Loading...
HomeMy WebLinkAboutTract Map 23103-2 Drainage Report Feb. 25, 2008PRELIMINARY DRAINAGE STUDY Vinyards View Estates TENTATIVE TRACT NO. 23103 -2 TEMECULA, CA. Revised FEBRUARY 25, 2008 Revised JUNE 6, 2007 Revised MAY 7, 2007 Revised APRIL 9, 2007 Revised MARCH 7, 2007 Revised JUNE 29, 2005 JUNE 169 2005 PREPARED FOR: VINEYARD VIEW ESTATES 8555 AERO DRIVE, SUITE 305 SAN DIEGO, CA 92123 858 -505 -0435 PREPARED BY: MAY Group, Inc. 8555 Aero Drive, Suite 305 San Diego, CA 92123 Phone: (858) 505 -0435 W.O. 127 -01 MAY GROUP, INC. BY: PHILIP E. BROWN, P.E. R.C.E. 18679 REGISTRATION EXPIRES 6/30/09 µo. 1eb79 r I I L 1 1 TABLE OF CONTENTS Page No. Introduction 1 Project Summary 1 Existing Conditions and Background 1 Project Description 2 Discussion 3 Hydrology Methodology 3 Determination of Runoff Coefficient 4 Determination of Time of Concentration and Intensity 4 Determination of Area 4 Conclusion 4 LIST OF FIGURES Figure 1 Vicinity Map 6 Figure 2 Hydrologic Soils Group - Bachelor Mtn. 7 Figure 3 RCFCD Manual Plate D -3, Time of Concentration 8 Figure 4 RCFCD Manual Plate D -4.1, Intensity/Duration Data 9 Figure 5 RCFCD Manual Plate D -5.4, Soil Type D/Runoff 10 Coefficient Figure 6 Velocity Discharge - 36' Roadway 11 Figure 7 Velocity Discharge - 86' Roadway 12 APPENDIX A Hydrology Calculations, 10 and 100 year storm frequencies "Drainage Study, TM 23209, Butterfield Stage Road ", 8/15/03, for Shea Homes, By May Group, Inc. March, 2007 Revisions February, 2008 Revisions APPENDIX B APPENDIX C ATTACHMENTS — ENVELOPE Hydrology Map — Vineyard View Estates Master Developed Hydrology Map - Margarita Village (portion) 1 I 1 1 1 1 t 'I 'I 1 INTRODUCTION The purpose of this drainage study is to determine the proposed condition hydrology for Tentative Tract No. 23103 -2, in the City of Temecula, California PROJECT SUMMARY Upon build out of Vineyard View Estates, the quantity of storm water runoff is estimated to be: Line "D "* 10 year storm n/a Line "E "* n/a Line T "* n/a Clinet & Butterfield Stage Road 6.6 CFS 100 Year storm 39.6 CFS 159.4 CFS 197.6 CFS 10.2 CFS *Reference: MARGARITA VILLAGE, T.T. 23100, 23101, 231021, HYDROLOGY CALCS, 100 YEAR AND 10 YEAR FREQUENCY, PREPARED FOR COMMUNITY SERVICES, 11/9/88, REVISED 2/28/89, referred to herein and in supporting documents as "Margarita" EXISTING CONDITIONS AND BACKGROUND In the City Of Temecula, County of Riverside, State of California, the site of Vineyard View Estates is a triangular shaped, vacant property containing 18.3 acres bounded on the east by Butterfield Stage Road and Temecula Wine Country, on the south by the fully improved street, Chemin Clinet, and on the west by single family residential 1 subdivisions. Access from the westerly subdivisions is provided by Ahern Place. The topography is rolling terrain crossed by what in the past were three well defined, east to west trending watercourses, dry except for the rainy season. Storm drains in place of 'I the two northernmost watercourses were installed as part of the recent (1993) 'I construction of Butterfield Stage Road. The third, or most southern, had been replaced by I a 36" storm drain several years ago. The site is covered by a low growth of wild grasses and overlooks the Temecula Wine 1' Country lying east of Butterfield. The Wine Country to the east is likely to remain an ■ ' agricultural preserve for many generations. A residential use of the property has been planned for more than twenty years and the site was incorporated in the drainage study referenced above. i r PROJECT DESCRIPTION ' Implementing a portion of an accepted community master plan, Vineyard View Estates is ' I an "in -fill' project of limited scope consisting of 36 single family residential lots on 18.3 acres. Upon build out, the lots will be served by a fully improved infrastructure consisting ' I of paved streets with curbs and gutters, sanitary sewer and water systems, and all utilities. ' Lot sizes are a mix of medium and low density. 1� ' 2 1! I I 11 DISCUSSION The referenced 1988 "Margarita" drainage study addressed the hydrology for the master planned community and the site of Vineyard View and, most importantly, the storm water flows within the three defined water courses that cross the site. The current hydrology is essentially an amendment to "Margarita" occasioned by the property's boundary being defined by surrounding development and a revision to the lot configuration resulting there from. Since its completion, the "Margarita" drainage study has been the hydrology for the design of most if not all of the drainage improvements in the existing development west and downstream from Vineyard View. Too, it is the primary hydrology for the recently completed Butterfield Stage Road extension along the sites east boundary. Accordingly, the hydrology contained in this study is limited to only that needed for the development of Vineyard View Estates. HYDROLOGY METHODOLOGY The detailed hydrology calculations for the project are attached in this study. For 10 and 100 year storm events, the rational method as defined in the Riverside County Flood Control District's Hydrology Manual is used, Q =CIA; i.e., quantity of runoff (cubic feet per second) = runoff coefficient X rainfall intensity (inches per hour) X watershed tributary area (acres). 3 Ii '1 1' 1 ,I '1 'I LJ C DETERMINATION OF RUNOFF COEFFICIENT In accordance with the Manual, runoff coefficients are dependent on soil type and the proposed land use of the basin. For Butterfield Stage Road extension, the runoff coefficients are for Soil Type D, paved areas and single family residential, % acre lots. DETERMINATION OF TIME OF CONCENTRATION AND INTENSITY Average rainfall intensity, "I", in inches per hour is based on a time of concentration (Tc) of the contributing storm. Total time of concentration is the time required for the storm runoff to flow from the most remote point of a drainage basin to the outlet point and is selected from the Manual Nomograph. The rainfall intensity is from the Manual, that of Murrieta, Temecula, and Rancho California. DETERMINATION OF AREA "A" is the drainage area, or drainage basin, and is determined based on the path the rainfall will take when running downhill. The delineation between basin marks where the water will flow in varying directions. All the rain falling within a basin will typically flow to the lowest point of the basin. CONCLUSION To allow for the grading of the site and its development as Vineyard View Estates, storm water runoff must necessarily be collected and controlled in a system of permanent and temporary storm water management facilities consisting of paved streets with curbs and gutters and storm drain inlets which in turn connect to the existing storm drains passing under and across the site. Given that these measures will be taken in compliance with 4 I City of Temecula and Riverside County Flood Control requirements and consistent with accepted engineering and construction practices are taken, Vineyard View Estates can be developed and it and downstream properties kept reasonably free of flood hazard. 'I 'I 1 11 5 a � I I r � T N. 1.5. MAP -a -i t Ilk- .7,1c ---- ------- - c - Pr �c, o-- 1� Ac r2 Nc o�A 111 11 1 -cl w: L 15- -zz-- -ac -9--o Ly ac BIC- Bc Ic ac, -Sc UV o�l�Zc, 2 4-A — 1, 6c f3c: c a 14 ac 3c ac .c ac ZGEND HYDROLOGIC SOILS Gr-CUP MAP SOILS 'ROUP BOUNDARY A SOILS CROUP DESIGNATION rOR R C= C& W C D BACHELOR MTN. j- Y-Cft01 -,- Y ^Vj :SL's._ O FEET 5000 • PI ti 'I i 1 1 �1. 