Loading...
HomeMy WebLinkAboutTract Map 33584 Geotechnical Report l �� � � ' , - - , f �_ � _.,__ - -� . � � � Mat- t ti n r t ri n . . , eo a es a o a o es c , , Soil Engineering, Environmental Engineering, Materials Testing, Geology August 31, 2013 Project No. 11081-01 TO: Mira Loma Recovery, LLC 6430 West Sunset Boulevard Suite 460 Los Angeles, California 90028 ATTENTION: Mr. Jim Ahmad SUBJECT: Geotechnical Report, Tract Map 33584, A.P.N. 944-060-006, Proposed 57 Single Family Homes, Northeast Corner of Mira Loma Drive and Rancho Vista Road, Temecula, California In accordance with your authorization we have prepared this geotechnical report for the subject proposed single family homes. No subsurface work was conducted to prepare this report. Geotechnical data from previous subsurface work conducted by this firm on January 15, 2012 and earlier work by Inland Foundation Engineering was utilized. Inland Foundation Engineering completed their work for 64 single family residential Iots. Our latest work was completed for multi- family residential development. Both our previous reports and Inland Foundation Engineering report was reviewed for the purpose of developing this geotechnical document for the proposed 57 single family homes. If you should have any questions regarding this report, please do not hesitate to call our office. We appreciate this opportunity to be of service. Submitted for GeoMat Testing Laboratories, Inc. �,;,:.:_�-- _.:.. :¢-- .:. ��;��;i� �';:r.�: � � � _ F�� i,Y �----�'� �� ���.---��_' f -�::� �;, ��� . 1� y�f, . ;.;''}l ..'4�F^t . y� 6-7 ;,i 1�1!'r'�/ �I',\.e ' � � rt Haytham Nabilsi, GE 2375 '' ��'-�-,F.��;�:``i � ed S�' i'��`r� ';��EG �., Princi al En ineer f ��'--�'�; �� P 9 �:, �����_ �,.�A�{- �.;.�� cR J f��_ :�r�n '�e logist z ,L.}'4 oi, •`i...��� �.., ;,� -t -9'�, CaE��.00a��:'t�� ,,�� �_,��;�. �r`#�:�..,N' ,��� _�� � f." ,�`., �� �;�.�,,�,�. Q� �•�'�.� ..��R ,��, C���, .a�1�,,4,J� ;�tYq,.:j,������ ���7�. 9 C' ~a'� Distribution: [3 ) Addressee 9980 Indiana Avenue • Suite 14 • Riverside • California • 92503 • Phone (951)688-5400 • Fax(951)688-5200 www.qeomatlabs.com, contact: infoCa�qeomatlabs.com e-mail geomatlabs@sbcglobal.net Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 ATTACHED FIGURES AND APPENDICES Figure 1 Site Location Map Figure 2 Regional Physiographic Setting, Topographic Map, 1/100000 Figure 3 Local Topographic Map, USGS Sca(e, 1/24000 - Figure 4 Large Scale Topographic Map, �6000 Scale Figure 5 Site Aerial Figure 6 Tectonic Setting Figure 7 Geologic Map Figure 8 A. P. Zones Map Figure 9 Faults of Southern California (Fault Setting) Plate 1 Exploratory Boring L.ocation Map Plate 2 Cross section A-A' Plate 3 Surficial Slope Stability P[ate 4 Static Settlement Plate 5 Retaining Wall Drainage Detail PEate 6 Surcharge Induced on Retaining Walls Appendix A References Appendix B Exploratory Boring Logs Appendix C Laboratory Test Results Appendix D Slope Stability Evaluation Appendix E Slope Maintenance Guidelines Appendix F Liquefaction Analysis Appendix G Earthwork and Grading Specifications GeoMat Tesfing Laboratories, lnc. Page 2 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 SITE DESCRIPT[ON AND PROP4SED DEVELOPMENT Site Descript[on The Legal Assessor's Parcel No. for the site is 944-060-006. The site rests in the easterly portion of Sec#ion 1, Township 8 South, Range 3 West, S.B.B.&M. The subject site rests northeast of the intersection of Rancho Vista Road and Mira Loma Drive in the City of Temecula, California. The si#e is located in a mixed usage area of Temecula, Cafifornia. The sifie consists of approximately 7.28 acres and is bounded on the east by a flood control channel and existing school, west and north by Mira Loma Drive, and south by Rancho Vista Road. See Figure 1, Sife Location Map. At the present time, the site is vacant except for remnants of old foundations, pavement, and fences. We understand that the site was used as a charter school. The topography may be described as variable and sloping. Based on our site visit the northwesferly portion of the site was occupied by the school facili#ies. The southeasterly portion of the site appears to have not been improved, except for drainage control. An active flood control channel bounds the easterly portion of the property. The channel is incised infio native ground. The downs#ream of the channel, at the intersection with Mira Loma Drive is improved with concrete wing walls and galvanized metal grill. Vegetation along the channeC is moderately dense to dense. Proposed Improvements Based on the provided Tentative Tract Map 33584 (not dated), Plate 1, the site is proposed for 57 single family homes, a small park, and detention basin. Retaining walls are proposed along the drainage path on the east side of the proper�y, and along a portion of the proposed cut slope on the west side of the property, and along the grade break between lots in the central loop road. The proposed residential homes are assumed to be two story wood frame sfiructures supported on shallow foundation and concrete slab-on-grade. We have not been provided with specific foundation loads. We anticipate however, that loads are lighfi. Review of Tentative Proposed Gradinq GeoMat Testing Laboratories, Inc, was provided with an electronic copy of Tentative Trac# Map 33584. Based on a review of proposed plan the following grading is proposed. Proposed Slopes The slope along Rancho Vista will be graded in cut and fill designed at 2H:1 V. The slope height at the east end of Rancho Visfa is about 20 feet and the west end about 41 feet. The slope is provided with a bench where the slope exceeds 30 fee# in height. The slope along Mira L.oma Road will also be graded in cut grading designed at 2H:1V. The sfope height at north end is about 21 feet and at the south end about 41 feet. The slope is provided with a bench where the slope exceeds 30 feet in height. A fi11 slope is proposed along the drainage path on the east side of the property. The slope height varies from 4 feet to a maximum of 12 feet. This slope spans the area between the lots and the retaining wall along the drainage path. GeoMat Testing Laboratories, Inc. Page 3 Tentative Tract Map 33584 Projec# No. 11051-41 City of Temecula, California August 31, �013 Stability of Sioqes Cut Slope: The maximum proposed height of this 2H:1V cut slope is approximately 41 feet high with a 6 feet bench at approximately 30 feet up from the toe of slope. A Geologic Cross Section, Plate 2 presented in our earlier report dated December 30, 2011 and attached herein, was drawn through �� the 41 feet high cut slope for stability evaluation. The majority of the cut slope is expected#o expose massive Pauba Formation. The stability evaluation is presented in Appendix D of this report. The evaluation shows the minimum factors ofi safety of the analysis are as follows: G�OBAL STABILITY SAFETY FACTORS Failure T e Sta�ic Pseudostatic Global Rotatior�a! 1.87 1.34 Fi(l Slope: Large portion of the slope along Rancho Vista Road will be deve(oped in fill grading. The maximum height of the slope is on the order of 23.5 feet at Lot 16. The slope tapers down in height eastward. The evaluation presented in Appendix D shows the minimum factors of safety of the analysis are as follows: GLOBAL.STABILITY SAFETY FACTORS Failure T e Static Pseudostatic Global Rotational 1.97 �.44 The cut and fill por�ions are expected to perform satisfactorily when constructed at a maximum gradien�of 2H:1 V and in accordance with standard grading recommendations. Surficial Sfope Stabilitv Surfcial stability of a 26.6° slope has been calculated. The result of cafculation shows a factor of safety of 2.1 >1.5, see Piate 3. Lots Proposed for Cut Gradinq Lot Tentative Pro osed Cut Gradin Minimum Maximum 9 7' 'f 3' 10 5' 17' 11 2' 21' 12 1' 6' 13 0' 1' 16 0' 4' 38 0' 2' 39 0' 1' 40 0' 1' 41 0' 1' 42 0' � 1' 43 0' 1' 44 0' 1' GeoMat Testing Laboratories, Inc. Page 4 Tentative Tract Map 33584 Project No. 1�081-0� City of Temecula, California August 31, 2013 Lots Pro osed for Fill Gradin Lot Tentative Pro osed Fill Gradin Minimum Maximum 18 2' S' 19 2' 8' 20 6' 10' 21 7' 12' 22 7' 7' 23 4' 6' 24 3' 6' 25 3' S' 26 5' 7' 27 7' 11' 28 1' 8' 29 1' 1' 30 1' S' 31 1' 5' 35 1' 10' 36 1' 10' 37 1' 8' 52 1' 4' 53 1' 3' 54 1' S' 55 1' 4' 56 1' 4' 57 1' 4' Lots Proposed for Transifion Cut to Fill Gradinq Lot Tentative Pro osed Transition Cut to Fill Gradin Cut Fiii 1 17 3 2 17 3 3 17' 3' 4 13' 3' 5 'I 2' 3' 6 2' 3' 8 11' 4' 9 13' 4' 14 5' 2' 15 4' 1' 17 3' 3' 32 1' 8' 33 1' 8' 34 1' 9' 45 1' 1' 46 2' 1' 47 2' 1' 4$ 1' 2' 49 4' 2' 50 4' �' 5� 4' 4' GeoMat Testing Laboratories, Inc. Page 5 Tentative Tract Map 33584 Project No. �1081-01 City of Temecula, California August 31, 2013 Retainin Walls Retaining wal! is proposed for the rear yards of Lots 1 tnrough 7. This wall is on the order of six feet in height. The wall will support the cut slope designed at 2H:1 V. Retaining wall is proposed for the rear yard of Lofis 38 through 48. This wall is on the order of four feet in height. The wall will support the grade separation between the opposite lo#s. Retair�ing wall east of Lots 20 and 28. This wall is on the order of 5 feet in height. It supports the fill slope for these [ots. The slope is assumed to be designed a� 2H:1V. Retaining wall for Lots 32 to 37. This wal( is on the order of 5 feet in height. It supports the fill slope for these lots. The slope is assumed to be designed at 2H:1 V. Detention Basin This basin is located between Lots 34 and 35. The tentative proposed bottom elevation of the basin 4 to 5 feet be[ow surrounding lots and street level. Based on �he provided plan most of the basin bottom will be developed in cut grading. The east basin embankment will be developed in fill inclined at an assumed design of 2H:1V. This fill embankmenf is retained by a retaining wall. Setback between the wall and basin bottom should be in accordance with Riverside County Low Impact Development managemertt Practices Manuai. Park Site The small park site will be mostly graded in sliver cut, less than a foot in dep#h. West end of the park will be graded in ten feet of cut.. Private Streets Streets A, B, and C are 44 feet wide private roads. The terminus of Streets B and C will be provided with fill on the order of ten feet in #he vicinity of Lots 20 and 28. Fill on the order of seven feet is proposed near Lot 11. The remaining of roadways will be developed in sliver cut and fill grading. We understand that these roads will pavers paved. GeoMat Testing Laboratories, Inc. Page 6 Tenf�fiive Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 GEOTECHNICAL FINDINGS Subsurface Exploration On March 7, 2005 Inland Foundafiion Engineering drilled seven boreholes at the site to a maximum depth of 101 feet be(ow ground surFace. The subsurface exploration was reported by Inland Foundation Engineering on April 19, 2005. On January 15, 2012 this office drilled fve additional boreholes utilizing a truck mounted rotary auger rig to a maximum depth of 50 feet. Refer to Plate 1 for approximate locatior�s of the boreholes. The geotechnical logs of the fin�elve boreholes are presen#ed in Appendix B of this report. Representative undisturbed samples were obtained by driving a thin-walled steel penetration sampler with successive 30-inch drops of a 140-pound hammer. The number of blows required fio achieve each six inches of penetration were recorded on the boring logs and used for estimating the relative consistencies of the subsoils. Two different samplers were used. The first sampler used was a Sfiandard Penetration Sampler for which published correlations relating the number of hammer blows to the strength of the soil are available. The second sampler type was larger in diame�er, carrying brass sample rings having inner diameters ofi 2.5 inches. Undisturbed samples were removed from the sampler and placed in moisture sealed containers in order to preserve the natural soil moisture content. They were then transported to the laboratory for observations and testing. Representative bulk samples were obtained and returned to the laboratory for further testing and observations. The results of this laboratory testing are discussed and presented in Appendix C. Subsurface Earth Material The results of the subsurface investigation indicate#hat the site may be characterized as being underlain by both aEluvial soils and materials of the Pauba Formation. In addition, manmade fills were encountered in the lower portions of the property. Manmade�II was encountered in our Boring B-2. The fi11 material extended to depth of approximately 5 feet. Based the standard blow count the Relative density of the fill is approximately 90 percent. These soils are similar to those encoun#ered elsewhere on the site and probably originated from the site during previous grading operations. Young alluvial channel deposits are present on the easterly side of the site, associated with the existing drainage on the lower portion of the property. The remainder of the site is underlain by sandsfone member of the Pleistocene Pauba Formation. Refer to the attached Geologic Map, Figure 7. In general, the site's materials appear to be consistent with those of the Pauba formation, consisting of alternating layers of sand, silty sand, lean clay, and sandy sil#y clay. The soils are moderate[y to very dense and firm to hard, consoiidated, and indurated. GeoMat Testing Laboratories, Inc. Page 7 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 No loose or soft soils were encountered to the maximum depth explored. Drilling was difficult. Accordingly, it is our judgment that the proposed buildings will be founded into competent soils and Pauba Formation. Slightiy compressible soil in the upper ten feet was encountered in borehole B-03 by Inland Foundation Engineering (referenced report dated April 19, 2005). This area is proposed for 6 to 20 feefi of cut grading. Considering this removal and site preparation overexcavation requirement, -� no compressible soils will remain in the vicinity of borehole B-03 (lnland Foundation Engineering}. Laborator�_Testin Laboratory tests were perFormed on selected soil samples. The#ests consisted primarify of moisture, density, sieve analysis, Atfierberg Limits, expansion index, and direct shear. The soil classifications are in confiormance with the Unified Soil Classifications System (USCS), as outlined in the Classification and Symbols Chart (Appendix B). A summary of our laboratory testing and ASTM designation is presented in Appendix C. Expansion Potential Expansion Index {EI) test was performed on representa#ive soil sampfe obtained from our exploration. Based on the laboratory test results, the soils in �he upper 15 fieet have a very low expansion potential (El value of 0), as defined in Table 18-I-B of the 2001 CBC. Laboratory expansion index testing by Inland Foundation E�gineering show a soil sample having an Expansion Index of 13; very low expansion potential, Additional expansion index testing should be performed subsequent to completion of rough grading. Groundwater Groundwater was encountered at the site in Boring B-3 at a depth of approximately 29 feet. Groundwater was encountered at 25 feet below ground surface during the subsurface work of Inland Foundation Engineering. Groundwater is not expected to impact site grading during dry season. In winter months the drainage east of the site may have a water flow. Retaining wall construction along the drainage may be impacted by water seepage in wet season. Dewatering may be required to facilitate retaining wall construction. Groundwater data compiled by the Western Municipal Water District/San Bernardino Valley Municipal Water District indicate two recently monitored wells in the vicinity of the site. State Well No. 8S3W01001, locafied approximately one-quarter mile west of the site was monitored on April 25, 2004. At that time, the depth to groundwater was 303.36 feet. State Well No. 8S3W01 P02, located approximateiy one-half mile west of the site was also monitored in April 2004. The depth to groundwater was 301.96 feet. It is important to nofe fihat neither of#hese wells reflects conditions associated with the alluvial drainage on the easterly portion of the site. GeoMat Tesfing Laboratories, lnc. Pa9� 8 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 Slope ConstructionlMaintenance Filf slopes should be provided af the toe with a#hree feefi deep keyway embedded into firm materials. The keyway should be at least one equipment width (+15 feet) inclined at rate of two percent inward. All keyways should be observed prior to starting fill slope construction. All s[opes should be compacted to at least 90 percent of the maximum dry density; to the outer slope face. We recommend overfilling, compaction by backro!ling and then trimming to grade for fill slope construction. It is recommended that all slopes be planted subsequent to construcfiion. As a minimum, Slope Maintenance Guidelines for Homeowners presented in Appendix E of this report should be followed for this purpose. Graded fi[I and cut slope, in our opinion, should be provided with a toe drain to prevent nuisance water from daylighting on the s(ope face or at the toe. Generally, a "burrito-style" drain consisting of perforated plastic pipe encased in free draining aggregate and surrounded by appropriate geotextile filter fabric would be sufficient for this condition. Typical toe drain details are presented in Appendix G of this report. Specific design details for subdrain should be developed during actual needs conditions encountered during grading. Liquefaction Analvsis The eastern side of the site, along the drainage, is located within State of California Seismic Hazard Zones for Liquefaction, as shown on the seismic hazard zone map for Murrieta Quadrangle. West of the drainage the alluvial soil is dense to very dense, consolidated and Endurated. Further westerly of the drainage, site soils is mapped as Pauba formation which is considered a non- liquefaction area. For the area with potential for liquefaction {the drainage and its banks), a quan#itative liquefaction analysis was conducted assuming groundwater is to rise to ground surface. Our Boreholes B-3 and B-5 were essentially used for the analysis. Soil liquefaction is a process by which loose, sa#urated, granular deposits loose a significant portion of their strength due to pore water pressure buildup resulting from cyclic loading, such as that caused by an earthquake. Soil liquefaction can lead to foundation bearing failures and excessive settlements. Liquefaction suscep#ibility reflects the relative resistance of soils to loss of strength when subjected to ground shaking. Primarily, physical properties and conditions of soils such as sediment grain-size distribution, compaction, cementafiion, saturation, and depth govern the degree of resistance. Soils that lack resistance (susceptible soils) are typically saturated, loose poorly graded sand sediments. Soils resis�ant to liquefaction inciude all soil types that are drier or sufficiently dense. Cohesive soils are generally not considered susceptible to (iquefaction. Fine Grained Soil Profile Evaluation The consistency of#ine grained earth material encountered in the upper 30 feet is firm to very firm. The consistency of fine grained material below 30 feet is hard. The following criteria by Finn (1991,1993) and Perlea et al (1999) is used as a guide to evaluate the onsite fine grained soil for liquefaction pofiential. GeoMat Tesfing Laboratories, lnc. P�ge 9 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 Depth In-Place Borehol� Consistency Class, LL o : (ft) /o Moisture B-3 15 to 25' Firm to Very Firm CL 32 24 <0.87�L B-3 35-50' Hard CL 47 22 <0.87LL B-5 15-20' Very Firm CLML 29 15 <0.87LL B-5 25-30' Very�irm CL 32 25 <0.87LL Fine grained soils are generally not considered susceptible to liquefaction and based on the above is not considered susceptible to liquefaction. Summarv of Quanti#ative Liquefaction Evaluation . Liquefaction susceptibility using Standard Penetration Test data and laboratory grain size test results presented in the referenced report being updated were analyzed using LiquefyPro software. Liquefaction analysis performed for this evaluation included: [1] evaluation of soil consistency and compactness influencing liquefaction, [2J correction of penetration resistance data to conver� measured SPT N-values fo standard Nso-values, [3] calculating the earthquake ircduced stress ratio (CSR), [4� calculating cyclic resistance