Loading...
HomeMy WebLinkAboutGeotechnical Investigation Dec. 1992GEOTECHNICAL INVESTIGATION FOR TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA PREPARED FOR MDC - VAIL SAN DIEGO, CALIFORNIA PREPARED BY GEOCONINCORPORATED SAN DIEGO, CALIFORNIA DECEMBER 1992 I 11 Project No. 04927-41-01 December 21, 1992 MDC - Vail 9474 Kearny Villa Road, Suite 203 San Diego, California 92126 Attention: Mr. Jerry Swanger Subject: TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA GEOTECHNICAL INVESTIGATION Gentlemen: In accordance with your authorization of our proposal dated October 2, 1992, we have performed a geotechnical investigation at the subject site. The accompanying'Peport presents the findings of our study and our conclusions and recommendations relative to the geotechnical aspects of developing the property as presently proposed. If there are any questions regarding this report, or if we may be of further service, please contact the undersigned at your convenience. ' Very truly yours, OCONINCORPORATED 1 Cjpy *CE ms ohn Hoobs 0 CEG 1524 7LB:JHH:JEL:slc oQPofESS10* (6/del) Addressee Q y m ' N0. 17030 N s # EXP. 6-30.93 + sl', CIVIC- P��P OF CA0 JameP-As L. Br 111 � RCE 43824 b x NXWON NO. 1524 O aWnFIED -4 • ENGINEERING • s'6-30-94 GEOLOGIST rfOR C a L 00;/ EXP.' �Z93 TABLE OF CONTENTS ' PURPOSE AND SCOPE .............................................. 1 SITE AND PROJECT DESCRIPTION ................................... 3 SOIL AND GEOLOGIC CONDITIONS .................................. 4 ' GROUNDWATER................................................... 5 GEOLOGIC STRUCTURE ............................................ 6 SITE SEISMICITY ................................................... 7 Deterministic Analysis ............................................ 7 Historic Site Seismicity ........................................... 8 LIQUEFACTION ............. 10 Evaluation of Liquefaction Potential ................................ 10 Effects of Liquefaction .......................................... 12 CONCLUSIONS AND RECOMMENDATIONS ........................... 14 General...................................................... 14 ' Results of Test Fills ............................................. 16 Grading...................................................... 17 Settlement.................................................... 19 ' Soil and Excavation Characteristics ................................. 20 Embankment Factors ........................................... 21 Slopes....................................................... 21 ' Preliminary Foundation Recommendations ........................... 22 Retaining Walls and Lateral Loads ................................. 23 Drainage and Maintenance ....................................... 25 Grading Plan Review ............................................ 25 LIMITATIONS AND UNIFORMITY OF CONDITIONS ' MAPS AND ILLUSTRATIONS Figure 1, Vicinity Map Figures 2 and 3, Geologic Maps (Map Pocket) ' Figure 4, Settlement Monument Figure 5, Slope Stability Analysis Figure 6, Surficial Slope Stability Analysis TABLE OF CONTENTS (Continued) APPENDIX A FIELD INVESTIGATION Figures A-1 - A-8, Logs of Borings APPENDIX B LABORATORY TESTS Table B -I, Summary of In-place Moisture Density and Direct Shear Test Results Table B -II, Summary of Laboratory Maximum Dry Density and Optimum Moisture Content Test Results Figures B-1 - B-2, Gradation Curves Figures B-3 - B-6, Consolidation Curves APPENDIX C EQFAULT & EQSEARCH ANALYSIS APPENDIX D LIQUEFY 2 Liquefaction Analysis APPENDIX E TEST FILL PROGRAM APPENDIX F RECOMMENDED GRADING SPECIFICATIONS REFERENCES Project No. 04927-41-01 December 18, 1992 GEOTECHNICAL INVESTIGATION PURPOSE AND SCOPE This report presents the results of our soil and geologic investigation of the proposed Tentative Tract 23172, an approximately 200 -acre site located near Temecula in Riverside County, California. The purpose of the investigation was to observe the soil and geologic conditions, identify potential geotechnical constraints and to provide recommendations relative to the geotechnical aspects of site development. Specifically, the major purposes of the investigation were: • To evaluate the potential for liquefaction at the site. • To evaluate the compressibility of the upper alluvial deposits. • To perform laboratory testing on selected representative soil samples to determine pertinent physical properties for engineering analysis. • To determine the feasibility of in situ densification of the upper alluvial soils. • To provide specific recommendations pertaining to grading the site, in particular, the extent of remedial grading. The scope of the field investigation consisted of a site reconnaissance, geologic mapping and excavation of 4 small -diameter rotary wash borings. Observation wells were placed within two of the borings for establishing current groundwater elevations and for future monitoring. The field investigation was performed on October 13, 1992. Laboratory tests were performed on representative soil samples obtained from the exploratory borings to evaluate pertinent physical ' Project No. 04927-41-01 December 21, 1992 ' properties. Detailed descriptions of the field investigation and laboratory testing are presented in Appendices A and B, respectively. Our scope also included a review of the following: • Geotechnical Feasibility Investigation 700 ± Acres, Vail Ranch Riverside ' County, California prepared by Highland Soils Engineering, Incorporated dated August 6, 1987. ' • Addendum to Report of June 21, 1989, Estimated Alluvial Removals Vail Ranch Commercial, Margarita Road and Highway 79, Rancho California, California prepared by ICG Incorporated dated June 28, 1989. ' • Liquefaction Analysis Vesting Tentative Tract No. 23172, South of Highway 79, between Butterfield Stage Road and Margarita Road, Riverside County, California, Work Order No. 219101.00 prepared by Ranpac Soils Incorporated dated March 15, 1991. • Limited Hydrogeologic Investigation, Tract 23172, South of Highway 79, ' Between Butterfield Stage Road and Margarita Road, Riverside County, California, Work Order No. 219201.07 prepared by Geotechnical and Environmental Engineers, Incorporated dated April 3, 1992. A detailed listing of the references utilized for preparation of this report is included at the end ' of the report. ' The scope of the investigation also included the implementation of a test fill program to ' evaluate the feasibility of in situ densification of the upper alluvial deposits to provide alternative remedial grading measures. Typical grading procedures for removal and ' recompaction are anticipated to be impacted by a near surface groundwater table attributable ' to the Eastern Municipal Water District (E. M. W. D.) effluent ponds adjacent to State Route 79 north of the site. Details of the test fill program are included in Appendix E. 1 ' 2 ' Project No. 04927-41-01 ' December 18, 1992 ' SITE AND PROJECT DESCRIPTION The rectangular property, occupying approximately 200 acres is located south of State Highway 79 between Margarita Road and Butterfield Stage Road, Riverside County, California. The southern boundary of the property is situated within the Temecula Creek ' channel. The western, portion of the site contains several old buildings associated with the original Vail Ranch. A Native American burial ground is located within the south central ' portion of the site. An existing well is situated near the old buildings. Site vegetation consists primarily of a moderate to heavy growth of native weeds and grasses. Several scattered trees exist near the creek channel. Site drainage flows southerly into Temecula Creek Channel which in turn drains to the west. In general, site topography consists of a relatively flat alluvial plain with elevations varying from a high of approximately 1110 Mean Sea Level (MSL) at the northeastern property corner to a low of approximately 1,053 MSL at the southwestern property corner. ' The Tentative Map indicates that site development will consist of grading the site for a 51 -lot commercial/industrial subdivision with associated streets and underground improvements. Grading is anticipated to consist of cuts and fills up to of 5 feet and 10 feet, respectively. Slopes are anticipated to be minor (less than 10 feet in height) and constructed at an inclination of 2:1(horizontal:vertical). The lots will be sheet graded and developed individually 1 -3- I 11 1 1 1 1 11 C I Project No. 04927-41-01 December 21, 1992 at a later date. It is anticipated that the project buildings will consist of concrete tilt -up structures founded on conventional continuous and/or spread footings. Additionally, Temecula Creek channel will be improved to an approximate width of 400 feet with revetment on the sidewall slopes. The base of the channel is anticipated to remain natural. Grading within the channel will consist of cuts up to approximately 14 feet to establish the new channel bottom. The locations and descriptions of the site and proposed development are based on a site reconnaissance and a review of the Tentative Map and readily -available geotechnical reports and geologic literature pertaining to the site. If project details vary significantly from those presently planned, Geocon Incorporated should be notified for review and possible revision of this report. SOIL AND GEOLOGIC CONDITIONS The entire site is underlain by recent alluvium anticipated to be on the order of 100 to 150 feet in thickness. The recent alluvium is underlain by approximately 600 feet of older alluvium and sedimentary rock of the Pauba Formation. Borings advanced during this and previous studies indicate that the recent alluvium is comprised primarily of sands and silty sand with occasional silt and clay interbeds. In general, the materials were in a loose to medium dense condition with in-place dry densities varying from 85 pcf to 118 pcf. Laboratory test results and visual observations indicated very low in-place moisture contents of the near surface soils -4- I Project No. 04927-41-01 December 21, 1992 (upper 5 feet). Consolidation testing and experience with similar soil conditions indicate that the upper dry material in it's present condition is susceptible to collapse upon an increase in moisture content. Therefore, remedial grading to moisture condition and densify the upper 3 rto 5 feet of alluvium will be required as recommended in the Conclusions and ' Recommendations Section of this report. Laboratory consolidation test results on deeper samples indicated higher in situ densities and moisture contents. These deeper materials should not consolidate significantly under the proposed additional fill loads. However, some immediate settlement may occur and a settlement monitoring program should be established to determine when settlement from fill placement has ended. Details of the monitoring program are included within the Conclusions and Recommendations section. GROUNDWATER ' Groundwater was encountered in each of the exploratory borings. The depth of groundwater measured during drilling operations varied from 7 feet (Boring No. 4) to a maximum depth of 25 feet (Boring No. 2). Observation wells were installed in Boring Nos. 1 and 4 for ' purposes of monitoring the groundwater levels, particularly Boring No. 4 which may be impacted by the nearby E.M.W.D. effluent ponds. Groundwater levels measured 72 hours after completion of drilling indicated the highest groundwater at 11.8 feet (Boring No. 4). A ' review of the referenced limited hydrogeologic study (G. E. E. April, 1992) indicated groundwater as near as 7.4 feet below the existing ground surface. The groundwater flows in ' -5- [1 Project No. 04927-41-01 December 21, 1992 ' an south -southwesterly direction at a gradient varying from approximately 0.7 percent to 2.5 ' percent. The highest measured level was along the northern property line. The report further indicated that previous groundwater levels measured prior to construction of the ponds (1971) indicated groundwater levels at 13 to 21 feet below the ground surface. This condition ' suggests that the recent higher measured groundwater levels are due to seepage from the effluent ponds. r It is our understanding that currently E.M.W.D. is constructing a pipeline to a new location and that the existing effluent ponds will be closed in the very near future. We anticipate that the groundwater levels near the vicinity of the ponds will return to the static groundwater elevation (approximately 15 to 20 feet). Additionally, the improvement to Temecula Creek will result in lowering the existing channel bottom by up to 14 feet. This should result in further lowering of the groundwater. GEOLOGIC STRUCTURE The site is situated within the Peninsular Ranges of Southern California east of the Elsinore Fault Zone. Specifically, the site is situated in Pauba Valley which generally trends east -west. ' The Peninsular Ranges extend southward from the Los Angeles Basin into Baja California and includes several active faults. Lateral displacement and uplift of the region has occurred on ' a series of major northwest -trending faults which are thought to be related to regional tectonic 1 I Project No. 04927-41-01 December 21, 1992 ' framework. The site is underlain by Quaternary alluvial deposits with depths on the order ' of 600 feet. The upper younger alluvium is estimated to be approximately 150 feet thick and is underlain by older alluvium. Sedimentary bedrock of the Pauba Formation underlies the alluvium. SITE SEISMICITY IDeterministic Analysis To determine the effects that earthquakes on known active faults may have on the site, the computer program EQFAULT (Blake, 1989a) was utilized. Within the specified search radius 1 of 100 miles, 45 active faults were identified. The EQFAULT analysis indicated that the Elsinore Fault is approximately 1.1 miles west of the site. Estimates of maximum credible and ' maximum probable earthquake magnitudes and calculated acceleration parameters were determined using EQFAULT. Estimates of earthquake recurrence intervals were calculated based on the method of Campbell (1978). Attenuation relationships presented by Joyner and Boore (1982) were used to estimate site acceleration. ' The highest predicted accelerations for the site are for earthquakes generated from the Elsinore Fault. Seismic events of magnitude 7.5 and 6.8 for the maximum credible and maximum probable earthquakes, respectively, were estimated for the Elsinore Fault. ' Estimated maximum probable and maximum credible peak site accelerations were 0. 45 g -7- I I Project No. 04927-41-01 December 21, 1992 and 0.69 g, respectively. Summarized below are other nearby faults with estimated earthquake events and site accelerations that may affect the site seismicity. TABLE I - - SUMMARY OF NEARBY FAULTS Distance Maximum Maximum Maximum Maximum from Credible Probable Credible Site Probable Site Fault Name Site (mites) Event Event Acceleration Acceleration San Jacinto 21 7.5 7.0 .14g .log San Andreas 42 8.0 7.25 .07g .05g Newport -Inglewood 42 7.5 6.5 .06g .03g San Gorgonio 35 8.0 7.0 .10g .06g Elsinore 1.1 7.5 6.75 .69g .45g Historic Site Seismicitv ' Historic site seismicity was studied utilizing the program EQSEARCH (Blake, 1989b). The computer program draws upon a catalog of historic earthquakes, and determines those which occurred within a specified distance of the site. Computer output from the analysis is ' presented in Appendix C. 1 I 1 [1 r 1 1 I I I Project No. 04927-41-01 December 21, 1992 The search of the earthquake catalog within a specified radius of 50 miles of the site indicated 32 earthquake events with magnitudes varying from 5.0 to 9.0. The largest historic earthquake was a Magnitude 7.0, that occurred in 1858 approximately 19 miles from the site and centered on the San Jacinto Fault. The largest historic ground acceleration at the site was 0.10 g. The largest historic earthquake on the closest fault system, located during the search was a Magnitude 6.0 occurring in 1910 on the Elsinore Fault, centered approximately 23 miles from the site. It should be noted that the magnitudes assigned to the 1858 and 1910 seismic events are postulated based upon observation and accounts of damage, and ground shaking felt. A probability analysis was conducted, based upon the recorded magnitude of each historic earthquake located in the EQSEARCH analysis, the relative distance from the site, and attenuation relationships presented by Joyner and Boore (1982). Results of the analysis indicate a 23 percent probability of exceeding a Magnitude 7.0 event within a 50 mile radius of the site within a 50 year period. Similarly, a 23 percent probability of exceeding a 0.10 g maximum site acceleration is estimated for a 50 year period. 02 Project No. 04927-41-01 December 21, 1992 LIQUEFACTION Liquefaction is a phenomenon in which loose, saturated and relatively cohesionless soil deposits lose strength during strong ground motions. Primary factors controlling the development of liquefaction include density and duration of ground motion, characteristics of ' the subsurface soil, in situ stress conditions and the depth to groundwater. ' Evaluation of Liquefaction Potential ' Evaluation of the site liquefaction potential was performed following procedures suggested by Seed et al. (1985). Our general approach to the evaluation was to use field test data (Standard Penetration Blow Counts) and gradation characteristics of the subsurface soils, considering a ' maximum probable earthquake of Magnitude 6.75, postulated to occur on the Elsinore Fault Ias the closest approach to the site. ' Quaternary alluvial deposits encountered in Borings 1 through 4 (Appendix A) were considered in the liquefaction analysis. For the purpose of the analysis, it was assumed that groundwater elevations were 10 feet below the proposed finish grade elevations at each boring location. It was further assumed that soils above the water table would not be saturated or subject to liquefaction. Materials classified as silt (ML) or clay (CL) according to the Unified -10- 11 I I I 1 j I 1 I I Project No. 04927-41-01 December 21, 1992 Soil Classification System (USCS) were considered to be non -liquefiable, due to the high percentages of fines. Liquefaction potential computations were performed utilizing the computer program LIQUEFY2 (Blake, 1989c). The results of the computer analyses performed for each boring are presented in Appendix D. A site acceleration of 0.458 (Maximum Probable site acceleration) estimated from the EQFAULT run was used in the liquefaction analysis. This acceleration assumes that the site exists on 'bedrock" or that relatively dense formational materials are present at shallow depth. Research (Seed and Idriss, 1982), indicates that for short -period, high -frequency seismic waves (as would be produced by the "near -field" event assumed in the analysis), the presence of deep, soft soil deposits tend to damp the seismic waves, resulting in a reduced maximum ground acceleration at the ground surface. Based on Figure 19 of Seed and Idriss (1982), a maximum site acceleration of 0.308 is estimated for the site, which is underlain by relatively thick deposits of alluvium. Therefore, our analysis used a site acceleration of 0.308. Additionally, an analysis using a site acceleration of 0.458 was performed to evaluate site liquefaction potential for approximate Maximum Probable ground accelerations. A summary of zones with calculated factor -of -safety against liquefaction of less than 1.0 is presented below. It should Project No. 04927-41-01 December 21, 1992 be noted that very little variation in the zones considered to be liquefiable occurs due to variation in assumed maximum accelerations. TABLE II SUMMARY OF POTENTIAL LIQUEFIABLE ZONES. Maximum Maximum Acceleration Acceleration Boring No. (0.308) (0.45g) B1 10.25 to 14.25 10.25 to 14.25 B2 10.25 to 19.75 10.25 to 19.75 24.25 to 29.75 24.25 to 29.75 B3 26.25 to 34.75 26.25 to 34.75 B4 10.25 to 30.75 10.25 to 30.75 35.25 to 36.75 35.25 to 36.75 Depths below proposed finish grade elevations Effects of Liquefaction The above tabulation indicates that liquefaction in thin discrete zones could occur for the intense levels of ground shaking assumed in the analysis. However, the effects of liquefaction can be mitigated by providing an increase in overburden pressure and a compacted fill mat as 12- ' Project No. 04927-41-01 December 18, 1992 recommended hereinafter. Additionally, results of the EQSEARCH Analysis (Appendix C) ' indicated a historic high ground acceleration of 0.10 g at the site and a 23 percent probability of exceedance of 0.10 g. The relatively low probability of excessive acceleration combined with remedial grading significantly reduces the potential for liquefaction to adversely impact the proposed site development. ' As recommended in the Conclusions and Recommendations section, remedial grading of the ' upper alluvial soils will be performed. In addition, the placement. of approximately 4 to 10 feet of compacted fill is planned at the site. The proposed fill soils combined with remedial grading ' of the upper alluvial soils and in situ densification of approximately 4 feet of the underlying soils will result in an increase in the effective overburden stress at depth and provide a non - liquefiable surface layer (non -liquefiable layer also includes the non -saturated material above ' the water table). Research presented by Ishihara (1985) indicates that the presence of a non - liquefiable surface layer may prevent the effects of at -depth liquefaction from reaching the ' surface. This can occur when the surface layer is thick enough to resist the upward pressure ' of the liquefying stratum. Based on a chart presented by Ishihara (1985), it has been determined that the remedial grading and placement of additional compacted fill soils to the ' proposed finish grade elevations reduces the potential for the effects of soil liquefaction to be ' manifested at the ground surface to a point such that probability for such manifestations is low. I - 13 - I 1 d Project No. 04927-41-01 December 21, 1992 CONCLUSIONS AND RECOMMENDATIONS General 1. In our opinion, no soil or geologic conditions exist at the site which would preclude the development of the property as presently proposed provided the recommendations of this report are followed. ' 2. The presence of loose, compressible alluvial deposits in the upper 5 feet will require special consideration during grading of the areas proposed for development. In general, ' remedial grading combined with in situ densification of the underlying deposits will be required. ' 3. Groundwater was encountered at elevations varying from 7 to 25 feet below the existing ' ground surface. The higher groundwater levels are adjacent to Highway 79 and are apparently impacted by the Eastern Municipal Water District effluent ponds on the ' north side of the highway. It is our understanding that the effluent ponds will be shut ' down in the very near future. Once this occurs we anticipate that the groundwater levels near the vicinity of the ponds will return to normal static groundwater levels (15 ' to 20 feet). Site development also includes improvement to Temecula Creek Channel which will result in lowering the existing channel by up to 14 feet. This will also likely ' lower the existing groundwater table. Constraints. associated with development of the ' -14- Project No. 04927-41-01 December 18, 1992 ' 5. property due to groundwater include impacting the amount of remedial grading and potential settlement that may result due to fluctuations of the groundwater level as a result of hydro -compression. Settlement issues related to groundwater are discussed in the Settlement portion of this report. If the existing well is to be destroyed or abandoned, it should be done in accordance with the regulations and specifications of Riverside County. The results of the liquefaction analysis indicate that the alluvial soils have localized discrete zones which may be susceptible to soil liquefaction. However, the remedial grading of the near surface soils combined with the placement of fill varying from 4 to 10 feet in thickness will provide an increase in overburden pressure and a non liquefiable surface layer. This should result in a siccant reduction in the probability for liquefaction at depth to manifest at the ground surface. Additionally, the closing of the effluent ponds and lowering of Temecula Creek channel should reduce the groundwater levels thereby increasing the thickness of the non liquefiable surface layer and reducing the site liquefaction potential. -15- ' 4. ' 5. property due to groundwater include impacting the amount of remedial grading and potential settlement that may result due to fluctuations of the groundwater level as a result of hydro -compression. Settlement issues related to groundwater are discussed in the Settlement portion of this report. If the existing well is to be destroyed or abandoned, it should be done in accordance with the regulations and specifications of Riverside County. The results of the liquefaction analysis indicate that the alluvial soils have localized discrete zones which may be susceptible to soil liquefaction. However, the remedial grading of the near surface soils combined with the placement of fill varying from 4 to 10 feet in thickness will provide an increase in overburden pressure and a non liquefiable surface layer. This should result in a siccant reduction in the probability for liquefaction at depth to manifest at the ground surface. Additionally, the closing of the effluent ponds and lowering of Temecula Creek channel should reduce the groundwater levels thereby increasing the thickness of the non liquefiable surface layer and reducing the site liquefaction potential. -15- Project No. 04927-41-01 December 21, 1992 Results of Test Fills A 7 As referenced earlier, a test fill program was implemented to evaluate the potential for in situ densification of the upper alluvial deposits. A review of the referenced reports previously prepared for the site, observation of the soils during drilling operations and results of laboratory gradation analyses indicated that the predominant site soils consist of silty sand and poorly graded sands. These type of materials typically densify to limited depths when subjected to dynamic vibratory effort. The test fills were implemented to evaluate the depth of density increase and moisture infiltration from surface flooding and application of vibratory effort. In general, the test fill program consisted of clearing 3 approximately 100 X 200 feet areas, irrigation from the surface from sprinkler systems and compaction with a DynaPac CA25 vibratory sheepsfoot roller. After the areas were cleared and irrigated, test pits were excavated to evaluate the depth of moisture penetration. Observation and in-place density test results indicated that there was a significant increase in moisture content up to a depth of approximately 6 feet. A review of the boring logs from the previous investigations and the logs from our field investigation indicate that in general, the materials below a depth of 6 feet contained a relatively high moisture content. Therefore, the moisture content of the in-place dry near surface soils was significantly increased. The increase in moisture content significantly reduces the potential for 16- Project No. 04927-41-01 December 18, 1992 hydro -compression of the near surface soils upon loading or from lowering of the groundwater table. In-place density test results indicated an increase in density to a depth of approximately 4 feet. The results of the test program indicated that the site soils are suitable for in situ densification. However, some areas will require limited removal. A more detailed description of the test fill program and test results are included in Appendix E. Gradine 3 0 10. All grading should be performed in accordance with the Recommended Grading Specifications contained in Appendix F and the County of Riverside Grading Ordinance. Where the recommendations of this section conflict with those of Appendix F, this section takes precedence. Site grading should begin with the removal of all vegetation and other deleterious material. The material should then be exported from the site. The depth of removal should be such that material to be used in fills is free of organic matter. Since the site is underlain by younger alluvium and the upper portions are compressible, remedial grading will be required over the entire site. In general, remedial grading in the form of in situ densification and removal and recompaction should be performed -17- I 1 1 1 1 [I 1 1 I Project No. 04927-41-01 December 21, 1992 such that a minimum of 5 feet of compacted fill is placed beneath the proposed finish grade elevations. The approximate limits of these areas are depicted on Figures 2 and 3. 