HomeMy WebLinkAboutGeotechnical Investigation Dec. 1992GEOTECHNICAL INVESTIGATION
FOR
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
PREPARED FOR
MDC - VAIL
SAN DIEGO, CALIFORNIA
PREPARED BY
GEOCONINCORPORATED
SAN DIEGO, CALIFORNIA
DECEMBER 1992
I
11
Project No. 04927-41-01
December 21, 1992
MDC - Vail
9474 Kearny Villa Road, Suite 203
San Diego, California 92126
Attention: Mr. Jerry Swanger
Subject: TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
GEOTECHNICAL INVESTIGATION
Gentlemen:
In accordance with your authorization of our proposal dated October 2, 1992, we have
performed a geotechnical investigation at the subject site. The accompanying'Peport
presents the findings of our study and our conclusions and recommendations relative to the
geotechnical aspects of developing the property as presently proposed.
If there are any questions regarding this report, or if we may be of further service, please
contact the undersigned at your convenience.
' Very truly yours,
OCONINCORPORATED
1 Cjpy
*CE
ms ohn Hoobs
0 CEG 1524
7LB:JHH:JEL:slc oQPofESS10*
(6/del) Addressee
Q y m
' N0. 17030 N s
# EXP. 6-30.93 +
sl', CIVIC- P��P
OF CA0
JameP-As L. Br 111 �
RCE 43824
b x NXWON
NO. 1524
O
aWnFIED -4
• ENGINEERING •
s'6-30-94
GEOLOGIST
rfOR C a L 00;/
EXP.' �Z93
TABLE OF CONTENTS
' PURPOSE AND SCOPE .............................................. 1
SITE AND PROJECT DESCRIPTION ................................... 3
SOIL AND GEOLOGIC CONDITIONS .................................. 4
'
GROUNDWATER...................................................
5
GEOLOGIC STRUCTURE ............................................
6
SITE SEISMICITY ...................................................
7
Deterministic Analysis ............................................
7
Historic Site Seismicity ...........................................
8
LIQUEFACTION .............
10
Evaluation of Liquefaction Potential ................................
10
Effects of Liquefaction ..........................................
12
CONCLUSIONS AND RECOMMENDATIONS ...........................
14
General......................................................
14
' Results of Test Fills ............................................. 16
Grading...................................................... 17
Settlement.................................................... 19
' Soil and Excavation Characteristics ................................. 20
Embankment Factors ........................................... 21
Slopes....................................................... 21
' Preliminary Foundation Recommendations ........................... 22
Retaining Walls and Lateral Loads ................................. 23
Drainage and Maintenance ....................................... 25
Grading Plan Review ............................................ 25
LIMITATIONS AND UNIFORMITY OF CONDITIONS
' MAPS AND ILLUSTRATIONS
Figure 1, Vicinity Map
Figures 2 and 3, Geologic Maps (Map Pocket)
' Figure 4, Settlement Monument
Figure 5, Slope Stability Analysis
Figure 6, Surficial Slope Stability Analysis
TABLE OF CONTENTS (Continued)
APPENDIX A
FIELD INVESTIGATION
Figures A-1 - A-8, Logs of Borings
APPENDIX B
LABORATORY TESTS
Table B -I, Summary of In-place Moisture Density and Direct Shear Test Results
Table B -II, Summary of Laboratory Maximum Dry Density and Optimum Moisture
Content Test Results
Figures B-1 - B-2, Gradation Curves
Figures B-3 - B-6, Consolidation Curves
APPENDIX C
EQFAULT & EQSEARCH ANALYSIS
APPENDIX D
LIQUEFY 2
Liquefaction Analysis
APPENDIX E
TEST FILL PROGRAM
APPENDIX F
RECOMMENDED GRADING SPECIFICATIONS
REFERENCES
Project No. 04927-41-01
December 18, 1992
GEOTECHNICAL INVESTIGATION
PURPOSE AND SCOPE
This report presents the results of our soil and geologic investigation of the proposed Tentative
Tract 23172, an approximately 200 -acre site located near Temecula in Riverside County,
California. The purpose of the investigation was to observe the soil and geologic conditions,
identify potential geotechnical constraints and to provide recommendations relative to the
geotechnical aspects of site development. Specifically, the major purposes of the investigation
were:
• To evaluate the potential for liquefaction at the site.
• To evaluate the compressibility of the upper alluvial deposits.
• To perform laboratory testing on selected representative soil samples to
determine pertinent physical properties for engineering analysis.
• To determine the feasibility of in situ densification of the upper alluvial
soils.
• To provide specific recommendations pertaining to grading the site, in
particular, the extent of remedial grading.
The scope of the field investigation consisted of a site reconnaissance, geologic mapping and
excavation of 4 small -diameter rotary wash borings. Observation wells were placed within two
of the borings for establishing current groundwater elevations and for future monitoring. The
field investigation was performed on October 13, 1992. Laboratory tests were performed on
representative soil samples obtained from the exploratory borings to evaluate pertinent physical
' Project No. 04927-41-01
December 21, 1992
' properties. Detailed descriptions of the field investigation and laboratory testing are presented
in Appendices A and B, respectively. Our scope also included a review of the following:
• Geotechnical Feasibility Investigation 700 ± Acres, Vail Ranch Riverside
' County, California prepared by Highland Soils Engineering, Incorporated
dated August 6, 1987.
' • Addendum to Report of June 21, 1989, Estimated Alluvial Removals Vail
Ranch Commercial, Margarita Road and Highway 79, Rancho California,
California prepared by ICG Incorporated dated June 28, 1989.
' • Liquefaction Analysis Vesting Tentative Tract No. 23172, South of
Highway 79, between Butterfield Stage Road and Margarita Road, Riverside
County, California, Work Order No. 219101.00 prepared by Ranpac Soils
Incorporated dated March 15, 1991.
• Limited Hydrogeologic Investigation, Tract 23172, South of Highway 79,
' Between Butterfield Stage Road and Margarita Road, Riverside County,
California, Work Order No. 219201.07 prepared by Geotechnical and
Environmental Engineers, Incorporated dated April 3, 1992.
A detailed listing of the references utilized for preparation of this report is included at the end
' of the report.
' The scope of the investigation also included the implementation of a test fill program to
' evaluate the feasibility of in situ densification of the upper alluvial deposits to provide
alternative remedial grading measures. Typical grading procedures for removal and
' recompaction are anticipated to be impacted by a near surface groundwater table attributable
' to the Eastern Municipal Water District (E. M. W. D.) effluent ponds adjacent to State Route
79 north of the site. Details of the test fill program are included in Appendix E.
1 '
2
' Project No. 04927-41-01
' December 18, 1992
' SITE AND PROJECT DESCRIPTION
The rectangular property, occupying approximately 200 acres is located south of State
Highway 79 between Margarita Road and Butterfield Stage Road, Riverside County,
California. The southern boundary of the property is situated within the Temecula Creek
' channel. The western, portion of the site contains several old buildings associated with the
original Vail Ranch. A Native American burial ground is located within the south central
' portion of the site. An existing well is situated near the old buildings.
Site vegetation consists primarily of a moderate to heavy growth of native weeds and grasses.
Several scattered trees exist near the creek channel. Site drainage flows southerly into
Temecula Creek Channel which in turn drains to the west. In general, site topography consists
of a relatively flat alluvial plain with elevations varying from a high of approximately 1110
Mean Sea Level (MSL) at the northeastern property corner to a low of approximately 1,053
MSL at the southwestern property corner.
' The Tentative Map indicates that site development will consist of grading the site for a 51 -lot
commercial/industrial subdivision with associated streets and underground improvements.
Grading is anticipated to consist of cuts and fills up to of 5 feet and 10 feet, respectively.
Slopes are anticipated to be minor (less than 10 feet in height) and constructed at an
inclination of 2:1(horizontal:vertical). The lots will be sheet graded and developed individually
1 -3-
I
11
1
1
1
1
11
C
I
Project No. 04927-41-01
December 21, 1992
at a later date. It is anticipated that the project buildings will consist of concrete tilt -up
structures founded on conventional continuous and/or spread footings. Additionally, Temecula
Creek channel will be improved to an approximate width of 400 feet with revetment on the
sidewall slopes. The base of the channel is anticipated to remain natural. Grading within the
channel will consist of cuts up to approximately 14 feet to establish the new channel bottom.
The locations and descriptions of the site and proposed development are based on a site
reconnaissance and a review of the Tentative Map and readily -available geotechnical reports
and geologic literature pertaining to the site. If project details vary significantly from those
presently planned, Geocon Incorporated should be notified for review and possible revision
of this report.
SOIL AND GEOLOGIC CONDITIONS
The entire site is underlain by recent alluvium anticipated to be on the order of 100 to 150 feet
in thickness. The recent alluvium is underlain by approximately 600 feet of older alluvium and
sedimentary rock of the Pauba Formation. Borings advanced during this and previous studies
indicate that the recent alluvium is comprised primarily of sands and silty sand with occasional
silt and clay interbeds. In general, the materials were in a loose to medium dense condition
with in-place dry densities varying from 85 pcf to 118 pcf. Laboratory test results and
visual observations indicated very low in-place moisture contents of the near surface soils
-4-
I
Project No. 04927-41-01
December 21, 1992
(upper 5 feet). Consolidation testing and experience with similar soil conditions indicate that
the upper dry material in it's present condition is susceptible to collapse upon an increase in
moisture content. Therefore, remedial grading to moisture condition and densify the upper 3
rto 5 feet of alluvium will be required as recommended in the Conclusions and
' Recommendations Section of this report. Laboratory consolidation test results on deeper
samples indicated higher in situ densities and moisture contents. These deeper materials
should not consolidate significantly under the proposed additional fill loads. However, some
immediate settlement may occur and a settlement monitoring program should be established
to determine when settlement from fill placement has ended. Details of the monitoring
program are included within the Conclusions and Recommendations section.
GROUNDWATER
' Groundwater was encountered in each of the exploratory borings. The depth of groundwater
measured during drilling operations varied from 7 feet (Boring No. 4) to a maximum depth
of 25 feet (Boring No. 2). Observation wells were installed in Boring Nos. 1 and 4 for
' purposes of monitoring the groundwater levels, particularly Boring No. 4 which may be
impacted by the nearby E.M.W.D. effluent ponds. Groundwater levels measured 72 hours
after completion of drilling indicated the highest groundwater at 11.8 feet (Boring No. 4). A
' review of the referenced limited hydrogeologic study (G. E. E. April, 1992) indicated
groundwater as near as 7.4 feet below the existing ground surface. The groundwater flows in
' -5-
[1
Project No. 04927-41-01
December 21, 1992
' an south -southwesterly direction at a gradient varying from approximately 0.7 percent to 2.5
' percent. The highest measured level was along the northern property line. The report further
indicated that previous groundwater levels measured prior to construction of the ponds (1971)
indicated groundwater levels at 13 to 21 feet below the ground surface. This condition
' suggests that the recent higher measured groundwater levels are due to seepage from the
effluent ponds.
r
It is our understanding that currently E.M.W.D. is constructing a pipeline to a new location
and that the existing effluent ponds will be closed in the very near future. We anticipate that
the groundwater levels near the vicinity of the ponds will return to the static groundwater
elevation (approximately 15 to 20 feet). Additionally, the improvement to Temecula Creek
will result in lowering the existing channel bottom by up to 14 feet. This should result in
further lowering of the groundwater.
GEOLOGIC STRUCTURE
The site is situated within the Peninsular Ranges of Southern California east of the Elsinore
Fault Zone. Specifically, the site is situated in Pauba Valley which generally trends east -west.
' The Peninsular Ranges extend southward from the Los Angeles Basin into Baja California and
includes several active faults. Lateral displacement and uplift of the region has occurred on
' a series of major northwest -trending faults which are thought to be related to regional tectonic
1
I
Project No. 04927-41-01
December 21, 1992
' framework. The site is underlain by Quaternary alluvial deposits with depths on the order
' of 600 feet. The upper younger alluvium is estimated to be approximately 150 feet thick and
is underlain by older alluvium. Sedimentary bedrock of the Pauba Formation underlies the
alluvium.
SITE SEISMICITY
IDeterministic Analysis
To determine the effects that earthquakes on known active faults may have on the site, the
computer program EQFAULT (Blake, 1989a) was utilized. Within the specified search radius
1 of 100 miles, 45 active faults were identified. The EQFAULT analysis indicated that the
Elsinore Fault is approximately 1.1 miles west of the site. Estimates of maximum credible and
' maximum probable earthquake magnitudes and calculated acceleration parameters were
determined using EQFAULT. Estimates of earthquake recurrence intervals were calculated
based on the method of Campbell (1978). Attenuation relationships presented by Joyner and
Boore (1982) were used to estimate site acceleration.
' The highest predicted accelerations for the site are for earthquakes generated from the
Elsinore Fault. Seismic events of magnitude 7.5 and 6.8 for the maximum credible and
maximum probable earthquakes, respectively, were estimated for the Elsinore Fault.
' Estimated maximum probable and maximum credible peak site accelerations were 0. 45 g
-7-
I
I
Project No. 04927-41-01
December 21, 1992
and 0.69 g, respectively. Summarized below are other nearby faults with estimated earthquake
events and site accelerations that may affect the site seismicity.
TABLE I - -
SUMMARY OF NEARBY FAULTS
Distance
Maximum
Maximum
Maximum
Maximum
from
Credible
Probable
Credible Site
Probable Site
Fault Name
Site
(mites)
Event
Event
Acceleration
Acceleration
San Jacinto
21
7.5
7.0
.14g
.log
San Andreas
42
8.0
7.25
.07g
.05g
Newport -Inglewood
42
7.5
6.5
.06g
.03g
San Gorgonio
35
8.0
7.0
.10g
.06g
Elsinore
1.1
7.5
6.75
.69g
.45g
Historic Site Seismicitv
' Historic site seismicity was studied utilizing the program EQSEARCH (Blake, 1989b). The
computer program draws upon a catalog of historic earthquakes, and determines those which
occurred within a specified distance of the site. Computer output from the analysis is
' presented in Appendix C.
1
I
1
[1
r
1
1
I
I
I
Project No. 04927-41-01
December 21, 1992
The search of the earthquake catalog within a specified radius of 50 miles of the site
indicated 32 earthquake events with magnitudes varying from 5.0 to 9.0. The largest historic
earthquake was a Magnitude 7.0, that occurred in 1858 approximately 19 miles from the site
and centered on the San Jacinto Fault. The largest historic ground acceleration at the site
was 0.10 g. The largest historic earthquake on the closest fault system, located during the
search was a Magnitude 6.0 occurring in 1910 on the Elsinore Fault, centered approximately
23 miles from the site. It should be noted that the magnitudes assigned to the 1858 and 1910
seismic events are postulated based upon observation and accounts of damage, and ground
shaking felt.
A probability analysis was conducted, based upon the recorded magnitude of each historic
earthquake located in the EQSEARCH analysis, the relative distance from the site, and
attenuation relationships presented by Joyner and Boore (1982). Results of the analysis
indicate a 23 percent probability of exceeding a Magnitude 7.0 event within a 50 mile radius
of the site within a 50 year period. Similarly, a 23 percent probability of exceeding a 0.10 g
maximum site acceleration is estimated for a 50 year period.
02
Project No. 04927-41-01
December 21, 1992
LIQUEFACTION
Liquefaction is a phenomenon in which loose, saturated and relatively cohesionless soil
deposits lose strength during strong ground motions. Primary factors controlling the
development of liquefaction include density and duration of ground motion, characteristics of
' the subsurface soil, in situ stress conditions and the depth to groundwater.
' Evaluation of Liquefaction Potential
' Evaluation of the site liquefaction potential was performed following procedures suggested by
Seed et al. (1985). Our general approach to the evaluation was to use field test data (Standard
Penetration Blow Counts) and gradation characteristics of the subsurface soils, considering a
' maximum probable earthquake of Magnitude 6.75, postulated to occur on the Elsinore Fault
Ias the closest approach to the site.
' Quaternary alluvial deposits encountered in Borings 1 through 4 (Appendix A) were
considered in the liquefaction analysis. For the purpose of the analysis, it was assumed that
groundwater elevations were 10 feet below the proposed finish grade elevations at each boring
location. It was further assumed that soils above the water table would not be saturated or
subject to liquefaction. Materials classified as silt (ML) or clay (CL) according to the Unified
-10-
11
I
I
I
1
j
I
1
I
I
Project No. 04927-41-01
December 21, 1992
Soil Classification System (USCS) were considered to be non -liquefiable, due to the high
percentages of fines. Liquefaction potential computations were performed utilizing the
computer program LIQUEFY2 (Blake, 1989c). The results of the computer analyses
performed for each boring are presented in Appendix D.
A site acceleration of 0.458 (Maximum Probable site acceleration) estimated from the
EQFAULT run was used in the liquefaction analysis. This acceleration assumes that the site
exists on 'bedrock" or that relatively dense formational materials are present at shallow depth.
Research (Seed and Idriss, 1982), indicates that for short -period, high -frequency seismic waves
(as would be produced by the "near -field" event assumed in the analysis), the presence of deep,
soft soil deposits tend to damp the seismic waves, resulting in a reduced maximum ground
acceleration at the ground surface. Based on Figure 19 of Seed and Idriss (1982), a maximum
site acceleration of 0.308 is estimated for the site, which is underlain by relatively thick
deposits of alluvium. Therefore, our analysis used a site acceleration of 0.308. Additionally,
an analysis using a site acceleration of 0.458 was performed to evaluate site liquefaction
potential for approximate Maximum Probable ground accelerations. A summary of zones with
calculated factor -of -safety against liquefaction of less than 1.0 is presented below. It should
Project No. 04927-41-01
December 21, 1992
be noted that very little variation in the zones considered to be liquefiable occurs due to
variation in assumed maximum accelerations.
TABLE II
SUMMARY OF POTENTIAL LIQUEFIABLE ZONES.
Maximum
Maximum
Acceleration
Acceleration
Boring No.
(0.308)
(0.45g)
B1
10.25 to 14.25
10.25 to 14.25
B2
10.25 to 19.75
10.25 to 19.75
24.25 to 29.75
24.25 to 29.75
B3
26.25 to 34.75
26.25 to 34.75
B4
10.25 to 30.75
10.25 to 30.75
35.25 to 36.75
35.25 to 36.75
Depths below proposed finish grade elevations
Effects of Liquefaction
The above tabulation indicates that liquefaction in thin discrete zones could occur for the
intense levels of ground shaking assumed in the analysis. However, the effects of liquefaction
can be mitigated by providing an increase in overburden pressure and a compacted fill mat as
12-
' Project No. 04927-41-01
December 18, 1992
recommended hereinafter. Additionally, results of the EQSEARCH Analysis (Appendix C)
' indicated a historic high ground acceleration of 0.10 g at the site and a 23 percent probability
of exceedance of 0.10 g. The relatively low probability of excessive acceleration combined with
remedial grading significantly reduces the potential for liquefaction to adversely impact the
proposed site development.
' As recommended in the Conclusions and Recommendations section, remedial grading of the
' upper alluvial soils will be performed. In addition, the placement. of approximately 4 to 10 feet
of compacted fill is planned at the site. The proposed fill soils combined with remedial grading
' of the upper alluvial soils and in situ densification of approximately 4 feet of the underlying
soils will result in an increase in the effective overburden stress at depth and provide a non -
liquefiable surface layer (non -liquefiable layer also includes the non -saturated material above
' the water table). Research presented by Ishihara (1985) indicates that the presence of a non -
liquefiable surface layer may prevent the effects of at -depth liquefaction from reaching the
' surface. This can occur when the surface layer is thick enough to resist the upward pressure
' of the liquefying stratum. Based on a chart presented by Ishihara (1985), it has been
determined that the remedial grading and placement of additional compacted fill soils to the
' proposed finish grade elevations reduces the potential for the effects of soil liquefaction to be
' manifested at the ground surface to a point such that probability for such manifestations is low.
I
- 13 -
I
1
d
Project No. 04927-41-01
December 21, 1992
CONCLUSIONS AND RECOMMENDATIONS
General
1. In our opinion, no soil or geologic conditions exist at the site which would preclude the
development of the property as presently proposed provided the recommendations of
this report are followed.
' 2. The presence of loose, compressible alluvial deposits in the upper 5 feet will require
special consideration during grading of the areas proposed for development. In general,
' remedial grading combined with in situ densification of the underlying deposits will be
required.
' 3. Groundwater was encountered at elevations varying from 7 to 25 feet below the existing
' ground surface. The higher groundwater levels are adjacent to Highway 79 and are
apparently impacted by the Eastern Municipal Water District effluent ponds on the
' north side of the highway. It is our understanding that the effluent ponds will be shut
' down in the very near future. Once this occurs we anticipate that the groundwater
levels near the vicinity of the ponds will return to normal static groundwater levels (15
' to 20 feet). Site development also includes improvement to Temecula Creek Channel
which will result in lowering the existing channel by up to 14 feet. This will also likely
' lower the existing groundwater table. Constraints. associated with development of the
' -14-
Project No. 04927-41-01
December 18, 1992
' 5.
property due to groundwater include impacting the amount of remedial grading and
potential settlement that may result due to fluctuations of the groundwater level as a
result of hydro -compression. Settlement issues related to groundwater are discussed in
the Settlement portion of this report.
If the existing well is to be destroyed or abandoned, it should be done in accordance
with the regulations and specifications of Riverside County.
The results of the liquefaction analysis indicate that the alluvial soils have localized
discrete zones which may be susceptible to soil liquefaction. However, the remedial
grading of the near surface soils combined with the placement of fill varying from 4 to
10 feet in thickness will provide an increase in overburden pressure and a non
liquefiable surface layer. This should result in a siccant reduction in the probability
for liquefaction at depth to manifest at the ground surface. Additionally, the closing of
the effluent ponds and lowering of Temecula Creek channel should reduce the
groundwater levels thereby increasing the thickness of the non liquefiable surface layer
and reducing the site liquefaction potential.
-15-
'
4.
' 5.
property due to groundwater include impacting the amount of remedial grading and
potential settlement that may result due to fluctuations of the groundwater level as a
result of hydro -compression. Settlement issues related to groundwater are discussed in
the Settlement portion of this report.
If the existing well is to be destroyed or abandoned, it should be done in accordance
with the regulations and specifications of Riverside County.
The results of the liquefaction analysis indicate that the alluvial soils have localized
discrete zones which may be susceptible to soil liquefaction. However, the remedial
grading of the near surface soils combined with the placement of fill varying from 4 to
10 feet in thickness will provide an increase in overburden pressure and a non
liquefiable surface layer. This should result in a siccant reduction in the probability
for liquefaction at depth to manifest at the ground surface. Additionally, the closing of
the effluent ponds and lowering of Temecula Creek channel should reduce the
groundwater levels thereby increasing the thickness of the non liquefiable surface layer
and reducing the site liquefaction potential.
-15-
Project No. 04927-41-01
December 21, 1992
Results of Test Fills
A
7
As referenced earlier, a test fill program was implemented to evaluate the potential for
in situ densification of the upper alluvial deposits. A review of the referenced reports
previously prepared for the site, observation of the soils during drilling operations and
results of laboratory gradation analyses indicated that the predominant site soils consist
of silty sand and poorly graded sands. These type of materials typically densify to
limited depths when subjected to dynamic vibratory effort. The test fills were
implemented to evaluate the depth of density increase and moisture infiltration from
surface flooding and application of vibratory effort.
In general, the test fill program consisted of clearing 3 approximately 100 X 200 feet
areas, irrigation from the surface from sprinkler systems and compaction with a
DynaPac CA25 vibratory sheepsfoot roller. After the areas were cleared and irrigated,
test pits were excavated to evaluate the depth of moisture penetration. Observation and
in-place density test results indicated that there was a significant increase in moisture
content up to a depth of approximately 6 feet. A review of the boring logs from the
previous investigations and the logs from our field investigation indicate that in general,
the materials below a depth of 6 feet contained a relatively high moisture content.
Therefore, the moisture content of the in-place dry near surface soils was significantly
increased. The increase in moisture content significantly reduces the potential for
16-
Project No. 04927-41-01
December 18, 1992
hydro -compression of the near surface soils upon loading or from lowering of the
groundwater table. In-place density test results indicated an increase in density to a
depth of approximately 4 feet. The results of the test program indicated that the site
soils are suitable for in situ densification. However, some areas will require limited
removal. A more detailed description of the test fill program and test results are
included in Appendix E.
Gradine
3
0
10.
All grading should be performed in accordance with the Recommended Grading
Specifications contained in Appendix F and the County of Riverside Grading Ordinance.
Where the recommendations of this section conflict with those of Appendix F, this
section takes precedence.
Site grading should begin with the removal of all vegetation and other deleterious
material. The material should then be exported from the site. The depth of removal
should be such that material to be used in fills is free of organic matter.
Since the site is underlain by younger alluvium and the upper portions are compressible,
remedial grading will be required over the entire site. In general, remedial grading in
the form of in situ densification and removal and recompaction should be performed
-17-
I
1
1
1
1
[I
1
1
I
Project No. 04927-41-01
December 21, 1992
such that a minimum of 5 feet of compacted fill is placed beneath the proposed finish
grade elevations. The approximate limits of these areas are depicted on Figures 2
and 3.
11. Prior to in situ densification, the existing ground surface should be flooded such that
there is an increase in moisture content to a depth of at least 5 feet. The results of the
test fill program indicate that depths up to 6 feet showed a significant increase in
moisture content. Therefore, consideration should be given to flooding the entire site
by the use of sprinkler systems.
12. Prior to placing fill soils, the areas being compacted from the existing ground surface
and the bottoms of the overexcavated areas (see Figure Nos. 2 and 3) should be
compacted with a vibratory compactor capable of imparting the dynamic energy of a
DynaPac CA25 or equivalent. The compaction effort should consist of a minimum
of 6 passes with the vibratory roller.
13. Fill soils may then be placed and compacted in layers to the design finish grade
elevations. Layers of fill should be no thicker than will allow for adequate bonding and
compaction. All fill (including backfill and scarified ground surfaces) should be
compacted to at least 90 percent of maximum dry density as determined by ASTM Test
I
I
[1,
CI'
1
Project No. 04927-41-01
December 21, 1992
Procedure D1557 --at or slightly above optimum moisture content. Fill areas with in-
place density test results which indicate a moisture content less than optimum will
require additional moisture conditioning before placing additional fill.
Settlement
14. Settlement at the site could occur as a result of compression due to additional loading
from the placement of fill soils, lowering of the groundwater table and by hydro -
compression of the alluvium as a result of an increase in moisture content. We estimate
that maximum settlements on the order of 1 -inch could occur as a result of fill
placement. However, due to the granular nature of the alluvium we anticipate that a
considerable portion of this settlement would occur during fill placement.
15. Minor settlement could occur as a result of regional lowering of the groundwater table.
However, in general, the alluvium becomes denser with depth and the amount of
settlement should be relatively uniform, small, and should not adversely impact the
project development.
16. Hydro -compression occurs when the in situ soil experiences an increase in moisture
content. The amount of compression is dependent upon the in situ density, stress
conditions and the response of the soil to a moisture increase. Consolidation testing
19-
' Project No. 04927-41-01
December 21, 1992
performed on the alluvium indicated that the material is subject to compression when
' saturated. We anticipate that the potential for significant hydro -compression to occur
at the site is minimal based upon the following:
' • The groundwater levels have been relatively close to the surface and the
majority of the soil has already been exposed to saturation.
' • Based upon observations during drilling, the upper 3 to 6 feet of the
alluvium is relatively dry. The results of the test fill indicated a significant
' increase in moisture content to depths on the order of 6 feet thereby
introducing moisture prior to loading and reducing the potential for future
hydro -compression.
17. It is recommended that a settlement monitoring program be established at the
completion of grading operations to determine when the settlement due to construction
loading (fill placement) is essentially complete. Settlement monuments should be
tinstalled at the approximate locations shown on Figures 2 and 3 and should be
constructed in accordance with Figure 4. The monitoring program should consist of
' weekly readings by the project civil engineer for a period of one month after installation
' and then monthly for a period of 2 months. At that time, after review of the
monument readings, the necessity for additional monitoring can be determined.
Soil and Excavation Characteristics
18. It is anticipated that the site soils can be excavated with a light to moderate effort with
' conventional heavy duty grading equipment.
d
1
20 -
I
�rJ
1
LI
1
1
Project No. 0492741-01
December 18, 1992
Embankment Factors
19. Estimates of embankment factors (bulking and shrinkage) are generally based on
Slopes
comparing laboratory maximum dry densities with the density of the in-place material.
It should be emphasized that variations in natural soil density, as well as in compacted
fill density, render shrinkage value estimates very approximate. For example, the
compaction of fill soils may vary from 90 percent to 100 percent relative compaction,
allowing a 10 percent variation in shrinkage. Based upon the limited work performed
to date, and previous experience with similar soil conditions, the following shrinkage
factors are recommended for evaluating earthwork quantities.
Soil Unit Shrinka e Factor
Alluvium removed and recompacted
Alluvium compacted from the surface
(in situ densification)
20 to 25 percent shrink
15 to 20 percent shrink
' 20. Slopes for the subject project are relatively minor with maximum heights on the order
I
1
of 10 feet at inclinations of 2:1 (horizontal:vertical). Slopes up to 15 feet in height are
planned along Temecula Creek. Slope stability analyses utilizing drained direct shear
parameters obtained from laboratory testing were performed and the results indicate
that the proposed slopes have calculated factors -of -safety against deep seated and
-21-
I
' Project No. 04927-41-01
December 21, 1992
surficial instability of at least 1.5. The results of the analyses are included on Figures 5
' and 6.
' 21. All fill slopes should be compacted by back -rolling at maximum fill heights of 4 feet and
' should be trackwalked upon completion or overbuilt a minimum of 3 feet and cut back
to finish grade such that the fill soils are uniformly compacted to at least 90 percent
relative compaction to the face of the finished slope.
' 22. Although the slopes are considered to be stable against deep seated and surficial
' instability, the granular nature of the on-site materials are highly susceptible to soil
erosion. Therefore, it is recommended that the slopes be landscaped as soon as
practicable after completion of grading. All slopes should be planted, drained and
' maintained to reduce the potential for erosion.
Preliminary Foundation Recommendations
23. The following foundation recommendations are for preliminary purposes only. The
actual foundation recommendations can be provided in updated geotechnical
investigations for the individual lots as they are developed at a later date, once building
' geometry, location and structural loading is known. These recommendations assume
I
1
-22-
h
1
[1
C
u
Project No. 04927-41-01
December 21, 1992
that the materials present within 3 feet of proposed building pad grades consist of very
low to low expansive soils as defined by Uniform Building Code (UBC) Table 29-C.
24. Conventional continuous and/or isolated spread footings are suitable for support of
lightly loaded structures. The foundations may be designed for an allowable soil bearing
pressure of 2,000 psf (dead plus live loads). This bearing pressure may be increased by
up to one-third for transient loads such as those due to wind or seismic forces.
25. If heavy concentrated column loads are anticipated, pile foundations will likely be
required. Recommendations for deep foundations can be provided in updated reports.
26. Footings located within 7 feet of the tops of slopes should be extended in depth such
that the outer bottom edge of the footing is at least 7 feet horizontally from the face of
the finished slope.
Retainine Walls and Lateral Loads
27. Retaining walls not restrained from movement at the top and having a level backfill
surface should be designed for an active soil pressure equivalent to a fluid pressure
of 35 pcf. Where the backfill will be inclined at no steeper than 2:1, an active soil
pressure of 45 pcf is recommended.
23 -
I
0
Project No. 04927-41-01
December 21, 1992
28. Unrestrained walls are defined as those walls that are not allowed to rotate more
than .001H at the top of the wall. Where walls are restrained from movement at the
top, an additional uniform pressure of 7H (where H equals the height of the wall in
feet) should be added to the above active soil pressure.
29. All retaining walls should be provided with a drainage system adequate to prevent the
buildup of hydrostatic forces and should be waterproofed as required by the Project
Architect or Design Engineer. The use of drainage openings through the base of the
wall (weep holes, etc.) is not recommended where the seepage could be a nuisance or
otherwise adversely impact the property adjacent to the base of the wall. The above
recommendations assume a properly compacted granular (Expansion Index less than 50)
material with no hydrostatic forces or imposed surcharge loads. If conditions different
from those described are anticipated, or if specific drainage details are desired, Geocon
Incorporated should be contacted for additional recommendations.
30. For resistance to lateral loads, we recommend a passive earth pressure equivalent to a
fluid weight of 300 pcf for footings or shear keys poured neat against properly
compacted fill soils. This lateral pressure assumes a horizontal distance extending at
least 5 feet or three times the height of the surfacegenerating passive pressure,
whichever is greater. The upper 12 inches of material not protected by floor slabs or
-24-
' Project No. 04927-41-01
December 21, 1992
pavement should not be included in the design for lateral resistance. If friction is to be
' used for lateral resistance, we recommend using a coefficient of friction between soil
and concrete of 0.40.
' Drainage and Maintenance
31. Good drainage is imperative to reduce the potential for soil movement, erosion and
' subsurface seepage. Positive measures should be undertaken to finish grade the building
pads and other improvements so that drainage water is directed away from foundations
' and the tops of slopes into controlled drainage devices.
1
1
Grading Plan Review
32. Grading and development plans should be reviewed by an engineer and/or engineering
geologist from Geocon Incorporated prior to finalization to determine the necessity for
additional recommendations and/or analysis.
-25-
iLl
' Project No. 04927-41-01
December 21, 1992
r
ILIMITATIONS AND UNIFORMITY OF CONDITIONS
r1. The recommendations of this report pertain only to the site investigated and are
based upon the assumption that the soil conditions do not deviate from those
disclosed in the investigation. If any variations or undesirable conditions are
rencountered during construction, or if the proposed construction will differ from
that anticipated herein, Geocon Incorporated should be notified so that supplemental
rrecommendations can be given. The evaluation or identification of the potential
presence of hazardous materials was not part of the scope of services provided
I
by Geocon Incorporated.
r2. This report is issued with the understanding that it is the responsibility of the owner,
or of his representative, to ensure that the information and recommendations
rcontained herein are brought to the attention of the architect and engineer for the
project and incorporated into the plans, and the necessary steps are taken to see
rthat the contractor and subcontractors carry out such recommendations in the field.
r3. The findings of this report are valid as of the present date. However, changes in
rthe conditions of a property can occur with the passage of time, whether they be
due to natural processes or the works of man on this or adjacent properties. In
raddition, changes in applicable or appropriate standards may occur, whether they
result from legislation or the broadening of knowledge. Accordingly, the findings
rof this report may be invalidated wholly or partially by changes outside our control.
