Loading...
HomeMy WebLinkAboutParcel Map 34387 Parcel 2 Hydrology1 1 ' ' ,, 1 ~ 1 , ' ' t ' , ' ' ' ' ' . ~ K&S ENGINEERING Planning Engineering Surveying HYDROLOGICAL ANALYSIS FOR CREEKSIDE CENTRE PARCEL 2 OF P.M.30107 IN CTI'Y OF TEMECULA ~~~g~ s. No.48592 ~P E'30Po6 JN 04-067 June 24, 2005. 6 2.3 ~~ D TE 7801 Mission Center Court, Suite 700 • San Diego, Califomia 92708 •(619) 296-5565 • Fax (619) 296 5564 1 1 , ' ' , I ' ' ' ' ' 1 , , ' ' ' ' ' ~ TABLE OF CONTENTS 1. INTRODUCTION 2.HYDROLOGY DESIGN MODELS 3.IIYDROLOGIC CALCULATIONS .......................... APPENDIX A 4.TABLES AND CHARTS ......................................... APPENDIX B S.HYDROLOGY MAPS ............................................. APPENDIX C 6. REFERENCE AS-BUII,T DRAWINGS ...............APPENDIX D ~ , I 1. INTRODUCTION ~ ' A. EXISTING CONDITION THE EXISTING SITE CONSISTS OF ONE VACANT PARCEL (PARCEL 2 OF P.M. '' No 30107) LOCATED ON THE CORNER OF OVERLAND DRIVE AND NICOLE LANE IN THE CITY OF TEMECULA. PRESENTLY, THE RUNOFF SHEET-FLOWS I' SOUTHWEST TOWARDS AN EXISTING CMP RISER LOCATED IN THE SOUTHWEST CORNER OF THE PARCEL AND THEN INTO THE LONG CANYON CREEK, THE EXISTING 18" PIPE ALSO CAPTURES THE RLJNOFF GENERATED ' BY THE PARCEL LOCATED EAST OF IVICOLE LANE (PARCEL 3 OF P.M.30107) AS SHOWN ON THE ATTACHED AS-BUII,T DRAWINGS. THE TOTAL RUNOFF DISCHARGED BY THE EXISTING 18" PVC INTO THE CREEK IS 16.84 C.F.S I ~ B. PROPOSED CONDITION ' THE PROPOSED DEVELOPMENT CONSISTS OF THE CONSTRUCTION OF TWO COMMERCIAL BUILDINGS, WITH DRNE AISLES AND PARKING. STORM ~ RUNOFF WILL BE COLLECTED USING PRNATE INLETS AND CONVEYED USING PRNATE STORM DRAIN PIPES. APPROXIMATELY 575 LINEAR FEET OF THE EXISTING 18" PVC LOCATED ACROSS THE PARCEL WILL BE ' RELOCATED TO AVOID CROSSING BELOW THE PROPOSED BUILDINGS; THEN IT WILL BE RE-CONNECTED TO THE EXISTING 18" PVC BY MEANS OF A STORM DRAIN CLEANOUT. ALL THE RUNOFF GENERATED BY THE , PROPOSED PROJECT WILL DRAIN TOWARDS THE EXISTING 18" PVC AND INTO LONG CANYON CREEK. THE TOTAL RUNOFF DISCHARGED BY THE EXISTING 18" PVC INTO THE CANYON WILL BE 1734 C.F.S. ' C. SUMMARY I THE INCREASED RUNOFF FROM THE EXISTING CONDITION TO THE PROPOSED CONDITION IS DUE SOLELY TO INCREASING THE RUNOFF INDEX , Ni.JMBERS OF HYDROLOGIC SOIL COVER, FROM i.INDEVELOPED TO COMMERCIAL DEVELOPMENT. THE EXISTING 18" RCP (DOWNSTREAM) WILL HANDLE THE DEVELOPED ' CONDITION RUNOFF FOR THE FOR BOTH PARCELS 2 AND 3 OF P.M. 30107. THE DEVELOPED CONDITION RUNOFF FROM PARCEL 3 WAS OBTAINED FROM THE DRAINAGE STUDY FOR ELI LILLY SITE LOT 9 OF TRACT MAP NO. ' 3334, PREPARED BY EXCEL ENGINEERING; WICH HAS BEEN APPROVED BY THE CITY OF TEMECULA; THEREFORE THERE WILL BE NO NEGATIVE ' IMPACTS ON THE AREA , ' ~ ~J ' , ~ ' , ' I ' I ' ' ' , ' ' ~ ' ~ , ' ' 2. HYDROLOGY DESIGN MODELS A. DESIGNMETHODS THE RATIONAL METHOD IS USED IN THIS ITYDROLOGY S'I'LJDY; THE RATIONAL FORNIIJI,A IS AS FOLLOWS: Q= CIA, WHERE : Q= PEAK DISCHARGE IN CUBIC FEET/SECOND * C = RUNOFF COEFFICIENT (DIMENSIONLESS) I= RAINFALL INTENSITY IN INCHES/HOUR A= TRIBUTARY DRAINAGE AREA IN ACRES * I ACRI3 INCHES/HOUR = 1.008 CUBIC FEET/SEC THE INITIAL TIME OF CONCENTRATION WAS DETERMINED USING PLATE D-3, WHERE: T~= INITIAL TIME OF CONCENTRATION IN MINUTES L= LENGTH OF INITIAL AREA IN FEET H= DIFFERENCE IN ELEVATION BETWEEN ENDS OF IIVITIAL AREA IN FEET K= DEVELOPMENT FACTOR B. DESIGN CRITERIA - FREQLIENCY, 100 YEAR STORM. - Lt1ND USE PER SPECIFIC PLAN AND TENTATNE MAP. - RAIN FALL IIVTENSITY PER RNERSIDE COUNTY FLOOS CONTROL AND WATER CONSERVATION DISTRICT HYDROLOGY MANi JAL. C. - COUNTY OF RNERSIDE 1978, HYDROLOGY MANUAL. - HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION. ~ ' ' LJ ' 1 , ' ' ' APPENDIX A ' (3. HYDROLOGIC CALCULATIONS) ' ' ' ' ' ' ' ' ~ 5 ' ' EXISTINC CONDITION NYDROLOGY (]00 YEAR) CREEKSIDE CENTRE J.N.04-067UND ' ~ Riverside County Rational Hydrology Program CIVILCADD/CNILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Ra[ional Hydrology Study Date: 06/24/OS File:04067UND.out ' - -------'------------------------------------------------- -------'- *****'•** Hydrology Study Control Information **"'"*'** English (in-Ib) Units used in input data file ' --------'-----"----'-------"------------'--'----------'-------- K& S E i i ng neer ng, San Diego, CA - SM 868 - ' -------------------------------------------------'----------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity-duration wrves data (Plare D-4.1) For the [ Murzieta,Tmc,Rnch CaNorco ] area used. ' 10 year s[orm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minu[e intensity = 0.880(In/Hr) 100 year storm 10 minute intensity = 3.480(InMr) 100 year storm 60 minute intensity = 1300(In/Hr) , S[orm event year = 100.0 Calculated rainfall intensity data: I hourintensity= 1.300Qn/Hr) ' Slope of intrnsiry duration curve = 0.5500 ++~,T,-.Tn,-rT+++++++++~ Process from PointlStation 1.000 ro PointlStation 2.000 ' ***' USER DEFINED FLOW INFORMATION AT A POINT •'** (FROM APPROVED ORA/tVAGE STUDY FOR ELI L/LLYSITE, LOT 9 TRACT MAP No3334 DEVELOPED COND/TION) Rainfall intensity= 2.528Qn/Hr) for a 100.0 year s[orm ' USER INPUT of soil data for subarea Runoff Coetticient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 ' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= I.000 RI index for soil(AMC 3) = 93.87 Pervious area frac[ion = 0900; Impervious fraction = 0.100 ~ User specified values are as (ollows: TC= 17.90min. Rainintensity= 2.53(In/Hr) Total area= 4.50(Ac.) Total runoff= 7.50(CFS) ' ~+++++++++n,--r,-,--r~T+++++++++++++F++++++++F++++++++++++++++++++++++ Process from PoinUStation 2.000 [o PoinUStation 3.000 ' **Y' pIpEFLOW TRAVEL TIME (User specified size) **•' Upstream poinUstation elevation = 66.680(Ft.) . Downsheam poinUstation elevation = 62920(FL) Pipe length = 160.00(Ft.) Manning's N= 0.013 ' No. of pipes = 1 Required pipe Flow = 7.800(CFS) Given pipe size = I8.00(In.) Calculared individual pipe Flow = 7.800(CFS) ' Normal flow depth in pipe = 8.84(In.) , ~ , ' Flow top width inside pipe = I 8.OOQn J CriticalDepth= 12.98(]n.) Pipe flow velocity = 9.04(FUs) ' Travel [ime through pipe = 029 min. Time of concentration (TC) = 18.19 mm. ~ , ++++++++++++~~r~~~T~r+-F++++++++++++++++++++f+++++++++++++++ Process from PoinUS[ation 3.000 ro Point/S[ation 4.000 •*** PIPEFLOW TRAVEL TIME (User speci£ed size)'•'• ~ ' Upstream poinUstation elevation = 62.920(FL) Downstream poinVstation elevation = 59.000(FL) Pipe length = 470.00(Ft.) Manning's