11. Prior to in situ densification, the existing ground surface should be flooded such that there is an increase in moisture content to a depth of at least 5 feet. The results of the test fill program indicate that depths up to 6 feet showed a significant increase in moisture content. Therefore, consideration should be given to flooding the entire site by the use of sprinkler systems. 12. Prior to placing fill soils, the areas being compacted from the existing ground surface and the bottoms of the overexcavated areas (see Figure Nos. 2 and 3) should be compacted with a vibratory compactor capable of imparting the dynamic energy of a DynaPac CA25 or equivalent. The compaction effort should consist of a minimum of 6 passes with the vibratory roller. 13. Fill soils may then be placed and compacted in layers to the design finish grade elevations. Layers of fill should be no thicker than will allow for adequate bonding and compaction. All fill (including backfill and scarified ground surfaces) should be compacted to at least 90 percent of maximum dry density as determined by ASTM Test I I [1, CI' 1 Project No. 04927-41-01 December 21, 1992 Procedure D1557 --at or slightly above optimum moisture content. Fill areas with in- place density test results which indicate a moisture content less than optimum will require additional moisture conditioning before placing additional fill. Settlement 14. Settlement at the site could occur as a result of compression due to additional loading from the placement of fill soils, lowering of the groundwater table and by hydro - compression of the alluvium as a result of an increase in moisture content. We estimate that maximum settlements on the order of 1 -inch could occur as a result of fill placement. However, due to the granular nature of the alluvium we anticipate that a considerable portion of this settlement would occur during fill placement. 15. Minor settlement could occur as a result of regional lowering of the groundwater table. However, in general, the alluvium becomes denser with depth and the amount of settlement should be relatively uniform, small, and should not adversely impact the project development. 16. Hydro -compression occurs when the in situ soil experiences an increase in moisture content. The amount of compression is dependent upon the in situ density, stress conditions and the response of the soil to a moisture increase. Consolidation testing 19- ' Project No. 04927-41-01 December 21, 1992 performed on the alluvium indicated that the material is subject to compression when ' saturated. We anticipate that the potential for significant hydro -compression to occur at the site is minimal based upon the following: ' • The groundwater levels have been relatively close to the surface and the majority of the soil has already been exposed to saturation. ' • Based upon observations during drilling, the upper 3 to 6 feet of the alluvium is relatively dry. The results of the test fill indicated a significant ' increase in moisture content to depths on the order of 6 feet thereby introducing moisture prior to loading and reducing the potential for future hydro -compression. 17. It is recommended that a settlement monitoring program be established at the completion of grading operations to determine when the settlement due to construction loading (fill placement) is essentially complete. Settlement monuments should be tinstalled at the approximate locations shown on Figures 2 and 3 and should be constructed in accordance with Figure 4. The monitoring program should consist of ' weekly readings by the project civil engineer for a period of one month after installation ' and then monthly for a period of 2 months. At that time, after review of the monument readings, the necessity for additional monitoring can be determined. Soil and Excavation Characteristics 18. It is anticipated that the site soils can be excavated with a light to moderate effort with ' conventional heavy duty grading equipment. d 1 20 - I �rJ 1 LI 1 1 Project No. 0492741-01 December 18, 1992 Embankment Factors 19. Estimates of embankment factors (bulking and shrinkage) are generally based on Slopes comparing laboratory maximum dry densities with the density of the in-place material. It should be emphasized that variations in natural soil density, as well as in compacted fill density, render shrinkage value estimates very approximate. For example, the compaction of fill soils may vary from 90 percent to 100 percent relative compaction, allowing a 10 percent variation in shrinkage. Based upon the limited work performed to date, and previous experience with similar soil conditions, the following shrinkage factors are recommended for evaluating earthwork quantities. Soil Unit Shrinka e Factor Alluvium removed and recompacted Alluvium compacted from the surface (in situ densification) 20 to 25 percent shrink 15 to 20 percent shrink ' 20. Slopes for the subject project are relatively minor with maximum heights on the order I 1 of 10 feet at inclinations of 2:1 (horizontal:vertical). Slopes up to 15 feet in height are planned along Temecula Creek. Slope stability analyses utilizing drained direct shear parameters obtained from laboratory testing were performed and the results indicate that the proposed slopes have calculated factors -of -safety against deep seated and -21- I ' Project No. 04927-41-01 December 21, 1992 surficial instability of at least 1.5. The results of the analyses are included on Figures 5 ' and 6. ' 21. All fill slopes should be compacted by back -rolling at maximum fill heights of 4 feet and ' should be trackwalked upon completion or overbuilt a minimum of 3 feet and cut back to finish grade such that the fill soils are uniformly compacted to at least 90 percent relative compaction to the face of the finished slope. ' 22. Although the slopes are considered to be stable against deep seated and surficial ' instability, the granular nature of the on-site materials are highly susceptible to soil erosion. Therefore, it is recommended that the slopes be landscaped as soon as practicable after completion of grading. All slopes should be planted, drained and ' maintained to reduce the potential for erosion. Preliminary Foundation Recommendations 23. The following foundation recommendations are for preliminary purposes only. The actual foundation recommendations can be provided in updated geotechnical investigations for the individual lots as they are developed at a later date, once building ' geometry, location and structural loading is known. These recommendations assume I 1 -22- h 1 [1 C u Project No. 04927-41-01 December 21, 1992 that the materials present within 3 feet of proposed building pad grades consist of very low to low expansive soils as defined by Uniform Building Code (UBC) Table 29-C. 24. Conventional continuous and/or isolated spread footings are suitable for support of lightly loaded structures. The foundations may be designed for an allowable soil bearing pressure of 2,000 psf (dead plus live loads). This bearing pressure may be increased by up to one-third for transient loads such as those due to wind or seismic forces. 25. If heavy concentrated column loads are anticipated, pile foundations will likely be required. Recommendations for deep foundations can be provided in updated reports. 26. Footings located within 7 feet of the tops of slopes should be extended in depth such that the outer bottom edge of the footing is at least 7 feet horizontally from the face of the finished slope. Retainine Walls and Lateral Loads 27. Retaining walls not restrained from movement at the top and having a level backfill surface should be designed for an active soil pressure equivalent to a fluid pressure of 35 pcf. Where the backfill will be inclined at no steeper than 2:1, an active soil pressure of 45 pcf is recommended. 23 - I 0 Project No. 04927-41-01 December 21, 1992 28. Unrestrained walls are defined as those walls that are not allowed to rotate more than .001H at the top of the wall. Where walls are restrained from movement at the top, an additional uniform pressure of 7H (where H equals the height of the wall in feet) should be added to the above active soil pressure. 29. All retaining walls should be provided with a drainage system adequate to prevent the buildup of hydrostatic forces and should be waterproofed as required by the Project Architect or Design Engineer. The use of drainage openings through the base of the wall (weep holes, etc.) is not recommended where the seepage could be a nuisance or otherwise adversely impact the property adjacent to the base of the wall. The above recommendations assume a properly compacted granular (Expansion Index less than 50) material with no hydrostatic forces or imposed surcharge loads. If conditions different from those described are anticipated, or if specific drainage details are desired, Geocon Incorporated should be contacted for additional recommendations. 30. For resistance to lateral loads, we recommend a passive earth pressure equivalent to a fluid weight of 300 pcf for footings or shear keys poured neat against properly compacted fill soils. This lateral pressure assumes a horizontal distance extending at least 5 feet or three times the height of the surfacegenerating passive pressure, whichever is greater. The upper 12 inches of material not protected by floor slabs or -24- ' Project No. 04927-41-01 December 21, 1992 pavement should not be included in the design for lateral resistance. If friction is to be ' used for lateral resistance, we recommend using a coefficient of friction between soil and concrete of 0.40. ' Drainage and Maintenance 31. Good drainage is imperative to reduce the potential for soil movement, erosion and ' subsurface seepage. Positive measures should be undertaken to finish grade the building pads and other improvements so that drainage water is directed away from foundations ' and the tops of slopes into controlled drainage devices. 1 1 Grading Plan Review 32. Grading and development plans should be reviewed by an engineer and/or engineering geologist from Geocon Incorporated prior to finalization to determine the necessity for additional recommendations and/or analysis. -25- iLl ' Project No. 04927-41-01 December 21, 1992 r ILIMITATIONS AND UNIFORMITY OF CONDITIONS r1. The recommendations of this report pertain only to the site investigated and are based upon the assumption that the soil conditions do not deviate from those disclosed in the investigation. If any variations or undesirable conditions are rencountered during construction, or if the proposed construction will differ from that anticipated herein, Geocon Incorporated should be notified so that supplemental rrecommendations can be given. The evaluation or identification of the potential presence of hazardous materials was not part of the scope of services provided I by Geocon Incorporated. r2. This report is issued with the understanding that it is the responsibility of the owner, or of his representative, to ensure that the information and recommendations rcontained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see rthat the contractor and subcontractors carry out such recommendations in the field. r3. The findings of this report are valid as of the present date. However, changes in rthe conditions of a property can occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties. In raddition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings rof this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a I period of three years I I ' Project No. 04927-41-01 �a a1 (-1 I'J.^.I,U1y(,,J,Jr/ J c')J�J I✓•. / Co_ \or.. 'n `.,� e>; Cl 'e 0�� C�e� IS .�/" f' r0 `G . Ili; � / � �•J � � „\ . �' .: IJ 17 SJ,\ ��✓� n ` Indian pT0 �. '\ �^ i0i`✓�r c - (3m,I,\ Burial Ground = --'SIO 59/J OW / - \ � "-/. — •"� ,,�\;�' .=,,', ff iib "I'" _\ \�_ _ �' {(�' �' l�'f.^.y l• L---- i"6 t 700 ..?` ).))'0011200 \. _ -� <2". ,,�"_' • )1� ��I I. 1 .., to -1);.1 � � w � y (1... `J:,. In �tJ� � ic ILE PECNANGA, CALIF. 1988 SCALE: I"• 2000' VICINITY MAP TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA ' Figure 1 Project No. 04927-41-01 1 ' Figure 4 EXISTING GROUND SURFACE 66"MI-7— N. `h6S7X.'F I' — 4"OR 6" DIA. PLASTIC PIPE I" MIN. DIA RIGID METAL PIPE I" PLYWOOD OR %4 STEEL PLATE SILICA SAND TO PROVIDE EL BASE 1. Locations of settlement plates shall be c1.arly marked and readily visible (red flagged) to Equipment Operators. 2. Contractor shall maintain 10 -foot horizontal clearance for heavy equipment within 5 feet (vertical) of plate base. Fill within clearance area shall be hand compacted to project specifications or compacted by alternative approved soils engineer. 3. After 5 feet (vertical) of fill is in place, the contractor shall maintain 5 feet horizontal equipment clearance. Fill in clearance area shall be hand compacted (or approved alternative) in vertical increments not to axes ' 2 feet. 4. In the event of damage to settlement plate or extension resulting from equipment operating within prescribed Clear- ance area, contractor shall immediately notify soils engineer and shall be responsible for restoring the settlement plates to working order. SETTLEMENT TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA ' Project No. 04927-41-01 ASSUMED CONDITIONS: Slope Height Slope Inclination Total Unit Weight of Soil Angle of Internal Friction Apparent Cohesion No Seepage Forces ANALYSIS: H = 15 feet 2:1 (Horizontal: Vertical) y = 130 pounds per cubic foot = 36 degrees C = 400 pounds per square foot .lcy = H tan Equation (3-3), Reference 1 C FS = NH Equation (3-2), Reference 1 Y ;LC* = 3.5 Calculated Using Eq. (3-3) Nct = 17 Determined Using Figure 10, Reference 2 FS = 3.5 Factor of Safety Calculated Using Eq. (3-2) REFERENCES (1) Janbu, N., Stability Analysis of Slopes with Dimensionless Parameters, Harvard Soil Mechanics, Series No. 46, 1954. (2) Janbu, N., Discussion of J.M. Bell, Dimensionless Parameters for Homogeneous Earth Slopes, Journal of Soil Mechanics and Foundation Design, No. SM6, November 1967. SLOPE STABILITY ANALYSIS TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA rigure 3 Project No. 04927-41-01 ASSUMED CONDITIONS: Slope Height H = Infinite Depth of Saturation Z = 3 feet Slope Inclination 2:1 (Horizontal: Vertical) Slope Angle i = 26.6 degrees Unit Weight of Water yw = 62.4 pounds per cubic foot Total Unit Weight of Soil yt = 130 pounds per cubic foot Angle of Internal Friction = 36 degrees Apparent Cohesion C = 200 pounds per square foot Slope saturated to vertical depth Z below slope face. Seepage forces parallel to slope face. ANALYSIS: FS = C + (yt - % ) Z cos' i tangy - 2.0 yt Z sin i cos i REFERENCES (1) Haefeli, R. The Stability of Slopes Acted Upon by Parallel Seepage, Proc. Second International Conference, SMFE, Rotterdam, 1948, 1, 57-62. (2) Skempton, A. W., and F. A. Delory, Stability of Natural Slopes in London Clay, Proc. Fourth International Conference, SMFE, London, 1957, 2, 378-81. SURFICIAL SLOPE STABILITY ANALYSIS TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA WA .,vMr. -,t — - -, , Athol 144 - -Fina0 oil I c t I, --- ",11 VOW 4� IV I'll' 1, ' Project No. 04927-41-01 December 21, 1992 APPENDIX A ' FIELD INVESTIGATION OThe field investigation was performed on October 13, 1992 and consisted of a visual site 1 reconnaissance and the excavation of 4 small -diameter rotary wash borings. A test fill program was also implemented to evaluate in situ densification (See Appendix E). ' The small -diameter borings were advanced to maximum depths on the order of 36 feet below existing grade using a Mayhew Rotary Wash drill rig. Disturbed drive samples were ' obtained using the Standard Penetration Test (SPT) split -tube sampler. Relatively undisturbed samples were obtained from the borings by driving a 3 -inch O.D. split -tube ring sampler 12 inches into the undisturbed soil mass. Standard Penetration Test samples were ' driven using a standard 140 -pound hammer falling a distance of 30 inches. The split -tube ring sampler was driven using a 400 -pound hammer falling a distance of 30 inches. ' The soils encountered in the borings and trenches were visually examined, classified and logged. Logs of the borings are presented on Figures A-1 through A-8. The logs depict the ' soil and geologic conditions encountered and the depth at which samples were obtained. tThe logs also include in-place dry density and moisture content test results. 1 [1 [l PRn1F(-T Nn nd9�7_dl_nl I BORING B 1 Z ^ HW z F H^ ^ �:�. DEPTH SAMPLE LD o p 3 C3 SOIL IN FEET NO H o (uscs) CLASS ELEV. (MSL) 1099 DATE COMPLETED 10/13/92 x (n wow HW GD EQUIPMENT MAYHEW 1000 PH wWm >-a Eo o �� o U 0 MATERIAL DESCRIPTION BI -I BI -2 ALLUVIUM SM Loose, dry, light gray -brown, Silty, fine 2 B1-3 to medium SAND 16 4 B1-4 -------------------------------------- Medium dense, slightly moist, gray -brown, 6 Silty, fine to medium SAND BI -5 SM -Becomes sandier at 6 feet 19 8 10 B1_6 ------- 9 Loose, moist, dark gray, fine to medium SM SAND with little silt 12 14 16 BI -7 --------y----------------------------- Loose, moist, gray, fine to medium 6 ML Sand SLLT with trace clay 18 1 20 B1-8 6 -Becomes sandier at 21 feet 22 24 BI -9 6 26 ------------------------------- Soft, moist, dark gray, fine Sandy SLI ML with clay and interbeds of sand Figure A-1 Log of Boring B 1, page 1 of 2 TT231 SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ❑ ... STANDARD PENETRATION TEST 0 ... DRIVE SAMPLE (UNDISTURBED) ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE Z ... WATER TABLE OR SEEPAGE ...�. - r LUOMJNrA" I.UNUIIIUNJ SHUWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AMC) AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. [1 I I I I PROJECT NO. 04927-41-01 b , P ge o TT�l ■ SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)- '®... DISTURBED OR BAG SAMPLE ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. BORING B 1 Z W^ H Z H H^ ^ W X DEPTH of 3 SOIL IN FEET SAMPLE No, o ELEV. (MSL) 1099 DATE COMPLETED 10/13/92 �CnH:x LL J (USCS) 0� '~w EQUIPMENT MAYHEW 1000 W wm W, > Eo D_ 0 v MATERIAL DESCRIPTION 28 ML Soft, moist, dark gray, fine Sandy SILT with clay and interbeds of sand (Continued) 30 B1-12 ---------------- 9 Loose, moist, gray, fine to medium SAND SM with silt and interbeds of sandy clay 32 34 BI-13 -------------------------------------- Medium dense, moist, dark gray, fine to SP -SM 24 medium SAND with trace silt 36 BORING TERMINATED AT 36 FEET Figure A-2 Log of Borin B 1 a 2 f 2 b , P ge o TT�l ■ SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)- '®... DISTURBED OR BAG SAMPLE ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. [1 .' ,I PROJECT NO 04977_41 _01 og o oring B 2, page 1 of 2 TT231 SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL � ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED) ®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE ng THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. W BORING B 2 Z W HZ I- } 1 W DEPTH o 3 SOIL IN FEET SAMPLE NO. 0 � CLASS (USCS) ELEV. (MSL) 1062 DATE COMPLETED 10/13/92 �yt�i! u. w� Nz H J O W LD EQUIPMENT MAYHEW 1000 z -IWWO3 >.a Eo 0-X" O U 0 MATERIAL DESCRIPTION B2-1 ALLUVIUM B2-2 SM Loose, dry, dark gray, Silty, fine to coarse 2 B2-3 SAND with trace gravel -------------------------------------- Loose to medium dense, moist, fine to medium 4 SAND with some silt SM B2-4 10 6 8 10 ------------------------ Dense, moist, gray, fine to medium SAND B2-5 SP -SM with trace silt 35 117.1 17.4 12 14 B2-6 -Becomes medium dense at 15 feet 20 16 18 20 B2 -7 -------------------------------------- Dense, moist, fine to medium SAND with 44 111.4 13.1 SP -SM trace silt and thin clay interbeds 22 24 26 B2-8 82-9 -------------------------------- Stiff ver moist dark _gray, Sand __ = NSP ]26 Medium dense, moist, dark gray, fine to medium SAND Figure A-3 L f B ori og o oring B 2, page 1 of 2 TT231 SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL � ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED) ®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE ng THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. 1 1 I I 1 1 [1 PRO.IECT No ndQ77-d I -n I gure A-4 Log of Boring B 2, page 2 of 2 TT231 SAMPLE SYMBOLS ❑ " • SAMPLING UNSUCCESSFUL ❑ ... STANDARD PENETRATION TEST ®... DRIVE SAMPLE (UNDISTURBED) ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE = WATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. W BORING B 2 Z MVi- r H^ WX DEPTH OJ 3 SOIL IN FEET SAMPLE NO. O ❑ z CLASS (USCS) ELEV. (MSL) 1062 DATE COMPLETED 10/13/92 HZW W�� N w� �z H J O HN3 ❑U MW 0 EQUIPMENT MAYHEW 1000 wwm �a Eo D ❑ u 28 MATERIAL DESCRIPTION SW -SM Very dense, moist, gray, fine to coarse SAND with trace silt 30 B2-10 52 118.3 16.4 BORING TERMINATED AT 31 FEET gure A-4 Log of Boring B 2, page 2 of 2 TT231 SAMPLE SYMBOLS ❑ " • SAMPLING UNSUCCESSFUL ❑ ... STANDARD PENETRATION TEST ®... DRIVE SAMPLE (UNDISTURBED) ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE = WATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. PROJECT NO. 04927-41-01 1 [1 L [1 ' Figure A-5 Log or tsoring is s, page 1 of 1 TT1z SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL C ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)+ ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE Z ... NATER TABLE OR SEEPAGE Wit: int LUG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. W BORING B 3 Z W„ HZF- } H �� DEPTH -j 3 SOIL IN FEET SAMPLE NO. H o (USCS) ELEV. (MSL) 1069 DATE COMPLETED 10/13/92 M cn . w� �z CD EQUIPMENT MAYHEW 1000 111 0 wwm �a so as o v 0 MATERIAL DESCRIPTION ALLUVIUM SP -SM Loose, dry, brown, fine SAND with trace 2 133-1 silt 11 96.8 6.7 4 6 B3-2 ---------- Soft, slightly moist, dark gray, fine ML 10 103.3 20.8 SM ._----SandySLLTr __--- Medium dense, moist, gray, fine to medium with silt 8 SP -SM _ _ _ _SAND Medium dense, moist, mottled coarse SAND and angular gravel with some silt 10 B3-3 _____ Medium dense, moist, gray, Silty, fine to 12 medium SAND SM 14 -------------------------------------- Medium dense, moist, gray, fine to medium 133-4 SM SAND with some silt 18 16 18 -------------------------------------- Soft, moist, gray, fine Sandy SILT ML 20 B3-5 1 — 6 85.2 38.0 22 ---------------------------- Medium dense, moist, light gray, fine to SP -SM medium SAND with trace silt 24 B3-6 10 26 B3-7 -------------------------------------- Loose to medium dense, moist, gray, fine SM SAND with silt and thin interbedded r clay lenses - ' Figure A-5 Log or tsoring is s, page 1 of 1 TT1z SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL C ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED)+ ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE Z ... NATER TABLE OR SEEPAGE Wit: int LUG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. I PROJECT NO. 04927-41-01 ' W BORING B 3 Z OH UF- } I�-�•• W� DEPTH LD 3 SOIL ' IN FEET SAMPLE NO. O H pCLASS o (uscs> ELEV. (MSL) 1069 DATE COMPLETED 10/13/92 H¢W �N(n LOLL W p Nw J LD EQUIPMENT MAYHEW 1000 WW111 -j Ira �o MATERIAL DESCRIPTION 28 Loose to medium dense, moist, gray, fine 30 SAND with silt and thin interbedded B3 8 SM clay lenses (Continued) 12 83.5 37.5 BORING TERMINATED AT 31 FEET 1 ' 1 . 