Loading...
HomeMy WebLinkAboutTract Map 23103-2 Drainage Report June 6, 2007t 1 1 PRELIMNARY DRAINAGE STUDY Vinyards View Estates TENTATIVE TRACT NO. 23103-2 TEMECULA, CA. Revised JUNE 6, 2007 Revised MAY 7, 2007 Revised APRIL 9, 2007 Revised MARCH 7, 2007 Revised JUNE 29, 2005 JUNE 169 2005 PREPARED FOR: VINEYARD VIEW ESTATES 8555 AERO DRIVE, SUITE 305 SAN DIEGO, CA 92123 858 -505 -0435 PREPARED BY: MAY Group, Inc. 8555 Aero Drive, Suite 305 San Diego, CA 92123 Phone: (858) 505 -0435 W.O. 127 -01 /r`(j MAY GAOUP,-lNC. / BY: PHILIP E. BROWN, P.E. R.C.E. 18679 REGISTRATION EXPIRES 6/30/07 NO. 18679 Exp: 6/30/ f i I I F 1 [1 1 1 1 1 1 I TABLE OF CONTENTS P Pa,e No. Introduction 1 Project Summary I Existing Conditions and Background 1 Project Description 2 Discussion 3 Hydrology Methodology 3 Determination of Runoff Coefficient 4 Determination of Time of Concentration and Intensity 4 Determination of Area 4 Conclusion 4 LIST OF FIGURES Figure 1 Vicinity Map 6 Figure 2 Hydrologic Soils Group - Bachelor Mtn. 7 Figure 3 RCFCD Manual Plate D -3, Time of Concentration 8 Figure 4 RCFCD Manual Plate D -4.1, Intensity/Duration Data 9 Figure 5 RCFCD Manual Plate D -5.4, Soil Type D/Runoff 10 Coefficient .Figure 6 Velocity Discharge - 36' Roadway 11 Figure 7 Velocity Discharge - 86' Roadway 12 APPENDIX A Hydrology Calculations, 10 and 100 year storm frequencies "Drainage Study, TM 23209, Butterfield Stage Road ", 8/15/03, for Shea Homes, By May Group, Inc. APPENDIX B March, 2007 Revisions ATTACHMENTS — ENVELOPE Hydrology Map — Vineyard View Estates Master Developed Hydrology Map - Margarita Village (portion) INTRODUCTION The purpose of this drainage study is to determine the proposed condition hydrology for Tentative Tract No. 23103 -2, in the City of Temecula, California PROJECT SUMMARY Upon build out of Vineyard View Estates, the quantity of storm water runoff is estimated to be: Line "D "* Line "E "* Line "F "* Clinet & Butterfield Stage Road 10 vear storm 100 year storm n/a 39.6 CFS n/a 159.4 CFS n/a 197.6 CFS 6.6 CFS 10.2 CFS *Reference: MARGARITA VILLAGE, T.T. 23100, 23101, 231021, HYDROLOGY CALCS, 100 YEAR AND 10 YEAR FREQUENCY, PREPARED FOR COMMUNITY SERVICES, 11/9/88, REVISED 2/28/89, referred to herein and in supporting documents as "Margarita" EXISTING CONDITIONS AND BACKGROUND In the City Of Temecula, County of Riverside, State of California, the site of Vineyard View Estates is a triangular shaped, vacant property containing 18.3 acres bounded on the east by Butterfield Stage Road and Temecula Wine Country, on the south by the fully improved street, Chemin Clinet, and on the west by single family residential ' subdivisions. Access from the westerly subdivisions is provided by Ahem Place. The topography is rolling terrain crossed by what in the past were three well defined, east ' to west trending watercourses, dry except for the rainy season. Storm drains in place of ' the two northernmost watercourses were installed as part of the recent (1993) i construction of Butterfield Stage Road. The third, or most southern, had been replaced by 1' a 36" storm drain several years ago. The site is covered by a low growth of wild grasses and overlooks the Temecula Wine Country lying east of Butterfield. The Wine Country to the east is likely to remain an agricultural preserve for many generations. A residential use of the property has been planned for more than twenty years and the site was incorporated in the drainage study referenced above. 'I PROJECT DESCRIPTION 'l Implementing a portion of an accepted community master plan, Vineyard View Estates is an "in- fill" project of limited scope consisting of 36 single family residential lots on 18.3 acres. Upon build out, the lots will be served by a fully improved infrastructure consisting of paved streets with curbs and gutters, sanitary sewer and water systems, and all utilities. Lot sizes are a mix of medium and low density. 2 DISCUSSION The referenced 1988 "Margarita" drainage study addressed the hydrology for the master planned community and the site of Vineyard View and, most importantly, the storm water flows within the three defined water courses that cross the site. The current hydrology is essentially an amendment to "Margarita" occasioned by the property's boundary being defined by surrounding development and a revision to the lot configuration resulting there from. Since its completion, the "Margarita" drainage study has been the hydrology for the design of most if not all of the drainage improvements in the existing development west and downstream from Vineyard View. Too, it is the primary hydrology for the recently completed Butterfield Stage Road extension along the sites east boundary. Accordingly, the hydrology contained in this study is limited to only that needed for the development of Vineyard View Estates. HYDROLOGY METHODOLOGY The detailed hydrology calculations for the project are attached in this study. For 10 and ' 100 year storm events, the rational method as defined in the Riverside County Flood ' Control District's Hydrology Manual is used, Q =CIA; i.e., quantity of runoff (cubic feet per second) = runoff coefficient X rainfall intensity (inches per hour) X watershed 'I tributary area (acres). 11 ' 3 DETERMINATION OF RUNOFF COEFFICIENT In accordance with the Manual, runoff coefficients are dependent on soil type and the proposed land use of the basin. For Butterfield Stage Road extension, the runoff coefficients are for Soil Type D, paved areas and single family residential, '/4 acre lots. DETERMINATION OF TIME OF CONCENTRATION AND INTENSITY Average rainfall intensity, "I", in inches per hour is based on a time of concentration (Tc) of the contributing storm. Total time of concentration is the time required for the storm runoff to flow from the most remote point of a drainage basin to the outlet point and is selected from the Manual Nomograph. The rainfall intensity is from the Manual, that of Murrieta, Temecula, and Rancho California. DETERMINATION OF AREA "A" is the drainage area, or drainage basin, and is determined based on the path the rainfall will take when running downhill. The delineation between basin marks where the water will flow in varying directions. All the rain falling within a basin will typically flow to the lowest point of the basin. CONCLUSION To allow for the grading of the site and its development as Vineyard View Estates, storm water runoff must necessarily be collected and controlled in a system of permanent and temporary storm water management facilities consisting of paved streets with curbs and gutters and storm drain inlets which in turn connect to the existing storm drains passing under and across the site. Given that these measures will be taken in compliance with 4 City of Temecula and Riverside County Flood Control requirements and consistent with accepted engineering and construction practices are taken, Vineyard View Estates can be developed and it and downstream properties kept reasonably free of flood hazard. IN. 1 .J. -Ml'i%/ :7 A- 67 G FAI 1 -4 W= J ------ rl 1 -7 c jJ D -zc ;Z! C' R4t :,Yc� I 3,-], i t r IF IV l ac. c 9c, Zc 2c DP sc Vc 0 c q� L I 6 a c Q c R, Br giz, (PECHANGA) 2 cc sc ac ' -c ac E— END HYDROLOGIC SOILS GROUP MAP SOILS CROUP BOUNDARY FOR A SOIL-5 CROUP DESIGNATION R C FIC & W C D BACHELOR MTN. 0 FEET 5000 PLATE Length (L) of Initial area in fiat N\ -- -1- M -0J oOn . s 10 0 O O O O O C, 0 0 ) — v 0 Time of concontration`,, (Tc) in minutoo for epocial develops ont T ` _'r_rr 1'TP-It r-1 r - rrr -'rr `.r-n -, r -- -~ 0 J am 10 �f A J ID IN O O O rn yyrJ Ipp- r �C7cj n_ cl I�M -(a� �\� li ®velapn gnt ar Zoning (to u 3 . . rcont� a of 6mpervloue Cover(PoI) u It It U " cn n IIIfTerenre I ®lavutlnn ((H) In feet wee enla of IldUul ar'a -p ;; b_ N b f ' T�IT11T1fi -rf�rY r7 Y IrIritl 'rI W1 E� %:. � � � y 7c bl yc �A - f*1 m 3 II 3 it `� b �iihii�i j g 75 0 Am ,8 R 3 \^ -1 v $ �� > O g' pi r' „ UI 1 Iv 10 \ lb cn si iB 06 �1 ( Tn � i V\7) zj Lai, t I 1 I I I.