HomeMy WebLinkAboutIV.b.3. Hydrology ReportI TABLE OF CONTENTS
I
I
INTRODUCTION.................................................. 1
Study Purpose ................................................ 1
' HYDROLOGIC ANALYSIS ......................................... 1
Methodology.................................................1
' Watershed Description ......................................... 2
Watershed Hydrology .......................................... 2
SEDIMENT ANALYSIS ............................................ 3
Methodology................................................. 3
' Pacific Southwest Interagency Committee Method ................... 3
The Dendy/Bolton Method ...................................... 4
DEVELOPMENT OF ALTERNATIVES ................................ 4
Existing Flood Control Facilities ................................. 5
' Existing Utilities .............................................. 5
Development of Alternatives .................................... 5
Alternative No. 1 .............................................. 6
' Alternative No. 2 .............................................. 6
Alternative No. 3 .............................................. 6
Alternative No. 4 .............................................. 6
Recommended Alternative ...................................... 7
' Appendix
[1
I
' WARNER / SANTIAGO ROAD
ASSESSMENT DISTRICT IMPROVEMENT PROJECT
HYDROLOGY STUDY
INTRODUCTION
' From approximately 1975 to the middle 1980's, the area around John Warner Road, between
Jeramie Drive and Santiago Road was subdivided into large parcels. The subdivisions reflect the
development patterns established during earlier land divisions along Ynez Road in the
southeastern portion of the City of Temecula.
This region of the City is characterized by small ranches on parcels of land typically no smaller
' than 5 acres. Public improvements are sparse and generally include water and power and
communications facilities and, in some locations, paved traveled ways. However, while the area
' under consideration enjoys improved water, power and communications systems, the roadways
which are private have been left unimproved.
Study Purpose
Currently, the homeowners along John Warner Road, the La Presa Loop, Colver Court, Lolita
Road and Paulita Road have banded together in pursuit of various improvements that will upgrade
' traveling conditions and storm water conveyance during wet weather. The analyzes contemplated
herein will establish the basis for the renovation of existing drainage facilities necessary to protect
private property and proposed roadway construction. Further, the analyzes will result in
recommendations for the construction of new flood control facilities capable of reducing impacts
of sedimentation on downstream properties.
' The final Engineer's Report will include a written history of project development and system
alternates, a detailed analysis of each alternate, calculations and other documentation supporting
the analysis and recommendations. Construction cost estimates, developed during the analysis of
the alternates, will include costs for construction and other items incidental to the construction of
the recommended facilities.
HYDROLOGIC ANALYSIS
An analysis of the watershed will determine the impact of certain storm events within the area
tributary to the intersection of John Warner Road and Jeramie Drive. To insure accurate
modeling of the tributary area, subarea boundaries have been identified on the most current
topography available and verified by field evaluation. When complete, the hydrologic
calculations predict runoff at key points throughout the watershed.
Methodology
Hydrologic methods used to determine the peak discharges for the study area are based upon
criteria set forth in the Riverside County Flood Control District Hydrology Manual, dated 1978,
' as incorporated in the Civilcadd/Civildesign rational method software package (copyright 1989-
1999). Runoff calculations have been prepared for multiple storm events including 10 -year and
February 3, 2002 City of Temecula Page 7
I
' WARNER / SANTIAGO ROAD
ASSESSMENT DISTRICT IMPROVEMENT ]PROJECT
' HYDROLOGY STUDY
100 -year return frequency storms. Runoff quantities and storm volumes for the stated storms
have been estimated using the Rational Method and the Synthetic Unit Hydrograph Method,
respectively.
' Watershed Description
' Watershed boundaries and the limits of subareas within the watershed were determined using
topography developed by the Riverside County Flood Control and Water Conservation District to
June 1982. Although this topography does not depict the current level of development within the
study area, field verification has shown that current development activities have not significantly
altered drainage patterns through the area.
Overall, the watershed encompasses approximately 48 -acres south of Santiago Road and east of
Vallejo Avenue (See hydrology map for more details). Previous land divisions have divided the
area into five acre parcels which typically developed as small horse ranches. In general, half of
' the area is built out.
Terrain within the study area consists of steep hills partially covered with sage scrub and native
' grasses. The main drainage course is steep and well defined throughout the study area.
Originating near the end of Lolita Road, this natural conveyance flows westerly and
southwesterly crossing Paulita Road, south of Lolita Road and John Warner Road twice south of
' Colver Court. Downstream of the second crossing, the watercourse begin to broaden taking the
characteristics of and alluvial fan as it crosses Jeramie Drive.
Watershed Hydrology
Watershed models have been developed using previously described methods. As noted,
' calculations have been prepared for 10- and 100 -year return frequency storms. Table 1
summarizes the model outcomes at various concentration points throughout the watershed.
1
TABLE 1
Concentration Point
10 -Year Runoff
100 year Runoff
John Wamer Road s/o Colver Court (6)
34 cfs
53 cfs
John Warner Road between La Presa Loop and
Colver Court (7)
56 cfs
90 cfs
John Warner Road at Jeramie Drive (8)
66 cfs
107 cfs
Santiago Road and Lot 87 east of Vallejo Avenue
(9)
281 cfs
506 cfs
February 3, 2002 City of Temecula Page 2
r
'
WARNER / SANTIAGO ][COAD
ASSESSMENT DISTRICT D vROVEMENT PROJECT
' HYDROLOGY STUDY
Hydrology calculations supporting the runoff values cited above are provided in Appendices `B"
and "C", respectively.
SEDIMENT ANALYSIS
Sediment yield from a watershed, is the quantity of sediment moving past a particular point, is
' sometimes mistakenly assumed to be synonymous with erosion. Within a channel, material
eroded from the land slope combined with materials from the banks and channel bed can be a
significant component of the sediment transported past a point of the stream. Eroded material
may be deposited back to the channel bed, on a flood plain or other locations within the watershed
when the sediment load exceeds the transport capacity of the runoff.
Methodology
Sediment yield from a watershed is a function of several factors including vegetative cover,
' rainfall intensity, slope of the watershed, geology, soil type and size of the drainage basin. As
noted above, sediment yield is the rate at which sediment passes a particular point and is typically
estimated as a volumetric rate per year.
Methods of estimating erosion and sediment yield from rangelands are based primarily on
principles developed in areas where cultivated agricultural activities are prevalent. Techniques
' incorporating disturbance of the soil tillage are not generally applicable to rangelands, so erosion
estimating techniques must be adjusted to reflect these land use differences for rangelands.
In June 1982, the U.S. Department of Agriculture published proceeding from the Workshop on
Estimating Erosion and Sediment Yield on Rangelands. This symposium evaluated numerous
methods of estimating erosion and sediment yield in semi -arid regions of the southwest. After
' reviewing the proceedings and evaluating the methods presented, we have determined the most
applicable methods to area under consideration include:
' The Pacific Southwest Interagency Committee Method (PSIAC); and,
The Dendy/Bolton Method.
Paciflc Southwest Interagency Committee Method
The Pacific Southwest Interagency Committee Method was originally intended for use on
' watersheds on 10 square miles or more. However, when tested on small watersheds the method
demonstrated a high level of accuracy when compared to field measurements. The method
requires using nine factors to determine the sediment yield classification for a watershed.
The egg t.factors required include: geology, soils type, climate runoff, topography, ground cover,
land use, upland erosion and channel erosion. Each factor is assigned a numerical value from a
' February 3, 2002 City of Temecula Page 3
1
WARNER / SANTIAGO ROAD
ASSESSMENT DISTRICT IMPROVEMENT PROJECT
HYDROLOGY STUDY
rating chart. Summing the rating chart values for the nine factors defines a sediment yield
classification, which in turn can be converted to the average annual sediment yield.
After evaluating the watershed factors required to determine the sediment yield classification, a
value of 75 has been determined to be most representative of the study area. Using this
classification value, the annual sediment yield for the watershed is estimated at 3,764 cubic feet.
The Dendy/Bolton Method /
Dendy and Bolton derived sediment yield equations having widespread applicability using data
from approximately 800 reservoirs throughout the United States to obtain measured sediment
yield values. The data acquired has been segregated into two areas where runoff was either less
than, or greater than 2 -inches per year.
Because of widely varying local factors, this method may not have been intended for use at a
' specific location. However, the method does express a rational relationship for sediment yield
that seems realistic for conditions encountered in the southwestern United States.
Using the DendyBolton Method, it is estimated that the watershed under consideration will yield
3,405 cubic feet of sediment on an annual basis.
' While other methods of estimating annual sediment yield were tested on the study area, the
PSIAC Method and the DendyBolton Method provided outcomes within reasonable tolerance of
each other. Therefore, an average annual sediment yield of 3,764 cubic feet will be employed
during the design of sediment removal structures for the John Warner Road Improvement Project.
' DEVELOPMENT OF ALTERNATIVES
The development of alternatives for proposed drainage facilities is dependent on several factors.
' Factors affecting alternative development include, but are not limited to, topography, point of
concentration, underground and overhead utilities, existing flood control facilities, environmental
concerns, public safety and available Right -of -Way.
' The primary concerns related to the development of alternatives for the John Warner Road
Improvement Project include the use of existing road culverts, underground utilities and available
' Right -of -Way. Each alternative presented will require consideration of one or all of these
concerns.
U
' February 3, 2002 City of Temecula Page 4
' 'WARNER / SANTIAGO ROAD
ASSESSMENT DISTRICT IMPROVEMENT PROJECT
' HYDROLOGY STUDY
' Existing Flood Control Facilities
Infrastructure systems within the study area are limited to those necessary to meet the minimum
requirements for development. Roadway construction within the area is limited to graded,
earthen traveled ways. For various reasons, this type of roadway is typically protected from
flooding by road culverts as opposed to mainline storm drains.
' Existing road culverts of significant size within the study area include:
48 -inch reinforced concrete pipe crossing John Warner Road west of La Presa Loop;
36 -inch reinforced concrete pipe crossing John Warner Road between La Presa Loop and
Colver Court;
' 36 -inch reinforced concrete pipe crossing John Warner Road west at Colver Court;
30 -inch reinforced concrete pipe crossing Paulita Road south Lolita Road;
' Existing Utilities
Within the area under consideration, there are multiple underground utilities that could interfere
with the construction of new drainage facilities. Underground utility systems that are known to
exist within the study area include water, power, telephone and cable television.
' Utility companies contacted during the development and analysis of drainage alternatives for the
John Warner Road Improvement Project include:
Utility locations shown on record drawings provided by the noted utilities are shown on
the construction drawings.
Development of Alternatives
The primary focus of the analysis related to the John Warner Road Improvements is the
quantification and mitigation of sediment generated in the watershed. Considering this goal and
' various constraints, the alternatives being considered for further_ evaluation are generally
described as:
' February 3, 2002 City of Temecula Page 5
Adelphia
Eastern Municipal Water District
Metropolitan Water District of Southern California
Rancho California Water District
Southern California Edison Company
Southern California Gas Company
'
Verizon
Utility locations shown on record drawings provided by the noted utilities are shown on
the construction drawings.
Development of Alternatives
The primary focus of the analysis related to the John Warner Road Improvements is the
quantification and mitigation of sediment generated in the watershed. Considering this goal and
' various constraints, the alternatives being considered for further_ evaluation are generally
described as:
' February 3, 2002 City of Temecula Page 5
I
t'WARNER / SANTIAGO ROAD
ASSESSMENT DISTRICT IMPROVEMENT ]PROJECT
' HYDROLOGY STUDY
ALTERNATIVE No. 1— "Do Nothing"
Construction drawings for improvements to John Warner Road show the installation of
catch basins and the extension of existing road culverts. Alternate No. 1 considers these
improvements only.
ALTERNATIVE No. 2 — Single Basin Concept
Sediment removal through the construction of a single desilting basin on the south side of
John Warner Road at La Presa Loop. The desilting basin will include a 60 -inch riser and a
' 48 -inch drain pipe to convey the flows to the nearest drainage facility downstream of the
project site. The nearest drainage facility is a grouted rip -rap trapezoidal channel along
Vallejo Avenue between Santiago Road and Ynez Road. The channel is characterized
' with approximately five feet bottom width, 3 to 5 feet depth and 1.5 to 1 side slopes. The
channel consists of numerous culvert crossings at the residence driveways. The tributary
runoff from Santiago watershed area also discharges into this channel. However, due to
the lack of adequate capacity in the channel the tributary runoff from both John Warner
Road and Santiago Road will be conveyed via an underground storm drain system toward
an outlet westerly of Ynez Road between Flores Drive and Vallejo Avenue. The proposed
' alignment will include a 48 -inch storm drain from the desilting basin to Jeramie Drive,
then northerly along the existing Southern California Edison (SCE) 12 -foot easement to
continue within a proposed drainage easement between Lots 87 and 88, toward Vallejo
t Avenue. A junction structure manhole will be constructed to transition from the 48 -inch
to a 84 -inch storm drain pipeline to account for the conveyance of the flows from both
1 watershed areas. An 84 -inch stub will be provided northerly of the manhole for future
extension of the storm drain system to intercept the tributary runoff from Santiago
Watershed to be conveyed toward Ynez Road and ultimately toward the existing outlet.
' Other improvements include: catch basins, culvert extensions, basin outlet structure and
outlet piping within John Warner Road improvements.
' ALTERNATIVE No. 3 — Multiple Basin Concept
Sediment removal through the construction of desilting basins south of John Warner Road
at La Presa Loop and Colver Court. Other improvement include catch basins, culvert
textensions, basin outlet structures and outlet piping.
ALTERNATIVE No. 4 — Interim Condition
The above alternative analysis and construction of the above recommended alternative
will contain the flooding beyond the limits of John Warner Road Assessment District.
' Therefore, the City has requested for an interim alternative to contain the tributary flows
from John Warner Road watershed area to be constructed under this Assessment District.
The storm drain improvements for the ultimate improvements which include both John
February 3, 2002 City of Temecula Page 6
I
' WARNER / SANTIAGO ROAD
ASSESSMENT DISTRICT IMPROVEMENT PROJECT
' HYDROLOGY STUDY
' Warner Road and Santiago Road watersheds will be constructed under a broader
Assessment District. The interim condition alignment maintains the historic drainage
pattern. The collected runoff from the desilting basin will be conveyed via a 48 -inch drain
1 pipe westerly toward an existing earthen channel northwesterly of John Warner Road and
Cabrillo Avenue. The channel runoff historically continues westerly through the existing
residential lots 79-81 and along Flores Drive within lots 52-54, toward the existing two
' 60 -inch Corrugated Metal Pipes(CMP) outlet crossing Ynez Road. The existing earthen
trapezoidal channel is approximately 3 feet deep and 6 feet wide with 2 to I side slope.
' The channel has the capacity to convey approximately 120 efs without overtopping the
road or encroach into the adjacent residential lot of the northwesterly corner of John
Warner Road and Cabrillo Avenue. The development of the interim condition,
' considering the adequate capacity of the channel and maintaining the historic drainage
pattern, it would be feasible to ultimately extend the above alignment through the above
mentioned lots toward the existing two 60 -inch CMP's crossing Ynez Road. This
alternative requires right-of-way acquisition from lots 79-81, and 52-54. The construction
survey for this alternative is performed from the proposed desilting basin at Jeramie Drive,
and then westerly to the existing earthen channel at Cabrillo Avenue. Therefore, the
' extension of the alignment for the ultimate condition is considered for both open channel
and underground systems. Should the construction survey indicate that an adequate grade
does not exist to provide the minimum required cover for the underground system, an
' open channel system could be constructed to be as effective. Other improvements include
catch basins, culvert extension, basin outlet structure, and outlet piping within John
Warner Road improvements.
Recommended Alternative
' Considering the cost of construction for the storm drain systems and maintenance requirements
for the proposed desilting basins; Alternative No. 4 is recommended as the most feasible
alternative. The intercepted flows from John Warner Road will maintain its historic drainage
' pattern without any diversion to Santiago watershed .
Additionally, smaller storm drain system will be required to convey the tributary flows from John
' Warner Road than when it confluences with the runoff from Santiago watershed. The Engineer's
Cost Estimate for the recommended alternative follows the drawings in this report.
' Upon review of all the alternatives in this report, the City staff recommended the interim
condition of Alternative No. 4 to be considered as the Ultimate Condition. The construction
' drawings and the Engineer's Estimate are prepared herein according to the above
recommendation.
' February 3, 2002 City of Temecula Page 7
1
1
1
1
1
1
1
1
1
i
1
1
1
1
�t\PT's
1 / '
/L W
PAA. 4
r ;
PAA. I / \
n
P.M. SO/80-B7 1
\1 1 !f
PAA. 3 r i
,
eo
4•
Jp F
1 PAR. 2 1
\ 1 r
F i
L07 86
ry 1
LOT 62
1
LOT B \ 48" RCP
L�
LOT 8
L07 83 �
\ LOT 64
9
LOT 62 -
4" RCP
LOT 63
\\ LOT 64 `� \
LOT 79
LOT 66
SCALE: I" = 300'
i Call: TOLL FREE
1-800
227-2600
qWW Mn woo YOU .0
REVISIONS
j '�-
T 1 1
L I I i
1
/, \
/
3--�,36" RCPT?'
.4
DR• °a
4RC
LOT 82
LOT 93 \ '
LOT 90
DESILTING
I ( i
18" RCP I —18" RCP /
LLOLItA�
RSP
,TIIi
r r
--BASIN
6E G
BASIN
JTL
`Lr
L
✓F99��L
y,.
SOLE 0..goxo ey _ oro.x ay ee¢o4.a ev evpwirve ry
O�jp1 RiM Rnr M4 RECOMMENDED BY: ORE_
�,; CITY OF TEMECUTA DEPARTMENT OF PUC WORKS
a RLUfi rR[ru+Eo uNo[R ME SUPfF0310N a
r ,
do- N Oaca ACCEPTED 6Y:�� PAw6 OATS_
aotiw M meur. me meee,OR eF Rueuc wonKs JOHN WARNER ROAD
Nn °aa g R.C.E. NO. '+mss Expir jy.p, arr OF o EanA DRAINAGE IMPROVEMENTS
R.C.E. NO 19�M yp�� s-ao-ns 4 ALTERNATIVE NO. 2 ;qEO 1 OF
1
1
1
1
1
1
fs)
GRAPHIC SCALE
100 0 50 100 - 200
SCALE I" = 100'
unoergmuna �e"wO r OR
C.11: rou FREE
1-800
/
ZZ c you 0
11r0 WMfWe Mrs 9809E lee eN
DATEI By REVISIONS IMTE ACC -0 BENCHMARK
1 5C
5EAL
�g 1S
,\�`^ r
cv
o..�e�aa er -k- er
RECOMMENDED BY: ppTE;_
ACCEPTED Bre RAwa DATE:_
ern OF TELEuu
R.C.E.. NO DFPurc dRELTgt 9 -le -es
CIN OF TEMECULA DEPARfMEN OF PUBLIC WORKS
Rni RTM un
NOBaDN�
r, eO•
RVfE RREPARED uHOEA ME suRExMswi OF
Dote
....
JONN WARNER ROAD
DRAINAGE IAAPROVEMENTS
ALTERNATItlE NO. 3
t4
R NO uvr E res s'n'o<
P�
na.
1 OF 7
1 '
I ,
II I I
jJV I I I �
li i i i 1G� I I
fir ----
I
I I
i I
III
!I I I I sa
i
YNEZ RD.
S
it I
`SGT rir IIIA 1G1,.
I
rl I
1 '
II
\ \ II 1
I I
I
I
48" RCRCP -- � I ------ _ __ _ ___ � __ i'_.,._ I i . -l" \ i 1
48" RCP Z DES TING/DETENTION
JOH>I 7wARNER ROAD `' _ easlN
G I I I
�> CABRILLO RD.
I Ii
Ni r
JERAMIE DR. j
1 nisi
GH HIC SCAca -
TOO 0 50 100 200
SC<LE I- . 100'
OwR Ga_VII Tau c"T.
_ p W rlma°"
F
1 w na
JDATEf BY REVISIONS 'DATE M.C'l
BENCHMARKSCAB
SEAL
��'O'"�
`
p ~ \
« r;p rni:
Oaaynea BY Omwn Ey cM1ec4M BY
Re M -MIMED BY:
ACCEPTED BY:
R.GE N0.•x`
CITI' OF TEIMECUTA DEPAmNENT OF PUBLIC WORKS
DRAWING N0.
am arM MA
NORIZONTA.
rC
X
PLW9 PPWMEO UNOEA THE SUPFRNSWN OF
Date
JOHN WARNER ROAD
DRAINAGE IMPROV
:LLTEANATIVE NO. i- tA.T11AATE CONDITION
_.
JOHN N. BflL9q
R.C.E. N0. alese Exoirex 3.ar.aa
sreEi i ov I
' YNEZ RD.
On'f T� Ys M LLSA i.0 lrw
I-em-R3]�3B'a
REVISIONS
c me salla
100 0 50 100 200
SCALE: I- . 100'
SCALE
NA
0 er 1 cnecaea
PWS FREVMM U"M TIE
low M BRl(p OGfa
R.C.E. N0. <uis E<Piree _
NO.
BY:
II
I
JERAMIE DR.
BY: I CITY OF TEMECULA DEPARTMENT OF PUBLIC WORKS
DRAINAGE IMPROVENENTG
ALTERNATIVE NO. 4• ULTIMATE CONDITION
I OPEN CHANNEL OPTION 1
I v
I
11
1
1
1
1
L
1
1
1
1
1
1
1
1
1
1
�o
_ I
�— o
r ,
lei
_ I ,
` I I
l i
l II
II
I + I
I
I
I '
I
I
j-
I
0
GRAPHIC SGL%
300 0 100 200 400
SCALE: 1- .200'
mn aN-,xRi r., ray ua Tw A— DATE BY REVISIONS DATE I ACC'0BENCHMARK I SME SEAL Devgnee By D,. o By cl-x-c By uruwmu No.
,F�, RECOMMENDED 8Y: CITY OF TEMECULA DEPARTMENT OF PUBLIC WORKS
1 -m1 -33} -}KO p`w� y��`y RiY RN YI
tw w Y— XORQOHiK tet¢' PVNS PREPARED UNDER THE SUPERNSON OF 1- • Pao' . ..me ACCEPTED BY: JOHN WARNER ROAD X
Date
It vERnuL .INN Y. eRupw (01 DRAINAGE IMPROVEMENTS
•���o- R.C.E. NO. .mx E.piree }-j'-DR RECOMMENDED ALTERNATIVE SHEET 1 Or 7
NA R.C_E. N0.
I
"ENGINEERING
ESOURCES
OF Soutxmx CALI'M wa, INC.
1
DATE:
10/29/2002
JOB NO.:
96018002
BY:
MA
SHEET
1 OF 1
ALTERNATIVE NO. 2 - SINGLE BASIN CONCEPT
ENGINEER'S ESTIMATE
'IT
No
DESCRIPTION
QUANTITY
PNCE
TOTAL
1.
84 -inch RCP (D-2000)
2,050
LF
325
$ 666,250
2.
48 -inch RCP (D-1500)
2,160
LF
150
324,000
3.
36 -inch RCP (D-1500)
610
LF
140
85,400
4.
18 -inch RCP (D-1500)
168
LF
60
10,080
5.
60 -inch Manholes
6
EA
5,000
30,000
6.
108 -inch Manhole
5
EA
20,000
100,000
7.
Junction Structure
1
EA
15,000
15,000
8.
Headwall/Wingwall at Ynez Road
1
EA
10,000
10,000
9.
84 -inch Bulkhead
1
EA
2,000
2,000
10.
Earthwork
800
CY
5.00
4,000
11.
CSP Riser and Drain Pipe
1
EA
10,000
10,000
12.
Desilting Wall
10
CY
250
2,500
13.
Desilting Inlet
20
CY
250
5,000
Subtotal
$ 1,264,230
20% Contingency
252,846
GRAND TOTAL
$ 1,517,076
' NOTE: The Engineer's Estimate does not include the improvements
required westerly of Ynez Road, downstream of the proposed
improvements.
Plan Sheet 1 of 1
ENGINEERING DATE:
ESOURCES JOB NO.:
BY:
or som m N cwmm. ac. SHEET
' JOHN WARNER ROAD DRAINAGE IMPROVEMENTS
RECOMMENDED ALTERNATIVE
ENGINEER'S ESTIMATE
1/31/2003
96018002
MA
1 OF 1
ITE
DESCRIPTION
QUANTITY
UNIT
TOTAL
1.
Mobilization
1
LS
$ 20,000
$ 20,000
2.
Traffic Control
1
LS
8,000
8,000
3.
42 -inch RCP (D-1500)
1,100
LF
145
159,500
4.
42 -inch RCP (D-2000)
310
LF
150
46,500
5.
36 -inch RCP (D-1500)
400
LF
140
56,000
6.
18 -inch RCP (D-1500)
70
LF
60
4,200
7.
14' C.B.
2
EA
7,000
14,000
8.
21' C.B.
2
EA
9,000
18,000
9.
Manholes
3
EA
5,000
15,000
10.
1/2 Ton Rock Slope Protection
500
CY
50
25,000
11.
Headwall for 42 -inch RCP
2
EA
5,000
10,000
12
Cutoff Wall
23
CY
250
5,750
13.
Desilting Basin
1
LS
30,000
30,000
Subtotal
$ 411,950
20% Contingency
82,390
GRAND TOTAL
$ 494,340
Plan Sheet 1 of 1
APPENDIX
I
1
� RATIONAL METHOD
i JOHN WARNER
� ROAD WATERSHED
11
I
I
I
I
I
11
1
� 10 -YEAR STORM
� FREQUENCY
I
I
I
U
I
I
I
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4
Rational Hydrology Study Date: 07/18/02
File:temeculal0.out
--------------------- — — ---------- — ---------- — ----------------------
********* Hydrology Study Control Information **********
English (in -lb) Units used in input data file
'-------------------------------------------------------------------- — -.-
Engineering Resources of Southern California, Inc. - SIN 685
---------- — — ----------------------------------------------------------
' Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
Standard intensity -duration curves data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
' 10 year storm 10 minute intensity = 2.360(In/Hr)
10 year storm 60 minute intensity = 0.880(In/Hr)
100 year storm 10 minute intensity = 3.480(In/Hr)
100 year storm 60 minute intensity = 1.300(In/Hr)
' Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880(In/Hr)
' Slope of intensity duration curve = 0.5500
[1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 730.000(Ft.)
Top (of initial area) elevation = 1268.000(Ft.)
Bottom (of initial area) elevation = 1180.000(Ft.)
Difference in elevation = 88.000(Ft.)
Slope = 0.12055 s(percent)= 12.05
TC = k(0.480)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 10.241 min.
Rainfall intensity = 2.327(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.740
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.330
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.340
RI index for soil(AMC 2) = 66.75
Pervious area fraction = 0.800; Impervious fraction = 0.200
Initial subarea runoff = 9.300(CFS)
Total initial stream area = 5.400(Ac.)
Pervious area fraction = 0.800
I
1
Process from Point/Station 2.000 to Point/Station .3.000
' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1160.000(Ft.)
End of natural channel elevation = 1172.000(Ft.)
' Length of natural channel = 100.000(Ft.)
Estimated mean flow rate at midpoint of channel = 9.300(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q'.33)(slope^.492)
Velocity using mean channel flow = 3.30(Ft/s)
Correction to map slope used on extremely rugged channels with
'
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0800
Corrected/adjusted channel slope = 0.0800
'
Travel time = 0.50 min. TC = 10.75 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
'
Runoff Coefficient = 0.736
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
'
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 2.266(In/Hr) for a 10.0 year storm
'
Subarea runoff = 0.000(CFS) for 0.000(Ac.)
Total runoff = 9.300(CFS) Total area = 5.400(Ac.)
Process from Point/Station 2.000 to Point/Station 3.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.400(Ac.)
Runoff from this stream = 9.300(CFS)
Time of concentration = 10.75 min.
Rainfall intensity = 2.266(In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 9.000 to Point/Station 10.000
'
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 230.000(Ft.)
Top (of initial area) elevation = 1239.000(Ft.)
'
Bottom (of initial area) elevation = 1190.000(Ft.)
Difference in elevation = 49.000(Ft.)
Slope = 0.21304 s(percent)= 21.30
TC=.k(0.480)*[(length"3)/(elevation change)]"0.2
'
Initial area time of concentration = 5.758 min.
Rainfall intensity = 3.194(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1 Acre Lot)
I
Runoff Coefficient = 0.775
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
'
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
'
Initial subarea runoff = 2.476(CFS)
Total initial stream area = 1.000(Ac.)
Pervious area fraction = 0.800
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 3.000
'
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1190.000(Ft.)
End of natural channel elevation = 1172.000(Ft.)
Length of natural channel = 80.000(Ft.)
'
Estimated mean flow rate at midpoint of channel = 2.624(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
'
velocity = 5.48(q".33)(slopeA.492)
Velocity using mean channel flow = 3.62(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.2250
Corrected/adjusted channel slope = 0.2250
Travel time = 0.37 min. TC = 6.13 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
'
Runoff Coefficient = 0.772
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 3.087(In/Hr) for a 10.0 year storm
Subarea runoff = 0.286(CFS) for 0.120(Ac.)
Total runoff = 2.762(CFS) Total area = 1.120(Ac.)
Process from Point/Station 10.000 to Point/Station 3.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.120(Ac.)
Runoff from this stream = 2.762(CFS)
Time of concentration = 6.13 min.
Rainfall intensity = 3.087(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
I
Process from Point/Station 3.000 to Point/Station 4.000
**** CONFLUENCE OF MAIN STREAMS ****
1
. 1 9.300 10.75 2.266
2 2.762 6.13 3.087
Largest stream flow has longer time of concentration
Qp = 9.300 + sum of
Qb Ia/Ib
2.762 * 0.734 = 2.027
Qp = 11.327
Total of 2 main streams to confluence:
Flow rates before confluence point:
9.300 2.762
Area of streams before confluence:
'
- 5.400 -1.120
Results of confluence:
Total flow rate = 11.327(CFS)
'
Time of concentration = 10.746 min.
Effective stream area after confluence = 6.520(Ac.)
Process from Point/Station 3.000 to Point/Station 4.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1172.000(Ft.)
End of natural channel elevation = 1164.000(Ft.)
Length of natural channel = 130.000(Ft.)
Estimated mean flow rate at midpoint of channel = 11.327(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q�.33)(slope'.492)
'
velocity using mean channel flow = 3.10(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0615
Corrected/adjusted channel slope = 0.0615
Travel time = 0.70 min. TC = 11.45 min.
'
Adding area flow tochannel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.731
'
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 2.189(In/Hr) for a 10.0 year storm
Subarea runoff = 0.000(CFS) for 0.000(Ac.)
'
Total runoff = 11.327(CFS) Total area = 6.520(Ac.)
Process from Point/Station 3.000 to Point/Station 4.000
**** CONFLUENCE OF MAIN STREAMS ****
1
J
The following data inside Main Stream is listed:
In Main Stream number: 1
t
Stream flow area = 6.520(Ac.)
Runoff from this stream = 11.327(CFS)
Time of concentration = 11.45 min.
Rainfall intensity = 2.189(In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 15.000 to Point/Station 4.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 280.000(Ft.)
Top (of initial area) elevation = 1250.000(Ft.)
Bottom (of initial area) elevation = 1164.000(Ft.)
-Difference in elevation = 86.000(Ft.)
Slope = 0.30714 s(percent)= 30.71
'
TC = k(0.480)*[(length"3)/(elevation change)]''0.2
Initial area time of concentration = 5.789 min.
Rainfall intensity = 3.184(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.775
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
'
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.600; Impervious fraction = 0.200
Initial subarea runoff = 2.467(CFS)
'
Total initial stream area = 1.000(Ac.)
Pervious area fraction = 0.800
Process from Point/Station 15.000 to Point/Station 4.000
**** CONFLUENCE OF MAIN STREAMS ****
'
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.000(Ac.)
'
Runoff from this stream = 2.467(CFS)
Time of concentration = 5.79 min.
Rainfall intensity = 3.184(In/Hr)
Program is now starting with Main Stream No. 3
Process from Point/Station 11.000 to Point/Station 12.000
'
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 250.000(Ft.)
Top (of initial area) elevation = 1231.000(Ft.)
'
Bottom (of initial area) elevation = 1182.000(Ft.)
Difference in elevation = 49.000(Ft.)
Slope = 0.19600 s(percent)= 19.60
TC = k(0.480)*[(length"3)/(elevation change)]"0.2
Initial area time of concentration = 6.053 min.
Rainfall intensity = 3.107(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1 Acre Lot)
J
1
1
Runoff Coefficient = 0.772
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
'
Initial subarea runoff = 3.600(CFS)
Total initial stream area = 1.500(Ac.)
Pervious area fraction = 0.800
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 4.000
'
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1182.000(Ft.)
End of natural channel elevation = 1164.000(Ft.)
Length of natural channel = 90.000(Ft.)
'
Estimated mean flow rate at midpoint of channel = 4.128(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q".33)(slope'.492)
Velocity using mean channel flow = 3.96(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.2000
Corrected/adjusted channel slope 0.2000
'
Travel time = 0.38 min. TC = 6.43 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
'
Runoff Coefficient = 0.769
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for scil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = '0.200
' -
Rainfall intensity = 3.005(In/Hr) for a 10.0 year storm
subarea runoff = 1.017(CFS) for 0.440(Ac.)
Total runoff = 4.616(CFS) Total area = 1.940(Ac.)
Process from Point/Station 12.000 to Point/Station 4.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 1.940(Ac.)
'
Runoff from this stream = 4.616(CFS)
Time of concentration = 6.43 min.
Rainfall intensity = 3.005(In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
II
1 11.327 11.45 2.189
'
2 2.467 5.79 3.184
3 4.616 6.43 3.005
Largest stream flow has longer time of concentration
Qp = 11.327-+ sum of
'
Qb Ia/Ib
2.467 * 0.687 = 1.696
Qb Ia/Ib
4.616 * 0.728 = 3.362
Qp = 16.386
Total of 3 main streams to confluence:
Flow rates before confluence point:
'
11.327 2.467 4.616
Area of streams before confluence:
6.520 1.000 1.940
'
Results of confluence:
Total flow rate = 16.386(CFS)
Time of concentration = 11.445 min.
'
Effective stream area after confluence 9.460(Ac.)
-
Process from Point/Station 4.000 to Point/Station 5.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1164.000(Ft.)
'
End of natural channel elevation = 1154.000(Ft.)
Length of natural channel = 240.000(Ft.)
Estimated mean flow rate at midpoint of channel = 16.386(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q".33)(slope'.492)
Velocity using mean channel flow = 2.89(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
'
Normal channel slope = 0.0417
Corrected/adjusted channel slope = 0.0417
Travel time = 1.39 min. TC = 12.83 min.
'
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.723
'
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
'
RI index for soil(AMC 2) = 66.56.
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 2.056(In/Hr) for a 10.0 year storm
Subarea runoff = 0.000(CFS) for 0.000(Ac.)
Total runoff = 16.386(CFS) Total area = 9.460(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
'
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 9.460(Ac.)
'
Runoff from this stream = 16.386(CFS)
Time of concentration = 12.83 min.
Rainfall intensity = 2.056(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 5.000
'
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1220.000(Ft.)
Bottom (of initial area) elevation = 1154.000(Ft.)
Difference in elevation = 66.000(Ft.)