ratio {CRR}, [5] assume that water tab[e rise to the surface, and [6]evaluation of liquefaction potential by calculating a factor of safety against liquefaction (FS}, by dividing CRR by CRS. The software output is presented in Appendix F. The generated computer calculation ir�Appendix F shows that onsite soils can resisfi liquefaction except for one foot zone between 26 to 27 feet below ground surface in the area of B-3 and three foot zone between 22 to 25 feet below ground surface in the area of B-5. Seismicall induced Settlement Earthquake-induced settlement was estimated using procedures presented by Ishihara and Yoshimine (1990} for dry/moist soils {above the water tabEe) and saturated sands. Settlements analyses were performed for the same location analyzed for liquefaction potential to estimate the maximum possible cyclic settlement to be expected at the project si#e. LIQUEFY PRO software was used to ca[culate cyclic settlements and presents them on a cumulative settlement in Appendix F, including settlements above and be[ow historic high ground water depths. Volumetric strains for soils above the water table were estimated using blow count data and cyclic shear strain (Tokimatsu and Seed, 1987). Cyclic settlement was obtained by mul#iplying the thickness of the soil layer by the calculated volumetric strain. Cyclic settlements for saturated sands were estimated using blow counf data corrected for fines content (i.e. blow counts for equivalent clean sand were used) and other factors used for liquefaction analyses (Stark and Olson, 1995). The referenced procedure applies only to saturated clean sands. Volumetric strain for saturated sands was estimated using the calcufated earthquake- induced cyclic shear stress and corrected blow count (Ishihara and Yoshimine {199Q). The cyclic settlement was obtained by multiplying the thickness of the liquefied soil layer by fhe volumetric strain. GeoMat Testing Laboratories, inc. Page 10 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 The results of computerized cyclic settlement analyses are presented in Appendix F. In this case, estimated total seismic settlemen# is expected to be less than 0.5 inch. Considering procedural conservatism and the above results, a maximum differential cycCic set�lement of 2/3 of the seismic setfilement is estimated (SCEC/DMG SP117, 1999). The above estimated cyclic settlements were computed for saturated and saturated sand. Although, not anticipated, irttermediate thin soil layers, not tested, may be subject to liquefaction. This condition are expected to be mitigated by upper non-liquefiabfe layers (per Ishihara, �985, procedures), and the settlements at the corresponding depths, although are expected to be insignificant, they should not propagate to the surface owing to the bridging effects from the non- liquefiable layers. Liquefaction Observations/Summarv 1. Some potentia! for liquefaction and earthquake-induced settlements are expected at this site. Although a maximum total seismic settlement of 0.4 inch is expected to be the possible highest, the foundations should be selected and detailed to resist liquefaction effects and prevent large-scale damage to these struc#ures. 3. An estimafied seismic differential settlemen#of 2/3 of total settlement may be anticipated. 4. Even based on the results from the rigorous reconciliation analyses, and per Ishihara's �rocedures (1985), no potential for surface manifes#ation (e.g. sand boi[s or significant ground fissures) as an effect from movement of layer{s) below the historic high groundwater is expected at this site. This is considering that significant liquefiable layers only start at a depth of 22 feet below ground surface and a thick non-liquefiiable �ayer is present above it. 5. Based on SCEC {1999) guidelines, a potential for loss of bearing capacity due to liquefaction is not expected a# the site since there is not an upper potentially liquefiable layer at a depth shallower than the estimated depth where the induced vertical stress in the soil is less than 10% of the bearing pressure imposed by the foundation systems. Furthermore, proper reinforced foundation systems are designed to dissipate structural loads. Also, no loss of bearing capacity is expected for grade beams or iightly loaded slabs-on-grade. 6. In significant conformance with Youd, Hanson, and Bartlett (ASCE Geotechnical Jr. April 1995, and Lecture by Youd on July 7, 1999), no lateral spreading due to liquefaction is expected at this site due to the following reasons: • Alluviai subsurface soils are essentia[[y horizo�tally layered. • According to the SPT blow count the formation is very dense, therefore, it is not expected to shear to cause significant lateral spreading, • No thick clean sand layer �s shown in the alluvial soil profile. If clean sand 'rs to exist elsewhere, in areas not explored, it is expected to be scattered or have minimal occurrence throughout the site, and cannot reasonably be connected to form a hypothefical "con#inuous" line of signi�icant length that could reasonably be expected to "exit" or� a slope or free face, or move significantly below the minimal (1%, per plan) slope of the site. GeoMat Testing L.aboratories, Inc. Page 11 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, Ca(ifornia August 31, 2Q13 • In the liq�efaction spreadsheets (a part of the LiquefyPro software results) it can be observed that at the analyzed locations, no saturated liquefiable sandv soils with values of N1(60) <15 exist at the site. 7. Although it is extremely difficult to predict the overall behavior of any site during seismic shaking, it is our opinion that proper design of foundation can substantially improve the structure's resistance to deformation. This is most commonly accomplished by prouiding proper reinforced foundation design. If the owner wishes a higher degree of con�idence, then fihe structures should be designed for higher probable events. Please note that foundation design is under the purview of the structural engineer. All foundations should be designed by a qualified structural engineer in accordance with the CBC and the latest applicable building codes and structural considerations may govern. Ge_ oloqv The subject parcel is 7 '/4 acres in size, situated chiefly on the southwest flank of a drainage that runs northwestward through the area. The properiy slopes generally to the northeas�from a high of approxima�ely 1145 feet above sea level in the southwest corner of the property to a low along the northeast side of, roughly 1090 feet above sea level, a#otal relief of 55 feet. The overall slope across the building area is approximately 8H:1V. The site location is depicted on Figures 1 through 5. Reqional Geoloqv The subject property is located in the Peninsular Ranges Province of California, see Tectonic Setting, Figure 6. The Peninsular Ranges Province is noted for its pronounced, active, northwest-southeast oriented fauit systems. The closest of these major faults are elements ofi the Elsinore Fau1t System. See Figures 6, 7, and 9. The closest of these elements is approximately'/a mile to the west(eas# border of the A.P. Zone). See Figures 6 through 8. The Elsinore Fault is an Mw7.� system in this region. The CGS Ground Motion Page indicates a PGA of 0.559g is expectable. The forma#ional units of the site area are members of the Pleistocene, Pauba Formation. See Figure 7. Structurally, the overall area is faulfied and sfightly flexured. Site Geoloqv The following report was reviewed: Preliminary Geotechnical Investigation for A.P.N. 944-060— 006 by Inland Foundation Engineering Inc. in April 19, 2045, Project Number P283-003. Inland's site investigation included review of existing literature and subsurFace exploration. Knowledge of the geology of tne area is little change since the time of that study. Elements of the geology of the site are re-reviewed below. The site is sifuated on northeast slaping hillside above a northwest flowing drainage. Slopes are regular and moderately low. Total height of slope is approximately 45 feet. The overall slope is approximately 8H:1 V with steeper slopes prevailing along the western border of the parcel. Sandstone of the Pleistocene, Pauba formation underlies the sfope area; Ho[ocene alluvium underlies the Eastern part of the parcel along the existing drainage. GeoMat Testing Laboratories, Inc. Page 12 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, Ca[ifornia August 31, 2013 No faults have been discovered or reported within the area of the parcel. No fault zones are reported in the tract by the Riverside Counfiy review for the item tract. Geoloqic Hazards Geologic hazards reviewed by Inland include seismicify, settlement, liquefaction, landslides, rock fall, slope stability, seiches, tsunamis, and sur�ace rupture. Geologic conditions reported by Inland in 2005 have not change significantly. Active faul#s Surface rupture- no ac#ive fault zones are mapped on the property. However, an A. P. Zone for a segment of the Elsinore system is mapped nearly adjacent fo the wes�border of the property. See Figure 8. Also, strong fau[�ing is mapped approximately 1500' northwest of and in line with the property. Although this faulting is not known to be active, the tectonic sensitivity of the location indicafies that all excavations on the property should be examined by the geotechnica! engineer or engineering geologist. A distinct potential for a high level of ground shaking during earthquakes is also possible here- above'/2 the strength of gravity(0.559g). Weak zones in the sub terrain, �ormed by the cross cutting of ancient faults, is also a distinct possibility here. Tsunamis, Seiches Standing bodies of water are not known where the locafiion could be affective in this way as a hazard to lots of this parcel. Slope Stability Deep seated instabilities are not anticipated, because of the character of the Pauba Formation, Most commonly, the underlying sub terrain is comprised of massive, coherent sandstone (Pauba Formation}. Therefore, slope stability should not be a problem, as a rule. Nevertheless, local raveling may become apparent if slopes are not planted and maintained. Site Class Formal structural plans have not been prepared, the exact height, design loads of the multi-famiEy buildings, and the eonstruction material, stiffness, and strength of s#ructure are unknown at this time. Therefore we are assuming that �he proposed three stories high buildings are expected to be 25 feet high or less, of conventional light frame construction, and their structure fundamenfial period of vibration is less than Q.5 seconds (this based on T=C�(hn)o.'5 where Ct=0.02 and h=25). Accordingly site specific evaluation to determine spectral acceleration for liquefiabie soils is not required and therefore the structure need not be designed as if it is Seismic Site Class "F:" (exempt under ASCE 7 Section 20.3.1). The structural engineer should verify the structure fundamenta[ period using applicable methods from the CBC. Ge�Maf Testing Laboratories, Inc. Page 13 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 lt is our opinion that structures should be designed in accordance with the current seismic building code as determined by the sfiructural engineer. Considering the Spectral Response Acceleration at short period SpS > 0.50g (CBC Table 1613.5.6(1), and the Spectral Response Acceleration at one second period Sb, >0.20g (CBC Table 1613.5.6(2}, the subject site is located in an estimated Site Class"D" as outlined in CBC Table 1613.5.2. Present building codes and construction practices, and the recommendations presented in this ._ report are intended #o minimize structural damage to buildings and loss of iife as a result of a moderate or a major earthquake. They are not intended to totally preven�damage to structures, graded slopes and natural hillsides due to moderate or major earthquakes. While it may be possibEe to design structures and graded slopes to withstand strong ground motion, the construction costs associated with such designs are usually prohibitive, and the design restrictions may be severely limiting. Earthquake insurance is often the oniy economical[y feasible form of protection for your property against major earthquake damage. Damage to sidewalks, steps, decks, patios and similar exterior improvements can be expected as these are not normally contro[led by the building code. Seismic Desiqn Parameters The CBC seismic design parameters are presented in the following#able. . � . Site Class � 0.2 second Spectraf Response Acceleration,55 1.845 1.0 second Spectraf Response Acceleratian,S� U.674 Site Coefficient,FA 1.0 Site Coefficient,F„ �.•� Maximum considered earthquake spectral response accelerations for short periods,SMs 1•845 Maximum considered earthquake spectral response accelerations for 1-second periods,S,�1 1.011 Design Spectral Response Acceleration at Short Periods,Sps 1.230 Design Spectral Respanse Acceleration at 1-Second Periods,Spl 0.674 GeoMat Tesfing Laboratories, 1nc. Page 14 Tentati�e Tract Map 33584 Projec� No. 11081-0� City of Temecula, California August 31, 2013 CONCLUSIONS Based upon our geotechnical findings, we conclude tha�the proposed improvements are feasible from a geotechnical standpoint. We have found no significant geologic or soif-related constraints during the course of this investigation thafi cannot be mitigated by proper design and construction practices. Specific conc(usions are summarized below: � The site is expected to experience strong ground shaking during the design life of the s#ructures. The potential for liquefaction occurrence is anticipated to be deeper than 22 feet below ground surface in younger alluvial soils. Seismically-induced settlement in young alluvium is expected to be on the order of 0.4 inch. No seismic settlement is expected in Pauba Forma�ion. • Very moist soil is expected to be encour�tered. Grading along the drainage, during wet season, may encounter shallow groundwater. Contingencies will need to be provided if construction takes place during periods of wet weather. Small, light weight grading equipment mounted on tracks may be applicable where shallow groundwater is anticipated. This conditions may require special construction practices, such as excavating wet soil with an excavator, mixing wet soil with drier soil or air drying, stabilizing with geo-fabric, pumping soil removal, and bottoms dewatering. • Subdrain system is not anticipated at this time. The need for subdrain will be determined during rough grading. Toe drain for slopes should be considered during planning and construction. We have no way of predicting future groundwater levels or perched water due to grading or increase in surface water infiltration from rainfall or from landscape irrigation. Subdrains, horizontal drains, toe drains, French drains, heel drains or other devices may be recommended in future for graded areas that exhibit nuisance water seepage. • Complete removaf and recompaction of the undocumented artificial fill and partial removal � and recompaction of the upper alluvial soil wi�l be necessary. • Cut slopes exposing massive, dense Pauba formation and fill s(opes constructed of onsite soil are expected #o perform satisfac#orily when constructed �n accordance with appropriate geotechnical recomme�dations. The slopes along the drainage bank will require rip-rap or equivalent method protection from flooding and erosion. • Based on laboratory fest results presented in referenced reports, the near-surface, onsite soil is expected to exhibit very low expansion potential. This shou{d be verified subsequent to completion of rough grading. � Concrete in contact with the onsite soil is expected to have negligible exposure to water- soluble sulfates in the soil. The onsite soil is considered to be mildly corrosive to ferrous metal. Soils with sever potential to corrosion may be encountered, according to the laboratory tes# results presented in the referenced soil report. Additional laboratory testing should be conducted subsequent to completion of rough grading. � 4vera(I, the geologic setting of the proper�y appears satisfactory for the use infended, provided engineering recommendations are followed. GeoMat Testing Laboratories, Inc. Page 15 Tentative Tract Map 33584 Project No. 11081-01 Ci�y of Temecula, California August 31, 2013 RECOMMENDATIONS The following recommendations are based upon our review of provided documents and associated subsurface work. These recommendafiions are preliminary and should be reviewed and amended, as necessary, during rough grading. Earkhwork All earthwork should be performed in accordance with the General Ear#hwork and Grading Specifications presented in Appendix G of fihis report), unless specifically revised or amended below or by future review of project plans. Clearinq and Grubbinq All bui[ding, slab and pavement areas and all surfaces to receive compacted fill should be cleared of existing Ioose soil, vegetation, debris, and other unsuitable materials. We recommend a minimum overexcavatiort of at least 36 inches to provide assurance of exposing potential[y unsuitable materials. If unsuitable conditions are exposed, they should be traced out and removed. All abandoned underground utility lines should be traced out and completely removed from the site. Each end of the abandoned utility line should be securely capped at the entrance and exit to the site to prevent any water from entering �he site. Concrete irrigation lines may be capped at their entrance and exit to the site, crushed in place and distributed throughout the filf as directed by the Soil Engineer. Soils which are loosened due to the removal of trees should be removed and replaced as controlled compacted fill under�he direction of the Soil Engineer. A search should be made in the vicinity of the existing s#ructures for possible septic tank and/or seepage pits. These should be excavated and removed from the site or processed under the direction of the Soi1 Engineer. Pre aration of SurFaces to Receive Com acted Fill The recommend depth of removal is on the order of eight to ten feet within the proposed fifl areas that are underlain by alluvium. All surfaces to receive compacted fill shall be subjected to compaction testing prior to processing. Testing should indicate a Relative Compaction of at least 85 percent within the unprocessed native soifs. If roots or other deleterious materials are encountered or if the Relative Compaction fails to meet fihe acceptance criterion, additional overexcavation will be required until satisfac�ory conditions are encountered. Upon approval, surfaces to receive fill shall be scarified, brought to near optimum moisture content, and compacted to a minimum of 90 percent Relative Compaction. Preparation of Building Areas Alf building areas should be underlain by a minimum compacted fill thickness of one times the footing width beneath the footing base elevation. This zone of recompaction should extend a minimum of five feet outside the bu'rlding lines, and a minimum ofi 36 inches below the existing or fina! ground surface, whichever is deeper. The surface of the overexcavation should then be reviewed for compliance with the criteria in the above paragraph under this section. Upon observation, the surface shall be scarified, brought to near optimum moisture content and compacted to a minimum of 90 percent Relative Compaction. GeoMat T'esting Laboratories, Inc. Page 16 Tenta�ive Tract Map 33584 Project No. 11081-0� City o�Temecula, California Augus# 31, 2013 An observation should then be made by the Soil Engineer or his represen#ative, in order to verify the depfih of fihe overexcavation and the Relative Compaction obtained. The excavated material may then be replaced as controlled compacted filf. Preparafion of Slab and Pavinq Areas Alf surfaces to receive asphalt concrete paving or concrete slabs-on-grade should be underlain by a minimum compacted fill thickness of 12 inches. This may be accomp(ished by a combination of overexcavation, scarification and recompact[on of the surFace, and replacement of the excavated material as controlled compacted fill. Compaction of the slab areas shall be to a minimum of 90 percent Relative Compaction. Compaction within the proposed pavemen#areas shall be to a minimum of 90 percent Relafiive Compaction. Placement of Com acted Fill Fill materials consisting of on-site soils or approved imported granular soils, shal� be spread in shallow lifts, and compacted at near optimum moisture content to a minimum of 90 percent Relative Compaction. Observations