1 ' Figure A-6 Log of Boring B 3, page 2 of 2 TT231 SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST ® ... DRIVE SAMPLE (UNDISTURBED) ®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. 1 1 I 11 PROJECT NO. 04927-41-01 LU . - . . _o- - -- - TT231 SAMPLE SYMBOLS El" SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST Y ... DRIVE SAMPLE (UNDISTURBED) ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... NATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. BORING B 4 oW1 I..IUF,' } H.. W;�,, DEPTH SAMPLE o J 3 SOIL 1N FEET N0' H o (USCS) ELEV. (MSL) 1083 DATE COMPLETED 10/13/92 cc w� �W J Of EQUIPMENT MAYHEW 1000 Wwm > Eo D -1r `-' ❑ U 0 MATERIAL DESCRIPTION B4-1 B4-2 SM ALLUVIUM Loose, dry, gray, very Silty, fine to 2 SAND B4-3 -----medium ----------------------- Loose to medium dense, dry, light gray, 10 94.3 3.5 SP -SM fine to medium SAND with trace silt 4 134-4 -Interbedded lenses of silt and clay 4 6 at 5 feet 1 8 10 134-5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 117.9 13.2 Medium dense, moist, gray, fine to coarse SP -SM SAND with silt 12 14 B4-6 12 16 18 20 B4-7 ---------------------------- 10 82.9 30.5 Medium dense, moist, gray, fine to coarse SP -SM SAND with trace silt 22 -Thin interbeds of silt at 23 feet 24 134-8 ---------------------------- 26 ILT Soft, wet, dark gray, fine Sandy S ML Figure A-7 Low of Borinu R A r,aop 1 of . - . . _o- - -- - TT231 SAMPLE SYMBOLS El" SAMPLING UNSUCCESSFUL ... STANDARD PENETRATION TEST Y ... DRIVE SAMPLE (UNDISTURBED) ® ... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... NATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. PROJECT NO. 04927-41-01 NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. W BORING B 4 ZW^ Hui- H^ _ W \ DEPTH LD 3 SOIL IH FEET SAMPLE ND- O = O z CLASS ELEV. (MSL) 1083 DATE COMPLETED 10/13/92 H¢LL 0: UU) NLL w Wv �z J Er H (DD EQUIPMENT MAYHEW 1000 wWm �o Fo ' 28 MATERIAL DESCRIPTION aw, o U Soft, wet, dark gray, fine Sandy SILT (Continued) ------------------------ ' 30 B4-9 Medium dense, wet, gray, fine. g y' SAND with SP -SM trace silt 10 ' BORING TERMINATED AT 31 FEET 1 1 Figure A-8 Log of Boring B 4, page 2 of 2 TT231 SAMPLE SYMBOLS ❑ ... SAMPLING UNSUCCESSFUL U ... STANDARD PENETRATION TEST ... DRIVE SAMPLE (UNDISTURBED) - ®... DISTURBED OR BAG SAMPLE ® ... CHUNK SAMPLE _ ... WATER TABLE OR SEEPAGE NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES. . , .. .. - _' . '. " � . - i:": - '. - . ,�, 1, . _., I - I I 11 I 11 � ­ - . " , I . I ,-� _. " I �, I - � l ... � . . , . , I I ,C.. - ."';�-_.." �Z.:A� I I " l- " . , � U ­ , , ­1 � - It 'f� I- -, V11 I - , - - l: � ­�_ j tt �,,V, , N-Zi, .1 I , -1 � ,"i NZ " 1,� - 't ,�' ,.'�� ,� -�.�,�­ 1�., -Y' , I - .,.,- , .. - -, - , , ". " .,,� ,� - "" ,I I 1p, - , I I - - .- , � - I' " . . .. , I , ,,I.,,. , " - .., "', "'N.i: , ­��­�, 7. Ili: ­� , �­*, . , ­­-1,_ :, ` - ­', '. � � ,,-I,' ", , , ,,, .A ��, 1. 1� � - -, '... -; �, ., i, _ � " l � � .1 . , , . Ill y � � - , ,.I. � -I- ,,.I " - ­�,, �_ ., it , � I- �71 I. �,�_ . � ," . . - '_ 1 � , - _� . , I "'. - I,` ­1 � , ��, - ,� "­ ;.�l,�,,*l-;i-I , ­,_ , � _­�­;-,I. - -�A , I- - 1�1. I - `�, � � . . -, ,��";=,,.Vl,:MIZ.�; F I I 1� . �i_ - . �- , . _. I ,I ­ -11 r. I- ­ I I l" I, � -, I�. I - il - � , - Wm'.;�` ml"`,Z'=!;�-,;�=,;,4�="� ,�'T=�,,,.-m�.'����=-;-.�'*,,,M:,�,���;�=�,,�,,�M, , " , � , . , " �,��,Z��_�= . " I �- 'it. ".1- ­'. _�M;_ ,�_.r'.._' ...� -1 -,.-, _­,­1 , Y. � . I � 'I".1­1 . - � -,.---. .­,­ - " I ,,-,,, t ,, . � ,,, �.:i , ✓­ ,",­ - ,� ,,l , ". -­ ,� ..�t, ,� f I- - � - �'. 1, - 'Zi; ,`4i.-' � f� -I,-, , '­,,. , f �� 1;�,_ 7"tc, , _I1a:'1"­1_1 i, ,., - -, ..'�. ... ,�,­,, ,-� . I. .... I_- � se� '_;l _,� I l I,- I I'll," .., W` 11 1 4, "­;I-.� �L - . � -,7 ,11i . 11"Z � -- , 1, ..- , I - _ . O .1 .1. "­'. ��­i,,I� , -,�.�a'� -,�I,Z�,,­': '­". �1- el,. ,I. --.-1 1'_� ""I'll-,., ­ I 11.11 - _.". .1 ­,­­ - :,�­ - .- - ". , ­ ­­ It,., I., -.1.1-, ''., I � ,.1­1ll1I­�� l-'..., ".- , I'� I, . �,;I,`,,,`l��',`.f, ,I. _ -1- -,,,111­-;­ 1-1 . .. _ , , , ,1;4 " - , , l -I,,,- , " � ,,, , " , .. - �b -, t , T',­ ,�,,,."', . , I - 111.A.�­ .111,_ - '. � I.-,- ", � - - •­ � , , . ,-, �, , � � , .., I - ,I - - �,_P,_­jl ,­'I.--r, . �4 ­__ '' _ ,­�l�11­1v>x �4.,r,� ,� � : ­� ­_ � ", - 1. � , � ­ 1­ - ... 1. , , Ill: - - - : I, Z -,�.., � ,-1. ,,.,, _-,.:�L,- 4 ., �,:-, ". I - 4--L - l ---. , ,"._ ._ ­111,_ k . �. .. ,.t ,., "_ � - �-,.�­ � ,,­-,­,..,-1��, � ­�. 11 �,�.". ­ � " � I �1� ".., 1. � "I � , I ". , - -- , 1. - ­­ -11, �". � .. 11.11;1W ,�. " ''4. . _ I.. f � ­ -1.11 .. . .. 1.1",­I, I ... .11 ­11-1-l-q �, I. ., - " 1. , �', '_�'. W. I­ � .. ��i,V 11 I 'il, 1. �-.­,,­­ .�I'1' - "­ ­ ill . , ,":."19."�46w.,.`,�l ,,j%,,,-4- - 11, ­11 "­jl. %1.11. Ill I,i,-�;, . f "., , ,-tr ,.,-I,. " - � . .1, I - . ,�, , ,, N­, I �', ,., � -,-. .. �, , � � , , ,.. � - -'. JJ " �� 5�,--. ."""6r, '� i,:,;. !� I � � ,111�;, I" J��­,.- 1, li-A.",­ i". ,i-,, - .. ,,,, 1.l . ., _­ 1­11.� , ­ ..'' - - 1� - " - - � .-,­1­,­',l,4-, I-1,11, 'I­"."; -A, �­?rI'14-­, ��''.,. ir'. It, " ��,,,�.".,.�',,�,.�,��lI Ill, ­ � . I � I . , 1.�'.1,I - il._, J, ­: .,�I,,...­­1 ii � 0-1, " I'­ , . . , - * t ,�. :_.;'111,.•:1. l � 1. � -1 '.6 .., .�. .e� -,,� I I',- .1:.1 , 'At - ­ ­­­­ � " ""; ". - " 't, - , I I -, , J,-', :­,�_ F, ,� ­1 --,. , ,�I,<�A� i-. Ii, �-� -:.,�� ', �A,I;� I , i"',�- ";� :. ' ­-� .,,I, , 1�� �, 1_�,-; --",!,--�Z,­_.`11 :1 - ,, � .* ,,` �, '. a}',: .­ , - "", ".,_.. 'I, -..,.,.,,. .,- I , 111-1.1 - 11­, "' 1_� T 11 1 I­_ �IJ_, - 1­1 1� 11,,­ , , ,� I., -4,1� ,­­,_--��, t..­,�­,'�t­,.�- � I. l- - ';,, " ; ,",.;�` - - � .,­­­,, .,,-,11 �- ly',j�,i,,,�,��. ,1� ... V111 , 11�1, - � ", ,�Xp�, ­,�, ,­ ­1 , ­...", . ,,, I , , i , ,;,��. ,-, -i: . � . � J "I � I . I � , I � _J7 .I, . _ - . � ', � - .., , , �-,., - �:- - �:, l" Z. . �,,""",'i';:1,� ,`, -�,, 'r.;:_"1 1�.; l', , ,,,, , , I: I - , , . ,l� �- ", ,- � ., "n" � , � '' . I "'.. �,,, , ,,_ .. ,,I ; �, I I ­1­ ''I -11 �t-1-1 I I -, - , . . t.- ­"..j, " . 111�11 . �. ­�', ­1, ­,� ­,!',; �.�,_'. ", 1, _ -, " 1_._,. - ,�, -� , I',,, , " � ,--� . ,,.�, , . &,�.,­�,", � �,-. ,� '.,. � .1- - �,._,. ''I -I, .1''.".., "..i.,4. 1 , � , � -� - ._. I It, �, ,I -,.-i , 'N N � . 11..-.11�1 4, _J, It"v.1'.�, . .., �,,,-, ,­ , " op. �. I. rl - �­ �V ;f , I �­ t!,;_,.,vv - - I ,,�­411 , . � , 1, -, -� � � ".,A' V; < .,- ' � " �­f I" -�!-��,4",".,',-?,�,�t� �,;��­; -1, -, I ", '­ 11" , . I " � . ,l, . �,"',;.", .t -i.,,, -,�ll ,­oI,,.­,� , � - ­ "'., 2 I I , - , - -1 .1, i'� I �,;, "J .L-I � -....... _ ., :. . . I -1 ...,I , .-;,� .,­i��!,', .l __'. , . 1­� _%� I I � _I1��. ��, .1, � �� -",; l"t-i�. -I1.1 i­,ir. ­. '� I 1.' - , ,-, ,-t-,A,r I., ­,t - ,- ­�, .. .. . P, , -,, - ., .. " . .I J� I ;, , 1,� - ,1­ ."l •:v1, " .', �11 ,­"I, �i�- -.� -,--li,-'t.�1. Allt',,, k. 11 I 11" � I . - -, ­ "" ,l'' , I -'�A4.�� - -ii! i%� -,,, , , Nr.­A ,,I I 1��_ _,,-,, ",__�, I, I ,',� 11,117Y4 , .." ­ '. , . - -1 _-­ - , , I '. I , , - I. -, ., ,� � - � , _� � - 11 I � ;o , � , " - t`:. , 'It" ,* .1 * j� ',',.��t 'I ­ . , I I . , ; t, �, , r I , I I .. . . � I�, , ,,, � - 'ia fl � , � . , :;I, �, ­ l� k I I � I ., , " , I 11 �:, . - 'll ­ ­.. i I. '. - - .1, ,.,�, , I. � " - � ., , I � _ . � , , , '. _ " � ,;., , , ­', � - I 1, I � , I . ,I,,i- "I lt� ', � ,. . " - V. I ." . , - � - k. ,.;. , , , , � - ... I . .."." . - �_ ii `; I 1� -� ; " ` . ,�, . - 4�4I'�., , ,4 1. 1­ -.1 11�, , , -. " .1"lim- �_ f , , 'T , , , -`i1,,i , "', �! , 'XI, , " � � _ " I, � " " ",­ . ,,I, ,� , . tf.-, ,,!� .�, ­1 ., I,. �', , � _. 11 'I - ".. . � . , ,.� . , '.. ,, , , . � " 'Ie ....... ;. ­.-,�. � . ��­ " a" l.iV , - , .- iv '� , I ,I I ,,_ "l ., ,'%'.,� ., " I � I . I l,'. . � . _ I - I -.� .", -• I � I.� I. .. , ,� ,i I , .�;�� '. ) ,, 1. ,� � � . " `I,,i(' "ti­ - I 1�_ "! _ ,,,� , , 'l, ,W.; , 11 " , �. I . ..- " ,,,.,,�­� ,� .. - , , e_ , � - v..i , it I � I , X, I ." _ -Im i'_�. . � - . - '_­ "1Z � ` I-- .. I ,�, -, di , . ,� , .'i _ - - , .. �4, l. _. . ,'�. I' I- , - t, ". ­4'p-t " ,­it..-_. � 7 � .,.-­,.',',,;�,iq l,,,�, .".1 ik - "l, F I I .1 I ", _� �_,,_ 'I ,,,-' ­_ . ,,-��" .�-, .l ,�- , ,"I' . ,;,I � ;­ .I.- .- , r, ,iii,� I I _�- , - ' ' ' � 4, , - 'l �.,. .- l 1. 1, 11 I I ­111 :�,­,­,�, _.� . � 1, . _ � ., ,i_�-, - .. , ,,- j . ... .. it' I " " - I.", 4,1�, � ,;' "� _�"� ` , . , , � I I .1 .1 1i � " I ­1 ", ­p. . .1. . , , � " ��") - �;, ,i-� . ,;, .. -, I "" 'C,�., �,­�!' v .- " -­ � 4 1 l, � , " ; I l " - �,, -1 I. 1, � I I. 4� .� , , - ­ ,,�,,.-,, - 11 41 � 111 I -i . I I-, ­ , , , ,­r. ,`� ;� ,-�, as ".�t.' P, . it , I -.1 t11 ­ I I - - , j , - .- � , , " ., � - I:Y'., �' ��, -, I,-- - , -, , , , . ,,,� I � - . . � 4 1 " I -.1 I - 11, " - , , . - , . 1­1 ; ­ ,, f. I'l �,, - , '. A, ; 4,' " , .. , , , 'l , I - � , . �, I � " � _. � , � � I � - ­ � ,,,, , -, , I -, . I I , '� , " _ . � , - - , . , , , - ,�, I , - , . - - , - , , ,,_ - .. . - ­ - I - 1. , A � ,� . i -, ; ;�A � - � ., � .... .. I 'Jus, I �z � - - - - I. . -� ­.", -1 'j, � .. , -- ., '. , ,� i. " � -1,I,.1, � I I I , e � , . , . ' I 'I . , � I 1, '.. " 'i �­ ,, � ,I ! ,� , ; .,V, , , . ., , . . � . , , _,, , . ,I, I j��­ . , .. �,i , ,, f;, p . ikjl� 'I, , :.��,, .,�, ,. , " , , - - " - . _ i , - , i. -i � .,. t , , � I ,I' 1­ .1'.. �­ . .1 , , , . . " .", L, �' � - � ," �! I ',�,`�,'--`:��' I 1 "�,`;4.,I.%"'I.'I, 'I- i' `4�7� _ , ."11; .,O, ,.,,,, " , - � ., � I � It- i "" i'� ", , , - ,..'1`,' ' I. ,� . l ,, �, _ .� I ,q .t, � I - �!, 1,.,,,,,, ,t " - � . ...-I It, - 'll J, . .. .1� �, ", '.I- .I _.. , .;. , . - ,-, lk� , ­ C ,.� , - l" - �_ , " 4, 11 .."4,I ; � I' * ., Ir .�_ . . 'i" `� *1 - - ' "" 4� � � ` Z '�*'�'Ik`_­"'�*-"" ' %" 111�1�1- " �� A, . ,Y � , "I-C;2= - .. � .. � : . , - 'l I I-l., 1. � . i, "n ��': 1%1� " � - le " , � . (��,.�:- 1��, -, ; :--,,,. l." �� l , _ .. . .; .., � ,.:I.:.... - . , ., ,mII,2i l " .. - .", 1;1-" I ;'s`.^_ , g,4.I -I �'. . 1 � �, " 1". -, - 1:', R I .. 11 I - I ��­ � - 4 - _ " . I . �,, i I !�j ,- - . i'&­, �­­,.., _, � , , � . .. I­ -- ��" . :.t3' - I - I ­ . I- t I I ? 11`�` 11 , " ? , , " I- . , :- " , . - I i ", , _, F.- " , I ,�- ., '�­ , I.J ", , � - _ . .... . 11 11- _1111 &. , - � . . ,,- �Il - , i I :1, � �,,- " i ?,ll i " .- -�, - qr, .-- :­ I - - . I? , 'l­ '7��, ""', ..'fi� � I " , " , , �­ , �,. , ,.. - - � , " , "' -,; i ,,,,1... ., T., , , "i" " .1 I � .-- 11 � , , ,­ I I It,, 'i, I .1 . � 1. I " . ,�l I � � .�., ,�, �, . .11 - I V -1 % si. � ,� It , ­ I mt,.".- , I- , 1, " -A , , " " , , ., , � " , I � .W . . " , ,� I _ , , � It, L - . 0 . , - , , -_ , � 'I. �._. , 1, � �-'­ .�' �41 I'. �� "'i - �. ,�,' - - - v 7 - ,.1, .- "-,I - , - ' _., ', ' � ' -__ " - . - - .. � I, -I , . ' "I - � ,�,�� '� ­ 4 . � ,.�" �­ I , �,t;�'�' ' I" ,,,, ­ ;I, , I.- - , , , . I, ., - , " , , � - - jl­ 1 ' " � ,., , . . , . , I 11` MZ*l ,<,. . , - " 1. , . �,l 11 " I I �,�', -� 7 , � � I I I �,,, . � I �, , , , ,,, � .:..r.:, , . I .. .1 � . I­ Irlt�.%l; .-I , �, LF:`-yip`: � p .4 ; I I I .�F I , � ,. I 11 . , l i­ . �, I , 10, ." , . r, "!*,, li- .'., :,I �, I ,�1.11�11_;�;� " "" . " ,%� I, , �1. . i.f. ,� , I1. I- i, I I •I - -, I � I - , - - , ,�,_�wi­ , � .,-� I': ­ ,� -, - ­ , - .. _ , ?.1 1�l,;. ­ . , �- 'Y ,- "., ".- -- ��-,t-4, - , . ", , � 1. � .11 1­ I "I . I I I 11 1. I � W,e, , , , v - ;�, � -:; . il- . it 1, " ,; - " , . - , I -, 1. �, I � - I' I ­ .I I '�;�, 't '�.,I­ � .-, j . , - ,�_ - 7 1 1 . . . l'. I - k '.", -o" �­t.� " C, `,� - -.1. ­­ , , �, - ­ I ,,I . � .4.. ',,�it ,-,, , lii.'.jl 'I '�',�.'% - � �1' , 'r , . � . , -i"I , �� ":I 1�_ - " _,� '. � � , . . , . - �­ - �`l t -11 t.l.- � . I ­_­; � . ... ... I I - , � - - , , - , - � � ,;,�Ji I , I- , "I . A 11 , - .. " I , , , � I I , . I I ,� � �, ,�I, , , I , -_ ,�, l- I . � I. 1-11, ­ ­ I -1� - " - -_ - " - - I , , . , , _,%, ", � " � , , , , ,�, , : �,,,e lr� ;; , ,� I­ � "I ­ �r � , " Z_,Io .. �,, I, - - , " , t , . , - , . , � � , . .6 I- - , - � � -, , �,-,,l", - I - . �,;, . ­ . - � � - - I, � . I , . ,� " ­ �, ... I , . _ - - � '. , , , ., I 11" , ) �, " - ,,, '. I � ._� zl� i7t� ,I.•� r V I .. �_ ,,, " IV., � � , , ._ �, � -, ,_ � . I t" '. , � -, - ,.; - I v , . i Z --.-­ I - - . � --- � I I 11. - , - - : , � ,- .,- ��. 4�-,",e, I � ..1'•.. ,iI. ­ - - - , - , -) ­ �) --- � '. .. , . � I 'i'�bf '� N � . w -I ( , ". , � J? -.1. - _1. , I., ­ I � � ..... .. I � ,� , `,�� � ,-.,I - , ; " . � � . " P1. , , � . ,* � �� ; "' ; , , - � -1, ­I. ,;� ��. 1, - , . , � - " � I I , , I � , , -11", �,; I -�tzl . I .", � � �'_ I - " , - - , - ­ ,- I � ., - � ) - , ­� I ". l , ­ I � ".., If ", - I .1 I� - I :' W`� `,. ,, r I 4,ij �, .I � 1, N, j ", �"k-' ", -` - I' ' "4 " �' ` , ,,�'-I, 'I): ,*, I , , . , . , , - , , , . - - _-, - . ­, I .I-, - ­- , -, .�, - �� .. . �, " . : I t,' �, i, , t , 1 , � JiI y . 1'� - -.1 - ., , , � , Ij -�­,,..� � " . .­ . li. .�. � - _ . i 1. � , , , , � � ."t" I - , . �,Z;�. - " ,,:,�j .�, ,I , y , -;,: � ­ I- I I I . ­11, - I 11, .. � t . . . �,­,- ­ _. 1. � I .� I � ... � .-,'!� .- I . , � , ' .- L ... � ' -; , .,, _ .. l..'­', - ,- ,V� , . �I - � �:,l izzl, - , X � ­� .-, I , - � ­; , .", .�,I�4,,�,�;�,:,�,,, 1 �'. ,, ;,t�,. , X" -. - � , , � I � 1: --. � "',,.. 1, I � � , . � � ,4 , ." - ;, I I ..• . i, Q- �,, "'t. �-,t -1:1, .Zi.,_I',,-�%W;.',.ti -',j ,'I "I ,� '. , I " 1� � '. ­., ,,� I. �1, , , IjJIi., I , ,­ l "I ., . , ',ii, . , ,�,_'�1�1, ,;,i ,- ,.,- . :.I I . � - - . I l i_f. �,­ " r, � ,, I I _. _ .I- - - """il � 'IN, " ,- %, ..I-,. I � .1 ., ; ,-. , - W, . I - , - � 1. "., . , , . .. - �., I -ii" . , " ,Q ', � . , � - - -' ,1 . 11 ., '. - , - - -, , " ,- - , ­, � , . .� ", ­•� � ,, - , I , 1� ', ,; ,1.1 '. 1�,­, ,,, "t, I.-I - ..f-' -1I',.*-1 i" � i ��A -,-.,. ''. ��.,,. 1.1,' I"51", ,,-­�l - "I'.1-111­1 ­, '­­-,-" .� I , ,Ili�­ - `f- "". I . T - . 1.7, , .-,. �� - 11.­�. A ..Ili , .1 � A IV. I l,­ ' 4 . I .4 ' � 'L le'l �_ ' �-I if, . �, � 1i' � , , , I I " . . , 7�' 17 . I . , I t '; , � � ." - . , � I, , - � . . . .......t­ _ , i't.v ", , ,� " , ." I, I , . . , , , ��, I I . , � I - - Ai 1 , ail", ,-' ­.", ,;, , ,��.,,-.l ,�.`i_ . - " I" -.1. - - ,.. a \Y _ _.�� �, , � - - I ­ I. - I � . - , " " " � , ,.. ,, � . "-.4 " Z , - , , , I 1; ,� ­,, ;-I; , '. . . -. . ­.� ,_, " � :fie, _ 1� 1'� - � " - - i %,� , -z- I ., . I � I I ­ . . , ,_ ­ - . .­ t I- ,�,, ,7 , ., , "Ill .1, �11_1 .- �� �T' '. " I` , - 1 ­, �r . � - -� -. � 1. - � .. ,'I 11 �� ­­ . - I -11 , , I 11 �:-,.-,,,� .. ­­ . ", I ,� �. � A i 'M _0 . z , , "�, �_ "�, .', " ­ ,,, t, I � , " . ,, - l :,'l . , � 4,%, . .� I ;..,, �i;� " :_ 11 , , - .. I -1. � ­ I % I.. . -, I � � . , I . I ­ I �.i I - - l, � 11 ­ . l; � ,� - Q . � �, I I z " '. -7".1.� 11-I- 11,� I IN _ � , I � -1 - . I., t� -� - -,I ,ii -,, ,_ .. '-,� ' ' L"'�-I­"Lii- 3"a � � 'I , �. ,-. ;� -,� �, � . -, ` ,q , I I . t, � �,� ,,�. ",,,,�� I ­ " . 11 - � � � I I I�L 11, "I -� . ,�'�",7�I,114, ., " , , , W ,l,..i:,t I ,.,.,)I, .; 1, i4 .�', ­ j,". ". , I - -k ., ­11. � "i-, - � I ,� 4� I l I . ­� ­', . I, . I. . - I -_ v - , ,,, ­­ i'__ . ­. I . - - � - ­�, , 11 I " I I I 0. 'l. t"; �, .�j� �, �,� _1 .. .... , �t, iI-I.,t Z, ", .,-:--- .'. , � - - ­,�. I �,, ­ . I -�, " - .. - , - � . l ,;1- " _', ,_ I � 4�,, , i ". .�* .1 ^ �.-*.' � ,,. ; I .;� - , I" -, � - 1 � . . . " - - I .-_ 1,Ii-1 , '. .. ,-," 1I It' .-� . . _. , . - - f " .", " , .�, , -. -.�,I­. , ', -1 I - " S. � I , , I _ ..P'. '4t.. _,� l I � " t " �1�1 I 1� � " z j�, ., ,.." I .. I - ;I, _� I . 11. I � I.. I I , I lam-. , � � -. . �1- �� � - -..fir- � - �1, .. � . , � - ,_,, " � ,, , . �-1 , ,,; , , ,� �i .� ­ � " ,,,,,.,.,,, ,.�"., , . , I - " .,. - -..-.! .'I, " - - , �,., I , � , I � , ,,� . - - , . ��. � , ­ ­ I I, ­ I , " � , - I -e . . - I I , . I I - 1. . ,. . � l, 'J'' ,-,.-2., , 11 % 1, , . �il , � -; . - '. .. ,- 'tNi ",;-.i I � I . . `1 I I . 11 - - . � , _. � l- , " I � . ..... 1 - "".. ;'-Z4�­,,.�� ,I?, , , ­ . . "" '­ � - , - .� ", '-'I I � 'I, , ,. I. It7, Z � I � .1� f� . - " �� ,. ; , .� "'.1 1.11.-'-�­",��. I i f .. It. . �. ­ Il I I , ,. , 'i.", .� t ,� , ,� IV, .. .I - .�� * - • -, � � ..... ..y1:;I- , - - i ;,,t, ,, 7 ,,�, , -1;, " ", -� ...... �X'� � , ,- I I . I � I I �-1 ,� ­­ . ,14l', L ," , � k ­ ,I " I- . I . ,� - .. 1 ­� I " - I I I , 1. 11 .� ­ I I- . ­ , " , 1i � ,�_- I . TiI. � ,�.'."'I ..., . .. J . ,� I , " � l" 11 . , .,I. , ,_ - - 11 ..... - "I . .1- _11, , I l � , I I�l I � , , , , , , , �17 . _, , , ­­', -, I - ", ,, " � . . ­ ,e. i I 11 ., . ,,, ,� .,­ - I', I 11 , ". 4,1 ,. . I— I , , V ., .� � , . . �t , ,I , ,,, "', " ,�u � �,� , � ­ I I - '. , j, ._�; ,l 1 .11, 'i -, , : , it ,,`l�, � , I ;,4, , , . I ­1 �+1 , � I i I. .11 , - .." �- . I , ­ I . ; 11-1 11. , �, . I � , I I -I-`.1 1. I , - , I . - I " p 'Z � -, 0 ­r'. . - .. . ­ . . .. ',.,- , ­ � , � , I A" I` .k " _,�� ,I­ ""','. , ,. � , , , ­, I � �, , �� , ,�; r'->.;', . I .. - , . e - , , ­ , � s ." - - , _i, I 1. �. , , ,t . I 4 1 -.1 . , .,.., ." . �1 � .. . "I 4-, - �_ .- �,_ , �, ; - � - -I ­ . � % :,t I`, I, . P , , , . �1�-�-_,'� I I', - I. - 1. � I 11 I jv i It , 11� t, " 1. I I �., � I �. ­ -­ .1� � �i. , � i , , 1z. �,,<- �� ,,- - -,,-" , , . - . ­ .i, � , I I . . - I I �, - � .i .ti - . 7I - I � ,�� , , �­I,, '.- .. , . ­ 11 ,.%j ".. .1,. ..i., I ­1 . . - vi , ­,., 4, i" 1'1� IX,;, , ­ , � i , , �,,` , �,-,, -�:,, , ,. �,'.ii�-t- I ­ �'., - " " , I - "_" - I ,� I- . I ' 1 4 'I '­ 4` ,� �,�,, , , .,-,,.,, � , �w , ,4�'f.pf , . �,,,, ",­-, .7. I .1 i-, - � � ... . - � � ­t� ­ , '. I - ",�, " - p, ."I " , ,,,,,, , :.." . .- �. " , . .. � , .. - I, ,. - ,� ­�,"�" .41 1 ,­ ,'Lq 11 . .1 I I I . I , .. , , � " I , ,,' , " � "to I. ,: .,�­�I' . "" ,,, , I � I � ,-. , I " "' � I - - e - ­ . ,, , .T'. ;, ; ,�,I 1� Xl�.� �, - � , / 4 ­ � ,�,,� I �. I - I , _ ., j . . .1 ­.� . . t �1, ... .. . �11 �. ,, . T - � , . " 1, , , � 4" . -1 I ... � 1. I I - , . � I ­ Vl,�.!.11 - .. �11 ­1 - ,,,.:- , I _��, 11 , - ... . 11 I � ,.. Ii. - , . . I . 1, �.� � ­ 1 . I I �� . I � , -- I v .ii " ,q. I., ­_1 I I -_1 . - _ . J. 1, , � - - .1, 1�1 11%��, . � .. �.., , I �I, ��;, , . , l .el,�� _ r,r, - 'o'; " ,�­ a-, " �T ill. ,` I, I ­ 1 4.11 _i;."' . I-1: .- I ., .� .. , .� - �, . , .I '%t, -�No� , - i ,,, - i, � I ­__ I � " - �1, ;, .", I_ .,-,, - 1, � . i" 1-4 - " ". j ,..��;, 1, ,,-_­­,t­ 't," "'i't-Ir, , , 'i �, ­1 . '. . . ­ Tl , , t .1. .l.; , l 4 d- --'-, " 't :�,.;, , , , , - ,!1`,.'Q � " 'A' ; .', 'o , - ,I . I � 1� ,,�-." . � �, r-1. l, , ir ,,,.I-, , t^. •.W ,�, , ,,� ­ l 1, � I I -% I .." - - - .,,I ­1i � l 11, _4 , �, - __ .. . I"""', ,Z _­,.��.-�',."-­. , -, ", -- M - ." " 'x ­ .1 II .11", ;ems., 1, I,,,, - 1 � il"I", I,- , I., 11w , . " ,q .- �, n" "­ - ,,I , 11 .t. - � I, ,e 1­� � I, .-,� .. � I I -1 Ii", �-, ­­ ,.." ­,., " , 'r zi ,•�1' tl�;, I . � ___ - " . .- i`,. � , , .. .1 . 'YP"', 4­.',,�� l . x � - - + ,,,,- * ry -, �, . I . � , , . I 1� , - , , , i 4. . .,. � 111.1 4l ,'I '�­ " � . , - ­­,�, ,., . q . I , � - I .. ml ­ �, . , , , �4- . � � "i, � 'q-", , . -� �y ". , '� '.; m-, , , , � . ,; I � ­ .'- , I � - - ; '. �_ -,i,-I; , ­­ , � - ,l­�. - I __I� " .. ­ ­_ ­ �_ "I . " , .. ,� . , , , I* , " V., .,. - " , ,, •" , il , ,,- ,, L ­ "14 , - , ". � _', , - I 1�, , � lnt� 'r, I .. . �. - - �";; .,", , , , �-,'_ �? . � , '. , , � - - ,.� I .., . , � It- . .I... - l� . . . el" �, , . ­ . , .� , " I ", , " .1,�­ . - 1� ." ; ,ik, - � �, I - , , : I , I N I � , ", " - , t n,, ,7 , � �r " �1� I. ,,, -I"' " , t, I;, � . , .�, - - , � � 1�, "", , I � � �, ­ � ,,,- li- .. , , , 4 , I., ­ _ , , , , I,�,� " , A,, " 11 I"" 1, . . ,i`I�. . I �� � ,_1 , 1� I. y I � '� , IF . , ,,,;.,..,t_, L, - ll%,� �­,:".5�Piciz l�r� i�� ,.,, � . � , , � �I 111. �, ­,- I I �, fir`. - , �" , - ',-,, ,�.. I .. ,. ­L � ­;i , 1� -, .; � , '.. . . , ". ­11 � , ... , 4 , � , � ��. -.I, , I - ,�,1. I l ,,,i_",;. ­ . - .�7,-',� , , ,`� , � "" . ­ ­%­ ", '�, 4 ' l " � '�` ' i" � I I I - . , " . , � ., � - :, ., I'A ; - .. � , , I , � ­1� ,--, 'll., _ ­ , .'..,,�T -.- ,t,,%,�. ,,, , , 41 ".e .. , . I 1--,,�. ,,,k­­ � . - I- -­;_ . ", - 11 1� I` le I- - I - -,11.' � F '/ " � ,,-. , , ,-.- ­� .- l,' I— ,, _ .,- , . , , , - , . 1. I , ,�,�� "'i. ��', , q; , . -I ,, �, . I I I I 11W Ill-, .". . ! , . ', �, ; - , " " ­. , _� , - I I .. t­l� .L I 'i , 'A. "' ��-� - .-,4.� j_ � '. l�, , ; �_. i", ,,� ", �,�', 1,,�-rl..,- ,�Y,` �,,� ,� .': 1 ;­�:� ,Wi 1 i i I . ­ � � , '. � , , , , ­; - lt� , - .,� .�-� �,� - , "yi , . 'r'� ,�;,.."� ,�' I ,,� ,,,��, I �l, "', I.:, -'j% , .1 ­­,i, - ��,:, ­�­,, 11�1:1 .1 , , ,_� ,g,,,,,; - 1��11 'I., ,_- ; ­. 'A, � 'l �, 4", r I ,, �., 1. I ." , � -, , . .1. . il I I I - - I I �-t � ,�,.,P, _ , �, .. -,.,,,, ,e _i , �14 1 - I , . ,'�, -, k�,�' 1, I ­., , . I l." ,_-1 ", " 't ;. -,�- .., . . I - � . l , �­ , . ,.-I', ,l - I �'r - , - � , "­, -�v,�� I. .,,� . � .l� 4 ; - - - " ia,-� , -1 111�1 . ­ ". '­`y . �; - Z ,' , , -, ` .. �_ ." Li .. , 1, I t �rtr, ,- ,I., 'j, il ., I . ,., . , ,..l " ,)". . iL"I ;',,-,7 -, Il';..� :-1_hie't - - , . N, `1 I 1�1.1 I , �, ­:4­ .1�1 v I I I - I, . ­­ , . t�.�t, :.�C! ,� 1. I . 11 KI I � �_�� - "'. , .- .- , -- - � . , � . � - ...,,-A . ,,- " ,,, � -.. N . , .. I I � -�l 'l.i. I, �, - 't"I" o. ;� -,.1, � -1.111 mo! 4cll, � �� ,�, i�,,- I t ". � , . . '. " � . �.. , .,Z�1,,;_-`,,`- , , � -- � - �-_­�'�';­ I'l. ;"��.,,,�-� � " 1� ,, ''ii.-;- � , , - , .�,- , ,� ,,_, .. I,- , - I . ". -, 4 � zk -,�-,-� -­ 1-. , -ii, , - '.' ,� O' J,I�il 1 , I � , ..� � I I I 11 I I i , f ` , �, - _y _ _-­� - � I ­ - _1 , -7 '­k:,,,T:I�l` � ,I . ... r, I ­,� 11,­ ',.t_ ,,, ti_�, �­, " ­­ ,. . 1z -, ­'-, �,._. . " I I ­. , , . . , , - ­,i,�i- -,. , � " , ,1­ .I; o - . - t" ". - ''t ,-,-. y- -, . . '. . " ­ � . I , ,I- - I �­' ,,, ,' �' - - I i_ - " i" - , - I - t, '� .-.4 �, ', if � . � . _,�., --,­��. , ", - �;�­',. li; - : �­,,it ��,� "v.ii�, - -,' L, , 11" ,­ ,�,­, it , 17,�,`I ',��,%� ­,�-i"`, I . I�, . _q'i ': , � -,_ ,.,� " , I � - I � _ .. _� It. ,� - , . . I, ., � ,� _-, " " , 1 _ , ." - �,'� 'i-,.,,";",.,�,',�..;.���,-,z,-,-�'I �;."","Ik%3.". I y,�;, 11 , ­L� �. . ,�"",- -1 ­1 v , - -,- It - , , 1I' - I" .il 11., U. _ ..- . , " 'i,.. �, , ". . , , I . j" "", - " � I': , , I -, ,­,�,­ � , , , ­_,,S,:t1,.r,-, .� t , ,.,- - � , "", �- lI, , I-- * �-- -­ ,­ . "I, ....... , ; ,�­� �?' �,,, ­ ."",'. I ­1I . . J, ; ,t, � �e4V�', ,l', 'r . I . ­1 I , - � - . - , " � I . I _,e.1'--;N­ A I - ,- .- ­ - � - , I �, l', - , " . I� ., , , A­ I - I t:.' tl �� �,A%, I O 1, , , , I l, . ': " ,- ,,�, , t, , . t, ,_11� 11 ,� , , I I "i" �­,,, . 11 I I I "'I., , I ,� �� -1, , ­­6 .� ��`.­ ,��! 4�,,j< :�,� ,,-, 1. I ­1 . . ". . ,, I �11' - . I- . j 01 I 14, _Z� I . � J � �� � � ,-, S, - " I - �, . 1, .ii,i" � "; " ." - ,� ,�Iz �T,-),.,. ;:� - '. , 'I" I � I, -1 I � - ,I' - , .jv , I' � , l . ". i. I ­- � - � - ;,­ . 11 � �1. I ii,�-- , W� . iix- ,�: , ',� . I' , ". , � � , , � I ,,'I - - . . - , . . ,,- , -� 't- ," in � .; " - � " , , ". I, I 1:?�,Vll I - ,; , '.." .-,.. � . , , . tl�,il,�,­, 111� I .1.1 1. .1 I) , it ". - i _ ..� 'I , �- ­, I.." I ., , - . I 11 .. ­ , , '-," "'. , .. , t , I I . - . �, - , , t , � , . % I l . It , . .1 . I I.- . ,­1� , . .- I II'L' ' ' N., �-.v 7�'4���,-,��,,.��.:��,�,-.-.�����,,�����,--,A�,4 � v �, , � , - - -1 �'e * - ., m4w!, � - - ­ I - , : � .O., , -. . ., �, �` 1'1� - I, , 4 i t 1; I - . � , � ", ,L � , ­ � , i� ,I - _` ,-, _,�, I , I I , lal lll�?' , , Z� , "l, 1�,. , � .�, ^ , - - I � _. I 11 I I ­> �11 '. I- I � - I ll, � . , I , � � 'i -.,. - --- ;� - ­ " " �;, I . .. I .. _­ li� ... ... �i �'Aiti.,�," " I "I I I ,,I � I - I � � I Y 1 1 . � �,. - . - - . I I '11, , ., 3, , , . - I I , , -17 - �, - --fl � z . - - "',, -I' ' ':,I,�: . , I 1, �.,, j z ... ". . . _ :" - ,C.'I-" '� . r'l� 1. _�, I I'i 'I - , ' .. � .,- , , � � , ; I N 4 - � - ' � -,I - " ,"'i­;,� ., � ,1 I � 1 ',I , , L jl� I ,� 'y , I l " .41�, -,, ,, I , ;�, , . I I '. � ,. 1�- � . � , .�, � , - ,),, 11 - ­�, �;_ . , , .I I. 11 I' IQ, " - �t, . , , , � .. ­ I l� I - �`� �,, ,It � I �/ ­ , J_ �, -.,_�'. , , ,�, -jq,_,�', '. .