N= 0.013 ~, No. of pipes = I Required pipe Flow = 7.800(CFS) Given pipe size = I8.00(In.) Calculated individual pipe Flow = 7.800(CFS) Normal Flow depth in pipe = 12.33(In.) ' Flow top width inside pipe= 16J2(In.) CriticalDepth= 12.98(In.) Pipe Flow velocity= 6A5(Ftls) Travel [ime through pipe = 1.29 min. ~, Time of concen[ration (TC) = 19.49 min. ++++f+++~~T+++++++F+++++~T+~~.r+++++++++++~-f+~++ ' Process from PoinUS[a[ion 4.000 to Point/Sta[ion 5.000 '"** PIPEFLOW TRAVEL TIME (User specified size) ••'* Upstream poinUstation elevation = 59.000(Ft.) ' Downstream poinUstation elevation = 52.530(FL) Pipe length = 66.68(FL) Manning's N= 0.013 No. of pipes = I Required pipe Flow = 7.800(CFS) Given pipe size = 18.00(In.) ' Calculated individual pipe Flow = 7.800(CFS) Normal Flow depth in pipe = 5.98(In.) Flow top width inside pipe= 1696(In.) CriticalDepth= 12.98(InJ ' PipeFlowvelocity= ]5.19(FUs) Travel time through pipe = 0.07 min. Time of concenhation (TC) = 19.56 min. ' +++++++++++++++++++~~+++++++++++++++++F+++~~~T++++F++++++++++++++ Process Gom PoinUS[a[ion 4.000 ro PointlS[ation 5.000 '*** SUBAREA FLOW ADDITION •••• ' IJNDEVELOPED (poor cover) subarea Runoff Coefficient = O.S78 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 ' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 3) = 95.60 ' Pervious area fraction = 1.000; Impervious Baction = 0.000 Time of concentration = 19.56 min. Rainfall intensity= 2.408(In/Hr) for a 100.0 year smrm Subarea runoff= 9.045(CFS) for 4280(Ac.) , Total runoff= I6.845(CFS) Total area= 8JS0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Proccss from Point/Station 5.000 to PoinVStation 6.000 ' ~ ~ ' `•`• PIPEFLOW TRAVEL TIME (User specified size) "'+ Upstream poinUstation elevation = 52.530(FL) , Downstream poinUstation elevation = 48.200(Ft.) Pipe length = 49.99(Ft.) Manning's N= 0.013 No. of pipes = I Required pipe Flaw = 16.845(CFS) Given pipe size = I8.00(In.) ' Calculated individual pipe Flow = 16.845(CFS) Normal flow depih in pipe = 9.47(In.) Flow top width inside pipe = U.9S(In.) ' Critical depth could not be calculated. Pipe flow velociry = 17.87(FVs) Travel time through pipe = 0.05 min. Time of concentration (TC) = 19.61 min. ' ++++++++++++ Process from PoinUSta[ion 6.000 to PointlStation 7.000 , •+:. p~pEFLOW TRAVEL TIME (User specifted size)':" Upstream pomUstation elevation = 48.200(Ft.) Downstream pointlstation elevation = 45.000(Ft.) ' Pipe length = 70.84(Ft) Manning's N= 0.013 No. of pipes = I Required pipe flow = 16.845(CFS) Given pipe size = 15.00(In.) Calculated individual pipe tlow = 16.845(CFS) ' Nortnal Flow depth in pipe = I 1.67(In.) Flow top width inside pipe = 17.19(In.) Critical depth could not be calculated. Pipe flow velocity = 13.SS(FUs) Travel time through pipe = 0.09 min. ' Time of concentration (TC) = 19.69 min. End of computations, rotal study area = 8J8 (Ac.) The following figures may ' be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.949 Area averaged RI index number= 86.8 ' ' ' ' ' ' ' ' ~ ' ~ ' I~ ' ' , ' ' ~ PROPOSED CONDITION HYDROLOGY (100 YEAR) CREEKSIDE CENTRE J.N. 04-067DEV Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGNEngineeringSoftware,(c)1989-2001 Version6.4 Rational Hydrology Study Da~e: 06/24/OS File:04067DEV.out •*•"**"* Hydrology StUdy Contr01 Infortnalton •*******"* English (in-16) Units used in input data file K& S Engineering, San Diego, CA - SM 868 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Anrecedent Moisture Condition = 3 Standard intensity-duration curves da[a (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNorco ] area used. 10 year storm 10 minute intensity = 2360(1n/Hr) 10 year storm 60 minute intensity = 0.880(ln/Hr) 100 year storm 10 minute intensity = 3.480Qn/Hr) 100 year stortn 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hourintensity= 1.300(In/Hr) Slope of intensity duration curve = 0.5500 ++++~T++++~T++++++++++++++++++++++++++++ t Process from PoinVS[ation 1.000 to PoinUStation 2.000 •*'* USER DEFINED FLOW 1NFORMATION AT A POINT ""' (FROMAPPROVED DRA/NACE STUDY FOR EL/ L7LLYSITE LOT 9 TRACT MAP No 3334J Rainfall in[cnsity = 2.528(InMr) for a 100.0 year storm ' USER INPUT of soil data for subarea Runoff CoefTicient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 , Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 A1 indez for soil(AMC 3) = 93.87 , Pervious area fraction = 0.900; Impervious fraction = OJ 00 User specified values are as follows: TC = 17.90 min. Rain intensiry = 2.53Qn/Hr) To[al area = 4.50(Ac.) Total runofT= 7.80(CFS) ' '•~ +++++ ,T,T;--rT+++F+~T+++++++++++++++++++++++++++++++++++++++++++++++ Process from PoinUStation 2.000 to PoinUStation 3.000 ' '*" pIpEFLOW TRAVEL TIME (User specified size) **** Upstream poinUstation elevation = 66.G80(Ft.) Downstream poinVstation elevation = 63970(FL) Pipe length = 1 I5.00(Ft) Manning's N= 0.013 ' No. of pipes = I Required pipe ilow = 7.800(CFS) Given pipe size = 18.OOQn.) Calculated individual pipe Flow = 7.800(CFS) ' Normal Flow depth in pipc = 8.82Qn.) , ~ ' ' ~ ' ~ ~ 1 ' ~ Flow top width inside pipe = IB.OOQn.) Critical Depth = 12.98(In.) Pipe Flow velocity = 9.05(FUs) Travel timc through pipe = 021 min. Time of concentration (TC) = I8.1 I min. ++++++++++++++++F~r+++++++++++++f++++++++++++++++ "~++++++++++++ Process from PoinUStation 3.000 to Point/Station 4.000 **'* P]PEFLOW TRAVEL TIME (User specified size)'•'* Upsheam poinVsta[ion elevation = 63.640(FL) Downstream poinUstation elevation = 62.770(Ft.) Pipe length = 54.38(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.800(CFS) Given pipe size = 18.00(In.) Calwlated individual pipe flow = 7.800(CFS) Normalflowdepthinpipe= 991(InJ Flow rop width inside pipe= 17.91(In.) Critical Depth = I298(ln.) Pipe flow velocity= 7.82(Ft/s) Travel time through pipe = 0.12 min. Time of concentra[ion (TC) = 18.23 min. i- F~~ ~T Pmcess from PointlStation 4.000 ro PointlStation 5.000 *'** PIPEFLOW TRAVEL TIME (User specified size) **•' Upstream point/s[ation eleva[ion = 62.440(FL) ' Downstream poinUs[ation elevation = 57.650(Ft.) Pipe length = 358.27(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.800(CFS) Given pipe size = I8.00(In.) ' Calwlated individual pipe flow = 7.800(CFS) Normal Flow dep[h in pipe =] 0.49(In.) Flaw top width inside pipe = 17J5(In.) Critical Depth = 1298(In.) ' Pipe flow velocity= 730(FUs) Travel timc through pipe = 0.82 min. Time of concentration (TC) = 19.05 min. , 1 , ' ' ' +++++++++++++++++++++++~,-,T~T+++++++~T++++~+++++++++++ Process from PoinUStation 4.000 ro PoinUStation 5.000 ***' SUBAREA FLOW ADDITION *•** COMMERCIAL subarea type _ Runoff Coefficient = 0.894 Decimal fraction soil group A= 0.000 Decimal Gaction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal (raction soil group D= I.000 RI index for soil(AMC 3) = 88.00 ~ Pervious area fraction = OJ 00; Impervious Gaction = 0.900 Time of concentra[ion = 19.05 min. Rainfall intensiry = 2.444(In/Hr) for a 100.0 year stortn Subarea runoff= I.ISS(CFS) for 0.530(Ac.) Total runoff= 8958(CFS)Total area = 5.