of the material encountered during the investigation indicate that compaction will be most readily obtained by means of rubber-wheeled or sheepsfoot compactors. If grading is performed during a dry period, pre-watering of the soil may provide a mea�s of obtaini�g a more uniform moisture content through the soils which were encountered. This should be investigated by the grading contractor prior to the commencement of site grading. FieldlLaboratorv Testinq During grading tesfis and observations shall be performed by the Soil Engineer or his representa�ive in order to verify that the grading is being performed in accordance with the project specifications. The minimum acceptable degree of compaction shal( be 90 percent of the maximum dry density as obtained by fhe ASTM D1557 test method. Where testing indicates insufficient density, additional compactive effort shall be applied until retesting indicates satisfactory compaction. Laboratory testing wifl also be conducted to verify fhat the soils will not subject concrete to sulfate attack and are not corrosive. Laboratory testing of any proposed import will be necessary prior to placement on the site. Laboratory testing of on-site soils may be done on either a sefective or random basis as site conditions indicate. Shrinkaqe and Subsidence Volumetr�c shrinkage of the material which is excavated and replaced as controlled compacted �ill should be anticipated. Near the surface, the anticipate shrinkage values of 15 to 20 percent with 15 percent being estimated on the basis of average values and 20 percent being based upon average values with the addition of one degree of uncertainty. It is estimated that this may be applicable�'or the upper two feet. Below that depth, these values will be much smaller, ranging from 5 to 10 percent. Subsidence of the surfaces which are scarified and compacted will be on the order of 4.05 to 4.1 feet per foot of recompaction. The effects of the recompaction of the soil "in-pface" may extend up #o two teet beneath the surface which is compacted. Therefore, subsidence due to such recompaction may be up to 0.2 feet in alluvial areas. This will vary depending upon the type of equipment used and the moisfure confent of the soil at the time of grading. Subsidence in Pauba Formation may be considered negligible. GeoMat Testing Laboratories, f nc. Page 17 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2Q13 These values for shrinkage and subsidence are exclusive of losses which will occur due to the stripping of the organic material from the site and the removal of#rees, utility or irrigation lines, and other subsurface obstructions. Wet Soil Very moist soif was encountered at the site. If wet soil is encountered during grading, special handling of the soil may be required, such as mixing with drier soil or spreading and drying. Special measures may also be required to stabilize wet, pumping removal bottoms for support of compacted fill, such as placement of imported crushed rock and/or ground reinforcement with geotextile. Dewatering should not be precluded. SI� Based on the current plan and our recommendations, we an#icipate that the planned fiEl and/or cut slopes constructed at an inclina#ion of 2H:1 V or flatter will be grossly and surficially stable. Any fill to be placed on sloping ground steeper than 5% should be keyed and benched into competent material. Benching detail is shown in Appendix G of this report. Fill slopes should be constructed in accordance with the General Earthwork and Grading Speci�cations in Appendix G, following typical key excavation and benching. In order to achieve adequate compaction at the slope face, we recommend that fill slopes be overfilled and then cut back to compacted mafierial. After cutting back, the final slope should be rolled with compaction equipment where determined necessary by the geotechnical engineer. The success of natural, cut and fill slopes will be dependent upon proper design, construction and maintenance. Grading should be designed in such a manner that all surFace water is directed away from the slope face and into satisfactory drainage devices. The finished slopes should be assumed to be highly susceptible to erosion and should be planted as soon as possible after construction. The moisture content ofi the soil exposed on the slopes should be maintained at a relatively constant level to avoid the problems related to cyclic shrinkage and swelling. Slopes must also be protected against rodent activity and other means of deterioration. As a minimum, Slope Maintenance Guidelines presented in Appendix E should be followed for this purpose. Tentative Foundation Recommendations Spread Footinqs Residential struc#ures founded into compacted fil! or in competent Pauba Formation may be supported on conventional spread footings. Footings should be established a minimum of 2 feet below the lowest adjacent final grade and measure at least 18 inches in width. An allowable bearing pressure of 2000 pounds per square foot{psfl may be used for spread footings with the above minimum dimensions. The allowable bearing pressure is a net value. Therefore, the weight of the foundation and the backfiill over the footing may be neglected when computing dead loads. The bearing pressure applies to dead plus live loads and includes a calculated factor of safety of at least 3. The allowable bearing pressure value may be increased by one-third for short-term loading due to wind or seismic forces. GeoMat Testing Laboratories, Inc. Page 18 Tentative Tract Map 33584 Project No. 11081-0� City of Temecula, California August 31, 2013 Reinforcement should be determined by qualified structural engineer, however minimum reinforcement of 2 No. 5 bar at fop and 2 at bottom is recommended These recommendations shou(d not precfude more restrictive structural requirements. The structural engineer should determine the actual footing sizes and reinforcement �o resist ver�ical, horizontal, and uplift forces under static and seismic conditions. Reinforcement and size recommendations presented in this report are considered the minimum necessary for the soil conditions present at foundation level and are not intended to supersede the design of the project structural engineer or criteria of the governing agencies for the project. Foundations should be designed by a qualified structural engineer in accordance with the latest applicable building codes and structural considerations may govern. Foundation design is under purview of structural engineer. All grading shall be performed under the testing and inspection of the Soil Engineer or his representative. Prior to the placement of concrete, we recommend that the footing excavations be inspected in order to verify that they extend into satisfactory soil and are free of loose and disturbed materials. If concrete �s to be placed on dry absorptive soil in hot and dry weather, the soil should be dampened but not to a point�hat there is freestanding water prior to placement. The formwork and reinforcement should also be dampened. Settlement Total static settlements of individual, lightly loaded spread footings will vary depending on the width of the footing and the actual load supported. Total static settlements of footings, designed and constructed in accordance with the preceding recomme�datior�s are estimated to be on the order of 0.2 inch, refer to Plate 4. Seismic settlements were calculated by LiquefyPro software and are presented in Appendix F. The total seismically-induced settlement is the sum of settlement of the dry and saturated soil in all explored layers. Calculation of the anticipated seismic settlement is between 0.35 to 0.39 inch. Differential sett[ement may be taken as 1/2 to 3/4 of the total settlement. The project should be designed for the following anticipated static and seismic settlements: Total Settlement 1.4 inch Differential Settlement 1/2 to 2/3 inch Please note �hat foundation design is under the purview of the structural engineer. Foundation should be reviewed/designed by a qualified structura[ engineer in accordance with t�e latest applicable building codes and structural considerations may govern. Frictional and Lateral Coefficients Resistance to latera! loading may be provided by friction acting on the base of foundations, grade-beams, and slabs-on-grade. A coefficient of �'riction of 0.35 may be applied to dead foad forces. This value does not include a factor-of-safety. A passive resistance of 2a3 pcf of equivalent fluid weight may be included for resistance to lateral load. This value does not include a factorWof safety. GeoMat Testing Laborataries, Inc. Page �9 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, Californ�a August 31, 2013 When passive resistance is used in conjunction with friction, the coefficienfi of friction should be reduced by one-third irt determ[ning the total Iateral resisfiance. At a minimum, a factor-of- safety of 1.5 should be included when resisting sliding or overturning. Passive earth pressure shou[d be ignored within the upper one foot except where confined as beneath a floor slab. Footinq Set Back As recommended in earlier paragraph, keyway for toe of slope construction is 3 feet in depth and at least 15 feet wide. Half of this keyway width is seven feet on each side of slope toe. We recommend that minimum building footing set back from the toe of slope to be at least seven feet. If this setback canno# be achieved, deeper keyway (2 additional feet of keyway depth for each foot encroachmen# in�o setback. Maximum encroachment is four feet) should be considered. Slabs-on-Grade Concrete slabs should be supported by compacted structural fill as recommended earlier in this report and in the case of shallow groundwater a layer of crushed rock should be considered. It is recommended that perimeter slabs (wa(ks, patios, etc.} be designed relatively independent of footing stems(free floating)so foundation adjustment will be less likely to cause cracking. Slabs at or near existing grades shou(d be underlain with a minimum of 4 inches of sand. Areas where floor wetness would be undesirable should be underlain with a plastic vapor barrier to reduce moisture transmission from the subgrade soils to #he slab. The membrane should be centered in the sand. The sand should be lightly moistened just prior to placing concrete. Flooring manufacturers may have specific requirements related to emission rates from concrete that should be achieved prior�o the placement of flooring. Some flooring applications may req uire more effective barriers than the typica[ 10 mil used in residentia! cons#ruction. Therefore, the selection of the vapor barrier should be based upon the type of flooring material and is not considered to be a Geotechnical Engineering design parameter. Slabs constructed at or near the groundwater should be designed to resist the uplift of the groundwater. Minimum slab reinforcement should be No. 4 bars placed 16 inches on center in each direction. Reinforcing should be located at mid-slab. The drying time of the concrete slabs may be reduced using a lower water-cement ra#io such as 0.5 or 0.45. The use of fly ash may enhance workability of the mix and reduce the alkali content. Soils underlying slabs that should be premoistened to 3% above optimum moisture con#ent to a depth of 12 inches below lowest adjacent grade. Premoistening of slab areas should be observed and tested by project geotechnical engineer for compliance with these recommendations prior to plac�ng of sand, reinforcing steel, or concrete. GeoMat Testing Laboratories, Inc. Page 20 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 Notes for Slab-on-Grade Construction The vapor retarder recommended in the preceding paragraphs is a common method of reducing the m�gration of moisture through the slab. !t will not prevent all moisture migration through the slab nor will it prohibit the formation of mold or other moisture related problems. For moisture sensitive floor coverings, an expert in that field should be consulted to properly design a moisture barrier suitable for the specific app(ication. If concrete is to be placed on a dry absorptive subgrade in hot and dry weather, the subgrade should be dampened but not to a poinfi that there is freestanding water prior to placement. The formwork and reinforcement shoufd also be dampened. Shrinkage o�'concrete should be anticipated. This will result in cracks in all concrete slabs-on- grade. Shrinkage cracks may be directed to saw-cut "control joints" spaced on the basis of slab thickness and reinforcemenfi. A level subgrade is also an important element in achieving some "control" in the locations of shrinkage cracks. Control joints should be cut immediately following the finishing process and prior to the placement of the curing cover or membrane. Control joints that are cut on the day following the concrete placement are generally ineffective. The placement of reinforcing steel wi(I help in reducing crack width and propagation as well-as providing for an increase in the control joint spacing. The addition of water to the mix to enhance placement and workabi[ity frequently resu(ts in an excessive water- cement ratio that weakens the concrete, increases drying times and results more cracking due to concrete shrinkage during the initial cure. Based on laboratory testing, expansive soils is not presen�at the site. If expansive soils are found in building pads, special expansive design criteria should be considered during preliminary planning for the design of foundations and concrete slabs-on-grade. As a minimum, concre�e slabs-on-grade should be 6 inches thick and reinforced with No. 4 bars at 12 inches, on center, each way. The slabs should also be provided with six inches of compacted sand or crushed rock. It should be noted, that the data given are minima, and that other more stringent structural considerations, such as large construction or service loads, or hydrostatic pressure may govern. Actual reinforcement and slab thickness should be determined by the Sfructural Engineer, but should not be less than values given herein. Retaininq Wall Design We recommend tha# retaining walls be backfilled with granular soil exhibiting a minimum sand equivalent of 30 and be constructed with a pipe/gravel/filter backdrain in accordance with the recommendations provided on Plate 5. The following parameters may be used for retaining wall design: Condition Equivalent Fluid Pressure(psf/ft) Active 40 (level backfill) 53 2H:1 V backfil[ At Resf �$(level backfill) 85 2H:1 V backfilf} Passive 203 with maximum value of 2000 psf GeoMat Testing Laboratories, Inc. Page 21 Ter�tative Tract Map 3�584 Project No. 11081-01 City of Temecula, California August 31, 2013 Where a 2:1 slope descends from the front of the wall, we recommend that the wal! be designed using a passive equivalent fluid pressure of 136 pcf. The upper 12 inches ofi soil at the toe of the wall should not be considered for passive resistance. We also recommend that retaining walls constructed at or near the top of slopes, or mid-slope walls be constructed with a minimum depth of embedment such that#here is a minimum of 5 feet measured horizontally between the bottom outside edge of the footing and the face of the slope. The above values do not contain an appreciable factor of safety, so the structural engineer should apply the applicable factors of safety and/or load factors during design. Cantilever walls that are designed to yield at least 0.002H, where H is equal to the wall height, may be designed using the active condition. The active pressure may be used to design an unrestrained retaining wall, such as a cantilever wall #hat is free to tilt slightly. For a restrained wall, such as a basement wall, curved walls without joints, or walls restrained at corners, the at-rest pressure should be used. If tilting of wall segments is acceptable and construction joints are provided at all angle points and frequently along curved wall segments (preferably not exceeding 15 feef), the active pressure may be used. Passive pressure is used to compute soil resistance to lateral structural movement. In addition, for sliding resistance, a frictional resistance coefficier�t of 0.35 may be used at the concrete and soil interface. The lateral passive resistance should be �aken into account only if it is ensured that the soil providing passive resisfiance, embedded against the foundation elements, wil[ remain intact with time. In addition to the above lateral forces due to retained earth, surcharge due to improvements, such as an adjacent structure, should be considered in the design of the retaining wall. Loads app(ied within a 1:1 projection from the surcharging structure on the stem of the waEl should be considered as lateral and vertical surcharge. For lateral surcharge conditions, we recommend utilizing a horizontal load equal to 50 percent of the vertical load, as a minimum. This horizontal load should be applied below the 1:1 projection plane. To minimize the surcharge load from an adjacent structure on the retaining wall and to minimize settlement of the adjacent structure, deepened building footings may be considered. Other lateral pressures due to surcharge loading may be estimated using the guidelines in attached Plate 6. The total depth of retained earth for design of cantilever walls should be the vertical distance below the ground surface measured at the wall face for stem design or measured at the heel of the footing for overturning and sliding. A soil unit weight of 120 pcf may be assumed for cafculating the actual weight of the soil over the wall footing. Retaining wall footings should have a minimum width of 24 inches and a minimum embedment of 24 inches below the lowesfi adjacent grade. An allowab(e bearing capacity of 2,000 psf may be used for retaining wal! foo#ing design, based on the minimum footing width and depth. This bearing value may be increased by 250 psf per foot increase in width or depth to a maximum allowable bearing pressure of 4,400 psf. GeoMat Testing Laboratories, Inc. Page� 22 Tentative Tract Map 33584 Project No. 11081-01 Cifiy of Temecula, California Augusfi 31, 2013 Retaining Wall alonq Creek Bed Retaining wall footings a(ong the creek should be esfiablished below the scour and erosion zone. Hydrology study is not part of this study and the design 100-year high water level is not known. The estimated scour/erosion depth is five feet. Retaining walls along the creek may be designed as gravity walls. Retaining wall foundation should be protected with concreted rep rap designed by the civil engineer. The rip rap may be extended to cover the creek bed. The channel wall may be designed to retain the fill for the adjacent lots. Preliminarv Pavement Desiqn Based on the design procedures oufilined in the current Caltrans Highway Design Manual, and using an assumed R-value of 40 for the onsite soil and a design R-value of 78 for aggregate base course, preliminary flexible pavement sections may consist of the fo(lowing for the Traffic Indices indicated. Final pavement design should be based on labora�ory testing performed near the completion of grading and the Traffic Index determined by the project civil engineer. Traffic Index Asphalt Concrete Aggregate Base inch inch 4.5 3 6 If the s�reets are to be paved prior to the construction of the buildings, we recommend that the full depth of the pavement section be placed in order to support heavy construction traffic. All pavement construction should be performed in accordance with the Standard Specifications for Public Works Construction. Field inspection and periodic testing, as needed during placement of the base course materials, should be undertaken to ensure that the requirements of the standard specifications are fulfilled. Prior to placement of aggregate base, the subgrade soil should be processed to a minimum depth of 12 inches, moisture- conditioned, as necessary, and recompacted to a minimum of 90 percent refative compaction. Aggregate base should be placed in thin lifts, moisture conditioned, as necessary, and compacted to a minimum of 95 percent relative compaction. Trench Wall Stability Significant caving did not occur within the exploratory borings. Nowever, caving should be expected in sandy soils. Exposure of sandy soils along the east side of the property is anticipated. All excavations should be configured in accordance with the requirements of CalOSHA. Onsite soils are tentatively classified as Type B. The classification of the soil and the shoring and/or slope