Loading...
HomeMy WebLinkAboutParcel Map 34524 Parcel 1-2 Hydrological ReportHYDROLOGY/HYDRAULIC Prepared by: Prepared for: STUDY Parcel Map 34524 Habitat Way Temecula, California May 2007 Habitat for Humanity 27475 Ynez Road #390 Temecula, CA 92591 i Table of Contents Introduction......................................................................................................................... 2 Overview............................................................................................................................. 2 A. Site Description....................................................................................................... 2 DrainagePattern ................................................................................................................. 2 A. Existing...................................................................................................................2 B. Proposed..................................................................................................................3 Methodology....................................................................................................................... 3 A. Hydrology...............................................................................................................3 B. Hydraulic Calculations............................................................................................ 4 Results................................................................................................................................. 4 LocationMap...................................................................................................................... 6 Riverside County Hydrology Manual Plate D-4.1 p. (4 of 6) ............................................. 8 Riverside County Hydrology Manual Plate D-4.4............................................................ 10 Riverside County Hydrology Manual Plate C-1.60.......................................................... 12 Riverside County Hydrology Manual Page C-4............................................................... 14 Undeveloped Hydrology Plan........................................................................................... 16 DevelopedHydrology Plan............................................................................................... 18 Riverside County Rational Hydrology Calculation.......................................................... 20 10 -Year Storm Event: UnDeveloped............................................................................ 21 100 -Year Storm Event: UnDeveloped......................................................................... 26 10 -Year Storm Event: Developed................................................................................. 31 100 -Year Storm Event: Developed............................................................................... 41 Street Capacity Calculations............................................................................................. 51 Introduction This is a Hydrology Study for Parcel Map Number 34524 in the City of Temecula, County of ' Riverside. Overview A. Site Description 1. Parcel No. 34524 is a proposed two lot residential subdivision located in Temecula, CA, consisting of approximately 0.22 acres. Pujol Street binds Parcel 34524 to the north, and Tract Map 30990 to the south-southeast; west of Parcel 34524 is vacant undeveloped land. A location map is provide on page 6. Drainage Pattern A. Existing 1. The site slopes to the easterly and northeasterly approximately 0.5% to 2% towards Pujol Street. 2. Parcel 34524 has one (1) major off-site tributary area, approximately 25 acres, as shown on page 16, the Undeveloped Hydrology Plan. a. Off-site of Parcel Map 34524, to the west, is undeveloped rolling hills where the storm -water sheet flows towards the site to Pujol Street. 3. There is an existing catch basin on Pujol Street approximately 76 feet north of First Street. a. The existing storm drainpipe in Pujol is an 18" RCP that confluences with Tract Map 30990's 42" RCP in First Street, south of Pujol. At the intersection of Pujol and First Street, the storm drainpipe is upsized to a 4S" RCP, continues easterly on First Street, and empties into the Murrieta Creek. The 18" and 4S" RCP in PuJol and First Street is per City of Temecula plans PW - 95 -05. Drainage Study Page 2 of 53 B. Proposed 1. There will be no change in the off-site drainage patterns from the existing condition. 2. The existing off-site sheet flow from the west of Parcel 34524 will flow to the western property line into a proposed gunite drainage channel. The drainage channel will convey the off-site flows to a storm drain inlet, designed by Tract 30990, and then to Tract 30990's 36" private RCP to First Street, where the storm drainpipe is then upsized to 44" RCP. 3. The on-site storm water will drain, via surface flow, through the individual lots and then to Habitat Way. The storm water then flows through the parcel to Pujol Street and continue northerly on Pujol Street, as shown on page 18, the Developed Hydrology Plan. Methodology A. Hydrology 1. The hydrology calculations performed utilized the "Riverside County Rational Hydrology Program," version 6.4 by CivilCADD/CivilDesign Engineering Software, 2001. 2. The Hydrology Software was written to conform to the requirements and methods provided in the Riverside County flood Control and Water Conservation District Hydrology Manual. 3. Hydrology Control Information a. Rainfall Intensity (From RCFCD Hydrology Manual, Plate D-4.1). 1) 0.88-in/hour for the 10-year/60 minute event. ' 2) 1.30-in/hour for the 100-year/60 minute event. b. Hydrologic Soils Group 1) The project is located within the area classified as soil group "D" off- site and "C" on-site as shown in the RCFCD figure C-1.32. c. Antecedent Moisture Condition (AMC) per the RCFCD Hydrology Manual Page C-4 the following AMC classifications are used: Drainage Study Page 3 of 53 1) For 10 -year storm event, AMC=2. 2) For 100 -year storm event, AMC=3. d. Land Use and Cover Type 1) The "single family 1/4 acre lots" land use option of the rational hydrology program determined the run-off rates for the on-site proposed area. 2) The "Undeveloped, Poor Cover," "Natural Valley Channel" land use ' option of the rational hydrology program determined the run-off rates for the pre -developed and off-site area. 1 tB. Hydraulic Calculations 1. Street Capacity calculations performed utilizing a custom spreadsheet program. The ' program provides a Street Capacity Rating Table given a specific street section at various grades; the program also compares the calculated half street flow rates with ' the corresponding street capacity a. A Manning's coefficient, n, of 0.015 for the interior streets is representative ' for the streets with asphalt and concrete. b. To evaluate the hydraulic capacity, the following criteria was used: i. 10 -year storm event contained within the top -of -curb; ' ii. 100 -year storm event contained within the Right -of -Way. Results A. Provided is the rational hydrology calculations for the undeveloped and the developed 10 -year and 100 -year run-off conditions on pages 21, 26, 31, and 41, respectively. The results indicate that the maximum Q I Oyr storm event will yield approximately 43.7 cfs for the undeveloped run-off and approximately 44.2 cfs for the developed run-off; in addition, the results indicate that the maximum QI00yr storm event will be approximately 69.1 cfs for the undeveloped run-off and approximately 69.3 cfs for the developed run-off. Drainage Study Page 4 of 53 ' B. Parcel Map 34524 is to have six-inch (6") curb face on all interior streets. Based upon the street capacity calculations, the maximum 10 -year storm event will not exceed the ' street capacity and the 100 -year flow rates do not exceed the right-of-way capacity. The street capacity calculations are provided on page 51. Drainage Study Page 5 of 53 ILocation Map Drainage Study Page 6 of i �o C, c,2o F9 � oti T 5� ST ,0 G� O� C�. sT (�\O 15 PROJECT SITE XC��\� 0 UN.T.S. 0 % w CML / STRUCTURAL ENGINEERS MUNICIPAL CONSULTANTS / PLANNERS SURVEYORS /GPS 151 South Girard Street Hemel, Ca 92544 TEL (951) 652-4454 • FAX (951) 766-8942 E—MAIL kbcozodOkbcozod.com TENTATIVE PARCEL 34524 LOCATION MAP HABITAT FOR HUMANITY FILE N0. 