Therefore, this report is subject to review and should not be relied upon after a
I
period of three years
I
I
' Project No. 04927-41-01
�a a1 (-1
I'J.^.I,U1y(,,J,Jr/ J c')J�J I✓•. / Co_ \or.. 'n `.,� e>;
Cl 'e 0�� C�e�
IS .�/" f' r0 `G . Ili; � / � �•J � � „\ . �' .:
IJ
17
SJ,\ ��✓�
n ` Indian pT0 �. '\ �^ i0i`✓�r c -
(3m,I,\ Burial Ground = --'SIO
59/J
OW
/ - \ � "-/. — •"� ,,�\;�' .=,,',
ff
iib "I'" _\ \�_ _ �' {(�' �' l�'f.^.y l•
L----
i"6
t
700
..?` ).))'0011200 \. _ -� <2". ,,�"_'
• )1� ��I I. 1 .., to -1);.1 � � w � y (1... `J:,. In �tJ� �
ic
ILE PECNANGA, CALIF. 1988
SCALE: I"• 2000'
VICINITY MAP
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
' Figure 1
Project No. 04927-41-01
1
' Figure 4
EXISTING GROUND
SURFACE
66"MI-7—
N.
`h6S7X.'F
I' —
4"OR 6" DIA. PLASTIC PIPE
I" MIN. DIA RIGID METAL PIPE
I" PLYWOOD OR %4 STEEL PLATE
SILICA SAND TO PROVIDE
EL BASE
1. Locations of settlement plates shall be c1.arly marked and
readily visible (red flagged) to Equipment Operators.
2. Contractor shall maintain 10 -foot horizontal clearance for
heavy equipment within 5 feet (vertical) of plate base. Fill
within clearance area shall be hand compacted to project
specifications or compacted by alternative approved soils
engineer.
3. After 5 feet (vertical) of fill is in place, the contractor
shall maintain 5 feet horizontal equipment clearance. Fill
in clearance area shall be hand compacted (or approved
alternative) in vertical increments not to axes ' 2 feet.
4. In the event of damage to settlement plate or extension
resulting from equipment operating within prescribed Clear-
ance area, contractor shall immediately notify soils engineer
and shall be responsible for restoring the settlement plates
to working order.
SETTLEMENT
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
' Project No. 04927-41-01
ASSUMED CONDITIONS:
Slope Height
Slope Inclination
Total Unit Weight of Soil
Angle of Internal Friction
Apparent Cohesion
No Seepage Forces
ANALYSIS:
H = 15 feet
2:1 (Horizontal: Vertical)
y = 130 pounds per cubic foot
= 36 degrees
C = 400 pounds per square foot
.lcy = H tan Equation (3-3), Reference 1
C
FS = NH Equation (3-2), Reference 1
Y
;LC* = 3.5 Calculated Using Eq. (3-3)
Nct = 17 Determined Using Figure 10, Reference 2
FS = 3.5 Factor of Safety Calculated Using Eq. (3-2)
REFERENCES
(1) Janbu, N., Stability Analysis of Slopes with Dimensionless Parameters, Harvard Soil
Mechanics, Series No. 46, 1954.
(2) Janbu, N., Discussion of J.M. Bell, Dimensionless Parameters for Homogeneous Earth
Slopes, Journal of Soil Mechanics and Foundation Design, No. SM6, November
1967.
SLOPE STABILITY ANALYSIS
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
rigure 3
Project No. 04927-41-01
ASSUMED CONDITIONS:
Slope Height
H =
Infinite
Depth of Saturation
Z =
3 feet
Slope Inclination
2:1
(Horizontal: Vertical)
Slope Angle
i =
26.6 degrees
Unit Weight of Water
yw =
62.4 pounds per cubic foot
Total Unit Weight of Soil
yt =
130 pounds per cubic foot
Angle of Internal Friction
=
36 degrees
Apparent Cohesion
C =
200 pounds per square foot
Slope saturated to vertical depth
Z below slope face.
Seepage forces parallel to slope face.
ANALYSIS:
FS = C + (yt - % ) Z cos' i tangy
- 2.0
yt Z sin i cos i
REFERENCES
(1) Haefeli, R. The Stability of Slopes Acted Upon by Parallel Seepage, Proc. Second
International Conference, SMFE, Rotterdam, 1948, 1, 57-62.
(2) Skempton, A. W., and F. A. Delory, Stability of Natural Slopes in London Clay, Proc.
Fourth International Conference, SMFE, London, 1957, 2, 378-81.
SURFICIAL SLOPE STABILITY ANALYSIS
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
WA .,vMr. -,t — - -,
,
Athol
144
- -Fina0
oil
I
c t I, --- ",11
VOW
4� IV I'll' 1,
' Project No. 04927-41-01
December 21, 1992
APPENDIX A
' FIELD INVESTIGATION
OThe field investigation was performed on October 13, 1992 and consisted of a visual site
1 reconnaissance and the excavation of 4 small -diameter rotary wash borings. A test fill
program was also implemented to evaluate in situ densification (See Appendix E).
' The small -diameter borings were advanced to maximum depths on the order of 36 feet
below existing grade using a Mayhew Rotary Wash drill rig. Disturbed drive samples were
' obtained using the Standard Penetration Test (SPT) split -tube sampler. Relatively
undisturbed samples were obtained from the borings by driving a 3 -inch O.D. split -tube ring
sampler 12 inches into the undisturbed soil mass. Standard Penetration Test samples were
' driven using a standard 140 -pound hammer falling a distance of 30 inches. The split -tube
ring sampler was driven using a 400 -pound hammer falling a distance of 30 inches.
' The soils encountered in the borings and trenches were visually examined, classified and
logged. Logs of the borings are presented on Figures A-1 through A-8. The logs depict the
' soil and geologic conditions encountered and the depth at which samples were obtained.
tThe logs also include in-place dry density and moisture content test results.
1
[1
[l
PRn1F(-T Nn nd9�7_dl_nl
I
BORING B 1
Z ^
HW
z F
H^
^
�:�.
DEPTH
SAMPLE
LD
o p
3
C3
SOIL
IN
FEET
NO
H
o
(uscs) CLASS
ELEV. (MSL) 1099 DATE COMPLETED 10/13/92
x (n
wow
HW
GD
EQUIPMENT MAYHEW 1000
PH
wWm
>-a
Eo
o ��
o
U
0
MATERIAL DESCRIPTION
BI -I
BI -2
ALLUVIUM
SM
Loose, dry, light gray -brown, Silty, fine
2
B1-3
to medium SAND
16
4
B1-4
--------------------------------------
Medium dense, slightly moist, gray -brown,
6
Silty, fine to medium SAND
BI -5
SM
-Becomes sandier at 6 feet
19
8
10
B1_6
-------
9
Loose, moist, dark gray, fine to medium
SM
SAND with little silt
12
14
16
BI -7
--------y-----------------------------
Loose, moist, gray, fine to medium
6
ML
Sand SLLT with trace clay
18
1
20
B1-8
6
-Becomes sandier at 21 feet
22
24
BI -9
6
26
-------------------------------
Soft, moist, dark gray, fine Sandy SLI
ML
with clay and interbeds of sand
Figure A-1 Log of Boring B 1, page 1 of 2
TT231
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ❑ ... STANDARD PENETRATION TEST 0 ... DRIVE SAMPLE (UNDISTURBED)
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE Z ... WATER TABLE OR SEEPAGE
...�. - r LUOMJNrA" I.UNUIIIUNJ SHUWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AMC) AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
[1
I
I
I
I
PROJECT NO. 04927-41-01
b , P ge o TT�l
■ SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)-
'®... DISTURBED OR BAG SAMPLE ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
BORING B 1
Z W^
H Z H
H^
^
W X
DEPTH
of
3
SOIL
IN
FEET
SAMPLE
No,
o
ELEV. (MSL) 1099 DATE COMPLETED 10/13/92
�CnH:x
LL
J
(USCS)
0�
'~w
EQUIPMENT MAYHEW 1000
W wm
W,
>
Eo
D_
0
v
MATERIAL DESCRIPTION
28
ML
Soft, moist, dark gray, fine Sandy SILT
with clay and interbeds of sand (Continued)
30
B1-12
----------------
9
Loose, moist, gray, fine to medium SAND
SM
with silt and interbeds of sandy clay
32
34
BI-13
--------------------------------------
Medium dense, moist, dark gray, fine to
SP -SM
24
medium SAND with trace silt
36
BORING TERMINATED AT 36 FEET
Figure A-2 Log
of Borin B 1 a 2 f 2
b , P ge o TT�l
■ SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)-
'®... DISTURBED OR BAG SAMPLE ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
[1
.'
,I
PROJECT NO 04977_41 _01
og o oring B 2, page 1 of 2 TT231
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL � ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)
®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE
ng
THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
W
BORING B 2
Z W
HZ I-
}
1
W
DEPTH
o
3
SOIL
IN
FEET
SAMPLE
NO.
0
�
CLASS
(USCS)
ELEV. (MSL) 1062 DATE COMPLETED 10/13/92
�yt�i!
u.
w�
Nz
H
J
O
W
LD
EQUIPMENT MAYHEW 1000
z -IWWO3
>.a
Eo
0-X"
O
U
0
MATERIAL DESCRIPTION
B2-1
ALLUVIUM
B2-2
SM
Loose, dry, dark gray, Silty, fine to coarse
2
B2-3
SAND with trace gravel
--------------------------------------
Loose to medium dense, moist, fine to medium
4
SAND with some silt
SM
B2-4
10
6
8
10
------------------------
Dense, moist, gray, fine to medium SAND
B2-5
SP -SM
with trace silt
35
117.1
17.4
12
14
B2-6
-Becomes medium dense at 15 feet
20
16
18
20
B2 -7
--------------------------------------
Dense, moist, fine to medium SAND with
44
111.4
13.1
SP -SM
trace silt and thin clay interbeds
22
24
26
B2-8
82-9
--------------------------------
Stiff ver moist dark _gray, Sand __
=
NSP
]26
Medium dense, moist, dark gray, fine to
medium SAND
Figure A-3 L
f B ori
og o oring B 2, page 1 of 2 TT231
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL � ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)
®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE
ng
THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
1
1
I
I
1
1
[1
PRO.IECT No ndQ77-d I -n I
gure A-4 Log of Boring B 2, page 2 of 2 TT231
SAMPLE SYMBOLS ❑ " • SAMPLING UNSUCCESSFUL ❑ ... STANDARD PENETRATION TEST ®... DRIVE SAMPLE (UNDISTURBED)
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE = WATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
W
BORING B 2
Z
MVi-
r
H^
WX
DEPTH
OJ
3
SOIL
IN
FEET
SAMPLE
NO.
O
❑
z
CLASS
(USCS)
ELEV. (MSL) 1062 DATE COMPLETED 10/13/92
HZW
W��
N
w�
�z
H
J
O
HN3
❑U
MW
0
EQUIPMENT MAYHEW 1000
wwm
�a
Eo
D
❑
u
28
MATERIAL DESCRIPTION
SW -SM
Very dense, moist, gray, fine to coarse
SAND with trace silt
30
B2-10
52
118.3
16.4
BORING TERMINATED AT 31 FEET
gure A-4 Log of Boring B 2, page 2 of 2 TT231
SAMPLE SYMBOLS ❑ " • SAMPLING UNSUCCESSFUL ❑ ... STANDARD PENETRATION TEST ®... DRIVE SAMPLE (UNDISTURBED)
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE = WATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
PROJECT NO. 04927-41-01
1
[1
L
[1
' Figure A-5
Log or tsoring is s, page 1 of 1
TT1z
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL C ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)+
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE Z ... NATER TABLE OR SEEPAGE
Wit: int LUG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
W
BORING B 3
Z W„
HZF-
}
H
��
DEPTH
-j
3 SOIL
IN
FEET
SAMPLE
NO.
H
o
(USCS)
ELEV. (MSL) 1069 DATE COMPLETED 10/13/92
M cn
.
w�
�z
CD
EQUIPMENT MAYHEW 1000
111 0
wwm
�a
so
as
o
v
0
MATERIAL DESCRIPTION
ALLUVIUM
SP -SM
Loose, dry, brown, fine SAND with trace
2
133-1
silt
11
96.8
6.7
4
6
B3-2
----------
Soft, slightly moist, dark gray, fine
ML
10
103.3
20.8
SM
._----SandySLLTr
__---
Medium dense, moist, gray, fine to medium
with silt
8
SP -SM
_ _ _ _SAND
Medium dense, moist, mottled coarse SAND
and angular gravel with some silt
10
B3-3
_____
Medium dense, moist, gray, Silty, fine to
12
medium SAND
SM
14
--------------------------------------
Medium dense, moist, gray, fine to medium
133-4
SM
SAND with some silt
18
16
18
--------------------------------------
Soft, moist, gray, fine Sandy SILT
ML
20
B3-5
1
—
6
85.2
38.0
22
----------------------------
Medium dense, moist, light gray, fine to
SP -SM
medium SAND with trace silt
24
B3-6
10
26
B3-7
--------------------------------------
Loose to medium dense, moist, gray, fine
SM
SAND with silt and thin interbedded
r
clay lenses
-
' Figure A-5
Log or tsoring is s, page 1 of 1
TT1z
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL C ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)+
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE Z ... NATER TABLE OR SEEPAGE
Wit: int LUG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
I
PROJECT NO. 04927-41-01
'
W
BORING B 3
Z
OH UF-
}
I�-�••
W�
DEPTH
LD
3
SOIL
'
IN
FEET
SAMPLE
NO.
O
H
pCLASS
o
(uscs>
ELEV. (MSL) 1069 DATE COMPLETED 10/13/92
H¢W
�N(n
LOLL
W
p
Nw
J
LD
EQUIPMENT MAYHEW 1000
WW111 -j
Ira
�o
MATERIAL DESCRIPTION
28
Loose to medium dense, moist, gray, fine
30
SAND with silt and thin interbedded
B3 8
SM
clay lenses (Continued)
12
83.5
37.5
BORING TERMINATED AT 31 FEET
1
'
1
.
1
' Figure A-6 Log of Boring B 3, page 2 of 2 TT231
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ® ... DRIVE SAMPLE (UNDISTURBED)
®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
1
1
I
11
PROJECT NO. 04927-41-01 LU
. - . . _o- - -- - TT231
SAMPLE SYMBOLS El" SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST Y ... DRIVE SAMPLE (UNDISTURBED)
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... NATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
BORING B 4
oW1
I..IUF,'
}
H..
W;�,,
DEPTH
SAMPLE
o
J
3
SOIL
1N
FEET
N0'
H
o
(USCS)
ELEV. (MSL) 1083 DATE COMPLETED 10/13/92
cc
w�
�W
J
Of
EQUIPMENT MAYHEW 1000
Wwm
>
Eo
D -1r `-'
❑
U
0
MATERIAL DESCRIPTION
B4-1
B4-2
SM
ALLUVIUM
Loose, dry, gray, very Silty, fine to
2
SAND
B4-3
-----medium
-----------------------
Loose to medium dense, dry, light gray,
10
94.3
3.5
SP -SM
fine to medium SAND with trace silt
4
134-4
-Interbedded lenses of silt and clay
4
6
at 5 feet
1
8
10
134-5
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
13
117.9
13.2
Medium dense, moist, gray, fine to coarse
SP -SM
SAND with silt
12
14
B4-6
12
16
18
20
B4-7
----------------------------
10
82.9
30.5
Medium dense, moist, gray, fine to coarse
SP -SM
SAND with trace silt
22
-Thin interbeds of silt at 23 feet
24
134-8
----------------------------
26
ILT Soft, wet, dark gray, fine Sandy S
ML
Figure A-7
Low
of Borinu R A r,aop 1 of
. - . . _o- - -- - TT231
SAMPLE SYMBOLS El" SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST Y ... DRIVE SAMPLE (UNDISTURBED)
® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... NATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
PROJECT NO. 04927-41-01
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
W
BORING B 4
ZW^
Hui-
H^
_
W \
DEPTH
LD
3
SOIL
IH
FEET
SAMPLE
ND-
O
=
O
z
CLASS
ELEV. (MSL) 1083 DATE COMPLETED 10/13/92
H¢LL
0: UU)
NLL
w
Wv
�z
J
Er
H
(DD
EQUIPMENT MAYHEW 1000
wWm
�o
Fo
'
28
MATERIAL DESCRIPTION
aw,
o
U
Soft, wet, dark gray, fine Sandy SILT
(Continued)
------------------------
'
30
B4-9
Medium dense, wet, gray, fine.
g y' SAND with
SP -SM
trace silt
10
'
BORING TERMINATED AT 31 FEET
1
1
Figure A-8 Log of Boring B 4, page 2 of 2
TT231
SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL U ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)
- ®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE
NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE
DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.
. , .. .. - _' . '. " � . - i:":
- '. - . ,�, 1, . _., I - I I 11 I 11 � -
. " , I . I ,-� _. " I �, I - � l ... � . . , . , I I ,C.. - ."';�-_.." �Z.:A� I I " l- " . , � U , , 1 � - It 'f� I- -, V11 I - , - - l: � �_ j tt �,,V, , N-Zi, .1 I , -1 � ,"i NZ " 1,� - 't ,�' ,.'�� ,� -�.�,� 1�., -Y'
, I - .,.,- , .. - -, - , , ". " .,,� ,� - ""
,I I 1p, - , I I - - .- , � - I' " . . .. , I , ,,I.,,. , " - .., "', "'N.i: , ���, 7. Ili: � , �*,
. , -1,_ :, ` - ', '. � � ,,-I,' ", , , ,,, .A ��, 1. 1� � - -, '... -; �, ., i, _ � " l � � .1 . , , . Ill y � � - ,
,.I. � -I- ,,.I " - �,, �_ ., it , � I- �71 I. �,�_ . � ," . . - '_ 1 � , - _� . , I "'. - I,` 1 � , ��, - ,� " ;.�l,�,,*l-;i-I , ,_ , � _�;-,I. - -�A , I- - 1�1. I - `�, � � . .
-, ,��";=,,.Vl,:MIZ.�; F I I 1� . �i_ - . �- , . _. I ,I -11 r. I- I I l" I, � -, I�. I - il - �
, - Wm'.;�` ml"`,Z'=!;�-,;�=,;,4�="� ,�'T=�,,,.-m�.'����=-;-.�'*,,,M:,�,���;�=�,,�,,�M, , " , � , . , "
�,��,Z��_�= . " I
�- 'it. ".1- '. _�M;_ ,�_.r'.._' ...� -1
-,.-, _,1 , Y. � . I � 'I".11 . - � -,.---. ., - " I ,,-,,, t ,, . � ,,, �.:i , ✓ ,", - ,� ,,l , ". - ,� ..�t,
,� f I- - � - �'. 1, - 'Zi; ,`4i.-'
� f� -I,-, , ',,. , f �� 1;�,_ 7"tc, , _I1a:'1"1_1 i, ,., - -, ..'�. ...
,�,,, ,-� . I. .... I_- � se� '_;l _,� I l I,- I I'll," .., W` 11 1 4, ";I-.� �L - . � -,7 ,11i . 11"Z � -- , 1, ..- , I - _ .
O .1 .1. "'. ��i,,I� , -,�.�a'� -,�I,Z�,,': '". �1- el,. ,I. --.-1 1'_� ""I'll-,., I 11.11 - _.". .1 , - :,�
- .- - ". , It,., I., -.1.1-, ''.,
I � ,.11ll1I�� l-'..., ".- , I'� I,
. �,;I,`,,,`l��',`.f, ,I. _ -1- -,,,111-; 1-1 . ..
_ , , , ,1;4 " - , , l -I,,,- , " � ,,, , " , .. - �b -, t , T', ,�,,,."', .
, I - 111.A.� .111,_ - '. � I.-,- ", � - - • � , , . ,-, �, , � � , .., I
- ,I - - �,_P,_jl ,'I.--r, . �4 __ '' _ ,�l�111v>x �4.,r,� ,� � : �
_ � ", - 1. � , � 1 - ... 1. , , Ill:
- - - : I, Z -,�.., � ,-1. ,,.,, _-,.:�L,- 4 ., �,:-, ". I - 4--L -
l ---. , ,"._ ._ 111,_ k . �. ..
,.t ,., "_ � - �-,.� � ,,-,,..,-1��, � �. 11
�,�.". � " � I �1� ".., 1. � "I � , I
". , - -- , 1. - -11, �". � .. 11.11;1W ,�. " ''4. . _ I..
f � -1.11 .. . .. 1.1",I, I ...
.11 11-1-l-q �, I. ., - " 1. , �', '_�'. W. I � ..
��i,V 11 I 'il, 1. �-.,, .�I'1' - "
ill . , ,":."19."�46w.,.`,�l ,,j%,,,-4- - 11, 11 "jl. %1.11. Ill I,i,-�;, . f "., , ,-tr ,.,-I,. " - � . .1,
I - . ,�, , ,, N, I �', ,., � -,-. .. �, , �
� , , ,.. � - -'. JJ " �� 5�,--. ."""6r, '� i,:,;. !� I � �
,111�;, I" J��,.- 1, li-A.", i". ,i-,, - .. ,,,, 1.l . ., _ 111.� ,
..'' - - 1� - " - - � .-,1,',l,4-, I-1,11, 'I"."; -A, �?rI'14-, ��''.,. ir'. It, " ��,,,�.".,.�',,�,.�,��lI Ill, � . I � I .
, 1.�'.1,I - il._,
J, : .,�I,,...1 ii � 0-1, " I' , . . , - * t ,�. :_.;'111,.•:1. l � 1. � -1
'.6 .., .�. .e� -,,� I I',- .1:.1 , 'At - � " ""; ".
- " 't, - , I I -, , J,-', :,�_ F, ,� 1 --,. , ,�I,<�A� i-. Ii, �-� -:.,�� ', �A,I;� I , i"',�- ";� :.
' -� .,,I, , 1�� �, 1_�,-; --",!,--�Z,_.`11 :1 - ,, � .* ,,` �, '. a}',: . , - "", ".,_.. 'I, -..,.,.,,. .,- I ,
111-1.1 - 11, "' 1_� T 11 1 I_ �IJ_, - 11 1� 11,, , , ,� I., -4,1� ,,_--��, t..,�,'�t,.�- � I. l- - ';,, "
; ,",.;�` - - � .,,, .,,-,11 �-
ly',j�,i,,,�,��. ,1� ... V111 , 11�1, - � ", ,�Xp�, ,�, , 1 , ...", . ,,, I , , i , ,;,��. ,-, -i: . � .
� J "I � I . I � , I � _J7 .I, . _ - . � ', � - .., , , �-,.,
- �:- - �:, l" Z. . �,,""",'i';:1,� ,`, -�,, 'r.;:_"1 1�.; l', , ,,,, , , I: I - , , . ,l� �- ", ,- � ., "n" � , � ''
. I "'.. �,,, , ,,_ .. ,,I ; �, I I 1 ''I -11 �t-1-1 I I
-, - , . . t.- "..j, " . 111�11 . �. �', 1, ,� ,!',; �.�,_'. ", 1, _ -, "
1_._,. - ,�, -� , I',,, , " � ,--�
. ,,.�, , . &,�.,�,", � �,-. ,� '.,. � .1- - �,._,.
''I -I, .1''.".., "..i.,4. 1 , � , � -� - ._. I
It, �, ,I -,.-i , 'N N �
. 11..-.11�1 4, _J, It"v.1'.�, . .., �,,,-, , , " op. �. I. rl - � �V ;f , I � t!,;_,.,vv - - I
,,�411 , . � , 1, -, -� � � ".,A'
V; < .,- ' � " �f I" -�!-��,4",".,',-?,�,�t� �,;��; -1,
-, I ", ' 11" , . I "
� . ,l, . �,"',;.", .t -i.,,, -,�ll ,oI,,.,� , � - "'.,
2 I I , - , - -1 .1, i'� I �,;, "J .L-I
� -....... _ ., :.
. . I -1 ...,I , .-;,� .,i��!,', .l __'. , . 1� _%� I
I � _I1��. ��, .1, � �� -",; l"t-i�. -I1.1 i,ir. . '� I 1.' - , ,-, ,-t-,A,r I.,
,t - ,- �, .. .. . P, , -,, - ., .. " . .I J� I ;, , 1,� - ,1
."l
•:v1, " .', �11 ,"I, �i�- -.� -,--li,-'t.�1. Allt',,, k. 11 I 11" � I . - -, "" ,l'' , I -'�A4.�� - -ii! i%� -,,, , , Nr.A ,,I I 1��_
_,,-,, ",__�, I, I ,',� 11,117Y4 , .." '. , . - -1 _-
- , , I '. I , , - I. -, ., ,� � - � , _� � - 11 I � ;o , � , " -
t`:. , 'It" ,* .1 * j� ',',.��t 'I . , I I . , ; t, �, , r I , I I .. . . � I�, , ,,, � - 'ia fl � , � . , :;I, �, l� k I I � I ., , " , I 11 �:, .
- 'll .. i I. '. - - .1, ,.,�, , I. � " - � ., , I � _ . � , , , '. _ " � ,;., , , ', �
- I 1, I � , I . ,I,,i- "I lt� ', � ,. . " -
V. I ." . , - � - k. ,.;. , , , , � - ... I . .."." . - �_ ii `; I 1� -� ; " ` . ,�, . - 4�4I'�., , ,4 1. 1 -.1 11�, , ,
-. " .1"lim- �_ f , , 'T , , , -`i1,,i , "', �! , 'XI, , " � � _ " I, � " " ", . ,,I, ,� ,
. tf.-, ,,!� .�, 1 ., I,. �', , � _. 11 'I - ".. . � . , ,.� . , '.. ,, , , . � " 'Ie ....... ;. .-,�. � . �� " a" l.iV , - , .- iv '� , I ,I I ,,_ "l ., ,'%'.,� ., " I � I
. I l,'. . � . _ I
- I -.� .", -•
I � I.� I. .. , ,� ,i I , .�;�� '. ) ,, 1. ,� � � . " `I,,i(' "ti - I 1�_ "! _ ,,,� , , 'l, ,W.; , 11 " , �. I . ..- " ,,,.,,�� ,� ..
- , , e_ , � - v..i , it I � I , X, I ." _ -Im i'_�. . � - . - '_ "1Z �
` I-- .. I ,�, -, di , . ,� , .'i _ - - , .. �4, l. _. .
,'�. I' I- , - t, ". 4'p-t " ,it..-_. � 7 � .,.-,.',',,;�,iq l,,,�, .".1 ik - "l, F I I .1 I ", _� �_,,_ 'I ,,,-' _ . ,,-��" .�-, .l ,�- , ,"I' . ,;,I �
; .I.- .- , r, ,iii,� I I _�- , - ' ' ' � 4, , - 'l �.,. .- l 1. 1, 11 I I
111 :�,,,�, _.� . � 1, . _ � ., ,i_�-, - .. , ,,- j . ... .. it' I " " - I.", 4,1�, � ,;' "� _�"� ` ,
. , , � I I .1 .1 1i � " I 1 ", p. .
.1. . , , � " ��") - �;, ,i-� . ,;, .. -, I "" 'C,�., �,�!' v .- "
- � 4 1 l, � , " ; I l " - �,, -1 I. 1, � I I. 4� .� , , - ,,�,,.-,, - 11 41 � 111 I -i . I I-, , , , ,r. ,`� ;� ,-�, as
".�t.'
P, . it , I -.1 t11 I I - - , j , - .- � , , " ., � - I:Y'., �'
��,
-, I,-- - , -, , , , . ,,,� I � - . . � 4 1 " I -.1 I - 11, " - , , . - , . 11 ;
,, f. I'l �,, - , '. A, ; 4,' " , .. , , , 'l , I - � , . �, I � " � _. � , � � I � - � ,,,, , -, , I
-, . I I , '� , " _ . � , - - , . , , , - ,�, I , - , . - - , - , , ,,_ - .. . - - I - 1. , A � ,� . i -, ; ;�A � - � ., � .... .. I 'Jus,
I �z � - - - - I. . -�
.", -1 'j, � .. , -- ., '. , ,� i. " � -1,I,.1, � I I I , e � , . , . ' I 'I
. , � I 1, '.. " 'i � ,, � ,I ! ,� , ; .,V, , , . ., , . . � . , , _,, , . ,I, I j�� . , .. �,i ,
,, f;, p . ikjl� 'I, , :.��,, .,�, ,. , " , , - - " - . _ i , - , i. -i � .,. t
, , � I ,I' 1 .1'.. � . .1 , , , . . " .", L, �' � - � ," �! I ',�,`�,'--`:��' I 1 "�,`;4.,I.%"'I.'I, 'I- i' `4�7� _ ,
."11; .,O, ,.,,,, " , - � ., � I � It- i "" i'� ", , , - ,..'1`,' '
I. ,� . l ,, �, _ .� I ,q .t, � I - �!, 1,.,,,,,, ,t " - � . ...-I It, - 'll J, . .. .1� �, ", '.I-
.I _.. , .;. , . - ,-, lk� , C ,.� , - l" - �_ , " 4, 11 .."4,I ; � I' * ., Ir .�_
. . 'i" `� *1 - - ' "" 4� � � ` Z '�*'�'Ik`_"'�*-"" ' %" 111�1�1-
" �� A, . ,Y � ,
"I-C;2=
- .. � .. � : . , - 'l I I-l., 1. � .
i, "n ��': 1%1� " � - le " , � . (��,.�:- 1��, -, ; :--,,,. l." �� l , _ .. . .; .., � ,.:I.:....
- . , ., ,mII,2i l " .. - .", 1;1-" I ;'s`.^_ , g,4.I -I �'. . 1 � �, " 1". -,
- 1:', R I .. 11 I - I �� � - 4 - _ " . I . �,, i I !�j ,- - . i'&, �,.., _, � , , � . .. I
-- ��" . :.t3' -
I - I . I- t I I ? 11`�` 11 , " ? , , " I- . , :- " , . - I i ", , _, F.- " , I ,�- ., '� , I.J ", , � - _ . .... . 11 11- _1111 &. , - �
. . ,,- �Il - , i I :1, � �,,- " i ?,ll i " .- -�, - qr, .-- : I - - . I? ,
'l '7��, ""', ..'fi� � I " , " , , � , �,. , ,.. - - � , " , "' -,; i ,,,,1... ., T.,
, , "i" " .1 I � .-- 11 � , , , I I It,, 'i, I .1 .
� 1. I " . ,�l I � � .�., ,�, �, . .11 - I
V -1 % si. � ,� It , I mt,.".- , I- , 1, " -A , , " " , , ., , � " , I � .W . . " , ,� I
_ , , � It, L - . 0 . , - , , -_ , � 'I. �._. , 1, � �-' .�' �41 I'. �� "'i - �. ,�,' - - - v 7 - ,.1, .- "-,I - , - ' _., ', ' � ' -__ "
- . - - .. � I, -I , . ' "I - � ,�,�� '� 4 . � ,.�" � I , �,t;�'�' ' I" ,,,, ;I, , I.- - , , , . I, .,
- , " , , � - - jl 1 ' " � ,., , . . , . , I 11` MZ*l ,<,.
. , - " 1. , . �,l 11 " I I �,�', -� 7 , � � I I I �,,, . � I �, , , , ,,, � .:..r.:,
, . I .. .1 � . I Irlt�.%l; .-I , �, LF:`-yip`: � p .4 ; I I I .�F I , � ,. I 11 . , l i . �, I ,
10, ." , . r, "!*,, li- .'., :,I �, I ,�1.11�11_;�;� " "" . " ,%� I, ,
�1. . i.f. ,� , I1. I- i, I I •I - -, I � I
- , - - , ,�,_�wi , � .,-� I': ,� -, - , - .. _ , ?.1 1�l,;. . , �- 'Y ,- "., ".- -- ��-,t-4, - , . ", , � 1. � .11 1 I "I . I I I 11 1. I � W,e, , , , v - ;�, � -:;
. il- . it 1, " ,; - " , .
- , I -, 1. �, I � - I' I .I I '�;�, 't '�.,I � .-, j . , - ,�_ - 7 1 1 . . . l'. I - k '.", -o" �t.� " C, `,� - -.1. , , �, - I ,,I . � .4..
',,�it ,-,, , lii.'.jl 'I '�',�.'% - � �1' , 'r , . � . , -i"I , �� ":I 1�_ - " _,� '. � � , . . , . - � - �`l t -11 t.l.- � . I _; � . ... ... I I - , � - - , , - , - � � ,;,�Ji I , I- ,
"I . A 11 , - .. " I , , , �
I I , . I I ,� � �, ,�I, , , I , -_ ,�, l- I . � I. 1-11,
I -1� - " - -_ - " - - I , , . , , _,%, ", � " � , , , , ,�, , : �,,,e lr� ;; , ,� I �
"I �r � , " Z_,Io .. �,, I, - - , " , t , . , - , . , � � , . .6 I- - , - � � -, , �,-,,l", - I -
. �,;, . . - � � - - I, � . I , . ,� " �,
... I , . _ - - � '. , , , ., I 11" , ) �, " - ,,, '. I � ._� zl� i7t� ,I.•�
r V I .. �_ ,,, " IV., � � , , ._ �, � -, ,_ � . I t" '. , � -, - ,.; - I v , . i Z --.- I - - . � --- � I I 11. - , - - : , � ,- .,-
��. 4�-,",e, I � ..1'•..
,iI. - - - , - , -) �) --- � '.
