HomeMy WebLinkAboutTract Map 23103-2 Drainage Report Feb. 25, 2008PRELIMINARY
DRAINAGE STUDY
Vinyards View Estates
TENTATIVE TRACT NO. 23103 -2
TEMECULA, CA.
Revised FEBRUARY 25, 2008
Revised JUNE 6, 2007
Revised MAY 7, 2007
Revised APRIL 9, 2007
Revised MARCH 7, 2007
Revised JUNE 29, 2005
JUNE 169 2005
PREPARED FOR:
VINEYARD VIEW ESTATES
8555 AERO DRIVE, SUITE 305
SAN DIEGO, CA 92123
858 -505 -0435
PREPARED BY:
MAY Group, Inc.
8555 Aero Drive, Suite 305
San Diego, CA 92123
Phone: (858) 505 -0435
W.O. 127 -01
MAY GROUP, INC.
BY: PHILIP E. BROWN, P.E. R.C.E. 18679
REGISTRATION EXPIRES 6/30/09
µo. 1eb79
r
I
I
L
1
1
TABLE OF CONTENTS
Page No.
Introduction
1
Project Summary
1
Existing Conditions and Background
1
Project Description
2
Discussion
3
Hydrology Methodology
3
Determination of Runoff Coefficient
4
Determination of Time of Concentration and Intensity
4
Determination of Area
4
Conclusion
4
LIST OF FIGURES
Figure 1
Vicinity Map
6
Figure 2
Hydrologic Soils Group - Bachelor Mtn.
7
Figure 3
RCFCD Manual Plate D -3, Time of Concentration
8
Figure 4
RCFCD Manual Plate D -4.1, Intensity/Duration Data
9
Figure 5
RCFCD Manual Plate D -5.4, Soil Type D/Runoff
10
Coefficient
Figure 6
Velocity Discharge - 36' Roadway
11
Figure 7
Velocity Discharge - 86' Roadway
12
APPENDIX A
Hydrology Calculations, 10 and 100 year storm frequencies
"Drainage Study, TM 23209, Butterfield Stage Road ", 8/15/03, for Shea Homes, By May
Group, Inc.
March, 2007 Revisions
February, 2008 Revisions
APPENDIX B
APPENDIX C
ATTACHMENTS — ENVELOPE
Hydrology Map — Vineyard View Estates
Master Developed Hydrology Map - Margarita Village (portion)
1
I
1 1
1 1
t
'I
'I
1
INTRODUCTION
The purpose of this drainage study is to determine the proposed condition hydrology for
Tentative Tract No. 23103 -2, in the City of Temecula, California
PROJECT SUMMARY
Upon build out of Vineyard View Estates, the quantity of storm water runoff is estimated
to be:
Line "D "*
10 year storm
n/a
Line "E "* n/a
Line T "* n/a
Clinet & Butterfield Stage Road 6.6 CFS
100 Year storm
39.6 CFS
159.4 CFS
197.6 CFS
10.2 CFS
*Reference: MARGARITA VILLAGE, T.T. 23100, 23101, 231021, HYDROLOGY
CALCS, 100 YEAR AND 10 YEAR FREQUENCY, PREPARED FOR COMMUNITY
SERVICES, 11/9/88, REVISED 2/28/89, referred to herein and in supporting documents
as "Margarita"
EXISTING CONDITIONS AND BACKGROUND
In the City Of Temecula, County of Riverside, State of California, the site of Vineyard
View Estates is a triangular shaped, vacant property containing 18.3 acres bounded on the
east by Butterfield Stage Road and Temecula Wine Country, on the south by the fully
improved street, Chemin Clinet, and on the west by single family residential
1 subdivisions. Access from the westerly subdivisions is provided by Ahern Place.
The topography is rolling terrain crossed by what in the past were three well defined, east
to west trending watercourses, dry except for the rainy season. Storm drains in place of
'I
the two northernmost watercourses were installed as part of the recent (1993)
'I construction of Butterfield Stage Road. The third, or most southern, had been replaced by
I
a 36" storm drain several years ago.
The site is covered by a low growth of wild grasses and overlooks the Temecula Wine
1'
Country lying east of Butterfield. The Wine Country to the east is likely to remain an
■ ' agricultural preserve for many generations.
A residential use of the property has been planned for more than twenty years and the site
was incorporated in the drainage study referenced above.
i
r
PROJECT DESCRIPTION
' Implementing a portion of an accepted community master plan, Vineyard View Estates is
' I an "in -fill' project of limited scope consisting of 36 single family residential lots on 18.3
acres. Upon build out, the lots will be served by a fully improved infrastructure consisting
' I of paved streets with curbs and gutters, sanitary sewer and water systems, and all utilities.
' Lot sizes are a mix of medium and low density.
1�
' 2
1!
I
I
11
DISCUSSION
The referenced 1988 "Margarita" drainage study addressed the hydrology for the master
planned community and the site of Vineyard View and, most importantly, the storm
water flows within the three defined water courses that cross the site. The current
hydrology is essentially an amendment to "Margarita" occasioned by the property's
boundary being defined by surrounding development and a revision to the lot
configuration resulting there from.
Since its completion, the "Margarita" drainage study has been the hydrology for the
design of most if not all of the drainage improvements in the existing development west
and downstream from Vineyard View. Too, it is the primary hydrology for the recently
completed Butterfield Stage Road extension along the sites east boundary. Accordingly,
the hydrology contained in this study is limited to only that needed for the development
of Vineyard View Estates.
HYDROLOGY METHODOLOGY
The detailed hydrology calculations for the project are attached in this study. For 10 and
100 year storm events, the rational method as defined in the Riverside County Flood
Control District's Hydrology Manual is used, Q =CIA; i.e., quantity of runoff (cubic feet
per second) = runoff coefficient X rainfall intensity (inches per hour) X watershed
tributary area (acres).
3
Ii
'1
1'
1
,I
'1
'I
LJ
C
DETERMINATION OF RUNOFF COEFFICIENT
In accordance with the Manual, runoff coefficients are dependent on soil type and the
proposed land use of the basin. For Butterfield Stage Road extension, the runoff
coefficients are for Soil Type D, paved areas and single family residential, % acre lots.
DETERMINATION OF TIME OF CONCENTRATION AND INTENSITY
Average rainfall intensity, "I", in inches per hour is based on a time of concentration (Tc)
of the contributing storm. Total time of concentration is the time required for the storm
runoff to flow from the most remote point of a drainage basin to the outlet point and is
selected from the Manual Nomograph. The rainfall intensity is from the Manual, that of
Murrieta, Temecula, and Rancho California.
DETERMINATION OF AREA
"A" is the drainage area, or drainage basin, and is determined based on the path the
rainfall will take when running downhill. The delineation between basin marks where the
water will flow in varying directions. All the rain falling within a basin will typically
flow to the lowest point of the basin.
CONCLUSION
To allow for the grading of the site and its development as Vineyard View Estates, storm
water runoff must necessarily be collected and controlled in a system of permanent and
temporary storm water management facilities consisting of paved streets with curbs and
gutters and storm drain inlets which in turn connect to the existing storm drains passing
under and across the site. Given that these measures will be taken in compliance with
4
I
City of Temecula and Riverside County Flood Control requirements and consistent with
accepted engineering and construction practices are taken, Vineyard View Estates can be
developed and it and downstream properties kept reasonably free of flood hazard.
'I
'I
1
11 5
a
� I I r � T
N. 1.5.
MAP
-a
-i t
Ilk-
.7,1c
---- ------- -
c - Pr �c,
o--
1�
Ac r2
Nc
o�A 111 11 1
-cl
w:
L
15-
-zz--
-ac
-9--o
Ly
ac
BIC-
Bc
Ic
ac, -Sc
UV
o�l�Zc,
2
4-A —
1, 6c
f3c:
c
a 14 ac 3c ac .c
ac
ZGEND HYDROLOGIC SOILS Gr-CUP MAP
SOILS 'ROUP BOUNDARY
A SOILS CROUP DESIGNATION rOR
R C= C& W C D BACHELOR MTN.
j- Y-Cft01 -,- Y ^Vj :SL's._
O FEET 5000
• PI
ti
'I
i
1
1
�1.
'I
'I
Il
11
i
'I
1
_ !00
1000 90
900 so
80C 70
700 Lac
'C 50
£ 13
13
12 2�
6� li
`o
y
O
L
c
n
e
2 /
is
a
T
---1� A m
_ ail F
12-47
�a
;7-i-
i-
_� c
KEY
°
t50 ® o L- H --c -K- -Ic
E
8 / m
EXAMPLE:
1;6 (1) L =550 , .H =5.0; X = Singie Family {I /4 Ac.) 55
Development , Tc = 12-6 min.
i00 (2) L =550, H =5.0', K = Commercial e-0
Development, Tc = 9.7 min. .
S
4
L
Reference: Bibliography itern No. 35.
TIME OF CONCENTRATION
FOR: INITIAL SUBAREA
zoo
i. maxim rn
langin = loco'
2- Maximum
aru = 10 Acres
®
35 '`
e
I"
E: !K0
;
30
c 30C
c
2w
-
i
p a
N
C'
Lt3
a
£ 13
13
12 2�
6� li
`o
y
O
L
c
n
e
2 /
is
a
T
---1� A m
_ ail F
12-47
�a
;7-i-
i-
_� c
KEY
°
t50 ® o L- H --c -K- -Ic
E
8 / m
EXAMPLE:
1;6 (1) L =550 , .H =5.0; X = Singie Family {I /4 Ac.) 55
Development , Tc = 12-6 min.
i00 (2) L =550, H =5.0', K = Commercial e-0
Development, Tc = 9.7 min. .
S
4
L
Reference: Bibliography itern No. 35.
TIME OF CONCENTRATION
FOR: INITIAL SUBAREA
zoo
=
®
35 '`
`
r 4
-0
30
R
gad
Unca
Good
9
35o
®
2a
Cover
a+d oiled
'
Fair co;oar
o
._
EF
_
300
l0e�aaveieaed
c
{
F 19 /
Poor covw
`o
C" { 9
"
gingm Family
J
250
F
1=
tfi
(i,+4 Acrai
_
i5
Commer=t
£ 13
13
12 2�
6� li
`o
y
O
L
c
n
e
2 /
is
a
T
---1� A m
_ ail F
12-47
�a
;7-i-
i-
_� c
KEY
°
t50 ® o L- H --c -K- -Ic
E
8 / m
EXAMPLE:
1;6 (1) L =550 , .H =5.0; X = Singie Family {I /4 Ac.) 55
Development , Tc = 12-6 min.
i00 (2) L =550, H =5.0', K = Commercial e-0
Development, Tc = 9.7 min. .
S
4
L
Reference: Bibliography itern No. 35.
TIME OF CONCENTRATION
FOR: INITIAL SUBAREA
RAINFALL INTENSITY - INCHES PER HOUR
MIRA
LOM6
Z
M RRIETA
RANCHO
- TEMECULA
CALIFORNIA
c
M
PALH
UPAIN65
PER1415
VALLEY
N
�
v
- DURATION-
goo
DURATION'
FREQUENCY
DURATION
D
C
FREQUENCY
c
1
b
-
MINUTES
r
RAINFALL INTENSITY - INCHES PER HOUR
MIRA
LOM6
Z
M RRIETA
RANCHO
- TEMECULA
CALIFORNIA
c
M
PALH
UPAIN65
PER1415
VALLEY
N
�
v
- DURATION-
goo
DURATION'
FREQUENCY
DURATION
D
UURAf10N
FREQUENCY
c
1
O
z
MINUTES
p�
�i.
MINUYES
C/l
MINUTES
RAINFALL INTENSITY - INCHES PER HOUR
MIRA
LOM6
M RRIETA
RANCHO
- TEMECULA
CALIFORNIA
NORCO
PALH
UPAIN65
PER1415
VALLEY
"AT ION ;"
FP[OUENCY
- DURATION-
-` FREQUENCY
DURATION'
FREQUENCY
DURATION
FREQUENCY
UURAf10N
FREQUENCY
MINUTES
MINUTES
MINUYES
MINUTES
- MINUTES- -
10
too
11
111
16
109
l0
'00
10
100
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YE 4R
YEAR
S
1.64
4.40
S
3.45
5.16
5 -
4.23 '
6.76
- 5
2.64
3.18
6
1.36
4.67
A
3.12
4.61
A
2.53
3.15
6
3.00
6.08
6
2.41
3.46
/
1.3T -
1.1s
7
2.61
4.24
- 7
2.34
].51
7
3.48
5.56
7
2.24-
3.21
9
2.21
3.49
8
2.61
3.94
8
2.19
3,29
4
3.22
5.15
0
2.09
3.01
9
2.06
1:21
9
2.50
3.69
9
2.07
3.10
9
3.01
4.11
9
1.08
2.84
)1
1.96
1.14
It
2.36
3.40
to
1.96
2.94
l0
2.63
4.52
10
1.88
2.69
II
1.67
1.90
It
2.14
3.30
11
1.81
2.80
11
2.67
4.26
11
1.79
2.57
I1
13
1.78
1.11
1.02
2.76
It
1.13
2.04
3.19
12
1.19
2.68
12
2.54
4.07
12
1.72
2,46
14
1.64
1.60
13
3.01
13
1.72
2.56
13
2.43
3.86
13
1.65
2.37
14
1.96
2,69
14
1.66
2.48
14
2.33
3.72
14
1.59
2.29
13
16
I.S6
1.33
1.51
2:41
IS
1.69
2.79
IS
1.60
2.40
IS
2.t3
3.56
IS
1.54
2.21
11
1i44
1134,
It
17
1.82
146
2.60
2.61
16
1.55
2.32
16
2.15
3.44
16
1.49
2.14
16
1.44
1.17
17
1.50
2.25
IT
2.81
3.32
11
1.45
2.06
19
1!40
1.21
16
19
1.11
1.46
2.92
2.45
Il
1.46.