0505400 ' Riverside County Hydrology Manual Plate D-4.1 p. (4 of 6) Drainage Study Page 8 of 53 MIRA LOMA DURATION FREQUENCY MINUTES 10 100 YEAR YEAR 5 2.84 4.48 6 2.58 4.07 T 2.37 3.75 B 2.21 3.49 9 2.08 3.28 10 1.96 3.10 11 1.87 2.95 12 1.78 2.82 13 1.11 2.70 14 1.61 2.60 15 1.58 2.50 16 1.53 2.42 17 1.48 2.34 18 1.44 2.27 19 1.40 2.21 20 1.36 2.15 22 1.29 2.04 24 1.24 1.95 26 1.18 1.87 29 1.14 1.80 30 1.10 I.T3 32 1.06 1.67 34 1.03 1.62 36 1.00 1.57 38 .97 1.53 40 .94 1.49 45 .89 1.40 50 .84 1.32 55 .80 1.26 60 .76 1.20 65 .73 1.15 70 .70 1.11 75 .68 1.07 80 .65 1.03 as .63 1.00 SLOPE _ .530 RAINFALL INTENSITY -INCHES PER HOUR MURRIETA - TEMECULA L RANCHO CALIFORNIA DURATION FREQUENCY MINUTES 10 100 YEAR YEAR 5 3.45 5.10 6 3.12 4.61 7 2.87 4.24 8 2.67 3.94 9 2.50 3.69 10 2.36 3.48 11 2.24 3.30 12 2.13 3.15 13 2.04 3.01 14 1.96 2.69 IS 1.89 2.79 16 1.82 2.69 17 1.76 2.60 I9 1.71 ?.52 19 1.66 2.45 20 1.61 ?.38 22 1.53 2.26 24 1.46 2.15 26 1.39 2.D6 29 1.34 1.99 30 1.29 1.90 32 1.24 1.84 34 1.20 1.78 36 1.17 1.72 39 1.13 1.67 40 1.10 1.62 45 1.03 1.52 50 .97 1.44 55 .92 1.36 6D .89 1.30 65 .94 1.24 70 .81 1.19 75 .78 1.15 90 .75 1.11 85 .73 1.07 SLOPE • .550 NORCO SPRINGS DURATION FREQUENCY MINUTES MINUTES 10 100 10 100 100 YEAR YEAR 5 2.77 1.16 6 2.53 3.79 7 2.34 3.51 8 2.19 3.29 9 2.01 3.10 10 1.96 2.94 11 1.67 2.60 12 1.79 2.68 13 1.72 2.58 14 1.66 2.46 IS 1.60 2.40 16 1.55 2.3? 17 1.50 2.25 18 1.46 2.19 19 1.42 2.13 20 1.39 2.08 22 1.32 1.96 24 1.26 1.90 26 1.22 1.82 28 1.17 1.76 30 1.13 1.7D 32 1.10 1.64 34 1.06 1.59 36 1.03 1.55 36 1.01 1.51 40 .98 1.47 45 .92 1.39 50 .68 1.31 55 .84 1.25 60 .80 1.20 65 .77 1.15 70 .74 1.11 75 72 1.07 60 .69 1.04 85 .67 1.01 SLOPE - .500 PALM SPRINGS MINUTES DURATION FREQUENCY MINUTES 10 100 10 100 5 YEAR YEAR 5 1.23 6.76 6 3.80 6.08 7 3.48 5.56 8 3.22 5.15 9 3.01 4.81 10 2.83 4.52 11 2.67 4.28 12 2.54 4.07 13 2.43 3.86 14 2.33 3.72 15 2.23 3.58 16 2.15 3.44 17 2.08 3.32 Is 2.01 3.22 19 1.95 3.12 20 1.89 3.03 22 1.79 2.86 24 1.70 2.72 26 1.62 2.60 28 1.56 2.49 30 1.49 2.39 32 1.44 2.30 34 1.39 2.22 36 1.34 2.15 39 1.30 2.09 10 1.27 2.02 45 1.18 1.89 50 1.11 1.78 55 1.05 1.68 60 1.00 1.60 65 .95 1.53 70 .91 1.46 75 .88 1.41 8D .85 1.35 85 .82 1.31 SLOPE _ .580 PERRIS VALLEY VVM=��an IwLYVL.LT MINUTES 10 100 YEAR YEAR 5 2.64 3.78 6 2.41 3.16 7 2.24 3.21 8 2.09 3.01 9 1.98 2.84 10 1.88 2.69 11 1.79 2.57 12 1.72 2.46 13 1.65 2.37 14 1.59 2.29 15 1.51 2.21 16 1.49 2.14 17 1.45 2.08 18 1.41 2.02 19 1.37 1.97 20 1.34 1.92 22 1.28 1.83 24 1.22 1.75 26 1.18 1.69 28 1.13 1.63 30 1.10 1.57 32 1.06 1.52 34 1.03 1.48 36 1.00 1.44 38 .98 1.40 40 .9s 1.37 45 .90 1.29 50 .85 1.22 55 .81 1.17 60 .78 1.12 65 .75 1.08 70 .72 1.04 75 .70 1.00 60 .68 .97 85 .66 .94 SLOPE = .490 ' Riverside County Hydrology Manual Plate D-4.4 Drainage Study Page 10 of 53 •--A.R ,��-----..-'R�.4: -r w,..^ _ .�:. a„ `I ,N yr__i� '.Y .,,!_7 .r --- '`�=_,..f,•-� 4�'.'_ - - 1R��'�2; ---� �.y '� �4 '". F ' S _ -_ .hl ..rn.c. v'•.' :i. �lrtf.'9i:1 _,e-�-.r:� _ `,I ..f,- .I 'y�" �L. :1-:'.�>l r' rl.e �''� r1 ".;•i ,fry' _ b. '',,li>i _.`^T{.�-� �. �t. ,A •? \ ' 'f.c�::y '� _, J1� _ = . 1• r TI. d. _ ��_,•n 4,'r�=' , '�, _ .��".3,\;i:' E' _j- ',��. - _°:�::,,��,�: 'rte »�.h• f�-I _ � .(„1Li:•:GSi"-C�___ __ _ I I r 1 , 11 n. r - � - �1 n°r .ralw.�:,, �`'f.�1., ��' �°.. 'c`!: M �+� _ .'!�•'frTf' ear .,..,;y-_� __ 1 � a� .!A':. 1. -___ � J ��.. y° Z.1` � .l: • _-yC.•,u : T, �4' f r+' +h, '?f`i f � :,I :.'� � r=-`-� I I � v I �,�c: �-�1-. .moi ^�`a'r_� �`•. o°ss �y..a' -yl.° •'��._ .•' E' _ - - _ �- '6 S`✓ - .d,' _f; .a.- - . 9� - - ,er..,ro.::� C _ _++ � l' r •,a' _ e,Im - J' - I- 4':;t - II "f...,a':: y.`f:.' �i,. . / _ '4• �4_ /�1'^ .'..1'. ,. ..1 1 - - `d S t� - -1t /5 ,�T•-� ILJl_ -' _,,�..e, t'v /- .t C�""' .\+;.ATF iL'1;";` `� N'J� f1lA'Y`. O �, ' .,h It �. �r-:.�__y�°I�wpp.��l�_���} e _ v\�• ,a (;d. ;4� i _ ..�,, /'].'� '".r fj _ , �'. _ i � �*��1,�'(\'"' _ - _ ,11� ",. ,iT . '"\-o v^' .t��.l. �-.:-rf-•=,.' ]-- , 1� n'� q k_ .f-1'1 i .�1 .'/; , rrr. t � -.:+. ., .� _'.1 ' �,�,Ap y Y( t'� _ .. �l.i t • � � r'c _ sa�� y, .A r'\-) „ y�� +aP� ' ""�" yl��'.. ,S /%n ��_ •.J �'t•'F 'v3>wP' -'- f,+i'1G ,.S'(4., :`f: `'��5. ��.. qA �) :.\�') 1V ;yQ� c 1.. �°'3 �. L,.,:✓ _J._""w Oq� i' r R (`�'�' _ .0 %r-::_ oegi -•�v. - 's �� /'�1 r�'• � jt ~ I( `�`%It' a rh.,.i. 2 •' „.> e`�. t I ., - _ T`�7 `- �'4 ' � - - "- i..}axnr„• � �a[ ^ - _ : �i.. r51.,-'--, .�, �. �• t � _ .f` ;'- .01 a ''_ .. �; ' ". r.;: ° . „: •t<:� 'i ' �f al _ ..-�' 't' kC,..nl ,. tE. ,1` r +{1•�'i [F[ 'IP T. I'�;'' °Y• I 'Odin YO �_ `• .,� \ - - ���\ +,�- l l _P' J','..>r�, Wim, 1 I - "0•nni' "�/ +r-1-,.. �� - - - r. - c r ,°-�✓ w 1. J - _ - ..]. "la ;° •_ �C. a `1'i; °'"2` Bm • .ai i„ I- • ^1 \d � 1,'l ` fr.•n '�1.' rx•_�_j74-_•P.-,•,Y" ' ! , .>o,(�.rI IJ.'� _ A'1 .ry � - �'°" fa �•'"" _�.'•• � ' fit vrr.. _ ,/ a Ir - r °' \ - _ ^�F. kyr �i?� �°H��..'j: J } S' � a� � T{f < � - - 'rte- v; •d,[ �,r ' :( ^ t �'t'� -`.-� �',I r '".:v" -'=r , (Z • ; (;�jj11j:�:.,,`•y` " " "ss"' � t?' r �,,f-� ': i'� _ �i I - .,�� - >s��} � ll- �`•ID -0I-"c...,. 'c�, '•yil- �'• l� :.`r '•.mi LJ �^°'_-_' Y �� •\''F�- }'if e#�':s a.�l�r•' �' �r`.�.' tra"`v^(1 �' '.,,,v -. - fie'>Ii �./ `..7.-" i - _ - 5 r i>�: .:l 'tel � _ ~2s .,rl �'-, �"_ \ ! �_ _ _1 •1 Cti '�•'�' ��.viy �{�1.. _ .J� i,�rv.",'�,/�-,��`c.-t-'vi,\r�•l+ _ icYbll+.i�^--.�(,; S rN _. ti ' _ r J, SLI\ �M{�uc �..'� r �/'�$ rj! � �j Ib`• iA^...'i, \:� IA`1JS-t' °J �4'.;". -� .M1 .:.7T� r �cd, Mt �tlirn.'(at5: r.�' _Pi•'tf<„ _ ! :�: ".,....i`•�(� - -' d!'irD.. Iia .r 1 P 1 '� - - '-�' - r :'p, - \9. ' �`��}{'�_I tS-v: ,�: i •.f M' �y�:.:� C y�•_ �`x-;yn 1"�_°-.kr���•�:-vt I,O_ � ':f�'.+�•''v;p •''>* 1 L` �`n �� 1• f " - -, E t > 0 .1 :� i L � �-^�[�+y--� - I v" „ �Y 'Y,''Y:�Ne}�'a'-1_f 4 "• I �t-�-�. ' ' 1 i �' 1 P•r _ , �.F'k^�-"^� i. _ y��--\ /., ,�^ -..tom - �. \-� �hN•K..,"!,s ,pf. 1q r�-'S.'� �` <p« •�F`�`.' ~���' a-�• \", 1; -1 E��, j ^y ,. S< . r� � - - ' "•' _ \ - , r� �. I _l ._� �F° -a�� i'iS-"^I 4�`- -,•. _ I '<= � :e?. C �j . ^tom • � ;'h ' � - - M ` I ..:..,� tl ' k c-� ^- _ '$, •^'. C1 � r �� r •:---u�i "Q -��\ `=Se�eV .. 1r.b .ti.:`' -'l t '\'_ ,- .,l ., ��� �l`-'u.. e P�' � � � \?�: +S .� .-� °; `la.. %Y�� F- �.� f �'° �C \ :i,r,:r '•f'.r". 1 r 'i_� Y �r �'>I,.. v 1„°°,^ !i �' �'- . � 5 f •/` +" - � _ � 1 �� /, P v. �', .1,1 @ {-!", '.V� �+ - 'T J - t -� > m - _-- n ICJq ,U+i �'.cr', t v' ,!'` _ / P �:.'1, a...r tf �S"�-}'�-`�i��:'�t� • `1 \�{I ��.1.°' y, /•d• y t^ iJt[ i �l f1 ^J•+ti} � � `tR ° ^� lI'vY.,r n_ I v�. Y'° _ ..' , - _ _ -_ �\ - .: t� _ _}_ I, I Jr: ��'. L. `• - '�° � ""4K-- i� {QE''rv'� - - �s'' I'' - _ �T".l e....a. - � I -„=� f - - .. 1 �_ I - ,- 9 r .5 '• , v �' -R � 1 " p, ,t ''t ,p . ��: - ?� "A.Ps„' - t �}.`+ iQ \� 1`� 'j` _ � '_I I-:- F' 3 F .^ba •N" I / • r,Y_N $n,�,dxc�.. r. __' ,ti eit `, J i4' _ � •°L,'o.Mrl rb } 3-.� ..�=a 'n 'r w �:,• �0.: T �" / '''�F� ^;< L3 ='��r� �. .� i \ - � ��/," r AFI f � ' / c ;y't -.. \c ' C°•,� J% r '1. S,.. - I _.I � a'w' f. .n,2�"- '''+r• y` r _ � f.t <. :� ti �t 1� i' �. �w - -=L< :c .�. t i., r1�-.��_: -»;y. T o -� r. C Y'i .?� „o -I. .-S.'l� '�' n� ^'h`.. .,'-�Y`�". - _v-"�,s,.'�w• D l•i�, w . ". dj'� 1 ° e. .. �w .,. v.a, w' r y r c. u { .nRf , U, . r' _ :. ,1.. r ��.,°F,± n , �?�r i ce lr.�.�' � 1 � ,'S. "'f^' ,� y.^•- S' _,ZI •�n•,� �J I � � � E�+�•A� t - H l' � d ` S�- _ � � ( av��� `'?•; ��r-- J n7° �J '} r y � _ ' �•^' S.,�, ,. } h r r. �1 �� `o- /�!' 1' '.Y•: .:I ;`,.,--!`tel=• .K i� ' }rpt, Or %' r r i:'` \°`Z s•[.un"S,I �� e°� .� c�f}=:, i'-.. l sem_ ,t^:I� �rl- .Y �,_ ,./ + .d ry _�' �"�t( ;���'•yY r ' p'� .. !.YW,•,l �>^QI ) �I •.�, - ,Ii4.i. Sizi� i �j�' �I °tea. !'�' /) _sS'/' - \ nw.. Ms•.r _ O'J _ J - _- -hJ, .t�J` .J 1 a -'y(- :•s=7^ �'�' i L •Yr - ii �y-S` ��y? - -_ �•--:'�,-��f,-( ,i " 4 ', I'•1' � o �p �." ^'i. - - sI /. u' 'wi�, - � ''. I __ ='_ 1 _ I d -.�_ l,: __'C `=, _ - -:' `r l :y of_-�'\�,,{' L )'� - �^ w i T�r � � - �`p .J" 1�(]... :. '1- 1��,l . .I'- �i, �$'•}n' ,'i'_ a - r. '' '% `rc" s "�1 1 '�.� )-' Y��' -�'x=�.1'-S\ ��Y- X p: - :L �� �/� .,.A... - "I nc+I ,C i ' GJ.. a � `<` I". I ,. arm c ..� rn,� s• - F�r_ 4. �i,'_ \ .�� i"U .. ,.n.,. �•' v I � I. :'4YJ "L1'I t- `.�_'1.J, _ �.. �' - v�` I I� ,,.,,%� ` _ el,, ./ la,� 1. ��,y, _ t _ J/ •� � ` 7 1 _r 1' •`�\^ "^�'� � tl�\ l .'1 '.y! / e� {� ^' - I° }\ .Ka?'!'d-' �)n.,, .._ ., i -<y;.. LYIu: , l`^', _ \ �=' ��( 1 / �r - > 'I. rJ,�,.�i'�s., .t � I ,`� .� i',. .Y - e i 1 .>a `�'t t /- ='°r, v s"r, e`w ���•-: - .uA-� y� "_ I - l '-, 'r Fr ,R - 'i r • '.tic ", L' �t �u � �: I n } _ _ UGli9'=�•'� �` -1 p'- ,.��� _ ,�' i f \ ..�I ' _ fir- I: -q ��, ('.. Y ,2v .. �- •I-, �L�?,�^�Y-�.c-�r ... � _ .¢3 �• Ir3 r h e w. +wa-. J<.'- r r• r7`• n:" r ••'}}» 1- yy_ J I TwZ..y�, I U_- r w./) _'�?'..� l i ./ � � J° r �> J \ e�n� �a .lvr �x t I r- �` 1 sclly i��„E. __ �1_ ,�',• .JCS I .I ! +,.,.r.te.+v. .I �. '1. 4nld - \J, .L ` .y'.�,. _ _ "Oj �} -- I ( / y✓ "' r'_... • N 4 r - - 1 Gam' �, 1 N°r@-./7. m �.'' ;� 1 F -= 1 .wo r�bca"'s'' <.'.` w.,./ [.- ��., L 11 1 tri `�I�.t` _ - J�[p•-.: I � �S.c��15� R'I`iOQ'i1• r'+r - '1. .- - -, y`+.., :�4�.� "-..ivF ..� ;� -�.: (( � i' L -'r -�' --"-- - --- c 'l-1 • , x- ,.' - >.1l�: r.. - _ , I ,,r..),.. I, r w - k 1� I ,� ` '"/ I �,...L.Lr;;, -�'. _ ,f .,,nf .=_li N .'�.�+.Q '3a„.i• 7l'>Sla-n� /}� i'.3\ \p�'E@'ulCw. ~r'A- -'-� �;ai'" �-, 'r '1• I (.3 `-�°. �' ,... ! �1 �O 197_ - .1 : .n - i ��. .�� .1 sPw�' I. �y�oM�,. 1 °I. ! _ �. 'Y-..., �;� _ JJl•' .. �:�'"'�( ',1 - r/ nj' iS A� ��. _ _ _ -- r.e-_- a P A ..�,/ 'Y F __'fI(J.��n'?'1 ._ylr ^c"-'�-' ;l } IF I/ .