Hr)
, 1 3.853 7.51 4.076
2 2.494 539 4.890
Largest stream Flow has longer time of concentration
Qp = 3.853 + sum of
~ Qb la/Ib
2.494 • 0.834 = 2.079
Qp = 5.933
~ Total of 2 streams ro confluence:
Flow rates before conFluence point:
3.853 2.494
Area of streams before confluence:
~ 0.970 0.550
Results of confluence:
Total flow rate = 5933(CFS)
~ Time of concentration = 7.511 min.
Effec[ive stream area after conFluence = 1
520(Ac
)
.
.
......~,,-r~+++++++++++++++++++~~+++++~++++~,,-r++++++++++++
I Process from PointlS[ation 16.000 to PoindS[ation 9.000
•*•* pIPEFLOW TRAVEL TIME (User specified size) ***'
Upstream poinVstation elevation = 60.240(Ft.)
~ Downstream poinUstation elevation = 52.530(Ft.)
Pipe lengrh = 17.89(Ft) Manning's N= 0.013
No. of pipes = I Required pipe flow = 5.933(CFS)
Given pipe size = I5.00(In.)
~ Calculated individual pipe flow = 5.933(CFS)
Normal Flow depth in pipe = 3J9(In.)
Flow top width inside pipe = 13.04Qn.)
Critical Depth = 11.82(In.)
' Pipe flow velocity= 24.36(Ftls)
Travel [ime through pipe = 0.01 min.
Time of wncentralion (TC) = 7.52 min.
'
+++,--~-~-~-~rT++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from PointlStation 16.000 ro Point/Station 9.000
~ **'* CONFLUENCE OF MAfN STREAMS *"•
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = I .520(AC.)
; Runoff from this stream = 5.933(CFS)
Time of concentration = 7.52 min.
Rainfall intensity= 4.073Qn/Hr)
~ Summary of stream data:
~ ~~
,
'
Stream Flow rate TC Rainfall Intensiry
1 No (CFS) (min) Qn/Hr)
1 13.838 19.59 2.406
' 2 5.933 7.52 4.073
Largest stream flow has longer time of concentratwn
Qp = 13.838 + sum of
Qb la/Ib
1 5.933 • 0.591 = 3.505
QP= 17.343
Total of 2 main streams to confluence:
Flow rates before confluence point:
~ 13.838 5.933
Area of streams before confluence:
7.270 1.520
'
Results of conFluence:
Total Flow rate = 17.343(CFS)
, Time of concentration = 19.593 min.
Effective s[ream area after conFluence = 8.790(Ac.)
++++++++~,~'~T+++++++F~T~T,..,~,-~,--rT++++++F++++++++
~ Process from PoinUStation 9.000 to PoindSta[ion 19.000
*•" PIPEFLOW TRAVEL TIME (User specified size) ""
Upstream point/station elevation = 52.530(Ft.)
~ Downsheam poinUstation elevation = 48.200(Ft.)
Pipe length = 47.40(Ft.) Manning's N= 0.013
No. of pipes = I Required pipe Flow = 17343(CFS)
' Given pipe size = IS.00(In.)
' Calculated individual pipe flow = 17.343(CFS)
Normal flow depth in pipe = 9.49(In.)
Flow rop width inside pipe = 17.97pn.)
Cri[ical depth could not be calwlated.
' Pipe flow velocity= 1837(FUs)
. Travel time through pipe = 0.04 min.
Time of concentration (TC) = 19.64 min.
'
+++++++++++F++++++++++~,-,--rT++~T++++++++++++++++++++++++++
Process from PoinUStation 19.000 to PoinUStation 20.000
~ •••' PIPEFLOW TRAVEL TIME (User specified size) ***"
Upstream poinUstation eleva[ion = 48.200(FL)
Downstream pointlstation eleva[ion = 45.930(Ft.)
Pipe length = 66J0(F[.) Manning's N= O.OI3
' No. of pipes = I Required pipe Flow = 17343(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 17343(CFS)
Normal flow depth in pipe= 1329(In.)
~ Flow top width inside pipe = I5.82(In.)
Critical depth could not be calculated.
Pipe Flow velocity= 12.40(FUs)
Travel time through pipe = 0.09 min.
~ Timeo(concentration(TC)= 1R73min.
End of computations, total smdy area = 5.79 (AC.)
The (ollowing figures may
' be used for a unit hydrograph study of the same area.
~ \~
~
'
Area averaged pervious area fraction(Ap) = 0.510
, Area averaged RI index number = 80.0
'
~
'
~I
~ I
u
~
~
~
,
,
,
~
'
,
~~
~
' \~
~
'
,
1
1
1
i
i
~~
~
'
~
'
~
'
'
~
~
APPENDIX B
(4. TABLES AND CHARTS)
z0
'
:~' ' ' • '~` 1~,.
~ .
~ ~
. AveraQe Y~lues of RouQlu~ess.Coelficient (ll~nnin; s n)
~.
" ' ~ Rou;hn~as~
, Typ~ oi N~c~rw~y Co~i!!el~n~ (n)
~ .
I
' 1. Closed Conduits (1) ~ '
'
~
~ Steel (not lined) ~ 0.025
~ Cast Iron 0.015-
~ Al~in~an ~ .021
, . Corrugated Metal (not lined) 0:024~•
. Corru~ated Metal (2) (smooth asphalt quarterlining) ~.021
Corrugated Atetal (2) (smooth asphalt half lining) • 0:018
~. CorruPated l~tetal (smooth asphalt full lining) 0.012
Concrete RCP ' 0.012
Clay (sewer) 0.013
~ . A~bestos Cement~ Pv~ ~ - ~- - 0.011
~ -
. Drain Tile (terra cotta) ~ 0.0?5
Cast-in-place Pipe 0.015 .
' ~ . Reinforced Concrete Hox 0.014~.