� I.t .t I r twt._� Iy�.1 J ► L>_l. LA T`'r�' Time of concsnimilon (Tv.) In minutes for .Ingle Family OvIblopmeill (I/iAcra �- MIRA LOM6.- / -- bUTATION' `FftOUCNCY ` MINUTES 10 100 YEAR YEA, a ! Myl'i_ z 4 2.51 C_.L 7 I._ 3.76 t 2.21 3:49 r 2:06 3:21 C 1.96 a - D r MIRA LOM6.- / -- bUTATION' `FftOUCNCY ` MINUTES 10 100 YEAR YEA, a ! a z 4 2.51 C_.L 7 I._ 3.76 t 2.21 3:49 r 2:06 3:21 It 1.96 D D ,1.47 o pDry It 6 1.611 A 1:71 l.74 14 OI 2.46 IS 1.54 MIRA LOM6.- / -- bUTATION' `FftOUCNCY ` MINUTES 10 100 YEAR YEA, a ! 2,64' 4,40 4 2.51 4.67 7 2,37 - 3.76 t 2.21 3:49 9 2:06 3:21 It 1.96 3.11 11 ,1.47 t.9f It I:TS 1.611 13 1:71 l.74 14 1.64 2.46 IS 1.54 1.56 16 1.53 2:42' 17 1:40 1534. 16 1:11 1.27 19 IT 40 3:21 24 1.26 1.15 22 1.29 2.04 24 1.24 1.95 26 1:16 1.07 20 1:14 1.90 - 30 --.1.1.0_.. 1.73 32 1.06 Ii6T 34 1.03 1.62 . -- .,,16._ -,_L. 00 1.57_ 35 .97 1.53 40 .94 1.49 45 .69 1.40 '50^ '• .44 '1.32 -- ' 55 ';ry f -.I IF 60 ;T¢ lire 65 .73 1.15 70 .To 1.11 7s .6e 1.07 60 .65 1.03 95 .63 1.06 SLOPE - .530 NFALL INTENSITY - INCHES PER HOUR M 11 IETA - TEMECULA RANCNO CALIFORNIA DURATION - FREQUENCY MINUTES MINUTES 2.11 ).46 IS 160 100 YEAR TEAR YEAR S - 4.2]' 4 3.12 4.61 7 2.51 4.24 1 2.67 3.94 .. 9 2.S0 3.61 It 2.36 3.40 It 2.24 3.10 it 2.13 3.1s 11 2.64 3.01 14 1.96 2.19 14 1.09 2.19 14 1.62 2.49 3.44 1.16 2.11 Is 1 2.99 19 1.64 2.45 - 116 1.61 2.30 22 1.53 2,26 E4 1.45 2.19 as 1.34 2.06 20 1.34 l.9e . .30 1.29 1.96 32 1.24 1.44 34 1.20 1.70 -36 - - -- 1.17 1.72 - 30 1.13 1.67 40 1.10 1.62 45 1.03 1.52 - So_ __.97 _. '- 1.44 Ss .92 1.36 60 .84 1.30 65 .64 1.24 70 .61 1.19 is .70 1.15 s0 .75 1.11 as .73 1.07 SLOPE - .550 NORCO DURATION' FREOIiENCY MINUTES 10 100 YEAR YEAR S 6 e 9 to 11 12 13 14 15 16 17 16 19 20 22 24 26 21 30 32 34 36 39 40 45 50 55 60 65 70 75 60 as 2.52 3.79 2.24 3:111 2.19 2.29 2.61 3.10 1.96 2.94 1.67 2.60 1.79 2.46 1.72 2.50 1.66 2.41 1.60 2.40 1.55 2.32 1.50 2.25 1.46- 2.14 1.42 2.13 1.39 2.00 1.32 1.90 1.26 1.90 1.22 1.42 1.17 1.76 1.13 1.70 1.10 1.64 1.06 1.59 1.63 I.SS 1.01 1.51 .96 1.47 .92 1.39 .e4 1.31 .84 1.2% .40 1.20 .77 1.15 .74 1.11 .72 1.07 .69 1.04 .67 1.01 SLOPE - .500 PALM 4PRI1405 DURATION FREQUENCY MINUTES 2.11 ).46 10 100 -•,;;''..h% YEAR YEAR S - 4.2]' 6.76 t 3.00 6.06 7 3.46 S.S6 t 3.22 5.15 9 3.01 4.11 10 2.03 4.52 11 2.67 4.21 12 2.54 4.07 13 2.43 3.60 14 2.33 3.72 IS 2.23 3.51 16 2.111 3.44 1? 2.11 3.32 14 2.61 '3.22 19 1.95 3.12 20 1.09 3.03 22 1.79 2.66 24 101 2.12 26 1.62 Z.60 24 1.56 2.49 30 1.49 2.39 32 1.44 2.30 34 1.39 2.22 36 1.34 2.15 36 1.30 2.09 40 1.27 2.02 45 1.16 1.49 so 1.11 1.76 55 I.Os 1.66 60 1.00 1.60 65 .95 1.53 70 .91 1.46 is .66 1.41 40 .65 1.35 65 .62 1.31 SLOPE - .580 PERRIS VALLEY OURAIION FREOUENCY bINUTES - 10 100 YEAR YEA - 5 6 7 e 9 l0 It 12 13 14 15 16 17 "" 16 19 20 22 24 26 2e 30 32 34 36 36 40 45 50 55 60 65 10 75 90 e5 2.64 2.11 ).46 2.24 - 3.21 -•,;;''..h% 2.09 3.0 1 1.98 2.64 1.50 2.69 1.79 2:57 1.72 2.46 ?' 1.65 1. 59 2:37 2.29 1.54 2:21 1.49 2 . 14: 1.45 2.04 -� 1.41_ 2.02' 1.37 1.97 1.34 �- {1 •,, 1.26 1.83 1.22 1.75 1 .11 1 .69- 1.13 1.63 :-•` 1.10 1.57 1.06 1;52 1.03 1.46 1.00 1.44 .94 1 . 40 .95 .37 .96 1.29 .es 1.22 51 1.17 -Fv? 76 1.12 75 1.06 /2 1.04 70 1.00 66 ;97 .66 .94 SLOPE - .490 %i't FA 6 5 4 3 2 0 t 0 2 5 4 rm, 6 PLATE D-5.4 .S- .8 .7 R 5 4 WINNOW F11 WEEK • m I&A ml 91 91 14 t fliffilliff nu al WWI Ew ME WE ff■ aw Kim. will ■ EWERS rF fullum urm as� U • COEFFICIENT CURVES'i SO(L GROUP-0 COVER TYPE-URBAN *LANDSCAPING AMC-I[ (RUNOFF INDEX NUMBER 75) 1llA11KE1EEEE NEURON Jr ZW_ ImiKENWill NEWSOM EKW111 illl!llll!llll!llll 0 t 0 2 5 4 rm, 6 PLATE D-5.4 .S- .8 .7 R 5 4 10 9 a t 3 4 3 2 10 9 N e n- w a 1 3 �. 4 U 3 O 1 W 2 0.9 0.0 0.) 0.6 0.0 0.4 2 3 4 3 6 i 10 I3 20 23 30 40 00 60 m m0 wu - DISCHARGE —C.F S. (TOTAL FLOW IN STREET) RCFC & WCD HYDROLOGY IMANUA! RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No.105 36' ROADWAY 6 "& 8 "CURBS PLATE D-7.6 C m 9. 4 T -r a.. 3 2 '3'a�w t _ 65 - 8 2 r 26' 8 1 IS ° LS % t 0.4 so . roo - �Teo .mo � . -xo 7400 !oo OJG. eoO �:IODO Q N ,I m• CALCS, 100 AND 10 YEAR FREQUENCY ", COMMUNITY ENGINEERING SERVICES, 11/9/88, REV. 2/28/89. HYDROLobY )MANUAL RfirioNAL METHOD CALCULATION FORM PROJECT VnE dfo� 1�57� lef — CaIcvIPIed by ;�E(3 6, //6,/0,4S- FREQUENCY Checked by`-- --- --- -p�Y�- -- DRAINAGE S Sall !A A A ; ;11-4 C C A A Q T T Q R RD I ION v v L L T T E E T REMARKS 3 34- 1 10,5 - ee71 4 4.5 ° °' ,qo\� 0 01 - �c� 32 L =3c -- � od e e37% J _ - -_ JA J © ©oT A AG = o o s 30-3/ . .➢,SF.ees o o5 2 2`° �� � �a�'� ° °�'� Coll l 7 e 4 v is PROJECT HYDROLOGY MANUAL RATIONAL METHOU CALCULATION FORM FREQUENCY S�a9G Aea) d Sheol No.2 of _,ShealE Calculated by _-.-_------TSXT7.-- Chocked by----------- 5XyE--- DRAINAGE AREA Sou & Dovetopwrit A Acres I In /Ix C AQ CFS S Q ImoptWECTION CFS FPS FT. T I MIN. ET - RENIARKS A d US / If/ SR. o . Cc7m �riE —f, — --� - -- �c ICSIR (F A23 a o = /SS. 5 / 2, ¢ , = 3(0. /oa /59.4/ 2.B 55�" 2/•8 SOCK 25.6 - pE 2 d f CFS a // /z rl a G - ¢ min. =2, 73G{s 8Fs vda 16 2 Cyicy - =6. / -9SS,/ �•8/ — s i fogy-G - I - -- p LL- - / 47� ?3.. C v t ry I I HYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM Sheet Na-5 of ;sheets ,��✓ 3�2�0 ��'�/3 3�2�a PROJECT/) e- �ai"ds Calculated by FREQUENCY Checked by - - - - - - - - - - - DRAINAGE AREA Se+1 ® Development A Acres I In /hc C A CF$ a o CFS SLOPC SECTION a FPS I- FT. T MIN. E T REMARKS ?o -37 SF2es O,S 2 A� ffP �2 .1� A 7 `� 5 reef — lerll P /acef cJ66) oaoe wAPPENDIX A m i m m = m = m m r m m m m m PRELIMINARY DRAINAGE STUDY BUTTERFIELD STAGE ROAD TM 23209 STA. 160 +00 TO 186 +00 TEMECULA, CA AUGUST 15TH, 2003 PREPARED FOR: SHEA HOMES 10721 TREENA STREET SAN DIEGO, CA 92131 PREPARED BY: MAY GROUP, INC. 8555 AERO DR, SUITE 305 SAN DIEGO, CA 92123 W.O 107 -02 MAY GROUP, INC. BY: PHILIP E. BROWN, P.E R.C.E 18679 REGISTRATION EXPIRES 6/30/05 1 1' -�i I 1' 1� 1� i� 1� 1� I1 1� 1� 1) 1� 1� 1� 1� 1� 1� TABLE OF CONTENTS Introduction Project Summary Existing Conditions and Background Project Description Discussion Hydrology Methodology Determination of Runoff Coefficient Determination of Time of Concentration and Intensity Determination of Area Conclusion LIST OF FIGURES Figure 1 Vicinity Map Figure 2 RCFCD Manual Plate D -3, Time of Concentration Figure 3 RCFCD Manual Plate D -4.1, Intensity/Duration Data Figure 4 RCFCD Manual Plate D -5.4, Soil Type D/Runoff Coefficient APPENDIX Hydrology Calculations, 10 and 100 year storm frequencies ATTACHMENTS — ENVELOPE