�' b'•°• ......J� 'e f S. _"5-'r'' 'fit ��j�.''4 1', -S J.' - :l`. :;'<.: _ _ 'rQux, - -' C' f:i I'�.-�-r-V`, _ +�, rI-G '�,r I�'� n .\_.'JAI; -- (=;0" „/„•I„� +) � _ ,s� _ '�`'"'. � - y. ..a .. •.f�v,.�F/. e/. cF'?i ''�.i ^+. ",;, vim".- .Tr/le, t.:%e�...,..i- 'o"'. �. r"3'r•-� 4, /.. :J� •�'r \ _ �y �. .e..- - " `•% <'. `+ :4�. w. .;~.�s� _�.. +4' „[�� " � - .c<� '�� --'.�' ':+'}' ��"�. . •: � r 1 . '•a .. < -pI .'1 Iec,.+rree �.tC ( ae°. •°r. Via_ r ,.t`" _ :�=,' a«n. n_ " •�<'. , C; rj v. - 1 '11:/ �� It _ 'j` ""1_.u•mw r1 - J •'rz ^'1 .. `.,t. �' - - ' ; - " J' al( �/. �.. `-+ID .. / s -�. ( �-11 ' - ��,,',`���/tel ,'�••t -�� "' - - '•D '-?-. ser: >. '-YSM rr�1 Et]][['' 4Leil�,;Jin !�'>a.e _ ..I �`rlNil r,i✓-/, � ` te S, 11 - - G �•'[ I nGl•m h ,. _ .A JvNT ,r,_ 1 ,-..,�,° -:RIVERSIDE COUNTY FLOOD AND �\ rI#-• cl.S; �y'+�1�4 ,1. �� .r1 P:,w;R' ?i=. `�V :r�r ;. .>' 1..� - -J:,^1; .I- ^...:.''. •.,q:. '' � \ I'. �••�w:., .\ -h!'I: ^w� „c - - aC<J�€ rr,- ,�'.,�.rtl_ 1 �,a�' .1 AMD "?' 4s +s- �'-'�� i•�t >r - ,. - c Y V - rr+• � � � '4'� WATER CONSERVATION Di J � :�- -P fi- °I R�.w • ` ..; ^� � rl w.r '- �1"..�..Y r,rdv'' Y !I ✓'9y'r 4\ j1r�aA qyr- e`en,• r� rf_�� _._ls �. _ '?;,i I :i• .�.=J✓'� 100 -YEAR -I-H' T } / .r r ,• 1i -..ice, •; Ar _ �.� . � � . �'' ' PRECIPITATION 1.1 rn N5 aeiC' . r.- p°'°. __ -`p•i. - ."_4+�`'"r,,, , �sr . _ 1C �p, \ : •e'i. - c+• J ort ,.•,li -� -2:. ,�J =r - .'F 2 li t wt 1 u... er Q W. `•, .v 't.i"� "iJ': �. e.^4 s, 1:-:, .Y _.�-• .. : _�`°',2, ��i � ':,4- ` ... / t � ,.` ' Riverside County Hydrology Manual Plate C-1.60 Drainage Study Pagc 12 of 53 C,. B BC ec C J D B BC B C B B ... BC -BC B 11 c ® o c B rB D i i.' Cql DC Bc dA" C BC B6 �D � B C,'�"i r �' .,. B .0 ILC' � D B� t D B ac ,.. a my - - - - " . cwyrr �_ ^ `,'Sie'�is`✓. . _ pj'' (�f �yl,l�-r.�%7: rA%/ �r'j ._ _l.ti"� - J'"__{' _- _' -\� `li�.�, �'/�_,�t.'=�^� 'r1/ r �•;r".e ��j/,(__ 1� r:. 1 _ LEGEND HYDROLOGIC SOILS GROUP MAP SOILS GROUP BOUNDARY A SOILS GROUP DESIGNATION FOR R C F C& W C D TEMECULA !" u. IT " I r,n Riverside County Hydrology Manual Page C-4 Dramagc Study Pagc 14 of 53 ' the District uses the following generalized definitions of AMC levels: ' AMC I - Lowest runoff potential. The watershed soils are dry enough to allow satisfactory grading or cultivation to take place. AMC II - Moderate runoff potential, an intermediate condition. AMC III - Highest runoff potential. The watershed is practically sat- urated from antecedent rains. ' In rainfall based hydrology methods it is normally true that a low AMC index (high loss rates) should be used in developing short return ' period storms (2 - 5 year); and a moderate to high AMC index (low loss rates) should be used in developing longer return period storms (10 - ' 100 year). For the purposes of design hydrology using District methods, AMC II should normally be assumed for both the 10 year and 100 year fre- quency storm. In the case of spillway hydrology for dams or debris basins, ' a condition between AMC II and AMC III should be assumed depending on the degree of risk involved in failure of the structure. ' Impervious Areas - Discussion in the previous paragraphs has dealt en- tirely with infiltration for pervious surfaces. In analyzing developed areas the effect of impervious surfaces on the average infiltration rate ' over the entire watershed must be considered. Estimated ranges of imper- vious percentages for various types of development are given on Plate D-5.6 ' or E-6.3 (identical Plates). Values given are for the actual percentage ' of area covered by impervious surfaces; however, studies have shown that effective impervious area is generally smaller than actual impervious area. ' A number of reasons for this difference can be cited, i.e.; an impervious surface discharging onto a pervious surface where infiltration may take ' place, evaporation from local depression storage, pervious area under the ' overhang of rooftop eves, etc. The difference between effective and actual C-4 ' Undeveloped Hydrology Plan Drainage Study Page 16 of 53 100Bills aN _IMPl 1•,Alt 5 ,'i S,� 1 40*� '�, __ '�w - _ r -6 .i,F�. t j� C,C / � ' ' _ - \' � 1_11 1 11 / 'I II, It ,,�� _I. � ^s - N IIII 1\\IIII 11111 71r « \ \ � !} 111 I� - ` /�I�`�Yc' ttlllt!llJ1i i�,rl ` �-150�p:_ �bI ow I 1 �&9w- _ 1080 W m J)\�\ 305 CFS 131jlIl10690 � \\It/ ' 5/ \ p\III ,° Q 277 CFS � I, —7 —1l ` VJ ) \3f9 4 Q- 92 CFS - ��`���\ ;IS) t! 1, t dill)) / i � rl I I� - °,=59 CFS )11' 1160 — 1\\I I)J/Is<» ® Q = n 4 CFS�� v{� QO 11.1 ICES tW' � �� .ieY .e$.n `�A �.•_ �!►' _1®. •li.. `i sa ' rr.9�!'//ri �/�./�' /,''I/;',; .5 .r /"I 1. �l� 1 \��� / HYDROLOGY LEGEND 100 NODE NUMBER 1 00' ELEVATION, (FT) Q FLOW. (CUBIC FEET PER SECOND) 100—STORM YEAR EVENT Undwgroaed Snake ANet X X AC TRIBUTARY AREA, (ACRES) O®ll1lI TOLL FRIEIR GRAPHIC SCALE �� 9-900 -.... _ - = FLOWUNE 0 50 100 zoo .00 - 227-2800 WATERSHED AREA n �� 1 TWO WORKING DAYS BEFORE YOU DIG CONSTRUCTION RECORD pppyppF{r NOTE Revisions. ,ea °•r cm.` CITY OF TEMECULA !NC USE Ce ]H(Y PUNS MAO SPfCL DQW S L B[ LWIL IO n/[ v° Oe�e By Deec„o�l.n A°°•oreC n5 rvpt ^ ttM4KrvL � RHL �S v�nar> Sue FLIP WN n HERE^TFWMCD,hn A'Lbu".iI MfRFO[LS RECOMMENDED BY O•� ��,eil a�'-`w'i'+'�ba. sP[Grr> tr L/w TO SWH USE RCPiq RQN PveLrannv OR • R ' °� „md,,,®,m„ - PARCEL VAP J4574 Sh.., N. RttwseSi[irBr ozNaC1h°O,wO.lor"''mOICr Op LAklvis"ED.°nnroulrolicPar`sivs "' = ` :o DRAINAGE PLAN w -«Yd CCFPlFD BY aLr S..Li een.n Mold g? MRJ SPCC9X 41 5LNLL R m LN ccztO IND COX LhC IHN l `. LYH//> pRICJCW Lr Fl,a.0 w}Ms 'e, dr' SDI °"""s `° ' •� +`r•�'.�.� UNDEVELOPED AREA La. eb.wir° 5v[„vaeY. vsuAe hvf Ai5! WRY F 9e PL.ws FS )AQRSnn/N" • • •. • a L..,, •: LN0.`M'C LY LNf ALCCPlM1,C LY n/FS[ R[SIN.C')X.W$ f rr C�p.,.s yr'ero! D.t.i I 0 F_1.SNT9 r Sq'K COZAD Mo l X,, HC .. r.., n,._... .m., o�c RCE -- ' Developed Hydrology Plan Dramagc Study Pagc 18 of 5 ' Riverside County Rational Hydrology Calculation ' Rational Hydrology Calculation Pagc 20 of >3 v Ci 130 .s. dam° ' �^ 150 Ei 1080 ® =480 CFS 40 _ 140 C 17.7 43 1 Q= 43.1 C - 0 V�� 1 1t / '1 \I11 (i ) ) , I L 200 1 I 013. 1007.7 23CFS`- / Q o 1 8 CFS 111111 I II Q� 22 111116 o\ix I)/l/)I/+'/ lT�s1�— �I �l 1,11 1 // ,/rte/ / ) I �) loos ,r m0698 CFS �� /// �� ) r'/ � J ! J •/ Il//'DUMMY NODE'S � /BP/ �i/� I � ��I\� � � ! i/ FOR' CDNFIUENCE � t HYDROLOGY LEGEND 100 NODE NUMBER 100' ELEVATION, (FT ) 0 FLOW, (CUBIC FEET PER SECOND) 10°\STORM YEAR EVENT Undworound swvko Alwt b IITlI)l TOLL FREE X X AC TRIBUTARY AREA, (ACRES) GRAPHIC SCALE 9'600o so )0G zoo aoo FLowuNE � .......... WATERSHED AREA , inch100 u TWO WORKING DAYS BEFORE YOU DIG coasraucrloN aecoao COPYRIGHT NOTR....... drymrsuwwEs , CITY OF ]EMECU[A ME USE OF THESE PLIAS AND SPC P/ TON 5H+¢ BC I/.lreO TO /HC O pare Br pexrmeae .RRr Oveo a.e rsTre,' RCCO.uuCmOfO BY a? n„ _ awRrv[v/ er wac .e.•s Cmrrerry s//EI WNK'HAEO 0SAIERHUPRESE COM'OOXPO'1lKP !HEREOF /s �'e°'o yil �'�c. I".)� R,n PFJRCE( MAP _J•JSLJ $Reel No SPFCREUSE Or rVE !O SUCH USE R IN PA 7 Wl Pb' /pN OR ° ) .r _ ' Re -use RY ayr "O "No /N wOR /N PARI mnrom me nvacss { - -° DRAINAGE PLAN CO9 SPC IE (MCIH ANO FOX, INC/NC NS PROQO O , !O MC RdsNS f /KCEPICD B/ M/[ Sc AS Bencn MnM ° ANO SPCC/lKWS 5/N(( REMUN /N LOLN ANO FOX. /AC 51OU J OENIr TAIrlo, `,s OF NB(K aOR.YS Z ra .cn perq PREJ(/LY IE NSW(TEA4XfAcCT F THESERKle(AONSnlu/E ,. _• .��• 5gw{pl e4Pws .s w)fD 1,�IRl� DEVELOPED AREA MOCK OF THE ACCEPIAACC OF THESE RES)RKnONS r'/ c 11 2006 COIAD .wO FOX, /nC pe°Ipneo USW lDrawn JSW COaoRaO BDF !RCE ,y,, NHi f.pne5 1/Y"/1l D.I. OF_1_SHTS 10 -Year Storm Event: UnDeveloped Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 05/10/07 File:0505400undevelop.out ------------------------------------------------------------------------ HABITAT FOR HUMANITY TEMECULA REDEVELOPMENT AGENCY 10 -YEAR STORM EVENT: UNDEVELOPED AREA J.N. 0505400 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in -1b) Units used in input data file ------------------------------------------------------------------------ ' Program License Serial Number 4067 ------- _------- _------ _------ ___________________________________________ Rational Method Hydrology Program based on ' Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity -duration curves data (Plate D-4.1) For the [Murrieta, Tmc, Ruch Callorcol area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 11.0.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1600.000(Ft.) Bottom (of initial area) elevation = 1320.000(Ft.) Difference in elevation = 280.000(Ft.) Slope = 0.28000 s(percent)= 28.00 TC = k(0.530)*[(length"3)/(elevation change)]"0.2 Initial area time of concentration = 10.835 min. Rainfall intensity = 2.256(In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0 839 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 10 -Yr. Storm Event: UnDevcloped Page 21 of I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.892(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 1.000 Process from Point/Station 110.000 to Point/Station 120.