Loading...
HomeMy WebLinkAboutIV.b.3. Hydrology ReportI TABLE OF CONTENTS I I INTRODUCTION.................................................. 1 Study Purpose ................................................ 1 ' HYDROLOGIC ANALYSIS ......................................... 1 Methodology.................................................1 ' Watershed Description ......................................... 2 Watershed Hydrology .......................................... 2 SEDIMENT ANALYSIS ............................................ 3 Methodology................................................. 3 ' Pacific Southwest Interagency Committee Method ................... 3 The Dendy/Bolton Method ...................................... 4 DEVELOPMENT OF ALTERNATIVES ................................ 4 Existing Flood Control Facilities ................................. 5 ' Existing Utilities .............................................. 5 Development of Alternatives .................................... 5 Alternative No. 1 .............................................. 6 ' Alternative No. 2 .............................................. 6 Alternative No. 3 .............................................. 6 Alternative No. 4 .............................................. 6 Recommended Alternative ...................................... 7 ' Appendix [1 I ' WARNER / SANTIAGO ROAD ASSESSMENT DISTRICT IMPROVEMENT PROJECT HYDROLOGY STUDY INTRODUCTION ' From approximately 1975 to the middle 1980's, the area around John Warner Road, between Jeramie Drive and Santiago Road was subdivided into large parcels. The subdivisions reflect the development patterns established during earlier land divisions along Ynez Road in the southeastern portion of the City of Temecula. This region of the City is characterized by small ranches on parcels of land typically no smaller ' than 5 acres. Public improvements are sparse and generally include water and power and communications facilities and, in some locations, paved traveled ways. However, while the area ' under consideration enjoys improved water, power and communications systems, the roadways which are private have been left unimproved. Study Purpose Currently, the homeowners along John Warner Road, the La Presa Loop, Colver Court, Lolita Road and Paulita Road have banded together in pursuit of various improvements that will upgrade ' traveling conditions and storm water conveyance during wet weather. The analyzes contemplated herein will establish the basis for the renovation of existing drainage facilities necessary to protect private property and proposed roadway construction. Further, the analyzes will result in recommendations for the construction of new flood control facilities capable of reducing impacts of sedimentation on downstream properties. ' The final Engineer's Report will include a written history of project development and system alternates, a detailed analysis of each alternate, calculations and other documentation supporting the analysis and recommendations. Construction cost estimates, developed during the analysis of the alternates, will include costs for construction and other items incidental to the construction of the recommended facilities. HYDROLOGIC ANALYSIS An analysis of the watershed will determine the impact of certain storm events within the area tributary to the intersection of John Warner Road and Jeramie Drive. To insure accurate modeling of the tributary area, subarea boundaries have been identified on the most current topography available and verified by field evaluation. When complete, the hydrologic calculations predict runoff at key points throughout the watershed. Methodology Hydrologic methods used to determine the peak discharges for the study area are based upon criteria set forth in the Riverside County Flood Control District Hydrology Manual, dated 1978, ' as incorporated in the Civilcadd/Civildesign rational method software package (copyright 1989- 1999). Runoff calculations have been prepared for multiple storm events including 10 -year and February 3, 2002 City of Temecula Page 7 I ' WARNER / SANTIAGO ROAD ASSESSMENT DISTRICT IMPROVEMENT ]PROJECT ' HYDROLOGY STUDY 100 -year return frequency storms. Runoff quantities and storm volumes for the stated storms have been estimated using the Rational Method and the Synthetic Unit Hydrograph Method, respectively. ' Watershed Description ' Watershed boundaries and the limits of subareas within the watershed were determined using topography developed by the Riverside County Flood Control and Water Conservation District to June 1982. Although this topography does not depict the current level of development within the study area, field verification has shown that current development activities have not significantly altered drainage patterns through the area. Overall, the watershed encompasses approximately 48 -acres south of Santiago Road and east of Vallejo Avenue (See hydrology map for more details). Previous land divisions have divided the area into five acre parcels which typically developed as small horse ranches. In general, half of ' the area is built out. Terrain within the study area consists of steep hills partially covered with sage scrub and native ' grasses. The main drainage course is steep and well defined throughout the study area. Originating near the end of Lolita Road, this natural conveyance flows westerly and southwesterly crossing Paulita Road, south of Lolita Road and John Warner Road twice south of ' Colver Court. Downstream of the second crossing, the watercourse begin to broaden taking the characteristics of and alluvial fan as it crosses Jeramie Drive. Watershed Hydrology Watershed models have been developed using previously described methods. As noted, ' calculations have been prepared for 10- and 100 -year return frequency storms. Table 1 summarizes the model outcomes at various concentration points throughout the watershed. 1 TABLE 1 Concentration Point 10 -Year Runoff 100 year Runoff John Wamer Road s/o Colver Court (6) 34 cfs 53 cfs John Warner Road between La Presa Loop and Colver Court (7) 56 cfs 90 cfs John Warner Road at Jeramie Drive (8) 66 cfs 107 cfs Santiago Road and Lot 87 east of Vallejo Avenue (9) 281 cfs 506 cfs February 3, 2002 City of Temecula Page 2 r ' WARNER / SANTIAGO ][COAD ASSESSMENT DISTRICT D vROVEMENT PROJECT ' HYDROLOGY STUDY Hydrology calculations supporting the runoff values cited above are provided in Appendices `B" and "C", respectively. SEDIMENT ANALYSIS Sediment yield from a watershed, is the quantity of sediment moving past a particular point, is ' sometimes mistakenly assumed to be synonymous with erosion. Within a channel, material eroded from the land slope combined with materials from the banks and channel bed can be a significant component of the sediment transported past a point of the stream. Eroded material may be deposited back to the channel bed, on a flood plain or other locations within the watershed when the sediment load exceeds the transport capacity of the runoff. Methodology Sediment yield from a watershed is a function of several factors including vegetative cover, ' rainfall intensity, slope of the watershed, geology, soil type and size of the drainage basin. As noted above, sediment yield is the rate at which sediment passes a particular point and is typically estimated as a volumetric rate per year. Methods of estimating erosion and sediment yield from rangelands are based primarily on principles developed in areas where cultivated agricultural activities are prevalent. Techniques ' incorporating disturbance of the soil tillage are not generally applicable to rangelands, so erosion estimating techniques must be adjusted to reflect these land use differences for rangelands. In June 1982, the U.S. Department of Agriculture published proceeding from the Workshop on Estimating Erosion and Sediment Yield on Rangelands. This symposium evaluated numerous methods of estimating erosion and sediment yield in semi -arid regions of the southwest. After ' reviewing the proceedings and evaluating the methods presented, we have determined the most applicable methods to area under consideration include: ' The Pacific Southwest Interagency Committee Method (PSIAC); and, The Dendy/Bolton Method. Paciflc Southwest Interagency Committee Method The Pacific Southwest Interagency Committee Method was originally intended for use on ' watersheds on 10 square miles or more. However, when tested on small watersheds the method demonstrated a high level of accuracy when compared to field measurements. The method requires using nine factors to determine the sediment yield classification for a watershed. The egg t.factors required include: geology, soils type, climate runoff, topography, ground cover, land use, upland erosion and channel erosion. Each factor is assigned a numerical value from a ' February 3, 2002 City of Temecula Page 3 1 WARNER / SANTIAGO ROAD ASSESSMENT DISTRICT IMPROVEMENT PROJECT HYDROLOGY STUDY rating chart. Summing the rating chart values for the nine factors defines a sediment yield classification, which in turn can be converted to the average annual sediment yield. After evaluating the watershed factors required to determine the sediment yield classification, a value of 75 has been determined to be most representative of the study area. Using this classification value, the annual sediment yield for the watershed is estimated at 3,764 cubic feet. The Dendy/Bolton Method / Dendy and Bolton derived sediment yield equations having widespread applicability using data from approximately 800 reservoirs throughout the United States to obtain measured sediment yield values. The data acquired has been segregated into two areas where runoff was either less than, or greater than 2 -inches per year. Because of widely varying local factors, this method may not have been intended for use at a ' specific location. However, the method does express a rational relationship for sediment yield that seems realistic for conditions encountered in the southwestern United States. Using the DendyBolton Method, it is estimated that the watershed under consideration will yield 3,405 cubic feet of sediment on an annual basis. ' While other methods of estimating annual sediment yield were tested on the study area, the PSIAC Method and the DendyBolton Method provided outcomes within reasonable tolerance of each other. Therefore, an average annual sediment yield of 3,764 cubic feet will be employed during the design of sediment removal structures for the John Warner Road Improvement Project. ' DEVELOPMENT OF ALTERNATIVES The development of alternatives for proposed drainage facilities is dependent on several factors. ' Factors affecting alternative development include, but are not limited to, topography, point of concentration, underground and overhead utilities, existing flood control facilities, environmental concerns, public safety and available Right -of -Way. ' The primary concerns related to the development of alternatives for the John Warner Road Improvement Project include the use of existing road culverts, underground utilities and available ' Right -of -Way. Each alternative presented will require consideration of one or all of these concerns. U ' February 3, 2002 City of Temecula Page 4 ' 'WARNER / SANTIAGO ROAD ASSESSMENT DISTRICT IMPROVEMENT PROJECT ' HYDROLOGY STUDY ' Existing Flood Control Facilities Infrastructure systems within the study area are limited to those necessary to meet the minimum requirements for development. Roadway construction within the area is limited to graded, earthen traveled ways. For various reasons, this type of roadway is typically protected from flooding by road culverts as opposed to mainline storm drains. ' Existing road culverts of significant size within the study area include: 48 -inch reinforced concrete pipe crossing John Warner Road west of La Presa Loop; 36 -inch reinforced concrete pipe crossing John Warner Road between La Presa Loop and Colver Court; ' 36 -inch reinforced concrete pipe crossing John Warner Road west at Colver Court; 30 -inch reinforced concrete pipe crossing Paulita Road south Lolita Road; ' Existing Utilities Within the area under consideration, there are multiple underground utilities that could interfere with the construction of new drainage facilities. Underground utility systems that are known to exist within the study area include water, power, telephone and cable television. ' Utility companies contacted during the development and analysis of drainage alternatives for the John Warner Road Improvement Project include: Utility locations shown on record drawings provided by the noted utilities are shown on the construction drawings. Development of Alternatives The primary focus of the analysis related to the John Warner Road Improvements is the quantification and mitigation of sediment generated in the watershed. Considering this goal and ' various constraints, the alternatives being considered for further_ evaluation are generally described as: ' February 3, 2002 City of Temecula Page 5 Adelphia Eastern Municipal Water District Metropolitan Water District of Southern California Rancho California Water District Southern California Edison Company Southern California Gas Company ' Verizon Utility locations shown on record drawings provided by the noted utilities are shown on the construction drawings. Development of Alternatives The primary focus of the analysis related to the John Warner Road Improvements is the quantification and mitigation of sediment generated in the watershed. Considering this goal and ' various constraints, the alternatives being considered for further_ evaluation are generally described as: ' February 3, 2002 City of Temecula Page 5 I t'WARNER / SANTIAGO ROAD ASSESSMENT DISTRICT IMPROVEMENT ]PROJECT ' HYDROLOGY STUDY ALTERNATIVE No. 1— "Do Nothing" Construction drawings for improvements to John Warner Road show the installation of catch basins and the extension of existing road culverts. Alternate No. 1 considers these improvements only. ALTERNATIVE No. 2 — Single Basin Concept Sediment removal through the construction of a single desilting basin on the south side of John Warner Road at La Presa Loop. The desilting basin will include a 60 -inch riser and a ' 48 -inch drain pipe to convey the flows to the nearest drainage facility downstream of the project site. The nearest drainage facility is a grouted rip -rap trapezoidal channel along Vallejo Avenue between Santiago Road and Ynez Road. The channel is characterized ' with approximately five feet bottom width, 3 to 5 feet depth and 1.5 to 1 side slopes. The channel consists of numerous culvert crossings at the residence driveways. The tributary runoff from Santiago watershed area also discharges into this channel. However, due to the lack of adequate capacity in the channel the tributary runoff from both John Warner Road and Santiago Road will be conveyed via an underground storm drain system toward an outlet westerly of Ynez Road between Flores Drive and Vallejo Avenue. The proposed ' alignment will include a 48 -inch storm drain from the desilting basin to Jeramie Drive, then northerly along the existing Southern California Edison (SCE) 12 -foot easement to continue within a proposed drainage easement between Lots 87 and 88, toward Vallejo t Avenue. A junction structure manhole will be constructed to transition from the 48 -inch to a 84 -inch storm drain pipeline to account for the conveyance of the flows from both 1 watershed areas. An 84 -inch stub will be provided northerly of the manhole for future extension of the storm drain system to intercept the tributary runoff from Santiago Watershed to be conveyed toward Ynez Road and ultimately toward the existing outlet. ' Other improvements include: catch basins, culvert extensions, basin outlet structure and outlet piping within John Warner Road improvements. ' ALTERNATIVE No. 3 — Multiple Basin Concept Sediment removal through the construction of desilting basins south of John Warner Road at La Presa Loop and Colver Court. Other improvement include catch basins, culvert textensions, basin outlet structures and outlet piping. ALTERNATIVE No. 4 — Interim Condition The above alternative analysis and construction of the above recommended alternative will contain the flooding beyond the limits of John Warner Road Assessment District. ' Therefore, the City has requested for an interim alternative to contain the tributary flows from John Warner Road watershed area to be constructed under this Assessment District. The storm drain improvements for the ultimate improvements which include both John February 3, 2002 City of Temecula Page 6 I ' WARNER / SANTIAGO ROAD ASSESSMENT DISTRICT IMPROVEMENT PROJECT ' HYDROLOGY STUDY ' Warner Road and Santiago Road watersheds will be constructed under a broader Assessment District. The interim condition alignment maintains the historic drainage pattern. The collected runoff from the desilting basin will be conveyed via a 48 -inch drain 1 pipe westerly toward an existing earthen channel northwesterly of John Warner Road and Cabrillo Avenue. The channel runoff historically continues westerly through the existing residential lots 79-81 and along Flores Drive within lots 52-54, toward the existing two ' 60 -inch Corrugated Metal Pipes(CMP) outlet crossing Ynez Road. The existing earthen trapezoidal channel is approximately 3 feet deep and 6 feet wide with 2 to I side slope. ' The channel has the capacity to convey approximately 120 efs without overtopping the road or encroach into the adjacent residential lot of the northwesterly corner of John Warner Road and Cabrillo Avenue. The development of the interim condition, ' considering the adequate capacity of the channel and maintaining the historic drainage pattern, it would be feasible to ultimately extend the above alignment through the above mentioned lots toward the existing two 60 -inch CMP's crossing Ynez Road. This alternative requires right-of-way acquisition from lots 79-81, and 52-54. The construction survey for this alternative is performed from the proposed desilting basin at Jeramie Drive, and then westerly to the existing earthen channel at Cabrillo Avenue. Therefore, the ' extension of the alignment for the ultimate condition is considered for both open channel and underground systems. Should the construction survey indicate that an adequate grade does not exist to provide the minimum required cover for the underground system, an ' open channel system could be constructed to be as effective. Other improvements include catch basins, culvert extension, basin outlet structure, and outlet piping within John Warner Road improvements. Recommended Alternative ' Considering the cost of construction for the storm drain systems and maintenance requirements for the proposed desilting basins; Alternative No. 4 is recommended as the most feasible alternative. The intercepted flows from John Warner Road will maintain its historic drainage ' pattern without any diversion to Santiago watershed . Additionally, smaller storm drain system will be required to convey the tributary flows from John ' Warner Road than when it confluences with the runoff from Santiago watershed. The Engineer's Cost Estimate for the recommended alternative follows the drawings in this report. ' Upon review of all the alternatives in this report, the City staff recommended the interim condition of Alternative No. 4 to be considered as the Ultimate Condition. The construction ' drawings and the Engineer's Estimate are prepared herein according to the above recommendation. ' February 3, 2002 City of Temecula Page 7 1 1 1 1 1 1 1 1 1 i 1 1 1 1 �t\PT's 1 / ' /L W PAA. 4 r ; PAA. I / \ n P.M. SO/80-B7 1 \1 1 !f PAA. 3 r i , eo 4• Jp F 1 PAR. 2 1 \ 1 r F i L07 86 ry 1 LOT 62 1 LOT B \ 48" RCP L� LOT 8 L07 83 � \ LOT 64 9 LOT 62 - 4" RCP LOT 63 \\ LOT 64 `� \ LOT 79 LOT 66 SCALE: I" = 300' i Call: TOLL FREE 1-800 227-2600 qWW Mn woo YOU .0 REVISIONS j '�- T 1 1 L I I i 1 /, \ / 3--�,36" RCPT?' .4 DR• °a 4RC LOT 82 LOT 93 \ ' LOT 90 DESILTING I ( i 18" RCP I —18" RCP / LLOLItA� RSP ,TIIi r r --BASIN 6E G BASIN JTL `Lr L ✓F99��L y,. SOLE 0..goxo ey _ oro.x ay ee¢o4.a ev evpwirve ry O�jp1 RiM Rnr M4 RECOMMENDED BY: ORE_ �,; CITY OF TEMECUTA DEPARTMENT OF PUC WORKS a RLUfi rR[ru+Eo uNo[R ME SUPfF0310N a r , do- N Oaca ACCEPTED 6Y:�� PAw6 OATS_ aotiw M meur. me meee,OR eF Rueuc wonKs JOHN WARNER ROAD Nn °aa g R.C.E. NO. '+mss Expir jy.p, arr OF o EanA DRAINAGE IMPROVEMENTS R.C.E. NO 19�M yp�� s-ao-ns 4 ALTERNATIVE NO. 2 ;qEO 1 OF 1 1 1 1 1 1 fs) GRAPHIC SCALE 100 0 50 100 - 200 SCALE I" = 100' unoergmuna �e"wO r OR C.11: rou FREE 1-800 / ZZ c you 0 11r0 WMfWe Mrs 9809E lee eN DATEI By REVISIONS IMTE ACC -0 BENCHMARK 1 5C 5EAL �g 1S ,\�`^ r cv o..�e�aa er -k- er RECOMMENDED BY: ppTE;_ ACCEPTED Bre RAwa DATE:_ ern OF TELEuu R.C.E.. NO DFPurc dRELTgt 9 -le -es CIN OF TEMECULA DEPARfMEN OF PUBLIC WORKS Rni RTM un NOBaDN� r, eO• RVfE RREPARED uHOEA ME suRExMswi OF Dote .... JONN WARNER ROAD DRAINAGE IAAPROVEMENTS ALTERNATItlE NO. 3 t4 R NO uvr E res s'n'o< P� na. 1 OF 7 1 ' I , II I I jJV I I I � li i i i 1G� I I fir ---- I I I i I III !I I I I sa i YNEZ RD. S it I `SGT rir IIIA 1G1,. I rl I 1 ' II \ \ II 1 I I I I 48" RCRCP -- � I ------ _ __ _ ___ � __ i'_.,._ I i . -l" \ i 1 48" RCP Z DES TING/DETENTION JOH>I 7wARNER ROAD `' _ easlN G I I I �> CABRILLO RD. I Ii Ni r JERAMIE DR. j 1 nisi GH HIC SCAca - TOO 0 50 100 200 SC<LE I- . 100' OwR Ga_VII Tau c"T. _ p W rlma°" F 1 w na JDATEf BY REVISIONS 'DATE M.C'l BENCHMARKSCAB SEAL ��'O'"� ` p ~ \ « r;p rni: Oaaynea BY Omwn Ey cM1ec4M BY Re M -MIMED BY: ACCEPTED BY: R.GE N0.•x` CITI' OF TEIMECUTA DEPAmNENT OF PUBLIC WORKS DRAWING N0. am arM MA NORIZONTA. rC X PLW9 PPWMEO UNOEA THE SUPFRNSWN OF Date JOHN WARNER ROAD DRAINAGE IMPROV :LLTEANATIVE NO. i- tA.T11AATE CONDITION _. JOHN N. BflL9q R.C.E. N0. alese Exoirex 3.ar.aa sreEi i ov I ' YNEZ RD. On'f T� Ys M LLSA i.0 lrw I-em-R3]�3B'a REVISIONS c me salla 100 0 50 100 200 SCALE: I- . 100' SCALE NA 0 er 1 cnecaea PWS FREVMM U"M TIE low M BRl(p OGfa R.C.E. N0. <uis E<Piree _ NO. BY: II I JERAMIE DR. BY: I CITY OF TEMECULA DEPARTMENT OF PUBLIC WORKS DRAINAGE IMPROVENENTG ALTERNATIVE NO. 4• ULTIMATE CONDITION I OPEN CHANNEL OPTION 1 I v I 11 1 1 1 1 L 1 1 1 1 1 1 1 1 1 1 �o _ I �— o r , lei _ I , ` I I l i l II II I + I I I I ' I I j- I 0 GRAPHIC SGL% 300 0 100 200 400 SCALE: 1- .200' mn aN-,xRi r., ray ua Tw A— DATE BY REVISIONS DATE I ACC'0BENCHMARK I SME SEAL Devgnee By D,. o By cl-x-c By uruwmu No. ,F�, RECOMMENDED 8Y: CITY OF TEMECULA DEPARTMENT OF PUBLIC WORKS 1 -m1 -33} -}KO p`w� y��`y RiY RN YI tw w Y— XORQOHiK tet¢' PVNS PREPARED UNDER THE SUPERNSON OF 1- • Pao' . ..me ACCEPTED BY: JOHN WARNER ROAD X Date It vERnuL .INN Y. eRupw (01 DRAINAGE IMPROVEMENTS •���o- R.C.E. NO. .mx E.piree }-j'-DR RECOMMENDED ALTERNATIVE SHEET 1 Or 7 NA R.C_E. N0. I "ENGINEERING ESOURCES OF Soutxmx CALI'M wa, INC. 1 DATE: 10/29/2002 JOB NO.: 96018002 BY: MA SHEET 1 OF 1 ALTERNATIVE NO. 2 - SINGLE BASIN CONCEPT ENGINEER'S ESTIMATE 'IT No DESCRIPTION QUANTITY PNCE TOTAL 1. 84 -inch RCP (D-2000) 2,050 LF 325 $ 666,250 2. 48 -inch RCP (D-1500) 2,160 LF 150 324,000 3. 36 -inch RCP (D-1500) 610 LF 140 85,400 4. 18 -inch RCP (D-1500) 168 LF 60 10,080 5. 60 -inch Manholes 6 EA 5,000 30,000 6. 108 -inch Manhole 5 EA 20,000 100,000 7. Junction Structure 1 EA 15,000 15,000 8. Headwall/Wingwall at Ynez Road 1 EA 10,000 10,000 9. 84 -inch Bulkhead 1 EA 2,000 2,000 10. Earthwork 800 CY 5.00 4,000 11. CSP Riser and Drain Pipe 1 EA 10,000 10,000 12. Desilting Wall 10 CY 250 2,500 13. Desilting Inlet 20 CY 250 5,000 Subtotal $ 1,264,230 20% Contingency 252,846 GRAND TOTAL $ 1,517,076 ' NOTE: The Engineer's Estimate does not include the improvements required westerly of Ynez Road, downstream of the proposed improvements. Plan Sheet 1 of 1 ENGINEERING DATE: ESOURCES JOB NO.: BY: or som m N cwmm. ac. SHEET ' JOHN WARNER ROAD DRAINAGE IMPROVEMENTS RECOMMENDED ALTERNATIVE ENGINEER'S ESTIMATE 1/31/2003 96018002 MA 1 OF 1 ITE DESCRIPTION QUANTITY UNIT TOTAL 1. Mobilization 1 LS $ 20,000 $ 20,000 2. Traffic Control 1 LS 8,000 8,000 3. 42 -inch RCP (D-1500) 1,100 LF 145 159,500 4. 42 -inch RCP (D-2000) 310 LF 150 46,500 5. 36 -inch RCP (D-1500) 400 LF 140 56,000 6. 18 -inch RCP (D-1500) 70 LF 60 4,200 7. 14' C.B. 2 EA 7,000 14,000 8. 21' C.B. 2 EA 9,000 18,000 9. Manholes 3 EA 5,000 15,000 10. 1/2 Ton Rock Slope Protection 500 CY 50 25,000 11. Headwall for 42 -inch RCP 2 EA 5,000 10,000 12 Cutoff Wall 23 CY 250 5,750 13. Desilting Basin 1 LS 30,000 30,000 Subtotal $ 411,950 20% Contingency 82,390 GRAND TOTAL $ 494,340 Plan Sheet 1 of 1 APPENDIX I 1 � RATIONAL METHOD i JOHN WARNER � ROAD WATERSHED 11 I I I I I 11 1 � 10 -YEAR STORM � FREQUENCY I I I U I I I I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 07/18/02 File:temeculal0.out --------------------- — — ---------- — ---------- — ---------------------- ********* Hydrology Study Control Information ********** English (in -lb) Units used in input data file '-------------------------------------------------------------------- — -.