Hydrology Map — Butterfield Stage Road extension Page No. I 1 1 2 2 3 3 3 3 4 5 6 7 8 1' 1 1� 1' 1 1� 1' 1� 1� 1� 1 1� ,I 1� i� 1 1� 11 INTRODUCTION The purpose of this drainage study is to amend the existing hydrology for Margherita Village dated 11/9/88, revised 2/28/89, to address the affect of new construction of Butterfield Stage Road extension, approximately 2600 lineal feet half width north of Chemin Clinet, City of Temecula. PROJECT SUMMARY Upon completion of the Butterfield Stage extension, the existing hydrology is amended: For a 100 year storm event: West of Sta. 171 +25: Q100 = 26.0 CFS West of Sta. 177 +08: Q100 = 13.6 CFS For a 10 year storm event: East of Sta. 179 +00: Q 10 = 4.3 CFS EXISTING CONDITIONS AND BACKGROUND The construction of the extension of Butterfield Stage Road is through vacant rolling terrain along a dedicated right of way immediately north of Chemin Clinet, Tract 23100- 3, to the partially improved Road in Tract No. 23209. The new construction forms the westerly boundary of the Hart and Callaway wine vineyards. The right of way is covered by a low growth of wild grasses. Three relatively significant east to west drainage courses cross the Road, only one of which is improved with a 30" RCP storm drain. The hydrology for these is provided in I the Margherita Village hydrology as: Sta. 163 +00 (improved), Q100 = 33.9 CFS; Sta. 170 +00, Q100 =155.5 CFS; and Sta. 177 +00, Q100 = 193.1 CFS. PROJECT DESCRIPTION The extension of Butterfield Stage Road project will consist of the grading of right of way sufficient for the placement of twenty -four feet of asphalt paving and the installation PCC curb and gutter and storm drains, the latter both temporary and permanent . DISCUSSION The extension of Butterfield Stage Road is an "in -fill" project of limited scope partially implementing plans for the work informally prepared on various occasions in the past. The previous plans, though not approved, established an acceptable precedent. The existing right of way is a confirmation of the ongoing process to full completion of Butterfield Stage Road as previously planned. Since its completion, the Margherita report has been the hydrology for the design of most if not all of the drainage improvements in the existing development west and downstream from the extension. It is also the hvdrology the Butterfield Stage Road extension. The hydrology contained in this study is limited to only that needed for the design of peripheral facilities necessary for the management of stormwater runoff generated by construction of the extension. 2 HYDROLOGY METHODOLOGY The detailed hydrology calculations for the project are attached in this study. For 10 and 100 year storm events, the rational method as defined in the Riverside County Flood Control District's Hydrology Manual is used, Q =CIA; i.e., quantity of runoff (cubic feet per second) = runoff coefficient X rainfall intensity (inches per hour) X watershed tributary area (acres). DETERMINATION OF RUNOFF COEFFICIENT In accordance with the Manual, runoff coefficients are dependent on soil type and the proposed land use of the basin. For Butterfield Stage Road extension, the runoff coefficients are for Soil Type D, paved areas and single family residential, %4 acre lots. DETERMINATION OF TIME OF CONCENTRATION AND INTENSITY Average rainfall intensity, "I ", in inches per hour is based on a time of concentration (Tc) of the contributing storm. Total time of concentration is the time required for the storm runoff to flow from the most remote point of a drainage basin to the outlet point and is selected from the Manual Nomograph. The rainfall intensity is from the Manual, that of Murrieta, Temecula, and Rancho California. DETERMINATION OF AREA "A" is the drainage area, or drainage basin, and is determined based on the path the rainfall will take when running downhill. The delineation between basin marks where the 3 1� 1' 1� 1� 1' i� li 1� 1� 1� 1� i' i� 1� 11 11 11 11 1�. water will flow in varying directions. All the rain falling within a basin will typically flow to the lowest point of the basin. CONCLUSION To allow for the grading of the right of way and the partial construction of Butterfield Stage Road extension, storm water flows must necessarily be controlled in a system of permanent and temporary storm drains consisting of open cannels, lined and unlined, and storm drains of the type and size normally associated with road improvement. Provided these measures in compliance with City of Temecula and Flood Control requirements and consistent with accepted engineering and construction practices are taken, Butterfield Stage Road can be partially improved and it and downstream properties kept reasonably free of flood hazard. El VICINITY MAP N.T.S. S Length (L) of initial area in feet I� "< 8 N N N W W .P pw a1 N OD 10 - . 9 `% O O 8 0 00 0 g O 00 O 0 0 0 O � a r C) Time of concentration (Te') in minutes for special development I, a w m -+ m u► — w w 76 cn of .I m 4-0 w `61 � 0 0 0 0 0 D ® - c 17- r- 0— o rn cIP ° 2 n w 3 w r n 4 � d � M � o Ira — Development or Zoning (K) 3 3 M _ x O O �m fyirceMOpe of Impervious Cover(AI) 3 3 ^.' � w 11 n Difference i elevation (M) in feet b wean ends of initial area � I� o m' I 0 TM i i cpgl�g� T rn ro 0 ? 7C 7 N N Wi�lPA1� N W1 01001 0 00600$ O O 6 .V m 11 j II Q 40 d. d G _( 0 n o D C) ` c 3 r z cn M = C z n M -a w D ;a w :0 > O U O U O t�OJN 01 U A N_ O l8 m J M w M _ I-' it I D Time of concentration (Tc) in minutes for 'tingle Family Development (1/4 Acre) 70 _ A MIRA LOMA .Yi -. A- - - - - -- -- DIMATIG IIIJJJ • I MINUTES G1 K 10 100 YEAR YEAR . - TEMECULA CALIFORNIA NORCO 5 2.14 6.69 PERRIS VALLEY 6 7 2.50 l.37 _ 6.57 3.75 FREQUENCY DURATION FREQUENCY 1 2.11 3.69 IINUTES 9 2.69 3.21 MINUTES 11 106 is 109 10 100 10 1.87 2.95 YEAR r.,. 12 1.71 2.12 ... YEAR 13 l.n 1.7e 3.65 S.10 S 16 1.66 1.69 6.76 - 5 2.66 IS 1.39 2.56 4.61 6 2.S3 16 1.93 1.42 6.06 DT 2.41 17 1.44 1.14 4.24 - 7 ;.34 19 1.46 2.27 S.56 7 2.24- 19 _ 1.40 2.21 3.94 0 2.19 3.29 0 3.22 S.IS a 2.09 20 1.36 2.15 3.69 9 2.07 22 1.29 2.04 - 9 1.90 24 1.26 1.95 3.46 10 1.96 26 1.18 1.07 ' 10 1.80 2e 1.16 1.80 3.30 Il 1.07 - 30 - -- -1.10 1.73 ' Il 1.79 32 1.06 1.67 - Z 1.79 34 1.03 1.62 4.07 12 1.72 2.46 13 1.57_ 3.01 m 1.72 le .v1 I.S3 - Z 1.6s 40 .94 1.49 -. LA N 45 .89 1.40 3.72 16 I.S9 So- IS - 2.79 IS 1.60 2.40 Is 2.23 3.58 IS 1.54 60 .786 11..20 2.69 16 1.55 2.32 16 2.15 " 16 D 65 .73 1.15 r 17 m 70 .70 1.11 3.32 17 1.45 00 .65 1.03 2.92 is 1.46 as .63 1.00 3.22 18 1.41_ 2.02 19 1.66 _ 1 - + � 1.42 SLOPE • .530 1.95 3.12 19 1.37 1.97 20 1.61 2.38 20 1.39 2.08 20 1.99 O 20 1.34 1.92 22 1.53 2.26 22 1.32 1.96 22 1.79 2.66 22 1,22 1,83 24 1.46 4 RAINFALL INTENSITY- INCHES PER HOUR m m HURRIETA L RANCHO - TEMECULA CALIFORNIA NORCO PALM SPRINGS PERRIS VALLEY - OURATEOK -- FREQUENCY 'DURATION FREQUENCY DURATION FREQUENCY DURATION FREQUENCY MINUTES IINUTES MINUTES MINUTES 11 106 is 109 10 100 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR S 3.65 S.10 S 2 Y7 4 16 - S - 4.23 6.76 - 5 2.66 3.78 6 3.12 4.61 6 2.S3 3.79 6 3.60 6.06 6 2.41 7.46 7 2.61 4.24 - 7 ;.34 3751 7 3,66 S.56 7 2.24- 3.21 9 2.67 3.94 0 2.19 3.29 0 3.22 S.IS a 2.09 3.01 _ 9 2.50 3.69 9 2.07 3.10 9 3.01 