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1320.000(Ft.) End of natural channel elevation = 1220.000(Ft.) Length of natural channel = 395.000(Ft.) ' Estimated mean flow rate at midpoint of channel = 3.973(CFS) Natural valley channel type used t L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) _ (7 + e(q(English Units)".352)(slope"0.5) velocity using mean channel flow = 10.06(Ft/s) ' Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2532 ' Corrected/adjusted channel slope = 0.2532 Travel time = 0.65 min. TC = 11.49 min. ' Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff coefficient = 0.837 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 ' RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.184(In/Hr) for a 10.0 year storm Subarea runoff = 4.021(CFS) for 2.200(Ac.) ' Total runoff = 5.913(CFS) Total area = 3.200(Ac Process from Point/Station 120.000 to Point/Station 130.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1220.000(Ft.) End of natural channel elevation = 1160.000(Ft.) Length of natural channel = 232 000(Ft.) Estimated mean flow rate at midpoint of channel = 8.593(CFS) Natural valley channel type used L.A. County Flood Control District formula for channel velocity: velocity(ft/s) _ (7 + 8(q(English Units)' 352)(slope"0.5) Velocity using mean channel flow = 12.23(Ft/s) 10 -Yr. Storm Event: UnDevcloped Page 22 of 53 Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2586 Corrected/adjusted channel slope = 0.2586 Travel time = 0.32 min. TC = 11.81 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.152(In/Hr) for a 10.0 year storm Subarea runoff = 5.217(CFS) for 2.900(Ac.) Total runoff = 11.130(CFS) Total area = 6.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1160.000(Ft.) End of natural channel elevation = 1120.000(Ft.) Length of natural channel = 230.000(Ft.) Estimated mean flow rate at midpoint of channel = 14.506(CFS) Natural valley channel type used L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 11.47(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1739 Corrected/adjusted channel slope = 0.1739 Travel time = 0.33 min. TC = 12.14 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.835 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.119(In/Hr) for a 10.0 year storm Subarea runoff = 6.547(CFS) for 3.700(AC .) Total runoff = 17.678(CFS) Total area = 9.800(Ac.) It) -Yr. Storm Event: UnDeveloped Page 3±u1'51 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 150.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1120.000(Ft.) End of natural channel elevation = 1080.000(Ft.) Length of natural channel = 274.000(Ft.) Estimated mean flow rate at midpoint of channel = 24.352(CFS) Natural valley channel type used L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 12.08(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1460 Corrected/adjusted channel slope = 0.1460 Travel time = 0.38 min. TC = 12.52 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.084(In/Hr) for a 10.0 year storm Subarea runoff = 12.860(CFS) for 7.400(Ac.) Total runoff = 30.538(CFS) Total area = 17.200(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 160.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1080.000(Ft.) End of natural channel elevation = 1009.500(Ft.) Length of natural channel = 1303.000(Ft.) Estimated mean flow rate at midpoint of channel = 38.083(CFS) ' Natural valley channel type used L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)'.352)(slope'0.5) Velocity using mean channel flow = 8.33(Ft/s) ' Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ' Normal channel slope = 0.0541 Corrected/adjusted channel slope = 0.0541 Travel time = 2.61 min. TC = 15.13 min. IAdding area flow to channel ' 10 -Yr. Storm Event UnDevelopcd Pagc 24 ol'>> UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.878(In/Hr) for a 10.0 year storm Subarea runoff = 13.206(CFS) for 8.500(Ac.) Total runoff = 43.743(CFS) Total area = 25.700(Ac.) End of computations, total study area = 25.70 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 89.0 10 -Yr. Storm Event: UnDevcloped Page 25 of 53 ' 100 -Year Storm Event: UnDeveloped Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 05/10/07 File:0505400undevelop.out ------------------------------------------------------------------------ HABITAT FOR HUMANITY TEMECULA REDEVELOPMENT AGENCY 100 -YEAR STORM EVENT: UNDEVELOPED AREA J.N. 0505400 ---------- ---------- ------ -------- ------------ ********* Hydrology Study Control Information ********** English (in -lb) Units used in input data file ---------------------------------------------------------------- Program License Serial Number 4067 -------- _------ _--------- _------- _----- _________________________________ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity -duration curves data (Plate D-4.1) . For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) ' 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 110.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1600.000(Ft.) Bottom (of initial area) elevation = 1320.000(Ft.) Difference in elevation = 280.000(Ft.) Slope = 0.28000 s(percent)= 28.00 TO = k(0.530)*[(lengthA3)/(elevation change) ]A0.2 Initial area time of concentration = 10.835 min. Rainfall intensity = 3.332(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.884 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 100 -Year Stomi Event: UnDeveloped Page 26 of 53 I Decimal fraction soil group D = 1.000 ' RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 2.945(CFS) Total initial stream area = 1.000(Ac.) 'Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 110.000 to Point/Station 120.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1320.000(Ft.) End of natural channel elevation = 1220.000(Ft.) Length of natural channel = 395.000(Ft.) Estimated mean flow rate at midpoint of channel = 6.184(CFS) ' Natural valley channel type used L.A. County Flood Control District formula for channel velocity: ' Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 11.17(Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2532 Corrected/adjusted channel slope = 0.2532 ' Travel time = 0.59 min. TC = 11.42 min. Adding area flow to channel ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.237(In/Hr) for a 100.0 year storm Subarea runoff = 6.289(CFS) for 2.200(Ac.) Total runoff = 9.234(CFS) Total area = 3.200(Ac 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 130.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1220.000(Ft.) End of natural channel elevation = 1160.000(Ft.) Length of natural channel = 232.000(Ft.) Estimated mean flow rate at midpoint of channel = 13.419(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) _ (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 13.71(Ft/s) 100 -Year Storm Event- UnDcvcloped Page 27 of 53 Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2586 Corrected/adjusted channel slope = 0.2586 Travel time = 0.28 min. TC = 11.71 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.194(In/Hr) for a 100.0 year storm Subarea runoff = 8.178(CFS) for 2.900(Ac.) Total runoff = 17.413(CFS) Total area = 6.100(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1160.000(Ft.) End of natural channel elevation = 1120.000(Ft.) Length of natural channel = 230.000(Ft.) Estimated mean flow rate at midpoint of channel = 22.693(CFS) Natural valley channel type used L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 12.93(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1739 Corrected/adjusted channel slope = 0.1739 Travel time = 0.30 min. TC = 12.00 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.150(In/Hr) for a 100.0 year storm Subarea runoff = 10.289(CFS) for 3.700(Ac.) Total runoff = 27.702(CFS) Total area = 9.800(Ac 100 -Year Storni Event UnDcvclopcd Page 28 of 53 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ! Process from Point/Station 140.000 to Point/Station 150.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1120.000(Ft.) ! End of natural channel elevation = 1080.000(Ft.) Length of natural channel = 274.000(Ft.) Estimated mean flow rate at midpoint of channel = 38.160(CFS) Natural valley channel type used L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) ! Velocity using mean channel flow = 13.69(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ! Normal channel slope = 0.1460 Corrected/adjusted channel slope = 0.1460 Travel time = 0.33 min. TC = 12.34 min. ! Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 ! Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 ! Rainfall intensity = 3.103(In/Hr) for a 100.0 year storm Subarea runoff = 20.264(CFS) for 7.400(Ac.) Total runoff = 47.966(CFS) Total area = 17.200(Ac.) Process from Point/Station 150.000 to Point/Station 160.000 ! **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1080.000(Ft.) End of natural channel elevation = 1009.500(Ft.) ! Length of natural channel = 1303.000(Ft.) Estimated mean flow rate at midpoint of channel = 59.818(CFS) ! Natural valley channel type used L.A. County Flood Control District formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 9.48(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ! Normal channel slope = 0.0541 Corrected/adjusted channel slope = 0.0541 Travel time = 2.29 min. TC = 14.63 min. ! Adding area flow to channel ! 