Loading...
HomeMy WebLinkAboutHydrology (Rational Method) 7 __'w � � ������� � � W � �C� Bcntr�� ��@90 LAND PLANNING � CIVIL ENGINEERING � LAND SURVEYING HYDROLOGY STUDY (RATIONAL METHOD) RIVERSIDE COUNTY �`TB�`2_ -< 5 '� EV#401-01 OWNER/APPLICANT: JACK HAMRY / TOM TAYLOR RANCHO BAHAMAS, INC. 25141 VIA PIEDRA BLANCA LAGLJNA NIGEL, CA. 92677 AND/OR 1280 BISON AVE., SUITE#B9-66 NEWPORT BEACH, CA. 92600 Ph. (949)388-7748 PREPARED BY: Joseph Ross ENGINEER: Mr. Randolph F. Fleming Engineering Ventures, Inc. 43500 Ridge Park Drive Suite 202 ��°'�" -" � Temecula, CA 92590 �� ^ r , ��� � '�v`�'� (909)699-6450 . ,� `-°- �l" � , � F .�.4 l � '� ' � ' %! :' t �`/,,� � ��< ,�C} •"y ''—� � �, �,' �•: °� �'� f .. s � ��� t `��1::�. C --;'`;cs;� ~ "` 4 �l S � _ � � � �� y� � 0Z , :... �,� �`��• �Z"3/' Y'�� andolph F. Fleming .C.E. Date �, ` J�,���,„ ; 1 , , �,�� ; ;; � '.''--- �:t License #45687 Exp. 12/31/02 .,\ � j �� �t � � _ ; �, �:`` :.1 � � �"�� i +._,,.......,.. ��._...�' 43500 Ridge Park Drive, Suite 202 � Temecula, CA 92590 a t909) 699-6450 Fax: (909) 6993569 0 E-nnail: engrvent@iinet.com � • i ' � _.. ����1 V ��� ��� ________ ..__._._....... � • I . , � � I •��:, � � 't �a. e � . I � tyI# I ��. °$'�� i y � . �� � i I ' � , �x��� . ' u � �'F� � . 1 y0� M S� ' ' . � � � � a�..: �'' S '+;: '�. �,�, � �� �s t � , � E � a��.� -�� �_ � ;; � M � �� a ` � �' !' � i� � " �� �1 ; tit �,. � ,. � �z��. r Y, �a f� ...�.�,.., 4. � ° '� �:r � � p,, � C � '' ,� + -x .;k {�� ' . �p '� y "@.. ...'rz i� ,.r' . ,..�! '� ? 3, . �+.�' �ti � �. � « �� F ' "� � . _ ' � � �i k.`" . �•. �'. � �r.'� �. i m� F i� i; �:r" p y >� . � � ., II '�..- �y tti .. � l' f �, s. � L� ' d . . � I . { ' :I �I� .„'(,: . ..� �i � ^�'�� v � .... � ,,,��. �r 1 n � � , ,� � � �,� �� �,�,��.,�'"°' ���i � � �; �� ;� '.� � �� � � �, �r. 4,,,, . �, �;i 3��n°`� � �' .;�' � Q �! T s i '� 3 r�, ; �� f � c � � �. �; ,t. � .. �. �. s � �; , tr' . ,� ,;_' �� ,�., .� a t L � ... �.....«..n� ..,,:.��r'` . � .. sn ��� � - t a u .,��� . � a; ,� :r��x � � a;F° _ � ,�� ,� !: . 5, .:r� � . �� ', . F� . �+ .-r' � •ac> �..'�"h��Z ~ K , 9 ' � � . orr:' �. . ` . q � � � { h , � � �,;: } s ,r�i� � E d k' ���'� � •� r; ��°�,l' �� t . . , ij �».ry.n'"' � �`T� � � Y I .��'`••'•^-"`�»u . `k . ��,� . � : f�� $ - . „n �,»^°" . .. ..��� t � r + � 4 � . '`...�..r''`�'���• � . E�}'�� . �� .r 7'�,�t w � . . � �.ky4� �• �6��' �� � � ' ..,� i ��� V �slf� `��� 4 . ��,.�t . 40^' }' «{' F} } x�� ,���`'i�� g,,, � ,, � " � "� E � ��:� ;—,� i �' k �j7s-�'�Y a �j .^e'`� . "'+i.: .. �'� �.�.,t . . . ��a ��. y � [ j ��.:,.:C �. .�..?'"` � , y ° jj ' € . ��S('�lit�i�l�tlYr,=^ F (fN ., ti�� t ,�.. w "^� �, �` �� ,���• �':� , }� y �, � ,�� ' � :ifs �. t Y. i{�� d � ' . Y��� 1 a .+.a f � .4.,1ry1� t . .� ' - ,�unr� � ��`� .. ._.. ���,.�(( .k } f�� � nR A' 4 t ��, y � i j� ' ... � �� �.e�� yf ' . . � . �� Ma � � . ��. � . Y ` . . 1 i�T T� wn s:mw�� n� . fl'°�'�t� � tl w�.r. . ��� . : .:�r �, i � :,.. � .. a 5. � , 2 r C _k�.Y... � y � <s'"� x � _ � �a � �..� �;��¢���_"' ,�,� . ��� ��� � ",*I p ""`r'' _�„R",., . . � � � F riap':� , ��,�„u "" � �� � l� • � � ��� � A�' . N+'�'. , . ? . ,Y ��.p� . . . 3 E ��N.'� . . � O . . . �.«�e».tltYO{p i: � E �,� f �, . r . . . 6..������"'...""•m�� g r � �. � Y ; __ . .... ..... .. .. ._ r ,. ___. _. _. .. -- . .__...... _ ._ _.... � l. s • • II. 1VIETI�ODOI,OGY RATIONAL METHOD• Criteria for this analysis are based on the latest edition of the RCFC&WCD Hydrology Manual. In accordance with the manual, since the study are�-is less than 500 acres, the Rational Method for determining the runoff flowrates has been used. RRIV; � The calculations have been computed using the RRIV computer prograrri, developed by Joseph E. Bonadiman & Associates, which performs the rational method analysis in accordance with RCFC&WCD Hydrology M�nual criteria. RRIV Models the study watershed through the application of link- node modeling. The major onsite and offsite study drainage areas have , been diyided into smaller, minor drainage areas- or sub-areas. Node , numbers have been assignecl at the upstream and downstream points of each sub-area. RRIV begins the analysis at the upstream node of each sub- area and proceeds towards the downstream node. Hydrology maps showing the study areas and the node modeling used for RRIV input are inciuded throughout this report. , � � � � � D�V�I�OPEI� (:OI�TDI7C'IOl�S � ' • � r - 10 Y�A.lZ S'T'OI.ZI�I �ALC'I.TI�AT' + I �1�tS ' �. � ! Riverside County RationaT Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational I Study Date: 04/O1/02 --------------------------------------------------------- AREA "A" TR 25055 DEVELOPED HYDROLOGY EV 401-01 ------------------------------------------------ ********* Hydrology Study Control Information ********** -------------------------------- --------------- -- ENGINEERING VENTURES Inc., Temecula, California - S/N 560 ------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1993 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 1 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = 10.0 " Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr.) Slope of intexisity duration curve = 0.5500 t � • • -�'+"+' - F'F -�-+�- �"�+�--�-'� �' �' � -{--}--{-'+' -�-'�' �' -{-'{--�"{"�' -�--�--� -�-+++++++�' -�--�--�' -�- - f"{' �"�' -�--�--}' -� -�- - F -�- - f - � - F - F Process from Point/Station 1.000 to Point/Station 2.OU0 **** INITIAL AREA EVALUATION **** Initial area flow distance = 412.000(Ft.) Top (of initial area) elevation = 98.300(Ft.) Bottom (of initial area) elevation = 95.500(Ft.) Difference in elevation = 2.800(Ft.) Slope = 0.00680 s(percent)= 0.68 TC = k(0.323)*((length^3)/(elevation change)]^0.2 Initial area time of concentration = 9.743 min. Rainfall intensity = 2.392(In/Hr) for a 10.0 year storm - APARTMENT subarea type Runoff Coefficient = 0.810 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0,800 Initial subarea runoff = 1.957(CFS) Total initial stream area = 1.01'0(Ac.} Pervious area fraction = 0.200 � • � � � ++++-i-++ �-++++++-�-+++-F+++++++++-�--�--F+++-+-+++++++++-F++++++-�-�-+++++++++++++++-�-f Process from Point/Station 2.000 to Point/Station 3.000 **** PIPEFLOW TFtAVLL TIME (User specified size) **** Upstream point/station elevation = 91.00(Ft.) ' Downstream point/station elevation = 82.12(Ft.) . Pipe length = "15.