2. Open Channels (1) ~
~ ~ a. Unlined
~ C1ay Loam •
'. Sand
('~;_, i b. Revetted ~ _
• Gravel
~ ' Rock ~
, ' ' Pipe and Wire • •
, ~. Sacked Concrete
' • , c. Lined
Cor{crete (poured) ,
Air, Blown biortar (3)
~ Asphaltie Concrete or Bit~inous Plant Kix .
d. Vegetated (5) , •;
~ Grass lined, maintained '
Grass and Weeds
~ Grass liried.with concrete loW flow channel
' 3. Pavement and Guiters (1)
' Concretc ~
~ ~.., ~ ~..: . . sic~~,ous (plant-mixed) : ~ . •
~~.~'..:. :-~ 1 ., .W.. .
' .~'' ~: •. ~ . r ~.N~.. ~ .
' ~ .• ~~~•~V'~~\I'I~~~~~:J~• • ~1+ 1.~ .
~_~ ~ ' ~1.*~u~•."~ • r. ' . . ' ~
~ r . '.1:..
~ •,~'..,~~ry~~;~''~'Y,:.w . " ~ ~ • •
. ~..~~jS7%J 11~ ~..~. ~'; ~ ~ ~1 1
~ ~~ .1 w~S'~.^+• • ~.. ~ .... . ...... 1 . . . . ~
_'~,`~~ , • ~ µ:•' , . ~ . .. ' , ,, , : .
ti ~I.~a.. .J .. : 'y'~,~,(•y'^~~~.)y!~~/~.: . '.'cJ.~~~'~\.. :(...•. ~ ' . A~v..
'' ~~ _.. . ~ • •.n '•s ~.. ~• .L "~1 :~..~..: .:• • ' ~~. .. ~~~ ~ ~
~s ~° ~ ' ' '~~"t: ;.•.'~;• ~~ .,. .
:- .t:.l '~ h~].},St' 54~~:,f ~ t~~''~~ ~~ 1-yl~'~~~ 141f,~~i
~ :'`~t~l.~. ,y~+ . s ~~ {,}+''_`-V`~' ,
.. • ~ y` i Illr~ . ` ~~~ ~~~ : ~ ~ /~~j ~~ ~= ! 1y~! ~~-•
.I
0.023• .. ,
O.Q'_0 .'.
0.050 ~
0.0»0
0.025
0.025. '~
0.014
0.016
0.018
.035 '
.045
. 0 32
0.015,
0.016.
~ .z~~~.,'t~
~'~~ ~ •.Y;, '~Li
:•''~t': ~ ~ •' ~, i y"
~
1
~~~':~ xv~'t~8~`~~
~
r
I
'
~
~
'
'
~
'
'
'
~
'
~
'
1
,
~~
'
RUNOFF INDEX NUt~EAS CH~ AYDAOLOGIC SOZL-COVER COI~LEXES FOR PERVIOUS AAEAS-AMC II
Covar 7ype (3) Quality of Soil Group
Cover (2) A B C D
NATURAL COVERS -
Barren
(Rockland, eroded and graded land)
Chaparrel, Broadleaf
(Manzonita, ceanothus and scrub oak)
Chaparrel, Narrowleaf
{Chamise and redshank)
Grass, Annual or Perennial
Meadows or Cienegas
(Areas with seasonally high water table,
principal vegetation is sod forming grass)
Open Brush
(Soft wood shnabs - buckwheat, sage, etc.)
woodland
(COniferous or broadleaf trees predaninate
Canopy density is at least 50 percent)
Woodland, Grass
(Coniferous or broadleaf trees with canopy
density fran 20 to 50 percent)
URBAN CUVERS -
Residential or Crnc~ercial Landscaping
(Lawn, shrubs, etc.)
'iUrf
(Irrigated and mowed grass)
AGRZCULTURAL COVERS -
Fallow
(Land plowed but not tilled or seeded)
RCFC ~~WCD °
rIYDROLOGY T/IANUAL
~ .,_
- . ...,~.
78 I 86 1 91 I 93
Poor 53 70 80 85
Fair 40 63 75 81
Good 31 57 71 78
Poor 71 82 88 91
Fair 55 72 81 86
Poor 67 76 86 89
Fais 50 69 79 84
Good 38 61 74 80
Poor 63 77 85 88
Fair ST 70 80 84
Good 30 58 72 78
Poor 62 76 84 88
Fair 46 66 77 83
Good 41 63 75 81
Poor 45 66 77 83
Fair 36 60 73 79
Good 28 55 70 77
Poor 57 73 82 86
Fair 44 65 77 82
Good 33 58 72 79
Good 132 156 169 175
~or I44 I65 l87 I82
Good 33 SB 72 79
76 I85 ~ 90 ~ 92
RUNOFF INDEX NUMBERS
FOR ~y7i
PERVIOUSJAREA
PLATE D-S.S (1 ot 21
' T~' ~IMITATIONS:
~ ~~ I. Maximum I~npth ~ 1000~ Te
~ 1000 ~ 2. Maximum ana s 10 Au~t 5
soo e0 s
' ' 800 T~ r, ~'~ 6 ~'
~ ~.$~ ~
~ 700 60 g ~ ° z~ '~
~ ~ s ~ ~
600 E ~ ~ ,r ` ~ E
' ~ o o ~ 8 $
5~ o O ~~~ ~~~ 20 9 c
' -'`
~ 'Y 35 ~ ~ ' lo 'E
I - s K ~ , ~~ °
~ 400 ' 30 UnO~vNoP~d : 2 (' 12 c°
Good Cowr _
, 0 350 = 25 UnGvNop~ e i.o -- " _..
~ E --Fci~ Cc = ,14~ ..