Slope = 0.22000 s(percent)= 22.00
TC = k(0.480)*[(length''3)/(elevation change)]''0.2
Initial area time of concentration = 6.362 min.
Rainfall intensity = 3.023(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.769
'
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
t
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Initial subarea runoff = 2.559(CFS)
Total initial stream area = - 1.100(Ac.)
Pervious area fraction = 0.800
Process from Point/Station 15.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
t
In Main Stream number: 2
Stream flow area = 1.100(Ac.)
Runoff from this stream = 2.559(CFS)
Time of concentration = 6.36 min.
'
Rainfall intensity = 3.023(In/Hr)
Program is now-starting with Main Stream No. 3
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
'
Initial area flow distance = 350.000(Ft.)
Top (of initial area) elevation = 1256.000(Ft.)
Bottom (of initial area) elevation = 1192.000(Ft.)
'
Difference in elevation = 64.000(Ft.)
Slope = 0.18286 s(percent)= 18.29
TC = k(0.480)*[(length''3)/(elevation change)]"0.2
'
Initial area time of concentration = 7.022 min.
Rainfall intensity = 2.864(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1 Acre Lot)
'
Runoff Coefficient = 0.764
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
'
Decimal fraction soil group D = 0.330
RI index for scil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Initial subarea runoff = 3.280(CFS)
Total initial stream area = 1.500(Ac.)
Pervious area fraction = 0.800
Process from Point/Station 14.000 to Point/Station 5.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1192.000(Ft.)
End of natural channel elevation = 1154.000(Ft.)
Length of natural channel = 170.000(Ft.)
'
Estimated mean flow rate at midpoint of channel = 3.957(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q'.33)(slope^.492)
'
Velocity using mean channel flow = 4.13(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
'
Normal channel slope = 0.2235
Corrected/adjusted channel slope = 0.2235
Travel time = 0.69 min. TC = 7.71 min.
1
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.758
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 2.720.(In/Hr) for a 10.0 year storm
Subarea runoff = 1.278(CFS) for 0.620(Ac.)
Total runoff = 4.558(CFS) Total area = 2.120(Ac.)
Process from Point/Station 14.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
'
In Main Stream number: 3
Stream flow area = 2.120(Ac.)
Runoff from this stream = 4.558(CFS)
Time of concentration = 7.71 min.
Rainfall intensity = 2.720(In/Hr)
Summary of stream data:
11
I
1
Stream Flow rate TC
No. (CFS) (min)
1 16.386 12.83
2 2.559 6.36
3 4.558 7.71
Largest stream flow has longer time of
Qp = 16.386 + sum of
Qb Ia/Ib
2.559 * 0.680 = 1.740
Qb Ia/Ib
4.558 * 0.756 = 3.444
Qp = 21.569
Rainfall Intensity
(In/Hr)
Total of 3 main streams to confluence:
Flow rates before confluence point:
16.386 2.559 4.558
Area of streams before confluence:
9.460 1.100 2.120
2.056
3.023
2.720
concentration
'
Results of confluence:
Total flow rate = 21.569(CFS)
Time of concentration = 12.831 min.
'
Effective stream area after confluence = 12.680(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 6.000
'
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1154.000(Ft.)
'
End of natural channel elevation = 1122.000(Ft.)
Length of natural channel = 620.000(Ft.)
Estimated mean flow rate at midpoint of channel = 29.309(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q'.33)(slope".492)
Velocity using mean channel flow = 3.89(Ft/s)
'
- Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0516
Corrected/adjusted channel slope = 0.0516
Travel time = 2.66 min. TC = 15.49 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.709
Decimal fraction soil group A = 0.000 -.
Decimal fraction soil group B = 0.340
'
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
'
Rainfall intensity = 1.853(In/Hr) for a 10.0 year storm
Subarea runoff = 11.955(CFS) for 9.100(Ac.)
'
Total runoff = 33.524(CFS) Total area = 21.780(Ac.)
Process from Point/Station 6.000 to Point/Station 7.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
'
Top of natural channel elevation = 1122.000(Ft.)
End of natural channel elevation = 1098.000(Ft.)
.Length of natural channel = 390.000(Ft.)
Estimated mean flow rate at midpoint of channel = 47.069(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) _ (7 + 8(q(English Units)".352)(slope"0.5)
'
Velocity using mean channel flow = 9.44(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
'
Normal channel slope = 0.0615
Corrected/adjusted channel slope = 0.0615
Travel time = 0.69 min. TC = 16.18 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.705
'
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330 -
-
Decimal fraction soil group D = 0.330
'
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 1.809(In/Hr) for a 10.0 year storm
Subarea runoff = 22.467(CFS) for 17.600(Ac.)
'
Total runoff = 55.991(CFS) Total area = 39.380(Ac.)
Process from Point/Station 7.000 to Point/Station 8.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1098.000(Ft.)
'
End of natural channel elevation = 1080.000(Ft.)
Length of natural channel = 640.000(Ft.)
Estimated mean flow rate at midpoint of channel = 62.033(CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) _ (7 + 8(q(English Units)`.352)(slope"0.5)
Velocity using mean channel flow = 6.91(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0281
Corrected/adjusted channel slope = 0.0281
Travel time = 1.54 min. TC = 17.72 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
'
-
Runoff Coefficient = 0.698
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
'
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious
fraction = 0.200
'
Rainfall intensity = 1.721(In/Hr) for
a 10.0 year storm
Subarea runoff = 10.215(CFS) for 8.500(Ac.)
Total runoff = 66.205(CFS) Total area
= 47.880(Ac.)
End of computations, total study area =
47.88 (Ac.)
The following figures may
be used for a unit hydrograph study of the
same area.
Area averaged pervious area fraction(Ap) =
0.800
Area averaged RI index number = 66.6
I
11
1
� 100 -YEAR STORM
� FREQUENCY
I
I
I
I
I
I
I
I
1
[1
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2001 Version 6.4
Rational Hydrology Study Date: 07/18/02 File:temecula.out
---------------------------------------------------------------
********* Hydrology Study Control Information **********
English (in -1b) Units used in input data file
------------------------------------------------------------------------
Engineering Resources of Southern California, Inc. - SIN 685
- —---------------------------------- — - — -------- ---------------------
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual 11
Storm event (year) = 100.00 Antecedent Moisture Condition = 2
Standard intensity -duration curves
data (Plate D-4.1)
For the [ Murrieta,Tmc,Rnch Callorco
] areased.
10 year storm 10 minute intensity =
2.360 An/Hr)
10 year storm 60 minute intensity -
0.880 (7�n
Hr)
100 year storm 10 minute intensity
= 3.48'01/(
n%r)
100 year storm 60 minute intensity
= 1.300
In/Hr)
Storm event year = 100.0
Calculated rainfall OLe0�Sity data:
1 hour intensity = 1.30 (In/Hr)
Slope of intensity duration curve =
0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION **** /
Initial area flow distance = -,730-.000'(Ft )
Top (of initial area) elevation/
1268.0gy.(Ft.)
Bottom (of initial area) elevati= 118 (Ft.
Difference in elevation = 86.000(Ft.)
Slope = 0.12055 s(percent)= 12.05
TC = k(0.480)*[(length'3)/(elevation ch e)] 0.2
Initial area time of concen ion = 0,.241 in.
Rainfall intensity = .437 In/Hr) for a 100
SINGLE FAMILY (1 Acre L
Runoff Coefficient = 0.7.83
Decimal fraction soil 0. 0
Decimal fraction soil group B = 0
Decimal fraction soil group C = 0.
Decimal fraction soil group D = 0.3
RI index for soil(AMC 2) = 66.75
0 year storm
' Pervious area fraction = 0.800; erviou fraction = 0.200
Initial subarea runoff = 14.54
Total initial stream area = .400 c.)
Pervious area fraction = 0.800
I
L
L
1
1
Process from Point/Station 2.000 to Point/Station 3.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1180.000(Ft.)
End of natural channel elevation = 1172.000(Ft.)
Length of natural channel = 100.000(Ft.)
Estimated mean flow rate at midpoint of channel = 14.542(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(gA.33)(slope'.492)
velocity using mean channel flow = 3.83(Ft/9)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0800
corrected/adjusted channel slope = 0.0800
Travel time = 0.44 min. TC = 10.68 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.780
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
RI index for soil(AMC
Pervious area fraction
Rainfall intensity =
Subarea runoff =
Total runoff = 14.
group A = 0.000
group B = 0.340
group C = 0.330
group D = 0.330
2) = 66.56
= 0.800; Impervious fraction
3.360(In/Hr) for a 100.0
0.000(CFS) for. 0.000(Ac.)
542(CFS) Total area =
= 0.200
year storm
5.400(Ac.)
Process from Point/Station 2.000 to Point/Station 3.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.400(A
Runoff from this stream = 1 54 (CFS)
Time of concentration = 10.6 /min.
Rainfall intensity = 3.36 In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 10.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = �_ 3O!000(Ft.)
Top (of initial area) elevation = 1239.000(Ft.)
Bottom (of initial area) elevation = 1190.000(Ft.)
Difference in elevation = 49.000(Ft.)
Slope = 0.21304 s(percent)= 21.30
TC = k(0.480)*[(length"3)/(elevation change))'0.2
Initial area time of concentration = 5.758 min.
Rainfall intensity = 4.718(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.810
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Initial subarea runoff = 3.824(CFS)
Total initial stream area = 1.000(Ac.)
Pervious area fraction = 0.800
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 3.000
****'NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1190.000(Ft.)
End of natural channel elevation = 1172.000(Ft.)
Length of natural channel = 80.000(Ft.) '�
Estimated mean flow rate at midpoint of channel = jJ!D�(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(gA.33)(slope�.492)
Velocity using mean channel flow = 4.17(Ft/s)
Correction to map slope used on extremely rugged channels with
dropsandwaterfalls (Plate D-6.2)
Normal channel slope = 0.2250
Corrected/adjusted channel slope = 0.2250
Travel time = 0.32 min. TC = 6.08 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.808
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
RI index for soil(AMC
Pervious area fraction
Rainfall intensity =
Subarea runoff =
Total runoff = 4.
group A = 0.000
group B = 0.340
group C = 0.330
group D = 0.330
2) = 66.56
0.800; Impervious
4.580(In/Hr) for
0.444(CFS) for 0
fraction = 0.200
100.0 year storm
120 (Ac.)
268(CFS) Total area
1.120(AC.)
Process from Point/Station 10.000 to Point/Station 3.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.120(Ac.)
Runoff from this stream = 4.268(CFS)
Time of concentration = 6.08 min.
Rainfall intensity = 4.580(In/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1
I�
1
�/1
14542" 10.664 3.3360'
2 4:26.8 6.0p,`i 4.5805 .
gest stream flow has `longer time of concentration
Qp 14.542 + sum of
Qb Ia/Ib
'
D4.268 * 0.733 = 3.131
i4p 17.673 �AlWQ-
Total of 2 main streams to confluence:
'
Flow rates -before -confluence point:
-'- 14- 542 4.268
Ares --of 'streams before confluence:
'
- 5.400 1.120
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Results of confluence:
'
Total flow rate = 17.673(CFS)
Time of concentration = . 10.677 min.
'
Effective stream area after confluence 6.520(Ac.)
-
+++++++++++++++++++k++++++++++++++++++++++++++++++++++++++++++++++++++
'
Process from Point/Station 3.000 to Point/Station 4.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1172.000(Ft.)
End of natural channel elevation = 1164.000(Ft.)
Length of natural channel = 130.000(Ft.)
Estimated mean flow rate at midpoint of channel = 17.673(CFS)
'
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q'.33)(slope^.492)
t
Velocity using mean channel flow = 3.59(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2).
'
Normal channel slope = 0.0615
Corrected/adjusted channel slope = 0.0615
Travel time = 0.60 min. TC = 11.28 min.
'
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.777
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
- RI index for soil(AMC 2) = 66.56
'
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 3.259(In/Hr) for a 100.0 year storm
Subarea runoff = 0.000(CFS) for 0.000(Ac.)
'
Total runoff = 17.673(CFS) Total area = 6.520(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
'
**** CONFLUENCE OF MAIN STREAMS ****
I
' The following data inside Main Stream is listed:
In Main Stream number: 1
' Stream flow area = 6.520(Ac.)
Runoff from this stream = 17.673(CFS)
Time of concentration = 11.28 min.
Rainfall intensity = 3.259(In/Hr)
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 250.000(Ft.)
Top (of initial area) elevation = 1231.000(Ft.)
Bottom (of initial area) elevation = 1182.000(Ft.)
Difference in elevation = 49.000(Ft.)
Slope = 0.19600 s(percent)= 19.60
TC = k(0.480)*[(length'3)/(elevation change)]'0.2
Initial area time of concentration = 6.053 min.
Rainfall intensity = 4.590(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.808
LI
1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/Station 4.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 280.000(Ft.)
Top (of initial area) elevation = 1250.000(Ft.)
Bottom (of initial area) elevation = 1164.000(Ft.)
Difference in elevation = 86.000(Ft.)
Slope = 0.30714 s(percent)= 30.71
TC = k(0.480)*[(length"3)/(elevation change)]'0.2
'
Initial area time of concentration = 5.789 min.
Rainfall intensity = 4.704(ln/Hr) for a 100.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.810
'.
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Initial subarea runoff = 3.812(CFS)
Total initial stream area = 1.000(Ac.)
Pervious area fraction = 0.800
Process from Point/Station 15.000 to Point/Station 4.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.000(Ac.)
Runoff from this stream = 3.812(CFS)
'
Time of concentration = 5.79 min.
Rainfall intensity = 4.704(In/Hr)
Program is now starting with Main Stream No. 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 250.000(Ft.)
Top (of initial area) elevation = 1231.000(Ft.)
Bottom (of initial area) elevation = 1182.000(Ft.)
Difference in elevation = 49.000(Ft.)
Slope = 0.19600 s(percent)= 19.60
TC = k(0.480)*[(length'3)/(elevation change)]'0.2
Initial area time of concentration = 6.053 min.
Rainfall intensity = 4.590(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.808
LI
1
1
Decimal fraction soil group
A =
0.000
Decimal fraction soil group
B =
0.340
Decimal fraction soil group
C =
0.330
Decimal fraction soil group
D =
0.330
RI index for soil(AMC 2) =
66.56
Pervious area fraction = 0.800;
Impervious fraction = 0.200
Initial subarea runoff =
5.566(CFS)
,-
Total initial stream area =
1.500(Ac.)
Pervious area fraction = 0.800
I
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 4.000
**** NATURAL CHANNEL rTIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1182.000(Ft.)
End of natural channel elevation = 1164.000(Ft.)
Length of natural channel = 90.000(Ft.)
Estimated mean flow rate at midpoint of channel 6.382(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q'.33)(51ope'.492)
Velocity using mean channel flow = 4.58(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.2000
Corrected/adjusted channel slope = 0.2000
Travel time = 0.33 min. TC = 6.38 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.806
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
Decimal fraction soil
RI index for soil(AMC
Pervious- area fraction
Rainfall intensity =
Subarea runoff =
Total runoff = 7.
group A = 0.000
group B = 0.340
group C = 0.330
group D = 0.330
2) = 66.56-
0,800; Impervious
4.459(ln/Hr) for
1.581(CFS) for 0
fraction = 0.200
100.0 year storm
440(Ac.)
147(CFS) Total area
1.940(Ac.)
Process from Point/Station 12.000 to Point/Station 4.000
**** CONFLUENCE OF MAIN STREAMS ****
' The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 1.940(Ac.)
Runoff from this stream = 7.147(CFS)
Time of concentration = 6.38 min.
Rainfall intensity = 4.459(In/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 17.673 11.28 3.259
2 3.812 5.79 4.704
3 7.147 6.38 4.459
Largest stream flow has longer time of concentration
Qp = 17.673 + sum of
Qb Ia/Ib
3.812 * 0.693 = 2.641
Qb Ia/Ib
7.147 * 0.731 = 5.224
'
Qp = 25.536
Total of 3 main streams to confluence:
Flow rates before confluence point:
17.673 3.812 7.147
'
Area of streams before confluence:
6.520 1.000 1.940
'
Results of confluence:
Total flow rate = 25.538(CFS)
Time of concentration = 11.281 min.
Effective stream area after confluence = 9.460(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1164.000(Ft.)
End of natural channel elevation = 1154.000(Ft.)
Length of natural channel = 240.000(Ft.)
Estimated mean flow rate at midpoint of channel = 25.538(CFS)
'
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q".33)(slope'.492)
Velocity using mean channel flow = 3.34(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0417
Corrected/adjusted channel slope = 0.0417
Travel time = 1.20 min. TC = 12.48 min.
Adding area flow to channel
'
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.772
Decimal fraction soil group A = 0.000
'
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
'
Rainfall intensity = 3.084(In/Hr) for a 100.0 year storm
Subarea runoff = . 0.000(CFS) for 0.000(Ac.)
Total runoff = 25.538(CFS) Total area = 9.460(Ac.)
1++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
11
Process from Point/Station 4.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
'
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 9.460(Ac.)
Runoff from this stream = 25.538(CFS)
'
Time of concentration = 12.48 min.
Rainfall intensity = 3.084(ln/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 16.000 to Point/Station 5.000
'
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1220.000(Ft.)
Bottom (of initial area) elevation = 1154.000(Ft.)
'
Difference in elevation = 66.000(Ft.)
Slope = 0.22000 s(percent)= 22.00
TC = k(0.480)*[(1ength"3)/(elevation.change)]'0.2
Initial area time of concentration = 6.362 min.
'
Rainfall intensity = 4.466(In/Hr) for a 100.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.806
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
'
Pervious area fraction = 0.800; Impervious fraction = 0.200
Initial subarea runoff = 3.960(CFS)
Total initial stream area = 1.100(Ac.)
Pervious area fraction = 0.800
Process from Point/Station 15.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
'
In Main Stream number: 2
Stream flow area = 1.100(Ac.)
Runoff from this stream = 3.960(CFS)
Time of concentration = 6.36 min.
'
Rainfall intensity = 4.466(In/Hr)
Program is now starting with Main Stream No. 3
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION ****
'
Initial area flow distance = 350.000(Ft.)
Top. (of initial area) elevation = 1256.00O(Ft.)
Bottom (of initial area) elevation = 1192.000(Ft.)
Difference in elevation = 64.000(Ft.)
Slope = 0.18286 s(percent)= 18.29
'
TC = k(0.480)*[(1ength^3)/(elevation change).]'0.2
Initial area time of concentration = 7.022 min.
tRainfall
intensity = 4.230(In/Hr)
for a 100.0 year storm
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.802
'
Decimal fraction soil group
A = 0.000
Decimal fraction soil group
B = 0.340
Decimal fraction soil group
C = 0.330
Decimal fraction soil group
D = 0.330
'
RI index for soil(AMC 2) =
66.56
Pervious area fraction = 0.800;
Impervious fraction = 0.200
Initial subarea runoff =
5.086(CFS)
Total initial stream area =
1.500(Ac.)
Pervious area fraction = 0.800
Process from Point/Station
14.000 to Point/Station 5.000
**** NATURAL CHANNEL TIME +
SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1192.000(Ft.)
t
End of natural channel elevation = 1154.000(Ft.)
Length of natural channel
= 170.000(Ft.)
Estimated mean flow rate at
midpoint of channel = 6.138(CFS)
I
1
1
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q'.33)(slope'.492)
velocity using mean channel flow = 4.77(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.2235
Corrected/adjusted channel slope = 0.2235
Travel time = 0.59 min. TC = 7.62 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.798
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 4.046(In/Hr) for a 100.0 year storm
Subarea runoff = 2.001(CFS) for 0.620(Ac.)
Total runoff = 7.087(CFS) Total area = 2.120(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 2.120(Ac.)
Runoff from this stream = 7.087(CFS)
Time of concentration = 7.62 min.
Rainfall intensity = 4.046(In/Hr)
Summary of stream data:
'
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 25.538 12.48 3.064
2 3.960 6.36 4.466
3 7.087 7.62 4.046
Largest stream flow has longer time of concentration
Qp = 25.538 + sum of -
Qb Ia/Ib
3.960 * 0.690 = 2.734
Qb Ia/Ib
7.087 * 0.762 = 5.402
Qp = 33.674 -
'
Total of 3 main streams to confluence:
Flow rates before confluence point:
25.538 3.960 7.087
Area of streams before confluence:
'
9.460 1.100 2.120
Results of confluence:
'
Total flow rate = 33.674(CFS)
Time of concentration = 12.477 min.
Effective stream area after confluence = 12.680(Ac.)
Process from Point/Station 5.000 to Point/Station 6.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION
Top
of natural channel elevation - 1154.000(Ft.)
End of natural channel elevation = 1122.000(Ft.)
Length of natural channel = 620.000(Ft.)
'
Estimated mean flow rate at midpoint of channel = 45.758(CFS)
Natural mountain channel type used
'
L.A. County flood control district formula for channel velocity:
Velocity = 5.48(q".33)(slope^.492)
Velocity using mean channel flow = 4.50(Ft/s)
'
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0516
Corrected/adjusted channel slope = 0.0516
'
Travel time = 2.30 min. TC = 14.77 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.761
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
'
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 2.810(In/Hr) for a 100.0 year storm
Subarea runoff = 19.471(CFS) for 9.100(Ac.)
Total runoff = 53.145(CFS) Total area = 21.780(Ac.)
I
1
1
Process from Point/Station 6.000 to Point/Station 7.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
'
Top of natural channel elevation = 1122.000(Ft.)
End of natural channel elevation = 1098.000(Ft.)
Length of natural channel = 390.000(Ft.)
Estimated mean flow rate at midpoint of channel = 74.618(CFS)
'
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) _ (7 + 8(q(English Units)'.352)(slope''0.5)
Velocity using mean channel flow = 10.79(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
channel,
Normal channel slope = 0.0615
'
Corrected/adjusted cannel slope = 0.0615
Travel time = 0.60 min. TC = 15.37 min.
'
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.759
Decimal fraction soil group A = 0.000
'
Decimal fraction soil group B = 0.340
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56
Pervious area fraction = 0.800; Impervious fraction = 0.200
Rainfall intensity = 2.749(In/Hr) for a 100.0 year storm
Subarea runoff = 36.719(CFS) for 17.600(Ac.)
Total runoff = 89.864(CFS) Total area = 39.380(Ac.)
++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1098.000(Ft.)
End of natural channel elevation = 1080.000(Ft.)
Length of natural channel = 640.000(Ft.)
Estimated mean flow rate at midpoint ofchannel= 99.563(CFS)
Natural valley channel type used
'
L.A. County flood control district formula for channel velocity:
Velocity(ft/s) _ (7 + 8(q(English Units)^.352)(slope''0.5)
Velocity using mean channel flow = 7.95(Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.0281
Corrected/adjusted channel slope = 0.0281
Travel time = 1.34 min. TC = 16.72 min.
Adding area flow to channel
SINGLE FAMILY (1 Acre Lot)
Runoff Coefficient = 0.754
1
I
1
11
11
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.340
'
Decimal fraction soil group C = 0.330
Decimal fraction soil group D = 0.330
RI index for soil(AMC 2) = 66.56.
Pervious area fraction =- 0.800; Impervious
fraction = 0.200
Rainfall intensity = 2.625(In/Hr) for
a 100.0 year storm
'
Subarea runoff = 16.618(CFS) for 8.500(Ac.)
Total runoff = 106.682(CFS) Total area
= 47.880(Ac.)
End of computations, total study area =
47.88 (Ac.)
The following figures may
be used for a unit hydrograph study of the
same area.
Area averaged pervious area fraction(AP) =
0.800
Area averaged RI index number = 66.6
1
11
11
L
1000
900
800
700
Tc'
100
90
80
70
60
C
600 En 50
9•
k 400
o 350
0
a F 300
c
o 250
w
CR
m 200
J
150
0
r
35
n
w
0 30
w
25
c
E
20
19
IB
17
t6
0 15
'� 14
` 13
C
0-12
� II
0
E 9
8
7
6
LIMITATIONS:
5
I. Maximum
length
= 1000'
2. Maximum
area =
10 Acres
a
71-
r
0
H
,�.
r_
Y
M
a
tr
44000
300
_CP -
s
>
200
C
O
y
O.
O
N
E
i o0
o
0
�
4�pp
E
CLTo
a
•
v
30
o
e
c
r
20
10
O
0
8
5
4
RCFC a WCD
HYDF30LOGY �VJANUAL
K
Undeveloped
Good -Cover
Undeveloped
Fair Cover
Single Family
(1/4 Acre)
Commercial.
(Pav
� 2
r
w
1.0
.8
.6
_ :4e
c .3
0 2
0
u
c
0
0
w
Tc
5
6
d
u
Q
71-
,�.
r_
Bo.
Mr.
14 --a
N
15 3'
16
17 E
18—s
19
20 --
c
0
0
25 Z)
KEY o
L- H –Tc –K–Tc `o
30
EXAMPLE; FE
–
(I)L=550', H=5.0,K=Single Family(1/4Ac.) 35
Development, Tc = 12_6 min.
(2) L =550', H =5.0', K= Commercial 40
Development , Tc = 9.7 fnin.
Reference: Bibliography item No. 35.
v
<
c�
`A`
I)
NIRA
DUR4TION
MINUTES
LO Ma
FREQUENCY
-
to loo
YEAR YEAR
RAINFALL INTENSITY -INCHES
MURR lE i4 - T[N(2UL4 MORCO
L RANCHO CALIFORNIA
DURATION FREQUENCY DURATION lgCOU[MCY
MINUTES MINUTES
le lee a Ie1
Y[e9 Y[99 ItAR YEAR
PER HOUR
•4L+ SPAT N65
DllRATION FREQUENCY
MINUTES
u ' u1
YEAR YEAR
aERg15
DURATION
MINUTES
Y4Ll.EY
=qE0$+E•
to lot
TE 4q YEAR
S
2.e4
4.48
S
7.95
5.11
5
2. 1i
4.16
S
4.21
6.76
S
2.69
).ie
6
2.58
4.07
6
3.12
9.61
6
2.51
3.79
6
7.//
6.86
6
2.91
7.94
\_
7
2.71
). Ts
7
2.e/
4.N
i
2.79
J.51
T
3.98
5.56
i
2.24
7.21
b
e
2.21
7.w
a
z.a/
3.94
a
2.19
7.29
1
7.22
5.1s
a
z.19
7.11
9
;,Oe
7.2e
9
2.50
3.69
9
2.07
7.11
9
7.11
4•e1
9
1.98
1.64
C
10
1.96
7.10
10
2.76
3.48
10
1.96
2.99
10
1.03
4.52
11
1.//
b
It
1.01
2.95
II
2.24
)JO
11
1.81
2•e1
11
2.61
4.24
It
1.10
2.19
12
1.7e
2.02
12
2.13
1.15
12
1.79
2.64
12
2.54
9,/7
12
1.12-
i.57
r
IJ
1.71
2.10
11
Leo
-7.01
13 -
1.72
•Se
13
2.43
).N
U
2.91
i♦
1.64
2.60
14
1.96
2.e9
19
1.66
.2
2.9e
19
2.33
3.72
19
1.6s
2.77
I.59
2.29
15
1.58
2.50
IS
1.89
2.19
15
1.60
2.41
IS
Z.23
7.58
IS
1.59
2.21
16
1.53
2.92
16
1.02
2.69
16
1.55
2.72
IB
2.1s
3.49
16
1.49
2.19
11
1.48
2.39
it
1.76
2.60
1?
I.SO
2.25
1/
?.1 a
3,72
17
I.95
2.08
IB
1.94
2.21
to
1.71
2.52
to
1.+6
2.19
Is
2.11
7.22
to
1.41
19
1.90
2.21
19
1.6e
2.95
19
1.9i
2.13
19
1.95
). 12
19
2.12
1.3?
1.97
20
1.76
2.15
20
1.61
2.78
Ie
1.71
i•IB
21
1.19
3.17
21
1.74
1.92
22
1.29
2.04
22
1.57
2.26
22
1.32
1.90
22
1.19
2./6
22
1.2/
1.87
24
1.29
1.95
24
1.96
2.15
24
t.26
1•N
24
1.7e
2.72
24
1.22
1.75
26
1•18
1•87
26
1.79
2.06
26
1.22
1.12
26
1.02
.2.a/
26
1,18
1,87
28
1.14
1.80
2e
1.14
1.98
28
1, 1T
1./e
2e
1.54
2.47
28
1.13
1.6330.
1.10
1.13
30
1.29
1.9e
70
1.13
I. T1
31
1.97
2.39
31
1.11
t.57
32
1.06
1.67
72
1.24
1.84
72
1.10
1.69
)i
1.44
2.71
32
1.14
1.52
z
N
i•Ol
1.62
19
1.20
1.18
N
1.16
I.59
N
1.37
x.$
N
1.13
1.4136
-I
1.00
1.57
76
1.17
1.12
36
1.13
I•SS
36
1.79
2.15
76
1.11
1.49
30
.97
1.57
38
1.17
1.61
38
1.11
I•SI
7/
1.31
2.19
7/
m
.9/
1.41
c Z
40
.91
1.49
40
1.10
1.62
40
.ve
1.97
N
1.2?
2J2
91
95
.89
1.40
IS
1.17
1.52
95
.92
I.39
♦S
1.18
1.11
♦S
.95
1.71
SO
.e4
1.12
Se
.91
L9+
se
.ee
I•ll
SI
I.It
LTe
SO
.H
1.29
55
.BO
1.26
SS
.92
1:76
55
,09
1•13
SS
1.68
,15
1.22
60
1,20
.1.15
55
JI
1.17
(�
Z
.76
ye
.ee
1.70
61
.8/
1,21
6/
1.10
1.60
60
.78
I•II
65
.77
1.15
65
.e4
1.24
65
.I1
1.15
65
.95
I.S)
65
10
.70
1.11
10
.81
1.19
10
,74
1.11
71
1.91
,75
1.10
75
1.07
15
1.15
IS
15
.91
70
•72
1.19
D
p
.68
.10
.721.17
,1e
1.91
TS
.71
1.11
80
.65
).0)
DO
.15
1.11
a0
.09
1.09
e1
.eS
1.75
ee
D D
BS
.67
I.00
85
.77
1.07
85
.67
1.11
e5
J2
1,71
05
.)/
•66
.97
.99
SLOPE
• .5 )0
SLOP
.550
SLOPE
• .501
SLOPE
• .581
SCOPE
_ .190
z
rll
I
1
I
1
1
1
� UNIT HYDROLOGY
� SANTIAGO ROAD
�
WATERSHED,
1
[1
1
1
I
i
1
= m = m = m = m = = = m = m = m m m m
I
I
L
1
1
11
LJ
1
1
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 09/16/02 File: teme21100.out
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
----------------------------------------- ----------------------
---------
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Engineering Resources of Southern California, Inc. - SIN 685
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
---------------------------------------------------------------------
------------------------------ ----------------- — -----
Drainage Area = 402.00(Ac.) 0.628 Sq. Mi.
Length along longest watercourse = 8200.00(Ft.)
Length along longest watercourse measured to centroid = 3400.00(Ft.)-
Length along longest watercourse = 1.553 Mi.
Length along longest watercourse measured to centroid = 0.644 Mi.
Difference in elevation = 237.00(Ft.)
Slope along watercourse = 152.6049 Ft./Mi.
Average Manning's 'N' = 0.035
Lag time = 0.323 Hr.
Lag time = 19.39 Min.
25% of lag time = 4.85 Min.
40% Of lag time = 7.76 Min.
Unit time = 10.00 Min.
Duration of storm = 1 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
402.00 0.50 201.00
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
402.00 1.30 522.60
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0.500(In)
Area Averaged 100 -Year Rainfall = 1.300(In)
Point rain (area averaged) = 1.300(In)
Areal adjustment factor = 99.64 %
Adjusted average point rain = 1.295(ln)
Sub -Area Data:
Area(Ac.)
Runoff Index Impervious &
402.000
66.00
0.200
Total Area
Entered =
402.00(Ac.)
RI RI
Infil. Rate
Impervious
Adj. Infil.
Rate Area%
F
AMC2 AMC -2
(In/Hr)
(Dec.%)
(In/Hr)
(Dec.)
(In/Hr)
66.0 66.0
0.405
0.200
0.332
1.000
0.332
Sum (F)
= 0.332
I
I
I
1
I
1
1
I
I
Area averaged mean soil loss (F) (In/Hr) = 0.332
Minimum soil loss rate ((In/Hr)) = 0.166
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.740
Slope of intensity -duration curve for a 1 hour storm =0.5500
------------------------------------------------------------
U n i
t H y d r o g r a p h
Combination
of 'S' Curves:
VALLEY 'S' Curve Percentage =
0.00
FOOTHILL 'S'
Curve Percentage
= 34.00
_
MOUNTAIN 'S'
Curve Percentage
= 33.00
---------
DESERT 'S' Curve
-------------------------------------------------------
Percentage =
33.00
--
Unit Hydrograph Data
---------------------------------------------------------------------
Unit
time period
Time % of lag Distribution Unit
Hydrograph
(hrs)
---------------------------------------------------------------------
Graph %
(CFS)
1
0.167
51.575
5.633
22.823
2
0.333
103.150
26.978
109.298
3
0.500
154.725
28.618
115.943
4
0.667
206.299
12.107
49.051
5
0.833
257.874
7.360
29.818
6
1.000
309.449
5.042
20.427
7
1.167
361.024
3.486
14.125
B
1.333
412.599
2.460
9.968
9
1.500
464.174
1.684
6.821
10
1.667
515.749
1.337
5.415
11
1.833
567.323
1.031
4.178
12
2.000
618.898
0.844
3.419
13
2.167
670.473
0.732
2.967
14
2.333
722.048
0.648
2.624
15
2.500
773.623
0.470
1.906
16
2.667
825.198
0.378
1.530
17
2.833
876.772
0.306
1.241
18
3.000
928.347
0.306
1.241
19
3.167
979.922
0.306
1.241
20
3.333
1031.497
0.272
1.104
-----------------------------------------------------------------------
Sum =
100.000 Sum=
405.141
Unit
Time
Pattern
Storm Rain Loss
rate(In./Hr)
Effective
(Hr.)
Percent
(In/Hr) Max
Low
(In/Hr).
1
0.17
7.50
0.583 0.332
---
0.25
2
0.33
9.20
0.715 0.332
---
0.38
3
0.50
11.40
0.886 0.332
---
0.55
4
0.67
15.60
1.212 0.332
---
0.88
5
0.83
45.30
3.521 0.332
---
3.19
6
1.00
11.00
0.855 0.332
---
0.52
Sum =
100.0
Sum =
5.8
Flood
volume = Effective
rainfall
0.96(In)
times
area 402.0(Ac.)/[(In)/(Ft.)]