� t. - , - " m-3 - q4,�� -,' - , -,:i,-,. ".; '. .."', I , i­� � � 7, .. '.. , . I � . I . . . .. , . -,, , � . I - , I. l. . I, �� �, , . , , I I - " I ­� ,-, I r � , . . � I I 11� . ,­ 4, , , , , � - 1,�,t - I . � , I'll - , , - . 1. - I -, , -- - I, - , '. , I . " - . " I � � I I ­ - -1 I � . I ., � � -,� I - I , , I , - , 0- ,l� , �iI;, -­. . .oi, . � I - - , -1 � 4 . k I ' j - - �..5.' . ' . '_ � . I I - ""'.. , -, ,_ ,,� ., ,I'�A . %�, .1 �.j ", � � e - " , - "I 4-1 � , " I. . , � . � I . .1 , - I - , , - v 1. � , . .. - I I - 1-1 �- - � . f -1 ­ . � '. , , �', .I, , "�_ 11 - - 11"I - . - "I I - - "' �1­ � ,,, .�.I` �� . . . I ,�� . , "," � ", .... .... rA, ­-, " I ,.4y" 4 "' I I I' I L It 'II"' . '. .� " . ". , , " �. I I , ,'�, ltIl� �., , , , . , -d , .-�- `,.(`� 'AI ', I 11 - I I 1, . ` I� . . _. � I �, . �', . , , . - , l - ­ , ­ 1,� ,�, . .. 'W',, ,z - � - , - , I � � � � -, '. - I " ­ ,I 1,�_ � I 1, " - , ,,�M, ", _1� ­1 . .1 , , . . ,-�,,- , , ., - ", , - .: �x ,%, ­�� . I .." . .. �, � 11 .. . " ,IC � - --- - I ­-� , � . - I � - " ;, , , . It'_ , ., A f" , ,_�',',�,� �l . I,,' . I . , ­_ ' ' L "t, ' ' ' � I - ; .- " �-�, ,-0 �;�_, 1. t . ., .. �� - . I � '.', .1 'I � , 4 _ , " ��, , I I . , : , I ,I "I I I - 'll; ...... 11� ", ­­1 I I, I , ,� _ _ - �, , I - ,­, L , " , , - , , I-, , : I'l. ­'� ­'. . �- �l I , " " , , -,I ,- . ­ . - � : , ,,j. ,'-_j, " : ,� ,,_ � I I - �11 I .1 , -, ., i, ". -- . . . - � I I I I I I . i", , . " . - I, - J�­ . .. , , . I I I I I � " � I .I. �, , I. � . ; , , ', I " I,' , , I I - , � "(`,"". - ,I � "Al 1 t , ,� , � 1,�,, . � . - .. � . - .. , I . . . . ." , � `,* J. 1.,� � �� � , . " I '1.1�� , J': ,. It-, '.I'.- 'I'I, - 1, 14, t �, 1�11' �1� 11 w 11r. .- - l j, " I 1, � , � -,� -, , ,-- ,-Z, - - . - ' _' " -4 '.. ', ­ , ' I , - - , � I . II, " � , Y. . ;! .,.o,�,, �, ) �llt:�%­,_'I:il. ,'�.,, %, i � o : � - .1 . . I- - , � It, I "�-�� , , I .Y. .$r.. - - � , -, . - "t, . ,,, O.- ,,� :w , , . I . , li, . . - - , ­'I"', _r , - d , , I � I, ,, I � . , l ", " ��'. �.i, , $ ", ,,�', � . , , � . , , _ �,.,. , , z 'i, ,I,, , " , . ,­ I ,.� I _ � �il �i ,,' I . ' ', I . '4' ' ­ - , ' - "_ -L - �­ , , L , � I� I,- . �.., �., : � /,,,, ,.", -,,.,,i. ,", - _,I - I - , � j � " .. I ... y , , j .,,:, _`ice ,.,� I ,,, -, I, I ., ,,,�� _� " " �', n , ,,,, , P�', , - V. ; ,r'j.. , - •" ,�, �,�. 4L� 1. I � 1!�.� � : '., I - 1, , ,.�. , , '1� , . I _ . , I 1, - , 1 . , . �:;� , ; I' Ari -, . , , .. . , , . I -, . � " . V � 'l -i, � 'P I , - ,�- I � �� ;� , " - .W " -,' " " - - " Y, 1,,,`Ilii� .7" - " � � I� k � , ,-., , t, , . " - I � I, -. .. I. ­I . _ e ,­ I . . ­-� � �- I I ". '.' i� -�,,,� t,� . I ­ . I I,,' ,- l-11. , � I I - , I 'k ,,.- . _1 � w 11 11 ,� �!�, . I,: :, - �' i. "', :��,,, , ,, �i,�:, 1;1 , '. �I I .,,� c ','�, , �i, ,., ;, ♦4 ­, �, " � ."', 1� 11 ., .. I . I , , 1, - _,. .l� I . . , , , . . � - -, - .1 , . . -11, I ­ , .4 1 ,,, - � � . .1 . I I �,: , '. I � - . , ,_ , ,-, �, , --� - - " - � •'. I.- � .. � � l", , "I , I .. .. ... _,--, - I " , I- , , , I 4 .,,7 t 'i I _ :.f I . ,­ I ­ 11 . I I - � .;,1,j', ­_ � Mill .1 � , �­ �, � , .) , ,,` ; . I - , 1i � I , , , -Z� r� , _, : o l e , , - - I .. �, O� , - � - I, - , ,., I . -1-1 - � -;?,� ­ - ,��' � -1 , I . j, I � I l. , -� �, I ; , � , ;, l�,., ­ ­l`_ ... . . " . I �, r-. I :,, " � ", -, . I - . , ,.,­.,,, t,� ,,I,� ""; , , � ,;�' . ­ I � I .i, �.,*, , , � 'l . � ' I " - �,,N .'., �-,,��i­-4`�. ,";,Z­`W,,, . . . .. . , ,� ,�, , � , I ,,, " ,� � .* . , , E , . , I I r'... - � I � ., ; , Ill. .." . 4�,,�;-n t� '�'_:J, '� �.',"NV _1L ' 1. l ­f4 , ,,­ . .r. , ,,,_,i...,tp1, ;"",,I � "I'. I; , , ,.,. � . � - - . ,� , ,., . . , - . . � �, , .,'� �, � O - �', I t, I �-, " - " ­ � , .1 , ,,�.5t��-%i, I , I ... :-", ,,,, z .. &I-` ,7 - ,,� � '? I . I f,.'^1;.; �.. I , . , . , : � , . , . . ­ . �_ ": , . � .1t. . N I , , ill. F,, 1 , ,,, 11 .Il � ­ O I _ k.4 � 4, , Il . nt�� .; : Project No. 04927-41-01 December 21, 1992 APPENDIX B LABORATORY TESTING Laboratory tests were performed in accordance with generally accepted test methods of the American Society for Testing and Materials (ASTM) or other suggested procedures. Selected soil samples were tested for in-place dry density and moisture content, direct shear strength, compaction, grain size and consolidation characteristics. The results of our laboratory tests are presented on Tables B-1 and B-2, and Figures B-1 through B-6. The in-place dry density and moisture content test results are also presented on the boring logs. Project No. 04927-41-01 December 21, 1992 TABLE B -I SUMMARY OF IN-PLACE MOISTURE DENSITY AND DIRECT SHEAR TEST RESULTS Angle of Dry Moisture Unit Shear Density Content Cohesion Resistance Sample No. (pcf) (%) (psf) (degrees) 132-2 116.4 8.5 400 B2-3 106.2 21.4 132-5 117.1 17.4 132-7 111.4 13.1 B-10 118.3 16.4 133-1 96.8 6.7 133-2 103.3 20.8 B3-5 85.2 38.0 B3-8 83.5 37.5 134-3 94.3 3.5 B4-5 117.9 13.2 B4-7 82.9 30.5 M, Project No. 04927-41-01 December 21, 1992 Sample No. TABLE B -II SUMMARY OF LABORATORY MAXIMUM DRY DENSITY AND OPTIMUM MOISTURE CONTENT TEST RESULTS ASTM D1557-78 Description 132-2 Dark gray, Silty, fine to coarse SAND with trace gravel Maximum Optimum Dry Moisture Density Content (pcf) (% Dry Weight) 129.0 8.7 Project No. 04927-41-01 GRAVEL Depth SAND BI -6 SILT OR CLAY COARSE FINE OARS MEDIUM FINE 20.0 (SM) Silly SAND 111111�iiii��iliri��ly1�IIIIIIII■IIIIIIII■ : ,111111■IIIIIIII■IIIIIII►1�IIIIIIIII■IIIIIIII■ ,111111■IIIIIIII■1111111\\IIIIIIII■IIIIIIII■ IIIIII■IIIIIIII■IIIIIIII �1�IIIIIII■IIIIIIII■ IIIIII■IIIIIIII■IIIIIIIIi�111�II11I■IIIIIIII■ ,IIIIII■IIIIIIII■IIIIIIII\IIIIIIII■IIIIIIII■ ,IIIIII■IIIIIIII■IIIIIIII■Ii�IIIII■IIIIIIII■ IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■ ., ,IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■ .IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■ .,��CURVETENTATIVE TRACT 23172VAIL RANCH COMMERCIAL SITE CALIFORNIA GRAVEL Depth SAND BI -6 SILT OR CLAY COARSE FINE OARS MEDIUM FINE SAMPLE Depth (ft) CLASSIFICATION AT W LL PL PI BI -6 10.0 (SM) Silty SAND BI -7 15.0 (ML) Sandy SILT BI -8 20.0 (SM) Silly SAND 111111�iiii��iliri��ly1�IIIIIIII■IIIIIIII■ : ,111111■IIIIIIII■IIIIIII►1�IIIIIIIII■IIIIIIII■ ,111111■IIIIIIII■1111111\\IIIIIIII■IIIIIIII■ IIIIII■IIIIIIII■IIIIIIII �1�IIIIIII■IIIIIIII■ IIIIII■IIIIIIII■IIIIIIIIi�111�II11I■IIIIIIII■ ,IIIIII■IIIIIIII■IIIIIIII\IIIIIIII■IIIIIIII■ ,IIIIII■IIIIIIII■IIIIIIII■Ii�IIIII■IIIIIIII■ IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■ ., ,IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■ .IIIIII■IIIIIIII■IIIIIIII■IIIIIIII■IIIIIIII■ SAMPLE Depth (ft) CLASSIFICATION AT W LL PL PI BI -6 10.0 (SM) Silty SAND BI -7 15.0 (ML) Sandy SILT BI -8 20.0 (SM) Silly SAND TT231 Figure B-1 1 1 t I 1 Project No. 04927-41-01 SAMPLE TT231 B-2 Figure Depth (ft) CLASSIFICATION AT WCJ LL PL PI B2-2 1.0 (SM) Silty SAND B3-4 15.0 (SM) Silty SAND GRAVEL 15.0 ($P) Poorly graded SAND SAND SILT OR CLAY COARSE FINE OARS MEDIUM FINE 1 1INNER INONE MEMO ME IN limmililill 0INNER MINIMUM llilillimililill 0 II 1� A il l, UNION 11 llimil RUN 110 MINE NONE p i llim TENTATIVE TfekT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA SAMPLE TT231 B-2 Figure Depth (ft) CLASSIFICATION AT WCJ LL PL PI B2-2 1.0 (SM) Silty SAND B3-4 15.0 (SM) Silty SAND B4-6 15.0 ($P) Poorly graded SAND II A SAMPLE TT231 B-2 Figure Depth (ft) CLASSIFICATION AT WCJ LL PL PI B2-2 1.0 (SM) Silty SAND B3-4 15.0 (SM) Silty SAND B4-6 15.0 ($P) Poorly graded SAND Project No. 04927-41-01 SAMPLE NO. 132-5 -10 -8 -6 -4 z -2 C H H O _J 0 O N z O U F- 2 z w U w 4 a 6 8 10 12 0.1 1 10 100 APPLIED PRESSURE (ksf) Initial Dry Density (pcf) 117.1 Initial Saturation Initial Water Content (%) 17.4 Sample Saturated at (ksf) 1.0 CONSOLIDATION CURVE TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA rt231 Figure B-3 1 I 1 I I 1 1 I 1 1 1 1 i I 1 Project No. 04927-41-01 SAMPLE NO. 133-2 -10 -6 -6 -4 O -2 H H O J 0 O U Z O U r 2 Z W U w a 4 6 8 10 12 0.1 1 10 100 APPLIED PRESSURE (ksf) Initial Dry Density (pcf) 103.3 Initial Saturation (%) 91.0 Initial Water Content (%) 20.8 Sample Saturated at (ksf) 0.5 CONSOLIDATION CURVE TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA rT231 Figure B-4 Project No. 04927-41-01 SAMPLE NO. 134-3 -10 -8 -6 -4 Z -2 0 H F O J 0 O N Z O U F 2 2 U U UJ UJ 4 6 ZI 8 10 12 0.1 1 10 100 APPLIED PRESSURE (ksf) Initial Dry Density (pcf) 94.3 Initial Saturation 90) 12.1 Initial Water Content (%) 3.5 Sample Saturated at (ksf) 0.5 CONSOLIDATION CURVE TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA TT231 Figure B-5 s Project No. 04927-41-01 SAMPLE NO. 134-5 -10 -8 -6 -4 Z -2 0 H H J 0 O N Z O U H 2 Z W U w a 4 6 8 10 12 0.1 1 10 100 APPLIED PRESSURE (ksf) Initial Dry Density (pcf) 117.9 Initial Saturation Initial Water Conten[ (%) 13.2 Sample Saturated at (ksf) 1.0 CONSOLIDATION CURVE TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA rr231 Figure B-6 1. V i .1 1, A, I. "AIN" -10 US ;VIA, Q, IF. III IF, IF 4, 14, tI IF IF an, n, IF .. .....rY pw I IF IN IF, F, tr . IV jv ,Itv V Ot re IrI V I All ', - 41 , .. ... S I, "YO IF 110 1 -01 Al it Q IF IF "A. C I I I - IF 'I-, - :',p - 11 , I , , '.Y.' � , Y. I� I , ­_ - �V_ , I i , " II I I,, }}%Ai F�­ I I IF IF— ."I It - IF ...... t.IF I r It, `tI't Ir 'FI , , so 1 tI FF In, IF- V-1-1,40 IS All tis'I " W , As A— V_ I. j,", IF,-11"­�l " � I W -MA . "t 'k LCnIF IF> I., ON A WIT ", W -A., p, If A WIW., IF j. 0 IF &TOW Q ON ju %I I nQ; tr ei Ft v. rl F 4F IF I -tF -Q ....... . . . . . . ­ IF IF f.v I IF , an yl.IF— rr '4. a.IF IF 10, Q- MOOTROY A IF I I IF A - IF IV "Ita i4 77777 -�"-7777-vI tProject No. 04927-41-01 December 21, 1992 1 APPENDIX C Included herewith are the results of the EQFAULT and EQSEARCH computer analyses. The output includes the maximum credible and maximum probable earthquake magnitudes and corresponding maximum credible and maximum probable site accelerations for the EQFAULT analysis and the probability data generated from the EQSEARCH run. C] I 1 I ' DATE: Wednesday, November 11, 1992 ************************************* * E Q F A U L T * * * * Ver. 1.01 *_ * Licensed to: - GEOCON, INC. * * (Estimation of Peak Horizontal Acceleration ' From Digitized California Faults) ' SEARCH PERFORMED FOR: James L. Brown JOB NUMBER: 4927-41-01 ' JOB NAME: Temecula Tract 23172 ' SITE COORDINATES: LATITUDE: 33.48 N LONGITUDE: 117.11 W ' SEARCH RADIUS: 100 mi ATTENUATION RELATION: JOYNER & BOORE (1982) Random - mean ' Soil Conditions: Not Used For This Attenuation Relation COMPUTE PEAK HORIZONTAL ACCELERATION 'FAULT -DATA FILE USED: S0CALI.DAT ----------------------------- DETERMINISTIC SITE PARAMETERS ' ----------------------------- Page 1 -------------------------- ABBREVIATED FAULT NAME -------------------------- BLUE CUT CUT -------------------------- BORREGO MTN. (San Jacinto) ---------------- CALABASAS -------------------------- 1CALICO - NEWBERRY --------------------- APPROX. DISTANCE mi (km) 57 ( 92) -57 ( 91) -79-(127) -80-(128) MAX. CREDIBLE EVENT MAX ' PEAK ' SITE CRED.1 SITE {INTENS MAG .IACC. g1 MM -{------{------ -7.0010.0281- V -- - -- 6.50{ 0.022{ IV -----1------1------ -6.50{ 0.0121 III 7.001 0.016, IV CAMP ROCK - EMERSON ' 73 (118) 7.50 0.024' V ------ ---------- --- - -)---------1-----1------1------ CASA LOMA-CLARK (S.Jacin ){ 21 ( 34){ 7.501 0.1351 VIII_O CHINO 33 ( 53)1 7.001 0.0611 ----- VI ------ - ------------ -- --------------1-----1------1------ CLEGHORN 1 55 ( 89)1 6.501 0.0221 IV --------------------------1---------1-----1----- 1CORONADO BANKS FAULT ZONE 1 44 ( 72){ 6.751-0.0361 I -1--- I V-- I -------------------------- - --------------------------------1-----1------1------ COYOTE COYOTE CREEK (San Jacinto){ -------------------------1---------1-----1------1------ --------- 34 ( 54)1 ----- 7.501 ------ 0.0771 ------ VII CUCAMONGA { 52 ( 84)1 1---------1-----1------1 7.00 0.0321 V -------------------------- ELSINORE 1 ( 2){ 7.501 0.6921 ----- XI -------------------------- LN.HELEN-LYTLE CR-CLREMNT ------------------------- HARPER TS_-BUCKRDG.(S.Jacinto) ------------------------ -------------------------- ENWOOD ------------- LOCKHART DLOW I� COAST --1-----1------1------ 24 ( 39){ 7.50{ 0.1181 VII --------- -----1------1------ 97 (157)1 7.001 0.0111 III ---------1-----1------1------ 58 ( 93){ 7.501 0.0361 V --1-----1------1------ 25 ( 40){ 7.50{ 0.114{ VII ---------1-----1------1------ 97 (156)1 7.50{ 0 0141 IV --------------------- 'MAX PROBABLE EVENT' 1-------------------1 MAX.' PEAK ' SITE 1PROB.1 SITE 11NTENSI 1_MAG.IACC.-g1__MM-_1 1.6.251-0.019{--IV--I 1.6.251.0.0191 --IV { 6.001 0.0101 III {----------------- 1_6.25 0.0111 III 6.00 0.0111 III 7.001 0.1041 VII 1.4.751-0.0191--IV--I 6.251 0.020 IV 1-----1------1------ 67_(108)1 7.251 0.0251 V 11 96 (154), 7.501 0.0151 IV _97-(156) 92 (148) ----1------1------ 7.501 0.0141 IV ----1------1------ 7.501 0.0161 IV 6.00 7.001, _6_75{ _6_751 _7_00{ _5.751 _6.251 6.25! 7.001 6.001 6.001 - _6.001 5.001 -0.024 -0.0591 0.0281 0.4651 0_0911 0.0061 0.0181 0.059 0.011 0.013 -0.007 -0.007 0.004 IV IV VI I I -------------------------- MOJAVE RIVER (Ord Mtn.) -------------------------- '--------- 58 ( 93)� '----- 7.00 '------ 0.027 ------ V " -----'------ 6.25 0.0181 '------ IV I NEWPORT - INGLEWOOD -------------------- --------- 42 ( 68)� +--------- 7.50 ------ 0.057 I ------ VI ----- 6.50 ------ 0.0341 I ------ V I ------� NORTHRIDGE HILLS 94 (151)1 ----- 6.501 1-----i------I------11-----------�------ ------ 0.0091 ------ III ----- 11 4.001 ------ 0.0021 ------ - -------------------------- OFFSHORE ZONE OF DEFORM. -------------------------- --------- 30 ( 48)l -------------- 7.501 0.0911 ------ VII ------ 11 6.001 11-----�------ 0.0411 V ------ [1 DETERMINISTIC_ SITEPARAMETERS age 2 -------------------------- ABBREVIATED FAULT NAME - ----- - --------- OLD WOMAN SPRINGS 'IPALOS VERDES HILLS PINTO MOUNTAIN - MORONGO -------------------------- PISGAH - - BULLION ----------- RAYMOND -------- ROSE CANYON -------------------------- ISAN ANDREAS (Mojave) -------------- SAN ANDREAS (Southern) I-------------------------- APPROX. DISTANCE mi (km) 65 (105) 51 ( 82) 47 ( 76) MAX_CREDIBL - MAX. PEAK CRED.1 SITE MAG.IACC. g ----- 1------ 7.001 0.023 ----- I------ 7.001 0.033 ----- 1------ 7.501 0.048 -- I --- -- 81 (131) 7.001 0.015 --------- I ----- I ------ 70 (112)1 7.501 0.026 --------- I -----I------' 33 ( 53)1 7.001 0.061 --1----- 60_(_96)L8 .50 ------ 42 ( 68)1 8.00 --------- ----- SAND HILLS 82 (131)1 8.00 --------------------------I---------1----- SAN CLEMENTE '80-(129)' 7.25 -------------------------- - SAN DIEGO TROUGH 1 55 ( 88)1 6.50 --------------------------1---------I----- SAN GABRIEL 74 (120)1 7.50 --------------- -----------I---------I----- SAN GORGONIO _-BANNING----'-35-(-56)'-8_00 (SANTA MONICA - HOLLYWOOD 1 79 (126)1 7.50 --------------------------1---------1----- SANTA SUSANA 1 96 (154)1 700 1--------- 1--.--- SIERRA MADRE-SAN FERNANDO 1 61 ( 97)1 7.50 --+--------- I ----- ISUPERSTITION HLS.(S Jacin)1 79 (128)1 7.00 I-------------- SUPERSTITION- MTN�(S_Jacin)+_75-(121)+-7_0011 ERDUGO 174(119)17.00 (119)1 7.001 --------- I- ---- i WHITTIER - NORTH ELSINORE i 31 ( 50)1 7.501 -------------------------- '--------- I - ----I F] EVENT''MAX. -------11------------------- I ------11----- PROBABLE EVENT SITE INTENS 1I MAX PROB.' PEAK ' SITE '-0_023IV--116_00 " SITE ACC_ g1- 'INTENS MM-- --�__II_MAG. IV 11 5.751 0.0121 I III I ------11----- V 11 5.501 ------ 0 0151 I ------ IV I ------11----- VI 11 6.001 ------ 0.0221 ------ IV IV 11 6.251 0.0101 III ------11-----I------1------ V 11 5.501 0.0091 III ------1I-----I------1------ VI 11 6.001 0.0361 V VI ------ 11 8.251 11 ----- 0.0511 I- ----- VI I ------ 0.074VII 7.25! 0.0501 VI 1------ '-0_026I---V--11-7_00 I ------11----- IV 0.0121 '-0_0181--IV--1-6_50 III -0_018 '-0_023IV--116_00 1-- 111 0.0561 VI ----- i-0_0961--VII-11-7_00 III 1 0.0091 0.0211 IV II 6.00 ------1------11----- 0.0111 III 11 6.50 ------1------11----- 0.0331 V 11 6.50 5.75 ------ 0.0151 1------ IV 0.0121 III -0_018 IV 0.0121 111 0.0561 VI 0.0101 III 1 0.0091 III 1 -0_0201--IV--I -0_008I 1 --III I -I 6.00' 0.0101 III ----- I ------ I------ 4.501 0.0051 II 6.251 0.0441 VI ----- I ------ I ------ I LEND OF SEARCH- 45 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS. THE ELSINORE FAULT IS CLOSEST TO THE SITE. IS ABOUT 1.1 MILES AWAY. RGEST MAXIMUM -CREDIBLE SITE ACCELERATION: 0.692 g RGEST MAXIMUM -PROBABLE SITE ACCELERATION: 0.465 g 1 1 1 1 1 [1 1 I 1 TATE : 1 Friday, November 27, 1992 *************************************** * * * E Q S E A R C H * * * Ver. 1.50 * * * Licensed to: - GEOCON, INC. - * * *************************************** (Estimation of Peak Horizontal Acceleration From California Earthquake Catalogs) 'EARCH PERFORMED FOR James L. Brown OB NUMBER: 4927-41-01 OB NAME: Temecula Tract No. 23172 ,ITE COORDINATES: LATITUDE: 33.48 N LONGITUDE: 117.11 W 'YPE OF SEARCH: RADIUS SEARCH RADIUS: 50 mi LARCH MAGNITUDES: 5.0 TO 9.0 IrARCH DATES: 1800 TO 1989 ATTENUATION RELATION: JOYNER & BOORE (1982) Random - mean ' Soil Conditions: Not Used For This Attenuation Relation COMPUTE PEAK HORIZONTAL ACCELERATION tRTHQUAKE-DATA FILE USED: ALLQUAKE.DAT FME PERIOD OF EXPOSURE FOR STATISTICAL COMPARISON: 50 years I L i I Page 1 FILE1 LAT. LONG. DATE 1 TIME 1DEPTH IQUAKE SITE ACC. SITE MM APPROX. DISTANCE ODE NORTH WEST (GMT) (km)� MAG. mi G MGI I132.8001117.1001 ------ 33.0001117.300 ------- ------------ 15/25/18030 -------- 12030 ----- ------ ---g---11NT_1------ - - - G 133.7001117.9001 12/ 8/1812 0.0 115 0 001 0.0� 0.0 5.00 6.90 0.013 0.035 II11 V 47 [ 76] 48 [ 77] I 133.0001117.0001 9/21/1856 730 0.01 MGI 134.000 117.500 12/16/1858 110 0.01 5.00 0.021 IV 34 [ 54] G 134.100 116.700 2/ 7/1889 0 0.0 520 0.0 0.01 0.01 7.00 0.044 VI 42 [ 68] G 133.400 116.300 2/ 9/1890 112 5.30 0.014 IV 49 [ 79] 133.800 00 17/15/1905 6 0.01 1225 0.0 0.01 6.30 0.026 V 47 [ 76] GI 134.1 001117.300 001117.3001 12041 0.0 6.60 0.07711 EG G 34.2001117.100 9/20/1907 9/20/1907 0.01 0.01 5.30 0.017 IV2/25/1899 44 [ 71] G 33.7001117.400 4/11/1910 4/11/1910 154 0.01 0.01 6.00 0.020 IV 50 [ 80] DMG 33.7001117.400 5/13/1910 5/13/1910 757 0.0 0.01 5.00 0.034 V 23 [ 36] G 133.7001117.4001 5/15/1910 620 0.01 11547 0.01 5.00 0.034 V 23 [ 361 G 133.5001116.5001 0.0 0.01 6.00 0.057 VI 23 [ 36] DMG 133.7501117.0001 9/30/1916 4/21/1918 211 0.01 1223225 0.01 5.00 0.019 IV 35 [ 57] I 133.8001117.6001 4/22/1918 O 12115 0.01 6.80 0.103 VI11 20 [ 32] G 33.750 117.000 6/ 6/1918 0.01 0.01 5.00 0.019 IV 36 [ 58] 33.200116.700 1/ 1/1920 2235 MGI 133.2001116.6001 10/12/1920 11748 0.0 0 01 5.00 0.0230 IV 30f,lG11 [ 49] 134 0001117.250 0.01 0.01 5.30 0.023 IV 35 [ 571 fG G 134.1801116.9201 7/23/1923 1/16/1930 73026.01 02433.91 0.01 6.25 0.035 V 37 [ 59] DMG 34.1801116.9201 1/16/1930 034 3.6 0.01 5.20 0.013 II11 50 [ 80] G 134.1001116.8001 10/24/1935 11448 0.0 5.10 0.013 875] G 133 4081116.261 3/25/1937 11649 7.6 0.01 5.10 0.014 IV11 46 [ G 133.6991117.5111 5/31/1938 1.81 10.01 6.00 0.021 IV 49 [ 79] 33.976 116.721 6/12/1944 83455.41 0 10.01 5.50 0.035 V 28 [ 44] l'MG G 133.9941116.7121 6/12/1944 1111636.01 1 1 1 G 133.9501116.8501 9/28/1946 1 10.01 5.30 1 0.018 1 IV 1 42 [ 68] DMG 133.7101116.9251 9/23/1963 719 9.01 0.01 5.00 0.019 IV 36 [ 57] IG 133.3431116.3461 S 133.5011116.5131 4/28/1969 1232042.91 1104738.51 20.01 5.80 1 1 0.021 1 1 IV 1 1 45 [ 72] PAS 133.998�116.606i 2/25/1980 7/ 8/1986 13.61 5.50 0.026 V 34 [ 55] LJ•ii 11111111 iia...6061 92044.Si 11.7 5.60 i 0.018 i IV 46 [ 74] ND OF SEARCH- 32 RECORDS FOUND MPUTER TIME REQUIRED FOR EARTHQUAKE SEARCH: 5.4 minutes XIMUM SITE ACCELERATION DURING TIME PERIOD 1800 TO 1989: 0.103g OXIMUM SITE INTENSITY (MM) DURING TIME PERIOD 1800 TO 1989: VII MAXIMUM MAGNITUDE ENCOUNTERED IN SEARCH RAREST HISTORICAL EARTHQUAKE WAS ABOUT NUMBER OF YEARS REPRESENTED BY SEARCH: NU 7.00 19 MILES AWAY FROM SITE. 190 years I I RESULTS OF PROBABILITY ANALYSES ---- ---------- ----------------- IME PERIOD OF SEARCH: 1800 TO 1989 ENGTH OF SEARCH TIME: 190 years TENUATION RELATION: JOYNER & BOORE (1982) Random - mean * TIME PERIOD OF EXPOSURE FOR PROBABILITY: 50 years OBABILITY OF EXCEEDANCE FOR ACCELERATION ---------------------------------------- tNO.OF C.'TIMES� AVE OCCUR. RECURR.i �INTERV.l in COMPUTED in PROBABILITY OF EXCEEDANCE g �EXCED� #/yr years 10 5 r� 1 in yrs in 50 yrs in 75 I in in ---- 1O1� .02 ----- 32� 201 ------I-------I----y-I----Yr 0.168 0.105 5.93810.0808�0.1550�0.8144 9.50010.0513 0.0999 -10--- 0.6510 ------ 0.9998�1.0000�1.000010.9998 0.9948�0.9996�1.000010.9948 ------ ------I----yr 0.03 121 0.063 15.83310.03110.0612 0.468210.9575�0.9912�0.9982�0.9575 04 61 61 0.032 31.667 0.0157 0.03110.27080.7938�0.9064�0.9575�0.7938 O5� 3� 0.016 63.3330.007910.01570.14610.5459�0.6940�0.7938�0.5459 0.06 21 0.0111 95-00010.005210.010510.099910.409210.545910.651010.4092 071 081 2� 11 0.0111 0.0051190-00010.002610.005210.051310.231410.326110.409210.2314 95.00010.005210.010510.099910.409210.545910.651010.4092 091 11 0.0051190-00010.002610.005210.0513 10.231410.32611 0.409210.2314 0.101 11 0.0051190.00010.002610.005210.051310.231410.326110.409210.2314 ------------------------------------------------------- 1 1 1 1 I I 1 PROBABILITY OF EXCEEDANCE FOR MAGNITUDE w-------------------------------------- NO.OF AVE. RECURR. G.ITIMES OCCUR. INTERV. IEXCEDI #/yr years -- ----- ------------- 5.001 321 0.1681 5.938 1501 141 0.0741 13.571 .001 101 0.0531 19.000 6.501 51 0.0261 38.000 00� 1� 0.0051 90.000 COMPUTED PROBABILITY OF EXCEEDANCE in in in in in in in D-5-yr--l-yr l -l0 -yr 1-50_yrI_75-yri100-yr i***_yr 10.080810.1550 0.814410.999811.000011.000010.9998 10.036210.071010.521410.974910.996010.999410.9749 10.026010.051310.409210.928010.980710.994810.9280 10.013110.026010.231410.731710.861110.928010.7317 0.002610.0052!0.0513!0.2314!0.3261!0.409210.2314 IGUTENBERG & RICHTER RECURRENCE RELATIONSHIP: a -value= 1.717 value= 0.505 beta -value= 1.163 1 - 1 1 I 1 1 i-1 1 1 1 1 m I CALIFORNIA NMDA j MONTEREY / ARIZ NA 0 50 100 SCALE A �f r xx (Miles) LOS ANGELES x o EXPLANATION ® x OM = 8.0 + SAN DIEGO 0 M = 7.0-7.9 \ (D M = 6.0-6.9 PACIFIC \ D M = 5.0-5.9 \ � x M = 4.0-4.9 OCEAN \ SITE LOCATION (+): Latitude — 33.4800 N JOB NO.: 4127-41-01 Longitude — 117.1100 w HISTORICAL EARTHQUAKES 1800 TO 1989 1 1 1 1 1 1 1 LOG N = 2.689 - 0.679M 100 10 z v f1' 1 z w 0 0.1 w m Z) + z > 0.01 g Z) U 0.001 0.0001 3.0 4.0 5.0 6.0 7.0 8.0 9.0 MAGNITUDE (M) SEISMIC RECURRENCE CURVE HISTORICAL EARTHQUAKES FROM 1800 TO 1989 Temecula Tract 23172 Project No. 04927-41-01 December 21, 1992 APPENDIX D LIQUEFACTION ANALYSIS Included herewith are the results of the liquefaction analysis. The analysis was performed utilizing the computer program LIQUEFY2. The computer program utilizes procedures suggested by Seed et al. (1985). The analysis incorporated information obtained from the data from EQFAULT and EQSEARCH. I I * L I Q U E F Y 2 * * ******************* EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 LIQUEFACTION.CALCULATION NAME: 4927borl ' SOIL -PROFILE NAME: lborl ' GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 ' SITE PEAK GROUND ACCELERATION: 0.300 g K sigma BOUND: M rd BOUND: M ' N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). 11 * * * L I Q U E F Y 2 * * ******************* EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 LIQUEFACTION.CALCULATION NAME: 4927borl ' SOIL -PROFILE NAME: lborl ' GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 ' SITE PEAK GROUND ACCELERATION: 0.300 g K sigma BOUND: M rd BOUND: M ' N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). 11 I ' ------------ LIQUEFACTION ------------ ----------------------------- Seed and Others (1985] Method 1 ' ----------------------------- ANALYSIS SUMMARY PAGE FIELD 1 N SOIL' CALL TOTAL EFF. DEPTH'STRESSySTRESS� CORR.'LIQUE.' 'INDUC.'LIQUE. GRESS? r 1STRESSISAFETY NO.! (ft) i (tsf)i (tsf)1 1 N j(B/ft)1 RATI01 d RATIO!FACTOR 1 ' 0.25 0.013' 0.013 1 0.75 0.0381 0.038 '1 1 1.25 1.751 0.063 0.0881 0.063 0.088 @ 1 2.251 0.1131 0.113 19 1 2.751 0.1381 0.138 '1 @ @ 3.251 0.1631 0.163 @ 1 3.751 0.1881 0.188 1 4.251 0.213 0.213 '1 19 4.751 0.2381 0.238 1 @ 1 5':251 0.2631 0.263 �- 1 5.751 0.288 0.288 '2 2 6.251 6.751 0.314 0.3411 0.314 0.341 @ 2 7.251 0.3691 0.369 @ 2 7.751 0.3961 0.396 - 2 8.251 0.4241 0.424 1 @ @ 2 8.751 0.4511 0.451 @ 2 9.251 0.4791 0.479 9.75 0.5061 0.506 '2 3 10.251 0.534 0.526 @ 3 1 10.751 0.561 0.537 1 @ 1 @ @ 11.25 0.5881 0.549 '3 3 1 11.751 0.6151 0.5601 1 @ @ 3 12.251 0.6421 0.571 @ 1 @ 3 12.751 0.6691 0.5831 1 @ 1 @ 13.251 0.6961 0.5941 '3 3 13.751 0.7231 0.6061 1 @ 3 14.251 0.750 0.617 '3 3 14.751 15.251 0.7771 0.804 0.6281 0.640 51 ' 3 15.751 0.8311 0.651 @ @ 3 16.251 0.8581 0.6631 0.167 0.9791 3 1 16.751 0.8851 0.6741 11.2421 3 117.251 0.167 0.978 0.9121 0.6851 6 6 3 1 17.751 0.9391 0.6971 ' 3 ! 18.25! 0.9661 0.708 ANALYSIS SUMMARY PAGE FIELD 1 N 'Est.D r1 1 C 1cN1)60 CORR.'LIQUE.' 'INDUC.'LIQUE. GRESS? r 1STRESSISAFETY (B/ft) 1 (%) 1 N j(B/ft)1 RATI01 d RATIO!FACTOR i 19 i - @ @ i @ i @ i @ ' @ @ 19 - @ @ @ @ @ 1 @ @ 19 - @ @ @ @ @ @ @ 19 - @ @ @ @ @ @ @ 19 @ @ @ @ @ 1 @ @ 19 @ @ 1 @ 1 @ �- @ @ @ 19 @ @ @ @ @ @.