.. , . � I 'i'�bf '� N � . w -I ( ,
". , � J? -.1. - _1. , I., I � � ..... .. I � ,� , `,�� � ,-.,I - , ; " . � � . "
P1. , , � . ,* � �� ; "' ; , , - � -1, I. ,;� ��. 1, - , . , � - " � I I , , I � , , -11", �,; I -�tzl . I .", � � �'_ I - " , - - , - ,-
I � ., - � ) - , � I ". l , I � "..,
If ", - I .1 I� - I :' W`� `,. ,, r I 4,ij �, .I � 1, N, j ", �"k-' ", -` - I' ' "4 " �' ` , ,,�'-I, 'I): ,*, I , , . , . , , - , , , .
- - _-, - . , I .I-, - - , -, .�, - �� .. . �, " . : I t,' �, i, , t , 1 , � JiI y . 1'� - -.1 - ., , , � , Ij -�,,..� � " .
. . li. .�. � - _ . i 1. � , , , , �
� ."t" I - , . �,Z;�. - " ,,:,�j .�, ,I , y , -;,: �
I- I I I . 11, - I 11, .. � t . . . �,,-
_. 1. � I .� I � ... � .-,'!� .- I . , � , ' .- L ... � ' -; , .,, _ .. l..'', - ,- ,V�
, . �I - � �:,l izzl, - , X � � .-, I , - � ; , .",
.�,I�4,,�,�;�,:,�,,, 1 �'. ,, ;,t�,. , X" -. - � , , � I �
1: --. � "',,.. 1, I � � , . � � ,4 , ." - ;, I I ..•
. i, Q- �,, "'t. �-,t -1:1, .Zi.,_I',,-�%W;.',.ti -',j ,'I "I ,� '. ,
I " 1� � '. ., ,,� I. �1, , , IjJIi., I , , l "I ., . , ',ii,
. , ,�,_'�1�1, ,;,i
,-
,.,-
. :.I I . � - - . I l i_f. �,
" r, �
,, I I _. _
.I- - - """il � 'IN, " ,- %, ..I-,. I � .1 ., ; ,-. , - W, . I - , - � 1. "., . , , . .. - �., I -ii" . , " ,Q ', � . , � - - -'
,1 . 11 ., '. - , - - -, , " ,- - , , � , . .� ", •� � ,, - , I , 1� ', ,; ,1.1 '. 1�,, ,,, "t, I.-I - ..f-' -1I',.*-1 i" � i ��A -,-.,. ''. ��.,,. 1.1,'
I"51", ,,-�l - "I'.1-1111 , '-,-" .� I , ,Ili� - `f- "". I . T - . 1.7,
, .-,. �� - 11.�. A ..Ili , .1 � A IV. I l, ' 4 . I .4 ' � 'L le'l �_ ' �-I if, . �, � 1i' � , , , I I " . . , 7�' 17 . I . , I t '; , � � ." - . , � I, , - � . . . .......t
_ , i't.v ", , ,� " , ." I, I , . . , , , ��, I I . ,
� I - - Ai 1 , ail", ,-' .", ,;, , ,��.,,-.l ,�.`i_ . - " I" -.1. - - ,..
a \Y
_ _.�� �, , � - - I I.
- I � . - , " " " � , ,.. ,, � . "-.4 " Z , - , , , I 1; ,� ,, ;-I; , '. . . -. . .� ,_, " � :fie, _ 1� 1'� - � " - -
i %,� , -z- I ., . I � I I . . , ,_ - . .
t I- ,�,, ,7 , ., , "Ill .1, �11_1 .- �� �T' '. " I` , - 1 , �r . � - -� -. � 1. - � .. ,'I 11 �� . -
I -11 , , I 11 �:-,.-,,,� .. .
", I ,� �. � A i 'M _0 . z , , "�, �_ "�, .', " ,,, t, I � , " . ,, - l :,'l . , � 4,%, . .� I ;..,, �i;� " :_ 11 , , - .. I -1. � I % I.. . -, I � � . , I
. I I �.i I - - l, � 11 . l; � ,� - Q . � �, I I z " '. -7".1.�
11-I- 11,� I IN _ � , I � -1 - . I., t� -� - -,I ,ii -,, ,_ .. '-,� ' ' L"'�-I"Lii- 3"a
� � 'I , �. ,-. ;� -,� �, � . -, ` ,q , I I . t, � �,� ,,�. ",,,,�� I " . 11 - � � � I I I�L 11, "I -� . ,�'�",7�I,114, ., " , , , W ,l,..i:,t I
,.,.,)I, .; 1, i4 .�', j,". ". , I - -k ., 11. � "i-, - � I ,� 4� I l
I . � ', . I, . I. .
- I -_ v - , ,,, i'__ . . I . - - � - �, , 11 I " I I I 0. 'l.
t"; �, .�j� �, �,� _1 .. .... , �t, iI-I.,t Z, ", .,-:--- .'. , � - - ,�. I �,, . I -�, " - .. - , - � . l ,;1- " _', ,_ I � 4�,, , i ".
.�* .1 ^ �.-*.' � ,,. ; I .;� - , I" -, � - 1 � . .
. " - - I .-_ 1,Ii-1 , '. .. ,-," 1I It' .-� . . _. , . - - f " .", " , .�, , -. -.�,I. , ', -1 I
- " S. � I , , I _ ..P'. '4t.. _,� l I � " t " �1�1 I 1� � " z j�,
., ,.." I .. I - ;I, _� I . 11. I � I.. I I , I lam-. , � � -.
. �1- �� � - -..fir- � - �1, .. �
. , � - ,_,, " � ,, , . �-1 , ,,; , , ,� �i .�
� " ,,,,,.,.,,, ,.�"., , . , I - " .,. - -..-.!
.'I, " - - , �,., I , � , I � , ,,� . - - , .
��. � , I I, I , " � , - I -e . .
- I I , . I I - 1. . ,. . � l,
'J''
,-,.-2., , 11 % 1, , . �il , � -; . - '. .. ,- 'tNi ",;-.i
I � I . . `1 I I . 11 - - . � , _. � l- , " I � . ..... 1 - "".. ;'-Z4�,,.�� ,I?, , , . . "" ' � - , - .� ",
'-'I I � 'I, , ,. I. It7, Z � I � .1� f� . - " �� ,. ; , .� "'.1 1.11.-'-�",��. I i f .. It. . �.
Il I I , ,. , 'i.", .� t ,� , ,� IV, .. .I - .�� * - •
-, �
� ..... ..y1:;I- , - - i ;,,t,
,, 7 ,,�, , -1;, " ", -� ...... �X'� � , ,-
I I . I � I I �-1 ,� . ,14l', L ," , � k ,I " I- . I . ,� - .. 1 � I " - I I I , 1. 11 .� I I- . , " , 1i � ,�_- I . TiI. � ,�.'."'I ..., . .. J . ,� I , "
� l" 11 . , .,I. , ,_ - - 11 ..... - "I . .1- _11, , I l � , I I�l I � , , , , , , , �17 . _, ,
, ', -, I - ", ,, " � . . ,e. i I 11 ., . ,,, ,� ., - I', I 11 , ". 4,1 ,. .
I— I , , V ., .� � , . . �t , ,I , ,,, "', " ,�u � �,� , � I I - '. , j, ._�; ,l 1 .11, 'i -, , : , it ,,`l�, � , I ;,4, ,
, . I 1 �+1 , � I i I.
.11 , - .." �- . I , I . ; 11-1 11. , �, . I � , I I -I-`.1 1. I , - , I . - I " p 'Z � -, 0 r'. . - .. .
. . .. ',.,- , � , � , I A" I` .k " _,�� ,I ""','. , ,. � , , , , I � �, , �� , ,�;
r'->.;',
. I .. - , . e - , , , � s ." - - , _i, I 1. �. , , ,t . I 4 1 -.1 . , .,.., ."
. �1 � .. . "I 4-, - �_ .- �,_ , �, ; - � - -I . � % :,t
I`,
I, . P , , , . �1�-�-_,'� I I', - I. - 1. � I 11 I jv i It , 11� t, " 1. I I �., � I �. - .1� � �i. , �
i , , 1z. �,,<- �� ,,- - -,,-" , , . - . .i, � , I I . . - I I �, - � .i .ti - . 7I - I � ,�� , , �I,, '.- .. , . 11 ,.%j ".. .1,. ..i.,
I 1 . . - vi , ,., 4, i" 1'1� IX,;, , , � i , , �,,` , �,-,, -�:,, , ,. �,'.ii�-t- I �'., - " " , I - "_" - I ,� I- . I
' 1 4 'I ' 4` ,� �,�,, , , .,-,,.,, � , �w , ,4�'f.pf , . �,,,, ",-, .7. I .1 i-, - � � ... .
- � � t� , '. I - ",�, " - p, ."I " , ,,,,,, , :.." . .- �. " ,
. .. � , .. - I, ,. - ,� �,"�" .41 1 , ,'Lq
11 . .1 I I I . I , .. , , � " I , ,,' , " � "to I. ,: .,��I' . "" ,,, , I � I � ,-.
, I " "' � I - - e - . ,, , .T'. ;, ; ,�,I 1� Xl�.� �, - � , / 4 � ,�,,� I �. I -
I , _ ., j . . .1 .� . . t �1, ... .. . �11 �. ,, . T - � , . " 1,
, , � 4" . -1 I ... � 1. I I - , . � I Vl,�.!.11 - .. �11 1 - ,,,.:- , I _��, 11 , - ... . 11 I � ,.. Ii. - , . . I . 1, �.� � 1 . I I ��
. I � , -- I v .ii " ,q. I., _1 I I -_1 . - _ . J. 1, , � - - .1, 1�1 11%��, . � .. �.., , I �I, ��;, , . , l .el,�� _ r,r, - 'o'; " ,� a-, " �T ill. ,`
I, I 1 4.11 _i;."' . I-1: .- I ., .� .. , .� - �, . , .I '%t, -�No� , - i
,,, - i, � I __ I � " - �1, ;, .", I_ .,-,, - 1, � . i" 1-4 - " ". j ,..��;,
1, ,,-_,t 't," "'i't-Ir, , , 'i �, 1 . '. . . Tl , , t
.1. .l.; , l 4 d- --'-, " 't :�,.;, , , , , - ,!1`,.'Q � " 'A' ; .', 'o , - ,I . I �
1� ,,�-." . � �, r-1. l, , ir ,,,.I-, , t^. •.W ,�, , ,,� l 1, � I I -% I .." - - -
.,,I 1i � l 11, _4 , �, - __ .. . I"""', ,Z _,.��.-�',."-. , -, ", -- M -
." " 'x .1 II .11", ;ems., 1, I,,,, - 1 � il"I", I,- ,
I., 11w , . " ,q .- �, n" " - ,,I , 11 .t. - � I, ,e 1� � I, .-,� .. � I I -1 Ii", �-, ,.." ,., " , 'r zi ,•�1' tl�;, I
. � ___ - " . .- i`,. � , , .. .1
. 'YP"', 4.',,�� l . x � - - + ,,,,- * ry -, �, . I . � , , . I 1� , - , , , i 4. . .,. � 111.1 4l ,'I '� " � . ,
- ,�, ,., . q . I , � - I .. ml �, . , , , �4- . � � "i, � 'q-", , . -� �y ". , '� '.; m-, , , , � . ,; I � .'- , I � - - ; '. �_ -,i,-I;
, , � - ,l�. - I __I� " .. _ �_ "I . " , .. ,� . , , , I* , " V., .,. - " , ,,
•" , il , ,,- ,, L "14 , - , ". � _', , -
I 1�, , � lnt� 'r, I .. . �. - - �";; .,", , , , �-,'_ �? . � , '. , , � - - ,.� I .., . , � It- . .I... - l�
. . . el" �, , . . , .� , " I ", , " .1,� . - 1� ."
; ,ik, - � �, I - , , : I , I N I � , ", " - , t n,, ,7 , � �r " �1� I. ,,, -I"' " , t, I;, � . , .�,
- - , � � 1�, "", , I � � �, � ,,,- li- .. , , , 4 , I., _ , , , , I,�,� " , A,, " 11 I"" 1, . . ,i`I�. . I �� �
,_1 , 1� I. y I � '� , IF . , ,,,;.,..,t_, L,
- ll%,� �,:".5�Piciz l�r� i�� ,.,, � . � , , � �I 111. �, ,- I I �, fir`. - , �" , - ',-,, ,�.. I .. ,.
L � ;i , 1� -, .; � , '.. . . , ". 11 � , ... , 4 , � , � ��. -.I, , I - ,�,1. I l ,,,i_",;.
. - .�7,-',� , , ,`� , � "" . % ", '�, 4 ' l " � '�` ' i" � I I I - . , " . , � ., � - :, ., I'A ; - .. � , , I , �
1� ,--, 'll., _
, .'..,,�T -.- ,t,,%,�. ,,, , , 41
".e .. , . I 1--,,�. ,,,k � . - I- -;_ .
", - 11 1� I` le I- - I - -,11.' � F '/ " � ,,-. , , ,-.- � .- l,' I— ,, _ .,- ,
. , , , - , . 1. I , ,�,�� "'i. ��', , q; , . -I ,, �, . I I I I 11W Ill-, .". . ! , . ', �, ; - , " " . , _� , - I I .. tl� .L I 'i , 'A. "' ��-� - .-,4.� j_ � '. l�, , ; �_.
i", ,,� ", �,�', 1,,�-rl..,- ,�Y,` �,,� ,� .': 1 ;�:� ,Wi 1 i i I . � � , '. � , , , , ; - lt� , - .,� .�-� �,� - , "yi , .
'r'� ,�;,.."� ,�' I ,,� ,,,��, I �l, "', I.:, -'j% , .1 ,i, - ��,:, �,, 11�1:1 .1 , , ,_� ,g,,,,,; - 1��11 'I., ,_- ; . 'A, � 'l �, 4", r
I ,, �., 1. I ." , � -, , . .1. . il I I I - - I I �-t � ,�,.,P, _ , �, .. -,.,,,, ,e _i , �14 1 - I , . ,'�, -, k�,�'
1, I ., , . I l." ,_-1 ", " 't ;. -,�- .., . . I - � . l , � , . ,.-I',
,l - I �'r - , - � , ", -�v,�� I. .,,� . � .l� 4
; - - - "
ia,-� ,
-1 111�1 . ". '`y . �; - Z ,' , , -, ` .. �_ ."
Li .. , 1, I t �rtr, ,- ,I., 'j, il ., I . ,., . , ,..l " ,)". . iL"I ;',,-,7 -, Il';..� :-1_hie't - -
, . N, `1 I 1�1.1 I , �, :4 .1�1 v I I I - I, . , . t�.�t, :.�C! ,� 1. I . 11 KI I � �_�� - "'. , .- .- , -- - � . , � . � - ...,,-A . ,,- " ,,,
� -.. N . , .. I
I � -�l 'l.i. I, �, - 't"I" o. ;� -,.1, � -1.111 mo! 4cll, � �� ,�, i�,,- I t ". � ,
. . '. " � . �.. , .,Z�1,,;_-`,,`- , , � -- � - �-_�'�'; I'l. ;"��.,,,�-� � " 1� ,, ''ii.-;-
� , , - , .�,- , ,� ,,_, .. I,- , - I . ". -, 4 � zk -,�-,-� - 1-. , -ii, , - '.' ,� O' J,I�il 1 , I � , ..� � I I I 11 I I
i , f ` , �, - _y _ _-� - � I - _1 , -7 'k:,,,T:I�l` � ,I . ... r, I ,� 11,
',.t_ ,,, ti_�, �, " ,. . 1z -, '-, �,._.
. " I I . , , . . , , - ,i,�i- -,. , � " , ,1 .I; o - . - t" ". - ''t ,-,-. y- -, . . '. . "
� . I , ,I- - I �' ,,, ,' �' - - I i_ - " i" - , - I - t, '� .-.4 �, ', if � . � . _,�., --,��. , ", - �;�',. li; - : �,,it ��,� "v.ii�, - -,'
L, , 11" , ,�,, it , 17,�,`I ',��,%� ,�-i"`, I . I�, . _q'i ': , � -,_ ,.,� " , I � - I � _ .. _� It. ,� - , .
. I, ., � ,� _-, " " , 1 _ , ." - �,'� 'i-,.,,";",.,�,',�..;.���,-,z,-,-�'I �;."","Ik%3.". I y,�;, 11 , L� �. . ,�"",- -1 1 v , - -,- It - , , 1I' - I" .il 11., U. _ ..-
. , " 'i,.. �, , ". . , , I . j" "", - " � I': , , I -, ,,�, � , , , _,,S,:t1,.r,-, .� t , ,.,- - � , "", �- lI, , I-- * �-- - ,
. "I, ....... , ; ,�� �?' �,,, ."",'. I 1I . . J, ; ,t, � �e4V�', ,l', 'r . I . 1 I
, - � - . - , " � I . I _,e.1'--;N A I - ,- .- - � - , I �, l', - , " . I� ., , , A I - I t:.' tl �� �,A%, I O 1, , , , I l,
. ': " ,- ,,�, , t, , . t, ,_11� 11 ,� , , I I "i" �,,, . 11 I I I "'I., , I ,� �� -1, , 6 .� ��`. ,��! 4�,,j< :�,� ,,-, 1. I 1 . . ". . ,, I �11' - . I- . j 01 I 14, _Z� I
. � J � �� � � ,-, S, - " I - �, . 1, .ii,i" � "; " ." - ,� ,�Iz �T,-),.,. ;:� - '. , 'I" I � I, -1 I � - ,I' - , .jv , I' � , l . ". i. I - � - � - ;, . 11
� �1. I ii,�-- , W� . iix- ,�: , ',� . I' , ". , � � , , � I ,,'I - - . . - , . . ,,- , -� 't- ," in
� .; " - � " , , ". I, I 1:?�,Vll I - ,; , '.." .-,.. �
. , , . tl�,il,�,, 111� I .1.1 1. .1 I) , it ". - i _ ..� 'I , �- , I.." I ., , - . I
11
.. ,
,
'-," "'. , .. ,
t ,
I I . - . �, - , , t , � , . % I l . It , . .1 . I I.-
. ,1� , . .- I II'L' ' ' N., �-.v 7�'4���,-,��,,.��.:��,�,-.-.�����,,�����,--,A�,4 �
v �, , � , - - -1 �'e * - ., m4w!, � - - I - , : � .O., , -. . ., �, �` 1'1� - I, , 4 i t
1; I - . � , � ", ,L � , � , i� ,I - _` ,-, _,�,
I , I I , lal lll�?' , , Z� , "l, 1�,. , � .�, ^ , - - I � _. I 11 I I > �11 '. I- I � - I ll,
� . , I , � � 'i -.,. - --- ;� - " " �;,
I . .. I .. _ li� ... ... �i �'Aiti.,�," " I "I I I ,,I � I - I � � I Y 1 1 . � �,. - . - - . I I '11, , ., 3, , , . - I I , , -17 - �, - --fl � z . - - "',, -I' '
':,I,�: . , I 1, �.,, j z ... ". . . _ :"
- ,C.'I-" '� . r'l� 1. _�, I I'i 'I - , ' .. � .,- , , � � , ; I N 4 - � - ' � -,I - " ,"'i;,�
., � ,1 I � 1 ',I , , L jl� I ,� 'y , I l " .41�, -,, ,, I , ;�, , . I I '. � ,. 1�- � . � , .�, � , - ,),, 11 - �, �;_ . , ,
.I I. 11 I' IQ, " - �t, . , , , � .. I l� I - �`� �,, ,It � I �/ , J_ �, -.,_�'. , , ,�, -jq,_,�', '. .� t. - , - " m-3 - q4,�� -,' - , -,:i,-,. ".; '. .."', I , i� � � 7,
.. '.. , . I � . I . . . .. , . -,, , � . I - , I. l. . I, �� �, , . , , I I - " I � ,-, I r � , . . � I I 11� . , 4, , , , , � - 1,�,t - I . � , I'll - , ,
- . 1. - I -, , -- - I, - , '. , I . " - . " I � �
I I - -1 I � . I ., � � -,� I - I , , I , - , 0- ,l� , �iI;, -. . .oi, . � I - - , -1 � 4 . k I ' j - - �..5.' . ' . '_
� . I I - ""'.. , -, ,_ ,,� ., ,I'�A . %�, .1 �.j ", � � e - " , - "I 4-1 � , " I. . , � . � I . .1 , - I - , , - v 1. � , . .. - I I - 1-1 �- - � . f -1 . � '. , ,
�', .I, , "�_ 11 - - 11"I - . -
"I I - - "' �1 � ,,, .�.I` �� . . . I ,�� . , "," � ", .... .... rA, -, " I ,.4y"
4 "' I I I' I L It 'II"' .
'. .� " . ". , , " �. I I , ,'�, ltIl� �., , , , . , -d , .-�- `,.(`� 'AI ', I 11 - I I 1, . ` I� . . _. � I �, . �', . , ,
. - , l - , 1,� ,�, . .. 'W',, ,z - � - , - , I � � � � -, '. - I " ,I 1,�_ � I 1, " - , ,,�M, ", _1� 1 . .1 , , . .
,-�,,- , , ., - ", , - .: �x ,%, �� . I .." . .. �, � 11 .. . " ,IC � - --- - I -� , � . - I
�
- " ;, , , . It'_ , ., A f" , ,_�',',�,� �l . I,,' . I . , _ ' ' L "t, ' ' ' � I - ; .- " �-�,
,-0 �;�_, 1. t . ., .. �� - . I � '.', .1 'I � , 4 _ , " ��, , I I . , : , I ,I "I I I - 'll; ...... 11� ", 1 I I, I ,
,� _ _ - �, , I - ,, L , " , , - , , I-, , : I'l. '� '. . �- �l I , " " , , -,I ,- . . - � :
, ,,j. ,'-_j, " : ,� ,,_ � I I - �11 I .1 , -, ., i, ". -- . . . - � I I I I I I . i", , . " . - I, - J� . .. , , . I I I I I � " � I .I. �, , I. � . ; , , ', I " I,' , ,
I I - , � "(`,"". - ,I � "Al 1 t , ,� , � 1,�,, . � . - .. � . - .. , I . . . . ." , � `,*
J. 1.,� � �� � , . " I '1.1�� , J': ,. It-, '.I'.- 'I'I, - 1, 14, t �, 1�11' �1� 11 w 11r. .- - l j, " I 1, � , � -,� -, , ,-- ,-Z, - - . - ' _' " -4 '.. ', , ' I ,
- - , � I . II, " � ,
Y.
. ;! .,.o,�,, �, ) �llt:�%,_'I:il. ,'�.,, %, i � o : � - .1 . . I- - , � It, I "�-�� , , I .Y. .$r..
- - � , -, . - "t, . ,,, O.- ,,� :w , ,
. I . , li, . . - - , 'I"', _r , - d , , I � I, ,, I � . , l
", " ��'. �.i, , $ ", ,,�', � . , , � . , , _ �,.,. , , z 'i, ,I,, , " , . , I ,.� I
_ � �il �i ,,' I . ' ', I . '4' ' - ,
' - "_ -L - � , , L , � I� I,- . �.., �., : �
/,,,, ,.", -,,.,,i. ,", - _,I - I - , � j � " .. I ... y , , j .,,:,
_`ice
,.,� I ,,, -, I, I ., ,,,�� _� " " �', n , ,,,, , P�', , - V. ; ,r'j.. ,
- •" ,�, �,�. 4L� 1. I � 1!�.� � : '., I - 1, , ,.�. , , '1� , . I _ . , I 1, - , 1 . ,
.
�:;�
,
;
I'
Ari
-, . , , .. . , , . I -, . � " . V � 'l -i, � 'P I , - ,�- I � �� ;� , " - .W " -,' " " - - " Y, 1,,,`Ilii� .7" - " � � I� k � , ,-., , t, ,
. " - I � I, -. .. I. I . _ e
, I . . -� � �- I I ". '.' i� -�,,,� t,� . I . I I,,' ,- l-11. , �
I
I - , I 'k ,,.-
. _1 � w
11 11 ,� �!�, . I,: :, - �' i. "', :��,,, , ,, �i,�:, 1;1 , '. �I I .,,� c ','�, , �i, ,., ;, ♦4 , �, " � ."', 1� 11 ., .. I . I , , 1, - _,. .l�
I . . , , , . . � - -, - .1 , . . -11, I , .4 1
,,, - � � . .1 . I I �,: , '. I � - . , ,_ , ,-, �, , --� - - " - � •'. I.- � .. � � l", , "I , I
.. .. ... _,--, - I " , I- , , , I 4 .,,7 t 'i I
_ :.f I . , I 11 . I I - � .;,1,j', _
� Mill .1 � , � �, � , .) , ,,` ; . I - , 1i � I , , , -Z� r� , _, : o l e , , - - I .. �, O� , - � - I, - , ,., I . -1-1 - � -;?,� - ,��' � -1 , I . j, I � I l. , -� �, I
; , � , ;, l�,., l`_ ... . . " . I
�, r-. I :,, " � ", -, . I - . , ,.,.,,, t,� ,,I,� ""; , , � ,;�' .
I � I .i, �.,*, , , � 'l . � ' I " - �,,N .'., �-,,��i-4`�. ,";,Z`W,,, . . . .. . , ,� ,�, , � , I ,,, " ,� � .* . , , E , . , I I r'... - � I � ., ; ,
Ill. .." . 4�,,�;-n t� '�'_:J, '� �.',"NV _1L ' 1. l f4 , ,, . .r. , ,,,_,i...,tp1, ;"",,I � "I'. I; , , ,.,. � . � -
- . ,� , ,., . . , - . . � �, , .,'� �, � O - �', I t, I �-, " - " � , .1 , ,,�.5t��-%i, I , I ...
:-", ,,,, z .. &I-` ,7 - ,,� � '? I . I f,.'^1;.; �.. I
,
. ,
. , : � ,
. ,
.
.
. �_ ": , .
� .1t. . N
I , , ill. F,, 1 , ,,,
11 .Il �
O
I
_ k.4 � 4, , Il .
nt�� .; :
Project No. 04927-41-01
December 21, 1992
APPENDIX B
LABORATORY TESTING
Laboratory tests were performed in accordance with generally accepted test methods of the
American Society for Testing and Materials (ASTM) or other suggested procedures.
Selected soil samples were tested for in-place dry density and moisture content, direct shear
strength, compaction, grain size and consolidation characteristics.
The results of our laboratory tests are presented on Tables B-1 and B-2, and Figures B-1
through B-6. The in-place dry density and moisture content test results are also presented
on the boring logs.
Project No. 04927-41-01
December 21, 1992
TABLE B -I
SUMMARY OF IN-PLACE MOISTURE DENSITY AND
DIRECT SHEAR TEST RESULTS
Angle of
Dry Moisture Unit Shear
Density Content Cohesion Resistance
Sample No. (pcf) (%) (psf) (degrees)
132-2
116.4
8.5 400
B2-3
106.2
21.4
132-5
117.1
17.4
132-7
111.4
13.1
B-10
118.3
16.4
133-1
96.8
6.7
133-2
103.3
20.8
B3-5
85.2
38.0
B3-8
83.5
37.5
134-3
94.3
3.5
B4-5
117.9
13.2
B4-7
82.9
30.5
M,
Project No. 04927-41-01
December 21, 1992
Sample
No.
TABLE B -II
SUMMARY OF LABORATORY MAXIMUM DRY DENSITY
AND OPTIMUM MOISTURE CONTENT TEST RESULTS
ASTM D1557-78
Description
132-2 Dark gray, Silty, fine to coarse SAND with
trace gravel
Maximum
Optimum
Dry
Moisture
Density
Content
(pcf)
(% Dry Weight)
129.0 8.7
Project No. 04927-41-01
GRAVEL
Depth
SAND
BI -6
SILT OR CLAY
COARSE
FINE
OARS
MEDIUM
FINE
20.0
(SM) Silly SAND
111111�iiii��iliri��ly1�IIIIIIII■IIIIIIII■
: ,111111■IIIIIIII■IIIIIII►1�IIIIIIIII■IIIIIIII■
,111111■IIIIIIII■1111111\\IIIIIIII■IIIIIIII■
IIIIII■IIIIIIII■IIIIIIII
�1�IIIIIII■IIIIIIII■
IIIIII■IIIIIIII■IIIIIIIIi�111�II11I■IIIIIIII■
,IIIIII■IIIIIIII■IIIIIIII\IIIIIIII■IIIIIIII■
,IIIIII■IIIIIIII■IIIIIIII■Ii�IIIII■IIIIIIII■
IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■
.,
,IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■
.IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■
.,��CURVETENTATIVE
TRACT 23172VAIL
RANCH COMMERCIAL SITE
CALIFORNIA
GRAVEL
Depth
SAND
BI -6
SILT OR CLAY
COARSE
FINE
OARS
MEDIUM
FINE
SAMPLE
Depth
(ft) CLASSIFICATION AT W LL PL PI
BI -6
10.0
(SM) Silty SAND
BI -7
15.0
(ML) Sandy SILT
BI -8
20.0
(SM) Silly SAND
111111�iiii��iliri��ly1�IIIIIIII■IIIIIIII■
: ,111111■IIIIIIII■IIIIIII►1�IIIIIIIII■IIIIIIII■
,111111■IIIIIIII■1111111\\IIIIIIII■IIIIIIII■
IIIIII■IIIIIIII■IIIIIIII
�1�IIIIIII■IIIIIIII■
IIIIII■IIIIIIII■IIIIIIIIi�111�II11I■IIIIIIII■
,IIIIII■IIIIIIII■IIIIIIII\IIIIIIII■IIIIIIII■
,IIIIII■IIIIIIII■IIIIIIII■Ii�IIIII■IIIIIIII■
IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■
.,
,IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■
.IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■
SAMPLE
Depth
(ft) CLASSIFICATION AT W LL PL PI
BI -6
10.0
(SM) Silty SAND
BI -7
15.0
(ML) Sandy SILT
BI -8
20.0
(SM) Silly SAND
TT231 Figure B-1
1
1
t
I
1
Project No. 04927-41-01
SAMPLE
TT231
B-2
Figure
Depth (ft)
CLASSIFICATION AT WCJ LL PL PI
B2-2
1.0
(SM) Silty SAND
B3-4
15.0
(SM) Silty SAND
GRAVEL
15.0
($P) Poorly graded SAND
SAND
SILT OR CLAY
COARSE FINE
OARS MEDIUM FINE
1
1INNER
INONE
MEMO
ME
IN
limmililill
0INNER
MINIMUM
llilillimililill
0
II
1�
A
il
l,
UNION
11
llimil
RUN
110
MINE
NONE
p
i
llim
TENTATIVE TfekT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
SAMPLE
TT231
B-2
Figure
Depth (ft)
CLASSIFICATION AT WCJ LL PL PI
B2-2
1.0
(SM) Silty SAND
B3-4
15.0
(SM) Silty SAND
B4-6
15.0
($P) Poorly graded SAND
II
A
SAMPLE
TT231
B-2
Figure
Depth (ft)
CLASSIFICATION AT WCJ LL PL PI
B2-2
1.0
(SM) Silty SAND
B3-4
15.0
(SM) Silty SAND
B4-6
15.0
($P) Poorly graded SAND
Project No. 04927-41-01
SAMPLE NO. 132-5
-10
-8
-6
-4
z -2
C
H
H
O
_J 0
O
N
z
O
U
F- 2
z
w
U
w 4
a
6
8
10
12
0.1 1 10 100
APPLIED PRESSURE (ksf)
Initial Dry Density (pcf) 117.1 Initial Saturation
Initial Water Content (%) 17.4 Sample Saturated at (ksf) 1.0
CONSOLIDATION CURVE
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
rt231 Figure B-3
1
I
1
I
I
1
1
I
1
1
1
1
i
I
1
Project No. 04927-41-01
SAMPLE NO. 133-2
-10
-6
-6
-4
O
-2
H
H
O
J 0
O
U
Z
O
U
r 2
Z
W
U
w
a 4
6
8
10
12
0.1 1 10 100
APPLIED PRESSURE (ksf)
Initial Dry Density (pcf) 103.3 Initial Saturation (%) 91.0
Initial Water Content (%) 20.8 Sample Saturated at (ksf) 0.5
CONSOLIDATION CURVE
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
rT231 Figure B-4
Project No. 04927-41-01
SAMPLE NO. 134-3
-10
-8
-6
-4
Z -2
0
H
F
O
J 0
O
N
Z
O
U
F 2
2
U
U
UJ
UJ 4
6
ZI
8
10
12
0.1 1 10 100
APPLIED PRESSURE (ksf)
Initial Dry Density (pcf) 94.3 Initial Saturation 90) 12.1
Initial Water Content (%) 3.5 Sample Saturated at (ksf) 0.5
CONSOLIDATION CURVE
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
TT231
Figure B-5
s
Project No. 04927-41-01
SAMPLE NO. 134-5
-10
-8
-6
-4
Z -2
0
H
H
J 0
O
N
Z
O
U
H 2
Z
W
U
w
a 4
6
8
10
12
0.1 1 10 100
APPLIED PRESSURE (ksf)
Initial Dry Density (pcf) 117.9 Initial Saturation
Initial Water Conten[ (%) 13.2 Sample Saturated at (ksf) 1.0
CONSOLIDATION CURVE
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
rr231 Figure B-6
1. V i .1 1, A, I.
"AIN" -10 US ;VIA, Q,
IF.
III IF,
IF
4, 14,
tI
IF
IF
an, n,
IF .. .....rY
pw I IF IN
IF,
F, tr . IV
jv
,Itv
V Ot
re
IrI
V I
All ', - 41 , .. ...
S I,
"YO
IF
110 1
-01 Al
it
Q IF IF
"A.
C I I I - IF 'I-, - :',p - 11 , I , , '.Y.' � , Y. I� I , _ - �V_ , I
i , " II I I,, }}%Ai F�
I I IF IF—
."I
It
- IF
......
t.IF I r
It,
`tI't Ir
'FI ,
, so 1
tI
FF
In, IF- V-1-1,40 IS All
tis'I " W , As A—
V_ I. j,", IF,-11"�l
" � I W -MA . "t
'k LCnIF IF> I.,
ON
A WIT ", W -A.,
p,
If
A
WIW.,
IF
j.