- Engineering Resources of Southern California, Inc. - SIN 685 ---------- — — ---------------------------------------------------------- ' Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity -duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. ' 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880(In/Hr) ' Slope of intensity duration curve = 0.5500 [1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 730.000(Ft.) Top (of initial area) elevation = 1268.000(Ft.) Bottom (of initial area) elevation = 1180.000(Ft.) Difference in elevation = 88.000(Ft.) Slope = 0.12055 s(percent)= 12.05 TC = k(0.480)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 10.241 min. Rainfall intensity = 2.327(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.740 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.330 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.340 RI index for soil(AMC 2) = 66.75 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 9.300(CFS) Total initial stream area = 5.400(Ac.) Pervious area fraction = 0.800 I 1 Process from Point/Station 2.000 to Point/Station .3.000 ' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1160.000(Ft.) End of natural channel elevation = 1172.000(Ft.) ' Length of natural channel = 100.000(Ft.) Estimated mean flow rate at midpoint of channel = 9.300(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q'.33)(slope^.492) Velocity using mean channel flow = 3.30(Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0800 Corrected/adjusted channel slope = 0.0800 ' Travel time = 0.50 min. TC = 10.75 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) ' Runoff Coefficient = 0.736 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 ' Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.266(In/Hr) for a 10.0 year storm ' Subarea runoff = 0.000(CFS) for 0.000(Ac.) Total runoff = 9.300(CFS) Total area = 5.400(Ac.) Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5.400(Ac.) Runoff from this stream = 9.300(CFS) Time of concentration = 10.75 min. Rainfall intensity = 2.266(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 9.000 to Point/Station 10.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 230.000(Ft.) Top (of initial area) elevation = 1239.000(Ft.) ' Bottom (of initial area) elevation = 1190.000(Ft.) Difference in elevation = 49.000(Ft.) Slope = 0.21304 s(percent)= 21.30 TC=.k(0.480)*[(length"3)/(elevation change)]"0.2 ' Initial area time of concentration = 5.758 min. Rainfall intensity = 3.194(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) I Runoff Coefficient = 0.775 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 ' Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 ' Initial subarea runoff = 2.476(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 3.000 ' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1190.000(Ft.) End of natural channel elevation = 1172.000(Ft.) Length of natural channel = 80.000(Ft.) ' Estimated mean flow rate at midpoint of channel = 2.624(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: ' velocity = 5.48(q".33)(slopeA.492) Velocity using mean channel flow = 3.62(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2250 Corrected/adjusted channel slope = 0.2250 Travel time = 0.37 min. TC = 6.13 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) ' Runoff Coefficient = 0.772 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.087(In/Hr) for a 10.0 year storm Subarea runoff = 0.286(CFS) for 0.120(Ac.) Total runoff = 2.762(CFS) Total area = 1.120(Ac.) Process from Point/Station 10.000 to Point/Station 3.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.120(Ac.) Runoff from this stream = 2.762(CFS) Time of concentration = 6.13 min. Rainfall intensity = 3.087(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I Process from Point/Station 3.000 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** 1 . 1 9.300 10.75 2.266 2 2.762 6.13 3.087 Largest stream flow has longer time of concentration Qp = 9.300 + sum of Qb Ia/Ib 2.762 * 0.734 = 2.027 Qp = 11.327 Total of 2 main streams to confluence: Flow rates before confluence point: 9.300 2.762 Area of streams before confluence: ' - 5.400 -1.120 Results of confluence: Total flow rate = 11.327(CFS) ' Time of concentration = 10.746 min. Effective stream area after confluence = 6.520(Ac.) Process from Point/Station 3.000 to Point/Station 4.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1172.000(Ft.) End of natural channel elevation = 1164.000(Ft.) Length of natural channel = 130.000(Ft.) Estimated mean flow rate at midpoint of channel = 11.327(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q�.33)(slope'.492) ' velocity using mean channel flow = 3.10(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0615 Corrected/adjusted channel slope = 0.0615 Travel time = 0.70 min. TC = 11.45 min. ' Adding area flow tochannel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.731 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.189(In/Hr) for a 10.0 year storm Subarea runoff = 0.000(CFS) for 0.000(Ac.) ' Total runoff = 11.327(CFS) Total area = 6.520(Ac.) Process from Point/Station 3.000 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** 1 J The following data inside Main Stream is listed: In Main Stream number: 1 t Stream flow area = 6.520(Ac.) Runoff from this stream = 11.327(CFS) Time of concentration = 11.45 min. Rainfall intensity = 2.189(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 15.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 280.000(Ft.) Top (of initial area) elevation = 1250.000(Ft.) Bottom (of initial area) elevation = 1164.000(Ft.) -Difference in elevation = 86.000(Ft.) Slope = 0.30714 s(percent)= 30.71 ' TC = k(0.480)*[(length"3)/(elevation change)]''0.2 Initial area time of concentration = 5.789 min. Rainfall intensity = 3.184(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.775 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 ' Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.600; Impervious fraction = 0.200 Initial subarea runoff = 2.467(CFS) ' Total initial stream area = 1.000(Ac.) Pervious area fraction = 0.800 Process from Point/Station 15.000 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.000(Ac.) ' Runoff from this stream = 2.467(CFS) Time of concentration = 5.79 min. Rainfall intensity = 3.184(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 11.000 to Point/Station 12.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1231.000(Ft.) ' Bottom (of initial area) elevation = 1182.000(Ft.) Difference in elevation = 49.000(Ft.) Slope = 0.19600 s(percent)= 19.60 TC = k(0.480)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 6.053 min. Rainfall intensity = 3.107(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) J 1 1 Runoff Coefficient = 0.772 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 ' Initial subarea runoff = 3.600(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 4.000 ' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1182.000(Ft.) End of natural channel elevation = 1164.000(Ft.) Length of natural channel = 90.000(Ft.) ' Estimated mean flow rate at midpoint of channel = 4.128(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q".33)(slope'.492) Velocity using mean channel flow = 3.96(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2000 Corrected/adjusted channel slope 0.2000 ' Travel time = 0.38 min. TC = 6.43 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) ' Runoff Coefficient = 0.769 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for scil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = '0.200 ' - Rainfall intensity = 3.005(In/Hr) for a 10.0 year storm subarea runoff = 1.017(CFS) for 0.440(Ac.) Total runoff = 4.616(CFS) Total area = 1.940(Ac.) Process from Point/Station 12.000 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.940(Ac.) ' Runoff from this stream = 4.616(CFS) Time of concentration = 6.43 min. Rainfall intensity = 3.005(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 11.327 11.45 2.189 ' 2 2.467 5.79 3.184 3 4.616 6.43 3.005 Largest stream flow has longer time of concentration Qp = 11.327-+ sum of ' Qb Ia/Ib 2.467 * 0.687 = 1.696 Qb Ia/Ib 4.616 * 0.728 = 3.362 Qp = 16.386 Total of 3 main streams to confluence: Flow rates before confluence point: ' 11.327 2.467 4.616 Area of streams before confluence: 6.520 1.000 1.940 ' Results of confluence: Total flow rate = 16.386(CFS) Time of concentration = 11.445 min. ' Effective stream area after confluence 9.460(Ac.) - Process from Point/Station 4.000 to Point/Station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1164.000(Ft.) ' End of natural channel elevation = 1154.000(Ft.) Length of natural channel = 240.000(Ft.) Estimated mean flow rate at midpoint of channel = 16.386(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q".33)(slope'.492) Velocity using mean channel flow = 2.89(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ' Normal channel slope = 0.0417 Corrected/adjusted channel slope = 0.0417 Travel time = 1.39 min. TC = 12.83 min. ' Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.723 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 ' RI index for soil(AMC 2) = 66.56. Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.056(In/Hr) for a 10.0 year storm Subarea runoff = 0.000(CFS) for 0.000(Ac.) Total runoff = 16.386(CFS) Total area = 9.460(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 ' **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.460(Ac.) ' Runoff from this stream = 16.386(CFS) Time of concentration = 12.83 min. Rainfall intensity = 2.056(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 5.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1220.000(Ft.) Bottom (of initial area) elevation = 1154.000(Ft.) Difference in elevation = 66.000(Ft.) Slope = 0.22000 s(percent)= 22.00 TC = k(0.480)*[(length''3)/(elevation change)]''0.2 Initial area time of concentration = 6.362 min. Rainfall intensity = 3.023(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.769 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 t RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 2.559(CFS) Total initial stream area = - 1.100(Ac.) Pervious area fraction = 0.800 Process from Point/Station 15.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: t In Main Stream number: 2 Stream flow area = 1.100(Ac.) Runoff from this stream = 2.559(CFS) Time of concentration = 6.36 min. ' Rainfall intensity = 3.023(In/Hr) Program is now-starting with Main Stream No. 3 Process from Point/Station 13.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 350.000(Ft.) Top (of initial area) elevation = 1256.000(Ft.) Bottom (of initial area) elevation = 1192.000(Ft.) ' Difference in elevation = 64.000(Ft.) Slope = 0.18286 s(percent)= 18.29 TC = k(0.480)*[(length''3)/(elevation change)]"0.2 ' Initial area time of concentration = 7.022 min. Rainfall intensity = 2.864(In/Hr) for a 10.0 year storm SINGLE FAMILY (1 Acre Lot) ' Runoff Coefficient = 0.764 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 ' Decimal fraction soil group D = 0.330 RI index for scil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.280(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.800 Process from Point/Station 14.000 to Point/Station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1192.000(Ft.) End of natural channel elevation = 1154.000(Ft.) Length of natural channel = 170.000(Ft.) ' Estimated mean flow rate at midpoint of channel = 3.957(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q'.33)(slope^.492) ' Velocity using mean channel flow = 4.13(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ' Normal channel slope = 0.2235 Corrected/adjusted channel slope = 0.2235 Travel time = 0.69 min. TC = 7.71 min. 1 Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.758 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.720.(In/Hr) for a 10.0 year storm Subarea runoff = 1.278(CFS) for 0.620(Ac.) Total runoff = 4.558(CFS) Total area = 2.120(Ac.) Process from Point/Station 14.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ' In Main Stream number: 3 Stream flow area = 2.120(Ac.) Runoff from this stream = 4.558(CFS) Time of concentration = 7.71 min. Rainfall intensity = 2.720(In/Hr) Summary of stream data: 11 I 1 Stream Flow rate TC No. (CFS) (min) 1 16.386 12.83 2 2.559 6.36 3 4.558 7.71 Largest stream flow has longer time of Qp = 16.386 + sum of Qb Ia/Ib 2.559 * 0.680 = 1.740 Qb Ia/Ib 4.558 * 0.756 = 3.444 Qp = 21.569 Rainfall Intensity (In/Hr) Total of 3 main streams to confluence: Flow rates before confluence point: 16.386 2.559 4.558 Area of streams before confluence: 9.460 1.100 2.120 2.056 3.023 2.720 concentration ' Results of confluence: Total flow rate = 21.569(CFS) Time of concentration = 12.831 min. ' Effective stream area after confluence = 12.680(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 ' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1154.000(Ft.) ' End of natural channel elevation = 1122.000(Ft.) Length of natural channel = 620.000(Ft.) Estimated mean flow rate at midpoint of channel = 29.309(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q'.33)(slope".492) Velocity using mean channel flow = 3.89(Ft/s) ' - Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0516 Corrected/adjusted channel slope = 0.0516 Travel time = 2.66 min. TC = 15.49 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.709 Decimal fraction soil group A = 0.000 -. Decimal fraction soil group B = 0.340 ' Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 ' Rainfall intensity = 1.853(In/Hr) for a 10.0 year storm Subarea runoff = 11.955(CFS) for 9.100(Ac.) ' Total runoff = 33.524(CFS) Total area = 21.780(Ac.) Process from Point/Station 6.000 to Point/Station 7.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1122.000(Ft.) End of natural channel elevation = 1098.000(Ft.) .Length of natural channel = 390.000(Ft.) Estimated mean flow rate at midpoint of channel = 47.069(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)".352)(slope"0.5) ' Velocity using mean channel flow = 9.44(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ' Normal channel slope = 0.0615 Corrected/adjusted channel slope = 0.0615 Travel time = 0.69 min. TC = 16.18 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.705 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 - - Decimal fraction soil group D = 0.330 ' RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 1.809(In/Hr) for a 10.0 year storm Subarea runoff = 22.467(CFS) for 17.600(Ac.) ' Total runoff = 55.991(CFS) Total area = 39.380(Ac.) Process from Point/Station 7.000 to Point/Station 8.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1098.000(Ft.) ' End of natural channel elevation = 1080.000(Ft.) Length of natural channel = 640.000(Ft.) Estimated mean flow rate at midpoint of channel = 62.033(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)`.352)(slope"0.5) Velocity using mean channel flow = 6.91(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0281 Corrected/adjusted channel slope = 0.0281 Travel time = 1.54 min. TC = 17.72 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) ' - Runoff Coefficient = 0.698 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 ' Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 ' Rainfall intensity = 1.721(In/Hr) for a 10.0 year storm Subarea runoff = 10.215(CFS) for 8.500(Ac.) Total runoff = 66.205(CFS) Total area = 47.880(Ac.) End of computations, total study area = 47.88 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 66.6 I 11 1 � 100 -YEAR STORM � FREQUENCY I I I I I I I I 1 [1 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4 Rational Hydrology Study Date: 07/18/02 File:temecula.out --------------------------------------------------------------- ********* Hydrology Study Control Information ********** English (in -1b) Units used in input data file ------------------------------------------------------------------------ Engineering Resources of Southern California, Inc. - SIN 685 - —---------------------------------- — - — -------- --------------------- Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual 11 Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity -duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] areased. 10 year storm 10 minute intensity = 2.360 An/Hr) 10 year storm 60 minute intensity - 0.880 (7�n Hr) 100 year storm 10 minute intensity = 3.48'01/( n%r) 100 year storm 60 minute intensity = 1.300 In/Hr) Storm event year = 100.0 Calculated rainfall OLe0�Sity data: 1 hour intensity = 1.30 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** / Initial area flow distance = -,730-.000'(Ft ) Top (of initial area) elevation/ 1268.0gy.(Ft.) Bottom (of initial area) elevati= 118 (Ft. Difference in elevation = 86.000(Ft.) Slope = 0.12055 s(percent)= 12.05 TC = k(0.480)*[(length'3)/(elevation ch e)] 0.2 Initial area time of concen ion = 0,.241 in. Rainfall intensity = .437 In/Hr) for a 100 SINGLE FAMILY (1 Acre L Runoff Coefficient = 0.7.83 Decimal fraction soil 0. 0 Decimal fraction soil group B = 0 Decimal fraction soil group C = 0. Decimal fraction soil group D = 0.3 RI index for soil(AMC 2) = 66.75 0 year storm ' Pervious area fraction = 0.800; erviou fraction = 0.200 Initial subarea runoff = 14.54 Total initial stream area = .400 c.) Pervious area fraction = 0.800 I L L 1 1 Process from Point/Station 2.000 to Point/Station 3.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1180.000(Ft.) End of natural channel elevation = 1172.000(Ft.) Length of natural channel = 100.000(Ft.) Estimated mean flow rate at midpoint of channel = 14.542(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(gA.33)(slope'.492) velocity using mean channel flow = 3.83(Ft/9) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0800 corrected/adjusted channel slope = 0.0800 Travel time = 0.44 min. TC = 10.68 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.780 Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil RI index for soil(AMC Pervious area fraction Rainfall intensity = Subarea runoff = Total runoff = 14. group A = 0.000 group B = 0.340 group C = 0.330 group D = 0.330 2) = 66.56 = 0.800; Impervious fraction 3.360(In/Hr) for a 100.0 0.000(CFS) for. 0.000(Ac.) 542(CFS) Total area = = 0.200 year storm 5.400(Ac.) Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5.400(A Runoff from this stream = 1 54 (CFS) Time of concentration = 10.6 /min. Rainfall intensity = 3.36 In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = �_ 3O!000(Ft.) Top (of initial area) elevation = 1239.000(Ft.) Bottom (of initial area) elevation = 1190.000(Ft.) Difference in elevation = 49.000(Ft.) Slope = 0.21304 s(percent)= 21.30 TC = k(0.480)*[(length"3)/(elevation change))'0.2 Initial area time of concentration = 5.758 min. Rainfall intensity = 4.718(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.810 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.824(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 0.800 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 3.000 ****'NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1190.000(Ft.) End of natural channel elevation = 1172.000(Ft.) Length of natural channel = 80.000(Ft.) '� Estimated mean flow rate at midpoint of channel = jJ!D�(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(gA.33)(slope�.492) Velocity using mean channel flow = 4.17(Ft/s) Correction to map slope used on extremely rugged channels with dropsandwaterfalls (Plate D-6.2) Normal channel slope = 0.2250 Corrected/adjusted channel slope = 0.2250 Travel time = 0.32 min. TC = 6.08 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil RI index for soil(AMC Pervious area fraction Rainfall intensity = Subarea runoff = Total runoff = 4. group A = 0.000 group B = 0.340 group C = 0.330 group D = 0.330 2) = 66.56 0.800; Impervious 4.580(In/Hr) for 0.444(CFS) for 0 fraction = 0.200 100.0 year storm 120 (Ac.) 268(CFS) Total area 1.120(AC.) Process from Point/Station 10.000 to Point/Station 3.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.120(Ac.) Runoff from this stream = 4.268(CFS) Time of concentration = 6.08 min. Rainfall intensity = 4.580(In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 I� 1 �/1 14542" 10.664 3.3360' 2 4:26.8 6.0p,`i 4.5805 . gest stream flow has `longer time of concentration Qp 14.542 + sum of Qb Ia/Ib ' D4.268 * 0.733 = 3.131 i4p 17.673 �AlWQ- Total of 2 main streams to confluence: ' Flow rates -before -confluence point: -'- 14- 542 4.268 Ares --of 'streams before confluence: ' - 5.400 1.120 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Results of confluence: ' Total flow rate = 17.673(CFS) Time of concentration = . 10.677 min. ' Effective stream area after confluence 6.520(Ac.) - +++++++++++++++++++k++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 3.000 to Point/Station 4.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1172.000(Ft.) End of natural channel elevation = 1164.000(Ft.) Length of natural channel = 130.000(Ft.) Estimated mean flow rate at midpoint of channel = 17.673(CFS) ' Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q'.33)(slope^.492) t Velocity using mean channel flow = 3.59(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2). ' Normal channel slope = 0.0615 Corrected/adjusted channel slope = 0.0615 Travel time = 0.60 min. TC = 11.28 min. ' Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.777 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 - RI index for soil(AMC 2) = 66.56 ' Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 3.259(In/Hr) for a 100.0 year storm Subarea runoff = 0.000(CFS) for 0.000(Ac.) ' Total runoff = 17.673(CFS) Total area = 6.520(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 ' **** CONFLUENCE OF MAIN STREAMS **** I ' The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 6.520(Ac.) Runoff from this stream = 17.673(CFS) Time of concentration = 11.28 min. Rainfall intensity = 3.259(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1231.000(Ft.) Bottom (of initial area) elevation = 1182.000(Ft.) Difference in elevation = 49.000(Ft.) Slope = 0.19600 s(percent)= 19.60 TC = k(0.480)*[(length'3)/(elevation change)]'0.2 Initial area time of concentration = 6.053 min. Rainfall intensity = 4.590(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.808 LI 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 280.000(Ft.) Top (of initial area) elevation = 1250.000(Ft.) Bottom (of initial area) elevation = 1164.000(Ft.) Difference in elevation = 86.000(Ft.) Slope = 0.30714 s(percent)= 30.71 TC = k(0.480)*[(length"3)/(elevation change)]'0.2 ' Initial area time of concentration = 5.789 min. Rainfall intensity = 4.704(ln/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.810 '. Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.812(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 0.800 Process from Point/Station 15.000 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.000(Ac.) Runoff from this stream = 3.812(CFS) ' Time of concentration = 5.79 min. Rainfall intensity = 4.704(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 250.000(Ft.) Top (of initial area) elevation = 1231.000(Ft.) Bottom (of initial area) elevation = 1182.000(Ft.) Difference in elevation = 49.000(Ft.) Slope = 0.19600 s(percent)= 19.60 TC = k(0.480)*[(length'3)/(elevation change)]'0.2 Initial area time of concentration = 6.053 min. Rainfall intensity = 4.590(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.808 LI 1 1 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 5.566(CFS) ,- Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.800 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 4.000 **** NATURAL CHANNEL rTIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1182.000(Ft.) End of natural channel elevation = 1164.000(Ft.) Length of natural channel = 90.000(Ft.) Estimated mean flow rate at midpoint of channel 6.382(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q'.33)(51ope'.492) Velocity using mean channel flow = 4.58(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2000 Corrected/adjusted channel slope = 0.2000 Travel time = 0.33 min. TC = 6.38 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil RI index for soil(AMC Pervious- area fraction Rainfall intensity = Subarea runoff = Total runoff = 7. group A = 0.000 group B = 0.340 group C = 0.330 group D = 0.330 2) = 66.56- 0,800; Impervious 4.459(ln/Hr) for 1.581(CFS) for 0 fraction = 0.200 100.0 year storm 440(Ac.) 147(CFS) Total area 1.940(Ac.) Process from Point/Station 12.000 to Point/Station 4.