@ 19 - @ @ @ @ @ @ @ 19 - @ @ @ @ 1 @ 1 @ @ 19 @ @ @ @ @ 1 - 1 1 1 1 @ @ 9 1 51 1 @ @ 1 @ 1 @ @ 1@@ 9 1 1 51 1 1 @ 1 @ 1 @ @ 1 @@@ 9 1 51 1 1 @ @ @ @ 1 @ 1 @ @ 9 1 51 1 1 @ @ @ 1 @ @ @ @ 9 1 51 1 1 @ 1 @ @ 1 @ 1 @ 1@@ 9 1 51 1 @ 1 @ @ @ 1 @ 1@@ 9 1 1 51 1 @ 1 @ @ @ 1 @ 1@@ 9 51 ' i @ i @ @ @ ' @ @ @ 6 40 1.242' 7.5 0.167 0.9791 0.194 0.86 6 40 1 11.2421 7.5 0.167 0.978 0.199 0.84 6 6 40 40 11.2421 11.2421 7.5 0.167 0.977 0.2041 0.82 11.2421 7.5 0.167 0.976 0.209 0.80 6 6 40 40 11.2421 7.5 0.167 0.975 0.2131 0.79 11.2421 7.5 0.167 0.974 0.2181 0.77 6 40 7.5 0.167 0.972 0.2221 0.75 6 6 40 40 1.2421 11.2421 7.5 0.167 0.971 0.2261 0.74 6 40 11.2421 7.5 0.167 0.970 0.2301 0.73 6 40 11.2421 7.5 ( 0.167 0.969 0.2341 0.72 6 40 11.2421 7.5 0.167 0.968 0.2371 0.71 6 1 40 11.2421 7.5 1 0.167 0.967 0.241 0.70 1 11.2421 7.5 1 0.16710.9661 0.2441 0.69 6 6 40 1 40 11.2421 7.5 1 0.16710.9651 0.2471 0.68 6 1 40 11.2421 7.5 1 0.16710.9641 0.2501 0.67 7.5 0.16710.9631 0.2531 0.66 6 1 40 !1.242! 7.5 ! 0.167!0.961! 0.256! 0.66 p 1] [1 [1 11 3 18.75 3 19.25 3 19.75 4 20.25 4 20.75 4 21.25 4 21.75 4 22.25 4 22.75 4 23.25 4 23.75 5 24.25 5 24.75 5 25.25 5 25.75 5 26.25 5 26.75 5 27.25. 5 27.75 5 28.25 5 28.751 5 29.25 5 1 29.75' 6 + 30.254 6 1 30.751 6 31.251 6" 1 31.751 0.993 0.720 6 1 40 '1.242' 7.5 ' 0.167'0.960' 0.2581 0.65 1.0201 0.7311 6 40 11.2421 7.5 1 0.16710.9591 0.2611 0.64 1.0471 0.7421 6 40 ,1.242, 7.5 , 0.16710.9581 0.2631 0.64 1.0744 0.7544 6 - - - - 1.1011 0.7651 6 - - 1.128 0.7771 6- 1.1551 0.7881 6 1 ' - 1.1821 0.7991 6 1 1.2091 0.8111 6 1 - - 1.2361 0.8221 6 - ( - 1.2631 0.8341 6 1 - - 1.2901 0.845 9 45 �1.032 9.3 �� 0.1930.944� 0.281 0.69 1.3184 0.8581 9 45 11.0321 9.3 0.193 0.943 0.2831 0.68 1.3461 0.870 9 45 41.032 9.3 0.193 0.941 0.2841 0.68 1.3741 0.8831 9 4 45 11.0321 11.0321 9.3 0.193 0.939 0.2851 0.68 1.4024 1.4301 0.895 0.9071 9 9 45 11.032 9.3 0.193 0.937 0.2864 0.67 45 11.0321 9.3 0.1930-:9341 0.2871 0.67 1.4581 1.4861 0.9201 0.9324 9 9 45 11.0321 9.3 0.193 0.932 0.2881 0.67 1.5141 0.9451 9 45 41.0321 9.3 0.193 0.930 1 0.2894 0.67 1.5421 0.9571 9 45 1 45 11.0321 9.3 0.19340.9281 1 0.2901 0.67 1 11.0321 9.3 0.19310.9261 1 0.2911 0.66 1.5701 1.598 0.9691 0.982, 9 9 45 45 ,1.032, 9.3 9.3 0.19 310.9231 0.193,0.921, 0.2921 0.66 1.626 0.994 24 1 72 10.989' 23.7 lInfin 0.9191 0.2921 6.29311nfin 0.66 1.6541 1.0071 24 1 1 72 10.9891 10.9891 23.7 11nfin 11nfin 10.9164 10.9131 0.29311nfin 1.6821 1.0191 24 72 23.7 0.29411nfin 1.7101 1.031, 24 , 72 ,0.989, 23.7 ,Infin 10. 101 0_294,Infin ******************* * * ' * L I Q U E F Y 2 * * ******************* EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 JOB NAME: Temecula Tract No. 23172 LIQUEFACTION CALCULATION NAME: 4927borl SOIL -PROFILE NAME: lborl ' GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 ' SITE PEAK GROUND ACCELERATION: 0.450 g K sigma BOUND: M rd BOUND: M N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS J ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). 7 rl ----------------------------- LIQUEFACTION ANALYSIS SUMMARY ----------------------------- ----------------------------- Seed and Others [1985] Method PAGE 11 ---------------------------- ' CALC. TOTAL EFF. 'FIELD Est.D ' ' CORR.'LIQUE.i INDUC. LIQUE. SOILI DEPTHISTRESSiSTRESSi N 1 ri C i(N1)601STRESSlr ISTRESSISAFETY NO., (ft) i (tsf)i (tsf)i(B/ft)i (�) i N i(B/ft)i RATIO' d i RATIOIFACTOR 1 0.25 0.013 0.013 19 - @ @ @ @ @ @ @ 1 I 0.751 0.0381 0.0381 19 I @ 1 @ @ I @ 1 @ I @ @ ' 1 1 1.251 0.0631 0.0631 19 I @ I @ @ I @ I @ I @ @ 1 1 1.751 0.0881 0.0881 19 1 1 @ I @ I @ I @ I @ I @ @ 1 I 2.251 0.1131 0.1131 19 I 1 @ I @ 1 @ I @ 1 @ 1 @ @ 1 I 2.751 0.1381 0.1381 19 1 = I @ I @ I @ I @ I @ 1 @ @ 1 I 3.251 0.1631 0.1631 19 I I @ 1 @ I @ 1 @ I @ I @ @ 1 I 3.751 0.1881 0.1881 19 I @ I @ I @ I @ 1 @ I @ @ 1 1 4.251 0.2131 0.2131 19 1 I @ @ I @ I @ I @ @ @ 1 I 4.751 0.2381 0.2381 19 I 1 @ I @ I @ I @ 1 @ I @ @ 1 I 5.251 0.2631 0.2631 19 1 I @ 1 @ I @ I @ I @ 1 @ @ 1 1 5.751 0.2881 0.2881 19 I I @ I @ I @ 1 @ I @ 1 @ @ 2 I 6.251 0.3141 0.3141 9 1 51 1 @ @ 1 @ I @ 1 @ 1 @ @ 2 I 6.751 0.3411 0.3411 9 1 51 1 @ @ I @ I @ 1 @ 1 @ @ 2 I 7.251 0.3691 0.3691 9 1 51 1 @ 1 @ 1 @ @ 1 @ I @ @ 2 1 7.751 0.3961 0.3961 9 I 51 I@ I @ 1 @ I@ 1 @ I@@ 2 I 8.251 0.4241 0.4241 9 I 51 I@ 1 @ I @ 1@ I @ 1@@ 2 I 8.751 0.4511 0.4511 9 1 51 1@ I @ I @ I@ I @ I@@ 2 I 9.251 0.4791 0.4791 9 1 51 I@ I @ 1 @ I@ I @ I@@ 2 I 9.751 0.5061 0.5061 9 1 51 @ @ @ I @ 1 @ I @ @ 3 1 10.251 0.5341 0.526+ 6 40 1.242 7.5 0.167 0.979 0.2911 0.58 3 110.751 0.5611 0.5371 6 I 40 11.2421 7.5 0.167 0.978 0.2991 0.56 '3 111.251 0.5881 0.5491 6 1 40 11.2421 7.5 10.16710.977 0.3061 0.55 3 111.751 0.6151 0.5601 6 I 40 11.2421 7.5 0.167 0.976 0.3131 0.54 3 112.251 0.6421 0.5711 6 1 40 11.2421 7.5 0.167 0.975 0.3201 0.52 3 112.751 0.6691 0.5831 6 I 40 11.2421 7.5 0.167 0.974 0.3271 0.51 3 113.251 0.6961 0.5941 6 1 40 11.2421 7.5 0.167 0.972 0.3331 0.50 3 113.751 0.7231 0.6061 6 I 40 11.2421 7.5 0.167 0.971 0.3391"0.49 3 1 14.251 0.7501 0.6171 6 1 40 11.2421 7.5 1 0.167 10.9701 0.3451 0.49 ' 3 114.751 0.7771 0.6281 6 I 40 11.2421 7.5 1 0.167 0.969 0.3501 0.48 3 115.251 0.8041 0.6401 6 I 40 11.2421 7.5 1 0.167 0.968 0.3561 0.47 3 1 15.751 0.8311 0.6511 6 1 40 11.2421 7.5 1 0.16710.9671 0.3611 0.46 3 1 16.251 0.8581 0.6631 6 1 40 11.2421 7.5 1 0.16710.9661 0.3661 0.46 3 1 16.751 0.8851 0.6741 6 1 40 11.2421 7.5 1 0.16710.9651 0.3701 0.45 3 117.251 0.9121 0.6851 6 1 40 11.2421 7.5 1 0.16710.9641 0.3751 0.45 3 1 17.75 0.9391 0.6971 6 1 40 11.2421 7.5 0.16710.9631 0.379 0.44 1 I u ' 3 3 18.25 18.75 0.966 0.993 0.708 0.720 6 6 1 40 1 '1.242' 11.2421 7.5 ' 0.167'0.961' 1 0.383 0.44 3 ( 19.25 1.020 0.731 40 11.242' 7.5 0.16710.9601 1 0.3871 0.43 3 19.75 1.047 0.742 6 6 40 40 !1.242� 7.5 7.5 0.16710.9591 0.16710.9581 0.3911 0.43 ' 4 20.25 1.0741 0.754 6 �� 0.3951 0.42 4 20.75 1.101) 0.765 6 4 21.25 1.128 0.7771 6 - - ' 4 21.751 1.155 07881 6 _ 4 22.25 1.182 0..7991 6 1 4 22.75 1.209 0.812 6 1 - 4 23.25 1.236 0.822 6 ' 4 23.75 1.263 0.834 6 5 24.25 1.290+ 0.845 9 �� 45 1.032 9.3 9.3 0.1930.944+ 0.422 0.46 5 24.75 1.318 0.858 9 45 1.032 9.3 9.3 0.193�0.943� 0.424 0.46 '. 5 25.25 1.346 0.870 9 45 1.032 9.3 9.3 0.193�0.941� 0.426 0.45 5 25.75 1.374 0.883 9 45 1.032 9.3 9.3 0.193�0.939� 0.427 0.45 5 26.25 1.402 0.895 9 45 1.032 9.3 9.3 0.193�0.937� 0.429 0.45 5 26.75 1.430 0.907 9 45 1.032 9.3 9.3 0.193�0.934� 0.431 0.45 ' 5 27.25 1.4581 0.920 9 I 45 1.032 9.3 9.3 ( 0.193 0.932 0.432 0.45 5 5"28.25 27.75 1.486 1.5141 0.932 0.945 9 ( 45 1 1.0321 11.0321 9.3 1 0.193 0.930 1 0.434 0.45 ' 5 1 28.751 1.5421 0.9571 9 9 45 1 45 11.0321 9.3 9.3 0.19310.9281 1 0.193110.9261 0.4351 0.4361 0.44 5 1 29.25 1.5701 0.9691 1 11.0321 1 0.44 5 29.75 1.598 0.982 9 9 45 45 11.032i 9.3 9.3 0.1930.9231 0.4371 0.44 + 0.1930.921 0.439 0.44 ' 6 30.25 1.626 0.994 24 72 X0.989 23.7 �Infin 0.919 0.439'Infin 6 30.751 1.6541 1.007 24 72 0.989 23.7 23.7 �Infin 0.9161 0.440lInfin 6 6 � 31.251 31.751 1.6821 1_710 1.019 1.031 24 24 1 72 72 0.989 10.989 23.7 23.7 �Infin 10.913 IInfin 10_91011 O'441�Infin ' 23.7 0.441lInfin I 1 1 I ******************* * * * L I Q U E F Y 2 * * ******************* EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL ' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 LIQUEFACTION CALCULATION NAME: 4927bor2 SOIL -PROFILE NAME: lbor2 ' GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 ' SITE PEAK GROUND ACCELERATION: 0.300 g K sigma BOUND: M rd BOUND:'M ' N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). I 1 ----------------------------- LIQUEFACTION ANALYSIS SUMMARY ----------------------------- ----------------------------- 'Seed and Others [1985] Method 1 [1 I 0.25 0.751 1.251 1.751 2.251 2.751 3.251 3.751 4.251 4.751 5.251 5.751 6.251 6.751 7.251 7.751 8.251 8.751 9.251 9.751 10.251 10.751 11.251 11.751 12.251 12.751 13.251 13.751 14.251 14.751 15.251 15.751 16.251 16.751 17.251 17.7511 0.016 0.049 0.081 0.114 0.146 0.179 0.211 0.244 0.276 0.309 0.341 0.373 0.404 0.436 0.467 0.498 0.529 0.559 0.589 0.619 0.649 0.679 0.709 0.739 0.769 0.799 0.829 0.859 0.889 0.921 0.9551 0.9891 1.0241 1.0581 1.0921 1.126 EFF. 'FIELD 'Est.D ' ' CORR. STRESS N 11 CALC. TOTAL (tsf)i(B/ft)i SOILI DEPTHISTRESS N :(B/ft) N0.11 (ft) i (tsf) 0.016 30 [1 I 0.25 0.751 1.251 1.751 2.251 2.751 3.251 3.751 4.251 4.751 5.251 5.751 6.251 6.751 7.251 7.751 8.251 8.751 9.251 9.751 10.251 10.751 11.251 11.751 12.251 12.751 13.251 13.751 14.251 14.751 15.251 15.751 16.251 16.751 17.251 17.7511 0.016 0.049 0.081 0.114 0.146 0.179 0.211 0.244 0.276 0.309 0.341 0.373 0.404 0.436 0.467 0.498 0.529 0.559 0.589 0.619 0.649 0.679 0.709 0.739 0.769 0.799 0.829 0.859 0.889 0.921 0.9551 0.9891 1.0241 1.0581 1.0921 1.126 EFF. 'FIELD 'Est.D ' ' CORR. STRESS N 11 rig C i (N1)60 (tsf)i(B/ft)i N :(B/ft) 0.016 30 @ @ 0.0491 30 I I @ @ 0.0811 30 I - I @ I @ 0.1141 30 1 I @ I @ 0.1461 30 I - I @ I @ 0.1791 30 I I @ I @ 0.2111 30 1 - I @ I @ 0.2441 30 I - I @ I @ 0.'2761 30 I - I @ I @ 0.3091 30 I - I @ I @ 0.3411 30 I - I @ I @ 0.3731 11 1 57 1 @ 1 @ 0.4041 11 1 57 I @ I @ 0.4361 11 1 57 1 @ 1 @ 0.4671 11 1 57 I @ I @ 0.4981 11 1 57 1 @ 1 @ 0.5291 10 1 51 I @ I @ 0.5591 10 1 51 1 @ 1 @ 0.5891 10 1 51 I @ I @ 0.6191 10 51 @ @ 0.641+ 10 51 1.226 12.3 0.6551 10 1 51 11.2261 12.3 0.6701 10 1 51 11.2261 12.3 0.6841 10 1 51 11.2261 12.3 0.6991 10 1 51 11.2261 12.3 0.7131 10 1 51 1 112261 11..2261 123 0.7271 0.7421 10 51 1 11.2261 12..3 10 51 111.2261 12.3 0.75611 10 51 12.3 0.773 30 81 0.995 29.8 0.7911 30 1 81 10.9951 29.8 1 0.8101 30 1 81 10.9951 29.8 1 0.8291 30 1 81 10.9951 29.8 1 0.8471 30 1 81 10.9951 29.8 1 0.8661 30 1 81 10.9951 29.8 1 0.8851 30 1 81 !0.995! 29.8 1 PAGE LIQUE.I 'INDUC.LIQUE. I ,STRESS,,r ISTRESS ISAFETY I RATIO� d ti RATIO!FACTOR I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ 1 @ 1 @ 1 @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ 1 @ 1 @ 1 @ 1 @ @ I @ I @ I @ I @ @ 1 @ 1 @ 1 @ 1 @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ I @ I @ I @ I @ @ 0.182 0.9791 0.1931 0.94 1 0.182 0.978 0.1981 0.92 1 0.182 0.977 0.2021 0.91 1 0.182 0.976 0.2051 0.89 1 0.18210.9751 0.2091 0.87 i 0.18210 974 0.2131 0.86 1 0.18210.9721 0.2161 0.84 1 0.18210.9711 0.21911 0.83 11 0.182110.970; 0.22211 0.82 Infin 0.9690.225Infin Infin 10.9681 0.228 Infin Infin 10.9671 0.23011nfin Infin 10.9661 0.23311nfin Infin 10.9651 0.23511nfin Infin 10.9641 0.23711nfin Infin I0.963I 0.239!Infin I ' 4 18.25 1.161 0.903 30 81 10.995 29.8 Infin 0.961 0.241 Infin 4 18.75 1.195 0.922 30 81 10.995 10.995 29.8 1Infin 1Infin �0.960� �0.959� 0.24311nfin 4 19.25 1.229 0.941 30 81 29.8 0.24411nfin ' 4 19.75 1.263 0.959 30 81 10.995 29.8 1Infin �0.958� 0.24611nfin 4 20.25 1.298 0.978 30 81 0.995 29.8 29.8 1Infin 10.957 0.248�Infin 4 ' 4 20.751 21.25 1.332 1.3661 0.997 1.015 30 30 81 10.995� 10.995� 29.8 Infin 1Infin 10.955 10.954 0.249�Infin 81 29.8 0.250�Infin 4 21.751 1.4001 1.0341 30 1 81 10.995 29.8 Infin 0.952 0.252 0.252�Infin 4 22.251 1.4351 1.0521 30 1 81 1 10.995 10.995 29.8 Infin 1Infin 0.951 10.949 0.253 0.253�Infin 4 22.751 1.4691 1.0711 30 81 29.8 0.254�Infin 4 23.25 1.5031 1.090 30 � 81 10.995� 29.8 1 Infin 1Infin 10.947� 0.255�Infin 4 23.75 1.537 1.108 30 81 0.995 29.8 29.8 1Infin 10.946 10.944 0.256�Infin ' 4 24.25 1.572 1.127 30 81 0.995 29.8 29.8 0.257�Infin 4 24.75 1.606 1.146 30 81 0.995 29.8 29.8 Infin 0.943 0.258 0.258�Infin 4 25.25 1.640 1.164 30 81 0.995 29.8 29.8 Infin 0.941 0.259 0.259�Infin 5 5 25.75 26.25 1.673 1.705 1.182 1.198 44 44 94 94 0.923 0.923 40.6 40.6 40.6 40.6 Infin Infin 0.939 0.937 0.259 0.259�Infin 5 26.75 0.260 0.260�Infin 1.736 1.213 44 94 0.923 40.6 40.6 Infin 0.934 0.261 0.261�Infin 5 27.25 1.768 1.229 44 94 0.923 40.6 40.6 Infin 0.932 0.261 0.261�Infin ' 5 5 27.75 28.25 1.799 1.831 1.245 44 94 0.923 40.6 40.6 Infin 0.930 0.262 0.262�Infin 5 28.75 1.862 1.261 44 94 0.923 40.6 40.6 Infin 0.928 0.263 0.263�Infin 1.277 44 94 0.923 40.6 40.6 Infin 0.926 0.263 0.263�Infin 5 5 29.25 29.75 1.894 1.925 1.293 1.309 44 44 94 94 0.923 0.923 40.6 40.6Infin 40.6 40.6 Infin 0.923 0.264 0.264�Infin 0.921 0.264 0.264�Infin 5 6 30.25 30.75 1.957 1.989 1.325 44 94 0.923 40.6 40.6 Infin 0.919 0.265 0.265�Infin 6 31.25 2.024 1.342 1.361 52 52 97 0.842 43.8 Infin 0.916 0.265 0.265�Infin 97 0.842 43.8 43.8Infin 0.913 0.265 0.265�Infin 6 31.75 2.058 1.379 52 97 �0.842� 43.8Infin 0.910 0.265 0.265�Infin 6 32.25 2.092 1.398 52 97 0.842 43.8 43.8 Infin 0.907 0.265 0.265�Infin 6 32.75 2.126 1.417 52 97 0.842 43.8 43.8 Infin 0.904 0.265 0.265�Infin 6 33.25 2.161 1.435 52 97 0.842 43.8 43.8 Infin 0.902 0.265 0.265�Infin 6 33.75 2.195 1.454 52 1 97 10.8421 0.842 43.8 43.8 1Infin Infin 10.8961 0.899 0.265 0.265�Infin 6 ' 6 1 34.251 34.751 2.2291 2.2631 1.4731 1.4911 52 52 1 97 97 10.8421 43.8 43.8 1Infin 10.8931 0.26411nfin 6 35.251 2.2981 1.5101 52 1 10.8421 1Infin 10.8901 0.26411nfin 1 1 97 10.8421 43.8 1Infin 10.8861 0.26411nfin 6 i 35.751 2.3321 1.5291 52 97 43.8 0.2641Infin 6- 36 _25 �- 2.366 i 1.547 52 97 i 0.84 2 1 43 _8 i Infin 10.882 0 _263 1 Infin I 1 I I I p ******************* * * * L I Q U E F Y 2 * * ******************* ' EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL ' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 'LIQUEFACTION CALCULATION NAME: 4927bor2 SOIL -PROFILE NAME: lbor2 GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 SITE PEAK GROUND ACCELERATION: 0.450 g K sigma BOUND: M rd BOUND: M N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). F ----------------------------- LIQUEFACTION ANALYSIS SUMMARY -------------------=--------- ----------------------------- 'Seed 11 and Others [1985] Method PAGE ---------------------------- CALL. SOIL' DEPTH'STRESSiSTRESS' TOTAL EFF. FIELD N Est.D C CORR. LIQUE. INDUC. iSTRESS'SAFETY LIQUE. r:i :(N1)60:STRESS: r NO.! (ft) i (tsf): (tsf):(B/ft)I ($) : N :(B/ft): RATIO: d I RATI01FACTOR 1 0.25 0.016 0.016' 30 ' @ @ ' @ @ @ @ @ 1 0.75 0.049 0.049 30 @ @ @ @ @ @ @ 1 1 1.25 0.0811 0.081 30 _ @ @ @ @ @ @ @ 1 1.75 0.114 0.114 30 @ @ @ @ @ @ @ 1 2.25 0.146 0.146 30 @ @ @ @ ( @ @ @ '1 2.75 0.179 0.179 30 _ @ @ @ @ @ @ @ 1 3.25 0.211 0.211 30 @ @ @ @ @ @ @ 1 3.751 0.244 0.244 30 @ @ @ @ @ @ @ 1 4.25 0.276 0.2761 30 @ @ @ @ @ @ @ 1 4.75 0.309 0.3091 30 @ @ @ @ @ @ @ 1 5.25 0.341 0.3411 30 @ @ @ @ @ @ @ 2 5.75 0.373 0.373 11 57 @ @ @ @ @ @ @ '2 6.25 0.404 0.404 11 57 @ @ @ @ @ @ @ 2 6.75 0.436 0.436 11 57 @ @ @ @ @ @ @ 2 7.25 0.467 0.467 11 57 @ @ @ @ @ @ @ 2 7.75 0.498 0.498 11 57 @ @ @ @ @ @ @ 3 8.25 0.529 0.529 10 51 @ @ @ @ @ @ @ 3 8.75 0.5591 0.5591 10 1 51 1 @ 1 @ I @ I @ @ I @ @ ' 3 3 9.25 9.75 0.589 0.619 0.589 0.619 10 10 51 i 51 @ @ @ @ @ @ @ @ @ @ @ @ @ @ 3 1 10.251 0.649 0641+ '1.226' ' 3 10.751 0.679 0..6551 10 10 51 11.226 12.3 0.182'0.979+ 0.290 0.63 51 12.3 0.182 0.9781 0.296 0.62 '3 3 11.251 11.75 0.709 0.7391 0.6701 0.6841 10 1 51 1 11.226� 12.3 0.182 0.9771 0.302 0.60 10 51 1 1.226 12.3 12.3 1 0.1820.9761 0.308 0.59 3 12.25 12.75 0.7691 0.7991 0.6991 0.7131 10 51 1 11.2261 1.2261 12.3 1 0.182 0.975 0.314 0.58 '3 3 13.251 0.8291 0.7271 10 51 1 11.2261 12.3 1 0.18210.9741 0.3191 0.57 3 13.75 0.8591 0.7421 10 51 1 11.2261 12.3 1 0.18210.9721 0.3241 0.56 10 51 111.226 12.3 0.18210.97111 0.3291 0.56 3 14.25 0.889 0.756 10 51 X29.8 12.3 0.'18 .33 0.334 0.55 '4 14.751 0.921 0.773 30 'I 81 X0.995 Infin '0.969�10.338'Infin �Infin 4 15.25 0.955 0.791 30 1 81 0.995 10.9951 29.8 29.8 lInfin 0.968 0.342 0.342�Infin 4 1 15.751 16.251 0.9891 1.0241 0.8101 0.8291 30 1 81 10.9951 29.8 10.9671 lInfin 10.9661 0.34511nfin 30 81 29.8 0.34911nfin '4 4 1 1 16.751 1.0581 0.8471 30 1 1 81 10.9951 10.9951 29.8 lInfin 10.9651 lInfin 10.9641 0.35211nfin 4 4 1 17.251 17.751 1.0921 1.1261 0.8661 0.885 30 81 i0.995i 29.8 !Infin i0.963! 0.35611nfin 30 81 29.8 0.359!Infin ' I I LJ I 1 L I 4 18.25 1.161 0.903 30 81 X0.995 4 18.751 1.1951 0.922 30 81 10.995 4 19.251 1.2291 0.941 30 81 0.995 4 19.751 1.263 0.9591 30 81 10.995 4 20.251 1.2981 0.9781 30 81 0.995 4 20.751 1.3321 0.9971 30 81 10.995 4 21.251 1.3661 1.0151 30 81 0.995 4 21.751 1.4001 1.0341 30 81 10.995 4 22.251 1.4351 1.0521 30 81 0.995 4 22.751 1.469 1.0711 30 81 10.995 4 23.251 1.5031 1.090 30 81 10.995 4 23.751 1.5371 1.1081 30 81 0.995 4 24.251 1.5721 1.127 30 81 10.995 4 24.751 1.6061 1.1461 30 81 10.995 4 25.251 1.6401 1.164 30 81 10.995 5 25.751 1.673 1.1821 44 94 10.923 5 26.251 1.7051 1.1981 44 94 0.923 5 26.751 1.7361 1:2131 44 94 10.923 5 27.251 1.7681 1.2291 44 94 10.923 5 27.751 1.7991 1.2451 44 94 10.923 5 28.251 1.831 1.2611 44 94 10.923 5 28.751 1.8621 1.2771 44 94 10.923 5 29.251 1.8941 1.2931 44 94 0.923 10.923 5 29.751 1.925 1.3091 44 94 5 30.251 1.9571 1.325 44 94 10.923 6 30.751 1.9891 1.3421 52 97 0.842 6 31.251 2.0241 1.3611 52 97 10.842 6 31.751 2.0581 1.3791 52 97 0.842 6 32.251 2.0921 1.398 52 97 10.842 6 32.751 2.1261 1.4171 52 97 10.842 10.842 6 33.251 2.1611 1.4351 52 97 6 1 33.751 2.1951 1.4541 52 97 10.842 1 1 6 34.251 1 2.2291 1.4731 52 97 1 0.842 6 34.751 2.2631 1.4911 52 97 0.842 6 1 35.251 2.2981 1.5101 52 1 97 10.842 6 135.751 2.3321 1.5291 52 1 97 10.842 6 --------------------------------------------- 1 36.251 2.3661 1.5471 52 1 97 0.842 29.8 Infin 0.961 0.361 Infin 29.8 11nfin 10.9601 0.36411nfin 29.8 11nfin 10.9591 0.36711nfin 29.8 11nfin 10.9581 0.36911nfin 29.8 11nfin 10.9571 0.37111nfin 29.8 11nfin 10.9551 0.37311nfin 29.8 11nfin 10.9541 0.37511nfin 29.8 11nfin 10.9521 0.37711nfin 29.8 11nfin 10.9511 0.37911nfin 29.8 11nfin 10.9491 0.38111nfin 29.8 11nfin 10.9471 0.38211nfin 29.8 11nfin 10.9461 0.38411nfin 29.8 11nfin 10.9441 0.38511nfin 29.8 11nfin 10.9431 0.38711nfin 29.8 11nfin 10.9411 0.38811nfin 40.6 11nfin 10.9391 0.38911nfin 40.6 11nfin 10.9371 0.39011nfin 40.6 11nfin 10.9341 0.39111nfin 40.6 11nfin 10.9321 0.39211nfin 40.6 11nfin 10.9301 0.39311nfin 40.6 11nfin 10.9281 0.39411nfin 40.6 11nfin 10.9261 0.39511nfin 40.6 11nfin 10.9231 0.39611nfin 40.6 11nfin 10.9211 0.39611nfin 40.6 �Infin 10.9191 0.397�Infin 43.8 �Infin 10.9161 0.39711nfin 43.8 11nfin 10.9131 0.39711nfin 43.8 11nfin 10.9101 0.39711nfin 43.8 11nfin 10.9071 0.39711nfin 43.8 11nfin 10.9041 0.39711nfin 43.8 11nfin 10.9021 0.39711nfin 43.8 �Infin 10.8991 0.39711nfin 43.8 lInfin 10.8961 0.39711nfin 43.8 11nfin 10.8931 0.39611nfin 43.8 IInfin 10.8901 0.39611nfin 43.8 11nfin 10.8861 0.39511nfin 43.8 11nfin 10.8821 0.39411nfin -------------- ------------------- ******************* * * ' * L I Q U E F Y 2 * * ******************* EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 LIQUEFACTION CALCULATION NAME: 4927bor3 SOIL -PROFILE NAME: lbor3 GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 SITE PEAK GROUND ACCELERATION: 0.300 9 K sigma BOUND: M rd BOUND: M ' N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS 1 I ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). I L] L 11 I I ' Seed 1 ----------------------------- LIQUEFACTION ANALYSIS SUMMARY ------------------------ and Others (1985] Method CALC. TOTAL' EFF. SOIL! DEPTH 1STRESSiSTRESSj -NO.! (ft) i (tsf)l (tsf) --+------+------+------+ 1 0.25 0.016 0.016 1 0.75 0.049 0.049 1 1.25 0.081 0.081 1 1.75 0.114 0.114 1 2.251 0.146 0.146 1 2.75 0.1791 0.179 1 3.25 0.211 0.211 1 3.751 0.244 0.2441 2 4.25 0.273 0.273 2 4.75 0.299 0.299 2 5.25 0.324 0.324 2 5.75 0.350 0.350 2 6.25 0.376 0.376 2 6.75 0.402 0.402 2 7.25 0.427 0.427 2 7.75 0.453 0.453 2 8.25 0.479 0.479 2 8.75 0.505 0.5051 3 9.25 0.533 0.5331 3 9.75 0.564 0.564 3 10.25 0.595 0.587 3 10.75 0.626 0.603 3 11.25 0.657 0.618 3 11.75 0.688 0.633 3 12.25 0.719 0.649 3 1 12.751 0.7501 0.6641 3 1 13.25 0.7811 0.6801 3 13.75 0.8121 0.69511 '4 ' 14.25+ 0.843 0.710 4 14.75 0.874 0.726 4 15.25 0.905 0.7411 4 15.751 0.9361 0.7571 4 1 16.251 0.9671 0.7721 4 1 16.751 0.9981 0.7871 4 17.251 1.0291 0.8031 ' 4 ! 17.751 1.060! 0.818 PAGE FIELD 'Est.D i i CORR.iLIQUE.i 'INDUC.'LIQUE. ISTRESSISAFETY N r C i(N1)601STRESSi r (B/ft)','($) i N l(B/ft)j RATIOS d S RATIO!FACTOR 30 - i @ i @ @ @ @ @ @ 30 @ @ @ @ @ @ @ 30 - @ @ I @ I @ I @ I @ @ 30 @ @ I @ I @ @ I @ @ 30 - @ @ @ @ @ @ @ 30 - @ I @ I @ I @ @ I @ @ 30 - @ ( @ I @ @ @ I @ @ 30 - @ @ I @ @ @ I @ @ 11 - @ @ I @ @ I @ @ @ 11 - @ @ I @ @ I @ I @ @ 11 - @ I @ I @ I @ I @ @ @ 11 " @ @ @ I @ I @ @ @ 11 - @ @ I @ @ I @ @ @ 11 - @ @ I @ I @ I @ I @ @ 11 @ @ @ @ @ @ @ 11 @ @ I @ I @ I @ @ @ 11 - @ I @ I @ @ I @ @ @ 11 - @ I @ I @ I @ I @ @ @ 14 61 @ I @ @ I @ I @ I @ @ 14 61 @ ! '1.244 @ ! @ ! @ I @ @ @ 14 61 17.4 0.350 0.979+ 0.1931 1.81 14 1 61 11.244 17.4 0.350 0.978 0.198 1.77 14 1 61 11.244 17.4 0.350 0.977 0.203 1.73 14 1 61 1.2441 17.4 1 0.350 0.976 0.207 1.70 14 1 61 11.2441 17.4 1 0.35010.9751 0.2111 1.66 14 1 1 61 11.2441 11.2441 17.4 1 0.35010.9741 1 0.2141 1.64 14 61 17.4 0.350110.9721 0.2181 1.61 14 ! 61 !1.244! 17.4 ! 0.350!0.971! 0.2211 1.58 18 65 1.078 19.4 Infin X0.970 0.225lInfin �1.078� �Infin �0.969� 18 65 �1.078� 19.4 �Infin �0.968� 0.228�Infin 18 1 65 11.0781 19.4 lInfin 10.9671 0.231�Infin 18 1 65 11.0781 19.4 lInfin 10.9661 0.233lInfin 18 1 65 11.0781 19.4 lInfin 10.9651 0.236lInfin 18 1 65 11.0781 19.4 lInfin 10.9641 0.238lInfin 18 ! 65 !1.0781 19.4 !Infin !0.963! 0.241lInfin 18 65 19.4 0.243!Infin I 1 1 1 [1 u 1 1 1 1 1 1 I I 1 1 1 1 4 ' 18.25 1.091 0.834 18 65 4 18.751 1.122 0.8491 18 65 4 19.251 1.1531 0.864 18 65 4 19.751 1.1841 0.8801 18 65 4 20.251 1.2151 0.8951 18 65 4 20751 1.2461 0.9111 18 1 65 4 21.. 251 1.2771 0.9261 18 1 65 4 21.75 1.308 0.9411 18 65 5 22.25 1.338 0.956 6 " 5 22.751 1.3681 0.9701 6 " 5 23.251 1.3971 0.984 6 " 5 23.751 1.4271 0.9981 6 5 24.251 1.4561 1.0121 6 1 " 5 1 24.751 1 1.4861 1.0261 6 1 - 5 25.251 1.5151 1.0391 6 1 " 5 1 25.751 1.5451 1.0531 6 6 1 26.251 1 1.574+ 1.067 12 48 6 26.751 1 1.6031 1.0801 12 1 48 6 27.251 1 1.6311 1.0931 12 1 48 6 1 27.751 1.6601 1.1061 12 1 48 6 1 28.251 1.6891 1.1201 12 1 48 6 1 28.751 1.7181 1.1331 12 1 48 6 1 29.251 1.7461 1.1461 12 1 48 6 1 29.751 1.7751 1.1591 12 1 48 6 1 30.251 1.8041 1.1721 12 1 48 6 1 30.75) 1.8331 1.1851 12 48 6 1 31.251 1.8611 1.1981 12 1 48 6 1 31.751 1.8901 1.2121 12 1 48 6 1 32.251 1.9191 1.2251 12 1 48 6 1 32.751 1.9481 1.2381 12 1 48 6 1 33.251 1.9761 1.2511 12 1 48 6 1 33751 2.0051 1.2641 12 1 48 6 34..251 2.0341 1.2771 12 1 48 6 i 34_75 2.063 --------------------------- 1.290 12 48 X1.078 19.4 Infin X0.961 11.0781 19.4 11nfin 10.960 11.0781 19.4 11nfin 10.959 11.0781 19.4 11nfin 10.958 11.0781 19.4 11nfin 10.957 11.0781 19.4 11nfin 10.955 11.0781 19.4 11nfin 10.954 1.078 19.4Infin X0.952 0.882' 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.8821 10.6 0.882-i- 10_ 6- 0.245 0.248 0.250 0.251 0.253 0.255 0.256 0.258 Infin Infin Infin Infin Infin Infin Infin Infin ' - - I-- 1 0.205 0.937+ 0.2691 0.76 1 0.205 0.934 0.2701 0.76 0.205 0.932 0.2711 0.75 0.204 0.930 0.2721 0.75 0.204 0.928 0.2731 0.75 0.204 0.926 0.2741 0.75 0.204 0.923 0.2741 0.74 0.204 0.921 0.2751 0.74 0.204 0.919 0.2761 0.74 0.204 0.916 0.2761 0.74 0.204 0.913 0.2771 0.74 0.204 0.910 0.2771 0.74 0.204 0.907 0.2771 0.73 0.20310 9041 0.2781 0.73 0.20310.9021 0.2781 0.73 0.20310.8991 0.2781 0.73 0.203108961 02781 0.73 0- 203 0. _893 0. _278 [ 0_73 * ' * L I Q U E F Y 2 * * ******************* ' EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 ' LIQUEFACTION CALCULATION NAME: 4927bor3 SOIL -PROFILE NAME: lbor3 GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 SITE PEAK GROUND ACCELERATION: 0.450 g 'K sigma BOUND: M rd BOUND: M ' N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). 