Loading...
HomeMy WebLinkAboutMaster Plan Hydrology Study '� TRACT MAP 29353-2 AND TRACT MAP 29353 RORIPAUGH RANCH MASTER PLAN HYDROLOGY STUDY (Volume 1 of 2) September 2006 .� Prepared for.� Ashby USA, LLC 39252 Winchester Road #107-393 Murrieta, CA 92563-3509 Prepared by: VA Consulting, Inc. �£�.. �� ��'�`���� �- � � Ct�`��L L'l�iti�� f� � - TABLE OF CONTENTS . 1. INTRODUCTION .....................................................................................................1 2. UNIT HYDROGRAPH METHOD ANALYSIS ...........................................................1 3. RATIONAL METHOD ANALYSIS ............................................................................2 4. RESULTS ................................................................................................................3 5. FIGURES ................................................................................................................ 5 6. TECHNICAL APPENDICES ....................................................................................6 � . � i • 1. INTRODUCTION Tract No. 29353 and Tract No. 29353-2, The Roripaugh Ranch, is a proposed master planned residential community located in the City of Temecula, Riverside County, California. Tract No. 29353 and Tract No. 29353-2 contain several internal subdivisions that are platted individually. The proposed Master Plan is generally bounded on the south by the southerly boundary of Section 21, Township 77 South, Range 2 West, on the west by The San Diego Aqueduct, on the north by the Northerly boundary of Section 21, and on the east by the Easterly boundary of Section 21. The Roripaugh Ranch is situated within the Santa Gertrudis Creek, and Long Valley Wash watersheds, and is currently rough graded with pads. In the existing condition, storm runoff flows into the Santa Gertrudis Creek and The Long Valley Wash. - The tributary area for the hydrology study for Tract No. 29353 and Tract No. 29353-2 include all of the lots within the respective tract boundaries. This report contains the developed condition hydrology study for the Roripaugh Ranch Master Plan for the purposes of designing the storm drain mains located within The North Loop Road, South Loop Road, and the connection to the Butterfield Stage Road storm drains. Also included is the overall regional hydrology, for the design of the Detention Basins. All of the NPDES methodology "a" requirements for attenuation of the post-development flows back to the pre-developed condition are provided for with two master planned .� detention basins. The individual internal tract maps will not have to provide any additional detention. The Roripaugh Ranch proposes to channelize both The Santa Gertrudis Creek and The Long Valley Wash, throughout the confines of the Roripaugh Ranch. The Improvement plans for these channels were prepared by David Evans & Associates, Inc. Additional hydrology information is contained in the Drainage Study for the CFD and Village Core Portion of Roripaugh Ranch in the City of Temecula (Study), by David Evans & Associates, Inc., dated October 28, 2003. Refer to this study for Channel improvements, and Community Facility District storm drains located in Butterfield Stage Road. A Water Quality Master Plan (WQMP) for the Roripaugh Ranch has been prepared by VA Consulting inc., dated May 2006. Refer to the WQMP for Basin Concept Plans and specific operational details of the detention basins. 2. UNIT HYDROGRAPH METHOD ANALYSIS The Riverside County Flood Control and Water Conservation District Hydrology Manual, published in 1978, (Hydrology Manual) provided the guidelines and procedures for the 10- and 100-year Unit Hydrograph Method analyses. The parameters used for the Unit Hydrograph method are summarized below. o Hydrologic boundaries were based on street grading plans for the subdivisions � as depicted on Figures 1(existing) and 2(proposed), Hydrology Maps, included in this report. X:Wrojec[s\B50 0143\Eng\TechDocsU2eportsWytlrology�TR29353_HVD_Te<t_Update_090806.tloc � • • The underlying hydrologic soil group is Type B, BC, C, and D as shown on Plate C-1.53 of the Hydrology Manual. For the purpose of this study soil group BC is conservatively modeled as soil group C. • The rainfall depths used in the rational method analyses were based on those reported on Hydrology Manual Plates D-4.3 and D-4.4 for the 2-year, 1-hour and - 100-year, 1-hour storm events, respectively. These values were used to calculate the hydrographs. The 10-year rainfall data was based on values derived from Plate D-4.5, and the slope of the intensity/duration curve was based on the information provided in Plate D-4.6. • The development density of Tract No. 29353 will vary by internal tract. The land uses were modeled using a constant soil curve and varying the impervious cover per Plate D-5.6 for each individual tract in the existing and proposed conditions. The unit hydrograph method analysis was performed with software developed by The Army Corps of Engineers, HEC-1, for the 2 year-24 hour, 10 year-24 hour, and the 100 year-3 hour storm events. The software was designed to accept watershed data and perform the unit hydrograph method analyses in accordance with the Hydrology Manual. The software defines sub areas and routing paths by means of upstream and downstream node numbers, node elevation, travel distance, soil group, and type of conveyance. The Hydrology Maps, Figures 1(existing) and 2(proposed), show the location of all node numbers used in the analysis. 3. RATIONAL METHOD ANALYSIS � The Riverside County Flood Control and Water Conservation District Hydrology Manual, published in 1978, (Hydrology Manual) provided the guidelines and procedures for the 10- and 100-year Rational Method analyses. The parameters used for the rational method are summarized below. • Hydrologic boundaries were based on street grading plans for the subdivisions as depicted on Figure 2, Hydrology Map, included in this report. • The underlying hydrologic soil group is Type B and D as shown on Plate C-1.53 of the Hydrology Manual. • The rainfall depths used in the rational method analyses were based on those reported on Hydrology Manual Plates D-4.3 and D-4.4 for the 2-year, 1-hour and 100-year, 1-hour storm events, respectively. These values were used to calculate the 1-hour rainfall intensity. The 10-year rainfall data was based on values derived from Plate D-4.5, and the slope of the intensity/duration curve was based on the information provided in Plate D-4.6. • The development density of each individual Tract varies per Plate D-5.6. The rational method analysis was performed with software developed by CIVILDESIGN Corporation for both the 10- and 100-year storm events. The software was designed to accept watershed data and perForm rational method analyses in accordance with the Hydrology Manual. The software defines subareas and routing paths by means of upstream and downstream node numbers, node elevation, travel distance, soil group, and type of conveyance. The Hydrology Map, Figure 3, shows the location of all node numbers used in the rational method analysis. • X1Projecls\850_D143�Eng\TechDocs\Reports\Hydralog�ATR29353_HYD_TeM Uptlate_090806.doc � • 4. RESULTS The results of the Unit Hydrograph Method Hydrology Study show that the 100-year storm runoff will be transmitted by means of storm drain mains to the principal watercourses, and that the additional discharge, produced by the development, will be mitigated to pre-developed conditions by the use of detention basins. The tributary area that serves the Santa Gertrudis Creek, within the Rorighpaugh Ranch, shall be routed to a detention basin located at the North West corner of the intersection of North Loop Road and ButterField Stage Road. Due to grading considerations, the whole tributary, within the Roripaugh Ranch, cannot be captured within the detention basin. Consequently, the basin has been designed to "over detain" the flows that are captured by the detention basin, in order to provide the mitigation to pre-developed flaws for the entire project. The proposed detention basin is designed to operate conventionally, by gravity, and completely drain, within 48 hours, into the Santa Gertrudis Wash. The hydrologic point just downstream of Butterfield Stage Road is used to compare the pre and post developed flows for Santa Gertrudis Creek. The tributary area that serves the Long Valley Wash, within the Roripaugh Ranch, shall be routed to a detention basin located at the South East corner of the intersection of South Loop Road and the Long Valley Wash. Due to grading considerations, the whole tributary, within the Roripaugh Ranch, cannot be captured within the detention basin. Consequently, the basin has been designed to capture additional flow from the Long Valley Wash in order to provide the mitigation to pre-developed flows for the entire • project. The proposed detention basin is designed to operate as a retention/infiltration basin during major events, with no staged flows through the basin and into Long Valley Wash. After the storm event, the basin shall be pumped out to Long Valley Wash within 72 hours for vector considerations. The hydrologic point just downstream of Butterfield Stage Road is used to compare the pre and post developed flows for Long Valley Wash. Table 4-1 below summarizes the peak discharges at the downstream end of the Santa Gertrudis Creek and Long Valley Wash, for both the existing and proposed conditions. Table 4-1 Unit Hydrograph Hydrology Maximum Storm Drain Flow Rates Storm Creek Existing Q Proposed Q 2-year, 24 hour Gertrudis 136 136 Long Valley 182 173 10-year,24 hour Gertrudis 515 509 Long Valley 334 333 100-year,3 hour Gertrudis 3329 3322 Long Valley 4272 4186 � X1Prqecls1850_0'143�Eng\TechDocs�ReportsWydrology�TR29353 HVD_Te� Update 090806.tloc � • Refer to the node table contained within the technical appendices for details regarding specific locations within the project. The results of the Rational Method Hydrology Study are show on the Rational Method Hydrology Map, see Figure 3. � � X1Projects�850_Oi43\EnglTe:hDOCS\Reports\Hydrology�TR29353_HVD_Ten_Update 090806.EOC � _� 5. FIGURES Figure 1— Existing Condition Unit Hydrograph Hydrology Map Figure 2— Proposed Condition Unit Hydrograph Hydrology Map Figure 3— Proposed Condition Rational Method Hydrology Map Note: A Vicinity map is located on each Hydrology Map. • • X:\Projects\BSD 0143�Eng\TechDocsU2eportsU-lytlrology\TR29353 HYD_Tex[_Uptlate_09�BO6.tloc � � 6. TECHNICAL APPENDICES � X1Projects\950_0143�Eng\TechDOCSU2eports\Hydrology�TR29353 HYD_TeM_Update 09080fi.doc / b Riverside County Hydrology Manual Soil Group and Rainfall Reference Plates . . � i .- �. . � ' , : . - �� x ��. � � �.- - - �,� '� �, . � , � � .. �°' � _. l �� 1� p .,�� ; � . � � � ;► � � � � H - � � �� ��� r,, � .I' �� � � ` c c �, s q' � � �'Z�� � e .i ' �. � ��� � ,,. � s �� � a , �°,,` ` -� �,/ .'� 4� ��_ ° �i�. �,� �� �� ` �� � _ �.�� ' . � � :s � F _ �+ ��. f �y��a��a �� � � � �� �'' �.?�, , �_:� � �,� � �;) �, i' ��•� \. », � � � �'��s..., „�� � , � _ � • "�r:' � `� , � "i� , �- � � . � � `�� f � � - �' �� • 4 ��i�'; `� � 1� � � ' /, �`, .i. � �` �►. ..� � .l�,�r�� � ���� : ►- � .. , � � •,� . �, �,� � .. � ' ' > �� _ �: �����'; ::�i.���r �=� _ • � � : � � � _' � 1 � `����.--' i : fi"_ r ." ► ?� ' �� /��� r'�:- , v. � � `�1 y '� �... ,� � ., �, . �� � I��� �� ��� .'. 1 � , .s • _ �. _ _ � � -�� !� i /� .r,,n f - ,ft,r � O �` � �,�v �.�J� � ` � `�r� ' - � r• - �s n, �'° ' ' : !� , • �`� y , '� °1 -� .� ���� 4� � � �-{� . �,� r� �, ��Y .� • � � �ca!!!� :�2�iri�;L'�"i i�' ��- '"'-`� � _ � ��.���r.�' � �6 T � - : � � 1' �� �, F _ �'.�"� '��1[qy� - `y - � '�`j�� _��J' ����`- 1�_ �� �' �• h,a � ��Q�A� � �° � �;s��" � �:J"�i. � � �l, � � . �' ► q . �,.._"� . � /��►-�' ^�:� ���� � �. ;{�, + i u ;� � .�°�� ��. ����' � : • '�(� ��,'� ` .r � �� (� N - '�"+.�+ \ � � 1 y .+ 1 � ' � ' ��� ` � r 'v�, � � � , � Ji i � - l��� ! � ^�SR 3 � '�� � 1 . :, �`� , � � �� � � ., '. ': � ���_!d. • ���� "�, � ,��? �.ic .;, c r � �: . +' ��� � p� ✓, .0 �. �� 1 f�7� l: ' i' ��� ��''� •� A��:� �k,.,�'�..�� �' ��L'� _ -' �'' .��.. ��.� o ,.,_ � � 4 ���� .,. • � l `P,t . " y�Z. �"7' � ��� a � l�r �� • ��� `'�� � �I � � � �� � ,� �� ?� � II� � '\ ' ,, �� �y / j �?I /, . � /•� � � � � 11✓. ` rr� • � ��y � - � � � � � �� �� �;� ' . .� l�!�r ��� A1°�T/'�il��gsi'. �7 � � • _�/���C!7 2 ! � .! � � " �,9. �! . ,�r� '.� �iJ � � � � t � ��,�i. ! � A� �" �'� •"'=�' ° �� � � �� � ., � � � \ � �� � � ; � r � ����t��y�J� \ `� �� � �V� �P' �. � ♦ f � � � ! ii `l � � � � . � �, : ��/� � � '°�� �- ,- � � .� r� ��: . .. � � ` ���. _ - � � �:-,�. , � ��--�; ��. .�X � . r� '�{�"�;.._ � ..or,41�t. � _.. , `��" "'�' '., . � �� r:� L� � � .�I -= ���y� •� ': :�� ,�-��r .�BR�����( ''� � �° ''� ./�� �� ' ° ��" �' � �'! ' a �� .��� ts, .�,� ���j�,� �" ► -� `' �,�� --�_� �� �-� � �1�„ "f�'-� � ��! �� �S� �'�,� % � � �G` , �I - I i� t %`.y �� . _ �t t: , ' �- ",*f� - f�"-�°° ; ��"'_` -' '��'� �� .,., � `�' ' �� ''� r" �� �°� �:. - .l�y�. -�o .' , � � " , ti ` � • ,�, , ��� ''��'��l�� � " '� y " �' v �`. � .1M��� �� ��r�'�' � � }�,•�i�Yi�� �,�� "�' '!' - '� r � � ' i � �' ..��zr�� �.�'�-�� �►�-���� �� -.-�,� � '�� �.%.��, �,°'� , '� . �-�: � � / � 0 � , � - �,'j. % �i • �,bV ����� • �A,� � - � �� . I-_ + R.! �` ��� �` ti y��� } ti� �ie�� ��� " _ �-;-r>'�,� y A r' � ; o � � � ��. s�+ '�_ ,: 1✓�1 y_ri� ` ' - ,� 4 , �' �-+ � ���•� � �� ,�� f ,,� , "" �, i� � +rr� i �, � e,�i�-•�4 �� �✓' � t► �:.:1 �.11 �;�-���i � ,� � ��"�`" ��� � ��a� `-�^ �' � � � � �. �} _ _�$°,`,. ,� rt-�► . rP '' ��'C��°o/�'�'j � f�''�;� �- � �-�;:: >�r: � � !d� , , 't`'�'�"` ' °�'b �:` '°'`'-. ""' u;�� .�-'° a�P�-� � + � . ' � � : �� � S, an �d3� �-�' =' -�+�•► . !' ' '- /�_ � ' + � `� : � ,� �,,,� = �>��s� ► - � � �' '� .., �l' I � � ;�v'- 1 ��' � � � s �� ° �' a � 6 ``� �, � r � � { •�=-� � � � � � � , � .� � +�., .�w ,� , -� �, �" � " � �' q ,-.::v- _ ' :. ,.�' ,� �`�`/ : �,,c: .�. � _ ;. _ ,,��-. _ - , ��.., �� "'�' ,�a,.'� - t , . � , � . y �� ' ; � 1 ( �` .�, ��• � �� �' .J/� " � � �� � � '�• � � ,� � - M� Z�� _ � � �• ` � �� ' ''�. - � , "='�, �� �`�,� � -� *_�-- ,r� 1� h ,' r � �� � e 'A - _'�f � � � '�_ - '�,��; �' c �. � f ' . � r �� a !� �, f. �A� .� y � � 1 �.�._' � �"+ _ �:' i �!aw sA ��' `' ! 1 r � �''� � � "' �� > > i�� �y,� ��� ✓ - � - 1 � '� � v 'il �`• '" � -'� � .� � i -� ,. �y� � � c � �� - .� , + . y °►' � .� t' 1- .�� � � ` 1��\ �� �� �� ��: � � ���� .E''. - . - k. � 3.5 3.5 3 3 W 2.S 2.5 U Z Z = 2 2 H a w 0 J �` Q 1.5 1.5 l�. � a a � \ ,, � !.? � J r `. _,, , � ,- �� ; � �. � - ::.-,: - .3 .5 p 0 2 S 10 2S 50 100 RETUR�I PER�OD IN YEARS NAOTE: I. �a Be�tanwalial� rataen �ev�s p0�f 2-g�r � B�O-qaov aw� hour �es from �ewpa,than conneci poqo4� �, reed aelw t� Asaised ►al�n �►Eod. Fo� eaaa+pl� qlv�n 2-ra: aes hour=.50 and 100- � y� on. AmaK = I.�O oeeo Irous =1.18 R��: a� �sa� z,er�� �—���,i�'�. RA9�FALL DE�'T�J V�RSUS � �� � � ���ru�� ����o� ��� � rJYbRt7LL��Y ���NU�, �A�tTlAL Dl9RA�9�� SERaES .:. . .. , _, _ - - ,� � -- _�� , ... ,, , . _ : �; :....:__, . _ .:. . _ .. . , : �. �, , -,, .. �.: . , , _ ��. ,�,.-._... . �<4a m � _ _, _ � __ � ,..,. �.;,.--• ..., , _� . . . - .� . ,. . . . � : :i��L ,,. . . „ _ �..�+ �.`':.- : , � . . . ._ -. . .- ..('k.. � . ... ,....... � _ .. .. , . _ __. -. . ,. ..`: a5s�, . ..... i� ._ � . .:��-. ,.. �q. �-wN �.x.. s�. ��y' - .. _..� .c .... :. }.. , . . .-. .,lG . . . _ , n. . � .., --. . :i., ,. . ?�. , _._ _ ...�.5: .{� ,�`r''� � c �!I .,. . :. �.. . i....: �.. . .... . , . . � ,. . .. � � . . _ ._. . � ._... . .-.. ..,;�. , .. _ �orrim?. . ;r �.::..:�..,, . � � .. ..'?__ _ . r ... ... : . .... . .. „ �� . , C L : _ � �T . �_ ..,�..�. -.,....i. . _. -`�' . ' - - �:r.� . f , _ , . . . � 4 .� ..� , _ � . , r„ �.. �,� � ��. _ .- 7 �� : ?7: �;;�: � - _. , . -.� _...� . �.. -�..-- -"-�`-... .�. ._.,Y�m.� . �. __ . . ,i . '�'C��„ ,. ,.. ..,., r` l. 'ti �� �3 . �F _ � _. � �2 � �A1 .� �. FA ,, __.,. ._ . .. ,. , .. . , , ... ti� 3.. . ' - - �, : �._. , _ �.. . ..._ . � . z_, ,.:.. .� � 7 .. _ , _ �» >�'�. - �. �� . _ . _ . . _ _ -:�_ .. , . . ... .. . . :�.-- - .,-- . �_.- . 2.['.. ._. _.�. . _ _ p ., , r. .. : .. .. . . .. . . „ .. �.. , . _•.-.. - ^ ,C. .... _ ..i, ��. ..., � . ..-,. - . , i n . l. ,.. .. .. � .. . . .., . , ...- .� ..a-� Vi, u. ._� . .� _ . � . � .: �.�� -- ' i . -?� . , � _..._ , . _ , . . .. _ . . .. _. _. r_ �.. . 1- _.: � ,:,-- _ v _.._` <�"9� �i - C �l.: R ,.�: .._. � . .: r , � � . x,:. _.._ . ,. � � ...: ._�. . . .,. > -, _,�` �,-� �..�. ����-�- > .:.� R E r . =�t �i� �E _ i� . . . .. ,,.: ..� , . _ Q . , � _ , �:. . �T .. ,.. . , .. �. ... ��.. .� _�`-_... � , �- �:�-s�� .. � �,.. �.fl P - ;�. . . ,s_. . .� . . ; F ..: ., ,. .. . . o .� ,.... . , .,.. ..-. J,.:;.r, �. .. t._. ...:e*,� - <. ,.�I �. ,���•, ..r.Y�' . w ���^ r p ... !I I . .. _. � a . . i � .. . :. . , i . � 3_. ..e.. � r - , . - �a : ,+� t } . � �� : . ' �. - F.. ' : � . ._..�.: ?' _ , a, e S _ (. � � fie�tl ua �i : � . . � � .Porap�� . �.. �: � 7!� � - c>_ . : .. _ � _ � ..� ..�: �K� n.lrte!9h+#. . . . v i .. � . _,,• �" • ,-- l. s.. .-i,.� +n � ..z,- _.. - ..:- �. _. ._ . ..:-�f !P' , '. i ..�.. ,� .�. . .. 4 . .�- --- - -- - ....... ...... . . ... n . , �. . -, _�. . : ,. ,,. ....-r..,, .� .. F ...� r..__ ,_ - i . . ,, , .�. . ... ._ _ � _�.4.--+-, .. :. . . . . .. 1 , a s .: s .. . . .i ., a , ,... . .� , { ... , ,-... - } �'�.`�,'`-' ;l �:,. - .. _.__._ c . _. . . . ...._.... __-•� .. . ... ._ I �...-L . .. .. a c.. - � '�F'. 5 ..�... ...,. _.. ._.-. �_�J �7 �:"�. „�.... ? 4-. 4-. � , , „ . .. ._._, ., . � ��- , ., t_ ..�-�,r � . __. �; - i� , �� 1 . -- ..a J _ � � ., l I . .. . v � Y . . � � _ �. . :. _. . .. .- < t.-�°. �� �rsp. . . _ .. � . _. ����.x, .�. <> � _ .. . , _, . :--. ``'�-� ,,'' - . IK I� . . d i/A2F . _. .f : . i - . . ..� . �: .. .. ..�.. � ... � . _ia.. . � .... �J_ .I f .s!;i� :\.^ -.\ .. .. . . 4. ,_.� . ., . . 3 i . .. . r. .. .. R_#r. .. . .��+. . _ . .. ... .....,e. HF ._. ...� -: _'� �s � ;s : i. .F� c ,.. . , . _.r .. . .... i_.. . __ _ . � ... �. -: �� � .. . e J-� . . ,l : � _ . ... ... .. ... .. .. . . ,.,, ., . L - , . .N-. , � t 1 ,: _ _ . _ �, , � , . .. _ . .,. ..- �. .�., � . . ., z �T :.. �. . �.� [ t �; 'l I I . .., . . , . . : . .._ .. _ � , . ,:. . . .fi... . ,_ . ._.. .�e.n . ..._ .f- �� 1. �1''�� h. . , . . . . . + t ._. ,� . . ,� . _ _. . . ._ .. . . c . . ..J.�. � "- .¢.�. ..�.�,: :.....�' i • •, .'i 1a�a �---'i "" .�'' ' I . ,. . c{ . -. . . . � :� .- . .. _ ... ._... .. ...T �. ... . �-:�. �:,r�., _- .d : a g��. ,..�:. ( I _ .,. . 1... . . .,. . . ...._ �' ... ,. ,.r ��. . „ ,., . �_ _. � �, � �, , . -1 .. li _ , RI Ilo Mrto .W . n . .. . .. _T . . � :Y . , a ... .. . . . . . .. . �.!�� � .,, i;�� .E .R._ r. 1 � � , .. ...: .: . ,. _ __.... . . . �. ,. _ ... ...._ .-. t .. . �. .... ., ...> _..at._ -,�. .i . uK .;� ;'� , ; .' � . 1 . _ .. .. _ . .. -._ _ .. ... . . . ..� . � ,. � . .. _ . � . :, . _ �Pw _L. ._.�.� �. -. �T.i � {' J . . . .7 i .�� �.�..Jr� .��� _�� . . . . ..�i . ..1. � .. . . .. L... � � _ . ....r. . _ _�y. . '.l. ..C. t . - E n �.._�� .}�.��. �_ _-. _ ,. l - � .r- _ �....� ,..� -� . . . .��.. . � . .,_ ,,. f .. . . .,. .. .. -"^�".:.� � � . ��-.�,.�,: _Y` �aWUer.. '_i�.: - _ . . : �i _ -�. - . � . . � _. , . . _ . . . ' .� _ -c .. . ,.... . , h,z �. . , . . . .. .. - .�i.'� s�. ��, � �...At � L�� • � - f .-.r=;' . :S � _,.4_. . _.""�� . , : < . .''k'... y .. H.1a . . `$ < , � .. �r'v �.. � -ti, , �� � F , . ! t :•: � ._. - 64 � _t _F� . +r.= . ' _" =.�„t . � 1 i .. -�-..Y"F . Etianc..d. . f , b J� n „ , .� . .:�- ... .. , ... ?�. .,;� ... -6 � ..: � k.. � i.a. . . r..�� �=a�.u. '1. iPa L _$,�_\ r . . � ., . . _ .. � v .� , , .: . . . . . r . - �. . .. . > ..it�i .. , c, . . . .. M' . .: �:.. . � . ,`��� ,� . °>./r� o ,�. \ y .D� }� �. � x?to�' - .T �e � ,_ / . �_. .. � I .,.. _.t �� r. ..:�✓'(. . i . . . � . ....; . i�,.x. R?'Y!i'� . , . ..... ..:, , � .L�._ - }z:. s'i.�. .i. - ,fi-. '1oaMUO L e �b V� . u �. �. - -i .e . �i'i[ *-�':� , �. �., � .I_ - n,r... . � I _ . �k v .'H:..: �f- . F" - .1 . .G ( T. ' -- :�' - . .�� ' .�e �. .n�i�e �. � ,...;._ ., .... �.._.i..,r...� ., � �. ��� 0.� �-._: ..,.�.r. .t �e.. ..� ' .i��� � r •' / e.•: ,, . ,. u �.: . . . .'fl� _. •. � . : - �-".I�-� � .„ .. ., ���`. ' : ' :. � � . � �� l. ✓;. r, +..,r ., r :� . - ;. ., �..�,�ac�lw�., ? _ . ,. . . _. , .. �a, �, �-.... .�� ►t� ;-Y i: �'r n `M .•a,ive� � - - __ -- ---- ---`- `._. z •�' _ t _. --- 1N.�. _.. �- ..... _ x� _ .t �, :- --.- 'r t _4 �.'�.'�`F . _ -- ��--, - :.�__ - '_ _. _ .__.� _�._._._ � � ...v. .. �. .. _ y � v .'� . ._ .. ..,,_r.- --` - :tiY. ..� �. .e`7:. - '� - . , � . . .. . _..- . r,. . � � �.. ' - _ _. _ . . .. f .. .. : . .� .__ . ..�. _ Y_. r . . � -. �. - . . . �. -. �. ; � � - . ab� . . . . . � . . _�S . ' C'" ..� Sl� . T ' : t .. 1�: � >-. _. . . - �1.: �u.S.:a- - _ . - - - _ _ _ . A _ f . . 9 � i - .. .... _ . �, . � .... _ .. .¢ ,. . _.. ..; . , ... . _ : _ .. :. �� . - � �:/ ��.:.4 'T-` 'T'1� 1• l� ' { .R . _..: . ..:-4 :. ,. _ . � i� . .. �/ . . .� . _ . '�'f'. ....._... .�. .,..__ �.. . _ . .. 4E:c'^..""��.-. ..' -+[.J.� ,_ � i.� _'7 � �r< ` yl � , :. � I.: : ! . , � � �.� ._,. , .,, , .... : , ... �.r .. ./ ..�. .,, _.. ., .� .E :_ . ,+. � - - - ,.. � K : �3�� ... � - r . z w�l,tw - t . _ � � 1 .. . . . ... I L: i , � �.. .I i5. •! . � . �: .y ...� �,. .. . " q . r .� :.� . � I.,'" '� -A' �' .! 7 . ,+- �;�'?e . .. +fy; o `t � � . f : i r .- a : �-Cc �..h.__ � ' �� '�`�� s . � - „- r ' - �! - � - _-. 4 �: ,� - ._ ... ,., -y,. . � 9Y• � n.; z7 -;� ��.i-� -��:, t: . � .. ::. . 1 � . �e . . .. - ... s - . . ..--- .:-._- '._-. .. � . r . +t � ��z-' a.. t- :. .. . �... - .-Y.:, � .E` ' , m.> - , �. , �---- _�._ z . -r.. .. .. ,. . .�.- .. .: � ., � ,..:� .� _.,;:, � �. - ..�. •- ,� � w. � ,j:,. �tia - . ` � �.i% �' r ' 1 -� . -- �c f n , � .. _ . _. � - - � � - :. .- . _ . .. -. � . .. , a. +.. L .e..,yY�.... . .: ... .-.�.. '� _ .; 1 i - � YuR �.Valla -4 . C E �1. ��... . : . . .._. . . � _ . : ,. . .: + e - =-a . .... _ .. , `�"o.. �_ .. �s..� .. � :, _,:. �� -._� �.� �.a'. /.`-`:� _ A. Y . r � . � �. - r. �: . � :i . .'�'` � ryokr � a�8 . . ,,... ' -- .> � s__� . .. .., ... - _._ _�. .;..: . .. .�� f.. "a. ��.,.. �< il i;. ., 2..... - ' �; - � -- tH4 tlt ) ... _. � _ �� _ ._ . _. _�. ,.. �_. � „C_ _. . ... _ :. � . :. � :cs�e. _ � _ � t - . �M� � �r.-..- ___ .�_',_ _ = 1 __-_'- __ . _. -__ .�� ��5` . . r ... !' . � V�.. , -� . ... -. . ... . a _I .��, rr. �-a� �� .. . . - �. .� . . , .._ F � . . � .: ,. . .. .- f . �� -: .� . � . " r � % ' x-.�_-� « ..r,..._..+ ._ . ..: �: - .I �=}c. "y. ._ . ,� �, .. -. , .. �.. .. . � �. . ... . . . _ J�. :,. ._�:. ....x. .., ... . �. . �..� i �•, i y � .- . �. . ., ,r--_ . ,. . e . . . �. �... .: . . . *,..., x. .�. . �_ � t �.s�a� .r..- � - ,e� A>. � . . t. C'I � . u .. . . 'L_ , . � . �:/ ... . _. ... ...� ... . >.:�4s�i�,��I �: t�c �� i , c. 4. ... .... f _ �h[. ,- " -`----- � . .r -. , .. �. _ � , . i .. . . .. ..�_ . __. , .'F.�_ . __ „.. . . .. -c�s.:+ a : .� "���I�� ``� .. � ,.; . ,zr-_�_ , , . � . , _._._. _� -��_ .,,. �... .__ . . R , , rc_ . . .,. .. . . � .. . . -_ 4L�.. ����t. L:..- J _ 1 i � 5. ..'- - . �_ , .. . �-_ -� _._ � .. _,.. _. r. . - .� ..,:. . . .., ..,_�... .. ��.. �C�%.� .4.���. �2�•� �:' _ _ .. . . . _ _. . ... . • . . � . . . . . .. . .. . � -.._. -�.-.. .�f ... .. . .: . �..� .. .�v_.� . . -� �'> �f � �\: ?,.� \ - �.r � ',{ .. . . � . . � .... �... . . �L, , . . �-.. O ,� e �_ . . _ . : . .. . _ .. (SF 1 . . . . '"`C..�. .., _ . � . � 9 M_!G'�(C ih a ' - fn.' _ � i , , . �.. . .. _ . _. , . L. .. . . , _t .�_. _-._: _... _ � �r� . ,�• - L r a . t . .t+� . •_. '-i�`\ y . ;�. - �. ...,� . �.� i .._ _._..A.. .�.:.....:.. . • � � � . .. . ... .'.. .. .� . .. �. ••-. .ti t. . � _ �:: �. - . .. _ ..�� - _ i . /'I 1 ��. .� .;. . 4 � � . 'v:, � � G ri.Cil . �:� Wat �! . j• 5�:�-., � t�S� e-�'r� _ ��.�. 1� . '.l• "` - ,'.,'�^-r�.. _ '.� i - ' I' - �:J - '�. . �. 0' 'C - .::� 3:.:. � � �., .. " � - �:.; ' I' iq3�#� � `. •:1 F - .t: � _ - �''rr. aJ. r . � y%:- - - .. �< . - � � . . i . ; �• , __ . ,_ .� ... .. - ..e.� i . � � .i �_. :t i ' ,..� � :r� - - � 0. � z«A7 I.. 1 �i `�'- _��i= �� � � -u.- - - i _ i��n, 7: r _ �`'. � f r:• •,- �. . . , .>, / , . _., -�� �sB' - ,_ �.' ., .. .. _,_.Ji � , . : . ._ .: ��w .. : � " - ?�i ,,.- ' Y. �i. _. . . - - - -J� ; ss:. _ � * _ f._. � - ° �..� ._a__ .J7� • � � ' ,_ . , .,, .� : � � ;.. . ,e� . �. - - _ �.� �� . - - - "- ,MaMonc t. �`«.� 'Pa!r Wail -�.l-�.Y'. _. _'_ . _. � ._ .. � , , . _ .. , "� , �,.. -a. <�� � .:;-�*_.. _.ri P n .�S_ ; ,, . � . �o . ... ,, . . � . , .-�� 5,. _ , � �:,. �. .. .��_: .:u � ,. f _ �;s . .TI' �. , �•-- �' � . � ' ' 1-J-- ...� s �' � .Y� :�y _ -.:r ..... �.... _ � . . .�..�.�.-... . �..'.._ " =a.?i`7. - J �-� �.'�-�,•^ , f _ ' �, .�.:. , �� � �^.'�,. �. ..--_ -. -_ . . . ... .� '_ -td. ' ' _ ",. .�. ♦ '_.... _ .' ' -`.. �^� -�i.: °'-�:\ 7� 1+ \�> .A..y �c. . 4 l . `; _ ,. _�_. � ..._i ..x�.- _.� .. ^�'�, :.. .._ .__. . .� 'c r �?,.•� `� s . �._ `E -� : � 0 . �. .. , � . � � . �..._. � .� .. - ._.v: ���������£. . -_� J.> . S.. - `C. -- � t�...�. K .. ,.: _. .. . _. , r . � - .t. - t_.-..�...t.�.�-,.vcy. .: .. .:_ .._ l ,. -.�.�.•r "' =t. � . ( _ 5�. - \.�: .._� _ .._ ... - • � : iait : ��.5. , ...�: 'i i . . .. ..,.;,.. . : 3�'�.., ., .... . .. .. :�� ''�....c � :S__ F - •:l. . o �,..� � .. , . _..-. _: . . , .. e�' . _.. . , . _�:_._._ .- ,: . . 3 .. � . ,. �` r � a. ='r. . _ i [ ��u � �' ` ,+ : . � '__ ' f � . , , ti .. . ,: .. . ... _ � S- _ . _ .:_ . -.� . .. :. - .t+;• �_ =�..� . ...-�� ! �. �'/ ';� ��: - . _. �as.� :. ,�:I- . . : , ae _., : _ . r. .,.. v , , r ._. t..,._ `k� , .�. - "'t - r '1 �a � `t; . 4` .=3.`�.��-- � - y r � t .r . � � _ t X1 '1`. �b (�.R t � M Q N. � NF''$, ,. � � � _ , . , _ ._ : . . .>_ .. ., .. . � . .. ,.. _ �.. �,:..� _ . s -rfi � �� ,q . ��2 �' , � 1`r 1 ( � - , �� y ` ,. � . � � �2, •. =-- �.::Y- ;, c:�._..,-� '.:.= E�: � - - , � , . �� i � .-.�,� - . r- :: , . � --= y .t , _ II - r r � ':1 . - - : � .e ..: •..� . F ��o o . _ . �� . . �a. . _ . .. . ,. , . �'; ..a .-, . .,� --.t���.; .. ..s�• \ ;c� �^ . i' - - �k� , .. -_ On manadona� . . o , . � . . . 7 . l . : . . . I .. . _ . � c..., .. ..i . . a L . .�: -.�... ...� .,�i.. .. � O� -. K!Y' ' 3.� ' . .[- >tmo�. . t , .� � . . , ,. St .. y . � .. . r..y.,, _ � . .�... _. ... , . �� �_ �. y�. .>i .:. . 9 . ).-, i ,' ..;�+ . _� '_ . .• . !Y'• _ _. �. . . _:� 4 . � � . �� �'-- . : .i .r} � .:: .4 z.5' t.3 ��":• �\ �.. : �� .. .. i . ��+,��_�_ ,--� . . ._ ..._. ..� _: �. . _ :� d . .. �. .., ... ,_.. .. _, .... �l. � - /' � •=t�ce;: _''u" --.i ��-- . .�.. . _ _�. ' _i,_ _ , ._ - .�- . .. ..__ :. .i .- �.__ .r _�'. .�. . ._ ^; `'�h., t .i`' t�� �l�a' a r,Cnc= . - 957 r.. �. .., .. _. . . . . . �..� .... .:. . �_ ... �`_.__. ,. �-�.�.�r .: ^:c .�-�+r, '4`c.� E. .l. :#�...:.�.: �. . >- .� 1t �:. v .: < . . . ., _ .__... r : :� . . , .. . .. .. tY.. � . . .. . ..:.... . . �. ..�'%� - � -4Jb. �.a �i - ' \'\• _ . . .. a � : ; . . .,. �. .. 'S _ ._ , . . ,t ; �'�� � -� _ _ � � \_ � I ��. �' •M. f '1 . I � . . . . . .� .. . .. . .. . .. . . ... .....y.�-. o .. .. .... -..... , �; '-.:. } - �y�._. '�F �.Q _.�Y .;.� 'ta S�i�- ^ Y` /4 ..'J :� - l " y .. . _ � i . . a . . ..� ../'. . -�. .. � . . � i ..� �. . .. � . .. . .. . .. _ . . .., . . _. .�'i . � � - - e r .� � . �L.._.t_..�.. . _ .... . . , �. ��i ..... �... , . . . , b . ... . _ i ... . -.' ......-. _. "�. .: � - .i'd _ :. � „ :. :: . 1 .� - ._ 1 „. . .. , ... � -,.. A .. a . i . .r . . . . .. .. -_ . . , -��. l . �z-' '>� :---=� . � . . ... r_ . � _.. . X . .. _. . . . . .. . .- .. . � . . .., : ..�-� 'a . .. >� . ., v�F ._'.s. � ` � �y ' a �� .+..`-- ' '::i _ ..1.._ . u. �. I.YJ_.. . . .:...R.. ,. . ....... . -... . ., ,.... ._.. ( . ,; _,.r .,.'�:s.,.�. .:�r .�r: ^\n.. ..� � .,. I , -� . , , _. / �.. . _ . _t^ . ..3`.. . .. . .. � „ , .. . . . . : - . `,��'�ti - -l: f#� ss t�� ~ S l �� .-�. ;' ` i.�.;:, �' ., j . _ .. . � po N,. na t '.a � . 1 . . . `. . ':�c.:., 1 , . . : v � '.b . . J -i$Q.- .. "'�-+. ' 1 . `� ' �l .�X. ' �� .� t.'�' r 8 F... '.t.n.� - \ AN 6FRNn{f:J �ti :� �l._A . _ L_._y .J� ' � , .4.. { . .. .._; . i�,,,� . . .,_ 2 .. . --: �Gi� �-(.. �.� '.�:l�:. .Tj- - _L :�... �-�'"O7 . 5'!� n Z I - I � '. .-". ,_._ _-' _i: "- . ._ . ' _ , �ta _ _ _ � a,�, - - _ !:: _ E �""'��I� i..�_^ - _ -_ _ __ .. . - . : . . i . . .. .. .. .. . .. ,... . .�: �.:: . � - <'�'!t"�-:' ..'� ' . _ ' `- . �" `'�- _ .`"�.'-:_ = . _ �,; ' - ' _. .- , .. �7 ..._ . � �1 .: . . . . ...i /" . .� . . . ,a , t.. �. . . . � � , _. ... , ". •�- ,..-...• .� ... " .:l!!+pf� - ' . � f - �.F�V� ; L.. .... . . �� . i . . ��.�( ,. . . �T � . . ,J a I .:. --- .�.� �. . o . , . , �� '..,.-. ✓ 'm - µ :a35� ,��:: 1 9 _SiSICi[ C � _ � �. , � . . , l .. , - r T� �.., _ � . . . _ � _; _ . .. .. N::.,,,:�t - , 1 is� a � � t ; r . .. . .. . .:. dS. ._ . .. �� � _. ..�tte. . -.� . .�.__ L_�i.' .._. __ . .- -_ ... �-.:� .: . ��-� . � � �3F- �f. -i � e.. .. - . i . .� i' �. . . ., �4P±.. .. : . . � .. . ., .. . �-. . �. ._ .. , r .. . . .. . .. . . . . ....... ,p•,- � � _ �. ,�1 .: .. . � r � . -._ a :. : a. � :. . . :,:x.. � �.., . a.. . >�, .. �� � . . .. . _. _ ... .� , � ; .,. , . ., . .: , .. _. . _ �. . F : , : m. �, , i h"SnCE.. t , � .. -.� . , J.. ,� . � . .... � �-,. : ,m.-.,.p,..c�. ,.. z :.. }. l 3 �_. _,._ . .._ .. -.. - .. .� �. y _ , g_x . �� _ - _ _ _-„'_ . -._.. _ . _._ .. ! . . ... .. :. . p - � ., .. .� .,. . . . .F .... . .L,n . -,,. 5 �...��4 ' . .� t_ : �,1 .f :.C.�,`� .1. � �( c t . ��� - -4- -� _-.:-.�._. -_ . . L .vh� -. � . .�� • - i. �'... • ��-:.... .,:-,. -... �j .�,i..k � .y . b_ �` ' i p1 ,-( _ - ..� �= - :-1 �? . � . .M.. _. . ,.-.� . .. . .... • ��� :. . _ -•:. -Y ., .. . ., � �., .�" �.."_ , ; ,. .., . -. � . z . . � . _ . _ .. _ . i 7E �. _. .:,, _. , > . : �. �t - .r � `� �: � t . ._ � ..._..__ �� � . . ��_ ...+. a . .. -� . ., . _._. a. . t�_.-. _� _ , < .Y'...?.. ... �..Y...�: .,-�`.1._ -i ..\ - ::'.,w_. 1l` �.,Y��c. ��'�.�X•, ��, ,1.. ._'-�__ -._ __ ' '. '_._ ' � . _ .. ! .- .. � . . t.- � .• . .. .. �-.. .. � . . r , .1 - a . �I I . J s�. _ ._ ;. .. . . . ..,�.. ",. _ . .. .,� � . , . �. ,.. .. \ ' -.�FA �e � � _+Y --_ ,� -._._- _-. .� . . . ir _. _ . l. _ ,... ._. _._ . .. J .. �.: . -�.�_.. . �.-,, :- .. -.. , •=� i: � r - .;.�... . �. , �, _ ., . M h ro„ . , � . , +. ] �.,< ,. . . ._ : . . . . ..� � � < _� - '.�'`�x���� �1 � . i .. �cc . �., . 3eue w� �a .. _ . , . . . . . , . _ ... _ : , .c , . :.e- _.. i : � i � � o lS " s e :i- r 1. i �S !" r- _ 4 �' �. r -,<:. .:� � o y � r� ..''{. S i r ��,, .�... �� ..I , . ,3 - �;- 7 �.: ' "�!. .N . ..R:_ x;�' {� 1 � � "5 :+��ir � - i. � o , � �. .,.. . : .. , ... "� , . . . � . � . .. �C . ...�.; � . �`... - r. � :1." .i ���-r^�a '+r: .�",.. � :: . .: � 1 � : ' ._ 4.�0 a. .. _ . v . . . : .��.-...�- , -� . . . ��-�'... _ ,� V P. 1' h. �t�.i ' i��� .:i��' � �� .N`. b ,.l 911/` - v.- . �. r. R � °=����.... �` _ :. �.. , . ,,. . . ,� _ , . . �. .., . :'%w _ . . '?, n. � � _ ! ----- . _,_.. _.....- - - 4 -- - - . _ :,_:� .._ �_ _ . .. .: ... , ; et �S � ' � � �. .� K /����')- C'' - �'> ♦ W' �L_�C_ . .�y .�� .. . .. .�._�.._. ..... .�...Y . .. �..... `' _�.. '.:;f.. i) ' '�. . , r- �-�'-- =-. . ... .� .. . .... .... . . . .� .� . .. ..�.- .,.. . ...... .... ... .. , ..I^ � � `,r 5. J'� ~ ,-1 n �. ._. .. . r� . . ., . .. � . , . � . _'�_ . ... , . \ .. ... .. , . � .. - Y. . Y � � �P. ` . . . -F-'. � . ., � � . . . , . ._� ,.... ...... .. .. . . .._ ...,.. .:,.>. ...,.. . . ...., ..r...... �. :� - -:1 l . .,. _�... . i � �. . ._.. .4 . .... .r { - , ... _ ..,. i _ . � .. / . �.. �-. - � .,..._�� . ' ,. , : :::r .`� ' �",.a�". 4 . . �1 . - 1� i � .��. . . �, .r � c.. . . . . .. : .,. ..r'�..... ti . :T � . , . ...... _ ... .,.. � .... ..:. .. . -. , .; 4t!' � � . o . ��� .<: :�:�� --�,:it ,�Sr . i6 s �,+•.._. i . , - , . ,. _ . F. \ ., `s. ., .. . _ w. . ��m . .:. S . _d � ,.�4. _��. '-�--.. . .,,r �t � d .. , , , i o.� . . .. � -z ..,,. ..... . .... ..... . . ,. _ �...,. , . . _ D 2 . ..:. -c.. 2k> � ' � �-. .. . . . . _� . - i �. .. _ . - . ,.. ., _ . _ . ... �-� �-� _... . .. :. :. -; �.. .. .. :. . ...m 7_ - �ez ° �.,�zv � �Lw+r,rr .: .i 1 :. . �: .r�s. i ..,....:. ,JT� ...,. .. _..... _ . . .. . . .. -. �... �..._ :. C�. ..'�. ::/� ..ii. ���vyil '� 2 � i d+ O i . > I _ e _ _ ,.Y �l.�.f : .. .. r > . ey. .. _. . . _ r_ ... . :� :TS, � ' � er � M�ro i ,o . , . .. . _ . , .� . , .�' .� _ ._.. . � . .. x � wr r ... « A % �'� �:� `' 1;-: . ,�no,,,. � �����. , M.rt P a c � . , , . . ,,_ . . \ _, . ... . _... . c - , � .. _. .. . . . ,.. �....r., ., .nF A. �:. � � Y...,- � . � a uT ; . Y E �L.- _._� N .. . : . .. _ _ . . , , ... . .� _ _ .. . x�. : m � 6c�. n d �:.: f i - • � ' - __.. - - . � a � ;,.. _ .._ ,..a .. ... .,. . .. . '�r .._.�... ._. . ,.:. .. { Q� `,:'t,s': . _.,l ����� T2; ,. . � 4. �oma , . , .. �im:. . ... �. ... o . . . . .-.: .. � , . .�.. ��. .1 G .. � _ . ... , . , ( �•,_, .1... T a - e . .. . � �-� R � , .I, _ J� 'Y, .� .. .r.. ,. . ' c� n 1 .. .-+ . o , 1 .. . . _. _.. . ... �. .. � _ _., .,. ,r,�.:. � ,.. : s� - . �,: 4l" �. ��: ,� �.... i � � Jr� �`�; _ �s. �,: fi il. :�r�- , _ � ,I . . _ _ .� r . :_. , r- .. . � ., .: . .� , -..,, :,. :. rt .... � � CiNAL i!_�it6$F. :Y`K7•� •9� �' - F J. - I. _ - � `• - � i � ) . N . _. _.� ..__._.._ �i .s_- . . xoa. - . : ��. �.t . . . �,.:. . . . ..:::- .fin r.. hekF�. � .�. . � _ _"'_' _ � . . � a a e {w-.._. . '�. _. �. _. , i .... .. . .. ..... � .... ..� �_�- . . .... _ .,., � : ...... - - j; � a4'' �.y .;[ ss _ ._ _ _ ..._ ... .. . _. r , _ .. .: . . , :.._ :. � ._ }S _ '�,:i . - �. :- . .:. . . _ :. ,. _ ,_ .. . . . , .. . . . �"`< . .._ _. _ � �, , � .f �s s���.. ±t� a ' S � 7 . �! -,- «tr r� . , _. _ -, . . . ..Jt, _ � . ,_ ... _ , d�-.. , .•�r-,_ : o - ..T ,��.,S:. T ±/,' � `---- - i , > . : . -A . ,, .. . r^ . .. . 1 . : . .. . .. �, , c . t!-�-' - � � ^� k V r . . � . , � Y . . . : _ . _.. . --.�. I 1 . '� ..�.. .1 . ... ,... . , � . . ... 5 ,. _ , t .� ,, _. . ,.., '�.. 'a.a { i :�,b' � .... ,.:.. ., . . _... ... .��. � .:,. .. � i:+-. � ...� ' I _ _ _ � Q _ . ` _ - ,: `.,: _ : ti , . . x � � ; f - ti. . k -- `L - .:.. .. ._ � . .. . ._ : ,. _ r... _ �- � . .... .� .�. ,: - •.� _;, � � J U , . , . ._ _ N, .. . . : .. . �,.. _ :. , r : � 3 i %'f '� �>. . . ., , : . . 1 p , .. . . . �_ ,�. . . '... h , . ':.. . . ... : .,.... ! 4 � .. � . .. .. , . . N_� �.. . :�,.. ' .. � . . ��.��� .,., ! � � '�. . . : _ � ('- � : _ � . .. �e . : « , . �. . ' .. .. .. .. -5...✓��?1 . . . .'� ... ..: � : .�. � .. Fl , � J�. ' L �$ � � � . . . . '� ra.. ..-. . a� . _,: . ., . �T .. . . . . .t . .a .... �. . "F. . ..... L�..f. �^ ��� - ��Dewn p'ng• ....�..:.. �#.'s � . ' � .'.-._....-. I Y . �._ =� . : .���;� � . _..i ti. . ,. .. : . _ o . . ,. ...._ ..._� . .�,- _l ''�. tii I' \ ��i -:\. , . _ . n. �.� . 'f:'- .. .. . . ..... . ' . . �, .. . �. . .� ., .,.. _, - ._ . : ,. . .. . . � .. . ., . _ .. _ �. . k .�..... _ _ .. . . I - .� .:..�.. . t ... � ., . �� . ' . ": Y . -- _ - <T , ... . .y I _ . - .r I . .� . . . . . �. . . . .. . .• 'SX�_ . . .. . .. � .. -. . v . iiv . i,r �:v:.�.� . 'l' `.��,� '. ... _ "' p j � .... : .... .., .. . � o11f . ' '. '" .:�. . ..... .... ... . . ., y , ., ...-.-.: . . , _. r� ,. : .. . . „ :4. },. _. . .. .- l� .�. �-.t` ..,T � ,�'i . }- � . , . .. .... ._ � , ... � ,..._ .. . .. .. .�. . .... � �. ., . �..>.� �.1,. ..._ .. .. ... . . . „ . . , .'rt rt: �e. �-t . . ,_ .r , . _. . . � «s, '`a� _, . . .. _�. � . � . �. � ... , .. ... .. . .......s.. , ..,� ;�,� �:�; -.. .. ...� . ��N. .. v._ ... )nea .. . ..:. . .h...�. . t... . . .. ... _. .� '�. ...,_ / ..... ��._ ...: �: � � � � 1:' � P .1 -�� A . �.. .) . . I _ . . . . . � .. \ .. ;i ,ri.._ . � � . , v 1 . ° t... ' `�/ �"•Ir+ /w..:� � . �Y+.rcDi� � / ",`�.1..,:.. . . :� i, . . u, .. '�� �-. . S. . .. ... .. 1 N . . , : � .., . -�....�. ,_. e�. .. _ . . i . .... .: r, �,.. t .1� ' �.�. > - ��."` " _ . �i . . .. , . ....� . � , . � .r ... .,,:: . ,. _ . ... . �__ : : : ., . � , ' i . - . 1 . `i,'. . - �..`�` ..�-. .S . �.,.. J I , �_�': _ _ , , i �.,. _. ..�`r . ..,�' �... '� � -.._ . : . � �, , , .. , .,, ..a-.. . � : � .. � ':{, - , ,. r �^ , r � , . , , � . � : �. - - . �. .��...�_. _ .u�_ . : � . _ ` > .��.... �.`�r ..� K�.s .... s:.... ,�-: �.r� . i ,, c� �.�.1 1. „p k� " 't� .t�...; ,��.. ,i ti �, r �`�,. •�- - _ .i .. , - �'.c:.- ., � -T. � "" � �- - - ��- � � : o. . ,,a. i._. . , -. ; _ S s .n _ .e �'-- - =:.k-s � ''�`�' � - - . , . .: .- ' . ,' . _ ... . Y °-�..>� , t _.._ ,_ � � _ _ � , ; � ..... .. -... /. , .� �, , . -'. .. � ...... .. . :. , ca . . . �, - .. .. :..... _. �.._ _. ._ .. . i� ...-. �Y-+FF._ - ."r�� _ _ "�. .. . a . R�niM� ... � - . . . .." .- .. .. . . . ... 4.. . . .._. . : � .. . .� . .. . � ., .., r':� '. `�. . " '� t � L , . \�. .�.. . ..' . ._ . . ., . � .v..: ... ._ .. N.M.�� .\ �.. � � � - `! ~�Fi- . . � u _. �. _, , . � .. .. �•. � ., _ ! a. .,.. , _. . � 4 ,. �v �'< 7 N; -� > tiw. � k.3,e 4.. f L � � {' '^���' \ ` �.� � 1y � �. l � " , F,_ - Y . � � _ ,: . ...�....: -� % � : c_ . - �r. .n ., : �,,.. , �.. •'>�- � ��Bea - n il ti _.. . . . J. . •,-; i . .. _ . ..� I � �• g', ; ( . . . i.� , � �.��.,..^� �.. ^_. '� Uma �.... ._� n _ �d.�d � � ♦ 1 F;�' a �..�_ -�'4 . . ,,r r � i �: . .:.. . - F . , �4. ., , . .... c v�.n¢e �::. ... . �... � �-. .. f ..... _ :•� .,, .D3,*_tnth. ��.+"�J.. �': ;- ��� �� .� 4, '� -.. , t 'f� . , . _ . . . , .4. i. ` :� , .. _ . . � � , i ..., ,�+ . .. ,, .. .., _.. ,._ . 4 ' ��_i..� . F . .i_� �� I ..:-� ..,:j: u� --- �.. �.. 1.��{.r... , :• , ; < , . .: ': �: � ,r� ,�<��.� - --•�._ s qr"'q d �., I� � ... �nG� 4 , 7. ._. .... .h�' �; -- _ -�`f cx:, i�.. . • ., L : .�= - �'i �E ,� : �?�:�.` �-.`:•-� � .4 > . ..,.. , a _ . . . , . ,.: . a ame ra� ....: . ;I V �..: ... �, . , ,t?t 3� t, ,,� -- fii P�,wn�i. ? n ' I'' - s . ?�� c. �. , �. �� ei ., . ;�. . . . ,.ZP' �� :.. __ .. �_7 . : .^ � I' .. � .,•.,R, , , ... - - • - a`� - '--- - - ';� . ,7 , �. .�, . ..:t �. � . . : :_ . ;,. , I. , , . i ..-....� . . �.i.:� �.a 4...1 ,�;--¢:_, �, ' _ _ 4 ,.ry. �� " , � _, i _ l,;.: a . � , . I _ . . . . ... S N �' a.: r 1 � - � . . . . o� , o , I , - � . � �.� z� � .. . � , l :; `' .., ' '�`�'`'f" 3 • � '�r �' . : { � ; , � ., \ a _ �r w��S , ; , . . . , . A - . _.-. _. �_= L,� � , .,_. �J` �`. . . . .�,��. � i •s . •x , ,-a � L � � � s. . i : t _. . ... . .. . ..: a. S '^ ..� 't . , s ._ , ..�-..._. � _� . ,, � � �--.�_-� � . ..:�; �... .. L.� .r .:..-..: ;j' , `t._r�- �i _ .x� l. ..t.� . �' r�, - M in ° _ , c..:. ..� , , a n . . . .. . � � "I I o ..�.._� :....:. V 1. .. . -. � .. . • ,. :.''.. 'J' .� . I'i' i '�i � : :!i. ( .. .- � . _:�:' . . .. , .. -.: �., .. u I. �� .I wnam.l t... , q ', . J .. .., nM.m u;Orta: 9+n� l J�� '�. T` �, , o � _ - --._,. � .. .. , .., ,� , . . . -!� , i� � � .. 'S , ,< . , . . •. .��w, ; , , _ r ._. .._ _ , �� i ---.� .. , ,,. z , . ..: . ., . i r r . ,, i '�_. `•�� . .. � ' .V' - . . , � - . . . .. . � . .. . -.n � .�. _� � -f .c . �I . , . . . . . 1 ... ., I .. . .. , p� ... . M .. �i k, � 'L3 � 'r' f.an.e .. - 1 . Y� � �. iC.- 4 � a . . ;�t' ._ ; .y. . ... �'� .. .. , ♦ .,.- ...s',...I . �..,.. i. �. �: �...,: '".1.. .. �> .� ^ �.�° ... .. . �. ... �a . , .� . , r . . . . � . _ ., -J� .,, � rn. ,,.... .,.y-+ � ...-.. .�(', � : i . �s . � � i, . t � � �=tf. . .,.. . . ..... . . .. i'u�. �,s�'.. . ♦ . ... . .! ..�. I : . ....Mit� L ... ., .� ...-� . .f� ...� ..:. � : � ..�1 %� �l.�we y'. I 17 r ,:� II . .. . . .. , ., , .. , . : . ., ,.. � . � a . � . .. .. _.__� a .; - . . � .. ._ _ _... C� ..S n4:�ao .a¢i nv 1. J� J h � ��.: �. : . .:7 . _ : . .. ... . ..., , � . �. a � :. � y, I � .. _ ._..,� ,1 . ,.. � . . .. .: , - a -�'f �/ . . .: ..: '� . ; , l . „ . . „ _, . / .n . , . � ... :.t_ r ,.,.r . <.::1 - , - k .: n., . r j� �'L . :.C_ sr, cu,om - � .. i� .. ..w: .J`" ..� � _.�. �. _ . . .. a.�ro. . : ! o. . , l,` . i J' `, c _. . '� . . . ., .. �.,.� r ` �' T:<•. .�.,, _ .. w.: w,�m i 'Pmrz`n , 'x.n: M . .�, �. „-. : ; � _ .Ta .. , . , . i . .. . . .. ."' 7 .. I � : i .,.. . . . ;. .. ... ..� . � GrR:J :-1�- G�, _ �{ . � .. � (� :. .- . . , � .... � I - 'r . e--. .. . .. . .�, . . � �... �.o .... ..: �" � ?+ :�F" " . :dI _ ���. _. ..: �, .. .. ,_ ..-�emJ. �1 ) ,. . � .. ... , ,� ,.......::-, i :3'.'..' �: . . . sJO 1' . ..-� . . .. . h �. ..... .r. ... . � . ... .....�.... . �,. .._... _ _ ...1�3. +2,-.•C�. - •`. 1 �_ , .. e i . � . , ,�` . ,/ . � i , 0 9 . \ „ �. :.c�' , . � , ... . , "�'��. �F .4 _. , . ., ..� - •..:-.. � . � �, _ .. ., . , a < . �. ti. _ : `[ k- �, t;., '_{ _ c:= ��� , � . � , ,. .' .° �. ... .J �_:. .. .i . � -t .. li✓. � . .�._ ... ,. ...-z ._ ..: . ._ ....: ;.... ... , "�. � K'. k ��. ;'T` . •8.�.l�� .w� ,. . � .. �oVY .... . . y . .. . - ..� a .. I . ... �1 tt' .... . , a. .(.. .. .�. .... . s .. ..�.`�. .. ..� . ..... . . <..l - � �' - �'y . ... _ � . � . .. .. � .. .. . . . , r- . . .:1'.., .._i... � ... . t"l,. 1� .. . : ... . .._� _ .. . .. .. . �i.. ^-n 1__�.� �{� /�., � , n .. , f"�.�.. �'� �o.�t. '. .. �'� �-�.:..w �:� .. � . �^' �7`. .. � . ... ..: � '...., i t. ... .�. ...�: \. 1'� .l^ , . �-. iii . h. �. ��� " _ _ ll7` i � p.:. • . � . n�le� . .. \ ..�� . . +. ., .. .. ._. , . - .�. , ..- ' .l^:.'Y.. �. . � . ,..C� , _ . : . ' , - � , ..t.; . . , � � . ., '� _� _. �` I. � - -r \ ' ,� I". , . K / . � . • . . .. . '�. r.�._ � �...::�. -�'��'� �.: �v, . ..r . S � � . .,�,. .. . -. I •. 2 T . 1-. ♦ ... .. .:C� . .�.. . ,.... . _, T.. ,: ..,,+ .. . a . - s __.. � � '" " . . �.�.: . . ., I M H ii . 1 . . ]� .y� ii mdfe �..2 >.JT. ... � - - ' . _ . _. x _ .. . _ _ .- 'I - •. A2C is ... .. , .. ,a . ... e , �. .. ,.,. ..-,� !..� . .�-m�... . .7A. �. '. � . -..:\� '� �.l�.r':::v'. ` ° Y� - � � � � L _.. -. . , _. .- roN t .«,. . . , . ..�t ,: �: . ,:.� ._. ., . . _ . w � ..� . . , . � �. t' � - "t,..,..i'' , . }r. �d -� - - . . _..... ... ,... . . . c.. .. , . �C .. , � .. . . . r. ,.: �.. ... .. . . . i ..... .... .-. i .. .... ti,. , a,� �• �a ,. i . � , I ,�� .. , ,. fN . . _ . .. . .... .:. . �-- . , ._ ._ . • .. _: t ... , . . , , . r�: . r" ' . . . ., .. .. . , .. ._ _ L .__ i c . _�i. .T7� . ,iC . \, ... .. . .. � . . r � :Yi:'"°` • ! # ; : �. . a . � -� :✓ . ,. . .., u . . .. , . .,.--. . a '�` I . .. . „-r: �S`3... .. .._ .. .. /.r. . . .a. _.. .r� .�Ii' , I� .._ I , .. ' . . . � :r .. , . � , �..... : . . ... . �.. . ,. . , . �.. _ �: : �... ' i ,v ` ._ ' A; n' !�. `���. , 5 �� . . ..,. , . '1 ,. , . . _ _' _ . . . , �. . i . . '• �'< ti" 4 .5 , i � . . � ,ti: .s. � . r. -. . -No �6�d� . „ . . ( . .. , • --� _ , : : .. � . . � .,. �,.. � . ._ .a� . i k. �. y, . : f `+< ,� �f7na - � z •r-n� , _ _ : . , ,t�,. , . . . . �. I . : _ . , .1/. , .9 ,, ,. .. . _. . �.. � :. ,.�.. , . .Y'.. . t�� 4 -ts-.. .I'.�'� • �:; : --_ .._ .e........ , .. ,. . 1 , !� . �c t , _ ,.- - -- et _. ._. 1 . ::. .c oa �t-_:s .( �;y. ( .i . ,+`�. �n, • _ . ... ..._ ,�- p . :� $ . � S 3 R . , . . . . �._,.._ . , , . _... - nz ��,� : �.;,'�' �" i�. .� 6 F . ., . . .. . . . . ,.. �•: ,�. - � �.: `� i� a. --- e.r��n � , y - -:f: , .. . i. ». �0 .. �. .} ��• �.... . '.. �. �� : , :� . ....1 : �.,'� ' .:� .:'�i � :I � Mpp: k'� � UY.., yl:� \ :.. _ � • - _. - - .. . .--�-' . � .i.�• �" ' oA .__I � � . .�, ... _, . _ }{,. . f "'R..' "5�., f'�p=!-,. .I: 1 . .?�� :^ : .� .: . .. .. .. . , ._ . . _ .. . - `'--"`-_ _; .__ ._ r�._. �... _ . � � � . . '. �F -• �� ° �:� : �' I :.� �:: . .�. . . .. - . s-... . , -. . , _ , . _. �. � ��---�-�- . . . . � � .. .. . , _ . . . , :. . ,.. ...� .. :. _ � _j^�l � . n:5'!^'^t. - :r - �'�,.'�[' � yy� � ;:., �. .6 � ` � . �. _ � .. . � . . , �i_ . ... , . . _�. . .. . _ . � . ; . .,t_ .. �: � aicorqi��..a` .__ . _. - .I . \ .. , ... . . . ... ._, � .. - .:. ...{� . � • . .. .: . �... . .. .. .�.:.. ` T x .t._ ( :'.. 2 -,_ �. ..- . �.. .. .. . .- . . t , , : -_ . . _. . 1..__ L.. . - .__...,: . � ,..� �ta.v� . H e � . V"" 'F , � � ,. � . �� .�" � L ., ....� -_ : �, a h _ . ,.., .:�- ... .___-� . ... .._ i �a . 1J . � F- ... ,. ..... �. .� . _.. �, -��.,-� L. .1 1 .f- ,( � :�,. .. ._ . . .. . ... `�i.. � _ : .. . .. S c. .. .. ..._ . .. ...,..: :- `.., ��. /. ..1:: ,.��. � � ! �. , •,, I . .. . . , r r . , � ..� , r ,. . . ,_„ .. _ w r - � � 4 , . t _.�� �.. . .. . . .. . .-.PS „1. . . . o ,I ., . r r. � . . J . d',n.r. .. _ �.� �!''y 'L�, � •"•:Ln7°.. �r'-'_ _ . _ _ ,. . � I . . �i�».��+r ��,.. , .. , .... .. .. :., .... "'T. � d _ � , , 5 ___._ _._ __ _ I . . ,. �. : .� ,. . . . ���� .... �''' . I �`:r � .. _, ., _:. „ . „ .. . _ _ • � _ __ __�. . � . c : �.:� �" c� �� . .. �. .. .. . . . � ,�.4 ,..�,.,. , � _. � n.. . . . _ . _ . t� y, ' , �:� r . . . _ , �.. . .,. � � �- � �, _ �. ,• .. � i �,, . . .. �:'.�;:' � - .,.... . _ , � _' ' •. ..J. .��. i . .� ... �v. ..�.._.� .. �._ lnwei �:." �F. 7., .#.. m fin� 'l� �. 7. _.. in . Ta � \ , _ �. .. . � _._..i_ ._ . ::.. : . _ �.. .. . . .. . .�, � ' . .. _ . �..._ .... . . . - ._.- . . � � .. ._ . -. � v _ i„ . .. .. ., .. - -�- - ._ . . ... . . .... �- 4 ; � .�- P ..9. . w�e'�•oi v. . , : ,. ._ . . . . . . . nn �1 � . . .�._ . _ _ . ._._ . a�. .. �.. �.. . _ - � . ... .. -.... �:, � .. _ � .� `Lr y� "9�•:, ^G�� / . �- .. . �. . . �JI ' � .' __.1_ __ _1. _. __._ J -_ . , . � . , . __.a. .. ,.� . ..: . � . t S, �: . ,.� e5 h...�.;'.: .�'y.'r" :�.. �- ,1_ . . �a_ . __ __ ___ �. . .• ".. .e� _ . . . . , rt _.. �- ;� < _ . , C`: ��.. .��- �;� � . .k�� . ...:: .�-. � . _. . . .- .y1s r - - , _ !k4 •' � i '� � .. . . ��V'+-�:�?+.�l:. i 4 r�i�. � \ � � � Y�. .- . - .�. � ,�1. . -� .. . . �:�. , A C 1 _ .. _ ..,.- -+. _ _ _ _� _ . . ,.,. . . . , .. . d .. �. . . . aws. 6 .,-�d ..{�it ^%. .! .. � i' ......f., � . `�l : '-i �,_ b�.. `�„'. �-�G ,, .. _ . . .. ... � . . . _ � . , . -�._- ,. ,-. n ,-� , _ � . _ _ � 2!. ^K.. �hr, �a.' � t;o s w� . . � �C ,. ..,.. �. .. - . � � : r _ : ...._ .. ..._ . . . . . - � .. . ._. _-, �.t _ . _ , . .. � ��. ' .... _ . . � . �. 1 � y�. .. • ,� :: . .•�. � - ,- �'' :,,� , . , � . ...� . . . ,. , . , > �. � �: . _ _ . �. r- �j - �, - _ �. . � : � . _.� � _ ; �: ,�;�� - - . ... `� . � _ . �, , ,,:, :. , � ., . . ._ , _ . ,. . . -.. . r .:.. � .. � �.<:-�' ..�tC. ,. .._ � - ,. .... 3 . . .. . .. �C .. �. . �� � . �Ju.i , Ff)f . � .. _ �_. . �._- . ... . . ... . �;� F - ��. � .�k.. S.1 _ .. . ._ .... _ �. - � . . iF' _ _ ... .., . - .: .. . . ,.. �l\. 3 F�,. -,. .-. . .. .- � I.:.� . ...� , c _:?"•,,, " ' . ,. _ . ,� , , �.. . . l. � , ..._- - I ... . , . �. . ., .,. .. . . . .__. ' �:.. . {._. .9.?� � � r . �� � _ 1 �� _ r . _ . . �. � .. . . � .. ,.,�,�. .. _.. . ._._ . .., .. . . , r ..-. ,. .. ... . f , .. , . �� 1 f . < ^ � . _ . . �. . , , . . .. +�5 _: _ � � , . .. � . , . . , . _ � >�;. :; , � . .. .� . _ . . '� .. , r- . , � _ .:. . � _ . .. �- . . . � �� � _ ,�' . �.. . _ . , . . . ., .. w.� , ,. i .: ,a . .�a .. _ r. ,.� �, F��. l: . r-�. ._ , ., . . . ,. . � x , � . .. . _ .. : . Y� i . � , l ....Y .: ��,l�' . : . ... ..� ; � . : . . .. ..J?'�. .. �r���:. i.a , r ��: C�' . - . _ .... � .. , , ... . _ . _ . , _, ,. . . � : . . .. S , r I s _ �. _._ _ _... . -. f � .v . -,. i �� � .:. . . _ � � . . . a I. _ �J , . .s .. ,:t.,.. Y: . f, � � � . � I _ . ,.r ,. . .. _...___ � _ .: � • , . � :� "=� y. ,. r r ,o. . , .. .. .. . .. �.. � t.� � t2. ` - - - �F:: . : _ . .. ..�. . .� _., , .. ...., � . , _.__ .. ��. - : � : ;�-�. _ . n .� , , , . _. . --- __ , .. _ . . . .., . . _ .., - - 1r �. ,, � � � - �`�' .:a>-. , r�� . �.. - � 1 � .:.� :,-, , . � . . . . � �. , , . .._. .: . .. _ . . .. . _ o . . ,. .. .. . � -: � t • ��><'. .. _. . . . . _ . . ._..� i . .� _ .. r � ; ... .�. .N.' F _. �,.,., -:'- �:-: ��. - �f. - - . ti . .. . ... . \ . , J _ \ � . .. i/ . .. . �_ . ,.✓��. .. ..,..: . � '��.. s':i i, .�S'. _�.::a:.. ��! ._ .. . . , . .. 1 .✓ . . . _.>, .. . � 5 . . , i w.�. .�f . . �� . ,.o, . . _..x_. ..: ... ! .-t.� :.L h ....''.'S; '�a ..�r., -S ,.. �. .. __L ,. . _ . \_, .. � _,. _, . `l. ,/ �"1 , . , . , �..: ..... �{_ � ,.. � u � �'='; L7'.: ..: ' r . _ ._ � x . _.. .,.� , , -... , . _:�. . _ r< _ ',y ; .� u v �'i. J r.� - *�1 ',� I r e � �� ,f i � _� • : :. . �_ • , _. ._ ,; . ..._• - �, ,.. ..� � . . ,. : -- .. .. . . . : . .« .., ; 7 . � .. :. �. : . . .. . _ _. . � . i; . . , � ' C � �. ! _ . . . _ ._ . ... . _ , , � // .. � . . � , .,, . .. _ ;:� �. ` r u �:,: . .�f' ;, . ..'s�`. , } .. t..� .. .. . _ . , . w,��_ .. . ., . .. . ��.�„ � { p �;, + _.�. .. . E. . h . ,. .� . � � . . �` . � ., .. =_.:. °`�, ' ,�, �Y_v. `^' - . .... . a._... � . �i� . J` / . ._ ...o ..� .... . .L_ . � _ _ a, . _ . . . -�. .... : � , . . .,- . . . . -- _ .. •-_ �-�f_ _ - . ,. , . .... , , . �a . .. . . .,_r_ 1` .._�t_� �} b.�� _ .. � �.�,r:.,._.., � - s: � . . ._ . . . . .. . , : . .;, . . _. .� . . � .. , . .. _ . . �.. . . . . ,.. ��., . �� -� A � SL�A � .+ +� _ .ti. • � ,� . .r-. �.... -.� . . :: .. . .: , .., .. � .,. - . . . o . . . . . ... . . � � .:� : .. -.. . _.S:' - .y ' .4. �.. + p .. .. _� .. .. :. .. �. .. .. . . ~l....�. �tn. 4 .. ...7' f . .. . . n .�i, :'`;. �:,w ��� f 7 7 � ` . ��� - �. � .�1.._.� ( �'.c,�.�, .r. ., .._ .._ . _... . � �d... � c .-.-.N' _ tX ...... � ,:R .�i . .`�. I �1 ��_j.j _ �i��- -:i; : ..o ._. .. .. . s ...-_ . .. . .,. . . � . . . . . .... . � � . .. ._. . . t .,y �.. .. . r, .Y.. - .> , t . .� ._ ... _ . .. .. . . , . _.. .. � ,. , . � .. _.. . �t .1 ,_ . �4" < - .,^..T ,,. ' � ; 4� _.. ,- ....� _... . .... _ . .. ... .. . .. 9. . ♦ . : . .� Ra . j . . . . . i.. . ':..'� 1... _�� . !: � �R�. N 1 ( � .,il '.'/+:.�', l . � ., _._I... . „ . -.. _, �.� � , .. . .r ... `4� .. , . . � :-1�S � � - . - � ... 7 _ .. . .1 . :: San Jac � :N 1 Y/.. �.✓ � i� � A J�. �!5.10 i }'l. • ' � - 1 - -.': ._�.._ . .. _.�.: ... . . .. - e .:._ ... • �_.. "'C'_. ._.. .� -.,. . ,. . . �� 1n ^� , .. : _. , � _ . . .. .. . . . _ - � � . . < � _ ,, . � . ?-� : `� �, _ �� r.� .,:-,� �r ,i '�:� � � 1,�: S. � ,} �, . . . .i__. ' - 3r, � � . 'Y z . ;. ..,-. :._ . - . .. _ _ .._ . ... ...... ..... _. , - a. /�° _ _ .. , - . _-_ __. .. � _, .: " -_-`Z -" -_�.. - �sv�5:� u i � o. 57:� , .r: - . . .. . � ._ .-. .., � . � _ : -. _ � , , e -. ... . .. . . . �_ . . a .-�s= ._._._. . .. . . . _ i .f-_ �`ci . ._ c� .- . n_ . .. � . _ . I.. . : . . _ . . � �. - , - -�. -,,. ..' tt �� _9' Mr .�r. i i '�o . , .. -. .. .._� <. .Y., . ,. . ._ . . , . f.Ct � _. . ..�. ___ _. ., . t� --� '�'... . .3 . - .. . •.i - `� .._ , _. . . _ .,. _ i ,. ,_ ..� , t_ . _ _ , . i� T .. � , _. - . : .. . ' S3;, I � ` _ ..�. .. . . _, . . . .. . : . _ . . . .. . ... ... ,. . ..�`�'_, . - . �1 c n s � ' .. .. -..:. _ y � ' y;' ...5 , . _ . .a .. .. ..a.. .;. . ..� ...- ,. . .- ._, .... .. , .._.- f . _ . . , . .. o + '� .:�., -/ ..4 `i ����.r+ _ . < . � rr _ . . . . ��„ :. � _ a. . .. � _ , . za �. :.. . .. r. _ � ..,C". ..: • -,: �- .l. _.. . �..,.. ._. .. .. . �.. , ,. '1_ � o �. :f, etvnt uHra�. r�,.. I r � C s ���' ;r . k - �;� � ;�� - ._. . . , h. .. .. , � � , f.: . , : , . . . _, '�: . , � � i �t� r#��, a � ,.�, , G . :� . f <a�� r _ . .., . .. . .. . ... . ��n . . � .:. . �.�� .� � .�. .i'r rr • '\ �7` - s _ -,.,. ..,.. _. ., . � _ - - - -- - , ,� , _.q 7� , .. .. _ ...: _ ... . _: . _.. =_�-�. - - - � ,; , . .� � ;... - -ti, . _ . _ . _ . . . -., -. - - :.�' - .. . . . :. .. . .. _ _ . . _: . _ . . . .. - , r� -�"'' ` � t: � , .� j .. _ - -- . _ . ,._ ,. ��� , , ,. „ . > ,.. , . �4a� � .',. s .�^. . e�., ti . _ . . . . . . . . .. . . ., . � ;r ;: - �._ L4T a.� r .r� ' w,� i .. - �.. :t. . . . .. .... . _.. � .,:.. ^ `r � ,rf ,. m�n � .. . � .. n � �- i'.�: .+'� .�{} '�nn M_ \ ... C. �... . ::: ..- _:. . . . .. _ ... � ....-.. .,. , i i .., ....�. `.1f �� .:`. -. . : . ., . . . n . , .. �.. . J. � . ., ( . � . . ���. � '- ". .. ` ... • J�� .. .1 ��1"•' T � . hl � ..i: . , . l,n. `J .�^ .. : ...�- ._.�. � .. 1 :. , . . . . ..:. , .. -..... .. fi . e _ . . , . . . �,/.� . . ...� r r i . �3i Y_. . -�z� , f , CC n ... .._.. L. ._,. .... .... ». : .. .. .. . :, ... ♦ . _. . . J, l .. i� .� . . : .. aa _ ,a ,y ��=�... .5'. ��`�. -- `a�4. . �. . . . :.... . -. ..T. . : ... . - r '.. .. _. . . i. . .i . . ..c .1� �T1. ..: . :'PRRK -�..�H- ' . � " _ C � � �... _ .,. .. . . ... . . -' ' . . . .... r . . . , ... ' a . . .. . . ..n _ ,. .. . .. .,. .. . ..� ii �i' -� '.� x - - .Ji._._-_ �___ � __ ' � S �. �.. .. _ � .. .: . , .. . � .. .... .. s .... �. - T x. i L ' � rl : .. . �. .,. - ' .'.I. : S. .,r,. ;>i : .. j � 4 _ '.V� ;�r.. -'"_- -�� y . 1, . ,: . . � _ ._ ,. .� � �.. ., . . � : � � � �. .. . . . . � � . 1� �. i " , n. ' { �j - f�. f - '�.'� _-r'_ � I � . �':<-; .. � �:. ... . � ... .. .. . .....r, _ ..'.. . ... . 1 ., . , , ... . . . .. .. .. . �,.: .._ ., _. � -. ..y:. ��� , � ':aq, :r - ♦ _ _. .... - . ._ .. _. .... ... . ... - _.. . _s. . ,: \ .r-: ' , � 1 ; 'f�� t_ L: i .�':1. � � 'k . '� : �.t..' .. . ..t : ._. .: . �i . .. e, �. ,.., .. , ... ..t.. t. 6:. � �" 1 - - ._. .... _ . -. . . ... , . - ; ,. .. ,•, , , wn.,I . 1�.. ..: � .;. . �:! � . •� t.a.. _. .. �k . .. , _ _ .-.1- . .. , . , -3__. i � I ..:. � _ '.1= . '�:. � : : i < � ' . S � ` 5n� u.fa�b.�e 4 . \'.1,. /*�F . . < . . .. . G" ' . ':... . .., l. ♦ � . � � - . �`-s ... . � :. . _ . -. . : � �I f . S. �... �"' °'_' ��_. 1� Jislu�a ..: S. . - �f: ' � .. � _. . _ \ . � . ...- . . . , ... .. .. ..�.. . ..� ..... ... 1 - � 5 ... .tah�.. . .� . R. . . ._ fl - ' ._... . . \ 4� ry fo�� �. �. �...�.:. :a r .,. ..: �.. �.. _ : ...... . 3 .,r� k� .. u O . . � .,n�A.�d . , � .;- ��.� � t i �' i � - � 1 �.�. l�. I � ,a �.. _ ��:d �� ._ I I =..�:.. .�F ,. �. . . . .:: ..1 � �... . � ,.... ._. . .,- , :. ._ . ,.,,..,, i .i - ,,�. ..�. - a . . .. : . .�_ '� =. c + ,. ,H , _. � . .. .a� � r . �r- ti ,:.� k.._.. . . _,f:.� ... . ...... . . . .. . . t . , _ �. . . . �._ .... '. �. .: ;� . . . :.- y�... :�i : f�_ , r.��-.., l �i � '`�+. C'l. -h -F .. � .._i :. ..� -: .. _ .. ...i ., � ..._ . - . . ..-�, , _ � -�r-�'�`.. P � a o �a. ':f - 7 nT' � � �1 . � �'ma... . � .. �.,,_ . . . ,..,. , l._ . l , �,.._ -,� V ..� � .. . .� � i �"' �"._ .�..'-;ft S�. .�Y' ..< i:Pilnr.e. . � _. .. _ .. _ � . . ,. ..., .. .. . � . .. ... �-. _. ..:. . �. : - - ..,, . . 2e. �: _ � .: ti' � �, . - - - di � �'':.;. �. J� - 4. l .�l - M' 3 ��! � / 1°�,i:. - �E 1.��(a6¢ �� � , , � , 'Y -r .r�.a4� •_, . _.. ,.. . . : :. _. r - .. • • •3 . �.. . . . _ r � i. •I.wK' _ _ �`` - � �z i . ¢ . �(7� I" n f r I 't . � t - �\ . M:: . _ : . : - ��. v......1, .. .. _:. . _ .... � . '�.� .1. . �..->__ ��a, _ ,:. �. �.'' ,: �.�TM� i��., s- �= { .` . - . �. � ` � :'.�� '. '.o�� a ' a'�• - ..:. : .... r.. .. ,. ei�.. .- .' .. . .,. _ .. . ,.. . � .... . . ..... . .. .. i' �I ri' �' !/ ;s:t . r:l at:' 4.� -J un -s"-. ..1� _v-: � ?L .. .. _.. L .... . �.:,.:.. .. . c - ... _ . w • _ - .. .. ... . 1 , _ _ .+:-. , - . ,. �:�_ L .4. � ..FsS �✓'. � /.:' - ... � ... . ,: -. ''t�'... .. - . . . . . ..... .. . . . .. /1` . .. . : . , t _ . . �Y . .'. _� '__ � ,`Y.`._. � ' ' , -.. . _.. . .�1 .. ._. � . . � .. � ''� i uo , I . . � -s��,� - _ . _ . . r � r . .. . . - : . . . � �. �. .. . . . ... : ; , , � .. . : �_ . � -=' . 4,:,f _-e S -./Y� , Palm Dewt. ° .''.� _ .. _, l�. _ .,. a ._ �.. . :. . f! , . .. .__ . f c __ "F.... ..... ._.. . .. , .,. . E2 . - < 'r1 { .�1-t ' .. �.. . _ ._ .. . _ .. _ � .� . . . � ni5�mn �. . _.. ._ _. . ., 1 . ; . r . ._.., i . . _.. 1 � '�� _ , . . : ..> . .. ... . _ , . _ �. !� . .. ... . .I� � .� . -•, G'T". . , .. .:i'': ��� �., _. . .. _� ,. _ _. . . _ , . ... _ ..... _ .t.. _ , . . , . , � - ` i �J.. . . . ,, . _ .. _. . . . , , � _ �. . . i . :, _ L , .:. .. ,,,. ... ., .4._ ._- .._ , . . ,.. _ .. .. _. . � . . . .,. __ . : ,. � _,,."�-Y; - �=- m ' � . ..... .. _. _ . . ` . . r , �. ..._.�. .�-:. '� � �f_ ' L..� ( �S$': }/''IP: e--..r^ ='� � ['_,_ �.. . ��. . , � ._ ,.. . . . �. . - � �. �r ��.. '� .,. _..�.. '.� `�. .f. .s����� - -. „. .� -.,- .__,.-... , _ . : , �..__ .�� -. -.., . .__� _.. .._: .� .. - . `�F-`,_ k. .. •>� . �=" > �-t ..c� d � . ..-� ,.. . .:...: . i -.� . �_ . .. ... .. .. . . . .. /'� .., .. . . . V � Y. .. . ... . ... -- II .F.. . In N A'ila - : . . . . ... , _ : ....: ._ . � ' . .... . ... .. . ..: �... . � , .. � _. , . [. I .. � � . � - C "� ��i: 91 .� � ( ..... • . . .... . . . . .. 1 I . . � . ' _�� . .e7� 34' '�.- Y 'L � �,F :;?;'�� I I'. _ , .�: _ , . - ,: ,. _ _. _.. � , . . r �. `=-� ,, „ � �, , � � , ., ., �,-. - � ,�. ' k .:�` . ::� f i, �- =:r;;-- - . � 1 � r `7. .,,. ._.., . .. .. .. .. .., �_. _, , _. �.-. :.; - � - . . , . . . . .._ - _. .: .. - � ,. .: �: , -. , . .. ,.. d � ..� , c . 1s - �:� ,.._ _ . . _ ,. .... . �.. � .. . .. >. . .. __._ i.. o. . � ; � \..' - - ,„ i. �y � ..., . - '! " - : - �il �:1 ND ES � � } . � .. . ._... . .i. ,... . . ...�.. . �,. • � - . : :-..... ,_ . . _ . _l . •. .. �.: �. . .. �. . �. � .. . -..�... � . .. i�. �. �, . .. _ .. .i: . .. ... . _ ..._ .__ ._._._ ._ .. � . , /� - - �f : X. - _.. , . . _ -. . �. . . .. . . . . . ... . . i 0 . `�-- . __- ..._ ____-JJ` _.. _ �- . . � 4 eil ' .� .�._ : . , !�. ' f' S� , `�- .� .. . .._ _ .�. . . ... _ .. .. : � � .... ... . - I � t .. . _ � rJS It:... . ... . . y' �� n.Y1 �� � .A .. . .. __ .. . .. .,., ..., �� :, .. .. , . � . � , . . .. 5>�.-.r- .. . . .� ._ fLti. .. .._ � . : y' - �J'': , �1 I � Il ��\ : �. - , . .-,_ .... . .� ,. . Cf. `�- � . ,. , i .. . .. ,_ . -, w,ad�a�. 4 �.,.. ..� , ., .-., . ._ �. .- � 1;. �c,na�bm.. - •.B � ^�,1. ';c;`� I, . . . . - .� . _. _. . � .. . _ 5.. � . . , _.. .._ �n_ .... , i �.. qA3� - . _ . . . : . _ .... .. .. .... :. . . _ 0 . �. . ..- tisl,� .. . � . .o , . ... .• � :. �. . , .. :T , '\�: �.� ' '.'- s _ � 5. . , .. , t l . .. . . -. . _ „ .. . ..� . .. �.i � r--� - '' J' : .... .. �.. �.. .. . , .. _. ,H... .� a n. . _. . . , ..L .. ..4 . .. _ . . . _ . . :.. . _ � sa, w � . , -- T-- - � . _ . ' ``� ,� ti • r : <, -, - . _� r _ . ,.._ . ,_ , .. . . _ � _ _ .. . 'I!� _ . �J: . _ , . . '� ,��� � - ; , _ ... ., ........ . .. .. ... ._, 9 .. . . _. ,_ .. � . . _ ..., :. _t.�.s ..r ``;r�� � �I I� z � , .. � .. . . __ . ... . . , , .: . _ , � . '-��t�. � 1.� ;i ;. �'� , , �. _ _ �..4 � ... F _._. ,� >:p - :. . . , .'� :.r:� ,c .�/ N. . / . . _ . -.. . , - t!<`-c� . . . .., . . . , , . _ _ . . . . , . . 1 . ... . . .. . _ .>�, • + -+.� r- ..>. � �I � -�� -� . _ . . . . . r. . . l^. . . . . � . . ��.. w ". . .... . ': . .. . . . . � . �.. . . f . �a ^ 1 �' � a' J �� N y . . r.. . �!� e �.. . .,. .. . ., . , .. a .,.:.. -!( Mis.� . • ,i I I � . .. .. . l . ^ I'� �.r'.' "t-� � " :`� �. a _ :. , ... ... x�. �... : � .�_ ._ . , . „ . . _ .- r t. .: . . ,. >, . ��-.. � . . •- . -. . • . .-: - <� ' � - x e.o�o� N_ .. .. ... � ..�. . . ��..... � - -... .., . . _ . .. . .i .. . .I -�... . . . : ../'. .� BL21f � � ' _ ..._ ..\ .,r c. ..%. :r.� � . 7 .. .- ..... . . . . . . ... . ..� �. . - �d , � .. � v�� _��- 6 ...1:��: L- 1 / �, ..., wu�... .. :. �_ �'� .. . ... . . � ,i... . , . . . -.. . . . _ . . �..� _..1.. . a . 1 i . � � � ., . ., _-� �1 �9,.. ..I.�- � "l.s.' 1 : �_. . . „ ... .�. . .� . .... .:::... ...�'S'_ . ...... ., ) . ,...-._. . . . � ..._. .. .I ID �ue �uNr - , _,,_ . _ .. .. . . . _ . ..- .. ._._ . -._ ... . � . �.. � � __ - - - _ - . _ . , . � _. - �t _ __�= l_( _- ,F . , ' '` ��' �.. . ,- ...-. .. ... .. ... � _ . -. . . '. . . �. _.., � , .-.� ... . �T - � .o ., .1�� - - 1 q E � aE � '\ . �� � � ..,�. �.,.�, _ _ ... . . o., ... � � -.., ��_ . . .. . -„� - ..� . <,. . � �s � .Cr'.. - ' t�-� '".�w ♦x', .,, : . . _.. . -. -. ,.. .. . . . .. .,.-; � . x ,. -. _�., � ��, -. � _. �t,., ��' ach Ila , . ,-. : F . . . .r , . � .,. . { 1. .P. . - - . . . � � � . � _.. ., .: . � � >. _ � __ . , - -,� �� � °I � - . .. , , z. .. v. , . ! .7t, � ��.--� 7.. :. _ . '�.- ,h I.' � 1t r',''- �`�� . . .. -..-.\ � Y-.:� �. , 9. ...,.�r ��s., ., - 4 _ : , -.,,,.._ w.� ma� : 7l � � �' .1 ,,,��� _ - i ;I _ . : � ; ._.....- ,_ . , . �/, no2. . .. . . _ � I � � , / c \ ' F - / �y # S� ' _ -- \�-� . . � �+( �f � t - f � � � .. . u�, .. D. .... -- . .. :.�-i �. ,. . _ .. .....'� .. . � � .. ,.. • ..� . . �.i.. �a �f r r l w . .0 � � ... . - .� �O ._.-.. . . ..._ _.. ... / , . . . .- .. �1. . _:.. .:_ .: �.. . .. ..� -7 � Yn e�M:�.: :�. -��.�:. - i . .. .. � .._�. _ �... ... :. ...... ..�. .. ... ., . _ . k:n�n�li \\... L. . . . :� �1 �'Nlh _•.t .l� "�. '� _ r � J 1 '1 � � .?�{ � 1 S C _ `��,G. � 1 1 _ =r\ . . � _ ..s .i .�-�s-. �...�..... ...._ ...i. . •. � :• �.. ..!<., . � . .Ja. �. '�K-1 .a!{.. F .� I . _, 5. .__. � .. ,_ . . . . .. ... . . f.�. . .> . . , : J�.. �. _ ; :�.,�_� ?M: �'��j.. - .�. ��1-. Y . .�' ,1 . - :'•�: a . - �tt ..`*� � , 's'� T - �I \,_ � - . .. . � . , - , ,,.... _. , . �.�._ ..- .. .. . _� �. , •. � -,-�y. , - .. . . . � . � 7 p �a�S : i. ,:: \� . ' •'.... -.-.....^ . . ., "�.F .� i Ci �� . . ... ...... . _Y...�� . . �..... �. .. . . ..... .: :- V . UNfw o r . . � . ....1. .' �!._ ,.y..� r-�'�_ �.. . ,- i" __.. +h.. .. : . �. \ . . -.. . . . . .. . . ...' �C '1. Z J . .,.... , ., '. .. _ a i `F. ��'bT,'� as. � ,. _ . i °e`e r . .. , \ . _ __ �:[ ' , . ... 1'Q ;�, -.f�: �:. !i I � , :. t , _. .:. _ t" . . � :. .. rc.,,.,, � � 1 .,.<� � : .,, .. . � .. S � � E-EF.fiI A. _ f�.�_t�Y' �f'1. f kr -..; � . .J -- - � ,v = '��'`.1. _} 1 - ry � - .-._�1...� .-:�. ���` �� - 1 - E,.� - - �,^� t` 1^. /' '-T - �I: `sxr v - m?. ::?.-.: \ li c� inE � • ,; , 1 • �, + . _ � . � t:C.. � ^�- •��. �- � ..r :•,: ..-. . ' `. .'": _. . �. t � ..,J .a ` q� _ a +. + . . . .' . �... .-. � �" � '� '-.._ . - � ' I C P - ,/' iueh � . ?r� _ ; �L\ ' �� I �I . ,. ... . O� ...... ^ :'- ..,� : �" , ... ..,� . � ...... �t . �. . . ... : ' . -.'!' � ' •,�;.. .,�'.;o (� . �.� ., . _\ .- . . .x. . .. . �OL /.. : . . .... .� . \ . i : . . . .. C '.M �, eu N.n. . . . � i l - . � '.f� l ' �L�l� �F - e 0 ..�.. .ti� � /. . ,: . . ICc murtil � J . . .. � d ' .. - " _ ..� - . 4 . ':':^'f - '- J l� .n IP I I _ . ...... . . �. :..* -..• . . ....,. : �_ � . , ar . .,. _:��. '- . . .. r �VZ, r,. ��� � . - . : .in /n . .T. .. ...ti'- ..... .. . ...... � A tr. a l. t- . ) , � . . � , . _ .. _ .: . - .. � � � - - R', '� ,I , o�m _ i. .. . � . � amm - .. , . . .. � . . ... .. , \ � . , . . � . e� . , .. _ .. ., . . .l . . ' i.:�. /,"�:y. , ` � b.,'.e.�.. �?�+,t T : a ;.:P' i 4 �, t .. ..k..4.� . y�<,. . �.P�. : � . ..�� ., ��. �l. v ..�. .7._ N11 . �. �. _ . .... . .. . _� _ ..'��� .\� .r>'. {:' G�., . b_ _ � ry� � ;�, � �... �. .,,... C _ . �„ ..:.. . ,< < - .. .._ e .�r� � . _ . . £ _ i \ � e.��. � k �i. t, w � „� . _-- - - �.. . .� . L '.k. .c . ...... . . ..... . . ... � .. . .. . �. � . r. . ! >Y . � __ ..__.. , mmn,n . . .:,e :, c.. � .�� .. � 4 .r .. � � �. C� v. - - - . :. r. . .: .. .... . .. . . ... . . , � - . . ..� .., . oi , � . .:/, . ._ ::__._._. .-_. . ..__'_ . , } . .. t , � F, _ .: Y �-� `� � - - -� r , �..,.. . . / . ....,.•. . �. _ . , lt , ..,_ .. . , �.., . . us� .ti� l� L`.! I __ - 7'� L'� '�s� r� Jne•m„ �a . � . . ; . . .. . .,.. ,,V ... . .. o �e.: � -i.k .l' .... s. . . .. � - . . . ��`�:" ` �"•' �:� .� � r .�` o • . a .::.... �., . .... . .. ... ..._ ".''"' $k , � .. . .. .. . �: D.O' Y% f ^:�,. :.1'� - � .... .� ...� ': -` � "'� ..-. ♦..� ♦ i �' r . -n��4��( �.�?dr . . .,..., .....,. .. . . .. .. ,....�,. ---, ,.�� d ��ie �. #r �4 . at&` o e� ..p �� � `"c �:1 - .. . ?d , _A �"� , o . ... . . -.;t �.... : . „ _ . . - . ._ . _ ._- �.. . � � . .• �:. ,. . . �-. / t�: , _ - - I� :"� . . , , .. i . . . . .r, ..r ,� .., . . . . . . �.. .. ... .... :: . . , . �. . M . c �NUi i� `' . .ti _. _ .. Q . J .,.. .. . . _i.. . . . �_ . dcr�.twl � .... . , . .. .- .. n. . . < . . , .. \ i - ..c.. ;�r- '�� ��.' . �a'r, I t. n. f �" , .: �.. .. .. . . .. . .. _. . . . _. . _. .. .:. . . .�, . . ` . ".;• -. . . �-,. '�Z' i. ''{i, ie3''. �:11 l - � I � .. .: ,� . �,,..t.. . .-.. �. �: . �...-.... .�. ... _, ... �T �. . . , i . `< ,... .loc�" - - itt �.'2i- ,c�� a' __ 1 - ..+- .. / �S .. . /�tj .�. i. �. .y<. .....\ O ._.__ . . .� . �.� .� . . �, i, ,. . �r a � ... u , . ....` f.. � ��,?. __' .� , ; 4 r., .: Z- .: , . � .. . _ as-A .. /;.___ __ .� > �:; r..w ^�_, C' �t . '�. }� r - V I . �., J. ., r� <,.,.�+. .. ,. - i ..... _. .... �-.. . .. ._ .�. ... �.... . , . �. . . . �. I�� ..9 ".�i�� ��. y- :'1.� cn � __ i . ... ,. . . r .... � � r � ,. I _, . . , . � r � - . � . i . . y i _ �.w� . j ; ��r � �,� . ; Y� 'i _. . _ rt � � _. r. . . . _, �l. ,,. �V .�� . .. .. �. . r A . , , . . ,�. ..etecR . �� 1! . , . . w '��. -^P. k A�9 - �.r 4 f � ��;�+. � - --- - i� � .� � ..� � :.. .. ..�. . , .; ,• . .: _ ,.-.;.. a�.� r� ..._ / -:. .; : �,_• '� T�. �F����� . ,. ._ � 7 �A.vBN .t81.. r.- . , . . .. . .. ., .�„ ;,� . �a . _� , �.. ,. _ ,. _ - � - 7 ' `'� I u .•� a - . m�ir f Lr P. . ...c L . , :� � � � _ � � �' � !�, �- �t' "� >�-, .�..,:. � `C � t' �.i {. ,.. . ;.. . ..�, _. . �. ,. .. ._., ., ,1p ,.. �• � .! .. : ..: � <.., w.�am �.y - �^. :-x na��(r��. ..i � . . . i ... ..... ... ... - � .r� . �_, \. . .. �.� .. . m .: .,. ^ a. . . ( '��.-�i . :�. '`�:, ' 1 _ ..L-` ,3�. �rti. �..'� .. ,. i!a ! , i.. .�- . .. _..�. .. .,. ' _. . ..... . � �..+.w., : � . ... . a .I,. . L : ,- : r/'..} - . �?, ..� 1 !L _�. . , . . ..< . 1 - . .. . , .. .. ._.. , , _ . .. l. P"�"�. -- ---- •_ } ..� . .. � . . -c . , U� . ,... .. . �h ..,: .. .. C �. . � ,. . .. . , .. . . . � .: ..� .. . .. � � ., .. _� � . ., •�' '�� '� ' S .Pa .t - .I �r _ -. .� _ � , i t i� . � 1... �. .. .. -- ....... , 1 -. ... . -. . �. \ .� ... . ._..- .. . .. . i , . A , ilitf �.A' � �� 0.N'. ' `��' `�L. 'i✓:� - : \ �,� � ' , . ! ... . . , �` < . . .�. .. . _. , _` � . . . �., � c +,��.> , �. _ } � r +� i i. � . r . ,. , .... : ,. . . .. : � _. . , � i ,� �, a' 1� .. ,�._L., ..._ _ n. � , _ , � .. � ' un�.� - s .: � . � n .. .b �� ).. , ..� .. �.i �., ,_ . �L'«F A .. :. �"� ��W.� � SER� .�.. si �..R •.� . - lf 1. . . . . � . . . .. . ... . /..: ,,. ., ,. ) �. /� � . _ �� , :. - A. . I' 'I� .., .. � a-- ... .. . . . .....� . ... �.-.. .. , :, nsK+ re+ _.. . .�.� � . �_ .. .. . .... : _ , . � ���o.: ./ �i n+� . �y 1� i' . _. i .. .�. i� ,1, . . � .. . . ,. � . . _._. . �. , i : .. <..i . ... a P�. � � � ' ��� .. - - i r �w � I 1 - . . ., �?: , 2.� t . ., , , , . . .. ,. . ..... � . _... . � . ... _ . , \ - `��. .Y f - G° . ,1 �.,xsz, . . . _ n . .:. . .. �, .. ... ,,.;U.�. �... .-.. .. . ._ .... .. .. .. . , . i�fc� - ..�f. ..1� } J__��:� .�� �. .�s .a:..;. ..,.... P��L k�] :, i.. � t.� •/��W .: �. . . .i :.. {.'�YI. - 1 1V -��� .�' �l �Y� L - - L_.. ,1.. t-Y' t pn�i:� J � T� �".-:.1. X a.. .4'.. _.�� �T��11 .yrJna � . .. . .."So'. _. . . .. . � . f':' ,,.:..:.. . .. . �. ; : . � . .. .. . ... . . . . - - --�z„ _ - y ..r;{��.�,!_-...-.- __ y . . y� rw. � . �:t ..T -./ . I. - . .� . .�1• -.� ....,..... �. ..,. .... . , :: . . T-��. YT;` .�r � .T ,,� - .TUPRYSMI S�N _ .. ... ... , -a .., e �" '.. . � � .: '. .. . . .....: ..��.. � �. l .0 , ..< . ..:'- .T Id '� - '.-:�� j � �IV�+�T �k �.�'M t , ..:_.. . .. . : . Ws! . �t . . .. -. . ..... .� : .� . .. �.. .. .: C . :_ . � -. .,... , �.. . �� Ae , � . /� � I �.�.-. ,'� �. .,L ' C . � ' O I � � _ H. . _ . � . � . , .. _ �:. . . . �. .: . �` : ..... . .3� . . � .. '. . . -.__ _`..... . . � � . , - .'7:" .�. �yyf ' + ' . 3aro.. . . ... � .. . .., � . _. . . _.. .. . . :. .... ..,. ..�_. . .. .. ..... . a.. , r. .`i . 't i. . 7 . . i . � r -, � _.. .., ; r. - . . . .." ,�,. _ �" , � i � � ..�. �r+6inr es � r . .. .. ._, �_ .. . f . :.c} ._ _ .. �: :. . t., I �... : . .,:-.- -_ . - I�; ...,A - - �t H:il[{ 31reI `-u. ,�^ `} m ' - _ s '� ...., .. .. , .. .. .. . . . ., .- . . . _. . x�� . .. .� .'ti-a :.:.._ . .�_ �-. _,-.. �_ .. . ..+, . . � x:, 1 n, ,. i - r - - \ .T _. .. _ :�lL ➢ � i , :. f . v . ._ .�.. .`?c� - i - ''P , c"h^ ��j.� � ...-�.` � ,� .. . -, . .... ✓_ ... .. . ..r� ,�. _. .� ,... ... ..:. �,:�; 1 ,r ;_.,... . �.v. . , :f l. �� i-' - l. �.L;. , ,. . . � ( X . ,� � . ` �rH �... � - - _ r ' - - ,. i .. , _ . .. ,. _ ,.- . _ _ ,_.., � �. , � . .. . -. ....... :. �._...�. ..,..'. ....• , ....�..,. . . t_ -. .: .. , s ' ..-_-ti `i'; �>� .c �-2� ��� �ti.� :f*"r_ _ , . , I .. . :.. ... , Y . .,. < ... � �. . .k°'' � � ?+, . . „ 3 � _ �f _ , t . . .�..�. .rti. ,�: . . i _��. . , . . , , .. . , , ,._� �5 �,`� , , ,^ . ;. < .; � , ,, _ � _ :, \ - ,✓ . . .. . , a ... ...... ,. . . � �. �� i , � �_ � ��9?tII" '� . , . - . . ._ . . :... : . . . . .. .. . . � .. . . . . .. ' ... �. . . . ..�.,.��.� G. . �c.. ., . . . . r ; � : ,. .° _ ; . . �:e . . .f��� �' ..� ., , v� ... .. ./.. . ,.. .....<�� . ....: . ...... .. .1 � . , .. . .., .. ... � .Ti.-�. �a.: t ,-f-- :t. - 86� . , 7 . - _ . :. ,.. t .1 � � .-... ...,... ... ... �: . -._ _ ) . � .. ._,: . .- .. � .• 7V : , . - I i - t�.' �Y. � Q�.. ... ,�.. � � � i . .r_ _ �i � . . _. . ,... . . . �. , : . .- ...... . _ . . .. ... . � . . . � , ... ._. - - .. .; _ l�R�. „^ `e`'� . . . . . . . . . ...... .,... . .. . . .. --. �.J . . . .. . . i . / , . . . � . . . : ✓..: .. _ , . .�: _.l- A , . ., � .� , . .., .,.. . �. „ ; . ; _ � . . .. ,... , a . . . �. . . �. � _. ,-. _ -:. . �' ! _ _ : ... . . , ,� . _ I . . � x '. . - '�_� �:' � Y t ;s -- . . � , l . : _ _ .� .. � . ., ,. .. _ � , .: . : .. . . � . � . • , i , L, � `.,:^a+� U-€'L . v� � � . � �o .,._ ,.... � . . _ � , . ..-, � , .'� ; • a n . L-. ` � � T . i'\ � . _ ...-.. . .... ..� .; .. F3. ._�-,. . . . .. .� .� . ,.. 't .. = v�Rr� _� i �� ORR .. ..4 1_ .._. .:��.. .. : �.-.... . .-.... : ._.. . .. �....: .., <:. . ...:... S om^oa��. -1f`� `� N.Cu .I �{ '.t - L�i . .,.... .� _ . .... ...J. ___. .,ai,. _ .. .. . . ,.. ... . �, .. �..;. .. - L '� ::. a�� !� �.1� b -u: � s.-.,-_ 1 \ i - T. i . . . . _ . < _ . ..:..5. . �_ .. ,- �:.,. . r . . , - � �. i \\, . , ,_., i� . _ . � ,... _,, ..,. . ..-. .� - , r , iti, � �w. m y _ .a�, . . . �, - .. _ � . � J � - k � _ _ x F ^-� -�' "'�r,.. `.;�"�.� - - nn YZ. . ,� 7.��:.. � . . . .. , .. .... .�. . � �. .. , r., . . :., . f , .. .� . . .. .. aN. �` �t . d .'�,... I t. :�, �eem�: aR f.' .. . ,. . �, _ . . . L .. .. . � � o.i .. -_ ,�.7• .. .... . . . .C.:, . w� uc i . �:�' ' rJ C� < �' � _� ,. �yr � � .. . }� .. . .. . . . .. . .. . � .: .. . ..� ... . , . ... _. P.f.T . / . -_.=t., . . . . . _:. 'n�iU� 1 I- {�y .� .�T _.� : : , . �. i � 1 . _ . .� � . , . .. . . _ '_ . :L . . ,'.. .. . . _ .i �. \ �. ' T �=/' {!V4 10 � - : . � .. .. .. . .. . �, , :__. _. . �" . . ., , _ _ �., SE t - - � � . l, �� M ., . �. - - .-. . . ... : . � . , i . .:.. ..in. , .... .... . .. . .. . .... . .. , i a`, Y - - t �. I. � ; _ .. . . ... - .. .� .. .. .. ..- . .. ..� ,♦ . .... , . ..: __"' .._.: C i , �:f�- �• .� . ��^ h ��i �I� .._� ..1" - S \ •C :. . . .. '� . . n ... ,-. ..-.� . �. . _ .:.. ., v .._ .. . t .... . . ..r. .1 .. .. . -. !... � `�_,.� ...� _ � , �...IN� AN �.. �;1 � mcna M� n vrc ., . � � ... . , . ... , k� c6 . ., .. . �� . . �. . aan` . . .:. .. .: , . ._ es . .� . i - ,i . I 'i � - i' - + �.5�',�` �� .. � , . ., .:,.. ra* . .. .. �. , � . .v . . , : . _ . . �. . ..M . � . ., �... . .: -. . _. �- ._. ... .. . . . . . . .A.. �lR�.w!51 • . -..+�,�: �j k �� .... ... �. .. . . r .. , . .. . . a. .. .. .. '-� . ... . �. . ..� . ._ . �. _ . � +11� �. � .. .... ; � '.':" � . /' . -,. . . .. ... � � . � � . � . .. _ . . . � �r. . _. ._. , � , ,.,,, ., . , � , e= : �� � � ' i 7 r .. .I., Y1L. _ . . .... \ . .. i . . . ..V .:, r� � ... . :.. .. . . .... .. ._ .:. :. . Z.` .. .Nin ., . � Z ��% ' N o i . .� . . ._.� .. �_ . ��. . ..... c.:...� ,. .. .. _.. . ... ._ ..-.. . __ .� n. <�/���F I - � ��� �. L'�. _ . .�. ... . . .� . ..�' - ...P-:. . _. ..:...., ... -.. . : ._, . . . :. . ..�.i . r.. .,.y. %�.. _ i �r . f �.. y� , '��:t �.. , . ., . , � � •. • . ^ _ �_ s_Ji. .r" : �K ' S:� S7S,.. 'R_. �: � . _. . > .. . .. << r., .� . . . _�.t . ,. .... � . � � i i ,�� �:� :; l ;NOA�r. �2 i.. c., t .. .�. �. . . , . _ :.-..� .,. . , . ..... en. , j �s � ; _ _�. �.�: ':. k L. .;� ; . ` � : �iY ,.� , _ � .:. _ ,�+. .. . _,- . r �.. .'� . . �? , . . _ . . . . � . .. ,. t. _ ',o � - �.L ; �, , ... ., ,. . :U . . . ._ �.. _. ,,�. . _ . z_, -.,: . _. . . , ..., .,..� ,�- - r,= - , � � �'i . , .... . . ... ,. .: , .., ,. a _. �. .... .. .,.: ,- . .c,. -,.. ...__. ,,.... -. -.-,. �� -- - - " ':i: �C_ a�.t �k - "i. _. . . ,. _ _ .. .. �.., t ._ . . , � .- ' . '� a rt� �, i'✓ , I : � Y _� .t• - _ ''� �; � . . „ � , �c .__ l. ,. . :, ..,;._, . -.. _ � . , . ., . . , . . . . � �t � �'. y� 1 . � . _ :i . : , . . .'R-.. -Y�Z. .. _ . _ . � !., Y.. > . . i . .. �. � � i - .... J` . �.. r. i � - ii ` v' r .l. - �� � 4 \ �,. . .___� .'� S_vtY.. �Y7 Feao-. . . . .. ... ,: ..:�,.+r�., .. ::. . . .: ,- . .. � S . � L..... . . . . ,. . . �. .._ �:. ..,._ .,- ._ ..1. .. :. ..l .A. . A .. , . �.:) � � - :�� . I. (r= ..�... i i .ff� a. .GK � _r ,.> , s , �l' �. .� .:s! �� .'~+� - Y�-� ' ..T ' .�: ; . . �.. , _ _. . _ r,_ .: . .. . . . _ . . . . � _ CQ . ��l� [110. � 9� i \ �r ^ . - - . .. T � � . .: . , . . wAer ..: �., u;. . ,. . . �. . . x . ._ .. .. , . '. . r l •'jY C U �'.� � .� ' . � - ' 1' - 1. Z4 - _ ' . k. • �:_. � ,.. . w ., � ,' R � , �. ,. � :.. x . _'°'�.� ,. . � . .. , _.;�. � . �� .� �.,,. - �:. r a. + - �.._ .C. . , : ,c. . ., .. . �.. . ..�.., ..:. ._� . ... , .. . � � �,.. >.. ,. . ,, z -� � i 4, .r:_ �:�� . < ,..�f:. .. . 1. . .. .. 'R' .. . .� �.. ._ .. � .. .. . ...._ t. .. . ... ._ - �� . . � �..... . 'Rv� i � �� R� .c �. C'- � +r-�?. -. � � � . . .. .. . . . . . . , .� .. � - ._ f .L� , . �.. - _. . ,_ . . .i � . .. . ,. . ais � ��1'er r' �. _ - :",� .1 . -.��. . _. _-... i_...,..... . .. ., . ..- :.. .. . . w..l , .l �... .. . . ,.�a. �. �, .A �..v' �� d •�� - . .. _ , _.. . ...,.,. _ .._ .. . . .. . �... ! 54ua . .. . �. P.I iJ � . a ( , ? L, \ .�� " � r ', ,� �( ;o �: . ;.� �,� ( - i, �C . ... , .. .; ._...._r \. 1.... �...-� •. -.., .. _ 2 I �: ... . ... t `�. i ..� �i:J`�. �� „ : , C:.•:, ;�r.�. {y� -��� _y[ .u� .s'. , . vf . .. Jr , _ �. ' .. . � 1_ .. . i. � r . . , . . . K . . .. . � x.� „� - - t _� . i` �.l. 1. � Ri.S. . ., d 1 `� , Y �.�' ..�:. . .. {�_ �1LISk�. _ . . - ,'.. %I�er . . -��- _ . � ,... �. ; ...' .,J . . -:.,. _. ,,;�:•� �' Nt .. . � . \\.: . � .. �.. . . . .. .. . i. � �-l. �,. ti l. :.�A� � � .aY' ' ' i i._... o ..,. � ,..wov �w, i ,. , ��. ,. ,. ,�.-.. ..... : : j3* I �.r,�N...� i!a[�ia�� �t3v!.t!:Jw' � .1��.,�-. t;.�� - - -€�� _ . .. . � �_ . . .. . .. -. �. ' �.'.. f�� ..�.. �-' �:,•�.:�. •. �-' ,.-. - .� ,�->a ., � .\ �t i _ 1' ,"��,ftE __ 'a�.. _ .,.Y:' � -- -T�= --'. ..x . c...: . , _ .. r , � �._ _, �_�.. . _� E - - _ _�=--` � ��� a �-� �'-� -�:�-'' - - - � .:-. - �i� R. .. � . . .. . . _ _ �. : _ � ... -: . . ,�y .as. _ . - :. � ' ._.. _.-_ _-�---t.__ , _ ` . . '+i... �--- - �(- _ ; - /-- _ _ .. � . . ... - ., _ .. � . t P d _, _..... � . _ ._ . _ `, �. .... � '_'S� .-. � , , . ..� �-� `I - .6�� __ _ __ - Ar� > _. . _ . .. -_ .... ' . . . . 1 ��c. ..inl ��n� .. � . �. . Z -. . __/: `.�, . �� -Tz.-.�_�..' S (� C � f"��.. bnn � i'��. L .2 . . DE 1 � ',: .f I �� .s' I . i . . ' 1� t �. .�), _ .. . �., ; , . � .. . . _.. � :: �'_ , , •, . . ,,: _ r „ __ , � : .� i� _ . _ 1. .. . „ _ . . . 'r � r . r_. . . _ . . _ . , : o. . ... ,., - '•". "- 1 . t �A:: � - �.. _ .. x.. n�n. , � , _ .� , � � . A rU S `.._ __ O : ''\ _ �`;.� �1 I _ �: .. , � . ..-.. .. a > ..� �.< .. �: ,. _. .�ea� _�:__ . ... . �. .. . )�.� _ , .. ' . ��i. f� - ��' �+'��:. �. --- . . .. _ . . h .. �B� . if-. . . .. . . _ .. ._ , .� ... ,.,. .t. . _.�.. . . - t .,a �t�^ -"'�--• v,� :�`-t .fi -�+.'' - . . . . . _. , ., ._ ... i : . _ , . 4 ... .. . . .. . .. .. e � . _ ..__. .. ., ..� : e :. . �. -t,T� � 1'. .1 �. - �» ' `i a . .__ � .. , .�.. . _ _\ . _ .. ... __ T.:... _ .- � . . . _ .. .. .. � � �'' �. .A -_-1 _ i._'_ ����� - x, �f. F � _ . , � .... ...... . . ... 1 a ... . .4.•, . . �.. . . .. ... ... ._.,. _ . . .ei �i�:i - -. �y .�.e _ ,� ..: . . . . . .. .. � .!4 f ,ti .. c . .� .. - .y , .. : .. . , . , : - . . , � : . � • ' - ' " - 1 / an r ' _. .�;...._.." / ii � � _J 3 �. j ,: , .. _ .� ,. . . , . .. . �_,, . ._ � � - �, _ �� �"O T . . , . -, . . � . . . _ . . M ... , ti „ ,. ' ' _ _ . . . .. . ., �. r . . , ... .. .. .. n..�-(.,.... . ... . , �. . � .� , ::-_.._ . .- : - - ''L l ..A+C �+'P.� ; . . ,..� . . .. � ,., _ � ,-.. : _.��(_ . . . ..... _ __ � •. . . -`i E ��..;r .r � ^ . �, g . . . . ' �l. . ... _ . �. , i. . , _ . . _ 2E .... , , . : .: . �. `�,J � y - `* ,i -, , ?� � / �. 1,. .. . v . , r. . , . . . �..:� . , . , , : .,. , . � �r, - , � �, D�6 , .5.... . ... 1 : , . . . . �. x . . . � .. . .. ... .. . , . -. � . - . r. : . . . . . . : , . . �F �� v^� : w� � _ .._y � Aa;heeW vf . . �a� v . ... , ._- .. . .. - , u ! , , . ..+ .., .. . .-, -.... .,. _ � . _ \ ,.. � . . . ' `^=��. a!^" . ,h _ t- , � : . .. _l.. .� .. . /. . . J . I .. L . ..[..� �. i ., _ .. - . . .. . � a1. . . . _ .. . �� , r. :3 Gaat .n.rh/' ' t - r 'J, r � �..� ' -. . ...,..a . . N.. . hF . .. ...�.n .. . .. .r . .. . .. .. . . , : . . . , � . ..__. . �. - _ � � I - .:t� . � poYl! ._ _-. .. r . _ .. . � . , d ., .,. ..i�. . .. ..` f-�". . _ . _ _ . ..., . . . ..�. . . 1. . ba , . . ' C •,. �'F F� - 6 �-q..s �'��: - . .�_.. .. ,-�.. _.. -.. . . . ... ..: i : �. .• .� . . . .., ;___,_�,. " .... _ , ..._' .. . . � �.� . . ,. ._. �, -s .._ . . . , : , . .. �. ,,. . - . . . e :. ..., . _ . . . -,. : � v,;�.�. --� �. - . . �. . ,. C . .-: . - ,., . � ... . _. , . l .., . . . .--_ Yn ,. ... . ., . . �. ; . o .. . . . . oa _ ,.� , . .. ..7� : i - i • '- n . f��7 va_S '��RA�- . y _. . ... . _ ... .Y. . .. . .. ..F- , n . ., .. ._. � � . .._ , . . ,-ti. : _ �"' . . . , : �*a�.,�o. a , x-u! s .t.e s . �y= � '.1"' .P ,. _: .f:. Y . . .. � .. . .A {fr.... p _. , .. _. , a , .+ . .: o- ' ' "�4 �- ti - `t r Pt - 4 i , ., . .. .. . .. �. .. . �.. .-�r. ... : �......�e, ... ... . ..._ -. . ... �� . . . ��': , . � . _ .. . . . � ., . , . _ . _ . . . , t . - - � �. , ,_ .. � .. -� �„ J s 1 � L- _ . t .e . .. .. . :� r .. . 1.. . e.�-�.,A. ... :'G- .r .. _. _.0 e -. ,� ., n,�r.n . - - - 4s:% ..\���~ . �'.� _ - ��.... � i . . . �.: . .+ .. . , . . ,.. .. ... ._ . .., r . . .._. �r . � e �O+Y, 6 �f �,i.' . .n i �Df� : .. . . . . ...�.. .. . _ _ . ... ^'1. .:-.� �,. .� � � .. �._ � ; - -� . : •' �E .r. :� > , . .\. ' � - - � _ .. _ . . _ � . . . . .� _:- :ti �,^,�r .� z�. � �� , � � . . . .. . . _ �, . r i r . � . . . , . n� .. s.� w�. . � . -. - ,; . „,;<< r�,e, � - - - . �/� F� ,,�S� ,c C A . . . �, . , .... - . .�.'*.�.. . ._. ... . .. . � ._. r._ ., , i�. , h ... >� .. , I ��... . _ � , ,.s� ��tf� . _� - � __'�li' :� e j:.���.J! �� `�. . ._ � . .. � .. . . . d."�1.. { . . . _. ._ .. .y ._ � , , � � .. � .. . . o .. . . .� .f�.v� ' y .' 6�,� . ���}'� �.� . . . . . , . � .. 4 .... _ �i .�a .. ..., . � .z.ti,� ��_. .-- - ,�. . 5"�, , _t , . .. .. _��..,s.�. ..wT. �• .�i - ' - - . � ,a,. ' 'Y• --- - o. . . t _ . �.:. F � , .. p ... _.... ��., y. "�!.- , ._ ., . � i., ,, u„n� ... . .,.. .;.. . ` �_ :�..�ca':�.- ._. �6 .�. ..��+. �;� . -� ! � �,�,1 a.,J� -; „-y�- �TS. � . a ana_EwdiL> --,L: ., � .� �...6 : � ... _:�. �- ,.: .. S.. .� ,.� . - .'9� ..�. -, , , . - . ; b .. . r : _ 4 � . �i� �7.. vir:. ' ,-�i - _ . �-ht ) . . . . . .... . � ., . �.... ._ . �.. , . ... _ . �. . .r .: �-_ ..l' . .. . .�. - ��.T� 1:. is,_� , .. . ., .. __ . , . __. . . ✓. . . . .�".Yr. ., -..o. .. . . .. .,. . . . . .. L.�-i:� � . _ - - . ..0 ( ✓ . . - _ F-, 9i. .. ... .... .. � Y. W.� . . � . . ._.. . _. . �:,) .- _. , _._. , . : --Y� . r4: }/ �c ..� . . . ;.. . _ . . ��- .Fi. . .. � . .i � . l� • �. '::�.. �' ��-! V . .-. .� ..��s�'. _._ �^�. - .:. .. .-�J. .. �. . �.ff .. , f... . -._� .'� ocn . ... . \ �. .. �. �'-\.,"'��• _ �. - M C ?! - e - ;t : y `�.� '�`' � ' ... . .. �. . ... .. , . .. . ., . ..,.�. - � -- = �ii. _` \ .. . .1 . . .. . ,- . ... , .. _. . . . .. ,� n _ _ : . . v.a.: . � ., .., .-: � . � . � �. � : . - : I �y < �i � -� - . . � . -. . . . . . . . f .._ . _. r . � . � . 5�.. � .... �, � ! .. . � L�•;� _ FECS. �" � _.r i �� '..� - �•�.' :�4 � � � . ...� .; .. ♦ L ... ....r_ . � / .. T . . ... . � F._.M'A� �Kt[ l - . .- -.I . .. _� � . � . : . . � - i\u . \^. , � . r � '�. . � .. . , _ ... . . , .� _ . .. , . -. Y ,... . :,.. , �' �i;`- :.,3- V �'2 - � g .r _ ; - _x, - � _ , , - .. �. .. . �. .. _ . , 1 � , ,.. . � . . _ � , �{ . . , . �. ( , 7 a .. : ' :� 9 . .� .. ._ . , . � - .. . . . ti. � . .-. -,�. _ , . ... ,.�. . ,.:.,. � . � . . . ..�. a - J� .. - �_ .,, � . ., _ � . . � . r - Y., . ... ..+ .. . .. � u+..w . . ., . . .-.. y ::t� �� � '.�v' V . .-� . a.. : �l, _ � �. : - . 1.� . � .� . . .. . , . . �. . .o:. . a ��:.: . :.... .. ., . va1RN '.' " / � ^�'� �6� -.. ,- . , . . � 'M � 1' .. �. l . .. . .. . l.. '. . . _ . . _ _ . .. �..r. . ��.^" �. . , _ ...� . . . 46t�11 AK r �� ) . - !F R�.h. ..1[� . J _ "I l _ .�` � : �.. / A� .�.•. > 1' � :. �"'�{?\-'.. .'.-3....�' . ^'-�' . � - . , .... , i . . . y0�.. . r , . ,� � . `. � • � . . ...-. �F _ . ' .'-ti A T F -> � t , . ,�.;' �.. \ �� . ,- .. . ; ..�. � J.. .,.. . . . J, , .:. _ . - ,�: ., � _ .-t.` . '., : -' " .. ' . . i � d .. - ...-�� . � �.. . . �i . .. . n a ..( .. t ;.. -._�- _ - .. .. �:..��er,,. . . , .: i'��� 4 . t n � ti ' ' ' ' \q .�.` - � f. �.^ � .. _ . r e nw � . _ . ,! .. .. .. . _ . 5 .,.,;. , _., .. . . . . f4��.n f „ �,,. .. �-'] � n v..�, - - I � L44'� .. .�. � . � t. �: _' . - , . . � - ' - . i _ .. .. .. - 'a 5'!4c. . . �..- � �..�v .. . . . . , .'.t �iER`l�ii !`� ', 9 _ : \•� _ ;•IJ3. ' 7�... - . t-i� �� � . i.. ,/ . : � tC} ` l, .i�. .Y . � n•�a - � PI'<c'p ��bi -. . ..� ; . ,� . . ,. y .. . _'�'. '. � _=Y. _ '�-� .�-°, l ��. � ^f - _ f. � R _ SFb .At,N�7: o•�_ �.� -�:/ _ �.;>�� . - 4, V - = ,' _ �� S . . . � � � . .. a ._'."�1^ )�zc� .:?`c . "�z' . . - .er .-� -.��,.,i� " � _ •. •�_ . _ -_ . . . . ,.i .�. :,. . . �. ��i:. } . °'"�a�mo. ��-�'p�"' .°..-'� _ . + _ ►c, . - " ! �i m � - � � � . . . _ �,. '.:. �1811 � �!'."... .'.:.�: � �'. . ..?.�. " .� .1. . ..... . \�..-., r .. �'"' � . � 4%�. -� � �S N'�] cLQ � l3: - i.Y - : . -` .. . . ' � � ..: ' . .i: . _ /; . A; .r'. . ' :�..�f .v- '� � . �. J � � �. ... . \ � .. .i . �'...�N<. . . ..O .. . Y.. . . . ,: . \ .�_'i_ _\ .� .r_. _-.` �.� . s . bi�' ''�' :�QB /l��nii; -+J� ._ _ 4 � _ . . . . � _ _ . ,:. � . .,, .... .. : . . ... . . , . ... _ . .. . . ,-i .. ., .. . „ , ' 1' y i - . r_ '1�,-P`- " _ t' ��..�:: ' ncn � ,:� _ _ . ��.:.� . _ - .. _ . _, ._ �. .: �.. ." . .r.� .. .T; •:., � � _�.. , ,�,-r. ;t „- _.�r-- _ «, o,�•. �;; ,�- � {° - �� + .�x �: ; `� -� ' RIVERSIDE COUNTY FLOOD COfti7'ROL _ /., _� ,: . .�s . � .�- - •�' °•� ..� �,1. - - - , �`. � �. - �. . ..r' -:x - =�i" r J. =. . �. , , . .. - �, � . � t. �.. �m��,�� ., }r*': : --� ,-.••,. _, � f � -t _ �{°� . _ °: d - _ - - ��-� � ��� h �� . , _ ` - � u:�. ..� � 7_ ,� : �`,,.:.- _ �y - . . a , , * r ': ��. ,-.'�,. , . ..; ,�;.. . :,� :�'. ;: : � �•: ,.� : ',1�, - ,, 1 . - " , � _ , s s -v. N � . . . . � wne� ` � N�aie. �. � ..,- .�. cY° ,.. .�r�� 1R.. <- ... ..� �. ,�:. � ' . J • i - �� ^� .-C'✓-s ';� ?, - '" £r `- �"-�-. . ., . ..�. _n.... � , , , . ..:.-� ' s,�_ �'i v ... _ r ,,e,-;'"� r :W A •� •� �� i• �9�• -� . �,.: _,� . .. .. ...... ... r�.:-_. �y`tr.----- .�_ _�. _ ' a5. � !� - [ \ fv� � ] � �,:�;�.,� �.:5. � : i - ,-un�i� ' �� - - -��- a- .:� . %t. - :;.i . 1_ _ •, _� r �.y WATER CONSERJATION DISTRI T r� - °, � >;� C - �' <�T`.. � i � _ 1 J. �'� R < '.1. ' . - � ` t ^ � t.� �a� - �fJR - I ~ .r 1 - '., •. •... :; ;" .. � , . . . :. _ T �yn Msfm hr" I I �L � �� _ ' �t a�'�i+ ��4.! ' �p�J' �: - �� �"1C �-�T- � ��; - ,. . . . ,.'N ._Y'. � , ! _^. . .:�,.� .e .._ .. � . �. J_'.o.V( -. �.� v -' OL'[M _ E'AL4.°W''. - 1 S� - :'J' _b . . __ _. ,� , ., P AtC t? ._ . : . F: z ;,: : _ . ti ' e,m s i,�l� `i 7 „r� - - - _� �� �� -' � _ ' S � V I. �-c� �� _�I % i. � _ . �. _ � ..--..� 3 Y 'r� �f�^ai -t � >. '� -�. . . . x � - ,. aHorco�X . ',f� - � - i �T� r. �� . , '. . � ;.. ... .. a ��, . . 4 ., . . . _ 'v+�.r_ �. - � � iFna '' � i='.:• � ' � • . _ i . ^� - .i �.�7'� . .. .'.� . . ��..�.> \ A _ �;' -�j _ 'fl4ne ��',�. � � . .1 y` � . >)j - .,�>�� . j ' ' - � '. ', , . , . . .. - . � . � . -' ��..� ��ei . n. . "J. u p .. , . . . . . ; . . _, / .. , �, , _ .;�� _,. �, . . . �. -• . ' . ' � h� • . ",T _ o- ' _' . � - - - � �`° 1 �- =�_ s r ; . . c; ...� � r �� � . .� _. � . �: _, . , a . .i '' " -T:' 1. : �:. ?lF 11. 4� 4 l ':�. . . �. � 3R0 Y ,. : I '. " z . �G7- V � � � ' - - a +l :�r: � . .. -: _. ..r.. ,.. -. !�i ,,.: .t �?.. - --r-,�, i�s,�,«im-i��x ,.� i. � � - - Z'Y�AR � . .. . f. > +, s. v-, �. ��- � ,:_.X <'7 . : � .t, - . �' � ..� ,. . . � _ , . : - ', ' 1 _ -_.sa � . rA.. 1' . ;� ;t�r: , . '�� � �� -- #' ��vi' f 1 O � R • '� . . s.� O ` .s _ . '- .c ti': .:'; , = :. � .o. . � � . .:.. .. :; nplt �� l � Y' ,.r �.: . �.: . sc . ±+v „� ;' fn�e ' $.; � � rc4 /-+� � �.�J + �di ...... '7 � � _ .> . �:: � �' SSNw.a,. �M�.dc: ''c . -^�;F° t ' i.r. � . . ti-.. � h : t� -- : , i , . i .� . . . . � .. , _ . c - �. �. , .:. '. 'b �. _ . . ,. .� . :. . �.': < . .. -� .� ._.�. - '. / . ' . �,r .e ^} � 0'.1 i i�. f ., .. ' -... ' � ... / .�..5, _ . � � .. : . . . � ,.� ;.� .�. .. � �• , . - . h' � . � '.s.' �'Y� (� - .Y. � ) ,: � � � � Y `� „� z . . v =. Tt.:,�' - . i � �t y � � r:: c13ti�sca�jps5s.kia^�r. � �' f a � , � r ., . . . �� B , �� .., #. . �.�2 i '�-. H�s . prtfirv �.. .r� � Z� � L. � . .� � 1 - ?RNST . �+ . . �. - . . .. . ._ . �. .\ . . �_ .....-� .-. � . �s+ ��:. : - , . �» N 1' ^ '+ : f . \ 4 _ -. -. -. �, ...' � ��.� � ...z_.._ -__ "-. �.. _ � ' ^ __�. ._ ` _ :1. .C� ,- ..P?.4LA M' �t ' .�,•> ._�Z�' .:°�'t 'ui. _ . r , ,__,_, y . , -�----�,--- � : _ t . , � _ _ <<� . r �:4._ �3,,� ��� � �o-����«�� -�: . ;:; P R E C i � i T . .. , o � ,, - ; -�c-`� _e, . .. .: ., -r---...z-� s���.�- ==�� _ .�_� - - a _ ° �:t+ � - - n�,. �..-,,; �.,._ y.;,y :� p . j.: e c � - . ! . _���., �� a t 1 (oltl ... �� �. � . � ... �sre�.� .. . t �uk��...,, ; 1..... . �, - . � �:.k t � ., '�! .o.:'. :. "+.�> . �'•.- 4,� r ;,':\� .�rcP.'csr - 9 "`".�'"_'7..;�?: r e' � /. '. �. �. .. . . ':.:,,.. ,.. ,i.. ,..:`... -..� ._. . .A - ,�I. �'�' :- . , 1 ." ��� ' ���c. %f% f �_� � - ,R.._ " _ t.�' �' _ . � . �, . �.. .: . � �. . . `�W sw .�.� �. .._._.. " 'ti }- �e, :a -�c,s�a: �� � .J,�,�,..#' ,�i. ��y .. ' C i � � ! , . ... . � -.i.�. ...�t - _. - .,� ... . ,�.__ ,.-._ ..M-,.._� ,' .! �r"'fiEa �i �i�l.. �.� �::e�� . r.. . @�:-��� ��::t• r � ���� C� e.,.,. : :: . , ., . ..;.�.:.' . ,.a,.I�tli.i4.S� � , " - in�c � . \ _ �i.:�..� . Z .a..c�.e�:�.�eur,.�. -.� , , .:ti� ... .:;�sr#R'� ' �. -.KCdD .,.�' _ a �'�` - �.i :i..Y T 'c�" i "'�G` ���e .2 a»mn � �` :L.. 'cv� � a" a. �fR� _..�: �. �., .._ . P .. > . . . . . . , •� . . .. .. . 'P t H �. . �. r . .. . .. �. .:��_l. ;� .,� ��.r .-' ues+l� :..., .: ...-�,:I � . , ...a� :J:� �+R��i. \�- ua.�'-,a°�'_ �l '��. &�w?5•rC+ttti?la 'iu �s _ .., . �. . : �.:,;.z . . ; ..�,L . , � ,, i .., .r .. . , ` .. „_". e�e., i,:,;` �.. � . . _�- ��+'. ` S - ro2F.:�+ . -'� c..c�.a e.. _ �1041 . . ��1�/. ,.,.:,,.,.: R5111f-- -. � �W._ ti. , �;-.. ; - r �, -:� � -„ �� - � ( �- ,,�_,. � ,�_, _ . , , ���it`�- ... �2. -.:,�„� �..a�l>V�.-.. . .. �::�m����. R2F , .� , .R�� , > _, �a� ��.,.,. ��;�`',�.�... �., . _ - - ,• .� : � � • . o��o �°�",� . 4 .. , -. _ , :-. ,� . . � �. �. ���,..., .. ,o ..., � , . ,.. y :.. _,. � 'f ,-. . : , 'ti I�Pt �•"r ti �. . � : : .. ,� . �, . b _ ,� '..,� ., ',!, . �+`a�, .. f � .\ ` ? _� � iy�7 . .:,:1,. :.f:;�""�( � x 1}� � . ,T J.:;W�I' l•;� -�;! * �...'..' ' ���/' i .� /ye �� .. a. �� _.... � "I ♦�'I�.. � �.. . "_`. . _ --. 4 WS1�.�. ' . .. . .. n :..t .�S . .. ""'�� ,. . � i�` l�. _ '.�.. - i��.. ' '::?^^:' ..: : � .. -.. .f] , .. .�.. . ....._ �.. _ . Q 4Y- .-... _..,. . I . � . . ... , � ., ., i_ FRGbN� ... ._ .. i.._ 't.. �% �.`� �3�."r � �,�r : s -- _ , . R �. 5.�1 . �, ... . -� .�€ . <:,,. . �� ,.:. -1 -� �. � .�� F - �. � M�� . .. . `. . _. .. �- _ i ,. . . . . _ i. , "'.>_�.. .. . . .. Y..... ��. ,}. . � ��-. A,ff. - � -:r J:. �f'°"yd°.�. . r .`, .'�, : . . , ., .. ��.... �.i , n �t '� :.., _ . . � y . . _ _ _.._. i . , . . > ,,.. _,�. . _ ..,. _ . ,. _ „_ C ,.. .,; � . { �.�;J- .�`. . :t � - .. ,. . , � . :, i . ; 8 �: .. �r , . ...x �. . . 7. , ��. ,.i;,, `�-� 'i . : . ...�,.�. � . . .._ n . i . � .. .... .. . . t.: - ... s .. . . .n . . .. . ..- . ..- , _ �, _. � n'NWk� 1 C� �^ i.� .{ , , . �_. . ,:. .�� _ . _ ..� .. . 4 . _ � . , �:. 7 � � , . . , . . �T _. , .. ;.., :- . �. . --� , �`I -, . i - ,_ _ �, , "� '� t_� �' � .� - �, y, � , . o , oe �,o . . �. '� . ;�� ,. � . �.� � � _ . ,�. �_. : . � .� 4 - � - - � - .=+; E-� . : _ a= �;s . � � � ��,.� � � . . , . . . . .. ; . . <- ,�. �_ _ _ _ . . .. --{, � �- �--.. r�..- � L, ...; y - ' / I.R E f�. _r r._. ._.____ , � . , .. r., ,�r� ... : 1 . .r . ... . . �,. ...�_. � . . . L �, .,._ �. ..,.,,��. ,E F'�� 3 R6E . : .- ..�..__--. __ __. ._. .,. . k ... ..._.....,r , .z... <.. ,,. ... .: . c_ .._ ._u� .._ ., .�.� ,a<-� s: � 'F . &.. .,�W„ ._i.. �.� � � . l l _ . . a- . F . . . . . ... N . . �. : . ..... .. 'X.. ..�n ., ��._ , �_ .,, s . , . . � ., .,. ,. . ..: ., . �. :-.' V���'���:� �: � ��.�.,', ( 1 . . _ , , V . . „ . . . :, �: . .. 1 , > -- ._ ,,. ., �\,S. .. . : ... J �.... ..f.... ... .....� . - - Fiekl -a IK � . . . .: r , , . . . .. :� . l . � ,. .a.._. . .... . ,, e... � ... _� .. . .�, �._ �: :.0�.. � 1-. t r .'� �� �-i � .. . 4 . . _ i, ✓aa r . � . ,� , : _ _ . L� � �^.Y!.. 6 .. t , ,.. • ..?. . ... "a . � . 1 , .. .. . _. �4 . . ., .. ..�.. . Y-.. � . .,...:�,.. .: �,:., �. _�-. � ..... . .. .......... .. ....:= h. '� � 1. . .. � . . . . _ , . ... �. L L .. . . .. � . r4��1�� ... � .. ... . c. , [n .. . � ..�, .. .. . . � . � � f. - - 4 � J' - . � ,� nC . -. , .._ ... � . � �` .. -Z 7 , `7_.. . ' . ( _.. �t . . . . , _ ,. � ,. . ,. ,.. �.., . :,,_. . . �r... . :. �. � �, +tr � , ;;v i. >u�' - _.._.. . � , . � . . \ , ,., . b, .. Y: v y -- . � . � . . ., t . �. . . . < �.,. _ ..., fi�� r . „•.:..• -o�"' . i . . . ,.. , i. . . r ,. . . �I` . . ... : ..v., . �.._ ... �.. , , v a�,:... :- -...,. C' .{`� , �.rY'� ,l - ,F"a,f - ; L.. . . , I , . . i. _ .. .. :_ . _.. ,ti .. . ,: , .... . . .,� .. :_.�_ : ..�. ---� � � �._ �. ti i `''� _ f �. . � ...._. R i . ._� . . . . .�.. . .....f�:Tr s.,�.,. �. �w.. �.� r t..,,.� ....r . .:,�.� ���,:.,. ��". .... n°Z .."'L'-: � :t� 4 1.� i. 1 � �� .. . . . �i .. . � .. ._. _ .. I W M��o . \` . . . . ._. y.r /. � �.. ,s.... ,._ r. r � . : $. �� ��... J ., �' l � I . . . . . � . ..+�.:..�- - . '�._ :. '. o _.. .;. .1 ... a, , � �. . ._ . ..... . � �,-��� .�.,�- I I.. y .. .!.. .:. . .. .... . .. . �, • :: �-. . � I � . ._ � " -...�. r�:+.�_Jr_d�..�.... � . �.... . .. i � � . . , . . i ... . . . . �; . ... . . � . T� ,' ) . � �� � ' '. "_. . .. v��:�.�. �. .. . �. . .. ✓...� �.,. ..,...� .c . .. . _. .. .. ,�� .�4 1 . �t" I . . .� _ ....t � . �.,. - -3 . . . , . ...:...�. .Y � 1, _ _ .� _ . .. . � :7�� y �. . . •� N ! I i �_ -�- .i„ . � �. _ _ _ ..:.. ._..... .. ..,. _ a._.:... .t. t .... . � r °: �� ^d., � r.€ ..d y-bTr,,� , u ? a -. I . . ._ . .. ar.ca � .,<._ ��.. . . �... : ._ . , _ .�. .. :,...-�. .� -..� . .�, ..., t. a ��' I ,Y. �r.. / . i � I.� , . � � . � .. .. , . . _.�... . �.,....� _M`:__ . ..:.... .�, ... , ...wv.>J„ ",. - •:.4.��n�,. + .i. . . . . � I a _. .i : . 'f' , : . _.. ... _ . . .. .. . ..F a .... . _ . . _.J.,_.. . .: . r a \:; .';u�'":. Y�= - 'P' . . ��� _ . . . , '"� ro C" , . 1_.t :. , . � , .... , ti , .. . .,.`�, t- , . . . ., .. _ _,�r.: � . -. . . . ,�-� -. �. y� c�ua:wn�ri... . - �' �.�s.=�-�� �:�.t�--�� - _�.-L-JL ...�. _.. _ _ �._ cY e ... . .. . i �. � : .� ,/ . _ . � . . ,.^.-e. . . .. X _. ..: , .- .,l ..,. _- . . �. L G,' i '.L � �;� r - .� � -- _:�e: F34� Ff .}. r .� � � 'C�33 .. . . ,1 .. .: i�._y� � _ ... j� '�:. J .:�'..`ir �+'�: � - :A� � t �7� _ _� . - r. . � . . xair. . '�? . � - . '� , . . _. _ , `+�..,.. + : �, � : �'�J» aS.r F: � , . :.. r .. � ,: �.�: :: .. • ,� ,e. . � o _ ' ' .... ._ __.� ._._�. . �., c�l�!a�!. ' .ian r �, , i su ��..._ .• .. '� .._. .... .... .. ..��� 7 ,� � ��.:. l� ' i � 12Z �JoaF}io�Tre' -�' . _._. - ._ "_ _ _ ...�_'. .._____...� ...._.�._....._..�L� N� �_ ..i �� � .,.a. . - . ...-� .:.... _...,� i� .L :G. i�:t--��: t� .r".""... 0 . .� .. � -- -, - ' x . v - __.___ '-_.'_ '__ " --LL_� . .'-. .<. ��d...: ,..... _=�� �y• `l...: _.:F� �.� 1 ;�.. ✓` _ _ , . �-__ � -- __� . , , � .�-, c m . . . ., - r. . . .. i -,. ... s._ . , .-.6. . , ._ �., v. . �✓.: _ . . , � � __.. _�_. _. ,. 7 , _Y� -c:o._;.�•r:, . .� r�• :�. f � 'S T r r •� . __ - r' . aas. -T ' , T , _; . ...n _ � i � . _ r . -. _ _ �I .�._. . _. _ z.,-,: � t �'t_ � <:__.^ � L" t c . ! at. 1 � , . : � . . i .�+:. _ q ,, .. .. � � � , .s . . . .. .. ....� �. . . _ . . . . , ..`�C'-"�. �..... -._,�...-, ��'., ..�. .�. ,>-� �. .�':;" �1_" ,.�..E; t ; .fS.�: : V � .,�i , ��_i_.= !':��� _- - - �. L7;. � � i , , :, ,: _ ,... ; , i _..: : ��:c.,s u ; _.�. - Y a �, i. � -�,. � _ ::II �4.'_ - - - - - _ „ , . .l. . i. � .. � ,.� � � -✓� s ..^"��.-.��' . .., „ _. _.. :r?.?:. �..:.s�-r -:=: -.+�-:,..t4�k . �•a ?T` - s°- .,.I��� - i / . .. .;_. ... _ .- �._ :� . � ;1 .. . �_ _ �,, _ r f . ...e.. 4 � L U � .�. • .._ �-,�.F�' .,..: :- r ... - .i�. ; - � � s..i� ,�. S ��� . w ��, � . .. �. : � . , . : . . , k�: . � �.n� /�.r ^' .�-.� _ _ . � ,:i f , ..�-�[z N � . K ♦ �.. .,_ _. . .:. . _ '�� :-. '. . . y..q... ;�_; . � ._ ., ' , . s .. ^" ` ..� �_„�.. �.. . . W^^ .. . . _ . , , l.. � t_ . .... .r _ . C , ,,� . -'_��- ,. -_ "�;, � - �;f�- I J , '.i � _: _. - . __ 1 ---- -_ __'- - . .. _. . . .��4"" . . . : . ,, . . . . +A., tS� .: _ �.. �.. ti . , _� . � 3r. . .� '4c E�., � � - ....., '�n�,�._.. .. �, �...t, ......__t7C. : .��d.. �n� .. S L. . �. , _ . . .. . ...:�_�. -,-,.r... . . . _ _ . _ .. . ..- .. ..� .�� � �E`,� � i: i � ._._� tli �- . . . .. , _ ,! .. £a�� . . �.�.. �. . ; .<: �.� ._ � e . - .,._ . :, . :..�. .., z... ... _i. �c. . �', .��. ...s.'_"" �. _-� _:�:_. ._ _ � _ _. .. . NO T y. . . . � . _ � �.. .. . ... ._ _. . . .. .... - V-`Y . 7-�., i- �._..:.. .., .� �.� �t �Yuci �:,V I '..� . .. . � •-__ .-�_.--�� . _._'_ . . .._._.. . C_ A �!i Rf8 �1 . s� . . . _ . t. . � l_,� r �. .: .� 9:. � Y � `[ �E � � � �. . . .v - __ -. _. �._. . �:l' v '; � < -. ,.. ,... ._ ... � -.3r .. ^�a� - .q'-�i, �. .� : . Y-� F.�' �a1 - : r� . . - r. . I- � .., he. e�: . ss .i. - � -. , ,._ . . I �. �-:, 1.. �-._ . > �. CZ.. .�=�.�i�. -- - l `t � . �( � 1 - �.� .p e . , � . . / ` "� y� . ,.. v -, . . __"' ._ _ "� . . . _ . �.: ��� :. .: _ .._.� L� � _. .�� _. � � < :.. �� �. Js`.�'..� l'�, - 1 <. � " , l - y ?� � .. . � � _ . •___" _. _' .r . .. � . . _ .Y : .. -. .. . . 7,... ... a._. t.-R.r� . . �.. .. ,. � . :_.A�..-:. -c. •?:^.: 4 �.,ae-.� . �°a_ y� �,. .... ._, .. ��_. __ . ._.s _ . . .� ..�� L.__ . . . ti. . - .. �_ �. . . .. .� i. i :5...:.mi✓'_�•. `�, �.. - 1 Y'� J �r: +" . . .. . .... . . .. _ , 1F n : . ..:_ ��_� ��.. ._ . ... �f . . . _ ...... , r ..s��. . � t �"� _ut..: - S�. (�. io _ . 1. ._ .0 y . . ... u i. . � - . . . , . . � . .. .. . . . ._ . . . �. _...-.. _. , i . .:_ . YP� �.. . . ... ....�'. 2, ��-�y�: :_. .'ls.._ �-Ct. l�P � . ` /�� .__. �A .... .... i.. . _. 1 . . �e - +' : �.. .. g . . . _.. _, i, . +. L•.� .iL.. . � ...-a5 .. � F�� �a .y.: `�"+. . �. . _ .. .... . . .. , � _ . . . . .,. . � � f . . . . --, .,. _. ..�.. ... �.. ' `�. , ^`; }. .aw� . Y �:i l.� �� C ��. 1 . _.�. ... . .. � � .. 'L - -- M - . r' . . �. , . .:.. . ... �. . . �.._ -�.. .J� ..... _ . . : . � . � .. �. - 'S. J!; '�'� .. �''! I ^L - . -. � . . • .. .. � _ _ -. r . . . . . . . . . . . _ . ... : 4 - .. . . _ . • a .c= �. . �.. - '. .r ` �e'.1':,�iBY�I' � - 1\ , 1 ' E _� � L .I . . ... � � .I I -.. ��i. il . .. ..... . •_...} , .. Y. '--• 'i.. � �.... . .� � ..- ...� :'.� 3'� � .J. . �f : . . : I : . . _ �. �r.,. . : C : : 7�,:..n .. .` w�.e� £_.. ... . .. . -(_ -... .. _. .... y�� - . y °.1� 1., ' ..tJqH:.9� .!an.; ' ,.r. ' , C .. � . _..� ...: . • . „ .,.;... _ -, i ... �.� . .. .. 9 .. : . . .. . � ., .� .._ . -.-.. .: t . .. _ . ... : _'� Y.C r - - r -� � L�.s . _ . _ � .�, �._ . _.�. __ .. ..� . r . . . ,. : ; _. .. ..$�< .. .: ,:. ...c.. , �, . ."[ , :.� ::. . :. �;=• �:c' �:�.:" � - ! _-A_ _.. �_._ . eri , i . .. . .� __ . . .-. . ,_. , �, �. ` . t _ .., . s. < .a.: .a � _._.,. __.._ _�-�._.._._ ._-tis: -". .�. - . I , 05.9 w unas , . , . pq� .'t .` - ! J..: ' :. , .. _ . . ' _ _ � ' __ . : . . . .. ____.._�t_._! r_ .. ._ .. . . �,� . . - .,.> ,:: c C . c -. f . ..o � _ ,. , : __. pN. . '+. . _. , . �.._ ..:-. _ "' �� .�,�:.. �x: „c:' � { .. .c.v I_ c. !�,. . _ a . ._ . � � � �' 1 . �- . , i - . >. tM.Mane �t : �"F'a-.�FYr_i �.. .. . a ��` _ ���rc,� P �" � \ � ; �' 7 a. ,e.�1-tin. .... .-., t . . ' . _ _ '. s.. . �. . .. �-� YT . . ._. . . . . ., .. �.' ..-' �".. _ . :-;_.� -:: � %� _ :L•.. � .\ . � � _ - ... .� �- . r . ,. „_;� _ . ... : _�.. Z,� . .>_...r, ....•`�..1"+i'�.-� �"` - - x s � . � i.� � , ._� . -- - �� , .._� .__�t. E -.�r �rar; -. - ._:..v _.: �;•-�.: - �-� � � -�-� y ,� � _ ,-; �.� ; �i � `i. . i.- - „ �--'�` ri =-t -g�a* : .= �,� � ± � � L . ± '� . S` . � � c��>= . ; . . _ ..�� ,... �� , : ,. ... „ �r,. � � ,_..:-;E:.. , ,. ...r. ,-� ..,..,:.. _,. ... �s... �`4�'�,ri .>.:.. ' L..- �`�u -�9.��. :., !�� ;:�;�. �..�� '.. ---_ - = o�. , . , -- . ... r . .- � � • : - _ : .. - , . _ .... . . . _.. �.. ,''^��'r,'�� �Y... . / - ^�' � `c ..cz. , . . r �� : : . l� �c .� ' . �- ' .. .._. . . . ra1,d+_ .,.,. tY . .: . : , . !�K�'�b� . � .. .�l�."' ' �.. _ ����?�z��\i ' . - :_ ��rsn �.� , , . :, r *� .�. t x . .. , . •, ..s�-:� � ,� - 1 _. y --m�v��r � - .4 '�- � _1 - �. .`S -+ .'� _ i� �-�-�--- '�'` � ��� �. .�:J �i.' .:�f ., � , � :, . ,.. �.,; a..��.,, � ' • a, - ,,�_ - �L_ k .< ._. - ---�. . , .- � � a � € .. . �± . , , . r ,.. _ ;� ,. _ � ,.. � �?� r�r'�^�. ��_ m ; � � - - �i oe o � .�7 � iath.,. .yz: �' , r .>- �':'.� '�';- `� � � ., po a t +. - �,t� _ i. - :I � .. � a:. �_, � .-�, . . . : :._ :� �. : � . . .. i , � ., .. ;.. - ' < s �' .. . On mam. ona �: . � .. . � . . .._ ._.. . 5. . .... , . ...... ��� � 3 ... .. ..' � .: :.. '� - p :,t � i . �'��� �` �'� b ��i �t . �`Q � � (V{:': i tpwd" i . . a ,. , � ,_ m n .,., . .._ -..yt-- . . ..� , ..,_.,. h . .. . . '�.:, ' �'- - - � �` ``.A ;. �`. .� �' M U � i�Y a- �- .E , � � .__. . , c :. ..: . +._ .. �lft o ! 4 :- � 1 - r . . -y .. ,... � .. , y�t .. �I � Z. ��3 �ivn'S.a �� .l-� , q N�-;� . �� \ � . � i � . � [ � � L ,1 . __ � _.... , . . _ . h ... . . . � . J'...__ . .. �_ . . ... . .. �i: ,."�" :`. _ ,C� {'� - e a i •�:. ro ( _ - - ,( , , �r . . :... ._ .. . -..- -�__ .r ._ _. , . -� . . ._ __� ._ . . .. . _ .. .,... .� . � .. ..: . k` �C . i ."`h o ssz . ' ' - - -. � . . r � _ '. 9 . .. . ..`•� .. y.� ', '.�Sv ` . � .:.� � �?. !` 0EI _ . . � . . �. ., . . ..... � .. .... .. ... _,. - . . � .-_ �. ..� . �.. . .... _- . � • �'. . �. ). - •i.Sw 1 : . �� s I . . . � . . .: :� . �. .. . .... _ �a___._. . ,.�. _�: � .�`e _ '.. _ '':3 � �i� ..es� �� . : r . . . � �- ... , i . � �`. _. ... . .�. _. .. . . _.. I' . . . .. '�.� �: '._ . �I �'-[�." - i� '- �`� _ .� .. -. ... : � . �I . �.,.�.. .. . . ._� . . s,�. ._ ._.. . � .. �. . ..:ii�. ��.. .�� � „���,' .�. iI'. ..1.�: . � . . . , . �: ._..._�_., . . .. . .. . 1 /'.. , r. . . .. . . _.... : . .- y . _..� � . r ��.k ).-�' rr}' . - �'' . ' " ' _ � �„ . ------- c v. .... .I. , . _ ...�.._ k �- .. S,_: ��' - - � t, y�_ oUNr.M�� ��w..�v_ . a � u. :�i. �:� ,� � f ^, � a. .re. i. x . �a - `�s,r-: �5 _ M ' i � - R., r . _ � :-� _ i� ?-�� . Y 'V .. � .,. , . .. o, . r v.... . .i�' -- - - �.-v'-- '.�'�- . .�• __�t - �{. I :'� . � .. , . . � n� , p�lf .,.� �i ' _ � . . W e�e . ,. � .:::;: . �. . � . ..Y. . � ...,.. `-::�... .� :.. ',•r . T� . V �{ 1 �.. .. �. . /� . � � ' ' - , _._....._ .. . s . '� ... . . ..�. .- . . _. , . . ,' .,-. ..:'..-=.. :. '+. - >:c. .Y. .- ' '_..._ _ " I! M � , . � � t.�� 5�p � i � • _. . .. . . , v 1 _ .. , W. � ' �. . . t. � 1 l .�� .r k � - . r' '. � .£ - F� - ,--> . . , _.�,.. . .. ..;.�, . :.. �.�, .. .... . .-. _ , -�... . ...�:. . �:_ r �� 'w ,::i , - ;, a� .. .. . : , r , . .. . . .... . . , .. . . , ... . � � .. .. �. _ .. . f . -� _ •� .1".'� 7:' _>t:- ? � d�:' : �;` .} �� '�?. - .� � . .,. . . . : . .-. .. � . . . .. ..�:. .q,T 3. � �c.,. a v...__ ___�_ ._,.. .- ,,`�Lr6*��� a_ .4�:`a: �� �'�g� � .�. r. .,ti Arv { . . _.� . �... . .. .. G� r ., , . :+ _ ...`.uW - . . ...,"_ _... x,y S,',+.•:.. :,[� �. k �.. .L , .t V � - dFkNA , I .: i �, ,1.. , .. 1,--��.., .� .� ,f� ��. � .�... ..� ,... . .�.. ...:. ... s�' .,... ... .>r .�- � ���5.`, �-.�-�. �j.:,..t..� . � - �. . �. . ... . , ..� . . . , ...._. y � .� �d�r . . . . f _ _ _ � , � -.- , . � -: - � . �. - -. , .., � . � �K - �: � � -'�-� . - .,,. � ' � : r'�"r �.a--- 4 , : , - , ;sn , .,. . � : -- ,. .. I�_ � : . �. _. _.. �+' - . ..._ . _ : .:� 2.. _ . . . -n_ _ , � _1 .� ; : _.: : _ . : . � . . . . . �� . . �. � .. . . . . : ._:..._. _ - .. . ... ��, �. i �: 't1 �:. -._ - . ���. - - �.•},,.�.� � f ..Hlvc .... ._..._._ . � .. ... . . ✓ .. . 1� . �l .'I' , L . l. .... � . y .. , , . : : .., .. ... ....� c ..r .� i6' -U51� >_:__ ._.__. _ _::. ,. � :..- � FsnrE:. . • ..,.�.a.�.� ,.. ._.. .. � �r ..ua: a v i _ . �� ,..._..._._.. ._� n. . „ Es^� N .O ... .. .. � . -� .... i ... .. ��- �. ; .. �. '4..,- :i�`. - 4 �a ��, - - 5� i �. ,�- ..�•i �. 'r `d'� .rcrt� a ,�, r ;!�it�r.� . � 1 �`� b J� - ' - �.:c. _ 1,� _ �n• w �''', ,�'c; i :_AunCv - d' • r�.... � ; -; �. �. `� .,_ �.., ..�- �ny5t^ • - ��� . ,. . :� .• ,�� -�� .._._.. .. __,.. . . . r .-� ,-.. ._ . .: . �:o : „. , ,w. � '.'.- . ::'b t...h:- .1 � �a.y. ..1�: - - - ......_..___ . ., .', . _ ___ ._. _ . � 5J' . ,. . , .. . L , . ,. . � � ._ r _. ... .. , � . ... . , . _ . � . ._:� .� ., _ ,. . . ._ . ,.�:. :�. .�. .: : r. :-.. �,>-d:. r � - .r� , c. - �� . .. .- _._. , ., '._ _. ._ e . . , � ..,;•,. �:. ._.. , `,.�, �' - ,,,� ' 6; - .� .' . . -� . F- . . .._. .. . _ �. � .. ,. : -. ... , .. � t" � . - ... . � �. . t. .. . 3.+ u �S , �.�i . : i ...� . .. r .� �� .. - - ��. : . �.. �� . , ._ .. _.e....J.. . .. _., .. -� :._ � - '��' ��� a i. � . , - , ... .. . .... . . .. '�-�=- . . , . ,- . _._ .:. . . _..._: <a � v. =F' 1, i F h r . L W � �,v. `� � c .. .. ..:.. ��; . . : . �, Nelt wn. ov�. �. . .. . ,:.. -�.. � . c. �. i., .. .... . : . ., ,..�.-, . .� ..t . . .� . . .. i ... . ... . . . . ,. ... . . fl� -.. . .� .. . . .. .L.. .. . . . ;:C-. ,:.. ,; .Y�. .....-� .. , � _ �k.. ,.`S� ,1 _�.:,i _ t�� . , , , . . . . _ . . . , . .i _.. ,_.a. - .. . �.. . . .�. ..,, . y'....... .,...� .. .a .;�+t :.ti ..�.. .. .. , , �. �1 .. �_, ._ �I:. . �4 ..,..-�. r � iJ. _., . ..., . ,:::�: �. � ..-�� -.�f'`. ',';ye�{ •'�� _�c ,. �,... � a . _.I , . ._ :.. �u. c .. .� .: . n .. , , ,. .. ,: . i . .�. � .._ _ � .. I .� .la ..� ._. � i . >. . .... r ....: ..... �� ... ..� � : .,... :. ..�. ... ,. E' �,5 \� ,�+ - :��' >OJ�p��.'klmllNAr �.11. _ ......__ _..._. ..____ ...� ._ fi... , . . ..... :<.. .�1 . .. .� .�- . 1 ,.....,.r. Y. .£� u� ;,.. - '�f`�;o Y.N' Se! } '!t__t�_. n ..._._.L..__ __ ..__ . .. . {Z� �:�; . ,�_ r.. .. s �r:,,.r .�� ..N�� Oft �en'`,.: . , ..: f_ a� �. � i�.� .<�.- ,�. °.�. �.._._s ...�. 'i._y-.�. _ .:. . � � :._.r., . . ... , ... ..-.� . �,. ,.,Z3. .�. d ,;d�dF� ..�� r. '-xt t., ��.. - C:�� �o `� �r .- . . ..s:-�,.�_a-_. , u � ` ��. ' ' � ` �: � . . . , r � i � . . . . .. . . . .., .... . ..,;� :, .. ... . ..... , ... . 6.,."\, vu � N� .h ' 't S., c�'� o.f �. .,., . .... , . . . .� , . , .. :� . . .:Y.. ,... , . ..,...-�; ..... . . :. .. �.. ... ... . ..,�. .�.Sf -��,: c •ie.. � G.. i �.. . .. . . . �._ V ..-. �: .: . .. .. ...�. . .... .-..:. . ... - . .. - - �l• . � t .�I::v �.� W' �_ _. .I . O, L � . .r. ,.i t � .., � �;y_ . ��s ) 2 t. : .� 1 1 . _ , , . , ,--,..,. . ., .. . i . . _ , . : _: a. 1 F _.�,.� .-� . . , ..:., , .... _ _ . . .:. , � ... :.:. t_ > . .��.. . � ; ..+�_ . . _.wai, .. , ..... �. � L; �:?: :.:.. _...-�- ' � _. � L_ ' �: , . .v, . . : : ..., � _� ._. .., . . 1 •.. . _ .. ... ... .,.,. . _....... � lim�s .. . �.( ... .. . ,« . 1 . S .4 � �� , .,� . ` � , 2 i Bt o i .. , . . . . . .. � . . . , . Qs _ .. . . �,,.. . __ 4 r, _� - � n �,: .,j i ,o�o,a� nm� P . 1 . r 4` . a� . .L" . ._t� �-t .!'C.. r �-, `C�/ J .l`�: i(6 • rv�i �p . n � a�M.n. � P . _ � . . v r .. . . _:. -...an .. ..�:.,:..1 � :. .:,�" ..�:�>., :«. ✓ ,�'vs \� �. 3 � � � ._ , . , . �L ..n . � .., -. . �_ . .. .. ... .. ��'-... .... ' _ Y.: ,, ., . eNM .:'kfiiei'I!'i.��'I . I _. .�.._ __,_- .. N . . .... . ..,. . . , . � � . .. � �_ . . ,,y . . ��.,.. .....::� -.. ' .':.:.. •..� A#:: _.x i�n . -.SEi��.� � :�rzv � uwr.�n „ c:.� N tom � v il : ;. , ,. , � _ : � .. �... . . ..: V'Y.. � ... . �.?�.'p _ � �..�.. � . ,... :. .�.r a... N . / . N 3. � � i ' Y�e i-`, A'16.'M�. E. e wa �. 4, t ? x. rxL�t M .� W r� ��'�.i�.�: n.Flc' .h . •ii �� - .. . ���� - w ,: _ .... �: , . _ .,, . � . � . .. . ..., , ,,� �.. P 1 . . � � , , � . _, . . . ... . . .a�, � ,���t. �..: = _ ._. . �.,t: f • , � � L ,� ir N . . _. . _. 1 � . ...,.. ( , � .... r. . .. . . ... �: ._ .. .--... _�4..." . � .;`::. . �._. .[;� `W� . :�"... ., � ' �y,: ' . e ._ � '-- -- -_-� __.._ l _. 1 ,.n� .. . .:. . � . . . ,, ., ,,.�� ,. �� > 7� > � . 65c ...__.._, _... ._ _. _ __. ..... u : . ... �� �. _ ,. ... � ..... . . i. { �__._. '[.�u . �. . - 'c . f� FI , � i c I .�.. ..., ... �'{� � - :':L � �� J ����� � . . , - . _.... � . � �. .. . . :. . ., �. . . , �:�.. c��r'xaTr...� 4 6 . .. 3se�H`�. ��(tA :7 }•: ..,� , � ,!``> , � A .. T ��r - .. 4 } .., ... _, . . �. . ,. . ........ ...;:. � :>>;.... � r "_ ' � . i ' l5< - , . ,..�. .� . . ...:.;-. C�,. .:.... . -.. - ..... . ... 1,.... �.� .� . �., . ,.. �:. ..:•""'`DI L.. . �'. .. .:TV :t' I ._' ` --- ��.-�� � . , . . f .: . .. ., g,., ., .. , A . .... -..:� . � . . ,. _.. o . . ,.._ 4 �t � R�.lnGO - aM -.! r . � "''r � a . , I � ,a � i� �: 2• . .., - i k� � . .`... � . . '�' R.,. � , � . _ ,..: . . ,,.'� t .. _, . . � , :_ _ .S .l, , - .- .... - � :..�. .. F •;a "F?w�•,. ,,.. ,, .. �.. , `I , iii'2�. .J. .. . . . . ) ... _. � , - .. - _. --_ . � , fi�� - '&, . .�.. . . `� � . . �_ , y� ....._ at . . . . .,... , _ i C .._. _._ ... � .. . . . . �, y� ,. .'� � F- o Z.'= e � : . . , . _ . „ <�. , . .. ��,.' . ____ _ _ . _. . ��,.;� - � � �--.. . � _ ._� I r .- . . � . : ., ..af ... ..... . � .. ...Ftn_ �.r� �.. , _ .... .t �F 1 ��� �� J u �, ��I F , ; y ,, `` ��. . . � . _ . ._- . .: . _-.;. . . . 5 . +..!KR. . . �.. . �. . . ... . . . .. . ... � . f�'1 . ..., . . . . t"t� .J1�:S � 1 1 :-� i � : ,:._:� .. _ . . .. . . ...� .� �.. `� _ .. .. S..I ,. .. ., _ .. .. . _ �, ., . . _ . .. ..., , ... '�E .T. �1�'.. l. �. � . r . ._.. . . .. .,... .. .. .. ,. . ..}. ..�...... _ �. �: ._;...., .:� ., .� . . .,.... �/y..' Y .. . y ._ .�-c-' ;.._ .:k ._ .. .. .... _ . . ., ,. � s ....'�.. � �, w7. �'... .� `J l� -, r , . � .a. ,. __ � . _. , , . -. ., . , .... , . _. � er<. . , s S � I � -. ,,. I .. .1 Y . ,. . - . . . . .. . ... .. ., �... _, .. .. -.. ... .. .. ... _ .... ... .. . .. . �, .�"� Y �•b�ti�, v �9 ,. . a � . ,.. � . . . .�.. : . . . . , . � M : � e:s . ` . . . . ._.. , . . _ � .. .� . . a . �,. , e . u. ., � �. , i� 1 t . :::;a �: . :.� : ��f \' . . .. .L -i ..,r .. /__ � .� ., .. . '7�.. �. ... : . ., _ ._ _ _:�-_ .. �.. . � . . :. _. . � t c. �? r �J'.n� .i i ..-,- ; _ J. . ... .... . �..n . . ._ .. ... :_ . E. .. . .. .. � .:-� .. vl:� Tj.1�.� �.�t .t " ' �.'\,• > , _ _ . , � d +. .. - . . �. 'i.�.. .. . � . .. . . ... � � �..�. ,'1 . ........� : :.: . . . . . .� '1 � ..7.:. : 'Y - s _ - h ,.-....i . . �i .� � � . _. \ . . . .. . . � .. .. ... .. .:.. ., . _ . .. .. :- ' '� t N' F � . . _ . i . . . _ Y, '�1 _ . . I � . / . .. . t . . i , . C � ., ... .. . � ,. . . . . _... � 'k.. . �.. .: . i. , ; P� � .�.,.r7 . x � ': �' ' _ i y . -�, ',;�.: �,._. . ... _:Lr . .- ._ 1 ..�_ , ..< na . . . J � . ,. ....� .. � ... _ 1. , �. r ..... 1.� , _ � .( .4 � � r.�C � f ' �.i . �--� . ._ .. . �. . �..�� p � . .:. _. . . ..3 ... . . ��� � . � .. _ n S ' , y... 'l.�{' . . . P . IC ' -% :':t� . � r. ' C f:9'.; \�'. .(y _: _., . 5 ,. ___ __ . _ . �. .. �., , ,r z , .. . � .� _ �. . �� �.; . ,. � � . F'y , . _ - . _ , 0, . , . . .x » .. .,: �: ; _ . r. . r n� ao, , :.� ti _ _ � a, . .. . . . � , . , . . . :. T ...-�----� �-.--.+� .�� � . . _ � . �; '� �, .��- : -y �, -.��„ :_r� , �.: r.- �:.v5 1 „ck ... . . . . � . . �- ;: � : .. :. - : e , . .... . . I ' ° � -- . x`B:�. , � � ---�-�-y!-- . . .. ._ _ .. � '- -- t ..4� �� + � .1"i . ..�� - ....., ' I � i .. � ... _ . .., ., . � �ic. �,.., 'l-"� q �.� .� . .. . � . . -M*�-- .�.:-7- ! '1"-.+^r- � _._ -- - �� ._,c, - "c-.. '�r- • - �^ - � � - - �T s . 4 . � � . �, . .a. r. .... ie �_. � . . :y ...10 >,._.. . .: ._ .. . i. 'i � �, ;L . -....' . .: �� _ _ _ _ _ :; -> . � . : .. .:. . �o - - - . ; k � . . � F � • � ,rn. �. . _� r. Md ::.. . _. � � . . ..0 . : - .. • vr.e ... .^'� . ,1..�,... � .;. l. � � k, rsf ,1 - . . j .. . . . :::� o „�xe �:�. . ,. : . � .- .: . :: iBea mOn .. . r�.-.> . �.l ✓ il ��. . ✓.�1, �:I 1(V" � �t_ �..: ; . •� ,, , � . � . .. _ � . _ � � � .. �, � . . . . . 1 3,� , :�:J 4 J � �. '. Q ` '� - •';� , : , . s _ < t � , n o. . . -_ - /� .��„n. � ..:._.. � sun rme d .. ,; . ,....: . '7,`�,^y �. ;.,. � - - ��. � � : .t.m .; k: .: ' � �;i � '�{.. , c - ,> �� _.. .. . � �,-., . :... I . 2 . .; ., \ , . . q . wm�� �}- :.. � - �.. `�_ - - � j � �.,: { � � �.... � s " � ..,� . .7 . fR11!} na ei. . . J Il� � fd mnonl• ' Tan0. '� � � ii ° 5'. �¢'' •F. _ "�+�9� ' ��'�,i"' G?;� lt+.:SC%�"'s`5. - .9�. �'. !� ..� . �.�..: ., � �- .�._ ,/ - .� L._9 i �� ...1 ' " � �`�7 � �� ,i,. �r !�a��;ir -.,�%' S i -.� � ��ti,?. �- ..'?� � .:�6 j. �:. 1 . . . ; to. � o . I d. . :: :� .::; , :'.- �"' . . �- .. � � . � i� ../. s T �- �.. YL • ,��u. � ��i, `--�.. .�.�. .�� l ,. ... . , , ., , . -. ., � . �. , .. . . n.:�, .: . .. .. r. � .. � . ' 't;f'' i n , .t' �. - i - � .�^ �4- - - •�.`-'-� -n� � .:.s� � s � --��- e; v�4,,,. � - _ i � r __ . : . • __ ' JL��n . . .. _r ' ;�l , _', I . , � . ' � - , - : . �._ - . . , .�_.. - -- � - -'-�-- : . .. . ...0 . ✓ ... : �: .., i . ,���o ,.. . 'i � -- - `��; `�t ) • - .:. �.� � �n .n • . ..... 4"". -'Y"• r--r : ... . : . .. _ .4( 1 - �'fr. t�� F n �I - ,!I . I , . . C. . ,.. . . A , e � � I . .. /, . � . ...: 'C,_ �1 �� ,_�! e'tl' . 1 0 - . ,. - r . � : w���am�n � �; _ . .. �.... .-. .... ! ...,¢r.. � . . ' �. -�e�.� '�,. ` t �!.� r� -:\ t: ' q � �, wH..<7b ,� . , i., anM - .' � .. -,; } " '- ____'i .I .. .� . . n oib.: .}-. - .. . .. -� , / � � - .. '� : �. . - . �-< . ..__..J .. . . .. . ,.-y n, ,.. . ..: G w:� . -i. . I ���?3. 1'-.- ?? � :. . . ... .. . � . _ . ., , r _ . �.. � . . .. . : . � - , _.:� . f . . . . : r.. ., - .. . � . � � � _ . , . . . l \.. _ . . L. . r . � .\. . : . - r . cY _ .... , � .. ...,h , . . ..�. .. 11 u�'�y _ I. '��'. � 1 .r- ' .� � -� f t a: t3 > Y/ .r � "„�,' i� ..f..- i., .. .. . . . . , � „� a I _ .. . . � .,'� ., - , _ �: • In ,�n � � ,____-.Y". . , � . -: . �{., � ,. '.., . �N i' _':. .., � .::: , .., : \ ;j y� '4.i i ' y .: - . �.. 1� .. . ...: . . ,. (.. �. ..�k. I � � " __'.:, . a . . T � .. : !•� -: i. ..1 :/. 'f'e:a �+� { T . .♦ . . .. ... . - . ..... ..�. . . . .� . .. ' �.._ J . .:r. . �__....43. . ,.. . / i� 1;: \ . .�' . �.� . . r. .. . �. .- ..:-.� .... . \ . r 1 � . /.. .�. . . ..... ,. �� -'..: .., . �.%i .i�ur..9 �rf.�e - � !� Co 0 1 e i _ h. RC. '.,` � � _ '� _1 . - Y� D -04f �:l '� '. �i_J ' ��\ ` 5 ` � U� o " ,-\ -:�� ,ta �. �'J` \ - f' '." �';' - , r.<Il_.. `� `t li. v.. +r+�r . , „ �.., .. ,.: ; - o _. . . , �: � . .1� �.� . ..,� , � . � '- �.' vo .. , ,� . �. . .. -.,� r,rn :� \ ��J a� . - -��.'.d''� �.. .... x,,. rva� - - c� .;: _; ., . . ,� � ,.: r � . •. � . ' . <" _ . , � "'� . :, - , _ ,. "._.'�-: ' ? . ;i�r �ol _ . �r. j. � . _ w.�� � . Fau:r{ .!, �� rrv �. i � L'�a . . I , .. . , �' �..,,, .� �,_ � , ,; �l _ ._ .. � . -: ., . . ; �+^t ��, - - f ,, ; ,, �,... r�r. � : �� . .. : r < e. _ . � . . - . . � - � �- --'-- ,:. . � .. . � -� ,. (.-i . . -. �:: � �... . ,, , , a ..,a- - �� _ . - �: - - � . ,. a1 . ..... .. . .. . �..- i. , ; � �'. � .. � - �. ...i� F� � -1. ''+��. ! � ' �a`� ,.�'( q, `�.. _ �-�`�.. ,'S . � . _ . _ < .. � , , �1 . . , �.y.-- ... . ... . Cfb-. �` • � . � •y �v :w �.. �F� � _:', i :. . . . - SLI . ..--r . \ ,� w ',.� � f . � ;. � � R _..,... .� � .. '� - �'�i� h - .,S 1� . „ .. ,� .. ,,. ,:Z.i:: . ' =_ "___ ': i� . ne I . � / .. � . . ti:.. .o_ . . .. `.. � \�.•.'. . Y�� -. - - �u:'�'ti.1:� � %[ - ' �-. . m�. ��...... . • � I� .. , . �. : 1 i , . . .\ -,... .. .. ) ...... , . . �.: . ..YN!�.�� ' S �. ' ' ('•+..� 'J� C . �_.. ._ . _ l-. . . ,.. .o•. ,: �N. : � MPBtM f �I . 1 �� . . � . �� � i. .. < � 27.. . .. ... , ...�'7 ...� . .� r� - . ) �.__�. , (� - '..��. " ,......, ., � ro ,,. . I � a . ,.. . �ar�n.. �..�'_.F . . � � . ... ., , �t...- . ._. . ., ... _. . , . p, r r .�_ !�' : -. � .. , :�'.inMt3s+ ` T `�tr���a�s. ! -� ff+r . - "%F:_ 'ri' rr'. - � � � iL.__. . „ ... :. S� ... ,. ! :._. ..._ � ..._ �9. . .. . .��- .. I\ .,� : ,- aa X �; \ G�� i�. "�...... i - __ . .., : .. ... . . .. ... .. . 1_...� � _ sF . _....... ..,..., ._� .. � , . ✓� -.,..� �!' ,v -fF•., . '�.. � --.� w.r S .9% � � . �,•-Ssr- .,'�_'_ .e�a .i- � . � r . . , . .. .. �� g , � _ ,i - • , . ,.. r' ,- - , . . .: .. . : �t. i s. � � � . � _ �'w, � '�. i - r _ �'�' � - � e6.�.: . . . , . � � . � .. - _Nv . , � ' �--- - f ! :�.. � _ . ., >�•. •�5.' "�: � r 7 ,; � _ i :a�'� --� . . � .. , _ -. . . ..:: -: , _ , i � . . . . � . � _ 'Y .. . `=- . x� � (.'�Y.. d ; lli( i' . ... . .. . .. ..�. , ok ,... ,� � .. �. ...1- �- ,_ . _._ H. .. . �_ 1 .. . . .. .. ,. ., : �i � \, �.��� -r ,..'S I ."� ,. - . , ., e�, �6bx . r . - � r , ;._.. , :� , , . .:- � ' - � -� � ,�oR , v �4= �,� �. �. .� �.. .'`-�_ � � .i.� - .'�f �_ , e�rn -,1'� ,�� S'S' �--...,y . ��• e � ?!S. ! �. . _. .-� .:. . . .,. ... ., .. , , . .�� _� :�. .,Y� .�7'�..• ��c� ..e �_�: _ ., .. : : . : -.<.z. -. -�� ".._.> .. ...-. _; ,.� .. _ . . � " ..� ... �. :� y.� � u. �, 7 � .� ' � " i I .\ � . .. .. -.. ; . . . . .._ , _ __ --1� J.._� ; -/+� �,: 1'`1 �./.jr � �n 1 ' . . . . � � .... . �. ... ... � , . . � ! . ,-.� . . .".. '`�-- �-='+., { , �� � ' ; .'� - _�' �: . ? < .q .. n � �. _ .. 01 a 11� ._. -_. �. � . . s . � .\ .. , I ' . . .. � . . " 1 .y _ ., . � . .`. ,. . � � � A."r 'ei- ( .�' ....: ._ �. , ,.L „ _ .. - J: .__ - . . ,.. . , .. ,._, . �L.� _ ','--�-r-�-�-' ��, , n-� , ,'� ��.� �. _ 1. �. �Y._ .-� _ ' ..� ._ I ... .. . , ,.r� . sl z.._�. �- � C�ixE��:� ra� E. V .,'�'°'�. . : ,:.. „ � _.�._. .. ,� :,q� a..._ , %'.�� � . . , . �r•� _ .:� _ a' :.1� ,�. t l 6 �., � & �'`, ..._ ... ..... � . . . . , �. �1 . r_.. .. . *� . - , . ��.. � • f :. �.:. '+c. : r: �.t ._�. �I `7 .J. / � �'. %�l .�'._ i � ,-. _ , . . v .. _ � o . , :, .. 'rt. �.. - �. � :� ' "• _r, h�` '°'f =. _ . . . .._ . .. 'f � .:,. . 7 � . . '� c ��,, �� ��� .. P _. . ,_ . _ : ;� �_' , �' '� .. .. .. . , �.� . , . �+s ,._ . . r . . .. , � . . . _..�.. .�._ . _ ..._..1�i r �... . . - . . .. .�Tl, . -��� .� - ' � ,sJ ;'�,r�_ . . /` .. � _ its�. .. ,. . . : ._ _..__._.. ��<. i . _.._ .. . .: .� -.� "'�.. ! L, . ....... . ... . ... . � �: ... !N , � . , ,..i , _ .:.:r.3; ... .,. '� ,. �F °� .�i� � � t . d.`� ionw�� ) � Y.ri� al . _ a. ,.� r,e� . . ., .� . , 'r�.. _ �v'.. .. , � . 1 , . , , �'Z i ": �r \,; . � I ~, 1 l. . . ,. � n� . , 'r . .; r� ,� cP t �� � , � � .� . ., . , � � . r � ,� Si 'S . �L' � . �. . .. .. .� '._. ' . .. , _ .., �. .. -.. ..__... .. �r - i� _.. . _ .� ...._...__...._ � : . r � � ,.. .. . . .. .. . .� . i ..,.� .. _,.._�. _ .. x \ .___' _ .�;: \ .`;.,: _y_ S � .r _ ,. . . .. � _ . .. - _ '_..-'- - �-_ . . . .. .. . _ ...-- -" �T�(.. . �. __. . �. _ .� .�� :'�� � - ... . v� '� � m ri �+. . .. . _.._ ��. ,_. .. ._ ._......._..... _. . .. .�- ... _ .�`._. . ... . .. .. .. . . : . �s:_. - . , ... . . . . � . . . . � � _ _ _ ., . . �. , .. .. � v , :-`� �:� .. ; . .�;( Q n , .. ..., . , c . . .. . .. . �i. i ..._..,,_ 1 '-, - _. .. , . _ �r . -.., . � ,cr...... . . .. , �.. . .. . . .. ... ...� ._ .'4� � . 7 '� � . ;y n.,_ ,. �.�- �s:pf �a ...... l. .. . r . . . .:., . . . �. � . .� A C I .__ .. , _ «" ' _' . !k4 . ...�Y� ! �a . �. . � . Forn.J . c... � ;setl+ . � . r� � . ,l � .::1 � .xu� . �...: � ,� ' . .. .�_+ . �. ... �. . ... � _ ._ � . . ,. P w.� .- - ..,. , , . . . ... • .an ls . . .�. .- . ...u+��g . ... . .,u..� .1� r.� t ..!�3'°, � ��[,y.�� ..., .._ .� . . . ., ....�> . : 1 . � o ,�, __Y -_ � �Y. . , . . ... �.. . ...<. ,'vr� .. "R.�. `': � .. .. �. .. .. i, _ mis � , � �.� .. .. : � , _.._: ._ 7 x _-• . _ ., . !� � � � - ti . . . . .. r. ,� � i . . . . _ . .... . . . � .. _. e .. . ,Y .. .. .... �.. .. . ,. ,. ..m �da� 4o s w �.•: w�"" �.�,;.. w 'c . ii°:`. ` � �'. . iC .. .-. �� � �... ,. {i r . . � .{�o� . .. � Em� . 1 . . � . . . �.�, i.4 . ..�-:':,:• , - .J . ".01�:'V . 'n ., e. �... ,. . � ,.. , .. ♦ .. . .:'� . � . , �l . \ n�. � _�IN . . „����� .r . �� .�� �. - '��� '_ . ._ . . .� . . . .. � . . �. . _ . �. a . . . . . � � �/u� ( . A� .'Stl . ..':� . .. .:'� ... � . , � / C . ��� - ` 1%\`n l"�� .. ... �\ .�K\: ... �... .. . , ..�'�: .� ���' `W�'�� ��.. / ' .. . „ . .. . .... ..... ... ...'? 5 : .,.�, . �. . . � � . , � .. .. ��:. , i . � . c��� � /.. . . . �, a , , _l.4 . . _ ,,,,.,, . ,. . _..... . . _ > � .: �, . -� t, ; : � - . . .. . . .. . , . .. . f , . � F- :.. . . � �, , . .,.3 .. s. , �., ¢ -.�,'' , : . . ,. M . .� � . . .. . w. , . . , .. , ._._.._ r. .. L �� �e� � �t�}�, . .�. . �.. 1... . ... ...\ .. ) n r .. . .10 . . . ii . . . � :i . .. i --. ,� .. �. .. .. .., . ... . ... .. .T � F. 5� \ 1 C .f . .. ., v . . . .. . . .. . . .. � . ... `� . .�. . .. . ..+i } ... "'1. .- . . �.. . '.'r .. . � �- .. , ..'. �.n�Q� • .! .7 �. � t ��� �,(- �M � � 'i�� .- : . .. ._ e_ � ... � . . . . � �. . .. ,-:'., � . . . . . ` � : n - � 1 . . . 4 � � . . ... . . . . . ... .� .. ... . - . .. _ ..- 'y , . _.....G . .f__ . . . ...: . -; . Y...♦ �. �..Y�P nyn . .. .c � .. . , .- . . . _, . . t . .. __ . . :.. , . _ . . .. .. p / �i . 'F _ ._ . . . . .. r � V � _ � ... �... , .. . . . , . . . .. <� .A . _ ... .__i_. .. r , i . .. . ... t __. ,. , .,, e� � f.. inu, �d � l. 7 "� = .�. .e,:e: ..A +.�' ,� .�'R�,':.� ,� :f� 'Pfr � irlt. �/' r�. 'A`�z- ... ti . ... ... , ..: . .: : � .. �.. e . � �1 . : C . � --�::: . . . .,,- , . . � \ ... � °1?� � � !. - 7 .. . : . .. .:. .. . � -... . °`^�7 . �. ... . ��a , . ,.� I ... "�.. 7'0.. o ... . .. ,�:; �.� ...:.' . � . -�:'' $ ;.� .. .. .. . .. ... .... :. . �. ., . -. __ , . _ : . . . . i . , J _. . �:, �, �. } . � .... , .: .. . � .. . � .,�.. - , -� . .. , :... � ..� . . 7. ,=.�..�. _ _ "' l �"�:. ,;s.� .. , . ... . ... . . _ . . ,.. .: . . .. r�' , , . i . � wai.e� ._ . �. .: �, : : � -^'l. .cc .. � a ..��t . . � :., .Z . . .7 - �� � � . _,,. , . .. . . . . .� . _ _ _. .. , . ...r ....,. .. :. . Y ., . �- .. �,. � _ .... . .✓.� ;c`1�..: F�:- . T�-� �.r,. - - 'i� - '- - 4P- ... _... . .. . ,. .c .,� , ..X .:, _ . ��l . .� , ., i .. � . . . . � �,. . d. ,.� ...... .. _ ,1�. _ .�i -- - - , _ ,. �. _ . .. . . t .. .. ... .� . . , _�. . . . . .�.vi ,W , 't . . .. . . .I � . .. . , . .. , .. ..: � . . �^. ^ f _. .'.L � '�' }� ,. .. . _. . . ., . _. .. � ... . . _.. .. .. . i .ve . . U .,. . , h � ._ �. . .�... . . � . . . . � :..Nw. fi�r , S. . � �. y , s _, � . . r �: , �, "�' , �. _ , . . . .,,. ... .. . ....,..., � . ,.. . �. . 1 . _ , � � - _ ,. �.. '"Lc , . .. . } .. .. � _ ... ...�. :.. . . . �h r � ..: �4t, I� . i. . --A .� .. .. .. . . .. �. , . ..... _ ��.�.., . .. ���,��:': +�.,: .:�_. � _ .� �: _ . . . . ,. . . r-. , .... , � ,. W � �tl lf . . � ..r 1.. �.�.,, , .:,. . . �. < � t lt . : 1 .s..r �� . . I `�� ?�Z. . ..... . .. . .. , . .� . _ . . . . .r_ Y� -, .. � .. .� � . �. . ��,.:,.� . �. . S . _. .. J��P M ��:� , C. 't1: • i . . ..... ..,. .. .. . . . . ....-, .r.�-i . �./ � . _ . �10 . .. . ..:�.._ .• I.. _...� . �� �, l.. �y � I ' �';:. �/� �.A / U E �[ �� � .�l . .. .. _ . . ,, __ __ __ _ _, � • .. , .,� . , �. .�i: l . .. . . . .. . _. . . , _ � _ -�._ .._.�,. _. �. . . , .. .. . � , ,,:_ ..:, � . - - � . . .. . . . �s . , C�,,, , .. , . , ,� . , s 7 _ .._. r �+� ,, r �:a � ,: . . _ _. . . . . G�.u.w . ,. n . � ` 3 � � ; F � 7 ' � -�p � \� L'.'_ ` :,.. ...... .' : _, , .. . . F t ... _ ._ . (+� . `� .: riP,. . .<. f , rt � � w d � +. . . _,.. _-=.P �.,, _,. .. . , . . . . ., . ... � , . . .J�: .. T , - :. .- � . , i ;., • �... . tr.i , . . . , _ . . . ... ... � _ . .., �'^,'t, , � . ,. � •_ I �� �'I' '� , `ar >c� �• - r...... ...c-+_.... , .. -.... .. _ ._ . .iJ i .. -. . 1� .i .. . . . c.. _ � -.� :r .. .f �;' �.-,, � =' �i� �..o� ��.��'% - �� .� , �-,;� ..'. -. .:. r. -. . ... . ... � . ., . . . �..C�'`� .. .... 4! . . � . �[ _. n S . . .. . � x . . V� . . .�. . '�'Y ��� � .�1 .. •x: �.U'�`� . ,iG i . . . . :. , . .. ... _. . . , _ ..__ .. � -�- .. .-J� . o� i . � :�I . � a .��- � . . . . n . � •-•,.. - . i �'. _ �: •,x ...� 9� - �J�,.�� w., ....... a.... t � . .. ... . . �, .-.. �.:�.� .. 'r� . I . < . _..^C. - J .. . . , , ..�. � ..�� :..r? �l ✓ �-C': T.� ? .I ;;J . . ..,.. , ... . . <. _ .. ..�_. , .. _ . .... ... _. ._ � . . . . . .: .. � . _; ...r�. i � 5.,� �..cm .6%���:�. , I �\ > .I '�� .n� �i.�G . _ . 1... �. ,. . . '. . . _' ... . . ��.., ... . 5 , . . - . lr (, .. . 1 �,� e � . . ,• 1 I �� T r!' A 1J , �RVy1;J�. N . � . . .....:: �.:. �.. . . .. .. .. :. , c a,� . . .. . .. . . . . -._. .._l.:'_ _ ... .. '.. �,J . �, - :;a.. -_�.-. ":V' ( . . .. .,. . . � ., : .. . _5 . . . . � . .._. : _�� _._. > ... �.. _...L_._... .: . __, . . <.u� . � .'�.: c - .. � . ....� �i . .. � . .. ,. : . .., ri 1 .. - _� I r .a s� _ _ ._ �. -. . ._.__.._..... .., . ,. �... �a.- : � .:�, �. � .p� �,��i�� ..;. ; .. f. . ., . �. h..�.. . . . I . . t [ ,... ....-. . .. , _� ... ._- .. ,.. .. � . ,L- . ,-�. q •x .: �, '�S� l�z �: f �. _ ticin.r � ✓ .r. �'� - y i :'s:'. ... . _., . :,.. ,. ._ . _ __ . �.� - , _ , , ..._� . a 3, .� T � r� p.. . �: J. .. .. : _ ,. . .� _. .z_ . s . .. . ... . . •� _ . _ . � � _ . , p i s' M9++e�±.. +t- ;�-r', � - 'h , .,. . ... _. . . - . _ ..�-. �,. .1.... ._. . _ N - : � ,. ..,-. - - �1 - 1 � n' I ' �'' s' 1. .� 1.. �, t''� 4-r, '� ' I 1 .... _. ._.. .. ,. n...... ., .... .. ... . .. ......�.'T r .. „ ,. , � �. o .. �ao u � I� i <1 ..:` �1;. I . �i''• . _-._. . . . ... . . . ' _: .... .. I .. -. .. . . : � _. . _ � .. . . . . , � fY M UN �AiN - .; . __. �., : .pK � ,. .. � . � � . � 4 .:�i` � ' _ � ..:. .. . .. .. . . .. _ .. :.r .. . . a .. . _ .. . i i k F 'N Y , .S�P l ,� ., . _ � , . . .r�-. \ A �. (•.�.- c�..�-- { i'. v �- . . . . . - . _ , .,_ . �� . r ... �.,� ... . F^. �/ . .. I �.... v; i .,. .. .... . _ , ,_.-1 i ..�. ,� J . ; _ c ,� �.. � <r � E�� "���� � � . :_ � . � - .. . _. . .. .. ., ..- ..., . ,.--- ._.� _----- - �. F . . .. . � --- -- -- --" ..._. `� .;� � rr � , :.: .: �':s... . � � . . . . . ;.:. ... ...... .. . . . . .� _ ...., �,-1 ___-�...�_.. _ r" ;r. �} .1.. . .. ._.. a �m .�/�,. / .__i ,.':. ' _- � i .. Guar b . . ... . .� , .., .. : �r�i . : .. . .. �..: . '..- __'6'. „ _..: ._ .-.:_ r-!�..` . � . .. ,. .�.... . _. .,. . . . T\ . ,. . . . . e .. , . . . � I . .. _ _._.. -. � • q _ $ � . . � .. . . �...J. _. . . . .. ... ,. . .. . . . . m�il . . �: � -. . � �.: - �. - . 'F�Y 1 �� � 5d � F- , - �1' " . `9..-,..� . ...,�. . ._ ..� . :.�.. �. :� .'- ... . . . .. 'N ... ,e�' ... n ..:, ., . - ? �4 - _ .. .. , . . ,:. . _ ,: f . . , � . [ e a u _�.. ; . Cai.O . �' T - . ..._., ; .. . ( � � n I J. � y ,. . , .,�• _ ,� . r � '�''ti , , . � .1 .,.. �.,,r.'�:� . ,.. .. . :� :. . . �.: , , . .: i _. :� , � .�. _ � . . � � _.< . � . . y . �:. � N - ,.� _ . ,-_ ..., ...... . . � . . , ,.. ..... ... .. . . . i � e �v , �� .�.._ _ .. �.._ . ;: .3r v. .,L : r '1� ' �il.n: . � �'� l .. -. .,..-,.�._ ._ ,.: . ; "+- _.•. .. � .-_. .. ., , . , .� ..� ., ....!`Lt`?.". .1 �� �.o.x 'u,I • \ �`- .. . . .. . . _. - .� . . . . . . ... ^S 7 . rg�r. . . � .. < �' ___. ��_ _ . . . ._. , � :; _ � � . �..: i 1 R F. : - � i .� :�(�` � � vs�'i:..�}�t � i�(.�� I' � /. ` .- .. . _. ._ , : . u. - vr . .. r . , t , 1 _. .. � _' . I �; E..' �- 5� ; - - `'� � . _ . ...k. . -.. _. ... . , .- _ .. _, .. _ ... .. ..