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.940(Ac.) Runoff from this stream = 7.147(CFS) Time of concentration = 6.38 min. Rainfall intensity = 4.459(In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 17.673 11.28 3.259 2 3.812 5.79 4.704 3 7.147 6.38 4.459 Largest stream flow has longer time of concentration Qp = 17.673 + sum of Qb Ia/Ib 3.812 * 0.693 = 2.641 Qb Ia/Ib 7.147 * 0.731 = 5.224 ' Qp = 25.536 Total of 3 main streams to confluence: Flow rates before confluence point: 17.673 3.812 7.147 ' Area of streams before confluence: 6.520 1.000 1.940 ' Results of confluence: Total flow rate = 25.538(CFS) Time of concentration = 11.281 min. Effective stream area after confluence = 9.460(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1164.000(Ft.) End of natural channel elevation = 1154.000(Ft.) Length of natural channel = 240.000(Ft.) Estimated mean flow rate at midpoint of channel = 25.538(CFS) ' Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q".33)(slope'.492) Velocity using mean channel flow = 3.34(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0417 Corrected/adjusted channel slope = 0.0417 Travel time = 1.20 min. TC = 12.48 min. Adding area flow to channel ' SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.772 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 ' Rainfall intensity = 3.084(In/Hr) for a 100.0 year storm Subarea runoff = . 0.000(CFS) for 0.000(Ac.) Total runoff = 25.538(CFS) Total area = 9.460(Ac.) 1++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 11 Process from Point/Station 4.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.460(Ac.) Runoff from this stream = 25.538(CFS) ' Time of concentration = 12.48 min. Rainfall intensity = 3.084(ln/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 16.000 to Point/Station 5.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 300.000(Ft.) Top (of initial area) elevation = 1220.000(Ft.) Bottom (of initial area) elevation = 1154.000(Ft.) ' Difference in elevation = 66.000(Ft.) Slope = 0.22000 s(percent)= 22.00 TC = k(0.480)*[(1ength"3)/(elevation.change)]'0.2 Initial area time of concentration = 6.362 min. ' Rainfall intensity = 4.466(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 ' Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 3.960(CFS) Total initial stream area = 1.100(Ac.) Pervious area fraction = 0.800 Process from Point/Station 15.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ' In Main Stream number: 2 Stream flow area = 1.100(Ac.) Runoff from this stream = 3.960(CFS) Time of concentration = 6.36 min. ' Rainfall intensity = 4.466(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 13.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 350.000(Ft.) Top. (of initial area) elevation = 1256.00O(Ft.) Bottom (of initial area) elevation = 1192.000(Ft.) Difference in elevation = 64.000(Ft.) Slope = 0.18286 s(percent)= 18.29 ' TC = k(0.480)*[(1ength^3)/(elevation change).]'0.2 Initial area time of concentration = 7.022 min. tRainfall intensity = 4.230(In/Hr) for a 100.0 year storm SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.802 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 ' RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Initial subarea runoff = 5.086(CFS) Total initial stream area = 1.500(Ac.) Pervious area fraction = 0.800 Process from Point/Station 14.000 to Point/Station 5.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1192.000(Ft.) t End of natural channel elevation = 1154.000(Ft.) Length of natural channel = 170.000(Ft.) Estimated mean flow rate at midpoint of channel = 6.138(CFS) I 1 1 Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48(q'.33)(slope'.492) velocity using mean channel flow = 4.77(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2235 Corrected/adjusted channel slope = 0.2235 Travel time = 0.59 min. TC = 7.62 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.798 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 4.046(In/Hr) for a 100.0 year storm Subarea runoff = 2.001(CFS) for 0.620(Ac.) Total runoff = 7.087(CFS) Total area = 2.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.120(Ac.) Runoff from this stream = 7.087(CFS) Time of concentration = 7.62 min. Rainfall intensity = 4.046(In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 25.538 12.48 3.064 2 3.960 6.36 4.466 3 7.087 7.62 4.046 Largest stream flow has longer time of concentration Qp = 25.538 + sum of - Qb Ia/Ib 3.960 * 0.690 = 2.734 Qb Ia/Ib 7.087 * 0.762 = 5.402 Qp = 33.674 - ' Total of 3 main streams to confluence: Flow rates before confluence point: 25.538 3.960 7.087 Area of streams before confluence: ' 9.460 1.100 2.120 Results of confluence: ' Total flow rate = 33.674(CFS) Time of concentration = 12.477 min. Effective stream area after confluence = 12.680(Ac.) Process from Point/Station 5.000 to Point/Station 6.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION Top of natural channel elevation - 1154.000(Ft.) End of natural channel elevation = 1122.000(Ft.) Length of natural channel = 620.000(Ft.) ' Estimated mean flow rate at midpoint of channel = 45.758(CFS) Natural mountain channel type used ' L.A. County flood control district formula for channel velocity: Velocity = 5.48(q".33)(slope^.492) Velocity using mean channel flow = 4.50(Ft/s) ' Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0516 Corrected/adjusted channel slope = 0.0516 ' Travel time = 2.30 min. TC = 14.77 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.761 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 ' Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.810(In/Hr) for a 100.0 year storm Subarea runoff = 19.471(CFS) for 9.100(Ac.) Total runoff = 53.145(CFS) Total area = 21.780(Ac.) I 1 1 Process from Point/Station 6.000 to Point/Station 7.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1122.000(Ft.) End of natural channel elevation = 1098.000(Ft.) Length of natural channel = 390.000(Ft.) Estimated mean flow rate at midpoint of channel = 74.618(CFS) ' Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)'.352)(slope''0.5) Velocity using mean channel flow = 10.79(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) channel, Normal channel slope = 0.0615 ' Corrected/adjusted cannel slope = 0.0615 Travel time = 0.60 min. TC = 15.37 min. ' Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.759 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.340 Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56 Pervious area fraction = 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.749(In/Hr) for a 100.0 year storm Subarea runoff = 36.719(CFS) for 17.600(Ac.) Total runoff = 89.864(CFS) Total area = 39.380(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1098.000(Ft.) End of natural channel elevation = 1080.000(Ft.) Length of natural channel = 640.000(Ft.) Estimated mean flow rate at midpoint ofchannel= 99.563(CFS) Natural valley channel type used ' L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)^.352)(slope''0.5) Velocity using mean channel flow = 7.95(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0281 Corrected/adjusted channel slope = 0.0281 Travel time = 1.34 min. TC = 16.72 min. Adding area flow to channel SINGLE FAMILY (1 Acre Lot) Runoff Coefficient = 0.754 1 I 1 11 11 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.340 ' Decimal fraction soil group C = 0.330 Decimal fraction soil group D = 0.330 RI index for soil(AMC 2) = 66.56. Pervious area fraction =- 0.800; Impervious fraction = 0.200 Rainfall intensity = 2.625(In/Hr) for a 100.0 year storm ' Subarea runoff = 16.618(CFS) for 8.500(Ac.) Total runoff = 106.682(CFS) Total area = 47.880(Ac.) End of computations, total study area = 47.88 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(AP) = 0.800 Area averaged RI index number = 66.6 1 11 11 L 1000 900 800 700 Tc' 100 90 80 70 60 C 600 En 50 9• k 400 o 350 0 a F 300 c o 250 w CR m 200 J 150 0 r 35 n w 0 30 w 25 c E 20 19 IB 17 t6 0 15 '� 14 ` 13 C 0-12 � II 0 E 9 8 7 6 LIMITATIONS: 5 I. Maximum length = 1000' 2. Maximum area = 10 Acres a 71- r 0 H ,�. r_ Y M a tr 44000 300 _CP - s > 200 C O y O. O N E i o0 o 0 � 4�pp E CLTo a • v 30 o e c r 20 10 O 0 8 5 4 RCFC a WCD HYDF30LOGY �VJANUAL K Undeveloped Good -Cover Undeveloped Fair Cover Single Family (1/4 Acre) Commercial. (Pav � 2 r w 1.0 .8 .6 _ :4e c .3 0 2 0 u c 0 0 w Tc 5 6 d u Q 71- ,�. r_ Bo. Mr. 14 --a N 15 3' 16 17 E 18—s 19 20 -- c 0 0 25 Z) KEY o L- H –Tc –K–Tc `o 30 EXAMPLE; FE – (I)L=550', H=5.0,K=Single Family(1/4Ac.) 35 Development, Tc = 12_6 min. (2) L =550', H =5.0', K= Commercial 40 Development , Tc = 9.7 fnin. Reference: Bibliography item No. 35. v < c� `A` I) NIRA DUR4TION MINUTES LO Ma FREQUENCY - to loo YEAR YEAR RAINFALL INTENSITY -INCHES MURR lE i4 - T[N(2UL4 MORCO L RANCHO CALIFORNIA DURATION FREQUENCY DURATION lgCOU[MCY MINUTES MINUTES le lee a Ie1 Y[e9 Y[99 ItAR YEAR PER HOUR •4L+ SPAT N65 DllRATION FREQUENCY MINUTES u ' u1 YEAR YEAR aERg15 DURATION MINUTES Y4Ll.EY =qE0$+E• to lot TE 4q YEAR S 2.e4 4.48 S 7.95 5.11 5 2. 1i 4.16 S 4.21 6.76 S 2.69 ).ie 6 2.58 4.07 6 3.12 9.61 6 2.51 3.79 6 7.// 6.86 6 2.91 7.94 \_ 7 2.71 ). Ts 7 2.e/ 4.N i 2.79 J.51 T 3.98 5.56 i 2.24 7.21 b e 2.21 7.w a z.a/ 3.94 a 2.19 7.29 1 7.22 5.1s a z.19 7.11 9 ;,Oe 7.2e 9 2.50 3.69 9 2.07 7.11 9 7.11 4•e1 9 1.98 1.64 C 10 1.96 7.10 10 2.76 3.48 10 1.96 2.99 10 1.03 4.52 11 1.// b It 1.01 2.95 II 2.24 )JO 11 1.81 2•e1 11 2.61 4.24 It 1.10 2.19 12 1.7e 2.02 12 2.13 1.15 12 1.79 2.64 12 2.54 9,/7 12 1.12- i.57 r IJ 1.71 2.10 11 Leo -7.01 13 - 1.72 •Se 13 2.43 ).N U 2.91 i♦ 1.64 2.60 14 1.96 2.e9 19 1.66 .2 2.9e 19 2.33 3.72 19 1.6s 2.77 I.59 2.29 15 1.58 2.50 IS 1.89 2.19 15 1.60 2.41 IS Z.23 7.58 IS 1.59 2.21 16 1.53 2.92 16 1.02 2.69 16 1.55 2.72 IB 2.1s 3.49 16 1.49 2.19 11 1.48 2.39 it 1.76 2.60 1? I.SO 2.25 1/ ?.1 a 3,72 17 I.95 2.08 IB 1.94 2.21 to 1.71 2.52 to 1.+6 2.19 Is 2.11 7.22 to 1.41 19 1.90 2.21 19 1.6e 2.95 19 1.9i 2.13 19 1.95 ). 12 19 2.12 1.3? 1.97 20 1.76 2.15 20 1.61 2.78 Ie 1.71 i•IB 21 1.19 3.17 21 1.74 1.92 22 1.29 2.04 22 1.57 2.26 22 1.32 1.90 22 1.19 2./6 22 1.2/ 1.87 24 1.29 1.95 24 1.96 2.15 24 t.26 1•N 24 1.7e 2.72 24 1.22 1.75 26 1•18 1•87 26 1.79 2.06 26 1.22 1.12 26 1.02 .2.a/ 26 1,18 1,87 28 1.14 1.80 2e 1.14 1.98 28 1, 1T 1./e 2e 1.54 2.47 28 1.13 1.6330. 1.10 1.13 30 1.29 1.9e 70 1.13 I. T1 31 1.97 2.39 31 1.11 t.57 32 1.06 1.67 72 1.24 1.84 72 1.10 1.69 )i 1.44 2.71 32 1.14 1.52 z N i•Ol 1.62 19 1.20 1.18 N 1.16 I.59 N 1.37 x.$ N 1.13 1.4136 -I 1.00 1.57 76 1.17 1.12 36 1.13 I•SS 36 1.79 2.15 76 1.11 1.49 30 .97 1.57 38 1.17 1.61 38 1.11 I•SI 7/ 1.31 2.19 7/ m .9/ 1.41 c Z 40 .91 1.49 40 1.10 1.62 40 .ve 1.97 N 1.2? 2J2 91 95 .89 1.40 IS 1.17 1.52 95 .92 I.39 ♦S 1.18 1.11 ♦S .95 1.71 SO .e4 1.12 Se .91 L9+ se .ee I•ll SI I.It LTe SO .H 1.29 55 .BO 1.26 SS .92 1:76 55 ,09 1•13 SS 1.68 ,15 1.22 60 1,20 .1.15 55 JI 1.17 (� Z .76 ye .ee 1.70 61 .8/ 1,21 6/ 1.10 1.60 60 .78 I•II 65 .77 1.15 65 .e4 1.24 65 .I1 1.15 65 .95 I.S) 65 10 .70 1.11 10 .81 1.19 10 ,74 1.11 71 1.91 ,75 1.10 75 1.07 15 1.15 IS 15 .91 70 •72 1.19 D p .68 .10 .721.17 ,1e 1.91 TS .71 1.11 80 .65 ).0) DO .15 1.11 a0 .09 1.09 e1 .eS 1.75 ee D D BS .67 I.00 85 .77 1.07 85 .67 1.11 e5 J2 1,71 05 .)/ •66 .97 .99 SLOPE • .5 )0 SLOP .550 SLOPE • .501 SLOPE • .581 SCOPE _ .190 z rll I 1 I 1 1 1 � UNIT HYDROLOGY � SANTIAGO ROAD � WATERSHED, 1 [1 1 1 I i 1 = m = m = m = m = = = m = m = m m m m I I L 1 1 11 LJ 1 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 09/16/02 File: teme21100.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ----------------------------------------- ---------------------- --------- Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Engineering Resources of Southern California, Inc. - SIN 685 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- ------------------------------ ----------------- — ----- Drainage Area = 402.00(Ac.) 0.628 Sq. Mi. Length along longest watercourse = 8200.00(Ft.) Length along longest watercourse measured to centroid = 3400.00(Ft.)- Length along longest watercourse = 1.553 Mi. Length along longest watercourse measured to centroid = 0.644 Mi. Difference in elevation = 237.00(Ft.) Slope along watercourse = 152.6049 Ft./Mi. Average Manning's 'N' = 0.035 Lag time = 0.323 Hr. Lag time = 19.39 Min. 25% of lag time = 4.85 Min. 40% Of lag time = 7.76 Min. Unit time = 10.00 Min. Duration of storm = 1 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 402.00 0.50 201.00 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 402.00 1.30 522.60 STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.500(In) Area Averaged 100 -Year Rainfall = 1.300(In) Point rain (area averaged) = 1.300(In) Areal adjustment factor = 99.64 % Adjusted average point rain = 1.295(ln) Sub -Area Data: Area(Ac.) Runoff Index Impervious & 402.000 66.00 0.200 Total Area Entered = 402.00(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 66.0 66.0 0.405 0.200 0.332 1.000 0.332 Sum (F) = 0.332 I I I 1 I 1 1 I I Area averaged mean soil loss (F) (In/Hr) = 0.332 Minimum soil loss rate ((In/Hr)) = 0.166 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.740 Slope of intensity -duration curve for a 1 hour storm =0.5500 ------------------------------------------------------------ U n i t H y d r o g r a p h Combination of 'S' Curves: VALLEY 'S' Curve Percentage = 0.00 FOOTHILL 'S' Curve Percentage = 34.00 _ MOUNTAIN 'S' Curve Percentage = 33.00 --------- DESERT 'S' Curve ------------------------------------------------------- Percentage = 33.00 -- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) --------------------------------------------------------------------- Graph % (CFS) 1 0.167 51.575 5.633 22.823 2 0.333 103.150 26.978 109.298 3 0.500 154.725 28.618 115.943 4 0.667 206.299 12.107 49.051 5 0.833 257.874 7.360 29.818 6 1.000 309.449 5.042 20.427 7 1.167 361.024 3.486 14.125 B 1.333 412.599 2.460 9.968 9 1.500 464.174 1.684 6.821 10 1.667 515.749 1.337 5.415 11 1.833 567.323 1.031 4.178 12 2.000 618.898 0.844 3.419 13 2.167 670.473 0.732 2.967 14 2.333 722.048 0.648 2.624 15 2.500 773.623 0.470 1.906 16 2.667 825.198 0.378 1.530 17 2.833 876.772 0.306 1.241 18 3.000 928.347 0.306 1.241 19 3.167 979.922 0.306 1.241 20 3.333 1031.497 0.272 1.104 ----------------------------------------------------------------------- Sum = 100.000 Sum= 405.141 Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max Low (In/Hr). 1 0.17 7.50 0.583 0.332 --- 0.25 2 0.33 9.20 0.715 0.332 --- 0.38 3 0.50 11.40 0.886 0.332 --- 0.55 4 0.67 15.60 1.212 0.332 --- 0.88 5 0.83 45.30 3.521 0.332 --- 3.19 6 1.00 11.00 0.855 0.332 --- 0.52 Sum = 100.0 Sum = 5.8 Flood volume = Effective rainfall 0.96(In) times area 402.0(Ac.)/[(In)/(Ft.)] = 32.3(Ac.Ft) Total soil loss = 0.33(In) Total soil loss = 11.131(Ac.Ft) Total rainfall = 1.30(In) Flood volume = 1405267.3 Cubic Feet Total soil loss = 484859.6 Cubic Feet -- Peak -------------------------------------------------------------------- ----------------------------------------------------- flow rate of this hydrograph = 506.391(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1- H O U R S T O R M ---- R u n o f f- -H-y -------- --------------------------------- d r o g r a p h Hydrograph in 10 Minute intervals ((CFS)) ---------------- Time(h+m) ----- --------------------------------- - Volume Ac.Ft ---------------------------- Q(CFS) 0 - - - - ----------------- 150.0 300.0 ------- - --------------------- 450.0 600.0 I C 1 11 L 1 I 1 I11 0+10 0.0788 5.72 Q 0+20 0.5767 36.14 V Q 0+30 1.7277 83.57 V Q 0+40 3.6195 137.34 V Q 0+50 7.1944 259.54 V Q l+ 0 14.1695 506.39 V Q 1+10 21.0300 498.07 V Q 1+20 24.6466 262.57 Q V 1+30 26.7417 152.10 Q V 1+40 28.1561 102.68 Q V 1+50 29.1398 71.42 Q V 2+ 0 29.8374 50.65 Q V 2+10 30.3347 36.11 Q V 2+20 30.7233 28.21 Q V 2+30 31.0304 22.30 Q V 2+40 31.2820 18.27 Q V 2+50 31.4958 15.52 Q V 3+ 0 31.6781 13.23 Q V 3+10 31.8196 10.27 Q V 3+20 31.9354 8.41 Q V 3+30 32.0313 6.96 Q - V 3+40 32.1183 6.31 Q V 3+50 32.1951 5.58 Q V 4+ 0 32.2525 4.17 Q V 4+10 ----------------------------------------------------------------------- 32.2605 0.58 Q V ' U n i t H y d r o g r a p h A n a l y s i s ' Copyright (C) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 09/16/02 File: teme23100.out Riverside County Synthetic Unit Hydrology Method ' RCFC & WCD Manual date - April 1978 Engineering Resources of Southern California, Inc. - SIN 685 --------------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used 1 English Units used in output format 1 --------------------------------------------------------------------- -------------------------------------------------------------------- Drainage Area = 402.00(Ac.) = 0.628 Sq. Mi. Length along longest watercourse = 8200.00(Ft.) Length along longest watercourse measured to centroid = 3400.00(Ft.) ' Length along longest watercourse = 1.553 Mi. Length along longest watercourse measured to centroid = 0.644 Mi. Difference in elevation = 237.00(Ft.) Slope along watercourse = 152.6049 Ft./Mi. ' Average Manning's 'N' = 0.035 Lag time = 0.323 Hr. Lag time = 19.39 Min. 25% of lag time = 4.85 Min. 40% of lag time = 7.76 Min. ' Unit time = 10.00 Min. Duration of storm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) ' 2 YEAR Area rainfall data: Area(AC.)[1] Rainfall(In)[2] Weighting[1*2] ' 402.00 0.90 361.BD 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 402.00 2.00 804.00 ' STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 0.900(In) Area Averaged 100 -Year Rainfall = 2.000(In) ' Point rain (area averaged) = 2.000(In) Areal adjustment factor = 99.82 % Adjusted average point rain = 1.996(ln) ' Sub -Area Data: Area(Ac.) Runoff Index Impervious % 402.000 66.00 0.200 ' Total Area Entered = 402.00(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 66.0 66.0 0.405 0.200 0.332 1.000 0.332 Sum (F) = 0.332 Area averaged mean soil loss (F) (In/Hr) = 0.332 ' Minimum soil loss rate ((In/Hr)) = 0.166 Loss rate(In./Hr) Effective (for 24 hour storm duration) (In/Hr) Max Low (In/Hr) Soil low loss rate (decimal) = 0.740 0.311 0.332 0.230 0.08 ------------ ------- ----------------- --------------------------------- 0.311 0.08 U n i t H y d r o g r a p h 3.30 0.395 0.332 0.06 Combination of IS, Curves: 4 0.67 3.30 0.395 0.332 --- VALLEY 'S' Curve Percentage = 0.00 5 0.83 ' 0.395 FOOTHILL 'S' Curve Percentage = 34.00 6 1.00 3.40 MOUNTAIN 'S' Curve Percentage = 33.00 ' 7 1.17 DESERT 'S' Curve Percentage = 33.00 0.19 ---------- --------------------------------------------- Unit Hydrograph Data 4.20 0.503 0.332 --- 0.17 Unit -------------------------------------------------------- time period Time % of lag Distribution Unit Hydrograph 0.635 (bra) 0.30 -------------Graph-&------------(CFS) --------- 1.67 1 0.167 51.575 5.633 22.823 11 2 0.333 103.150 26.978 109.298 t 3 4 0.500 0.667 154.725 206.299 28.618 12.107 115.943 49.051 0.37 5 0.833 257.874 7.360 29.818 0.332 --- 0.54 6 1.000 309.449 5.042 20.427 1.018 0.332 7 8 1.167 1.333 361.024 412.599 3.486 2.460 14.125 9.968 14.10 1.689 9 1.500 464.174 1.684 6.821 2.67 14.10 10 1.667 515.749 1.337 5.415 17 2.63- 11 1.833 567.323 1.031 4.178 18 12 2.000 618.898 0.844 3.419 ' 13 2.167 670.473 0.732 2.967 6.3 14 2.333 722.048 0.648 2.624 15 2.500 773.623 0.470 1.906 ' 16 2.667 825.198 0.378 1.530 17 2.833 876.772 0.306 1.241 = 31.589(AC.Ft) 18 3.000 928.347 0.306 1.241 rainfall = 2.00(In) 19 3.167 979.922 0.306 1.241 Flood ' 20 3.333 1031.497 0.272 1.104 Total ----------------------------------------------------------------------- = 1375997.8 Sum = 100.000 Sum= 405.141 ' Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max Low (In/Hr) 1 0.17 2.60 0.311 0.332 0.230 0.08 2 0.33 2.60 0.311 0.332 0_230 0.08 ' 3 0.50 3.30 0.395 0.332 0.06 4 0.67 3.30 0.395 0.332 --- 0.06 5 0.83 3.30 0.395 0.332 --- 0.06 6 1.00 3.40 0.407 0.332 0.08 ' 7 1.17 4.40 0.527 ___ 0.332 0.19 8 1.33 4.20 0.503 0.332 --- 0.17 9 1.50 5.30 0.635 0.332 --- 0.30 10 1.67 5.10 0.611 0.332 0.28 11 1.83 6.40 0.767 __- 0.332 0.43 12 2.00 5.90 0.707 0.332 --- 0.37 13 2.17 7.30 0.874 0.332 --- 0.54 14 2.33 8.50 1.018 0.332 0.69 15 2.50 14.10 1.689 ___ 0.332 1.36 16 2.67 14.10 1.689 0.332 --- 1.36 17 2.63- 3.80 0.455 0.332 --- 0.12 18 3.00 2.40 0.287 0.332 0.213 0.07 ' Sum = 100.0 Sum = 6.3 Flood volume = Effective rainfall 1.05(In) times area 402.0(AC.)/[(In)/(Ft.)3 = 35.3(Ac.Ft) Total soil loss = 0.94(In) Total soil loss = 31.589(AC.Ft) Total rainfall = 2.00(In) Flood volume = 1537389.3 Cubic Feet Total soil loss = 1375997.8 Cubic Feet Peak flow rate of this hydrograph = 379.732(CFS) 1 3- H O U R S T O R M R u n o f f H y d r o g r a p h 1 --------------------------- H drogra h in ------------------------------- 10 Minute intervals ((CFS)) ----------------------- Time(h+m) ----- - --" Volume AC.Ft ----------------------- - -------------- Q(CFS) -------------- 0 100_0 200_0 - -- - 300.0 --- ---- - 400.0 0+10 0.0255 1.85 Q 0+20 0.1729 10.70 VQ 0+30 0.4441 19.69 VQ ' 0+40 0.7430 21.70 V Q 0+50 1.0465 22.04 VQ 1+ 0 1.3645 23.08 VQ 1+10 1+20 1.7466 2.3268 27.74 42.12 VQ V Q 1+30 3.1159 57.29 V Q 1+40 - 4.1472 74.87 V Q 1+50 2+ 0 5.4413 7.0307 93.95 115.38 V Q V Q 2+10 8.6898 134.97 V Q 2+20 11.0985 160.36 V Q 2+30 2+40 14.0555 18.4069 214.67 315.92 V Q V Q 2+50 23.6374 379.73 V Q 3+ 0 27.5771 286.02 Q V 3+10 29.8155 162.51 Q V ' 3+20 31.2855 106.73 Q V 3+30 32.2736 71.74 Q V 3+40 32.9717 50.68 Q V 3+50 33.4767 36.66 Q V 4+ 0 33.8552 27.48 Q V 4+10 34.1543 21.71 Q V 4+20 34.3950 17.48 Q V 4+30 34.5940 14.45 Q V 4+40 34.7613 12.15 Q V 4+50 34.8964 9.81 Q V 5+ 0 35.0021 7.68 Q V 5+10 35.0866 6.13 Q V 5+20 35.1575 5.15 Q V ' 5+30 35.2181 4.39 Q V 5+40 35.2653 3.43 Q V 5+50 35.2893 1.74 Q V V ' 6+10 ----------------------------------------------------------------------- 35.2936 0.08 Q V 1 ' U n i t H y d r It g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 09/16/02 File: teme26100.out - -------------- -------- -------------------------------------- ---- — Riverside County Synthetic Unit Hydrology Method ' RCFC & WCD Manual date - April 1976 Engineering Resources of Southern California, Inc. - SIN 6B5 '------- — ----- — ----- — ------------------- — -------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format -- — ----------------------------------------------------------------- -------------------------------------------------------------------- Drainage Area = 402.00(Ac.) 0.628 Sq. Mi. Length along longest watercourse = 8200.00(Ft.) Length along longest watercourse measured to centroid = 3400.00(Ft.) ' Length along longest watercourse = 1.553 Mi. Length along longest watercourse measured to centroid = 0.644 Mi. Difference in elevation = 237.00(Ft.) Slope along watercourse = 152.6049 Ft./Mi. Average Manning's 'N' = 0.035 Lag time = 0.323 Hr. Lag time = 19.39 Min. 25% of lag time = 4.85 Min. 40% of lag time = 7.76 Min. Unit time = 10.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) ' 2 YEAR Area rainfall data: Area(Ac.)[1) Rainfall(In)[2] Weighting[1*23 ' 402.00 1.20 482.40 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 402.00 2.70 1085.40 ' STORM EVENT (YEAR) = 100.00 Area Averaged 2 -Year Rainfall = 1.200(In) Area Averaged 100 -Year Rainfall = 2.700(In) ' Point rain (area averaged) = 2.700(In) Areal adjustment factor = 99.86 % Adjusted average point rain = 2.696(In) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 402.000 66.00 0.200 Total Area Entered = 402.00(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) ' 66.0 66.0 0.405 0.200 0.332 1.000 0.332 . - Sum (F) = 0.332 Area averaged mean soil loss (F) (In/Hr) = 0.332 ' Minimum soil loss rate ((In/Hr)) = 0.166 (In/Hr) Max Low (for 24 hour storm duration) 0.17 1.10 0.178 Soil low loss rate (decimal) = 0.740 0.132 0.05 ' ------------ -n -i- 1.20 ------------------------------ - 0.194 0.332 U t H y d r o g r a p h 3 0.50 1.30 Combination of 'S' Curves: 0.332 0.156 VALLEY 'S' Curve Percentage = 0.00 0.67 1.40 0.226 FOOTHILL 'S' Curve Percentage = 34.00 0.168 0.06 MOUNTAIN 'S' Curve Percentage = 33.00 0.226 0.332 DESERT 'S' Curve Percentage = 33.00 0.06 6 --- -------------------- - --- - - ----------------- Unit Hydrograph Data ------ ----- - ----- 0.332 ------------ Unit ----------------------------------------------------- time period Time % of lag Distribution Unit Hydrograph 7 (hrs) ----- ----- --------- ------ 1 0.167 51.575 5.633 22.823 8 2 0.333 103.150 26.978 109.298 0.332 3 0.500 154.725 28.618 115.943 1.50 ' 4 0.667 206.299 12.107 49.051 0.192 5 0.833 257.874 7.360 29.818 0.259 6 1.000 309.449 5.042 20.427 0.07 7 1.167 361.024 3.486 14.125 0.332 8 1.333 412.599 2.460 9.968 12 2.00 9 1.500 464.174 1.684 6.821 0.204 10 1.667 515.749 1.337 5.415 1.70 11 12 1.833 2.000 567.323 618.898 1.031 0.844 4.178 3.419 0.07 13 2.167 670.473 0.732 2.967 0.291 14 2.333 722.048 0.648 2.624 ' ' 15 16 2.500 2.667 773.623 825.198 0.470 0.378 1.906 1.530 0.332 17 2.833 876.772 0.306 1.241 2.67 1.80 18 3.000 928.347 0.306 1.241 0.215 19 3.167 979.922 0.306 1.241 0.324 20 3.333 1031.497 0.272 1.104 0.08 ----------------------------------------------------------------------- 3.00 Sum = 100.000 Sum= 405.141 ' Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max Low (In/Hr) 1 0.17 1.10 0.178 0.332 0.132 0.05 2 0.33 1.20 0.194 0.332 0.144 0.05 3 0.50 1.30 0.210 0.332 0.156 0.05 4 0.67 1.40 0.226 0.332 0.168 0.06 5 0.83 1.40 0.226 0.332 0.168 0.06 6 1.00 1.50 0.243 0.332 0.180 0.06 ' 7 1.17 1.60 0.259 0.332 0.192 0.07 8 1.33 1.60 0.259 0.332 0.192 0.07 9 1.50 1.60 0.259 0.332 0.192 0.07 ' 10 1.67 1.60 0.259 0.332 0.192 0.07 11 1.83 1.60 0.259 0.332 0.192 0.07 12 2.00 1.70 0.275 0.332 0.204 0.07 13 2.17 1.70 0.275 0.332 0.204 0.07 14 2.33 1.80 0.291 0.332 0.215 0.08 ' 15 2.50 1.80 0.291 0.332 0.215 0.08 16 2.67 1.80 0.291 0.332 0.215 0.08 17 2.83 2.00 0.324 0.332 0.239 0.08 18 3.00 2.00 0.324 0.332 0.239 0.08 ' 19 3.17 2.10 0.340 0.332 0.01 20 3.33 2.20 0.356 0.332 --- 0.02 21 3.50 2.50 0.404 0.332 --- 0.07 22 3.67 2.80 0.453 0.332 0.12 23 3.83 3.00 0.485 0.332 =__ 0.15 24 4.00 3.20 0.516 0.332 --- 0.19 25 4.17 3.50 0.566 0.332 --- 0.23 26 4.33 3.90 0.631 0.332 0.30 27 4.50 4.20 0.679 0.332 __- 0.35 28 4.67 4.50 0.728 0.332 --- 0.40 29 4.83 4.80 0.777 0.332 --- 0.44 I 1 F 1 C 1 30 5.00 5.10 0.625 0.332 --- 0.49 0.1001 31 5.17 6.70 1.084 0.332 --- 0.2673 0.75 12.14 32 5.33 8.10 1.310 0.332 --- 15.45 0.98 0+50 33 5.50 10.30 1.666 0.332 --- 1+ 0 1.33 34 5.67 2.80 0.453 0.332 --- 0.12 35 5.83 1.10 0.178 0.332 0.132 0.05 1.9513 36 6.00 0.50 0.081 0.332 0.060 2.2965 0.02 25.06 Sum = 100.0 Sum = 7.2 2+ 0 3.0072 Flood volume = Effective rainfall 1.21(In) 2+10 3.3761 26.78 times area 402.0(Ac.)