100 -Year Storm Event: UnDcvcloped Page 29 of 53 1 UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.881 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 ' RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.825(In/Hr) for a 100.0 year storm ' Subarea runoff = 21.155(CPS) for 8.500(Ac.) Total runoff = 69.121(CFS) Total area = 25.700(Ac.) End of computations, total study area = 25.70 (Ac.) The following figures may be used for a unit hydrograph study of the t same area. Area averaged pervious area fraction(Ap) = 1.000 ' Area averaged RI index number = 89.0 ' 100 -Year Storm Evcnt UnDcvclopcd Page 30 of 53 10 -Year Storm Event: Developed Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 06/18/07 File:0505400develop.out ------------------------------------------------------------------------ HABITAT FOR HUMANITY TEMECULA REDEVELOPMENT AGENCY 10 -YEAR STORM EVENT: DEVELOPED AREA J.N. 0505400 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 4067 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 ' Standard intensity -duration curves data (Plate D-4.1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360(In/Hr) ' 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880(In/Hr) ' Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 100.000 to Point/Station 110.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1600.000(Ft.) Bottom (of initial area) elevation = 1320.000(Ft.) Difference in elevation = 280.000(Ft.) Slope = 0.28000 s(percent)= 28.00 TC - k(0.530)*((length"3)/(elevation change)]"0.2 Initial area time of concentration = 10.835 min. Rainfall intensity = 2.256(In/Hr) for a 10.0 year storm ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C - 0.000 I O -Year Stonn Event. Devclopcd Pa,,;c 1I of 53 Decimal fraction soil group D = 1.000 ' RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.892(CFS) Total initial stream area = 1.000(Ac.) ' Pervious area fraction = 1.000 Process from Point/Station 110.000 to Point/Station 120.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation 1320.000(Ft.) End of natural channel elevation = 1220.000(Ft.) Length of natural channel = 395.000(Ft.) Estimated mean flow rate at midpoint of channel = 3.973(CFS) ' Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units )A.352)(slope"0.5) Velocity using mean channel flow = 10.06(Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2532 Corrected/adjusted channel slope = 0.2532 ' Travel time = 0.65 min. TC = 11.49 min. Adding area flow to channel ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 ' Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.184(In/Hr) for a 10.0 year storm Subarea runoff = 4.021(CFS) for 2.200(Ac.) Total runoff = 5.913(CFS) Total area = 3.200(Ac t ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 120.000 to Point/Station 130.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1220.000(Ft.) ' End of natural channel elevation = 1160.000(Ft.) Length of natural channel = 232.000(Ft.) Estimated mean flow rate at midpoint of channel = 8.593(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 12.23(Ft/s) 10 -Year Storm Event Developed Page 32 of 53 Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2586 t Corrected/adjusted channel slope = 0.2586 Travel time = 0.32 min. TC = 11.81 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C 0.000 ' Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Rainfall intensity = 2.152(In/Hr) for a 10.0 year storm Subarea runoff = 5.217(CFS) for 2.900(Ac.) Total runoff = 11.130(CFS) Total area = 6.100(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION *--* Top of natural channel elevation = 1160.000(Ft.) End of natural channel elevation = 1120.000(Ft.) Length of natural channel = 230.000(Ft.) Estimated mean flow rate at midpoint of channel = 14.506(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope'0.5) Velocity using mean channel flow = 11.47(Ft/s) Correction to map slope used'on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1739 Corrected/adjusted channel slope = 0.1739 Travel time = 0.33 min. TC = 12.14 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.835 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.119(In/Hr) for a 10.0 year storm Subarea runoff = 6.547(CFS) for 3.700(Ac.) Total runoff = 17.678(CFS) Total area = 9.800(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 10 -Year Storm Event: Developed Pa, -,c ; I of 53 Process from Point/Station 140.000 to Point/Station 150.000 ' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation 1120.000(Ft.) End of natural channel elevation = 1080.000(Ft.) ' Length of natural channel = 274.000(Ft.) Estimated mean flow rate at midpoint of channel = 24.352(CFS) Natural valley channel type used ' L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope A0.5) Velocity using mean channel flow = 12.08(Ft/s) ' Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1460 ' Corrected/adjusted channel slope = 0.1460 Travel time = 0.38 min. TC = 12.52 min. ' Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.834 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 ' Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.084(In/Hr) for a 10.0 year storm ' Subarea runoff = 12.860(CFS) for 7.400(Ac.) Total runoff = 30.538(CFS) Total area = 17.200(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 160.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1080.000(Ft.) End of natural channel elevation = 1015.000(Ft.) Length of natural channel = 1085.000(Ft.) Estimated mean flow rate at midpoint of channel = 37.551(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)'.352)(slope"0.5) Velocity using mean channel flow = 8.73(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0599 Corrected/adjusted channel slope = 0.0599 Travel time = 2.07 min. TC = 14.59 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea 10 -Year Stone Event: Developed Page 34 of 53 Runoff Coefficient = 0.629 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 ' RI index for soil(AMC 2) = 89.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 1.915(In/Hr) for a 10.0 year storm Subarea runoff = 12.539(CFS) for 7.900(Ac.) ' Total runoff = 43.077(CFS) Total area = 25.100(Ac.) Process from Point/Station 160.000 to Point/Station 170.000 **** iMPROVED CHANNEL TRAVEL TIME **** ' Upstream point elevation = 1015.700(Ft.) Downstream point elevation = 1015.100(Ft.) Channel length thru subarea = 120.000(Ft.) ' Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 43.094(CFS) ' Manning's 'N' = 0.013 - Maximum depth of channel 2.500(Ft.) Flow(q) thru subarea = 43.094(CFS) ' Depth of flow = 1.605(Ft.), Average velocity = 7.449(Ft/s) Channel flow top width = 5.210(Ft.) ' Flow Velocity-= 7.45(Ft/s) Travel time 0.27 min. Time of concentration = 14.86 min. Sub-Channel No. 1 Critical depth = 1.813(Ft.) Critical flow top width = 5.625(Ft.) 'I ICritical flow velocity= 6.236(Ft/s) 'I ICritical flow area = 6.910(Sq.Ft) Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.808 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Rainfall intensity = 1.896(In/Hr) for a 10.0 year storm Subarea runoff = 0.031(CFS) for 0.020(Ac.) Total runoff = 43.108(CFS) Total area = 25.120(Ac.) Depth of flow = 1.605(Ft.), Average velocity = 7.450(Ft/s) Sub-Channel No. 1 Critical depth = 1.813(Ft.) ' Critical flow top width = 5.625(Ft.) ' r Critical flow velocity= 6 238(Ft/s) Critical flow area = 6.910(Sq.Ft) ' 10 -Year Storm Evcnt Developed Page 35 of 51 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 175.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1015.100(Ft.) ' Downstream point/station elevation = 1002.740(Ft.) Pipe length = 191.50(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 43.108(CFS) Given pipe size = 36.00(In.) ' Calculated individual pipe flow = 43.108(CFS) Normal flow depth in pipe = 13.36(In.) Flow top width inside pipe = 34.78(In.) Critical Depth = 25.68(In.) Pipe flow velocity = 18.05(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 15.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 175.000 to Point/Station 180.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** FOR CONFLUENCE ONLY Depth of flow = 0.660(Ft.), Average velocity = 29.104(Ft/s) ' !!Warning: Water is above left or right bank elevations ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 1.00 0.00 3 2.00 0.00 4 3.00 0.50 Manning's 'N' friction factor = 0.040 ---------------------------------- Sub -Channel flow = 43.108(CFS) flow top width = 3.000(Ft.) ' I velocity= 29.104(Ft/s) 1 area = 1.481(Sq.Ft) ' Froude number = 7.299 Upstream point elevation = 1002.740(Ft.) Downstream point elevation = 1001.000(Ft.) Flow length = 1.000(Ft.) Travel time = 0.00 min. ' Time of concentration = 15.04 min. Depth of flow = 0.660(Ft.) Average velocity = 29.104(Ft/s) Total irregular channel flow = 43.108(CFS) Irregular channel normal depth above invert elev. = 0.660(Ft Average velocity of channel(s) = 29.104(Ft/s) !!Warning: Water is above left or right bank elevations ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 175.