� , ...: v. � : � / � .._._-_:_ . �•N. . � .. i.... - I " _.J• l � _- `•ti'�. . .e.. . . -.. :. ._ .�b . . .. .....�.. n.... ...�. , _. . :�. -.� . ., .� . ... .� . �. 'yi '�. Z. .�". �,�, ".1•`� �'d�!: - - __ s=' _ __ .:� � L �...,.�. $ _ . .., ,. . .. ,;. r ..,.�.. . .� -.,.... .f (.: .- P� . .� . ,. . ,. 3 �. .. �... ,?.. � ;i!Ff .I�_ tb � , Y �.a P.:�f� �? T ��.... ��� '1 . }� ��`----, - ��. , .�_� . . . . ,. e .. . �. Z ,.... ;..�r � . � � i ,w� � 1, .. . _ .. . �� - ,.'�a. �. - � Fs�,:� _ ' - - . � : . . .. d �..�• . n.�, �, . '_ f , e , ..__•. ... ��'{ i .° - .:. . t '.l' ::1�� � �'<, - .�. �. ' �".. . rc. .. . .•'k .� : �.;` . _ .. ,_. � . ..,. . , , .. ... ��._.. , ,....,�... . ..�. ._ t . . 1��� . r .. . ��.,"7 Y. w�.._.. �+.i ' I . � . .-s , ... . ! - .. . -. . , ,.. u � 1 � . 1 r . 0 .�a x .. . .'. . r .. _ �� u'a� r y I � Bermuaa� unei ' \ � � \ � � y � � �. A��p .1 - f .�'2 . J I �/'j I �R�i �Isna / �:.L..:i - �� `, 1� .'t�l' °f :4 - �lY � _I ��. �. . . . �>....,e� _,a . .: .. .)� >:_. ' ._ . .. ., ..... ..�.� ^; �•� - / �., 3� . , /" ...- � . �. . . :.. ......�.: ...:�2 ,\ ..: � e, .. � -=. . .' .. :� -." .. ".: Cs' -�, .� i.F� ,.,) � ;I Hrc�� ti . 4eaetr- . -F . F� .._. . _... . .. _ . . ... . .. .. r.C, ,. , . . .Y_.. �� . . � .c: `,...`""� - l{, . ea � �� �'.. .. . _. , t ... . „ _ _ , _ , � ..1 . , ,.. . . 1 „ . . . . . . � . ., � � ,�,., �r. �r 7 v.� - - �� .�. _ �-- _ ' . . .> _ _ r . ._ , . �. . . .. . . { , � . . r 6: , ; �r'-- { �S � � i . :;f c:- - f`: x �. %-^�v:�'� ..,,. x . I � . '�. . . . , -.. _ __ . ... � .. . . .. :. _. . .... . ... . . . . _ � a, .. . _ . , � , �, �� � ,:. . �-. �'`'�.�.. P , .� �..='. `f � Y� �:�.-i:. >'!� - .N- - _.� . . ... .._. .n!�� � -�: � _,. .., ., � _. -.;.. . „ ._ . .. �. ...: . . .,. _. � i , a... \ x. - 1 '�. -.�={ .S' �j � �i .ti. . . �i . t,..� . .. - ..F. . . P . . _, . 1 . .. . : � ,� � . � � :C .'Ymaeien ,� _. . . g � .. . . � . . . .. . ..,_..� ._: . � . -d .. . , . , .. �.. ,.. _ �r . ... ; _.I r. . ' t .•.�a+�� P � .�..`g .. . o-.. ._: ,. ....... .,.> t�._ ..... �. . i . _ TUo .-�. r �.I;.:. �:�� . �_. _"" '.r+� t�iy ��.t'�.,i.: .p ..;� _. F�. �- . .., �z ....: .,,. ... ._ l� _. -. �..: �,._ � , l. . . . � . .. . ... . . ...., . .I � .�.. : . . �r�! �� ' 9. di . 1' : ._ -... ....�.. . ... ... . . � .. 'v... . _� . . .. � . .. :. .. .n.e : .-o.. . .,.� . .. �. .� ..�=- .�:,y�.: T • .'�� ..� �L 5 :I � - . , . . ..�Cf ' ' _ . 2 , _. . . .. . . .,.. . ...: .,. . . . .i . � . . t . �. - I/ �i2 . T]n - i _ � .. / . _._ .,, ., r .... _ � . �._ . _. .. . u , 9 ,. `� � _,.-_ � ,._. _�, � .�;...e� NsrbL's��,r� �.� . `:.�� a�isn� - rt.i: , ;� �t �j .� _ . . .. . ... .� . . _ . �. ; _ __ . . . ,. .. « C. . . . . . . . _. e� �a- _ 7. 7 _ r �^s ,�f � .. . . .. �... _ ., : . ..� a .. �. > . - 7.. A.SM..iil .... :.. .. ... ... . .. �. ..''. � �L . � ,.. - - l�� � ./ 1� � �\ �: . ..: :, .. r_ . .. .. . .. 11 � ,. . :. .._ . .. .. ._ ., - lut� bi# ' -�:'- � '- - '� �.- . ... .. . . «.- ... . . . . . � ... , .�. . ./.. _ . . .-.. .o. . ., .I- . .:. .. _ . . .. ?f - K'� - E� - � � 1 � t L , . ..., � ,,..._ ...., . :,.... .� . ... . . . .. . .. ,. ,.� .. _.. .- .-_ � , . . _.. '6' i�i:. ��1.; �'�. .F.�� �`PalmOe.+r_. P c\ - . - .. . ._ .. . .. ., : . - _ .. ' .._ . .. . . .. -, r. . . ��a, � . r ( n. nd a �� 7 � u � � ! �'. ' l � � i . - `i..., . . .. ., w . � "....__ . ..,-. . . _ . ..� . . .�/ ..... t . � „-' f., � . �S . _., . . - . � . . .. _ _ 4...� v_ J _ - �� '�\ I. .r�`� ,/. y ' � - `� -_ - `� , .. -. . ... C �kiF�.,� ... �. �..... .:. ... . � .. ... ...�s ... - 1 - ._.. . . . ._.. n�n . ; .i4�.. � . c {-� - _ - ., .. . ., . , _ . . . _. ... .. -- .. _.. � . f Y - L_-r . 1 s 1 "_7..;; I . . _ ., _... _ ,. . { . , � ` ,. :, � : !� . . . . _., . �'.. . .._ . - � r- . ._ .. . . .... .. . .: . � , ._. _ .v i. . : ------�_ . . _.,...:_ . . : .._ , �.� .:; �. S':� r , - �. �[� -,.�_ �. . . . . ....... .� � _.,... �� :: . .. .�.., .. . ... I I . r k �!r - - ( �i .. . . � . �.,: , � . . _ r . .. � .,:. ... -� .. _.. . . „ . � -,_. .. . . . _ .. ... ..-. -- :. � 1 � L fi'\ � J. � , in w,.•r. l�s �c. , a.. $.. 1 � -j 1 ..,)c - � i . •„'�s �.-,� ` ._ . �' -'�:�: ' 4 9 � \ =��Y, I . �� . f.;., . . 1 :n ' . '7-, ' - ��r` i - .. �' � -:1' ' �. _ - � r ,a .I , � , .. _ . �. : _. . , r �+ /. - - ,., . . ... . � :: :. ... ,; .: ; . _... -,... • - = >";:- / a \:"' �.. i:' i: ': f .. , .:.. . , �a: ; , :. ........ ... . ....,_ . . . ,. _ . -.. ._... . � . . : �:., r.� e.. : ... . .-. :.__ _.. ._� .� Ib S� �# . i; - ui q T . . .< �_e �� .�.. . :� . � _. :�.. . .. . ..: . . .. : . C . : _ �� ..� . �. � .__ -_ .=.�44-_ �..��• U� R' 'MIt� 'V' '�:G.- .�'... �'� _ :�1. �:ii .. � . ... . _... . . . . ti... _ � . . . . w�.a�ar . 7 • .:. .„ ._ , .. � t._ a' , '! - ',.. ... ..� . , ." ...:�... .. . ....: � ,_.. . . c . _ ., � ..Ou . . . : �_.� . . ._ . ti,r �-� '�' �.�,4. ;�('�; �.�� . . .. . .. .... �.. _ , . ... L � e....� . ;,• . , . . �, �� ` aw:" -� l. t � r. - � . _ .� �. ... . . .. .. .'�c .. .. ..�.. ....i ... . :N ._ � . .t ... , . . :I � I.. '� ^'d� '� ,-9 �t�''. '•<`T� I' i , . � e_ . <:. . . ..._. �_ . .,. . _... = a �W . . �.. , ., v _ �.. rr a" N ;- `�l�r :-�. ., �, � � J N " a ?,! � } DI Ea I I t R �f � ��:: '4'� � - . /. . . .-. . -. ,: .a -q... ;. _ ._. ..? ._ , . ... '. :. .: ... - , `�= . �cti-. 5... - raf... f _. Nf�la..... .. ., , �k i�� „ ,-. ' ``?r� . . ,.. _ _. _r . . . . .. - • _ � � � , „ � - C._ , :.: 4 -� �'""� , s.... -, k' . , t_ ... . . .... . ._ � ..� ¢ : . _ ..-� r°- .. , . _. ,. � . ._.. , . ^ C - ..y �, _ � E - - M _ . .... . _.. . . . .. . . ., .,.. .. :- . ..>. , ... .,... _. H. . �. f . . . , ��' �i.:�\ ,�� `=i \ . � � � � ' � ) '�.. � . � �(- - .:.. •.'._ \�. . . . ...:. ....... ., ._ .. . .. d.. I 4 a+. .. �V' _ .�� ��h� :.1 '� ..�! I 1 _. ,.yv''`3 �?; -... S. _ , _ . � � ..... .y.� , � t= � � �: a� > I� i�� � � ... .... .. . -4.'� .. .. ..... ..... . , �.h. .c. / , ..-...� -ri... . .: . .�. .�. . . n ..(E . '\ `.1 �I ^�. V .� �„ � , .. . � . .. . _ .� f. _ . .�. . ; L.1 i Y ;' I {: � Y i M." 4 n.a�o ��+�: . ..� . . �-. � . �. �. '>�3�.. `of3 .... . ..�. .. _ . . _ . =- . '-_ .,J�._ ._ - 44 ��� J: :-� `a::,:. 5 � . -. � . . ... -..v .. . . - '_�.: '_'� � _ ��.� - � r , bi�drAl - �L__. L. __ . �. . . , .__�. . . . ._ � . : . .. -...�. _ .. ,---�J � .�. �, � . . . , .. ._ , , � .. � . . , . • 3 wr . ,.., . , 2 ,.. � '_ � E _ ((�.,..`.. f i F :y:� a. � � .- � ... �.,.:. , ., ._ ... . _ . ... .� a• - ,. ;�-� -." °... .� ; \ �. " � �.: a r _.r. -� _.\ .. .. .: •: .. : .. . -- . � :_ v.: �. � �.. ,/� � . . .;.� -.: •-':. ;_�. ., ..� � � �-�=•�+' t r � a:�.� � � �+�� ?�t'•- � _. e c �' . . . .. � _>t . � 7.,. �.� r . . � l I . . . a ,.� ..i �:..._ . �4a.. ,.. -.. - .. . -:. �+-' �• :. 4 � � • '.-U"- w: �.� .`.�� :-� .�:�.. fYtP� � �::a t?.. �;,. N . 7.` 1 � w � i . .. .. . . ., . -. �..... , ... , . .'._. /� �0.2 .. _ . , . . .-.;.. .. . ,... i _ e . "' n � � ,n , �`� : i �_ d: 5 _ : .� .� , � �• . • . _ o . . . , . . .. ... �: :....... ; . .. . >% � i�„ _ _ _., .; .... _ .... i �r .. : • � 1:. ;. fi. Lv1':. ,7 F: _ . - ki _ �. Y ch� Ilo ' � . ... . . . . ..-.-_... ........��. . .. /./ I ��� ..F�. .. .. �. :� , '\C. .. ... ...� ��[ �(�..�� �ti'� - - '.`i y 5 _... � o . ... . , s .. , •. , t , .. ,. . .,2t' .. . . _ � -y, . �m , , , ,� ou'r.t�a� r ,:- - y�� - - - - -- , . . . . ... :._ . ..,._ .�_ . . . ..� . _ ..� . p n, . _ ... . .: .. . _ .i � � =i . Ja . ' , ... �.t. � _� Ran � � ��. t � . - - - - . . . . .. _,.. .. -. ... � ° a 'i(n 'V - \�.. ,:... .1 J �_. ��c�ef A . � ' f � O>... . ��... ..� ..: , _ . .-p . , ...:�:. .. . .. -:.. _ F- . � .. . . , . .. � ... .�- /�: -�S`y S; �. '1 \'._ 1�� 6. - .! '. � . .. . :.-. _. . � . 4 . .. . . =-.. - ... `?a . . : Q . JuN. w n . . ti ' • �^, � . .�4�f" ^� ' � ��. . - �1.. 4 � ' �� R � a:. 1 a �;",. � . n ., ..� � .4 .,,. ,._ � �*`:. �.. ,..�,�". zt,.: � .� i . a � p , e •�' i 1. _.!'� � l ��� - - , . . . .. ,.._- . . . . . . � . �. . ta 7.1:., �. ; . _. . . . . . . a . _ � F r � 7 �>� � - , £ � � �� .. t�� ��_. . ... .... . ... . . : �. . . , .. � �` ,_ . ._.,... .. . . :.. . .. . ry „•<: ,v.. . ,: ,. -.. _ i ' : 6' °}7: `:C " 1 ".ICI 7t' v ., � e M ' � ti :; ,.. � . � . � �.. : _ , ,: � . < < � � r� .. - �.. .� . .. }� E'�;N A S-� ��Y:•�k- �i�Y T �, ,�� E,. CY �;.� �< 't I �� � h � h a"� \ .'!�-1..�...�_-J ^ •. :: . . . a . . : "�: _.. � .;I. " ` � C _ . (y� .. o ..:. � ..,.: , _.. _.. .. `: . m. . .: ,. +� . .� - � . Fivr'I l';.! £ .t:w. _L � . x.. .. _ ., . c � a :' ���, , � I _.n: . :- � - �.. .,. `x. .r. �=- - _ . _ . .... . . .. � .. . +. .:. .:.�.�... , �.. . . i �. , .: . , ti �.. • A. � � . m�, .. . O :`:J�.:�' q ;.'.L �:fi.. '- -1 �"•\ . ,. . , . _ . .. . ,.. 7.. .,,. .. . : '7r. . .... . : �.. . . � _, � . . .., . . ,. .. > .� t�:,,, , � ... � t-. / wn � .1 r. aanc� '� ine- ..: � • . am .:.. ,n�(' ...r��5� ..:_ . ... . ,... a .a n. . ._. . ... ...b „r.m o�n � , �''.� 3 _ . � .'R L ` j ,( .: •. 1 4�� - �em�ul . , ,.�._. .r ..,.n .,....... �.. \ L �J R , .. .,r . „ . .. � i P _ c .. ' ' l _ - .i `_C.. x �.:. } 'Y�h i �� �... . .. . .. ..,� ,. . � ,A�.�� . ., �\ , . �. . ,�. viha� . . . . � ,. {.' d ( Y, :4. �� ♦ ....!! .�. � , _ .. . '. .. .- �-.. i ... '�. ._ .. � ��s. :J I' i� .. ., . +ti. x. ..,s,� �'-�. � b. .�. .. i. Hall e ` � . l"' .!^:._ ,.➢•� . . � ._. . . . . . _ . . . . : . � . .: . ., . : � .. . � i •. r- . . .. .. .. � . v .. . ! \ �. } `�� 7�t�. � .,. .. ... _.,..... ..,., . . . . . . . � S,.aRf��1 „ -. . .. ,.__ _.._. I �. .�� �. s .� � ' �1 3�' � - I ..I � .� � . C. / 1n . . .. _ . . . � . � . �,...� . .. �: ._.:_ .,_... . ... ' "' - , mn . . .. . .._ L. '� :' . =~ . ' ..�'. . �'` ' �' c..!v. ' \_ ��� t'�":�.�� .,� ,' "� .� '. �, �: �l___" . � S . . . .. ,�r . . , �.��. -. - : ' ...� ..�'.lvks .� e . . . - .. ..� . . .r ._..._.. � . I .rn�. , , . >:. c'( � .'� �.'� _'S;�' I_-'_-" __ �� . . .e . � .. . . . .. ;�: .v.._ . • �♦ �� J . . t^L. . . G .J. . . w� d. . i , ... .. . .. � Swparkl �. � - -_ - .`}`f� ,� .., .- . ... r � i ... � ..'-�"� �' �.s-. �l. ;C... �I �a! . .. / n / , , _., .. - . ,: _ ,� _:-. .. .. �' _ '-`� �. � :+'�; • i ; . .. . .l '7 . r , ., .:,. -...... �.. . ... , . . _ ..., �.. , �i - � �. � , , . �.�. 9. .. u� ,. �,�` , :rs. r�r.m� _ � ._. .. .. , F`�, � ..�.,. . . „ . z._, , � � . _ . � ..,. _ : y. r s ,:�;;� �' •1��,: . n ... U > . � �1 �� -.,.... ._,.. . w. . �- . �. �. . .. e1f.`lRt.N_ T . � � .� �.... . � . f . ' .� ,� . .. _ :' P IA1M\...��4 '.% � l,: � 5 ' r'. � i{ :� :K. .� .�y � . � ,� ,.... _......p,. r .. ,. . .... �� �,..�. ..... .. . .: .. r . . � .,.` �: r �. ... .., ,. � � . / _ � . n1. . , .. ,-, ..._ :� t _. , . s�. ., r '..°i, � �s .a}; i i ..'a v �r .. < � .. . .. ..n, . o' ...;. � ; - - ✓ ; . , , ? .. . �_ -. .t: � - '-� , �\ �"[, I. `' , i 6w . � . ,. ,,... �.. . _. . . . 1.. -. S . , , n ...:. i ._.. .. .... : �.. , . , i � ��_ �-y... �.�;� R � . � >.. _.. .. },._ � � ' . . � .. . .. .. .. -. ,,. ,� .,� .,.. 1-� v. . I i . '-,� a . �. + �� ,;rid � _�L. � �. 1 :L: �, _ -, -1, �+-, `� `.� . - �L�. 4 ,l. .� ,'A. \ 1� i. '�. �t°�... __ - .. • } ,- A � �• .. `�� . . : . ,. ( < <_. ... . l _ . , . ,.� ; x�� �.� .1 :�t - � . . .. 7 � ,a�ll . �-C-. . f .. . F , . . � , . . i/ i . , . _ . r : �l ° � ei rc',u�±r, . yA . s; ; o > �y, � - V G . ,_ .. � ��I... f .._�.... . . .I... . . .. _ . , �, u . .. . �{ 6 , ti-. ._. � � . I x . J � h_,,,.a.xo � S�. . t '?�� rv „�, 'f� .in , �( ii .. � -. .. .. . � i _.:. . . +i � . t ' _ -. ... . . . .. -. . n �.. . . .. II . r ..: �.. .. . . ... : . _ p ; i'.: �' �i n'i .1_ ,� i i ' - . . /a � _ i . ` . . .r - . . .>. . . ._.. . � . , . 0 ! . �... . �./, . . . _ .... <. 9. iAndm � . . : \ . i� : . � � : : � � . �. �n�.� , ,y�ic 1 .l .E . h P t - �? �r 1� �..'.I:. 7 � `\ '��o� _ - i�.�indl' �..��.... .c/ . / �� .l . �v ... , a :... �- ..-.. ..:.'... ..:" .. . .� _TY . . ...u.�n ' � . .�H.L . • : . � L � 'k � net��r,i ..�. � A� k" .n I • . .:. .,�-, .: , . c... . r . ... ll.... .... , C . .. _. . .. .... ... : � . S . r - ;:� . 'a' �a "`.r:: - P�!'t+... t .L:., �,i�. "i � r .? , a 6 ``r` `i, �:�� �T " , ,r .1 � �1 'L . ,. _. � . 1 : :.. ....�. . :,.. . . . . ... .._� . �� . _ .. .. �. .•: . . ' �': '�t�� 7 1. ii . . , ,. ... _. . . :: � . . t .. . . . . . ( . , .- �. . �,� Y... . . ' l . . ' . . . �� ^ :S'': o; I� � � : '1 `.��� �aa�yr .6� � F �� � - - --- - , .. .�.�) _. ..,.J .;.. _� ... i1...�....,. . .�. :. ... .�.:... . , �..._. . 1 �: , r � y F :nner nro aN, .hWr � �� }, .�. _i�„ -- - �1�' q i � � , G � .. T- ,� . �. .\ �' �C'�n ��I...k. 1� ���r .. �•�v,. .��1 - _ ...1 �./(�� �� s ➢.rr1 .�. H . .1 � V�3?��FR�dwo�.K+�. J� �( 'f +T .�.. . -. :'l't':" U.. �. .:: � .. ).� ��.:-.. , ._ . . � § l�}.:' ::._ i -.' F` 1 J � -"�'' , ...� , i. .,,... . .. .. ._ : - . �.: . _ . :� .. �r� t::i� .. . �. :? � ,tRVA� ..X. r1 L";. ,- i ., . r .. :- _ . 1...,..: ..... ' . .. .-+. .. . . _ _„ . . , ... ,. . . Ib: .- '� ,�. ,. ., .. < 1. �1 � iN .�: c`�"� I + ___ .t , . _. .. , _ h . . � . .. -.....,.. .. °.� . , ; � .. , � 't•. 'a . f` � t . �'• ? , : I ,I .� . . . .. .s'^y .. .i'� -.. �i-f / ,.. . . ,,. .. .. .. � ae . tic. _ .. .., .. � .... i. ,. : .r Y� . �. + . � ` .��. ''� .- ,�A i �ib `.�..�.' .� s � , � . _ t�._ . . .:. ,� . , _ . <. , � � .. � r,..r: i. 4 .,�= io 1. ./ �°: j y � �+c � � i. � _ �. I -.: ,. � . � � a: , . � i ' r i'_�'� � � y � _a _ _'� . . . � .. ,.�. y- z: � : � . -� - - -- � . . .. , . ..> ,,. . . - . - - - }-- �• - , , . �' -� . _.:�='- - � -r -> -�-. � *� . � y� •..�(� .._.., .. Y, � ..., e. -... :. . :.: .-.. . ... � y.�.�ti -� .. ' , .Y. ' _ id � ._ �) /� �+-� _ + _ _ - __ _ , � � � . w+ -F� f-� _ �. i ^ � r - '�.� -., • � a .�OtO.. .. _f�. . .. -� ' . � . _ � .� . ... ���4 . � ..� i'. . - . .. . :/.. . .. .' 1� / �. I � .. .AU �1 . {�0 � L'Y^rC'�' . 1 " , ., ' .l �CHR SIM1 ` ... ... f. �. . �: . -�.I �� � ....� . ... .. . '�. : (�.. . .. ... .. _ "__ 1 ../ � ..'i.. \..,..'fw `�� A ..,JV�1� l �SM . _ ..,_. . . ... . �. . , -- .. ., . ..: �. .-�.. � . �: -, � .�r � . ... . .. ., : --�z- .�.,,� . i.`r� �1 � 7 � :5�.. "i+ouia '.� cild 1 .� . . ., kJ - . . . , . a . �. .. . . ...._. , , . :� _ �. ; -. -' . „ ,. .,,^s. ;� 1 , t - ��.. . � ,. �� .+.L � ' `3 -' O '� .. ; , - - I r � ...� .-I .VW ..... X :- :. 1 - . ...'I. . � ... �7_... J .\ . ..1�.:/ -'.� �CAHUY nie4���irA� . . -.�r... �x1'.: _ �� � - - �. � �. �. � � / ' �� 4 ��� �..,�J�� _ ../ , '1� :� �. J::.� �I.i' IND�A4 E9` . . �..... '... .. .. ��� . . -.; J� . �- e ... .1. .-.T .tl. /. _ -�.. . . k .� �. . � .:�'- �.- ., � �-:.. �. . .. . .�.'' '.: . : :_ .. .i7a.. . :.lC_v -'y :!' -:t.,� �`7�a . F y^ ,... � � �. , ,/' ..:_ . . .. . . l . , _ . - : . . � .�.. .. . . .. . \ - _..,- . . _ - - i S G' . .. i . � I _ .. i '�. %: t . _ , _ . .. . .. . . . . �. . . .. i;... .. . . .. . . . ... II �.1.... . -.. i : �' -TL. ' ; � .. .' ,•. r� . •� ' , � � r � �' �.. �, �`_, ,.. . _ ,: _. J. . ; , � � .. ... -. ._. :- ._ � �.. . } , . . , . � t a. ,L... � :. . . .. . _ � - a� _-7 l� 7 ,,. - - ���"' � � . 1 ,ry"i ...r-T . ' l3 ,�� . . ....r_ , t . . : v . _� .. `�'.�,.. �. ...,:' 7 •i` rkr �-�--.�9af J - � - \,��.. � _. • , , , _ ._ .:- . f'`� R. _ _... .,.. ,_ .: �^ _ "�4 � - � � - �: � . . ...�. :.: . .., � �: . .- .. .-.�. : ... r .... ..,.. � . . . ... ' t �11'� � �c�-aOSr'(� ♦ �;'.� - .. , . . . I. . � . � - . .,,, . j?_ . . :� . .,,. �. �. . .. _ . , .. � ., i a . _ .. : ✓ / i ' �t1 A. �> _ _ ' . .� ,. . � I . '!h. .... .. .� . , .. ...h . . . .. . �... . � d �, . � ��- \'�� . � z.'. � i G £ . . .� . i-� . . . . , cc .: . .. . . . r .�� . . , , . . .: , _ r . � ` _ ' S ' . - - , _. -.. , . . �. �_ _.., , _ ... . . .. - .-,.�.:. . , . . ... ,,. a .-�.�: -- - ( : _ �. . �.. _._. . . ... _ _ . . . < .. , , . � .. � (`� - +�s � a. { ,�. .::. ; ,�, _ " �. � � _ _ � ,. l.` . . .. . . . . _ . . . .. ,. , ; __ ; f_ . �: . : � - .h i - - , f c � � 1:3 M�:: ,�. � � ' � � ;�` - ;.: =-, - -- . y. ,.... V.� . _�",.-� .-..- _t: _ ��.� .,i.... , .� _ - :_...... _ ,. . •.. �. �. .l.� I �. h.�.r 'fl. �� - 'r , . .. ',.1, � � . _ .. .. .... � . �+✓ 1� i.- . ... ..ia.. . . �.: . �.. '-..� ' ..: .it �ni�rjM.. it'.. "�. %V*.' - I �TORR �..I . . , , . �r . . � ., i , �-.-. . .... , , � . ,J . .. . . �..� . . . . ... (� 1 ..i u �.. .. �.J y R" _ `�. ar�: -:74 . a :s.:-...`. j � \., .� ..:, , : . . : . . . . ..�., ... :, r✓ �- .- ti,.,.v. �� . , ,__.,. _..�. .i.' �.., I �. "C. '.�.. �' , _ .�- , f - , - z+�^ � �• � ,-• � �.., � . .. • .� �. . _ _ . .: � - x_ F , .. . � . .. .« r , :.. . ,. .. _r.. . �r. �HT . , :. .. . . . - . . i . .., . . . . . _: - . . . . { ., ' . . - :. __. : _. _.�- , �- �� <./ . - � . . l _. _ . . . . A . . d' U . . . . _, .. , n ��s..�{�f =. „w .,- i ,, � � � r ^�- eem' .T anc Mitarnv�e ., . . . . . Aanc .. . .. .. a . ..,. �.4 . -.. .. . . . .. . , _ - -. . ..:.. _,. C . ,�. . �� � = . �7' '���.i .�.�-.���- 5ER`: � .`-"_=. . , .� �M . . . .:. . . � -... .1 � - N... 6 . .. � �.. . 'i . P°�.� . .. . . . - !.e. :... .; { ' �.- J . � M .'^l. .�a/' _� � � �. ... .. .t. '. ... .. _. ..._.. . �. �� ,�e'1 � . .. . . . . . .. . .� . . . �' a: r '.' . .. .. - e .. '_'� � .:.:ij :. ..0 '1 ' _ _ - .. .: : . . .. . .! • . � . [ . . . . . ... t � ..a . � � . . .. , . _ � .1 A �� � '.Y.. i/ - 4 ..�'�� ; \ �..i' � �\ - � 77Y � C . R.. n ES� - J �� W.;•.: { �� l�� a . _ . .. .. . ....:. i.... ....V�-�. .-,_...�.... .._. .:. ., ., .. . :. .. _... .[ f� . ��� i,y���A 1+t�:,/ . �. _ _ c .,. .... �.. _ .. .._ i:_. .. ,r. �, ai: � , � � L,l - '� - � n . �. . . _ ._ � . .� .,. .. .r �,,� �, , _ �� .. .�.. . .. � � ., _ `�� , �= .� ,: _.. . a .. . . . _.. ,� , r -t, �� ��,J,,� ai - .r- � � . I 'i -,r��. ' b 1 .�. ,(.. „iv. - .i � > /_ �_ e:e � �5. �.3! v �n . .. .. . .. �. ,: .. . .�.���� ..-': � � �. , � •:- .�- J% I �+::- .�•. !, �..... .�. ,�. .- ,: : ,-.. , ,_ ,.. . ... _ . 4 . , � .. .. ... > ',�' . ;' \. - i� i :� . �. - _ . ' f" �� � ^ '� k ._ ..a , ..., .. . . .. ._ .. .,_��. ... .. _. ,. ...,_ ., .: ..-r -. ��� �:\Yl - ' __ �K' , �. p ( : .. . .� ` . .. "` �.l - -.r' - - 1$�.`��5� . . . , � _ _ . ... . . .. . � `�. ,h _ii� N � - � . . . ,. _ . _ . _.._ , . .. _ . . . , . ._ . �. .. . ��, - - - - ��, - - � o� x� . ��-.-� . �; �. , . .� . , �i. .. _ .. . .... ... ...- ... . ._ �. . . � - n ... . . � i����-: ,r' �� - - -'�4 - ,� � w � - •��. , - ._...- . ...h11. 5... .. . . . . .SKr _ ..ii. .. . .. . . . �. - , �/. . . _ .. . . . .l � �.� �po f . �r"'� '-- i+ � � ' a q � . i. -X... . .. . �.h. V £... fT .� , l. . . . `� .... �.. .. . . . c . - i � . �. y !. �. I i .. � . . . . ... ._. _ ... _ . 1 . �. .. .. � . � . : . _ ... , � . _ .. . .. .� . . . i: .f��` .,, : � , ... .. .. . _ . ',.'-. .... . ..-.� -.:... .. ,. :N.(�_1`a . . ) r .. . _ �' ' i 'i I �' - �d" ' � �., . _ , , , o i" i. � „ , . .-�� S... . . ., . , � . . ,. . T.�� _ � �°'n' �. � . �� 1,.; '! b ,_. v . � Yv....: i a ...,, .�. , +! . �o ��:, _ _ i: . .�. . - ._ . ,.. . . . , . .. . A._� _ , . � � T . ,. -� .: , ,. .r�, �_a '' �}� (� 4� ./ .. . C . : � . a. .. ._ : Y . . . �..�.} ... �,. .....:.. ..- . . . . ��- -e . � .c. , t 2� h � ... -- 1� _ :�C �, - n - ..,r..... .. �. ,_. .. .. .._. _ _ _ � .. .. 2 , . -g- 1 y •(. � t - � . ?� �. � �� � -�. 2 Q � Ca �r io 19� .. . . . _ . . , , � , ,. . .. ... .. .. ..; : ,. .. .. � <. - �.� � . : �. . ,. ... . .. . . .. , . � .. . . .. . 1. . , a, 1:3 . .�- ;�> ,c�. .. -. . .i � ,. 5� i6xw '-. ,. -. . .. , b . .. . '': . r:�i�.... 1 n.�� " � i 1 - ..:. . , .` ....... _ .. .... . .. . :. .:'�- : .. -. � U . i��_P.h�1 .. . �b1 �.,✓ ��.:,";f`..� 1 - . .. ... . . _. .. . �... �. .:-..:.. . ... . .. ,.. ,-,. . ., f ..1 .. . -. � • , ' ��`. - -- J . . � ~ 'qL"'° .. � - ���i� � - , ., . . ... . w�k. . . . . , . �� ..0 , . : .. ... . ...:. , . . . .. , .. . . � l . . . �= � Fs.:'� i �o �.S �� ``i� - .1 .,�, _ �, '\ � N ,- �{ . _ , , � . ,... .. . e_ � F . . � . . .. . . �� _. .. . . .i "' J .• . . �1 � .n . . .._ � , �: . ,,�- � . � .'L' l�y J I � �._ .. /... ..�.,. 0 ... ...l ,<:�.. . t : � .. \.. ..AKM1F, f.' � �1 �/ t" ,/`� 4N "' ..�. .h. C l;SS? . La -. : -. : � . ^ � �T . .:. . �. rrW.. .. t.. .. � .: � . . . r_ � _. .. . . . . ; � .� ' 1 ,. 5... . . C�:.. . -. . .. . .. i �. . . :. : �� � . . :. '.� i � : :... _ I 'C�1N.r. .S6L�fP`f�' 1 � k: �\ ' -.tx"\.,- . '� �.., , .. ..`:'LYf�t..l� tG+ ] - ... ... .. '.,. \ c�. . .� . ^_ .. . _ : _ "' �I L.IP:NDIa�- �. .L� _.Z,� .'T. �nl - ..�W 1�i .., _ � � v �. " _ . _. • - _.. � . . , _ �P;. .. � -: , �s. 5 �-- '�' . - . - , � , i.!F.r�+u.� . . - . .__ i _-�___:-..-: , _-,�_�.�._.:_� - _-�_ _ ..�..__ �r - ' f'; � .�.N �c ' ..� _ .�^ _ � o . . � .. : .� .. ...... . __ . . .. . ., . . ... "�� . � � � . ... � . . ._. - c. �- � i -- - - - =.`'Yr, . ��r .-x�.�F"• -��- - �.° - I - ..... , ..r . �. . o'�.. .. T, .YS .. . . . ./ -. Jrv .nF�a Ot - � i. / e.�it .�.n{�nn .. -�. �.. .. . _._ ....r . _4," . '4�3! ' 'p � �[ �i:; � .- ' _ : . :..7. . . . .� -��: �,_ -. �Y .. � -.,. ,, , i .. . 7..,a v n � . � . �._. : .�1 �.� l -^-`r; .t�T-. � :��i "' - '_'I-Y`�`- - t � _ _" ( � . aR �_ .o. � �d. '. ,.� ., ...-.. .. .. u -..: ... Y. : o��� .� �. ., .. _ d ' d `. ��. ..S {.�.�'� : �- � -:� � ,<�......, ( _. 9*^"._ ��. .i. , - , _�� : � �, .L.�v _ �_._� _ �.0 \...w����:. . i ,r .4:J B1�p.. 't _,i2., - �}-.. .. . ` ... .., � � _ . - . x . . . . . /! `� .. . . . .•,. . EC ♦ ? _ . . .... ! . . -� _�"�.- �" .- F� . ° �_ � � � "� '1 . : , .., . . , .,.. � ,! �-. -.'1 ..� . �. . .. _. �... .. �� � '•: �. .�..� -t..�?-+�,�` �IF I =�;� � .I. - - :y�. _ ";( ... , . . . . . . . f . <, vS�at . ,. . _ - - - � ' . ' ..� � , . . . . . 4. . ... . _ 44 s`� � �.... � . - .. ,wE ,... ... . .i. r..... �.... ... _ • :.•, . "J - .�a' ��l _' � 'T .. . �. �9 �.:.. .- . � o ° �S ° . _ . , '. '• -/' _ ' _ _ y^p5 Jc� ' _ ,, � ��� - /i ♦. ... . i: . .. .1 .. � Y..A } w�.... .. Y' . ..' ... . . ,. �.. ��. .: . . r : .,. _ '�- ' 1 �• ! . . . . . ., . � . r , 1 , .. . t . / .. ... . - . � . _ . . . . . . , . .4. � a.m., . _ , � .`A "!`-. ' � . . .. � . . . . f .. . /. .: .. . . . . .: ... . . . � , .i , : ,1 ';'''-' :.�' . ";l - �y� '�wk� , . a . 1>. , ... . .. . : . . . . .: r .'�.�� _ .�'. . �A< ..._ .�.. . . .. �'. � . - , .. . _ .'.... � .'�.J` /-�, i�- . / ..... .... � ,. , ..�. -;.'.Y/I i � ,. .. � ..�,. .� cR. ...( _... �: I� . ... ...� � :./' :wa. �'Y.� - i . N'b f �_:f' � �_ .'-. ./..1 . . 'F . . . . +. :.� . :. 1 � �. , . _. _ - . . . -: . . � i . � : . .IeY . . . '- '.' � _ ��.�1'S :..�"`a�+ Ms+ � t .. . i.--..�. r_ .- .� . G . „�,._� f . � � . ... c c. . � � _ / - :. . .: � .. . ..� . � , . r . . .. . : , �.Y�,., ' ' 1 ' �� , . � . : .. . . . .. -. � � ,- .. , _ dY m �:�. r �. . y. -. .. ._. .. : . .:. v . , . . . ; � a .. . �:.-�ui' ..��vf �-a ( ` ..ea.'. � � f- - 1 �• � .... .... \i........ J... ,.:i .....- '. r'.. f'.,�� �. . . .. .... . .�. i .. .. �. . a , .. ! ! ��?I ui y , .. . . � .... �.. .. : .. . .. . . c ... ., .,. . � . , ! . x . . . . . . , .ti _ . ��.! � t . �. � .. � . , f. .,, ... i, . . . ... ._ , .7 .i-. _. .�. �?r . : .�w... , a..- . .... . b.g .. �,. . k .. ...�� � . .. 1 - r J� l-- - � . . 1 ,. . .. t � � . .. 1 �. ,. .. �. , . , . .r. . �. u� � Pa , .:.,. r `"?m�^�` ' �. � .> ;;`"`�, .. m• r t .++' �u.,. ,,.s I ''.� , .- ..�: _ . �, . ., r ,..... , t / - • i - - �.. � : r .. .. . . _. -, . ,. � � . - .. .3 ._ , .a:. , �. . ..a.. �, .. ! ..�_ ,. . -_. . ._ � ,,: . ._ . �. .. ; , • ..-�. ,�. -�\ �� r�� .i�an �. ..4I ,. v� . . 7 �, , . . ,- J� . . �,1.. . ��. � v ,... .. �: - . , ��.. . � , i� _ . "c R': �� :•. i � �: l �- . ..4 4 �7 . .. : � . _�,t - . .r .. < ,_ _Y.. , w. ,� . .. . .�. . „ �'/ �, �,. `�, - , .. e �.�., . , � ,; ,� �r, �_" . ,., __ �. � , . ;. ..: w �'- •"<- �.,. �.r�� � .,. ; � i . C� _ . . � . , , . . ..: . . . . . . . . .. ; , �. . ::> , .. � ,�-: , , _ �. ` , . v ' , , , "�'di�.�, , , :a^ �-...�,_ .:, ., ,.,: , �. C. , ,. ... , _.r,--� .,i,; I vnr�c.�rv . . , .. � r: _ . .i. , it. . . ... � � �.... 1 � .. .. . f.s � - •T :.r . :. V�. � � '-. . ., �. .. . �., � , .a1,n.. : � , �. � � -rx r a . . S . ti . . , , , : : I ,. . . �r"- -.._,,. 7� . � ,-z ^ ', ` .� . o .ko�v e� � -_ . <, . . , . . _ :..._ �-�_ , .. _ � _, . .-. � _ .. . w,���,. , . , . , 4 ln..,... . _ 7 S.y:t w 4 .� �L7 { "� . . . . , . . �t . . r�' . �,. ..c.� , ...,,. ,. .., . .� . . . .. �ti.. . ."�r ._ -.r„ . : . . - ��i i , - .. .,�� .� �.. .... . . . ... i ... ... . _ .. . a +�- .. . . . ... � i .'.-.. ; : i.: - . �'T . .c)� � � . 4, ...� [ . . . �{�! .'� �. .. , :- .a•f7. .. f,..: � ,.. r ., . . . . , . .. �.-i , . ; ... - .. .� ' ::., F? »- - _7 ..a.. � � , x�- ._ . . _ Y�,,.�� ._ , � .. � , . , . . . . � 4. . .. _ �:,..:.. ;�, / _. ,�;i �.. ��� ��- _ ar . , „ . . �.�� ,: ... . _. .. 9 � - . �. 3.._, .. . , ,� �.. .. , : .� /� _ , ��. ° �; \ f . yD� . .. . . _ , , . : . , .g , _. . _ _ . . : . , _. ._. ._ . . . ...�+�"�, � - . r �-.� -.-.�: �l . , -� .� � _ . . . �. . , : .. .. . . .. �.. . � � �; .�"' . . . . � . ... ,,,. .. . ..� -; , a..a. -__ .; �. _ . �. . . . .._ .. � �. t+ . :. ._ .. T-. . r `b E� �.r,,�- s ...a. . ti f" , . ., . . ... ' _ . �l �. . W:nPr ,. . � ... , t(. i. l,n . ... ).. � . - ' ,'y \ ' �i�� \ -. 1. � � � r\' . i / � i. ..- .. . � . ..,.F_ 4A . Ktk l . . / .. . . _..., � . . . .... .. ., r.. .. . �. `�... ul V .r�1 I. .� � �� . - .....a�� -:'.\ .� 'L'1 , ir,. .. .: � . ,.... .. ... _I . ��.J ...r�.. .,- : .... :� / f� .3,.. ��l �..i� .V '!� 3� :.G : �.�I - • .. /.. . , . . �I. . ., ti . �_ � _.._ . .... � .r. . . , , , � i i . . : . . .. �. '-'� < nT.� ,r"'�%. , r 9 , � . < .. .1 {. -,� , ,,. . .x,. �...v .. _ _. <. ,. .,:,:: .:� > � � � �... : . �. . - . !. -. . . . � . ,. a .�. � , , -. . � . +a . �.>.an�.• :: . . h . 1 . � wta. ( . ' .� . , . � � � � � a �. . . .: .. ,. _ . , : : ... . - ' __..:.�.� ��I>.;v .,. ti "`.'Tr�cc��!l!'f;�. � .V _.... "., � ,� j .t\ �.�4 � . Rnc < . . _ J .. . . a . � '. - ... .. i � .. .. j . �. . . r . . . y . ,: ... . -. - .. ..r/. .. . �...: . 1 :^7:�. d- _+"jr ? . �. . 5 . . . _� ... . �. . � , , , _ � . F , ., �: � .,a�n �k �. :� < , \ .. . , , : . . , , _. , . . . ! .> ._ . .�, ,�.,. .. ... . �. -, �-.. . � ,. . . . a : a• : 5� x - . - ..:j?, � � : x . �. . ; �. �C� � . � i . _� , �. ,�:.. �_ . . . �_. , � ., � . �.. � . . , • -.. -. � .��. , . . _.. . i . _ y �'.� ' e+ne« i ..a f �x � . � �l' �"'4: j aa � ��_.±: � �- d€� �� �-� . � .,,.•: , , . �. � . . ....:.. .. :.� .:�;�-.,. -.,n: . S •� •-._ .2�^ -- .!' ' 4� - < ' T,. `[. . . � � �.a--_ ��- .. . .. ..� 1� s."w. . +c . _ �. �_t:,l >. a�.. . . ; :o. . .: i . > , . . -, t. 1 : ' ' ��,, A°anW . _ a,,s;: . �.,. • , . . k�c _ �a-,.*�• -�r + . . ,.. ! � ^� „ � ;: :. .I' i � .. ., c•� ,...�''.. ..� _. _ � __,..-�_-.�_.._..s._ . ,. _v, � � ,'i i z z i �4 s,, �,., � � � . I . -� a n 1'. . . � . .. „ , .: '_`F . '�z� : . ..: � .. _., ... ; : . : ; . : . . m -. - _v "Ea5lCk �Ji� ' , i W T. .� � . :, i . ... . -, -- �.... -.. ,> ... .� : . -. . . ... . � �._ ,__ . ,._..,.. . . ,� _ . �xer 1-�� ,.' s':".. ` v�ve;r Sen mel�te . ..7 .,-_ ? . : , : .�..� � , 4 , .. > : . _:' .L7• � f1r 8. i: ., � .. � � f.. , . .. ..._ _. .�.. .-" /i �- -- .... .�., r.. _ - i � ' . .. - e „!R ` ..�r��r '' a.►�� � _ _ i y. n,�e. _ :� � .._ �:.'. n �r .�.:��_ � - `.� � r"��_ ' �:�%�w '['6J rC'+� ���� - . : . �� � . � .. � � . . � F;. .. �... . . _ U - ,v . 11 ' i,b�c � _ ' � �_ ' • ... ..r . . . :.- . .., '� _ � :;�' ..'^ ; � . . �� , i : `i�n .r.,� . - �, i -ll. `. � .. . ..i._ ,.� . - �{�,� _ �..:. r- �.' _\ i��._ � J.7-- . ,,p r ,� , ;' � i .y �.rda:5� �4 ..5{i�� �. � � ___ � � � ' \\ \. �. . � �, �.,� : . � - � >. .Y . � . .. , .., • . a. - . ..,. . ' �� � '�'• r� . ' _ , ,' � - , 1��:�. r: _' - - - - �;.' i._. - - - - f s� . RIVERSIDE COUN , _ - LOOD CON � �20L , .. . . , ,.. �- �y.��.:�.�� . : � .�Y" ...': -_. ... � �� r. :�i, k _ .ta?� _ t :•"�..7 � , . . � , _ � _ � :. ' -M. . I: y 5' �. • � _ ,, T Y F . . . . " __ . " "':'(� �. �_ ' ' _ .;.�.�: .i ' zf''.' - I�-. � �..> � ` T, -_ '. , �' _ � h' � 1 CAIe. � ��._ : '� .r'. �-., : f f �Y . l .v�' .� - . . '.i Ha1� � . . .. � �.�n.� i - r wa .'C�.,�-.R�. �l' � . �� c ��' -ti ..�_.. .:r . �'t- �:€'. A N D ] - Si.°.+ .I '-,'N�... .L . 1 - l . M�! ._ ..t� .� _ - j.r �G . �� � 1 � ' ��-� . .'. _f-, r �. : T .. �'�lc. _ .. i � {3�'t:: - r : ' _ \ . „ x ' . „ , . , r � ', . , _ .�. ... .. , . , � � ! .� . .. , ,.: . . . ; - . �" � _ - _ " : .�> , . `� .� , .. . ._�.. .✓ : �:�,. -' ..-: i ' . �� .. _:= :`^ ` .: J � _fla�il. ' \i `� ,'�� _ �Ui...:. I . ':5. . :AHMU fk�ir.l fi _ .� . . �.. . w . � , .V. , .? . r�._ ..'` (.Y: j ' �.J�.�. ';� ! .F. . ..y' � � W \ �^ ,,.. _ . _ . .., : ;�_ � ,; ;- A�n:�" ,nt�, $ ,�_ �RES-�. _ i L ATER CONSES2 TION • . _. . . . �,,...�� .-�. . .,.- .. _ ,:. •r:,., ,�'= . , „,e,. i�'y � � �:8.� ..-,J - � ,, � QI ST R I CT � . . , `• _- ..._� �P i�13L.k t �. . . . .. sY % `1 � r� _ X a - r. - '•�--=�""� r `�� � °�- c - `'�. , �, i y JA ' -�� � ` ctihraokr"" ,- �I' �� y -. � T� scrj,_� . � �y. .... �• . I _ F - . � �';� �-�- y _ �+ :.`A:s � .c -- - 1 1� - -Fr,s� i - y :� _- .k, - � . . ., . , ._'. . . , �F . ,1 � Mn9 � .. . . "a � � '. . . . � .- � � . -� .v i � � - � '�"`. Hs ^'°i: - <,T.. ._��' .�- ',`��;�. ;r � atL940r 1 • - R �� � ;*v ,.�.,': .;l �'� -� A . A " 5�" � . - -r .+ F' � i:' �. R . .:,. . , : � i - �,�u?`- . � . � :�r ' ^ .�7'`-. ,T o� � � t . . . . , ...... . -�. . . . .. :�. . „ . �d �..�/".✓-' - . . , r,.. ` ' '� v' ?:. �°� . . �' ', ! . ' „ , � .. . J'! (?t T� . - .-i- .'� �/ p , . � '� . .,.. "F _...5 =7 i . :�._.� :;t .: � - � . ' '. , ' � _ ' D ,fs "'i ` _:'1�+ / `.�^, " �- , t Y .w^ • , � ., . ��. .,. , _ , �..., ., r .�...,..... �n4a, - � -�F . � � � . . t � �. O ,. ,�-. � : ,,., u„ .. � . , . _. , -. . . _ . - t� a- i1-� � � 1 t ,. � . . _ _ � . . . ,, . -,..:. ,:. �Yeiu,+ds+. -. - 'j" . - - � rc-+- �e �R < <., � AR t HO � . _ - '_' -'bi^ k � t 1 �.a ' v ' u 'tti. - l'. - . �l '!`e i . ;.��. _ •. a- ,.t I� _ � x � F � ' t. _ ..y, �.,'v� . ' t . _ �., �, .�t ..:.. �,. '�,. . �. r : . �., a�� , . . ., ..�F. � .:�.t r :. .� ..,,*•. 4,-� � 4. .-.: �., . "P1:T•� � . - �$-��.V�.. : �, q _ z g � 1: �_ �-. ti 1' ` i '��. s .. .-t . x 8e5E. �.rb`,:� c*` -`- ;`� .i-�. .�.!!s� , . . t�7'e+�r_ .� s� � a't�?F < t r � r . . ;., .. , � � ..: ' �:,...� . c.,�- ': �':�. ;,; =,!'Y r - '1.� . ��d Y '•. �. � 'o. ` �-�-. .. o '.��_[t.. '-"_�c _-,�. -� - - Y; - 7' : _ � . �^ ..'' i� '. 3 � . 'r.�t n:: _ � �.� . � :��� - . N �d"e(ic ` .. \ . 's. .^'� . ,. ,t� ..:., � -.- - �-iC_y_''' �.' .. �."'�r 's: ��, r: -.=,-y '�.- n.{ . . n ' '- �='' _ � ' Y: �4 � � � H� F 1 ti �. : , ,:. �� �°r -- '- �:-a _ ��. !r� .� � _ _ - T�� -. _ � c+.._�_�.:n � N�. �Fan . • ,�:a .. . . ,. �ss L _ � � F�.�. _! - ' - �- , <"',�' -- - F, �+s R EC I P I T� , . .� . . . . � .. ctle . �. . �'�..:-.. . .. ._:. . ; ' .i� . �.y �..'S'tn�an��. ..� ec.�uu:�,<� �'.� - t ; r�a �� � y ic� ° � - ,-\ . . . .. �- ��i �. .. .,.,,� .:.... ^ �l�_- -� i'\r rd�, . _ ?t .� .} y� ._.4.,r,� .e. �sT _ - e . � . P TI �J �_. _. . .. •. _. :: •� .��_ �_ �..,; I \.. � ,:� � � ' �1-j :�:� . -. • . . . . -- .�: . �;:. . �. .: ; .> 1 Y� �,., . -,i . �� �.f�aca T10rt�. ..: i , lnEYm�� � - . �c� �t . . y� �.: . . . . . . �. - .. , �-. . `�2 amr. - e. E ..:�, � . J ff���;'� - �uq7� . _ �: "+�L - _ - - �- �-�- � � , •1,� �f �1 `�. • ' Q u_ . ., : : �.. . . • � t iE ,-. ' ' ; - y .�' � ,- r �. r r I �?x�: � , �) 1t' r � � � �. j � .. � ...::�. - , `a, . ag.,- ; . .._ .. _�� .. . ..' y'. . :��t .:� �. � _ '_ - 1 ' - �;�'. - t . �`✓ ..� .? o..v,. s (-� �.:.qr .. . �� :..,.(_ ��( . . 1. . .. 1 _ , 1 , _ . . .. t* .� ..: ��" �pn4� �� �� 1� '� ,1,'.•."C5{ "+-.. -.�I' - ,�, awa:r � � `W � � ���'� :. � .p_..�.-. � .�� .:� �-.. �.. . � � : �. .... ,.-� 9a.fjk.. �.,_ .... . .�`:t. � ' ,'�}r� x \ �\. +KJN�ICt A .✓fRi�*"...-e �.v�;' r.. - � LG �o Y . . . . . ,. . ;A,� ,:•..�.. .. �, . �AY �_ ._ .. I � .. . :� r .. � - _ 1,. : � ._ 1� ., � '�, ,y a - h ` , J °s' .. .: (.. C.�� • . . . �.. I� ._�'. . �- .,:.;:. • 1�It�.: - -- � - ` � l,l� � , � ` o a.. - . � , ` . _ ,r -- - _ ,. _ . ,� ; t �, � ' . � - ., , _ ,. `• - , ` ,� "ti .� � ..,.,. . � `f.�l� �, R2E � . a..� , ,. > «,., ���:�... . ,o. .._. � . . . , .. � ,,�_�3_3E . � ���= a�~:':: ,� .��.. f :cr�� ._��.,�: = __, .,_ _ - - - _ . _ ... . ,. . _, : . : :; ,,, ar _ .. --a �r �?«- �M>:- �r='*„ - ` �� \ i - ;� C _ ' . ._ . . .. . . . _ _. . . . . . , . .. . � . . _ r � . - . .. r:.. � � . .. . , , ..'� ": . i i .. . _ _. _. . .... .. , .. _. _. <.. .. . . _ .,.� :x ,. , _ v - -.m. ``��'.:.`./: {`. _ , .. .., ,. �. , . . . a . � _ .. .. , . . . . ti �... - � . . - . - Q �r i: � �, , . , , �. -.,. . . . .... . - . .. .. r . � . , _ . _... , . - _ „F . . . . . - . . .... . > . � : (� - .k:. � i'�� -+c '� . __ .. _ .� n- . a.. _ ... I ._.,_,i" _ , . � . . . . �._ ,.: .t- _ .- . 9!h� , . , _ ., :� :` ,� :i-� :�� -' 1, - . C . . T :� . . . . .__. �.� . . . ,,. .. .�., . �_ ,�<, '' _.� - -, - - ,�,.. R8 �/ .. ; _ .., ,. x.. . � . .. .. _ .. _ �_ : ..-. , -: . :._. �.., �-: . � �. ;;�=..��€ �. � .: �` - - i - •� ' � °S� .--� f .. � ., ., ��. :.. .. � . . � , „ ....., � . ,. _ x :,. . . . _ . _ � ._ r. . .- ,,, v n'�ha 1 _ ..'F . �� ,�:; . , . ' � r„ ; i - ; I 1.. i . � .. -.� J... ..� ... ,. _ • � . - i. l.. �.. , .�,,.�... , - -...••s- _ �' \_�� "`"�� K �e�l ` �"`�. r . _; V�: y,..��? � �VV .... _. ._, `�'ti'�' ,_ c.�,. �f,��tre��,.� __� -� � � R , f -a �..;. - - �-,___--+--- --- ._z� . �t . . �... . ._. _ _: -���- -- � e °•r. � �- -- , _ �} _. � .� ... . . - : , . .. � .,, ._ _ _ ...� �,�-., � i - - - .� 1 , . . � �- _ , � ,. r -� 1- r - , �_ , ,.:.: , ......... - .: .� n �k �_ . . .. ...... _ . _ ..., �. _ . .., .. . ,�?'_�� --, ' ��. � 4,� ��a. - �•t.- '� .•�.�1 o i-= I' 2 .�� .�- - _ !_ , . .�Z .�..`__� . 9 r � �fi,; .. . � . � ,. ,� ._< .. ... . . �s ,..-.; ., i .� 1,.. �:f`...v_v.;,'� � q .. ..:;�? ..r ��� . �� _ . �.:. � . . . .,�F'. . .. 1+'� .. � .. A . 4 . . '. . . . LT . . .�., .. _ . . , p. � -{ ..: �. .-> . F L - !c , � � � + ' " % � ,. i _•. . ` . ... , .,�„� _. . f .. o- . . . .. .�' O . h..� :. -.' .. . __ .� ,.- , ! . , :d:' �' k" ' Y:a^�Y-' ` "Y�. ..SJ�'•=� i._-�r -�..� �... / , ' ,... ,. . 1 . , . . .. � I II .. .. ft., . . _ � c . f .._ .,. . t. , � ..�,' -, ..: . .t ,! ",; a �tr.�. \.., .-a'.. •i - . . "Jd i Y �. .s` 1..��F.�+,: � _ - L . �,.�e ; 1-' � t,. I. � 1 I � �} , . .._� � 6 , w..� A�F -,,; , . ,. _.,-.. . , �•, ..., ,r< _ .�.�.,, ,. � 5 � � �� ��� .-� �;:.. = : " _:?`�..c �, 1- i� ,i I ae ro�� �yry, .. . � < ; � � ... � . _ . ,...o . .,4� - ^ :� -.. . .•. �Y, (� . - - �; F=• _ -� , , __.. . _ .� . _ . c , .�_�.}S.l - . � 2. ., � -� .., . 1� . .. : s_ � .. _� . - F • C . . - _. - . _. ��L- . _. . .- Ha _ . . � .. , u '^Y ... , . .. -.. � i-n ._.�. ...: C' ,'.� . . ,,7 f .:/ �t f': ! + � �, . � �u� � . ._._ -� �.. � . . . . ... . . ,. . : .... . ., . � : ... . . � � . . . � . . . ,. � `-�•� ti Sw-^ �.I' . Y" ��3._�-�� . . ��- li--._ -i a� , f .i . . .r. r �. Y �.e�. . i�� ..�� � .�(. +.�: =�`rt' . "!.� - �:'. . �.�.�I.. . . . . . . . � . - . - _ . _. . 5... � �. ... � . . ',� .. . :' ,. � . . ._� .. 1 , . . . s ii. . .. . s... �..' ��T ' S. �.1.: l - _�_- .�=�:� '_ �'.:..�F, - �,9 .. .c', _ �i i ,: .: .._-. .,v ,, ... �. . � b� . �. .. ti7':.�.._� �, :. �.. ��� ..-� ,ix Z ..f'._c. i.�•#%n.x� �C� .'�. :r :'a:. ��- �i4si �:�i�:.�_�.� ' i . _� , ieze , • .- --' , . _F'. �t.: _ _ J; - - �sf�-�' � � C�u`tc _ �-..� , , 9� . _ , � .: �I t .�_.. � , . . . .. .,_ � ; .x.. ,rs. ..�. _ . ._ x� ,,,. . ,gy�� • , . I _._. .. � , � . : � � . � . ,.,�;. � , _ ,* „F�� �`= .���. r 4T � � rl p. - ��=�r" . sa '�: . : . .�f� . ._ . .... . , � . . . : . . . -� : �... �__. ._!s. .� ,'4.__.. , �. � �<� ,y. n�- �: ��:."`F'' _ - � ;Si - .... �..urx .f�, ,o.Woo r. ,� . . . . . . ..... k . � . s �� R y Ia.Mvo -,: .o. .: _ i, �_.�. ,:.. _ , � .�3 � .. . .,; :� :�- `'.�, .��" , r �.._ _ .� , L_ : . .� : , � _..- - � , .: .�._ . . . ,.,..J.. . .. ,_. . . , � ��-�.. �.,.. -�... � � r ; :� � , � :. . , � � + , yy .�� 1 : . . , .. .�. . ,.r... ._...�:..�:-L�.- ._..,., ,. ..� - . -. . . �. .. � . - l4tli� - , -.':'. :. „ � �'7'.•- I`� �. - (. : ..i � } _ . • '{. 'T�- ,:.^1.-i, �•i..INE' - . . � _ :� . __._,.. ..� . . - .. , .. . , . . ..,. � �1. -.� .., ..: .s.. . �'r ..-. -.f1" ,�i � �� , - � - � ,��.. �r�,��� .f,�.. F S '�� �-i... �,cG.E _L._ - _ _ _ � i . --- . : : .. "1ic', + .: ..: . � . .. . . . ._S� PeA!r . . .,� . .. .,.. _.z .. � .�.., . '�������. ._L- J . :�-'_ - -.i� _ T � - - En od'� i J. :t` . ,.� `c.� :�-� - . v. _ ._ w. � : � . , .. ,. .� ,. , ...' -• �.. r �..�..- .:� _,..,� � .:-.� ir.,_ .. � .��G�':� v�,. r' i �-.� �'�� G\ �I.�.--..67?✓. _��� ..t.v �•tir> �.iw", Yat�ePatn � I . . . . .. _ . � : . .t i 1 . '� - . ,'a �� � . `c .. 'z r� € . �� � - .. �:.. �,'�", .. r ? � ,J�„ . \ • >,. .,;r �4 •It;?..t `r. •_ _ � _.+ .��x: .j p r - „n : _. . -. . . i . � o � �. . , rw.�.: : .. � .�.._ �U � • ...-:-..��......_ �-. - ��.1'`,'�A` - - "s+�- � �;t�.: 4 � ti wi�+'' � �:ln ts�� . ., . . . , I . . , ,. . : . .. ,.c.... a _,.� r � --.r .ti.._ , :, . � - _ `�"'e :,r . >� 1 �r�.- '::s�.. x. r . .. �. �� ; �.. _ � tv�o� � . 9. ..�N ,s _ . # n , __ _ �, ,z i inR.t� nn� I� T 11r1 - � , z � � ' '.� : :a'r�„'' ;�' - - - r i v -..._ _�_;�-.,. _ .. _._ __ - - - ,,__.., , �.,,. � :. : , . ,.. � � "�"�T � .,- - - - .., -�-_. _.. -- ' -- ----- ,.., - � ' , .. s r � _ _. _ .a"sr �- . . ... _..._ . �. . r , , . � . . ._ y . .. ... ,.. _ :: ��:�. .; . -.� -� �. . .., . r'�:` . � .:�� ��' ..../:- ;:�.�-]' t ��. ..1," f , � � - ... ... - ._ -fii . - r � F � _ . .. .� . �.�'J � i , s'Y�... �. :. . .Y.. � .. . ..LnG. !� - , -.s ' !y. Y�. -' "�:" C �y E �" • �' �� .. Cae1 .i .. . . '. . __ . . r . . . 95 . . .�. � ,., ..� ..1, ^� i l� F w� , a�.... �1 �Y�c[ .V - i _4' 't d. ) ... � .. .. . - � �� � �,�' . . . _ � . ._ 1 . - . . .<..�.. .t,.�.:;.. . � . . " ..L ti `�.:'�i. - . t' 4�IW .{ . fi � � . .. 1. : � ` ` ' . '"� � . -. . -� i ; I . Q . . t..... 1. .. ...... , ,� ._ . . r �_: ... ._ .. _- �- _P. �hti. {:�. , r ., , �. r :I . .1 lr I . � . , � _1 . U - �"' ,X� ..-_F A.., .�� -.t. . ;._._. , � ,� �;.� ,r:. �J.�� � �n`�:. z���' :1::C a �' _ .r . ( <5 . i . i 1 �., . �. I � .i . � . . _ __. . _ . _ ..__. - _- . .,. ..., ,� ...�, �: .. ., � ��- _., . ..,..- .� . _ J) � . . :�� .,� ��.. � _ }1 - - p . �' _. . . . �,,_. � � „ ..... . ti . .: , ._ Le.. ..,. __ . _ .. ,.. � �. ., � _. �: . ...``,.. .. ,. �.. ... _ r. - i � �., f .f ; . . . . E �- -- -'�Ea; � . . .= . . .�"... .. .. . .-r -. ... � ... .i.._ .� . �?.'� �•: . . � ca_. ..;i., � :X .'-�,/ . , . ^ . � Y s .. ?� , • „_.. . �r�}, c . ..: . _ � F.'?a . : s.c. .r.. . , a,.. :`, ,�.y. k � � k�4 _ 6 si•L _ ': .. _ +�. .. ..�._ � . - NO T Afa . .-ens � -..... �>:C-.... • . . . ��_-...� �'' � .�. iS, .:-. ..- . �.� �V����.-.. �. � 1 '. 4; � ��� 'ti. - ti. . .. . ..` .. „ . .�- a • � .�. IYt.., . 2[`'.,� :.. �. _ . .._ .. . . ..�. . t�":. ta�...t' ... ..fY.�� l. 1 � - 1 I p r � - �'j�.''` �.'�,.,. � i.. , . . i _ _ ._ . � `'�B�' . . . . _< ., - J ... ; .. , ., . a. .. �.7 [. r - ,��f __...t- _ . :_._. . 1 .. . ,. . �.,.� •_:. e _ . . . �- .. y . .:. - � ,. t7.., f . � � . � .� ' � ' _ _ 5. , 3. ./ - ti'J -� ' '� \ � �� �2 � . � � 6 dro �i \ � 4. - . �_.r _.-.-... . � -� � ' � " ' .'. -�,4„�, . s � ., .. '�z. �'� '`� C1 �a=?� - l �'•'/•�.. �.- t. .. . .r. ., �_. . .�- . , . �.: .'ti. J� .. �P r�L.. . _ �. .� ' _ �� . M;::�n � � � f' :I J.�� �"F�.� - � , , s� _� �. . .. 3 .. t_- . _ . . : .. ,_ .. �. -,,,' �:_ .i ...-_„ ->: - r�t�. .�, _ .r} e,tc . - , ! • • �r } . .. . .._ ._-____ .. � ._�,, t.., ____. e� . u_- . �.� ; 6�.� .... __. ., ... .,. w�-.�: .`^.=:"-� . �. �.� ..� K ..-��, :::t.x� _.' ' -�_--- .._. ., � . : -- - � . . . . _ _. . � •--,�x �.�c.. . :,,..: : ��w.. ! , se�"^ � �i �. 1 r .'� � �.. �). , }. , _ .. ..._. . . � . � ' �.. �-: . . . . .. .. ♦ . ..., .,,,-._ ..,../ ._ 4 �.�''�..._. ....4�F - Y ..4�. �,�?'. _ � "��a) . .� .�) , �'.�.�`� .�� �'\ 'r - �-- • ,. , : Y-., � � - �,F `��s ,c+�'r: ,l y �± _ � . ,: f , T.I S . _ . _ .- : : ...�-. . . . � � _.. „� a .. . .- .. .� : ..� :. .. w _. � .. •.. .c�!�., . �k <<✓ 't � • i.. �r\ ���r:� . �:�i. r i �� .�a2 �`x 1 �=f_. �-� ♦ i - i ��"'�.. £ �r., . . _ ._ : ��... . : �.. �. -� - c _ .� � -d.0 .� . ^x^ - _'.- ...; � � . --, .."_.a` �Pam' �� �^+ ;'�:: ,�1. .- �,�. _ .. ._, i... , .. H:. � , . . � ,- . �L-.-• � . . � ` , �r i':. ; c .....: � . - �, 7 -- 5' t�'� .:�-� �-1? s _ _ �`�'; „ `c�., � _ .;J ���: i . F�. �. �.... i . .� �. : Y i.- . ..� ,� .. .. .. ...:� .. . �.� .S._ � - i� ,`?. . �.-u' ♦ ..� ..eii I�ne y '.j ' •1^::s.i.. .;� _ G - �' .'��' is...,:._ - �h t � .. i I I .56 � �. +-�t� +"�! .:\ � - / I �C l - _' . ' . ., ..�� . . . - . i � , , , • , , , .. -� . - , , _. _.. -.. .�. i,^- . :;:. «. %L �, \ . ,,ti. _ , . .,. . _ _�.�. �i__ ...�t�._._._ ._/ _�_ _.� .__:-� „ cw . , . . .. ._.__._.__- . ' M rN n .:_.. ,. _..... ��:.. .4 r - :b !i. r /'-. .'.`�.. - a.F ..a,._ . , • � '��" - . i . , .'. .. . �- . T t n � ` i }�`�p� �p�, � -- � -��----� - .o � , Y . � . . ..._ 5_ , :.. - .� _ t... �.� _.. . . a - �`c ;=��r �r':' u ,�.. __,.t,` �,�. - . ,, . .. . . . - .. _ .. f .. - . � _ . . -T.> L ... �_. � � - . , . .._, . .... . i . c. ..�.�! 1 ; 7� y� i .. � - , � .- ' t . . �._�te k_-_.�,. .. ,_ r.. � .� r-.-. ._ -.ta . ,.. ..-�.. :.. - � ' -s. ` .. � _ ✓ a � ��(S �� L `'.� f._ ��:V 1�1 y, �T'� 1 y-- - A � ",c. ,,• .,,. � c �,.� J � � ; � t s! ,Ef �� (Y�p 7`�-YS f�. i M CI : .. � _ , . ,, t _. , �, v �y . - : s ' ^- i f ' � �rai .. ' J�=' _= �; :.. . � _ `. _ ='y ..� X � . . 'i.'. �' '�.; _ � \ � -- ' �:' IN � � • -. . ( .: .. .. �-- ' .- - _. . � . _ . � . . .> y, � , . . . . .... . .� • `." . .. '� i� r1� �]. C / 7 iY,i: i '��-'. � " � .S� ..- .,� � -1",•.,:. � -..._ ., . .. . '� �i �� �.�..'�' �� r l_ �\.. �r� .�' ..3 `�rl ? ��: \ . � � � - a - :t' i � .c-� vl �c, c� c�. .. r � � rv�:. � ��eia r]vM.. � � ou ��r . , � .. , . f ,... .. : : ,� .� . � p _ .T�y` ' _ ' r $- � �. "� ,1i: °'i '�`�. ��� � - !'. .t.- \'. . - A�r• � 'ti .r �x � •% [.. r -_ I .�_ _,? ' a �' �. ;�^ a 4 ��� <� e �� '1 - u s # f.\ ����� f � "' . 7 f ' _ � � �.� � ... . � � - ` � u '•; .: .� . . � � , "-_. i... .�e . '�;' '�^b[ ��i ! . . . ._: � .� .. � � .. .. . . .. _ _ ' � .: , e.+. +� ��, - �� . � �. � �. � „ �� , , . � ' .o.y."`` A. v�-S�. x� � , b ➢s� . r . t `;-4` .,� ' --- � � ,: I . �. . .. . - . .. a. ,�. r, .; . . �. .,-, _ , .` .r.. _ . - `y� , . i � r I �. .. , ,n _ , ; } t .� . .: ` -�;i� M vr_ - r�. _ � ;.. - ,� Si o�eeoe . . y . � � . . . ., . , , . . . ,'LL._.. , � . . � ,�. �� .� � '.:. ��.. - . d ;�� i `yr. .e _ � i . I F . ,: . .rm .. �. �. . ' .�_. . : � , :. "? .. __ ..�_ .:5..... . _ . , � r. . .. .� � 4 , .,r� ' a.�. H wNaNOivO _. on i��.��. a . . �.:, i. _ f,�F o . _ G ,. , a , :�1_ rv� ..�a.., , .. . � , : . Y� ''�. . � ,.- {"' �i� .�;., s� � , b i - - i �n eE ,_� _ ..,.� 1 I�. � - _7 . .- -... . _ . .: _ - '�'--- a. � .. <.....� //'' �. w,�..� l ��:�i •f2� J.r9 ��..l. "�.n.. s4..;.� _ ... . ..: t . ,. - 5- . . . ....... ........ � ..; .,_ .:\. . ,. . i �- : � �. * . ! -x! ` `�. --•�.c--�. . �:r-'-�c�-- � - - - - �_ „ . . .. vn . ,.. , I . � _., r . �� , . �:�..� .. . . .,... . ., . .._�..,-: .. ..:-.... .,a - ::4.� ;� .. .� i-,., �t, ,4'F^ft, .� �".*. :(- � -, v e � 1 c � . . � �a. � . � N \ , .. �.JQ a . , � , r.c.� _. . . . � : S._ - - �.r i ��'' ..w.. �� - f �. •. RIVEI.IEI[ CX3C IL=�__.�. �. ,:,.' ,.: � x , . n ... �:. ,,.�.: _ _ . , f , � �.;= � _ f 9.. . � �.. . . ti. .I .- T .Qaclo 2... �. . � . ... �� ... .. . . _ .. . .. b � ..�... -`�. 5� b.+F's . Z -� `\ ..� 1�' 6 ....tv� � Ii � � i_� � � - , 6/`. . 1 : /,` . l ' F_ ,p ... / ' � �� ...;�• 1' .l. f �' _��. n . ,x. ,. .� d � ' i. _ • , �, y .. _ .. • � � °+.. na� �,. t . . . . , ....:. ..r ��. �^ . , ... . . _,.: ,.. _ - a � �. . ��I . `E? `e(' _ x ` �.,.r.� .t. i "'>', _ J�.. l-• . �. ' - a. - p � Ju . ' r , , ,• >. . .� p � , .. � e>t � � . `. . -- � ` . . , ,` �- . .... y: � i. :5 r i _ . � . t - ' 1 ' ...,.., , � . ... __ .� �, _. .,z. . � � u .- .. `.._., i .�.. ..�� a � -_� __,�- .s"' >...... � ,- ., : . .. ... . <'. .- , .. , :.. l.• ' '1 { ?S cv. 1`, . . . . -. 'F �. . �. :. . . .� .._ . � . . . . . . > > . . � : . „ �.. �- . . . .._ �1..•1, r r .� . : � ^ � � �' - :�! ��.✓J �;/ � � �'-" >.. / .r, c..Y �r�? ,i r: :�.c.:. C.. �. i V�`: . . T� .-. �.,.. , . . : .. ,,. ..� .._ . .. � � -_ ._ - ...,.,._ p ,... :�.iS( b [� 7 �� .. .. - . � . � r �. _ . . . . . .. .-. . . _ _ . ..; ,' �' . {.= t :'�'? r + v-'�i �c,-�. ...':�. '1 � 3� j . .�! .�. .� ! � 'f I�! ..(' � � .. . : . .P._ . ... ..�... � . �^' �.a r[. :::K-': ?1 .t � i �. i _ .r.� . .,_ .. � � r � -, d�.. . . � - -.�__ , . .. . _ .� . ,.. �. : � . :�,: '�+ . t_�.... . .L ..... .....� . ..� .. . ....:. .�, . .. . . . . .. � .... . .. . ,.... . ,r k. '.� `:9, _-�, c. � r _ . . -�- . . , .. . , ., . , . .. .. �.: . , . . j _ - � � _ <, ' - _...., ,k �, ..� �,. - t _ _ �. . _. r s. �. , . , ., . _ . . . _ _. .. .. . . .. .., � . ; ,; ., . , r. ., . s . ., r. . .wr», . _. . _, , . . ... , .. .. ....,.. ,.. .., . . �... , . ::�_.. f, s' o �.L . ...,,,, . � r . f . . . n . . . :. ,. .�. :. � . / , .. _ . . . , .. . � _''�. � �, "` : � , �. �. .r, ' � .� . . . ._ i . .:. ,... N�. . ,. � . � .. � . ... . f . .. .. ✓ . . _? . . . . . . . . , ... � �, t � �' d 7� �Srn. � • YA' � �iNQN1 H!. .�... ..'�. IKO}QGU . �.. . T . ., ., .. �.. ��..� w�(� �: ��. �. _ . . , i . , ,. .•. _ , . , ,., , � snr.� ! . � eA au ., ,� � ( ��,. �'? ;`?�� a ,� t , e+t11 � a r .. ..,_ .... . _ '�r . .w� . . ._. , ..�... .�.. , .� . ti .�., �� �, �,t� r .a9` �o� �. _ �4 ___._.. k _. -t. ._. .. _ _ �!� _.... ., , :... , _. � ,� „ : .M,, . ,^ . ,_,, _ �E:, f ,� ,' --•- - -__-_ _ _ v � .. , ... .. � � � �-- _ , � .. z . .. . � .. . x. .. �" . .. , �, ,�; � � ,. �" �� , _,�. �. _.__. ._._i .. �n ,. . ... i , _ � � ♦ • ` _. � �.. - - • � . .... _ _... . .� .., i� �.L . ..3. . 'S. � ..L � � .��.. V� " 7l .3. � . �- ' V � - '1 � , � . ... �.. .. ✓ _, i !. � . T �... ..: � r. . Y... ..... .. . . . . . .f� . .. �:.:li` J. �. l � f �.. T i 91/�'a ' _ . . . ., .... . .. .. .' �ei�CER1S .. . .:. , c. � �A .. . . , .� . .. � . � ._ . . � , . ., ; . ..: . o ' � ki- ' C. , � �w ti ' i .3 _� _ c e � �,' - � :F" �. �{ �. - � y � . __ .. �,__. .._.�_._i_._._ . i : .J � .. . .. .. .,_ �.,. . _ .. ._ . < . 4p. , .: : � . .�.:" -/ _ � �� _ . C n ,ar.. �.�I F�:. .>_ s �:� �� � ��.. �•� - - F_- -- - � , __ . . �� w�.. � . . _._. . .. _ - �._ ; .: ,. �� „.��:. a. -�': .. .r V,. Pe t ."1..L' �' '..r� . Y �� �l', ° t - � v (•.�.. e � '4- ��a`. :-k r�� - I ... . . . . .. . i � ..,�.. ?� ..: 0 �.4 .�. .1:2 %�y-. - � . / _ _-- . : i I . 'r1: •., :,_'. � . . . i7. ...:.:._; a._ . �;'., t'`. ' �. .C:C. •.� '.�;: f ��'S ' / .r , � / _, �... ._.,... _ „ . . � T!'-+ _n.,: : �-r.v_ d, r:. `.� _ :.,r✓' S. , � '�t%'� �urvr�in ; �i a.,: ,. : � R , ,.l.F _ .. _ _r.r;' z... ;�. _ ; -�,, 4 : r`a"y ......, .� fr` � �l,_�._. i i. � - °P'.. -.. ii. '� .,::..__ •.. �. ._.. _ _. .. . ... .. .:.,... _ - t ` ,.t�... -� r 'i...^� /t.. ^ tf,yb 4 - kv:H '°r,,rd4t8 _'_" _'"_' �� --"_'-l- .. . ... , -'i......._ ..� .. -�. ._�. .-.� ... .. .-,,., .... '- :'� I. .' q1\ :l ,.i-� L V��7 �.�- `t J .:J��' f.. _ , . �._ .. , r_.._` . . . .., �- ,. .,.. _.. .. . , .. �_.�: . . : .. .� v ::,=:,�y-� T2 , ..._ . . ,. �� _ __ . . , __._,._ :,. , �a, , �,�F.�� : . � . � �; s� 5. -�-�T ,� .. � .._,.� � .. - . 9 . .. '. : . _ ,� , �w �. r . . .., , . _ ., iR , . . ,_�,..... ..: . .. ; �:. - _.,-..:.� .;. _ 4. f ir L� r a L ,-.. I !r T .. i,e� ...._ � � 4 - , . , , . � . i . ..., .. .. .. . a, � . ._ '�"'�-.. :, - . �. .. : .: .... � � . .. -� , M4>" � " 5 " - (���, r • - . .�.� . I i - I o � . . : , .,. ., ...: ,..: .. . ) : t .. . . . �•. . . « .. .. _ r�. ��.,, :.:,,., .. c:!:sr:, � .. � ', ` �� � ( , I r � - -....1.. . �• : �z 3 `�Vy �,: . �. � �' r � A t'�C ,.1. � , � �� �y . .. . . .� �> .+ jb _' .,�.. , �,,,� . , . , .`1,- :. • . . ._. - .: . ....; t .7:: . � o M,.a , ; .._1� . .. 55 : . ; ' r , � ,,;� , : �� �{, � , 1. � � �.o: _ 2 c� I' � a s a R E' � ,I .,� . ,,; - ;,. : � , _ �:. .`. t� , _. _ ., �, .,� __ T :.., ,� . .. .,�». . �ulo�.�r�t umu rM< . . p . ,� . : �� ,. �. �F ... ... �. }. . .r..� .. � . ... �,! . � i . ...p. �� �..� .. ��S' � � . T VJ /._., � _. {'1 .. . . . 4!i : . . ,.. ... s .�;1, . ..:. . . ... . � . . . a a ,y^h. . . .. . . . -. , ' -.�: ..� :.V... ..:`( ..�.��. �'-�.• _- .. . R Lomol .. . s lR .. , . .,.�'. ., . . .. ... . P"�- � . � . _ ..Y ._. � . ,. �,. . , : "� O ...��� �t.. �. � �. �. $ ..T . , � E � � I e . ,�, .. . :. ....r .., ... ..� . .. ... L . . . .- . �... ; t�{' ., ._. �`' _ "�< -..z �.. � � .n� t . c � R - -- n,. � .. ; , .. , _ . ?.. , _ .-, . .. ... _ . �. ,\ � 1. fi G`o �,..e-,'4y �r � l c r ` �.0 � . � �+ . noo __] ��x .,_ ea : ,.1 .. . ,. r ., ;...� _. ,..:. _ ti �._ .�i- , rf.� 4.. �.% >.` :� �. 'i' , . S �,.� N _. _ .._._.� ... _ .,.. _. . :. , �... .. . �...... .. .. . ..,. _ . . . ..._. i. ti ��i ti; wi ��:!u � .� . .._. ._ � �_ .. . . . „ ..n+ .� � , . .._. .. � . . . .:.,, � , .:f .:ti � _ _ _ : ., .. ... . . ..� . _, � .. _ �,,,.. �.... ...,., . ,. �, :.��. .�.. �a.,�. 6 _.,. �» � . .. ,. :. _. . ... _.._. �. � .., : �. ,;fT � z:. «� 5 �::_ ::�: . , . . ..: . � .,_ 5 :,_.,..,, „ leti C r... . :.-_.-.�_f: ... ,., 1 •.�. 1,�r. _ T: � �oeti a'�e• i L � a �S .7 1' 1 9 .`.. . ... . . .. .. .: , . ... ......... . . .._ _ . r ... .. .. � , �. ., 9 _ _ . � �� . � ,. .... ...; ,y!' l � - - -- °. `�-i- ."/ 'I �-: _ � .. , . .. . . . i . I . .. . . .. � �- ti4 ti:: -- -.�'_-_ - t � - -r r _. . . �' ' .' . T-- �. ,..: . . . , . �.. .. . .. .. ,. . �. , i � :. ... . . i, i �tr'1 `' r�i, `'.ct� � \ �, � 12 U , . . . . . _, , ..> ._....:,. . .. .. _ _ _� ; ,.. , i.. !.,.... ., . �. .:-�+e\�. : m' 1 _li - �.:�^✓�.�. t e.. L� .}'� . .� _ .. _ . . . , ._ _ � .. . .�° ..�.�. � - -- - � s a:_ �_. c._ ; �. .'� � s�` � ; - ,.t, - . , . _ : .. , _ > . .. .,.... . . .. . . ... _ _, _ ._., . ..:,. r- . ,� �� �' �..� .. � �, .:..�, n ho,' - :?r ��. ,�'. t, , j . �.� .. , . � . : _-�;. _ y, , ...� .: . ,..,:. - .. , . . .. . .. . ?SSS•,��:. ��i 1 ^ ; " � •Y+ - . _�. L . . Y �, .. ... , > _. r ,. . ,-�, i , r - _ -. .. _ . ..... , . . +,._,. . ,. . , . < s '.�. .L , �;,, , . . .__ . . � . . .._ , .. . .. .. . �> , .. 3�.� �� .�r> - � � i : �'r - T�,--:: . . , , �. .. : _ __ _ _ . .. _ .. . , . , + , , � � , . t>- �r�. �'�,_. '� � ,� i �' � � '� �-5-= , - ,_ . . . � � . i , ..._ _ � _. . ,.. : �.�, ,_ _.... ....�. .�... , . �. : �. y� ._�.. �„ r ,, .j�- , MI a�r��� . � dr, °�, . ..>. . �ti,,:�„>�,... , ,.�.,.... ,. . .. . . ti . _ , ..... ..,� . �� .:M �+ � ; L._. �1 - '�:,r-:ti h .� C, .. ��., , .:,� � .. H ., . . c„ . . ..� . �jJt r,�, ^4 ( ��- �{' �.� _ � . . . . I . .- ._ . . . . . _ . ..._.. . .. , o : �: I �..;�......:,?,. , � . . .. c , .: �.7 � _ }.__- _ . . t .��' c �! � � � . , .. . fr_. ., . r .� ._� r ... ,.. ,. _ sr . . ,.., : , .2 � �� ��° ;1,; - �;r N ;�.. � :, , , � , , v! n Rcs � . . . .. �� � , . ... ; ib __ � � _, o- - - - � 2� '.( �' r.� 1 „� �. �.7'. � . , , i� h -. - �.3" . , - ... :.: . �. •: �: • .�! ...v V .F -.. .. :- -'- a- r�'�':^'4':: �` '1 i r. ...\` '.,� � a��; . f.� i -, - . � . _ . _ - . .._-J.. . . . . .'_' . ._.. '._ .. . -. : � I '!' �' ¢`L . c � � : C � - ! . _ � `�n l ,s � .. �. ._ "_.'_... -.- . ... .� .. V a . . . . . ��-- . ._. 'k . �� ' aaa�u i . ".. . 'm� 1 1 \ -' ...� = .p C , . .. r . .. ..: . . . . .. �. ,.:.;' :.i .. . : . . . ._ ._ .. i . .. _ .... ,� 1 . ' I ��.. Jr, K'. �•. : �.,.. � �� � \.�"�/�'� � . . s., , , ° _ _ . . . ., �o.. . . � ,. v� . L , �, :,� ,, �etr� , � 5 ,j' �-k � �. , '� - : c �1 - '� -" � RaNk �., , � � .. - � . , ,.� i0 � .. ...-...�. ..� �. O .... _. � . \: �y - �i,'S � � � i IC ,Y� - ��1. ..G-, .-a . .. „•. - �...:.., ... , . ,.. r. .... • . . .� .. . . .. . .._. � ,Be dn , .. �.- .�c� _ _ .'i }j� >� f . . . ,. .: : , .. . k;a,o ,. .:. .�: .,E.,..: '� .. , �a�T, _� _. � ,.�;-�- :�`:I ---•� .,.;` .53 ;� ��.,':'n .:; �. ��- : :�. . . - . _..... , : . �. :.� _ .._ _ _ . � - �. ,�� _,l - ,�:, f- . .. , �. : . .._ . � .. . , r ,.� < . , � I . .. .: . ,�. ...,:, :: v - _ �e:_:_; ..:: . '3t+.r l,y� i, iw i _ o . �t.�� r�„O � r. , , r- . � . ,:. _� . �. _. �. � . , . �. .. so� m«d .. � . ,.. 4 . , t:' - -� '�_;'f°'" r 'u, � } �t �:_- - - � ' `-"'��, z.. �' 'to . t-. � E � . � . . _4., �., �, :�aoo� . ..;;:. : v o:: � . � . �. ��v.y�, •,. ,.y o ���. "' � , �.�:.: � �.-: �.r ,!i �., 4 ,,, . , �, on � . � . . . . ��. .. .. � , . . �. - . r.� :.._ , � r . �.� .,.... •.: - � . .n&. i. ..�. y� � \+�-,�.. -. i �i `Yi �� ,.., .. '� ,� J , . ,., •... , � ;. .,,_ ' , � , ,R, ., �� I . -.>,.. •�....!:� � r -:� N.� V,r� �ai� s �. ,t I `t,, �:Y'R `, , �G y . � . .. .. � v . � � 1 . .. .. : : .3r .. .,.. . ;.- � . ��, I ... ..�., J. . ,.��.: N ! �i�, il, ', I . �� p � 1 ./ � � . ., a�, � ... . ,..o . .:,. , ..... � rn ( �.,. � '7�, •�0 . . " ., . _ �-' s`.. � � °•,,� :i6. � . .� . (, '_,...� ...,' r� ,. .�. � i ...bWz.,J � � �.. .... � . . �- �' �/ I .�. t� :�. �. , .,, ��_. � i : r a �... . , w ..�. . �.L . ..� .. _ :._.• ..- �-'-�.z'�=# � -- .:, ... , . ,. .. .�. .. � . � .. .. !�_ � .. i Raara _ �tx.*r �4, � � �j zN% . � . e . o o I . . _ � , ,--., .r � . �� �' , . i revmo�n� .�osbn�� � i . � � >'.; r.. . r �r � . ;s �w��� . 55 . ._ ,. , , . ._. . �:, �..;�,. , .. . , �f��� i � m f t'.�y .i .( � w��mm�u - 1 , ,:a �! .a � I �3-. �._ � � /i. i.>��. i y� xi �is� '�f .�� G�� :7�' �+ A;-� ...; . . . , �..i,.,. .. ... ; in , . ,, _ . :,-' .!.^' . _' . -. _J .: ��. _ I ��2�. : i. � : .. . ` � y �� o � .. .. � _ ...-s .. �-._ -- � � ; . � .. ' ; . ...:. :: � -. ' � :'.. :. M '�. S. 1, I :11v � \ M= .. . .. . . . .� inks ,. . ,, ; -f^., _� , I e ,-; . ,. � \ �. - ,d � :-tl6�.. \` " �..4� �.ry,4nsri a¢ nu �cr. � ��Wne� �„C• f �, ' • ,: . f . . . , , ...:. .. M � i., \��- 'f' 4 .. : �� ... vl�: .�,.> - .,I... �a. .... , w�� xa y� _ . �- .. .� . . . . .. . : � � '� -. .. .. . � , c. �h� .. -' M7 . t 4Y � . . . . ... ) �. ; , ::. - :y� - �` � :a.:�", t :c1ry - . . C � - r ' . �' y I�ia[;.t . _ . . . . _� . � �. ,.�. .. . .. . .. . �. L (" ... _ . . 5(S , _ � , . � __� �_ _. ; : =--::• , , . .�;, . ..... . . _t- «�. ��y - - ,� . �. �#�-. , : . , < ,. , . . . . _., ... . . _ ,� � .h . ` � ,. . . _ . . � _ . _.. , .. . . �. , �... e.�;,�: Y ,�, � o r.�'. � ��' �-� ,� - I.. .. ., . �. . � . .�.� . .... . - � , r:.. �-.. ....a.. / . .�T:..'• Y. ,. .. ...�� � . : .. 7 /. J . .� . . . r0 . �. . � � . �� .., . ;. . . .... . _.?". .. . ���f . ./ 'l 'Y' F a� , ,,�J�. . y , � ..: . ,. _ ... . . !1� c � .. .., . .. ..., .... e -•: -..'� i l- Js� ,. . _ . ., . � _ .. i .�. . ...,. _ , . . �; ..,�,,$� . . Sr ron� . : �. � . . • . . I y I M 1 c. �� 2! . �,. �.. ��.k. �. ' � �S ;-� - . h _.� ��� �'� - •-•,v .$.. I�. CO .. Ta . . . � . . ,� .__. t'Nh .. �.0 .. (. :..... .. . ...:� �. -,. ,- . _ •. .. . .��. R., .1 k :d^L'.. ,{�' I. � .� : ..i� : . . .. . � . . � . . . . � �. .,.�. .. 1 .�:� .... � '. ....�' {�.::.:� .. � .\..' - - L. .III` i� ��s e_ , i� . r ..... . . i v\ � _ ._ � .L . ,..... ... ... � ... '�ci! ..:.: '•�'.V�� .. . � .� �'.�.. N' - � � .. . . . SJU . . , ., . .i:..l �'I >.. � ��--t .. � � � ,......5 J. .� `s+-`l_. }?iJ !'�Ha S� ,��. . . - � _._..! �I t�� � .. ,::-: � � .L . .. .� -•-�-r-. .'Y. � �..'Zt:� �`a •. :•a .�� ,:. .� , � -- �, __ . . ,:. .�� , &�. �. .. _.:... , . .. V� �,- y 1 :: r .„ �1 y . , . - ,F , ,. - A . ... i _ , � . -- M . ,_ � � .... -.- ;. t.: . . ... :.. ; . � .. � .Y`.C. .. .,.,�� ..�.._ t I�. �`. ..r t a.. - : : ' . � _. .. , � : _ . , . r'. R / . � , \. d'a . , �._ r7. .„ ., , .. . cisY� :.. T�ti f�! . _ , ,. .. ; : , . � . . . , ��e ( \ y,e,n,J. �� . . .. , - : �� .., .. `t i` 3�/. ;....: .. � . _ 1.. _<. . �'.3. �\� - _ n , �� �.., . , . a � -,�.'-� - . I �� ; � , : . . . ��an . � .,. > . .. •,: ., -. : . . . r- . .... ,.. �- �e��. � 1 �, �`:;t r ' . " � -n�: �, � �� � ,,FF ... < : ,,, z. . .. , . i . i.-....�. . .. ., v/�a .. .._„� . .: ,� . ._ .. ,. .. ,� . _, ..... .�� ...,:3"'" � :�.?"'. � � .'i� ' - I���G1? �. � .��;:.� �.. , .'.�>..� .i i1 . . .._. . . - \ M CII - /S:kl I t •.. . 1 , a � .,,�". , . >j.� j9 , J .._ � 1 . - :.1. v . �. P � A .. . . ., . . .... ...... \...�..:. w. -.. . . .; .� . . �. .� �� �,_ � t . _ S. ' � � ,. ..1 r,^,;•.� --- � .. ; . -.. ... M • r M.. ;., � - . . ; �. � � (. '� i. �.._ ,�� �..,__ ... .,1.: s. . �. -. ... , . ... .a� • <� .,�. ':r ���✓���",F,` ..5 ���..... � r .� ,. . _, . .. . ` „ _ .. � m., . . uq . . ,. ��.--1 , i ` � .. ,�t. , , , ...>. . ^`'-S � . i � y , I� ,�-�-� ` , �:.;:t.;{ _ � . S _. . .. .. �... . , ... _ _.. .-._ F ' G . ,�� :� :......� s ..,,., ,. . `'� a _. ... . . .. .. � .� . . . ,. _ . � __ _. : , . �! _ ��=�� ;.: .r .... , �., ... . ... . . �r � .. �: . .„,. .. . ,.. ;. .:. ...� �r: , : M'.1' �M,. : 1' �:�\.T-"+'�}, /" ;n'� t �� ..✓ . (�e , : , . . . '.' � . I i I i ..;,, . ... i ;� . .. ,,. . '9� ,. . .. f ... .-....r . ._ �. . , ... . 4 � . Siioa'-� 5_Y� . N , �C . �v . . - � �. ;, � .. S! . ._ .�.:'1!� � r � .. . , . . . . .. . -, _ .. c t � .o.. � - ?M'. .: f.'� ::?� � . �.. . � +t.r . glc, ,. . ( _,_ _ 1 1�. ; . ,;. . .i.. ,:: • ��- - _ , � . Na , , .. . - - - ta � : _., .. . „ . -. ,: � �.�•. . 1ak r6�. �. 9 2,:! � C ` Y i 1 '3''"-� .�. � f , � \yf�. , I Y � „. �. . .�, I....D A` "? .I� ��.?7 .� /� L . . . , .. • .. . . „ , . a d / .1 � 1' ,. .: ..... . .. � , . . �- , . , . � . :. ._ ;. I�.... . n � - '�`. , ..-.ti .�. � ..:_i,_ o � �. .l L�,.. S 6 . { ,., ...,�! \. .,. .. ... . .. ..,. � ....^...,_ . ,... .� �t' �.�,. -�•- - . _ . . ,.,. � _. . ,., .� . _. . ;._. : ,: _.. , �,;•. .' �� , ""' ' - '._--.. �-- _. ,. , . . . . . r. . .. . . . ', t � f __" _ ri"\. �:l ' �, � . _, . : . �� ._..,_ ___� . ...,-�- . � � � _ . . . , , ... � . ..., �r � ; ' 4�` � :.r . _ . _ � -� .:. ... :. . , _ , � . , . - _. . _ : �-, . . . . , \ � �� -,!. ,�,. : . � ..� . ¢ r . .. .t�e.. . _ �`,�T . . ' s: �.J(�. � Y ;.; . ,. . .-, � .. ; . y ` .. - . ., � � _ , btxru� x i . � . . . �.._ _ a� � �o.. S� F, r,. _. .. . , , ;.. .. i. .... ;. .� �, �.�.. ��t / �a _ � Y .. . i m o : _.. . ..:z .__ a �. . .. .... s .�.. ... . .w .ti .:.' .. . .. _ .. � , �.:. •.� . � '�.. .6 � , . . _k-lk� _.. ; o "` `'�� - ., .. ��... . .. • . . �... . .. , � /„ . � ... _ -„_.... .�. ., .:.: ..... . ...�Lu'� . . .. . . ... � ,.._ '�'��-.. � .--t:' fi� vendvai y!"ci ��Y.. . . +.. .,. .. .., _. . . .. .. �. .,, `-� 1..rAF . • � :. . T d .�., � �.s Q .._ � I�`.`. ..�. .�.. � �J - � r � rr�: � . �;°ht-� p a95.. �.�9 . �vz+.:�j �'7�. ;�'��: ..r-�. . �. ..,�, ..- ., n . _. . .., . .. _ �._ , + :fi___ i ��..� �:u _ ,: �, . . ._ I -..+, i , �" 4 , - x n .�. ,a i �� � ,J. , -.: .. _: . S._.. i � .... T s =-- - �---- � .. . ,.. '�_ .. , r,>� , �rr �. . � , . r`.' ..k _ F . . .. ... .. ., . .�. �, ... - �t .. �. . � �. ._s-,.� . . ._ . . ,r ',...' r "' y �':. . 1 �."'�; � ' \ ...J i�":�:.�.1�. i-i'.:.e , V • ' ' � , .: . , . . i.3e, � � ., .. . ... .. .:� -. . 'd�a. . r.�d�.��. � .. � �� . ,.r, _ . �...r3 ...... - �._- �.f `'r� d '�.. y��:1. .1L r, �- r � �.. . ... � . . , ,.. . . , . � . �"_ _�_ . _. . -- :. � �-� - ; r ;,.�.. � I : � �, � -�� > r: _ . �. .�� , �. �. �. . ....I�. � .._ , , . - , -._ ... `'.. . . ,., ,: ,� _ 'a4 - ' C eP c . .... �... . .. : T� k. . _, . s�_ 1_""_ -.. �I : ._ . .,_ete.,.. .��d;"t�er!.uf...6 .f: .... ..� �: �� .�^. '.j:.. - �.: :.slr - ._ _. r. ..�.. .. .. .� .. . � _' n -�. " ___ -.Y i. . - .a . �s . , � „�.� . , +e�.,�.n "�va: o �� � �I`#�� � C • e�` ' c . .�.. „ .. . . . ,.... . �.� _. . . ,... - _'�Y : :_ . '. _ . , . . T. .,._ .9 ' ° -yy . .., � �....�.�� �`�-�•. . ,..... . ' ... � .. . .. . . , �7 ' ' _ :•.. _ . .._"p" ' _� .�.. _ .�_. �:`f. . .. /.� -... . ...: . �.. . - 1 _ , . _ _. _ �.. , . . . , . A I TY - . . r -. e r . . . ... .. �/ ., _. . . .. . . , � � .. . ..... .. rw ' - - . , ^.�, , r ' C �i . �.�. ._.. . .� c _ � .,��� --- ,_ �. __ . �._,., :...; . _. _. . .t . � ; ..�:� ;:r „�.• t,;� 1 � . . e , . .. _,. . r , i __ �� • q , . . .. . .. .. .. ,.. . ... t.. r�o: s „e . ri,,r : I �"� :.� a.'v� . .-. ,. , . _. , . , . , . � . { � 7 . . A ,. . . i �. -,?a� . . , r .,.a ,,•�,,,.r , m'%�, , , .... ... ., .. ....t ..., .. L. .. . �}. s.. - ac +.�`";''- l �°. ,r.em.,<a �/'� : t: • I . .c :.� _ ......_ rt6 � -. .,,.� ..:-. .... � am .. . : Y.� , . -�H� .. . . .� � �n��'� -:. ... .,_. rC�o ....� l � . 1+0 _ \ - ..'<^. ' �L ., . . .., : � . �-._ �. . � . . -_-__ . . ,.-�,\.... ... �.. q .� _�,t+-•<. .. , _c . .. . r.. '� . . . . . . . �_ . .. . „ _. � .. .� .. �... .. , . . _ ..,. ... _ �. � y, -� -- :iL �s ��,.r . >,... . _ $ .,... ... ..�... .._, an �� . .:_.. ., .. \ ,,. , . ..;,..�. ....! � --��--- . F'=o:1Z r,. 1![ . i.. 1, _ , . .'l r'.. , V .<R �f �. . x:..v c.: � l�. ✓� .� � - _ .,� � . ... ... ..... > ._-. _ . � . . �.��. '." .. , ..: ...ua . waY� a , �� 7�� ' �. ..k- .� . . � . . .,... ,�. S � . . . ,- . .. � i . .. F � ....' �':. ..r� � - __.... .;� .-. tM �:� � v. °! ,�t4". -;�n - .r. �T. ?�". � 3. \ >� � �. F �r�,.y t: . � f � , � .: ,� �.._ . .,.. .� . .� ... . , . i . , . . _ ,. �: _ ,. . � � �i :.� �{.,� I � �E; .� � . .. . `�` , , , , .. _ . ,._ ... . .. .. . .,;:� �.c . .. . '�.,�� . . �_� ,....,... ._, ,,:...• ,�: f, i 5� : . - ..l. .. .. - ...� M� r .. � . I .. , � .: . i�_.. . .. -. > . � v, . . .. J� .V � S .\ :.?r .: ._ . .:. , c\ �? . ,. .,�% . ... 4ra ri. _ .. . ._. . . ...� ...., r-i ..3+. ... .. . .s... :..�. ... ..d-, ...1.,. ;��;c� - I I .� . . . . . �'3c _.� .. . � . ... . � ,.. ..�a ... 4 .. ..._._� .:. . :I .. . F� ... _..,..V. ... 1 ,;` -�, �.,�` �E ' �.�. y _ . �.. „ � _.. ,L . ,. ..v " "" . .. �.. .. . .. . �: . . . .�-`--��. . : ��. .. l // .. � .: `.�'�. \ - �-:T `'..�.' ' �CA J E: � �..._,_ �,. „. . : . _ . . . : o � , , _ ... �r. 'S� .. .�,, : , , .,. �!� I u i.i ,r-. � , .. . :, . , i+. . , s_, ... „ . , . ..�<� . _ . , _. �, ,.> � �.! -: `�^. - .; 7 4 • > . ...�o � ... ,. . . . �... . _...- � .. C . 5 . ,i I �. .. _v` , a . .. . �i. � .. .. .... ,. . . � �`�i;.:. . ��. _ .L.-,�.� S�l.'�1 .. .,. ... . . .. _ , . � . . ...✓ � _.� ..�. .. . . . , . . , i . .. . �.�.. . . .� .._ .. r. ...... G � M.. c7..--. _ _.r: . �.r. ... .. .� .. �. ... � . r./ _. . . \. .. , ry.. ... .I � .. .l r .< .. ti �! i.�r.i n . .. ... �l \ �.)�� !_.�. . , ... . . .r . .. . �._ .. : �. . . ... . �. .d .i . . .. � . •f � _ . _ t ; : � 1 , S. °'�' . , r �' � _ :% ='•�:y. '1 � o �. r, � a �^... R. �, �� G�.� C� . e. Y "61 •�'�n�... '� 9i t{ �. r i .r ':.r .�. "�,.. .�,.-.. , � � r .;, .-�" � , .1:: �.. _ � � . � .: -.. _ .. ., �, - - . . . .... . •-, , .• . �,,;�. .: :. � . �.� '� � _�. , ,.. . . -, , ._ .,. . � .,;, � _. ,- .._. : / , i . - . . , . .-. � . .: � .L .. .t ._�._._1t .-. 1 ... '. ".... �.-. �: :hr - `11 �,L. �� . .: �. ; , _ : . >,.. .� .. . .. �. ._. „ f __ � .. . .. , ._. _t..... . ✓ . .� . ,�a: - r �.�' - t-, ..o-- � �,. � _ . :. , . . o . � . . _.._� , i , � ' , ' - :• .. : � ; • :N �.J ;:�. V�. �. � I _ �� . . . .. ,.. .. , .� . . , 'r _ . . .. , _ � . . =.. . , ���� �- .� '� .7�� '� _ �;'�'�' } F. -.,r.� at .en"u ,.I �a. �. . �_ .�', ��1] . . ,� ��$ �- � ... . . .,� � . �. . . ,. ..-.. � .. .. . ;, . . ..« , . � ,. . > �. ..: i . r �.r �i .. .: , , ',� :. ,, . . . . . ... . : �iM �7.. . . , �, x , t^ . l . ': . �", '� 1 I . ..._. .. _ . .. , . , . P� .�1. ,, _, � a�`" . . .� _. � ::cwN'i _:....r2"�' aJ - .= -v�. {� ,�,., � _. � . . , . ,.: . : �. .. ... . �,.� . , , � f �. � . � , , r � _ r ,, � � � �, a a � �, ar ��. . �. � _ �� �_ '=� ,; .�, . .., ,. � . : � ., �,. ,��. t - ...... . _ , �, . . i , .--1 . _ . �, , � .� _ y.t.. � - . ;. .. �. >. . , _, _ . �. t° �, . , .. �,. i ; , ,,,, ��. � - ; ,,: ., -.. , . ..:... -.c � a. ,, i `��� ., .. �:• .�c -�-. h „_',: ,... . F- _.t.t. .. � ... .� ,._... �4.:...-. .�v5. . : . : < . ... . .. �._._. �3+Y1A� �'��� �D �7' t .... . .. . ..,., . ... ... � :� � .... . _ . ... . .. . . ,.. r .. . . . .. . ... . �` i. �: ... .. �, . ... .. . .. _ . :. . .. _ ... . �:. , . . __ . .�.� . . . ... _. . ;,. . . _ . .. _. ._ . .. _.� F i- .. -"---<- - ., �t. •_'(: • -. � �.. > '.�' _ i . . , 7.. . r '"� ... . "� .. . Z , _ . __ -� : -: � _ _-; .. - , x ..,h � �S-' . � •: �r �-`21 - i "�� � . .._. � . � _-4: �? . �5 . _ - r y S t, _ -�._ es �J � � '.�� . f �;C�: t" �t ,ht'c' ry _ ,...,__ . � ....: . .,. ��-� ... .. ; ,. ,..o. „ ,.,: . -�..-�:. .,�. p - ��' .r - . , . • . �� , _ :f�..- --�, � - , ,.� ...� �i- ;I v _ r. . s . . �. .. ... . � .. ,_ . r.-,. , , _.� . . ,_. -. .. . ., , i a' s�r . �2•' � S •tr' _ t . 'g_ u ,,�. - � ..... .,. .: - �: , . � .... - ..__.. _. I :.. . {: , .. . - .�. . , . � '. . . � : :3'� - �4, r .� . -- 'F- " � N .i a+. .r.a- .:..X� .,, ... �. ...�.....� .....�. . .. 1`, . .,... n,amro.eri . �EV.IE A� UNTAi 4:- �. :/'• �1. _ - � �l ... :. � �� .....i . ..::: �.,. ,. .. . .. .. .-1..� •, -- � ....-. �k- . .... . ' .,.. . .. ,�. . ..� .� . .. _ ..... .. .< ..� � . � , . .I :1.. � 6 . W . .. �s�.r.r..:� � � ��..< .� t �' "��" ..i .. ,. � . ..l: .. .. . .. ._. . sa ., .. .> . -. ... , "'l,- . . e..� ._ . ,: i,.:.-'-' .- - 'w�c ,l � 1 . .. .. . ��-.._.. __ .... , _.. .I ',. ,. . . ,. n � .� .. . _'-_ .: ... . .v•. - .. ¢.., . . . ...: . .... ..n R. .. .� . . . . �_ . �. nc . .__. . - _ __ �-+ . . �� : . . i .; - 7 T A. ', .F'_ i r y .. "� �'n � . f .i7 - � - ' _ . ; :,' ` � � _ . .. . _ . �. . .. _...__ _�. _ . . . : ;. .. ., �. I �.t-�- __ , h„ � � t .: .� T,, x_::5!; � �'�,.' --F. - . _ �yy .. . , . , . . . . ... .. . ... . .. .. .. _. w : . .. . . „ -- ( ����� - -- - -- �«�= _. . , .. . ., . , . . . : , , . , «„ � . . �.. , y - ,::;_ �,.Q'� � -��, - � �, . - -- - - -�- � � .... _, . . . .. . .. .. . . . . , . . _ . < ., . � ... , . , , , . ����'�� - - _ � .� , .. � . , , � , ¢� .. < .. .; e . � � .: j .,.�, f .> . t - - �{V` _ ,... w . �. . . . .. _.. .. . .m., ��., ,. . . .. �i am,��. .� � , , . . � . ti r� �! �y `�'.: ,h - ,i �. � . . .. . . . r.. ... ,.. l 9 . -. . .. ...K �. tO I : I, . �.. RR Nll_____�_.��� �?. t�� '�� � f'i \. .1+ . . .._: ...., r... ....: .. ..�: :I. .: .. .. . ,.. .( ., . V Ile �i .:� � � .1� , ..c 1 :.. 1 i .. �,IA .�. :�� . � �,�. : II . . 'i _. _ �\• '1 V". . <. ..� � d . � . J�l. .1 � �.�.{. s.'J� �'I Z_ �1 .'y� ' � �N �. . .. .. . �.;.. .r,: ._ .. 't ':- ... ��. : :�..,,.: �\ -... ._.. ,� . . ,. _ ' ' .:'t ,r" eermaA�!- " .,�. .. } �.. _ �. . .r .r.�� .. _::. � . .. . . -. _.. . �y , � . > r .•... ... , � • .,. _ .-� �. ;� . P,. � _ . . ,r»T. _ .., _. � . -.--1_.� � �°. � . ., ' - _,. - �' r , IZ. � � -. s . �sf '%C:. . �? �.,Q,( � : - �: i ` '� S T ��• - . .__ . � � .. . . , � . .. . .. ,.. ,. , . . r �c. . . . .:,., < il - - z - z-. vo . 1 a . 1 � $ �_� r �:��'-'F---.,�'.. � � a \� � �l �::.- _. .s. . .�, . . �... .. . : .. ., . � . .. :', .ti. ' -...,... . . � ..v � . . ! -':( ' � �l - .'.f.' ` . ��68 S . I� _ �y ?tL. . t . �J - ,. � -. '=vc.^' . ��' � ���..K. - _ \ . -t... .ZS.. - � \ - 'I �, i�` - I Y ,_ ,....c.,. ,..-_,.� . ... .., , ,. f - , i� .- . . ....s .. �. . . .. , ., � . �. �. � ..� ..... y,... . .: .. ._ . , �. . - . i� ' wan _ - � # Y.ea � l ,.�'Z: - {� � ! �� � . ... . . .. ... . , �. . . .. .....�. . .. _ . . . . . .... . : . . .. . .:.1. . ' t . . , C .. � . , , , � . i .: � `. --zA.-t- � � S '. ��;T'�- �. � ,. � Y - T'i! . ,� ..... . . � ., �r.. : . .fi. _ .. . . "�. `�..,. ...,. ,. ... S.. . �. .t. , t _ __ '� 1 r ;� - . S�":� - S .:1 �t� . z_...x.a:. J;.� �; ," �i� ... .. . , . k , r � -�- -: .� �.�.d �. „ � . _.... .: �,. .. �.� 4- . ,. .. . . � .. .. ,i `c _ .:� ,. : ._ '- '•; < .7 � a�t ` .t, �.�:..�s. ° �c: �P �.� . h di �.!t . ,.�:... A .. _. -• . ..'�s. ..�:6. s ...._.... � :. � .. .,� . . .-.. 0 ae,. I . � ._ , i� : en:,u�a�.d . _ . �f �°an��� .�'., `� � � - - �. �� , , ,. , � , . . . .. .. . �?. � , i � � rtr': ?! � i / i , , � :�: . J �^` 1 �i; i - - ' l k a a � � � �. t � !�� :Y �` Na�a 't'vs �. �� - • :._:. . ,. .� .. .., .. > . , f .. ..:. . ... . ..:. \ ::., . I i t'� _ .� . . .._.. ... . - . ._. . . C �. ♦ :. . . Y.: . � . . .__ - 1... '�'7.. .i. �v -� �•' .. �.... ...-�. .....� . . �.. ...:...^.�.,_. .� ., . . .. . :f . -.,. . .,I '. �-,-��j+��✓.-... -�e �> ....,� :.. `T.. ._ :....... ...... .:�.... . _...v �� . H i. lar.. .. .x ...� � I` -t. -.��.. .�� I �c� ` , ., >.:.,. � .� � .�. `k 5c . . �_-.. - ,I�.,r' -��P �� a ..i1% �' , .. . ._ . . _. :..; _ . , .. . .. . _. .¢ _ ,: � � _ ,s� a�m oe ,I o � k ,_ ,F ..: . . , ._ . ... :: �. :. . _. - _. ,-. . ,x 1 � _ :. . � L.3::� - P ..R.. �.. , ! _. 'aMa . t � . � M. ao i� ¢, „� �_�.: �t - � � ".� r.t � .. . >... :... � , ,. �. ,. .. . � � ... ...- . , . _ . .. �.,-_ l. \.,,. ,. .. � i� . . . , , _ ;:�..,x; { �� f :'. .:r� - .. � ,. �r : ,. . . .. r ., o � na� . . �.: a,� / h -1.. ' . �5.. _ _. . _ ... . r . . . . ,.... - o _ �...-.: : . ,.. . _ ,, L_ -� - }' - _'� L-- � - i . .,� , .. ,., � �,� -_ . .. . .�f� .. .... .. .... : . . : -.. .. .. t . � . .. .,. ... a �:C: `� � - - � 1 i/'� - -��� ; _ rC ... . . ... . . . ._ J . � = - -:;, _ --�, -• 1 _ i - . i � . e. l . ; . .,. . , .«, .. 1.. . _ . , , , i � .. , __ ,. . . ..+ ' ;\ � � , "\ � , � . „ . , i . : . . ... . . ., .., .�' . , � .: . . .. . , , . , ,., . : n _, i, . � J : � � �( c �. , ' S�. . _ ..... � I��r. .... . .. < . ..., '� . , � �. . � . . . .. . . . . � . _ _ .. l F. , r . . . .� . . .. ...�f .. � .. ...�,. . r un W lii' � � \ ���t . . 3.,. . .. ="rn.. ., _. . � ...� � . �. - . . „ _.. ,. , - .. . , . , ... . , ...Y . .}.. . � e�,�cnri � � C , l.: . -� 9 S I J,... � . - _ .. . , _ ,.. . �... _ . ( II - .. . . , i �. .. ... �. ', . , . _ ��.. .., ' : . . . J . '\ \ '\, s �� ^ � . . > . . �: .. , . n.Sn�e� . . . J. , FS' . ,.-_ .,..._ .i-. ' ..F . - , 7.. �, �,. , x. .: r ,.., . .... . t. , i .. ,e�,. . __ . �a: `'i �,:.: �. :.-, . .. w _ ., '2� : . � .. : . , _. .. _ . ,.. .. . .... . _ �. . . . . . t�. ��- r .�, �',. - .i' 7 . . .. _ . .. .� ... . . �. N .. - , ,I_. �•- � � _...� ,. . r �� �, _.. �•� L. .:,_i,. F '> _ . .�-�' Su '.II ND Eb _.� � e.� - .. ,•,,. � . :-, .:. , .;.:.�, _ . . _. , ...,.. . . . , , ; . . . °_' ., � . ._ ..... _ .. _ . , , . �. �-. � �-: � - �-:.m�� .::> ( , a��� �. . „. .r . . . . . _ . �.� .. .._. ... � -._�.�..: }-�.: . :, . , .= Y .Y. "�' - .�4'. 1J � �4 n. �r� .��_ � (?�11 :/ - - '�1 �<I. •Ci ��! - a. .� - M , 50 �. � : �, - a1. :b' ��.)-- - d• r ,*-��. � 1�^ - .ti � y" .J ,.,� \ = F� 4 � S: . �.� M �'.� �� _� .. - : y'ajs. � f r' �. . . . .�� . .�.-.� ...� - � 1 ^S!` . � : . . • ;'. . . .. . '- ,.. . FY: .,. .�,' , ...� � ...� '-.�, / 3 ''\..� � . - _.:. .,. .. ..i .. ...._r . ... � _. .. . ., �..� .. .:. - ... , °' � �, ; :, .., ; .�. .: ... �' : � � _o�: rt06 �rilir5.' '-- aSS. �� `:�� \ , .. . . _ . .. .. .. . G _ , . ... . `. " ._ ., . _ . - � ..,._�.._. _. _._ _.�.._ - c6inb� - �� �� _ _ 1 I .� ..-f'.'_... i5� �`,� - �� --- - �l• � -i �'. � !" - , c � �� � =: i , . , : . , , .� , t. � .. ��� - tr., t. - � �`• :�+ �', y. ,� , .�.. _ � � � t ;5!';.._ v ,- .,, . ., _ � .. .�.. I . . ��. �... ..- �3� " n . „ . .... .. - r ,. . ... -� . ., . .: i.t� . . : . .v��i� c .s:Pr . ;.,,, ( -'`5_ ii �.� .a. � . ..7 . �.- '�- 1� �T.s�%� p �/.. � �cf -. . '�. �.:.. . .._ a.-. . . . . � . . . .... �- ...:.. .... ... � . .. ` 1 s0ia�o\ ' ' 4 � i� �.•�� �. '�y ` _ � � �" � � � I. � `J'' .1 . � � 'y` .�. . '�.. ' . a.. - I .� ' � ,_. ... .. ... _ . .,. . , , .•,.: � - 5... : - .�.00 �.c . � 4 .. 1 . s� .. .. ....- _ �_,. .. . , �_ �,..,,.. ry � � • � ��„ a c.. � �).� •:�;� -�'� t - 7.., .���� _ � . . :� . . . .-. . .: ... . . . . .. .. :.. .: x,,f :dt nu . .. .. .... ..-' J ,�:.��''� i�--� q_ l i� � r l_ .� �']`- _ . .. .. . , �.. -,.�. . _. ..� . _ - � ,. .. . .. . ._ '�-.. -� \4 . .... t_•... : " '. . _- , ', .,. :..:. �.. . . . � � i. . • . . .... � .i .- . ` � _ !"i'. �-.L 'N � - . .�. :. . . ._... , . :�.. _ ..:. .. .: .. �. 1 .. � . ... _ . . . . � , . . � .. � .. �::�t7' 1� • iN:F . U - 1' \� n d E ` \.� � � . ....: 1 '.--�.1 ':,.. �... ... :-! � ,.. �..�.,. � � .. � • :... . i�.:. F ( . 3 . .?. .. IE �'� .�'. �ti - ,1 R �E ' . � �t . . _ . . . ; . .. . :.. . - ... , �` -- , � _... . nr •i�{ . �, i .� a , .. . _ . - ... ";a � � �� ?''�.9 � R• r' i+ i� Ai � ach II � � , , _ ... . :.. : ... �..:_��. .ab :� . .r.�•iy ..., ._.. • .... Rrl� ...,� , .: . I .... C�. - _ 1^ ., �( � a ?�. i. F. '�? . . � .I ��_ p� _ - � r� � .�h.. ,_ - � i' ..I ;. � e . � - .e�. .r_. � .. - . .. . .. ni . . .. _ , . . ..,. . . .. _ .. -. : . - , .. ,.:t. � ,c . : .. . -. . . � . _ . _ .� . _ . .. . .... .. . 7 ...-�.. �:..,- , . ..: _. '. ,._ . : �..i � . __._ � . '...'e .: '� "'(`� fi �},� �\� N. � . . .... �� �:J:.�-,. ... .. ., _ ... � ...._,- _ ,u. �. ��'_ _ '__'�_. _ ..:4' .I ♦ �+.... ��. - -- - -- � � n r - � i. � �� ..�I'. _�3.:�� : � � - - ` . .. �_.- .. ... _ ... ....: .. ..,. _ . . . _ �.' , : y � �' ._. ... ' , .A.� :-� Y _- '-r _. .: _.. � � -.- . . .. - . . . . �� - �.._ �"�'. :<: . .- ... : ama. L... . } �Lw4�� - - � - � - � .- � . �IT3 . . ..�_ .. „ -�. �•. �,. .. .. - _'. .. :.. ......:- :.-.. .,:�.. . . av . . ... ._.. ... .. � . ' .. '. i �: .l'� F_..,�. � � , ; _ .�, � � �.., � . , . �.. , . ..� .. ..--� .. . �� � - - .: . . _ _.�.�_.' . . . e .. .. ,, , .. .. , .,.- ,,. Wj L . �-i-- r `� � C e - �. � �. �._�. ."� . �` Ca • 1 _ �.. , . . ,,, .,. �_-�.. -. .- ,._ . a . ,,_ , .., . . ....,,. . l . . �; w� �na�.. 7,. -. � _.. " - �c�d6: .b 1�Sk :,t� il� I - -i . ~ L 'Rl! .'-�I" .. ti �- :��:'�:,. _ ���. . . ... . . � .. �S -, . .:^7,i ;... _ _ �..� ._.,..., ., . �/^ . : ^ ..,.1, �... 1 � �1 '.�.<y. �5 - :A . ��\' . .. � „ .. . _. � � ..�. .. -... .a . ... �4 .. . . -.. . . . . .., � � . .... I� _ � n ._ ef�� .\. -��r-� � �.T_� �{ �R:. "U-- I v , �� �/ � � �i � � .� . J.. � �','_, y Elhiw� . Y� s �Yr:roniu 0:. - y, �:� ����. ?.� 1:� J '� - -_ I .i • � "-� - ..�.`. .,i - r ,F `�. • '_ '. � > ' " :_. /.i� , " .'ti=. � , ..��.. _� � .Js 1 .i _`41-.. ...� 4�.�:�.;.:,'�'!:". _ . "..wa�.�...�,•. '�Y�._ Y 1 . � " . .:: : .."�:-. , .. ��. .:•,... : ., ... � �..,��. . . � . ,. _, i . ..� � .R-.r I. - nE . � bF . �. _ _. _ , . . ._ __ .. ... . r . ., _... . .: . � _ ... ' � �� -,. �.�� _:°. ,. '<T 'D� ,.'�5•�� - ,t'� ' �_� „ � � .. o -r_..: . . .. . .. . . . � . ._. � ,.. �a 'i A _.� 4� _ '` ={ � .:r": i F . < �,rs . . � �.�a. . .,. . � , .. ... , a ,. � r t� °.� �S h �._. - _ ;� .4' � � , . __ ) - , �, _.,. � ,. . . . ,.:.. . ... `iC' s� .�� . . _ . M r � �-u i. a ' '�-- _,- . . , , .. . . . .00. , . ' �.: ., ., s . . : , �. �._ . . . . .i.. _ . _ . .. . , � ..; �. _ - o . .nman - .. a � n I ,. L I � . . . .. ,� ,. . ... I �< . . .:.� ... ..: '. '.� ._ . ,� O,:' %, `t'_ '.` , o .l� . _ . .; . -r' .. ._-.. ,. .r`.te . � . . _ -. , � \ F l,�„r,. �. � . , . _... ,I I n d` � 7 i - � 1 . ' .,^'� `t ' 'T�.., i s _. s , . _. . ,.�t�' �e, r..,. :. , � . : .. , ., . . .- . , . ... _. .. - ? � � t � - S - -� ' .?: � � - �� ` �= �. - - R: :- : .. . t . . . .�% _ . . . . .. ..- � . . . ... .. � . _ . . �� . < ,.. - - 1 .�' - -..s �v-� . _.J� � �;� , � � �� .C. . . .. . _ . . ... - � ' " ... ,:^ T, . �'Y' - I . T `= li-.=.,_' . , _ _ _ . :�... . ._. __ , o . .� �: , � - - , ._ .. _ .t, _ �� . , _. � .� M,,,, . ,. . _ :; . r � � . a � : � � - r - . .. r . �f. ��� -- .. . , . :.. . ��. ._ , . ,. ,. , . . _ ti . - � : _ .�' �.... , r. �r-- - __: . . a . .. �_ ,., .. _. � wa .. .� , ,. , ....� _ .. ,.�mm„�,� , , � . r� :.�ti�. , �. � � =�,t,m _ S n. x .. o �1'� ..... _: . ,a . _ . .. .. _ r. � . _ _ a,. ;.l) r' 'v"�- �`. � r ;u. .�. ,. . _�..,. . . .�., . . ,o ... .._ _ .� : �:.. .. . A 4.4C ,. . 'a, .. .. . ,� ..� . �: . � _t. ` �r. ! . � I r„ � _ \ > � ' � L � - - �: � �+' � „ ..: 3 . r �. -s,..l �., � _ , . .�._... . � � . e G N.n - - _.s ':t r � ,_: , -. m . 'ln - �emm .. . - .... , . . .. . .,.. . .. . , , . . . 'h.h. �-. . . � . •. .: � m � om,r. ,. .- ."L.: 1 1� r. ', L i - `i� �.. 1 � 1� a ._ _� . � . . .. . ... , . . .�±s. ---.- _-� ,. - •; . � , � �� - - .� � 'I , . .. . �� j , , ,... ,. ... : .� . . + ,: . ... .. � - � - .:� � . � �. � rw� . x . ,.; ... : . ._.. . ... . . 45 . _� ---. - • :... _ x �c� �a s:;Icau� � �i` - �� , .� . ... .,.. _.. .. ,, . .. . _ . . . . ... .i.. . : . . � • ._ - a.v�' �w:, �A rL �. ..�. - - - � 55 � , . . �.: < n . / ._ . ! . _ .. . , y . - >M ia� .c.,� -: . . . - .. ._ •' .: .� .: . ��.'. iEP'MO. ,�"�' . _ � 7 .. - ��,�j� � - 'I ..il] � F r :� � i�. � �,>9,�� � <:. .�, •�•. :i �t _s � � ''ti .t .� � . �G� . • - ;.. _. .. ...�,^ _ ...-. - . l. . : �s. ,, , - �:.�'- ��-. -� � . . C� ... .. - � .. , . . - , .. .. ..- ..._,. . ..: .. _ . � . : �:. . ' , lW � .."� ' . k' " _ ' _ md .. � i(� _.:1.�. i 1�. �.� . 9 .��, '�/ :1''�'�. Tnei I 1 �MW . 1{"'� � �t�fa .�l . ! V l "1 " {� ♦ . ;� . � . � '�" �..i:�-.�.� .� '� . k84: ,t � '. � . �:.. . '• � -.,. i .. _ . i.� .� 1 1 � � _ . Y... ` ' . .S. .i^'� - ? 4 l , �"3 - . J; . � t �: �, i - -�\ :`�. � l { - 5 : �;;� -. r. •�-- < G r i --�, - - ; p � . "3' : r ,L � � _ � - t! ,N�� � ',� :,�., / L i� �" . p. .. /•,1�. - �� R..: -'\ - r /' - ' rr,�!' , 4. ��•� :..: � . . ....r. � �.^i - �. ... , e:•�:� >. �Z :A'flrv i (� � - . � et.eK e. �r n �` � . t �. �� . �c �w ''Y . ,d � _r. --� � - - ' ��i - � �9 � .ra� . v. ��-� n.� � �. - ,n'y =T� .,\ /YC ' :.�,. -�� ..��. �.L- ^i'�.: f' -:s Q - �:'? - t' F 45� i' M > > � J F-- - . � .�.:t ��. t ' � ""'� � 1 �_� r< - .� - � '�� _ • '�- - � r _ ,�� . . . .., � +.. � �. � . ^ � . ,.. .-�/l E.. .: . �. . : . �.: , .�.�. . ;...: •-� ;. 4 : � ✓':� ,� : :;���R" \. " ' 7 W �� .. \ .\. - � w..am � ` i 1� :� §n ZSf .� �i� , r.. A \ /� n9 �\- �n., l I� Pudz� 1 :l + c , �N F.- �` �. .� � - , � \ .. � .� .L. 0 J � TIEU '�'� ,� - F ,u. .�. �'\. � ::�.V•." .�'k.' � J � r. 3 :,h t _ � �.:`� y , .. ..,, , , � , _ .. �: �. . .: � �. :� -; : .� .. - ,� �� y i ,.. �: ,s - `� :Y� !� _ � : . ,. , _. -. . , - -:. - _ ,.,w . , . � .. � 1� !��_ .�. R �! �. ,:, . . .. .. ..,... . .: .G'.. .:.. .� �aY�7 - �t l�', � :.r A _ , s . .•, • -.. : :.�.'� Y ,. ._.. j ./� ..... :.. ,.� . :�. .1'.. :. �\ � .-. . ...... .. ..�". �!� . `'. `�� l� "�FY�� "l' � .. . . B. . . . 4 � ..., .. .:�� .. ...,... . , . . �-� _.. � 1� . .. . _. .: : . -. . �� � .�Yiau�7�i %'i Mtri. � , � .'G� !C .�`' - �. - . � . - _ _ .. _. .., . ��. �. t....� .. ..a ,... .._.. . _ . . ` .. ,; ..-.._ . �. . . .`Y� £ _ _�� � �.�(o 3 1 � 1`: �:�4 `r - -- }� - -. .... -7 .� : . .�.� ..� .� V. .;. .- . . 1 . . .. . ....�. \.A .., _ � ..- .� : � � �.• TUHP S CIN� , - _ _. ( ri . �_ . .... , ...C.. .. .. . . .. ..w.. _ .. ,. .. . . . . : . . ., / � ' ';, ��5. t . JF 1J "`c- _ _ M ,,. .... ., .. .,:_L, t.. . a ov ,,;. . � X., t _ ,..... .. _�, i ,�c!` :�. _.� „=-; �-T 'n .�fF ��• , a� . d ....o /, .. . „ � .,.. ., .,: .. . , .. .. .. .. ....: . ,... .. ' --c � - 3'7 ��,}� C J. . 1 . . .._ id .. .. . � . .. . �j ,.� ..n.. r Y; � a�:ir` , `�•-- -- r ' - I . .. L.. �; . , _ . . .. .. .. . . ,. , _ . -. : ... .-t. . , _ � J� , i � i, _ . ..f. . ..;��I'_� i . . �.. . ... . .� ........ �_ ....,. iY ,: �h... ... .�� . :. .. ., ' .. .� i�� f "� , 4' - :. ��a°fzr��..� IN IwN E3.� . .'.�_. �.. . ....- .. . ".v �'/� .•�. ..... .. .: v ... .. . . _ .4'�i""�� .. . . ^ .. __ � / � ! � �-! �� �/� .��., // Ii� _ � T^T-� __ . . .. . . ... < . ....t �-. , . . ... . . . . . .. � .. : _ . . . . � -i A Id . ~ -... , / ..� - _ � , . - �:?�. _. e ._�,. ..� �.. ..:: . �-... _ �... . :-... :� _;.... wi � , .. � _r f. . ♦ �J�a �` ... u 4,;:� �r" _„v i = t' t ° } �.'= �.�n.c 7 - ���:� � hTs.->. , . :. .._ .,.. .. __..-.. ,.....4.:,.�� .,,:�. ,.. �. '..'ti -- - �Y�..:�'� �~_�.�. .la�/' �c �- .1�/ ::n�" l . .,... , ..w+t ....�_ .�. . . .:. ,��s �. ...:.,.. ,. .., �..._� , n.; . '� -A:v '�. :,.... .. �. . , �r . .. . . ....._ . .. ... .., . . . � .. , . ._ .. . __ . .. - �� -_� _n I.. � - - _' _ �...L�' , . _ _f ... . , _ , ... . _ _ , _,. . . ,. .r . �_ . - ._4. ..... . '. . -;,.. � _._: /� -t � s_ �� � '-4 : .. ' .�... d.�_ , . . . ,. >. �; . . . ,. . � . r. _ �. _ � ___. . :. .� . .: . : : - , � t - , � -,,. � �; - � b x,M � ' � , �� , 13�•-' J � -x , .. .,. ..,., .. . ... �. ._ . .:. .. ..._ P.. . .,. i . .G �.- :... �...,..., .. i 9 ., .a. .� . .a ::j F _ � ' . . ... �� . ... .. . .. - : . ._ - . , .. � .. . . - . . � .- s � ' /� . � , . . . ' �.Ca! . �. . ( : .. , f ._ . \ • < � C... _ ..s - Sfi�RO$F �'- :-_'----° . _ \ . �t .., - ,. ,. �. rv. . ,. .. . :-°. . � , .X. ..... � . � . . �.. : _ . � ma Y4� ' : 7' ' a'� PF. :--7�i.�'i:'; . � .. _ , .._. ..i , _ ., . ..... . . . . � .. . ,.. . .... , , .., , � e :58 :r< �A� _ - s, � . . . �' . .. . r .. . . ., . > .. . �.. r. . _... � , , .. • w,��;�;� � � . . � : .� 1 _ - L- . .t'2 , ' r /__�L?Y., TORRCS ' . ,. T . . . .. : .�. _- . . ... . .. -.._�.. .. , A. . ... .... t . _ .. 4r . ... . i � �'' ; T ,_-�.-P- ..f- �"--�:f� �.`;�. . -^, : / ., I � Ii, _i.. p.. � . .. .' . . . . . ..+ .. ....�� ...._ ., _. . .. ti.. . . .i .; . r._. -..-. _ .... . .. 'V �: - y� _ m\> , ..: � ..✓� ... ; i. , . ..-�. � ... _. .... .. 1 . . '.' .... ........./ ... � .. ..� F �� �'� 7 .�i I�ri�A ' .V' `' 1 iIN � I.. . .. . � .� :. ._.O. ., . .. . . .. . .... . � . , ., . _. . _ � . . . : . . _ � ' ( - .1"` �. N. i�,r" .'V.: `�-�,.-.. � Y.... : . % AN' E '{ ., . . l .�� . ... ._ ,. . .. F.�-Q�?- B . :S. .... .__..1. . � : _ � . , � `' _.. � �.m•nn�d;.' ,:�� � n: c.m M . < . . . , . . . , . ...a .,. ._ . .. . .... ._ .. .. . . .., . . . 3. �. . _ .:� ,.. . ���F :i .�r:�, � : T. . ... . .. � . r . .. ..... .,_ . ..v _. . .r _ .. . . . � I :-.:.. ' a.'7 -lt _" ' _� :_� � � . ..�n _� . . .... . . , f. ,, ; _. . . . ... �-'. ,a �' L o ' ^F'. i -- L. 7WCn �a�� r - "�. t. >5--. I - ' ?< - � -.1 . . � . , -. / _ _ .X:�'�. _ . - . . _ ..L . n . � . . ... � . . . .. .. .. . _- K � x �Fv. X� - - ::YT - � J.. `� - i ' - ) � . .. �... _ " , . _ _ . .... ... . . �. . . : . - , . . � _ '-�.... �.... . . . ....i ._ ._.. . , ... .... , ..... . �� ;.. .,. ... . . . . :� � . . . .. � :J !'. < .�._ 'ERVA i0� - '�E� .E . �..`;^�.. ..'� _ . . . :__. .. . , .. .. ..... .. ., . . . , . ... . . __ r .. r :kv� � t s Y . t� -t� ? � ��4 �.�a:�.. �(:.:� .,�'� _ , �, 50 r �� < I �i. - -.�..� - ,:, .�- . .. . . . . ... _J ...,. . , y ..� .... .. ..., . . . . , ,. ... . ,.- _ _ +1 �- �. �. { � . � . �1 � _� � . � �IND 4r� l � . . ! � � �.��n. %�` J' � i�.�= - . `r , '.:.3:' . ..-�. 4.. , _ ... _ ,: ., . . . ... : ; r�. � _ :.._ �`. I �., c\-.s � . . __ �,c .a . _ f .. . , w �� u� ... .: . .:_ _» , ::. - :ti �r�L, ' i /- . _ , ! _ . 7r-... . .3 l _ _ I . . . _. / I . . _ . , . . . . _ _: ,_'t '�' '� e �'7 , . .. _.r.. _ ,. da.� _ . LG^ ,. _ __. .. �.,. - --.. o`, . .;� `w r s� �,. r . . . . .. _ �� � . ... . - . _ , i.' - :�-' � ( v ./ ' ' l�: � - . . � . � . .:: . .4 �.�.. . . ,. , . _ _. _ . . . _ '�. ��: :� _ 'B� ec _ - .. . , . - . ..: . � . . .. . . _ . . .:_ . . . . ,..., , �. �, �� y . , - -•> urcit �X@� � , ;: _ � � , . . , s' .. , . �* . , � r. . , . _ . _ -� .,, , r., a _ _ �i - � � - f -� i. � ,� .». . n,� .s. a��� i, f�� �.. �" 1 � �2f1`� �'Q.. - 1 :.1 . ta.�.�� a } `��o . . t jl s:. �: r . � 'f .m�c - - 'C.• t ^'T 1�. i ,.},. T f t �w� 'Y' �� _ / � C... , � cM k� ' tl -� I 5 �•• � � � _ 'SZ � S ` ; j7 �_ � � �-'. �S "Y �"%:s1 . . o : � �' � � h. ' I `i_.. �,; �. - �Ni ; C (' . i . . ,.: : e. .��. ��. . � R • „ . . , � � 1 " "-.-�' �' - .� y� �Y _ ''' e _ "' � � � _ � `�'. ..�i.. F � C.. �i .0�1 . - l�.l: :.�Ga.. , .., "_. .:... � . ,�.. -:. . �; . �..- : . \i . . .. �. i,•� .T. .. ,.. . �. ... ,_ i..: .� ' :I` . �t , ..r. , .- ..��„a .. � �i' [s..� . - _ NZ; 4 - . � . �. "' �,:: = � ' _ - - ' c ;•� . .4i ,y, _ . . : . , . ..: . . . . . .. , ti.:,: ...^.ti. � � �_��,... � : r. � �-� ' . . . ��. . . �.... . _ . . . _ ... .. . _ .._ .. ._. .�. .. � . � . .. .. . _ . ." �-_ ' .. . �-� � ' �;.I ��1 a- � .. - %t .�' 0 9 � u }� � � /w l � � I : � .�e� _ J�. t. _ �,• o !G -QI1 �: 5�f C�� +ds , . . . _ . . . . . : �- ... ,.. . �_,. - .. . , .� -.. _ . . :: _. . ..:_.,h , _. ---- - '�` �,�.�`� w ; ► `t� .i� c� i t� 1 . .. . .. - -. �. : _... .. '�' � .... . ... _ . . . . _ � ' �;�,�i , ,; ::s�b a _.� ��c� . _� ;. t.:.. . . ._i cz.__ r t.�1t . .. :.:. .. ... ._.,_ � i� v. - d-' 'f; _,��?4. > rx .�_, - Q'1' t_. ... . ., . ..: .; . . _� ,.._..- .- ..... .,. ... ,� ... ., . .. . ..., i.. l Y. 1 t� e� _.+1-� _ _3..� - �a�. ,.. � . . _ � .._ � . .. . . . . . ,. � _ . � ... . . � ., "T �- _ ,,� -, } . �� i . . . . . _ . . . . d - \ .. i ..... . ...1 _..... . . . . '. n T -: .. '...:. . :� - Y l,' !.; �f. �.-�' �?.r�l� I �. . . : . . � . _ . _.. . .:.. . . . .. . ... V. � . . . . ., .: -. ' � :_ . ' f` �� ] 1 �i t. . :� . f': . .,. , . . ... � . �` _ R!- �- 1�; ... _ . 5 k \ J. . _ , h , ' r /' _s '� . -�7''; d»\ �, i. i1.. 1. i"d Fn -` ?.. �v-:, � i. 'rT �r I , . . ., : _ .., . . V � . . .. . d . ... . „ _.. .. . . ._ . . _ , ;. . .. . ..� . . . . `� �: �: t�c S i. E.� a i. T, f`':�,,,'��-a -- ��, �:�.- , .�.. , . ,. . .. . .w':.. ..� Y...: . . . � . . .. , �. `?Y E 2� U `A r r" A�. �.�,., :�• a .. . . - . -._ . , . _ _ _ ._ _ _ . � . ,, _ :. , .�. z� ` �-�� , � �..; :� , � �._- -� cords • � � .. _ _ _ . , , . _ _ _. _ ....,,�._,. . , ..,y �t . . r. ,. , �rt,a* _� -..r � ,..� .q. �o�k P d � . �. . . � t . .I.. .., ..waa .. . .:,. _,.. L � .�. . � . . ,. . . � . .. �,: .. � �.� �r ..,�. --�.�� - 1,l'.. g"'�:.��. ---�'��.. . . �,,, , . _ - ,.-_ �.l�..-• . . . . .... . . , . � .> _ ... , ,�. _ __ 1� �, , a �.! :1 v i � s � , 1 � t.. ,:.e _ - - - , _ ., , .o. . _ ._ . .. _ . :. .. ..._ ,. t _... , . 9 v� 3 _ s - -" r. .... T .. . � . .. ... . . � ._ . _ _ . .. . _. ,,.. . .. ... ,- . Y . . .: .. . -, t . ._. . . �,w,�� � - � vafi �i' ."� , ' . �� R � .-S f ,1. ,.� .Y . � F�.�I h� .r �1, i •.itti P � .REf4� .. -�-1`�- . : � _ T �� _ ���- . .. - . .. . . . . . . _ . ... .. _ �^ 4. � . ; ' .. ;.: lrll;�ll�l}i tNUI� - , .�-: : . ...�. , . J..r.._ .�..,� '.� �.._:.... - , . �. ... .S. .\"- �� ^�.� � � '� ^� .�. . �. .. , .. Y i� .r .. . .. ' - - ._ � i . . . . . �.' . � . V � _.�. `� � • .� : -. . ....- . . , .� .. _. ,. .... . � .. . . � � :_.�.. . • : ._ . f'. : . 1: : t - _..� . ''"i ...� . _ . . .. _ _. .. ..4 �. .� . ....... . . NtA `.'�t.. I .. . . ,,,. r .c _.�+, - ^�"-; - i'�' .:l � ,Q.a. :L.�" . . . : � w�k. . � . ... . . ... r . _ . .. .. . . �: . JL . W ...... 5 : . .: � . . ; . , ,� I - -. ,L.�- -_-- � ' l � f :✓ •' - _ : . , w � _ _. . l.•. �. . _ ..._ o � r . ... . �. �. , . ..... . _ . / . _ . . .lbnch . . - � . �.K." - � - c`�.. `T- i .�� _ .� � � !�. A I '_ f .. . . c. . }..�f'. . . _ : . . . _ a .� .. . . . . . : -__. _' z-.-' .` ' ... - T _.-._ I f � \ ;I' -f . H v � _ �. , . . . .. :. . .. . .: . . ...�� _ : . . _ . �... . . �, ^ - 'T" � - . . . n 1 � .„ .. - ' . s . , . : . , . .. ... /. .. �. -, . . ,, � „ru _ ._ . . . ,._ J f, I . , i .. - �: . , f,.. . . . p. . ._ - .. . . E .�.__... _ � .. .. ., o . , . c � .,k , . � . ,. � � l .i t^ .`�`. �` \ ' �_ .�. - I �,}Fz: -...n � 4��,'d k t. P 2 F es, .._ i � r r .. P . 1 ` � �� r'� �+y - � ,� ... ., - _ . .: . . , �. , . . ... ... � A ... .i YS.... ..: p._ �y' . i ``'t �"b � , _. ._ . ._ ... ... I . -� -� " . l . _ : �i... . \ . . . . .. . .. . . � Y.. .. - �: � ' n� . .w ' . � • i . :'�.zs.:� ..._� 'E�J � .;1 ��. I - ".�_'_ ,1 . �'. �P �.� :��/l 1 ,.. � t.. ...C�..�... �. . . �.• .�..r. . :��.. ...:_ �... I 4� Z ____�-_ ,'-l� �-f�. �!n{',J1P�/`' .,.. . , . ... t : ,. ... . . . . .lara .,�._ .. .. � .. .;- � �_��.., . . "a'ta'Zi°.. �t �:f -�''i-r i' _' ?? ' ^���. _;2Z. ''c�.1.,_ ���'. . . ... 7, . - � . , . . . , !nMa+� - �.,�s : .> � . . ., . _ � . . ^ :r � 2..r _ : s�5 � . - _ 4r' + �.! _ >..... . .. � sB . s .:� . . . . . . .. .. . .. . . . . . . . E . •. � . ; . .. :. - .. . ._ . .1 . l. ` � / � ` _ ' 1 . � ." ' .-.•�!. R' �. - '_*+c �-- . !Y . `Z�N- - � b � � � J __ . . � . . .. .. . ., . . . .. .. ..�P _ , i . - . . �...- .,. . . � ..�:._. . •`iC ' °'+ - 8 "� � ��i , �. . . . ..,�. .. . .,. . , .. .. :. .. ,�. S. -�. '+. "?�-, \ �, :°� I _ - � : �:. � ��,,�,„ . . .. . . _ ., � . . � � . . _ _. ._ .. _ r . . . .« _�: , «�r .� _. _ w. �:. _ � . , _ . . � ,. � �... , .. . . . . . .6 �, `-�. . .. ..... � � � i�4. : ..� � ARAHE� � .. 1 .. . . .7Y . _ .. .' ...�... . . ,_.: __. . .� . .. �.. .. .. . . �...[ :� . I. � .. �.: 3�nu ..'�l �7 �� , -. . � .a. . �. ,... c�, v . . . ,..... . .- v.. � <. .. , ,�. _ .. i �r�• - --a r' �t.. �-� ;a :a, �. {.�` �. �l ._ . - , ,ti... , . •yS : . . . . . .'K". r� .- . .. .� . _ e . _. . :�. . . - .� . . e. ...� . -�-� eaei ,.rls/' �i - �'1 �i.k�� �.:-; t� � - 7 � . : � .. . � , . . ... . . . . . , , .� � , .. . � i � � t nf' �:'.. f'" _ . . . . .. . �.. � /..,x . � an. . . S. . . _ :. .._ . ,�. .. :a�� _. �.: � '' �. - �S , v � - , L . ��. . .:.v . . ...�.. .. .. ... .-„�... ..l ra . . t,. ., � �. . � . _.__ .. . ���r.� - .;?'i.. �'"�f " .� .�_ .4. . . . .. . . �. ..,: . -, _ . , . . :.. , ,:, . .. . � _ ^r ,� "� �y..�. /� ��j� q vnucm ! Q o� �.. . .,. i ._ . . a� , .< ,., .... . . _ � ..�. , .. _. _. \ , e a _ : ,, ti�F �r �... �� ( '�' a . , _� _ . x . i L� �, . i i. . � j. ., _ .,: .. . , � , k: y.s - /' `�„" - -J - :w:�' _,.�.�. . {�f .. ,_ .. . „ r . � �.., ._ � , � �- ,� .,.: �. .; ,. P a� f�,�.�,:., �,,, s 4 � . •---+! - � ..- ..... ,� . . .. . . . ... .......I. '.. : . . � �v �a � - ��: <. . �.� N _�s . � ,� . . � .. . .. _, .. . . _. . . n d'". .."41'- ...dF' . .. � e . . a ,.., �. .: � f . . �:y 'e. !:�'n� .f . � . � -. ., . >_ . i... . . .- . �. ._ .... .�c�. . 7Y4eG� , ... << . .].- 1 . . .. ... . ' _ '� _ •„ ; ' :`., ' . ' _ :�� - �� r T a �'i . .. _ . .__.. . . � .. .. _.. , ._ ...F"'� . _ ,_,. .. ..... I .1�_ - ., �.... ,._d t . - � 0.� (-- �F:S .._�S - � as5 . _ � . .. . _.S .. , v 1 ,. ,. ..., .� ... . „ . _. . . . ."�, � ... . -. � ._,,.,. .. .._��K nan f . iy `� _ �.s;.:,) •;�. ��_.e :.r.. ... ��t:..� .. :. . . ..r L ..,. t.... �_ .. ,. . . Y. .. . . _ _. : �. :. ;�. .� vaii.� ��:. : �: �Z.� v '�:. . �'.1 _ _..: , .. _ r.: . .. .�; � t . .. .. -,.. .. ( • ., � . / � . •... :�Y.� �,u� ir . + - - . 1.'�� � ��. r � :• .. , . _:,.. , .. . � . �.....�(:+�> � . . ..,,^",.... . ,� .:.�!� ,� . . ;.� _ . .<, -. ., ` .- i . - .::h �;1.. ..> . r ..u:.. � -i-- . . ��. ... .. �. � � , ..r ,_ . .� = �. .� . ..,. _... - r. , . ,. � ,. �.. r .. , , <. �_: ,��-., ',•�_,,�v i . 1� `:�� ( r � ?-� . :'� , . .. . �,p . .. .. . Y .. ._ . 4 ... n � �, . �.. . . , .:i. ei _ F 1, H-�� _ � , �'� _ • . _. . �c . . . . . .. .:.,.. .f.. . I . . . ' .. . 3 �. . . _. 1. . , '. , .! , . {� . 6 • � \" � ��.,� dz e � :� �. . .,, , _ ., .r_ �. ��:. , . . , � ,. ,,;,.. ... ` -,,:- - ,,, "' j� �..\ .. -�.,� . _ . .. .. � .. . ... . . 'F...... � .. ..r. ... �:. .1.. .._ . .. . � �� � I . � . p� rt,. /" �• .'A ��Y . �~ . ..\ � �".'J?K . C �'i 'H . . .. .�Y .. . : .IF�... . .L�.•.�. -.. .Pxi.'-�_.- ... .. . ,�. ... S. ., . .n .. \..� •�. �:. . {` ..'C: t . _. �nY1 _ E. . . .G . . .. . .i/ . . ...... . A .1 �t � . � . _ , . ... :'. . ... .' . � ' �.�_ . +.n r : . . � �rl. " J . �`: ' . C; � f . �., �' r.v ,t�-�.. � _�. , _ � .. . .: �_ .. ... , . .�_ _. . . � , , .-- -- -' q � f a.,µ, � ,S . , .�� _... . .,. . _ ...x�... � .-..: � . , I'. ... , .. . � , . . . .. . �r. r . � .�, . ..� _ {a .. . . __. ,.. �:.:.. _ : : '. _:: _ `Z� ..�: C .y,- - rt- 0 �...� ... .. .�, G .. ... ._ ..�., , . . , . .. _ , i �. w . . .. . .s._ �_ ., �...- .. �- ..e „:� - ;l � .�- ` .�'P�� ;�;z<. _ u , nna_ a6d C, , . . .. . . . ,/ , �. .. . _ . �. . . S S . , . � z . . . �. . . . . . ... . . r . ,it_. �'> :%� c� .\ . 2 � . . . ...- � . �. . . . .. . . .�. Xoo.oul � , . .. . . . `�Y-. ..._ .. r. , ., .- ... .. .'c.:� .0 ' 4`. '''� ..�s:��. .,'�: _� -SF . .. .., ...� .. �1�. . . .. . . r . ` . . � . .. � . � Oc. . .�. , \ _. . . .-. . ...i.. .. .�.Y : �� - t'� . L ,'� ^':1 . .r�. �. . .. _ /. ... �.._ . . . . .. .� ... . ,. .'Ri �. , . v.. . H �r ,1 .. '". '"� ' ^'\� �b "f i'..^. ,�,�� . . �z _. __ _ �; +�. . . .. . , . _ cl , .,a,. ,., . � . . �c a� 4 . _. � . _ ' J .ic . . . . / . Jl . . . -. . . , . . . . . . > . .. . . a.�x+�., .. �. .. 1 . . . ro' � � . :. . . _ �. _ , �.. ,.,.,-,. : i ` - - r� i ti. � - �-t� , :+x. -c l .... ... . . _...... ,. . ,. �.ZY r . 4 . -. . v . _.... i'_,..., : .... "n/� - ` ' �`.�- .:q.;_ � _ . � . _ d ,�9 Y . - . i � . , � �... ,,.�, _. �. , ,,, . i , - U+. ^~�. , _ .. . i� r _ , _.F_ a a�M� �. _ . ,, : t� Yoa;c �..1- _�„ �i' " i.- 1•e€.�exr ,+� �:. � � -. .'.2... �� ... / . . / .,. .. .l'. N .�. ... : _ . . :/ r .�. , F .. r r . . . ... _ �_. �� •i�.. ,�` - :�l � �. � . . . .. ...... � l . . . . i. ..' . � . . .1 . . . . .. o� i. �. �� 1 :f�&SVw.aN . . ._ .. _. ...1..CiIRN ,.� .�. � .." 1.. d - - '�`{l1s . zS . 1 R l £ .� _r� . \ . �, lT. ...v']. ... ti "'T'� _._ .,ti. , .., ++'�'�... )4'!.-. ., :� . .,... � . �'•?= ��. K .'C - x ~ 2 _ '�, .RVE Q ,� . .. . . . .i p.. .. . . � . . � .. �. K , �, ;,.� ,, . .. _� � .�% � �� _ c u:. _ .� ` '� ... ..:, . � r � . .:. ,. � . . - � - ,,:,:F ... i - - _ . . . ., : �. ..��� . � , if �, . ., . L . . � . . ., �. , > .- . : ., .. , . r r'•. a � � . . �' . - � . � , ... . i. _.t. , e . . ..,a . �. . .. . _.. � . ..,_ .:. a. � .t" �., .�. . ., ., n . �� ��: v�^ /. i i ` �a � Ro.he -. 5 . , .... ... . . . .. .� ... . . � ... . . . ..: r. . , i � . �. �-�,. -�� :..�.. r Y RifEkTiPD6�C�J �t � . . .. } ... � �} .5 - i_. . rA. ., . J. r. .. ., - . . � .. �.�� L,: < �rw. � . .�inCh. 'iF,S�R114it. {S '1 ! � ..e�_ - _ �: t� ��^.,. ` t�1. ._ l, . ;. .. : B�m�v:t{. .: '...f ../".�?...'11. N. •:�. �:.� �� . Ku_3.a. -.-l8. .. - . r . � . . � � .: ,;' : , � �` � �. �.( ��" �° ' \ . , . . . . . ( . . ... . . yT 5'l' . . � . .. " i: ""..-:- _ � .�; . . . a•.�- . T� . I � E6 �:O:i .Y �- �- � � . . . ___� / . • . :.i ' � '� . : . "'� � T" �� . ' .��%'1 � . � �. � _ ' . :. �-. ..�� 1.� � � . . - l �. w, . . .. . ,. . _ , � �. ; � �. •. �k . •�� � � NTY _ �. � ., \ � „ _ � � . , . . , -� . ., , . � - h - } �, � RIVERSIDE COU FLOOD ONTRdL �. . . , , ...1 .: .. .._ ��. ..,.. . ... ,�. � ..� r + . ,,, .: `� �Da�A VaL.r •+t:e.� '��-: . \ � � � '�•� n me te : � _.� - ��. � �-:. F . .. ;.. . ...;.� ..� �.. .._,.. e !' �i - t�,.r - l' �'. � � ,R� ��1, w .w'�. .�, .�., C , �a 6!0 , . ,a ,. K_. y . : . - i_ .n. ..., .., <- ..�-.: � .-� .� . - 1, r`� -" i� • ai. - Y` g � . i. . �i . .. ... _, .7... 'M. ;r ...J!,., ., � . f... > , . . f . ..�.. ^ a:aws�. .�.i� rr. - - -"t-� .. . A N D . , . � . _, __... -� �- .. �.: � .. . . .. �. . .'C . 3 .1 � .,.?� . � _ . $.'.:.-'!. • �. 1 . +rdM. g .. �. • . . / .._. .._, .. . -., �� .:.. , . .��: � . .. : ..::. . . �. ��t,� ' ..t � i ..Sai :'f--£' -..C ��� � � . . � . , �.�J �. 1: �.V .� .: .. �� .._.. �. .^ ..:._ ,>T .._.. ... _ : - I . / �: �T _e M ' � 1 �. . . � F / � � �/�'° , -� `. . /. . . .. . . . ... . , . . ..,. i 4 �a -_ ..- .�; � .Yrx - r.. __, r� � , .,. .". � � � . -. sF �', . a �� . . T � . 5 , x"��'.o.. � � . , , � ,..� . � , v . . . . ,. �. . :r.:'.1 . , . ..... . ., . _-� . , .,-�C . q ,.. . �i � - . � ., . J AY' '�'� � Y°' . .<: J F . .� \ . �. . , . . �. .. ... . o � _ .. , '"'T . - �.., .. L . I. � - � ,. ..� �?,:�.'•- l - .L �� I- � - . - 1-' .� ' . ' �f J... .. �E . +�� ..... : ._ .. ..,::- .. , , ��-:.,. .�.,.,,.�.,a�r,�. ���. .-�`�` d�,r_-, �. r� � ATER CONSERVATIO�I 61STRICT � / ..,I: .l!± � ecxr � / , , �: �..� �. .'`i. �i r1 •' '�� .-r�l 1' J I f .I � . ��JPris .. Wi�er �O ,. �l.l�'� � �iT . �u t �.yi!> / •. - - 4 ;,L � ''.� 3:. • . . � `` '. � ':: ` q " a � ..... �6e.nP � 4. z ��.'.'� ��.-r. . , ...� �U � ' ' T� I �° L - x ��} .. . � l �. \� h 3 �` ' .%' 7 �v.r^ i •" �.:el '��:.. �..'.;�..J. �.7%�..'. ..- -Z .._.i �:�..� � `y . � ` . • � . ,,. G ......., . . ... ..: .,, .. _. . . � �, �. t . � : ., _ - C) FiAS-� � fORES'l°. f ` �-^.,. v � ?. � ,�_?�- r?pt. �ti � ..r_a. dst;iert��. ~ .dL _.:H.'�f17 0�`'���'� .� . i `�:' �:;-y� .C. ' � ' ' --} ,�r-� . "_� .F �aiC+E i:aN .i..:i. :t� - +.�+r� - _.. - F ? ��:� , . ,.. � - t . •. �.. ._ . . :� * " ',�'' '.' `'',4 V-" -. ._ �-v" _ _ _ '_ ..*�.1 `^ 'T: r' ��, - c: -b. ,.� . . � � . .. .r ;... �, ., , _ ..' . � .�., � - +�-. _ r . �!n Abb Roinf �' ;: ; .'.... ��. . .. .. � -� .. . �' .. �. . ::' .° . , :. �.��: �� ��f^ • ' �''#}. � .$ N` " ^^� � T� 1 ".. I 1 V° J C ' a..���� P ��� , _� ��'� - ��: _ V., , �' �-`- SLOPE OF -�5., - �-� - � _ f ? o�zb��k--�= -�f -��,�. -�.,�; � n� �s ' �` ` '`' ' ' �>.s, �. ':_-"�� �-�:..-.�:•..� ..�. _ _ , Z�4^� ` �c. "� '�. - � : � ,r . ��.. . . . � �, �. � .t - -- -,^�_ � ..� � „ _ - - - . -� � ...`;w.s_ y . � .., � . .,. � , � .-r-.__ , � ��. � t.: ,�_ unro�. .�,� ., �_ '-�� � �' . y _ , . , ., . . •..� ._. .. .. �. . , - ; ... - a ..� , � K�°°'atv.`. :x.. - ' - �a _ A..; �-�k 3 . � n, � , . . . . � . . -_v.�, ; �c . ...... .; .. . �a_.tr : . �_ .�J �i ' - � '�o .. . . �,. .� .�>. ... P . � .. ��, .�r e x :�� .. � .._.'� � r• .._ ., �` .; "�,. :Oas.�» ��z�� t .= �6 'h . . , yr . , .. . �.. .- .... . .t. .-.. . . � ,... .L f?O . . :. ... . ... .MiS- ..1 [7iG ''t r" i � . . �� . . Ca ... ., ..:.� - ....�.{ �,. ..{- . ..__p .. :,.. ... :.f --�� ,. _ -`.1., x.« .�.�� L-� T ATIOfV T . . . ;.. .,.., v ., '- a-'N tf A .� , . A._r, . .� � 4�.. i . �r . . . , �� « r : � „ �=:'_ , �.'� . = �� 'S� � p . � 's $ _ r I 1 V E N S i T Y � _,. .��. � ,�'�,- -- ,� �� t-�'ha.� _ �r���..m�.�.� 4 �� �;- _.�� ' �. j' _ ::; DUR . . . . . :� . . �. n .'' ; " f - ./?. . ..�?.,' J e;� �, ..�.�. !n.n![.ti_ _ N ._ r �-�,c�..yYr. _ T�' .,�,�`�_. �'A y.. ,i .'Wa�Kli� � � � . , . . Q , • � �_ , . .. ..• , �, , ;ra�� - - � !� . `� . �n m . npa54 V 7�E �� �. i �• ' '• � • '. `� •. �• ::b'� .... ... �- �:. .- . �� � � .,:��,i .r;° _.. �. . . '_'�<� t � � .i :n-.'��� s cE�vi'�r T r ��. ..L�_., ; �i ' �. `� ;i- : -. �., , .., , �. . 'b � , •; : . . ::� : �. . � .. . .F . � � t i . , ., . _ _ ' :,,'4°1.� . _ � � c+r - ..:. , .,±; : •� ! 1 r?. s: �o , ,_ , . . .,,.,.: x.. z . ,.. .:_ ,, • - - - - .. y, ,. '. �i .. .,� .{�, :.t.. (,: .. ....-...: :.rF_SF14'pT7F�*!r. �'L-- . ... ��., Na .w `...,-+",`'. : �k .. ':a:�i' ��dEkrrdG'NZ i3NA r'. 'E� ��� - . ., . �. .. d,�. ,.,... ... ���..�.. ...�.m� <�.. ��:. :.� ;.:-_ ����" � ..,. .. `� _y,,...�y,, .�. .(;�: � _ -� - r�,u. r �.�-`._.�._ - - ��� -:1� �.� { J_ e _: . . l�.,_ �. .. � zc T; -�- o_.�.>.. --�--`-�•-�''-- --- T.�°'r-- -` �,:arf.+-f.. -J.+...1., - --�-•--�•-`�-:.,-?F f -e�� : c .�:�,a,� e • _ .�. .�J ' ,;coa�sr .i�::. �:r�. .2'. - . ., :.. . �__. �H.. .. , . �, , . �v _ .'Y .�... : ,,:.� . ,: , . , .. ��. . - P'F,�wt i . � - . r..: ..5:.. '6. /+' 1p`, . � ., i v. .:� � .. ``� .; ,� . t . 4� .. � .1 . ,f' � ...: . �._,•.�� . ' �.���.;�NOian � . �-� .1 i ',��' ,P`. t-. .sz`� ..,. �. �. ? � y 1 F �2„ ..f � �� � , ,,,! ..o - :�. 'S` ± , c ` - --1- r;� ea li V fl Y e..�, no. , .., ., p ..s..� . . .�:., �;.: : ��.7 .' v F .�e. . � . � �,� i,.1�i .R ,/�' u �'�F �.f �a - r`�1 i ��. � : - ' �,�i,�_..� �rd f`t�'.._ � , . .� . H ..:.. . ' ' ... _..•Ade�. ; c. , . ... � . . ,�� i ,� „.. � : , , .,� t.l � �i � E�. n.� .•d=�u.5 � - � ��, -.. +� :� �; }�`, - , r'" . . ' ,. r.. . '�.. �i �. �- �� .:�. ...�. rC'. . �., r..d�ui.rw�a,,,.Il_ --... . ., . , ...:. � . :`�.- - ^E lOC+[-_�. .5 .§a�� ��.� -,: G � �.,-'�: `i -".L.:, � /-. . . . , .. . ..... � , . ..�,.. ,., ., .,,. . �, ... . .��._- .t.. �._ . . �.:� � •- . ., . . ' .... � . - .,;"U �, l•� .. ...:i� . �`�.i. a,� _,..� <. . , ...Ypqt 1E� ; �.'4, .,-a ._ _ ... .e a.� t � � ... • . . ., : �� . _ . . -... ....�ei. ...rt: �t✓ .�. ; .. � . .. �,. � .. . _ ... . ...vi ,�.4?`F/'G�. ?§�T � ���,.�. - � -i. e'a. � -FF � I o ,t�. ; IA2 . ."dVN . 4.�.'. ..r . . �. , �. � �. '. -,� _�.:,, ...... _.� :` : .. .. �amo.e,. ..m .� ,. �. ,,. . .�.. ,.S ..\ '^!4"�v'r �� . ` i�� :.i�... . � - - try. ..1 �. � , �.. ..: . r _is .,..- .. . . �;.. ,. , _ . � .. . � i 1 . . . , �,,n "�. ,� ��.3: :�.. ..x.c �r:' �� � � :•.a \_ o,. n . � . . -. . ... , ,.. ..,. .. , .. . . .,a en . - .�.. . . � -• � . � ; .I�. ; .. , . -.. ,,. � ^� . ..;G�:, , v : � t � ._ .. ._ 3 ' : '::1^ ; .i� !�r::��.Ge ¢ o,..aY o.n�a..�, '� .��� �.�. ...... !.Y.R. r �: . � 'T. .1' ._x_ - .L`li ��? ✓�, rL a :i .��:'��1�� CF t_I �( � ' �3 £ W ,, � ,��,� . �'5'�9l , � �:.,�. � � _ �f i � ^'�" �.t'4,�t - � ., :�� !'. 2 E 3.E , _ , , r- � :• , v , ,. r _ � , >.. ,� . �_ �. _ , ._ , ;. �. ; , ' ._ . , ,:- , �E... � PLATE D 4.6 9 y � . :� M iy�::.�.�.:�i����i..�IN ° � ° ■ wu N�� ��w N . . _. M������tltl�W ��N� ����N� ��N�Y� �M ��M N �Y%�Y ��A�M� ■ � ��Y���M9�1�A�IA� Y1/�h�M N�� . •SOH��\e������.i�.N/������� �������������.� I�IY���f�it�������W��O�%Y���d��p����-N� � � � 1��� II �� �Y� �������Y���Y�/Y��������a��� ��\�/�II��I�L���hY�YtOt M�� ��. Y� p��� d� �NMN/ N��� ���Y71�/�I���I�Y��i��qYYY����� �/ �1Y � � � • � M Y�� N�Y�tY/ittN��� ii�ieiiiiiiiiiii°aino�iwn��iiii��u�xi�iiiiiii � °� q�u��ua�� �r/����/t/M�������A���N�p�M��\�n�1N�H u� � '' �' u�� pi i�ia�� ieiiiiiiiiii�iiiiiuumi �ii�ii�a�� �i°aZiiuni��tl� � �n ■ nn���� uL�� �.un�oe���a�����n�uuu�u������������������uum�nu� • • - - . � • � �n��u"�"n �� B�I�IItAIt�■��1/\���N�Q�N/��������NSO/�����N/�f�0���/W�UO ��piaNn� ��i���B �� �N:°'.::':' «".�� M �� : � a �::�� r . � `��.���..����� :::��G� '�:.'7:.•:7Y.'���.. ::.���� .:::.iii� �i������ ������i������i�iii.i�.i� 'ii ������� i��.�.�w.w����� '����� ���� ��iiiiiiii������������ ��� �iiiiiiiiiiii7iiii� � � � ' • + � • ���ii�Ziii���wa� ����I�������s ��������1��������������M��l�����NY�M���. �����Y ��N����M\���a� iioiiiii ��a� ����N���YY� % � MMN1��� ���� �:�h�� �N��N�O��I�NM�M���MN�NM���Y���Y�YMN����� 'aiiiiiiiii�iiiiii%iiiiiiiiiii���� �����������°�iiiii=i��tiii I � � �r N��%�NO����� �/���I�����������������������\�������������������_��������������\ � � • ��Y���\������ �� •A�����������������������������N�N�����N�1���� ����I�1����\��� ��������Y\�Y��N •�����iY�������9/����\�N/�0����N������N�������h���\������tl� ��������A���/�M ■�Y����i�����Y/����������� ��� ��������������\��������/��/�����t�/ � • • � ����/\�N�N����� •����������������������//���■\���������������M��/��t���\���\��U/ ��M�h�N������■ •�tt���������i���i��/�\�����tl����������������Y� 1��t���� ����■ , u��u�nu��u�u�u����uau�a�����a��������� ■r��i��ru�����a�������������������N����������� �� • � ' • �� - / ' • � � ■ . iiiiiiiiiiiiiiiiiiiiiii�iiiiii������ i�i�iiiiiiii������iiiiiiiuuuiii�iiii���� ������ I�I��Y����11��%�\����t���N����%���������������Y�N����t��t/i������������������� i ���A�n � • � �� ���uueur����s��������s���u����������������s������uno��iiiiiiii�iii�iiii� � �• • _ �4n� u�ue�N�����������un��������������t�����t���uu ��iiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiim°aiiiiiiiiiiiii'iiu�iii�iiiiiiiio�iiiiiiiiiieieniuiiiii .. .°_ —e-------- = ---: .. - - ..........----- .........................-- - .,::;3::::===--=== =:--:_::.::—===========�= --=_.:-:-.:: :::::::::::::_=_ ==:=:::::::5°e=: :3: �e9 �==�=======:� ::ece99=ae _"� :?: ===°—===� =° -- ?n? 9e:99=======?::?:?9e:::::e:::e:::e:a�= _5??'a9:::es5e5e:==M� �:: a o :::e::::----------==-=====---e: ;:::;:::..:::::=== - �......_ �=::::::::� ::::::===========-----G---... .................-�-------....................._�.s-----------.o....---- ����� �ii�iiii°i°i ra:::u:i:iu�wa����oor�u��u���������a°��ar°� �� � � �eauuu�������oa�uuuuo����� r w� aa uramr��������auuu�w���������������N��uouou�uuuuu�°�°����osuu�u��uunu�u��r������o��� e o•a�u��u�����a�r��uuu���������a����a�r��s�s�u��� •�uuuu��� ��a����u�ouu��o�uu�u�s��������u�euu��a��� ° n: ii:::::i: i��e ����::iiiii iii:i ������ ���� ii iii:� ia io�■:i■iii=:°riiii=:i i i=�ii i:ii::o:i siii i sisii iiiii s:iii:i:ai:ii:ii■°: i�� ��i a::iaiie:i.�siiiiiiiiiiiiisi=a���������iiiiiiiwiiiiiiiiiiiiiiiiiiiiii��� 'iiisiiiiiiiiisiiiu��iiii�iiiinviiiiiiiiiiiiu=i���� °� iuiii�ssiiiiiiiiii iiii=i� ����i� =i�'ii�iii3 oiii?iZ ii �=iu�iiiii°iiiiiiiiiiiiiiiiiii=iiiiiiAiii°siiiiiiaiii�� �i�i�v�� //\���������O�Ai� iiiiiiiiiiiie�iiiiiiiiiiiiiiii�����������iiiii°a�iiiiiiiiiiiiiioiiiii�iiiiiiiii�iiiiiiaoi�ii �siismiioiiisiiiii�i�a ��io;iiiiiii�iiiioiiiiiiiiaiiii�i�ii"' iwiiiiii'e iiii�eaiiio�i�isii�i �iiiii ���i iiiiiiiii� i�ii�ii�iri°in�!ii i�iii�siiii�iiiii�iiivsiiiiin iimiiiissieiii �i�ii sa�vsurn��■ r ��������=��=�i �� 0� i��� ��_�!�� !� i��� �°��_��_ =��e�i�=� _� _ � �v�'e�raa��im �� � �as�oROOUaa�a�ia���r� r ��� � ee �i �=�i� u �3 ��i�� ���� � � ���� �i �� �� ����i �o �s�a�■ � S eaeonat+u�ss�m����■ uouu ���i■���Gi�=�sr s rre� � u=� ��0��s�a� ��n� �r u� t m�aa ��asoso� � u ■�� qRlG191�ilIq�A o�� ��� o ����'�aC s = ° �i=Sfi ieiaf i i��So��S = �i'i�ii i��i�u=�iii�iso��ie�ii�i i�iC 1e e�C ° ruraooro��ie���as�r��uuoi�� �i'siv� in� ni�voa�aai�ee u �e��e���s��i ana�yi�ui ■m�����re �a��� �����■■�■■■sa�a�ta=s�e��� �a�r� o ��� m� o�soo � u v�rmer i�` u ��o0msa aav�vr � u aeioiiiiii�������vseuu�u�==��a Sa���a�a�=�a�srs�r�w����ae�m� S■����ssu uuatuse� o�em'e�aa���eew�a�e��ur� ���' �ev������a�ue�u �� ■ a� u��aa e■� i��o�r � uinm� �����o�u=un��u v omu a��e�:�ovnuwveoea���■■ NGtM71 n�i�v�e,sa�uuuu ■■ ■ e�����a ■ e ���miv s� ao � m ■���ii3O1 1�111 ill I1i119111 �6,i�6il��f11111111 e�■� �oe��t�u��m�l����e�e��e�uu��m�� ■o�s�a�� ,��„r�asu �a�t�w= ■v����� t�i,m'e�=m��ssoit � =s��,�����avtu ie�� ■■■ aNi�r� �m■�s��ea��e � m ■ ■�■ ���o�, , �i ovst�o o � o u��oo��,�'�is�aeon,�es�se��it� ���e,��,00emo�����et�C�o�� ��e��e� ��� �'��'.ri.■�'sse��a���, AA11�0� � 9� 11 �11 �Y6� 01lSI I1i111la 1 I 1111 �, o�s� ��e�aete oai �e�� m�..°•.. a.. .�e a��e oe�e-: s :• a a a�s :-es �SaS :ae ! ••: : s e:o:a:a:a:eaa»���� •n�i���t.ii�r �0.�3 �� � ■� � � �� � r�s � �i� �_� �i�� �� �5��� 8o���sa�e ■�7�i�t���� � ii���g��si����iiiiii�ii=������C��� ����_� �� =L ��_ ■ � �_ � S = _ �i .s�u�� u��s�u�u�u�� �uu�� � � �� � �r �o��u�uuu�uu� • �� e • ����u���o ■ ���uuu���u u uw ou�u�ouuuu���a= wiei=ois io�i�iiiii� == �=io�as i �= r• a u��u�u�ooto�� n� �i ,a� �ra���� uw au su u�� � a�u�ars�=uo�v�e uu=u��o� �a��auo�uuu s� �����u�n��os���os�iG��u�����i��� u�i����s s��s��u�u� ■■ ■ u r� � rro��s ���sw � ti �= 0 i i ti9 ri���s�����u��a��anu��u�Gs�a��su�u�u�=�m���'f ee'�'�,u'iiiiiisiiii''i'�=°�i� ='i��ri i�iwli�iiii�ii ioii'3=i'='ii �iii=i°i='iiiii'iii=i i'iii{ii' i ��i�iiiii�iaimiiiii�a== ! e� C���� �m�o��r ■� �_ � S �_� s=����i�u ■ s�=ug� mus�i���os=s�=�Sa�i�=n=�su���aa � � ��ii �i r�isi �a�i � � 'E��ae��=u�i���� a�u��o== _ �����ss ��s ■ �=�=�ii�oo�� eaao eeaus��raosees�ae �w�i �iC'��Q � �__�� �i � � ��r�� �� ■ suur� ue � o� ■ a�r�� ■��w� �a� A���il��ls�\■ ■ ■ � ���� � �►�■ h.��aes �uo � � � ■ ■v ■ �a�e sv�aa � o� un= �oe� "nie �i i ° , oi� i i=����'�' �ii��eiieei=is�ii��A=i,='�ii'�=it�e°�a:wisi�aEwii ii=8a��°� � sn;� �r� � ■ � � u�n=sa�o����s�sa�o�e��a�s�e��� a�y�a9adeoaa �vvrsre��u�o�r�u�;aw�ii��o���� m. � � NIIIt111 t!i ■��iC��a ��sreoo� �eu n�os�.�ees�r�eean��o����� .: ::�dx °'a5 = = i S° ' "E==�==="__'.,"= "i::s:"3'_� s-esas--::::--::••��::ea:::�:_ o--:�::a: --ea"�= :o- ' �:�z�_ z -- s�' -E�' , -�i �_-@�.�"=:� ---=E--.� -. :: a•�-r �s=�- e..::�--�'� —� �A �: ::E��:E°e:-==�=s- �'e---3_sea_.s� �3..:. . _ �-= === ..: -� a= � a-.� • • �a - - a° a-e • . a°-a: � a�5� �r��a�:=.:=�___$����� ������� �����em='_���- . �����:����g���s��������a������������a��l ��_ � V p � � Ti=�=iC=��i �� ■ :��ii.��i;� ri'=ai �i�iiri�= ���56= e ;iw3=�iiiii= S=i���ii��ias= �ueiiiiii������isi� ■ ������i��� �� � ■ � ■ � �a�e . ...... .e ....= s w���o�a�n����� Z7 � o�nw=n������'��_ . �i:._�— -- o� - �1�=q�• Z. e�. ._.._..�� �ro� ■■ �s u u e�su���su o� s���� BM �%�i� � ! ■.���Y��� � ����� �~ � �� !' � �� � �� ■ ���/O �������������SY�� ■�\�Y��S■ ��� �OB Ii�������1le� � , - . ..�. � .. .. a ... z: sF,��a��,a�.a:.a..sz.. � ■a��� �����auu �i�sn�ri=Qi���� ���i�� ■ =�iruu���ii�.m.� rc �i.��uuu u� uw u�a���rouu ■■ � oa �. ... . .._ .... ..�.�...- ..._...................� . .. ..... ....... . o ��. . :.C��:�� a: .:C::: C ' � : C= ::. . � ' ! ' s - � _:: �:� i=:s= ::' :::::=:=� �=sp■ �iiii iis�is i�i3uuu'�� �i�Q'��i�i w� �i��� '��i��i sLsiiiii:=Gi :i;i iii�i��i� i��uuiiiii �iid =i �u����ai����s�we� �=�w � _�_ ��� • ■ � ■ u= uu=:_.�g�..,�s� 'l�iii'i ° C"==� = ! °S�' se _ �a°C eiiii�i� ��n i�o i'i �,�, n � � e� :i� �Z�i � �; ��� 3�i • �iii i ����_�'� ��i�t i� i�ii� ii ��e •� � ��,,,�,�:�....m....��.:�� .� �:3� ��.a=.�� :B��O������:�����E�aB��.��a...=.��a.�h.�.�.a=.:9=. aa�.��� .�. . . . .. . .. :. .. •� � -• � �� � , , � � :� - f �' 1 � � a'�l�L I� C0�3t � Rec�nded V�lue L�ad Use (1) Ranqe-Percent For Averaqe Conditions-Percent(2 �iatural or �yricultur� 0- 10 0 Single F�ily �i+e�id�ntial: (3) 40,000 S. F. (1 Aca^a) Lot.� 10 - 25 20 20,Q00 S. F. (� Acz°�) Lot� 30 - 45 40 7,200 - 10,m00 S. F. Lot� 45 - 55. 50 Multiple Yamily �eaidmntial: Ca�dasainit� 4 5 - 7 0 6 5 1►partseents 6 5- 90 BO Mobile Hcx�e P� 60 - 85 75 � ��-- Canm�erci�l, Daa�nt.own 80 -100 9p �uair�eaa or Inrlustrial 1�iotea : 1. Land use shculd be based on ultimate develog�ent of the watershed. Ieonq range a+aster plans for the County and incosporated cities �kiould be revi�red to inauz+e reasonable land uae ass�ptions . 2. Rec�ad�d valuea mr� bmsed o� averaqe conditions which mmy not ��ly to a�rticular �tudy area. The percentsqe iaipervious may vary qre�tly �vea� os� c�arabl� sized lots due to differes►ce� in �lling siz�, iiaprav�rents, �tc. Land�cape practices should also � esmsr,aa�er�d ae it f� c� in s�ee area� to uee orn�ntal grav- els �er].�in �y i�rvious pla�tic m�aterials in place of lavrns and ahxvbs. � f ield investigation of a�tudy area should a�.wmys be made, aasd � a°�sri� o� aerial photos, wh�r� available may assist in estima� ianq t�a� �c�s�tsg� mf iadptrvious cover in develo�d areas . 3. F� tg�� cml a���se r�raeh ��bdivi�ion� increase impervious area 5 per- c�t o�rc tta.e v�lues reca�►ended in t�� table above. � � � ������a��� ����� � � ' ��� ���D������ ���.,� ���°��,. �������� � a�'d���� �e ��rr� �..�� � RUNOFF INDEX NUM�ERS �' HYDROLOGIC SOIL-COVER COl�LEXES FOR PERVIOUS AREAS-AMC II � Cover Zype (3) � Quality of Soil Group Cover (2 ) A B C D I�TUR�L CO'VERS - Barren 78 86 91 93 (Rockland, eroded and qraded land) C�aparrel, Broadleaf Poor 53 70 80 85 (Minzonita, c�anothus arsd scrub oak) Fair 40 63 75 81 C,00d 31 57 71 78 C�aparrel, tiarz�oarleaf Poor 71 82 88 91 (Cha�ise�and r�dshank) Fair 55 72 81 86 Grass, Annual or Perennial Poor 67 78 86 89 Fair 50 69 79 84 Gooci 38 61 74 80 Meado4rs or Cieneqas Poor 63 77 85 88 (Areas with seasonally high water table, Fair 51 70 80 84 principal vegetation is sod toz�ing qrass) Good 30 58 72 78 Open Bruah Poor 62 76 84 88 (Soft rrood shrubs - buckwheat, saqe, etc.} Fair 46 66 77 83 � Good 41 63 75 81 Woodland Poor 45 66 77 83 (Coniferous or broadleaf treee predaainate. Fair 36 60 73 79 Caaopy de�ait�► ia at least 50 percent) Good 26 55 70 77 Woodland, Grass Poor 57 73 82 86 (Coniferous or broadleaf trees with canopy Fair 44 65 77 82 density fran 20 to 50 percent) Good 33 58 72 79 URBA►N COVERS - Residential or C��ercial Landscapinq Good 32 56 69 75 (I.a�rn, shruba, etc. ) Z1irf Poor 58 74 83 87 (Irriqatcd and moaed qrass) Fair 44 65 77 82 Good 33 58 72 79 AGRICUUd'[J�L CdVERS - Falla�r 76 85 90 92 (Land plawed but not tilled or seeded) � ������ ����� ������5 ��� � 1 �t��NlJ�►L. PERVIOU � A�tEA 5 �1 ATC 11_R � /e ..s n1 LOOP ROAD A1 � 10-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS AREAl10.out Riverside County Rational Hydrology Program , CIVILCADD/CIVILDESIGN Engineering Software,(c),1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/25/06 File:AREA110.out RORIPAUGH RANCH LOOP ROAD AREA 1 10 YEAR, 1 HOUR EVENT APRIL 25, 2006 ***��**** Hydrology Stlldy Control Information �********* English (in-1b) Units used in input data file ----------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 -- - — Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 3.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 629.330(Ft.) Top (of initial area) elevation = 280.000(Ft.) Bottom (of initial area) elevation = 259.430(Ft.) Difference in eleva*_ion = 20.570(Ft.) Slope = 0.03269 s(percent)= 3.27 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.831 min. Rainfall intensity = 2.415(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.851 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.604(CFS) Total initial stream area = 0.780(AC.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 259.430(Ft.) End of street segment elevation = 219.500(Ft.) Length of street segment = 1974.160(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 AREAl10.out � Distance from curb to property line = 12.000(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) _ Manning-'s N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.061(CFS) Depth of flow = 0.337(Ft.), Average velocity = 3.301(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.506(Ft.) Flow velocity = 3.30(Ft/s) Travel time = 9.97 min. TC = 17.80 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.842 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0_000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 ' RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.537(In/Hr) for a 10.0 year storm Subarea runoff = 3.093(CFS) for 2.390(AC.) Total runoff = 4.696(CFS) Total area = 3.170(Ac.) Street flow at end of street = 4.696(CFS) Half street flow at end of street = 4.696(CFS) Depth of flow = 0.350(Ft.), Average velocity = 3.414(Ft/s) Flow width (from curb towards crown)= 11.176(Ft.) End of computations, total study area = 3.17 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 � � Page 2 LINEB10.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 _ Rational Hydrology Study Date: 09/08/06 File:LINEB10.out 850 0139 RORIPAUGH RANCH NORTH LOOP ROAD LINE B 10-YR 9/7/06 swL ��*�***** Hydrology Stlldy Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 206.000 to Point/Station 300.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Js� t�pu - r ; Rainfall intensity = 1.950(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 / 4 Acre Lot ) 47A ��' NOpE � p 6 Runoff Coefficient = 0.743 f'� Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 1.000 Q y ��� g � S Decimal fraction soil group C= 0.000 p Decimal fraction soil group D= 0.000 �� 1� � ��(%l�t�. P��.�09 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 11.55 min. Rain intensity = 1.95(In/Hr) Total area = �4.04lAc.) Total runoff = 30.83(CFS ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 302.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1253.160(Ft.) Downstream point/station elevation = 1226.300(Ft.) Pipe length = 1382.04(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 30.827(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 30.827(CFS) Normal flow depth in pipe = 19.22(In.) Flow top width inside pipe = 19.17(In.) Critical Depth = 22.48(In.) Pipe flow velocity = 11.44(Ft/s) Travel time through pipe = 2:01 min. Time of concentration (TC) = 13.56 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 302.000 Page 1 LINEB10.out **** CONFLUENCE OF MINOR STREAMS **** � A1ong Main Stream number: 1 in normal stream number 1 Stream flow area = 24.040(Ac.) Runoff from this stream = 30.827(CFS) Time of concentration = 13.56 min. Rainfall intensity = 1.785(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 301.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.299(In/Hr) for a 10.0 year storm usE ' N Pv r: SINGLE FAMILY (1/4 Acre Lot) tL � Runoff Coefficient = 0.699 P� �T NO�� (O'f Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 �! Z3 3G` Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 5�E PA ��F (�,�T�oNA� ����� RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 24.16 min. Rain intensity = 1.30(In/Hr) Total area = 21.41(AC. Total runoff = 23.39(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1229.000(Ft.) Downstream point/station elevation = 1226.300(Ft.) Pipe length = 59.17(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 23.388(CFS) Nearest computed pipe diameter = 21.00(In.) � Calculated individual pipe flow = 23.388(CFS) Normal flow depth in pipe = 12.83(In.) Flow top width inside pipe = 20.48(In.) Critical Depth = 19.93(In.) Pipe flow velocity = 15.18(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 24.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 302.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 21.410(Ac.) Runoff from this stream = 23.388(CFS) Time of concentration = 24.23 min. Rainfall intensity = 1.298(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 30.827 13.56 1.785 2 23.388 24.23 1.298 Largest stream flow has longer or shorter time of concentration Qp = 30.827 + sum of Qa Tb/Ta 23.388 * 0.560 = 13.092 Qp = 43.919 Total of 2 streams to confluence: Flow rates before confluence point: 30.827 23.388 Area of streams before confluence: 24.040 21.410 Results of confluence: Page 2 LINEBlO.out Total flow rate = 43.919(CFS) Time of concentration = 13.563 min. Effective stream area after confluence = 45.450(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 304.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1226.300(Ft.) Downstream point/station elevation = 1197.000(Ft.) Pipe length = 223.07(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 43.919(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 43.919(CFS) Normal flow depth in pipe = 13.76(In.) Flow top width inside pipe = 19.96(In.) Critical depth could not be calculated. Pipe flow velocity = 26.30(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 13.70 min. End of computations, total study area = 45.45 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 Page 3 LINEC10.out Riverside County Rational Hydrology Program _ CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/07/06 File:LINEC10.out 850 0139 RORIPAUGH RANCH NORTH LOOP ROAD LINE C 10-YR 9/7/06 SWL ---------- ********* Hydrology Study Control Information ********** English (in-1b) Units used in input data file ---------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 400.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.554(In/Hr) for a 10.0 year storm u ��� � v T� SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.719 �� �b NO�� 2� Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Q= �•o"� G Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 5�E Q�1 �6 �T�p►J/�I. M�T�1�o Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 17.45 min. Rain intensity = 1.55(In/Hr) Total area = 15.33(Ac.) Total runoff = 20.07(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 402.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1258.000(Ft.) Downstream point/station elevation = 1246.310(Ft.) Pipe length = 645.24(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 20.067(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 20.067(CFS) Normal flow depth in pipe = 16.20(In.) F1ow top width inside pipe = 17.64(In.) Critical Depth = 19.20(In.) Pipe flow velocity = 10.08(Ft/s) Travel time through pipe = 1.07 min. Time of concentration (TC) = 18.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 402.000 Page 1 LINEC10.out � **** CONFLLTENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 15.330(AC.) Runoff from this stream = 20.067(CFS) Time of concentration = 18.51 min. Rainfall intensity = 1.504(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 401.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.500(In/Hr) for a 10.0 year storm u SE � I � � T. SINGLE FAMZLY (1/4 Acre Lot) Runoff Coefficient = 0.715 �A (� NO�� � Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 / Decimal fraction soil group C= 0.000 Q= t� �S Decimal fraction soil group D= 0.000 Rz index for So�i �rr�c z) = s6. oo SEE PA lq 2�'f1 DNA� M�"t�Hol� Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 18.60 min. Rain intensity = 1.50(In/Hr) Total area = 49.47(AC.) Total runoff = 62.16(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 401.000 to Point/Station 402.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1248.830(Ft.) Downstream point/station elevation = 1246.310(Ft.) Pipe length = 57.38(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 62.157(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 62.157(CFS) Normal flow depth in pipe = 21.19(In.) Flow top width inside pipe = 22.19(In.) Critical depth could not be calculated. Pipe flow velocity = 18.59(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 18.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 402.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 49.470(Ac.) Runoff from this stream = 62.157(CFS) Time of concentration = 18.66 min. Rainfall intensity = 1.498(In/Hr) SLUnmary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 20.067 18.51 1.504 2 62.157 18.66 1.498 Largest stream flow has longer time of concentration Qp = 62.157 + sum of Qb Ia/Ib 20.067 * 0.996 = 19.984 Qp = 82.141 Total of 2 streams to confluence: Flow rates before confluence point: 20.067 62.157 Area of streams before confluence: 15.330 49.470 Results of confluence: Page 2 LINEC10.out Total flow rate = 82.141(CFS) Time of concentration = 18.655 min. Effective stream area after confluence = 64.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 404.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1246.310(Ft.) Downstream point/station elevation = 1234.030(Ft.) Pipe length = 1050.29(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 82.141(CFS) Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 82.141(CFS) Normal flow depth in pipe = 29.48(In.) Flow top width inside pipe = 33.50(In.) Critical Depth = 34.03(In.) Pipe flow velocity = 12.21(Ft/s) Travel time through pipe = 1.43 min. Time of concentration (TC) = 20.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 404.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 64.800(AC.) Runoff from this stream = 82.141(CFS) Time of concentration = 20.09 min. Rainfall intensity = 1.438(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 460.000 to Point/Station 403.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Us�f� INP�T � Rainfall intensity = 1.642(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) b Runoff Coefficient = 0.725 iA �� Nb Q�' ��� Decimal fraction soil group A= 0.000 /� Decimal fraction soil group B= 1.000 � c (�, 1�ZCt Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for So�i c�c z> = s6. oo S�E P�►, lg RATton�At, NETN.aIf Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 15.79 min. Rain intensity = 1.64(In/Hr) Total area = 42.81(AC.) Total runoff = 48.42(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.000 to Point/Station 404.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1235.320(Ft.) Downstream point/station elevation = 1234.030(Ft.) Pipe length = 40.10(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe.flow = 48.424(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 48.424(CFS) Normal flow depth in pipe = 19.50(In.) Flow top width inside pipe = 24.19(In.) Critical depth could not be calculated. Pipe flow velocity = 15.74(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 15.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 404.000 **** CONFLUENCE OF MINOR STREAMS **** Page 3 LINEC10.out Along Main Stream number: 1 in normal stream number 2 � Stream flow area = 42.810(AC.) Runoff from this stream = 48.424(CFS) Time of concentration = 15.83 min. Rainfall intensity = 1.640(In/Hr) � Sununary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 82.141 20.09 1.438 2 48.424 15.83 1.640 Largest stream flow has longer time of concentration Qp = 82.141 + sum of Qb Ia/Ib 48.424 * 0.877 = 42.480 Qp = 124.621 Total of 2 streams to confluence: Flow rates before confluence point: 82.141 48.424 Area of streams before confluence: 64.800 42.810 Results of confluence: Tota1 flow rate = 124.621(CFS) Time of concentration = 20.089 min. Effective stream area after confluence = 107.610(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 406.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1234.030(Ft.) Downstream point/station elevation = 1229.500(Ft.) Pipe length = 41.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 124.621(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 124.621(CFS) Normal flow depth in pipe = 22.59(In.) Flow top width inside pipe = 25.87(In.) Critical depth could not be calculated. Pipe flow velocity = 31.45(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 20.