' c 300 ~ 20 p ~ v .3 2 15 ~
.19 ~ :2 ~ 16 ~
~ 250 H 17 S' 91t Family ,~ ~~ E
~ ~ . t6 (1/4 Acn1 ~ ~' 18 `
t « o ~~ Comm~rcia 19 ~
' ~ Q (Pav ~ 20 ~
• 200 ~ 13 i ~ o
J ° 12 2~ °
g ~ S
o `
8 ~
' `c
~ 2S ~
~ KEY c°,
€ 9 L-H Tc-K-Tc o
' ~ 8 ~~ •
EXAMPLE; E
7 ~
' (I)L=550~, H=5.O~,K=Sinpk famiiy(I/4Ac.) 35
Devebpment , Te =12.6 mie.
~ 6
, ,,~`~ 100 ~2) L=5S0~, N=S.O~, Ks Comm~rciol 40
s Oevelopment , Tc = 9.T min.
5
' 4 R~hnnu: Bfblioprophy f1~m No. 3S.
, R.C FC A W C O TIME OF CONCENTRATION
'~ HYDROLOdY 1ylANUAL FOR INITIAL SUBAREA7.3
' PIATE 0-3
~
W
l
N
K
W
G
'
u
,
'
'
'
t ~~~~• O f C r• •~ N r N n N~ n r N O~~ r P N n N O 1 O n 1
> ~~ P :N~• ON :'1N N~~~p so~-~e NM : : ; '1NN~ O~~~P
U ^y • • • • •
^ - AIInqN NNNNN NNNN~ .~r..~~ ~~~~~ ~~~~~ ~~..~ ~
W
7
O
W t 1~1~• ~PMN• •1M~M •~N~A Oi~1~• N~N~O NNeOi
Y •~ ~~N~• ~~r.0~11 MI~IVI /INN~ ~0~~! O~O~h I~~.r~•
r ~ NNNN ,y~ ~~~~^ ^ • • ~ ~ • • ~ • • •
_
=N
W
ti M
< ~
J
02
e
M i ~ O P ~ N n~ N i P O P O N 1 i O O N I O O O V~ O Y1 O N O N O N
~~~~~ ~~~~.~ NNNNN ~nI1/II1I~ •INNi ~Onh00
O
•
~
~
O
J
N
~
~ Q~OO<N~ NOMON C~NNN ~LNOP PoNNO NPOOO ~0~111~
> Of heN~O NNOa~ N~nN~ oO~C~ I~FlN~e OO~OO Yf~~Fln
O V ^ W . • . ~ • • • ~ . • • • • • • • • ~ ~ ~ . • ^^ r-__-
Z ) N~YNN• •~1~'II1 01OIw1I~P1 TNNNN NNNNN N~~ ~
~ W Q
N 7 p
W O N
2 W Q IIOCN~ nn~nll IINO,+N PPONi P~P~O ri~NO N~ONN
Q Ot NO~NO O~ON~~'1 N~OOP OrhiY~ •~P1I11~1 N~~00 Pp000
6 LL ~ W
/~I 6 a •nFl~IFl NNNNN NNNN~ ~~~+~ ..~~~.. ^~^~~ • • • ~ • ~
L` N
e
W = '"
J ^N ~
~ t W
G ~f NOr00 O~^~'II N=rOP ON~~Om ONI~00 ONONO NONOY~ N
eJ ~ NNNNN I~I~nnPr •~y~N~O Ohw00
Q2
~ ~
N Oi
W
2 ¢ OO.~PO •OiOO ONNO~ OmONp O~PY~~ ~P~yfo N~h~.+
U 1 O~ :hNN~ PO~OY1• •YIN~~ ORPOP I~yy~NN •~'fI1NN e00 .~
V = W . • . • . . . • • ~ ~ . • . • . ~
Z 2 Y •IIPI'1I1 NNNNN NNNNN N .. ..
W 0
~ o
O N
I W 6:T~pP .prONO ONO~ON PNONr I~IOCII~ ONa~O r~NPn
6 O< NI'1~0 OOrPO ~CNN~• PIPINN~ ~~000 PPOOO hMrdC
O 1~ ~ W • • ~ • • • . ~ . . • . .
~ U Y NNNNN .~ .~ .+ ~ •
6
O W
L ~ 4
r ~~ O
W J
~~ N~O ~ O P O~ N n• N O h O P O N 1< O o N~~O E e N o N O N o N O N N
//~ fJ ~+ ~ ~.~.r~~ NNNNN OIOII'In'1 ~~NNa ar-r~e0
VJ ¢2
Z '-
W °•
H I', ~',
Z Q~6,r~1'P~00N~P ppONY1 OON~OO O~ENh NNIOe •PN~h
1 00~ ~1i~ONP.O ~:I~Ir00 rlOM• 1'IN~00 POI~r< .ON~nII N.-~~.-.O
V W ~ • • • • • • ~ ~ ~ • • ~ • • •
J~` 2.~T Y~(1~1'f.~ In1'1I1I1N NNNNN NNNN~ r~~.~~ ~~~
J i W ~. 1' . ~' O
UQ ~ V
W O O ~
N
J 2~ W Q 11~N~A0 ~p1~~~0 ONl~.r.p ..np0• p~Orln pI~MNO ~~oN1n
`j ` =W • :O~ON 1'1N~OP OO~n~p ~ON~nn NNN~~ ~ePPe ephrr
J f Y I1~INNN NNNN~ .. __~~_ ^_~__ ^^ • • • • • • • '
iu
Q t ~ W
= U W ~
~ F N a
i~`f N~OhCO O~NI~• y1dAOP ON1'OC ON~00 pY10M0 NeNON N
Z 6 fJ ~ .. NNNNN nl~lnl'~n •~V~y1E C~.nOO
J a J r
Q I .i G i
~
,
, R
> O<
U ^W O ~ N P O
•O~~N
. . . . • o YI N O o
~PO~O
• ~ ~ • o N 1 M ~
Y~IFlNN
. ~ ~ • N ~ N ~- O
~OPOO
• 1-O~ONN •~FlNN ~~OOo
2 1
~~FlOIP1
1'~NNNN
NNNNN
NN~~~ ^ ~ ^ _ ^ _ _ _ - _ ^ _ _ ^ ^
W p
J ~
O N
~ W Q ~~r.~0 <h0.~• OI~OIO ~OP~O• ~'IOr
0 ~P~OG I'100NI'1
I Q Ol •MI'IN~ 0
P P<OOh rhOO~O
O 1~ ~ W • • • ~ • = • ~ ~ ~ • • ~ • •
~
~ ~ > N N N N N r_~.+ M.-' .~r^ti~. ~w.n.~ ~
~ y
a i a
, ~ ~' o
I W J
~~
<~ Y~«CP .o~NFl~
~.+~i+~ NOrOP
.~...~~r ON~~OE
NNNNN ON~OO
P11'1I'11'11'1 ONONO
•IN1f10 1/~OY~ON
a~1-oe N
' ~
J
O =
'
.' RCFC ~ WCD
rJYDRdL.dGY _~`/JANUAL
' _
~
l
STANDARD ~
INTENSITY-~URATION ~
CURVES DATA
PLATE D-4.1(4 of 6
i.o
,
'
~ ~ .9
~
, .8
'
.7
'
' .!