= 32.3(Ac.Ft)
Total
soil loss =
0.33(In)
Total
soil loss =
11.131(Ac.Ft)
Total
rainfall =
1.30(In)
Flood
volume =
1405267.3 Cubic Feet
Total
soil loss =
484859.6 Cubic
Feet
--
Peak
--------------------------------------------------------------------
-----------------------------------------------------
flow rate of
this hydrograph =
506.391(CFS)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1- H O U R S
T O R M
----
R u
n o f f- -H-y
-------- ---------------------------------
d r o g r a p h
Hydrograph in 10 Minute
intervals ((CFS))
----------------
Time(h+m)
----- ---------------------------------
-
Volume Ac.Ft
----------------------------
Q(CFS) 0
-
- - - -----------------
150.0 300.0
------- - ---------------------
450.0 600.0
I
C
1
11
L
1
I
1
I11
0+10
0.0788
5.72
Q
0+20
0.5767
36.14
V Q
0+30
1.7277
83.57
V Q
0+40
3.6195
137.34
V Q
0+50
7.1944
259.54
V
Q
l+ 0
14.1695
506.39
V
Q
1+10
21.0300
498.07
V
Q
1+20
24.6466
262.57
Q
V
1+30
26.7417
152.10
Q
V
1+40
28.1561
102.68
Q
V
1+50
29.1398
71.42
Q
V
2+ 0
29.8374
50.65
Q
V
2+10
30.3347
36.11
Q
V
2+20
30.7233
28.21
Q
V
2+30
31.0304
22.30
Q
V
2+40
31.2820
18.27
Q
V
2+50
31.4958
15.52
Q
V
3+ 0
31.6781
13.23
Q
V
3+10
31.8196
10.27
Q
V
3+20
31.9354
8.41
Q
V
3+30
32.0313
6.96
Q -
V
3+40
32.1183
6.31
Q
V
3+50
32.1951
5.58
Q
V
4+ 0
32.2525
4.17
Q
V
4+10
-----------------------------------------------------------------------
32.2605
0.58
Q
V
' U n i t H y d r o g r a p h A n a l y s i s
' Copyright (C) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 09/16/02 File: teme23100.out
Riverside County Synthetic Unit Hydrology Method
' RCFC & WCD Manual date - April 1978
Engineering Resources of Southern California, Inc. - SIN 685
---------------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
1 English Units used in output format
1
---------------------------------------------------------------------
--------------------------------------------------------------------
Drainage Area = 402.00(Ac.) = 0.628 Sq. Mi.
Length along longest watercourse = 8200.00(Ft.)
Length along longest watercourse measured to centroid =
3400.00(Ft.)
'
Length along longest watercourse = 1.553 Mi.
Length along longest watercourse measured to centroid =
0.644 Mi.
Difference in elevation = 237.00(Ft.)
Slope along watercourse = 152.6049 Ft./Mi.
'
Average Manning's 'N' = 0.035
Lag time = 0.323 Hr.
Lag time = 19.39 Min.
25% of lag time = 4.85 Min.
40% of lag time = 7.76 Min.
'
Unit time = 10.00 Min.
Duration of storm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
'
2 YEAR Area rainfall data:
Area(AC.)[1] Rainfall(In)[2] Weighting[1*2]
'
402.00 0.90 361.BD
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
402.00 2.00 804.00
'
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 0.900(In)
Area Averaged 100 -Year Rainfall = 2.000(In)
'
Point rain (area averaged) = 2.000(In)
Areal adjustment factor = 99.82 %
Adjusted average point rain = 1.996(ln)
'
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
402.000 66.00 0.200
'
Total Area Entered = 402.00(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area%
F
AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.)
(In/Hr)
66.0 66.0 0.405 0.200 0.332 1.000
0.332
Sum (F)
= 0.332
Area averaged mean soil loss (F) (In/Hr) = 0.332
'
Minimum soil loss
rate ((In/Hr)) =
0.166
Loss rate(In./Hr)
Effective
(for
24 hour storm
duration)
(In/Hr)
Max Low
(In/Hr)
Soil
low loss rate
(decimal) = 0.740
0.311
0.332 0.230
0.08
------------
-------
-----------------
---------------------------------
0.311
0.08
U n i
t H y d r o g r
a p h
3.30
0.395
0.332
0.06
Combination
of IS, Curves:
4
0.67
3.30
0.395
0.332 ---
VALLEY 'S' Curve
Percentage =
0.00
5
0.83
'
0.395
FOOTHILL 'S'
Curve Percentage
= 34.00
6
1.00
3.40
MOUNTAIN 'S'
Curve Percentage
= 33.00
'
7
1.17
DESERT 'S' Curve
Percentage =
33.00
0.19
----------
---------------------------------------------
Unit Hydrograph Data
4.20
0.503
0.332 ---
0.17
Unit
--------------------------------------------------------
time period
Time % of lag
Distribution Unit
Hydrograph
0.635
(bra)
0.30
-------------Graph-&------------(CFS)
---------
1.67
1
0.167
51.575
5.633
22.823
11
2
0.333
103.150
26.978
109.298
t
3
4
0.500
0.667
154.725
206.299
28.618
12.107
115.943
49.051
0.37
5
0.833
257.874
7.360
29.818
0.332 ---
0.54
6
1.000
309.449
5.042
20.427
1.018
0.332
7
8
1.167
1.333
361.024
412.599
3.486
2.460
14.125
9.968
14.10
1.689
9
1.500
464.174
1.684
6.821
2.67
14.10
10
1.667
515.749
1.337
5.415
17
2.63-
11
1.833
567.323
1.031
4.178
18
12
2.000
618.898
0.844
3.419
'
13
2.167
670.473
0.732
2.967
6.3
14
2.333
722.048
0.648
2.624
15
2.500
773.623
0.470
1.906
'
16
2.667
825.198
0.378
1.530
17
2.833
876.772
0.306
1.241
= 31.589(AC.Ft)
18
3.000
928.347
0.306
1.241
rainfall =
2.00(In)
19
3.167
979.922
0.306
1.241
Flood
'
20
3.333
1031.497
0.272
1.104
Total
-----------------------------------------------------------------------
= 1375997.8
Sum =
100.000 Sum=
405.141
'
Unit Time
Pattern
Storm Rain
Loss rate(In./Hr)
Effective
(Hr.)
Percent
(In/Hr)
Max Low
(In/Hr)
1
0.17
2.60
0.311
0.332 0.230
0.08
2
0.33
2.60
0.311
0.332 0_230
0.08
'
3
0.50
3.30
0.395
0.332
0.06
4
0.67
3.30
0.395
0.332 ---
0.06
5
0.83
3.30
0.395
0.332 ---
0.06
6
1.00
3.40
0.407
0.332
0.08
'
7
1.17
4.40
0.527
___
0.332
0.19
8
1.33
4.20
0.503
0.332 ---
0.17
9
1.50
5.30
0.635
0.332 ---
0.30
10
1.67
5.10
0.611
0.332
0.28
11
1.83
6.40
0.767
__-
0.332
0.43
12
2.00
5.90
0.707
0.332 ---
0.37
13
2.17
7.30
0.874
0.332 ---
0.54
14
2.33
8.50
1.018
0.332
0.69
15
2.50
14.10
1.689
___
0.332
1.36
16
2.67
14.10
1.689
0.332 ---
1.36
17
2.63-
3.80
0.455
0.332 ---
0.12
18
3.00
2.40
0.287
0.332 0.213
0.07
'
Sum =
100.0
Sum =
6.3
Flood
volume = Effective rainfall
1.05(In)
times area
402.0(AC.)/[(In)/(Ft.)3
= 35.3(Ac.Ft)
Total
soil loss
= 0.94(In)
Total
soil loss
= 31.589(AC.Ft)
Total
rainfall =
2.00(In)
Flood
volume =
1537389.3 Cubic
Feet
Total
soil loss
= 1375997.8
Cubic Feet
Peak flow rate of this hydrograph = 379.732(CFS)
1
3- H
O U R S T O R M
R u
n o f f
H y d r o g r a p
h
1
---------------------------
H drogra h in
-------------------------------
10 Minute intervals
((CFS))
-----------------------
Time(h+m)
----- - --"
Volume AC.Ft
-----------------------
- --------------
Q(CFS)
--------------
0 100_0 200_0
- -- -
300.0
--- ----
- 400.0
0+10
0.0255
1.85
Q
0+20
0.1729
10.70
VQ
0+30
0.4441
19.69
VQ
'
0+40
0.7430
21.70
V Q
0+50
1.0465
22.04
VQ
1+ 0
1.3645
23.08
VQ
1+10
1+20
1.7466
2.3268
27.74
42.12
VQ
V Q
1+30
3.1159
57.29
V Q
1+40 -
4.1472
74.87
V Q
1+50
2+ 0
5.4413
7.0307
93.95
115.38
V Q
V Q
2+10
8.6898
134.97
V Q
2+20
11.0985
160.36
V Q
2+30
2+40
14.0555
18.4069
214.67
315.92
V Q
V
Q
2+50
23.6374
379.73
V
Q
3+ 0
27.5771
286.02
Q V
3+10
29.8155
162.51
Q
V
'
3+20
31.2855
106.73
Q
V
3+30
32.2736
71.74
Q
V
3+40
32.9717
50.68
Q
V
3+50
33.4767
36.66
Q
V
4+ 0
33.8552
27.48
Q
V
4+10
34.1543
21.71
Q
V
4+20
34.3950
17.48
Q
V
4+30
34.5940
14.45
Q
V
4+40
34.7613
12.15
Q
V
4+50
34.8964
9.81
Q
V
5+ 0
35.0021
7.68
Q
V
5+10
35.0866
6.13
Q
V
5+20
35.1575
5.15
Q
V
'
5+30
35.2181
4.39
Q
V
5+40
35.2653
3.43
Q
V
5+50
35.2893
1.74
Q
V
V
'
6+10
-----------------------------------------------------------------------
35.2936
0.08
Q
V
1
' U n i t H y d r It g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 09/16/02 File: teme26100.out
-
-------------- -------- -------------------------------------- ---- —
Riverside County Synthetic Unit Hydrology Method
' RCFC & WCD Manual date - April 1976
Engineering Resources of Southern California, Inc. - SIN 6B5
'------- — ----- — ----- — ------------------- — --------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
-- — -----------------------------------------------------------------
--------------------------------------------------------------------
Drainage Area = 402.00(Ac.) 0.628 Sq. Mi.
Length along longest watercourse = 8200.00(Ft.)
Length along longest watercourse measured to centroid =
3400.00(Ft.)
'
Length along longest watercourse = 1.553 Mi.
Length along longest watercourse measured to centroid =
0.644 Mi.
Difference in elevation = 237.00(Ft.)
Slope along watercourse = 152.6049 Ft./Mi.
Average Manning's 'N' = 0.035
Lag time = 0.323 Hr.
Lag time = 19.39 Min.
25% of lag time = 4.85 Min.
40% of lag time = 7.76 Min.
Unit time = 10.00 Min.
Duration of storm = 6 Hour(s)
User Entered Base Flow = 0.00(CFS)
'
2 YEAR Area rainfall data:
Area(Ac.)[1) Rainfall(In)[2] Weighting[1*23
'
402.00 1.20 482.40
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
402.00 2.70 1085.40
'
STORM EVENT (YEAR) = 100.00
Area Averaged 2 -Year Rainfall = 1.200(In)
Area Averaged 100 -Year Rainfall = 2.700(In)
'
Point rain (area averaged) = 2.700(In)
Areal adjustment factor = 99.86 %
Adjusted average point rain = 2.696(In)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
402.000 66.00 0.200
Total Area Entered = 402.00(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area%
F
AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.)
(In/Hr)
'
66.0 66.0 0.405 0.200 0.332 1.000
0.332
. - Sum (F)
= 0.332
Area averaged mean soil loss (F) (In/Hr) = 0.332
'
Minimum soil loss
rate ((In/Hr)) =
0.166
(In/Hr)
Max
Low
(for
24 hour storm
duration)
0.17
1.10
0.178
Soil
low loss rate
(decimal) = 0.740
0.132
0.05
'
------------
-n -i-
1.20
------------------------------
-
0.194
0.332
U
t H y d r o g r
a p h
3
0.50
1.30
Combination
of 'S' Curves:
0.332
0.156
VALLEY 'S' Curve
Percentage =
0.00
0.67
1.40
0.226
FOOTHILL 'S'
Curve Percentage
= 34.00
0.168
0.06
MOUNTAIN 'S'
Curve Percentage
= 33.00
0.226
0.332
DESERT 'S' Curve
Percentage =
33.00
0.06
6
--- --------------------
- --- - - -----------------
Unit Hydrograph Data
------
-----
- -----
0.332
------------
Unit
-----------------------------------------------------
time period
Time % of lag
Distribution Unit
Hydrograph
7
(hrs)
-----
-----
---------
------
1
0.167
51.575
5.633
22.823
8
2
0.333
103.150
26.978
109.298
0.332
3
0.500
154.725
28.618
115.943
1.50
'
4
0.667
206.299
12.107
49.051
0.192
5
0.833
257.874
7.360
29.818
0.259
6
1.000
309.449
5.042
20.427
0.07
7
1.167
361.024
3.486
14.125
0.332
8
1.333
412.599
2.460
9.968
12
2.00
9
1.500
464.174
1.684
6.821
0.204
10
1.667
515.749
1.337
5.415
1.70
11
12
1.833
2.000
567.323
618.898
1.031
0.844
4.178
3.419
0.07
13
2.167
670.473
0.732
2.967
0.291
14
2.333
722.048
0.648
2.624
'
'
15
16
2.500
2.667
773.623
825.198
0.470
0.378
1.906
1.530
0.332
17
2.833
876.772
0.306
1.241
2.67
1.80
18
3.000
928.347
0.306
1.241
0.215
19
3.167
979.922
0.306
1.241
0.324
20
3.333
1031.497
0.272
1.104
0.08
-----------------------------------------------------------------------
3.00
Sum =
100.000 Sum=
405.141
' Unit Time Pattern Storm Rain Loss rate(In./Hr) Effective
(Hr.)
Percent
(In/Hr)
Max
Low
(In/Hr)
1
0.17
1.10
0.178
0.332
0.132
0.05
2
0.33
1.20
0.194
0.332
0.144
0.05
3
0.50
1.30
0.210
0.332
0.156
0.05
4
0.67
1.40
0.226
0.332
0.168
0.06
5
0.83
1.40
0.226
0.332
0.168
0.06
6
1.00
1.50
0.243
0.332
0.180
0.06
'
7
1.17
1.60
0.259
0.332
0.192
0.07
8
1.33
1.60
0.259
0.332
0.192
0.07
9
1.50
1.60
0.259
0.332
0.192
0.07
'
10
1.67
1.60
0.259
0.332
0.192
0.07
11
1.83
1.60
0.259
0.332
0.192
0.07
12
2.00
1.70
0.275
0.332
0.204
0.07
13
2.17
1.70
0.275
0.332
0.204
0.07
14
2.33
1.80
0.291
0.332
0.215
0.08
'
15
2.50
1.80
0.291
0.332
0.215
0.08
16
2.67
1.80
0.291
0.332
0.215
0.08
17
2.83
2.00
0.324
0.332
0.239
0.08
18
3.00
2.00
0.324
0.332
0.239
0.08
'
19
3.17
2.10
0.340
0.332
0.01
20
3.33
2.20
0.356
0.332
---
0.02
21
3.50
2.50
0.404
0.332
---
0.07
22
3.67
2.80
0.453
0.332
0.12
23
3.83
3.00
0.485
0.332
=__
0.15
24
4.00
3.20
0.516
0.332
---
0.19
25
4.17
3.50
0.566
0.332
---
0.23
26
4.33
3.90
0.631
0.332
0.30
27
4.50
4.20
0.679
0.332
__-
0.35
28
4.67
4.50
0.728
0.332
---
0.40
29
4.83
4.80
0.777
0.332
---
0.44
I
1
F
1
C
1
30
5.00
5.10
0.625 0.332 ---
0.49
0.1001
31
5.17
6.70
1.084 0.332 ---
0.2673
0.75
12.14
32
5.33
8.10
1.310 0.332 ---
15.45
0.98
0+50
33
5.50
10.30
1.666 0.332 ---
1+ 0
1.33
34
5.67
2.80
0.453 0.332 ---
0.12
35
5.83
1.10
0.178 0.332 0.132
0.05
1.9513
36
6.00
0.50
0.081 0.332 0.060
2.2965
0.02
25.06
Sum =
100.0
Sum =
7.2
2+ 0
3.0072
Flood
volume =
Effective rainfall 1.21(In)
2+10
3.3761
26.78
times
area
402.0(Ac.)/[(In)/(Ft.)] = 40.4(Ac.Ft)
27.61
2+30
Total
soil loss
= 1.49(In)
2+40
4.5505
Total
soil loss
= 49.935(Ac.Ft)
4.9611
29.81
Total
rainfall
= 2.70(In)
31.01
3+10
5.8079
Flood
volume =
1759392.1 Cubic Feet
3+20
6.1252
23.04
Total
soil loss
= 2175165.3 Cubic Feet
17.37
3+40
------------------------------------------------------------
Peak
---------------------------------------------------------------
flow rate
of this hydrograph = 337.423(CFS)
3+50
7.1169
- - -
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4+ 0
7.7205
43.82
4+10
8.4835
6- H O U R S T O R M
55.39
4+20
9.4407
69.49
R u n o f f H y d r o g r a p
h
10.6422
87.23
------------------
Hydrograph
------------------ - --- - --------------------------
in 10 Minute intervals
((CFS))
106.07
---------------------------
Time(h+m) Volume Ac.Ft Q(CFS)
0+10
0.0146
1.06
0+20
0.1001
6.21
0+30
0.2673
12.14
0+40
0.4801
15.45
0+50
0.7278
17.98
1+ 0
1.0012
19.85
1+10
1.2970
21.47
1+20
1.6159
23.15
1+30
1.9513
24.35,
1+40
2.2965
25.06
1+50
2.6486
25.56
2+ 0
3.0072
26.03
2+10
3.3761
26.78
2+20
3.7564
27.61
2+30
4.1482
28.45
2+40
4.5505
29.21
2+50
4.9611
29.81
3+ 0
5.3883
31.01
3+10
5.8079
30.47
3+20
6.1252
23.04
3+30
6.3644
17.37
3+40
6.6694
22.14
3+50
7.1169
32.49
4+ 0
7.7205
43.82
4+10
8.4835
55.39
4+20
9.4407
69.49
4+30
10.6422
87.23
4+40
12.1031
106.07
4+50
13.8176
124.47
5+ 0
15.7878
143.03
5+10
18.0823
166.58
5+20
21.0099
212.54
5+30
24.9008
282.48
5+40
29.5485
337.42
5+50
33.2203
266.58
6+ 0
35.2742
149.11
6+10
36.6302
98.45
6+20
37.5651
67.87
6+30
38.2193
47.50
6+40
38.6955
34.58
6+50
39.0515
25.84
7+ 0
39.3331
20.45
7+10
39.5587
16.38
7+20
39.7446
13.51
7+30
39.8996
11.24
-----------------------------------------
0 100.0 200.0 300.0 400
----------------------------------------
7Q
7Q
7Q
7Q
VQ
VQ
VQ
Q
Q
Q
QV
QV
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
QV
QV
QV
QV
VQ
V Q
V Q
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q V
C
'
7+40
40.0258
9.16
Q
V
7+50
40.1236
7.10
Q
V
8+ 0
40.2022
5.71
Q
V
8+10
40.2666
4.68
Q
V
8+20
40.3212
3.96
Q
V
8+30
40.3622
2.98
Q
V
8+40
40.3857
1.71
Q
V
8+50
40.3887
0.22
Q
v
9+10
-----------------------------------------------------------
40.3901
0.02
Q
V
1
U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 09/16/02 File: teme2110.out
---------------------------------------------------------------
Riverside County synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Engineering Resources of Southern California, Inc. - SIN 685
--------------------------------- — ----------- — ---------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
tEnglish Units used in output format
---------------------------------------------------------------------
-------------------------`-------_----------------------------------
Drainage Area = 402.00(Ac.) 0.628 Sq. Mi.
Length along longest watercourse = 6200.00(Ft.)
Length along longest watercourse measured to centroid =
3400.00(Ft.)
'
Length along longest watercourse = 1.553 Mi.
Length along longest watercourse measured to centroid =
0.644 Mi.
Difference in elevation = 237.00(Ft.)
Slope along watercourse = 152.6049 Ft./Mi.
Average Manning's 'N' = 0.035
Lag time = 0.323 Hr.
Lag time = 19.39 Min.
25% of lag time = 4.85 Min.
40% of lag time = 7.76 Min.
'
Unit time = 10.00 Min.
Duration of storm = 1 Hour(s)
User Entered Base Flow = 0.O0(CFS)
'
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
402.00 0.50 201.00
100 YEAR Area rainfall data:
'
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2)
402.00 1.30 522.60
'
STORM EVENT (YEAR) = 10.00
Area Averaged 2 -Year Rainfall = 0.500(In)
Area Averaged 100 -Year Rainfall = 1.300(In)
Point rain (area averaged) = 0.829(In)
Areal adjustment factor = 99.64 %
Adjusted average point rain = 0.826(In)
'
Sub -Area Data:
Area(Ac.) Runoff Index Impervious &
402.000 66.00 0.200
'
Total Area Entered = 402.00(Ac.)
RI RI Infil. Rate Impervious Adj, Infil. Rate Area%
F
AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.)
(In/Hr)
66.0 66.0 0.405 0.200 0.332 1.000
0.332
Sum (F)
= 0.332
-
Area averaged mean soil loss (F) (In/Hr) = 0.332
'
Minimum soil loss rate ((In/Hr)) = 0.166
(for
24 hour storm duration)
Soil
low loss rate (decimal) = 0.740
------------------------
Slope
-----
-------- - - ------------------- - -----------
of intensity -duration curve for a 1 hour storm =0.5500
-----------------------------------------------------------------
U n i t H y d r o g r a p h
Combination of IS, Curves:
VALLEY 'S' Curve Percentage = 0.00
FOOTHILL 'S' Curve Percentage = 34.00
MOUNTAIN 'S' Curve Percentage = 33.00
'
DESERT 'S' Curve Percentage = 33.00
------------------------------------' - -----------
Unit Hydrograph Data -
-------
---------------------------------------------------------------------
Unit
time period Time % of lag Distribution Unit
Hydrograph
(hrs)
Graph &
(CFS)
---------------------------------------------------------------------
1
2
0.167 51.575 5.633
0.333 103.150 26.978
22.823
109.298
3
0.500 154.725 28.618
115.943
4
0.667 206.299 12.107
49.051
'
5
6
0.833 257.874 7.360
1.000 309.449 5.042
29.818
20.427
7
1.167 361.024 3.486
14.125
8
1.333 412.599 2.460
9.968
'
9
10
1.500 464.174 1.684
1.667 515.749 1.337
6.821
5.415
11
1.833 567.323 1.031
4.178
12
2.000 618.898 0.844
3.419
13
2.167 670.473 0.732
2.967
'
14
2.333 722.048 0.648
2.624
15
2.500 773.623 0.470
1.906
16
2.667 825.198 0.378
1.530
17
2.833 876.772 0.306
1.241
'
18
3.000 928.347 0.306
1.241
19
3.167 979.922 0.306
1.241
20
3.333 1031.497 0..272
1.104
100.000 Sum=_
405_ 141
-Sum_= _____________-_
---
Unit Time
Pattern Storm Rain Loss rate(In./Hr)
Effective
'
(Hr.)
Percent (In/Hr) Max Low
(In/Hr)
1
0.17
7.50 0.372 0.332
0.04
2
0.33
9.20 0.456 0.332 ---
0.12
3
0.50
11.40 0.565 0.332 ---
0.23
4
0.67
15.60 0.773 0.332
0.44
'
5
0.83
___
45.30 2.245 0.332
1.91
6
1.00
11.00 0.545 0.332 ---
0.21
Sum =
100.0 .Sum =
3.0
Flood
volume = Effective rainfall 0.49(In)
times area 402.0(Ac.)/[(In)/(Ft.)) = 16.5(Ac.Ft)
Total
soil loss = 0.33(ln)
Total
soil loss = 11.131(Ac.Ft)
Total
rainfall = 0.83(In)
Flood
volume = 720643.7 Cubic Feet
Total
soil loss = 484859.6 Cubic Feet
------------
Peak.
- - - --- ------- - --------------------------------
flow rate of this hydrograph = 281_145(CFS)
--- -------------------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1- H O U R S T O R M
'
----------------------
R u n o f f H d r o r a h
-----------Y-------g-- p
-----------------------
Hydrograph in 10 Minute intervals ((CFS))
----------- - --------- - - - - ----------------------- - --------------
Time(h+m) Volume AC.Ft Q(CFS) 0_ 75_0 150_0 225.0 300.0
---------------------------------- ----------------
0+10 0.0124 0.90 Q
1
1
0+20
0.1108
7.14
Q
0+30
0.4335
23.43
V Q
0+40
1.1473
51.82
V Q
0+50
2.8851
126.16
V
Q
1
1+ 0
6.7576
281.15
V
Q
1+10
10.5714
276.89
V
Q
1+20
12.4812
138.65
Q
V
1+30
13.6015
81.33
Q
V
1
1+40
14.3599
55.07
Q
V
1+50
14.8862
38.21
Q
V
2+ 0
15.2583
27.01
Q
V
2+10
15.5212
19.08
Q
V
1
2+20
15.7268
14.93
Q
V
2+30
15.8687
11.75
Q
V
2+40
16.0216
9.65
Q
V
1
2+50
3+ 0
16.1352
16.2324
8.25
7.06
Q
Q
V
V
3+10
16.3064
5.37
Q
V
3+20
16.3666
4.37
Q
V
1
3+30
3+40
16.4172
16.4646
3.68
3.44
Q
Q
V
V
3+50
16.5077
3.13
Q
V
4+ 0
16.5405
2.38
Q
V
1
4+10
---------------------------------------------------------------------
16.5437
0.24
Q
1
1
1
1
I
1
u
1
1
1
1
1
' U n i t H y d r o g r a p h A n a l y s i s
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 09/16/02 File: teme2310.out
Riverside County Synthetic Unit Hydrology Method
' RCFC & WCD Manual date - April 1978
Engineering Resources of Southern California, Inc. - SIN 685
t---------------------------------------------------------------
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
'
---------------------------------------------------------------------
-------------- --- --- ---------------------------
—--------
Drainage Area = 402.00(Ac.) = 0.628 Sq. Mi.
Length along longest watercourse = 8200.00(Ft.)
Length along longest watercourse measured to centroid =
3400.00(Ft.)
Length along longest watercourse = 1.553 Mi.
Length along longest watercourse measured to centroid =
0.644 Mi.
Difference in elevation = 237.00(Ft.)
Slope along watercourse = 152.6049 Ft./Mi.
Average Manning's 'N' = 0.035
Lag time = 0.323 Hr.
Lag time = 19.39 Min.
25% of lag time = 4.85 Min.
'
40% of lag time = 7.76 Min.
Unit time = 10.00 Min.
Durationofstorm = 3 Hour(s)
User Entered Base Flow = 0.00(CFS)
'
2 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2] Weighting[1*2]
'
402.00 0.90 361.80
100 YEAR Area rainfall data:
'
Area(Ac.)[i]-- Rainfall(In)[2] Weighting[1*2]
402.00 2.00 804.00
'
STORM EVENT (YEAR) = 10.00
Area Averaged 2 -Year Rainfall = 0.900(In)
Area Averaged 100 -Year Rainfall = 2.000(In)
Point rain (area averaged) = 1.353(In)
Areal adjustment factor = 99.82 %
Adjusted average point rain = 1.350(In)
'
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %-
402.000 66.00 0.200
402.000
'
Total Area Entered = 402.00(Ac.)
RI RI Infil. Rate Impervious Adj. Infi1. Rate Area%
F
AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.)
(In/Hr)
'
66.0 66.0 0.405 0.200 0.332 1.000
0.332
Sum (F)
= 0.332
Area averaged mean soil loss (F) (In/Hr) = 0.332
I
C
I
1
1
C
1
1
Minimum soil loss rate ((In/Hr)) = 0.166
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.740
--- - ---------------- - ------------- - -------- - ------------- - ------
U n
i t H y d r o g r a p h
Combination
of IS, Curves:
VALLEY 'S'
Curve Percentage
= 0.00
FOOTHILL 'S'
Curve Percentage = 34.00
MOUNTAIN 'S'
Curve Percentage = 33.00
DESERT 'S'
Curve Percentage
= 33.00
-----------------
Unit
-----------------------
Hydrograph Data
----------------------
- --
Unit
time period
-----------------------------------------------------
Time % of lag
Distribution
Unit
Hydrograph
(hrs)
Graph %
(CFS)
--------------------------------------------------------------
1
0.167
51.575
5.633
22.623
2
0.333
103.150
26.978
109.298
3
0.500
154.725
26.618
115.943
4
0.667
206.299
12.107
49.051
5
0.833
257.874
7.360
29.818
6
1.000
309.449
5.042
20.427
7
1.167
361.024
3.486
14.125
8
1.333
412.599
2.460
9.968
9
1.500
- 464.174
1.684
6.821
10
1.667
515.749
1.337
5.415
11
1.833
567.323
1.031
4.178
12
2.000
618.898
0.844
3.419
13
2.167
670.473
0.732
2.967
14
2.333
722.048
0.648
2.624
15
2.500
773.623
0.470
1.906
16
2.667
825.198
0.378
1.530
17
2.833
876.772
0.306
1.241
18
3.000
928.347
0.306
1.241
19
3.167
979.922
0.306
1.241
20
3.333
1031.497
0.272
1.104
-----------------------------------------------------------------------
Sum
= 100.000
Sum=
405.141
Unit Time
Pattern
Storm Rain Loss
rate(In./Hr)
Effective
(Hr.)
Percent
(In/Hr)
Max
Low
(In/Hr)
1
0.17
2.60
0.211
0.332
0.156
0.05
2
0.33
2.60
0.211
0.332
0.156
0.05
3
0.50
3.30
0.267
0.332
0.198
0.07
4
0.67
3.30
0.267
0.332
0.198
0.07
5
0.83
3.30
0.267
0.332
0.198
0.07
6
1.00
3.40
0.275
0.332
0.204
0.07
7
1.17
4.40
0.356
0.332
---
0.02
8
1.33
4.20
0.340
0.332
---
0.01
9
1.50
5.30
0.429
0.332
---
0.10
10
1.67
5.10
0.413
0.332
---
0.08
11
1.83
6.40
0.518
0.332
---
0.19
12
2.00
5.90
0.478
0.332
---
0.15
13
2.17
7.30
0.591
0.332
---
0.26
14
2.33
8.50
0.689
0.332
---
0.36
15
2.50
14.10
1.142
0.332
---
0.81
16
2.67
14.10
1.142
0.332
---
0.81
17
2.83
3.80
0.308
0.332
0.228
0.08
18
3.00
2.40
0.194
0.332
0.144
0.05
Sum =
100.0
Sum =
3.3
Flood
volume = Effective rainfall
0.55(In)
times area 402.0(Ac.)/[(In)/(Ft.)]
=
18.4(Ac.Ft)
Total
soil loss
= 0.80(In)
Total
soil loss
= 26.819(Ac.Ft)
Total
rainfall =
1.35(In)
Flood
volume =
802027.8 Cubic
Feet
Total
soil loss
= 1168221.4 Cubic
Feet
-------------------------y---g--P--_------------------------
Peak
flow rate of this h dro ra h
217.720(CFS)
- - ----
I
1
1
J
+++++++++++++++++++++++++?+++++++++++++++++++++T++++++++++++++++++++
3- H
O U R S T O R M
R u
n o f f
H y d r o g r a p h
-------
-----------------------------------------
Hydrograph in
10 Minute intervals ((CFS))
- ----
'
--------------------------------------------------------------------
Time(h+m)
------------------------------
Volume Ac.Ft
Q(CFS)
0 75_0 150_0 -- _225.0
300.0
0+10
0.0172
1.25
Q
0+20
0.1169
7.24
Q
0+30
0.3088
13.93
VQ
'
0+40
0.5599
18.23
VQ
0+50
0.8570
21.57
VQ
1+ 0
1.1802
23.46
VQ
1+10
1.5083
23.82
Q
1+20
1.7750
19.36
QV
1+30
1.9789
14.81
Q V
1+40
2.2610
20.48
Q V
'
1+50
2+ 0
2.6689
3.2411
29.61Q
41.54
V
Q V
2+10
3.9715
53.03
QV
2+20
4.9214
68.96
QV
2+30
2+40
6.3658
8.7444
104.86
172.68
Q
V Q
2+50
11.7433
217.72
V Q
3+ 0
14.0218
165.42
Q V
3+10
3+20
15.3164
16.1626
93.99
61.44
Q
Q
V
V
3+30
16.7249
40.82
Q
V
3+40
17.1193
28.64
Q
V
3+50
17.4021
20.53
Q
V
'
4+ 0
17.6119
15.23
Q
V
4+10
17.7760
11.91
Q
V
4+20
17.9068
9.49
Q
V
4+30
18.0156
7.90
Q
V
4+40
18.1080
6.71
Q
V
4+50
18.1831
5.45
Q
V
5+ 0
18.2423
4.30
Q
V
5+10
18.2899
3.46
Q
V
5+20
18.3306
2.96
Q
V
5+30
18.3662
2.58
Q
V
5+40
18.3946
2.06
Q
V
5+50
- 18.4092
1.06
Q
V
6+10
--- - ---------
18.4120
- --------------------
0.06
Q
- -- ---------------- - ------------
V
I
1
1
J
11
1
1
I
1
C
1
I
1
1
U n i t H y d r o g r a p h A n a l y s i s
Copyright (C) CIVILCADD/CIVILDESIGN, 1989 - 1999, Version 6.0
Study date 09/16/02 File: teme2610.out
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Riverside County Synthetic Unit Hydrology Method
RCFC & WCD Manual date - April 1978
Engineering Resources of Southern California, Inc. - SIN 685
----------- -- —--------- — — -- —----------------------`--------- ---
English (in -lb) Input Units Used
English Rainfall Data (Inches) Input Values Used
English Units used in output format
---------------------------------------------------------------------
---------- —
Drainage Area = 402.00(Ac.) 0.628 Sq. Mi.
Length along longest watercourse = 8200.00(Ft.)
Length along longest watercourse measured to centroid = 3400.00(Ft.)
Length along longest watercourse = 1.553 Mi.
Length along longest watercourse measured to centroid = 0.644 Mi.
Difference in elevation = 237.00(Ft.)
Slope along watercourse = 152.6049 Ft./Mi.
Average Manning's 'N' = 0.035
Lag time = 0.323 Hr.
Lag time = 19.39 Min.
25% of lag time = 4.85 Min.
40% of lag time = 7.76 Min.
Unit time = 10.00 Min.
Duration of storm = 6 Hour(s)
User Entered Base Flow = 0.00(CFS)
2 YEAR Area rainfall data:
Area(AC.)[1] Rainfall(In)[2) Weighting[1*2)
402.00 1.20 482.40
100 YEAR Area rainfall data:
Area(Ac.)[1] Rainfall(In)[2) Weighting[1*27
402.00 2.70 1085.40
STORM EVENT (YEAR) = 10.00
Area Averaged 2 -Year Rainfall = 1.200(In)
Area Averaged 100 -Year Rainfall = 2.700(In)
Point rain (area averaged) = 1.817(In)
Areal adjustment factor = 99.86 %
Adjusted average point rain = 1.815(ln)
Sub -Area Data:
Area(Ac.) Runoff Index Impervious %
402.000 66.00 0.200
Total Area Entered = 402.00(Ac.)