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from PoinUStation 5.000 to Point/Station 6.000 ' ~fl ' ~ **'* PIPEFLOW TRAVEL TIME U if d i **•* , ( ser spec ie s ze) ~ Upstream pointls[ation elevation = 57320(Ft.) Downstream poinUstation elevation = 55320(Ft.) Pipe length = I 17.66(Ft.) Manning's N= 0.013 No. of pipes= I Required pipe flow = 8.958(CFS) Civen pipe size = 18.00(In.) ~ Calculated individual pipe Flow = 5958(CFS) , Normal flow depth in pipe = 10.62(In.) Flow top width inside pipe = 17.71(In.) Critical Depth = 13.89(In J ' Pipe flow velociry= 8.26(Ftls) Travel time through pipe = 0.24 min. Time of concentration (TC) = 1928 min. ~ ~ ++++++F++++++++n,-,--rT+++++++++~,--r+++++Fn,~r+++++++++++~T Process from PoinVStation 5.000 ro PointlStation 6.000 ~ ***' CONFLUENCE OF MWOR STREAMS "** Along Main Sheam number. I in normal stream number I Sheam flow area= 5.030(Ac.) Runoff from this stream = 8.958(CFS) ~ Time of concentration = 19.28 min. Rainfall intensiry= 2.427(In/Hr) ' +' '~;T ~r++++'~,T +++++++++++++++++++F Process from PoinUStation 7.000 to PointlStation 8.000 *••• INITIAL AREA EVALUATION "** ~ Initial area flow distance = 469.720(F[.) Top (of initial area) elevation = 76J00(F[.) Bottom (of initial area) elevation = 68.810(FL) DifTerence in elevation = 7.890(Ft.) ~ Slope= 0.01680 s(percent)= 1.68 TC = k(0300)•[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.958 min. Rainfall intensity= 3949(In/Hr) for a I00.0 year storm ' COMMERCIAL subarea type Runoff Coefficient = 0.896 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 ~ Decimal fraction soil group C= 0.000 Decimal frachon soil group D= 1.000 RI index for soil(AMC 3) = 88.00 Pervious area frac[ion = 0.100; Impervious fraction = 0.900 ~ Initialsubarearunoff= 7926(CFS) Total initial stream area = 2.240(Ac.) Pervious area fraction = 0.100 ~ ++++++++++++++++++++++++++++++++++++++++++++++++++++f+++++++++++++++++ Process from PoinUStation 8.000 to PoindSta[ion 6.000 ' "**PIPEFLOWTRAVELTIME(Userspecifiedsize)'*** " Upstrcam point/station elcvation = 65.810(Ft.) Downstrcam poindstation elevation = 55.320(Ft.) Pipe length = 37.63(Ft.) Manning's N= 0.013 ' No. of pipes = I Required pipe Flow = 7926(CFS) , Givenpipesize= IO.WQn.) Calculated individual pipe Flow = 7.926(CFS) ~ Normal flow depth in pipe = 6.08Qn.) ' 1 , Flow top width inside pipe = 9.77(ln.) Critical depth could not be calculated. Pipe flow velocity = 22.84(FUs) ~ Travel time through pipe = 0.03 min. Time of concentrahon (TC) = 799 mm. ~ ~-.-~.~~~,--r+++++++++++++++++F+++++++++~r++++++++++++++++++++++++++++++ Process from PoinUStation 8.000 to PoinVStation 6.000 '•'• CONFLUENCE OF MINOR STREAMS "'* ~ Along Main Stream number: 1 in normal sheam nun S[ream tlow area= 2.240(Ac.) Runoff from Ihis stream = 7926(CFS) Time of concentration = 7.99 min. ~ Rainfall intensiry= 3.941(In/Hr) Summary of stream data: ; S[ream Flow rate TC Rainfall lntensity No. (CFS) (min) (In/Hr) , 1 8958 1228 2.427 ~ 2 7.926 7.99 3.941 Larges[ stream flow has longer time of concentration Qp= 5.958+sumof Qb Ia/Ib ~ 7.926 * 0.616 = 4.881 QP= 13.838 Total of 2 sheams to confluence: M Flow rates before contluence point 5958 7.926 Area o(streams be(ore conFluence: 5.~3~ Z.Z4~ ~ Resul[s of conFluence: Total flow rate = 13.838(CFS) Time olconcentration = 19283 min. ~ Effective stream area after contluence = 7270(Ac J +++++++++++~•~Tt+++++++++++++++++++++++++++++~~~~,-;+++++-HF++++F++++f++ ~ Process from PoinVSta[ion 6.000 to Point/Station 9.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ,~ ~ ' ~ ~ Upsheam point/station eleva~ion = 55320(Ft) Downstream poinUstation elevation = 52.530(Ft) Pipe length = 16398(Ft) Manning's N= 0.013 No. of pipes = I Required pipe flow = 13.838(CFS) Given pipe size = IB.OOQn.) Calculated individual pipe flow = 13.838(CFS) Normal Flow depth in pipe = 14.91 Qn.) Flow [op width inside pipe = 13.58(In.) Critical Depth = 16.52(In.) Pipe Flow velocity = 8.84(FUs) Travel time through pipe = 031 min. Time of concentration (TC) = 19.59 min. Process from PoinVStation 6.000 to PoinVStation 9.000 '*** CONFLUENCE OF MAIN STREAMS •"' ~ ~v ~ , The following data inside Main Stream is listed: ~ In Main Stream number: 1 StreamFlowarea= 7.270(AcJ M Runoff from this stream = 13 838(CFS) Time of concentration = 19.59 min. Rainfall intensity= 2.406(In/Hr) ~ Program is now starting with Main Stream No. 2 ++++++++++++~.r++++++++++++++++++++++++++++++++++++++++F+++++i+++ Process from Point/Station 10.000 to Point/Station 1 I.000 , **** INiTIAL AREA EVALUATION'**• Initial area flow distance = 23.560(FC) Top (of ini[ial area) elevation= 72950(F[ ) 1 Bottom (of initial area) elevation = 72.170(Ft.) Difference in elevatwn = 0.580(FL) Slope = 0.02462 s(percent)= 2.46 TC = k(0300)*[(length^3)/(elevation change)]^0.2 ~ Waming: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Ini[ial area time of concentra[ion = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year srorm ~ COMMERCIAL subarea type Runoff Coefticient = 0.897 Decimal fraction soil group A= 0.000 , Decimal fraction soil group B= 0.000 ~ Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 3) = 88.00 Pervious area frac[ion = 0.100; Impervious fraction = 0.900 ' Initial subarea runoff= 0.137(CFS) Total initial stream area= 0.030(Ac.) Pervious area fraction = 0.100 ~ ~,-,--rT+~n++++++++++F~~~,-,--r~+++++++++ Process from PoinUStation 1 I.000 to PoindS[a[ion 12.000 ~ ••'• PIPEFLOW TRAVEL TIME (User specified size) ***' ' Upsheam poindstation elevation = 70.170(FL) Downstream poinUstation eleva[ion = 69.710(F[.) Pipe length = 45.37(FL) Manning's N= 0.013 ; No. of pipes = I Required pipe flow = 0.137(CFS) Given pipe size = 6.00(In.) Calculated individual pipe Flow = 0.137(CFS) Normal Flow depth in pipe = 2.02(In.) ~ Flow top width inside pipe= 5.67(ln.) Critical Depth = 2.21(In.) Pipe tlow velocity= 238(Ft/s) ~ Travel time through pipe = 0.32 min. Time of concentra[ion (TC) = 5.32 min. ++++++++++++++++++++++++++++++++++++++++~~n~,-;+~++++t+++++++++++++++++++ Process from PoinUStation I 1.000 to Point/Station 12.000 -- "`* SUBAREA FLOW ADDITION *'** COMMERCIAL subarea type ~ Runoff Coe(ficient = 0.897 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 ~ Decimal fraction soil group C= 0.000 ~ ,~ LJ , Decimal fraction soil group D= 1.000 RI index for soil(AMC 3) = 88.00 ~ Pervious area fraction = 0.100; Impervious fraction = 0900 Timeofconcentration= 5.32min. Rainfall intensity= 4929(In/Hr) for a 100.0 year storm Subarea runoff = 0.177(CFS) for 0.040(Ac.) ~ Total runoff= 0314(CFS)Total area= 0.070(Ac.) +++++++++++++++++++++++++++++~-.