'
, ~
~
'
'
1
'
.2
~
' .~
't .
' o
~
~
9
T
6
.5
,4
.3
~ '
~
'
R cF C a w
c
o
_
~
H
A
YDROLOGY
IJANUAL
~
T~ ,
RUNOFF COEFFICIENT CURVES
SOIL GROUP-D
COVER TYPE-URBAN LANOSCAPING
, ~ AMC-II
~
(RUNOFF IN~EX NUMBE R 75)
~ , ,
'
~ ~
~
~
; ~
~
' RAINFALL INT EN S IT Y IN INCHES PER HOUR
.~
0 ~ ,2 3 4 5 6 I
n~ ~T~ I~_R A ~
,
'
'
'
1
'
'
'
'
'
'
'
'
'
,
'
,
~_
'
~ NnI1I11~+1+1M~~~rV.~~OP~00
a~aeaa~eoo~~~ea~e~e~~
o . . . . . . .
O r~NN/1II~~~ny~.~.y~.A00P000
O~O~<OOOOOOOO~OOOOOP•
n . . . . . . . . . . . . . . . . . . . .
O POeO~NN/1I11111~i<rrOOPOe
~ • ~`n~0O0Oi000O0lOCiO00P
h • • ~ • • • • • • • ~ • • • •
• Q 1I~ hOPpO~~NNI11~N0<rl~CppO
~ • ~"~`rrilOtOE00iCOiCOCOP
O = 1'1 • ~ • • • ~ • • • • ~ ~ ~ ~ ~ ~ • •
Z \
N O iiMOOPO~~NI1~~11~0<MQOPO
~[ W • ~-Ph~-rhO0OCO00OlOii00P
W 2 ~ • • • . ~ • • • • • • • • ~ ~ . . •
O U ~ ~ ~
~ ~
r n~ r d r ~ e P O~ N N'1~ N i n ~< P O
h ~ h h M r h r O O O O O O O O i O p O P
1 N • . • • • • • • • • • •
a • • . • •
1
C ~ O O~NFl~yf~pNOPO~NI~I~I(~ir~p0
~ ~' • ~`~`r~`rrrrhri00apii00OP
4 N N • ~ . • • • . • • • • • • • • . •
N W
~ f II~ IPiiP0~1~1~111COPO~II~y~~pePO
z ` eoaor~~-~.~.~-~.r-~.ooeeooeoo
M ~ . . . . . . . . . . . . . . . . . . . .
~
O hP~N11PI~PON~YIMPONI'INrOe
n ~nnooaooo'.r..-~.nr.ooeoeoP
~ . .. ...... . .
O
4! Y1 N1~PN~OO~~OO..~aoe~noe
~• :~111NY1Y1~OCi<PrrI~0000P
` • • • • ~ • • ~ ~ ~ ~ • • ~
O
2 0 01p/IONti.~OONP10I1hNO~.po
a OOO~~+NN1'11'I~~~Y1N~G~Or1~iOP
~ • ~ ~ ~ ~ • • • • • • • • ~ ~ ~ ~ ~ ~ • •
N
O
ti. f
>Z
6Y eY~ey~eNONeYfONONeNONeyte
~¢ ~~NNnP1~~NY~~O~pwnOaPPo
ZW ~
~p
0
a
N
O
e
o ~
Z
O
r
¢
0
~
N
~
u
s
0
u
r
Z
C
a n
J
O II
~
N O
W
Z n
~ N
1 N
s
.~. °.
N N ,
2
W
f N
r ~
n
V
N
> 2
R W
W V
6 6
ZW
-s
~NNnI1~ 1~ NY~ OiI~r1~iOP pp o
i O C O O C O E E O O i C O E O O! O P p
O~~NNIIIi~~y1y1O~pI~rOOPPO
O O O O O O O O O O O O o O O i O O O O P
• ~ • • ~ ~ • • • ~ • • • • • • • • • •
oePOOr~NIlI1~NN~OdI~oOpPo
~-.-~-ooooe~eeoooeeooeoe
. . . . . . . . . . . . . . . . .
a~.oeoeo~rvrvn~ru+o~.r.oaoe
r h h h r O O E~ C i O O O o p O C p O P
•Y1~OreCPO.~~NI1~1P1COhiipO
~~~~-~~~o~oooeoooeccco
'~1~r~O~O~nPO.+Nn1WY~i~OPe
~-~-n~-r~nnneoeoeoeooeeo
• • • • • • • • • • • • • • • • • • •
PO~NI'1~If~~pr<PO~N~mar.oao
<Ph~`PhhM1~PI~pE00000OOP
• ~ ~ ~ ~ ~ ~ • • • • ~ ~ ~ ~ ~ • • • • •
I'111~~OMpO~I1~NrOP~NI'll/~il~p0
<aoco~n'.r.r~r-ni.oeeecooa
. . . . . . . . . . . . . . . . . . . . .
owa-.ti~ar.o~n~oee..np,.oo
v~nv~ooaaoo~nnr.~.ooooeeo
. . . . . . . . . . . . . . . . . .