4,61 9 1.90 2.64 16 2.36 3.46 10 1.96 2.96 10 2.63 4.52 10 1.80 2.69 11 2.26 3.30 Il 1.07 2.00 11 2.67 4.28 Il 1.79 2.57 12 2.13 3.1S 12 1.79 2.60 12 2.S4 4.07 12 1.72 2.46 13 2.04 3.01 13 1.72 2.56 13 2.63 3.00 13 1.6s 2.37 16 1.96 2.89 14 1.66 2.40 14 2.33 3.72 16 I.S9 2.29 IS 1.89 2.79 IS 1.60 2.40 Is 2.23 3.58 IS 1.54 2.21 16 1.02 2.69 16 1.55 2.32 16 2.15 3.44 16 1.49 2.14 17 1.76 2.60 17 1.50 2.25 17 2.00 3.32 17 1.45 2.08 is 1.71 2.92 is 1.46 2.19 is 2.01 3.22 18 1.41_ 2.02 19 1.66 2.45-- 19 1.42 2.17 19 1.95 3.12 19 1.37 1.97 20 1.61 2.38 20 1.39 2.08 20 1.99 3.03 20 1.34 1.92 22 1.53 2.26 22 1.32 1.96 22 1.79 2.66 22 1,22 1,83 24 1.46 2.15 24 1.26 1.96 24 1.19 2.72 24 1.22 1.75 26 1.79 2.06 26 1.22 1.82 26 1.62 2.60 26 1.18 - 1.69 28 1.34 1.90 28 1.17 1.76 28 1.56 2.49 28 1.13 1.63 30 1.29 1,91 30 1.13 I.TO 30 1.49 2.39 30 1.10 1.57 32 1.26 1.84 32 1.10 1.64 32 1.44 2.30 32 1.06 1.52 34 1.20 1.78 34 1.06 1.59 34 1.39 2.22 34 1.07 1.40 - 36 - - -- -1.17 1.7t- - -36 1.03 I.SS 36 1.34 2.15 36 1.00 1.44 78 1.11 1.67 79 1.01 1.51 3e, 1.30 2.09 35 .98 1.40 40 1.10 1.62 40 .99 1.47 40 1.27 2.02 40 1.37 45 1.03 1,52 - 45 ,92 1.39 45 1.18 1.89 45 .95 .96 1.29 SO- ..97- 1-.44 _ _ -50.. ...ee - 1.31 so 1.11 1.78 50 .e5 1.22 55 .92 1.36 55 .84 1.25 SS 1.05 1.68 55 1.17 60 .88 1.30 60 .90 1.20 60 1.00 1.60 60 .81 .78 1.12 65 .84 1.24 65 IT I.IS 65 .95 1,53 65 1.08 70 .BI 1.19 70 .74 1.11 70 .91 1.46 70 .75 1.04 75 .79 1.15 75 .72 1.07 75 .86 1.41 )5 .72 1.00 00 .75 1.11 00 .69 1.04 90 .65 1.3S 90 .70 1.97 95 .73 1.07 BS .67 1.01 85 .82 1.31 95 .68 .66 .94 SLOPE • .550 I SLOPE • .500 I SLOPE • .500 I SLOPE • .490 i HYDROLOGY MANUAL RATIONAL MET•OU CAi-(.,ui-/vrION FORM 'Iry ")-p PROJECT C a I r ul a I a d by FRFOUIENrY - - - - - - - DRAINAGE AREA Sell a Diovelopwrit A Acres YI In/ht C AQ CFO 1 0 CFS OLM SECTION v FPS L FT T M 114. ET DAY! REMARKS ').6 --'� 'ell ,7 'L�' Noo'ez5 /2- /3 5.7 A 7.5 Aloa,ce 16 - 2 16 Lx� I IYDROL05Y M,AHUAL RATIONAL MET11clu CALCULATION FORM she a I -N c: y of shim it- PROJECT 3Y -E3 Ca I c ul a I a d - y - - - - - - - Z 13 Kylt FREQUENCY C lie c k a d by - - - - - - - - - - - R n,i DRAINAGE AREA Soil a Devotopakent A Acres I lm/M C A Q CFO 1 0 CF5 01,13M MCTI ON v FPS L FT. T M114. E T ..REMARKS c C: HEIGHT OF OPENING (11) IN FEET r a rp 0 :jE �7 I 1- —1-11 > — --1 11 1 1 . I -1 O— lr� 4� G) , ra lif IG 11T 01 'PPEIIING pll IN INC H ES C-) 0 %4 I > 0 cl, GAPACI I Y PER FOOT OF LE-I!GTfl OF ()PEIJIQG (Q/I-) Ira G. r. S. PIER Fo O'f CD 'm t)) Cl) 61 -A L, -l-,I 0-1 L -L] 't 0 10 �o -u < 2 o RATIO OF DEPTH OF V,AFER A'r OPENING TO HEIGHT OF OPENING C) f Til 7J = m m = m m m m m m m m m = m m m m m 16 1. 2\A C. I DEVELOPER: SOILS ENGINEER: VINEYARD VIEW ESTATES, LLC 8555 Aero Drive, Suite 305 San Diego, CA 92123 858-505-0435 BY I DATE (17 REVISIONS A 2 V f0024 SY, 10659 S. F. 5 P ACS 98 28 12749 S.F. S r PAD=1293 10 EA-1 8035 S.. PAD=1300 18348 S.F. 27 6,K) I, � "POSED 54" PAD=1 295 0 E- AIN, 10992 SFl 26 n PA0=129 C 9 25 7276 PA D=1 PAD=1299' 1.05 C5-32 24 7222 S.F. \ ?gip PAD=1300 7798 S.F. T. )XI PAD=1300 At, 20 D=1310 78888 S.F. EXISTING 22 �, Q .51 OFS-- 11PAD=1300 DRAINAGE Q1 =pop 'l 7 �T 8W 10032 S.F EASEME 8W Q1 dO 1 CFS 20 VV A01 '-- 15 9. 4 PAD=1300 \ — AD= 1,313 A00 155.5 CFS TC=19.-l',MIN TEMECULA VINEYARDS 0 Q100= CFs AB T=9-0 MIN GS77NG 54" Q10=9 Q1007-1 X40 312 'N `41- 8702 S. Q1 1 fFS —8A)1MIN.Fv M, Op CAI 7" 6 PAD= 31 0, 21844 S.F. 0.5 AC. 5 PAjf 13 MI 0 11939 S.F. 588 S.F. 20* STORA4 DRW, EA SEMEN T *21AC. 17 4 5 "Op =1 PAD=1 312 PAD 1321 20455 Sl� 21 R 16 W --270.00' lak%� V I Q100= % D=08'29'17' ) I PAD=1310 TC= 7. IV 4 �q L=40.00' 9491 S.F. & '100, z 14 T- PAD=1 310 21255 S,F, SPACI- . ...... . ... ...... ... Tl�) — ,k9 CFS- RDED TRACT 23100-5 00 -8:7 ,--d FS PER MAP NO. 1.2 LEGEND AA HYDROLOGY REFERENCE: "MARGARITA VILLAGE, HYDROLOGY CALCS, 100 AND 10 YEAR FREQUENCY", COMMUNITY ENGINEERING SERVICES, 11/9/88, REV. 2/28/89. HYDROLOGY REFERENCE: "DRAINAGE STUDY, TM 23209, BUTTERFIELD STAGE ROAD", 8/15/03, FOR SHEA HOMES, BY MAY GROUP, INC. Q100=33.9 CFS- AA TC= 18.4 MIN 3 PADS--1319 24803 S,F, 2 PAD=1317 24799 S.F. r. 4.4 C. Q --6 -'b� 1 4z, CFS Q100=10. I:S� TC=20.8 MIN .................. 1�'v I 1-� ,TC*3.1 M11 ZONING: L. M.R. 4* 21843 SR PAD °1308 Sri - CHARDONNAY( HILLS PLANNING AREA 9 W 20' T RM DRA 16078 S.F. EAS'CME�NT R ISOM* EXISTING SPECIFIC PLAN 70NING. U' LOIA/ MEDIIJ110 JR ESiDENTIAL (L) 2 3 7. 1-y EXISTING RECREATION CENTFP 3 A.C. ACC'D1 DATE I PLANS PREPARED BY: Designed By Drawn By Checked By ims EPP ims RECOMMENDED BY: DATE: Plans Prepared Under Supervision Of ACCEPTED BY: DATE: • Date PRINCIPAL ENGIINEER, FOR CITY ENGINEER GROUP MARWAN A. YOUNIS - RONALD J. PARKS PLANNING *ENGINEERING *SURVEYING 8555 Aero, Drive* Suite 305e San Diego, CA 92123 R.C.E. No. 43217 March 31, 2004 R.C.E. (858) 505-0435 1 Expires No. 19744 Expires SEPTEMBER 30, 2005 CITY OF TEM ECU LA HYDROLOGY MAP: PROPOSED CONDITION TENT. TRACT 23103-2 VINEYARD VIEW ESTATES ESS/ X7-, Uj T --,,217 u'l 'rT 4L EXP. 3/31/04 %P -- �c I SHEET - 1 OF 1 SHTS DRAWING NO. APPENDIX _ M MIJATIJWL WjjHOWLCWWTI%MORWN M PROJECT: TRACT NO. 32206 - PROPOSED CONDITION FREQUENCY: 10 YEAR - oWHEE "1 _ PREPARED BY PEB DATE 2127/07 DRAINAGE SOIL & A I C DELTA Q SUM Q SLOPE SECTION VEL L T SUM T REMARKS AREA 'DEVELOPMENT ACRES INIHR CFS CFS % FPS FT MIN 7 EL HI= 321.0, EL. LO =311, L =300' NODE 35 -34 B, SF 1/4 ACRE 0.2 3.12 084 052 052 1.3 STREET 2.4 160 1.1 8.1 34 -36 B, SF 1/4 ACRE 2.4 2.65 0.83 5.28 5.80 8.5 EL H1 =308, EL. L0= 295.8, L =390' NODE 50 -51 B, SF 114 ACRE 2.2 2.59 0.83 4 73 4.73 8.2 EL. HI= 318.0, EL. L0= 316.0, L =200' NODE 30 -31 B, SF 114 ACRE 05 2.64 084 1.11 1.11 4 STREET 2.7 380 2.3 10.5 NODE 31 -52 B, SF 1(4 ACRE 1.5 2.2 0.83 2.74 3.85 88 EL. Hi= 295.8, EL. LO =288 „L =340' NODE 52 -32 ' B, SF 1/4 ACRE 1.5 253 0.83 3.15 3.15 ADJUST TO TC =23 9, NODE 39 -32, SHEET 1 3.15 1.82 1.75 6.63 ADJUSTED TOTAL Q10 @NODE 32, TC =23.9 MIN., SHT. 1 123.9118 C23.91C8 8 QTOT @32 23.9 663 1.0 STREET 3 250 1.4 25.3 33 -33 STREET 24 1.41 0.88 298 961 M NOTIUMIl- NIMODOOLCOW[O�Rf PROJECT: TRACT NO. 32206 - PROPOSED CONDITION FREQUENCY: 100 YEAR PREPARED BY PEB DATE 2/27107 DRAINAGE SOIL & A I C DELTA Q SUM Q SLOPE SECTION VEL L T SUM T REMARKS AREA DEVELOPMENT ACRES IN /HR CFS I CFS % FPS FT MIN 7 EL. HI= 321.0, EL, LO =311, L =300' NODE 35 -34 B, SF 1/4 ACRE 0.2 4.24 0.85 0.72 0.72 1.3 STREET 2.4 160 1.1 8.1 34 -36 B, SF 1/4 ACRE 2.4 3.91 0.85 7.98 8 70 85 EL HI =308, EL. L0= 295.8, L =390' NODE 50 -51 B, SF 1/4 ACRE 22 3.82 0 85 714 7.14 MAX Q @ INLET W. SIDE PLACER LOUD. 8.2 EL. HI= 318.0, EL. L0= 316.0, L =200' NODE 30 -31 B, SF 1/4 ACRE 06 3.91 0.86 168 1.68 4.0 STREET 2.7 380 2.3 10.5 NODE 31 -52 B, SF 1/4 ACRE 1.5 339 0 85 4.32 600 1.0 18" RCP 9.7 40 0.1 10.6 MAX. Q @ INLET E. SIDE PLACER LOUD. 50 -51152 B, SF 1/4 ACRE 2.2 3.37 0.85 6.30 12.31 ADJUST TO TC =19.4, 54" S.D 12.31 8.84 ADJUSTED TOTAL Q100 @NODE 51, 52, INLETS 172.43 181.27 Q100 54" S.D., NODES 51/52 8.8 EL. H1= 295.8, EL. LO =288, L =340' NODE 52 -32 B, SF 114 ACRE 1.5 3.74 0.85 4.77 4.77 ADJUST TO TC =23.9, NODE 39 -32, SHEET 1 4.77 2,74 264 10 08 ADJUSTED TOTAL Q100 @NODE 32: 2.64 +7.44 =10.08 23.9 10.08 33 -33 STREET 2.4 2.10 0.89 4.49 1.0 STREET 