-.~++++++++++++++++•~T~,-,~ Process from PointlS[a[ion 12.OW [o PointlStation 13.000 ~ •••* PIPEFLOW TRAVEL TIME (User specified size)'""* Upstream pointlstation elevation = 69.710(Ft.) Downstream point/station elevation = 68.770(Ft.) ~ Pipe length = 94.84(Ft.) Manning's N= 0.013 No. of pipes = I Required pipe flow = 0314(CFS) Given pipe size = 6.00(ln.) Calculared individual pipe Oow = 0314(CFS) ~ Normal flowdep[h in pipe= 3.22(In.) Flow top width inside pipe = 5.98(In.) CriticalDepth= 3.40(InJ ~ Pipe flow velocity= 2.93(Fds) Travel time through pipe = 0.54 min. , Time of concenhation (TC) = 5.86 min. , ~~~+++++++++++++++++++++F++ `~ Process from PoinUStation 12.000 to PoinUStation 13.000 '*•• SUBAREA FLOW ADDITION "" ~~ COMMERCIAL subarea type Runoff Coef6cien[ = 0.897 Decimal fraction soil group A= 0.000 , Decimal fraction soil group B= 0.000 ~ Decimal fraction soil group C= 0.000 Decimal fraction soil group D= I.000 RI index for soil(AMC 3) = 88.00 Pervious area fraction = 0.100; Impervious frac[ion = 0.900 ~ Time of concentration = 5.86 min. Rainfall intensrty= 4.674(]n/Hr) for a 100.0 year srortn Subarea runofT= 1.215(CFS) for 0.290(Ac.) ~ Total runoff= 1.529(CFS)Total area= 0360(Ac.) ~~T++++++++~,--r+++++++++++~,T+++++++~,--r++++++F Process from PoinUStation 13.000 to PoinVStation 14.000 ' •••• PIPEFLOW TRAVEL TIME (User specified size) *'•' ~ Upstream poinUstation elevation = 68.770(Ft.) Downstream poinUstation elevation = 66.650(Ft.) ~ Pipe length = 21 1.59(Ft.) Manning's N= 0.013 No. ofpipes= 1 Required pipe Flow = 1.529(CFS) Given pipe size = I O.OOQn.) Calculated individual pipe flow = 1.529(CFS) ~ Normal flow dep[h in pipe = 6.15(In.) Flow top width inside pipe = 9.73Qn.) CriticalDepth= 6.65(In.) , Pipe Flow velociry = 435(Ft/s) ~ Travel time through pipe = 0.81 min. Time ofconcentration (TC)= 6.67 mfn. ~ ~ ~ ' ' + ~-~++++~+~++~+~++++++~+~+~+++~+~+~~++,~+~++++++ Process Gom PoinVStation 13.000 ro PoinVStation 14.000 1 *•** SUBAREA FLOW ADDITION **** COMMERCIAL subarea type Runoff Coefficient = 0.896 Decimal Baction soil group A= 0.000 ~ Decimal fraction soil group B= 0.000 Decimal frac[ion soil group C= 0.000 Decimal fraction soil group D= I.000 RI index for soil(AMC 3) = 88.00 ~ Pernous area fraction = 0.100; Impervious frac[ion = 0.900 Time of concentration = 6.67 min. Rainfall intensity= 4352(In/Hr) for a 100.0 year storm Subarea runoR = 1287(CFS) for 0330(Ac ) 1 Totalrunoff= 2.817(CFS)Totalarea= 0.690(AcJ ~ ~~--n ~ .~,-,--r++++++++++++++++++++++~~T,-r+++F++++++++++ ~ Process 6om PoinUStation 14.000 to PoinVS[a[ion I5.000 . *"•* PIPEFLOW TRAVEL TIME (User specified size) ••" Upstream poinUstation elevation = 66.650(Ft.) ~ Downstream point/station eleva[ion = 64.640(FtJ Pipe length = 200.40(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe Flow = 2.8I7(CFS) Given pipe size = 12.00(In.) ' Calculated individual pipe flow = 2.817(CFS) _ Normal flow depth in pipe = 8.04(In.) Flow top width inside pipe = 11.29Qn.) CriticalDepth= 8.63(In.) ~ Pipe flow velocity= 5.03(Ftls) Travel time through pipe = 0.66 min. Time of concentration (TC) = 733 min. ~~* ~,-,--rT++++++++++++++++++,~+~~T++++u~m Process from PoinUS[ation 14.000 to PoinUStation I5.000 ; '••' SUBAREA FLOW ADDITION **'* COMMERCIAL subarea type Runoff Coefficient = 0.896 Decimal frac[ion soil group A= 0.000 ~ Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= I.000 RI index for soil(AMC 3) = 88.00 ' Pervious area frachon = 0.100; Impervious fraction = 0900 -~ Time of concentration = 733 min. Rainfall intensity = 4.131(In/Hr) for a I00.0 year s[orm Subarearunoff= I.037(CFS)for 0.280(AcJ ~ Total runoff= 3.853(CFS)Total area = 0.970(Ac.) +++~~T+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ~ Process from PointlStation 15.000 to PoinUStation 16.000 **'* PIPEFLOW TRAVEL TIME (User specified size) **'* Upstream pomt/station elevation = 64 640(Ft ) 1 Downstream point/station elevation = 60.240(Ft.) Pipe length = 101.08(Ft.) Manning's N= 0.013 No. of pipes= 1 Required pipe Oow = 3.853(CFS) ' Givenpipesize= I2.OOQn.) / 1 ~' ~ ~ Calculated individual pipe (low = 3.853(CFS) Normal flow depth in pipe = 7.03(In.) Flow top width inside pipe = 9.14(In.) ~ Critical depth could not be calculated. Pipe flow velocity = 939(Ft/s) Travel time through pipe = 0.18 min. ~ Timeofconcentration(TC)= 7.Slmin. +++++t~,-,--r ~,~-r~++-f+,~,-,--r++++++++++++++++~,T,--r+++++++++++++++ ~ Process from PoinUStation I5.000 [o PoinUStation 16.000 `•** CONFLUENCE OF MINOR STREAMS **•• Along Main Stream number. 2 in normal stream number 1 Stream flow area = 0970(Ac.) ~ Runoff from this stream = 3.853(CFS) . Time of concentration = 7.51 min. Rainfall intensity= 4.076(InMr) ~ + ~~T++++++++++,-r~T+++++++++++++++++++++++++++++++~~+++++ Process from Point/Station U.000 to Point/Station I8.000 *•*" INITIAL AREA EVALUATION'•*• ~ Imtial area flow distance = 203.000(FL) Top (of initial area) elevation = 70.880(F[.) Botrom (of initial area) elevation = 64.850(Ft.) ~ Difference in elevation = 6.030(Ft.) . Slope= 0.02970 s(percent)= 2.97 TC= k(0300)*[(length^3)/(elevation change)]^0.2 Initial area time of concenhation = 5 076 min. 1 Rainfall intensity = 5.057(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.897 Decimal fraction soil group A= 0.000 ' Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D=].000 RI indez for soil(AMC 3) = 88.00 ; Pervious area 6action = 0.100; Impervious fraction = 0.900 Initial subarea mnoff= 2.494(CFS) Total initial stream area = 0.550(Ac.) ~ ' Pervious area fraction = 0.100 + + + F , - . T , - , - - r + + + + + + + + ~ , - , - , - . T + + + + + + + + + f + + + + + + + ~ + + + + + + + + + + + + + + + + + + + + + + + ' Process from PoindStation 18.000 to PoinUStation 16.000 *'•• PIPEFLOW TRAVEL TIME (User specifted size) *•** Upsheam poinUstation elevation = GI.I SO(Ft.) Downstream poinUstation elevation = 60240(Ft.) ~ Pipe length = 93.82(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe Flow = 2.494(CFS) Given pipe size = 12.OOQn.) Calcula[ed individual pipe Flow = 2.494(CFS) ' Normal flow depth in pipe = 739(In.) Flow rop width inside pipe = 1 1.67(In.) CriticalDepth= 8.12(In.) Pipeflowvelocity= 491(FUs) ~ Travel time through pipe = 0.32 min. Time of concentration (TC) = 539 min. ' , ~W ~ ~ +~~++~~+~+~~~++~~~+,~-~++++++.