~ ON+IhONr1hON~11MONY1rONN1~0
I 1~~ IN1111f111fi0i'Orrrhi000P
o~PPIpNM...poNP~O/11-N~O~.pO
OOO~~NNII'11 ~1111N~OihhOOP
oY~o^oY~one~IfoNO1/~eYlelf~eNo
~ NN/IP11~/ip1OOMhOiPPO
RCFC 8~
t'~YDROLOGY
WCD
1~/JANUAL
~
O II 1~~ N 11~ 11~ r i O- ~ ~~ O~'! O!~~
aeaoaeeoeoa~~~~ee~~~~
~o . . . ~
O N/Inn1~HIf1pO~Mrr00~~-~~.
ee~so~ee~e~~e~e~~e~~•
in ... .......... ....
o .~~NNNn1n~~y~y~0O~1.0i~0e0
^ • O O O i O~ O~ O O O O O O O O O O O f •
~ • • • • • • • • • • ~ •
~ C N PeO~NNMn~~y1+1pOPI~00PP0
7 • M C O i O O C i O O O O O O O t O p O e P
_ ` •
O = q • ~ ~ ~ • • • • • • • • • • •
N O OePeO~~N'IRIII~Y'<OhtOpPe
R W M.r n O O i i e(. C~~ p C i C i i t f P
W i ~ • . . ~ • • . . • • • • • • • • • • • •
O U
2 2
~+ ~ Y~ Orr<PPO....Nn1~NOiI~OPPO
r h r h M r i O C O C O O O O O O O t O P
1 N • . • . . . . • • • . • • . • .
Q • • •
Y
Q f O II~N+10hOPO~~N~11+1~Gr1~pP0
o - . ~-r.r-r-r-n.-nooooc~oeoecce
LL N N . ~ . ~ . . . ~ ~ • • • . • • • . •
2
N W
~ ~ N Po.~Nn~NL1~OPO~n~N«OPo
_ ~ c~~~~~r-r-nnr-oemoeooeep
u .. ~ . . . . . . . . . . . . . . . . . . .
o ~n~OPOO~n~~pMPO~11~~prpe
~. oaeaocwwr-r.~-~.~eoeeoooo
y • • • • • • • • • • • • • • • • •
O
Y Y1 CP~I'INhON~i00/1NfO~l'I~i00
• 1 N N N N O C O i O r 1~1~ h M O C C O P
y . . . . . ~ • • . ~ . . • . . • •
O
2 O O~pl'ICNr~CO1f~PIml'IrNC~OO
7 0 o e~~ N N 1'11'1 I 1 1 III N.p ~O Y. Y. O O P
Q
N '
O
rf
i 2 . . . ~ . . ~ ~ ~ ~ . . . . . . . . • . .
6W ONOVIONOIf~ONOM011~01(IONONO
aQ NNI~IPI~INIf~i~OnrOiPPO
I W
~p
~
0
i
c
C
O
4
N
h
2
u
4
0
Y
O
C
e~
~
N
•
¢ N
J •
o n
z
~
N O
W
i n
~ N
1 N
>
~ o
N N
i
W
f r
~ ..
..
N
1IIIIINHN~O'LONPPOOPpp00
ooeeaoaooooeooooooeoa
. . . . . . . . . . . . . . . . . . . . .
NNN~'IPI~~NY~rOOrr~.00PP00
Y O O O O m O p C i O O O O O O O O e P P
• ~ • • • • • • • • • • • • • • • • • • •
Oo~~NNnn~1y~11t.p~pl~~.OOPPo
oeoeooeaeeoooeooocoaa
. . . . . . . . . . . . . . . . . . .
iPOO.~..NNn~~NM~~OhrElPPO
rrcaoc<acooooecoooome
rMOpPO..rNI~I~~NNOrrEPPO
PPh~-hOO00COOLOCmCt OCR
• ~ • • • • • • • • • • • • • • • • • • •
NII~CAOePO.~.-~NI'1~11111~'Ohp000
M r h h r r r O e m O O o O O C E O! O P
. . . . • . . . . . . • . . • ~ ~ • • ~ •
~NI11Y1ChOPO~NP11 ~N VN EPO
rhrrl~Al~Fhmeomeosoooco
• ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ • • • • ~ ~ • • ~ •
MOPONP111I~<heO~Nll~y~rpp0
oao'-~-r-nw~.~~-ooeeeoeooo
P.+NIY1hOONl'11f1O~P~N~IPh00
y+~oooaco~r-~~-nr.neoeoeoa
. . . . . . . . . . . . . . . . . .
I~OP.~I~Ii00„11(~hPN1OP.~I~fY~00
•~~Y~~YI/10i00~OrMrriCOOP
O~PFlONw.~.poYlP~pnhNC~00
oee.~~NNI'In~ ~~y~y~.pOww OOP
N
7
~
>2
6 W O 1(1 O 1(~ O H O~1 O Ifl O Y1 O 1(1 O N O N O Y1 O
S6 ~ NNIIII~IU~Y1~.Or1~OCPPO
~_.. p
O
ai eTC ~1-R7 fQ ~s ~~1
, ~
•
' r
W
0
~
,
' a
O
r
N
u
' F
r
r
' W
O
Y
O
2
' a
'
'
'
'
1
'
'
'
'
i
'
0
r
.