2.19
16
2.61
1.22
"' 10
1.41.
2.07
--
19
1.42
2.13
!9
1.95
7.12
19
1.37
1.97
20
22
1.36
1.29
2.15
2.04
24
1.61
2.36
20
1.39
2.06
20
1.99
3.03
20
1.34
1.9i
24
1.14
1.95
22
1.51
t.t6
22
1.72
1.94
22
1.79
2.86
22
1.20
1.0]
26
1.10
1.07
14
1.46
2.18
24
1.26
1.90
24
1.14
2.72
24
1.22
1.7!
26
1.39
2.06
26
1.22
1.02
26
1.62
2.60
26
1.18
1.61
21
1.14
1.10
as
1.34
1.96
2B
1.17
1.76
28
1.56
2.49
28
1.13
1.61
30
,1.10
I.T3
30
1.29
1.91
30
1.13
1.70
30
1.49
2.39
.70
1.10
1.51
32
1.06
1:67
32
1.24
1.04
32
1.10
1.64
32
1.44
2.30
32
1.06
I.Si
34
1.03
1.62
34
1.20
1.70
34
1.06
1.59
34
1.39
2.22
34
1.03
1.41
00
L. 67 _.
_36 -_.-
1.17
1.72 -
- 36
1.03
1 S
36
1.34
2.15
36
1.00
1.44
30
.91
1.53
38
1.13
1.67
38
1.01
1.51
38
1.30
2.09
38
,9A
1.41
40
.94
1.49
40
1.10
1.62
40
.98
1.47
40
1.27
2.02
40
1.31
45
.so- "
.99
1.40
45
1.03
1.52
45
.92
1.39
45
1.18
1.89
45
.95
X1.21
55
.84
1.32 --
50_ "-
-- ..97..
1.44
_ so
...,69.
1.31
so
1.11
1.70
so
,96
.05
1.27
60
.76
1120
55
60
.92
1.36
55
.84
1.25
55
1.05
1,68
55
.31
1.11
.88
1.30
60
.80
1.26
60
1.00
1.60
60
.78
1 -Ii
65
70
.73
1.15
65
.84
1.24
65
,77
1.15
65
.95
1.53
65
1.01
75
.70
1.11
70
.81
1.19
70
.74
1.11
70
.91
1.46
70
.75
1.01
s0
.68
1.07
).03
75
.78
1.15
15
,72
1.07
15
.0s
1.41
75
.72
.10
1. p1
06
.65
1.00
s0
85
.75
1.11
60
.69
1.04
so
.A5
1.35
so
.68
.9'
.63
.73
1.07
05
.67
1.01
85
.82
1.31
85
.66
,9
SLOPE
.530
SLOPE
- .550
SLOPE
- .500
SLOPE • ,580
SLOPE
. .490
1m
1
1!
it
N t.
r =i
;did
i.
Il
II
.4
.3
.2
4 5
6
PLATE D-5-4
.8
.7
.6
•
EFMWdWj
rm
amp@
Qilfft
le
1111MIN
lmumw
flani�
of
0111111111111111111
1111111's ■
m
Mai
lllffzllfj���
III
MM
ow®
9191
uumua
44
IF
RUNOFF. COEFFICiENT CURVES
SOIL GROUP-D
COVER TYPE-URBAN' LANDSCAPING
AMC-I[
(RUNOFF INDEX NUMBER 75)
ile
B[Q
is
4 5
6
PLATE D-5-4
.8
.7
.6
'I
RCFC & WCD
HYDROLOGY 1\11AAUAL
RIVERSIDE
COUNTY FLOOD CONTROL
AND
WATER
CONSERVATION
DISTRICT
VELOCITY
DISCHARGE
CURVES
COUNTY
STANDARD
No.105
36' ROADWAY 6 "& 8 "CURBS
..ea.
.e
V
J
.miEr'��T�m
arm
®a
®�I�i
°was
°mom
�vM
mw- �e'Iwlm�s>_IS��
as
m
�® �Iw�ip1nl�i
RAAl
YWM.
®wmi���'�gqtltl��rrrv�ml�
AAIAmWB1Y.
pppp11lAtl�a1�
YlYAAYAAAAA�A
®a�A�.AYIAYYAYAYYI
M®
IrOlNmfldmll��®®:
IV ®I�IP.IIIIPIWyWIa00Clr��11111
®.:i1'JRIYGIYW
RRRRYIAiNYi
.®
AARAOt ®YNYIGYl�AAW911�®®tl�xTy�1
i�R�Q..T�TT-
•�••�_••�
@ILIIMtlII�
• ••,- •I�Cltlsll�
®�®
® ®�N®
. ®��'dI1Y1911i®Wllli�Wl
�P
IA111YIBIIW�
Y11
®19B1YtW®I
AAAA�AAARmHm1
®PIRA
®Y11
^- _••-
®RIR�11
I�li>�mlAe�
®IIm9ANlIY7
®�IItl16.RY�1O
7 �
viii
®1 ®B61v ®Rlq
®��lacrl�gmr
rail
I�s®Il��a®
® Im119b1�91Otl91q
[®I
®�OImINgIa�111191:'lJ►�
%J
Itel�����®OH91
�r -.-
-
�r =.—..,
�o
�3C.Cww••�—
�.�e.-
��
ir�+srumleu� ®uar
-
����•- ��®nr>
-- --
m�13Llraw��iaiv®uwnv.
®
uwAOAARA
®vn
anoasrm�
®iml
�_�
®AI— ISYJ
®� °
^'
�- 1�A�
/eal
/.AdIMV.YYAi9_Om
®tlM
�I�pIAAIINYI
{NrBYlIA1M11YM1®iA91NAm1Y11
�ppl�Rp
we
AR1 ®.mYm
fl�IYW
®OM��IAI
J
tam, �mle1. WT'
/i�0.1 �W�YpI..
C191MI�
\2JIYY'n
!NO�O—ia�i.AgWV.IA
�uNdSII.SV�m1ARA991H®
®�BIAIWI
®IRY
P���A�.--
iruul
",NRpR®IAA'.�B�I
AI.
®®11:11.- ••9
®IA�I
1A1�YeA
.'.A!l6:va•:A�111:i1'1.1.
A:
MI`
RRIIgryA
I-1ARIAl1A�YY11�aNR
��rRA19R11R11AQmiu'/.
®dYR.:u_:YYri1R'•�wnmll�
1�J
1RIgqad=,=p�
�r4TT®m5F-n
- ISI
MNAYNAIA
®1®mmA
��
ewi�Imnmms�
maw
/rte
mraror
®1��
m
mwlm
ar.rw
=.
-� ai�errze�n..
-
mo®
umlae
®ui
®ate
�
��®
®
®�B
911
®®I�®
®.lR.'�'Im�_r
a`•n�IN1!d'�
EFE
SEE
gas
E.
a
1
'I
RCFC & WCD
HYDROLOGY 1\11AAUAL
RIVERSIDE
COUNTY FLOOD CONTROL
AND
WATER
CONSERVATION
DISTRICT
VELOCITY
DISCHARGE
CURVES
COUNTY
STANDARD
No.105
36' ROADWAY 6 "& 8 "CURBS
..ea.
.e
Il PLATE D -7.6
_DISCHARGE - C.F S:
TOTAL FLOW IN STREET)
t
a
ro
M �
^� �O "M-iA r.' r1' Al "M� c iAR . : Vic AGE— iiYDl <o�OG . — — —'
CALCS, 100 AND 10 YEAR FREQUENCY ", COMMUNITY ENGINEERING
SERVICES, 11/9/88, REV. 2/28/89.
-__ 1-IYDR01-oGY A/IANUAL
RATIONAL. METHOD CALCULATION FORM Sheol N0._! of _ snsafs
PROJECT �n�° d�ol �S ��S C a I c u I o I a d by �E�?___6, A/9 /0 S
FREQUENCY Chocked by ----------
ro�y�---
DRAINAGE S
Sall IA A
A I
I C
C A
A Q '
'S Q S
SLOPIESECTION v
v L
L T
T E
ET
REMARKS
35 3 4 d
d, 5 ree>< D
D• 5 3
3•t .�� °
°' .qo �
�,�i a� _
_ _
to t
_ / % °32 �/ _ /o ,n
�' t
_
j(�lJ
Alo f e
e,3 7;
- _
_-- — -
-- @
i _
_ -
i
'
'04'
Q _
_
- -- —
— 3
- o
-
oo X- A
AG = o
o c s
s
3/ -32 ----- -
- -` - -- $
$,2 z
z /'.moo• o
ora °
�a
3
4o S
S�ree —
/3 _
_
,w 4
_ /D• 2
2 �/" 2
2 D
D "9 0
— /
�9.5 t
E4:�o— LO/7 f U nC5
3F'-39 A
AOPeti5zc� 0
0.7 \
\'� d
duo "�a��ory1 b
b1 . � 2
2.7 3
3,3 8
82a ¢
¢./ �
— - --
�i2- 33 D
D,sfreef 2
2.¢ 0
0
27S -
-
m
e
4-
/
AA
AA
0
r�
i
DRAINAGE
AREA
loll a
Dovebpm.enr
A
Acres
I
IA/h4
C
AQ
CFS
S Q
CFS
N.OpESECTION
STa9�
,��ad
I
HYDROLOGY A/JANUAL
REMARKS
(t
. %l (J C° 20
RATIONAL
'METHOD CALCULATION FORM
Sf2
Sheet Nat of _sn..�s
PROJECT !/ine -104- 9L
___
Colcula+ed
by - - - - - - - - - - -
FREQUENCT
Chocked
by - ------- --- BM----
AA
AA
0
r�
i
DRAINAGE
AREA
loll a
Dovebpm.enr
A
Acres
I
IA/h4
C
AQ
CFS
S Q
CFS
N.OpESECTION
v
FPS
L
FT.
T
MIN.
E T
REMARKS
(t
. %l (J C° 20
US
/ B
Sf2
ro .
/�':
Cr9m "I=777%r:f-�.'/7 d
X
25,
Zf =
__
-
- --
-- -
-
—
ao '
/SS.
S •/
2•
�i :=
Shf / .____
3�.
� s
� "
o B
R
� ✓n
ioe
2 5.6
�—
_-
u
DE 2 -f
3F5
Laa
fc
J�
--
FS
Y of 24
ico
: 'f•3
S
d--
_
s
5./
A8(
zFs
AJ61- X�
- -
-
'3.1
L
Q
I
N
I
i -------- _ HYDROLOGY MANUAL
RATIONAL METHOD CALCULATION FORM meet Na of ^sheds
'/�n e ai -� s AEU. 3�2�0 �PE(3 �/2 jo
PROJECT Calculated by
�Z-
FREQUENCY Checked by ----- -- -- - -Bryl - --
DRAINAGE
AREA
soil e
Devek""rit
A
Acres
I
In /Ac
C
eQ
CF!
s Q
JCFS
SLOP
TION
v
FPS
L
FT.
T
MIN.
E T
REMARKS
30 -37
_17- /%
SFkes
o•s
2 a�
ti
age
go
�° .�be
82
�o?J6K
/-7
�_/
S reel
/.%
f
P/a
61
onge
J_
Appendix A
I
ti
I
1
� I
I
1
n
1
11
0
1
11
11
1
tl
t
PRELIMINARY
DRAINAGE STUDY
BUTTERFIELD STAGE ROAD
TM 23209
STA. 160 +00 TO 186 +00
TEMECULA, CA
AUGUST 15TH, 2003
PREPARED FOR:
SHEA HOMES
10721 TREENA STREET
SAN DIEGO, CA 92131
PREPARED BY:
MAY GROUP, INC.
8555 AERO DR, SUITE 305
SAN DIEGO, CA 92123
W.O 107 -02
MAY GROUP, INC.