3.1 250 1.3 25.2 14 57 ADJUST TO TC =19.1, TC @NODE 20 14.57 16.93 172.43 TOTAL Q100 @NODE19/33= 155.5 +16.93 SEE HYDROLOGY MAP goTICOW MMODIWCI riO�RN M = = _EETM PROJECT: TRACT NO. 32206 - PROPOSED CONDITION PREPARED BY PEB DATE 2127/07 FREQUENCY: 100 YEAR DRAINAGE I SOIL 1, 1 A I C DELTA p SUM q SLOPE SECTION VEL L T SUM T REMARKS AREA DEVELOPMENT ACRES INIHR CFS CUM % FPS FT I MIN 1 1 I 1 I 170.471 28 54" RCP I 20.9 I I I 19.11 340 0.3 19 4 S.D. Q100 0 NODE 51,52 I 1 1 F PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1962 -2004 Advanced Engineering Software (aes) Ver. 10.0. Release Date: 01/01/2004 License ID 1461 Analysis prepared by: MAY GROUP, INC 8555 AERO DR., STE. 305 SAN DIEGO, CA 92123 858 -505 -0435 DESCRIPTION OF STUDY * CITY OF TEMECULA, CA - TRACT NO. 23102 -2 • STORM DRAIN HYDRAULICS - LINE 'A' • 100 YEAR STORM FILE NAME: HAVVEOA.DAT TIME /DATE OF STUDY: 08:53 03/07/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: " *^ indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 138.36- 3.90 Dc 6005.02 2.46* 7729.90 ) FRICTION ° 154.52- 3.90 Dc 6005.02 2.52* 7579.95 ) JUNCTION 159.02- 3.90 Dc 6005.06 2.51* 7595.17 } FRICTION 289.38- 3.90 Dc 6005.02 2.71* 7086.39 ) JUNCTION 293.38- 4.57 5922.08 2.45* 7085.78 } FRICTION 515.93- 3.82 *Dc 5587.51 3.82 *Dc 5567.51 ) JUNCTION 519.93- 5.30* 5974.51 2.46 5857.12 } FRICTION ) HYDRAULIC JUMP 632.00- 3.65 *Dc 4825.60 3.65 *Dc 4825.60 ) CATCH BASIN 632.00- 6.01* 3730.86 3.65 Dc 1436.36 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 _ ---- --------------- ------ NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE ---- --- --- MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.36 FLOWLINE ELEVATION = 1261.51 PIPE FLOW = 181.27 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1264.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.49 FT.) IS LESS THAN CRITICA DEPTH( 3.90 FT.) > CRITICAL DEPTH IS ASSUMED AS DOhIIQSTREAM CONTROL DEPTH _ FOR UPSTREAM RUN ANALYSIS I -----------------------------------------7---------- NODE 138.36 : HGL = < 1263.974> ;EGL- < 1270395 >;FLOWLINE = < 1261.510> FLOW PROCESS FLOW PROCESS FROM NODE 138.36 TO NODE 154.52 IS CODE = 1 UPSTREAM NODE 154.52 ELEVATION = 1262.17 (FLOW IS SUPERCRITICAL) ______________ _______________________________ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 181.27 CPS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 16.16 FEET MANNING'S N = 0.01300 ___________________________ NORMAL DEPTH(FT) __________ ____ _________________ _ = 2.13 CRITICAL DEPTH(FT) = 3.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.52 GRADUALLY VARIED _________________ FLOW PROFILE COMPUTED INFORMATION: ___`_________________________ DISTANCE FROM ______________ _____ __________ __ _ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.515 19.820 8.619 7579.95 4.507 2.500 19.970 8.696 7623.74 9.274 2.485 20.121 8.775 7668.44 14.324 2.469 20.276 8.857 7714.06 16.160 2.464 20.329 8.865 7729.90 _______________________ NODE 154.52 : _________ _______________ _ _ _ __ HGL = < 1264.685>;EGL- < 1270.789 >;FLOWLINE - < 1262.170> II 1 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02368 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02351 AVERAGED FRICTIONT SLOPE IN JUNCTION ASSUMED AS 0.02359 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY +HV1- HV2) +( ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.187) +( 0.000) = 0.187 _________________________________________________ ___ ____ _______ _________ __ _ ___ NODE 159.02 : HGL = < 1264.B40>;EGL- < 1270.976>;FLOWLINE= < 1262.330> FLOW PROCESS FROM NODE 159.02 TO NODE 289.38 IS CODE = 1 UPSTREAM NODE 289.38 ELEVATION = 1265.98 (FLOW IS SUPERCRITICAL) __ ______________________ ________ _______________________ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 181.27 CPS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 130.36 FEET MANIQING'S N = 0.01300 FLOW PROCESS FROM NODE 154.52 TO NODE 159.02 IS CODE = 5 - ' UPSTREAM NODE 159.02 ELEVATION = 1262.33 (FLOW IS SUPERCRITICAL) _____________________________________ CALCULATE JUNCTION LOSSES: __________ ___ __________________ PIPE FLOW DIAMETER ANGLE FLOWLINTE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 181.27 54.00 0.00 1262.33 3.90 19.878 DOWNSTREAM 181.27 54.00 - 1262.17 3.90 19.826 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 ' LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 = = =Q5 EQUALS BASIN INPUT = =- II 1 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02368 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02351 AVERAGED FRICTIONT SLOPE IN JUNCTION ASSUMED AS 0.02359 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY +HV1- HV2) +( ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.187) +( 0.000) = 0.187 _________________________________________________ ___ ____ _______ _________ __ _ ___ NODE 159.02 : HGL = < 1264.B40>;EGL- < 1270.976>;FLOWLINE= < 1262.330> FLOW PROCESS FROM NODE 159.02 TO NODE 289.38 IS CODE = 1 UPSTREAM NODE 289.38 ELEVATION = 1265.98 (FLOW IS SUPERCRITICAL) __ ______________________ ________ _______________________ CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 181.27 CPS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 130.36 FEET MANIQING'S N = 0.01300 ' NORMAL DEPTH(FT) = 2.38 CRITICAL DEPTH(FT) = 3.90 ' ____________________________________ ---- ________ -------------------------------------- ______________------- UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.71 _______ ______________________ _______________________________ GRADUALLY VARIED FLOW .PROFILE COMPUTED INFORMATION: _ __________________________ ________________________ ____ __ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.714 18.078 7.792 7086.39 ' 4.955 2.701 18.183 7.838 10.189 2.687 18.290 7.885 7115.21 7144.56 15.726 2.674 18.398 7.934 7174.44 21.595 2.661 18.508 7.983 7204.87 27.830 2.648 18.619 8.034 7235.85 ' 34.467 2.635 18.731 8.086 7267.39 41.551 2.621 18.845 8.139 7299.50 49.134 2.608 18.961 8.194 7332.20 57.276 2.595 19.078 6.250 7365.48 ' 66.051 2.562 19.196 8.307 7399.36 75.547 2.569 19.317 8.366 7433.84 85.870 2.555 19.438 8.426 7468.94 97.155 2.542 19.562 8.488 7504.67 ' 109.571 2.529 19.687 8.551 7541.04 123.332 2.516 19.814 8.616 7578.05 130.360 2.510 19.672 8.646 7595.17 NODE 269.38 HGL = < 1268.694 >;EGL = < 1273.771 >; FLOWLINE = < 1265.9BD> ' FLOW PROCESS FROM NODE 289.38 TO NODE 293.38 IS CODE = 5 UPSTREAM NODE 293.38 ELEVATION = 1266.09 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES ' PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CPS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 172.43 54.00 0.00 1266.09 3.62 19.472 ' DOWNSTREAM 181.27 54.00 - 1265.98 3.90 LATERAL fit 8.84 18.00 80.00 1268.73 1.15 18.063 6.077 LATERAL 42 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 = = =Q5 EQUALS BASIN INPUT = == ' LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1'COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 °V4 *COS(DELTA4)) /((A1 +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02313 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01853 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02083 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.083 