'I 'I Il 11 i 'I 1 _ !00 1000 90 900 so 80C 70 700 Lac 'C 50 £ 13 13 12 2� 6� li `o y O L c n e 2 / is a T ---1� A m _ ail F 12-47 �a ;7-i- i- _� c KEY ° t50 ® o L- H --c -K- -Ic E 8 / m EXAMPLE: 1;6 (1) L =550 , .H =5.0; X = Singie Family {I /4 Ac.) 55 Development , Tc = 12-6 min. i00 (2) L =550, H =5.0', K = Commercial e-0 Development, Tc = 9.7 min. . S 4 L Reference: Bibliography itern No. 35. TIME OF CONCENTRATION FOR: INITIAL SUBAREA zoo i. maxim rn langin = loco' 2- Maximum aru = 10 Acres ® 35 '` e I" E: !K0 ; 30 c 30C c 2w - i p a N C' Lt3 a £ 13 13 12 2� 6� li `o y O L c n e 2 / is a T ---1� A m _ ail F 12-47 �a ;7-i- i- _� c KEY ° t50 ® o L- H --c -K- -Ic E 8 / m EXAMPLE: 1;6 (1) L =550 , .H =5.0; X = Singie Family {I /4 Ac.) 55 Development , Tc = 12-6 min. i00 (2) L =550, H =5.0', K = Commercial e-0 Development, Tc = 9.7 min. . S 4 L Reference: Bibliography itern No. 35. TIME OF CONCENTRATION FOR: INITIAL SUBAREA zoo = ® 35 '` ` r 4 -0 30 R gad Unca Good 9 35o ® 2a Cover a+d oiled ' Fair co;oar o ._ EF _ 300 l0e�aaveieaed c { F 19 / Poor covw `o C" { 9 " gingm Family J 250 F 1= tfi (i,+4 Acrai _ i5 Commer=t £ 13 13 12 2� 6� li `o y O L c n e 2 / is a T ---1� A m _ ail F 12-47 �a ;7-i- i- _� c KEY ° t50 ® o L- H --c -K- -Ic E 8 / m EXAMPLE: 1;6 (1) L =550 , .H =5.0; X = Singie Family {I /4 Ac.) 55 Development , Tc = 12-6 min. i00 (2) L =550, H =5.0', K = Commercial e-0 Development, Tc = 9.7 min. . S 4 L Reference: Bibliography itern No. 35. TIME OF CONCENTRATION FOR: INITIAL SUBAREA RAINFALL INTENSITY - INCHES PER HOUR MIRA LOM6 Z M RRIETA RANCHO - TEMECULA CALIFORNIA c M PALH UPAIN65 PER1415 VALLEY N � v - DURATION- goo DURATION' FREQUENCY DURATION D C FREQUENCY c 1 b - MINUTES r RAINFALL INTENSITY - INCHES PER HOUR MIRA LOM6 Z M RRIETA RANCHO - TEMECULA CALIFORNIA c M PALH UPAIN65 PER1415 VALLEY N � v - DURATION- goo DURATION' FREQUENCY DURATION D UURAf10N FREQUENCY c 1 O z MINUTES p� �i. MINUYES C/l MINUTES RAINFALL INTENSITY - INCHES PER HOUR MIRA LOM6 M RRIETA RANCHO - TEMECULA CALIFORNIA NORCO PALH UPAIN65 PER1415 VALLEY "AT ION ;" FP[OUENCY - DURATION- -` FREQUENCY DURATION' FREQUENCY DURATION FREQUENCY UURAf10N FREQUENCY MINUTES MINUTES MINUYES MINUTES - MINUTES- - 10 too 11 111 16 109 l0 '00 10 100 YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YE 4R YEAR S 1.64 4.40 S 3.45 5.16 5 - 4.23 ' 6.76 - 5 2.64 3.18 6 1.36 4.67 A 3.12 4.61 A 2.53 3.15 6 3.00 6.08 6 2.41 3.46 / 1.3T - 1.1s 7 2.61 4.24 - 7 2.34 ].51 7 3.48 5.56 7 2.24- 3.21 9 2.21 3.49 8 2.61 3.94 8 2.19 3,29 4 3.22 5.15 0 2.09 3.01 9 2.06 1:21 9 2.50 3.69 9 2.07 3.10 9 3.01 4.11 9 1.08 2.84 )1 1.96 1.14 It 2.36 3.40 to 1.96 2.94 l0 2.63 4.52 10 1.88 2.69 II 1.67 1.90 It 2.14 3.30 11 1.81 2.80 11 2.67 4.26 11 1.79 2.57 I1 13 1.78 1.11 1.02 2.76 It 1.13 2.04 3.19 12 1.19 2.68 12 2.54 4.07 12 1.72 2,46 14 1.64 1.60 13 3.01 13 1.72 2.56 13 2.43 3.86 13 1.65 2.37 14 1.96 2,69 14 1.66 2.48 14 2.33 3.72 14 1.59 2.29 13 16 I.S6 1.33 1.51 2:41 IS 1.69 2.79 IS 1.60 2.40 IS 2.t3 3.56 IS 1.54 2.21 11 1i44 1134, It 17 1.82 146 2.60 2.61 16 1.55 2.32 16 2.15 3.44 16 1.49 2.14 16 1.44 1.17 17 1.50 2.25 IT 2.81 3.32 11 1.45 2.06 19 1!40 1.21 16 19 1.11 1.46 2.92 2.45 Il 1.46. 2.19 16 2.61 1.22 "' 10 1.41. 2.07 -- 19 1.42 2.13 !9 1.95 7.12 19 1.37 1.97 20 22 1.36 1.29 2.15 2.04 24 1.61 2.36 20 1.39 2.06 20 1.99 3.03 20 1.34 1.9i 24 1.14 1.95 22 1.51 t.t6 22 1.72 1.94 22 1.79 2.86 22 1.20 1.0] 26 1.10 1.07 14 1.46 2.18 24 1.26 1.90 24 1.14 2.72 24 1.22 1.7! 26 1.39 2.06 26 1.22 1.02 26 1.62 2.60 26 1.18 1.61 21 1.14 1.10 as 1.34 1.96 2B 1.17 1.76 28 1.56 2.49 28 1.13 1.61 30 ,1.10 I.T3 30 1.29 1.91 30 1.13 1.70 30 1.49 2.39 .70 1.10 1.51 32 1.06 1:67 32 1.24 1.04 32 1.10 1.64 32 1.44 2.30 32 1.06 I.Si 34 1.03 1.62 34 1.20 1.70 34 1.06 1.59 34 1.39 2.22 34 1.03 1.41 00 L. 67 _. _36 -_.- 1.17 1.72 - - 36 1.03 1 S 36 1.34 2.15 36 1.00 1.44 30 .91 1.53 38 1.13 1.67 38 1.01 1.51 38 1.30 2.09 38 ,9A 1.41 40 .94 1.49 40 1.10 1.62 40 .98 1.47 40 1.27 2.02 40 1.31 45 .so- " .99 1.40 45 1.03 1.52 45 .92 1.39 45 1.18 1.89 45 .95 X1.21 55 .84 1.32 -- 50_ "- -- ..97.. 1.44 _ so ...,69. 1.31 so 1.11 1.70 so ,96 .05 1.27 60 .76 1120 55 60 .92 1.36 55 .84 1.25 55 1.05 1,68 55 .31 1.11 .88 1.30 60 .80 1.26 60 1.00 1.60 60 .78 1 -Ii 65 70 .73 1.15 65 .84 1.24 65 ,77 1.15 65 .95 1.53 65 1.01 75 .70 1.11 70 .81 1.19 70 .74 1.11 70 .91 1.46 70 .75 1.01 s0 .68 1.07 ).03 75 .78 1.15 15 ,72 1.07 15 .0s 1.41 75 .72 .10 1. p1 06 .65 1.00 s0 85 .75 1.11 60 .69 1.04 so .A5 1.35 so .68 .9' .63 .73 1.07 05 .67 1.01 85 .82 1.31 85 .66 ,9 SLOPE .530 SLOPE - .550 SLOPE - .500 SLOPE • ,580 SLOPE . .490 1m 1 1! it N t. r =i ;did i. Il II .4 .3 .2 4 5 6 PLATE D-5-4 .8 .7 .6 • EFMWdWj rm amp@ Qilfft le 1111MIN lmumw flani� of 0111111111111111111 1111111's ■ m Mai lllffzllfj��� III MM ow® 9191 uumua 44 IF RUNOFF. COEFFICiENT CURVES SOIL GROUP-D COVER TYPE-URBAN' LANDSCAPING AMC-I[ (RUNOFF INDEX NUMBER 75) ile B[Q is 4 5 6 PLATE D-5-4 .8 .7 .6 'I RCFC & WCD HYDROLOGY 1\11AAUAL RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No.105 36' ROADWAY 6 "& 8 "CURBS ..ea. .e V J .miEr'��T�m arm ®a ®�I�i °was °mom �vM mw- �e'Iwlm�s>_IS�� as m �® �Iw�ip1nl�i RAAl YWM. ®wmi���'�gqtltl��rrrv�ml� AAIAmWB1Y. pppp11lAtl�a1� YlYAAYAAAAA�A ®a�A�.AYIAYYAYAYYI M® IrOlNmfldmll��®®: IV ®I�IP.IIIIPIWyWIa00Clr��11111 ®.:i1'JRIYGIYW RRRRYIAiNYi .® AARAOt ®YNYIGYl�AAW911�®®tl�xTy�1 i�R�Q..T�TT- •�••�_••� @ILIIMtlII� • ••,- •I�Cltlsll� ®�® ® ®�N® . ®��'dI1Y1911i®Wllli�Wl �P IA111YIBIIW� Y11 ®19B1YtW®I AAAA�AAARmHm1 ®PIRA ®Y11 ^- _••- ®RIR�11 I�li>�mlAe� ®IIm9ANlIY7 ®�IItl16.RY�1O 7 � viii ®1 ®B61v ®Rlq ®��lacrl�gmr rail I�s®Il��a® ® Im119b1�91Otl91q [®I ®�OImINgIa�111191:'lJ►� %J Itel�����®OH91 �r -.- - �r =.—.., �o �3C.Cww••�— �.�e.- �� ir�+srumleu� ®uar - ����•- ��®nr> -- -- m�13Llraw��iaiv®uwnv. ® uwAOAARA ®vn anoasrm� ®iml �_� ®AI— ISYJ ®� ° ^' �- 1�A� /eal /.AdIMV.YYAi9_Om ®tlM �I�pIAAIINYI {NrBYlIA1M11YM1®iA91NAm1Y11 �ppl�Rp we AR1 ®.mYm fl�IYW ®OM��IAI J tam, �mle1. WT' /i�0.1 �W�YpI.. C191MI� \2JIYY'n !NO�O—ia�i.AgWV.IA �uNdSII.SV�m1ARA991H® ®�BIAIWI ®IRY P���A�.-- iruul ",NRpR®IAA'.�B�I AI. ®®11:11.- ••9 ®IA�I 1A1�YeA .'.A!l6:va•:A�111:i1'1.1. A: MI` RRIIgryA I-1ARIAl1A�YY11�aNR ��rRA19R11R11AQmiu'/. ®dYR.:u_:YYri1R'•�wnmll� 1�J 1RIgqad=,=p� �r4TT®m5F-n - ISI MNAYNAIA ®1®mmA �� ewi�Imnmms� maw /rte mraror ®1�� m mwlm ar.rw =. -� ai�errze�n.. - mo® umlae ®ui ®ate � ��® ® ®�B 911 ®®I�® ®.lR.'�'Im�_r a`•n�IN1!d'� EFE SEE gas E. a 1 'I RCFC & WCD HYDROLOGY 1\11AAUAL RIVERSIDE COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No.105 36' ROADWAY 6 "& 8 "CURBS ..ea. .e Il PLATE D -7.6 _DISCHARGE - C.F S: TOTAL FLOW IN STREET) t a ro M � ^� �O "M-iA r.' r1' Al "M� c iAR . : Vic AGE— iiYDl <o�OG . — — —' CALCS, 100 AND 10 YEAR FREQUENCY ", COMMUNITY ENGINEERING SERVICES, 11/9/88, REV. 2/28/89. -__ 1-IYDR01-oGY A/IANUAL RATIONAL. METHOD CALCULATION FORM Sheol N0._! of _ snsafs PROJECT �n�° d�ol �S ��S C a I c u I o I a d by �E�?___6, A/9 /0 S FREQUENCY Chocked by ---------- ro�y�--- DRAINAGE S Sall IA A A I I C C A A Q ' 'S Q S SLOPIESECTION v v L L T T E ET REMARKS 35 3 4 d d, 5 ree>< D D• 5 3 3•t .�� ° °' .qo � �,�i a� _ _ _ to t _ / % °32 �/ _ /o ,n �' t _ j(�lJ Alo f e e,3 7; - _ _-- — - -- @ i _ _ - i ' '04' Q _ _ - -- — — 3 - o - oo X- A AG = o o c s s 3/ -32 ----- - - -` - -- $ $,2 z z /'.moo• o ora ° �a 3 4o S S�ree — /3 _ _ ,w 4 _ /D• 2 2 �/" 2 2 D D "9 0 — / �9.5 t E4:�o— LO/7 f U nC5 3F'-39 A AOPeti5zc� 0 0.7 \ \'� d duo "�a��ory1 b b1 . � 2 2.7 3 3,3 8 82a ¢ ¢./ � — - -- �i2- 33 D D,sfreef 2 2.¢ 0 0 27S - - m e 4- / AA AA 0 r� i DRAINAGE AREA loll a Dovebpm.enr A Acres I IA/h4 C AQ CFS S Q CFS N.OpESECTION STa9� ,��ad I HYDROLOGY A/JANUAL REMARKS (t . %l (J C° 20 RATIONAL 'METHOD CALCULATION FORM Sf2 Sheet Nat of _sn..�s PROJECT !/ine -104- 9L ___ Colcula+ed by - - - - - - - - - - - FREQUENCT Chocked by - ------- --- BM---- AA AA 0 r� i DRAINAGE AREA loll a Dovebpm.enr A Acres I IA/h4 C AQ CFS S Q CFS N.OpESECTION v FPS L FT. T MIN. E T REMARKS (t . %l (J C° 20 US / B Sf2 ro . /�': Cr9m "I=777%r:f-�.'/7 d X 25, Zf = __ - - -- -- - - — ao ' /SS. S •/ 2• �i := Shf / .____ 3�. � s � " o B R � ✓n ioe 2 5.6 �— _- u DE 2 -f 3F5 Laa fc J� -- FS Y of 24 ico : 'f•3 S d-- _ s 5./ A8( zFs AJ61- X� - - - '3.1 L Q I N I i -------- _ HYDROLOGY MANUAL RATIONAL METHOD CALCULATION FORM meet Na of ^sheds '/�n e ai -� s AEU. 3�2�0 �PE(3 �/2 jo PROJECT Calculated by �Z- FREQUENCY Checked by ----- -- -- - -Bryl - -- DRAINAGE AREA soil e Devek""rit A Acres I In /Ac C eQ CF! s Q JCFS SLOP TION v FPS L FT. T MIN. E T REMARKS 30 -37 _17- /% SFkes o•s 2 a� ti age go �° .�be 82 �o?J6K /-7 �_/ S reel /.