/[(In)/(Ft.)] = 40.4(Ac.Ft) 27.61 2+30 Total soil loss = 1.49(In) 2+40 4.5505 Total soil loss = 49.935(Ac.Ft) 4.9611 29.81 Total rainfall = 2.70(In) 31.01 3+10 5.8079 Flood volume = 1759392.1 Cubic Feet 3+20 6.1252 23.04 Total soil loss = 2175165.3 Cubic Feet 17.37 3+40 ------------------------------------------------------------ Peak --------------------------------------------------------------- flow rate of this hydrograph = 337.423(CFS) 3+50 7.1169 - - - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 4+ 0 7.7205 43.82 4+10 8.4835 6- H O U R S T O R M 55.39 4+20 9.4407 69.49 R u n o f f H y d r o g r a p h 10.6422 87.23 ------------------ Hydrograph ------------------ - --- - -------------------------- in 10 Minute intervals ((CFS)) 106.07 --------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0+10 0.0146 1.06 0+20 0.1001 6.21 0+30 0.2673 12.14 0+40 0.4801 15.45 0+50 0.7278 17.98 1+ 0 1.0012 19.85 1+10 1.2970 21.47 1+20 1.6159 23.15 1+30 1.9513 24.35, 1+40 2.2965 25.06 1+50 2.6486 25.56 2+ 0 3.0072 26.03 2+10 3.3761 26.78 2+20 3.7564 27.61 2+30 4.1482 28.45 2+40 4.5505 29.21 2+50 4.9611 29.81 3+ 0 5.3883 31.01 3+10 5.8079 30.47 3+20 6.1252 23.04 3+30 6.3644 17.37 3+40 6.6694 22.14 3+50 7.1169 32.49 4+ 0 7.7205 43.82 4+10 8.4835 55.39 4+20 9.4407 69.49 4+30 10.6422 87.23 4+40 12.1031 106.07 4+50 13.8176 124.47 5+ 0 15.7878 143.03 5+10 18.0823 166.58 5+20 21.0099 212.54 5+30 24.9008 282.48 5+40 29.5485 337.42 5+50 33.2203 266.58 6+ 0 35.2742 149.11 6+10 36.6302 98.45 6+20 37.5651 67.87 6+30 38.2193 47.50 6+40 38.6955 34.58 6+50 39.0515 25.84 7+ 0 39.3331 20.45 7+10 39.5587 16.38 7+20 39.7446 13.51 7+30 39.8996 11.24 ----------------------------------------- 0 100.0 200.0 300.0 400 ---------------------------------------- 7Q 7Q 7Q 7Q VQ VQ VQ Q Q Q QV QV Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V QV QV QV QV VQ V Q V Q Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V C ' 7+40 40.0258 9.16 Q V 7+50 40.1236 7.10 Q V 8+ 0 40.2022 5.71 Q V 8+10 40.2666 4.68 Q V 8+20 40.3212 3.96 Q V 8+30 40.3622 2.98 Q V 8+40 40.3857 1.71 Q V 8+50 40.3887 0.22 Q v 9+10 ----------------------------------------------------------- 40.3901 0.02 Q V 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 09/16/02 File: teme2110.out --------------------------------------------------------------- Riverside County synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Engineering Resources of Southern California, Inc. - SIN 685 --------------------------------- — ----------- — --------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used tEnglish Units used in output format --------------------------------------------------------------------- -------------------------`-------_---------------------------------- Drainage Area = 402.00(Ac.) 0.628 Sq. Mi. Length along longest watercourse = 6200.00(Ft.) Length along longest watercourse measured to centroid = 3400.00(Ft.) ' Length along longest watercourse = 1.553 Mi. Length along longest watercourse measured to centroid = 0.644 Mi. Difference in elevation = 237.00(Ft.) Slope along watercourse = 152.6049 Ft./Mi. Average Manning's 'N' = 0.035 Lag time = 0.323 Hr. Lag time = 19.39 Min. 25% of lag time = 4.85 Min. 40% of lag time = 7.76 Min. ' Unit time = 10.00 Min. Duration of storm = 1 Hour(s) User Entered Base Flow = 0.O0(CFS) ' 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] 402.00 0.50 201.00 100 YEAR Area rainfall data: ' Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2) 402.00 1.30 522.60 ' STORM EVENT (YEAR) = 10.00 Area Averaged 2 -Year Rainfall = 0.500(In) Area Averaged 100 -Year Rainfall = 1.300(In) Point rain (area averaged) = 0.829(In) Areal adjustment factor = 99.64 % Adjusted average point rain = 0.826(In) ' Sub -Area Data: Area(Ac.) Runoff Index Impervious & 402.000 66.00 0.200 ' Total Area Entered = 402.00(Ac.) RI RI Infil. Rate Impervious Adj, Infil. Rate Area% F AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 66.0 66.0 0.405 0.200 0.332 1.000 0.332 Sum (F) = 0.332 - Area averaged mean soil loss (F) (In/Hr) = 0.332 ' Minimum soil loss rate ((In/Hr)) = 0.166 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.740 ------------------------ Slope ----- -------- - - ------------------- - ----------- of intensity -duration curve for a 1 hour storm =0.5500 ----------------------------------------------------------------- U n i t H y d r o g r a p h Combination of IS, Curves: VALLEY 'S' Curve Percentage = 0.00 FOOTHILL 'S' Curve Percentage = 34.00 MOUNTAIN 'S' Curve Percentage = 33.00 ' DESERT 'S' Curve Percentage = 33.00 ------------------------------------' - ----------- Unit Hydrograph Data - ------- --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (hrs) Graph & (CFS) --------------------------------------------------------------------- 1 2 0.167 51.575 5.633 0.333 103.150 26.978 22.823 109.298 3 0.500 154.725 28.618 115.943 4 0.667 206.299 12.107 49.051 ' 5 6 0.833 257.874 7.360 1.000 309.449 5.042 29.818 20.427 7 1.167 361.024 3.486 14.125 8 1.333 412.599 2.460 9.968 ' 9 10 1.500 464.174 1.684 1.667 515.749 1.337 6.821 5.415 11 1.833 567.323 1.031 4.178 12 2.000 618.898 0.844 3.419 13 2.167 670.473 0.732 2.967 ' 14 2.333 722.048 0.648 2.624 15 2.500 773.623 0.470 1.906 16 2.667 825.198 0.378 1.530 17 2.833 876.772 0.306 1.241 ' 18 3.000 928.347 0.306 1.241 19 3.167 979.922 0.306 1.241 20 3.333 1031.497 0..272 1.104 100.000 Sum=_ 405_ 141 -Sum_= _____________-_ --- Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective ' (Hr.) Percent (In/Hr) Max Low (In/Hr) 1 0.17 7.50 0.372 0.332 0.04 2 0.33 9.20 0.456 0.332 --- 0.12 3 0.50 11.40 0.565 0.332 --- 0.23 4 0.67 15.60 0.773 0.332 0.44 ' 5 0.83 ___ 45.30 2.245 0.332 1.91 6 1.00 11.00 0.545 0.332 --- 0.21 Sum = 100.0 .Sum = 3.0 Flood volume = Effective rainfall 0.49(In) times area 402.0(Ac.)/[(In)/(Ft.)) = 16.5(Ac.Ft) Total soil loss = 0.33(ln) Total soil loss = 11.131(Ac.Ft) Total rainfall = 0.83(In) Flood volume = 720643.7 Cubic Feet Total soil loss = 484859.6 Cubic Feet ------------ Peak. - - - --- ------- - -------------------------------- flow rate of this hydrograph = 281_145(CFS) --- ------------------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1- H O U R S T O R M ' ---------------------- R u n o f f H d r o r a h -----------Y-------g-- p ----------------------- Hydrograph in 10 Minute intervals ((CFS)) ----------- - --------- - - - - ----------------------- - -------------- Time(h+m) Volume AC.Ft Q(CFS) 0_ 75_0 150_0 225.0 300.0 ---------------------------------- ---------------- 0+10 0.0124 0.90 Q 1 1 0+20 0.1108 7.14 Q 0+30 0.4335 23.43 V Q 0+40 1.1473 51.82 V Q 0+50 2.8851 126.16 V Q 1 1+ 0 6.7576 281.15 V Q 1+10 10.5714 276.89 V Q 1+20 12.4812 138.65 Q V 1+30 13.6015 81.33 Q V 1 1+40 14.3599 55.07 Q V 1+50 14.8862 38.21 Q V 2+ 0 15.2583 27.01 Q V 2+10 15.5212 19.08 Q V 1 2+20 15.7268 14.93 Q V 2+30 15.8687 11.75 Q V 2+40 16.0216 9.65 Q V 1 2+50 3+ 0 16.1352 16.2324 8.25 7.06 Q Q V V 3+10 16.3064 5.37 Q V 3+20 16.3666 4.37 Q V 1 3+30 3+40 16.4172 16.4646 3.68 3.44 Q Q V V 3+50 16.5077 3.13 Q V 4+ 0 16.5405 2.38 Q V 1 4+10 --------------------------------------------------------------------- 16.5437 0.24 Q 1 1 1 1 I 1 u 1 1 1 1 1 ' U n i t H y d r o g r a p h A n a l y s i s Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 09/16/02 File: teme2310.out Riverside County Synthetic Unit Hydrology Method ' RCFC & WCD Manual date - April 1978 Engineering Resources of Southern California, Inc. - SIN 685 t--------------------------------------------------------------- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format ' --------------------------------------------------------------------- -------------- --- --- --------------------------- —-------- Drainage Area = 402.00(Ac.) = 0.628 Sq. Mi. Length along longest watercourse = 8200.00(Ft.) Length along longest watercourse measured to centroid = 3400.00(Ft.) Length along longest watercourse = 1.553 Mi. Length along longest watercourse measured to centroid = 0.644 Mi. Difference in elevation = 237.00(Ft.) Slope along watercourse = 152.6049 Ft./Mi. Average Manning's 'N' = 0.035 Lag time = 0.323 Hr. Lag time = 19.39 Min. 25% of lag time = 4.85 Min. ' 40% of lag time = 7.76 Min. Unit time = 10.00 Min. Durationofstorm = 3 Hour(s) User Entered Base Flow = 0.00(CFS) ' 2 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2] ' 402.00 0.90 361.80 100 YEAR Area rainfall data: ' Area(Ac.)[i]-- Rainfall(In)[2] Weighting[1*2] 402.00 2.00 804.00 ' STORM EVENT (YEAR) = 10.00 Area Averaged 2 -Year Rainfall = 0.900(In) Area Averaged 100 -Year Rainfall = 2.000(In) Point rain (area averaged) = 1.353(In) Areal adjustment factor = 99.82 % Adjusted average point rain = 1.350(In) ' Sub -Area Data: Area(Ac.) Runoff Index Impervious %- 402.000 66.00 0.200 402.000 ' Total Area Entered = 402.00(Ac.) RI RI Infil. Rate Impervious Adj. Infi1. Rate Area% F AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) ' 66.0 66.0 0.405 0.200 0.332 1.000 0.332 Sum (F) = 0.332 Area averaged mean soil loss (F) (In/Hr) = 0.332 I C I 1 1 C 1 1 Minimum soil loss rate ((In/Hr)) = 0.166 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.740 --- - ---------------- - ------------- - -------- - ------------- - ------ U n i t H y d r o g r a p h Combination of IS, Curves: VALLEY 'S' Curve Percentage = 0.00 FOOTHILL 'S' Curve Percentage = 34.00 MOUNTAIN 'S' Curve Percentage = 33.00 DESERT 'S' Curve Percentage = 33.00 ----------------- Unit ----------------------- Hydrograph Data ---------------------- - -- Unit time period ----------------------------------------------------- Time % of lag Distribution Unit Hydrograph (hrs) Graph % (CFS) -------------------------------------------------------------- 1 0.167 51.575 5.633 22.623 2 0.333 103.150 26.978 109.298 3 0.500 154.725 26.618 115.943 4 0.667 206.299 12.107 49.051 5 0.833 257.874 7.360 29.818 6 1.000 309.449 5.042 20.427 7 1.167 361.024 3.486 14.125 8 1.333 412.599 2.460 9.968 9 1.500 - 464.174 1.684 6.821 10 1.667 515.749 1.337 5.415 11 1.833 567.323 1.031 4.178 12 2.000 618.898 0.844 3.419 13 2.167 670.473 0.732 2.967 14 2.333 722.048 0.648 2.624 15 2.500 773.623 0.470 1.906 16 2.667 825.198 0.378 1.530 17 2.833 876.772 0.306 1.241 18 3.000 928.347 0.306 1.241 19 3.167 979.922 0.306 1.241 20 3.333 1031.497 0.272 1.104 ----------------------------------------------------------------------- Sum = 100.000 Sum= 405.141 Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max Low (In/Hr) 1 0.17 2.60 0.211 0.332 0.156 0.05 2 0.33 2.60 0.211 0.332 0.156 0.05 3 0.50 3.30 0.267 0.332 0.198 0.07 4 0.67 3.30 0.267 0.332 0.198 0.07 5 0.83 3.30 0.267 0.332 0.198 0.07 6 1.00 3.40 0.275 0.332 0.204 0.07 7 1.17 4.40 0.356 0.332 --- 0.02 8 1.33 4.20 0.340 0.332 --- 0.01 9 1.50 5.30 0.429 0.332 --- 0.10 10 1.67 5.10 0.413 0.332 --- 0.08 11 1.83 6.40 0.518 0.332 --- 0.19 12 2.00 5.90 0.478 0.332 --- 0.15 13 2.17 7.30 0.591 0.332 --- 0.26 14 2.33 8.50 0.689 0.332 --- 0.36 15 2.50 14.10 1.142 0.332 --- 0.81 16 2.67 14.10 1.142 0.332 --- 0.81 17 2.83 3.80 0.308 0.332 0.228 0.08 18 3.00 2.40 0.194 0.332 0.144 0.05 Sum = 100.0 Sum = 3.3 Flood volume = Effective rainfall 0.55(In) times area 402.0(Ac.)/[(In)/(Ft.)] = 18.4(Ac.Ft) Total soil loss = 0.80(In) Total soil loss = 26.819(Ac.Ft) Total rainfall = 1.35(In) Flood volume = 802027.8 Cubic Feet Total soil loss = 1168221.4 Cubic Feet -------------------------y---g--P--_------------------------ Peak flow rate of this h dro ra h 217.720(CFS) - - ---- I 1 1 J +++++++++++++++++++++++++?+++++++++++++++++++++T++++++++++++++++++++ 3- H O U R S T O R M R u n o f f H y d r o g r a p h ------- ----------------------------------------- Hydrograph in 10 Minute intervals ((CFS)) - ---- ' -------------------------------------------------------------------- Time(h+m) ------------------------------ Volume Ac.Ft Q(CFS) 0 75_0 150_0 -- _225.0 300.0 0+10 0.0172 1.25 Q 0+20 0.1169 7.24 Q 0+30 0.3088 13.93 VQ ' 0+40 0.5599 18.23 VQ 0+50 0.8570 21.57 VQ 1+ 0 1.1802 23.46 VQ 1+10 1.5083 23.82 Q 1+20 1.7750 19.36 QV 1+30 1.9789 14.81 Q V 1+40 2.2610 20.48 Q V ' 1+50 2+ 0 2.6689 3.2411 29.61Q 41.54 V Q V 2+10 3.9715 53.03 QV 2+20 4.9214 68.96 QV 2+30 2+40 6.3658 8.7444 104.86 172.68 Q V Q 2+50 11.7433 217.72 V Q 3+ 0 14.0218 165.42 Q V 3+10 3+20 15.3164 16.1626 93.99 61.44 Q Q V V 3+30 16.7249 40.82 Q V 3+40 17.1193 28.64 Q V 3+50 17.4021 20.53 Q V ' 4+ 0 17.6119 15.23 Q V 4+10 17.7760 11.91 Q V 4+20 17.9068 9.49 Q V 4+30 18.0156 7.90 Q V 4+40 18.1080 6.71 Q V 4+50 18.1831 5.45 Q V 5+ 0 18.2423 4.30 Q V 5+10 18.2899 3.46 Q V 5+20 18.3306 2.96 Q V 5+30 18.3662 2.58 Q V 5+40 18.3946 2.06 Q V 5+50 - 18.4092 1.06 Q V 6+10 --- - --------- 18.4120 - -------------------- 0.06 Q - -- ---------------- - ------------ V I 1 1 J 11 1 1 I 1 C 1 I 1 1 U n i t H y d r o g r a p h A n a l y s i s Copyright (C) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0 Study date 09/16/02 File: teme2610.out ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Riverside County Synthetic Unit Hydrology Method RCFC & WCD Manual date - April 1978 Engineering Resources of Southern California, Inc. - SIN 685 ----------- -- —--------- — — -- —----------------------`--------- --- English (in -lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format --------------------------------------------------------------------- ---------- — Drainage Area = 402.00(Ac.) 0.628 Sq. Mi. Length along longest watercourse = 8200.00(Ft.) Length along longest watercourse measured to centroid = 3400.00(Ft.) Length along longest watercourse = 1.553 Mi. Length along longest watercourse measured to centroid = 0.644 Mi. Difference in elevation = 237.00(Ft.) Slope along watercourse = 152.6049 Ft./Mi. Average Manning's 'N' = 0.035 Lag time = 0.323 Hr. Lag time = 19.39 Min. 25% of lag time = 4.85 Min. 40% of lag time = 7.76 Min. Unit time = 10.00 Min. Duration of storm = 6 Hour(s) User Entered Base Flow = 0.00(CFS) 2 YEAR Area rainfall data: Area(AC.)[1] Rainfall(In)[2) Weighting[1*2) 402.00 1.20 482.40 100 YEAR Area rainfall data: Area(Ac.)[1] Rainfall(In)[2) Weighting[1*27 402.00 2.70 1085.40 STORM EVENT (YEAR) = 10.00 Area Averaged 2 -Year Rainfall = 1.200(In) Area Averaged 100 -Year Rainfall = 2.700(In) Point rain (area averaged) = 1.817(In) Areal adjustment factor = 99.86 % Adjusted average point rain = 1.815(ln) Sub -Area Data: Area(Ac.) Runoff Index Impervious % 402.000 66.00 0.200 Total Area Entered = 402.00(Ac.) RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F t AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr) 66.0 66.0 0.405 0.200 0.332 1.000 0.332 Sum (F) = 0.332 Area averaged mean soil loss (F) (In/Hr) = 0.332 11 L Minimum soil loss rate ((In/Hr)) = 0.166 (for 24 hour storm duration) Soil low loss rate (decimal) = 0.740 --------------------------------------------------------------------- U n i t H y d r o g r a p h Combination of 'S' Curves: VALLEY 'S' Curve Percentage = 0.00 FOOTHILL 'S' Curve Percentage = 34.00 MOUNTAIN 'S' Curve Percentage = 33.00 DESERT 'S' Curve Percentage = 33.00 -------------------------------------------------------------------- Unit Hydrograph Data --------------------------------------------------------------------- Unit time period Time % of lag Distribution Unit Hydrograph (bra) Graph % (CFS) -------------------------------------------------------------------- 1 0.167 51.575 5.633 22.823 2 0.333 103.150 26.978 109.298 3 0.500 154.725 28.618 115.943 4 0.667 206.299 12.107 49.051 5 0.833 257.874 7.360 29.818 6 1.000 309.449 5.042 20.427 7 1.167 361.024 3.486 14.125 8 1.333 412.599 2.460 9.968 9 1.500 464.174 1.684 6.621 10 1.667 515.749 1.337 5.415 11 1.833 567.323 1.031 4.178 12 2.000 618.898 0.844 3.419 13 2.167 670.473 0.732 2.967 14 2.333 722.048 0.648 2.624 15 2.500 773.623 0.470 1.906 16 2.667 825.198 0.378 1.530 17 2.833 876.772 0.306 1.241 18 3.000 928.347 0.306 1.241 19 3.167 979.922 0.306 1.241 20 3.333 1031.497 0.272 1.104 ----------------------------------------------------------------------- Sum = 100.000 Sum= 405.141 Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective (Hr.) Percent (In/Hr) Max Low (In/Hr) 1 0.17 1.10 0.120 0.332 0.089 0.03 2 0.33 1.20 0.131 0.332 0.097 0.03 3 0.50 1.30 0.142 0.332 0.105 0.04 4 0.67 1.40 0.152 0.332 0.113 0.04 5 0.63 1.40 0.152 0.332 0.113 0.04 6 1.00 1.50 0.163 0.332 0.121 0.04 7 1.17 1.60 0.174 0.332 0.129 0.05 8 1.33 1.60 0.174 0.332 0.129 0.05 9 1.50 1.60 0.174 0.332 0.129 0.05 10 1.67 1.60 0.174 0.332 0.129 0.05 11 1.83 1.60 0.174 0.332 0.129 0.05 12 2.00 1.70 0.185 0.332 0.137 0.05 13 2.17 1.70 0.185 0.332 0.137 0.05 14 2.33 1.80 0.196 0.332 0.145 0.05 15 2.50 1.80 0.196 0.332 0.145 0.05 16 2.67 1.80 0.196 0.332 0.145 0.05 17 2.83 2.00 0.218 0.332 0.161 0.06 18 3.00 2.00 0.218 0.332 0.161 0.06 19 3.17 2.10 0.229 0.332 0.169 0.06 20 3.33 2.20 0.240 0.332 0.177 0.06 21 3.50 2.50 0.272 0.332 0.201 0.07 22 3.67 2.80 0.305 0.332 0.226 0.08 23 3.83 3.00 0.327 0.332 0.242 0.08 24 4.00 3.20 0.348 0.332 --- 0.02 25 4.17 3.50 0.381 0.332 --- 0.05 26 4.33 3.90 0.425 0.332 --- 0.09 27 4.50 4.20 0.457 0.332 --- 0.13 28 4.67 4.50 0.490 0.332 --- 0.16 29 4.83 4.80 0.523 0.332 --- 0.19 I I 30 5. 00 5.10 0.555 0.332 - -- 0.22 0+20 31 5.17 6.70 0.729 0.332 --- 0.40 0.1799 32 5.33 8.10 0.882 0.332 --- 0.55 VQ 33 5.50 10.30 1.121 0.332 --- 0.79 12.10 34 5.67 2.80 0.305 0.332 0.226 0.08 Q 35 5.83 1.10 0.120 0.332 0.089 0.03 1+20 36 6.00 0.50 .0.054 0.332 0.040 0.01 1.3132 Sum = 100.0 Sum = 3.9 Q V 16.87 Flood volume = Effective rainfall 0.65(ln) 1.7625 17.20 times area 402.0(Ac.)/[(In)/(Ft.)] = 21.7(Ac.Ft) 17.52 Q V Total soil loss = 1.17(In) 18.03 Q 2+20 Total soil loss = 39.109(Ac.Ft) Q 2+30 2.7918 Total rainfall = 1.81(In) 2+40 3.0625 Q Flood volume = 944383.4 Cubic Feet 3.3388 V 20.06 Total soil loss = 1703591.4 Cubic Feet 20.87 --------------------- Peak flow rate of - ----------- - - - - -------- -- - ------- - ----------------- this hydrograph = 187.522(CFS) --------------- ---------------- 21.75 Q 3+20 ------- ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 22.51 3+30 4.5608 23.58 6- H O U R S T 0 R.M 3+40 4.9097 Q 25.33 R u n o f f- -- H y d r o g r a p h --------------------------------- 5.2914 27.71 Hydrograph in 10 Minute intervals ((CFS)) 28.39 --------------------------- Time(h+m) Volume Ac.Ft Q(CFS) 0+10 0.0098 0.71 1 0+20 0.0674 4.18 1 0+30 0.1799 8.17 VQ 0+40 0.3231 VQ 10.40 0+50 0.4898 12.10 l+ 0 0.6738 13.36 Q 1+10 0.8729 Q 14.45 1+20 1.0875 15.58 1+30 1.3132 16.39 Q V 1+40 1.5456 Q V 16.87 1+50 1.7625 17.20 2+0 2.0239 17.52 Q V 2+10 2.2722 V 18.03 Q 2+20 2.5281 Q 18.58 Q 2+30 2.7918 19.15 Q 2+40 3.0625 Q 19.66 V 2+50 3.3388 V 20.06 3+ 0 3.6263 20.87 3+10 3.9258 21.75 Q 3+20 4.2360 22.51 3+30 4.5608 23.58 Q 3+40 4.9097 Q 25.33 3+50 5.2914 27.71 4+ 0 5.6824 28.39 4+10 6.0006 23.10 4+20 6.2830 20.51 4+30 6.6546 26.97 4+40 7.1543 36.28 4+50 7.7929 46.37 5+ 0 6.5818 57.27 5+10 9.5737 72.01 5+20 10.9810 102.17 5+30 13.0280 148.61 5+40 15.6109 187.52 5+50 17.6928 151.14 6+ 0 18.8544 84.34 6+10 19.6179 55.43 6+20- 20.1403 37.92 6+30 20.5015 26.22 6+40 20.7616 18.89 6+50 20.9536 13.94 7+ 0 21.1041 10.93 7+10 21.2237 8.68 7+20 21.3229 7.21 7+30 21.4063 6.05 -------------------- ------------------ 0 0 -------------------- 50.0 1 7Q 7 Q 7 Q VQ VQ VQ VQ VQ Q Q QV QV Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q V S Q Q Q Q Q Q Q Q Q Q -------------------- )0.0 150.0 2 -------------------- V Q V Q Q V V V V V V V V V V V )0.0 7+40 21.4748 4.98 Q v ' 7+50 21.5282 3.86 Q I I I V 1 1 1 D 8+ 0 21.5716 3.15 Q V 8+10 21.6076 2.62 Q v 8+20 21.6390 2.27 Q y 8+30 21.6630 1.75 Q p 8+40 21.6771 1.03 Q V 8+50 21.6791 0.14 Q V ' 9+10 21.6801 0.02 Q v 1 1 1 D I 1 1 � SEDIMENT � ANALYSIS I u I I I I I Proceedings of the Workshop on ESTIMATING EROSION and SEDIMENT YIELD on RANGELANDS Tucson, Arizona March 7-9, 1981 E. R. Burroughs, Jr J. C. Chugg C. E. Dissmeyer D. A. Farreli G. R. Foster K. A. Cebhardt G. E. Hart. C. W. Johnson J. M. Laflen L. J. Lane C. J. Lovely D. K. McCool L. D. Meyer W. C. Moldenhauer E. .t. Neff R. J. Page K. C. Renard M. 13. Rollins E. D. Shirley J. R. Simanton J. J. Stone E. S. Sundberg 1. R. WighL J. R. Williams U.S. Department of Agriculture Agricultural Research Service Agricuflural Reviews and Manua1s.ARM-W-20/June 1982 I 1 r SEDIMENT YIELD FROM SMALL SEMIARID RANGELAND WATERSHEDS K. G. Renard and J. J. Stone I/ INTRODUCTION Sediment yield, the quantity of sediment moving past a cross-section of a channel in a specified time interval, is sometimes mistakenly assumed to be synonomous with erosion. Material removed from a slope as rill and interrill erosion may be deposited at the toe of a slope, on a flood plain, or ac ocher points within the watershed where the sediment load exceeds Che transport capa- city of the runoff. Within a channel, material eroded not only from the land - slope, but also from the channel bed and banks and from gullies and huadcuts, can be a significant part of the sediment transported past a point on the stream. The path that a soil particle takes in moving to a point of lower potential energy is complicated, and the process is often stepwise in time. Assuming that governing equations for such movements are known, these com- plexities make physically based equations describing the movement of sedLment difficult to use. Thus, more simplified empirical equations are often used. Recent developments in watershed modeling, however, include crosion/sediment transport routines with dctailed hydrologic models. Thesu new modeling tech- niques promise to reflect the effects of different land usu and the cffocts of the variations from year to year resulting from climatic differunces. They do, of course, require much more computer time, have different data requirements, and are more expensive to use than the simple empirical models. Methods for estimating erosion and sediment yield from rangelands are based primarily upon the principles developed in parts of the United States where cultivated agricultural activities are prevalont. Techniques incorpora- tins disturbance of the soil by tillage are not generally applicable to range- lands, so the erosion-estimacing techniques must be adjusted to reflect these Land use differences for rangelands. Typical problems unique to rangelands are those associated with the different soils (tilegenesis of western range, soils are different from those in humid areas); the existence of erosion pavements (which provide protection from raindrop impact and decrease the shear of water moving over the land); grazing and trampling by animals; and with channel ero- sion processes which are very important on rangelands. Renard (1980) detailed seven different methods for estimating sediment yield. Each has different data requirements, vary in complexity, and produce diFferent results. The choice of method depends upon the objectLve of the investigation. In this further investLgation, some sediment yield formulae are 1 _. • YHydraulic Engineer, USDA -SEA -A1C and Graduate Student, University of Ari- zona, 442 E. 7th Sr., Tucson, AZ, 85705. 