BY: PHILIP E. BROWN, RE R.C.E 18679
REGISTRATION EXPIRES 6/30/05
li
1►
1
1i
1
1
11
1►
1
1i
1
i►
i
-1
1
1►
1►
TABLE OF CONTENTS
Introduction
Project Summary
Existing Conditions and Background
Project Description
Discussion
Hydrology Methodology
Determination of Runoff Coefficient
Determination of Time of Concentration and Intensity
Determination of Area
Conclusion
LIST OF FIGURES
Page No.
I
I
2
2
3
3
3
3
4
Figure 1 Vicinity Map 5
Figure 2 RCFCD Manual Plate D -3, Time of Concentration 6
Figure 3 RCFCD Manual Plate D -4.1, Intensity/Duration Data 7
Figure 4 RCFCD Manual Plate D -5.4, Soil Type D /Runoff 8
Coefficient
APPENDIX
Hydrology Calculations, 10 and 100 year storm frequencies
ATTACHMENTS — ENVELOPE
Hydrology Map — Butterfield Stage Road extension
n
' INTRODUCTION
The purpose of this drainage study is to amend the existing hydrology for Margherita
Village dated 11/9/88, revised 2/28/89, to address the affect of new construction of
Butterfield Stage Road extension, approximately 2600 lineal feet half width north of
Chemin Clinet, City of Temecula.
PROJECT SUNLMARY
Upon completion of the Butterfield Stage extension, the existing hydrology is amended:
1 For a 100 year storm event:
West of Sta. 171 +25: Q100 = 26.0 CFS
f! West of Sta. 177 +08: Q100 = 13.6 CFS
For a 10 year storm event:
' ( East of Sta. 179 +00: Q 10 = 4.3 CFS
FIEXISTING CONDITIONS AND BACKGROUND
' I The construction of the extension of Butterfield Stage Road is through vacant rolling
terrain along a dedicated right of way immediately north of Chemin Clinet, Tract 23100-
' 3, to the partially improved Road in Tract No. 23209. The new construction forms the
' I westerly boundary of the Hart and Callaway wine vineyards. The right of way is covered
' by a low growth of wild grasses.
' Three relatively significant east to west drainage courses cross the Road, only one of
' I which is improved with a 30" RCP storm drain. The hydrology for these is provided in
11 1
'I
1!
1I
1
1i
1
11
1!
1i
-1 l
1I
1I
_1 I
11
it
'1
i
the Margherita Village hydrology as: Sta. 163 +00 (improved), Q100 = 33.9 CFS; Sta.
170 +00, Q100 =155.5 CFS; and Sta. 177 +00, Q100 = 193.1 CFS.
PROJECT DESCRIPTION
The extension of Butterfield Stage Road project will consist of the grading of right of
way sufficient for the placement of twenty -four feet of asphalt paving and the installation
PCC curb and gutter and storm drains, the latter both temporary and permanent .
DISCUSSION
The extension of Butterfield Stage Road is an "in -fill' project of limited scope partially
implementing plans for the work informally prepared on various occasions in the past.
The previous plans, though not approved, established an acceptable precedent. The.
existing right of way is a confirmation of the ongoing process to full completion of
Butterfield Stage Road as previously planned.
Since its completion, the Margherita report has been the hydrology for the design of most
if not all of the drainage improvements in the existing development west and downstream
from the extension. It is also the hydrology the Butterfield Stage Road extension. The
hydrology contained in this study is limited to only that needed for the design of
peripheral facilities necessary for the management of stormwater runoff generated by
construction of the extension.
2
' HYDROLOGY METHODOLOGY
' The detailed hydrology calculations for the project are attached in this study. For 10 and
' 100 year storm events, the rational method as defined in the Riverside County Flood
Control District's Hydrology Manual is used, Q =CIA; i.e., quantity of runoff (cubic feet
1
per second) = runoff coefficient X rainfall intensity (inches per hour) X watershed
' i tributary area (acres).
1,
DETERMINATION OF RUNOFF COEFFICIENT
In accordance with the Manual, runoff coefficients are dependent on soil type and the
') proposed land use of the basin. For Butterfield Stage Road extension, the runoff
coefficients are for Soil Type D, paved areas and single family residential, '/< acre lots.
'i
iDETERMINATION OF TIME OF CONCENTRATION AND INTENSITY
Average rainfall intensity, "I ", in inches per hour is based on a time of concentration (Tc)
of the contributing storm. Total time of concentration is the time required for the storm
irunoff to flow from the most remote point of a drainage basin to the outlet point and is
iselected from the Manual Nomograph. The rainfall intensity is from the Manual, that of
' Murrieta, Temecula, and Rancho California.
'i
DETERMINATION OF AREA
"A" is the drainage area, or drainage basin, and is determined based on the path the
rainfall will take when running downhill. The delineation between basin marks where the
'i
3
water will flow in varying directions. All the rain falling within a basin will typically
flow to the lowest point of the basin.
CONCLUSION
To allow for the grading of the right of way and the partial construction of Butterfield
Stage Road extension, storm water flows must necessarily be controlled in a system of
permanent and temporary storm drains consisting of open cannels, lined and unlined, and
storm drains of the type and size normally associated with road improvement. Provided
these measures in compliance with City of Temecula and Flood Control requirements and
consistent with accepted engineering and construction practices are taken, Butterfield
Stage Road can be partially improved and it and downstream properties kept reasonably
free of flood hazard.
�- 4
VICINITY MAP
N.T.S.
N
IC
1
`r
-a
1
m
0
1.
w
Z,
v C1
r n
I r
C
r
Length (L) of initial area in feet
N U O W A U
0 0 $ 0 0 0 $ g
Time
concentration (Tc') in minutes for special ' development
_ ____�1 G+ rp 1^
-4 C0 U O U O 0 O O O O g
Ir
00 00
O 0
4 =
X
V
r
n �3t.
�
O C:
/Development
9
n
x
�i
m
,
8iI'
$
O'
--
{--- {---
or Zoning ..
3'
c
c
�
O b
-�
o
�b!
io O
N O
3
!!
r
U A
Q
m
x
3'
3
i
00
u
u
N o
N �.
��o o �a�s0 g
s„
O
d
b
O
O
3
V
`
o
o_
3
g
3
i
z
P
w
r
U
concentration (Tc') in minutes for special ' development
_ ____�1 G+ rp 1^
-4 C0 U O U O 0 O O O O g
Ir
00 00
O 0
0
0
0
concentration (Tc') in minutes for special ' development
_ ____�1 G+ rp 1^
-4 C0 U O U O 0 O O O O g
0 (71 0 (A o c3 m m tJi A
Time of concentration (Tc) in minutes f
N = O to OD J Oi
LA I id I I I I
ngle Family Development (1/4 Acre
ul
J
m
r
n �3t.
�
O C:
/Development
9
n
x
D
i.
8iI'
$
O'
--
{--- {---
or Zoning ..
3'
c
c
�
O b
-�
o
�b!
pirc *efage of fanpervbus CGvef(Ai)
0
3
Difference I elevation H) in
feet b
wean ends of initial I=
Q
m
i
u
s
N o
N �.
��o o �a�s0 g
s„
b
O
O
0
0 (71 0 (A o c3 m m tJi A
Time of concentration (Tc) in minutes f
N = O to OD J Oi
LA I id I I I I
ngle Family Development (1/4 Acre
ul
J
-
RAINFALL
INTENSITY-
INCHES
PER HOUR
-
A
MINA
LOMA
MURRIETA
- TEMECULA
NORCO
PALM
SPRINGS
PERRIS
VALLEY
'A
L RANCHO
CALIFORNIA
_
- DURATION
- FREQUENCY
OURAT 10#1- FREQUENCY
DURATION
FREQUENCY
DURATION
FREQUENCY
-
-F - - -DURATION FREQUENCY
yl-J MINUTES
MINUTES
11NUTES
MINUTES
MINUTES
-
CA1
10
100
It
109
it
109
10
loo
10
100
-
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
S
3.45
S.16
S
2 1T 4 l6
- 5 -
4.23 -
6.76
- 5
2.64
3.70
S 2.66 6.66
6
1
2.66
2.37
4.97
3,75
6
3.12
4.61
6
2.53
3.79
6
3.60
6.05
6
2.41
3.46
_
7
2.61
4.24
7
4,34
]:Sl
7
3,46
5.56
7
2.24-
3.21
0
2.21
3.49
6
2.67
3.94
6
2.19
3.29
9
3.22
5.15
0
2.09
3.01
9
2.96
3.24
9
2.50
3.69
9
2.07
3.10
9
3.01
4.61
9
1.99
2.04
it
1.96
3.16
16
2.76
3.46
10
1.96
2.94
10
2.93
4.S2
10
1,06
2.69
r
11
1.67
2.95
11
2.24
7.30
11
1.67
2.60
11
2.67
4.20
11
1.79
2.57
.
r
12
1.16
2.62
12
2.17
3.IS
12
1.79
2.64
12
2.S4
4,07
12
1.72
2.46
13
1.71
2.70
13
2.04
3.01
13
1.72
2.50
11
2.43
3.46
13
1.65
2.37
_..
14
1.64
2.60
14
1.06
2.09
14
1.66
2.40
14
2.33
3.72
14
1.59
2.29
IS
1.36
2.54
IS
1.09
2.79
IS
1.60
2.40
IS
2.23
3.S6
IS
1.54
2.21
"
16
1.53
2.42
16
1.62
2.69
16
1.55
2.32
16
2.15
3.44
16
1.49
2.14
17
1.66
2.34
17
1.76
2.66
17
I.SO
2.25
17
2.09
3.32
17
1.45
2.00 -
y
-Lb
_ _
16
1.44
2.27
Is
J.11
?.St
l9
1.46.
- 2.19
14
2.01
3.22
L4
1.41_
2.02'
19 -
1.40
1.21
19
1.66
2.45 -
19
1.42
2.13
19
1.95
3.12
19
1.37
1.97
W
20
1,36
2.15
20
1.61
2.36
20
1.39
2.09
20
1.69
3.03
20
1.34
1,92
22
1.29
2.04
22
1.53
2.26
22
1.32
1.94
22
1.79
2.66
22
1.26
1.03
-�
24
1.24
1.95
26
1.46
2,15
24
1.26
1.90
24
1.74
2.72
24
1.22
1.75
26
1.10
1.01
26
1.39
2.06
26
1.22
1.02
26
1.62
2.60
26
1.10 '
1.69
20
_ -
1.14
-1.10
1,00
26
1,34
1.96
26
1.17
1.76
20
1.56
2.49
26
1.13
1.63
30
1.73
30
1.29
1.99
30
1.13
1.70
30
1.49
2.39
30
1.10
1.57
32
1.06
1.67
32
1.24
1.64
32
1.10
1.64
32
1.44
2.30
32
1.06
1.52
Z
34
1.03
1.62
34
1.20
1.70
34
1.06
1.59
34
1.39
2.22
34
1.03
1.49
I•AD
1.57_
_36 - - --
-1.17
1,72 -
-- -36
1,03
I.SS
36
1.34
2.15
36
1.00
1.44
m
30
,97
1.53
30
1.13
1.61
30
1.01
1.51
30
1.30
2.09
30
,96
1.40
-
40
,94
1.49
40
1.10
1.6t
40
.96
1.47
40
1.27
2.02
40
.95
1.37
_
N
45
'so-
.09
1,40
4S
1.03
1.52
45
.92
1.39
45
1.10
1.09
45
1.29
- -_4
-
,84-
-S�
-- 1.32 - _
_ _ SO_ _ -__,
97___
1.44
_ _- -SO.-
_ 6
.0
1.31
SO
1.11
1.70
50
.90
1.22
Z
55
IT, 26-
55
.92
1.36
45
,04
1.23
SS
1.05
1.60
55
.85
1.17
60
.76
1.20
60
.60
1.30
60
.60
1.20
60
1.00
1.60
60
.01
.70
1.12
-�
65
.73
1.15
65
.64
1.24
65
.77
1.15
65
.95
1.53
65
CT
70
.70
1.11
70
.01
1.19
70
.74
1.11
70
.91
1.46
70
.75
1.00
1.04
75
.60
1.07
7s
.70
1.15
75
.72
1.07
75
.00
1.41
75
.72
_ mD
Q
60
.65
1.03
00
.75
1,11
00
.69
1.04
6o
.65
1.35
60
.7a
1.00
DN
D
05
.63
1.00
OS
.73
1.07
OS
,61
1.01
OS
.02
1.31
OS
.60
.97
_0
.66
.94
Q
Z
SLOPE
• .530
SLOPE - .550
SLOPE
.500
SLOPE
• .500
SLOPE
+ .490
O
mom mm M.M m m
HYDRDLDOY MANUAL
e,
RATIONAL METHOD CALCULATION FORM sheol W), Shoals
PROJECT /""�"o /ao -
Co I C ul o I ad by
F FtFri I IF ILI r.v bxyl
DRAINAGE
AREA
Boll a
G*valoposont
A
Acres
Im/k
AQ
CFO
1 0
CFS
OLOPIE
SICTION
v
FPS
L
FT
T
MIN.