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 1.957(CE'S) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.957(CFS) Normal flow depth in pipe = 1.93(In.) Flow top width inside pipe = 11.14(In.) � Critical Depth = 6.33(In.) Pipe flow velocity = 19.19(Ft/s) Travel time through pipe = 0.01 min. Time of.concentration ('I'C) = 9.76 min. / , • • , ++++ + +-I--I -f- Process from Point/Station ?.000 to Point/Station 3.OU0 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.010(Ac.) . Runoff from this stream = 1.957(CFS) Time of concentration = 9.76 min. Rainfall intensity = 2.390(In/Hr) � � � � +++-F+-F+++++++-f +++++++-+--F+-�-+++++++-+-�-++++++++-F++++++-i-+-F++++++++-F++�--+- � + +-i--i- Process from Point/Station 3.000 to Point/Station 3.UUU **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.358(In/Hr) for a 10.0 year storm SINGLE FAMII,Y (1/4 Acre Loi.) Runoif Coefficient = 0.6.79 Decimal fraction soil group A= 0.000 � Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 . User specified values are as follows: TC = 10.00 min. Rain iritensity = 2.36(In/Hr) � Total area = 10.00(Ac.) Total runoff = 19.30(CFS) . �r o �_+_�++++++++++++_�++++++++++++�_+++++++++++++�_++++++++++++++++++++++++++_,_ Yrocess from Point/Station 3.000 to Point/Station 3.U00 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.000(Ac.) Runoff from this stream = 19.300(CFS) Time of concentration = 10.00 min. � Rainfall intensity = 2.358(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity � No. (CFS) (min) (Iri/Hr) 1 1.957 9.7b 2.390 2 19.300 10.00 2.358 Largest stream flow has longer time of concentration Qp = 19.300 + sum of , Qb Ia/Ib 1.957 * 0.987 = 1.931 Qp = 21.231 Total of 2 streams to confluence: Flow rates before confluence point: 1.957 19.300 Area of streams before confluence: "1.010 10.000 Results of conf].uence: Total flow rate = 21.231(CFS) Time oF concentration = 10.000 min. Effective stream area after confluence = 11.010(Ac.) . � � � ++++a +- Process from Point/Station 3.00U to Point/Station 4.OU0 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 82.12(Ft.) Downstream point/station elevation = 81.80(Ft.) Pipe length = 2•0.00(Ft.) Manning's N= 0.013 No. of pipes ="1 Required pipe flow = 21.231(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 21.231(CFS) Normal flow depth in pipe = 15.40(In.) Flow top width inside pipe = 23.02(In.) Critical Depth - 19.78(In.) Pipe flow velocity = 9.98(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 10.03 rnin. End of cornputations, total study area = 11.01 (Ac.; ` The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.472 Area averaged RI index number = 56.0 � � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rationa.l Hydrology Study Date: 04/Ol/02 ----------------------------------------------- AREA "B" TR25055 DEVELOPED CONDITION EV401-01 ----------------------------------------------- ********* Hydrology Study Control Information ********** -------------------------------------------- ENGINEERING VENTURES Inc., Temecula, California - S/N 560 ----------------------.------------------------------ Rational Method Hydrology Frogram based on Riverside County Flood Control & Water Conservation District 1993 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 1 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ) area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) "100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = 10.0 � Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr.) Slope of intensity duration curve = 0.5500 , � � � ++++++++-F++++++-+-+++++++++-+-+++�-++++++++++a-+++++++-�-+++++++++++++++++-+- +--F+ Process from Point/Station 6.000 to Point/Station 7.UUU **** INITIAL AREA EVALUATION **** Initial area flow distance = 60.000(Ft.) Top (of initial area) elevation = 98.200(Ft.) Bottom (of initial area) elevation = 97.600(Ft.) Difference in elevation = 0.600(Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.323)*[(length^3)/(elevation change)]�0.2 Warning: T,C computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes, Initi.al area time of concentration = 5.000 min. Rainfall intensity = 3.452(In/Hr) for a 10.0 year storm APARTMEN`P subarea type Runoff Coefficient = 0.827 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0:000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.200(CFS) Total initial stream area = 0.070;Ac.; Pervious area fracLion = 0.200 ♦ 1 � • "�'++��'�'�'++'��"�'�'+�"�"�'�'+�"�'�+�"F""f.'i"'�'�"f' f i'�+�'� I+ I'"�++ -�"+++� I'{ Process from Point/Station 6.000 to Point/Station 7.000 **** STREET INLE`P + ARER -I- PIPE TRAVEL TIME **** Top of street segment elevation = 98.240(Ft.) End of street segment elevation = 98.140(Ft.) Length oi street segment = 126.000(Ft.) Height of curb above gutter flowline = "18.0(In.) Width of half street (curb Lo crown) = 15.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade brealc to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street . Distance from curb to property line = 1.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter widtll = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0250 Manning's N from gutter to grade break = 0.0250 Manning's N frorn grade break to crowri = 0.0250 User-specified maximum inlet flow capacity of 0.250(CFS) Number of street inlets = 1 Note: Single inlet capacity is greater than 1/2 street flow Estimated mean flow rate at midpoint of street = 0.211(CFS) Depth of flow =-0.27"1(Ft.) Average velocity = 0.327(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.198(Ft.) Flow velocity = 0.33(Ft/s) Travel time = 6.42 min.. TC = 11.42 min. Adding area flow to street APARTMENT subarea type Runoff Coefficient = 0.806 Decimal fraction soil group A= 0.000 llecimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 ' Pervious area fraction = 0.200; Impervious fraction = 0.800 Rainfall iirtensity = 2.191(In/Hr) for a 10.0 year storm Subarea runoff = 0.194(CFS) for 0.110(Ac.) Total runoff =. U.394(CFS) Total area = 0.1�OjAc.) Street flow"at end �of street = 0.394(CFS) Half street flow at end of street = 0.394(CFS) Depth of flow = 0.319(Ft.), Average velocity = 0.375(Ft/s) . Flow width (from curb towards crown)= 9.621(Ft.) , � � • +++++++-�-++++++++++++++++++�-++++++-�+a-�-++++++++++++-�-+++++++++++++++++�-� -F � Process from Point/Station 7.000 to Point/Station 3.UUU **** STREET IrdLET + AREA 1- PIPE TRAVEL TIME **** Top of street segment elevation = 98.140(Ft.) End of streei� segment elevation = 98.040(Ft.) Length of street segment = 128.000(Ft.) Height of curb above gutter flowline = 18.0(In.} Width of half street (curb to crown) = 15.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 1.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0250 Manning's N from gutter to grade break = 0.0250 Manning's N from grade break to crown =,0.0250 User-specified maximum inlet flow capacity of . 0.250�CE'S) Number of street inlets = "1 Pipe calculations for under street flow rate of 0.250(CFS) Using a pipe slope = 1.000 0 Upstream point/station elevation = 98.14(Ft.) Downstream point/station elevation = . 98.04(Ft.) Pipe length = 128.00(Ft.) Manning's N= 0.010 No. of pipes = 1 Required pipe flow = 0.250(CFS) Given pipe size = 6.00(In.) Calculated individual pipe flow = 0.250(CFS) Norrnal flow depth in pipe =. 