configuration should be the responsibility ofi the contractor on the basis of the trench dep#h and the soil encountered. The contractor should have a "competenf person" on-site for the purpose of assuring safety within and about all construction excavations. Trench Backfill Utility#renches can be backfilled with onsite soil, provided it is free of debris, organic and oversized material. Prior to backfilling the trench, pipes should be bedded in granular material wifh a sand equivalent of 30 or greater to a depth of at least 12 inches over the pipe. GeoMat Testing Laboratories, Inc. Page 23 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, Caiifornia August 31, 2013 The pipe bedding should be densified in-place by wetting. The native backfill should be placed in thin lifts, moisture conditioned, as necessary, and mechanically compacted using a minimum standard of 90 percent relative compaction. Surface Draina e Positive drainage should be provided and maintained for the life of the project around the perimeter of all structures(including slopes and retaining walls) and all foundations toward s#reets or approved drainage devices to minimize water infiltrating into the underlying natura(and engineered fiff soils, and prevent errosion. In addition, finish subgrade adjacent to e�erior footings should be sloped down (at least 2%) and away to facilitate surface drainage. Roof drainage should be collected and directed away from foundations via nonerosive devices. Water, either natural or by irrigation, should not be permitted to pond or saturate the foundation soils. Ali planters and terraces should be provided with drainage devices. A concrete lined brow ditch should be constructed along the top of proposed cut/fill slopes. Internal slope drainage should be directed to approve drainage collection devices, per the civil engineer recommendations. Over the slope drainage should be prevented. Location of drainage device should be in accordance with the design civil engineers drainage and erosion control recommendations. Ponded water, leaking irrigation systems, over watering or other conditions which could fead to ground saturation should be avoided. Surface and subsurface runoff from adjacent properties should be controlled. Area drainage collection should be directed toward the existing street through approved drainage devices. All drainage devices should be properly maintained. All proposed cut and fill slopes should be protected with suitable erosion control measures such as jute matting, hydroseeding, etc. As a minimum, the slope maintenance guidelines in Appendix E should be utilized. Soil Corrosion Potential To evaluate the corrosion potential of the surficial soi[s we have reviewed the analytical test results presented in the referenced report by Inland Foundation Engineering. The test results of these tests are summarized below. Sulfate % Chloride H Saturated Resistivit 0.001 to 0.407 <500 m 7.2#0 7.3 1,500 to 11,400 ohm-cm Many factors can affect the corrosion potential of soil including soil moisture confient, resistivity, permeability and pH, as well as sulfate concentration. In general, soi! resistivity, which is a measure of how easi(y electrical current flows through soils, is the most influential factor. Based on the findings of studies presented in ASTM STP 1013 titled "Effects of Soil Characteristics on Corrosion" (February, 1989), the approximate relationship between soil resistivity and soil corrosiveness was developed as shown in Tab1e below. Soil Resistivit ohm-cm Class+frcation of Soif Corrosiveness 0 to 900 Ver Severe Corrosion 900 to 2,300 Severel Corrosive 2,300 to 5,000 Moderate[ Corrosive 5,000 to 10,000 Mildl Corrosive 10,000 to>100,000 Very Mildfy Corrosive � G�oMat 7esting Laboratories, Inc. Page 24 Tentative Tract Map 33584 Project No. 11081-01 City ofTemecula, California August 31, 2013 Sulfate ion concentrations, and pH appear to play secondary roles in affecting corrosion potential. Sulfate ions in the soil can lower#he soil resistivity and can be highly aggressive to Portland cement concrete by combining chemically with certain constituents of the concrete, principally tricalcium aluminate. This reaction is accompanied by expansion and eventuai disruption of the concrete matrix. Potentially high sulfate content could also cause corrosion of the reinforcing stee! in concrete. California Building Code (CBC}provides requirements for concrete exposed to sulfate-containing solutions as summarized below. Water Soluble Sulfate m Sulfate Ex osure 0 1040 Ne li ible 1000-2000 Moderate 2000-20000 Severe o��r Zaooa V�r Severe Acidity is an impor#ant factor of soil corrosivity. The lower the pH (the more acidic the environment), the higher the soil corrosivity with respect to buried metallic structures. As soil pH increases above 7 (the neutral value}, the soil is increasingly more alkaline and less corrosive to buried steel structures due to protective surface films which form on steel in high pH environments. A pH between 5 and 8.5 is generally considered relatively passive from a corrosion standpoint. Based on the test results and the resistivi#y correlations, it appears#hat the corrosion potentia[ to buried mefiallic improvements may be characterized as severe. From the CBC guidelines, sulfate exposure to Porfiland Cement Concrete (PCC) may be considered negligible to moderate for the sampled materials. We Should Be Retained For The Followin Sta es Of Construction Gradin and Foundation Plan Review The recommendations provided in this report are based on preliminary information and subsurface conditions as interpreted from limited explora#ory boreholes. We MUST review final foundation and grading plans to revise our conclusions and recommendations, as necessary. �ur preliminary conclusions and recommendations should also be reviewed and verified during grading, and revised accordingly if exposed geotechnical conditions vary from our preliminary findings and interpretations. Based on our review of plans, additional subsurface work should not be precluded. Additional Observation and/or Testinq a. During demolition, site clearance, and removal of tree roots and any underground obstrucfions. b. During all overexcavations and fill placement. c. Following footing excavations and prior to placement of footing materials. d. During wetting of slab subgrade and prior to placement of slab materials. e. During a!!trench backfills, subgrade and base compaction prior to paving. f. When any unusual conditions are encountered. GeoMat Tesfiing Laboratories, Inc. Page 25 Tentative Tract Map 33584 Project No. 1�081-01 City of Temecula, California Augus�31, 2013 Report of Field Densitv Testinq Durinq Gradinq A report of field density tests should be prepared subsequent�o the completion of grading. The report should include a summary of work performed, labora#ory test results, and the results and focations of field densifiy fiests perFormed during grading. Geo�lat Testing Laboratories, Inc. Page 26 Tentative Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 LIMfTATION OF INVESTfGATIUN Geotechnical Risk The concept of risk is an important asp�ct of the geotechnical evafuation. The primary reason far this is fihat the analytical methods used to develop geotechnical recommendations do not comprise an exact science. The analytical tools which geotechnical engineers use are generally empirical and must be used in conjunction with engineering judgment and experience. Therefore,the soiutions and r�commendat�ons presented in the geotechnicai evaluatian should not be considered risk-free and, more impnrtantly, are not a guarantee that the interaction between the soifs and the proposed structure will perForm as planned. The engineering recommendations presented in the preceding sections constitute GeoMat Testing Laboratories professional estimate of those measures that are necessary for the proposed structure to perform according to the proposed design based on the information generated and referenced during this evaluation, and GeoMat Testing Laboratories experience in working with these conditions. L.imitation of Investiqation This repor�was prepared for the exclusive use of the subject site. The use by others, or for the purposes other than intended, is at the user's sole risk. Our investigation was perFormed using the degree o#care and skill ordinarily exercised, under similar circumstances, by reputable Geotechnical Engineers practicing in this or similar focations within the limitations of scope, schedule, and budget. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report. The field and laboratory test data are believed representative of the project site; however, soif conditions can vary signifcantly. As in mos#projects,conditions revealed during grading may be a�variar�ce with preliminary findings. If this condition occurs, the possible variations must be evaluated by the Project Geotechnical Engineer and adjusted as required or alternate design recommended. This report is issued with the understanding that it is the responsibility of the owner, or his representative,to ensure that the information and recommendations contained herein are brought to the attention of fihe architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractor carry out such recommendations in th�field. This firm does no�practice or consulfi in the field of safety engineering. We do not direct the con�ractor's operations, and we cannot be responsible for other than our own personnef on the site;therefore, the safety of ofihers is the responsibility of the contractor. The contractor should notify the owner if he considers any o# the recommended actions presented herein to be unsafe. The findings, conclusions, and recommendations presented herein are based on our understanding of the project and on subsurface conditions observed during our site work, and are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whe#her they be due to natural processes or the works of man on this or adjacent properties. In additions, changes in applicable or appropriate standards may occur,whether they result from legislation or the broadening of knowledge. The findings of this report are valid as of the present date. Nowever, changes in the conditions of a property can occur with the passage of time, whether they be due to natural processes ar the works of man on this ar adjacent properties. In additions, changes in applicable or appropriate standards may occur, wf�ether they resuft from Iegislation or the broadening of knowledge. GeoMat Testing Laboratories, Inc. Page 27 � � . Topo USA�6.0 , c� SNfi� __—.-, �G� ti�P� � qN ���f=� �`y �'O� C,J�'� �COryDR �� �' `\ � � - . c,�`��� -��Me � O RTn✓ � O���C �E-' � `�>`. ��� � E,5�R T \ J � ti �rA� FLClN o � Q, PA5E0 SONRI5A OEL=SO���,LPN��P` O�J`�` �,� \ � ,� � ��� /�nP P � : \ m- m i ��i - ,t� a ?� �� �`JW^- _--�".. i_. �Q' i.�i o /" �ti � � �__Q �yQ/ � _. . ,`y "�`Q;-.�.in ��y1SP• ,�p 4 0` � -r \' � - a�"-a� RGP� �pFF v� W O� ,�Qg Lt � cr v \\ � `' �G �rn �N1�-�v M��gE'� � _ �qyG � `s1 v 51K�� �� eF � 1 ~ �'`� w l�� CT n -- . w s' cN� `��. ��� � � CNu� RFD RIV�R C!R �� ; to_. - ---- — - -. _ _-----'o__ ------------- --� _� _-". �', � � -- ' ��� RNIARD� _�_� �,,', , r _ - �FA �.CA�`lF� A'EBUTA LN M►LKY WAY p�; NGN 1 7' �'i �� � �fr-f i �Y - '� � ''`. ,,rt" , ./i 2Q f _ _ L O `.G �` '' r"'--� ����' � t��� � � � � �' N O t� _ � w �.L . �..l._ �',z �a �5 ` �o M 1 �s�1 i_����� �,,.,�� .S;• ti P > � S 2 �,. „ �-�'/. o� � eL ,;: \ Q ; oR �' ��F/ �`�-��,yL•, UF� Cp,R�NO ,���P '.,� `, �O(.PC`�.Ar -JtiP _ OyO �` P�• ���yA�t ti\\\ P��t. �.� Ro \\ �' S� �9�< 'P ` Q� ,\ � P ` ,``��. � � �� \ �—�-.�._����! �� •�<�� GPQ.Q`PN�' `�`�� '�\�CF / i. � � � (��'� ��� ��� �O �'� � • Slte' CqSq CHATA PL . � VERONDA Pl tiPlCi+:_T z 9 �NCH�vl � � Q , J STq R p � n , ' :� � n: z �«Sp/vp�q 2 � .z�� t4 �o �3� :�i; �r u�.Nr � � � �. �i O `; � �� m � 24 �'` ���' c� �n�� �, 1 f � � Q - �� � "P�j\ ,`;� �ii�, �J�Q j � � �n `� � \*`� 7Of �PG �� � F. � O '\�_ ��� :-�O��R r r' ','� / ,� r � - `�\ � 59 COl�r�MqlBfNp ._ � _� \ �\�F '� `�z�- : \ ,� ��Rr P� VIA V[LC2:f'L Ln PRIN1nVERA ST . \ �°��, �°�,�0 3 o�e`'� J _ S e, �c.� u�, ]_=.:; � � u, n ;Pccsr Q��'4+ 6�CkFy� �p � �t �o��y� �• _ ,', 9 Rp QPJ�p. q �� O� �, .\\\ � ' J �� �- . GAT Evlew CT 'A' , M� ---..-^, o � ,� ;, _ � v �`� JlP v; � \ y �`�� a�� --�'p � '�� m 1 3°p t�~� ' \ � N ',�'P�, 79 ...1� �F \\ �o ` p0� `!,q f ! � �\ �O� ��r9 I! � � e�s w ,1 Temecula Ss� ����,OQ ��'QO�p� �J q O ' � `y` � LO �� .`� �� �1.D��Rp, ,,�� N\ ��Q,\ ,O '� _ j v1P. . `t.�" �a� < ���� �� ��� IOAIGVq��� 1 ' � �� \`e'� <- �''e ��i'`�" .� y 1 i �' � � � ,�� � �' Viq SERRIl� w`��.�.Jr ��l ``�f . - •!• /�\ a ` �~�-�/.I p� % yt`?�- � U G w o Rp c CULVER C 1 ! �; � c�PN�tpG = S�Q ! v�i � `�n� q 79 1 �R�o � . �,, �l R � � �oN UR � Data use subject to license. TN Scale 1 :12,800 * o zoo aoo aoo_.soo ,000 �2006 DeLorme.Topo USA�6.0. Mn„z=•e� � '" �� ___---�__-......_�1� m 0 700 2QD 30D A�D `-iW .____-'_'_-__ _.._______ '_ _ www.delorme.com 1"=1,066.7 ft Data Zoom 14-0 � � . XMap�7 ;Ytt?'to , '_+� _ ,;�t?'10 "' a�l1t?=s , .,'��"'t .. • �i a;it;�a � . j w � , a.�+.�:.. . � ... . ' .. . ... � : �� - � . - ... ' .. ,� • . . . . � . J - .. � �/ � � . . •.. _. '..." � '" _ .'. � � ''.___. �,--._.._..__... •�. .• . . 2 _. . . . ,• ,. � ' � � �I ..�• . , ' . . • ' ..' �/ %�. � � I � . ,� � `• '_'__._ . . .,s.._ '� ' . � " . . � � � _ - . �` �.. . . A���� •�. � "_""____'__ "_'._. . . _ _ _ . '.' ' ! . . - . . ' �'' , . ' .. . � .,� � � �. . ,. . ,. , . , i. f �� - � _ . . � � - � t.. •- �; �� � � . Z ``•�,. \� L�.t�El �, , _ ",..... ' l0 . ,, . ,� •y ,.,. ,` �`l ,. ,. � . -.�r..-.:ti.- ' . � � . _ ' .� - �� �\, - .,��. - - - � 4i. � � � '^ . � - . .. /�``C .^ . •. Y. \ =���� •.-•' � �� � '. _ � .,.. - _ .. .... � �, . . � \. �a . ,... ` �,\ , :.�, . �' � . . .. � � � - ���'�. �. . . �,�.�_ . ', ' r .. ' - - Z''�,:�. � . `\`�� �' � i i ' .� _ : . �.e . '. �.,'�-- � . _.. �7 �t `"'� �' � I • < � , ^ ., ! . :`, � :- .. ' i � � r � �'y. � � . - �� . +�" , '•�. .. . : [�` ^ �' _ �t •- . '� .. - - ' - �.; d, _ ; . �. _ '' , � .� J . . * ` . � .. `;3=�0.0�3' � '' •- ., . e e _ • Y , . .'�;. . . 1����,_�l.�r� p - �. - .. . • �y �t • ' _ . � .. � ' A^� �•' ��•� � � -1 . �^� K� . f'f",f R � ' . ' - .�! - � . . - J.. - �1 . _ . T 1: M. � .. " � . l' . .. ,���I��S( ���� - o}�' F .4 � 't .l Y H .� _ f� ' � , . :•ty�� .�� _ Y I.I.... . ... 1 ' �. � ! C7 � . � C _' 1 `a ' f� �'I I . �� . .`. �I . ' �.•,�, . . 1' ./• . . .. . . � . '` . ` , '; '_. " 1 . .-.. I., . . . r....�.� .�. . ��a �, � �. ::�: ; _ . : �-, - ___.. . -_ , _ __.- _ __ _._.._._ .. � -- �, �, .. ,. _- _ _ . _ __- ,r ,� �� - � ,�,-' � .� _ _. .. f- : _ , . .�-, .,►_: , . �/�� �,..�_ . . , �� ' - . j' � = Rancho Vista & 1Vlira Loma, Temecula �' T� � r . . ,_�- Data use subject to license. � rpl 8 DeLorme Xt�lapt�7 7 0 '/z 1 1'/z 2 2'/z www.delorme.com , Figure 2 Data Zoom 11-0 t�1N(12.2 E) • ' � � • XMap�7 ii�� ,. ',11'��F , �,. 4�i11''3�t ��-��,,._ e`�11 8°� '. '��.a`;it?`-8� '��_. OO�:�tt,-�','•F.: \l ..J�III ��,�i ; -- �/�� �- - �! '��. i -��_ ,j� f- -- � �` K� � i�lt .. � � •rS�.' : `�__] fd j� `� 4�� h, )�1`�/. '\ �'v� IIT�f11�2... C._. ._ ��_� ;) � �r-- 4 �.� .. ��""..� =� ('l..-,` '1 ' -' M 1 C ��_l - . �;i�� � `�� S8fVC1li' '�'�'` �' 1 J � -- � Y �QO ��i . �k. � �`� � ,� � I? � '� il Y.:�s 0P ' ' � c 1 :��a� _ �� '�yx�� _, �' _^�-��;,��r r� 41z1' 11 ., � , ' ., • *t ' �'��_'.' . Ir ~ . ,I `�` ' , -f �� 1 , � �' � \ `--J t- � ' � '1 ;� •�.\ �-���`'��r.�i'�1 ` 1 \� '->�c. I.� 1 �4'\ ,� `� ` / '/ �v'`'� `� t'��.��..��c��� ��c!• ``� !�� � _�{ --�.-j�+s7 _�. � �s0. `� `J\ �_�f.7//� --•r�--1L.\S �Jffi�`- � i f-�s r-��"�.R`_/'�---� p� -�� \` �� ' '1 �w _ R �8/XOir,� `( _�a` ._ l `�"� ��Jy(� L �. - 4 ...1, �� / / - �v �fJ f-�_ �i y-.�.�Ys�!' ``,�- _�' ���.-_._�__ � � l� ' . � /,� k l .. � \��<<-,�J� =�-<��� ' � �� . �"� + f I� �'�. ^ �_- ',..< ,.- _ „_�-} � � ;�- � � , �` I .-'� ! %i ^.,.,1� �./-,-tr,-�„? ;�? �j,�-�:� ' � - 1. �-. \ ', 1� ;i ti•/�j /li:c,�`�1 i {� ;i c� � ��/� . ��� ���� ;�1-~�'_ .� �;, '-. �� ''. / _�� / /r,�) r�� �` Y��'��� -`,,�, =�'� "�'po �`�.j`' � i 1 r-� r' -� - i c_ ! , , �;? ��.-,.. �- .� �'� \ ,; - .,��� _ __� i,'l ��� r�'� JJ _ �S _) �f% -��� ��'�� •��.p •S��. ���� I ?• ,��n �, '� ., �, , �� -.,lY s"'�• � �/ �- - `� .�-�''-�-��L _ 1 �' • .:, r� �;, � I�(�,� a; r�` �- - �-�(`.�.,.,Lr��`.�--�, _-__:�• ��_-��-?�� } ,aea �� . �.�� ' .'� ��r - '--�" �: ����_ �t .� _ - �� ��- - Yy � ` __ �i ` � � ��. c� � � � O t, �.j ` ��'..`�S S, - " +L.�_- �� k: , ,� � � ;.' _ f; _ _ ._ -- ' �. " , , \1 ._ �',' � `� ' r z. -_f �1 l-r. ''. A�J" . �1j53'. T : .S • � �/�,'"` '!%�- - ! '�I' � "�f 1 ' _ � �`_> 1 J\�,L'-=\ ("• �-Js�'' '--�',,� :<j��� t " (_;-�` , i � r;� � �"` f (i ��/"ti � � � ir ..j'� _ .,.����� � O'� '� • - •�/��- / � t 1 `._/ �( �n\`..r! �, •t-'—'/ .rJ"�—��"�- 1 I i (�}�� �.yD� �` . �/ I . ) �`\ O �1/_ �- ._ - \ �/�,��:t��.. -_ �G > �'�/'-�`. �� ` �I �. W�.�%�A�7�-' . ',�_ '�,;� �� 1�1� �`-� �. !_� f�j` J)f\�"'J�`;= ;---� ,�!���--� ;�7`�� }�\� � �,� �1 S \� �, '� ` --S'� �^ � /�'`��-.-�J til�-��� �J�•'! L.%�!}��,�`'�(<_��/f ' '' `-- �i � r l. )/�/�� _ - - _ �' ( ir �• - ;> ' �. �/ r� 1` t`-" � � "'�, i . r' Cf-t.-,Z--�.1 � ,� .�f'� >\�_ii.r_��0� ._ ;, \ �..i-��. '� -� -_ ��_/,, ! (_, � .. t . ''" �'1��'r� :)� i :;�,i�,^�'\��((�: • �� �-� �1 ,. ..__�J� / '� .: _ . `� ��----t:�,-, .I. - � .._ n,,�� � ��; � , '� _ r`- �-�_7 f/�f� 1 r.. :.'� � ��� ,� �� ;��,f �,.�i i 5 . /�� �, �l(` f T�.�.....L ��._ '._��a.� � ^.*..-..�+���.�..��_„�. �,���f Q ��`3 `r~`'`�� �J <�'� ,-../ � .�-���� Carr' �a�yori-r_ -�z'� ���-��,.� �� . � ,�__ �' / � _ �`�/}Qll,;'� '�/ �.� -. . -r, �G--�f' '_ --..- ;5 r '�.,� � ' � i'�. ;;��\.�lr�,�' ����. 'l _ _ � +. RQAA._ . � � �i. o. t �. - �f� �' �.3�---�� " _ - � '� - � ��-- � '! -���� ':�- '` �; ��" �' /\-� ;`-' �._. w: ' '•.. t. �'�'.�=� �fr � � _. . _ .s's � � , . ��� \.% -, � � y- y � .ii fC N � _ ,Pt�n.��_SS� t .\��-. -�t-1��'�f� ��� 1 .�ir�a �:� ..� r - ,� `, / , �Sr' � r ( ,; 1 '� �`-�1_ J \� . } u� i. p,,�� � y -�_ � f�- � ��/ i`�1 f� -+ �J���1��� ' � 'S'` 1 r-�a �'�/�'-� �� „r, f/ --,� (, � `- � /�C�- '" � ��(���., ~!, � � -_+ `r-...-p :i1i. � � � � ' �� � ,ZI�t�-J` `� , /=-- 1�'��j� � 7 \ "J '�.f'�..:� ' . , � � •\� �� \ _ _ �.�� .� � _.� l �y i-.i �� . /,?81 ,li � "F) '��� , � �'� t' �'. -- �~"�� ��. _ �� t= �S �_�• R!S �=�� � . � I�! • ' . _1'- .��� � /� , �I}���} �.;=1`'C� \ _-�--� � lf�+ �"n`� ,,, ' s1�' - 4 �, �" �� ' �� , •.. ', _� S�., - � �.` ',,,. ��, ; - :. ,, , .`.`�`.. ���;:� �,��,.i•_, -.-) _ _i ' ,is � � ,.. , _ \ ��. �, '� �r i' �__ � _ii� _�?'! ' „ � �' � : � _ �r`R �'' f '� - { �>C ,C" �i "'��y�i. i- i �, \ '„�)" / � � * " �, �`, l� ��� , �,� \z3=30.033 �_ i' �r,} l��,)r `''T�, r � �. � �- `. .•� �.� � ��--> ` •�a, tCll 33..1 � t}� �� , .. ;, � ��:. � � r ( C- -`�l�� ' � �' i �`�.. '\�l`�`�i�l� .�. ( � ��� '�� ��`,. � , �. _.��� �\\ �� ��`� �-� i .fy�../ 1 'i l � � i � . - ��� . � '��� ,5 ,'`.f ,;�r.4 _,i (�_ ��t;`�� ,.Y��.�.�����'� � �: �' y.;�� t-___/ 'l��.. ��� (J.' �•`C.h��.� ��� .'� � /�:/ -'_-� -�� .i�.% _lr.J. ' 1 -_ __ ! . '• .Y.'. r.. � . �} ��a!itor��a � �� ��_ ��� .�� �•. �. , C.,.a tL .� ¢ 3r ' - _ , ��^`' ,\'� i': -, � � ��� � .�, �`Z��f' +�� •�y �`"'c� •� �l f'' ' _� ^ � . �.�.y �,'. _� ��. ``� � :.�! ••� .s �� __ �;. C-!'"v�. •� {,�� 1� . ti�ti � /`,�,(.�1` s � - � ��•1U �ti ��a�* .. -.. =1' . /" � t ,�-' -• - -, � _ -'�` 15Jr' •",� ! . . . ��__ -k ?��- ` � � � � -� � I \/ 1 . ♦� , t IZ ' 1� � � J 1 � ` _ '1`� � `� � i� �/� I/'Ty/ (�• �O'�.�' 1�� �.-' ' J..� !.._ ��.� . � , �- ' _'f � ! � �J.,\��i �' ',� ) � < �.•; , . _. L - _ � ;� �� t _� `;-� � .: ' ,,: e ,�c 1 �,}. j� .� '- �4�^' =�' �. , , �`, � ••,/ .ii� � � i � f. ' i /,, �,� .:"i+� '� `'� ��•:. "��1Q:�' ' -• f _ �y: 4.V . ` • .i�.�t' . ,1��� � t . . (' • ��� _� l� �• -+�r � . s �� .,,.�.�., -� • . �:. c � - -: _�:�, . - � � :, 7 �%.,, ..q, � �.-, , -,, �.� �� - - t _5 �1., n .:;� i . ,U. •.• .;^f. � ? i i �� - .' }� � �\ti�. �� ♦ ♦ I K ..�•�b ' .-�:�� . I t� ,rl c 1 -_� ,r- . � �\c � .,;•� � ! �, , �� 1:--��. � tt - - ,:, - � • :�� � / o , • ,� � '-- � r � �- < �l-��f' �. - � `, � � l, � •�/ ' �1 ! �ft� , �j •+'+` / �� L .< - � ,1, �hi� � O / f �� ♦r -� � ` .�',�� r .-` .S '. � U� ` , � � Z �� � `�, `'�� �, � `�� A�P ;: �- . =, , ,� '� }` � l ,�:1 _ ).v� S',� a; .�;, ,t 1_. `� 4.. - ��:,',_"�_� -- �,��,.n� ;i tij `� !/� ��`�I � -- � �� o��. �i"� . .� �^��i �; �l � � \ ..._ ' �;,;nrvnnG 1 � ,, � � i� � 1 ( ) �'- ` • '•i`' � �� y� %'�' - st< J ,� Li ' �' �' ' i 1+\ _ iO�V , /�� `� �-�el,' ���, ���i .,� 'c� r--�' S` � ('� ��', _ A ,.