E T
REMARKS
5.7
0. 115
-1-19-%
A
2
6,
7j
JY[)Iiof 00Y kb%1,11JAL
-,
RATIONAL METHOD CALCULATION FORM Slit 01714 of �shaefs-
PROJECT
Calculafad by
FfqiEoUEIJCY Chocked by - - - - - - - - - - - A ryl -
DRAINAGE
AREA
S,041 IN
Deva;op"nt
A
Acres
I
In /hr
C
AQ
CFS
1 0
CFS
BLOM
WTI ON
v
FPS
L
FT.
T
U I N.
E T
..REMARKS
-p
I
I
I
LOCAL DLF.•
r U.
r 17AU M- �Unl i�
DIVISION fy;o D. G.
1.
7OR CAPAGI Ty OF
OPZ11ING Ii :-'E-TS AT L-OV., POINT
75
L
7
.3
uj
ul
w
zn
z
C,
4
.2
ul
LU
5
.2
Lo
---
e C.3
.2
`02
uj
<
<
.01
LOCAL DLF.•
r U.
r 17AU M- �Unl i�
DIVISION fy;o D. G.
1.
7OR CAPAGI Ty OF
OPZ11ING Ii :-'E-TS AT L-OV., POINT
75
Maps
Plans Prepared Under Supervision Of YD�
ACCEPTED BY. DATE,
HYDROLOGY MAP: PROPOSED CONDITION
Q j "j`'�''�'` (�'` ('� �` /� j'� [� /� ('� OF 5 SHTS
10721 TREENA STREET 3934 MURPHY, CANYON ROAD
RONALD FOR CITY ENGItEER BV 1 { E tl IELD STAGE ROAD
Date
MARWAN A. YOUNIS DRAWING -NO.
SAN DIEGO, CA 92131 SAN DIEGO, CA 92123 PGROUP. ENGI IZERTNG • SURV'EYING RONALD J. PARKS STA: 16.0-f-08.65 thru 185 +81.71
(858) 549 -3156 (858) 292 -8030 i' 8555 Aero Drive • Suite SOS • Sea Diego, CA 92123 i
R.C.E. No. 43217 Expires March 31, 2004 R.C.E. No. 19744 Expires SEPTCMBER 30, 2005 TRACT NO. 23103 --2 LD03- -138CO
__.. .,_...._ ... ........... _.. ....... _ _.. _.. ..._..... _... ....... ... -... _ .... _ _...... _........ ...._ _. _..... _..._ __.... _._r_ _ __..._ _..._..... _- ...
�'S.a �:
Appendix B
! 0�� DC �
m m "RO7MT T 322PRO ENDITION
FREQUENCY: 10 YEAR
_ gWEET j
PREPARED BY PEB DATE 2/27107
DRAINAGE
SOIL &
A
I
C
DELTA Q
SUM Q
SLOPE
SECTION
VEL
L
T
SUM T
REMARKS
AREA
DEVELOPMENT
ACRES
IN /HR
CFS
CFS I
%
FPS
FT
MIN
7
EL. H1= 3270, F70=311, L =300'
NODE 35 -34
B, SF 1/4 ACRE
02
312
0.84
0.52
0.52
1.3
STREET
2.4
160
11
8.1
34 -36
B, SF 1/4 ACRE
24
2.65
083
5.28
5.80
_
8.5
EL. H1 =308, EL. L0= 295.8, L =390'
NODE 50 -51
B, SF 114 ACRE
2.2
2.59
0.83
4.73
4 73
_
8.2
EL. H1= 318.0, EL. L0= 316.0, L =200'
NODE 30 -31
B, SF 1/4 ACRE
0.5
264
0.84
1.11
1.11
4
STREET
27
380
2.3
10.5
NODE 31 -52
B, SF 1/4 ACRE
1.5
2.2
0.83
2.74
3.85
88
EL. HI= 295.8, EL. LO =288, L =340'
_
NODE 52 -32
B, SF 114 ACRE
1.5
253
0.83
3.15
3.15
ADJUST TO TC =23.9, NODE 39 -32, SHEET 1
315
1.82
1.75
6.63
ADJUSTED TOTAL Q10 @NODE 32, TC =23.9 MIN., SHT. 1
123 9/18
C23.9/C8.8
QTOT @32
-
23.9
6.63
1.0
STREET
3
250
1.4
25.3
33 -33
STREET
24
1.41
088
2.98
961
_PROJECT ITOR�AC M%W 40� RO*SECONDITION
FREQUENCY: 100 YEAR
_ MET I
PREPARED BY PEB DATE 2/27/07
DRAINAGE
SOIL 8
A
I
--FN/HR
C
DELTA Q
SUM Q
SLOPE
SECTION
VEL
L
T
SUM T
REMARKS
AREA
DEVELOPMENT
ACRES
CFS
CFS
%
FPS
FT
MIN
7
EL. H1= 321.0, EL. LO =311, L =300'
NODE 35 -34
B, SF 114 ACRE
0.2
4.24
0.85
072
072
13
STREET
2.4
160
11
8.1
34 -36
B, SF 1l4 ACRE
2.4
3.91
085
798
8.70
8.5
EL. H1 =308, EL. L0= 295.8, L =390'
NODE 50 -51
B, SF 1/4 ACRE
2.2
382
0.85
714
7.14
MAX Q @ INLET W. SIDE PLACER LOUD.
8.2
EL. H1= 318.0, EL. L0= 316.0, L =200'
NODE 30 -31
B, SF 1/4 ACRE
0.5
391
0.86
168
_
1.68
4.0
STREET
2.7
380
2.3
10.5
NODE 31 -52
B, SF 1/4 ACRE
1.5
139
085
4 32
6.00
1.0
18" RCP
9.7
40
0.1
10.6
MAX. 0 @ INLET E. SIDE PLACER LOUD.
50 -51/52
B, SF 1/4 ACRE
2.2
337
085
6.30
12.31
ADJUST TO TC =19.4, 54" S.D.
12.31
8.84
ADJUSTED TOTAL Q100 @NODE 51, 52, INLETS
172.43
-
181.27
`
Q100 54" S.D., NODES 51/52
8.8
EL. HI= 295.8, EL. LO =288, L =340'
NODE 52 -32
B, SF 114 ACRE
1.5
3.74
0.85
4.77
4.77
ADJUST TO TC =23.9, NODE 39 -32, SHEET 1
4.77
2.74
2.64
10.08
ADJUSTED TOTAL Q100 @NODE 32:2.64 +7.44 =10.08
23.9
10.08
33 -33
STREET
2.4
2.10
0.89
449
1.0
STREET
3.1
250
13
25.2
_
14.57
ADJUST TO TC =19.1, TC @NODE 20
14.57
16.93
172.43
TOTAL 0100 @NODE19 133= 155.5 +16.93
SEE HYDROLOGY MAP
O TI TnNO. 32206- PROPOSED CONDITION
FREQUENCY: 100 YEAR
- M MWETW -
PREPARED BY PEB DATE 2127107
DRAINAGE
SOIL 11
A
I
C
DELTA Q
SUM Q
SLOPE
SECTION
VEL
L
T
SUM T
REMARKS
AREA
DEVELOPMENT
ACRES
INIHR
CFS
CFS
%
FPS
FT
MIN
19.1
170.47
2.8
54" RCP
20.9
340
0.3
19 4
S.D. 0100 @ NODE 51,52
I
PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982 -2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1461
Analysis prepared by:
MAY GROUP, INC.
' 8555 AERO DR., STE. 305
SAN DIEGO, CA 92123
858 -505 -0435
1
1
1
+ * + * * * + + + + + * * * + + + + * * + + + + ** DESCRIPTION OF STUDY + * + * * * + + + + + + * # * # + + + + + + # + **
* CITY OF TEMECULA, CA - TRACT NO. 23102 -2 +
* STORM DRAIN HYDRAULICS - LINE 'A' +
* 100 YEAR STORM +
FILE NAME: HAVVEOA.DAT
TIME /DATE OF STUDY: 08:53 03/07/2007
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: "" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW
PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
138.36- 3.90 Dc 6005.02 2.46*
7729.90
) FRICTION
-
154.52- 3.90 Dc 6005.02 2.52*
7579.95
) JUNCTION
159.02- 3.90 Dc 6005.06 2.51*
7595.17
) FRICTION
289.38- 3.90 Dc 6005.02 2.71*
7086.39
) JUNCTION
293.38- 4.57 5922.08 2.45*
7085.78
) FRICTION
515.93- 3.82 *Dc 5567.51 3.82 *Dc
5587.51
} JUNCTION
519.93- 5.30* 5974.51 2.46
5857.12
) FRICTION ) HYDRAULIC JUMP
632.00- 3.65 *Dc 4825.60 3.65 *Dc
4825.60
) CATCH BASIN
' 632.00- 6.01* 3730.86 3.65 Dc
________________________________________________
1436.36
____ ___ ______ ______
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
__ ___ __ ____ __ ___ ______
___________
________ ___ - ____-- ____________-
NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE
______
MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 138.36 FLOWLINE ELEVATION = 1261.51
PIPE FLOW = 181.27 CPS PIPE DIAMETER = 54.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 1264.000 FEET
*NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 2.49 FT.)
IS LESS THAN CRITICAL DEPTH( 3.90 FT.)
CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH
FOR UPSTREAM RUN ANALYSIS
I
i
--------------------------------- --------------- - --
NODE 138.36 : HGL = < 1263.974> ;EGL= < 1270.395 >; FLOWLINE = < 1261.510>
FLOW PROCESS FROM NODE 138.36 TO NODE 154.52 IS CODE
= 1
UPSTREAM NODE
______________________
154.52 ELEVATION = 1262.17 (FLOW IS
SUPERCRITICAL)
__
CALCULATE FRICTION LOSSES(LACFCD):
_
PIPE FLOW =
181.27 CFS PIPE DIAMETER = 54.00 INCHES
PIPE LENGTH =
_____________
16.16 FEET MANNING'S N = 0.01300
NORMAL DEPTH(FT)
_________________ ______________
2.13 CRITICAL DEPTH(FT)
__________ -__
= 3.90
UPSTREAM CONTROL
ASSUMED FLOWDEPTH(FT) = 2.52
FLOWLINE
GRADUALLY VARIED
____________________
-____ ____
FLOW PROFILE COMPUTED INFORMATION:
-------------
DISTANCE FROM
______ ___ ________ ___ ___________
FLOW DEPTH VELOCITY SPECIFIC
_
PRESSURE+
CONTROL(FT)
(FT) (FT /SEC) ENERGY(FT)
MOMENTUM(POUNDS)
0.000
2.515 19.820 8.619
7579.95
4.507
2.500 19.970 8.696
7623.74
9.274
2.485 20.121 8.775
7668.44
14.324
2.469 20.276 8.857
7714.06
16.160
________________
2.464 20.329 8.865
7729.90
NODE 154.52 : HGL
_________ ___________ ___________
= < 1264.685>;EGL= < 1270.789 >; FLOWLINE = < 1262.170>
'
FLOW PROCESS
UPSTREAM NODE
FROM NODE
159.02
154.52 TO NODE 159.02
ELEVATION = 1262.33
IS CODE = 5
(FLOW IS SUPERCRITICAL)
CALCULATE JUNCTION
LOSSES:
___________
______
___________________
______
PIPE
FLOW
DIAMETER ANGLE
FLOWLINE
CRITICAL
VELOCITY
'
(CFS)
(INCHES) (DEGREES)
ELEVATION
DEPTH(FT.)