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 107.610(AC.) Runoff from this stream = 124.621(CFS) Time of concentration = 20.11 min. Rainfall intensity = 1.438(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1280.000(Ft.) Bottom (of initial area) elevation = 1254.000(Ft.) Difference in elevation = 26.000(Ft.) Slope = 0.02600 s(percent)= 2.60 TC = k(0.300)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 9.866 min. Rainfall intensity = 2.127(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Page 4 LINEC10.out Runoff Coefficient = 0.884 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 _ Decimal fraction soil group C= 0.000 , Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.934(CFS) Total initial stream area = 1.560(AC.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1254.000(Ft.) End of street segment elevation = 1240.200(Ft.) Length of street segment = 1224.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) � Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.703(CFS) Depth of flow = 0.379(Ft.), Average velocity = 2.731(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.631(Ft.) Flow velocity = 2.73(Ft/s) Travel time = 7.47 min. TC = 17.34 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.842 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.560(In/Hr) for a 10.0 year storm Subarea runoff = 2.469(CFS) for 1.880(AC.) Total runoff = 5.403(CFS) Total area = 3.440(AC.) Street flow at end of street = 5.403(CFS) Half street flow at end of street = 5.403(CFS) Depth of flow = 0.394(Ft.), Average velocity = 2.822(Ft/s) Flow width (from curb towards crown)= 13.371(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.440(Ac.) Runoff from this stream = 5.403(CFS) Time of concentration = 17.34 min. Rainfall intensity = 1.560(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 19.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 546.520(Ft.) Top (of initial area) elevation = 1260.750(Ft.) Bottom (of initial area) elevation = 1250.000(Ft.) Page 5 LINEC10.out � Difference in elevation = 10.750(Ft.) Slope = 0.01967 s(percent)= 1.97 TC = k(0.300)*[(length change)]^0.2 Initial area time of concentration = 8.192 min. Rainfall intensity = 2.356(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.851 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.684(CFS) Total initial stream area = 0.840(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1250.000(Ft.) End of street segment elevation = 1240.200(Ft.) Length of street segment = 965.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.00OfFt.) S1ope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] sidels) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.876(CFS) Depth of flow = 0.337(Ft.), Average velocity = 2.338(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.505(Ft.) Flow velocity = 2.34(Ft/s) Travel time = 6.88 min. TC = 15.07 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.844 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.685(In/Hr) for a 10.0 year storm Subarea runoff = 1.691(CFS) for 1.190(AC.) Total runoff = 3.375(CFS) Total area = 2.030(AC.) Street flow at end of street = 3.375(CFS) Half street flow at end of street = 3.375(CFS) Depth of flow = 0.352(Ft.), Average velocity = 2.426(Ft/s) Flow width (from curb towards crown)= 11.243(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.030(Ac.) Runoff from this stream = 3.375(CFS) Time of concentration = 15.07 min. Rainfall intensity = 1.685(In/Hr) Summary of stream data: � Stream Flow rate TC Rainfall Intensity Page 6 LINEC10.out No. (CFS) (min) � (In/Hr) 1 5.403 17.34 1.560 2 3.375 15.07 1.685 Largest stream flow has longer time of concentration Qp = 5.403 + sum of Qb Ia/Ib 3.375 * 0.926 = 3.125 4p = 8.528 Total of 2 streams to confluence: Flow rates before confluence point: 5.403 3.375 Area of streams before confluence: 3.440 2.030 Results of confluence: Total flow rate = 8.528(CFS) Time of concentration = 17.336 min. Effective stream area after confluence = 5.470(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 406.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1234.750(Ft.) Downstream point/station elevation = 1229.500(Ft.) Pipe length = 34.73(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.528(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.528(CFS) Normal flow depth in pipe = 6.81(In.) Flow top width inside pipe = 11.89(In.) Critical depth could not be calculated. Pipe flow velocity = 18.55(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 17.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.470(Ac.) Runoff from this stream = 8.528(CFS) Time of concentration = 17.37 min. Rainfall intensity = 1.558(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 25.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 982.540(Ft.) Top (of initial area) elevation = 269.060(Ft.) Bottom (of initial area) elevation = 253.510(Ft.) Difference in elevation = 15.550(Ft.) Slope = 0.01583 s(percent)= 1.58 TC = k(0.300)*((length^3)/(elevation change)j Initial area time of concentration = 10.819 min. Rainfall intensity = 2.022(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.662(CFS) Page 7 LINEC10.out � Total initial stream area = 0.930(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 27.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 253.510(Ft.) End of street segment elevation = 240.200(Ft.) Length of street segment = 1034.850(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.600(CFS) Depth of flow = 0.318(Ft.), Average velocity = 2.503(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.549(Ft.) Flow velocity = 2.50(Ft/s) Travel time = 6.89 min. TC = 17.71 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.842 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.542(In/Hr) for a 10.0 year storm Subarea runoff = 1.363(CFS) for 1.050(Ac.) Total runoff = 3.024(CFS) Total area = 1.980(Ac.) Street flow at end of street = 3.024(CFS) Half street flow at end of street = 3.024(CFS) Depth of flow = 0.331(Ft.), Average velocity = 2.591(Ft/s) Flow width (from curb towards crown)= 10.201(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 27.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 1.980(Ac.) Runoff from this stream = 3.024(CFS) Time of concentration = 17.71 min. Rainfall intensity = 1.542(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 29.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 539.470(Ft.) Top (of initial area) elevation = 269.060(Ft.) Bottom (of initial area) elevation = 250.000(Ft.) Difference in elevation = 19.060(Ft.) Slope = 0.03533 s(percent)= 3.53 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.249 min. Rainfall intensity = 2.520(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.852 Decimal fraction soil group A= 1.000 Page 8 LINEC10.out Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 32.00 . . Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.009(CFS) Tota1 initial stream area = 0.470(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 27.00� **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.000(Ft.) End of street segment elevation = 240.200(Ft.) Length of street segment = 890.200(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.922(CFS) Depth.of flow = 0.299(Ft.), Average velocity = 2.203(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.637(Ft.) Flow velocity = 2.20(Ft/s) Travel time = 6.74 min. TC = 13.98 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.844 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.755(In/Hr) for a 10.0 year storm Subarea runoff = 1.260(CFS) for 0.850(AC.) Total runoff = 2.269(CFS) Total area = 1.320(Ac.) Street flow at end of street = 2.269(CFS) Half street flow at end of street = 2.269(CFS) Depth of flow = 0.313(Ft.), Average velocity = 2.286(Ft/s) Flow width (from curb towards crown)= 9.307(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 27.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.320(AC.) Runoff from this stream = 2.269(CFS) Time of concentration = 13.98 min. Rainfall intensity = 1.755(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.024 17.71 1.542 2 2.269 13.98 1.755 Largest stream flow has longer time of concentration Qp = 3.024 + sum of � Qb Ia/Ib Page 9 LINEC10.out � 2.269 * 0.878 = 1.993 Qp = 5.017 , Total of 2 streams to confluence: , Flow rates before confluence point: 3.024 2.269 Area of streams before confluence: 1.980 1.320 Results of confluence: Total flow rate = 5.017(CFS) Time of concentration = 17.709 min. Effective stream area after confluence = 3.300(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 406.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1232.000(Ft.) Downstream point/station elevation = 1229.500(Ft.) Pipe length = 10.18(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.017(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.017(CFS) Normal flow depth in pipe = 5.09(In.) Flow top width inside pipe = 8.92(In.) Critical depth could not be calculated. Pipe flow velocity = 19.48(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 17.72 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** CONFLUENCE OF MAIN STREAMS **** � The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3.300(AC.) Runoff from this stream = 5.017(CFS) Time of concentration = 17.72 min. Rainfall intensity = 1.541(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 124.621 20.11 1.438 2 8.528 17.37 1.558 3 5.017 17.72 1.541 Largest stream flow has longer time of concentration Qp = 124.621 + sum of Qb Ia/Ib 8.528 * 0.923 = 7.867 Qb Ia/Ib 5.017 * 0.933 = 4.680 Qp = 137.168 Total of 3 main streams to confluence: Flow rates before confluence point: 124.621 8.528 5.017 Area of streams before confluence: 107.610 5.470 3.300 Results of confluence: Total flow rate = 137.168(CFS) Time of concentration = 20.111 min. Effective stream area after confluence = 116.380(Ac.) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 408.000 Page 10 LINEC10.out • `*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1229.500(Ft.) Downstream,point/station elevation = 1221.830(Ft.) . Pipe length = 44.39(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 137.168(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 137.168(CFS) Normal flow depth in pipe = 24.30(In.) Flow top width inside pipe = 16.20(In.) Critical depth could not be calculated. Pipe flow velocity = 36.40(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 20.13 min. End of computations, total study area = 116.38 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.470 Area averaged RI index number = 55.1 � � Page 11 LINED10.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 File:LINED10.out ---------------------------------------------------------------- 850_0139 RORIPAUGH RANCH SOUTH LOOP ROAD LINE D 10-YR 9/7/06 swL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file • Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 500.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** US�I� INPuT � Rainfall intensity = 1.970(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.732 �A �O NODE ��� Decimal fraction soil group A= 0.000 /� Decimal fraction soil group B= 0.000 ��(?j.3� C-rS Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 �j� Pp'c ZO Q�t1�NR�' ��TK'�� Pervious area fraction = 0.800; Impervious fraction = 0.200 User specified values are as follows: TC = 11.34 min Rain intensity = 1.97(In/Hr) Total area = 11.73(A Tota1 runoff = 13.31( ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 502.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1255.910(Ft.) Downstream point/station elevation = 1240.330(Ft.) Pipe length = 964.94(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 13.311(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 13.311(CFS) Normal flow depth in pipe = 14.72(In.) Flow top width inside pipe = 13.90(In.) Critical Depth = 16.33(In.) Pipe flow velocity = 8.61(Ft/s) Travel time through pipe = 1.87 min. Time of concentration (TC) = 13.21 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 502.000 Page 1 LINED10.out **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 1 in normal stream number 1 , Stream flow area = 11.730(Ac.) , _ Runoff from this stream = 13.311(CFS) Time of concentration = 13.21 min. Rainfall intensity = 1.812(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 501.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** v�j'E� �N � Y T= Rainfall intensity = 1.681(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) nA � N o D � � Runoff Coefficient = 0.624 r�� � Decimal fraction soil group A= 0.000 /� Decimal fraction soil group B= 1.000 V( = 13,� 3 C�S Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 •� RI index for soil(AMC 2) = 56.00 �EFi Pa� R�z�o��� r`�T� Pervious area fraction = 0.800; Impervious fraction = 0.200 User specified values are as follows: TC = 15.14 m in. Rain intensity = 1.68(In/Hr) Total area = 13.65(A Total runoff = 13.73(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1242.690(Ft.) Downstream point/station elevation = 1240.330(Ft.) Pipe length = 30.81(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 13.727(CFS) Nearest computed pipe diameter = 15.00(In.) � Calculated individual pipe flow = 13.727(CFS) Normal flow depth in pipe = 9.86(In.) Flow top width inside pipe = 14.24(In.) Critical depth could not be calculated. Pipe flow velocity = 16.06(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.17 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 502.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 13.650(AC.) Runoff from this stream = 13.727(CFS) Time of concentration = 15.17 min. Rainfall intensity = 1.679(In/Hr) SLUnmary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 13.311 13.21 1.812 2 13.727 15.17 1.679 Largest stream flow has longer time of concentration Qp = 13.727 + sum of Qb Ia/Ib 13.311 * 0.927 = 12.334 Qp = 26.061 Total of 2 streams to confluence: Flow rates before confluence point: 13.311 13.727 Area of streams before confluence: • 11.730 13.650 Results of confluence: Page 2 LINEDlO.out • Total flow rate = 26.061(CFS) Time of concentration = 15.171 min. Effective stream area after confluence = 25.380(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1240.330(Ft.) Downstream point/station elevation = 1222.000(Ft.) Pipe length = 378.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 26.061(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 26.061(CFS) Normal flow depth in pipe = 13.52(In.) Flow top width inside pipe = 20.11(In.) Critical depth could not be calculated. Pipe flow velocity = 15.90(Ft/s) Travel time through pipe = 0.40 min. Time of concentration (TC) = 15.57 min. End of computations, total study area = 25.38 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 62.0 • • Page 3 AREASlO.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 _ Rational Hydrology Study Date: 04/25/06 File:AREA510.out RORIPAUGH RANCH ' LOOP ROAD AREA 5 10 YEAR, 1 HOUR EVENT APRIL 25, 2006 ********* Hydrology Stlldy Control Infozination ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 35.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 643.620(Ft.) Top (of initial area) elevation = 266.300(Ft.) Bottom (of initial area) elevation = 258.360(Ft.) Difference in elevation = 7.940(Ft.) Slope = 0.01234 s(percent)= 1.23 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.601 min. Rainfall intensity = 2.159(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.880 Decimal fraction,soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 4.087(CFS) Total initial stream area = 2.150(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 37.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 258.360(Ft.) End of street segment elevation = 242.750(Ft.) Length of street segment = 2348.610(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Page 1 AREAS10.out Street flow is on (1] side(s) of the street � Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 . Gutter width = 2.000(Ft.) . Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.244(CFS) Depth of flow = 0.442(Ft.), Average velocity = 2.391(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.764(Ft.) Flow velocity = 2.39(Ft/s) Travel time = 16.37 min. TC = 25.97 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.876 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.249(In/Hr) for a 10.0 year storm Subarea runoff = 2.484(CFS) for 2.270(Ac.) Total runoff = 6.571(CFS) Total area = 4.420(AC.) Street flow at end of street = 6.571(CFS) ' Half street flow at end of street = 6.571(CFS) Depth of flow = 0.448(Ft.), Average velocity = 2.421(Ft/s) Flow width (from curb towards crown)= 16.087(Ft.) End of computations, total study area = 4.42 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 72.1 � Page 2 AREA610.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/25/06 File:AREA610.out RORIPAUGH RANCH LOOP ROAD AREA 6 10 YEAR, 1 HOUR EVENT - APRIL 25, 2006 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 ----------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 549.530(Ft.) Top (of initial area) elevation = 260.750(Ft.) Bottom (of initial area) elevation = 258.360(Ft.) Difference in elevation = 2.390(Ft.) Slope = 0.00435 s(percent)= 0.43 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.103 min. Rainfall intensity = 1.993(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.879 Decimal fraction soil group A= 0.000 Decimal fraction soil group s= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.911(CFS) Total initial stream area = 0.520(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 43.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 258.360(Ft.) End of street segment elevation = 242.750(Ft.) Length of street segment = 2328.780(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) • � Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Page 1 AREA610.out • Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb,to property line (v/hz) = 0.020 . Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.760(CFS) Depth of flow = 0.352(Ft.), Average velocity = 1.975(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.274(Ft.) Flow velocity = 1.97(Ft/s) Travel time = 19.66 min. TC = 30.76 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.875 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.138(In/Hr) for a 10.0 year storm Subarea runoff = 2.100(CFS) for 2.110(Ac.) Total runoff = 3.011(CFS) Total area = 2.630(Ac.) Street flow at end of street = 3.011(CFS) Half street flow at end of street = 3.011(CFS) Depth of flow = 0.361(Ft.), Average velocity = 2.015(Ft/s) Flow width (from curb towards crown)= 11.694(Ft.) End of computations, total study area = 2.63 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 � Area averaged RI index number = 73.8 � Page 2 � 100-YEAR PROPOSED CONDITION . RATIONAL METHOD ANALYSIS � � area1100.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 04/25/06 File:AREAl100.out ----------------------------------------------------------------- RORIPAUGH RANCH LOOP ROAD AREA 1 100 YEAR, 1 HOUR EVENT APRIL 25, 2006 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file -------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 • +++++++++++++++++++++++++++++++++++++++++++++++++-F++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 3.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 629.330(Ft.) Top (of initial area) elevation = 280.000(Ft.) Bottom (of initial area) elevation = 259.430(Ft.) Difference in elevation = 20.570(Ft.) Slope = 0.03269 s(percent)= 3.27 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.831 min. Rainfall intensity = 3.678(In/Hr) for a 100.0 year stonn COMMERCIAL subarea type Runoff Coefficient = 0.861 Decimal fraction soil group A= 1.000 • Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.469(CFS) Total initial stream area = 0.780(AC.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 259.430(Ft.) End of street segment elevation = 219.500(Ft.) Length of street segment = 1974.160(Ft.) Height of curb above gutter flowline = 6.0(In.) . Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) • Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Page 1 area1100.out • Street flow is on [1] side(s) of the street Distance from curb to property line 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 � Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.253(CFS) Depth of flow = 0.379(Ft.), Average velocity = 3.651(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.593(Ft.) Flow velocity = 3.65(Ft/s) Travel time = 9.01 min. TC = 16.84 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.851 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.413(In/Hr) for a 100.0 year storm Subarea runoff = 4.911(CFS) for 2.390(Ac.) Total runoff = 7.380(CFS) Total area = 3.170(Ac.) Street flow at end of street = 7.380(CFS) Half street flow at end of street = 7.380(CFS) Depth of flow = 0.396(Ft.), Average velocity = 3.798(Ft/s) Flow width (from curb towards crown)= 13.478(Ft.) End of computations, total study area = 3.17 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 32.0 � • Page 2 LINEBl00.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/08/06 File:LINEB100.out 850_0139 RORIPAUGH RANCH NORTH LOOP ROAD LINE B 100-YR ' 9/7/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 , • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 300.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** �SER- 1NPuT � Rainfall intensity = 3.063(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) PA `� Nbp� �p6 Runoff Coefficient = 0.785 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 �:, �,�� � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 / RI index for soil(AMC 2) = 56.00 c�� Pr1 �rj ��(IONH�- H�'{+s(� Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 10.92 min. Rain intensity = 3.06(In/Hr) Total area = 24.04(Ac.) Total runoff = 48.69(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 302.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1253.160(Ft.) Downstream point/station elevation = 1226.300(Ft.) Pipe length = 1382.04(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 48.694(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 48.694(CFS) Normal flow depth in pipe = 21.28(In.) Flow top width inside pipe = 27.24(In.) Critical Depth = 27.40(In.) Pipe flow velocity = 13.08(Ft/s) Travel time through pipe = 1.76 min. Time of concentration (TC) = 12.68 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 302.000 Page 1 LINEB100.out S **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 24.040(AC.) Runoff from this stream = 48.694(CFS) Time of concentration = 12.68 min. Rainfall intensity = 2.822(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 301.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** � v s�R � N PuT � Rainfall intensity = 2.048(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) p�, �� n160E �0� Runoff Coefficient = 0.748 Decimal fraction soil group A= 0.000 _/�_ Decimal fraction soil group B= 1.000 Q=��•20 �`�' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 � RI index for soil (AMC 2) = 56. 00 �� P�4 �� F�TI6N/4L M�THat� Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 22.71 min. Rain intensity = 2.05(In/Hr) Total area = 21.41(AC.) Total runoff = 38.20(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1229.000(Ft.) Downstream point/station elevation = 1226.300(Ft.) Pipe length = 59.17(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 38.202(CFS) Nearest computed pipe diameter = 24.00(In.) � Calculated individual pipe flow = 38.202(CFS) Normal flow depth in pipe = 16.10(In.) Flow top width inside pipe = 22.55(In.) Critical depth could not be calculated. Pipe flow velocity = 17.05(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 22.77 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 302.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 21:410(Ac.) Runoff from this stream = 38.202(CFS) Time of concentration = 22.77 min. Rainfall intensity = 2.045(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 48.694 12.68 2.822 2 38.202 22.77 2.045 Largest stream flow has longer or shorter time of concentration Qp = 48.694 + sum of Qa Tb/Ta 38.202 * 0.557 = 21.271 Qp = 69.965 Total of 2 streams to confluence: F1ow rates before confluence point: 48.694 38.202 Area of streams before confluence: � 24.040 21.410 Results of confluence: Page 2 LINEB100.out � Total flow rate = 69.965(CFS) Time of concentration = 12.678 min. Effective stream area after confluence = 45.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 304.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1226.300(Ft.) Downstream point/station elevation = 1197.000(Ft.) Pipe length = 223.07(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 69.965(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 69.965(CFS) Normal flow depth in pipe = 17.06(In.) Flow top width inside pipe = 21.76(In.) Critical depth could not be calculated. Pipe flow velocity = 29.32(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 12.80 min. End of computations, total study area = 45.45 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Page 3 LINEC100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 Fi1e:LINEC100.out 850_0139 RORIPAUGH RANCH NORTH LOOP ROAD LINE C 100-YR 9/7/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van De11 and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 400.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** vS�r� t N p u r� Rainfall intensity = 2.430(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) P� �b �jbp� 'Z2� Runoff Coefficient = 0.764 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Q= �j2.• =j3 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 5�E PA l6 �E! ��T a RI index for soil(AMC 2) = 56.00 ������' � b Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 16.63 min Rain intensity = 2.43(In/Hr) Total area = 15.33(Ac.) Total runoff = 32.53(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 402.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1258.000(Ft.) Downstream point/station elevation = 1246.310(Ft.) Pipe length = 645.24(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 32.533(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 32.533(CFS) Normal flow depth in pipe = 17.95(In.) Flow top width inside pipe = 25.49(In.) Critical Depth = 23.52(In.) Pipe flow velocity = 11.60(Ft/s) Travel time through pipe = 0.93 min. Time of concentration (TC) = 17.56 min. • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 402.000 Page 1 LINEC100.out • **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 15.330(Ac.,) _ Runoff from this stream = 32.533(CFS) Time of concentration = 17.56 min. Rainfall intensity = 2.359(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 401.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** US&�- lu pvT = Rainfall intensity = 2.338(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) n Q Runoff Coefficient = 0.761 rA �-` N 6 P� t S� Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Q�� •� � Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 p p � Pervious area fraction = 0.500; Impervious fraction = 0.500 ��. P� �` MT�O��L ��TK°D User specified values are as follows: TC = 17.85 min. Rain intensity = 2.34(In/Hr) Total area = 49.47(Ac.) Total runoff = 100.40(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 401.000 to Point/Station 402.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1248.830(Ft.) Downstream point/station elevation = 1246.310(Ft.) Pipe length = 57.38(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 100.398(CFS) Nearest computed pipe diameter = 33.00(In.) � Calculated individual pipe flow = 100.398(CFS) Normal flow depth in pipe = 24.61(In.) Flow top width inside pipe = 28.74(In.) Critical depth could not be calculated. Pipe flow velocity = 21.13(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 17.90 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 402.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 49.470(AC.) Runoff from this stream = 100.398(CFS) Time of concentration = 17.90 min. Rainfall intensity = 2.334(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 32.533 17.56 2.359 2 100.398 17.90 2.334 Largest stream flow has longer time of concentration Qp = 100.398 + sum of Qb Ia/Ib 32.533 * 0.990 = 32.194 Qp = 132.592 Total of 2 streams to confluence: Flow rates before confluence point: ' 32.533 100.398 Area of streams before confluence: � 15.330 49.470 Results of confluence: Page 2 e LINEC100.out . Total flow rate = 132.592(CFS) Time of concentration = 17.895 min. Effective stream area after confluence = 64.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 404.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1246.310(Ft.) Downstream point/station elevation = 1234.030(Ft.) Pipe length = 1050.29(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 132.592(CFS) Nearest computed pipe diameter = 45.00(In.) Calculated individual pipe flow = 132.592(CFS) Normal flow depth in pipe = 37.50(In.) Flow top width inside pipe = 33.54(In.) Critical Depth = 40.96(In.) Pipe flow velocity = 13.49(Ft/s) Travel time through pipe = 1.30 min. Time of concentration (TC) = 19.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 404.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 64.800(Ac.) Runoff from this stream = 132.592(CFS) Time of concentration = 19.19 min. Rainfall intensity = 2.246(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 460.000 to Point/Station 403.000 � **** USER DEFINED FLOW INFORMATION AT A POINT "* ** VS�R ( N P UT � Rainfall intensity = 2.555(In/Hr) for a 100.0 year stozin SINGLE FAMILY (1/4 Acre Lot) �9e �Ca �O�E ({.6� Runoff Coefficient = 0.769 � r Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 � t`j�_g 7�' Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 � RI index for soil(AMC 2) = 56.00 c�� Pa lg IYiT��N{�L KE�}{�� Pervious area fraction = 0.500; Impervious fraction = 0.500 v User specified values are as follows: TC = 15.18 m in. Rain intensity = 2.56(In/Hr) Total area = 42.81(Ac.) Total runoff = 79.87(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 403.000 to Point/Station 404.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1235.320(Ft.) Downstream point/station elevation = 1234.030(Ft.) Pipe length = 40.10(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 79.866(CFS) Nearest computed pipe diameter = 33.00(In.) Calculated individual pipe flow = 79.866(CFS) Normal flow depth in pipe = 23.20(In.) Flow top width inside pipe = 30.15(In.) Critical depth could not be calculated. Pipe flow velocity = 17.90(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 15.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 404.000 � **** CONFLUENCE OF MINOR STREAMS **** Page 3 LINEC100.out • Along Main Stream number: 1 in normal stream number 2 Stream flow area = 42.810(Ac.) Runoff from this stream = 79.866(CFS) Time of concentration = 15.22 min. Rainfall intensity = 2.552(In/Hr) Summary of stream data: Stream Flow rate � TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 132.592 19.19 2.246 2 79.866 15.22 2.552 Largest stream flow has longer time of concentration Qp = 132.592 + sum of Qb Ia/Ib 79.866 * 0.880 = 70.294 4P = 202.886 Total of 2 streams to confluence: Flow rates before confluence point: 132.592 79.866 Area of streams before confluence: 64.800 42.810 Results of confluence: Total flow rate = 202.886(CFS) Time of concentration = 19.193 min. Effective stream area after confluence = 107.610(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 406.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1234.030(Ft.) Downstream point/station elevation = 1229.500(Ft.) � Pipe length = 41.14(Ft.) Manning�s N= 0.013 No. of pipes = 1 Required pipe flow 202.886(CFS) Nearest computed pipe diameter 36.00(In.) Calculated individual pipe flow = 202.886(CFS) Normal flow depth in pipe = 27.14(In.) Flow top width inside pipe = 31.01(In.) Critical depth could not be calculated. Pipe flow velocity = 35.51(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 19.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 107.610(AC.) Runoff from tl�is stream = 202.886(CFS) Time of concentration = 19.21 min. Rainfall intensity = 2.245(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1280.000(Ft.) Bottom (of initial area) elevation = 1254.000(Ft.) Difference in elevation = 26.000(Ft.) Slope = 0.02600 s(percent)= 2.60 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.866 min. • Rainfall intensity = 3.239(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Page 4 LINEC100.out O Runoff Coefficient = 0.889 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 . Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 4.493(CFS) Total initial stream area = 1.560(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1254.000(Ft.) End of street segment elevation = 1240.200(Ft.) Length of street segment = 1224.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.00OIFt.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 � Estimated mean flow rate at midpoint of street = 7.200(CFS) Depth of flow = 0.427(Ft.), Average velocity = 3.024(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.015(Ft.) � Flow velocity = 3.02(Ft/s) Travel time = 6.75 min. TC = 16.61 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.852 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.432(In/Hr) for a 100.0 year storm Subarea runoff = 3.893(CFS) for 1.880(Ac.) Total runoff = 8.386(CFS) Total area = 3.440(Ac.) Street flow at end of street = 8.386(CFS) Half street flow at end of street = 8.386(CFS) Depth of flow = 0.446(Ft.), Average velocity = 3.137(Ft/s) Flow width (from curb towards crown)= 15.957(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.440(AC.) Runoff from this stream = 8.386(CFS) Time of concentration = 16.61 min. Rainfall intensity = 2.432(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 19.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 546.520(Ft.) • Top (of initial area) elevation = 1260.750(Ft.) Bottom (of initial area) elevation = 1250.000(Ft.) Page 5 LINEC100.out � Difference in elevation = 10.750(Ft.) 51ope = 0.01967 s(percent)= 1.97 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.192 min. Rainfall intensity = 3.588(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.860 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.592(CFS) Total initial stream area = 0.840(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1250.000(Ft.) End of street segment elevation = 1240.200(Ft.) Length of street segment = 965.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1J side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 � Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.429(CFS) Depth of flow = 0.378(Ft.), Average velocity = 2.587(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.592(Ft.) Flow velocity = 2.59(Ft/s) Travel time = 6.22 min. TC = 14.41 min. Adding area flow to street COMMERCIAL subarea type xunoff Coefficient = 0.853 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.629(In/Hr) for a 100.0 year storm Subarea runoff = 2.670(CFS) for 1.190(Ac.) Tota1 runoff = 5.262(CFS) Total area = 2.030(Ac.) Street flow at end of street = 5.262(CFS) Half street flow at end of street = 5.262(CFS) Depth of flow = 0.397(Ft.), Average velocity = 2.695(Ft/s) Flow width (from curb towards crown)= 13.513(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.030(Ac.) Runoff from this stream = 5.262(CFS) Time of concentration = 14.41 min. Rainfall intensity = 2.629(In/Hr) Summary of stream data: � Stream Flow rate TC Rainfall Intensity Page 6 LINECl00.out � No. (CFS) (min) (In/Hr) _ 1 8.386 16.61 2.432 , 2 5.262 14.41 2.629 Largest stream flow has longer time of concentration Qp = 8.386 + sum of Qb Ia/Ib 5.262 * 0.925 = 4.867 Qp = 13.253 Total of 2 streams to confluence: Flow rates before confluence point: 8.386 5.262 Area of streams before confluence: 3.440 2.030 Results of confluence: Total flow rate = 13.253(CFS) Time of concentration = 16.613 min. Effective stream area after confluence = 5.470(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 406.000 � **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1234.750(Ft.) Downstream point/station elevation = 1229.500(Ft.) Pipe length = 34.73(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 13.253(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 13.253(CFS) Normal flow depth in pipe = 9.40(In.) Flow top width inside pipe = 9.89(In.) Critical depth could not be calculated. Pipe flow velocity = 20.08(Ft/s) � Travel time through pipe = 0.03 min. Time of concentration (TC) = 16.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.470(Ac.) Runoff from this stream = 13.253(CFS) Time of concentration = 16.64 min. Rainfall intensity = 2.429(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 25.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 982.540(Ft.) Top (of initial area) elevation = 269.060(Ft.) Bottom (of initial area) elevation = 253.510(Ft.) Difference in elevation = 15.550(Ft.) Slope = 0.01583 s(percent)= 1.58 TC = k(0.300)*[(length change)] Initial area time of concentration = 10.819 min. Rainfall intensity = 3.079(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.889 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 � Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.544(CFS) Page 7 LINEC100.out � Total initial stream area = 0.930(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 27.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 253.510(Ft.) End of street segment elevation = 240.200(Ft.) Length of street segment = 1034.850(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.981(CFS) Depth of flow = 0.356(Ft.), Average velocity = 2.761(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.467(Ft.) Flow velocity = 2.76(Ft/s) Travel time = 6.25 min. TC = 17.07 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.851 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 • Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.396(In/Hr) for a 100.0 year storm Subarea runoff = 2.142(CFS) for 1.050(AC.) Total runoff = 4.686(CFS) Total area = 1.980(Ac.) Street flow at end of street = 4.686(CFS) Half street flow at end of street = 4.686(CFS) Depth of flow = 0.372(Ft.), Average velocity = 2.869(Ft/s) Flow width (from curb towards crown)= 12.274(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 27.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 1.980(AC.) Runoff from this stream = 4.686(CFS) Time of concentration = 17.07 min. Rainfall intensity = 2.396(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 29.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 539.470(Ft.) Top (of initial area) elevation = 269.060(Ft.) Bottom (of initial area) elevation = 250.000(Ft.) Difference in elevation = 19.060(Ft.) Slope = 0.03533 s(percent)= 3.53 TC = k(0.300)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.249 min. Rainfall intensity = 3.837(In/Hr) for a 100.0 year storm COMMERCIAL subarea type • Runoff Coefficient = 0.862 Decimal fraction soil group A= 1.000 Page 8 LINEC100.out o Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= 0.000 - RI index for soil(AMC 2) = 32.00 , Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.554(CFS) Total initial stream area = 0.470(AC.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 27.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.000(Ft.) End of street segment elevation = 240.200(Ft.) Length of street segment = 890.200(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.960(CFS) Depth of flow = 0.336(Ft.), Average velocity = 2.428(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.451(Ft.) Flow velocity = 2.43(Ft/s) Travel time = 6.11 min. TC = 13.36 min. • Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.854 Decimal fraction soil group A= 1.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 32.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.741(In/Hr) for a 100.0 year storm Subarea runoff = 1.991(CFS) for 0.850(AC.) Total runoff = 3.545(CFS) Total area = 1.320(Ac.) Street flow at end of street = 3.545(CFS) Half street flow at end of street = 3.545(CFS) Depth of flow = 0.352(Ft.), Average velocity = 2.532(Ft/s) Flow width (from curb towards crown)= 11.284(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 27.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.320(AC.) Runoff from this stream = 3.545(CFS) Time of concentration = 13.36 min. Rainfall intensity = 2.741(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.686 17.07 2.396 2 3.545 13.36 2.741 Largest stream flow has longer time of concentration � QP = 4.686 + sum of Qb Ia/Ib Page 9 LINEC100.out 3.545 * 0.874 = 3.098 � Qp = 7.784 Total of 2 streams to confluence: Flow rates before confluence point: 4.686 3.545 Area of streams before confluence: 1.980 1.320 Results of confluence: Total flow rate = 7.784(CFS) Time of concentration = 17.065 min. Effective stream area after confluence = 3.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 406.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1232.000(Ft.) Downstream point/station elevation = 1229.500(Ft.) Pipe length = 10.18(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.784(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 7.784(CFS) Normal flow depth in pipe = 7.00(In.) Flow top width inside pipe = 7.49(In.) Critical depth could not be calculated.. Pipe flow velocity = 21.12(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 17.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 406.000 **** CONFLUENCE OF MAIN STREAMS **** • The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3.300(Ac.) Runoff from this stream = 7.784(CFS) Time of concentration = 17.07 min. Rainfall intensity = 2.395(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 202.886 19.21 2.245 2 13.253 16.64 2.429 3 7.784 17.07 2.395 Largest stream flow has longer time of concentration pp = 202.886 + sum of Qb Ia/Ib 13.253 * 0.924 = 12.246 Qb Ia/Ib 7.784 * 0.937 = 7.295 4P = 222.427 Total of 3 main streams to confluence: Flow rates before confluence point: 202.886 13.253 7.784 Area of streams before confluence: 107.610 5.470 3.300 Results of confluence: Total flow rate = 222.427(CFS) Time of concentration = 19.212 min. Effective stream area after confluence = 116.380(Ac.) • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 408.000 Page 10 LINEC100.out � **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1229.500(Ft.) Downstream point/station elevation,= 1221.830(Ft.) , Pipe length = 44.39(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 222.427(CFS) Nearest computed pipe diameter = 33.00(In.) Calculated individual pipe flow = 222.427(CFS) Normal flow depth in pipe = 27.42(In.) Flow top width inside pipe = 24.74(In.) Critical depth could not be calculated. Pipe flow velocity = 42.17(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 19.23 min. End of computations, total study area = 116.38 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.470 Area averaged RI index number = 55.1 � . • Page 11 LINED100.out � Riverside County Rational Hydrology Program � CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/07/06 File:LINED100.out ------- — ---------------- — ----------------------------------------- 850_0139 RORIPAUGH RANCH SOUTH LOOP ROAD LINE D 100-YR 9/7/06 SWL -------------------------------------------------------------- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 500.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** �SE�. �NPvr : Rainfall intensity = 3.072(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.783 p� � �bd� �1�� Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 � _/� Decimal fraction soil group C= 1.000 "� '� Z�' �� �'tS� Decimal fraction soil group D= 0.000 xz index for So�ic�c 2) = 69.00 s�� PA2o R�4TlaNLlc. ��rtHaC Pervious area fraction = 0.800; Impervious fraction = 0.200 User specified values are as follows: TC = 10.86 min Rain intensity = 3.07(In/Hr) Total area = 11.73(AC. Total runoff = 22.14(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 502.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1255.910(Ft.) Downstream point/station elevation = 1240.330(Ft.) Pipe length = 964.94(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 22.143(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 22.143(CFS) Normal flow depth in pipe = 15.80(In.) Flow top width inside pipe = 22.77(In.) Critical Depth = 20.16(In.) Pipe flow velocity = 10.09(Ft/s) Travel time through pipe = 1.59 min. Time of concentration (TC) = 12.46 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 502.000 Page 1 LINED100.out **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 11.730(Ac.) _ Runoff from this stream = 22.143(CFS) Time of concentration = 12.46 min. Rainfall intensity = 2.849(In/xr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 501.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** US'�f� ( N PuT � Rainfall intensity = 2.582(In/Hr) for a 100.0 year sto� SINGLE FAMILY (1 Acre Lot) n� �p ND �� � Za Runoff Coefficient = 0.692 �� Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Z3 �,�. C� Decimal fraction soil group C= 0.000 Q� Decimal fraction soil group D= 0.000 RI index for soil (AMC 2) = 56.00 S� p�, ��A'[(ON/S �•(�TK Pervious area fraction = 0.800; Impervious fraction = 0.200 User specified values are as follows: TC = 14.90 mi n. Rain intensity = 2.58(In/Hr) Total area = 13.65(AC. Total runoff = 23.44(C ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 501.000 to Point/Station 502.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1242.690(Ft.) Downstream point/station elevation = 1240.330(Ft.) Pipe length = 30.81(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 23.440(CFS) Nearest computed pipe diameter = 18.00(In.) � Calculated individual pipe flow = 23.440(CFS) Normal flow depth in pipe = 12.25(In.) Flow top width inside pipe = 16.79(In.) Critical depth could not be calculated. Pipe flow velocity = 18.30(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 14.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 502.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 13.650(Ac.) Runoff from this stream = 23.440(CFS) Time of concentration = 14.92 min. Rainfall intensity = 2.580(In/xr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 22.143 12.46 2.849 2 23.440 14.92 2.580 Largest stream flow has longer time of concentration Qp = 23.440 + sum of Qb Ia/Ib 22.143 * 0.905 = 20.048 Qp = 43.488 Total of 2 streams to confluence: Flow rates before confluence point: 22.143 23.440 Area of streams before confluence: 11.730 13.650 Results of confluence: Page 2 LINEDl00.out Total flow rate = 43.488(CFS) Time of concentration = 14.923 min. Effective stream area after confluence = 25.380(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 502.000 to Point/Station 504.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1240.330(Ft.) Downstream point/station elevation = 1222.000(Ft.) Pipe length = 378.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 43.488(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 43.488(CFS) Normal flow depth in pipe = 17.37(In.) Flow top width inside pipe = 21.47(In.) Critical depth could not be calculated. Pipe flow velocity = 17.87(Ft/s) Travel time through pipe = 0.35 min. Time of concentration (TC) = 15.28 min. End of computations, total study area = 25.38 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 62.0 Page 3 area5100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 _ Rational Hydrology Study Date: 04/25/06 File:AREA5100.out RORIPAUGH RANCH LOOP ROAD AREA 5 100 YEAR, 1 HOUR EVENT APRIL 25, 2006 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 ---- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) S1ope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 35.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 643.620(Ft.) Top (of initial area) elevation = 266.300(Ft.) Bottom (of initial area) elevation = 258.360(Ft.) Difference in elevation = 7.940(Ft.) Slope = 0.01234 s(percent)= 1.23 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.601 min. Rainfall intensity = 3.288(In/Hr) for a 100.0 year storm CONIMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 6.263(CFS) Total initial stream area = 2.150(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 37.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 258.360(Ft.) End of street segment elevation = 242.750(Ft.) Length of street segment = 2348.610(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) S1ope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) = 0.020 Page 1 area5100.out Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) - Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.570(CFS) Depth of flow = 0.500(Ft.), Average velocity = 2.653(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.658(Ft.) Flow velocity = 2.65(Ft/s) Travel time = 14.76 min. TC = 24.36 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.883 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.970(In/Hr) for a 100.0 year storm Subarea runoff = 3.951(CFS) for 2.270(AC.) Total runoff = 10.214(CFS) Total area = 4.420(Ac.) Street flow at end of street = 10.214(CFS) Half street flow at end of street = 10.214(CFS) Depth of flow = 0.512(Ft.), Average velocity = 2.656(Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.61(Ft.) Flow width (from curb towards crown)= 19.276(Ft.) End of computations, total study area = 4.42 (Ac.) The following figures may be used for a unit hydrograph study of the same area. � Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 72.1 Page 2 area6100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/25/06 File:AREA6100.out RORIPAUGH RANCH LOOP ROAD AREA 6 100 YEAR, 1 HOUR EVENT APRIL 25, 2006 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------- — -------------- ---- - ------------------------- ------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 549.530(Ft.) Top (of initial area) elevation = 260.750(Ft.) Bottom (of initial area) elevation = 258.360(Ft.) Difference in elevation = 2.390(Ft.) Slope = 0.00435 s(percent)= 0.43 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.103 min. Rainfall intensity = 3.035(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.885 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 1.397(CFS) Total initial stream area = 0.520(AC.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 43.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 258.360(Ft.) End of street segment elevation = 242.750(Ft.) Length of street segment = 2328.780(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000(Ft.) Distance from crown to crossfall grade break = 18.000(Ft.) � Slope from gutter to grade break (v/hz) = 0.083 Slope from grade break to crown (v/hz) 0.020 Page 1 area6100.out Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.231(CFS) Depth of flow = 0.396(Ft.), Average velocity = 2.184(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.455(Ft.) Flow velocity = 2.18(Ft/s) Travel time = 17.77 min. TC = 28.87 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.794(In/Hr) for a 100.0 year storm Subarea runoff = 3.340(CFS) for 2.110(AC.) Total runoff = 4.737(CFS) Total area = 2.630(Ac.) Street flow at end of street = 4.737(CFS) Half street flow at end of street = 4.737(CFS) Depth of flow = 0.408(Ft.), Average velocity = 2.244(Ft/s) Flow width (from curb towards crown)= 14.086(Ft.) End of computations, total study area = 2.63 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 73.8 Page 2 PA 10 � � . � . I i I i , PROJECT SITE � � � �s i 9 � ► �' I HOT SPRINGS RpAp � � �+ � � . . _ - � 15 �, ,:. a �� � � , N �OVS I 8 � � PFIMAAY A � � cw�i�os � o I . J'' . AC�es �/ . . � �� I / � � qTY OF TEIu�CIJLA � � W I �MY �� . � A� Q wf�'� q .r, �7 � o � � � _N_ i � m � I I R � � . i � f pitN�` I . � o � I ��° �� � �I � . I I � � I I � I I � VlC�1'i'Y MAP i � N.T.S. � THOMAS BROTHERS MAP REFERENCE � RIVERSIDE COUNTY 2001 EDITION � PAGE 929, E-7 I I RORIPAUGH RANCH DATE I VAN DELLANDASSO�IP,TES, iNC. PA - 10 01/05 � � Enginoerg Planncrs SUrvcyors ���o, �.,�.��o�� qa�0, I�rins, CA. 8261f TRACT NO. 30766 I i:�9�B) �7�-1t00 F:(B�B) 1:5-59BV FIGURE Intc�nel Sile: rr� v�noci�CE.com � � VICINITY MAP O� I ` Xi/PftUJECTS/850_OI1G/ENC/IA(SC/VICINITY AIAP.UGN � -°• - .___.. � Riverside County Rat'_onal Hydrology Program CIVILC�DD/CIVILDESIGV Enqineering Software,(c; 1989 - 2001 Version 6.� Rational Hld_oioqy Study Cate: 0�/ld/Oo Fi1e:307'o6A.out ------------------------------------------------------------------------ TRACT NO. 30760' DEVELOPED CONDITZCN H`fDROLOGY STUDY 10 YEAR 1 HOUR STCRM SYSTEM A, SOUTH SIDE Ce STREET A ------------------------------------------------------------------------ ���`�" Hydrolog SL'1C1'y' Control I[l° ' English (in-1b) Units used in inou� data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & water Conservation District 1978 hydroloqy manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) . For the ( Murrieta,Tmc,Rnch Callorco ] area used. . 10 year storm 10 minute intensity =. 2.360(In/Hr) � 1fl year storm 60 minute intensity =� 0.880(In/Hr) � ' 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 haur intensity = 0.880(In/Hr) . . Slope of intensity duration curve = 0.5500 � . • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 1:000 to Point/Station 2.000 *'** INITIAL AREA EVALUATION **** Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 369.000(Ft.1 Bottom (of initial area) elevation = 365.000(Et.) Difference in elevation = 4.000(Ft.) Slope = 0.01818 s(percent)= 1.82 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.518 min. Rainfall intensity = 2.758(In/fir) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.776 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.284(CFS) Total initial stream area = 0.600(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 ";t STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 365.000(Ft.) End of street segment elevation = 364.800(Ft.) � Lenqth of street segment = 90.000(Ft.� Heiqht of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.078 � Slope from grade �reati *_o crown (v/hz) = 0.020 Street flow is or. [1) side(s; o` tne street Distance from curb to prcper�y line 5.500(F*_.) Slope from curb =o property line (v/h�) = 0.020 Gutter width = 1.500(c^t.) Gutter hike from fiowline = 2.000(:n.) Manninq's N in gutter = 0.0150 Manning's N f-om qutte- to grade br2ak = 0.0150 Manninq's N from grade break to cr�wn = 0.0150 Estimated mean flow rate at midpoint o� street = 1.712(CFS) Depth of flow = 0.372(F:.), Average velocity = 1.151(Ft/s) Streetflow hydraulics at midpoint oz street travel: Halfstreet flow width = 11.7n8(Pt.) Flow velocity = 1.15(Et/s) Travel time = 1.30 min. TC = 8.82 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.768 Decimal fraction soil qroup A= 0.000 Decimal fraction soil gr,oup B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil qroup D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.526(In/Hr) fo= a 10.0 year storm Subarea runoff = 0.776(CFS) for 0.400(Ac.) Total runoff = 2.060(CFS) Total area = 1.000(AC.) Street flow at end of street = 2.060(CFS) ' • ' Ha1f street flow at end of street = 2.060(CFS) Depth of flow = 0.390(Ft.), Average velocity = 1.203(Ft/s) Flow width (from curb towards crown)= 12.687(Ft.) +++++++++++++±++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 ***' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION '**' . Top of street segment elevation = 369.800(Ft.) End of street segment elevation = 362.900(Ft.) ' • Length of street segment = 150.000(Ft.) Height of curb above gutter flowline = 6.0(In.) . Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Pt.) ' Slope from gutter to grade break (v/hz) = 0.078 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.843(CFS) Depth of flow = 0.339(Ft.), Average velocity = 2.523(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.122(Ft.) Flow velocity = 2.52(Ft/s) Travel time = 0.99 min. TC = 9.81 min. Adding area flow to street SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.763 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil qroup D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.382(In/Hr) for a 10.0 year storm Subarea runoff = 1.381(CFS) for 0.760(Ac.) Tota1 runoff = 3.441(CFS) Tota1 area = 1.760(Ac.) Street flow at end of street = 3.441(CFS) Half street flow at end of street = 3.441(CFS) Depth of flow = 0.356(Ft.), Average velocity = 2.638(Ft/s) Flow width (from curb towards crown)= 10.962(Ft.) t Process from Point/Station 4.000 to Point/Station 5.000 "*' STREET FLOW TL�VEL :IME + S'JBA�E� FLOW ADDIT_TODI *"` Top of street seq�ent eie��aticn = 302.900(Ft.) End of street seqment elevation = 35n.500(ct.) Length of stree*_ seqmen[ = 355.000(Et.) Heiqht of curb above gu*_*_er flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to cross�all g-ade break = 10.500(Et.) Slope from gutter to grade break (v/h>_) = 0.079 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manninq's N in qutter = 0.0150 Manninq's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.233(CFS) Depth of flow = 0.359(Ft.), Average velocity = 3.171(Ft/s) Streetflow hydraulics at midpoint of street travel: , Halfstreet flow width = 11.102(Ft.) . Flow velocity = 3.17(Ft/s) . Travel time = 1.87 min. TC = 11.68 min. � Addinq area flow to street ' ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.753 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= O.OQO . RZ index for soil(AMC 2) = 56.00 . Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 2.165(In/Hr) for a 10.0 year storm Subarea runoff = 1.321(CFS) for 0.810(Ac.) Total� runoff = 4.762(CFS) Total area = 2.570(Ac.) Street flow at end of street = 4.762(CFS) Half street flow at end of street = 4.762(CFS) � Depth of flow = 0.370(Ft.), Average velocity = 3.261(Ft/s) Flow width (from curb towards crown)= 11.653(Ft.) End of computations, total study area = 2.57 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � , Riverside County Rational Hydrology P-cgram CIVIiCADD/C?VILDESIGN E;.qineering So°t�are,(c) 1999 - 2001 Version E.4 Rational Hydrolog1 Study Date: 04/14/Ob Fi1e:307o'n"a2.out ------------------------------------------------------------------------ TRACT N0. 30760 DEVELOP°D CONDiTiON H`!DROLOGY STUDY 100 YEAR 1 HOU� STC&^d SYSTEM A, SOUTY SIDE OF STR��T A ------------------------------------------------------------------------ " ���'*'� Hydrolog Study Control IR formation **'��`�*'�• English (in-lb) Units used in input daca file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District . 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) • For the ( Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity =,2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) � ' 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: - l.hour intensity = 1.300(In/Hr) Slope of intensity duration curve =�0.5500 � . • . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 ••" INITIAL AREA EVALUATION **** ' Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 369.000(Ft.) Bottom (of initial area) elevation.= 365.000(Ft.) Difference in elevation = 4.000(Ft.) Slope = 0.01818 s(percent)= 1.82 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.518 min. Rainfall intensity = 9.074(In/Ffr) for a 100.0 year storm SZNGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 5"0.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.975(CE'S) Total initial stream area = 0.600(Ac.) Pervious area fraction = 0.500 +++++++++++++++++++++++++++++++++�+++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **'* STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 3'05.000(E't.) End of street segment elevation = 364.800(Ft.) Length of street segment = 90.000(Ft.) � Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.078 Slope from qrade break *_o crown (v/nz) = 0.020 � Street flow is on (I] side(s) of tne street Distance from curb to p=oper*_y line 5.500;F*_.) Slope from curb to property line (v/hz) = 0.0�� Gutter width = 1.500(F_.i Gutter hike f*om �1owline = Z.000(In.) Manning's N in qucter = 0.0150 Manning's � from qutter to grade break = 0.0150 Manning's N from qrade break to cro�n = 0.0150 Estimated mean F1o� rate at midpoint of street = 2.634(CFS) Depth of flow = 0.�17(c�.), Average ve'_ocity = 1.277(Ft/s) Streetflow hydraulics at midpoint oc street travel: Halfstreet flow width = 14.001(Et.) F1ow velocity = 1.28(Ft/s) Travel time = 1.17 min. TC = 8.69 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.802 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.7o2(In/Hr) for a 100.0 year storm Subarea runoff = 1.207(CFS) for 0.400(Ac.) Total runoff = 3.182(CES) Total area = 1.000(Ac.) Street flow a� end of sEreet = 3.182(CFS) � � Half street flow at end of street = 3.182(CFS) Depth of flow = 0.439(Et.), Average velocity = 1.337(Ft/s) Flow width (from curb towards crown)= 15.092(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++t++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 "** STREET FLOW TRAVEL TIME + SUBAREA FLO.W ADDITION **'* Top of street segment elevation = 364.B00{Ft.) End of street segment elevation = 362.900(Ft.) Length of street segment = 150.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) � Distance from crown to crossfall grade break = 16.500(Ft.) � Slope from gutter to grade break (v/hz) = 0.078 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.391(CFS) Depth of flow = 0.379(Ft.), Average velocity = 2.796(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.11o(Ft.) Flow velocity = 2.80(Ft/s) Travel time = 0.89 min. TC = 9.59 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.798 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.565(In/Hr) for a 100.0 year storm Subarea runoff = 2.161(CFS) for 0.760(Ac.) Total runoff = 5.393(CeS) Tota1 area = 1.760(Ac.) Street flow at end of street = 5.343(CFS) • Ha1f street flow at end of street = 5.343(CES) Depth of flow = 0.399(Ft.), Average velocity = 2.931(Ft/s) Flow width (from curb towards crown)= 13.117(Ft.) � +t++++++++++++++++}+ttt+++t++rYl+t++t+++T+++++T'r++Y++T++++++�++++t+tt+ Process from Point/Station �.000 to Point/Stat_on 5.000 ***' STREGT FLOW TRAVEL TIME + SUBARB� FLOW ADDITION *`** Top of street segment elevation = 302.900(Ft.) End o£ street segment elevation = 350.500(Ft.) Length of street segment = 355.000(Ft.) Heiqht of curb above gutter flowline = 'o.0(In.) Width of half street (curb to crown; = 18.000(F�.) Distance from crown to crossfall grade break = 1n.500(e`.) Slope from gutter to grade break (v/hz) = 0.078 Slope from grade break to crcwn (v/h�) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in guttez = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.573(CFS) Depth of flow = 0.402(Ft.), Average velocity = 3.522(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.280(Ft.) . Flow velocity = 3.52(Ft/s) Travel time = 1.68 min. TC = 11.27 min. Addinq area,fLow to street � � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.791 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 - Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 3.262(In/Hr) for a 100.0 year storm Subarea runoff = 2.089(CFS) for O.B10(AC.) Total'runoff = 7.932(CFS) Total area = 2.570(Ac.) Street flow at end of street = 7.932(CFS) Ha1f street flow at end of street = 7.432(CFS) Depth of flow = 0.416(Ft.), Average velocity = 3.628(Ft/s) F1ow width (from curb towards crown)= 13.949(Ft.) ' End of computations, total study area = 2.57 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap} = 0.500 Area averaged RI index number = 56.0 � � Riverside County Rational Hydrology ?rog*am CIVILCADD/CIVILDESI�N Engineerinq Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/14/Oo File:30766A10.out ------------------------------------------------------------------------ TRACT NO. 30706 DEVELOPED CGNDITION HYDROLOGY SiUDY 10 YEAR 1 HOUR STORM TRIBU?AR't A10, TERRACE DRAiN INTO STORM ORAIN ------------------------------------------------------------------------ �*** " Hydrology Study Control Infor:nation *"**`**'** English (in-1b) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County F1ood Control & Water Conservation District 1978 hydrology manual Stotm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNOrco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) � 10•year storm 60 minute intensity = 0.880(In/Hr) � 100 year storm 10 minute intensity = 3.480(In%Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: � 1 hour intensity = 0,880(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 12.000 to Point/Station 13.000 ***" INITIAL AREA EVALUATION **'* Initial area flow distance = 295.000(Et.) Top (of initial area) elevation = 369.000(Ft.) Bottom (of initial area) elevation = 335.000(Ft.) Difference in elevation = 39.000(Ft.) Slope = 0.1387B s(percent)= 13.68 TC = k(0.390)*[(length"3)/(elevation change)]^0.2 Initial area time of concentration = 5.227 min. Rainfall intensity = 3.368(In/Ftr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.793 Decimal fraction soil group A= 0.000 Decimal fraction soil qroup B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.641(CFS) Total initial stream area = 0.240(AC.) Pervious area fraction = 0.500 End of computations, total study area = 0.24 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Riverside County Rational Hydrology Program CZVILCADD/CIVILD�SIGN Enqiaeerinq Sof*_ware,(c) 1989 - 2001 Version 6.4 Rational Hydrology Stud1 Date: 04/14/Oo' cile:3076oA102.out ------------------------------------------------------------------------ TRACT N0. 30760 DEVELOPED CONDITION HYDROLOG': STUDY 100 YEAR 1 HOUR STORM TRIBUTARY A10, TERRaCc DRIIN INTO STCRM DRAIN ------------------------------------------------------------------------ ****'*'*• Hydrology Study Control Information "***i*t�** English (in-lb) Units used in input data °ile ------------------------------------------------------------------------ Van De11 and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on , Riverside County Flood Control & Water Conservation District . 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ]. area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10•year storm 60 minute intensity = 0.880(In/Hr) . � 100 year storm 10 minute intensity = 3.480(InlHr) 100 year storm 60 minute intensity = 1.300(in/Hr) Storm event year = 100.0 Calculated rainfall intensity data: . . l.hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 � • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.00'0 "*t' INITIAL AREA EVALUATION *"' Initial area flow distance = 245.000(Ft.) Top (of initial area) elevation = 369.000(Ft.) Bottom (of initial area) elevation = 335.000(Ft.) Difference in elevation = 39.000(Ft.) Slope = 0.13878 s(percent)= 13.88 TC = k(0.390)'[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.227 min. Rainfall intensity = 4.976(In/fir) for a 100.0 year storm SZNGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.822 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.981(CFS) Total initial stream area = 0.240(AC.) Pervious area fraction = 0.500 End of computations, total study area = 0.24 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Riverside County Rational Hydrology 2rogram CIVILCADD/CIVILDESIGN Engineering Sottware,(c).1989 - 2001 Vers�on "0.4 Rational Hydrology Study Date: 04/1�/06 File:307ooB2.out ------------------------------------------------------------------------ TRACT N0. 30760' DEVELOPED CONDITI�7N HYDROLOGY STUDY 100 YEAR 1 HOUR STOEL�I SYSTEM B, NORTH SIDE �F STREET A ------------------------------------------------------------------------ ** "`•`*' Hydrology Study Control Iniormation *`*t�*�;«� English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van De11 and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on • Riverside County F1ood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) £or the � Murrieta,Tmc,Rnch Calloz.co ] area used. . 10 year storm 10 minute intensity = 2.360(In/Hr) l0�year storm 60 minute intensity = 0.880(In/Hr) � 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 • Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) , Slope of intensity duraEion curve = 0.5500 � . � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 � **'* INITIAL AREA EVALUATION **** Initial area flow distance = 310.000(Ft.) Top (of initial area) elevation = 376.000(Ft.) Bottom (of initial area) elevation = 364.B00(Ft.) Difference in elevation = 11.200(Ft.) Slope = 0.03613 s(percent)= 3.61 TC = k(0.390)'((length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.517 min. Rainfall intensity = 4.075(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil qroup A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.897(CFS) Total initial stream area = O.BBO(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 ***` STREET FLOW TRAVEL TIi�IE + SUBAREA FLOW ADDITION '*** Top of street seqment elevation = 364.800(Ft.) End of street seqment elevation = 362.900(Ft.) Length of street segment = 150.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(E't.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.076 Slope from grade break to crown (v/hz) = 0.020 • Street flow is on (1] side(s) of the street Distance from curb to property line 5.500(ct.) S1ope from curb to prooer*_y line (v/h�) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from fTowline = 2.000(In.) Manning's N in qutter = O.Q150 Manning's DI f=cm gutter to qrade brea� = 0.0150 Manninq's N f_om grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.247(CFS1 Depth of flow = 0.37o"(et.), Average velocity = 2.779(Ft/s) Streetflow hydraulics ac midpoint of street travel: Halfstreet flow width = 11.953(Ft.) F1ow velocity = 2.77(Ft/s) � Travel time = 0.90 min. TC = 8.42 min. Adding area flow to street SLNGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.803 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.829(In/Hr) for a 100.0 year storm Subarea runoff = 2.522(CFS) for 0.820(Ac.) Tofal runoff = 5.419(CFS) Total area = 1.700(Ac.) 8treet flow at end of street = 5.419(CFS) � ' ' Half street flow at end of street = 5.419(CFS) Depth of flow = 0.401(Ft.), Averaqe velocity = 2.941(Ft/s) Flow width (from curb towards crown)= 13.192(Ft.) ++++±+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 � '*"* STREET FLOW TRAVEL TIME + SUBAREA FLOW.ADDITION **** � , Top of street segment elevation = 362.900(Ft.) End of street segment elevation = 356.500(Ft.) Length of street segment = 355.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crownJ = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) � ' Slope from gutter to grade break (v/hz) = 0.078 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade brear = 0.0150 Manninq's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.658(CFS) Depth of flow = 0.422(Ft.), Average velocity = 3.678(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 19.262(Ft.) Flow velocity = 3.68(Ft/s) Travel time = 1.61 min. TC = 10.03 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.478(In/Hr) for a 100.0 year storm Subarea runoff = 4.234(CFS) for 1.530(Ac.) Total runoff = 9.654(CFS) Tota1 area = 3.230(Ac.) Street flow at end of street = 9.654(CFS) � Half street flow at end of street = 9.654(CFS) Depth of flow = 0.446(Ft.), Average velocity = 3.866(Ft/s) Flow width (from curb towards crown)= 15.473(Ft.) End of computations, total study area = 3.23 (Ac.) The following fiqures may � be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � . . . � Riverside County Rational Hydroiogy Program CIVILCADD/CIVILDESIGN Eagineering Soc�wa:e,(c) 1989 - 2001 Version 6.4 Rational Hyd�ology Study Date: 04/l4/06 eile:307663.out ------------------------------------------------------------------------ TRACT NO. 307'00 DEVELOPED CONDITION HYDRCLOGY SPJDY 10 YEAR 1 HOUR STORM SYSTEM B, NORTH SIDE OE STR�ET A ------------------------------------------------------------------------ *'*'"'*`" Hydrology Study Control Information *�x���•*�t Enqlish (in-lb) Units used in input data file ------------------------------------------------------------------------ Van De11 and Associatzs, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydroloqy manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (P1ate D-4.I) For the ( Murrieta,Tmc,Rnch Callorco ] area used. . 10 year storm 10 minute intensity = 2.360(In/Hr) 10•year storm 60 minute intensity = 0.880(In/Hr) � 100 year storm 10 minute intensity = 3.480(In/Hr) � 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: � 1 hour intensity = O.B80(In/Hr) Slope of intensity duration curve = 0.5500 � � . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ �Process from Point/Station 6.000 to Point/Station 7.000 "** INITZAL AREA EVALUATION *'** Initial area flow distance = 310.000(Ft.) Top (of initial area) elevation = 376.000(Ft.) Bottom (of initial area) elevation = 369.800(Ft.) Difference in elevation = 11.200(Ft.) Slope = 0.03613 s(percent)= 3.61 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.517 min. Rainfall intensity = 2.756(In/f(r} for a 10.0 year storm SINGLE FAMZLY (1/4 Acre Lot) Runoff Coefficient = 0.776 Decimal fraction soil group A= 0.000 Decimal fraction soil group e= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.884(CFS) Tota1 initial stream area = 0.880(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** STREET FLOW TAAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 304.800(Ft.) End of street segment elevation = 3"02.900(Ft.) � Lenqth of street segment = 150.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.078 Slope from grade break to crown (v/hz) = 0.020 Street flow is on ['_] side(s) of tne street �. Distance from curb to property line = 5.500(F*_.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Et.) Gutter hike f�om flowline = 2.000(In.) Manning's N in gutter = 0.0150_ Manning's N from qutter to grade break = 0.0150 Manning's N from grade brzak to crown = 0.0150 Estimated mear, flow rate a= midpoint of street = 2.762iCFS) Depth of flow = 0.337(Et.), Average velocity = 2.SOo'(Et/s) Streetflow hydraulics at midpoint of stree*_ travel: Halfstreet flow width = 9.998(Ft.) Flow velocity = 2.51(Ft/s) Travel time = 1.00 min. TC = 8.51 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.770 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Peryious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.576(In/Hr) for a 10.0 year storm Subarea zunoff = 1.62o(CFS) for 0.820(AC.) Total runoff = 3.510(CFS) Total area = 1.700(Ac.) Street flow at end of street = 3.510(CPS) � Half street flow at end of street = 3.510(CFS) Depth of flow = 0.358(Ft.), Average velocity = 2.651(Ft/s) F1ow width (from curb towards crown)= 11.052(Et.) ++++++++++++++++++++++++±+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 • *�** STREET FLOW TRAVEL TIME + SUBAREA FLOW.ADDITION **** . � Top of street segment elevation = 362.900(Et.) End of street segment elevation = 356.500(Ft.) Length of street segment = 355.000(Et.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) S1ope from gutter to grade break (v/hz) = 0.078 Slope from 'grade break to crown (v/ht) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(Zn.) Manning's N in gutter = 0.0150 Manning's N from gutter to yrade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.089(CFS) Depth of flow = 0.376(Ft.), Average velocity = 3.313(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.979(Ft.) Flow velocity = 3.31(Ft/s) Travel time = 1.79 min. TC = 10.30 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.760 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.319(In/Hr) for a 10.0 year storm Subarea runoff = 2.697(CFS) for 1.530(Ac.) Total runoff = 6.207(CFS) Total area = 3.230(Ac.) Street flow at end of street = 6.207(CFS) � Half street flow at end of street = 6.207(CFS) Depth of flow = 0.396(Ft.), Average velocity = 3.974(Ft/s) Flow width (from curb towards crown)= 12.977(Ft.) End of computations, total study area = 3.23 (Ac.) The followinq figures may • be used for a unit hydroqraph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaqed RI index number = 56.0 � . . • � Riverside Ccun�y Rational Hydroloqy Proqram CIVILCADD/CIVILDESIGN Enqir.eering Software,(c) 1989 - 2001 �lersion 6.� Rational Hydroloqy Study Date: 04/14/Oo c'i1e:3076oC1.out ------------------------------------------------------------------------ TRACT N0. 3076n" DEVELOPED CONDITION HYDROLOGY STUDY 10 YEAR 1 HOUR STCRM TRI6UTARY C1, SHEET FLOW I�TO MURRZETA HOT SPRINGS ROAD ------------------------------------------------------------------------ , ��'��`*��* Hydroloqy SC1C{1J CORtT01 In�orma=ion t **'*'r*** English (in-1b) Units used in ir.put data file ------------------------------------------------------------------------ Van �ell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Proqram based on Riverside County Flood Control &-Water Conservation District 1978 hydrology manual � Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) • For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr> ' , 10 year storm 60 minute intensity = 0.880(In/Hr) � � � 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: . 1 hour intensity = 0.8B0(In/Hr) Slope of intensity duration curve = 0.5500 � . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.00Q ***' INIT'IAL AREA EVALUATION * " ' ' Initial area flow distance = 80.000(Ft.) Top (of initial area) elevation = 366.000(Ft.) Bottom (of initial area) elevation = 335.000(Ft.) Difference in elevation = 31.000(Ft.) Slope = 0.38750 s(percent)= 38.75 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentr.ation is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.452(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.795 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.878(CFS) Total initial stream area = 0.320(Ac.) Pervious area fraction = 0.500 End of computations, total study area = 0.32 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Riverside County Rational Hydrology ?rogram CIVILC�DD/CIVILDESIGN Engineerinq Software,(c) 1989 - 2001 Version '0.4 Rational H�idrology Study Date: 04/1�;06 Fi1e:307o6C2.out ------------------------------------------------------------------------ TRACT N0. 3070"0 DEVELOPED CGNDITION HYDROLOGY STUDY 10 YEAR 1 HOUR STCRM TRIBUTARY CZ, SHEET FLOW INTO MURRI�TA HOT S?RIDIGS ROAD ----------------------------------------------------------------------- "*'**'*` H11dLOlOCJ.! Study Control I:�formation *�'*`�rxr.r English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual � Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (P1ate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ) area used: 10 year storm 10 minute intensity = 2.360(In/Hr) � 10 year storm 60 minute intensity = 0.880(In/Hr) � • 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In%Hr) Storm event year = 10.0 Calculated rainfall intensity data: � 1 hour intensi.ty = 0.880(In/Hr) Slope of intensity duration curve = 0.5500 � � . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 19.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 65.000(Ft.) Top (of initial area) elevation = 347.000(Ft.) Bottom (of initial area) elevation = 318.000(Ft.) Difference in elevation = 29.000(Ft.) Slope = 0.94615 s(percent)= 49.62 TC = k(0.390)*[(length^3)/(elevation change)�^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is S minutes. Znitial area time of concentration = 5.000 min. xainfall intensity = 3.452(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.795 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.769(CFS) Total initial stream area = 0.280(Ac.) Pervious area fraction = 0.500 End of computations, total study area = 0.28 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 • � Riverside Count� Rational Hydrology Program CIVILCADD/CIVILDESIGN E�gineerinq Soft�are,(c) 1989 - 2001 Versien 6.9 Rational Hydroloqy Study Date: 04/14/05 eile:307'ooC3.out ------------------------------------------------------------------------ TRACT N0. 3070'6 DEVELOPED CONDITION H':DROLOGY STUDY 10 YEAR 1 HOUR STORM TRZBUTARY C3, JOIN EXISTING TER.RACc DRAiN ------------------------------------------------------------------------ ***''*}" * Hydrology Study Control Information "t*=�x+t.r Enqlish (in-1b) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Elood Control & Water Conservation Distric[ , 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the ( Murrieta,Tmc,Rnch CaNOrco.] area used. 10 year storm 10 minute intensity = 2.360(In/Fir) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880(In/Hr) Slope of intensity duration curve = 0.�5500 � � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 ***' INITTAL AREA EVALURTION '*** Initial area flow distance = 145.000(Ft.) Top (of initial area) elevation = 369.000(Ft.) Bottom (of initial area) elevation = 336.000(Ft.) Difference in elevation = 33.000(Et.) Slope = 0.22759 s(percent)= 22.76 TC = k(0.390)'((length^3)/(elevation chanqe)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.952(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.795 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.494(CFS) Total initial stream area = 0.180(Ac.) Pervious azea fraction = 0.500 End of computations, total study area = 0.18 (AC.) The following figures may be used for a unit hydrograph study of the same area. Rrea averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Riverside County Ra*_ional Hydrology Program CIVILCADD/CIVILDEST_GN Engir.eer�ng Software,(c) 1989 - 2001 Version 6.4 Rational Hpdroiogy Study Date: 04/19/0' Fi�e:30766C12.out ------------------------------------------------------------------------ TRACT NO. 30766 DEVELOPED CONDITION HYDROLOGY STUDY 100 YEAR 1 HOUR STORM TRIBUTARY C1 SHGET FLOW INTO MURRIETA HOT SPRINGS ROAD ____��________�____________�__________�_____�___________________________ ��"�" "� Hydrology St1Cly CORt�01 Information s"****��rr English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van De11 and Associates, Ir.c., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control s Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) . For the ( Murrieta,Tmc,Rnch CaNOrco ] area used. . 10 year storm 10 minute intensity = 2.360(In/Hr) ' 10 year storm 60 minute intensity = 0.880(In/Hr)� ' 100 year storm 10 minute intensity = 3.480(In/Hi) ' 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) Slope of in[ensity duration curve = 0.5500 � � . � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 "*'* INITIAL AREA EVALUATION *•" � Initial area flow distance = 80.000(Ft.) Top (of initial area) elevation = 366.000(Ft.) Bottom (of initial area) elevation = 335.000(Ft.) Difference in elevation = 31.000(Ft.) Slope = 0.38750 s(percent)= 38.75 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Znitial area time of concentration = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 initial subarea runoff = 1.343(CFS) Total initial stream area = 0.320(Ac.) Pervious area fraction = 0.500 End of computations, total study area = 0.32 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Riverside County Ra*_ional Hydroloqy Proqram CIVILCADD/CIVILDESIGN Enqineer�ng Software,(c) 1989 - 2001 Version o.4 Rational Hydrology Study Date: 04/14/Oo Fi1e:30?o"oC22.out ------------------------------------------------------------------------ TRACT N0. 307'nn DEVELOPED CONDITION HYDROLOGY STUD: 100 YEAR 1 HOUR STORM TRIBUTARY C2, SHEET ELOW INTO MURIETA HOT SPR?NGS ROAD ------------------------------------------------------------------------ "*"*«** Hydrology Study Control Information 4 !*�+**+�* English (in-1b) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Proqram based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) • For the ( Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year,storm 60 minute intensity = 0.880(In/Hr) � � 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute interisity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: . . 1 hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 � � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Pzocess from Point/Station � 14.000 to Point/Station 15.000 ' **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 65.000(Ft.) Top (of initial area) elevation = 347.000(Ft.) Hottom (of initial area) elevation = 318.000(Pt.) Difference in elevation = 29.000(Ft.) Slope = 0.44615 s(percent)= 44.62 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Zmpervious fraction = 0.500 Initial subarea runoff = 1.175(CFS) Total initial stream area = 0.280(Ac.) Pervious area fraction = 0.500 End of computations, total study area = 0.28 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 5'.0 � R�verside Coun�y Rational Hydroloq� Proqram CIVILCADD/CIVILDES?GN Engineering Sof�ware,(c) 1989 - 2001 Version 6.4 Rational Hydrology Studl Date: 04/1�/06 Fi1e:307o'6C32.out ------------------------------------------------------------------------ TRACT N0. 3070"0 DEVELOPED CONDITION HYDROLOGY STUDY 100 YEAR 1 HOUR STORM TRIBUT�RY C3, JOIN EXISTLNG TERRr1C� DRAIN ------------------------------------------------------------------------ "" '**•** Hydrology Study Control Information *"��***** , English (in-1b1 Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District� 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2,360(In/Hr) � 10 year storm 60 minute intensity = O.B80(In/Hr) � • � 100 year storm 10 minute intensity = 3.480(In/Hr) � 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity,= 1.300(In/Hr) Slope of intensity dutation curve = 0.5500 . . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ , Process from Point/Station 16.000 to Point/Station 17.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 145.000(Ft.) Top (of initial area) elevation = 369.000(Ft.) Bottom (of initial area) elevation = 336.000(Ft.) Difference in elevation = 33.000(Ft.) Slope = 0.22759 s(percent}= 22.76 TC = k(0.390)*((length^3)/(elevation change)j^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal f.raction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.756(CFS) Total initial stream area = 0.180(Ac.) Pervious area fraction = 0.500 End of computations, total study area = 0.18 (AC.) The folLowing figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 � � Rivers±de County Rational Hydrology Program CIVILCADD/CIVILDESIGN Enq_r.eering SoPtware,(c) 1989 - 2001 Vers�on 6.4 Racional Hfdrology Study Date: 04/14/06 e^i1e:30?o"oD2.cut ------------------------------------------------------------------------ TRACT NO. 30760 DEVELOPSD CONDITICN HYDROLOG! STUDY 100 YEAR 1 HOUR STORM SYSTEM D, ACCESS ROAD DRrIIN ON EAST':.Y BOUNDARY ------------------------------------------------------------------------ *" {*`*** Hydrology Scudy Control IRTOLIRdtl.Otl r+tr:xr.rr English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on � Riverside County Flood Control s Water Conservation District 1978 hydrology manuai � Storm event (year) = 100.00 Antecedent Moistu=e Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco J area used. 10 year storm 10 minute intensity =. 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) � � 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) . Slope of intensity duration curve = 0.5500 � ' . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 19.000 "** INITIAL AREA EVALUATION *'** Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 370.000(Ft.) Bottom (of initial area) elevation = 361.000(Ft.) Difference in elevation = 9.000(Ft.) Slope = 0.09091 s(percent)= 4.09 TC = k(0.390)*[(length^3)/(elevation chanqe))^0.2 Initial area time of concentration = 6.392 min. Rainfall intensity = 4.455(In/Hr) for a 1U0.0 year storm SINGLE FAMILY (1/9 Acre Lot) Runoff Coefficient = 0.814 Decimal fraction soil group A= 0.000 Decimal fraction soil group e= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.725(CFS) Total initial stream area = 0.200(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 '*** IMPROVED CHANNEL TRAVEL TIME **** IIpstream point elevation = 301.000(Ft.) Downstream point elevation = 350.000(Ft.) Channel length thru subarea = 80.000(Ft.) � - Channel base width = 0.500(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.816(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.81o(CeS) Depth of flow = 0.152(Ft.), �verage velocity = 8.251(rt/s) Channel flow top width = 0.804(F*_.) Flow Velocity = 8.25(Ft/s) Travel time = 0.1'o min. Time of concentration = 6.55 min. Sub-Channel No. 1 Critical deptn = 0.34�(F*_.) ' ' ' Critical flow top width = 1.188(Ft.) ' ' ' Critical flow velocity= 2.814(Ft/s) ' ' ' Critical flow area = 0.290(Sq.Ft) Adding area flow to.channel SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A= 0.000 ' Decimal fcaction soil qroup B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil grouo D= 0.000 RI index fot soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 4.394(In/Hr) for a 100.0 year storm Subarea runoff = 0.179(CFS) for 0.050(Ac.) Total runoff '= 0.904(CFS) Total area = 0.250(Ac.) End of computations, total study area = 0.25 (Ac.) . �The fbllowinq figures may � � be used for a unit hydroqraph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 . Area averaged RI index number = 56.0 � . � • Riverside County Rational Hydrology Program CIVILCADD/CZVILDESLGN Eng_neering Software,(c) 1989 - 2001 Version 6.4 Rational Nydrelogv Study Date: 04/14/06 Fi1e:3076o'D.out ------------------------------------------------------------------------ TRACT N0. 3070'6 DEVELOPED CONDITI0�1 HYDROLOGY STUDY 10 YEAR 1 HOUR STORM SYSTEM D, ACCESS ROAD DR.AIN ON EAST'LY BOUNDARY ------------------------------------------------------------------------ *'****"*' Hydrology Study Control Information *****;�+** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control s Water Conservation District 1978 hydrology manual Stozm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Carlorco ] area used. 10 year storm 10 minute intensity = 2.360fIn/Hr) 10 year storm 60 minute intensity = O.BBO(In/Hr) • ' � 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: � 1 hQUr intensity = 0.680(In/Hr) - ' Slope of intensity duration curve = 0.5500 ' � . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** INITIAL AREA EVALUATION **'* ' Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 370.000(Ft.) Bottom (of initial area) elevation =. 361.000(Ft.) Difference in elevation = 9.000(Ft.) Slope = 0.04091 s(percent)= 4.09 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.392 min. Rainfall intensity = 3.015(In/fir) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.784 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Znitial subarea runoff = 0.473(CFS) Total initial stream area = 0.200(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 **** IMPROVED CHANrIEL TRAVEL TIME ***' Opstream point elevation = 361.000(Ft.) Downstream point elevation = 350.000(Ft.) Channel length thru subarea = 80.000(Ft.) � Channel base width = 0.500(Ft.) S1ope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.532(CFS) Manninq's 'N' = 0.015 � Maximum depth of channel = 1.000(Et.) Flow(q) thru subarea = 0.532(CFS) Depth of flow = O.ii9(Ft.), Averagz veloc,ty = 7.255(Ft/s) Channel flow top widt� = 0.737(et.) - F1ow Velocity = 7.26(Ft/s) Travel time = 0.18 min. Time of concentration = 6.58 cnin. Sub-Chanr.el No. 1 Critical depth = 0.?71(Et.) ' ' ' Critical flow toa width = 1.043(Ft.) ' ' ' Critica'_ f1o�a velocity= 2.540(ct/s) ' ' ' Critical flow area = 0.209(Sq.Ft) Adding area flow to channel SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.783 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 • Decimal fraction soil gzoup C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 2.969(In/Hr) for a 10.0 year storm Subarea runoff = 0.116(CFS) for 0.050(Ac.) Total runoff = 0.589(CFS.) Tota1 area = 0.250(AC.) . End of computations, total study area = 0.25 (Ac.) _ The following figures may� . be used for a unit hydrograph study of the same area. Area averaqed pervious area fraction(Ap) = 0.500 Area averaqed RI index number = 56.0 � . . � � Rive=side County Rat:onal �ydrology Program CIVILCADD/CIV�LDES�GN Engineer�ng So.°t�are,(c) 1989 - 2001 Vers�on 6.4 Rational Hydrologl Scudy Dat2: 04/14/Oo' Ei1e:30?o'o"E1.out ------------------------------------------------------------------------ TRACT N0. 30766 DEVELOPED CONDITION HYCROLOGY STJDY 10 YEAR 1 HOUR STORM TRZBUTARY Ei, SHEEi FLOW ALOD7G EAST'LY BOUNDARY ------------------------------------------------------------------------ *** ""*'* Hydroiogy Study Control Informatior **«**t**** Enqlish (in-1b) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) . For the [ Murrieta,Tmc,Rnch CaNOrco,� area us , 10 year storm 10 minute intensity = 2.360(In/Hr) , 10 year storm 60 minute intensity = 0.8B0(In/Hr) � i00 year storm 10 minute intensity = 3.480(In/Hr) ' 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = O.B80(In/Hr) Slope of intensity duration curve = 0.5500 � � � . . . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** INITIAL AREA EVALUATION '*** Znitial area flow distance = 110.000(Ft.) Top (of initial area) elevation = 370.000(Pt.) Bottom (of initial area) elevation = 325.000(Ft.) Difference in elevation = 45.000(Ft.) Slope = 0.40909 s(percent)= 90.91 TC = k(0.940)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.368 min. Rainfall intensity = 2.789(In/fir) for a 10.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.689 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.659(CFS) Tota1 initial stream area = 0.340(Ac.) Pervious area fraction = 1.000 End of computations, total study area = 0.34 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI inde:< number = 61.0 • � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Sottware,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/14/Oo Eile:30766E2.out ------------------------------------------------------------------------ TRACT NO. 30760 DEVELOPED CONDITION HYDROLCGY STUDY 10 YEAR 1 HOUR STORM TRIBUTARY E2, SHEET rLOW ALONG WEST'LY AND NORT'L': BOUNDARIES ------------------------------------------------------------------------ '*•*'**'* Hydrology Study Con uo1 Information �***�**�*+ English (in-1b) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydroloqy Proqram based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (P1ate D-4.1) For the ( Mur.rieta,Tmc,Rnch Callorco,] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.860(In/Hr) � ' i00 year storm 10 minute intensity = 3.480(In/Hrj 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: . . 1 hour intensity = 0.880(In/Hr) Slope of intensity duration curve =,0.5500 � � ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 **** INITIAT. AREA EVALUATION **** � Initial area flow distance = 35.000(Ft.) Top (of initial area) elevation = 367.000(Ft.) Bottom (of initial area). elevation = 365.000(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.05714 s(percent)= 5.71 TC = k(0.940)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.906 min. Rainfall intensity = 2.889(In/Hr) for a 10.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.695 Decimal fraction soil group R= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal £raction soil group D= 0.000 RI index for soil(AMC 2) = 61.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.743(CFS) Total initial stream area = 0.370(Ac.) Pervious area fraction = 1.000 End of computations, total study area = 0.37 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI inde:< number = 61.0 � � Riverside County Rational Hydrology Program CIVILCADD/CIVZL�ESIGDI Enginzer_ng So*tware,(c) i999 - Z001 �lersion 6.4 Ratior.al Hydrology Study Datz: 04%14/o6 Pi1e:3076oE12.out ------------------------------------------------------------------------ TRACT N0. 30766 DEVELOPED CONDITION HYDROLOGY STUDY 100 YEAR 1 HOUR STUDY TRZBUTARY Ei, SHEET FLOW ALONG EAjT'LY BOUNCARY ------------------------------------------------------------------------ ##'��#�** HydroLoqy Study Cont�ol ?nformation ****tr.�r• English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County F1ood Control & Water Conservation District � 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch CaNOrco.j area used. 10 year storm 10 minute intensity = 2.360(In/Hr) . 10 year storm 60 minute intensity = 0.880(In/Hr) � 100 year storm 10 minute intensity = 3.980(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1,300(In/Hr) , Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **`* INITIAL AREA EVALUATION ***' Initial area flow distance = 110.000(Ft.) Top (of initial area) elevation = 370.000(Ft.) Bottom (of initial area) elevation = 325.000(Ft.) Difference in elevation = 45.000(Ft.) Slope = 0.40909 s(percent)= 90.91 TC = k(0.940}*[(length^3)/(elevation chanqe))^0.2 Initial area time of concentration = 7.368 min. Rainfall intensity = 9.120(In/Hr) for. a 100.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.746 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.045(CFS) Total initial stream area = 0.340(Ac.) Pervious area fraction = 1.000 End of computations, total study area = 0.34 (Ac.) The followinq figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI inde:t number = 61.0 Ri✓erside County Rational Hydrology Program CIVILCADD/CIVIiDES_GN �ngiaeering Software,(c) 1989 - 2001 V2rsion 6.4 Rational Hydrology Study Date: 04/14/06 File:30766E22.out ------------------------------------------------------------------------ TRACT N0. 3076'0 DEVELOPED CONDITION HYDROLOGY STUDY 100 YEAR 1 HOUR STCRM TRIBUTARY E2, SHcET FLOW ALONG E�ST'LY AND NORTH'LY BOUNDARI�S ------------------------------------------------------------------------ x+*++r+s+ Hydrology Study Control Information **�**`�*rr English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van De11 and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on • Riverside County Flood Control � Water Conservation District 1978 hyd=ology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. , 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) � 100 year storm 10 minute intensity = 3.480(In/Hr) • 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 • Calculated rainfall intensity data: . 1 hour intensity = 1.300(In/Hr) , Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 23.000 to Point/Station 24.000 ' *'** INITIAL AREA EVALUATION *'�** Initial area flow distance = 35.000(Ft.) Top (of initial area) elevation = 367.000(Ft.) Bottom (of initial area) elevation = 365.000(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.05714 s(percent)= 5.71 TC = k(0.940)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.908 min. RainLall intensity = 4.2o'9(In/Hr) for a 100.0 year storm UNDEVELOPED (good cover) subarea Runoff Coefficient = 0.750 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.185lCFS) Total initial stream area = 0.370(Ac.) Pervious area fraction = 1.000 End of computations, total study area = 0.37 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 61.0 � PA 11 � PA1110.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/09/06 File:PA1110.out ------------------------------------------------------------ 850_0139 RORIPAUGH RANCH PA 11 10-YR 9/9/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 602.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 335.150(Ft.) Top (of initial area) elevation = 1295.000(Ft.) Bottom (of initial area) elevation = 1290.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.01492 s(percent)= 1.49 TC = k(0.390)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.256 min. Rainfall intensity = 2.203(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.543(CFS) Total initial stream area = 1.400(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 604.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.000(Ft.) End of street segment elevation = 1280.000(Ft.) Length of street segment = 649.130(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 e Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 PA1110.out Distance from curb to property line = 10.000(Ft.) 51ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.1 , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 15.010(CFS) Depth of flow = 0.501(Ft.), Average velocity = 4.139(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.05(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 4.14(Ft/s) Travel time = 2.61 min. TC = 11.87 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.815 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.921(In/Hr) for a 10.0 year storm Subarea runoff = 21.510(CFS) for 13.730(AC.) Total runoff = 24.052(CFS) Total area = 15.130(AC.) Street flow at end of street = 24.052(CFS) Half street flow at end of street = 24.052(CFS) Depth of flow = 0.579(Ft.), Average velocity = 4.630(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.97(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total study area = 15.13 (Ac.) � The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 75.0 • Page 2 PA11100.out Riverside County Rational Hydrology Program , CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 _ Rational Hydrology Study Date: 09/09/06 File:PA11100.out --- — — - — ----- --- — ----------------------- — — — ---------------------- 850 0139 RORIPAUGH RANCH PA 11 100-YR 9/9/06 SWL ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) S1ope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 602.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 335.150(Ft.) Top (of initial area) elevation = 1295.000(Ft.) Bottom (of initial area) elevation = 1290.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.01492 s(percent)= 1.49 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.256 min. Rainfall intensity = 3.355(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.980(CFS) Total initial stream area = 1.400(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 604.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.000(Ft.) End of street segment elevation = 1280.000(Ft.) Length of street segment = 649.130(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 PA11100.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) oGutter hike from flowline = 2.000(In.) . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 23.493(CFS) Depth of flow = 0.575(Ft.), Average velocity = 4.604(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.76(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 4.60(Ft/s) Travel time = 2.35 min. TC = 11.61 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.962(In/Hr) for a 100.0 year storm Subarea runoff = 34.214(CFS) for 13.730(AC.) Total runoff = 38.194(CFS) Total area = 15.130(Ac.) Street flow at end of street = 38.194(CFS) " Half street flow at end of street = 38.194(CFS) Depth of flow = 0.669(Ft.), Average velocity = 5.178(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 8.47(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total study area = 15.13 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 75.0 Page 2 PA 12 i i i PROJ ECT SITE � � , I 15 i 9 � M��� I � MOT SPRINGS ROAp � � I � .��, I � � ����. �:. I 15 � �� �►� I J � N� I U° � � PRIMARY TM cr+a�os � � ACCESS / coHro�ro I ACCESS ,/ I e � �/ � � CITY OF TEMECULA � W � I SECONDARY �� sEg� � o ACCESS WI WP � � � , i �� � � -N- � � m o � I R � � � � � � O I � I �°`� �� I yI � � � I I � � � I i I i VICINITY MAP � N.T.S. I � THOMAS BROTHERS MAP REFERENCE � RIVERSIDE COUNTY 2001 EDITION � PAGE 929, E-7 I RORIPAUGH RANCH - PA-12 DATE � , VAN DELLANDASSOCIATES i►vc. TRACT NO. 32355 O3IO4 Engineers Planners Surveyors I tveoi ca��wripn� qoaa, ir�ine. ce. eseia I T:�9�8) �TI-/6D0 F:(B4B) 125-59BB VICINITY MAP FIGURE Internei Sf�a� rww.VanOeiiCE.eom � 01 i �.,00�,��r�,e�, �.��,�.,�,...��,�.�„e�, ��., 10-Year Rational Method Calculations � � � rori0110.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 03/23/04 File:rori0110.out ------------------------------------------------------------------------ PA 12 -- RORIPAUGH RANCH DEVELOPED CONDITION HYDROLOGY RZVERSIDE COUNTY -- 10-YR STUDY MAR 04 ---------------- -------------------------------- — ------------------ -- ********* Hydrology Study Control Information **•******* English (in-lb) units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/xr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 703.000(Ft.) Top (of initial area) elevation = 1245.000(Ft.) Bottom (of initial area) elevation = 1227.400(Ft.) Difference in elevation = 17.600(Ft.) Slope = 0.02504 s(percent)= 2.50 TC = k(0.370)*[(length�3)/(elevation change)]�0.2 Initial area time of concentration = 10.648 min. Rainfall intensity = 2.039(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.844 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 3.286(CFS) Total initial stream area = 1.910(AC.) Pervious area fraction = 0.350 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++�++++++++ Process from Point/Station 10.000 to Point/Station 25.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1227.400(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 530.000(Ft.) Height of curb above gutter flowline = 6.o(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from.crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2) side(s) of the street Page 1 rori0110.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.215(CFS) Depth of flow = 0.289(Ft.), Average velocity = 3.077(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.631(Ft.) Flow velocity = 3.08(Ft/s) Travel time = 2.87 min. TC = 13.52 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.837 _ Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RS index for soil(AMC 2) _ �5.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.789(In/Hr) for a 10.0 year storm Subarea runoff = 1.617(CFS) for 1.080(AC.) Total runoff = 4.903(CFS) Total area = 2.990(Ac.) Street flow at end of street = 4.903(CFS) Half street flow at end of street = 2.452(CFS) Depth of flow = 0.300(Ft.), Average velocity = 3.183(Ft/s) Flow width (from curb towards crown)= 6.172(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.990(Ac.) Runoff from this stream = 4.903(CFS) Time of concentration = 13.52 min. Rainfall intensity = 1.789(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 15.000 **** INITIAL AREA EVALUATZON **** Initial area flow distance = 460.000(Ft.) Top (of initial area) elevation = 1231.000(Ft.) Sottom (of initial area) elevation = 1224.000(Ft_) Difference in elevation = 7.000(Ft.) Slope = 0.01522 s(percent)= 1.52 TC = k(0.370)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 9.927 min. Rainfall intensity = 2.120(Zn/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.845 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 3.154(CFS) Total initial stream area = 1.760(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 20.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1224.000(Ft.) End of street segment elevation = 1218.400(Ft.) Length of street segment = 225.00o(Ft.) Page 2 rori0110.out Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning�s N in gutter = 0.0150 Manning�s N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.435(CFS) Depth of flow = 0.293(Ft.), Average velocity = 3.093(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.838(Ft.) Flow velocity = 3.09(Ft/s) Travel time = 1.21 min. TC = 11.14 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = O.B42 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.989(Zn/Hr) for a 10.0 year storm Subarea runoff = 2.397(CFS) for 1.430(Ac.) Total runoff = 5.550(CFS) Total area = 3.190(Ac.) Street flow at end of street = 5.550(CFS) Half street flow at end of street = 2.775(CFS) Depth of flow = 0.310(Ft.), Average velocity = 3.253(Ft/s) Plow width (from curb towards crown)= 8.664(Ft.) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 25.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1218.400(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 450.o00(Ft.) Height of curb above gutter flowline = 6.0(Zn.) Width o£ half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning�s N in gutter = 0.0150 Manning�s N from gutter to grade break = 0.0150 Manning�s N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.577(CFS) Depth of flow = 0.364(Ft.), Average velocity = 2.365(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.349(Ft.) Flow velocity = 2.36(Ft/s) Travel time = 3.17 min. TC = 14.31 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.836 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.733(In/Hr) for a 10.0 year storm Subarea runoff = 1.709(CFS) for 1.180(Ac.) Page 3 rori0110.out Total runoff = 7.260(CFS) Total area = 4.370(Ac.) Street flow at end of street = 7.260(CFS) Half street flow at end of street = 3.630(CFS) Depth of flow = 0.373(Ft.), Average velocity = 2.421(Ft/s) Flow width (from curb towards crown)= 11.819(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 25.000 �*** CONFLUENCE OF MZNOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.370(AC.) Runoff from this stream = 7.260(CFS) Time of concentration = 14.31 min. Rainfall intensity = 1.733(In/Hr) - Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.903 13.52 1.�89 2 7.260 14.31 1.733 Largest stream flow has longer time of concentration Qp = 7.260 + sum of Qb Ia/Ib 4.903 * 0.969 = 4.752 Qp = 12.012 Total of 2 streams to confluence: Flow rates before confluence point: 4.903 7.260 Area of streams before confluence: 2.990 4.370 Results of confluence: � Total flow rate = 12.012(CFS) Time of concentration = 14.311 min. Effective stream area after confluence = 7.360(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 75.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1209.000(Ft.) Downstream point/station elevation = 1208.500(Ft.) Pipe length = 25.00(Ft.) Manning�s N= 0.013 No. of pipes = 1 Required pipe flow = 12.012(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 12.012(CFS) Normal flow depth in pipe = 12.28(In.) Flow top width inside pipe = 16.76(In.) Critical Depth = 15.76(In.) Pipe flow velocity = 9.36(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 75.000 *#** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 7.360(AC.) Runoff from this stream = 12.012(CFS) Time of concentration = 14.36 min. Rainfall intensity = 1.730(In/Hr) � ++++++++++++++++++++++++++++++++�+++++++++++++++++++++++++++++++++++++ Process from Point/Station 65.000 to Point/Station 70.000 **** INITIAL AREA EVALUATION **** Page 4 � rori0110.out Initial area flow distance = 740.000(Ft.) Top (of initial area) elevation = 1240.000(Ft.) Bottom (of initial area) elevation = 1230.000(Ft.) Difference in elevation = 10.000(Ft.) Slope = 0.01351 s(percent)= 1.35 TC = k(0.370)*[(length�3)/(elevation change)]�0.2 Initial area time of concentration = 12.295 min. Rainfall intensity = 1.884(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.840 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 - Initial subarea runoff = 1.282(CFS) Total initial stream area = 0.810(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 70.000 to Point/Station 75.000 **** PZPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1220.000(Ft.) Downstream point/station elevation = 1208.500(Ft.) Pipe length = 520.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 1.282(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.282(CFS) Normal flow depth in pipe = 4.61(In.) Flow top width inside pipe = 9.00(In.) Critical Depth = 6.26(in.) Pipe flow velocity = 5.63(Ft/s) Travel time through pipe = 1.54 min. Time of concentration (TC) = 13.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 75.000 **'* CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.810(Ac.) Runoff from this stream = 1.282(CFS) Time of concentration = 13.84 min. Rainfall intensity = 1.766(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.012 14.36 1.730 2 1.282 13.64 1.766 Largest stream flow has longer time of concentration Qp = 12.012 + sum of ' Qb Ia/Ib 1.282 * 0.980 = 1.256 Qp = 13.268 Total of 2 streams to confluence: Flow rates before confluence point: 12.012 . 1.282 Area of streams before confluence: 7.360 0.810 Results of confluence: Total flow rate = 13.268(CFS) Time of concentration = 14_356 min. � Effective stream area after confluence = 8.170(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 5 � rori0110.out Process from Point/Station 75.000 to Point/Station 80.000 '*** PIPEFLOW TRAVEL TIME (Program estimated size) *'** Upstream point/station elevation = 1208.500(Ft.) Downstream point/station elevation = 1207.000(Ft.) Pipe length = 25.00(Ft.) Manning�s N= 0.013 No. of pipes = 1 Required pipe flow = 13.268(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 13.268(CFS) Normal flow depth in pipe = 10.51(In.) Flow top width inside pipe = 13.74(In.) Critical depth could not be calculated. Pipe flow velocity = 14.44(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 14.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 80.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: Zn Main Stream number: 1 Stream flow area = 8.170(Ac.) Runoff from this stream = 13.268(CFS) Time of concentration = 14.38 min. Rainfall intensity = 1.728(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 35.000 **** INITIAL AREA EVALUATZON **** Initial area flow distance = 315.000(Ft.) Top (of initial area) elevation = 1285.000(Ft.) Bottom (of initial area) elevation = 1245.000(Ft.) Difference in elevation = 40.000(Ft.) Slope = 0.12698 s(percent)= 12.70 TC = k(0.370)*[(length�3)/(elevation change)]�0.2 Initial area time of concentration = 5.582 min. Rainfall intensity = 2.909(In/Hr) for a 10.0 year storm CONDOMINZUM subarea type Runoff Coefficient = 0.858 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RZ index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.223(CFS) Total initial stream area = 0.490(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 40.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.o73(Ft.), Average velocity = 2.873(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1: Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 0.10 0.00 3 5.90 0.00 4 6.00 1.00 Manning's �N' friction factor = 0.013 ---------------------------------------------------------- — ----- � Sub-Channel flow = 1.223(CFS) ' flow top width = 5.815(Ft.) � velocity= 2.873(Ft/s) � � area = 0.426(Sq.Ft) Page 6 � , rori0110.out Froude number = 1.871 Upstream point elevation = 1240.000(Ft.) Downstream point elevation = 1238.300(Ft.) Flow length = 80.000(Ft.) Travel time = 0.46 min. Time of concentration = 6.05 min. Depth of flow = 0.073(Ft.) Average velocity = 2.873(Ft/s) Total irregular channel flow = 1.223(CFS) Irregular channel normal depth above invert elev. = 0.073(Ft.) Average velocity of channel(s) = 2.873(Ft/s) +++++++++++++++++++++++++++.+++++++++++++++++++++++++++�+++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 *'** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.490(Ac.) Runoff from this stream = 1.223(CFS) Time of concentration = 6.05 min. Rainfall intensity = 2.784(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 40.000 *�** INITIAL AREA EVALUATION **�* Initial area flow distance = 345.000(Ft.) Top (of initial area) elevation = 1249.000(Ft.) Bottom (of initial area) elevation = 1238.300(Ft.) Difference in elevation = 10.700(Ft.) Slope = 0.03101 s(percent)= 3.10 TC = k(0.370)*[(length�3)/(elevation change))"0.2 Initial area time of concentration = 7.674 min. Rainfall intensity = 2.442(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.851 Decimal fraction soil group A= 0.000 Decimal fraction soil group S= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.352(CFS) Total initial stream area = 0.650(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.650(Ac.) Runoff from this stream = 1.352(CFS) Time of concentration = 7.67 min. Rainfall intensity = 2.442(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.223 6.05 2.784 2 1.352 7.67 2.442 Largest stream flow has longer time of concentration Qp = 1.352 + sum of Qb Ia/Ib � 1.223 * 0.877 = 1.073 Qp = 2.425 Total of 2 streams to confluence: Page 7 rori0110.out �; Flow rates before confluence point: 1.223 1.352 Area of streams before confluence: 0.490 0.650 Results of confluence: Total flow rate = 2.425(CFS) Time of concentration = 7.674 min. Effective stream area after confluence = 1.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1238.300(Ft.) End of street segment elevation = 1220.000(Ft.) Length of street segment = 733.000(Ft.) Height o£ curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning�s N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.318(CFS) Depth of flow = 0.291(Ft.), Average velocity = 3.079(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.738(Ft.) Flow velocity = 3.08(Ft/s) Txavel time = 3.97 min. TC = 11.64 min. Adding area flow to street � CONDOMINIUM subarea type Runoff Coefficient = O.B41 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) _ �5.00 Pervious area fraction = 0.350; Zmpervious fraction = 0.650 Rainfall intensity = 1.942(In/Hr) for a 10.0 year storm Subarea runoff = 2.908(CFS) for 1.780(Ac.) Total runoff = 5.332(CFS) Total area = 2.920(AC.) Street flow at end of street = 5.332(CFS) Half street flow at end of street = 2.666(CFS) Depth of flow = 0.307(Ft.), Average velocity = 3.227(Ft/s) Flow width (from curb towards crown)= 8.50�(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 45.000 to Point/Station 80.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1220.000(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = 6.0(Zn.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s} of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning�s N in gutter = 0.0150 Manning�s N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Page 8 � rori0110.out Estimated mean flow rate at midpoint of street = 6.291(CFS) _ Depth of flow = 0.335(Ft.), Average velocity = 2.901(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.909(Ft.) Flow velocity = 2.90(Ft/s) Travel time = 2.01 min. TC = 13.65 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.837 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.779(In/Hr) for a 10.0 year storm Subarea runoff = 1.563(CFS) for 1.050(Ac.) Total runoff = 6.896(CFS) Total area = 3.970(AC.) Street flbw at end of street = 6.896(CFS) Half street flow at end of street = 3.448(CFS) Depth of flow = 0.343(Ft.), Average velocity = 2.963(Ft/s) Flow width (from curb towards crown)= 10.300(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 80.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.970(AC.) Runoff from this stream = 6.896(CFS) Time of concentration = 13.65 min. Rainfall intensity = 1.779(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 55.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 245.000(Ft.) Top (of initial area) elevation = 1244.000(Ft.) Bottom (of initial area) elevation = 1241.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.01224 s(percent)= 1.22 TC = k(0.370)*[(length"3)/(elevation change)j�0.2 IniCial area time of concentration = 8.059 min. Rainfall intensity = 2.377(In/Hr) for a 10.0 year storm CONDOMZNIUM subarea type Runoff Coefficient = 0.850 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.637(CFS) Total initial stream area = 0.810(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 55.000 to Point/Station 60.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1241.000(Ft.) End of street segment elevation = 1220.000(Ft.) Length of street segment = 312.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Page 9 � rori0110.out Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.486(CFS) Depth of flow = 0.226(Ft.), Average velocity = 4.121(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.463(Ft.) Flow velocity = 4.12(Ft/s) Travel time = 1.26 min. TC = 9.32 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.847 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.194(In/Hr) for a 10.0 year storm Subarea runoff = 1.561(CFS) for 0.840(Ac.) Total runoff = 3.199(CFS) Total area = 1.650(Ac.) Street flow at end of street = 3.199(CFS) Half street flow at end of street = 1.599(CFS) Depth of flow = 0.241(Ft.), Average velocity = 4.297(Ft/s) Flow width (from curb towards crown)= 5.193(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 80.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1220.000(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 720.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning�s N in gutter = 0.0150 Manning�s N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.914(CFS) Depth of flow = 0.345(Ft.), Average velocity = 2.077(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.395(Ft.) Flow velocity = 2.08(Ft/s) Travel time = 5.76 min. TC = 15.10 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.834 Decimal fraction soil group A=,0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.683(In/Hr) for a 10.0 year storm Subarea runoff = 2.485(CFS) for 1.770(Ac.) Total runoff = 5.683(CFS) Total area = 3.420(Ac.) � Street flow at end o� street = 5.683(CFS) Half street flow at end of street = 2.842(CFS) Depth of flow = 0.358(Ft.), Average velocity = 2.149(Ft/s) Flow width (from Curb towards crown)= 11.044(Ft.) Page 10 � rori0110.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station B0.000 to Point/Station 80.000 **** CONFLUENCE OF MAIN STREAMS ***• The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3.420(Ac.) Runoff from this stream = 5.683(CFS) Time of concentration = 15.10 min. Rainfall intensity = 1.683(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Zntensity No. (CFS) (min) (In/Hr) 1 13.268 14.38 1.728 2 6.896 13.65 1.779 3 5.683 15.10 1.683 Largest stream flow has longer or shorter time of concentration Qp = 13.268 + sum of Qb Ia/Ib 6.896 * 0.972 = 6.701 Qa Tb/Ta 5.683 * 0.953 = 5.415 4p = 25.383 Total of 3 main streams to confluence: Flow rates before confluence point: 13.268 6.896 5.683 Area of streams before confluence: 8.170 3.970 3.420 Results of confluence: Total flow rate = 25.383(CFS) Time of concentration = 14.385 min. Effective stream area after confluence = 15.560(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 85.000 •*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1207.000(Ft.) Downstream point/station elevation = 1205.000(Ft.) Pipe length = 90.00(Ft.) Manning�s N= 0.013 No. of pipes = 1 Required pipe flow = 25.383(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 25.383(CFS) Normal flow depth in pipe = 15.54(In.) Flow top width inside pipe = 22.93(In.) Critical Depth = 21.24(Zn.) Pipe flow velocity = 11.79(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 14.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 85.000 to Point/Station 85.000 **** SUBAREA FLOW ADDITION **** CONDOMINIUM subarea type Runoff Coefficient = 0.635 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Time of concentration = 14.51 min. Rainfall intensity = 1.720(In/Hr) for a 10.0 year storm Page 11 � rori0110.out Subarea runoff = 0.402(CFS) for 0.280(Ac.) Total runoff = 25.786(CFS) Total area = 15.840(AC.) End of computations, total study area = 15.84 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.350 Area averaged RI index number = 75.0 � � Page 12 100-Year Fiational Method Calculations Flow top width inside pipe = 16.78(In.) Critical depth could not be calculated. Pipe flow velocity = 16.20(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 80.000 *'** CONFLUENCE OF MAIN STREAMS ***+ The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.170(Ac.) Runoff from this stream = 20.787(CFS) Time of concentration = 13.94 min. Rainfall intensity = 2.678(In/Hr) -- Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 35.000 **** INZTIAL AREA EVALUATION **** Initial area flow distance = 315.000(Ft.) Top (of initial area) elevation = 1285.000(Ft.) Bottom (of initial area) elevation = 1245.000(Ft.) Difference in elevation = 40.000(Ft.) Slope = 0.12698 s(percent)= 12.70 TC = k(0.370)*[(length�3)/(elevation change)]�0.2 Initial area time of concentration = 5.562 min. Rainfall intensity = 4.430(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.871 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Znitial subarea runoff = 1.891(CFS) Total initial stream area = 0.490(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 40.000 **"* IRREGULAR CHANNEL FLOW TRAVEL TIME ***# Depth of flow = 0.095(Ft.), Average velocity = 3.410(Ft/s) *;***** Irregular Channel Data ****t****** ----------------------------------------------------------------- Infozznation entered for subchannel number 1: Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 0.10 0.00 3 5.90 0.00 4 6.00 1.00 Manning's 'N' friction factor.