++,-+++~~~~+~~-~+ Process from PoinUStation 18.000 to PoinUStation 1G.000 1 *"'* CONFLUENCE OF MINOR STREAMS *'•' Along Mam Stream numbec 2 in nortnal stream number 2 Stream flow area= 0.550(Ac.) ~ , Runoff from this stream = 2.494(CFS) Time of concentration = 5.39 min. Rainfall intensity= 4.890(ln/Hr) Summary of stream data: ~ Stream Flow rate TC Rainfall Intensity No. (CFS) (min) Qn/Hr) , 1 3.853 7.51 4.076 2 2.494 539 4.890 Largest stream Flow has longer time of concentration Qp = 3.853 + sum of ~ Qb la/Ib 2.494 • 0.834 = 2.079 Qp = 5.933 ~ Total of 2 streams ro confluence: Flow rates before conFluence point: 3.853 2.494 Area of streams before confluence: ~ 0.970 0.550 Results of confluence: Total flow rate = 5933(CFS) ~ Time of concentration = 7.511 min. Effec[ive stream area after conFluence = 1 520(Ac ) . . ......~,,-r~+++++++++++++++++++~~+++++~++++~,,-r++++++++++++ I Process from PointlS[ation 16.000 to PoindS[ation 9.000 •*•* pIPEFLOW TRAVEL TIME (User specified size) ***' Upstream poinVstation elevation = 60.240(Ft.) ~ Downstream poinUstation elevation = 52.530(Ft.) Pipe lengrh = 17.89(Ft) Manning's N= 0.013 No. of pipes = I Required pipe flow = 5.933(CFS) Given pipe size = I5.00(In.) ~ Calculated individual pipe flow = 5.933(CFS) Normal Flow depth in pipe = 3J9(In.) Flow top width inside pipe = 13.04Qn.) Critical Depth = 11.82(In.) ' Pipe flow velocity= 24.36(Ftls) Travel [ime through pipe = 0.01 min. Time of wncentralion (TC) = 7.52 min. ' +++,--~-~-~-~rT++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from PointlStation 16.000 ro Point/Station 9.000 ~ **'* CONFLUENCE OF MAfN STREAMS *"• The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = I .520(AC.) ; Runoff from this stream = 5.933(CFS) Time of concentration = 7.52 min. Rainfall intensity= 4.073Qn/Hr) ~ Summary of stream data: ~ ~~ , ' Stream Flow rate TC Rainfall Intensiry 1 No (CFS) (min) Qn/Hr) 1 13.838 19.59 2.406 ' 2 5.933 7.52 4.073 Largest stream flow has longer time of concentratwn Qp = 13.838 + sum of Qb la/Ib 1 5.933 • 0.591 = 3.505 QP= 17.343 Total of 2 main streams to confluence: Flow rates before confluence point: ~ 13.838 5.933 Area of streams before confluence: 7.270 1.520 ' Results of conFluence: Total Flow rate = 17.343(CFS) , Time of concentration = 19.593 min. Effective s[ream area after conFluence = 8.790(Ac.) ++++++++~,~'~T+++++++F~T~T,..,~,-~,--rT++++++F++++++++ ~ Process from PoinUStation 9.000 to PoindSta[ion 19.000 *•" PIPEFLOW TRAVEL TIME (User specified size) "" Upstream point/station elevation = 52.530(Ft.) ~ Downsheam poinUstation elevation = 48.200(Ft.) Pipe length = 47.40(Ft.) Manning's N= 0.013 No. of pipes = I Required pipe Flow = 17343(CFS) ' Given pipe size = IS.00(In.) ' Calculated individual pipe flow = 17.343(CFS) Normal flow depth in pipe = 9.49(In.) Flow rop width inside pipe = 17.97pn.) Cri[ical depth could not be calwlated. ' Pipe flow velocity= 1837(FUs) . Travel time through pipe = 0.04 min. Time of concentration (TC) = 19.64 min. ' +++++++++++F++++++++++~,-,--rT++~T++++++++++++++++++++++++++ Process from PoinUStation 19.000 to PoinUStation 20.000 ~ •••' PIPEFLOW TRAVEL TIME (User specified size) ***" Upstream poinUstation eleva[ion = 48.200(FL) Downstream pointlstation eleva[ion = 45.930(Ft.) Pipe length = 66J0(F[.) Manning's N= O.OI3 ' No. of pipes = I Required pipe Flow = 17343(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 17343(CFS) Normal flow depth in pipe= 1329(In.) ~ Flow top width inside pipe = I5.82(In.) Critical depth could not be calculated. Pipe Flow velocity= 12.40(FUs) Travel time through pipe = 0.09 min. ~ Timeo(concentration(TC)= 1R73min. End of computations, total smdy area = 5.79 (AC.) The (ollowing figures may ' be used for a unit hydrograph study of the same area. ~ \~ ~ ' Area averaged pervious area fraction(Ap) = 0.510 , Area averaged RI index number = 80.0 ' ~ ' ~I ~ I u ~ ~ ~ , , , ~ ' , ~~ ~ ' \~ ~ ' , 1 1 1 i i ~~ ~ ' ~ ' ~ ' ' ~ ~ APPENDIX B (4. TABLES AND CHARTS) z0 ' :~' ' ' • '~` 1~,. ~ . ~ ~ . AveraQe Y~lues of RouQlu~ess.Coelficient (ll~nnin; s n) ~. " ' ~ Rou;hn~as~ , Typ~ oi N~c~rw~y Co~i!!el~n~ (n) ~ . I ' 1. Closed Conduits (1) ~ ' ' ~ ~ Steel (not lined) ~ 0.025 ~ Cast Iron 0.015- ~ Al~in~an ~ .021 , . Corrugated Metal (not lined) 0:024~• . Corru~ated Metal (2) (smooth asphalt quarterlining) ~.021 Corrugated Atetal (2) (smooth asphalt half lining) • 0:018 ~. CorruPated l~tetal (smooth asphalt full lining) 0.012 Concrete RCP ' 0.012 Clay (sewer) 0.013 ~ . A~bestos Cement~ Pv~ ~ - ~- - 0.011 ~ - . Drain Tile (terra cotta) ~ 0.0?5 Cast-in-place Pipe 0.015 . ' ~ . Reinforced Concrete Hox 0.014~. 2. Open Channels (1) ~ ~ ~ a. Unlined ~ C1ay Loam • '. Sand ('~;_, i b. Revetted ~ _ • Gravel ~ ' Rock ~ , ' ' Pipe and Wire • • , ~. Sacked Concrete ' • , c. Lined Cor{crete (poured) , Air, Blown biortar (3) ~ Asphaltie Concrete or Bit~inous Plant Kix . d. Vegetated (5) , •; ~ Grass lined, maintained ' Grass and Weeds ~ Grass liried.with concrete loW flow channel ' 3. Pavement and Guiters (1) ' Concretc ~ ~ ~.., ~ ~..: . . sic~~,ous (plant-mixed) : ~ . • ~~.~'..:. :-~ 1 ., .W.. . ' .~'' ~: •. ~ . r ~.N~.. ~ . ' ~ .• ~~~•~V'~~\I'I~~~~~:J~• • ~1+ 1.~ . ~_~ ~ ' ~1.*~u~•."~ • r. ' . . ' ~ ~ r . '.1:.. ~ •,~'..,~~ry~~;~''~'Y,:.w . " ~ ~ • • . ~..~~jS7%J 11~ ~..~. ~'; ~ ~ ~1 1 ~ ~~ .1 w~S'~.^+• • ~.. ~ .... . ...... 1 . . . . ~ _'~,`~~ , • ~ µ:•' , . ~ . .. ' , ,, , : . ti ~I.~a.. .J .. : 'y'~,~,(•y'^~~~.)y!~~/~.: . '.'cJ.~~~'~\.. :(...•. ~ ' . A~v.. '' ~~ _.. . ~ • •.n '•s ~.. ~• .L "~1 :~..~..: .:• • ' ~~. .. ~~~ ~ ~ ~s ~° ~ ' ' '~~"t: ;.•.'~;• ~~ .,. . :- .t:.l '~ h~].},St' 54~~:,f ~ t~~''~~ ~~ 1-yl~'~~~ 141f,~~i ~ :'`~t~l.~. ,y~+ . s ~~ {,}+''_`-V`~' , .. • ~ y` i Illr~ . ` ~~~ ~~~ : ~ ~ /~~j ~~ ~= ! 1y~! ~~-• .I 0.023• .. , O.Q'_0 .'. 0.050 ~ 0.0»0 0.025 0.025. '~ 0.014 0.016 0.018 .035 ' .045 . 