RI RI Infil. Rate Impervious Adj. Infil. Rate Area% F
t AMC2 AMC -2 (In/Hr) (Dec.%) (In/Hr) (Dec.) (In/Hr)
66.0 66.0 0.405 0.200 0.332 1.000 0.332
Sum (F) = 0.332
Area averaged mean soil loss (F) (In/Hr) = 0.332
11
L
Minimum soil loss rate ((In/Hr)) = 0.166
(for 24 hour storm duration)
Soil low loss rate (decimal) = 0.740
---------------------------------------------------------------------
U n i t H y d r o g r a p h
Combination of 'S' Curves:
VALLEY 'S' Curve Percentage = 0.00
FOOTHILL 'S' Curve Percentage = 34.00
MOUNTAIN 'S' Curve Percentage = 33.00
DESERT 'S' Curve Percentage = 33.00
--------------------------------------------------------------------
Unit Hydrograph Data
---------------------------------------------------------------------
Unit
time period
Time % of
lag
Distribution Unit
Hydrograph
(bra)
Graph %
(CFS)
--------------------------------------------------------------------
1
0.167
51.575
5.633
22.823
2
0.333
103.150
26.978
109.298
3
0.500
154.725
28.618
115.943
4
0.667
206.299
12.107
49.051
5
0.833
257.874
7.360
29.818
6
1.000
309.449
5.042
20.427
7
1.167
361.024
3.486
14.125
8
1.333
412.599
2.460
9.968
9
1.500
464.174
1.684
6.621
10
1.667
515.749
1.337
5.415
11
1.833
567.323
1.031
4.178
12
2.000
618.898
0.844
3.419
13
2.167
670.473
0.732
2.967
14
2.333
722.048
0.648
2.624
15
2.500
773.623
0.470
1.906
16
2.667
825.198
0.378
1.530
17
2.833
876.772
0.306
1.241
18
3.000
928.347
0.306
1.241
19
3.167
979.922
0.306
1.241
20
3.333
1031.497
0.272
1.104
-----------------------------------------------------------------------
Sum =
100.000
Sum=
405.141
Unit
Time
Pattern
Storm Rain
Loss
rate(In./Hr)
Effective
(Hr.)
Percent
(In/Hr)
Max
Low
(In/Hr)
1
0.17
1.10
0.120
0.332
0.089
0.03
2
0.33
1.20
0.131
0.332
0.097
0.03
3
0.50
1.30
0.142
0.332
0.105
0.04
4
0.67
1.40
0.152
0.332
0.113
0.04
5
0.63
1.40
0.152
0.332
0.113
0.04
6
1.00
1.50
0.163
0.332
0.121
0.04
7
1.17
1.60
0.174
0.332
0.129
0.05
8
1.33
1.60
0.174
0.332
0.129
0.05
9
1.50
1.60
0.174
0.332
0.129
0.05
10
1.67
1.60
0.174
0.332
0.129
0.05
11
1.83
1.60
0.174
0.332
0.129
0.05
12
2.00
1.70
0.185
0.332
0.137
0.05
13
2.17
1.70
0.185
0.332
0.137
0.05
14
2.33
1.80
0.196
0.332
0.145
0.05
15
2.50
1.80
0.196
0.332
0.145
0.05
16
2.67
1.80
0.196
0.332
0.145
0.05
17
2.83
2.00
0.218
0.332
0.161
0.06
18
3.00
2.00
0.218
0.332
0.161
0.06
19
3.17
2.10
0.229
0.332
0.169
0.06
20
3.33
2.20
0.240
0.332
0.177
0.06
21
3.50
2.50
0.272
0.332
0.201
0.07
22
3.67
2.80
0.305
0.332
0.226
0.08
23
3.83
3.00
0.327
0.332
0.242
0.08
24
4.00
3.20
0.348
0.332
---
0.02
25
4.17
3.50
0.381
0.332
---
0.05
26
4.33
3.90
0.425
0.332
---
0.09
27
4.50
4.20
0.457
0.332
---
0.13
28
4.67
4.50
0.490
0.332
---
0.16
29
4.83
4.80
0.523
0.332
---
0.19
I
I
30
5. 00
5.10
0.555 0.332 - --
0.22
0+20
31
5.17
6.70
0.729 0.332 ---
0.40
0.1799
32
5.33
8.10
0.882 0.332 ---
0.55
VQ
33
5.50
10.30
1.121 0.332 ---
0.79
12.10
34
5.67
2.80
0.305 0.332 0.226
0.08
Q
35
5.83
1.10
0.120 0.332 0.089
0.03
1+20
36
6.00
0.50
.0.054 0.332 0.040
0.01
1.3132
Sum =
100.0
Sum =
3.9
Q V
16.87
Flood
volume = Effective rainfall 0.65(ln)
1.7625
17.20
times
area 402.0(Ac.)/[(In)/(Ft.)]
= 21.7(Ac.Ft)
17.52
Q V
Total
soil loss =
1.17(In)
18.03
Q
2+20
Total
soil loss =
39.109(Ac.Ft)
Q
2+30
2.7918
Total
rainfall =
1.81(In)
2+40
3.0625
Q
Flood
volume =
944383.4 Cubic Feet
3.3388
V
20.06
Total
soil loss =
1703591.4 Cubic Feet
20.87
---------------------
Peak
flow rate of
- -----------
- - - - -------- -- - ------- - -----------------
this hydrograph = 187.522(CFS)
--------------- ----------------
21.75
Q
3+20
-------
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
22.51
3+30
4.5608
23.58
6- H O U R S T 0 R.M
3+40
4.9097
Q
25.33
R u
n o f f- -- H y d r o g r a p h
---------------------------------
5.2914
27.71
Hydrograph
in 10 Minute intervals ((CFS))
28.39
---------------------------
Time(h+m) Volume Ac.Ft Q(CFS)
0+10
0.0098
0.71
1
0+20
0.0674
4.18
1
0+30
0.1799
8.17
VQ
0+40
0.3231
VQ
10.40
0+50
0.4898
12.10
l+ 0
0.6738
13.36
Q
1+10
0.8729
Q
14.45
1+20
1.0875
15.58
1+30
1.3132
16.39
Q V
1+40
1.5456
Q V
16.87
1+50
1.7625
17.20
2+0
2.0239
17.52
Q V
2+10
2.2722
V
18.03
Q
2+20
2.5281
Q
18.58
Q
2+30
2.7918
19.15
Q
2+40
3.0625
Q
19.66
V
2+50
3.3388
V
20.06
3+ 0
3.6263
20.87
3+10
3.9258
21.75
Q
3+20
4.2360
22.51
3+30
4.5608
23.58
Q
3+40
4.9097
Q
25.33
3+50
5.2914
27.71
4+ 0
5.6824
28.39
4+10
6.0006
23.10
4+20
6.2830
20.51
4+30
6.6546
26.97
4+40
7.1543
36.28
4+50
7.7929
46.37
5+ 0
6.5818
57.27
5+10
9.5737
72.01
5+20
10.9810
102.17
5+30
13.0280
148.61
5+40
15.6109
187.52
5+50
17.6928
151.14
6+ 0
18.8544
84.34
6+10
19.6179
55.43
6+20-
20.1403
37.92
6+30
20.5015
26.22
6+40
20.7616
18.89
6+50
20.9536
13.94
7+ 0
21.1041
10.93
7+10
21.2237
8.68
7+20
21.3229
7.21
7+30
21.4063
6.05
--------------------
------------------
0
0
--------------------
50.0 1
7Q
7 Q
7 Q
VQ
VQ
VQ
VQ
VQ
Q
Q
QV
QV
Q V
Q V
Q V
Q V
Q V
Q V
Q V
Q
V
Q
V
Q
V
Q
V
Q
V
Q
V
Q
V
Q
V
Q V
Q V
S
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
--------------------
)0.0 150.0 2
--------------------
V Q
V Q
Q V
V
V
V
V
V
V
V
V
V
V
)0.0
7+40 21.4748 4.98 Q v
' 7+50 21.5282 3.86 Q I I I V
1
1
1
D
8+ 0
21.5716
3.15
Q
V
8+10
21.6076
2.62
Q
v
8+20
21.6390
2.27
Q
y
8+30
21.6630
1.75
Q
p
8+40
21.6771
1.03
Q
V
8+50
21.6791
0.14
Q
V
'
9+10
21.6801
0.02
Q
v
1
1
1
D
I
1
1
� SEDIMENT
� ANALYSIS
I
u
I
I
I
I
I
Proceedings of the Workshop on
ESTIMATING EROSION and SEDIMENT YIELD
on RANGELANDS
Tucson, Arizona
March 7-9, 1981
E. R. Burroughs, Jr
J. C. Chugg
C. E. Dissmeyer
D. A. Farreli
G. R. Foster
K. A. Cebhardt
G. E. Hart.
C. W. Johnson
J. M. Laflen
L. J. Lane
C. J. Lovely
D. K. McCool
L. D. Meyer
W. C. Moldenhauer
E. .t. Neff
R. J. Page
K. C. Renard
M. 13. Rollins
E. D. Shirley
J. R. Simanton
J. J. Stone
E. S. Sundberg
1. R. WighL
J. R. Williams
U.S. Department of Agriculture
Agricultural Research Service
Agricuflural Reviews and Manua1s.ARM-W-20/June 1982
I
1
r
SEDIMENT YIELD FROM SMALL SEMIARID RANGELAND WATERSHEDS
K. G. Renard and J. J. Stone I/
INTRODUCTION
Sediment yield, the quantity of sediment moving past a cross-section of a
channel in a specified time interval, is sometimes mistakenly assumed to be
synonomous with erosion. Material removed from a slope as rill and interrill
erosion may be deposited at the toe of a slope, on a flood plain, or ac ocher
points within the watershed where the sediment load exceeds Che transport capa-
city of the runoff. Within a channel, material eroded not only from the land -
slope, but also from the channel bed and banks and from gullies and huadcuts,
can be a significant part of the sediment transported past a point on the
stream. The path that a soil particle takes in moving to a point of lower
potential energy is complicated, and the process is often stepwise in time.
Assuming that governing equations for such movements are known, these com-
plexities make physically based equations describing the movement of sedLment
difficult to use. Thus, more simplified empirical equations are often used.
Recent developments in watershed modeling, however, include crosion/sediment
transport routines with dctailed hydrologic models. Thesu new modeling tech-
niques promise to reflect the effects of different land usu and the cffocts of
the variations from year to year resulting from climatic differunces. They do,
of course, require much more computer time, have different data requirements,
and are more expensive to use than the simple empirical models.
Methods for estimating erosion and sediment yield from rangelands are
based primarily upon the principles developed in parts of the United States
where cultivated agricultural activities are prevalont. Techniques incorpora-
tins disturbance of the soil by tillage are not generally applicable to range-
lands, so the erosion-estimacing techniques must be adjusted to reflect these
Land use differences for rangelands. Typical problems unique to rangelands are
those associated with the different soils (tilegenesis of western range, soils
are different from those in humid areas); the existence of erosion pavements
(which provide protection from raindrop impact and decrease the shear of water
moving over the land); grazing and trampling by animals; and with channel ero-
sion processes which are very important on rangelands.
Renard (1980) detailed seven different methods for estimating sediment
yield. Each has different data requirements, vary in complexity, and produce
diFferent results. The choice of method depends upon the objectLve of the
investigation. In this further investLgation, some sediment yield formulae are
1 _.
• YHydraulic Engineer, USDA -SEA -A1C and Graduate Student, University of Ari-
zona, 442 E. 7th Sr., Tucson, AZ, 85705.
129
OCT— 9-92 FRI 16;19 Robe, t 1. I a, dFAI N01 6029246962 P. 04
tested with sediment yield data from nine small watersheds in the Walnut 8ulc}i
Experimental Watershed near Tombstone, Arizona.
METHODS TESTED
Pacific Southwest Interagency-Committea Method (PSIAC)
The method developed by the Water Management Committee of the PSIAC (1968)
was intended for broad planning rather than for specific project formulation
where more intensive investigations are required. Although this method was in-
tended for use in areas larger than 10 mit, we tested it here on small water-
sheds to demonstrate a method that might be readily used to estimate sediment
yield within a land resource area (Austin, 1965). Testing the method improves
the confidence of the user in selecting parameter values that reproduce obser-
ved data.
The method requires using nine factors to determine ttte sediment yield
classification for a watershed. The factors are (A) geology, (B) soils, (C)
Climate, (D) runoff, (E) topography, (F) ground cover, (G) land use, (H) upland
erosion, and (I) channel erosion/sediment transport. Each factor is assigned a
numerical value from a rating chart (PSIAC, 1968) which is too long to repro-
duce here. Descriptive terms for three sediment yield levels (high, moderate,
low) for each factor are used to select the numerical value. Summing the
rating chart values for tile nine factors defines a sediment yield rating class-
ification, which in turn can be converted to the averaze annual sediment yield
using Table 1.
TABLE 1. --Sediment yield classification
Rating Annual -
Classification sediment yield
---- --- __ _� ac-ft/mit
> 100 i > 3.0
75 to 100 2 1.0 to 3.0
50 to 75 3 U.5 to i.0
25 to 50 4 0.2 to 0.5
0to25 5 <0.2
Numerical values for each of the nine factors range from 25 to minus I0.
Although only three levels are suggested for general use in the rating chart, a
footnote states that, if experience so dictates, intecpolation between the
three sediment yield levels may be made.
study. Such interpolation was used in this
To -assist in interpolation between the classifications of Table 1, The
data in Table I were converted CO equation form. Although such precision was
not intended for the original method, we felt that such a schema could provide
additional insight into the ability of the technique to reflect differences in
the observed data. The equation is:
lin
Because of widely varying local factors, the authors may not have intended for
this equation to be used for a specific location. However, the equation docs
express a rational relationship for sediment yield that seems realistic for
conditions encountered in the Southwest.
To estimate the average annual runoff for a watershed, the relationship
developed by Renard (1977) for the Walnut Gulch Experimental Watershed was
used;
Q = 0.4501 A-0.1449 (3)
where the terms are as defined above. Substituting Eq. 3 into Eq. 2 gives
S = 887 A--0667 (1.43 - 0.26 log A) (4)
To convert the annual sediment yield to ac-ft/mi2/yr, the sediment deposited
was assumed to weighed 80 lbs/ft3.
Flaxman Method
Flaxman (1972) developed a regression equation for reservoir design on
rangeland watersheds in the western United States relating sediment yield to
' four parameters. His expression is
log (Y + 100) = 6.21301 - 2.19113 log (X1 + 100)
' + 0.06034 log (X2 + 100) - 0.01644 log (X3 + lou)
+ 0.04250 log (X4 + 100) (5)
whurc Y = antilog of jiog (Y + 100)) - 100
Y = average annual sediment yield (ac-ft/m12/yr)
131
Y - 0.06e0.0353X
81
(1)
Where Y = annual sediment yield (ac-Lt/mi2) -
' .
e = natural logarithm
X = PSIAC rating factor
t
Dendx/Bolton Method
'
Dendy and Bolton (1976) derived sediment yield equations having widespread
applicability because they used data from over 800 resurvoirs throughout
the
United States to obtain measured sediment yield values. They segregated
i
the
'
data into areas where runoff was either less than or greater than 2 in/yr.
In areas where runoff is less than 2 in, they derived the oquation;
y
S ='1280 Q0.46(1.43 - 0.26 log A)
(2)
where S = sediment yield (t/mi2/yr)
Q = annuaal runoff (in)
A = watershed arca (mi2).
'
Because of widely varying local factors, the authors may not have intended for
this equation to be used for a specific location. However, the equation docs
express a rational relationship for sediment yield that seems realistic for
conditions encountered in the Southwest.
To estimate the average annual runoff for a watershed, the relationship
developed by Renard (1977) for the Walnut Gulch Experimental Watershed was
used;
Q = 0.4501 A-0.1449 (3)
where the terms are as defined above. Substituting Eq. 3 into Eq. 2 gives
S = 887 A--0667 (1.43 - 0.26 log A) (4)
To convert the annual sediment yield to ac-ft/mi2/yr, the sediment deposited
was assumed to weighed 80 lbs/ft3.
Flaxman Method
Flaxman (1972) developed a regression equation for reservoir design on
rangeland watersheds in the western United States relating sediment yield to
' four parameters. His expression is
log (Y + 100) = 6.21301 - 2.19113 log (X1 + 100)
' + 0.06034 log (X2 + 100) - 0.01644 log (X3 + lou)
+ 0.04250 log (X4 + 100) (5)
whurc Y = antilog of jiog (Y + 100)) - 100
Y = average annual sediment yield (ac-ft/m12/yr)
131
X1 = ratio of average annual precipitation (in) to average annual tempera-
ture
X2 = average watershed slope: (/>)
X3 = soil particles greater than 1.0 Mm (i)
X4 = soil aggregation index
The parameters express climate and vegetativegrowth (X1), topography (X2) and
soil properties (X3 and X4). The cquation explained about 91id of the variance
in average annual sediment yield from 27 watersheds ranging in size from 12 to
54 mit in 10 western states.
Flaxman (1974) modified his original sediment yield prediction equation by
adding an additional term to reflect the 50 portent chance peak discharge in
csm (cubic ft/sec/mi2). The revised equation included converting the depend-
ent variable sediment yield from acre -ft in the original equation to tun/mit.
The equation is thus given as
log (Y + 100) - 524.37321 - 270.65625 Log (Xi + 100)
+ 6.41730 log (X2 + 100) - 1.70177 log (X3 + 100)
+ 4.03317 log (X4 + 100) + 0.99248 log (X5 + 100) (6)
where Y = sediment yield in ton/mit yr,
X5 = the 50 percent chance peak discharge, csm and
X, X21 X3, and X4 are the same as defined in eq (5).
Renard Method
A method for estimating sediment yield was developed by Renard (1972) and
Renard and Laursen (1975). This mcthod uses (a) a stochastic runoff model
(Diskin and Lane, 1972) which generates fiydr,oi;raphs for semiarid watersheds in
the southwestern United States, and (b) a deterministic sediment tansport rela-
tionship (Laursen, 1955). Sediment yield is then computed by simulating indi-
vidual hydrographs and computing the sediment transport for the simulated
hydraulic conditions. Annual runoff and sediment yield is the sum of the yield
of individual runoff events. Thus, sediment yield is a function of runoff vol-
ume, hydrograplh peak, Manning s roughness, slnpe, hydraulic radius, and the
size distribution of the sediment in tilt strcambed. The method was applied and
calibrated with sample data for several of the larger watersheds on. Walnut
Gulch in southeastern Arizona. With the model, a simplified'relationship was
developed which relates the annual sediment yield to watershed drainage area in
the form
Y - 0.001846 Aa -•1187 (7)
where Y = average annual sediment yield in ac-ft/ac/yr
Aa drainage area in acres.
Thus, because of transmission losses (abstractions from runoff ty tile.
alluvial channels) in the watershed, water yield decreases with increasing
Inent yTdrainage area (drainage density), and this same trend is reflected in the sedi-
ield relationship. Conversions are required to produce the units compar-
able to the other methods.
132
s
I
NOINEERINO
ESOUROES
almmimmm ffwm mc.
DATE _
JOB NO
BY _
CK'D _
SHEET OF _
sed:mem �r ram 12"16
f, rG SnJfG�4? �
v:o3S3 �_
y= 08
o. 0 3 5,3 X So
/ t .f Pew YP�i = v•°�76? X �.o7S vh�Z
To�x S��ineiJ E rnn
lye& r .
,4sldme- Tl�e-.. 6wr.l, d¢sy� F.�� 5_1eu� ��vc/dc�ro.
/ S6 o �./3/344 , �' s 62krs = 79620 tcy
iNGINEERING
NSOURGES
OF SOUTHERN turtowm. W.
DATE
JOB NO
BY
CK'D
SHEET OF
a•a353 �G
0.03 53 xis
.L
T6J��/ S2c✓.'in�nfts +off �CT �� /• /SZ X 0. o75
,gss✓.ru- f� ,6�I�� �!�f`j� ��r .5':�jp�tr P/�oldG-Ec=�
3 7�i SL F Xyye& r X 5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
—RENGINEEI UNG
ESOURCES
Of f00i®OI ONOOOMIO. WO.
.� fJ • i�7s N1
DATE
JOB NO
BY
CK'D
SHEET OF
/
flrld0(S %f,3 To C¢/1✓vgo F
3
/dNt
3,
4 -Vs r
3¢d.S F���ai � S,��s c
I? D2S f✓f3
I
1
I
I
1
1
1
i HYDRAULIC
� CALCULATION FOR
� VALLEJO CHANNEL
1 (EXISTING CONDITION CAPACITY)
r,
1,
1
1
1
1
1
_ <_ M wa�.WSW_ M M _ P ( CIV_IGN=1i-on _ M M M M M M _
Program Package Serial Number: 1416
WATER SURFACE PROFILE LISTING Date:10- 2-2002 Time:10:32:12
Channel Parallel to Ynez Rd. & Vallejo Ave.
Temecula, California
Invert
Depth
Water
Q
Vel
Vel I
Energy
I Super
ICriticallFlow Topl Height/IBase Wtl
INo Wth
Station
I Elev
i (FT)
Elev
(CFS)
(FPS)
Head I
Grd.El.)
Elev
I Depth I
Width
JDia.-FTlor
I.D.I
ZL
IPrs/Pip
L/Elem
ICh Slope
I
I
SF Avel
HF
ISE Dpthl
Froude NINorm
Dp
I "N"
I X -Fall)
ZR
(Type
Ch
*f##*4#4RliR4k*#FRRIi#*##*i#lif**#h#i4f4iiii*#RfR#*f4#*#*#4*flR#*#*****li4itt#kl**f***f*IiRRf#f#ilRf#i##4l
I
I
I
I
*fii###lff4#f
Ri*#*#*
1000.000
1017.200
1.364
i_
1018.564
60.00
5.69
I
.50
1019.07
.00
I 1.36
10.45
I 5.000
I I
5.000
2.00
0
.0
.203
.0035
I
I
I
I_
.0181
.00
1.36
1.00
2.12
.035
.00
2.00
l
TRAP
1000.203
1017.201
1.412
1018.613
60.00
I
5.93
.46
1019.07
I
.00
1.36
10.65
I
5.000
I
5.000
2.00
I
0
.0
.694
.0035
i
I
l
.0158
.01
_I_
1.41
.94
2.12
.035
.00
2.00
I_
TRAP
1000.897
1017.203
1.462
1018.666
I
I_
60.00
5.18
I
.42
1019.
OB
I
.00
I
1.36
10.85
I
5.000
I I
5.000
2.00
I
0
.0
1.333
.0035
I
I
.0139
.02
1.46
.88
2.12
.035
.00
2.00
I_
TRAP
1002.230
1017.208
1.514
1018.722
60.00
9.99
I
.38
1019.10
I
.00
I I
1.36
11.06
I
5.000
I
5.000
2.00
i
0
.0
2.169
.0035
I
I
.0121
.03
1.51
.83
2.12
.035
I_
.00
2.00
I_
TRAP
1009.399
1017.215
1.567
1018.783
60.00
4.71
� .39
1019.13
.00
I I
1.36
11.27
I
5.000
I
5.000
2.00
I
0
.0
3.278
.0035
I I
.0106
.03
1.57
.78
2.12
.035
.00
2.00
I_
TRAP
1007.677
1017.227
1.622
1018.849
I
60.00
4.99
I
.31
1019.16
.00
i I
1.36
11.49
I
5.000
I
5.000
2.00
I
0
.0
4.775
.0035
i
I
.0093
.04
1.62
.73
2.12
.035
.00
2.00
I_
TRAP
1012.451
1017.294
1.678
1018.922
I_
60.00
4.28
.28
1019.21
I
.00
1.36
11.71
I
5.000
I I
5.000
2.00
0
.0
6.845
.0035
i
i
I_
.0082
.06
1.68
.69
2.12
.035
.00
2.00
I_
TRAP
1019.297
1017.268
1.736
1019.004
60.00
I
9.08
I
.26
1019.26
I
.00
I I
1.36
11.94
5.000
I I
5.000
2.00
0
.0
9.811
I
.0035
I
.0072
.07
1.74
.65
2.12
.035
.00
2.00
l_
TRAP
1029.108
1017.302
1.796
1019.098
60.00
I
3.89
.23
1019.33
I
.UO
I I
1.36
12.18
I
5.000
I
5.000
.
200
I
0
.0
14.281
.0035
.0063
.09
i_
1.80
.61
2.12
.035
.00
2.00
I_
TRAP
1043.389
I
I
1017.352
1.857
1019.209
I
60.00
I
3.71
.21
1019.42
I
.00
I
1.36
12.43
I 5.000
I I
5.000
2.00
I
0
.0
21.566
.0035
.0055
.12
_ 1.86
.57
2.12
.035
.00
2.00
i_
TRAP
Existing Conditions
I Invert I Depth Water I Q I Vel Vel I Energy I Super ICriticallFlow Topl Height/IBase Wt1 INo Wth
Station I Elev (FT) Elev l (CFS) I (FPS) Head I Grd.El.I Elev I Depth I Width IDia'.-FTIor 1.D.1 ZL IPrs/Pip
L/Elem ICh Slope I I I SF Avel HF ISE DpthlFroude NINOM Dp I "N" I X-Fa111 ZR IType Ch
F#*h*k*R*I*#*#k**i*I#****4kk##*ii#4##Ik*fii####*I*#t*###I#*!k***lk####*!h*41i#!##4##**##krt*#h++lhk!#4 #141FR+##+#I#*##♦ Ilfirt#fi*i
1064.955
I
1017.927
1.920
I
1019.347
i_
60.00
3.54
I
.19
1019.54
I
.00 I
1.36
I 12.68
I 5.000 1
5.000
I
2.00
I 0 .0
35.089
I
.0035
I
I
.0048
.17
1.92
.54
2.12
.035
.00
2.00
I_
TRAP
1100.039
1017.550
1.984
I_
1019.535
60.00
I
3.37
I
.18
1019.71
i
.00
1.36
I
12.94
I I
5.000
5.000
I
2.00
I
0 .0
67.4781
I
.0035.1_
I
I
I_
.0042
.29
1.98
.51
2.12
.035
.00
2.00
1_
TRAP
1167.517
1017.786
2.051
1019.837
I
I_
60.00
I
3.21
I
.16
1020.00
I
I
.00
1.36
I
13.20
I I
5.000
5.000
I
2.00
i
0 .0
32.484
I
.0035
I
i
.0039
.13
2.05
.48
2.12
.035
.00
2.00
I_
TRAP
1200.000
1017.900
I_
2.068
1019.968
60.00
3.18
I
.16
1020.12
I
.00
1.36
I
13.27
I I
5.000
5.000
I
2.00
I
0 .0
WALL
EXIT
I_
I_
1200.000
I
1017.900
2.069
I
1019.969
I
60.00
I
3.17
.16
1020.13
I
.00 I
1.36
I 13.27
I 5.000 1
5.000
I
2.00
0 .0
9.726
-.0050 I
I
I
.0035
.03
2.07
.47
.00
.035
.00
2.00
I_
B OX
1209.726
I_
1017.851
I_
2.172
1020.023
I_
60.00
I
2.96
.19
1020.16
I
I
.00
1.36
I
13.69
I I
5.000
5.000
I
2.00
I
0 .0
10.274
WALL
-.0050
ENTRANCE
.0029
.03
2.17
.43
.00
.035
I_
.00
2.00
I_
BOX
1220.000
I
1
I
1017.800
_I_
2.271
I
1020.071
60.00
I
2.77
I
.12
1020.19
.00 I
1.36
I
19.08
I I
5.000
5.000
I
2.00
0 .0
10.476
.0086
I_
.0028
.03
2.27
.39
1.68
.035
.00
2.00
I_
TRAP
1230.476
1017.890
2.198
1_
1020.089
.60.00
2.90
.13
1020.22
.00
I 1.36
13.79
5.000
5.000
2.00
0 .0
10.661
.0066
I
I
I_
.0032
.03
2.20
.42
1.68
I_
.035
.00
2.00
I_
TRAP
1241.137
1017.982
2.128
1020.110
60.00
I
3.05
I
.14
1020.25
I
.00
1.36
I
13.51
I I
5.000
5.000
I
2.00
I
0 .0
10.982
I
.0086
I
I
I
I
.0037
I
.04
I
2.13
I
.44
I
1.68
.035
I I
.00
I
2.00
1-
TRAP
I
2
3
Existing Conditions
I Invert
I Depth
Water
Q
I Vel
Vel I
Energy
I Super
CriticallFIOW
Topl
Height/lBase
Wt1
INO Wth
Station
-I-
I Elev
-I-
I (FT)Elev
I Elev
I
I (FPS)
Head I
Grd.E1.1
Elev
I Depth I
Width
IDia.-FTIor
I.D.1
ZL
IPrs/pip
L/Elem
ICh Slope
I
-I-
I
-I-
-I-
I
-i-
-I-
SF Avel
-I-
HF
-I-
ISE DpthlFroude
-I-
NINorm
-I-
Dp
-I-
I "N" I
X -Fall)
-I-
ZR
-I
IType
Ch
1252.119
1018.076
2.060
1020.135
60.00
3.19
.16
1020.29
.00
1.36
13.24
5.000
5.000
2.00
0
.0
11.510
1 I .0086
I
I
.0042
.05
2.06
.47
1.68
.035
.00
2.00
1-
TRAP
1263.629
1018.175
1.993
1020.168
60.00
3.35
.17
1020.34
I
.00
I
1.36
12.97
I I
5.000
5.000
I
2.00
0
.0
12.376
.0086
I I
I
I_
.0048
.06
1.99
1
.50
1.68
_I_
.035
.00
2.00
1
TRAP
1276.005
1018.281
1.928
1020.209
60.00
I
3.51
I
.19
1020.90
I
.00
I
1.36
12.71
I I
5.000
5.000
I
2.00
0
,0
13.868
.0086 I
I
I_ I_
.0054
.08
1.93
.53
1.68
.035
.00
2.00
1_
TRAP
1289.873
1018.401
1.865
1020.265
I
60.00
I
3.69
.21
1020.48
I
.00
I
1.36
12.46
I I
5.000
5.000
I
2.00
0
.0
16.727
.0086 I
I
.0062
.10
1.06
.57
1.68
.035
.00
2.00
1-
TRAP
1306.601
1018.544
1.803
1020.348
I
60.00
I
3.87
I
.23
1020.58
.00
I
1.36
12.21
5.000
5.000
I
2.00
I
0
.0
23.667
.0086 I
I
I
.0071
.17
1.80
.60
1.68
.035
.00
2.00
1
TRAP
1330.267
1018.748
1.744
1020.491
60.00
4.05
i
.26
1020.75
.00
I
1.36
11.97
I I
5.000
5.000
2.00
I
0
.0
58.871
I I .0086
I
.0080
.47
1.74
I_
.64
1.68
.035
.00
2.00
i_
TRAP
1389.138
1019.254
1_
1.686
1020.939
60.00
i
4.25
.28
1021.22
I
.00
1.36
11.74
I
5.000
5.000
I
2.00
I
0
.0
20.272
.0086
I I
I
.0086
.17
1.69
.68
1.6B
.035
.00
2.00
I_
TRAP
1909.910
1019.428
I_
1.684
1021.112
60.00
4.26
I
.28
1021.39
I
.00
I
1.36
11.74
I I
5.000
5.000
I
2.00
I
0
.0
66.590
.0086
I
I
i
.0086
.57
1.68
.68
1.68
.035
.00
2.00
1_
TRAP
1476.000
1020.000
1.684
1021.684
60.00
4.26
I
.28
1021.97
I
.00
I
1.36
11.74
I I
5.000
5.000
I
2.00
I
0
.0
WALL
EXIT
1_
I_
.1476.000
I
1020.000
I_
1.685
I
1021.685
I
60.00
I
4.26
.28 I
1021.97
I .00
1.36 1
11.74
I
5.000
5.000
I
2.00
I
0
.0
9.115
.0086
1
1_
.0066
.08
1.68
.68
1.68
.035
.00
2.00
1
BOX
1985.115
1020.078
1.685
1021.763
60.00
I
4.25
.28
1022.04
I
.00
I I
1.36
11.79
I I
5.000
5.000
I
2.00
I
0
.0
14.885
.0086
.0085
.13
1.68
.68
1.68
.035
.00
2.00
1_
BOX
3
2
Existing Conditions
Invert
Depth
Water
Q
Vel
Vel I
Energy
I Super
CriticaljFlow
ToPIHeight/
Ease
Wtj
INo Wth
Station
I Elev
(FT)
Elev
(CFS)
(FPS)
Head I
Grd.E1.I
Elev
I Depth
I Width
Dia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Elem
SCh Slope 1
SF Avel
HF
ISE DpthlFroude
NINorm
Dp
I "N"
I X -Fall
ZR
IType
Ch
Rhhhh+Y++IY+Rx*h«++++#+x*RR#+#f*R*kxl#Y#*#***RI+k+++{Y+{Y##{{#*++k+##*I*****RhI+*+k+**RI*k+{w*+hl+Rx++{+{f+RR*RI+##*{
#h###+#
WALL
ENTRANCE
1500.000
1020.206
1.686
1021.892
60.00
4.25
.28
1022.17
.08
1.36
11.74
5.000
5.000
2.00
0
.0
3.179
-.0181
.0092
.03
1.76
.68
1.39
.035
.00
2.00
TRAP
1503.179
1020.264
1.629
1021.893
60.00
4.46
.31
1022.20
.08
1.36
11.52
5.000
5.000
2.00
0
.0
3.142
.0181
.0105
.03
1.71
.73
1.39
.035
.00
2.00
TRAP
1506.321
1020.320
1.574
1021.895
60.00
4.68
.34
1022.23
.09
1.36
11.30
5.000
5.000
2.00
0
.0
3.144
.0181
.0119
.04
1.66
.77
1.39
.035
.00
2.00
TRAP
1509.465
1020.377
1.521
1021.898
60.00
4.90
.37
1022.27
.10
1.36
11.08
5.000
5.000
2.00
0
.0
3.234
.0181
I
I
I
.0136
- .04
1.62
.82
1.39
.035-
.00
2.00
TRAP
1512.700
1020.436
1.469
1021.905
60.00
I
5.14
.41
I
1022.32
.10
I
1.36
I
10.88
I
5.000
5.000
1
2.00
1
0
.0
3.640
.0181
.0156
.06
1.57
.88
1.39
.035
.00
2.00
TRAP
1516.339
1020.502
1.419
1021.921
60.00
5.40
.45
1022.37
.11
1.36
10.68
5.000
5.000
2.00
0
.0
3.846
.0181
.0173
.07
1.53
.93
1.39
.035
.00
2.00
TRAP
1520.186
1020.571
1.386
1021.958
60.00
5.57
.48
1022.44
.12
1.36
10.55
5.000
5.000
2.00
0
.0
56.815
.0181
.0180
1.02
1.51
.97
1.39
.035
.00
2.00
TRAP
1577.000
1021.600
1.386
1022.986
60.00
5.57
.48
1023.97
.00
1.36
10.55
5.000
5.000
2.00
0
.0-
1.052
.0116
.0170
.02
1.39
.97
1.56
.035
.00
2.00
TRAP
1578.052
1021.612
1.436
1023.048
60.00
5.31
.44
1023.99
.00
1.36
10.79
5.000
5.000
2.00
0
.0
3.396
.0116
.0149
.05
1.44
.91
1.56
.035
.00
2.00
TRAP
1581.448
1021.652
1.987
1023.138
60.00
5.06
.40
1023.54
.00
1.36
10.95
5.000
5.000
2.00
0
.0
11.400
.0116
.0130
.15
1.49
.86
1.56
.035
.00
2.00
TRAP
1592.849
1021.784
1.539
1023.323
60.00
4.83
�.