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** 10 -Year Storm Event: Developed Page )6 of 5 1 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 25.120(Ac.) Runoff from this stream = 43.108(CFS) Time of concentration = 15.04 min. Rainfall intensity = 1.884(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 45.500(Ft.) Top (of initial area) elevation = 1013.500(Ft.) Bottom (of initial area) elevation = 1011.500(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.04396 s(percent)= 4.40 TC = k(0.390)*[(length"3)/(elevation change))"0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.452(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.833 1 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 1 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.633(CFS) Total initial stream area = 0.220(Ac.) Pervious area fraction = 0.500 Process from Point/Station 200.000 to Point/Station 210.000 **** CONFLUENCE OF MAIN STREAMS **-- The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.220(Ac.) Runoff from this stream = 0.633(CFS) Time of concentration = 5.00 min. Rainfall intensity = 3.452(In/Hr) ' Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 178.000(Ft.) Top (of initial area) elevation = 1013.500(Ft.) Bottom (of initial area) elevation = 1011.500(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.01124 s(percent)= 1.12 TC = k(0.390)*[(length"3)/(elevation change)] -0.2 10 -Year Storm Event: Developed Page 17 of 51 Initial area time of concentration = 7.605 min. Rainfall intensity = 2.741(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.819 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.898(CFS) Total initial stream area = 0.400(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 210.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.400(Ac.) Runoff from this stream = 0.898(CFS) Time of concentration = 7.61 min. Rainfall intensity = 2.741(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.633 5.00 3.452 2 0.898 7.61 2.741 Largest stream flow has longer time of concentration Qp = 0.896 + sum of Qb Ia/Ib 0.633 * 0.794 = 0.503 Qp = 1.401 Total of 2 main streams to confluence: Flow rates before confluence point: 0.633 0.898 Area of streams before confluence: 0.220 0.400 Results of confluence: Total flow rate = 1.401(CFS) Time of concentration = 7.605 min. Effective stream area after confluence = 0.620(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 220.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1011.500(Ft.) 10 -Year Storm Event: Developed Page 38 of 53 End of street segment elevation = 1007.700(Ft Length of street segment = 117.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 13.000(Ft.) Distance from crown to crossfall grade break = 11.000(Ft.) Slope from gutter to grade break (v/hz) 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 0.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.446(CFS) Depth of flow = 0.241(Ft.), Average velocity = 3.201(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.701(Ft.) Flow velocity = 3.20(Ft/s) Travel time = 0.61 min. TC = 8.21 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.627(In/Hr) for a 10.0 year storm Subarea runoff = 0.086(CFS) for 0.040(Ac.) Total runoff = 1.486(CFS) Total area = 0.660(Ac.) Street flow at end of street = 1.486(CFS) Half street flow at end of street = 1.486(CFS) Depth of flow = 0.242(Ft.), Average velocity = 3.217(Ft/s) Flow width (from curb towards crown)= 5.792(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 180.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.104(Ft.), Average velocity = 11.858(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 1.00 0.00 3 2.00 0.00 4 3.00 0.50 Manning's 'N' friction factor = 0.040 ----------------------------------------------------------------- Sub-Channel flow = 1.486(CFS) ' I flow top width = 1.415(Ft.) velocity= 11.858(Ft/s) 10 -Year Storm Event: Developed Page 39 of 53 ' area = 0.125(Sq.Ft) ' Froude number = 7.021 Upstream point elevation = 1007.700(Ft.) Downstream point elevation = 1005.000(Ft.) Flow length = 1.000(Ft.) Travel time = 0.00 min. Time of concentration = 8.22 min. Depth of flow = 0.104(Ft.) Average velocity = 11.858(Ft/s) Total irregular channel flow = 1.486(CFS) Irregular channel normal depth above invert elev. _ Average velocity of channel(s) = 11.858(Ft/s) 0.104(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.660(Ac.) Runoff from this stream = 1.486(CFS) Time of concentration = 8.22 min. Rainfall intensity = 2.627(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 43.108 15.04 1.884 2 1.486 8.22 2.627 Largest stream flow has longer time of concentration Qp = 43.108 + sum of Qb Ia/Ib 1.486 * 0.717 = 1.066 Qp = 44.174 Total of 2 streams to confluence: Flow rates before confluence point: 43.108 1.486 Area of streams before confluence: 25.120 0.660 Results of confluence: Total flow rate = 44.174(CFS) Time of concentration = 15.035 min. Effective stream area after confluence = 25.780(Ac.) End of computations, total study area = 25.78 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction (Ap) = 0.987 Area averaged RI index number = 88.5 10 -Year Storm Event: Developed Page 40 of 51 100 -Year Storm Event: Developed Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c) 1989 - 2004 Version 7.0 Rational Hydrology Study Date: 06/18/07 File:0505400develop.out ------------------------------------------------------------------------ HABITAT FOR HUMANITY TEMECULA REDEVELOPMENT AGENCY 100 -YEAR STORM EVENT: DEVELOPED AREA J.N. 0505400 ------------------------------------------------------- — _-_----------- ********* Hydrology Study Control Information ********** English (in -lb) Units used in input data file ------------------------------------------------------------------------ Program License Serial Number 4067 ------------------------------------------------------------------------ Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity -duration curves data (Plate D-4.1) ■ For the [ Murrieta,Tmc,Rnch Callorco ) area used. 10 year storm 10 minute intensity = 2.360(In/Hr) 10 year storm 60 minute intensity = 0.880(In/Hr) 100 year storm 10 minute intensity = 3.480(In/Hr) 100 year storm 60 minute intensity = 1.300(In/Hr) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300(In/Hr) ' Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 100.000 to Point/Station 110.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000(Ft.) Top (of initial area) elevation = 1600.000(Ft.) Bottom (of initial area) elevation = 1320.000(Ft.) Difference in elevation = 280.000(Ft.) 1 Slope = 0.28000 s(percent)= 28.00 TC = k(0.530)*[(length"3)/(elevation change))"0.2 Initial area time of concentration = 10.835 min. Rainfall intensity = 3.332(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.884 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 100 -Year Storm Event: Developed Page 41 of 53 I Decimal fraction soil group D = 1.000 1 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 2.945(CFS) Total initial stream area = 1.000(Ac.) Pervious area fraction = 1.000 Process from Point/Station 110.000 to Point/Station 120.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1320.000(Ft.) End of natural channel elevation = 1220.000(Ft.) Length of natural channel = 395.000(Ft.) Estimated mean flow rate at midpoint of channel = 6.184(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope-0.5) Velocity using mean channel flow = 11.17(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.2532 Corrected/adjusted channel slope = 0.2532 Travel time = 0.59 min. TC = 11.42 min. Adding area flow to channel ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.237(In/Hr) for a 100.0 year storm Subarea runoff = 6.289(CFS) for 2.200(Ac.) Total runoff = 9.234(CFS) Total area = 3.200(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 130.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1220.000(Ft.) End of natural channel elevation = 1160.000(Ft.) Length of natural channel = 232.000(Ft.) Estimated mean flow rate at midpoint of channel = 13.419(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 13.71(Ft/s) 100 -Year Stonn Event: Developed Page 42 of 53 1 Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ' Normal channel slope = 0.2586 Corrected/adjusted channel slope = 0.2586 Travel time = 0.28 min. TC = 11.71 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.194(In/Hr) for. a 100.0 year storm Subarea runoff = 8.178(CFS) for 2.900(Ac.) Total runoff = 17.413(CFS) Total area = 6.100(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 140.