FEET ENTRANCE LOSSES = 0.000 FEET t JUNCTION LOSSES = (DY +HV1- HV2)-(ENTPANCE LOSSES) JUNCTION LOSSES = ( 0.657) +( 0.000) = 0.657 ' ______________________________________________________________________________ NODE 293.38 : HGL = < 1268.541>;EGL= < 1274.428 >; FLOWLINE = < 1266.090> FLOW PROCESS FROM NODE 293.38 TO NODE 515.93 IS CODE = 1 ' UPSTREAM NODE 515.93 ELEVATION = 1272.32 (FLOW IS SUPERCRITICAL) -------- _---- ___ ------ --------- ____ ------- __----- _- __ -------------- CALCULATE FRICTION LOSSES(LACFCD): ____ ' PIPE FLOW = 172.43 CPS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 222.55 FEET MANNING'S N 0.01300 1 NORMAL DEPTH(FT) = 2.31 CRITICAL DEPTH(FT) 3.62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW-DEPTH-VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.819 11.980 6.049 5587.51 ' 0.114 3.759 12.147 6.051 5589.60 0.466 3.696 12.325 6.056 5595.95 1.082 3.638 12.513 6.071 5606.69 ' 1.979 3.187 3.578 12.712 3.518 12.923 6.089 6.113 5621.97 5641.93 4.739 3.458 13.146 6.143 5666.78 6.675 3.397 13.382 6.180 5696.70 9.042 3.337 13.630 6.224 5731.91 ' 11.694 3.277 13.893 6.276 5772.67 15.301 3.217 14.171 6.337 5619.24 19.344 3.156 14.463 6.407 5871.90 24.124 3.096 14.773 6.487 5930.97 ' 29.769 3.036 15.099 6.579 5996.80 36.438 2.976 15.445 6.682 6069.78 44.340 2.916 15.610 6.799 6150.32 53.748 2.855 16.196 6.931 6236.88 ' 65.036 2.795 16.604 7.079 6335.96 78.727 2.735 17.037 7.245 6442.11 95.589 2.675 17.496 7.431 6557.95 ' 116.817 2.615 17.983 7.639 6684.16 144.411 2.554 18.500 7.872 6821.47 182.128 2.494 19.049 8.132 6970.72 222 19.466- 338- 7085 -550_- NODE --- - __2.451_ - - -- -_ -_ -- HGL _8- - - - - -- -78 -- - -- 1272.320> 515.93 : = < 1276.139 >;EGL = < 1278.369>;FLOWLINE= < FLOW PROCESS FROM NODE 515.93 TO NODE 519.93 IS CODE = 5 UPSTREAM NODE 519.93 ELEVATION = 1272.43 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES ' PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 155.50 54.00 0.00 1272.43 3.65 9.777 DOWNSTREAM 172.43 54.00 - 1272.32 3.82 11.984 LATERAL 41 0.00 18.00 70.00 1272.84 0.00 0.000 LATERAL 42 0.00 0.00 0.00 0.00 0.00 0.000 Q5 16.93 = = =Q5 EQUALS BASIN INPUT = == ' LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-QI-V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- - Q4 *V4* COS( DELTA4 )) /((A1 +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00625 ' DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00726 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00676 JUNCTION LENGTH = 4.00 FEET ' FRICTION LOSSES = 0.027 FEET ENTRANCE LOSSES = 0.446 FEET JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.401) +( 0.446) = 0.847 NODE 519.93 : _____________________________ ________________ _______________ HGL = < 1277:731 >;EGL = < 1279.216>;FLOWLINE= < 1272.430> 1 Cl J DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.652 FLOW PROCESS FROM NODE 519.93 TO NODE 632.00 IS CODE = 1 ' UPSTREAM NODE 632.00 ELEVATION = 1275.60 (HYDRAULIC JUMP OCCURS) __________________ CALCULATE FRICTION _________ _______________________________ LOSSES(LACFCD): 11.418 PIPE FLOW = 155.50 CFS PIPE DIAMETER = 54.00 INCHES ' PIPE LENGTH = 112.07 FEET MANNING'S N = 0.01300 3.534 _______________________________________________ HYDRAULIC JUMP: _______________________________ DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 2.17 CRITICAL DEPTH(FT) 3..65 0.957 3.474 - 5.637 _______________________________________________ _________________________________ UPSTREAM CONTROL _______________________________ _______________________________ ASSUMED FLOWDEPTH(FT) = 3.65 ` ' ===_°___-_____- _- ----- --- 12.004 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: Cl J DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.652 11.244 5.616 4825.60 0.100 3.593 11.418 5.619 4827.47 0.412 3.534 11.603 5.625 4833.15 0.957 3.474 11.798 5.637 4642.78 1.756 3.415 12.004 5.654 4856.52 2.838 3.356 12.221 5.676 4874.54 4.233 3.297 12.450 5.705 4897.03 5.980 3.237 12.692 5.740 4924.18 8.123 3.178 12.947 5.783 4956.23 10.715 3.119 13.216 5.833 4993.40 13.820 3.060 13.500 5.891 5035.96 17.515 3.000 13.800 5.959 5084.21 21.897 2.941 14.117 6.037 5138.45 27.084 2.882 14.451 6.126 5199.03 33.229 2.822 14.805 6.228 5266.33 40.527 2.763 15.179 6.343 5340.75 49.237 2.704 15.575 6.473 5422.75 59.709 2.645 15.995 6.620 5512.84 72.436 2.585 16.440 6.785 5611.56 86.149 2.526 16.912 6.970 5719.53 107.966 2.467 17.415 7.179 5837.42 112.070 2.457 17.497 7.214 5857.12 _ ________________________ _______________________________ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS _ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = S-30 _________________________________ PRESSURE FLOW PROFILE COMPUTED INFORMATION: _______________________________ _______________________________________________ DISTANCE FROM PRESSURE VELOCITY _______________________________ SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 5.301 9.777 6.786 5974.51 36.370 4.500 9.777 5.964 5179.25 ASSUMED DOWNSTREAM ______---- PRESSURE HEAD(FT) = 4.50 _______- _____- _- _______- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 35.370 - 4.500 9.774 5.984 5179.25 37.749 4.4666 9.725 5.954 5148.88 I L' J 11 36.986 4.432 9.805 5.926 5121.27 40.136 4.398 9.631 5.900 5095.50 41.217 4.364 9.861 5.875 5071.27 42.237 4.330 9.896 5.852 5048.42 43.203 4.297 9.934 5.830 5026.83 44.118 4.263 9.976 5.809 5006.44 44.985 4.229 10.021 5.789 4987.20 45.806 4.195 10.070 5.770 4969.08 46.581 4.161. 10.122 5.753 4952.04 47.311 4.127 10.176 5.736 4936.08 47.997 4.093 10.234 5.720 4921.18 48.639 4.059 10.294 5.706 4907.34 49.237 4.025 10.357 5.692 4894.56 49.790 3.991 10.423 5.679 4882.63 50.297 3.957 10.492 5.668 4872.16 50.757 3.923 10.564 5.658 4862.56 51.170 3.890 10.639 5.646 4854.04 51.534 3.856 10.716 5.640 4846.60 51.847 3.822 10.797 5.633 4840.26 52.108 3.788 10.880 5.627 4835.04 52.315 3.754 10.966 5.623 4830.94 52.466 3.720 11.056 5.619 4827.99 52.559 3.686 11.148 5.617 4826.20 52.590 3.652 11.244 5.616 4825.60 112.070 3.652 11.244 5.616 4825.60 ________________________END OF HYDRAULIC JUMP ANALYSIS ________________________ PRESSURE +MOMENTUM BALANCE OCCURS AT 7.08 FEET UPSTREAM OF NODE 519.93 DOWNSTREAM DEPTH = 5.145 FEET, UPSTREAM CONJUGATE DEPTH = 2.476 FEET _ ___________ NODE 632.00 : HGL = < 1279.252 >;EGL = < 1281.216 _______________________________ >;FLOWLINE = < 1275.600> FLOW PROCESS FROM NODE 632.00 TO NODE 632.00 IS CODE = 8 UPSTREAM NODE 632.00 ELEVATION = 1275.60 (FLOW UNSEALS IN REACH) _ _ ____________________________________ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): _______________________________ PIPE FLOW = 155.50 CFS PIPE DIAMETER = 54.00 INCHES FLOW VELOCITY = 11.25 FEET /SEC. VELOCITY HEAD = 1.964 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 -( 1.964) = 0.393 NODE 632.00 : HGL = < 1281.609 >;EGL = < 1261.609 >;FLOWLINE = < 1275.600> }***k i******* r+***I* it**+ k*-**i* a*t*I*i******** * * * * * * * * * * * *z * * * * * * *i UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 632.00 FLOWLINE ELEVATION = 1275.60 ASSUMED UPSTREAM CONTROL HGL = 1279.25 FOR DOWNSTREAM RUN ANALYSIS _--_ ________- ------------- END OF GRADUALLY VARIED FLOW ANALYSIS ' PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1461 ' Analysis prepared by: MAY GROUP, INC. 8555 AERO DR., STE. 305 SAN DIEGO, CA 92123 858 -505 -0435 DESCRIPTION OF STUDY + * * + + + + + + + + + + + + + + + * + + * + + ++ ' * CITY OF TEMECULA - TRACT NO. 23102 -2 * STORM DRAIN HYDRAULICS - LINE 'A -1' * 100 YEAR STORM ' FILE NAME: HAVVEOAI.DAT TIME /DATE OF STUDY: 15:16 06/05/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: " *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) ' 1108.21- 1.33 Dc 241.69 0.51* 564.36 } FRICTION 1043.70- 1.33 *Dc 241.69 1.33 *DC 241.69 } JUNCTION ' 1040.49- 2.86* 271.95 0.82 92.38 } FRICTION 1000.00- 2.56* 241.30 0.95 Dc 89.56 } CATCH BASIN ' 1000- 00 - - -__ - - - - _2_80 * - - - -- - - - 225.51------ - -0 -95 Dc 30.14 ---- - -_ - -- - MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------' - - - - - -- ' NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ' DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1108.21 FLOWLINE ELEVATION = 1268.73 PIPE FLOW = 12'.31 CFS PIPE DIAMETER = 18.00 INCHES ' ASSUMED DOWNSTREAM CONTROL HGL = 1269.