% f P/a 61 onge J_ Appendix A I ti I 1 � I I 1 n 1 11 0 1 11 11 1 tl t PRELIMINARY DRAINAGE STUDY BUTTERFIELD STAGE ROAD TM 23209 STA. 160 +00 TO 186 +00 TEMECULA, CA AUGUST 15TH, 2003 PREPARED FOR: SHEA HOMES 10721 TREENA STREET SAN DIEGO, CA 92131 PREPARED BY: MAY GROUP, INC. 8555 AERO DR, SUITE 305 SAN DIEGO, CA 92123 W.O 107 -02 MAY GROUP, INC. BY: PHILIP E. BROWN, RE R.C.E 18679 REGISTRATION EXPIRES 6/30/05 li 1► 1 1i 1 1 11 1► 1 1i 1 i► i -1 1 1► 1► TABLE OF CONTENTS Introduction Project Summary Existing Conditions and Background Project Description Discussion Hydrology Methodology Determination of Runoff Coefficient Determination of Time of Concentration and Intensity Determination of Area Conclusion LIST OF FIGURES Page No. I I 2 2 3 3 3 3 4 Figure 1 Vicinity Map 5 Figure 2 RCFCD Manual Plate D -3, Time of Concentration 6 Figure 3 RCFCD Manual Plate D -4.1, Intensity/Duration Data 7 Figure 4 RCFCD Manual Plate D -5.4, Soil Type D /Runoff 8 Coefficient APPENDIX Hydrology Calculations, 10 and 100 year storm frequencies ATTACHMENTS — ENVELOPE Hydrology Map — Butterfield Stage Road extension n ' INTRODUCTION The purpose of this drainage study is to amend the existing hydrology for Margherita Village dated 11/9/88, revised 2/28/89, to address the affect of new construction of Butterfield Stage Road extension, approximately 2600 lineal feet half width north of Chemin Clinet, City of Temecula. PROJECT SUNLMARY Upon completion of the Butterfield Stage extension, the existing hydrology is amended: 1 For a 100 year storm event: West of Sta. 171 +25: Q100 = 26.0 CFS f! West of Sta. 177 +08: Q100 = 13.6 CFS For a 10 year storm event: ' ( East of Sta. 179 +00: Q 10 = 4.3 CFS FIEXISTING CONDITIONS AND BACKGROUND ' I The construction of the extension of Butterfield Stage Road is through vacant rolling terrain along a dedicated right of way immediately north of Chemin Clinet, Tract 23100- ' 3, to the partially improved Road in Tract No. 23209. The new construction forms the ' I westerly boundary of the Hart and Callaway wine vineyards. The right of way is covered ' by a low growth of wild grasses. ' Three relatively significant east to west drainage courses cross the Road, only one of ' I which is improved with a 30" RCP storm drain. The hydrology for these is provided in 11 1 'I 1! 1I 1 1i 1 11 1! 1i -1 l 1I 1I _1 I 11 it '1 i the Margherita Village hydrology as: Sta. 163 +00 (improved), Q100 = 33.9 CFS; Sta. 170 +00, Q100 =155.5 CFS; and Sta. 177 +00, Q100 = 193.1 CFS. PROJECT DESCRIPTION The extension of Butterfield Stage Road project will consist of the grading of right of way sufficient for the placement of twenty -four feet of asphalt paving and the installation PCC curb and gutter and storm drains, the latter both temporary and permanent . DISCUSSION The extension of Butterfield Stage Road is an "in -fill' project of limited scope partially implementing plans for the work informally prepared on various occasions in the past. The previous plans, though not approved, established an acceptable precedent. The. existing right of way is a confirmation of the ongoing process to full completion of Butterfield Stage Road as previously planned. Since its completion, the Margherita report has been the hydrology for the design of most if not all of the drainage improvements in the existing development west and downstream from the extension. It is also the hydrology the Butterfield Stage Road extension. The hydrology contained in this study is limited to only that needed for the design of peripheral facilities necessary for the management of stormwater runoff generated by construction of the extension. 2 ' HYDROLOGY METHODOLOGY ' The detailed hydrology calculations for the project are attached in this study. For 10 and ' 100 year storm events, the rational method as defined in the Riverside County Flood Control District's Hydrology Manual is used, Q =CIA; i.e., quantity of runoff (cubic feet 1 per second) = runoff coefficient X rainfall intensity (inches per hour) X watershed ' i tributary area (acres). 1, DETERMINATION OF RUNOFF COEFFICIENT In accordance with the Manual, runoff coefficients are dependent on soil type and the ') proposed land use of the basin. For Butterfield Stage Road extension, the runoff coefficients are for Soil Type D, paved areas and single family residential, '/< acre lots. 'i iDETERMINATION OF TIME OF CONCENTRATION AND INTENSITY Average rainfall intensity, "I ", in inches per hour is based on a time of concentration (Tc) of the contributing storm. Total time of concentration is the time required for the storm irunoff to flow from the most remote point of a drainage basin to the outlet point and is iselected from the Manual Nomograph. The rainfall intensity is from the Manual, that of ' Murrieta, Temecula, and Rancho California. 'i DETERMINATION OF AREA "A" is the drainage area, or drainage basin, and is determined based on the path the rainfall will take when running downhill. The delineation between basin marks where the 'i 3 water will flow in varying directions. All the rain falling within a basin will typically flow to the lowest point of the basin. CONCLUSION To allow for the grading of the right of way and the partial construction of Butterfield Stage Road extension, storm water flows must necessarily be controlled in a system of permanent and temporary storm drains consisting of open cannels, lined and unlined, and storm drains of the type and size normally associated with road improvement. Provided these measures in compliance with City of Temecula and Flood Control requirements and consistent with accepted engineering and construction practices are taken, Butterfield Stage Road can be partially improved and it and downstream properties kept reasonably free of flood hazard. �- 4 VICINITY MAP N.T.S. N IC 1 `r -a 1 m 0 1. w Z, v C1 r n I r C r Length (L) of initial area in feet N U O W A U 0 0 $ 0 0 0 $ g Time concentration (Tc') in minutes for special ' development _ ____�1 G+ rp 1^ -4 C0 U O U O 0 O O O O g Ir 00 00 O 0 4 = X V r n �3t. � O C: /Development 9 n x �i m , 8iI' $ O' -- {--- {--- or Zoning .. 3' c c � O b -� o �b! io O N O 3 !! r U A Q m x 3' 3 i 00 u u N o N �. ��o o �a�s0 g s„ O d b O O 3 V ` o o_ 3 g 3 i z P w r U concentration (Tc') in minutes for special ' development _ ____�1 G+ rp 1^ -4 C0 U O U O 0 O O O O g Ir 00 00 O 0 0 0 0 concentration (Tc') in minutes for special ' development _ ____�1 G+ rp 1^ -4 C0 U O U O 0 O O O O g 0 (71 0 (A o c3 m m tJi A Time of concentration (Tc) in minutes f N = O to OD J Oi LA I id I I I I ngle Family Development (1/4 Acre ul J m r n �3t. � O C: /Development 9 n x D i. 8iI' $ O' -- {--- {--- or Zoning .. 3' c c � O b -� o �b! pirc *efage of fanpervbus CGvef(Ai) 0 3 Difference I elevation H) in feet b wean ends of initial I= Q m i u s N o N �. ��o o �a�s0 g s„ b O O 0 0 (71 0 (A o c3 m m tJi A Time of concentration (Tc) in minutes f N = O to OD J Oi LA I id I I I I ngle Family Development (1/4 Acre ul J - RAINFALL INTENSITY- INCHES PER HOUR - A MINA LOMA MURRIETA - TEMECULA NORCO PALM SPRINGS PERRIS VALLEY 'A L RANCHO CALIFORNIA _ - DURATION - FREQUENCY OURAT 10#1- FREQUENCY DURATION FREQUENCY DURATION FREQUENCY - -F - - -DURATION FREQUENCY yl-J MINUTES MINUTES 11NUTES MINUTES MINUTES - CA1 10 100 It 109 it 109 10 loo 10 100 - YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR YEAR S 3.45 S.16 S 2 1T 4 l6 - 5 - 4.23 - 6.76 - 5 2.64 3.70 S 2.66 6.66 6 1 2.66 2.37 4.97 3,75 6 3.12 4.61 6 2.53 3.79 6 3.60 6.05 6 2.41 3.46 _ 7 2.61 4.24 7 4,34 ]:Sl 7 3,46 5.56 7 2.24- 3.21 0 2.21 3.49 6 2.67 3.94 6 2.19 3.29 9 3.22 5.15 0 2.09 3.01 9 2.96 3.24 9 2.50 3.69 9 2.07 3.10 9 3.01 4.61 9 1.99 2.04 it 1.96 3.16 16 2.76 3.46 10 1.96 2.94 10 2.93 4.S2 10 1,06 2.69 r 11 1.67 2.95 11 2.24 7.30 11 1.67 2.60 11 2.67 4.20 11 1.79 2.57 . r 12 1.16 2.62 12 2.17 3.IS 12 1.79 2.64 12 2.S4 4,07 12 1.72 2.46 13 1.71 2.70 13 2.04 3.01 13 1.72 2.50 11 2.43 3.46 13 1.65 2.37 _.. 14 1.64 2.60 14 1.06 2.09 14 1.66 2.40 14 2.33 3.72 14 1.59 2.29 IS 1.36 2.54 IS 1.09 2.79 IS 1.60 2.40 IS 2.23 3.S6 IS 1.54 2.21 " 16 1.53 2.42 16 1.62 2.69 16 1.55 2.32 16 2.15 3.44 16 1.49 2.14 17 1.66 2.34 17 1.76 2.66 17 I.SO 2.25 17 2.09 3.32 17 1.45 2.00 - y -Lb _ _ 16 1.44 2.27 Is J.11 ?.St l9 1.46. - 2.19 14 2.01 3.22 L4 1.41_ 2.02' 19 - 1.40 1.21 19 1.66 2.45 - 19 1.42 2.13 19 1.95 3.12 19 1.37 1.97 W 20 1,36 2.15 20 1.61 2.36 20 1.39 2.09 20 1.69 3.03 20 1.34 1,92 22 1.29 2.04 22 1.53 2.26 22 1.32 1.94 22 1.79 2.66 22 1.26 1.03 -� 24 1.24 1.95 26 1.46 2,15 24 1.26 1.90 24 1.74 2.72 24 1.22 1.75 26 1.10 1.01 26 1.39 2.06 26 1.22 1.02 26 1.62 2.60 26 1.10 ' 1.69 20 _ - 1.14 -1.10 1,00 26 1,34 1.96 26 1.17 1.76 20 1.56 2.49 26 1.13 1.63 30 1.73 30 1.29 1.99 30 1.13 1.70 30 1.49 2.39 30 1.10 1.57 32 1.06 1.67 32 1.24 1.64 32 1.10 1.64 32 1.44 2.30 32 1.06 1.52 Z 34 1.03 1.62 34 1.20 1.70 34 1.06 1.59 34 1.39 2.22 34 1.03 1.49 I•AD 1.57_ _36 - - -- -1.17 1,72 - -- -36 1,03 I.SS 36 1.34 2.15 36 1.00 1.44 m 30 ,97 1.53 30 1.13 1.61 30 1.01 1.51 30 1.30 2.09 30 ,96 1.40 - 40 ,94 1.49 40 1.10 1.6t 40 .96 1.47 40 1.27 2.02 40 .95 1.37 _ N 45 'so- .09 1,40 4S 1.03 1.52 45 .92 1.39 45 1.10 1.09 45 1.29 - -_4 - ,84- -S� -- 1.32 - _ _ _ SO_ _ -__, 97___ 1.44 _ _- -SO.