0 IF &TOW Q ON ju %I I nQ;
tr
ei
Ft
v.
rl
F 4F IF I
-tF -Q
....... . . . . . . IF IF
f.v
I IF
, an
yl.IF—
rr
'4.
a.IF IF
10, Q- MOOTROY A
IF I I IF A - IF
IV
"Ita i4
77777 -�"-7777-vI
tProject No. 04927-41-01
December 21, 1992
1
APPENDIX C
Included herewith are the results of the EQFAULT and EQSEARCH computer analyses.
The output includes the maximum credible and maximum probable earthquake magnitudes
and corresponding maximum credible and maximum probable site accelerations for the
EQFAULT analysis and the probability data generated from the EQSEARCH run.
C]
I
1
I
' DATE: Wednesday, November 11, 1992
*************************************
* E Q F A U L T *
* *
* Ver. 1.01
*_
* Licensed to: - GEOCON, INC.
* *
(Estimation of Peak Horizontal Acceleration
' From Digitized California Faults)
' SEARCH PERFORMED FOR: James L. Brown
JOB NUMBER: 4927-41-01
' JOB NAME: Temecula Tract 23172
' SITE COORDINATES:
LATITUDE: 33.48 N
LONGITUDE: 117.11 W
' SEARCH RADIUS: 100 mi
ATTENUATION RELATION: JOYNER & BOORE (1982) Random - mean
' Soil Conditions: Not Used For This Attenuation Relation
COMPUTE PEAK HORIZONTAL ACCELERATION
'FAULT -DATA FILE USED: S0CALI.DAT
-----------------------------
DETERMINISTIC SITE PARAMETERS
' -----------------------------
Page 1
--------------------------
ABBREVIATED
FAULT NAME
--------------------------
BLUE CUT
CUT
--------------------------
BORREGO MTN. (San Jacinto)
----------------
CALABASAS
--------------------------
1CALICO - NEWBERRY
---------------------
APPROX.
DISTANCE
mi (km)
57 ( 92)
-57 ( 91)
-79-(127)
-80-(128)
MAX. CREDIBLE EVENT
MAX ' PEAK ' SITE
CRED.1 SITE {INTENS
MAG .IACC. g1 MM
-{------{------
-7.0010.0281- V
--
-
--
6.50{ 0.022{ IV
-----1------1------
-6.50{ 0.0121 III
7.001 0.016, IV
CAMP ROCK - EMERSON
' 73 (118)
7.50
0.024'
V
------ ---------- ---
- -)---------1-----1------1------
CASA LOMA-CLARK (S.Jacin ){
21 ( 34){
7.501
0.1351
VIII_O
CHINO
33 ( 53)1
7.001
0.0611
-----
VI
------ - ------------
-- --------------1-----1------1------
CLEGHORN
1 55 ( 89)1
6.501
0.0221
IV
--------------------------1---------1-----1-----
1CORONADO BANKS FAULT ZONE
1 44 ( 72){
6.751-0.0361
I
-1---
I
V--
I
--------------------------
- --------------------------------1-----1------1------
COYOTE
COYOTE CREEK (San Jacinto){
-------------------------1---------1-----1------1------
---------
34 ( 54)1
-----
7.501
------
0.0771
------
VII
CUCAMONGA
{ 52 ( 84)1
1---------1-----1------1
7.00
0.0321
V
--------------------------
ELSINORE
1 ( 2){
7.501
0.6921
-----
XI
--------------------------
LN.HELEN-LYTLE CR-CLREMNT
-------------------------
HARPER
TS_-BUCKRDG.(S.Jacinto)
------------------------
--------------------------
ENWOOD
-------------
LOCKHART
DLOW
I�
COAST
--1-----1------1------
24 ( 39){ 7.50{ 0.1181 VII
--------- -----1------1------
97 (157)1 7.001 0.0111 III
---------1-----1------1------
58 ( 93){ 7.501 0.0361 V
--1-----1------1------
25 ( 40){ 7.50{ 0.114{ VII
---------1-----1------1------
97 (156)1 7.50{ 0 0141 IV
---------------------
'MAX PROBABLE EVENT'
1-------------------1
MAX.' PEAK ' SITE
1PROB.1 SITE 11NTENSI
1_MAG.IACC.-g1__MM-_1
1.6.251-0.019{--IV--I
1.6.251.0.0191 --IV
{ 6.001 0.0101 III
{-----------------
1_6.25 0.0111 III
6.00 0.0111 III
7.001 0.1041 VII
1.4.751-0.0191--IV--I
6.251 0.020 IV
1-----1------1------
67_(108)1 7.251 0.0251 V 11
96 (154), 7.501 0.0151 IV
_97-(156)
92 (148)
----1------1------
7.501 0.0141 IV
----1------1------
7.501 0.0161 IV
6.00
7.001,
_6_75{
_6_751
_7_00{
_5.751
_6.251
6.25!
7.001
6.001
6.001
-
_6.001
5.001
-0.024
-0.0591
0.0281
0.4651
0_0911
0.0061
0.0181
0.059
0.011
0.013
-0.007
-0.007
0.004
IV
IV
VI
I I
--------------------------
MOJAVE RIVER (Ord Mtn.)
--------------------------
'---------
58 ( 93)�
'-----
7.00
'------
0.027
------
V
" -----'------
6.25
0.0181
'------
IV
I
NEWPORT - INGLEWOOD
--------------------
---------
42 ( 68)�
+---------
7.50
------
0.057
I
------
VI
-----
6.50
------
0.0341
I
------
V
I
------�
NORTHRIDGE HILLS
94 (151)1
-----
6.501
1-----i------I------11-----------�------
------
0.0091
------
III
-----
11 4.001
------
0.0021
------
-
--------------------------
OFFSHORE ZONE OF DEFORM.
--------------------------
---------
30 ( 48)l
--------------
7.501
0.0911
------
VII
------
11 6.001
11-----�------
0.0411
V
------
[1
DETERMINISTIC_ SITEPARAMETERS
age 2
--------------------------
ABBREVIATED
FAULT NAME
- ----- - ---------
OLD WOMAN SPRINGS
'IPALOS VERDES HILLS
PINTO MOUNTAIN - MORONGO
--------------------------
PISGAH - - BULLION
-----------
RAYMOND
--------
ROSE CANYON
--------------------------
ISAN ANDREAS (Mojave)
--------------
SAN ANDREAS (Southern)
I--------------------------
APPROX.
DISTANCE
mi (km)
65 (105)
51 ( 82)
47 ( 76)
MAX_CREDIBL
-
MAX. PEAK
CRED.1 SITE
MAG.IACC. g
----- 1------
7.001 0.023
----- I------
7.001 0.033
----- 1------
7.501 0.048
-- I --- --
81 (131) 7.001 0.015
--------- I ----- I ------
70 (112)1 7.501 0.026
--------- I -----I------'
33 ( 53)1 7.001 0.061
--1-----
60_(_96)L8 .50
------
42 ( 68)1 8.00
--------- -----
SAND HILLS 82 (131)1 8.00
--------------------------I---------1-----
SAN CLEMENTE '80-(129)' 7.25
--------------------------
-
SAN DIEGO TROUGH 1 55 ( 88)1 6.50
--------------------------1---------I-----
SAN GABRIEL 74 (120)1 7.50
---------------
-----------I---------I-----
SAN GORGONIO _-BANNING----'-35-(-56)'-8_00
(SANTA MONICA - HOLLYWOOD 1 79 (126)1 7.50 --------------------------1---------1-----
SANTA SUSANA 1 96 (154)1 700
1--------- 1--.---
SIERRA MADRE-SAN FERNANDO 1 61 ( 97)1 7.50
--+--------- I -----
ISUPERSTITION HLS.(S Jacin)1 79 (128)1 7.00
I--------------
SUPERSTITION- MTN�(S_Jacin)+_75-(121)+-7_0011
ERDUGO 174(119)17.00 (119)1 7.001
--------- I- ---- i
WHITTIER - NORTH ELSINORE i 31 ( 50)1 7.501
-------------------------- '--------- I - ----I
F]
EVENT''MAX.
-------11-------------------
I ------11-----
PROBABLE
EVENT
SITE
INTENS
1I MAX
PROB.'
PEAK
' SITE
'-0_023IV--116_00
"
SITE
ACC_ g1-
'INTENS
MM--
--�__II_MAG.
IV
11 5.751
0.0121
I
III
I
------11-----
V
11 5.501
------
0 0151
I
------
IV
I
------11-----
VI
11 6.001
------
0.0221
------
IV
IV
11 6.251
0.0101
III
------11-----I------1------
V
11 5.501
0.0091
III
------1I-----I------1------
VI
11 6.001
0.0361
V
VI
------
11 8.251
11 -----
0.0511
I- -----
VI
I ------
0.074VII 7.25! 0.0501 VI
1------
'-0_026I---V--11-7_00
I ------11-----
IV
0.0121
'-0_0181--IV--1-6_50
III
-0_018
'-0_023IV--116_00
1--
111
0.0561
VI
-----
i-0_0961--VII-11-7_00
III 1
0.0091
0.0211
IV II
6.00
------1------11-----
0.0111
III 11
6.50
------1------11-----
0.0331
V 11
6.50
5.75
------
0.0151
1------
IV
0.0121
III
-0_018
IV
0.0121
111
0.0561
VI
0.0101
III 1
0.0091
III 1
-0_0201--IV--I
-0_008I 1 --III I -I
6.00' 0.0101 III
----- I ------ I------
4.501 0.0051 II
6.251 0.0441 VI
----- I ------ I ------
I
LEND OF SEARCH- 45 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS.
THE ELSINORE FAULT IS CLOSEST TO THE SITE.
IS ABOUT 1.1 MILES AWAY.
RGEST MAXIMUM -CREDIBLE SITE ACCELERATION: 0.692 g
RGEST MAXIMUM -PROBABLE SITE ACCELERATION: 0.465 g
1
1
1
1
1
[1
1
I
1
TATE :
1
Friday, November 27, 1992
***************************************
* *
* E Q S E A R C H
* *
* Ver. 1.50
* *
* Licensed to: - GEOCON, INC. -
* *
***************************************
(Estimation of Peak Horizontal Acceleration
From California Earthquake Catalogs)
'EARCH PERFORMED FOR
James L. Brown
OB NUMBER: 4927-41-01
OB NAME: Temecula Tract No. 23172
,ITE COORDINATES:
LATITUDE: 33.48 N
LONGITUDE: 117.11 W
'YPE OF SEARCH: RADIUS
SEARCH RADIUS: 50 mi
LARCH MAGNITUDES: 5.0 TO 9.0
IrARCH DATES: 1800 TO 1989
ATTENUATION RELATION: JOYNER & BOORE (1982) Random - mean
' Soil Conditions: Not Used For This Attenuation Relation
COMPUTE PEAK HORIZONTAL ACCELERATION
tRTHQUAKE-DATA FILE USED: ALLQUAKE.DAT
FME PERIOD OF EXPOSURE FOR STATISTICAL COMPARISON: 50 years
I
L
i
I
Page 1
FILE1
LAT.
LONG.
DATE
1
TIME
1DEPTH
IQUAKE
SITE
ACC.
SITE
MM
APPROX.
DISTANCE
ODE
NORTH
WEST
(GMT)
(km)�
MAG.
mi
G
MGI I132.8001117.1001
------
33.0001117.300
-------
------------
15/25/18030
--------
12030
-----
------
---g---11NT_1------
- - -
G
133.7001117.9001
12/ 8/1812
0.0
115 0 001
0.0�
0.0
5.00
6.90
0.013
0.035
II11
V
47 [ 76]
48 [ 77]
I
133.0001117.0001
9/21/1856
730 0.01
MGI
134.000
117.500
12/16/1858
110
0.01
5.00
0.021
IV
34 [ 54]
G
134.100
116.700
2/ 7/1889
0 0.0
520 0.0
0.01
0.01
7.00
0.044
VI
42 [ 68]
G
133.400
116.300
2/ 9/1890
112
5.30
0.014
IV
49 [ 79]
133.800
00
17/15/1905
6 0.01
1225 0.0
0.01
6.30
0.026
V
47 [ 76]
GI
134.1 001117.300 001117.3001
12041
0.0
6.60
0.07711
EG
G
34.2001117.100
9/20/1907 9/20/1907
0.01
0.01
5.30
0.017
IV2/25/1899
44 [ 71]
G
33.7001117.400
4/11/1910 4/11/1910
154 0.01
0.01
6.00
0.020
IV
50 [ 80]
DMG
33.7001117.400
5/13/1910 5/13/1910
757 0.0
0.01
5.00
0.034
V
23 [ 36]
G
133.7001117.4001
5/15/1910
620 0.01
11547
0.01
5.00
0.034
V
23 [ 361
G
133.5001116.5001
0.0
0.01
6.00
0.057
VI
23 [ 36]
DMG 133.7501117.0001
9/30/1916
4/21/1918
211 0.01
1223225
0.01
5.00
0.019
IV
35 [ 57]
I 133.8001117.6001
4/22/1918
O
12115
0.01
6.80
0.103
VI11
20 [ 32]
G
33.750
117.000
6/ 6/1918
0.01
0.01
5.00
0.019
IV
36 [ 58]
33.200116.700
1/ 1/1920
2235
MGI 133.2001116.6001
10/12/1920 11748
0.0
0 01
5.00
0.0230
IV
30f,lG11 [ 49]
134
0001117.250
0.01
0.01
5.30
0.023
IV
35 [ 571
fG
G 134.1801116.9201
7/23/1923
1/16/1930
73026.01
02433.91
0.01
6.25
0.035
V
37 [ 59]
DMG
34.1801116.9201
1/16/1930
034 3.6
0.01
5.20
0.013
II11
50 [ 80]
G 134.1001116.8001
10/24/1935 11448
0.0
5.10
0.013
875]
G 133
4081116.261
3/25/1937 11649
7.6
0.01
5.10
0.014
IV11
46 [
G 133.6991117.5111
5/31/1938
1.81
10.01
6.00
0.021
IV
49 [ 79]
33.976
116.721
6/12/1944
83455.41
0
10.01
5.50
0.035
V
28 [ 44]
l'MG
G 133.9941116.7121
6/12/1944 1111636.01
1
1
1
G 133.9501116.8501
9/28/1946 1
10.01
5.30
1
0.018
1
IV
1
42 [ 68]
DMG 133.7101116.9251
9/23/1963
719 9.01
0.01
5.00
0.019
IV
36 [ 57]
IG 133.3431116.3461
S 133.5011116.5131
4/28/1969 1232042.91
1104738.51
20.01
5.80 1
1
0.021 1
1
IV 1
1
45 [ 72]
PAS 133.998�116.606i
2/25/1980
7/ 8/1986
13.61
5.50
0.026
V
34 [ 55]
LJ•ii 11111111
iia...6061
92044.Si
11.7
5.60 i
0.018 i
IV
46 [ 74]
ND OF SEARCH- 32 RECORDS FOUND
MPUTER TIME REQUIRED FOR EARTHQUAKE SEARCH: 5.4 minutes
XIMUM SITE ACCELERATION DURING TIME PERIOD 1800 TO 1989: 0.103g
OXIMUM SITE INTENSITY (MM) DURING TIME PERIOD 1800 TO 1989: VII
MAXIMUM MAGNITUDE ENCOUNTERED IN SEARCH
RAREST HISTORICAL EARTHQUAKE WAS ABOUT
NUMBER OF YEARS REPRESENTED BY SEARCH:
NU
7.00
19 MILES AWAY FROM SITE.
190 years
I
I
RESULTS OF PROBABILITY ANALYSES
---- ----------
-----------------
IME PERIOD OF SEARCH: 1800 TO 1989
ENGTH OF SEARCH TIME: 190 years
TENUATION RELATION: JOYNER & BOORE (1982) Random - mean
* TIME PERIOD OF EXPOSURE FOR PROBABILITY: 50 years
OBABILITY OF EXCEEDANCE FOR ACCELERATION
----------------------------------------
tNO.OF
C.'TIMES�
AVE
OCCUR.
RECURR.i
�INTERV.l
in
COMPUTED
in
PROBABILITY
OF EXCEEDANCE
g
�EXCED�
#/yr
years
10 5 r�
1
in
yrs
in
50 yrs
in
75
I
in
in
----
1O1�
.02
-----
32�
201
------I-------I----y-I----Yr
0.168
0.105
5.93810.0808�0.1550�0.8144
9.50010.0513
0.0999
-10---
0.6510
------
0.9998�1.0000�1.000010.9998
0.9948�0.9996�1.000010.9948
------
------I----yr
0.03
121
0.063
15.83310.03110.0612
0.468210.9575�0.9912�0.9982�0.9575
04
61 61
0.032
31.667
0.0157
0.03110.27080.7938�0.9064�0.9575�0.7938
O5�
3�
0.016
63.3330.007910.01570.14610.5459�0.6940�0.7938�0.5459
0.06
21
0.0111
95-00010.005210.010510.099910.409210.545910.651010.4092
071
081
2�
11
0.0111
0.0051190-00010.002610.005210.051310.231410.326110.409210.2314
95.00010.005210.010510.099910.409210.545910.651010.4092
091
11
0.0051190-00010.002610.005210.0513
10.231410.32611
0.409210.2314
0.101
11
0.0051190.00010.002610.005210.051310.231410.326110.409210.2314
-------------------------------------------------------
1
1
1
1
I
I
1
PROBABILITY OF EXCEEDANCE FOR MAGNITUDE
w--------------------------------------
NO.OF AVE. RECURR.
G.ITIMES OCCUR. INTERV.
IEXCEDI #/yr years
-- ----- -------------
5.001 321 0.1681 5.938
1501 141 0.0741 13.571
.001 101 0.0531 19.000
6.501 51 0.0261 38.000
00� 1� 0.0051 90.000
COMPUTED PROBABILITY OF EXCEEDANCE
in in in in in in in
D-5-yr--l-yr l -l0 -yr 1-50_yrI_75-yri100-yr i***_yr
10.080810.1550 0.814410.999811.000011.000010.9998
10.036210.071010.521410.974910.996010.999410.9749
10.026010.051310.409210.928010.980710.994810.9280
10.013110.026010.231410.731710.861110.928010.7317
0.002610.0052!0.0513!0.2314!0.3261!0.409210.2314
IGUTENBERG & RICHTER RECURRENCE RELATIONSHIP:
a -value= 1.717
value= 0.505
beta -value= 1.163
1 -
1
1
I
1
1
i-1
1
1
1
1
m I
CALIFORNIA
NMDA j
MONTEREY
/
ARIZ
NA
0
50 100
SCALE
A
�f
r xx
(Miles)
LOS ANGELES
x
o
EXPLANATION
® x
OM
= 8.0 +
SAN
DIEGO
0
M = 7.0-7.9
\
(D
M = 6.0-6.9
PACIFIC
\
D
M = 5.0-5.9
\
�
x
M = 4.0-4.9
OCEAN
\
SITE
LOCATION (+):
Latitude
— 33.4800 N
JOB NO.: 4127-41-01
Longitude
— 117.1100 w
HISTORICAL EARTHQUAKES 1800 TO 1989
1
1
1
1
1
1
1
LOG
N = 2.689 - 0.679M
100
10
z
v
f1'
1
z
w
0
0.1
w
m
Z)
+
z
>
0.01
g
Z)
U
0.001
0.0001 3.0
4.0
5.0 6.0 7.0 8.0 9.0
MAGNITUDE (M)
SEISMIC
RECURRENCE CURVE
HISTORICAL
EARTHQUAKES FROM 1800 TO 1989
Temecula Tract 23172
Project No. 04927-41-01
December 21, 1992
APPENDIX D
LIQUEFACTION ANALYSIS
Included herewith are the results of the liquefaction analysis. The analysis was performed
utilizing the computer program LIQUEFY2. The computer program utilizes procedures
suggested by Seed et al. (1985). The analysis incorporated information obtained from the
data from EQFAULT and EQSEARCH.
I
I
* L I Q U E F Y 2
* *
*******************
EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
LIQUEFACTION.CALCULATION NAME: 4927borl
' SOIL -PROFILE NAME: lborl
' GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
' SITE PEAK GROUND ACCELERATION: 0.300 g
K sigma BOUND: M
rd BOUND: M
' N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
11
* *
* L I Q U E F Y 2
* *
*******************
EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
LIQUEFACTION.CALCULATION NAME: 4927borl
' SOIL -PROFILE NAME: lborl
' GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
' SITE PEAK GROUND ACCELERATION: 0.300 g
K sigma BOUND: M
rd BOUND: M
' N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
11
I
' ------------
LIQUEFACTION
------------
-----------------------------
Seed and Others (1985] Method
1
' -----------------------------
ANALYSIS SUMMARY
PAGE
FIELD
1 N
SOIL'
CALL TOTAL EFF.
DEPTH'STRESSySTRESS�
CORR.'LIQUE.' 'INDUC.'LIQUE.
GRESS? r 1STRESSISAFETY
NO.!
(ft) i
(tsf)i
(tsf)1
1 N j(B/ft)1
RATI01 d
RATIO!FACTOR
1 '
0.25
0.013'
0.013
1
0.75
0.0381
0.038
'1
1
1.25
1.751
0.063
0.0881
0.063
0.088
@
1
2.251
0.1131
0.113
19
1
2.751
0.1381
0.138
'1
@ @
3.251
0.1631
0.163
@
1
3.751
0.1881
0.188
1
4.251
0.213
0.213
'1
19
4.751
0.2381
0.238
1 @
1
5':251
0.2631
0.263
�-
1
5.751
0.288
0.288
'2
2
6.251
6.751
0.314
0.3411
0.314
0.341
@
2
7.251
0.3691
0.369
@
2
7.751
0.3961
0.396
-
2
8.251
0.4241
0.424
1 @ @
2
8.751
0.4511
0.451
@
2
9.251
0.4791
0.479
9.75
0.5061
0.506
'2
3
10.251
0.534
0.526
@
3
1
10.751
0.561
0.537
1 @
1 @ @
11.25
0.5881
0.549
'3
3 1
11.751
0.6151
0.5601
1 @ @
3
12.251
0.6421
0.571
@ 1 @
3
12.751
0.6691
0.5831
1 @ 1
@
13.251
0.6961
0.5941
'3
3
13.751
0.7231
0.6061
1 @
3
14.251
0.750
0.617
'3
3
14.751
15.251
0.7771
0.804
0.6281
0.640
51
'
3
15.751
0.8311
0.651
@ @
3
16.251
0.8581
0.6631
0.167 0.9791
3 1
16.751
0.8851
0.6741
11.2421
3 117.251
0.167 0.978
0.9121
0.6851
6
6
3 1
17.751
0.9391
0.6971
'
3 !
18.25!
0.9661
0.708
ANALYSIS SUMMARY
PAGE
FIELD
1 N
'Est.D
r1
1
C 1cN1)60
CORR.'LIQUE.' 'INDUC.'LIQUE.
GRESS? r 1STRESSISAFETY
(B/ft)
1 (%)
1 N j(B/ft)1
RATI01 d
RATIO!FACTOR
i 19
i -
@
@
i @ i @
i @
' @ @
19
-
@
@
@ @
@
1 @ @
19
-
@
@
@ @
@
@ @
19
-
@
@
@ @
@
@ @
19
@
@
@ @
@
1 @ @
19
@
@
1
@
1 @
�-
@
@
@
19
@
@
@ @
@
@.@
19
-
@
@
@ @
@
@ @
19
-
@
@
@ @
1 @
1 @ @
19
@
@
@
@
@
1
-
1
1
1
1 @ @
9
1
51
1 @
@
1 @ 1 @
@
1@@
9
1
1 51
1
1 @
1 @
1 @ @
1 @@@
9
1
51
1
1 @
@
@ @
1 @
1 @ @
9
1
51
1
1 @
@
@ 1 @
@
@ @
9
1
51
1
1 @ 1
@
@ 1 @
1 @
1@@
9
1
51
1 @ 1
@
@ @
1 @
1@@
9
1
1 51
1 @ 1
@
@ @
1 @
1@@
9
51
'
i @ i
@
@ @
'
@
@ @
6
40
1.242'
7.5
0.167 0.9791
0.194
0.86
6
40
1
11.2421
7.5
0.167 0.978
0.199
0.84
6
6
40
40
11.2421
11.2421
7.5
0.167 0.977
0.2041
0.82
11.2421
7.5
0.167 0.976
0.209
0.80
6
6
40
40
11.2421
7.5
0.167 0.975
0.2131
0.79
11.2421
7.5
0.167 0.974
0.2181
0.77
6
40
7.5
0.167 0.972
0.2221
0.75
6
6
40
40
1.2421
11.2421
7.5
0.167 0.971
0.2261
0.74
6
40
11.2421
7.5
0.167 0.970
0.2301
0.73
6
40
11.2421
7.5
(
0.167 0.969
0.2341
0.72
6
40
11.2421
7.5
0.167 0.968
0.2371
0.71
6
1 40
11.2421
7.5
1
0.167 0.967
0.241
0.70
1
11.2421
7.5
1
0.16710.9661
0.2441
0.69
6
6
40
1 40
11.2421
7.5
1
0.16710.9651
0.2471
0.68
6
1 40
11.2421
7.5
1
0.16710.9641
0.2501
0.67
7.5
0.16710.9631
0.2531
0.66
6
1 40
!1.242!
7.5 !
0.167!0.961!
0.256!
0.66
p
1]
[1
[1
11
3
18.75
3
19.25
3
19.75
4
20.25
4
20.75
4
21.25
4
21.75
4
22.25
4
22.75
4
23.25
4
23.75
5
24.25
5
24.75
5
25.25
5
25.75
5
26.25
5
26.75
5
27.25.
5
27.75
5
28.25
5
28.751
5
29.25
5 1
29.75'
6 +
30.254
6 1
30.751
6
31.251
6" 1 31.751
0.993
0.720
6
1 40
'1.242'
7.5
' 0.167'0.960'
0.2581
0.65
1.0201
0.7311
6
40
11.2421
7.5
1 0.16710.9591
0.2611
0.64
1.0471
0.7421
6
40
,1.242,
7.5
, 0.16710.9581
0.2631
0.64
1.0744
0.7544
6
-
-
-
-
1.1011
0.7651
6
-
-
1.128
0.7771
6-
1.1551
0.7881
6
1
'
-
1.1821
0.7991
6
1
1.2091
0.8111
6
1 -
-
1.2361
0.8221
6
-
(
-
1.2631
0.8341
6
1 -
-
1.2901
0.845
9
45
�1.032
9.3
�� 0.1930.944�
0.281
0.69
1.3184
0.8581
9
45
11.0321
9.3
0.193 0.943
0.2831
0.68
1.3461
0.870
9
45
41.032
9.3
0.193 0.941
0.2841
0.68
1.3741
0.8831
9
4 45
11.0321
11.0321
9.3
0.193 0.939
0.2851
0.68
1.4024
1.4301
0.895
0.9071
9
9
45
11.032
9.3
0.193 0.937
0.2864
0.67
45
11.0321
9.3
0.1930-:9341
0.2871
0.67
1.4581
1.4861
0.9201
0.9324
9
9
45
11.0321
9.3
0.193 0.932
0.2881
0.67
1.5141
0.9451
9
45
41.0321
9.3
0.193 0.930
1
0.2894
0.67
1.5421
0.9571
9
45
1 45
11.0321
9.3
0.19340.9281
1
0.2901
0.67
1
11.0321
9.3
0.19310.9261
1
0.2911
0.66
1.5701
1.598
0.9691
0.982,
9
9
45
45
,1.032,
9.3
9.3
0.19 310.9231
0.193,0.921,
0.2921
0.66
1.626
0.994
24 1
72
10.989'
23.7 lInfin
0.9191
0.2921
6.29311nfin
0.66
1.6541
1.0071
24 1
1
72
10.9891
10.9891
23.7 11nfin
11nfin
10.9164
10.9131
0.29311nfin
1.6821
1.0191
24
72
23.7
0.29411nfin
1.7101
1.031,
24 ,
72
,0.989,
23.7 ,Infin
10. 101
0_294,Infin
*******************
* *
' * L I Q U E F Y 2
* *
*******************
EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
JOB NAME: Temecula Tract No. 23172
LIQUEFACTION CALCULATION NAME: 4927borl
SOIL -PROFILE NAME: lborl
' GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
' SITE PEAK GROUND ACCELERATION: 0.450 g
K sigma BOUND: M
rd BOUND: M
N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
J
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
7
rl
-----------------------------
LIQUEFACTION ANALYSIS SUMMARY
-----------------------------
-----------------------------
Seed and Others [1985] Method PAGE
11
----------------------------
' CALC. TOTAL EFF. 'FIELD Est.D ' ' CORR.'LIQUE.i INDUC. LIQUE.
SOILI DEPTHISTRESSiSTRESSi N 1 ri C i(N1)601STRESSlr ISTRESSISAFETY
NO., (ft) i (tsf)i (tsf)i(B/ft)i (�) i N i(B/ft)i RATIO' d i RATIOIFACTOR
1 0.25 0.013 0.013 19 - @ @ @ @ @ @ @
1 I 0.751 0.0381 0.0381 19 I @ 1 @ @ I @ 1 @ I @ @
' 1 1 1.251 0.0631 0.0631 19 I @ I @ @ I @ I @ I @ @
1 1 1.751 0.0881 0.0881 19 1 1 @ I @ I @ I @ I @ I @ @
1 I 2.251 0.1131 0.1131 19 I 1 @ I @ 1 @ I @ 1 @ 1 @ @
1 I 2.751 0.1381 0.1381 19 1 = I @ I @ I @ I @ I @ 1 @ @
1 I 3.251 0.1631 0.1631 19 I I @ 1 @ I @ 1 @ I @ I @ @
1 I 3.751 0.1881 0.1881 19 I @ I @ I @ I @ 1 @ I @ @
1 1 4.251 0.2131 0.2131 19 1 I @ @ I @ I @ I @ @ @
1 I 4.751 0.2381 0.2381 19 I 1 @ I @ I @ I @ 1 @ I @ @
1 I 5.251 0.2631 0.2631 19 1 I @ 1 @ I @ I @ I @ 1 @ @
1 1 5.751 0.2881 0.2881 19 I I @ I @ I @ 1 @ I @ 1 @ @
2 I 6.251 0.3141 0.3141 9 1 51 1 @ @ 1 @ I @ 1 @ 1 @ @
2 I 6.751 0.3411 0.3411 9 1 51 1 @ @ I @ I @ 1 @ 1 @ @
2 I 7.251 0.3691 0.3691 9 1 51 1 @ 1 @ 1 @ @ 1 @ I @ @
2 1 7.751 0.3961 0.3961 9 I 51 I@ I @ 1 @ I@ 1 @ I@@
2 I 8.251 0.4241 0.4241 9 I 51 I@ 1 @ I @ 1@ I @ 1@@
2 I 8.751 0.4511 0.4511 9 1 51 1@ I @ I @ I@ I @ I@@
2 I 9.251 0.4791 0.4791 9 1 51 I@ I @ 1 @ I@ I @ I@@
2 I 9.751 0.5061 0.5061 9 1 51 @ @ @ I @ 1 @ I @ @
3 1 10.251 0.5341 0.526+ 6 40 1.242 7.5 0.167 0.979 0.2911 0.58
3 110.751 0.5611 0.5371 6 I 40 11.2421 7.5 0.167 0.978 0.2991 0.56
'3 111.251 0.5881 0.5491 6 1 40 11.2421 7.5 10.16710.977 0.3061 0.55
3 111.751 0.6151 0.5601 6 I 40 11.2421 7.5 0.167 0.976 0.3131 0.54
3 112.251 0.6421 0.5711 6 1 40 11.2421 7.5 0.167 0.975 0.3201 0.52
3 112.751 0.6691 0.5831 6 I 40 11.2421 7.5 0.167 0.974 0.3271 0.51
3 113.251 0.6961 0.5941 6 1 40 11.2421 7.5 0.167 0.972 0.3331 0.50
3 113.751 0.7231 0.6061 6 I 40 11.2421 7.5 0.167 0.971 0.3391"0.49
3 1 14.251 0.7501 0.6171 6 1 40 11.2421 7.5 1 0.167 10.9701 0.3451 0.49
' 3 114.751 0.7771 0.6281 6 I 40 11.2421 7.5 1 0.167 0.969 0.3501 0.48
3 115.251 0.8041 0.6401 6 I 40 11.2421 7.5 1 0.167 0.968 0.3561 0.47
3 1 15.751 0.8311 0.6511 6 1 40 11.2421 7.5 1 0.16710.9671 0.3611 0.46
3 1 16.251 0.8581 0.6631 6 1 40 11.2421 7.5 1 0.16710.9661 0.3661 0.46
3 1 16.751 0.8851 0.6741 6 1 40 11.2421 7.5 1 0.16710.9651 0.3701 0.45
3 117.251 0.9121 0.6851 6 1 40 11.2421 7.5 1 0.16710.9641 0.3751 0.45
3 1 17.75 0.9391 0.6971 6 1 40 11.2421 7.5 0.16710.9631 0.379 0.44
1
I
u
'
3
3
18.25
18.75
0.966
0.993
0.708
0.720
6
6
1 40
1
'1.242'
11.2421
7.5
' 0.167'0.961'
1
0.383
0.44
3
( 19.25
1.020
0.731
40
11.242'
7.5
0.16710.9601
1
0.3871
0.43
3
19.75
1.047
0.742
6
6
40
40
!1.242�
7.5
7.5
0.16710.9591
0.16710.9581
0.3911
0.43
'
4
20.25
1.0741
0.754
6
��
0.3951
0.42
4
20.75
1.101)
0.765
6
4
21.25
1.128
0.7771
6
-
-
'
4
21.751
1.155
07881
6
_
4
22.25
1.182
0..7991
6
1
4
22.75
1.209
0.812
6
1
-
4
23.25
1.236
0.822
6
'
4
23.75
1.263
0.834
6
5
24.25
1.290+
0.845
9
�� 45
1.032
9.3 9.3
0.1930.944+
0.422
0.46
5
24.75
1.318
0.858
9
45
1.032
9.3 9.3
0.193�0.943�
0.424
0.46
'.