2.42(In.) Flow top width inside pipe = 5.89(In.) Critical Depth = 3.02(In.) Pipe flow velocity = 3.36(Ft/s) � Travel time through pipe = 0.63 min. Time of concentration (TC) = 12.06 min. Maximum flow rate of street �inlet(s) = 0.250(CFS) , Maximum pipe flow capacity 0.250(CFS) � Remaining flow in street below inlet = 0.144(CFS) Adding area flow to street APARTMENT subarea type Runoff Coefficient = 0.805 Decimal fract:ion soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Rainfall intensity = 2.127(In/Hr) for a 10.0 year storm Subarea runoff =� 0.183(CFS) for 0.110(Ac.) Total runoff = 0.582(C.FS) Total area = - 0.290(Ac.l Street flow at end of street = 0.332(CFS) Half street flow at end of street = 0.332(CFS) a � � � Depth of flow = 0.306(P't.) Average velocity = 0.358(Ft/s) Flow width (from curb towards crown)= 8.951(Ft.) \ , � � � +++++ �- �- Process from Point/Station 8.000 to Point/Station 9.000 *�** STREET INLET + AREA + PIPE TRAVEL TIME **** Top of street segment.elevztion = 98.040(Ft.) End of street segment elevation = 97.600(Ft.) Length of street segment = 65.000(Ft.) Height of curb above gutter flowline = 18.0(In.) Width of half street (curb to crown) = 15.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 1.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width - 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0250 Manning's N from gutter to grade break = U.025U Manning's N irom grade break to crown = 0.0250 User-specified maximum inlet flow capacity of 0.250(CFS) Number of street inlets = 1 Pipe calculations for under street flow rate of 0.500(CFS) Using a pipe slope = 1.000 � Upstream point/station elevation = 98.04(Ft.) " Downstream point/station elevation = 97.60(Ft.) Pipe length = 65.00(Ft.) Manning's DI = 0.010 No. of pipes = 1 Required pipe ilow = 0.500(CFSj Given pipe size = 6.00(In.) Calculateci individual pipe flow = 0.500(CFSj Normal flow depth in pipe = 3.64(In.) Flow top width inside pipe = 5.86(In.j Critical Uepth = 4.33(In.) Pipe flow velocity = 9.00(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 12.33 min. Maximum flow rate of street inlet(s) = 0.250(CFS) Maximum pipe flow capacity = 0.500(CFS) Remaining flow iri street below inlet = 0.082(CFS) Adding area flow to street APARTMENT subarea type Runoff Coeffic:ient = 0.805 � Decimal fraction soil group A= 0.000 Decirnal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 � RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.300 Ra intensity = 2.101(In/Hr) for a 10.0 year storm v Subarea runoff = 0.085(CFS) for 0.050(Ac.) Total runoff = 0.667(CFS) Total area = 0.340(Ac.i Street flow at end of street = 0.167(CFS) Half street flow at end of street = 0.167(CFS) . ' � � Depth of flow = 0.182(Ft.), Average velocity = 0.820(Ft/s) rlow width (from curb towards crown)= 2.773(Ft.) ' � • +++� Process from Point/Station 9.OU0 to Point/Station 1U.UOU **** PIPEFLOW TRAVEL i'IME (User speci_iied size) **** Upstream point/station elevation = 92.80(Ft.) � Downstream point/station elevation = 91.70(Ft.) Pipe length = 107.00(Ft.) Manning's N= 0.010 No. of pipes = 1 Required pipe flow = 0.667(CFSj Given pipe size = 6.UU(In.) Calculated individual pipe flow = 0.667(CFS) Normal flow depth in pipe = 4.45(In.) Flow top width inside pipe = 5.25(In.) Critical Depth = 4.96(In.) Pipe flow velocity = 4.26(Ft/s) Travel time through pipe = 0.42 mitz. Time'of concentration (TC) = 12.75 min. � ' � • � • +++++++� -I--I- Process from Point/Station 9.000 to Point/Station 10.UOU **** SUBAREA FLOW ADDITION **** APARTMENT subarea type Runoff Coefficient = 0.804 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal f_raction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious are� fraction = 0.200; Impervious fraction = 0.80Q Time of coricentration = 12.75 min. Rainfall intensity = 2.063(In/Hr) for a 10.0 year storm Subarea runoff = 0.050(CFS) for 0.030(Ac.) Total runoff = 0.717(CFS) Total area = U.370jAc.) . � � • ++++++-�-++++++++++++ �-++-�-++++-�-++++-� +++++-F+++-F �--F++-�-+++++-�-+�-++-�- -+--F++++-�-+-�--� -i- Process from Point/5tation 10.000 to Point/Station 11.000 �*** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 96.00(Ft.) Downstream point elevation = £32.00{Ft.) Channel length thru subarea = 20.00(Ft.) Chanriel base �-aidth = 0. 000 (Ft. ) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Manning's 'N' = 0.015 Maximum depth of channel = 1.500(Ft.) Flow(q) thru subarea = 0.717(CFS) Depth of flow = 0.218(Ft.), Average velocity = 15.029(Ft/s) Channel flow top width = 0.437(Ft.) Flow Velocity = 15.03(Ft/s) Travel time = 0.02 min. ; Time of concentration = 12.77 min. Critical depth = 0.504(Ft.) End of computatioris, total stud� area = 0.37 �P.c.j The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap} = 0.200 Area averaged RI index number = 56.0 , • � • , Riverside County Rational Hydrology Program CIVILCADD/CIVILD�SIGN I,ngineering Software, (c) "1992 ' Version 3.3 Rational Hydrology Study Date: 04/Ol/02 ------------------- ------------------------------ ---------------- AREA "C" TR25055 DEVELOPED CONDITIONS EV401-01 ********* Hydrology Study Control Information ********** ENGINEERING VENTURES Inc., Temecula, California - S/N 560 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1993 hydrology manual Storm event (year) = 10.00 Antecedeni. Moisture Condition = 1 Standard intensity-duration curves data (Plate D-9.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr.) Slope of intensity duration curve = 0.5500 � ' � � -�++++++++�-+-�-++++++++-�-++++++-F+a-++++++++++++++++++++-F-�-++-�+++++++++++� �-� -E- Process from Point/Station 5.000 to Point/Station 12.00U **** Ii�IITIAL AREA EVALUATION **** ' Initial area flow distance = 220.000(Ft.} Top (of initial area) elevation = 98•200(Ft.) Bottom (of initial area) elevation = 96.000(Ft.) Difference in elevation = 2.200(L't.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.323)*((length�3)/(elevation change)]^0.2 Initial area time of concentration = 7.017 min. Rainfall interisity = 2.865(In/Hr) for a 10.0 year storm APARTMENT subarea type Runoff Coefficient = 0.818 Decirnal Lraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fract=ion soil group C= 0.000 Decimal fract:ion soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.422(CFS) Total initial stream area = 0.1II0(Ac.) Pervious area fraction = 0.200 . • � � +++-�-+++++++++-�-++++++++++++++++++++++++++++�-+++++++-�-++++++++++++++++ i-++ Process from Point/Station 12.Ot�0 to Point/Station 13.000 ' **** IMPROVED CHANNEL TF2AVEL TIME **** Covered channel Upstream point elevation = 96.00(Ft.) , Downstream point elevation = 95.87(Ft.) Channel length thru subarea = "12.00(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 0.000 Slope or 'Z' of right channel bank = 0.000 Manning's 'N' = 0.015 Maximum depth of channel = 0.330(Et.) Flow(q) thru subarea = 0.422(CFS) Depth of flow = 0.10"1(Ft.), Average velocity = 2.094(Ft/s) Channel flow top width = 2.000(Ft.) Flow Velocity = 2.09(Ft/s) Travel time = 0.10 min. Time of concentration = 7.11 min. Critical depth = 0.117.