0 32 0.015, 0.016. ~ .z~~~.,'t~ ~'~~ ~ •.Y;, '~Li :•''~t': ~ ~ •' ~, i y" ~ 1 ~~~':~ xv~'t~8~`~~ ~ r I ' ~ ~ ' ' ~ ' ' ' ~ ' ~ ' 1 , ~~ ' RUNOFF INDEX NUt~EAS CH~ AYDAOLOGIC SOZL-COVER COI~LEXES FOR PERVIOUS AAEAS-AMC II Covar 7ype (3) Quality of Soil Group Cover (2) A B C D NATURAL COVERS - Barren (Rockland, eroded and graded land) Chaparrel, Broadleaf (Manzonita, ceanothus and scrub oak) Chaparrel, Narrowleaf {Chamise and redshank) Grass, Annual or Perennial Meadows or Cienegas (Areas with seasonally high water table, principal vegetation is sod forming grass) Open Brush (Soft wood shnabs - buckwheat, sage, etc.) woodland (COniferous or broadleaf trees predaninate Canopy density is at least 50 percent) Woodland, Grass (Coniferous or broadleaf trees with canopy density fran 20 to 50 percent) URBAN CUVERS - Residential or Crnc~ercial Landscaping (Lawn, shrubs, etc.) 'iUrf (Irrigated and mowed grass) AGRZCULTURAL COVERS - Fallow (Land plowed but not tilled or seeded) RCFC ~~WCD ° rIYDROLOGY T/IANUAL ~ .,_ - . ...,~. 78 I 86 1 91 I 93 Poor 53 70 80 85 Fair 40 63 75 81 Good 31 57 71 78 Poor 71 82 88 91 Fair 55 72 81 86 Poor 67 76 86 89 Fais 50 69 79 84 Good 38 61 74 80 Poor 63 77 85 88 Fair ST 70 80 84 Good 30 58 72 78 Poor 62 76 84 88 Fair 46 66 77 83 Good 41 63 75 81 Poor 45 66 77 83 Fair 36 60 73 79 Good 28 55 70 77 Poor 57 73 82 86 Fair 44 65 77 82 Good 33 58 72 79 Good 132 156 169 175 ~or I44 I65 l87 I82 Good 33 SB 72 79 76 I85 ~ 90 ~ 92 RUNOFF INDEX NUMBERS FOR ~y7i PERVIOUSJAREA PLATE D-S.S (1 ot 21 ' T~' ~IMITATIONS: ~ ~~ I. Maximum I~npth ~ 1000~ Te ~ 1000 ~ 2. Maximum ana s 10 Au~t 5 soo e0 s ' ' 800 T~ r, ~'~ 6 ~' ~ ~.$~ ~ ~ 700 60 g ~ ° z~ '~ ~ ~ s ~ ~ 600 E ~ ~ ,r ` ~ E ' ~ o o ~ 8 $ 5~ o O ~~~ ~~~ 20 9 c ' -'` ~ 'Y 35 ~ ~ ' lo 'E I - s K ~ , ~~ ° ~ 400 ' 30 UnO~vNoP~d : 2 (' 12 c° Good Cowr _ , 0 350 = 25 UnGvNop~ e i.o -- " _.. ~ E --Fci~ Cc = ,14~ .. ' c 300 ~ 20 p ~ v .3 2 15 ~ .19 ~ :2 ~ 16 ~ ~ 250 H 17 S' 91t Family ,~ ~~ E ~ ~ . t6 (1/4 Acn1 ~ ~' 18 ` t « o ~~ Comm~rcia 19 ~ ' ~ Q (Pav ~ 20 ~ • 200 ~ 13 i ~ o J ° 12 2~ ° g ~ S o ` 8 ~ ' `c ~ 2S ~ ~ KEY c°, € 9 L-H Tc-K-Tc o ' ~ 8 ~~ • EXAMPLE; E 7 ~ ' (I)L=550~, H=5.O~,K=Sinpk famiiy(I/4Ac.) 35 Devebpment , Te =12.6 mie. ~ 6 , ,,~`~ 100 ~2) L=5S0~, N=S.O~, Ks Comm~rciol 40 s Oevelopment , Tc = 9.T min. 5 ' 4 R~hnnu: Bfblioprophy f1~m No. 3S. , R.C FC A W C O TIME OF CONCENTRATION '~ HYDROLOdY 1ylANUAL FOR INITIAL SUBAREA7.3 ' PIATE 0-3 ~ W l N K W G ' u , ' ' ' t ~~~~• O f C r• •~ N r N n N~ n r N O~~ r P N n N O 1 O n 1 > ~~ P :N~• ON :'1N N~~~p so~-~e NM : : ; '1NN~ O~~~P U ^y • • • • • ^ - AIInqN NNNNN NNNN~ .~r..~~ ~~~~~ ~~~~~ ~~..~ ~ W 7 O W t 1~1~• ~PMN• •1M~M •~N~A Oi~1~• N~N~O NNeOi Y •~ ~~N~• ~~r.0~11 MI~IVI /INN~ ~0~~! O~O~h I~~.r~• r ~ NNNN ,y~ ~~~~^ ^ • • ~ ~ • • ~ • • • _ =N W ti M < ~ J 02 e M i ~ O P ~ N n~ N i P O P O N 1 i O O N I O O O V~ O Y1 O N O N O N ~~~~~ ~~~~.~ NNNNN ~nI1/II1I~ •INNi ~Onh00 O • ~ ~ O J N ~ ~ Q~OO<N~ NOMON C~NNN ~LNOP PoNNO NPOOO ~0~111~ > Of heN~O NNOa~ N~nN~ oO~C~ I~FlN~e OO~OO Yf~~Fln O V ^ W . • . ~ • • • ~ . • • • • • • • • ~ ~ ~ . • ^^ r-__- Z ) N~YNN• •~1~'II1 01OIw1I~P1 TNNNN NNNNN N~~ ~ ~ W Q N 7 p W O N 2 W Q IIOCN~ nn~nll IINO,+N PPONi P~P~O ri~NO N~ONN Q Ot NO~NO O~ON~~'1 N~OOP OrhiY~ •~P1I11~1 N~~00 Pp000 6 LL ~ W /~I 6 a •nFl~IFl NNNNN NNNN~ ~~~+~ ..~~~.. ^~^~~ • • • ~ • ~ L` N e W = '" J ^N ~ ~ t W G ~f NOr00 O~^~'II N=rOP ON~~Om ONI~00 ONONO NONOY~ N eJ ~ NNNNN I~I~nnPr •~y~N~O Ohw00 Q2 ~ ~ N Oi W 2 ¢ OO.~PO •OiOO ONNO~ OmONp O~PY~~ ~P~yfo N~h~.+ U 1 O~ :hNN~ PO~OY1• •YIN~~ ORPOP I~yy~NN •~'fI1NN e00 .~ V = W . • . • . . . • • ~ ~ . • . • . ~ Z 2 Y •IIPI'1I1 NNNNN NNNNN N .. .. W 0 ~ o O N I W 6:T~pP .prONO ONO~ON PNONr I~IOCII~ ONa~O r~NPn 6 O< NI'1~0 OOrPO ~CNN~• PIPINN~ ~~000 PPOOO hMrdC O 1~ ~ W • • ~ • • • . ~ . . • . . ~ U Y NNNNN .~ .~ .+ ~ • 6 O W L ~ 4 r ~~ O W J ~~ N~O ~ O P O~ N n• N O h O P O N 1< O o N~~O E e N o N O N o N O N N //~ fJ ~+ ~ ~.~.r~~ NNNNN OIOII'In'1 ~~NNa ar-r~e0 VJ ¢2 Z '- W °• H I', ~', Z Q~6,r~1'P~00N~P ppONY1 OON~OO O~ENh NNIOe •PN~h 1 00~ ~1i~ONP.O ~:I~Ir00 rlOM• 1'IN~00 POI~r< .ON~nII N.-~~.-.O V W ~ • • • • • • ~ ~ ~ • • ~ • • • J~` 2.~T Y~(1~1'f.~ In1'1I1I1N NNNNN NNNN~ r~~.~~ ~~~ J i W ~. 1' . ~' O UQ ~ V W O O ~ N J 2~ W Q 11~N~A0 ~p1~~~0 ONl~.r.p ..np0• p~Orln pI~MNO ~~oN1n `j ` =W • :O~ON 1'1N~OP OO~n~p ~ON~nn NNN~~ ~ePPe ephrr J f Y I1~INNN NNNN~ .. __~~_ ^_~__ ^^ • • • • • • • ' iu Q t ~ W = U W ~ ~ F N a i~`f N~OhCO O~NI~• y1dAOP ON1'OC ON~00 pY10M0 NeNON N Z 6 fJ ~ .. NNNNN nl~lnl'~n •~V~y1E C~.nOO J a J r Q I .i G i ~ , , R > O< U ^W O ~ N P O •O~~N . . . . • o YI N O o ~PO~O • ~ ~ • o N 1 M ~ Y~IFlNN . ~ ~ • N ~ N ~- O ~OPOO • 1-O~ONN •~FlNN ~~OOo 2 1 ~~FlOIP1 1'~NNNN NNNNN NN~~~ ^ ~ ^ _ ^ _ _ _ - _ ^ _ _ ^ ^ W p J ~ O N ~ W Q ~~r.~0 <h0.~• OI~OIO ~OP~O• ~'IOr 0 ~P~OG I'100NI'1 I Q Ol •MI'IN~ 0 P P<OOh rhOO~O O 1~ ~ W • • • ~ • = • ~ ~ ~ • • ~ • • ~ ~ ~ > N N N N N r_~.+ M.-' .~r^ti~. ~w.n.~ ~ ~ y a i a , ~ ~' o I W J ~~ <~ Y~«CP .o~NFl~ ~.+~i+~ NOrOP .~...~~r ON~~OE NNNNN ON~OO P11'1I'11'11'1 ONONO •IN1f10 1/~OY~ON a~1-oe N ' ~ J O = ' .' RCFC ~ WCD rJYDRdL.dGY _~`/JANUAL ' _ ~ l STANDARD ~ INTENSITY-~URATION ~ CURVES DATA PLATE D-4.1(4 of 6 i.o , ' ~ ~ .9 ~ , .8 ' .7 ' ' .! ' , ~ ~ ' ' 1 ' .2 ~ ' .~ 't . ' o ~ ~ 9 T 6 .5 ,4 .3 ~ ' ~ ' R cF C a w c o _ ~ H A YDROLOGY IJANUAL ~ T~ , RUNOFF COEFFICIENT CURVES SOIL GROUP-D COVER TYPE-URBAN LANOSCAPING , ~ AMC-II ~ (RUNOFF IN~EX NUMBE R 75) ~ , , ' ~ ~ ~ ~ ; ~ ~ ' RAINFALL INT EN S IT Y IN INCHES PER HOUR .~ 0 ~ ,2 3 4 5 6 I n~ ~T~ I~_R A ~ , ' ' ' 1 ' ' ' ' ' ' ' ' ' , ' , ~_ ' ~ NnI1I11~+1+1M~~~rV.~~OP~00 a~aeaa~eoo~~~ea~e~e~~ o . . . . . . . O r~NN/1II~~~ny~.~.y~.A00P000 O~O~<OOOOOOOO~OOOOOP• n . . . . . . . . . . . . . . . . . . . . O POeO~NN/1I11111~i<rrOOPOe ~ • ~`n~0O0Oi000O0lOCiO00P h • • ~ • • • • • • • ~ • • • • • Q 1I~ hOPpO~~NNI11~N0<rl~CppO ~ • ~"~`rrilOtOE00iCOiCOCOP O = 1'1 • ~ • • • ~ • • • • ~ ~ ~ ~ ~ ~ • • Z \ N O iiMOOPO~~NI1~~11~0<MQOPO ~[ W • ~-Ph~-rhO0OCO00OlOii00P W 2 ~ • • • . ~ • • • • • • • • ~ ~ . . • O U ~ ~ ~ ~ ~ r n~ r d r ~ e P O~ N N'1~ N i n ~< P O h ~ h h M r h r O O O O O O O O i O p O P 1 N • . • • • • • • • • • • a • • . • • 1 C ~ O O~NFl~yf~pNOPO~NI~I~I(~ir~p0 ~ ~' • ~`~`r~`rrrrhri00apii00OP 4 N N • ~ . • • • . • • • • • • • • . • N W ~ f II~ IPiiP0~1~1~111COPO~II~y~~pePO z ` eoaor~~-~.~.~-~.r-~.ooeeooeoo M ~ . . . . . . . . . . . . . . . . . . . . ~ O hP~N11PI~PON~YIMPONI'INrOe n ~nnooaooo'.r..