1 11 I ----------------------------- LIQUEFACTION ANALYSISSUMMARY ----------------------------- 'Seed and Others [1985] Method 1 ----------------------------- C u I 1 PAGE SOIL ' CALC.' i DEPTH+STRESS�STRESSII TOTAL' EFF. 1FIELD 'Est.D 1 1 CORR.iLIQUE.j INDUC. N C LIQUE. d r1I i,(Nl)601ISTRESSII r �STRESS iSAFETY NO.i (ft) i (tsf)i (tsf)i(B/ft)l o (�) i N i(B/ft)i RATIO1 d RATI01FACTOR ----+------+ --------- -----I------+------+-----+------+------+-----+------+------ 1 ' 0.25' 1 0.016 0.016 30 ' @ @ @ ' @ @ @ @ 1 0.751 1 0.049 0.049 30 - @ @ @ @ @ @ @ 1 1.251 1 0.0811 0.0811 30 @ @ @ @ @ @ @ 1 1.751 1 0.1141 0.1141 30 @ @ @ @ @ @ @ 1 2.251 1 0.146 0.146 30 @ @ @ @ @ @ @ 1 2.751 0.179 0.179 30 @ @ @ @ @ @ @ 1 3.251 0.211 0.2111 30 @ @ @ @ @ @ @ 1 3.751 0.2441 0.2441 30 @ @ @ @ @ @ @ 2 4.25 ( 0.273) 0.2731 11 @ @ @ @ @ @ @ 2 4.751 0.2991 0.299 11 - @ @ @ @ @ @ @ 2 5.251 0.3241 0.3241 11 1 _ @ @ 1 @ @ @ @ @ 2 5.751 0.3501 0.3501 11 1 - @ @ @ @ @ @ @ 2 6.251 0.3761 0.3761 11 1 - @ @ @ @ @ @ @ 2 6.751 0.4021 0.4021 11 @ 1 @ 1 @ @ 1 1 1 @ @ @ 1 2 7.251 1 0.4271 0.4271 11 1 @ 1 @ 1 @ @ 1 @ @ @ 2 7.751 1 0.4531 04531 11 1 @ 1 @ 1 @ 1 @ 1 1 1 @ 1 @ @ 1 2 8.251 1 0.4791 0..4791 11 1 @ 1 @ @ @ @ @ @ 2 8.751 1 0.5051 0.5051 11 _ @ 1 @ 1 @ 1 @ 1 @ 1 @ @ 3 9.251 0.5331 0533 14 1 61 1 @ 1 @ 1 @ 1 @ 1 @ 1 @ @ 3'1 9.751 1 0.5641 0..5641 14 61 1 @ @ 1 @ @ 1 @ 1 @ @ 3 10.251 0.5951 0.5871 14 61 1.244' 17.4 ' 0.350 0.9791 0.2901 1.21 3 1 1 10.751 0.6261 0.6031 14 1 61 11.2441 17.4 1 0.350 0.978 0.2971 1.18 3 1 11.25) 0.6571 0.6181 14 1 61 11.2441 17.4 1 0.350 0.977 0.3041 1.15 3 11.751 0.6881 0.6331 14 1 61 11.2441 17.4 1 0.35010.9761 0.3101 1.13 3 1 12.251 0.7191 06491 14 1 61 11.2441 17.4 1 0.35010.9751 0.3161 1.11 3 1 12.751 0.7501 0..6641 14 1 61 11.2441 17.4 1 0.35010.9741 0.3221 1.09 3 1 13.251 0.7811 0.6801 14 1 61 11.2441 17.4 1 0.3500.9721 0.3271 1.07 3 1 1 13.751 0.8121 0.6951 14 1 61 11.2441 X19.4 17.4 1 0.350 10.9711 0.3321 1.06 4 14.25 0.843 0.710 18 65 1.078 'Infin '0.970 0.337 Infin 4 1 1 14.751 0.8741 0.7261 18 1 1 65 11.0781 11.0781 19.4 11nfin 10.9691 11nfin 10.9681 0.34111nfin 4 4 1 15.251 15.751 0.9051 0.9361 0.7411 0.7571 18 1 65 11.0781 19.4 11nfin 10.9671 0.34611nfin 4 1 16.251 0.9671 0.7721 18 18 1 65 11.0781 19.4 11nfin 10.9661 0.35011nfin 1 65 11.0781 19.4 11nfin 10.9651 0.35411nfin 4'1 16.751 0.9981 0.7871 18 65 19.4 0.35811nfin 4 1 17.251 1.0291 0.8031 18 1 65 11.0781 19.4 11nfin 10.9641 0.36111nfin 4 1 17.751 1.0601 0.818 18 65 11.0781 19.4 Infin 10.9631 0.36511nfin I 1 1 65 65 65 65 65 65 65 65 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 �1.07819.4 Infin 0.961 0.368 Infin 11.0781 19.4 11nfin 10.9601 0.37111nfin 11.0781 19.4 IInfin 10.9591 0.37411nfin 11.0781 19.4 11nfin 10.9581 0.37711nfin 11.0781 19.4 11nfin 10.9571 0.38011nfin 11.0781 19.4 11nfin 10.9551 0.38211nfin 11.0781 19.4 11nfin 10.9541 0.38511nfin 1.0781 19.4 11nfin10.952 0.387IInfin -- I 0.882 0.8821 10.6 0.20510.937+ 1 0.404 0.8821 10.6 4 18.25 1 1.091 0.834 18 0.20510.9321 1 4 18.751 1 1.1221 0.8491 18 1 4 19.251 1 1.1531 0.8641 18 1 ' 4 19.751 ( 1.1841 0.8801 18 1 0.8821 4 20.251 1 1.2151 0.8951 18 1 ' 4 4 20.751 1 21.251 1 1.2461 1.2771 0.9111 0.9261 18 1 18 1 0.204 1 4 21.751 1.3081 0.9411 18 0.916 5 i 22.25 1.338 0.956 6 ' 5 1 22.751 1 1.3681 0.9701 6 1 0.8821 5 23.251 1.3971 0.9841 6 1 10.6 1 5 1 23.751 1 14271 0.9981 6 1 0.203I 0.8991 24.251 1 1..4561 1.0121 6 1 '5 5 24.751 1 1.4861 1.0261 6 1 0 _418 5 25.251 1 1.5151 1.0391 6 1 '5 6 25.751 1 26.25+ 1 1.5451 1.574f 1.0531 1.067 6 12 6 26.751 1 1.6031 1.0801 12 1 6 27.251 1.6311 1.0931 12 1 6 1 27.751 1.6601 1.1061 12 1 6 1 28.251 1.6891 1.1201 12 1 6 28.751 1.7181 1.1331 12 1 '6 1 6 1 1 29.251 29.751 1.7461 1:7751 1.1461 1.1591 12 1 12 1 6 1 30.251 1.8041 1.1721 12 1 6 30.751 1.8331 1.1851 12 1 '6 1 1 31.251 1.8611 1.1981 12 1 6 31.751 1.8901 1.2121 12 1 6 1 1 32.251 1.9191 1.2251 12 1 32.751 1.9481 1.2381 12 1 '6 6 133.251 1 1.9761 1.2511 12 1 6 1 33.751 2.0051 1.2641 12 1 6 6 1 34.251 34.75 2.0341 2.0631 1.2771 1.2901 12 1 --- ------ ------ ----- 12- -- 1 65 65 65 65 65 65 65 65 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 �1.07819.4 Infin 0.961 0.368 Infin 11.0781 19.4 11nfin 10.9601 0.37111nfin 11.0781 19.4 IInfin 10.9591 0.37411nfin 11.0781 19.4 11nfin 10.9581 0.37711nfin 11.0781 19.4 11nfin 10.9571 0.38011nfin 11.0781 19.4 11nfin 10.9551 0.38211nfin 11.0781 19.4 11nfin 10.9541 0.38511nfin 1.0781 19.4 11nfin10.952 0.387IInfin -- I 0.882 0.8821 10.6 0.20510.937+ 1 0.404 0.8821 10.6 0.20510.9341 1 0.406 0.8821 10.6 10.6 0.20510.9321 1 0.407 0.8821 0.20410.9301 1 0.408 0.8821 10.6 10.6 0.204 1 0.928 0.409 0.8821 0.204 1 0.926 0.411 0.8821 10.6 0.204 1 0.923 0.412 0.8821 10.6 10.6 0.204 1 0.921 0.413 0.8821 10.6 0.204 1 0.919 0.414 0.8821 0.204 1 0.916 0.414 0.8821 10.6 10.6 0.204 1 0.913 0.415 0.8821 10.6 0.204 1 0.204 0.910 0.907 0.415 0.4161 0.8821 10.6 1 0.20310.9041 0.4161 0.8821 10.6 1 0.20310.9021 0.4171 0.8821 10.6 1 0.203I 0.8991 0.4171 0.8821 10.6 1 0.203 0.8961 0.4171 0_ 882 1, 10_ 6 0_ 203 -1-0.-89 3 0 _418 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0_49 I ******************* * * * L I Q U E F Y 2 * * ******************* ' EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL ' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 ' LIQUEFACTION CALCULATION NAME: 4927bor4 SOIL -PROFILE NAME: lbor4 ' GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 ' SITE PEAK GROUND ACCELERATION: 0.300 g K sigma BOUND: M rd BOUND: M N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS 1 ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). 1 I [1 I I 11 1 1 [1 E ----------------------------- LIQUEFACTION ANALYSIS SUMMARY ----------------------------- ----------------------------- Seed and Others [1985] Method PAGE 1 ----------------------------- SOIL'CALC ' TOTAL' EFF. ''FIELD 'Est.D ' CORR.'LIQUE.' INDUC. LIQUE. 1 DEPTHfSTRESSiSTRESSI' N 'i o r'i C 'I(N1)6011STRESSI r ySTRESSISAFETY NO., (ft) ' (tsf)' (tsf)'(B/ft)' (�) ' N '(B/ft)' RATIO' d ' RATIO'FACTOR ----+------+------+-------------+------+-----+------+----- -+-----+------+------ 1 0.25 0.016 0.016 30 @ @ @ @ @ i @ @ 1 0.751 0.0491 0.0491 30 @ @ @ @ @ @ @ 1 1.251 0.0811 0.0811 30 @ @ @ @ @ @ @ 1 1.751 0.1141 0.1141 30 @ @ @ @ @ @ @ 1 2.251 0.1461 0.1461 30 @ @ @ @ @ @ @ 1 2.751 0.1791 0.179 30 @ @ @ @ @ @ @ 1 3.251 0.2111 0.2111 30 @ @ @ @ @ @ @ 1 3.751 0.2441 0.2441 30 @ @ @ @ @ @ @ 1 4.251 0.2761 0.2761 30 @ @ @ @ @ @ @ 1 4.751 0.3091 0.3091 30 @ @ @ @ @ @ @ 1 5.251 0.3411 0.341 30 @ @ @ @ @ @ @ 1 5.751 0.3741 0.3741 3'0 @ @ @ @ @ @ @ 2 1 6.251 0.4031 0.4031 7 1 43 @ 1 @ 1 @ 1 @ 1 @ 1 @ @ 2 6.751 0.428 0.4281 7 1 43 @ @ @ @ @ @ @ 2 7.251 0.4531 0.4531 7 43 @ @ @ @ @ @ @ 2 1 7.751 0.478 0.4781 7 1 43 @ 1 @ 1 @ 1 @ 1 @ 1 @ @ 2 1 8.251 0.5031 0.5031 7 1 43 @ 1 @ 1 @ 1 @ 1 @ 1 @ @ 2 1 8.751 0.5281 0.5281 7 1 43 1@ 1 @ 1 @ 1@ 1 @ 1@@ 2 1 9.251 0.5531 0.5531 7 1 43 1@ 1 @ 1 @ 1@ 1 @ 1@@ 2 1 9.751 0.5781 0.5781 7 143 1 1 1 1 1 1 2 ' 10.251 0.6031 0.595 7 43 1.266 8@9 �� 0.1@84 0.979 0.1931 0.95 2 1 10.751 0.6281 0.6041 7 1 43 11.2661 8.9 1 0.184 0.978 0.1981 0.93 2 1 11.251 0.6531 0.6141 7 1 43 11.2661 8.9 1 0.184 0.977 0.2031 0.91 2 1 11.751 0.6781 0.6231 7 1 43 11.2661 8.9 1 0.184 0.976 0.2071 0.89 2 1 12.251 0.7031 0.6321 7 1 43 11.2661 8.9 1 0.184 0.975 0.2111 0.87 2 1 12.751 0.7281 0.6421 7 1 43 11.2661 8.9 1 0.184 0.974 0.2151 0.85 2 1 13.251 0.7531 0.6511 7 1 43 11.2661 8.9 1 0.184 0.972 0.2191 0.84 2 1 13.751 0.7781 0.661 7 1 43 11.2661 8.9 1 0.184 0.971 0.2231 0.82 2 1 14.251 0.8031 0.6701 7 1 43 11.2661 8.9 1 0.184 0.970 0.2271 0.81 2 1 14.751 0.8281 0.6791 7 43 11.2661 8.9 1 0.18410.9691 0.2301 0.80 2 1 15.251 0.8531 0.6891 7 1 43 11.2661 8.9 1 0.184 0.968 0.2341 0.79 2 1 15.751 0.8781 0.6981 7 1 43 11.2661 8.9 1 0.18410.9671 0.2371 0.78 3 1 16.251 0.9071 0.7121 12 1 52 11.0441 12.5 1 0.15610.9661 0.2401 0.65 3 1 16.751 0.9401 0.7291 12 1 52 11.0441 12.5 1 0.15610.9651 0.2421 0.64 3 1 17.251 0.9731 0.7471 12 1 52 11.0441 12.5 1 0.15610.9641 0.2451 0.64 3 117.751 1.0061 0.7651 12 1 52 11.0441 12.5 1 0.15610.9631 0.2471 0.63 i i i i i i i i I 1 11 11 3 ! 18.25! 1.040 3 18.75 1.073 3 1 19.251 1.106 3 1 19.751 1.139 3 1 20.251 1.173 3 1 20.751 1.206 3 1 21.251 1.239 3 1 21.751 1.272 3 1 22.251 1.306 3 1 22.751 1.339 3 1 23.251 1.372 3 1 23.751 1.405 3 1 24.251 1.439 3 1 24.751 1.472 3 1 25.251 1.505 3 1 25.751 1.538 4 1 26.251 1.569 4 1 26.751 1.596 4 1 27.251 1.623 4 1 27.751 1.650 4 1 28.251 1.677 4 ' 28.751 1.704 4 1 29.251"-1.731 46 10.974 4 1 29.751 1.758 4 1 30.251 1.785 4 1 30.751 1.812 5 131.251 1.839 5 1 31.751 1.868 5 1 32.251 1.897 5 1 32.751 1.926 5 ( 33.251 1.954 5 ' 33.751 1.983 5 1 34.251 2.012 5 1 34.751 2.041 6 1 35.25+ 2.069 6 1 35.751 2.096 6 1 36.251 2.123 6 1 36.751 2.150 0.782' 12 52 1.044 0.800! 12 1 52 11.044 0.8181 12 1 52 11.044 0.8351 12 1 52 11.044 1 11.044 0.8531 12 52 0.8711 12 1 52 11.044 0.8881 12 1 52 11.044 ' 11.044 0.9061 12 52 0.9231 12 1 52 11.044 0.9411 12 ! 52 11.044 1 11.044 0.9591 12 52 0.9761 12 1 52 11.044 ' 11.044 0.9941 12 52 1.0121 12 ! 52 11.044 1.0291 12 1 52 11.044 1.0471 12 1 52 11.044 1.0621 10 1 46 10.974 1.0731 10 1 ' 46 10.974 10.974 1.0841 10 46 1.0961 10 1 46 10.974 1.1071 10 1 46 10.974 1.119! 10 ' 46 10.974 1.1301 10 1 46 10.974 1.1411 10 1 46 10.974 1.1531 10 146 10.974 1.1641 10 1 46 10.974 1.176, 5 " 1.1901 5 1 - I 1.2031 5 1 - 1.2161 5 I - I 1.2291 5 1 - I - 1.2421 5 1 - I - 1.2551 5 I - I - 1.2681 5 I - I 1.2811 10 44 0.874 1.2921 10 1 44 10.874 1.3041 10 144 10.874 1.3151 10 1 44 10.874 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 0.156!0.961 0.156'0.960 0.156 0.959 0.156 0.958 0.156 0.957 0.156 0.955 0.156 0.954 0.156 0.952 0.156 0.951 0.156 0.949 0.156 0.947 0.156 0.946 0.156 0.944 0.156 0.943 0.156 10.941 0.155 '0.939 0.121 0.937 0.121 0.934 0.121 0.932 0.120 0.930 0.120 0.928 0.120 0.926 0.12010.923 0.12010.921 0.12010 919 0.1201 916 i - - I - 0.249 0.2511 0.2531 0.2551 0.2571 0.2581 0.2591 0.2611 0.2621 0.2631 0.2641 0.2661 0.2671 0.2681 0 ,,258. 1 0`. 269 0.2701 0.2711 0.2721 0.2731 0.2741 0.2751 02761 0.. 2771 0.2771 0.278 8.7 0.1070.8901 - 0.280 8.7 1 0.107 0.8861 0.2801 1 ' 8.7 8_ 7 0.10710.882 1 0_ 1071 0 . 02801 " _8781 0.- 28011 0.63 0.62 0.62 0.61 0.61 0.60 0.60 0.60 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.58 0.45 0.45 0.44 0.44 0.44 0.44 0.44 0.44 0.43 0_43 0.38 0.38 0.38 0.38 I 1 * * * L I Q U E F Y 2 ******************* ' EMPIRICAL PREDICTION OF EARTHQUAKE -INDUCED LIQUEFACTION POTENTIAL ' JOB NUMBER: 4927-41-01 DATE: Wednesday, November 11, 1992 ' JOB NAME: Temecula Tract No. 23172 ' LIQUEFACTION CALCULATION NAME: 4927bor4 SOIL -PROFILE NAME: lbor4 ' GROUND WATER DEPTH: 10.0 ft DESIGN EARTHQUAKE MAGNITUDE: 6.75 SITE PEAK GROUND ACCELERATION: 0.450 g K sigma BOUND: M ' rd BOUND: M N60 CORRECTION: 1.00 FIELD SPT N -VALUES < 10 FT DEEP ARE CORRECTED FOR SHORT LENGTH OF DRIVE RODS ' NOTE: Relative density values listed below are estimated using equations of Giuliani and Nicoll (1982). 11 I I ------------- LIQUEFACTION ANALYSIS SUMMARY ----------------------------- ----------------------------- 1 Seed and Others (1985] Method 1 ----------------------------- 1 1 1 I 1 PAGE CALC.' TOTAL' EFF. 'FIELD 'Est.D 1 CORR.'LIQUE.l INDUC. LIQUE. SOIL' DEPTH'STRESSySTRESS� N ri C i(N1)60�STRESSi r ISTRESS ISAFETY NO.! (ft) (tsf)i (tsf)i(B/ft)i (%) N :(B/ft)' RATIO' d y RATIO11FACTOR 1 0.25 0.016 0.016 30 @ @ @ @ @ i @ @ 1 1 0.75 0.049 0.049 30 ' - ' @ ' @ ' @ I @ I @ I @ @ 1 ' 1.25 0.081 0.081 30 ' @ ' @ I @ I @ 1 @ I @ @ 1 ' 1.75 0.114 0.114 30 ' I @ ' @ ( @ 1 @ I @ 1 @ @ 1 ' 2.25 0.146 0.146 30 ' ' @ I @ I @ I @ I @ I @ @ 1 ' 2.75 0.179 0.179 30 ' ' @ @ 1 @ I @ I @ 1 @ @ 1 ' 3.251 0.2111 0.2111 30 ' ' @ ' @ I @ I @ 1 @ I @ @ 1 1 3.75 0.244 0.2441 30 I - I @ ' @ I @ I @ I @ I @ @ 1 1 4.25 0.276 0.276 30 ' ' @ ' @ I @ I @ 1 @ I @ @ 1 ' 4.75 0.3091 0.309 30 ' ' @ @ I @ 1 @ 1 @ I @ @ 1 ' 5.251 0.3411 0.341 30 ' ' @ I @ I @ I @ I @ I @ @ 1 ' 5.75 0.3741 0.3741 30 1 I @ ' @ 1 @ I @ 1 @ I @ @ 2 ' 6.25 0.4031 0.403 7 1 43 1 @ ' @ ' @ 1 @ 1 @ 1 @ @ 2 1 6.751 0.4281 0.4281 7 1 43 1@ I @ I @ 1@ 1 @ I@@ 2 1 7.251 0.4531 0.4531 7 1 43 1@ I @ 1 @ I@ I @ I@@ 2 1 7.751 0.4781 0.4781 7 1 43 I @ 1 @ I @ 1 @ 1 @ @ @ 2 1 8.251 0.5031 0.503 7 1 43 I@ 1 @ I @ 1@ 1 @ 1@@ 2 1 8.751 0.5281 0.5281 7 1 43 1@ I @ I @ 1@ I @ I@@ 2 1 9.251 0.5531 0.5531 7 1 43 1@ I @ I @ I@ I @ I@@ 2 1 9.751 0.5781 0.578 7 43 @ @ @ @ I @ I @ @ 2 10.251 0.6031 0.595+ 7 43 X1.266 8.9 0.1840.979� 0.2901 0.63 2 1 10.751 0.6281 0.6041 7 1 43 11.2661 8.9 1 0.184 0.978 0.2971 0.62 2 1 11.251 0.6531 0.6141 7 1 43 11.2661 8.9 1 0.184 0.977 0.3041 0.61 2 1 11.751 0.6781 0.6231 7 ' 43 11.2661 8.9 1 0.184 0.976 0.3101 0.59 2 1 12.251 0.7031 0.6321 7 1 43 11.2661 8.9 1 0.18410.975 0.3171 0.58 2 1 12.75 0.7281 0.6421 7 1 43 11.2661 8.9 1 0.184 0.974 0.3231 0.57 2 ' 13.251 0.753 0.6511 7 ' 43 11.266 8.9 ' 0.184 0.972 0.3291 0.56 2 1 13.751 0.7781 0.6611 7 1 43 11.2661 8.9 1 0.184 0.971 0.3341 0.55 2 1 14.251 0.8031 0.6701 7 1 43 11.2661 8.9 1 0.184 0.970 0.340 0.54 2 1 14.751 0.828 0.6791 7 ' 43 11.2661 8.9 1 0.184 0.969 0.3451 0.53 2 ' 15.251 0.8531 0.689 7 ' 43 11.2661 8.9 1 0.1840.9681 0.3511 0.52 2 1 15.751 0.8781 0.6981 7 1 43 11.2661 8.9 1 0.18410.9671 0.3561 0.52 3 1 16.251 0.9071 0.7121 12 1 52 11.0441 12.5 1 0.15610.9661 0.3601 0.43 3 1 16.751 0.9401 0.7291 12 1 52 11.0441 12.5 1 0.15610.9651 03641 0.43 3 1 17.251 0.9731 0.7471 12 1 52 11.0441 12.5 1 0.15610.9641 0.. 3 67 1 0.42 3 117.751 1.0061 0.7651 12 1 52 11.0441 12.5 ' 0.15610.963 0.3711 0.42 1 i 1 i I 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 --6 18.25 1.040 0.782 18.751 1.0731 0.8001 19.251 1.1061 0.8181 1 19.751 1.1391 0.8351 20.251 1.1731 0.8531 20.751 1.2061 0.871 1 21.251 1.2391 0.8881 21.751 1.2721 0.9061 22.251 1.3061 0.9231 22.751 1.339 0.941 23.251 1.3721 0.9591 23.751 1.4051 0.9761 24.251 1.4391 0.994 24.751 1.472 1.012 25.251 1.5051 1.0291 25.751 1.5381 1.0471 26.251 1.569 1.062 26.751 1.5961 1.0731 27.25 1.623 1.0841 27.751 1.6501 1.0961 28.251 1.6771 1.1071 28.751 1.7041 1.1194 29.251 1.7311 1.1301 29.751 1.7581 1.141 30.251 1.785 1.1531 30.751 1.8121 1.1641 31.254 1.8394 1.1764 31.751 1.8681 1.190 32.251 1.8971 1.203 32.75 1.9261 1.2161 33.251 1.9541 1.2291 33.751 1.983 1.242 34.251 2.012 1.255 34.751 2.041 1.2681 35.251 2.069+ 1281+ 35.751 2.0961 1..2921 36.254 2.1231 1.3044 36.75 2.150 1.315 --------------------- 12 52 X1.044 12.5 12 52 11.0441 12.5 12 12 52 11.0441 11.0441 12.5 12 52 11.0441 12.5 12 52 11.0441 12.5 12 52 11.0441 12.5 12 52 52 11.0441 12.5 12 11.0441 12.5 12 52 52 11.0441 12.5 12 11.0441 12.5 12 52 52 11.0441 12.5 12 52 11.0441 12.5 0.121 11.0441 12.5 12 52 12.5 12 52 11.0441 12.5 12 52 11.0441 12.5 10 46 10.9741 9.7 10 46 10.9741 9.7 10 46 10.9741 9.7 10 46 10.9741 9.7 10 46 10.9741 9.7 10 46 10.9741 9.7 10 1 10 1 46 10.9741 10.9741 9.7 1 46 10.9741 9.7 10 46 9.7 1046 0.9741 9.7 5 1 - 5 - - - 5 - 5 - 5 - 10 44 1'0.874 1' 8.7 10 44 10.8741 8.7 10 1 44 10.8741 8.7 10 44 10.874] 8.7 0.156'0.961 0.156 0.960 0.156 0.959 0.156 0.958 0.156 0.957 0.156 0.955 0.156 0.954 0.156 0.952 0.156 0.951 0.156 0.949 0.156 0.947 0.156 0.946 0.156 0.944 0.156 0.943 0.156 0.941 0.155 0.939 0.121 0.937 0.121 0.934 0.121 0.932 0.120 0.930 0.12010 928 0.12010.926 0.12010.923 0.12010.921 0.12010.919 0.120;0.916 0.374 0.377 0.380 0.382 0.385 0.387 0.389 0.391 0.393 0.395 0.397 0.398 0.400 0.401 0.402 0.403 0.405 0.406 0.408 0.410 0.411 0.412 0.414 0.415 0.416 0.417 0.107 0.8901 0.420 0.10710.8861 0.420 0.10710.8821 0.420 0.107110.878 0.420 -------------------- 0.42 0.41 0.41 0.41 0.41 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.30 0.30 0.30 0.29 0.29 0.29 0.29 0.29 0.29 0_29 0.26 0.26 0.26 0.26 .... .... .... Y• , -'i t Vp I 1 I 1 [_ l� 1 1 LJI 1 1 L 1 1 1 1 1 I I Project No. 04927-41-01 December 21, 1992 APPENDIX E TEST FILL PROGRAM A test fill program was established to evaluate in situ densification of the alluvial materials as an alternative to remedial grading consisting of removal and recompaction. Observations of the soil types encountered during drilling, gradation analyses and observations during the course of the implementation of the test fill program indicated that the predominant site soils consist of silty sands and poorly graded sands. These type of materials typically respond well to in situ densification with heavy vibratory effort. Three test fills approximately 100 X 200 feet in dimension were constructed; one at each end of the site and one in the central portion. The approximate locations of the test fills are depicted on Figures 2 and 3. Each of the areas was cleared of vegetation, irrigated from the surface using sprinkler systems and compactive effort utilizing a DynaPac CA25 equipped with a sheepsfoot drum was applied. Prior to irrigation, test pits were excavated to obtain samples and to observe the in situ moisture content. In-place dry densities and moisture content test results indicated that prior to irrigating the upper 5 feet of material varied in moisture content from 1.3 percent to 14.2 percent with densities varying from 93.6 pcf to 100.1 pcf. After moisture conditioning, test pits were excavated to determine the depth of moisture penetration and in-place density tests were performed for purposes of comparison after I I 1 [1 F 11 I_ 1 1 1 Project No. 04927-41-01 December 21, 1992 APPENDIX E (Continued) TEST FILL PROGRAM application of compactive effort. Observations of the test pits and moisture contents determined from the in-place density tests indicated a significant increase in moisture to depths on the order of 5 feet. Vibratory compactive effort was then applied in equal increments of 2 roller passes. After each increment of roller passes compaction tests were performed to evaluate the increase in density. The maximum increase in density was achieved after 6 passes with the roller. The compaction test results indicate that the in- place density increase varied from approximately 2 pcf to 12 pcf. The results of the in-place density tests are presented on Table C-1. The results of the test fill program indicate a moderate increase in density and significant increase in moisture content from in situ densification. Based upon the results of the test fill program we recommend that the site soils are suitable for in situ densification. In general, for areas where fill soils are in excess of 5 feet in thickness, no removal and recompaction is necessary, and in situ densification is appropriate. Where fills are less than 5 feet, removal and recompaction to a depth of at least 5 feet below proposed finish grade is recommended. Within the areas where removals are made the base of the overexcavations should be compacted the same as the areas of in situ densification. The results of the test fill program indicate that benefits associated with deep moisture conditioning and surface compaction include: 1. A significant increase in moisture content. Our experience with similar soils and interpretation of laboratory consolidation tests indicate that I 1 1 1 1 I 1 Project No. 04927-41-01 December 21, 1992 APPENDIX E (Continued) TEST FILL PROGRAM the site soils are susceptible to compression when inundated with water. The depth of moisture penetration observed and a review of the in-place densities obtained from the borings (See Boring Logs -Appendix A) indicate that for depths greater than 5 feet the soils contain a relatively high moisture content. Introduction of water to the upper dry soils thereby significantly reduces the compression and hydro -compression potential of the materials. Settlement from fill loads should occur relatively quickly and can be monitored by the settlement monitoring program recommended previously. 2. The majority of the area suitable for in situ densification is adjacent to t State Highway 79. Within this area the groundwater is relatively high and could impact normal removal and recompaction with conventional grading equipment. 1 I 1 1 1 1 3. The increase in density both in areas of in situ densification and removal and recompaction would provide for a thicker compacted fill mat beneath finish grade elevations. The thicker compacted fill mat would provide a thicker non liquefiable surface layer thereby reducing the site liquefaction potential. The approximate areas recommended for in situ densification, and removal and recompaction combined with vibratory densification at the base of the overexcavations are depicted on Figures 2 and 3. I ' Project No. 04927-41-01 ' December 21, 1992 1 1 1 1 1 1 1 APPENDIX E (Continued) TEST FILL PROGRAM TABLE C-1 SUMMARY OF TEST FILL COMPACTION TEST RESULTS :. - Location Depth `' (ft) Before Comp,active Effort After Compactive Effort Comments - Dry Density (ef) Moisture Content (%) Dry Density (cf) Moisture Content % Test Fill 1 1.0 93.6 7.4 Prior to adding water Test Fill 1 3.5 -- 1.3 -- Prior to adding water Test Fill 1 1.5 99.6 17.6 102.3 4.6' Test Fill 1 3.5 96.8 4.6 98.9 6.0 Test Fill 2 0.5 92.5 19.3 97.8 21.7 Test Fill 2 3.0 90.6 25.2 98.7 8.2' Test Fill 2 4.0 94.5 5.0 98.3 5.7 Test Fill 3 1.0 100.1 4.3 -- -- Prior to adding water Test Fill 3 4.0 -- 5.0 Prior to adding water Test Fill 3 5.5 -- 14.2 -- -- Prior to adding water Test Fill 3 0.5 92.7 17.7 105.2 15.5 Test Fill 3 2.0 93.9 20.5 99.8 19.9 Test Fill 3 3.0 91.5 24.1 92.7 18.7 Test Fill 3 4.0 91.8 23.7 98.8 16.7 Material changed from a silty sand to a poorly graded clean sand Note: Density values shown are after compactive effort for 6 roller passes I ol� ....... ... rV I't X' APPENDIX F RECOMMENDED GRADING SPECIFICATIONS FOR TENTATIVE TRACT 23172 VAIL RANCH COMMERCIAL SITE TEMECULA, CALIFORNIA PROJECT NO. 04927-41-01 RECOMMENDED GRADING SPECIFICATIONS 1 GENERAL L1 These Recommended Grading Specifications shall be used in conjunction with the ' Geotechnical Report for the project prepared by Geocon Incorporated. The recommendations contained in the text of the Geotechnical Report are a part of the earthwork and grading specifications and shall supersede the provisions ' contained hereinafter in the case of conflict. 12 Prior to the commencement of grading, a geotechnical consultant (Consultant) shall be employed for the purpose of observing earthwork procedures and testing the fills for substantial conformance with the recommendations of the Geotech- nical Report and these specifications. It will be necessary that the Consultant provide adequate testing and observation services so that he may determine that, in his opinion, the work was performed in substantial conformance with these specifications. It shall be the responsibility of the Contractor to assist the ' Consultant and keep him apprised of work schedules and changes so that personnel may be scheduled accordingly. ' 13 It shallbe the sole responsibility of the Contractor to provide adequate equipment and methods to accomplish the work in accordance with applicable grading codes ' or agency ordinances, these specifications and the approved grading plans. If, in the opinion of the Consultant, unsatisfactory conditions such as questionable soil materials, poor moisture condition, inadequate compaction, adverse weather, and ' so forth, result in a quality of work not in conformance with these specifications, the Consultant will be empowered to reject the work and recommend to the Owner that construction be stopped until the unacceptable conditions are corrected. 2 DEFINITIONS 2.1 Owner shall refer to the owner of the property or the entity on whose behalf the ' grading work is being performed and who has contracted with the Contractor to have grading performed. 22 Contractor shall refer to the Contractor performing the site grading work. ' 23 Civil Engineer or Engineer of Work shall refer to the California licensed Civil Engineer or consulting firm responsible for preparation of the grading plaits, surveying and verifying as -graded topography. I (A 2.4 Consultant shall refer to the soil engineering and engineering ' geology tconsulting firm retained to provide geotechnical services for the project. 25 Soil Engineer shall refer to a California licensed Civil Engineer retained by the Owner, who is experienced in the practice of geotechnical engineering. The Soil Engineer shall be responsible for having qualified representatives on-site to ' observe and test the Contractor's work for conformance with these specifications. 2.6 Engineering Geologist shall refer to a California licensed Engineering Geologist ' retained by the Crooner to provide geologic observations and recommendations during the site grading. ' 2.7 Geotechnical Report shall refer to a soil report (including all addendums) which may include a geologic reconnaissance or geologic investigation that was prepared specifically for the development of the project for which these Recommended Grading Specifications are intended to apply. 3 MATERIALS 3.1 Materials for compacted fill shall consist of any soil excavated from the cut areas ' or imported to the site that, in the opinion of the Consultant, is suitable for use in construction of fills. In general, fill materials can be classified as soil fills, ' soil -rock fids or rock fills, as defined below. 3.1.1 Soil fills are defined as fills containing no rocks or hard lumps greater than 12 inches in maximum dimension and containing at least 40 percent by weight of material smaller than 3/4 inch in size. ' 3.12 Soil -rock fills are defined as fills containing no rocks or hard lumps larger than 4 feet in maximum dimension and containing a sufficient matrix of soil fill to allow for proper compaction of soil fill around the rock fragments or ' hard lumps as specified in Paragraph 6.2. Oversize rock is defined as material greater than 12 inches. 3.13 Rock fills are defined as fills containing no rocks or hard lumps larger than 3 feet in maximum dimension and containing little or no fines. Fines are ' defined as material smaller than 3/4 inch in maximum dimension. The quantity of fines shall be less than approximately 20 percent of the rock fill quantity. ' 32 Material of a perishable, spongy, or otherwise unsuitable nature as determined by the Consultant shall not be used in fills. .1 33 Materials used for fill, either imported or on-site, shall not contain hazardous ' materials as defined by the California Code of Regulations, Title 22, Division 4, Chapter 30, Articles 9 and 10; 40CFR; and any other applicable local, state or federal laws. The Consultant shall not be responsible for the identification or analysis of the potential presence of hazardous materials. However, if observations, odors or soil discoloration cause Consultant to suspect the presence ' of hazardous materials, the Consultant may request from the Owner the termination of grading operations within the affected area. Prior to resuming grading operations, the Owner shall provide a written report to the Consultant ' indicating that the suspected materials are not hazardous as defined by applicable laws and regulations. ' 3.4 The outer 15 feet of soil -rock fill slopes, measured horizontally, should be composed of properly compacted soil fill materials approved by the Consultant. Rock fill may extend to the slope face, provided that the slope is not steeper than ' 2:1 (horizontal. -vertical) and a soil layer no thicker than 12 inches is track -walked onto the face for landscaping purposes. This procedure may be utilized, provided ' it is acceptable to the governing agency, Owner and Consultant. 