= 0.013 ----------------------------------------------------------------- Sub-Channel flow = 1.891(CFS) ' ' flow top width = 5.819(Ft.) ' ' velocity= 3.410(Ft/s) ' ' area = 0.555(Sq.Ft) ' ' Froude number = 1.946 Upstream point elevation = 1240.000(Ft.) Downstream point elevation = 1238.300(Ft.) Flow length = 80.000(Ft.) Travel time = 0.39 min. Time of concentration = 5.97 min. Depth of flow - 0.095(Ft.) Average velocity = 3.410(Ft/s) Total irregular channel flow = 1.891(CFS) Irregular channel normal depth above invert elev. = 0.095(Ft.) Average velocity of channel(s) = 3.410(Ft/s) Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 03/23/04 File:rori01100.out ------------------------------------------------------------------------ PA 12 -- RORIPAUGH RANCH DEVELOPED CONDITION HYDROLOGY RIVERSIDE COUNTY -- 100-YR STUDY MAR 04 ------------------------------------------------------------------------ *****'*** Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 __ ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(Zn.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 703.000(Ft.) Top (of initial area) elevation = 1245.000(Ft.) Bottom (of initial area) elevation = 1227.400(Ft.) Difference in elevation = 17.600(Ft.) Slope = 0.02504 s(percent)= 2.50 TC = k(0.370)*[(length�3)/(elevation change)]�0.2 Snitial area time of concentration = 10.648 min. Rainfall intensity = 3.106(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.861 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 Ri index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 5.105(CFS) Total initial stream area = 1.910(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 25.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1227.400(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 530.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) S1ope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.548(CFS) Depth of flow = 0.322(Ft.), Average velocity = 3.399(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.278(Ft.) Flow velocity = 3.40(Ft/s) Travel time = 2.60 min. TC = 13.25 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.856 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 - Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.754(In/Hr) for a 100.0 year storm Subarea runoff = 2.547(CFS) for 1.080(Ac.) Total runoff = 7.652(CFS) Total area = 2.990(AC.) Street flow at end of street = 7.652(CFS) Half street flow at end of street = 3.826(CFS) Depth of flow = 0.335(Ft.), Average velocity = 3.524(Ft/s) Flow width (from curb towards crown)= 9.916(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.990(Ac.) Runoff from this stream = 7.652(CFS) Time of concentration = 13.25 min. Rainfall intensity = 2.754(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 460.000(Ft.) Top (of initial area) elevation = 1231.000(Ft.) Bottom (of initial area) elevation = 1224.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01522 s(percent)= 1.52 TC = k(0.370)*[(length�3)/(elevation change)]�0.2 Initial area time of concentration = 9.927 min. Rainfall intensity = 3.228(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.862 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 4.896(CFS) Total initial stream area = 1.760(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 20.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1224.00o(Ft.) End of street segment elevation = 1218.400(Ft.) Length of street segment = 225.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.885(CFS) Depth of flow = 0.327(Ft.), Average velocity = 3.418(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.512(Ft.) Flow velocity = 3.42(Ft/s) Travel time = 1.10 min. TC = 11.02 min. Adding area flow to street CONDOMINIUM subarea type _. Runoff Coefficient = 0.860 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.047(In/Hr) for a 100.0 year storm Subarea runoff = 3.747(CFS) for 1.430(Ac.) Total runoff = 8.643(CFS) Total area = 3.190(Ac.) Street flow at end of street = 8.643(CFS) Half street flow at end of street = 4.321(CFS) Depth of flow = 0.346(Ft.), Average velocity = 3.604(Ft/s) Flow width (from curb towards crown)= 10.472(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 25.000 *'** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** � Top of street segment elevation = 1218.400(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 450.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break - 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.241(CFS) Depth of flow = 0.408(Ft.), Average velocity = 2.630(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.583(Ft.) Flow velocity = 2.63(Ft/s) Travel time = 2.85 min. TC = 13.88 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.855 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RZ index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction - 0.650 Rainfall intensity = 2.685(In/Hr) for a 100.0 year storm Subarea runoff = 2.709(CFS) for 1.180(Ac.) Total runoff = 11.352(CFS) Total area = 4.370(Ac.) Street flow at end of street = 11.352(CFS) � Half street flow at end of street = 5.676(CFS) Depth of flow = 0.420(Ft.), Average velocity = 2.696(Ft/s) Flow width (from curb towards crown)= 14.153(Ft.) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.370(Ac.) Runoff from this stream = 11.352(CFS) Time of concentration = 13.88 min. Rainfall intensity = 2.685(In/Hr) Summary of stream data: Stream Flow rate TC Rainfali Intensity No. (CFS) (min) (In/Hr) 1 7.652 13.25 2.754 2 11.352 13.88 2.685 Largest stream flow has longer time of concentration Qp = 11.352 + sum of Qb Ia/Ib , 7.652 * 0.975 = 7.459 Qp = 16.811 Total of 2 streams to confluence: Flow rates before confluence point: 7.652 11.352 Area of streams before confluence: 2.990 4.370 Results of confluence: Total flow rate = 18.811(CFS) ' Time of concentration = 13.877 min. Effective stream area after confluence = 7.360(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 25.000 to Point/Station 75.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1209.000(Ft.) Downstream point/station elevation = 1208.500(Ft.) Pipe length = 25.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 18.811(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = T8.811(CFS) Normal flow depth in pipe = 14.73(In.) Flow top width inside pipe = 19.22(In.) Critical Depth = 18.82(In.) Pipe flow velocity = 10.44(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 75.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 7.360(Ac.) Runoff from this stream = 18.811(CFS) Time of concentration = 13.92 min. Rainfall intensity = 2.681(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 65.000 to Point/Station 70.000 **** INZTIAL AREA EVALUATZON **** Znitial area flow distance = 740.000(Ft.) Top (of initial area) elevation = 1240.o00(Ft.) Bottom (of initial area) elevation = 1230.000(Ft.) Difference in elevation = 10.000(Ft.) � Slope = 0.01351 s(percent)= 1.35 TC = k(0.370)*[(length�3)/(elevation change}]"0.2 Initial area time of concentration = 12.295 min. Rainfall intensity = 2.870(In/Hr) for a 100.o year storm CONDOMINIUM subarea type Runoff Coefficient = 0.856 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.994(CFS) Total initial stream area = 0.810(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 70.000 to Point/Station 75.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1220.000(Ft.) Downstream point/station elevation = 1208.500(Ft.) Pipe length = 520.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 1.994(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.994(CFS) No�al flow depth in pipe = 6.15(In.) F1ow top width inside pipe = 8.38(In.) Critical Depth = 7.70(In.) Pipe flow velocity = 6.20(Ft/s) Travel time through pipe = 1.40 min. Time of concentration (TC) = 13.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 75.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream £low area = 0.810(AC.) Runoff from this stream = 1.994(CFS) Time of concentration = 13.69 min. Rainfall intensity = 2.705(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 18.811 13.92 2.681 2 1.994 13.69 2.705 Largest stream flow has longer time of concentration Qp = 18.811 + sum of Qb Ia/ib 1.994 * 0.991 = 1.976 QP = 20.787 Total of 2 streams to confluence: Flow rates before confluence point: 18.811 1.994 Area of streams before confluence: 7.360 0.610 Results of confluence: Total flow rate = 20.787(CFS) Time of concentration = 13.917 min. . Effective stream area after confluence = 8.170(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 80.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1208.500(Ft.) Downstream point/station elevation = 1207.000(Ft.) � Pipe length = 25.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 20.787(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow - 20.787(CFS) Normal flow depth in pipe = 12.26(In.) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.490(Ac.) Runoff from this stream = 1.891(CFS) Time of concentration = 5.97 min. Rainfall intensity = 4.268(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 40.000 **** INITIAL AREA EVALUATION **** _ Initial area flow distance = 345.000(Ft.) Top (of initial area) elevation = 1249.000(Ft.) Bottom (of initial area) elevation = 1238.300(Ft.) Difference in elevation = 10.700(Ft.) Slope = 0.03101 s(percent)= 3.10 TC = k(0.370)*((length�3)/(elevation change)]�0.2 Initial area time of concentration = �.674 min. Rainfall intensity = 3.719(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.866 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RZ index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Znitial subarea runoff = 2.094(CFS) Total initial stream area = 0.650(Ac.) Pexvious area fraction = 0.350 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Po.int/Station 40.000 to Point/Station 40.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.650(Ac.) Runoff from this stream = 2.094(CFS) Time of concentration = 7.67 min. Rainfall intensity = 3.719(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.891 5.97 4.268 2 2.094 7.67 3.719 Largest stream flow has longer time of concentration Qp = 2.094 + sum of Qb Ia/Ib 1.891 * 0.871 = 1.648 4P = 3.742 Total of 2 streams to confluence: Flow rates before confluence point: 1.891 2.094 Area of streams before confluence: 0.490 0.650 Results of confluence: Total flow rate = 3.742(CFS) Time of concentration = 7.674 min. Effective stream area after confluence = 1.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** � Top of street segment elevation = 1238.300(Ft.) End of street segment elevation = 1220.000(Ft.) Length of street segment 733.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.664(CFS) _._ Depth of flow = 0.324(Ft.), Average velocity = 3.396(Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.373(Ft.) Flow velocity = 3.40(Ft/s) Travel time = 3.60 min. TC = 11.27 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.859 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.010(In/Hr) for a 100.0 year storm Subarea runoff = 4.605(CFS) for 1.760(Ac.) Total runoff = 8.347(CFS) Total area = 2.920(Ac.) Street flow at end of street = 8.347(CFS) Half street flow at end of street = 4.174(CFS) � Depth of flow = 0.343(Ft.), Average velocity = 3.579(Ft/s) Flow width (from curb towards crown)= 10.314(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 80.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1220.000(Ft.) End of street segment elevation = 1214.000(Ft.) Length of street segment = 350.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flaw is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.848(CFS) Depth of flow = 0.375(Ft.), Average velocity = 3.224(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.936(Ft.) Flow velocity = 3.22(Ft/s) Travel time = 1.81 min. TC = 13.08 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.856 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.773(In/Hr) for a 100.0 year storm Subarea runoff = 2.494(CFS) for 1.050(Ac.) Total runoff = 10.841(CFS) Total area = 3.970(Ac.) Street flow at end of street = 10.841(CFS) Half street flow at end of street = 5.421(CFS) Depth of flow = 0.385(Ft.), Average velocity = 3.299(Ft/s) Flow width (from curb towards crown?= 12.412(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 80.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.970(Ac.) Runoff from this stream = 10.841(CFS) Time of concentration = 13.08 min. Rainfall intensity = 2.773(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 55.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 245.000(Ft.) Top (of initial area) elevation = 1244.000(Ft.) Bottom (of initial area) elevation = 1241.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.01224 s(percent)= 1.22 TC = k(0.370)*[(length�3)/(elevation change)j"0.2 Initial area time of concentration = 8.059 min. Rainfall intensity = 3.620(In/Hr) for a 100.0 year storm CONDOM2NIUM subarea type Runoff Coefficient = 0.866 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 2.538(CFS) Total initial stream area = 0.810(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 55.000 to Point/Station 60.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1241.000(Ft.) End of street segment elevation = 1220.000(Ft.) Length of street segment = 312.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = 0.100 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.854(CFS) Depth of flow = 0.252(Ft.), Average velocity = 4.'450(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.749(Ft.) Flow velocity = 4.45(Ft/s) Travel time = 1.17 min. TC = 9.23 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.863 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 • Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Zmpervious fraction = 0.650 Rainfall intensity = 3.360(Zn/Hr) for a 100.0 year storm Subarea runoff = 2.436(CFS) for o.840(Ac.) Total runoff = 4.974(CFS) Total area = 1.650(AC.) Street flow at end of street = 4.974(CFS) Half street flow at end of street = 2.487(CFS) Depth of flow = 0.268(Ft.), Average velocity = 4.684(Ft/s) Flow width (from curb towards crown)= 6.546(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ProCess from Point/Station 60.000 to Point/Station 80.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1220.000(Ft.) End of street segment elevation = 1214.0oo(Ft.) Length of street segment = 720.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.500(Ft.) Slope from gutter to grade break (v/hz) = o.loo Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.643(CFS) Depth of flow = 0.386(Ft.), Average velocity = 2.306(Et/s) � Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.467(Ft.) Flow velocity = 2.31(Ft/s) Travel time = 5.20 min. TC = 14.43 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.854 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.628(In/Hr) for a 100.0 year storm Subarea runoff = 3.974(CFS) for 1.770(Ac.) Total runoff = 8.948(CFS) Total area.= 3.420(Ac.) Street flow at end of street = 8.948(CFS) Half street flow at end of street = 4.474(CFS) Depth of flow = 0.402(Ft.), Average velocity = 2.395(Ft/s) Flow width (from curb towards crown)= 13.286(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 80.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3.420(Ac.) Runoff from this stream = 8.948(CFS) Time of Concentration = 14.43 min. Rainfall intensity = 2.628(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) � 1 20.787 13.94 2.678 2 10.841 13.08 2.773 � 3 8.948 14.43 2.628 Largest stream flow has longer or shorter time of concentration Qp = 20.787 + sum of Qb Ia/Ib 10.841 * 0.966 = 10.467 Qa Tb/Ta 8.948 * 0.966 = 8.646 Qp = 39.900 Total of 3 main streams to confluence: Flow rates before confluence point: 20.787 10.841 8.948 Area of streams before confluence: 8.170 3.970 3.420 Results of confluence: _ Total flow rate = 39.900(CFS) Time of concentration = 13.943 min. Effective stream area after confluence .= 15.560(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 85.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1207.0o0(Ft.) Downstream point/station elevation = 1205.000(Ft.) Pipe length = 90.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 39.900(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 39.900(CFS) Normal flow depth in pipe = 19.36(In.) Flow top width inside pipe = 24.32(In.) Critical Depth = 25.08(In.) Pipe flow velocity = 13.07(Ft/s) � Travel time through pipe = 0.11 min. Time of concentration (TC) = 14.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 85.00o to Point/Station 85.000 **** SUBAREA FLOW ADDITION **** CONDOMINIUM subarea type Runoff Coefficient = 0.855 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 � Pervious area fraction = 0.350; Impervious fraction = 0.650 Time of concentration = 14.06 min. Rainfall intensity = 2.666(In/Hr) for a 100.0 year storm Subarea runoff = 0.638(CFS) for 0.280(Ac.) Total runoff = 40.538(CFS) Total area = 15.840(Ac.) End of computations, total study area = 15.84 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.350 Area averaged RI index number = 75.0 � PA 14 & 15 � � . � I I � � I ' P ROJ ECT S ITE � � , � _ , � � � , � � � � 9 � i i � �� � � � � i i i � - i � �s � � � � � ' . � � i TMa � � i i A � �cc�se l i � � � � / � � � � i qTY OF T'ENECU.A � � ' �oo�o�r �v�''' � i �oc�s �� �w► � , i � �� - N i � � � i ' � �"° � � i �� � ' i i i I � �, � � , � , , � � , , � I � I � � � � I I � � VICINITY MAP � � N.T.S. � i i i THOMAS BROTHERS MAP REFERENCE i i RIVERSIDE COUNTY 2001 ED�TION i i PAGE 929, E-7 i i i DATE � � RORIPAUGH RANCH 08/Ofi � VA Consulting, Inc. TRACT NO. 32356 - PA 14&15 i i � ENGiNEEAS� PIANNERS• SURVEYORS FIGURE :7��' .A��1V% � .AD »:�` :.72-+L(�J " I � coNSULra�a :�v,;�_, �.� 7r�'�' ;�4Gi =_;-���' �aF VICINITY MAP � � L X.7PRO.IECTS1850_0140/ENGICADOlOGWEXHIBITSNICINITYMAP_PA1415.DGN _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I 10-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS • �AREA A � . � . AlO.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Enqineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 03/17/06 File:AlO.out ----- — — ----------- ------------ ----------------------------- ---- --- 850_0116 RORIPAUGH RANCH PA 14 & 15 AREA A 10-YR 1 HOUR STORM 3/14/06 SWL 1 -------------- — -------- — ----------- — --------------- — --- ------------- `"******* Hydrology Study Control Information ********** English (in-lb) Units used in input data file --------------------------------- -------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------- ----------- — ---- ----- ----------------------------- -------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Stosm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 122.000 �._ **** INITIAL AREA EVALUATION x*** Initial area flow distance = 846.7801Ft.) Top (of initial area) elevation = 266.500(Ft.} Bottom (of initial area) elevation = 249.300(Ft.) Difference in elevation = 17.200(Ft.) Slope = 0.02031 s(percent)= 2.03 TC = k(0.390)*[(lenqth^3)/(elevation change)]^0.2 Initial area time of concentration = 12.607 min. Rainfall intensity = 1.858(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.023 Decimal fraction soil group C= 0.977 Decimal fraction soil group D= 0.000 RI index for soillAMC 2) = 68.70 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.933(CFS) Total initial stream area = 2.000(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 100.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 249.300(Ft.) Downstream point/station elevation = 246.650(Ft.) Pipe length = 25.39(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 2.933(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.9331CFS) � Normal flow depth in pipe = 4.�6(In.) Flow top width inside pipe = 8.99(In.) Critical depth could not be calculated. Page 1 AlO.out � Pipe flow velocity = 12.38(Ft/s> Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.000(AC.) Runoff from this stream = 2.933(CFS) Time of concentration = 12.64 min. Rainfall intensity = 1.856(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 143.370(Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom (of initial area) elevation = 265.200(Ft.) Difference in elevation = 1.300(Ft.) Slope = 0.00907 s(percent)= 0.91 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.280 min. Rainfall intensity = 2.514(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.409(CFS) Total initial stream area = 0.200(AC.) �.- Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITZON ***' Top of street segment elevation = 265.200(Ft.) End of street segment elevation = 247.800(Ft.) Length of street segment = 632.I60(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.362(CFS) Depth of flow = 0.280(Ft.), Average velocity = 3.298(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.677(Ft.) Flow velocity = 3.30(Ft/s) Travel time = 3.19 min. TC = 10.47 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.791 Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 0.166 Decimal fraction soil group C= 0.834 Decimal fraction soil group D= 0.000 Page 2 A10.out RI index for soil(AMC 2) = 66.84 Pervious area fraction = 0.500; Impervious fraction = 0.500 l Rainfall intensity = 2.058(In/Hr) for a 10.0 year storm Subarea runoff = 3.107(CFS) for 1.910(Ac.) Total runoff = 3.516(CFS) Total area = 2.110(Ac.) Street flow at end of street = 3.516(CFS) Half street flow at end of street = 3.516(CFS) Depth of flow = 0.311(Ft.), Average velocity = 3.598(Ft/s) Flow width (from curb towards crown)= 9.223(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 100.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevat�ion = 247.800(Ft.) Downstream point/station elevation = 246.650(Ft.) Pipe length = 14.16(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.516(CFS) Nearest computed pipe diameter = 9.00(Zn.) Calculated individual pipe flow = 3.516(CFS) Normal flow depth in pipe = 5.79(In.) Flow top width inside pipe = 8.62(In.) Critical depth could not be calculated. Pipe flow velocity = 11.70(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 10.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.110(Ac.) � Runoff from this stream = 3.516(CFS) Time of concentration = 10.50 min. \ Rainfall intensity = 2.056(In/Hr) .. Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.933 12.64 1.856 2 3.516 10.50 2.056 Largest stream flow has longer or shorter time of concentration Qp = 3.516 + sum of Qa Tb/Ta 2.933 * 0.830 = 2.435 Qp = 5.951 Total of 2 streams to confluence: Flow rates before confluence point: 2.933 3.516 Area of streams before confluence: 2.000 2.110 Results of confluence: � Total flow rate = 5.951(CFS) Time of concentration = 10.495 min. Effective stream area after confluence = 4.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 246.650(Ft.) Downstream point/station elevation = 240.870(Ft.) Pipe length = 298.27(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.951(CFS) � Nearest computed pipe diameter =- 15.00(In.) Calculated individual pipe flow 5.951(CFS) Normal flow depth in pipe = 8.92(In.) Page 3 AlO.out � Flow top width inside pipe = 14.73(In.) Critical Depth = 11.85(In.) Pipe flow velocity = 7.83(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 11.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.110(Ac.) Runoff from this stream = 5.951(CFS) Time of concentration = 11.13 min. Rainfall intensity = 1.990(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 142.000 '*** INITIAL AREA EVALUATION **** Initial area flow distance = 262.220(Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom (of initial area) elevation = 263.900(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.00992 s(percent)= 0.99 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.105 min. Rainfall intensity = 2.223(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.756 Decimal fraction soil group A= 0.000 Decimal fraction soil group e= 1.000 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.722(CFS) Tota1 initial stream area = 0.430(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 144.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 263.900(Ft.) End of street segment elevation = 245.300(Ft.) Length of street segment = 722.470(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.839(CFS) Depth of flow = 0.297(Ft.), Average velocity = 3.343(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow widtn = 8.501(Ft.) F1ow velocity = 3.34(Ft/s) Travel time = 3.60 min. TC = 12.71 min. � Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.737 Page 4 � _ AlO.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 , Decimal fraction soil group C 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.850(In/Hr) for a 10.0 year storm Subarea runoff = 3.438(CFS) for 2.520(AC.) Total runoff = 4.161(CFS) Total area = 2.950(Ac.) Street flow at end of street = 4.161(CFS) Half street flow at end of street = 4.161(CFS) Depth of flow = 0.328(Ft.), Average velocity = 3.642(Ft/s) Flow width (from curb towards crown)= 10.078(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 245.300(Ft.) Downstream point/station elevation = 241.870(Ft.) Pipe length = 25.40(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.161(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.161(CFS) Normal flow depth in pipe = 5.47(In.) Flow top width inside pipe = 8.79(In.) Critical depth could not be calculated. Pipe flow velocity = 14.82(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.�4 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 �o Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 — Stream flow area = 2.950(Ac.) Runoff from this stream = 4.161(CFS) Time of concentration = 12.74 min. Rainfall intensity = 1.848(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 527.780(Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom (of initial area) elevation = 256.120(Ft.) Difference in elevation = 10.380(Ft.) Slope = 0.01967 s(percent)= 1.97 TC = k(0.390)*[(length^3)/(elevation changel]^0.2 Initial area time of concentration = 10.503 min. Rainfall intensity = 2.055(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.953 Decimal fraction soil group C= 0.047 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.61 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.344(CFS) Total initial stream area = 1.520(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 154.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDZTION **** Top of street segment elevation = 256.120(Ft.) Page 5 AlO.out � End of street segment elevation = 248.700(Ft.) Length of street segment 792.080(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hzl = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.678(CFS) Depth of flow = 0.364(Ft.), Average velocity = 2.401(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.855(Ft.) F1ow velocity = 2.40(Ft/s) Travel time = 5.50 min. TC = 16.00 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.724 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.630(In/Hr) for a 10.0 year storm Subarea runoff = 2.042(CFS) for 1.730(Ac.) Total runoff = 4.386(CFS) Total area = 3.250(AC.) Street flow at end of street = 4.386(CFS) Half street flow at end of street = 4.386(CFS) Depth of flow = 0.382(Ft.), Average velocity = 2.503(Ft/s) Flow width (from curb towards crown)= 12.751(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/sta�ion elevation = 248.700(Ft.) Downstream point/station elevation = 248.170(Ft.) Pipe length = 160.66(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.386(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe £low = 4.386(CFS) Normal flow depth in pipe = 11.39(In.) Flow top width inside pipe = 17.35(In.) Critical Depth = 9.63(In.) Pipe flow velocity = 3.72(Ft/s) Travel time through pipe = 0.72 min. Time of concentration (TC) = 16.72 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++�++++++++++++++ Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.250(Ac.) Runoff from this stream = 4.386(CFS) Time of concentration = 16.72 min. Rainfall intensity = 1.591(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 160.000 **** INITIAL AREA EVALUATION **** � Initial area flow distance = 216.720(Ft.) Top (of initial area) elevation = 260.500(Ft.) Page 6 AlO.out � Bottom (of initial area) elevation = 259.900(Ft.) Difference in elevation = 0.600(Ft.) Slope = 0.00277 s(percent)= 0.28 TC = k(0.390)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.889 min. Rainfall intensity = 2.014(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.746 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.827(CFS) Tota1 initial stream area = 0.550(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 162.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 259.900(Ft.) End of street segment elevation = 246.670(Ft.) Length of street segment = 1101.900(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to cross£all grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) � Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.886(CFS) Depth of flow = 0.330(Ft.), Average velocity = 2.496(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.146(Ft.l Flow velocity = 2.50(Ft/s) Travel time = 7.36 min. TC = 18.25 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.716 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.517(In/Hr) for a 10.0 year storm Subarea runoff = 2.976(CFS) for 2.740(AC.) Total runoff = 3.802(CFS) Total area = 3.290(AC.) Street flow at end of street = 3.802(CFS) Half street flow at end of street = 3.802(CFS) Depth of flow = 0.355(Ft.f, Average velocity = 2.661(Ft/s) Flow widtn (from curb towards crown)= 11.412(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 162.000 �**` STREET FLOW TRAVEL TIME + SUBAREA FLOW RDDITION **** Top of street segment elevation = 259.700(Ft.) End of street segment elevation = 246.6701Ft.) Length of street segment = 785.310(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Page 7 AlO.out � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [l� side(s) of the street Distance from curb to property line S.S00(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.606(CFS) Depth of flow = 0.358(Ft.), Average velocity = 3.150(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.557(Ft.) F1ow velocity = 3.15(Ft/s) Travel time = 4.16 min. TC = 22.40 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.704 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.�0 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.355(In/Hr) for a 10.0 year storm Subarea rur.off = 1.325(CFS) for 1.390(Ac.) Total runoff = 5.128(CFS) Total area = 4.680(Ac.) Street flow at end of street = 5.128(CFS) Half street flow at end of street = 5.128(CFS) Depth of flow = 0.368(Ft.), Average velocity = 3.230(Ft/s) Flow width (from curb towards crown)= 12.086(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 164.000 **** PZPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 246.670(Ft.) Downstream point/station elevation = 241.870(Ft.) Pipe length = 14.19(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.128(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.128(CFS) Normal flow depth in pipe = 4.68(In.) Flow top width inside pipe = 8.99(in.) Critical depth could not be calculated. Pipe flow velocity = 22.13(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 22.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 4.680(Ac.) Runoff from this stream = 5.128(CFS) Time of concentration = 22.41 min. Rainfall intensity = 1.354(In/Hr) Sununary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.161 12.74 1.848 2 4.386 16.72 1.591 3 5.128 22.41 1.354 Largest stream flow has longer time of concentration Qp = 5.128 + sum of � Qb Ia/Ib 4.161 * 0.733 = 3.049 Qb Ia/Ib Page 8 AlO.out � 4.386 * 0.851 = 3.733 Qp = 11.910 Total of 3 streams to confluence: Flow rates before confluence point: 4.161 4.386 5.128 Area of streams before confluence: 2.950 3.250 4.680 Results of confluence: Total flow rate = 11.910(CFS) Time of concentration = 22.412 min. Effective stream area after confluence = 10.880(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 241.870(Ft.) Downstream point/station elevation = 240.870(Ft.) Pipe length = 283.75(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.910(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 11.910(CFS) Normal flow depth in pipe = 17.58(In.) Flow top width inside pipe = 21.25(In.) Critical Depth = 14.87(In.) Pipe flow velocity = 4.83(Ft/s) Travel time through pipe = 0.98 min. Time of concentration (TC) = 23.39 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 **** CONFLUENCE OF MAIN STREAMS �*** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 10.880(AC.) Runoff from this stream = 11.910(CFS) Time of concentration = 23.39 min. Rainfall intensity = 1.323(In/Hr) � Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.951 11.13 1.990 2 11.910 23.39 1.323 Largest stream flow has longer time of concentration Qp = 11.910 + sum of Qb Ia/Ib 5.951 * 0.665 = 3.956 Qp = 15.865 Tota1 of 2 main streams to confluence: F1ow rates before confluence point: 5.951 11.910 Area of streams before confluence: 4.110 10.880 Results of confluence: Total flow rate = 15.865(CFS) Time of concentration = 23.392 min. Effective stream area after confluence = 14.990(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 240.870(Ft.) Page 9 AlO.out Downstream point/station elevation = 239.400(Ft.) Pipe length = 276.91(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 15.865(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 15.865(CFS) Normal flow depth in pipe = 18.69(In.) F1ow top width inside pipe = 19.65(In.) Critical Depth = 17.23(In.) Pipe flow velocity = 5.98(Ft/s) Travel time through pipe = 0.77 min. Time of concentration (TC) = 24.16 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **'* CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 14.990(Ac.) Runoff from this stream = 15.865(CFS) Time of concentration = 24.16 min. Rainfall intensity = 1.299(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** ZNITIAL AREA EVALUATION **** Initial area flow distance = 255.800(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 273.400(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.00665 s(percent)= 0.66 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.766 min. Rainfall intensity = 2.139(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.802 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.874(CFS) Tota1 initial stream area = 0.510(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.400(Ft.) End of street segment elevation = 251.700(Ft.) Length of street segment = 591.900(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.860(CFS) Depth of flow = 0.253(Ft.), Average velocity = 3.523(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.335(Ft.) Flow velocity = 3.52(Ft/s) Page 10 AlO.out Travel time = 2.80 min. TC = 12.57 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.806 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.862(In/Hr) for a 10.0 year storm Subarea runoff = 1.726(CFS) for 1.150(Ac.) Total runoff = 2.600(CFS) Total area = 1.660(Ac.) Street flow at end of street = 2.600(CFS) Half street flow at end of street = 2.600(CFS) Depth of flow = 0.277(Ft.), Average velocity = 3.769(Ft/s) Flow width (from curb towards crown)= 7.505(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/S[ation 116.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDZTION **x* Top of street segment elevation = 251.700(Ft.) End of street segment elevation = 239.800lFt.) Length of street segment = 995.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz> = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.049(CFS) Depth of flow = 0.361(Ft.), Average velocity = 2.696(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.727(Ft.) Flow velocity = 2.70(Ft/s) Travel time = 6.15 min. TC = 18.72 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.739 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.570 Decimal fraction soil group C= 0.430 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.59 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.495(In/Hr) for a 10.0 year storm Subarea runoff = 2.045(CFS) for 1_850(AC.) Total runoff = 4.645(CFS) Total area = 3.510(Ac.) Street flow at end of street = 4.645(CFS) Half street flow at end of street = 4.645(CFS) Depth of flow = 0.375(Ft.), Average velocity = 2.784(Ft/s) Flow width (from curb towards crown)= 12.416(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 239.800(Ft.) Downstream point/station elevation = 239.400(Ft.) Pipe length = 16.26(Ft.) Manning's N= 0.013 No_ of pipes = 1 Required pipe flow = 4.645(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.645(CFS) Normal flow depth in pipe = 8.36(In.) Page 11 AlO.out � Flow top width inside pipe = 11.04(In.) Critical Depth = 10.75(In.) Pipe flow velocity = 7.96(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 18.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.510(AC.) Runoff from this stream = 4.645(CFS) Time of concentration = 18.75 min. Rainfall intensity = 1.494(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 182.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 295.960(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 266.500(Ft.) Difference in elevation = 8.600(Ft.) S1ope = 0.02906 5(percent)= 2.91 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.707 min. Rainfall intensity = 2.436(Zn/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.811 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 � RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.850(CFS) Total initial stream area = 0.430(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 182.000 to Point/Station 184.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 266.500(Ft.) End of street segment elevation = 249.300(Ft.) Length of street segment = 799.230(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) S1ope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.l Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.599(CFS) Depth of flow = 0.297(Ft.), Average velocity = 3.057(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.505(Ft.) F1ow velocity = 3.06(Ft/s) Travel time = 4.36 min. TC = 12.06 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.792 � Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Page 12 AlO.out Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.904(In/Hr) for a 10.0 year storm Subarea runoff = 2.670(CFS) for 1.770(Ac.) Total runoff = 3.520(CFS) Total area = 2.200(Ac.) Street flow at end of street = 3.520(CFS) Half street flow at end of street = 3.520(CFS) Depth of flow = 0.322(Ft.), Average velocity = 3.272(Ft/s) Flow width (from curb towards crown)= 9.743(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 184.000 to Point/Station 186.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 249.300(Ft.) End of street segment elevation = 245.300(Ft.) Length of street segment = 276.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.928(CFS) Depth of flow = 0.349(Ft.), Average velocity = 2.880(Ft/s) Streetflow hydraulics at midpoint of street travel: � Halfstreet flow width = 11.124(Ft.) Flow velocity = 2.88(Ft/s) Travel time = 1.60 min. TC = 13.66 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.748 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.734 Decimal fraction soil group C= 0.266 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 59.46 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.778(In/Hr) for a 10.0 year storm Subarea runoff = 0.678(CFS) for 0.510(AC.) Total runoff = 4.198(CFS) Total area = 2.710(Ac.) Street flow at end of street = 4.198(CFS) Half street flow at end of street = 4.198(CFS) Depth of flow = 0.355(Ft.), Average velocity = 2.925(Ft/s) Flow width (from curb towards crown)= 11.440(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 186.000 to Point/Station 188.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 245.300(Ft.) End of street segment elevation = 239.500(Ft.) Length of street segment = 289.420(Ft.) Heignt of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) S1ope from gutter to grade break (v/hz) = 0.087 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Page 13 AlO.out � Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.353(CFS) Depth of flow = 0.344(Ft.), Average velocity = 3.342(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.843(Ft.) Flow velocity = 3.34(Ft/s) Travel time = 1.44 min. TC = 15.11 min. Adding area flow to street ' COMMERCIAL subarea type Runoff Coefficient = 0.865 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.682(In/Hr) for a 10.0 year storm Subarea runoff = 0.291(CFS) for 0.200(Ac.) Total runoff = 4.489(CFS) Total area = 2.910(Ac.) Street flow at end of street = 4.489(CFS) Half street flow at end of street = 4.489(CFS) " Depth of flow = 0.346(Ft.), Average velocity = 3.366(Ft/s) Flow width (from curb towards crown)= 10.986(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 188.000 to Point/Station 104.000 **** PIPEFLOW TR.AVEL TIME (Program estimated size) **** Upstream point/station elevation = 239.500(Ft.) Downstream point/station elevation = 239.400(Ft.) Pipe length = 27.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.489(CFS) Nearest computed pipe diameter = 18.00(In.) � Calculated individual pipe flow = 4.489(CFS) Normal flow depth in pipe = 11.13(In.) Flow top width inside pipe = 17.49(In.) Critical Depth = 9.75(In.) Pipe flow velocity = 3.91(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 15.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: l in normal stream number 3 Stream flow area = 2.910(Ac.) Runoff from this stream = 4.489(CFS) Time of concentration = 15.22 min. Rainfall intensity = 1.675(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.865 24.16 1.299 2 4.645 18.75 1.494 3 4.489 15.22 1.675 Largest stream flow has longer time of concentration Qp = 15.865 + sum of Qb Ia/Ib 4.645 * 0.870 = 4.041 Qb Ia/Ib 4.489 * 0.776 = 3.482 4P = 23.388 Total of 3 streams to confluence: Flow rates before confluence point: 15.865 4.645 4.489 Page 14 AlO.out � Area of streams before confluence: 14.990 3.510 2.910 Results of confluence: Tota1 flow rate = 23.388(CFS) Time of concentration = 24.164 min. Effective stream area after confluence = 21.410(Ac.) End of computations, total study area = 21.41 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.523 Area averaged RI index number = 62.1 Page 15 � AREA B � . B10.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/08/06 File:BlO.out --------------------------------------------------------------- 850_0116 RORIPAUGH RANCH PA 14 & 15 AREA B 10-YR 1 HOUR STORM 9/7/06 SWL -- ----- — - — ------------------------------------------------------ -- ********* HydrolOgy StUdy COntr01 InfOrmdtiOn ********** English (in-lb) Units used in input data file ----------------- ------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) 51ope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 222.000(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 274.200(Ft.) Difference in elevation = 0.900(Ft.) Slope = 0.00405 s(percent)= 0.41 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.187 min. Rainfall intensity = 2.090(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.800 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.769(CFS) Total initial stream area = 0.460(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 274.200(Ft.) End of street segment elevation = 257.700(Ft.) Length of street segment = 583.400(Ft.) Height of curb above gutter flowline = 6.0(Zn.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 � S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 B10.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) _ Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.964(CFS) Depth of flow = 0.266(Ft.), Average velocity = 3.209(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.966(Ft.) Flow velocity = 3.21(Ft/s) Travel time = 3.03 min. TC = 13.22 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.747 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.780 Decimal fraction soil group C= 0.220 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 58.86 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.811(In/Hr) for a 10.0 year storm Subarea runoff = 1.935(CFS) for 1.430(Ac.) Total runoff = 2.703(CFS) Total area = 1.890(AC.) Street flow at end of street = 2.703(CFS) Half street flow at end of street = 2.703(CFS) Depth of flow = 0.289(Ft.), Average velocity = 3.431(Ft/s) Flow width (from curb towards crown)= 8.131(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.890(Ac.) Runoff from this stream = 2.703(CFS) Time of concentration = 13.22 min. Rainfall intensity = 1.811(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 204.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.819(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.736 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 13.11 min. Rain intensity = 1.82(In/Hr) Total area = 2.86(AC.) Total runoff = 4.30(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in nornial stream number 2 Stream flow area = 2.860(Ac.) Runoff from this stream = 4.304(CFS) Time of concentration = 13.11 min. Rainfall intensity = 1.819(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity � No. (CFS) (min) (In/Hr) Page 2 B10.out 1 2.703 13.22 1.811 2 4.304 13.11 1.819 � Largest stream flow has longer or shorter time of concentration . Qp = 4.304 + sum of Qa Tb/Ta 2.703 * 0.992 = 2.682 Qp = 6.986 Total of 2 streams to confluence: Flow rates before confluence point: 2.703 4.304 Area of streams before confluence: 1.890 2.860 Results of confluence: Tota1 flow rate = 6.986(CFS) Time of concentration = 13.110 min. Effective stream area after confluence = 4.750(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 257.700(Ft.) Downstream point/station elevation = 256.700(Ft.) Pipe length = 27.13(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.986(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 6.986(CFS) Normal flow depth in pipe = 8.05(In.) Flow top width inside pipe = 14.96(In.) Critical Depth = 12.71(In.) Pipe flow velocity = 10.40(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.15 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.750(Ac.) Runoff from this stream = 6.986(CFS) Time of concentration = 13.15 min. Rainfall intensity = 1.816(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 146.100(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 274.500(Ft.) Difference in elevation = 0.600(Ft.) Slope = 0.00411 s(percent)= 0.41 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.595 min. Rainfall intensity = 2.294(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.807 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.370(CFS) Total initial stream area = 0.200(Ac.) Pervious area fraction = 0.500 Page 3 B10.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 212.000 � **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 274.500(Ft.) End of street segment elevation = 257.700(Ft.) Length of street segment = 616.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.388(CFS) Depth of flow = 0.244(Ft.), Average velocity = 2.957(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.856(Ft.) Flow velocity = 2.96(Ft/s) Travel time = 3.47 min. TC = 12.07 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.756 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.715 Decimal fraction soil group C= 0.285 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 59.70 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.904(In/Hr) for a 10.0 year storm Subarea runoff = 1.582(CFS) for 1.100(AC.) Total runoff = 1.952(CFS) Total area = 1.300(AC.) Street flow at end of street = 1.952(CFS) Half street flow at end of street = 1.952(CFS) Depth of flow = 0.267(Ft.), Average velocity = 3.158(Ft/s) Flow width (from curb towards crown)= 7.011(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 257.700(Ft.) Downstream point/station elevation = 256.700(Ft.) Pipe length = 16.30(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 1.952(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.952(CFS) Normal flow depth in pipe = 4.38(In.) Flow top width inside pipe = 9.00(In.) Critical Depth = 7.63(In.) Pipe flow velocity = 9.17(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.10 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** - Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.300(Ac.) Runoff from this stream = 1.952(CFS) Time of concentration = 12.10 min. Rainfall intensity = 1.901(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 4 B10.out Process from Point/Station 130.000 to Point/Station 206.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ` Rainfall intensity = 1.950(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.743 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 11.55 min. Rain intensity = 1.95(In/Hr) Total area = 17.99(Ac.) Total runoff = 22.83(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 17.990(AC.) Runoff from this stream = 22.829(CFS) Time of concentration = 11.55 min. Rainfall intensity = 1.950(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.986 13.15 1.816 2 1.952 12.10 1.901 3 22.829 11.55 1.950 Largest stream flow has longer or shorter time of concentration Qp = 22.829 + sum of Qa Tb/Ta 6.986 * 0.878 = 6.134 Qa Tb/Ta 1.952 * 0.955 = 1.864 4P = 30.827 Total of 3 streams to confluence: F1ow rates before confluence point: 6.986 1.952 22.829 Area of streams before confluence: 4.750 1.300 17.990 Results of confluence: Total flow rate = 30.827(CFS) Time of concentration = 11.550 min. Effective stream area after confluence = 24.040(AC.) End of computations, total study area = 24.04 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.7 Page 5 � 100-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS � AREA A � A100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 03/17/06 File:Al00.out ------------------------------- --- ---------- — - — ------------- ------- 850_0116 RORIPAUGH RANCH PA 14 & 15 AREA A 100-YR 1 HOUR STORM 3/14/06 SWL ---------------------------------------------------------------- **'**"*** Hydrology Study Control Information ********** English (in-lb) Units used in input data file ----------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ----------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) � 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 122.000 `�_-. **'* INITIAL AREA EVALUATION '*** Initial area flow dist�nce = 846.780(Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom (of initial area) elevation = 249.300(Ft.) Difference in elevation = 17.200(Ft.) Slope = 0.02031 s(percent)= 2.03 TC = k(0.390)*[(length^3)/(elevation change)J^0.2 Initial area time of concentration = 12.607 min. Rainfall intensity = 2.830(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.820 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.023 Decimal fraction soil group C= 0.977 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 68.70 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 4.644(CFS) Tota1 initial stream area = 2_000(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 100.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 249.300lFt.) Downstream point/station elevation = 246.650(Ft.) Pipe length = 25.39(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.644(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.644(CFS) Normal flow depth in pipe = 6.49(In.) Flow top width inside pipe = 8.08(In.) Critical depth could not be calculated. Page 1 A100.out . Pipe flow velocity = 13.63(Ft/s) Travel time through pipe = 0.03 min. � Time of concentration (TC) = 12.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream ntunber: 1 in normal stream number 1 Stream flow area = 2.000(AC.) Runoff from this stream = 4.644(CFS) Time of concentration = 12.64 min. Rainfall intensity = 2.826(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 ***" INITIAL AREA EVALUATION **** Initial area flow distance = 143.370(Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom (of initial area) elevation = 265.200(Ft.) Difference in elevation = 1.300(Ft.) S1ope = 0.00907 s(percent)= 0.91 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.280 min. Rainfall intensity = 3.82811n/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.839 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.642(CFS) 1 Total initial stream area = 0.200(Ac.) .. Pervious area fraction = 0.500 _ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 265.200(Ft.) End of street segment elevation = 247.800(Ft.) Length of street segment = 632.160(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 51ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.710(CFS) Depth of flow = 0.316(Ft.), Average velocity = 3.641(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.445(Ft.) Flow velocity = 3.64(Ft/s) Travel time = 2.89 min. TC = 10.17 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 0.166 Decimal fraction soil group C= 0.834 Decimal fraction soil qroup D= 0.000 Page 2 A100.out � RI index for soil(AMC 2) = 66.84 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.185(In/Hr) for a 100.0 year storm Subarea runoff = 5.004(CFS) for 1.910(Ac.) Total runoff = 5.646(CFS) Total area = 2.110(Ac.) Street flow at end of street = 5.646(CFS) Half street flow at end of street = 5.646(CFS) Depth of flow = 0.353(Ft.), Average velocity = 4.010(Ft/s) Flow width (from curb towards crown)= 11.319(et.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 100.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 247.800(Ft.) Downstream point/station elevation = 246.650(Ft.) Pipe length = 14.16(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.646(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.646(CFS) Normal flow depth in pipe = 6.39(In.) F1ow top width inside pipe = 11.97(In.) Critical Depth = 11.33(In.) Pipe flow velocity = 13.27(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 10.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 **'* CONFLUENCE OF MINOR STREAMS **** A1ong Main Stream number: 1 in normal stream number 2 Stream flow area = 2.110(AC.) Runoff from this stream = 5.646(CFS) Time of concentration = 10.19 min. Rainfall intensity = 3.182(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.644 12.64 2.826 2 5.646 10.19 3.182 Largest stream flow has longer or shorter time of concentration Qp = 5.646 + sum of Qa Tb/Ta 4.644 * 0.806 = 3.745 Qp = 9.391 Total of 2 streams to confluence: Flow rates before confluence point: 4.644 5.646 Area of streams before confluence: 2.000 2.110 Results of confluence: Tota1 flow rate = 9.391(CFS) Time of concentration = 10.191 min. Effective stream area after confluence = 4.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 �*** PIPEFLOW TRAVEL TIME (Program estimated size) ***" Upstream point/station elevation = 246.650(Ft.) Downstream point/station elevation = 240.870(Ft.) Pipe length = 298.27(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.391(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pioe flow = 9.391(CFS) Normal flow depth in pipe = 10.49(In.) Page 3 A100.out Flow top width inside pipe = 17.75(In.) Critical Depth = 14.22(In.) Pipe flow velocity = 8.78(Ft/s) Travel time through pipe = 0.57 min. Time of concentration (TC) = 10.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 *�*� CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.110(AC.) Runoff from this stream = 9.391(CFS) Time of concentration = 10.76 min. Rainfall intensity = 3.088(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 142.000 **** INITIAL AREA EVRLUATION **** Initial area flow distance = 262.220(Ft.) Top (of initial area) elevation = 266.500(Ft.) Bottom (of initial area) elevation = 263.900(Ft.) Difference in elevation = 2.600(Ft.) S1ope = 0.00992 s(percent)= 0.99 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.105 min. Rainfall intensity = 3.385(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.794 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 __ RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.155(CFS) Total initial stream area = 0.430(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 144.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 263.900(Ft.) End of street segment elevation = 245.300(Ft.) Length of street segment = 722.470(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.540(CFS) Depth of flow = 0.336(Ft.), Average velocity = 3.716(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.465(Ft.) Flow velocity = 3.72(Ft/s) Travel time = 3.24 min. TC = 12.35 min. • Adding area flow to street SZNGLE FAMZLY (1/4 Acre Lot) Runoff Coe£ficient = 0.779 Page 4 A100.out � Decimal fraction soil group A= 0.000 ' Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.863(In/Hr) for a 100.0 year storm Subarea runo£f = 5.624(CFS) for 2.520(AC.) Total runoff = 6.779(CFS) Total area = 2.950(Ac.) Street flow at end of street = 6.779(CFS) Half street flow at end of street = 6.779(CFS) Depth of flow = 0.374(Ft.), Average velocity = 4.081(Ft/s) Flow width (from curb towards crown)= 12.388(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 245.300(Ft.) Downstream point/station elevation = 241.870(Ft.) Pipe length = 25.40(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.779(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.779(CFS) Normal flow depth in pipe = 6.13(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 16.82(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS •*** � Along Main Stream number: 2 in normal stream number 1 Stream flow area = 2.950(Ac.) Runoff from this stream = 6.779(CFS) Time of concentration = 12.37 min. Rainfall intensity = 2.860(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** Znitial area flow distance = 527.7801Ft.) Top (of initial area) elevation = 266.500{Ft.) Bottom (of initial area) elevation = 256.120(Ft.) • Difference in elevation = 10.380(Ft.) Slope = 0.01967 s(percent)= 1.97 TC = k(0.390)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.503 min. Rainfall intensity = 3.129(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.953 Decimal fraction soil group C= 0.047 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.61 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.754(CFS) Total initial stream area = 1.520(Ac.} Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 154.000 **** STREET FLOW TRAVEL TINIE + SUBAREA FLOW ADDITION **** Top of street segment elevation = 256.120(Ft.) Page 5 A100.out � End of street segment elevation = 248.700(Ft.) Length of street segment 792.080(Ft.) Height of curb above gutter flowline 6.0lIn.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [17 side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.890(CFS) Depth of flow = 0.414(Ft.), Average velocity = 2.685(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.377(Ft.) Flow velocity = 2.69(Ft/s) Travel time = 4.92 min. TC = 15.42 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.768 Decimal fraction soil group A= 0.000 . Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soillAMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.534(In/Hr) for a 100.0 year storm Subarea runoff = 3.368(CFS) for 1.730(Ac.) Total runoff = 7.122(CFS) Total area = 3.250(Ac.) Street flow at end of street = 7.122(CFS) Half street flow at end of street = 7.122(CFS) Depth of flow = 0.437(Ft.), Average velocity = 2.811(Ft/s) � Flow width (from curb towards crown)= 15.514(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 248.700(Ft.) Downstream point/station elevation = 248.170(Ft.) Pipe length = 160.66(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.122(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 7.122(CFS) Normal flow depth in pipe = 13.99(In.) Flow top width inside pipe = 19.80(In.) Critical Depth = 11.85(In.) Pipe flow velocity = 4.19(Ft/s) Travel time through pipe = 0.64 min. Time of concentration (TC) = 16.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.250(Ac.) Runoff from this stream = 7.122(CFS) Time of concentration = 16.06 min. Rainfall intensity = 2.478(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 160.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 216.720(Ft.) Top (of initial area) elevation = 260.500(Ft.) Page 6 A100.out Bottom (of initial area) elevation = 259.900(Ft.) Difference in elevation = 0.600(Ft.) Slope = 0.00277 s(percent)= 0.28 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.889 min. Rainfall intensity = 3.068(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.785 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.325(CFS) Total initial stream area = 0.550(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 162.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 259.900(Ft.) End of street segment elevation = 246.670(Ft.) Length'of street segment = 1101.900(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [lj sidels) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 _ Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.626(CFS) Depth of flow = 0.374(Ft.), Average velocity = 2.786(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.384(Ft.) Flow velocity = 2.79(Ft/s) Travel time = 6.59 min. TC = 17.48 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.762 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.365(In/Hr) for a 100.0 year storm Subarea runoff = 4.936(CFS) for 2.7401Ac.) Total runoff = 6.261(CFS) Total area = 3.290(AC.) Street flow at end of street = 6.2611CFS) Ha1f street flow at end of street = 6.261lCFS) Depth of flow = 0.407(Ft.), Average velocity = 2.994(Ft/s) Flow width (from curb towards crown)= 14.015(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 162.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 259.7001Ft.) End of street segment elevation = 246.670(Ft.) Length of street segment = 785.310(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Page 7 A100.out Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street . Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.584(CFS) Depth of flow = 0.410(Ft.), Average velocity = 3.546(Ft/s) Streetflow hydraulics at midpoint o£ street travel: Halfstreet flow width = 14.186(Ft.) Flow velocity = 3.55(Ft/s) Travel time = 3.69 min. TC = 21.17 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.752 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.128(In/Hr) for a 100.0 year storm Subarea runoff = 2.223(CFS) for 1.390(AC.) Total runoff = 8.485(CFS) Total area = 4.680(Ac.) Street £low at end of street = 8.485(CFS) Half street flow at end of street = 8.485(CFS) Depth of flow = 0.423(Ft.), Average velocity = 3.642(Ft/s) Flow width (from curb towards crown)= 14.841(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 164.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 246.670(Ft.) -- Downstream point/station elevation = 241.870(Ft.) Pipe length = 14.19(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.485(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 8.485(CFS) Normal flow depth in pipe = 6.56(In.) ' Flow top width inside pipe = 8.00(In.) Critical depth could not be calculated. Pipe flow velocity = 24.58(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 21.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 164.000 **** CONFLUENCE OF MZNOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 4.680(Ac.) Runoff from this stream = 8.485(CFS) Time of concentration = 21.18 min. Rainfall intensity = 2.128(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.779 12.37 2.860 2 7.122 16.06 2.478 3 8.485 21.18 2.128 Largest stream flow has longer time of concentration Qp = 8.485 + sum of Qb Ia/Ib � 6.779 * 0.744 = 5.043 Qb Ia/Ib Page 8 A100.out 7.122 * 0.859 = 6.116 Qp = 19.644 Tota1 of 3 streams to confluence: Flow rates before confluence point: 6.779 7.122 8.485 Area of streams before confluence: 2.950 3.250 4.680 Results of confluence: Total flow rate = 19.644(CFS) Time of concentration = 21.181 min. Effective stream area after confluence = 10.880(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 102.000 � **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 241.870(Ft.) Downstream point/station elevation = 240.870(Ft.) Pipe length = 283.75(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 19.644(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 19.644(CFS) Normal flow depth in pipe = 20.44(In.) Flow top width inside pipe = 27.96(In.) Critical Depth = 18.05(In.) Pipe flow velocity = 5.52(Ft/s) Travel time through pipe = 0.86 min. Time of concentration (TC) = 22.04 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 10.880(AC.) Runoff from this stream = 19.644(CFS) Time of concentration = 22.04 min. Rainfall intensity = 2.08211n/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 9.391 10.76 3.088 2 19.644 22.04 2.082 Largest stream flow has longer time of concentration Qp = 19.644 + sum of Qb Ia/Ib 9.391 * 0.674 = 6.330 Qp = 25.974 Total of 2 main streams to confluence: Flow rates before confluence point: 9.391 19.644 Area of streams before confluence: 4.110 10.880 Results of confluence: Total flow rate = 25.974(CFS) Time of concentration = 22.038 min. Effective stream area after confluence = 14.990(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 '*** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 240.870(Ft.) Page 9 A100.out � Downstream point/station elevation = - 239.400(Ft.) Pipe length 276.91(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow 25.974(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 25.974(CFS). Normal flow depth in pipe = 21.61(In.) F1ow top width inside pipe = 26.93(In.) Critical Depth = 20.84(In.) Pipe flow velocity = 6.86(Ft/s) Travel time through pipe = 0.67 min. Time of concentration (TC) = 22.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 14.990(Ac.) Runoff from this stream = 25.974(CFS? Time of concentration = 22.71 min. Rainfall intensity = 2.048(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 255.800(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 273.400(Ft.) Difference in elevation = 1.700(Ft.) Slope = 0.00665 s(percent)= 0.66 TC = k(0.390)*((length"3)/(elevation change)]^0.2 Initial area time of concentration = 9.766 min. Rainfall intensity = 3.257(In/Hr) for a 100.0 year storm � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.379(CFS) Total initial stream area = 0.510(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.400(Ft.) End of street segment elevation = 251.700(Ft.) Length of street segment = 591.900(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) 51ope from gutter to grade break (v/hz) = 0.087 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.933(CFS) Deoth of flow = 0.286(Ft.), Average velocity = 3.867(Ft/s) Streetflow hydraulics at midpoint of street travel: • Halfstreet flow width = 7.950(Ft.) Flow velocity = 3.87(Ft/s) Page 10 A100.out � Travel time = 2.55 min. TC = 12.32 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.837 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 • Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.867(In/Hr) for a 100.0 year storm Subarea runoff = 2.758(CFS) for 1.150(Ac.) Total runoff = 4.137(CFS) Total area = 1.660(Ac.) Street flow at end of street = 4.137(CFS) Half street flow at end of street = 4.137(CFS) Depth of flow = 0.313(Ft.), Average velocity = 4.17o(Ft/s) Flow width (from curb towards crown)= 9.303iFt.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 251.700(Ft.) End of street segment elevation = 239.800(Ft.) Length of street segment = 995.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) • Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 - Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.442(CFS) Depth of flow = 0.410(Ft.), Average velocity = 3.010(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.190(Ft.) Flow velocity = 3.01(Ft/s) Travel time = 5.51 min. TC = 17.83 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.782 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.570 Decimal £raction soil group C= 0.430 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.59 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.339(In/Hr) for a 100.0 year storm Subarea runoff = 3.384(CFS) for 1.850(Ac.) Total runoff = 7.521(CFS) Total area = 3.510(Ac.) Street flow at end of street = 7.521(CFS) Half street flow at end of street = 7.521(CFS) Depth of flow = 0.429(Ft.), Average velocity = 3.124(Ft/s) Flow width (from curb towards crown)= 15.102(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 239.800(Ft.) Downstream point/station elevation = 239.400(Ft.) Pipe length = 16.26(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.521(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 7.521(CFS) No�al flow depth in pipe = 9.62(In.) Page 11 A100.out � Flow top width inside pipe = 14.39(In.) Critical Depth = 13.09(In.) Pipe flow velocity = 9.04(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 17.86 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.510(Ac.) Runoff from this stream = 7.521(CFS) Time of concentration = 17.86 min. Rainfall intensity = 2.337(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 182.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 295.960(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 266.500lFt.) Difference in elevation = 8.600(Ft.) Slope = 0.02906 s(percent)= 2.91 TC = k(0.390)*[(length^3)/lelevation change)]^0.2 Initial area time of concentration = 7.707 min. Rainfall intensity = 3.710(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.837 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 � RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 _ Znitial subarea runoff = 1.336(CFS) Total initial stream area = 0.430(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 182.000 to Point/Station 184.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 266.500(Ft.) End of street segment elevation = 249.300(Ft.) Length of street segment = 799.230(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.086(CFS) Depth of flow = 0.335(Ft.), Average velocity = 3.385(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.394(Ft.) Flow velocity = 3.39(Ft/s) Travel time = 3.94 min. TC = 11.64 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) � Runoff Coefficient = 0.824 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Page 12 A100.out Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.957(In/Hr) for a 100.0 year storm Subarea runoff = 4.314(CFS) for 1.770(Ac.) Total runoff = 5.650(CFS) Total area = 2.200(AC.) Street flow at end of street = 5.650(CFS) Half street flow at end of street = 5.650(CFS) Depth o£ flow = 0.365(Ft.), Average velocity = 3.650(Ft/s) Flow width (from curb towards crown)= 11.921(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 184.000 to Point/Station 186.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITZON **** Top of street segment elevation = 249.300(Ft.) End of street segment elevation = 245.300(Ft.) Length of street segment = 276.500(Ft.) Height of curb above gutter flowline = 6.0(Zn.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.304(CFS) Depth of flow = 0.3971Ft.), Average velocity = 3.220(Ft/s) Streetflow hydraulics at midpoint of street travel: � Halfstreet flow width = 13.533(Ft.) Flow velocity = 3.22(Ft/s) Travel time = 1.43 min. TC = 13.07 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.734 Decimal fraction soil group C= 0.266 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 59.46 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensiGy = 2.774(In/Hr) for a 100.0 year storm Subarea runoff = 1.116(CFS) for 0.510(AC.) Total runoff = 6.766(CFS) Total area = 2.710(AC.) Street flow at end of street = 6.766(CFS) Hal£ street flow at end of street = 6.766(CFS) Depth of flow = 0.405(Ft.), Average velocity = 3.275(Ft/s) Flow width (from curb towards crown)= 13.926(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 186.000 to Point/Station 188.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 245.300(Ft.) End of street segment elevation = 239.500(Ft.) Length of street segment = 289.420(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.l Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) � Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Page 13 A100.out � Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.015(CFS) Depth of flow = 0.391(Ft.), Average velocity = 3.739(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.227(Ft.) Flow velocity = 3.74(Ft/s) Travel time = 1.29 min. TC = 14.36 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.874 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 �ecimal fraction soil group C= 0.000 �ecimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 2ervious area fraction = 0.100; Impervious fraction = 0.900 _ Rainfall intensity = 2.634(In/Hr) for a 100.0 year storm Subarea runoff = 0.461(CFS) for 0.200(Ac.) Total runoff = 7.226(CFS) Total area = 2.910(Ac.) Street flow at end of street = 7.226(CFS) Half street flow at end of street = 7.226(CFS) Depth of flow = 0.394(Ft.), Average velocity = 3.766(Ft/s) Flow width (from curb towards crown)= 13.388(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 188.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 239.500(Ft.) Downstream point/station elevation = 239.400(Ft.) Pipe length = 27.14(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.226(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 7.226(CFS) Normal flow depth in pipe = 13.59(In.) Flow top width inside pipe = 20.07(In.) Critical Depth = 11.93(In.) Pipe flow velocity = 4.39(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 14.47 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 2.910(Ac.) Runoff from this stream = 7.226(CFS) Time of concentration = 14.47 min. Rainfall intensity = 2.624(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 25.974 22.71 2.048 2 7.521 17.86 2.337 3 7.226 14.47 2.624 Largest stream flow has longer time of concentration Qp = 25.974 + sum of Qb Ia/Ib 7.521 * 0.876 = 6.590 Qb Ia/Ib 7.226 * 0.780 = 5.639 QP = 38.202 Total of 3 streams to confluence: � Flow rates before confluence point: 25.974 7.521 7.226 Page 14 A100.out � Area of streams before confluence: 14.990 3.510 2.910 Results of confluence: Total flow rate = 38.202(CFS) Time of concentration = 22.711 min. Effective stream area after confluence = 21.410(Ac.) End of computations, total study area = 21.41 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.523 Area averaged RI index number = 62.1 � s Page 15 AREA B � ' -.� B100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/08/06 File:B100.out ------------------------------------------------------------------------ 850_0116 RORIPAUGH RANCH PA 14 & 15 AREA B 100-YR 1 HOUR STORM 9/7/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 222.000(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 274.200(Ft.) Difference in elevation = 0.900(Ft.) � Slope = 0.00405 s(percent)= 0.41 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.187 min. Rainfall intensity = 3.182(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.829 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.213(CFS) Total initial stream area = 0.460(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 274.200(Ft.) End of street segment elevation = 257.700(Ft.) Length of street segment = 583.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Page 1 B100.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 � Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.099(CFS) Depth of flow = 0.300(Ft.), Average velocity = 3.535(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.660(Ft.) Flow velocity = 3.54(Ft/s) Travel time = 2.75 min. TC = 12.94 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.787 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.780 Decimal fraction soil group C= 0.220 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 58.86 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.790(In/Hr) for a 100.0 year storm Subarea runoff = 3.142(CFS) for 1.430(AC.) Total runoff = 4.355(CFS) Total area = 1.890(Ac.) Street flow at end of street = 4.355(CFS) Half street flow at end of street = 4.355(CFS) Depth of flow = 0.328(Ft.), Average velocity =,3.816(Ft/s) Flow width (from curb towards crown)= 10.072(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 � Stream flow area = 1.890(AC.) Runoff from this stream = 4.355(CFS) Time of concentration = 12.94 min. Rainfall intensity = 2.790(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 204.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.815(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.778 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 12.73 min. Rain intensity = 2.82(In/Hr) Total area = 2.86(Ac.) Total runoff = 6.87(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 204.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.860(Ac.) Runoff from this stream = 6.874(CFS) Time of concentration = 12.73 min. Rainfall intensity = 2.815(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity � No. (CFS) (min) (In/Hr) Page 2 B100.out � 1 4.355 12.94 2.790 2 6.874 12.73 2.815 .� Largest stream flow has longer or shorter time of concentration . Qp = 6.874 + sum of Qa Tb/Ta 4.355 * 0.984 = 4.285 Qp = 11.159 Total of 2 streams to confluence: Flow rates before confluence point: 4.355 6.874 Area of streams before confluence: 1.890 2.860 Results of confluence: Total flow rate = 11.159(CFS) Time of concentration = 12.730 min. Effective stream area after confluence = 4.750(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 257.700(Ft.) Downstream point/station elevation = 256.700(Ft.) Pipe length = 27.13(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.159(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 11.159(CFS) Normal flow depth in pipe = 11.12(In.) Flow top width inside pipe = 13.14(In.) Critical depth could not be calculated. Pipe flow velocity = 11.44(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.77 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.750(Ac.) Runoff from this stream = 11.159(CFS) Time of concentration = 12.77 min. Rainfall intensity = 2.810(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 146.100(Ft.) Top (of initial area) elevation = 275.100(Ft.) Bottom (of initial area) elevation = 274.500(Ft.) Difference in elevation = 0.600(Ft.) Slope = 0.00411 s(percent)= 0.41 TC = k(0.390)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.595 min. Rainfall intensity = 3.494(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.5831CFS) Total initial stream area = 0.200(Ac.) Pervious area fraction = 0.500 Page 3 B100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 212.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 274.500(Ft.) End of street segment elevation = 257.700(Ft.) Length of street segment = 616.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.186(CFS) Depth of flow = 0.275(Ft.), Average velocity = 3.232(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.414(Ft.) Flow velocity = 3.23(Ft/s) Travel time = 3.18 min. TC = 11.77 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.795 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.715 Decimal fraction soil group C= 0.285 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 59.70 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.939(In/Hr) for a 100.0 year storm Subarea runoff = 2.568(CFS) for 1.100(AC.) Total runoff = 3.151(CFS) Total area = 1.300(AC.) Street flow at end of street = 3.151(CFS) Half street flow at end of street = 3.151(CFS) Depth of flow = 0.303(Ft.), Average velocity = 3.497(Ft/s) Flow width (from curb towards crown)= 8.800(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 257.700(Ft.) Downstream point/station elevation = 256.700(Ft.) Pipe length = 16.30(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.151(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.151(CFS) Normal flow depth in pipe = 5.92(In.) Flow top width inside pipe = 8.54(In.) Critical depth could not be calculated. Pipe flow velocity = 10.23(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.300(Ac.) Runoff from this stream = 3.151(CFS) Time of concentration = 11.80 min. Rainfall intensity = 2.935(In/Hr) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 4 B100.out � Process from Point/Station 130.000 to Point/Station 206.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** � Rainfall intensity = 3.063(In/Hr) for a 100.0 year storm , SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.785 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 10.92 min. Rain intensity = 3.06(In/Hr) Total area = 17.99(Ac.) Total runoff = 36.24(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 206.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 17.990(AC.) Runoff from this stream = 36..238(CFS) Time of concentration = 10.92 min. Rainfall intensity = 3.063(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.159 12.77 2.810 2 3.151 11.80 2.935 3 36.238 10.92 3.063 Largest stream flow has longer or shorter time of concentration Qp = 36.238 + sum of Qa Tb/Ta 11.159 * 0.855 = 9.540 Qa Tb/Ta 3.151 * 0.925 = 2.915 Qp = 48.694 Total of 3 streams to confluence: Flow rates before confluence point: 11.159 3.151 36.238 Area of streams before confluence: 4.750 1.300 17.990 Results of confluence: Total flow rate = 48.694(CFS) Time of concentration = 10.917 min. Effective stream area after confluence = 24.040(Ac.) End of computations, total study area = 24.04 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.7 � Page 5 � PA16,17&18 i � i i i i i i i i PROJECT SITE ; . � � � � � I 1,5 � � 9 i i i M�R��� i I HOT SPRINGS ROAD I � � � o � � � � � �,� . � � 15 o N � �° I I � :� I I o� � � � U ` PRMI1R1f TM � � � I ACCE83 I corrrErrro � I ACCES8 �/ � � I � �8 I I I � � � CITY OF TEMECULA � W I � �— � � � �co�c�r ��, s�'�' � � ACCE38 �� w�'� � i W � I , �� � - N� � i m i �� � � � � j c avFO�"� I I I o l � � �,a`�` � � I � y� i � � I � � I I � � � � � � I I � � i � VIC�'i'Y MAP � � N.T.S. � � THOMAS BROTHERS MAP REFERENCE � � ! � RIVERSIDE COUNTY 2001 EDITION ; � PAGE 929, E-7 � � � � DATE � � VA Consulting, Inc RORIPAUGH RANCH 08/06 � I PA-16, 17, & 18 � � -�� ENGINEERS• PLANNERS• SURVEYORS TRACT NO. 29368 FIGURE � " � 17801 CARTWRIGHT ROAD 949 474-1400 TEL � � CONSULTIIJG IRVINE, CA 92614 �9493 261-8482 FAX VICINITY MAP � � � L X:/PROJ C 5%B50__010 6/�%MISC/FIGUREI_DCN _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ ' � . 10-YEAR PROPOSED CONDITION ° RATIONAL METHOD ANALYSIS AREA A � g � AlO.out Riverside County Rational Hydrology Program � CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 08/30/06 Fi1e:Al0.out — --- — — ----------------- — — ------------ — ------ — ------------------ — S50_0106 RORIPAUGH RANCH PA 16 TRACT 29368 AREA A 10-YR 1-HR STORM 8/30/06 SWL - ------- -------------- ********* Hydrology Study Control Information ********** English (in-lb1 Units used in input data file ---------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ---------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual S�orm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATZON **** Initial area flow distance = 337.640(Ft.) Top (of initial area) elevation = 1330.000(Ft.) Bottom (of initial area) elevation = 1305.900(Ft.) Difference in elevation = 24.100(Ft.) Slope = 0.07138 s(percent)= 7.14 TC = k(0.390)*[(length^3)/(elevation change)j^0.2 Initial area time of concentration = 6.788 min. Rainfall intensity = 2.612(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff CoefEicient = 0.816 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.025(CFS) Total initial stream area = 0.950(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 `**' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1305.9001Ft.) End of street segment elevation = 1284.000(Ft.) Length of street segment = 775.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Page 1 AlO.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.223(CFS) Depth of flow = 0.344(Ft.), Average velocity = 3.978(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.892(Ft.) Flow velocity = 3.98(Ft/s) Travel time = 3.25 min. TC = 10.03 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.800 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.107(In/Hr) for a 10.0 year storm Subarea runoff = 5.059(CFS) for 3.000(Ac.) Total runoff = 7.085(CFS) Total area = 3.950(Ac.) Street flow at end of street = 7.085(CFS) Half street flow at end of street = 7.085(CFS) Depth of flow = 0.374(Ft.), Average velocity = 4.273(Ft/s) Flow width (from curb towards crown)= 12.375(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1284.000(Ft.) Downstream point/station elevation = 1283.800(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 � No. of pipes = 1 Required pipe flow = 7.085(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 7.085(CFS) Normal flow depth in pipe = 14.95(In.) Flow top width inside pipe = 13.50(In.) Critical Depth = 12.36(In.) Pipe flow velocity = 4.52(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 10.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11Q.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.950(Ac.) Runoff from this stream = 7.085(CFS) Time of concentration = 10.20 min. Rainfall intensity = 2.088(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 107.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 336.940(Ft.) Top (of initial area) elevation = 1308.200(Ft.) Bottom (of initial area) elevation = 1305.300(Ft.> Difference in elevation = 2.900(Ft.) Slope = 0.00861 s(percent)= 0.86 TC = k(0.370)*[(length"3)/(elevation change)]^0.2 Initial area time of concentration = 9.823 min. Rainfall intensity = 2.132(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.831 Page 2 AlO.out Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index ior soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.417(CFS) Total initial stream area = 0.800(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1305.300(Ft.) End of street segment elevation = 1284.100(Ft.) Length of street segment = 758.640(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on•(1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.321(CFS) Depth of flow = 0.306(Ft.), Average velocity = 3.573{Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.960(Ft.) Flow velocity = 3.57(Ft/s) � Travel time = 3.54 min. TC = 13.36 min. Adding area flow to street CONDOMZNIUM subarea type Runoff Coefficient = 0.796 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.690 Decimal fraction soil group C= 0.310 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 60.03 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.800(In/Hr) for a 10.0 year storm Subarea runoff = 3.080(CFS> for 2.150(Ac.) Total runoff = 4.497(CFS) Total area = 2.950(Ac.) Street flow at end of street = 4.497(CFS) Half street flow at end of street = 4.497(CFS) Depth of flow = 0.331(Ft.), Average velocity = 3.827(Ft/s) Flow width (from curb towards crown)= 10.240(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1284.100(Ft.) Downstream point/station elevation = 1283.800(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.497(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 4.497(CFS) Normal flow depth in pipe = 10.65(In.) Flow top width inside pipe = 13.61(In.) Critical Depth = 10.31(In.) Pipe flow velocity = 4.83(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 13.52 min. � +++++++++++++++++++++++++++:++++++++++++++++++++++++++++++++++++++++++ Page 3 ' AlO.out • Process from Point/Station 110.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.950(Ac.) Runoff from this stream = 4.497(CFS) Time of concentration = 13.52 min. Rainfall intensity = 1.789(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.085 10.20 2.088 2 4.497 13.52 1.789 Largest stream flow has longer or shorter time of concentration Qp = 7.085 + sum of Qa Tb/Ta 4.497 * 0.755 = 3.394 Qp = 10.479 Total of 2 streams to confluence: Flow rates before confluence point: 7.085 4.497 Area of streams be£ore confluence: 3.950 2.950 Results of confluence: Total flow rate = 10.479(CFS) Time of concentration = 10.201 min. Effective stream area after confluence = 6.900(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1283.800(Ft.) � Downstream point/station elevation = 1265.560(Ft.) Pipe length = 100.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.479(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 10.479(CFS) Normal flow depth in pipe = 7.32(In.) Flow top width inside pipe = 11.71(In.) Critical depth could not be calculated. Pipe flow velocity = 20.89(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 10.28 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.900(Ac.) Runoff from this stream = 10.479(CFS) Time of concentration = 10.28 min. Rainfall intensity = 2.079(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 276.160(Ft.) Top (of initial area) elevation = 1331.600(Ft.) Bottom (of initial area) elevation = 1326.200(Ft.) Difference in elevation = 5.400(Ft.) Slope = 0.01955 s(percent)= 1.96 � TC = k(0.370)*[llength^3)/(elevation change)]^0.2 Initial area time of concentration = 7.699 min. Rainfall intensity = 2.438(In/Hr) for a 10.0 year storm Page 4 AlO.out � CONDOMINIUM subarea type Runoff Coefficient = 0.838 Decimal fraction soil group A= 0.000 Decimal fraction soil grouo B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.307(CFS) Total initial stream area = 0.640(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***'� Top of street segment elevation = 1326.200(Ft.) End of street segment elevation = 1287.300(Ft.) Length of street segment = 882.890(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 • Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.921(CFS) Depth of flow = 0.301(Ft.), Average velocity = 4.426(Ft/s) Streetflow hydraulics at midpoint of street travel: � Halfstreet flow width = 8.714(Ft.) Flow velocity = 4.43(Ft/s) Travel time = 3.32 min. TC = 11.02 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.827 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.001(In/Hr) for a 10.0 year storm Subarea runoff = 4.238(CFS) for 2.560(AC.) ' Total runofE = 5.545(CFS) Total area = 3.200(Ac.) Street flow at end of street = 5.545(CFS) Half street flow at end of street = 5.545(CFS) Depth of flow = 0.330(Ft.), Average velocity = 4.785(Ft/s) Flow width (from curb towards crown)= 10.160(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1287.300(Ft.) Downstream point/station elevation = 1265.560(Ft.) Pipe length = 85.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.545(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.545(CFS) Normal flow depth in pipe = 5.36(In.) ' F1ow top width inside pipe = 8.84(In.) Critical depth could not be calculated. Pipe flow velocity = 20.25(Ft/s) Travel time through pipe = 0.07 min. � Time of concentration (TC) = 11.09 min. Page 5 AlO.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** A1ong Main Stream number: 1 in normal stream number 2 Stream flow area = 3.200(AC.) Runoff from this stream = 5.545(CFS) Time of concentration = 11.09 min. Rainfall intensity = 1.994(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.479 10.28 2.079 2 5.545 11.09 1.994 Largest stream flow has longer or shorter time of concentration Qp = 10.479 + sum of Qa Tb/Ta 5.545 * 0.927 = 5.139 Qp = 15.618 Total of 2 streams to confluence: Flow rates before confluence point: 10.479 5.545 Area of streams before confluence: 6.900 3.200 Results of confluence: Total flow rate = 15.618(CFS) Time of concentration = 10.281 min. Effective stream area after confluence = 10.100(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1265.560(Ft.) Downstream point/station elevation = 1261.250(Ft.) Pipe length = a90.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 15.618(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 15.618(CFS) Normal flow depth in pipe = 15.30(In.) Flow top width inside pipe = 23.07(In.) Critical Depth = 17.08(In.) Pipe flow velocity = 7.38(Ft/s) Travel time through pipe = 1.11 min. Time of concentration (TC) = 11.39 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 130.000 **** CONFLUENCE OF MAZN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.100(AC.) Runoff from this stream = 15.618(CFS) Time of concentration = 11.39 min. Rainfall intensity = 1.966(In/Hr) Program is now starting with �ain Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 123.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1332.000(Ft.) Bottom (of initial area) elevation = 1324.000(Ft.) Difference in elevation = 8.000(Ft.) Page 6 AlO.out � Slope = 0.02667 s(percent)= 2.67 TC = k(0.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.713 min. Rainfall intensity = 2.033(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.813 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.140(CFS) Total initial stream area = 0.690(AC.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 124.000 '*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.000(Ft.) End of street segment elevation = 1293.200(Ft.) Length of street segment = 585.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz> = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 � Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.248(CFS) Depth of flow = 0.254(Ft.), Average velocity = 4.229(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.363(Ft.) Flow velocity = 4.23(Ft/s) Travel time = 2.31 min. TC = 13.02 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.782 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.390 Decimal fraction soil group C= 0.610 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 82.88 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.826(In/Hr) for a 10.0 year storm Subarea runoff = 1.913(CFS) for 1.340(Ac.) Total runoff = 3.054(CFS) Total area = 2.030(Ac.) Street flow at end of street = 3.054(CFS) Half street flow at end of street = 3.054(CFS) Depth of flow = 0.275(Ft.), Average velocity = 4.497(Ft/s) Flow width (from curb towards crown)= 7.432(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 128.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1293.200(Ft.) End of street segment elevation = 1262.020(Ft.) Length of street segment = 885.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.08� Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 7 AlO.out Distance from curb to property line = 5.500(rt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N Erom gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.882(CFS) Depth of flow = 0.328(Ft.), Average velocity = 4.264(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.091(Ft.) Flow velocity = 4.26(Ft/s) Travel time = 3.46 min. TC = 16.48 min. Rdding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.814 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.604(In/Hrl for a 10.0 year sto� Subarea runoff = 3.174(CFS) for 2.430(Ac.) Total runoff = 6.228(CFS) Total area = 4.460(AC.) Street flow at end of street = 6.228(CFS) Half street flow at end of street = 6.228(CFS) Depth of flow = 0.351(Ft.), Average velocity = 4.510(Ft/s) Flow width (from curb towards crown)= 11.199(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 � Stream flow area = 4.460(Ac.) Runoff from this stream = 6.228(CFS) Time of concentration = 16.48 min. Rainfall intensity = 1.604(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process £rom Point/Station 126.000 to Point/Station 128.000 **"`* INITIAL AREA EVALUATION **** Initial area flow distance = 758.680(Ft.) Top (oE initial area) elevation = 1283.100(Ft.) Bottom (of initial area) elevation = 1262.020(Ft.) Difference in elevation = 21.080(Ft.) Slope = 0.02779 s(percent)= 2.78 TC = k(0.390)*((length^3)/lelevation change))^0.2 Initial area time o£ concentration = 11.332 min. Rainfall intensity = 1.971(In/Hr) £or a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.755 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.793 Decimal fraction soil group C= 0.207 Decimal fraction soil group D= 0.000 RI index Eor soil(AMC 2) = 58.69 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.689(CFS) Total initial stream area = 2.480(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point%Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.480(Ac.) Runoff £rom this stream = 3.689(CFS) Page 8 AlO.out � Time of concentration = 11.33 min. Rainfall intensity = 1.971(In/Hr� ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station 128.000 '*** INITIAL AREA EVALUATION **** Initial area flow distance = 321.260(Ft.) Top (of initial area) elevation = 1283.100(Ft.) Bottom (of initial area) elevation = 1262.0201Ft.) Difference in elevation = 21.080(Ft.) 51ope = 0.06562 s(percent)= 6.56 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 � Initial area time of concentration = 6_420 min. Rainfall intensity = 2.694(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.812 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 2.077(CFS) Total initial stream area = 0.950(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.950(AC.) Runoff from this stream = 2.077(CFS) � Time of concentration = 6.42 min. Rainfall intensity = 2.694(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.228 16.48 1.604 2 3.689 11.33 1.971 3 2.077 6.42 2.694 Largest stream flow has longer time of concentration 4P = • 6.228 + sum of Qb Ia/Ib 3.689 * 0.814 = 3.003 Qb Ia/Ib 2.077 * 0.595 = 1.237 Qp = 10.467 Tota1 of 3 streams to confluence: Flow rates before confluence point: 6.228 3.689 2.077 Area of streams before confluence: 4.460 2.480 0.950 Results of confluence: Total flow rate = 10.467(CFS) Time of concentration = 16.479 min. Effective stream area after confluence = 7.890(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to ?oint/Station 130.000 **** ?IPEFLOW TRAVcL TIME (Program estimated size) **** Upstream point/station elevation = 1262.020(Ft.) Downstream point/station elevation = 1261.250(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.467(CFS) Page 9 AlO.out Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 10.467(CFS) Normal flow depth in pipe = 10.28(In.) Flow top width inside pipe = 17.82(In.) Critical Depth = 14.92(In.) Pipe flow velocity = 10.04(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 16.53 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 7.890(Ac.) Runoff from this stream = 10.467(CFS) Time of concentration = 16.53 min. Rainfall intensity = 1.601(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min} (In/Hr) 1 15.618 11.39 1.966 2 10.467 16.53 1.601 Largest stream flow has longer or shorter time of concentration Qp = 15.618 + sum of Qa Tb/Ta 10.467 * 0.689 = 7.211 QP = 22.829 Total of 2 main streams to confluence: Flow rates before confluence point: 15.618 10.467 Area of streams before confluence: 10.100 7.890 Results of confluence: Total flow rate = 22.829(CFS) Time of concentration = 11.387 min. Effective stream area after confluence = 17.990(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1261.250(Ft.) Downstream point/station elevation = 1253.730(Ft.) Pipe length = 150.00(Ft.> Manning's N= 0.013 � No. of pipes = 1 Required pipe flow = 22.829(CFS) Nearest computed pipe diameter = 18.00(Zn.) Calculated individual pipe flow = 22.829(CFS) Normal flow depth in pipe = 14.30(In.) Flow top width inside pipe = 14.55(In.) Critical depth could not be calculated. Pipe flow velocity = 15.17(Ft/s) Travel time through oipe = 0.16 min. Time of concentration (TC) = 11.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Sta�ion 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 17.990(AC.) Runoff Erom this stream = 22.829(CFS) Time of concen�ration = 11.55 min. Rainfall intensity = 1.950(In/Hr) Page 10 AlO.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 311.890(Ft.) Top (of initial area? elevation = 1283.000(Ft.) Bottom (of initial area) elevation = 1280.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.00962 s(percent)= 0.96 TC = k(0.370)'((length"3)/(elevation change)]^0.2 Initial area time of concentration = 9.315 min. Rainfall intensity = 2.195(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.798 Decimal fraction soil group A= 0.000 Decimal £raction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.191fCFS) Total initial stream area = 0.680(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1280.000(Ft.) End of street segment elevation = 1264.700(Ft.) Length of street segment = 719.670(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) � Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) o£ the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.101(CFS) Depth of flow = 0.311(Ft.), Average velocity = 3.164(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.238(Ft.) Flow velocity = 3.16(Ft/s) Travel time = 3.79 min. TC = 13.11 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.785 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.�0 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.819(In/Hr) for a 10.0 year storm Subarea runoff = 3.113(CFS1 for 2.180(Ac.) Total runoff = 4.304(CFS) Total area = 2.860(Ac.1 Street Elow at end of street = 4.304(CFS) Ha1f street flow at end of street = 4.304(CFS) Depth of flow = 0.340(Ft.), Average velocity = 3.410(Ft/s) Flow width (from curb towards crown)= 10.657(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 136.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Page 11 AlO.out Upstream point/station elevation = 1264.700(Ft.) Downstream point/station elevation = 1257.730(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.304(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.304(CFS) Normal flow depth in pipe = 4.71(In.) Flow top width inside pipe = 8.99(In.) Critical depth could not be calculated. ' Pipe flow velocity = 18.40(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** A1ong Main Stream number: 1 in normal stream number 2 Stream flow area = 2.860(Ac.) Runoff from this stream = 4.304(CFS) Time of concentration = 13.13 min. Rainfall intensity = 1.817(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 22.829 11.55 1.950 2 4.304 13.13 1.817 Largest stream flow has longer or shorter time of concentration Qp = 22.829 + sum of Qa Tb/Ta 4.304 * 0.880 = 3.786 Qp = 26.615 Total of 2 streams to confluence: Flow rates before confluence point: 22.829 4.304 Area of streams be£ore confluence: 17.990 2.860 Results of confluence: Total flow rate = 26.615(CFS) Time of concentration = 11.552 min. Effective stream area after confluence = 20.850(AC.) End of computations, total study area = 20.85 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.460 Area averaged RI index number = 65.9 Page 12 - AREA B B1�.011C j Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 03/21/06 File:BlO.out ------------------------------------------------------------------ 850_0106 RORIPAUGH RANCH TRACT 29365 PA 17 & 18 AREA 8 10-YR STORM 3/21/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van De11 and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 273.840(Ft.) Top (of initial area) elevation = 1400.000(Ft.) Bottom (of initial area) elevation = 1387.190(Ft.) Difference in elevation = 12.810(Ft.) Slope = 0.04678 s(percent)= 4.68 TC = k(0.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.231 min. Rainfall intensity = 2.206(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.819 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.922(CFS) Total initial stream area = 0.510(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1387.190(Ft.) End of street segment elevation = 1324.640(Ft.) Length of street segment = 1031.430(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 B10.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.00O�1n.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.775(CFS) Depth of flow = 0.264(Ft.), Average velocity = 4.665(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.842(Ft.) Flow velocity = 4.66(Ft/s) Travel time = 3.69 min. TC = 12.92 min. Adding area flow to street LTNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.805 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.834(In/Hr) for a 10.0 year storm Subarea runoff = 3.025(CFS) for 2.050(AC.) Total runoff = 3.947(CFS) Tota1 area = 2.560lAc.) Street flow at end of street = 3.947(CFS) Half street flow at end of street = 3.947(CFS) Depth of flow = 0.289(Ft.), Average velocity = 5.022(Ft/s) Flow width (from curb towards crown)= 8.120(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 *'** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1332.000(Ft.) End of street segment elevation = 1324.640(Ft.) Length of street segment = 556.450(Ft.) Height of curb above gutter flowline = 6.0(In.,) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.749(CFS) Depth of flow = 0.372(Ft.), Average velocity = 2.909(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.271(Ft.) Flow velocity = 2.91(Ft/s) Travel time = 3.19 min. TC = 16.10 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.794 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soi11AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.624(In/Hr) for a 10.0 year storm Subarea runoff = 1.341(CFS) for 1.040(AC.) Total runoff = 5.288(CFS) Total area = 3.600(Ac.) Street flow at end of street = 5.288(CFS) Half street flow at end of street = 5.288(CFS) Depth of flow = 0.383(Ft.>, Average velocity = 2.984(Ft/s) Flow width (from curb towards crown)= 12.828(Ft.) Page 2 B10.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.640lFt.) End of street segment elevation = 1306.600(Ft.) Length of street segment = 237.470(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.522(CFS) Depth of flow = 0.320(Ft.), Average velocity = 6.128(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.684(Ft.) Flow velocity = 6.13(Ft/s) Travel time = 0.65 min. TC = 16.75 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.777 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 1.590(In/Hr) for a 10.0 year storm Subarea runoff = 2.075(CFS) for 1.680(Ac.) Total runoff = 7.363(CFS) Tota1 area = 5.280(Ac.) Street flow at end of street = 7.363(CFS) Half street flow at end of street = 7.363(CFS) Depth of flow = 0.331(Ft.), Average velocity = 6.299(Ft/s) Flow width (from curb towards crown)= 10.209(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1306.600(Ft.) Downstream point/station elevation = 1303.210(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.363(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.363(CFS) Normal flow depth in pipe = 8.07(In.) Flow top width inside pipe = 11.26(In.) Critical depth could not be calculated. Pipe flow velocity = 13.10(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 16.81 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STRERMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.280(Ac.) Runoff from this stream = 7.363(CFS) Time of concentration = 16.81 min. Rainfall intensity = 1.586(In/Hr) Page 3 B10.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 207.000 to Point/Station 208.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 353.140(Ft.) Top (of initial area) elevation = 1399.000(Ft.) Bottom (of initial area) elevation = 1392.600(Ft.) Difference in elevation = 6.400(Ft.) Slope = 0.01812 s(percent)= 1.81 TC = k(0.390)*((length"3)/(elevation change)]^0.2 Initial area time of concentration = 9.091 min. Rainfall intensity = 2.225(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.805 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.450(CFS) Total initial stream area = 0.810(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 209.000 "*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION `*** Top of street segment elevation = 1392.6001Ft.) End of street segment elevation = 1334.300(Ft.) Length of street segment = 912.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line - 5.500(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) ` Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.866(CFS) Depth of flow = 0.286(Ft.), Average velocity = 5.102(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.944(Ft.) Flow velocity = 5.10(Ft/s) Travel time = 2.98 min. TC = 12.07 min. Adding area flow to street SINGLE FAMILY (1/4 Acre LoG) Runoff Coefficient = 0.792 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0_500 Rainfall intensity = 1.903(In/Hr) for a 10.0 year storm Subarea runoff = 4.072(CFS) for 2.700(Ac.) Total runoff = 5.521(CFS) Tota1 area = 3.510(Ac.) Street flow at end of street = 5.5211CFS) Half street flow at end of street = 5.521(CFS) Depth of flow = 0.314(Ft.), Average velocity = 5.518(Ft/s) Flow width (from curb towards crown)= 9.348(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 1334.300(Ft.) Page 4 B10.out Downstream point/station elevation = 1303.210(Ft.> Pipe length = 391.97(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.521(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe £low = 5.521(CFS) Normal flow depth in pipe = 6.35(In.) Flow top width inside pipe = 11.98(In.) Critical Depth = 11.28(In.) Pipe flow velocity = 13.08(Ft/s) Travel time through pipe = 0.50 min. Time of concentration (TC) = 12.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** A1ong Main Stream number: 1 in normal stream number 2 Stream flow area = 3.510(AC.) Runoff from this stream = 5.521(CFS) Time of concentration = 12.57 min. Rainfall intensity = 1.861(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (Zn/Hr) 1 7.363 16.81 1.586 2 5.521 12.57 1.861 Largest stream flow has longer time of concentration Qp = 7.363 + sum of Qb Ia/Ib 5.521 * 0.852 = 4.705 Qp = 12.068 • Tota of 2 streams to confluence: Flow rates before confluence point: 7.363 5.521 Area of streams before confluence: 5.280 3.510 Results of confluence: Total flow rate = 12.068(CFS) Time of concentration = 16.814 min. Effective stream area after confluence = 8.790(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 220.000 *'** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1303.210(Ft.) Downstream point/station elevation = 1262.490(Ft.) Pipe length = 576.26(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 12.068(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.068(CFS) Normal flow depth in pipe =, 9.27(In.) Flow top width inside pipe = 14.58(In.) Critical depth could not be calculated. Pipe flow velocity = 15.15(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 17.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MAIN STREAMS **** The Eollowing data inside Main Stream is listed: Zn Main Stream number: 1 Stream flow area = 8.790(Ac.) Runoff from this stream = 12.068(CFS) Time of concentration = 17.45 min. Page 5 B10.out � Rainfall intensity = 1.554(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 213.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 271.360(Ft.) Top (of initial area) elevation = 1308.200(Ft.) Bottom (of initial area) elevation = 1306.600(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.00590 s(percent)= 0.59 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.242 min. Rainfall intensity = 2.084(In/Hr> for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.800 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.083(CFS) Total initial stream area = 0.650(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 214.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1306.600(Ft.) End of street segment elevation = 1278.100(Ft.) Length of street segment = 533.790(Ft.) � Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.756(CFS) Depth of flow = 0.290(Ft.), Average velocity = 4.726(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstree[ flow width = 8.174(Ft.) F1ow velocity = 4.73(Ft/s) Travel time = 1.88 min. TC = 12.12 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.740 Decimal fraction soil group A= 0.000 Decimal fraction soil group S= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.899(In/Hr) for a 10.0 year storm Subarea runoff = 4.511(CFS) for 3.210(Ac.) Total runoff = 5.593(CFS) Total area = 3.860(AC.) Street flow at end of street = 5.593(CFS) Half street flow at end of street = 5.593(CFS) Depth of flow = 0.322(Ft.), Average velocity = 5.163(Ft/s) Flow width (from curb towards crown)= 9.781(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 6 B10.out Process from Point/Station 214.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1278.100(Ft.) Downstream point/station elevation = 1262.490(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.593(CFS) Nearest computed pipe diameter = 9.00{In.) Calculated individual pipe flow = 5.593(CFS) Normal flow depth in pipe = 5.05(In.) F1ow top width inside pipe = 8.93(In.) Critical depth could not be calculated. Pipe flow velocity = 21.91(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12.16 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MAIN STREAMS **'* The following data inside,Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.860(Ac.) Runoff from this stream = 5.593(CFS) Time of concentration = 12.16 min. Rainfall intensity = 1.896(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 216.000 to Point/Station 217.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 309.460(Ft.) Top (of initial area) elevation = 1334.300(Ft.) Bottom (of initial area) elevation = 1313.600(Ft.) Difference in elevation = 20.700(Ft.) • Slope = 0.06689 s(percent)= 6.69 TC = k(0.390)`[(length"3)/(elevation change)]^0.2 Initial area time of concentration = 6.641 min. Rainfall intensity = 2.644(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.817 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.944(CFS) Total initial stream area = 0.900(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 217.000 to Point/Station 218.000 *"** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1313.600(Ft.) End of street segment elevation = 1276.600(Ft.) Length of street segment = 547.930(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Page 7 B10.out � Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.866(CFS) Depth of flow = 0.283(Ft.), Average velocity = 5.215(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet £low width = 7.840(Ft.) Flow velocity = 5.21(Ft/s) Travel time = 1.75 min. TC = 8.39 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.760 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.325(In/Hr) for a 10.0 year storm Subarea runoff = 3.146(CFS) for 1.780(AC.) Total runoff = 5.090(CFS) Total area = 2.680(Ac.) Street flow at end of street = 5.090(CFS) Half street flow at end of street = 5.090(CFS) Depth of flow = 0.305fFt.), Average velocity = 5.537(Ft/s) Flow width (from curb towards crown)= 8.903(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 218.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1276.600(Ft.) Downstream point/station elevation = 1262.490(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.090(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.090(CFS) Normal flow depth in pipe = 4.92(Zn.) � Flow top width inside pipe = 8.96(In.) Critical depth could not be calculated. Pipe flow velocity = 20.62(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 8.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 `*** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.680(Ac.) Runoff from this stream = 5.090(CFS) Time of concentration = 8.43 min. Rainfall intensity = 2.319(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.068 17.45 1.554 2 5.593 12.16 1.896 3 5.090 8.43 2.319 Largest stream flow has longer time of concentration Qp = 12.068 + sum of Qb Ia/Ib 5.593 * 0.820 = 4.586 Qb Ia/Ib 5.090 * 0.670 = 3.412 Qp = 20.067 Total of 3 main streams to confluence: Flow rates before confluence point: � 12.068 5.593 5.090 Area of streams before confluence: Page 8 B10.out � 8.790 3.860 2.680 � Results of confluence: Total flow rate = 20.067(CFS) Time of concentration = 17.448 min. Effective stream area after confluence = 15.330(AC.) End of computations, total study area = 15.33 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.617 Area averaged RI index number = 68.8 � Page 9 � . . � AREA C � C10.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 File:ClO.out 850_0106 RORIPAUGH RANCH TRACT 29368 PA 18 AREA C 10-YR 9/7/06 SWL ------ ------------ -------------------------- ---------------------- ********* Hydrology StUdy COntr01 InfOrmation ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 322.000 to Point/Station 324.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 378.180(Ft.) Top (of initial area) elevation = 1414.000(Ft.) Bottom (of initial area) elevation = 1411.500(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.00661 s(percent)= 0.66 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.431 min. Rainfall intensity = 1.961(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.795 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.808(CFS) Total initial stream area = 1.160(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 324.000 to Point/Station 326.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1411.500(Ft.) End of street segment elevation = 1348.200(Ft.) Length of street segment = 1491.940(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 cio.ouc Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) , Gutter hike from flowline = 2.000(In.) , _ Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.565(CFS) Depth of flow = 0.332(Ft.), Average velocity = 4.720(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.258(Ft.) Flow velocity = 4.72(Ft/s) Travel time = 5.27 min. TC = 16.70 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.802 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.592(In/Hr) for a 10.0 year storm Subarea runoff = 6.154(CFS) for 4.820(Ac.) Total runoff = 7.962(CFS) Total area = 5.980(Ac.) Street flow at end of street = 7.962(CFS) Half street flow at end of street = 7.962(CFS) Depth of flow = 0.365(Ft.), Average velocity = 5.130(Ft/s) Flow width (from curb towards crown)= 11.939(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 326.000 to Point/Station 336.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1348.200(Ft.) Downstream point/station elevation = 1295.630(Ft.) � Pipe length = 908.55(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.962(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.962(CFS) Normal flow depth in pipe = 9.14(In.) Flow top width inside pipe = 10.22(In.) Critical depth could not be calculated. Pipe flow velocity = 12.39(Ft/s) Travel time through pipe = 1.22 min. Time of concentration (TC) = 17.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 336.000 to Point/Station 336.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.980(Ac.) Runoff from this stream = 7.962(CFS) Time of concentration = 17.92 min. Rainfall intensity = 1.532(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 333.000 to Point/Station 334.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 469.420(Ft.) Top (of initial area) elevation = 1368.980(Ft.) Bottom (of initial area) elevation = 1351.400(Ft.) Difference in elevation = 17.580(Ft.) S1ope = 0.03745 s(percent)= 3.75 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.810 min. Rainfall intensity = 2.263(In/Hr) for a 10.0 year storm � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.758 Page 2 cio.out � Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 , Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.835(CFS) Total initial stream area = 1.070(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 334.000 to Point/Station 335.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1351.400(Ft.) End of street segment elevation = 1300.300(Ft.) Length of street segment = 701.930(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 � Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.115(CFS) Depth of flow = 0.285(Ft.), Average velocity = 5.443(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.933(Ft.) Flow velocity = 5.44(Ft/s) � Travel time = 2.15 min. TC = 10.96 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.746 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.007(In/Hr) for a 10.0 year storm Subarea runoff = 3.982(CFS) for 2.660(AC.) Total runoff = 5.816(CFS) Total area = 3.730(Ac.) Street flow at end of street = 5.816(CFS) Half street flow at end of street = 5.816(CFS) Depth of flow = 0.313(Ft.), Average velocity = 5.873(Ft/s) Flow width (from curb towards crown)= 9.293(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 335.000 to Point/Station 336.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1300.300(Ft.) Downstream point/station elevation = 1295.630(Ft.) Pipe length = 100.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.816(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.816(CFS) Normal flow depth in pipe = 7.79(In.) Flow top width inside pipe = 11.45�1n.) Critical Depth = 11.40(In.) Pipe flow velocity = 10.77(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 11.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 C10.out • Process from Point/Station 336.000 to Point/Station 336.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main,Stream number: 1 in normal stream number 2 , Stream flow area = 3.730(AC.) Runoff from this stream = 5.816(CFS) Time of concentration = 11.11 min. Rainfall intensity = 1.992(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.962 17.92 1.532 2 5.816 11.11 1.992 Largest stream flow has longer time of concentration Qp = 7.962 + sum of Qb Ia/Ib 5.816 * 0.769 = 4.472 Qp = 12.434 Total of 2 streams to confluence: Flow rates before confluence point: 7.962 5.816 Area of streams before confluence: 5.980 3.730 Results of confluence: Total flow rate = 12.434(CFS) Time of concentration = 17.922 min. Effective stream area after confluence = 9.710(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 336.000 to Point/Station 330.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 1295.630(Ft.) Downstream point/station elevation = 1290.000(Ft.) Pipe length = 205.90(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 12.434(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 12.434(CFS) Normal flow depth in pipe = 11.26(In.) Flow top width inside pipe = 17.42(In.) Critical Depth = 15.96(In.) Pipe flow velocity = 10.68(Ft/s) Travel time through pipe = 0.32 min. Time of concentration (TC) = 18.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 330.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.710(Ac.) Runoff from this stream = 12.434(CFS) Time of concentration = 18.24 min. Rainfall intensity = 1.517(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 327.000 to Point/Station 328.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 377.450(Ft.) Top (of initial area) elevation = 1343.600(Ft.) Bottom (of initial area) elevation = 1329.200(Ft.) Difference in elevation = 14.400(Ft.) Slope = 0.03815 s(percent)= 3.82 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Page 4 cio.out Initial area time of concentration = 8.663 min. Rainfall intensity = 2.284(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.788 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.674(CFS) Total initial stream area = 0.930(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 328.000 to Point/Station 329.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1329.200(Ft.) End of street segment elevation = 1292.200(Ft.) Length of street segment = 903.310(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.651(CFS) Depth of flow = 0.335(Ft.), Average velocity = 4.673(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.405(Ft.) Flow velocity = 4.67(Ft/s) Travel time = 3.22 min. TC = 11.89 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.793 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.920(In/Hr) for a 10.0 year storm Subarea runoff = 6.729(CFS) for 4.420(Ac.) Total runoff = 8.402(CFS) Total area = 5.350(Ac.) Street flow at end of street = 8.402(CFS) Half street flow at end of street = 8.402(CFS) Depth of flow = 0.373(Ft.), Average velocity = 5.126(Ft/s) Flow width (from curb towards crown)= 12.298(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 329.000 to Point/Station 330.