N
•
a ~n
J ~
i ~
\
N O
W
I n
u
~ N
1 N
f
0
N N
z
W
~ „
~
N i
0
n
ninnm~~o.~~ne~~s~~~~~e
~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ O O ~ ~ ~ ~ ~ ~ ~ •
•1101~11Y~<'I~rrI~POO~P~P00
•~~~~~~~~~ease~~e~~~•
• • • ~ ~ • • • • . • • • • • • . . ~ •
V~n ~~~ N W Y i O ~ ~ r O C O P P e o
~e~~e~eaeosciooeeoese
~M1Nnnn.~vncar-.,~-sasaeo
oec~cactO00~iOCOOfiPP
OO~~M111,InIl11NY~CV.'rMOfPPO
OLCOftiltiOfOCOCittCP
OPPO~~M1Nn~~N1(~<OrOCRPe
~~~ooeoooceeooaeoaooa
~O~OhOPOO.~.~NI~~~y~COMCPPO
P r r r M r t{ t{' C!! O t t O t t O P
Nn~H~O«iPO..N~~NY+<1-OPO
r~`r1`I~PI~rrElOOi0OO00oP
Y~~~ PO Nn ~N 00 Pe ~Fl ~Y~ <e PO
~O O i< r: r P M r M r O O C O i O e O p
. . . . . . . . . . . . . . . .
~n Y~~ O~ n N ~ P~ n N O O o N~ O b o
NYINNNO~OOOiMrI~rMOOiOOP
o~enetir-~aono~onnrvo~~oe
eoe-..NNnn~~~y+yfao~r-oo?
OY10111011~01110111OY10YfONONOYIO
~~NNI'~Ii~~YtY1~p~OrrOOPPO
e
Y
O
W
c
~_..
¢
O
w
N
f
2
u
W
V
O
Y
O
~
Q
e
c
O
N
~
S M
~ .
C n
2
\
N O
2 n
u
~ N
1 N
T
~ e
N N
_
W
f N
Z
n
0
0010~~~~PeeOlOOPfPe~~
oao<ecaoeeaoeeas~o~~•
n~naaoa~..~e~oas~~POOO
ae~ooeo~eoo~ee~o~e~~•
• ~ • • ~ ~ • • • • • • ~ ~ ~ ~ • • ~ ~ •
•..v~rnoo«.~eose~ssoe
oeeeeeseeeoe~~eoeee~•
~^~'+ •~Y`PN<O~~~ilCpPOeo
~ C C O t C i i O O l' t t i C C O~ L O P
hhnl.~~~MY"CiKrI~OiCpPOp
occcoeeceesosseea~coe
. . . . . . . . . . . . . . . . . . . .
~H titi~,+~~ nvi aor-~-oeva ee
omacaaooeoieeooeeaeoe
PPOO~~Nnn~~y~yiO~~CCPO~
r-r-oo~ec~oc~cce~ctceee
N C ~ C a P O O~ N n II 1 N O O h O P p O
~-r~-hh~-ceieeeaeaeooaep
O~h'I~Nihi00~NI1~MCMOPO
~-~~~r-r-~~~r-eeeaeeoo~ea
hOONI~I/1rOON~Y1rOeN'IN~iO
NYIOC~OO.Odrrrl~l~rO00fOOP
o~ancrvn~aona~en~.tia~oo
ooo.~..NNnn~~~NNO~OM~CiP
~
r ~
! 2 • ~ • • . . • • • • • • • • • . . • • •
6W OY101(~011101(~ONOY101IfOYlONOY1p
W 1.1 .-~ .-~ h N 1'1 I'1 ~~ N If~ i O r h i L P P O
6 6 ..
zu
-n
o •~yiNNiiiOF~rOOOPPPPOO a N~OC.Oi.[~~~-~-ptOOPpPPO00
~ i i O O C C O i i i C E! i O i O m O P V t O O Q O t O C O O C C O C p O m L P P O
O • ~ ~ ~ • • ~ ~ • • • • • • ~ ~ • d • ~ • • • ~ ~ ~ • • • • ~ • • •
O PIPI~~INIf~Y1~O~prI~I~000J0000 ~NNN'Oi<~OrrI~rCOOPPPP00
O O! i V ~ O O O O O O O O O O i O O P P p i O O O i o O i O C 6 O O C i O C O P P
YI • • • • • • • • • • • • • • • • • • • • N • ~ ~ ~ ~ • • • • • • • • ~ ~ • • • • • •
O .~NNnI~~11111Y1<~Orr1~OCOP00 O I~IIn~~.~NY~<~OOnhFEOCPPP00
~O
r • OOOOOiiiOOCOCO000OOPP o . cmo0ootio~0loo0000iP0
~ • ~ . • • . • • • • . • • • • • • O • • . . • • • • • . . . • • • • . • • • .
• Q p pr..NN1901~1Y~N~00rrCOP000 • Q y~ N19I'IR.~~~111PN~C~O<hPi00PP00
7 • i t( C O t i l' C O O L' C C< O t i O P P ~ . {~C ~ t p O c C O C O t O l' a i O C o P p
O n • . ~ . • • • • • • • • • . • • • • • • O n
. . . . . . . . . . . . . . • • • • . .