(FT /SEC)
UPSTREAM
181.27
54.00 0.00
1262.33
3.90
19.878
DOWNSTREAM
181.27
54.00 -
1262.17
3.90
19.826
LATERAL #1
0.00
0.00 0.00
0.00
0.00
0.000
'
LATERAL #2
0.00
0.00 0.00
0.00
0.00
0.000
Q5
0.00 = = =Q5 EQUALS BASIN INPUT
= ==
1
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1-COS(DELTAI)-Q3*V3*COS(DELTA3)-
Q4 *V4* COS( DELTA4 )) /((A1 +A2) *16.1) +FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02368
DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02351
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02359
JUNCTION LENGTH = 4.50 FEET
FRICTION LOSSES = 0.106 FEET ENTRANCE LOSSES = 0.000 FEET
JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.187) +( 0.000) = 0.187
_ ________________ ______________________ ________
NODE 159.02 : HGL = < 1264.840>;EGL= < 1270.976>;FLOWLINE= < 1262.330>
FLOW PROCESS FROM NODE 159.02 TO NODE 289.38 IS CODE = 1
UPSTREAM NODE 289.38 ELEVATION = 1265.98 (FLOW IS SUPERCRITICAL)
____________________________ _________ _______ _______________
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 181.27 CFS PIPE DIAMETER = 54.00 INCHES
PIPE LENGTH = 130.36 FEET MANNING'S N = 0.01300
FLOW PROCESS
UPSTREAM NODE
FROM NODE
515-93
293.38 TO NODE 515.93
ELEVATION = 1272.32
NORMAL DEPTH(FT) = 2.38 CRITICAL DEPTH(FT) =
3.90
'
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.71
____
________ ----- ____ °=== ------ ======- _°°°°°°°°°_
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
PIPE FLOW =
172.43
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+
DIAMETER =
CONTROL(FT) (FT) (FT /SEC) ENERGY (FT) MOMENTUM(POUNDS)
'
0.000 2.714 18.078 7.792
7086.39
FEET
4.955 2.701 18.183 7.838
7115.21
'
10.189 2.687 18.290 7.885
7144.56
15.726 2.674 18.398 7.934
7174.44
21.595 2.661 18.508 7.983
7204.87
27.830 2.648 18.619 6.034
7235.85
'
34.467 2.635 18.731 8.086
7267.39
41.551 2.621 18.845 8.139
7299.50
49.134 2.608 18.961 8.194
7332.20
57.276 2.595 19.078 8.250
7365.48
'
66.051 2.582 19.196 8.307
7399.36
75.547 2.569 19.317 8.366
7433.84
85.870 2.555 19.438 8.426
7468.94
97.155 2.542 19.562 8.488
7504.67
109.571 2.529 19.687 8.551
7541.04
123.332 2.516 19.814 8.616
7578.05
'
130.360 2.510 19.872 8.646
NODE 269.38
7595.17
HGL = < 1268.694>;EGL= < 1273.771 >;FLOWLINE = <
1265.980>
FLOW PROCESS FROM NODE 289.38 TO NODE 293.38 IS CODE = 5
UPSTREAM NODE 293.38 ELEVATION = 1266.09 (FLOW IS SUPERCRITICAL)
________________________ _ _____________- _________________
CALCULATE JUNCTION LOSSES:
'
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.)
(FT /SEC)
UPSTREAM 172.43 54.00 0.00 1266.09 3.82
19.472
DOWNSTREAM 181.27 54.00 - 1265.98 3.90
18.083
'
LATERAL 41 8.84 18.00 80.00 1268.73 1.15
6.077
LATERAL 42 0.00 0.00 0.00 0.00 0.00
0.000
Q5 0.00 == =Q5 EQUALS BASIN INPUT = ==
-
'
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2-V2-Q1=V1*COS(DELTAI)-Q3*V3*COS(DELTA3)-
Q4 *V4 *COS(DELTA4)) /((AI +A2) *16.1) +FRICTION LOSSES
'
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02313
DOWNSTREAM: VANNING'S N = 0.01300; FRICTION SLOPE = 0.01853
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02083
JUNCTION LENGTH = 4.00 FEET
'
FRICTION LOSSES = 0.083 FEET ENTRANCE LOSSES = 0.000
FEET
JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 0.657) +( 0.000) = 0.657
'
NODE 293.38 : HGL = < 1268 541 >;EGL = < 1274 428>;FLOWLINE= <
1266.090>
FLOW PROCESS
UPSTREAM NODE
FROM NODE
515-93
293.38 TO NODE 515.93
ELEVATION = 1272.32
IS CODE = 1
(FLOW IS SUPERCRITICAL)
CALCULATE FRICTION
______________________________
LOSSES (LACFCD) :
PIPE FLOW =
172.43
CFS PIPE
DIAMETER =
54.00 INCHES
'
PIPE LENGTH
222.55
FEET
MANNING'S
N = 0.01300
1
1
_
-- NORMAL _ DEPTH( FT)======== 2= 31 CRITICAL - DEPTH(FT)========
_
3= 82= = = = =__
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.62
1
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
-------- _---- ______----
_----- __-------- ______ -------- ________---------
DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC
______
PRESSURE+
CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000 3.819 11.980 6.049
5587.51
1
0.114 3.759 12.147 6.051
5589.60
0.466 3.698 12.325 6.056
5595.95
1.082 3.638 12.513 6.071
5606.69
1.979 3.576 12.712 6.069
5621.97
1
3.187 3.518 12.923 6.113
5641.93
4.739 3.456 13.146 6.143
5666.78
6.675 3.397 13.382 6.180
5696.70
1
9.042 3.337 13.630 6.224
5731.91
11.894 3.277 13.893 6.276
5772.67
15.301 3.217 14.171 6.337
5819.24
1
19.344 3.156 14.463 6.407
24.124 3.096 14.773 6.487
5871.90
5930.97
29.769 3.036 15.099 6.579
5996.80
36.438 2.976 15.445 6.682
6069.78
1
44.340 2.916 15.810 6.799
53.748 2.855 16.196 6.931
6150.32
6238.88
65.036 2.795 16.604 7.079
6335.96
76.727 2.735 17.037 7.245
6442.11
95.569 2.675 17.496 7.431
6557.95
1
116.817 2.615 17.983 7.639
6684.16
144.411 2.554 18.500 7.872
6621.47
' 182.128 2.494 19.049 8.132
6970.72
'
222 .550 19.466 8.338
- - - - - - -- ---- - -_ - -- 2.451
7085- 76
- - - -- ----
NODE 515.93 HGL = < 1276.139>;EGL= c 1278 369>;FLOWLINE= <
- - - --
1272.320>
FLOW PROCESS FROM NODE 515.93 TO NODE 519.93 IS CODE = 5
UPSTREAM NODE 519.93 ELEVATION = 1272.43 (FLOW UNSEALS
__ ____________
IN REACH)
__________________F____________ ______________
CALCULATE JUNCTION LOSSES:
1
,
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY
(CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.)
(FT /SEC)
UPSTREAM 155.50 54.00 0.00 1272.43 3.65
9.777
1
DOWNSTREAM 172.43 54.00 - 1272.32 3.82
LATERAL #1 0.00
11.984
18.00 70.00 1272.84 0.00
0.000
LATERAL #2 0.00 0.00 0.00 0.00 0.00
0.000
1
Q5 16.93 = = =QS EQUALS BASIN INPUT = ==
LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED:
DY=(Q2*V2-Q1*V1*COS(DELTAl)-Q3*V3*COS(DELTA3)-
1
Q4 *V4* COS( DELTA4 )) /((A1 +A2) *16.1) +FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00625
DOWNSTREAM: PANNING'S N = 0.01300; FRICTION SLOPE = 0.00726
AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00676
1
JUNCTION LENGTH = 4.00 FEET
FRICTION LOSSES = 0.027 FEET ENTRANCE LOSSES
= 0.446
JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES)
FEET
JUNCTION LOSSES = ( 0.401) +( 0.446) = 0.847
NODE 519.93 HGL = c 1277.731 >;EGL= < 1279.216>;FLOWLINE= <
1272.430>
1
'
FLOW PROCESS FROM NODE 519.93
TO NODE 632.00 IS CODE = 1
UPSTREAM NODE 632.00 ELEVATION
_____________
=
1275.60 (HYDRAULIC
JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD)
_________________________
'
PIPE FLOW
155.50 CFS
PIPE DIAMETER = 54.00
INCHES
PIPE LENGTH =
_________________
112.07 FEET
MANNING'S N =
0.01300
_______________________________
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS
---------
RESULTS
____
________
NORMAL DEPTH(FT)
---- ___________--------
= 2.17
_---------
CRITICAL DEPTH(FT)
__ ______ ---- _______
3,.65
UPSTREAM CONTROL
ASSUMED FLOWDEPTH(FT)
= 3.65
_______ -_ - --
GRADUALLY VARIED
FLOW PROFILE
COMPUTED
INFORMATION:
___________________________
DISTANCE FROM
FLOW DEPTH
_
VELOCITY
_
SPECIFIC
__ __________
PRESSURE+
CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
0.000
3.652
11.244
5.616
4825.60
0.100
3.593
11.418
5.619
4827.47
'
0.412
3.534
11.603
5.625
4833.15
0.957
3.474
11.798
5.637
4842. 78
1.756
3.415
12.004
5.654
4856.52
'
2.838
4.233
3.356
3.297
12.221
12.450
5.676
5.705
4874.54
4897.03
5.980
3.237
12.692
5.740
4924.18
8.123
3.178
12.947
5.783
4956.23
'
10.715
13.820
3.119
3.060
13.216
13.500
5.833
5.891
4993.40
5035.96
17.515
3.000
13.800
5.959
5084.21
21.897
2.941
14.117
6.037
5138.45
27.084
2.882
14.451
6.126
5199.03
'
33.229
2.822
14.805
6.228
5266.33
40.527
2.763
15.179
6.343
5340.75
49.237
2.704
15.575
- 6.473
5422.75
59.709
2.645
15.995
6.620
5512.84
'
72.438
2.585
16.440
6.785
5611.56
88.149
2.526
16.912
6.970
5719.53
107.966
2.467
17.415
7.179
5837.42
'
___ 112. 070-- _- -
- -_ -- 2.457
7.214----
5857.12
HYDRAULIC JUMP: UPSTREAM
- -_- _17.497 -
RUN ANALYSIS RESULTS
- -_ - - - --
_ - - - -- ___________
'
DOWNSTREAM CONTROL
- ASSUMED PRESSURE HEAD(
FT)- = 5.30--
-- -
PRESSURE FLOW PROFILE
-
COMPUTED
-
INFORMATION:
- - - --
----------- -- - - - - --
'
___________________________________
DISTANCE FROM
PRESSURE
_______________________________
VELOCITY
SPECIFIC
___
PRESSURE+
CONTROL(FT)
HEAD(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
0.000
5.301
9.777
6.786
5974.51
'
____== = = =36. 370======
ASSUMED
= = = =4- 500== =
= = =9. 777-===
- - = = == 5.984====
= = = = == 5179.25 = = = ==
DOWNSTREAM
PRESSURE HEAD(FT)
=
4.50
'
GRADUALLY VARIED -FLOW- PROFILE - COMPUTED_ INFORMATION: __ ____
___ _---------
DISTANCE FROM
FLOW DEPTH
VELOCITY
SPECIFIC
PRESSURE+
CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
36.370
- 4.500
9.774
5.984
5179.25
'
37.749
4,466
9.785
5.954
5148.88
I
1
LJ
I-
I
J
1
36.966
4.432
9':605
5.926
5121.27
40.136
4.398
9.831
5.900
5095.50
41.217
4.364
9.861
5.875
5071.27
42.237
4.330
9.896-
5.852
5048.42
43.203
4.297
9.934
5.830
5026.83
44.118
4.263
9.976
5.809
5006.44
44.965
4.229
10.021
5.769
4987.20
45.806
4.195
10.070
5.770
4969.08
46.561
4.161.
10.122
5.753
4952.04
47.311
4.127
10.176
5.736
4936.08
47.997
4.093
10.234
5.720
4921.18
48.639
4.059
10.294
5.706
4907.34
49.237
4.025
10.357
5.692
4894.56
49.790
3.991
10.423
5.679
4862.83
50.297
3.957
10.492
5.668
4872.16
50.757
3.923
10.564
5.658
4862.56
51.170
3.890
10.639
5.646
4854.04
51.534
3.656
10.716
5.640
4646.60
51.647
3.822
10.797
5.633
4840.26
52.108
3.788
10.880
5.627
4835.04
52.315
3.754
10.966
5.623
4830.94
52.466
3.720
11.056
5.619
4827.99
52.559
3.666
11.146
5.617
4826.20
52.590
3.652
11.244
5.616
4825.60
112.070
3.652
11.244
5.616
4825.60
------------------------
END OF HYDRAULIC
JUMP ANALYSIS------------------------
PRESSURE+MOMENTUM BALANCE OCCURS AT
7.08
FEET UPSTREAM OF
NODE 519.93
DOWNSTREAM DEPTH
----- ------ -- ------
= 5.145
FEET,
UPSTREAM
CONJUGATE DEPTH
= 2.476 FEET
NODE 632.00 : HGL =
-- - - - - --
< 1279.252 >;EGL
_
= < 1281.216>;FLOWLINE=
_ _
<
1275.600>
FLOW PROCESS FROM NODE 632.00 TO NODE 632.00 IS CODE = 6
UPSTREAM NODE 632.00 ELEVATION = 1275.60 (FLOW UNSEALS IN REACH)
---------------------------------- --- ----- ------ ---- ---- -- -----
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 155.50 CFS PIPE DIAMETER = 54.00 INCHES
FLOW VELOCITY = 11.25 FEET /SEC. VELOCITY HEAD = 1.964 FEET
CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 1.964) = 0.393
------------ ------ ---- ----- ---- ---- - - - --- _ _ _-
NODE 632.00 : HGL = < 1281.609>;EGL= < 1281.609 >;FLOWLINE = < 1275.600>
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 632.00 FLOWLINE ELEVATION = 1275.60
ASSUMED UPSTREAM CONTROL HGL = 1279.25 FOR DOWNSTREAM RUN ANALYSIS
.END OF GRADUALLY VARIED FLOW ANALYSIS
I
' PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982 -2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1461
' Analysis prepared by:
MAY GROUP, INC.