5
25.25
1.346
0.870
9
45
1.032
9.3 9.3
0.193�0.941�
0.426
0.45
5
25.75
1.374
0.883
9
45
1.032
9.3 9.3
0.193�0.939�
0.427
0.45
5
26.25
1.402
0.895
9
45
1.032
9.3 9.3
0.193�0.937�
0.429
0.45
5
26.75
1.430
0.907
9
45
1.032
9.3 9.3
0.193�0.934�
0.431
0.45
'
5
27.25
1.4581
0.920
9
I 45
1.032
9.3 9.3
( 0.193 0.932
0.432
0.45
5
5"28.25
27.75
1.486
1.5141
0.932
0.945
9
( 45
1
1.0321
11.0321
9.3
1 0.193 0.930
1
0.434
0.45
'
5 1
28.751
1.5421
0.9571
9
9
45
1 45
11.0321
9.3
9.3
0.19310.9281
1 0.193110.9261
0.4351
0.4361
0.44
5 1
29.25
1.5701
0.9691
1
11.0321
1
0.44
5
29.75
1.598
0.982
9
9
45
45
11.032i
9.3
9.3
0.1930.9231
0.4371
0.44
+
0.1930.921
0.439
0.44
'
6
30.25
1.626
0.994
24
72
X0.989
23.7
�Infin 0.919
0.439'Infin
6
30.751
1.6541
1.007
24
72
0.989
23.7 23.7
�Infin 0.9161
0.440lInfin
6
6 �
31.251
31.751
1.6821
1_710
1.019
1.031
24
24 1
72
72
0.989
10.989
23.7 23.7
�Infin 10.913
IInfin 10_91011
O'441�Infin
'
23.7
0.441lInfin
I
1
1
I
*******************
* *
* L I Q U E F Y 2
* *
*******************
EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
LIQUEFACTION CALCULATION NAME: 4927bor2
SOIL -PROFILE NAME: lbor2
' GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
' SITE PEAK GROUND ACCELERATION: 0.300 g
K sigma BOUND: M
rd BOUND:'M
' N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
I
1
-----------------------------
LIQUEFACTION ANALYSIS SUMMARY
-----------------------------
-----------------------------
'Seed and Others [1985] Method
1
[1
I
0.25
0.751
1.251
1.751
2.251
2.751
3.251
3.751
4.251
4.751
5.251
5.751
6.251
6.751
7.251
7.751
8.251
8.751
9.251
9.751
10.251
10.751
11.251
11.751
12.251
12.751
13.251
13.751
14.251
14.751
15.251
15.751
16.251
16.751
17.251
17.7511
0.016
0.049
0.081
0.114
0.146
0.179
0.211
0.244
0.276
0.309
0.341
0.373
0.404
0.436
0.467
0.498
0.529
0.559
0.589
0.619
0.649
0.679
0.709
0.739
0.769
0.799
0.829
0.859
0.889
0.921
0.9551
0.9891
1.0241
1.0581
1.0921
1.126
EFF. 'FIELD
'Est.D ' '
CORR.
STRESS
N
11
CALC.
TOTAL
(tsf)i(B/ft)i
SOILI
DEPTHISTRESS
N :(B/ft)
N0.11
(ft) i
(tsf)
0.016
30
[1
I
0.25
0.751
1.251
1.751
2.251
2.751
3.251
3.751
4.251
4.751
5.251
5.751
6.251
6.751
7.251
7.751
8.251
8.751
9.251
9.751
10.251
10.751
11.251
11.751
12.251
12.751
13.251
13.751
14.251
14.751
15.251
15.751
16.251
16.751
17.251
17.7511
0.016
0.049
0.081
0.114
0.146
0.179
0.211
0.244
0.276
0.309
0.341
0.373
0.404
0.436
0.467
0.498
0.529
0.559
0.589
0.619
0.649
0.679
0.709
0.739
0.769
0.799
0.829
0.859
0.889
0.921
0.9551
0.9891
1.0241
1.0581
1.0921
1.126
EFF. 'FIELD
'Est.D ' '
CORR.
STRESS
N
11
rig C i
(N1)60
(tsf)i(B/ft)i
N :(B/ft)
0.016
30
@
@
0.0491
30
I
I @
@
0.0811
30
I -
I @
I @
0.1141
30
1
I @
I @
0.1461
30
I -
I @
I @
0.1791
30
I
I @
I @
0.2111
30
1 -
I @
I @
0.2441
30
I -
I @
I @
0.'2761
30
I -
I @
I @
0.3091
30
I -
I @
I @
0.3411
30
I -
I @
I @
0.3731
11
1 57
1 @
1 @
0.4041
11
1 57
I @
I @
0.4361
11
1 57
1 @
1 @
0.4671
11
1 57
I @
I @
0.4981
11
1 57
1 @
1 @
0.5291
10
1 51
I @
I @
0.5591
10
1 51
1 @
1 @
0.5891
10
1 51
I @
I @
0.6191
10
51
@
@
0.641+
10
51
1.226
12.3
0.6551
10
1 51
11.2261
12.3
0.6701
10
1 51
11.2261
12.3
0.6841
10
1 51
11.2261
12.3
0.6991
10
1 51
11.2261
12.3
0.7131
10
1 51
1
112261
11..2261
123
0.7271
0.7421
10
51
1
11.2261
12..3
10
51
111.2261
12.3
0.75611
10
51
12.3
0.773
30
81
0.995
29.8
0.7911
30 1
81
10.9951
29.8 1
0.8101
30 1
81
10.9951
29.8 1
0.8291
30 1
81
10.9951
29.8 1
0.8471
30 1
81
10.9951
29.8 1
0.8661
30 1
81
10.9951
29.8 1
0.8851
30 1
81
!0.995!
29.8 1
PAGE
LIQUE.I 'INDUC.LIQUE.
I
,STRESS,,r ISTRESS ISAFETY
I RATIO� d ti RATIO!FACTOR
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ 1 @ 1 @ 1 @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
1 @ 1 @ 1 @ 1 @ @
I @ I @ I @ I @ @
1 @ 1 @ 1 @ 1 @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
I @ I @ I @ I @ @
0.182 0.9791 0.1931 0.94
1
0.182 0.978 0.1981 0.92
1
0.182 0.977 0.2021 0.91
1
0.182 0.976 0.2051 0.89
1 0.18210.9751 0.2091 0.87
i
0.18210 974 0.2131 0.86
1 0.18210.9721 0.2161 0.84
1 0.18210.9711 0.21911 0.83
11 0.182110.970; 0.22211 0.82
Infin 0.9690.225Infin
Infin 10.9681 0.228 Infin
Infin 10.9671 0.23011nfin
Infin 10.9661 0.23311nfin
Infin 10.9651 0.23511nfin
Infin 10.9641 0.23711nfin
Infin I0.963I 0.239!Infin
I
'
4
18.25
1.161
0.903
30
81
10.995
29.8
Infin
0.961
0.241
Infin
4
18.75
1.195
0.922
30
81
10.995
10.995
29.8
1Infin
1Infin
�0.960�
�0.959�
0.24311nfin
4
19.25
1.229
0.941
30
81
29.8
0.24411nfin
'
4
19.75
1.263
0.959
30
81
10.995
29.8
1Infin
�0.958�
0.24611nfin
4
20.25
1.298
0.978
30
81
0.995
29.8 29.8
1Infin
10.957
0.248�Infin
4
' 4
20.751
21.25
1.332
1.3661
0.997
1.015
30
30
81
10.995�
10.995�
29.8
Infin
1Infin
10.955
10.954
0.249�Infin
81
29.8
0.250�Infin
4
21.751
1.4001
1.0341
30
1 81
10.995
29.8
Infin
0.952
0.252 0.252�Infin
4
22.251
1.4351
1.0521
30
1 81
1
10.995
10.995
29.8
Infin
1Infin
0.951
10.949
0.253 0.253�Infin
4
22.751
1.4691
1.0711
30
81
29.8
0.254�Infin
4
23.25
1.5031
1.090
30
� 81
10.995�
29.8
1 Infin
1Infin
10.947�
0.255�Infin
4
23.75
1.537
1.108
30
81
0.995
29.8 29.8
1Infin
10.946
10.944
0.256�Infin
' 4
24.25
1.572
1.127
30
81
0.995
29.8 29.8
0.257�Infin
4
24.75
1.606
1.146
30
81
0.995
29.8 29.8
Infin
0.943
0.258 0.258�Infin
4
25.25
1.640
1.164
30
81
0.995
29.8 29.8
Infin
0.941
0.259 0.259�Infin
5
5
25.75
26.25
1.673
1.705
1.182
1.198
44
44
94
94
0.923
0.923
40.6 40.6
40.6 40.6
Infin
Infin
0.939
0.937
0.259 0.259�Infin
5
26.75
0.260 0.260�Infin
1.736
1.213
44
94
0.923
40.6 40.6
Infin
0.934
0.261 0.261�Infin
5
27.25
1.768
1.229
44
94
0.923
40.6 40.6
Infin
0.932
0.261 0.261�Infin
' 5
5
27.75
28.25
1.799
1.831
1.245
44
94
0.923
40.6 40.6
Infin
0.930
0.262 0.262�Infin
5
28.75
1.862
1.261
44
94
0.923
40.6 40.6
Infin
0.928
0.263 0.263�Infin
1.277
44
94
0.923
40.6 40.6
Infin
0.926
0.263 0.263�Infin
5
5
29.25
29.75
1.894
1.925
1.293
1.309
44
44
94
94
0.923
0.923
40.6 40.6Infin
40.6 40.6
Infin
0.923
0.264 0.264�Infin
0.921
0.264 0.264�Infin
5
6
30.25
30.75
1.957
1.989
1.325
44
94
0.923
40.6 40.6
Infin
0.919
0.265 0.265�Infin
6
31.25
2.024
1.342
1.361
52
52
97
0.842
43.8
Infin
0.916
0.265 0.265�Infin
97
0.842
43.8 43.8Infin
0.913
0.265 0.265�Infin
6
31.75
2.058
1.379
52
97 �0.842�
43.8Infin
0.910
0.265 0.265�Infin
6
32.25
2.092
1.398
52
97
0.842
43.8 43.8
Infin
0.907
0.265 0.265�Infin
6
32.75
2.126
1.417
52
97
0.842
43.8 43.8
Infin
0.904
0.265 0.265�Infin
6
33.25
2.161
1.435
52
97
0.842
43.8 43.8
Infin
0.902
0.265 0.265�Infin
6
33.75
2.195
1.454
52
1
97
10.8421
0.842
43.8 43.8
1Infin
Infin
10.8961
0.899
0.265 0.265�Infin
6
' 6 1
34.251
34.751
2.2291
2.2631
1.4731
1.4911
52
52 1
97
97 10.8421
43.8
43.8 1Infin
10.8931
0.26411nfin
6
35.251
2.2981
1.5101
52 1
10.8421
1Infin
10.8901
0.26411nfin
1
1
97
10.8421
43.8
1Infin
10.8861
0.26411nfin
6
i
35.751
2.3321
1.5291
52
97
43.8
0.2641Infin
6-
36 _25 �-
2.366 i
1.547
52
97 i
0.84 2 1
43 _8 i
Infin 10.882
0 _263 1
Infin
I
1
I
I
I
p
*******************
* *
* L I Q U E F Y 2
* *
*******************
' EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
'LIQUEFACTION CALCULATION NAME: 4927bor2
SOIL -PROFILE NAME: lbor2
GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
SITE PEAK GROUND ACCELERATION: 0.450 g
K sigma BOUND: M
rd BOUND: M
N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
F
-----------------------------
LIQUEFACTION ANALYSIS SUMMARY
-------------------=---------
-----------------------------
'Seed
11
and Others [1985] Method
PAGE
----------------------------
CALL.
SOIL'
DEPTH'STRESSiSTRESS'
TOTAL
EFF. FIELD
N
Est.D
C
CORR. LIQUE. INDUC.
iSTRESS'SAFETY
LIQUE.
r:i :(N1)60:STRESS:
r
NO.!
(ft) i
(tsf):
(tsf):(B/ft)I
($)
: N :(B/ft):
RATIO: d I
RATI01FACTOR
1
0.25
0.016
0.016'
30
' @
@
' @
@
@
@ @
1
0.75
0.049
0.049
30
@
@
@
@
@
@ @
1
1
1.25
0.0811
0.081
30
_
@
@
@
@
@
@ @
1
1.75
0.114
0.114
30
@
@
@
@
@
@ @
1
2.25
0.146
0.146
30
@
@
@
@
(
@
@ @
'1
2.75
0.179
0.179
30
_
@
@
@
@
@
@ @
1
3.25
0.211
0.211
30
@
@
@
@
@
@ @
1
3.751
0.244
0.244
30
@
@
@
@
@
@ @
1
4.25
0.276
0.2761
30
@
@
@
@
@
@ @
1
4.75
0.309
0.3091
30
@
@
@
@
@
@ @
1
5.25
0.341
0.3411
30
@
@
@
@
@
@ @
2
5.75
0.373
0.373
11
57
@
@
@
@
@
@ @
'2
6.25
0.404
0.404
11
57
@
@
@
@
@
@ @
2
6.75
0.436
0.436
11
57
@
@
@
@
@
@ @
2
7.25
0.467
0.467
11
57
@
@
@
@
@
@ @
2
7.75
0.498
0.498
11
57
@
@
@
@
@
@ @
3
8.25
0.529
0.529
10
51
@
@
@
@
@
@ @
3
8.75
0.5591
0.5591
10
1 51
1 @
1 @
I @
I @
@
I @ @
'
3
3
9.25
9.75
0.589
0.619
0.589
0.619
10
10
51
i 51
@
@
@
@
@
@
@
@
@
@
@ @
@ @
3 1
10.251
0.649
0641+
'1.226'
'
3
10.751
0.679
0..6551
10
10
51
11.226
12.3
0.182'0.979+
0.290
0.63
51
12.3
0.182
0.9781
0.296
0.62
'3
3
11.251
11.75
0.709
0.7391
0.6701
0.6841
10
1 51
1
11.226�
12.3
0.182
0.9771
0.302
0.60
10
51
1
1.226
12.3 12.3
1
0.1820.9761
0.308
0.59
3
12.25
12.75
0.7691
0.7991
0.6991
0.7131
10
51
1
11.2261
1.2261
12.3
1
0.182
0.975
0.314
0.58
'3
3
13.251
0.8291
0.7271
10
51
1
11.2261
12.3
1
0.18210.9741
0.3191
0.57
3
13.75
0.8591
0.7421
10
51
1
11.2261
12.3
1
0.18210.9721
0.3241
0.56
10
51
111.226
12.3
0.18210.97111
0.3291
0.56
3
14.25
0.889
0.756
10
51
X29.8
12.3
0.'18
.33 0.334
0.55
'4
14.751
0.921
0.773
30 'I
81
X0.995
Infin '0.969�10.338'Infin
�Infin
4
15.25
0.955
0.791
30
1
81
0.995
10.9951
29.8 29.8
lInfin
0.968
0.342 0.342�Infin
4
1
15.751
16.251
0.9891
1.0241
0.8101
0.8291
30
1
81
10.9951
29.8
10.9671
lInfin 10.9661
0.34511nfin
30
81
29.8
0.34911nfin
'4
4 1
1
16.751
1.0581
0.8471
30 1
1
81
10.9951
10.9951
29.8
lInfin 10.9651
lInfin 10.9641
0.35211nfin
4
4 1
17.251
17.751
1.0921
1.1261
0.8661
0.885
30
81
i0.995i
29.8
!Infin i0.963!
0.35611nfin
30
81
29.8
0.359!Infin
'
I
I
LJ
I
1
L
I
4
18.25
1.161
0.903
30
81
X0.995
4
18.751
1.1951
0.922
30
81
10.995
4
19.251
1.2291
0.941
30
81
0.995
4
19.751
1.263
0.9591
30
81
10.995
4
20.251
1.2981
0.9781
30
81
0.995
4
20.751
1.3321
0.9971
30
81
10.995
4
21.251
1.3661
1.0151
30
81
0.995
4
21.751
1.4001
1.0341
30
81
10.995
4
22.251
1.4351
1.0521
30
81
0.995
4
22.751
1.469
1.0711
30
81
10.995
4
23.251
1.5031
1.090
30
81
10.995
4
23.751
1.5371
1.1081
30
81
0.995
4
24.251
1.5721
1.127
30
81
10.995
4
24.751
1.6061
1.1461
30
81
10.995
4
25.251
1.6401
1.164
30
81
10.995
5
25.751
1.673
1.1821
44
94
10.923
5
26.251
1.7051
1.1981
44
94
0.923
5
26.751
1.7361
1:2131
44
94
10.923
5
27.251
1.7681
1.2291
44
94
10.923
5
27.751
1.7991
1.2451
44
94
10.923
5
28.251
1.831
1.2611
44
94
10.923
5
28.751
1.8621
1.2771
44
94
10.923
5
29.251
1.8941
1.2931
44
94
0.923
10.923
5
29.751
1.925
1.3091
44
94
5
30.251
1.9571
1.325
44
94
10.923
6
30.751
1.9891
1.3421
52
97
0.842
6
31.251
2.0241
1.3611
52
97
10.842
6
31.751
2.0581
1.3791
52
97
0.842
6
32.251
2.0921
1.398
52
97
10.842
6
32.751
2.1261
1.4171
52
97
10.842
10.842
6
33.251
2.1611
1.4351
52
97
6
1 33.751
2.1951
1.4541
52
97
10.842
1
1
6
34.251
1
2.2291
1.4731
52
97
1
0.842
6
34.751
2.2631
1.4911
52
97
0.842
6
1 35.251
2.2981
1.5101
52
1 97
10.842
6
135.751
2.3321
1.5291
52 1
97
10.842
6
---------------------------------------------
1 36.251
2.3661
1.5471
52 1
97
0.842
29.8 Infin 0.961 0.361 Infin
29.8 11nfin 10.9601 0.36411nfin
29.8 11nfin 10.9591 0.36711nfin
29.8 11nfin 10.9581 0.36911nfin
29.8 11nfin 10.9571 0.37111nfin
29.8 11nfin 10.9551 0.37311nfin
29.8 11nfin 10.9541 0.37511nfin
29.8 11nfin 10.9521 0.37711nfin
29.8 11nfin 10.9511 0.37911nfin
29.8 11nfin 10.9491 0.38111nfin
29.8 11nfin 10.9471 0.38211nfin
29.8 11nfin 10.9461 0.38411nfin
29.8 11nfin 10.9441 0.38511nfin
29.8 11nfin 10.9431 0.38711nfin
29.8 11nfin 10.9411 0.38811nfin
40.6 11nfin 10.9391 0.38911nfin
40.6 11nfin 10.9371 0.39011nfin
40.6 11nfin 10.9341 0.39111nfin
40.6 11nfin 10.9321 0.39211nfin
40.6 11nfin 10.9301 0.39311nfin
40.6 11nfin 10.9281 0.39411nfin
40.6 11nfin 10.9261 0.39511nfin
40.6 11nfin 10.9231 0.39611nfin
40.6 11nfin 10.9211 0.39611nfin
40.6 �Infin 10.9191 0.397�Infin
43.8 �Infin 10.9161 0.39711nfin
43.8 11nfin 10.9131 0.39711nfin
43.8 11nfin 10.9101 0.39711nfin
43.8 11nfin 10.9071 0.39711nfin
43.8 11nfin 10.9041 0.39711nfin
43.8 11nfin 10.9021 0.39711nfin
43.8 �Infin 10.8991 0.39711nfin
43.8 lInfin 10.8961 0.39711nfin
43.8 11nfin 10.8931 0.39611nfin
43.8 IInfin 10.8901 0.39611nfin
43.8 11nfin 10.8861 0.39511nfin
43.8 11nfin 10.8821 0.39411nfin
--------------
-------------------
*******************
* *
' * L I Q U E F Y 2
* *
*******************
EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
LIQUEFACTION CALCULATION NAME: 4927bor3
SOIL -PROFILE NAME: lbor3
GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
SITE PEAK GROUND ACCELERATION: 0.300 9
K sigma BOUND: M
rd BOUND: M
' N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
1
I
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
I
L]
L
11
I
I
' Seed
1
-----------------------------
LIQUEFACTION ANALYSIS SUMMARY
------------------------
and Others (1985] Method
CALC. TOTAL' EFF.
SOIL! DEPTH 1STRESSiSTRESSj
-NO.! (ft) i (tsf)l (tsf)
--+------+------+------+
1 0.25 0.016 0.016
1 0.75 0.049 0.049
1 1.25 0.081 0.081
1 1.75 0.114 0.114
1 2.251 0.146 0.146
1 2.75 0.1791 0.179
1 3.25 0.211 0.211
1 3.751 0.244 0.2441
2 4.25 0.273 0.273
2 4.75 0.299 0.299
2 5.25 0.324 0.324
2 5.75 0.350 0.350
2 6.25 0.376 0.376
2 6.75 0.402 0.402
2 7.25 0.427 0.427
2 7.75 0.453 0.453
2 8.25 0.479 0.479
2 8.75 0.505 0.5051
3 9.25 0.533 0.5331
3 9.75 0.564 0.564
3 10.25 0.595 0.587
3 10.75 0.626 0.603
3 11.25 0.657 0.618
3 11.75 0.688 0.633
3 12.25 0.719 0.649
3 1 12.751 0.7501 0.6641
3 1 13.25 0.7811 0.6801
3 13.75 0.8121 0.69511
'4 ' 14.25+ 0.843 0.710
4 14.75 0.874 0.726
4 15.25 0.905 0.7411
4 15.751 0.9361 0.7571
4 1 16.251 0.9671 0.7721
4 1 16.751 0.9981 0.7871
4 17.251 1.0291 0.8031
' 4 ! 17.751 1.060! 0.818
PAGE
FIELD 'Est.D i i
CORR.iLIQUE.i 'INDUC.'LIQUE.
ISTRESSISAFETY
N
r C i(N1)601STRESSi
r
(B/ft)','($)
i N l(B/ft)j
RATIOS d S
RATIO!FACTOR
30
-
i @ i
@
@ @
@
@ @
30
@
@
@ @
@
@ @
30
-
@
@
I @ I @ I
@
I @ @
30
@
@
I @ I @
@
I @ @
30
-
@
@
@ @
@
@ @
30
-
@ I
@
I @ I @
@
I @ @
30
-
@ (
@
I @ @
@
I @ @
30
-
@
@
I @ @
@
I @ @
11
-
@
@
I @ @ I
@
@ @
11
-
@
@
I @ @ I
@
I @ @
11
-
@ I
@
I @ I @ I
@
@ @
11
"
@
@
@ I @ I
@
@ @
11
-
@
@
I @ @ I
@
@ @
11
-
@
@
I @ I @ I
@
I @ @
11
@
@
@ @
@
@ @
11
@
@
I @ I @ I
@
@ @
11
-
@ I
@
I @ @ I
@
@ @
11
-
@ I
@
I @ I @ I
@
@ @
14
61
@ I
@
@ I @ I
@
I @ @
14
61
@ !
'1.244
@
! @ ! @ I
@
@ @
14
61
17.4
0.350 0.979+
0.1931
1.81
14 1
61
11.244
17.4
0.350 0.978
0.198
1.77
14 1
61
11.244
17.4
0.350 0.977
0.203
1.73
14 1
61
1.2441
17.4
1 0.350 0.976
0.207
1.70
14 1
61
11.2441
17.4
1 0.35010.9751
0.2111
1.66
14 1
1
61
11.2441
11.2441
17.4
1 0.35010.9741
1
0.2141
1.64
14
61
17.4
0.350110.9721
0.2181
1.61
14 !
61
!1.244!
17.4
! 0.350!0.971!
0.2211
1.58
18
65
1.078
19.4
Infin X0.970
0.225lInfin
�1.078�
�Infin �0.969�
18
65
�1.078�
19.4
�Infin �0.968�
0.228�Infin
18
1
65
11.0781
19.4
lInfin 10.9671
0.231�Infin
18
1
65
11.0781
19.4
lInfin 10.9661
0.233lInfin
18
1
65
11.0781
19.4
lInfin 10.9651
0.236lInfin
18
1
65
11.0781
19.4
lInfin 10.9641
0.238lInfin
18
!
65
!1.0781
19.4
!Infin !0.963!
0.241lInfin
18
65
19.4
0.243!Infin
I
1
1
1
[1
u
1
1
1
1
1
1
I
I
1
1
1
1
4
' 18.25
1.091
0.834
18
65
4
18.751
1.122
0.8491
18
65
4
19.251
1.1531
0.864
18
65
4
19.751
1.1841
0.8801
18
65
4
20.251
1.2151
0.8951
18
65
4
20751
1.2461
0.9111
18 1
65
4
21.. 251
1.2771
0.9261
18 1
65
4
21.75
1.308
0.9411
18
65
5
22.25
1.338
0.956
6
"
5
22.751
1.3681
0.9701
6
"
5
23.251
1.3971
0.984
6
"
5
23.751
1.4271
0.9981
6
5
24.251
1.4561
1.0121
6
1 "
5
1 24.751
1
1.4861
1.0261
6
1 -
5
25.251
1.5151
1.0391
6
1 "
5
1 25.751
1.5451
1.0531
6
6
1 26.251
1
1.574+
1.067
12
48
6
26.751
1
1.6031
1.0801
12
1 48
6
27.251
1
1.6311
1.0931
12
1 48
6
1
27.751
1.6601
1.1061
12
1 48
6
1
28.251
1.6891
1.1201
12
1 48
6
1
28.751
1.7181
1.1331
12
1 48
6
1
29.251
1.7461
1.1461
12
1 48
6
1
29.751
1.7751
1.1591
12
1 48
6
1
30.251
1.8041
1.1721
12
1 48
6
1
30.75)
1.8331
1.1851
12
48
6
1
31.251
1.8611
1.1981
12
1 48
6
1
31.751
1.8901
1.2121
12 1
48
6
1
32.251
1.9191
1.2251
12 1
48
6
1
32.751
1.9481
1.2381
12 1
48
6
1
33.251
1.9761
1.2511
12 1
48
6
1
33751
2.0051
1.2641
12 1
48
6
34..251
2.0341
1.2771
12 1
48
6 i
34_75
2.063
---------------------------
1.290
12
48
X1.078 19.4 Infin X0.961
11.0781 19.4 11nfin 10.960
11.0781 19.4 11nfin 10.959
11.0781 19.4 11nfin 10.958
11.0781 19.4 11nfin 10.957
11.0781 19.4 11nfin 10.955
11.0781 19.4 11nfin 10.954
1.078 19.4Infin X0.952
0.882' 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.8821 10.6
0.882-i- 10_ 6-
0.245
0.248
0.250
0.251
0.253
0.255
0.256
0.258
Infin
Infin
Infin
Infin
Infin
Infin
Infin
Infin
' - -
I--
1 0.205 0.937+ 0.2691 0.76
1
0.205 0.934 0.2701 0.76
0.205 0.932 0.2711 0.75
0.204 0.930 0.2721 0.75
0.204 0.928 0.2731 0.75
0.204 0.926 0.2741 0.75
0.204 0.923 0.2741 0.74
0.204 0.921 0.2751 0.74
0.204 0.919 0.2761 0.74
0.204 0.916 0.2761 0.74
0.204 0.913 0.2771 0.74
0.204 0.910 0.2771 0.74
0.204 0.907 0.2771 0.73
0.20310 9041 0.2781 0.73
0.20310.9021 0.2781 0.73
0.20310.8991 0.2781 0.73
0.203108961 02781 0.73
0- 203 0. _893 0. _278 [ 0_73
*
' * L I Q U E F Y 2
* *
*******************
' EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
' LIQUEFACTION CALCULATION NAME: 4927bor3
SOIL -PROFILE NAME: lbor3
GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
SITE PEAK GROUND ACCELERATION: 0.450 g
'K sigma BOUND: M
rd BOUND: M
' N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
1
11
I
-----------------------------
LIQUEFACTION ANALYSISSUMMARY
-----------------------------
'Seed and Others [1985] Method
1
-----------------------------
C
u
I
1
PAGE
SOIL
' CALC.'
i DEPTH+STRESS�STRESSII
TOTAL' EFF. 1FIELD 'Est.D 1 1 CORR.iLIQUE.j INDUC.
N C
LIQUE.
d
r1I i,(Nl)601ISTRESSII
r �STRESS
iSAFETY
NO.i
(ft) i
(tsf)i
(tsf)i(B/ft)l
o
(�)
i N i(B/ft)i
RATIO1 d
RATI01FACTOR
----+------+
---------
-----I------+------+-----+------+------+-----+------+------
1
' 0.25'
1
0.016
0.016
30
' @
@
@ ' @
@
@ @
1
0.751
1
0.049
0.049
30
-
@
@
@ @
@
@ @
1
1.251
1
0.0811
0.0811
30
@
@
@ @
@
@ @
1
1.751
1
0.1141
0.1141
30
@
@
@ @
@
@ @
1
2.251
1
0.146
0.146
30
@
@
@ @
@
@ @
1
2.751
0.179
0.179
30
@
@
@ @
@
@ @
1
3.251
0.211
0.2111
30
@
@
@ @
@
@ @
1
3.751
0.2441
0.2441
30
@
@
@ @
@
@ @
2
4.25
(
0.273)
0.2731
11
@
@
@ @
@
@ @
2
4.751
0.2991
0.299
11
-
@
@
@ @
@
@ @
2
5.251
0.3241
0.3241
11
1
_
@
@
1
@ @
@
@ @
2
5.751
0.3501
0.3501
11
1
-
@
@
@ @
@
@ @
2
6.251
0.3761
0.3761
11
1
-
@
@
@ @
@
@ @
2
6.751
0.4021
0.4021
11
@
1
@
1
@ @
1 1 1
@
@ @
1
2
7.251
1
0.4271
0.4271
11
1
@
1
@
1
@ @
1
@
@ @
2
7.751
1
0.4531
04531
11
1
@
1
@
1
@ 1 @ 1
1 1
@
1 @ @
1
2
8.251
1
0.4791
0..4791
11
1
@
1
@
@ @
@
@ @
2
8.751
1
0.5051
0.5051
11
_
@
1 @
1 @ 1 @ 1
@
1 @ @
3
9.251
0.5331
0533
14 1
61
1 @
1 @
1 @ 1 @ 1
@
1 @ @
3'1
9.751
1
0.5641
0..5641
14
61
1 @
@
1 @ @ 1
@
1 @ @
3
10.251
0.5951
0.5871
14
61
1.244'
17.4
' 0.350 0.9791
0.2901
1.21
3
1
1 10.751
0.6261
0.6031
14 1
61
11.2441
17.4
1 0.350 0.978
0.2971
1.18
3
1
11.25)
0.6571
0.6181
14 1
61
11.2441
17.4
1 0.350 0.977
0.3041
1.15
3
11.751
0.6881
0.6331
14 1
61
11.2441
17.4
1 0.35010.9761
0.3101
1.13
3 1
12.251
0.7191
06491
14 1
61
11.2441
17.4
1 0.35010.9751
0.3161
1.11
3 1
12.751
0.7501
0..6641
14 1
61
11.2441
17.4
1 0.35010.9741
0.3221
1.09
3 1
13.251
0.7811
0.6801
14 1
61
11.2441
17.4
1 0.3500.9721
0.3271
1.07
3 1
1
13.751
0.8121
0.6951
14 1
61
11.2441
X19.4
17.4
1 0.350 10.9711
0.3321
1.06
4
14.25
0.843
0.710
18
65
1.078
'Infin '0.970
0.337
Infin
4 1
1
14.751
0.8741
0.7261
18 1
1
65
11.0781
11.0781
19.4
11nfin 10.9691
11nfin 10.9681
0.34111nfin
4
4 1
15.251
15.751
0.9051
0.9361
0.7411
0.7571
18
1
65
11.0781
19.4
11nfin 10.9671
0.34611nfin
4 1
16.251
0.9671
0.7721
18
18 1
65
11.0781
19.4
11nfin 10.9661
0.35011nfin
1
65
11.0781
19.4
11nfin 10.9651
0.35411nfin
4'1
16.751
0.9981
0.7871
18
65
19.4
0.35811nfin
4 1
17.251
1.0291
0.8031
18 1
65
11.0781
19.4
11nfin 10.9641
0.36111nfin
4 1
17.751
1.0601
0.818
18
65
11.0781
19.4
Infin 10.9631
0.36511nfin
I
1
1
65
65
65
65
65
65
65
65
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
�1.07819.4 Infin 0.961 0.368 Infin
11.0781 19.4 11nfin 10.9601 0.37111nfin
11.0781 19.4 IInfin 10.9591 0.37411nfin
11.0781 19.4 11nfin 10.9581 0.37711nfin
11.0781 19.4 11nfin 10.9571 0.38011nfin
11.0781 19.4 11nfin 10.9551 0.38211nfin
11.0781 19.4 11nfin 10.9541 0.38511nfin
1.0781 19.4 11nfin10.952 0.387IInfin
--
I
0.882
0.8821
10.6
0.20510.937+
1
0.404
0.8821
10.6
4
18.25
1
1.091
0.834
18
0.20510.9321
1
4
18.751
1
1.1221
0.8491
18 1
4
19.251
1
1.1531
0.8641
18 1
'
4
19.751
(
1.1841
0.8801
18 1
0.8821
4
20.251
1
1.2151
0.8951
18 1
'
4
4
20.751
1 21.251
1
1.2461
1.2771
0.9111
0.9261
18 1
18 1
0.204
1
4
21.751
1.3081
0.9411
18
0.916
5
i 22.25
1.338
0.956
6
'
5
1 22.751
1
1.3681
0.9701
6 1
0.8821
5
23.251
1.3971
0.9841
6 1
10.6 1
5
1 23.751
1
14271
0.9981
6 1
0.203I
0.8991
24.251
1
1..4561
1.0121
6 1
'5
5
24.751
1
1.4861
1.0261
6 1
0 _418
5
25.251
1
1.5151
1.0391
6 1
'5
6
25.751
1 26.25+
1
1.5451
1.574f
1.0531
1.067
6
12
6
26.751
1
1.6031
1.0801
12 1
6
27.251
1.6311
1.0931
12 1
6
1 27.751
1.6601
1.1061
12 1
6
1
28.251
1.6891
1.1201
12 1
6
28.751
1.7181
1.1331
12 1
'6
1
6 1
1
29.251
29.751
1.7461
1:7751
1.1461
1.1591
12 1
12 1
6
1
30.251
1.8041
1.1721
12 1
6
30.751
1.8331
1.1851
12 1
'6
1
1
31.251
1.8611
1.1981
12 1
6
31.751
1.8901
1.2121
12 1
6 1
1
32.251
1.9191
1.2251
12 1
32.751
1.9481
1.2381
12 1
'6
6 133.251
1
1.9761
1.2511
12 1
6
1
33.751
2.0051
1.2641
12 1
6
6 1
34.251
34.75
2.0341
2.0631
1.2771
1.2901
12 1
---
------
------
-----
12-
--
1
65
65
65
65
65
65
65
65
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
�1.07819.4 Infin 0.961 0.368 Infin
11.0781 19.4 11nfin 10.9601 0.37111nfin
11.0781 19.4 IInfin 10.9591 0.37411nfin
11.0781 19.4 11nfin 10.9581 0.37711nfin
11.0781 19.4 11nfin 10.9571 0.38011nfin
11.0781 19.4 11nfin 10.9551 0.38211nfin
11.0781 19.4 11nfin 10.9541 0.38511nfin
1.0781 19.4 11nfin10.952 0.387IInfin
--
I
0.882
0.8821
10.6
0.20510.937+
1
0.404
0.8821
10.6
0.20510.9341
1
0.406
0.8821
10.6
10.6
0.20510.9321
1
0.407
0.8821
0.20410.9301
1
0.408
0.8821
10.6
10.6
0.204
1
0.928
0.409
0.8821
0.204
1
0.926
0.411
0.8821
10.6
0.204
1
0.923
0.412
0.8821
10.6
10.6
0.204
1
0.921
0.413
0.8821
10.6
0.204
1
0.919
0.414
0.8821
0.204
1
0.916
0.414
0.8821
10.6
10.6
0.204
1
0.913
0.415
0.8821
10.6
0.204
1 0.204
0.910
0.907
0.415
0.4161
0.8821
10.6 1
0.20310.9041
0.4161
0.8821
10.6 1
0.20310.9021
0.4171
0.8821
10.6 1
0.203I
0.8991
0.4171
0.8821
10.6 1
0.203
0.8961
0.4171
0_ 882 1, 10_
6
0_ 203 -1-0.-89
3
0 _418
0.51
0.51
0.50
0.50
0.50
0.50
0.50
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0.49
0_49
I
*******************
* *
* L I Q U E F Y 2
* *
*******************
' EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
' LIQUEFACTION CALCULATION NAME: 4927bor4
SOIL -PROFILE NAME: lbor4
' GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
' SITE PEAK GROUND ACCELERATION: 0.300 g
K sigma BOUND: M
rd BOUND: M
N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
1
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
1
I
[1
I
I
11
1
1
[1
E
-----------------------------
LIQUEFACTION ANALYSIS SUMMARY
-----------------------------
-----------------------------
Seed and Others [1985] Method PAGE
1
-----------------------------
SOIL'CALC ' TOTAL' EFF. ''FIELD 'Est.D ' CORR.'LIQUE.' INDUC. LIQUE.