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1292.200(Ft.) Downstream point/station elevation = 1290.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.402(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 8.402(CFS) Normal flow depth in pipe = 7.98(In.) Flow top width inside pipe = 14.97(In.) Critical Depth = 13.59(In.) Pipe flow velocity = 12.66(Ft/s) Travel time through pipe = 0.05 min. Page 5 C10.out � Time of concentration (TC) = 11.94 min. ++++++++++++++++++++++++++++++++++++±+++++++++++++++++++++++++++++++++ _ Process from Point/Station 330.000 to Point/Station 330.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.350(Ac.) Runoff from this stream = 8.402(CFS) Time of concentration = 11.94 min. Rainfall intensity = 1.915(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 331.000 to Point/Station 332.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 405.150(Ft.) Top (of initial area) elevation = 1366.400(Ft.) Bottom (of initial area) elevation = 1357.300(Ft.) Difference in elevation = 9.100(Ft.) Slope = 0.02246 s(percent)= 2.25 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.201 min. Rainfall intensity = 2.210(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.780 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.500 Decimal fraction soil group C= 0.500 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 62.50 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.621(CFS) Total initial stream area = 0.940(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 332.000 to Point/Station 339.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1357.300(Ft.) End of street segment elevation = 1300.300(Ft.) Length of street segment = 1273.660(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.837(CFS) Depth of flow = 0.299(Ft.), Average velocity = 4.432(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.598(Ft.) Flow velocity = 4.43(Ft/s) Travel time = 4.79 min. TC = 13.99 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.750 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.670 Decimal fraction soil group C= 0.330 Decimal fraction soil group D= 0.000 Page 6 C10.out RI index for soil(AMC 2) = 60.29 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.755(In/Hr) for a 10.0 year storm _ Subarea runoff = 3.382(CFS) for 2.570(Ac.) Tota1 runoff = 5.004(CFS) Total area = 3.510(AC.) Street flow at end of street = 5.004(CFS) Half street flow at end of street = 5.004(CFS) Depth of flow = 0.320(Ft.), Average velocity = 4.703(Ft/s) Flow width (from curb towards crown)= 9.682(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 339.000 to Point/Station 339.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 3.510(Ac.) Runoff from this stream = 5.004(CFS) Time of concentration = 13.99 min. Rainfall intensity = 1.755(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 337.000 to Point/Station 338.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 328.480(Ft.) Top (of initial area) elevation = 1352.800(Ft.) Bottom (of initial area) elevation = 1348.600(Ft.) Difference in elevation = 4.200(Ft.) Slope = 0.01279 s(percent)= 1.28 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.469 min. Rainfall intensity = 2.175(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.754 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.131(CFS) Total initial stream area = 0.690(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 338.000 to Point/Station 339.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1348.600(Ft.) End of street segment elevation = 1300.300(Ft.) Length of street segment = 601.230(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) , Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.746(CFS) Depth of flow = 0.253(Ft.), Average velocity = 5.212(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.326(Ft.) Flow velocity = 5.21(Ft/s) Travel time = 1.92 min. TC = 11.39 min. �= Adding area flow to street Page 7 C10.out � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.744 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 , Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.965(In/Hr) for a 10.0 year storm Subarea runoff = 2.878(CFS) for 1.970(Ac.) Total runoff = 4.010(CFS) Total area = 2.660(AC.) Street flow at end of street = 4.010(CFS) Half street flow at end of street = 4.010(CFS) Depth of flow = 0.280(Ft.), Average velocity = 5.627(Ft/s) Flow width (from curb towards crown)= 7.654(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 339.000 to Point/Station 339.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 2.660(AC.) Runoff from this stream = 4.010(CFS) Time of concentration = 11.39 min. Rainfall intensity = 1.965(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.004 13.99 1.755 2 4.010 11.39 1.965 Largest stream flow has longer time of concentration Qp = 5.004 + sum of • Qb Ia/Ib 4.010 * 0.893 = 3.581 Qp = 8.585 Total of 2 streams to confluence: Flow rates before confluence point: 5.004 4.010 Area of streams before confluence: 3.510 2.660 Results of confluence: Total flow rate = 8.585(CFS) Time of concentration = 13.991 min. Effective stream area after confluence = 6.170(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 339.000 to Point/Station 330.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1300.300(Ft.) Downstream point/station elevation = 1290.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.585(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.585(CFS) Normal flow depth in pipe = 5.82(In.) Flow top width inside pipe = 11.99(In.) Critical depth could not be calculated. Pipe flow velocity = 22.73(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 14.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 330.000 **** CONFLUENCE OF MAIN STREAMS **** � The following data inside Main Stream is listed: Page 8 C10.out � In Main Stream number: 3 Stream flow area = 6.170(AC.) Runoff from this stream = 8.585(CFS) Time of concentration = 14.02 min. Rainfall intensity = 1.753(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.434 18.24 1.517 2 8.402 11.94 1.915 3 8.585 14.02 1.753 Largest stream flow has longer time of concentration Qp = 12.434 + sum of Qb Ia/Ib 8.402 * 0.792 = 6.654 Qb Ia/Ib 8.585 * 0.865 = 7.428 Qp = 26.516 • Total of 3 main streams to confluence: Flow rates before confluence point: 12.434 8.402 8.585 Area of streams before confluence: 9.710 5.350 6.170 Results of confluence: Total flow rate = 26.516(CFS) Time of concentration = 18.243 min. Effective stream area after confluence = 21.230(Ac.) End of computations, total study area = 21.23 (AC.) The following figures may be used for a unit hydrograph study of the same area. � Area averaged pervious area fraction(Ap) = 0.504 Area averaged RI index number = 65.1 Page 9 AREA D D10.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 File:DlO.out 850_0106 RORIPAUGH RANCH TRACT 29368 PA 18 AREA D 10-YR 9/7/06 SWL ********* Hydrology SCllCly Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 483.010(Ft.) Top (of initial area) elevation = 1411.600(Ft.) Bottom (of initial area) elevation = 1405.400(Ft.) Difference in elevation = 6.200(Ft.) Slope = 0.01284 s(percent)= 1.28 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.040 min. Rainfall intensity = 1.999(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.990(CFS) Total initial stream area = 1.250(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 304.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1405.400(Ft.) End of street segment elevation = 1375.200(Ft.) Length of street segment = 795.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 D10.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) �_ Gutter hike from flowline = 2.000(In.) , . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.243(CFS) Depth of flow = 0.313(Ft.), Average velocity = 4.251(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.334(Ft.) Flow velocity = 4.25(Ft/s) Travel time = 3.12 min. TC = 14.16 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.797 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.500 Decimal fraction soil group D= 0.500 RI index for soil(AMC 2) = 72.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.744(In/Hr) for a 10.0 year storm Subarea runoff = 3_932(CFS) for 2.830(Ac.) Total runoff = 5.922(CFS) Tota1 area = 4.080(AC.) Street flow at end of street = 5.922(CFS) Half street flow at end of street = 5.922(CFS) Depth of flow = 0.342(Ft.), Average velocity = 4.588(Ft/s) Flow width (from curb towards crown)= 10.790(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1375.200(Ft.) � Downstream point/station elevation = 1334.500(Ft.) Pipe length 539.41(Ft.) Manning's N= 0.013 ,_ No. of pipes = 1 Required pipe flow 5.922(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.922(CFS) Normal flow depth in pipe = 6.74(In.) Flow top width inside pipe = 11.91(In.) Critical depth could not be calculated. Pipe flow velocity = 13.05(Ft/s) Travel time through pipe = 0.69 min. Time of concentration (TC) = 14.85 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.080(AC.) Runoff from this stream = 5.922(CFS) Time of concentration = 14.85 min. Rainfall intensity = 1.699(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306.000 to Point/Station 308.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 284.670(Ft.) Top (of initial area) elevation = 1368.600(Ft.) Bottom (of initial area) elevation = 1359.200(Ft.) Difference in elevation = 9.400(Ft.) Slope = 0.03302 s(percent)= 3.30 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.397 min. Rainfall intensity = 2.492(In/Hr) for a 10.0 year stonn � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.832 Page 2 D10.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 , RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.762(CFS) Total initial stream area = 0.850(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 309.000 **** STREET FLOW TRA�IEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1359.200(Ft.) End of street segment elevation = 1337.600(Ft.) Length of street segment = 348.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.954(CFS) Depth of flow = 0.267(Ft.), Average velocity = 4.766(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.022(Ft.) ' Flow velocity = 4.77(Ft/s) � Travel time = 1.22 min. TC = 8.62 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.807 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.291(In/Hr) for a 10.0 year storm Subarea runoff = 2.126(CFS) for 1.150(Ac.) Total runoff = 3.888(CFS) Total area = 2.000(Ac.) Street flow at end of street = 3.888(CFS) Half street flow at end of street = 3.888(CFS) Depth of flow = 0.287(Ft.), Average velocity = 5.049(Ft/s) Flow width (from curb towards crown)= 8.021(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 1337.600(Ft.) Downstream point/station elevation = 1334.500(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.888(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.888(CFS) Normal flow depth in pipe = 6.64(In.) Flow top width inside pipe = 7.91(In.) Critical depth could not be calculated. Pipe flow velocity = 11.11(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 8.68 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 D10.out � Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 1 in normal stream number 2 _ Stream flow area = 2.000(AC.) Runoff from this stream = 3.888(CFS) Time of concentration = 8.68 min. Rainfall intensity = 2.282(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.922 14.85 1.699 2 3.888 8.68 2.282 Largest stream flow has longer time of concentration Qp = 5.922 + sum of � Qb Ia/Ib 3.888 * 0.744 = 2.895 Qp = 8.816 Total of 2 streams to confluence: Flow rates before confluence point: 5.922 3.888 Area of streams before confluence: 4.080 2.000 Results of confluence: Total flow rate = 8.816(CFS) Time of concentration = 14.847 min. Effective stream area after confluence = 6.080(Ac.) End of computations, total study area = 6.08 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 � Area averaged RI index number = 71.2 � Page 4 AREA E 0 � � ElO.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 . Rational Hydrology Study Date: 09/07/06 File:ElO.out ------------------------------- — ------------------- — -------------- 850_0106 RORIPAUGH RANCH TRACT 29368 PA 18 AREA E 10-YR 9/7/06 SWL -------------------------------------------------------------- �******** HydTOlOgy Study COritY01 Information *�''******* English (in-lb) Units used in input data file -------- — ------------------------------------------ ----------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ---------------------------------------------------------------- Rational Method Hydrology Program based on ' Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 422.000 to Point/Station 424.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 279.480(Ft.) Top (of initial area) elevation = 1297.600(Ft.) Bottom (of initial area) elevation = 1296.000(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.00572 s(percent)= 0.57 TC = k(0.390)*[(length change)]^0.2 Initial area time of concentration = 10.424 min. Rainfall intensity = 2.063(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.748 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.359(CFS) Total initial stream area = 0.880(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 424.000 to Point/Station 426.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1296.000(Ft.) End of street segment elevation = 1258.800(Ft.) Length of street segment = 1277.920(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 E10.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000,(In.) , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.351(CFS) Depth of flow = 0.345(Ft.), Average velocity = 4.047(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.935(Ft.) Flow velocity = 4.05(Ft/s) Travel time = 5.26 min. TC = 15.69 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.725 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.648(In/Hr) for a 10.0 year sto�m Subarea runoff = 6.178(CFS) for 5.170(Ac.) Total runoff = 7.537(CFS) Total area = 6.050(Ac.) Street flow at end of street = 7.537(CFS) Half street flow at end of street = 7.537(CFS) Depth of flow = 0.379(Ft.), Average velocity = 4.385(Ft/s) Flow width (from curb towards crown)= 12.618(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 426.000 to Point/Station 440.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1258.800(Ft.) Downstream point/station elevation = 1252.840(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.537(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.537(CFS) Normal flow depth in pipe = 6.79(In.) Flow top width inside pipe = 11.90(In.) Critical depth could not be calculated. Pipe flow velocity = 16.45(Ft/s) Travel time through pipe = O.OS.min. Time of concentration (TC) = 15.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 440.000 to Point/Station 440.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.050(AC.) Runoff from this stream = 7.537(CFS) Time of concentration = 15.74 min. Rainfall intensity = 1.645(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 432.000 to Point/Station 434.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 278.600(Ft.) Top (of initial area) elevation = 1291.400(Ft.) Bottom (of initial area) elevation = 1287.900(Ft.) Difference in elevation = 3.500(Ft.) Slope = 0.01256 s(percent)= 1.26 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.897 min. Rainfall intensity = 2.251(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.757 Page 2 ElO.out � Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 � . Decimal fraction soil group D= 0.000 . . RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.972(CFS) Total initial stream area = 0.570(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 434.000 to Point/Station 436.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1287.900(Ft.) End of street segment elevation = 1259.400(Ft.) Length of street segment = 1083.510(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.673(CFS) Depth of flow = 0.317(Ft.), Average velocity = 3.570(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.498(Ft.) Flow velocity = 3.57(Ft/s) Travel time = 5.06 min. TC = 13.96 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.732 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.757(In/Hr) for a 10.0 year storm Subarea runoff = 4.078(CFS) for 3.170(AC.) Total runoff = 5.049(CFS) Total area = 3.740(AC.) Street flow at end of street = 5.049(CFS) Half street flow at end of street = 5.049(CFS) Depth of flow = 0.345(Ft.), Average velocity = 3.840(Ft/s) Flow width (from curb towards crown)= 10.901(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 436.000 to Point/Station 440.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1259.400(Ft.) Downstream point/station elevation = 1252.840(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.049(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.049(CFS) Normal flow depth in pipe = 6.33(In.) Flow top width inside pipe = 8.22(In.) Critical depth could not be calculated. Pipe flow velocity = 15.20(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 14.01 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 ElO.out Process from Point/Station 440.000 to Point/Station 440.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 1 in normal stream number 2 , Stream flow area = 3.740(AC.) Runoff from this stream = 5.049(CFS) Time of concentration = 14.01 min. Rainfall intensity = 1.754(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.537 15.74 1.645 2 5.049 14.01 1.754 Largest stream flow has longer time of concentration Qp = 7.537 + sum of Qb Ia/Ib 5.049 * 0.938 = 4.736 Qp = 12.273 Total of 2 streams to confluence: Flow rates before confluence point: 7.537 5.049 Area of streams before confluence: 6.050 3.740 Results of confluence: Total flow rate = 12.273(CFS) Time of concentration = 15.739 min. Effective stream area after confluence = 9.790(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 440.000 to Point/Station 430.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 1252.840(Ft.) Downstream point/station elevation = 1249.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 12.273(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.273(CFS) Normal flow depth in pipe =� 9.12(In.) Flow top width inside pipe = 14.65(In.) Critical depth could not be calculated. Pipe flow velocity = 15.71(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 430.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.790(Ac.) Runoff from this stream = 12.273(CFS) Time of concentration = 15.79 min. Rainfall intensity = 1.642(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.704(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.729 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Page 4 ElO.out � Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: � TC = 14.76 min. Rain intensity = 1.70(In/Hr) � Total area = _ 22.58(Ac.) Total runoff = 25.03(CFS) . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 430.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1250.000(Ft.) Downstream point/station elevation = 1249.000(Ft.) Pipe length = 196.54(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 25.031(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 25.031(CFS) Normal flow depth in pipe = 21.35(In.) Flow top width inside pipe = 27.18(In.) Critical Depth = 20.46(In.) Pipe flow velocity = 6.70(Ft/s) Travel time through pipe = 0.49 min. Time of concentration (TC) = 15.25 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 430.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 22.580(Ac.) Runoff from this stream = 25.031(CFS) Time of concentration = 15.25 min. Rainfall intensity = 1.674(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity � No. (CFS1 (min) (In/Hr) 1 12.273 15.79 1.642 2 25.031 15.25 1.674 Largest stream flow has longer or shorter time of concentration Qp = 25.031 + sum of Qa Tb/Ta 12.273 * 0.966 = 11.855 Qp = 36.886 Tota1 of 2 streams to confluence: Flow rates before confluence point: 12.273 25.031 Area of streams before confluence: 9.790 22.580 Results of confluence: Total flow rate = 36.886(CFS) Time of concentration = 15.253 min. Effective stream area after confluence = 32.370(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 420.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1249.000(Ft.) Downstream point/station elevation = 1243.000(Ft.) Pipe length = 275.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 36.886(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 36.886(CFS) Normal flow depth in pipe = 18.38(In.) Flow top width inside pipe = 25.18(In.) Critical Depth = 24.53(In.) Pipe flow velocity = 12.80(Ft/s) � Travel time through pipe = 0.36 min. Time of concentration (TC) = 15.61 min. Page S ElO.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 420.000 to Point/Station 420.000 . **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 32.370(Ac.) Runoff from this stream = 36.886(CFS) Time of concentration = 15.61 min. Rainfall intensity = 1.652(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 412.000 to Point/Station 414.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 373.400(Ft.) Top (of initial area) elevation = 1269.300(Ft.) Bottom (of initial area) elevation = 1268.800(Ft.) Difference in elevation = 0.500(Ft.) Slope = 0.00134 s(percent)= 0.13 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 15.652 min. Rainfall intensity = 1.650(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.725 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.233(CFS) Total initial stream area = 1.030(Ac.) Pervious area fraction = 0.500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 414.000 to Point/Station 416.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1268.800(Ft.) End of street segment elevation = 1248.100(Ft.) Length of street segment = 900.800(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.698(CFS) Depth of flow = 0.323(Ft.), Average velocity = 3.393(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.813(Ft.) Flow velocity = 3.39(Ft/s) Travel time = 4.42 min. TC = 20.08 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.710 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.439(In/Hr) for a 10.0 year storm Page 6 ElO.out � Subarea runoff = 4.211(CFS) for 4.120(Ac.) Total runoff = 5.444(CFS) Tota1 area = 5.150(AC.) Street flow at end of street = 5.444(CFS) .�' Half street flow at end of street = 5..444(CFS) , Depth of flow = 0.358(Ft.), Average velocity = 3.711(Ft/s) Flow width (from curb towards crown)= 11.578(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 416.000 to Point/Station 420.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1248.100(Ft.) Downstream point/station elevation = 1243.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.444(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.444(CFS) Normal flow depth in pipe = 5.85(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 11.24(In.) Pipe flow velocity = 14.33(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 20.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 420.000 to Point/Station 420.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.150(AC.) Runoff from this stream = 5.444(CFS) Time of concentration = 20.13 min. Rainfall intensity = 1.437(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 36.886 15.61 1.652 2 5.444 20.13 1.437 Largest stream flow has longer or shorter time of concentration Qp = 36.886 + sum of Qa Tb/Ta 5.444 * 0.775 = 4.221 Qp = 41.107 Total of 2 streams to confluence: • Flow rates before confluence point: 36.886 5.444 Area of streams before confluence: 32.370 5.150 Results of confluence: Total flow rate = 41.107(CFS) Time of concentration = 15.611 min. Effective stream area after confluence = 37.520(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 420.000 to Point/Station 450.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1243.000(Ft.) Downstream point/station elevation = 1242.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 41.107(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 41.107(CFS) Normal flow depth in pipe = 19.57(In.) Flow top width inside pipe = 18.62(In.) � Critical depth could not be calculated. Pipe flow velocity = 14.99(Ft/s) Page 7 ElO.out � Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 450.000 to Point/Station 450.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 37.520(Ac.) Runoff from this stream = 41.107(CFS) Time of concentration = 15.64 min. Rainfall intensity = 1.650(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 402.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 286.470(Ft.) Top (of initial area) elevation = 1269.200(Ft.) Bottom (of initial area) elevation = 1266.800(Ft.) Difference in elevation = 2.400(Ft.) Slope = 0.00838 s(percent)= 0.84 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.756 min. Rainfall intensity = 2.140(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.802 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.046(CFS) Total initial stream area = 0.610(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1266.800(Ft.) End of street segment elevation = 1247.700(Ft.) Length of street segment = 904.170(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [lJ side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.302(CFS) Depth of flow = 0.317(Ft.), Average velocity = 3.202(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.512(Ft.) F1ow velocity = 3.20(Ft/s) Travel time = 4.71 min. TC = 14.46 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Page 8 ElO.out • Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.723(In/Hr) for a 10.0 year storm . Subarea runoff = 3.661(CFS) for 2.630(AC.) Total runoff = 4.707(CFS) Total area = 3.240(Ac.) Street flow at end of street = 4.707(CFS) Half street flow at end of street = 4.707(CFS) Depth of flow = 0.348(Ft.), Average velocity = 3.473(Ft/s) Flow width (from curb towards crown)= 11.085(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.240(Ac.) Runoff from this stream = 4.707(CFS) Time of concentration = 14.46 min. Rainfall intensity = 1.723(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 406.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 294.570(Ft.) Top (of initial area) elevation = 1258.800(Ft.) Bottom (of initial area) elevation = 1255.500(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.01120 s(percent)= 1.12 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.308 min. Rainfall intensity = 2.196(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) � Runoff Coefficient = 0.804 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.376(CFS) Total initial stream area = 0.780(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1255.800(Ft.) � End of street segment elevation = 1247.700(Ft.) Length of street segment = 323.080(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.497(CFS) Depth of flow = 0.288(Ft.), Average velocity = 3.217(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.058(Ft.) � Flow velocity = 3.22(Ft/s) Travel time = 1.67 min. TC = 10.98 min. Page 9 ElO.out Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A= 0.000 . Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.005(In/Hr) for a 10.0 year storm Subarea runoff = 2.028(CFS) for 1.270(Ac.) Total runoff = 3.405(CFS) Total area = 2.050(Ac.) Street flow at end of street = 3.405(CFS) Half street flow at end of street = 3.405(CFS) Depth of flow = 0.312(Ft.), Average velocity = 3.445(Ft/s) Flow width (from curb towards crown)= 9.282(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.050(Ac.) Runoff from this stream = 3.405(CFS) Time of concentration = 10.98 min. Rainfall intensity = 2.005(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.707 14.46 1.723 2 3.405 10.98 2.005 Largest stream flow has longer time of concentration � Qp = 4.707 + sum of Qb Ia/Ib 3.405 * 0.859 = 2.926 Qp = 7.633 Total of 2 streams to confluence: F1ow rates before confluence point: 4.707 3.405 Area.of streams before confluence: 3.240 2.050 Results of confluence: Total flow rate = 7.633(CFS) Time of concentration = 14.463 min. Effective stream area after confluence = 5.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 450.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1247.700(Ft.) Downstream point/station elevation = 1242.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.633(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.633(CFS) Normal flow depth in pipe = 5.94(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 19.69(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 14.49 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45�.000 to Point/Station 450.000 � **** CONFLUENCE OF MAIN STREAMS **** Page 10 ElO.out • The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.290(AC.) Runoff from this stream = 7.633(CFS) , Time of concentration = 14.49 min_ Rainfall intensity = 1.722(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 41.107 15.64 1.650 2 7.633 14:49 1.722 Largest stream flow has longer time of concentration Qp = 41.107 + sum of Qb Ia/Ib 7.633 * 0.959 = 7.318 Qp = 48.424 Tota1 of 2 main streams to confluence: Flow rates before confluence point: 41.107 7.633 Area of streams before confluence: 37.520 5.290 Results of confluence: Total flow rate = 48.424(CFS) Time of concentration = 15.645 min. Effective stream area after confluence = 42.810(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 450.000 to Point/Station 460.000 **** PIPEFLOW TRAVEL TIME (Program estimated siae) **** � Upstream point/station elevation = 1242.000(Ft.) Downstream point/station elevation = 1235.000(Ft.) Pipe length = 150.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 48.424(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 48.424(CFS) Normal flow depth in pipe = 19.48(In.) Flow top width inside pipe = 18.77(In.) Critical depth could not be calculated. Pipe flow velocity = 17.73(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 15.79 min. End of computations, total study area = 42.81 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 58.0 � Page 11 100-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS AREA A A100.out • Riverside County Rational Hydrology Program \ CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 08/30/06 File:A100.out - ------------- --------------------- 850_0106 RORIPAUGH RANCH PA 16 TRACT 29368 AREA A 100-YR 1-HR STORM S/30/06 SWL -------- — ---------------------- — ------------ --- — ------------------- **`****"* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------- — --------------------- — ----------------------- --- Van De11 and Associates, Inc., Irvine, CA - S/N 953 ------------- ------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Stonn event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 \,,... **** INITIAL AREA EVALUATION **** Initial area flow distance = 337.640(Ft.) Top (of initial area) elevation = 1330.000(Ft.) Bottom (of initial area) elevation = 1305.900(Ft.) Difference in elevation = 24.100(Ft.) Slope = 0.07138 s(percent)= 7.14 TC = k(0.390)*[(length^3)/�elevation change)]^0.2 Initial area time of concentration = 6.788 min. Rainfall intensity = 3.978(Zn/Hr) for a 100.0 year storm . SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraccion = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.179(CFS) Total initial stream area = 0.950(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** STREET FLQW TRAVEL TIME + SUBAREA FLOW ADDITION "*** Top of street segment elevation = 1305.900(Ft.) End of street segment elevation = 1284.000(Ft.) Length of street segment = 775.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) � Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 Street flow is on [ij side(s) of the street Page 1 A100.out • Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.198(CFS) Depth of flow = 0.389(Ft.), Average velocity = 4.423(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.141(Ft.) F1ow velocity = 4.42(Ft/s) Travel time = 2.92 min. TC = 9.71 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.268(In/Hr) for a 100.0 year storm Subarea runoff = 8.139(CFS) for 3.000(AC.) Total runoff = 11.318(CFS) Total area = 3.950(AC.) Street flow at end of street = 11.318(CFS) Half street flow at end of street = 11.318(CFS) Depth of flow = 0.426(Ft.), Average velocity = 4.779(Ft/s) F1ow width (from curb towards crown)= 14.973(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 110.000 x*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1284.000(Ft.) � Downstream point/station elevation = 1283.800(Ft.) Pipe length 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow 11.318(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 11.318(CFS) Normal flow depth in pipe = 15.52(In.) Flow top width inside pipe = 22.95(In.) Critical Depth = 14.49(In.) Pipe flow velocity = 5.27(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 9.85 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.000 *`** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.950(Ac.) Runoff from this stream = 11.318(CFS) Time of concentration = 9.85 min. Rainfall intensity = 3.242(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 107.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 336.940(Ft.) Top (of initial area) elevation = 1308.200(Ft.) Bottom (of initial area) elevation = 1305.300(Ft.) Difference in elevation = . 2.900(Ft.) S1ope = 0.00861 s(percent)= 0.86 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Znitial area time of concentration = 9.823 min. � Rainfall intensity =. 3.24711n/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.851 Page 2 A100.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 2.210(CFS) Total initial stream area = 0.800(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1305.300(Ft.) End of street segment elevation = 1284.100(Ft.) Length of street segment = 758.640(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) S1ope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of stzeet = 5.180(CFS) Depth of flow = 0.344(Ft.), Average velocity = 3.954(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.879(Ft.) Flow velocity = 3.95(Ft/s) Travel time = 3.20 min. TC = 13.02 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.824 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.690 Decimal fraction soil group C= 0.310 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 60.03 Pervious area fraction = 0.350; Impervious £raction = 0.650 Rainfall intensity = 2.780(In/Hr) for a 100.0 year storm Subarea runoff = 4.924(CFS) for 2.150(Ac.) Total runoff = 7.134(CFS) Total area = 2.950(Ac.) Street flow at end of street = 7.134(CFS) Half street flow at end of street = 7.134(CFS) Depth of flow = 0.375(Ft.), Average velocity = 4.262(Ft/s) Flow width (from curb towards crown)= 12.439(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1284.100(Ft.) Downstream point/station elevation = 1283.800(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.134(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 7.134(CFS) Normal flow depth in pipe = 12.54(Zn.) Flow top width inside pipe = 16.55(In.) Critical Depth = 12.42(In.) Pipe flow velocity = 5.43(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 13.16 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 A100.out � Process from Point/Station 110.000 to Point/Station 110.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.950(Ac.) Runoff Erom this stream = '7.134(CFS) Time of concentration = 13.16 min. Rainfall intensity = 2.764(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.318 9.85 3.242 2 7.134 13.16 2.764 Largest stream flow has longer or shorter time of concentration Qp = 11.318 + sum of Qa Tb/Ta 7.134 * 0.749 = 5.340 Qp = 16.659 Total of 2 streams to confluence: Flow rates before confluence point: 11.318 7.134 Area of streams before confluence: 3.950 2.950 Results of confluence: Total flow rate = 16.659(CFS) Time of concentration = 9.850 min. Effective stream area after confluence = 6.900(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program esGimated size) **** � Upstream point/station elevation = 1283.800(Ft.) Downstream point/station elevation = 1265.560(Ft.) Pipe length = 100.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 16.659(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 16.659(CFS) Normal flow depth in pipe = 8.40(In.) Flow top width inside pipe = 14.89(In.) Critical depth could not be calculated. Pipe flow velocity = 23.53(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 9.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.900(AC.) Runoff from this stream = 16.659(CFS) Time of concentration = 9.92 min. Rainfall intensity = 3.229(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 276.160(Ft.) Top (of initial area) elevation = 1331.600(Ft.) Bottom (of initial area) elevation = 1326.200(Ft.) Difference in elevation = 5.400(Ft.) S1ope = 0.01955 s(percent)= 1.96 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.699 min. Rainfall intensity = 3.712(In/Hr) for a 100.0 year storm Page 4 A100.out � CONDOMINIUM subarea type Runoff Coefficient = 0.856 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 2.034(CFS) Tota1 initial stream area = 0.640(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 *'** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1326.200(Ft.) End of street segment elevation = 1287.300(Ft.) Length of street segment = 882.890(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.103(CFS) Depth of flow = 0.338(Ft.), Average velocity = 4.892(Ft/s) Streetflow hydraulics at midpoint of street travel: � Halfstreet flow width = 10.587(Ft.) Flow velocity = 4.89(Ft/s) Travel time = 3.01 min. TC = 10.71 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.849 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.096(In/Hr) for a 100.0 year storm Subarea runoff = 6.729(CFS) for 2.560(AC.) Total runoff = 8.763(CFS) Total area = 3.200(Ac.) Street £low at end of street = 8.763(CFS) Half street flow at end of street = 8.763(CFS) Depth of flow = 0.373(Ft.), Average velocity = 5.323(Ft/s) Flow width (from curb towards crown)= 12.327(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1287.300(Ft.) Downstream point/station elevation = 1265.560(Ft.) Pipe length = 85.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.763(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.763(CFS) Normal flow depth in pipe = 5.91(In.) Flow top width inside pipe = 12.00(Zn.) Critical depth could not be calculated. Pipe £1ow velocity = 22.79(Ft/s) � Travel time through pipe = 0.06 min. Time of concentration (TC) = 10.77 min. Page S A100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 *`*` CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.200(Ac.) Runoff from this stream = 8.763(CFS) Time of concentration = 10.77 min. Rainfall intensity = 3.087(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.659 9.92 3.229 2 8.763 10.77 3.087 Largest stream flow has longer or shorter time of concentration Qp = 16.659 + sum of Qa Tb/Ta 8.763 * 0.921 = 8.074 QP = 24.732 Total of 2 streams to confluence: Flow rates before confluence point: 16.659 8.763 Area of streams before confluence: 6.900 3.200 Results of confluence: Total flow rate = 24.732(CFS) Time of concentration = 9.921 min. Effective stream area after confluence = 10.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 120.000 to Point/Station 130.000 **"'* PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1265.560(Ft.) Downstream point/station elevation = 1261.250(Ft.) Pipe length = 490.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 24.732(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 24.732(CFS) Normal flow depth in pipe = 19.15(In.) Flow top width inside pipe = 24.52(In.) Critical Depth = 20.86(In.) Pipe flow velocity = 8.20(Ft/s) Travel time through pipe = 1.00 min. Time of concentration (TC) = 10.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.100(Ac.) Runoff from this stream = 24.732(CFS) Time of concentration = 10.92 min. Rainfall intensity = 3.063(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 123.000 **`* INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.1 Top (of initial area) elevation = 1332.000(Ft.) � Bottom (of initial area) elevation = 1324.000(Ft.) Difference in elevation = 8.000(Ft.) Page 6 A100.out � Slope = 0.02667 s(percentl= 2.67 TC = k(0.530)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.713 min. Rainfall intensity = 3.095(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.891 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.796(CFS) Total initial stream area = 0.690(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 124.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.000(Ft.) End of street segment elevation = 1293.200(Ft.) Length of street segment = 585.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 � Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.540(CFS) Depth of flow = 0.286(Ft.), Average velocity = 4.641(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.977(Ft.) Flow velocity = 4.64(Ft/s) Travel time = 2.10 min. TC = 12.81 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.820 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.390 Decimal fraction soil group C= 0.610 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 82.88 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.805(In/Hr) for a 100.0 year storm Subarea runoff = 3.080(CFS) for 1.340(Ac.) Total runoff = 4.877(CFS) Total area = 2.030(Ac.) Street flow at end of street = 4.877(CFS) Half street flow at end of street = 4.877(CFS) Depth of flow = 0.311(Ft.), Average velocity = 4.979(Ft/s) Flow width (from curb towards crown)= 9.234(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 128.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1293.200(Ft.) End of street segment elevation = 1262.020(Ft.) Length of street segment = 885.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 51ope from grade break to crown (v/hz) = 0.020 Street flow is on (lj side(s) of the street Page 7 A100.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.795(CFS) Depth of flow = 0.373(Ft.), Average velocity = 4.754(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.300(Ft.) Flow velocity = 4.75(Ft/s) Travel time = 3.10 min. TC = 15.92 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.839 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.490(In/Hr) for a 100.0 year storm Subarea runoff = 5.075(CFS) for 2.430(AC.) Total runoff = 9.952(CFS) Total area = 4.460(Ac.) Street flow at end of street = 9.952(CFS) Ha1f street flow at end of street = 9.952(CFS) Depth of flow = 0.399(FC.), Average velocity = 5.038(Ft/s) Flow width (from curb towards crown)= 13.596(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 4.460(AC.) Runoff from this stream = 9.952(CFS) Time of concentration = 15.92 min. Rainfall intensity = 2.490�1n/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 128.000 **** iNITIAL AREA EVALUATION **** " Initial area flow distance = 758.680(Ft.) Top (of initial area) elevation = 1283.100(Ft.) Bottom (of initial area) elevation = 1262.020(Ft.) Difference in elevation = 21.080(Ft.) Slope = 0.02779 s(percent)= 2.78 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.332 min. Rainfall intensity = 3.001(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.793 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.793 Decimal fraction soil group C= 0.207 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 58.69 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 5.901(CFS) Total initial stream area = 2.480(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** A1ong Main Stream number: 2 in normal stream number 2 Stream flow area = 2.480(Ac.) Runoff from this stream = 5.901(Cr^S) Page 8 A100.out Time of concentration = 11.33 min. Rainfall intensity = 3.001(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station 128.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 321.260(Ft.) Top (of initial area) elevation = 1283.100(Ft.) Bottom (of initial area) elevation = 1262.020(rt.) Difference in elevation = 21.080(Ft.) Slope = 0.06562 s(percent)= 6.56 TC = k(0.370)*[(length^3)/(elevation change)]"0.2 Initial area time of concentration = 6.420 min. Rainfall intensity = 4.102(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.836 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Zmpervious fraction = 0.650 Initial subarea runoff = 3.258(CFS) Tota1 initial stream area = 0.950(AC.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.950(Ac.) Runoff from this stream = 3.258(CFS) Time of concentration = 6.42 min. Rainfall intensity = 4.102(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (Zn/Hr) 1 9.952 15.92 2.490 2 5.901 11.33 3.001 3 3_258 6.42 4.102 Largest stream flow has longer time of concentration Qp = 9.952 + sum of Qb Ia/Ib 5.901 * 0.830 = 4.895 Qb. Ia/Ib 3.258 * . 0.607 = 1.977 Qp = 16.824 Total of 3 streams to confluence: F1ow rates before confluence point: 9.952 5.901 3.258 Area of streams before confluence: 4.460 2.480 0.950 Results of confluence: Total flow rate = 16.824(CFS) Time of concentration = 15.917 min. Effective stream area after confluence = 7.890(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 *`** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1262.020(Ft.) Downstream point/station elevation = 1261.250(Ft.) � Pipe length = 30.00(Ft.) Manning�s N= 0.013 No. of pipes = 1 Required pipe flow 16.824(CFS) Page 9 A100.out Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 16.824(CFS) Normal flow depth in pipe = 14.74(In.) F1ow top width inside pipe = 13.86(In.) Critical depth could not be calculated. Pipe flow velocity = 10.86(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.96 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 130.000 ***� CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 7.890(AC.) Runoff from this stream = 16.824(CFS) Time of concentration = 15.96 min. Rainfall intensity = 2.486(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 24.732 10.92 3.063 2 16.824 15.96 2.486 Largest stream flow has longer or shorter time of concentration QP = 24.732 + sum of Qa Tb/Ta 16.824 * 0.684 = 11.506 Qp = 36.238 Total of 2 main streams to confluence: Flow rates before confluence point: 24.732 16.824 Area of streams before confluence: 10.100 7.890 Results of confluence: Total flow rate = 36.238(CFS) Time of concentration = 10.917 min. Effective stream area after confluence = 17.990(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1261.250(Ft.) Downstream point/station elevation = 1253.730(Ft.) Pipe length = 150.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 36.238(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 36.238(CFS) Normal flow depth in pipe = 17.65(In.) Flow top width inside pipe = 15.38(Zn.) Critical depth could not be calculated. Pipe flow velocity = 16.79(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 11.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 17.990(Ac.) Runoff from this stream = 36.238(CFS) Time of concentration = 11.07 min. Rainfall intensity =- 3.041(In/Hr) Page 10 A100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 ***` INZTIAL AREA EVALUATION **** Initial area flow distance = 311.890(Ft.) Top (of initial area) elevation = 1283.000(Ft.) Bottom (of initial area) elevation = 1280.000(Ft.) Difference in elevation = 3.000(Ft.) Slope = 0.00962 s(percent)= 0.96 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.315 min. Rainfall intensity = 3.343(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.825 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.875(CFS) Total initial stream area = 0.680(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1280.000(Ft.) End of street segment elevation = 1264.700(Ft.) Length of street segment = 719.670lFt.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 51ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.880(CFS) Depth of flow = 0.351(Ft.), Average velocity = 3.5111Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.240(Ft_) Flow velocity = 3.51(Ft/s) Travel time = 3.42 min. TC = 12.73 min. Adding area flow to street CONDOMINILIM subarea type Runoff Coefficient = 0.815 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.815(In/Hr) for a 100.0 year storm Subarea runoff = 4.999(CFS) for 2.180(Ac.) Total runoff = 6.874(CFS) Total area = 2.860(Ac.) Street flow at end of street = 6.874(CFS) Ha1f street flow at end of street = 6.874(CFS) Depth of flow = 0.386(Ft.), Average velocity = 3.806(Ft/s) Flow width (from curb towards crown)= 12.959(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 136.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Page 11 A100.out � Upstream point/station elevation = 1264.700(Ft.) Downstream point/station elevation = 1257.730(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.874(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 6.874(CFS) Normal flow depth in pipe = 6.45(In.) F1ow top width inside pipe = 8.12(In.) Critical depth could not be calculated. Pipe flow velocity = 20.31(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 12.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.860(AC.) Runoff from this stream = 6.874(CFS) Time of concentration = 12.76 min. Rainfall intensity = 2.812(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 36.238 11.07 3.041 2 6.874 12.76 2.812 Largest stream flow has longer or shorter time of concentration Qp = 36.238 + sum of Qa Tb/Ta 6.874 * 0.867 = 5.963 � Qp = 42.201 Total of 2 streams to confluence: Flow rates before confluence point: 36.238 6.874 Area of streams before confluence: 17.990 2.860 Results of confluence: Total Elow rate = 42.201(CFS) Time of concentration = 11.066 min. Effective stream area after confluence = 20.850(Ac.) End of computations, total study area = 20.85 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fractionlAp) = 0.460 Area averaged RI index number = 65.9 • Page 12 AREA B � B100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 03/21/06 File:B100.out ------------------------------------------- 850_0106 RORIPAUGH RANCH TRACT 29368 PA 17 AREA B 100-YR STORM 3/21/06 SWL ------------ ----------------- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ----------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------------- ----------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 273.840(Ft.) Top (of initial area) elevation = 1400.000(Ft.) Bottom (of initial area) elevation = 1387.190(Ft.) Difference in elevation = 12.810(Ft.) Slope = 0.04678 s(percent)= 4.68 TC = k(0.530)*[(length^3)/(elevation change)]"0.2 Initial area time of concentration = 9.231 min. Rainfall intensity = 3.359(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.845 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.448(CFS) Total initial stream area = 0.510(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITI�N **** Top of street segment elevation = 1387.190(Ft.) End of street segment elevation = 1324.640(Ft.) Length of street segment = 1031.430(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) s Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1) side(s) of the street Page 1 B100.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) � Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.359(CFS) Depth of flow = 0.297(Ft.), Average velocity = 5.131(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.502(Ft.) Flow velocity = 5.13(Ft/s) Travel time = 3.35 min. TC = 12.58 min. Adding area flow to street UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.836 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.833(In/Hr) for a 100.0 year storm Subarea runoff = 4.856(CFS) for 2.050(AC.) Total runoff = 6.304(CFS) Total area = 2.560(Ac.) Street flow at end of street = 6.304(CFS) Half street flow at end of street = 6.304(CFS) Depth of flow = 0.327(Ft.), Average velocity = 5.574(Ft/s) Flow width (from curb towards crown)= 10.022(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1332.000(Ft.) End of street segment elevation = 1324.640(Ft.) Length of street segment = 556.450(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of halr street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = Q.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street_ = 7.585(CFS) Depth of flow = 0.424(Ft.), Average velocity = 3.253(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 14.849(Ft.) Flow velocity = 3.25(Ft/s) Travel time = 2.85 min. TC = 15.43 min. Adding area flow to stree[ UNDEVELOPED (poor cover) subarea Runoff Coefficien� = 0.829 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.532(In/Hr) for a 100.0 year storm Subarea runoff = 2.183(CFS) for 1.040(Ac.) Tota1 runoff = 8.487(CFS) Total area = 3.600(Ac.) Street E1ow at end of street = 8.487(CFS) Half street flow at end of street = 8.487(CFS) Depth of flow = 0.437(Ft.), Average velocity = 3.343(Ft/s) Flow width (from curb towards crown)= 15.532(Ft.) Page 2 B100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 206.000 � **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.640(Ft.) End of street segment elevation = 1306.600(Ft.l Length of street segment = 237.470(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown> = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break tv/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.468(CFS) Depth of flow = 0.364(Ft.), Average velocity = 6.836(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.852(Ft.) Flow velocity = 6.84(Ft/5) • Travel time = 0.58 min. TC = 16.01 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.482(In/Hr) for a 100.0 year storm Subarea runoff = 3.387(CFS) for 1.680(AC.) Total runoff = 11.875(CFS) Total area = 5.280(Ac.) Street flow at end of street = 11.875(CFS) Half street flow at end of street = 11.875(Cr^S) Depth of flow = 0.376(Ft.), Average velocity = 7.042(Ft/s) Flow width (from curb towards crown)= 12.488(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 206.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) '*�* Upstream poin�/station elevation = 1306.600(Ft.) Downstream point/station elevation = 1303.210(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.875(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 11.875(CFS) Normal flow depth in pipe = 9.30(In.) F1ow top width inside pipe = 14.56(In.) Critical depth could not be calculated. Pipe flow velocity = 14.86(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 16.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.280(Ac.) Runoff from this stream = 11.875(CFS) Time of concentration = 16.07 min. Rainfall intensity = 2.477(In/Hr) � Page 3 B100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Statior. 207.000 to Point/Station 208.000 ***' INITIAL AREA EVALUATION **** Initial area flow distance = 353.140(Ft.) Top (of initial area) elevation = 1399.000(Ft.) Bottom (of initial area) elevation = 1392.600(Ft.) Difference in elevation = 6.400(Ft.) Slope = 0.01812 s(percent)= 1.81 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.091 min. Rainfall intensity = 3.388(In/Hr) Eor a 100.0 year stonn SINGLE FAMILY (1/4 Acre Lot) Runoff Coe£ficient = 0.832 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.284(CFS) Total initial stream area = 0.810(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 208.000 to Point/Station 209.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1392.600(Ft.) End of street segment elevation = 1334.300(Ft.) Length of street segment = 912.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break Iv/hz) = 0.087 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.091(CFS) Depth of flow = 0.322(Ft.), Average velocity = 5.642(Ft/s) Streetflow hydraulics at midpoint of street travel: � Halfstreet flow width = 9.762(Ft.) Flow velocity = 5.64(Ft/s) Travel time = 2.70 min. TC = 11.79 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coe£ficient = 0.824 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.937(In/Hr) for a 100.0 year storm Subarea runoff = 6.532(CFS) for 2.700(AC.) Total runoff = 8.817(CFS) Total area = 3.510(Ac.) Street flow at end of street = 8.817(CFS) Ha1f street flow at end of street = 8.817(CFS) Depth of flow = 0.355(Ft.), Average velocity = 6.145(Ft/s) Flow width (from curb towards crown)= 11.437(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 209.000 to Point/Station 210.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1334.300(Ft.) Page 4 B100.out � Downstream point/station elevation = 1303.210(Ft.) Pipe length 391.97(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow 8.817(CFS) Nearest computed oipe diameter = 12.00(In.) Calculated individual pipe flow = 8.817(CFS) Normal flow depth in pipe = 8.72(In_) Flow top width inside pipe = 10.70(In.) Critical depth could not be calculated. Pipe flow velocity = 14.41(Ft/s) Travel time through pipe = 0.45 min. Time of concentratior (TC) = 12.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 210.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.510(AC.) Runoff from this stream = 8.817(CFS) Time of concentration = 12.24 min. Rainfall intensity = 2.8'77(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.875 16.07 2.477 2 8.817 12.24 2.877 Largest stream flow has longer time of concentration Qp = 11.875 + sum of Qb Ia/Ib 8.817 * 0.861 = 7.591 Qp = 19.466 � Total of 2 streams to confluence: Flow rates be£ore confluence point: 11.875 8.817 Area o£ streams before confluence: 5.280 3.510 Results of confluence: Total flow rate = 19.466(CFS) Time of concentration = 16.067 min. Effective stream area after confluence = 8.790(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1303.210(Ft.) Downstream point/station elevation = 1262.490(Ft.) Pipe length = 576.26(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 19.466(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 19.466(CFS) Normal flow depth in pipe = 11.06(In.) Flow top width inside pipe = 17.52(In.) Critical depth could not be calculated. Pipe flow velocity = 17.08(Ft/s) Travel time through pipe = 0.56 min. Time of concentration (TC) = 16.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process £rom Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.790(Ac.) Runoff from this stream = 19.466(CFS) Time of concentration = 16.63 min. Page 5 B100.out Rainfall intensity = 2.430(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 212.000 to Point/Station 213.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 271.360(Ft.) Top (of initial area) elevation = 1308.200(Ft.) Bottom (of initial area) elevation = 1306.600(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.00590 s(percent)= 0.59 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.242 min. Rainfall intensity = 3.173(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.829 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.709(CFS) Total initial stream area = 0.650(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 213.000 to Point/Station 214.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION •*** Top of street segment elevation = 1306.600(Ft.) End of street segment elevation = 1276.100(Ft.) Length of street segment = 533.790(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.). _, Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.928(CFS) Depth of flow = 0.327(Ft.), Average velocity = 5.232(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.031(Ft.) Flow velocity = 5.23(Ft/s) Travel time = 1.70 min. TC = 11.94 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.781 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.916(In/Hr) £or a 100.0 year storm Subarea runoff = 7.311(CFS) for 3.210(AC.) Total runoff = 9.020(CFS) Total area = 3.860(AC.) Street flow at end of street = 9.020(CFS) Half street flow at end of street = 9.020(CFS) Depth of flow = 0.366(Ft.), Average velocity = 5.768(Ft/s) Flow width (from curb towards crown)= 11.988(Ft.) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 6 B100.out � Process from Point/Station 214.000 to Point/Station 220.000 '*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1278.100(Ft.) Downstream point/station elevation = 1262.490(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.020(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 9.020(CFS) Normal flow depth in pipe = 7.18(In.) Flow top width inside pipe = 7.22(In.) Critical depth could not be calculated. Pipe flow velocity = 23.85(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.98 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: Zn Main Stream number: 2 Stream flow area = 3.860(AC.) Runoff from this stream = 9.020(CFS) Time of concentration = 11.98 min. Rainfall intensity = 2.911(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 216.000 to Point/Station 217.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 309.460(Ft.) Top (of initial area) elevation = 1334.300(Ft.) Bottom (of initial area) elevation = 1313.600(Ft.) Difference in elevation = 20.700(Ft.) ,_ Slope = 0.06689 s(percent)= 6.69 TC = k(0.390)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 6.641 min. Rainfall intensity = 4.027(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.842 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.050(CFS) Total initial stream area = 0.900(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 217.000 to Point/Station 218.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1313.600(Ft.) End of street segment elevation = 1276.600(Ft.) Length of street segment = 547.930(Ft.) Heiqht of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to cross£all grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street E1ow is on [1] side(s) of the street Distance from curb to property line = 5.500lFt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) � Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Page 7 B100.out Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.067(CFS) Depth of flow = 0.319(Ft.), Average velocity = 5.759(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.627(Ft.) F1ow velocity = 5.76(Ft/s) Travel time = 1.59 min. TC = 8.23 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.798 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.579(In/Hr) for a 100.0 year storm Subarea runoff = 5.085(CFS) for 1.780(Ac.) Total runoff = 8.135(CFS) Tota1 area = 2.680(AC.) Street flow at end of street = 8.135(CFS) Half street flow at end of street = 8.135(CFS) Depth of flow = 0.345(Ft.), Average velocity = 6.160(Ft/s) Flow width (from curb towards crown)= 10.926(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 218.000 to Point/Station 220.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1276.600(Ft.) Downstream point/station elevation = 1262.490(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.135(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 8.135(CFS) Normal flow depth in pipe = 6.84(In.) Flow top width inside pipe = 7.68(In.) Critical depth could no� be calculated. Pipe flow velocity = 22.59(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 8.26 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.680(AC.) Runoff from this stream = 8.135(CFS) Time of concentration = 8.26 min. Rainfall intensity = 3.570(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 19.466 16.63 2.430 2 9.020 11.98 2.911 3 8.135 8.26 3.570 Largest stream flow has longer time of concentration Qp = 19.466 + sum of Qb Ia/Ib ' 9.020 * 0.835 = 7.530 Qb Ia/Ib 8.135 * 0.681 = 5.538 Qp = 32.533 Total of 3 main streams to confluence: Flow rates before confluence point: 19.466 9.020 8.135 Area of streams before confluence: Page 8 B100.out 8.790 3.860 2.6B0 � Results of confluence: Total flow rate = 32.533(CFS) Time of concentration = 16.630 min. Effective stream area after confluence = 15.330(Ac.) End of computations, total study area = 15.33 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.617 Area averaged RI index number = 68.8 � � Page 9 AREA C � � C100.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 File:C100.out --------------------------------------------------------------- 850_0106 RORIPAUGH RANCH TRACT 29368 PA 18 AREA C 100-YR 9/7/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Sto� event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 322.000 to Point/Station 324.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 378.180(Ft.) Top (of initial area) elevation = 1414.000(Ft.) Bottom (of initial area) elevation = 1411.500(Ft.) Difference in elevation = 2.500(Ft.) Slope = 0.00661 s(percent)= 0.66 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.431 min. Rainfall intensity = 2.987(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = O.SOO; Impervious fraction = 0.500 Initial subarea runoff = 2.858(CFS) Total initial stream area = 1.160(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 324.000 to Point/Station 326.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1411.500(Ft.) End of street segment elevation = 1348.200(Ft.) Length of street segment = 1491.940(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break �(v/hz) = 0.087 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 C100.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) , Gutter hike from flowline = 2.000(In.) , . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.795(CFS) Depth of flow = 0.376(Ft.), Average velocity = 5.252(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.442(Ft.) Flow velocity = 5.25(Ft/s) Travel time = 4.73 min. TC = 16.17 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.831 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.468(In/Hr) for a 100.0 year storm Subarea runoff = 9.891(CFS) for 4.820(Ac.) Total runoff = 12.749(CFS) Total area = 5.980(AC.) Street flow at end of street = 12.749(CFS) Half street flow at end of street = 12.749(CFS) Depth of flow = 0.416(Ft.), Average velocity = 5.738(Ft/s) Flow width (from curb towards crown)= 14.475(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 326.000 to Point/Station 336.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1348.200(Ft.) � Downstream point/station elevation = 1295.630(Ft.) Pipe length 908.55(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow 12.749(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.749(CFS) Normal flow depth in pipe = 10.34(In.) Flow top width inside pipe = 13.89(In.) Critical depth could not be calculated. Pipe flow velocity = 14.13(Ft/s) Travel time through pipe = 1.07 min. Time of concentration (TC) = 17.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 336.000 to Point/Station 336.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.980(Ac.) Runoff from this stream = 12.749(CFS) Time of concentration = 17.24 min. Rainfall intensity = 2.383(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 333.000 to Point/Station 334.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 469.420(Ft.) Top (of initial area) elevation = 1368.980(Ft.) Bottom (of initial area) elevation = 1351.400(Ft.) Difference in elevation = 17.580(Ft.) Slope = 0.03745 s(percent)= 3.75 TC = k(0.390)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.810 min. Rainfall intensity = 3.447(In/Hr) for a 100.0 year storm � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.795 Page 2 cioo.out � Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 . Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.932(CFS) Total initial stream area = 1.070(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 334.000 to Point/Station 335.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1351.400(Ft.) End of street segment elevation = 1300.300(Ft.) Length of street segment = 701.930(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.577(CFS) Depth of flow = 0.323(Ft.), Average velocity = 6.039(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.811(Ft.) Flow velocity = 6.04(Ft/s) � Travel time = 1.94 min. TC = 10.75 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.786 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.090(In/Hr) for a 100.0 year storm Subarea runoff = 6.461(CFS) for 2.660(Ac.) Total runoff = 9.393(CFS) Total area = 3.730(Ac.) Street flow at end of street = 9.393(CFS) Half street flow at end of street = 9.393(CFS) Depth of flow = 0.355(Ft.), Average velocity = 6.557(Ft/s) Flow width (from curb towards crown)= 11.428(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 335.000 to Point/Station 336.000 � **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1300.300(Ft.) Downstream point/station elevation = 1295.630(Ft.) Pipe length = 100.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.393(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 9.393(CFS) Normal flow depth in pipe = 9.01(In.) Flow top width inside pipe = 14.69(In.) Critical Depth = 14.02(In.) Pipe flow velocity = 12.20(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 10.88 min. ++++++++++++++±+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 C100.out � Process from Point/Station 336.000 to Point/Station 336.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 _ Stream flow area = 3.730(AC.) Runoff from this stream = 9.393(CFS) Time of concentration = 10.88 min. Rainfall intensity = 3.069(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.749 17.24 2.383 2 9.393 10.88 3.069 Largest stream flow has longer time of concentration Qp = 12.749 + sum of Qb Ia/Ib 9.393 * 0.777 = 7.294 Qp = 20.044 Total of 2 streams to confluence: Flow rates before confluence point: 12.749 9.393 Area of streams before confluence: 5.980 3.730 Results of confluence: Total flow rate = 20.044(CFS) Time of concentration = 17.238 min. Effective stream area after confluence = 9.710(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 336.000 to Point/Station 330.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1295.630(Ft.) `_. Downstream point/station elevation = 1290.000(Ft.) Pipe length = 205.90(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 20.044(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 20.044(CFS) Normal flow depth in pipe = 13.76(In.) > Flow top width inside pipe = 19.96(In.) Critical Depth = 19.20(In.) Pipe flow velocity = 12.00(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 17.52 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 330.000 **** CONFLLTENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.710(Ac.) Runoff from this stream = 20.044(CFS) Time of concentration = 17.52 min. Rainfall intensity = 2.361(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 327.000 to Point/Station 328.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 377.450(Ft.) Top (of initial area) elevation = 1343.600(Ft.) Bottom (of initial area) elevation = 1329.200(Ft.) Difference in elevation = 14.400(Ft.) � Slope = 0.03815 s(percent)= 3.82 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Page 4 C100.out � Initial area time of concentration = 8.663 min. Rainfall intensity = 3.479(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.821 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 2.655(CFS) Total initial stream area = 0.930(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 328.000 to Point/Station 329.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1329.200(Ft.) End of street segment elevation = 1292.200(Ft.) Length of street segment = 903.310(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.965(CFS) Depth of flow = 0.379(Ft.), Average velocity = 5.205(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.632(Ft.) Flow velocity = 5.21(Ft/s) Travel time = 2.89 min. TC = 11.56 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.969(In/Hr) for a 100.0 year storm Subarea runoff = 10.820(CFS) for 4.420(Ac.) Total runoff = 13.475(CFS) Tota1 area = 5.350(Ac.) Street flow at end of street = 13.475(CFS) Half street flow at end of street = 13.475(CFS) Depth of flow = 0.425(Ft.), Average velocity = 5.738(Ft/s) Flow width (from curb towards crown)= 14.905(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 329.000 to Point/Station 330.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1292.200(Ft.) Downstream point/station elevation = 1290.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 13.475(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 13.475(CFS) Normal flow depth in pipe = 11.02(In.) F1ow top width inside pipe = 13.25(In.) Critical depth could not be calculated. Pipe flow velocity = 13.95(Ft/s) Travel time through pipe = 0.05 min. Page 5 C100.out Time of concentration (TC) = 11.60 min. +++++++++++++++++++++++++++++++++++++±++++++++++++++++++++++++++++++++ . Process from Point/Station 330.000 to Point/Station 330.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number:,2 Stream flow area = 5.350(Ac.) Runoff from this stream = 13.475(CFS) Time of concentration = 11.60 min. Rainfall intensity = 2.962(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 331.000 to Point/Station 332.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 405.150(Ft.) Top (of initial area) elevation = 1366.400(Ft.) Bottom (of initial area) elevation = 1357.300(Ft.) Difference in elevation = 9.100(Ft.) Slope = 0.02246 s(percent)= 2.25 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.201 min. Rainfall intensity = 3.366(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.814 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.500 Decimal fraction soil group C= 0.500 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 62.50 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.574(CFS) Total initial stream area = 0.940(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 332.000 to Point/Station 339.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1357.300(Ft.) End of street segment elevation = 1300.300(Ft.) Length of street segment = 1273.660(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.092(CFS) DeptYi of flow = 0.338(Ft.), Average velocity = 4.919(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.544(Ft.) Flow velocity = 4.92(Ft/s) Travel time = 4.32 min. TC = 13.52 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.790 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.670 Decimal fraction soil group C= 0.330 Decimal fraction soil group D= 0.000 Page 6 C100.out RI index for soil(AMC 2) = 60.29 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.724(In/Hr) for a 100.0 year storm . Subarea runoff = 5.532(CFS) for 2.570(Ac..) Total runoff = 8.106(CFS) Total area = 3.510(AC.) Street flow at end of street = 8.106(CFS) Half street flow at end of street = 8.106(CFS) Depth of flow = 0.365(Ft.), Average velocity = 5.258(Ft/s) Flow width (from curb towards crown)= 11.896(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 339.000 to Point/Station 339.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 3.510(AC.) Runoff from this stream = 8.106(CFS) Time of concentration = 13.52 min. Rainfall intensity = 2.724(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 337.000 to Point/Station 338.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 328.480(Ft.) Top (of initial area) elevation = 1352.800(Ft.) Bottom (of initial area) elevation = 1348.600(Ft.) Difference in elevation = 4.200(Ft.) Slope = 0.01279 s(percent)= 1.28 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.469 min. Rainfall intensity = 3.313(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.792 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.810(CFS) Total initial stream area = 0.690(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 338.000 to Point/Station 339.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1348.600(Ft.) End of street segment elevation = 1300.300(Ft.) Length of street segment = 601.230(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2..000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.394(CFS) Depth of flow = 0.287(Ft.), Average velocity = 5.738(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.994(Ft.) F1ow velocity = 5.74(Ft/s) Travel time = 1.75 min. TC = 11.22 min. Adding area flow to street Page 7 C100.out SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.784 , Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 , Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.018(In/Hr) for a 100.0 year storm Subarea runoff = 4.662(CFS) for 1.970(AC.) Total runoff = 6.472(CFS) Total area = 2.660(AC.) Street flow at end of street = 6.472(CFS) Half street flow at end of street = 6.472(CFS) Depth of flow = 0.317(Ft.), Average velocity = 6.251(Ft/s) Flow width (from curb towards crown)= 9.533(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 339.000 to Point/Station 339.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in nozmal stream number 2 Stream flow area = 2.660(Ac.) Runoff from this stream = 6.472(CFS) Time of concentration = 11.22 min. Rainfall intensity = 3.018(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 8.106 13.52 2.724 2 6.472 11.22 3.018 Largest stream flow has longer time of concentration Qp = 8.106 + sum of Qb Ia/Ib 6.472 * 0.902 = 5.841 Qp = 13.947 Total of 2 streams to confluence: Flow rates before confluence point: 8.106 6.472 Area of streams before confluence: 3.510 2.660 Results of confluence: Total flow rate = 13.947(CFS) Time of concentration = 13.516 min. Effective stream area after confluence = 6.170(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 339.000 to Point/Station 330.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** , Upstream point/station elevation = 130Q.300(Ft.) Downstream point/station elevation = 1290.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 13.947(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 13.947(CFS) Normal flow depth in pipe = 7.91(In.) Flow top width inside pipe = 11.38(In.) Critical depth could not be calculated. Pipe flow velocity = 25.40(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.54 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 330.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: Page 8 C100.out � In Main Stream number: 3 Stream flow area = 6.170(Ac.) Runoff from this stream = 13.947(CFS) Time of concentration = 13.54 min. Rainfall intensity = 2.721(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 20.044 17.52 2.361 2 13.475 11.60 2.962 3 13.947 13.54 2.721 Largest stream flow has longer time of concentration Qp = 20.044 + sum of Qb Ia/Ib 13.475 * 0.797 = 10.741 Qb Ia/Ib 13.947 * 0.868 = 12.104 4P = 42.889 Total of 3 main streams to confluence: Flow rates before confluence point: 20.044 13.475 13.947 Area of streams before confluence: 9.710 5.350 6.170 Results of confluence: Total flow rate = 42.889(CFS) Time of concentration = 17.524 min. Effective stream area after confluence = 21.230(AC.) End of computations, total study area = 21.23 (Ac.) The following figures may be used for a unit hydrograph study of the same area. • Area averaged pervious area fraction(Ap) = 0.504 Area averaged RI index number = 65.1 • Page 9 - AREA D D100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 . Rational Hydrology Study Date: 09/07/06 File:D100.out 850_0106 RORIPAUGH RANCH TRACT 29368 PA 18 AREA D 100-YR 9/7/06 SWL ********* HydrOlOgy Study COntr01 Infozmation ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County F1ood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 302.000 *.*** INITIAL AREA EVALUATION **** Initial area flow distance = 483.010(Ft.) Top (of initial area) elevation = 1411.600(Ft.) Bottom (of initial area) elevation = 1405.400(Ft.) Difference in elevation = 6.200(Ft.) Slope = 0.01284 s(percent)= 1.28 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.040 min. Rainfall intensity = 3.045(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.826 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.144(CFS). Total initial stream area = 1.250(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 304.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1405.400(Ft.) End of street segment elevation = 1375.200(Ft.) Length of street segment = 795.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Page 1 D100.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.), , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.702(CFS) Depth of flow = 0.354(Ft.}, Average velocity = 4.722(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.370(Ft.) Flow velocity = 4.72(Ft/s) Travel time = 2.81 min. TC = 13.85 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.500 Decimal fraction soil group D= 0.500 RI index for soil(AMC 2) = 72.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.688(In/Hr) for a 100.0 year storm Subarea runoff = 6.293(CFS) for 2.830(Ac.) Total runoff = 9.436(CFS) Total area = 4.080(Ac.) Street flow at end of street = 9.436(CFS) Half street flow at end of street = 9.436(CFS) . Depth of flow = 0.389(Ft.), Average velocity = 5.119(Ft/s) Flow width (from curb towards crown)= 13.103(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1375.200(Ft.) Downstream point/station elevation = 1334.500(Ft.) Pipe length = 539.41(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.436(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 9.436(CFS) Normal flow depth in pipe = 9.47(In.) Flow top width inside pipe = 9.79(In.) Critical depth could not be calculated. Pipe flow velocity = 14.19(Ft/s) Travel time through pipe = 0.63 min. Time of concentration (TC) = 14.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.080(Ac.) Runoff from this stream = 9.436(CFS) Time of concentration = 14.48 min. Rainfall intensity = 2.623(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 306.000 to Point/Station 308.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 284.670(Ft.) Top (of initial area) elevation = 1368.600(Ft.) Bottom (of initial area) elevation = 1359.200(Ft.) Difference in elevation = 9.400(Ft.) Slope = 0.03302 s(percent)= 3.30 TC = k(0.390)*[(length^3),/(elevation change)]^0.2 Initial area time of concentration = 7.397 min. Rainfall intensity = 3.795(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.853 Page 2 D100.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 , Decimal fraction soil group D= 1.000 . RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.751(CFS) Total initial stream area = 0.850(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 308.000 to Point/Station 309.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1359.200(Ft.) End of street segment elevation = 1337.600(Ft.) Length of street segment = 348.390(Ft.) Height of curb above gutter flowline = �6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.612(CFS) Depth of flow = 0.300(Ft.), Average velocity = 5.240(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.680(Ft.) Flow velocity = 5.24(Ft/s) Travel time = 1.11 min. TC = 8.50 min. Adding area flow to street' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.514(In/Hr) for a 100.0 year storm Subarea runoff = 3.373(CFS) for 1.150(AC.) Total runoff = 6.123(CFS) Total area = 2.000(AC.) Street flow at end of street = 6.123(CFS) . Half street flow at end of street = 6.123(CFS) Depth of flow = 0.324(Ft.), Average velocity = 5.584(Ft/s) Flow width (from curb towards crown)= 9.848(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 309.000 to Point/Station 310.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1337.600(Ft.) Downstream point/station elevation = 1334.500(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.123(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.123(CFS) Normal flow depth in pipe = 7.08(In.) Flow top width inside pipe = 11.80(In.) Critical depth could not be calculated. Pipe flow velocity = 12.69(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 8.56 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 D100.out Process from Point/Station 310.000 to Point/Station 310.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 1 in normal stream number 2 . Stream flow area = 2.000(AC.) Runoff from this stream = 6.123(CFS) Time of concentration = 8.56 min. Rainfall intensity = 3.501(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 9.436 14.48 2.623 2 6.123 8.56 3.501 Largest stream flow has longer time of concentration qp = 9.436 + sum of Qb Ia/Ib 6.123 * 0.749 = 4.587 Qp = 14.023 Total of 2 streams to confluence: Flow rates before confluence point: 9.436 6.123 Area of streams before confluence: 4.080 2.000 Results of confluence: Total flow rate = 14.023(CFS) Time of concentration = 14.481 min. Effective stream area after confluence = 6.080(Ac.) End of computations, total study area = 6.08 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 71.2 Page 4 AREA E � E100.out Riverside County Rational Hydrology Program _ CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 File:El00.out ----- — --------- ------------------------------- -------- ---------- 850_0106 RORIPAUGH RANCH TRACT 29368 PA 18 AREA E 100-YR 9/7/06 SWL -------------------- --- ------ ------------------------ -------- ---- ********* HydrOlOgy Stlldy COritY01 InfOrmdtiOn ********** English (in-lb) Units used in input data file ----------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 422.000 to Point/Station 424.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 279.480(Ft.) Top (of initial area) elevation = 1297.600(Ft.) Bottom (of initial area) elevation = 1296.000(Ft.) Difference in elevation = 1.600(Ft.) Slope = 0.00572 s(percent)= 0.57 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.424 min. Rainfall intensity = 3.142(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.787 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.178(CFS) Total initial stream area = 0.880(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 424.000 to Point/Station 426.000 **** STREET FLOW TRAVEL TIME +'SUBAREA FLOW ADDITION **** Top of street segment elevation = 1296.000(Ft.) End of street segment elevation = 1258.800(Ft.) Length of street segment = 1277.920(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 E100.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.574(CFS) Depth of flow = 0.393(Ft.), Average velocity = 4.522(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.302(Ft.) Flow velocity = 4.52(Ft/s) Travel time = 4.71 min. TC = 15.13 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.769 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.560(In/Hr) for a 100.0 year storm Subarea runoff = 10.181(CFS) for 5.170(AC.) Total runoff = 12.358(CFS) Total area = 6.050(Ac.) Street flow at end of street = 12.358(CFS) Half street flow at end of street = 12.358(CFS) Depth of flow = 0.435(Ft.), Average velocity = 4.936(Ft/s) Flow width (from curb towards crown)= 15.417(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 426.000 to Point/Station 440.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1258.800(Ft.) Downstream point/station elevation = 1252.840(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 12.358(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.358(CFS) Normal flow depth in pipe = 7.97(In.) Flow top width inside pipe = 14.97(In.) Critical depth could not be calculated. Pipe flow velocity = 18.64(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 15.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 440.000 to Point/Station 440.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.050(Ac.) Runoff from this stream = 12.358(CFS) Time of concentration = 15.18 min. Rainfall intensity = 2.555(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 432.000 to Point/Station 434.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 278.600(Ft.) Top (of initial area) elevation = 1291.400(Ft.) Bottom (of initial area) elevation = 1287.900(Ft.) Difference in elevation = 3.500(Ft.) Slope = 0.01256 s(percent)= 1.26 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.897 min. Rainfall intensity = 3.428(In/Hr) for a 100.0 year storm � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.795 Page 2 E100.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.553(CFS) Total initial stream area = 0.570(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 434.000 to Point/Station 436.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1287.900(Ft.) End of street segment elevation = 1259.400(Ft.) Length of street segment = 1083.510(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.871(CFS) Depth of flow = 0.359(Ft.), Average velocity = 3.977(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.617(Ft.) Flow velocity = 3.98(Ft/s) Travel time = 4.54 min. TC = 13.44 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.775 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.733(In/Hr) for a 100.0 year storm Subarea runoff = 6.716(CFS) for 3.170(AC.) Total runoff = 8.269(CFS) Total area = 3.740(Ac.) Street flow at end of street = 8.269(CFS) Half street flow at end of street = 8.269(CFS) Depth of flow = 0.394(Ft.), Average velocity = 4.313(Ft/s) Flow width (from curb towards crown)= 13.381(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 436.000 to Point/Station 440.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1259.400(Ft.) Downstream point/station elevation = 1252.840(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.269(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.269(CFS) Normal flow depth in pipe = 6.98(In.) Flow top width inside pipe = 11.84(In.) Critical depth could not be calculated. Pipe flow velocity = 17.44(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 13.48 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 E100.out � Process from Point/Station 440.000 to Point/Station 440.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 _ Stream flow area = 3.740(Ac.) Runoff from this stream = 8.269(CFS) Time of concentration = 13.48 min. Rainfall intensity = 2.727(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.358 15.18 2.555 2 8.269 13.48 2.727 Largest stream flow has longer time of concentration Qp = 12.358 + sum of Qb Ia/Ib 8.269 * 0.937 = 7.74H Qp = 20.106 Total of 2 streams to confluence: Flow rates before confluence point: 12.358 8.269 Area of streams before confluence: ° 6.050 3.740 Results of confluence: Total flow rate = 20.106(CFS) Time of concentration = 15.179 min. Effective stream area after confluence = 9.790(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 440.000 to Point/Station 430.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 1252.840(Ft.) Downstream point/station elevation = 1249.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 20.106(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 20.106(CFS) Normal flow depth in pipe = 10.99(In.) Flow top width inside pipe = 17.55(In.) Critical depth could not be calculated. Pipe flow velocity = 17.77(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 430.000 *�** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 9.790(AC.) Runoff from this stream = 20.106(CFS) Time of concentration = 15.23 min. Rainfall intensity = 2.551(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.644(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.772 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Page 4 E100.out � Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 14.27 min. Rain intensity = 2.64(In/Hr) , Total area = 22.58(Ac.) Total runoff = 41.91(CFS) , ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 430.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1250.000(Ft.) Downstream point/station elevation = 1249.000(Ft.) Pipe length = 196.54(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 41.910(CFS) Nearest computed pipe diameter = 36.00(In.) Calculated individual pipe flow = 41.910(CFS) Normal flow depth in pipe = 26.25(In.) Flow top width inside pipe = 32.00(In.) Critical Depth = 25.28(In.) Pipe flow velocity = 7.60(Ft/s) Travel time through pipe = 0.43 min. Time of concentration (TC) = 14.70 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 430.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 22.580(Ac.) Runoff from this stream = 41.910(CFS) Time of concentration = 14.70 min. Rainfall intensity = 2.601(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity � No. (CFS) (min) (In/Hr) 1 20.106 15.23 2.551 2 41.910 14.70 2.601 Largest stream flow has longer or shorter time of concentration Qp = 41.910 + sum of Qa Tb/Ta 20.106 * 0.966 = 19.415 Qp = 61.325 Total of 2 streams to confluence: Flow rates before confluence point: 20.106 41.910 Area of streams before confluence: 9.790 22.580 Results of confluence: Total flow rate = 61.325(CFS) Time of concentration = 14.703 min. Effective stream area after confluence = 32.370(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 430.000 to Point/Station 420.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1249.000(Ft.) Downstream point/station elevation = 1243.000(Ft.) Pipe length = 275.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 61.325(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 61.325(CFS) Normal flow depth in pipe = 24.94(In.) Flow top width inside pipe = 22.47(In.) Critical depth could not be calculated. Pipe flow velocity = 14.06(Ft/s) � Travel time through pipe = 0.33 min. Time of concentration (TC) = 15.03 min. Page 5 E100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 420.000 to Point/Station 420.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 32.370(Ac.) Runoff from this stream = 61.325(CFS) Time of concentration = 15.03 min. Rainfall intensity = 2.570(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 412.000 to Point/Station 414.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 373.400(Ft.) Top (of initial area) elevation = 1269.300(Ft.) Bottom (of initial area) elevation = 1268.800(Ft.) Difference in elevation = 0.500(Ft.) Slope = 0.00134 s(percent)= 0.13 TC = k(0.390)*[(length^3)/(elevation change)J^0.2 Initial area time of concentration = 15.652 min. Rainfall intensity = 2.513(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.768 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.987(CFS) Total initial stream area = 1.030(Ac.) Pervious area fraction = 0.500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 414.000 to Point/Station 416.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1268.800(Ft.) End of street segment elevation = 1248.100(Ft.) Length of street segment = 900.800(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.960(CFS) Depth of flow = 0.367(Ft.), Average velocity = 3.790(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.024(Ft.) Flow velocity = 3.79(Ft/s) Travel time = 3.96 min. TC = 19.61 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.756 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.220(In/Hr) for a 100.0 year storm Page 6 E100.out Subarea runoff = 6.911(CFS) for 4.120(Ac.) Total runoff = 8.897(CFS) Total area = 5.150(Ac.) Street flow at end of street = 8.897(CFS) Half street flow at end of street = 8.897(CFS) . Depth of flow = 0.410(Ft.), Average velocity = 4.169(Ft/s) Flow width (from curb towards crown)= 14.168(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 416.000 to Point/Station 420.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1248.100(Ft.) Downstream point/station elevation = 1243.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.897(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.897(CFS) Normal flow depth in pipe = 7.98(In.) Flow top width inside pipe = 11.33(In.) Critical depth could not be calculated. Pipe flow velocity = 16.03(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 19.67 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 420.000 to Point/Station 420.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.150(Ac.) Runoff from this stream = 8.897(CFS) Time of concentration = 19.67 min. Rainfall intensity = 2.216(In/Hr) Siunmary of stream data: � Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 61.325 15.03 2.570 2 8.897 19.67 2.216 Largest stream flow has longer or shorter time of concentration Qp = 61.325 + sum of Qa Tb/Ta 8.897 * 0.764 = 6.800 Qp = 68.125 Total of 2 streams to confluence: Flow rates before confluence point: 61.325 8.897 Area of streams before confluence: 32.370 5.150 Results of confluence: Total flow rate = 68.125(CFS) Time of concentration = 15.029 min. Effective stream area after confluence = 37.520(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 420.000 to Point/Station 450.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1243.000(Ft.) Downstream point/station elevation = 1242.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 68.125(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 68.125(CFS) Normal flow depth in pipe = 22.45(In.) Flow top width inside pipe = 26.03(In.) Critical depth could not be calculated. Pipe flow velocity = 17.29(Ft/s) Page 7 E100.out � Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 450.000 to Point/Station 450.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 37.520(Ac.) Runoff from this stream = 68.125(CFS) Time of concentration = 15.06 min. Rainfall intensity = 2.567(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 402.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 286.470(Ft.) Top (of initial area) elevation = 1269.200(Ft.) Bottom (of initial area) elevation = 1266.800(Ft.) Difference in elevation = 2.400(Ft.) Slope = 0.00838 s(percent)= 0.84 TC = k(0.390)*[llength^3)/(elevation change)J^0.2 Initial area time of concentration = 9.756 min. Rainfall intensity = 3.259(In/Hr) for a 100.0 year sto� SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.650(CFS) Total initial stream area = 0.610(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 402.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1266.800(Ft.) End of street segment elevation = 1247.700(Ft.) Length of street segment = 904.170(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.208(CFS) Depth of flow = 0.358(Ft.), Average velocity = 3.556(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.567(Ft.) Flow velocity = 3.56(Ft/s) Travel time = 4.24 min. TC = 13.99 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Page 8 E100.out � Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.672(In/Hr) for a 100.0 year storm , Subarea runoff = 5.875(CFS) for 2.630(AC.) Total runoff = 7.525(CFS) Total area = 3.240(AC.) Street flow at end of street = 7.525(CFS) Half street flow at end of street = 7.525(CFS) Depth of flow = 0.396(Ft.), Average velocity = 3.879(Ft/s) Flow width (from curb towards crown)= 13.465(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.240(Ac.) Runoff from this stream = 7.525(CFS) Time of concentration = 13.99 min. Rainfall intensity = 2.672(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 404.000 to Point/Station 406.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 294.570(Ft.) Top (of initial area) elevation = 1258.800(Ft.) Bottom (of initial area) elevation = 1255.500(Ft.) Difference in elevation = 3.300(Ft.) Slope = 0.01120 s(percent)= 1.12 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.308 min. Rainfall intensity = 3.344(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.832 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.169(CFS) Total initial stream area = 0.780(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 406.000 to Point/Station 408.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1255.800(Ft.) End of street segment elevation = 1247.700(Ft.) Length of street segment = 323.080(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.087 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.935(CFS) Depth of flow = 0.325(Ft.), Average velocity = 3.560(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.894(Ft.) Flow velocity = 3.56(Ft/s) Travel time = 1.51 min. TC = 10.82 min. Page 9 E100.out Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 . Decimal fraction soil group A= 0.000 , Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.078(In/Hr) for a 100.0 year sto�m Subarea runoff = 3.232(CFS) for 1.270(Ac.) Total runoff = 5.401(CFS) Total area = 2.050(Ac.) Street flow at end of street = 5.401(CFS) Half street flow at end of street = 5.401(CFS) Depth of flow = 0.353(Ft.), Average velocity = 3.830(Ft/s) Flow width (from curb towards crown)= 11.330(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 408.000 **** CONFLLTENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.050(Ac.) Runoff from this stream = 5.401(CFS) Time of concentration = 10.82 min. Rainfall intensity = 3.078(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.525 13.99 2.672 2 5.401 10.82 3.078 Largest stream flow has longer time of concentration � QP = 7.525 + sum of Qb Ia/Ib 5.401 * 0.868 = 4.689 Qp = 12.214 Total of 2 streams to confluence: Flow rates before confluence point: 7.525 5.401 Area of streams before confluence: 3.240 2.050 Results of confluence: Total flow rate = 12.214(CFS) Time of concentration = 13.994 min. Effective stream area after confluence = 5.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 408.000 to Point/Station 450.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1247.700(Ft.) Downstream point/station elevation = 1242.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 12.214(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 12.214(CFS) Normal flow depth in pipe = 8.02(In.) Flow top width inside pipe = 11.30(In.) Critical depth could not be calculated. Pipe flow velocity = 21.90(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 14.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 450.000 to Point/Station 450.000 � **** CONFLUENCE OF MAIN STREAMS **** Page 10 E100.out � The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.290(Ac.) Runoff from this stream = 12.214(CFS) . Time of concentration = 14.02 min. Rainfall intensity = 2.670(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 68.125 15.06 2.567 2 12.214 14.02 2.670 Largest stream flow has longer time of concentration Qp = 68.125 + sum of Qb Ia/Ib 12.214 * 0.961 = 11.742 4P = 79.866 Total of 2 main streams to confluence: Flow rates before confluence point: 68.125 12.214 Area of streams before confluence: 37.520 5.290 Results of confluence: Total flow rate = 79.866(CFS) Time of concentration = 15.058 min. Effective stream area after confluence = 42.810(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 450.000 to Point/Station 460.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1242.000(Ft.) Downstream point/station elevation = 1235.000(Ft.) Pipe length = 150.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 79.866(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 79.866(CFS) Normal flow depth in pipe = 22.27(In.) Flow top width inside pipe = 26.25(In.) Critical depth could not be calculated. Pipe flow velocity = 20.43(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 15.18 min. End of computations, total study area = 42.81 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 58.0 � Page 11 PA 19 � � � PROJECT SITE 215 � 79 � MURR HOT SPRINGS ROAD �/� � ' ° / � i ��� � I � 15 0 ,� `co i � � �� N � _ � � ��i �o` � THIRD � CALLE � � PWMARY ACCESS CHAPOS ACCESS �� o / � o al � e� w � CITY OF TEMECULA � � 0 SECONDARY �p,SE�� W ACCESS I `t'� � w c W ° w `" 'o � � �I RoA� m o CPL\FOR�\P ? � � �O Z �P� � �� \ N � � � . I CITY OF TEMECULA VICIN/TY MAP Vicinity Map TRACT 29367 NOT TO SCALE THOMAS BROTHERS MAP PAGE: RIVERSIDE CO., PAGE 929 ��K r�s°N on� er VA Consulting, Inc. DRAWN BY: DAiE: SEC. 21, T7S, R2W nvcnv�s r�wxn�as soxv�ons �/ 255 E. RINCON STREET, SUIIE 323 CHECKED BY: FlGURE: CON80L1'II�IG CaRONA, CA 92879 � 10-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS A1tEA C � � . AREAC10.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 . Rational Hydrology Study Date: 09/07/06 Fi1e:AREAC10.out 850_0105 RORIPAUGH RANCH PA 19 AREA C 10-YR 9/7/06 swL ********* HydrOlogy Study COntY01 InfOrmatiOn ********** English (in-1b) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------- — ------------------------ — — ----------------------------- — Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) S1ope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 30.000 � **�* USER DEFINED FLOW ZNFORMATION AT A POINT **** Rainfall intensity = 1.957(In/Hr) for a 10.0 year sto� UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.830 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 User specified values are as follows: TC = 11.48 min. Rain intensity = 1.96(In/Hr) Total area = 4.22(AC.) Total runoff = 7.50(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1347.500(Ft.) Downstream point/station elevation = 1330.000(Ft.) Pipe length = 687.54(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.499(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 7.499(CFS) Normal flow depth in pipe = 9.49(In.) Flow top width inside pipe = 14.46(In.) Critical Depth = 13.07(In.) Pipe flow velocity = 9.16(Ft/s) Travel time through pipe = 1.25 min. Time of concentration (TC) = 12.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 Page 1 AREAC10.out � **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.220(Ac.) , Runoff from this stream = 7.499(CFS) Time of concentration = 12.73 min. Rainfall intensity = 1.849(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.699(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.728 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 14.85 min. Rain intensity = 1.70(In/Hr) Total area = 6.08(AC.) Total runoff = 8.82(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1334.500(Ft.) Downstream point/station elevation = 1330.000(Ft.) Pipe length = 40.17(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.816(CFS) Nearest computed pipe diameter = 12.00(In.) � Calculated individual pipe flow = 8.816(CFS) Normal flow depth in pipe = 7.68(In.) �, Flow top width inside pipe = 11.52(In.) Critical depth could not be calculated. Pipe flow velocity = 16.61(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.89 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in nos�nal stream number 2 Stream flow area = 6.080(AC.) Runoff from this stream =, 8.816(CFS) Time of concentration = 14.89 min. Rainfall intensity = 1.696(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.499 12.73 1.849 2 8.816 14.89 1.696 Largest stream flow has longer time of concentration Qp = 8.816 + sum of Qb Ia/Ib 7.499 * 0.917 = 6.880 Qp = 15.696 Total of 2 streams to confluence: Flow rates before confluence point: 7.499 8.816 Area of streams before confluence: � 4.220 6.080 Results of confluence: Page 2 AREAC10.out Total flow rate = 15.696(CFS) Time of concentration = 14.887 min. '� Effective stream area after confluence = 10.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1330.000(Ft.) Downstream point/station elevation = 1285.000(Ft.) Pipe length = 658.72(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 15.696(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 15.696(CFS) No�al flow depth in pipe = 11.44(In.) Flow top width inside pipe = 12.77(In.) Critical depth could not be calculated. Pipe flow velocity = 15.63(Ft/s) Travel time through pipe = 0.70 min. Time of concentration (TC) = 15.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.300(Ac.) Runoff from this stream = 15.696(CFS) Time of concentration = 15.59 min. Rainfall intensity = 1.654(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** \ Initial area flow distance = 894.460(Ft.) Top (of initial area) elevation = 1358.200(Ft.) Bottom (of initial area) elevation = 1332.500(Ft.) Difference in elevation = 25.700(Ft.) Slope = 0.02873 s(percent)= 2.87 TC = k(0.420)*[(length change)J^0.2 Initial area time of concentration = 12.948 min. Rainfall intensity = 1.831(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.704 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 2.152(CFS) Total initial stream area = 1.670(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1332.500(Ft.) End of street segment elevation = 1297.500(Ft.) Length of street segment = 677.120(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Page 3 AREAC10.out � Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 , Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.975(CFS) Depth of flow = 0.296(Ft.), Average velocity = 4.724(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.454(Ft.) Flow velocity = 4.72(Ft/s) Travel time = 2.39 min. TC = 15.34 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.726 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.669(In/Hr) for a 10.0 year storm Subarea runoff = 3.430(CFS) for 2.830(Ac.) Total runoff = 5.582(CFS) Total area = 4.500(Ac.) Street flow at end of street = 5.582(CFS) Half street flow at end of street = 5.582(CFS) Depth of flow = 0.323(Ft.), Average velocity = 5.097(Ft/s) Flow width (from curb towards crown)= 9.841(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1294.000(Ft.) Downstream point/station elevation = 1285.000(Ft.) Pipe length = 33.94(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.582(CFS) . Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.582(CFS) Normal flow depth in pipe = 5.31(In.) Flow top width inside pipe = 8.85(In.) Critical depth could not be calculated. Pipe flow velocity = 20.57(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.500(Ac.) Runoff from this stream = 5.582(CFS) Time of concentration = 15.36 min. Rainfall intensity = 1.667(In/Hr) Siunmary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 15.696 15.59 1.654 2 5.582 15.36 1.667 Largest stream flow has longer time of concentration Qp = 15.696 + sum of Qb Ia/Ib 5.582 * 0.992 = 5.537 Qp = 21.233 Total of 2 streams to confluence: Flow rates before confluence point: 15.696 5.582 Area of streams before confluence: Page 4 AREAC10.out 10.300 4.500 Results of confluence: Total flow rate = 21.233(CFS) ` Time of concentration = 15.590 min. Effective stream area after confluence = 14.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1285.000(Ft.) Downstream point/station elevation = 1284.000(Ft.) Pipe length = 64.79(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 21.233(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 21.233(CFS) Normal flow depth in pipe = 15.59(In.) Flow top width inside pipe = 22.90(In.) Critical Depth = 19.78(In.) Pipe flow velocity = 9.83(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 15.70 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 ****�CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 14.800(AC.) Runoff from this stream = 21.233(CFS) Time of concentration = 15.70 min. Rainfall intensity = 1.647(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 330.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.517(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.716 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 18.24 min. Rain intensity = 1.52(In/Hr) Total area = 21.23(Ac.) Total runoff = 26.52(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1290.000(Ft.) Downstream point/station elevation = 1284.000(Ft.) Pipe length = 71.86(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 26.516(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 26.516(CFS) Nonnal flow depth in pipe = 13.03(In.) Flow top width inside pipe = 16.09(In.) Critical depth could not be calculated. Pipe flow velocity = 19.36(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 18.30 min. � Page 5 AREAC10.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 21.230(AC.) Runoff from this stream = 26.516(CFS) Time of concentration = 18.30 min. Rainfall intensity = 1.514(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 466.550(Ft.) Top (of initial area) elevation = 1336.300(Ft.) Bottom (of initial area) elevation = 1327.200(Ft.) Difference in elevation = 9.100(Ft.) Slope = 0.01950 s(percent)= 1.95 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.014 min. Rainfall intensity = 2.109(In/Hr) for a 10.0 year storm SINGLE FAMIL'f (1/4 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.473(CFS) Total initial stream area = 0.930(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1327.200(Ft.) End of street segment elevation = 1289.500(Ft.) Length of street segment = 619.450(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.985(CFS) Depth of flow = 0.268(Ft.), Average velocity = 4.741(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.092(Ft.) Flow velocity = 4.74(Ft/s) Travel time = 2.18 min. TC = 12.19 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.740 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soi11AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.893(In/Hr) for a 10.0 year storm Page 6 AREAC10.out Subarea runoff = 2.675(CFS) for 1.910(AC.) Total runoff = 4.147(CFS) Total area = 2.840(AC.) Street flow at end of street = 4.147(CFS) , Half street flow at end of street = 4 _ Depth of flow = 0.293(Ft.), Average velocity = 5.083(Ft/s) Flow width (from curb towards crown)= 8.302(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2.840(Ac.) Runoff from this stream = 4.147(CFS) Time of concentration = 12.19 min. Rainfall intensity = 1.893(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 417.010(Ft.) Top (of initial area) elevation = 1333.500(Ft.) Bottom (of initial area) elevation = 1314.700(Ft.) Difference in elevation = 18.800(Ft.) Slope = 0.04508 s(percent)= 4.51 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.'720 min. Rainfall intensity = 2.276(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.730 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.562(CFS) Total initial stream area = 0.940(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1314.700(Ft.) End of street segment elevation = 1289.500(Ft.) Length of street segment = 319.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.459(CFS) Depth of flow = 0.246(Ft.), Average velocity = 5.067(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.988(Ft.) Flow velocity = 5.07(Ft/s) Travel time = 1.05 min. TC = 9.77 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.752 � Decimal fraction soil group A= 0.000 Page 7 I I AREAC10.out � Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 56.00 , Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.138(In/Hr) for a 10.0 year storm Subarea runoff = 1.737(CFS) for 1.080(Ac.) Total runoff = 3.298(CFS) Total area = 2.020(AC.) Street flow at end of street = 3.298(CFS) Half street flow at end of street = 3.298(CFS) Depth of flow = 0.266(Ft.), Average velocity = 5.364(Ft/s) Flow width (from curb towards crown)= 6.987(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 2.020(AC.) Runoff from this stream = 3.298(CFS) Time of concentration = 9.77 min. Rainfall intensity = 2.138(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.147 12.19 1.893 2 3.298 9.77 2.138 Largest stream flow has longer time of concentration Qp = 4.14'7 + sum of Qb Ia/Ib 3.298 * 0.885 = 2.920 Qp = 7.067 � Total of 2 streams to confluence: Flow rates before confluence point: 4.147 3.298 Area of streams before confluence: 2.840 2.020 Results of confluence: Total flow rate = 7.067(CFS) Time of concentration = 12.191 min. Effective stream area after confluence = 4.860(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 119.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1289.500(Ft.) End of street segment elevation = 1287.600(Ft.) Length of street segment = 190.830(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.213(CFS) Depth of flow = 0.435(Ft.), Average velocity = 2.886(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.404(Ft.) Flow velocity = 2.89(Ft/s) Travel time = 1.10 min. TC = 13.29 min. Page 8 AREAC10.out � Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.867 Decimal fraction soil group A= 0.000 , Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.805(In/Hr) for a 10.0 year storm Subarea runoff = 0.313(CFS) for 0.200(AC.) Total runoff = 7.380(CFS) Total area = 5.060(Ac.) Street flow at end of street = 7.380(CFS) Half street flow at end of street = 7.380(CFS) Depth of flow = 0.438(Ft.), Average velocity = 2.902(Ft/s) Flow width (from curb towards crown)= 15.546(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1287.600(Ft.) Downstream point/station elevation = 1284.000(Ft.) Pipe length = 71.96(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.380(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.380(CFS) Normal flow depth in pipe = 9.12(In.) Flow top width inside pipe = 10.25(In.) Critical depth could not be calculated. Pipe flow velocity = 11.52(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 13.40 min. • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 5.060(Ac.) Runoff from this stream = 7.380(CFS) Time of concentration = 13.40 min. Rainfall intensity = 1.797(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 21.233 15.70 1.647 2 26.516 18.30 1.514 3 7.380 13.40 1.797 Largest stream flow has longer time of concentration Qp = 26.516 + sum of Qb Ia/Ib 21.233 * 0.919 = 19.514 Qb Ia/Ib 7.380 * 0.842 = 6.216 Qp = 52.246 Total of 3 main streams to confluence: Flow rates before confluence point: 21.233 26.516 7.380 . Area of streams before confluence: 14.800 21.230 5.060 Results of confluence: Total flow rate = 52.246(CFS) � Time of concentration = 18.305 min. - Effective stream area after confluence 41.090(Ac.) Page 9 AREAC10.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1284.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 412.69(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 52.246(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 52.246(CFS) Normal flow depth in pipe = 16.31(In.) Flow top width inside pipe = 22.40(In.) Critical depth could not be calculated. Pipe flow velocity = 22.99(Ft/s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 18.60 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 41.090(Ac.) Runoff from this stream = 52.246(CFS) Time of concentration = 18.60 min. Rainfall intensity = 1.500(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 132.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 347.780(Ft.) Top (of initial area) elevation = 1333.100(Ft.) � Bottom (of initial area) elevation = 1324.800(Ft.) Difference in elevation = 8.300(Ft.) Slope = 0.02387 s(percent)= 2.39 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.551 min. Rainfall intensity = 2.301(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.275(CFS) Total initial stream area = 0.730(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.800(Ft.) End of street segment elevation = 1288.000(Ft.) Length of street segment = 426.240(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) � Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Page 10 AREAC10.out Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 _ Estimated mean flow rate at midpoint of street = 2.332(CFS) Depth of flow = 0.240(Ft.), Average velocity = 5.209(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.666(Ft.) Flow velocity = 5.21(Ft/s) Travel time = 1.36 min. TC = 9.92 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.121(In/Hr) for a 10.0 year storm Subarea runoff = 1.928(CFS) for 1.210(Ac.) Total runoff = 3.203(CFS) Total area = 1.940(Ac.) Street flow at end of street = 3.203(CFS) Half street flow at end of street = 3.203(CFS) Depth of flow = 0.261(Ft.), Average velocity = 5.529(Ft/s) Flow width (from curb towards crown)= 6.728(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1288.000(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 429.770(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 , Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.003(CFS) Depth of flow = 0.301(Ft.), Average velocity = 5.659(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.702(Ft.) Flow velocity = 5.66(Ft/s) Travel time = 1.27 min. TC = 11.18 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.745 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.985(In/Hr) for a 10.0 year storm Subarea runoff = 3.223(CFS) for 2.180(Ac.) Total runoff = 6.426(CFS) Total area = 4.120(Ac.) Street flow at end of street = 6.426(CFS) Half street flow at end of street = 6.426(CFS) Depth of flow = 0.321(Ft.), Average velocity = 5.986(Ft/s) Flow width (from curb towards crown)= 9.731(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 150.000 Page 11 AREAC10.out � **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1253.000(Ft.) _ Downstream point/station elevation = 1250.000(Ft.,) Pipe length = 16.97(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.426(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 6.426(CFS) Normal flow depth in pipe = 6.83(In.) Flow top width inside pipe = 7.70(In.) Critical depth could not be calculated. Pipe flow velocity = 17.87(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 11.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.120(AC.) Runoff from this stream = 6.426(CFS) Time of concentration = 11.20 min. Rainfall intensity = 1.984(In/Hr) Program is now starting with Main Stream No. 3 +++++++++++++++++++++++++±++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 140.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 209.270(Ft.) Top (of initial area) elevation = 1287.600(Ft.) Bottom (of initial area) elevation = 1277.9001Ft.) � Difference in elevation = 9.700(Ft.) Slope = 0.04635 s(percent)= 4.64 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Warning: TC computed to be less than S min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.091(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.877 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.624(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 142.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1277.900(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 300.240(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Page 12 AREAC10.out • Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 � Estimated mean flow rate at midpoint of street = 6.087(CFS) � Depth of flow = 0.318(Ft.), Average velocity = 5.832(Ft/s), Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.576(Ft.) Flow velocity = 5.83(Ft/s) Travel time = 0.86 min. TC = 5.86 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.779 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.833(In/Hr) for a 10.0 year storm Subarea runoff = 8.888(CFS) for 4.030(Ac.) Total runoff = 9.512(CFS) Total area = 4.260(Ac.) Street flow at end of street = 9.512(CFS) Half street flow at end of street = 9.512(CFS) Depth of flow = 0.359(Ft.), Average velocity = 6.464(Ft/s) Flow width (from curb towards crown)= 11.596(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1253.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 27.71(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.512(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 9.512(CFS) � Normal flow depth in pipe = 8.20(In.) Flow top width inside pipe = 11:16(In.) Critical depth could not be calculated. Pipe flow velocity = 16.62(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 5.89 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 � Stream flow area = 4.260(AC.) Runoff from this stream = 9.512(CFS) Time of concentration = 5.89 min. Rainfall intensity = 2.826(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 52.246 18.60 1.500 2 6.426 11.20 1.984 3 9.512 5.89 2.826 Largest stream flow has longer time of concentration Qp = 52.246 + sum of Qb Ia/Ib 6.426 * 0.756 = 4.860 Qb Ia/Ib 9.512 * 0.531 = 5.051 Qp = 62.157 Total of 3 main streams to confluence: Flow rates before confluence point: 52.246 6.426 9.512 Page 13 AREAC10.out Area of streams before confluence: 41.090 4.120 4.260 Results of confluence: Total flow rate = 62.157(CFS) Time of concentration = 18.604 min. Effective stream area after confluence = 49.470(Ac.) End of computations, total study area = 49.47 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.544 Area averaged RI index number = 58.8 Page 14 AREA D AREAD10.out � Riverside County Rational Hydrology Program 1 � CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/07/06 File:AREAD10.out ------------------------------------------------------------ 850_0105 RORIPAUGH RANCH PA 19 AREA D 10-YR 9/7/06 swL ********* HydTOlOgy StUdy COntrol IrifOrmatiOri ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 ---------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Stornt event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 162.