- _ 6 .0 1.31 SO 1.11 1.70 50 .90 1.22 Z 55 IT, 26- 55 .92 1.36 45 ,04 1.23 SS 1.05 1.60 55 .85 1.17 60 .76 1.20 60 .60 1.30 60 .60 1.20 60 1.00 1.60 60 .01 .70 1.12 -� 65 .73 1.15 65 .64 1.24 65 .77 1.15 65 .95 1.53 65 CT 70 .70 1.11 70 .01 1.19 70 .74 1.11 70 .91 1.46 70 .75 1.00 1.04 75 .60 1.07 7s .70 1.15 75 .72 1.07 75 .00 1.41 75 .72 _ mD Q 60 .65 1.03 00 .75 1,11 00 .69 1.04 6o .65 1.35 60 .7a 1.00 DN D 05 .63 1.00 OS .73 1.07 OS ,61 1.01 OS .02 1.31 OS .60 .97 _0 .66 .94 Q Z SLOPE • .530 SLOPE - .550 SLOPE .500 SLOPE • .500 SLOPE + .490 O mom mm M.M m m HYDRDLDOY MANUAL e, RATIONAL METHOD CALCULATION FORM sheol W), Shoals PROJECT /""�"o /ao - Co I C ul o I ad by F FtFri I IF ILI r.v bxyl DRAINAGE AREA Boll a G*valoposont A Acres Im/k AQ CFO 1 0 CFS OLOPIE SICTION v FPS L FT T MIN. E T REMARKS 5.7 0. 115 -1-19-% A 2 6, 7j JY[)Iiof 00Y kb%1,11JAL -, RATIONAL METHOD CALCULATION FORM Slit 01714 of �shaefs- PROJECT Calculafad by FfqiEoUEIJCY Chocked by - - - - - - - - - - - A ryl - DRAINAGE AREA S,041 IN Deva;op"nt A Acres I In /hr C AQ CFS 1 0 CFS BLOM WTI ON v FPS L FT. T U I N. E T ..REMARKS -p I I I LOCAL DLF.• r U. r 17AU M- �Unl i� DIVISION fy;o D. G. 1. 7OR CAPAGI Ty OF OPZ11ING Ii :-'E-TS AT L-OV., POINT 75 L 7 .3 uj ul w zn z C, 4 .2 ul LU 5 .2 Lo --- e C.3 .2 `02 uj < < .01 LOCAL DLF.• r U. r 17AU M- �Unl i� DIVISION fy;o D. G. 1. 7OR CAPAGI Ty OF OPZ11ING Ii :-'E-TS AT L-OV., POINT 75 Maps Plans Prepared Under Supervision Of YD� ACCEPTED BY. DATE, HYDROLOGY MAP: PROPOSED CONDITION Q j "j`'�''�'` (�'` ('� �` /� j'� [� /� ('� OF 5 SHTS 10721 TREENA STREET 3934 MURPHY, CANYON ROAD RONALD FOR CITY ENGItEER BV 1 { E tl IELD STAGE ROAD Date MARWAN A. YOUNIS DRAWING -NO. SAN DIEGO, CA 92131 SAN DIEGO, CA 92123 PGROUP. ENGI IZERTNG • SURV'EYING RONALD J. PARKS STA: 16.0-f-08.65 thru 185 +81.71 (858) 549 -3156 (858) 292 -8030 i' 8555 Aero Drive • Suite SOS • Sea Diego, CA 92123 i R.C.E. No. 43217 Expires March 31, 2004 R.C.E. No. 19744 Expires SEPTCMBER 30, 2005 TRACT NO. 23103 --2 LD03- -138CO __.. .,_...._ ... ........... _.. ....... _ _.. _.. ..._..... _... ....... ... -... _ .... _ _...... _........ ...._ _. _..... _..._ __.... _._r_ _ __..._ _..._..... _- ... �'S.a �: Appendix B ! 0�� DC � m m "RO7MT T 322PRO ENDITION FREQUENCY: 10 YEAR _ gWEET j PREPARED BY PEB DATE 2/27107 DRAINAGE SOIL & A I C DELTA Q SUM Q SLOPE SECTION VEL L T SUM T REMARKS AREA DEVELOPMENT ACRES IN /HR CFS CFS I % FPS FT MIN 7 EL. H1= 3270, F70=311, L =300' NODE 35 -34 B, SF 1/4 ACRE 02 312 0.84 0.52 0.52 1.3 STREET 2.4 160 11 8.1 34 -36 B, SF 1/4 ACRE 24 2.65 083 5.28 5.80 _ 8.5 EL. H1 =308, EL. L0= 295.8, L =390' NODE 50 -51 B, SF 114 ACRE 2.2 2.59 0.83 4.73 4 73 _ 8.2 EL. H1= 318.0, EL. L0= 316.0, L =200' NODE 30 -31 B, SF 1/4 ACRE 0.5 264 0.84 1.11 1.11 4 STREET 27 380 2.3 10.5 NODE 31 -52 B, SF 1/4 ACRE 1.5 2.2 0.83 2.74 3.85 88 EL. HI= 295.8, EL. LO =288, L =340' _ NODE 52 -32 B, SF 114 ACRE 1.5 253 0.83 3.15 3.15 ADJUST TO TC =23.9, NODE 39 -32, SHEET 1 315 1.82 1.75 6.63 ADJUSTED TOTAL Q10 @NODE 32, TC =23.9 MIN., SHT. 1 123 9/18 C23.9/C8.8 QTOT @32 - 23.9 6.63 1.0 STREET 3 250 1.4 25.3 33 -33 STREET 24 1.41 088 2.98 961 _PROJECT ITOR�AC M%W 40� RO*SECONDITION FREQUENCY: 100 YEAR _ MET I PREPARED BY PEB DATE 2/27/07 DRAINAGE SOIL 8 A I --FN/HR C DELTA Q SUM Q SLOPE SECTION VEL L T SUM T REMARKS AREA DEVELOPMENT ACRES CFS CFS % FPS FT MIN 7 EL. H1= 321.0, EL. LO =311, L =300' NODE 35 -34 B, SF 114 ACRE 0.2 4.24 0.85 072 072 13 STREET 2.4 160 11 8.1 34 -36 B, SF 1l4 ACRE 2.4 3.91 085 798 8.70 8.5 EL. H1 =308, EL. L0= 295.8, L =390' NODE 50 -51 B, SF 1/4 ACRE 2.2 382 0.85 714 7.14 MAX Q @ INLET W. SIDE PLACER LOUD. 8.2 EL. H1= 318.0, EL. L0= 316.0, L =200' NODE 30 -31 B, SF 1/4 ACRE 0.5 391 0.86 168 _ 1.68 4.0 STREET 2.7 380 2.3 10.5 NODE 31 -52 B, SF 1/4 ACRE 1.5 139 085 4 32 6.00 1.0 18" RCP 9.7 40 0.1 10.6 MAX. 0 @ INLET E. SIDE PLACER LOUD. 50 -51/52 B, SF 1/4 ACRE 2.2 337 085 6.30 12.31 ADJUST TO TC =19.4, 54" S.D. 12.31 8.84 ADJUSTED TOTAL Q100 @NODE 51, 52, INLETS 172.43 - 181.27 ` Q100 54" S.D., NODES 51/52 8.8 EL. HI= 295.8, EL. LO =288, L =340' NODE 52 -32 B, SF 114 ACRE 1.5 3.74 0.85 4.77 4.77 ADJUST TO TC =23.9, NODE 39 -32, SHEET 1 4.77 2.74 2.64 10.08 ADJUSTED TOTAL Q100 @NODE 32:2.64 +7.44 =10.08 23.9 10.08 33 -33 STREET 2.4 2.10 0.89 449 1.0 STREET 3.1 250 13 25.2 _ 14.57 ADJUST TO TC =19.1, TC @NODE 20 14.57 16.93 172.43 TOTAL 0100 @NODE19 133= 155.5 +16.93 SEE HYDROLOGY MAP O TI TnNO. 32206- PROPOSED CONDITION FREQUENCY: 100 YEAR - M MWETW - PREPARED BY PEB DATE 2127107 DRAINAGE SOIL 11 A I C DELTA Q SUM Q SLOPE SECTION VEL L T SUM T REMARKS AREA DEVELOPMENT ACRES INIHR CFS CFS % FPS FT MIN 19.1 170.47 2.8 54" RCP 20.9 340 0.3 19 4 S.D. 0100 @ NODE 51,52 I PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1461 Analysis prepared by: MAY GROUP, INC. ' 8555 AERO DR., STE. 305 SAN DIEGO, CA 92123 858 -505 -0435 1 1 1 + * + * * * + + + + + * * * + + + + * * + + + + ** DESCRIPTION OF STUDY + * + * * * + + + + + + * # * # + + + + + + # + ** * CITY OF TEMECULA, CA - TRACT NO. 23102 -2 + * STORM DRAIN HYDRAULICS - LINE 'A' + * 100 YEAR STORM + FILE NAME: HAVVEOA.DAT TIME /DATE OF STUDY: 08:53 03/07/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 138.36- 3.90 Dc 6005.02 2.46* 7729.90 ) FRICTION - 154.52- 3.90 Dc 6005.02 2.52* 7579.95 ) JUNCTION 159.02- 3.90 Dc 6005.06 2.51* 7595.17 ) FRICTION 289.38- 3.90 Dc 6005.02 2.71* 7086.39 ) JUNCTION 293.38- 4.57 5922.08 2.45* 7085.78 ) FRICTION 515.93- 3.82 *Dc 5567.51 3.82 *Dc 5587.51 } JUNCTION 519.93- 5.30* 5974.51 2.46 5857.12 ) FRICTION ) HYDRAULIC JUMP 632.00- 3.65 *Dc 4825.60 3.65 *Dc 4825.60 ) CATCH BASIN ' 632.00- 6.01* 3730.86 3.65 Dc ________________________________________________ 1436.36 ____ ___ ______ ______ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 __ ___ __ ____ __ ___ ______ ___________ ________ ___ - ____-- ____________- NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE ______ MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 138.36 FLOWLINE ELEVATION = 1261.51 PIPE FLOW = 181.27 CPS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1264.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.49 FT.) IS LESS THAN CRITICAL DEPTH( 3.90 FT.) CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS I i --------------------------------- --------------- - -- NODE 138.36 : HGL = < 1263.974> ;EGL= < 1270.395 >; FLOWLINE = < 1261.510> FLOW PROCESS FROM NODE 138.36 TO NODE 154.52 IS CODE = 1 UPSTREAM NODE ______________________ 154.52 ELEVATION = 1262.17 (FLOW IS SUPERCRITICAL) __ CALCULATE FRICTION LOSSES(LACFCD): _ PIPE FLOW = 181.27 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = _____________ 16.16 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) _________________ ______________ 2.13 CRITICAL DEPTH(FT) __________ -__ = 3.90 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.52 FLOWLINE GRADUALLY VARIED ____________________ -____ ____ FLOW PROFILE COMPUTED INFORMATION: ------------- DISTANCE FROM ______ ___ ________ ___ ___________ FLOW DEPTH VELOCITY SPECIFIC _ PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.515 19.820 8.619 7579.95 4.507 2.500 19.970 8.696 7623.74 9.274 2.485 20.121 8.775 7668.44 14.324 2.469 20.276 8.857 7714.06 16.160 ________________ 2.464 20.329 8.865 7729.90 NODE 154.52 : HGL _________ ___________ ___________ = < 1264.685>;EGL= < 1270.789 >; FLOWLINE = < 1262.170> ' FLOW PROCESS UPSTREAM NODE FROM NODE 159.02 154.52 TO NODE 159.02 ELEVATION = 1262.33 IS CODE = 5 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: ___________ ______ ___________________ ______ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY ' (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 181.27 54.00 0.00 1262.33 3.90 19.878 DOWNSTREAM 181.27 54.00 - 1262.17 3.90 19.826 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 ' LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 = = =Q5 EQUALS BASIN INPUT = == 1 LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1-COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4* COS( DELTA4 )) /((A1 +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02368 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02351 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02359 JUNCTION LENGTH = 4.50 FEET FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.187) +( 0.000) = 0.187 _ ________________ ______________________ ________ NODE 159.02 : HGL = < 1264.840>;EGL= < 1270.976>;FLOWLINE= < 1262.330> FLOW PROCESS FROM NODE 159.02 TO NODE 289.38 IS CODE = 1 UPSTREAM NODE 289.38 ELEVATION = 1265.98 (FLOW IS SUPERCRITICAL) ____________________________ _________ _______ _______________ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 181.27 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = 130.36 FEET MANNING'S N = 0.01300 FLOW PROCESS UPSTREAM NODE FROM NODE 515-93 293.38 TO NODE 515.93 ELEVATION = 1272.32 NORMAL DEPTH(FT) = 2.38 CRITICAL DEPTH(FT) = 3.90 ' UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.71 ____ ________ ----- ____ °=== ------ ======- _°°°°°°°°°_ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: PIPE FLOW = 172.43 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ DIAMETER = CONTROL(FT) (FT) (FT /SEC) ENERGY (FT) MOMENTUM(POUNDS) ' 0.000 2.714 18.078 7.792 7086.39 FEET 4.955 2.701 18.183 7.838 7115.21 ' 10.189 2.687 18.290 7.885 7144.56 15.726 2.674 18.398 7.934 7174.44 21.595 2.661 18.508 7.983 7204.87 27.830 2.648 18.619 6.034 7235.85 ' 34.467 2.635 18.731 8.086 7267.39 41.551 2.621 18.845 8.139 7299.50 49.134 2.608 18.961 8.194 7332.20 57.276 2.595 19.078 8.250 7365.48 ' 66.051 2.582 19.196 8.307 7399.36 75.547 2.569 19.317 8.366 7433.84 85.870 2.555 19.438 8.426 7468.94 97.155 2.542 19.562 8.488 7504.67 109.571 2.529 19.687 8.551 7541.04 123.332 2.516 19.814 8.616 7578.05 ' 130.360 2.510 19.872 8.646 NODE 269.38 7595.17 HGL = < 1268.694>;EGL= < 1273.771 >;FLOWLINE = < 1265.980> FLOW PROCESS FROM NODE 289.38 TO NODE 293.38 IS CODE = 5 UPSTREAM NODE 293.38 ELEVATION = 1266.09 (FLOW IS SUPERCRITICAL) ________________________ _ _____________- _________________ CALCULATE JUNCTION LOSSES: ' PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 172.43 54.00 0.00 1266.09 3.82 19.472 DOWNSTREAM 181.27 54.00 - 1265.98 3.90 18.083 ' LATERAL 41 8.84 18.00 80.00 1268.73 1.15 6.077 LATERAL 42 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00 == =Q5 EQUALS BASIN INPUT = == - ' LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2-V2-Q1=V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((AI +A2) *16.1) +FRICTION LOSSES ' UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02313 DOWNSTREAM: VANNING'S N = 0.01300; FRICTION SLOPE = 0.01853 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02083 JUNCTION LENGTH = 4.00 FEET ' FRICTION LOSSES = 0.083 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.657) +( 0.000) = 0.657 ' NODE 293.38 : HGL = < 1268 541 >;EGL = < 1274 428>;FLOWLINE= < 1266.090> FLOW PROCESS UPSTREAM NODE FROM NODE 515-93 293.38 TO NODE 515.93 ELEVATION = 1272.32 IS CODE = 1 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION ______________________________ LOSSES (LACFCD) : PIPE FLOW = 172.43 CFS PIPE DIAMETER = 54.00 INCHES ' PIPE LENGTH 222.55 FEET MANNING'S N = 0.01300 1 1 _ -- NORMAL _ DEPTH( FT)======== 2= 31 CRITICAL - DEPTH(FT)======== _ 3= 82= = = = =__ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.62 1 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -------- _---- ______---- _----- __-------- ______ -------- ________--------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC ______ PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.819 11.980 6.049 5587.51 1 0.114 3.759 12.147 6.051 5589.60 0.466 3.698 12.325 6.056 5595.95 1.082 3.638 12.513 6.071 5606.69 1.979 3.576 12.712 6.069 5621.97 1 3.187 3.518 12.923 6.113 5641.93 4.739 3.456 13.146 6.143 5666.78 6.675 3.397 13.382 6.180 5696.70 1 9.042 3.337 13.630 6.224 5731.91 11.894 3.277 13.893 6.276 5772.67 15.301 3.217 14.171 6.337 5819.24 1 19.344 3.156 14.463 6.407 24.124 3.096 14.773 6.487 5871.90 5930.97 29.769 3.036 15.099 6.579 5996.80 36.438 2.976 15.445 6.682 6069.78 1 44.340 2.916 15.810 6.799 53.748 2.855 16.196 6.931 6150.32 6238.88 65.036 2.795 16.604 7.079 6335.96 76.727 2.735 17.037 7.245 6442.11 95.569 2.675 17.496 7.431 6557.95 1 116.817 2.615 17.983 7.639 6684.16 144.411 2.554 18.500 7.872 6621.47 ' 182.128 2.494 19.049 8.132 6970.72 ' 222 .550 19.466 8.338 - - - - - - -- ---- - -_ - -- 2.451 7085- 76 - - - -- ---- NODE 515.93 HGL = < 1276.139>;EGL= c 1278 369>;FLOWLINE= < - - - -- 1272.320> FLOW PROCESS FROM NODE 515.93 TO NODE 519.93 IS CODE = 5 UPSTREAM NODE 519.93 ELEVATION = 1272.43 (FLOW UNSEALS __ ____________ IN REACH) __________________F____________ ______________ CALCULATE JUNCTION LOSSES: 1 , PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 155.50 54.00 0.00 1272.43 3.65 9.777 1 DOWNSTREAM 172.43 54.00 - 1272.32 3.82 LATERAL #1 0.00 11.984 18.00 70.00 1272.84 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 1 Q5 16.93 = = =QS EQUALS BASIN INPUT = == LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)- 1 Q4 *V4* COS( DELTA4 )) /((A1 +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00625 DOWNSTREAM: PANNING'S N = 0.01300; FRICTION SLOPE = 0.00726 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00676 1 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.027 FEET ENTRANCE LOSSES = 0.446 JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES) FEET JUNCTION LOSSES = ( 0.401) +( 0.446) = 0.847 NODE 519.93 HGL = c 1277.731 >;EGL= < 1279.216>;FLOWLINE= < 1272.430> 1 ' FLOW PROCESS FROM NODE 519.93 TO NODE 632.00 IS CODE = 1 UPSTREAM NODE 632.00 ELEVATION _____________ = 1275.60 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD) _________________________ ' PIPE FLOW 155.50 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH = _________________ 112.07 FEET MANNING'S N = 0.01300 _______________________________ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS --------- RESULTS ____ ________ NORMAL DEPTH(FT) ---- ___________-------- = 2.17 _--------- CRITICAL DEPTH(FT) __ ______ ---- _______ 3,.65 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.65 _______ -_ - -- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ___________________________ DISTANCE FROM FLOW DEPTH _ VELOCITY _ SPECIFIC __ __________ PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.652 11.244 5.616 4825.60 0.100 3.593 11.418 5.619 4827.47 ' 0.412 3.534 11.603 5.625 4833.15 0.957 3.474 11.798 5.637 4842. 78 1.756 3.415 12.004 5.654 4856.52 ' 2.838 4.233 3.356 3.297 12.221 12.450 5.676 5.705 4874.54 4897.03 5.980 3.237 12.692 5.740 4924.18 8.123 3.178 12.947 5.783 4956.23 ' 10.715 13.820 3.119 3.060 13.216 13.500 5.833 5.891 4993.40 5035.96 17.515 3.000 13.800 5.959 5084.21 21.897 2.941 14.117 6.037 5138.45 27.084 2.882 14.451 6.126 5199.03 ' 33.229 2.822 14.805 6.228 5266.33 40.527 2.763 15.179 6.343 5340.75 49.237 2.704 15.575 - 6.473 5422.75 59.709 2.645 15.995 6.620 5512.84 ' 72.438 2.585 16.440 6.785 5611.56 88.149 2.526 16.912 6.970 5719.53 107.966 2.467 17.415 7.179 5837.42 ' ___ 112. 070-- _- - - -_ -- 2.457 7.214---- 5857.12 HYDRAULIC JUMP: UPSTREAM - -_- _17.497 - RUN ANALYSIS RESULTS - -_ - - - -- _ - - - -- ___________ ' DOWNSTREAM CONTROL - ASSUMED PRESSURE HEAD( FT)- = 5.30-- -- - PRESSURE FLOW PROFILE - COMPUTED - INFORMATION: - - - -- ----------- -- - - - - -- ' ___________________________________ DISTANCE FROM PRESSURE _______________________________ VELOCITY SPECIFIC ___ PRESSURE+ CONTROL(FT) HEAD(FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 5.301 9.777 6.786 5974.51 ' ____== = = =36. 370====== ASSUMED = = = =4- 500== = = = =9. 777-=== - - = = == 5.984==== = = = = == 5179.25 = = = == DOWNSTREAM PRESSURE HEAD(FT) = 4.50 ' GRADUALLY VARIED -FLOW- PROFILE - COMPUTED_ INFORMATION: __ ____ ___ _--------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 36.370 - 4.500 9.774 5.984 5179.25 ' 37.749 4,466 9.785 5.954 5148.88 I 1 LJ I- I J 1 36.966 4.432 9':605 5.926 5121.27 40.136 4.398 9.831 5.900 5095.50 41.217 4.364 9.861 5.875 5071.27 42.237 4.330 9.896- 5.852 5048.42 43.203 4.297 9.934 5.830 5026.83 44.118 4.263 9.976 5.809 5006.44 44.965 4.229 10.021 5.769 4987.20 45.806 4.195 10.070 5.770 4969.08 46.561 4.161. 