129 OCT— 9-92 FRI 16;19 Robe, t 1. I a, dFAI N01 6029246962 P. 04 tested with sediment yield data from nine small watersheds in the Walnut 8ulc}i Experimental Watershed near Tombstone, Arizona. METHODS TESTED Pacific Southwest Interagency-Committea Method (PSIAC) The method developed by the Water Management Committee of the PSIAC (1968) was intended for broad planning rather than for specific project formulation where more intensive investigations are required. Although this method was in- tended for use in areas larger than 10 mit, we tested it here on small water- sheds to demonstrate a method that might be readily used to estimate sediment yield within a land resource area (Austin, 1965). Testing the method improves the confidence of the user in selecting parameter values that reproduce obser- ved data. The method requires using nine factors to determine ttte sediment yield classification for a watershed. The factors are (A) geology, (B) soils, (C) Climate, (D) runoff, (E) topography, (F) ground cover, (G) land use, (H) upland erosion, and (I) channel erosion/sediment transport. Each factor is assigned a numerical value from a rating chart (PSIAC, 1968) which is too long to repro- duce here. Descriptive terms for three sediment yield levels (high, moderate, low) for each factor are used to select the numerical value. Summing the rating chart values for tile nine factors defines a sediment yield rating class- ification, which in turn can be converted to the averaze annual sediment yield using Table 1. TABLE 1. --Sediment yield classification Rating Annual - Classification sediment yield ---- --- __ _� ac-ft/mit > 100 i > 3.0 75 to 100 2 1.0 to 3.0 50 to 75 3 U.5 to i.0 25 to 50 4 0.2 to 0.5 0to25 5 <0.2 Numerical values for each of the nine factors range from 25 to minus I0. Although only three levels are suggested for general use in the rating chart, a footnote states that, if experience so dictates, intecpolation between the three sediment yield levels may be made. study. Such interpolation was used in this To -assist in interpolation between the classifications of Table 1, The data in Table I were converted CO equation form. Although such precision was not intended for the original method, we felt that such a schema could provide additional insight into the ability of the technique to reflect differences in the observed data. The equation is: lin Because of widely varying local factors, the authors may not have intended for this equation to be used for a specific location. However, the equation docs express a rational relationship for sediment yield that seems realistic for conditions encountered in the Southwest. To estimate the average annual runoff for a watershed, the relationship developed by Renard (1977) for the Walnut Gulch Experimental Watershed was used; Q = 0.4501 A-0.1449 (3) where the terms are as defined above. Substituting Eq. 3 into Eq. 2 gives S = 887 A--0667 (1.43 - 0.26 log A) (4) To convert the annual sediment yield to ac-ft/mi2/yr, the sediment deposited was assumed to weighed 80 lbs/ft3. Flaxman Method Flaxman (1972) developed a regression equation for reservoir design on rangeland watersheds in the western United States relating sediment yield to ' four parameters. His expression is log (Y + 100) = 6.21301 - 2.19113 log (X1 + 100) ' + 0.06034 log (X2 + 100) - 0.01644 log (X3 + lou) + 0.04250 log (X4 + 100) (5) whurc Y = antilog of jiog (Y + 100)) - 100 Y = average annual sediment yield (ac-ft/m12/yr) 131 Y - 0.06e0.0353X 81 (1) Where Y = annual sediment yield (ac-Lt/mi2) - ' . e = natural logarithm X = PSIAC rating factor t Dendx/Bolton Method ' Dendy and Bolton (1976) derived sediment yield equations having widespread applicability because they used data from over 800 resurvoirs throughout the United States to obtain measured sediment yield values. They segregated i the ' data into areas where runoff was either less than or greater than 2 in/yr. In areas where runoff is less than 2 in, they derived the oquation; y S ='1280 Q0.46(1.43 - 0.26 log A) (2) where S = sediment yield (t/mi2/yr) Q = annuaal runoff (in) A = watershed arca (mi2). ' Because of widely varying local factors, the authors may not have intended for this equation to be used for a specific location. However, the equation docs express a rational relationship for sediment yield that seems realistic for conditions encountered in the Southwest. To estimate the average annual runoff for a watershed, the relationship developed by Renard (1977) for the Walnut Gulch Experimental Watershed was used; Q = 0.4501 A-0.1449 (3) where the terms are as defined above. Substituting Eq. 3 into Eq. 2 gives S = 887 A--0667 (1.43 - 0.26 log A) (4) To convert the annual sediment yield to ac-ft/mi2/yr, the sediment deposited was assumed to weighed 80 lbs/ft3. Flaxman Method Flaxman (1972) developed a regression equation for reservoir design on rangeland watersheds in the western United States relating sediment yield to ' four parameters. His expression is log (Y + 100) = 6.21301 - 2.19113 log (X1 + 100) ' + 0.06034 log (X2 + 100) - 0.01644 log (X3 + lou) + 0.04250 log (X4 + 100) (5) whurc Y = antilog of jiog (Y + 100)) - 100 Y = average annual sediment yield (ac-ft/m12/yr) 131 X1 = ratio of average annual precipitation (in) to average annual tempera- ture X2 = average watershed slope: (/>) X3 = soil particles greater than 1.0 Mm (i) X4 = soil aggregation index The parameters express climate and vegetativegrowth (X1), topography (X2) and soil properties (X3 and X4). The cquation explained about 91id of the variance in average annual sediment yield from 27 watersheds ranging in size from 12 to 54 mit in 10 western states. Flaxman (1974) modified his original sediment yield prediction equation by adding an additional term to reflect the 50 portent chance peak discharge in csm (cubic ft/sec/mi2). The revised equation included converting the depend- ent variable sediment yield from acre -ft in the original equation to tun/mit. The equation is thus given as log (Y + 100) - 524.37321 - 270.65625 Log (Xi + 100) + 6.41730 log (X2 + 100) - 1.70177 log (X3 + 100) + 4.03317 log (X4 + 100) + 0.99248 log (X5 + 100) (6) where Y = sediment yield in ton/mit yr, X5 = the 50 percent chance peak discharge, csm and X, X21 X3, and X4 are the same as defined in eq (5). Renard Method A method for estimating sediment yield was developed by Renard (1972) and Renard and Laursen (1975). This mcthod uses (a) a stochastic runoff model (Diskin and Lane, 1972) which generates fiydr,oi;raphs for semiarid watersheds in the southwestern United States, and (b) a deterministic sediment tansport rela- tionship (Laursen, 1955). Sediment yield is then computed by simulating indi- vidual hydrographs and computing the sediment transport for the simulated hydraulic conditions. Annual runoff and sediment yield is the sum of the yield of individual runoff events. Thus, sediment yield is a function of runoff vol- ume, hydrograplh peak, Manning s roughness, slnpe, hydraulic radius, and the size distribution of the sediment in tilt strcambed. The method was applied and calibrated with sample data for several of the larger watersheds on. Walnut Gulch in southeastern Arizona. With the model, a simplified'relationship was developed which relates the annual sediment yield to watershed drainage area in the form Y - 0.001846 Aa -•1187 (7) where Y = average annual sediment yield in ac-ft/ac/yr Aa drainage area in acres. Thus, because of transmission losses (abstractions from runoff ty tile. alluvial channels) in the watershed, water yield decreases with increasing Inent yTdrainage area (drainage density), and this same trend is reflected in the sedi- ield relationship. Conversions are required to produce the units compar- able to the other methods. 132 s I NOINEERINO ESOUROES almmimmm ffwm mc. DATE _ JOB NO BY _ CK'D _ SHEET OF _ sed:mem �r ram 12"16 f, rG SnJfG�4? � v:o3S3 �_ y= 08 o. 0 3 5,3 X So / t .f Pew YP�i = v•°�76? X �.o7S vh�Z To�x S��ineiJ E rnn lye& r . ,4sldme- Tl�e-.. 6wr.l, d¢sy� F.�� 5_1eu� ��vc/dc�ro. / S6 o �./3/344 , �' s 62krs = 79620 tcy iNGINEERING NSOURGES OF SOUTHERN turtowm. W. DATE JOB NO BY CK'D SHEET OF a•a353 �G 0.03 53 xis .L T6J��/ S2c✓.'in�nfts +off �CT �� /• /SZ X 0. o75 ,gss✓.ru- f� ,6�I�� �!�f`j� ��r .5':�jp�tr P/�oldG-Ec=� 3 7�i SL F Xyye& r X 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 —RENGINEEI UNG ESOURCES Of f00i®OI ONOOOMIO. WO. .� fJ • i�7s N1 DATE JOB NO BY CK'D SHEET OF / flrld0(S %f,3 To C¢/1✓vgo F 3 /dNt 3, 4 -Vs r 3¢d.S F���ai � S,��s c I? D2S f✓f3 I 1 I I 1 1 1 i HYDRAULIC � CALCULATION FOR � VALLEJO CHANNEL 1 (EXISTING CONDITION CAPACITY) r, 1, 1 1 1 1 1 _ <_ M wa�.WSW_ M M _ P ( CIV_IGN=1i-on _ M M M M M M _ Program Package Serial Number: 1416 WATER SURFACE PROFILE LISTING Date:10- 2-2002 Time:10:32:12 Channel Parallel to Ynez Rd. & Vallejo Ave. Temecula, California Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow Topl Height/IBase Wtl INo Wth Station I Elev i (FT) Elev (CFS) (FPS) Head I Grd.El.) Elev I Depth I Width JDia.-FTlor I.D.I ZL IPrs/Pip L/Elem ICh Slope I I SF Avel HF ISE Dpthl Froude NINorm Dp I "N" I X -Fall) ZR (Type Ch *f##*4#4RliR4k*#FRRIi#*##*i#lif**#h#i4f4iiii*#RfR#*f4#*#*#4*flR#*#*****li4itt#kl**f***f*IiRRf#f#ilRf#i##4l I I I I *fii###lff4#f Ri*#*#* 1000.000 1017.200 1.364 i_ 1018.564 60.00 5.69 I .50 1019.07 .00 I 1.36 10.45 I 5.000 I I 5.000 2.00 0 .0 .203 .0035 I I I I_ .0181 .00 1.36 1.00 2.12 .035 .00 2.00 l TRAP 1000.203 1017.201 1.412 1018.613 60.00 I 5.93 .46 1019.07 I .00 1.36 10.65 I 5.000 I 5.000 2.00 I 0 .0 .694 .0035 i I l .0158 .01 _I_ 1.41 .94 2.12 .035 .00 2.00 I_ TRAP 1000.897 1017.203 1.462 1018.666 I I_ 60.00 5.18 I .42 1019. OB I .00 I 1.36 10.85 I 5.000 I I 5.000 2.00 I 0 .0 1.333 .0035 I I .0139 .02 1.46 .88 2.12 .035 .00 2.00 I_ TRAP 1002.230 1017.208 1.514 1018.722 60.00 9.99 I .38 1019.10 I .00 I I 1.36 11.06 I 5.000 I 5.000 2.00 i 0 .0 2.169 .0035 I I .0121 .03 1.51 .83 2.12 .035 I_ .00 2.00 I_ TRAP 1009.399 1017.215 1.567 1018.783 60.00 4.71 � .39 1019.13 .00 I I 1.36 11.27 I 5.000 I 5.000 2.00 I 0 .0 3.278 .0035 I I .0106 .03 1.57 .78 2.12 .035 .00 2.00 I_ TRAP 1007.677 1017.227 1.622 1018.849 I 60.00 4.99 I .31 1019.16 .00 i I 1.36 11.49 I 5.000 I 5.000 2.00 I 0 .0 4.775 .0035 i I .0093 .04 1.62 .73 2.12 .035 .00 2.00 I_ TRAP 1012.451 1017.294 1.678 1018.922 I_ 60.00 4.28 .28 1019.21 I .00 1.36 11.71 I 5.000 I I 5.000 2.00 0 .0 6.845 .0035 i i I_ .0082 .06 1.68 .69 2.12 .035 .00 2.00 I_ TRAP 1019.297 1017.268 1.736 1019.004 60.00 I 9.08 I .26 1019.26 I .00 I I 1.36 11.94 5.000 I I 5.000 2.00 0 .0 9.811 I .0035 I .0072 .07 1.74 .65 2.12 .035 .00 2.00 l_ TRAP 1029.108 1017.302 1.796 1019.098 60.00 I 3.89 .23 1019.33 I .UO I I 1.36 12.18 I 5.000 I 5.000 . 200 I 0 .0 14.281 .0035 .0063 .09 i_ 1.80 .61 2.12 .035 .00 2.00 I_ TRAP 1043.389 I I 1017.352 1.857 1019.209 I 60.00 I 3.71 .21 1019.42 I .00 I 1.36 12.43 I 5.000 I I 5.000 2.00 I 0 .0 21.566 .0035 .0055 .12 _ 1.86 .57 2.12 .035 .00 2.00 i_ TRAP Existing Conditions I Invert I Depth Water I Q I Vel Vel I Energy I Super ICriticallFlow Topl Height/IBase Wt1 INo Wth Station I Elev (FT) Elev l (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width IDia'.-FTIor 1.D.1 ZL IPrs/Pip L/Elem ICh Slope I I I SF Avel HF ISE DpthlFroude NINOM Dp I "N" I X-Fa111 ZR IType Ch F#*h*k*R*I*#*#k**i*I#****4kk##*ii#4##Ik*fii####*I*#t*###I#*!k***lk####*!h*41i#!##4##**##krt*#h++lhk!#4 #141FR+##+#I#*##♦ Ilfirt#fi*i 1064.955 I 1017.927 1.920 I 1019.347 i_ 60.00 3.54 I .19 1019.54 I .00 I 1.36 I 12.68 I 5.000 1 5.000 I 2.00 I 0 .0 35.089 I .0035 I I .0048 .17 1.92 .54 2.12 .035 .00 2.00 I_ TRAP 1100.039 1017.550 1.984 I_ 1019.535 60.00 I 3.37 I .18 1019.71 i .00 1.36 I 12.94 I I 5.000 5.000 I 2.00 I 0 .0 67.4781 I .0035.1_ I I I_ .0042 .29 1.98 .51 2.12 .035 .00 2.00 1_ TRAP 1167.517 1017.786 2.051 1019.837 I I_ 60.00 I 3.21 I .16 1020.00 I I .00 1.36 I 13.20 I I 5.000 5.000 I 2.00 i 0 .0 32.484 I .0035 I i .0039 .13 2.05 .48 2.12 .035 .00 2.00 I_ TRAP 1200.000 1017.900 I_ 2.068 1019.968 60.00 3.18 I .16 1020.12 I .00 1.36 I 13.27 I I 5.000 5.000 I 2.00 I 0 .0 WALL EXIT I_ I_ 1200.000 I 1017.900 2.069 I 1019.969 I 60.00 I 3.17 .16 1020.13 I .00 I 1.36 I 13.27 I 5.000 1 5.000 I 2.00 0 .0 9.726 -.0050 I I I .0035 .03 2.07 .47 .00 .035 .00 2.00 I_ B OX 1209.726 I_ 1017.851 I_ 2.172 1020.023 I_ 60.00 I 2.96 .19 1020.16 I I .00 1.36 I 13.69 I I 5.000 5.000 I 2.00 I 0 .0 10.274 WALL -.0050 ENTRANCE .0029 .03 2.17 .43 .00 .035 I_ .00 2.00 I_ BOX 1220.000 I 1 I 1017.800 _I_ 2.271 I 1020.071 60.00 I 2.77 I .12 1020.19 .00 I 1.36 I 19.08 I I 5.000 5.000 I 2.00 0 .0 10.476 .0086 I_ .0028 .03 2.27 .39 1.68 .035 .00 2.00 I_ TRAP 1230.476 1017.890 2.198 1_ 1020.089 .60.00 2.90 .13 1020.22 .00 I 1.36 13.79 5.000 5.000 2.00 0 .0 10.661 .0066 I I I_ .0032 .03 2.20 .42 1.68 I_ .035 .00 2.00 I_ TRAP 1241.137 1017.982 2.128 1020.110 60.00 I 3.05 I .14 1020.25 I .00 1.36 I 13.51 I I 5.000 5.000 I 2.00 I 0 .0 10.982 I .0086 I I I I .0037 I .04 I 2.13 I .44 I 1.68 .035 I I .00 I 2.00 1- TRAP I 2 3 Existing Conditions I Invert I Depth Water Q I Vel Vel I Energy I Super CriticallFIOW Topl Height/lBase Wt1 INO Wth Station -I- I Elev -I- I (FT)Elev I Elev I I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/pip L/Elem ICh Slope I -I- I -I- -I- I -i- -I- SF Avel -I- HF -I- ISE DpthlFroude -I- NINorm -I- Dp -I- I "N" I X -Fall) -I- ZR -I IType Ch 1252.119 1018.076 2.060 1020.135 60.00 3.19 .16 1020.29 .00 1.36 13.24 5.000 5.000 2.00 0 .0 11.510 1 I .0086 I I .0042 .05 2.06 .47 1.68 .035 .00 2.00 1- TRAP 1263.629 1018.175 1.993 1020.168 60.00 3.35 .17 1020.34 I .00 I 1.36 12.97 I I 5.000 5.000 I 2.00 0 .0 12.376 .0086 I I I I_ .0048 .06 1.99 1 .50 1.68 _I_ .035 .00 2.00 1 TRAP 1276.005 1018.281 1.928 1020.209 60.00 I 3.51 I .19 1020.90 I .00 I 1.36 12.71 I I 5.000 5.000 I 2.00 0 ,0 13.868 .0086 I I I_ I_ .0054 .08 1.93 .53 1.68 .035 .00 2.00 1_ TRAP 1289.873 1018.401 1.865 1020.265 I 60.00 I 3.69 .21 1020.48 I .00 I 1.36 12.46 I I 5.000 5.000 I 2.00 0 .0 16.727 .0086 I I .0062 .10 1.06 .57 1.68 .035 .00 2.00 1- TRAP 1306.601 1018.544 1.803 1020.348 I 60.00 I 3.87 I .23 1020.58 .00 I 1.36 12.21 5.000 5.000 I 2.00 I 0 .0 23.667 .0086 I I I .0071 .17 1.80 .60 1.68 .035 .00 2.00 1 TRAP 1330.267 1018.748 1.744 1020.491 60.00 4.05 i .26 1020.75 .00 I 1.36 11.97 I I 5.000 5.000 2.00 I 0 .0 58.871 I I .0086 I .0080 .47 1.74 I_ .64 1.68 .035 .00 2.00 i_ TRAP 1389.138 1019.254 1_ 1.686 1020.939 60.00 i 4.25 .28 1021.22 I .00 1.36 11.74 I 5.000 5.000 I 2.00 I 0 .0 20.272 .0086 I I I .0086 .17 1.69 .68 1.6B .035 .00 2.00 I_ TRAP 1909.910 1019.428 I_ 1.684 1021.112 60.00 4.26 I .28 1021.39 I .00 I 1.36 11.74 I I 5.000 5.000 I 2.00 I 0 .0 66.590 .0086 I I i .0086 .57 1.68 .68 1.68 .035 .00 2.00 1_ TRAP 1476.000 1020.000 1.684 1021.684 60.00 4.26 I .28 1021.97 I .00 I 1.36 11.74 I I 5.000 5.000 I 2.00 I 0 .0 WALL EXIT 1_ I_ .1476.000 I 1020.000 I_ 1.685 I 1021.685 I 60.00 I 4.26 .28 I 1021.97 I .00 1.36 1 11.74 I 5.000 5.000 I 2.00 I 0 .0 9.115 .0086 1 1_ .0066 .08 1.68 .68 1.68 .035 .00 2.00 1 BOX 1985.115 1020.078 1.685 1021.763 60.00 I 4.25 .28 1022.04 I .00 I I 1.36 11.79 I I 5.000 5.000 I 2.00 I 0 .0 14.885 .0086 .0085 .13 1.68 .68 1.68 .035 .00 2.00 1_ BOX 3 2 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super CriticaljFlow ToPIHeight/ Ease Wtj INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width Dia.-FTIor I.D.1 ZL IPrs/Pip L/Elem SCh Slope 1 SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall ZR IType Ch Rhhhh+Y++IY+Rx*h«++++#+x*RR#+#f*R*kxl#Y#*#***RI+k+++{Y+{Y##{{#*++k+##*I*****RhI+*+k+**RI*k+{w*+hl+Rx++{+{f+RR*RI+##*{ #h###+# WALL ENTRANCE 1500.000 1020.206 1.686 1021.892 60.00 4.25 .28 1022.17 .08 1.36 11.74 5.000 5.000 2.00 0 .0 3.179 -.0181 .0092 .03 1.76 .68 1.39 .035 .00 2.00 TRAP 1503.179 1020.264 1.629 1021.893 60.00 4.46 .31 1022.20 .08 1.36 11.52 5.000 5.000 2.00 0 .0 3.142 .0181 .0105 .03 1.71 .73 1.39 .035 .00 2.00 TRAP 1506.321 1020.320 1.574 1021.895 60.00 4.68 .34 1022.23 .09 1.36 11.30 5.000 5.000 2.00 0 .0 3.144 .0181 .0119 .04 1.66 .77 1.39 .035 .00 2.00 TRAP 1509.465 1020.377 1.521 1021.898 60.00 4.90 .37 1022.27 .10 1.36 11.08 5.000 5.000 2.00 0 .0 3.234 .0181 I I I .0136 - .04 1.62 .82 1.39 .035- .00 2.00 TRAP 1512.700 1020.436 1.469 1021.905 60.00 I 5.14 .41 I 1022.32 .10 I 1.36 I 10.88 I 5.000 5.000 1 2.00 1 0 .0 3.640 .0181 .0156 .06 1.57 .88 1.39 .035 .00 2.00 TRAP 1516.339 1020.502 1.419 1021.921 60.00 5.40 .45 1022.37 .11 1.36 10.68 5.000 5.000 2.00 0 .0 3.846 .0181 .0173 .07 1.53 .93 1.39 .035 .00 2.00 TRAP 1520.186 1020.571 1.386 1021.958 60.00 5.57 .48 1022.44 .12 1.36 10.55 5.000 5.000 2.00 0 .0 56.815 .0181 .0180 1.02 1.51 .97 1.39 .035 .00 2.00 TRAP 1577.000 1021.600 1.386 1022.986 60.00 5.57 .48 1023.97 .00 1.36 10.55 5.000 5.000 2.00 0 .0- 1.052 .0116 .0170 .02 1.39 .97 1.56 .035 .00 2.00 TRAP 1578.052 1021.612 1.436 1023.048 60.00 5.31 .44 1023.99 .00 1.36 10.79 5.000 5.000 2.00 0 .0 3.396 .0116 .0149 .05 1.44 .91 1.56 .035 .00 2.00 TRAP 1581.448 1021.652 1.987 1023.138 60.00 5.06 .40 1023.54 .00 1.36 10.95 5.000 5.000 2.00 0 .0 11.400 .0116 .0130 .15 1.49 .86 1.56 .035 .00 2.00 TRAP 1592.849 1021.784 1.539 1023.323 60.00 4.83 �. .36 1023.68 .00 1.36 11.16 5.000 5.000 2.00 0 .0 2 Existing Conditions Invert I Depth Water I q I Vel Vel Energy I Super ICriticallFlow ToplHeight/leaseWt1 INo Wth Station I Elev I (FT) Elev I (CFS) i (FPS) Head Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I I I SF Avel HF ISE DpthlFroude NINorm DP I "N" I X -Fall) ZR (Type Ch 27.496 1620.345 1 .0116 1022.103 i_ i 1.558 1023.661 I 60.00 4.74 I I .0119 .35 1024.01 I .33 I 1.54 .00 .81 1.36 I 1.56 11.23 I I .035 5.000 5.000 I .00 2.00 2.00 I TRAP 0 .0 233.509 .0116 I I .0116 2.70 1.56 .79 1.56 .035 .00 2.00 I_ TRAP 1853.859 1024.813 1.558 1026.371 60.00 4.74 I .35 1026.72 I I .00 I 1.36 11.23 I I 5.000 5.000 I 2.00 I 0 .0 HYDRAULIC JUMP I_ 1853.854 I I 1024.813 I_ I 1.180 1025.992 i 60.00 II 6.91 .74 1026.73 .00 1.36 9.72 5.000 5.000 I 2.00 0 .0 .941 .0116 I I I_ .0346 .03 1.18 1.29 1.56 .035 .00 2.00 I_ TRAP 1854.795 1024.823 1.154 I_ 1025.977 I_ 60.00 7.12 I .79 1026.76 I I .00 I 1.36 9.62 I I 5.000 5.000 200 . I 0 .0 1.387 .0116 I I .0386 .0S 1.15 1.34 1.56 .035 .00 2.00 I_ TRAP 1856.182 1029.839 1.113 1025.952 60.00 7.46 I .66 1026.82 I .00 I 1.36 9.95 I I 5.000 5.000 I 2.00 I 0 .0 1.430 .0116 I .0442 .06 1.11 I_ 1.43 1.56 .035 .00 2.00 I_ TRAP 1857.611 1024.856 1.073 1025.929 60.00 I 7.83 .95 1026.88 I I .00 i 1.36 9.29 I 5.000 5.000 I 2.00 I 0 .0 1.498 i .0116 I I I .0505 .07 1.07 1.52 1.56 .035 .00 2.00 I_ TRAP 1859.060 1024.873 1.034 1025.907 60.00 8.21 I 1.05 1026.95 I .00 1.36 9.14 I I 5.000 5.000 I 2.00 0 .0 1.950 .0116 I I .0579 .08 1.03 1.62 1.56 .035 .00 2.00 TRAP 1860.510 1024.890 .997 1025.886 60.00 I 8.61 I 1.15 1027.04 I i .00 I 1.36 8.99 I I 5.000 5.000 2.00 I 0 .0 1.940 .0116 I I I_ I_ .0663 .10 1.00 1.72 1.56 .035 .00 2.00 I_ TRAP 1861.950 1029.906 I_ .960 1025.867 60.00 I 9.03 I 1.27 1027.13 I .00 I 1.36 8.89 I I 5.000 5.000 I 2.00 0 .0 1.421 .0116 i .0759 .11 .96 1.84 1.56 .035 .00 2.00 TRAP 1863.371 I 1024.923 _I_ .925 1025.848 60.00- 9.47 I 1.39 1027.24 I I .00 I 1.36 H.70 I I 5.000 5.000 I 2.00 I 0 .0 1.399 I .0116 I I I .0870 .12 .92 1.96 1.56 .035 .00 2.00 I_ TRAP 1864.765 1024.939 .891 1025.830 60.00 9.93 I 1.53 1027.36 I I .00 1.36 8.56 I I 5.000 5.000 I 2.00 I 0 .0 5 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super ICritical[Flow Topl Height/IBase WtI INo Wth Station I Elev [ (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/E1em ICh Slope I I SF Ave[ HF ISE DpthIFroude NINorm Dp I "N" I X-Fa11I ZR IType Ch 1.363 .0116 I 1 1866.129 1024.955 1.328 .0116 I 1867.457 1029.970 1.291 .0116 1868.748 1024.985 1.252 .0116 I 1870.000 1025.000 I_ WALL EXIT I 1870.000 1025.000 4.732 .0367 I 1874.732 1025.173 6.169 .0367 I 1860.901 1025.400 I_ 4.916 .0367 i 1885.017 1025.580 3.871 .0367 I I 1889.688 1025.722 3.072 .0367 I I 1892.760 1025.035 2.418 .0367 0 .0997 .14 .89 2.08 1.56 .035 .00 2.00 TRAP WATER SURFACE PROFILE LISTING Date:10- 2-2002 Time:10:32:12 Channel Parallel I to Ynez rd. & Vallejo Ave. .858 1025.813 60.00 [ 10.42 [ 1.69 1027.50 [ .00 I 1.36 1 8.43 I 5.000 I 5.000 I 2.00 [ '0 .0 I [ .1143 .15 .86 2.22 1.56 .035 .00 2.00 TRAP .826 1025.796 60.00 10.93 1.85 1027.65 [ .00 1.36 8.30 { 5.000 [ 5.000 { 2.00 I 0 .0 [ .1312 .17 .83 2.37 1.56 .035 .00 2.00 TRAP .795 1025.780 60.00 11.46 I 2.04 1027.82 [ .00 I 1.36 6.18 5.000 I 5.000 I 2.00 I 0 .0 .1505 .19 .79 2.52 1.56 .035 .00 2.00 TRAP .765 1025.765 60.00 12.02 2.24 1028.01 .00 1.36 8.06 5.000 5.000 2.00 0 .0 1.193 1026.193 i 60.00 [ 11.45 2.03 1028.23 II .00 1.77 2.94 3.000 I .000 i .00 [ 2 .0 .0175 .08 1.19 1.51 .99 .013 .00 .00 PIPE 1.220 1026.394 60.00 11.11 1.92 1028.31 .00 1.77 2.95 3.000 .000 .00 2 .0 [ I I .0157 .10 1.22 1.45 .99 .013 .00 .00 PIPE 1.265 -I- 1026.665 -I- 60.00 -I- 10.59 -i- 1.74 -I- 1028.41 I -I- .00 I 1.77 2.96 [ 3.000 .000 I .00 I 2 .0 I I .0138 I .07 -I- 1.27 -I- 1.35 .99 -I- -I- .013 -I- .00 .00 1- PIPE 1.311 1026.891 60.00 10.10 1.56 1028.47 I I .00 I 1.77 2.98 I I 3.000 .000 I .00 I 2 .0 I I I .0121 .05 1.31 1.26 .99 .013 .00 I_ .00 I_ PIPE 1.360 -I- 1027.082 -i- 60.00 -I 9.63 -I 1.44 -I 1028.52 I -I- .00 -I- I 1.77 -I 2.99 I 3.000 .000 I .00 I 2 .0 I I I .0107 .03 1.36 1.17 .99 -I- -I- .013 -I- .00 .00 I- PIPE 1.411 _I_ 1027.246 _I_ 60.00 _I_ 9.18 _I_ I 1.31 _I_ 1028.55 I I_ i .00 1.77 2.99 I I 3.000 I .000 ,00 I 2 .0 .0094 .02 _i_ 1.41 _I_ 1.10 .99 _I_ _I_ .013 _I_ .00 .00 I- PIPE 0 Existing Conditions Invert Depth Water Q Vel Vel EnergySuper ICriticallFlow ToplHeight/IBase WtI Station I Elev (FT) Elev �- (CFS) (FPS) Head Grd.El.� Elev I Depth I Width IDia.-FTIor I.D.' ZL INo Wth (Prs/Pip L/Elem S+£F**++SIk*#{£kk*f#RfihY£FR*kRk#*SRkI#kk#if ICh Slope I 4RRI#*##*R##{#+k+##4Ffi#!k*FIfi#f4R*k#4##F4*R#f SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall 4i+hkklf#*{R*RIR4h##RR4##t* ZR IType Ch h*R*+*k 1895.179 1025.923 I 1.464 I 1027.307 60.00 I 8.75 i i I I I 1.19 1028.58 .00 1.77 3.00 3.000 .000 I .00 I 2 .0 1.036 .0367 I I I 1 i .0083 .02 1.46 1.02 .99 .013 .00 .00 PIPE m= m mm m m m m m mm m == m = Existing Conditions Invert Depth Water i Q9) Vel Vel I Energy Super [CriticallFlow ToplHeight/IBase Wtj INo Wth . Station I Elev I (FT) Elev (C I (FPS) Head Grd.El.l Elev I Depth I Width Dia.-£TIor I.D.I ZL IPra/Pip L/Eleni ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR (Type Ch 1897.015 1025.991 1.520 1027.511 60.00 8.35 1.08 1028.59 .00 1.77 3.00 3.000 .000 .00 2 .0 1.372 .0367 .0073 .01 1.52 .95 .99 .013 .00 .00 PIPE 1898.387 1026.041 1.578 1027.619 60.00 7.96 .98 1028.60 .00 1.77 3.00 3.000 .000 .00 2 .0 .905 .0367 .0064 .01 1.58 .88 .99 .013 .00 .00 PIPE 1899.293 1026.074 1.640 1027.714 60.00 7.59 .89 1028.61 .00 1.77 2.99 3.000 .000 .00 2 .0 .557 .0367 .0057 .00 1.64 .82 .99 .013 .00 .00 PIPE 1899.649 1026.094 1.704 1027.799 60.00 7.23 .81 1028.61 .00 1.77 2.97 3.000 .000 .00 2 .0 .151 .0367 .0050 .00 1.70 .76 .99 .013 .00 .00 PIPE 1900.000 1026.100 1.774 1027.874 60.00 6.89 .74 1028.61 .00 1.77 2.95 3.000 .000 .00 2 .0 WALL ENTRANCE 1900.000 1026.100 3.681 1029.781 60.00 1.32 .03 1029.81 .00 1.36 1 19.72 5.000 1 5.000 2.00 0 .0 7.240 .0150 .0004 .00 3.68 .15 1.46 .035 .00 2.00 TRAP 1907.240 1026.209 3.573 1029.781 60.00 1.38 .03 1029.81 .00 1.36 19.29 5.000 5.000 2.00 0 .0 7.060 .0150 .0004 .00 3.57 .16 1.46 .035 .00 2.00 TRAP 1914.300 1026.315 3.967 1029.781 60.00 It 1.45 .03 1029.81 .00 1.36 18.87 5.000 5.000 2.00 0 .0 6.885 .0150 .0005 .00 3.47 .17 1.46 .035 .00 2.00 TRAP 1921.185 1026.418 3.364 1029.781 60.00 1.52 .04 1029.82 .00 1.36 18.45 5.000 5.000 2.00 0 .0 6.714 .0150 .0006 .00 3.36 .1B 1.46 .035 .00 2.00 TRAP 1927.899 1026.519 3.263 1029.782 60.00 1.60 .04 1029.82 .00 1.36 18.05 5.000 5.000 2.00 0 .0 6.547 .0150 .0006 .00 3.26 .19 1.46 .035 .00 2.06 TRAP 1934.446 1026.617 3.165 1029.782 60.00 1.67 .04 1029.83 .00 1.36 17.66 5.000 5.000 2.00 0 .0 6.385 .0150 .0007 .00 3.17 .21 1.46 .035 .00 2.00 TRAP 8 m 9 Existing Conditions Invert ( Depth Water Q Vel Vel Energy I Super ICriticall Flow ToplHeight/I6aee WtI INo Wth Station I Elev ( (FT) Elev (CFS) (FPS) Head Grd.El.l Elev I Depth I Width IDia.