(Ft.) End of computations, total study area = 0.18 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.200 Area averaged RI index numk>er = 56.0 . � � • 100 �'EA.1� STOI�IVI C�I..,C�JLATIC)NS �, . ' � � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 04/01/02 AREA "A" TR 25055 DEVELOPED HYDROLOGY EV 401-01 ********* Hydrology Study Control Information *"******** ENGINEERING VENTURES Inc., Temecula, California - S/N 560 Rational Method Hydrology Px:ogram based on Riverside County E'lood Control & Water Conservation District 1993 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 1 Standard intensity-duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480,(in./hr.) 100 year storm 60 minute intensity =. 1.300 (in./hr.) Storm event ye�r = 100.0 Calculated rairifall intensity data: 1 hour intensity = "1.300 (in./hr.) Slope of intensity duration curve = 0.5500 ' ' � • -ht-I-i--F-f--I--f--I--1--I--I I--I-1-+-l- -t--F-I--f- f--F-�+-i--f--f-+-f-t+ I-+-I- I--f- Process from Point/Station 1.000 to Point/Station 2.U00 **** INITIAL AREA EVALUATION **** Initial area flow distance = 412.000(Ft.) Top (of initial area) elevati.on = 98.300(Ft.) Bottom (of initial area) elevation = 95.500(Ft.) `� Difference in elevation = 2.800(Ft.) Slope,= 0.00680 s(percent)= 0.68 TC = k(0.323)*[(length change)]^0.2 Initial area time of concentration = 9.743 min. Kainfall intensity = 3.533(In/Hr) for a 100.0 year storm APAR`PM�NT subarea type Kunoff Coefficient = 0.828 Decimal fraction soil group A= 0.000 llecimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 llecimal fraction soil group ll= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 2.954(CFS) Total initial stream area = 1.010(Ac.) Pervious area fraction = 0.200 ' � �, �-�-a-+++++++++++++++++++++++-�-+++++++++++++++++++++++++++++++++-�-+� +�--+ �-+-� f Process from Point/Station 2.000 to Point/Station 3.U00 **** PIPEFLOW TRAVEL TIM� (User specified size) **** Upstream point/station elevation = 91.00(Ft.) Downstream point/station elevation = 82.12(Ft.) Pipe length = 15.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 2.954(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.954(CFS) Normal flow depth in pipe = 2.35(In.) Flow top width inside pipe = 12.14(In.) Critical Depth : 7.83(In.) Pipe flow velocity = 2"1.71(Ft/s) Travel time through pipe = 0.01 min. 'I'ime of concentration (TC) = 9.75 min. � � ++++++++-�-+++++++++++++-�-++++++++++++++++++++-�-F+++++++++++++++++++++ � +-�--F Process from Point/Station 2.000 to Point/Station 3.000 *�** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.010(Ac.) Runoff from this stream = 2.954(CE'S) 'Pime ot concentration = 9.75 min. Rainfall intensity = 3.531(In/Hr) . . � � -� �--f--I--F+-i �-+ f-++-{-+-f ++-I-++++� '++++++++i--I-+++++++ Process from Point/Station 3.000 to Point/Station 3.UUU **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3.483(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/9 Acre Lot) � Runoff Coefficient = 0.718 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group �� = 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 10.00 min. Rain intensity = 3.48(In/Hr) Total area = 10.00(Ac.} Total runoff = 34.30(CFS} . . • � 5 j T�'�" 1 I�� I 1 1 I++'+� r I� 1 ����+� 1 1+ 1 Process from Point/Station 3.000 to Point/5tation 3.UOU **** CONFLUEidCE OF MINOR STREAMS **** Along Main Stream number: 1 i_n normal stream number 2 Stream flow area = 10.000(Ac.) Runoff from this stream = 34.300(CFS) � Time of concentration = 10.00 min. � Rainfall intensity.= 3.483(In/Hr) Summary of stream data: Stream L'low rate TC Rainfall Iritensity T�1o. (CFS; (min) . (In/Hr) 1 2.954 9.75 3.531 2 39.300 10.00 3.483 � Largest stream flow has longer time of concentration Qp = 34.300 + sum of Qb Ia/Ib , 2.954 * 0.986 = 2.914 Qp = 37.214 Total of 2 streams to confluence: Flow rates before confluence point: 2.954 34.300 Area of streams before confluence: ' 1.010 10.000 Results of confluence: Total flow rate = 37.214(CFS) Time of concentration = 10.000 min. Effective stream area after confluence = 11.010(Ac.) , � � � +++-�-++-+-+-i-+++++-+-�-++++++++++++++-�-+-�-++++-�+++++++++-�++++++++++++++++-�--�-�--�+ � Process from Point/Station 3.000 to Point/Station 9.UOU **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 82.12(Ft.) Downstream point/station elevation = 81.80(Ft.) Pipe length = 20.00(Ft.) Manning's N= 0.013 No. of pipes = 1 Required pipe flow = 37.214(CFS) Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade Iine above the pipe invert is 3.489(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.541(Ft.) Minor friction loss = 3.268(Ft.) K-factor_ = 1.5U Pipe flow velocity = 1:1.85(Ft/s) Travel time through pipe = �0.03 min. Time of concentration (TC) = 10.03 min. End of computations, total study area = 11.01 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.472 Area averaged RI index number = 56.0 ' ' • � • Riverside County Rational Hydrology Program � CIVILCAUD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study DaL 09/Ol/02 ------------------------------------- AREA "B" TR25055 DEVELOPED CONDITION EV401-01 ------------- *******�** ********* Hydrology Study Control Information --------------------- ------------ �NGINEERING VENTURES Inc., Temecula, California - S/N 560 -------------------------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1993 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 1 Standard intensity-duration curves data (Plate D-�.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in./hr.) Slope of intensity duration curve = 0.5500 . � � � +++++++-�++++++-�-+++++++++++++++++++-+-+++++++++-+-++++++++++++++++++�-++-f--� ++ Process. from Point/Station 6.p00 to Point/Station 7.UU0 **** INITIRL AREA EVALUATION **** Initial area flow distance = 60.000(Ft.) Top (of initial area) elevation = 98.200(Ft.) Bottom (of initial area) elevation = 97.600(Ft.) Difference in elevation = 0.600(I?t.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.323)*[(length^3)/(elevation change)]^0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm APARTMENT subarea type Runoff Coefficient = 0.843 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0•8�0 Initial subarea runoff = 0.301(CFS) Total initial stream area = 0.070(Ac.) Pervious area fraction = 0,200 , � • -�-++++++-� ++-+--�-�-+++++++++++++++++++�-+++�-++�-+++++++++++++++++++++-�+++++�- ++ Process from Point/Station 6.000 to Point/Station 7.OU0 **** STR�ET INLET + AREA -F PIPE TRF�VEL TIME **** Top of street segment elevation = 98.240(Ft.) End of street segment elevation = 98.140(Ft.) ' Length of street segment = 126.000(Ft.) Height of curb above gutter flowline = 18.0(In.) Width of half street (curb to crown) = 15.