10.122 5.753 4952.04 47.311 4.127 10.176 5.736 4936.08 47.997 4.093 10.234 5.720 4921.18 48.639 4.059 10.294 5.706 4907.34 49.237 4.025 10.357 5.692 4894.56 49.790 3.991 10.423 5.679 4862.83 50.297 3.957 10.492 5.668 4872.16 50.757 3.923 10.564 5.658 4862.56 51.170 3.890 10.639 5.646 4854.04 51.534 3.656 10.716 5.640 4646.60 51.647 3.822 10.797 5.633 4840.26 52.108 3.788 10.880 5.627 4835.04 52.315 3.754 10.966 5.623 4830.94 52.466 3.720 11.056 5.619 4827.99 52.559 3.666 11.146 5.617 4826.20 52.590 3.652 11.244 5.616 4825.60 112.070 3.652 11.244 5.616 4825.60 ------------------------ END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 7.08 FEET UPSTREAM OF NODE 519.93 DOWNSTREAM DEPTH ----- ------ -- ------ = 5.145 FEET, UPSTREAM CONJUGATE DEPTH = 2.476 FEET NODE 632.00 : HGL = -- - - - - -- < 1279.252 >;EGL _ = < 1281.216>;FLOWLINE= _ _ < 1275.600> FLOW PROCESS FROM NODE 632.00 TO NODE 632.00 IS CODE = 6 UPSTREAM NODE 632.00 ELEVATION = 1275.60 (FLOW UNSEALS IN REACH) ---------------------------------- --- ----- ------ ---- ---- -- ----- CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 155.50 CFS PIPE DIAMETER = 54.00 INCHES FLOW VELOCITY = 11.25 FEET /SEC. VELOCITY HEAD = 1.964 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 1.964) = 0.393 ------------ ------ ---- ----- ---- ---- - - - --- _ _ _- NODE 632.00 : HGL = < 1281.609>;EGL= < 1281.609 >;FLOWLINE = < 1275.600> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 632.00 FLOWLINE ELEVATION = 1275.60 ASSUMED UPSTREAM CONTROL HGL = 1279.25 FOR DOWNSTREAM RUN ANALYSIS .END OF GRADUALLY VARIED FLOW ANALYSIS I ' PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1461 ' Analysis prepared by: MAY GROUP, INC. 8555 AERO DR., STE. 305 ' SAN DIEGO, CA 92123 858 -505 -0435 DESCRIPTION OF STUDY * * * * + + + + + + + + + + + + + + + + + + + + ++ ' * CITY OF TEMECULA - TRACT NO. 23102 -2 + * STORM DRAIN HYDRAULICS - LINE 'A -1' + * 100 YEAR STORM FILE NAME: HAVVEOAI.DAT TIME /DATE OF STUDY: 15:16 06/05/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE ' (Note: ' *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) ' 1108.21- 1.33 Dc 241.69 0.51* 564.36 ) FRICTION 1043.70- 1.33 *Dc 241.69 1.33 *Dc 241.69 ) JUNCTION ' 1040,49_ 2.86* 271.95 0.82 92.38 ) FRICTION 1000.00- 2.58* 241.30 0.95 Dc 89.56 ) CATCH BASIN 1000.00- _-- _- 280 *---- 225.51- -___ -- -0.95 Dc 30.14 _ _____________ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ______________________________________ _______________________________ ' NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1108.21 FLOWLINE ELEVATION = 1268.73 PIPE FLOW = 12.31 CFS PIPE DIAMETER = 18.00 INCHES ' ASSUMED DOWNSTREAM CONTROL HGL = 1269.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.27 FT.) IS LESS THAN CRITICAL DEPTH( 1.33 FT.) CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH ' FOR UPSTREAM RUN ANALYSIS ------- ___ --- _____ -------------- ___ ------------------- ___ _____________ NODE 1108.21 HGL = < 1269.238 >;EGL = < 1277.717 >;FLOWLINE = < 1268.730> FLOW PROCESS FROM NODE 1108.21 TO NODE 1043.70 IS CODE = 1 UPSTREAM NODE 1043.70 ELEVATION = 1287.67 (FLOW IS SUPERCRITICAL) ______________________ _____ _______________________________ _ ' CALCULATE FRICTION LOSSES(LACFCD): I 1 PIPE FLOW = 12.31 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 64.51 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.47 CRITICAL DEPTH(FT) = 1.33 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.33 ' GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ ' CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.326 7.444 2.187 241.69 0.009 1.292 7.601 2.190 241.94 0.037 1.258 7.776 2.198 242.72 ' 0.085 1.224 7.971 2.211 244.04 0.156 1.190 8.186 2.231 245.93 0.253 1.156 8.423 2.258 246.42 ' 0.379 0.539 1.122 1.068 8.682 6.968 2.293 2.337 251.56 255.40 0.737 1.053 9.280 2.392 259.99 0.981 1.019 9.623 2.458 265.40 1.276 0.985 10.000 2.539 271.72 ' 1.640 0.951 10.414 2.636 279.03 2.078 0.917 10.870 2.753 287.45 2.610 0.663 11.374 2.893 297.11 3.257 0.849 11.931 3.061 308.16 ' 4.047 0.815 12.549 3.262 320.78 5.020 0.781 13.238 3.504 335.19 6.229 0.747 14.009 3.796 351.66 7.750 0.712 14.875 4.150 370.50 ' 9.699 0.678 15.852 4.583 392.12 12.256 0.644 16.962 5.114 417.00 15.727 0.610 18.230 5.774 445.76 20.690 0.576 19.688 6.599 479.19 ' 28.457 0.542 21.380 7.644 518.28 43.245 0.508 23.360 8.987 564.36 64.510 0.508 23.360 8.967 564.36 NODE 1043.70 HGL 1288.996>;EGL= __________ ----- '------ - '--- : = c < 1269.857 >; FLOWLINE = < 1287.670> ' FLOW PROCESS FROM NODE 1043.70 TO NODE 1040.49 IS CODE = 5 UPSTREAM NODE 1040.49 ELEVATION = 1288.00 _______________ (FLOW UNSEALS IN REACH) ' _________- ______________ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 6.00 18.00 90.00 1288.00 0.95 3.396 DOWNSTREAM 12.31 18.00 -- 1287.67 1.33 7.447 ' LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 6.31 = = =Q5 EQUALS BASIN INPUT = == ' LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *CDS(DELTA4)) /((Al +A2) *16.1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00326 ' DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01229 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00778 JUNCTION LENGTH = 3.21 FEET ' FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = 0.172 FEET 1 ' JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.008) +( 0.172) = 1.180 NODE 1040.49 HGL = < 1290.858>;EGL= < 1291.037 >; FLOWLINE = < 1288.000> + + + + + + + + ++ rrrrr + + ++ rrrr + ++ rrr + + + + +r+ rrr +r + ++ rrr + + + + + +r +r +r + + + + + ++ +r + + + + + + + + + ++ ' FLOW PROCESS FROM NODE 1040.49 TO NODE 1000.00 IS CODE = 1 UPSTREAM NODE 1000.00 ELEVATION = 1288.41 (FLOW IS UNDER PRESSURE) _____ ______ _____________ ' CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 6.00 CPS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 40.49 FEET MANNING'S N = 0.01300 SF= (Q /K) * *2 = (( 6.00)/( 105.053)) * *2 = 0.00326 ' = HF =L r SF ( 40.49) *(0.00326) = 0.132 NODE 1000.00 HGL = c 1290.990 >;EGL = < 1291.169>;FLOWLINE= < 1288.410> t + + + +rrrrrrr + + + + ++ rrr + ++ +rrrr + ++ +rrrr + + + + ++ *rrrr + + ++ +rrr + + + + + ++ +rrrr + + ++ +rrrrr+ FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 8 UPSTREAM NODE 1000.00 ELEVATION = 1288.41 (FLOW IS UNDER PRESSURE) ____________ _____ __ __ ________ ' CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 6.00 CPS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.39 FEET /SEC. VELOCITY HEAD = 0.179 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.179) = 0.036 NODE 1000.00 HGL = <- 1291.205>;EGL= c 1291.205>;FLOWLINE= < 1288.410> ++ rrrrrr + + + + ++ rrr + + ++ rrrr + ++ rrr + + + + + ++ rrrr + + ++ rrrr + ++ +rrrrr + + ++ +rrrrr + + ++ +rrr+ ' UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1000.00 FLOWLINE ELEVATION = 1288.41 ASSUMED UPSTREAM CONTROL HGL = 1289.36 FOR DOWNSTREAM RUN ANALYSIS OF GRADUALLY VARIED FLOW ANALYSIS________ _________________________ _ _ ____ 1 1 1 v 1 I L PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1461 MAY GROUP, INC ' 8555 AERO DR., STE. 305 SAN DIEGO, CA 92123 858 -505 -0435 Analysis prepared by: + * * + + + + + + + + + + + + + + + + + + + + + ++ DESCRIPTION OF STUDY * * + * * * * * * * * + * * * + + + + + + + * + ++ * CITY OF TEMECULA - TR. NO. 23103 -2 + * STORM DRAIN HYDRAULICS - LINE 'A -2' + * 100 YEAR STORM + FILE NAME: HAVVEOA2.DAT TIME /DATE OF STUDY: 08:01 06/06/2007 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: " *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 6.85- 2.90* 550.28 0.96 493.78 ) FRICTION ) HYDRAULIC JUMP 30.27- 2.24 477.08 1.00* 477.10 ) FRICTION 75.79- 1_44+nC 393.59 1.44'DC 393.59 ________________________ ___________ _________ ________________ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 _______________________________________________ ________________ _______________ NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6.85 FLOWLINE ELEVATION = 1274.04 PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1276.940 FEET _____ _______________________ ______ __ ______ _______________________________ ____ NODE 6.85 : HGL = < 1276.940>;EGL= < 1278.360>;FLOWLINE= < 1274.040> FLOW PROCESS FROM NODE 6.85 TO NODE 30.27 IS CODE = 1 UPSTREAM NODE 30.27 ELEVATION = 1275.31 (HYDRAULIC JUMP OCCURS) ___ -____ _______ __________ _______________________________ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 23.42 FEET MANNING'S N = 0.01300 _____________________ ___ _________________ _______________________________ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ____ _______________________________ NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) 1.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.00 r' GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW-DEPTH--VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) ' 0.000 1.528 0.999 0.995 13.522 13.572 3.839 3.857 477.10 476.49 3.132 0.992 13.623 3.876 479.91 4.820 0.989 13.674 3.894 481.33 6.600 8.481 0.965 0.982 13.726 13.776 3.913 3.932 482.78 484.24 10.472 0.979 13.831 3.951 485.71 12.587 0.976 13.864 3.971 487.21 14.838 0.972 13.936 3.991 488.72 ' 17.244 0.969 13.992 4.011 490.25 19.823 0.966 14.047 4.032 491.79 22.600 0.963 14.102 4.052 493.35 ' _- __23.420-- _ - -_ - -- -0.962 _______ 14. 