- L -- ,< </.' i ' � . . ` r F , .���r :l `\ �� �� v� �'T� _ �,[.�1 7��1 � \j f,�~#� • ,f'1 ,�,� i `� 1` ��� 7_ � � >J , — '�: , '� zJ' �;► r'�- s � - ; �, , S � `. �_�- � .;� ;� �� � ��y `," � � '. � h �;. r�C(� � '` �C/ ��,- _ � � . ``.�.. �.I i �g�' �� \ ``, ?� �rC�.^'�i � f� �. �� -�� -� � -:; �.:= , ':'�' _ �\`�-J'{ . '�l' , r,J',1_'��•,ri� `,r �, � ( i._ _ }.\ -i}, �'•;. ;'. t '�, �' ``�xa ( - r" ,��� �I, tii,' � 'l' ; J~f J � f/' �� . �. � � � '.PI�� -_) �`it CJ .\.I_ �� .��. � - ' •��. I 4 . .�r i5_ .� �I �'' " �. _ io �� � i _ -. . _ } 1 :,� �\ � a . E- � � `�! r �, ��;. ' : � \l � 4 f � � � 1 � '��' � �:t� { .�; ;1tt� , ''�rj� l .� ��-:� j \ 3'�i �v � � �_ � � ?�, _ ��� 1.. ' r^�� _\ .Q �, � �',� / {,�'G `.-1 "�'i f� ).� � � ��-- �� - � ��. •`� � .�`�- %0 r ` 1 i- �;�n� , ; �: � ( � '� 1 .c �- ' o� _;�,�/ �4, �. .�\ ,.� ,�`�� i664J �` .�j ,�.'� � � 'BM 01 �_•` .� � �, � .i�� • '`� � 7L ��•� �'^ �; -�� �> ; �1 1,' t\,v G�� �., �;� qA,-� -� ;;,jt. , ,. _�� ,.` ,� ,,�� /� �� L ,�r,�/�- i �� Stati �� ���,!+P� _:`` ii+ ��I r '`_� f ,/.�- �'�"_�� \ �. � �� ,:. " ---- � �••- �) -h .� - .:I -c`.. ..��• . � i ,�1��,.�-,i,'_-i.J-: r - . 'rr,, /. �. �. . ,i f � -_ � '-�.� v�i��. �.1� E..'' t t ,,�,;�- rFi3 � _�,1 (�1 ' I� - / . ...1 �� . ` 1� � �, ,`.: ,��-._ , � ` Rancho �'ista & Mira Loma, Temecula --� � �• ,..F-- ���` ��j J ���.�; � � ,r :-..�.r,-.,,_._- � _ - ;�. - � �:�: t►� + � �'. . �� -, r Data use subject to license. ft OO DeLorme.XPv9ap�7 0 600 1200 1800 2400 3000 3600 www.delorme.com ��1N{12 2,E) Figure 3 Oata Zoom 13-1 ' � • • XMap�7 -:S`_F- _— 4V11?'8 5 �1r vVt 17' .333 vi,�i l,`8.1q7 YY11''8 .� i 1 � ��- � � � •r • ,+,. :• 1 + � ���sf �� � �� , �e � . �. � .r i� � z ' - � •� ` � ��� � �� ri— � � � z a-.� , — � r� Z1 s � * �L �., �~ ~ � �� u� ' ��S 1/ � �`� +^� T� j I� ~ � � � # � � ' 1 � /�� �' � �� � � IF. � � � ti � L O ` 1� � ��� f� � � � �� � .. � �1— _ — ---�� -.; V33'30.053 -' ''�Y � � ��'ll'=3.3�1' � � � � i■■�.. � � � 5 # r��...� � 1 ��**��a+ � f� rr*■��� � i 1 �*iaaa 0 � � � titi��**r � �� � i` � r,f j r�,f ' � • ' � �.-. � � r f r� � ��i��� � f � ti � �ti +' z +� .� •� ' L r'� .# Yi���ti I �� ~� `~+ r '� r j• •f ■�/ir��• � �� .'ti �� � � � � � ■���J�* �� •� . �� � r � 'I 1r'f '• • �• . ��� ■����'�■ �� ''4 y �• `�' ���. ' . � •�r ,r ' r ��� *l.+M L- '., r.f . �,, ...r , � `+ � � .� -ti '' I � �' � i1 , }Fr ' �'ti � � I ` i _` ,,� � �T •� �"� w `�.� a � ti �� � ' * ��' ,� ,�, •. r___ _ � ��■ '' - �. � 1 .* � --�. ` r. � . � � ���� ~ �... . �`•, * * � �"�.1'�, � 't •; �r �, rr � � ,r -._ � a r Yr� �ti�ti. �' i 1 _ �.+1 • —�''+-.� � � y.� � �\�!r i 4�fy ~ -'� �, � ' r . ! (T 5� � * � • �,� 'k � r _ t � i , �r r � '�.y1 � . �..� 1 r ' � �`. �.��� +�. #� � 1 •�, �►7 � � � -�' ' s � r r � � �' t— �`~ ~4� k'+ -� ./ �• f rl . ' r•k� ��� � '� � � L '� ti., � � ` • .r � . .r� ~� �, ,�_ .� .�' �' � - : � � �� ;; ' • , t , �''�� ��- - , I y�-�. ti. tf'`�,, '' + � � r ~ � --�-���- r r' i `• � � i'� 1+ �'�~� ,.,+ � '►1• i� 1 j � .z ti ���' �. ' � •��,` ti� �, '�{ . ��. _ .���� �`� ,. r .L ,� �.. .��..,^ _•_1 f'. � � ti� i � � ' ��rf� ' � ,_s f r-. - _y + �� .�. 1 ` ti, ~ ~ y * � �'�. i. � .,--.ti 1' � 4 �- I �'i � ��'� 1 t r r s � � ,�� r • � ' " .ti -'1 'ti � �''. 1 � J ��•� J � i�., .r�•� 1, .� ', f . 11 f` �� � .r��,� �� '� } • ,� � ?�j�� � �.� � . � � y'• � �r• • � �� ` - _�~�•� •1 � � S �1' � � J� �� L . �. �. Jr— � ti � r �, �� �' � ti �� _ L r ti I • � .� �t�L 'L-`r � ti, M' J. � i .y 1 � � � � •�' f ` �' 4•�� '`�"� . ' -r^- \, •1L. •' �`'. � � r"T' '� �1.. � , _ �•� �.� � � • ,r- l, �� �} a� f 1 � r .�f�� f � 1 ' I � �' J ••� ^_ I� � � � .r �r • � Rancho Vista & M�ra Loma, Temecula ' `� .��''y ., ��.r:� f� � , r f Data use subject to license. �� {{ �DeLorme.Xf�1ap�7 0 180 360 540 720 900 www.delorme.com o Figure 4 Data Zoom 15-1 PY9N(12 2 E) - �� � . �� f 1 't1 ^ `. � . • ��� ..+��� 4 .y � _. ♦�' � - . �I '�1 � ,i ., � t s�J� T��► �! � � �� •"� �-�': c .. .. � � ' +� �r - „� ' _'i • � ; �' , ��. \ - ;� Y.� . . .� t 1�� �- �F Mi Lana Qr ?e��'D � �;'�1� �" ' � Ot �`� .'-� :;'a',.�a.0 ��; *f � ;', � c.. Y �'�, `;�� �`��`� :� � �_ 6. �fF` '����_!" _ 4 •'T� �li . � � � k•� �_�, � ,� ' .� ; �r . , = _ ��.,.� C�'l�� - �G'0�" ;- �'. . �9 _ " -..wf"' '. . . " ^t'°/-':. ''''� ye +�' `'�� ,.;,. . 1- x 3� - ��°!$ - A( p. •� �;��� : ;- . +' �, � � ° ;` r-� '� - Y,•�'[. r:� , s ` �,' 2 � ' t . • �;' ' `� . Q � _ '�-, . � �xT y_ _J ���� - i- .r;, r�. .l' �.'- �'_. �'. � .- - rf - ' � �� -+�. . v. _.; k'�' � � � s�4 . ` ` '..: +B � ��� t*4 �'� `�" � �_.' - { .:.�.� ;�s� �'� lyj �, �_y , ��,.� µr Cp , _� �.:_ ��` - r:,�. . � " Vail Elemenlary h �M��'�' � , ' . �i, ..��' ��. "°�� Sc:hool - E� �;€,� r '.� `'� - �� . � p .S' < r t 's� .� �,` � L �l1.� I !� .. s ,�,�`� ,A,•_�'' '�;; �+ - . ,� ,�,- r� :�. � �� -� ��` # ��'� '>: JT ��, ~ �T �1 ' Y'�'' , , ��� �, ���, �! .'�` �,�:'` s a� r' �I; � i- �, A: •n •.. ��:: � � t ;� ,. g _ � , � � � , � �t. a f � F:�- _ � �:z/� ' �' r : �.;� i Y� _ , = g'� �,.`'� u` t�.��!�'�`� � s 3���l � �x- .Y,...`. * F'tl�_?.v . , ,('T- - _ �M ��� :fr {�'�R.,y-� u X, .,`:� a}2:�. 1` ��k. g: . 1-+l � �` <_ - - P7��� . � ,�4�.... 't� � `^E`.� t.� �`'1{-i, ti� - .��,�r,� 1-ex . ,_' � s';^.j �� � ��i ... . r.� ' 4 «� _�� �: , � �'� � Rancho Vista Rd J �c 5.: . . gn1�o , _ - - � a�,cho v►g��d` .-s � �� � « � .-,, . ; .. � ,:, � �, x l ��. � ���i '�`� �ro'E,-. i �- _ !_ �r, `r �� � �.N �� '.� � � �� .��. `w� � :� �$�h0v15 ,,` �}` �;��� at � H ': �� � ..�:�` :� K. - "� ;ts. s �'� . , ��� } � .19� _ ► . ...�y,+t �,$��'a y � f._,� � j�, � i s: ,_ �, . `-t*.-•.- �• ��4 •_o�'e_ ��1 ' � 'e# +` �8, +' �t�. � `� .. : � _' ¢ • m s . ';� .s �s ��. !. E f � ;�� ; .'t � ..'�� ,�`�� ` �i ,�-'� - � •t �� 4 �'� � � �� t �-x ��. �•, 5 � �' � ' !' $�r '��� �� ` �_ � ��_� , . ������///I- "t+y .k�� .f� _ � � . i'. �,� �4i+�:: �r':� �,A. � � .� �i � 'a� �� Y.. . �- �y .-" '���_- , �= �..s�' j r. 1 r = �$ 3�� � �, 1 `� � g`• 'e�a p �� , � � $ �r �: � �� . ` � , � ta ,! � ,�,_, G � � � �jiia.�� 1 'i _' .� 7 .�' "1 � :,1 �� � � s : " �j" - "',. .+ _ .. ■ � � y� 'r, �./ _ �� p � � ._ -= ,ry 3 � �-�i � '� � �i � v � � '' � - y� a �j �'�7 .+ a • r� , `; 6 . . I� �� +� F.:n � F� R „ ' � "� � _ �' � � -, � =� r. G � u G � �' � S . �� '� � � li 7s �' � �•; � r'j� u "� �� � � S:� `� a -_ C U �� � _ L.I.. .� u � �, �, -.. � 2 � >' � � _ � G � � � � f 6 c ; �' � Y Z � � _ � � ., ,', � � F r � '� � '� I _ " F " _ � � 0. � '� U � � L �y i•��• r �r� 'i :j s ��„ � F! y +.� \ � ��' � y� �, � s .r. ,. F. . .i� F.-�7 .rt V -�, 1 1 1=�� _ = k ' � -, � - v ^ � � �'� ti�' , f� � ��� �t:�� Y-1 ..* � � � � I i �+,1 . , . f � � � r � �, s,�/'j� . ' '�� m G �� � =' ;r� '�' __--= fr=� __-;�:;..�` . �I I7 c. �.t� � � _:�:F:" , � � .. , _ � •i r _ _'11 _,,�"�' � y � J = -� � 'f' �: �.�-:___ .r-- ■ � -�_"�-_- !� �' . k ��� � _ '� ��� �,�. `�`�__—'�— _� � ,i � � � t . f� ��" _ .- s � � ''- �"��j �'J���� a�.i � F � � � � .��: '�f� � r G � �r � � 8 � .._:`�—='/� � � ^ ^ ¢ � — f ; �'`, q ."y�"�� � � .� �. '`f_ �-_ /`� :;,- �� �• �r � ~ � �� v =i � � �,r� { � , �� 6� l� � S � � ` �� � �-- / � 'l�: � f �� �,fr �z.!' P, ?'� _ �, a �-'�rf t � i {' +' ,�'f � � ,, ` '' f f� � � �� +y � � �_'_ - -�{� � � �� � � _ 'f,f� ��_F;� _ _ ` '�' � -- �+ j' R. o .�j � .�! 8 C�' w ti � + ,r ' �i �'f 'r 'G t� .+' � �c� ��a�_ ..,,� � �, � � � k li 6 � �l ��� V Yi' ' ''�,r�� f �� _ � wr�_ _�_�b ���� - - � � � ,�� � � ,� � t �f' �.�, �. G�� � r, � � �r�`�`'r { �"� �� � �,� '�� ..'�' � �1 � ... �/ [�1 � � � � � � � � M ' G ', , r `��,;�,� �, _ • - Z � � 7i 1� � -� -.._ " _--' '' j `' � 4 r � �.��` r� . �^~ -�___- --"" .-� u M � r- �...� � � ��.. � 1 _ ^ ;a �� , •i t'I ,� ,� ��;'�� ., il ,i+� 1 T � �a' '�1 �� � O I`���.�^ � �t1 � ��d w��I � - ���� � , ` I'I " � I i +` � r --. � _ '~ , � � ��� 1 , Ta�_� � ♦ - (/1 � �„x � y�r� r �i ♦' =X � �' ��" �`,` � x � � r i � � y�-'e.* � •Al , �r - ` ;#�_W� � � ; � Y� ,,.� ~ � ;L � � ? ' = �� �—� � gi 1 � . f- � --� sI1. f _ - _-- � °� .�_ .-� -----�- -• � r�,. . . E"� �' .� ' � �, ._,._- _ ''J� � `�Q' �,f�r'� � �!:'�`�.,.s�" r*'- � W � � ,� ,� � -�' ';�,, E-�+ �� � �' �: ��` � __-_�.�-}'' f�.� � .�� � �� .,.-� _,_._.�.�,�,� � r _ _.:• � � .: � ___ _ r �r _ .. .% ��_�.�— N L' ��� �, �. �� � ���� � 4� _ , � - ' .� t � _ - _.._ _ .� -- — - � i' ��_.,- -� _t� \ �� F *. , _ ^ � � II �� � `` ,j?pT� ". I� K f ':�----�`—�I6� � • � � j}s ^. j . • - „ �i I ':�� yr. f =� J • ( . � f; �/�,i' ' .I�� ��=. ��� �, i j , ^ r ,J � .,� 'cl� � � 1� � '�1 �i L' -� i, ;� � .,� �� ., � � � 1 I� 4� / � I L� �� � �` .. � ti f `' � .�� - � � � . � . . .` :-. .� r�� o � �� �� r� f� � ri�J'���--•-+ _ ;I���_� -,\f ` r�\`� �,f r .... \� j` ` v � ;,•� r-- t� �' � -r' -" ��'�!^ l( ,� � ` � r/ � . °�' � N � � �ti �.. � C / � \. � - S� � �C�-� .-� � � � t ' ��f!. /� ( ��, �� ��� �. � ~ � r�, �; .� �� . �-.-`�'-� :r` a - ', ``C, �Q5 , .��'' / �� ��n ��.� :'�iSA} o L� r r � � �` ... � '�,""1,r �\`�`� '` - q ,� % _ 1Z r.�?� r' � `�',� iii� �' _ } • ,, +, . � � ' , � � .,J J�� ,,� �:*.•����••I �y �---�,�;�� � (Y,I l� j � .G (j��a-S,y,� b � ti ` i I t•� �'�`' ` ' •' Q� � �`� ' `i����• � �' ���' 1 �•� � � i � a � ��.. �- �` � '`� lfI� � �r � ��1�r• � V] � '\ L ��' � � �� �' O 1'�? -'."•...; � � I i '� � - ����, ' 1 .���.,•... �'' � �_�../���,� ,� ' , f'�11 {/L, ' !_ � �,��;/. f`.. ._ � °o �;:-� 'l��J N t � . ��� e��} ����4 1� � �f�� 4. � � o � � � ��rr-!f� � ' "i • w�' - ���\�1.`,� � �'�r` J) �:, ��� `�,� •�iiiii � ._ �..,1,�. .,;;,__ �� �� ,,,� .,�. o 0 `�� � i . ' r.����(/�f� 1 ��+ .-.... '� ! % •.�r U � \ � `l! , -� ��1� � ,� ��~�\�, ,� , `����1�V//���J`,�l �/�% /r�--1' � �/ �`� y� , �' � �5 1 `�- /' l0../ l _`. C/] � � � �} � �)� , , , ;/ � � � �� r\� �J ` , . � �1�,,,,, \,�: s l�=�,_' � �� ` ' "� 'Q� � +�/:'%� -��• `� ♦ �C � " � � 0 I Y.�'� �` ♦� '��� O � ��� c-- i �t� � � �} ��; .i�� � ��:� O t� rn : t/ � � . / /:' . 0� p '.-, ,�� �; ` ;�� . . _; -�`_, � ,� ��.r�. • � U-� � __. � � , 1 ; ., ,, ,.(� -� , � �','� ,� M ;,;� , p •� r,'r ',\,�:y' / � , � 1(;�� (�. �, I i� f ,._ -- i � . ' �\ i � � �/'\/ d, /i� I ��t, . , , � . � L;�' ��� 4 �,7� , �,�� � d, O '�:t �j'� • ' � � ' 'f'"'1 ;`'l ,/) !` O� U t � �'.` .` � f 41 .�i+ � ' `t �� �-� • `. � �' ,� ,-' '\1/ .• II` /� `+. f `�l� ,I /1 ' �'`'` �i O ` --� �� . �,,/` +-� I��� � • .-./� w� � Cl� :t �� \�' � � 'r ;'�f�,�; ��,,\' - f�f f � � �i `ti-•/ � 0� r ' ". h� ''!'� •/ .-� U \`I 1\� IJ/ �� \'`� ti �� � v ��i+'�`!J`,__ ���-.r '��, � � Q Cn - ~1 � � � ` �� t`,"-' � /� f • �'�ti1�%f •� � l�l C�/� � "� '� ��..i \ . , � '�(�;+� w � �� � '.i � Iy '` h�1 J �, ���1 � ?y����'� 'ri�,c V � �"y � ' 'st, t�S � '-`t � a c� �����` � �� a �� � •�.�� �� U � � �� '^ � • � . ''�� �--, '� i � �� '�'l�..ei E �.t `7 M"'� 0 � r�71 C=; \. 1 `\ "- •.,;, ' '��'`:,�� � `\�:_ '� � '�l •'-' '� � �L �_.f,;� r `�'�:�'r.�'`�,�� --�\� O .� p� � :�, . � , /} �,� ,�- �;Y.=[' `� � � �..� '`� _�.`~`\��� -'� T � ~ � �; _.:+,'',�,.y��`.,.\.,'E.'-.),, ` ,, Q 'ci � O � � 3e7 i t� r� '� - `"� ..�_ . .: .. �(� � � �r%,, �,:,__ _�- - � ��-' •• �' w � � � 4-•, ;�•�` �- ,!�:�-- !� r.•� ,,��� '� � � -d '.d � .J �,,1i �y� fi• { h �al��(■ � _ '_'' ,� � "��1 � il: ^� �.`� '`,��'_����i �" " ' '_.. (/) � }�i � �{� y� ' ,L�ly �'i �v ` � • • - • M i � � • � � � � ,`,� ' �' . • Q U ,� � '' � ' O ,l l � ' � \� `� �• '/� . � � � O O N /'ti/` `' � `�. =�- �" � S''-, t �r � �.- � � "Cj U ���' '� �,,�� � � � o ,+ • �•. ��• 'n � +� , �• . . . O .� . � * � _ � .'� � � a . � �� . . �r�� �. . , � ,� � .• , ,•� ._., _. �_ , r ,���,j a� c.� ��� � / _ /�,��i � (� O � `�'/` / V� � � f/`�/fA.'�� � �rH �`�� • ` b �j � l'' ^�j '� C� � ` � {�,.'. � �.� �. � : � J,f� r � i 1f�, � .-�-1 � � , ' � ���j C� '_I ! •~ � � l-'Qi /' ,*.I � � ��.;r ' � � b �3"� r,�� � � . , �i� �j~�"V L � � ^C� LJ � I ' r /, •'���+- 0 �+ . --,�: -d:r-, .• ,�:,� � _ a � �' � � r!�� • ���� �'�'�'' 1`�j��'��j/ tV �U-L � O � Qi �U� i � � � � ''f�/ ��f' �, � � i � � � '''f ` �`•'f ,� �b�~ � `� � � � . '-` -/ .^ �� � /' .� � > ,�` .�;,, `:.�:� � ---� } i ,� � °' °� o' .:' d�e i �. u? _"J + ''� � � ; � �� i'c ' • � `A1/, �..1 /,� .r:.� 'i�j, '�•� ('�/ /\S • /� � � �",;i° :i�3'� � _��,� ,.� I� n � . �V Ee-� •:: . . . ,��.�. :�:.i..i�xsr:.i%:..,;.� , . .. ,. ._. .,.�...,: . . . . � .�� _ .. , . .i • . . .. ,_ ..4:� . ...5 ....1... . .....� • . .. . .. ,. .. ... .. . . . . � ' .. -.;'� . .... ` . ,. . .�.. .., .. .�. . .. . � .. . . . . . . � s�L" . , . .. . .. . ' ti.. ..� . . ' S'. . . , . l. i ..i , .� . , .... - , , i : -�-�......: .. -' - : ' .-., '- .... . .:i_. '. .. . -... , E.,`.; . .. . .. . ' .. . �. ..... . . � . . . : ,. - � ...: . .�:, _ . _ . �� . �-'.,: .. . ' ' . . ,,,..:. . .:-.- . f .. _ . _ , .. ,.. :� .::.. ' .... .: - � . . . . . . . . . . . ,�.:. . . ... .. . . . .. �... � . . ;_, . . . .. �.�. . -. .. '.1. ' ' ; �,,.... .: �.- , -� . .... . . .. . .,.:.. � _ , . . . ... � ... .. ... " 1 . � . . . " . . . . . 5. ':' . � ..�. ' '.�1 .. . . �. .. . ' . _ . .i .i.. . ..... ..� ... .. . . ..... . . .. .. ........ . . � , ; ' . t'. . . - - . .. F ' . . . . , �. '.. ... : .. . .. , . . . <.{ '. �. ,, . . . . . . ... ' ':::"... . �'. ....'. ' - . . ..: . .. , . . . . . ' , � .. . . . .. ... ' . 4 - . .. - . '- . � . .. . �..... . . . � ' .,. . .. ... . . . . � <�� .-f '' ...' .� �.. �.,`. . .-� . ..'�'. .-'' . . - ' . .. . ... . . . .... . . . . .. . . ., . , ,r . �. .. . , . . ' • . ... '... ... f� . . ' ' �•1. . ,.. . . .. .. '\ '. . .' .. - � .. . . -� .... ... 1 .:,.. : . .� . . . - .,:,i -.3.. . _ ,.. . . . :,� ..• .. . ... ...... . . . .,... . . ..., .., �i.,..-:.•�.... .�... ,.,... . ._.--.. ..� .... .. .:._ . .. .. .. . .. .�. ... a. ....... .. „�' ,..� ' ' . .. _ ... ,' ., , �.� 1 . . .. .-� . ....�.- .._ . _.' .-:.. . �. . . �.. .;.. .�t . . . . � . . .. . }` . ' . . . .. � .l; ..�.. . . ' . - .. ... . . " . : . - �. � . ( ,,..... .....-, . � . - . � � .;�',' � '� ... . ' . . .�. t � � �\ �' . . ' � � � . . -. ,�•� `_'. •'' • � e:�� �� �� - , ...� �,�,; . ,,..- ., . , . .� . � � . ., .�,\.� . `� -.. _... , . �., . . . �. � . F.:: .� '� ') �.. � ' . Q . . , .. . , . � . . d: \\\�� .. ',.. .: . , .-_.'. ..�- 3 ; ' . . . , j\:�i,,.� ' . �A� �.� , . .. . , .. � \ , . . ..' s . . , `, � . . . .. " . � k i . . - . ` y�-. `, , ` . . . , .. . .. . `� 1 i�k'� � �� ,: � _ � • ,. ��� ' '`� ,f�i ., , . . r � � .� . ' ;� .. . •-�'�;� , ` ,.����\�., �� _ � , � \,� � � �. , ', _ , � � '�� - � : ''\ ��\, •.\ � , -;�� '� ,� . . `l �.� �\ �� . - . •y ' ... � ',l ' .:- . .: i. -:. > � . . . � ' .... �., ... . �.. . , . . . . . . t '-.. - . . �.. .'. � , . ,� `'\ . . . ,. . . . . \�. . .,.: ' ' ' -. � �.' . • . . - , .... . ... . . . . . �... �� . ,. , ".� . �: i. x .' . ' �. . .� �-.^ ... �. ... . . .�.. � . �� , _": :� ` , , ,�� ... .. . - ' - ... . ... .. �. : .. .�T . .. . . . ,. �• t �"' � ''� , . �': �-� t � i -' ;'� � ' . . . . ✓ '.; ,_ / �\`� ���, .� �;.. ' . .. .. . , . .. - ' �'�:�" ' � � .:�,�,ti,1�\ ... �;�. . , � � . - . - "+r` ..�, '.,,., ,: ,;: `,..- '. ` , �.,\ \ . . F a��ry.. ' .. . :l �.'. : >� � .,(F. .:�� ' `,�\� . . , l In.: ,. " . . . . . .. .-' ,,.... . . ._ y.,- , - . �. � ....-, . �. .:.,. . �.� �S .. . . i, ./':v ..".: ,.-'i.:.:. , '. : ',� .'. . ..'..-' ',��:. �� �,`��1. . .. , _ , . ;� �. . , .. �,�.. .. .. �.�.� ' . � . . . . .. . :. ,.. .�.�; . . . . . . �1 � ,��. � - .. -..i ... . . V , • .. . . - .. . . :..':� : . . . '�, � '-.: � :- � `�\., .: . � � - .. . . ' .. .. �:� '� � � . � .. . . � '� -,. '\ .,, �.: . �.., 5-� .. ... , � . , •� � ♦ \\��* �\ , : x ` "� ,�`.� r ��_,�p �ky '-:_ .. '...�- . `��4i� \I _. ' . , . . ' . , ' .. .,... ,;,. � �: ,, 4 �., �.� ' . _ - . , . . ;t; . ` �� � ' . .. "';� �2� - „ ' �\�ti-�?' � . . - , . . - � ' :i_. , . ' . . .. %..` .. ' . � ' . �. . i �� ' � � ' - ' ' `�.�,`..�....* �� �, � i ... , . > . ,. .: o•. .. .. . \ . .. ' � � .. �:. � �,.: • \ t . .. . . 1\f� . . .. - ... . . ., :, � (� . .. �.� .: ...� ' .�' ` . ' � . . �� �. , .... , . �`� �\ .., . �� � . . �� �t",- 1} L�f � ``�'�e,,�'� ... , . . �.)�}. � .1,.:� .. . .. � ' � � ``� „�t }_A `' ,"w,� ��f _ . � , - ' r,' . .� .`-.,.` \ , . . _ ., . , � , _ 'r ( _ . �.-:j � . r.�`` .'i`+,.x .. .. .. � : >,ti;,� �� . � �'�� �� " ```'���``�, `; _' S .. _ �� ` . ;. ; . . � , ��. . ;,. �.. ...� ...'.. ',.' �. . ., s .� �. �Y.` . ' ' . . ;,.: � .:�: -��: ,'�� ;. >. <�.. , :., . .� .. . \�.� ,�`�, r _4 = y. � ��")"�'� �� : . '�,� t ` . �� , . 7 y�?��.ti �l\` .. �. . ' " '` . �:.��... .. i- .. w ( . : . , .,.:.: . . .. . ,. `\_ ,..�.� w..�, , � �.�('�!'w.. ..:. . . . ��.� .. ,� - , ..,. . ..:: . . Y....., . .. ... . . . .. . .. . t . .. . � .. , .. ..�;. ;. . .,. ...... I .. - ,r.,.. .�.., . ' .... ..............' . ,:. . ._ ; _ ;..,: ,. .. , .. .� aittm¢::-:xaasc.-;:::iMVSY,`.wwt',:.:::_vNw1Y.•...,. ...-,. .•.�.� . . . .. � ,. . . ,. xN-:;:.,�w1� ,:.uMR"..�W'. ...i. _.f_. I .. . . . .. . ... - - . ,. , ..,� . • ... it.....,, kff(Wk��t,£C-vGE i'L��.�.`P_F.'.c'�,.. ..x� ...... ..... �� +� -y��+/�-... r y'f��.;�s�.s .r,�.a,vr.c�� � . y . *knt.. �,>.�.<,�s.,..,N..�.......,�-....., , , �,� � � �y�Nc 1��YV/T U��SI`�l1177M. •'s-s�� •r-..a. ..�...�...r.�.N...... ,.r...,<,.�. . . KitAPE'kPLANAYtUk 4,fi-�.�w�'1f'3� t�/V���� �V��� ...�ti;o ..<.,..•. �s. . .... ..�� ,,.� sei;da e.uire SITFi � n.a<.�.,�.�r E.,o..,c+u„c,�w.�e W :�+r�+w�Y 6y D�Wai 1 ot tM��tifa�n�r PvW+e R�sw�.raaa Cods f k IG 14�ifdSd 1{1 hJ d kHi� 3.t af ��2' P 4 F�h d 4!£ R� �8 3.!.�.,���F..���J ._ .��.(�����a������ ��/��$��0 .-.,� N. .�-�... ��.>..p ,a, .��.YK �tl'At YY�r�.��:��Fttw I._�i�A 1ttLk i}-s,f U%�ad 1 f 6X -�,s�8 6 J 4.itJff..........�,...._..,......^�^^^-^^�-y-�-^ .«..�..--r....--,,,......_.^v�...._.�,�... • ,,,. if.+�j/7&S6 wYA fr dD✓�x=;rb1'Y'O,'1f:F/!W�'!ffTS`+Y.�Q.O.rIP Cd,C;�1'P4 7'�Wfil$��7 GY1��E .. w' n:>..�A nb q,N�7 t;> �7�,�a»:{4 n.-�r.,:t a-��y.��«is .b s��,s'.t.�. pqp�¢ pS� �+yyJ1y¢i �$t iffP�RThMY S�LSatiC NOTf .f. •t G La7.<1��8'U F�V ikat i t�v�..:N4G 9t1�.:8FUt14�(...'(`1ry ..•'.d'.6. P'li"wV���G7�i'"�"1TW`II'i6.d�F4� 'x.g..tb YE6:�1'.81'�i3'rLSS1�9�t2F.(:. :.! S�/l:. '1-..X 1 'Jn.I Y�P ��'�-P 1 ..f.••EP „. � ��f1+fS'I,�QI�lK7f���� � e arn s . .r r .:o..h re- � Je -< 6VM<:61$q,4iw�vn6 8aundyricsr y i ��•. �d r. ;,�t n at.� .��., g . ,.�.. s . ...,.�y ?'�.s a r�Fei�ao�o6osEt�a f.f �r-3P� r i�,t�.ae�..r c��n,a-:. ..�n.}a-.��_r.; ��� y� �` " � I sr' ,44 t�� o �rt e��{,sn w&� .s x�r,a i .. � L��<.:S+.Jd&",+qV=�.d`>>&CA-Yv�,'PS:,tt14.bN 'fi.•, /jyJy' � / �j f•�y(�p�,� l.l r :A .�r..Y Yi b ,I f�.. t'<355 a '< N ....���i'.�.1..�..f�� 3 9j� } . .3[.......M...�.r'_��..............�t4a1.4+l..F�JV�����4t`21 r ' .�. " c t.-!? 9 S� �.t st..«� ....:..s ,.,...F..�.F n ,:i'..y..t. ........�.^ Se�.-��a,a F,,�,i,;,..�:..�,..x:,�n.�.,,-:.;�r.,��. .,' r-...:,a . �'�''' �. .... Ak_..r_�.�,.� .,. `' Figure 8 � � .N .fl � 3 N � L '(>' � � � � � Ui-� a O � � y .• e.��h� e � . , < . . � � �� �� � e. ; , ; �,` , -�� ; � � � � � F � � ' " F �� r� �� e � K � � • J t' �R. � ;,. � �. � �Q _� F � . ' , �: �' � e o a � r ,�� Q - � � � �' � R Q ,�] .8 `-� -� � � � � � , � � . • �. : � � �`'-�` �� ` � w ► ,.�=-p x � '� _ �� � ,,. .Y...e • r""1 a � I•�� .• ^ O v � T/1 VL . . v ,��/ • � ' [T ♦'. 1\ � � : y � O r .. � .� ��,,� ��i � � � 1 � � � .., i t� � e � � I` � � f.,Q � r - � �' w ,-� . ; ; �`� � � � •/�' F 4 � ._ ,,,, _ r–+ � � � � +1 � •,, � c0 � — — y j j Y j � �. LL � � � � �' LL " j ? .-, 7 1L L� 7 � LL c6 . `� �� ro °� � � � m � _ � -� � Q ti ro � ro ti � c�f � ll LL LL N .,.. N � �� � 'Q f6 � <(1 L > d C 0 � U C � C u" 7 � � � � � O � � Z ° 'S �i �s m �- >- °' ° c�o � a rn cn � a� �3 m c � c � c�v LL o o � � c� a, � U C7 °, �° co ._ c � =' � m c � � c o _ic c �c '*� Q � m � L � C � N � P� C � � ` R1 cts O � cn d in x � a � cn p cn m 'a cn cn a O cn z 9Gt��t7Gr7 ���Ci�C���6.7�7 �• • � e ,r � cd � LL _ ' li � � «. -a ._ .� „_, � m m � �n � � � O w, � 7 j � C u- f0 �-' C 3 j .r � ttf O f� c4 7 Vl � LL j ,,., Rf u" � u- 3 � u�.. �'- �- ti ° ' c�v c .. ro ... � .., -- a � u.. LL � m ,q c d .r � cv � m ~ � _ -� -' ti •ao 3 -- _, u- � R3 > > � �o �s �n ... �i in v_ � c c > > � � � .r � � � � c ti cc � m -a � a' � � o o -a c�a ii o o ti �i c � u- ca c'v � - � Y � � ro m o m c�a d � � m co � U c m = ' cr, c� ° � � �- LL � � o � � � � � u- ia V � � $. � � ,o ro E � c .� y m � � o U o � u � a`�i a Y 3 � � �° a Q Y � c�a � o a 3 i t �m i c s m c o m �� � � E c c � � � � m E m � m � m m c�u m � �m cn a o� z � cn � tn a� �n w rn cn � `c�i 'a m � a c� � w U J J O = in cn � m c7 �� • .. . . .. • . .. . � �� GeoNSat 7esting l.aboralories,Inc. Exploratory 0orehofe l.ocalion Map � I \� r � Plaie 1 I f \\� � � � J � \\ � � � .