1 DEPTHfSTRESSiSTRESSI' N 'i o r'i C 'I(N1)6011STRESSI r ySTRESSISAFETY
NO., (ft) ' (tsf)' (tsf)'(B/ft)' (�) ' N '(B/ft)' RATIO' d ' RATIO'FACTOR
----+------+------+-------------+------+-----+------+----- -+-----+------+------
1 0.25 0.016 0.016 30 @ @ @ @ @ i @ @
1 0.751 0.0491 0.0491 30 @ @ @ @ @ @ @
1 1.251 0.0811 0.0811 30 @ @ @ @ @ @ @
1 1.751 0.1141 0.1141 30 @ @ @ @ @ @ @
1 2.251 0.1461 0.1461 30 @ @ @ @ @ @ @
1 2.751 0.1791 0.179 30 @ @ @ @ @ @ @
1 3.251 0.2111 0.2111 30 @ @ @ @ @ @ @
1 3.751 0.2441 0.2441 30 @ @ @ @ @ @ @
1 4.251 0.2761 0.2761 30 @ @ @ @ @ @ @
1 4.751 0.3091 0.3091 30 @ @ @ @ @ @ @
1 5.251 0.3411 0.341 30 @ @ @ @ @ @ @
1 5.751 0.3741 0.3741 3'0 @ @ @ @ @ @ @
2 1 6.251 0.4031 0.4031 7 1 43 @ 1 @ 1 @ 1 @ 1 @ 1 @ @
2 6.751 0.428 0.4281 7 1 43 @ @ @ @ @ @ @
2 7.251 0.4531 0.4531 7 43 @ @ @ @ @ @ @
2 1 7.751 0.478 0.4781 7 1 43 @ 1 @ 1 @ 1 @ 1 @ 1 @ @
2 1 8.251 0.5031 0.5031 7 1 43 @ 1 @ 1 @ 1 @ 1 @ 1 @ @
2 1 8.751 0.5281 0.5281 7 1 43 1@ 1 @ 1 @ 1@ 1 @ 1@@
2 1 9.251 0.5531 0.5531 7 1 43 1@ 1 @ 1 @ 1@ 1 @ 1@@
2 1 9.751 0.5781 0.5781 7 143 1 1 1 1 1 1
2 ' 10.251 0.6031 0.595 7 43 1.266 8@9 �� 0.1@84 0.979 0.1931 0.95
2 1 10.751 0.6281 0.6041 7 1 43 11.2661 8.9 1 0.184 0.978 0.1981 0.93
2 1 11.251 0.6531 0.6141 7 1 43 11.2661 8.9 1 0.184 0.977 0.2031 0.91
2 1 11.751 0.6781 0.6231 7 1 43 11.2661 8.9 1 0.184 0.976 0.2071 0.89
2 1 12.251 0.7031 0.6321 7 1 43 11.2661 8.9 1 0.184 0.975 0.2111 0.87
2 1 12.751 0.7281 0.6421 7 1 43 11.2661 8.9 1 0.184 0.974 0.2151 0.85
2 1 13.251 0.7531 0.6511 7 1 43 11.2661 8.9 1 0.184 0.972 0.2191 0.84
2 1 13.751 0.7781 0.661 7 1 43 11.2661 8.9 1 0.184 0.971 0.2231 0.82
2 1 14.251 0.8031 0.6701 7 1 43 11.2661 8.9 1 0.184 0.970 0.2271 0.81
2 1 14.751 0.8281 0.6791 7 43 11.2661 8.9 1 0.18410.9691 0.2301 0.80
2 1 15.251 0.8531 0.6891 7 1 43 11.2661 8.9 1 0.184 0.968 0.2341 0.79
2 1 15.751 0.8781 0.6981 7 1 43 11.2661 8.9 1 0.18410.9671 0.2371 0.78
3 1 16.251 0.9071 0.7121 12 1 52 11.0441 12.5 1 0.15610.9661 0.2401 0.65
3 1 16.751 0.9401 0.7291 12 1 52 11.0441 12.5 1 0.15610.9651 0.2421 0.64
3 1 17.251 0.9731 0.7471 12 1 52 11.0441 12.5 1 0.15610.9641 0.2451 0.64
3 117.751 1.0061 0.7651 12 1 52 11.0441 12.5 1 0.15610.9631 0.2471 0.63
i i i i i i i i
I
1
11
11
3 ! 18.25! 1.040
3
18.75
1.073
3
1 19.251
1.106
3
1 19.751
1.139
3
1 20.251
1.173
3
1 20.751
1.206
3
1 21.251
1.239
3
1 21.751
1.272
3
1 22.251
1.306
3
1 22.751
1.339
3
1 23.251
1.372
3
1 23.751
1.405
3
1 24.251
1.439
3
1 24.751
1.472
3
1 25.251
1.505
3
1 25.751
1.538
4
1 26.251
1.569
4
1 26.751
1.596
4
1 27.251
1.623
4
1 27.751
1.650
4
1 28.251
1.677
4 '
28.751
1.704
4 1
29.251"-1.731
46 10.974
4 1
29.751
1.758
4 1
30.251
1.785
4 1
30.751
1.812
5
131.251
1.839
5
1 31.751
1.868
5
1 32.251
1.897
5
1 32.751
1.926
5
( 33.251
1.954
5 '
33.751
1.983
5 1
34.251
2.012
5 1
34.751
2.041
6 1
35.25+
2.069
6 1
35.751
2.096
6 1
36.251
2.123
6 1 36.751 2.150
0.782'
12
52 1.044
0.800!
12
1 52 11.044
0.8181
12
1 52 11.044
0.8351
12
1 52 11.044
1 11.044
0.8531
12
52
0.8711
12
1 52 11.044
0.8881
12
1 52 11.044
'
11.044
0.9061
12
52
0.9231
12
1 52 11.044
0.9411
12
! 52 11.044
1 11.044
0.9591
12
52
0.9761
12 1
52 11.044
'
11.044
0.9941
12
52
1.0121
12 !
52 11.044
1.0291
12 1
52 11.044
1.0471
12 1
52 11.044
1.0621
10 1
46 10.974
1.0731
10 1
'
46 10.974
10.974
1.0841
10
46
1.0961
10 1
46 10.974
1.1071
10 1
46 10.974
1.119!
10 '
46 10.974
1.1301
10 1
46 10.974
1.1411
10 1
46 10.974
1.1531
10 146
10.974
1.1641
10 1
46 10.974
1.176,
5
"
1.1901
5
1 - I
1.2031
5
1 -
1.2161
5
I - I
1.2291
5
1 - I -
1.2421
5
1 - I -
1.2551
5
I - I -
1.2681
5
I - I
1.2811
10
44 0.874
1.2921
10 1
44 10.874
1.3041
10 144
10.874
1.3151
10 1
44 10.874
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
0.156!0.961
0.156'0.960
0.156 0.959
0.156 0.958
0.156 0.957
0.156 0.955
0.156 0.954
0.156 0.952
0.156 0.951
0.156 0.949
0.156 0.947
0.156 0.946
0.156 0.944
0.156 0.943
0.156 10.941
0.155 '0.939
0.121 0.937
0.121 0.934
0.121 0.932
0.120 0.930
0.120 0.928
0.120 0.926
0.12010.923
0.12010.921
0.12010 919
0.1201 916
i -
- I -
0.249
0.2511
0.2531
0.2551
0.2571
0.2581
0.2591
0.2611
0.2621
0.2631
0.2641
0.2661
0.2671
0.2681
0 ,,258.
1
0`. 269
0.2701
0.2711
0.2721
0.2731
0.2741
0.2751
02761
0.. 2771
0.2771
0.278
8.7
0.1070.8901
-
0.280
8.7
1 0.107 0.8861
0.2801
1 '
8.7
8_ 7
0.10710.882
1 0_ 1071 0
.
02801
"
_8781
0.- 28011
0.63
0.62
0.62
0.61
0.61
0.60
0.60
0.60
0.59
0.59
0.59
0.59
0.58
0.58
0.58
0.58
0.45
0.45
0.44
0.44
0.44
0.44
0.44
0.44
0.43
0_43
0.38
0.38
0.38
0.38
I
1
* *
* L I Q U E F Y 2
*******************
' EMPIRICAL PREDICTION OF
EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL
' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992
' JOB NAME: Temecula Tract No. 23172
' LIQUEFACTION CALCULATION NAME: 4927bor4
SOIL -PROFILE NAME: lbor4
' GROUND WATER DEPTH: 10.0 ft
DESIGN EARTHQUAKE MAGNITUDE: 6.75
SITE PEAK GROUND ACCELERATION: 0.450 g
K sigma BOUND: M
' rd BOUND: M
N60 CORRECTION: 1.00
FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS
' NOTE: Relative density values listed below are estimated using equations of
Giuliani and Nicoll (1982).
11
I
I
-------------
LIQUEFACTION ANALYSIS SUMMARY
-----------------------------
-----------------------------
1 Seed and Others (1985] Method
1
-----------------------------
1
1
1
I
1
PAGE
CALC.' TOTAL' EFF. 'FIELD 'Est.D 1 CORR.'LIQUE.l INDUC. LIQUE.
SOIL' DEPTH'STRESSySTRESS� N ri C i(N1)60�STRESSi r ISTRESS ISAFETY
NO.! (ft) (tsf)i (tsf)i(B/ft)i (%) N :(B/ft)' RATIO' d y RATIO11FACTOR
1 0.25 0.016 0.016 30 @ @ @ @ @ i @ @
1 1 0.75 0.049 0.049 30 ' - ' @ ' @ ' @ I @ I @ I @ @
1 ' 1.25 0.081 0.081 30 ' @ ' @ I @ I @ 1 @ I @ @
1 ' 1.75 0.114 0.114 30 ' I @ ' @ ( @ 1 @ I @ 1 @ @
1 ' 2.25 0.146 0.146 30 ' ' @ I @ I @ I @ I @ I @ @
1 ' 2.75 0.179 0.179 30 ' ' @ @ 1 @ I @ I @ 1 @ @
1 ' 3.251 0.2111 0.2111 30 ' ' @ ' @ I @ I @ 1 @ I @ @
1 1 3.75 0.244 0.2441 30 I - I @ ' @ I @ I @ I @ I @ @
1 1 4.25 0.276 0.276 30 ' ' @ ' @ I @ I @ 1 @ I @ @
1 ' 4.75 0.3091 0.309 30 ' ' @ @ I @ 1 @ 1 @ I @ @
1 ' 5.251 0.3411 0.341 30 ' ' @ I @ I @ I @ I @ I @ @
1 ' 5.75 0.3741 0.3741 30 1 I @ ' @ 1 @ I @ 1 @ I @ @
2 ' 6.25 0.4031 0.403 7 1 43 1 @ ' @ ' @ 1 @ 1 @ 1 @ @
2 1 6.751 0.4281 0.4281 7 1 43 1@ I @ I @ 1@ 1 @ I@@
2 1 7.251 0.4531 0.4531 7 1 43 1@ I @ 1 @ I@ I @ I@@
2 1 7.751 0.4781 0.4781 7 1 43 I @ 1 @ I @ 1 @ 1 @ @ @
2 1 8.251 0.5031 0.503 7 1 43 I@ 1 @ I @ 1@ 1 @ 1@@
2 1 8.751 0.5281 0.5281 7 1 43 1@ I @ I @ 1@ I @ I@@
2 1 9.251 0.5531 0.5531 7 1 43 1@ I @ I @ I@ I @ I@@
2 1 9.751 0.5781 0.578 7 43 @ @ @ @ I @ I @ @
2 10.251 0.6031 0.595+ 7 43 X1.266 8.9 0.1840.979� 0.2901 0.63
2 1 10.751 0.6281 0.6041 7 1 43 11.2661 8.9 1 0.184 0.978 0.2971 0.62
2 1 11.251 0.6531 0.6141 7 1 43 11.2661 8.9 1 0.184 0.977 0.3041 0.61
2 1 11.751 0.6781 0.6231 7 ' 43 11.2661 8.9 1 0.184 0.976 0.3101 0.59
2 1 12.251 0.7031 0.6321 7 1 43 11.2661 8.9 1 0.18410.975 0.3171 0.58
2 1 12.75 0.7281 0.6421 7 1 43 11.2661 8.9 1 0.184 0.974 0.3231 0.57
2 ' 13.251 0.753 0.6511 7 ' 43 11.266 8.9 ' 0.184 0.972 0.3291 0.56
2 1 13.751 0.7781 0.6611 7 1 43 11.2661 8.9 1 0.184 0.971 0.3341 0.55
2 1 14.251 0.8031 0.6701 7 1 43 11.2661 8.9 1 0.184 0.970 0.340 0.54
2 1 14.751 0.828 0.6791 7 ' 43 11.2661 8.9 1 0.184 0.969 0.3451 0.53
2 ' 15.251 0.8531 0.689 7 ' 43 11.2661 8.9 1 0.1840.9681 0.3511 0.52
2 1 15.751 0.8781 0.6981 7 1 43 11.2661 8.9 1 0.18410.9671 0.3561 0.52
3 1 16.251 0.9071 0.7121 12 1 52 11.0441 12.5 1 0.15610.9661 0.3601 0.43
3 1 16.751 0.9401 0.7291 12 1 52 11.0441 12.5 1 0.15610.9651 03641 0.43
3 1 17.251 0.9731 0.7471 12 1 52 11.0441 12.5 1 0.15610.9641 0.. 3 67 1 0.42
3 117.751 1.0061 0.7651 12 1 52 11.0441 12.5 ' 0.15610.963 0.3711 0.42
1 i 1 i
I
1
1
1
1
1
1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
6
6
6
--6
18.25 1.040 0.782
18.751 1.0731 0.8001
19.251 1.1061 0.8181
1 19.751 1.1391 0.8351
20.251 1.1731 0.8531
20.751 1.2061 0.871
1 21.251 1.2391 0.8881
21.751 1.2721 0.9061
22.251 1.3061 0.9231
22.751 1.339 0.941
23.251 1.3721 0.9591
23.751 1.4051 0.9761
24.251 1.4391 0.994
24.751 1.472 1.012
25.251 1.5051 1.0291
25.751 1.5381 1.0471
26.251 1.569 1.062
26.751 1.5961 1.0731
27.25 1.623 1.0841
27.751 1.6501 1.0961
28.251 1.6771 1.1071
28.751 1.7041 1.1194
29.251 1.7311 1.1301
29.751 1.7581 1.141
30.251 1.785 1.1531
30.751 1.8121 1.1641
31.254 1.8394 1.1764
31.751 1.8681 1.190
32.251 1.8971 1.203
32.75 1.9261 1.2161
33.251 1.9541 1.2291
33.751 1.983 1.242
34.251 2.012 1.255
34.751 2.041 1.2681
35.251 2.069+ 1281+
35.751 2.0961 1..2921
36.254 2.1231 1.3044
36.75 2.150 1.315
---------------------
12
52 X1.044
12.5
12
52 11.0441
12.5
12
12
52 11.0441
11.0441
12.5
12
52
11.0441
12.5
12
52
11.0441
12.5
12
52
11.0441
12.5
12
52
52 11.0441
12.5
12
11.0441
12.5
12
52
52 11.0441
12.5
12
11.0441
12.5
12
52
52 11.0441
12.5
12
52 11.0441
12.5
0.121
11.0441
12.5
12
52
12.5
12
52 11.0441
12.5
12
52 11.0441
12.5
10
46 10.9741
9.7
10
46 10.9741
9.7
10
46 10.9741
9.7
10
46 10.9741
9.7
10
46 10.9741
9.7
10
46 10.9741
9.7
10 1
10 1
46 10.9741
10.9741
9.7
1
46
10.9741
9.7
10
46
9.7
1046
0.9741
9.7
5
1 -
5
- -
-
5
-
5
-
5
-
10
44 1'0.874 1'
8.7
10
44 10.8741
8.7
10 1
44 10.8741
8.7
10
44 10.874]
8.7
0.156'0.961
0.156
0.960
0.156
0.959
0.156
0.958
0.156
0.957
0.156
0.955
0.156
0.954
0.156
0.952
0.156
0.951
0.156
0.949
0.156
0.947
0.156
0.946
0.156
0.944
0.156
0.943
0.156
0.941
0.155
0.939
0.121
0.937
0.121
0.934
0.121
0.932
0.120
0.930
0.12010
928
0.12010.926
0.12010.923
0.12010.921
0.12010.919
0.120;0.916
0.374
0.377
0.380
0.382
0.385
0.387
0.389
0.391
0.393
0.395
0.397
0.398
0.400
0.401
0.402
0.403
0.405
0.406
0.408
0.410
0.411
0.412
0.414
0.415
0.416
0.417
0.107 0.8901 0.420
0.10710.8861 0.420
0.10710.8821 0.420
0.107110.878 0.420
--------------------
0.42
0.41
0.41
0.41
0.41
0.40
0.40
0.40
0.40
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.30
0.30
0.30
0.29
0.29
0.29
0.29
0.29
0.29
0_29
0.26
0.26
0.26
0.26
.... ....
....
Y• , -'i
t Vp
I
1
I
1
[_
l�
1
1
LJI
1
1
L
1
1
1
1
1
I
I
Project No. 04927-41-01
December 21, 1992
APPENDIX E
TEST FILL PROGRAM
A test fill program was established to evaluate in situ densification of the alluvial materials
as an alternative to remedial grading consisting of removal and recompaction. Observations
of the soil types encountered during drilling, gradation analyses and observations during the
course of the implementation of the test fill program indicated that the predominant site
soils consist of silty sands and poorly graded sands. These type of materials typically
respond well to in situ densification with heavy vibratory effort.
Three test fills approximately 100 X 200 feet in dimension were constructed; one at each
end of the site and one in the central portion. The approximate locations of the test fills
are depicted on Figures 2 and 3. Each of the areas was cleared of vegetation, irrigated from
the surface using sprinkler systems and compactive effort utilizing a DynaPac CA25
equipped with a sheepsfoot drum was applied. Prior to irrigation, test pits were excavated
to obtain samples and to observe the in situ moisture content. In-place dry densities and
moisture content test results indicated that prior to irrigating the upper 5 feet of material
varied in moisture content from 1.3 percent to 14.2 percent with densities varying from
93.6 pcf to 100.1 pcf.
After moisture conditioning, test pits were excavated to determine the depth of moisture
penetration and in-place density tests were performed for purposes of comparison after
I
I
1
[1
F
11
I_
1
1
1
Project No. 04927-41-01
December 21, 1992
APPENDIX E (Continued)
TEST FILL PROGRAM
application of compactive effort. Observations of the test pits and moisture contents
determined from the in-place density tests indicated a significant increase in moisture to
depths on the order of 5 feet. Vibratory compactive effort was then applied in equal
increments of 2 roller passes. After each increment of roller passes compaction tests were
performed to evaluate the increase in density. The maximum increase in density was
achieved after 6 passes with the roller. The compaction test results indicate that the in-
place density increase varied from approximately 2 pcf to 12 pcf. The results of the in-place
density tests are presented on Table C-1.
The results of the test fill program indicate a moderate increase in density and significant
increase in moisture content from in situ densification. Based upon the results of the test
fill program we recommend that the site soils are suitable for in situ densification. In
general, for areas where fill soils are in excess of 5 feet in thickness, no removal and
recompaction is necessary, and in situ densification is appropriate. Where fills are less than
5 feet, removal and recompaction to a depth of at least 5 feet below proposed finish grade
is recommended. Within the areas where removals are made the base of the
overexcavations should be compacted the same as the areas of in situ densification. The
results of the test fill program indicate that benefits associated with deep moisture
conditioning and surface compaction include:
1. A significant increase in moisture content. Our experience with similar
soils and interpretation of laboratory consolidation tests indicate that
I
1
1
1
1
I
1
Project No. 04927-41-01
December 21, 1992
APPENDIX E (Continued)
TEST FILL PROGRAM
the site soils are susceptible to compression when inundated with water.
The depth of moisture penetration observed and a review of the in-place
densities obtained from the borings (See Boring Logs -Appendix A)
indicate that for depths greater than 5 feet the soils contain a relatively
high moisture content. Introduction of water to the upper dry soils
thereby significantly reduces the compression and hydro -compression
potential of the materials. Settlement from fill loads should occur
relatively quickly and can be monitored by the settlement monitoring
program recommended previously.
2. The majority of the area suitable for in situ densification is adjacent to
t State Highway 79. Within this area the groundwater is relatively high
and could impact normal removal and recompaction with conventional
grading equipment.
1
I
1
1
1
1
3. The increase in density both in areas of in situ densification and
removal and recompaction would provide for a thicker compacted fill
mat beneath finish grade elevations. The thicker compacted fill mat
would provide a thicker non liquefiable surface layer thereby reducing
the site liquefaction potential.
The approximate areas recommended for in situ densification, and removal and
recompaction combined with vibratory densification at the base of the overexcavations are
depicted on Figures 2 and 3.
I
' Project No. 04927-41-01
' December 21, 1992
1
1
1
1
1
1
1
APPENDIX E (Continued)
TEST FILL PROGRAM
TABLE C-1
SUMMARY OF TEST FILL COMPACTION TEST RESULTS :.
-
Location
Depth
`' (ft)
Before Comp,active Effort
After Compactive Effort
Comments
-
Dry Density
(ef)
Moisture
Content
(%)
Dry
Density
(cf)
Moisture
Content
%
Test Fill 1
1.0
93.6
7.4
Prior to adding water
Test Fill 1
3.5
--
1.3
--
Prior to adding water
Test Fill 1
1.5
99.6
17.6
102.3
4.6'
Test Fill 1
3.5
96.8
4.6
98.9
6.0
Test Fill 2
0.5
92.5
19.3
97.8
21.7
Test Fill 2
3.0
90.6
25.2
98.7
8.2'
Test Fill 2
4.0
94.5
5.0
98.3
5.7
Test Fill 3
1.0
100.1
4.3
--
--
Prior to adding water
Test Fill 3
4.0
--
5.0
Prior to adding water
Test Fill 3
5.5
--
14.2
--
--
Prior to adding water
Test Fill 3
0.5
92.7
17.7
105.2
15.5
Test Fill 3
2.0
93.9
20.5
99.8
19.9
Test Fill 3
3.0
91.5
24.1
92.7
18.7
Test Fill 3
4.0
91.8
23.7
98.8
16.7
Material changed from a silty sand to a poorly graded clean sand
Note: Density values shown are after compactive effort for 6 roller passes
I ol�
....... ...
rV
I't X'
APPENDIX F
RECOMMENDED GRADING SPECIFICATIONS
FOR
TENTATIVE TRACT 23172
VAIL RANCH COMMERCIAL SITE
TEMECULA, CALIFORNIA
PROJECT NO. 04927-41-01
RECOMMENDED GRADING SPECIFICATIONS
1 GENERAL
L1 These Recommended Grading Specifications shall be used in conjunction with the
' Geotechnical Report for the project prepared by Geocon Incorporated. The
recommendations contained in the text of the Geotechnical Report are a part of
the earthwork and grading specifications and shall supersede the provisions
' contained hereinafter in the case of conflict.
12 Prior to the commencement of grading, a geotechnical consultant (Consultant)
shall be employed for the purpose of observing earthwork procedures and testing
the fills for substantial conformance with the recommendations of the Geotech-
nical Report and these specifications. It will be necessary that the Consultant
provide adequate testing and observation services so that he may determine that,
in his opinion, the work was performed in substantial conformance with these
specifications. It shall be the responsibility of the Contractor to assist the
' Consultant and keep him apprised of work schedules and changes so that
personnel may be scheduled accordingly.
' 13 It shallbe the sole responsibility of the Contractor to provide adequate equipment
and methods to accomplish the work in accordance with applicable grading codes
' or agency ordinances, these specifications and the approved grading plans. If, in
the opinion of the Consultant, unsatisfactory conditions such as questionable soil
materials, poor moisture condition, inadequate compaction, adverse weather, and
' so forth, result in a quality of work not in conformance with these specifications,
the Consultant will be empowered to reject the work and recommend to the
Owner that construction be stopped until the unacceptable conditions are
corrected.
2 DEFINITIONS
2.1 Owner shall refer to the owner of the property or the entity on whose behalf the
' grading work is being performed and who has contracted with the Contractor to
have grading performed.
22 Contractor shall refer to the Contractor performing the site grading work.
' 23 Civil Engineer or Engineer of Work shall refer to the California licensed Civil
Engineer or consulting firm responsible for preparation of the grading plaits,
surveying and verifying as -graded topography.
I (A
2.4 Consultant shall refer to the soil engineering and engineering ' geology
tconsulting firm retained to provide geotechnical services for the project.
25 Soil Engineer shall refer to a California licensed Civil Engineer retained by the
Owner, who is experienced in the practice of geotechnical engineering. The Soil
Engineer shall be responsible for having qualified representatives on-site to
' observe and test the Contractor's work for conformance with these specifications.
2.6 Engineering Geologist shall refer to a California licensed Engineering Geologist
' retained by the Crooner to provide geologic observations and recommendations
during the site grading.
' 2.7 Geotechnical Report shall refer to a soil report (including all addendums) which
may include a geologic reconnaissance or geologic investigation that was prepared
specifically for the development of the project for which these Recommended
Grading Specifications are intended to apply.
3 MATERIALS
3.1 Materials for compacted fill shall consist of any soil excavated from the cut areas
' or imported to the site that, in the opinion of the Consultant, is suitable for use
in construction of fills. In general, fill materials can be classified as soil fills,
' soil -rock fids or rock fills, as defined below.
3.1.1 Soil fills are defined as fills containing no rocks or hard lumps greater than
12 inches in maximum dimension and containing at least 40 percent by
weight of material smaller than 3/4 inch in size.
' 3.12 Soil -rock fills are defined as fills containing no rocks or hard lumps larger
than 4 feet in maximum dimension and containing a sufficient matrix of soil
fill to allow for proper compaction of soil fill around the rock fragments or
' hard lumps as specified in Paragraph 6.2. Oversize rock is defined as
material greater than 12 inches.
3.13 Rock fills are defined as fills containing no rocks or hard lumps larger than
3 feet in maximum dimension and containing little or no fines. Fines are
' defined as material smaller than 3/4 inch in maximum dimension. The
quantity of fines shall be less than approximately 20 percent of the rock fill
quantity.
' 32 Material of a perishable, spongy, or otherwise unsuitable nature as determined by
the Consultant shall not be used in fills.
.1
33 Materials used for fill, either imported or on-site, shall not contain hazardous
' materials as defined by the California Code of Regulations, Title 22, Division 4,
Chapter 30, Articles 9 and 10; 40CFR; and any other applicable local, state or
federal laws. The Consultant shall not be responsible for the identification or
analysis of the potential presence of hazardous materials. However, if
observations, odors or soil discoloration cause Consultant to suspect the presence
' of hazardous materials, the Consultant may request from the Owner the
termination of grading operations within the affected area. Prior to resuming
grading operations, the Owner shall provide a written report to the Consultant
' indicating that the suspected materials are not hazardous as defined by applicable
laws and regulations.
' 3.4 The outer 15 feet of soil -rock fill slopes, measured horizontally, should be
composed of properly compacted soil fill materials approved by the Consultant.
Rock fill may extend to the slope face, provided that the slope is not steeper than
' 2:1 (horizontal. -vertical) and a soil layer no thicker than 12 inches is track -walked
onto the face for landscaping purposes. This procedure may be utilized, provided
' it is acceptable to the governing agency, Owner and Consultant.
3.5 Representative samples of soil materials to be used for fill shall be tested in the
' laboratory by the Consultant to determine the maximum density, optimum
moisture content, and, where appropriate, shearstrength, expansion, and gradation
characteristics of the soil.
' 3.6 During grading, soil or groundwater conditions other than those identified in the
Geotechnical Report may be encountered by the Contractor. The Consultant shall
' be notified immediately to evaluate the significance of the unanticipated condition.
' 4 CLEARING AND PREPARING AREAS TO BE FILLED
4.1 Areas to be excavated and filled shall be cleared and grubbed. Clearing shall
' consist of complete removal above the ground surface of trees, stumps, brush,
vegetation, man-made structures and similar debris. Grubbing shall consist of
' removal of stumps, roots, buried logs and other unsuitable material and shall be
performed in areas to be graded. Roots and other projections exceeding 1-1/2
inches in diameter shall be removed to a depth of 3 feet below the surface of the
ground. Borrow areas shall be grubbed to the extent necessary to provide suitable
fill materials.
42 Any asphalt pavement material removed during clearing operations should be
properly disposed at an approved off-site facility. Concrete fragments which are
free of reinforcing steel may be placed in fills, provided they are placed in
' accordance with Section 62 or 63 of this document.
I
' R1[ as Fccc..cmaw
er vii a XLR
' aorc . 1U ec eCH
a aM
uaaawMID1.0.
"93 .Q aCCJM
' NOTES: (1) Key width eBe should be a minimum of 10 feet wide, or
sufficiently wide to permit complete coverage with the
compaction equipment used. The base of the key should be
' graded horizontal, or inclined slightly into the natural slope.
(2) The outside of the bottom key should be below the topsoil
or unsuitable surficial material and at least 2 feet into dense
formational material Where hard rock is exposed in the bottom
of the key, the depth and configuration of the key may be
modified as approved by the Consultant
1
• z
NO SCALA
43 After clearing and grubbing of organic matter or other unsuitable material, loose
or porous soils shall be removed to the depth recommended in the Geotechnical
'
Report The depth of removal and compaction shall be observed and approved
by a representative of the Consultant The exposed surface shall then be plowed
'
or scarified to a minimum depth of 6 inches and until the surface is free from
uneven features that would tend to prevent uniform compaction by the equipment
to be used. '
'
4.4 Where the slope ratio of the original ground is steeper than 6:1
'
(horizontaiNertical), or where recommended by the Consultant, the original
ground should be benched in accordance with the following illustration.
'
TYPICAL BENCBING DETAIL
FINISH GRADE
EXIST
•. � ING GROUND \\�
/A --FINISH SLOPE SUAFdC$
' R1[ as Fccc..cmaw
er vii a XLR
' aorc . 1U ec eCH
a aM
uaaawMID1.0.
"93 .Q aCCJM
' NOTES: (1) Key width eBe should be a minimum of 10 feet wide, or
sufficiently wide to permit complete coverage with the
compaction equipment used. The base of the key should be
' graded horizontal, or inclined slightly into the natural slope.
(2) The outside of the bottom key should be below the topsoil
or unsuitable surficial material and at least 2 feet into dense
formational material Where hard rock is exposed in the bottom
of the key, the depth and configuration of the key may be
modified as approved by the Consultant
1
• z
NO SCALA
I
I
4.5 After areas to receive fill have been cleared, plowed or scarified, the surface
r should be disced or bladed by the Contractor until it is uniform and free from
large clods. The area should then be moisture conditioned to achieve the proper
moisture content, and compacted as recommended in Section 6.0 of these
specifications.
r5 COMPACTION EQUIPMENT
5.1 Compaction of soil or soil -rock fill shall be accomplished by sheepsfoot or
' segmented -steel wheeled rollers, vibratory rollers, multiple -wheel pneumatic -tired
rollers, or other types of acceptable compaction equipment. Equipment shall be
of such a design that it will be capable of compacting the soil or soil -rock fill to the
rspecified relative compaction at the specified moisture content.