.36
1023.68
.00
1.36
11.16
5.000
5.000
2.00
0
.0
2
Existing Conditions
Invert I Depth Water I q I Vel Vel Energy I Super ICriticallFlow ToplHeight/leaseWt1 INo Wth
Station I Elev I (FT) Elev I (CFS) i (FPS) Head Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip
L/Elem ICh Slope I I I SF Avel HF ISE DpthlFroude NINorm DP I "N" I X -Fall) ZR (Type Ch
27.496
1620.345
1
.0116
1022.103
i_
i
1.558
1023.661
I
60.00
4.74
I
I
.0119
.35
1024.01
I
.33
I
1.54
.00
.81
1.36
I
1.56
11.23
I I
.035
5.000
5.000
I
.00
2.00
2.00
I
TRAP
0 .0
233.509
.0116
I
I
.0116
2.70
1.56
.79
1.56
.035
.00
2.00
I_
TRAP
1853.859
1024.813
1.558
1026.371
60.00
4.74
I
.35
1026.72
I
I
.00
I
1.36
11.23
I I
5.000
5.000
I
2.00
I
0 .0
HYDRAULIC
JUMP
I_
1853.854
I I
1024.813
I_
I
1.180
1025.992
i
60.00
II
6.91
.74
1026.73
.00
1.36
9.72
5.000
5.000
I
2.00
0 .0
.941
.0116
I
I
I_
.0346
.03
1.18
1.29
1.56
.035
.00
2.00
I_
TRAP
1854.795
1024.823
1.154
I_
1025.977
I_
60.00
7.12
I
.79
1026.76
I
I
.00
I
1.36
9.62
I I
5.000
5.000
200
.
I
0 .0
1.387
.0116
I
I
.0386
.0S
1.15
1.34
1.56
.035
.00
2.00
I_
TRAP
1856.182
1029.839
1.113
1025.952
60.00
7.46
I
.66
1026.82
I
.00
I
1.36
9.95
I I
5.000
5.000
I
2.00
I
0 .0
1.430
.0116
I
.0442
.06
1.11
I_
1.43
1.56
.035
.00
2.00
I_
TRAP
1857.611
1024.856
1.073
1025.929
60.00
I
7.83
.95
1026.88
I
I
.00
i
1.36
9.29
I
5.000
5.000
I
2.00
I
0 .0
1.498
i
.0116
I
I
I
.0505
.07
1.07
1.52
1.56
.035
.00
2.00
I_
TRAP
1859.060
1024.873
1.034
1025.907
60.00
8.21
I
1.05
1026.95
I
.00
1.36
9.14
I I
5.000
5.000
I
2.00
0 .0
1.950
.0116
I
I
.0579
.08
1.03
1.62
1.56
.035
.00
2.00
TRAP
1860.510
1024.890
.997
1025.886
60.00
I
8.61
I
1.15
1027.04
I
i
.00
I
1.36
8.99
I I
5.000
5.000
2.00
I
0 .0
1.940
.0116
I
I
I_
I_
.0663
.10
1.00
1.72
1.56
.035
.00
2.00
I_
TRAP
1861.950
1029.906
I_
.960
1025.867
60.00
I
9.03
I
1.27
1027.13
I
.00
I
1.36
8.89
I I
5.000
5.000
I
2.00
0 .0
1.421
.0116
i
.0759
.11
.96
1.84
1.56
.035
.00
2.00
TRAP
1863.371
I
1024.923
_I_
.925
1025.848
60.00-
9.47
I
1.39
1027.24
I
I
.00
I
1.36
H.70
I I
5.000
5.000
I
2.00
I
0 .0
1.399
I
.0116
I
I
I
.0870
.12
.92
1.96
1.56
.035
.00
2.00
I_
TRAP
1864.765
1024.939
.891
1025.830
60.00
9.93
I
1.53
1027.36
I
I
.00
1.36
8.56
I I
5.000
5.000
I
2.00
I
0 .0
5
Existing Conditions
Invert Depth Water Q Vel Vel I Energy I Super ICritical[Flow Topl Height/IBase WtI INo Wth
Station I Elev [ (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/E1em ICh Slope I I SF Ave[ HF ISE DpthIFroude NINorm Dp I "N" I X-Fa11I ZR IType Ch
1.363 .0116
I 1
1866.129 1024.955
1.328 .0116
I
1867.457 1029.970
1.291 .0116
1868.748 1024.985
1.252 .0116
I
1870.000 1025.000
I_
WALL EXIT
I
1870.000 1025.000
4.732 .0367
I
1874.732 1025.173
6.169 .0367
I
1860.901 1025.400
I_
4.916 .0367
i
1885.017 1025.580
3.871 .0367
I I
1889.688 1025.722
3.072 .0367
I I
1892.760 1025.035
2.418 .0367
0
.0997
.14
.89
2.08
1.56
.035
.00
2.00
TRAP
WATER
SURFACE
PROFILE LISTING
Date:10-
2-2002
Time:10:32:12
Channel Parallel
I
to
Ynez
rd.
&
Vallejo Ave.
.858
1025.813
60.00
[
10.42
[
1.69
1027.50
[
.00 I
1.36 1
8.43
I 5.000
I
5.000
I 2.00
[
'0
.0
I
[
.1143
.15
.86
2.22
1.56
.035
.00
2.00
TRAP
.826
1025.796
60.00
10.93
1.85
1027.65
[
.00
1.36
8.30
{
5.000
[
5.000
{
2.00
I
0
.0
[
.1312
.17
.83
2.37
1.56
.035
.00
2.00
TRAP
.795
1025.780
60.00
11.46
I
2.04
1027.82
[
.00
I
1.36
6.18
5.000
I
5.000
I
2.00
I
0
.0
.1505
.19
.79
2.52
1.56
.035
.00
2.00
TRAP
.765
1025.765
60.00
12.02
2.24
1028.01
.00
1.36
8.06
5.000
5.000
2.00
0
.0
1.193
1026.193
i
60.00
[
11.45
2.03
1028.23
II
.00
1.77
2.94
3.000
I
.000
i
.00
[
2
.0
.0175
.08
1.19
1.51
.99
.013
.00
.00
PIPE
1.220
1026.394
60.00
11.11
1.92
1028.31
.00
1.77
2.95
3.000
.000
.00
2
.0
[
I
I
.0157
.10
1.22
1.45
.99
.013
.00
.00
PIPE
1.265
-I-
1026.665
-I-
60.00
-I-
10.59
-i-
1.74
-I-
1028.41
I
-I-
.00
I
1.77
2.96
[
3.000
.000
I
.00
I
2
.0
I
I
.0138
I
.07
-I-
1.27
-I-
1.35
.99
-I- -I-
.013
-I-
.00
.00
1-
PIPE
1.311
1026.891
60.00
10.10
1.56
1028.47
I
I
.00
I
1.77
2.98
I I
3.000
.000
I
.00
I
2
.0
I
I
I
.0121
.05
1.31
1.26
.99
.013
.00
I_
.00
I_
PIPE
1.360
-I-
1027.082
-i-
60.00
-I
9.63
-I
1.44
-I
1028.52
I
-I-
.00
-I-
I
1.77
-I
2.99
I
3.000
.000
I
.00
I
2
.0
I
I
I
.0107
.03
1.36
1.17
.99
-I- -I-
.013
-I-
.00
.00
I-
PIPE
1.411
_I_
1027.246
_I_
60.00
_I_
9.18
_I_
I
1.31
_I_
1028.55
I
I_
i
.00
1.77
2.99
I I
3.000
I
.000
,00
I
2
.0
.0094
.02
_i_
1.41
_I_
1.10
.99
_I_ _I_
.013
_I_
.00
.00
I-
PIPE
0
Existing Conditions
Invert Depth Water Q Vel Vel EnergySuper ICriticallFlow ToplHeight/IBase WtI
Station I Elev (FT) Elev �- (CFS) (FPS) Head Grd.El.� Elev I Depth I Width IDia.-FTIor I.D.' ZL
INo Wth
(Prs/Pip
L/Elem
S+£F**++SIk*#{£kk*f#RfihY£FR*kRk#*SRkI#kk#if
ICh Slope
I
4RRI#*##*R##{#+k+##4Ffi#!k*FIfi#f4R*k#4##F4*R#f
SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall
4i+hkklf#*{R*RIR4h##RR4##t*
ZR
IType Ch
h*R*+*k
1895.179
1025.923
I
1.464
I
1027.307
60.00
I
8.75
i i I I I
1.19 1028.58 .00 1.77 3.00 3.000 .000 I
.00
I
2 .0
1.036
.0367
I I
I 1
i
.0083 .02 1.46 1.02 .99 .013 .00
.00
PIPE
m= m mm m m m m m mm m == m =
Existing Conditions
Invert
Depth
Water
i Q9)
Vel
Vel I
Energy
Super
[CriticallFlow
ToplHeight/IBase
Wtj
INo Wth .
Station
I Elev
I (FT)
Elev
(C
I
(FPS)
Head
Grd.El.l
Elev
I Depth I
Width
Dia.-£TIor
I.D.I
ZL
IPra/Pip
L/Eleni
ICh Slope
I
SF Avel
HF
ISE DpthIFroude
NINorm
Dp
I "N"
I X -Fall
ZR
(Type
Ch
1897.015
1025.991
1.520
1027.511
60.00
8.35
1.08
1028.59
.00
1.77
3.00
3.000
.000
.00
2
.0
1.372
.0367
.0073
.01
1.52
.95
.99
.013
.00
.00
PIPE
1898.387
1026.041
1.578
1027.619
60.00
7.96
.98
1028.60
.00
1.77
3.00
3.000
.000
.00
2
.0
.905
.0367
.0064
.01
1.58
.88
.99
.013
.00
.00
PIPE
1899.293
1026.074
1.640
1027.714
60.00
7.59
.89
1028.61
.00
1.77
2.99
3.000
.000
.00
2
.0
.557
.0367
.0057
.00
1.64
.82
.99
.013
.00
.00
PIPE
1899.649
1026.094
1.704
1027.799
60.00
7.23
.81
1028.61
.00
1.77
2.97
3.000
.000
.00
2
.0
.151
.0367
.0050
.00
1.70
.76
.99
.013
.00
.00
PIPE
1900.000
1026.100
1.774
1027.874
60.00
6.89
.74
1028.61
.00
1.77
2.95
3.000
.000
.00
2
.0
WALL
ENTRANCE
1900.000
1026.100
3.681
1029.781
60.00
1.32
.03
1029.81
.00
1.36 1
19.72
5.000
1
5.000
2.00
0
.0
7.240
.0150
.0004
.00
3.68
.15
1.46
.035
.00
2.00
TRAP
1907.240
1026.209
3.573
1029.781
60.00
1.38
.03
1029.81
.00
1.36
19.29
5.000
5.000
2.00
0
.0
7.060
.0150
.0004
.00
3.57
.16
1.46
.035
.00
2.00
TRAP
1914.300
1026.315
3.967
1029.781
60.00
It
1.45
.03
1029.81
.00
1.36
18.87
5.000
5.000
2.00
0
.0
6.885
.0150
.0005
.00
3.47
.17
1.46
.035
.00
2.00
TRAP
1921.185
1026.418
3.364
1029.781
60.00
1.52
.04
1029.82
.00
1.36
18.45
5.000
5.000
2.00
0
.0
6.714
.0150
.0006
.00
3.36
.1B
1.46
.035
.00
2.00
TRAP
1927.899
1026.519
3.263
1029.782
60.00
1.60
.04
1029.82
.00
1.36
18.05
5.000
5.000
2.00
0
.0
6.547
.0150
.0006
.00
3.26
.19
1.46
.035
.00
2.06
TRAP
1934.446
1026.617
3.165
1029.782
60.00
1.67
.04
1029.83
.00
1.36
17.66
5.000
5.000
2.00
0
.0
6.385
.0150
.0007
.00
3.17
.21
1.46
.035
.00
2.00
TRAP
8
m
9
Existing Conditions
Invert
( Depth Water Q
Vel Vel Energy I Super ICriticall Flow ToplHeight/I6aee WtI
INo Wth
Station I Elev
( (FT) Elev (CFS)
(FPS) Head Grd.El.l Elev I Depth I Width IDia.-FTIor I -D.1 ZL
IPrs/Pip
L/Eleni ICh Slope
I I
SF Avel HE ISE DpthlFroude NINorm DP I "N" I X-Fa11I ZR
IType Ch
9
Existing Conditions
#++##x#+x**axkx#k+x+#x**kxx+*#x*+xk**x*+#**xxfY*##4r*#+*#***x****k##+++***x**a*fk++4+far+tx*fxYx+xYf*k+k+r+rr+###**+++++r+ #*+#+#+#
Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToPIHeight/IBase WtI INo Wth
Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Eleni ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall ZR IType Ch
Y**kk#k##I***faxfk#I#+*xxxxYl#+*a*x*##I*****x+#fl##+****I**x**Y+I+4#*#*x**Ik+#+###I##*#***#I##*#**#*It*+af**I##+#***IYk4*# Ik#**###
1940.831
1026.713
I_
3.070
1029.782
60.00
1.75
.05
1029.83
.00
1.36
17.28
5.000
5.000
2.00
0 .0
6.227
I .0150
I
I
.0008
.01
3.07
.22
1.46
.035
.00
2.00
i_
TRAP
1947.058
1026.806
2.976
I_
1029.782
I
I_
60.00
I
1.84
.OS
1029.89
i
,00
1.36
I
16.91
I I
5.000
I
5.000
2.00
I
0 .0
6.074
I .0150
I
I_
.0009
.01
2.98
.23
1.46
.035
.00
2.00
i_
TRAP
1953.132
1026.897
2.886
1029.783
60.00
1.93
.06
1029.84
I
.00
1.36
I
16.54
I
5.000
I
5.000
2.00
I
0 .0
5.925
.0150
i
I
.0011
.01
I_
2.89
.25
1.46
.035
.00
2.00
I_
TRAP
1959.057
1026.986
I_ I_
2.797
1029.783
I
60.00
2.02
I
.06
1029.85
i
.00
1.36
16.19
I I
5.000
5.000
2.00
i
0 .0
.943
.0150
I I
I_
.0011
I_
.00
2.80
.26
I
1.46
_I_
.035
I_
.00
2.00
I_
TRAP
1960.000
1027.000
2.783
1029.783
I
60.00
2.04
I
.06
1029.85
I
.00
1.36
I
16.13
I I
5.000
5.000
2.00
I
0 .0
HYDRAULIC
JUMP
I
_I_
I
_I_
i_
1960.000
I I
1027.000
1.268
1028.268
I
60.00
I
10.56
I
1.73
1030.00
I
I
.00
1.77
2.96
I 3.000 I
.000 I
.00
I 2 .0
4.876
.0350
I
.0137
.07
1.27
1.34
1.00
.013
.00
.00
I_
PIPE
1969.876
1027.171
1.311
I_
1028.482
60.00
I
10.10
1.58
1030.07
I
I
.00
1.77
I
2.90
I
3.000
I
.000
.00
I
2 .0
4.153
.0350
I
.0121
I_
.05
1.31
1.26
1.00
.013
.00
.00
I_
PIPE
1969.030
1027.316
1.360
I_
1028.676
60.00
I
9.63
1.44
1030.12
I
.00
1.77
2.99
I
3.000
I
.000
.00
I
2 .0
3.283
I .0350
I
.0107
.04
1.36
1.17
1.00
.013
.00
.00
I_
PIPE
1972.313
1027.431
I_
1.411
I_
1028.892
60.00
I
9.18
1.31
1030.15
I
I
.00
1.77
I
2.99
I I
3.000
.000.
.00
I
2 .0
2.576
.0350
I
.0094
.02
1.41
1.10
1.00
.013
.00
.00
I_
PIPE
1974.889
1027.521
1.469
1026.985
I
60.00
8.75
1.19
1030.17
I
I
.00
1.77
3.00
I
3.000
I
.000
.00
I
2 .0
1.951
.0350
I I
.0083
.02
1.46
1.02
1.00
.013
.00
.00
I_
PIPE
1976.840
1027.589
1.520
1029.109
I
60.00
8.35
I
1.08
1030.19
I
I
.00
1.77
I
3.00
I I
3.000
.000
.00
I
2 .0
1..455
.0350
.0073
I_
.01
1.52
.95
1.00
.013
.00
.00
PIPE
10
m m = IM = m r m m = m = = = = = m
11
Existing Conditions
I Invert
Depth Water
q vel vel I Energy I Super ICriticallFlow Topl Height/IBase Wtl
INo Wth
Station I Elev
(FT) Elev
(CFS) (FPS) Head I Grd.El.l Elev I Depth I Width IDia.-FTIor I.D.I ZL
IPrs/Pip
L/Elem ICh Slope I
SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR
IType Ch
I I
I
I I I I i I I I I
I
11
Existing Conditions
Invert I Depth Water I Q Vel Vel Energy I Super ICriticall Flow ToplHeight/lEase Wti INo Wth
Station I Elev (FT) Elev (CFS) (FPS) Head Grd.E1.1 Elev I Depth I Width Dia.-FTIor I.D.1 ZL 1Prs/Pip
L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude N1Norm Dp I "N" I X -Fall) ZR (Type Ch
#****i***Iifi*fifi##hrtlfi#i#k#filfi#f##f##flkfifikfirt+##I#i##.i#I#+##{##I*fikkfi##krtlhht#{##IFhfiF#h##I#fifth#Fh+I**#####Ii##*#**1*fi#f# I#***#*#
1978.294
1027.640
I
1.578
1029.218
60.00
7.96
.98
1030.20
.00
1.77
3.00
3.000
.000
.00
2 .0
.958
I
.0350
i
_I_
.0064
.01
1.58
.88
1.00
.013
.00
.00
I
PIPE
1979.253
1027.679
1.690
I_
1029.319
I
60.00
I
7.59
.89
1030.21
I
I
.00
1.77
I
2.99
I
3.000
I
.000
.00
2 .0
.589
I
.0350
I
_I_
.0057
.00
1.64
.82
1.00
.013
.00
.00
I_
PIPE
1979.841
1027.694
1.704
1029.398
I
60.00
7.23
I
.81
1030.21
I
.00
1.77
2.97
I I
3.000
I
.000
.00
2 .0
.159
I
.0350
I
.0050
.00
1.70
.76
1.00
.013
.00
.00
1-
PIPE
1980.000
1027.700
1.774
1_
1029.474
60.00
6.89
I
.74
1030.21
I
.00
1.77
I
2.95
I I
3.000
I
.000
.00
2 .0
WALL
ENTRANCE
I_
I_
1_
1980.000
I
I
1027.700
3.661
1031.381
i
60.00
1.32
.03
1031.41
I
.00
1.36
19.72
I
5.000
I
5.000
2.00
0 .0
4.828
I
.0223
I
I_
.0004
.00
3.68
I
.15
1.31
_I_
.035
.00
2.00
1_
TRAP
1984.828
1
1027.808
_I_
3.573
I
1031.380
I
60.00
I
1.38
I
.03
1031.41
I
I
.00
1.36
I
19.29
I I
5.000
I
5.000
2.00
I
0 .0
4.702
.0223
I
.0004
.00
3.57
.16
1.31
.035
.00
2.00
TRAP
1989.530
1027..912
I_
3.467
I_
1031.379
60.00
I
1.95
.03
1031.91
I
I
.00
1.36
18.87
I
5.000
I
5.000
2.00
0 .0
4.579
I
.0223
I
I_
.0005
.00
3.47
.17
1.31
.035
.00
2.00
I
TRAP
1994.109
1028.015
i_
3.364
1031.378
I
60.00
1.52
I
.04
1031.41
I
.00
1.36
I
18.45
I
5.000
5.000
2.00
I
0 .0
4.458
I
.0223
I
I_
I_
.0006
.00
3.36
.18
1.31
.035
.00
2.00
I_
TRAP
1998.567
1028.114
3.263
I_
1031.377
I
60.00
1.60
I
.04
1031.42
I
.00
1.36
I
18.05
i
5.000
5.000
2.00
i 0 .0
4.340
.0223
i
I
_1_
.0006
I_
.00
3.26
.19
1.31
.035
.00
2.00
I
TRAP
2002.907
1
1028.211
I_
3.165
1031.376
I
1_
60.00
1.67
.04
1031.42
.00
1.36
I
17.66
I
5.000
i
5.000
2.00
0 .0
4.224
I
.0223
I
1_
.0007
I_
.00
I_
3.17
.21
1_
1.31
1_ I_
.035
1_
.00
2.00
I_
TRAP
2007.131
1028.305
3.070
1031.375
60.00
I
1.75
.OS
1031.42
I
.00
1.36
I
17.28
I I
5.000
5.000
2.00
I
0 .0
4.110
.0223
.0008
.00
3.07
.22
1.31
.035
.00
2.00
I
TRAP
12
Existing Conditions
Invert 'Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase WtI INo Wth
Station I Elev I (FT) Elev I (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Elem ICh Slope I I I I SF Avel 11F ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR IType Ch
I I I I I I I I I I I I I
13
Existing Conditions
Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFlow ToplHeight/]Base WtI INo Wth
Station I Elev ] (FT) Elev ] (CFS) ] (FPS) Head I Grd.E1.1 Elev I Depth I Width ]Dia.-FTIor I.D.1 ZL ]Prs/Pip
L/Elem ICh Slope I ] SF Ave] HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch
2011.240
1028.397
2.976
1031.373
60.00
1.84
.05
1031.43
.00
1.36
16.91
5.000
5.000
2.00
0 .0
3.997
.0223
i
.0009
.00
2.98
.23
1.31
.035
.00
2.00
TRAP
2015.238
1028.486
2.866
1031.372
I
60.00
1.93
.06
1031.43
.00
1.36
16.54
5.000
5.000
I
2.00
0 .0
3.887
.0223
I
.0011
.00
2.89
.25
1.31
.035
.00
2.00
TRAP
2019.125
1028.573
2.797
1031.370
60.00
I
2.02
I
.06
1031.43
I
.00
1.36
I
16.19
I i
5.000
5.000
2.00
I
0 .0
3.779
I
.0223
I
.0012
.00
2.80
.26
1.31
.035
.00
2.00
TRAP
2022.909
1028.657
2.711
1031.368
I
60.00
2.12
.07
1031.94
I
,00
1.36
15.89
I
5.000
5.000
I
.2.00
0 .0
3.672
1
.0223
I
.0014
.01
2.71
.28
1.31
.035
.00
2.00
TRAP
2026.576
1028.739
2.627
1031.366
60.00
2.23
I
.08
1031.44
I
I
.00
1.36
I
15.51
] ]
5.000
5.000
I
2.00
0 .0
3.567
I
I .0223
I
.0016
.01
2.63
.30
1.31
.035
.00
2.00
TRAP
2030.143
1028.819
2.546
1031.364
]
60.00
I
2.34
I
.08
1031.45
I
I
.00
1.36
i
15.18
I I
5.000
5.000
I
2.00
I
0 .0
3.463
.0223 I
I
-.0018
.01
2.55
.32
1.31
.035
.00
2.00
TRAP
2033.606
1028.896
2.966
1031.362
60.00
I
2.45
.09
1031.96
.00
1.36
'14.86
5.000
5.000
2.00
0 .0
3.361
I
.0223
.0020
.01
2.47
.34
1.31
.035
.00
2.00
TRAP
2036.967
1028.971
2.389
1031.359
60.00
2.57
.10
1031.46
]
.00
1.36
14.55
5.000
5.000
2.00
I
0 .0
3.259
I
.0223
]
]
.0023
.01
2.39
.36
1.31
.035
.00
2.00
TRAP
2040.226
1029.049
2.313
1031.357
60.00
2.69
i
.11
1031.47
I
]
.00
1.36
I
14.25
5.000
5.000
i
2.00
I
0 .0
3.159
1
I .0223
'
I
.0026
.01
2.31
.38
1.31
.035
.00
2.00
TRAP
2093.385
-
1029.114
�
2.240
�I-
1031.354
I
-I-
60.00
I
-]�
2.83
I
.12
1031.48
.00
1.36
_
I
13.96
I
5.000
5.000
I
2.00
I
0 .0
3.059
.0223
-I
.0030)
.01 I
2.241
.40
I 1.31
.035 I
.001
2.00
(TRAP
14
Existing Conditions
I Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow Topl Height/]Base Wt] INo+Wth
Station I Elev I (FT) I Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width ]Dia.-FTlor I.D.I ZL IPrs/Pip
L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude NINOM Dp I "N" I X -Fall] ZR (Type Ch
2046.444
I I
1029.182
2.168
.14
I
1031.350
I
2.960
I
1.36
.0223
I
13.67
5.000
5.000
2049.404
I
2.00
I
1029.248
2.099
1031.347
2.861
.0034
.0223
.01
2.17
.43
2052.265
i
1029.312
2.031
]
1031.343
2.762
60.00
.0223
3.11
.15
1031.50
2055.027
i
1029.374
1.965
13.39
1031.339
5.000
2.661
.0223
0 .0
2057.688
I
1029.433
1.901
I
1031.334
2.560
1.31
.0223
.035
.00
2.00
2060.248
I
1029.490
1.638
I
1031.329
.17
2.455
]
.0223
1.36
13.12
2062.704
I
1029.595
1.778
i
1031.323
2.347
.0223
.0044
]
.01
2.03
2065.050
i
I
1029.597
1.719
i
1031.316
I
2.231
.0223
60.00
-I-
3.42
-I-
2067.282
1031.52
i
1029.647
1.661
1.36
1031.308
2.106
I
5.000
I_
.0223
]
2.00
I
0 .0
2069.388
I
1029.694
1.605
.0050
1031.300
I
1.963
.0223
1.31
-i-
-I-
.035
2071.351
i
-I-
1029.738
-I-
1.551
I
-I-
1031.289
-I-
60.00
2.96
.14
1031.49
.00
I
1.36
I
13.67
5.000
5.000
I
2.00
I
0 .0
I
.0034
.01
2.17
.43
1.31
.035
.00
2.00
1-
TRAP
60.00
3.11
.15
1031.50
.00
1.36
13.39
5.000
5.000
2.00
0 .0
.0039
.01
2.10
.46
1.31
.035
.00
2.00
I_
TRAP
60.00
3.26
.17
1031.51
]
]
.00
1.36
13.12
] ]
5.000
5.000
2.00
0 .0
.0044
]
.01
2.03
.49
1.31
.035
.00
2.00
TRAP
60.00
-I-
3.42
-I-
.18
-I-
1031.52
-I-
I
.00
1.36
]
12.86
I
5.000
5.000
]
2.00
I
0 .0
.0050
.01
-I-
1.96
-I-
.52
1.31
-i-
-I-
.035
-i-
.00
2.00
1-
TRAP
60.00
-I-
3.59
-I-
.20
-I-
1031.53
-I-
.00
-I-
1.36
12.60
5.000
5.000
2.00
0 .0
.0057
.01
1.90
-I-
.55
1.31
-I-
-I-
.035
-I-
.00
2.00
1-
TRAP
60.00
_I_
3.76
_I_
.22
_I_
1031.55
I
_I_
.00
1.36
12.35
I I
5.000
5.000
I
2.00
0 .0
1
.0065
.02
_I_
1.84
_I_
.58
1.31
_I_
_I_
.035
_I_
.00
2.00
I-
TRAP
60.00
3.95
.24
1031.56
I
.00
1.36
12.11
I ]
5.000
5.000
I
2.00
I
0 .0
I
.0075
]
.02
1.78
.62
1.31
.035
.00
2.00
TRAP
60.00
4.14
.27
1031.58
]
.00
1.36
11.87
5.000
5.000
2.00
I
0 .0
]
.0085
.02
1.72
.66
1.31
.035
.00
2.00
TRAP
60.00
4.34
.29
1031.60
I
.00
1.36
I
11.64
I I
5.000
5.000
2.00
0 .0
.0097
I
.02
1.66
.70
1.31
.035
.00
2.00
TRAP
60.00
-I-
4.55
-I-
.32
-I-
1031.62
I
-I-
.00
1.36
11.42
5.000
5.000
I
2.00
I
0 .0
1
.0111
.02
-I-
1.61
-I-
.75
1.31
-I-
-I-
.035
-I-
.00
2.00
I-
TRAP
60.00
-I-
4.77
-I-
.35
-I-
1031.64
-I-
I
.00
-I-
1.36
I
-I-
11.20
-I-
I I
5.000
-I-
5.000
I
-I-
2.00
I
0 .0
I-
15
Existing Conditions
Invert I Depth ] Water Q ] Vel Vel Energy I Super ICriticallFlow ToplHeight/lBase WtI INo Wth
Station I Elev I (FT) ] Elev I (CFS) I (FPS) Head Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR ]Type Ch
1.790
.0223
.0126
.02
2073.141
.79
i
1029.778
1.499
.035
1031.276
.00
1.558
.0223
60.00
5.01
-1-
2074.699
1031.67
I
1029.813
1.447
1.36
1031.260
I I
5.000
.862
.0223
2.00
I
0 .0
2075.561
1029.832
1.398
]
1031.229
I
HYDRAULIC
1.31
JUMP
.035
.00
2.00
2075.561
TRAP
I
1029.832
1.312
I
1031.144
.43
_I_
1.450
I
.0223
1.36
I
10.79
I I
5.000
2077.010
I
I
1029.864
1.312
I
0 .0
1031.176
I
4.737
.027.3
.01
1.45
.90
2081.747
-I-
I
1029.970
1.305
I
1031.275
5.400
60.00
I_
.0223
5.51
I_
.47
I_
2087.147
]
I
1030.090
1.260
]
1031.350
I
3.262
2.00
.0223
i
0 .0
60.00
I
6.00
2090.409
I
.56
i
1030.163
1.215
I
.00
1031.379
10.25
2.686
I
5.000
.0223
I
2.00
I
0 .0
2093.095
i
1030.223
1.172
.0223
1031.396
I
2.392
1.07
.0223
I_
.00
2095.487
I
I
1030.276
1.131
I
1031.407
I
2.198
1031.73
.0223
.00
1.36
10.25
2097.686
-I-
I
1030.325
-I-
1.090
]
-I-
1031.416
I
-I-
.0126
.02
1.55
.79
1.31
.035
.00
2.00
TRAP
60.00
5.01
.39
1031.67
i
.00
1.36
I
10.99
I I
5.000
5.000
2.00
I
0 .0
I
.0144
I
.02
1.50
.85
1.31
.035
.00
2.00
TRAP
60.00
5.25
I
.43
_I_
1031.69
I
I
.00
1.36
I
10.79
I I
5.000
5.000
I
2.00
I
0 .0
I
.0165
.01
1.45
.90
1.31
.035
.00
2.00
i_
TRAP
60.00
5.51
.47
'1031.70
I
.00
1.36
I
10.59
I
5.000
5.000
2.00
i
0 .0
60.00
I
6.00
_I_
I
.56
1031.70
I
.00
1.36
10.25
I
5.000
5.000
I
2.00
I
0 .0
.0223
.03
1.31
1.07
1.31
.035
.00
2.00
TRAP
60.00
6.00
.56
1031.73
.00
1.36
10.25
5.000
5.000
2.00
0 .0
.0225
I
.11
1.31
1.07
1.31
.035
.00
2.00
TRAP
60.00
6.04
.57
1031.84
I
.00
1.36
I
10.22
I
5.000
5.000
2.00
I
0 .0
.0243
I
.13
1.31
1.08
1.31
.035
.00
2.00
TRAP
60.00
6.33
.62
1031.97
I
.00
1.36
10.04
]
5.000
5.000
2.00
I 0 .0
.0278
.09
1.26
1.15
1.31
I_ I_
.035
]_
.00
2.00
I_
TRAP
60.00
6.64
.69
1032.06
.00
1.36
9.86
5.000
5.000
I
2.00
I
0 .0
.0318
.09
1.22
1.22
1.31
.035
.00
2.00
TRAP
60.00
I_
6.97
.75
1032.15
.00
1.36
9.69
5.000
5.000
2.00
0 .0
I
.0364
I
.09
i
1.17
1.30
1.31
.035
.00
2.00
I_
TRAP
60.00
7.31
.83
1032.24
I
.00
I
1.36
9.52
I I
5.000
5.000
I
2.00
I
0 .0
.0416
I
.09
1.13
1.39
1.31
.035
.00
2.00
TRAP
60.00
7.66
.91
1032.33
I
.00
I
1.36
9.36
I I
5.000
5.000
1
2.00
I
0 .0
16
17
Existing Conditions
YRR###*R#+Y4++#***Y#++##**Y#R#R!**+#4#*++#Y##4!****rt++Y#++#!R***++#4+#!!**Y*#+##!#R********+Y*++#R+#++#4#R***rt+Y#R#**+RR**
Y#4***+Y
Invert
Depth Water
Q
Vel Vel l Energy l Super lCriticallFlow ToplHeight/lBase
Wtl
No Wth
Station
I Elev
(FT) Elev
(CFS)
(FPS) Head I Grd.El.l Elev l Depth I Width
IDia.-FTlor I.D.1
ZL
lPrs/Pip
L/Elem
lCh Slope I
SF Avel HF ISE DpthjFroude NjNorm Dp
l "N" I X -Fall
ZR
IType Ch
2.052
1 I .0223
�
I
.0476 .10 1.09 1.48 1.31
�
.035 .00
2.00
TRAP
17
Existing Conditions
Invert Depth Water Q Vel Vel I Energy I Super CriticalIFloW ToPIHeight/lHase Wtl INo Wth
Station I Eley (FT) Elev (CFS) (FPS) Head I Grd.El.j Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Elem IGh Slope I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch
2099.738
1030.371
1.051
1031.422
60.00
8.04
1.00
.1032.43
.00
1.36
9.20
5.000
5.000
2.00
0 .0
1.934
.0223
.0545
.11
1.05
1.57
1.31
.035
.00
2.00
TRAP
2101.672
1030.414
1.013
1031.427
60.00
8.43
1.10
1032.53
.00
1.36
9.05
5.000
5.000
2.00
l
0 .0
1.832
.0223
.0624
.11
1.01
1.68
1.31
.035
.00
2.00
TRAP
2103.503
1030.455
.976
1031.431
60.00
8.84
1.21
1032.65
.00
1.36
8.90
5.000
5.000
2.00
0 .0
1.741
.0223
.0715
.12
.98
1.78
1.31
.035
.00
2.00
TRAP
2105.245
1030.499
.990
1031.434
60.00
9.27
1.34
1032.77
.00
1.36
8.76
5.000
5.000
2.00
0 .0
1.659
.0223
.0819
.14
.94
1.90
1.31
.035
.00
2.00
TRAP
2106.904
1030.531
.906
1031.437
60.00
9.73
1.47
1032.91
.00
1.36
8.62
5.000
5.000
2.00
0 .0
1.583
.0223
.0939
.15
.91
2.03
1.31
.035
.00
2.00
TRAP
2108.487
1030.566
.872
1031.438
60.00
10.20
1.62
1033.05
.00
1.36
8.49
5.000
5.000
2.00
0 .0
1.513
.0223
.1076
.16
.87
2.16
1.31
.035
.00
2.00
TRAP
2110.000
1030.600
.840
1031.440
60.00
10.70
1.78
1033.22
.00
1.36
8.36
5.000
5.000
2.00
0 .0
WALL
EXIT
2110.000
1030.600
I
1.327
_I_
1031.927
60.00
9.99
1.53
1033.46
.00
1.77
2.98
3.000
.000
.00
2 .0
6.5461
.0435
.0340
.22
1.33
I_
1.23
1.25
.022
.00
.00
I_
PIPE
2116.547
1030.885
1.360
1032.245
60.00
9.63
1.49
1033.68
.00
1.77
2.99
3.000
.000
.00
2 .0
6.179
.0435
.0306
.19
1.36
1.17
1.25
.022
.00
.00
PIPE
2122.726
1031.153
1.411
1032.564
60.00
9.18
1.31
1033.87
.00
1.77
2.99
3.000
.000
.00
2 .0
3.974
.0435
.0269
.11
1.41
1.10
1.25
.022
.00
.00
PIPE
2126.700
1031.326
1.464
1032.790
60.00
8.75
1.19
1033.98
.00
1.77
3.00
3.000
.000
.00
2 .0
2.632
.0435
.0237
.06
1.46
1.02
1.25
.022
.00
.00
PIPE
18
Existing Conditions
Invert Depth Water Q Vel Vel I Energy I Super ICriticallFlow ToplHeight/lease Wtj No Wth
Station I Elev (FT) EleV (CFS) I (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip
L/Elem ICh Slope I SF Ave HF ISE DpthIFroude NINorm Dp I "N" I X -Fall ZR IType Ch
19
m m m m m m r m m m m m m m= m m m m
Existing Conditions
Invert Depth Water Q Vel Vel I Energy I Super ICriticallFloW TopIHeight/lBase Wtl INo Wth
Station I Elev (FT) Elev(CFS) (FPS) Head I Grd.El.l Elev I Depth I Width Dia.-FTIor I.D. ZL [Prs/Pip
L/Eleni ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch
2129.332
1031.440
1.520
1032.961
60.00
8.35
1.08
1034.04
.00
1.77
3.00
3.000
.000
.00
2 .0
1.781
.0435
.0208
.04
1.52
.95
1.25
.022
.00
.00
PIPE
2131.113
1031.518
1.578
1033.096
60.00
7.96
.98
1034.08
.00
1.77
3.00
3.000
.000
.00
2 .0
1.091
.0435
.0184
.02
1.58
.88
1.25
.022
.00
.00
PIPE
2132.204
1031.565
1.640
1033.205
60.00
7.59
.89
1034.10
.00
1.77
2.99
3.000
.000
.00
2 .0
.633
.0435
.0162
.01
1.64
.82
1.25
.022
.00
.00
PIPE
2132.837
1031.593
1.704
1033.297
60.00
7.23
.81
1034.11
.00
1.77
2.97
3.000
.000
.00
2 .0
.163
.0435
.0143
.00
1.70
.76
1.25
.022
.00
.00
PIPE
2133.000
1031.600
1.774
1033.374
60.00
6.89
.74
1034.11
.00
1.77
2.95
3.000
.000
.00
2 .0
WALL
ENTRANCE
2133.000
1031.600
3.681
1035.281
60.00
1.32
.03
1035.31
.00
1.36
19.72
5.000
5.000
2.00
0 .0
3.820
.0281
.0004
.00
3.68
.15
1.23
.035
.00
2.00
TRAP
2136.820
1031.707
3.573
1035.280
60.00
1.38
.03
1035.31
.00
1.36
19.29
5.000
5.000
2.00
0 .0
3.719
.0281
.0004
.00
3.57
.16
1.23
.035
.00
2.00
TRAP
2140.539
3.620
1031.812
.0281
3.467
1035.279
60.00
1.45
.03
.0005
1035.31
.00
.00
3.47
1.36
.17
18.87
1.23
5.000
.035
5.000
.00
2.00
2.00
0 .0
TRAP
2149.159
1031.913
3.364
1035.277
60.00
1.52
.04
1035.31
.00
1.36
18.95
5.000
5.000
2.00
0 .0
3.522
.0281
.0006
.00
3.36
.18
1.23
.035
.00
2.00
TRAP
2147.681
1032.012
3.263
1035.275
60.00
1.60
.04
1035.31
.00
1.36
18.05
5.000
5.000
2.00
0 .0
3.426
.0281
.0006
.00
3.26
.19
-1.23
.035
.00
2.00
TRAP
2151.107
1032.109
3.165
1035.274
60.00
1.67
.04
1035.32
.00
1.36
17.66
5.000
5.000
2.00
0 .0
3.332
.0281
.0007
.00
3.17
.21
1.23
.035
.00
2.00
TRAP
2159.939
1032.202
3.070
1035.272
60.00
1.75
.05
1035.32
.00
1.36
17.28
5.000
5.000
2.00
0 .0
20
Existing Conditions
Invert Depth Water Q Vel Vel I Energy I Super CriticalIFloW ToplHeight/Base WtI «No Wth
Station I Elev (FT) Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width [Dia.-FTIor I,D.I ZL IPrs/Pip
L/Elem ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Fd11I ZR (Type Ch
3.238
-I
-I_
.0281
_I_
_I_
-I-
_I_
_I_
.0008
_I_
.00
_I_
3.07
_I_
.22
1.23
_I_
_I_
.035
_I_
.00
2.00
1-
TRAP
2157.677
1032.293
2.976
1035.270
60.00
1.84
.05
1035.32
.00 I1.36
16.91
5.000
5.000
2.00
0 .0
3.146
.0281
.0009
.00
2.98
.23
1.23
.035
.00
2.00
TRAP
2160.823
1032.381
2.886
1035.267
60.00
1.93
.06
1035.33
.00
1.36
16.54
5.000
5.000
2.00
0 .0
3.056
.0281
.0011
.00
2.89
.25
1.23
.035
.00
2.00
TRAP
2163.879
1032.467
I
2.797
I
1035.265
_I_
60.00
2.02
.06
1035.33
.00
1.36
16.19
5.000
5.000
2.00
0 .0
2.9661
.0281
I_
.0012
.00
2.80
.26
I
1.23
_I_
.035
.00
2.00
I_
TRAP
2166.895
1032.551
2.711
1035.262
60.00
2.12
.07
1035.33
.00
1.36
15.89
5.000
5.000
2.00
0 .0
2.877
.0281
.0014
.00
2.71
.28
1.23
.035
.00
2.00
TRAP
2169.723
1032.631
2.627
1035.259
60.00
2.23
.08
1035.34
.00
1.36
15.51
5.000
5.000
2.00
0 .0
2.790
.0281
.0016
.00
2.63
.30
1.23
.035
.00
2.00
TRAP
2172.512
1032.710
2.546
1035.255
60.00
2.39
.08
1035.39
,00
1.36
15.18
5.000
5.000
2.00
0 .0
2.702
.0281
.0018
.00
2.55
.32
1.23
.035
.00
2.00
TRAP
2175.219
1032.786
2.466
1035.252
60.00
2.45
.09
1035.34
.00
1.36
14.86
5.000
5.000
2.00
0 .0
2.615
.0281
.0020
.01
2.47
.34
1.23
.035
.00
2.00
TRAP
2177.830
1032.859
2.389
1035.248
60.00
2.57
.10
1035.35
.00
1.36
14.55
5.000
5.000
2.00
0 .0
2.529
.0281
.0023
.01
2.39
.36
1.23
.035
.00
2.00
TRAP
2180.358
1032.930
2.313
1035.243
60.00
2.69
.11
1035.36
.00
1.36
14.25
5.000
5.000
2.00
0 .0
2.442
.0281
I
I
.0026
.01
2.31
.38
1.23
.035
.00
2.00
TRAP
2182.800
1032.999
2.240
1035.239
I
60.00
I
2.83
.12
I
1035.36
I
.00
1.36
I
13.96
I
I
5.000
5.000
I
2.00
1
1
0 .0
2.355
.0281
.0030
.01
2.24
.40
1.23
.035
.00
2.00
TRAP
21
m m m m ! m m m = m m m m m m m m m m
Existing Conditions
Invert Depth Water Q Vel Vel Energy I Super ICriticallFlow Top Height/lHase WtI No Wth
Station I Elev (FT) Elev (CFS) (FPS) Head Grd.El.1 Elev I Depth I Width Dia.-FTjor I.D.I ZL IPrs/Pip
L/Elem jCh Slope SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X-Fa11I ZR IType Ch
2185.155
1033.065
2.168
1035.233
60.00
2.96
.14
1035.37
1.36
13.67
5.000
.00
5.000
2.00
0 .0
2.267
.0281
.0034
.01
2.17
.43
1.23
.035
.00
2.00
TRAP
2187.422 1033.129
2.099 1035.227
60.00
3.11
.15
1035.38
.00
1.36
13.39
5.000
5.000
2.00
0
2.178
.0281
.0039
.01
2.10
.46
1.23
.035
.00
2.00
TRAP
2189.600
1033.190
2.031
1035.221
60.00
3.26
.17
1035.39
1.36
13.12
5.000
.00
5.000
2.00
0 .0
2.087
.0281
.0044
.01
2.03
.49
1.23
.035
.00
2.00
TRAP
2191.687
1033.249
1.965
1035.213
60.00
3.42
1035.40
1.36
12.86
I_
I_
.18
.DO
5.000
5.000
2.00
0 .0
1.994
.0281
.0050
I_
.01
I_
1.96
.52
1.23
I_
I_
.035
.00
2.00
I_
TRAP
2193.681
1033.305
1.901
1035.205
60.00
3.59
.20
1035.41
1.36
12.60
5.000
I_
I_
I_
I_
I_
.00
5.000
2.00
0 .0
1.898
.0281
.0057
I_
.01
1.90
I_
.55
1.23
.035
.00
2.00
TRAP
2195.579
1033.358
1.838
1035.196
60.00
3.76
1035.42
1.36
12.35
I_
I_
I_
.22
.00
5.000
5.000
2.00
0 .0
1.796
.0281
I_
.0065
I_
.01
1.84
I_
.58
1.23
.035
I_
.00
2.00
I_
TRAP
2197.375
1033.908
1.778
1035.186
60.00
3.95
1035.43
1.36
I_
I_
I_
I_
.24
.00
12.11
5.000
5000
.