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1160.000(Ft.) End of natural channel elevation = 1120.000(Ft.) Length of natural channel = 230.000(Ft.) Estimated mean flow rate at midpoint of channel = 22.693(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) Velocity using mean channel flow = 12.93(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1739 Corrected/adjusted channel slope = 0.1739 Travel time = 0.30 min. TC = 12.00 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.150(In/Hr) for a 100.0 year storm Subarea runoff = 10.289(CFS) for 3.700(Ac.) Total runoff = 27.702(CFS) Total area = 9.800(Ac.) 100 -Year Storm Event: Developed Page 43 of 53 +++++++++++++++++++++++++++++++++++++++......+........................ Process from Point/Station 140.000 to Point/Station 150.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1120.000(Ft.) End of natural channel elevation = 1080.000(Ft.) Length of natural channel = 274.000(Ft.) Estimated mean flow rate at midpoint of channel = 38.160(CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope"0.5) velocity using mean channel flow = 13.69(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1460 Corrected/adjusted channel slope = 0.1460 Travel time = 0.33 min. TC = 12.34 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.883 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.103(In/Hr) for a 100.0 year storm Subarea runoff = 20.264(CFS) for 7.400(Ac.) Total runoff = 47.966(CFS) Total area = 17.200(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 160.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1080.000(Ft.) End of natural channel elevation = 1015.000(Ft.) Length of natural channel = 1085.000(Ft.) Estimated mean flow rate at midpoint of channel = 58.981(CFS) S Natural valley channel type used un L.A. County flood control district formula for channel velocity: Velocity(ft/s) = (7 + 8(q(English Units)".352)(slope'0.5) velocity using mean channel flow = 9.94(Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.0599 Corrected/adjusted channel slope = 0.0599 Travel time = 1.82 min. TC = 14.16 min. 1 Adding area flow to channel 100 -Year Storni Event: Developed Page 44 of 53 UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.881 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 3) = 95.60 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.877(In/Hr) for a 100.0 year storm Subarea runoff = 20.026(CFS) for 7.900(Ac.) Total runoff = 67.992(CFS) Total area = 25.100(Ac ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 170.000 **** IMPROVED CHANNEL TRAVEL TIME ***- Upstream point elevation = 1015.700(Ft.) Downstream point elevation = 1015.100(Ft.) Channel length thru subarea = 120.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 68.019(CFS) Manning's 'N' = 0.013 Maximum depth of channel = 2.500(Ft.) Flow(q) thru subarea = 68.019(CFS) Depth of flow = 2.021(Ft.), Average velocity = 8.368(Ft/s) Channel flow top width = 6.043(Ft.) Flow Velocity = 8.37(Ft/s) Travel time = 0.24 min. Time of concentration = 14.40 min. Sub -Channel No. 1 Critical depth = 2.281(Ft.) ' Critical flow top width = 6.563(Ft Critical flow velocity= 6.964(Ft/s) ' Critical flow area = 9.767(Sq.Ft) Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.876 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 94.40 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.850(In/Hr) for a 100.0 year storm Subarea runoff = 0.050(CFS) for 0.020(Ac.) Total runoff = 68.042(CFS) Total area = 25.120(Ac Depth of flow = 2.022(Ft.), Average velocity = 8.368(Ft/s) Sub -Channel No. 1 Critical depth = 2.281(Ft.) Critical flow top width = 6.563(Ft.) Critical flow velocity= 6.967(Ft/s) Critical flow area = 9.767(Sq.Ft) 100 -Year Storm Gvcnt Developed Pan -c 45 of 5 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 175.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1015.100(Ft.) Downstream point/station elevation = 1002.740(Ft.) Pipe length = 191.50(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 68.042(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 68.042(CFS) Normal flow depth in pipe = 17.23(In.) Flow top width inside pipe = 35.97(In.) Critical Depth = 31.58(In.) Pipe flow velocity = 20.38(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 14.55 min. 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 175.000 to Point/Station 180.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** FOR CONFLUENCE ONLY Depth of flow = 0.816(Ft.), Average velocity = 34.934(Ft/s) !!Warning: Water is above left or right bank elevations ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 1.00 0.00 p 3 2.00 0.00 ® 4 3.00 0.50 Manning's 'N' friction factor = 0.040 ----------------------------------------------------------------- ' Sub -Channel flow = 68.042(CFS) flow top width = 3.000(Ft.) 'I velocity= 34.934(Ft/s) 1 area = 1.948(Sq.Ft) Froude number = 7.640 Upstream point elevation = 1002.740(Ft.) Downstream point elevation = 1001.000(Ft.) Flow length = 1.000(Ft.) Travel time = 0.00 min. Time of concentration = 14.55 min. Depth of flow = 0.816(Ft.) Average velocity = 34.934(Ft/s) Total irregular channel flow = 68.042(CFS) Irregular channel normal depth above invert elev. = 0.816(Ft.) Average velocity of channel(s) = 34.934(Ft/s) !!Warning: Water is above left or right bank elevations ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 175.000 to Point/Station 180.000 **** CONFLUENCE OF MINOR STREAMS **** 100 -Year Storni Event: Developed Pale 46 of 53 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 25.120(Ac.) Runoff from this stream = 68.042(CFS) Time of concentration = 14.55 min. Rainfall intensity = 2.833(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 45.500(Ft.) Top (of initial area) elevation = 1013.500(Ft.) Bottom (of initial area) elevation = 1011.500(Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.04396 s(percent)= 4.40 TC = k(0.390)*[(length"3)/(elevation change)]"0.2 Warning: TC computed to be less than 5 min.; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.879 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.986(CFS) Total initial stream area = 0.220(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 210.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.220(Ac.) Runoff from this stream = 0.986(CFS) Time of concentration = 5.00 min. Rainfall intensity = 5.099(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 210.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 178.000(Ft ) Top (of initial area) elevation = 1013.500(Ft.) Bottom (of initial area) elevation = 1011.500(Ft Difference in elevation = 2.000(Ft.) Slope = 0.01124 s(percent)= 1.12 TC = k(0.390)*[(length"3)/(elevation change)]^0.2 100 -Year Storm Event: Devc1oped Page 47 of 53 Initial area time of concentration = 7.605 min. Rainfall intensity = 4.049(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.874 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.416(CFS) Total initial stream area = 0.400(Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 210.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.400(Ac.) Runoff from this stream = 1.416(CFS) 1 Time of concentration = 7.61 min. Rainfall intensity = 4.049(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.986 5.00 5.099 2 1.416 7.61 4.049 Largest stream flow has longer time of concentration Qp = 1.416 + sum of Qb Ia/Ib 0.986 * 0.794 = 0.783 Qp = 2.199 Total of 2 main streams to confluence: Flow rates before confluence point: 0.986 1.416 Area of streams before confluence: 0.220 0.400 Results of confluence: Total flow rate = 2.199(CFS) Time of concentration = 7.605 min. Effective stream area after confluence = 0.620(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 220.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1011.500(Ft ) 100 -Year Storni Event: Developed Page 48 of 53 End of street segment elevation = 1007.700(Ft.) Length of street segment = 117.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 13.000(Ft.) Distance from crown to crossfall grade break = 11.000(Ft.) Slope from gutter to grade break (v/hz) 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 0.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.270(CFS) Depth of flow = 0.271(Ft.), Average velocity = 3.492(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.234(Ft.) m Flow velocity = 3.49(Ft/s) Travel time = 0.56 min. TC = 8.16 min. �tlJl Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.873 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 3) = 84.40 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.894(In/Hr) for a 100.0 year storm Subarea runoff = 0.136(CFS) for 0.040(Ac.) Total runoff = 2.335(CFS) Total area = 0.660(Ac. Street flow at end of street = 2.335(CFS) Half street flow at end of street = 2.335(CFS) Depth of flow = 0.273(Ft.), Average velocity = 3.513(Ft/s) Flow width (from curb towards crown)= 7.335(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 180.