8555 AERO DR., STE. 305
' SAN DIEGO, CA 92123
858 -505 -0435
DESCRIPTION OF STUDY * * * * + + + + + + + + + + + + + + + + + + + + ++
' * CITY OF TEMECULA - TRACT NO. 23102 -2 +
* STORM DRAIN HYDRAULICS - LINE 'A -1' +
* 100 YEAR STORM
FILE NAME: HAVVEOAI.DAT
TIME /DATE OF STUDY: 15:16 06/05/2007
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
' (Note: ' *" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
' 1108.21- 1.33 Dc 241.69 0.51* 564.36
) FRICTION
1043.70- 1.33 *Dc 241.69 1.33 *Dc 241.69
) JUNCTION
' 1040,49_ 2.86* 271.95 0.82 92.38
) FRICTION
1000.00- 2.58* 241.30 0.95 Dc 89.56
) CATCH BASIN
1000.00- _-- _- 280 *---- 225.51- -___ -- -0.95 Dc 30.14
_
_____________
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
______________________________________ _______________________________
' NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1108.21 FLOWLINE ELEVATION = 1268.73
PIPE FLOW = 12.31 CFS PIPE DIAMETER = 18.00 INCHES
' ASSUMED DOWNSTREAM CONTROL HGL = 1269.000 FEET
*NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.27 FT.)
IS LESS THAN CRITICAL DEPTH( 1.33 FT.)
CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH
' FOR UPSTREAM RUN ANALYSIS
------- ___ --- _____ -------------- ___ ------------------- ___
_____________
NODE 1108.21 HGL = < 1269.238 >;EGL = < 1277.717 >;FLOWLINE = < 1268.730>
FLOW PROCESS FROM NODE 1108.21 TO NODE 1043.70 IS CODE = 1
UPSTREAM NODE 1043.70 ELEVATION = 1287.67 (FLOW IS SUPERCRITICAL)
______________________
_____ _______________________________ _
' CALCULATE FRICTION LOSSES(LACFCD):
I
1
PIPE FLOW =
12.31 CFS
PIPE DIAMETER =
18.00 INCHES
PIPE LENGTH =
64.51 FEET
MANNING'S
N = 0.01300
NORMAL DEPTH(FT)
= 0.47
CRITICAL
DEPTH(FT) =
1.33
UPSTREAM CONTROL
ASSUMED FLOWDEPTH(FT) 1.33
'
GRADUALLY VARIED
FLOW PROFILE COMPUTED
INFORMATION:
DISTANCE FROM
FLOW DEPTH
VELOCITY SPECIFIC PRESSURE+
'
CONTROL(FT)
(FT)
(FT /SEC) ENERGY(FT) MOMENTUM(POUNDS)
0.000
1.326
7.444
2.187
241.69
0.009
1.292
7.601
2.190
241.94
0.037
1.258
7.776
2.198
242.72
'
0.085
1.224
7.971
2.211
244.04
0.156
1.190
8.186
2.231
245.93
0.253
1.156
8.423
2.258
246.42
'
0.379
0.539
1.122
1.068
8.682
6.968
2.293
2.337
251.56
255.40
0.737
1.053
9.280
2.392
259.99
0.981
1.019
9.623
2.458
265.40
1.276
0.985
10.000
2.539
271.72
'
1.640
0.951
10.414
2.636
279.03
2.078
0.917
10.870
2.753
287.45
2.610
0.663
11.374
2.893
297.11
3.257
0.849
11.931
3.061
308.16
'
4.047
0.815
12.549
3.262
320.78
5.020
0.781
13.238
3.504
335.19
6.229
0.747
14.009
3.796
351.66
7.750
0.712
14.875
4.150
370.50
'
9.699
0.678
15.852
4.583
392.12
12.256
0.644
16.962
5.114
417.00
15.727
0.610
18.230
5.774
445.76
20.690
0.576
19.688
6.599
479.19
'
28.457
0.542
21.380
7.644
518.28
43.245
0.508
23.360
8.987
564.36
64.510
0.508
23.360
8.967
564.36
NODE 1043.70 HGL
1288.996>;EGL=
__________
----- '------
- '---
:
= c < 1269.857
>; FLOWLINE = <
1287.670>
'
FLOW PROCESS FROM
NODE 1043.70
TO NODE 1040.49
IS CODE = 5
UPSTREAM NODE 1040.49 ELEVATION = 1288.00
_______________
(FLOW UNSEALS
IN REACH)
'
_________- ______________
CALCULATE JUNCTION LOSSES:
PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL
VELOCITY
(CFS) (INCHES)
(DEGREES) ELEVATION
DEPTH(FT.)
(FT
/SEC)
UPSTREAM
6.00 18.00
90.00 1288.00
0.95
3.396
DOWNSTREAM 12.31 18.00
-- 1287.67
1.33
7.447
'
LATERAL #1
0.00 0.00
0.00 0.00
0.00
0.000
LATERAL #2
0.00 0.00
0.00 0.00
0.00
0.000
Q5
6.31 = = =Q5 EQUALS
BASIN INPUT = ==
'
LACFCD AND OCEMA FLOW JUNCTION FORMULAE
USED:
DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)-
Q4 *V4 *CDS(DELTA4)) /((Al +A2) *16.1)
+FRICTION LOSSES
UPSTREAM: MANNING'S N = 0.01300;
FRICTION SLOPE
= 0.00326
'
DOWNSTREAM: MANNING'S N = 0.01300;
FRICTION SLOPE
= 0.01229
AVERAGED FRICTION
SLOPE IN JUNCTION
ASSUMED AS 0.00778
JUNCTION LENGTH =
3.21 FEET
'
FRICTION LOSSES =
0.025 FEET
ENTRANCE LOSSES = 0.172 FEET
1
' JUNCTION LOSSES = (DY +HV1 -HV2) +(ENTRANCE LOSSES)
JUNCTION LOSSES = ( 1.008) +( 0.172) = 1.180
NODE 1040.49 HGL = < 1290.858>;EGL= < 1291.037 >; FLOWLINE = < 1288.000>
+ + + + + + + + ++ rrrrr + + ++ rrrr + ++ rrr + + + + +r+ rrr +r + ++ rrr + + + + + +r +r +r + + + + + ++ +r + + + + + + + + + ++
' FLOW PROCESS FROM NODE 1040.49 TO NODE 1000.00 IS CODE = 1
UPSTREAM NODE 1000.00 ELEVATION = 1288.41 (FLOW IS UNDER PRESSURE)
_____ ______ _____________
' CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW 6.00 CPS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 40.49 FEET MANNING'S N = 0.01300
SF= (Q /K) * *2 = (( 6.00)/( 105.053)) * *2 = 0.00326
' =
HF =L r SF ( 40.49) *(0.00326) = 0.132
NODE 1000.00 HGL = c 1290.990 >;EGL = < 1291.169>;FLOWLINE= < 1288.410>
t + + + +rrrrrrr + + + + ++ rrr + ++ +rrrr + ++ +rrrr + + + + ++ *rrrr + + ++ +rrr + + + + + ++ +rrrr + + ++ +rrrrr+
FLOW PROCESS FROM NODE 1000.00 TO NODE 1000.00 IS CODE = 8
UPSTREAM NODE 1000.00 ELEVATION = 1288.41 (FLOW IS UNDER PRESSURE)
____________ _____ __ __ ________
' CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 6.00 CPS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 3.39 FEET /SEC. VELOCITY HEAD = 0.179 FEET
CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.179) = 0.036
NODE 1000.00 HGL = <- 1291.205>;EGL= c 1291.205>;FLOWLINE= < 1288.410>
++ rrrrrr + + + + ++ rrr + + ++ rrrr + ++ rrr + + + + + ++ rrrr + + ++ rrrr + ++ +rrrrr + + ++ +rrrrr + + ++ +rrr+
' UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1000.00 FLOWLINE ELEVATION = 1288.41
ASSUMED UPSTREAM CONTROL HGL = 1289.36 FOR DOWNSTREAM RUN ANALYSIS
OF GRADUALLY VARIED FLOW ANALYSIS________ _________________________ _ _ ____
1
1
1
v
1
I
L
PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982 -2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1461
MAY GROUP, INC
' 8555 AERO DR., STE. 305
SAN DIEGO, CA 92123
858 -505 -0435
Analysis prepared by:
+ * * + + + + + + + + + + + + + + + + + + + + + ++ DESCRIPTION OF STUDY * * + * * * * * * * * + * * * + + + + + + + * + ++
* CITY OF TEMECULA - TR. NO. 23103 -2 +
* STORM DRAIN HYDRAULICS - LINE 'A -2' +
* 100 YEAR STORM +
FILE NAME: HAVVEOA2.DAT
TIME /DATE OF STUDY: 08:01 06/06/2007
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: " *" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
6.85- 2.90* 550.28 0.96 493.78
) FRICTION ) HYDRAULIC JUMP
30.27- 2.24 477.08 1.00* 477.10
) FRICTION
75.79- 1_44+nC 393.59 1.44'DC 393.59
________________________
___________ _________ ________________
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
_______________________________________________ ________________ _______________
NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 6.85 FLOWLINE ELEVATION = 1274.04
PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 1276.940 FEET
_____ _______________________ ______ __
______ _______________________________ ____
NODE 6.85 : HGL = < 1276.940>;EGL= < 1278.360>;FLOWLINE= < 1274.040>
FLOW PROCESS FROM NODE 6.85 TO NODE 30.27 IS CODE = 1
UPSTREAM NODE 30.27 ELEVATION = 1275.31 (HYDRAULIC JUMP OCCURS)
___ -____ _______
__________ _______________________________
CALCULATE FRICTION LOSSES(LACFCD):
PIPE FLOW = 16.90 CFS PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH = 23.42 FEET MANNING'S N = 0.01300
_____________________ ___
_________________ _______________________________
HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS
____ _______________________________
NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) 1.44
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.00
r'
GRADUALLY VARIED FLOW PROFILE
COMPUTED INFORMATION:
DISTANCE FROM
FLOW-DEPTH--VELOCITY
SPECIFIC
PRESSURE+
CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
'
0.000
1.528
0.999
0.995
13.522
13.572
3.839
3.857
477.10
476.49
3.132
0.992
13.623
3.876
479.91
4.820
0.989
13.674
3.894
481.33
6.600
8.481
0.965
0.982
13.726
13.776
3.913
3.932
482.78
484.24
10.472
0.979
13.831
3.951
485.71
12.587
0.976
13.864
3.971
487.21
14.838
0.972
13.936
3.991
488.72
'
17.244
0.969
13.992
4.011
490.25
19.823
0.966
14.047
4.032
491.79
22.600
0.963
14.102
4.052
493.35
'
_- __23.420-- _
- -_ - -- -0.962
_______
14. 117-----
058---
493_78
HYDRAULIC JUMP:
_ -_ - -4.