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.27 FT.) IS LESS THAN CRITICAL DEPTH( 1.33 FT.) CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH ' FOR UPSTREAM RUN ANALYSIS NODE 1108.21 : HGL = < 1269.238 >:EGL = < 1277.717>:FLOWLINE= < 1268.730> FLOW PROCESS FROM NODE 1108.21 TO NODE 1043.70 IS CODE = 1 UPSTREAM NODE 1043.70 ELEVATION = 1287.67 (FLOW IS SUPERCRITICAL) -------------------------- ---------------------------------------------------- ' CALCULATE FRICTION LOSSES(LACFCD): ' PIPE FLOW = 12.31 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 64.51 FEET MANNING'S N = 0.01300 ' NORMAL DEPTH( FT)- = CRITICAL- 0.47---- DEPTH(FT)- = 1.33 -- - = -_ ---= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = - - - 1.33 - -- - - - - -_- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: --------- _------ _---- _------- _-------- _------------ DISTANCE FROM FLOW DEPTH VELOCITY _________________________ SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) ' 0.000 1.326 7.444 2.187 241.69 0.009 1.292 7.601 2.190 241.94 0.037 1.258 7.776 2.198 242.72 0.085 1.224 7.971 2.211 244.04 ' 0.156 1.190 8.186 2.231 245.93 0.253 1.156 8.423 2.258 248.42 0.379 1.122 8.682 2.293 251.56 0.539 1.088 8.968 2.337 255.40 0.737 1.053 9.280 2.392 259.99 0.981 1.019 9.623 2.458 265.40 1.278 0.985 10.000 2.539 271.72 1.640 0.951 10.414 2.636 279.03 ' 2.076 0.917 10.870 2.753 287.45 2.610 0.683 11.374 2.893 297.11 3.257 0.849 11.931 3.061 306.16 ' 4.047 0.815 12.549 3.262 320.78 5.020 0.781 13.238 3.504 335.19 6.229 0.747 14.009 3.796 351.66 7.750 0.712 14.875 4.150 370.50 ' 9.699 0.678 15.652 4.583 392.12 12.256 0.644 16.962 5.114 417.00 15.727 0.610 18.230 5.774 445.76 ' 20.690 28.457 0.576 19.688 0.542 21.380 6.599 7.644 479.19 518.28 43.245 0.508 23.360 8.987 564.36 64.510 0.508 23.360 8.987 564.36 NODE 1043.70 HGL = < 1288.996>;EGL= < 1289.857>;FLOWLINE= < 1287.670> FLOW PROCESS FROM NODE 1043.70 TO NODE 1040.49 IS CODE = 5 ' UPSTREAM NODE 1040.49 ELEVATION = 1288.00 (FLOW UNSEALS IN REACH) _ __________________________ CALCULATE JUNCTION LOSSES: ___________ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY ' (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 6.00 18.00 90.00 1288.00 0.95 3.396 DOWNSTREAM 12.31 18.00 - 1287.67 1.33 7.447 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 ' LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 QS 6.31 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4* COS( DELTA4 )) /((A1 +A2) *16.1)+FRICTION LOSSES UPSTREAM: MANNING'S DOWNSTREAM: MANNING'S N = 0.01300; FRICTION N = 0.01300; FRICTION SLOPE = 0.00326 SLOPE = 0.01229 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00778 JUNCTION LENGTH = 3.21 FEET ' FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES 0.172 FEET I JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.008) +( 0.172) = 1.180 __________________________ _________ ______________________ _____ ' NODE 1040.49 : HGL = < 1290.858 >;EGL = < 1291.037>;FLOWLINE= < 1288.000> FLOW PROCESS FROM NODE 1040.49 TO NODE 1000.00 IS CODE = 1 UPSTREAM NODE 1000.00 ELEVATION = 1288.41 (FLOW IS UNDER PRESSURE) __------- __----- ____ ----- _--------- ___ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 40.49 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 6.00)1( 105.053)) * *2 = 0.00326 HF =L *SF = ( 40.49) *(0.00326) = 0.132 NODE 1000.00 HGL = < 1290.990>;EGL= < 1291.169 >;FLOWLINE = < 1288.410> ' FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 8 UPSTREAM NODE 1000.00 ELEVATION = 1288.41 (FLOW IS UNDER PRESSURE) _ _____________________________ _______________________________ _ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.00 CPS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.39 FEET /SEC. VELOCITY HEAD = 0.179 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) = .2 *( 0.179) = 0.036 _ _______________________________ ________________________ _______ NODE 1000.00 : HGL = < 1291.205>;EGL= < 1291.205 >;FLOWLINE = < 1288.410> ' UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1000.00 FLOWLINE ELEVATION = 1288.41 ASSUMED UPSTREAM CONTROL HGL = 1289.36 FOR DOWNSTREAM RUN ANALYSIS _____ -- END OF GRADUALLY VARIED FLOW ANALYSIS I� u I } * * *kk * * * * + + + + * # * * } * ** kkk++*+****}** *k *k }k *kk + # # + * * * * * # } * } * *k *k *k ** *kkk * *k * + #* ' PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1461 t Analysis prepared by: MAY GROUP, INC. 8555 AERO DR., STE. 305 ' SAN DIEGO, CA 92123 858 -505 -0435 + * #* *kkk #k * # * + * * *kk * * *kk *+ DESCRIPTION OF STUDY k *k * + * + # + * * # #k * * *k * * *kk *k+ ' * CITY OF TEMECULA - TR. NO. 23103 -2 * STORM DRAIN HYDRAULICS - LINE 'A -2' * 100 YEAR STORM + * * * #k* kkkk # # + # * * *k *k * *k * + * * * * ** kkkk#*+#+*+ *k *kkkkkkk *k +k + + + * + *k * * *k }k *k ** ' FILE NAME: HAVVEOA2.DAT TIME /DATE OF STUDY: 08:01 06/06/2007 + } + # #kk* kkk + # * *kk *kk + + * # *k* kkkk * # # # + }+ kkkkk* k## + * * * * * *k *kkkkkkkkkk # * + # * } * * + # *k GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE ' (Note: " *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) ' 6.85- 2.90* 550.28 0.96 493.78 ) FRICTION ) HYDRAULIC JUMP 30.27- 2.24 477.08 1.00* 477.10 ) FRICTION ' 75.79- 1.44 *DC 393.59 1.44 *Dc 393.59 _ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE - 25 1 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ' DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6.85 FLOWLINE ELEVATION = 1274.04 PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1276.940 FEET NODE 6.85 : HGL = < 1276.940>;EGL= < 1278.360 >; FLOWLINE = < 1274.040> # + # #x + + + + +k +k # * + + + + +kk +k * # ++ kkkkk # + + + +kkxk # * +* +kkkk + * + * + +k *kkkk # +k * + + + ++ +kkkkk ' FLOW PROCESS FROM NODE 6.85 TO NODE 30.27 IS CODE = 1 UPSTREAM NODE 30.27 ELEVATION = 1275.31 (HYDRAULIC JUMP OCCURS) ' CALCULATE FRICTION LOSSES(LACFCD): - PIPE FLOW 16.90 CPS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 23.42 FEET MANNING'S N = 0.01300 ______________________________ _______________________________ ' HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ____________________________________ _______________________________ NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) 1.