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance front curb to property line = 1.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0250 Manning's N from gutter to grade break = 0.0250 Manning's N from grade break to crown = 0.0250 , User-speciiied maximum inlet flow capacity of 0.250�CFS) Number of street inlets =-1 Note: Single inlet capacity is great�=_r than 1/2 street flow Estimated mean flow rate at midpoint of street = 0.317(CFS) Depth of flow = 0.301(Ft.), Average velocity = 0.357(Ft/s) Streetflow hydraulics at midpoint of street travelc Halfstreet flow width = 8.734(Ft.) Flow velocity = 0.36(Ft/s) Travel time = 5.89 min. TC = 10.39 min. Adding area flow to street , APARTMENT subarea type Runoff Coefficient = 0.825 � Decimal fraction soil group A= 0.000 Decimal fraction s,oil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Rainfall intensity = 3.324(In/Hr) for a 100.0 year storm Subarea runoLf = 0.302(CFS) for 0.110(Ac.) � Total runoff = 0.603(CL'S) Total area = 0.180(Ac.) Street ilow at end of street = 0.603(CFS) Half street flow at end of street = 0.603(CLS) Depth of flow = 0.358(Ft.), Average velocity = 0.413(Ft/s) Flow width (from curb towards crown)= 11.542(Ft.) , . , � � f--I-�--I--f-i f--I-+-I--I--F�--f--F++-f--I--F�--{--I Process from Point/Station 7.000 to Point/Station 8.000 **�* STREET INLET + AREA + PIPE TRAVEL TIME **** Top of street segment elevation = 98.140(Ft.) End of stree� segment elevation = 98.040(Ft.) Length of street segment = 128.000(Ft.) Height of curb above gutter flowline = 18.0(In.) Width of half street (curb to crown) = 15.000(FL.) - Distance from crown .to crossfall grade break = 12.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break.to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 1.000(Ft.) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) • Manning's N in gutter = 0.0250 � Manning's N from gutter to grade break = 0.0250 Manning's N from grade break to crown = 0.0250 User-specified maximum inlet flow capacity of 0.250(CFS) Number of street inlets = 1 Pipe calculations for under street flow rate of �0.250(CF.S) Using a pipe slope = 1.000 � � • Upstream point/station elevation = 98.14(Ft.) Downstream point/station elevation = 98.04(Ft.) Pipe length = 128.00(Ft.) Manning's N= 0.010 No. oi pipes = 1 Required pipe flow = 0.250(CFS) Given pipe si.ze = 6.00(In.) • Calculated individual pipe flow = 0.250(CFS) . Normal flow depth in pipe = 2.42(In.) Flow top width inside pipe = 5.89(In.) Critical Depth = 3.02(In.) Pipe flow velocity = 3.36(L't/s) Travel time through pipe = 0.63 min. - Time of concentration (TC) = 11.52 min. Maximum flow rate of street inlet(s) = 0.250(CFS) Maximum pipe flow capacity = 0.?_50(CFS) Remaining flow in street below inlet = 0.353(CFS) Adding area flow to street � APARTMENT subarea type . Runoff Coefficient = 0.824 Decimal fract;ion soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fract�ion soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = O.B00 Rainfall intensity = 3.222(In/Hr) for a 100.0 year storm Subarea runoff = 0.292(CFS) for 0 Total runoff = 0.894(CFS) Total area = 0.290(Ac.j Street flow at end of street = 0.644(CFS) Half street :Elow at end of street = 0.644(CFS) , • • • � Depth of flow = 0.365(Ft.), Averaqe velocity = 0.417(Ft/s) Flow width (from curb towards crown)= 11.910(Ft.) . � . � � +++++++++++++�-+++++++++++-+-+�-++++++�-+++++++-�-+++++++�-+++++�--+--+-+++++++-f-E-++ Process from Point/Station 8.000 to Point/Station 9.UOU **** STREE'I' INLEI' + AREA -I- PIPE 'I'RAVEL TIME **** Top of street segment elevation = 98.040(Ft.) End of street segment elevation = 97.600(Ft.) Length oi street segment = 65.000(Ft.) Height of curb above gutter flowline = 18.0(In.) " Width of half street (curb to crown) = 15.000(Ft.) Distance from crown to crossfall grade break = 12.000(Ft.) _ Slope from gutter to grade break (v/hz) = 0.020 Slope frorn grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 1.000(Ft.) Slope frorn curb to property line (v/hz) = 0.025 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0250 Manning's N from gutter to grade break = 0.0250 Manning's N from grade break to crown = 0.0250 User-specified maximum inlet flow capacity of 0.250(CFS) Number of_ street inlets = "1 Pipe calculations for under street flow rate of 0.500(CFS) Using a pipe slope = 1.000 � Upstream po.int/station elevation = 98.04(Ft.) Downstream point/station elevation = 97.60(Ft.) Pipe length = 65.00(Ft.) Manning's N= 0.010 No. of pipes = 1 Required pipe flow = 0.500(CFS) Given pipe size = 6.00(In.) Calculated individual pipe flow = 0.500(CFS) Normal flow depth in pipe = 3.64(In.) Flow top width inside pipe = 5.86(In.) Critical Depth = 4.33(In.) Pipe flow v�locity = 4.00(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 1"1.79 min. Maximum flow rate of street inlet(s) = 0.250(CFS) Maximum pipe flow capacity = 0.500(CFS) Remaining flow in street below inlet = 0.394(CFS) Adding area flow to street APARTMENT subarea type Runoff Coefficient = 0.823 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Irnpervious fraction = 0.800 Rainfall intensity = 3."181(In/Hr) for a 100.0 year storm Subarea runoff = 0.131(CFS) for 0.050(Ac.) Total runoff - 1.025(CFS) T�tal area = 0.340(Ac.l Street flow at end of street = 0.525(CFS) Half street flow at end of street = 0.525(CFS) ..: • o Depth of flow = 0.260(Ft.), Average velocity = 0.925(Ft/s) Flow width (from curb towards crown)= 6.695(Ft.) i � , ,. , � � + i- -F �-+-I-+-I--I--F -I--1--F++ -f-+-f- �-++++-I--f--I-++� �-+-4-++++i--F -I-+++-I-+++++++++++ i- -F -F +++++-{--I- -f- Process frorn Point/Station 9.000 to Point/Station 10.000 **** PIPEF'LOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 92.80(Ft.) Downstream point/station elevation = 91.70(Ft.) Pipe length = 107.00(Ft.) Manning's rr = 0.010 No. of pipes = 1 Required pipe flow = 1.025(CFS) Given pipe siae = 6.00(In.) NOT�: Normal flow is pressure flow in user selecLed pipe size. The approximate hydraulic grade line above the pipe invert is 1.649(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 2.114(Ft.) � Minor friction loss = 0.635(Ft.) K-factor = 1.50 Pipe flow velocity = 5.22(Ft/s) Travel time through pipe = 0.34 min. Time of concentration (TC) = 12.13 min. .. . . . � � +++++++++++++++++-F+++-�-++++++++++++++++-+-+++++++++++++++-F+++++-F+++++-� �-+-F Yrocess from Point/Station 9.000 to Point/Station 1U.000 **** SUBAREA FLOW ADDITION **** APARTMENT subarea type Runoff Coefficient = 0.822 Decimal fraction soil group A= 0.000 Decimal Lraction soil group B= 1.000 Decimal fraction soil group C= 0.000 Decimal fraction soil group ll= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Time of concentration = 12.13 min. Rainfall intensity = 3.132(In/Hr) for a 100.0 year storm Subarea runoff = 0.077(CFS) for 0.030(Ac.) Total runoff = 1.103(CFS) Total area = 0.370(Ac.) - i � �8 1 � � � . - r - rTl - T 1 T+ I I I� I��� 1� I'�' I 1� I I I I I I I' I� Process from Point/Station 10.000 to Point/Station 11.000 **** IMPROVED CHI-1NNEL TRAVEL 'I'IME **** Upstream point elevation = 96.00(Ft.) Downstream point elevation = 82.00(Ft.