UPSTREAM RUN ANALYSIS RESULTS
__ - - - -_-
-- DOWNSTREAM CONTROL ASSUMED PRESSURE
HEAD( FT)-
= 2.90-------
-
PRESSURE FLOW PROFILE
- -
COMPUTED
-
INFORMATION:
-------- - - -- --
'
______________________________
DISTANCE FROM
_______________________________
PRESSURE
VELOCITY
SPECIFIC
_______
PRESSURE+
CONTROL(FT)
HEAD(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
0.000
2.900
9.563
4.320
550.28
23.420
2.236
9.563
3.656
477.08
'
________________________END
OF HYDRAULIC
JUMP
ANALYSIS ________________________
PRESSURE +MOMENTUM BALANCE OCCURS AT 23.41
FEET UPSTREAM OF NODE 6.85
DOWNSTREAM
DEPTH = 2.236
FEET, UPSTREAM
CONJUGATE DEPTH = 0.999 FEET 'I
__________________________
NODE 30,27 :
HGL _ < 1276.309 >;EGL = < 1279.150>;FLOWLINE=
_____________________________
< 1275.310>
'
FLOW PROCESS FROM NODE 30.27 TO NODE 75.79
UPSTREAM NODE 75.79 ELEVATION 1277.79
IS CODE
= 1
____________________________________________
=
(FLOW IS
SUPERCRITICAL)
CALCULATE FRICTION LOSSES(LACFCD):
_______________________________
PIPE FLOW =
16.90 CFS
PIPE DIAMETER = 18.00 INCHES
'
PIPE LENGTH
---- _------ ________
45.52 FEET
-----
MANNING'S N = 0.01300
NORMAL DEPTH(FT)
_---- ________---------
= 0.92
_______ -------
CRITICAL DEPTH(FT)
______________
= 1.44
UPSTREAM CONTROL
ASSUMED FLOWDEPTH(FT) =
1.44
GRADUALLY VARIED
FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
FLOW DEPTH
______
VELOCITY
_________________
SPECIFIC
PRESSURE + ______
CONTROL(FT)
(FT)
(FT /SEC) ENERGY(FT)
MOMENTUM(POUNDS)
0.000
1.438
9.696
2.899
393.59
'
0.058
1.417
9.772
2.901
393.79
0.226
1.396
9.858
2.906
394.37
0.502
1.375
9:955
2.915
395.31
'
0.884
1.377
1.355
1.334
10.061
10.177
2.927
2.943
396.59
398.21
1.986
1.313
10.303
2.962
400.17
2.721
1.292
10.438
2.985
402.47
3.592
1.271
10.583
3.011
405.11
'
4.613
1.250
10.737
3.041
408.11
i
i
1
1
i
1
1
1
i
1
1
1
1
1
1
1
1
i
5.603
1.229
10.902
3.076
411.47
7.184
1.208
11.077
3.115
415.20
8.783
1.167
11.263
3.158
419.31
10.635
1.166
11.460
3.207
423.83
12.765
1.145
11.669
3.261
426.76
15.290
1.124
11.890
3.321
434.13
18.229
1.104
12.124
3.387
439.96
21.704
1.083
12.372
3.461
446.28
25.863
1.062
12.634
3.542
453.10
30.922
1.041
12.911
3.631
460.46
37.216
1.020
13.205
3.729
466.39
45.306
0.999
13.516
3.837
476.93
45.520
____________
0.999
13.522
3.839
477.10
NODE 75.79
_
HGL = < 1279.228
__________
>;EGL= <
_
12B0.689>;FLOWLINE=
___ __
< 1277.790>
UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER =
75.79
FLOWLINE ELEVATION = 1277.79
ASSUMED UPSTREAM
CONTROL HGL
= 1279.23
FOR DOWNSTREAM RUN ANALYSIS
END OF GRADUALLY
VARIED FLOW
ANALYSIS
Street
Capacity /Inlet
Sizing
GROUP
PLANNING •ENGINEERING • SURVEYING
6540 Lusk goule anJ • Suite C -225 • San Diego, CA 92121
(619) 550 -9901 • FAX (619) 550A469
Job No.
Sheet of 2
V.
Lnll /o%- �Tee�s .
B#1 1W1s)/ye
D ` Zr� /off 2C�C z�W c z>
eeT
�.� R . O• W., �ih HIV u A5 f CAS
e5n / c 7�j
/OMaX
/�•O,Vv, `A��J'
4 .
1= 1�7L���Y�3�zJ 1 3,v
Pi /1�J 11
1 �ez� O� _/
1
GROW
PLANNING •ENGINEERING • SURVEYING
6540 Lusk Boulevard I Son a C -225 I San Diego, CA 92121
(619) 550.9901 • FAX (619) 550-9469
Job No.
She e�EB of 7i
2Da �
�V
n e e�-&I)J71-h D/-
0,3024 = -407 h= N46 _'
jo O, S
2, S
Fig 13% SR Zrn� Pons, CQ AO2 7o
2, S
CHART 1 -103,6 A
CAPACITY OF CURB OPENING INLETS
ASSUMED 2% CROWN
Q = 0,7L (A +'Y)372
*A = -0,33
Y = HEIGHT OF WATER AT CURB FACE (0,4' MAXIMUM)
REFER TO CHART 1- 104,12
L = LENGTH OF CLEAR OPENING OF INLET
*Use A =0 when the inlet is adjacent to traffic;
i.e., for a Type "J" median inlet or where the
parking lane is removed.
REV. CITY OF SAN DIEGO - DESIGN GUIDE SHT. NO.
CAPACITY OF CURB OPENING INLETS --
13
) ;
own
. .
f
-
r�
HEIGHT OF OPENING (h) IN FEET,
N 61
Q1 y m C9 ,O
;7)
.
(f
S C17
- L-Lir
V. n
N N
N W W A A N Vf
0
4 ^HEIGHT
% OJ (0
N o N
OF\ \0PENING (h) IN INCHES
co
\SS'.
' • '.�
o C
°I
`
j � r• QAPACIT'
PER FOOT OF LENGTH OF OPFNI[�!0 (0/L) IN
R FO 01'
,j
� '�
Vii,
I�'
\ _
N L' O1 CO O
1 W •t' M CD
\ .
,-
a
I ,J_ 1- _�_I_J
rn
_.
s
.
`
I\
Fk1T10 OF DEPTH
OF YIATER AT OPENING TO HEIGHT OF OPENING (H /h)' IN FTJFT,
V
,, "�
L.J
O -
f•1 N W 1. 4'� OI �1 C6 . ttl -
P.P N W A N
I
1
1
K
C
1 1.
h
h
[R
O
W'
N
2
t O
U
U
Q
' J
1
SEE STANDARD C B 03
MANUOLE FRAME AND COVER FOR CATCH BASINS
� 2 iA@i\
w-
\C`
\ 2WAQ2
i 46D6Ew
CATCH BASIN OPENING
'NORMAL CURB FACE 44 INCHES
UNLESS OTHERWISE SPECIFIED
1,
\\✓ �/�1
\ 6 0 // 1
FLOr
MEET EXISTING CURB
I
R 4' -0- WARPED
GUTTER _. MEET EXISTING PAVEMENT
SEE STANDARD DRAWN.: NO. LD20I
V• FOR APPROPRIATE LDU.L DEPRESSION
SECTION A -A
SEE STANDARD DRAWING
No. C8109,5PECIAL
CONNECTIONS.
R[YIS TORS
I.lICT
ANR
ITH)N Nm1cT CATCH BASIN
UYm R' ER•�I�G �E
N0. I
7,1 jSTANDARD DRAWING HUMBER C6 100 E`
q•
-
NOTES
%
1. DIMENSIONS: UNLESS OTHERWISE SPECIFIED
/4
D
V- 6'4PW- 7 -,9'P W-11.12 9W. 21'
V Y SMALL BE SHOWN ON THE PLANS.
W •SHALL BE SHOWN ON THE PLANS
—y !.7 FOOT MIN.
PERSPECTIVE
T • 6 INCHES IF V b FEET OR LESS.
OF
T • B INCHES IF V IS LESS THAN B FEET.
T _ 11 INCHES IF V IS B FEET DR MOPE
CATCH BASIN
NO. 1
0 Yb INCHES UNLESS OTHERWISE SPECIFIED
A', 38 INCHES UNLESS OTHERWISE SPECIFIED
2. STRUCTURAL CONCRETE SHALL BE CLASSY P.CC.
SEE
STO. G3 WING C B IDS CATCH BASIN
INLET FOR DETAILS.
16 SACK).
ANCHOR
i
3. THE REINFORCING STEEL SHALL BE NUMBER s
R
:'R IR i
DEFORMED BARS. CLEARANCE SMALL BE 11/2 INCH
(V
FROM THE BOTTOM OF THE SLAB. SEE NOTE T.
T
+
,Tr
�
?-(..
-�• TY�7 -:
�
CURS FACE
l THE SURFACE Of ALL EXPOSED CONCRETE SHALL
CONFORM TO SLOPE, GRADE, COLOR, FINISH AND
<M
27A <
SCORING IN THE EXISTING OR PROPOSED CURB AND
WALK ADJACENT TO THE BASIN. THE BASIN FLOOR
"-
CONST JOI NY
y'y
SHALL BE GIVEN A TIGHT WOOD FLOAT FINISH.
v.-
-
CURVATURE OF THE LIP AND SIDEWALLS AT THE
< <'
STEP SEE NH 239
I
GUTTER OPENINU SHALL NOT BE MADE BY
_
AND NOTE S
_
PLASTERING. THE OUTLET PIPE SMALL BE TRIMMED
TO FINAL SHAPE AND LENGTH BEFORE THE
J
FA
A _
CONCRETE IS POURED.
S. STEPS:
3H INCH PLAIN ROUND GALVANIZED STEEL STEPS
°
SHALL BE INSTALLED 16 INCHES APART WHEN V
<
_
EXCEEDS A FEET 6 INCHES. THE TOP STEP SHALL
BE 6 INCHES BELOW THE TOP SURFACE AND SHALL
BE 21/2 INCHES CLEAR FROM THE WALL,
<E s
SLOPE TO OUTLET
_
ALL OTHER STEP!; SHALL BE 4 INCHES CLEAR
��
FROM THE WALL. ONLY ONE STEP 12 INCHES FROM THE
FROM ALL DIRECTIONS
BOTTOM SHALL BE INSTALLED IF V IS A FEET 6 INCHES
-
OR LESS. ALL STEPS SHALL BE ANCHORED NOT LESS
_
THAN A INCHES INTO THE WALL OF THE 2ASIN.
6. CURSSGUTTER AND LOCAL DEPRESSIONS SMALL BE
-B"CONCRETE.
. <. .
C1a29
1
I
T SEF STANDARD DRAWING CBIOS FOR WALL. &FLOOR STEEL
T .I-
A'
REINFORCING.
SECTION A -A
SEE STANDARD DRAWING
No. C8109,5PECIAL
CONNECTIONS.
R[YIS TORS
I.lICT
ANR
ITH)N Nm1cT CATCH BASIN
UYm R' ER•�I�G �E
N0. I
7,1 jSTANDARD DRAWING HUMBER C6 100 E`
Appendix C
Line B Hydraulics
I
1
1
*# k##*#}*****++++**+##******+++++++*#+#+*##**** * * + + # # { # * # * * # * * * * * * * * * + } + * * * + ++
PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE
(Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION)
(c) Copyright 1982 -2004 Advanced Engineering Software (aes)
Ver. 10.0 Release Date: 01/01/2004 License ID 1461
MAY GROUP, INC.
' 8555 AERO DR., STE. 305
SAN DIEGO, CA 92123
858- 505 -0435
1
1__J
I
I
J
Analysis prepared by:
# * # * * * * * * * * + + * * +k # * # # # # * #+ DESCRIPTION OF STUDY * * + * + + # + # # # # # * # * # * * * * * * * }*
* CITY OF TEMECULA - TRACT NO. 32103 -2
* STORM DRAIN HYDRAULICS - LINE 'B'
* 100 YEAR STORM
kkk*##{####+***** k****++ kk###+##*##**** k* k+ k # + * # # # * * * * * * * * ++ * ++ # + # # # # * # + ##
FILE NAME: VVEHAOB.DAT
TIME /DATE OF STUDY: 09:33 02/25/2008
GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM
NODAL POINT STATUS TABLE
(Note: " *" indicates nodal point data used.)
UPSTREAM RUN DOWNSTREAM RUN
NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+
NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS)
1159.75- 2.43* 268.25 0.54 262.62
FRICTION ) HYDRAULIC JUMP
1153.85- 1.95 215.37 0.54* 262.52
1003.17- 1.82* 117.86 1.14 Dc 46.17
---------------------------------------------------------------------------
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1159.75 FLOWLINE ELEVATION = 1286.77
PIPE FLOW = 8.70 CPS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 1289.200 FEET
NODE 1159.75 : HGL = < 1289.200 >;EGL = < 1289.576 >;FLOWLINE = < 1286.770>
FLOW PROCESS FROM NODE 1159.75 TO NODE 1153.85 IS CODE = 1
UPSTREAM NODE 1153.85 ELEVATION = 1287.29 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
)
FRICTION +BEND
1131.31-
1.14
Dc
147.79
0.54*
262.09
)
FRICTION
1054.95-
1.14
Dc
147.79
0.57*
247.35
)
FRICTION +BEND
1004.43-
1.14
Dc
147.79
0.94*
155.27
FRICTION
1003.17-
1.14
*DC
147.79
1.14
*DC
147.79
)
CATCH BASIN
1003.17- 1.82* 117.86 1.14 Dc 46.17
---------------------------------------------------------------------------
MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25
NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST
CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA
DESIGN MANUALS.
DOWNSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1159.75 FLOWLINE ELEVATION = 1286.77
PIPE FLOW = 8.70 CPS PIPE DIAMETER = 18.00 INCHES
ASSUMED DOWNSTREAM CONTROL HGL = 1289.200 FEET
NODE 1159.75 : HGL = < 1289.200 >;EGL = < 1289.576 >;FLOWLINE = < 1286.770>
FLOW PROCESS FROM NODE 1159.75 TO NODE 1153.85 IS CODE = 1
UPSTREAM NODE 1153.85 ELEVATION = 1287.29 (HYDRAULIC JUMP OCCURS)
CALCULATE FRICTION LOSSES(LACFCD):
1
PIPE FLOW =
6.70 CFS PIPE
DIAMETER = 18.00 INCHES
PIPE LENGTH =
5.90 FEET
MANNING'S N = 0.01300
'
HYDRAULIC ----JUMP: ------DOWNSTREAM
----------RUN ---ANALYSIS ---------RESULTS
-----------------------------------
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
NORMAL DEPTH(FT)
= 0.54
CRITICAL DEPTH(FT) = 1.14
4.078
UPSTREAM CONTROL
ASSUMED FLOWDEPTH(FT)
= 0.54
1
GRADUALLY VARIED FLOW PROFILE
COMPUTED INFORMATION:
FLOW PROCESS FROM NODE 1153.85 TO NODE 1131.31 IS CODE = 3
DISTANCE FROM
FLOW DEPTH
VELOCITY
SPECIFIC
PRESSURE+
-- ------ ------------------------------------
LOSSES(OCEMA):
CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
0.000
0.543
15.085
4.078
262.52
'
1.122.
0.543
15.086
4.079
262.54
2.291
0.543
15.067
4.079
262.56
3.513
0.543
15.088
4.080
262.58
- - - - -- - - - - -- -
ASSUMED FLOWDEPTH(FT) = 0.54
4.791
0.543
15.090
4.080
262.60
'
5.900
0.542
15.091
4.081
262.62
(FT) (FT /SEC) ENERGY(FT)
HYDRAULIC JUMP:
UPSTREAM RUN ANALYSIS
- -
RESULTS
- - -- - -- - -- -
'
DOWNSTREAM CONTROL
ASSUMED PRESSURE HEAD(FT)
= 2.43
262.12
2.290
0.543 15.062 4.068
262.15
3.511
0.543 15.063 4.069
------------------------------------------------------------------------------
PRESSURE FLOW
PROFILE COMPUTED
INFORMATION:
0.543 15.065 4.070
262.21
'
- --- ----------------------------------------------------------------
DISTANCE FROM
PRESSURE
VELOCITY
SPECIFIC
PRESSURE+
CONTROL(FT)
HEAD(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
'
0.000
5_900
2.430
1.950
9.923
4.923
2.806
2.327
268.25
215.37
-----
- - - - -- -END OF HYDRAULIC JUMP
ANALYSIS------------------
- - - - --
I PRESSURE +MOMENTUM BALANCE OCCURS AT 0.63
FEET UPSTREAM OF NODE 1159.75
'
DOWNSTREAM DEPTH = 2.379
- ---------------------------------------------------------------------
FEET, UPSTREAM
CONJUGATE
DEPTH = 0.543 FEET
NODE 1153.85
: HGL = < 1287.833 >;EGL = < 1291.368
>;FLOWLINE
= < 1287.290>
1
FLOW PROCESS FROM NODE 1153.85 TO NODE 1131.31 IS CODE = 3
UPSTREAM NODE 1131.31
ELEVATION = 1289.29 (FLOW
IS SUPERCRITICAL)
---- -- -- -- -- ------
CALCULATE PIPE -BEND
-- ------ ------------------------------------
LOSSES(OCEMA):
'
PIPE FLOW =
8.70 CFS PIPE DIAMETER =
18.00 INCHES
CENTRAL ANGLE =
14.500 DEGREES MANNING'S N = 0.01300
PIPE LENGTH =
22.74 FEET
'
Note: For open
flow conditions, computer program WSPG
(see LAFCD program)
does NOT estimate
losses for bends. Therefore, to be consistent
with WSPG results,
a zero bend loss is used.
'
------------------------------------------------------------------------------
NORMAL DEPTH( FT)-
CRITICAL DEPTH(FT)- = L 14
0.59-----
=
-- -
UPSTREAM CONTROL
- - - - -- - - - - -- -
ASSUMED FLOWDEPTH(FT) = 0.54
- - - - -- - - - - - --
'
---=------------
------------------------------------------------------------------------------
GRADUALLY VARIED
---------------------------------------------------------------------------
FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
FLOW DEPTH VELOCITY SPECIFIC
PRESSURE+
CONTROL(FT)
(FT) (FT /SEC) ENERGY(FT)
MOMENTUM(POUNDS)
'
0.000
0.543 15.058 4.066
262.09
1.121
0.543 15.060 4.067
262.12
2.290
0.543 15.062 4.068
262.15
3.511
0.543 15.063 4.069
262.18
'
4.790
0.543 15.065 4.070
262.21
1
I
1
1
1
1
L 1
1
E
6.130
7.540
9.026
10.598
12.265
14.040
15.938
17.977
20.179
22.574
22.740
fIi7J�mlclwll
0.543
0.543
0.543
0.543
0.543
0.543
0.543
0.543
0.543
0.543
0.543
15.067
15.069
15.071
15.073
15.075
15.077
15.079
15.081
15.082
15.084
15
-----------------------------
- - - - --
HGL = < 1289.833 >;EGL = < 1293
4.070
4.071
4.072
4.073
4.074
4.075
4.076
4.076
4.077
4.078
4.078
.356 >;FLOWLINE = <
262.24
262.27
262.30
262.33
262.36
262.39
262.42
262.45
262.48
262.51
262.52
1289.290>
FLOW PROCESS
FROM
NODE
1131.31
TO NODE 1054.95 IS
CODE
= 1
UPSTREAM
NODE 1054.95
-- -----------------------------------
ELEVATION
=
1296.01 (FLOW
IS
SUPERCRITICAL)
CALCULATE
FRICTION
LOSSES(LACFCD):
PIPE FLOW
=
8.70
CFS
PIPE DIAMETER =
18.00 INCHES
PIPE LENGTH
=
76.16
FEET
MANNING'S N
= 0.01300
--
NORMAL DEPTH(FT) =
=--- --------------- =--
--------
0.54
---------------------_-----------------
===--------
CRITICAL DEPTH(FT)
1.14
UPSTREAM
----------
CONTROL ASSUMED
FLOWDEPTH(FT)
---------------
= 0.57
_-------------------
GRADUALLY
VARIED FLOW PROFILE
----------------------
COMPUTED
INFORMATION:
DISTANCE
FROM
FLOW DEPTH
VELOCITY
-------------------------------------
SPECIFIC
PRESSURE+
CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
0.000
0.570
14.126
3.670
247.35
1.036
0.569
14.163
3.685
247.94
2.119
0.567
14.201
3.701
248.54
3.254
0.566
14.239
3.717
249.13
4.447
0.565
14.277
3.732
249.73
5.701
0.564
14.315
3.748
250.34
7.025
0.563
14.354
3.764
250.94
8.425
0.562
14.393
3.780
251.55
9.909
0.561
14.431
3.797
252.17
11.489
0.560
14.471
3.813
252.78
13.177
0.558
14.510
3.830
253.40
14.988
0.557
14.549
3.846
254.03
16.939
0.556
14.589
3.863
254.65
19.053
0.555
14.629
3.880
255.28
21.359
0.554
14.669
3.897
255.92
23.894
0.553
14.709
3.914
256.55
26.705
0.552
14.749
3.932
257.20
29.859
0.551
14.790
3.949
257.84
33.446
0.549
14.831
3.967
258.49
37.600
0.548
14.872
3.985
259.14
42.531
0.547
14.913
4.003
259.80
48.585
0.546
14.955
4.021
260.46
56.417
0.545
14.997
4.039
261.12
67.495
0.544
15.039
4.058
261.78
76.160
------------------
0.543
15.058
4.066
262.09
NODE 1054.95
HGL
- < 1296.580>;EGL=
------
--- -- ---- ----- - --- --
< 1299.680 >;FLOWLINE
--------------- --
= < 1296.010>
FLOW PROCESS
FROM NODE 1054.95
TO NODE
1004.43 IS
CODE =
3
UPSTREAM NODE
1004.43
ELEVATION =
1300.46 (FLOW
IS
SUPERCRITICAL)
J
I
1
1
1
1
1
1
1
1
i
1
1
11
1
[J
1
11
---------------------------------
CALCULATE PIPE -BEND LOSSES(OCEMA)
PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES
CENTRAL ANGLE = 64.300 DEGREES MANNING'S N = 0.01300
PIPE LENGTH = 50.52 FEET
Note: For open flow conditions, computer program WSPG (see LAFCD program)
does NOT estimate losses for bends. Therefore, to be consistent
with WSPG results, a zero bend loss is used.
------------------------------------------------------------------------------
NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 1.14
UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.94
GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION:
DISTANCE FROM
FLOW DEPTH
VELOCITY
SPECIFIC
PRESSURE+
_ CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
0.000
0.943
7.430
1.801
155.27
0.258
0.927
7.582
1.821
156.66
0.551
0.911
7.740
1.842
158.19
0.883
0.895
7.906
1.866
159.88
1.259
0.879
8.080
1.694
161.72
1.664
0.863
8.262
1.924
163.73
2.164
0.847
8.454
1.958
165.92
2.706
0.831
8.655
1.995
168.29
3.317
0.815
8.867
2.037
170.87
4.009
0.799
9.090
2.083
173.65
4.793
0.783
9.324
2.134
176.66
5.682
0.767
9.571
2.190
179.90
6.696
0.751
9.832
2.253
183.40
7.856
0.735
10.107
2.322
187.17
9.189
0.719
10.398
2.398
191.22
10.733
0.703
10.706
2.483
195.59
12.534
0.686
11.032
2.577
200.29
14.656
0.670
11.378
2.662
205.35
17.196
0.654
11.746
2.798
210.80
20.261
0.638
12.137
2.927
216.66
24.120
0.622
12.554
3.071
222.98
29.063
0.606
12.998
3.231
229.80
35.761
0.590
13.473
3.411
237.15
45.684
0.574
13.982
3.612
245.09
50.520
0.570
14.126
3.670
247.35
------------------------------------------------------------------------------
NODE 1004.43 :
HGL = < 1301.403>;EGL= <
1302.261>;FLOWLINE=
< 1300.460>
+++++++++++++++++++++++++++++++++++++++++++++++
+ + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + ++
FLOW PROCESS FROM NODE 1004.43
TO NODE
1003.17 IS CODE
= 1
UPSTREAM NODE 1003.17
ELEVATION =
1300.57 (FLOW IS
- - -------------------------------
SUPERCRITICAL)
CALCULATE FRICTION
LOSSES(LACFCD):
PIPE FLOW =
8.70 CFS
PIPE DIAMETER = 18.00 INCHES
PIPE LENGTH =
1.26 FEET
MANNING'S N = 0.01300
NORMAL DEPTH(FT)
- ------
= 0.54
--- ------ ---- --------
CRITICAL DEPTH(FT)
---- ------
= 1.14
------------------------------------------------------------------------------
UPSTREAM CONTROL
ASSUMED FLOWDEPTH(FT)
=
1.14
-========----------------------------------------------------------------
GRADUALLY VARIED
------------------------------------------------------------------------------
FLOW PROFILE
COMPUTED INFORMATION:
DISTANCE FROM
FLOW DEPTH
VELOCITY
SPECIFIC
PRESSURE+
CONTROL(FT)
(FT)
(FT /SEC)
ENERGY(FT)
MOMENTUM(POUNDS)
I
H
0.000 1.142 6.026 1.706 147.79
0.014 1.118 6.158 1.707 147.89
0.056 1.094 6.299 1.710 148.18
0.131 1.070 6.449 1.716 148.68
0.242 1.046 6.610 1.725 149.39
0.394 1.022 6.781 1.737 150.34
0.592 0.998 6.964 1.752 151.54
0.842 0.974 7.160 1.771 152.99
1.152 0.950 7.369 1.794 154.73
1.260 0.943 7.430 1.801 155.27
-----------------------------------------------------------------
NODE 1003.17 : HGL = < 1301.712>;EGL= < 1302.276 >;FLOWLINE = < 1300.570>
FLOW PROCESS FROM NODE 1003.17 TO NODE 1003.17 IS CODE = 8
UPSTREAM NODE 1003.17 ELEVATION = 1300.57 (FLOW UNSEALS IN REACH)
--- -- ---------- --- -- --- ------ --------------- -
CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD):
PIPE FLOW = 8.70 CFS PIPE DIAMETER = 18.00 INCHES
FLOW VELOCITY = 6.03 FEET /SEC. VELOCITY HEAD = 0.565 FEET
CATCH BASIN ENERGY LOSS = .2 *(VELOCITY HEAD) _ .2 *( 0.565) = 0.113
NODE 1003.17 : HGL = < 1302.389 >;EGL = < 1302.389 >;FLOWLINE = < 1300.570>
' UPSTREAM PIPE FLOW CONTROL DATA:
NODE NUMBER = 1003.17 FLOWLINE ELEVATION = 1300.57
ASSUMED UPSTREAM CONTROL HGL = 1301.71 FOR DOWNSTREAM RUN ANALYSIS
-- ----- - - - - ---
END OF GRADUALLY VARIED FLOW ANALYSIS
1
1