2.00
0 .0
1.689
.0281
.0075
I_
.01
1.78
I_
.62
1.23
I_
.035
I_
.00
2.00
TRAP
2199.064
1033.456
1.719
1035.174
60.00
4.19
.27
1035.44
1.36
I_
I_
I_
I_
.00
11.87
5.000
5.000
2.00
0 .0
1.573
1
.0201
I
I
I
�
.0085
I_
.01
1.72
I_
.66
1.23
.035
I_
.00
2.00
I_
TRAP
2200:636
1033.500
1.661
1035.161
60.00
4.34
1
1035.45
I
I
1.36
1
I
I
1
I
I_
I_
I_
I_
I_
.29
.00
11.64
5.000
5.000
2.00
0 .0
1.494
.0281
I_
.0097
.01
1.66
I_
.70
1.23
.035
I_
.00
2.00
TRAP
2202.080
1033.541
1.605
1035.196
60.00
4.55
1035.47
1.36
I_
I_
I_
I_
I_
.32
.00
11.42
5.000
5.000
2.00
0 .0
1.296
.0281
I_
.0111
.01
I_
1.61
I_
.75
1.23
I_
I_
.035
I_
.00
2.00
I_
TRAP
2203.376
1033.577
1.551
1035.128
60.00
4.77
.35
1035.48
1.36
11.20
5.000
I_
I_
I_
I_
.00
5.000
2.00
0 .D
.591
.0281
I_
.0122
.01
I
1.55 -
I_
.79
1.23
.035
I_
.00
2.00
I_
TRAP
22
0
m= m r m m m m m m m m m m ! m m= m
Existing Conditions
Invert Depth I Water Q Vel Vel I Energy I Super CriticalIFloW ToPIKeight/ISace WtI INo Wth
Station I Elev (FT) EleV(CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Elem ICh Slope I I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X-Fa11I ZR (Type Ch
2203.917
1033.592
1.525
1035.118
60.00
4.89
.37
1035.49
.00
1.36
11.10
5.000
S.000
2.00
0 .0
HYDRAULIC
JUMP
I_
2203.917
_I_
I
1033.592
_I_
1.209
_I_
1039.801
I
60.00
I
6.69
II
.69
1035.50
.00
1.36
9.84
5.000
I
5.000
2.00
0 .0
.075
.0281
.0303
.00
1.21
1.23
1.23
.035
.00
2.00
I_
TRAP
2203.993
1033.594
1.209
1034.804
60.00
6.69
.69
1035.50
.00
1.36
I
9.84
5.000
5.000
2.00
0 .0
6.147
I
.0281
I_
.0324
.20
1.21
1.23
1.23
.035
_I
.00
2.00
I_
TRAP
2210.140
1033.767
1.166
1034.933
60.00
7.07.
.76
1035.70
I
.00
1.36
9.67
5.000
5.000
2.00
0 .0
3.877
I
.0281
.0371
.14
I_
1.17
1.31
1.23
.035
I_
.00
2.00
I
TRAP
2214.017
1033.876
1.125
1035.001
60.00
7.36
.84
1035.84
i
.00
1.36
9.50
I
5.000
5.000
2.00
I
0 .0
3.052
I
.0281
I
.0424
.13
1.12
1.40
1.23
.035
.00
2.00
I_
TRAP
2217.069
1033.962
1.085
1035.046
I_
60.00
I
I_
7.72
,92
1035.97
I
.00
1.36
9.34
I I
5.000
5.000
2.00
I
0 .0
2.609
.0281
.0486
.13
1.08
1.49
1.23
.035
.00
2.00
I_
TRAP
2219.678
1034.035
1.046
1035.080
60.00
8.09
1.02
1036.10
.00
1.36
9.18
5.000
5.000
2.00
0 .0
2.322
.0281
I
.0556
.13
1.05
1.59
1.23
.035
.00
2.00
1-
TRAP
2222.000
I_
1039.100
I_
1.009
I_
1035.108
I_
60.00
I_
8.49
I
1.12
1036.23
I
.00
1.36
9.03
I
5.000
5.000
2.00
I
0 .0
WALL
EXIT
I_
I_
I_
I_ I_
I_
I
2222.000
1034.100
1.774
1035.879
60.00
6.89
.74
1036.61
.00
1.77 I
2.95
3.000 -
I
.000
.00
2 .0
.630
.0000
I_
.0125
.01
I_
1.77
.71
.00
.022
.00
.00
I_
PIPE
2222.630
1039.100
1.863
I_
1035.963
60.00
6.50
.66
1036.62
.00
1.77
2.91
I I
3.000
.000
.00
I
2 .0
2.110
.0000
I
.0108
.02
1.86
.64
.00
.022
.00
.00
I_
PIPE
2229.740
1034.100
1.956
1036.056
60.00
I
I
6.15
I
.59
1036.69
.00
1.77
2.86
I I
3.000
I
.000
.00
I
2 .0
3.898
.0000
_I_
.0094
.04
1.96
.S9
.00
.022
.00
.00
I_
PIPE
23
Existing Conditions
R*Invert
Rl+
Depth
Water
Q
Vel
Vel I
Energy
i Super
lCriticallFlow
TOPIHeight/lease
Wtl
lNo Wth
Station
I Elev
(FT)
Elev
(CFS)
I
(FPS)
Head I
Grd.El.l
Elev
l Depth I
Width
lDia.-FTIor
I.D.I
ZL
lPrs/Pip
L/Elem
ICh Slope I
SF Avel
` HF
ISE DpthlFroude
NlNorm
Dp
I "N"
I X-Falll
ZR
(Type Ch
2228.638
II
1039.100
2.054
1036.154
60.00
5.82
.53
1036.68
.00
1.77
2.79
3.000
I
.000
.00
I
2
.0
6.023
.0000
.0082
.05
2.05
.53
.00
.022
.00
.00
l_
PIPE
2234.661
1034.100
i_
2.157
1036.257
60.00
5.52
.47
1036.73
I
.00
I
1.77
2.70
i
3.000
I I
.000
.00
I
2
.0
8.500
.0000
I
.0073
.06
2.16
.48
.00
.022
.00
.00
l_
PIPE
2243.161
_I_
1034.100
l_
2.264
_I_
1036.364
60.00
5.29
I
.43
1036.79
.00
I
1.77
2.58
3.000
.000
.00
2
.0
.839
.0000
I
_l_
-l_
_l_
_l_
.0068
.01
I_ _I_
2.26
l_
.44
-I_
.00
_I_
.022
_I_
.00
.00
I-
PIPE
2244.000
1039.100
2.274
1036.374
60.00
5.22
.42
1036.80
.00
I
1.77
2.57
3.000
.000
.00
2
.0
WALL
ENTRANCE
I_
2244.000
1034.100
3.589
II
1037.689
60.00
1.37
.03
1037.72
.00
1.36
19.36
5.000
5.000
2.00
0
.0
3.727
.0281
l_
.0004
.00
3.59
.16
1.23
.035
.00
2.00
1-
TRAP
2247.727
1039.205
3.483
1037.688
60.00
1.49
.03
1037.72
I
.00
I
1.36
18.93
I
5.000
5.000
2.00
0
.0
3.627
.0281
I
.0005
.00
3.48
.17
1.23
.035
.00
2.00
I_
TRAP
2251.359
1034.307
3.379
1037.686
60.00
1.51
.04
1037.72
I
.00
1.36
18.52
I I
5.000
5.000
2.00
I
0
.0
3.530
.0281
i
i
.0005
.00
3.38
.18
1.23
.035
.00
2.00
l_
TRAP
2254.884
1034.406
3.278
1037.684
60.00
I_
1.58
.04
1037.72
.00
I
1.36
18.11
5.000
5.000
2.00
0
.0
3.439
I .0281
I
.0006
.00
3.28
.19
1.23
i_ l_
.035
.00
2.00
I_
TRAP
2258.316
1034.503
3.180
I_
1037.683
60.00
I
1.66
.09
1037.73
.00
1.36
17.72
I
5.000
5.000
2.00
i
0
.0
3.339
.0281 i
I
1
.0007
.00
3.18
.21
1.23
.035
.00
2.00
I_
TRAP
2261.656
1039.597
3.084
1037.681
60.00
1.74
.OS
1037.73
.00
I
1.36
17.34
5.000
5.000
2.00
I
0
.0
3.246
.0281
I
I
I_
.0008
.00
3.08
I_
.22
1.23
.035
.00
2.00
I_
TRAP
2269.902
1034.688
2.990
1037.679
60.00
1.83
.OS
1037.73
.00
I
1.36
16.96
5.000
5.000
2.00
0
.0
3.154
.0281
.0009
.00
2.99
I_
.23
1.23
.035
.00
2.00
I_
TRAP
24
Existing Conditions
Invert
Depth
Water
Q
Vel
Vel I
Energy
I Super
ICriticallFlow
TOPIHeight/IBase
WtI
[NO Wth
Station
I Elev
I (FT)
Elev
I (CFS)
I (FPS)
Head I
Grd.e1.I
Elev
I Depth
i Width
IDia.-FTIor
I.D.I
ZL
IPre/Pip
L/Elem
ICh Slope
II
SF Avel
HF
ISE DpthlFroude
NINorm
Dp
I "N"
I X-Fa11I
ZR
IType Ch
2268.056
1034.777
2.899
I_
I
1037.676
60.00
1.92
.06
1037.73
.00
I I
1.36
16.60
I
5.000
I
5.000
I
2.00
I 0
.0
3.063
.0281
i
I_
I _I_
.0010
.00
2.90
.25
1.23
.035
.00
2.00
I_
TRAP
2271.119
1034.863
2.811
1037.679
I
60.00
I
2.01
I
.06
1037.74
.00
1.36
16.24
5.000
5.000
I
2.00
I 0
.0
2.974
.0281
I_
.0012
.00
2.81
.26
1.23
.035
.00
2.00
I
TRAP
2274.093
1034.997
2.724
I
1037.671
60.00
2.11
.07
1037.74
I
.00
I
1.36
15.90
5.000
I
5.000
2.00.
0
.0
2.885
.0281
I
.0013
.00
2.72
.28
1.23
.035
.00
2.00
I_
TRAP
2276.978
1035.028
2.690
I_
1037.668
60.00
2.21
.OB
1037.74
.00
I
1.36
15.56
I
5.000
I 5.000
2.00
0
.0
2.797
I .0281
.0015
.00
2.64
.30
I_
1.23
.035
.00
2.00
I_
TRAP
2279.779
1035.107
2.558
1037.665
60.00
2.32
.OB
1037.75
.00
1.36
15.23
I
5.000
I
5.000
2.00
0
.0
2.710
.0281
.0017
.00
2.56
.31
1.23
.035
.00
2.00
I_
TRAP
2282.489
1035.183
2.478
1037.661
60.00
I_
2.43
.09
1037.75
i
.00
1.36
14.91
I
5.000
I
5.000
2.00
0
.0
2.623
i .0281
.0020
.01
2.48
.33
1.23
.035
.00
2.00
I_
TRAP
2285.107
1035.257
2.400
1037.657
I
60.00
I
2.55
.10
1037.76
.00
1.36
14.60
5.000
I
5.000
I
2.00
I
0
.0
2.536
.0281
.0023
.01
I_
2.40
.35
1.23
.035
.00
2.00
I_
TRAP
2287.643
1035.328
2.324
1037.653
60.00
2.68
.li
1037.76
1.36
19.30
5.000
5.000
2.00
I
0
.00
.0
2.450
.0281
.0026
.01
2.32
I
.38
1.23
_I_
.035
.00
2.00
i_
TRAP
2290.093
1035.397
2.251
1037.648
60.00
i
2.81
I
.12
1037.77
I
1.36
14.00
5.000
5.000
i
2.00
I
.I_
.00
0
.0
2.363
.0281
i
I
I_
.0029
.01
2.25
.40
1.23
.035
.00
2.00
I_
TRAP
2292.456
1035.464
2.179
1037.643
60.00
2.94
.13
1037.78
I
.00
1.36
13.72
5.000
I
5.000
2.00
0
,0
2.275
.0281
I
.0033
.01
2.18
.43
1.23
.035
.00
2.00
I_
TRAP
2294.731
1035.528
2.109
1037.637
60.00
3.09
.15
1037.78
I
1.36
13.44
5.000
I
5.000
2.00
I
_I_
_I_
-I-
.00
I_
0
I_
.0
25
25
Existing
Conditions
Invert
Depth
Water
Q
Vel
Vel I
Energy I
Super
ICriticallFlow
ToplHeight/lease
WtI
INo Wth
Station
I Elev
(FT)
Elev
(CFS)
I
(FPS)
Head I
Grd.E1.I
Elev
I Depth I
Width
IDia.-FTIor
I.D.I
ZL
IPrs/Pip
L/Eleni
ICh Slope
I
I
SF Avel
HF ISE DpthlFroude
NINorm
Dp
I "N" I
X -Fall'
ZR
(Type
Ch
*###AA{#;I;kR#*k#hAi#.;;Thkfilhh#A;#;;#Ih#RRfiiAhhlA*A+hT#I##*#A{RI;RRhtfih*hI*fiY#{##IR{*+RR#{l{;*{#*;RI*RRRRR*Iii}+**RItRRii
I*#Rkh*T
2.187
.0281
I
I
.0038
.01
2.11 .45
1.23
.035
.00
2.00
TRAP
2296.917
1035.589
2.041
1037.630
60.00
3.24
I
.16
I
1037.79
I I
.00 1.36
13.16
5.000
I
5.000
2.00
I
0
.0
2.096
.0281
I
I
.0043
.01
2.04 .48
1.23
.035
.00
2.00
I_
TRAP
2299.013
1035.648
1.975
I
1037.623
I
60.00
I
3.40
I
.18
I
1037.80
I I
.00 1.36
12.90
I
5.000
I
5.000
2.00
I
0
.0
2.004
.0281
i
.0049
l_
.01
1.97 .51
1.23
.035
.00
2.00
I
TRAP
2301.017
1035.705
1.910
1037.615
I
60.00
3.56
.20
I
1037.81
.00 1.36
12.64
I I
5.000
I
5.000
2.00
I
0
.0
1.908
.0281
I
I
l_
.0056
.01
1.91 .54
1.23
.035
.00
2.00
I_
TRAP
2302.925
1035.759
l_
1.848
1037.606
60.00
3.73
.22
I
1037.82
I
.00 1.36
12.39
I
5.000
I
5.000
2.00
I
0
.0
1.808
.0281
l_
.0064
.l_
.01
1.85 .58
1.23
.035
.01)
2.00
I_
TRAP
2304.732
1035.809
1.787
1037.596
60.00
3.92
.24
1037.83
I
.00 1.36
12.15
i
5.000
i
5.000
2.00
I 0
.0
1.701
.0281
I
l_
.0073
.01
1.79 .61
1.23
.035
.00
2.00
I_
TRAP
2306.434
1035.857
1.727
1037.585
I
60.00
4.11
.26
1037.85
I
.00 1.36
11.91
5.000
5.000 I
2.00
0
.0
1.586
.0281
l_
.0083
.01
1.73 .65
1.23
.035
.00
2.00
I_
TRAP
2308.020
1035.902
i_ I_
1.670
1037.572
l_
60.00
9.31
iI
.29
1037.86
.00 1.36
11.68
5.000
5.000
2.00
I
0
.0
1.460
.0281
I
I_
I_
.0095
.01
I_
1.67 .70
1.23
l_
.035
.00
2.00
l_
TRAP
2309.480
1035.943
1.614
1037.557
60.00
4.52
.32
1037.87 I
I I
.00 1.36
11.46
I
5.000 I
5.000
2.00
0
.0
1.316
.0281
i
I
.0109
.01
1.61 .74
1.23
.035
.00
2.00
I_
TRAP
2310.795
1035.980
I_ I_
1.559
1037.539
I_
60.00
4.74
.35
1037.89
I
.00 1.36
11.24
I
5.000
I
5.000
2.00
I
0
.0
1.145
.0281
I I
-
I
I
.0124
.01
1.56 .79
1.23
.035
.00
II
2.00
TRAP
2311.941
1036.012
1.506
1037.519
60.00
I
4.97
I
.38
I
1037.90
I I
.00 1.36
11.03
I I
5.000
5.000
2.00
I
0
.0
.112
.0281
.0132
.00
1.51 .84
1.23
l_
.035
.00
2.00
1-
TRAP
2312.053
_I_
1036.016
-I-
1.506
1037522
.
60.00
I_
I
4.97
.38
1037.91
I
.00 1.36
11.03
I
5.000
5.000
2.00
0
l_
.0
26
26
Existing Conditions
#*4#+4#+*#{**4*4#R#***+#####+*#*#*4#R#****#*4#RRRRRR*R***##}4#+#******#*#R}#+}**R***##**#*###**##+#k####+}#R+***#4+}+*{### +#**++##
Invert Depth Water Q Vel Vel Energy I Super CriticaljFlow ToplHeight/IBase Wtl INo Wth
Station I Elev (FT) Elev (CFS) (FPS) Head Grd.E1.I Elev I Depth I Width IDia.-FTlor I.D.I ZL IPrs/Pip
L/Elem ICh Slope I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X -Fall) ZR (Type Ch
HYDRAULIC
JUMP
2312.053
1036.016
1.233
1037.298
60.00
6.52
.66
1037.91
.00
1.36
9.93
15.000
5.000
2.00
0 .0
201.399
.0281
.0282
5.67
1.23
1.19
1.23
.035
.00
2.00
TRAP
2513.452
1041.684
1.233
1042.917
60.00
6.52
.66
1043.58
.00
1.36
9.93
5.000
5.000
2.00
0 .0
10.231
.0281
.0287
.29
1.23
1.19
1.23
.035
.00
2.00
TRAP
2523.683
1041.972
1.220
1043.192
60.00
6.61
.68
1093.87
.00
1.36
9.88
5.000
5.000
2.00
0 .0
7.617
.0281
.0314
.24
1.22
1.22
1.23
.035
.00
2.00
TRAP
2531.300
1042.186
1.177
1043.363
60.00
6.94
:75
1044.11
.00
1.36
9.71
5.000
5.000
2.00
0 .0
4.231
.0281
.0359
.15
1.18
1.29
1.23
.035
.00
2.00
TRAP
2535.531
1042.305
1.135
1043.940
60.00
7.27
.82
1049.26
.00
1.36
9.54
5.000
5.000
2.00
0 .0
3.215
.0281
.0411
.13
1.13
1.38
1.23
.035
.00
2.00
TRAP
2538.746
1042.396
1.094
1043.490
60.00
7.63
.90
1049.39
.00
1.36
9.38
5.000
5.000
2.00
0 .0
2.705
.0281
.0470
.13
1.09
1.47
1.23
.035
.00
2.00
TRAP
2541.451
1042.472
1.055
1093.527
60.00
8.00
- .99
1044.52
.00
1.36
9.22
5.000
5.000
2.00
0 .0
2.387
.0281
.0538
.13
1.05
1.56
1.23
.035
.00
2.00
TRAP
2543.838
1042.539
1.017
1043.556
60.00
8.39
- 1.09
1044.65
.00
1.36
9.07
5.000
5.000
2.00
0 .0
2.162
.0281
.0616
.13
1.02
1.67
1.23
.035
.00
2.00
TRAP
2546.000
1042.600
.980
1093.580
60.00
8.80
1.20
1044.78
.00
1.36
8.92
5.000
5.000
2.00
0 .0
WALL
EXIT
2546.000
1042.600
1.341
1093.941
60.00
8.12
1.02
1044.96
.00
1.62
3.78
4.000
,000
.00
2 .0
32.615
.0213
.0207
.67
1.34
1.02
1.34
.022
.00
.00
PIPE
2578.615
1043.295
1.360
1044.655
60.00
7.96
.98
1045.64
.00
1.62
3.79
4.000
.000
.00
2 .0
27
Existing Conditions
Invert
Depth
Water
Q
Vel
Vel I
Energy
I Super
ICriticallFlow
TopiHeight/leaee
Wtj
INo Wth
Station
I Elev
(FT)
Elev(CFS)
(FPS)
Head I
Grd.El.l
Elev
I Depth
I Width
Dia.-FTIor
I.D.
ZL
[PrS/Pip
L/Elem
ICh Slope
SF Avel
HF
ISE DpthjFroude
NINorm
Dp
j "N"
I X -Fall
ZR
IType
Ch
16.991
.0213
.0189
.32
1.36
.99
1.34
.022
.00
.00
PIPE
2595.606
-I-
1043.657
-I-
1.408
-I-
1045.065
-I-
60.00
7.59
.89
1045.96
.00
1.62
3.82
4.000
.000
.00
2
.0
6.351
.0213
-I-
-I
-I-
.0165
-I-
.11
-I-
1.41
-I-
.93
1.34
-I-
-I-
.022
-I-
.00
.00
1-
PIPE
2601.958
1043.793
1.459
1045.252
60.00
7.23
.81
1046.06
.00
1.62
3.85
4.000
.000
.00
2
.0
3.217
.0213
.0145
.0S
1.46
.87
1.34
.022
.00
.00
PIPE
2605.174
1043.861
1.511
1045.372
60.00
6.90
.74
1046.11
.00
1.62
3.88
4.000
.000
.00
2
.0
1.917
.0213
.0127
- .02
1.51
.81
1.34
.022
.00
.00
PIPE
2606.591
1043.891
1.566
1045.457
60.00
6.58
.67
1046.13
.00
1.62
3.90
4.000
.000
.00
2
.0
.409
.0213
.0112
.00
1.57
.76
1.34
.022
.00
.00
PIPE
2607.000
1043.900
1.624
1045.524
60.00
6.27
.61
1046.13
.00
1.62
3.93
9.000
.000
.00
2
.0
WALL
ENTRANCE
2607.000
1043.900
2.915
1046.815
60.00
1.90
.06
1046.87
.00
1.36
16.66
15.000
5.000
2.00
D
.0
2.964
.0292
.0010
.00
2.92
.24
1.22
.035
.00
2.00
TRAP
2609.964
1043.987
2.826
1046.813
60.00
1.99
.06
1046.87
.00
1.36
16.30
5.000
5.000
2.00
t
0
.0
2.877
.0292
.0012
.00
2.83
.26
1.22
.035
.00
2.00
TRAP
2612.840
�-
1044.071
I_
2.739
I_
1046.810
I_
60.00
I_
2.09
.07
1046.88
.00
1.36
15.96
5.000
5.000
2.00
0
.0
2.791
.0292
I_
I_
.0013
.00
2.74
I_
.27
1.22
.035
I_
.00
2.00
TRAP
2615.631
1044.152
2.654
1046.807
60.00
2.19
.07
1046.88
.00
1.36
15.62
5.000
5.000
2.00
0
.0
2.705
.0292
.0015
.00
2.65
.29
1.22
.035
.00
2.00
TRAP
2618.336
1044.231
2.572
1046.803
60.00
2.30
.08
1046.89
.00
1.36
15.29
5.000
5.000
2.00
0
.0
2.620
.0292
.0017
.00
2.57
.31
1.22
.035
.00
2.00
TRAP
2620.956
1094.308
2.492
1046.799
60.00
2.91
.09
1046.89
.00
1.36
14.97
5.000
5.000
2.00
0
.0
28
Existing Conditions
I Invert Depth Water Q Vel Vel I Energy I Super [CriticallFlow Top[Height/lBase Wtj INo Wth
Station I Elev (FT) Elev(CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.I ZL jPrs/Pip
Y*L/ElemRRICRh'4 Slope Yi SF Avej HF ISE DpthlFroude NINOM Dp I "N" I X -Fall ZR IType Ch
2.536
.0292
.0019
.00
2623.492
.33
1044.382
2.914
.035
1046.795
.00
2.452
.0292
60.00
2.53
2625.994
1096.89
1044.453
2.337
1.36
1046.791
2.367
5.000
.0292
2.00
0 .0
2628.311
1044.522
2.263
1046.786
2.41
2.283
1.22
.0292
.035
.00
2.00
2630.594
TRAP
1044.589
2.191
2.65
1046.780
.11
2.197
.0292
1.36
14.35
5.000
2632.791
I
1044.653
2.121
10 .0
1046.774
2.111
.0292
.01
2.34
.37
2639.902
1049.715
2.053
.00
1046.767
2.023
60.00
.0292
2.78
.12
1046.91
2636.925
.00
1044.774
1.986
1046.760
5.000
1.933
2.00
.0292
0 .0
2638.858
.0029
1044.830
1.921
2.26
1046.752
1.22
1.839
.035
.0292
.00
2.00
TRAP
2640.697
1094.884
1.858
.13
1096.793
1.741
1.36
.0292
5.000
5.000
2642.438
1044.935
1,797
1046.732
1.638
_I_
I_
.0292
2.19
_I_
1.22
-I-
2644.076
1044.983
1.738
1046.720
I
.0019
.00
2.49
.33
1.22
.035
.00
2.00
TRAP
60.00
2.53
.10
1096.89
.00
1.36
19.65
5.000
5.000
2.00
0 .0
.0022
.01
2.41
- .35
1.22
.035
.00
2.00
TRAP
60.00
2.65
.11
1046.90
.00
1.36
14.35
5.000
5.000
I
2.00
10 .0
.0025
.01
2.34
.37
1.22
.035
.00
2.00
TRAP
60.00
2.78
.12
1046.91
.00
1.36
14.05
5.000
5.000
2.00
0 .0
.0029
.01
2.26
.40
1.22
.035
.00
2.00
TRAP
60.00
2.92
.13
1046.91
.00
1.36
13.76
5.000
5.000
2.00
0 .0
.0033
.01
2.19
.42.