__,�__ � �. � � � r � Project No.11081-01 � � ,�,��Olo August 31,2013 ! I - � � � �.,QT$2 Approximate Location of Borehole(GeoMat) � j� � �A��e v�o��rTa ��-��-�-�� � PUBLIC INSTITUmIONAL / �;� I I �� � - � ` \ � MB b4192 � /r Approximate Location of Borehole(Iniand Foundation) I �� � �' \ \ / � /i � f � �� � �% � 1 �� � � � � � y � ,,� ��� ' � �+ � � � � l ` � �� � � �/��, ��� � ' ;� � � �LQW MED�IUM REISI�EN`TIAL � � / _ _ _ _ --�- -- I i f � � � �, x �� � I ( �MB 64192 � , -- -- -- �` ' � �� � � , �� � �� ( I � _ _ -- -- -- - - � � � � � � i� � 1 � \y/ � � --- - -' �. TR 4010 � ,,' �� � �� i _._ --- -- LOT 83 �i // / � 51 J � ,�� - --�--- _._ �.� � �_,_ _. _.�._ � � � /_.,,�- - -- -- �" ' �- OPEN SPACE �' ���ii / � I � -. w � _,L_ � ` EXIST. 100 YR,WATER SURFACE , �+ i' �o�?��y _ _ � ����-..._.. ,'� - MB 64192 ��\ �/i ,// + I �1 ��/ / � FE�ERAL WATER5 - / � J� "" ='1 � � � / Z. 1 I _ ^ • . / // �� ��y,y� / � ` �/ r_„__ _��,_� � „� .,...- -... � ./ R o �' "..� 59798'�_'` / /i ,��` � n � � BOUNDA Y t�as as�35"w "- � z1 � �i � �� I I �� _ _... ..._ _.--�.�. / _.__---.----___ y, _,., �.. -�- �� P ARC EL .,.�.__._.-.. ._.---�------��_i,�r --._. i � �� ��i � / �,� 1 I i 1 �� --» SiAT�WATFRS / �•-�'7'-""` � � / !I 5 �N38°i3'38"W 1.03' _•---- RET. WALI --�"� ---- �' / � I �� � I ` i ` �'" _-- -^�-`� ---'� �-~'_ .{ 1�--._ � RET. �yqLL-_I'--`_�� � % � � � �+ `�`::���,�..-- --- - - _..,___ _r� � J 27 --� � y �� � \ � � �i i � �-�-- _-�--,,. � /�/ aeT. w�� � �--.-�` �--��- � o i.s 2� o� i ii / � � � at :�---�r-- „r w"" �� _,,,. •< _ � x'- �-. o � .� '� � ii , ��` �-� � OS '�.:.�. � .-__ ,_` � � � `o.r � oz.t � ,�. � / � . ` � �� � ` � � � \ -J� ��--��_,.���.- ��3� 32� \ � � �� �' �" � �e � / 0�3 ^i ii� � � I 1 .�=� �`B s� _._- I -- 99;5._. -99:a- --aD.-r- -- �� -. �- � \ r� ° / //� �� \ � ` �t �3�- -- -- =��`J,� ._� ao.2 �3"6� � B-5 � cu �� B-3 / . -^ ` � 1 _" -- - T-1?Q,3=' � '^_ _--� ��� 00.4 2� � � ` ` 01.9 � � � � _� ��/ �Q, i / -�-� �_ �_ � �� �3 --0�:2 � �' � B_4 oo.s � c� � � � _ � s/�v 19 �\� ii ��� � � � �. -� o tit o2.0,} � � _ � 25 ` � � 02.� � �� / � � � t � � -. -"X�� � 0. ����'---._ 0.59' . `� �- � U 00.9 2 4 � � / �/ Q � � � �. _� �.- 1� _ ...- � �- -"� ..-- 2°"�" /� a sr��Fr � �-� � N � r � � b,.o 23 � � _ � � �� �i� ,�c'� � / / / \ � . _._ � _ � _ 1 1 `�' l�`_ ` -.�" � ' �' � s 2 � � / �` = - i ii� �`" � / � -�"'. ` � 01.9 -� �. �� / / 1 1 �- M� 38 B-7 39 ~ � � _� � B-1 � ii � \�FN �i'�,� 99.5 99.4 40 4� S/W ` � '- �� � o� y� 99.6 99.8 �Z 43 -` -- ` �"`� � 9�� � //� � �/� � :s � � ��.� f'AR K wa�.t oo.� 00.2 44 � � ` � ��� � ii e / / � �� m�,c� \ �` 99.5 gET. � oo.a 4� � i�. / � , ii o � � � ��F�\ �i'E� o°� o.za nc. R o0.6 46 -' �v�v � � � ii� � ����, �\ � � �` � � 5' er wq« oo.s 47 � �� � 16 � �. � �=W / � y� �'�,o \\ �\ �/ �R ST Q �s oi.o 4g /�i o1.� i ii �3`� � � i ._ d. / D 1.2 � � ti� � \ 9! \� �\� ... 0�1�, �' ti� �03.9 oa.� p4.3 0� 5� / y� B 4 , � %� /�� ��y ��` � p � �o, � o oa.� 52 / �� � 15 � ii �• � � �` � �9� \� �°��o � ` � � �'/W 04.3 5 f / 02.3 �' �/ � � y•/ \ \ T'o\ �\ 2a e-6 � q �N $ STREET � � aa.f a a 49 / �'¢" � � � �ii � `� � �� 1 � -- i � 9'D �� � ,�� 04.3 �. _ i ` M _�;` 03J 14 ry / // / �\ � Z -� 02 . � � / 02.9 / 9 / / � '-` � `� -�._ 2 / // �� � \ � Q�r` 04.1 `�1�59, � � � � . . � Ur�� `� +� :�`'ti:_ / � 4q� . � . � \� ��\� � z:� RE?�v.��� o3.s q, _ ~ �' - __�,,.___ s 13 � �' �2,�� 9 PM21414 \ ��F�.,S�\`�\p�f`\ � oa.i p4.3 065 7 � � � / o3.a `� � �i �?' � j � HIGH RESIDENTIAI, \ 6. .`'g, `� -� oa.s g � _ ��� � � i .s,a y���� ..� B-3 � h/i � � i EASEMEI�I'I'N07'ES PM 133113 � �`��\ �`�a��`.,� '�zo B_2 o4.s �g., 1 p �2 � �/� , - -- \ \ \�s.�� � � 2:r � 03.6 � ����� �� � � 03.9 �� / �'��� � � � ( / � �� P�ER�WSi��j��13$285�R C�OCTO�CRL20��474.�ASEMEN7�0��€iF�1A�CAE�D��AND ` �� � 03.7 � � 1 � � � ' '� \ \ \ �� � ��� � ` _ / FACILITIES TO�G ftELUCATED!RIOR TQ GRADI�C PERh(IT, \ '\�� �� ` 1 I �U � h"J EASF.NENT IN fAVOR OF S0.CALEfORNIA E�i50W C0.FOR GVE�NEAp E \ �\���f396j.,��` �� � 2; � �,ti�� ,� / �� GUNOERGRuUND ELECTP!CAl SUPPLY SYSTEM PER I�J�T.� I3tS89 REC. � � � ��� � � I � a�� � � OECEMBER 29, 19b9.EASE�dENT TD 13E VACATED A`iD FACiCITk�S TD t3E : � � \� `'�o�R � ��JD �� // + ���l ? �` RELOCl�TE�PRIOIt TO GRADING PERAIIT. � � � � �= �� ��5� � � �� V � � � �� � �� hN EASEA!EIdT IiV�AVOR OF S0.CALIFORNih EDISOI€C0.TO COWSTRUCT,USE, \ �O "� 1�� "'� l � = 1,rAlIJTAiN,REPNR,REIlEV7,RE{'LACE,RECOI.STRUCi,AIJd/OR INPROVE A "'_'c��� ��R.4iN i 1 B-1 � 1/' �� � oo� ''� �fRRAC � P,Oh61�AY IN,Qtd,OVER,ANO ACROSS PER IP;ST.{{A445G REC.dULY 25, i9G7. �� � \ � ,{ '-�--_..�__,_ ♦ / �� c`.-� cV EASEldENT TO DE VACATF.O AND�ACILITIES TO f3E RELOCATED PfiIOR TO / \ ^� £xlST�H��� �_, ��" 2:] � 11 � ��� GRADItdG PERMIT. \ � � � � � ��,�� �����' � / ��--' � I/ / �x "-' � � �� � � A RiGH7 Qf WAY FOR TELEPHONE AQ�ES AiJO hNCHORS A�"d0 TNE RIG1iT T� � ���� XISj. . �N25°p�, ;�� �740 \ I �� � k � � ��� � I(EFP 1HE SA.'�IF.FREE F�Otd FOLIAGF,OVFR BIOCKS 1.2, t8, 19,22,2c 23 e �'R1_ `� ��N' ��'�- � ` � q�� OF PAUOA LAN�AWD 44hTER COMPAt�'f'S SUQDfViS10!J Of ph?CEL 1,COIJVEI'ED � _ ~� ERZ�NE -``- -;;- -�-_ �Mp ATH PER 1� �� � ;� � � � � � �����81,q3� �-�,�� $CAA�p���S y�-s-� !/ � �. � � TU THE P<,CIFIC 7EtEPi�UNE,h��yD TELE�RAFH CUMPNJY B'r DEED RCC. � ti _ � ~_�` _1�=1 � y����G�apG �/ / y/ � � SfPTENCiF.R 21, t917 iN�OOK 470,I AGC 14 OF DECDS(�dOT PLOTTAI3LE). � _ �_ ���`� ~�`�� �i��*F,a� \ � � 1 Q ` a A 10'4'lI�F.F.ASEM[tJT CRAIdTfD TO J00 S.L[E Attp INKIE L[[FOR PUf2PGSES � MIRq '-- � o�,�� �/ / / � � GF INGRESS ANp EGRF55 PER I1JST.M iU07-D347270 REG 61A'i 25,2007 � '`' -` ��A�fja� ��'-' �' �/ EASEAdE1JT TO f3E VACATEU Ah;D FACILITIF.S TO f3E f2ELOCATE�PR',OR TO � �` .� � R�AD �`�T 6'sre KE �K�=�=�;� .' ` na. r I � GRnO�rac PEeMir. �` � � ,-_�_ ���; � � _._ _ � � � ` �_--_ -s�`' � � 8� �t �s' � ,s �, � '_ '� `�,� I I UTILITY/ �--•.1.4 ^" PEpSEIA Ni / � I I � S�w � PROP.A.C. EhSENENT � � PROP, j PAVEA4E�`� �'ROP. / �IG�R����4 � '`` I I �GURBER_,2%_ 27P, GUI�TER� � �13.�i NrIAL � I ' � �`�----- 1 � 13 \ � � �--� , A, B, C STREETS / 1 I I ' _� � � � � ____ (PRIVATE)�NTS 1 �-_ DA7E PREPARED.'JULY 2013 / � "�. �'� � / � ' � / � ' CITY �r TEMECUI.,A o� 4a• eo• �Zo� �bo� �ANCHO�IS�'A�ILLAG� 5ChLE:1'=40' ��t�V,j�2 0�� s }� . '� �!'! ;�� ,4�,� �2,.� \ ' ..,,.,_., .'�..................: .... 't..`I 1-._....,.,,_..,.w-._.,,..,,.,..,.. ,.... .... .. . �. � Jf_ ,y.._c.._E �,'><; k� - 3 f � ..� l �6},.s � .. i \? \....�°3'�.�_..? N �:y,, _. �. � �'. .., 1 E' :� � �.._._.2. 9 s, z � � f� i'i�i . ;'—. - �..(� 2��• � � tlf � � ,�:}3 E'; � .,............M�.��� £ ,�,. �\3 x.✓ � �,a;; �� ...,,.......�.. .,....:.....:.,_7 �: "` 1 � .}.; • ? ' /i ,�� j ` t t t�� „ iz {'v', #.�,v " �< .. .F. � `; ' ,,:, : �� gv 2�'4 j�� a� :�s {'t. : .� �'I ,{ FI�} c d�ij �Y �1Z _ bN ���,..,,,,., �Y .... ��..8 � i f �.�, �'S �� �a� t� .� � r l€, i � �� .'> s '1 l. - �"` � i 7 F E_s� �a�`;.. '€ �:Iti � R$� t � ��� `"'` a S ���� :��.,�.....-. ;i-�-�.� s i j i � � � �` ¢ �',A.'� 1� ,��:�� �` . . ✓ �� � : � � . �� �� �; , �k t � .. / F� ° ;: }, �'' x � s �s,e,,( SJ= ��,?�........ ......{��� C.:#i,.�'r`, S�` ��: �. �} � F � £� 3� ; �k �^`v' i�F �1 ,,�( � � I,`;':� ' e.,:{�' . k-�W . p t,i��t,t µ� ..�} y ' ��I�,�„....,-..� t'.y £ t �;. '�, �,`��, R �� P1' �\f j �!; � ,'�`-`:;-` l� �, .w.. . . ..{�.�� Ca� . � ��� 6� �� �. ,.�., z4�� J:t. E : ��� � `— �� ,� ', ; <: s �; ..� t ° :. � � s M�� � r� ` ; .. r � � ��t r�t�� i IF t Y $ � ° �. � � t�-a �� � °•°� a a'� ,. /�,� fi i E �, �� i. ( ,Yi � �^b k' � � d i () y. � � ,�r� , ;� � e g�i . �Y .� � €x: !i s�. t ,� ¢ i� 1, �� � �'° ............._.,..__._.,.._,.,,.,.,..,.„..„ $ � �;{ � .�: t i"' �� p i`` .. 1 ? i , 3 � j'. � . � �€, � � � � ;1 2 ' . G�( t < " �Y �.,.., � �i .0 3.��._ r ` ' F'�:. j� l E f�'^ 2' � . , ( �t !i t { j }��E f ..; S ��..y,� � � S ( .r"�✓�.. f i �.� L .. i��) � y �_ . f � �:_.3 . . ..�r�v�... �...,-...�- ._.._........+,., -:�.. ":.�,. "� ' ! r" i� f i y�� fj .. ,� ,. � . 7entative Tract Map 33584 Projec#No. 11081-01 City of Temecula, California December 30, 2011 SURFfC�AL STABILITY CALCULA7'ION . . . � . . . � � � .. �F��a . .. � m � . � . ... � � � -� �. . . . . ..� . . . . . . - � _ ���f � � . � . .. . . . - .�. ,�� : - �.- . . . . . . . . . � � . . � aIW[FMldiilifii((6�1Y�N�i�iili�. .... ... � . - .. � . ... .. . � . . . Satu rati o n Zo n e (h) = 4' Soil Total Unit Weight (Yt) = 120 pcf Soil Buoyant Weight = 62.4 pcf SlopeAngle (�}= 26.6° Soil Cohesion (C) = 288 psfi Soil Friction Ang�e (�) = 34° �� �- � + �w�2.� C� �'1 X �U��''� � X tc'�rl � � Yfix � x �r�s�3x �ir�f� FS = 2. 1 FS>1.5 is desired H =zone of saturation, usually taken as 4`, unless in arid regions�r where GVVT is uery deepg in that case H = 2' is sufficient. Plate 3 GeoMat Tes�ing Labora�ories, Inc. �n�t�n������� ���t���,��t r�f �e�r�����e�� �r�c��i� s e�� �r��r�r�N�� ���I� Project Name: Tentative Tract 33584 Prnject No. 11081-01 Refference: Nava! Facilities Engineering Command, Design Manual 7.01, September 1986 Definitions L1H (ft} � ��Immediate Settlement of Footing r � �� "'" _ _ _ ___ __ _ __' _� q (tsf) � W,FaotingUnitLoadintsf -_ r � � W � �_ _ _ _ _ _ _ � �_� B (ft)W_W;FootingWidth_ � __ ., _- - - - - - - �. __ _ _ - - - - - .. _ _ _ _ � _ _ ' ��W B D (ft) �Depth of Footing Below Grade ° - -- -- -�- - - - - --- - - -- - -- - -- - -- - -- -- - - - --- -- ---� Kv (t/ft3} ;Modulus of Vertical Subgrade Reaction (from NAVAC 7.1-2�.9) � --- - - - -,-- - -- - - - - - � - - --- - - - - - - - - - - -- - --- -- -- -, Note ;Modulus of Esticity lncreasing Linearly with Depth ; _ _ _ --__ -- --- -- - - -- - -- -- - - - - - - - - .. .. .� _ - - - - - _ -� - _ _ �����e��r�a�������� For B<_20 feefi: OH =4 q B2/Kv(B+1)Z Interpofate for Intermediate Vafues af B For B >_40 feet: �H =2 q 82/Kv(6+1}2 C����������� ���� For B<20 feet: �H = 2 q BZ/Kv(B+1)2 ��1��I��i�n�. Enter yellow Fields q 1 tsf B 1.5 Kv 100 From NAVAC 7.1, Fig 6, P 219 Shallow Footings D S B: L1H =4 q B2/Kv(B-�1) �H =2 q B2/Kv(B-�1) �H (ft) 0.014 �H (ft) Q.007 �H (in) 0.2 OH (in) 0.1 For B<_20�eet For B>_40 feet Notes: For isolated footings multiply the settlement computed for width"B"by 2. Terzaghi, K.and Peck, R.,"5oil Mechanics in Engineering Practice", Page 489;suggested that for footings on sand,differential settlement is unlikely to exceed 75%of the�otal settlement. For clays, differential settlement may in some cases approach the total settlement. Plafie 4 SUBDRAIN OPTIONS AND BACK�YLL WHEN NATTVE MATERIAL HAS EXPANSI�N INDEX OF <50 QPTION 1:PIPE SURROUNDED WITH Cl..ASS 2 PERMEABI.E MAT�RIAL �PTIQN 2:GFtAVEL WRAPPED IN FILTER FABRIC WITH PROPER WITH PROPER SURFACE DRAINAGE SURFACE DRAINAGE SLOPE SLOPE OR LEVEL OR LEVEL 12" 12�� •. NATIVE ; ,. NATIVE WATERPROOFING � �•� (SEE GENERAL NOTES) �.• WATERPROOFING ��!� '•�'•' (SEE GEN�RAL NOTES) �ILTER FAgRTC �•.'•' (SEE NOTE 4) • 12"MINIMUM , `.. �y ', • �� 12"MIf�IMUM CLASS 2 PERMEABLE WEEP HOLE FILTER MATERIA� WEEP HOLE ,` 1/a TO 1�/z INCH 5IZE GRAVEL (SEE NOTE 5) `•� ' (S�E GRADA"fION) (SEE NOTE 5) �';:° WRAPPED IN FILTER FA6RIC .'.O. O, " � ` 4 INCH DIAMETER , ••• � LE1/EL OR PERFORATED PTPE �EVEL QR SLOPE (SEE NOTE 3) SLOPE Class 2 Filter Permeable Materia)Gradatlon Per Caltrans Specifications Sieve Size Percent Passing 1�� 100 ��4�� 90-100 3�g�� 40-100 N�,4 25-40 No.8 18-33 No.30 5-15 No.50 0`� No.2fl0 0-3 GEN�RAI.NOTES: * Waterproofing should be provided where moisture nuisance problem through the wall is undesirable. * Water proofing of the walls is not under purview of the geotechnical engineer *All drains should have a gradient of 1 percent minimum *Outlet portion of the subdrain shauld have a 4-inch diameter solid pipe discharged into a suitable disposal area designed �y the project engineer.The subdrain pipe should be accessible for maintenance(rodding) *Other subdrain backfill options are subject to the review by the geotechnical engineer and modi�ication of design parameters. Notes: 1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting. 2) 1 Cu, ft. per ft, of 1/4-to 1 1/2-inch size gravel wrapped in filter fabric 3) Pipe type should be ASTM D1527 Acrylonitrile Butadiene 5tyrene(ASS)SDR35 or ASTM D1785 Polyvinyl Chloride plastic(PVC),Schedule 40,Armco AZ000 PVC,or approved equivalen�. Pipe should be installed with perForations down. Perforations shauld be 3/8 inch in diameter placed at�he ends of a 120-degree arc in two rows at 3-inch on center(staggered) 4) Fifter fabric should be Mirafi 140NC or approved equivalent. 5) Weephole should be 3-inch minimum diameter and provided at 10-foot maximum in�ervals. If exposure is permitted,weepholes should be loca�ed i2 inches above finished grade, If exposure is not permit�ed such as for a wall adjacent to a sidewalk/curb,a pipe under the sidewalk to be discharged through the curb face or equiv�lent should be provided, For a basement-type wa(l, a proper subdrain outlet system should be provided. 6) Retaining wali plans should be reviewed and appraved by the geotechnical engineer. 7) Walls over six feet in height�re subject to a special review by the geotechnical engineer and modifcations to the above requirements. RETATNIfVG WALL �3ACKFILL AND SUBDRATN DET'AIL _ FOR WALLS 6 FEET aR LESS IN HEIGHl' �Ia�� � WHEN NATIVE MATERIAL HAS EXPANSION INDEX OF <50 �—X=I'Yl I�---=� �-INE LOAD, Q� '�-� STRIP LOAD, q a i � � � �;,��� .; ,,: , ; _ �� .; .� ,. ` ��`�,. � � ��2 For mS0.4; (� Z=n H - .�.. 6n= Q� o.2n �.�.._._..�.�....,. ......�:.:.�..__.-=----- H (0.16+r�)z / rn .._..._....,..__..........._.__.�...._�.....__v.. F o r m>0.4: ..._............................_........ �r' �--{ a,,= Q� �.28��, H H (�+�j��- ._ � �� �....._..�_ 6n .............._.._ .._.__......._. csh= 2� (3–S!N j3 C 0 S 2 a � {�iin radians} \ -,\ � �` _ __ .._..._._ _ _..... _..... _ -- -..... .._.., �LINE„ LOAD PARALLEL TO WALLj �STR�P L�AD PARALLEL T0 WALL� —*—X=m H —"' POINT LOAD, QQ ;; .,.��v� � . • `�., Z—n H _...._.M.._..._�.��...,,��....._....w_.____._.�. A �..�.......�..�..;,, A' H �or mS0.4: _....�....� �n= Q P 0.28 n� 6h � (0.16+r�3 For m>0.4: 6h= Q P 1.7 7 rr�n :,,:., H2 (rr�+r�)s– ,� �%- �: (A) �A') .�� ��� �.,, � X=mH ��8 �'h =�,cos2(�.��} � � NOTES: 6h �� 1, These guidelines appfy to rigid walls with � Ppisson's ratin assumed to be 0.5 for backfill materials. DISTRIBUTION OF HORIZONTAL PRESSURES 2. Lateral pressures from any combination of ---- -- - -- above loads may be deiermined by the �ERTICAL POINT LOADJ principle of sup�rposition. SUPCI-IAR(xIa. INDU(;t�'I) P�a�e 6 SCAI�Ia.: N'I'S S1'ATIC I,r1�I,IsRAI, Is'r1P'I'I-I I'PI�:�iSURi?S Tentative Tract Map 33584 City of Temecula, California Tentative Tract Map 33584 Project No. 11081-01 Ci#y of Temecula, California December 30, 2011 BIBLIOGRAPHY USGS, Geologic Map of the Temecula 7.5 Min Quadrangle, San Diego and Riverside Counfies. CGS, Seismic Hazard Zone Report 115, Seismic Hazard Zone Report for the Murrieta 7.5 Min Quadrang[e, Riverside County, California, 2007. Association of Engineering Geologists, Soufihern California Section, Special Publication, Geology, Seismicity, and Environmental lmpact, 1973. Association af Engineering Geologists, Southern California Section, Special Publication 4, Engineering Geology Practice in Southern California, 1992. Bell, F. G. {Ed.), 1994, Engineering in Rock Masses: �xford, L.ondon, Boston, Butterworth-Heinemann Ltd (member Ree� Elsevier group), 580p. CDMG/CGS, Digital images nf official maps of Alquist Priolo Earthquake Fault Zones of California, southern region, CDMG/CGS, Fault Inves#igation reports for devefopment sites within Alquis�Priolo Earthquake Fault Zones in southern California, 1974-2000, CDMG/CGS, Fault Evaluation reports prepared under the Alquis#-Priolo Earthquake Fault Zoning Act Region 2—Southern California, CDMG., Geologic Data Map No.6, Fauit Activity Map of California and Adjacent Areas, 1994. CDMG. Note 36, Geomorphic Provinces and Some Principai Faults of California, 1986. CDMG. Bulletin No. 146. CDMG/USGS, Preliminary Digital Geologic Map of the Santa Ana 30'x 60'Quadrangle. GSA., Geoiogy of North America, V. G-3, the Cordilleran Orogen: Conterminous U.S., 1992. GSA., Memoir 178,the San Andreas Fauffi System: Displacement, Palinspastic Recanstruction, and Geologic Evolution, 1993. USGS, OFR 03-189(Geol. Map Murrieta Quad. Riverside County), USGS, OFR 2006-1217, Geologic Map and associated figures of the Santa Ana and San Bernardino 30'x 60'Quadrangles. USGS. Map MF-1964, Map Showing Late Quaternary Faults and 1978-84 Seismicity. USGS. 4pen File Report 85-365, Distribution and Geologic Relations of Fault Systems in the Vicinity af the Central Transverse Ranges, southern California, 1985. USGS. Professional Paper 1515,The San Andreas Fault System, Calif., 1990. USGS. Open File Repnrt 96-706/DMG Open-File Report 96-08, Probabilistic Seismic H�zard Assessment for the State of California, 1996. Websites: CDMG/CGS, USGS, and Riverside County GIS GeoMat T'esting Laboratories, Inc. Appendix A Tentative Tract Map 33584 Project No. 11 Q81-01 City of Temecula, California August 31, 2013 REFERENCES Inland Foundation Engineering, Preliminary Geotechnicai Investigation, Proposed Residential Development, Mira Loma Drive, Temecula, California A.P.N. 944-060-006." Report Dated April 19, 20�5, Project Number P283-003. GeoMat Testing Laboratories, Inc. "Preliminary Geotechnical Investigation Report Update, Tentative Tract Map 33584, A.P.N. 944-060-�06, Proposed Residential Development, Northeast Corner of Mira Loma Drive and Rancho Vista Road, Temecula, California." Report Dated December 30, 2011, Project No. 11081-01. GeoMat Testing Laboratories, Inc. "Addi#ional SubsurFace Soil lnvestigation, Review of Rough Grading Plan, Foundation Recommendations and Liquefaction Analysis, Tentative Tract Map 33584, A.P.N. 944-�60-006, Proposed Residential Development, Northeast Corner of Mira Loma Drive and Rancho Vista Road, Temecula, California." Report dated February 11, 2012 Department of the Navy, Design Manual 7.01, Soil Mechanics, September 1986. Department of the Navy, Design Manual 7.02, Foundation and Earth Structures, September 1986. Department of the Army, US Army Corps of Engineers, Engineering and Design, Bearing Capacity of Soils, EM 1110-�-1945. CivilTech, LiquefyPro Software. Principals of Foundation Design, Braja Das. Rober� Day, Geotechnical Engineer's Portable Handbook. Robert Day, Geotechnical Foundation Handbook. Manual on Scour at Bridges and other Hydraulic Structures. GeoMat Testing Laboratories, Inc. Appendix A GEOTECHNlCAL BORING LOGS Drilf Hole No. B-1 Date: January 15,2012 Project No �1081-01 Drilling Company: GeaMat Type of Rig: CME 45 Hole Diameter: 5" Drive Wei ht: Auto 140 Ibs. Dro : 30" Elevation: Existin Surface � GEOT�CHNiCAL DESCRIPTION J f- N�,T � � �(n � � 4 N ��? �Z �a �� LOGGED BY: TK p y� m ic �W� p �V � SAMPLED BY: TK � SM SILTY SAND: 2 Medium Brown, fine to coarse grained, moist 3 4 5 CR 6 7 8 9 10 '[2 SS s � � %Passing No.200 Sieve= 14 s � cn ''a c 'I1 � � � � 12 13 14 � � � � 4 � a WELL GRADED SAND WITH SILT:same gravel 15 '�4 SS s � p SWSM %Passing No. 200 Sieve=5 16 17 TOTAL DEPTH= 15' NO GROUNDWATER �8 BOREHOL� BACK�'ILLED 19 20 SS 21 22 23 24 25 Ger�NJat 7`esting Laboratories, Ir�c. GEOTECHNICAL BORING LUGS Drill Hole No. B-2 Date: Januarv 14,2012 Project No 11081 m01 Drilling Company: GeoMat Type of Rig: CME 45 Hole Diameter: 6" Drive Wei ht: Auto 140 Ibs. Dro : 30" Elevation: Existin Surface w GEOTECHNICAL D�SCRIPTION ��, N�_ � � v�vi w � �� p�� o� y n �g LOGGED BY: TK N� � � � Q m � U SAMPLED BY: TK 1 SM SILTY SAND: 2 Medium Brown, fine to coarse grained,moist F11[ 3 4 2Q � 5 rj7 CR 32 q�j � 56 � � 6 7 8 9 9 10 �$ SS s � � �ight brown,silty fine sand �o � �n � � 't 1 � � � � 12 13 14 � � � � c 15 2� SS 1 � 0 12 16 17 18 19 � c 9 � Zo 30 ss ,5 0 TOTAI.DEPTH=20' 2� NO GROUNDWATER 22 BOREHOLE BACKFII..LED 23 24 25 GeoNlaf T'esting l.aborafvrles, Inc. GEOTECHNICAL BORING LQGS Drill Hole No. B-3 Date: Januarv 15,2012 Project No 11081-01 Drilling Company: GeoMat Type of Rig: CME 45 Hofe Diameter: 6" Drive Wei ht: Auto 140 Ibs. Dro : 30" Elevation: Existin Surface w GEOTECHNICAL�ESGRIP710N w� ��y � � � � �N p�� oz Np �g LOGGEDBY: TK �� `° wo � � m � � SAMPLED BY: TK 1 ML SANDY SILT: 2 Medium brawn, moist 3 4 s 21 CR is �,� 124 8 Light brown �s > �- 6 % Passing No.220 Sieve=62 7 8 9 10 22 SS i � � 4 SWSM SAND W[TH SILT 11 � N � � 11 � p Tan brown, �€niformly grained 12 % Passing No.220 Sieve=6 13 14 15 �6 SS 9 � � 15 C� 1.EAN CLAY a� .