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.00 u I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: _______________________________________________ DISTANCE FROM FLOW DEPTH VELOCITY _______________________ SPECIFIC ________ PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.999 13.522 3.839 477.10 ' 1.528 3.132 0.995 0.992 13.572 13.623 3.857 3.876 478.49 479.91 4.820 0.989 13.674 3.894 481.33 6.600 0.985 13.726 3.913 482.78 8.481 0.962 13.776 3.932 484.24 10.472 0.979 13.831 3.951 485.71 12.587 0.976 13.884 3.971 487.21 14.838 0.972 13.938 3.991 488.72 17.244 0.969 13.992 4.011 490.25 ' 19.823 0.966 14.047 4.032 491.79 22.600 0.963 14.102 4.052 493.35 23.420 0.962 14.117 4.058 493.78 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ______________________________ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) __________________________ ______________ = 2.90 _____ PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.900 9.563 4.320 550.28 23.420 2.236 9.563 3.656 477.08 ' - - -END OF HYDRAULIC JUMP PRESSURE +MOMENTUM BALANCE OCCURS AT 23.41 ANALYSIS ------------------------ FEET UPSTREAM OF NODE 6.85 DOWNSTREAM DEPTH = 2.236 FEET, UPSTREAM CONJUGATE DEPTH = 0.999 FEET ' NODE 30.27 : HGL = < 1276 309>;EGL= < 1279.150 >;FLOWLINE = c 1275.310> rrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrr, rr, tr+ r+ r+, rr+, t +r +rr + + +r +r + +rrrrrrxrrrrr +r +rr FLOW PROCESS FROM NODE 30.27 TO NODE 75.79 IS CODE = 1 UPSTREAM NODE 75.79 ELEVATION = 1277.79 (FLOW IS SUPERCRITICAL) -------- -------------__ CALCULATE FRICTION LOSSES (LACFCD): PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES ' PIPE LENGTH = 45.52 FEET MANNING'S N = 0.01300 _______________________________________________ NORMAL DEPTH(FT) = 0.92 CRITICAL ________ __ ____ DEPTH(FT) _________________ 1.44 ' _______________________________________________ UPSTREAM CONTROL _______________ ASSUMED FLOWDEPTH(FT) = _______________________________ 1.44 _____________________________- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - _ -_ -_- ' _________________________________ DISTANCE FROM FLOW DEPTH VELOCITY _________ __ ____________________ SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.438 9.696 2.899 393.59 0.058 1.417 9.772 2.901 393.79 ' 0.226 1.396 9.858 2.906 394.37 0.502 1.375 9.955 2.915 395.31 0.864 1.355 10.061 2.927 396.59 1.377 1.986 1.334 1.313 10.177 10.303 2.943 2.962 398.21 400.17 2.721 1.292 10.438 2.985 402.47 3.592 1.271 10.583 3.011 405.11 ' 4.613 1.250 10.737 3.041 408.11 ' S.803 1.229 10.902 3.076 411.47 7.184 1.208 11.077 3.115 415.20 8.783 1.187 11.263 3.158 419.31 ' 10.635 1.166 11.460 3.207 423.83 12.765 1.145 11.669 3.261 428.76 15.290 1.124 11.890 3.321 434.13 ' 18.229 21.704 1.104 1.083 12.124 12.372 3.387 3.461 439.96 446.28 25.863 1.062- 12.634 3.542 453.10 30.922 1.041 12.911 3.631 460.46 37.216 1.020 13.205 3.729 468.39 ' 45.306 0.999 13.516 3.837 476.93 45.520 0.999 13.522 3.839 477.10 ' NODE 75.79 : HGL = < 1279.228 >;EGL = < 1280.689 >;FLOWLINE = < 1277.790> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 75.79 FLOWLINE ELEVATION = 1277.79 ASSUMED UPSTREAM CONTROL HGL = 1279.23 FOR DOWNSTREAM RUN ANALYSIS ' END OF GRADUALLY VARIED FLOW ANALYSIS________ _______________________________ INLET SIZING m = m = m m m = = r = m m m m m m m m 1 1 1 1 1 1 1 1 1 1 G ENGINEERING • SURVEYING 6540 Lusk Boulevard • Suite G -225 • San Diego, CA 92121 (619) 550 -9901 • FAX (619) 550 -9469 Job No. Sheet of 2 ce v. = /O, / GIs . 71W C cltfl�o�Ty IVLcnua 71e 76 )) (// = D, S ,,I rooMa -X 1 %fie CvrS T /� 1 1 u 1 1 1 p 1 ¢_ l� 7L 7 Acs. //I, ¢ eSe erg Q��ni� ' Job No. Sheet 2 of � croup pE� ' PLANNING •ENGINEERING • SURVEYING - By: 6540 Lusk Boulevard • Suite C -225 • San Diego, CA 92121 Dat 7 (619) 550 -9901 • FAX (619) 550 -9469 �e�e one Ge /`y74 off// O � we y7l ' Rz /0 fie/, �� O/C G(/d te/' 7� ' D, �3 '4 O, 24 ' 107 ,i r/z I 1 ll 0� 1 1 1 j.. 1 1 CHART 1 -103,6 A` CAPACITY OF CURB OPENING INLETS ASSUMED 2% CROWN.- (� ILA i L= Q = 0.7L (A +Y)3/2 *A= 0,33 Y = HEIGHT OF WATER AT CURB FACE (0,4' MAXIMUM) REFER,TO CHART 1- 104,12 L = -LENGTH OF CLEAR OPENING OF INLET *Use A =0 when the inlet is 'adjacent to traffic-, i.e., for -a Type "J" median inlet or where the parking lane is removed. REV. CITY-.OF.SAN DIEGO - DESIGN GUIDE SHT. N0. CAPACITY OF CURB OPENING INLETS ' 13 f — HEIGHT OF OPENING (h) IN FEET ro U N : W A d' U cn O� G� r :J ap r 7 U+ n N V U U I :e 0 11EIGHT 0 \OPENING (h) IN INCHES U O ro n r3 �r- C.APACIT PER FOOT OF LENrGTH OF.0 PEN IflG (0/L) I'd C.F.S. P P, FOOT' W L' . 0) W O . 1. I 11,�iL1 ;r 11 rTl t; RATIO OF D�PTH OF WATER AT OPENINv TO HEIGHT OF OPENING (H /hP IN FTJFT. .7+i tJ r Gi rJ cA W J. G'� U J r� cD O Ln N W .A U SEE STANDARD C B 03 MANHOLE FRAME AND COVER FOR EAT(:. BGSINS CATCH BASIN OPENING 'NORMAL CURB FACE +.INCHES UNLESS OTHERWISE SPECIFIED A � 4(Rlf EW �Ap' \ 2 .4G2 k IF LOW 0�'u�,` 204p2 MEET EXISTING CURB 1 T 6 R . _' -D WARPED 6R�\ 0TEP - MEET EIISTIMG PAVEMENT SEE. STANDARD DRA A- NO. LD201 V• FOR APPROPRIATE LOCAL DEPRESSION / r 1 4• A NOTES i t I DIMENSIONS: UNLESS OTHERWISE SPECIFIED p Via 6aVW =)', 9aO W =14', 12 (9W'21 V =SHALL BE SHOWN ON THE PLANS. W =SMALL BE SHOWN ON THE PLANS �C7 FOOT YIN. PERSPECTIVE O F T ° 6 INCES IF V IS LESS T a b INCHES V IS LESS SS THAN THAN B FEET. I T e q INCHES F V IS B FEET OR MORE CATCH BASIN NO.I 0 =16 INCHES UNLESS OTHERWISE SPECIFIED A'.M INCHES UNLESS OTHERWISE SPECIFIED 2. STRUCTURAL CONCRETE SHALL BE CLASS PCLC. SEE STD. G•UBMNG C B 105 CA7CM BASIN INLET FDA DETAILS. (6 SACK). ANCHOR i ] THE REINFORCING STEEL SMALL BE NUMBER 4 < R DEFORMED BARS. CLEARANCE SMALL BE 1112 INCH FROM THE BOTTOM OF THE SLAB. SEE NOTE 7. T •� ^r a r_, 4 THE SURFACE OF ALL EXPOSED CONCRETE SHALL v., NRB FACE CONFORM TO SLOPE, GRADE, COLOR, FINISH AND ,< 2)° SCORING IN THE EXISTING OR PROPOSED CURB AND 4 - WALK ADJACENT TO THE BASIN. THE BASIN FLOOR COAST JOINT^ J SHALL BE GIVEN A TIGHT WOOD FLOAT FINISH. U - CURVATURE OF THE LIP AND SIOEWALLS AT THE STEP. SEE M 259 1 GUTTER OPENINU SMALL NOT BE MADE BY AND NOTE 3 PLASTERING. THE OUTLET PIPE SHALL BE TRIMMED 4 TO FINAL SHAPE AND LENGTH BEFORE THE --4 4'. CONCRETE IS POURED. 5. STEPS: > 3/4 INCH PLAIN ROUND GALVANQED STEEL STEPS °4 �. °. SHALL BE INSTALLLD 16 INCHES APART WHEN V < H'f 4 EXCEEDS 4 FEET 6 INCHES. THE TOP STEP SMALL 4D A 3-A Bt 6 INCHES BELOW THE TOP SURFACE AND SHALL b BE 21/2 INCHES CLEAR FROM THE WALL. SLOPE TO OUTLET — --:7— ALL OTHER STEPS SHAD BE 4 INCHES CLEAR FROM THE WALL. ONLY ONE STEP 2 INCHES FROM THE N_ FROM ALL DIRECTIONS I BOTTOM SHALL BE INSTALLED IF V IS 4 FEET 6 INCHES N OR LESS.ALL STE.°S SMALL BE ANCHORED NOT LESS ) ID _ THAN 4 INCHES INTO THE WALL OF THE dA31N. • ' N I, -W • ` _ S. CURB,GUTTER AND LOCAL DEPRESSIONS SHALL BE - - <. •. CLASS 'B"CONCRETE, _ • I I I T SEF STANDARD DRAWING C8IO6 FOR WA' B FLOOR STEEL {« T .{ A �r T REINFORCING. 0 U SECTION A -A U Q SEE STAMDARO DRAWNG NA. CO 109, SPECIAL CONNECTIONS. R[vlf lOa t1Yf U1M COIINTT Ef00f CORtMI rlgJl Ci . AMID E12 NOTE. 7 A WAL■ CONMtNATION MRUCT CATCH BASIN AMMxNm o: - o-ulwc No EVI ED NOTE IN NO. I DRAWING NUMBER OS q0 PF