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 500.560(Ft.) Top (of initial area) elevation = 1356.000(Ft.) Bottom (of initial area) elevation = 1336.700(Ft.) Difference in elevation = 19.300(Ft.) Slope = 0.03856 s(percent)= 3.86 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.061 min. Rainfall intensity = 1.997(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.652 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.019(CFS) Total initial stream area = 1.550(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 164.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1336.700(Ft.) End of street segment elevation = 1290.000(Ft.) Length of street segment = 1090.210(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1� side(s) of the street Page 1 AREAD10.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.263(CFS) Depth of flow = 0.327(Ft.), Average velocity = 4.677(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.993(Ft.) Flow velocity = 4.68(Ft/s) Travel time = 3.88 min. TC = 14.95 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.625 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.692(In/Hr) for a 10.0 year storm Subarea runoff = 5.265(CFS) for 4.980(Ac.) Total runoff = 7.284(CFS) Total area = 6.530(AC.) Street flow at end of street = 7.284(CFS) Half street flow at end of street = 7.284(CFS) Depth of flow = 0.356(Ft.), Average velocity = 5.042(Ft/s) Flow width (from curb towards crown)= 11.480(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1290.000(Ft.) Downstream point/station elevation = 1280.000(Ft.) Pipe length = 150.47(Ft.) Manning's N= 0.013 , No. of pipes = 1 Required pipe flow = 7.284(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.284(CFS) Normal flow depth in pipe = 8.06(In.) Flow top width inside pipe = 11.27(In.) Critical depth could not be calculated. Pipe flow velocity = 12.97(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 15.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.530(AC.) Runoff from this stream = 7.284(CFS) Time of concentration = 15.14 min. Rainfall intensity = 1.681(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 166.000 to Point/Station 168.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 456.040(Ft.) Top (of initial area) elevation = 1335.000(Ft.) Bottom (of initial area) elevation = 1324.000(Ft.) Difference in elevation = 11.000(Ft.) Slope = 0.02412 s(percent)= 2.41 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.242 min. Rainfall intensity = 2.084(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.719 Page 2 AREAD10.out � Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group_D = 0.000 , RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.873(CFS) Total initial stream area = 1.250(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 168.000 to Point/Station 169.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.000(Ft.) End of street segment elevation = 1286.000(Ft.) Length of street segment = 888.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.538(CFS) Depth of flow = 0.331(Ft.), Average velocity = 4.729(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.219(Ft.) Flow velocity = 4.73(Ft/s) Travel time = 3.13 min. TC = 13.37 min. � Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.701 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.799(In/Hr) for a 10.0 year storm Subarea runoff = 6.170(CFS) for 4.890(AC.) Total runoff = 8.043(CFS) Total area = 6.140(AC.) Street flow at end of street = 8.043(CFS) Half street flow at end of street = 8.043(CFS) Depth of flow = 0.366(Ft.), Average velocity = 5.158(Ft/s) Flow width (from curb towards crown)= 11.969(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 169.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1286.000(Ft.) Downstream point/station elevation = 1280.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.043(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.043(CFS) Normal flow depth in pipe = 6.58(In.) Flow top width inside pipe = 11.94(In.) Critical depth could not be calculated. Pipe flow velocity = 18.24(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.41 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 AREAD10.out � Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** , Along Main Stream number: 1 in normal stream number 2 , Stream flow area = 6.140(Ac.) Runoff from this stream = 8.043(CFS) Time of concentration = 13.41 min. Rainfall intensity = 1.797(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.284 15.14 1.681 2 8.043 13.41 1.797 Largest stream flow has longer or shorter time of concentration Qp = 8.043 + sum of Qa Tb/Ta 7.284 * 0.886 = 6.452 Qp = 14.495 Total of 2 streams to confluence: Flow rates before confluence point: 7.284 8.043 Area of streams before confluence: 6.530 6.140 Results of confluence: Total flow rate = 14.495(CFS) Time of concentration = 13.409 min. Effective stream area after confluence = 12.670(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 180.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** � Upstream point/station elevation = 1280.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 949.39(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 14.495(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 14.495(CFS) Normal flow depth in pipe = 11.92(In.) Flow top width inside pipe = 17.03(In.) Critical Depth = 16.72(In.) Pipe flow velocity = 11.67(Ft/s) Travel time through pipe = 1.36 min. Time of concentration (TC) = 14.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.670(Ac.) Runoff from this stream = 14.495(CFS) Time of concentration = 14.76 min. Rainfall intensity = 1.704(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 172.000 to Point/Station 174.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 543.460(Ft.) Top (of initial area) elevation = 1300.000(Ft.) Bottom (of initial area) elevation = 1290.000(Ft.) Difference in elevation = 10.000(Ft.) Slope = 0.01840 s(percent)= 1.84 TC = k(0.480)*[(length^3)/(elevation change))^0.2 � Initial area time of concentration = 13.254 min. Rainfall intensity = 1.808(In/Hr) for a 10.0 year storm Page 4 AREAD10.out SINGLE FAMILY ( 1 Acre Lot) Runoff Coefficient = 0.636 Decimal fraction soil group A= 0.000 . Decimal fraction soil group B= 1.000 . Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.150(CFS) Total initial stream area = 1.870(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 174.000 to Point/Station 176.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.000(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 783.530(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.714(CFS) Depth of flow = 0.318(Ft.), Average velocity = 4.532(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.558(Ft.) Flow velocity = 4.53(Ft/s) Travel time = 2.88 min. TC = 16.14 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.618 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.623(In/Hr) for a 10.0 year storm Subarea runoff = 4.469(CFS) for 4.460(Ac.) Total runoff = 6.619(CFS) Total area = 6.330(AC.) Street flow at end of street = 6.619(CFS) Half street flow at end of street = 6.619(CFS) Depth of flow = 0.348(Ft.), Average velocity = 4.899(Ft/s) Flow width (from curb towards crown)= 11.065(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 176.000 to Point/Station 180.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1254.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.619(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.619(CFS) Normal flow depth in pipe = 6.61(In.) Flow top width inside pipe = 11.94(In.) Critical depth could not be calculated. Pipe flow velocity = 14.92(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 16.18 min. Page 5 AREAD10.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.330(Ac.) Runoff from this stream = 6.619(CFS) Time of concentration = 16.18 min. Rainfall intensity = 1.620(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 177.000 to Point/Station 178.000 **** INITIAL AREA EVALUATION **** Initial area flow distance,= 460.790(Ft.) Top (of initial area) elevation = 1285.700(Ft.) Bottom (of initial area) elevation = 1278.000(Ft.) Difference in elevation = 7.700(Ft.) Slope = 0.01671 s(percent)= 1.67 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.068 min. Rainfall intensity = 1.997(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.714 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.711(CFS) Total initial stream area = 1.200(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 178.000 to Point/Station 179.000 � **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1278.000(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 651.560(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.408(CFS) Depth of flow = 0.302(Ft.), Average velocity = 3.7991Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.777(Ft.) Flow velocity = 3.80(Ft/s) Travel time = 2.86 min. TC = 13.93 min. Adding area flow .to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.698 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.760(In/Hr) for a 10.0 year storm Subarea runoff = 2.925(CFS) for 2.380(Ac.) Page 6 AREAD10.out � Total runoff = 4.636(CFS) Total area = 3.580(Ac.) Street flow at end of street = 4.636(CFS) Half street flow at end of street = 4.636(CFS) Depth of flow = 0.328(Ft.), Average velocity = 4.071(Ft/s) , Flow width (from curb towards crown)= 10.060(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 179.000 to Point/Station 180.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1257.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.636(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.636(CFS) Normal flow depth in pipe = 5.39(In.) Flow top width inside pipe = 8.82(In.) Critical depth could not be calculated. Pipe flow velocity = 16.79(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 13.97 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 3.580(Ac.) Runoff from this stream = 4.636(CFS) Time of concentration = 13.97 min. Rainfall intensity = 1.757(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) \ 1 14.495 14.76 1.704 2 6.619 16.18 1.620 3 4.636 13.97 1.757 Largest stream flow has longer or shorter time of concentration Qp = 14.495 + sum of Qa Tb/Ta 6.619 * 0.912 = 6.040 Qb Ia/Ib 4.636 * 0.970 = 4.496 Qp = 25.031 Total of 3 streams to confluence: Flow rates before confluence point: 14.495 6.619 4.636 Area of streams before confluence: 12.670 6.330 3.580 Results of confluence: Tota1 flow rate = 25.031(CFS) Time of concentration = 14.764 min. Effective stream area after confluence = 22.580(AC.) End of computations, total study area = 22.58 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.714 Area averaged RI index number = 56.0 � Page 7 100-YEAR PROI'OSED CONDITION ° RA�'IONAI. METHOD ANALYSIS �. ` AREA C AREAC100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 . Rational Hydrology Study Date: 09/07/06 File:AREAC100.out 850_0105 RORIPAUGH RANCH PA 19 AREA C 100-YR 9/7/06 SWL --------------------------------------------------------- ********* Hydr010gy StUdy COritY01 IrifOrmatiOR ********** English (in-lb) Units used in input data file ---------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Stozm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 30.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3.027(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.854 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 User specified values are as follows: TC = 11.16 min. Rain intensity = 3.03(In/Hr) Total area = 4.22(AC.) Total runoff = 11.76(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1347.500(Ft.) Downstream point/station elevation = 1330.000(Ft.) Pipe length = 687.54(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.759(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 11.759(CFS) Normal flow depth in pipe = 11.11(In.) Flow top width inside pipe = 17.50(In.) Critical Depth = 15.65(In.) Pipe flow velocity = 10.26(Ft/s) Travel time through pipe = 1.12 min. Time of concentration (TC) = 12.28 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 Page 1 AREAC100.out � **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 , Stream flow area = 4.220(Ac.) _ _ Runoff from this stream = 11.759(CFS) Time of concentration = 12.28 min. Rainfall intensity = 2.872(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 310.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.623(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.772 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 14.48 min. Rain intensity = 2.62(In/Hr) Total area = 6.08(Ac.) Total runoff = 14.02(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 310.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1334.500(Ft.) Downstream point/station elevation = 1330.000(Ft.) Pipe length = 40.17(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 14.023(CFS) Nearest computed pipe diameter = 15.00(In.) � Calculated individual pipe flow = 14.023(CFS) Normal flow depth in pipe = 8.80(In.) Flow top width inside pipe = 14.77(In.) Critical depth could not be calculated. Pipe flow velocity = 18.75(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 14.52 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 6.080(Ac.) Runoff from this stream = 14.023(CFS) Time of concentration = 14.52 min. ' Rainfall intensity = 2.619(In/Hr) Stunmary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.759 12.28 2.872 2 14.023 14.52 2.619 Largest stream flow has longer time of concentration Qp = 14.023 + sum of Qb Ia/Ib 11.759 * 0.912 = 10.723 Qp = 24.746 Total of 2 streams to confluence: Flow rates before confluence point: 11.759 14.023 Area of streams before confluence: 4.220 6.080 Results of confluence: Page 2 AREAC100.out Total flow rate = 24.746(CFS) Time of concentration = 14.517 min. Effective stream area after confluence = 10.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1330.000(Ft.) Downstream point/station elevation = 1285.000(Ft.) Pipe length = 658.72(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 24.746(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 24.746(CFS) Normal flow depth in pipe = 13.36(In.) Flow top width inside pipe = 15.75(In.) Critical depth could not be calculated. Pipe flow velocity = 17.58(Ft/s) Travel time through pipe = 0.62 min. Time of concentration (TC) = 15.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.300(AC.) Runoff from this stream = 24.746(CFS) Time of concentration = 15.14 min. Rainfall intensity = 2.559(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 894.460(Ft.) Top (of initial area) elevation = 1358.200(Ft.) Bottom (of initial area) elevation = 1332.500(Ft.) Difference in elevation = 25.700(Ft.) Slope = 0.02873 s(percent)= 2.87 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 12.948 min. Rainfall intensity = 2.789(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.753 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 3.505(CFS) Total initial stream area = 1.670(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1332.500(Ft.) End of street segment elevation = 1297.500(Ft.) Length of street segment = 677.120(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Page 3 AREAC100.out Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 _ Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.475(CFS) Depth of flow = 0.337(Ft.), Average velocity = 5.273(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.494(Ft.) Flow velocity = 5.27(Ft/s) Travel time = 2.14 min. TC = 15.09 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.�69 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.564(In/Hr) for a 100.0 year storm Subarea runoff = 5.583(CFS) for 2.830(Ac.) Total runoff = 9.088(CFS) Total area = 4.500(Ac.) Street flow at end of street = 9.088(CFS) Half street flow at end of street = 9.088(CFS) Depth of flow = 0.369(Ft.), Average velocity = 5.707(Ft/s) Flow width (from curb towards crown)= 12.107(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1294.000(Ft.) Downstream point/station elevation = 1285.000(Ft.) Pipe length = 33.94(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.088(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 9.088(CFS) Normal flow depth in pipe = 8.10(In.) Flow top width inside pipe = 5.40(In.) Critical depth could not be calculated. Pipe flow velocity = 21.68(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.500(Ac.) Runoff from this stream = 9.088(CFS) Time of concentration = 15.11 min. Rainfall intensity = 2.562(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 24.746 15.14 2.559 2 9.088 15.11 2.562 Largest stream flow has longer time of concentration Qp = 24.746 + sum of Qb Ia/Ib 9.088 * 0.999 = 9.080 Qp = 33.825 Total of 2 streams to confluence: Flow rates before confluence point: 24.746 9.088 Area of streams before confluence: Page 4 AREAC100.out 10.300 4.500 Results of confluence: Total flow rate = 33.825(CFS) Time of concentration = 15 min. _ Effective stream area after confluence = 14.800(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1285.000(Ft.) Downstream point/station elevation = 1284.000(Ft.) Pipe length = 64.79(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 33.825(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 33.825(CFS) Normal flow depth in pipe = 19.64(In.) Flow top width inside pipe = 24.05(In.) Critical Depth = 23.86(In.) Pipe flow velocity = 10.92(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 15.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 14.800(AC.) Runoff from this stream = 33.825(CFS) Time of concentration = 15.24 min. Rainfall intensity = 2.550(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 330.000 � **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.361(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.762 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 17.52 min. Rain intensity = 2.36(In/Hr) Total area = 21.23(AC.) Total runoff = 42.89(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1290.000(Ft.) Downstream point/station elevation = 1284.000(Ft.) Pipe length = 71.86(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 42.889(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 42.889(CFS) Normal flow depth in pipe = 16.13(In.) Flow top width inside pipe = 17.73(In.) Critical depth could not be calculated. Pipe flow velocity = 21.64(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 17.58 min. � Page 5 AREAC100.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 21.230(Ac.) Runoff from this stream = 42.889(CFS) Time of concentration = 17.58 min. Rainfall intensity = 2.357(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 466.550(Ft.) Top (of initial area) elevation = 1336.300(Ft.) Bottom (of initial area) elevation = 1327.200(Ft.) Difference in elevation = 9.100(Ft.) Slope = 0.01950 s(percent)= 1.95 • TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.014 min. Rainfall intensity = 3.212(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.789 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.358(CFS) Total initial stream area = 0.930(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1327.200(Ft.) End of street segment elevation = 1289.500(Ft.) Length of street segment = 619.450(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.780(CFS) Depth of flow = 0.304(Ft.), Average velocity = 5.244(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.859(Ft.) Flow velocity = 5.24(Ft/s) Travel time = 1.97 min. TC = 11.98 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.781 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.910(In/Hr) for a 100.0 year storm Page 6 AREAC100.out Subarea runoff = 4.341(CFS) for 1.910(Ac.) Total runoff = 6.699(CFS) Total area = 2.840(AC.) Street flow at end of street = 6.699(CFS) , Half street flow at end of street = 6.699(CFS) Depth of flow = 0.332(Ft.), Average velocity = 5.660(Ft/s) Flow width (from curb towards crown)= 10.281(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLLTENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2.840(AC.) Runoff from this stream =' 6.699(CFS) Time of concentration = 11.98 min. Rainfall intensity = 2.910(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 417.010(Ft.) Top (of initial area) elevation = 1333.500(Ft.) Bottom (of initial area) elevation = 1314.700(Ft.) Difference in elevation = 18.800(Ft.) Slope = 0.04508 s(percent)= 4.51 TC = k(0.420)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.720 min. Rainfall intensity = 3.466(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.775 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 2.524(CFS) ' Total initial stream area = 0.940(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1314.700(Ft.) End of street segment elevation = 1289.500(Ft.) Length of street segment = 319.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.974(CFS) Depth of flow = 0.280(Ft.), Average velocity = 5.575(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.656(Ft.) Flow velocity = 5.58(Ft/s) Travel time = 0.96 min. TC = 9.68 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) � Runoff Coefficient = 0.791 Decimal fraction soil group A= 0.000 Page 7 AREAC100.out Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 , Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.274(In/Hr) for a 100.0 year storm Subarea runoff = 2.796(CFS) for 1.080(Ac.) Total runoff = 5.321(CFS) Total area = 2.020(Ac.) Street flow at end of street = 5.321(CFS) Half street flow at end of street = 5.321(CFS) Depth of flow = 0.302(Ft.), Average velocity = 5.939(Ft/s) Flow width (from curb towards crown)= 8.770(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 2.020(Ac.) Runoff from this stream = 5.321(CFS) Time of concentration = 9.68 min. Rainfall intensity = 3.274(In/Hr) Summary of stream data: Stream Flow rate , TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.699 11.98 2.910 2 5.321 9.68 3.274 Largest stream flow has longer time of concentration Qp = 6.699 + sum of Qb Ia/Ib 5.321 * 0.889 = 4.730 Qp = 11.429 � Total of 2 streams to confluence: Flow rates before confluence point: 6.699 5.321 Area of streams before confluence: 2.840 2.020 Results of confluence: Total flow rate = 11.429(CFS) Time of concentration = 11.983 min. Effective stream area after confluence = 4.860(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 119.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1289.500(Ft.) End of street segment elevation = 1287.600(Ft.) Length of street segment = 190.830(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.665(CFS) Depth of flow = 0.497(Ft.), Average velocity = 3.287(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 3.29(Ft/s) Page 8 AREAC100.out Travel time = 0.97 min. TC = 12.95 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.875 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 2.789(In/Hr) for a 100.0 year storm Subarea runoff = 0.488(CFS) for 0.200(Ac.) Total runoff = 11.918(CFS) Total area = 5.060(Ac.) Street flow at end of street = 11.918(CFS) Half street flow at end of street = 11.918(CFS) Depth of flow = 0.499(Ft.), Average velocity = 3.315(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1287.600(Ft.) Downstream point/station elevation = 1284.000(Ft.) Pipe length = 71.96(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.918(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 11.918(CFS) Normal flow depth in pipe = 10.38(In.) Flow top width inside pipe = 13.85(In.) Critical depth could not be calculated. Pipe flow velocity = 13.15(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 13.04 min. • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 5.060(AC.) Runoff from this stream = 11.918(CFS) Time of concentration = 13.04 min. Rainfall intensity = 2.778(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 33.825 15.24 2.550 2 42.889 17.58 2.357 3 11.918 13.04 2.778 Largest stream flow has longer time of concentration Qp = 42.889 + sum of Qb Ia/Ib 33.825 * 0.924 = 31.270 Qb Ia/Ib 11.918 * 0.849 = 10.113 4P = 84.272 Total of 3 main streams to confluence: Flow rates before confluence point: 33.825 42.889 11.918 Area of streams before confluence: 14.800 21.230 5.060 � Results of confluence: Total flow rate = 84.272(CFS) Page 9 AREAC100.out � Time of concentration = 17.579 min. _ Effective stream area after confluence 41.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1284.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 412.69(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 84.272(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 84.272(CFS) Normal flow depth in pipe = 20.95(In.) Flow top width inside pipe = 22.51(In.) Critical depth could not be calculated. Pipe flow velocity = 25.44(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 17.85 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 41.090(Ac.) Runoff from this stream = 84.272(CFS) Time of concentration = 17.85 min. Rainfall intensity = 2.338(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 130.000 to Point/Station 132.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 347.780(Ft.) Top (of initial area) elevation = 1333.100(Ft.) Bottom (of initial area) elevation = 1324.800(Ft.) Difference in elevation = 8.300(Ft.) Slope = 0.02387 s(percent)= 2.39 TC = k:(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.551 min. Rainfall intensity = 3.504(In/Hr) for a 100.0.year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.796 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.037(CFS) Total initial stream area = 0.730(AC.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.800(Ft.) End of street segment elevation = 1288.000(Ft.) Length of street segment = 426.240(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Page 10 AREAC100.out � Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) _ Manning's N in gutter = 0.0150 , Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.725(CFS) Depth of flow = 0.272(Ft.), Average velocity = 5.701(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.258(Ft.) Flow velocity = 5.70(Ft/s) Travel time = 1.25 min. TC = 9.80 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.790 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.251(In/Hr) for a 100.0 year storm Subarea runoff = 3.109(CFS) for 1.210(Ac.) Total runoff = 5.146(CFS) Total area = 1.940(AC.) Street flow at end of street = 5.146(CFS) Half street flow at end of street = 5.146(CFS) Depth of flow = 0.296(Ft.), Average velocity = 6.108(Ft/s) Flow width (from curb towards crown)= 8.461(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1288.000(Ft.) End of street segment elevation = 1257.000(Ft.) � Length of street segment = 429.770(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.038(CFS) Depth of flow = 0.341(Ft.), Average velocity = 6.301(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.719(Ft.) Flow velocity = 6.30(Ft/s) Travel time = 1.14 min. TC = 10.93 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.785 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.061(In/Hr) for a 100.0 year storm Subarea runoff = 5.240(CFS) for 2.180(Ac.) Total runoff = 10.386(CFS) Total area = 4.120(Ac.) Street flow at end of street = 10.386(CFS) Half street flow at end of street = 10.386(CFS) Depth of flow = 0.365(Ft.), Average velocity = 6.689(Ft/s) Flow width (from curb towards crown)= 11.941(Ft.) � Page 11 AREAC100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1253.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 16.97(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.386(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 10.386(CFS) Normal flow depth in pipe = 7.35(In.) Flow top width inside pipe = 11.69(In.) Critical depth could not be calculated. Pipe flow velocity = 20.59(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.95 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.120(Ac.) Runoff from this stream = 10.386(CFS) Time of concentration = 10.95 min. Rainfall intensity = 3.059(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 140.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 209.270(Ft.) Top (of initial area) elevation = 1287.600(Ft.) Bottom (of initial area) elevation = 1277.900(Ft.) Difference in elevation = 9.700(Ft.) Slope = 0.04635 s(percent)= 4.64 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 4.707(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 0.957(CFS) Total initial stream area = 0.230(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 142.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1277.900(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 300.240(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Page 12 AREAC100.out Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 �- Manning's N from,grade break to crown = 0.0150 _ Estimated mean flow rate at midpoint of street = 9.337(CFS) Depth of flow = 0.357(Ft.), Average velocity = 6.436(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.507(Ft.) F1ow velocity = 6.44(Ft/s) Travel time = 0.78 min. TC = 5.78 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.347(In/Hr) for a 100.0 year storm Subarea runoff = 14.236(CFS) for 4.030(AC.) Total runoff = 15.193(CFS) Total area = 4.260(AC.) Street flow at end of street = 15.193(CFS) Half street flow at end of street = 15.193(CFS) Depth of flow = 0.408(Ft.), Average velocity = 7.224(Ft/s) Flow width (from curb towards crown)= 14.059(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1253.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 27.71(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 15.193(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 15.193(CFS) Normal flow depth in pipe = 9.38(In.) � Flow top width inside pipe = 14.52(In.) Critical depth could not be calculated. Pipe flow velocity = 18.82(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.260(Ac.) Runoff from this stream = 15.193(CFS) Time of concentration = 5.80 min. Rainfall intensity = 4.337(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 84.272 17.85 2.338 2 10.386 10.95 3.059 3 15.193 5.80 4.337 Largest stream flow has longer time of concentration qp = 84.272 + sum of Qb Ia/Ib 10.386 * 0.764 = 7.937 Qb Ia/Ib 15.193 * 0.539 = 8.189 Qp = 100.398 Total of 3 main streams to confluence: � ' � Page 13 AREAC100.out • Flow rates before confluence point: 84.272 10.386 15.193 Area of streams before confluence: 41.090 4.120 . 4.260 , Results of confluence: Total flow rate = 100.398(CFS) Time of concentration = 17.850 min. Effective stream area after confluence = 49.470(AC.) End of computations, total study area = 49.47 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.544 Area averaged RI index number = 58.8 • • Page 14 AREA D AREAD100.out Riverside County Rational Hydrology Program ,� CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/07/06 File:AREAD100.out 850_0105 RORIPAUGH RANCH PA 19 AREA D 100-YR 9/7/06 SWL ------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 162.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 500.560(Ft.) Top (of initial area) elevation = 1356.000(Ft.) Bottom (of initial area) elevation = 1336.700(Ft.) Difference in elevation = 19.300(Ft.) ' Slope = 0.03856 s(percent)= 3.86 TC = k(0.480)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 11.061 min. Rainfall intensity = 3.041(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.716 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.373(CFS) Total initial stream area = 1.550(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 164.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1336.700(Ft.) End of street segment elevation = 1290.000(Ft.) Length of street segment = 1090.210(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 AREAD100.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 � Gutter width = 2.000(Ft.) , Gutter hike from flowline = 2.000(In.) . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.792(CFS) Depth of flow = 0.375(Ft.), Average velocity = 5.271(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.416(Ft.) Flow velocity = 5.27(Ft/s) Travel time = 3.45 min. TC = 14.51 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.694 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.620(In/Hr) for a 100.0 year storm Subarea runoff = 9.059(CFS) for 4.980(Ac.) Total runoff = 12.432(CFS) Total area = 6.530(Ac.) Street flow at end of street = 12.432(CFS) Half street flow at end of street = 12.432(CFS) Depth of flow = 0.413(Ft.), Average velocity = 5.724(Ft/s) Flow width (from curb towards crown)= 14.301(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1290.000(Ft.) Downstream point/station elevation = 1280.000(Ft.) Pipe length = 150.47(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 12.432(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.432(CFS) Normal flow depth in pipe = 9.66(In.) Flow top width inside pipe = 14.37(In.) Critical depth could not be calculated. Pipe flow velocity = 14.88(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 14.68 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.530(Ac.) Runoff from this stream = 12.432(CFS) Time of concentration = 14.68 min. Rainfall intensity = 2.603(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 166.000 to Point/Station 168.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 456.040(Ft.) Top (of initial area) elevation = 1335.000(Ft.) Bottom (of initial area) elevation = 1324.000(Ft.) Difference in elevation = 11.000(Ft.) Slope = 0.02412 s(percent)= 2.41 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.242 min. Rainfall intensity = 3.173(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.766 Page 2 AREAD100.out Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 3.038(CFS) Total initial stream area = 1.250(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 168.000 to Point/Station 169.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1324.000(Ft.) End of street segment elevation = 1286.000(Ft.) Length of street segment = 888.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(Tn.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.980(CFS) Depth of flow = 0.377(Ft.), Average velocity = 5.294(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.528(Ft.) Flow velocity = 5.29(Ft/s) Travel time = 2.80 min. TC = 13.04 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.752 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.778(In/Hr) for a 100.0 year storm Subarea runoff = 10.219(CFS) for 4.890(Ac.) Total runoff = 13.257(CFS) Tota1 area = 6.140(Ac.) Street flow at end of street = 13.257(CFS) Half street flow at end of street = 13.257(CFS) Depth of flow = 0.420(Ft.), Average velocity = 5.810(Ft/s) Flow width (from curb towards crown)= 14.680(Ft.) ±+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 169.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1286.000(Ft.) Downstream point/station elevation = 1280.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 13.257(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 13.257(CFS) Normal flow depth in pipe = 9.45(In.) Flow top width inside pipe = 9.82(In.) Critical depth could not be calculated. Pipe flow velocity = 20.01(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.07 min. � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 AREAD100.out Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** \ � Along Main Stream number: 1 in normal stream number 2 _ Stream flow area = 6.140(Ac.) Runoff from this stream = 13.257(CFS) Time of concentration = 13.07 min. Rainfall intensity = 2.774(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.432 14.68 2.603 2 13.257 13.07 2.774 Largest stream flow has longer or shorter time of concentration Qp = 13.257 + sum of Qa Tb/Ta 12.432 * 0.891 = 11.072 4P = 24.329 Total of 2 streams to confluence: Flow rates before confluence point: 12.432 13.257 Area of streams before confluence: 6.530 6.140 Results of confluence: Total flow rate = 24.329(CFS) Time of concentration = 13.072 min. Effective stream area after confluence = 12.670(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 180.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1280.000(Ft.) '�. Downstream point/station elevation = 1250.000(Ft.) ` Pipe length = 949.39(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 24.329(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 24.329(CFS) Normal flow depth in pipe = 15.07(In.) Flow top width inside pipe = 18.91(In.) Critical depth could not be calculated. Pipe flow velocity = 13.18(Ft/s) Travel time through pipe = 1.20 min. Time of concentration (TC) = 14.27 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 12.670(Ac.) Runoff from this stream = 24.329(CFS) Time of concentration = 14.27 min. Rainfall intensity = 2.644(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 172.000 to Point/Station 174.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 543.460(Ft.) Top (of initial area) elevation = 1300.000(Ft.) Bottom (of initial area) elevation = 1290.000(Ft.) Difference in elevation = 10.000(Ft.) Slope = 0.01840 s(percent)= 1.84 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 � Initial area time of concentration = 13.254 min. Rainfall intensity = 2.753(In/Hr) for a 100.0 year storm Page 4 AREAD100.out � SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.702 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 _ Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.612(CFS) Total initial stream area = 1.870(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 174.000 to Point/Station 176.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.000(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 783.530(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.920(CFS) Depth of flow = 0.365(Ft.), Average velocity = 5.109(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.931(Ft.) Flow velocity = 5.11(Ft/s) Travel time = 2.56 min. TC = 15.81 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.687 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.499(In/Hr) for a 100.0 year storm Subarea runoff = 7.660(CFS) for 4.460(AC.) Total runoff = 11.273(CFS) Total area = 6.330(Ac.) Street flow at end of street = 11.273(CFS) Half street flow at end of street = 11.273(CFS) Depth of flow = 0.403(Ft.), Average velocity = 5.556(Ft/s) Flow width (from curb towards crown)= 13.793(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 176.000 to Point/Station 180.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1254.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.273(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 11.273(CFS) Normal flow depth in pipe = 12.00(In.) Flow top width inside pipe = 0.00(In.) Critical depth could not be calculated. Pipe flow velocity = 14.35(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.86 min. Page 5 AREAD100.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream'number: 1 in normal stream number 2 Stream flow area = 6.330(AC.) Runoff from this stream = 11.273(CFS) Time of concentration = 15.86 min. Rainfall intensity = 2.495(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 177.000 to Point/Station 178.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 460.790(Ft.) Top (of initial area) elevation = 1285.700(Ft.) Bottom (of initial area) elevation = 1278.000(Ft.) Difference in elevation = 7.700(Ft.) Slope = 0.01671 s(percent)= 1.67 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.068 min. Rainfall intensity = 3.040(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.762 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 2.779(CFS) Total initial stream area = 1.200(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 178.000 to Point/Station 179.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1278.000(Ft.) End of street segment elevation = 1257.000(Ft.) Length of street segment = 651.560(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.534(CFS) Depth of flow = 0.344(Ft.), Average velocity = 4.241(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.855(Ft.) Flow velocity = 4.24(Ft/s) Travel time = 2.56 min. TC = 13.63 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.750 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.712(In/Hr) for a 100.0 year storm Subarea runoff = 4.837(CFS) for 2.380(Ac.) Page 6 AREAD100.out Total runoff = 7.616(CFS) Total area = 3.580(AC.) Street flow at end of street = 7.616(CFS) Half street flow at end of street = 7.616(CFS) � Depth.of flow = 0.375(Ft.), Average velocity = 4.570(Ft/s)_ Flow width (from curb towards crown)= 12.408(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 179.000 to Point/Station 180.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1257.000(Ft.) Downstream point/station elevation = 1250.000(Ft.) Pipe length = 40.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.616(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.616(CFS) Normal flow depth in pipe = 6.08(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 19.08(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 180.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 3.580(AC.) Runoff from this stream = 7.616(CFS) Time of concentration = 13.66 min. Rainfall intensity = 2.708(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 24.329 14.27 2.644 2 11.2'J3 15.86 2.495 3 7.616 13.66 2.708 Largest stream flow has longer or shorter time of concentration Qp = 24.329 + sum of Qa Tb/Ta 11.273 * 0.900 = 10.147 Qb Ia/Ib 7.616 * 0.976 = 7.435 Qp = 41.910 Total of 3 streams to confluence: Flow rates before confluence point: 24.329 11.273 7.616 Area of streams before confluence: 12.670 6.330 3.580 Results of confluence: Total flow rate = 41.910(CFS) Time of concentration = 14.272 min. Effective stream area after confluence = 22.580(AC.) End of computations, total study area = 22.58 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.714 Area averaged RI index number = 56.0 Page 7 PA20&21 � . i i i i i PROJECT SITE i I 15 � 9 � � Mu ���� MOT SPRINGS RW1D � x � � �' i � z r: I � 5 � sf .,;r y :: r( ��w � �� a: ' N� I � . "r'�Y m�,..,. ; I h� GLLE CALLE I ��-�' PR�AARY ACCESS I �"'� coKro�ro � "� �I � �/ M �� � I � � �VV�/� ( ���� W I pc/�A�1��V �_etlV� �. 41 aRMf/fY7 t w' A0�8 �� w�'� � 1 � �i � -N- i m � � � , i R �° I c� I � o l � I � ,l ° �I � I � � I � I � I � I i I i VIC�'TY MAP � N.T.S. I � THOMAS BROTHERS MAP REFERENCE � RIVERSIDE COUNIY 2001 EDITION � PAGE 929, E-7 I I RORIPAUGH RANCH DATE � , VAN DELLANDASSOCIATES iNC. PA-20 & 21 OT/O4 Engincers Planners 3urveyors � ,�eo, �.,�.,�4�� RoaO, Irvine, CA. B297C TRACT NO. 29366 FIGURE I T:(918) 6T1-1400 W:(BaB) 235�5988 Inlernet Si1e: ww.VanOeIICE.tom. � VICINITY MAP O� � X:/PROJECTS/850_0101/ENG/MISC/FIGURE7.DGN `— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 10-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS SYS110.out Riverside County Rational Hydrology Program CIVILCADD/CIVZLDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/10/06 File:SYS110.out ----------------------------------------------------------------- RORIPAUGH RANCH TRACT 29366 PA 20 SYSTEM 1 10-YR 1-HR STORM 4/7/06 SWL - - --------- ********* Hydrology Study Control Information *********� English (in-lb) Units used in input data file ------------------------------------------------------------------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) _. 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) , Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100:000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 313.380(Ft.) Top (of initial area) elevation = 267.100(Ft.) Bottom (of initial area) elevation = 263.700(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.01085 s(percent)= 1.OB TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.819 min. Rainfall intensity = 1.926(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) � Runoff Coefficient = 0.646 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.518(CFS) Total initial stream area = 1.220(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 263.700(Ft.) End of street segment elevation = 245.940(Ft.) Length of street segment = 1128.040(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) � Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) �.020 Street flow is on (1] side(s) of the street Page 1 SYS110.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.943(CFS) Depth of flow = 0.320(Ft.), Average velocity = 2.784(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.647(Ft.) Flow velocity = 2.78(Ft/s) Travel time = 6.75 min. TC = 18_57 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.604 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.502(In/Hr) for a 10.0 year storm Subarea runoff = 2.078(CFS) for 2.290(AC.I Total runoff = 3.596(CFS) Total area = 3.510(Ac.) Street flow at end of street = 3.596(CFS) Half street flow at end of street = 3.596(CFS) Depth of flow = 0.337(Ft.), Average velocity = 2.915(Ft/s) Flow width (from curb towards crown)= 10.522(Ft.) ++++++++�+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 120.000 *'** PIPEFLOW TRAVEL TIME (Program estimated size) '*** Upstream point/station elevation = 245.940(Ft.) Downstream point/station elevation = 245.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.596(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.596(CFS) Normal flow depth in pipe = 6.49(In.) Flow top width inside pipe = 11.96(In.) Critical Depth = 9.70(In.) Pipe flow velocity = 8.29(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 18.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.510(Ac.) Runoff from this stream = 3.596(CFS) Time of concentration = 18.63 min. Rainfall intensity = 1.499(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 360.980(Ft.) Top (of initial area) elevation = 267.100(Ft.) Bottom (of initial area) elevation = 263.700(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.00942 s(percent)= 0.94 TC = k(0.480)*[(length^3)/(elevation change)J^0.2 _ Initial area time of concentration = 12.866 min. Rainfall intensity = 1.838(In/Hr) for a 10.0 year storm Page 2 SYS110.out SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.639 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area £raction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.314(CFS) Total initial stream area = 1.120(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 263.700(Ft.) End of street segment elevation = 253.870(Ft.) Length of street segment = 551.890(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.451(CFS) Depth of flow = 0.328(Ft.), Average velocity = 3.027(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.065(Ft.) Flow velocity = 3.03(Ft/s) Travel time = 3.04 min. TC = 15.90 min. Adding area flow to street SZNGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.619 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.636(In/Hr) for a 10.0 year storm Subarea runoff = 3.685(CFS) for 3.640(Ac.) Total runoff = 4.999(CFS) Total area = 4.760(Ac.) Street flow at end of street = 4.999(CFS) Half street flow at end of street = 4.999(CFS) Depth of flow = 0.362(Ft.), Average veloci�y = 3.299(Ft/s) Flow width (from curb towards crown)= 11.784(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from PoinC/Station 110.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 253.870(Ft.) Downstream point/station elevation = 245.000(Ft.) Pipe length = 400.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.999(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.999(CFS) Normal flow depth in pipe = 9.26(In.) F1ow top width inside pipe = 10.08(In.) Critical Depth = 11.00(In.) Pipe flow velocity = 7.68(Ft/s) Travel time through pipe = 0.87 min. Time of concentration (TC) = 16.77 min. Page 3 SYS110.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.760(Ac.) Runoff from this stream = 4.999(CFS) Time of concentration = 16.77 min. Rainfall intensity = 1.588(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 885.720(Ft.) Top (of initial area) elevation = 298.500(Ft.) Bottom (of initial area) elevation = 251.710(Ft.) Difference in elevation = 46.790(Ft.) Slope = 0.05283 s(percent)= 5.28 TC = k(0.480)'[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 13.049 min. Rainfall intensity = 1.824(In/Hr) for a 10.0 year stonn SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.637 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.200 Initial subarea runoff = 3.510(CFS) Total initial stream area = 3.020(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** STREET FLOW TRAVEL TIME + SUSAREA FLOW ADDITZON **** Top of street segment elevation = 251.710(Ft.) End of street segment elevation = 245.940(Ft.) Length of street segment = 377.700(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.881(CFS) Depth of flow = 0.368(Ft.), Average velocity = 3.094lFt/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.046(Ft.) Flow velocity = 3.09(Ft/s) Travel time = 2.03 min. TC = 15.08 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.700 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.126 Decimal fraction soil group C= 0.874 � Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 67.36 Pervious area fraction = 0.800; Impervious fraction = 0.200 Page 4 SYS110.out Rainfall intensity = 1.684(In/Hr) for a 10.0 year storm Subarea runoff = 2.783(CFS) for 2.360(Ac.) Total runoff = 6.293(CFS) Total area = 5.380(Ac.) Street flow at end of street = 6.293(CFS) Half street flow at end of street = 6.293(CFS) Depth of flow = 0.394(Ft.), Average velocity = 3.286(Ft/s) Flow width (from curb towards crown)= 13.373(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 245.940(Ft.) Downstream point/station elevation = 245.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.293(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.293(CFS) Normal flow depth in pipe = 9.82(In.) Flow top width inside pipe = 9.25(In.) Critical depth could not be calculated. Pipe flow velocity = 9.15(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS.**** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 5.380(AC.> Runoff from this stream = 6.293(CFS) Time of concentration = 15.14 min. Rainfall intensity = 1.681(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.596 18.63 1.499 2 4.999 16.77 1.588 3 6.293 15.14 1.681 Largest stream flow has longer or shorter time of concentration Qp = 6.293 + sum of Qa Tb/Ta 3.596 * 0.812 = 2.922 Qa Tb/Ta 4.999 * 0.903 = 4.512 Qp = 13.727 Total of 3 main streams to confluence: Flow rates before confluence point: 3.596 4.999 6.293 Area of streams before confluence: 3.510 4.760 5.380 Results of confluence: Tota1 flow rate = 13.727(CFS) Time of concentration = 15.139 min. Effective stream area after confluence = 13.650(AC.) End of computations, total study area = 13.65 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 58.0 Page S SYS210.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/10/06 File:SYS310.out --------- — -------- — ------------ — ------ — ----------------------------- RORIPAUGH RANCH TRACT 29366 PA 20 SYSTEM 2 10-YR 1-HR STORM 4/7/06 SWL - — --------------------------------------------- — ---- — ---------------- ********* Hydrology Study Control Information ********** English (in-1b) Units used in input data file ---- — ---- ------------------------------- ------- — — ------------------ Van Dell and Associates, Znc., Irvine, CA - S/N 953 ------------------------ — --------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 124.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 254.660(Ft.) Top (of initial area) elevation = 302.500(Ft.) Bottom (of initial area) elevation = 277.700(Ft.) Difference in elevation = 24.800(Ft.) Slope = 0.09738 s(percent)= 9.74 TC = k(0.480)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.014 min. Rainfall intensity = 2.566(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.751 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.180 Decimal fraction soil group C= 0.820 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 66.66 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.237(CFS) Total initial stream area = 1.160(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 126.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 277.700(Ft.) End of street segment elevation = 270.600(Ft.) Length of street segment = 582.920(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Page 1 SYS210.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.00011n.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.100(CFS) Depth.of flow = 0.384(Ft.), Average velocity = 2.867(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.854(Ft.) Flow velocity = 2.87(Ft/s) Travel time = 3.39 min. TC = 10.40 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.701 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.480 Decimal fraction soil group C= 0.520 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 62.76 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.066(In/Hr) for a 10.0 year storm Subarea runoff = 4.298(CFS) for 2.970(Ac.) Total runoff = 6.535(CFS) Total area = 4.130(Ac.) Street flow at end of street = 6.535(CFS) Half street flow at end of street = 6.535(CFS) Depth of flow = 0.411(Ft.), Average velocity = 3.042(Ft/s) Flow width (from curb towards crown>= 14.219(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 273.000(Ft.) Downstream point/station elevation = 260.280(Ft.) Pipe length = 500.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.535(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 6.535(CFS) Normal flow depth in pipe = 8.67(In.) Flow top width inside pipe = 14.82(In.) Critical Depth = 12.35(In.) Pipe flow velocity = 6.89(Ft/s) Travel time through pipe = 0.94 min. Time of concentration (TC) = 11.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.130(Ac.) Runoff from this stream = 6.535(CFS) Time of concentration = 11.34 min. Rainfall intensity = 1.970(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 600.050(Ft.) Top (of initial area) elevation = 310.000(Ft.) Bottom (of initial area) elevation = 263.800(Ft.) Difference in elevation = 46.200(Ft.) Slope = 0.07699 s(percent)= 7.70 � TC = k(0.480>*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.357 min. Rainfall intensity = 2.071(In/Hr) for a 10.0 year storm Page 2 SYS210.out • SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.693 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.580 Decimal fraction soil group C= 0.420 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.46 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 4.735(CFS) Total initial stream area = 3.300(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **'* PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 263.800(Ft.) Downstream point/station elevation = 260.280(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.735(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.735(CFS) Normal flow depth in pipe = 6.29(In.) Flow top width inside pipe = 6.25(In.) Critical depth could not be calculated. Pipe flow velocity = 14.36(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 10.39 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 `*"* CONFLLTENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: • In Main Stream number: 2 Stream flow area = 3.300(Ac.) Runoff from this stream = 4.735(CFS) Time of concentration = 10.39 min. Rainfall intensity = 2.067(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 '*** INITIAL AREA EVALUATION **** Initial area flow distance = 351.150(Ft.) Top (of initial area) elevation = 274.000(Ft.) Bottom (of initial area) elevation = 273.000(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00285 s(percent)= 0.28 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 16.164 min. Rainfall intensity = 1.621(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.706 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.162(CFS) Total initial stream area = 1.890(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 � **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.000(Ft.) Page 3 SYS210.out � End ot street segment elevation = 266.800(Ft.) Length of street segment 786.060(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.541(CFS) Depth of flow = 0.369(Ft.), Average velocity = 2.228(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.094(Ft.) Flow velocity = 2.23(Ft/s) � Travel time = 5.88 min. TC = 22.04 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.681 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RZ index for soil(AMC 2) = 69.00 Pervious area fraction = 0.800; Zmpervious fraction = 0.200 Rainfall intensity = 1.367(In/Hr) for a 10.0 year storm Subarea runoff = 2.242(CFS) for 2.410(Ac.) Total runoff = 4.404(CFS) Total area = 4.300(Ac.) Street flow at end of street = 4.404(CFS) Half street flow at end of street = 4.4Q4(CFS) Depth oE flow = 0.391(Ft.), Average velocity = 2.346(Ft/s) � F1ow width (from curb towards crown)= 13.230(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) ***k Upstzeam point/station elevation = 266.800(Ft.) Downstream point/station elevation = 260.280(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.404(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.404(CFS) Normal flow depth in pipe = 4.88(In.) Flow top width inside pipe = 8.97(In.) Critical depth could not be calculated. Pipe flow velocity = 18.04(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 22.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.300(Ac.) Runoff from this stream = 4.404(CFS) Time of concentration = 22.07 min. Rainfall intensity = 1.366(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Zntensity No. (CFS) (min) (In/Hr) • 1 6.535 11.34 1.970 Page 4 SYS210.out • 2 4.735 10.39 2.067 3 4.404 22.07 1.366 Largest stream flow has longer or shorter time of concentration Qp = 6.535 + sum of Qb Ia/Ib 4.735 * 0.953 = 4.513 Qa Tb/Ta 4.404 * 0.514 = 2.263 Qp = 13.311 Total of 3 main streams to confluence: Flow rates before confluence point: 6.535 4.735 4.404 Area of streams before confluence: 4.130 3.300 4.300 Results of confluence: Total flow rate = 13.311(CFS) � Time of concentration = 11.340 min. Effective stream area after confluence = 11.730(AC.) End of computations, total study area = 11.73 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 65.1 � . � Page 5 SYS310.out Riverside County Rational Hydrology Program CIVILCADD/CIVZLDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/10/06 File:SY5210.out ------------------------------------------------------------------------ RORIPAUGH RANCH TRACT 29366 PA 21 SYSTEM 3 10-YR 1-HR STORM 4/10/06 SWL ------ ********' Hydrology Study Control Information ********** English (in-lb) Units used in input data file --------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------ ----------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 143.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 411.750(Ft.) Top (of initial area) elevation = 266.300(Ft.) Bottom (of initial area) elevation = 257.400(Ft.) Difference in elevation = 8.900(Ft.) Slope = 0.02162 s(percent)= 2.16 TC = k(0.480)*[�length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.485 min. Rainfall intensity = 1.956(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.731 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.800; Zmpervious fraction = 0.200 Initial subarea runoff = 1.531(CFS) Total initial stream area = 1.070(AC.) Pervious area fraction = 0.800 End of computations, total study area = 1.07 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 69.0 � Page 1 SYS410.out � Riverside County Rational Hydrology Program , CIVILCADD/CIVZLDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/11/06 File:SYS410.out ----------------------------------------------------------------- RORIPAUGH RANCH TRACT 29366-1 PA 21 SYSTEM 4 10-YR 1-HR STORM 4/7/06 SWL ----------------------------------------------------------------- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------ ---------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------------- -------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 144.000 ***� INITIAL AREA EVALUATION **** Initial area flow distance = 400.930(Ft.) Top (of initial area) elevation = 266.100(Ft.) Bottom (of initial area) elevation = 262.500(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.00898 s(percent)= 0.90 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 13.546 min. Rainfall intensity = 1.786(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.685 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.407 Decimal fraction soil group C= 0.593 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 63.71 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.285(CFS) Total initial stream area = 1.050(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++±+++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 146.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 262.500(Ft.) End of street segment elevation = 249.530(Ft.) Length of street segment = 756.150(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) � Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) 0.020 Street flow is on (1) side(s) of the street Page 1 SY5410.out � Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manninq's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.597(CFS) Depth of flow = 0.356(Ft.), Average velocity = 3.189(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.467(Ft.) Flow velocity = 3.19(Ft/s) Travel time = 3.95 min. TC = 17.50 min. Adding area flow to street SINGLE FAMZLY (1 Acre Lot) Runoff Coefficient = 0.613 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.970 Decimal fraction soil group C= 0.030 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.39 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.552(In/Hr) for a 10.0 year storm , Subarea runoff = 5.143(CFS) for 5.410(Ac.1 Total runoff = 6.428(CFS) Total area = 6.460(Ac.) Street flow at end of street = 6.428(CFS) Half street flow at end of street = 6.428(CFS) Depth of flow = 0.390(Ft.), Average velocity = 3.451(Ft/s) Flow width (from curb towards crown)= 13.175(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 146.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 249.530(Ft.) Downstream point/station elevation = 240.000(Ft.) Pipe length = 1000.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.428(CFS) Nearest computed pipe diameter = 16.00(Zn.) Calculated individual pipe flow = 6.428(CFS) Normal flow depth in pipe = 10.32(In.? Flow top width inside pipe = 17.80(In.) Critical Depth = 11.77(In.) Pipe flow velocity = 6.13(Ft/s) Travel time through pipe = 2.72 min. Time of concentration (TC) = 20.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 160.000 '*** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 6.460(Ac.) Runoff from this stream = 6.4281CFS) Time of concentration = 20.22 min. Rainfall intensity = 1.433(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 148.000 to Point/Station 150.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 421.5301Ft.) Top (of initial area) elevation = 252.300(Ft.) Bottom (of initial area) elevation = 251.300(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00237 s(percent)= 0.24 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 18.036 min. Rainfall intensity = 1.526(In/Hr) for a 10.0 year storm Page 2 SYS410.out � SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.607 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.130(CFS) Total initial stream area = 1.220(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 152.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION '*** Top of street segment elevation = 251.300(Ft.) End of street segment elevation = 240.660(Ft.) Length of street segment = 643.040(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.274(CFS) Depth of flow = 0.297(Ft.), Average velocity = 2.680(Ft/s1 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.497(Ft.) Flow velocity = 2.68(Ft/s) Travel time = 4.00 min. TC = 22.04 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.588 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.367(in/Hr) for a 10.0 year storm Subarea runoff = 1.984(CFS) for 2.470(Ac.) Total runoff = 3.114(CFS) Total area = 3.690(Ac.) Street flow at end of street = 3.114(CFS) Half street flow at end of street = 3.114(CFS) Depth of flow = 0.322(Ft.), Average velocity = 2.875(Ft/s) Flow width (from curb towards crown)= 9.781(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 152.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.690(Ac.) Runoff from this stream = 3.114(CFS) Time of concentration = 22.04 min. Rainfall intensity = 1.367(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 151.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** � Initial area flow distance = 551.530(Ft.) Top (of initial area) elevation = 250.400(Ft.) Page 3 SYS410.out � Bottom (of initial area) elevation = 240.660(Ft.) Difference in elevation = 9.740(Ft.) Slope = 0.01766 slpercent)= 1.77 TC = k(0.480)*[(length^3)/(elevation change)j^0.2 Initial area time of concentration = 13.442 min. Rainfall intensity = 1.794(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.746 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.093 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.907 RI index for soil(AMC 2) = 73.23 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.677(CFS) Total initial stream area = 2.000(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 152.000 **** CONFLUENCE OF MZNOR STREAMS *'** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.000(AC.) Runoff from this stream = 2.677(CFS) Time of concentration = 13.44 min. Rainfall intensity = 1.794(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) � 1 3.114 22.04 1.367 2 2.677 13.44 1.794 � Largest stream flow has longer time of concentration Qp = 3.114 + sum of Qb Ia/Ib 2.677 ' 0.762 = 2.040 Qp = 5.154 Total of 2 streams to confluence: Flow rates before confluence point: 3.114 2.677 Area of streams before confluence: 3.690 2.000 Results of confluence: Total flow rate = 5.154(CFS) Time of concentration = 22.036 min. Effective stream area after confluence = 5.690(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ , Process from Point/Station 152.000 to Point/Station 160.000 *'** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 240.660(Ft.) Downstream point/station elevation = 240.000(Ft.) Pipe length = 30.00{Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.154(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.154(CFS) Normal flow depth in pipe = 9.59(In.) Flow top width inside pipe = 9.6211n.) Critical Depth = 11.09(In.) � Pipe flow velocity = 7.67(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 22.10 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 160.000 to Point/Station 160.000 **'* CONFLUENCE OF M.AIN STREAMS **** Page 4 SYS410.out � The following data inside Main Stream is listed: In Main S�ream number: 2 Stream flow area = 5.690(Ac.) Runoff from this stream = 5.154(CFS) Time of concentration = 22.10 min. Rainfall intensity = 1.365(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 156.000 **** ZNITIAL AREA EVALUATION **** Initial area flow distance = 343.540(Ft.) Top (of initial area) elevation = 262.900(Ft.) Bottom (of initial area) elevation = 261.000(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00553 s(percent)= 0.55 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 14.031 min. Rainfall intensity = 1.752(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.704 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.150 Decimal fraction soil group C= 0.850 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 67.05 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.308(CFS) Total initial stream area = 1.060(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 156.000 to Point/Station 158.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 261.000(Ft.) End of street segment elevation = 240.660(Ft.) Length of street segment = 1563.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.397(CFS) Depth of flow = 0.386(Ft.), Average velocity = 2.980(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.979(Ft.) Flow velocity = 2.98(Ft/s) Travel time = 8.74 min. TC = 22.77 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.650 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.300 Decimal fraction soil group C= 0.700 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 65.10 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.342(In/Hr) for a 10.0 year storm � Subarea runoff = 5.784(CFS) for 6.630(Ac.) Tota1 runoff = 7.092(CFS) Tota1 area = 7.690(AC.) Street flow at end of street = 7.092(CFS) Page S SYS410.out Half street flow at end of street = 7.092(CFS) Depth of flow = 0.417(Ft.), Average velocity = 3.181(Ft/s) Flow width (from curb towards crown)= 14.501(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 240.660(Ft.) Downstream point/station elevation = 240.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.092(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 7.092(CFS) Normal flow depth in pipe = 9.61(Zn.) Flow top width inside pipe = 14.39(In.) Critical Depth = 12.79(In.) Pipe flow velocity = 8.55(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 22.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 160.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 7.690(Ac.) Runoff from this stream = 7.092(CFS) Time of concentration = 22.83 min. Rainfall intensity = 1.341(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (Zn/Hr) 1 6.428 20.22 1.433 2 5.154 22.10 1.365 3 7.092 22.83 1.341 Largest stream flow has longer time of concentration Qp = 7.092 + sum of Qb Ia/Ib 6.428 * 0.935 = 6.012 Qb Ia/Ib 5.154 ' 0.982 = 5.063 Qp = 18.167 Total of 3 main streams to confluence: Flow rates before confluence point: 6.428 5.154 7.092 Area of streams before confluence: 6.460 5.690 7.690 Results of confluence: Total flow rate = 18.167(CFS) Time of concentration = 22.833 min. Effective stream area after confluence = 19.840iAC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 240.000(Ft.) Downstream point/station elevation = 235.000(Ft.) Pipe length = 200.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 18.167(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 18.167(CFS) Normal flow depth in pipe = 13.27(In.) Page 6 SYS410.out � Flow top width inside pipe = 20.26(In.) Critical Depth = 16.59(In.) Pipe flow velocity = 11.36(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 23.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 19.840(Ac.) Runoff from this stream = 18.167(CFS) Time of concentration = 23.13 min. Rainfall intensity = 1.331(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 170.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.370(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.777 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 User specified values are as follows: TC = 8.10 min. Rain intensity = 2.37(In/Hr) Total area = 7.67(Ac.) Total runoff = 14.12(CFS) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **.** CONFLUENCE OF MZNOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 7.670(AC.) Runoff from this stream = 14.124(CFS) Time of concentration = 8.10 min. Rainfall intensity = 2.370(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 18.167 23.13 1.331 2 14.124 8.10 2.370 Largest stream flow has longer time of concentration Qp = 18.167 + sum of Qb Ia/Ib 14.124 * 0.562 = 7.932 Qp = 26.098 Total of 2 streams to confluence: Flow rates before confluence point: 18.167 14.124 Area of streams before confluence: 19.840 7.670 Results of confluence: Total flow rate = 26.098(CFS) Time of concentration = 23.127 min. Effective stream area after confluence = 27.510(AC.) End of computations, total study area = 27.51 (Ac.) The following figures may be used for a unit hydrograph study of the same area. � Area averaged pervious area fraction(Ap) = 0.856 Area averaged RZ index number = 66.4 Page 7 SY5410.out � � Page 8 OFFSITE10.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/11/06 File:OFFSITElO.out ------ — ------ — ----- ------------- ---------- ------------------------- RORIPAUGH RANCH TRACT 29366 OFFSITE 10-YR 1-HOUR STORM 04/11/06 SWL -------------- ------------------------ — -- — --------- ---------------- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------- ------ ---- — — ------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ----------------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 346.650(Ft.) Top (of initial area) elevation = 1345.000(Ft.) Bottom (of initial area) elevation = 1295.000(Ft.) Difference in elevation = 50.000(Ft.) Slope = 0.14424 s(percent)= 14.42 TC = k(0.530)�[(length^3)/lelevation change)]^0.2 Znitial area time of concentration = 8.099 min. Rainfall intensity = 2.371(Zn/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.777 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 5.377(CFS) Total initial stream area = 2.920(AC.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.777 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 � Pervious area fraction = 1.000; Impervious fraction = 0.000 Time of concentration = 8.10 min. Page 1 OFFSITElO.out � Rainfall intensity = 2.371(In/Hr) for a 10.0 year storm Subarea runoff = 8.747(CFS) for 4.750(AC.) Total runoff = 14.124(CFS) Total area = 7.670(Ac.) End of computations, total study area = 7.67 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 Page 2 100-YEAIZ PROPOSED CONDITION RATIONAL METHOD ANALYSIS , SYS1100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/10/06 File:SYS1100.out --------------- ------------------- — --------------- — ----- ------------ RORIPAUGH RANCH TRACT 29366 PA 20 SYSTEM 1 100-YR 1-HR STORM 4/7/06 SWL, --------------------------------------------------------------- ********* Hydrology Study Control Information '********* English (in-lb) Units used in input data file -------------------------------- ---------- -------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(Zn.) Storm event year = 100.0 Calculated rainfall intensity data: ' 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102.000 ***' INITIAL AREA EVALUATION **`* Initial area flow distance = 313.380(Ft.) Top (of initial area) elevation = 267.100(Ft.) BotCOm (of initial area) elevation = 263.700(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.01085 s(percent)= 1.08 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.819 min. Rainfall intensity = 2.933(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.710 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.542(CFS) Total initial stream area = 1.220(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 ***� STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 263.700(Ft.) End of street segment elevation = 245.940(Ft.) Length of street segment = 1128.040(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 SYS1100.out � Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.928(CFS) Depth of flow = 0.367(Ft.), Average velocity = 3.137(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.018(Ft.) Flow velocity = 3.14.(Ft/s) Travel time = 5.99 min. TC = 17.81 min. Adding area flow to street SZNGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.677 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RZ index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.340(In/Hr) for a 100.0 year storm Subarea runoff = 3.630(CFS) for 2.290(AC.) Total runoff = 6.172(CFS) Total area = 3.510(Ac.) Street flow at end of street = 6.172(CFS) Half street flow at end of street = 6.172(CFS) Depth of flow = 0.390(Ft.), Average velocity = 3.308(Ft/s) Flow width (from curb towards crown)= 13.186(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 245.940(Ft.) Downstream point/station elevation = 245.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.172(CFS) Nearest computed pipe diameter = 12.00(Ir..) Calculated individual pipe flow = 6.172(CFS) Normal flow depth in pipe = 9.61(In.) Flow top width inside pipe = 9.59(In.) Critical depth could not be calculated. Pipe flow velocity = 9.15(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 17.87 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **" The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = ' 3.510(Ac.) Runoff from this stream = 6.1721CFS) Time of concentration = 17.87 min. Rainfall intensity = 2.336(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 106.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 360.980(Ft.) Top (of initial area) elevation = 267.100(Ft.) Bottom (of initial area) elevation = 263.700(Ft.) Difference in elevation = 3.400(Ft.) Slope = 0.00942 s(percentl= 0.94 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 12.866 min. Rainfall intensity = 2.799(In/Hr) for a 100.0 year storm Page 2 SYS1100.out SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.704 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56_00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.207(CFS) Total initial stream area = 1.120(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 263.700(Ft.) End of street segment elevation = 253.870(Ft.) Length of street segment = 551.890(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.792(CFS) Depth of flow = 0.377(Ft.), Average velocity = 3.416(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.526(Ft.) Flow velocity = 3.42(Ft/s) Travel time = 2.69 min. TC = 15.56 min. Adding area flow to street SINGLE FAMZLY (1 Acre Lot) Runoff Coefficient = 0.689 Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity =. 2.521(In/Hr) for a 100.0 year storm Subarea runoff = 6.319(CFS) for 3.640(Ac.) Total runoff = 8.526(CFS) Tota1 area = 4.760(AC.) Street flow at end of street = 8.526(CFS) Half street flow at end of street = 8.526(CFS) Depth of flow = 0.420(Ft.), Average velocity = 3.746(Ft/s) Flow width (from curb towards crown)= 14.660(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 120.000 **** PZPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 253.870(Ft.) Downstream point/station elevation = 245.000(Ft.) Pipe length = 400.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.526(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 8.526(CFS) Normal flow depth in pipe = 10.99(In.) Flow top width inside pipe = 13.27(In.) Critical Depth = 13.65(In.) Pipe flow velocity = 8.85(Ft/s) Travel time through pipe = 0.75 min. Time of concentration (TC) = 16.31 min. Page 3 SYS1100.out � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.760(Ac.) Runoff from this stream = 8.526(CFS) Time of concentration = 16.31 min. Rainfall intensity = 2.456(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 114.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 885.720(Ft.) Top (of initial area) elevation = 298.500(Ft.) Bottom (of initial area) elevation = 251.710(Ft.) Difference in elevation = 46.7901Ft.) Slope = 0.05283 s(percent)= 5.28 TC = k(0.480)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 13.049 min. Rainfall intensity = 2.777(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.703 Decimal fraction soil group A= 0.000 Decimal fraction soil group H= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Zmpervious fraction = 0.200 Initial subarea runoff = 5.894(CFS) Total initial stream area = 3.020(Ac.) � Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 ***' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 251.710(Ft.) End of street segment elevation = 245.940(Ft.) Length of street segment = 377.700(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s> of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.197(CFS) Depth of flow = 0.424(Ft.), Average velocity = 3.501(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.882(Ft.) Flow velocity = 3.50(Ft/s) Travel time = 1.80 min. TC = 14.85 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.756 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.126 Decimal fraction soil group C= 0.874 Decimal fraction soil group D= 0.000 � RI index for soil(AMC 2) = 67.36 Pervious area fraction = 0.800; Impervious fraction = 0.200 Page 4 SYS1100.out Rainfall intensity = 2.587(In/Hr) for a 100.0 year storm Subarea runoff = 4.616(CFS) for 2.360(Ac.) Total runoff = 10.510(CFS) Total area = 5.380(Ac.) Street flow at end of street = 10.510(CFS) Half street flow at end of street = 10.510(CFS) Depth of flow = 0.455(Ft.), Average velocity = 3.718(Ft/s) Flow width (from curb towards crown)= 16.433(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 120.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 245.940(Ft.) Downstream point/station elevation = 245.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.510(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 10.510(CFS) Normal flow depth in pipe = 11.32(In.) Flow top width inside pipe = 12.91(In.) Critical depth could not be calculated. Pipe flow velocity = 10.57(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 14.89 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 120.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 5.380(Ac.) Runoff from this stream = 10.510tCFS) Time of concentration = 14.89 min. Rainfall intensity = 2.582(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.172 17.87 2.336 2 8.526 16.31 2.456 3 10.510 14.89 2.582 Largest stream flow has longer or shorter time of concentration Qp = 10.510 + sum of Qa Tb/Ta 6.172 * 0.834 = 5.145 Qa Tb/Ta 8.526 * 0.913 = 7.785 Qp = 23.440 Total of 3 main streams to confluence: Flow rates before confluence point: 6.172 8.526 10.510 Area of streams before confluence: 3.510 4.760 5.380 Results of confluence: Total flow rate = 23.440(CFS) Time of concentration = 14.895 min. Effective stream area after confluence = 13.650lAc.) End of computations, total study area = 13.65 (AC.) The following £igures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 58.0 Page 5 SYS2100.out � Riverside County Rational Hydrology Program CIVILCADD/CZVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/10/06 Fi1e:SYS3100.out ---------------------------------------------------------------- RORIPAUGH RANCH TRACT 29366 PA 20 SYSTEM 2 100-YR 1-HR STORM 4/7/06 SWL --------------------------------------------------------------- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------ — --------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 - -------------- --------- ------------------------------------------ -- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 124.000 **** INITIAL AREA EVALUATION "**' Initial area flow distance = 254.680(Ft.) Top (of initial area) elevation = 302.500(Ft.) Bottom (of initial area) elevation = 277.700(Ft.) Difference in elevation = 24.800(Ft.) Slope = 0.09738 s(percent)= 9.74 TC = k(0.480)*[(length^3)/(elevation change)J^0.2 Initial area time of concentration = 7.014 min. Rainfall intensity = 3.907(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.795 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.180 Decimal fraction soil group C= 0.820 Decimal fraction soil group D= 0.000 RZ index for soil(AMC 2) = 66.66 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.604(CFS) Total initial stream area = 1.160(AC.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 126.000 #*°* STREET FLOW TRAVEL TZME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 277.700(Ft.) End of street segment elevation = 270.600(Ft.) Length of street segment = 582.920(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 SYS2100.out Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.217(CFS) Depth of flow = 0.438(Ft.), Average velocity = 3.214(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.587(Ft.) Flow velocity = 3.21(Ft/s) Travel time = 3.02 min. TC = 10.04 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.758 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.480 Decimal fraction soil group C= 0.520 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 62.76 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.209(In/Hr) for a 100.0 year storm Subarea runoff = 7.219(CFS) for 2.970(Ac.) Total runoff = 10.823(CFS) Tota1 area = 4.130(Ac.) Street flow at end of street = 10.823(CFS) Half street flow at end of street = 10.823(CFS) Depth of flow = 0.474(Ft.), Average velocity = 3.437(Ft/s) Flow width (from curb towards crown)= 17.385(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 273.000(Ft.) Downstream point/station elevation = 260.280(Ft.) Pipe length = 500.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.823(CFS) Nearest computed pipe diameter = 18.00(Zn.) Calculated individual pipe flow = 10.823(CFS) Normal flow depth in pipe = 10.52(In.) Flow top width inside pipe = 17.74(In.) Critical Depth = 15.15(In.) Pipe flow velocity = 10.08(Ft/s) Travel time through pipe = 0.83 min. Time of concentration (TC) = 10.86 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Sta�ion 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: Zn Main Stream number: 1 Stream flow area = 4.130(Ac.) Runoff from this stream = 10.823(CFS) Time of concentration = 10.86 min. Rainfall intensity = 3.072(In/Hr) Program is now starting with Main Stream No. 2 , ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 130.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 600.050(Ft.) Top (of initial area) elevation = 310.000(Ft.) Bottom (of initial area) elevation = 263.800(Ft.) Difference in elevation = 46.200(Ft.) Slope = 0.07699 s(percent)= 7.70 TC = k(0.480)*[(length"3)/(elevation change)�^0.2 Initial area time of concentration = 10.357 min. Rainfall intensity = 3.153(In/Hr) for a 100.0 year storm Page 2 SY52100.out � SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.749 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.580 Decimal fraction soil group C= 0.420 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 61.46 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 7.796(CFS) Total initial stream area = 3.300(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **"* Upstream point/station elevation = 263.800(Ft.) Downstream point/station elevation = 260.280(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.796(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.796(CFS) Normal flow depth in pipe = 6.97(In.) Flow top width inside pipe = 11.84(In.) Critical depth could not be calculated. Pipe flow velocity = 16.48(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 10.39 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 *`** CONFLUENCE OF MAIN STREAMS ***' The following data inside Main Stream is listed: � In Main Stream number: 2 Stream flow area = 3.300(Ac.) Runoff from this stream = 7.796lCFS) Time of concentration = 10.39 min. Rainfall intensity = 3.148(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 134.000 **** ZNITIAL AREA EVALUATION **'* Initial area flow distance = 351.150(Ft.) Top (of initial area) elevation = 274.000(Ft.) Bottom (of initial area) elevation = 273.000(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00285 s(percent)= 0.28 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 16.164 min. Rainfall intensity = 2.469(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.543(CFS) Total initial stream area = 1.890(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 136.000 #** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 273.000(Ft.) Page 3 SYS2100.out End of street segment elevation = 266.800(Ft.) � Length of street segment = 786.060(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.802(CFS) Depth of flow = 0'.423(Ft.), Average velocity = 2.506(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.793(Ft.) Flow velocity = 2.51(Ft/s) Travel time = 5.23 min. TC = 21.39 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.741 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.116(In/Hr) for a 100.0 year storm Subarea runoff = 3.780lCFS) for 2.410(Ac.) Total runoff = 7.323(CFS) Total area = 4.300(Ac.) Street flow at end of street = 7.3231CF5) Half street flow at end of street = 7.323(CFS) Depth of flow = 0.451(Ft.), Average velocity = 2.651(Ft/s) � Flow width (from curb towards crown)= 16.233(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 266.800(Ft.) Downstream point/station elevation = 260.280(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.323(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 7.3231CFS) Normal flow depth in pipe = 7.00(In.) Flow top width inside pipe = 7.49(In.) Critical depth could not be calculated. Pipe flow velocity = 19.86�Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 21.42 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS '*'* The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.300(Ac.) Runoff from this stream = 7.323lCFS) Time of concentration = 21.42 min. Rainfall intensity = 2.115(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.823 10.86 3.072 Page 4 SYS2100.out 2 7.796 10.39 3.148 3 7.323 21.42 2.115 Largest stream flow has longer or shorter time of concentration Qp = 10.823 + sum of Qb Ia/Ib 7.796 * 0.976 = 7.606 Qa Tb/Ta 7.323 * 0.507 = 3.715 Qp = 22.143 Total of 3 main streams to confluence: Flow rates before confluence point: 10.823 7.796 7.323 Area of streams before confluence: 4.130 3.300 4.300 Results of confluence: Total flow rate = 22.143(CFS) Time of concentration = 10.863 min. Effective stream area after confluence = 11.7301Ac.) End of computations, total study area = 11.73 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 65.1 � � Page 5 SYS3100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/10/06 File:SYS2100.out --------------------------------------------- — ---------------- --- — --- RORIPAUGH RANCH TRACT 29366 PA 21 SYSTEM 3 100-YR 1-HR STORM 4/10/06 SwL ----------------- — -------------------------------------- — ------------ ***'***** Hydrology Study Control Information *******�** English (in-lb) Units used in input data file ----------------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------------- ----------------- ------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(Zn.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 143.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 411.750(Ft.) Top (of initial area) elevation = 266.300(Ft.) Bottom (of initial area) elevation = 257.400(Ft.? Difference in elevation = 8.9001Ft.) Slope = 0.02162 s(percent)= 2.16 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 11.485 min. Rainfall intensity = 2.979(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.779 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.485(CFS) Total initial stream area = 1.070(AC.) Pervious area fraction = 0.800 End of computations, total study area = 1.07 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 69.0 Page 1 SYS4100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/11/06 Fi1e:SYS4100.out - — ---- — ------- -------------- — ----------------------------- ------- RORIPAUGH RANCH TRACT 29366-1 PA 21 SYSTEM 4 100-YR 1-HR STORM 4/7/06 SWL - — ---------------------------- — ---- — - — ------------------------ — --- ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------ — ---- — -------------------------------------------- ------------ Van Dell and Associates, Inc., Irvine, CA - S/N 953 --------- -------------------------------- ------------------ — -------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(Zn.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 144.000 **"* ZNITIAL AREA EVALUATION *'** Initial area flow distance = 400.930(Ft.) Top (of initial area) elevation = 266.100(Ft.) Bottom (of initial area) elevation = 262.500(Ft.) Difference in elevation = 3.600(Ft.) Slope = 0.00898 s(percent)= 0.90 TC = k(0.480)*[(length^3)/(elevation change)�^0.2 Initial area time of concentration = 13.546 min. Rainfall intensity = 2.721(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.743 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.407 Decimal fraction soil group C= 0.593 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 63.71 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.122(CFS) Total initial stream area = 1.050(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 146.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 262.500(Ft.) End of street segment elevation = 249.530(Ft.) Length of street segment = 756.1501Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 SYS4100.out � Distance from curb to property line = 10.000(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.589(CFS) Depth of flow = 0.409(Ft.), Average velocity = 3.591(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.095(Ft.) Flow velocity = 3.59(Ft/s) Travel time = 3.51 min. TC = 17.06 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.683 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.970 Decimal fraction soil group C= 0.030 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.39 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.397(In/Hr) for a 100.0 year storm Subarea runoff = 8.862(CFS) for 5.410(AC.) Total runoff = 10.984(CFS) Total area = 6.460(Ac.) Street flow at end of street = 10.984(CFS) Half street flow at end of street = 10.984(CFS) Depth of flow = 0.454(Ft.), Average velocity = 3.926(Ft/s) Flow width (from curb towards crown)= 16.343(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 146.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 249.530(Ft.) Downstream point/station elevation = 240.000(Ft.) Pipe length = 1000.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.984(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 10.984(CFS) Normal flow depth in pipe = 13.08(Zn.) Flow top width inside pipe = 20.36(Zn.) Critical Depth = 14.81(In.) Pipe flow velocity = 6.98(Ft/s) Travel time through pipe = 2.39 min. Time of concentration (TC) = 19.44 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 160.000 ***" CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 6.460(Ac.) Runoff from this stream = 10.984(CFS) Time of concentration = 19.44 min. Rainfall intensity = 2.230(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 148.000 to Point/Station 150.000 **`* INITIAL AREA EVALUATION **** Initial area flow distance = 421.530(Ft.) Top (of initial area) elevation = 252.300(Ft.) Bottom (of initial area) elevation = 251.300(Ft.) Difference in elevation = 1.000(Ft.) Slope = 0.00237 s(percent)= 0.24 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 � Initial area time of concentration = 18.036 min. Rainfall intensity = 2.324(In/Hr) for a 100.0 year storm Page 2 SYS4100.out SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.676 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 1.918�CFS) Total initial stream area = 1.220(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 152.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 251.300(Ft.) End of street segment elevation = 240.660(Ft.) Length of street segment = 643.040(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.859(CFS) Depth of flow = 0.341(Ft.), Average velocity = 3.020(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.730(Ft.) Flow velocity = 3.02(Ft/s) Travel time = 3.55 min. TC = 21.59 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.661 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.106(In/Hr) for a 100.0 year storm Subarea runoff = 3.437(CFS) for 2.470(Ac.) Total runoff = 5.354(CFS) Total area = 3.690(Ac.) Street flow at end of street = 5.354(CFS) Half street flow at end of street = 5.354(CFS) Depth of flow = 0.373(Ft.1, Average velocity = 3.260(Ft/s) Flow width (from curb towards crown)= 12.312(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 152.000 *"** CONFLUENCE OF MINOR STREAMS **�* Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.690(AC.) Runoff from this stream = 5.354(CFS) Time of concentration = 21.59 min. Rainfall intensity = 2.106(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 151.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 551.530(Ft.) Top (of initial area) elevation = 250.400(Ft.) Page 3 SYS4100.out Bottom (of initial area) elevation = 240.660(Ft.) Difference in elevation = 9.740(Ft.) Slope = 0.01766 s(percent)= 1.77 TC = k(0.480)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 13.442 min. Rainfall intensity = 2.732(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.791 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.093 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.907 RI index for soil(AMC 2) = 73.23 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 4.322(CFS) Total initial stream area = 2.000(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 152.000 **** CONFLUENCE OF MINOR STREAMS ***r Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.000(AC.) Runoff from this stream = 4.322(CFS) Time of concentration = 13.44 min. Rainfall intensity = 2.732(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.354 21.59 2.106 2 4.322 13.44 2.732 � Largest stream flow has longer time of concentration Qp = 5.354 + sum of Qb Ia/Ib 4.322 * 0.771 = 3.331 Qp = 8.686 Total of 2 streams to confluence: Flow rates before confluence point: 5.354 4.322 Area of streams before confluence: 3.690 2.000 Results of confluence: Total flow rate = 8.686(CFS) Time of concentration = 21.585 min. Effective stream area after confluence = 5.690(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 240.660(Ft.) Downstream point/station elevation = 240.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.686(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 8.686(CFS) Normal flow depth in pipe = 11.19(In.) Flow top width inside pipe = 13.06(In.) Critical Depth = 13.72(In.) Pipe flow velocity = 8.94(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 21.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 160.000 to Point/Station 160.000 **** CONFLUENCE OF MAIN STREAMS **`* Page 4 SYS4100.out � The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.690(Ac.) Runoff from this stream = 8.686(CFS) Time of concentration = 21.64 min. Rainfall intensity = 2.103(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 156.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 343.540(Ft.) Top (of initial area) elevation = 262.900(Ft.) Bottom (of initial area) elevation = 261.000(Ft.) Difference in elevation = 1.900(Ft.) Slope = 0.00553 s(percent)= 0.55 TC = k(0.480)*[(length^3)/lelevation change)�^0.2 Initial area time of concentration = 14.031 min. Rainfall intensity = 2.669(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.758 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.150 Decimal fraction soil group C= 0.850 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 67.05 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.144(CFS) Total initial stream area = 1.060(Ac.) Pervious area fraction = 0.H00 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 156.000 to Point/Station 158.000 *"*" STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **'* Top of street segment elevation = 261.000(Ft.) End of street segment elevation = 240.660(Ft.) Length of street segment = 1563.390(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.050 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1J side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.850(CFS) Depth of flow = 0.444(Ft.), Average velocity = 3.356(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.846(Ft.) F1ow velocity = 3.36(Ft/s) Travel time = 7.77 min. TC = 21.80 min. Adding area flow to street SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.717 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.300 � Decimal fraction soil group C= 0.700 Decimal fraction soil group D= 0.00� RI index for soil(AMC 2) = 65.10 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.094(In/Hr) for a 100.0 year storm Subarea runoff = 9.953(CFS) for 6.630(Ac.) Total runoff = 12.098(CFS) Tota1 area = 7.690(Ac.) Street flow at end of street = 12.098(CFS) Page 5 SYS4100.out Ha1f street flow at end of street = 12.098(CFS) Depth of flow = 0.485(Ft.), Average velocity = 3.620(Ft/s) Flow width (from curb towards crown)= 17.930(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 240.660(Ft.) Downstream point/station elevation = 240.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes =.1 Required pipe flow = 12.098(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 12.098(CFS) Normal flow depth in pipe = 11.92(In.) Flow top width inside pipe = 17.03(In.) Critical Depth = 15.82(In.) Pipe flow velocity = 9.74(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 21.85 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 160.000 **** CONFLUENCE OF MAZN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 7.690(Ac.) Runoff from this stream = 12.098(CFS) Time of concentration = 21.85 min. Rainfall intensity = 2.092(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.984 19.44 2.230 2 8.686 21.64 2.103 3 12.098 21.85 2.092 Largest stream flow has longer time of concentration Qp = 12.098 + sum of Qb Ia/Ib 10.984 * 0.938 = 10.302 Qb Ia/Ib 8.686 * 0.995 = 8.641 Qp = 31.040 Total of 3 main streams to confluence: Flow rates before confluence point: 10.984 8.686 12.098 Area of streams before confluence: 6.460 5.690 7.690 Results of confluence: Total flow rate = 31.040(CFS) Time of concentration = 21.847 min. Effective stream area after confluence = 19.840(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 240.000(Ft.) Downstream point/station elevation = 235.000(Ft.) Pipe length = 200.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 31.040(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 31.040(CFS) Normal flow depth in pipe = 17.27(In.) Page 6 SYS4i00.out Flow top width inside pipe = 21.56(In.) Critical Depth = 22.52(In.) Pipe flow velocity = 12.82(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 22.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 19.840(Ac.) Runoff from this stream = 31.040(CFS) Time of concentration = 22.11 min. Rainfall intensity = 2.078(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 170.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3.610(Zn/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.815 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 User specified values are as follows: TC = 8.10 min. Rain intensity = 3.61(In/Hr) Total area = 7.67(Ac.) Total runoff = 22.57(CFS) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** CONFLUENCE OF MINOR STREAMS **** A1ong Main Stream number: 1 in normal stream number 2 Stream flow area = 7.670(AC.) Runoff from this stream = 22.570(CFS) Time of concentration = 5.10 min. Rainfall intensity = 3.610(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 31.040 22.11 2.078 2 22.570 8.10 3.610 Largest stream flow has longer time of concentration Qp = 31.040 + sum of Qb Ia/Ib 22.570 * 0.576 = 12.993 Qp = 44.033 Total of 2 streams to confluence: Flow rates before confluence point: 31.040 22.570 Area of streams before confluence: 19.840 7.670 Results of confluence: Total flow rate = 44.033(CFS) Time of concentration = 22.107 min. Effective stream area after confluence = 27.510(Ac.) End of computations, total study area = 27.51 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.856 Area averaged RI index number = 66.4 Page 7 SY54100.out Page 8 OFFSITEl00.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 04/11/06 File:OFFSITEl00.out ------------------------------ ----------------------- -------- — ---- — - RORIPAUGH RANCH TRACT 29366 OFFSITE 100-YR 1-HOUR STORM 04/11/06 SWL ------------------ ---------------------- — -------------------- — ------- ******`** Hydrology Study Control Information "********* English (in-lb) Units used in input data file ----------------- ----------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 346.650(Ft.) Top (of initial area) elevation = 1345.000(Ft.) Bottom (of initial area) elevation = 1295.000(Ft.) Difference in elevation = 50.000(Ft.) Slope = 0.14424 s(percent)= 14.42 TC = k(0.530)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.099 min. Rainfall intensity = 3.610(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.615 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 8.593(CFS) Total initial stream area = 2.920(AC.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 204.000 **** SUBAREA FLOW ADDITION **** UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.815 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Time of concentration = 8.10 min. Page 1 OFFSITEl00.out Rainfall intensity = 3.610(In/Hr) for a 100.0 year storm Subarea runoff = 13.978(CFS) for 4.750(Ac.) Total runoff = 22.570(CFS) Total area = 7.670(Ac.) End of computations, total study area = 7.67 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 � Page 2 PA 22 i � i i i i � � i i P ROJ ECT S ITE � � � � � � � � 15 I � I i 9 i � '��RRi�� I I HOT SPRINGS ROAp � � � � O �u I � � ..: I j � 5 � "'c°� � I � UO �� . I � � PN�IARY A� 1 � �� � I � ACCE89 ,/ � I B I � �/ I ; txrir oF �cu.A � � i � , � � � � �� ,� � � � � ACCE38 W� w�'� �9 I i �� � "N� i i � m � i i �� � i i �F�'" � i i o i i i ��� �i i � �� I I I � � � I � I i I � i I � I � � ��i�Y ��p � � N.T.S. � � THOMAS BROTHERS MAP REFERENCE � � ' � RIVERSIDE COUNTY 2001 EDITION j � PAGE 929, E-7 � � � � RORIPAUGH RANCH �ATE � � VA Consulting, Inc. PA - 22 08/06 � �n ENGWEERS• PGI.WERS• SURVEYORS TRACT NO. 32358 FIGURE I I � �_.4•(9:::,- .�\"_ y �-� '��i: I I CONSULTINO -(�\'. rq ?.'n ^: ,':;.�:.,. I.?�_^'_d.: ':.< I I _. VICINITY MAP O� � � 10-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS PA2210.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: OS/04/06 File:PA2210.out ------------------------------------------------------------------------ 850_0117 TRACT 32358 PA 22 10-YEAR 1-HOUR STORM 8/3/06 SWL ------------------------------------------------------------------ *****•'** Hydrology Study Control Information *`�******' English (in-lb) Units used in input data file -------- ----------------------------------- ----------- ---------- — -- Van De11 and Associates, Inc., Irvine, CA - S/N 953 ----------------- — — --------------- ------------------------------ -- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200�1n.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 280.100(Ft.) Top (of initial areal elevation = 252.000(Ft.) Bottom (of initial area) elevation = 245.200(Ft.) Difference in elevation = 6.800(Ft.) Slope = 0.02428 s(percent)= 2.43 TC = k(0_370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 7.415 min. Rainfall intensity = 2.489(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.843 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.230 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.770 RI index for soil(AMC 2) = 70.63 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runof£ = 1.216(CFS) Total initial stream area = 0.580(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 14.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 245.200(Ft.) End o£ street segment elevation = 236.400(Ft.) Length of street segment = 446.910(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Page 1 PA2210.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.355(CFS) Depth of flow = 0.321(Ft.), Average velocity = 3.127(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.728(Ft.) Flow velocity = 3.13(Ft/s) Travel time = 2.38 min. TC = 9.80 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.645 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.020 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.980 RI index for soil(AMC 2) = 74.62 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.135(In/Hr) for a 10.0 year stonn Subarea runoff = 3.680(CFS) for 2.040(AC.) Total runoff = 4.896(CFS) Total area = 2.620(AC.I Street flow at end of street = 4.896(CFS) Half street flow at end of street = 4.896(CFS) � Depth of flow = 0.355(Ft.), Average velocity = 3.412(Ft/s) Flow width (from curb towards crown)= 11.438(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **'* Top of street segment elevation = 236.400(Ft.) End of street segment elevation = 232.400(Ft.) Length of street segment = 527.540(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.231(CFS) Depth of flow = 0.465(Ft.), Average velocity = 2.760(Ft/s) Note: depth of flow exceeds top of street crown. Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) Flow velocity = 2.76(Ft/s) Travel time = 3.19 min. TC = 12.98 min. Adding area flow to street CONDOMINIiJM subarea type Runoff Coefficient = 0.835 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.070 Decimal fraction soil group C= 0.010 Decimal fraction soil group D= 0_920 RI index for soil(AMC 2) = 73_61 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.829(In/Hr) for a 10.0 year storm Subarea runoff = 5.450(CFS) for 3.570(Ac.) Total runoff = 10.346(CFS) Total area = 6.190(AC.) Street flow at end of street = 10.346(CFS) Half street flow at end of street = 10.346(CF51 Depth of flow = 0.4931Ft.), Average velocity = 3.023(Ft/s) Note: depth of flow exceeds top of street crown. Page 2 PA2210.out F1ow width (from curb towards crown)= 16.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 20.000 '*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 232.400(Ft.) Downstream point/station elevation = 230.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No_ of pipes = 1 Required pipe flow = 10.346(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe £low = 10.346(CFS) Normal flow depth in pipe = 9.52(In.) Flow top width inside pipe = 14.45(In.? Critical depth could not be calculated. Pipe flow velocity = 12.59(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 13.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 20.000 ***� CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.190(Ac.) Runoff from this stream = 10.346(CFS) Time of concentration = 13.05 min. Rainfall intensity = 1.824(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18.000 *'** INITIAL AREA EVALUATION **** Initial area flow distance = 700.610(Ft.) Top (of initial area) elevation = 248.300(Ft.) Bottom (of initial area) elevation = 229.300(Ft.) Difference in elevation = 19.000(Ft.) Slope = 0.02712 s(percent)= 2.71 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.465 min. Rainfall intensity = 2.059(In/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.828 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.314 Decimal fraction soil group C= 0.040 Decimal fraction soil group D= 0.646 RI index for soil(AMC 2) = 68.79 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoEf = 3.565(CFS) Total initial stream area = 2.090(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 ***` STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *'** Top of street segment elevation = 229.300(Ft.) End of street segment eievation = 222.200(Ft.) Length of street segment = 231.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s1 of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Page 3 PA2210.out Maruiing's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.416(CFS) Depth of flow = 0.344(Ft.), Average velocity = 4.139(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.871(Ft.) Flow velocity = 4.14(Ft/s) Travel time = 0.93 min. TC = 11.40 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.827 ' Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.300 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.700 RI index for soil(AMC 2) = 69.30 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.965(In/Hr) for a 10.0 year storm Subarea runoff = 3.526(CFS) for 2.170(Ac.) Total runoff = 7.091(CFS) Total area = 4.260(AC.) Street flow at end of street = 7.091(CFS) Half street flow at end of street = 7.091(CFS) Depth of flow = 0.370(Ft.}, Average velocity = 4.409(Ft/s) Flow width (from curb towards crown)= 12.173(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 �*•* PIPEFLOW TRAVEL TIME (Program estimated size) **'* Upstream point/station elevation = 222.200(Ft.) Downstream point/station elevation = 220.000(Ft.) Pipe length = 15.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.091(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.091(CFS) Normal flow depth in pipe = 6.14(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 17.54(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 11.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 20.000 *'"' CONFLUENCE OF MINOR STREAMS **"* Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.260(AC.) Runoff from this stream = 7.091(CFS) Time of concentration = 11.41 min. Rainfall intensity = 1.963(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.346 13.05 1.824 2 7.091 11.41 1.963 Largest stream flow has longer time of concentration Qp = 10.346 + sum of Qb Ia/Ib 7.091 * 0.929 = 6.588 Qp = 16_933 Total of 2 streams to confluence: Flow rates before confluence point: 10.346 7.091 Area of streams before confluence: 6.190 4.260 Results of confluence: Page 4 PA2210.out Total flow rate = 16.933(CFS) Time of concentration = 13.048 min. Effective stream area after confluence = 10.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 40.000 ***' PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 220.000(Ft.) Downstream point/station elevation = 217.000(Ft.) Pipe length = 80.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 16.933(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 16.933(CFS) Normal flow depth in pipe = 12.54�Zn.) Flow top width inside pipe = 16.55(In.) Critical depth could not be calculated. Pipe flow velocity = 12.88(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 13.15 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 "`** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.450(Ac.) Runoff from this stream = 16.933(CFS) Time of concentration = 13.15 min. Rainfall intensity = 1.816(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 32.000 **** INITIAL AREA EVALUATION **** Znitial area flow distance = 287.790(Ft.) Top (of initial area) elevation = 247.400(Ft.) Bottom (of initial area) elevation = 234.500(Ft.) Difference in elevation = 12.900(Ft.) Slope = 0.04482 s(percent)= 4.46 TC = k(0.370)*((length^3)/(elevation change)]^0.2 Znitial area time of concentration = 6.630 min. Rainfall intensity = 2.646(Zn/Hr) for a 10.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.842 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.693(CFS) Total initial stream area = 0.760(Ac.} Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 34.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 234.500(Ft.) End of street segment elevation = 228.500(Ft.) Length of street segment = 355.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000'(Ft.1 Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 � Street flow is on [2] side(s) of the street Distance from curb to property line 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Page S PA2210.out � Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.331(CFS) Depth of flow = 0.273(Ft.), Average velocity = 2.526(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.298(Ft.) Flow velocity = 2.53(Ft/s) Travel time = 2.35 min. TC = 8.98 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.834 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.090 Decimal fraction soil group C= 0.710 Decimal fraction soil group D= 0.200 RI index for soil(AMC 2) = 69.03 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.240(In/Hr) for a 10.0 year storm Subarea runoff = 2.745(CFS) for 1.470(AC_) Total runoff = 4.438(CFS) Total area = 2.230(AC.) Street flow at end of street = 4.438(CFS) Half street flow at end of street = 2.219(CFS) Depth of flow = 0.294(Ft.), Average velocity = 2.686(Ft/s) Flow width (from curb towards crown)= 8.365(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 36.000 ***' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***• Top of street segment elevation = 228.500(Ft.) End of street segment elevation = 220.600(Pt.) Length of street segment = 447.050(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from.gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(Zn.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0_0150 Estimated mean flow rate at midpoint of street = 5.742(CFS) Depth of flow = 0.313(Ft.), Average velocity = 2.895(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.301(Ft.) Flow velocity = 2.90(Ft/s) Travel time = 2.57 min. TC = 11.55 min. Adding area flow to street CONDOMINIiJM subarea type Runoff Coefficient = 0.819 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.450 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.550 RI index for soil(AMC 2) = 66.45 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.950(In/Hr) for a 10.0 year storm Subarea runoff = 2.093(CFS) for 1.310(Ac.) Total runoff = 6.531(CFS) Tota1 area = 3.540(AC.) Street flow at end of street = 6_531(CFS) Half street flow at end of street = 3.266(CFS) Depth of flow = 0.324(Ft.), Averaqe velocity = 2.981(Ft/s) Flow width (from curb towards crown)= 9.844(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 6 • PA2210.out Process from Point/Station 36.000 to Point/Station 40.000 »Y•* pIpEFLOW TRAVEL TIME (Program estimated size) *`•* Upstream point/station elevation = 220.600(Ft.) Downstream point/station elevation = 217.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.531(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.531(CFS) Normal flow depth in pipe = 6.21(In.) Flow top width inside pipe = 11.99(In.) Critical depth could not be calculated. Pipe flow velocity = 15.94(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 •*** CONFLUENCE OF MINOR STREAMS **"* Along Main Stream number: 1 in normal stream number 2 � Stream flow area = 3.540(Ac.) Runoff from this stream = 6.531(CFS) Time of concentration = 11.58 min. Rainfall intensity = 1.947(In/Hr) Summary of stream data: Stream F1ow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.933 13.15 1.816 2 6.531 11.58 1.947 Largest stream flow has longer time of concentration � 4P = 16.933 + sum of Qb Ia/Ib 6.531 * 0.932 = 6.090 Qp = 23.023 Total of 2 streams to confluence: F1ow rates before confluence point: 16.933 6.531 Area of streams before confluence: 10.450 3.540 Results of confluence: Total flow rate = 23.023(CFS) Time of concentration = 13.152 min. Effective stream area after confluence = 13.990(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 60.000 �*** PIPEFLOW TRAVEL TIME (Program estimated size) *" * Upstream point/station elevation = 217.000(Ft.) Downstream point/station elevation = 215.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 PIo. of pipes = 1 Required pipe flow = 23.023(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 23.023(CFS) Normal flow depth in pipe = 12.73(In.) Flow top width inside pipe = 16.38(In.) Critical depth could not be calculated. Pipe flow velocity = 17.22(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 13.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 60.000 � •••• CONFLLTENCE Or MI^?OP. ST.°.EAMS ••+• Along Main Stream number: 1 in normal stream number 1 Page 7 PA2210.out � Stream flow area = 13.990(Ac.) Runoff from this stream = 23.023(CFS) Time of concentration = 13.18 min. Rainfall intensity = 1.814(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 52.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 275.560(Ft.) Top (of initial area) elevation = 249.000(Ft.) Bottom (of initial area) elevation = 245.000lFt.) Difference in elevation = 4.000(Ft.} Slope = 0.01452 s(percent)= 1.45 TC = k(0.370)'[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.164 min_ Rainfall intensity = 2.360(In/Hr) for a 10.0 year storm CONDOMINZUM subarea type Runoff Coefficient = 0.805 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.960 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.040 RI index for soil(AMC 2) = 56.76 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 0.969(CFS) Total initial stream area = O.S101Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 52.000 to Point/Station 54.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "** Top of street segment elevation = 245.000(Ft.) • End of street segment elevation = 231.900(Ft.) Length of street segment 882.510(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 16_000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.955(CFS) Depth of flow = 0.322(Ft.), Average velocity = 2_724(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.789(Ft.) Flow velocity = 2.72(Ft/s) Travel time = 5.40 min. TC = 13.56 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.787 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.930 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.070 RI index for soil(AMC 2) = 57.33 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 1.785(In/Hr) for a 10.0 year storm Subarea runoff = 2.938(CFS) for 2.090(Ac.) Total runoff = 3.907(CFS) Total area = 2.600(Ac.) Street flow at end of street = 3.907(CFS) Half street flow at end of street = 3.907(CFS) • Depth of flow = 0.347(Ft.), Average velocity = 2.905(Ft/s) Flow width (from curb towards crown)= 11.039(Ft.) Page 8 PA2210.out � +++++++++++++++++++++++++++++++++++++++++++�++++++++++++++++++++++++++ Process from Point/Station 54.000 to Point/Station 56.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "*•* Top of street segment elevation = 231.900(Ft.) End of street segment elevation = 220.600(Ft.) Length of street segment = 602.850(Ft.) Height of curb above gutter Elowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft_) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0_063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(sl of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.00O�Ft.) Gutter hike from flowline = 2.000(In.) Maruiing's N in gutter = 0.0150 Maruiing's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.147(CFS) Depth of flow = 0.363(Ft.), Average velocity = 3.387(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.802(Ft.) Flow velocity = 3.39(Ft/s) Travel time = 2.97 min. TC = 16.53 min_ Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.775 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 � Rainfall intensity = 1.601(In/Hr) for a 10.0 year storm Subarea runoff = 2.049(CFS) for 1.650(Ac.) Total runoff = 5.956(CFS) Total area = 4.250(AC.) Street flow at end of street = 5.956(CFS) Hal£ street flow at end of street = 5.956(CFS) Depth of flow = 0.377(Ft.), Average velocity = 3.506(Ft/s) Flow width (from curb towards crown)= 12_538(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process Erom Point/Station 56.000 to Point/Station 60.000 `*'* PIPEFLOW TRAVEL TIME (Program estimated size) �*** Upstream point/station elevation = 220.600(Ft.) Downstream point/station elevation = 215.000(Ft.) Pipe length = 20.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.956(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.956(CFS) Normal flow depth in pipe = 5.44(In.) Flow top width inside pipe = 8.80(In.) Critical depth could not be calculated. Pipe £low velocity = 21.31(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 16.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 60.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4_250(Ac.) Runoff from this stream = 5.956(CFS) Time of concentration = 16.55 min. � Rainfall intensity = 1.600(In/Hr) Summary oE stream data: Page 9 PA2210.out Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 23.023 13.18 1.814 2 5.956 16.55 1.600 Largest stream flow has longer or shorter time of concentration Qp = 23.023 + sum of Qa Tb/Ta 5.956 * 0_797 = 4.745 QP = 27.768 Total of 2 streams to confluence: Flow rates before confluence point: 23.023 5.956 Area of streams before confluence: 13.990 4.250 Results of confluence: Total flow rate = 27.768(CFS) Time of concentration = 13.181 min. Effective stream area after confluence = 18.240(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 70.000 *" ` PIPEFLOW TRAVEL TIME (Program estimated size) '**' Upstream point/station elevation = 215.000(Ft.) Downstream point/station elevation = 213.000(Ft.) Pipe length = 100.