� 16 � � Medium brown, uniformly fine grained 97 18 19 % Passing No.220 Sieve=68 4 20 13 SS s � � 24 LL=32 PL=23 P1=9 $ > � 21 22 23 24 � � � � 6 � � 25 1� SS � � 0 $ SWSM SAND WITH SILT 9 GeolVlat �'estinc�Laboraforaes, Inc. GEDTECHNICAL BORING L4GS Drill Hole No. B-3 Date: Januarv 15,2012 Project No -1�081-01 Drilling Company: GeaMat Type of Rig CME 45 Hole Diameter: 6" Drive Wei ht: Auto 140 fbs. Dro : 30" Elevation: Existin Surface w GEOTECHNICAL DESCRIPTION �� ��_ � °= cnui � N Q� p a z �� �o �g LOGGED BY: HMN � � � n m � � SAMPL��BY: HMN 26 SWSM SAN�WITH SILT 27 Red brown,coarse sand with gravel 28 % Passing No.220 Sieve=8 2g E a� � � � � 30 24, SS i �� 7 SM SILTY SAND 13 31 Gray,fine coarse grained 32 % Passing No.220 Sieve= 14 33 34 35 32 14 22 CL LEAN CLAY 18 � cv 36 = 41ive brown 37 % Passing No.220 Sieve=62 38 L1.=47 PL=27 P1-19 39 40 35 � 20 13 � 22 �- 41 = % Passing No.220 Sieve=62 42 43 44 �5 110 as � 16 ssia°� _ 46 47 �— TOTAL DEPTH=50 FEET, ag GROUNDWATER AT 29', HOLE BACKFILLED 49 � 11 � so 74� 63 = 20 % Passing Na.220 Sieve=58 GeoMaf T"esf�ng Laboratories, Inc. GEOTECHNICAL BORING LOGS Drill Hole No. B-4 Date: Januarv 15,2012 Project No 11081-01 Driiling Company: GeoMat Type of Rig: CME 45 Hole Diameter: 6" Drive Wei ht: Auto 140 Ibs, Dro : 30" Elevation: Existin Surface uj GEOTECHNICAL DESCRlPTION J� N�Z � � �� � N �N p a z 0� �d �g LOGGED BY: TK N� � � � � m � U SAMPLED BY: TK 1 SM S1L.TY SAND: 2 Brown,fine#o coarse grained,mofst 3 4 27 � 5 60 CR 43 � � 49 � 0 6 7 8 9 4 10 '�$ SS 7 � � Dark brown, fine to coarse grained with gravel 11 � c � 11 � p 12 13 14 E � � � � �s �5 ss s � o TOTAL DEPTH= 15' 16 NO GROUNDWATER 97 BOREHOLE BACKFILLED 18 19 20 21 22 23 24 25 GeoMaf Tesfing l.aboratories, ln�. GEOTECHNICAL BOR�NG LOGS Drill IHole No. B-5 Date, Januarv 15,2012 Project No 11081-01 Drilling Company: GeoMaf Type of Rig: CME 45 Hole Diameter: 6" �rive Wei ht: Auto 140 Ibs. Dro : 3�" Elevation: Existin Surface w GEQTECHNfCAL�ESCRIPTION �� ��s � � v�vi � N �NW O�? o Z �o �� LOGGED BY: TK a y~ m 1° p O =U � SAMPLED BY: TK � SM SILTY SAND. 2 Red brown, moist, sandy 3 4 12 � 5 30 CR 20 � 118 13 % Passing No.200 Sieve= 15 2s � 6 � s 9 4 �0 14 ss � � � 7 Dark brown 7 � � C 11 � p °/o Passing No.200 Sieve= 19 12 13 14 15 '�6 SS 9 � � 15 CL-ML SANDY SfLTY CLAY � L 16 � �' Olive brown, cohesive,sandy 17 LL=29 PL=22 P1=7 18 % Passing No.200 Sieve=63 19 6 � N 20 14. SS s � � 16 SM SILTY SAND a � o 2� � Tan brown silty fine sand 22 % Passing No,200 Sieve=30 23 24 5 j U`-_ 25 1� SS 6 CL LEAN CLAY 9 �eo�a� Testing Labor'atories, Inc. GEOTECHNICAL BORING LOGS Drill Hole No. B-5 Date: Januarv 15, 2012 Project Nn -11081-01 Drilling Company: GeoMat Type o#Rig CME 45 Hole Diameter: 6" Drive Wei ht: Auto 14�Ibs. Dro : 30" Elevation: Existin Surface � w GEOTECNNICAL DESCRIP710N � �a� � E- � � g N p�z o� �a �� I.OGGEp�3Y: HMN N� � a � � m � � SAMPLE�SY: HMN 26 19 CL. LEAN CLAY 27 LL=32 PL=22 P1=10 28 % Passing No.200 Sieve=51 29 � � � � 30 20 SS o � � 5 SWSM WELL GRADED SAND W1TH SILT 10 31 Tan brown,fine to medium grained 32 % Passing No.200 Sieve=6 33 34 35 26 2 E � 9 14 � � � � 36 � p % Passing No.200 Sieve=8 37 38 39 a� � 40 '�'�Q 2s � 8 % Passing No.200 Sieve=6 as � 61 �1 j Becoming gravelly 42 43 44 � � c 45 70 32 0 19 SM S1LTY SAND: 38 Z` N 46 �' Olive brown, silty fine sand �7 % Passing Nn.200 Sieve=33 TOTAI.DEPTH=50 FEET, 4$ NO GROUNDWATER H�LE BACKFILLED 49 � � � �a � � 50 �2 3Q � 52 �eoNlat T'esting Lafaoratorles, Inc. � i APPEiVDIX A FtE�.D EXPL�RATIC7N For our field investigation, seven exploratory barings were excavated by means of a truck mounted ro#ary auger rig �t fh� approximate locations shown vn Figure No. A-8. Con#ir�uous togs of the ma#erials encountered were ma�ie on the si�e by a Soil Engineer. These are presented on Figure Nas. A-2 thrvugh A-7. Represen#ative�undisturbed samples were abtaingd wi�hin our borings by dri�ing a �hin-walled steel penetration sampler with successive 3Q-in�h drops of a 140-pound hamm�r. The number of blows required to achieve each six inches of penetration were recorded on our boring logs and used for estimating the �rel�tive consistencies of the subsoils. Two difFerent samplers were used. The �rst sampler used was a Standard Penetration Sampler for which published correlations relating the number of��rnmer blows to the strength of the soil are available. The second sample�type was larger in diameter, carrying brass sarr�ple rings having �nner diameters of 2.5 inches. Undisturbed sarnples were removed from the sampler and placed in moisture sealed containers in order to preserve the natural soil moisture content. They were ther�tr�nsparted to our laboratory �for further observations and #esting. Representative bulk samples were abtained and returned to vur labaratory for further testing and abservations. Tt�e results of this testing are discussed and presenked in Appendix B. Geqtechnical l'nvesligalron—Mira l.orna Drive f'roject No.P.283-003-April ZODS ��1 Inla�ad.�"au�edatrora.�r�g�nee�°in�,Pnc, , } �pPENn�x B L/�BORATC}RY TESTiNC Representative bulk soi[samp[es were abtained �n the fteld and r�turned to our laboratary for additianal observatians�nci testing. l.abora#ory testing was generaEly performed in iwo pha�es. The ftrst phase consisted of testing in order to determine the compaction of the existing natural sail�nd the general engineering c[assifica#ions of the soils across the site. This testing w�s p�rformed in order to estimate the engineering characteristics t�f thc svil �nd fo se�ve as a basis for seCecting samples for the second phas�af testing. The second phase consisted of soil mechanics and analyfic�!testir�g. This testing included direct shear testing,expansiQn testing, consolidafiion testing and testing to es#imate the concentration of water-saluble sulfate, pH, resistivity and chlorides. These tests were perFormed in order to provide a means nf developing s�ecific design recommendations based on the strength and cx�rr-osive characteristics of�he soil. CLASSI�iCATIt)N ANa C('�IVIPACTION TESTING Urtit Weight and Maisture Content De�erminations: Each undisturbed sample was weighed and measured in arder ta determine its unit weEght. A small portion of each sarrtiple was#hen subjected ta testing in arder to determine its maisture content. `�h�s was used in order to determine the dry density of the so�l in its natural candition. The resuits of this testing are shown on the Boring Logs (Figure Nas. A-2 through A-7�. IV�aximum Density-�ptimum Moisture De#erminatians: Representative soil types were selected for maximum dens�ty determinations. This testing was pertormed in accordance with the ASTM Standard D1557-00 test method A. The results afthis testing are presented �raphically an Figure No. B-4. The maximum densities are compared to the field densities af the sail in at-der to defierrnine the existing relative compaction to the soil. This is shown on the€iaring Logs, and is useful in es�ima#ing the strength and compressibility of the soil. C[assjfication Testing: N�ne soil samples were selected for ciassification test�ng. This �esting consists af inechantcal grain size analyses and Atterberg Limits de#erminations. These provide information for developing c�assifcations for the soil in accordance with#he �lnified CJassification System. This classifcation system categorizes the soif into groups having simifar engineering characteris#ics. The resu�ts of this testing are very useful in detec�ng variations in the soils and in selecting samples for�urther testing. The results of �his testing are presented an Figure Na. B�5 and B-6. Geolechnica!Cnvesligalion-Mira Lnma Drive Project No.P283-003-Aprt!2�OS I3-1 I�tla�t[�'FUu�dat�r���ngltteer�ng,dn�. i �.�� �� �+���r�� ��o� Elev�tion; _--- L�at�(s) l7ciited: 3/7/0S Logged by: �WC #�rilling Method: Rota �u er Hammar Type: _� Auto»Tri brii�ing Rig: CMEy'�S Hammer Weight: 1dq lb. 8oring Di�rt�et�r: 9Q�in�h�� Hammer C�rop: 30-fnches SUMMARY qF SUQS€JRFACE CONQI`�iUNS 5AMp�.�S 1'�is surtYmary aPPEies only si the locatian af tha EwRng�nd at the time of dtfliing. � Subsu�iar:�►conditlons in�y di#rter at o#her lacablan�and may change at tf�is � .�w.► n�, � � Q ,.� locabion with#he passage af time. The data presanted fs s��implifiration of � = u� Y � actuai conditfans encountatad�nd is repr�ser�tative of intgrpr�fatians�nad$ � � u� � � >� � = during d�illing. Cantrastfng da#a derfved fram labaratnry anslysts maynot ba � �„ � � � w a� � � � retiected in these rapresentat(ons. � o ca � o � � � � �� �o ,��ICI,,,�,,,,AL F!L!».SILTY SAND,fine to medium grainsd, 14 91 bra�nm�moist, laose to medium den�e. . .SC SlL7Y C tir�e to medium grained with ciay, SS � 15 114 � � �SNf brnw�t,maist,loase to medium dense. fi �� •:SM SIL 0 flne grained, brown,moist, medium dense. SS 8 14 �17 8 -' •:SM SIE.,,,�S�ND.fine ta medium grained, brown,moist,rt�edium $� �7 Z� ��� 14 dense. 5�} ;thin tayers sanc[y silt througho�€t- �L7Y C fine rained ra brown moist hard. �� 2� �� �� �::�:�M�. SA� �ne t4 cvarse graine�wlth trace gravei, brown�slight(y 3� 15 � SP moi�t,dense. SS 2� 3 1Q5 3� �0 -mare grave!at depth- SS �0/4" 3 S� 25 S� 35 +� �10 � �SW V11��.1�GRAD�Q SAND wiEh SfLTY C�..A,Y,medium ia ve�y �� �C co�rsa grained wilh gravel,gr�y brawn,sligh#ly moist, medi�m 30 de�nse ta d�nse. �� �0 4 19 6 50 3� SS 37 4 108 50f5" �� � :SM SIL7Y SAND fine gr�ined,oEive brown,slightly ma�st to mois#, med�um dense. SS 38 8 124 -fhin layers sandy silt thraughout- 5Q 4� :';':5P A D #ine to mediurn grained,�ray br�wn,sliglhtly rnaisE, `'� mediurn dense to dense. SS �a 4 1��� -- 5� ,;;�-`:���;,SM -hard drillin frorn 49 feet to S5 fe�t- ��� S5 18 15 '1�3 �;IITY�ANQ,fine grained,gray brpwn,s�ig#�t1y maist to maist,densa. �� -thin layer�s�cndy�itt thrc�ughout- .�....� Geot�chntc�t tnaestiga�tion ��ure No. 11VL��C.� �C)E.1NI�A.Tt�N E�I�''a1Nl���NN�, I��. ��ra�.o�ma�r. T�mecuta,CA �'ra ect No.P2�3�d?a3 A�«�'� � r :�� �o� o� sa���� s�a� su�n���r o�sv��u����� coNo�-r�oNs �A"�P��� This aurnm�ry 8pplfie�oniy at the lo�ation of the boring and at the tlme qf drilEing. � °e Subsurface cand�iana may differ at other locations�nd m�y chgngg at thls � � 4 a� � � locetion with the passa�e oi t�me. 7he data presented i��simpldffr.ati�n nf � w '� v acxual t�ndftlnns�nC�untat�ti�nd ls r�presentative a€Interpretattans mad� v� �° °� � �� � durir�g cEr�R�g. C�traat��t�d�ta dersved fram laboratory analy�is may nof 6e � y� � � � � �a. � � �ttec��eci�n thase rerpr�s�r�t�tlons. Q � � � � �� �� ;' :SM tl. �1ND�ine gcained, brown,slightly moist,dense. �� 54 4" �2 �2� .SP �„AND�fine fo coarse�reir�ed, brown�sfightiy moist,dens��. �� fi� -very thin I�yer�silty sand or sandy s�it tnroughaut- SS 27 4 1 Q5 SUI��� �5 -sand wifh sitt�ay��'s SS 54 9 11d 70 � SM StLT'Y SANQ �ine tc�medium gr�ined� brow�, moist,dense. 55 2� 14 120 _ -hard drif�ing from 71 rteet to 1 UO feet- �p �5 :•�. SP SANQ•f�ne#o coarse grained,gray,sligt�tty moist,dense. SS 43 3 1A4 •very ihin i�yers silty sand or sa�dy silt thraug#�aut- ��/�,� 80 �N1L SAN!] SI T,fine g�ained�gray brawn, slightly rnc�ist,v�ry har�. SS 2� �6 114 S(�15" �; 85 '-'. :;'• G�. SA�DY.��LT1f,Ct,.A�Y,very fine to�ne grairted, olive,slightly S5 25 2�f i09 ML moist,vety hard, �0 9E� SS 34 Z6 �U� :';'� SP �'�ne to caarse�rained witkr trace�rauel,c�range 50/5" �� browr�,�(��htiy mo�st,medlum der�se,slighilt ta m�deratelt >:: �:: g5 cernented. �� SS 1C 7' 112 ;.; 50I5" T.� 'oa �:�' End of boring�t 1�1 feet. No groundwater�r mot#lin9 50/4�� encountered. � � �: .�.�...^.�..�� Geotechni�a��nv�stigation F�Jur�hio. M�� Loma�r. '� N� ���N�l�k���� ������������ ���. T�me�ul�,CA , y:.:.:''..-:ii:F P'r0 8Ct iVd.F'x$3-003 14�;.��..�'�°° � � �c�� c�� �a��N� �-a� � �levatlpn: Qate(s��rilled: 3!$I05 Lagged by: F'1NG Drilifng Method: I�o#�ry Au�er Hamme�Type: Auto-Trip prilling Ri�: CNi�-76 Hammer Weight: 1dO lb. 8ori�g Diame#er: 10M�nches Hammer Drop: 3�-inctr�s aUMN�ARY C�F SUB�URFACE Cl"�NDIT'IC�NS ��'p�"�� This summary appf�es oniy at the Eocatlon a#tha baring a�at t��time of driiling. � Subsurfaae conditions may di�er af other lacat��ns s�n�may ct�e�nge at khis � Q � � � toca�on with the passag�of dme. 7he data pr�sented is�s�mplification nf � � � �� actc�al cand�tians&ncauntered and�s representatnre of inierpretat�ans rt�ade � ,,,� � >d � during drilling. Contrasting data derived frorn labaratary ana�+�may not be � � � � �� � � �fl�cted in these represantativns. � � � o � � t� a �a m � m � a� �° AR7iFlC1�1��I�.i»,SILTY SANQ,fir�e ta medium grained with 1� 93 �' •��� trace cla brown maist loase. �� �� �� ��� SII»TY SI�ND.fine to m��ium grained, brown, moist,m ium �� $ dense to dense. SS 23 8 �t 13 33 SS 2 i 1'l 1 Q7 �0 �� SS 29 � 1��4 .":�. SP SANd,f�ne to coarse grained with tr�ce�ilt, brown, moist, 3� meciium dense to dense. 15 SS 25 S 415 35 �a •ML S NDY St�,T,�finq grained,ol�ve brown,moist, hard. :;`•:SP SAND,fin�to very�t�arSe gr�ined with trace gr�vel,gray S5 5Q14" 4 124 brown,slightly moist, medium dense#o dense. �5 S5 2� 3 1 Q8 so so ss �� .,: O N.R 3� SS 35 5 96 S0/4�► 44 SS 1$ 6 1�2 �� 4� S� 2� �0 i 19 �0 ,. �� �a:��-:��r. S�LTY SAN�i �r�e to m�dium grair�e�i,gr�y brown, slightly SS �0 1a S9 'SP moist dense. SA.Np,fin�ta very co�rse grained,brawn,slightiy maist, dens�. G�ote�chnia�l rnve�tig�t�on Figura t�o. ���,�H� �����14���� �����������, N��. rillira Loma�r, �`emecuia,CA Proje�t No.P�B�-��3 Aw3� i � �+�� �� �o�ir�� �-a� �UMI�IA�tY C)F SUBSUR�A�� C4NDfTEO�IS sa�n�t��s Thls summary applieg only a�the bc�tion of th���ring and ac the tirns of drilling. W � Scibs�rfacs aonditk�n�may differ�t ather tocatians�nd may chan�e at this �' � '� � � � ,.., [acatfan with the�assage af 6ma. 7he data presant�d is�sim�slificatinn n# � � � � � actual condltions encounfered and k�representative of int�rpretations made � � �� � during drifting. ContrasGng dat�derived from labo�atoty an�lyxi�may not t�e � � � ~a. a, � � � � �� Q � refleGtetl In these rep[es�ntahons. � � � � � �� a v -hard drillin from 51 feet to 71 feet- SS 50 •:�� StL,,,TY,�ANi�,�fine grained,brown, mofs#,dense. -thin interbedded fayers s�ndy silt or sii#y sand wlth clay gQ thcaughout- SS 3p 6 1�8 6� 65 SS 5� 22 101 7D SS 44 13 95 5015" :':��:SP SA�ID,�,tir�e ta very coarse grained,ar�nge�rawn,sligh#ly 7� moist,dense�siightfy cemented. SS �� 1S 118 50l3" a : :' �:SM SILTY SAND,fine tn medium gralned, medtum gr�y,ma�st, dense. �nd af boring a�t 80.5 feet. Na groundw�ter or mottling �ncauntered. �� � Geotechni��! Investlgati4� ���f���. �� �� � �������� ����nl������� ���. Mtra Lvma C1re �'emecuras�� Pro ect Na,�'�8�-Q�3 Aw�;: • � ��� �� ������ ��� ��evatlor�: � o�te(sy aritfed: 3r8Ja5 �oggea ny: ,� Flt+rc Dril[ing Methad: Rot�r Augar,__� Mammer Type: Auta-7r�p Drill�ng Ftig: �CME-75 Marnrr;er We�ght: 140 ib. Boring Diameter: 90-lnches Hammer Drop; 3n-lnches SUAIl�V1Al�'Y C�� SI���URFACE CON��TIt�NS s'`��'��s Thfs summ�ry a�lies onfy al ffie bca�on of iha bortn��n�at ih�iime oi dri�fing. r, � Subsurface condidons may diifer at ather�ncat�ons and mey ch�nge st lhis a � � a,? � � ,�, (ar,ation wifh the passage af tim�. Tha data pros�nteci is a�Irnpt�'}catlon of � � � � ar�ual canditions en�aut�t��ed and is repressntative of intarpretaiions made � � w � � �� � during drllling. Contrast�t�g data der€ved imm laboraEary anatysis may naE be w � � �'� � y raflected in tt�se rep�e�entati�ns. a p �� � � � � � � o� � o._. �� •,�=.�•:S SAN€�WlTM_SILT,fine ta coarse grained, brawn,moist, 12 9fi '�`' loos�.(Fill� :�.»�. � �SC tl C YEY SA D fine to coarse c�r��ned,gray-brown, �� f 2 9 132 5 ' 'Si4l moist, �ediuin dense 19 9 116 SANDY Ct..AY,fins grafned,daric molst,stiff. �S � 14 922 :' �:SM 51„�SA,�, �ne grained with trace coarse.�ray-brawn, �S i 1 1� 1'f 8 1 p ','''�'� moist me�dium derise �7 '. 3A#Vp with SI�.T,fine to co�rse grained, brown, moist, ;: �� medium dense. - SS 12 6 104 �: �#hin tayars of si�yr sand,c�ayey sar�d vr sandy sil#th�oughout- �� 15 �' ;• SS 10 7 iQ� .; -fine#o medium graclned- ,�� . :' �:SM SILTY S�1ND,very fiine td fi�te grained,brown, moist,medium 20 der�se. SS 10 6 1fl9 :' �:SM SIl.'X`Y SANti.fine to medium grained,gray brow��moist, 1� . .,„,,,._.,_. madium dense. 2� �-thin interbedded layers of clay�y s�ncf or sandy sift tf�roughout- � �' ��, PT 3 27' :�•. SC �'o��tLY GRAa�D AND wI h SI CL Y an�l Gf�tAV L 8 #ine to medium grained, ight brown,wet,�nedium dense. 30 P7' 14 i 7 19 �A�ND StLTY CLAY,�ine grained,olive brown�moist,very 3� hard. �S 38 18 1 i� �r �ai��� 2s �� 40 '16 SPT 14 28 17 45 SS 18 �3 12� " �:5M S1L�`Y SAND fine to coarse gra�n�d, red brown, mo�st,v�ry dense. SPT 50/4" 9 3 aQ 5(l _.._._�. . CLAYEY SA�a,fine ta medufm gr�ined,gray br�wn, mo�st, 21 dense. En�of baring at 51.� fe�t. Grour�dwater�ncounlersd a#25 fee�. Geot�cchnFca�ln�vestigatton �►sur���� �� �� �����,��'��� ������������ ���. �ira Lotna Or. Tem�e�:u�"ae C�t Pro ect No. P283-q43 �«A� � Lt?G t�� Bt�RlNG �w4� �tavativn: Date(s)C3riiled: 318f45 �.agged by: �WC Drilling Methnd: �totary Au�g�r Ham�n�r Type: Auto-TNp Driliing Rig; CME�75 Hammer Vtl�ight; �14tt tb. ` 6oring piarrieter: 10-irtches Nammer Dra�p: 3Q-�nches Sl.11V�M�1#�Y�}� SURSURFA�E G4ND1TIt�NS s�aM���s Th�a aummary appli�s onty at th�locati�n ai the baring and at t�e time af dn#ling. ,,,, � i: Suba�wf�rx car�cfrtions may diffe�at other icxatians a�nd rnay change a1 this a � � ° � � �ocab�on with�e passaga of t�me. The dat�presente�is�simpfiC'ica�an of � � � w �, � tt � at�a3 candi�cK►s 9nc�Dunte�'ed anci is re�resenfative nf i€tterpretationa made rn �u � � � iti c#uring dril�ng. Gor�trasting data c�erived(rom laboratary analyats may not be w � a � � �od. � re�ct�ed in these representaUang. c�i m � m � �� �� :' • SM $L��A 1�7,,,��ne to medium grained, black, rnoist,Iooss. 8 1�7 Fiil '' •`�M 31�7.Y. SAND,�fine to medium grained wlth trace clay,gay SS � 12 124 � �rown, moist to very molst.medium dens�, �2 SS � 1n 12� 13 SS S 13 11$ 10 7 ': •r �S 8 11 122 1� . �� �nd a�boring at 1�.5 fest. No gra�ndwatsr�r muttling �7 encoun#ered. < ; ;� ; Geotechnic�!i�vesttgatlon ��lu�Na. N� �� �����/����� ���°af�������, ���w Mira Lama Dr. Temece��a,GA �ro eG�lvo.R�83-�Q� �1�� . i �IM�IF�/ �� ������ \MW�� , �(ev�tior+: Date(s�Ori[1ed: 3/8/05 l.agged by: �1NC �rilling Mlethod: Ro#�ry Auger Harnmer Ty�e: Auto 7r�p Drilling I�i�: CM�-�5 �M� Hammer Weig�t: 140!b. �oring Diameter: 14-inches Hammer Drcrp: 30-ir�ches SUMNIARY OF SUB�UR�'ACE CONQiTIC�NS �A�"�'�-�s Th+s summary applfes or�ly at tt►e i�caiion af fhe borirtg and at�he bime of dri�ing. � n � 5ubsurfaoe condit�or�s may dtffer at olher locations and may change at this a � � a� � � � lacation with the passage of time. Tha data pres�nted is a simp(ificalia�of � � � � � V achaa4 ca�di��ans encauntered a�i is representafir�nf ini�rpreEattans ad� � � � � � � � � � durir�g dri�ltng. Contr�sting data derived Erom�aboratary an�[ysis rnay�ot be u� � }- � �^a`�. � � � �etlected in these reprexenGatinns. � � � —' �y �� w p m � o... ac� : •:SM �iI.TY SAN�=fne to medium�raln�cl,dark gray,mo�st, loase,raotlet�f�roughout.(Fill) �� 3 g ��,� 3 5 SS 3 9 114 •:SM ��LTY�AND.fne ta m�dium grained vuith trace�lay,graY � brawn, moist to�ery moist,iaase ta medium dense. S� 7 12 1�0 ,�� 9 �� 8 13 123 9 �5 �S 6 13 1�2 � 20 � ':�� �IE.TY SAND.fine to coa�r�e grair�ed,gr�ay brawrt,slight�y moEst,medium dense#o der�se. SS 1 i 8 1�5 �3 z� ss �a �a �z� a� �nd afbarirtg at�8 feet. No graundwater or mottlirtg encountered. 7 I � � CyeoteCht���a�it�vestig�#tbn �igure No. 1��..1�N� F��lN�AT'IaIV It��1N���IRIN�, I��a A�tra Lorna�r. T�me�u�a,�A �ra ect lVo.P28��f}Q3 A�6 i i �� �Cl� Q�' BC�RING B-Q� Eleva�on: pate(s)4�ritled: 31810� Logged by: FWC Drillir�g Methad: 12otr� Au er Hammer Type: Auto�Tr#p., p�311ing#�ig: CME»7S Nammer Weigf�t: �,�,��id0 ib. ,.. ...._ 8or�ng Diam�ter: 10�in�che� Hammer Orop: 30-inches ; SUMiIAARY C�� �UBSU��ACE C(�NDITIUNS 5AMP1.�S � Tfiis sumrn�ry applbx oaly at Ehe��an 4f the baring and at the tlme of d�iAfng. � � �ubsurface cortditiorts may cfiffer at nihsr bcaBons and may change at this a ,• ,,. locattan w�h t�e passage of�me. Thc data presented is a�impliflr.�tiar�of � � s u�i � � � � � aGtuAE conditlans encountsr�d and is represgnt�tive of interpretatians made �} � W a � �c�. � � � durtng driifing. Coat��stin�data derived frorr�labarstory anatysis may noi be w � � � � �-�, � � �ettec�ed In thes�repre�entatfons. � � � o � a� �� � t] an va tn D a U :, S P ONGRETE 2 inches � •; �� �l.R,GRADED SANU v,���,t�5�1 ,,�',f�ne tv coarse grained wi#i� .• trace sil#,brornm,moFst to very maist,det�se. .; � ., SS �0 11 122 ' 23 : .• � SS 28 11 118 � -fine 10 v� fine reined- 35 : •.$� S! T'Y r�e to very caarse�rain�d,gray brown ta►o�l,ve �S �� �� 124 10 brown,moist,dense. �J��rJu �� �� �� ��7 �� ;; S �f�,LL,�,�,�D�D SAND wi�h StLT,fine fn co�rse grained, �� • SN! alive brown,moist ta very moist, dense. �� �� '��' �� -th[n layec af sand fine ta vecy coarae lhrough�ut- �fl . . ;;�".S WEU.GRADED SANd.fine to coarse grained, �rawn,very 2q -�`.w� mo�st,d�nse. ';.