} Channel length,thru subarea = 20.00(Ft.) Channel base width = 0.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Manning's 'N' = 0.015 Maximum depth of channel = 1.500(Ft.) Flow(q) thru subarea = 1.103(CFS) Depth of flow = 0.257(Ft.), Average velocity = 16.738(Ft/s) Channel flow top width = 0.513(Ft.) Flow Velocity = 16.74(Ft/s) Travel time = 0.02 min. Time of concentration = 12.15 min. Critical depth = 0.598(Ft.) End of computations, total study area = 0.37 (Ac.) The following figures may be used for c"? UI111. hydrograph study oi the same area. Area averaged pervious area fraction(Ap) = 0.200 Area averaged RI index number = 56.0 . . � . � � Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN .Engineeririg Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 04/Ol/02 AREA "C" TR25055 DEVELOPED CONDITIONS EV401-01 ********* Hydrology Study Control Information ********** ENGINEERING VENTURES Inc., Temecula, California - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1993 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 1 Standard interisity-duration. curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr.) 10 year storm 60 minute intensity = 0.880 (in./hr.) 100 year storm 10 minute intensity = 3.480 (in./hr.) 100 year storm 60 minute intensity = 1.300 (in./hr.) Storm event year = "100.0 Calculated rainfall intensity data: 1 hour intensi_ty = 1.300 (in./hr.) Slope of intensity duration curve = 0.5500 . , , . � • +-f--I-�-+-I--F-f--f--F+-I-+++-F++-I--I--I--I--F++-F-I-+++-I-+++-I-+-{-i-++-F1-++++++-F+-I-++++++++++++i-+-I-+-f-+�- , Process from Point/Station 5.000 to Point/Station 12.U00 **** INITIAL AREA EVALUA'I'IOI� **** Initial area flow distance = 220.000(Ft.) Top (of initial area) elevation = 98.200(Ft.) Bottorn (of initial area) elevation = 96.000(I't.) Difference in elevation = 2.200(Fi�.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.323)*[(length^3)/(elevation change)]^0.2 Initial area ti.me of concentration = 7.017 min. Rainfa_11 intensity = 4.232(In/Hr) for a 100.0 year storrn APARTMENT subarea type Runoff Coefficient = O.II35 Decimal fraction soil group A= 0.000 Decimal fraction soil group B= 1.000 � Decimal fraction soil group C= 0.000 Decimal fraction soil group D= 0.000 RI index for soil(AMC 1) = 36.00 Pervious area fraction = 0.200; Impervious fraction = 0.800 Initial subarea runoff = 0.636(CL'S) Total initial stream area = 0.180(Ac.) Pervious area'iraction = 0.200 • , ' • � +++++++++++�--+--�-++++-�+-i-+++-�-+-�-�--�-�--F++++++-�--�-++++-i--�-+++++++++++++++-�-++++++ i-�-� Process from E'oint/Station 12.000 to Point/Station 13.000 **** IMPROVED CHANNEL TRAVEL TIME **** Covered channel Upstream point elevation = 96.00(Ft.) Downstream point elevation = 95.87(Ft.) Channel length thru subarea = 12.00(rt.) Channel base width = 2.ODU(Ft.) Slope-or 'Z' of left channel bank = 0.000 Slope or 'Z' of riglit channel bank = 0.000 Manning's 'N' = 0.0"15 Maximum depth of channel = 0.330(Ft.) Flow(q) thru subarea = 0.636(CFS) Depth of flow = 0.130(Ft.), Average velocity = 2.442(Ft/s) Channel flow top width = 2.000(Ft.l Flow Velocity = 2.44(Ft/s) Travel time = 0.08 min. Time of concentration = /.10 min. Critical depth = 0.146(Ft.) End of computations, total study area = 0.18 �Ac.? The following figures may be used for a unit hydrograph study o:E the same area. Area averaged pervious area fraction(l�p) = 0.200 Area averaged RI index number = 56.0 � . ..:. � � 12�rEIZ�NC� :� w��� i . ._ C ,�,,��, ( 1URRIEIA) CJC q 9 �> 1, �l � {' p r1 t � T � i �� C � i t Cr 7 �; �� `; > Z t � j� J'j� _ r�_ _ �t ';� �'�<Q t� ""',� S , �� i ' ,,_�,� � 7 ��� .: �l �� t'� J (..s �� y � ,, j � (C � .� i il� � ` l �' t ��� �i �l✓J�p . 1 ( D. C �.._ � � � / � � � (1 a 1 �� �l � r�/ !'�. C_'.� �l1 ���..� i �S ��� �U ��.; �S � a e ^% '�,�,. � I �:S/ b� r �j � ! _.BC � e� , c, c � t l � � ��_, �n.� � •i ��� � r; � :- � �_ ..4"`, i� Sl.� /�� � :' ✓��� \� �. � �� '�� � L .. �-�� � ^,.� cfS .�-� \ . ��� ���•' �I� B � ,. �_ � s )-'. . �SI fi , .. � (\ ' �, \n, ��, � EC ( � ? { i1' � �, � I��� � s � iVf,(< � / ���`r�y. � : � � �.� f . �..- ` ..'��`-`Sc` ? i ! i� � �11 � -f3 \; C � <� ! / t C� ;v i� �,�/1 , / � e , � t ( __ �' � ��i�:�i\� jl� �� 1�" � � �!i �� � l � n �/ , � ;.' c''� ,. , %S � �� ( l;i�� �`: r ` � � `� ! � S� �� :t � � � �,r �%F \ �� i � ;;I � C �� �� _ 'A� � `1 .�� t/�� � i �r l. �l:P/" i L '�. �i �� #. ti ��1J � � : �� . � � � ��L . � � } � � � �'t !t{ ( f } (D . � � L �i /� � ��l �f � 1 V �. � . "� .;�i . °�� �A ��d �' _�Z ^y i - ; � '�1��� � �� r� � �� ��? �. �G� � dt ��. �(l� v'�.� eV / � �.�'��'� �i,. 'L� i C� v� 7 S ? �.� � ��.0 � �)� �1 ��l � �t� � 5 .����`� S ��, ' `� ��R� ; )t. � 1�� �� 1 ���G � t�,s�ZL�S'�i1 ��1� � ��5i'�f ( .'�� � ::�.� �CiC 1.�-- < < � , v � � � �7 z � ( �l . � • l) i �r i - .>A/ ) �. ) J � r � i . . i,.z � � .;; ��4 �l � 1 ��'i y . S L��::' �t�l,r� i. � � 1T-> �� .. .�. • �1�� ��l � � '1'�� 1 : i� � ' i Sl. _ i- e ' � � � 7 xJu�A L' 'l) i /�3 4,_� ? r��.�= n � S� �{ i . f"�� =Cj i�:r n �./ �!�- � fIly � ili .S �; - �..j ��� �� ��., � ���� i U f 7 ��( � ( �. � J .�..i �-.� t i �u; 4 � i r � � � � �� ll ) � ' � C V ; C� � : t � ':i 1 4 �� �� : S 1'jC I S; 1 � f� ��� �'1� 1( .��(f ( .,t 1 � U ' \ � � gg+ � �,__� �;'. ;'! Jl���� A(, � � � � � �2���., � I �r�, ,[. 3 f .��f l � ��� L�� � ��'C �a � I����( i i�, � .' �; /, ` � � ) .f f3��� ���j � ?� J r �':,�� U - r� bl >, C � � S (� � � ti �ls ' ,. �< < � i f I ; �.,>`-.,� G? (L I) } � {'1/�'�' ���f `��. J �:,S��i �;ln{� )�-_�;( \,` i�?� 7 1 r �����t i � ` � . r . y i �;,� o f S) I .` (_�L � - t��� `��:i/ r �� f �)`\ � �..i'�� Z4 j���7l1��° D ���'1J � E �.i�.,)�t (.i3J\�j,... i[�C; �h .�.,._. � y �ttt�. ��; ��l J�;j��� �.�G��� - I t� t��iZ� {r��/� �I ��� �� �i �iJ �, !j � 4�.c�"� ��t* � �� 9..,,)� `, ` , � - � � ��a_.. �, ! 9 1� �l . f � �f�', � / ' � �' ' f � �( �;� Z � � �l G �i �� .n �%�%� - r r0 � < r � � e i �1 V i � � � 3.i : , 1 �'�) 1 Clr �'� � ������� � tiI� �`�� l !:'. � � � � � �� �!. f� ,.'.. � �� ���� � ,� �1�������� , � f3C • ����. '�.-,y }��� �� ik� -'"-'�� (� � � ��1� I , 1� ��ii�-���� i���t �f.����\ 1 i -�'.,(= �i .j_FJ Z,N � i �. 1 �.; � � .1� � ��. �'� ��_���\ Jf •. ) � ���� � .� i� I �..C`r.:L � ��VS � � \.�' � � (. /,� ����. 7. � / ; C , j �f ,:. }� ✓ : II / / V,� � :/ \ �B �:��, /,� t �� �; � 1 {� l (�{' �l � �:i ` �„jJ ' l ��lr�..� �l, � �`` �! �L jvSJ��, ��� i.:�B ��� �� i 11.,, �1i - . ��� � ;�!� �., aC�.�c(5, ::) �"�' � ''�'� �l�. I���rl��l�...i�fJ�r��.��' ,C'�.Y . � yr� t� 1 ��' � :(�,%.E1C � � l:� i: �� ;;;�r� L ., `��. � lJ� ��' i ( � G ?� `�, ��f� G�C �� � ::� j �� !