-FTIor I -D.1 ZL IPrs/Pip L/Eleni ICh Slope I I SF Avel HE ISE DpthlFroude NINorm DP I "N" I X-Fa11I ZR IType Ch 9 Existing Conditions #++##x#+x**axkx#k+x+#x**kxx+*#x*+xk**x*+#**xxfY*##4r*#+*#***x****k##+++***x**a*fk++4+far+tx*fxYx+xYf*k+k+r+rr+###**+++++r+ #*+#+#+# Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToPIHeight/IBase WtI INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Eleni ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall ZR IType Ch Y**kk#k##I***faxfk#I#+*xxxxYl#+*a*x*##I*****x+#fl##+****I**x**Y+I+4#*#*x**Ik+#+###I##*#***#I##*#**#*It*+af**I##+#***IYk4*# Ik#**### 1940.831 1026.713 I_ 3.070 1029.782 60.00 1.75 .05 1029.83 .00 1.36 17.28 5.000 5.000 2.00 0 .0 6.227 I .0150 I I .0008 .01 3.07 .22 1.46 .035 .00 2.00 i_ TRAP 1947.058 1026.806 2.976 I_ 1029.782 I I_ 60.00 I 1.84 .OS 1029.89 i ,00 1.36 I 16.91 I I 5.000 I 5.000 2.00 I 0 .0 6.074 I .0150 I I_ .0009 .01 2.98 .23 1.46 .035 .00 2.00 i_ TRAP 1953.132 1026.897 2.886 1029.783 60.00 1.93 .06 1029.84 I .00 1.36 I 16.54 I 5.000 I 5.000 2.00 I 0 .0 5.925 .0150 i I .0011 .01 I_ 2.89 .25 1.46 .035 .00 2.00 I_ TRAP 1959.057 1026.986 I_ I_ 2.797 1029.783 I 60.00 2.02 I .06 1029.85 i .00 1.36 16.19 I I 5.000 5.000 2.00 i 0 .0 .943 .0150 I I I_ .0011 I_ .00 2.80 .26 I 1.46 _I_ .035 I_ .00 2.00 I_ TRAP 1960.000 1027.000 2.783 1029.783 I 60.00 2.04 I .06 1029.85 I .00 1.36 I 16.13 I I 5.000 5.000 2.00 I 0 .0 HYDRAULIC JUMP I _I_ I _I_ i_ 1960.000 I I 1027.000 1.268 1028.268 I 60.00 I 10.56 I 1.73 1030.00 I I .00 1.77 2.96 I 3.000 I .000 I .00 I 2 .0 4.876 .0350 I .0137 .07 1.27 1.34 1.00 .013 .00 .00 I_ PIPE 1969.876 1027.171 1.311 I_ 1028.482 60.00 I 10.10 1.58 1030.07 I I .00 1.77 I 2.90 I 3.000 I .000 .00 I 2 .0 4.153 .0350 I .0121 I_ .05 1.31 1.26 1.00 .013 .00 .00 I_ PIPE 1969.030 1027.316 1.360 I_ 1028.676 60.00 I 9.63 1.44 1030.12 I .00 1.77 2.99 I 3.000 I .000 .00 I 2 .0 3.283 I .0350 I .0107 .04 1.36 1.17 1.00 .013 .00 .00 I_ PIPE 1972.313 1027.431 I_ 1.411 I_ 1028.892 60.00 I 9.18 1.31 1030.15 I I .00 1.77 I 2.99 I I 3.000 .000. .00 I 2 .0 2.576 .0350 I .0094 .02 1.41 1.10 1.00 .013 .00 .00 I_ PIPE 1974.889 1027.521 1.469 1026.985 I 60.00 8.75 1.19 1030.17 I I .00 1.77 3.00 I 3.000 I .000 .00 I 2 .0 1.951 .0350 I I .0083 .02 1.46 1.02 1.00 .013 .00 .00 I_ PIPE 1976.840 1027.589 1.520 1029.109 I 60.00 8.35 I 1.08 1030.19 I I .00 1.77 I 3.00 I I 3.000 .000 .00 I 2 .0 1..455 .0350 .0073 I_ .01 1.52 .95 1.00 .013 .00 .00 PIPE 10 m m = IM = m r m m = m = = = = = m 11 Existing Conditions I Invert Depth Water q vel vel I Energy I Super ICriticallFlow Topl Height/IBase Wtl INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch I I I I I I I i I I I I I 11 Existing Conditions Invert I Depth Water I Q Vel Vel Energy I Super ICriticall Flow ToplHeight/lEase Wti INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head Grd.E1.1 Elev I Depth I Width Dia.-FTIor I.D.1 ZL 1Prs/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude N1Norm Dp I "N" I X -Fall) ZR (Type Ch #****i***Iifi*fifi##hrtlfi#i#k#filfi#f##f##flkfifikfirt+##I#i##.i#I#+##{##I*fikkfi##krtlhht#{##IFhfiF#h##I#fifth#Fh+I**#####Ii##*#**1*fi#f# I#***#*# 1978.294 1027.640 I 1.578 1029.218 60.00 7.96 .98 1030.20 .00 1.77 3.00 3.000 .000 .00 2 .0 .958 I .0350 i _I_ .0064 .01 1.58 .88 1.00 .013 .00 .00 I PIPE 1979.253 1027.679 1.690 I_ 1029.319 I 60.00 I 7.59 .89 1030.21 I I .00 1.77 I 2.99 I 3.000 I .000 .00 2 .0 .589 I .0350 I _I_ .0057 .00 1.64 .82 1.00 .013 .00 .00 I_ PIPE 1979.841 1027.694 1.704 1029.398 I 60.00 7.23 I .81 1030.21 I .00 1.77 2.97 I I 3.000 I .000 .00 2 .0 .159 I .0350 I .0050 .00 1.70 .76 1.00 .013 .00 .00 1- PIPE 1980.000 1027.700 1.774 1_ 1029.474 60.00 6.89 I .74 1030.21 I .00 1.77 I 2.95 I I 3.000 I .000 .00 2 .0 WALL ENTRANCE I_ I_ 1_ 1980.000 I I 1027.700 3.661 1031.381 i 60.00 1.32 .03 1031.41 I .00 1.36 19.72 I 5.000 I 5.000 2.00 0 .0 4.828 I .0223 I I_ .0004 .00 3.68 I .15 1.31 _I_ .035 .00 2.00 1_ TRAP 1984.828 1 1027.808 _I_ 3.573 I 1031.380 I 60.00 I 1.38 I .03 1031.41 I I .00 1.36 I 19.29 I I 5.000 I 5.000 2.00 I 0 .0 4.702 .0223 I .0004 .00 3.57 .16 1.31 .035 .00 2.00 TRAP 1989.530 1027..912 I_ 3.467 I_ 1031.379 60.00 I 1.95 .03 1031.91 I I .00 1.36 18.87 I 5.000 I 5.000 2.00 0 .0 4.579 I .0223 I I_ .0005 .00 3.47 .17 1.31 .035 .00 2.00 I TRAP 1994.109 1028.015 i_ 3.364 1031.378 I 60.00 1.52 I .04 1031.41 I .00 1.36 I 18.45 I 5.000 5.000 2.00 I 0 .0 4.458 I .0223 I I_ I_ .0006 .00 3.36 .18 1.31 .035 .00 2.00 I_ TRAP 1998.567 1028.114 3.263 I_ 1031.377 I 60.00 1.60 I .04 1031.42 I .00 1.36 I 18.05 i 5.000 5.000 2.00 i 0 .0 4.340 .0223 i I _1_ .0006 I_ .00 3.26 .19 1.31 .035 .00 2.00 I TRAP 2002.907 1 1028.211 I_ 3.165 1031.376 I 1_ 60.00 1.67 .04 1031.42 .00 1.36 I 17.66 I 5.000 i 5.000 2.00 0 .0 4.224 I .0223 I 1_ .0007 I_ .00 I_ 3.17 .21 1_ 1.31 1_ I_ .035 1_ .00 2.00 I_ TRAP 2007.131 1028.305 3.070 1031.375 60.00 I 1.75 .OS 1031.42 I .00 1.36 I 17.28 I I 5.000 5.000 2.00 I 0 .0 4.110 .0223 .0008 .00 3.07 .22 1.31 .035 .00 2.00 I TRAP 12 Existing Conditions Invert 'Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase WtI INo Wth Station I Elev I (FT) Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem ICh Slope I I I I SF Avel 11F ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch I I I I I I I I I I I I I 13 Existing Conditions Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/]Base WtI INo Wth Station I Elev ] (FT) Elev ] (CFS) ] (FPS) Head I Grd.E1.1 Elev I Depth I Width ]Dia.-FTIor I.D.1 ZL ]Prs/Pip L/Elem ICh Slope I ] SF Ave] HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch 2011.240 1028.397 2.976 1031.373 60.00 1.84 .05 1031.43 .00 1.36 16.91 5.000 5.000 2.00 0 .0 3.997 .0223 i .0009 .00 2.98 .23 1.31 .035 .00 2.00 TRAP 2015.238 1028.486 2.866 1031.372 I 60.00 1.93 .06 1031.43 .00 1.36 16.54 5.000 5.000 I 2.00 0 .0 3.887 .0223 I .0011 .00 2.89 .25 1.31 .035 .00 2.00 TRAP 2019.125 1028.573 2.797 1031.370 60.00 I 2.02 I .06 1031.43 I .00 1.36 I 16.19 I i 5.000 5.000 2.00 I 0 .0 3.779 I .0223 I .0012 .00 2.80 .26 1.31 .035 .00 2.00 TRAP 2022.909 1028.657 2.711 1031.368 I 60.00 2.12 .07 1031.94 I ,00 1.36 15.89 I 5.000 5.000 I .2.00 0 .0 3.672 1 .0223 I .0014 .01 2.71 .28 1.31 .035 .00 2.00 TRAP 2026.576 1028.739 2.627 1031.366 60.00 2.23 I .08 1031.44 I I .00 1.36 I 15.51 ] ] 5.000 5.000 I 2.00 0 .0 3.567 I I .0223 I .0016 .01 2.63 .30 1.31 .035 .00 2.00 TRAP 2030.143 1028.819 2.546 1031.364 ] 60.00 I 2.34 I .08 1031.45 I I .00 1.36 i 15.18 I I 5.000 5.000 I 2.00 I 0 .0 3.463 .0223 I I -.0018 .01 2.55 .32 1.31 .035 .00 2.00 TRAP 2033.606 1028.896 2.966 1031.362 60.00 I 2.45 .09 1031.96 .00 1.36 '14.86 5.000 5.000 2.00 0 .0 3.361 I .0223 .0020 .01 2.47 .34 1.31 .035 .00 2.00 TRAP 2036.967 1028.971 2.389 1031.359 60.00 2.57 .10 1031.46 ] .00 1.36 14.55 5.000 5.000 2.00 I 0 .0 3.259 I .0223 ] ] .0023 .01 2.39 .36 1.31 .035 .00 2.00 TRAP 2040.226 1029.049 2.313 1031.357 60.00 2.69 i .11 1031.47 I ] .00 1.36 I 14.25 5.000 5.000 i 2.00 I 0 .0 3.159 1 I .0223 ' I .0026 .01 2.31 .38 1.31 .035 .00 2.00 TRAP 2093.385 - 1029.114 � 2.240 �I- 1031.354 I -I- 60.00 I -]� 2.83 I .12 1031.48 .00 1.36 _ I 13.96 I 5.000 5.000 I 2.00 I 0 .0 3.059 .0223 -I .0030) .01 I 2.241 .40 I 1.31 .035 I .001 2.00 (TRAP 14 Existing Conditions I Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow Topl Height/]Base Wt] INo+Wth Station I Elev I (FT) I Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width ]Dia.-FTlor I.D.I ZL IPrs/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude NINOM Dp I "N" I X -Fall] ZR (Type Ch 2046.444 I I 1029.182 2.168 .14 I 1031.350 I 2.960 I 1.36 .0223 I 13.67 5.000 5.000 2049.404 I 2.00 I 1029.248 2.099 1031.347 2.861 .0034 .0223 .01 2.17 .43 2052.265 i 1029.312 2.031 ] 1031.343 2.762 60.00 .0223 3.11 .15 1031.50 2055.027 i 1029.374 1.965 13.39 1031.339 5.000 2.661 .0223 0 .0 2057.688 I 1029.433 1.901 I 1031.334 2.560 1.31 .0223 .035 .00 2.00 2060.248 I 1029.490 1.638 I 1031.329 .17 2.455 ] .0223 1.36 13.12 2062.704 I 1029.595 1.778 i 1031.323 2.347 .0223 .0044 ] .01 2.03 2065.050 i I 1029.597 1.719 i 1031.316 I 2.231 .0223 60.00 -I- 3.42 -I- 2067.282 1031.52 i 1029.647 1.661 1.36 1031.308 2.106 I 5.000 I_ .0223 ] 2.00 I 0 .0 2069.388 I 1029.694 1.605 .0050 1031.300 I 1.963 .0223 1.31 -i- -I- .035 2071.351 i -I- 1029.738 -I- 1.551 I -I- 1031.289 -I- 60.00 2.96 .14 1031.49 .00 I 1.36 I 13.67 5.000 5.000 I 2.00 I 0 .0 I .0034 .01 2.17 .43 1.31 .035 .00 2.00 1- TRAP 60.00 3.11 .15 1031.50 .00 1.36 13.39 5.000 5.000 2.00 0 .0 .0039 .01 2.10 .46 1.31 .035 .00 2.00 I_ TRAP 60.00 3.26 .17 1031.51 ] ] .00 1.36 13.12 ] ] 5.000 5.000 2.00 0 .0 .0044 ] .01 2.03 .49 1.31 .035 .00 2.00 TRAP 60.00 -I- 3.42 -I- .18 -I- 1031.52 -I- I .00 1.36 ] 12.86 I 5.000 5.000 ] 2.00 I 0 .0 .0050 .01 -I- 1.96 -I- .52 1.31 -i- -I- .035 -i- .00 2.00 1- TRAP 60.00 -I- 3.59 -I- .20 -I- 1031.53 -I- .00 -I- 1.36 12.60 5.000 5.000 2.00 0 .0 .0057 .01 1.90 -I- .55 1.31 -I- -I- .035 -I- .00 2.00 1- TRAP 60.00 _I_ 3.76 _I_ .22 _I_ 1031.55 I _I_ .00 1.36 12.35 I I 5.000 5.000 I 2.00 0 .0 1 .0065 .02 _I_ 1.84 _I_ .58 1.31 _I_ _I_ .035 _I_ .00 2.00 I- TRAP 60.00 3.95 .24 1031.56 I .00 1.36 12.11 I ] 5.000 5.000 I 2.00 I 0 .0 I .0075 ] .02 1.78 .62 1.31 .035 .00 2.00 TRAP 60.00 4.14 .27 1031.58 ] .00 1.36 11.87 5.000 5.000 2.00 I 0 .0 ] .0085 .02 1.72 .66 1.31 .035 .00 2.00 TRAP 60.00 4.34 .29 1031.60 I .00 1.36 I 11.64 I I 5.000 5.000 2.00 0 .0 .0097 I .02 1.66 .70 1.31 .035 .00 2.00 TRAP 60.00 -I- 4.55 -I- .32 -I- 1031.62 I -I- .00 1.36 11.42 5.000 5.000 I 2.00 I 0 .0 1 .0111 .02 -I- 1.61 -I- .75 1.31 -I- -I- .035 -I- .00 2.00 I- TRAP 60.00 -I- 4.77 -I- .35 -I- 1031.64 -I- I .00 -I- 1.36 I -I- 11.20 -I- I I 5.000 -I- 5.000 I -I- 2.00 I 0 .0 I- 15 Existing Conditions Invert I Depth ] Water Q ] Vel Vel Energy I Super ICriticallFlow ToplHeight/lBase WtI INo Wth Station I Elev I (FT) ] Elev I (CFS) I (FPS) Head Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR ]Type Ch 1.790 .0223 .0126 .02 2073.141 .79 i 1029.778 1.499 .035 1031.276 .00 1.558 .0223 60.00 5.01 -1- 2074.699 1031.67 I 1029.813 1.447 1.36 1031.260 I I 5.000 .862 .0223 2.00 I 0 .0 2075.561 1029.832 1.398 ] 1031.229 I HYDRAULIC 1.31 JUMP .035 .00 2.00 2075.561 TRAP I 1029.832 1.312 I 1031.144 .43 _I_ 1.450 I .0223 1.36 I 10.79 I I 5.000 2077.010 I I 1029.864 1.312 I 0 .0 1031.176 I 4.737 .027.3 .01 1.45 .90 2081.747 -I- I 1029.970 1.305 I 1031.275 5.400 60.00 I_ .0223 5.51 I_ .47 I_ 2087.147 ] I 1030.090 1.260 ] 1031.350 I 3.262 2.00 .0223 i 0 .0 60.00 I 6.00 2090.409 I .56 i 1030.163 1.215 I .00 1031.379 10.25 2.686 I 5.000 .0223 I 2.00 I 0 .0 2093.095 i 1030.223 1.172 .0223 1031.396 I 2.392 1.07 .0223 I_ .00 2095.487 I I 1030.276 1.131 I 1031.407 I 2.198 1031.73 .0223 .00 1.36 10.25 2097.686 -I- I 1030.325 -I- 1.090 ] -I- 1031.416 I -I- .0126 .02 1.55 .79 1.31 .035 .00 2.00 TRAP 60.00 5.01 .39 1031.67 i .00 1.36 I 10.99 I I 5.000 5.000 2.00 I 0 .0 I .0144 I .02 1.50 .85 1.31 .035 .00 2.00 TRAP 60.00 5.25 I .43 _I_ 1031.69 I I .00 1.36 I 10.79 I I 5.000 5.000 I 2.00 I 0 .0 I .0165 .01 1.45 .90 1.31 .035 .00 2.00 i_ TRAP 60.00 5.51 .47 '1031.70 I .00 1.36 I 10.59 I 5.000 5.000 2.00 i 0 .0 60.00 I 6.00 _I_ I .56 1031.70 I .00 1.36 10.25 I 5.000 5.000 I 2.00 I 0 .0 .0223 .03 1.31 1.07 1.31 .035 .00 2.00 TRAP 60.00 6.00 .56 1031.73 .00 1.36 10.25 5.000 5.000 2.00 0 .0 .0225 I .11 1.31 1.07 1.31 .035 .00 2.00 TRAP 60.00 6.04 .57 1031.84 I .00 1.36 I 10.22 I 5.000 5.000 2.00 I 0 .0 .0243 I .13 1.31 1.08 1.31 .035 .00 2.00 TRAP 60.00 6.33 .62 1031.97 I .00 1.36 10.04 ] 5.000 5.000 2.00 I 0 .0 .0278 .09 1.26 1.15 1.31 I_ I_ .035 ]_ .00 2.00 I_ TRAP 60.00 6.64 .69 1032.06 .00 1.36 9.86 5.000 5.000 I 2.00 I 0 .0 .0318 .09 1.22 1.22 1.31 .035 .00 2.00 TRAP 60.00 I_ 6.97 .75 1032.15 .00 1.36 9.69 5.000 5.000 2.00 0 .0 I .0364 I .09 i 1.17 1.30 1.31 .035 .00 2.00 I_ TRAP 60.00 7.31 .83 1032.24 I .00 I 1.36 9.52 I I 5.000 5.000 I 2.00 I 0 .0 .0416 I .09 1.13 1.39 1.31 .035 .00 2.00 TRAP 60.00 7.66 .91 1032.33 I .00 I 1.36 9.36 I I 5.000 5.000 1 2.00 I 0 .0 16 17 Existing Conditions YRR###*R#+Y4++#***Y#++##**Y#R#R!**+#4#*++#Y##4!****rt++Y#++#!R***++#4+#!!**Y*#+##!#R********+Y*++#R+#++#4#R***rt+Y#R#**+RR** Y#4***+Y Invert Depth Water Q Vel Vel l Energy l Super lCriticallFlow ToplHeight/lBase Wtl No Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.El.l Elev l Depth I Width IDia.-FTlor I.D.1 ZL lPrs/Pip L/Elem lCh Slope I SF Avel HF ISE DpthjFroude NjNorm Dp l "N" I X -Fall ZR IType Ch 2.052 1 I .0223 � I .0476 .10 1.09 1.48 1.31 � .035 .00 2.00 TRAP 17 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super CriticalIFloW ToPIHeight/lHase Wtl INo Wth Station I Eley (FT) Elev (CFS) (FPS) Head I Grd.El.j Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem IGh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 2099.738 1030.371 1.051 1031.422 60.00 8.04 1.00 .1032.43 .00 1.36 9.20 5.000 5.000 2.00 0 .0 1.934 .0223 .0545 .11 1.05 1.57 1.31 .035 .00 2.00 TRAP 2101.672 1030.414 1.013 1031.427 60.00 8.43 1.10 1032.53 .00 1.36 9.05 5.000 5.000 2.00 l 0 .0 1.832 .0223 .0624 .11 1.01 1.68 1.31 .035 .00 2.00 TRAP 2103.503 1030.455 .976 1031.431 60.00 8.84 1.21 1032.65 .00 1.36 8.90 5.000 5.000 2.00 0 .0 1.741 .0223 .0715 .12 .98 1.78 1.31 .035 .00 2.00 TRAP 2105.245 1030.499 .990 1031.434 60.00 9.27 1.34 1032.77 .00 1.36 8.76 5.000 5.000 2.00 0 .0 1.659 .0223 .0819 .14 .94 1.90 1.31 .035 .00 2.00 TRAP 2106.904 1030.531 .906 1031.437 60.00 9.73 1.47 1032.91 .00 1.36 8.62 5.000 5.000 2.00 0 .0 1.583 .0223 .0939 .15 .91 2.03 1.31 .035 .00 2.00 TRAP 2108.487 1030.566 .872 1031.438 60.00 10.20 1.62 1033.05 .00 1.36 8.49 5.000 5.000 2.00 0 .0 1.513 .0223 .1076 .16 .87 2.16 1.31 .035 .00 2.00 TRAP 2110.000 1030.600 .840 1031.440 60.00 10.70 1.78 1033.22 .00 1.36 8.36 5.000 5.000 2.00 0 .0 WALL EXIT 2110.000 1030.600 I 1.327 _I_ 1031.927 60.00 9.99 1.53 1033.46 .00 1.77 2.98 3.000 .000 .00 2 .0 6.5461 .0435 .0340 .22 1.33 I_ 1.23 1.25 .022 .00 .00 I_ PIPE 2116.547 1030.885 1.360 1032.245 60.00 9.63 1.49 1033.68 .00 1.77 2.99 3.000 .000 .00 2 .0 6.179 .0435 .0306 .19 1.36 1.17 1.25 .022 .00 .00 PIPE 2122.726 1031.153 1.411 1032.564 60.00 9.18 1.31 1033.87 .00 1.77 2.99 3.000 .000 .00 2 .0 3.974 .0435 .0269 .11 1.41 1.10 1.25 .022 .00 .00 PIPE 2126.700 1031.326 1.464 1032.790 60.00 8.75 1.19 1033.98 .00 1.77 3.00 3.000 .000 .00 2 .0 2.632 .0435 .0237 .06 1.46 1.02 1.25 .022 .00 .00 PIPE 18 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/lease Wtj No Wth Station I Elev (FT) EleV (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I SF Ave HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch 19 m m m m m m r m m m m m m m= m m m m Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super ICriticallFloW TopIHeight/lBase Wtl INo Wth Station I Elev (FT) Elev(CFS) (FPS) Head I Grd.El.l Elev I Depth I Width Dia.-FTIor I.D. ZL [Prs/Pip L/Eleni ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch 2129.332 1031.440 1.520 1032.961 60.00 8.35 1.08 1034.04 .00 1.77 3.00 3.000 .000 .00 2 .0 1.781 .0435 .0208 .04 1.52 .95 1.25 .022 .00 .00 PIPE 2131.113 1031.518 1.578 1033.096 60.00 7.96 .98 1034.08 .00 1.77 3.00 3.000 .000 .00 2 .0 1.091 .0435 .0184 .02 1.58 .88 1.25 .022 .00 .00 PIPE 2132.204 1031.565 1.640 1033.205 60.00 7.59 .89 1034.10 .00 1.77 2.99 3.000 .000 .00 2 .0 .633 .0435 .0162 .01 1.64 .82 1.25 .022 .00 .00 PIPE 2132.837 1031.593 1.704 1033.297 60.00 7.23 .81 1034.11 .00 1.77 2.97 3.000 .000 .00 2 .0 .163 .0435 .0143 .00 1.70 .76 1.25 .022 .00 .00 PIPE 2133.000 1031.600 1.774 1033.374 60.00 6.89 .74 1034.11 .00 1.77 2.95 3.000 .000 .00 2 .0 WALL ENTRANCE 2133.000 1031.600 3.681 1035.281 60.00 1.32 .03 1035.31 .00 1.36 19.72 5.000 5.000 2.00 0 .0 3.820 .0281 .0004 .00 3.68 .15 1.23 .035 .00 2.00 TRAP 2136.820 1031.707 3.573 1035.280 60.00 1.38 .03 1035.31 .00 1.36 19.29 5.000 5.000 2.00 0 .0 3.719 .0281 .0004 .00 3.57 .16 1.23 .035 .00 2.00 TRAP 2140.539 3.620 1031.812 .0281 3.467 1035.279 60.00 1.45 .03 .0005 1035.31 .00 .00 3.47 1.36 .17 18.87 1.23 5.000 .035 5.000 .00 2.00 2.00 0 .0 TRAP 2149.159 1031.913 3.364 1035.277 60.00 1.52 .04 1035.31 .00 1.36 18.95 5.000 5.000 2.00 0 .0 3.522 .0281 .0006 .00 3.36 .18 1.23 .035 .00 2.00 TRAP 2147.681 1032.012 3.263 1035.275 60.00 1.60 .04 1035.31 .00 1.36 18.05 5.000 5.000 2.00 0 .0 3.426 .0281 .0006 .00 3.26 .19 -1.23 .035 .00 2.00 TRAP 2151.107 1032.109 3.165 1035.274 60.00 1.67 .04 1035.32 .00 1.36 17.66 5.000 5.000 2.00 0 .0 3.332 .0281 .0007 .00 3.17 .21 1.23 .035 .00 2.00 TRAP 2159.939 1032.202 3.070 1035.272 60.00 1.75 .05 1035.32 .00 1.36 17.28 5.000 5.000 2.00 0 .0 20 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super CriticalIFloW ToplHeight/Base WtI «No Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width [Dia.-FTIor I,D.I ZL IPrs/Pip L/Elem ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Fd11I ZR (Type Ch 3.238 -I -I_ .0281 _I_ _I_ -I- _I_ _I_ .0008 _I_ .00 _I_ 3.07 _I_ .22 1.23 _I_ _I_ .035 _I_ .00 2.00 1- TRAP 2157.677 1032.293 2.976 1035.270 60.00 1.84 .05 1035.32 .00 I1.36 16.91 5.000 5.000 2.00 0 .0 3.146 .0281 .0009 .00 2.98 .23 1.23 .035 .00 2.00 TRAP 2160.823 1032.381 2.886 1035.267 60.00 1.93 .06 1035.33 .00 1.36 16.54 5.000 5.000 2.00 0 .0 3.056 .0281 .0011 .00 2.89 .25 1.23 .035 .00 2.00 TRAP 2163.879 1032.467 I 2.797 I 1035.265 _I_ 60.00 2.02 .06 1035.33 .00 1.36 16.19 5.000 5.000 2.00 0 .0 2.9661 .0281 I_ .0012 .00 2.80 .26 I 1.23 _I_ .035 .00 2.00 I_ TRAP 2166.895 1032.551 2.711 1035.262 60.00 2.12 .07 1035.33 .00 1.36 15.89 5.000 5.000 2.00 0 .0 2.877 .0281 .0014 .00 2.71 .28 1.23 .035 .00 2.00 TRAP 2169.723 1032.631 2.627 1035.259 60.00 2.23 .08 1035.34 .00 1.36 15.51 5.000 5.000 2.00 0 .0 2.790 .0281 .0016 .00 2.63 .30 1.23 .035 .00 2.00 TRAP 2172.512 1032.710 2.546 1035.255 60.00 2.39 .08 1035.39 ,00 1.36 15.18 5.000 5.000 2.00 0 .0 2.702 .0281 .0018 .00 2.55 .32 1.23 .035 .00 2.00 TRAP 2175.219 1032.786 2.466 1035.252 60.00 2.45 .09 1035.34 .00 1.36 14.86 5.000 5.000 2.00 0 .0 2.615 .0281 .0020 .01 2.47 .34 1.23 .035 .00 2.00 TRAP 2177.830 1032.859 2.389 1035.248 60.00 2.57 .10 1035.35 .00 1.36 14.55 5.000 5.000 2.00 0 .0 2.529 .0281 .0023 .01 2.39 .36 1.23 .035 .00 2.00 TRAP 2180.358 1032.930 2.313 1035.243 60.00 2.69 .11 1035.36 .00 1.36 14.25 5.000 5.000 2.00 0 .0 2.442 .0281 I I .0026 .01 2.31 .38 1.23 .035 .00 2.00 TRAP 2182.800 1032.999 2.240 1035.239 I 60.00 I 2.83 .12 I 1035.36 I .00 1.36 I 13.96 I I 5.000 5.000 I 2.00 1 1 0 .0 2.355 .0281 .0030 .01 2.24 .40 1.23 .035 .00 2.00 TRAP 21 m m m m ! m m m = m m m m m m m m m m Existing Conditions Invert Depth Water Q Vel Vel Energy I Super ICriticallFlow Top Height/lHase WtI No Wth Station I Elev (FT) Elev (CFS) (FPS) Head Grd.El.1 Elev I Depth I Width Dia.-FTjor I.D.I ZL IPrs/Pip L/Elem jCh Slope SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X-Fa11I ZR IType Ch 2185.155 1033.065 2.168 1035.233 60.00 2.96 .14 1035.37 1.36 13.67 5.000 .00 5.000 2.00 0 .0 2.267 .0281 .0034 .01 2.17 .43 1.23 .035 .00 2.00 TRAP 2187.422 1033.129 2.099 1035.227 60.00 3.11 .15 1035.38 .00 1.36 13.39 5.000 5.000 2.00 0 2.178 .0281 .0039 .01 2.10 .46 1.23 .035 .00 2.00 TRAP 2189.600 1033.190 2.031 1035.221 60.00 3.26 .17 1035.39 1.36 13.12 5.000 .00 5.000 2.00 0 .0 2.087 .0281 .0044 .01 2.03 .49 1.23 .035 .00 2.00 TRAP 2191.687 1033.249 1.965 1035.213 60.00 3.42 1035.40 1.36 12.86 I_ I_ .18 .DO 5.000 5.000 2.00 0 .0 1.994 .0281 .0050 I_ .01 I_ 1.96 .52 1.23 I_ I_ .035 .00 2.00 I_ TRAP 2193.681 1033.305 1.901 1035.205 60.00 3.59 .20 1035.41 1.36 12.60 5.000 I_ I_ I_ I_ I_ .00 5.000 2.00 0 .0 1.898 .0281 .0057 I_ .01 1.90 I_ .55 1.23 .035 .00 2.00 TRAP 2195.579 1033.358 1.838 1035.196 60.00 3.76 1035.42 1.36 12.35 I_ I_ I_ .22 .00 5.000 5.000 2.00 0 .0 1.796 .0281 I_ .0065 I_ .01 1.84 I_ .58 1.23 .035 I_ .00 2.00 I_ TRAP 2197.375 1033.908 1.778 1035.186 60.00 3.95 1035.43 1.36 I_ I_ I_ I_ .24 .00 12.11 5.000 5000 . 2.00 0 .0 1.689 .0281 .0075 I_ .01 1.78 I_ .62 1.23 I_ .035 I_ .00 2.00 TRAP 2199.064 1033.456 1.719 1035.174 60.00 4.19 .27 1035.44 1.36 I_ I_ I_ I_ .00 11.87 5.000 5.000 2.00 0 .0 1.573 1 .0201 I I I � .0085 I_ .01 1.72 I_ .66 1.23 .035 I_ .00 2.00 I_ TRAP 2200:636 1033.500 1.661 1035.161 60.00 4.34 1 1035.45 I I 1.36 1 I I 1 I I_ I_ I_ I_ I_ .29 .00 11.64 5.000 5.000 2.00 0 .0 1.494 .0281 I_ .0097 .01 1.66 I_ .70 1.23 .035 I_ .00 2.00 TRAP 2202.080 1033.541 1.605 1035.196 60.00 4.55 1035.47 1.36 I_ I_ I_ I_ I_ .32 .00 11.42 5.000 5.000 2.00 0 .0 1.296 .0281 I_ .0111 .01 I_ 1.61 I_ .75 1.23 I_ I_ .035 I_ .00 2.00 I_ TRAP 2203.376 1033.577 1.551 1035.128 60.00 4.77 .35 1035.48 1.36 11.20 5.000 I_ I_ I_ I_ .00 5.000 2.00 0 .D .591 .0281 I_ .0122 .01 I 1.55 - I_ .79 1.23 .035 I_ .00 2.00 I_ TRAP 22 0 m= m r m m m m m m m m m m ! m m= m Existing Conditions Invert Depth I Water Q Vel Vel I Energy I Super CriticalIFloW ToPIKeight/ISace WtI INo Wth Station I Elev (FT) EleV(CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem ICh Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X-Fa11I ZR (Type Ch 2203.917 1033.592 1.525 1035.118 60.00 4.89 .37 1035.49 .00 1.36 11.10 5.000 S.000 2.00 0 .0 HYDRAULIC JUMP I_ 2203.917 _I_ I 1033.592 _I_ 1.209 _I_ 1039.801 I 60.00 I 6.69 II .69 1035.50 .00 1.36 9.84 5.000 I 5.000 2.00 0 .0 .075 .0281 .0303 .00 1.21 1.23 1.23 .035 .00 2.00 I_ TRAP 2203.993 1033.594 1.209 1034.804 60.00 6.69 .69 1035.50 .00 1.36 I 9.84 5.000 5.000 2.00 0 .0 6.147 I .0281 I_ .0324 .20 1.21 1.23 1.23 .035 _I .00 2.00 I_ TRAP 2210.140 1033.767 1.166 1034.933 60.00 7.07. .76 1035.70 I .00 1.36 9.67 5.000 5.000 2.00 0 .0 3.877 I .0281 .0371 .14 I_ 1.17 1.31 1.23 .035 I_ .00 2.00 I TRAP 2214.017 1033.876 1.125 1035.001 60.00 7.36 .84 1035.84 i .00 1.36 9.50 I 5.000 5.000 2.00 I 0 .0 3.052 I .0281 I .0424 .13 1.12 1.40 1.23 .035 .00 2.00 I_ TRAP 2217.069 1033.962 1.085 1035.046 I_ 60.00 I I_ 7.72 ,92 1035.97 I .00 1.36 9.34 I I 5.000 5.000 2.00 I 0 .0 2.609 .0281 .0486 .13 1.08 1.49 1.23 .035 .00 2.00 I_ TRAP 2219.678 1034.035 1.046 1035.080 60.00 8.09 1.02 1036.10 .00 1.36 9.18 5.000 5.000 2.00 0 .0 2.322 .0281 I .0556 .13 1.05 1.59 1.23 .035 .00 2.00 1- TRAP 2222.000 I_ 1039.100 I_ 1.009 I_ 1035.108 I_ 60.00 I_ 8.49 I 1.12 1036.23 I .00 1.36 9.03 I 5.000 5.000 2.00 I 0 .0 WALL EXIT I_ I_ I_ I_ I_ I_ I 2222.000 1034.100 1.774 1035.879 60.00 6.89 .74 1036.61 .00 1.77 I 2.95 3.000 - I .000 .00 2 .0 .630 .0000 I_ .0125 .01 I_ 1.77 .71 .00 .022 .00 .00 I_ PIPE 2222.630 1039.100 1.863 I_ 1035.963 60.00 6.50 .66 1036.62 .00 1.77 2.91 I I 3.000 .000 .00 I 2 .0 2.110 .0000 I .0108 .02 1.86 .64 .00 .022 .00 .00 I_ PIPE 2229.740 1034.100 1.956 1036.056 60.00 I I 6.15 I .59 1036.69 .00 1.77 2.86 I I 3.000 I .000 .00 I 2 .0 3.898 .0000 _I_ .0094 .04 1.96 .S9 .00 .022 .00 .00 I_ PIPE 23 Existing Conditions R*Invert Rl+ Depth Water Q Vel Vel I Energy i Super lCriticallFlow TOPIHeight/lease Wtl lNo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.l Elev l Depth I Width lDia.-FTIor I.D.I ZL lPrs/Pip L/Elem ICh Slope I SF Avel ` HF ISE DpthlFroude NlNorm Dp I "N" I X-Falll ZR (Type Ch 2228.638 II 1039.100 2.054 1036.154 60.00 5.82 .53 1036.68 .00 1.77 2.79 3.000 I .000 .00 I 2 .0 6.023 .0000 .0082 .05 2.05 .53 .00 .022 .00 .00 l_ PIPE 2234.661 1034.100 i_ 2.157 1036.257 60.00 5.52 .47 1036.73 I .00 I 1.77 2.70 i 3.000 I I .000 .00 I 2 .0 8.500 .0000 I .0073 .06 2.16 .48 .00 .022 .00 .00 l_ PIPE 2243.161 _I_ 1034.100 l_ 2.264 _I_ 1036.364 60.00 5.29 I .43 1036.79 .00 I 1.77 2.58 3.000 .000 .00 2 .0 .839 .0000 I _l_ -l_ _l_ _l_ .0068 .01 I_ _I_ 2.26 l_ .44 -I_ .00 _I_ .022 _I_ .00 .00 I- PIPE 2244.000 1039.100 2.274 1036.374 60.00 5.22 .42 1036.80 .00 I 1.77 2.57 3.000 .000 .00 2 .0 WALL ENTRANCE I_ 2244.000 1034.100 3.589 II 1037.689 60.00 1.37 .03 1037.72 .00 1.36 19.36 5.000 5.000 2.00 0 .0 3.727 .0281 l_ .0004 .00 3.59 .16 1.23 .035 .00 2.00 1- TRAP 2247.727 1039.205 3.483 1037.688 60.00 1.49 .03 1037.72 I .00 I 1.36 18.93 I 5.000 5.000 2.00 0 .0 3.627 .0281 I .0005 .00 3.48 .17 1.23 .035 .00 2.00 I_ TRAP 2251.359 1034.307 3.379 1037.686 60.00 1.51 .04 1037.72 I .00 1.36 18.52 I I 5.000 5.000 2.00 I 0 .0 3.530 .0281 i i .0005 .00 3.38 .18 1.23 .035 .00 2.00 l_ TRAP 2254.884 1034.406 3.278 1037.684 60.00 I_ 1.58 .04 1037.72 .00 I 1.36 18.11 5.000 5.000 2.00 0 .0 3.439 I .0281 I .0006 .00 3.28 .19 1.23 i_ l_ .035 .00 2.00 I_ TRAP 2258.316 1034.503 3.180 I_ 1037.683 60.00 I 1.66 .09 1037.73 .00 1.36 17.72 I 5.000 5.000 2.00 i 0 .0 3.339 .0281 i I 1 .0007 .00 3.18 .21 1.23 .035 .00 2.00 I_ TRAP 2261.656 1039.597 3.084 1037.681 60.00 1.74 .OS 1037.73 .00 I 1.36 17.34 5.000 5.000 2.00 I 0 .0 3.246 .0281 I I I_ .0008 .00 3.08 I_ .22 1.23 .035 .00 2.00 I_ TRAP 2269.902 1034.688 2.990 1037.679 60.00 1.83 .OS 1037.73 .00 I 1.36 16.96 5.000 5.000 2.00 0 .0 3.154 .0281 .0009 .00 2.99 I_ .23 1.23 .035 .00 2.00 I_ TRAP 24 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow TOPIHeight/IBase WtI [NO Wth Station I Elev I (FT) Elev I (CFS) I (FPS) Head I Grd.e1.I Elev I Depth i Width IDia.-FTIor I.D.I ZL IPre/Pip L/Elem ICh Slope II SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Fa11I ZR IType Ch 2268.056 1034.777 2.899 I_ I 1037.676 60.00 1.92 .06 1037.73 .00 I I 1.36 16.60 I 5.000 I 5.000 I 2.00 I 0 .0 3.063 .0281 i I_ I _I_ .0010 .00 2.90 .25 1.23 .035 .00 2.00 I_ TRAP 2271.119 1034.863 2.811 1037.679 I 60.00 I 2.01 I .06 1037.74 .00 1.36 16.24 5.000 5.000 I 2.00 I 0 .0 2.974 .0281 I_ .0012 .00 2.81 .26 1.23 .035 .00 2.00 I TRAP 2274.093 1034.997 2.724 I 1037.671 60.00 2.11 .07 1037.74 I .00 I 1.36 15.90 5.000 I 5.000 2.00. 