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Depth of flow = 0.134(Ft.), Average velocity = 13.709 ******* Irregular Channel Data *********** ------------- ------------------------------------------ Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 1.00 0.00 3 2.00 0.00 4 3.00 0.50 Manning's 'N' friction factor = 0.040 -------------------------------------------------------- Sub-Channel flow = 2.335(CFS) flow top width = 1.537(Ft.) ' velocity= 13.709(Ft/s) 100 -Year Storni Event: Developed Pagc 49 of i 3 area = 0.170(Sq.Ft) Froude number = 7.257 Upstream point elevation = 1007.700(Ft.) Downstream point elevation = 1005.000(Ft.) Flow length = 1.000(Ft.) Travel time = 0.00 min. Time of concentration = 8.16 min. Depth of flow = 0.134(Ft.) Average velocity = 13.709(Ft/s) Total irregular channel flow = 2.335(CFS) Irregular channel normal depth above invert elev. _ Average velocity of channel(s) = 13.709(Ft/s) 0.134(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station .180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.660(Ac.) Runoff from this stream = 2.335(CFS) Time of concentration = 8.16 min. Rainfall intensity = 3.894(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 68.042 14.55 2.833 2 2.335 8.16 3.894 Largest stream flow has longer time of concentration Qp = 68.042 + sum of Qb Ia/Ib 2.335 * 0.728 = 1.699 Qp = 69.741 Total of 2 streams to confluence: Flow rates before confluence point: 68.042 2.335 Area of streams before confluence: 25.120 0.660 Results of confluence: Total flow rate = 69.741(CFS) Time of concentration = 14.553 min. Effective stream area after confluence = 25.780(Ac.) End of computations, total study area = 25.78 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction (Ap) = 0.987 Area averaged RI index number = 88.5 100 -Year Storni Event: Developed Page 50 of 53 Street Capacity Calculations 1 Street Capacity Calculations Page 51 of 53 0505400—strap-Habitat Way XLS Printed 5/16/2007 10 48 AM Page 1 of 2 engineering — planning — surveying 151 SOUTH GIRARD STREET HEMCA 9254 PHONE: 951.652.4454 Ujifilliaaa FAX: 9 FAX: 951.766.89422 4 street capacity calcs PROJECT Parcel # 34524 J N 505400 CITY Temecula BY J Whelan, EIT STREET Habitat Way DATE 05/16/07 0505400—strap-Habitat Way XLS Printed 5/16/2007 10 48 AM Page 1 of 2 4 X3 %4 v5 X6 X3 X5<,,LEVEL LEVEL LINE O l L YHALF W/CROWTJ HA F S TIBELOW SECTION T C A@OVE CASE # 1 CASE IN 2 CROSS-SECTIONAL DATA OF PROPOSED STREET STREET CAPACITY TABLE DIST, CROWN TO RAN X1 = 2400 FT DIST, CROWN TO CIF X2 = 1600 FT HALF STREET FULL STREET DIST, CROWN TO GR BRK X3 = 1400 FT STANDARD SLOPE, CROWN TO GR BRK S1 = 200 % SLOPES TO T.0 TO RAN TO T C. TO RAN DIST, GR BRK TO GUTTER LIP X4 = SLOPE, GR BRK TO GUTTER LIP S2= 000 FT 000 % (%) (C F S.) (C F S.) (C F S) (C F S ) GUTTER WIDTH X5= 200 FT 050 89 200 17.8 399 GUTTER HIKE Y6= 200 IN 1.00 126 282 25 1 565 CURB HEIGHT Y4= 600 IN 150 154 346 30.8 692 DIST, C.F TO RNV X6 = 800 FT 200 17.8 399 355 799 SLOPE, C F TO RNV S3 = 200 % 250 19.9 447 397 893 MANNINGS FRICTION FACTOR n= 0 015 300 21.8 489 43 5 978 350 400 235 251 528 56 5 47.0 503 1057 1130 VERTICAL OFFSETS FROM T.0 AND HALF -STREET AREA CALCS WATER DEPTH @ CURB TO CROWN 5.36 IN 450 267 59 9 533 1198 WATER DEPTH @ CURB TO T C 6.00 IN 500 28 1 632 562 1263 WATER DEPTH @ CURB TO RNV 792 IN 550 295 662 59.0 132.5 (NOTE: NEGATIVE DIMENSION OR AREA DENOTES BELOW T C.) 600 30.8 69.2 616 1384 Y1 = -0053 FT @ CROWN (NOTE CASE # 1 APPLIES) 650 320 720 64.1 144 0 2= -0.333 FT @ 1/4 CROWN GR_ BRK 700 333 74 7 665 1494 Y3 = -0 333 FT (9? GUTTER LIP 7 50 344 77.3 688 154 7 Y4 = -0500 FT @ FLOWLINE (= CURBFACE HEIGHT) 800 35.5 79 9 71 1 1598 Y5= 0 160 FT @ STREET RIGHT-OF-WAY 850 36.6 82,3 733 1647 X7 = 16 000 FT FLOW WIDTH FROM C F (W S @ T C) 900 37.7 84 7 754 1695 X8= 16 000 FT FLOW WIDTH FROM C F (W S @ RAN) 950 387 87.1 775 1741 AI= X5(Y3+Y4)/2 = -083 SF 1000 39 7 89 3 795 1786 = X4(Y2+Y3)/2 = 000 SF 1050 407 91 5 815 1830 3 = X3'(Y1+Y2)/2 = -271 SF 11 00 41 7 93 7 834 1873 4 = X6'Y5/2 = 064 SF 11 50 426 958 852 191 6 AS = X5'Y5 = 032 S F 1200 43, 5 97.8 87 1 1957 6 = X4'Y5 = 000 SF 12 50 444 99 9 889 1997 A7 = X3'Y5 = 224 SF 13 00 45 3 1018 90.6 2037 14 00 1111 47 0 417 105 7 109 4 941 97 4 211 4 2188 HALF -STREET CAPACITY TO TOP OF CURB (T.C.) O =(1 486/n)' A' R"2/3' S"1/2 WHERE, n = 0 015 HALF STREET FULL STREET A= ABS (At +A2+A3)= 354 SF SPECIFIC R"2/3 = AN/P)"2/3 = (A/(X7+Y4))'-2/3 = 036 SLOPES TO T C TO R/W TO T C TO R/W »» THEREFORE, Q= 125 68 S"1/2 N 0 50 (C F S) 8 9 (C F S) 200 (C F S) 17 8 (C F S ) 39 9 HALF -STREET CAPACITY TO RIGHT-OF-WAY (R/W) 0=(1486/n)'A' R"2/3S"1/2 060 97 219 195 438 WHERE, n= 0015 070 105 236 21,0 473 A= ABS(A1+A2+A3)+A4+A5+A6+A7 = 6 74 S F 080 112 25 3 22 5 505 R"213 = A/WP)"2/3 = (A/(X8+Y4+X6))"2/3 = 0 42 0 90 119 26 8 23 8 536 »» THEREFORE, 0- 28243 S"1/2 1 00 12 6 28 2 251 565 0505400—strap-Habitat Way XLS Printed 5/16/2007 10 48 AM Page 1 of 2 engineering — planning — surveying 151 SOUTH GIRARD STREET HEMET, CA 92544 PHONE: 951.652.4454 FAX: 951.766.8942 street capacity caics PROJECT. Parcel # 34524 J N 505400 CITY Temecula BY J Whelan.EIT STREET Habitat Way DATE 05/16/07 HALF STREET HYDRAULIC CAPACITY CHECK LOCATION MINIMUM STREET LOCATION SLOPE STREET REFER TO HYDRO DWSG) (% Q10 (CFS 10 YEAR EVENT 112ST CAP COMMENT (CFS) Q100 (CFS) 100 YEAR EVENT 1/2ST CAP COMMENT (CFS) Habitat Way 200 to 210 141 063 149 0 K 099 33 5 O K. Habitat Way Tr. 30990 300 to 210 0 14 090 47 0 K 1 42 106 O K 0505400_stcap-Habitat Way XLS Printed 5/16/2007 10.48 AM Page 2 of 2 0505400_stcap-Habitat Way Long Ent XLS Printed 5/16/2007 10 48 AM Page 1 of 2 engineering — planning — surveying 151 SOUTH GIRARD STREET HEMET, CA 9254 PHONE: 951.652.4454 FAX: 951.766.89422 ¢ X5 street capacity caics PROJECT Parcel # 34524 J N 505400 CITY. Temecula BY J Whelan,EIT STREET Habitat Way Long Entrance DATE 05/16/07 0505400_stcap-Habitat Way Long Ent XLS Printed 5/16/2007 10 48 AM Page 1 of 2 ¢ X5 x3 XS<EVEL xz X3 X4 XS © ® ® © "LUEL LINE O T C 2HALF SFCTIABOVE CASE # 1 CASE # 2 CROSS-SECTIONAL DATA OF PROPOSED STREET STREET CAPACITY TABLE DIST, CROWN TO RNV X1 = 1300 FT HALF STREET FULL STREET DIST, CROWN TO C F X2 = 1250 FT DIST, CROWN TO GR BRK X3 = 1050 FT STANDARD SLOPES TO T.C. TO RNV TO T C TO RNV SLOPE, CROWN TO GR BRK S1 = 2,00 % DIST, GR BRK TO GUTTER LIP X4 = 0.00 FT. M (C F S) (C F SJ (C F S) (C.F.S ) SLOPE, GR BRK TO GUTTER LIP S2 = 000 Y _ GUTTER WIDTH X5= 200 FT 050 89 89 179 179 GUTTER HIKE Y6 = 200 IN 1 00 127 127 253 253 CURB HEIGHT Y4 = 600 IN 1 50 155 155 310 31.0 DIST, C.F. TO RNV X6 = 000 FT 200 17.9 179 358 358 SLOPE, C F. TO R/W S3 = 200 % 2 50 200 200 400 400 MANNINGS FRICTION FACTOR n= 0 015 300 219 219 438 43.8 350 400 23.7 253 237 253 473 506 473 506 VERTICAL OFFSETS FROM T.0 AND HALF -STREET AREA CALCS WATER DEPTH @ CURB TO CROWN 4 52 IN 4 50 268 268 53 7 53 7 WATER DEPTH @ CURB TO T C 6 00 IN 500 283 283 566 566 WATER DEPTH @ CURB TO RNV 600 IN 550 297 297 593 59 3 (NOTE NEGATIVE DIMENSION OR AREA DENOTES BELOW T C) 600 31 0 310 620 620 Y1 = -0 123 FT @ CROWN (NOTE CASE # 1 APPLIES) 6 50 32 3 323 645 64 5 Y2 = -0.333 FT @ 1/4 CROWN GR BRK 700 335 335 669 fib 9 Y3= -0 333 FT 9 GUTTER LIP 750 34.6 346 693 693 Y4= -0500 FT @ FLOWLINE (= CURBFACE HEIGHT) 800 358 358 716 71.6 5= 0.000 FT RNV@ OR BELOW T C '!illi 850 369 369 738 738 X7= 12.500 FT FLOW WIDTH FROM CF. (W.S. @ T C) 900 380 380 759 75 9 X8= 12.500 FT FLOW WIDTH FROM C.F (W S @ RNV) 950 39 0 390 780 780 1 = X5(Y3+Y4)/2 = -083 SF 1000 400 400 800 800 = X4(Y2+Y3)/2 = 000 SF 1050 410 410 820 82 0 3 = X3'(Y 1+Y2)/2 = -2.40 SF 1100 420 420 839 83 9 AA = X6'Y5/2 = 000 S F 11 50 42.9 429 858 85 8 5= 0 000 000 S F 1200 43 8 438 877 87.7 A6= X4'Y5 = 000 S F 12 50 44 7 447 895 89 5 A7 = X3'Y5 = 000 S F 1300 45.6 456 91 2 912 1400 1500 473 490 473 490 947 980 947 980 HALF -STREET CAPACITY TO TOP OF CURB (T.C.) 0 =(1 486/n)'A * R"2/3' S"1/2 HALF STREET FULL STREET WHERE, n = 0 015 = ASS (Al +A2+A3)= 323 SF SPECIFIC SLOPES TO T.C. TO RNV TO T C TO RNV R"2/3 = ANVP)"2/3 = (A/(X7+Y4))"2/3 = 040 RNV BELOW »» THEREFORE, C = 126 52 S"1/2 ( % ) (C F S) (C F S) (C F S) (C F S) HALF -STREET CAPACITY TO RIGHT-OF-WAY (R/W) 050 8.9 89 179 179 0=(1486/n)' A' R"2/3' S"1/2 060 98 98 196 196 WHERE, n= 0015 070 10.6 106 212 21,2 = ABS(A1+A2+A3)+A4+A5+A6+A7 = 3 23 S F 0 80 11.3 11 3 226 226 R"2/3 = ANVP)"2/3 = (A/(X8+Y4+X6))"2/3 = N A RNV BELOW 0 90 12 0 120 24 0 24 0 »» THEREFORE. 0 = 12652 S-112 1 00 12 7 127 253 25 3 0505400_stcap-Habitat Way Long Ent XLS Printed 5/16/2007 10 48 AM Page 1 of 2 engineering — planning — surveying 151 SOUTH GIRARD STREET HEMET, CA 92544 PHONE: 951.652 4454 FAX. 951.766.8942 street capacity calcs PROJECT Parcel 0 34524 J N 505400 CITY. Temecula BY J Whelan,EIT STREET, Habitat Way Long Entrance DATE 05/16/07 HALF STREET HYDRAULIC CAPACITY CHECK LOCATION MINIMUM STREET LOCATION SLOPE STREET (REFER TO HYDRO DWSG) N 010112 (CFS 10 YEAR EVENT ST CAP COMMENT (CFS) 0100 (CFS) 100 YEAR EVENT 1/2 ST CAP COMMENT (CFS) Habitat Way Long Entr. 210 to 220 471 1 49 27 5 OK 2 34 275 OK 0505400_stcap-Habitat Way Long Ent XLS Printed 5/16/2007 10 48 AM Page 2 of 2