� t�', J t � f, r : l� l d �[)' � �r 1 �� � f � .� l�t ` -'''� 71 )-. � } 1\ c i'�f'��.� .� t�J /�� �� iti U\� �/ .,. � �� t� � � �� � � !� ' r r ; ( � � �� � ��< < , �� � � � ...r� . t� r �./� 1 � �� ��i:J"/.e 1�--��i 1 �t << l�� !�� ^�J� ��'; j s`�� � � �� ` �k�j ,] �`�%�� � . ' %� i ��t 1� �.�� � U�� /� I j.� z ti ���� ` t "� J�� i13�. 1�/ �/�� �C �����` � (< �%� '�t i-� �1 i�f ! l �1., �" �� ''.l.._ � r �l ;.!� ! - .i,�l� ( f f r_�� I) i ' � 5 � � 2 ( �> > i�V( i l �\ � ,j �j' � ✓� � i " i f ���1 � C.1C 1: � 7 ���� : �'� .. , �r� � c ��: �('J -s � ( � ✓1 S} �: ( S i :: l f r �,, ) �. j r l� 7 � � � � � :t i �) S � �. ��� i�� _�: � .: . ���+ f � U "i 1 < l;` � ���/' � ��0 �. �.�^1' \ �B4 1 v/� il � d:- �t\i!c'` r) Sa,'. 2 �`J �� �\ S lli� t�:j'�Jl��, J` i✓ - �;. � ; _. C� t '� / l ( /i �'f S � � ': �i � n�; � � ,� � (✓ ( �l `' � l � � �, J�� r �. � �a fj � ��'t� � 'F�r ;'.���� {!`^. 1 1_ � �C): �� �L.. �i �J �.l,j, t V� i�i e � --� ��.�� �l � i. .�:% } � -- �.i� - �.;�J t(�R, J i/� �t � . i _ t Z V l �� � � � � } � !� { r— ��rt�, � � � ,� � � . � � �/ i.. ���`�i F, r � � � ����:t %� ���� � �� `1�1a��4 1� �f� ��i,,,� ,� � ��r� �r t�� �I -Z 1 n �!r �� t � , >) � � � �.I � 1�� ..� !__. ��� � ?� �� � !�.< f r � �� fi l� �:� � c( ! ; � �' .> ..,:., l s .:/ ✓ :.-'" � � � i . > ;� 5 � �H � �: r r r .�:. ,,�,�� 1 � �. t� :)���� 1 ) l � (� `> �` �' :� � �' i u. ��i� t _ i, �J�de , i ,Z � r. `�S� ���U� �, �Zr� Lr �;� , �`IJr� ">�� � i<� ' 7 ' ��, �' 1' �. a� f��%� _:l� ��11 j�, i� �} I� �i{) i � r 1 � ,.'� ;�- , 1 ( ` � � _% ..J�Ji _, �� .�;'F �; r '��,1 . ��_l .r /.�/� � ..��' �.;� i�l� ����,2 > �� � � � E+r> � ���� s � > >�--; r , �.i r � , � y � ;%� � � � � ,�, i % ��, n EI(, �' t �, L �/ �-� r (,� 1� aS.y.. �ir ✓��< i 1;:,' 4 /r s �� � � fi > I '..,"�,�� � � � ��� kn4�� , � , ,,,� Ci� � :L��) 1 � � � �� Z/�g,�� �fS.I.,�J 7f�i� � .� ( � ' (' � .. �,� ,�� �.�'� � � Lqr ., i� ,� t• ��.! �r. r i � �� { c) 7 1 � _; � � . F'�: 'c_7 C' ` � :1� �/?t ���t�� i�� � � ���1'� �� � -� � S ��� ���t��� � � ../.��:t � � i��'1�� i � ( � � r'a at q. ( y � C \/ �� �� 1 J I �1 } 1 � E �� , � C � f I.� :? j i� q . r .� � ; j��; �.J;: �c �°��..� t ����� ( ��:� ) iri � �� � I yl�� (�� \S � ��i �� ��?� )f � � t - � �� t � ._� �� � _� ��i� � i� j-, � S�: �. - �l � �' c � rl ✓ � Z�. E f � { � . � �.., �� �:� � �� Y�Y i-�� � �,( s l � �' � :�5�` �1� � � -?/' � °n.: 2 �,,;r� � � � � .. � ... �/ �' G F ( � i ��� > a �5�� . �. ��.' �L� � `� : ' I'; �.��� G 3d C� t "� \ � m �l'!,.- !h l�j ri � ' � � ) , � � `1 �� �l . , �Fe `�..' ;: � .� � ; i �J ��� f � . " \ v!L „� ��. � \ ��j L �`� i � �n �" _; �� \ ��.,� C / '�J t fj � i � I ) �� � �.� i i i � /J /'i , !;.) l I i�� � � 1 � ���. u � -- _v v ir � � �� `�) r�(� � i'; J � n, f i� ��,� l�, �/ a . I { � 1 ( �` ��l`. j �IIJf����ti���7.1��' i ��� � 1/ �:;� \ l � :��1 I�� // i (, � ��. J '�' r 1 J; �� � ) ���J`��l , � 1 !'� � 1��1�..�����1� �. „ � a� r c, r, 1. r �� i) i .� rC t J r j a 1 C't ti i ii, i f ` � ,. ) \��.lff��tr_ � � . 1 !� - J jr�� �i„�j �1}L�J. � �;. t � i r S._; f}� � �1 �� (I. ��1 '�/�S�i� �.��1 Il � � �.�1` i � � ,�. I� ��>`, �, .t-�n� f. � \� ')� <.:..� - ih .:) 2 �f r� 'i-':S� �: ,.. � � ) l,✓�/' � �� \. i ( � ��/r: 1 i. l l, ) ` 1 ' v. � a i . i l� ! i /� r 1�•: (, j l 5 �/ � l. j z � �j 7 ,� �/ � \ .L � ll� � C. i i � - 4�,� �� �.'Z/. \ l. `. J � t,_ � � � � . � ( `I 1 L�� i% �' �. "' C'r r l� //� r l�t / i. � 1:. l �,� � � �..._)) � t ; �. � 1 � � .t;L � �l �>`� l �� t fi; o � Lr�.� � n:><< :� /i � i � .;Jr� �'�, f << _ a� (l� ?.( � ii I.. f3L i- 1 f t�/. c S r•' S r � ��. �i ` �,a., ��i a. 3, �� J & p .� .1c i ( . � r '" .� s ` �� °� ,�� ' ' " �_;) , �� ��� ; r J�1� . �� a` � , � [ � { �1�.�� �I�C . / � 'i� � �: �t+ 1 � i c, J ,1� f � � ��'` i� )�( • �1���I � t � �.�..; �����1 �; i� I � („���I ]��`' � � � �� ' Z�f /(�� t ^�� � c+? � �����I� \ - ��`..ric 1r. i<<�� a.���� / � _ �� , i; �S � i ' z �.:. i � (�� �,,. J � `` ' f � � i, c / 1 i \ � a jZ,.i' } J, ./J.: �� `„�n,' � ,f3% � � �/(� �. �� ( J �`�\ �r;r� �� 1� :; t /1 f i .. il ��� �, iV� l r� r l }�/ ,} ,r 1 � .U�:rV �'` � � � .Y 1 �i � �) ;�'� / ,l' �' � / ` � �.</l . .��, �.,� ..� � �`� s �. �! �-�y ;SS.� )l��U� _..1�� h�:� l�>�..1�S1�c �.x U���.,:�\ � .\., ) l},. r/✓if�l jr�4 rf� i'. �f 6(,// _� � � �3(j �(������ s i i i � r .f > , J+ �� �o i�� ( �� Z �� - ri{� i, /1 .�( ,� i �} � � \ 1�� Rl?�� �. ��!� f J �.. � �r rc,�11 S� F��.. � � �-� n�s.ini�t 1��� � - �' �;�� J lI eQOHUarY )� r`i f� y oy r� ��� } . � '.•- . � ' d.+l� 7;}? � ,� J 1 � y y . �a 1 1� " i�i.;' ���j 1( dA oi rf ) C �}. � s �'Y� �J l ��r-vi v ^� S �/� �r,q�urv � 'V �� � � 7' �� � � I . J J �� ;? a ,\�) 1 t� ��jr � r';,�A / � � � � ,� / � � I 1 �` � ���f� ,; n .2 ' :U H [� ,'c '��t � �. s i :, . . ,. f i /i� . " �\ � I � C��✓ � i; / , � r � i�': {\_. 7 j_ '�'/'L.` �. �Z,- 1 1�� �. r �) �1 � .� - 'J ( �f� r 1�' ) ��r.v.sri j:.J !�`� rfct,r�`i t�i,�//r� c.{I);'�J�_..,-../ t��f -� J�� 3 i `��i\�`� �)v . L ���'� Fl1�r��✓ .�.-�� ,'(`_� f .r � ? !� r','i° l� ' � � �'�.st �� y �(�r �, { lj % r �y(. �� �t `) t l�� � �� � �� �/:. �. , ,l"�I c ib� 1���� it (�,�., L� ) ( ijtS � � �� ii , v �( ����l:l ( ��- �/ �)<i � � � ��J ''.�rf�C � 3�) 7�, � � ' n f t � S, � c � c � 7 �, �zt J ) i `� ��t, � ��1 � ��` ��, �S ;� , 2 �';� 1 � �,, s �'il /� :;, � �.. � s � ( � � � � , �t.�r /i �,� ���� if .� - 5 � /: S 5 .:' / ^ i:� f}� � �.../ . j � ,i � f ✓ � i�`:. � z� �����: � ��� �/i ,,, t I � f ��i / ✓).�: S ��-: 'C � ,: yie��.{J - ,,/� S � r � F:��/' S ��.t qi r�'�h�.��`vilJ/�}v�' � ����1`��� ;.. J� F ?�...`�` � ..1 f `._ \ ' I r . / ; � S` ( , \t' /x, `!� � .. . �fl I �?3 � 1 � � � , � / 11 „1 � : � �,T� f � � / C� f S � � � ��/:� l, � l \ '` � , ! � . ��)' i ��f '1 ':� � $� !� � f i � i r ��, I � � �..� � r � , c; / � � v i/ �., 8 f J : � Z� ..^J � f` f rJl {� � � � � ` � l T t �-� I�. ;.- : { � r . 7�;. �"r'�� S i i j :' �� / �, 5 � �f)'. J � .�.,�1 �c .e �i , J!\ �I;UC� ,;,,1( ✓ � nl . � � /�i ....� � �.(� (` �;:'. �,� i �' . i � � e( t � ! �J `� ��.0 _S i3 � � � S ° r �.' t .;� l ! r )� �� ,�\ � � ,�i � '` .rt li �� �I... � _,� >��_i:� ll�� : C )f ����. i r:ii r \`; y � 1 �,p C1\ t d/i� � i S/t `��. S c �� r ���r�� ..�x � '.t�i�l.�.0 ��1�� ��)�1.� �J�/ y f - - i ( . f� �� ' :�G 'i .: c � /t � t � ' � ��� � r r 5: f � .._ � t �, ` `` 1 y - � r�r ! I f �J, I; j � S ,"r i !� f/ 1 /iV. t �f �'��1 �� f I �� n :4 �J��' e � ��v� :b � ' �� � 1 �si �tj �lr �'/ � �, � � � � � � � r il � ( � a, � , .,7 , „ I � t ;; S ?• � ? �r J� � ,>' 4�'� �:; ` � r,� � ' °-� � - 1 � r tJJ I � ` \ ''' ) ��' '� \ i .� � 1 � Cci ts ° n � � ��� %� � .'�' � f\ ( � � l� � � i� : � �I�1 ��1; l j -� � � f � /+..a - � � I r. � .� �` / 1 � � �+7J �c�:. � � � .�-� yry io � l/ i.� � � 2 y_/ t S ;(.. t � �rt v�_ � ��r �`-��� 1�f �i �/ � i � � 7.