O Z 0 I
S \
N O PPO~~NNIYII~~IP~O~CrritOpO N O~~NNPII'~~IpIP<2~pPrpOPP00
1[ W h M i O O i a O~; l' p O O i C t O O L t p ~[ W • i~ E< C i i O! C t C(! O C O C C p O
• • • • • • • • • • • ~ • • • • • • • • • W Z 1'1 • • • ~ ~ • • • ~ • • • • • • • • • • • •
O Y O V
Z Z
^
~
V1
hOiPOO..NNI'1~~N11~L~hOPpO ~
Y~ POO~NNI'III~INNEl~-~-OOPPo
r r h r a e O e O O i O i C C O i O i O P • I~ o O O O O O O~ O i O O O a O O i O O P
Q 1 N • ~ • • • ~ • • • • • • • • • • • • • • • 1 N • ~ • • • • •
• • • • • • • • • • • • • •
~
T
C
H
O
INOhhCPO.-~~NnIN111iriOPO
Q ~
rtOPOO.+NNI'I~~y1lphhOQPO
~' ~- ~~~ni-nr-oie~e eecc cccoo o r-.-r-r-oc oo cc ~e aocccocmo
1~ N
_ N • • r ~ • • • • ~ • • • • ~ ~ ~ ~ ~ ~ ~ • y N N • ~ • • • • • ~ ~ •
• ~ ~ ~ • • • • • • •
N W _
~
Z
Z 1/~ e~N1~1~Y~OrOPO.-~N'1~111.OhCPe f i N • NCrCOPe..N/In~y1~1~f'OPO
~
~h~~-pp~-wwMO~OECpOQOiP Z S n
r-r-r-r-i-r-oocooooocOOEO
~ r • • • • • • • • • • • • • • • • • • • • • F ~n • ~ • ~ ~ • • • • • • • • • • • • • • • •
U y
~ O A/~OMfO~I1111~rOP~+N1'1NOrP0 r O 1~.PO~NIIIYfOOPp~N1~1~OrCPO
V ~OOQOOr1~1~I~hrrr~O00OiOP 1~ ~pphnrrrhnFMO00OOEOiOP
w ~ . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . .
W
O p
V Yf P~nlf~r-~1~1~11hP~+~~000N~000 U YI •COP~AY1nOeN~<hP~l'IY1~O00
~nnnnno<aoo~~wrOii000 mnininoaooar.r-r~'-~.~.oooooa
~ • ~ ~ ~ • • • • • • • ~ ~ ~ ~ ~ ~ • • • 4 • ~ • • • • • • ~ ~ ~ • • • • ~ ~ • • •
` y
O p
Z O o~PIIONh~O0Y1P~01~hN~p~OO = o o~PI10NP~0oY1P~OI1wNO~+~Oo
J o00~.~NNFlII~1~YfY10~OhhOOP ~ Ooor.~NN1'IPI~~~NV100MhOOP
Q C • ~ ~ • • ~ ~ ~ ~ • • ~ ~ ~ ~ • • ~ •
M
~
r ~.
7 = • • • • • ~ ~ • • ~ • • • • • • • • • •
tW oYloYlOylOY1011fo1110Y1oNO1/~o11fo
WU ~~NN~II~~N~11iCr~iOPPO
sa ~
I W
~6
RcFC e wco
i-~YDROLOGY T/JANUAL
r~
> _ • ~ ~ ~ • ~ • • ~ ~ • • ~ • . . • • ~ •
6W ONO^~~101/~1NOy1pNO11~0I1OY~~
WU ~ NNIIFl~~I(~Y~.p.pfhOOPOe
na ..
IY
.. p
RUNOFF COEFFICIENT I Z'~ <
CURVE DATA
i~
'
'
L~J
'
'
'
'
'
'
,
1
'
'
'
'
,
,._
'
0
~
_
W
G
~
6
O
N
f
z
u
r
V
O
~
i
Q
a
N
•
S 11~
o n
x
~
N O
I /~
U
N
1 N
T
0
N N
W
r ~
0
n
O
.~~~~oaeoae~~~~~~~~~e
eeeosaeeo~ee~~~~~~~oe
O~~`rrrh~OO~~~~O~-~OO~
Oi~~OOOOOOO~~O~~OOOP~
• • • ~ • • ~ ~ • • ~ ~ • • • • •
~11 O O C O r r P M h i O O~ P P P P O~ O
~eaa~asoeoaeoeeeeas~s
II~PY~i<OOPMPI~OOCOPPOp00
eooceccee«seecoeoses
• 1 N r N N< i O M ~ ~ O i O C P P P O o
tOiOOeeooeeeoeeoooePP
• • • ~ ~ • • ~ ~ • • • • • • •
I~I1~~1111Y~Mi0i~`~`rO~VPP00
O O C i O C O i O O~ O~ O O O O< O P P
.~NNRP1/~~ ~nmoaa~~osP000
~ceoereoeee~aeeoeses•
ppOOr..NI~/I~~rlf~Oh~~O~P•
~~-cooeoeaeeoeeseoo~e•
.....................
.mae.-eeee..nn~~ne.-~e-e
~.r-r-~n~-~.ea~~ea~e~~e~aa
/1~y~~~e~N111~OefONFllliir~0
oosa<n..~.~...r.~~eao~o~~~
e~OIIONr~00NP10'IrN~O~'OO
OOO~.~NN'1/III II~II~OOrrO~P
N
7
O
r -
~ I • • ~ ~ • • • • ~ ~ ~ ~ • • ~ ~ • • • •
~u enomenen~~nononomenene
IYY ~~NN'11~11~V~11~COhFiOPlO
= ~ ~
o irrI~MP1`OOiOiPfPO~fe~•
oeoooeoseeoeesee~~~~•
a . . . . . . . . . . . . .
o sae«wr-~~oc~eosas~~~•
eeooooaoeaeaeoooeos~~
n . . . . . . . . . . . . . . ~.. • • . .
e mminmaaer,~-w~eaoessosee
• . ceeeooeeeoceaeeoooooa
e • . . . . . . . . . . . . . . . . . . .
• a r~ ~~rrrm~ooo~~r~OCOPOPOe
~ • coeaeoooceceameooo<aa
o ~w . . . . . . . . . . . . . . . . . . .
o i
= N o /II11~~11~N11~~0«MMpOOPP000
~„ . seeeceeeeeoeoeeeocoss
u : n . . . . . . . . . . . . . . . . . . . . .
O u
Z 2
~ ~ Y~ NN~In'1~~11~111111OOMhOO~P1~0
e~eeeeee~~~~o~~eesa~s
1 N • • • • • • • • • ~ ~ • • • • • • • • • •
Q
ti
Q O OO~rNNIlI11~111~1ii1'~1~Oif-O
o ceooooooa~eeceneeoe~a~
1~ N N • ~ ~ ~ ~ ~ • • ~ ~ . ~ ~ ~ ~ • • ~ ~ • •
2
W
F f 1I~ hOOPOOrNNIII'~~11~11~OI~MOf1~•
z z nnnr-ooooee~eeeaeeo~~s
F .. .. . . . . . . . . . . . . . . . . . . . . .