1.22
.035
.00
2.00
TRAP
60.00
3.06
.15
1046.92
.00
1.36
13.48
5.000
5.000
2.00
0 .0
.0037
.01
2.12
.45
1.22
.035
.00
2.00
TRAP
60.00
3.21
.16
1046.93
.00
1.36
13.21
5.000
5.000
2.00
0 .0
.0042
.01
2.05
.4B
1.22
.035
.00
2.00
TRAP
60.00
3.37
.18
1046.94
.00
1.36
12.94
5.000
5.000
2.00
0 .0
.0046
.01
1.99
.51
1.22
.035
.00
2.00
TRAP
60.00
I_
3.53
I_
.19
_I_
1046.95
�_
.00
�_
1.36
12.69
5.000
4-�_
5.000
2.00
0 .0
.0055
.01
1.92
_I_
.54
1.22
.035
�_
.00
2.00
1-
TRAP
60.00
3.70
.21
1046.96
.00
1.36
12.93
5.000
5.000
2.00
0 .0
.0063
.01
1.86
.57
1.22
.035
.00
2.00
TRAP
60.00
3.88
.23
1046.97
.00
1.36
12.19
5.000
5.000
2.00
0 .0
.0071
.01
1.B0
.61
1.22
.035
.00
2.00
TRAP
60.00
_I_
4.07
_I_
.26
_I_
1046.98
_I_
.00
_I_
1.36
_I_
11.95
_I_
5.000
_I_
5.000
_I_
2.00
0 .0
I-
29
Existing
Conditions
Invert
Depth
Water I
Q
Vel
Vel I
Energy I
Super ICriticallFlow
TQPIHeight/lease
Wt1
INQ Wth
Station
I Elev
(FT)
Elev I
(CFS)
I
(FPS)
Head I
Grd.F.l.1
Elev I Depth I
Width
IDia.-FTIor
I.D.1
ZL
IPrs/Pip
L/Elem
ICh Slope
I
I
SF Avel
HF ISE DpthIFroude NINorm
Dp
I "N" I
X-Fal1I
ZR
IType
Ch
1.527
.0292
I
.0081
.01
1.74 .65
1.22
.035
.00
2.00
TRAP
2645.603
1095.027
1.680
I
1096.707
I
60.00
4.27
.28
1046.99
.00 1.36
11.72
5.000
I
5.000
2.00
I 0
.0
1.404
.0292
I
.0093
.01
1.68 .69
1.22
.035
.00
2.00
I_
TRAP
2647.007
1045.068
1.623
1046.692
60.00
I
4.48
.31
1047.00
I
.00 1.36
11.99
I I
5.000
I
5.000
2.00
0
.0
1.266
.0292
I
_I_
.0106
.01
I_
1.62 .73
1.22
.035
.00
2..00
I_
TRAP
2648.273
1045.105
1.569
1046.674
60.00
9.70
.34
1097.02
I
.00 1.36
11.27
I I
5.000
5.000
2.00
0
.0
1.105
.0292
.0121
.01
I_
1.57 .78
1.22
.035
.00
2.00
i_
TRAP
2649.378
1045.138
1.516
1046.653
60.00
4.93
.38
1047.03
I
.00 1.36
11.06
5.000
i
5.000
2.00
0
.0
.015
.0292
I
i
.0129
.00
1.52 .83
1.22
I _I_
.035
.00
2.00
I_
TRAP
2649.393
1045.138
1.516
1046.654
- 60.00
9.93
.38
i
1047.03
I
.00 1.36
11.06
�
I
5.000
5.000
2.00
0
.0
HYDRAULIC
JUMP
I_
2699.393
I I
1045.138
1.221
1046.359
60.00
I
6.61
.68
1047.04 I
.00 1 1.36
9.88
I 5.000 1
5.000
2.00
I
0
.0
416.001
.0292
.0292
12.15
1.22 1.21
1.22
.035
.00
2.00
I_
TRAP
3065.394
1057.285
I_ 1_
1.221
1058.506
60.00
6.61
.68
1059.18
.00 1.36
9.88
I
5.000
I
5.000
2.00
I
0
.0
11.530
.0292 I
1
I
I
.0309
.36
1.22 1.21
1.22
.035
.00
2.00
I_
TRAP
3076.924
1057.622
1.184
1058.006
60.00
6.88
I
.73
I
1059.54
I
.00 1.36
9.74
5.000
I
5.000
2.00
0
.0
5.365
.0292
I
.0350
.19
1.18 1.28
1.22
.035
.00
2.00
I_
TRAP
3082.289
1057.778
1.142
1058.921
I_
60.00
7.21
.81
1059.73
I I
.00 1.36
9.57
I I
.5.000
I
5.000
2.00
i
0
.0
3.669
.0292
.0401
.15
1.14 1.36
1.22
.035
.00
2.00
I_
TRAP
3085.958
-I-
.1057.885
-I
1.101
-I-
1058.987
60.00
7.56
.89
1059.88
I
.00 1.36
9.41
5.000
5.000
2.00
0
.0
2.955
.0292
I
-I-
-I-
-I-
-I-
.0459
-I-
.14
-I- -I-
1.10 1.45
1.22
-I-
-I-
.035
-I-
.00
2.00
1-
TRAP
3088.913
1057.972
1.062
1059.034
60.00
7.93
.98
1060.01
i
.00 1.36
9.25
I
5.000
I_
5.000
2.00
I
0
i_
.0
30
=mm m m m m m mm m m mm m m i m m
2.546 .0292
3091.459 1058.096
2.274 .0292
3093.733 1058.113
2.073 .0292
3095.805 1058.173
1.915 .0292
3097.720 1058.229
1.785 .0292
3099.505 1058.281
1.674 .0292
3101.179 1058.330
1.577 .0292
3102.756 1058.376
1.491 .0292
3104.247 1058.420
1.412 .0292
3105.659 1058.461
1.341 .0292
3107.000 1058.500
-I- (-
WALL EXIT
3107.000 1058.500
-I- -1-
1 1
1.023 1059.070
.986 1059.099
.950 1059.123
.915 1059.194
I- -I-
.881 1059.162
.849 1059.179
-I -I-
.817 1059.193
.786 1059.206
-I- I-
.756 1059.217
.728 1059.228
2.205 1060.705
-I- -1-
60.00
I
Existing Conditions
-I-
60.00
Invert
Depth Water Q
Vel Vel I Energy I Super ICriticallFlow ToplHeight/1Base WtI
INo Wth
Station I Elev
(FT) Elev (CFS)
(FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTIor I.D.1 ZL
jPre/Pip
L/Elem ICh Slope I
5.000
SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Falll ZR
(Type Ch
10.07
0
60.00
1.65
2.546 .0292
3091.459 1058.096
2.274 .0292
3093.733 1058.113
2.073 .0292
3095.805 1058.173
1.915 .0292
3097.720 1058.229
1.785 .0292
3099.505 1058.281
1.674 .0292
3101.179 1058.330
1.577 .0292
3102.756 1058.376
1.491 .0292
3104.247 1058.420
1.412 .0292
3105.659 1058.461
1.341 .0292
3107.000 1058.500
-I- (-
WALL EXIT
3107.000 1058.500
-I- -1-
1 1
1.023 1059.070
.986 1059.099
.950 1059.123
.915 1059.194
I- -I-
.881 1059.162
.849 1059.179
-I -I-
.817 1059.193
.786 1059.206
-I- I-
.756 1059.217
.728 1059.228
2.205 1060.705
-I- -1-
60.00
I
8.32
-I-
60.00
8.72
2.00
60.00
TRAP
9.15
1.36
60.00
9.60
5.000
60.00
2.00
10.07
0
60.00
1.65
10.56
60.00
11.07
2.00
60.00
TRAP
11.61
1.36
60.00
12.18
5.000
60.00
2.00
12.77
0
60.00
_I_
10.78
_ _
0525 .13
1.07 1060.14
0601 .14
1.18 1060.28
0688 .3.4
1.30 1060.92
0789 .15
1.43 1060.57
0904 .16
1.57 1060.79
1036 .17
1.73 1060.91
1188 .19
1.90 1061.10
1363 .20
2.09 1061.30
1564 .22
2.30 1061.52
1796 .24
2.53 1061.76
1.80 1062.51
31
1.06
1.55
1.22
.035
.00
2.00
TRAP
.00
1.36
9.09
5.000
5.000
2.00
0
1.02
1.65
1.22
.035
.00
2.00
TRAP
.00
1.36
8.95
5.000
5.000
2.00
0
.99
1.75
1.22
.035
.00
2.00
TRAP
.00
1.36
8.80
5.000
5.000
2.00
0
.95
1.87
1.22
.035
.00
2.00
TRAP
.00
1.36
8.66
5.000
5.000
2.00
0
.92
1.99
1.22
.035
.00
2.00
TRAP
.00
1.36
8.53
5.000
5.000
2.00
0
.88
2.12
1.22
.035
.00
2.00
TRAP
.00
1.36
8.39
5.000
5.000
2.00
0
.85
2.26
1.22
.035
.00
2.00
TRAP
.00
1.36
8.27
5.000
5.000
2.00
0
.82
2.41
1.22
.035
.00
2.00
TRAP
.00
1.36
8.14
5.000
5.000
2.00
0
.79
2.57
1.22
.035
.00
2.00
TRAP
.00
1.36
8.03
5.000
5.000
2.00
0
.76
2.74
1.22
.035
.00
2.00
TRAP
.00
I-
1.36
-I-
7.91
-I-
5.000
-i-
5.000
-I-
2.00
0
I-
.00
_I_
2.50
_I_
2.65
_I_
3.000
_I_
.000
_I_
.00
1
I_
0
0
0
0
0
0
0
0
0
0
0
Existing Conditions
I Invert Depth I Water q Vel Vel I Energy I Super ICriticallFlow ToplHeight/IBase WtI INo Wth
Station I Elev (FT) I Elev (CFS) (FPS) Head I Grd.E1.I Elev I Depth I Width IDia.-FTIor I.D.1 ZL IPrs/Pip
L/Elem ICh Slope I I SF Avel HF ISE DpthlFroude NINorm Dp I "N" I X-Fa11I ZR (Type Ch
7.364
.0333
.0284
.21
2.20
1.31
2.09
.022
.00
.00
PIPE
3114.364
1058.745
2.263
1061.009
60.00
10.49
1.71
1062.72
I
I
.00
2.50
2.58
i I
3.000
I
.000
.00
I
1 .0
5.988
.0333
I
I
.0261
.16
2.26
1.24
2.09
.022
.00
.00
I_
PIPE
3120.352
1058.945
2.375
1061.320
60.00
10.00
1.55
1062.87
I
.00
2.50
I
2.44
I
3.000
I
.000
.00
I
1 .0
1.648
.0333
.0236
I_
.04
2.38
1.12
2.09
.022
.00
.00
I_
PIPE
3122.000
1059.000
2.501
1061.501
60.00
I
9.53
1.91
1062.91
.00
2.50
2.23
I
3.000
.000
.00
1 .0
WALL
ENTRANCE
3122.000
1059.000
5.016
1064.016
60.00
.80
.Ol
1069.03
.00 I
1.36
25.06
I I
5.000
5.000
I
2.00
I
0 .0
2.937
I
.0480
I
I
.0001
.00
5.02
.08
1.07
.035
.00
2.00
TRAP
3124.937
1
1059.141
I_
4.875
1064.016
60.00
.83
I
.Ol
1064.03
.00
1.36
I
24.50
5.000
5.000
2.00
I
0 .0
2.864
I
.0480
I
i
.0001
.00
4.87
.09
1.07
.035
.00
2.00
I.
TRAP
3127.801
-I-
1059.278
-I-
4.736
-I-
1064.015
-I-
60.00
.88
.01
1064.03
I
I
.00
1.36
23.95
I
5.000
-1-
5.000
2.00
0 .0
2.791
i
.0480
I
-I-
-I-
-I-
.0001
-I-
.00
-I-
4.74
-I-
.09
1.07
-I-
.035
-I-
.00
2.00
1-
TRAP
3130.592
1059.412
4.602
1064.019
60.00
.92
.Ol
1064.03
I
I
.00
1.36
23.41
I I
5.000
5.000
2.00
I
0 .0
2.720
I
.0480
I
.0001
.00
4.60
.10
1.07
.035
.00
2.00
I_
TRAP
3133.313
1059.543
4.470
1064.013
I_
60.00
.96
I
.Ol
1064.03
I
i
.00
1.36
22.88
I I
5.000
5.000
I
2.00
i
0 .0
2.651
.0480 i
I_
.0002
.00
4.47
.10
1.07
.035
.00
2.00
I_
TRAP
3135.963
1059.670
1_
4.342
1069.012
60.00
I
1.01
I
.02
1069.03
.00
I
1.36
22.37
5.000
5.000
2.00
I
0 .0
2.583
.0480
I
.0002
.00
I_
4.34
.11
1.07
.035
.00
2.00
I_
TRAP
3138.596
1059.794
4.217
1064.011
60.00
1.06
.02
1064.03
I
i
.00
1.36
21.87
I I
5.000
5.000
I
2.00
i
0 .0
2.516
.0980
i
I
.0002
.00
4.22
.12
1.07
.035
.00
2.00
TRAP
3141.063
1059.919
4.095
1064.010
60.00
I
1.11
.02
1069.03
I
.00
1.36
21.38
I I
5.000
5.000
i
2.00
I
0 .0
I-
32
m m m m m m m m m= m m m r m m
Existing Conditions
I Invert Depth Water Q Vel Vol I Energy I Super ICriticall Flow ToplHeight/IBase WtI INo Wth
Station Elev (FT) Elev (CFS) (FPS) .Head I Grd.EI.I Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Elem (Ch Slope ' I SF Avel HF ISE DpthlFroude NINorm DP I "N" I X -Fall ZR IType Ch
2.451
I
.0480
.0002
.00
4.10
.12
1.07
.035
.00
2.00
TRAP
3143.513
1060.032
3.976
1064.008
60.00
1.16
.02
1064.03
.00
1.36
I
20.91
I I
5.000
5.000
I
2.00
1
0 .0
2.386
I
.0480
i
.0003
.00
3.98
.13
1.07
.035
.00
2.00
I_
TRAP
3145.899
1060.196
3.660
1064.007
60.00
1.22
.02
1064.03
I
.00
1.36
20.44
I I
5.000
5.000
I
2.00
I
0 .0
2.323
i
.0480
I
.0003
.00
3.86
.14
1.07
.035
.00
2.00
I_
TRAP
3198.222
1060.258
3.797
1069.005
60.00
1.28
.03
1064.03
.00
1.36
19.99
5.000
5.000
I
2.00
I
0 .0
2.261
I
.0480
.0004
.00
3.75
.15
1.07
I_
.035
.00
2.00
I_
TRAP
3150.483
1060.366
3.637
1064.004
60.00
1.34
.03
1064.03
.00
1.36
I
19.55
5.000
5.000
I
2.00
I
-0 .0
2.200
I
.0480
I
.0004
.00
3.64
.16
1.07
.035
.00
2.00
I_
TRAP
3152.683
_i_
1060.472
_I_
3.530
_I_
1064.002
_I_
60.00
1.41
.03
1064.03
I
.00
1.36
19.12
I I
5.000
5.000
2.00
0 .0
2.140
i
.0480
I
_I_
_I_
_I_
.0005
_I_
.00
_I_
3.53
_I_
.17
1.07
_i_
i_
.035
_I_
.00
2.00
I-
TRAP
3154.823
1060.575
3.425
1063.999
60.00
1.48
.03
1064,03
I
.00
1.36
18.70
I i
5.000
5.000
2.00
0 .0
2.080
.0480
.0005
.00
3.42
.18
1.07
.035
.00
2.00
I_
TRAP
3156.903
_I_
1060.674
_I_
3.323
_I_
1063.997
_I_
60.00
i
1.55
I
.04
1064.03
I
.00
1.36
18.29
I I
5.000
5.000
I
2.00
I
0 .0
2.022
.0480
r
_I_
I_
I_
.0006
I_
.00
I_
3.32
I_
.19
1.07
I_ I_
.035
I_
.00
2.00
I_
TRAP
3158.925
1060.771
I_
3.223
I_
1063.995
60.00
1
1.63
.09
1064.04
.00
1.36
17.89
.
5000
5.000
200
.
0 .0
1.964
.0480
i
i
i_
.0007
.00
3.22
.20
1.07
.035
.00
2.00
I_
TRAP
3160.889
1060.866
3.126
1063.992
I_
60.00
i
1.71
.05
1064.04
.00
1.36
I
17.50
I I
5.000
5.000
i
2.00
I
0 .0
1.907
.0480
I
.0008
.00
3.13
.21
1.07
.035
.00
2.00
i_
TRAP
3162.795
1060.957
3.032
1063.989
60.00
1.79
I
.OS
1064.04
.00
1.36
I
17.13
5.000
5.000
I
2.00
0 .0
1.850
.0480
I
.0009
.00
3.03
.23
1.07
.035
.00
2.00
I_
TRAP
3164.646
1061.046
2.940
1063.985
60.00
1.88
.OS
1069.04
.00
1.36
i
16.76
5.000
5.000
I
2.00
I
0 � .0
I_
33
Existing Conditions
Invert Depth Water Q Vel Vel I Energy I Super CriticallFlow ToplHeight/lBase WtI INo Wth
Station I Elev (FT) Elev (CFS) I (FPS) Head I Grd.El.1 Elev I Depth I Width IDia.-FTIor I.D.I ZL IPrs/Pip
L/Elem ICh Slope I I SF Avel HF ISE DpthIProude NINorm Dp I "N" I X -Fall ZR IType Ch
+#fi#44#4+1«k*fi#fi#fi#IR*«fiFfi#414#R*.Fkk#I#+#f+#+*RI+«kkkfi#I#fi#4##RIRRR*«*+kF1*#####RI+RRRR4#RI«R*R*+F+I*Fkfik4#14#44RkkI#44FR i+*44++R
1.794
.0480
I
.0010
.00
2.94
.24
1.07
.035
.00
2.00
TRAP
3166.439
1061.132
2.850
1063.982
I
60.00
i
1.97
.06
1069.09
.DO
1.36
16.40
I I
5.000
5.000
I
2.00
I
0 .0
1.738
.0480
i
.0011
.00
2.85
.25
1.07
.035
.00
2.00
I_
TRAP
3168.178
I_
1061.215
I_
2.762
1063.978
I_
60.00
2.06
.07
1064.04
I
.00
1.36
16.05
I I
5.000
5.000
I
2.00
I
0 .0
1.683
.0480
I
.0013
.00
2.76
.27
1.07
.035
.00
2.00
i_
TRAP
3169.861
1061.296
2.677
1063.973
60.00
I
2.16
.07
1064.05
.00
1.36
I
15.71
5.000
5.000
I
2.00
I
0 .0
1.627
.0480
I
.0014
.00
2.68
.29
1.07
.035
.00
2.00
I_
TRAP
3171.488
I_
1061.374
2.594
1063.968
60.00
2.27
.OB
1064.05
.00
1.36
15.38
5.000
5.000
2.00
0 .0
1.572
.0480
I
I
.0016
.00
2.59
.31
1.07
.035
.00
2.00
I_
TRAP
3173.060
1061.449
2.513
1063.963
60.00
I
2.38
I
.09
1064.05
.00
1.36
I
15.05
I
5.000
5.000
I
2.00
I
0 .0
1.517
I
.0480
.0019
I_
.00
2.51
.32
1.07
.035
.00
2.00
1_
TRAP
3174.577
1061.522
2.435
1063.957
60.00
2.50
.10
1064.05
I
.00
1.36
i
14.74
5.000
5.000
I
2.00
0 .0
1.461
I
.0480
.0021
.00
2.43
.34
1.07
.035
.00
2.00
TRAP
3176.038
1061.592
2.358
1063.950
I
60.00
2.62
.11
1064.06
i
I
.00
1.36
14.93
I
5.000
5.000
2.00
0 .0
1.405
.0480
.0024
.00
2.36
.37
1.07
.03S
.00
2.00
1_
TRAP
3177.493
1061.660
2.283
1063.943
I_
60.00
I_
2.75
.12
1064.06
.00
1.36
14.13
I i
5.000
5.000
2.00
I
0 .0
1.348
.0480
i
i
.0028
.00
2.28
.39
1.07
.035
.00
2.00
I_
TRAP
3178.792
1061.724
2.211
1063.935
60.00
I
2.88
I
.13
1064.06
.00
1.36
13.09
I I
5.000
5.000
I
2.00
i
0 .0
1.291
.0480
.0031
.00
1_
2.21
.41
1.07
.035
.00
2.00
I
TRAP
3180.082
1061.786
2.140
1063.926
60.00
3.02
.14
1069.07
.00
1.36
I
13.56
5.000
5.000
i
2.00
0 .0
1.232
I
.0480
i
.0036
.00
2.14
.44
1.07
- .035
.00
2.00
TRAP
3181.314
1061.845
2.071
1063.916
60.00
3.17
.16
1064.07
i
.00
1.36
13.28
I I
5.000
5.000
2.00
0 .0
I-
34
Existing Conditions
fINo
Invert
I Depth
Water
I Q
-
Vel
Vel I
Energy
I Super
Critica11F1oW
Topl
Height/IBase
Wtj
Wth
Station
I Elev
(FT)
Elev
I (CFS)
I (FPS)
Head I
Grd.E1.I
Elev
I Depth
I Width
IDia.-FTIor
I.D.I
ZL
IPrs/Pip
L/Elem
ICh Slope
I
SF Avel
HF
ISE DpthIFroude
NINorm
Dp
I "N"
_I_
I X-Fa11I'
ZR
I
IType
Ch
1.171
.0480
.0041
.00
2.07
.47
1.07
.035
.00
2.00
TRAP
3182.485
1061.901
2.004
I
1063.905
60.00
3.32
.17
1064.08
.00
1.36
I
13.02
5.000
5.000 I2.00
0
.0
1.109
.0480
.0047
.01
2.00
.50
1.07
.035
.00
2.00
1-
TRAP
3183.594
1061.955
1.939
I
1063.893
60.00
3.49
I_
.19
1064.08
.00
1.36
1 12.76
I
5.000
I 5.000 I
I _I_
2.00
I 0
I_
.0
3189.638
1062.005
1.875
1063.880
60.00
II
3.66
.21
1064.09
.00
1.36
12.50
5.000
I
5.000
2.00
I
0
.0
.977
.0480
I
I
.0060
.01
1.88
.56
1.07
.035
.00
2.00
I_
TRAP
3185.615
1062.052
1.814
1063.865
60.00
3.83
.23
1064.09
.00
I
1.36
12.25
I I
5.000
I
5.000
2.00
0
.0
.905
.0480 I
.0069
.01
1.81
.60
1.07
.035
.00
2.00
I_
TRAP
3186.520
1062.095
1.754
1063.899
I
60.00
I
4.02
.25
1064.10
.00
1.36
I
12.01
I I
5.000
I
5.000
2.00
I
0
.0
.753
.0480
.0079
.01
1.75
.64
1.07
.035
.00
2.00
TRAP
3187.273
1062.131
1.695
1063.827
60.00
4.22
.28
1064.10
.00
1.36
i
11.78
I
5.000
I
5.000
2.00
I
0
.0
HYDRAULIC
JUMP
I_
I_
3187.273
I
1062.131
1.068
1063.199
60.00
7.88
.96
1064.16
1 .00
1.36
I
9.27
5.000
I
5.000
2.00
0
.0
56.136
.0480
.0480
2.69
1.07
1.53
1.07
.035
.00
2.00
I_
TRAP
3243.409
1064.829
1.068
1065.892
I
60.00
I
7.88
.96
1066.86
i
.00
I
1.36
9.27
I I
5.000
I
5.000
2.00
0
,0
15.979
.0480 I
1
I
.0456
.73
1.07
1.53
1.07
.035
I_
.00
2.00
I_
TRAP
3259.389
1065.591
1.099
1
1066.690
_I_
60.00
7.59
.89
1067.58
I
.00
I
1.36
9.39
I
5.000
5.000
2.00
0
.0
5.386
.0480 I
1
.0404
.22
1.10
1.46
1.07
I_
.035
.00
2.00
I_
TRAP
3264.775
1065.849
1.139
1066.989'
60.00
7.23
.81
1067.80
.00
I
1.36
9.56
I I
5.000
5.000
2.00
0
.0
2.528
.0480
I
I
I
.0354
.09
1.14
1.37
1.07
.035
.00
2.00
TRAP
3267.303
1065.971
1.181
1067.152
I_
60.00
6.90
.74
1067.89
I
,00
I
1.36
9.73
I I
5.000
5.000
2.00
0
I_
.0
35
36
Existing Conditions
Invert
I Depth
Water i
( Vel
Vel Energy
I Super CriticallFloW
ToplHeight/IBase
Wt1
No Wth
Station
-I-
Elev
I (FT)
I- -I-
Elev
(CFS)
(FPS)
Head Grd.El.]
Elev I Depth
I WidthDia.-FT
I I
or I.D. I
ZL
IP=a/Pip
L/Elem
ICh Slope
I
-I-
I
-i-
-I-
I
-I- -I-
SF Avel HF
-I- -I-
ISE DpthlFroude NINorm
-I-
Dp
-I-
I "N" I
-I-
X-Falll
ZR
-I
]Type Ch
*kM#F##F#M***##Frt*I*##FFFRR###{#R4#hl##RT*#*####{*FRRRRY**#*ITR*Y##4#*I**#####I####R**tR*kR#tT#I####*##I4*k*k1M###M*
I##Rt#Y#
1.401
.0480
I
.0309 .04
1.1B 1.29
1.07
.035
.00
2.00
TRAP
3268.704
1066.038
1.225
1067.263
I_
60.00
6.58
.67 1067.93
I i
.00 1.36
9.90
I I
5.000
I
5.000
2.00
I
0 .0
.787
.0480
I
i
I
.0270 .02
1.22 1.21
1.07
.035
.00
2.00
I_
TRAP
3269.490
1066.076
1.269
1067.345
60.00
6.27
.61 1067.96
I
1.36
10.08
i I
5.000
5.000
I
.00
2.00
0 .0
.399
.0480
I
I
.0237 .01
1.27 1.13
1.07
.035
.00
2.00
TRAP
3269.889
1066.094
1.315
1067.910
60.00
5.98
� .56 1067.96
I
1.36
10.26
I
5.000
I
5.000
I
I
_I_
.00
2.00
0 .0
.116
.0980
I
.0207 .00
1.32 1.07
1.07
.035'
.00
2.00
I_
TRAP
3270.000
1066.100
1.364
1067.469
60.00
5.69
.50 1067.97
I I
1.36
10.45
I I
5.000
I
5.000
I
-I-
-1-
-I-
-I-
-I-
-I-
-I- -I-
.00
-I- -I-
-I-
-I-
-I-
2.00
0 .0
I-
36
I
� HYDRAULIC
� CALCULATIONS
� FOR
I ALTERNATE NO. 2
I
0
I
0
I
I
FILE: sd.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 1
Program Package Serial Number: 1416
WATER SURFACE PROFILE LISTING Date:10- 7-2002 Time: 8:12: 6
ALTERNATE No. 2
Storm Drain parallel to Ynez & Vallijo
48 inch Storm Drain from John Warner
Invert
I Depth
Water
Q
Vel
Vel I
Energy
I Super
ICriticallFlow ToplHeight/IBase Wtl
INo Wth
Station
I Elev
I (FT)Elev
Eley
I I
(FPS)
Head I
Grd.El.l
Elev
I Depth I
Width
IDia.-FTIor
I.D.1-
ZL
IPrs/Pi.p
L/Eleni
ICh Slope
I
SF Avel
HF
ISE DpthlFroude
NINorm
Dp
I "N" I X
-Fall)
_I
ZR
IType
Ch
I
I
I
I
1000.000
1018.000
4.535
1022.535
619.00
23.28
8.41
1030.95
I
.00
6.31
6.69
7.000
I
.000
.00
I
1
.0
865.406
.0163
I _I_
.0163
19.11
4.53
2.07
4.53
I_
.013
.00
.00
I_
PIPE
1865.906
1032.108
4.535
I
1036.642
614.00
I
23.28
8.41
1045.06
i .00
1 6.31
6.69
i
7.000
I
.000
.00
I
1
.0
631.247
.0163
I
.0155
9.81
4.53
2.07
4.53
.013
.00
.00
I
PIPE
2496.653
1042.398
9.695
1047.093
614.00
I
22.37
7.77 I
1054.87
I .00
I
6.31 I
6.58
I 7.000 I
.000 I
.00
I 1
.0
215..054
.0163
I
I
I
.0140
3.01
4.70
1.93
9.53
.013
.00
.00
I_
PIPE
2711.707
1045.909
4.901
1050.805
I
614.00
I
21.33
I
7.07
1057.87
1 .00
I I
6.31
6.41
I 7.000 I
.000 I
.00
I 1
.0
109.422
.0163
I
I
I
I_
.0125
1.36
4.90
1.77
4.53
.013
I_
.00
.00
I_
PIPE
2821.129
1047.687
5.124
1052.811
I
619.00
I
20.34
6.42
1059.23
.00
I
6.31
6.20
I I
7.000
I
.000
.00
I
1
.0
66.614
.0163
I i
I
.0112
.74
5.12
1.62
4.53
.013
.00
.00
I_
PIPE
2887.742
1098.773
I_
5.366
1054.139
614.00
19.39
5.89
1059.98
I
.00
6.31
5.92
I I
7.000
I
.000
.00
1
.0
41.773
.0163
I I
I
I_
.0101
.42
.5.37
1.48
4.53
.013
.00
.00
I
PIPE
2929.516
1049.454
5.636
1055.090
I
614.00
18.49
I
5.31
1060.40
I
.00
I
6.31
5.55
I I
7.000
I
.000
.00
1
.0
24.631
.0163 I
I
I_
.0091
.22
5.64
1.33
4.53
.013
.00
.00
I_
PIPE
2954.147
1049.856
5.942
1055.798
i
614.00
17.63
I
9.83
1060.62
I
.00
I
6.31
5.01
I I
7.000
.000
.00
I
1
.0
8.853
.0163 i
I
I
.0089
.07
5.94
1_
1.18
4.53
.013
.00
.00
PIPE
2963.000
1050.000
6.312
1056.312
614.00
i
16.81
I
4.39
1060.70
.00
I
6.31
4.17
I I
7.000
I
.000
.00
I
1
.0
JUNCT
SIR
.0163
6.31
1.00
.013
.00
.00
I_
PIPE
FILE:
sd.WSW
W
S P
G W-
CIVILDESIGN Version 14.03
PAGE
2
Program
Package
Serial
Number:
1416
WATER
SURFACE
PROFILE
LISTING
Date:10-
7-2002
Time:
8:12:
6
Storm Drain parallel
to
Ynez &
Vallijo
48
inch Storm Drain
from
John
Warner
♦!{!R**Ri*###*4klRRR**!i#!i**k##i#+!*#RRR*RRfilk#+!+##!#4RRR#k*#*4###!+#*k*****k****RR**!{RR**!R*1Rt#####*R*i*44
i#*#*h#*#4{
* 4#R#k*
Invert
Depth I
Water
Q
Vel
Vel I
Energy
I Super
ICriticallFlow
ToplHeight/lBase
Wti
INo Wth
Station
I Elev
(FT)
Elev(CFS)
(FPS)
Head I
Grd.El.I
Elev
I Depth
I Width
IDia.-FTIor
I.D.I
ZL
]Pre/Pip
L/Elem
ICh Slope
I
SF Avel
HF
ISE DpthlFroude
NINorm
Up
I "N"
_I
I X-FallI
ZR
-I
(Type
Ch
2978.000
1050.245
2.125
1052.370
108.00
15.92
I
3.94
1056.31
.00
3.14
I
3.99
4.000
I .000 I
.00
1
.0
1600.948
.0184
.0184
29.53
2.13
2.15
2.13
.013
.00
.00
I_
PIPE
4578.948
1079..779
2.125
1081.904
108.00
15.92
I
3.94
1085.84
I
.00
3.14
I
3.99
I
4.000
I I
.000
.00
1
.0
253.574
.0184
I I
I
.0181
4.58
2.13
2.15
2.13
.013
.00
.00
I
PIPE
4832.522
1089.457
2.153
I_
1086.610'
108.00
I
15.66
3.81
1090.42
I
.00
I
3.19
3.99
I
4.000
I I
.000
.00
I
1
.0
143.484
.0184
I
.0166
2.39
2.15
2.10
2.13
.013
.00
.00
I_
PIPE
4976.006
1087.104
2.238
I_
I
1089.342
108.00
I
19.93
3.96
1092.80
I
.00
I
3.19
3.97
I
4.000
I
.000
.00
I
1
.0
59.965
.0184
I
.0147
.88
2.24
1.95
2.13
.013
.00
.00
I_
PIPE
5035.971
1088.210
2.327
I_
1090.537
108.00
19.24
I
3.15
1093.68
I
.00
3.14
I
3.95
I
4.000
I
.000
.00
I
1
.0
35.140
.0184
I
I
.0130
.46
I_
2.33
1.81
2.13
.013
.00
.00
I_
PIPE
5071.110
1068.858
2.421
1091.279
108.00
13.57
I
2.86
1094.14
.00
3.14
I
3.91
I
4.000
I
.000
.00
1
.0
23.017
.0184
I
i
.0115
.26
2.42
1.68
2.13
.013
.00
.00
1-
PIPE
5099.127
1089.283
2.521
1091.804
108.00
I
12.99
2.60
1099.40
.00
i
3.14
3.86
I
4.000
I
.000
.00
1
.0
15.800
.0184
.0102
.16
2.52
1.55
2.13
.013
.00
.00
I_
PIPE
5109.927
1089.574
2.627
I
1092.201
108.00
I
12.34
I
2.36
1094.57
.00
I
3.14
I
3.80
4.000
I
.000
.00
I
1
.0
10.750
I .0184
.0091
.10
2.63
1.43
2.13
.013
.00
.00
1-
PIPE
5120.676
1089.773
2.741
I
1092.519
108.00
I
11.77
2.15
1094.66
.00
3.14
I
3.72
4.000
i
.000
.00
I
1
.0
7.073
.0184
.0081
.06
2.74
1.32
2.13
.013
.00
.00
1-
PIPE
FILE: sd.WSW W S P G W- CIVILDESIGN Version 14.03 PAGE 3
Program Package Serial Number: 1416
WATER SURFACE PROFILE LISTING Date:10- 7-2002 Time: 8:12: 6
Storm Drain parallel to Ynez & Vallijo
48 inch Storm Drain from John Warner
#Invert Depth Water Q Vel Vel Energy I Super CriticaljFlow ToplHeight/ Ease Wtj JNo Wth.
Station Elev (FT) I Elev (CFS) (FPS) Head Grd.El.1 Elev I Depth I Width Dia.-FTIor I.D.I ZL IPrS/Pip
L/Elem ICh Slope I I SF Avel HF ISE DpthIFroude NINorm Dp I "N" I X -Fall) ZR IType Ch
5127.750 1009.903 2.863 1092.766 108.00 11.22 1.95 1094.72 .00 3.14 3.61 4.000 .000 .00 1 .0
3.974 .0184 .0072 .03 2.86 1.21 2.13 .013 .00 .00 PIPE
I I I I I I I I 1, 1 1 I I
5131.723 1089.976 2.996 1092.973 108.00 10.70 1.78 1094.75 .00 3.14 3.47 4.000 .000 .00 1 .0
_I_ _I_ _I_ -I_ _I_ _I_ _I_ I _I_ I _I_ _I_ _I_ I-
1.277 .0184 .0065 .01 3.00 1.10 2.13 .013 .00 .00 PIPE
WALL ENTRANCE
I I I I I I I. I I I I 1 1
5133.000 1090.000 3.144 1093.144 108.00 10.19 1.61 1094.76 .00 3.14 3.28 4.000 .000 .00 0 .0
I
� HYDRAULIC
� CALCULATIONS FOR
� EXISTING EARTHEN
� CHANNEL 1N JOHN
� WARNER ROAD
� WESTERLY OF
� CABRILLO AVENUE
I
I
I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NGINEFRINN
ESOORCES
m mammi muawm. M.