� y / �; y 1 . r� i i �- 1 1' i�: � I. ( ' �� } 1 t �.7 � : .7 S J ✓ t y �� li � ,-f ti 1 ! �� . l _ �v i13 > /; � ^- �� •, r �_ _ � - �ri r / p � n .. tt�� : i y ^` � 11 � � � lK �( ��:. `�1��! o�fi 1��.( �( ��,,� . (r � � 2� 1�.. a'�� /) \ . �� y)<'Sl ���! 't.c "__ �ti °:'S /f/..c�Oj�>�i.��f ° �' �i ,� � � ✓ �'2 I ..,� k � 1�� J' :" � � ��a 1 � i� �.. (i !1'} �� 1r � i� �t �� ; a J(, +. 1 S ��� � �ii� �� 'r i/ �. (c � J. I fi �: �ft )I C.: � r .,) ! ' 1 ; S� ?�l � 1 ':: r �{ 1 ' c t �,. . �� /:.: � � /, � \� ,.-�� ./ �- �. ` y� _ L) { E . i) � . i(. i ..� �"3. s� `' ` �' ��� z' I/ � j C l: �� j � ; t i/ ,� �- �_;/ " � S �, i�� , o�) „`� � ti;!� 1 4 i i^�t � �. I < < , � � % � 4 f C ',�' \� � � � y C �� � s P+ ; 1 j 1 � � � f .>. '� \ - ( �(" 1 � � f � c � : �\ lZ � ,/ : � � � �. ,. , �) � } �t� e)7 I �� i i� � J� � .' � S Q'Lc�` ;�� ( � �' J�'�, l i � � +�� 1 '�� � � y S S �i �t ;i� , f t U ( k 1�s � � S i f �� � \ ` r .l � ': � t I �.: � �, il� � a �..__, � � ;(� �S �� j � Z ( j � � i � � � '1� E - C r ( t `,'.� 1 `� . �r � �1 � l� 1 ���E�.;. '�,1 � t}� �,` It � � � ) }\ S. .. � 1 \' � `�' C � � i � � � -$ 's ti� r � � � C � r _,� I P � ` I r "J � : a / � .._. 1 {� i S R ) ;f t < ) � r {`.; y� I � f f 2 , r JJ I A.,.,� `�� C � I ~, � ��( ��;,� ( ''..J � l-1 ( 1 � J. .� � 1 l: f 7� �\. � � � r� � 1� y" � J _�. � � � � t � ti� �� i / � � ( l � .f�\ f V 1 a l t 1�... ,S � d' 1 f � .` ...5 �" 1 c Ii�S �� C� )� ( ����� ( , v ..��r �`;� ti .1f�11� �1 �r � 1 , � t� . 4 r e � i '✓�: ,. �, �. �` � 1 )S �. . i� � i� S u � „ 1 � Z } �{�. �� ( � :� �� 1'��1 r/ rjl� i° � j�� Z �/'\� J4 t`' J� \�t{�(1�� � �.,1P�� ;v�/ l��vU�� x ( ��� ��� �,i �4'�\( �✓,• � �� ' f � r �� � � . . li�� �� ta '•'� ,$ l�� ��\ `�, (.�1���1 �� ) �p .�� � i ��i � .'i �� : � i . }�. � , � � �I" .� � } ii�' � - � J.'t 1 '�` s� t'��v c +�l "'U � �, �S �S � f � .1.,��� � i �, ! �r \i p c � f � } '' f ��, ?;r � ., � � / 1 � � lr „���'�� )\��� r �Y �� � vj ; s � r � ' S�; � S ( � .. 1 . ;� � �. J�� Y� �i\JV('� tltl���\/ +{ y � � C � ,,�\ 5 ��; / �rs i�}� F) �� ��� L � �.�i " I� �; � � I �i .� ' � \... ( r 1 t1�` I J�� �� ��I f U.+ . Z l�� `, �n:R�J S , 1 ( S �� 1� �) � f > J� � , it 1 , g e I �/ I/ 4 �_:. l I. ,/ '��`\ ,l .: \ j �i I �) ��7� 11���j f�rC�( ..i � -" . \ � c.,� ���r J 9 ?.. J) � �� 4� j d ��Il� � :�fi �i: (I i� � t � 1� � � � t S F( I\ L� �l� (v } ( n 1.). � / � , � � i . � >� ._. � ; _ ��� f �� i .Y`� I � '" � � � { � -1 �< � � � / V l. ��/ � 5 '� � t (\ � � � � � s J1� �, �4� , � ��� - ,� . l ,-�- �'� � � ;}fs / �'r v�<�� �� Is � y �. A ��j . �� �.ni � 5 i : �'� �,�� S I � ��� J (` .,f g S ���� �� � � S � �..� J� n<�.. � J � l � � � �� I�'} � � i �f.�i l� �/ ;.,� � ��: �'+ ' J� i �i i n eo��rz� t � � � ��. � a �-�� � � ,- � �.a �% J . � � �� /� ' /' f . ,i � /� � � " i y � � � �7i m i t ��, ) i J i ( � �° i �`1�� � .v ( � ��� �� ,S I���Ii� '/ ����,��( �,� ��;if� �� �� . � z - , ,� � >� i ' � i .1 �� r ` , i� �( i�'+�i�.� �� �7� � ((� (�T � '� .�� l�� 1���'��s� �J lli��V������.� L. S�ld��l� � � , /� � � ;�a f � ..�„ � ,1c� �� �f.. / �t 1 >� � ���� .,`I� I �- �`�j �, (�li � �= t ( :. :�i �' j�', � �! rt �� l�r9a� �� ��,� � 1' �� 1 t�� r��+ ��_} � � S lJ .. �i 1 i l�� �Vl �( ��i� � � " i 1 (! i'' (..��I )� i.; i � ` s ' � , i '�� � R � , , ; ,�,� � , � , .� . , ��� lz � � � ,�, � , � � 3 �� � �� '+ . �. � � ,, 1� y � C J � � �� � ; r t / ti � : a i Jy a � �� � � u � t 1 t J�___-_�'., � i_ /0'��. i i 1 , ll t i ��' ✓� , :�! s ^ ;��� j�r� ; ? r � f. rs JJ_ . � �, .!���.,�t�lr��r� )i , . ......,_.... . _.,.._,_.........,.....�_.......,__..._�____....._.__.__ i .s �Y' . ` �.J 1!i ( .........!..::: s....��.____ .._�__..._ „ .._... ��� ' � � - 3l"27�3U� 6_�.���r��.� ._... _�._._ '� FiYl:�f�C�l,_G�iC ;��C)Il_���,::�1: --- SUII_S GliOUN LirJllVdl3AP3�" �n �oi�..s ��rz�ur� rar�;��r��nr,or� i< �'taf� � � �°� �'� k;� �'�! �;r �v;� .. r�����i��.n, � ���� .� ,-�I C)I.�J(;Y ��i.lr�;��u,a�_, o r-cc,� 5000 �1 �@`t'G': a,.._ i (;(1 r R�Al���►.���___1�`�E�SIT`�-I�C�ES P�R �OU� � � �' � _._ -- �, a � � M:Rd LOMA ,j MURRT_Ei� -�E4ECULs1 `�,� NORCO QaLM SPRiNGS PERRIS VALLEY � � - i 6 RANCH6 CA�;FpR4Id _ - . � � � .. . � . . .�.. - DURkTi^vN FR�GU�4CY 'r.��RAT.SOk--^ DURATION FREDUENCY DURATIpN fRE�UENCY DURATION �REGUENCY t � MINl:TES MTNUT�S MINUTES HiNUTES MINUTES � 10 lOQ 10 lOQ � 10 100 ` 10 100 10 100 (l�; � YEAR YEAR YEAR Y=AR YEAR YEAR YEAR YEAR YEAR TEAR � - 5 2a84 , .4.48 5. 3.45 5.10 � 5 2.77 4.1b_ 5 4,23 6.7b 5 2.64 3.78 � b 2.58 4.07 6 3.12 4.61 6 'c.53 3.79 6 3.80 6.08 b 2>41 3.�6 �� T 2,3T 3.75 7,___ c,°7 a,24 7 2,34 a.51 7 3.48 5.56 7 2,24' 3.2] 6 2.21 3.49 S 2.6i; 3.`Sa� � II 2.19 3.29 9 S 3.22 5.15 9 2.0� 3,0; � � � 9 P.D6 3.28 9 Z,s� 3.59 9 2.07 3.10 I 9 3.01 4.81 9 1.48 2.Bk � � IQ i.a6 3.10 ?0 c.36 3.48 ' IO 1.9a 'ce?4 10 2.73 4,5'c 1G 1,83 2,59 �. � 11 1,87 2.95 ` 11 2,24 3.30 i il 1.Si 2.80 � 12 2.57 4,2& 1? 1,iS �,Si � :� 1.?8 2.82 12 Z,?3 3,15 � 12 1,79 2.6�t g 12 2,5� 0.07 i� 1,72 2.45 +- 1� i.71 2.70 13 2,0§ �.ui � 13 ;.72 2.�a � 13 2,43 3, �s 1.5� 2,3; � ;a 1.6u 2.6� � 14 _l.,ac_._.2,89 :�c ;,o0 2•42 � 1J �.33 3v'_ � i4 i.59 2.c9 � � � 1� 2.So 2.�0 15 l,�c? 2.79' i i� 1,6U 2,40 � 15 2023 3.58 � 1= ?.54 2.2i g 16 '_.53 2,A2 16 ?082 2.69 �' lb 1055 Ze32 15 2.15 3.44 15 ?.44 2.14 � 17 i,48 2.3i 17 1.76 2,50 17 1.50 2.25 17 2.08 3,32 g 17 1,45 2a08 � 18 1,b4 2.27 I? 1.7I 2.52 � 18 1.46 2.19 ' 18 2.01 3.22 � :@ 1.41 2.02 29 1.40 2e21 ?9 1,5e 2,�5 � 19 1.42 2.13 19 1.95 3.12 � 19 1.3T 1097 20 1.36 2.15 26 i.6;1 2.3H S @ 20 1.39 Z.08 20 1,89 3.03 29 1.34 1.92 � 22 Z.29 2.04 22 ?,53 2,25 3 22 1.32 1,98 2'c 1.79 2.0"6 22 1.c9 1.83 � 24 l.2a 1.95 2a 1.46 2..25 S 2�s 1.25 1•9a 20 1.70 2.T2 24 i.22 1�T5 25 1.18 1.87 Z6 i.39 2.06 26 1.22 1•82 26 1.62 Z.50 26 1e1B 1.59 � 28 - 1.14 1.E0 28 1e34 i.99 2° 1,17 �•7b 28 I.55 2.49 28 1.13 1>b3 � 30 1,20 1.73 30 1.29 1.90 30 i.13 i.70 .'s0 1,49 2.39 C 30 i.10 1.57 32 i.05 1.67 �2 1.2k 1.84 32 1.10 a.6� 32 1.44, Z.30 32 1.06 1.52 � 34 i.a3 i.62 34 ?.20 1.78 34 1..Oo 1.59 34 1.39 2.22 � 34 1.03 1.48 � 36 i3O0 1.57 36 1.17 1.72 3b. 1.03 1.55 36 1.34 2D15 � 36 1.00 1.44 � 38 .97 1.5� 38 1.;'3 i.bl 38 1.01 1.Si 3� 1.3� 2.69 38 ..98 1.40 n � �� 4� .99 1.4� 40 1.10 1.62 40 .9B i.47 40 1.2' 2+02 4� ,95 1.37 �(n �.., 45 .89 1..40 45 1.03 1.52 4� ,92 1•�9 g 45 1.18 1.89 #5 .90 1.29 . 50 .84 1.32 50 .9i j.44 50 .88 1.31 � 50 1.11 1.78 50 .85 1.22 ��� 5� .80 1.26 55 .92 1.36 55 ,84 Z.ZS 55 :.05 1.68 5� .9I 1.17 �'e � 60 +76 1.20 50 .88 1.34 60 .80 Ie2U 60 1.OA 1.60 fi0 :78 1.12 � � �. <, � -� �- 65 .73 1.15 �5 .84 1.24 65 ,77 1.15 65 .9.5 1.Ss o5 .75 1.Q8 r- � � 70 .70 1.21 70 .81 :.19 70 .74 1.11 �6 .9; 1.45 . 70 .72 1.44 � ,�.J ��'- 75 .b8 1:07 75 ,78 1.15 75 .72. 1.07 75 .88 1.41 75 .74 1.00 m D �'j Q' 20 .55 1.03 80 ,75 1.11 � 30 .59 1.04 80 .85 1.35 80 .68 .97 �.� 85 .63 I.00 85 .73 I.Oi � BS .67 l.fll 85 .82 1.31 95 .66 .94 !� 0 � � � SLOPE _ .530 SLaPE _ .550 � S�OPE _ .500 � S�OPE _ .586 SLa�E _ .490 � � �, ' � O � � M U� � �