-~.nr.ooeoeoP ~ . .. ...... . . O 4! Y1 N1~PN~OO~~OO..~aoe~noe ~• :~111NY1Y1~OCi<PrrI~0000P ` • • • • ~ • • ~ ~ ~ ~ • • ~ O 2 0 01p/IONti.~OONP10I1hNO~.po a OOO~~+NN1'11'I~~~Y1N~G~Or1~iOP ~ • ~ ~ ~ ~ • • • • • • • • ~ ~ ~ ~ ~ ~ • • N O ti. f >Z 6Y eY~ey~eNONeYfONONeNONeyte ~¢ ~~NNnP1~~NY~~O~pwnOaPPo ZW ~ ~p 0 a N O e o ~ Z O r ¢ 0 ~ N ~ u s 0 u r Z C a n J O II ~ N O W Z n ~ N 1 N s .~. °. N N , 2 W f N r ~ n V N > 2 R W W V 6 6 ZW -s ~NNnI1~ 1~ NY~ OiI~r1~iOP pp o i O C O O C O E E O O i C O E O O! O P p O~~NNIIIi~~y1y1O~pI~rOOPPO O O O O O O O O O O O O o O O i O O O O P • ~ • • ~ ~ • • • ~ • • • • • • • • • • oePOOr~NIlI1~NN~OdI~oOpPo ~-.-~-ooooe~eeoooeeooeoe . . . . . . . . . . . . . . . . . a~.oeoeo~rvrvn~ru+o~.r.oaoe r h h h r O O E~ C i O O O o p O C p O P •Y1~OreCPO.~~NI1~1P1COhiipO ~~~~-~~~o~oooeoooeccco '~1~r~O~O~nPO.+Nn1WY~i~OPe ~-~-n~-r~nnneoeoeoeooeeo • • • • • • • • • • • • • • • • • • • PO~NI'1~If~~pr<PO~N~mar.oao <Ph~`PhhM1~PI~pE00000OOP • ~ ~ ~ ~ ~ ~ • • • • ~ ~ ~ ~ ~ • • • • • I'111~~OMpO~I1~NrOP~NI'll/~il~p0 <aoco~n'.r.r~r-ni.oeeecooa . . . . . . . . . . . . . . . . . . . . . owa-.ti~ar.o~n~oee..np,.oo v~nv~ooaaoo~nnr.~.ooooeeo . . . . . . . . . . . . . . . . . . ~ ON+IhONr1hON~11MONY1rONN1~0 I 1~~ IN1111f111fi0i'Orrrhi000P o~PPIpNM...poNP~O/11-N~O~.pO OOO~~NNII'11 ~1111N~OihhOOP oY~o^oY~one~IfoNO1/~eYlelf~eNo ~ NN/IP11~/ip1OOMhOiPPO RCFC 8~ t'~YDROLOGY WCD 1~/JANUAL ~ O II 1~~ N 11~ 11~ r i O- ~ ~~ O~'! O!~~ aeaoaeeoeoa~~~~ee~~~~ ~o . . . ~ O N/Inn1~HIf1pO~Mrr00~~-~~. ee~so~ee~e~~e~e~~e~~• in ... .......... .... o .~~NNNn1n~~y~y~0O~1.0i~0e0 ^ • O O O i O~ O~ O O O O O O O O O O O f • ~ • • • • • • • • • • ~ • ~ C N PeO~NNMn~~y1+1pOPI~00PP0 7 • M C O i O O C i O O O O O O O t O p O e P _ ` • O = q • ~ ~ ~ • • • • • • • • • • • N O OePeO~~N'IRIII~Y'<OhtOpPe R W M.r n O O i i e(. C~~ p C i C i i t f P W i ~ • . . ~ • • . . • • • • • • • • • • • • O U 2 2 ~+ ~ Y~ Orr<PPO....Nn1~NOiI~OPPO r h r h M r i O C O C O O O O O O O t O P 1 N • . • . . . . • • • . • • . • . Q • • • Y Q f O II~N+10hOPO~~N~11+1~Gr1~pP0 o - . ~-r.r-r-r-n.-nooooc~oeoecce LL N N . ~ . ~ . . . ~ ~ • • • . • • • . • 2 N W ~ ~ N Po.~Nn~NL1~OPO~n~N«OPo _ ~ c~~~~~r-r-nnr-oemoeooeep u .. ~ . . . . . . . . . . . . . . . . . . . o ~n~OPOO~n~~pMPO~11~~prpe ~. oaeaocwwr-r.~-~.~eoeeoooo y • • • • • • • • • • • • • • • • • O Y Y1 CP~I'INhON~i00/1NfO~l'I~i00 • 1 N N N N O C O i O r 1~1~ h M O C C O P y . . . . . ~ • • . ~ . . • . . • • O 2 O O~pl'ICNr~CO1f~PIml'IrNC~OO 7 0 o e~~ N N 1'11'1 I 1 1 III N.p ~O Y. Y. O O P Q N ' O rf i 2 . . . ~ . . ~ ~ ~ ~ . . . . . . . . • . . 6W ONOVIONOIf~ONOM011~01(IONONO aQ NNI~IPI~INIf~i~OnrOiPPO I W ~p ~ 0 i c C O 4 N h 2 u 4 0 Y O C e~ ~ N • ¢ N J • o n z ~ N O W i n ~ N 1 N > ~ o N N i W f r ~ .. .. N 1IIIIINHN~O'LONPPOOPpp00 ooeeaoaooooeooooooeoa . . . . . . . . . . . . . . . . . . . . . NNN~'IPI~~NY~rOOrr~.00PP00 Y O O O O m O p C i O O O O O O O O e P P • ~ • • • • • • • • • • • • • • • • • • • Oo~~NNnn~1y~11t.p~pl~~.OOPPo oeoeooeaeeoooeooocoaa . . . . . . . . . . . . . . . . . . . iPOO.~..NNn~~NM~~OhrElPPO rrcaoc<acooooecoooome rMOpPO..rNI~I~~NNOrrEPPO PPh~-hOO00COOLOCmCt OCR • ~ • • • • • • • • • • • • • • • • • • • NII~CAOePO.~.-~NI'1~11111~'Ohp000 M r h h r r r O e m O O o O O C E O! O P . . . . • . . . . . . • . . • ~ ~ • • ~ • ~NI11Y1ChOPO~NP11 ~N VN EPO rhrrl~Al~Fhmeomeosoooco • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ • • • • ~ ~ • • ~ • MOPONP111I~<heO~Nll~y~rpp0 oao'-~-r-nw~.~~-ooeeeoeooo P.+NIY1hOONl'11f1O~P~N~IPh00 y+~oooaco~r-~~-nr.neoeoeoa . . . . . . . . . . . . . . . . . . I~OP.~I~Ii00„11(~hPN1OP.~I~fY~00 •~~Y~~YI/10i00~OrMrriCOOP O~PFlONw.~.poYlP~pnhNC~00 oee.~~NNI'In~ ~~y~y~.pOww OOP N 7 ~ >2 6 W O 1(1 O 1(~ O H O~1 O Ifl O Y1 O 1(1 O N O N O Y1 O S6 ~ NNIIII~IU~Y1~.Or1~OCPPO ~_.. p O ai eTC ~1-R7 fQ ~s ~~1 , ~ • ' r W 0 ~ , ' a O r N u ' F r r ' W O Y O 2 ' a ' ' ' ' 1 ' ' ' ' i ' 0 r . N • a ~n J ~ i ~ \ N O W I n u ~ N 1 N f 0 N N z W ~ „ ~ N i 0 n ninnm~~o.~~ne~~s~~~~~e ~ ~ ~ ~ ~ ~ ~ ~ ~ O ~ O O ~ ~ ~ ~ ~ ~ ~ • •1101~11Y~<'I~rrI~POO~P~P00 •~~~~~~~~~ease~~e~~~• • • • ~ ~ • • • • . • • • • • • . . ~ • V~n ~~~ N W Y i O ~ ~ r O C O P P e o ~e~~e~eaeosciooeeoese ~M1Nnnn.~vncar-.,~-sasaeo oec~cactO00~iOCOOfiPP OO~~M111,InIl11NY~CV.'rMOfPPO OLCOftiltiOfOCOCittCP OPPO~~M1Nn~~N1(~<OrOCRPe ~~~ooeoooceeooaeoaooa ~O~OhOPOO.~.~NI~~~y~COMCPPO P r r r M r t{ t{' C!! O t t O t t O P Nn~H~O«iPO..N~~NY+<1-OPO r~`r1`I~PI~rrElOOi0OO00oP Y~~~ PO Nn ~N 00 Pe ~Fl ~Y~ <e PO ~O O i< r: r P M r M r O O C O i O e O p . . . . . . . . . . . . . . . . ~n Y~~ O~ n N ~ P~ n N O O o N~ O b o NYINNNO~OOOiMrI~rMOOiOOP o~enetir-~aono~onnrvo~~oe eoe-..NNnn~~~y+yfao~r-oo? OY10111011~01110111OY10YfONONOYIO ~~NNI'~Ii~~YtY1~p~OrrOOPPO e Y O W c ~_.. ¢ O w N f 2 u W V O Y O ~ Q e c O N ~ S M ~ . C n 2 \ N O 2 n u ~ N 1 N T ~ e N N _ W f N Z n 0 0010~~~~PeeOlOOPfPe~~ oao<ecaoeeaoeeas~o~~• n~naaoa~..~e~oas~~POOO ae~ooeo~eoo~ee~o~e~~• • ~ • • ~ ~ • • • • • • ~ ~ ~ ~ • • ~ ~ • •..v~rnoo«.~eose~ssoe oeeeeeseeeoe~~eoeee~• ~^~'+ •~Y`PN<O~~~ilCpPOeo ~ C C O t C i i O O l' t t i C C O~ L O P hhnl.~~~MY"CiKrI~OiCpPOp occcoeeceesosseea~coe . . . . . . . . . . . . . . . . . . . . ~H titi~,+~~ nvi aor-~-oeva ee omacaaooeoieeooeeaeoe PPOO~~Nnn~~y~yiO~~CCPO~ r-r-oo~ec~oc~cce~ctceee N C ~ C a P O O~ N n II 1 N O O h O P p O ~-r~-hh~-ceieeeaeaeooaep O~h'I~Nihi00~NI1~MCMOPO ~-~~~r-r-~~~r-eeeaeeoo~ea hOONI~I/1rOON~Y1rOeN'IN~iO NYIOC~OO.Odrrrl~l~rO00fOOP o~ancrvn~aona~en~.tia~oo ooo.~..NNnn~~~NNO~OM~CiP ~ r ~ ! 2 • ~ • • . . • • • • • • • • • . . • • • 6W OY101(~011101(~ONOY101IfOYlONOY1p W 1.1 .-~ .-~ h N 1'1 I'1 ~~ N If~ i O r h i L P P O 6 6 .. zu -n o •~yiNNiiiOF~rOOOPPPPOO a N~OC.Oi.[~~~-~-ptOOPpPPO00 ~ i i O O C C O i i i C E! i O i O m O P V t O O Q O t O C O O C C O C p O m L P P O O • ~ ~ ~ • • ~ ~ • • • • • • ~ ~ • d • ~ • • • ~ ~ ~ • • • • ~ • • • O PIPI~~INIf~Y1~O~prI~I~000J0000 ~NNN'Oi<~OrrI~rCOOPPPP00 O O! i V ~ O O O O O O O O O O i O O P P p i O O O i o O i O C 6 O O C i O C O P P YI • • • • • • • • • • • • • • • • • • • • N • ~ ~ ~ ~ • • • • • • • • ~ ~ • • • • • • O .~NNnI~~11111Y1<~Orr1~OCOP00 O I~IIn~~.~NY~<~OOnhFEOCPPP00 ~O r • OOOOOiiiOOCOCO000OOPP o . cmo0ootio~0loo0000iP0 ~ • ~ . • • . • • • • . • • • • • • O • • . . • • • • • . . . • • • • . • • • . • Q p pr..NN1901~1Y~N~00rrCOP000 • Q y~ N19I'IR.