3.5 Representative samples of soil materials to be used for fill shall be tested in the ' laboratory by the Consultant to determine the maximum density, optimum moisture content, and, where appropriate, shearstrength, expansion, and gradation characteristics of the soil. ' 3.6 During grading, soil or groundwater conditions other than those identified in the Geotechnical Report may be encountered by the Contractor. The Consultant shall ' be notified immediately to evaluate the significance of the unanticipated condition. ' 4 CLEARING AND PREPARING AREAS TO BE FILLED 4.1 Areas to be excavated and filled shall be cleared and grubbed. Clearing shall ' consist of complete removal above the ground surface of trees, stumps, brush, vegetation, man-made structures and similar debris. Grubbing shall consist of ' removal of stumps, roots, buried logs and other unsuitable material and shall be performed in areas to be graded. Roots and other projections exceeding 1-1/2 inches in diameter shall be removed to a depth of 3 feet below the surface of the ground. Borrow areas shall be grubbed to the extent necessary to provide suitable fill materials. 42 Any asphalt pavement material removed during clearing operations should be properly disposed at an approved off-site facility. Concrete fragments which are free of reinforcing steel may be placed in fills, provided they are placed in ' accordance with Section 62 or 63 of this document. I ' R1[ as Fccc..cmaw er vii a XLR ' aorc . 1U ec eCH a aM uaaawMID1.0. "93 .Q aCCJM ' NOTES: (1) Key width eBe should be a minimum of 10 feet wide, or sufficiently wide to permit complete coverage with the compaction equipment used. The base of the key should be ' graded horizontal, or inclined slightly into the natural slope. (2) The outside of the bottom key should be below the topsoil or unsuitable surficial material and at least 2 feet into dense formational material Where hard rock is exposed in the bottom of the key, the depth and configuration of the key may be modified as approved by the Consultant 1 • z NO SCALA 43 After clearing and grubbing of organic matter or other unsuitable material, loose or porous soils shall be removed to the depth recommended in the Geotechnical ' Report The depth of removal and compaction shall be observed and approved by a representative of the Consultant The exposed surface shall then be plowed ' or scarified to a minimum depth of 6 inches and until the surface is free from uneven features that would tend to prevent uniform compaction by the equipment to be used. ' ' 4.4 Where the slope ratio of the original ground is steeper than 6:1 ' (horizontaiNertical), or where recommended by the Consultant, the original ground should be benched in accordance with the following illustration. ' TYPICAL BENCBING DETAIL FINISH GRADE EXIST •. � ING GROUND \\� /A --FINISH SLOPE SUAFdC$ ' R1[ as Fccc..cmaw er vii a XLR ' aorc . 1U ec eCH a aM uaaawMID1.0. "93 .Q aCCJM ' NOTES: (1) Key width eBe should be a minimum of 10 feet wide, or sufficiently wide to permit complete coverage with the compaction equipment used. The base of the key should be ' graded horizontal, or inclined slightly into the natural slope. (2) The outside of the bottom key should be below the topsoil or unsuitable surficial material and at least 2 feet into dense formational material Where hard rock is exposed in the bottom of the key, the depth and configuration of the key may be modified as approved by the Consultant 1 • z NO SCALA I I 4.5 After areas to receive fill have been cleared, plowed or scarified, the surface r should be disced or bladed by the Contractor until it is uniform and free from large clods. The area should then be moisture conditioned to achieve the proper moisture content, and compacted as recommended in Section 6.0 of these specifications. r5 COMPACTION EQUIPMENT 5.1 Compaction of soil or soil -rock fill shall be accomplished by sheepsfoot or ' segmented -steel wheeled rollers, vibratory rollers, multiple -wheel pneumatic -tired rollers, or other types of acceptable compaction equipment. Equipment shall be of such a design that it will be capable of compacting the soil or soil -rock fill to the rspecified relative compaction at the specified moisture content. 5.2 Compaction of rock fills shall be performed in accordance with Section 63. r 6 PLACING, SPREADING AND COMPACTION OF FILL MATERIAL r6.1 Soil fill, as defined in Paragraph 3.1.1, shall be placed by the Contractor in accordance with the following recommendations: r6.1.1 Soil fill shall be placed by the Contractor in layers that, when compacted, should generally not exceed 8 inches. Each layer shall be spread evenly and r shall be thoroughly mixed during spreading to obtain uniformity of material and moisture in each layer. The entire fill shall be constructed as a unit in nearly level lifts. Rock materials greater than 12 inches in maximum dimension shall be placed in accordance with Section 6.2 or 63 of these specifications. 6.12 In general, the soil fill shall be compacted at a moisture content at or above ' the optimum moisture content as determined by ASTM D1557-78. 6.13 When the moisture content of soil fill is below that specified by the ' Consultant, water shall be added by the Contractor until the moisture content is in the range specified. ' 6.1.4 When the moisture content of the soil fill is above the range specified by the Consultant or too wet to achieve proper compaction, the soil fill shall be aerated by the Contractor by blading/mixing, or other satisfactory rmethods until the moisture content is within the range specified. 6.15 After each layer has been placed, mixed, and spread evenly, it shall be r thoroughly compacted by the Contractor to a relative compaction of at least 90 percent. Relative compaction is defined as the ratio (expressed in percent) of the in-place dry density of the compacted fill to the maximum r laboratory dry density as determined in accordance with ASTM D1557-78. Compaction shall be continuous over the entire area, and compaction r 62.2 Rocks or rock fragments up to 4 feet in maximum dimension may either be individually placed or placed in windrows. Under certain conditions, rocks equipment shall make sufficient passes so that the specified minimum density has been achieved throughout the entire filL 6.1.6 Soils having an Expansion Index of greater than 50 may be used in fills if using similar methods. The acceptability of placing rock materials greater placed at least 3 feet below finish pad grade and should be compacted at a moisture content generally 2 to 4 percent greater than the optimum moisture content for the materiaL ' 6.1.7 Properly compacted soil fill shall extend to the design surface of fill slopes. ' To achieve proper compaction, it is recommended that fill slopes be over- built by at least 3 feet and then cut to the design grade. This procedure is 6 11 considered preferable to track -walking of slopes, as described in the following paragraph. ' ' 6.1.8 As an alternative to over -building of slopes, slope faces may be back -rolled with a heavy-duty loaded sheepsfoot or vibratory roller at maximum 4 -foot For windrow placement, the rocks should be placed in trenches excavated fill height intervals. Upon completion, slopes should then be track -walked with a D-8 dozer or similar equipment, such that a dozer track covers all slope surfaces at least twice. ' 6.2 Soil -rock fill, as defined in Paragraph 3.1.2, shall be placed by the Contractor in accordance with the following recommendations: '6.2.1 Rocks larger than 12 inches but less than 4 feet in maximum dimension Equivalent of 30 or greater and should be compacted by flooding. may be incorporated into the compacted soil fill, but shall be limited to the area measured 15 feet minimum horizontally from the slope face and 5 feet below finish grade or 3 feet below the deepest utility, whichever is deeper. 62.2 Rocks or rock fragments up to 4 feet in maximum dimension may either be individually placed or placed in windrows. Under certain conditions, rocks or rock fragments up to 10 feet in maximum dimension may be placed using similar methods. The acceptability of placing rock materials greater ' than 4 feet in maximum dimension shall be evaluated during grading, as specific cases arise and shall be approved by the Consultant prior to placement. ' 6 11 For individual placement, sufficient space shall be provided between rocks to allow for passage of compaction equipment. ' 62.4 For windrow placement, the rocks should be placed in trenches excavated in properly compacted soil fill. Trenches should be approximately 5 feet wide and 4 feet deep in maximum dimension. The voids around and beneath rocks should be filled with approved granular soil having a Sand Equivalent of 30 or greater and should be compacted by flooding. Windrows may also be placed utilizing an "open -face" method in lieu of the trench procedure, however, this method should first be approved by the Consultant 625 Windrows should generally be parallel to each other and may be placed either parallel to or perpendicular to the face of the slope depending on the I 11 1 1 11 1 site geometry. The minimum horizontal spacing for windrows shall be 12 feet center -to -center with a 5 -foot stagger or offset from lower courses to next overlying course. The minimum vertical spacing between windrow courses shall be 2 feet from the top of a lower windrow to the bottom of the next higher windrow. k 62.6 All rock placement, fill placement and flooding of approved granular soil in the windrows must be continuously observed by the Consultant or his representative. 63 Rock fills, as defined in Section 3.13, shall be placed by the Contractor in accordance with the following recommendations: 63.1 The base of the rock fill shall be placed on a sloping surface (minimum slope of 2 percent, maximum slope of 5 percent). The surface shall slope toward suitable subdrainage outlet facilities. The rock fills shall be provided with subdrains during construction so that a hydrostatic pressure buildup does not develop. The subdrains shall be permanently connected to controlled drainage facilities to control post -construction infiltration of water. 632 Rock fills shall be placed in lifts not exceeding 3 feet. Placement shall be by rock trucks traversing previously placed lifts and dumping at the edge of the currently placed lift. Spreading of the rock fill shall be by dozer to facilitate searing of the rock. The rock BE shall be watered heavily during placement. Watering shall consist of water trucks traversing in front of the current rock lift face and spraying water continuously during rock placement. Compaction equipment with compactive energy comparable to or greater than that of a 20 -ton steel vibratory roller or other compaction equipment providing suitable energy to achieve the required compaction or deflection as recommended in Paragraph 63.3 shall be utilized. The number of passes to be made will be determined as described in Paragraph 6.33. Once a rock fill lift has been covered with soil fill, no additional rock fill lifts will be permitted over the soil ML 633 Plate bearing tests, in accordance with ASTM D1196-64, may be performed in both the compacted soil fill and in the rock fill to aid in determining the number of passes of the compaction equipment to be performed. If performed, a minimum of three plate bearing tests shall be performed in the properly compacted soil fill (minimum relative compaction of 90 percent). Plate bearing tests shall then be performed on areas of rock fill having two passes, four passes and six passes of the compaction equipment, respectively. The number of passes required for the rock fill shall be determined by comparing the results of the plate bearing tests for the soil fill and the rock fill and by evaluating the deflection variation with number of passes. The required number of passes of the compaction equipment will be performed as necessary until the plate bearing deflections are equal to or less than that determined for the properly compacted soil fill. In no case will the required number of passes be less than two. I ' 7 I 1 63.4 A representative of the Consultant shall be present during rock fill operations to verify that the minimum number of "passes" have been obtained, that water is being properly applied and that specified procedures are being followed. The actual number of plate bearing tests will be determined by the Consultant during grading. In general, at least one test should be performed for each approximately 5,000 to 10,OOQ cubic yards of rock fill placed. 63.5 Test pits shall be excavated by the Contractor so that the Consultant can state that, in his opinion, sufficient water is present and that voids between large rocks are properly filled with smaller rock material In-place density testing will not be required in the rock frills. 63.6 To reduce the potential for "piping" of fines into the rock fill from overlying soil fill material, a 2 -foot layer of graded filter material shall be placed above the uppermost lift of rock fill. The need to place graded filter material below the rock should be determined by the Consultant prior to commencing ,grading. The gradation of the graded filter material will be determined at the time the rock fill is being excavated. Materials typical of the rock fill should be submitted to the Consultant in a timely manner, to allow design of the graded filter prior to the commencement of rock fill placement. 63.7 All rock fill placement shall be continuously observed during placement by representatives of the Consultant. OBSERVATION AND TESTING 7.1 The Consultant shall be the Owners representative to observe and perform tests during clearing, grubbing, filling and compaction operations. In general, no more than 2 feet in vertical elevation of soil or soil -rock frill shall be placed without at least one field density test being performed within that interval. In addition, a minimum of one field density test shall be performed for every 2,000 cubic yards of soil or soil -rock fill placed and compacted. 7.2 The Consultant shall perform random field density tests of the compacted soil or soil -rock fill to provide a basis for expressing an opinion as to whether the all material is compacted as specified. Density tests shall be performed in the compacted materials below any disturbed surface. When these tests indicate that the density of any layer of fill or portion thereof is below that specified, the particular layer or areas represented by the test shall be reworked until the specified density has been achieved. 73 During placement of rock fill, the Consultant shall verify that the minimum number of passes have been obtained per the criteria discussed in Section 633. The Consultant shall request the excavation of observation pits and may perform plate bearing tests on the placed rock fills. The observation pits Will be excavated to provide a basis for expressing an opinion as to whether the rock fill is properly seated and sufficient moisture has been applied to the material- If performed, 1 A I I I LJI I I [_1 I'll I 11' I I I I plate bearing tests will be performed randomly on the surface of the most -recently placed lift Plate bearing tests will be performed to provide a basis for expressing an opinion as to whether the rock fill is adequately seated. The maximum deflection in the rock fill determined in Section 633 shall be less than the maximum deflection of the properly compacted soil fill. When any of the above criteria indicate that a layer of rock fill or any portion thereof is below that specified, the affected layer or area shall be reworked until the rock fill has been adequately seated and sufficient moisture applied. 7.4 A settlement monitoring program designed by the Consultant may be conducted in areas of rock frill placement The specific design of the monitoring program shall be as recommended in the Conclusions and Recommendations section of the project Geotechnical Report or in the final report of testing and observation services performed during grading. 7.5 The Consultant shall observe the placement of subdrains, to verify that the drainage devices have been placed and constructed in substantial conformance with project specifications. 7.6 Testing procedures shall conform to the following Standards as appropriate: 7.6.1 Soil and Soil -Rock Fills: 7.6.1.1 Field Density Test, ASTM D1556-82, Density of Soil In -Place By the Sand -Cone Method. 7.6.12 Field Density Test, Nuclear Method, ASTM D2922-81, Density of Soil and Soil Aggregate In -Place by Nuclear Methods (Shallow Depth). 7.6.13 Laboratory Compaction Test, ASTM D1557-78, Moisture -Density Relations of Soils and Soil Aggregate Mixtures Using 10 -Pound Hammer and 18 -Inch Drop. 7.6.1.4 Expansion Index Test, Uniform Building Code Standard 29-2, Expansion Index Test. 7.62 Rock Fills: 7.6.2.1 Field Plate Bearing Test, ASTM D1196-64 (Reapproved 1977) Standard Method for Nonrepresentative Static Plate Load Tests of Soils and Flexible. Pavement Components, For Use in Evaluation and Design of Airport and Highway Pavements. I8 PROTECTION OF WORK 8.1 During construction, the Contractor shall properly grade all excavated surfaces to provide positive drainage and prevent ponding of water. Drainage of surface water shall be controlled to avoid damage to adjoining properties or to finished I I I I I I [1 1 11 1 LJ work on the site. The Contractor shall take remedial measures to prevent erosion of freshly graded areas until such time as permanent drainage and erosion control features have been installed. Areas subjected to erosion or sedimentation shall be properly prepared in accordance with the Specifications prior to placing additional fill or structures. 8.2 After completion of grading as observed and tested by the Consultant, no further excavation or filling shall be conducted except in conjunction with the services of the Consultant CERTIFICATIONS AND FINAL REPORTS 9.1 Upon completion of the work, Contractor shall furnish Owner a certification by the Civil Engineer stating that the lou and/or building pads are graded to within 0.1 foot vertically of elevations shown on the grading plan and that all tops and toes of slopes are within OS foot horizontally of the positions shown on the grading plans. After installation of a section of subdrain, the project Civil Engineer should survey its location and prepare an as -built plan of the subdrain .location. The project Civil Engineer should verify the proper outlet for the subdrains and the Contractor should ensure that the drain system is free of obstructions. 9.2 The Owner is responsible for furnishing a final as -graded soil and geologic report satisfactory to the appropriate governing or accepting agencies. The as -graded report should be prepared and signed by a California licensed Civil Engineer experienced in geotechnical engineering and by a California Certified Engineering Geologist, indicating that the geotechnical aspects of the grading were performed in substantial conformance with the Specifications or approved changes to the Specifications. Gc a Inmryon,cd Fam Aevoioo dIc 06/04/90 I I I I1 0 I I I I I I I I I I lI IJ REF. MAP: U.S. G.S. QUADRANGLE PECHANGA, CALIF. 1988 9DA L E:2000 VICINITY MAP ti_ \, 10 �� /tTI 0 /1 r<✓r ) _' / t%r: -_./J.ir<• — i a 1 / �� \� (:�2 i -,n T r�"� IIL (0,20 nr'/ L� ``�� ' r l'^/J �\1�11�.'.gi i`.�ln� .• .!,1•I,V�y I , I 7alnk�l� A ®rl it oo i � � �\ �- — .� P � • .-._ > /r._ Jt\ Ind,aniy� _ BMS Bur,dl Gm,,d— j /- 059 /' � // \050' �--'' Cil �� � � `-: ���`' .? o_ � �=� f"�\,. •j `1��.,, ,� j renae(uJa, a, rip _'��i,� �•\�� � 1�1LL__ ('�-___�`,�i,u \.\�r�,�'`.\)`t>,�-� i'y'•fiC �ti.. . la ndl n8 �rrsz')I iip-', 1, �.. _ of ({� _� - lI I %�U:'.I l a��. \- J. /0 ' io rxe _t�� � i1. ���._„r 1 ��:j1 ,��.,:,;I •— � __.�: '.y^�, `r,C, ir?L�, � I 1 ` 7 - of lZ�t ✓)`L\ ;, `��'.1'1 .�. ��;'. �J ` /0` ' 1 ( Z '1�\ _'` � •.,. _,,`_ 1 (.•� � i. Vii. '��� ���. ��;, ' .' ., V � ., 11�:. \ / v `id�P; ;I'L• 1 _r I,p ,� , 22,°It.;,�''�-.��, , I REFERENCES Blake, T. F., LIQUEFY2, A computer Program for the Empirical Prediction of Earthquake - Induced Liquefaction Potential, User's Manual. 1986. I EQFAULT, A Computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults, User's Manual, 1989a. 1 EQSEARCH, A Computer Program for the Estimation of Peak Horizontal Acceleration from Southern California Historical Earthquake Catalogs, User's Manual 1989b. ' Ishihara, K Stability of Natural Deposits During Earthquakes, Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, A. A. Balkema Publishers, Rotterdam, Netherlands, 1985, Vol. 1, pp. 321-376. Kennedy, M. P., Recency and Character of Faulting Along the Elsinore Fault Zone in Southern Riverside County, California, Division of Mines and Geology, Special Report 131, 1977. Seed, H. B., K. Tokimasu, L. F. Harder, and R. M. Chung, Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations, Journal of the Geotechnical Engineering Division, American Society of Engineers, 1985, Vol. 111, No. GT12, pp. 1425 - 1445. u I I I I E 9 ,I� f C6 ► VESTING TENTATIVE TRACttb% MAP 926- /3D-O/Y Q[olqDCED HQ)o RANCHO CALN'.DEV.CO, Date : March 1989 Scale • 1 ° 306" 2001 ► V — — RY ao0 .00 R l SECTION A -A %wilts rw?" T t'MVT -. SECTION B-8 SECTION C -C SD UFE, LST A_ -1 - "-a � zz7! I —.�-_Ems_- _ _—- SECTION D -D VON MI.rY WM+Y )l11QW [moo U v O 0 j��j U NF 70 Of CONSTRPI WED Or AD %59 NO. 23172 926- /30-0/3 RANCHO CAL /f DEV. CO. BY - RANPAC ENGN*MRiNG CORPORATION - 27447 ENTERPRISE CIRCLE WEST, TEMECULA, CALIFORNIA 92390 -714-676- LEGEND 001 _--- ALLUVIUM B-4& ____APPROX. LOCATION OF BORING ® ____RECOMMENDED LOCATION OF SETTLEMENT MONUMENT _----APPROX. LOCATION OF TEST FILL E/= ----APPROX. LIMITS OF 2FT. ( FROM EXISTING GROUND SURFACE) REMOVAL AND RECOMPACTION ----APPROX. LIMITS OF 4FT. (BENEATH PROPOSED FINISH GRADE ELEVATION) REMOVAL AND RECOMPACTION ___-APPROX. LIMITS OF IN-SITU DENSIFICATION 1O_ DEVELOPER OWNER w MOC VAIL PROPERTIES 9699 TIERRA GRANDE ST. SAN DIEGO, CA 92126 (619) - 69SA109 GENERAL NOTES THOMAS BROS. COARD 5�--�!-B-, C-6, D -i, 1! -SSE PROPOSEDUNCOMhERU/go+NE�.S ,;MS` EXISTING ZOTINO" S -P PROPOSED ZONNG� S -P i EXISTING USE AACANT SHS)O" VAIL RANCH 91.111.011111 CONIPLE BUSINESS PARK LOTS 27 ` COMMERCIAL LOB 24- EXIS!INGGRAVC SIZE IL31 !Ic1Gl OPEN SPACE LOIS 1 (LM hl. 631 HISTORIC COMIERCM4 COIC EEA (LOT 7) TOTAL IITTS 53M7� - TOTAL ACRES 70181 DEVELOPMENT "TOWEQV/RNl7 AND WILL SA%.EAENT THE "NOLr- COME EIKIA1 AND UM ESS PAID( COMFK) ENTS OF THE VAIL RANCH SPECIFIC PLAN (SP. 223) MNIMLIM COM,EAgAL/BU$IEW PARK LOT Ste.: 1 ACRE AP.eL 926-1704DD2--'- _ - 'r .-, -- I THIS MAP CONTAINS ALL CONTOLIOLS CANNERSIIP ALL IN TERIOR CIRCULATION N'1H'DFD AS PRIVATE STREET SYSTEM. t• FOR GRACING NOTES SEE SHAY 2 I UTUTES . SEWER : F KIND. WATER P-C.WO. GAS: 90. CALIF, GAS CO. TELBP1101E GENERAL 7E3.19"MO E! I LEGEND :•RESTIFICTEO ACCESS zr—, VICINITY MAP w1.PANe..D Ew lu. ^M(ylA UNIY. iYW.li� INDEX MAP 60 OkIPm1 to Ic DCT 1 7 %) WtA.S ) JAUKOJ rMCH TALC DT :eT4 tAt6µ4A01.« A 1away. RXr I X IQT �INJ4 ON tDiE A' R auuaT AL'S t.•AO I an-•�uw T 4aRAY)iP ta1ALLAr aP r..Nn WA.AWY � D i r10Ty IJ IRKao .M1allATy WP ---- I.tON iEMia itlaar. NDiurMW Y01CA/®DW M.LA c1tC'fuaau .10Ni W �. aR Cp WDlX NN iWld2RR4TlD ePElJPF RN. [FPfR.ct I VO.t :pKfA1 uatRS. CD ural 6r. •YYI. H' p w .S♦aiaDw I ii WIJ CNtlYa'Nipl YVt PC.I,Ow I1 C14 GNYIRTRU' vO.M. IiC.Mnn (4L N APO+4 wen ./OI1 A 98' p ' Rov GES ON INCORPOSLATICID 17 QEGtlCwwlG /..l tNQiNlJA8 Aw0 ENQ.NEE.,.o pLQOQOIRit NED aAN DE AB DIYIYE - 6" 01#60. CAt IPOANI. D!Ili JE]. PADNE iH 6ER-EEDD -. TAM DIE aaAEgJ PM JECT NO. 04027.41-01 Fla 2 104E 12.21. 1992 9 Oft 0*4 M S 1 ' 9 h VESTING TENTATIVE TRACT MAP- NO. 2 LaC►�C�C�D�D [�00 o= ow h J h t Q RANCHO CA( IF DEV CO. q Q I � ILeBA 00 Sir m 50 1.14 AC \ 1,99 AC:54 1.2C AC. 1.06 AC. 1.24 l�� 1►4.__ hti-- t6... r'e ,•• `t �i SIX .02 d a 1.02 Jic r 1.07 AC. Ir, t: o f / ::,.: +: i! :' t. r �� •EF 2/ k II Y4 j 31 :.. 4)1- -2S AC 1.19 AG I k 1.25 AC. I t ,: r- y % 1.01 AC 4 J 47 40 so 1.05 AC. y \335 AC 4.03 AC. LA6 d� yy 4.02 AC8.74AC. ��lAC. 5 AC. -.. - {.. b rrwrrr =J.- -.36 _y •t _ .46\� h x•64 /►�. 7t 0 1;1AC. w T �.. _. Yb � grfMrNr j I � � -..;� `•st„\�� �' � -r. - 1.38 4C.'. i 'F. 1.61 1.46 AC Y9 1.20 1.34 AC.�'J \ -- ---._-h-; �r _- ..� • r>.•;l �..i• .w•` i k•t�_�•1 k \ _� 11• `d'. 1 OO .'� � "y_�, - - �__ F�-�f^'_- � ----r- -- 8" ` - � A -'1 � -'-.�T-fid'_• I. •,.:. j, 0 1' v ' PARK - , OPEN SPACE ;. �•(.'i . U! REGIONAL CREEK - ' -�- D.`_1 I/ 1.28 AC • . _.. T E E a ► LOT 53 _ � ` -� y" c Qat =�I ... 81 � � � s+r •�. � eye �• � s �� - .. ..' '- . A►1 � � _ .,_.--Nt _. - _. SJl !/J d//.. ^-- .._ - - .. _ -! QTC<lr ,�'V Srpr, 1607 - I •p IV 69 _ ' 'lea sv I' _ . -- -' .q7 7/e !ld Ni 117 IJ/1 Jl! 7/0 J(m l�-� -. __.