117----- 058--- 493_78 HYDRAULIC JUMP: _ -_ - -4. UPSTREAM RUN ANALYSIS RESULTS __ - - - -_- -- DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD( FT)- = 2.90------- - PRESSURE FLOW PROFILE - - COMPUTED - INFORMATION: -------- - - -- -- ' ______________________________ DISTANCE FROM _______________________________ PRESSURE VELOCITY SPECIFIC _______ PRESSURE+ CONTROL(FT) HEAD(FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.900 9.563 4.320 550.28 23.420 2.236 9.563 3.656 477.08 ' ________________________END OF HYDRAULIC JUMP ANALYSIS ________________________ PRESSURE +MOMENTUM BALANCE OCCURS AT 23.41 FEET UPSTREAM OF NODE 6.85 DOWNSTREAM DEPTH = 2.236 FEET, UPSTREAM CONJUGATE DEPTH = 0.999 FEET 'I __________________________ NODE 30,27 : HGL _ < 1276.309 >;EGL = < 1279.150>;FLOWLINE= _____________________________ < 1275.310> ' FLOW PROCESS FROM NODE 30.27 TO NODE 75.79 UPSTREAM NODE 75.79 ELEVATION 1277.79 IS CODE = 1 ____________________________________________ = (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): _______________________________ PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES ' PIPE LENGTH ---- _------ ________ 45.52 FEET ----- MANNING'S N = 0.01300 NORMAL DEPTH(FT) _---- ________--------- = 0.92 _______ ------- CRITICAL DEPTH(FT) ______________ = 1.44 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ______ VELOCITY _________________ SPECIFIC PRESSURE + ______ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.438 9.696 2.899 393.59 ' 0.058 1.417 9.772 2.901 393.79 0.226 1.396 9.858 2.906 394.37 0.502 1.375 9:955 2.915 395.31 ' 0.884 1.377 1.355 1.334 10.061 10.177 2.927 2.943 396.59 398.21 1.986 1.313 10.303 2.962 400.17 2.721 1.292 10.438 2.985 402.47 3.592 1.271 10.583 3.011 405.11 ' 4.613 1.250 10.737 3.041 408.11 i i 1 1 i 1 1 1 i 1 1 1 1 1 1 1 1 i 5.603 1.229 10.902 3.076 411.47 7.184 1.208 11.077 3.115 415.20 8.783 1.167 11.263 3.158 419.31 10.635 1.166 11.460 3.207 423.83 12.765 1.145 11.669 3.261 426.76 15.290 1.124 11.890 3.321 434.13 18.229 1.104 12.124 3.387 439.96 21.704 1.083 12.372 3.461 446.28 25.863 1.062 12.634 3.542 453.10 30.922 1.041 12.911 3.631 460.46 37.216 1.020 13.205 3.729 466.39 45.306 0.999 13.516 3.837 476.93 45.520 ____________ 0.999 13.522 3.839 477.10 NODE 75.79 _ HGL = < 1279.228 __________ >;EGL= < _ 12B0.689>;FLOWLINE= ___ __ < 1277.790> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 75.79 FLOWLINE ELEVATION = 1277.79 ASSUMED UPSTREAM CONTROL HGL = 1279.23 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Street Capacity /Inlet Sizing GROUP PLANNING •ENGINEERING • SURVEYING 6540 Lusk goule anJ • Suite C -225 • San Diego, CA 92121 (619) 550 -9901 • FAX (619) 550A469 Job No. Sheet of 2 V. Lnll /o%- �Tee�s . B#1 1W1s)/ye D ` Zr� /off 2C�C z�W c z> eeT �.� R . O• W., �ih HIV u A5 f CAS e5n / c 7�j /OMaX /�•O,Vv, `A��J' 4 . 1= 1�7L���Y�3�zJ 1 3,v Pi /1�J 11 1 �ez� O� _/ 1 GROW PLANNING •ENGINEERING • SURVEYING 6540 Lusk Boulevard I Son a C -225 I San Diego, CA 92121 (619) 550.9901 • FAX (619) 550-9469 Job No. She e�EB of 7i 2Da � �V n e e�-&I)J71-h D/- 0,3024 = -407 h= N46 _' jo O, S 2, S Fig 13% SR Zrn� Pons, CQ AO2 7o 2, S CHART 1 -103,6 A CAPACITY OF CURB OPENING INLETS ASSUMED 2% CROWN Q = 0,7L (A +'Y)372 *A = -0,33 Y = HEIGHT OF WATER AT CURB FACE (0,4' MAXIMUM) REFER TO CHART 1- 104,12 L = LENGTH OF CLEAR OPENING OF INLET *Use A =0 when the inlet is adjacent to traffic; i.e., for a Type "J" median inlet or where the parking lane is removed. REV. CITY OF SAN DIEGO - DESIGN GUIDE SHT. NO. CAPACITY OF CURB OPENING INLETS -- 13 ) ; own . . f - r� HEIGHT OF OPENING (h) IN FEET, N 61 Q1 y m C9 ,O ;7) . (f S C17 - L-Lir V. n N N N W W A A N Vf 0 4 ^HEIGHT % OJ (0 N o N OF\ \0PENING (h) IN INCHES co \SS'. ' • '.� o C °I ` j � r• QAPACIT' PER FOOT OF LENGTH OF OPFNI[�!0 (0/L) IN R FO 01' ,j � '� Vii, I�' \ _ N L' O1 CO O 1 W •t' M CD \ . ,- a I ,J_ 1- _�_I_J rn _. s . ` I\ Fk1T10 OF DEPTH OF YIATER AT OPENING TO HEIGHT OF OPENING (H /h)' IN FTJFT, V ,, "� L.J O - f•1 N W 1. 4'� OI �1 C6 . ttl - P.P N W A N I 1 1 K C 1 1. h h [R O W' N 2 t O U U Q ' J 1 SEE STANDARD C B 03 MANUOLE FRAME AND COVER FOR CATCH BASINS � 2 iA@i\ w- \C` \ 2WAQ2 i 46D6Ew CATCH BASIN OPENING 'NORMAL CURB FACE 44 INCHES UNLESS OTHERWISE SPECIFIED 1, \\✓ �/�1 \ 6 0 // 1 FLOr MEET EXISTING CURB I R 4' -0- WARPED GUTTER _. MEET EXISTING PAVEMENT SEE STANDARD DRAWN.: NO. LD20I V• FOR APPROPRIATE LDU.L DEPRESSION SECTION A -A SEE STANDARD DRAWING No. C8109,5PECIAL CONNECTIONS. R[YIS TORS I.lICT ANR ITH)N Nm1cT CATCH BASIN UYm R' ER•�I�G �E N0. I 7,1 jSTANDARD DRAWING HUMBER C6 100 E` q• - NOTES % 1. DIMENSIONS: UNLESS OTHERWISE SPECIFIED /4 D V- 6'4PW- 7 -,9'P W-11.12 9W. 21' V Y SMALL BE SHOWN ON THE PLANS. W •SHALL BE SHOWN ON THE PLANS —y !.7 FOOT MIN. PERSPECTIVE T • 6 INCHES IF V b FEET OR LESS. OF T • B INCHES IF V IS LESS THAN B FEET. T _ 11 INCHES IF V IS B FEET DR MOPE CATCH BASIN NO. 1 0 Yb INCHES UNLESS OTHERWISE SPECIFIED A', 38 INCHES UNLESS OTHERWISE SPECIFIED 2. STRUCTURAL CONCRETE SHALL BE CLASSY P.CC. SEE STO. G3 WING C B IDS CATCH BASIN INLET FOR DETAILS. 16 SACK). ANCHOR i 3. THE REINFORCING STEEL SHALL BE NUMBER s R :'R IR i DEFORMED BARS. CLEARANCE SMALL BE 11/2 INCH (V FROM THE BOTTOM OF THE SLAB. SEE NOTE T. T + ,Tr � ?-(.. -�• TY�7 -: � CURS FACE l THE SURFACE Of ALL EXPOSED CONCRETE SHALL CONFORM TO SLOPE, GRADE, COLOR, FINISH AND <M 27A < SCORING IN THE EXISTING OR PROPOSED CURB AND WALK ADJACENT TO THE BASIN. THE BASIN FLOOR "- CONST JOI NY y'y SHALL BE GIVEN A TIGHT WOOD FLOAT FINISH. v.- - CURVATURE OF THE LIP AND SIDEWALLS AT THE < <' STEP SEE NH 239 I GUTTER OPENINU SHALL NOT BE MADE BY _ AND NOTE S _ PLASTERING. THE OUTLET PIPE SMALL BE TRIMMED TO FINAL SHAPE AND LENGTH BEFORE THE J FA A _ CONCRETE IS POURED. S. STEPS: 3H INCH PLAIN ROUND GALVANIZED STEEL STEPS ° SHALL BE INSTALLED 16 INCHES APART WHEN V < _ EXCEEDS A FEET 6 INCHES. THE TOP STEP SHALL BE 6 INCHES BELOW THE TOP SURFACE AND SHALL BE 21/2 INCHES CLEAR FROM THE WALL, <E s SLOPE TO OUTLET _ ALL OTHER STEP!; SHALL BE 4 INCHES CLEAR �� FROM THE WALL. ONLY ONE STEP 12 INCHES FROM THE FROM ALL DIRECTIONS BOTTOM SHALL BE INSTALLED IF V IS A FEET 6 INCHES - OR LESS. ALL STEPS SHALL BE ANCHORED NOT LESS _ THAN A INCHES INTO THE WALL OF THE 2ASIN. 6. CURSSGUTTER AND LOCAL DEPRESSIONS SMALL BE -B"CONCRETE. . <. . C1a29 1 I T SEF STANDARD DRAWING CBIOS FOR WALL. &FLOOR STEEL T .I- A' REINFORCING. SECTION A -A SEE STANDARD DRAWING No. C8109,5PECIAL CONNECTIONS. R[YIS TORS I.lICT ANR ITH)N Nm1cT CATCH BASIN UYm R' ER•�I�G �E N0. I 7,1 jSTANDARD DRAWING HUMBER C6 100 E` Appendix C Line B Hydraulics I 1 1 *# k##*#}*****++++**+##******+++++++*#+#+*##**** * * + + # # { # * # * * # * * * * * * * * * + } + * * * + ++ PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2004 Advanced Engineering Software (aes) Ver. 10.0 Release Date: 01/01/2004 License ID 1461 MAY GROUP, INC. ' 8555 AERO DR., STE. 305 SAN DIEGO, CA 92123 858- 505 -0435 1 1__J I I J Analysis prepared by: # * # * * * * * * * * + + * * +k # * # # # # * #+ DESCRIPTION OF STUDY * * + * + + # + # # # # # * # * # * * * * * * * }* * CITY OF TEMECULA - TRACT NO. 32103 -2 * STORM DRAIN HYDRAULICS - LINE 'B' * 100 YEAR STORM kkk*##{####+***** k****++ kk###+##*##**** k* k+ k # + * # # # * * * * * * * * ++ * ++ # + # # # # * # + ## FILE NAME: VVEHAOB.DAT TIME /DATE OF STUDY: 09:33 02/25/2008 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: " *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 1159.75- 2.43* 268.25 0.54 262.62 FRICTION ) HYDRAULIC JUMP 1153.85- 1.95 215.37 0.54* 262.52 1003.17- 1.82* 117.86 1.14 Dc 46.17 --------------------------------------------------------------------------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1159.75 FLOWLINE ELEVATION = 1286.77 PIPE FLOW = 8.70 CPS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1289.200 FEET NODE 1159.75 : HGL = < 1289.200 >;EGL = < 1289.576 >;FLOWLINE = < 1286.770> FLOW PROCESS FROM NODE 1159.75 TO NODE 1153.85 IS CODE = 1 UPSTREAM NODE 1153.85 ELEVATION = 1287.29 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): ) FRICTION +BEND 1131.31- 1.14 Dc 147.79 0.54* 262.09 ) FRICTION 1054.95- 1.14 Dc 147.79 0.57* 247.35 ) FRICTION +BEND 1004.43- 1.14 Dc 147.79 0.94* 155.27 FRICTION 1003.17- 1.14 *DC 147.79 1.14 *DC 147.79 ) CATCH BASIN 1003.17- 1.82* 117.86 1.14 Dc 46.17 --------------------------------------------------------------------------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1159.75 FLOWLINE ELEVATION = 1286.77 PIPE FLOW = 8.70 CPS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1289.200 FEET NODE 1159.75 : HGL = < 1289.200 >;EGL = < 1289.576 >;FLOWLINE = < 1286.770> FLOW PROCESS FROM NODE 1159.75 TO NODE 1153.85 IS CODE = 1 UPSTREAM NODE 1153.85 ELEVATION = 1287.29 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): 1 PIPE FLOW = 6.