~~~111PN~C~O<hPi00PP00 7 • i t( C O t i l' C O O L' C C< O t i O P P ~ . {~C ~ t p O c C O C O t O l' a i O C o P p O n • . ~ . • • • • • • • • • . • • • • • • O n . . . . . . . . . . . . . . • • • • . . O Z 0 I S \ N O PPO~~NNIYII~~IP~O~CrritOpO N O~~NNPII'~~IpIP<2~pPrpOPP00 1[ W h M i O O i a O~; l' p O O i C t O O L t p ~[ W • i~ E< C i i O! C t C(! O C O C C p O • • • • • • • • • • • ~ • • • • • • • • • W Z 1'1 • • • ~ ~ • • • ~ • • • • • • • • • • • • O Y O V Z Z ^ ~ V1 hOiPOO..NNI'1~~N11~L~hOPpO ~ Y~ POO~NNI'III~INNEl~-~-OOPPo r r h r a e O e O O i O i C C O i O i O P • I~ o O O O O O O~ O i O O O a O O i O O P Q 1 N • ~ • • • ~ • • • • • • • • • • • • • • • 1 N • ~ • • • • • • • • • • • • • • • • • • • ~ T C H O INOhhCPO.-~~NnIN111iriOPO Q ~ rtOPOO.+NNI'I~~y1lphhOQPO ~' ~- ~~~ni-nr-oie~e eecc cccoo o r-.-r-r-oc oo cc ~e aocccocmo 1~ N _ N • • r ~ • • • • ~ • • • • ~ ~ ~ ~ ~ ~ ~ • y N N • ~ • • • • • ~ ~ • • ~ ~ ~ • • • • • • • N W _ ~ Z Z 1/~ e~N1~1~Y~OrOPO.-~N'1~111.OhCPe f i N • NCrCOPe..N/In~y1~1~f'OPO ~ ~h~~-pp~-wwMO~OECpOQOiP Z S n r-r-r-r-i-r-oocooooocOOEO ~ r • • • • • • • • • • • • • • • • • • • • • F ~n • ~ • ~ ~ • • • • • • • • • • • • • • • • U y ~ O A/~OMfO~I1111~rOP~+N1'1NOrP0 r O 1~.PO~NIIIYfOOPp~N1~1~OrCPO V ~OOQOOr1~1~I~hrrr~O00OiOP 1~ ~pphnrrrhnFMO00OOEOiOP w ~ . . . . . . . . . . . . . . . . . . . . . r . . . . . . . . . . . . . . . . . . . . . W O p V Yf P~nlf~r-~1~1~11hP~+~~000N~000 U YI •COP~AY1nOeN~<hP~l'IY1~O00 ~nnnnno<aoo~~wrOii000 mnininoaooar.r-r~'-~.~.oooooa ~ • ~ ~ ~ • • • • • • • ~ ~ ~ ~ ~ ~ • • • 4 • ~ • • • • • • ~ ~ ~ • • • • ~ ~ • • • ` y O p Z O o~PIIONh~O0Y1P~01~hN~p~OO = o o~PI10NP~0oY1P~OI1wNO~+~Oo J o00~.~NNFlII~1~YfY10~OhhOOP ~ Ooor.~NN1'IPI~~~NV100MhOOP Q C • ~ ~ • • ~ ~ ~ ~ • • ~ ~ ~ ~ • • ~ • M ~ r ~. 7 = • • • • • ~ ~ • • ~ • • • • • • • • • • tW oYloYlOylOY1011fo1110Y1oNO1/~o11fo WU ~~NN~II~~N~11iCr~iOPPO sa ~ I W ~6 RcFC e wco i-~YDROLOGY T/JANUAL r~ > _ • ~ ~ ~ • ~ • • ~ ~ • • ~ • . . • • ~ • 6W ONO^~~101/~1NOy1pNO11~0I1OY~~ WU ~ NNIIFl~~I(~Y~.p.pfhOOPOe na .. IY .. p RUNOFF COEFFICIENT I Z'~ < CURVE DATA i~ ' ' L~J ' ' ' ' ' ' , 1 ' ' ' ' , ,._ ' 0 ~ _ W G ~ 6 O N f z u r V O ~ i Q a N • S 11~ o n x ~ N O I /~ U N 1 N T 0 N N W r ~ 0 n O .~~~~oaeoae~~~~~~~~~e eeeosaeeo~ee~~~~~~~oe O~~`rrrh~OO~~~~O~-~OO~ Oi~~OOOOOOO~~O~~OOOP~ • • • ~ • • ~ ~ • • ~ ~ • • • • • ~11 O O C O r r P M h i O O~ P P P P O~ O ~eaa~asoeoaeoeeeeas~s II~PY~i<OOPMPI~OOCOPPOp00 eooceccee«seecoeoses • 1 N r N N< i O M ~ ~ O i O C P P P O o tOiOOeeooeeeoeeoooePP • • • ~ ~ • • ~ ~ • • • • • • • I~I1~~1111Y~Mi0i~`~`rO~VPP00 O O C i O C O i O O~ O~ O O O O< O P P .~NNRP1/~~ ~nmoaa~~osP000 ~ceoereoeee~aeeoeses• ppOOr..NI~/I~~rlf~Oh~~O~P• ~~-cooeoeaeeoeeseoo~e• ..................... .mae.-eeee..nn~~ne.-~e-e ~.r-r-~n~-~.ea~~ea~e~~e~aa /1~y~~~e~N111~OefONFllliir~0 oosa<n..~.~...r.~~eao~o~~~ e~OIIONr~00NP10'IrN~O~'OO OOO~.~NN'1/III II~II~OOrrO~P N 7 O r - ~ I • • ~ ~ • • • • ~ ~ ~ ~ • • ~ ~ • • • • ~u enomenen~~nononomenene IYY ~~NN'11~11~V~11~COhFiOPlO = ~ ~ o irrI~MP1`OOiOiPfPO~fe~• oeoooeoseeoeesee~~~~• a . . . . . . . . . . . . . o sae«wr-~~oc~eosas~~~• eeooooaoeaeaeoooeos~~ n . . . . . . . . . . . . . . ~.. • • . . e mminmaaer,~-w~eaoessosee • . ceeeooeeeoceaeeoooooa e • . . . . . . . . . . . . . . . . . . . • a r~ ~~rrrm~ooo~~r~OCOPOPOe ~ • coeaeoooceceameooo<aa o ~w . . . . . . . . . . . . . . . . . . . o i = N o /II11~~11~N11~~0«MMpOOPP000 ~„ . seeeceeeeeoeoeeeocoss u : n . . . . . . . . . . . . . . . . . . . . . O u Z 2 ~ ~ Y~ NN~In'1~~11~111111OOMhOO~P1~0 e~eeeeee~~~~o~~eesa~s 1 N • • • • • • • • • ~ ~ • • • • • • • • • • Q ti Q O OO~rNNIlI11~111~1ii1'~1~Oif-O o ceooooooa~eeceneeoe~a~ 1~ N N • ~ ~ ~ ~ ~ • • ~ ~ . ~ ~ ~ ~ • • ~ ~ • • 2 W F f 1I~ hOOPOOrNNIII'~~11~11~OI~MOf1~• z z nnnr-ooooee~eeeaeeo~~s F .. .. . . . . . . . . . . . . . . . . . . . . . ' o tin~m~no~-e~~+wn~mno~e-e 4 ~- r h ~ r h ~ r h~ O~ i O i O O O O O ! V • • • • • • • • • ~ ~ • • • • • • • • V •! N •~1'1~O1~fONnf~O~O~N1~llh~• ~~~~~~1~hPMnhhh~~~~O~f : • ~ ~ ~ ~ ~ ~ ~ ~ ~ • • • • • O Z 01r1'1~NI~~~IOY1~1~1'1hNi~~• J 0~~~~NN~IPIIIIN+IOOrM~~• 6 • • a j • • • • • • . . . . . . . . . • • • • • RW ol~oNO111oY101f~o1M1O11~o~11s~11~111• WU +~NNPIIII~II~II~'C<r~`OOl1• s a -~ ~ V RCFC ~ WCD r~YDRflLOGY J~/IANUAL • ~ • • • • • • • • ~ ~ ~ ~ • • • • ~ ~ • ~n~no~n~~n~ineno~nafi~n• ~ .~.~NNnI11111~n<OrM~Of • PLATE D-5.T (il of 12) P ~ x W O ~ Q O N H _ u ~ W 0 ~ ~ Q e r • Q M ~ n s ~ N O W Z ~ V ~ n 1 N s r O N N Y ~_.. ~ 0 n O ~aae~~~~~~~~~~~~~• •• •oo~~~~~~~~~~~~~~~~~• . . . • • .~e~a~~~~~~~~~~~~~ • •a~~~~~~~~~~~~~~~~_~_ • • • • ~ ~ • • ~ ~ • • • • • • ~ ~ ~ • ~~-~P~~~iO~~~O •~~~• •• ea~eosse~~ee ~~~~~C~- e~nr-~n'.o~o~e-~~~~~~•~ aaeeeooee~eoeeaee~ ~~ aooe~~~~~eeee~~~~• •~ aeeeseseeeeesess~e~~• • • • ~ ~ ~ ~ • • ~ ~ • ~ • ~ ~ ~ . nininsoaen~-~~aa~~~~~~~~ O O ~ ~ ~ Oi O O ~ ~ ~ O ~ ~ O ~ O . f • •~III~Y111~~OO~OMP~OC00~1~~• ccaeeeooo~eaeaeae~e~• NN~1~111~11~~0O01~ri00! •O oe~eeeseoeaeaeeeaa ~• e.e.__«w.,..~r<.~o.6.. r-r.eeee<~ae~~a~~~e~ ~• •~~'1~ 11f0 r~ ~e.~M ~11 Y1~ 1-~ f• a~-~~~n~-r-~n~e~~~~~~ o• 011/IONr~00t~P10I1rNi~i• ~~~r~.NNA'11~~~1~1100hr~O• N ~ r H (1=i1 Olf~e~11~Y1~/~~~0+1011fOY1eYl0~1~ yy ~.~NNI~III~Y11l1iOhhOOP~O ~ ` l e r-~ e o e~~~~~~! r ~- ~~~ e e• e~~e~e~~~~ea~~~ee~-~• o . . . . . . . . . . . . . . . . . . . . . ~-~~-.-r~oo~~ee~~~~~~~~•~ eee~oe~~~~~~a~~~~~e~• i . . . . . . . . . . . . . . . . . . . . r o <oo~r-~-r-r-eoeoe~~e~-~~• a . oooooeeoeooeoooooe~~s o ~ . . . . . . . . . . . . . . . •_ i r aodoor~-~-noaooosaooaee ~ . aooeee~ooooooeeese~oa o n . . . . . . . . . . . . . . . . . o i 2 ~ M O Y~N11~<~O~0~01~1-hPOOOOPPPP00 ~[ W • a e C c O O i e i~ O i i O O O E O t P P y j q • • • • • ~ ~ • • • • • • • • • • • • C U 2 2 ~ ~ Yf •111~~1111~Y~~0'C~OrhPiOOOPOPOo E i O O O O i O i i O O~ O O O O i i O P 1 N • • • • • • • • • • • • • • • • • • . • • 6 6 f O NI~rI~1~~r~mnoor-r-~-eeOPP00 O C ~ C~ O i i O O L O E i O i O O O O O P. • N N • ~ • • ~ ~ • • • • ~ ~ • • • ~ ~ ~ ~ • 2 N Y1 F F N 0.~.~NNII~II~II~r1~0Or1`~CiPP00 z 2 ooee~a~eeeaaoeeeoo~eP . ` .. . . . . . . . . . . . . . . . . . . . . . ~ • enee~~~~aan~~n.or~~-aa-o ~. ~-r-~.r-~-asoe~eeeeeeaesoa ~ • • • • • • • • • • • • • • • • • V O y yl il~O~rNI1~irEPON1'111110i00 i<~ r r 1~ r 1` r M r r i i O O O i O O P ` • • • • • • ~ ~ ~ ~ ~ ~ • • • • ~ 0 01f'10Nf~i0Y1P10FlrNO~~o •Oa~~NN~'1n~~~1(~/IOihri~P ~ • • • • • • • ~ ~ • • • • ~ ~ • • ~ ~ • ' 1 t ' ' ' LJ ' ' APPENDIX C ~ (5. HYDROLOGY MAP) , ' ' ' ' ' , ~I Z~ ' ' , ' ' ' ' ' ' ~ ~ ~ ~ CI ' 1 ' ' II APPENDIX D (6. REFERENCE AS-BUILT DRAWINGS) , ~