'
o tin~m~no~-e~~+wn~mno~e-e
4 ~- r h ~ r h ~ r h~ O~ i O i O O O O O !
V • • • • • • • • • ~ ~ • • • • • • • •
V
•! N •~1'1~O1~fONnf~O~O~N1~llh~•
~~~~~~1~hPMnhhh~~~~O~f
: • ~ ~ ~ ~ ~ ~ ~ ~ ~ • • • • •
O
Z 01r1'1~NI~~~IOY1~1~1'1hNi~~•
J 0~~~~NN~IPIIIIN+IOOrM~~•
6 • •
a j • • • • • • . . . . . . . . . • • • • •
RW ol~oNO111oY101f~o1M1O11~o~11s~11~111•
WU +~NNPIIII~II~II~'C<r~`OOl1•
s a -~
~ V
RCFC ~ WCD
r~YDRflLOGY J~/IANUAL
• ~ • • • • • • • • ~ ~ ~ ~ • • • • ~ ~ •
~n~no~n~~n~ineno~nafi~n• ~
.~.~NNnI11111~n<OrM~Of •
PLATE D-5.T (il of 12)
P
~
x
W
O
~
Q
O
N
H
_
u
~
W
0
~
~
Q
e
r
•
Q M
~ n
s
~
N O
W
Z ~
V
~
n
1 N
s
r O
N N
Y
~_.. ~
0
n
O
~aae~~~~~~~~~~~~~• ••
•oo~~~~~~~~~~~~~~~~~•
. . . • •
.~e~a~~~~~~~~~~~~~ •
•a~~~~~~~~~~~~~~~~_~_
• • • • ~ ~ • • ~ ~ • • • • • • ~ ~ ~ •
~~-~P~~~iO~~~O •~~~• ••
ea~eosse~~ee ~~~~~C~-
e~nr-~n'.o~o~e-~~~~~~•~
aaeeeooee~eoeeaee~ ~~
aooe~~~~~eeee~~~~• •~
aeeeseseeeeesess~e~~•
• • • ~ ~ ~ ~ • • ~ ~ • ~ • ~ ~ ~ .
nininsoaen~-~~aa~~~~~~~~
O O ~ ~ ~ Oi O O ~ ~ ~ O ~ ~ O ~ O . f •
•~III~Y111~~OO~OMP~OC00~1~~•
ccaeeeooo~eaeaeae~e~•
NN~1~111~11~~0O01~ri00! •O
oe~eeeseoeaeaeeeaa ~•
e.e.__«w.,..~r<.~o.6..
r-r.eeee<~ae~~a~~~e~ ~•
•~~'1~ 11f0 r~ ~e.~M ~11 Y1~ 1-~ f•
a~-~~~n~-r-~n~e~~~~~~ o•
011/IONr~00t~P10I1rNi~i•
~~~r~.NNA'11~~~1~1100hr~O•
N
~
r H
(1=i1 Olf~e~11~Y1~/~~~0+1011fOY1eYl0~1~
yy ~.~NNI~III~Y11l1iOhhOOP~O
~ `
l
e r-~ e o e~~~~~~! r ~- ~~~ e e•
e~~e~e~~~~ea~~~ee~-~•
o . . . . . . . . . . . . . . . . . . . . .
~-~~-.-r~oo~~ee~~~~~~~~•~
eee~oe~~~~~~a~~~~~e~•
i
. . . . . . . . . . . . . . . . . . . .
r
o <oo~r-~-r-r-eoeoe~~e~-~~•
a . oooooeeoeooeoooooe~~s
o ~ . . . . . . . . . . . . . . .
•_ i r aodoor~-~-noaooosaooaee
~ . aooeee~ooooooeeese~oa
o n . . . . . . . . . . . . . . . . .
o i
2 ~
M O Y~N11~<~O~0~01~1-hPOOOOPPPP00
~[ W • a e C c O O i e i~ O i i O O O E O t P P
y j q • • • • • ~ ~ • • • • • • • • • • • •
C U
2 2
~ ~ Yf •111~~1111~Y~~0'C~OrhPiOOOPOPOo
E i O O O O i O i i O O~ O O O O i i O P
1 N • • • • • • • • • • • • • • • • • • . •
•
6
6 f O NI~rI~1~~r~mnoor-r-~-eeOPP00
O C ~ C~ O i i O O L O E i O i O O O O O P.
• N N • ~ • • ~ ~ • • • • ~ ~ • • • ~ ~ ~ ~ •
2
N Y1
F F N 0.~.~NNII~II~II~r1~0Or1`~CiPP00
z 2 ooee~a~eeeaaoeeeoo~eP
.
` .. . . . . . . . . . . . . . . . . . . . . .
~
• enee~~~~aan~~n.or~~-aa-o
~. ~-r-~.r-~-asoe~eeeeeeaesoa
~ • • • • • • • • • • • • • • • • •
V
O
y yl il~O~rNI1~irEPON1'111110i00
i<~ r r 1~ r 1` r M r r i i O O O i O O P
` • • • • • • ~ ~ ~ ~ ~ ~ • • • •
~ 0 01f'10Nf~i0Y1P10FlrNO~~o
•Oa~~NN~'1n~~~1(~/IOihri~P
~ • • • • • • • ~ ~ • • • • ~ ~ • • ~ ~ •
'
1
t
'
'
'
LJ
'
' APPENDIX C
~ (5. HYDROLOGY MAP)
,
'
'
'
'
'
,
~I
Z~
'
'
,
'
'
'
'
'
'
~
~
~
~
CI
'
1
'
'
II
APPENDIX D
(6. REFERENCE AS-BUILT DRAWINGS)
, ~