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 27.768(CFS) Nearest computed pipe diame�er = 24.00(In.) Calculated individual pipe flow = 27.768(CFS) Normal flow depth in pipe = 17.27(In.) Flow top width inside pipe = 21.56(In.) Critical Depth = 21.88(In.) � Pipe flow velocity = 11.47(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 13.33 min. End of computations, total study area = 18.24 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.350 Area averaged RI index number = 6�.6 Page 10 � 100-YEAR PROPOSED CONDITION RATIONAL METHOD ANALYSIS • PA22100.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 08/04/06 File:PA22100.out ----------------------- -------- ------------------------ ------------- 850 0117 TRACT 32358 PA 22 100-YEAR 1-HOUR STORM 8/3/06 SWL ----------------------------------------------------------------- *•*•***** Hydrology Study Control Information ***•*`*'** English (in-lb) Units used in input data file Van Dell and Associates, Znc., Irvine, CA - S/N 953 ---------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Stozm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storni event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 12.000 ***• INITIAL AREA EVALUATION **x* Initial area flow distance = 280_100(Ft.) Top �of initial area) elevation = 252.000(Ft.) Bottom (of initial area) elevation = 245.200(Ft.) Difference in elevation = 6.800(Ft.) Slope = 0.02428 s(percent)= 2.43 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Znitial area time of concentration = 7.415 min. Rainfall intensity = 3.790(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.860 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.230 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.770 RI index for soil(AMC 2) = 70.63 Pervious area £raction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.890(CFS) Total initial stream area = 0.580(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 14.000 '*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDZTION **** Top oE street segment elevation = 245.200(Ft.) End of street segment elevation = 236.400(Ft.) Length of street segment = 446.910(Ft.) Height of curb above gutter flowline = 6.0{In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossEall grade break. = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 SGreet flow is on (lj side(s) of the street Page 1 PA22100.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street =. 5.214(CFS) Depth of flow = 0.362(Ft.), Average velocity = 3.462(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.743(Ft.) Flow velocity = 3.46(Ft/s) Travel time = 2.15 min. TC = 9.57 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.862 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0_020 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.980 RI index for soil(AMC 2) = 74.62 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.294(In/Hr) for a 100.0 year storm Subarea runoff = 5.792(CFS) for 2.040(AC.) Total runoff = '7.682(CFS) Total area = 2.620(Ac.) Street flow at end of street = 7.682(CFS) Half street flow at end of street = 7.682(CFS) Depth of flow = 0.402(Ft.), Average velocity = 3.796(Ft/s) Flow width (from curb towards crown)= 13.774(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 16.000 *"** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *"** Top of street segment elevation = 236.400(Ft.) End of street segment elevation = 232.400(Ft.) Length of street segment = 527.540�Ft.) Height of curb above gutter flowline = 6.0(Zn.l Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1� side(s) of the street Distance Erom curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 12.916(CFS) Depth o£ flow = 0.531(Ft.), Average velocity = 3.188(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 1.53(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.000(Ft.) Flow velocity = 3.19(Ft/s) Travel time = 2.76 min. TC = 12.32 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.855 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.070 Decimal fraction soil group C= 0.010 Decimal fraction soil group D= 0.920 RI index for soil(AMC 2) = 73.61 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.866(In/Hr) for a 100.0 year storm Subarea runoff = 8.747(CFS) for 3.570(AC.) Total runoff = 16.429(CFS) Total area = 6.190(Ac.) Street flow at end of street = 16.429(CFS) Half street flow at end of street = 16.429(CFS) Page 2 PA22100_out Depth of flow = 0.577(Ft.), Average velocity = 3.345(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.83(Ft.) Flow width (from curb towards crown)= 16.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 20.000 *"** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 232.400(Ft.) Downstream point/station elevation = 230.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 16.429(CFS) Nearest computed pipe diameter = 18.00(Zn.) . Calculated individual pipe flow = 16.429(CFS) Normal flow depth in pipe = 11.25(In.) Flow top width inside pipe = 17.43(In.) Critical depth could not be calculated. Pipe flow velocity = 14.15(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 12.38 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 20_000 **** CONFLUENCE OF MINOR STREAMS k*** Along Main Stream number: 1 in no�al stream number 1 Stream flow area = 6.190(AC.) Runoff from this stream = 16.429(CFS) Time of concentration = 12.38 min. Rainfall intensity = 2.858(In/Hr) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 18_000 "`** INITZAL AREA EVALUATION **** Initial area flow distance = 700.610(Ft.) Top (of initial area) elevation = 248.300(Ft.) Bottom (of initial area) elevation = 229.300(Ft.) Difference in elevation = 19.000(Ft.) Slope = 0.02712 s(percent�= 2.71 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 10.465 min. Rainfall intensity = 3.136(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.849 Decimal fraction soil group A= 0.000 . Decimal fraction soil group B= 0.314 Decimal fraction soil group C= 0.040 Decimal fraction soil group D= 0.646 RI index for soil(AMC 2) = 68.79 Pervious area fraction = 0.350; Impervious fraction = 0.650 . Znitial subarea runoff = 5.564(CFS) Total initial stream area = 2.090(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 *�** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***' Top of street segment elevation = 229.300(Ft.) End of street segment elevation = 222.200(Ft.) Length of street segment = 231.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) � Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) 0.020 Street flow is on (1] side(s) of the street Page 3 PA22100.out Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.1 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.453(CFS) Depth of flow = 0.388(Ft.), Average velocity = 4.596(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.086(Ft.) Flow velocity = 4.60(Ft/s) Travel time = 0.84 min. TC = 11.30 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.848 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.300 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.700 RI index for soil(AMC 2) = 69_30 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.005(In/Hr) for a 100.0 year storm Subarea runoff = 5.532(CFS> for 2.170(Ac.) Total runoff = 11.096(CFS) Total area = 4.260(AC.) Street flow at end of street = 11.096(CFS) Half street flow at end of street = 11.096(CFS) Depth of flow = 0.419(Ft.), Average velocity = 4.905(Ft/s) Flow width (from curb towards crown)= 14.613(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 222.200(Ft.) Downstream point/station elevation = 220.000(Ft.) Pipe length = 15_00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.096(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 11.096(CFS) Normal flow depth in pipe = 8.21(In.) Flow top width inside pipe = 11.15(In.) Critical depth could not be calculated. Pipe flow velocity = 19.36(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 11.32 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 20.000 *'*'� CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.260(Ac.) Runoff from this stream = 11.096(CFS) Time of concentration = 11.32 min. Rain£all intensity = 3.003(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.429 12.38 2.858 2 11.096 11.32 3.003 Largest stream flow has longer time of concentration Qp = 16.429 + sum of Qb Ia/Ib 11.096 * 0.952 = 10.560 Qp = 26.990 � Total of 2 streams to confluence: Flow rates before confluence point: Page 4 PA22100.out 16.429 11.096 Area of streams before confluence: 6.190 4.260 Results of confluence: Total flow rate = 26.990(CFS) Time of concentration = 12.383 min. Effective stream area after confluence = 10.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 40.000 �'** PIPEFLOW TRAVEL TIME (Program estimated size) *`** Upstream point/station elevation = 220.000(Ft.) Downstream point/station elevation = 217.000(Ft.) Pipe length = 80.00(FL.) Manning's N= 0.013 No. oE pipes = 1 Required pipe flow = 26.990(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 26.990(CFS) Normal flow depth in pipe = 15.28(In.) Flow top width inside pipe = 18.70(In.) Critical depth could not be calculated. - Pipe flow velocity = 14.39(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 12.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 *"** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.450(AC.) Runoff from this stream = 26.990(CFS) Time of concentration = 12.48 min. Rainfall intensity = 2.847(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 32.000 ***' INITIAL AREA EVALUATION **** Initial area flow distance = 287_790(Ft.) Top (o£ initial area) elevation = 247.400(Ft.) Bottom (of initial area) elevation = 234.SOO�Ft.) Difference in elevation = 12.900(Ft.) Slope = 0.04482 s(percent)= 4.48 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.630 min. Rainfall intensity = 4.030(In/Hr) for a 100.0 year sto� CONDOMINIUM subarea type Runoff Coefficient = 0.859 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RZ index for soil(AMC 2) = 69.00 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 2.632(CFS) Total initial stream area = 0.760(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 34.000 4 '** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION '*** Top of street segment elevation = 234.500(Ft.1 End of street segment elevation = 228.500(Ft.) Length of street segment = 355.620(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) � � Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Page 5 � PA22100.out Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.177(CFS) Depth of flow = 0.306(Ft.), Average velocity = 2.778(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.972(Ft.) Flow velocity = 2.78(Ft/s) Travel time = 2.13 min. TC = 8.76 min. Adding area flow to street CONDOMZNIUM subarea type Runoff Coefficient = 0.854 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.090 Decimal fraction soil group C= 0.714 Decimal fraction soil group D= 0.200 RI index for soil(AMC 2) = 69.03 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.457(In/Hr) for a 100.0 year storm Subarea runoff = 4.337(CFS) for 1_470(Ac.) Total runoff = 6.969(CFS) Total area = 2.230(AC.} Street flow at end of street = 6.969(CFSI Half street flow at end of street = 3.485(CFS) Depth of flow = 0.331(Ft.), Average velocity = 2.972(Ft/s) Flow width (from curb towards crown)= 10.227(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 36.000 *'*' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 228.500(Ft.) End of street segment elevation = 220.600(Ft.) Length of street segment = 447.050(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) ' Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2] side(s) of the street Distance.from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.016(CFS) Depth of flow = 0.353(Ft.), Average veloci�y = 3.211(Ft/s) Street£low hydraulics at midpoint of street travel: Halfstreet flow width = 11.302(Ft.) Flow velocity = 3.21(Ft/s) Travel time = 2.32 min. TC = 11.08 min. Adding area flow to street CONDOMZNIUM subarea type Runoff Coefficient = 0.843 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.450 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.550 RI index for soil(AMC 21 = 66.45 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 3.038(Zn/Hr) for a 100.0 year storm Subarea runofE = 3.354(CFS) £or 1.310(Ac.) Total runoff = 10.323(CFS) Total area = 3.540(Ac.) Street flow at end of street = 10.323(CFS) � Half street flow at end of street = 5.162(CFS) Depth of flow = 0.366(Ft.), Average velocity = 3.314(Ft/s) Page 6 PA22100.out Flow width (from curb towards crown)= 11.962(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.000 to Point/Station 40.000 **'• PIPEFLOW TRAVEL TIME (Program estimated size) '*** Upstream point/station elevation = 220.600(Ft.) Downstream point/station elevation = 217.000(Ft.) Pipe length = 30.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.323(CFS) Nearest.computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 10.323(CFS) Normal flow depth in pipe = 8.39(In.) Flow top width inside pipe = 11.01(In.) Critical depth could not be calculated. Pipe flow velocity = 17_59(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 40.000 ;*** CONFLUENCE OF MINOR STREAMS *'** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.540(Ac.) Runoff from this stream = 10.323(CFSI Time of concentration = 11.11 min. Rainfall intensity = 3_034(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (Zn/Hr) 1 26.990 12.48 2.847 2 10.323 11.11 3.034 Largest stream flow has longer time of co:�centration Qp = 26.990 + sum of Qb Ia/Ib 10.323 * 0.938 = 9.687 Qp = 36.677 Total of 2 streams to confluence: Flow rates before confluence point: 26.990 10.323 Area of streams before con£luence: 10.450 3.540 Results of confluence: Total flow rate = 36.677(CFS) Time of concentration = 12.476 min. Effective stream area after confluence = 13.990(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 60.000 **'* PIPEFLOW TRAVEL TIME (Program estimated size) *'** Upstream point/station elevation = 217.000(Ft.) Downstream point/station elevation = 215.000(Ft.) Pipe length = 30.00lFt.) Manning's N= 0.013 Na. of pipes = 1 Required pipe flow = 36.677(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 36.677(CFS) Normal flow depth in pipe = 15.52(In.) Flow top width inside pipe = 18.45(Zn.) Critical depth could not be calculated. Pipe flow velocity = 19.24(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 12.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 7 PA22100.out � Process from Point/Station 60.000 to Point/Station 60.000 *'** CONFLUENCE OF MINOR STREAMS **k* Along Main Stream number: 1 in normal stream number 1 Stream flow area = 13.990(Ac.) Runoff from this stream = 36.677(CFS) Time of concentration = 12.50 min. Rainfall intensity = 2.843(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 52.000 '**• INZTIAL AREA EVALUATZON **•* Znitial area flow distance = 275.560(Ft.) Top (of initial area) elevation = 249.000(Ft.) Bottom (of initial area) elevation = 245.000(Ft.) Difference in elevation = 4.000(Ft.) Slope = 0.01452 s(percent)= 1.45 TC = k(0.370)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.164 min. Rainfall intensity = 3.594(In/Hr) for a 100.0 year storm CONDOMINIUM subarea type Runoff Coefficient = 0.831 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.960 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.040 RZ index for soil(AMC 2) = 56.76 Pervious area fraction = 0.350; Impervious fraction = 0.650 Initial subarea runoff = 1.523(CFS) Total initial stream area = 0.510(Ac.) Pervious area fraction = 0.350 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station. 52.000 to Point/Station 54.000 "*** STREET FLOW TRAVEL TIME + SUBAREA FLGW ADDITION * Top of street segment elevation = 245.000(Ft.) End of street segment elevation = 231.900(Ft.) Length of street segment = 882_510(Ft.) Height of curb above gutter flowline = 6.0(Zn.) Width of half street (curb to crownl = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2_000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.642(CFS) Depth of flow = 0.364(Ft.), Average velocity = 3.024(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.868(Ft.) Flow velocity = 3.02(Ft/s) Travel time = 4.86 min. TC = 13.03 min. Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.817 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.930 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.070 RI index for soil(AMC 2) = 57.33 Pervious area fraction = 0.350; Impervious fraction = 0.650 Rainfall intensity = 2.780(In/Hr) for a 100.0 year storm Subarea runoff = 4.747(CFS) for 2.090(Ac.) Total runoff = 6.269(CFS) Total area = 2.600(Ac.) Street flow at end of street = 6.269(CFS) Page 8 PA22100.out Half street flow at end of street = 6.269(CFS) Depth of flow = 0.395(Ft.), Average velocity = 3.247(Ft/s) Flow width (from curb towards crown)= 13.432{Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 54.000 to Point/Station 56.000 •*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 231.900(Ft.) End of street segment elevation = 220.600(Ft.) Length of street segment = 602.850(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb.to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 14.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1]. side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.259(CFS) Depth of flow = 0_413lFt.), Average velocity = 3.790(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.325(Ft.) Flow velocity = 3.79(Ft/s) . Travel time = 2.65 min. TC = 15.68 min_ Adding area flow to street CONDOMINIUM subarea type Runoff Coefficient = 0.807 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.350; Zmpervious fraction = 0.650 Rainfall intensity = 2.510(In/Hr) for a 100.0 year storm Subarea runoff = 3.344(CFS� for 1.650(Ac.) Total runoff = 9.613(CFS) Total area = 4.250(Ac.) Street flow at end of street = 9.613(CFS) Half street flow at end of street = 9.613(CFS) Depth of flow = 0.431(Ft.), Average velocity = 3.932(Ft/s) Flow width (from curb towards crown)= 15.226(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 56.000 to Point/Station 60.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) *"** Upstream point/station elevation = 220.600(Ft.) Downstream point/station elevation = 215.000(Ft.) Pipe length = 20.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.613(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 9.613(CFS) Normal flow depth in pipe = 6.07(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 24.12�Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 15.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Poin�/Station 60.000 **** CONFLUENCE OF MINOR STREAMS '*** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 4.250(Ac.) Runoff Erom this stream = 9.613(CFS) Page 9 PA22100.out � Time of concentration = 15.69 min. Rainfall intensity = 2.509(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 36.677 12.50 2.843 2 9.613 15.69 2.509 Largest stream flow has longer or shorter time of concentration Qp = 36.67� + sum of Qa Tb/Ta 9.613 ' 0.797 = 7.658 Qp = 44.335 Total of 2 streams to confluence: Flow rates before confluence point: 36.677 9.613 Area of streams before confluence: 13.990 4.250 Results of confluence: Total flow rate = 44.335(CFS) Time of concentration = 12.502 min. Effective stream area after confluence = 18.240(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 70.000 '*** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 215.000(Ft.) Downstream point/station elevation = 213.000(Ft.) Pipe length = 100.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 44.335(CFS) Nearest computed pipe diameter = 27.00(In_) Calculated individual pipe flow = 44.335(CFS) Normal flow depth in pipe = 22.45(In.) Flow top width inside pipe = 20.21(In.) Critical depth could not be calculated. Pipe flow velocity = 12.55(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 12.63 min. End of computations, total study area = 18.24 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.350 Area averaged RI index number = 67.6 � Page 10 PA 23 � _ • PROJECT S{TE 2,s / 79 � MURR HOT SPRINGS ROAD � . � ° / , ��� � I 15 0 � < \ ���PS R � Pp � � �� N / u ' � , THIRD � c���e � � PRIMARY ACCESS / CNAP09 / ACCESS �/ Q 0 a� � QI w � _ CITY OF TEMECULA � � 0 SECONDARY �PSE�� w - ACCESS I �P� � w �I w o w `" Z O I � � Q m � N � RO P� o GPL�F�RN\P o �r� Z I � F�P� � � ` � � � I Figure 1 CITY OF TEMECULA - VICINITY MAP � icinity Map TRACT 30768 NOT TO SCALE THOMAS BROTHERS MAP PAGE: RIVERSIDE CO., PAGE 929 �� ��ON oatE BY - SEC. 21, T7S, R2W VA COIISUIting, IIIC. DRAw� eY: DA�: ENGINEERS PLANNERS SURVEYORS 255 E. RINCON SiREFT, SUIiE 323 �Eq(m BY: SHEET: cocv`sui.rnvc CORONA, CA 92879 • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 02/27/06 File:Roripaughl0.out ------------------------------------------------------------------------ Tract 30768 10 yr. Storm Node 100, flow to culdesac A ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 4091 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 • 2 year, 1 hour precipitation = 0.510(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.794(In/Hr) Slope of intensity duration curve = 0.5600 ++++++±+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 185.800(Ft.) Top (of initial area) elevation = 257.500(Ft.) Bottom (of initial area) elevation = 250.400(Ft.) Difference in elevation = 7.100(Ft.) Slope = 0.03821 s(percent)= 3.82 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.057 min. Rainfall intensity = 2.867(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.780 • Decimal fraction soil group A= O.OQO Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Dec.imal fraction soil group D= 0.000 � RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.358(CF5) Total initial stream area = 0.160(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.400(Ft.) End of street segment elevation = 249.500(Ft.) Length of street segment = 48.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 • Estimated mean flow rate at midpoint of street = 0.861(CFS) Depth of flow = 0.157(Ft.), Average velocity = 2.002(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.604(Ft.) Flow velocity = 2.00(Ft/s) Travel time = 0.40 min. TC = 6.46 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.776 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.766(In/Hr) for a 10.0 year storm Subarea runoff = 0.966(CFS) for 0.450(Ac.) Total runoff = 1.324(CFS) Total area = 0.610(Ac.) Street flow at end of street = 1.324(CFS) Half street flow at end of street = 0.662(CFS) Depth of flow = 0.180(Ft.), Average velocity = 2.137(Ft/s) Flow width (from curb towards crown)= 4.742(Ft.) ++++++++++++++++++++++++++++++++++++++++�+++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** • Top of street segment elevation = 249.500(Ft.) End of street segment elevation = 246.610(Ft.) • Length of street segment = 147.800(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.300(CFS) Depth of flow = 0.210(Ft.), Average velocity = 2.429(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.233(Ft.) Flow velocity = 2.43(Ft/s) Travel time = 1.01 min. TC = 7.47 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.769 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 • RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.549(In/Hr) for a 10.0 year storm Subarea runoff = 1.764(CFS) for 0.900(Ac.) Total runoff = 3.068(CFS) Total area = 1.510(Ac.) Street flow at end of street = 3.068(CFS) Half street flow at end of street = 1.544(CFS) Depth of flow = 0.228(Ft.), Average velocity = 2.588(Ft/s) Flow width (from curb towards crown)= 7.152(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 246.610(Ft.) End of street segment elevation = 243.600(Ft.) Length of street segment = 223.200(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) � Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) • Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 • Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4.290(CFS) Depth of flow = 0.264(Ft.), Average velocity = 2.415(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.962(Ft.) Flow velocity = 2.42(Ft/s) Travel time = 1.54 min. TC = 9.01 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2J = 56.00 � Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.295(In/Hr) for a 10.0 year storm Subarea runoff = 2.212(CFS) for 1.270(Ac.) Total runoff = 5.300(CFS) Total area = 2.780(Ac.) Street flow at end of street = 5.300(CFS) Half street flow at end of street = 2.650(CFS) Depth of flow = 0.281(Ft.), Average velocity = 2.538(Ft/s) Flow width (from curb towards crown)= 9.794(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 � **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 243.600(Ft.) Downstream point/station elevation = 210.000(Ft.) Pipe length = 214.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.300(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.300(CFS) Normal flow depth in pipe = 6.14(In.) Flow top width inside pipe = 8.38(In.) Critical depth could not be calculated. Pipe flow velocity = 16.52(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 9.23 min. End of computations, total study area = 2.78 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 • Riverside County Rational Hydrology Program • CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 02/27/06 File:roripaugh20.out ------------------------------------------------------------------------ Tract 30768 10 yr. Strom Node 200, flow to catchbasins 200 and 300 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 4091 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.510(In.) 100 year, 1 hour precipitation = 1.200(In.) • Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.794(In/Hr) Slope of intensity duration curve = 0.5600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 135.000(Ft.) Top (of initial area) elevation = 252.900(Ft.) Bottom (of initial area) elevation = 250.300(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.01926 s(percent)= 1.93 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.113 min. Rainfall intensity = 2.852(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.779 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 • Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.289(CFS) Total initial stream area = 0.130(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 • **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 25o.300(Ft.) End of street segment elevation = 248.400(Ft.) Length of street segment = 99.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.} Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.556(CFS) Depth of flow = 0.170(Ft.), Average velocity = 2.102(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.234(Ft.) Flow velocity = 2.10(Ft/s) Travel time = 0.76 min. TC = 6.90 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.773 Decirnal fraction soil group A= 0.000 Decirnal fraction soil group B= 1.000 • Decirnal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.666(In/Hr) for a 10.0 year storm Subarea runoff = 0.495(CFS) for 0.240(Ac.) Total runoff = 0.783(CFS) Total area = 0.370(Ac.) Street flow at end of street = 0.783(CFS) Half street flow at end of street = 0.783(CFS) Depth of flow = 0.188(Ft.), Average velocity = 2.232(Ft/s) F1ow width (from curb towards crown)= 5.157(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 248.400(Ft.) End of street segment elevation = 242.600(Ft.) Length of street segment = 309.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft_) Slope from curb to property line (v/hz) = 0.020 • Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.447(CFS) Depth of flow = 0.225(Ft.), Average velocity = 2.511(Ft/s) • Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.008(Ft.) Flow velocity = 2.51(Ft/s) Travel time = 2.05 min. TC = 8.95 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction soil group A= 0.000 Decimal fraction soil qroup B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.304(In/Hr) for a 10.0 year storm Subarea runoff = 1.260(CFS) for 0.720(Ac.) Total runoff = 2.043(CFS) Total area = 1.090(Ac.} Street flow at end of street = 2.043(CFS) Half street flow at end of street = 2.043(CFS) Depth of flow = 0.248(Ft.), Average velocity = 2.713(Ft/s) Flow width (from curb towards crown)= 8.174(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 242.600(Ft.) End of street segment elevation = 234.800(Ft.) Length of street segment = 610.500(Ft.) • Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.124(CFS) Depth of flow = 0.297(Ft.), Average velocity = 2.584(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.602(Ft.) Flow velocity = 2.58(Ft/s) Travel time = 3.94 min. TC = 12.89 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.739 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 1.879(In/Hr) for a 10.0 year storm Subarea runoff = 2.068(CFS) for 1.490(Ac.) Total runoff = 4.112(CFS) Total area = 2.580(Ac.) Street flow at end of street = 4.112(CFS) Half street flow at end of street = 4.112(CFS) Depth of flow = 0.322(Ft.), Average velocity = 2.759(Ft/s) Flow width (from curb towards crown)= 11.854(Ft.) • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 234.800(Ft.) End of street segment elevation = 230.270(Ft.) Length of street segment = 392.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from qrade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.669(CFS) Depth of flow = 0.360(Ft.), Average velocity = 2.870(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.743(Ft.) Flow velocity = 2.87(Ft/s) Travel time = 2.28 min. TC = 15.16 min. Adding area flow to street � SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.729 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.715(In/Hr) for a 10.0 year storm Subarea runoff = 3.052(CFS) for 2.440(Ac.) Total runoff = 7.164(CFS) Total area = 5.020(Ac.) Street flow at end of.street = 7.164(CFS) Half street flow at end of street = 7.164(CFS) Depth of flow = 0.386(Ft.), Average velocity = 3.039(Ft/s) Flow width (from curb towards crown)= 15.075(Ft.) • ++++±+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5.020(Ac.) Runoff from this stream = 7.164(CFS) Time of concentration = 15.16 min. Rainfall intensity = 1.715(In/Hr) Program is now starting with Main Stream No. 2 � +++++++++++++++++++++++++++++++++++++++++++++++++++++-�++++++++++++++++ Process from Point/Station 300.000 to Point/Station 301.000 **** INITIAL AREA EVALOATION **** Initial area flow distance = 181.000(Ft.) • Top (of initial area) elevation = 257.500(Ft.) Bottom (of initial area) elevation = 250.900(Ft.) Difference in elevation = 6.600(Ft.) Slope = 0.03646 s(percent)= 3.65 TC = k(0.390)*[{length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.050 min. Rainfall intensity = 2.869(In/HrJ for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.780 Decirnal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decirnal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.403(CFS) Total initial stream area = 0.180(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.900(Ft.) End of street segment elevation = 247.100(Ft.) Length of street segment = 201.000(Ft.} Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) • Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.874(CFS) Depth of flow = 0.195(Ft.), Average velocity = 2.266(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.483(Ft.) Flow velocity = 2.27(Ft/s) Travel time = 1.48 min. TC = 7.53 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.769 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.538(In/Hr) for a 10.0 year storm Subarea runoff = 0.878(CFS) for 0.450(Ac.) • Total runoff = 1.281(CFS) Total area = 0.630(Ac.) Street flow at end of street = 1.281(CFS) Half street flow at end of street = 1.281(CFS) Depth of flow = 0.217(Ft.), Average velocity = 2.453(Ft/s) Flow width (from curb towards crown)= 6.6ll(Ft.) � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ � Process from Point/Station 302.000 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FZOW ADDITION **** Top of street segment elevation = 247.100(Ft.) End of street segment elevation = 244.200(Ft.) Length of street segment = 168.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.386(CFS) Depth of flow = 0.263(Ft.), Average velocity = 2.719(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.903(Ft.) Flow velocity = 2.72(Ft/s) Travel time = 1.03 min. TC = 8.56 min. Adding area flow to street � SINGLE FAMILY (1/4 Acre Lot) � Runoff Coefficient = 0.762 • Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 � Decirnal fraction soil qroup D= 0.000 � RI index for soil(AMC 2) = 56.00 i Pervious area fraction = 0.500; Impervious fraction = 0.500 � Rainfall intensity = 2.362(In/Hr) for a 10.0 year storm '� Subarea runoff = 2.141(CFS) for 1.190(Ac.) ; Total runoff = 3.422(CFS) Total area = 1.820(Ac.) Street flow at end of street = 3.422(CFS) Half street flow at end of street = 3.422(CFS) Depth of flow = 0.292(Ft.), Average velocity = 2.958(Ft/s) Flow width (from curb towards crown)= 10.352(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 304.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 244.200(Ft.) End of street segment elevation = 240.700(Ft.) Length of street segment = 236.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 --� Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 • Estimated mean flow rate at midpoint of street = 4.794(CFS) Depth of flow = 0.330(Ft.), Average velocity = 3.030(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.236(Ft.) Flow velocity = 3.03(Ft/s) Travel time = 1.30 min. TC = 9.86 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.754 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.183(In/Hr) for a 10.0 year storm Subarea runoff = 2.650(CFS) for 1.610(Ac.) Total runoff = 6.071(CFS) Total area = 3.430(Ac.) Street flow at end of street = 6.071(CFS) Half street flow at end of street = 6.071(CFS) Depth of flow = 0.354(Ft.), Average velocity = 3.208(Ft/s) Flow width (from curb towards crown)= 13.445(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 305.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 240.700(Ft.) • End of street segment elevation = 230.300(Ft.) Length of street segment 79B.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.261(CFS) Depth of flow = 0.381(Ft.), Average velocity = 3.190(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.801(Ft.) Flow velocity = 3..19(Ft/s) Travel time = 4.17 min. TC = 14.03 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.734 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 • RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity 1.791(In/Hr) for a 10.0 year storm Subarea runoff = 2.327(CFS) for 1.770(Ac.) Total runoff = 8.399(CFS) Total area = 5.200(Ac.) Street flow at end of street = 8.399(CFS) Half street flow at end of street = 8.399(CFS) • Depth of flow = 0.398(Ft.), Average velocity = 3.306(Ft/s) Flow width (from curb towards crown)= 15.670(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 305.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 5.200(Ac.) Runoff from this stream = 8.399(CFS) Time of concentration = 14.03 min. Rainfall intensity = 1.791(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.100 to Point/Station 305.200 **** INITIAL AREA EVALUATION **** Initial area flow distance = 145.000(Ft.) Top (of initial area) elevation = 249.100(Ft.) Bottom (of initial area) elevation = 243.000(Ft.) Difference in elevation = 6.100(Ft.) Slope = 0.04207 s(percent)= 4.21 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.380 min. Rainfall intensity = 3.064(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 • Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.500 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.500 RI index for soil(AMC 2) = 65.50 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.400(CFS) Total initial stream area = 0.160(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.200 to Point/Station 305.300 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 242.800(Ft.) Length of street segment = 33.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 • Manning's.N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.850(CFS) Depth of flow = 0.186(Ft.), Average velocity = 1.246(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.060(Ft.) • Flow velocity = 1.25(Ft/s) Travel time = 0.44 min. TC = 5.82 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.500 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.500 RI index for soil(AMC 2) = 65.50 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.931(In/Hr) for a 10.0 year storm Subarea runoff = 0.858(CFS) for 0.360(Ac.) Total runoff = 1.258(CFS) Total area = 0.520(Ac.) Street flow at end of street = 1.258(CFS) Half street flow at end of street = 0.629(CFS) Depth of flow = 0.209(Ft.), Average velocity = 1.347(Ft/s) Flow width (from curb towards crown)= 6.179(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.300 to Point/Station 305.400 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 242.800(Ft.) End of street segment elevation = 240.600(Ft.) Length of street segment = 174.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) • Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.407(CFS) Depth of flow = 0.226(Ft.), Average velocity = 2.067(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.051(Ft.) F1ow velocity = 2.07(Ft/s) Travel time = 1.40 min. TC = 7.22 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.820 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.250 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.750 RI index for soil(AMC 2) = 70.25 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.598(In/Hr) for a 10.0 year storm Subarea runoff = 2.150(CFS) for 1.010(Ac.) • Total runoff = 3.408(CFS) Total area = 1.530(Ac.) Street flow at end of street = 3.408(CFS) Ha1f street flow at end of street = 1.704(CFS) Depth of flow - 0.250(Ft.), Average velocity = 2.235(Ft/s) Flow width (from curb towards crown)= 8.232(Ft.) • +++++-�+++++++++++++++++++-�++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.400 to Point/Station 305.500 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 240.600(Ft.) End of street segment elevation = 237.700(Ft.) Length of street segment = 145.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.282(CFS) Depth of flow = 0.265(Ft.), Average velocity = 2.949(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.003(Ft.) Flow velocity = 2.95(Ft/s) Travel time = 0.82 min. TC = 8.04 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.819 . Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.200 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.800 RI index for soil(AMC 2) = 71.20 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.446(In/Hr) for a 10.0 year storm Subarea runoff = 3.645(CFS) for 1.820(Ac.) Total runoff = 7.053(CFS) Total area = 3.350(Ac.) Street flow at end of street = 7.053(CFS) Half street flow at end of street = 3.527(CFS) Depth of flow = 0.288(Ft.), Average velocity = 3.155(Ft/s) Flow width (from curb towards crown)= 10.162(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.500 to Point/Station 305.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 237.700(Ft.) End of street segment elevation = 230.300(Ft.) Length of street segment = 466.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street • Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 • Estirnated mean flow rate at midpoint of street = 10.095(CFS) Depth of flow = 0.331(Ft.), Average velocity = 3.148(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.322(Ft.) Flow velocity = 3.15(Ft/s) Travel time = 2.47 min. TC = 10.51 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.200 Decimal fraction soil group C= 0.000 Decirnal fraction soil group D= 0.800 RI index for soil(AMC 2) = 71.20 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.106(In/Hr) for a 10.0 year storm Subarea runoff = 5.906(CFS) for 3.470(Ac.) Total runoff = 12.959(CFS) Total area = 6.820(Ac.) Street flow at end of street = 12.959(CFS) Half street flow at end of street = 6.479(CFS) Depth of flow = 0.357(Ft.), Average velocity = 3.344(Ft/s) Flow width (from curb towards crown)= 13.611(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 305.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 • Stream flow area = 6.820(Ac.) ` Runoff from this stream = 12.959(CFS) Time of concentration = 10.51 min. Rainfall intensity = 2.106(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hrj 1 8.399 14.03 1.791 2 12.959 10.51 2.106 Largest stream flow has longer or shorter time of concentration Qp = 12.959 + sum of Qa Tb/Ta 8.399 * 0.749 = 6.293 4P = 19.252 Total of 2 streams to confluence: Flow rates before confluence point: 8.399 12.959 Area of streams before confluence: 5.200 6.820 Results of confluence: Total flow rate = 19.252(CFS) Time of concentrat.ion = 10.511 min. Effective stream area after confluence = 12.020(Ac.) • +++++-�++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 205_000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 230.300(Ft.) Downstream point/station elevation = 230.270(Ft.) • Pipe length = 37.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow 19.252(CFS) Nearest computed pipe diameter = 36.00(In.) Calculated individual pipe flow = 19.252(CFS) Normal flow depth in pipe = 30.00(In.) Flow top width inside pipe = 26.83(In.) Critical Depth = 16.88(In.) Pipe flow velocity = 3.06(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 10.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 12.020(Ac.) Runoff from this stream = 19.252(CFS) Time of concentration = 10.71 min. Rainfall intensity = 2.083(In/Hr) , Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) • 1 7.164 15.16 1.715 2 19.252 10.71 2.083 Largest stream flow has longer or shorter time of concentration Qp = 19.252 + sum of Qa Tb/Ta 7.164 * 0.707 = 5.061 Qp = 24.313 Total of 2 main streams to confluence: Flow rates before confluence point: 7.164 19.252 Area of streams before confluence: 5.020 12.020 Results of confluence: Total flow rate = 24.313(CFS} Time of concentration = 10.712 min. Effective stream area after confluence = 17.040(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 230.270(Ft.) Downstream point/station elevation = 220.000(Ft.) Pipe length = 198.20(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 24.313(CFS} • Nearest computed pipe diameter =- 21.00(In.) Calculated individual pipe flow 24.313(CFS) Normal flow depth in pipe = 12.63(In.) Flow top width inside pipe = 20.56(In.) Critical depth could not be calculated. Pipe flow velocity = 16.10(Ft/s) Travel time through pipe = 0.21 min. • Time of concentration (TC) = 10.92 min. End of computations, total study area = 17.04 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 61.9 • • Riverside County Rational Hydrology Program • CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 02/27/06 File:roripaugh100.out ------------------------------------------------------------------------ Tract Map No. 30768 100 Yr Storm Node 100, flow to culdesac A ------------------------------------------------------------------------ ********* Hydrology Study Control InfOrInation ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 4091 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual - Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.510(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 • Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 185.800(Ft.) Top (of initial area) elevation = 257.500(Ft.) Bottom (of initial area) elevation = 250.400(Ft.) Difference in elevation = 7.100(Ft.) Slope = 0.03621 s(percent)= 3.82 TC = k{0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.057 min. Rainfall intensity = 4.334(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.563(CFS) • Total initial stream area = 0.160(Ac.) Pervious area fraction = 0.500 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+ Process from Point/Station 101.000 to Point/Station 102.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** • Top of street segment elevation = 250.400(Ft.) End of street segment elevation = 249.500(Ft.) Length of street segment = 48.400(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2J side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.356(CFS) Depth of flow = 0.181(Ft.), Average velocity = 2.146(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.805(Ft.) Flow velocity = 2.15(Ft/s) Travel time = 0.38 min. TC = 6.43 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.810 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 ' • Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.190(In/Hr) for a 100.0 year storm Subarea runoff = 1.527(CFS) for 0.450(Ac.) Total runoff = 2.091(CES) Total area = 0.610(Ac.) Street flow at end of street = 2.091(CFS) Half street flow at end of street = 1.045(CFS) Depth of flow = 0.205(Ft.), Average velocity = 2.334(Ft/s} _ Flow width (from curb towards crown)= 6.023(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 249.500(Ft.) End of street segment elevation = 246.610(Ft.) Length of street segment = 147.800(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) • Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.566(CFS) Depth of flow = 0.238(Ft.), Average velocity = 2.673(Ft/s) • Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.630(Ft.) Flow velocity = 2.67(Ft/s) Travel time = 0.92 min. TC = 7.35 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.804 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil qroup C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.888(In/Hr) for a 100.0 year storm Subarea runoff = 2.815(CFS) for 0.900(Ac.) Total runoff = 4.905(CFS) Total area = 1.510(Ac.) Street flow at end of street = 4.905(CFS) Half street flow at end of street = 2.453(CFS) Depth of flow = 0.260(Ft.), Average velocity = 2.874(Ft/s) Flow width (from curb towards crown)= 8.766(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 246.610(Ft.) End of street segment elevation = 243.600(Ft.) Length of street segment = 223.200(Ft.) • Height of curb above gutter flowline _ 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.761(CFS) Depth of flow = 0.302(Ft.), Average velocity = 2.688(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.829(Ft.) Flow velocity = 2.69(Ft/s) Travel time = 1.38 min. TC = 8.74 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.797 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.530(In/Hr) for a 100.0 year storm • Subarea runoff = 3.573(CFS) for 1.270(Ac.) Total runoff = 8.478(CFS) Total area = 2.780(Ac.) Street flow at end of street = 8.478(CFS) Half street flow at end of street = 4.239(CFS) Depth of flow = 0.322(Ft.), Average velocity = 2.837(Ft/s) Flow width (from curb towards crown)= 11.870(Ft.) • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 243.600(Ft.) Downstream point/station elevation = 210.000(Ft.) Pipe length = 214.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.478(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 8.478(CFS) Normal flow depth in pipe = 6.70(In.) Flow top width inside pipe = 11.92(In.) � Critical depth could not be calculated. Pipe flow velocity = 18.79(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 8.93 min. End of computations, total study area = 2.78 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 • � Riverside County Rational Hydrology Program • CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2005 Version 7.1 Rational Hydrology Study Date: 02/27/06 File:roripaugh200.out ------------------------------------------------------------------------ Tract 30768 100 Yr. Storm Node 200, flow to catchbasins 200 and 300 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 4091 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.510(In.) 100 year, 1 hour precipitation = 1.200(In.) • Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 201.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 135.000(Ft.) Top (of initial area) elevation = 252.900(Ft.) Bottom (of initial area) elevation = 250.300(Ft.) Difference in elevation = 2.600(Ft.) Slope = 0.01926 s(percent)= 1.93 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.113 min. Rainfall intensity = 4.312(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 � Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.455(CFS) Total initial stream area = 0.130(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 • **** STREET FLOW TRA.VEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.300(Ft.) End of street segment elevation = 248.400(Ft.) Length of street segment = 99.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.j Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.875(CFS) Depth of flow = 0.194(Ft.), Average velocity = 2.281(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.466(Ft.) Flow velocity = 2.28(Ft/s) Travel time = 0.72 min. TC = 6.84 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 • Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil{AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.050(In/Hr) for a 100.0 year storm Subarea runoff = 0.785(CFS) for 0.240(Ac.) Total runoff = 1.240(CFS) Total area = 0.370(Ac.) Street flow at end of street = 1.240(CFS) Half street flow at end of street = 1.240(CFS) Depth of flow = 0.215(Ft.), Average velocity = 2.450(Ft/s) Flow width (from curb towards crown)= 6.489(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 248.400(Ft.) End of street segment elevation = 242.600(Ft.) Length of street segment = 309.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to p.roperty line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) • Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.305(CFS) Depth of flow = 0.257(Ft.), Average velocity = 2.789(Ft/s) � 5treetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.611(Ft.) Flow velocity = 2.79(Ft/s) Travel time = 1.85 min. TC = 8.68 min. Adding area flow to street SINGZE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.797 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.542(In/Hr) for a 100.0 year storm Subarea runoff = 2.033(CFS) for 0.720(Ac.) Total runoff = 3.273(CFS) Total area = 1.090(Ac.) Street flow at end of street = 3.273(CFS) Half street flow at end of street = 3.273(CFS) Depth of flow = 0.285(Ft.), Average velocity = 3.026(Ft/s) Flow width (from curb towards crown)= 9.983(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 204.000 **** STREET FLOW TRAVEL TIME + SUBRREA FLOW ADDITION **** Top of street segment elevation = 242.600(Ft.) End of street segment elevation = 234.800(Ft.) Length of street segment = 610.500(Ft.) • Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.013(CFS) Depth of flow = 0.342(Ft.), Average velocity = 2.894(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.834(Ft.) Flow velocity = 2.89(Ft/s) Travel time = 3.52 min. TC = 12.20 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.781 Decimal fraction soil qroup A= 0.000 Decimal fraction soil group S= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.928(In/Hr) for a 100.0 year storm • Subarea runoff = 3.409(CFS) for 1.490(Ac.) Total runoff = 6.683(CFS) Total area = 2.580(Ac.) Street flow at end of street = 6.683(CFS) Half street flow at end of street = 6.683(CFS) Depth of flow = 0.373(Ft.), Average velocity = 3.103(Ft/s) Flow width (from curb towards crown)= 14.382(Ft.) • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 204.000 to Point/Station 205.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 234.800(Ft.) End of street segment elevation = 230.270(Ft.) Length of street segment = 392.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 9.260(CFS) Depth of flow = 0.418(Ft.), Average velocity = 3.236(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.664(Ft.) Flow velocity = 3.24(Ft/s) Travel time = 2.02 min. TC = 14.22 min. Adding area flow to street • SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.774 Decimal fraction soil group A= 0.000 Decimal fraction soil group S= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.688(In/Hr) for a 100.0 year storm Subarea runoff = 5.074(CFS) for 2.440(Ac.) Total runoff = 11.757(CFS) Total area = 5.020(Ac.) Street flow at end of street = 11.757(CFS) Half street flow at end of street = 11.757(CFS) Depth of flow = 0.449(Ft.), Average velocity = 3.452(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5.020(Ac.) Runoff from this stream = 11.757(CFS) Time of concentration = 14.22 min. Rainfall intensity = 2.688(In/Hr) Program is now starting with Main Stream No. 2 0 ++++++++++.�.+++++ �+++++++++++++++++++++++ �+++++++++++++++++++++++++++++ Pror_ess from Point/Station 300.000 to Point/Station 301.000 ***} INITIAL AREA EVALUATION **** • Initial area flow distance = 181.000(Ft.) Top (of initial area) elevation = 257.500(Ft.) Bottom (of initial area) elevation = 250.900(Ft.) Difference in elevation = 6.600(Ft.) Slope = 0.03646 s(percent)= 3.65 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.050 min. Rainfall intensity = 4.337(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 Decimal fraction soil group A= 0.000 Decimal fraction soil group S= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.634(CFS) Total initial stream area = 0.180(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 250.900(Ft.) End of street segment elevation = 247.100(Ft.) Length of street segment = 201.000(Ft.) Aeight of curb above gutter flowline = 6.0(In.) S Width of half street (curb to crown) = 1B.000(Ft.) Distance from crown to crossfall grade break 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.382(CFS) Depth of flow = 0.222(Ft.), Average velocity = 2.493(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.849(Ft.) Flow velocity = 2.49(Ft/s) Travel time = 1.34 min. TC = 7.39 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.804 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.876(In/Hr) for a 100.0 year storm • Subarea runoff = 1.403(CFS) for 0.450(Ac.) Total runoff = 2.037(CFS) Total area = 0.630(Ac.) Street flow at end of street = 2.037(CFS) Half street flow at end of street = 2.037(CFS) Depth of flow = 0.248(Ft.), Average velocity = 2.719(Ft/s) Flow width (from curb towards crown)= 8.150(Ft.) • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 302.000 to Point/Station 303.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 247.100(Ft.) End of street segment elevation = 244.200(Ft.) Length of street segment = 168.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.787(CFS) , Depth of flow = 0.301(Ft.), Average velocity = 3.031(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.792(Ft.) Flow velocity = 3.03(Ft/s) Travel time = 0.93 min. TC = 8.32 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) • Runoff Coefficient = 0.799 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.628(In/Ar) for a 100.0 year storm Subarea runoff = 3.450(CFS) for 1.190(Ac.) Total runoff = 5.487(CFS) Total area = 1.820(Ac.) Street flow at end of street = 5.487(CFS) Half street flow at end of street = 5.487(CFS) Depth of flow = 0.336(Ft.), Average velocity = 3.312(Ft/s) Flow width (from curb towards crown)= 12.537(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 304.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 244.200(Ft.) End of street segment elevation = 240.700(Ft.) Length of street segment = 236.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 • Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 • Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.676(CFS) Depth of flow = 0.380(Ft.), Average velocity = 3.396(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.749(Ft.) Flow velocity = 3.40(Ft/s) Travel time = 1.16 min. TC = 9.48 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.793 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 • Rainfall intensity = 3.373(In/Hr) for a 100.0 year storm Subarea runoff = 4.306(CFS) for 1.610(Ac.) Total runoff = 9.795(CFS) Total area = 3.430(Ac.) Street flow at end of street = 9.795(CFS) Half street flow at end of street = 9.795(CFS) Depth of flow = 0.409(Ft.), Average velocity = 3.604(Ft/s) Flow width (from curb towards crown)= 16.225(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 304.000 to Point/Station 305.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** • Top of street segment elevation = 240.700(Ft.) End of street segment elevation = 230.300(Ft.) Length of street segment = 798.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.763(CFS) Depth of flow = 0.442(Ft.), Average velocity = 3.591(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 17.863(Ft.) Flow velocity = 3.59(Ft/s) Travel time = 3.70 min. TC = 13.18 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.778 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 • Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.804(In/Hr) for a 100.0 year storm Subarea runoff = 3.859(CFS) for 1.770(Ac.) Total runoff = 13.654(CFS) Total area = 5.200(Ac.) Street flow at end of street = 13.654(CFS) • Half street flow at end of street = 13.654(CFS) Depth of flow = 0.460(Ft.), Average velocity = 3.798(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 305.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 5.200(Ac.) Runoff from this stream = 13.654(CFS) Time of concentration = 13.18 min. Rainfall intensity = 2.804(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.100 to Point/Station 305.200 **** INITIAL AREA EVALUATION **** Initial area flow distance = 145.000(Ft.) Top (of initial area) elevation = 249.100(Ft.) Bottom (of initial area) elevation = 243.000(Ft.) Difference in elevation = 6.100(Ft.) Slope = 0.04207 s(percent)= 4.21 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 5.380 min. Rainfall intensity = 4.631(In/Hr) for a 100.0 year storm • SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.500 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.500 RI index for soil(AMC 2) = 65.50 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.623(CFS) Total initial stream area = 0.160(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.200 to Point/Station 305.300 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 243.000(Ft.) End of street segment elevation = 242.800(Ft.) Length of street segment = 33.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz} = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from cu.rb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) • Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.324(CFS) Depth of flow = 0.212(Ft.), Average velocity = 1.362(Ft/s) • Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.332(Ft.) Flow velocity = 1.36(Ft/s) Travel time = 0.40 min. TC = 5.78 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.839 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.500 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.500 RI index for soil(AMC 2) = 65.50 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.447(In/Hr) for a 100.0 year storm Subarea runoff = 1.343(CFS) for 0.360(Ac.) Total runoff = 1.966(CFS) Total area = 0.520(Ac.) Street flow at end of street = 1.966(CFS) Half street flow at end of street = 0.983(CFS) Depth of flow = 0.237(Ft.), Average velocity = 1.485(Ft/s) Flow width (from curb towards crown)= 7.596(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.300 to Point/Station 305.400 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 242.800(Ft.) End of street segment elevation = 240.600(Ft.) Length of street segment = 174.000(Ft.) • Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.716(CFS) Depth of flow = 0.256(Ft.), Average velocity = 2.279(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.544(Ft.) Flow velocity = 2.28(Ft/s) Travel time = 1.27 min. TC = 7.06 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.250 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.750 RI index for soil(AMC 2) = 70.25 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.979(In/Hr) for a 100.0 year storm � Subarea runoff = 3.392(CFS) for 1.010(Ac.) Total runoff = 5.357(CF'S) Total area = 1.530(Ac.) Street flow at end of street = 5.357(CFS) Half street flow at end of street = 2.679(CFS) Depth of flow = 0.284(Ft.), Average velocity = 2.482(Ft/s) Flow width (from curb towards crown)= 9.971(Ft.) • +++++++++++++++++++++++�++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.400 to Point/Station 305.500 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 240.600(Ft.) End of street segment elevation = 237.700(Ft.) Length of street segment = 145.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 16.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.321(CFS) Depth of flow = 0.303(Ft.), Average velocity = 3.282(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.876(Ft.) Flow velocity = 3.28(Ft/s) Travel time = 0.74 min. TC = 7.79 min. Adding area flow to street • SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A= 0.000 Decimal fraction soil qroup B= 0.200 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.800 RI index for soil(AMC 2) = 71.20 Pervious area fraction = 0.500; Impervious fraction = 0.50o Rainfall intensity = 3.763(In/Hr) for a 100.0 year storm Subarea runoff = 5.778(CFS) for 1.820(Ac.) Total runoff = 11.136(CFS) Total area = 3.350(Ac.) Street flow at end of street = 11.136(CFS) Half street flow at end of street = 5.568(CFS) Depth of flow = 0.330(Ft.), Average velocity = 3.519(Ft/s) Flow width (from curb towards crown)= 12.237(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.500 to Point/Station 305.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 237.700(Ft.) End of street segment elevation = 230.300(Ft.) Length of street segment = 466.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 • Street flow is on [2] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz} = 0.020 Gutte.r width = 2.000(Ft.) Gutter hike from flowline = 1.500(In.) Manning's N in gutter = 0.0150 . Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 15.950{CFS) Depth of flow = 0.380(Ft.), Average velocity = 3.517(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.773(Ft.) Flow velocity = 3.52(Ft/s) Travel time = 2.21 min. TC = 10.00 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.200 Decimal fraction soil group C= 0.000 ' Decirnal fraction soil group D= 0.800 RI index for soil(AMC 2) = 71.20 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.273(In/Hr) for a 100.0 year storm Subarea runoff = 9.498(CFS) for 3.470(Ac.) Total runoff = 20.634(CFS) Total area = 6.820(Ac.) Street flow at end of street = 20.634(CFS) Half street flow at end of street = 10.317(CFS) Depth of flow = 0.412(Ft.), Average velocity = 3.746(Ft/s) Flow width (from curb towards crown)= 16.337(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 305.000 **** CONFLUENCE OF MINOR STREAMS **** • Along Main Stream number: 2 in normal stream number 2 Stream flow area = 6.820(Ac.) Runoff from this stream = 20.634(CFS) Time of concentration = 10.00 min. Rainfall intensity = 3.273(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 13.654 13.18 2.804 2 20.634 10.00 3.273 Largest stream flow has longer or shorter time of concentration Qp = 20.634 + sum of Qa Tb/Ta 13.654 * 0.759 = 10.358 4P = 30.992 Total of 2 streams to confluence: Flow rates before confluence point: , 13.654 20.634 Area of streams before confluence: 5.200 6.820 Results of confluence: Total flow rate = 30.992(CFS) Time of concentration = 10.001 min. Effective stream area after confluence = 12.020(Ac.) r ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 305.000 to Point/Station 205.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** • Upstream point/station elevation = 230.300(Ft.) Downstream point/station elevation = 230.270(Ft.) Pipe length 37.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 30.992(CFS) Nearest computed pipe diameter = 45.00(In.) Calculated individual pipe flow = 30.992(CFS) Normal flow depth in pipe = 33.38(In.) Flow top width inside pipe = 39.39(In.) Critical Depth = 20.26(In.) Pipe flow velocity = 3.53(Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 10.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 205.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Strearn flow area = 12.020(Ac.) Runoff from this stream = 30.992(CFS) Time of concentration = 10.18 min. Rainfall intensity = 3.241(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) � 1 11.757 14.22 2.68B 2 30.992 10.18 3.241 Largest stream flow has longer or shorter time of concentration Qp = 30.992 + sum of Qa Tb/Ta 11.757 * 0.716 = 8.414 Qp = 39.407 Total of 2 main streams to confluence: � Flow rates before confluence point: 11.757 30.992 Area of streams before confluence: 5.020 12.020 Results of confluence: Total flow rate = 39.407(CFS) Time of concentration = 10.176 min. Effective stream area after confluence = 17.040(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 205.000 to Point/Station 206.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 230.270(Ft.) Downstream point/station elevation = 220.000(Ft.) Pipe length = 198.20(Ft.) Manning's N= 0.013 • No. of pipes = 1 Required pipe flow = 39.407(CFS) Nearest computed pipe diameter 24.00(In.) Calculated individual pipe flow = 39.407(CFS) Normal flow depth in pipe = 15.73(In.) Flow top width inside pipe = 22.81(In.) Critical depth could not be calculated. • Pipe flow velocity = 18.06(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 10.36 min. End of computations, total study area = 17.04 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 61.9 • • • PA 27 & 28 � • � i __ � i i i i i i ' P ROJ ECT S ITE ; � ' � � � � � � � �5 � i 9 i i � � '��RR/ET,� j I HOT SPRINGS ROqp � � � � � � � � .. � � 15 � �,� � i I uo�� I � � ,. PFi1�MRY � � cw�e�os corrt�rrro � I �� �/ I I 8 I I g/ I ; ar�r oF �cu�► � � ; � � � � i sECO�c�nr ��, �'''' � i � A � WI Wr � � I � �� � "N' � � i � m � i i �� � i i �'f °`�� � i i o ► i I �G'� � � I I N� I I � I I I I � I I � I I � I I I I I � V�i�Y �P � � N.T.S. � � THOMAS BROTHERS MAP REFERENCE � � RIVERSIDE COUNTY 2001 EDITION � � PAGE 929, E-7 i � FIGURE 1 � � RORIPAUGH RANCH DATE � � VA Consultin Inc. STORM DRAIN LINE LV-5 09/06 � I ENGtNEERS• pLpNNERS• � TRACT NO. 32358 � � �;a:; cnR r,v� �:-- �; .,n FIGURE i :yd31 =� <;;L` fc' I ' CONSULTWO �7`.�\!.. i A 4.'r. ! � (?•L?j 2F :;, • I VICINITY MAP O� � I � L _ X:/PROJECTS/850_0716/ENG/MISC/VEC M(TY MAP—SD_LV�.DGN _ _ _ _ _ _ _ _ _ _ _ _ _ � G � `Y" - " .��,�r ' . - . � ..%'� "'J' �,,> = ' ~ � _ - �., ° � � . � �. � �l � .,./ � �� . � , � � � �� � �.r� a . I�� •' • � \ I _ � � �_ ` J� � ��� , '.� ' r ��, ���� ' � � , ' � r �^ ' \ � � �. ♦ s � 1 v► � 1 � � `� ' : '�.' � r � J � , ,..�° ,,,.- � �� � ,. ' '� � ' "��. � , � , �,� �� � � � �,.-�K • •� - . � ,� . . � � f � n � � . ��,. .. �� �• � ,.,� � , � . � � . — — - ��!_.,,; � ` � r ,;._, : � � � �� � �` ' �r�� �� . �`: ,� , � . � - . -.. . ' �I'... - a , --� - t�' ` �.•' c_ �c � .a_• a ♦ . . , I��� � ' �t �• '�', - s ��• t � ~~ � i?��� •���� �``_ , i � - � t` `�\ J � .� -.� �,�- ;, - ,�1�►�,i � � � , � � ' � � y , `, ,' ' � ���j /� �������� �, ��± �:•� . i . �..�l:L l � �a: ✓� - ��, pi� i � / � L • � - � ���,� ��. ill�` ��a � . �' "� 1�a.d`� � �� b�.,��=,���li� • :� .� _ � �:.P �� F� ' � „ v t= �i,b�.,'�,�.-,�q,��.�al�r�� �-� —� / � �-"� . ' � 4 - _ ,� y� i•��,�.� � � , i , ` � : �� �; f L °�� � ' . � r � � � - �� �, :• � �,� � � �U .,. �, �, �� r... . � �� , , �� .'` . � �" � � , dU _ �, �, � �. �, % 1 � yw' � - D r �q � A � j� -�, �'�������.:��� .: �, ,� .� � ����I�.A .•J��a�'= ..��-� ?�����i9�� ���-��. • ,L��i� � �� : �llyi ���' '' ' A � ��+�"� y 7 r � . � �`'1;� �,�� '� ;�� � � . . � • �� � : . ��� � , ��` � � �� e�,� , • .�� \ �� � � � � , o � - • ►� '� + _ `�fi� ►r, � v � � ,_' � � ��' � y , �: ' � : � � '��� � � ' _ r �.:: � ! � �'`' �` "'�� � �s • � e � ��: \ r •'��� ��! ..:► .�� ` .< t . yr ., � �'y�� ' : �� � - T `� \ ������.a� � i ' . �•� � � � ' •� 14 "; '� � , r4' , i ♦, � ��� 1 � s � �, ` ` 7 �,�"�"� ��I � . � �.: ; � ., � ,, �p - e y ,�� , � '- r� * � 6� A - .�'� ` '� � - ����' a � e): �� _ , I�.r" 7 l ° J °_ .-s ''� • _ ""'� j0 �� � .f.� - '' . ..1� � �' �� : �� � � -�►''''�� - ► '.�`^ j ' =: � � �.�` �~ � : Lr � d�� �`� _ � ✓ ` y _ � � �„� ♦ ..� �e _� �� �� � � �.1 ��'�.L� � � =' • ! ,�: •, _ u� a �,:► 7-"� �.�►.J. '���-'�,. ����"�.' ' � J•, ~ , � . � . �_�� _ r'r • �w ���'w�� �-- ,� �1::���� / �� ` . � � _ _� - v,�. �.� ���,�',. �e��,,,� :� , � ��_�.� d � �►'��i1� : _� �' ; ' �"� � ��'�"1• t�� ` �.: ,, V ' �'�,� - , �\� ' !" : ,,1- �: : � � � -� ��/, � �� , � y t '.- � d � • _ an � � _ : ' �� • 1 � � � _ a�- J � ��'j. ��_ I' � f, / �!" •���°�� .1� ' �' � �� e ������ �� � ' _ � `� = ��� , �: � � 1 `�'�' � fc� l. � � � � ���`rj/ r .1 M� �'� �„wi�,-'�� y � ��� � _ �'�= �'�� d - � � .1��,�.., � :.� .cfl�` 1 ``'=', � "��l���� �+ � �a� F ,g'' _�'�`s► '�' �a�����i✓i � ' � � �,, �/ �,`q��,. . j'� ��` � �� � ! gr, � _..,r•- _r �� • � ,� -- �'. ��: _ v� .• - ,� �a�-�� � c,� � � ' ` _ ,- ,,�� , , : " y�� p � . � �,, ` � .,,� � .� '�'^,! �r� f �'�` �"_ 'O' �►, f , � I � f���m i `�`� :Y� -�� i �. •,,���_ `� �d��: 's � !F ������.' 3 �,,,,_ r �.� .��/'����:i � ' �,. �. .. < < i��y �� ��- "�+' � c� � � �`�� _ �-� ."�-�, �� � �``� � . . :�� .,,c . , y �, -� �. ,�. , , � � � � �. � • o _ y p � t � / � n� � ! . � 1- �,� ' i�� r , � �_ .� Y� r�" � ���s / _� ���'°.a� �/ •. �' �� � � � `�!: � �f �✓ �.� � : � � i��� p � E , , �� _ 1� ,��J t � Y � �C_ .!` �` '''"�,�a!'� „ ��° �����-� °' �L� �i. ��` ' � ' � q ,�` G . .... �� . � , �. ._ . '` � � � �� Ib l� 7 '� � �� , � - ..�- - `� , � -,, r -1 ,� + ,�� � . : � _ «�i� r �0 �' 8`� � ' y . � � -- ��'�'�a ��i .-- . '�a��a 1 � � '`�` � � _ �"�',.;!�.;� j�- ^l�� , �r, � .-��- ��� ��� �,. � :' �,�� � 1. y �.=5 ��� � \ ��., , ,r �w ' � '� o � : � � � • ��-' �� � ��' � ,�/� i � � - ; t � ) ' 1// a - � i� � . j ' ' �r�,\�\� � � � !�, . -� ": �� . �: �'�'�, ,. `� �`� r 1 � e ' •/ f . i _ ��a �/1�� 1.� .� ����r,+�r+`i�_ � �'' , i:/1�P�� 1�� �L- .�/ : r ��� � 1 � � � � � � � � • -• :• ••- • -• � • � � . � :� �_ . �. � . ... � • r � i � � 3.5 ` �--- ; � � 3.5 i � ! f � ; ( � , . � f b � :-_� � � I � 3 � { 3 � tn = 2.5 � 2 5 V Z � � Z = 2 2 H- . a 0 • J � � 1.5 ` --J / , 1.5 Z � � � � � •Z O r � � _ � � � i , I •07 � / f• f � . � � � � . � .5 --� f I f ; � ( ; � . � F � f i � : � E � � E I. � � � i � � � � ' � I. 0! � j j � : 0 � 2 5 10 25 50 100 � RETURN PERIOD IN Y�ARS NOTE: I. For intermediote refurn periods pbt 2-year ond IQp-yea► one hour valves from maps,then ConneCt f , points and reod value for desired return period. For example qfven 2-yea one hour=.50��ond 100- � yeor one hour =1.60��,25-yeor one hour =1.18�� � Reterence:iVOAA Atles 2,Volume ]Q-Colifornio,l973. RCFC � ��; �I RAINFALL OEPTH VERSUS ` RETURN PER(00 FOR ' ; f . � r�YDRD! �J�Y 1�/�ANJAL ; PARTIA� DU?AT,ON S�RIES ; i D� ATC r�_ w r � �������N����w�����������w������������N��M��o ................""����������.�..���.� '.'.. ...��� ��������'���������� • �������tl������h�����H��Y��������������NN�M����������������„���������Y����Y�\���� W�\Yi������5������/�����M������� . NY��YM�YNN�����������N������������N�N�NN��h�/����tl������N���N�YOY����NN��YYN�����ti���������A\����� �NY��M��N�M�dY�MAY�t��N���NY�YY�tltlpW Y�dYtl��YO��Y�Y�pYH����Y�MYN�Y\NO��� tlY� �p��'. OM\�YA � � • . � � � , � ■ �����u����nun���� ����� ���n��n�� • • ' � ���nuauuw�u�w� n„i�iu�� uumuuuun m�nm� m�w�unnn , �utap� ` • i�=" �UBMO�II��� �AYYW� Y� � p • • � � � • mt • ��������w�n � � • � � ��������1 �����N��YYt�O������N � ' � � • ���� � � � ' �N��� tltl� •' • � • � � \��/���� ������■ \�� ��� ���pppL �����\� �� : . � �f���������/�������h�■�����IiI �� �M �O���tV����p1ON�0��:�i�� ! • B��tW�YU�m����au� Y����� n�m�nm�u�� m�mwmm a�n�mmmfn�uw � � �mae�a�n���� �anon�nn�muna�o��� ■�...��■.■ ' ■■■■.■■■.� n��umn a mmmnmumm����m���uuuu�uuu�u����������nuuun�� _ � �n�a���da u�n�um�uuu �unu���u�um��w�xnn�uu���n�nun�� ���'�.�..... ° _ o ° a ..:e5�-== ' �....e....-� :---�.:::: ���..'e :«:'.:��= .= ===�=a-�--- �4�NO�Y� O��MYAY�A��wH���w�����O��M����YN�w�OM������Y���N���AW�� W ������������YN�M��O����M���N��MO���N�A��YY��tl����YMYI��w���N\�Y�MYA��OH��AO�\� ....� �...o....................._�_�.R..........m...o.��............� e � ���� u�� i�w���i� a� w�ii oew��a����p �s�m��mwuM�a� aa�wmsw���� uu��� ��N���a� w�av�w n��ti���nao�����w�ouam�ur�sM����w�w�w��a� �M��M YO� Y�A����N�\HV��YO�KO�/�tlnORY�����N\�Nf�M� Nl�N��YAM ��Y��Ma ��t��YO�������W������Y�N�tl�tlN�9�OM�Y���A��M�Y�MY����� ��Y�N�N�M���Ol��/N���YOOY��OtN�YYAVI������ iB�Nttl�W������ NNf�MN�Y�M/OON�YMt���OOV���NWM/lAt��YO������H�H�����WYY �Y��tl�Y�N�f\���� Y�M��tlH�HN�N��f�tl�� �YY�EO��Ml�Y��M�Y���YNONH��U��O�YA��t��W�O��� , tltlt�t�NW�A��MW�BBN��vN����N/Y�NN�Y��Y��Y���A�t�O�NM��p ���pqM�� N�tN��t��N�H � Y�p�YY��A/��YtO���O��O��B�YB�O6/�N �tOnM ppYtYf� �N A�Y�NYBtlfY�dB� �Yp�,p Y����/O =�� -_ _ _ _f�BW/iB6tW�� � �M ttpBO�h�Wp� � �tOMtHO� f �Y W �� ��OOf tNi��i� �e tVB�BnMt�� ��/ � �t �1�� dBflO11vM� � w� umu�r�o nomxua�mm�um �� nn n� ma �mmi�■� �u■ � �.� �� i�a��n ��i■ �Ya:�. ium nm �� ���mnnmaen��n �uu�e��a�u� �r..� ��■m��■ ��mum�n�n�m�re� ui■ � v�a w��e�aaa���m����� ��a �e �ro�����a�w o�a tA sasa�a.rawrs��� ��r ��r.asww�a u :�� �. �.a aaumou�e w�����r�m���� s��� a� ��� ���o �� '/�A � ° � A � nm�n���a��as a�ia� �ww� O �p � /� /�\ ���HpON�N ���0w�t�Y�N�� 7a d� � �� ��n�O�tO��f�YW■ �e�� /Mtl��� 'M� � �� , ��� • � � ��� ` �����'i� � • � ��� � � ��� rv • ��.� � sa ■ ■ �. =� ■ �� � ' • �:�o �Nr �H����� �_� A u��u�ww� �` i �a� ���~ �.. • • • �• • .• • •' � ' � • ' ; ;�:. � � � � • s • • . . � .. _�.� -. �i 6 � - a ' ilu '.,`.. ,.a. - -- /C ;rS�m. ....� ...a�° ""M � °ir, n �......,.� �,-_. � �� ' -'-' .. ._ :��,/' � ���'�-✓. ��4� � i�`�n'��. 1, � a�, : .,�� '=' � � f cll i`. > � -1"'�,� ' J`. ",�u "Y,: � (P.���;`:� � � � ^+ ` � l�f � ' _ --..r_. ._.. ,..,..... I._ I �_ I � �1�.,ii ��1"� - �;`f. Z �;�.:��\\� .� / / r��,f� ) y qC Zl Nl% ��)�" ..��cJ"' . ��� � L-, '71 / ° . ��.. _1� '-'�� (�.% I :� . . r � , % ! 1 i •I � � ' ' ' ' . ( p ���� ..�/ Z t / f� �7 £ i � � i� t � ,� d"" � 7 a� iC . (V� �.-�� "�i -/��`� �� �`�r � <M1 ,t t . � �jv�'.. ���,`� �� �� ," `^ J ,,,,, .,� , �„f�� � 'T-' l, l� � /�{ ak��+ V Ty� .�( .sX�F� n.s m /� 4 l' ... wy _ 1 J _�. .l �:_. - -1 S ,�.� i J'>. t� - ♦ . _.�l? i _` �- t fi � ' � - . � , � , � : t I i l � � ro., �'� 7 i �� <�, ��, Jf � c _ r "` �' ' - t _r � - S`�� - � - � - Z . T 'n � �m �, } ( l 4 . ` J� ,' � W w l � f � � .I.S `� "c r/� ..,J"'�' n( '�.$ . � .+��. '� � J 1 � „ p Q � v.1���� ( �� �i�� m l��l'/� : � . �..� / , ! f (����il ��s'(�', '!� f f ° ff Y.i . ,� = c r j '`� ` p.S .. `! � _ ' � � e R - �x_},-,,,, y ° � � ..� � (]tC �' t i ,: d� i � 1i .! \� � � : � ii�,/�+nf J f� �� a f}I" �i , z F- U /1 � ' 9A� ;� � �:: .i a� �s ? �� �r .9 `� A � � \ i '. f �.� , y, . Ci Y, Y•�9� ic� y y -� nSmr f -- - - -I _ <� J' f : j t � � . . .,� - �I ; ��t . 2i i y .. 3�. �r. �, lf � � i �ti r`, \� u i s Uiirl � � �; /- _ , - � o --._J. > f� ( � 7_ 6.L n �.1� 3 7S i 9 1 j� � , � -,�. h' f ��� `I�. �d � •:f � J r � �lCS'� �m n \ � � '... ,- � .�... .: Z ;.r.r ,v l . .. n � Sr^. � c . t� - �:� � n �_ � z�� � z 1'a I PjC�. �i n�i.� �..��j I n��s3: ����/ ,'�• .:�{^ )� i f � �-- f ��� �� �., r �. - // lute��,s _ �J � _ � � ,U fn "�. ^K � oo jy � � l'„� '& i . '�I > > '� a } �ki i�� � " � � :-- ''(�_ ' w7G �'' _�I 1�! ��i�j:� s�p���'i ''t h 1��j �� ' ��.1 i I f . t✓ c. �s� � l ,�-� � � s E �1•E t: f� d � � � �` 1 � p . �!7' �� �'' ' . � z �r Jd � . . ,il, 1S Y� l �1� li T -�' � � _ - � ° �, _"I -� J . u�� . � � F z�'., � � i/� ` -". �..�; _ � . � - i � �� � �^C� \ r T S ! _� , � w�_ , � , F � F � 4 �� J IS� � 'T �A'1 s � t S � 7\� � ij�� .�, `I .,�.��/ ' .. 1 O/�� Ur/`. ! rr�`A1 � `.fi t � I.� .,� }� � _ /�' . ��� r , � � '� od � C � A!•«- \`� " _� ° �;�:2 ..� '�,� c� � �i ,>�,�= < <�� .' � � } J� �,/ �P � -z/Lr .o x f . r �\ V .� y � J'�'���J�1� �. � (� •� �-- ��nl�, Li t�, � �� S N. . ��..� b� J i }� s � >��r �'f. � ,r `� N � ti ✓ _ J �_ � J _ "� � _ `_� ��'; ', � � +� 4. F- L � � i.a.� - �!�':2 t a i.;. � / ���� � y � � �-' - c✓�}d�.['F t �'? � -. ����"�� � .t �' - 1' - i•�' �� � r�. o Q P- �' � � I �. }� �v ^._ti �„- t� CC�� ,�\ � j �i`� . �Y r �, � Y�_ �Jf�) ���..,,�''j" :�! �v 7 � � � _ - , o `I . I . i �' .:�.. � �- ��' �, r � ; Z � , : w - - � i, � �-�? � rv� ,r �6Z>r/, ' �_ ; F, ) rc�r , � :, , ; J � / _ �� ° z I '' �% "' � .�o�� ;�,;,� � I m a � 1' �, o � i ? � � �Y' n•: ��r ��i i� ' a.� ; J . .: `, , ' ' -- � ,-, d. i t�� �- �'t J i � w� �` .l" �I 5`7 I� r� k'4� r•7 , oY ��f ,},� � k+ y�' tl � . �r � t ,, � :� i r� �1,.� i ; t � - �l ! a � r � . � ;,� 1 � , � � iit�t' � t`;s' I _ r� (�1�� p Z w d 3 1 \� 1) '1 ti �,� >. ,4 - NJ � �- -' ' � � `� � ,. ,�. , 4 � , � ; - . �, � .� ' �1 � � 'c .r - C �� :'� [ i � ! ) t r � ) 4 �, l !' �� f� ,` j _- --. __ - -f ^ + � •� . � � r �a � N . � - ,.�� .. i Wi. 2 ��: � , p ..l � . • � �1� f.'�3�,Z` � � u, s,,c � �?v�;}4� Z r �����=�.y�5�S�/i � w �% J 1 1 � f ��' ?�. ��' ,�, `1FZ'1�� �� O �O �.� � _ lr � Ii � �� 4(; 1 %`N�/'P> li?j� ;��� � � ; r� ' r �'i a� � �'a} / 3"d'J � = I /� � - L "s�'?'��`�' S. �''�� �7' � � 1 � U U � ., � �1 � �. , �I �, � , C ��� c �� F , ; , " � i ;��� l � !�1 � y �� . i � i �.. t��=� y �y�. ,�i�f C1; . '� .n. � �^ i� f ���1Jf ,f ���_ R � � ` � �,� Vl, � f i � . '> > �; P� � ��C �`' 4 [• .�- ` . y. _�, ` . C i I . • �! .- �.- _� ..I �1 . �j}�� 4 K'Z j � f w �„J: p W � � l , , � � � {p� � rj '` K °3^� c � . ^ ` sit _ .� };� n l �' hi =---- - -C � � � '�. S� ' � f .^. .� �j� � � ( ,� � p �' `� yl �'� � , � � , ( � " � �,C\ .� xNf � t� � ��� .T JT .�`�.',u,� �_ ig '%, ��2! / b T �����: /' «a'�. r ,� .�Y: J: .'� ,((� „ �y, l�t {, � i n .��� (JJ 1 .yli � �6, r ''")l,t ' ��;�LU`�' t�,S� �fi �. ' '� f � F N lcl �� i' l`�R`�'���.�; ` S �'.L:'..- - - �',`< 1 . ' (1/ ���( \� °•t, -,le: jy�, G �1°;;�1 �`r' l � 5 fn F- '.�� �7��,� � � �",s� I:!' � ��- � rn� � ,_:-4 " - -'�. ' =� ����3i . � �� � , r S��i.i � � �� } � � ��a , �., �. � � ��� ��3�i->��+i LY'^ r� � .r�� i -'/1� `�1�T - ° -- �T_� h- _ /��'� !`.�.Mi `� �� Q��'l� . ;�� 1 :1 � \ J�� \\ �1 % 4 h'r? � e+� r�r l � ' �.� , � r,r / ! s 'e I �lS� c � ( 2 �I . � FS - I r � > - ` � �j �,o'l ^ D'' ��,u y `�e y Q'� .uj ' .S/� ' : � Z 3 •.Fiw x �l_'k I�/.�t� `i . �„' ? � � . � .. ` ) f -:,� {�o ��,u � , .�� . 7 �' �. 3 � 1 t / ` �' 7 J. � 7 � � j °f � �,f J ��� f : �. �l� . �� � � � �7 �° %� f s � � � ��J C S` m �(f'1 . 1.. •!4�S' i � \ r� �� ( '�., ° � �1 1'�` � • c, � i 1 � +.�n ^.�. a';'!, a . .n . ` F•i.�, � i � � � `�q a � � ,� i `� = `y n n. � � . � t i b`,�� � ` � , j S 1 � �/.�l � . )S � Y, c ' l� � r o I _ �� _ y � ' ' ,r� '� { . R$) �� � � S i i[ c . r.y�, � nj! ( � . �. :� - .i ?t� � �� �5��. � ..i�Ml �?� _''rr a �o �..r `� �ry� . u�( .1 f �� �`i. �� � ,l`i''��i��� .� J. � � � ..i' Ui .i E , i' 1 � 1. f S� � t ' y� S ' [� 7 G /.�5, i 6,�, e [ f o r. I,, � wG+ ���yi y` ,� � ,.,W , �� f � • � v J y, �, . . , � ' p d � �>: r? � ' c � �4 r \ i` lv _ / ��t l fr • � /1 i hi � � . n. ¢ l T� . n��. � ......_.._....�.......... _ i =41'S�: � i� ;fid � � �' _,?{ �?, r � i ,,, ��;, mr i�r� � / s �•�� rv i- a � i '��'��s {r, o '!i' , �� !� �,�� T`J(r �k�� f .� .d �� . � � ,t ;' ' •: s. i , „ � � -f � 1 � ' T � 1 i. - a a. , u. ( a I , �� x_ � 3, : t " •s , �• , ��-}; � i �� ,-? `` .,1 if•.�. �-'V � $� r. � y c;:` ., � p , [�; "=� {( i�, l; :' { . ¢ � i; l �� 'f f ri - : J �� � �{ ` ��._. °�:_,.r. .�.`.... � 't �-�� ;; . (,.' '�'� n�?'� � + ) � a.,�t'. �.� �� ��!" k ��' � ��'- ��p. r / �r.. 5 )� fvu� (� � �. f �:. �'��. t l 4�< 2' l' r �� s� / < S'�� �� l i� r /i' r n•1�i 1,,. Y. � < I � il. , y � ,� � 6'. `. �+�=' r i 1 ' 3 � �' t ' r \; , �,�.i� U, � � i ,� G Y r''� �,�: < F v r°�• ..c a",' t�r* � h �7 ,�. i ��; r S � w�? � ✓'rir' � i, � � t, %Jc,r i e �.. �, �- � �$L �, .' C� �� � ' tn. J`' ..4;.-, i���. i ��, �itl .,�H;t ��i:� I -=! r� ' i�<,ti-- t ,•�� i v, � r •, ,F i��,. �-'' 5�1 � � �{�,{'�i - � 7' �J � �,, � 7�� 1.. � ii '� l 1 L i '7 1 l n; ���:�"' � i.i �i �i �J �!i �-jr ���. 4�\ . A \ i y, r r�- t, � ...4 _ �....J --./� �.' \ i � �i � t a � r � ,� / yc �. 1� i /� ,. i� :,�' :i'n� 'c,r i frl, -= i.l. �;(� ' al ,� } � � ��, _ � % +. � ..l_,. , /�, ' I(Ie y •�,,.. �I�� .. {�. c. �dr'��J 9!�"_ � �"K i� � I . ��i�_.. i. ``.. S,� � �vG� .}. -�_l_./ - _ -__. � i� rr' C(l i f �.. ;7c ,�� �S, 1•t 4,. _h � � � �i t� �s;; t ... � - ~ - = �`�`'� _ 1 �_,��,., �,>r'Y.� h ..�r, � ) i .. '�i _ � � V ��,�ly 7 7 .�.. T,' / -� - tl ,� `� ./ v�..i ,51� �; S�� � �r I^��:�.;,� - _, n � .'71���C3' ,�;� �'� ) oC \.Cr� , �-,i!. _ � m . �. s „ v`.: �� L. / � i �(�_ �f � >, ,,�Tti'�� ! , ' i i i ! ,) ,� /. ,� �)t � r � I � (. �/i (l �� �.! �h. � i � , ' - , a ! d, . ��. �A : , ,.5. ! � :�\S ' �l. � � ) , 5 , h �xu !', I �( , " �'^ _ ` e�v ..I �}`�ti � y,�, l � .ii ; r 3� �. � �..,;' d l ��`r � y � � � J� ��PC. �R 7i�_r 'ft �f '11�.i 9 l;� c�i � 7�i. � 'Y�' .�P c .� �l!�9` a� rn s�( .S`f' v,i � ;. , ,,i.. ,��- F•.�: a �ih�(e�,. �� �t � � l���iZ.W'�`"k� d'�j� n f,. ,,�;• \ -+�- _ /p� "�.�: �� i).i-���� �r s. J�. �1 ° � 1 � y `��•.:q �) n Iro.. g'� ✓ :/i..=��.!v.n.`i• .,.��_ ,n �� ,�; ,1 ,}�{ �S/ 'rf` ' � � '°� "Sr,..;., • r� ,� , i ,l( /, -q � �� � ; r.., � ��rx��, ;,l'��r. .4'�' �:� ;'a. . �: � .e ' �' ti . Y ,. _ .,. � t i C ,�� .i<� i+�w , � � .�, ., _ .l i ��� _i. ,F .�.G� I t �h'��,t���.����ir•.,� "�ur{�,::.:T-..'_';�.' � i`��A ,�'� / ( f _i ':'� J. i �:��� . I �k �� , f����" .y M:t�:,. Y,- j�cn � :v:,�v�l:' •t ^nS`•.� i � � r � 1 ra ,:�: �,�l�����,� � '�,y7�.��"�a i�• r � :i�h�'. � ' � (�iG�. dl ..✓,l:S '�'� ' .,, ''� ua '1� F � i „'G�,,, _ � �K.! :,�' >:� � 's; i ; �-t' „I ..�� �.��..,��,k• �> 'l � / :�.��J�� '4. �' r �e '/>°> ��:' � '< <^ ' :.t �'�; �'�i« - -•s;, /, f4� ��! yV �' t� { ' p � �� ��i=; '�t ,'� � �E ;i _ 4 � 3 ; �, t � y, �c�� _ _ _�x` � ,'.; ."� , a '�, - - d�; •c i �; � �.� _ �.� ��- ��: 'C .., �� °< '..� .3 �� rti� �., r - 7. 1^ � �, :, t , ��: � L � ,��t.: 'i�` �` ,� .r<`�. i�� �� - i� � Y � ,� d0 . i, `i i 7' � �J - �l ,( y f �l . � �, >�, � '� �Y, ' �, o' 3 � > Pl� o. ` � � .,;� ' �S�J� > !` ti'�� .r � � .°`; � � : S� '���, � � `l � � �. i' �� (�� , dv �°,� r��� � e1 i .y .� l/ ! „l�' -�c �� '�y. �."1. �-�.�:J�k�. , y �°� :` ��6''`. ..� -.%'�� :,� '`�' � '�� � �• %�•, � � Q . ,�r� � f ); 1� ` � 1 1�� i + �.�'x� � k5 �: �'� ;J {`"' ry ��a \�•, ::� L L ' , L ^., ^, .t I � � . .� . � 1 �. � r� - ��a A. � �. - �VI" �j�-.t ' � � i �., i �l. �, �1 „6, ,� d "� ;�` ' . . � � �' � �.., - - c�f �. � � � ' ;� � �s.,.. � , o� �, . , � li . "�a� 1 '<� � K . � d �i�j � �, - 7 � r%;^ ;�� :1';�i:�,:� ::! .� i •i i .i: a � �^ 1 i.. ��p( e, : � �•" ' .'( (r � i � � .�C � 1 i.� ,�...,�f��t �� ,f� lo;r s� . .1�0 ,�, • �. - b .� ��. ',�l �,.'I�� p'�t'� ia ��' ?5.. 5/.� a.. �4 N§ � �� �S, ��' (� `S.i .k a4� �A�.S�� �y. -l� �. �r � - ;.7 Sp�� '/',iE;.�- �y�-•. -[�. ��. F- ,�..� � . '.ef /-::.__�?_._ /-rq. ".i�hi Y �}7� ��{, � �. ::f l n`� L. �M e ��. �'� �J� ir� l��a ^�' �--.:� - , �5 a F�,% �' -. tt''_ ' .j � t-�-f� -i . �r' � e. ' I� � !F r�N�s q� � ,. s ��� � N = I r � !' ' -� _.! - + �:� � . � �9i, ,�,�.. i i ` �r .,�. �7'� � ��; ' h ua� � , u . 5.�.,��� ��r l��, ,. ,. '.';l t r L..+, : �a1 .<.., �:.� �to �'" .�` �.� � , ��3. �� , _�.9s � _ �e i t�� t b , j 3 F �. � , � � _ v�' y � m UI �,� �.. M1•`r.�� ' I.:: ( f. - � . C J� �i �«. f,,� (�. e � , �SA, - ,i � � � � :.� '�. '4 -�.5.'' � y� � �. � �, E. �.�ti� .y �v�� -r - --�.-� _ -�=�r� �„ ; i r,.s r..., � f � r � � � �;� � !, � i � , a � : � ,- .i , ? � � ' :�', ' � =. �.��,,, is;,t l ./ F• a �l}�r;? �i � `�� d l I q,G , �'� �,�� � ` .���.�., - � r; d' �V i ` .1 p S , � c .. .. , , / -� � o� � r. .,, � ,1����j�ja ,� � . . ..p � , ✓ * � .. �,` . `.F�., ,7,� �. ,�. � , � ��� � � � :�� y � �• ;� v � ->-., ,, , ,�� ; -� Q ;-- t� . � 6 , , , ,�:r j ` ,� (� ;:�:; �' �; ,, x r � � �� -�( � '� „ l ,, �. �,y �L • R � �' � ovr�t � . Y �1, '1. i� °_ �l.m �` � FV'� / ' lo ''.-,� � � , :t�c"l .\ . T .. �. � !% � , '�.i-' k:} , 9 ��;,: �5�. k.. �7 , t. :L : 1 �. c. ! f - �'�2�. i � , �Ji. .�� .c� �S � i�: �� ' � � . � .0 ,� '?9 �a..� ,,: , ;,�: ; ��. ,. ,:,,I �s" °r.' ?= ,w.�< < , }, "_5 -- _� ��`� - l: �,F��� �, �� :� R , : 'r<'� R'' ��/T�� :u �.r L � _ � ,o:.r'i` ^� If � i' j �T�, -' -_ - ��� � j,� `�, o� ;�� ����f S ; t.� � �� . �`?�" ' 1_ i�i ✓ c' _ i ! _ � � ' � �',-., >a � � i Tt:�3�, . � � �/ �. Y't t�< �� v f . �'% ti� � �.�'�:t � 4� � ' � / r ' �i i "� t J"'� }��.w � 1';[,� . ` : � ��;` �. / ti. , 7/,�. ".i �? { ,f%�S _ �� ��,, , r.G � JC ' i _ : - �e ; '� ? , . � � � - :..0 � F y, ..r. .� . g" ,� 1 � ,. ,, .N T� � � � . � �� .. r- Y :�w^ � - / - l(� - /.•, �_-� i � ` r , s �. f � ! �� � 1'.`��'. . �.�Y � c �'�� i- {; � I _f� �y��"J$.�;: �, .��4; ; .�, 3 • ; _1S � �, �?t� d t/. .� p N) ) \ ... �}' �'�:. Y �, '� � ^�l I�� ��r:t k:'A �; ,�� '° d � � � '6e� . . a ys, I -i - �r , ��f '�'." ;� ' 1 -y �b5`� ` p�-ry�./� �� '� `� e C '�\l��''•5\ � i� `,�'':\': i ' {/-� ,4f t ;r� �.` ��V I �" i � � t-.�� �} d y. _ l _-_ I A�"l - ' ' (� ,�� �� �' �r T4�� ��'^ � " Y�� c`����� .1f� �.� `�. 4�_ p r q•.. ^ a'� _ -- - - ' Y; :.,:,� y` ' . i:;. , �. I '% , r �. t `r ' `�. �a ' 1�,� :�' S ' i, ��f. �, r_:. �( 4 � � ! . i _ .�l f . ..�4,..��` f 1 ` � � .�7 r . t:: � � , .f �- ' ( _ e': ri �i �. �� _ `� a�d s �('" s���( ;��' y a, r �se ., \ ��..,� •.� r ol 5 j� .�. � Y � -� x ��\i h .l. :d I r.t'�J i r .� v'g� Y L . ,lg�rr�� -/ r. _ �_. _' � ��„& -r�.d..�' � �i�. - , : � •_f� � � .SR�. a.._ f. h".i :`'._ �- xf;�.:� � 1� ,�. �, �,�R F �/ � _� /� �y 'n;���'q:y-' r�i �� n �,� �:� �ji i { ;� .�,. . �!,� ��� a c,' '� � i . ; t t•,., 'S�:_. U�__) ` �.. � '.13 S � b c; ���„�, �* f •�; fr� 1�;�� i- � _ ,at �M ,, � �`�' :,: s _ o. ,� r�',s„ ,,�Li'� � ..c °�a, ).,� '�,'� •,I.�: , r. `•" � \ �',� � , �it;. i •�, i, / Ir.'8 :r: � i ..��, � t� �h;' `� � � S'�� r✓. i� ' / � _ �' I � _ � �. I� :� �r,. 1 n `.� e- � rs`- � Y�C�I, � ,�� ( 4 \' v. �yk -� �'i� ';:a� � r� �- ;�� �� \.: ��,... �'�..; . ��� -�k � x ,�,� � `; � ° � . ,- ; '� l ; ��` , , . �iv . ""�G��1 'iP r ).; � \ l ��5 y3H E : � � - :� iR!'` � \ S � E ... . 1> o � � ���1 !�i 'Id ' I u � / Ct? 4 � , �` .: �'f � ��,� , .I���, �� !, a � e� j� �-'-� ,C.�' .�, � . ,' � � -.� fi" ¢� " l II '�' � � ��`� - . ,. � � , � (i ;t: ..+-' ,( ���� :rr - " �,2' � �'d'�, ��~ - i �n• ���s.. "� �,.r '� - ; .751,. �' a::.�. ��,�1 �- �..�: � I ��a �t��� ��;.,,�+( I i �. . , •. y S.Y q I� ,.�:1 �:3�, � . � i� �. � . ,t <., i� i�. 2 �: i �� � i ' � X- .J:,y�;�� �l - [ ;,� i`'' � '�?�Y.}F•h�.� �4 �� �i �rl l ���' �? �J' a' � ��' �.��, � �� �f e� l �_-:,,.. - � 'i`t��S. �_ ,},x: �,.�� � �.:"� �, - v�Y� Fv � �, t�;��Y ii �a S : ),!. '�'� `rl'= �,`�.' ` � � i • � I � : � � .� ; ��.Sr _ ���� �� � • s'�` � i \\° t L' C y�. � 'C 1 L}= f . T�+ � .�c,� .� �f`)' �� �L \ £ ��.• \e '�- � -.+^' , �� � ��Qr J; . � '� i'� ''a :.,Y 1; �� W P.9G � � q,�? Y �.�';' �. J 'l�r� . iC � T `�%� . i r a:::�fl�(� M � ' . � � b '1 _1 '1� �.`;�.i�;;; � �� o d '� r'� ( ��� �r ,i,� :�� ;�_ �.. a f �� - � � s � �� - c �: �';J . ��v:'. <.+�'::� `a -a � o � - �i: � �2� 5r ° '�i.55j = d ' � P'� )1:,� f ; �' / �� 1 � a `l�j� .� I �� i ; i� _ ,?�{ 1 / E � � ��,n. . l.�- \'� . �E' yl� 4 � �-: �� _ Sr- �._ P" - I z i ?' i � � �� {o �,�.�4 - i .. . ti�,..,�,\5.�,:,t � • O .. t�.�' ., . . � ,.° ..h i� 1 ' I : � �, i � ,Z; 4 '1 H �� s + �a � \ � ,�,iv -'C �,1 '�, )! \ r �� E iff'i $,, ;� �, �t,a` �i � � t/� .,,� , ��'� �b��jii1 � �.Y � j'.'AC"� ; - r� I �y. 4'.� .;:� 1 � �S� x � ` 7� f Ni '� z _�J ...� �' f -. .(.,� _ � � . � ��� . f � :Cr:` � b � �.:4. 5 � E 6f�:: - � i � �� - - v • ' ' �-- - - a,� z� . �� �3 : � ��.I. � . l,_ __ J - �, i -' kg� � �, �Rf ��vy r�� '� i ��"� � ,� f ( � __ `�� 1��) "` s - �I yb u + `�• ' � � � l; :i, �r , � n �� � s � .� - �, t� '' .{(���'({" �,j�t �1�, �{�l: �� � �� f( �, __ l y '��� `\\ '"r = '__.�, ���,`I ^2� •,P /5 _ v� -� ,fi` �'. �� .`s ` '\/;. f',�'. . •:r(`1, 11, n : �� � � 1 � � a'� ' f J! v 1 � � ` � ��\ �.-. j( I ; o a !;.. '.� i l 1 :.�. 1 y �� .?9 ' °��� 1 i �� � �; � �.� ' e �?i � � '1 � 4^',r, � r . � . "� �\'a ,,� �c = � . _ �t � 1 r l_J��� v i.�a i e ss '',l: Z �ii , w � � - r ? - � � � � 5. a' � i �/ -h� 'I , t� � . , �r� I "s �' .�.�+ ti � ��� � �.�y.. ��i ^�.�:4 . I � S ' f ��� E \T� t � '� �, I �I �, '.,J.; 4 ��- ' ��. . p,t - - 1 �o ^�� � W .�ti w ��., �, S� �R I�L.� i.. f j' � �. o o ti 7� � l i �' P�, C Z J e � �` _ i�� . �_ ��.t=� �<�� .� ,� 5 ,`� � i. R 1. \,. ' ��,.�� �"�^ , a , _� o � � <,� 5 , r� • d �� �1���� �- � � 5` _ .:T.. ; E _ i q °o v�. . s ;, � {� ° • � �j� ��.. ,� - � . , • ,u I l�� / '^ L 1 ' f .. , l. S . >� E Y �I •el 2' " �.' v' �/~ (I I..� � �� �e�j ) ..� _ a s� j - �., � / �`��,� �"i�'�-f ����°`,'-1 .:- r ,. �•1;F5 ;� ,�i..l , - -"6r� �f,�o^ ��u� -. , y _ _ "i' �'. �..i� /.� �fJi e <� ��• ;l. �` \ , I r - ;:..�,)���� I. . k?; �-`z-. , .a I, Yr �.x r� ,tf T � - _ _ ' ' g 1 q.d ..l o v ��d � L r $ � ° u i ; g � `� � 1 3.,;�: ^ u ' /, n �1 �� r 3 ,�, �` i ��>,\ �-f� iv. ��� R �,� tp�n ' �.�.__- -_ , _ l�3 9 i ',. :i' �l! � \ ' I ( � g�. ..�. � � A „ .. •: , , � .. i ,.� _ ` r .�� . �`�� ,i A�� � �= ° d <, q� 't � �m a. L - i :;,:� ` _ -. T ��/ . � ..� c� � � � � ' ,,� �2' �' �,7'� i ��''J�i . � .. u ' ' '� . i , � �. � � _. �. .,, m ,� _ Y _ � � . _ . _ ,� _ ; � `� r- r � r.3�k r-� ',�;°� 1- �. � '� .. r s_� f . r �'s� i� � _.,{_ � t .. � . . � ,. o l _ _.� � �. --- y .� � M u �/��. u�� - _ J' .•a! �,kr�:S u � �y p ' L w ;� �Z�r _ ,�-� _�,�, #, s. ` U���,,. .;� r �.- � Z � -°�. - ly' � <., _ R i� � •' (�, � r _ ,- �., �� :.�--�� I�-:� - 1� � r , ,; „ 5 �z:; , _ - , :,• <. , � , . /�` ��. �i h �, � • � oiC;;M r�,- �/„ ` w i i � 1 , y; v �� �. i /`i�s;:�' .>a ^e� �! � �' � Cf '�`�� 0 � ��:��� � !J< `�; _f� _.r. ' i � % 9 i��, �' z {`- "r = r� .�S ��" R t z � �•�; � � �r��� " ,,� '.y�'' i" _ �" ,� . -� ,:� ��: . a � t� ' ,1 t V � _ �.I� `�'�.-� f Y ":.i�r��J y r = d� .;�i iu�- = - � ,� �. ���<(��� e< ��- � _�,�'� .. -. .. . , • . •. � �.qJ. � � � � L � _ �- � o ., ° �"� ,y ..t�i rS.,= I � �y�� F �� o �1. ' •<-'� � n ' � i'�'� t'e. � �,m s�'�' v. � � �i - 3 �u/ , ' �� �" 1 ',�C - E "+��:��u �?�`'r � � � � �.� I ¢ �1 � ��� ( �� r,' � ��^� � v �' . N .J . r � Q h � f � „. � � o .��. ;� ti � ; .y�l.... `,rv;� ` aF i -� '1.> �:1� �)l yf . �r,.N �� � �� r�%'`, ��1�� i , �,. � r = S.` ��. �� g�� ( , y; ..kR�th ...:�. �� �''� , ) � ti i - � - 1 � ,/ ',v� �nH� JJ.•j „{'^ ti 5 ,'y� � Q �' I',, . , , - � 0 ,�,:.,1 r "Al'I �� � .�_-.. I..,.. ;.d��"a.s�/�� i.__I�_'_d' ...., � - `1:�1';'f ,. �",� .i...';� ry.�,�/rS7/�, � .,`r; p'3 �n 7. ��a . �,rt,l;4,�.. .. � . w . 3r .:;�.�'�.�.p__,��+_.�.�.. , C� �•l- � ,, _ �.. . i I � � ,S �� r�n �oi �� ��- ✓,, -r �t,.rY �'I;� ��::� .V..� , r� ,� a� ..�� � ..? ,. °z_J. ,�r�3C rr �-��t� - `..%�S�Z°�S'' � -- -----' � `- -._.......a. ...,,..�_...a....,_ I. � l � �,r �����, � d � ����,s �r! , � �� � .}..� :��� .s .�a-, �� ._.. ....', .:Z/_ Y%i�� � �! .._..' � i �i. , h � � � .�.V� . � ,J �. �, 1 F 4.� .�rj` �� " _ ^ .�� __ � ��'� � t� , i � , - 1 ° � / �' � �� S � �i i �. i i . �rf � 7 "y�� `+ f �S,/ � �_ -�...,._ „ ��: � � ����ts•1�(�(' �n ( ;�o�w ��, %(�(� _ �i �•:� (� - �����s � i� y�,<� �1�uI"�'�yS'7 - � � ���I'Ffl�_ ��=�-. � -� � ��- ,, � ;� l � , `. � -, �__. � i�.. .., f � - , �. �. �S .a. �',� _7� , .. _ ►,�. j �, .1�.. ;`���..,� '� n �' 3 �� ,,, � � y `�'`�Z" :���%1-'_� � ��" - , � ._ _ _/!�' i- " ..!� , w . , - , �� ( /I i � Z m v � v `_ , c� t J _. - r� �� -e..5� , . . . S -f'�� � .- r ..- , �. .:. .:� J �•. . ,._ �.,. � I ��� �� (,�.;�i�li`�wlw.� �'m _ � 1 �f. �� `� ^ 1('"c'C r, , r,S . g ..,�:� z ,"� -' { r . - I - . � / „� ,�,� m � �� 1 < � a a ' If r- 1� �� � r�� � ` �s '1 )r � - � �i�"" JL._� � B � � '� " � � � � -� �-- z l �� ������lli��v�� .�\z�.l�. �� y �_� `��\,� 1 ��°� ��,11�;\� C l�?sn,��, U � � �'j- ;'T/ !`��Jry (.f ���i� _/ ��i-:� z . "^'-q,�. . r� / b' V � ' la.� 6 t 1<} . � '� . } y 1' , a '� i , s a's� �l^�c �'T �9 � N ,Y .. ria$:ti ; i _ .r - z a _ _ z� " � - � ? St � � _i-, � , � � � �, � w,; �� � � � , � , ,� �I _ If �- �- - - �� > � , ' r� � a „ J' i A _� C t i` !�'� u`i r : � « v + � r V Vr� i s�' r/' -,., O ��° y � 1� � _.� _�. I ° 1 �y� .`� � ,� � �' �\�'. .�'��j�:' ' ) ` ? \ � �,�/,� . ; �1.� � �`S�. .C��� y�, li��..��� / � �,._... �� S � liyte ., _ �M. �.�. _ � �i . ,__f.,� 1 � a _ -:— _� .;W ,�•'� ;� „d , ,...�.�4 , ��F� ; .;,, s, 1�;a \l �f � �. \ E _ J — _ � � ` . �. �,Y � . .. U � ,� � ., .� � . z � � �5: (. � - :�.'•r't�/,�T �a ' "' �' � �`.� �i ��\� �j fg �,�: 5'�` �S � � _�' _ _ E � �I r ' (a � � . ���_' / �� ' ` g _ �� u � 7 ��,., ;�, "'� � "� ° o , �,• � i� 'i r } .,,i , - .;� � ?,�r � - ` '7 � �� ^ � ���� / ,1 r,.� Q e ,.. .. :, � �, � ,7 �. �I%'� o o ' _ .:/ ". .;..� i � �) -r ( � � � ��1�b �{�' c Q � - o J � � _ \� � �/S?'�� � rs� i�, Q � � � . A! '�� v' .. �. � '� .. �, �, a.� , , ..' i , , u � 3 .. ' ¢ � ( : ` --1-�.. v .... r � // U Z . 'O ...' _ � � ._ V tf � . I - �' ��nl� \ f�� i i s� �,N ,_ . ., ;f ��' � b �i n< i �;�� � � � : '$ i� � . � ;�� .� � 3 i / � yt� = 4 - \ 's-.''1... !" ` '��.G , � � r ,�,+ ��iR � p � � '� . ^ f �, -� p / �3 u : � ' {J ! � _ fl[ C < <7N � _ ' a �i ._ - 71 _ "' � _ _ _ x � ��a y� i� p t4 Sr�, �� � Y �^ l /� S� •�� z����t.� ���,�, "�. r��: �Jf,l i�. ��,. �'�:� J�c%� r l � -- l ' z l.: I -�� y� ni'; � w S��� .. , O Q •� R • • � ( __,,,9 � r �r ;, o �q �, s , ,r � ,,. \, r r'fi I =t,,,t-� - - l_.JI ° 1 � ° � ffa � �rs�,T y.. z 7� \ r � "� � � i � f : ' � .!�` 1 , s . ..?. F C i;�S 7 �. _- _ ��4 �i. T . _ lj ,�� j),�� )1�F��:�.'y I- a � � �, g Q 1 �� ;� �;J °. K �<, �• , � �, � �i� � ' 4 G'�. ;s', -- �--- - - - - l �µ, � ,�� !r f c fl�� sa1 s,�.' � t J . ' � �" i � _ `�. 'S }� � �y: )j� y )%t� � 1 !r " ` �'��� I � Ny —' - �- -- - U �J : Y! � i...� r �? �k� i �� � � , 7 , . `.� . � -�.... � _ !,},0 ti .._. . I i � p � - J t1'}�. ��; i rr l ,. ; k� .. _ ' _ � � s l � � __ ` �� l � C�� � � �` F9 � ; � .� �� � , r� . .,. �.. � � 4� q : i�^ � � b.;;'- �,,,/ /1 j�Cl�s '1 y ��` wl / i, �, cS, ii I S . �. ) t �� ( " �..Fl 7� �Y, 1 y' ._ � �� l ". i }� �' 1\ � � C�y O e � . . I � l(�� \ i ,�s . � AF"7'�, i � 1 / i � (' it -� - � �� � � . ' 0 h.4dl � �I.�v , b( � sl� ` ;,� a� 1. . Si ��' (Y t�,,��;.j � / J S :��P,�(�1 � _ 1 �-' �a 4 �p,S' -� 1�� i V �I � l � , i. , r �, , f , "F � ' 1 ,( f �, ) �:_J �J� I. �' .' l. �Lr �1 � 1 17�'r�y; r U � Q� l, _ f �t � �'.f :, V �Tn¢�:� � � ;I i� �,��� F� 1 !� r t .1 r� ti '� — - - ) / �v. w. � � q , ��" r 1 ��' � pq - � - � � �i � i � 1 � Sl . _ , � � r� r W ._'\:\ l. �� y � � , `v lT' � . t `(� 41 � � � .] 4 � 2 � 1 . � `L..r'� ( S � _ —_ _ -- � � !'1� .L �I . t � � � � , ' q i r , `..ff^ " - � 5� }� �'R,. .�' , a� `�,, � Z.� r�" ; 4 ' .� r r' - r �,��,, Q v.� Y( � i %� ! i �)I ( O '�kt � �� ��..r ft(ffj� �,n i n4. .��..�. Si .J .�� zi � �i,)3-�' Q-� �,�..,��-� �i'.1 � �i€ �'; "��"' 6 �i7 C '� �. w � � � o QI \,'7?�; l - i I\��r \� 0 0/ / i G �1�� ��k ,� � � ) t5 �.a-U �i � �y „„r ��� t. ���'�S. - � S ��LI .,'�'S � � [`� ii -`��y i��- ' 1 � ° 't t �^. �"1 � ��1.�'J �� -- ;rrarL. ����J i�; � ��' ,!`� � _ \) �� ���..- - �� :��..�'�J%.af�1..-� ; ;n. ( � � t ���. � ! � �� � � �1�11.;� �..' Q °"° - _ _ , r'i m-` �.�i� .. :�� 1, �� .,�� ��� j���.if�� �-, i�l � - i-�- T . N _ ��[�_ _� �� '�-' , I - i �. ��i i�]'Y�,�� lLl � !3 , � �. i 'r �.- J' l� ����3'I�" Ca�v�,� r r.� l ��.; � �`��5 ��v'� '� v ,���' �' .:� , � ..�� ��, .� � �L�'I r`��� S � ;7. ], � ,_ � _. (� . , � . E ... ��;� � � ( �.. �i ��. .�J7���, �.';:�;/I^e"�lo � I�at�ri 7 � �?^r ( "y� � �-� ��.;�, � �' a� 7 ;�:, �,� ,y.� ��l.i�' 1 <f ( �� t 1 `5 ,. �J " � o S, �r, r #n i� � i.� . 5 �- ��\ t ' � .� � �i - .� ( i ( il 7��^ ,.` � r (� . � .�{ - ' : dli '�� � 1 � zi � ���: � l�� y'r f�" , I � .`�s f . � � >.' 1 r.: ` / � �% � {�(;� l C m \ q �� �.!'1�1'` ✓a1C':��r,-1 Yv / �{n[r,.� /nr�� ��N�� /�,J�i 1 j � . . s `..�'T' ; .. ._I���111J�?f, }� ::.�! �., ,",� t ,��. j « ,,� _. � r � -/' � l �;� _'(5�l � t ��'�o.}. � f '�� { � y � �I�ihc�� .�' ���r p�,. ,� �;, :��.I-: � y .`���;Y�iX ' �p :i ,� ��S ��'r�� i.F ;:M: \ � ( L .i e ` ��/,�{ � � Y i-�� ti �S ii?+. _�s:i�� Y �� �i St^'^ii R � < :,�Y \ ' ( �' � i;`l l . .�4'' ai � I. ? • , � � , _1� . � J ( ,.f' E � ) V `'\ i: f ,� .�i�( F. f< �.r f l .. Si _. ll x �Y ,.,? e....._..__...... .....,........M._....,..�.... ;`�:` S.��dR�i �- � - G„ i.!. �i �r .:l �� {�� N �` d u�`, FL �„y,^. L x o { j���-', � ��"��, "� ��,� 1 C.t � i e.. r: f, ,i� �(/ / :i.._. � _�.�. �;���fa.`� � i:-�til1-i.:i �1:� C .,�.y� 1� { �� �i ft/ •� ��� k .�� - ia_h� '�j � ,r�� c � ��:::T ,`(�" - S I '�5 ;r �,:,•�l �. ,/." r.� �y - •) f .' ( �'� r�3 ,�. `f7 � i. ��1 ) .5,� J ) `�^.. .� , � � � /-�; §.Z . 1�cii 7�,' `S�� F`. . � �.�r'�� \ f k / ���c , s � �%i� i�$N • �r,����' � o �1 � i � � ��y :��� � ��.�1 ! JV 'Yf>.'"�/ , � I .1.'.:. 4� ;i' '\�•�• l-� 1- ���/ u - t4 c . . /or �3 ' �' 1 i \ n � �`l�� ��. � � � - r� � � i% �d �..j�� - . � ('S � y '�� � i� a�./ :� 1` � eP �. — i 4 � �,. 3 „fi F� ,;,, ��,�; T \ � �-1. , ` - i 1 �(, i r ? 'a��„��, , ��, ,;r,�� s , J/ � �� ` ; \ti -. . i �� i �,� i _ �.; ' i 1. � :,�. � 4 }r �Lai `•r � °t.� .� � �� � / 4C£.. �> ir ��Sr�� �i �1 �1�� ,� l, f,p� ,1 �. �� �(,�( 7 ���5� , '�.�.'i � � �' r ^ - � .,.- � . I . , , . =� �' l� � ..,, .� � �'�7�. . £ ,,. �; rr�''. .. J° �� tC . ��'�� .��! �.,:,.L.. l � __ �' ,.�/ �- '� , b�;�f ( ( , < 1 ��6;P ..�" t. ��, �'lt��• �>'� . I , - � �,. '% 9 c,�' a'�!" ..� ��' ,'�...,'iit � ti..�. , / - _ � � �r` ..J r rrv/f �y� �JJ�_ �� G. � � t i.t- - v 1 i, n�r't7 �F ,�!> y � ,�.���r� �'f'��. �=. 4--+^ � �i''� 4����,,� /�, ::�p t}1 _ d.�,��,.7i i � / �,,;._ '`C,.".. �if �i Yf� f ; .i _ s'r-• / � (r�r "�� !7 (�- '�i'� L " 1, a � p� iL� ,,. �1n. , � ti f _ ,, / r r �� _:. ��7,.. �n '�.. ., . �., . _.,. . ti :, . ... 13. �. �i�_ t t f ' �^:.:% ' �:... � � -'. ,: i � ,i .r� �S '?h: ..�x� ,( ��� �,,,� .. { . / � r �, �:yP {� 1:� / ;B ,✓� 1`� k _J�s, Y� _ f` yB,� .�,�� �� i ��� c :� � i �� i� �� . 1. nfl�y �I �c .�{I6n'" '.� ,14�� �i tl. - �t _ �.� i � �.: R�S l �d,�. 0� ,I , S (��� � ir �� �� L•� �n .r �_>.�1 - / �ii '��I._ �I� � ,;I.� r� i i�Z;" N �'r�' �' r F' �j' .1 (� - �-r„ '�rd:��l1�' i;.._ k�, .f �, ��. 1: .) .F6��� .��-��, r t �.i �fc,� .on . .w : � n :��: i . r . , p �,q ...r I � .i4 �^ r�� �+ � ,Je: • I �. ' ..1 ).� ili �J V"r�;`� ,dey:�. Yi : .,r , �'r;•.: . ;, , y�'?�� �.L;,. _ .e ��h 'f�. , n. ir i�.. ��.. :�l � !�1.�.. ✓,,, l.. f -,S'�J., u^. lr- �An� ,��.a�'�:N� ^.q ti ��. I �i� - �j�J�l��' lJ��" i 4 . �riS %�.• .ir - .4. .�);;� 'i L��ic� _ .,� ��• ir� �. �e .��.., . ..:n . � F � , . : � ., � 7 : , i t J -o i`..Ri �r�« �,�„ �� ���4' ,-/, ;(�' y� Y�„ �C � � .�-E, . .�� .� •'�•> � oG'�i � ✓.,� Sti � ,r> � - `iZ�;• _ �., t: , _ ,:�, 7`�. � y ,�: i�., vti•; �; I�.f � � 7�. �' � ,�. .�1� /° `k� � r +'.s -, s.�-a,�...{�'d�� i �,fw � i 'j�j�( ��"(� ";( , y I . d� � N� c:1. �.. , v .) �°y �,� ,� _ y.-. .-..\ '-M� ,�`�, : j,.� (`- ) �. u �Nl,' G �I'f'`��.`\ �i t� ��'� .Y�I( ).�.:7"., r - � '�i � � _� �'\., 1� � �1: �� '��v r�' i'Y`=�1 � �c',�.I -�. 3 �. ��'�J_ i�o-i� .l:Y' ..�� .f .� �� `2 �,�_'.�,i 1 � d _. r :d ` +,�:� s:�,. .rl, '�+���. ��'i �j"1^ 'a'ul,�' �,s� �1 ��. �C' ,,���. ������� ,7 - rc`.�,. .i �71"c(.n. _�,�>' �, I ,w::� �` ::� �� .�I`�. ,y, .�.i� �� l`�'�^" .� .' +� i , �: ) ty�.. ... 4-. � "a-,. h:� a � ��r F..��,2 �I _ �� � �. �\�_...c�'e i.e� ' 9 �9)i�� i I n�.� !ti I� ..�r.y t � � (1' i(�' l � � - "� - � � �X' � �.1 �..,y. .f� � i� i. � I � ") "E , -1 ' V v. :;J' 'C � "f� �. �'I;^ � ._ � .. x��� >}f�. I ' ��Y' n ���;.. �,�� � . } (tt� �� ., {( �,� �,� '� � � tiN � aL�-, _ g�� S �l� , � C -��� _ :� ,� � •. o i � •�.! t : c.,, • - � � , v+�. >c» , . ; . ' �_ �, 'ii.. ,.� , ,�" { ,r' ,r �� b`S��^_,$ - . { y .( 4i;: -1 _� _ i i ; ! r ,�S!�Ct'��� ?a �,.pr �o f !�:. „� _ , i '�. ,, �,y., � � �j,� ,�t• :,a � (� � , =e ,....�,,.. .,4 � . rr'r�n� 1�.� z � . � s ,, ,a �_ ..�.�, : e� ;,;;' '.`,i� �j- .� _ - �y: .a2 ���( t_ � �. � � .h � N''�P � ��,,, � ,:. 7 �.�, r � ,., r ai �e — r— ,.�v � N'�rnx�' � 4; � �'.' ,, ,�n.�`��� ; �, �� �, ;•Jl� j�l..�` � � ..�.., ... �t , . �+. �'_�. �' i Sa.=«tm�Si��. ' ' � c �R- :..���'., Kl �.� �'.n;� . ,v/ _ 9b._ �� 3 � 1..�.�'d➢FIY. ), '��T` �.���. > t � s , �"4. � ° : _ 1; � ; 'r . .. � .. , ;.�. r�t ,, _ � rS- �. �'� : � . _ . / � - �- _ ' k J � v' ,! �+� � . G�. � � r� .. ,.:.: � 4, i.� -f �I.. � , va�t i . .� E �v:`��..�.. .�J`, :s� ��°`' n`'{�i, 3�"��� � r ' � � �o-�1t� W �i� J� iE ' �v ' �'r . i ,�! ,il .', rz•,.`. ; �. �, ,-;? ., �f,. , �. 5-•R-... _ ,• � . .. , b r .�' �`� � I ;S ;T',.L,.�:� 1 � �._.. , , ,.: ,. .� � . .- - � � � ,. � ? � ` � � - - _ / �. , �' S ;, C - �: � : tt. . d� ; �, J� . � 1 , � . - _ E - __. r -:- _ .1. � ' ==: � rr , , ,�s ,y, �� -_ .:,. , ..1� _7 , i . x , d� ;Sw�' , � + �, i° -. 5�, � , �. �s r� � �.'X ��� , n � , a . .,• -'-'°r, _ .:-. .__ �, P".� � a 1 � � i: i r� ! l�. -,� . � �, �:F F j � N i�.:�. ��-o �� �i t� .�� ��•< �:� � •�. r o � �.•��;�t'.�, ,.. � ,�; ll�i�/� 1 , i� �.. `Z�\ .+. 'Ja'if� 1 - 1� :,J, .I'I� ,�� ; 5 y ,f�.� ��,j3 . .� I;� ir ��, 1 � 0 1 �:� ,J� 1���:'`a / P, ` , " � � �'ti��� i -��� I�i��. �.y: l �..�: �, � ��.:�� �•�� 3 :� 6 [� .k'.. � �. j� I � m r,. ' '"�.� 'i' l:�. � \ s, n ,�j�;r �� " � i , �°. :,� � � �� ,� � ;_ ; �. m „. 1 - � , � : ) `,�� ;: r� <� ,t..}_,� `1 t � _:� ,� - q �� '�. � _� �f � i *,, ���. .. : . _ . ) � S � .% _ . �.'1 �� - 1,. � ft il I..�' ,j ' •G 1 .� " 1' 4�� .r � C � •i! � -, r �. 1 '.� ' [ � �= N .ts I . � r -< �% '�': . � ,�.. i , �.::. '; .. !�'� �. � '� � � . �' - � 4 ' . z-z . ; t . � � .., � c� �. � ti � __�, � �. � . ., � , ° . . , , �, „ Y ,',, _ - -;_ - -� � _ ) <,, . ..,, U - : �.�-t� � , ,. �� -�,�,�: ,.,�! .�. �, .. ;_ _ t . - - �° , _ _ �, �� . " � ::.: , � -- � f . • ra . � G,�- ;,-.,, ti _. �., ._ ,- � t '� �.; �:,,- y_ vei' o '�..-.� r <:J� a �i��t v•. � �.��$��.�1 i/ 3.,� � .,1._,l I�i�. �.��'l �... _:.::. ,� :i.'.:.r- ��� i ' �o -- �'l t ( . . . ., � . � ... . �-. :.�y�..:' ���.�.r•;-�..r,. . .�J � �i� , ;i , K � �:w,� a. � v : . • ., . ^ �i.� � ;. � � ��,��.;� � : � / 4 Cg` i ' l � ��.il ,�', 4�':, . } , �.�_ �. �� � , �s � -;� � .�:. 1L :1C-_- , �-:, � ' � � �� � � : � ,_ i ,�, "���q�it�.z�;���; Y �r,' .,.;..-�..� :x,.rr��� :�:• t .r - % � - � - ' ,y� - •a :,� r. � .;� .ik '.��(.' � ry "' - � �^ � 4 '�Y�, t�S�.,.�S�.�r.� ..L�ti'� �c. g:. .. "zr � : t' .: �t� :,,� .��- /.'�o i ��� ��. t�- Y � .��rv,i�� : .Y�'1 .., , . .,: � . Y . ' � �,.. t-�4h.: , o ,y i �� i, I. � , � � ., r' " e •... �ti^r:..: � ,., :; ' n �� � (n I T'�'yB'� ���� 7 � �- 1 „�I- ;i�/� ,. (n i i . c a�' i y ,,,� 4 � � �� l i � �� • � o l.` o� '� i i 1 ci: � /' Y��� .-� ��r`r�,. ,�1!A �i if_ .�' ..r�.,.iy�;� � l ��� r '.� �=i� --_ 't� i ��,- ���J. �1� -�. \. / �•`` �,�...���.�, ' �� ;�1 � ( y;- `ry(_ �i,r �.. ?� I l� a� n� a� / f;�� - -- s Y ,� (�� J c u � A y � Pr 1 Y� �?.`� `� t� _� t ` �! � _=' � •"� � eC � p � �,�a y � : . i. I F. f : , - �� � ( I _ i ° ' � S t:. �I. „ �� 1' ' � �' � I x :$ - ` '� '1/��,. � �t 'I ' :tdl tI :�� l� � . lb •: �.�•',I .E�n��'� l s - h r i �{ � r i� �t�i � '"� 2 , d. � _ ( i _ �'' �au�f ��'- �. ..�L�r,:. 'F :�_._. ��?� \ �I_ i l '-!..' - -�'4��' $ ,��� J� ���.;'�. .1 �'?� , r , e - � �� �"� �E' ,r �'.?r . � . -�.� - _ � � `1' � ��;r.' � '�- ; 'c- %� '.'<a i t .`��tir.i -S .-.7' `. � �t�. -~ �,i, ��J � �� 'i,. �:i ;•�,a F. �� - �^�» ��L�: v�, .iW /_ 4 � -s� i f `.4,. � / i �a .�C�''��-' ( �i �,. � '' :� � 0 1 r,i .'i . �):•, ., f i ,I��/ l i jS �...� - ,rf J;�� I;.. j;, ;�,�✓, p ,� > , c. �;,';�$,�.;,, / �;�„2 t ;�:` .. ,.. �' < 5 c �; � � r � - �. r � � . �. i ,� / I v ' ''i' � .� �, � L 't. k'�Y.... . qC '�','� ; t , 'i �l� y'� i : l• �'; "�� r., M s �. � y. J� ,'/, . t� ���� ' ( ..��..,' . _ ). ,�,� ;c� . : l �. f _ /� ` � ; I� :� a �� _� �r�, j;: . ;p�:.�' ~ I :� 1 � u�� }� �n' )4 � � � � ��r 'SSS. � ..3� _ ..e 14. . � � ,(h� � I �}..,, l. �!. �� t -y "� \''_ ,a ���.... �_ � � .'.I... t � ' J ' ,ry�\ . i J� . ��i . ? . �-�, � r . h � � "1/ � �. I� � .7,: � n o� f .(p4 �:�.. �. .}� YI J `�. � .J ,�. c�u . i . ' / N . � \ dW. J �.,S �, � l I . • 3T._;, ,,.c.�"'���, �.� � .� �� � 7I c_ !r ��: , %=� �4� .n. � a ,�� � :..'� _ _ .Y . ' A � / 4`� �,�. � , �. � �'r• � � s �� . -`4-''. •t:�1., . � A , t, _/� •sd� .., � �• �; � r�� i , F• S . s�`. � uF� g � ti � ��,c `a'.� V �a ` � � I�� ,..a l�1. a � � .. ., u � _ ,., '. � . a �j �. `��i°�' '`.?�s*,3.•,�- c �T,( i 9 � � i r '�c,s. ;� „� � `? I � c? ��11' �s � � �' r ��. ,� �;;> � f , �. i � 7 �, r ?� �, � r � 5 � ,G �Q✓ , � tSC , , L '� � ! 'l � � �' i� � j 4 ' ;� \ � � x ?' J, _�� � l . •� .�.� t�A � ' ' q " ; . , s ,,.. �_ - • _ � \ � r,,.�.I ' z" l A r _ ,.� 1 i';: `+, :E� . - i ;1 < �W � � "� r 1 �.f-' 'E'` a � � �iz --_ � 4 ���,'r� , ( -_ - � .. �: .i�` >�� h..�� t j ° i • % , }� -. � �t�. y � ..� �. . ( �: ��_�i -�'�. �` �. �`- .i � `1 _ ' �.t ��f,� f � x . 1 � / F� Y� r y . .,,. � �.Y v'-sca %"�?�3� ° r 7. �''f'7` i _�1- .,3 � I d �.. � '��- .� I:�� '. j :'�e`,'-�,-� �'.. "- ., : € �3�,L.i �x :: �. '�' ,�{`_ � y � �r `V � .� ' �r= . � � =��,1 ' ' �: � , o I;, '; `�.. � �f.r_ i,. _ � - T ` , 3 � s ;�'` - � . _ . :. ` ' , . ., � ,.� �,\ �.:�5 �.,f�. I�: ��€ ,'� ; T.. '„ t .,�' j �1 P� i�� � `' A;° % �`r ''Q'r i '� j _ si � �a e � ` E � .7 ;, ,� ;,J- �. ' - _ ° _ , �i �CY ° d�' „.���� •:�,-• ..' � ; � � � �_\ __ � ...Y+.. I 2 s � ! �"- ., r � c�t o �t:. rl� l y'a> >�3, r � ' t `l ���; �'. � ° - � ;t � � � _. ^� i'��; '�` _ ..�'C J _ y . i�. ,J :) �� � 3 - -n v F.�+� � `ie� � �''..`.° :� � � '�'1. `. .. �. �' s � � . � � ; L !;✓t 'vc �� � J�.. '.wY" . I� vk;-���%� ' z i � r - , ` ;� '� �3 � M '�� �' d �- ,fi .�� � �..�� �� '. �. -� �� �.� 1�'�t. .. y '� �. � �1 � .,. �. k,, i �/ � J '�/ � �� .s r.wy�11 3 �l - - � ��( .�. ?�oN S �. � � � ��(��'�� -� �e � ��, .�`J ? r.7 3 '��`'— tf` - � ^�— _ �� Y i �� —Y' ' - � F•a -- �i; ���l.+r I� ��_ �.' f k -�... , ., k • � � I �' �: � � , ... :. � � �/ i{",��C �l,'C�' . � , r�� �� . . � , ; ll+ �`1c;' _'._ i . �,p.. �) �6-� � .�. � _.,.- . SI _ ���I : . i '� y � \ s r.,. j, � \ l . " � K y� Yi . I,� t+� `I _ �� I �� Y t v� 7 ' � .A JFi i - �;: 1 ,� V :� � ����� � _. � � Q.c � �� .� �+�;` � � �� ' h��� r r �.f,�'�' i t i_r% - L\ ��' \\'_= Y ;�•� Nt � s' w N '� � 1,.. �� � � f �' \ q .� X��, �+,1 � �v. f i.� . _ •\' :��- - y: i, - ;� �'' °�r;� e vre �''� � N9ti�. � \,_ � �Y.,:� x" ""� a � ;�i3 t �� ��' -� i: ��15� {°�� E � �'� � ��",�r'� `� � - _ .r - �� _ _ �''�r `�w W. f;': � r'�� n. !P - - � * `. � � i 3 � i • .> �� r I,..S - ' 'F � �"� _ � � s '(. �.. -{ 1,: �. � . � ,� g _ ti,,�,• ''' � ,,�� ,�ti �1.� �li� j� s' _:� .r �,y� � " � �. ��' S .`,'.� � ,r ;� aZ ��r �r��r � �z l.� � ` � E� il�L ' �i ��,� .f� _ '��F- y �%( � �41 i e�; .���� :1� ;��i: - P �i' _ �rL (�i,M �1 � L ._. N - .�� .l E� } F � ' � `�d .1 :� 1: \. . '. ���.Il .k .s Jr ';�,'. .' {.i_✓: ' �7 4-,� f° - _ � _ __��, g � i (` �•� .�i �>.�'\ \ � tii.!-f/�. � o \, �{ .� - Rlc � � r.. �� s 3 �^ §�a` \. � r �l, �.�� c , �;�q� �_ - ��_� v , ., j � .. p - - 1• � �" �J� a - � �, _. i •'K.�• i �o� �/ _ _ ._ _ __ - �. _ 1 . _ -- ° ' 9 i x �, � ' ��"� Fc I : � .i} ��rs � ;� '•� >. ' o °j s t i � F _ ( � - l� � =i `+ i i F� ;i .� � ` /✓ F ' 4 � l q , `�� �-, �, . ___ ,. ,. . . , dz 1 f" ; � � _ �. � _ r. ,� . 1 � � i � � , -t . . . � �",•4, o,�i '3�:. , y . i ::� � , •� _:�C1° , 1 ? �I� i� ��i. � .l _ ,'?� (. '% `�+° �-�'��� � �' � . � . L`.J i.r - � �.._ .. - c. _ .��� c . � _�. � � . I �� � , mF � �s�,v� .. , z Y ' .�, �.a . _ y S �` • , ) J . , ry �'$ 4 _ .td _ �y _ � .�� o . _._ y�� _ � � , / -, J ,, ..,,, .. e � _ , �, 5 ,� U' � ,e. �� � < ,, - - _ . . �. �. .�. �:� �' .�_:, �., �� (,r � / �J. � � �-/ ty�� o w* �` �' '@; �.( �i �_ �+. `� .v� - _ _ �_ m. p . � l�' - .-,� t' i , a' t ' � � , �� T, � f � y � `� �� �� ,�Y L� . .c o ` _ � � K` N� .:� � ���, rv h, � •-� .. � "` � _ L � S{ � `��.r � y � � r �� 3 �, f _ � �� .L. .I � _� _ `I � ; � _ ::' n � �' � � � �� , t, � � I �,r � , � r �,w, - . -- -.f r,.-;1i � .iR s _ _ ` �' d S 1"' �. u i �� ;- � i r� � •�'^:- .. i:. '� j � \ �(�� U�"� � J � �` �' r <'� 1��� � IT ` �-�..>� � j''S� .'i � � l� � / �'� ' v ,:r/ � � ; o = � F,�r�� � ( . �` qe � � c �, � �. � � � � r . — p � s . �v;M�» � i<. i I� `-� �) I f J � i . \� p • �p - � 1 � _ ...J.&. Sq.n �� ! �ar`� _ - '� /� �,ti p�"�. i, Q �LJ j,y M1. /, � �� ., �n�,. '�1� �, ��*.�3'.. ��� /9. .�a d! . �7a ; o �'��Sti _ � a� ..,I � �. .� „n,��"'�i'�)ft� �,i \ � Z'�k -�:�� �1,"a . r _ �.�, - � � . '.` { •n<=` 1 ! F r. .,., � •� I •� u �• ' �^' � 4" ✓.? P ;N rf� ..... �.� .1�1� � ��F: N I:g... �k Ct. "" , L , / - -,. .L 77 ti. Q ��� �1;:. / �k " .!�" ri�° '� !�- �� %/� �. � �� $ ti A = r �� �? �.�, t � EX" 4" .I _ � �� { � � � � �.� �� .i �., � � � i . . . � a . v, � S � �� . �I ��, � . _ ;*� - d - i rf'°S _'�r . ., r> '2 fP ��+/�c . ' 5 . , �f . . . w r� l . . d �.. '�i: �, '.� ' . ���..' �� , - - � ,- - . , . . l � t T �o - ,,�/` : a I .' ✓;1S h � '7 ' } fS�U.�'� " b l � �� t. j'- o° y .,. / `. . ... � �,', -) �C.�l��' �y.._ `,.�..._ p� � �(7-^..,, ° . °.S.°. , \J°L�� ,� -�. � �' . F _ _. . � .. -.... . . ' _ "_. I. s�. ` _` _ :i� Y` 1���' ��.y.• z t3=`�1 '�` ' 1fi)`�� �, /'�q�l� 1 � - ��l :i: � e :'�4 �`� _ � -�)5' „� f ,Y 1 L .'. `. ,,� (' _ . � C � / i i l , p'9"{ � ( � � i� . (� - k:.�' ^ c. / . ��o �... \� �< � : -��T�' r„ ,sk�'� '.._ ;:� _ � � _ / ..- � -- �� 9c� �� � .� I y �t Gj�� p � , t�� w� %, ' 'T - - \ �, r � ,� �Z... y }, 1t . � ' �, � �s�l'�� m °�'�,Z' - 1��' i _.�*� - - ` � . i c 5 f�l� ,. a /� ¢ 4 �l r la i'' h• ° �L,' f^i� R � �S ' � J �- -( / Y .r � , � �zi� � (� {1� !"� c�r '`jr- `> , �� ' � � F ( n c �'� / . d /� !� � � 7 i �. a" �� � �w' . - � l � � �� w / )4" � f .!� £ � � � , �'� . � � -� � � z 1 - ` a . � f ' il w > , I�,� F a L �, v . e . �, l � Sy+ ._ .....�"' �~ ;.-� - O .. , B . � � � � - I QC F' � . �� f� � ' � l�i��!« �z .� � �}�'uJ'. �t,f r:" h� t�t �t� �� ,�f J J / -`� �.�!.� / _ �' z. "'°��"'"' F ° ��� F- V C i � , y ( il ��' ! r� t�,� i,� � y-� '�` � . l f�.� � �. . j ' r N _ ' - _ < t3 -- a ` � 0 � J' . \ �l �Y,�' ,1 a-„ 1 ' tia � �t, � �y ��,. ' � � Z z � ' �L -.' i' � 1 �� ,�' r'�,�, 1� , p �i;, >D.S ,J r� 1L = — - ' ¢ � o : } > � � �': 2�' �� . - . � � , 7 � F l � �����l1�,� �$ I 'YacJ�' ��1i,`," a '�r•,(0:� • �� �� C��'" i i /,,� ` � � �-�- �`� r i � o Z y � � � i � 7 °° 1� 'iry�'� � Sa �$S:of� \`s> ..�_ > 1 i � �,.� � � �`I,� t �� - :�y^� '^�� �`� ,� - � rtiile . I� � �� % a f �.� . � . �U o-"� (L / . ) .. ..: u. `: 1� / � 9 Y ` .. i'v y ,�, "'� `�;(� '!�/ � � f, � \ • C � / � � s�`.. a ' �E . � x � E _. ._ � J Jv Q � —� __ —' � �; t -�-+�- S � '� d L 'S _ � � 1� � E � � c � � e� ��' i -_ W W 3 € � � -� , crv� Y d' � � I/z � i, �r��,�t�� � 5 �.1 f � ' r�� � i ;, • v ,� � J ��� �r 1 ` ��'�"�,�f , r � _ " - w / : �: , ''~' �� J ._i 1 s ,�s � � �- C ( � h, 7� r 1 � , -p-� g J�. - � Pr � I N"_ l p r- 7. 1 a r � '�.A� t�' (";,� r � ,?, . � � ,���� " � � L� ' , �f� 9 "�" � � . � �S A!' ��;�U \14-.-, \� ��,_ ._' f � i�� �}l .�l �f�':1 ' }� �a°� .. y f � : \ � �� � �3 � J�1��. . �J � � � � W ,; �� '+ `� o � ;/b�'� S i +�' s aSr �i �� V, �'' ' � ' �S'' � 1 � ' � ` �/ y " �k . - 1. -- �_`- ---� ��;. �,5� ` �} > �.1 ' , /h � . YJ C I � � 1 � l:S ,�' 1 . u . — K 2 . i `7.ti w\ _ ` �� �� � O Q � 0 � 1 ! lt . ry( y C ,i��� `� i�.� ' � r � ¢`�1' � � s. 5 ti . �, �''�-' � ^✓j � J I , � - „ahl�^ iw �j o i�i .lr �� � � Q _ l S. n, b � � ''? (' .,r � ` tl`.7'/, .�Jr � C'. F�r .•'L° s', � _ _�-J ° �' - -- R G,:�v. /f .,i �d+, �i ::1�� >- z O�C - � � J 1 ' � �� i��,.:ars�, � it 'i " �' ���'� i '���; ��� % Jri��� ;'irt� , E � ,.� .� li 4 ��) �}l� t�; � � s Z a W �.. � � a �- , _ ri � �� � �� � :r'� � 8 _ �. ,�l . Jt. :L � [ ��rfJt h. ��L � ��:.�: �/`�` �;1,� .: � S �J�- ^'� � - - _ ' �- J l J �, . � fc !' �� _ r�' a., . � (/� A / ! .. � .... �... r t d ) � � 111 w. �_ � R � � tn. a, i f 'i`� 6� ��..r _ _ I I � 1 �' , ,,,C � (�(f `f � rc �i:. Q � o i� �.i � � ; "�` ..-�i . w S( �b ��Ai� E �� .�,�� � � �v G' '�� zi��` '/ j. % �'R� ` , �s1S 3 /,'' _ w Iti..1,� „- l '�.` � � r'1� . � ..�.�i , 7 Q� � / � � � : y� J ,(� .y'� � � �; � _� •. � � r F `, t , , � � _ � ��� �' J' Jy � � .��J� s: � �� ��7,� V U //� • �.-.- ,� r� ' Vl�. ,, 1 J� . T � lt � �!/, !�• /�J J O�1T/ � _ 1 . " . $ l � .i:�� _ l 1 � N f � a G f � � y ti _ ���- �.J� f '�' 7 'v .K �( � \ v � � 1 � � ' ' � n � l � - � J - - S ' ? Y� � u . } K � ,{ W � ,. A, t ,: �"��� r ��"�' � .�; ' 7 �.�si S',t 1� � � �/'�,.Stsf — _ - •� .}'c;� '4 k �,r` .. i - 3 °�';Sr , I' S'``�� 0 � ,.p ',l\� 1 ��� � . � ..,^� � S � � � ��l f � - f 'F�� �' / d ��' � � fii .( 1 �� 7 � _, .( /r - W hJL � M t iT�., 3. � ) i r� � �'t (�} � , .�„� , . r ��` P ;;.� ` y � i - : l +\ � 1 ; i^ ' , ��) , i,2�lC�aC�' �'q�,j ',� � '` � sTl�„"T�'+��'� �) S� b ��.��...-- __ ��� ..� I,,�� - � �1 .;�.. , �)P� y �. (n �- 0_. j� . ) 1 _� W { .( 1 +�l �' L .a ` i V `��!�!� � � � . � � �' �_- _..r� . J ,� . ' � � 'i� l � ! � .. ' '�c. ''��Cg. c ���1,�t,� . ��,h r : a �F ( � � y� �'-� �� _ �_o',-.— �kr _ � � 5l ` � � � � e� �.i y�o1 �- �� � L'l� ���C��� �'� z ���� ' C� � .,�%1 il 7 � iL-�'__ ) �. � � � � � ��i , �id ib �J�� IJ,J � �3 � �d 1 c�^r� e� r�'�' J' r T� � r":'� ��i' � � i, T� � � L, -/ `��- J � ��j� � . � ��. � � `� � / -I� �` ( � � J` ..� ( � �i L i .rs' iR vs � ii�� N• � � �� �1 � I / 1 � Y - J r V'� .<� ^ 'E ' ` I / _' '�� _ / � / ��/ � � 7 �ur l. .,U !� � x 3�� i� f �` L i' :�v' . t�'r / �i . �( .� � I- � � � l k . � ,}� J 1 \ �- ( .�, ' - � j,; .;1 / �" /�/ �'a .7� �G�r�'� ,�, �;�. '� r� , � t �. f, aY � � j C � `�° �i� c `��.r e S . T" f� x� r` , I� �' 1 � " �.j �1 � ' I, � ��)7� �y: * f; � ' , l '4 .,,�.Y!i' � h;�,�„ �/ 1 ( : �,i 3 r! ) _"� !' _� I�'1�'IT a i W Hr, 7'�'%%j �^;'•+'s� .� �Y�� t {' v ' S ,Ga y',ti `;) `� ' y Y - f � �.il f � � / . � � ��°� . . s �� "" y . �5 j n � .:; •i; ` ` _J - � � : �',` d �S' �� ? r�i , I. �' P t 11�` o : V r�l��ti?� '�!%ai'CEj�� -�',�4. !� . 1. �' �� � _r.- f a o _ J/ f� �S� _j f� .7 ( � X ��4�� � � S t� �f �' i o .. � )` \'' - � 5 ' .. f 7�✓�' � �c... ti r�� ���t� �� f �,1� �'� . "� .L,!" -• .� - `Ii � I E '1 (` .� E ��,�j-F � r� ' i�`�.i ti J(f i - ll � l�� i �,Sz.�i � t ..� _ .� � .__._._.._... ..,_....._.....�....._. '� , W Itdr. ,�`�,� �';i � , ' .a. 1/y. ..,,i ) r L ;r�7,, � 1 t' / _ ro I ... % �ti , QI - ,� f ��� � l� ,�l .,G� � 4`r� � .a� T �LlP , ���� � � e�d ��� . s..lti:;_�! ..1� '� a� -tiG; .i:°�C » l � ,�1 � (`' ,"� �"t( � ����, i J�s; .r .��{! ,.�.. � f� ,��', � 5 y , �,�. �,... �.�:;�: _ ' � � t / - �4�r - +7 ) '- p -�`��•'I ) �MIu�f/;. ^ . �''�` ri , `� y .�-'1t\�, } ( c�, .\ ..,��. t�� /,�. JS � c'SID,a!•:; SI� li:`,�O �( '� "r, SJf 1" ( �..�y.���`.4l �5_ , / �1 i �F� = .Z � 9 °.. ,{ y� ) ��'"��. ,a �r' �♦�) i f� k /�`- c 9�'<. . �'._ s V ( ( , � � � . � ( ) _ F ,i� ���-�� lc ,R'Ai yf iJ �`� � l. I \ � I,�LJ � N S 1(C✓� `` ��i.. J!.J ( \) -f���. 1�5 �� 5'S< � r0 .L... ..�;�f` f . ,�� }� v ,� I �� �'4• , .,,� �.� � 1 ti ) "� c 1..,,,.''Q-' � r'�"-� .� � r,� � f''� i._ 1 � =�� -� - � _ ( �j rR " a r �i� `f ., � �'i' �, `, � � �':�, �1 s �' f _ n,� �� �/j� ` 1 � : ���1� � �,_ YJ' \ �•- �, J �,�r L ���. 7�� 1, I ! / / � '{ �' �' (. ( �� � I �.��" \� Y �1 4� �1v1 4 1 �. -' � � � � '� p s : � � � acJ,� r _ aVS�' :,:�C l . `��'��t$ ,� .;-� ii ^(' � ` / /� }. t 1 � _ V°., r h �l,y i� ,� 6 � ���,j,� i,�, o��, .i � �r n J; '!,, y � `� - �� ' �i.-� ( - � ' - � ' ` `3,'t � - t �hi� o✓ � LLS�1 �� t ��h;�,, y � --zr� �' - - -- � .N :�, y y?s . � ��i ? ) � (r i ,�° 'uar�'�"� �Gi ���{' fi `�, `•�+ u, YJ� #n"/ � � /, i; �l , '� - ih° � __ � S: `�� �Y Y"p „ � ,1[��- �}� �f � 'Y :.� _.-. . - - � / '-� ,1�. ��No�l�.r�i�i ..r� � \fbqSl h Y, i i'�h\; � . l.: y '. _ , � . ,G y� : ; t{�� �N :E,s: ,,��?.., ` .}� � x,: , �„ . ` 1� �, � i �q � $' ,..;�.=�' .. �'�, /'f '�, i ,_ �� ��/� �'"1'» ��:1,. , i ? '.t� .i'i' ��' �j , �� � �, d� ./�, -� � � � b a �" 'v '� 5 .:n\� � '�� ; 1. , � `�r � �}+, ,�x� . � t T i . _ �IY .�Pn �� �-v�1 � �z � � � nti ,�c.�'i ��.�.. ,.�a. l• � . � i�s�� J��i.a 1. � �)[. �.�;. �� �I �� ��'��? .�' � � � ,.�. ,���C: ; ; r .:(C�;l' � ��, � --�3 ; _ f _ � �! �,� .; •c �� _.,o�". "� � f (, S t „� „ '-�,"�; �;•?�y i � p .. �'�6 e� y; � � s `� H.<_� - n5 ��� Il.f>i ( �f� 1�on .�. ��i' ., i/ : :�f" j�'-°' .;P ;`�� ;E � '� ,r �'" �/ ; ���� ( � 2'.' d .1�C,� , �`Clll�' { � I�i+Y 1':��;' l� . f,'f�;� - 7 i .m"�Yn'.Y. c �_' [�f.:,�s�,i a �ti. .4�,��;1� � x,.,��T�;` �._ ,14�. ���4���. ,� � ,� �" � ` ' . ' . i ^ �, i i t . � I L . '�'i�.�� � " � -'�=k ^ n nXL -, � 4� L / r� f ��% 1 , � �, . :i� � � �;,5� � �"��� i i�2 `� r� 3 15�\` �\ a)' � 4 a ) � ra - - u 9' � vr�;y� y,�t, o y ,. .� .. _. t: � � r' . i .. ( �fit r F'n V P I 1 ..''y p -- ` ! :_J � �: o /�� ; c t" � _ .. ,. r � �� ; �;�_w. 1. % � � ° � �l �� `' ' �S �� y I . ' fr�,� l �+ E 01 '��, h i�i� S( .�r�7� ��� � � /, . T�_ Y � �� .� � .� � ,M . 1.? E� }_ ��.. �`,� .�. . � � � ' �„t.l . 'Y 1 ` :l " f ' ti I�.If j :1 ,� ' , , T� � � ., {� {� ! 4 ��. � Y 1 _ � . .� : ; f�f�; '.1 t t" < 3 :r�' �-, �`�r � � � 'l,y. f � ; �7, � . � r�� :,.�� , ,� � y F�k�� s� x� � . � V •' � � E C� � ; � 1� C� -'-;=1-<._ - iav� ka,l <,�� .. 4r_.:5' /i � ;;� ` s �r'/ � r � � v ,� � 1 _ �, e > � / ��� � `'li �L�11 ., /Sa ,�iy . ;d ;� l �A' � ,� ��i 4 i � � .i ��J �; j '0 1 , J,sa ., r,,, n,;� r� ,Zc ).,� �: .�-,� � � � , t�r,� ` \ 6 � � , �r �r� �. 1 P I' N ��? .7 � f � ��� J ! •. � .1 ; t � . � `� �� �y (, �. _ _�_m r' n _ ,\,.�v. - � ; � �f' ( �-;i �1: � � ���� f ` r'�, . ;��f'`'tr �y ,� . � ��� ,� • K,• - L�., `;7 r `�. �, ,- �1 � . � - ' � ,��, ` t • v5t�. �,.r ���t,,.���1`.�; ,� F � > . -� .- �e. � _ �� �;; c , ,����1��i,�'.P�� , , � , r ': c ;h , : -.,.. `� . , ' . ., : - A- �, r f y �i � �. ,,;, , ,,,T�,�,,,... ..�r �F�� ������: , � , ! � . L s �.�..,. °R L 1t� .y r r - - - - �°�� ; _,� �. o ;�r- G ;., � � �.,� , , �. , h ,� . ..iy: �'is - ' !. �i S :a'I' =1`' ` F �r'S + .1� . 1 < u . n � � c ,;2,. �l. l � r_�( ��' , �a ,�- y � � : tt� �i'� 4 - �.a !;I.Y'' � -'�i%�, f_, �� �� j 1 �o S'�' � � I �` , :, 1 • _ ' .1.,. '�`, , . . . .�� � .�r'p ; :� �. _. S . - �`� = - -'���:r , � a ,�� - 4 :�' li a6+�� ,: � � �;'-r,� ��.� � � �1L.. �/ . a . �'t r,y; �y �� `F` � r � p ):� � j. y'��{l.l�'i�el��i. :2. ( � 3�:f: . , y u �.,� �. ?aa� >� �� _ ' t ��..' ; °ct: a Sf '�1�, � 5:..� ' ' •L.�.::. � p] /_,�.. _ ,S: � t-� :c:..�` �' r � (nT .yi ),, � 1� ..�;, ��,�� .� � �!i ��.,�. � ��•\� �,,� ( ��� �7 S �I� �� ' �\� O � FY �v� j �/ - � �I � �� -��� J. � ` Q-�( ��� � I � . 1 � ��� � '`- ��..'4`��, ��, �(J _ ,m.. �� � = t " F l `� � - "�".�,3 ti � ,.' / , �� " ._ . �� . i lY � �!� ,�� �� .�� - \ (�'1 .t �o. r .� i .�.�� IPy � :�` � � . Y '/L� � �;'> � .,, r ��:y, ��'� a� �� --� ` �, •� .� 1" �S ^?a 3 _ a, _ � � r `7; _''z„ j ,�,?.;1�:<\"'^� ,' r r. �.�. � �x. �� _ -ma� � {� "ix n ���:t. �v� �,�, ;l ,t YlO :��'�, , L_� �. �o:, 1 , I 1t4' � I •.�� : .c.�, � r':�<� . � ���� (� I � � �pk //`� , }tt.� t' S lil rj:. . ti, � �y �. ' r 'a r ' ` .1- �,.. � ^ � �",�,� �i � F \ I E JI r° ��.. Lr. °o J:yF C - -(r - `� -.i... <.,.," ��';: t �; j ��,: / ' 5;-:a � v� ,,Y.. �'�� .. � ` .r �� �, r�- - -y , � -: - -,� . ,: l�, j -la--! �- -. � 4 ,� �=4 �� ..._� � ; ;'� - � �S Il� � � , :a � ...�i!.,.�.,./��,�„^'A . f � , p � ��� � �� .�'.'�" � s / ; n r � '4 `� Y` :�� ' ( �,}G;.: �,1�`[�:.';�. � � , t,... ' 1�3/,��.�/ xaC1'� �•s S� , i .v /�. !.��_.r_ ,� �, �i���+� �)'�, ..r'�"=_1c i`1^ � � .�;; � 1. �..,��� _ O}} �' �i � r l� ' " _ c. ' . �s� � � lt. / s � � �l � r � F;�� , `�•S��`,Y ` Yi �� M, . � • �'k� +���`4, x�.,�l,.` � �' �:�" ` �� :��3��-ir.,. � "o��� .h �Y' '�. ,�� %. f . ti �iT:� F,�`� li ., . � S F� Y� �, 1 S � �l� . _ .1� . � �{,._ .r�, {�.3' � % �1 ? �- '7( \':�a . Q �- �C�� > � l ,:.v 1f�4: � �I. f , �� r, lj� � +� �' t r ?'` "Y � �a ;5 i� .�i'�_ � ..��' �.., „�,;,, � 4 1 .. � ' I � il, ¢. _ a o ;rc: li �", :;� , ,r!�,����u t u �� '�1 �, a �; � ��: /E � ,k, y ��.u. � : ��f E 1 � �• � c ,� �' n � ; l� ,i•u: f'� I - ° � �'�:�r !• �'r r i�\�>-� � t' AS� f-v...u� � �r,�,,-JJ� _ �"" .•�W 4'unt'"'�; ,1: '�,4'd.:.' '8 � �' 4 �:.y ` �, � ' �� ;c;r�( " � �•� 1��'. �s$ i�d .� �� ° [� e ^� _ - . . - .�. '/`�. d. �.1 , , � � ,�s� -i»'� � '^j�'f` ,: ; �' ,i' 'tr, r+ C: •t, :, i• ��:..' j ��! `�,l1 ' E _ �T t� .�u �r. i�l � :r - � � �- �./��r �j .L . •� . �' t .. � r / Q 7. � d � e 1°"7 ` V ;� �!�" � .. i°- -� -• � . _ • � „ . �::- � ."� I 1 , � . ,.�� . � sj �: � x�n:� � �N . ":,i3 "'�� a"��:, '� . � � ����_. c. . ,i�. 1� �.. � ; �\` .t_ E ��� I" - �., � ti. f � ,f' 1,, s .. �� � � ,�T' ���� �� �� � 1 , � �� � • ; �. f y rq �• � � 4- \..v o��:! � c ; C�.; 1 r: � ,� , �io „ \,'a n � � • lGr ^o'�v r-". ; �. I� [ � y� �'' l ._�� . _.u:� ��` ° �n � '�`. . � � o d � i� �r ��� S" ��tir�_ �toj.:. \- = ' s f -- ` `i s `A %''� � i�. �' -� w� . �i,�J � )'r r � � i ' ` n��� �J S : 1 �`,v'•, � ' �.. .. Hj,� �l�' J �,��� - �� �" j , L�'��1�' :�r '.�...� �1i"`t.� ,� m i y j � ? � � � Q�� ' r ..� I � �B �;� � �a.. ' -�-� ':��� � " �� �r�r� E. �O� .;i^ 'i�^ � '�'", '�`� ' � � �`?Ar\, s k .� � .� v�== ��)�"� S l 3 '_ _ -ac 1�X,�,�R � �n �'� b.. A. L^. j • ,� J' � £ ' 4, �'i - - � \ ` ( _ Z E � --�- .. � _ - f- �';• a i'-� ;� � �,: � -'-!�� ; - � � d" �Yiii PA`:.' F,. _ '� s.'� .Sd . 'i � i \ � � S � E � . � 1 / ,'� ��•?. � 3 c -1 3. . �, Z,� e� ' ' �'; �� l � N" - N; k`v r� MF, y�. , .. i ..� . . �� � ' n S ; - y �. �- i7`" 7 - , - a �'' (�t `� - -- i � "- — i4 �'�' . �'�•�g �L^ � . q �• l i' y f '.��t 5• r� l � �� �`, ft I �r '��' -.- l.'� `' �G i -r� -��. � = ' � I � ',y �N sP� .. J' � 1�; i; „y z �� ` �i ��.r�y - �� .ti• '�� - .;''� � '� 9\`. �5. :e { ��,�5� �� �{I �' ,b��� :r ` '�,r� �� `?� �j f � � i �'�" � ��f'.', f t - �,. ,� � rl fh°';�N jL J, - _ \1 ' a ��� `�.'� �i: � s,_a ;' - i.2g� 5 •� " e os aP �p �L3F' � � w t �.� r� ;_�.+e ..',^.�. � °. s� \ . � � � i � � r; £ / �-� "? ^ � e :-e�^�-- . � c � `'�f' 1 6 � '..�'r - a ,._ �.,.. - r F �� e" - ,� :/ z � � ( � �y t �W •: ; �. ; _ �, i pp':y « a . ' � ( s' `.� '� �� ` i�� f'::� � _ `� ��1 � �! ,c�s� 7 S Z fle _ ., .�,. �: l � ..� s ' ( 1 � ',�+, ). h � � - c3 � r -� ��. ,.!�"� E�n > / � I �i n,, �,� •d ��iy r . ���w �o�, .� `�?i" '�i i .,.j l r�c . ' ii��.o, �! 1 � .. '�r�'. =@.� ��~. � � ' i ��4�.-, _ $• `r� (� -"�� -��8ln.��� a ^ w��Y _ N_ - _ oi r �' �`'" d �'?`y i ay . i � � ; 7 . � ., � � . u� -�� , :� .7� I/ 1- _ � : ` � � � .. _ _ _- _ _ _ ,�� - .��,� y � . .. ty, I. , q ! ,. •�' ��r� �� .. - �. = � t's ' � : 1 i � ��.�� �� Q � L , ,, ..._ ,I a . ;}�,� , . ''' .�,al�r_; o �•�,, _ ��,� / �`�: j� _ -��-= 1 t- _ ;t y y -_ � c �`"'�.. - �.r �� �;j`� �` `9.� �/ ^ .'l �, lu� r � 4 p�.:� �\ `§'1 ��� �'.�.. � {� � g ,� � _ = 1 � - � �L ', .is i � . A� �( o S ' � ��� •i �m - �� s"� `� _ *!�: ��� 7 _' N�6.�.�� - J - .� _ C Y _ y i' �,\ ` ) � + _ , a rt1. ! � 3 i � �- � /s - � ° ` � � � F � V" > ;1 _ �, •, �; r'3. �'_y' �; 1 �_. � �, � � �v � %0- ..1�, w7 ' ' �y -� o = � :7 - , ,�, ��'�• � K . l ,�,� _ �> ° —1 _ _o ' � ,� ,,, , ,,{ , _ � �,� � , ,� �. .�. __ \ �� � � ( � � ` � :> : � i �, � �. If) � '' � 3� + y .. � � e �. -� � ° � o :U• � �` `/ ."'° � � � r?n j«�J-``�\• � �t • • 1('������ � i.� ��✓ �r i ,.'.` _� �� ,eS o `� Y �� <c� �� � rt � � � . �;., y1,.�. ' ...�+r Je l, _ r . ' ��� �4 a � .� � �r , . _ : .` _, . ..-(': � f-�t. Q >� � � - �'ti', a o x �� `' �" � / 1 5 � ) �. __ � r, .� 'x _ �s :: � l. �y i. � � }.� 1��+ , ' { �- • - ,, r i r • ,54,-.a'i _ � : '( ,� � � , I._ ..I.�JI�. � , . �..-: . � . .''� . . `��r, � aS ��.. ��r 7 . 1. � 7 ` I ' �)�. ., � V d • 4 , ., r - � - � ..� � t . . .. p� � i ° l O 5. w�. C„ � .. .� � �F� �/� '�'1 . �' ` l� ��i;r 4 . �, l �. •. Cf .�R` �[�� � 0 . E I � . �:�i� l��' � f � Y / �� � Q �` \ . . � - y C � �L ' . / �.� ti aD C� d, � „ �,w , �, ti it?Sl . �� 'z'. .=� r'`"��,5l� �E `l��" f i '� c ;+;t- .�'� ,6 S ,�`au•��:.` �� �� cO •:t..�, �`,'�, l\ �' .-�� ��'� �..����`i��`� - ��� .s ...„.y ...,�, �O _ �� � .a � y `rt��_1 �� � j ..% ��., ��(�l� d r�� � � ..tic^ J%`,7 .�;ul'�� •'� '�s.n � i�s�..,. � i1 h. , 3�. •�• �•2.� `Y 1 r �-": y I --- - , h �yi� �. .t ,t.` n• �.�. ; . W �_• -�, �''�,,� ��:! b'`� ° i , � ,�'��� . �.. ` qL �^ - I /�'�' ` � H �Q , i ,�2f . $ .��,. �a `L�S�' ,r , , ��a'1 �'�, �` �:$,�'.-.,�^' . , n � - ' �. 