0 .0 2.885 .0281 I .0013 .00 2.72 .28 1.23 .035 .00 2.00 I_ TRAP 2276.978 1035.028 2.690 I_ 1037.668 60.00 2.21 .OB 1037.74 .00 I 1.36 15.56 I 5.000 I 5.000 2.00 0 .0 2.797 I .0281 .0015 .00 2.64 .30 I_ 1.23 .035 .00 2.00 I_ TRAP 2279.779 1035.107 2.558 1037.665 60.00 2.32 .OB 1037.75 .00 1.36 15.23 I 5.000 I 5.000 2.00 0 .0 2.710 .0281 .0017 .00 2.56 .31 1.23 .035 .00 2.00 I_ TRAP 2282.489 1035.183 2.478 1037.661 60.00 I_ 2.43 .09 1037.75 i .00 1.36 14.91 I 5.000 I 5.000 2.00 0 .0 2.623 i .0281 .0020 .01 2.48 .33 1.23 .035 .00 2.00 I_ TRAP 2285.107 1035.257 2.400 1037.657 I 60.00 I 2.55 .10 1037.76 .00 1.36 14.60 5.000 I 5.000 I 2.00 I 0 .0 2.536 .0281 .0023 .01 I_ 2.40 .35 1.23 .035 .00 2.00 I_ TRAP 2287.643 1035.328 2.324 1037.653 60.00 2.68 .li 1037.76 1.36 19.30 5.000 5.000 2.00 I 0 .00 .0 2.450 .0281 .0026 .01 2.32 I .38 1.23 _I_ .035 .00 2.00 i_ TRAP 2290.093 1035.397 2.251 1037.648 60.00 i 2.81 I .12 1037.77 I 1.36 14.00 5.000 5.000 i 2.00 I .I_ .00 0 .0 2.363 .0281 i I I_ .0029 .01 2.25 .40 1.23 .035 .00 2.00 I_ TRAP 2292.456 1035.464 2.179 1037.643 60.00 2.94 .13 1037.78 I .00 1.36 13.72 5.000 I 5.000 2.00 0 ,0 2.275 .0281 I .0033 .01 2.18 .43 1.23 .035 .00 2.00 I_ TRAP 2294.731 1035.528 2.109 1037.637 60.00 3.09 .15 1037.78 I 1.36 13.44 5.000 I 5.000 2.00 I _I_ _I_ -I- .00 I_ 0 I_ .0 25 25 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/lease WtI INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Eleni ICh Slope I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall' ZR (Type Ch *###AA{#;I;kR#*k#hAi#.;;Thkfilhh#A;#;;#Ih#RRfiiAhhlA*A+hT#I##*#A{RI;RRhtfih*hI*fiY#{##IR{*+RR#{l{;*{#*;RI*RRRRR*Iii}+**RItRRii I*#Rkh*T 2.187 .0281 I I .0038 .01 2.11 .45 1.23 .035 .00 2.00 TRAP 2296.917 1035.589 2.041 1037.630 60.00 3.24 I .16 I 1037.79 I I .00 1.36 13.16 5.000 I 5.000 2.00 I 0 .0 2.096 .0281 I I .0043 .01 2.04 .48 1.23 .035 .00 2.00 I_ TRAP 2299.013 1035.648 1.975 I 1037.623 I 60.00 I 3.40 I .18 I 1037.80 I I .00 1.36 12.90 I 5.000 I 5.000 2.00 I 0 .0 2.004 .0281 i .0049 l_ .01 1.97 .51 1.23 .035 .00 2.00 I TRAP 2301.017 1035.705 1.910 1037.615 I 60.00 3.56 .20 I 1037.81 .00 1.36 12.64 I I 5.000 I 5.000 2.00 I 0 .0 1.908 .0281 I I l_ .0056 .01 1.91 .54 1.23 .035 .00 2.00 I_ TRAP 2302.925 1035.759 l_ 1.848 1037.606 60.00 3.73 .22 I 1037.82 I .00 1.36 12.39 I 5.000 I 5.000 2.00 I 0 .0 1.808 .0281 l_ .0064 .l_ .01 1.85 .58 1.23 .035 .01) 2.00 I_ TRAP 2304.732 1035.809 1.787 1037.596 60.00 3.92 .24 1037.83 I .00 1.36 12.15 i 5.000 i 5.000 2.00 I 0 .0 1.701 .0281 I l_ .0073 .01 1.79 .61 1.23 .035 .00 2.00 I_ TRAP 2306.434 1035.857 1.727 1037.585 I 60.00 4.11 .26 1037.85 I .00 1.36 11.91 5.000 5.000 I 2.00 0 .0 1.586 .0281 l_ .0083 .01 1.73 .65 1.23 .035 .00 2.00 I_ TRAP 2308.020 1035.902 i_ I_ 1.670 1037.572 l_ 60.00 9.31 iI .29 1037.86 .00 1.36 11.68 5.000 5.000 2.00 I 0 .0 1.460 .0281 I I_ I_ .0095 .01 I_ 1.67 .70 1.23 l_ .035 .00 2.00 l_ TRAP 2309.480 1035.943 1.614 1037.557 60.00 4.52 .32 1037.87 I I I .00 1.36 11.46 I 5.000 I 5.000 2.00 0 .0 1.316 .0281 i I .0109 .01 1.61 .74 1.23 .035 .00 2.00 I_ TRAP 2310.795 1035.980 I_ I_ 1.559 1037.539 I_ 60.00 4.74 .35 1037.89 I .00 1.36 11.24 I 5.000 I 5.000 2.00 I 0 .0 1.145 .0281 I I - I I .0124 .01 1.56 .79 1.23 .035 .00 II 2.00 TRAP 2311.941 1036.012 1.506 1037.519 60.00 I 4.97 I .38 I 1037.90 I I .00 1.36 11.03 I I 5.000 5.000 2.00 I 0 .0 .112 .0281 .0132 .00 1.51 .84 1.23 l_ .035 .00 2.00 1- TRAP 2312.053 _I_ 1036.016 -I- 1.506 1037522 . 60.00 I_ I 4.97 .38 1037.91 I .00 1.36 11.03 I 5.000 5.000 2.00 0 l_ .0 26 26 Existing Conditions #*4#+4#+*#{**4*4#R#***+#####+*#*#*4#R#****#*4#RRRRRR*R***##}4#+#******#*#R}#+}**R***##**#*###**##+#k####+}#R+***#4+}+*{### +#**++## Invert Depth Water Q Vel Vel Energy I Super CriticaljFlow ToplHeight/IBase Wtl INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head Grd.E1.I Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip L/Elem ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch HYDRAULIC JUMP 2312.053 1036.016 1.233 1037.298 60.00 6.52 .66 1037.91 .00 1.36 9.93 15.000 5.000 2.00 0 .0 201.399 .0281 .0282 5.67 1.23 1.19 1.23 .035 .00 2.00 TRAP 2513.452 1041.684 1.233 1042.917 60.00 6.52 .66 1043.58 .00 1.36 9.93 5.000 5.000 2.00 0 .0 10.231 .0281 .0287 .29 1.23 1.19 1.23 .035 .00 2.00 TRAP 2523.683 1041.972 1.220 1043.192 60.00 6.61 .68 1093.87 .00 1.36 9.88 5.000 5.000 2.00 0 .0 7.617 .0281 .0314 .24 1.22 1.22 1.23 .035 .00 2.00 TRAP 2531.300 1042.186 1.177 1043.363 60.00 6.94 :75 1044.11 .00 1.36 9.71 5.000 5.000 2.00 0 .0 4.231 .0281 .0359 .15 1.18 1.29 1.23 .035 .00 2.00 TRAP 2535.531 1042.305 1.135 1043.940 60.00 7.27 .82 1049.26 .00 1.36 9.54 5.000 5.000 2.00 0 .0 3.215 .0281 .0411 .13 1.13 1.38 1.23 .035 .00 2.00 TRAP 2538.746 1042.396 1.094 1043.490 60.00 7.63 .90 1049.39 .00 1.36 9.38 5.000 5.000 2.00 0 .0 2.705 .0281 .0470 .13 1.09 1.47 1.23 .035 .00 2.00 TRAP 2541.451 1042.472 1.055 1093.527 60.00 8.00 - .99 1044.52 .00 1.36 9.22 5.000 5.000 2.00 0 .0 2.387 .0281 .0538 .13 1.05 1.56 1.23 .035 .00 2.00 TRAP 2543.838 1042.539 1.017 1043.556 60.00 8.39 - 1.09 1044.65 .00 1.36 9.07 5.000 5.000 2.00 0 .0 2.162 .0281 .0616 .13 1.02 1.67 1.23 .035 .00 2.00 TRAP 2546.000 1042.600 .980 1093.580 60.00 8.80 1.20 1044.78 .00 1.36 8.92 5.000 5.000 2.00 0 .0 WALL EXIT 2546.000 1042.600 1.341 1093.941 60.00 8.12 1.02 1044.96 .00 1.62 3.78 4.000 ,000 .00 2 .0 32.615 .0213 .0207 .67 1.34 1.02 1.34 .022 .00 .00 PIPE 2578.615 1043.295 1.360 1044.655 60.00 7.96 .98 1045.64 .00 1.62 3.79 4.000 .000 .00 2 .0 27 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow TopiHeight/leaee Wtj INo Wth Station I Elev (FT) Elev(CFS) (FPS) Head I Grd.El.l Elev I Depth I Width Dia.-FTIor I.D. ZL [PrS/Pip L/Elem ICh Slope SF Avel HF ISE DpthjFroude NINorm Dp j "N" I X -Fall ZR IType Ch 16.991 .0213 .0189 .32 1.36 .99 1.34 .022 .00 .00 PIPE 2595.606 -I- 1043.657 -I- 1.408 -I- 1045.065 -I- 60.00 7.59 .89 1045.96 .00 1.62 3.82 4.000 .000 .00 2 .0 6.351 .0213 -I- -I -I- .0165 -I- .11 -I- 1.41 -I- .93 1.34 -I- -I- .022 -I- .00 .00 1- PIPE 2601.958 1043.793 1.459 1045.252 60.00 7.23 .81 1046.06 .00 1.62 3.85 4.000 .000 .00 2 .0 3.217 .0213 .0145 .0S 1.46 .87 1.34 .022 .00 .00 PIPE 2605.174 1043.861 1.511 1045.372 60.00 6.90 .74 1046.11 .00 1.62 3.88 4.000 .000 .00 2 .0 1.917 .0213 .0127 - .02 1.51 .81 1.34 .022 .00 .00 PIPE 2606.591 1043.891 1.566 1045.457 60.00 6.58 .67 1046.13 .00 1.62 3.90 4.000 .000 .00 2 .0 .409 .0213 .0112 .00 1.57 .76 1.34 .022 .00 .00 PIPE 2607.000 1043.900 1.624 1045.524 60.00 6.27 .61 1046.13 .00 1.62 3.93 9.000 .000 .00 2 .0 WALL ENTRANCE 2607.000 1043.900 2.915 1046.815 60.00 1.90 .06 1046.87 .00 1.36 16.66 15.000 5.000 2.00 D .0 2.964 .0292 .0010 .00 2.92 .24 1.22 .035 .00 2.00 TRAP 2609.964 1043.987 2.826 1046.813 60.00 1.99 .06 1046.87 .00 1.36 16.30 5.000 5.000 2.00 t 0 .0 2.877 .0292 .0012 .00 2.83 .26 1.22 .035 .00 2.00 TRAP 2612.840 �- 1044.071 I_ 2.739 I_ 1046.810 I_ 60.00 I_ 2.09 .07 1046.88 .00 1.36 15.96 5.000 5.000 2.00 0 .0 2.791 .0292 I_ I_ .0013 .00 2.74 I_ .27 1.22 .035 I_ .00 2.00 TRAP 2615.631 1044.152 2.654 1046.807 60.00 2.19 .07 1046.88 .00 1.36 15.62 5.000 5.000 2.00 0 .0 2.705 .0292 .0015 .00 2.65 .29 1.22 .035 .00 2.00 TRAP 2618.336 1044.231 2.572 1046.803 60.00 2.30 .08 1046.89 .00 1.36 15.29 5.000 5.000 2.00 0 .0 2.620 .0292 .0017 .00 2.57 .31 1.22 .035 .00 2.00 TRAP 2620.956 1094.308 2.492 1046.799 60.00 2.91 .09 1046.89 .00 1.36 14.97 5.000 5.000 2.00 0 .0 28 Existing Conditions I Invert Depth Water Q Vel Vel I Energy I Super [CriticallFlow Top[Height/lBase Wtj INo Wth Station I Elev (FT) Elev(CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL jPrs/Pip Y*L/ElemRRICRh'4 Slope Yi SF Avej HF ISE DpthlFroude NINOM Dp I "N" I X -Fall ZR IType Ch 2.536 .0292 .0019 .00 2623.492 .33 1044.382 2.914 .035 1046.795 .00 2.452 .0292 60.00 2.53 2625.994 1096.89 1044.453 2.337 1.36 1046.791 2.367 5.000 .0292 2.00 0 .0 2628.311 1044.522 2.263 1046.786 2.41 2.283 1.22 .0292 .035 .00 2.00 2630.594 TRAP 1044.589 2.191 2.65 1046.780 .11 2.197 .0292 1.36 14.35 5.000 2632.791 I 1044.653 2.121 10 .0 1046.774 2.111 .0292 .01 2.34 .37 2639.902 1049.715 2.053 .00 1046.767 2.023 60.00 .0292 2.78 .12 1046.91 2636.925 .00 1044.774 1.986 1046.760 5.000 1.933 2.00 .0292 0 .0 2638.858 .0029 1044.830 1.921 2.26 1046.752 1.22 1.839 .035 .0292 .00 2.00 TRAP 2640.697 1094.884 1.858 .13 1096.793 1.741 1.36 .0292 5.000 5.000 2642.438 1044.935 1,797 1046.732 1.638 _I_ I_ .0292 2.19 _I_ 1.22 -I- 2644.076 1044.983 1.738 1046.720 I .0019 .00 2.49 .33 1.22 .035 .00 2.00 TRAP 60.00 2.53 .10 1096.89 .00 1.36 19.65 5.000 5.000 2.00 0 .0 .0022 .01 2.41 - .35 1.22 .035 .00 2.00 TRAP 60.00 2.65 .11 1046.90 .00 1.36 14.35 5.000 5.000 I 2.00 10 .0 .0025 .01 2.34 .37 1.22 .035 .00 2.00 TRAP 60.00 2.78 .12 1046.91 .00 1.36 14.05 5.000 5.000 2.00 0 .0 .0029 .01 2.26 .40 1.22 .035 .00 2.00 TRAP 60.00 2.92 .13 1046.91 .00 1.36 13.76 5.000 5.000 2.00 0 .0 .0033 .01 2.19 .42. 1.22 .035 .00 2.00 TRAP 60.00 3.06 .15 1046.92 .00 1.36 13.48 5.000 5.000 2.00 0 .0 .0037 .01 2.12 .45 1.22 .035 .00 2.00 TRAP 60.00 3.21 .16 1046.93 .00 1.36 13.21 5.000 5.000 2.00 0 .0 .0042 .01 2.05 .4B 1.22 .035 .00 2.00 TRAP 60.00 3.37 .18 1046.94 .00 1.36 12.94 5.000 5.000 2.00 0 .0 .0046 .01 1.99 .51 1.22 .035 .00 2.00 TRAP 60.00 I_ 3.53 I_ .19 _I_ 1046.95 �_ .00 �_ 1.36 12.69 5.000 4-�_ 5.000 2.00 0 .0 .0055 .01 1.92 _I_ .54 1.22 .035 �_ .00 2.00 1- TRAP 60.00 3.70 .21 1046.96 .00 1.36 12.93 5.000 5.000 2.00 0 .0 .0063 .01 1.86 .57 1.22 .035 .00 2.00 TRAP 60.00 3.88 .23 1046.97 .00 1.36 12.19 5.000 5.000 2.00 0 .0 .0071 .01 1.B0 .61 1.22 .035 .00 2.00 TRAP 60.00 _I_ 4.07 _I_ .26 _I_ 1046.98 _I_ .00 _I_ 1.36 _I_ 11.95 _I_ 5.000 _I_ 5.000 _I_ 2.00 0 .0 I- 29 Existing Conditions Invert Depth Water I Q Vel Vel I Energy I Super ICriticallFlow TQPIHeight/lease Wt1 INQ Wth Station I Elev (FT) Elev I (CFS) I (FPS) Head I Grd.F.l.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X-Fal1I ZR IType Ch 1.527 .0292 I .0081 .01 1.74 .65 1.22 .035 .00 2.00 TRAP 2645.603 1095.027 1.680 I 1096.707 I 60.00 4.27 .28 1046.99 .00 1.36 11.72 5.000 I 5.000 2.00 I 0 .0 1.404 .0292 I .0093 .01 1.68 .69 1.22 .035 .00 2.00 I_ TRAP 2647.007 1045.068 1.623 1046.692 60.00 I 4.48 .31 1047.00 I .00 1.36 11.99 I I 5.000 I 5.000 2.00 0 .0 1.266 .0292 I _I_ .0106 .01 I_ 1.62 .73 1.22 .035 .00 2..00 I_ TRAP 2648.273 1045.105 1.569 1046.674 60.00 9.70 .34 1097.02 I .00 1.36 11.27 I I 5.000 5.000 2.00 0 .0 1.105 .0292 .0121 .01 I_ 1.57 .78 1.22 .035 .00 2.00 i_ TRAP 2649.378 1045.138 1.516 1046.653 60.00 4.93 .38 1047.03 I .00 1.36 11.06 5.000 i 5.000 2.00 0 .0 .015 .0292 I i .0129 .00 1.52 .83 1.22 I _I_ .035 .00 2.00 I_ TRAP 2649.393 1045.138 1.516 1046.654 - 60.00 9.93 .38 i 1047.03 I .00 1.36 11.06 � I 5.000 5.000 2.00 0 .0 HYDRAULIC JUMP I_ 2699.393 I I 1045.138 1.221 1046.359 60.00 I 6.61 .68 1047.04 I .00 1 1.36 9.88 I 5.000 1 5.000 2.00 I 0 .0 416.001 .0292 .0292 12.15 1.22 1.21 1.22 .035 .00 2.00 I_ TRAP 3065.394 1057.285 I_ 1_ 1.221 1058.506 60.00 6.61 .68 1059.18 .00 1.36 9.88 I 5.000 I 5.000 2.00 I 0 .0 11.530 .0292 I 1 I I .0309 .36 1.22 1.21 1.22 .035 .00 2.00 I_ TRAP 3076.924 1057.622 1.184 1058.006 60.00 6.88 I .73 I 1059.54 I .00 1.36 9.74 5.000 I 5.000 2.00 0 .0 5.365 .0292 I .0350 .19 1.18 1.28 1.22 .035 .00 2.00 I_ TRAP 3082.289 1057.778 1.142 1058.921 I_ 60.00 7.21 .81 1059.73 I I .00 1.36 9.57 I I .5.000 I 5.000 2.00 i 0 .0 3.669 .0292 .0401 .15 1.14 1.36 1.22 .035 .00 2.00 I_ TRAP 3085.958 -I- .1057.885 -I 1.101 -I- 1058.987 60.00 7.56 .89 1059.88 I .00 1.36 9.41 5.000 5.000 2.00 0 .0 2.955 .0292 I -I- -I- -I- -I- .0459 -I- .14 -I- -I- 1.10 1.45 1.22 -I- -I- .035 -I- .00 2.00 1- TRAP 3088.913 1057.972 1.062 1059.034 60.00 7.93 .98 1060.01 i .00 1.36 9.25 I 5.000 I_ 5.000 2.00 I 0 i_ .0 30 =mm m m m m m mm m m mm m m i m m 2.546 .0292 3091.459 1058.096 2.274 .0292 3093.733 1058.113 2.073 .0292 3095.805 1058.173 1.915 .0292 3097.720 1058.229 1.785 .0292 3099.505 1058.281 1.674 .0292 3101.179 1058.330 1.577 .0292 3102.756 1058.376 1.491 .0292 3104.247 1058.420 1.412 .0292 3105.659 1058.461 1.341 .0292 3107.000 1058.500 -I- (- WALL EXIT 3107.000 1058.500 -I- -1- 1 1 1.023 1059.070 .986 1059.099 .950 1059.123 .915 1059.194 I- -I- .881 1059.162 .849 1059.179 -I -I- .817 1059.193 .786 1059.206 -I- I- .756 1059.217 .728 1059.228 2.205 1060.705 -I- -1- 60.00 I Existing Conditions -I- 60.00 Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/1Base WtI INo Wth Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL jPre/Pip L/Elem ICh Slope I 5.000 SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR (Type Ch 10.07 0 60.00 1.65 2.546 .0292 3091.459 1058.096 2.274 .0292 3093.733 1058.113 2.073 .0292 3095.805 1058.173 1.915 .0292 3097.720 1058.229 1.785 .0292 3099.505 1058.281 1.674 .0292 3101.179 1058.330 1.577 .0292 3102.756 1058.376 1.491 .0292 3104.247 1058.420 1.412 .0292 3105.659 1058.461 1.341 .0292 3107.000 1058.500 -I- (- WALL EXIT 3107.000 1058.500 -I- -1- 1 1 1.023 1059.070 .986 1059.099 .950 1059.123 .915 1059.194 I- -I- .881 1059.162 .849 1059.179 -I -I- .817 1059.193 .786 1059.206 -I- I- .756 1059.217 .728 1059.228 2.205 1060.705 -I- -1- 60.00 I 8.32 -I- 60.00 8.72 2.00 60.00 TRAP 9.15 1.36 60.00 9.60 5.000 60.00 2.00 10.07 0 60.00 1.65 10.56 60.00 11.07 2.00 60.00 TRAP 11.61 1.36 60.00 12.18 5.000 60.00 2.00 12.77 0 60.00 _I_ 10.78 _ _ 0525 .13 1.07 1060.14 0601 .14 1.18 1060.28 0688 .3.4 1.30 1060.92 0789 .15 1.43 1060.57 0904 .16 1.57 1060.79 1036 .17 1.73 1060.91 1188 .19 1.90 1061.10 1363 .20 2.09 1061.30 1564 .22 2.30 1061.52 1796 .24 2.53 1061.76 1.80 1062.51 31 1.06 1.55 1.22 .035 .00 2.00 TRAP .00 1.36 9.09 5.000 5.000 2.00 0 1.02 1.65 1.22 .035 .00 2.00 TRAP .00 1.36 8.95 5.000 5.000 2.00 0 .99 1.75 1.22 .035 .00 2.00 TRAP .00 1.36 8.80 5.000 5.000 2.00 0 .95 1.87 1.22 .035 .00 2.00 TRAP .00 1.36 8.66 5.000 5.000 2.00 0 .92 1.99 1.22 .035 .00 2.00 TRAP .00 1.36 8.53 5.000 5.000 2.00 0 .88 2.12 1.22 .035 .00 2.00 TRAP .00 1.36 8.39 5.000 5.000 2.00 0 .85 2.26 1.22 .035 .00 2.00 TRAP .00 1.36 8.27 5.000 5.000 2.00 0 .82 2.41 1.22 .035 .00 2.00 TRAP .00 1.36 8.14 5.000 5.000 2.00 0 .79 2.57 1.22 .035 .00 2.00 TRAP .00 1.36 8.03 5.000 5.000 2.00 0 .76 2.74 1.22 .035 .00 2.00 TRAP .00 I- 1.36 -I- 7.91 -I- 5.000 -i- 5.000 -I- 2.00 0 I- .00 _I_ 2.50 _I_ 2.65 _I_ 3.000 _I_ .000 _I_ .00 1 I_ 0 0 0 0 0 0 0 0 0 0 0 Existing Conditions I Invert Depth I Water q Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase WtI INo Wth Station I Elev (FT) I Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Fa11I ZR (Type Ch 7.364 .0333 .0284 .21 2.20 1.31 2.09 .022 .00 .00 PIPE 3114.364 1058.745 2.263 1061.009 60.00 10.49 1.71 1062.72 I I .00 2.50 2.58 i I 3.000 I .000 .00 I 1 .0 5.988 .0333 I I .0261 .16 2.26 1.24 2.09 .022 .00 .00 I_ PIPE 3120.352 1058.945 2.375 1061.320 60.00 10.00 1.55 1062.87 I .00 2.50 I 2.44 I 3.000 I .000 .00 I 1 .0 1.648 .0333 .0236 I_ .04 2.38 1.12 2.09 .022 .00 .00 I_ PIPE 3122.000 1059.000 2.501 1061.501 60.00 I 9.53 1.91 1062.91 .00 2.50 2.23 I 3.000 .000 .00 1 .0 WALL ENTRANCE 3122.000 1059.000 5.016 1064.016 60.00 .80 .Ol 1069.03 .00 I 1.36 25.06 I I 5.000 5.000 I 2.00 I 0 .0 2.937 I .0480 I I .0001 .00 5.02 .08 1.07 .035 .00 2.00 TRAP 3124.937 1 1059.141 I_ 4.875 1064.016 60.00 .83 I .Ol 1064.03 .00 1.36 I 24.50 5.000 5.000 2.00 I 0 .0 2.864 I .0480 I i .0001 .00 4.87 .09 1.07 .035 .00 2.00 I. TRAP 3127.801 -I- 1059.278 -I- 4.736 -I- 1064.015 -I- 60.00 .88 .01 1064.03 I I .00 1.36 23.95 I 5.000 -1- 5.000 2.00 0 .0 2.791 i .0480 I -I- -I- -I- .0001 -I- .00 -I- 4.74 -I- .09 1.07 -I- .035 -I- .00 2.00 1- TRAP 3130.592 1059.412 4.602 1064.019 60.00 .92 .Ol 1064.03 I I .00 1.36 23.41 I I 5.000 5.000 2.00 I 0 .0 2.720 I .0480 I .0001 .00 4.60 .10 1.07 .035 .00 2.00 I_ TRAP 3133.313 1059.543 4.470 1064.013 I_ 60.00 .96 I .Ol 1064.03 I i .00 1.36 22.88 I I 5.000 5.000 I 2.00 i 0 .0 2.651 .0480 i I_ .0002 .00 4.47 .10 1.07 .035 .00 2.00 I_ TRAP 3135.963 1059.670 1_ 4.342 1069.012 60.00 I 1.01 I .02 1069.03 .00 I 1.36 22.37 5.000 5.000 2.00 I 0 .0 2.583 .0480 I .0002 .00 I_ 4.34 .11 1.07 .035 .00 2.00 I_ TRAP 3138.596 1059.794 4.217 1064.011 60.00 1.06 .02 1064.03 I i .00 1.36 21.87 I I 5.000 5.000 I 2.00 i 0 .0 2.516 .0980 i I .0002 .00 4.22 .12 1.07 .035 .00 2.00 TRAP 3141.063 1059.919 4.095 1064.010 60.00 I 1.11 .02 1069.03 I .00 1.36 21.38 I I 5.000 5.000 i 2.00 I 0 .0 I- 32 m m m m m m m m m= m m m r m m Existing Conditions I Invert Depth Water Q Vel Vol I Energy I Super ICriticall Flow ToplHeight/IBase WtI INo Wth Station Elev (FT) Elev (CFS) (FPS) .Head I Grd.EI.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem (Ch Slope ' I SF Avel HF ISE DpthlFroude NINorm DP I "N" I X -Fall ZR IType Ch 2.451 I .0480 .0002 .00 4.10 .12 1.07 .035 .00 2.00 TRAP 3143.513 1060.032 3.976 1064.008 60.00 1.16 .02 1064.03 .00 1.36 I 20.91 I I 5.000 5.000 I 2.00 1 0 .0 2.386 I .0480 i .0003 .00 3.98 .13 1.07 .035 .00 2.00 I_ TRAP 3145.899 1060.196 3.660 1064.007 60.00 1.22 .02 1064.03 I .00 1.36 20.44 I I 5.000 5.000 I 2.00 I 0 .0 2.323 i .0480 I .0003 .00 3.86 .14 1.07 .035 .00 2.00 I_ TRAP 3198.222 1060.258 3.797 1069.005 60.00 1.28 .03 1064.03 .00 1.36 19.99 5.000 5.000 I 2.00 I 0 .0 2.261 I .0480 .0004 .00 3.75 .15 1.07 I_ .035 .00 2.00 I_ TRAP 3150.483 1060.366 3.637 1064.004 60.00 1.34 .03 1064.03 .00 1.36 I 19.55 5.000 5.000 I 2.00 I -0 .0 2.200 I .0480 I .0004 .00 3.64 .16 1.07 .035 .00 2.00 I_ TRAP 3152.683 _i_ 1060.472 _I_ 3.530 _I_ 1064.002 _I_ 60.00 1.41 .03 1064.03 I .00 1.36 19.12 I I 5.000 5.000 2.00 0 .0 2.140 i .0480 I _I_ _I_ _I_ .0005 _I_ .00 _I_ 3.53 _I_ .17 1.07 _i_ i_ .035 _I_ .00 2.00 I- TRAP 3154.823 1060.575 3.425 1063.999 60.00 1.48 .03 1064,03 I .00 1.36 18.70 I i 5.000 5.000 2.00 0 .0 2.080 .0480 .0005 .00 3.42 .18 1.07 .035 .00 2.00 I_ TRAP 3156.903 _I_ 1060.674 _I_ 3.323 _I_ 1063.997 _I_ 60.00 i 1.55 I .04 1064.03 I .00 1.36 18.29 I I 5.000 5.000 I 2.00 I 0 .0 2.022 .0480 r _I_ I_ I_ .0006 I_ .00 I_ 3.32 I_ .19 1.07 I_ I_ .035 I_ .00 2.00 I_ TRAP 3158.925 1060.771 I_ 3.223 I_ 1063.995 60.00 1 1.63 .09 1064.04 .00 1.36 17.89 . 5000 5.000 200 . 0 .0 1.964 .0480 i i i_ .0007 .00 3.22 .20 1.07 .035 .00 2.00 I_ TRAP 3160.889 1060.866 3.126 1063.992 I_ 60.00 i 1.71 .05 1064.04 .00 1.36 I 17.50 I I 5.000 5.000 i 2.00 I 0 .0 1.907 .0480 I .0008 .00 3.13 .21 1.07 .035 .00 2.00 i_ TRAP 3162.795 1060.957 3.032 1063.989 60.00 1.79 I .OS 1064.04 .00 1.36 I 17.13 5.000 5.000 I 2.00 0 .0 1.850 .0480 I .0009 .00 3.03 .23 1.07 .035 .00 2.00 I_ TRAP 3164.646 1061.046 2.940 1063.985 60.00 1.88 .OS 1069.04 .00 1.36 i 16.76 5.000 5.000 I 2.00 I 0 � .0 I_ 33 Existing Conditions Invert Depth Water Q Vel Vel I Energy I Super CriticallFlow ToplHeight/lBase WtI INo Wth Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthIProude NINorm Dp I "N" I X -Fall ZR IType Ch +#fi#44#4+1«k*fi#fi#fi#IR*«fiFfi#414#R*.Fkk#I#+#f+#+*RI+«kkkfi#I#fi#4##RIRRR*«*+kF1*#####RI+RRRR4#RI«R*R*+F+I*Fkfik4#14#44RkkI#44FR i+*44++R 1.794 .0480 I .0010 .00 2.94 .24 1.07 .035 .00 2.00 TRAP 3166.439 1061.132 2.850 1063.982 I 60.00 i 1.97 .06 1069.09 .DO 1.36 16.40 I I 5.000 5.000 I 2.00 I 0 .0 1.738 .0480 i .0011 .00 2.85 .25 1.07 .035 .00 2.00 I_ TRAP 3168.178 I_ 1061.215 I_ 2.762 1063.978 I_ 60.00 2.06 .07 1064.04 I .00 1.36 16.05 I I 5.000 5.000 I 2.00 I 0 .0 1.683 .0480 I .0013 .00 2.76 .27 1.07 .035 .00 2.00 i_ TRAP 3169.861 1061.296 2.677 1063.973 60.00 I 2.16 .07 1064.05 .00 1.36 I 15.71 5.000 5.000 I 2.00 I 0 .0 1.627 .0480 I .0014 .00 2.68 .29 1.07 .035 .00 2.00 I_ TRAP 3171.488 I_ 1061.374 2.594 1063.968 60.00 2.27 .OB 1064.05 .00 1.36 15.38 5.000 5.000 2.00 0 .0 1.572 .0480 I I .0016 .00 2.59 .31 1.07 .035 .00 2.00 I_ TRAP 3173.060 1061.449 2.513 1063.963 60.00 I 2.38 I .09 1064.05 .00 1.36 I 15.05 I 5.000 5.000 I 2.00 I 0 .0 1.517 I .0480 .0019 I_ .00 2.51 .32 1.07 .035 .00 2.00 1_ TRAP 3174.577 1061.522 2.435 1063.957 60.00 2.50 .10 1064.05 I .00 1.36 i 14.74 5.000 5.000 I 2.00 0 .0 1.461 I .0480 .0021 .00 2.43 .34 1.07 .035 .00 2.00 TRAP 3176.038 1061.592 2.358 1063.950 I 60.00 2.62 .11 1064.06 i I .00 1.36 14.93 I 5.000 5.000 2.00 0 .0 1.405 .0480 .0024 .00 2.36 .37 1.07 .03S .00 2.00 1_ TRAP 3177.493 1061.660 2.283 1063.943 I_ 60.00 I_ 2.75 .12 1064.06 .00 1.36 14.13 I i 5.000 5.000 2.00 I 0 .0 1.348 .0480 i i .0028 .00 2.28 .39 1.07 .035 .00 2.00 I_ TRAP 3178.792 1061.724 2.211 1063.935 60.00 I 2.88 I .13 1064.06 .00 1.36 13.09 I I 5.000 5.000 I 2.00 i 0 .0 1.291 .0480 .0031 .00 1_ 2.21 .41 1.07 .035 .00 2.00 I TRAP 3180.082 1061.786 2.140 1063.926 60.00 3.02 .14 1069.07 .00 1.36 I 13.56 5.000 5.000 i 2.00 0 .0 1.232 I .0480 i .0036 .00 2.14 .44 1.07 - .035 .00 2.00 TRAP 3181.314 1061.845 2.071 1063.916 60.00 3.17 .16 1064.07 i .00 1.36 13.28 I I 5.000 5.000 2.00 0 .0 I- 34 Existing Conditions fINo Invert I Depth Water I Q - Vel Vel I Energy I Super Critica11F1oW Topl Height/IBase Wtj Wth Station I Elev (FT) Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip L/Elem ICh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" _I_ I X-Fa11I' ZR I IType Ch 1.171 .0480 .0041 .00 2.07 .47 1.07 .035 .00 2.00 TRAP 3182.485 1061.901 2.004 I 1063.905 60.00 3.32 .17 1064.08 .00 1.36 I 13.02 5.000 5.000 I2.00 0 .0 1.109 .0480 .0047 .01 2.00 .50 1.07 .035 .00 2.00 1- TRAP 3183.594 1061.955 1.939 I 1063.893 60.00 3.49 I_ .19 1064.08 .00 1.36 1 12.76 I 5.000 I 5.000 I I _I_ 2.00 I 0 I_ .0 3189.638 1062.005 1.875 1063.880 60.00 II 3.66 .21 1064.09 .00 1.36 12.50 5.000 I 5.000 2.00 I 0 .0 .977 .0480 I I .0060 .01 1.88 .56 1.07 .035 .00 2.00 I_ TRAP 3185.615 1062.052 1.814 1063.865 60.00 3.83 .23 1064.09 .00 I 1.36 12.25 I I 5.000 I 5.000 2.00 0 .0 .905 .0480 I .0069 .01 1.81 .60 1.07 .035 .00 2.00 I_ TRAP 3186.520 1062.095 1.754 1063.899 I 60.00 I 4.02 .25 1064.10 .00 1.36 I 12.01 I I 5.000 I 5.000 2.00 I 0 .0 .753 .0480 .0079 .01 1.75 .64 1.07 .035 .00 2.00 TRAP 3187.273 1062.131 1.695 1063.827 60.00 4.22 .28 1064.10 .00 1.36 i 11.78 I 5.000 I 5.000 2.00 I 0 .0 HYDRAULIC JUMP I_ I_ 3187.273 I 1062.131 1.068 1063.199 60.00 7.88 .96 1064.16 1 .00 1.36 I 9.27 5.000 I 5.000 2.00 0 .0 56.136 .0480 .0480 2.69 1.07 1.53 1.07 .035 .00 2.00 I_ TRAP 3243.409 1064.829 1.068 1065.892 I 60.00 I 7.88 .96 1066.86 i .00 I 1.36 9.27 I I 5.000 I 5.000 2.00 0 ,0 15.979 .0480 I 1 I .0456 .73 1.07 1.53 1.07 .035 I_ .00 2.00 I_ TRAP 3259.389 1065.591 1.099 1 1066.690 _I_ 60.00 7.59 .89 1067.58 I .00 I 1.36 9.39 I 5.000 5.000 2.00 0 .0 5.386 .0480 I 1 .0404 .22 1.10 1.46 1.07 I_ .035 .00 2.00 I_ TRAP 3264.775 1065.849 1.139 1066.989' 60.00 7.23 .81 1067.80 .00 I 1.36 9.56 I I 5.000 5.000 2.00 0 .0 2.528 .0480 I I I .0354 .09 1.14 1.37 1.07 .035 .00 2.00 TRAP 3267.303 1065.971 1.181 1067.152 I_ 60.00 6.90 .74 1067.89 I ,00 I 1.36 9.73 I I 5.000 5.000 2.00 0 I_ .0 35 36 Existing Conditions Invert I Depth Water i ( Vel Vel Energy I Super CriticallFloW ToplHeight/IBase Wt1 No Wth Station -I- Elev I (FT) I- -I- Elev (CFS) (FPS) Head Grd.El.] Elev I Depth I WidthDia.-FT I I or I.D. I ZL IP=a/Pip L/Elem ICh Slope I -I- I -i- -I- I -I- -I- SF Avel HF -I- -I- ISE DpthlFroude NINorm -I- Dp -I- I "N" I -I- X-Falll ZR -I ]Type Ch *kM#F##F#M***##Frt*I*##FFFRR###{#R4#hl##RT*#*####{*FRRRRY**#*ITR*Y##4#*I**#####I####R**tR*kR#tT#I####*##I4*k*k1M###M* I##Rt#Y# 1.401 .0480 I .0309 .04 1.1B 1.29 1.07 .035 .00 2.00 TRAP 3268.704 1066.038 1.225 1067.263 I_ 60.00 6.58 .67 1067.93 I i .00 1.36 9.90 I I 5.000 I 5.000 2.00 I 0 .0 .787 .0480 I i I .0270 .02 1.22 1.21 1.07 .035 .00 2.00 I_ TRAP 3269.490 1066.076 1.269 1067.345 60.00 6.27 .61 1067.96 I 1.36 10.08 i I 5.000 5.000 I .00 2.00 0 .0 .399 .0480 I I .0237 .01 1.27 1.13 1.07 .035 .00 2.00 TRAP 3269.889 1066.094 1.315 1067.910 60.00 5.98 � .56 1067.96 I 1.36 10.26 I 5.000 I 5.000 I I _I_ .00 2.00 0 .0 .116 .0980 I .0207 .00 1.32 1.07 1.07 .035' .00 2.00 I_ TRAP 3270.000 1066.100 1.364 1067.469 60.00 5.69 .50 1067.97 I I 1.36 10.45 I I 5.000 I 5.000 I -I- -1- -I- -I- -I- -I- -I- -I- .00 -I- -I- -I- -I- -I- 2.00 0 .0 I- 36 I � HYDRAULIC � CALCULATIONS � FOR I ALTERNATE NO. 2 I 0 I 0 I I FILE: sd.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1 Program Package Serial Number: 1416 WATER SURFACE PROFILE LISTING Date:10- 7-2002 Time: 8:12: 6 ALTERNATE No. 2 Storm Drain parallel to Ynez & Vallijo 48 inch Storm Drain from John Warner Invert I Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase Wtl INo Wth Station I Elev I (FT)Elev Eley I I (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTIor I.D.1- ZL IPrs/Pi.p L/Eleni ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) _I ZR IType Ch I I I I 1000.000 1018.000 4.535 1022.535 619.00 23.28 8.41 1030.95 I .00 6.31 6.69 7.000 I .000 .00 I 1 .0 865.406 .0163 I _I_ .0163 19.11 4.53 2.07 4.53 I_ .013 .00 .00 I_ PIPE 1865.906 1032.108 4.535 I 1036.642 614.00 I 23.28 8.41 1045.06 i .00 1 6.31 6.69 i 7.000 I .000 .00 I 1 .0 631.247 .0163 I .0155 9.81 4.53 2.07 4.53 .013 .00 .00 I PIPE 2496.653 1042.398 9.695 1047.093 614.00 I 22.37 7.77 I 1054.87 I .00 I 6.31 I 6.58 I 7.000 I .000 I .00 I 1 .0 215..054 .0163 I I I .0140 3.01 4.70 1.93 9.53 .013 .00 .00 I_ PIPE 2711.707 1045.909 4.901 1050.805 I 614.00 I 21.33 I 7.07 1057.87 1 .00 I I 6.31 6.41 I 7.000 I .000 I .00 I 1 .0 109.422 .0163 I I I I_ .0125 1.36 4.90 1.77 4.53 .013 I_ .00 .00 I_ PIPE 2821.129 1047.687 5.124 1052.811 I 619.00 I 20.34 6.42 1059.23 .00 I 6.31 6.20 I I 7.000 I .000 .00 I 1 .0 66.614 .0163 I i I .0112 .74 5.12 1.62 4.53 .013 .00 .00 I_ PIPE 2887.742 1098.773 I_ 5.366 1054.139 614.00 19.39 5.89 1059.98 I .00 6.31 5.92 I I 7.000 I .000 .00 1 .0 41.773 .0163 I I I I_ .0101 .42 .5.37 1.48 4.53 .013 .00 .00 I PIPE 2929.516 1049.454 5.636 1055.090 I 614.00 18.49 I 5.31 1060.40 I .00 I 6.31 5.55 I I 7.000 I .000 .00 1 .0 24.631 .0163 I I I_ .0091 .22 5.64 1.33 4.53 .013 .00 .00 I_ PIPE 2954.147 1049.856 5.942 1055.798 i 614.00 17.63 I 9.83 1060.62 I .00 I 6.31 5.01 I I 7.000 .000 .00 I 1 .0 8.853 .0163 i I I .0089 .07 5.94 1_ 1.18 4.53 .013 .00 .00 PIPE 2963.000 1050.000 6.312 1056.312 614.00 i 16.81 I 4.39 1060.70 .00 I 6.31 4.17 I I 7.000 I .000 .00 I 1 .0 JUNCT SIR .0163 6.31 1.00 .013 .00 .00 I_ PIPE FILE: sd.