5.2 Compaction of rock fills shall be performed in accordance with Section 63.
r
6 PLACING, SPREADING AND COMPACTION OF FILL MATERIAL
r6.1 Soil fill, as defined in Paragraph 3.1.1, shall be placed by the Contractor in
accordance with the following recommendations:
r6.1.1 Soil fill shall be placed by the Contractor in layers that, when compacted,
should generally not exceed 8 inches. Each layer shall be spread evenly and
r shall be thoroughly mixed during spreading to obtain uniformity of material
and moisture in each layer. The entire fill shall be constructed as a unit in
nearly level lifts. Rock materials greater than 12 inches in maximum
dimension shall be placed in accordance with Section 6.2 or 63 of these
specifications.
6.12 In general, the soil fill shall be compacted at a moisture content at or above
' the optimum moisture content as determined by ASTM D1557-78.
6.13 When the moisture content of soil fill is below that specified by the
' Consultant, water shall be added by the Contractor until the moisture
content is in the range specified.
' 6.1.4 When the moisture content of the soil fill is above the range specified by
the Consultant or too wet to achieve proper compaction, the soil fill shall
be aerated by the Contractor by blading/mixing, or other satisfactory
rmethods until the moisture content is within the range specified.
6.15 After each layer has been placed, mixed, and spread evenly, it shall be
r thoroughly compacted by the Contractor to a relative compaction of at least
90 percent. Relative compaction is defined as the ratio (expressed in
percent) of the in-place dry density of the compacted fill to the maximum
r laboratory dry density as determined in accordance with ASTM D1557-78.
Compaction shall be continuous over the entire area, and compaction
r
62.2
Rocks or rock fragments up to 4 feet in maximum dimension may either be
individually placed or placed in windrows. Under certain conditions, rocks
equipment shall make sufficient passes so that the specified minimum
density has been achieved throughout the entire filL
6.1.6 Soils having an Expansion Index of greater than 50 may be used in fills if
using similar methods. The acceptability of placing rock materials greater
placed at least 3 feet below finish pad grade and should be compacted at
a moisture content generally 2 to 4 percent greater than the optimum
moisture content for the materiaL
'
6.1.7 Properly compacted soil fill shall extend to the design surface of fill slopes.
'
To achieve proper compaction, it is recommended that fill slopes be over-
built by at least 3 feet and then cut to the design grade. This procedure is
6 11
considered preferable to track -walking of slopes, as described in the
following paragraph.
'
'
6.1.8 As an alternative to over -building of slopes, slope faces may be back -rolled
with a heavy-duty loaded sheepsfoot or vibratory roller at maximum 4 -foot
For windrow placement, the rocks should be placed in trenches excavated
fill height intervals. Upon completion, slopes should then be track -walked
with a D-8 dozer or similar equipment, such that a dozer track covers all
slope surfaces at least twice.
'
6.2 Soil -rock fill, as defined in Paragraph 3.1.2, shall be placed by the Contractor in
accordance with the following recommendations:
'6.2.1
Rocks larger than 12 inches but less than 4 feet in maximum dimension
Equivalent of 30 or greater and should be compacted by flooding.
may be incorporated into the compacted soil fill, but shall be limited to the
area measured 15 feet minimum horizontally from the slope face and 5 feet
below finish grade or 3 feet below the deepest utility, whichever is deeper.
62.2
Rocks or rock fragments up to 4 feet in maximum dimension may either be
individually placed or placed in windrows. Under certain conditions, rocks
or rock fragments up to 10 feet in maximum dimension may be placed
using similar methods. The acceptability of placing rock materials greater
'
than 4 feet in maximum dimension shall be evaluated during grading, as
specific cases arise and shall be approved by the Consultant prior to
placement.
'
6 11
For individual placement, sufficient space shall be provided between rocks
to allow for passage of compaction equipment.
'
62.4
For windrow placement, the rocks should be placed in trenches excavated
in properly compacted soil fill. Trenches should be approximately 5 feet
wide and 4 feet deep in maximum dimension. The voids around and
beneath rocks should be filled with approved granular soil having a Sand
Equivalent of 30 or greater and should be compacted by flooding.
Windrows may also be placed utilizing an "open -face" method in lieu of the
trench procedure, however, this method should first be approved by the
Consultant
625
Windrows should generally be parallel to each other and may be placed
either parallel to or perpendicular to the face of the slope depending on the
I
11
1
1
11
1
site geometry. The minimum horizontal spacing for windrows shall be
12 feet center -to -center with a 5 -foot stagger or offset from lower courses
to next overlying course. The minimum vertical spacing between windrow
courses shall be 2 feet from the top of a lower windrow to the bottom of
the next higher windrow.
k
62.6 All rock placement, fill placement and flooding of approved granular soil
in the windrows must be continuously observed by the Consultant or his
representative.
63 Rock fills, as defined in Section 3.13, shall be placed by the Contractor in
accordance with the following recommendations:
63.1 The base of the rock fill shall be placed on a sloping surface (minimum
slope of 2 percent, maximum slope of 5 percent). The surface shall slope
toward suitable subdrainage outlet facilities. The rock fills shall be provided
with subdrains during construction so that a hydrostatic pressure buildup
does not develop. The subdrains shall be permanently connected to
controlled drainage facilities to control post -construction infiltration of
water.
632 Rock fills shall be placed in lifts not exceeding 3 feet. Placement shall be
by rock trucks traversing previously placed lifts and dumping at the edge of
the currently placed lift. Spreading of the rock fill shall be by dozer to
facilitate searing of the rock. The rock BE shall be watered heavily during
placement. Watering shall consist of water trucks traversing in front of the
current rock lift face and spraying water continuously during rock
placement. Compaction equipment with compactive energy comparable to
or greater than that of a 20 -ton steel vibratory roller or other compaction
equipment providing suitable energy to achieve the required compaction or
deflection as recommended in Paragraph 63.3 shall be utilized. The number
of passes to be made will be determined as described in Paragraph 6.33.
Once a rock fill lift has been covered with soil fill, no additional rock fill
lifts will be permitted over the soil ML
633 Plate bearing tests, in accordance with ASTM D1196-64, may be performed
in both the compacted soil fill and in the rock fill to aid in determining the
number of passes of the compaction equipment to be performed. If
performed, a minimum of three plate bearing tests shall be performed in
the properly compacted soil fill (minimum relative compaction of 90
percent). Plate bearing tests shall then be performed on areas of rock fill
having two passes, four passes and six passes of the compaction equipment,
respectively. The number of passes required for the rock fill shall be
determined by comparing the results of the plate bearing tests for the soil
fill and the rock fill and by evaluating the deflection variation with number
of passes. The required number of passes of the compaction equipment
will be performed as necessary until the plate bearing deflections are equal
to or less than that determined for the properly compacted soil fill. In no
case will the required number of passes be less than two.
I
' 7
I
1
63.4 A representative of the Consultant shall be present during rock fill
operations to verify that the minimum number of "passes" have been
obtained, that water is being properly applied and that specified procedures
are being followed. The actual number of plate bearing tests will be
determined by the Consultant during grading. In general, at least one test
should be performed for each approximately 5,000 to 10,OOQ cubic yards of
rock fill placed.
63.5 Test pits shall be excavated by the Contractor so that the Consultant can
state that, in his opinion, sufficient water is present and that voids between
large rocks are properly filled with smaller rock material In-place density
testing will not be required in the rock frills.
63.6 To reduce the potential for "piping" of fines into the rock fill from overlying
soil fill material, a 2 -foot layer of graded filter material shall be placed
above the uppermost lift of rock fill. The need to place graded filter
material below the rock should be determined by the Consultant prior to
commencing ,grading. The gradation of the graded filter material will be
determined at the time the rock fill is being excavated. Materials typical of
the rock fill should be submitted to the Consultant in a timely manner, to
allow design of the graded filter prior to the commencement of rock fill
placement.
63.7 All rock fill placement shall be continuously observed during placement by
representatives of the Consultant.
OBSERVATION AND TESTING
7.1 The Consultant shall be the Owners representative to observe and perform tests
during clearing, grubbing, filling and compaction operations. In general, no more
than 2 feet in vertical elevation of soil or soil -rock frill shall be placed without at
least one field density test being performed within that interval. In addition, a
minimum of one field density test shall be performed for every 2,000 cubic yards
of soil or soil -rock fill placed and compacted.
7.2 The Consultant shall perform random field density tests of the compacted soil or
soil -rock fill to provide a basis for expressing an opinion as to whether the all
material is compacted as specified. Density tests shall be performed in the
compacted materials below any disturbed surface. When these tests indicate that
the density of any layer of fill or portion thereof is below that specified, the
particular layer or areas represented by the test shall be reworked until the
specified density has been achieved.
73 During placement of rock fill, the Consultant shall verify that the minimum
number of passes have been obtained per the criteria discussed in Section 633.
The Consultant shall request the excavation of observation pits and may perform
plate bearing tests on the placed rock fills. The observation pits Will be excavated
to provide a basis for expressing an opinion as to whether the rock fill is properly
seated and sufficient moisture has been applied to the material- If performed,
1
A
I
I
I
LJI
I
I
[_1
I'll
I
11'
I
I
I
I
plate bearing tests will be performed randomly on the surface of the most -recently
placed lift Plate bearing tests will be performed to provide a basis for expressing
an opinion as to whether the rock fill is adequately seated. The maximum
deflection in the rock fill determined in Section 633 shall be less than the
maximum deflection of the properly compacted soil fill. When any of the above
criteria indicate that a layer of rock fill or any portion thereof is below that
specified, the affected layer or area shall be reworked until the rock fill has been
adequately seated and sufficient moisture applied.
7.4 A settlement monitoring program designed by the Consultant may be conducted
in areas of rock frill placement The specific design of the monitoring program
shall be as recommended in the Conclusions and Recommendations section of the
project Geotechnical Report or in the final report of testing and observation
services performed during grading.
7.5 The Consultant shall observe the placement of subdrains, to verify that the
drainage devices have been placed and constructed in substantial conformance
with project specifications.
7.6 Testing procedures shall conform to the following Standards as appropriate:
7.6.1 Soil and Soil -Rock Fills:
7.6.1.1 Field Density Test, ASTM D1556-82, Density of Soil In -Place By
the Sand -Cone Method.
7.6.12 Field Density Test, Nuclear Method, ASTM D2922-81, Density of
Soil and Soil Aggregate In -Place by Nuclear Methods (Shallow
Depth).
7.6.13 Laboratory Compaction Test, ASTM D1557-78, Moisture -Density
Relations of Soils and Soil Aggregate Mixtures Using 10 -Pound
Hammer and 18 -Inch Drop.
7.6.1.4 Expansion Index Test, Uniform Building Code Standard 29-2,
Expansion Index Test.
7.62 Rock Fills:
7.6.2.1 Field Plate Bearing Test, ASTM D1196-64 (Reapproved 1977)
Standard Method for Nonrepresentative Static Plate Load Tests of
Soils and Flexible. Pavement Components, For Use in Evaluation
and Design of Airport and Highway Pavements.
I8 PROTECTION OF WORK
8.1 During construction, the Contractor shall properly grade all excavated surfaces to
provide positive drainage and prevent ponding of water. Drainage of surface
water shall be controlled to avoid damage to adjoining properties or to finished
I
I
I
I
I
I
[1
1
11
1
LJ
work on the site. The Contractor shall take remedial measures to prevent erosion
of freshly graded areas until such time as permanent drainage and erosion control
features have been installed. Areas subjected to erosion or sedimentation shall
be properly prepared in accordance with the Specifications prior to placing
additional fill or structures.
8.2 After completion of grading as observed and tested by the Consultant, no further
excavation or filling shall be conducted except in conjunction with the services of
the Consultant
CERTIFICATIONS AND FINAL REPORTS
9.1 Upon completion of the work, Contractor shall furnish Owner a certification by
the Civil Engineer stating that the lou and/or building pads are graded to within
0.1 foot vertically of elevations shown on the grading plan and that all tops and
toes of slopes are within OS foot horizontally of the positions shown on the
grading plans. After installation of a section of subdrain, the project Civil
Engineer should survey its location and prepare an as -built plan of the subdrain
.location. The project Civil Engineer should verify the proper outlet for the
subdrains and the Contractor should ensure that the drain system is free of
obstructions.
9.2 The Owner is responsible for furnishing a final as -graded soil and geologic report
satisfactory to the appropriate governing or accepting agencies. The as -graded
report should be prepared and signed by a California licensed Civil Engineer
experienced in geotechnical engineering and by a California Certified Engineering
Geologist, indicating that the geotechnical aspects of the grading were performed
in substantial conformance with the Specifications or approved changes to the
Specifications.
Gc a Inmryon,cd Fam Aevoioo dIc 06/04/90
I
I
I
I1
0
I
I
I
I
I
I
I
I
I
I
lI
IJ
REF. MAP: U.S. G.S. QUADRANGLE PECHANGA, CALIF. 1988
9DA L E:2000
VICINITY MAP
ti_ \, 10 �� /tTI 0 /1 r<✓r ) _' / t%r: -_./J.ir<• — i a 1
/ �� \� (:�2 i -,n T r�"� IIL (0,20 nr'/ L� ``�� ' r l'^/J �\1�11�.'.gi i`.�ln� .• .!,1•I,V�y
I
, I
7alnk�l�
A
®rl
it oo i � � �\ �- — .� P � • .-._ > /r._
Jt\
Ind,aniy�
_ BMS Bur,dl Gm,,d—
j
/- 059
/' � // \050' �--'' Cil �� � � `-: ���`' .? o_ � �=� f"�\,. •j `1��.,, ,� j
renae(uJa,
a,
rip
_'��i,� �•\�� � 1�1LL__ ('�-___�`,�i,u \.\�r�,�'`.\)`t>,�-� i'y'•fiC �ti..
. la ndl n8 �rrsz')I
iip-', 1, �.. _ of ({� _� - lI I %�U:'.I l a��. \- J.
/0
' io rxe _t�� � i1. ���._„r 1 ��:j1 ,��.,:,;I •— � __.�: '.y^�, `r,C, ir?L�, � I 1 ` 7 -
of lZ�t ✓)`L\ ;, `��'.1'1 .�. ��;'. �J
` /0` ' 1 ( Z '1�\ _'` � •.,. _,,`_ 1 (.•� � i. Vii. '��� ���. ��;, ' .' ., V � ., 11�:.
\ / v `id�P; ;I'L• 1 _r I,p ,� , 22,°It.;,�''�-.��,
,
I
REFERENCES
Blake, T. F., LIQUEFY2, A computer Program for the Empirical Prediction of Earthquake -
Induced Liquefaction Potential, User's Manual. 1986.
I
EQFAULT, A Computer Program for the Deterministic Prediction of Peak Horizontal
Acceleration from Digitized California Faults, User's Manual, 1989a.
1 EQSEARCH, A Computer Program for the Estimation of Peak Horizontal Acceleration
from Southern California Historical Earthquake Catalogs, User's Manual 1989b.
' Ishihara, K Stability of Natural Deposits During Earthquakes, Proceedings of the Eleventh
International Conference on Soil Mechanics and Foundation Engineering, A. A.
Balkema Publishers, Rotterdam, Netherlands, 1985, Vol. 1, pp. 321-376.
Kennedy, M. P., Recency and Character of Faulting Along the Elsinore Fault Zone in Southern
Riverside County, California, Division of Mines and Geology, Special Report 131, 1977.
Seed, H. B., K. Tokimasu, L. F. Harder, and R. M. Chung, Influence of SPT Procedures in
Soil Liquefaction Resistance Evaluations, Journal of the Geotechnical Engineering
Division, American Society of Engineers, 1985, Vol. 111, No. GT12, pp. 1425 - 1445.
u
I
I
I
I
E
9
,I� f
C6
► VESTING TENTATIVE TRACttb% MAP
926- /3D-O/Y
Q[olqDCED HQ)o
RANCHO CALN'.DEV.CO,
Date : March 1989
Scale • 1 ° 306" 2001
► V — — RY ao0 .00 R l
SECTION A -A
%wilts rw?" T t'MVT -.
SECTION B-8
SECTION C -C
SD UFE, LST
A_ -1 - "-a � zz7! I
—.�-_Ems_- _ _—-
SECTION D -D
VON MI.rY WM+Y
)l11QW
[moo
U v O 0
j��j
U
NF
70 Of CONSTRPI WED Or AD %59
NO. 23172
926- /30-0/3
RANCHO CAL /f DEV. CO.
BY - RANPAC ENGN*MRiNG CORPORATION - 27447 ENTERPRISE CIRCLE WEST, TEMECULA, CALIFORNIA 92390 -714-676-
LEGEND
001 _--- ALLUVIUM
B-4& ____APPROX. LOCATION OF BORING
® ____RECOMMENDED LOCATION OF SETTLEMENT MONUMENT
_----APPROX. LOCATION OF TEST FILL
E/= ----APPROX. LIMITS OF 2FT. ( FROM EXISTING GROUND SURFACE)
REMOVAL AND RECOMPACTION
----APPROX. LIMITS OF 4FT. (BENEATH PROPOSED FINISH GRADE
ELEVATION) REMOVAL AND RECOMPACTION
___-APPROX. LIMITS OF IN-SITU DENSIFICATION
1O_
DEVELOPER OWNER w
MOC VAIL PROPERTIES
9699 TIERRA GRANDE ST.
SAN DIEGO, CA 92126
(619) - 69SA109
GENERAL NOTES
THOMAS BROS. COARD
5�--�!-B-, C-6, D -i, 1! -SSE
PROPOSEDUNCOMhERU/go+NE�.S ,;MS`
EXISTING ZOTINO" S -P
PROPOSED ZONNG� S -P i
EXISTING USE AACANT SHS)O" VAIL RANCH 91.111.011111 CONIPLE
BUSINESS PARK LOTS 27 `
COMMERCIAL LOB 24-
EXIS!INGGRAVC SIZE IL31 !Ic1Gl
OPEN SPACE LOIS 1 (LM hl. 631
HISTORIC COMIERCM4 COIC EEA (LOT 7)
TOTAL IITTS 53M7� -
TOTAL ACRES 70181
DEVELOPMENT "TOWEQV/RNl7 AND WILL SA%.EAENT
THE "NOLr- COME EIKIA1 AND UM ESS PAID(
COMFK) ENTS OF THE VAIL RANCH SPECIFIC PLAN
(SP. 223)
MNIMLIM COM,EAgAL/BU$IEW PARK LOT Ste.: 1 ACRE
AP.eL 926-1704DD2--'- _ - 'r .-, -- I
THIS MAP CONTAINS ALL CONTOLIOLS CANNERSIIP
ALL IN TERIOR CIRCULATION N'1H'DFD AS PRIVATE
STREET SYSTEM. t•
FOR GRACING NOTES SEE SHAY 2
I
UTUTES .
SEWER : F KIND.
WATER P-C.WO.
GAS: 90. CALIF, GAS CO.
TELBP1101E GENERAL 7E3.19"MO E!
I
LEGEND
:•RESTIFICTEO ACCESS
zr—,
VICINITY MAP
w1.PANe..D Ew lu.
^M(ylA UNIY. iYW.li�
INDEX MAP
60 OkIPm1 to Ic
DCT 1 7 %)
WtA.S ) JAUKOJ rMCH TALC DT :eT4 tAt6µ4A01.«
A 1away. RXr I X IQT �INJ4 ON tDiE A'
R auuaT AL'S t.•AO
I an-•�uw T
4aRAY)iP ta1ALLAr aP r..Nn WA.AWY
� D i r10Ty
IJ IRKao .M1allATy WP ----
I.tON iEMia itlaar. NDiurMW
Y01CA/®DW M.LA c1tC'fuaau .10Ni W �. aR
Cp WDlX NN
iWld2RR4TlD ePElJPF RN. [FPfR.ct
I VO.t :pKfA1 uatRS.
CD ural 6r. •YYI. H' p w .S♦aiaDw
I ii WIJ CNtlYa'Nipl YVt PC.I,Ow I1
C14 GNYIRTRU' vO.M. IiC.Mnn (4L N
APO+4 wen ./OI1 A 98' p ' Rov
GES ON
INCORPOSLATICID 17
QEGtlCwwlG /..l tNQiNlJA8 Aw0 ENQ.NEE.,.o pLQOQOIRit
NED aAN DE AB DIYIYE - 6" 01#60. CAt IPOANI. D!Ili JE].
PADNE iH 6ER-EEDD -. TAM DIE aaAEgJ
PM JECT NO. 04027.41-01
Fla 2
104E 12.21. 1992
9
Oft
0*4 M
S 1 '
9
h
VESTING TENTATIVE
TRACT MAP-
NO. 2
LaC►�C�C�D�D [�00
o=
ow
h J
h
t Q
RANCHO CA( IF DEV CO.
q Q
I � ILeBA 00
Sir m
50
1.14
AC \ 1,99 AC:54
1.2C AC. 1.06 AC. 1.24
l�� 1►4.__ hti--
t6... r'e ,•• `t �i SIX
.02
d a 1.02 Jic r 1.07 AC. Ir, t: o f / ::,.: +: i! :' t. r �� •EF
2/ k II Y4 j 31 :.. 4)1-
-2S AC 1.19 AG I k 1.25 AC. I t ,: r- y % 1.01 AC 4 J 47 40 so
1.05 AC. y \335 AC 4.03 AC. LA6 d�
yy 4.02 AC8.74AC. ��lAC. 5 AC.
-.. - {.. b
rrwrrr =J.- -.36 _y •t _ .46\� h
x•64 /►�. 7t 0 1;1AC. w T �..
_. Yb � grfMrNr j I � � -..;� `•st„\�� �' � -r. - 1.38 4C.'. i 'F.
1.61 1.46 AC Y9 1.20
1.34
AC.�'J \ -- ---._-h-; �r _- ..� • r>.•;l �..i• .w•` i k•t�_�•1 k \ _� 11• `d'. 1 OO
.'� � "y_�, - - �__ F�-�f^'_- � ----r- -- 8" ` - � A -'1 � -'-.�T-fid'_• I. •,.:. j,
0
1' v '
PARK
- , OPEN SPACE ;. �•(.'i
. U!
REGIONAL CREEK - ' -�- D.`_1
I/ 1.28 AC
• . _.. T E E a
► LOT 53 _ � ` -� y" c
Qat =�I
... 81 � � � s+r •�. � eye �• � s ��
- .. ..' '- . A►1 � � _ .,_.--Nt _. - _. SJl !/J d//.. ^-- .._ - - .. _ -! QTC<lr ,�'V
Srpr, 1607 - I •p
IV 69 _ ' 'lea
sv I'
_ .
--
-' .q7 7/e !ld Ni 117 IJ/1 Jl! 7/0 J(m l�-� -. __.____. _._.. ",• __ -. .. ..
O�
_. ..l
00E O
' 0 e
Ali. GRADING iVL s SO A OwPODUIOt Ella,
.. WmtYWTEDRN GIRO InvRLRw '�- 002
S� YN S wRDfiS[
mi10�/ As WFlT DORWss acid OWZ IRQII00 17, fSaSIL1ST Ot@YRW NZTI A /ACIDS Or AT IRAST 0R ASD - --
PO�AT2M Wfr %� EID Ciw'ITICATi00 SLT RR '� IL.SI OAZi 01 SDOQTTLD SY A >a1L assapapt �� Q
R1Apla YOTff: wA0s0 SS SISEN ('OS Zw ns TS 701 WL"M EM LRI'T MPARTRQR PDR wr AM Till, -
SSCVSmIDATZeW OT TRS !N[LDmIRRE SDIL O ]0'
aspoRr. Y'DITICAL Moon,
3. •r, �NAOZRO sNANS, COPiONN -O TIQ •9 -
O
_ 4E aDI
wllOOl IDIND
CODE. '_Z1RR T0. Y YQaptD SY DppZNAPQ N). `]CONTRACTOREW1
Tai CONTRA[DI•jTr TS, Ctwessa mnlILIY Sot
19. A %MATSN,o CTVIL ORINm' w UI u LAD WRY[YOP --`� 17%e
BALI. EVOwT <mrRPiCArtw OF aDIIDLw MD [IJ•TATIw.
Z
S0A{.L l
]. R'It
aIItDIR PAD ANO CNARAIN SF
EAPETT EOAsI�T AT LWT E4 ®S ZN AOPAM 11�M
rMEN LET
Nml[ SNfC c Q.TVATZOSE AR[ NEWLAI.T01 tZSrATxw --
I
H
- ZP ,. a
Zr CIT 00 RLL Z! iSO TRAIN 1U�, f1 IF CPT Ol rtll
m
HAw � Wtos to@Pwnw. TRLT
IO1RTiw aT S As000OR rQw To ESLLI;o rrDITI
(RTi SSP[CT IV ME SEA L l SNALL IS EIVO. Ir AR
'It
Z[ TSAN :6•. DNNRAGE SAN11 EDLL at l
PILL MVNOTtw PS SAM tay.
WtrllTTw RxTR NW)rcT lO aDrAcnrt �amnD aO11rAQ L
W
0.1- DE
TO Dor DEEP AND W A N6YIlSw Dr ]• !4 TO
m Tat
RMWERCO. TW AC7tW. OZSTNNCi AJRm TNI At11AmR :... .
W
2
wints.wusICTTO
for or cvr w Ru s1DPl.
:L. = 3Iq)W �L at w aril I IF" a' to tnrzc MOST
S..r. AS DIVE.
(lav
I. NN[ZHUN COT ASO PC= Awn - ]: t.
AND RT'L Slays EAL TO 00 iRTR =0 ] � Ie VSTLOEL
.
MGM .wt. S r.Avm E'ER ORASS on wool" cam TO
19. mlw mTSOL: ALL wAwo alOPes WRNS [[ rliNrl YZTi
W
t
.. Aw"M a' aTDR l I- =GN TOOT DA EDDITN ' AIDRD TW
TDP Of ALL FILL SZOM
ItlIALT T6 Stam Aw cutum AS TSTANITR IN
ALpOROAAQ a(S Ob2YaQ DD. 437 Mat TO TL A1PbTAt
EUSSA ZCS PLIT AT II• w C33FTRa M A60TEM APPNpr[p
alwAD CDIS. aWs ORp a zf YSTICiC mwT, iA
N
CNW S' MEN.
N/ Ph1AL 1!)ALTiw.
AD6I?SOD TO OORRD oWp AYii. a[ PWTm YITR APPRpv[D
1. ASL 6LDLM a4ld. W DO01 ONOO is 90/EatZiZw OF A
Ll. S RLL SSL{, S KNEW w MET No
TOO. SWISS. w WOOIMM Mospor. ESOts so.. 6[
PIANSO AT TI' w Com[) TEAS• IN, w
� SDTL"W/LMR IOD e.,• (aR:'i)r 1"a ,Vl� FELL
W sO I!♦OPOu PLSCm ASD SM Nut. swmw
EMUNC %`WTTL Far
OSpOD SS WO CIYOD Or NNECA DESSIS. !bRCIL. ANT
mRp;
wlaLlATlt64. 101' w 4y[uS. S -am Dap 4- (A VumR
a.e.
A PION.
oSI)Apriw SAS[ rw AK TW RLL OVER I- wn.
OMM ClLwn m 1O1'taxXt.
WSaTR NEWS IOIW1OrT TMQATTOY sTemo NTTS
Date March 1989
31. v STOP
SA�IGa PWPORZON 01141M PER O.P.C.. CIYPIR 1..r.
. , eiNTL msaEr aDEll EwN¢T
SLPLC TTMZa ocR OPOx ftIm rz1 Is TO at
PalmA. R NROT
3a rIRT88 ouDE ....
AS saRrt TbASYm/T t=TRIW DOS.RCATIw 00
R CTJIIR[D. ART[p. AND aEaR[a i17D RAS
SAFIiLi SOIL TS FILL SVRONT. ANDPA)AtZw
u fLP[p ALY rTaa ALL IS RZOA NA i
AT NOT :SSS raw, 1/I• PR FDOT PON A 10'[100 or ] rift.
w 1[OOI OLNOw IN AOps{RS Nt70 Ta IJIRDIO �
10+10 Natty m I/SOAI,Ci Tar
OWl aL
AIMPo[D NY A 4OISTeNn pDIA®t mot To PI- EI6eT =r
V1 ar aRIatR1 vw. wT.
Scale 1" =�89'- 200 Eaton Tlw --" AN M :
FlIz wlR .
E1. -)D OMtlmtTxw or 1fODD rune rn NArmul. YATR coOWn
' o3A0a: Q.TEFiw ASD
taurlw OF R AND RLL ftoPDE.
14- .NOIR[ Sam wAOINe OPO TtaL AL Taiw
...... v PORwTTR.•
D lOo ;100 ]OU .•%_i T, >MN.DITQ SMl'SINW 10 REIDLL iDMr[L D fl\IO
TO EDa6nut•Ttw
w NOROT SALUM Stamm" T'wODIWN DRAINAGE
I owSOL AN" S rl mosa W rRrOT NURSING YATR
23. ALL ES/Qx COSIO>fS w..• W CTJaNw.x DELZNLATNO :N THE
P123d Nam TO comm) OF AST �OT1pCTI0Y/CAADZNE.
r N RAW, 13000 TO our M Sam.
AND
DEO/[ TO wsA M-120.
s. RLSwNFIErtw alms n as NNwIN6D FOEAL:. RUA
SRR :-FOOT.
is. DOFT sYiEM
i. at e04rrRD..... sY ,&TPS ON DeaiA APPaDVED
Taff WADINIO ORMON 011l C ITION LCI V=m TA.TCT
!N11113,2231
0170000. .
TO Iiw/IW
A "a 06ITIC TEAR wIPD4R WILOIND Octal AND SP61FiC AMwD-
:6.• ALL RKxSTTNS ti•)"•^ :rova1R ON m >%1TLCT SIT[ RUNT
N O" TO Os2NYR:1 YT IN /TPECT AT TS TIS TM AL APPSDVVD.
O.L. to I-1-90
I� (� /� /��
M
mPTINO[ TO ro 1100' nwcL tx NIXING Rey
wix w Coa6ltlo. No.1O ta.A. 'All 6TM Y,a
Y 1 DDRtOM to Cx pt.r TO or cAr 1Ma U.O.C.
•- �l j� G'yl
14... ((
Lf�UI 1l� /L/
AaSwp ANp TyIPwAN) oYiNAE[
IONESD
PaOaitlwa DPT RE ;sfo TO PARC y DL INC g1pPOilEf
u rntlM AOM.
SD-. Attar 1 -1 -SO It wOIA r7.'All S. ... o[ tDr
LONG
ISM D.1.c. .. rap6Dy
11J-�1
II= 0 S
�CON
�A
so"
a od. 4J17.73 Thu. so" r t1 cyan
J(
jPREFARED BY - RANPAC ENGINEERING CORPORATION - 27447
ENTERPRISE CIRCLE WEST, TEMECULA, CALIFORNIA 92390 -714-676-7000
8111 BNEESn t CA SOC
OCr 1 7 0)
I AICOE PONATlg»
%t0TCvNR70z ENGINE 403 4ND (SUNNI EN1Np 469LC0�4tD
4060 rt ANDERS 7R4Ya -- SAN DIk DD, CAL': DAM;A Elf i)T1)♦
"ONE 6:01 EEf-IPR9 - PA} 119 136••64A9
PROJECT 00 04927.41-01
F16. 3
ONE 12-21-1951z
I
4
m
fl
0' 100
Q��QRROFESS/0*4
to Y yf' A c0
4f' S
I Ly V N fes„
"c N6 34490
Jrr
T
til , l 3 A 1 J
FOR- 40' SCA GRADIN
I I
2001 300 400'
SCALE; If' = 1001 QrjFESStL
S IQ.
,$ z 1:3 ar27
7� :.7 p. 3/31/92
J)
:T
.RJ
LE_
®__-_APPROXIMATE LIMITS OF 2 FT. (FROM EXISTING GROUND
SURFACE) REMOVAL AND RECOMPACTION
____APPROXIMATE LIMITS OF 4 FT. (BENEATH PROPOSED
FINISH GRADE ELEVATION) REMOVAL AND RECOMPACTIONN
�-___APPROXIMATE LIMITS OF IN-SITU DENSIFICATION
s'. ___-APPROXIMATE LIMITS OF AREA DESIGNATED FOR
NO REMOVAL'S
GEOCON dffi
INCORPORATED 71
GEOTECHNICAL ENOINEERS AND ENOINEERtNO OEOLOOISTS
6960 FLANDERS DRIVE — SAN DIEGO CALIFORNIA 92121.297.4
PHONE 619 5566900 — FAX 519 $666159 DOE 7-15-93
FILENO. 04927-41-01 FOG
a
a n
,
.. ... .. J1•.Ai.>' �... —�- a • f . w • ! r/.. _. . ••f ♦ ♦f �J♦ U.• N• •} > - f•. N.o K• •• • •f
l' - • ..:b >t' n. >. x •LJ �.• L• L •i f./ t, !r, . ,. a�� _ .......
_ ___ --. !� ... _ .. -•���— _
__ _ .. _ _� �. _ _-•__mss_-. ,,,y -_p..... ,
_ SOOT
t
-
-- - ::a: _ • i —`_ �'�---'E--- �— -„r-- - .. -- ... .. —
L • \ - - 1 7. ,� � >, � , ” � tD�V• III '\ •�'"'Y �
CIDLm
/.
• I 1' / M.e •, > � Aa, %�w.>f>'�•>.. ''
, �Yn/:'l-.L�' qZc
` .T�•t f ,- .. V
L � � • .fir..' •. .�. ,"' 7 �•! >. C '
�.:''_ ''` n F Bt/[bED ALE, 'SEE SUP\EMENTAL BIDJSET NO. 1 Iltlf ` _ N"1►1 TF+ 41FTTLINtG�I�IONUMENT "�O BE
4__
BF'•ICH MANK
RANPAC ENGINEERING CORP. -it
27447 Enterprise Circle West
Te6lecula, California 92390 SEE SHEET NO. 1
Tel (714) 676-7000
SUBMITTED 8Y!11116x
REGISTEAED CIVIL ENGINEER NO 30927
2/ Po EXP. 3/31/91
GATE : _
oo -'
REVISIONS RIVERSIDE COUNTY FLOOD CONTROL
AND
eEvr Eo cerrlv/n� /A/ ER CON "VA ION DISTR
nooEo EXJ.fr s o"t4 jj HFCOMMENDED FOR APPI44 v JED BY
/R0V/900 6R.'IO/.vG
PLANNING E "EF EN61
--- - - -- DAT L,ATF
HANNE IIII o
' I I I I o PPiN i ED ON
JUN 211993
58'Sl "E I- I,I.Ir Imo' --�—
C
►, NO. 73-5009
wHJTF^T NO.