2!J ^ :;� l i � � � �: . i �� ��.'J -� 1. � ���'i . � , ^r 1 '�`r �..;r' f . . �a... � lfi �rtY���� � j `\ .I .� �" F . p . ` �.,j.�: � / i�• � � �n , s' ' '.�� i - a'�'0�.`" ' ; �' a' �. N!. ��� ;5'^ C f ° t' . �, � . (t ^ v � . L� . L+ rt u �.����. '"� `'' .,� _ Jba � r - - �r� f - 1 _ '� o �7 0 � o = � . "'� � � • -- r , u- ly, .� ` ,, ., � ..� i f . 4'''r � ��� .: �. 1 ;L \ ( �'. � � .wi l � , 1 _ '�x ��`��r � �`• / �� ��' ,r � �:. � . < S ��l `��+ i" . �� �� 1 � U L„ i . 4 . ;. �- r - r - 1 ' ,�r_ � ' ' �� i 7 ��%j� � - `�,.-- - i �� ` ; � ��'c'� � C� .(` - ��'� q i� p . �'^r�",�-� y '�T ��'.P�.� �r�� c]' F� .: ., '° �{ - j' g ' ' . < � �` �.. � f 5 � ,�; ,�� �. _ , � . � z � , y � � r .�'�` r� , 1. �: - ..•.". , ,)-`�t �M1i:.� ..��'a. -T!..u� .� i. :il.:__� : . ��r. \.,:�_ C� � - * I _ i �.) ?�t �C_� � W i 1 a � � b � < I��. ... . -. 13-�^' :� �� ,�,'q?� � � �+ �' ;.; � , ... . � • . S' ' . ' "' ., i d� .' uo. �. � ACTUAL IMPERVIOliS COVER (= � • ' , �: Recomrnended Value ' � Land Use (1) � Range-Percent For Average t 4 � ; Conditions-Percent(2}; 1: { � 4 4 ' Natural or Agriculture � 0- 10 0 �� i � � `: , � �: f! h �i �i Single Family Residential: (3) � � i� � �� �i � 40,000 S. F. (1 Acre) Lots 10 - 25 20 y � 20,000 S. F. (�S Acre) Lots 30 - 45 � 40 � G �� 7,200 - 10,000 S. F. Lots � 45 - 55 F 50 � � 1 Multiple Family Residential: � � Condaminiums � 45 - 70 � 65 � Apartments 65 - 90 80 Mobile Home Park 60 - 85 75 � • Commercial, Downtown 80 -100 90 � Business or Industrial � x Notes: � 1. Land use should be based on ultimate developa�►ent of the watershed. Long range master plans for the Co�unty and incorporated cities should be reviewed to insure reasonable land use assumptions. 2. Recommended values are based on average conditions which may not apply to a particular study area. The percentage impervious may vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices.should also be considered as it is camnon in some areas to use ornamental grav- els underlain by impervious plastic materials in place of lawns and � shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estima� 4 ing the percentage of impervious cover in developed areas. � It � 3. For typical horse ranch subdivisions increase impervious area 5 per- � cent over the values reco�nended in the table above. 'i '� � ! � RC�C � VVCD �� IMPERVIOUS COVER � r'�YDR�JL�JGY 1�/�AJ�IUAL FO�R DEVELOPED AREAS P�ATE D-5.6 ' � VAN DELL AND ASSOCIATES, INC. PROJECT NO. ��'� - �� 3 7 17801 CARTWRIGHT ROAD BY °.� � DATE - os IRVINE, CALIFORNIA 92614 CHK DATE 949-474-1400 PAGE � OF • —�_�' ��`" � � �� � � �. � � f�-P`'I��C-'�-I f ��-O� l t GT S� ' �V- S ' � � � _ ,,,, . � a-. � .� � N � •F-- _ � � � / � r , ,.� ,,� 'r�`�> � �. � ►� � ? � � � G cl—: '� � 0 2 � � � � � � r � � ;� - � � � �c` N � � f — — � - ` /"' � . �� �� n �' � � , s � � � � • Q 1 � p; � � � — igo' ZgQ � , ,' _ . ;� o ` . N • � r� V � � rJ � �r � � — �� � ` . � . � , � �o �� � � � � � � ��. -.� �}- o �, r . tr � �" 6cA� P N P - � C� — �� � � r'` — — � • RRLVS.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/21/06 File:RRLVS.out --------------------------------------------------------------- RORIPAUGH RANCH PROJECT LV-5 THROUGH PA 27 AND 28 10-YR 9/21/06 SWL ------- — — ------------ — ------------- — - ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file ---------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 ---------------- — --- — --------------------- — --- — --------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(Zn.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 129.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 610.000(Ft.) Top (of initial area) elevation = 1241.100(Ft.) Bottom (of initial area) elevation = 1231.900(Ft.) Difference in elevation = 9.200(Ft.) Slope = 0.01508 slpercent)= 1.51 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.027 min. Rainfall intensity = 2.233(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Zmpervious fraction = 0.900 Initial subarea runoff = 4.997(CFS) Total initial stream area = 2.540(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 129.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1226.900(Ft.) Downstream point/station elevation = 1219.000(Ft.) Pipe length = 50.00(rt.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.997(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.997(CFS) Normal flow depth in pipe = 5.87(In.) • Flow top width inside pipe = 8.57(In.) Critical depth could not be calculated. Page 1 RRLVS.out • Pipe flow velocity = 16.38(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 9.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME �Program estimated size) **** Upstream point/station elevation = 1219.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 280.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 4.997(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 4.997(CFS) Normal flow depth in pipe = 9.67(In.) Flow top width inside pipe = 14.36(In.) Critical Depth = 10.88(In.) Pipe flow velocity = 5.98(Ft/s) Travel time through pipe = 0.78 min. Time of concentration (TC) = 9.86 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.540(Ac.) Runoff from this stream = 4.997(CFS) Time of concentration = 9.86 min. Rainfall intensity = 2.128(In/Hr) Program is now starting with Main Stream No. 2 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 645.000(Ft.) Top (of initial area) elevation = 1242.500(Ft.) Bottom (of initial area) elevation = 1231.900(Ft.) Difference in elevation = 10.600(Ft.) Slope = 0.01643 s(percent)= 1.64 TC = k(0.710)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 21.475 min. Rainfall intensity = 1.387(In/Hr) for a 10.0 year storin UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.717 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 79.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 2.266(CFS) Total initial stream area = 2.280(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1225.000(Ft.) Downstream point/station elevation = 1221.000(Ft.) Pipe length = 250.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 2.266(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 2.266(CFS) • Normal flow depth in pipe = 6.02(In.) F1ow top width inside pipe = 12.00(In.) Critical Depth = 7.73(In.) Page 2 RRLVS.out • Pipe flow velocity = 5.75(Ft/s) Travel time through pipe = 0.73 min. Time of concentration (TC) = 22.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 135.000 �*** SUBAREA FLOW ADDITION **** USER INPUT of soil data for subarea Runoff Coefficient = 0.800 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 87.43 Pervious area fraction = 0.900; Impervious fraction = 0.100 Time of concentration = 22.20 min. Rainfall intensity = 1.361(In/Hr) for a 10.0 year storm Subarea runoff = 1.677(CFS) for 1.540(Ac.) Total runoff = 3.943(CFS) Total area = 3.820(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1221.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.943(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.943(CFS) Noimal flow depth in pipe = 5.63(In.) Flow top width inside pipe = 8.71(In.) Critical depth could not be calculated. � Pipe flow velocity = 13.56(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 22.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.820(AC.) Runoff from this stream = 3.943(CFS) Time of concentration = 22.26 min. Rainfall intensity = 1.360(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 139.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 610.000(Ft.) Top (of initial area) elevation = 1234.000(Ft.) Bottom (of initial area) elevation = 1227.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01148 s(percent)= 1.15 TC = k10.300)*[(length"3)/(elevation change)J^0.2 Initial area time of concentration = 9.535 min. Rainfall intensity = 2.167(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.881 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 • RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Page 3 RRLVS.out • Initial subarea runoff = 3.339(CFS) Total initial stream area = 1.750(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1222.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 70.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.339(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.339(CFS) Normal flow depth in pipe = 5.50(In.) Flow top width inside pipe = 8.78(Zn.) Critical depth could not be calculated. Pipe flow velocity = 11.83(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 9.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 '*** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.750(Ac.) Runoff from this stream = 3.339(CFS) Time of concentration = 9.63 min. Rainfall intensity = 2.155(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity • No (CFSI (min) (In/Hr) 1 4.997 9.86 2.128 2 3.943 22.26 1.360 3 3.339 9.63 2.155 Largest stream flow has longer or shorter time of concentration 4P = 4.997 + sum of Qa Tb/Ta 3.943 * 0.443 = 1.747 Qb Ia/Ib 3.339 * 0.987 = 3.297 Qp = 10.041 Total of 3 main streams to confluence: Flow rates before confluence point: 4.997 3.943 3.339 Area of streams before confluence: 2.540 3.820 1.750 Results of confluence: Total flow rate = 10.041(CFS) Time of concentration = 9.859 min. Effective stream area after confluence = 8.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1216.000(Ft.) Downstream point/station elevation = 1208.000(Ft.) Pipe length = 280.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 10.041(CFS) Nearest computed pipe diameter = 15.00(In.) • Calculated individual pipe flow = 10.041(CFS) Normal flow depth in pipe = 11.33(In.) Page 4 RRLVS.out • Flow top width inside pipe = 12.89(In.) Critical Depth = 14.21(In.) Pipe flow velocity = 10.09(Ft/s) Travel time through pipe = 0.46 min. Time of concentration (TC) = 10.32 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 *`** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.110(Ac.) Runoff from [his stream = 10.041(CFS) Time of concentration = 10.32 min. Rainfall intensity = 2.075(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 147.000 to Point/Station 148.000 **** INITIAL AREA EVALUATZON '*** Initial area flow distance = 440.000(Ft.) Top (of initial area) elevation = 1235.000(Ft.) Bottom (of initial area) elevation = 1228.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01591 s(percent)= 1.59 TC = k(0.300)*[(length^3)/(elevation change)7^0.2 Initial area time of concentration = 7.837 min. Rainfall intensity = 2_414(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.882 Decimal fraction soil group A= 0.000 Decimal £raction soil group B= 0.000 • Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 5.536(CFS) Total initial stream area = 2.6001AC.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 148.000 to Point/Station 149.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1221.000(Ft.) Downstream point/station elevation = 1216.00OfFt.) Pipe length = 290.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.536(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 5.536(CFS) Normal flow depth in pipe = 8.84(In.) Flow top width inside pipe = 14.76(In.) Critical Depth = 11.44(In.) Pipe flow velocity = 7.37(Ft/s) Travel time through pipe = 0.66 min. Time of concentration (TC) = 8.49 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 149.000 to Point/Station 149.000 '`*** SUBAREA FLOW ADDITION **** Note: User entered runoff coefficient C value = 0.200 Results in the lowest RI Curve number USER INPUT of soil data for subarea Runoff Coefficient = 0.200 Decimal fraction soil group A= 0.000 • Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Page 5 RRLVS.out • Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 20.00 Pervious area fraction = 0.900; Impervious fraction = 0.100 Time of concentration = 8.49 min. Rainfall intensity = 2.309(In/Hr) for a 10.0 year storm Subarea runoff = 0.845(CFS) for 1.830lAc.) Total runoff = 6.381(CFS) Total area = 4.430(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 149.000 to Point/Station 150.000 **** PIPEFLOW TIME (Program estimated size) **** Upstream point/station elevation = 1216.000(Ft.) Downstream point/station elevation = 1208.000(Ft.) Pipe length = 25.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.381(CFS) Nearest computed pipe diameter = 9.00�Zn.) Calculated individual pipe flow = 6.3B1(CFS) Normal flow depth in pipe = 5.46(In.) Flow top width inside pipe = 8.79(In.) Critical depth could not be calculated. Pipe flow velocity = 22.79(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 8.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.430(Ac.) Runoff from this stream = 6.381(CFS) Time of concentration = 8.51 min. • Rainfall intensity = 2.307(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.041 10.32 2.075 2 6.381 8.51 2.307 Largest stream flow has longer time of concentration Qp = 10.041 + sum of Qb Ia/Ib 6.381 * 0.899 = 5.739 Qp = 15.781 Total of 2 main streams to confluence: Flow rates before confluence point: 10.041 6.381 Area of streams before confluence: 8.110 4.430 Results of confluence: Total flow rate = 15.781(CFS) Time of concentration = 10.322 min. Effective stream area after confluence = 12.540(Ac.) End of computations, total study area = 12.54 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.479 Area averaged RI index number = 65.9 • Page 6 • 100RRLVS.out Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1939 - 2001 Version 6.4 Rational Hydrology Study Date: 09/21/06 File:l00RRLV5.out RORIPAUGH RANCH PROJECT, JN 881.0137 LV-5 THROUGH PA 27 AND 28 100-YR 9/21/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 ------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 129.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 610.000(Ft.) Top (of initial area) elevation = 1241.100(Ft.) Bottom (of initial area) elevation = 1231.900(Ft.) Difference in elevation = 9.200(Ft.) Slope = 0.01508 s(percent)= 1.51 TC = k(0.300)*[(length"3)/(elevation change)]^0.2 Initial area time of concentration = 9.027 min. Rainfall intensity = 3.401(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.887 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 7.658(CFS) Total initial stream area = 2.540(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 129.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1226.900(Ft.) Downstream point/station elevation = 1219.000(Ft.) Pipe length = 50.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.658(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.658(CFS) • Normal flow depth in pipe = 6.29(In.) F1ow top width inside pipe = 11.99(In.) Critical depth could not be calculated. Page 1 100RRLV5.out • Pipe flow velocity = 18.38(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 9.07 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1219.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 280.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.658(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 7.658(CFS) Normal flow depth in pipe = 11.14(In.) Flow top width inside pipe = 17.48(In.) Critical Depth = 12.87(In.) Pipe flow velocity = 6.67(Ft/s) Travel time through pipe = 0.70 min. Time of concentration (TC) = 9.77 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.540(Ac.) Runoff from this stream = 7.658(CFS) Time of concentration = 9.77 min. Rainfall intensity = 3.256(In/Hr) Program is now starting with Main Stream No. 2 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** INZTIAL AREA EVALUATION **** Znitial area flow distance = 645.000(Ft.) Top (of initial area) elevation = 1242.500(Ft.) Bottom (of initial area) elevation = 1231.900(Ft.) Difference in elevation = 10.600(Ft.) Slope = 0.01643 s(percent)= 1.64 TC = k(0.710)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 21.475 min. Rainfall intensity = 2.112(In/Hr) for a 100.0 year storm UNDEVELOPED (fair cover) subarea Runoff Coefficient = 0.771 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 79.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 3.710(CFS) Total initial stream area = 2.280(Ac.) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TLME (Program estimated size) **** Upstream point/station elevation = 1225.000(Ft.) Downstream point/station elevation = 1221.000(Ft.) Pipe length = 250.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 3.710(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.710(CFS) • Normal flow depth in pipe = 8.30(In.) Flow top width inside pipe = 11.09(In.) Critical Depth = 9.85(In.) Page 2 • 100RRLVS.out Pipe flow velocity = 6.41(Ft/s) Travel time through pipe = 0.65 min. Time of concentration (TC) = 22.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process £rom Point/Station 135.000 to Point/Station 135.000 `*'* SUBAREA FLOW ADDITION **** USER INPUT of soil data for subarea Runoff Coefficient = 0.800 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 82.01 Pervious area fraction = 0.900; Impervious fraction = 0.100 Time of concentration = 22.13 min. Rainfall intensity = 2.077(In/Hr) for a 100.0 year storm Subarea runoff = 2.559(CFS) for 1.540(Ac.) Total runoff = 6.269(CFS> Total area = 3.820(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **'* Upstream point/station elevation = 1221.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 45.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.269(CFS) Nearest computed pipe diameter = 12.00(Zn.) Calculated individual pipe flow = 6.269(CFS) Normal flow depth in pipe = 6.20(In.) Flow top width inside pipe = 11.99(Zn.) • Critical depth could not be calculated. Pipe flow velocity = 15.33(Ft/s) Travel time throuqh pipe = 0.05 min. Time of concentration (TC) = 22.17 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/S�ation 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS '*** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.820(AC.) Runoff from this stream = 6.269(CFS) Time of concentration = 22.17 min. Rainfall intensity = 2.075(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 139.000 **** INITIAL AREA EVALUATION *"** Initial area flow dis�ance = 610.000(Ft.) Top (of initial area) elevation = 1234.000(Ft.) Bottom (of initial area) elevation = 1227.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01148 s(percent)= 1.15 TC = k(0.300)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.535 min. Rainfall intensity = 3.300(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.886 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 • Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Page 3 100RRLV5.out • Initial subarea runoff = 5.118(CFS) Tota1 initial stream area = 1.750(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 140.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1222.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 70.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 5.118(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.116(CFS) Normal flow depth in pipe = 5.94(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 11.07(In.) Pipe flow velocity = 13.22(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 9.62 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.750(AC.) Runoff from this stream = 5.118(CFS) Time of concentration = 9.62 min. Rainfall intensity = 3.284(In/Hr) S�uncnary of stream data: Stream Flow rate TC Rainfall Intensity • No. (CFS) (min) (In/Hr) 1 7.658 9.77 3.256 2 6.269 22.17 2.075 3 5.118 9.62 3.284 Largest stream flow has longer or shorter time of concentration Qp = 7.658 + sum of Qa Tb/Ta 6.269 * 0.441 = 2.763 Qb Ia/Ib 5.118 * 0.992 = 5.075 Qp = 15.496 Total of 3 main streams to confluence: Flow rates before confluence point: 7.658 6.269 5.118 Area of streams before confluence: 2.540 3.820 1.750 Results of confluence: Total flow rate = 15.496(CFS) Time of concentration = 9.773 min_ Effective stream area after confluence = 8.110(Ac.) +++++++++++++++++++++++++++++±++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 150.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1216.000(Ft.) Downstream point/station elevation = 1208.000(Ft.) Pipe length = 280.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 15.496(CFS) • Nearest computed pipe diameter =- 18.00(In.) Calculated individual pipe flow 15.496(CFS) Normal flow depth in pipe = 13.01(In.) Page 4 100RRLV5.out • Flow top width inside pipe = 16.12(In.) Critical Depth = 16.99(In.) Pipe flow velocity = 11.32(Ft/s) Travel time through pipe = 0.41 min. Time of concentration (TC) = 10.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 t*** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.110(Ac.) Runoff from this stream = 15.496(CFS) Time of concentration = 10.18 min. Rainfall intensity = 3.183(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 147.000 to Point/Station 148.000 '*** INITIAL AREA EVALUATION **** Initial area flow distance = 440.000(Ft.) Top (of initial area) elevation = 1235.000(Ft.) Bottom (of initial area) elevation = 1228.000(Ft.) Difference in elevation = 7.000(Ft.) Slope = 0.01591 s(percent)= 1.59 TC = k(0.300)*[(length"3)/(elevation change)]^0.2 Initial area time of concentration = 7.937 min. Rainfall intensity = 3.676(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runof£ Coefficient = 0.887 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 • Decimal fraction soil group C= 1.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 69.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 8.481(CFS) Total initial stream area = 2.600(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 146.000 to Point/Station 149.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1221.000(Ft.) Downstream point/station elevation = 1216.000(Ft.) Pipe length = 290.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 8.481(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 8.481(CFS) Norn�a1 flow depth in pipe = 15.00(In.) Flow top width inside pipe = 0.00(In.) Critical Depth = 13.63(In.) Pipe fiow velocity = 6.91(Ft/s) Travel time through pipe = 0.70 min. Time of concentration (TC) = 8.54 min. ++++++++++++++++++++++++++++++'++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 149.000 to Point/Station 149.000 *'** SUBAREA FLOW ADDITION **** Note: User entered runoff coefficient C value = 0.200 Results in the lowest RI Curve number USER INPUT of soil data for subarea Runoff Coefficient = 0.200 Decimal fraction soil group A= 0.000 • Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 1.000 Page 5 100RRLV5.out • Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) 20.00 Pervious area fraction = 0.900; Impervious fraction = 0.100 Time of concentration = 8.54 min. Rainfall intensity = 3.507(In/Hr) for a 100.0 year storm Subarea runoff = 1.284(CFS) for 1.830(Ac.) Total runoff = 9.765(CFS) Total area = 4.430(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 149.000 to Point/Station 150.000 *�** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1216.000(Ft.) Downstream point/station elevation = 1208.000(Ft.) Pipe length = 25.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 9.765(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 9.765(CFS) Normal flow depth in pipe = 5.89(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 25.46(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 8.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 150.000 *`** CONFLUENCE OF MAIN STREAMS ***" The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.430(Ac.) Runoff from this stream = 9.765(CFS) Time of concentration = 8.55 min. • Rainfall intensity = 3.503(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Zntensity No. (CFS) (min) (In/Hr) 1 15.496 10.18 3.183 2 9.765 8.55 3.503 Largest stream flow has longer time of concentration Qp = 15.496 + sum of Qb Ia/Ib 9.765 * 0.908 = 8.871 Qp = 24.367 Total of 2 main streams to confluence: Flow rates before confluence point: 15.496 9.765 Area of streams before confluence: 8.110 4.430 Results of confluence: Total flow rate = 24.367(CFS) Time of concentration = 10.185 min. Effective stream area after confluence = 12.540(Ac.) End of computations, total study area = 12.54 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.479 Area averaged RI index number = 65.3 • Page 6 • HYDROLOGY STUDY Community Sports Park Roripaugh Ranch Temecula, California Prepared for: Hirsch & Associates 2221 East Winston Rd., Suite A Anaheim, CA 92806 • Prepared by: Blue Peak Engineering, Inc. 646 North Sepulveda Placentia, CA 92870 (714) 749-3077 November 9, 2005 ���OFES� C�,�� � �, '�'��� � � nF,, `?� Prepared under the supervision of Blue Peak Engineering, Inc: 4� r', �t, � nio. c �����? ��; E;;p. G ca6�.r \ %; `%` ���! �� 1`•. � 'l,r �__.___ . _ '��'� CF1l_�F� % / �i /� 9 o S Robe� . DePrat, RCE 60482 Date • Hydro[ogy Study COMMUNITY SPORTS PARK—TEMECULA, CA � Ta ble of Contents Section Project Description ................................................................................... 1 Section Methodology ............................................................................................. 2 Section III Hydrology Calculations ........................................................................... 8 SectionIV Conclusion .............................................................................................. Attachments AppendixA ......................................................................... Location/Vicinity Map AppendixB .................................................................................. Hydrology Map Appendix C .......................................... Riverside County Hydrology Manual Plates • • Hydrology Study COMMUNITY SPORTS PARK—TEMECULA,CA � ' I Pro"ect Descri tion Sec�i on ) p INTRODUCTION This report has been prepared to analyze the hydrological effects of the proposed Community Sports Park site development as part of the master-planned community of Roripaugh Ranch. The proposed site flows will be calculated for each exit point from the development. EXISTING DRAINAGE PATTERN The existing site consists of approximately L9.5 acres of rough graded dirt located at the southeast corner of North Loop Road and Butterfield Stage Road in the City of Temecula, California (See Vicinity Map in Appendix A). The existing drainage pattern splits the property into two sections. Approximately 2 acres at the northwest corner of the site drains into the Santa Gertrudis Wash which runs through the northwest portion of the site. The remainder of the site sheet flows into the Long Valley Channel to the south of the site. PROPOSED DRAINAGE PATTERN The site is a portion of the Roripaugh Ranch Development and will serve as a community sports park for the overall master-planned community. The proposed developed site includes the construction of a community sports park containing sports fields, concession stands and a paved parking lot. Drainage will � be collected through a series of drainage swales and catch basins throughout the site emptying into an underground storm drain system. This storm drain system will divert runoff offsite at four distinct exit points. The four exit points are as follows: 1) Sheet flow onto North Loop Road 2) Proposed storm drain system entering Santa Gertrudis Wash 3) Proposed storm drain system entering Long Valley Channel (East) 4) Proposed storm drain system entering Long Valley Channel (West) These locations are shown graphically on the Hydrology Map in Appendix B of this report. • Page 1 November 9, 2005 Hydrology Study COMMUNIT SPORTS PARK—TEMECULA, CA �Sec�ion I I Methodolo 9y RUNOFF DETERMINATION METHODS The two primary methods used by the Riverside County Flood Control District to determine design discharges are the Rational method and the Synthetic Unit Hydrograph method. The Rational method is generally intended for use on small watersheds of less than 300 to 500-acres while the Synthetic Unit Hydrograph method is intended for use on watersheds in excess of these limits. For the purposes of this report, we will be using the Rational Method. PHYSIOGRAPHIC CHARACTERISTICS Topography The Riverside County Flood Control District encompasses portions of three major river basins: the Santa Ana, the Santa Margarita and the Whitewater. The entire San Jacinto River Basin, a 768 square mile tributary of the Santa Ana River, is located within District boundaries. The San Jacinto River is regulated by natural storage in Lake Elsinore, and rarely contributes flow to the Santa Ana River, the last occurrence being in 1916. This project is located within the Santa Margarita Watershed. Geology and Soils � The extremely varied topography in the region is a result of extensive fault systems crossing the area and erosive weathering. The mountain ranges are essentially a product of this faulting and run roughly paraltel to one another, and to the largest fault zones. The three major fault zones are the Elsinore, San Jacinto and San Andreas. The Elsinore fault parallels the northeasterly toe of the Santa Ana Mountains, while the San Jacinto and San Andreas faults lie at the southwesterly toe of the San Jacinto and Little San Bernardino Mountains, respectively. In mountainous areas soil depths are extremely shallow, and on many of the steepest slopes soil cover is virtually non-existent with bedrock exposed. Infiltration capacity is extremely limited in such areas. In the valley areas alluvial soils predominate, but extreme variations do exist in the depth and nature of the alluvial deposits. In general, the al(uvial cones or fans near canyon mouths are coarse and extremely porous. The materials further downstream tend to become finer and less porous with distance from the source. Some valley areas have extremely low infiltration rates due to high clay content in the alluvium. The soil properties for this project are classifted in Group D. Group D consists of soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very slow rate of water transmission. � Page 2 November 9, 2005 Hydrology Study COMMUNITY SPORTS PARK—TENIECULA, CA �Hydrometeorological Characteristics The three types of storms which can occur over the District are general winter storms, general summer storms and high intensity thunderstorms. Most precipitation results from the general winter storms which normally occur in the late fall or winter months and may have durations of several days. General winter storms occur when, as the result of extratropical cyclones, warm moisture laden Pacifc air masses move inland over Southern California. Orographic lifting and cooling of the air masses results in increasing precipitation as they move eastward over the coastal plain and Santa Ana Mountains. Precipitation rates decrease over the inland valleys, but as the air masses are subjected to more extensive lifting upon rising over the major interior mountain ranges high rates of precipitation occur. As the storm continues eastward beyond the mountains litt(e moisture remains and precipitation decreases rapidly over the desert areas. INTENSITY-DURATION CURVES Intensity-duration data is required for use with the Rationa! Method. This data is usually presented in the form of curves of rainfall intensity in inches per hour versus storm duration in minutes. Standard intensity-duration curves have been published in master plan studies for many areas of the District. In areas where these curves are still applicable they shoutd be used in the interest of consistency. A tabular presentation of current intensity-duration data for many of the population centers throughout the District are presented on Plate D-4 .l . The intensity-duration curve data shown in Plate D-4.1 (Murrieta — Temecula & Rancho California) was used for this project and can be seen in Appendix C of this report. • INFILTRATION General Infiltration is the process of water entering the soil surface. In Riverside County Flood Control District design hyurology, infilt*ation is expressed as the rate in inches per hour at which precipitation enters the soil surface and is stored in the subsurface structure. Among the many factors affecting infiltration or loss rates, three of the most important are: soil surface and profile characteristics, soil cover or vegetation type, and antecedent moisture conditions. During a storm event loss rates tend to decrease with time, although in design hydrology a constant average loss rate is often assumed. In the following paragraphs major factors affecting infiltration.are discussed in deta.il, and methods are described for estimating loss rates for use in District design hydrology. The methods described are based on general information, and therefore are intended only as a guide in estimating loss rates; however, it is believed that when properly applied by experienced engineers and hydrologists they will yield reasonable results. Hydrologic Soil Groups The major factor affecting infiltration is the nature of the soil itself. The soils surface characteristics, ability to transmit water through subsurface layers and total storage capacity are all major factors in the infiltration capabilities of a particular soil. The Soil Conservation Service (SCS) of the U.S. Department of Agricu(ture has investigated the hydro(ogic characteristics of soils as related to runoff potential, and has developed a system useful to the District to classify soils into four hydrologic soils groups as Follows: • Page 3 November 9, 2005 xydrorogy srudy COMMUNITY SPORTS PARK—TEMECULA, CA • Group A - Low runoff potential_ Soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels. These soils have a high rate of water transmission. Group B- Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately well to well drained soi(s with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission. Group C- Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a(ayer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission. Group D- High runoff potential. Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high sweliing potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very slow rate of water transmission. The SCS and U. S. Forest Service (USFS) have mapped soil types and assigned hydrologic soils classifications in many areas of the District. Using this information the District has compiled generalized hydrologic soils classification maps. These maps are shown on Figures C(.O1 through C-1.66 of the Riverside County Hydrology Manual. This project falls in Soil Group D as shown on Figure C-1.53 in • Appendix C of this report. Soil Cover Type The type of vegetation or ground cover on a watershed, and the quality or density of that cover, have a major impact en the infiltration capacity of a given soil. In consideration of cover type and quality the District uses a system developed by the SCS, whose studies on the affect of cover type on runoff potential are believed to represent the most comprehensive information available for this region. Detailed descriptions of these cover types grouped in three broad classifications (Natural, Urban, and Agricultural) are given on Plate C-2. Definitions of cover quality are as follows: Poor - Heavily grazed or regularly burned areas. Less than 50 percent of the ground surface is protected by plant cover or brush and tree canopy. Fair - Moderate cover with 50 percent to 75 percent of the ground surface protected. Good - Heavy or dense cover with more than 75 percent of the ground surface protected. For the purposes of this report, a cover type of urban landscaping was used. • Page 4 November 9, 2005 Hydrorogy srudy COMMUNITY SPORTS PARK—TEMECULA, CA • Antecedent Moisture Conditions Antecedent moisture condition (AMC) has a major effect on the runoff potential of a particular soil-cover complex. AMC can be defined as the relative wetness of a watershed just prior to a flood producing storm event. AMC is sometimes expressed as the amount of rainfall occurring in a specific period of time prior to a major storm. Such evaluations are crude at best due to the importance of the time distribution of rainfall within the antecedent period, etc. For this reason the District uses the following gerieralized definitions of AMC levels: AMC I- Lowest runoff potential. The watershed soils are dry enough to allow satisfactory grading or cultivation to take place. AMC II - Moderate runoff potential, an intermediate condition. AMC III - Highest runoff potential. The watershed is practically saturated from antecedent rains. In rainfall based hydrology methods it is normally true that a low AMC index (high loss rates) should be used in developing short return period storms (2-5 year); and a moderate to high AMC index (low loss rates) should be used in developing longer return period storms (10 — 100 year). For the purposes of design hydrology using District methods, AMC II should normally be assumed for both the 10 year and 100 year frequency storm. In the case of spiltway hydrology for dams or debris basins, a condition between AMC II and AMC III should be assumed depending on the degree of risk involved in failure of • the structure. Since this report contains the results for a 10-year storm event, an AMC II condition will be used for the calculations. Impervious Areas Discussion in ±he previous paragraphs has dealt entirely with infiltration for pervious surfaces. In analyzing developed areas the effect of impervious surfaces on the average infiltration rate over the entire watershed must be considered. Estimated ranges of impervious percentages for various types of development are given on Plate D-5.6 or E-63 (identical Plates). Values given are for the actual percentage of area covered by impervious surfaces; however, studies have shown that effective impervious area is generally smaller than actual impervious area. A number of reasons for this difference can be cited, i.e., an impervious surface discharging onto a pervious surface where infiltration may take place, evaporation from loca! depression storage, pervious area under the overhang of rooftop eaves, etc. The difference between effective and actual impervious area generally is larger for short return period storms (2 - 5 year), and smaller for longer return period storms (10 - 100 year). To account for the difference between actual and effective impervious areas in District hydrology, actua( impervious area is assumed to be 90 percent effective during design storms. This adjustment is made in the computation of runoff coefficients for the Rational method, and in the computation of adjusted (oss rates for the Synthetic Unit Hydrograph method. • Page 5 November 9, 2005 Hydrology Study COMMUNITY SPORTS PARK— TE M ECULA, CA � RATIONAL METHOD General The Rational method is commonly used for determining peak discharge from relatively small drainage areas. The Rational method is based on the following equation: Q = CIA, where: Q = Peak discharge - cfs C = Coefficient of runoff I= Rainfall intensity (inches/hour) corresponding to the time of concentration A = Area — acres Time of Concentration If rain were to fall continuously at a constant rate and be uniformly distributed over an impervious surface, the rate of runoff from that surface would reach a maximum rate equivalent to the rate of rainfall. This maximum would occur when all parts of the surface were contributing runoffto the concentration point. The time required to reach the maximum or equilibrium runoff rate is defined as the time of concentration. The time of concentration is a function of many variables including the length of the flow path from the most remote point of an area to the concentration point, the slope and other characteristics of natural and improved channels in the area, the infiltration characteristics of the soil, and the degree and • type of development. In District Rational tabling, the time of concentration for an initial sub-area can be estimated from the nomograph on Plate D-3, as shown in Appendix C of this report. The time of concentration for the next downstream subarea is computed by adding to the initial time, the time required for the computed peak flow to travel to the next concentration point. Time of concentration is computed for each subsequent subarea by computing travel time between subareas and adding the cumulative sum. Intensity-Duration Curves Rainfall intensity, "I", is determined using District intensity-duration curves for the area under study. Standard intensity-duration curves have been prepared for many population centers in the District. Intensity-duration data for these standard curves is given in tabular form on Plate D-4.1. The standard intensity-duration curve used for this project is shown on Plate D-4.1 (Murrieta — Temecu(a & Rancho California) in Appendix C of this report. Coefficient of Runoff Curves The coefficient of runoff is intended to account for the many factors which influence peak flow rate. The co-efficient depends on the rainfall intensity, soil type and cover, percentage of impervious area, antecedent moisture condition, etc. To account for the difference between actuat and effective impervious area it is assumed the maximum runoff rate which can occur from impervious surfaces is 90-percent of the rainfall rate. The runoff from pervious surfaces is further reduced by infiltration. The infiltration rate for pervious areas, "FP", can be estimated using the methods discussed in the • Riverside County Hydrology Manual for various combinations of soil type, cover type and antecedent Page 6 November 9, 2005 Hydrology Study COMMUNITY SPORTS PARK- TEMECULA, CA �noisture condition (AMC). In practice it is not necessary for the engineer to make these computations, as runoff coefficlent curve data has been tabulated by the District on Plate D-5.7 for the working range of runoff index (RI) numbers. Runoff coefficient curves can be developed for any combination of conditions by simply plotting the data from Plate D-5.7 on Plate D-5.8. In addition, for the common case of urban landscaping type cover, runoff coefficient curves have been plotted on Plates D-5.1 through D-5.4. • • Page 7 November 9, 2005 xydrotogy srudy COMMUNITY SPORTS PARK-TEMECULA, CA � ' Calculations Sect� on I I i Hyd rology Runoff Calculations Using the Riverside County Hydrology Manual, the proposed runoff for the project was calculated for the 10-Year Storm Event. The runoff from this project exits the site at four separate points. These points of exit, as well as the sub-area locations are shown on the Hydrology Map in Appendix B of this report. The runoff calculations are shown in the following tables. TABLE 1 SUB-AREA ANALYSIS (10-YEAR STORM) Area Storm Soil C Tc I A Q No. Freq. Group (in/hr) (acres) (cfs) A1 10 D 0.78 12.0 2.130 0.50 0.83 A2 10 D 0.80 8.0 2.670 0.67 1.43 A3 10 D 0.79 10.0 2.360 3.14 5.85 A4 10 D 0.79 11.0 2 .240 2.47 4.37 A5 10 D 0.89 16.0 1.820 1.86 3.01 A6 10 . D 0.79 10.0 2.3 60 1.22 2.27 A7 10 D 0.77 15.0 1.890 2.92 425 A8 10 D 0.77 14.0 1. 960 3.04 4.59 A9 10 D 0.77 14.0 1.960 3.72 5.61 • A10 10 D 0.78 12.0 2.130 1.42 2.36 TABLE 2 SHEET FLOW ONTO NORTH LOOP ROAD Area Storm Soil C Tc Ttot I A Atot Q Qdes Dia. Slope Velocity Length Travel No. From To Freq. Group (min) (in/hr) (acres) (cfs) (in) (ft/sec) (ft) Time (min) q� 10 D 0.78 12.0 2.130 0.50 0.83 TABLE 3 PROPOSED STORM DRAIN SYSTEM ENTERING SANTA GERTRUDIS WASH Area Stortn Soil C Tc Ttot I A Atot Q Qdes Dia. S�ope Velocity Length Travel No. From To Freq. Grou (min) (in/hr) (acres) (cfs in) ftlsec) ft) Time (min) A10 10 D 0.78 12.0 2.130 1.42 2.36 A10 A2 12" 0.0059 3.92 337 1.43 A3 10 D 0.79 1'I.0 2240 3.14 5.56 __ _ ___ ----- -A3 -- -� - - ----- --- ----- --- -- _- � $��_ 0.00 _4.96 165 _ 0. p,2 10 D 0.80 8.0 2.670 0.67 1.43 A2 A2 ---- -�--- -- --- - -- - q2 10 D 0.79 13.43 2.000 5.23 8.26 A2 END � Page 8 November 9, 2005 Hydro[ogy Study COMMUIYITY SPORTS PARK - TEMECULA, CA • TABLE 4 PROPOSED STORM DRAIN SYSTEM ENTERING LONG VALLEY CHANNEL (EAST END OF SITE) Area Storm Soil C Tc Ttot I A Atot Q Qdes Dia. Slope Velocity Length _ Travel . ..----- ----..---...-- ---- _---�- ------ No. From To Freq. Group min) (in/hr) (acres) (cfs) (in) (fl/sec) (ft) Time (min) A5 10 D 0.89 16.0 1.820 1.86 3.01 . TABLE 5 PROPOSED STORM DRAIN SYSTEM ENTERING LOIVG VALLEY CHANNEL (WEST END OF SITE) Area Storm Soil C Tc Ttot I A Atot Q odes Dia. Slope Velocity Length Travel No. From To Fre . Grou (min (iNhr) acres cfs) in ft/sec) ft Time min) A4 10 D 0.79 11.0 2.240 2.47 4.37 A4 A7 18" 0.0120 6.07 194 0.53 A6 10 D 0.79 10.0 2.360 1.22 2.27 A6 A7 8" 0.0300 6.74 64 0.16 A7 10 D 0.77 15.0 1.890 2.92 4.25 A7 A7 A7 10 D 0.80 _ 15.00 1 _890 -------.._6 61 . --... .... _. 9.99 _..._..__.. .__.......--- _......_ ..... .. ...........--..__. A7 A8 --- -- --- ---' --- 18" 0.0360 11.76_ 41 _ 0.06 A8 10 D 0.77 14.0 1.960 3.04 4.59 __ _._ __ A8 A8 __ - A8 10 D 0.80 15.06 1.880 9.65 14.5 _ __.. A8 A9 --- -- -- -- ---- - --- - --- 24" 0.0100 7.64 464 1.01 A9 10 D 0.77 14.0 1.960 3.72 _ _ 5.61 � ----- - -- _ -- A9 A9 -- ----- ---- ---- A9 10 D 0.79 16.07 1.810 __ 13.37 ____ 19.12 ____ _____ A9 END • Page 9 November 9, 2005 Hydrology Study CONIMUNITY SPORTS PARK—TENiECULA, CA � Sec�ion I V Conclusion Runoff Summarv The following table shows the location the runoff exits the site with its corresponding runoff rate for the 10-year storm event. These locations are shown graphically on the Hydrology Map in Appendix B of this report. Description Runoff Sheet flow onto North Loop Road 0.83 cfs Proposed storm drain system entering Santa Gertrudis Wash 8.26 cfs Proposed storm drain system entering Long Valley Channel (East) 3.01 cfs Proposed storm drain system entering Long Val(ey Channel (West) 19.12 cfs • � Page 10 November 9, 2005 � Appendix A LocationNicinty Map • • � z,s } � RORIPAUGH o RANCH ' HQr a PROJECT SPRINGS ROAO SITE 15 � z w CALLE CHA N�G��' a � J�' � k N 79 u p J ; W � LA SERENA WY P� W 15 � � � � m �� �'�'r v a aN U �` �c �w�" � a �,c�` O VICINITY MAP � NOT TO SCALE 0 RIETA HDT SPRINCS ROAD � 1 3 3 4U RRl� A HaT �RIHC � A i O 7B 1 A 2 5 4A 4B 9 B � 3 ��... �C - 6 11 � � 7A ;' � NAP � 2 _ ( L 33B , _ 16 17 `, / 15 ,—�)19 33A 14 � \ ; �' 29 30 ' 18 ) 27 28 _� 31 SITE � `---- ---- — ��� � . � �______ _ 26 /� 22 ` ���� 24 23 ,, � � — _,`� ,� 21 20 32 LOCATION MAP NOT TO SCALE Appendix B � Hydrology Map • • , � i � om �� � � �� � � � ���� � � � °. � . I � ��m$ .._ ._..._. �" . -: I � /'� � i � n m 9 � � � 3a�� 3 . , j — — Np9Tjy � — _ � � � .___. � 1 ' _ -�' • � � ADAD � � � � � �� — — —�� w� � —� � � � � AREA 1 � — _ � � � ARfA SUMM�4RY w � a '__ �__ �i �a����r�.•� �� � + �{/ * � AC �� AC �-�-3��. 4 AC � •_, � I �� GAI / r� N=4.5" H=9 � H=20" y � AREA 2 ' SAHTA 6E RUD ASH �_��' �_��� � =350 • Tc=11 AtlN. 7c=B AIDK Tc=10 AI/N. � — — -�sm-- _ -� _ C=Q78 C=0.80 C=0J9 � /'-' - - ---- -- '' 0 O 0=Q CfS 0=16fJ O=.�BS �� I ; I - _ AREA 5 eaFa_i � ARFA 6 ��� �.�.,..�.,,.,��o 0 v, .'"� / �` ,' Q A=1.47 AC ,4=LB6 AC A=l.12 AC a= �'" i O � �,`_ N=70' H=!7' N=15" � �' ' � � Tc=� AIW. 7c 616 MqtL c J�0 M/A! �` '. ' A R E A 3 c= o.� ao.e9 c=o.�9 ` � � , l 2.14 /N/HR / 1.87 /N/HR 1=2J6 /N/HR Q y, I Q. 0=4.J7 C� 0=3.01 CFS 0=2.27 CfS .._...... .. � � _. _ ... _ . y � � a - c - ac - ,ac -' , - `- `•, ARfA T AREA B AR£A 9 , A 2.91 A A 3.OI A-,�71 . � I � H=10� H=12' H�10' _. ... . .. ........ ' .. � � � _ _ . � . _--- AREA 4 o �=��s• i=sao' c=�9a' � AREA 1O _ . r�=�s �rN ��_�� ,uint Tc=i4 MW. _ : � ; � __ � - - - c=o.» c=o.n c=a.» „�� .: I � I _. _ , . .. _ Q /=LB9 /N/HR b1.96 /N/HR 1=1.96 /N/HR n ac om�ia 0- CFS 0=4.59 Cf5 0=5.61 f�'S � m � � a �� ' A-!f1 C 3 - _ I- - ._._ _;..-u-_ .---� -- ' ` ----- _ _ ------------ = � � A �. -.. . .. . H Z.5 I L -cr. _ � . - - _�-----�" %esr � Tc IZ AI/N. _ ... . C=0.7tl _. . _. _ ��� \ � � 1=2.1J /N/HR 0=1.36 CFS � \ �, ,, � ;y\ , \ �i ', � — --i —=t- — � � � AREA 7 AREA 6 � LEGcNO ` ■ v � � ■ OUIUNf OF SUB-AREA � � � � AREA 9 AAEA 8 �' � i � � RUNOFF SUMMARY (O, � � ` � a o � sHEEr �tow oFrs� o.eJ cFS � 1 �' � £X? RJ S4NTA C£R7R!/0/5 WASH 8.26 Cf5 a � o \� EX// lt� COMC YALCfY CIGINNfL (FASTJ 3.01 CFS �� q � � EX? 70 LONC �ACLEY GdINNEZ ( W E 37 J 19.72 CFS x r F ! � • � y�� ; !� — ° —�— 4 � � \ � � � '`\ . � oR' W \ LAI / 1 O � , � �• 7� '. < . � LONG VALLEl� CH NNEL (WESTJ �- ' � _. t ... i ��-- '_'�'--_�— / � ..f.y .. . O .. � ... . .' .. �� , . i � � 3#7-- _. .. . _ / � ... . .. .. . � ...,;�..., _ . Eps � - - �� �,� Tp �NpNNEI ( �.. ._ , . . . . . . .. . � . .. _ .._. .. ... . . _ .. . � . ` y . ..._.. . . ,.... .," . I . .; . . � .. . . ,. - � _ __ _ _ _ .. NG �p_ - . .. .. . .. �f,oq i ' \ .` . . , .. .. _._ : _. �- . ' . .. - .. � _ � No. C060492 . _ .._ -�---- , _. . ,. .. - __. . ..._.. _... . . - . ; . pE� �.�� � . N � ,���� � _ ;� �Hp : _ \ - . _ _ . , �p�, .. .. .. w � .,. .. . _ - . . ,f ; - undeiyiound service aert \ �\ - �.o�`�� .. _ - � ���� i \ _ �� � � B EF�E y � _ ' _.. _ � :. �r , � � � : . . � ` � �;; ., _-; Hrneo�ocr Co/%• TOLL FREE \ _ . Y •.._ . ._... _ �r./' ...... MAP >-BOO ' _ _ ....__ ..- - - -......._. __ . 412-413.I . \ � � 1 �� ,w� r.svwa� a�rs e�sa� rvu ac _ — 1 . , � — Appendix C • Riverside County Hydrology Manual Plates � • �: � � C: � � M 1 ,���. � "�0�a'� i'�� � �� � � � 1� 1, � � �� � � � . ��{�%y..� ������ � � s��� �3'°� �;�``���-� �. ��? � � . � - � � � o_� 4 (�� ��� � ( � ; � �L ��`�'`\�'�/� h`. i =i1� y _ +� ' �� � � �� ,� , �� �l'•� m R �! � y� ` ' �v. m ��. ` �. ��� �� '/ ��' y ./ .`� � .,� ��7��.�:!'�:� ,1� . � ' f�1=r"� y� � `���� � � ����d' ,� �v,. ! '" ` °/ �, i '� ��l[rY��, �'�i���� ~ ' .�� ��.+ .- � ' L ' , � �� � 7F ' � � � � n � �.� _s►�>�►�. ";.. .��1L1r��µt��a��,��if��'�wa� � i ��'�.� . J �-�!�.�.�'�,�,�.��a a �; . �, r . �� .�. x"nJ���r,��j ����� � . 'V �-� � ��.� �„''��` � '" � a.. �; �� .� mt ,, � ��� �' ' ;�^� f=�"� � ��'�� �_ , � s* `� ' '' ' � ��� � _ .� � � � �--�--. �' *� �.������ .��' - � '�` � � � ��. '�tk f�� ,,���� � 1 ��'�ti�` .�,� �'� J o�r 1 'f?r � � ': �S' A � e � d � ' . � '"� � ' _, ��._�� �'��•.� \ ` �\,`��'�� A � ��' l�� �� •'�� + `1! � ��' _\� i � ,7,J _ � �, � i � �tiu � � � /' r ;,��•�i�. � `. `V^ � ��- �,j� `� � � , �;t����:t�� ��> �� , ,�.� ��,;`% � ��" ' � , � i1 � � 0 f:�117� ����=- �����'�����':: ���1 c� ��� �5��'vzt : e �` � �� � . �� • •., , � - � ��;�-_��=�- �� .p�'Mt'� .� � t�_ ,«. � • 1 - .: � , �'�. e_ '_ � .�� ` • � � � . � � � .�,��,���� • _ �i,���� �,.����''�t..� _ _ � ` Y, ��, � s r �. ��`f + h � � � � � . ' }QK � R�.�.'��C/�'�� {' t , '`�` \ ��l.:�� ��"�?`•�'j-- � � ;�r �� !' � J � � l' 7 � �� �'i �y��� / �n'� . � 1 � � '. �\� 1 /C� /,�,^- 'n/�fil���•�- � ..�,�T��� . , >��i������'.�.��'�,�f� 'r" ti �.+� � ;�, �. � 5 �y' � ��`► � , � . � ' ��i , r� �a;���' f3 � ��'�,� ,z �=r,��;,�" � ���`'1�� `� � ..:_�.:_� ,_ :a,�:��� �K��--�.�i:� ' __ b F.�- �-.:c;:�* �-J...,. � , , ���� � y � � ;� � � '� � _� y . ,� � s "'� - : `.� - (['� y' '� ',✓� ' '�f :' �� � �1���� � , J � 1 �� ,. + � � A � �` ' � r � �' ( r � �,, ��'�7�� �\� �� � 4 1Pf ' ; �'11 ��,,... ► �/� � ' ��' + 1 y . _ °�'�: � �,., !l�'� • d� ��:'J v c; ���5�. ',�� �� � � 4 . � `:�` ��j�' '� -���� '� � . � ���� � I •., i � � y /- •' �^�"�� i.' � � �� , �' ,�� d �� ��`� � � �+ '!' � ' �'��� C• -., ! � `�,��-°!:�iirT � �•! � ,�'r ���� ., ��; � j`� `�'� ����, � � c � � � � b / �' I'� T.�'f- � �� �+�� �� �•��+'n5✓� �'o� /� ` _�� �, � � : � �.1� \.A' � ' f\ � ` • �f+�:,��� � � � _��:�-y_��� � ,� � d� ��„��r�1� „1 ui: •`' `�� ►•�': � ', ~ � �''1��, � ' � t�. � rn.ar� � r �t f�'�� � �;r-. � � '�L�,� � <.° �j:,�: ��„ �►� ���(! , wJ �, �'i-�- 6� � B � � `,�,�� � � �n / ���. r 1r , � � .� � %� ` � I �::..• � a �li l �' [ - � �� w. f - - ,L'i��' � !�, � tY.�� \ �`���' `, �"fI\ . Vv�F{�.�' �4� � ���� V ` �� �Ty��� � l��i>'l� `�.�,1�.��Ji.�!Il�t�'. A � �t� � ��1C��` � ru.r75�'. �+�`�.�.=.1`'l�tY �� /I �'!1�/. ��_ 9:fs L�� 9 �' T �... -. ' �! �• � � I / � b . � � •� - ; u`wti��n te` • I l`. � ���1! �F ` j � y � e 1 , � ' � t!� 1 �r/"1 , �' ;�4umi� / �. �+: .i, -�,) �'��!',�.- ��;�� � r i � � �- 5 � t3r.' �' i S' � ` ��!' � � ``" �����► ��` , -'���`'�.� tr �.� ` '� ` 1)` �� ''1 ! � t I � �-�iT.� � r.�r,+1���� '�; ce 1 ��!: ���� �' � � � �. .. � • ��� ����� ^ �I�' A R`1t�''{�'�]fi� F j,r.1�r�I ������� ' A` r� ������ , `�:� � �'� � � /f � ''l��i�� r L,'yo � ' "1�u °�_'., � � - ��' � � ��� � i y ��, C � 7�/�� �FO � �s `: . `�L1 Y .�l:� ., ��`^�-�0 � �� :;�'�* '� �"-!r�',; ��� . ��- y��_. _,; - ��� : �� �o , ']7t � � � .� \ r � �.�� � � �.., , Jl �� �+� �►�. _ ,,� �� '-' ' , ��`-+aa. � `� �, f � � `� `-�`� � �•� � l ;� ��� -�11'1\ � �. ti �,•_ � , .__, ��/ ' �� , �� �•�P� -�^ _ � �� �� �i i"/----�i��..s:�' ��� t"' � 1/ ��r��':-�+r =r-� i., .�,/,% l��� _ `a��� �"�T � J 1,�. _�C� � p� ,��� � - , �{�� �1',� 'd " ' i �+� �+� � . u �+ �''� o � }�'�i r= = ! Sy p � • " r:p �""' { v �t� : i����"'" '�;"�"'°' '." ="�'.T� � ,4.fI�"'°.�'w��% i � : � ' x��� ^! �= ^r ���1��,Q�'�rr-�. L� B v= `� ..� ���`�1''�� �1 ��z .� �' ,�� ��y� . _ � �Z.�� � a'" � , Y ' '�� � " — _._�� � / ��!_�� r'� .n� 2 ,� w ,�. • � r , � � � -' iP,++' �,� /- .^ � ���' '►• �� `,,+ . r `�1� ' ��0 �'' , � '� ', �y�`�� '' ��� r''��'_.-_-' ..,�r ='(�i��'�"` � � , •��'�� s�,��:s r_.. � y ,..J �..,. s$ 'V�� 'e��y """ ♦ "'�, � ��ri�.,�" a�rl'' -�i�� ,i� : ' �� � � -� �� -i,_` � ��•e�� •?r '. .ri�r►1� �`ye��i i 1z:l1, .f � ,/ �/ ���, rJ►;(!f �� � 'F�4��` - - �`�� r� •.,_����,..♦ti,�S' � � �����'�S �� � t� �b�•�' 1 y ..� , �e °� -`� S �� `�.'� �� ,j' � , 'J'" t� e %!,✓ �/,° � � �,/� �� � � - 1 a � ;1" �� � n g �+� � �� \� ��, [� i �f.�" t �� � ,,�,'I��!���� ' ' �"- Gs�'`"°�La- � - ti � ��ri'�'� �: � �` "\\ ��- \ ��' ' �YF 4� . f� ...i���lGc_.. - � � �,y �� � .� '�,,� � �'����1��P,�,r1 y'�• ' , �': • , 1��tiG. : ��A C� � _ ' _JI� N. y R y r,. o�` Y ����� ._ � t- � � � � i'-. �- , � .a�� ���bv:,� �� � �=��'u,� i � ••�., � `�_ s,l' �'�'��'�, ,'v �''r'dl't_- � ��' r. '�� � �+— �� 'A� ��.4'.� 3� i N� r a � � • h ,�'� � �\ � � �,� � �� � � � ,,,,�,�{;�'�yv�,1,��� s��ii" �� ` �"��� •. ;��r-����` r� �'' ��� n �8��`>'� �� `-`c ,�+ �- r ., \ ��. �� D� r �� J� vc-�A ��oti.� +��_�� ���d� �� �' � ���� °- ��_�K<��c ��. -a�t � �f¢' °-::�,, ���. •�'^`?' �:.,� �a':',�7�� �1p`� � i �. I�i�/�.� :t �� �k• � -� .:��' ;��' /� IIF��.,1 i �' e ��� �����4 �. � _�� ��w �v�-�,� :,v � s�' '�° i,'• -v� i - -� ' r .�",f�i'",�► �� ' � � a" -9 `"� �,,�y��j � � _ } { � ��t ' �� 5��� �� t �'4��A����t� . ��� � �� � .�f.)0'�j 1���.. � � ��b'�,p r�. .� �'/ ;r�O���IA t' � {: a �� � '�.. 1 �f � �'0 / 6f �`�- ;�l��J_r���"��i�..�'� �� '' �,,,.,,�,�`�'� � ' ,y�� �����.a� ' �:,��� �' � „�. wo _:r ��Za �r F'-� Ri'�'����" _?, ._ta,� � � �T• J3��--� p s�'' .` -� k ^ r �34 A : , , , � �` • C` ��� ��i. `�:� �� .�'' J fi �,��p ��u �, . . �� �fi c'�_>_���`t��� •�7 r:� .� R� Y' ``'��` Y �l. + .,�q • � �-�gv/q ��- �-. �;�c ti•���-;.J �i �i` ��f.%�i Q; {- S i;,.. �'- - `� , � \ \�a� �'-- �1,�� .� 1 1 "� � ° d ��� � "��"1� ,,o�, xyn�`'�1 , � �i/� l!��:"� : � � . _�� � / ~ - d. ♦ ° 'oL�i��f' � ''�: �. .�.� , �� '� l� �� y ti� , � �;�',� '� � w�� � � ° + s ' .�i `�� � u �p��� � o � : ��� '�' ;r 1` �� ` �� 1 . ���r;pd'= , �j�s� � � :�,�,��' ����� � �� ��J� , � � . 67° ►1�. � � . . ar �+ � � � `X�yf A� � �"'� „�` �`� • r' � $'� ��" � � l �'°�../%l J.� � ,�'' �.� e , � 1�d' �� �+ V.'7 ��d t�� �• L,- �, `.'� � �:7:�.a..i��c.. i �� � ti 1 � ��.. . +C:��� r�.'�' �4J'�i ►' �:���a = '���M'� �Y ����.����'�f}�'.�r. }� � ���SA ' �r '�'�.�! y r d .� ;,,� � �R���� '�' � - �'�, .+`�"��w;�� ��r i� �a�� s�� ' - e' ✓ �� �� ��'�`'i��9� y� Y �`• .�'"� �� �? �, �`�'rl'`' �� �'`� .1f` ,-� ��'�r'�� ���" ,�� 'd � �����ii 'i�� � �`Q �/ ,�, ,� _ �- �_� �J� �p 9t er . � - �;f� '��� : 1 J y 1/� ' �� ° ��L,�h �� ..��,�i�����' ��_ � P � � �" s .\ �� ��' , �\ t `�1'�^7�1►� f �: � � ��� � ,�.� � �� �'�i/1���' R b���..1�� i�'��� f�'tt,,,i 1v�i ►i�'i:����'f±i`:L -�`-�°``' 15� � 1 � �'• • • �� � �� � -. :. �.- �• . -. . . ` •� �. i � �. ..� �:.,..�:,. � � •�• Tc' LIMITATIONS: L 100 I. Maximum length = 1000� TC • 1000 90 2. Maximum area = 10 Acres 5 900 8 O a � 70 o H 6 � 800 v y� a a � o aoo a 700 6O � > 200 -- c � v 7 w • o °' � c � N E � 100 � 600 a 5O � o 0 50 8 0 `c � —�� E o c 30 9 0 a " 20 500 � (�) a�, d °' �, o d � � i0 �p — � �; 35 0� a� e o m y n 3 6 tL .- K A I � �/) I I � � 400 � , 3 O Undeveloped � ' Good Cover � � 2 �2 � a 350 � 25 Undeveloped O•� �s `o ° c Fair Cover � .� �q y- �E _ �, � 300 Undeveloped � � , ` 2� 15 � '� .� 9 Poo� Cover o . Z / I6 � o -� � 8 Single Family �� � (7 E � J 250 �- f6 (I/4 Acre) d 18 � t o 15 Comme�cial O� 19 " 20 ~ � .- 14 (Pav � � m 200 � 13 � o J � ~' c � 2 ` „' o `� �� / � 25 v ,� c ° KEY � U 150 � g L-►H Tc—K-�Tc o �., 30 � e � EXAMPLE: H 7 (I) L=550�, N=S.O;K=Single Family(I/4Ac.) 35 Development , Tc = 12_6 min. 6 100 �2) L=550�, H=5.0�, K= Commercial 40 Development , Tc = 9.7 min. 5 4 Reference: Bibliography item No. 35. R C F� C� W C D TIME OF CONCENTRATION � s ��Y 1�/JANUAL FOR INITIAL SUBAREA PLATE D-3 i � i � � � �- � RAINFALL INTENSITY-INCHES PER HOUR I � � M1RA IOMA MURRIETA - iEMECU�A NORCO PA�w SPRINGS PERR15 VAILEY � d R�NCMO CALIFORNI� u DURATION FREOUENCY pURATiON FAEOUENCI' DURATION FREOUENCY OURATION FREOUENCY DUAATION FREOUENCY l � MINUTES MINUTES MINUTES MINUTES MINUIES � 10 100 10 100 10 1�0 10 100 10 100 I (1'1 � YEAR YEAR YEAA TE�R YEAR YEAR YEAR YEAR YEAR 1'EAR I � 5 2.B♦ �.�8 5 3.�5 5.10 5 2.77 ♦.16 5 ♦.23 6.76 5 2,6♦ 3,7g 6 2.58 �.07 6 3.12 ♦.61 6 2.53 �.79 6 3.80 6.OB 6 2,41 3.�6 � 7 2.37 3.75 7 2.91 •.2♦ 7 2.3♦ 3.51 7 3.�8 5.56 7 2.2• 3.21 I \' 8 2.21 3.�9 B 2.67 3.9♦ 8 2.19 3.29 B 3.22 5.15 8 2.09 3.01 � � 9 2.08 3.28 9 2.50 3.69 9 2.07 3.I0 9 3.01 �.BI 9 �,98 2,84 � v 10 1.96 3.10 10 2.36 3.�8 10 1.96 z.9♦ 10 2.93 4.52 10 l, z,69 I1 ].97 2.95 11 2.2♦ 3.30 11 I.BT z.80 11 2.6) 4.28 I1 1.79 2.57 i D 12 1.78 z.B2 12 2.13 3.15 12 1.79 z.69 12 2.5♦ ♦.07 12 1.72 z.�6 � 13 1.71 2.70 13 2.0♦ 3.01 13 1.72 2.SB 13 2.43 3.89 13 1,65 2.37 i 1♦ 1.6♦ 2.60 1♦ ].96 2.89 14 1.66 2.�9 14 2.33 3.72 1♦ 1.59 2.29 i 15 1.58 2.50 ►5 1.89 2.79 15 1.60 2.�0 15 2.23 3.58 IS l.50 2,21 16 1.53 2.�2 16 1.82 2.69 16 1.55 2.32 16 2.15 3.44 16 1.�9 2.1♦ I 17 1.�8 2.3♦ 17 1.16 2.60 17 1.50 2.25 17 2.08 3.32 17 1.�5 2.08 1B 1.�� 2.27 18 1.11 ?.52 18 1.�6 2.l9 18 2.01 3.22 18 1.�1 2.02 19 1.�0 2.21 19 1.66 2.45 19 1.42 2.13 19 1.95 3.12 19 1.37 1.97 i 20 1.36 2.15 20 1.61 ?.38 20 1.39 z.09 20 I.B9 3.03 20 1.3♦ 1.92 22 1.29 2.0♦ 22 1.53 2.26 22 1.32 1.98 22 1.T9 2.86 22 1.28 1.83 2♦ 1.2♦ 1.95 2♦ 1.�6 2.15 2� 1.26 1.90 2♦ 1.70 2.12 2� l.22 1.75 i 26 I.1B 1.87 26 1.39 2.06 26 1.22 �.82 26 1.62 2.60 26 1.18 1.69 2B 1.1♦ 1.80 2H 1.30 1.98 28 1.17 ►.76 2A 1.56 2.�9 2B 1.13 1.63 I 30 1.10 1.73 30 1.29 1.90 30 1.13 1.70 30 1.49 2.39 30 1.10 1.57 I 32 1.06 1.67 32 1.2♦ 1.B• 32 I.10 �.6♦ 32 1.�♦ 2,30 32 1.06 1.52 z 3♦ 1.03 1.62 3♦ 1.20 1.79 3• 1.06 �.59 34 1,39 2.22 3♦ 1.03 1.�9 � 36 I.00 1.57 3A 1.17 1.72 36 1.03 1.55 36 1.3♦ 2.15 36 1.00 1.�4 I rn 3B �97 1.53 39 1.13 1.67 38 1.01 !•51 38 1.30 2.09 3B .98 1.�0 �0 .9� 1.49 ♦0 1.10 1.62 ♦0 ,9B �.47 40 1.27 2.02 ♦0 ,95 1.�7 � � (n � ♦5 .89 1.�0 ♦5 1.03 1.52 ♦5 .9Z 1,39 ♦5 1.18 1.89 �5 .90 1.29 SD .9♦ 1.32 50 .97 1.�♦ 50 .BB 1•31 50 1.11 1.78 50 .95 1.22 � �""� � 55 .BO 1.26 55 .92 1.36 55 .9♦ �.25 55 1.05 I.6B 55 .B1 1.1T i (T� -� z 60 .76 1.20 60 .B8 1.30 60 .80 1.20 60 1.00 1.60 60 .7B 1.12 I � � I � 65 .73 1.15 65 .B♦ 1.2♦ 65 .77 1.15 65 .95 1.53 65 .75 1.OB i �- Q D 70 .70 1.11 70 .81 1.19 70 .74 1.11 70 .91 1.�6 70 .12 �.0♦ � Q� �� 75 .6B 1.07 75 .7B 1.15 75 .72 1.0T 75 .88 1.�1 75 ,70 1.00 BO .65 1.03 BO .TS 1.11 80 .69 1.0♦ 80 .85 1.35 BO .68 .97 � fTl D �� 85 .63 1.00 BS .73 1.01 85 .61 1.01 85 .82 1.31 85 .66 .9� O � i � Q SIOPE a .530 SI.OPE _ .550 SLOPE � .500 SLOPE _ .SBO SLOPE = .�90 - z .-�. I � I o � m I I i � • ��B �■�Hp MN��N � ■■���■�■�/N��N■�■�NU ■■���■��������■��� N��A ■���■��M����■N���N�■�■�N��N�����������■■���■ N�N� H�H���H NH■■��n����■���■��������N� Y��� ■■n� N�n���■��n■���■��■■N�n ■ �u��u���■��■� ■ � �na��aan�� �=n■■��■■�����i� �■����uu�u����■ ��■■����ou ■�NH���■�■ ■NHN�N NNHd��■��H��N��■������■�����h�N�W�Y�N� N��----- n�L�- :��— -===-------------------- 1 _ - ------__=_______---- =� ■ii N�■/9.: :�ii±_�N�N�!°��v!�=���iN���i:�� ��i`Yi�t�'l�N��!:�i�N■�����:i������ii�..� HL'�/_N��!r1/!���r����N!~N�������!���i�����=�������H�N���NN ����■�titii!�c7��•�i��!�� ����!:��/�/!_�.��■n���..������■/���H�N�■ N�■■/S•:i�SI.".:.7i����i/������i�/�! :i��■■■���/:�:i����������������N��N ■ /.H���AI'JiNP_iM����i/�!��H��■���!�i�H���!=�.��■�H�N������NM��� IK�i/,!�►; .NN.N■A:•]Y�iN!�N■■■��!5i/�����!����������N���N�■NN��■� . ��C:/.r:J�/�`:/iN!Cill.i�Ni�����N�i��■■���i��■����■���■�n�h�H���M�H ' �N<��IlhIIN�Y�NI��N�� �/�i/������■���■ N�W�N��NNYN q%r��il��/��17�.�t��1■■N�NN�i��N�■n��NN ���H■NH��■Y�pN ■/If�►i�i��: �N�O �R� :N�Ni���u�tH���■��■�■��■����������ANNV�N■� �II/�YHlVI�I'v'i�lN�i�H��N�H�������■■��■NH�� ■N H■��■N�p\� /,■►I�C�I■!` ��►:I�q/.�Y�/.%��■H/�■�■����������N��H■ N� ►II.�[��AC��L7'I�N���N/i�����■N�■�■■��■���■ ■ ■��■■■�■N�■� ■ �II�If�I�<✓./V %H��i�/�Y.lN�O��■�\/���■�����\�����H■���NN�M■��HA�N •�������wiu�►.�■�����m��■��u�■�■■��■�■���■��N��■�■n��t I��I:/H��/F'i�K•7.�NVinNN�MN��H���N�� ■������N�■�M�NN���NHN■� I/�IIRJl�.�O�i:qq�iN� ■NnH■o■W���■��■■��HN■NN�NN�N /�I���I3%N�J%N��i��M�NY■qNN�uuNH�N� NHH��i■ p/I�f/I11I��'� I/�Ii� ���■�HHHV■��H�� �I�It►r%K�!YV,AN�■ ■ �H�N�■BN��N�NNn Nit;7�C7�■W/NI'/■p�■ H■NH�N�� NI�I���INI.�VI�■ ■ ■��N�n�NNNN� �I�I.� �■�VI�N.�YH N��A�N� ■a�N■NY ■/�'It/I�R9.H�%���p■■���■��Hn�h■ ■H� • � ■/' �'I�`:►INI� H��A■■H�N■�HN■■ ■ �I�l%I�Ai ��� ' ��/II�wP/�I/N��NN��N�■HW�■�h�■�■������■���■/■��■���N���� • ■ ' // �'1R9 ��/�■��■�■■�■NhN�N�������■■�■��H�■���■■��■�■�■���■M �/i��l�/1�1'/■�NN���h�N��■��■���■■N�■�■■■■■N■■��■���MN��■�N� ■ HI����'/[�►/,��■n�N��NN���H�N�H��■HON�■■�M��N��■ �I�II�fI �►:'►/���■bh�h�■���N■��■��■�����■■����■��■����■■��■■■■��H� �'�►�r:/��i•�nM��■NmYHN��■H!■N����■�■■�M■�■■■■�M����■H�� � ■ ■�/;*II/►��►���■■�■����■�■■�����N����H��■�■�N�����������■■■�����■�■ ■ ....�.�-.....,......�'�l��'�Y`�'��*��C'iZ'J��. ..................�.. f�/�■/S'91H���■\�:��i . � �l: � • - .. . �H�H�■���q�q� 1111■I�l��i���■��■��■�■ �n�■�������/■■N��NH�HH� ■ I11/■�IL�►���■����■���■�■�������■■���■■������■�������■������������h� ■ '/���I�nI���\��u■■����■■■�■��■■■■�H�■■■■��■N��■H�■■����■■■�■■�N ■ � �� II ■��■�■■����������■■������n�n�■N��■�����■�■��■��N■�■� ■ / /� ri .'\�N�����������■��H��■�����N■����■�N�■������\�H�■��■ ■ ����1/1�►H�H��Nn����������■�NH■�Na��■MN��■■ � 11■il� /�.Nh�N��N�N�■■�N��NN\h���M■��N�N��N� ���� ���� � ��� ■ �f�I�����11��Nr • ��� �\ � N����N� • � ���t���■�������■■���■■�■■■���■�■�■■������■���■■■�■��■■��■�����■��� ■ ��I��� � ■11� �■N■■�■■��N�����■�����N■�■����■���■��■■�■■��\������N� �I �%% �■���� NHH��h N������ �H��N��� �� ������� ��N �� ■ �1/��■�N■�N�p�/■�N���■NN��■���up�NN���■���uH�NH�� ■ �!��■�NN■N�■H���■��HB�■�■�■���H�������N■�■ �■ ■ � ��■HN�HnN■����������■■■�����■■N���N��■�■��N���H���N�■ ■ ■�����■�t■■M���■h■��■nO�■��h■�■�N�■■��■■�■�M■��N�A■N� � / �H�Nh■�H■p�H�N■�NU�■■��H■�■�N■N■�■■■ ��M�p� �:� ��H■�H���N��N�■��■�■�N��MN�■����■q�■������NW■�N�N�Np 1111■������s� ����■�N��� ��n�������n ■V■�NN■■ N�■��N. IIII��N�v��N�����N�� nH����HN■� � � � 11 �■M�t�■■■�■■■�■H■M�■H����■�■���H � �������H■�N��■�\�NN��O��■����■■■■■ � . � � . . � �■M�N������■/�N��H■�������■■�N�� � �■uH■■����N�N��HN■N�v■�■N�N�� �Np / ��■���������N��■N��■��H��■�■������■■■■�������■�■v�Nh ���MN� i �h\N����N■��uYN��B■■����q■ / ■��■�NN�■����HN���■N��H�NN ' • • � ���N���■N���■�������■�On��N�� ��������v�NN���N�NN�/��N��■�� • ' • ' � 11����■■H���H�N�■����■��M\�■�■ � - ; . . � 1 IN���NN�qNNNMNN��H■ II�q��H■���N�������A�H�■ � � 1 NHN�N�■�H�■�N il��� N�■W������uW �� ��N�� • � ' I�N�■�■■��q■�n■���H��q�■������NNM■��Y� ■�NYW■ 1�■��NNO����■ �■H��Na ■ �■Y��N�N�v■� �NNH■vN�BN■ �� - ' � • , �� � ■ ��� • • � r PA29,30&31 � � . PA282910.out • Riverside County Rational Hydrology Program ,CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/14/06 File:PA282910.out 850 0100 RORIPAUGH RANCH PA 29 AND PART OF 28 10-YR 9/14/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file --------------------------------------------------------------- Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County F1ood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 700.000 to Point/Station 702.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 323.080(Ft.) Top (of initial area) elevation = 1265.000(Ft.) Bottom (of initial area) elevation = 1260.000(Ft.) Difference in elevation = 5.000(Ft.) Slope = 0.01548 s(percent)= 1.55 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.965 min. Rainfall intensity = 2.576(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.887 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 2.353(CFS) Total initial stream area = 1.030(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 702.000 to Point/Station 704.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1260.000(Ft.) End of street segment elevation = 1225.000(Ft..) Length of street segment = 1447.450(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 • Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 PA282910.out • Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 27.477(CFS) Depth of flow = 0.563(Ft.), Average velocity = 5.674(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 3.16(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.67(Ft/s) Travel time = 4.25 min. TC = 11.22 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 1.982(In/Hr) for a 10.0 year storm Subarea runoff = 38.522(CFS) for 22.000(Ac.) Tota1 runoff = 40.874(CFS) Total area = 23.030(AC.) Street flow at end of street = 40.874(CFS) Half street flow at end of street = 40.874(CFS) Depth of flow = 0.637(Ft.), Average velocity = 6.244(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 6.86(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total study area = 23.03 (AC.) • The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 75.0 • Page 2 PA2829100.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/14/06 File:PA2829100.out ---------------------------------------------------------------- 850_0100 RORIPAUGH RANCH PA 29 AND PART OF PA 28 100-YR 9/14/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 700.000 to Point/Station 702.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 323.080(Ft.) Top (of initial area) elevation = 1265.000(Ft.) Bottom (of initial area) elevation = 1260.000(Ft.) Difference in elevation = 5.000(Ft.) . Slope = 0.01548 s(percent)= 1.55 TC = k(0.300)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.965 min. Rainfall intensity = 3.922(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.891 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Initial subarea runoff = 3.599(CFS) Total initial stream area = 1.030(Ac.) Pervious area fraction = 0.100 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 702.000 to Point/Station 704.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1260.000(Ft.) End of street segment elevation = 1225.000(Ft.) Length of street segment = 1447.450(Ft.) Height of curb above gutter flowline = 6.0(In.) • Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 • Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 PA2829100.out • Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) , Gutter hike from flowline = 2.000(In.) . . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 42.037(CFS) Depth of flow = 0.643(Ft.), Average velocity = 6.286(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.14(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 6.29(Ft/s) Travel time = 3.84 min. TC = 10.80 min. Adding area flow to street COMMERCIAL subarea type Runoff Coefficient = 0.889 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 Rainfall intensity = 3.081(In/Hr) for a 100.0 year storm Subarea runoff = 60.240(CFS) for 22.000(AC.) Total runoff = 63.839(CFS) Total area = 23.030(AC.) Street flow at end of street = 63.839(CFS) Half street flow at end of street = 63.839(CFS) Depth of flow = 0.727(Ft.), Average velocity = 7.122(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 11.35(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total study area = 23.03 (Ac.) • The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.100 Area averaged RI index number = 75.0 • Page 2 � PA 30 � � . .._ .. Y � �, _ �� 1` - _ �'� � ho !4F^+(':�.. � / — i.� � t � �. f LT � • � � ,� i � t -. 9�i��� ,. c. � �� '•s L� PEAKE��IN�ERI�G -_��..:;_ : :�� HYD RO L�GY STU DY Roripaugh Ranch — Nlega Recreation Center 31431 Polo Creek Drive Temecuia, Cal6fornia Prepared for: Hirsch �c Asso�iates • 2221 East Winston Rd., Suite A Anaheim, CA 92806 Prepared by: Blue Peak Engir�eering, Inc. 646 Plorth Sepulveda Placentia, CA 92870 (714) 749-3077 _ . _. .:., August 28, �006 `. Q �pF ESSlp,y ' . --.._. ��`�,���� J. OF Prepared under the superrris6on of Blue Pea9c Engineering, Inc: � t ��� � � N0. COo04 2 � � Ezp. � J 'l �! V 1�- �Q' ql F OF CAL�F��� �'��./ " • bert ]. ePrat, RCE 60482 Date � Hydro[ogy Study MEGA RECREATION CENTEIZ - TEMECULA, CA • ����� O� �OI1����5 SectionY Project Description ...................................v..............,.............. �ection IY Hydrology Calculations ..............o.......,........,.................,...,........................... 2 SectionIII Conclusion ..............o...................................,.....v....................... Af�chment§ Attachment ................................................................................... Location/Vicinity Map Attachment ............................................................................................ Hydrology Map Plate C-1.53 ............................................................................ Hydrologic Soils Group Map Plate D-3 ............................................................Time of Concentration for Initial Subarea Plate D-4.1 ..........................................................Standard Intensity-Duration Curves Date Plate D-5.2 ........................................................... Runoff Coefficient Curves (Soil Group B) • � Hydro[ogy Study MEGA RECREA'TION CENTER — TEMECIJLA, CA � 5ection I Proje�t Des��'iptio� Introduction: This report has been prepared to analyze the hydrological and hydraulic effects of the Mega Recreation Center site development as part of the master-planned community of Roripaugh Ranch. The existing and proposed site flows will be calculated. The drainage structures will be analyzed using the calculated flows to provide adequate drainage of the site. Existing Drainage Pattern: � The existing site consists of approximately 3.9 acres of rough graded dirt located at 31431 Polo Creek Drive in the City of Temecula, California (See Vicinity Map). The existing drainage pattern is in a southerly direction where the runoff sheet flows offsite to the adjacent lots. Proposed Drainage Pattern: The site is a portion of the Roripaugh Ranch Development and will serve as a recreation center for the overall master-planned community. The proposed developed site includes the construction of a recreation center along with the associated swimming pools, sports courts and paved parking lot. Drainage will be collected through a series of drainage swales and catch basins throughout the site emptying into an underground storm drain system. This storm drain system will divert runoff offsite in a southerly direction tying into the main storm drain system of the Roripaugh Ranch Development. • Methodolog,y: The Rational Method of the Riverside County Department of Public Works Hydrology Manual will be used to determine the hydrological quantities and hydraulic capacities of the site and drainage system. The Rational Method equation, Q=CIA, was used for the hydrology analysis, where Q is the flow in cubic feet per second, I is the intensity and A is the area acreage. The onsite storm drain system will be designed for a 10-yeaz storm. A type B soils group was used for this analysis per Plate C-1.53 of the Riverside County Hydrology Manual. • Page 1 Aub st 28, 2006 Hydrology Study MEGA RECREATION C ENTER - TENdECULA, CA � Section II Hyclrology Calcuiat�ons Runoff Calculations The project proposes a new storm drain system. Using the Riverside County Hydrology Manual, the proposed runoff for the new storm drain system was calculated for the 10-Year and 100-Year Storm Events. As seen in the spreadsheets below (Tables 1, 2, 3& 4), the proposed runoff offsite is 7.90 cfs for the 10-Year Storm and 11.85 cfs far the 100-Year Storm. TABLE 1 SUB-A1tEA ANALYSIS (10-YEAR STORNn Area Storm Soil C Tc Ttot I A Atot Q No. From To Freq. Group (min) (in/hr) (acres) (cfs) A1 10 B 0.88 6.0 3.120 1.47 4.04 A2 10 B 0.88 5.0 3.450 0.36 1.09 A3 10 B 0.88 5.0 3.450 1.07 3.25 A4 10 B 0.88 8.0 2.670 0.97 2.28 TABLE 2 TOTAL RUNOFF ANALYSIS (10-YEAR STOR1Vn • qrea Stortn Soil C Tc Tlot I A A[ot Q �des Dia. Siope Velocity Length Travel No. From To Fre . Grou min in/hr acres) ds in ft/sec) ft) Time min) A4 10 B 0.88 8.0 2.670 0.97 2.28 A4 C84 24" 0.0050 3.42 430 2.10 A3 10 B 0.88 5.0 3.450 1.07 325 A3 C63 C83 10 B 0.88 10.10 2.350 2.04 4.22 CB3 CB2 24" 0.045� 8.96 126 0.23 q� 1 D B 0.68 6.0 3.120 1.47 4.04 C81 C82 24" 0.0490 9.08 139 0.26 ,qz 10 B 0.88 5.0 3.450 0.36 1.09 A2 CB2 TOTAL 10 B 0.88 10.33 2.320 3.87 7.9Q TABLE 3 SUB-�REA ANALYSIS (100-YEAR ST012� Area Storm Soil C Tc Ttot I A Atot Q No. From To Freq. Group (min) (in/hr) (acres) (cfs) A1 10 B 0.88 6.0 4.600 1.47 5.95 A2 10 B 0.88 5.0 5.100 0.36 1.62 A3 10 B 0.88 5.0 5.100 1.07 4.80 A4 10 B 0.88 8.0 3.940 0.97 3.36 � Page 2 - August 28, 2006 Hydrology Study MEGA RECREATION CENTER — TEMECULA, CA • TABLE 4 TOTA�� RLTNOFF ANALYSIS (100-Y]EAIt STORM) Area Slortn Soii C Tc Ttot I A Atot � Qdes Dia. Slope Vefocity Length Travel No. From To Freq. Grau �min) inlhr) acres (cfs in) fUsec) (ft) Time (min A4 10 B 0.88 8.0 3.940 0.97 3.36_ A4 C84 _ _ _ 24" 0.0050 4.03 430 1.78 A3 10 B 0.88 5.0 5.100 1.07 4.80 A3 C83 C63 10 B 0.88 9.78 3.500 2.04 628 C63 C82 _ 24" 0_0450 10.56 126 0.20 q� 10 B 0.88 6.0 4.600 1.47 __ 5.95 CBi C82 24" 0.0490 10.72 139 0.22 Az 10 8 0.88 5.0 5.100 0.36 1.62 A2 C82 TOTAL 10 B 0.88 9.96 3.480 3.87 1�.85 � • Page 3 August 28, 2006 Hydrology Study MEGA RECREATION CENTER — TEMECULA, CA • Storm Drain Capacit� Caelculations 18" Pipe: Input Arguments Pnrameter Value Units �� i s � � ,-;; :. Dia: � (in) i 0.013 n: � r _ -`— S: ; .oas " �(ft/ft) Q. ; a.22 �— ,:: �cfs) Calculate { Assume uniform flow, small slope, and constant n. At input slope; maximum open channel flow = 7.99 cfs. At input slope, pipe full flow = 7.428 cfs. � Results for in ut flow: (rounded to three places) P _. . _ _ _.._.. _._ _. . _ _ . _ . _ .. ..._ .. __ . ; ._ _ _. _. _ Parameter Open-Flow, Circular Pipe ' Open-Flow, Normal Full Critical . _ .. _ _.. . _. -- - - . _. _ . _ _- - ... . .._ ___ . .. _ _ Slope (ftlft) 0.005 0.001614 ' 0.005483 _____ _._ ___ _.._--- .. __ _ _ ,_ ---- ---._ _ _ _ .._ Theta (rad) 3.301 6.283 3.241 ..._... ...- -- --- - _ . _ ._ _..._..___.. __ _ _ _. _ .. _---_.._ _ . _ _ .. _ _ Depth (ft) 0.81 _ 1.5 _ _ _ : ` _ _ . 0.787 _ -----... _ _... __... .. --- --.._.. _ . . Rh (ft) 0.393 ' 0.375 � 0.387 __ .. _ ._. _..__ __.._ _ _..... _.. ... _ _ _. _... Vel (ft/sec) 4.337 2.388 4.491 _ .__..... _._.._.....______ _... _ ._...__.._.____.. _... .._..,._ .._.___.._.._.... ._._ __. . A (ft^2) 0.973 ': 1.767 0.94 ; _ __ __... _._. ___.. _ _ . .. ._.. _ _ _ _._ ... . _. __ _. _ _ _ Top Width (ft) , 1.495 ; 0.000 ; 1.498 ;. _ . ___._.----__ _. __..... .. ____ ._ --------. ____. _. _.._-; Vel h(ft) ' 0.292 0.089 0314 ; _-- ----_ _ .._ .-- _.. . _ __ _ . , ._ ..---- --- _ _ _ . , Nf 0.948 N/A � 1 _. _ .. _._ ._. _ ._ _... _ ... _..._ ..._._.__, _ . _-- .._ _._ .....___.. . _ ___, ref: Chow, Ven Te. Open-Channel Hydraulics, McGraw-Hill, 1959 � Page 4 August 28, 2006 Hydrology Study MEGA RECREATION CENTER—TEMECULA, CA • 24" Pipe: Input Arguments Parameter Value Units i 24 � '± Dia: � (in) ' 0.013 n: S : � :005 ' ' • (� ft) r 7.9_ �:� Q. � {cfs) � Calculate j --------- � Assume uniform flow, small slope, and constant n. At input slope, maximum open channel flow = 17.207 cfs. At input slope, pipe full flow = 15.996 cfs. • Results for input flow: (rounded to three places) _ . _ - _ ._.�---- . . . - - -_ _ _ . Parameter Open-Flow, Circular Pipe Open-Flow, Normal Full Critical _ __ _._ .__. .. ._. _. . Slope (ftlft) 0.005 0.001219 0 004872 _ _ _.. . __ _ _ _._ .__ _. _ .. __... _.__ . _ . _.___ _._. Theta (rad) 3.127 6.283 3 142 _ __ ......_.._...----.._ . _ _ _ _.... __._�._._._... __._. _.__._.__. __..._. _ Depth (ft) 0.993 ; 2 ; 1 � __..._.. __ _. _. _ ._ . __. . _. _ . ... _._ _ . Rh (ft) ` 0.498 , 0.5 . 0.5 _ .........._. _ . .. : _ _. _... ...--- - .__ _ .. __....__._. . _. Vel (ft/sec) 5.076 ' 2.515 5.027 _. . _-. _.. .. . ...._ .._._ ._. _ _ .._ _ _ __ _ ... .._ . A(ft^2) , 1.556 � 3.142 1.57 __...__ ------------.. ._ . ...__._..._.. _.-------_ ____..._._.._. _, _ ----. __. _ _ _. . Top Width (ft) 2 � 0.000 ' _ _ � _. ._.. .._..... -- _._. 1 ----... . _ ...-- _ _ __._.... Vel h(ft) � 0.401 0.098 4393 _ _. _ .___._.....____._...... _ .. ._ _._ . _ _ __:...._.._... -_- _.__..-- ..__ ... _ _.. . Nf 1.015 ' N/A 1 , -- _. _ _ .._ ._. _._ _. .. __ _ . _ _ __.. __ _... _ __ _. _ _._..._ .._. __- - ref: Chow, Ven Te. Open-Channel Hydraulics, McGraw-Hill, 1959 � Page 5 August 28, 2006 Hydrology Study MEGA RECItEATION CENTER — TEMECULA, CA • 12" Pipe: Input Arguments _._... Parameter Value Units _.... __.... .._ � .. i --- 1 2----- `.. Dia: '- . (ft) _..:::--_..__,... n _ ; 0.013 ' `� : -(ft/ft) s ,� .a� W � '� (x100) ` (eval) `` (cfs) Q� � .___...__ '(gPm) � 'f � _ .. _._ _.._,_.. . _. Calculate ; , __ _ .�._:, -.-..__... __.. _._ ........ ..... . • Assume uniform flow, small slope, and constant n. At input slope, maxunum open channel flow = 3.833 cfs. At input slope, pipe full flow = 3.563 cfs. Results for input flow: (rounded to three places) _.. -__ _-_... _ .._.____ _.._ ___..._._. _..........__ . Parameter Open-Flow, Circular Pipe Open-Flow, Normal Full Critical _ _ _ .,___--- ................. ___ __._ .....-- _._..,_._..---..... Slope (ft/ft) ; 0.01 0.000788 0.005807 _ ___ . _ .. .. _ - - —_ ...__ - -- -- --.._ .__ __ . . _ . . _..--. . .. _. _ _ . Theta (rad) 2.584 6.283 2.82 ......._.._......__.._..___._,_----�--__._.__. _ , ......._..._.......__._. _.. ._..-----._.---.._.._____.._. Depth (ft) 0.362 1 0.42 . _...._... - _..... _ _ . ._ - -__----._. _ ..._._..._.__ _ . __ ._ _. _- -___. . ._ __ _. . _..___--._.._ ____ _ Rh (ft) 0.199 0.25 0.222 , --._ _.. . . : . _ _ _ .. _. _ _ .. . . ..... .._ _ . .. ._ _-----. _ . _ . _ Vel (ft/sec) 3.894 1.273 3.194 - -- -------_ _ _ _ _ __ -- - --- —_ _ ._ __ ___-- -- _. _ _ ---- - .._._.. __.. _..._ __ .. . _ , . . _ -- ................ .. ._ --- - -; A (ft^2) 0.257 0.785 0.313 _ p . .. _.. I . _._ .,.___.. _.. _ _. _ . .- ---- -.. _ __ _._ _._ ._..._.. ____ ; To Width (ft) 0.961 0.000 0.987 ___-_ _.._. ____.._ ---..._.._.._.__ __------ -._..___ _. ._..._ __.__. Vel h(ft) � 0.236 , 0.025 0.159 _._ --_.._.___. _ .. .. ..;-------..__.._..._,___ _ :._----.._.�_-�-----.__ .. , .._. _..-------_....___ ..._, Nf 1.328 N/A 1 'ref: Chow, VenTe...Op....__..__....---..__------- _........---.._..-----..__.._........_._..... ... ._....._._......_.... --...._ . en-Channel HydrauZics, McGraw-Hill, 1959 • Page 6 August 28, 2006 Hydrology Study MEGA RECREATION CENTER—TEMECULA, CA • 6" Pipe: Input Arguments , _.. . .. Parameter Value Units _ __ --. ..... __... �:: ��� Dia: '� s ��u: ;�ft� ; _. _ _ _ _ --- �.__....._.. _ n: ; o.o� s � �;: ; -.-:--: (ft/ft) r ..... 01 ...__ - _�� _. S: , (x100) , ,.- � (eval) � ''� : (cfs) Q: i---5--_____ , ..::(gpm) ; ,�= : . (mgd) _ _,. . __ . Calculate • _._ --... .. .. ._._... _....._....._.._...._ . Assume uniform flow, small slope, and constant n. At input slope, maximum open channel flow = 0.604 cfs. At input slope, pipe full flow = 0.561 cfs. Results for input flow: (rounded to three places) ' _.. __ . _. . ._..__. .. _ _.. . . . _ _ _. __ Parameter ' Open-Flow, Circular Pipe ! Open-Flow, Norffial Full Critical � _ ._ .. . . , _ . _ _-- -- __ __ _. _- _ . . __ _....._..._.._ Slope (f�/ft) 0.01 ; 0.007941 ; 0.010495 ' _ _ _. . .. __ .. . . _.._..__.__....._.. __ ._...._.._.__... __ __ _.._..... ._..... -: Theta (rad) 4.123 ' 6.283 � 4.058 _...__...._ ._._._....---..._.. _ _---...._..____...__ _. . . .. . .__..__._... -.._ _ ._ .__... . _ . _ ___.. _.._ _.--- � Depth (ft) ` 0.368 0.5 _ 0.361- __....___' _.._. _.:_.__.. _........ . _._._._..-- ---�..._._... ._ . __ _. _ _ ._..----_...__._ _......_ . Rh (ft) ' 0.15 0.125 0.149 � .. _ __...__. _ - ------ .. . _ _ ._.. . . ._ . . _ ._ _ _ .._ ._ .. ..._... ; Vel (ft/sec) 3.23 2.546 3.298 _. _ _..---_ -- ._...._ _ .__ . _._..__ ..---____ . _....._. _..--- _.__ _. _ . _, A (ft^2) 0.155 0.196 0.152 _...-_--...---_._.._.. ___. __ ------------ __ _.. ._ ----__.-- __ --- ____...___--------._.....-----__: Top Width (ft) 0.441 ' 0.000 0.448 ; ----._. ----- ...._. . , _ _. . --- -- ._. . _--- --_... _ ._. _._.. _._ ------- -: Vel h(ft) 0.162 , 0.101 0.169 '. .. _ . ._----. _ _ _ __ ._ _._ __._ _._. _ _ _ . -- -.. _. - ; Nf 0.961 N/A 1 .._._ _._.._---------- _._....__.,__..---.__ ..._._...._.__ _ ..__...�_..__..._---____.._._ .._..._.. ---_.__..___. ref Chow, Ven Te. Open-Channed Hydraulics, McGraw-Hill, 1959 • Page 7 August 28, 2006 Hydrology Study MEGA 12ECREATION CENTER — TEMECULA, CA • 4" Pipe: Input Arguments .... ....... .. . . Para�neter Value �Jnits Dia: a .- 4 ._..,..._ c � ` (in) _ � ft � _ __._._ .,.. ,. n- ,;i...o.ois ..... ;: �ft/ft) :, ��.�,_...�_.- , . . S: ;� .o� (x100) . ; -. (eval) `� (cfs) Q. i__,1..._.__.�_. �:" �gPm) ,� . � _ Calculate ; , � ..... ................. ....... .. ..._. . . � Assurne uniform flow, small slope, and constant n. At input slope, maYimum open channel flow = 0.205 cfs. At input slope, pipe full flow = 0.19 cfs. . Results for input flow: (rounded to three places) __._ .__.. . ;_ _ _ __ . .._...- ----_. ..__. _ . _ . _. _..___...._.. _ � Parameter Open-Flow, Circular Pipe Open-Flow, Normal Full Critical _ _.... __. .... _ . ..._ _ . ._ . _ . .. ._ . _ . _. ...._. . __--. Slope (f�/ft) 0.01 0.002761 0.009095 ' . . _. __ ._------...._ .. . . _ _. __ . . _ ___. ___ ._..__... __ .__ ___. _ ,.._.. .._.._...._--.__ _. Theta (rad) 3201 6.283 � 3.261 _ ; _--- ----------._.___.... _. _.__ _ .. . _._ ._. . .--------..___.__. . ._. _._ ,....__._.._ Depth (ft) 0.172 0.333 ; 0.177 ___ ____._.._...._... . . ___. __. _ . . ... . ....... . . _._ .._.. -- -_ _.._ _... ._.___._.--_ . ._. . Rh (ft) 0.085 � 0.083 ; 0.086 : ..._.._. _ .._ _._ _.._ _.__ _ _ .. _.. . _ . _ _ _..._ __..... _.._ -. _. . . . Vel (ft/sec) ; 2.208 1.146 2.13 _ _.__ . __ _. . ._ ._._ __. .._ . _ .. _ _ ._. - -- . ._ ..--. . . . _ __ . _ , __ .. --- --.__. . . .. - A (ft^2) 0.045 0.087 0.047 ; _.. _-- _..__.__.__..._. ,_. _..__ -_ ---_....,_.--------.___._._._ _..__._.___..__.....__.._----- __....__._, Top Width (ft) 0.333 0.000 ; 0333 ; _.._ .._--..__.._--- .__ . , . _._.- -- _.._.._.----._----..__..._._. _. ....;_._....__.------.____ ----, Vel h(ft) ; 0.076 ; 0.02 ; 0.071 ; __. ..._.__ ---- ._.__.. .-- _ _. -- --.... ..__ _._._;.__..__. __._.__ __ .__ ._ .._.,........_.....__ .____ __ ___. _.:. Nf 1.05 6 N/A 1 _.._ _.-_--....__...------ . . _ . --------- _....__ ._:.....___ .._.__._ __.. -- _ .. _........ --- ___....__._.. _ _ _ ..___ . . . ref: Chow, Ven Te. Open-Channel Hydraulics, McGraw-Hill, 1959 � - Page 8 Aub st 28, 2006 � HydTO�O�v sruay MEGA RECREATION CENTER — TE1VlECULA, CA � Sectgo� II Cor��ius�o�t Storm Drain Capacity As shown in the preceding storm drain capacity tables, the full flow capacity for the 4" storm drain at its minimum slope is 0.19 cfs. The maximum flow in any 4" storm drain onsite will be 0.1 cfs. Therefore, the pipe size is adequate. As shown in the preceding storm drain capacity tables, the full flow capacity for the 6" storm drain at its minunum slope is 0.561 cfs. The maximum flow in any 6" storm drain onsite will be 0.45 cfs. Therefore, the pipe size is adequate. As shown in the preceding storm drain capacity tables, the full flow capacity for the 12" storm drain at its minimum slope is 3.563 cfs. The maximum flow in any 12" storm drain onsite will be 3.36 cfs. Therefore, the pipe size is adequate. As shown in the preceding storm drain capacity tables, the full flow capacity for the 18" storm drain at its minimum slope is 7.428 cfs. The maximum flow in any 18" storm drain onsite will be 6.28 cfs. Therefore, the pipe size is adequate. As shown in the preceding storm drain capacity tables, the full flow capacity for the 24" storm drain at its minimum slope is 15.996 cfs. The maximum flow in any 24" storm drain onsite will • be 11.85 cfs. Therefore, the pipe size is adequate. Runoff As shown in the hydrology calculations, the maximum runoff offsite for the 10-year starm event is 7.90 cfs and the maYimum runoff offsite for the 100-year storm event is 11.85 cfs. � Page 9 August 28, 2006 A�tachment A � LocationNicinty Map � • � 2,s o � RORIPAUGH o RANCH a MURR��q HOT PROJECT SAR S1TE �`'�AD 75 � 0 cALLE CHAP N���� RD � � K � 79 0 0 J 3 W ' i., U SERENA WY �Q'� W 1 S ��?°��5� m 0 0 F• � P fo � N �p. �` �GN� VICINITY MAP NOT TO SCALE 0 � RRIEfA HOT SPRINGS ROAD � \ 1 Q 3 ��RRI U i 3 � N � T �RIN�iS Ra� A I O �a :.- 1'q 2 5 4A 4B gB 13 �'�� <� 7c i g ,,._ � 1 1 pARK � 7 '�` LOCATION NAP '� 12 � 33B `� � 16 17 ,�: � 19 33A 14 15 '' '\ 3 ';: ` 29 � 18 I 27 2 8 31 � �� 26 22 \ l 24 23 25� � .,�1�..,., 21 20 32 LOCATION IUTAP NOT TO SCALE Attachment � � Hydrology Map • • _ - - _ -:: : , m - - _, � - - -. ' . .. _. _ ,... ; , �m � -, _ ga`�� E '` ,. .�, .. . �O� : `, . .;.. , `, ,' -= . _ -' :;,.:_ � ' �� �m � � .. _- ._ .... .,, .: � �- - - - a � .� _ � 1 � .... � � F O� - . ' '- ' � . . . � . '.. . " � ... ' .. : �,:� �;.' '�. .. .'. . � -•'-:'_ ~ ~ � `." _. . _ ..i ... � ,. ... _ .. ' . ' . '. .. , • �� i ; ... _�� •. -... '. . � - . ' ' .. ' ' J � . _ , w a� ; i; 1.` � - AREA SUMM,4RY � z� -.�.. �'�•, � � .. .. . . . . . � . . � . � . ARFA 1 ARfA 2 �s� o-�.� � � � .. �,. , \. . . � - ;� � - - '� .. A=1.47 AC A=0.36 AC '� � . .. i � � � i r \ H=9 H=1 �"� � ; � _ . � - . [=325' L=115" G7 o-� ; � i � � • Tc=6 MIN. Tc=S � ` � i _ - C=0.B8 C=0.B8 ' �' �� : ��� i Ora=4.04 CFS Oru=1.09 Cf5 i i - ' �': i `� _ _ --------= :i � , - O�m=5.95 CfS Orm=7.62 CfS , 1 .._ � � , � � � ' : ', I I , ' � _ ��--� AC A 097 AC , I � � i i � . �I � . ' � . -.� _,� �; � . . . . . .. i . . . . . . . a c :. . � � � . . _ .� . � . I � � ' I �'::- , � . � - . t � '�- � _ _ .., i ' . . _ _ � _ .. �: ; ,v r N r �� � M ... . - -- - - � . . � . . . . Tc=S MIN. Tc=B M/N. aumrarssueatrn ws otsoria i �' � � , \.. \ . C=0.B8 C=0.B8 � I "'. + „. i � •• _ � �/ �a^. --- - . �. . O�o=3.25 CFS O�o=2.28 Cf5 .�� � : � I . .' . , :��, O,m=4.80 CFS Orm=3.36 Cf5 � � � , i i.' � ....� � • ; R � , ,; .. \ �I \ � � v � i , r . . --- - . � . . . . � �� -. ... ; ,� .. . / � . . :, , _� ._ _.. . . ' ' � . i . . . ; .' ��� � I ^ _ ..:"-.. ___� . . � .. . . " : _ �� I • , , F. _ - , , - F _. _ ` , , , , , � ; -' ; , :. _ --- �(���,� � . ; . ; , _ =:_: I r. � . ; _ I � �" � `—' �` 1 . , : . ..�' � . _ ' . . . , � . i` � i : -. � � , ;.. _ �.�� .. � <. - ,.,. i �� i I. _��� � � I NkY/llOM RECOl10 . 1 . I. �! _- . . . . I : � I . . : _ ._ . _ - _, . ' � ' . /- _ i= .. I, ... - ' ' . ._..._ . - � . . �' . :... . ��: i I� '. .. ... _ _ :.I: ., ' -._ . .. ' � . .. . ' . . ' . �. �.... . i :� ._ .._...__. .,..-�-... -� ' � ._... -- �� .. , ' ' - . ' . . ' . �. . . � +. '. `. \ '. .,.. "- ; .�_.,., I . \ . xa M¢ R9C'llul � . . � I � ' . . ; . . . .. . - . , . I �i ': � ' . . � ' - - � � ' ' � ' ' 1 . � _ � �.: .. . .... '. � . , i . /,. � : ` � i _ . . I. � .. ..._. .. I . �� ' . . 4 . , ,. _. .. / ' . � \ ,.. ; , � . Y , � _ - .� :. . ` . . .. . . \ � � ... , - __.. . - : -;... .. , , . . ,. . . . . , . , .. .-. �. ; i . .' ; . .. .. ' . .� - � � . :. � , � � �� �� _ . . . , , I,�7. / � , ; it � - \ � � ' � t ; ; i . / \ \ , , ; ; �i � ,1 � ; , � ;��— r �: , ' � li' '. I � ' , / ;' , � , _ , ,. _ � _ - �� , , _ '�, /� ; i ; , �, i ; _ ----- �� - f �: ._ _ � r � - / 1 �� '; - �;, � . — -- .�a�� iY I . � ; , _ � _ .. , . __. —_ ; .. � i � :- �_ _: _ ::._. . . � . : ,; . - �: _ \�;. , �; j _ � ; CB1 ,. . , , ,, ` '� - _ , `\ � ,. - ' . . _, : ; ; � .;:,:.. � � � � i ; \. � ; � ! l ,; . _ � , � -- _ , � �----------� � - , ,; � , .: ; , �, . � �. : '- ;; : ., . i :� ..'_ . . �� I \� �V ; I - ' , '� " � Z �, : --, i . �- _ �� �' . �� ,� -� ` �� I �� -_ � " _ ' - ��° , _ i i �, �, { � o - y i � �. . : ; i � � . . ._. . �'� Y ''r : . - . \ \ � � � . . � � - W a � .. � I � 4 � : � i � . � . i 1 ' � .. � . . . , . - _ . / ,'.� . . - � C�1 V � � _: . . . . : : I� . . i: � i . . � . u '. � -_ - " . _ . _ ' O � _.. . I, _ . �� ' ^`\\ �� ' ' - � �1 �. � � ' __ � =.. � � �. _ � � � �,��, ' '. `. i � ' _ _- •- ��w �` f � ; I ; � � _ _ \� � � _ . _ . - .. — -` ,; - , �' �: i : - � i , .. .._ '�.�� 1: �:_ 'I " � . O �~ ' � ' \ `. . ; . . . i . . � . - .. t ' � I� ' 1 � . • . {' , . . • .. . ' . . ; � � I � _: l �\� . _ : �, , _._ __ , , ,. ; i ` s � � � � ; , , _. _ _ 4 ,_ _ ,.. i,+;CB2 i _.. ,_ '� r - - � :� CB _ �� , - , �; - �; .- --- _ � ` _ - _ � ca3 _, _ - _ _ _ _ � � _ _ _ _ - — \ - ,--: __ - -� .;_� __.: �_ ,-, J _ - - - - - - � - ` ----__.__ ._ - - - ------=- � �- - -.._ , . . , .. ;. . , i . � � _ . ,; � -:- -- - _ _ - - -�-- -- - _ . � - --- - -- _ _. �., ;, --- � __ --- ----_ �.!� -- � �_. .. � . � :: .::. _. _ ._,' i � ; .. _ .. _STORM DRAIN OUTL�' ---_ . ' . . __._ - --�- -_ _..._ _..- _ _ _ _ - �� � - - --- -�-- .,--- - - . _ __ - - , - - - --- - �. , _ ..__ _ � � _._-._.. - - - � ; ,. _.: . ._. --. ,..- � ��,o��.. � ; � , ,::, _ � . . _ _ ..__ � __ _ __ . ___ _ , , .. -- - , � : .. ..._..__ . ;. ,. . _ _ : ., _.:._.. .... _ , , . ..�_ _ __ , . . _, _..._._.�._ -----_ _- - � " i � ., . � . ' : _.._ _. . � i _ . � i: � . _' . ' r„R � i� - f J. - , �l � � '�� � No. C060482 Ery,p6_3p_p� a ', aeu. 0� � �F � 39EE11)ltF HYDROLOGY MAP SNEGT NfIYHEA � � n� � � - � � - �- ' ; ��;; �'��' � a t �/'°�'1 ��'ti� . �� ���" � ��� 1 � � � j� � c � •I��,��y.,::� ����•Ya�'� ���s��� ~ ''� _ ���'�; � �-,�y . _ ., �� � . ,��' � �� . , `�, 4 ' f } / � � ' � �c; - i`�``�.�' �-'" ��r�� ,�� � � �.. � , 3 S r �� ,: t�' ° � � ��� / �'��'� r �%�.� vA� 1 �1 e �,j�� 0 � ����� a• �!!' � �� � �' �;,� .� � � � �,�.' �� ��� ��� � � ` � � � t � `� � _ i • =�i �-.. �� 3 �� ' � ' i`�. � a ` �_ ��� � � � a � � . £ r µL� f o����r�t���t� 1 ��►�,.�,�'���`'�`� >�� � z � � � _ � 1�111 �� _ � n�(N������.�r� .�.� - r . v A ..a � � � .P .� ��.��,� � � � c. ��r •%" :z"a";Jt�° { �� , ��SZ'�+ � '-�� -� r = �� 0������� � � � a, � 1 r'� �rf' � �� � I��.sa ± �l � A. � �em��� � � . r �`1���1,� {��:;�'� ° °"� ' � ' �0 0 � � �y f "������ �r1,�11����%' q ^. �� �ti�'� : �J � .._� � i _ � r+�( � �� �(t���j`y r,,/��: �.=��., `,: � ,�°' 9, � �� �;.,�`, ��:4l� �` °p ,' � � � �� 1 . �� � _ �� �;' �-�, �� � � . C\ ,! � 1� ��� ( � � � � � ����f, ,�7 e � 1 (a � � � � s �---.�► r ���� �� � ,� �� � �^ i � � ��- �1 � �� � �„��'�i���'�� ��� � • ,� �� �i; �;��-°, ��. � �, � �-� 0 . ��� �. �, � �� ;'_.%��"� � �t De � ��� i�����„� �� ��� ` .f.�:'.�� ` � � -�� q �� ��`���G�-. p .4e�:r,'.�1 s;�� " - �. /� �� , tr � ,� n�1 � �� �� � ' � C �,/� �� d �l_� " �~' � � l�� �� e .: I �� ��, • � y��;�� �.ir � � ' �� f � ~ �° - n � �'. a � � � � � a��t'I ��- � ��t;������'r �•��'%�., �I^'. d �_ , ���Si � � J��!-�z�\�� 4���4 ���_ �� �, e �r���� �l ; � �' l � ����r,�� :1t, +-� 4 l'• � ' ' �.� '` � .�{.�'�� �\� - -� � � ''l7�:r►��� - �- - � � � !� � 5�+��"t/' ii' �� U�� � •i�/ri��������_ '�.� ,A �� �. � .5C'.\ / �' '" �� � ' �� - � �� "� • �1 +�� e �9>�� �a' +�.c'�. , , .�'�� , �� ���� a� ����..-�' _�-Jf.:,..- '��':,,,14��)�.,,� � � � � rr. w ��`{��:f�y,: �� � ^ b i.. ,�.y.���� :�►�+1��!I����r �,.e � � � \` Ctl `� ��� �..,� .;��...: �F�� . r.^'��� � - J . � ���� ;'� ��`����'� ?i � -r •'�����r ��'�i �� �.�+ ��''.�'`'��=��'�`��'�:: P F��i '1��� � ����'°-' _ 3�" Ja.�: ��, j • ` _ o �:r�' � , ipl ; � � � ` ,P.m� 1 �S/�� � � •: �'� �'►.'��;� � j �! j � � 'P,`�. : . 7� � �1�.� v R-��= '� � � �� � � Y '� .���t I� i: � �� �j �' Y ° � ,� �6� � l :� a � a , 1 ��,�.r :., , '/ ���:y�'�`� tiGS;�i ���. ., � ` „�,`�''� '� �'�, � i f �l� b y�,' �� � � ����,��� � ,o a � ��p,�,,�4✓•. °..���� ,1' � •' �''�l � 1 '� � • � r�� _ r�� ����..(d��'� � ��qN -;�. � . . � .n '�f ,�����.�.: ��(��:\�� �`` ►. + �(R , � � ; 1►.,"���, �r l • � � ,� � � r 1 b.,-�,o� ��'�?�+, _� --�� . �', � ,_: ,y� � ���� � �',���' ti ,��� � ��� � �B '� � �6� 1. if�'�� :%'��� - ��`��������:i���C.`�t�l'�;��i:c ��'t�'��'�Q�i���� �� �+ a• . S I�� . v. .�rf�r�l t/�n..�o ���y � � �_ � �"_f � � ��� � ��l/Pl�. �/ �� �it �c�g�� �\`�c'��;�\� ;�_� � ���\�!f.r � _ � � :� � �Lf 4�� .1., �� .�� �. , �� • c�, `.� ,'�. ���► ��� �'�� ��1� ���,'�;�,r� � ����f'r � -� � f �' f ��� « r 1 �� c d � �r, 1 ����+� �� ��� ��1�(.�-� � �` , tlti`r' " ��t;� .�����►� � � � ��. �� ��i� t r- �;' � Irf�� t�-� f ';���, s `ii�� _ �..- ` ,5� 11 �y1 '�✓ r . • ' �� : �j��'!�'�T� �� � 7 ` � � -�'e�` y ,�� a �y '�' A�--� �, lJ 'c�+" �y�,yS � CR � e�(� ` � i \ �'ii�.�� y�� � �c�`�' tYr 6 ;� µ ` = '�"`� ��e�� ���� � D • F ,..�'��„� ' � �,� �: 74��j� -'..�'f.�'s' �`,.P- -- �. h, � , r�:' � 1 � � � F; ���I,tf ��� ���:; � 4 � .n. F���lr7e�! : { ,�.a �. .' 1 �� g �--� : a �: .' ' _ `��� ` �i'��9➢'� c �r' =i��''� � ` ��'� ��5 ��' ��� e��.5=--� )�J�iT� � s a•�4J,�° , p � a,; ��91v � " [ 'F�� '" ,,, , �� �� ��+� j='�g �''� e�i-`f•a �����' ,��� E11!'� i�'" ,� Y � ` � " z �'�: ;�'� � � a.s � • �l( .%�•✓� - `� �,��' ' : � �. .1!�s � s4�j'. '' , �: , -'�- � ,F,� .�. : f � � t� �Q '� �' Ji1J' +,' � i.' r • � � � J '�`7 � v i � '��� ��,...,_ �,i��9 ��- ' ,�r,� `''�;_,�� �; . ,��' �,'��� __ �.:�=��,��la�� ' ��. � � - - _,`?'c�v.�� , � ;.t , t �, '.-'-i "`� '� .;-�%�ti�'ti� � -d ' � �r e ` • \ � � ���� � �J yo, — � � .f � � ,1 � 'dT .� - f �� 1 �- ° •"t�• � a� , A'� / �i � •� .,r �..%:� -� �s�,? .� '11r � � � _ ` � ! + �� � , ��„L - <.,� � .ep' �� ;�' � • � �� ���"• � ��� n � �'� ''�; \��u. � P���'ar` � � �: � =���:� � �a— �� �- �� �� � � ��� ; � � ,� ���� .�. �° �'� ��., ,.��l yq� . �j � r �c; _ �� { . : �'`ac�Y� P � ' � �/!'�y�v.. _ � � �.. �'': " � � .. � t. y � ,g� . \ ��� -.�r a� e �- � �y,.�,� �/�' �, ,+'i�. �y,»�� � l�r:!'� � 4�� e ��� �.._ ��-� ��TG(� .� .�.� '� �� . 1 ,�1����=° �p� :..- i � �; -a'�-: 9 �� '�-�e� ,•!q6a a% ; L!��` i,:. .' -.� �/'�'a"�'i� ' ' / � � ' � "���"� a �� �A�� _ 3�� .�. ' �1�8 J �.� �T W9"Y �"��'�th � t f'�'� 1 ��r-a����!��� "� i �\�q � �^.� � � ���� ����� ; �9 �"6� ` ��r'° + ` y �����ly�� ��cb� �`,�_��,.a-a�--'�vc � '3��• ��y��� � µ'��' • � Ot� r Cc�i�c . �f, y� � L ���a � .�- �"-r °_'l'^C J�' .. ♦ �,I� �. � I��� �rX.Gf ���� s•� e � / = '� y�:: '�2.-';��, i Qpp ei q � _' .; ``\ ..v�� , }� 1b�4'�1 ��Y���:���a„ �v , 'rt �{1 _ r 1 \� v.I �� 7 ���:�9 �- ''f � ���f�lq� 4;1 � �� { i �,��a e. � , ��, ` ���. "P ���'�3r���v- �& c� � � - �� T �. i ,_ �, ` 'i a ��f �_�j.4�.:i: '-''�-�,�.�� d��, ����' 4 �F� `�� � +, �' _ � ° �J - 7��..- __ d " l- ��`- � _ r1'�� /J �_.� - 'C���� ` a �������`+�����a` � �"'�i _ - aa9 �' � . .�=Y ti�a-- +� � ... � �--��L' - . d �r 4 ��' L�� � -- ���1``�� . � i,� Vf11��� � ;9 l .1��' � 'a j. yB �.. , •a �` �� el� � 7:7 � �;� 9�� T (��" .J.ifr��������'4V� -' ��1.� �• �`j�i\ %�� � ��7 �l`7�, , •.� • 0 ` j�D(� • Q' �y,�� .7 � �,�� �.� a - ` �. ..�� i e `\ j � • / � 0'.�. � v .� b ' _ ` � -� �;� ��� °� . ; ''� �' �—��� ,����;Q� ,� � `�_ , �� �r i�'� �°�`����,������• =�zN�'l�`'��r.r ����i� ;� _� o��' � `��� s �[''' �'�'�, 1� y � . � ��� �wi _ ��i�� j �w � ����-a. �� L _ ,/ � • "`• e ��+gg �?d � �R1 �V � �� �. f � � �' � � J. ai►�� . �'` i��.a� � �' � �- ` �- �- �`�. Y � � �""`i �'�!�'.�� /•� a.�y�a ! 1 h ��� �; -=� � . -.►,.. ,,��--�'�" ��� �� �� �-- �� �� �s-_�.�^�:: �°�- �, � ��, � �1 - r � � � . . _ � e ��. �� �:. _� �. - , � � �°. � �`.,. �.:�'.-� ' ��'��•�� g ���" ��s �; , � ^° �1. � .� p.� ;���, t� a�� ���. , - -"� �.�' � • �� .� ` ! , � .� 'b� � C'� •� �C i`i�''��•�+• �I��� �� '� , � � _ � � •,y ,� ' � ,� t p � ' ' � t� + Ry 1�i "�� t ,-�° � ``�;�� - � : � ��� �� :, s�lf��l `� , ��"��J�� °. t�, ' n � ��` � -ie � � f' a � l��c,,'' .� � � � `� � T /! e '�+,.,1.0�' � `� �-`� �_ �'`�� ��'����� `��1��� �,��,°r ���` ��"��tiil � �Q[�ia".l���P����������17n�1i1���aT��i�, � - __ _. ___ _ _ _ _ � � � � � . �. � � � • -� :• -.�:.- • � • -� � • - � � � a � � , . , . ..:.-..:.�:..:::�;:�=.'ec':: . .. �?r'._ : i�'t:[:ii� � � � � Tc' LIMITATIONS: L 100 �, Maximum length = 1000� TC • 1000 9 O 2, Maximum area = 10 Acres 5 900 80 a > 800 7O � H�po 6 � v �, y ° 400 Q 700 6O � o 0 300 � .- � � 0 200 . — CCi N �' � � E c �00 y 600 a 5O o,� '- 80 E ° " ° 0 50 8 0 > a�, a� 40 � E o .0 30 � 500 0 0 � �� U� 20 9 0 � d 35 °� a e 10 T a E � m � N K A� ,a 6 I I v � 400 0 30 Undevetoped � ��� ° � Good Cove� �� 2 12 � m 350 } " � o � 25 Undeveloped c �•o � Fair Cover � �� •e o .-. .6 � _ � 300 E Undeveloped •� 14 � � �` 20 Poor Cover 0 0 •3 l21 15 � � I 9 ;.. - 16 � ° 'o � 8 Single Family 250 � 17 50 � � 17 � • � f 6 ( I/4 Acre) a, 18 � � 0 15 Commercial 0 19 � o, 0 14 ( Pav � �' d 200 � 13 � ` 20 c J � 12 `2� � w a S II � a � � 25 � o c I�0 �, 9 KEY � U � L�ii Tc -K �Tc w . t= a 3O ° EX,_AMPLE: E 7 � � � ' (I) L=550, H=5.0, K=Single Family(I/4Ac.) 35 Development , Tc = 12_6 min. 6 � 100 �2) L=550�, F4=5_O�, K= Commercial 40 Development , Tc = 9.7 min. 5 I I i 4 Reference: Bibliography item No. 35. I I R C�C a 1MC D TIME OF CONCENTRATION � • �JY�ROL�Gy 1�jJANUA� ; F4R INITIAL SUBAREA ' ; � PLATE D-3 � I • - � ■ ■�■���■�� � ' � N��H���■��■H���■���■����■■ /��■■�■��■■■v�� ■���N�N�H�■■�N H■ � ■ ����� N � n � ■ ���NN�������■��M■��������■H�� M�■����� nu�■��■a■���■�■������■�n■���■�■�■�■a■■��■�m� ■■�NH����hhN���N ■■ ���������■N�� ��� ����������N����N��N� . . NYHW��H��H�HN���■■■ �N■h��■■■q�■N■�■■�■����������H�� N��H����N���N���������H/�������■H�h H��■■�RIRr�'iHL:i�!°��i��H���������������n�����a����l� �7.�!!L�W±'�'�ia�N����������/�N!����M�1�■�B��Hnn�NH NNN� ■����! ��R7��!��������N� �G���■■�����\��N��■�NHp ■■nN�iN■�H!�?�,\�liiH���„7�N���'=�i������■�����.==���.�����t■����q��■� H��i�h■■�!\:� \�li�!��eG�7�\d►�=5r/■�■■■���!=�i���■�������■�n�N�\N�■■�n■ ■� �H■�!!l7l�V!i!l�t�1iL'��N�H�■��!�'�i�����H��■■����"�a��N����■■■NN .�N�O■t•: J��R�A7�!�NHN■�/!Si�■���■��■���=�i������n��=���iN■�■�■�� . n�■�n.w tol�'iV��A���!�i��■�l����/!�i��������!����HN������■������� - HH■�/�lZay�H�IKC1�Ji!i�����l1[lil��!i��������!������������■■N�H�� ��N/Iit\!%N/�!;�L`J+i�NNl:S�1\��i��N■��!�i����■�■���■■n!��N��n■��Nh • �N�%���nR►ib�!'i�N�■t� hy�i�7����!i/�■■■■■■�l�N!�i���■��N���■ H�I,�H'IN/i��ll�!�Nii�lIR.7V i/�� �1N / �iH�■�u���H�i����■■n�!5��■�H■� hI �NNKal���1����C,��Si��\��������!i�N��■����!iN■�� ■I.AI.���7�J .�v�NR��►1����:�AN������■���■�!i��■■��■��!i����n�■■�■����■a� I.��I.��Nr/HN�R.I':�:��C�ssi�■N��■■■��i������■���i���■■HHN��■��n■�N IhI�H�N■��N►��:IH1� �/N�������5�■■■������i���■■�����■��N�H�■�■■� N�I ��HI ��N�L� �q!li�r:�H�■h�■Ri����■����i�■�■■������N�O�■■■M■■q�s N�NNI�H�[iiil�!\y�vN�l7■/.�Nn��/��■�■������■���NNH�■�� � iW �'�Z�.�v� � NNW■�:1/.N!�V/NNg J7,I �NN■��/�n���■■���■N�■N■�NN■ W'INN:�r!�r'I■Y�^J�H./�W��HN��■�H�■ ■ �/i■N�V.��J'I� Vtl■■�p►���■v��N�■����H�\�H■��N�■� ■�'IW N'I�/5���7►;/�NNiN��■�N�����H■�■�q� �r,��ru��.u��:y�■�dr.nn�un■�����■■�u■���■�■��■uN■ • ■ ■�IHN r.■��r,m�r�%u��.n�■■���uu��■���■��m■uN■���� I ��■�IIH�.J!I��Rtiii��■�q/ q�■■�■�■■��������■■N■■■��N�■H�� ■ Il����►I �%HN.��i���/.����H■��N■�■■��■�N���q��■N�����n ' '1��■I.��Vi�■■Iw►��N��I.����■���■����■��������■■���■�■���N��N�v�� � ■ I����I��%�����iG����I./���M■■■��■■���������■■���■�■■�����N�H�p■ ■ ���I,����I�\��!1'A�■■I.��■��■���■■■�■■�������■■■■■■■�■���■�■■��■�� ■ ���II ■�I.�NE � I■N�I.��N■��■■N��N■�■■�■����■■����■�■■■■NH� ■ �■�/�■'I■■�:iYi���AR%����■���������■■����■����■�����������O���u��■ ■ ■�II�Ni�Nt/����:."I��■■�■■NH�����l���■\�■■�����■�■■■����■N�H� � ■ �■'I��'I�■��:�I■�t1iI��N■�■H�■■n����������■����■■��■���■■■l���■■� ■ N.��I.���7.�■■rl;��■■�■�Hn�■■H�N������■■■��■���������■■�■�����■ ■ ■1/��!I ��■■UNR!1i��■�������■■���N■■��■�����■��t��������■�������n�■ �'���/��\/��■L7I�rf■������■■��■�\■�■■�■��■�■■■���■■�■����■■■■�■H��� ■ ��■II■■��II��1�ii��■��►����■�N����������■�■�■�������■���������■■���■� ■ /�■�►I���/�■���/�����►����■�����■��■���■■����N�H������■��■����H■N ■ ►1�/��■■/I�■C�/.�■■■��■\\�N� p� �■��■N� v �■ ■■■���■■■■■ ■ ��II■�■�'/��1►/■■�H���\. �� � l�ii�'i��7:a�1�7�1[�7:PT�i:�i�[�����■■� ■ HI/■��%H!1/,N������■■�� R�■ �� ■■���N ■��■■�►1�lV I/��M■NHN��■�hMMHH���■����■�n�■�H�N�H� ■ ���■■�II■\11■�■�■�■��■������■■���H����r��■■����■H��■�v��■����N ■ �►1■NII��■II►:\��■■■���■■■■���■����■�����■�����■������■�����■���■�■■■ ■ �'1�■��1■��/�\\�����■�■�■■���N�■���■■�����■�■��■■■�■■���■�■�■�■�■■� • ■ . /��■����Ii�����\■\�■���������■����������■���■�■�■�■�����■���■��■��� ■ , r,���r,�■�►�■���������■� ■ ����I���H��H������H��7��IWi��iI�LLW���i1:�iC�L�' ♦ ���N�������������■�� N�I/N% �vu������������������������������\��������������■N������H�N ��%IU����� H��q�������N■��������un��������������������■O��N H ��/.��I�■�■u■/N�■■���■■����■�■�����■■��■�■�����■������������■■■NHN �■ri�■ri■��■a�a■�■■����■��■�■■�■�■■���NN���■�n■■��■�n��Hn�a �■1/�I�N��NH�h���■��■��������N���■■��NN������N��H� ■��■�■��■� ■���■'1��■�������������■�■��■■�■■��■■■■■��N�■��n■�������n�■■�Hn�� ����I�n■���q�■�■■■�����■��■■■�\■�■��M�����■■��■�� ■N���l��■���NH ��1�■Il�■■����■���■��■N���■�■■����■���n� _ n�� �/1��11�■H■■��������■�■■■�����������N��� . 1 ■■■� ��1��'�■��■���N■■����■��■■■■�������■■■�■ ■p %���i���H�\���������������������■������� ��� �i■■/I■N������■■�■�l��■�■���■������■��■�■ � � � � ■N■ II��r1�■���■������N��H��■��■■���������■�■ ■■���� 1��/�■��■■����■��■��■��■■�H���■��■�■�■■�����■■��■����������■■����■t■� �����■���■N������■�■���■������N�■ � hII��N�■�v�����������■����■■�■■�� • • ��N�����■��■���■■■�����■��■���■■��� ■■I��\�■����N■■■■�■■�■���������■■�■ � '• ' : ��'���N�■��N�N����■������������ . � � � � � � ���N�N■■�H■■�u��■0��■■■�■�■■■�� • �/�N����NH��n�■�BN��■��■!■ � � ��I���n���N�■���■��■������■■��■� ��IN�MN������■■��■\■�■��N■����■■ � � ' �I�����N�■■�N�■�■�■����■■���■■��� �i ��N�■N�����■���■■�N■�■■��■�■���■�������■■■��������■h■���N\MYN ■ �qn■N��qhqh�N�■�A�■��n�■■N■����■■■H���h■■���� ■�N�N�N�u��W �NU�■H���N■����N■■�NUH��/N� �I in��H�� � N�n�a I ■�B��N■HNN■N�HM� �N� - � ► � � - � i��N■�BN■■Hn�N�NHN■H�N � • • - _ _ \ • PA 31 • • PA3110.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: 09/14/06 Fi1e:PA3110.out 850_0100 RORIPAUGH RANCH PA 31 10-YR 9/14/06 SWL ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 � Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.788(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 601.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 200.490(Ft.) Top (of initial area) elevation = 253.140(Ft.) Bottom (of initial area) elevation = 244.110(Ft.) Difference in elevation = 9.030(Ft.) Slope = 0.04504 s(percent)= 4.50 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.042 min. Rainfall intensity = 2.785(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.315(CFS) Total initial stream area = 1.420(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 601.000 to Point/Station 602.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 244.110(Ft.) End of street segment elevation = 237.400(Ft.) Length of street segment = 456.920(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 • Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Page 1 PA3110.out • Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.,000(In.) , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.574(CFS) Depth of flow = 0.417(Ft.), Average velocity = 3.384(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.532(Ft.) Flow velocity = 3.38(Ft/s) Travel time = 2.25 min. TC = 8.29 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.828 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.�0 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.340(In/Hr) for a 10.0 year storm Subarea runoff = 7.074(CFS) for 3.650(Ac.) Total runoff = 10.388(CFS) Total area = 5.070(AC.) Street flow at end of street = 10.388(CFS) Half street flow at end of street = 10.388(CFS) Depth of flow = 0.456(Ft.), Average velocity = 3.652(Ft/s) Flow width (from curb towards crown)= 16.485(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 602.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 • Stream flow area = 5.070(AC.) Runoff from this stream = 10.388(CFS) Time of concentration = 8.29 min. Rainfall intensity = 2.340(Zn/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 602.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.074(In/Hr) for a 10.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.884 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 User specified values are as follows: TC = 10.33 min: Rain intensity = 2.07(In/Hr) Total area = 3.87(AC.) Total runoff = 7.90(CFS) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 602.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.870(Ac.) Runoff from this stream = 7.900(CFS) Time of concentration = 10.33 min. Rainfall intensity = 2.074(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity • No. (CFS) (min) (In/Hr) Page 2 PA3110.out • 1 10.388 8.29 2.340 2 7.900 10.33 2.074 . Largest stream flow has longer or shorter time of concentration . Qp = 10.388 + sum of Qa Tb/Ta 7.900 * 0.803 = 6.342 Qp = 16.730 Total of 2 streams to confluence: Flow rates before confluence point: 10.388 7.900 Area of streams before confluence: 5.070 3.870 Results of confluence: Total flow rate = 16.730(CFS) Time of concentration = 8.293 min. Effective stream area after confluence = 8.940(AC.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 604.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 237.400(Ft.) End of street segment elevation = 216.000(Ft.) Length of street segment = 1390.880(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) • Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 35.163(CFS) Depth of flow = 0.652(Ft.), Average velocity = 5.073(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 7.62(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.07(Ft/s) Travel time = 4.57 min. TC = 12.86 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C=.0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.838(In/Hr) for a 10.0 year storm Subarea runoff = 29.417(CFS) for 19.700(AC.) Total runoff = 46.147(CFS) Total area = 28.640(AC.) Street flow at end of street = 46.147(CFS) Half street flow at end of street = 46.147(CFS) Depth of flow = 0.709(Ft.), Average velocity = 5.462(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 10.43(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total study area = 28.64 (Ac.) The following figures may be used for a unit hydrograph study of the same area. • Area averaged pervious area fraction(Ap) = 0.446 Area averaged RI index number = 75.0 Page 3 PA3110.out � e S Page 4 PA31100.out � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 09/14/06 File:PA31100.out 850_0100 RORIPAUGH RANCH PA 31 100-YR 9/14/06 SWL ------------------------------------------------------------- ********* Hydrology Study COntrol IrifOTm3tlon ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 -------------------------------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.200(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.200(In/Hr) Slope of intensity duration curve = 0.5500 � ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 601.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 200.490(Ft.) Top (of initial area) elevation = 253.140(Ft.) Bottom (of initial area) elevation = 244.110(Ft.) Difference in elevation = 9.030(Ft.) Slope = 0.04504 s(percent)= 4.50 TC = k(0.390)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 6.042 min. Rainfall intensity = 4.241(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.857 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 5.164(CFS) Total initial stream area = 1.420(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 601.000 to Point/Station 602.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 244.110(Ft.) ' End of street segment elevation = 237.400(Ft.) Length of street segment = 456.920(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 � Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 PA31100.out � Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11.800(CFS) Depth of flow = 0.473(Ft.), Average velocity = 3.767(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 17.337(Ft.) Flow velocity = 3.77(Ft/s) Travel time = 2.02 min. TC = 8.06 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.851 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.619(In/Hr) for a 100.0 year storm Subarea runoff = 11.238(CFS) for 3.650(AC.) Total runoff = 16.401(CFS) Total area = 5.070(Ac.) Street flow at end of street = 16.401(CFS) Half street flow at end of street = 16.401(CFS) Depth of flow = 0.519(Ft.), Average velocity = 4.150(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.94(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 602.000 • **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.070(Ac.) Runoff from this stream = 16.401(CFS) Time of concentration = 8.06 min. Rainfall intensity = 3.619(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 602.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3.218(In/Hr) for a 100.0 year storm COMMERCIAL subarea type Runoff Coefficient = 0.889 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.100; Impervious fraction = 0.900 � User specified values are as follows: TC = 9.98 min. Rain intensity = 3.22(In/Hr) Tota1 area = 3.87(Ac.) Total runoff = 11.85(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 602.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.870(Ac.) Runoff from this stream = 11.850(CFS) Time of concentration = 9.98 min. Rainfall intensity = 3.218(In/Hr) � Summary of stream data: Page 2 PA31100.out � Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.401 8.06 3.619 2 11.850 9.98 3.218 Largest stream flow has longer or shorter time of concentration Qp = 16.401 + sum of Qa Tb/Ta 11.850 * 0.808 = 9.574 4P = 25.976 Total of 2 streams to confluence: Flow rates before confluence point: 16.401 11.850 Area of streams before confluence: 5.070 3.870 Results of confluence: Total flow rate = 25.976(CFS) Time of concentration = 8.064 min. Effective stream area after confluence = 8.940(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 604.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 237.400(Ft.) End of street segment elevation = 216.000(Ft.) Length of street segment = 1390.880(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.063 S1ope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street � Distance from curb to property line = 10.000(Ft.) S1ope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 � Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 54.596(CFS) Depth of flow = 0.741(Ft.), Average velocity = 5.842(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 12.03(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 5.84(Ft/s) Travel time = 3.97 min. TC = 12.03 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.904(In/Hr) for a 100.0 year storm Subarea runoff = 48.069(CFS) for 19.700(Ac.) Total runoff = 74.045(CFS) Total area = 28.640(Ac.) Street flow at end of street = 74.045(CFS) Half street flow at end of street = 74.045(CFS) Depth of flow = 0.808(Ft.), Average velocity = 6.599(Ft/s) Warning: depth of flow exceeds top of curb ' Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 15.38(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) End of computations, total study area = 28.64 (AC.) • The following figures may be used for a unit hydrograph study of the same area. Page 3 PA31100.out � Area averaged pervious area fraction(Ap) = 0.446 Area averaged RI index number = 75.0 • • Page 4 � � PA 33A • �� . ' AreaAlO.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering $oftware,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: O1/03/06 File:AreaAlO.out CITY OF TEMECULA -- TTM 30767 DEVELOPED CONDITION HYDROLOGY STUDY 10-YR 1-HR STORM JAN '06 - AREA A ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.180(In.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.780(In/Hr) Slope of intensity duration curve = 0.5600 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 24.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 330.000(Ft.) Top (of initial area) elevation = 1212.300(Ft.) Bottom (of initial area) elevation = 1207.400(Ft.) Difference in elevation = 4.900(Ft.) Slope = 0.01485 s(percent)= 1.48 TC = k(0.420)*((length^3)/(elevation change))^0.2 Initial area time.of concentration = 9.916 min. Rainfall intensity = 2.137(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.722 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.050(CFS) Total initial stream area = 0.680(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 22.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1207.400(Ft.) End of street segment elevation = 1204.200(Ft.) Length of street segment = 669.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 • Slope from grade break to crown (v/hz) = 0.020 Street ilow is on [1J side(s) of the street Page 1 AreaAlO.out � Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) , Gutter hike from flowline = 2.000(In.) _ . Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.473(CFS) Depth of flow = 0.393(Ft.), Average velocity = 1.833(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.299(Ft.) Flow velocity = 1.83(Ft/s) Travel time = 6.08 min. TC = 16.00 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.690 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.990 Decimal fraction soil group C= 0.010 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.13 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.635(In/Hr) for a 10.0 year storm Subarea runoff = 3.540(CFS) for 3.140(Ac.) Total runoff = 4.590(CFS) Total area = 3.820(Ac.) Street flow at end of street = 4.590(CFS) Half street flow at end of street = 4.590(CFS) Depth of flow = 0.424(Ft.), Average velocity = 1.959(Ft/s) � Flow width (from curb towards crown)= 14.886(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1200.200(Ft.) � Downstream point/station elevation = 1199.600(Ft.) Pipe length 17.50(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow 4.590(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.590(CFS) Normal flow depth in pipe = 7.37(In.) Flow top width inside pipe = 11.68(In.) Critical Depth = 10.72(In.) • Pipe flow velocity = 9.08(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 16.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MZNOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.820(Ac.) Runoff from this stream = 4.590(CFS) Time of concentration = 16.03 min. Rainfall intensity = 1.633(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 241.000(Ft.) Top (of initial area) elevation = 1212.300(Ft.) Bottom (of initial area) elevation = 1207.400(Ft.) Difference in elevation = 4.900(Ft.) Slope = 0.02033 s(percent)= 2.03 TC = k(0.420)*[(length^3)/(elevation change))^0.2 Initial area time of concentration = 8.211 min. Rainfall intensity = 2.375(In/Hr) for a 10.0 year stonn � SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.735 Page 2 AreaAlO.out • Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 , RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 0.890(CFS) Total initial stream area = 0.510(AC.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1207.400(Ft.) End of street segment elevation = 1204.200(Ft.) Length of street segment = 733.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.139(CFS) Depth of flow = 0.444(Ft.), Average velocity = 1.944(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.862(Ft.) Flow velocity = 1.94(Ft/s) • Travel time = 6.29 min. TC = 14.50 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.696 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 1.727(In/Hr) for a 10.0 year storm Subarea runoff = 5.856(CFS) for 4.870(Ac.) Total runoff = 6.746(CFS) Total area = 5.380(AC.) Street flow at end of street = 6.746(CFS) Half street flow at end of street = 6.746(CFS) Depth of flow = 0.480(Ft.), Average velocity = 2.077(Ft/s) Flow width (from curb towards crown)= 17.666(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1200.200(Ft.) Downstream point/station elevation = 1199.600(Ft.) Pipe length = 30.30(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 6.746(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 6.746(CFS) • Normal flow depth in pipe = 9.62(In.) F1ow top width inside pipe = 14.39(In.) Critical Depth = 12.53(In.) Pipe flow velocity = 8.11(Ft/s) Travel time through pipe = 0.06 min. Time of concentration ( TC) = 14.56 min. • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 AreaAlO.out � Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 , Stream flow area = 5.380(AC.) Runoff from this stream = 6.746(CFS) Time of concentration = 14.56 min. Rainfall intensity = 1.723(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.590 16.03 1.633 2 6.746 14.56 1.723 Largest stream flow has longer or shorter time of concentration Qp = 6.746 + sum of Qa Tb/Ta 4.590 * 0.908 = 4.169 Qp = 10.915 Total of 2 streams to confluence: Flow rates before confluence point: 4.590 6.746 Area of streams before confluence: 3.820 5.380 Results of confluence: Tota1 flow rate = 10.915(CFS) Time of concentration = 14.561 min. Effective stream area after confluence = 9.200(Ac.) End of computations, total study area = 9.20 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.600 • Area averaged RI index number = 56.0 � Page 4 AREAAl00.out • Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 , Rational Hydrology Study Date: O1/03/06 File:AREAA100.out -------------------------------------------------------- CITY OF TEMECULA -- TTM 30767 DEVELOPED CONDITION HYDROLOGY STUDY 100-YR 1-HR STORM JAN '06 - AREA A ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Van Dell and Associates, Inc., Irvine, CA - S/N 953 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.500(In.) 100 year, 1 hour precipitation = 1.180(In.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.180(In/Hr) Slope of intensity duration curve = 0.5600 • «��+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 24.000 * INITIAL AREA EVALUATION **** Initial area flow distance = 330.000(Ft.) Top (of initial area) elevation = 1212.300(Ft.) Bottom (of initial area) elevation = 1207.400(Ft.) Difference in elevation = 4.900(Ft.) Slope = 0.01485 s(percent)= 1.48 TC = k(0.420)*[(length change))^0.2 Initial area time of concentration = 9.916 min. Rainfall intensity = 3.234(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.768 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.689(CFS) Total initial stream area = 0.680(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 22.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1207.400(Ft.) End of street segment elevation = 1204.200(Ft.) Length of street segment = 669.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) S1ope from gutter to grade break (v/hz) = 0.020 • Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 1 AREAAl00.out • Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.)_ , Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5.587(CFS) Depth of flow = 0.449(Ft.), Average velocity = 2.055(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.102(Ft.) Flow velocity = 2.05(Ft/s) Travel time = 5.43 min. TC = 15.34 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.743 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 0.990 Decimal fraction soil group C= 0.010 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.13 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.532(In/Hr) for a 100.0 year storm Subarea runoff = 5.905(CFS) for 3.140(AC.) Total runoff = 7.593(CFS) Total area = 3.820(Ac.) Street flow at end of street = 7.593(CFS) Half street flow at end of street = 7.593(CFS) Depth of flow = 0.489(Ft.), Average velocity = 2.222(Ft/s) Note: depth of flow exceeds top of street crown. Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** • Upstream point/station elevation = 1200.200(Ft.) . Downstream point/station elevation = 1199.600(Ft.) Pipe length 17.50(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 7.593(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 7.593(CFS) Normal flow depth in pipe = 8.67(In.) Flow top width inside pipe = 14.82(In.) Critical Depth = 13.14(In.) Pipe flow velocity = 10.32(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 15.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS **** � Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.820(Ac.) Runoff from this stream = 7.593(CFS) Time of concentration = 15.37 min. Rainfall intensity = 2.530(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 241.000(Ft.) Top (of initial area) elevation = 1212.300(Ft.) Bottom (of initial area) elevation = 1207.400(Ft.) Difference in elevation = 4.900(Ft.) Slope = 0.02033 s(percent)= 2.03 TC = k(0.420)*[(length^3)/(elevation change)]^0.2 Initial area time of concentration = 8.211 min. � Rainfall intensity = 3.594(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/2 Acre Lot) Page 2 AREAAl00.out � Runoff Coefficient = 0.778 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 , Decimal fraction soil group C= 0.000 , Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Initial subarea runoff = 1.426(CFS) Total initial stream area = 0.510(Ac.) Pervious area fraction = 0.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1207.400(Ft.) End of street segment elevation = 1204.200(Ft.) Length of street segment = 733.500(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 18.000(Ft.) Distance from crown to crossfall grade break = 16.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1J side(s) of the street Distance from curb to property line = 5.500(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.j Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 8.236(CFS) Depth of flow = 0.506(Ft.), Average velocity = 2.219(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. � Distance that curb overflow reaches into property = 0.29(Ft.) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 18.000(Ft.) Flow velocity = 2.22(Ft/s) Travel time = 5.51 min. TC = 13.72 min. Adding area flow to street SINGLE FAMILY (1/2 Acre Lot) Runoff Coefficient = 0.749 Decimal fraction soil group A= 0.000 ' Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 2) = 56.00 Pervious area fraction = 0.600; Impervious fraction = 0.400 Rainfall intensity = 2.696(In/Hr) for a 100.0 year storm Subarea runoff = 9.832(CFS) for 4.870(Ac.) Total runoff = 11.258(CFS) Total area = 5.380(Ac.) Street flow at end of street = 11.258(CFS) Half street flow at end of street = 11.258(CFS) Depth of flow = 0.557(Ft.), Average velocity = 2.389(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 2.85(Ft.) Flow width (from curb towards crown)= 18.000(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1200.200(Ft.) Downstream point/station elevation = 1199.600(Ft.) Pipe length = 30.30(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 11.258(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 11.258(CFS) s Normal flow depth in pipe = 11.75(In.') Flow top width inside pipe = 17.14(In.) Page 3 AREAAl00.out . Critical Depth = 15.38(In.) Pipe flow velocity = 9.21(Ft/s) Travel time through pipe = 0.05 min. Time of, concentration (TC) = 13.78 min. , ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 5.380(Ac.) Runoff from this stream = 11.258(CFS) Time of concentration = 13.78 min. Rainfall intensity = 2.690(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.593 15.37 2.530 2 11.258 13.78 2.690 Largest stream flow has longer or shorter time of concentration Qp = 11.258 + sum of Qa Tb/Ta 7.593 * 0.896 = 6.806 Qp = 18.064 Total of 2 streams to confluence: Flow rates before confluence point: 7.593 11.258 Area of streams before confluence: 3.820 5.380 Results of confluence: Total flow rate = 18.064(CFS) • Time of concentration = 13.776 min. Effective stream area after confluence = 9.200(Ac.) End of computations, total study area = 9.20 (AC.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.600 Area averaged RI index number = 56.0 • Page 4