DATE �� `:%J —C,L
JOB NO 9/GOOU
BY ✓�
CKT) —
SHEET OF
C I d r, 0 r d,� F�,baarcjll
Q � i cis
� 3
6. 6
7-
3
Opj
T
DI Z
b k1p 9
VyfJ L 1�, t" = �; - 73
i
o•�-s
4 = i 2 I c.S
c 4�'lJ ;=yn?rvt
jli/;
:J,.,"'C_ a/ ��u nn•e.. I.
� 3
6. 6
7-
3
Opj
T
DI Z
b k1p 9
VyfJ L 1�, t" = �; - 73
i
o•�-s
4 = i 2 I c.S
n
I
1
1
1
� HYDRAULIC
� CALCULATIONS
� FOR
� ALTERNATE NO. 4
1
� (ULTIMATE CONDITION)
1
1
1
1
1
1
FILE: JWR.ALT4.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 1
For: Engineering Resources of Southern California - S/N 685
WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 2:25:32
HYDRAULIC CALCULATIONS FOR ALTERNATIVE NO.4 OF STORM DRAIN SYSTEM FOR
JOHN WARNER ROAD DRAINAGE IMPROVEMENTS. (ULTIMATE CONDITION)
JANUARY, 2003 CITY OF TEMECULA 96018002
Invert I Depth I Water I Q I Vel Vol I Energy I Super ICriticallFlow ToplHeight/IBase Wt1 INo Wth
Station Elev (FT) Elev (CFS) (FPS) Head I Grd.EI.I Elev I Depth I Width IDia.-FTlor I.D.1 ZL IPrs/Pip
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- -1
L/Elam ICh Slope 1 SF Avel HF ISE Dpthl Froude NINorm Dp I "N" I X-Falll ZR IType Ch
I I I I I I I I I I I I I
987.890 1026.940 3.500 1030.440 107.00 11.12 1.92 1032.36 .00 3.14 .00 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
192.748 .0050 .01.13 2.18 3.50 .00 3.50 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1180.638 1027.906 4.713 1032.619 107.00 11.12 1.92 1034.54 .00 3.14 .00 3.500 .000 .00 1 .0
HYDRAULIC JUMP
1180.638 1027.906 2.061 1029.967 107.00 18.15 5.12 1035.08 .00 3.14 3.44 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
15.969 .0050 .0279 .45 2.06 2.45 3.50 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1196.608 102.1.985 1.996 1029.982 107.00 18.87 5.53 1035.51 .00 3.14 3.47 3.500 .000 .00 1 .0
16.159 .0050 .0313 .57 2.00 2.60 3.50 .013 .00 .00 PIPE
I 1
1214.766 1.028.076 1.920 1029.997 107.00 19.79 6.08 1036.08 .00 3.14 3.98 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
17.617 .0050 .0354 .62 1.92 2.80 3.50 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1232.383 1028.165 1.848 1030.013 107.00 20.76 6.69 1036.70 .00 3.14 3.49 3.500 .000 .00 1 .0
17.065 .0050 .0402 .69 1.85 3.01 3.50 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1249.448 1028.250 1.780 1030.030 107.00 2.1.77 7.36 1037.39 .00 3.14 3.50 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
16.511 .0050 1 .0456 .75 1.78 3.24 3.50 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1265.959 1028.333 1.714 1030.047 107.00 22.84 8.10 1038.14 .00 3.14 3.50 3.500 .000 .00 1 .0
-1- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
15.957 .0050 .051.9 .83 1.71 3.48 3.50 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1281.916 1028.413 1.652 1030.065 107.00 23.95 8.91 1038.97 .00 3.14 3.49 3.500 .000 .00 1 .0
15.414 .0050 .0589 .91. 1..65 3.73 3.50 .013 .00 .00 PIPE
M = = = M = = = r = = r i M = " M
FILE:
JWRALT4.WSW
W
S P
G W-
CIVILDESIGN Version
12.9
PAGE
2
For:
Engineering
Resources
of
Southern
California
- SIN
685
WATER
SURFACE
PROFILE LISTING
Date: 1-30-2003
Time:
2:25:32
HYDRAULIC
CALCULATIONS
FOR
ALTERNATIVE
NO.4
OF STORM DRAIN
SYSTEM
FOR
JOHN
WARNER
ROAD DRAINAGE
IMPROVEMENTS.
(ULTIMATE
CONDITION)
JANUARY,
2003
CITY OF
TEMECULA
96018002
Invert
I Depth I
Water
- 4
I
Vel
Vel I
Energy I
Super
ICritical.IFlow
ToplHeight/lBase
WtI
INo Wth
Station
I Elev
I (FT) I
Elev
I (CFS)
I
(FPS)
Head I
Grd.E1.1
Elev
I Depth
I Width
IDia.-FT1or
I.D.1
ZL
IPrs/Pip
-I-
L/Elem
-I-
]Ch Slope
-I-
-I-
-I-
-I-
-I-
SF Avel
-I-
HF ISE
-I-
DpthlFroude
-I-
NINorm
Dp
-I- -I-
I "N"
-I-
1 X -Fall)
ZR
-I
IType
Ch
I
++++++++++++++++++I+++++++I+++++++1+++++++++++x
1297.330
1028.490
I I
1.592
1030.082
I
107.00
I
25.12
I
9.80
I
1039.88
.00
I
3.14
I
3.49
I
3.500
I I
.000
.00
I
1
.0
5.340
.0337
.0635
.34
1.59
4.00
1.91
.013
.00
.00
PIPE
1302.670
-I-
I
1028.670
I I
1.582
1030.252
I
107.00
I
25.34
I
9.9'1
I
1040.22
.00
I
3.14
I
3.48
I I
3.500
I
.000
.00
I
1
.0
10.126
-I-
.0642
I
-I-
-I-
-I-
-I-
-I-
.0642
-I-
.65
-I-
1.58
-I-
4.06
1.58
-I- -I-
.013
-I-
.00
.00
1-
PIPE
131.2.796
-I-
1029.320
-I-
I I
1.582
-I-
1030.902
I
107.00
I
25.34
I
9.91
I
1040.87
.00
I
3.14
I
3.48
I I
3.500
I
.000
.00
I
1
.0
21.6.192
.0642
-I-
-I-
-I-
-I-
.0637
-I-
13.77
-I-
1.58
-I-
4.06
1.58
-I- -I-
.013
-I-
.00
.00
1-
PIPE
1528.988
-I-
1043.200
-I-
1.589
1044.788
107.00
25.19
9.85
1054.64
.00
3.14
3.49
3.500
.000
.00
1
.0
173.682
.0642
-I-
-I-
-I-
-I-
-I-
.0594
-I-
10.31
-I-
1.59
-I-
4.02
1.58
-I- -I-
.013
-I-
.00
.00
1-
PIPE
1702.670
I
1054.350
I I
1.648
1055.998
I
107.00
I
24.02
I
8.96
I
1064.96
.00
I
3.14
I
3.49
I I
3.500
I
.000
.00
I
1
.0
18.239
.0556
.0556
1.01
1.65
3.75
1.65
.013
.00
.00
PIPE
1720.909
I
1055.364
I I
1.648
1057.012
I
107.00
I
24.02
I
8.96
I
1065.97
.00
I
3.14
I
3.49
I I
3.500
I
.000
.00
I
1
.0
223.119
.0556
.0549
12.24
1.65
3.75
- 1.65
.013
.00
.00
PIPE
1944.028
-I-
1067.763
-I-
1.660
1069.424
107.00
23.79
8.79
1076.21
.00
3.14
3.50
3.500
.000
.00
1
.0
158.642
.0556
-I-
-I-
-I-
-I-
-I-
.0509
-I-
8.08
-I-
1.66
-I-
3.70
1.65
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2102.670
-I-
1076.580
1.723
1078.303
107.00
22.69
7.99
1086.29
.00
3.14
3.50
3.500
.000
.00
1
.0
79.303
-I-
.0490
-I-
-I-
-I-
-I-
-I-
.0470
-I-
3.73
-I-
1.72
-1-
3.44
1.71
-I- -I-
.013
-I-
.00
.00
1-
PIPE
2181.973
7
-I-
1060.466
I I
1..738
1082.204
I
1.07.00
I
22.44
I
7.82
I
1090.02
.00
I
3.14
I
3.50
I
3.500
I I
.000
.00
I
1
.0
118.027
-I-
.0490
-I-
-I-
-I-
-I-
-I-
.0435
-I-
5.14
-I-
1.74
-I-
3.39
1.71
-I- -I-
.013
-I-
.00
.00
1-
PIPE
m m= m m m m m= m m m m m r m= m m
FILE:
JWRALT4.WSW
W S P
G W- CIVILDESIGN Version
12.9
PAGE 3
For:
Engineering
Resources of Southern
California
- SIN
685
WATER
SURFACE
PROFILE LISTING
Date: 1-30-2003
Time:
2:25:32
HYDRAULIC CALCULATIONS
FOR ALTERNATIVE NO.4
OF STORM DRAIN
SYSTEM
FOR
JOHN
WARNER
ROAD DRAINAGE IMPROVEMENTS.
(ULTIMATE
CONDITION)
JANUARY,
2003
CITY OF
TEMECULA
96018002
Invert
Depth
Water
4
Vel
Vel I
Energy I
Super
ICriticall
Flow ToplHeight/IBase
Wtl
INo Wth
Station
-I-
Elev
-I-
(FT)
Elev
(CPS)
(FPS)
Head
Grd.E1.1
Elev
I Depth
I Width
IDia.-FTIOr
L D.I
ZL
IPrs/Pip
L/Eleni
ICh Slope
I
-I-
-I-
-I-
-I-
-I-
SF Avel
-I-
HF ISE
-I-
D thIFfoude
p
-I-
N
Norm
-I-
D p
-I-
l "N"
-1-
I X -Fall)
-1
IType Ch
+zR
2300.000
-I-
1086.250
-I-
1.805
-I-
1088.055
107.00
21.39
7.11
1095.16
.00
3.14
3.50
3.500
.000
.00
1 .0
7.716
.0825
-I-
-I-
-I-
-I-
.0394
-I-
.30
-I-
1.80
-I-
3.15
1.47
-I-
-I-
.01.3
-I-
.00
.00
1-
PIPE
2.307.716
-I-
1086.887
-I-
1.893
1088.730
107.00
20.83
6.79
1095.47
.00
3.14
3.50
3.500
.000
.00
1 .0
11.572
.0625
I I
-I-
-I-
-I-
-I-
-I-
.0358
-I-
.41.
-L-
1.84
-I-
3.03
1.47
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
2319.288
-I-
1087.841
-I-
1..915
-I-
I
1089.756
I I
1.07.00
19.86
I
6.12
I
1095.88
.00
I
3.14
I
3.48
I
3.500
I I
.000
.00
I
1 .0
9.447
.0825
I I
-I-
-I-
-I-
-I-
.0316
-I-
.30
-I-
1.92
-I-
2.81
1.47
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
2328.735
-I-
1088.620
-I-
1.991
-I-
I
1090.611
I I
107.00
18.94
I
5.57
I
1096.18
.00
I
3.14
I
3.47
I
3.500
I I
.000
.00
I
1 .0
7.809
.0625
I I
-I-
-I-
-I-
-I-
.0279
-1-
.22
-I-
1.99
-I-
2.61
1.47
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
2336.544
-I-
1089.264
-I-
2.071
I
1091.335
I I
107.00
18.05
I
5.06
I
1.096.40
.00
I
3.14
I
3.44
I
3.500
I I
.000
.00
I
1 .0
6.497
.0825
I I
-I-
-I-
-I-
-I-
-I-
.0247
-I-
.16
-I-
2.07
-I-
2.42
1.47
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
2343.041
1089.800
2.155
I
1091.955
I I
107.00
17.21
I
4.60
I
1096.56
.00
I
3.14
I
3.40
I
3.500
I I
.000
.00
I
1 .0
5.420
.0825
I
.021.9
.12
2.1.6
2.25
1.47
.013
.00
.00
PIPE
2348.461
I
1090.247
2.245
I
1092.492
I I
107.00
16.41
I
4.18
I
1096.68
.00
I
3.14
I
3.36
I
3.500
I I
.000
.00
I
1 .0
4.512
.0625
.0194
.09
2.24
2.08
1.47
.013
.00
.00
PIPE
2352.973
-I-
1090.620
2.340
1092 960
107.00
15.65
3.80
1096.76
.00
3.14
3.29
3.500
.000
.00
1 .0
3.727
-I-
.0825
I
-I-
-I-
-I-
-I-
-
-I-
.0113
-I-
.06
-I-
2.34
-I-
1.91
1.47
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
2356.700
I
1090.927
2.443
I
1093.370
I I
107.00
14.92
I
3.46
I
1096.83
.00
I
3.14
I
3.21
I
3.500
I I
.000
.00
I
1 .0
3.036
.0825
.0154
.05
2.44
1.76
1.47
.01.3
.00
.00
PIPE
M. M M M M MM r M M ■■i M M M M M M M. M
FILE: JWRALT4.WSW W S P G W- CIVILDESIGN Version 12.9 PAGE 4
For: Engineering Resources of Southern California - S/N 685
WATER SURFACE PROFILE LISTING Date: 1-30-2003 Time: 2:25:32
HYDRAULIC CALCULATIONS FOR ALTERNATIVE NO.4 OF STORM DRAIN SYSTEM FOR
JOHN WARNER ROAD DRAINAGE IMPROVEMENTS. (ULTIMATE CONDITION)
JANUARY,+ 2003 CITY OF TEMECULA 96018002
I Invert I Depth I Water 4 Vol Vel I Energy I Super ICriticall Flow ToplHeight/IBase Wt[ INo Wth
Station I Elev I (FT) I Elev (CFS) I (FPS) Head I Grd.E1.1 Elev I Depth I Width Dia.-FTlor I,D.I ZL IPrs/Pip
L{/Elem Ch Slope I SF Avel HE ISE DpthI Froude NlNorm Dp I "N" I X -Fall) ZR (Type Ch
I I I I I I I I I I I I I
2359.736 1091.177 2.554 1093.731 107.00 14.23 3.14 1096.87 .00 3.14 3.11 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
2.402 .0825 .01.38 .03 2.55 1.61 1.47 .013 .00 .00 PIPE
2362.138 1091.3"/5 2.674 1099.050 107.00 13.56 2.86 1.096.91 .00 3.19 2.97 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
1.801 .0825 .0124 .02 2.67 1.47 1.47 .013 .00 .00 PIPE
2363.939 1091.529 2.808 1094.332 107.00 12.93 2.60 1096.93 .00 3.14 2.79 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
1.187 .0825 .0113 .01 2.81 1.32 1.47 .013 .00 .00 PIPE
2365.126 1097..622 2.959 1094.581 107.00 12.33 2.36 1096.94 .00 3.14 2.53 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
.464 .0825 .0104 .00 2.96 1.17 1.47 .013 .00 .00 PIPE
2365.590 1091..660 3.142 1094.802 107,00 11.75 2.15 1096.95 .00 3.14 2.12 3.500 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
M= M mm ■i■ M M M= mm M M
FILE:
JWRLAT.WSW
W
S P
G W-
CIVILDESIGN Version
12.9
PAGE 1
For:
Engineering Resources
of
Southern
California
- SIN
685
WATER
SURFACE
PROFILE LISTING
Date: 1-30-2003
Time:
3:57: 7
HYDRAULIC
CALCULATIONS
FOR STORM DRAIN CROSSING THE
JOHN
WARNER ROAD
AT
STA.
18+00 ------------------------
Q100=90
CFS
CITY OF TEMECULA
------------
JAN. 2003 -------------96018002
I Invert I
Depth I
Water I Q
I
Vel
Vel I
Energy I
Super
ICriticall
Flow ToplHeight/IBase
Wt1
No Wth
Station
-I-
I Flee I
-I-
(FT) I
-I-
Elev (CFS)
I
(FPS)
Head I
Grd.E1.1
Elev
I Depth
I Width
Dia.-FTlor
I.D.1
ZL
IPrs/Pip
L/Elem
]Ch Slope
-I-
-I-
-I-
-I-
SF Ave)
-I-
HF ISE
-I-
DpthlFroude
-I-
NINorm
-I-
Dp
-I-
I "N" I X-FaIll
-I-
ZR
-I
ITYP e Ch
I I
I
I
1000.000
-I-
1104.000
-I-
1.051
-I-
1.105.052 90.00
-I-
I
13.58
I
2.86
I
1107.92
.00
I
1.77
I
2.86
I I
3.000
I
.000
.00
I
3 .0
7.282
.0361
I I
I
-I-
-I-
-I-
.0287
-I-
.21
-I-
1.05
-I-
1.57
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
3007.283
1104.263
1.059
I
1105.322 90.00
I
13.44
I
2.81
I
1106.13
.00
I
1.77
I
2.87
I I
3.000
I
.000
.00
I
3 ,0
22.788
.0361
I I
I
.0266
.61
1.06
1.55
.99
.013
.00
.00
PIPE
1030.070
-I-
1105.085
-I-
1.097
-I-
I
1106.182 90.00
-L-
I
12.82
I
2.55
I
1108.73
.00
I
1.77
I
2.89
I I
3.000
I
.000
.00
I
3 .0
15.032
.0361
I I
-I-
-I-
-I-
.0233
-I-
.35
-I-
1.10
-I-
1.45
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1045.102
1105.628
I
1.137
I
1106.764 90.00
I
12.22
I
2.32
I
1109.08
.00
I
1.77
I
2.91
I I
3.000
I
.000
.00
I
3 .0
10.840
.0361
I I
.0204
.22
1.14
1.35
.99
.013
.00
.00
PIPE
1055.942
-I-
1106.019
-I-
I
1.178
-I-
I
1107.197 90.00
I
11.65
I
2.11
I
1109.30
.00
I
1.77
I
2,93
I I
3.000
I
.000
.00
I
3 .0
8.193
.0361
I
-I-
-I-
-I-
-I-
.0179
-I-
.15
-I-
1.18
-I-
1.26
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1064.135
-I-
1106.315
-I-
I
1..220
-I-
I
1107.535 90.00
I
11.11
I
1..92
I
1109.45
.00
I
1.77
I
2.95
I I
3.000
I
.000
.00
I
3 .0
6.368
.0361
-I-
-I-
-I-
-I-
.0157
-I-
.10
-I-
1.22
-I-
1.16
-I-
-.99
-I-
.013
-I-
.00
.00
1-
PIPE
1.070.503
-I-
1106.545
-I-
1.265
-I-
1107.809 90.00
10.59
1.74
1.109.55
.00
1.77
2.96
3.000
.000
.00
3 .0
5.024
.0361
I
I
-I-
-I-
-I-
-I-
.0138
-I-
.07
-I-
1.26
-I-
1.10
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1075.526
-I-
1106.726
-I-
1.311
-I-
I
1108.037 90.00
I
10.10
I
1.56
I
1109.62
.00
I
1..77
I
2.98
I I
3.000
I
.000
.00
I
3 .0
3.979
.0361
I I
-I-
-I-
-I-
-I-
.0121
-I-
.05
-I-
1.31
-I-
1.03
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1079.505
-I-
1106.869
-I-
I
1.360
-I-
I
1108.229 90.00
I
9.63
I
1.44
I
1109.67
.00
I
1.77
I
2.99
I I
3.000
I
.000
,00
I
3 .0
3.152
.0361
-I-
-I-
-I-
-I-
.0107
-I-
.03
-I-
1.36
-I-
.96
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
FILE:
JWRLAT.WSW
W
S P
G W-
CIVILDESIGN Version
12.9
PAGE 2
For: Engineering Resources
of
Southern
California
- SIN
685
WATER
SURFACE
PROFILE LISTING
Date: 1-30-2003
Time:
3:57: 7
HYDRAULIC CALCULATIONS
FOR
STORM
DRAIN CROSSING THE
JOHN
WARNER ROAD AT
STA. 18+00
------------------------
Q100=90
CFS
CITY OF TEMECULA
------------
JAN. 2003 -------------96018002
I Invert
I Depth I Water
I Q
I
Vel
Vel. I
Energy I
Super
ICriticall
Flow ToplHeight/IBase
Wt1
INo Wth
Station
-I-
I Elev
I (FT) I Elev
I (CFS)
I
(FPS)
Head I
Grd.E1.1
Elev
I Depth
I Width
IDia.-FTIor
I.D.1
ZL
IFrs/Pip
L/Elem
-I-
ICh Slope
-I- -I-
I I
I
-I-
I
-I-
-I-
SF Avel
-I-
HF ISE
-I-
DpthlFroude
-I-
NINorm
-I-
Dp
-I-
"N"
-I-
I X-Falll
ZR
-I
(Type Ch
I
I I
I
1.082.657
-I-
1106.983
1.411 1108.394
I
90.00
9.18
I
1.31
I
1109.70
.00
I
1.77
I
2.99
I
3.000
I I
.000
.00
I
3 .0
2.464
-I-
.0361
I
-I- -I-
-I-
-I-
-I-
.0094
-I-
.02
-I-
1.41
-I-
.89
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1085.122
-I-
1107.072
-I-
I I
1.464 1108.536
I
90.00
I
8.75
I
1.19
I
1109.73
.00
I
1.77
I
3.00
I
3.000
I I
.000
.00
I
3 .0
1.863
.0361
-I- -I-
-I-
-I-
-I-
.0083
-I-
.02
-I-
1.46
-I-
.83
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1.087.004
-I-
I
1101.140
-I-
I I
1.520 1108.660
I
90.00
I
8.35
I
1.08
I
1109.74
.00
I
1.77
I
3.00
I
3.000
I I
.000
.00
I
3 .0
1.383
.0361
-I- -I-
-I-
-I-
-I-
.0073
-I-
.01.
-I-
1.52
-I-
.78
-I-
.99
-I-
.01.3
-I-
.00
.00
1-
PIPE
1088.388
-I-
I
1107.190
-I-
I I
1.578 1108.768
I
90.00
I
7.96
I
.98
I
1109.75
.00
I
1.77
I
3.00
I
3.000
I I
.000
.00
I
3 .0
.941
.0361
-I- -I-
-I-
-I-
-I-
.0064
-I-
.01
-I-
1.56
-I-
.72
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1089.328
-I-
I
1.107.224
-I-
I I
1.640 1108.864
I
90.00
I
7.59
I
.89
I
1109.76
.00
I
1.77
I
2.99
I
3.000
I I
.000
.00
I
3 .0
.545
.0361
I
-I- -I-
-I-
-I-
-I-
.0057
-I-
.00
-I-
1.64
-I-
.67
-I-
.99
-I-
.01.3
-I-
.00
.00
1-
PIPE
1089.873
-I-
1107.244
-I-
I I
1J05 1108.948
I
90.00
I
7.24
I
.81
I
1109.76
.00
I
1.77
I
2.97
I
3.000
I I
.000
.00
I
3 .0
.177
.0361
-I- -I-
-I-
-I-
-I-
.0050
-I-
.00
-I-
1.70
-I-
.62
-I-
.99
-I-
.013
-I-
.00
.00
1-
PIPE
1090.050
1107.250
I I
1.774 1109.024
I
90.00
I
6.89
I
.74
I
1109.76
.00
I
1.77
I
2.95
I
3.000
I I
.000
.00
I
3 .0
FILE:
PAULLAT.WSW
W
S P G W-
CIVILDESIGN
Version
12.9
PAGE 1
For:
Engineering Resources of
Southern
California
- SIN
685
WATER
SURFACE
PROFILE LISTING
Date: 1-30-2003 Time:
4: 7:14
HYDRAULIC
CALCULATIONS
FOR THE
STORM DRAIN
CROSSING
IN PAULITA
ROAD
AT
APPROX. STA. 11+30
---------------
Q100 = 34
CFS
CITY OF TEMECULA
---------------
96018002
--------------------
JAN.
2
I Invert
I Depth
Water Q
I Vel
Vel I
Energy
Super
Criti.call Flow Topllleight/lHase
Wtl
INo Wth
Station
-I-
I Elev
-I-
(FT)
Elev I (CFS)
I (FPS)
Head I
Grd.E1.1
Elev
Depth I Width
Did.-FTlor
I.D.1
ZL
Prs/Pip
L/Elem
ICh Slope
-I-
I
-I-
I
-I- -I-
I
-I-
SF Avel
-I-
HF ISE
-I-
Dpthl
-I- -I-
Froude NINorm Dp
-I-
I "N" I X
-I-
-Fall)
ZR
-I
(Type Ch
I
I I
1000.000
11.61.000
.944
I
1161.944 34.00
I
17.84
I
4.94
I
1166.88
.00
I I
1.89 2.79
I I
3.000
I
.000
.00
I
1 .0
25.592
.0683
.0530
1.36
.94
3.80
.90
.013
.00
.00
PIPE
1025.592
1162 748
.975
1163.723 34.00
17.06
4.52
11
.00
1.89 2.81
3.000
1.68.24
.000
.00
1 .0
17.429
.0683
I
I I
.0467
.81
.98
3.57
.90
.013
.00
.00
PIPE
1043.021
-I-
1.163.938
-I-
1.010
-I-
I
1164.948 34.00
-I-
I
16.27
I
4.11
I
1169.06
.00
I I
1.89 2.84
I I
3.000
I
.000
.00
I
1 .0
12.339
.0683
I I
I
-I- -I-
-I-
.0409
-I-
.50
-I-
1.01
-I-
3.34
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
1055.360
-I-
1164.760
-I-
1.045
-I-
I
1165.826 34.00
-I-
I
15.51
I
3.74
I
1169.56
.00
I I
1.89 2.86
I I
3.000
I
.000
.00
I
1 .0
9.323
.0683
I I
I
-I- -I-
-I-
.0358
-I-
.33
-I-
1.05
-I-
3.12
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
1064.683
1165.41.7
1.063
I
1166.500 34.00
I
14.79
I
3.40
I
1169.90
.00
I I
1.89 2.88
I I
3.000
1
.000
.00
I
1 .0
7.329
.0683
I I
I
.0314
.23
1.08
2.92
.90
.013
.00
.00
PIPE
1012.012
-I-
1165.917
-I-
1.121.
-I-
I
1167.039 34.00
I
14.10
I
3.09
I
1170.13
.00
I I
1.69 2.90
I I
3.000
I
.000
.00
I
1 .0
5.902
.0683
-I-
-I- -I-
-I-
.0276
-I-
.16
-I-
1.12
-I-
2.73
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
1077.919
-I-
1166.321
-I-
1.162
-I-
1167.882 39.00
13.45
2.81
1170.29
.00
1.89 2.92
3.000 1
.000
.00
1 .0
4.832
.0683
I I
I
-I-
-I- -I-
-I-
.0242
-I-
.12
-I-
1.16
-I-
2.55 .90
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
1.062.746
-I-
1166.651
-I-
1.204
-I-
I
1167.854 34.00
I
12.82
I
2.55
I
1170.41.
.00
I I
1..89 2.94
I I
3.000
I
.000
.00
I
1 .0
3.997
.0683
-I-
-I- -I-
-I-
.0212
-I-
.08
-I-
1.20
-I-
2.38 .90
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
1086.743
-i-
1166.923
-I-
1.248
-I-
1168.171 39.00
I1
12.22
2.32
1170.49
.00
1.89 2.96
1
3.000
.000
.00
1 .0
3.326
.0683
-I-
-I- -I-
-I-
.0186
-I-
.06
-I-
1.25
-I-
2.22 .90
-I-
-I-
.013
-I-
.00
.00
1-
PIPE
FILE:
PAULLAT.WSW
W
S P G W- CIVILDESIGN
Version
12.9
PAGE
2
For:
Engineering Resources of Southern
California
- SIN
685
WATER SURFACE
PROFILE LISTING
Date: 1-30-2003 Time:
4: 7:14
HYDRAULIC
CALCULATIONS FOR THE STORM DRAIN
CROSSING
IN PAULITA
ROAD
AT
APPROX. STA. 11+30
---------------
QI00 = 34
CFS
CI'T'Y OF TEMECULA
--------------- 96018002
--------------------
JAN. 2
I Invert
I Depth I
Water I Q
Vel Vel I
Energy I
Super
ICriticall
Flow ToplHeight/IBase Wtl
No Wth
Station
-I-
I Elev
-I-
I (FT) I
-I-
Elev (CFS)
-I-
I (FPS) Head
-I- -I- -I-
Grd.El.I
E1ev
I Depth I
Width
IDia.-FTlor
I-D.I
ZL
IPrs/Pip
L/Elem
ICh Slope
SF Avel
-I-
HP ISE
-I-
Dpthl
-I-
Froude NINorm
Up
-I- -I-
I "N" I X-Fall.l
-I-
ZR
-I
1Type Ch
1090.069
-I-
1167.151
-I-
1.299
-I-
1168.449 34.00
-I-
11.65 2.11
-I-
1170.55
.00
1.89 1
2.97
3.000
1
.000
.00
1 .0
2.773
.0683
-I- -I-
.0164
-I-
.05
-I-
1.29
-I-
2.07
.90
-I- -I-
.013
-I-
.00
.00
1-
PIPE
1092.842
-I-
1167.390
-I-
1.391
-I-
1168.681 34.00
-I-
11.11 1.92
1170.60
.00
1.89
2.98
3.000
.000
.00
1 .0
2.307
.0683
I
I I
I
-I- -I- -I-
.0144
-I-
.03
-I-
1.34
-I-
1.93
.90
-I- -I-
.013
-I-
.00
.00
1-
PIPE
1095.149
1167.497
1.391
1168.889 34.00
I I
10.60 1.74
I
1170.63
.00
I I
1.89
2.99
I I
3.000
I
.000
.00
I
1. .0
1.909
.0683
I
I I
I
.0127
.02
1.39
1.80
.90
.013
.00
.00
PIPE
1097.057
11.67.628
1.444
1169.072 34.00
I I
10.10 1.58
I
1170.66
I I
1.89
3.00
I I
3.000
I
I
-I-
-I-
-I-
-I-
.00
.000
.00
1 .0
1..562
.0683
I
I I
I
-I- -I- -I-
.0111
-I-
.02
-I-
1.44
-I-
1.68
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
1098.620
-I-
1167.734
-I-
1.499
-I-
1169.233 34.00
-I-
I I
9.63 1.44
-I-
I
1170.67
.00
I I
1.89
3.00
I I
3.000
I
.000
.00
I
1 .0'
1.256
.0683
I
I I
I
-I- -I-
.0098
-I-
.01
-I-
1.50
-I-
-1.56
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
1099.878
-I-
1167.620
-I-
1..556
-I-
1169.376 34.00
-I-
I I
9.18 1.31
-I-
I
1170.69
.00
I I
1.89
3.00
I I
3.000
I
.000
.00
I
1 .0
.984
.0683
-I- -I-
.0086
-I-
.01
-I-
1.56
-I-
1.46
-I-
.90
-I-
.013
-I-
.00
.00
I-
PIPE
1100.561
1167.888
1.616
I
1169.504 34.00
8.76 1.19
1170.69
.00
1.09
2.99
3.000
.000
.00
1 .0
.739
.0683
.0076
.01
1..62
1.35
.90
.013
.00
.00
PIPE
1101.600
11.67.938
1.660
1169.618 34.00
8.35 1.08
1170.70
1.89
2.98
3.000
-I-
-I-
-I-
-I-
-I-
.00
.000
.00
1 .0
.510
.0683
-I- -I-
.0067
-I-
.00
-I-
1.68
-I-
1.26
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
11.02.110
-I-
1167.9'13
-I-
1.747
-I-
1169.719 34.00
-I-
7.96 .98
1170.70
.00
1.89
2.96
3.000
.000
.00
1 .0
.301
.0683
-I- -I- -I-
.0060
-I-
.00
-I-
1.75
-I-
1.17
-I-
.90
-I-
.013
-I-
.00
.00
1-
PIPE
FILE: PAULLAT.WSW W S P G W- CIVILDESIGN Version 12.9PAGE 3
For: Engineering Resources Of Southern California - SIN 685
WATER SURFACE PROFILE LISTING Date: 1.-30-2003 Time: 4: 7:14
HYDRAULIC CALCULATIONS FOR THE STORM DRAIN CROSSING IN PAULITA ROAD
AT APPROX. STA. 11+30 --------------- Q100 = 34 CFS
CITY OF TEMECULA--------------- 96018002 -------------------- JAN. 2
Invert I 'Depth I Water Q Vel Vel I Energy I Super Criticall F].ow ToplHei.ght/lBase Wt1 [No Wth
Station I Elev I (FT) I Elev (CFS) I (FPS) Head I Grd.El.l Elev I Depth I Width Dia.-FTIor I.D.I ZL IPrs/Pip
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I
L/Elem ICh Slope SF Avel HE ISE Dpthl Froude NINorm Dp I "N" I X -Fall) ZR (Type Ch
I I I I I I I I I I I I I
1102.411 1167.993 1.817 11.69.81.1 34.00 7.59 .89 1170.71 .00 1.89 2.93 3.000 .000 .00 1 .0
.099 .0683 .0053 .00 1.82 1.08 .90 .013 .00 .00 PIPE
I I I I I I I I I I I I I
1102.510 1168.000 1..894 1169.894 34.00 7.23 .81 1170.71 .00 1.89 2.89 3.000 .000 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
F-
%
7 -,-
Was
C
`
A- 0.dw
cee*r-
3q
0 �Gl
1 49- 2 0
-----------
Ile
1>
It 18
48r
11000,11,111111,11111111
&SEMENT
L
,Od=f 07efs
N,
Cy)
-1140 0 i -
r
LEGEND
MAJOR DR4N4GE AFIEA
SL6-DR41VAGE ARE4
@ NODE MO.
Q10 =1 i2cfs 10 -YEAR FLOW
Q10d=182cfs 100-YE4R FLOW
--- — --- DRAINAGE COURSE
GRAPHIC SCALE
loe 100 0 50 100 200
�'`1 mm=4
F7=
SCALE: 1" 100'
• X
Don't Dig ... UffUl You Call U.S-k Toll Fina DATE BY REVISIONS DATE ACC'D BENCHMARKSCALE SEAL ES Designed By Drawn By Checked By RECOMMENDED BY: DATE:— DRAWING NO.
1-800-227-2600 RTM RTM MA CITY OF TE DEPARTMENT OF PUBLIC WORKS
for the location HORIZONTAL PLANS PREPARED UNDER THE SUPERVISION OF
of buried
utility lines. 1, = 100' No. 41836 ACCEPTED BY: DATE: HYDROLOGY MAP X
Don't disrupt Exp. 3/31/04 Date RONALD J. PARKS
DEPUTY DIRECTOR OF PUBLIC WORKS
vital services. VERTICAL JOHN M. BRUDIN
CIVIV CITY OF TEMECULA FOR
NA OF R.C.E. NO. 418.36 — Expires 3-31-04 R.C.E. NO. 19744 —Expires 9-30-05 JOHN WARNER RD. DRAINAGE IMPROVEMENTS SHEET OF
TWO T0UWG DAYS BMRZ YOU DIG