____. _._.. ",• __ -. .. .. O� _. ..l 00E O ' 0 e Ali. GRADING iVL s SO A OwPODUIOt Ella, .. WmtYWTEDRN GIRO InvRLRw '�- 002 S� YN S wRDfiS[ mi10�/ As WFlT DORWss acid OWZ IRQII00 17, fSaSIL1ST Ot@YRW NZTI A /ACIDS Or AT IRAST 0R ASD - -- PO�AT2M Wfr %� EID Ciw'ITICATi00 SLT RR '� IL.SI OAZi 01 SDOQTTLD SY A >a1L assapapt �� Q R1Apla YOTff: wA0s0 SS SISEN ('OS Zw ns TS 701 WL"M EM LRI'T MPARTRQR PDR wr AM Till, - SSCVSmIDATZeW OT TRS !N[LDmIRRE SDIL O ]0' aspoRr. Y'DITICAL Moon, 3. •r, �NAOZRO sNANS, COPiONN -O TIQ •9 - O _ 4E aDI wllOOl IDIND CODE. '_Z1RR T0. Y YQaptD SY DppZNAPQ N). `]CONTRACTOREW1 Tai CONTRA[DI•jTr TS, Ctwessa mnlILIY Sot 19. A %MATSN,o CTVIL ORINm' w UI u LAD WRY[YOP --`� 17%e BALI. EVOwT <mrRPiCArtw OF aDIIDLw MD [IJ•TATIw. Z S0A{.L l ]. R'It aIItDIR PAD ANO CNARAIN SF EAPETT EOAsI�T AT LWT E4 ®S ZN AOPAM 11�M rMEN LET Nml[ SNfC c Q.TVATZOSE AR[ NEWLAI.T01 tZSrATxw -- I H - ZP ,. a Zr CIT 00 RLL Z! iSO TRAIN 1U�, f1 IF CPT Ol rtll m HAw � Wtos to@Pwnw. TRLT IO1RTiw aT S As000OR rQw To ESLLI;o rrDITI (RTi SSP[CT IV ME SEA L l SNALL IS EIVO. Ir AR 'It Z[ TSAN :6•. DNNRAGE SAN11 EDLL at l PILL MVNOTtw PS SAM tay. WtrllTTw RxTR NW)rcT lO aDrAcnrt �amnD aO11rAQ L W 0.1- DE TO Dor DEEP AND W A N6YIlSw Dr ]• !4 TO m Tat RMWERCO. TW AC7tW. OZSTNNCi AJRm TNI At11AmR :... . W 2 wints.wusICTTO for or cvr w Ru s1DPl. :L. = 3Iq)W �L at w aril I IF" a' to tnrzc MOST S..r. AS DIVE. (lav I. NN[ZHUN COT ASO PC= Awn - ]: t. AND RT'L Slays EAL TO 00 iRTR =0 ] � Ie VSTLOEL . MGM .wt. S r.Avm E'ER ORASS on wool" cam TO 19. mlw mTSOL: ALL wAwo alOPes WRNS [[ rliNrl YZTi W t .. Aw"M a' aTDR l I- =GN TOOT DA EDDITN ' AIDRD TW TDP Of ALL FILL SZOM ItlIALT T6 Stam Aw cutum AS TSTANITR IN ALpOROAAQ a(S Ob2YaQ DD. 437 Mat TO TL A1PbTAt EUSSA ZCS PLIT AT II• w C33FTRa M A60TEM APPNpr[p alwAD CDIS. aWs ORp a zf YSTICiC mwT, iA N CNW S' MEN. N/ Ph1AL 1!)ALTiw. AD6I?SOD TO OORRD oWp AYii. a[ PWTm YITR APPRpv[D 1. ASL 6LDLM a4ld. W DO01 ONOO is 90/EatZiZw OF A Ll. S RLL SSL{, S KNEW w MET No TOO. SWISS. w WOOIMM Mospor. ESOts so.. 6[ PIANSO AT TI' w Com[) TEAS• IN, w � SDTL"W/LMR IOD e.,• (aR:'i)r 1"a ,Vl� FELL W sO I!♦OPOu PLSCm ASD SM Nut. swmw EMUNC %`WTTL Far OSpOD SS WO CIYOD Or NNECA DESSIS. !bRCIL. ANT mRp; wlaLlATlt64. 101' w 4y[uS. S -am Dap 4- (A VumR a.e. A PION. oSI)Apriw SAS[ rw AK TW RLL OVER I- wn. OMM ClLwn m 1O1'taxXt. WSaTR NEWS IOIW1OrT TMQATTOY sTemo NTTS Date March 1989 31. v STOP SA�IGa PWPORZON 01141M PER O.P.C.. CIYPIR 1..r. . , eiNTL msaEr aDEll EwN¢T SLPLC TTMZa ocR OPOx ftIm rz1 Is TO at PalmA. R NROT 3a rIRT88 ouDE .... AS saRrt TbASYm/T t=TRIW DOS.RCATIw 00 R CTJIIR[D. ART[p. AND aEaR[a i17D RAS SAFIiLi SOIL TS FILL SVRONT. ANDPA)AtZw u fLP[p ALY rTaa ALL IS RZOA NA i AT NOT :SSS raw, 1/I• PR FDOT PON A 10'[100 or ] rift. w 1[OOI OLNOw IN AOps{RS Nt70 Ta IJIRDIO � 10+10 Natty m I/SOAI,Ci Tar OWl aL AIMPo[D NY A 4OISTeNn pDIA®t mot To PI- EI6eT =r V1 ar aRIatR1 vw. wT. Scale 1" =�89'- 200 Eaton Tlw --" AN M : FlIz wlR . E1. -)D OMtlmtTxw or 1fODD rune rn NArmul. YATR coOWn ' o3A0a: Q.TEFiw ASD taurlw OF R AND RLL ftoPDE. 14- .NOIR[ Sam wAOINe OPO TtaL AL Taiw ...... v PORwTTR.• D lOo ;100 ]OU .•%_i T, >MN.DITQ SMl'SINW 10 REIDLL iDMr[L D fl\IO TO EDa6nut•Ttw w NOROT SALUM Stamm" T'wODIWN DRAINAGE I owSOL AN" S rl mosa W rRrOT NURSING YATR 23. ALL ES/Qx COSIO>fS w..• W CTJaNw.x DELZNLATNO :N THE P123d Nam TO comm) OF AST �OT1pCTI0Y/CAADZNE. r N RAW, 13000 TO our M Sam. AND DEO/[ TO wsA M-120. s. RLSwNFIErtw alms n as NNwIN6D FOEAL:. RUA SRR :-FOOT. is. DOFT sYiEM i. at e04rrRD..... sY ,&TPS ON DeaiA APPaDVED Taff WADINIO ORMON 011l C ITION LCI V=m TA.TCT !N11113,2231 0170000. . TO Iiw/IW A "a 06ITIC TEAR wIPD4R WILOIND Octal AND SP61FiC AMwD- :6.• ALL RKxSTTNS ti•)"•^ :rova1R ON m >%1TLCT SIT[ RUNT N O" TO Os2NYR:1 YT IN /TPECT AT TS TIS TM AL APPSDVVD. O.L. to I-1-90 I� (� /� /�� M mPTINO[ TO ro 1100' nwcL tx NIXING Rey wix w Coa6ltlo. No.1O ta.A. 'All 6TM Y,a Y 1 DDRtOM to Cx pt.r TO or cAr 1Ma U.O.C. •- �l j� G'yl 14... (( Lf�UI 1l� /L/ AaSwp ANp TyIPwAN) oYiNAE[ IONESD PaOaitlwa DPT RE ;sfo TO PARC y DL INC g1pPOilEf u rntlM AOM. SD-. Attar 1 -1 -SO It wOIA r7.'All S. ... o[ tDr LONG ISM D.1.c. .. rap6Dy 11J-�1 II= 0 S �CON �A so" a od. 4J17.73 Thu. so" r t1 cyan J( jPREFARED BY - RANPAC ENGINEERING CORPORATION - 27447 ENTERPRISE CIRCLE WEST, TEMECULA, CALIFORNIA 92390 -714-676-7000 8111 BNEESn t CA SOC OCr 1 7 0) I AICOE PONATlg» %t0TCvNR70z ENGINE 403 4ND (SUNNI EN1Np 469LC0�4tD 4060 rt ANDERS 7R4Ya -- SAN DIk DD, CAL': DAM;A Elf i)T1)♦ "ONE 6:01 EEf-IPR9 - PA} 119 136••64A9 PROJECT 00 04927.41-01 F16. 3 ONE 12-21-1951z I 4 m fl 0' 100 Q��QRROFESS/0*4 to Y yf' A c0 4f' S I Ly V N fes„ "c N6 34490 Jrr T til , l 3 A 1 J FOR- 40' SCA GRADIN I I 2001 300 400' SCALE; If' = 1001 QrjFESStL S IQ. ,$ z 1:3 ar27 7� :.7 p. 3/31/92 J) :T .RJ LE_ ®__-_APPROXIMATE LIMITS OF 2 FT. (FROM EXISTING GROUND SURFACE) REMOVAL AND RECOMPACTION ____APPROXIMATE LIMITS OF 4 FT. (BENEATH PROPOSED FINISH GRADE ELEVATION) REMOVAL AND RECOMPACTIONN �-___APPROXIMATE LIMITS OF IN-SITU DENSIFICATION s'. ___-APPROXIMATE LIMITS OF AREA DESIGNATED FOR NO REMOVAL'S GEOCON dffi INCORPORATED 71 GEOTECHNICAL ENOINEERS AND ENOINEERtNO OEOLOOISTS 6960 FLANDERS DRIVE — SAN DIEGO CALIFORNIA 92121.297.4 PHONE 619 5566900 — FAX 519 $666159 DOE 7-15-93 FILENO. 04927-41-01 FOG a a n , .. ... .. J1•.Ai.>' �... —�- a • f . w • ! r/.. _. . ••f ♦ ♦f �J♦ U.• N• •} > - f•. N.o K• •• • •f l' - • ..:b >t' n. >. x •LJ �.• L• L •i f./ t, !r, . ,. a�� _ ....... _ ___ --. !� ... _ .. -•���— _ __ _ .. _ _� �. _ _-•__mss_-. ,,,y -_p..... , _ SOOT t - -- - ::a: _ • i —`_ �'�---'E--- �— -„r-- - .. -- ... .. — L • \ - - 1 7. ,� � >, � , ” � tD�V• III '\ •�'"'Y � CIDLm /. • I 1' / M.e •, > � Aa, %�w.>f>'�•>.. '' , �Yn/:'l-.L�' qZc ` .T�•t f ,- .. V L � � • .fir..' •. .�. ,"' 7 �•! >. C ' �.:''_ ''` n F Bt/[bED ALE, 'SEE SUP\EMENTAL BIDJSET NO. 1 Iltlf ` _ N"1►1 TF+ 41FTTLINtG�I�IONUMENT "�O BE 4__ BF'•ICH MANK RANPAC ENGINEERING CORP. -it 27447 Enterprise Circle West Te6lecula, California 92390 SEE SHEET NO. 1 Tel (714) 676-7000 SUBMITTED 8Y!11116x REGISTEAED CIVIL ENGINEER NO 30927 2/ Po EXP. 3/31/91 GATE : _ oo -' REVISIONS RIVERSIDE COUNTY FLOOD CONTROL AND eEvr Eo cerrlv/n� /A/ ER CON "VA ION DISTR nooEo EXJ.fr s o"t4 jj HFCOMMENDED FOR APPI44 v JED BY /R0V/900 6R.'IO/.vG PLANNING E "EF EN61 --- - - -- DAT L,ATF HANNE IIII o ' I I I I o PPiN i ED ON JUN 211993 58'Sl "E I- I,I.Ir Imo' --�— C ►, NO. 73-5009 wHJTF^T NO. County of Riverside ASSESSMENT DISTRICT X'159 7-0-050. _ CHANNEL GRADIN; PLAN JkAkiN6 No TEMECULA CREEK 7-20e DISPOSAL SITE GRACING SHEET NO. QI �4 STA. 1414- 39.52 TO STA !'Z `•I.•; 1C FOR TRANSPORTATION UIRFCTOR (r/� �(' � � OF .39 RIVERSIDE COUNTr,CAL1F•. DATE: --- , 2t" I IM— 0' 100 Q��QRROFESS/0*4 to Y yf' A c0 4f' S I Ly V N fes„ "c N6 34490 Jrr T til , l 3 A 1 J FOR- 40' SCA GRADIN I I 2001 300 400' SCALE; If' = 1001 QrjFESStL S IQ. ,$ z 1:3 ar27 7� :.7 p. 3/31/92 J) :T .RJ LE_ ®__-_APPROXIMATE LIMITS OF 2 FT. (FROM EXISTING GROUND SURFACE) REMOVAL AND RECOMPACTION ____APPROXIMATE LIMITS OF 4 FT. (BENEATH PROPOSED FINISH GRADE ELEVATION) REMOVAL AND RECOMPACTIONN �-___APPROXIMATE LIMITS OF IN-SITU DENSIFICATION s'. ___-APPROXIMATE LIMITS OF AREA DESIGNATED FOR NO REMOVAL'S GEOCON dffi INCORPORATED 71 GEOTECHNICAL ENOINEERS AND ENOINEERtNO OEOLOOISTS 6960 FLANDERS DRIVE — SAN DIEGO CALIFORNIA 92121.297.4 PHONE 619 5566900 — FAX 519 $666159 DOE 7-15-93 FILENO. 04927-41-01 FOG a a n , .. ... .. J1•.Ai.>' �... —�- a • f . w • ! r/.. _. . ••f ♦ ♦f �J♦ U.• N• •} > - f•. N.o K• •• • •f l' - • ..:b >t' n. >. x •LJ �.• L• L •i f./ t, !r, . ,. a�� _ ....... _ ___ --. !� ... _ .. -•���— _ __ _ .. _ _� �. _ _-•__mss_-. ,,,y -_p..... , _ SOOT t - -- - ::a: _ • i —`_ �'�---'E--- �— -„r-- - .. -- ... .. — L • \ - - 1 7. ,� � >, � , ” � tD�V• III '\ •�'"'Y � CIDLm /. • I 1' / M.e •, > � Aa, %�w.>f>'�•>.. '' , �Yn/:'l-.L�' qZc ` .T�•t f ,- .. V L � � • .fir..' •. .�. ,"' 7 �•! >. C ' �.:''_ ''` n F Bt/[bED ALE, 'SEE SUP\EMENTAL BIDJSET NO. 1 Iltlf ` _ N"1►1 TF+ 41FTTLINtG�I�IONUMENT "�O BE 4__ BF'•ICH MANK RANPAC ENGINEERING CORP. -it 27447 Enterprise Circle West Te6lecula, California 92390 SEE SHEET NO. 1 Tel (714) 676-7000 SUBMITTED 8Y!11116x REGISTEAED CIVIL ENGINEER NO 30927 2/ Po EXP. 3/31/91 GATE : _ oo -' REVISIONS RIVERSIDE COUNTY FLOOD CONTROL AND eEvr Eo cerrlv/n� /A/ ER CON "VA ION DISTR nooEo EXJ.fr s o"t4 jj HFCOMMENDED FOR APPI44 v JED BY /R0V/900 6R.'IO/.vG PLANNING E "EF EN61 --- - - -- DAT L,ATF HANNE IIII o ' I I I I o PPiN i ED ON JUN 211993 58'Sl "E I- I,I.Ir Imo' --�— C ►, NO. 73-5009 wHJTF^T NO. County of Riverside ASSESSMENT DISTRICT X'159 7-0-050. _ CHANNEL GRADIN; PLAN JkAkiN6 No TEMECULA CREEK 7-20e DISPOSAL SITE GRACING SHEET NO. QI �4 STA. 1414- 39.52 TO STA !'Z `•I.•; 1C FOR TRANSPORTATION UIRFCTOR (r/� �(' � � OF .39 RIVERSIDE COUNTr,CAL1F•. DATE: m D OI ' 100' 200' 3001 400' SCALE: I"= 100. /7b > RANPAC ENGINEERING CORP. BENCH MAHK 27447 Enterprise Circle West Irk Temecula, California 92790 SEE SHEET NO. 1 Tel (714) 676-7000 �,j SUBMITTED 9Y. �—REGISTERED. CT VA ENGINEER N0. 30927 -' DATE:9 Q/ �D ExP. 3/31/92 GEOCON INCORPORATED •� �' GEOTECHNICAL ENGINEERS AND ENGINEERING GEOLOGISTS 6960 FLANDERS DRIVE — SAN DIEGO CALIFORNIA 9212/2674 PHONE 619 5666900 — FAX 619 5566159 FILE NO. 04927-41-01 Fro. 2 OiRE T-13-93 1 _ 1_`J ...._ sem.• .. s..r •,a 9� p :c .- '.. .... �'_� —_ ..... as r. a _. \ . _._ � .. ". .�.� A� H' I♦. —. • . 6. i �--•sem... -.-' _��... M 14� ��/'. ♦•.a .•.�_ >tt,: 1. ._� ��• � _ , , .. (f) LQ _ ' f..7°� i"" •i =' � r � L"\� f � _ J 1 i � 1 I \ �' / e., , _ � • e,. - � J V J REVISIONS �AOFESSlOi�'� , �rvQ tet' A co may\ W N rn e. 34490 �l'rF OF CAUEO��\'� ,PLANNING 0ATL i' - r----- X90 RIVEASIDE COUNTY FLOOD CONTROL AND ER CONSERVATION DIST FOR APNHEU BY: /J5 County of Riverside ANP •8 ; . AIIEF ENG1 FOR_TRANSPORTATION'DI DATE: RIVERSIDE COUNTY,CALIF. DATE: q / Plied i ED ON, JUN 211993 W.O. NO. 73-50091 - ASSESSMENT DISTRICT NO. 159 ''aAECT No. 7-4-050 CHANNEL, GRADING PLAN'" DRAWING NO. TEMECULA CREEK 7 -?06 DISPOSAL SITE GRADING STA. 172+00.00 TO STA. 201+34,16 SKEET. N0. •, /1*R (8 OF. jS P 4 0 11 GEocoN INCORPORATED GEOTECHNICAL ENGINEERS AND ENGINEERING GEOLOGISTS 6960 FLANDERS DRIVE - SAN DIEGO. CALIFORNIA 91121-2974 PHONE 619 5566900 - FAX 619 556.6159 FLENO.04927-41-01 FIG.3 DATE 7 -IS -93 �T I] C -4 M 7� 'T1 rn 0 _.--- -- - -- ----- — -—. ^��6i•--'�'- 1. � _._ . w .< •♦ .. •1 ,.• q., •• M• of .r•: - .. �• -. � • .♦1 `:.� .� r ,� .f ,. Y---�) •.• •� .w, .w. v• .• ,e:�!': :"_::� :. •_ _.... _.. .. __.. - .-�-._- .-..��_ - _. rY._._ •'�.--r---'�__^ .._.. . _..-_ �T�'^�'� �►'n:_. .._ .-.•.�.:� .rw.r: m. - ..._ I _.._ _ ,.. �1� ..1 -. _.r .. 4:1 rf 4 _ . 79 ell 816H WA r -SOU TH % / r �'y. It .' ... •{ �• •7:f,{.h f L t ,, 1.1.••f. ;,.,t+.: %; 40 . •�. ��, ii. •.',••t-• .:. ♦• —� 10 " J P �' •� �� a ILEI • ... ^ 1 ♦ Of YS[ GI►OVNO cnvfR o + - •.. ,, O \ , _ ..• ♦' .� . '` • -"�� 0VEC Te r/�.Q • •, e: ...• 1107` ����2'�-.! •a. �O% LL' Ft7- �t�• ; - +.4 q - . y 1�� oAs %Q r 1'•` 4f x I y ku DED SWALE, E !SUPPLE TAL BI SE 1.5 el az 1 TO _ E N 6 -i0 - QI' 'fE�trTE °AT L --TIMERS UIQ ESS QV VAI EW Q i1p1'• b /a?r i 1111 eb a\ a P _.:� \ 6! (.•• S as oa• ��� ns.•' �.J ` 1' ♦ ADUNG COV[/ 1 r0„'. � ¢ ••.• •'• I 111' �� i• �--”-� •o•, v` ,e \ 711 "' '' •° ' - -- °' "r .�/ :I ;f 9�� i I "mss---- ' ' � - — -- ; ,:,.,. •� .` - ` -: tib ; I I 1 ��� � ��••��—----__—_♦.♦ � a r_ Lnt• •yes• �J�1 nre �I'.,f � � J� .` I n-,•�.�1 11/) � '' '`1 —.-- +. O 100' 200' 300' SCALE: I"= 100' RANPAC ENGINEERING CORP. eF'4^H "AHK 27447 Enterprise Circle West '7r Temecula. California 92390 SEE SHEET NO. 1 Tel (714) 676-7000 SUBMITTED BY DATE: 61 -el RE6ISTERED CIVIL EN61NEfR N0. 3092T eo EXP- 3/311/91 _ Z/S \_N gNNE L , y,S A. CO{\yam\ a.• t s f N79• pro —= EVISIONS RIVERSIDE COUNTY FLOOD CONTROL AND ,eev(sao GtAO/Nq ; A77 CA CONSERVATION DIST S7ZW1W arK /n/ e44JMA4&IrS HFCOMMENDED FOR APNHv Y EU BY R6V/f. nA9 PLANNING E HIEF ENG] DESCRIPTION PPR PR DAT DAT DATE: L1 P PO . a• '`' PMN—i ED 1N �, ' '.. •� rtd— —�_ • JUN 211993 W.O. NO. ,i3-5009-' County of Riverside ASSESSMENT DISTRICT' NO, ttiu PFCT ilo 050 AP a CHANNEL GRADING PLAN DR WING NO: TEMECULA CREEK DISPOSAL DISPOSAL SITE GRADING ~•` FOR TRANSPORTATION DIRECTOR ' STA.201+ 34.18 TO STA, 228+00.00 SHEET NO., . :4ic RIVERSIDE COUNTY,CALIF. DATE' l•?/9l 19 - OF`39AA 1 0 0 11 GEocoN INCORPORATED GEOTECHNICAL ENGINEERS AND ENGINEERING GEOLOGISTS 6960 FLANDERS DRIVE - SAN DIEGO. CALIFORNIA 91121-2974 PHONE 619 5566900 - FAX 619 556.6159 FLENO.04927-41-01 FIG.3 DATE 7 -IS -93 �T I] C -4 M 7� 'T1 rn 0 _.--- -- - -- ----- — -—. ^��6i•--'�'- 1. � _._ . w .< •♦ .. •1 ,.• q., •• M• of .r•: - .. �• -. � • .♦1 `:.� .� r ,� .f ,. Y---�) •.• •� .w, .w. v• .• ,e:�!': :"_::� :. •_ _.... _.. .. __.. - .-�-._- .-..��_ - _. rY._._ •'�.--r---'�__^ .._.. . _..-_ �T�'^�'� �►'n:_. .._ .-.•.�.:� .rw.r: m. - ..._ I _.._ _ ,.. �1� ..1 -. _.r .. 4:1 rf 4 _ . 79 ell 816H WA r -SOU TH % / r �'y. It .' ... •{ �• •7:f,{.h f L t ,, 1.1.••f. ;,.,t+.: %; 40 . •�. ��, ii. •.',••t-• .:. ♦• —� 10 " J P �' •� �� a ILEI • ... ^ 1 ♦ Of YS[ GI►OVNO cnvfR o + - •.. ,, O \ , _ ..• ♦' .� . '` • -"�� 0VEC Te r/�.Q • •, e: ...• 1107` ����2'�-.! •a. �O% LL' Ft7- �t�• ; - +.4 q - . y 1�� oAs %Q r 1'•` 4f x I y ku DED SWALE, E !SUPPLE TAL BI SE 1.5 el az 1 TO _ E N 6 -i0 - QI' 'fE�trTE °AT L --TIMERS UIQ ESS QV VAI EW Q i1p1'• b /a?r i 1111 eb a\ a P _.:� \ 6! (.•• S as oa• ��� ns.•' �.J ` 1' ♦ ADUNG COV[/ 1 r0„'. � ¢ ••.• •'• I 111' �� i• �--”-� •o•, v` ,e \ 711 "' '' •° ' - -- °' "r .�/ :I ;f 9�� i I "mss---- ' ' � - — -- ; ,:,.,. •� .` - ` -: tib ; I I 1 ��� � ��••��—----__—_♦.♦ � a r_ Lnt• •yes• �J�1 nre �I'.,f � � J� .` I n-,•�.�1 11/) � '' '`1 —.-- +. O 100' 200' 300' SCALE: I"= 100' RANPAC ENGINEERING CORP. eF'4^H "AHK 27447 Enterprise Circle West '7r Temecula. California 92390 SEE SHEET NO. 1 Tel (714) 676-7000 SUBMITTED BY DATE: 61 -el RE6ISTERED CIVIL EN61NEfR N0. 3092T eo EXP- 3/311/91 _ Z/S \_N gNNE L , y,S A. CO{\yam\ a.• t s f N79• pro —= EVISIONS RIVERSIDE COUNTY FLOOD CONTROL AND ,eev(sao GtAO/Nq ; A77 CA CONSERVATION DIST S7ZW1W arK /n/ e44JMA4&IrS HFCOMMENDED FOR APNHv Y EU BY R6V/f. nA9 PLANNING E HIEF ENG] DESCRIPTION PPR PR DAT DAT DATE: L1 P PO . a• '`' PMN—i ED 1N �, ' '.. •� rtd— —�_ • JUN 211993 W.O. NO. ,i3-5009-' County of Riverside ASSESSMENT DISTRICT' NO, ttiu PFCT ilo 050 AP a CHANNEL GRADING PLAN DR WING NO: TEMECULA CREEK DISPOSAL DISPOSAL SITE GRADING ~•` FOR TRANSPORTATION DIRECTOR ' STA.201+ 34.18 TO STA, 228+00.00 SHEET NO., . :4ic RIVERSIDE COUNTY,CALIF. DATE' l•?/9l 19 - OF`39AA B DensityTest Location Map 1 I M.D.C. VAI L, TRACT NO. 23172 I I I Highway 79 South 164 I 265 2 267 2 269 2 0 2 1 1 I 273 274 1 5 1 6 277 2 8 1 9 1 2 I 262 293 14 3 Ste- 2A7 2 8 2 9 I 291 - 292 293 294 245 2 6 291 248 299 I ->_-s-->_---------------a------------tea } + 531 —1;7- --F- 551 SSF _— �+708 - �- } 516 - + ++- ___. ___. - ___. ____._ _-. _._ __ -___. __+_-__---___— ________.___s..�-____-_ _____-__—_—___--r I 786 + S75 8Y 524 + 543 + 539 523 • yS6 537 535 SSJ 522 534 + + 619 X530 •� 8 541 54 J', 338 '',> 313 47 + + r + I + + f \ + �'P I + + + + + + 6:6 + + + 624 625 n 272 707 �b q� + + 210 + + 1 + + + 81 8: B3 8a + B5 189 ++ 6t1 B16 + 621 + + i + + + • b v. 126 + 127 255 ` '12B 129 + 244 399 91 + 394 + x 0 + 9p 190 613 191 523 297 W Sheet -2 of 2 64 467 ` 1 r 706 + + + +173 +422 `, +t75 �] + +176 + !B] + + 372 + + + B +1 + + +620 4T9 + } 1 I + + a 6♦' 259 + I e + B15 Ia8 + 179 + 4Qr`) + 104 + 3 1 0� + 1 1 Ila }q + e] 56b }a6 !32 + 3I4 J22 0 7 F/) �*�' + + of o1 0] 3.o Sa I 6]6 711 I -� + �) rJ + 694 • 70* 137 a10 823 3 + 179 ♦ ✓I f. /I /I + 3n o b'� + + + 290 1 549 / 1 + 177 426 176 -� J / J") I f -f I92 ri + 291 292 1 + 465 + + + + + + I + •3 /f J 13A 6'.5 + + :99 rIr 1 + + + 253 J9 393 4 + + + + :9. 617 732 9�} 709 + 643 133 ,34 95 9> 337 + I + + 42! 400 + + + + 323 + 708 + + + 648 125 258 + s06 9$ 94 + + 33339 3'.7 + J26 + I89 + 1 1 1 443 651 �] ♦ + 820 82 + + + + + + + ♦ 298 �9 + I + + 69, a + 7 257 396 + 113 a09 + 512 388 311 + +Sat + 618 * 2B �. 274 71 e `+ 2,1 + + + 106 + 3.♦ 6'2 / 293♦ 1 I * 64M • 171 + 702 42a 1 + + 413 4j247,+ 135 ,61 ♦ '�i 143 + 1C1 + + 3a5 + B 6 /f J + 71a J75 + + 326 T_ 1 6ti5 650 4.Y + + 41 3� 256 f) _1 1 4 254 411 % + y6> + J5, + 1 33 I + 697 6 • 1 + + • + 466 _ + 170 + + * apl ISO I + + 329 + + I i 676 C� 249 lab ♦ Ia5 93 � + 95 + + + + SJ6 /I ) + /I 680 + /// + + 70 + 252 �— + ICs f i.. A r ` 035 -f (�1 7, f I ]0, + + + 2 + 644 + 69 414 �^) r 369 + 3" -j J + 612 `J + iJ r 1 J + 295 19a ' + /^ 774 736 /� r 3I7 `J 1 O I I15 ty + 66 67 6B ` ' + B17 J 444 � + + 186 + 4,5 + + + + 531+ +2%� Z I 0682 1- /I 638 6J7 69B 160 14 404 1B7 + ]35 + v + + 188 ll0 + x +. 1 j� -I -f + ,BJ J �_ 15 a77 159 + 160 7� x ♦hb + 403 + + 390 + B•5 8f1 + BOI 771 T 7 7 315 + }16 333 + � + 1 2 I aaa 635 + 646 + 416 4 % 397 + 276+, I a51 � 65 4/- + + 64 % %b +419 + +,49 ice) (�� I I 1 + ]1 715 + 636 + + 26 r] + 420 417 + Ia7 + �b 1 �1 + 391 e 1 8' + J `l ` J J 715 + 311 + 334 + 117 I + 11 + + 6] r �) 699 + + 169 + 4IB 2� ` x + J92 _f + 82♦ + 62 _/� (r`1 + 810 + 11�, + 76B + }14 + Sys + 61 + 62 +553 670 + ( 1 68 /I fJ + `l + % ♦ �1 634 + 67 701 �` + 4 • 829 8.4 K BCS 3_0 + I 87 + + + : I J 45 — f J + . 9Y + TO] 250 1 2 + i 826 BN + * + 495 1 + 66 + + 349 + 806 + 789 766 11 + 720 + 303 • '4 + 475 + IB4 206 + 208 + 309 757 8 + + 30] A T82 f r 421 ��� + f + 350 M1 7 9 }11 7•,8 I83 304 1 + + + + I 157 J ) 18 + 819 + 8 5 ,L + % $ + + 7e: 2 2 4 + 118 ,1 4U 67, + + + �./ �./--r-j — + 7 + B1 3 l + 770 + 7y + 716 SIO 305 + 6 * 674 4B + ��� 165 ♦ 59 ��::` 30 614 723 + + 9 1 i' ,55 30 + + 156 16 �� + + Ja7 + 1 + + + + ♦ ? + I r �-,. 479 Ia7 a31 152 61p + + 'J06 J 4;B 1 _ _ 807 776- J 7n J + 1 453 47J 7, I + a + rl + 671 +/ IaB �' - - - + 760___ _ _�� `a8 + + + ;51 SIMI + 711 + 726 + 71a + 1 + 714 I+ a7+ 628 % ti 21 a70 + + 63 i ii— 363 + 362 + 675 �I- _ - _ -._ Y6 758"�__ J5J + �r o5 1� + 755 + �� �7 + 10 iN + 7 -- ■ 1 1 ,� 53 15a 30 + 797 i� ice% + 6 t2D + 629 +162 S r �. --�� �+ 7a1 752 1� 741 / + 476 + ♦BI + + - _ M')�� 749 74 + + + 878 161 +— 673 IS 365 J6a `_�_�_��. �� 725 + 1 7114 115 B n i aye 53 I i __ - _ + 795 + _�'� + + 119 + 6 632 . �b _— —_•-- 899 ]aA 742 + + 1 + +681 % + - Creek — �6J %i 744 +793 441 9� B - -_-_ '6B8 + + 6B6 + a�_. �� - _ _-` _-___ —7}9 a-,.. '67 + 7W 7)8 + 745 + 745 r + t --------- M lel M-1 191 Temecula 192 GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE 2 OF 13 193 194 195 1 2'i- 207 210 0 213 Channel 2. 216 217 218 9 LEGENvrD 972 APP1,,OXLUSATE LOCATION OF DENSITY TESTS GRAPHIC SCALE 100 0 50 100 200 aoo ( IN FEET ) 1 inch - 100 (L 210 J 1 790 9V 792 22, II t 223 r L 0 Ir* SWTST2.DWG 9-21-95 HIGHWAY 79 23r w @r 'If „— fiit?�h''a'�x . DETAIL "A' (POINT NUMBERS CORRESPONDS TO BOX CULVERT, V1 & V2) HIGHWAY GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 3 OF 13 o% SIB ,�o�„�I� f�' � 3 „y r., DETAIL 'B” Density Test Location Map (CHANNEL IMPROVEMENTS) SOU TH 79 SOUTH (POINT NUMBERS CORRESPONDS TO ASPHALTIC CONCRETE, BASE GRADE, & SUBGRADE ALONG HIGHWAY 79) 100' 50' 0' 700, 100' 300' SCAL£.• I" = 100' SEE DETAIL "A & B" FOR THIS AREA 1- 7 05 .C. W.D ELL N0. 120 f 229 --1----------------------------- --•------------------ I I I I I I LEGEND 972 - APPROXMATE LOCATION OF DENSITY TESTS SHEET 1 OF 5 mw I 1 I I I I ---------- IIA_TSTI.DWG 9/6/95 �Jr9-1C323�l22+ 3J7 20 �kl lJ�!-!7 !2-313 7B7�� I'' 3138 31, 288 + JJs BO 3 114 115 116 Z J 267 ,7 26 �'� +IBY2'2ij�71� 69 'y „ ,f 79077, .7L2 7j '�* 61 I 7 )91 e , 3 J 9r J � 760 259 GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 4 OF 13 4 130 1,9 277 ]2 I W z J 117 119 TEMECULA 0 119 121 122 Density Test Location Map (CHANNEL IMPROVEMENTS) CREEK 72� 725 \ 126 123 100' 50' 0" 100' 200' JOO SCALE.• 1" = 100' CHANNEL 127 129 129 T' 130 131 132 133 773 LEGEND J W z z 5 li 0 z P N X W I J U + +fir/ 2Bara 972 APPROXD.4ATE LOCATION OF DENSITY TESTS SHEET 2 OF 5 4 W, z J 316 k 316 I►1_TST2.DWG 9/6/95 +447 *445 +�y +�•J +J97+Ni +,,y 402 2B 39 4%8 *++ + 401+2 �•1 J a ' 4,3 i 407 + +fir/ 2Bara 972 APPROXD.4ATE LOCATION OF DENSITY TESTS SHEET 2 OF 5 4 W, z J 316 k 316 I►1_TST2.DWG 9/6/95 SHEET 3 OF 5 Density Test Location Map ( CHANNEL IMPROVEMENTS) GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 5 OF 13 100' 50' 0' 100' 200' 300' SCALE.' I" = 100' LEGEND 972 - APPROXIMATE LOCATION OF DENSITY TESTS iM_TST3.DWC 9/6/95 193 191 179 l78 GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE- OCT. 1995 PLATE: 6 OF 13 Density Test Location Map TEMECU'L.A ( CHANNEL IMPROVEMENTS) 1 f2'2 CREEK 1'9 ��7 1BB m IB+ 1B5 1B6m r �1� 460 '77, 373 NNII 100' 50' 0' 100' 200' 300' SCALE: I" = 100' 190 191 l ft3s3 353 ,a. j_209 CHANNEL `A 195 _9319• 193 � w� U +}7Q 3 ID 213 �5, - 19, 227 71� � 2< . 2-0 22. SHEET 4 OF 5 IDl r2D �'h DZ zqg '217 i .SS 5 � j 203 204 205 202 zo Zo, e m eo7 Zoo Ciy 6 199 p ♦ N LEGEND 972 - A-PPROXIMATE LOCATION OF DENSITY TESTS 4 IM_TST4.DWG 9/6/95 J TO GEOTECHNICAL & ENVIRONN Density Test Location Map ( CHANNEL IMPROVEMENTS ) DENSITY TEST LOCATION MAP 3 TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 7 OF 13 SHEET 5 OF 5 ti 100' 50' 0' 100' 200' 300' SCA IE.• 1" = 100' LEGEND XIMATE LOCATION OF DENSITY TESTS iM_TS15.DWG 9/6/95 Density Test Location TEMECULA CREEK Map Sheet 1 of 4 N O Z x 4 � b x14 f l x raJ 'R� x r� 12� �2a 125 I — 122 !1 i21 t Z — 133 N 9 — — 134 116 112 nB g 735 1J6 11!m 114 115 ry Creek J, 2 N S 13B 139 Ia0 tat a a n e Channel TZ Temecula u + + + a) b++ b U) s x GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP ' TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 8 OF 13 GRAPHIC SCALE 100 0 50 100 200 a00 ( IN FEET ) I inch - 100 (t_ LEGEND 972 APPROXIMATE LOCATION OF DENSITY TESTS W (1) U) EMBANKI DAG T40 T- 0 Z Ilj I EGEOTMLNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP ECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA 22530122 DATE: OCT. 1995 PLATE: 9 OF 13 l Temecula GRAPHIC SCALE 100 0 s0 loo 200 ( IN FEET ) I inch = 100 fL .C,0 er ' so Sheet 2 of 4 ICVI) ♦E, —772 73 •tB T IE5 rW 1 Channel C LEGEND =kppROXI%,LNTE LOCATION OF DENSITY TESTS EMBANK2.DWG {L' 6 l� IV lel IV EGEOTMLNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP ECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA 22530122 DATE: OCT. 1995 PLATE: 9 OF 13 l Temecula GRAPHIC SCALE 100 0 s0 loo 200 ( IN FEET ) I inch = 100 fL .C,0 er ' so Sheet 2 of 4 ICVI) ♦E, —772 73 •tB T IE5 rW 1 Channel C LEGEND =kppROXI%,LNTE LOCATION OF DENSITY TESTS EMBANK2.DWG y. ,e !v EGEOTMLNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP ECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA 22530122 DATE: OCT. 1995 PLATE: 9 OF 13 l Temecula GRAPHIC SCALE 100 0 s0 loo 200 ( IN FEET ) I inch = 100 fL .C,0 er ' so Sheet 2 of 4 ICVI) ♦E, —772 73 •tB T IE5 rW 1 Channel C LEGEND =kppROXI%,LNTE LOCATION OF DENSITY TESTS EMBANK2.DWG Density Test Location TEMECULA CREEK N O Z Map _ Ih Y i a o, oe co 195 0 19a � 93 O 9� N — 191 }, 187 Chan — 50 9 -' e I ,Aa XZ- -- Ba l� ie1 1F2 U)-79 178 Creek 177 __—„5 a+ - --- 74 ;,3 --- 172 Temecu a a -- x x a a y b 4 x -10 y a �— GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 10 OF 13 GRAPHIC SCALE 100 200 ( IN FEET ) I inch = 100 It + + 50 LEGEND 972 - APPROXIMATE LOCATION OF DENSITY TESTS . ,. + ')S Sheet 3 of 4 50 + SS a 5• "1 a� C- �I / W EMBANK3.DWG Y '7J + + 50 LEGEND 972 - APPROXIMATE LOCATION OF DENSITY TESTS . ,. + ')S Sheet 3 of 4 50 + SS a 5• "1 a� C- �I / W EMBANK3.DWG 0 z 'I6 + I 4 SS ^-^`B ^W W i SB rs� 59 GEOTECHNICAL &, ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 11 OF 13 Temecula {so Density Test Location TEMECULA CREEK i2 71] Cree % 1>S % t>b Bs LEGEND 972 APPROXIMATE LOCATION OF DENSITY TESTS Map GRAPHIC SCALE 50 100 200 ( IN FEET ) 1 inch = 100 ft. Sheet 4 of 4 EMBANK4.DWG 1B b 1 + I 4 SS ^-^`B ^W W i SB rs� 59 GEOTECHNICAL &, ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 225301.22 DATE: OCT. 1995 PLATE: 11 OF 13 Temecula {so Density Test Location TEMECULA CREEK i2 71] Cree % 1>S % t>b Bs LEGEND 972 APPROXIMATE LOCATION OF DENSITY TESTS Map GRAPHIC SCALE 50 100 200 ( IN FEET ) 1 inch = 100 ft. Sheet 4 of 4 EMBANK4.DWG Density Test Location Map 0 M W J U I^\ IN V 100' 50' 0' 100' 200' 300' SCALE: 1" = 100' F HNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 12 OF 13 LEGEND 972 - APPROXIMATE LOCATION OF DENSITY TESTS RW_TSTI.DWG 9/6/95 ( RETAINING WALL) TEMECULA CREEK CHANNEL - 125 t26 i2 7 t28 129 _-- 130 tat 132 144 123 ,24 t33 34 143 135 142 t22 12t + 730 137 138 139 140 141 1 0 "'� N + 119 N 8 0 1 + 117 116 N 1t5 O it`s 114 00 0 o =� cel r 3 76 5 4 17 q 46 79 37 67 38 4 53 1g 47 2p 48 27 47 �2 4 49 22 Sp 23 6 6 36 6 2 11 42.68 61 35 + 31 8 60 34 68 RETAINING WALL 32 9 59 33 10 29 58 28 57 3p 27 6 1 24 25 �52���5 56 755 44 0 M W J U I^\ IN V 100' 50' 0' 100' 200' 300' SCALE: 1" = 100' F HNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 12 OF 13 LEGEND 972 - APPROXIMATE LOCATION OF DENSITY TESTS RW_TSTI.DWG 9/6/95 Density Test Location Map , PRESLEY PROPERTY_ 235 '-- ; " � sov�N 21 P� 2,0 + vj / { JS 67 + 66 — 68 / + 36 109 + 30 + IN i / + + + 110 59 + 52 51 1 = 201 37 _ 60+ 53 + 31 + 76 + + + 77 + 07 + + 32 111 106 i- 69 + + + 50 3B } 55 } St IJS / Qrj + + 49 + 78 2 / + + + 33 61 +73 4 at 52 { + 106 + + 134 71 103 34 + 70 74 { / + 57 + a] 75 i 201 /.- ++ 80 + 46 56 2 1 + + +40 + + 86 85 89 72 -�� + +65 + 19 i el + 1$ 9 + + 87 17 88 90 } + + 41 133 82 + 91 + + 63 + 48 83 + 93 92 + + Ba 64 } 94 GEOTECHNICAL & ENVIRONMENTAL ENGINEERS, INC. DENSITY TEST LOCATION MAP TEMECULA CREEK CHANNEL IMPROVEMENTS AND DISPOSAL AREAS RIVERSIDE COUNTY, CALIFORNIA WORK ORDER: 22530122 DATE: OCT. 1995 PLATE: 13 OF 13 EM�Gv� + 1+ 132 101 +25 + 98 + IU 2,9 2fe / / GRAPHIC SCALE loo 0 so 100 200 400 ( IN FEET ) I inch = 100 (t + 101 + 105 + 131 + % 99 + + los la „4 116 + 97 + 150 + 100 117 + + 129 115 + 118 + 119 + + + 123 124 115 + 127 } 120 126 �f + 126 + I 9 1 ''- + 121 i 122 REEK !\ _ j. LEGEND 972 - APPROXIMATE LOCATION OF DENSITY TESTS 136 35 N / r / 24 j 23 + 22 + + 29 _ J -� } 7 + + 19 28 + + 6 + 17 27 4 + + 20 2 26 + + 5 I + 21 +8 + 12 9 + + + + 25 11 10 13 + IS + 16 u / 225301PR.DWG 9-14-95