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 2 Program Package Serial Number: 1416 WATER SURFACE PROFILE LISTING Date:10- 7-2002 Time: 8:12: 6 Storm Drain parallel to Ynez & Vallijo 48 inch Storm Drain from John Warner ♦!{!R**Ri*###*4klRRR**!i#!i**k##i#+!*#RRR*RRfilk#+!+##!#4RRR#k*#*4###!+#*k*****k****RR**!{RR**!R*1Rt#####*R*i*44 i#*#*h#*#4{ * 4#R#k* Invert Depth I Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/lBase Wti INo Wth Station I Elev (FT) Elev(CFS) (FPS) Head I Grd.El.I Elev I Depth I Width IDia.-FTIor I.D.I ZL ]Pre/Pip L/Elem ICh Slope I SF Avel HF ISE DpthlFroude NINorm Up I "N" _I I X-FallI ZR -I (Type Ch 2978.000 1050.245 2.125 1052.370 108.00 15.92 I 3.94 1056.31 .00 3.14 I 3.99 4.000 I .000 I .00 1 .0 1600.948 .0184 .0184 29.53 2.13 2.15 2.13 .013 .00 .00 I_ PIPE 4578.948 1079..779 2.125 1081.904 108.00 15.92 I 3.94 1085.84 I .00 3.14 I 3.99 I 4.000 I I .000 .00 1 .0 253.574 .0184 I I I .0181 4.58 2.13 2.15 2.13 .013 .00 .00 I PIPE 4832.522 1089.457 2.153 I_ 1086.610' 108.00 I 15.66 3.81 1090.42 I .00 I 3.19 3.99 I 4.000 I I .000 .00 I 1 .0 143.484 .0184 I .0166 2.39 2.15 2.10 2.13 .013 .00 .00 I_ PIPE 4976.006 1087.104 2.238 I_ I 1089.342 108.00 I 19.93 3.96 1092.80 I .00 I 3.19 3.97 I 4.000 I .000 .00 I 1 .0 59.965 .0184 I .0147 .88 2.24 1.95 2.13 .013 .00 .00 I_ PIPE 5035.971 1088.210 2.327 I_ 1090.537 108.00 19.24 I 3.15 1093.68 I .00 3.14 I 3.95 I 4.000 I .000 .00 I 1 .0 35.140 .0184 I I .0130 .46 I_ 2.33 1.81 2.13 .013 .00 .00 I_ PIPE 5071.110 1068.858 2.421 1091.279 108.00 13.57 I 2.86 1094.14 .00 3.14 I 3.91 I 4.000 I .000 .00 1 .0 23.017 .0184 I i .0115 .26 2.42 1.68 2.13 .013 .00 .00 1- PIPE 5099.127 1089.283 2.521 1091.804 108.00 I 12.99 2.60 1099.40 .00 i 3.14 3.86 I 4.000 I .000 .00 1 .0 15.800 .0184 .0102 .16 2.52 1.55 2.13 .013 .00 .00 I_ PIPE 5109.927 1089.574 2.627 I 1092.201 108.00 I 12.34 I 2.36 1094.57 .00 I 3.14 I 3.80 4.000 I .000 .00 I 1 .0 10.750 I .0184 .0091 .10 2.63 1.43 2.13 .013 .00 .00 1- PIPE 5120.676 1089.773 2.741 I 1092.519 108.00 I 11.77 2.15 1094.66 .00 3.14 I 3.72 4.000 i .000 .00 I 1 .0 7.073 .0184 .0081 .06 2.74 1.32 2.13 .013 .00 .00 1- PIPE FILE: sd.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3 Program Package Serial Number: 1416 WATER SURFACE PROFILE LISTING Date:10- 7-2002 Time: 8:12: 6 Storm Drain parallel to Ynez & Vallijo 48 inch Storm Drain from John Warner #Invert Depth Water Q Vel Vel Energy I Super CriticaljFlow ToplHeight/ Ease Wtj JNo Wth. Station Elev (FT) I Elev (CFS) (FPS) Head Grd.El.1 Elev I Depth I Width Dia.-FTIor I.D.I ZL IPrS/Pip L/Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall) ZR IType Ch 5127.750 1009.903 2.863 1092.766 108.00 11.22 1.95 1094.72 .00 3.14 3.61 4.000 .000 .00 1 .0 3.974 .0184 .0072 .03 2.86 1.21 2.13 .013 .00 .00 PIPE I I I I I I I I 1, 1 1 I I 5131.723 1089.976 2.996 1092.973 108.00 10.70 1.78 1094.75 .00 3.14 3.47 4.000 .000 .00 1 .0 _I_ _I_ _I_ -I_ _I_ _I_ _I_ I _I_ I _I_ _I_ _I_ I- 1.277 .0184 .0065 .01 3.00 1.10 2.13 .013 .00 .00 PIPE WALL ENTRANCE I I I I I I I. I I I I 1 1 5133.000 1090.000 3.144 1093.144 108.00 10.19 1.61 1094.76 .00 3.14 3.28 4.000 .000 .00 0 .0 I � HYDRAULIC � CALCULATIONS FOR � EXISTING EARTHEN � CHANNEL 1N JOHN � WARNER ROAD � WESTERLY OF � CABRILLO AVENUE I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NGINEFRINN ESOORCES m mammi muawm. M. DATE �� `:%J —C,L JOB NO 9/GOOU BY ✓� CKT) — SHEET OF C I d r, 0 r d,� F�,baarcjll Q � i cis � 3 6. 6 7- 3 Opj T DI Z b k1p 9 VyfJ L 1�, t" = �; - 73 i o•�-s 4 = i 2 I c.S c 4�'lJ ;=yn?rvt jli/; :J,.,"'C_ a/ ��u nn•e.. I. � 3 6. 6 7- 3 Opj T DI Z b k1p 9 VyfJ L 1�, t" = �; - 73 i o•�-s 4 = i 2 I c.S n I 1 1 1 � HYDRAULIC � CALCULATIONS � FOR � ALTERNATE NO. 4 1 � (ULTIMATE CONDITION) 1 1 1 1 1 1 FILE: JWR.ALT4.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 1 For: Engineering Resources of Southern California - S/N 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 2:25:32 HYDRAULIC CALCULATIONS FOR ALTERNATIVE NO.4 OF STORM DRAIN SYSTEM FOR JOHN WARNER ROAD DRAINAGE IMPROVEMENTS. (ULTIMATE CONDITION) JANUARY, 2003 CITY OF TEMECULA 96018002 Invert I Depth I Water I Q I Vel Vol I Energy I Super ICriticallFlow ToplHeight/IBase Wt1 INo Wth Station Elev (FT) Elev (CFS) (FPS) Head I Grd.EI.I Elev I Depth I Width IDia.-FTlor I.D.1 ZL IPrs/Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- -1 L/Elam ICh Slope 1 SF Avel HF ISE Dpthl Froude NINorm Dp I "N" I X-Falll ZR IType Ch I I I I I I I I I I I I I 987.890 1026.940 3.500 1030.440 107.00 11.12 1.92 1032.36 .00 3.14 .00 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 192.748 .0050 .01.13 2.18 3.50 .00 3.50 .013 .00 .00 PIPE I I I I I I I I I I I I I 1180.638 1027.906 4.713 1032.619 107.00 11.12 1.92 1034.54 .00 3.14 .00 3.500 .000 .00 1 .0 HYDRAULIC JUMP 1180.638 1027.906 2.061 1029.967 107.00 18.15 5.12 1035.08 .00 3.14 3.44 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 15.969 .0050 .0279 .45 2.06 2.45 3.50 .013 .00 .00 PIPE I I I I I I I I I I I I I 1196.608 102.1.985 1.996 1029.982 107.00 18.87 5.53 1035.51 .00 3.14 3.47 3.500 .000 .00 1 .0 16.159 .0050 .0313 .57 2.00 2.60 3.50 .013 .00 .00 PIPE I 1 1214.766 1.028.076 1.920 1029.997 107.00 19.79 6.08 1036.08 .00 3.14 3.98 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 17.617 .0050 .0354 .62 1.92 2.80 3.50 .013 .00 .00 PIPE I I I I I I I I I I I I I 1232.383 1028.165 1.848 1030.013 107.00 20.76 6.69 1036.70 .00 3.14 3.49 3.500 .000 .00 1 .0 17.065 .0050 .0402 .69 1.85 3.01 3.50 .013 .00 .00 PIPE I I I I I I I I I I I I I 1249.448 1028.250 1.780 1030.030 107.00 2.1.77 7.36 1037.39 .00 3.14 3.50 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 16.511 .0050 1 .0456 .75 1.78 3.24 3.50 .013 .00 .00 PIPE I I I I I I I I I I I I I 1265.959 1028.333 1.714 1030.047 107.00 22.84 8.10 1038.14 .00 3.14 3.50 3.500 .000 .00 1 .0 -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 15.957 .0050 .051.9 .83 1.71 3.48 3.50 .013 .00 .00 PIPE I I I I I I I I I I I I I 1281.916 1028.413 1.652 1030.065 107.00 23.95 8.91 1038.97 .00 3.14 3.49 3.500 .000 .00 1 .0 15.414 .0050 .0589 .91. 1..65 3.73 3.50 .013 .00 .00 PIPE M = = = M = = = r = = r i M = " M FILE: JWRALT4.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 2 For: Engineering Resources of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 2:25:32 HYDRAULIC CALCULATIONS FOR ALTERNATIVE NO.4 OF STORM DRAIN SYSTEM FOR JOHN WARNER ROAD DRAINAGE IMPROVEMENTS. (ULTIMATE CONDITION) JANUARY, 2003 CITY OF TEMECULA 96018002 Invert I Depth I Water - 4 I Vel Vel I Energy I Super ICritical.IFlow ToplHeight/lBase WtI INo Wth Station I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FT1or I.D.1 ZL IPrs/Pip -I- L/Elem -I- ]Ch Slope -I- -I- -I- -I- -I- SF Avel -I- HF ISE -I- DpthlFroude -I- NINorm Dp -I- -I- I "N" -I- 1 X -Fall) ZR -I IType Ch I ++++++++++++++++++I+++++++I+++++++1+++++++++++x 1297.330 1028.490 I I 1.592 1030.082 I 107.00 I 25.12 I 9.80 I 1039.88 .00 I 3.14 I 3.49 I 3.500 I I .000 .00 I 1 .0 5.340 .0337 .0635 .34 1.59 4.00 1.91 .013 .00 .00 PIPE 1302.670 -I- I 1028.670 I I 1.582 1030.252 I 107.00 I 25.34 I 9.9'1 I 1040.22 .00 I 3.14 I 3.48 I I 3.500 I .000 .00 I 1 .0 10.126 -I- .0642 I -I- -I- -I- -I- -I- .0642 -I- .65 -I- 1.58 -I- 4.06 1.58 -I- -I- .013 -I- .00 .00 1- PIPE 131.2.796 -I- 1029.320 -I- I I 1.582 -I- 1030.902 I 107.00 I 25.34 I 9.91 I 1040.87 .00 I 3.14 I 3.48 I I 3.500 I .000 .00 I 1 .0 21.6.192 .0642 -I- -I- -I- -I- .0637 -I- 13.77 -I- 1.58 -I- 4.06 1.58 -I- -I- .013 -I- .00 .00 1- PIPE 1528.988 -I- 1043.200 -I- 1.589 1044.788 107.00 25.19 9.85 1054.64 .00 3.14 3.49 3.500 .000 .00 1 .0 173.682 .0642 -I- -I- -I- -I- -I- .0594 -I- 10.31 -I- 1.59 -I- 4.02 1.58 -I- -I- .013 -I- .00 .00 1- PIPE 1702.670 I 1054.350 I I 1.648 1055.998 I 107.00 I 24.02 I 8.96 I 1064.96 .00 I 3.14 I 3.49 I I 3.500 I .000 .00 I 1 .0 18.239 .0556 .0556 1.01 1.65 3.75 1.65 .013 .00 .00 PIPE 1720.909 I 1055.364 I I 1.648 1057.012 I 107.00 I 24.02 I 8.96 I 1065.97 .00 I 3.14 I 3.49 I I 3.500 I .000 .00 I 1 .0 223.119 .0556 .0549 12.24 1.65 3.75 - 1.65 .013 .00 .00 PIPE 1944.028 -I- 1067.763 -I- 1.660 1069.424 107.00 23.79 8.79 1076.21 .00 3.14 3.50 3.500 .000 .00 1 .0 158.642 .0556 -I- -I- -I- -I- -I- .0509 -I- 8.08 -I- 1.66 -I- 3.70 1.65 -I- -I- .013 -I- .00 .00 1- PIPE 2102.670 -I- 1076.580 1.723 1078.303 107.00 22.69 7.99 1086.29 .00 3.14 3.50 3.500 .000 .00 1 .0 79.303 -I- .0490 -I- -I- -I- -I- -I- .0470 -I- 3.73 -I- 1.72 -1- 3.44 1.71 -I- -I- .013 -I- .00 .00 1- PIPE 2181.973 7 -I- 1060.466 I I 1..738 1082.204 I 1.07.00 I 22.44 I 7.82 I 1090.02 .00 I 3.14 I 3.50 I 3.500 I I .000 .00 I 1 .0 118.027 -I- .0490 -I- -I- -I- -I- -I- .0435 -I- 5.14 -I- 1.74 -I- 3.39 1.71 -I- -I- .013 -I- .00 .00 1- PIPE m m= m m m m m= m m m m m r m= m m FILE: JWRALT4.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 3 For: Engineering Resources of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 2:25:32 HYDRAULIC CALCULATIONS FOR ALTERNATIVE NO.4 OF STORM DRAIN SYSTEM FOR JOHN WARNER ROAD DRAINAGE IMPROVEMENTS. (ULTIMATE CONDITION) JANUARY, 2003 CITY OF TEMECULA 96018002 Invert Depth Water 4 Vel Vel I Energy I Super ICriticall Flow ToplHeight/IBase Wtl INo Wth Station -I- Elev -I- (FT) Elev (CPS) (FPS) Head Grd.E1.1 Elev I Depth I Width IDia.-FTIOr L D.I ZL IPrs/Pip L/Eleni ICh Slope I -I- -I- -I- -I- -I- SF Avel -I- HF ISE -I- D thIFfoude p -I- N Norm -I- D p -I- l "N" -1- I X -Fall) -1 IType Ch +zR 2300.000 -I- 1086.250 -I- 1.805 -I- 1088.055 107.00 21.39 7.11 1095.16 .00 3.14 3.50 3.500 .000 .00 1 .0 7.716 .0825 -I- -I- -I- -I- .0394 -I- .30 -I- 1.80 -I- 3.15 1.47 -I- -I- .01.3 -I- .00 .00 1- PIPE 2.307.716 -I- 1086.887 -I- 1.893 1088.730 107.00 20.83 6.79 1095.47 .00 3.14 3.50 3.500 .000 .00 1 .0 11.572 .0625 I I -I- -I- -I- -I- -I- .0358 -I- .41. -L- 1.84 -I- 3.03 1.47 -I- -I- .013 -I- .00 .00 1- PIPE 2319.288 -I- 1087.841 -I- 1..915 -I- I 1089.756 I I 1.07.00 19.86 I 6.12 I 1095.88 .00 I 3.14 I 3.48 I 3.500 I I .000 .00 I 1 .0 9.447 .0825 I I -I- -I- -I- -I- .0316 -I- .30 -I- 1.92 -I- 2.81 1.47 -I- -I- .013 -I- .00 .00 1- PIPE 2328.735 -I- 1088.620 -I- 1.991 -I- I 1090.611 I I 107.00 18.94 I 5.57 I 1096.18 .00 I 3.14 I 3.47 I 3.500 I I .000 .00 I 1 .0 7.809 .0625 I I -I- -I- -I- -I- .0279 -1- .22 -I- 1.99 -I- 2.61 1.47 -I- -I- .013 -I- .00 .00 1- PIPE 2336.544 -I- 1089.264 -I- 2.071 I 1091.335 I I 107.00 18.05 I 5.06 I 1.096.40 .00 I 3.14 I 3.44 I 3.500 I I .000 .00 I 1 .0 6.497 .0825 I I -I- -I- -I- -I- -I- .0247 -I- .16 -I- 2.07 -I- 2.42 1.47 -I- -I- .013 -I- .00 .00 1- PIPE 2343.041 1089.800 2.155 I 1091.955 I I 107.00 17.21 I 4.60 I 1096.56 .00 I 3.14 I 3.40 I 3.500 I I .000 .00 I 1 .0 5.420 .0825 I .021.9 .12 2.1.6 2.25 1.47 .013 .00 .00 PIPE 2348.461 I 1090.247 2.245 I 1092.492 I I 107.00 16.41 I 4.18 I 1096.68 .00 I 3.14 I 3.36 I 3.500 I I .000 .00 I 1 .0 4.512 .0625 .0194 .09 2.24 2.08 1.47 .013 .00 .00 PIPE 2352.973 -I- 1090.620 2.340 1092 960 107.00 15.65 3.80 1096.76 .00 3.14 3.29 3.500 .000 .00 1 .0 3.727 -I- .0825 I -I- -I- -I- -I- - -I- .0113 -I- .06 -I- 2.34 -I- 1.91 1.47 -I- -I- .013 -I- .00 .00 1- PIPE 2356.700 I 1090.927 2.443 I 1093.370 I I 107.00 14.92 I 3.46 I 1096.83 .00 I 3.14 I 3.21 I 3.500 I I .000 .00 I 1 .0 3.036 .0825 .0154 .05 2.44 1.76 1.47 .01.3 .00 .00 PIPE M. M M M M MM r M M ■■i M M M M M M M. M FILE: JWRALT4.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 4 For: Engineering Resources of Southern California - S/N 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 2:25:32 HYDRAULIC CALCULATIONS FOR ALTERNATIVE NO.4 OF STORM DRAIN SYSTEM FOR JOHN WARNER ROAD DRAINAGE IMPROVEMENTS. (ULTIMATE CONDITION) JANUARY,+ 2003 CITY OF TEMECULA 96018002 I Invert I Depth I Water 4 Vol Vel I Energy I Super ICriticall Flow ToplHeight/IBase Wt[ INo Wth Station I Elev I (FT) I Elev (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width Dia.-FTlor I,D.I ZL IPrs/Pip L{/Elem Ch Slope I SF Avel HE ISE DpthI Froude NlNorm Dp I "N" I X -Fall) ZR (Type Ch I I I I I I I I I I I I I 2359.736 1091.177 2.554 1093.731 107.00 14.23 3.14 1096.87 .00 3.14 3.11 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 2.402 .0825 .01.38 .03 2.55 1.61 1.47 .013 .00 .00 PIPE 2362.138 1091.3"/5 2.674 1099.050 107.00 13.56 2.86 1.096.91 .00 3.19 2.97 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.801 .0825 .0124 .02 2.67 1.47 1.47 .013 .00 .00 PIPE 2363.939 1091.529 2.808 1094.332 107.00 12.93 2.60 1096.93 .00 3.14 2.79 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 1.187 .0825 .0113 .01 2.81 1.32 1.47 .013 .00 .00 PIPE 2365.126 1097..622 2.959 1094.581 107.00 12.33 2.36 1096.94 .00 3.14 2.53 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- .464 .0825 .0104 .00 2.96 1.17 1.47 .013 .00 .00 PIPE 2365.590 1091..660 3.142 1094.802 107,00 11.75 2.15 1096.95 .00 3.14 2.12 3.500 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- M= M mm ■i■ M M M= mm M M FILE: JWRLAT.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 1 For: Engineering Resources of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 3:57: 7 HYDRAULIC CALCULATIONS FOR STORM DRAIN CROSSING THE JOHN WARNER ROAD AT STA. 18+00 ------------------------ Q100=90 CFS CITY OF TEMECULA ------------ JAN. 2003 -------------96018002 I Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticall Flow ToplHeight/IBase Wt1 No Wth Station -I- I Flee I -I- (FT) I -I- Elev (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width Dia.-FTlor I.D.1 ZL IPrs/Pip L/Elem ]Ch Slope -I- -I- -I- -I- SF Ave) -I- HF ISE -I- DpthlFroude -I- NINorm -I- Dp -I- I "N" I X-FaIll -I- ZR -I ITYP e Ch I I I I 1000.000 -I- 1104.000 -I- 1.051 -I- 1.105.052 90.00 -I- I 13.58 I 2.86 I 1107.92 .00 I 1.77 I 2.86 I I 3.000 I .000 .00 I 3 .0 7.282 .0361 I I I -I- -I- -I- .0287 -I- .21 -I- 1.05 -I- 1.57 -I- .99 -I- .013 -I- .00 .00 1- PIPE 3007.283 1104.263 1.059 I 1105.322 90.00 I 13.44 I 2.81 I 1106.13 .00 I 1.77 I 2.87 I I 3.000 I .000 .00 I 3 ,0 22.788 .0361 I I I .0266 .61 1.06 1.55 .99 .013 .00 .00 PIPE 1030.070 -I- 1105.085 -I- 1.097 -I- I 1106.182 90.00 -L- I 12.82 I 2.55 I 1108.73 .00 I 1.77 I 2.89 I I 3.000 I .000 .00 I 3 .0 15.032 .0361 I I -I- -I- -I- .0233 -I- .35 -I- 1.10 -I- 1.45 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1045.102 1105.628 I 1.137 I 1106.764 90.00 I 12.22 I 2.32 I 1109.08 .00 I 1.77 I 2.91 I I 3.000 I .000 .00 I 3 .0 10.840 .0361 I I .0204 .22 1.14 1.35 .99 .013 .00 .00 PIPE 1055.942 -I- 1106.019 -I- I 1.178 -I- I 1107.197 90.00 I 11.65 I 2.11 I 1109.30 .00 I 1.77 I 2,93 I I 3.000 I .000 .00 I 3 .0 8.193 .0361 I -I- -I- -I- -I- .0179 -I- .15 -I- 1.18 -I- 1.26 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1064.135 -I- 1106.315 -I- I 1..220 -I- I 1107.535 90.00 I 11.11 I 1..92 I 1109.45 .00 I 1.77 I 2.95 I I 3.000 I .000 .00 I 3 .0 6.368 .0361 -I- -I- -I- -I- .0157 -I- .10 -I- 1.22 -I- 1.16 -I- -.99 -I- .013 -I- .00 .00 1- PIPE 1.070.503 -I- 1106.545 -I- 1.265 -I- 1107.809 90.00 10.59 1.74 1.109.55 .00 1.77 2.96 3.000 .000 .00 3 .0 5.024 .0361 I I -I- -I- -I- -I- .0138 -I- .07 -I- 1.26 -I- 1.10 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1075.526 -I- 1106.726 -I- 1.311 -I- I 1108.037 90.00 I 10.10 I 1.56 I 1109.62 .00 I 1..77 I 2.98 I I 3.000 I .000 .00 I 3 .0 3.979 .0361 I I -I- -I- -I- -I- .0121 -I- .05 -I- 1.31 -I- 1.03 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1079.505 -I- 1106.869 -I- I 1.360 -I- I 1108.229 90.00 I 9.63 I 1.44 I 1109.67 .00 I 1.77 I 2.99 I I 3.000 I .000 ,00 I 3 .0 3.152 .0361 -I- -I- -I- -I- .0107 -I- .03 -I- 1.36 -I- .96 -I- .99 -I- .013 -I- .00 .00 1- PIPE FILE: JWRLAT.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 2 For: Engineering Resources of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 3:57: 7 HYDRAULIC CALCULATIONS FOR STORM DRAIN CROSSING THE JOHN WARNER ROAD AT STA. 18+00 ------------------------ Q100=90 CFS CITY OF TEMECULA ------------ JAN. 2003 -------------96018002 I Invert I Depth I Water I Q I Vel Vel. I Energy I Super ICriticall Flow ToplHeight/IBase Wt1 INo Wth Station -I- I Elev I (FT) I Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL IFrs/Pip L/Elem -I- ICh Slope -I- -I- I I I -I- I -I- -I- SF Avel -I- HF ISE -I- DpthlFroude -I- NINorm -I- Dp -I- "N" -I- I X-Falll ZR -I (Type Ch I I I I 1.082.657 -I- 1106.983 1.411 1108.394 I 90.00 9.18 I 1.31 I 1109.70 .00 I 1.77 I 2.99 I 3.000 I I .000 .00 I 3 .0 2.464 -I- .0361 I -I- -I- -I- -I- -I- .0094 -I- .02 -I- 1.41 -I- .89 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1085.122 -I- 1107.072 -I- I I 1.464 1108.536 I 90.00 I 8.75 I 1.19 I 1109.73 .00 I 1.77 I 3.00 I 3.000 I I .000 .00 I 3 .0 1.863 .0361 -I- -I- -I- -I- -I- .0083 -I- .02 -I- 1.46 -I- .83 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1.087.004 -I- I 1101.140 -I- I I 1.520 1108.660 I 90.00 I 8.35 I 1.08 I 1109.74 .00 I 1.77 I 3.00 I 3.000 I I .000 .00 I 3 .0 1.383 .0361 -I- -I- -I- -I- -I- .0073 -I- .01. -I- 1.52 -I- .78 -I- .99 -I- .01.3 -I- .00 .00 1- PIPE 1088.388 -I- I 1107.190 -I- I I 1.578 1108.768 I 90.00 I 7.96 I .98 I 1109.75 .00 I 1.77 I 3.00 I 3.000 I I .000 .00 I 3 .0 .941 .0361 -I- -I- -I- -I- -I- .0064 -I- .01 -I- 1.56 -I- .72 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1089.328 -I- I 1.107.224 -I- I I 1.640 1108.864 I 90.00 I 7.59 I .89 I 1109.76 .00 I 1.77 I 2.99 I 3.000 I I .000 .00 I 3 .0 .545 .0361 I -I- -I- -I- -I- -I- .0057 -I- .00 -I- 1.64 -I- .67 -I- .99 -I- .01.3 -I- .00 .00 1- PIPE 1089.873 -I- 1107.244 -I- I I 1J05 1108.948 I 90.00 I 7.24 I .81 I 1109.76 .00 I 1.77 I 2.97 I 3.000 I I .000 .00 I 3 .0 .177 .0361 -I- -I- -I- -I- -I- .0050 -I- .00 -I- 1.70 -I- .62 -I- .99 -I- .013 -I- .00 .00 1- PIPE 1090.050 1107.250 I I 1.774 1109.024 I 90.00 I 6.89 I .74 I 1109.76 .00 I 1.77 I 2.95 I 3.000 I I .000 .00 I 3 .0 FILE: PAULLAT.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 1 For: Engineering Resources of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 4: 7:14 HYDRAULIC CALCULATIONS FOR THE STORM DRAIN CROSSING IN PAULITA ROAD AT APPROX. STA. 11+30 --------------- Q100 = 34 CFS CITY OF TEMECULA --------------- 96018002 -------------------- JAN. 2 I Invert I Depth Water Q I Vel Vel I Energy Super Criti.call Flow Topllleight/lHase Wtl INo Wth Station -I- I Elev -I- (FT) Elev I (CFS) I (FPS) Head I Grd.E1.1 Elev Depth I Width Did.-FTlor I.D.1 ZL Prs/Pip L/Elem ICh Slope -I- I -I- I -I- -I- I -I- SF Avel -I- HF ISE -I- Dpthl -I- -I- Froude NINorm Dp -I- I "N" I X -I- -Fall) ZR -I (Type Ch I I I 1000.000 11.61.000 .944 I 1161.944 34.00 I 17.84 I 4.94 I 1166.88 .00 I I 1.89 2.79 I I 3.000 I .000 .00 I 1 .0 25.592 .0683 .0530 1.36 .94 3.80 .90 .013 .00 .00 PIPE 1025.592 1162 748 .975 1163.723 34.00 17.06 4.52 11 .00 1.89 2.81 3.000 1.68.24 .000 .00 1 .0 17.429 .0683 I I I .0467 .81 .98 3.57 .90 .013 .00 .00 PIPE 1043.021 -I- 1.163.938 -I- 1.010 -I- I 1164.948 34.00 -I- I 16.27 I 4.11 I 1169.06 .00 I I 1.89 2.84 I I 3.000 I .000 .00 I 1 .0 12.339 .0683 I I I -I- -I- -I- .0409 -I- .50 -I- 1.01 -I- 3.34 -I- .90 -I- .013 -I- .00 .00 1- PIPE 1055.360 -I- 1164.760 -I- 1.045 -I- I 1165.826 34.00 -I- I 15.51 I 3.74 I 1169.56 .00 I I 1.89 2.86 I I 3.000 I .000 .00 I 1 .0 9.323 .0683 I I I -I- -I- -I- .0358 -I- .33 -I- 1.05 -I- 3.12 -I- .90 -I- .013 -I- .00 .00 1- PIPE 1064.683 1165.41.7 1.063 I 1166.500 34.00 I 14.79 I 3.40 I 1169.90 .00 I I 1.89 2.88 I I 3.000 1 .000 .00 I 1 .0 7.329 .0683 I I I .0314 .23 1.08 2.92 .90 .013 .00 .00 PIPE 1012.012 -I- 1165.917 -I- 1.121. -I- I 1167.039 34.00 I 14.10 I 3.09 I 1170.13 .00 I I 1.69 2.90 I I 3.000 I .000 .00 I 1 .0 5.902 .0683 -I- -I- -I- -I- .0276 -I- .16 -I- 1.12 -I- 2.73 -I- .90 -I- .013 -I- .00 .00 1- PIPE 1077.919 -I- 1166.321 -I- 1.162 -I- 1167.882 39.00 13.45 2.81 1170.29 .00 1.89 2.92 3.000 1 .000 .00 1 .0 4.832 .0683 I I I -I- -I- -I- -I- .0242 -I- .12 -I- 1.16 -I- 2.55 .90 -I- -I- .013 -I- .00 .00 1- PIPE 1.062.746 -I- 1166.651 -I- 1.204 -I- I 1167.854 34.00 I 12.82 I 2.55 I 1170.41. .00 I I 1..89 2.94 I I 3.000 I .000 .00 I 1 .0 3.997 .0683 -I- -I- -I- -I- .0212 -I- .08 -I- 1.20 -I- 2.38 .90 -I- -I- .013 -I- .00 .00 1- PIPE 1086.743 -i- 1166.923 -I- 1.248 -I- 1168.171 39.00 I1 12.22 2.32 1170.49 .00 1.89 2.96 1 3.000 .000 .00 1 .0 3.326 .0683 -I- -I- -I- -I- .0186 -I- .06 -I- 1.25 -I- 2.22 .90 -I- -I- .013 -I- .00 .00 1- PIPE FILE: PAULLAT.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 2 For: Engineering Resources of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 4: 7:14 HYDRAULIC CALCULATIONS FOR THE STORM DRAIN CROSSING IN PAULITA ROAD AT APPROX. STA. 11+30 --------------- QI00 = 34 CFS CI'T'Y OF TEMECULA --------------- 96018002 -------------------- JAN. 2 I Invert I Depth I Water I Q Vel Vel I Energy I Super ICriticall Flow ToplHeight/IBase Wtl No Wth Station -I- I Elev -I- I (FT) I -I- Elev (CFS) -I- I (FPS) Head -I- -I- -I- Grd.El.I E1ev I Depth I Width IDia.-FTlor I-D.I ZL IPrs/Pip L/Elem ICh Slope SF Avel -I- HP ISE -I- Dpthl -I- Froude NINorm Up -I- -I- I "N" I X-Fall.l -I- ZR -I 1Type Ch 1090.069 -I- 1167.151 -I- 1.299 -I- 1168.449 34.00 -I- 11.65 2.11 -I- 1170.55 .00 1.89 1 2.97 3.000 1 .000 .00 1 .0 2.773 .0683 -I- -I- .0164 -I- .05 -I- 1.29 -I- 2.07 .90 -I- -I- .013 -I- .00 .00 1- PIPE 1092.842 -I- 1167.390 -I- 1.391 -I- 1168.681 34.00 -I- 11.11 1.92 1170.60 .00 1.89 2.98 3.000 .000 .00 1 .0 2.307 .0683 I I I I -I- -I- -I- .0144 -I- .03 -I- 1.34 -I- 1.93 .90 -I- -I- .013 -I- .00 .00 1- PIPE 1095.149 1167.497 1.391 1168.889 34.00 I I 10.60 1.74 I 1170.63 .00 I I 1.89 2.99 I I 3.000 I .000 .00 I 1. .0 1.909 .0683 I I I I .0127 .02 1.39 1.80 .90 .013 .00 .00 PIPE 1097.057 11.67.628 1.444 1169.072 34.00 I I 10.10 1.58 I 1170.66 I I 1.89 3.00 I I 3.000 I I -I- -I- -I- -I- .00 .000 .00 1 .0 1..562 .0683 I I I I -I- -I- -I- .0111 -I- .02 -I- 1.44 -I- 1.68 -I- .90 -I- .013 -I- .00 .00 1- PIPE 1098.620 -I- 1167.734 -I- 1.499 -I- 1169.233 34.00 -I- I I 9.63 1.44 -I- I 1170.67 .00 I I 1.89 3.00 I I 3.000 I .000 .00 I 1 .0' 1.256 .0683 I I I I -I- -I- .0098 -I- .01 -I- 1.50 -I- -1.56 -I- .90 -I- .013 -I- .00 .00 1- PIPE 1099.878 -I- 1167.620 -I- 1..556 -I- 1169.376 34.00 -I- I I 9.18 1.31 -I- I 1170.69 .00 I I 1.89 3.00 I I 3.000 I .000 .00 I 1 .0 .984 .0683 -I- -I- .0086 -I- .01 -I- 1.56 -I- 1.46 -I- .90 -I- .013 -I- .00 .00 I- PIPE 1100.561 1167.888 1.616 I 1169.504 34.00 8.76 1.19 1170.69 .00 1.09 2.99 3.000 .000 .00 1 .0 .739 .0683 .0076 .01 1..62 1.35 .90 .013 .00 .00 PIPE 1101.600 11.67.938 1.660 1169.618 34.00 8.35 1.08 1170.70 1.89 2.98 3.000 -I- -I- -I- -I- -I- .00 .000 .00 1 .0 .510 .0683 -I- -I- .0067 -I- .00 -I- 1.68 -I- 1.26 -I- .90 -I- .013 -I- .00 .00 1- PIPE 11.02.110 -I- 1167.9'13 -I- 1.747 -I- 1169.719 34.00 -I- 7.96 .98 1170.70 .00 1.89 2.96 3.000 .000 .00 1 .0 .301 .0683 -I- -I- -I- .0060 -I- .00 -I- 1.75 -I- 1.17 -I- .90 -I- .013 -I- .00 .00 1- PIPE FILE: PAULLAT.WSW W S P G W- CIVILDESIGN Version 12.9PAGE 3 For: Engineering Resources Of Southern California - SIN 685 WATER SURFACE PROFILE LISTING Date: 1.-30-2003 Time: 4: 7:14 HYDRAULIC CALCULATIONS FOR THE STORM DRAIN CROSSING IN PAULITA ROAD AT APPROX. STA. 11+30 --------------- Q100 = 34 CFS CITY OF TEMECULA--------------- 96018002 -------------------- JAN. 2 Invert I 'Depth I Water Q Vel Vel I Energy I Super Criticall F].ow ToplHei.ght/lBase Wt1 [No Wth Station I Elev I (FT) I Elev (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width Dia.-FTIor I.D.I ZL IPrs/Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I L/Elem ICh Slope SF Avel HE ISE Dpthl Froude NINorm Dp I "N" I X -Fall) ZR (Type Ch I I I I I I I I I I I I I 1102.411 1167.993 1.817 11.69.81.1 34.00 7.59 .89 1170.71 .00 1.89 2.93 3.000 .000 .00 1 .0 .099 .0683 .0053 .00 1.82 1.08 .90 .013 .00 .00 PIPE I I I I I I I I I I I I I 1102.510 1168.000 1..894 1169.894 34.00 7.23 .81 1170.71 .00 1.89 2.89 3.000 .000 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- F- % 7 -,- Was C ` A- 0.dw cee*r- ­3q 0 �Gl 1 49- 2 0 ----------- Ile 1> It 18 48r 11000,11,111111,11111111 &SEMENT L ,Od=f 07efs N, Cy) -1140 0 i - r LEGEND MAJOR DR4N4GE AFIEA SL6-DR41VAGE ARE4 @ NODE MO. Q10 =1 i2cfs 10 -YEAR FLOW Q10d=182cfs 100-YE4R FLOW --- — --- DRAINAGE COURSE GRAPHIC SCALE loe 100 0 50 100 200 �'`1 mm=4 F7= SCALE: 1" 100' • X Don't Dig ... UffUl You Call U.S-k Toll Fina DATE BY REVISIONS DATE ACC'D BENCHMARKSCALE SEAL ES Designed By Drawn By Checked By RECOMMENDED BY: DATE:— DRAWING NO. 1-800-227-2600 RTM RTM MA CITY OF TE DEPARTMENT OF PUBLIC WORKS for the location HORIZONTAL PLANS PREPARED UNDER THE SUPERVISION OF of buried utility lines. 1, = 100' No. 41836 ACCEPTED BY: DATE: HYDROLOGY MAP X Don't disrupt Exp. 3/31/04 Date RONALD J. PARKS DEPUTY DIRECTOR OF PUBLIC WORKS vital services. VERTICAL JOHN M. BRUDIN CIVIV CITY OF TEMECULA FOR NA OF R.C.E. NO. 418.36 — Expires 3-31-04 R.C.E. NO. 19744 —Expires 9-30-05 JOHN WARNER RD. DRAINAGE IMPROVEMENTS SHEET OF TWO T0UWG DAYS BMRZ YOU DIG