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.90 FEET MANNING'S N = 0.01300 ' HYDRAULIC ----JUMP: ------DOWNSTREAM ----------RUN ---ANALYSIS ---------RESULTS ----------------------------------- (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 1.14 4.078 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 1 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FLOW PROCESS FROM NODE 1153.85 TO NODE 1131.31 IS CODE = 3 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ -- ------ ------------------------------------ LOSSES(OCEMA): CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.543 15.085 4.078 262.52 ' 1.122. 0.543 15.086 4.079 262.54 2.291 0.543 15.067 4.079 262.56 3.513 0.543 15.088 4.080 262.58 - - - - -- - - - - -- - ASSUMED FLOWDEPTH(FT) = 0.54 4.791 0.543 15.090 4.080 262.60 ' 5.900 0.542 15.091 4.081 262.62 (FT) (FT /SEC) ENERGY(FT) HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS - - RESULTS - - -- - -- - -- - ' DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.43 262.12 2.290 0.543 15.062 4.068 262.15 3.511 0.543 15.063 4.069 ------------------------------------------------------------------------------ PRESSURE FLOW PROFILE COMPUTED INFORMATION: 0.543 15.065 4.070 262.21 ' - --- ---------------------------------------------------------------- DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) ' 0.000 5_900 2.430 1.950 9.923 4.923 2.806 2.327 268.25 215.37 ----- - - - - -- -END OF HYDRAULIC JUMP ANALYSIS------------------ - - - - -- I PRESSURE +MOMENTUM BALANCE OCCURS AT 0.63 FEET UPSTREAM OF NODE 1159.75 ' DOWNSTREAM DEPTH = 2.379 - --------------------------------------------------------------------- FEET, UPSTREAM CONJUGATE DEPTH = 0.543 FEET NODE 1153.85 : HGL = < 1287.833 >;EGL = < 1291.368 >;FLOWLINE = < 1287.290> 1 FLOW PROCESS FROM NODE 1153.85 TO NODE 1131.31 IS CODE = 3 UPSTREAM NODE 1131.31 ELEVATION = 1289.29 (FLOW IS SUPERCRITICAL) ---- -- -- -- -- ------ CALCULATE PIPE -BEND -- ------ ------------------------------------ LOSSES(OCEMA): ' PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 14.500 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 22.74 FEET ' Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. ' ------------------------------------------------------------------------------ NORMAL DEPTH( FT)- CRITICAL DEPTH(FT)- = L 14 0.59----- = -- - UPSTREAM CONTROL - - - - -- - - - - -- - ASSUMED FLOWDEPTH(FT) = 0.54 - - - - -- - - - - - -- ' ---=------------ ------------------------------------------------------------------------------ GRADUALLY VARIED --------------------------------------------------------------------------- FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) ' 0.000 0.543 15.058 4.066 262.09 1.121 0.543 15.060 4.067 262.12 2.290 0.543 15.062 4.068 262.15 3.511 0.543 15.063 4.069 262.18 ' 4.790 0.543 15.065 4.070 262.21 1 I 1 1 1 1 L 1 1 E 6.130 7.540 9.026 10.598 12.265 14.040 15.938 17.977 20.179 22.574 22.740 fIi7J�mlclwll 0.543 0.543 0.543 0.543 0.543 0.543 0.543 0.543 0.543 0.543 0.543 15.067 15.069 15.071 15.073 15.075 15.077 15.079 15.081 15.082 15.084 15 ----------------------------- - - - - -- HGL = < 1289.833 >;EGL = < 1293 4.070 4.071 4.072 4.073 4.074 4.075 4.076 4.076 4.077 4.078 4.078 .356 >;FLOWLINE = < 262.24 262.27 262.30 262.33 262.36 262.39 262.42 262.45 262.48 262.51 262.52 1289.290> FLOW PROCESS FROM NODE 1131.31 TO NODE 1054.95 IS CODE = 1 UPSTREAM NODE 1054.95 -- ----------------------------------- ELEVATION = 1296.01 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 76.16 FEET MANNING'S N = 0.01300 -- NORMAL DEPTH(FT) = =--- --------------- =-- -------- 0.54 ---------------------_----------------- ===-------- CRITICAL DEPTH(FT) 1.14 UPSTREAM ---------- CONTROL ASSUMED FLOWDEPTH(FT) --------------- = 0.57 _------------------- GRADUALLY VARIED FLOW PROFILE ---------------------- COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY ------------------------------------- SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.570 14.126 3.670 247.35 1.036 0.569 14.163 3.685 247.94 2.119 0.567 14.201 3.701 248.54 3.254 0.566 14.239 3.717 249.13 4.447 0.565 14.277 3.732 249.73 5.701 0.564 14.315 3.748 250.34 7.025 0.563 14.354 3.764 250.94 8.425 0.562 14.393 3.780 251.55 9.909 0.561 14.431 3.797 252.17 11.489 0.560 14.471 3.813 252.78 13.177 0.558 14.510 3.830 253.40 14.988 0.557 14.549 3.846 254.03 16.939 0.556 14.589 3.863 254.65 19.053 0.555 14.629 3.880 255.28 21.359 0.554 14.669 3.897 255.92 23.894 0.553 14.709 3.914 256.55 26.705 0.552 14.749 3.932 257.20 29.859 0.551 14.790 3.949 257.84 33.446 0.549 14.831 3.967 258.49 37.600 0.548 14.872 3.985 259.14 42.531 0.547 14.913 4.003 259.80 48.585 0.546 14.955 4.021 260.46 56.417 0.545 14.997 4.039 261.12 67.495 0.544 15.039 4.058 261.78 76.160 ------------------ 0.543 15.058 4.066 262.09 NODE 1054.95 HGL - < 1296.580>;EGL= ------ --- -- ---- ----- - --- -- < 1299.680 >;FLOWLINE --------------- -- = < 1296.010> FLOW PROCESS FROM NODE 1054.95 TO NODE 1004.43 IS CODE = 3 UPSTREAM NODE 1004.43 ELEVATION = 1300.46 (FLOW IS SUPERCRITICAL) J I 1 1 1 1 1 1 1 1 i 1 1 11 1 [J 1 11 --------------------------------- CALCULATE PIPE -BEND LOSSES(OCEMA) PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 64.300 DEGREES MANNING'S N = 0.01300 PIPE LENGTH = 50.52 FEET Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for bends. Therefore, to be consistent with WSPG results, a zero bend loss is used. ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 1.14 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.94 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ _ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.943 7.430 1.801 155.27 0.258 0.927 7.582 1.821 156.66 0.551 0.911 7.740 1.842 158.19 0.883 0.895 7.906 1.866 159.88 1.259 0.879 8.080 1.694 161.72 1.664 0.863 8.262 1.924 163.73 2.164 0.847 8.454 1.958 165.92 2.706 0.831 8.655 1.995 168.29 3.317 0.815 8.867 2.037 170.87 4.009 0.799 9.090 2.083 173.65 4.793 0.783 9.324 2.134 176.66 5.682 0.767 9.571 2.190 179.90 6.696 0.751 9.832 2.253 183.40 7.856 0.735 10.107 2.322 187.17 9.189 0.719 10.398 2.398 191.22 10.733 0.703 10.706 2.483 195.59 12.534 0.686 11.032 2.577 200.29 14.656 0.670 11.378 2.662 205.35 17.196 0.654 11.746 2.798 210.80 20.261 0.638 12.137 2.927 216.66 24.120 0.622 12.554 3.071 222.98 29.063 0.606 12.998 3.231 229.80 35.761 0.590 13.473 3.411 237.15 45.684 0.574 13.982 3.612 245.09 50.520 0.570 14.126 3.670 247.35 ------------------------------------------------------------------------------ NODE 1004.43 : HGL = < 1301.403>;EGL= < 1302.261>;FLOWLINE= < 1300.460> +++++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ FLOW PROCESS FROM NODE 1004.43 TO NODE 1003.17 IS CODE = 1 UPSTREAM NODE 1003.17 ELEVATION = 1300.57 (FLOW IS - - ------------------------------- SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 1.26 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) - ------ = 0.54 --- ------ ---- -------- CRITICAL DEPTH(FT) ---- ------ = 1.14 ------------------------------------------------------------------------------ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.14 -========---------------------------------------------------------------- GRADUALLY VARIED ------------------------------------------------------------------------------ FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) I H 0.000 1.142 6.026 1.706 147.79 0.014 1.118 6.158 1.707 147.89 0.056 1.094 6.299 1.710 148.18 0.131 1.070 6.449 1.716 148.68 0.242 1.046 6.610 1.725 149.39 0.394 1.022 6.781 1.737 150.34 0.592 0.998 6.964 1.752 151.54 0.842 0.974 7.160 1.771 152.99 1.152 0.950 7.369 1.794 154.73 1.260 0.943 7.430 1.801 155.27 ----------------------------------------------------------------- NODE 1003.17 : HGL = < 1301.712>;EGL= < 1302.276 >;FLOWLINE = < 1300.570> FLOW PROCESS FROM NODE 1003.17 TO NODE 1003.17 IS CODE = 8 UPSTREAM NODE 1003.17 ELEVATION = 1300.57 (FLOW UNSEALS IN REACH) --- -- ---------- --- -- --- ------ --------------- - CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 6.03 FEET /SEC. VELOCITY HEAD = 0.565 FEET CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.565) = 0.113 NODE 1003.17 : HGL = < 1302.389 >;EGL = < 1302.389 >;FLOWLINE = < 1300.570> ' UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 1003.17 FLOWLINE ELEVATION = 1300.57 ASSUMED UPSTREAM CONTROL HGL = 1301.71 FOR DOWNSTREAM RUN ANALYSIS -- ----- - - - - --- END OF GRADUALLY VARIED FLOW ANALYSIS 1 1