County of Riverside ASSESSMENT DISTRICT X'159 7-0-050.
_ CHANNEL GRADIN; PLAN JkAkiN6 No
TEMECULA CREEK 7-20e
DISPOSAL SITE GRACING SHEET NO.
QI �4 STA. 1414- 39.52 TO STA !'Z `•I.•; 1C
FOR TRANSPORTATION UIRFCTOR (r/� �(' � � OF .39
RIVERSIDE COUNTr,CAL1F•. DATE:
---
,
2t"
I
IM—
0' 100
Q��QRROFESS/0*4
to Y yf' A c0
4f' S
I Ly V N fes„
"c N6 34490
Jrr
T
til , l 3 A 1 J
FOR- 40' SCA GRADIN
I I
2001 300 400'
SCALE; If' = 1001 QrjFESStL
S IQ.
,$ z 1:3 ar27
7� :.7 p. 3/31/92
J)
:T
.RJ
LE_
®__-_APPROXIMATE LIMITS OF 2 FT. (FROM EXISTING GROUND
SURFACE) REMOVAL AND RECOMPACTION
____APPROXIMATE LIMITS OF 4 FT. (BENEATH PROPOSED
FINISH GRADE ELEVATION) REMOVAL AND RECOMPACTIONN
�-___APPROXIMATE LIMITS OF IN-SITU DENSIFICATION
s'. ___-APPROXIMATE LIMITS OF AREA DESIGNATED FOR
NO REMOVAL'S
GEOCON dffi
INCORPORATED 71
GEOTECHNICAL ENOINEERS AND ENOINEERtNO OEOLOOISTS
6960 FLANDERS DRIVE — SAN DIEGO CALIFORNIA 92121.297.4
PHONE 619 5566900 — FAX 519 $666159 DOE 7-15-93
FILENO. 04927-41-01 FOG
a
a n
,
.. ... .. J1•.Ai.>' �... —�- a • f . w • ! r/.. _. . ••f ♦ ♦f �J♦ U.• N• •} > - f•. N.o K• •• • •f
l' - • ..:b >t' n. >. x •LJ �.• L• L •i f./ t, !r, . ,. a�� _ .......
_ ___ --. !� ... _ .. -•���— _
__ _ .. _ _� �. _ _-•__mss_-. ,,,y -_p..... ,
_ SOOT
t
-
-- - ::a: _ • i —`_ �'�---'E--- �— -„r-- - .. -- ... .. —
L • \ - - 1 7. ,� � >, � , ” � tD�V• III '\ •�'"'Y �
CIDLm
/.
• I 1' / M.e •, > � Aa, %�w.>f>'�•>.. ''
, �Yn/:'l-.L�' qZc
` .T�•t f ,- .. V
L � � • .fir..' •. .�. ,"' 7 �•! >. C '
�.:''_ ''` n F Bt/[bED ALE, 'SEE SUP\EMENTAL BIDJSET NO. 1 Iltlf ` _ N"1►1 TF+ 41FTTLINtG�I�IONUMENT "�O BE
4__
BF'•ICH MANK
RANPAC ENGINEERING CORP. -it
27447 Enterprise Circle West
Te6lecula, California 92390 SEE SHEET NO. 1
Tel (714) 676-7000
SUBMITTED 8Y!11116x
REGISTEAED CIVIL ENGINEER NO 30927
2/ Po EXP. 3/31/91
GATE : _
oo -'
REVISIONS RIVERSIDE COUNTY FLOOD CONTROL
AND
eEvr Eo cerrlv/n� /A/ ER CON "VA ION DISTR
nooEo EXJ.fr s o"t4 jj HFCOMMENDED FOR APPI44 v JED BY
/R0V/900 6R.'IO/.vG
PLANNING E "EF EN61
--- - - -- DAT L,ATF
HANNE IIII o
' I I I I o PPiN i ED ON
JUN 211993
58'Sl "E I- I,I.Ir Imo' --�—
C
►, NO. 73-5009
wHJTF^T NO.
County of Riverside ASSESSMENT DISTRICT X'159 7-0-050.
_ CHANNEL GRADIN; PLAN JkAkiN6 No
TEMECULA CREEK 7-20e
DISPOSAL SITE GRACING SHEET NO.
QI �4 STA. 1414- 39.52 TO STA !'Z `•I.•; 1C
FOR TRANSPORTATION UIRFCTOR (r/� �(' � � OF .39
RIVERSIDE COUNTr,CAL1F•. DATE:
m
D
OI ' 100' 200' 3001 400'
SCALE: I"= 100.
/7b
>
RANPAC ENGINEERING CORP. BENCH MAHK
27447 Enterprise Circle West Irk
Temecula, California 92790 SEE SHEET NO. 1
Tel (714) 676-7000
�,j SUBMITTED 9Y.
�—REGISTERED. CT VA ENGINEER N0. 30927 -'
DATE:9 Q/ �D ExP. 3/31/92
GEOCON
INCORPORATED •� �'
GEOTECHNICAL ENGINEERS AND ENGINEERING GEOLOGISTS
6960 FLANDERS DRIVE — SAN DIEGO CALIFORNIA 9212/2674
PHONE 619 5666900 — FAX 619 5566159
FILE NO. 04927-41-01 Fro. 2 OiRE T-13-93
1
_ 1_`J ...._ sem.• .. s..r
•,a 9� p :c .- '.. .... �'_� —_ ..... as r. a _.
\ . _._ � .. ". .�.� A� H' I♦. —. • . 6. i �--•sem... -.-' _��... M 14� ��/'. ♦•.a .•.�_
>tt,: 1. ._� ��• � _ , , ..
(f) LQ
_
' f..7°� i"" •i =' � r � L"\� f � _ J 1 i � 1 I \ �' / e., , _ � • e,. - � J V J
REVISIONS
�AOFESSlOi�'� ,
�rvQ tet' A co may\
W N rn
e. 34490
�l'rF OF CAUEO��\'�
,PLANNING
0ATL i'
- r----- X90
RIVEASIDE COUNTY FLOOD CONTROL
AND
ER CONSERVATION DIST
FOR APNHEU BY:
/J5
County of Riverside
ANP •8 ; .
AIIEF ENG1
FOR_TRANSPORTATION'DI
DATE: RIVERSIDE COUNTY,CALIF. DATE: q /
Plied i ED ON,
JUN 211993
W.O. NO. 73-50091 -
ASSESSMENT DISTRICT NO. 159 ''aAECT No.
7-4-050
CHANNEL, GRADING PLAN'"
DRAWING NO.
TEMECULA CREEK 7 -?06
DISPOSAL SITE GRADING
STA. 172+00.00 TO STA. 201+34,16 SKEET. N0. •, /1*R
(8 OF. jS
P
4
0
11
GEocoN
INCORPORATED
GEOTECHNICAL ENGINEERS AND ENGINEERING GEOLOGISTS
6960 FLANDERS DRIVE - SAN DIEGO. CALIFORNIA 91121-2974
PHONE 619 5566900 - FAX 619 556.6159
FLENO.04927-41-01 FIG.3 DATE 7 -IS -93
�T
I]
C
-4
M
7�
'T1
rn
0
_.--- -- - -- ----- — -—. ^��6i•--'�'- 1. � _._
. w .< •♦ .. •1 ,.• q., •• M• of .r•: - .. �• -. � • .♦1 `:.� .� r ,� .f ,. Y---�) •.• •� .w, .w. v• .•
,e:�!': :"_::� :. •_ _.... _.. .. __.. - .-�-._- .-..��_ - _. rY._._ •'�.--r---'�__^ .._.. . _..-_ �T�'^�'� �►'n:_. .._ .-.•.�.:� .rw.r: m. - ..._ I _.._ _ ,.. �1� ..1 -. _.r .. 4:1 rf 4 _ .
79 ell
816H WA r -SOU TH %
/ r �'y. It .' ... •{ �• •7:f,{.h f L t ,, 1.1.••f. ;,.,t+.:
%;
40 . •�. ��, ii. •.',••t-• .:. ♦• —�
10
" J P �' •� �� a ILEI • ... ^ 1 ♦ Of YS[ GI►OVNO cnvfR
o + - •.. ,,
O \ , _ ..• ♦' .� . '` • -"��
0VEC Te r/�.Q • •, e: ...• 1107` ����2'�-.! •a. �O%
LL' Ft7-
�t�• ; - +.4 q - . y 1�� oAs %Q r 1'•` 4f x I y
ku
DED SWALE, E !SUPPLE TAL BI SE 1.5 el az 1 TO _ E
N 6 -i0 - QI' 'fE�trTE °AT L --TIMERS UIQ ESS
QV
VAI EW
Q i1p1'• b /a?r i 1111 eb a\ a P _.:� \
6! (.••
S as oa• ��� ns.•' �.J ` 1' ♦ ADUNG COV[/
1 r0„'. � ¢ ••.• •'• I 111' �� i• �--”-� •o•, v` ,e \
711
"' '' •° ' - -- °' "r .�/ :I ;f 9�� i I "mss---- ' ' �
- — -- ; ,:,.,. •� .` - ` -: tib ; I I
1 ��� � ��••��—----__—_♦.♦ � a r_ Lnt• •yes• �J�1 nre �I'.,f � � J� .` I n-,•�.�1 11/) � '' '`1 —.-- +.
O 100' 200' 300'
SCALE: I"= 100'
RANPAC ENGINEERING CORP. eF'4^H "AHK
27447 Enterprise Circle West '7r
Temecula. California 92390 SEE SHEET NO. 1
Tel (714) 676-7000
SUBMITTED BY
DATE: 61 -el
RE6ISTERED CIVIL EN61NEfR N0. 3092T
eo EXP- 3/311/91
_ Z/S \_N gNNE L
,
y,S A. CO{\yam\
a.• t s f
N79•
pro
—= EVISIONS RIVERSIDE COUNTY FLOOD CONTROL
AND
,eev(sao GtAO/Nq ; A77 CA CONSERVATION DIST
S7ZW1W arK /n/ e44JMA4&IrS HFCOMMENDED FOR APNHv Y EU BY
R6V/f. nA9
PLANNING E HIEF ENG]
DESCRIPTION PPR PR DAT DAT DATE:
L1
P
PO
. a• '`'
PMN—i ED 1N
�, ' '.. •� rtd— —�_ • JUN 211993
W.O. NO. ,i3-5009-'
County of Riverside ASSESSMENT DISTRICT' NO, ttiu PFCT ilo 050
AP a CHANNEL GRADING PLAN DR WING NO:
TEMECULA CREEK
DISPOSAL
DISPOSAL SITE GRADING ~•`
FOR TRANSPORTATION DIRECTOR ' STA.201+ 34.18 TO STA, 228+00.00 SHEET NO., . :4ic
RIVERSIDE COUNTY,CALIF. DATE' l•?/9l 19 - OF`39AA
1
0
0
11
GEocoN
INCORPORATED
GEOTECHNICAL ENGINEERS AND ENGINEERING GEOLOGISTS
6960 FLANDERS DRIVE - SAN DIEGO. CALIFORNIA 91121-2974
PHONE 619 5566900 - FAX 619 556.6159
FLENO.04927-41-01 FIG.3 DATE 7 -IS -93
�T
I]
C
-4
M
7�
'T1
rn
0
_.--- -- - -- ----- — -—. ^��6i•--'�'- 1. � _._
. w .< •♦ .. •1 ,.• q., •• M• of .r•: - .. �• -. � • .♦1 `:.� .� r ,� .f ,. Y---�) •.• •� .w, .w. v• .•
,e:�!': :"_::� :. •_ _.... _.. .. __.. - .-�-._- .-..��_ - _. rY._._ •'�.--r---'�__^ .._.. . _..-_ �T�'^�'� �►'n:_. .._ .-.•.�.:� .rw.r: m. - ..._ I _.._ _ ,.. �1� ..1 -. _.r .. 4:1 rf 4 _ .
79 ell
816H WA r -SOU TH %
/ r �'y. It .' ... •{ �• •7:f,{.h f L t ,, 1.1.••f. ;,.,t+.:
%;
40 . •�. ��, ii. •.',••t-• .:. ♦• —�
10
" J P �' •� �� a ILEI • ... ^ 1 ♦ Of YS[ GI►OVNO cnvfR
o + - •.. ,,
O \ , _ ..• ♦' .� . '` • -"��
0VEC Te r/�.Q • •, e: ...• 1107` ����2'�-.! •a. �O%
LL' Ft7-
�t�• ; - +.4 q - . y 1�� oAs %Q r 1'•` 4f x I y
ku
DED SWALE, E !SUPPLE TAL BI SE 1.5 el az 1 TO _ E
N 6 -i0 - QI' 'fE�trTE °AT L --TIMERS UIQ ESS
QV
VAI EW
Q i1p1'• b /a?r i 1111 eb a\ a P _.:� \
6! (.••
S as oa• ��� ns.•' �.J ` 1' ♦ ADUNG COV[/
1 r0„'. � ¢ ••.• •'• I 111' �� i• �--”-� •o•, v` ,e \
711
"' '' •° ' - -- °' "r .�/ :I ;f 9�� i I "mss---- ' ' �
- — -- ; ,:,.,. •� .` - ` -: tib ; I I
1 ��� � ��••��—----__—_♦.♦ � a r_ Lnt• •yes• �J�1 nre �I'.,f � � J� .` I n-,•�.�1 11/) � '' '`1 —.-- +.
O 100' 200' 300'
SCALE: I"= 100'
RANPAC ENGINEERING CORP. eF'4^H "AHK
27447 Enterprise Circle West '7r
Temecula. California 92390 SEE SHEET NO. 1
Tel (714) 676-7000
SUBMITTED BY
DATE: 61 -el
RE6ISTERED CIVIL EN61NEfR N0. 3092T
eo EXP- 3/311/91
_ Z/S \_N gNNE L
,
y,S A. CO{\yam\
a.• t s f
N79•
pro
—= EVISIONS RIVERSIDE COUNTY FLOOD CONTROL
AND
,eev(sao GtAO/Nq ; A77 CA CONSERVATION DIST
S7ZW1W arK /n/ e44JMA4&IrS HFCOMMENDED FOR APNHv Y EU BY
R6V/f. nA9
PLANNING E HIEF ENG]
DESCRIPTION PPR PR DAT DAT DATE:
L1
P
PO
. a• '`'
PMN—i ED 1N
�, ' '.. •� rtd— —�_ • JUN 211993
W.O. NO. ,i3-5009-'
County of Riverside ASSESSMENT DISTRICT' NO, ttiu PFCT ilo 050
AP a CHANNEL GRADING PLAN DR WING NO:
TEMECULA CREEK
DISPOSAL
DISPOSAL SITE GRADING ~•`
FOR TRANSPORTATION DIRECTOR ' STA.201+ 34.18 TO STA, 228+00.00 SHEET NO., . :4ic
RIVERSIDE COUNTY,CALIF. DATE' l•?/9l 19 - OF`39AA
B
DensityTest Location Map
1
I
M.D.C. VAI L, TRACT NO. 23172
I
I
I
Highway 79 South
164 I 265 2 267 2 269 2 0 2 1 1 I 273 274 1 5 1 6 277 2 8 1 9 1 2 I 262 293 14 3 Ste- 2A7 2 8 2 9 I 291 - 292 293 294 245 2 6 291 248 299
I
->_-s-->_---------------a------------tea
} + 531
—1;7-
--F- 551
SSF _— �+708 - �- } 516 - + ++- ___. ___. - ___. ____._ _-. _._ __ -___. __+_-__---___— ________.___s..�-____-_ _____-__—_—___--r
I 786 + S75 8Y 524 + 543 + 539 523 • yS6 537 535 SSJ 522 534 + + 619 X530 •�
8 541 54 J', 338 '',> 313 47 + + r
+ I + + f \ + �'P I + + + + + + 6:6 + + + 624 625 n
272 707 �b q� + + 210 + + 1 + + + 81 8: B3 8a + B5 189 ++ 6t1 B16 + 621 + + i +
+ + • b v. 126 + 127 255 ` '12B 129 + 244 399 91 + 394 + x 0 + 9p 190 613 191 523 297
W
Sheet -2 of 2
64 467 `
1 r 706 + + + +173 +422 `, +t75 �] + +176 + !B] + + 372 + + + B +1 + + +620 4T9 + } 1 I
+ + a 6♦' 259 + I e + B15 Ia8 + 179 + 4Qr`) + 104 + 3 1 0� + 1 1
Ila }q + e] 56b }a6 !32 + 3I4 J22
0 7 F/) �*�' + + of o1 0] 3.o Sa I
6]6 711 I -� + �) rJ + 694 • 70* 137 a10 823 3 + 179 ♦ ✓I f. /I /I + 3n o b'� + + + 290 1
549 / 1 + 177 426 176 -� J / J") I f -f I92 ri + 291 292 1
+ 465 + + + + + + I + •3 /f J 13A 6'.5
+ + :99 rIr
1 + + + 253 J9 393 4 + + + + :9. 617 732 9�}
709 + 643 133 ,34 95 9> 337 +
I + + 42! 400 + + + + 323
+ 708 + + + 648 125 258 + s06 9$ 94 + + 33339 3'.7 + J26 + I89 + 1 1
1 443 651 �] ♦ + 820 82 + + + + + + + ♦ 298 �9
+ I + + 69, a + 7 257 396 + 113 a09 + 512 388 311 + +Sat + 618 * 2B �.
274 71 e `+ 2,1 + + + 106 + 3.♦ 6'2
/ 293♦ 1
I * 64M • 171 + 702 42a 1 + + 413 4j247,+ 135 ,61 ♦ '�i 143 + 1C1 + + 3a5 + B 6 /f J + 71a J75 + + 326
T_ 1 6ti5 650 4.Y + + 41 3� 256 f) _1 1 4 254 411 % + y6> + J5, +
1 33
I + 697 6 • 1 + +
• + 466 _ + 170 + + * apl ISO I + + 329 +
+ I i 676 C� 249 lab ♦ Ia5 93 � + 95 + + + + SJ6 /I ) + /I
680 + /// + + 70 + 252 �— + ICs f i.. A r ` 035 -f (�1 7, f I ]0, +
+ + 2 + 644 + 69 414 �^) r 369 + 3" -j J + 612 `J + iJ r 1 J + 295 19a '
+ /^ 774 736 /� r 3I7 `J 1
O I I15 ty + 66 67 6B ` ' + B17 J
444 � + + 186 + 4,5 + + +
+ 531+ +2%�
Z I 0682 1- /I 638 6J7 69B 160 14 404 1B7 + ]35 +
v + + 188 ll0 + x +.
1 j� -I -f + ,BJ
J �_ 15 a77 159 + 160 7� x ♦hb + 403 + + 390 + B•5 8f1 + BOI 771 T 7 7 315 + }16 333 + �
+ 1 2 I aaa 635 + 646 + 416 4 % 397 +
276+, I a51 � 65
4/- + + 64 % %b +419 + +,49 ice) (�� I I
1 + ]1
715 + 636 + + 26 r] + 420 417 + Ia7 + �b 1 �1 + 391 e 1 8' +
J `l ` J J 715 + 311 + 334
+ 117 I + 11 + + 6] r �) 699 + + 169 + 4IB 2� ` x + J92 _f + 82♦ + 62 _/� (r`1 + 810 + 11�, + 76B + }14 + Sys
+ 61 + 62 +553 670 + ( 1 68 /I fJ + `l + % ♦ �1
634 + 67 701 �` + 4 • 829 8.4 K BCS 3_0 +
I 87 + + + : I J 45 — f J + . 9Y
+ TO] 250 1 2 + i 826 BN + * + 495
1 + 66 + + 349 + 806 + 789 766 11 + 720 + 303 • '4 +
475 + IB4 206 + 208 + 309 757 8 + + 30] A T82
f r 421 ��� + f + 350 M1 7 9 }11 7•,8 I83 304
1 + + + + I 157 J ) 18 + 819 + 8 5 ,L + % $ + + 7e: 2 2 4 +
118 ,1 4U 67, + + + �./ �./--r-j — + 7 + B1 3 l + 770 + 7y + 716 SIO 305
+ 6 * 674 4B + ��� 165 ♦ 59 ��::` 30 614 723 + +
9 1 i' ,55 30 + + 156 16 �� + + Ja7 + 1 + + + +
♦ ? + I r �-,. 479 Ia7 a31 152 61p + + 'J06
J 4;B 1 _ _ 807 776- J 7n J +
1 453 47J 7, I + a + rl + 671 +/ IaB �' - - - + 760___ _ _�� `a8 + + + ;51 SIMI + 711 + 726 + 71a +
1 + 714 I+ a7+ 628 % ti 21 a70 + + 63 i ii— 363 + 362 + 675 �I- _ - _ -._ Y6 758"�__ J5J + �r o5 1� + 755 + �� �7
+ 10 iN + 7 -- ■ 1 1 ,� 53 15a 30 + 797
i� ice% + 6 t2D + 629 +162 S r �. --�� �+ 7a1 752 1� 741
/ + 476 + ♦BI + + - _ M')�� 749 74 +
+ + 878 161 +— 673 IS 365 J6a `_�_�_��. �� 725 +
1 7114 115 B n i aye 53 I i __ - _
+ 795
+ _�'� +
+ 119 + 6 632 . �b _— —_•-- 899 ]aA 742 +
+ 1 + +681 % + - Creek — �6J %i 744 +793
441 9� B - -_-_
'6B8 + + 6B6 + a�_. �� - _ _-` _-___ —7}9 a-,.. '67 + 7W 7)8 + 745 + 745 r +
t ---------
M
lel
M-1
191
Temecula
192
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE 2 OF 13
193
194
195
1
2'i-
207
210
0
213
Channel
2.
216
217
218
9
LEGENvrD
972 APP1,,OXLUSATE LOCATION OF DENSITY TESTS
GRAPHIC SCALE
100 0 50 100 200 aoo
( IN FEET )
1 inch - 100 (L
210
J 1
790 9V
792
22,
II
t
223
r
L
0
Ir*
SWTST2.DWG
9-21-95
HIGHWAY 79
23r
w @r 'If „—
fiit?�h''a'�x .
DETAIL "A'
(POINT NUMBERS CORRESPONDS TO
BOX CULVERT, V1 & V2)
HIGHWAY
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 3 OF 13
o% SIB ,�o�„�I� f�' � 3
„y r.,
DETAIL 'B”
Density Test Location Map
(CHANNEL IMPROVEMENTS)
SOU TH
79 SOUTH
(POINT NUMBERS CORRESPONDS TO
ASPHALTIC CONCRETE, BASE GRADE,
& SUBGRADE ALONG HIGHWAY 79)
100' 50' 0' 700, 100' 300'
SCAL£.• I" = 100'
SEE DETAIL
"A & B" FOR
THIS AREA
1- 7 05
.C. W.D
ELL N0. 120
f 229
--1-----------------------------
--•------------------
I
I
I
I
I
I
LEGEND
972 - APPROXMATE LOCATION OF DENSITY TESTS
SHEET 1 OF 5
mw
I
1
I
I
I
I
----------
IIA_TSTI.DWG 9/6/95
�Jr9-1C323�l22+ 3J7
20
�kl lJ�!-!7 !2-313
7B7�� I'' 3138
31, 288 + JJs BO 3
114
115 116
Z
J
267 ,7
26 �'� +IBY2'2ij�71� 69 'y „
,f 79077, .7L2 7j '�* 61 I 7
)91 e , 3 J
9r J � 760
259
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 4 OF 13
4
130
1,9 277
]2
I
W
z
J
117
119
TEMECULA
0
119
121
122
Density Test Location Map
(CHANNEL IMPROVEMENTS)
CREEK
72� 725 \ 126
123
100' 50' 0" 100' 200' JOO
SCALE.• 1" = 100'
CHANNEL
127 129 129 T'
130
131
132
133
773
LEGEND
J
W
z
z
5 li
0
z
P
N
X
W I
J
U
+ +fir/
2Bara
972 APPROXD.4ATE LOCATION OF DENSITY TESTS
SHEET 2 OF 5
4
W,
z
J
316
k
316
I►1_TST2.DWG 9/6/95
+447
*445
+�y
+�•J
+J97+Ni
+,,y
402 2B
39 4%8
*++
+
401+2 �•1 J
a
'
4,3
i 407
+ +fir/
2Bara
972 APPROXD.4ATE LOCATION OF DENSITY TESTS
SHEET 2 OF 5
4
W,
z
J
316
k
316
I►1_TST2.DWG 9/6/95
SHEET 3 OF 5
Density Test Location Map
( CHANNEL IMPROVEMENTS)
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 5 OF 13
100' 50' 0' 100' 200' 300'
SCALE.' I" = 100'
LEGEND
972 - APPROXIMATE LOCATION OF DENSITY TESTS
iM_TST3.DWC 9/6/95
193
191
179
l78
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE- OCT. 1995 PLATE: 6 OF 13
Density Test Location Map
TEMECU'L.A
( CHANNEL IMPROVEMENTS)
1
f2'2
CREEK
1'9
��7 1BB m
IB+ 1B5 1B6m
r �1�
460
'77, 373
NNII
100' 50' 0' 100' 200' 300'
SCALE: I" = 100'
190
191
l ft3s3 353 ,a. j_209
CHANNEL
`A
195
_9319•
193 �
w� U
+}7Q
3 ID
213 �5, -
19,
227
71� � 2<
. 2-0
22.
SHEET 4 OF 5
IDl r2D �'h
DZ zqg
'217
i
.SS
5 �
j 203 204 205
202 zo
Zo, e m eo7
Zoo Ciy 6
199 p ♦ N
LEGEND
972 - A-PPROXIMATE LOCATION OF DENSITY TESTS
4
IM_TST4.DWG 9/6/95
J
TO
GEOTECHNICAL & ENVIRONN
Density Test Location Map
( CHANNEL IMPROVEMENTS )
DENSITY TEST LOCATION MAP
3 TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 7 OF 13
SHEET 5 OF 5
ti
100' 50' 0' 100' 200' 300'
SCA IE.• 1" = 100'
LEGEND
XIMATE LOCATION OF DENSITY TESTS
iM_TS15.DWG 9/6/95
Density Test
Location
TEMECULA CREEK
Map
Sheet 1 of 4
N
O
Z
x 4 �
b x14 f
l
x
raJ 'R� x
r�
12� �2a 125
I
— 122 !1
i21 t Z
— 133 N
9 — — 134
116 112 nB g 735 1J6
11!m 114 115 ry
Creek J, 2
N S 13B 139 Ia0 tat
a a
n e
Channel TZ
Temecula u + + + a)
b++
b
U)
s x
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
' TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 8 OF 13
GRAPHIC SCALE
100 0 50 100 200 a00
( IN FEET )
I inch - 100 (t_
LEGEND
972 APPROXIMATE LOCATION OF DENSITY TESTS
W
(1)
U)
EMBANKI DAG
T40
T-
0
Z
Ilj
I
EGEOTMLNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
ECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
22530122 DATE: OCT. 1995 PLATE: 9 OF 13
l
Temecula
GRAPHIC SCALE
100 0 s0 loo 200
( IN FEET )
I inch = 100 fL
.C,0
er '
so
Sheet 2 of 4
ICVI)
♦E,
—772
73
•tB
T
IE5
rW
1
Channel C
LEGEND
=kppROXI%,LNTE LOCATION OF DENSITY TESTS
EMBANK2.DWG
{L'
6
l�
IV
lel
IV
EGEOTMLNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
ECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
22530122 DATE: OCT. 1995 PLATE: 9 OF 13
l
Temecula
GRAPHIC SCALE
100 0 s0 loo 200
( IN FEET )
I inch = 100 fL
.C,0
er '
so
Sheet 2 of 4
ICVI)
♦E,
—772
73
•tB
T
IE5
rW
1
Channel C
LEGEND
=kppROXI%,LNTE LOCATION OF DENSITY TESTS
EMBANK2.DWG
y.
,e
!v
EGEOTMLNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
ECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
22530122 DATE: OCT. 1995 PLATE: 9 OF 13
l
Temecula
GRAPHIC SCALE
100 0 s0 loo 200
( IN FEET )
I inch = 100 fL
.C,0
er '
so
Sheet 2 of 4
ICVI)
♦E,
—772
73
•tB
T
IE5
rW
1
Channel C
LEGEND
=kppROXI%,LNTE LOCATION OF DENSITY TESTS
EMBANK2.DWG
Density Test
Location
TEMECULA CREEK
N
O
Z
Map
_ Ih
Y i a
o, oe co 195 0
19a �
93 O
9� N
— 191
}, 187
Chan
— 50
9
-' e
I
,Aa
XZ-
-- Ba
l� ie1 1F2
U)-79
178
Creek
177
__—„5 a+
- --- 74
;,3
--- 172 Temecu a a --
x x a a y b
4 x
-10
y a �—
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 10 OF 13
GRAPHIC SCALE
100 200
( IN FEET )
I inch = 100 It
+
+ 50
LEGEND
972 - APPROXIMATE LOCATION OF DENSITY TESTS
. ,.
+
')S
Sheet 3 of 4
50
+ SS a
5• "1
a�
C-
�I /
W
EMBANK3.DWG
Y
'7J
+
+ 50
LEGEND
972 - APPROXIMATE LOCATION OF DENSITY TESTS
. ,.
+
')S
Sheet 3 of 4
50
+ SS a
5• "1
a�
C-
�I /
W
EMBANK3.DWG
0
z
'I6
+ I 4
SS
^-^`B
^W
W
i SB
rs� 59
GEOTECHNICAL &, ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 11 OF 13
Temecula
{so
Density Test Location
TEMECULA CREEK
i2
71]
Cree
%
1>S % t>b
Bs
LEGEND
972 APPROXIMATE LOCATION OF DENSITY TESTS
Map
GRAPHIC SCALE
50 100 200
( IN FEET )
1 inch = 100 ft.
Sheet 4 of 4
EMBANK4.DWG
1B
b
1
+ I 4
SS
^-^`B
^W
W
i SB
rs� 59
GEOTECHNICAL &, ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 11 OF 13
Temecula
{so
Density Test Location
TEMECULA CREEK
i2
71]
Cree
%
1>S % t>b
Bs
LEGEND
972 APPROXIMATE LOCATION OF DENSITY TESTS
Map
GRAPHIC SCALE
50 100 200
( IN FEET )
1 inch = 100 ft.
Sheet 4 of 4
EMBANK4.DWG
Density Test Location Map
0
M
W
J
U
I^\ IN
V
100' 50' 0' 100' 200' 300'
SCALE: 1" = 100'
F
HNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 12 OF 13
LEGEND
972 - APPROXIMATE LOCATION OF DENSITY TESTS
RW_TSTI.DWG 9/6/95
( RETAINING
WALL)
TEMECULA
CREEK
CHANNEL
- 125
t26 i2 7 t28
129 _-- 130 tat 132
144
123
,24
t33
34 143
135 142
t22
12t
+ 730 137 138 139 140 141
1 0
"'� N +
119 N
8 0
1
+
117
116
N
1t5
O it`s 114 00
0
o =�
cel
r
3
76 5 4 17 q 46
79
37 67 38
4 53 1g
47 2p 48 27
47
�2
4 49 22 Sp 23 6 6
36
6 2
11
42.68
61
35
+
31 8
60 34 68
RETAINING WALL
32 9 59 33
10
29 58
28 57 3p
27 6
1 24 25 �52���5 56
755 44
0
M
W
J
U
I^\ IN
V
100' 50' 0' 100' 200' 300'
SCALE: 1" = 100'
F
HNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 12 OF 13
LEGEND
972 - APPROXIMATE LOCATION OF DENSITY TESTS
RW_TSTI.DWG 9/6/95
Density Test Location Map ,
PRESLEY PROPERTY_ 235
'-- ; " � sov�N 21
P�
2,0 + vj
/ {
JS 67 + 66
—
68
/ + 36 109 + 30 + IN
i / + + + 110 59 + 52 51
1 = 201 37 _ 60+ 53 + 31 + 76 +
+ + 77 + 07
+ + 32 111
106 i- 69 + + + 50
3B } 55 } St IJS
/ Qrj + + 49 + 78
2 / + + + 33 61 +73
4 at 52 {
+ 106
+ + 134 71
103 34 + 70 74 {
/ + 57
+ a] 75
i 201 /.- ++ 80 +
46 56
2 1 + + +40 + + 86
85 89 72
-�� + +65 +
19 i el + 1$
9 + + 87
17 88
90 } +
+ 41 133
82
+ 91 +
+ 63
+ 48
83 +
93
92
+ +
Ba 64 }
94
GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC.
DENSITY TEST LOCATION MAP
TEMECULA CREEK CHANNEL IMPROVEMENTS
AND DISPOSAL AREAS
RIVERSIDE COUNTY, CALIFORNIA
WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 13 OF 13
EM�Gv�
+ 1+ 132
101 +25
+
98 + IU
2,9
2fe / /
GRAPHIC SCALE
loo 0 so 100 200 400
( IN FEET )
I inch = 100 (t
+
101 + 105
+ 131 + %
99
+ +
los la
„4
116 + 97
+ 150 +
100 117
+
+ 129
115 +
118
+ 119
+ + +
123 124 115
+ 127
} 120
126
�f
+ 126 +
I
9
1
''- + 121
i 122 REEK !\ _
j.
LEGEND
972 - APPROXIMATE LOCATION OF DENSITY TESTS
136
35 N /
r
/
24
j 23 +
22 +
+ 29
_ J
-� }
7
+ +
19 28
+
+ 6 +
17 27
4
+ +
20 2
26
+
+ 5
I +
21 +8
+ 12
9 + +
+ + 25
11 10
13
+ IS
+ 16
u
/
225301PR.DWG 9-14-95