�::;► End of baring at 21.5 feet, No graundwate�vr mottling Y z� enco�ntered. � . ( Ge+at�ahntcal Investigatton �+�ure tvo. �� �� �����1�1���� ���i��������y I��. �ira Lom�pr. Temecula,��1 F�ro ect Nc�.P'2��WpD� A-7 . I �.o� a� Bo���� ��a�► El�vatir�n: � Date(s}Drilled: �1�1�5 Lagged by: FING Qrilling N�ethad: Ro�ary Auger �lammer Type: Auto�1"rip C�ri11[ng Rig: �ME 75 Hammer Weight: 34a ib. �ioring D��meter: 14-Inches Hammer prop: 3(l�in�hes �UII�MARY CaF SUBSUR�AG� CC?NDITlC�NS �AMPLES This summary app1l�only ai iha lacation of the baring and aE the ti�a of drilli�g, � ,,, � Subsurfaoe ccrnditians m�y differ at othar Iv�Gans and may change at lhis � `i' � � lacatlon witlti the passage of birne. The data presented is a simpliiEcation af � � • w � � � actuat oondlt[ans anoountered and i�represantative of interpretaUa�s mada w � °� � �� � � during drilling. Contrasting data derivad hom iabofatcry analysis may not be � �` � � � �n�. � � � rofle�t�ci ir�ttr�Se representa�ans. � � .,t � w� O � CA .=tA. m � Q V I�V . •:�::�'•:S WE��.t�FtAn�D SANd3fine to caars�grain�d wi#h tr��ce siit, .,''�.�; red brornm, mofs#, dense. SS 12 9 i31 .:�:.�,: �' :SM Si�3ANp�ine to aoar�e grained,red b�awn tc��iivg 24 g brown,moist�dense. S� 4Q 11 1�7 �interbedded layer of sand with silt th�o�ghout- �� -interbedded lay�r of datic olive material,high odar- . ,• , SS Zt} 7 1�8 .�� :; � YVELL G�tAn��SAND with SILT.�n�#o medium gr�ined, 3� ,• �M red�rown, dense . 5S 24 7 128 , �; 18 �. •. . 15 ' :• .• Er�d of bo�ing at�6 feet;Na groundwa#er or mottling �2 encauntered. � Geot��hnt�cai investtg�tfarr ��ur�t�a ���.1�,�� ������'r��� E��i��������'a, ���. Ntlra�.oma Dre 1'�mecuta,CA �ro�eCt Na.p2��-0n3 �►-$ LABORATORY TESTING INTRODUCTION The cor�tents of this appendix shal( be integrated with the geotechnical engineering study of which it is a part. The data contained in this appendix shall not be used in whole or in part as a sole source for infiormation or recommendations regarding the subject site. Not all nf the tests included in fihe following list have been performed on this project. LABORATORY ANALYSIS Laboratory tests were performed on selected driven ring or SPT and bulk soil samples ta estimate eng ineering characteristics of the various earth materials encountered. Testing was performed in general accordance with ASTM Standards for Soil Testing. The results of the laboratory analyses are summarized in this Appendix. Laboratorv Moisture and Densifiv Determinations Moisture content and dry density defierm�nations were performed on selected driven ring samples collected by California Ring Split Spoon Sampler(ASTM D1587) #o evaluate the natural water conten#and dry density of the various soils encountered in accordance wifih ASTM D2216 and part of D2937. The results are presented on the respective drill-hole logs. Sieve Analysis and Hydrometer Laboratory sieve analysis and hydrometer were performed on selec�ed bulk, driven ring, or split spoon samples collected to evaluate the grain size distribution of the various soils encoun#ered in accordance with ASTM D422. The graphical results are presented in this Appendix. Atterberq Limits Tests Atter�erg limits tests were performed on selected sampies. Liquid and plastic limits were determined in accordance with standard test method ASTM D4318. The test results are shown on Plas#ici#y Chart in this Appendix and may be also be listed on the respective drill-hoie logs. Direct Shear Tests. Direct shear tests were performed on a selected driven ring sample to evaluate the shear strength of the earth materials. The tes#s were performed in accordance with standard test method ASTM D-3080. Summary plots of the direct shear data are presented in this Appendix. Residual shear strength was obtained by re-shearing the samples. Compaction Tests Compaction tests were performed on selected samples of the onsite soils to assess their compaction characteristics. The tests were performed in accordance with ASTM D1557 and the resuEts are presented in this Appendix. R-Vaiue Tests R-value tests were performed on selected samples of surficial earth material. The tesfi was performed in accordance with standard fiest method ASTM D2844 or CT-301 and test results is in this Appendix. Expansion Index Tests Expansion Index tests wer� performed on selected samples of the near-surface soils to estimate the expansion characteristics. The �est was performed in general accordance with Uniform Building Code (UBC) Standard No. 29-2, Expansion Index Test Method. The results are presented in this Appendix. Soil Chemistry Tesfis/Corrosion Tests soil chemistry tests were performed on select samples to evaluate resistivity, pH, sulfate, and chloride. The results vf the testing and opinion on corrosivity to pipe and concrete materiais are summarized in the t�xt, The laborafory output is presented in this Appendix. Odometer Consolidation-Swell Test This can be used to determine consolidation (ASTM D2435) and swelling{ASTM D4546} parameters. Consolidation tests were performed on samples, within the brass ring, to predict the soils behavior under a specific 1oad. Porous stones are placed in contact with top and bot#om of the samples to permit to allow the addition or release of water. Loads are applied in several increments and the results are recorded at se(ected time intervals. Samples are tested at field and increased moisture content. The results are plotted an the Consolidation Test Curve and the load at which the water is added is noted on the drawing. Tent�tive Tract Map 33584 Project No. 11081-01 City of Temecula,California August 31,2013 LABORATORY TEST RESULTS 100.... -- -- � ___.......,.._.. , ' . 90 —---- -----..__.._.. .__. -- � — --- -__...........��....._._.._._...---... � ' , �� � W_-.,.. ..__._.1 .. E� _ ___- ___.-__--__.............. 1 _.-__ ___ . . �...,.."___'_. � ' ___ ,� �� t� •�r � � �„ 7�_`-.__._..............."__.___- � ,., ..______..'___...._,.._......_.._, _'-_-- V,^� _1__ -_ _ _- VI � � � � � ____ i C� - __. __�__.-.._.....,._".___-__''"-._ __ _..._,_.___'_'__{_ .__ ___".__.___._ C � � � � yo._.._____..... ----- ---- � ---- ---� _......._..._.... ; � , U , , ` � _..._.....- - ' - -- -- -------- �_. ------ � ---- - -- ; � � , , �._.__......... ----- ---�-._.... _-_-- - ----- _._..---- � � �o --.....____-- ---- �.._._._._.._-- -- - 1, . _.__._._... a�___.._.�. _._.. - - ---.........: ....------ i- - ._.,;.. . __.__-�-- 1.0E-4 'l.DE-3 1.0E-2 1.OE•1 1.0E+0 1.0E+7 1.0E+2 Particle size (mm} —Unimodal Fit O Laboratory -- USCS%Clay -- USCS°h Si3t --- USCS°k Sand D�o Dzo D3o �so Dso 0.0405 0.0836 0.1397 � 0.4097 0,7382 SAMPLE FIELD % % % % PERCENT PASSING , . : L�CATION MOISTURE Cu Cc CEay S€1t Sand Caarse No 200 USCS .�} -w--�'1�' ` �.�� B-5�1 D' 19 �� � 7 0.7 18.2 1.6 16.5 &0.1 1.8 SM °�� �.�J�a,�,�...., ASTM 422-63(2002) GeoMat Testing Laboratories,Inc. Appendix A Tentative Tract Map 33584 Project No. 11081-�1 City of Temecula,California August 31,2013 LABORATORY TEST RESULTS �oo -- --................___ _._..._.........�,._....___._...._....,....... � ; � � so ------ - --_......_. - -- ... ....................... ..--------- ----._......_�.. ; , � � eo ' ------�--- ----.....___._..._-- � - -- --___._ ....------ -- C � � • �a � � � ---------- __...�_ _ __ .._.._.. --—-- -------- .__.......---- -�. N �; , � ,. � so ----- - ------.._ ___._._,...-- � --.._.....----.._-----.._T... __._�— - a ' �� � � � so ............... �- _..__...- --- ...._.........._ _...------ -- -- _ � --- , ,� � � �; N ao ------- ..____-_ -- � - -_� ..�_. ,� U ' � L- 30 ----- - --- -- - - -----; ---- Q� �! � � 20 --_._._.._.- - ---- _._----- -i ----_--- . ......._.,.....--;- --- ... .__.._.. 10-----._ ._......._'------- --__ -... +I _..� o _____ � .._ ___� �_l_ � ��_-_ __ _ ---���: �a__-__�__-�-_:__� � 1.0E-4 i.0E-3 1.�E-2 1.0E-1 1.0E+0 4.0E+1 1.0E+2 Particle size (mm) —Unimodal Fit O l.aboratory -- USCS%C1ay -•� USCS%Silt --- USCS%Sand pi D D D5 D6 0.0445 0.0606 0.0767 0.1192 0.1544 SAMPLE �IELD % % % % PERCENT PASSING , LOCATlON MOISTURE Cu �� Clay Silt Sand Coarse No 200 USCS -� �=--���' '�'� ��.�: 30 � B-5�20' 16 0.9 3.5 0 30 69.9 0.1 SM '? ��;�,�'„„. ASTM 422-63(20Q2) GeoMat Testing Laboratories,Inc. Appendix A Tentative Tract Map 33584 Praject No. 11081-Q1 City of Temecula,California August 31,2013 LABORATORY TEST RESUI.TS 100 I ---� f _— --.._. _ - - .. ! ��� �.. _ __,�. ---� -_ . � __.____.__ _._ ---- , � �, �� � � eo-�--_._- -- . ....._._--- -- -----......___ ;f-- -- _ . --- --- �.... ------�----.. E '� .._" _.. {._,_...........___. ..""_'_�;_ ._____.__..___.... (/� 70 � ---'-- . _.i---- � --..... `.I i Q � . �'-_ --��-V --�._�__. __J._,...� -. _ _.... ....�_......I� .. ..... .. .......I3.. -i-+ � I � ' � � � 40 -- -_... ------._1_......._._ -__- � , , � � _.. __ _ .._.,.--- --- �.. U � �i , °� � 3a._.......__-- -._...__-- --__.. i ---- ... .___ � _- -- CLza......_–-- --.._.._.____...__........._--- � ----- __ —–--, ----------.. . �o�--__---.—.-.._.. .. ----.._ _.,._._ _-- -.._...___. ��._ ._..^_..._,---- I 0 1.0E-4 1.0E-3 1.0E-2 1.0E-5 1,0E+0 1.0E+1 1.(3E+2 Particle size (mm) —UNmodal Fit O Laboratory -^ USCS%Clay -•� USCS°h Silt --- USCS%Sand D,o D2D Dso �so �sa 0.0445 0.0606 0,0767 0.1 192 0.1544 SAMPLE FIELD /o /o /o /o PERCENT PASSING ^��Y� 0 0 0 0 LOCATION MOISTURE Cu CC Clay Silt Sand Coarse No 200 USCS � � �'` l-;-i- �.l'::.:::::.. 6 ;,,,( ; B-5@ 30' 5 9.9 3 0.3 5.6 90.3 3.7 SWSM �;-�»wJ..���=, ASTM 422-63(2002) GeoMat Testing Laboratories,inc. App�ndix A Tentative Tract Map 33584 Project No. 11081-01 City of Temecula,California August 31,2013 LABORATORY TEST RESU�TS 100 _...._.._-- - .................... .--..._....- ...._........__.. ... . ---- - i I I E 90---- - -- ------ ----- ----.._...__..: ------- -..... ...__-------... i i i � }�y . ... �. ___ . ."""__ _� ""_"""...,......,,___. �� � _""_..._...... —_....._'__'__"____" — � I 1 .�. � f /^ 70"--——__ _._'_'..,.._..._.._ _'.___—"'"'"_'.......,.,._.�,"__"__" __ "——____tE.._.—"_—____'__'_''" VJ ; I �ry� s� � lU � . ; _'__'_'__"......,...___—._ — ' ...____"_'_." .�.—__ —__ ._..._,_..,__.i................._........__.., � i i i i _ �� r.7�___..........______.— ____._..._...'_"_...__'_'i _'__.............. .._-____.- ___ _...__'-_-___- � i � � W�\ �_ ... ..__.. __ .. . "__. _'—__ ' _-' __'___. .."'_.._.... ....._...... 3 ( L�.J � I 1 ^' � ...,.,_.- —._.___ - _-— --_____ .,..... 1 ._"' W JI 1. "" � � I I 1I — — __.., .. .._." ._'...._.__„,.._ . __— _'......__."""" � - _-_ __ __,........ I �0"___'_"_'__"...__,._..._'—_'__'.__...'""....,.___'___i —__— "_____..__..___...._.'�_.... __.�-............ O._..._..__�_ —_�..............—_—�"..__ .. _i�"'__'_'�___'.—�—I ��.....I_'_"_' . _-_ _ 1.0E-4 1.0E-3 1.0E-2 1.0E-1 1.0E+0 1.0E+1 1.0E+2 Particle size (mm) —UNmoda€Fit O L.aboratwy -- USCS°k Clay •�•• USCS°h Silt --- USCS%Sand D D D D D 0.0910 0,2052 0.3205 0.5991 0.7949 SAMPLE FIELD % % % % PERCENT PASSING ,, ; LOCATION MOISTURE Cu Cc Clay Silt Sand Coarse No 20o USCS �I �-�-.- ����` . , � , " �. .:....... ..�..Q..�.......... 8 ' __..�..;.. ! B-5@ 35' 9 8.7 1.4 2.1 6.6 86.9 4.4 SWSM '" � �;��_ ASTM 422-63(2002) GeoMat Testing Laboratories,Inc. Appendix A Tentative Tract Map 33584 Project No. 11081-01 City of Temecufa,California Augus�31,2013 LABORATORY TEST RESULTS ,00----- - -- �......_ ,�._.__.._..._.... --- �,- T : ,� so------ � � _.._... _..- - --- 1 € __I-..._._.......�__... _ --- •� ..... _-- ------.....'... ...... ...... . ..... � � l; '; _ .... _--- - _ _.__ -- _. .... .- --. - ._ � � � � � '� �o._..._ -_I-- ---'- __... -----_..__.� ._._._.............. ..-- -.;........._.._.._- � ' i ; ..-- _ �. c�S � ...._ _... .... r E d so _ - _ _-� .........- �� --- -._. �._ ---� - - I __ _ � 1:� � '� � . � ' _ . ----_ . _.. _ , _ __ � __ _ - _ , . � . � :� _� . L- ao --_... --- ----- ----... .- ; --- ... _----;t �---. .....__.... � � ij t � 20 ---_ _.� ._.._.. _..- - ---...._..,,.�I. ------ _ .__...-------- .__.._._,___ ,o _____��j_ _ _ � � _ ___;� 1 ��. o _�.. ..----� ,�, ._._ ...�_....,� --l-'_� � ___ 1.0E-4 1.0E-3 1.0E-2 f.OE•1 1.0E+0 t.0E+1 1.0E+2 Particle size (mm) —Unimodal Fit O Laboratwy -- USCS%Clay •••• USCS%Silt --- USCS%Sand D�o �20 �30 �so �so 0.1247 0.2407 0.4164 1.9 394 1.6073 SAMPLE FIELD %y % % % PERCEf�lT PASSING ���'�, LOCATI�N MOISTURE Cu Cc Cla Silt Sand Coarse No 200 USCS � � �' " �� , �� , 6 ��s� B-5 cL'D 40' 8 12.9 1 0.9 4.8 81.5 12J SWSM '� �.73LG1.��— ASTM 422-63(2002) GeoMat Testing Labnratories,inc. Appendix A Tentative Tract Map 33584 Project No. 11�81-01 City of Temecula,California August 31,2013 LABORATORY TEST RESULTS ,�-----_.__ ._._. -_ ---. _ _ ___ _.. ... ; , �� � , � -..._.. ---- ---__ .._..._ __.. � __---- ---._,_ ---_..-----_ _ , , ; , � � so .' � __—- - -----.........._. ..._.._..._.._..._. ---__._.,... -------- C ---- , �t � � jl � � '��....._...... __-____"........... -__--._'__....__........_..........._'"_.._____.y........__..-__ __ _ -- t N3 � eo --- -_ - -_.., _. _ _. � �' So ._.__..._ ..-- --.. ..�_.�- � -- _� j ; �_..�... � � C � � � � ao -- ._. ------- .....---° -----._. . _---; ---._ � � �i � sa _-..�.._....... -----._....,.... -- --3 __.�.__ -- .............__ ------ N � -- a. - � ----------._ ----..--- —_ � ..._ ---- --_._..., .. ------.__... zo � � ; ; _ � -------_.. --- -; o --- ------� _:_:::-.----� -- -- . ____ -,�- �:::-��_:_ . t.0E-4 i3OE•3 1.0E-2 1.0E-1 1.9E+0 1.0E+1 t.0E�2 Particle size (mm} —Unirradal Fit � Laboratory -- USCS%Clay -- USCS°/Silt --- USCS%Sand p p D D D6 0.0343 0.0518 O.d694 0.1176 0.1594 SAMPLE FIELD % % % % PERCENT PASSINC7 , , : : LOCATION MOISTURE Cu CC Clay Silt Sand Coarse No 200 USCS E -'-�- ���` '"�' .... ; _.; ��.;. .. 33 ���� � B-5 cLD 45' 13 4.6 0,9 0.4 32.6 66.7 0.4 SM �. ���.'',R.,��,�- ASTM 422-63(2002) GeoMat Testing Laboraiories,Inc. Appendix A Tentative Tract Map 33584 I'roject Na. 11081-Q1 City ofTemecula,Califarnia August 31,2013 LABORATORY TEST RESULTS �- ---______—------_.____--------......----------.___.._�._.... X �....______..._----- -____------------�--------�------- __.._. a� � � � ----------._.._...__. ---_.._,....... ....._....__ _-- � :� �---._....__.___ ------_--___ _- _.__.._.------------._._. .... � � cn �o-—.._.._..._......._---- ---..__...--- --.._..........-------------..._......_ c� a- so---------------______ __ __--- -____...---....------------ o----�-�--.,_.......---�----�-�---...___,____-�- -�- ....,.._------,..------,_..... 0 10 20 30 40 50 60 70 80 90 100 Liquid limit SAMPLE LL PL PI , LOCATION o�o % (%� USCS E ''' ��e-o :. __. �� .J� :-�-=: . B-3 @ 20' 32 23 9 CL "': 1!'irC�,.��- GenMat Testing Laboratories,Inc. Appendix A Tentative Tract Map 33584 Project No. 11081-01 City of Temecula,Cafifornia August 31,2013 LABORATORY TEST RESULTS so -----------....-�----- --- ----- - -----.. xso —--- ---- ---- - ------ --�-- a� � � ao-____._�_...._._....__m.._.�__._.._.._.._..._._....__.______.__........._..__..._________ � 30---- - --- ----------------- �U u> zo __.__.._.. ____. .__ ._._ __...... .... ... _.__...�____----- cu ' 0- ,o----— -- — ------ -----——-- o.__�__—_,__ �— —�-------�----�--,___--� —�------�---- 0 10 20 30 40 50 60 70 80 90 100 Liquid limit SAMPLE LL PL PI � : LOGATION % % (%) USCS �� ,,.;,,,;,°..�_,_<._;.,...... ���:'.�.. B-3 @ 35' 46 27 19 CL �1r1aG�- GeoMat Testing Laboratories,lnc. Appendix A Tentative Tract Map 33584 Project No. 11081-01 City ofTemecula,Cali€ornia August 31,2013 LABORATORY TEST RESULTS �_____._________.. __.----- ---- ---.-______.__.�._.... ............ Xsa -- ----__._........__._...._.._.......�.---�----------..- -------------. ._...._.._._.....�...... "�7 � � ! Cao-----------...__.........................�.....�__...._____- ---�-------- ---_i .� � a � 30 ----- ____ ___ - -- - - ---- ---- _.,_......... . ,U � zo -- _ ________.... ..._.._.._._..................----------l..-----._..._._....._..........._-I �]'^' 10-_.__...--�- ----------------....---..._._.._.__......_.._..........I-.._..----------------------' � o..._-�----�--- —�—-�--�- __,___...__,...�..,_�...__,----�-----� 0 10 26 30 40 50 80 TO 80 90 100 Liquid limit SAMPLE Ll. PL PI ,, LQCAyCION % % �%) USCS I � ( , �r�C��r B-5�15' 29 22 7 MLCL �:L!'l�.�F-� GeolVlat Testing Laboratories,fnc. Appendix A Tentative Tract Map 33584 Project No. 11081-01 City of Temecula,California August 31,2013 LABORATORY TEST RESU�TS �. _ __...___- ----.___._._-----._...- --._�_ X50---- ---__.._--- --__..._....._._.---- -----_------_._......-------- Q3 � � 40 ----- ----_.........__,.---------�--....._....---------------_..__.._.....,___.._....._ � 30 --------—._.._......---------.......__._.._�. _....--—----.....__----- � ! (n 20 --------------- --....._._... ---- --- _.._._...�-------......_... �` 10 -- _.._---- ---.._..ar---- ---....._--——.._._..--f-----.-..__.��____ o.._.--.-.-----, ---.-__�--.---.-- -�-------,.---I----.--1—_, __ 0 10 2U 30 40 SO 80 70 80 90 100 Liquid limit SAMPLE LL PL P1 LOCATlON % % (%) USCS ��'!� � V.�'�_ ' B-5�25' 32 22 10 CL �1.r1C�.,.��- GeoMat Testing Laboratories,Inc. Appendix A Tentative Tract Map 33584 Project No. 11081-01 City nf Temecuia,California August 31,2013 LABORATORY TEST RESU�TS .-. � ,� _ �._ ----_ ------- _ __- - _. . � � I � . `—' 80 ...�.... ------ _...._._.._,.�._ — � --- -- — 3 i � � , _ ___.____--------____�__...._.__....-----------..._...---.. . so--------------...__._..� __ � � __ I L Q� ` ". ----__.._._......_�---- ----�.._....._...- ---'................._-'--------------�---__..._.. � a._....------ vJ � � � � � 20 - . ,� . .___+ ........_ ._... � ....._ ._....____. ^' ; ; W i ! i � a"._---� --.�___... . –I._�.__.!..__ -- ......-- --- -_._.__�_.� � 9 50 100 150 200 250 Net normal stress (kPa} x. 1 —MohrvCoulorr�6�n�elope 3 A 2 —1 t, g »,...2 %Field %Sat. In Pface , Sample �oisture Moisture Densit ���ionAngle Cohesion(psf) USGS � ;_i_ � ° Ultimate Residual Ultimate Residual ��.�� �:::::.. B3 @ 5' 8 12 124 Sand Silt . �Gl�i:� 35° 28° 309 240 Y � �" GeoMat Testing Laboratories, Inc. Appendix A Tentative Tract Map 33584 Project No. 11081-p1 City nf Temecula,California Augus#31,2013 LAB4RATORY TEST RESULTS � ,zo _�..._......�. _ ___. — __.._ 1 tf3 � � �oo —..__-�----.. --_..... -- --- .. __.....�. - - -- --{ f � � � � i -F-+ gp...�___..._. ..,,.,._ _---- -__......, ____..._. ---- � � � 60.__-- --- ......,_,.- - ------- _..,......__. ---.._.,......__ ---__ _--_ _ L U� 40 •. --........_.--� L `4 � � `,\ M / \ � G\!"...._.....,. ,�_!-.___._.___--_-___.,...,_.._'_�'_.-___'."__'_____-_-_....__......._'_._.__-�._____._..._......____'._ �� � � , `1 I � � 1 1 Q_____._'.._.._-1 ,........_ - - _�......_..--`-....�.,_._._._--_.__..._......___--._..._........_."'_'_-- p 50 100 750 200 250 IVet normal stress (kPa) :� 1 —Mohr-Coulomb Enwlope 3 !.x 2 ----1 � 3 ._ 2 Sam !e %Field %Sat. In Place Friction Angle Cohesion(psfl USCS ; � p Moisture Moisture Densit � Ultimafe Residual Ultimafe Residual ���� ���� B5�5' 13 16 1'f8 Silty Sand - ' ��f� 29° 31° 284 186 �.�1�,�,��. GeoMat Testing Laboratories,Inc. Appendix A Tentative Tract Map 33584 Projecfi No. 11081-01 City of Temecula,California August 31,2013 LAB�RATORY TEST RESULTS No. 20U Wash Moisture Content % %Passin No.200 Siev� B-3 6' 8 52 B-3 10' 4 6 B-3 20' 24 68 B-3 25' 8 g B-3 30' 7 14 B-3 35' 22 62 B-3 40' 20 6� B-3 50' 20 58 B-5 15 15 63 B-5 25 19 51 Sample Compacted Fina{ Expansion �xpansion Moisture Moisture lndex Potential B-3 7 17 9 Ve Low GeoMat Testing Laboratories, Inc. Appendix A ! SC?!L MEC�AN���S TEST[NC Direct She�r T�s#ing: Five samples were selected for Direct Shear Testing. This testing measure5 the shear streng�h of the soil under various normal pressures and is used in developing pa�ameters for faundation design and lateral design. 7esting was perforrned using �ecompacted t�st specimens which were saturated prior t� testing. Testing was performed using a strain cantrolled test apparatus with normal pressures ranging from 934 ta 223Q pounds per square foot. The results of this testing are shown on Figure No. B-7 and 6-8. Consotidation Testing: Two samples were selected for consolidation tes#ing. For this test, relativefy undisturbed samples were selected and carefully trimrned �nto a one inch thick by 2.5-inch diameter conso�idameter. The cansolidometer was moisture sealed in order ta preserve the natural moisture content during the init�al stages of tes�ing. Loads ranging from 325 to 20,800 pounds per squ�re i`oot were applied progressively wi#h t�e r�te of settlement declining t�a value vf O.U002 inches per hour prior to the�pplication o�each subsequent laad. At a preseJected laad,water was introduced into the cansolidometer in arder #o observe the potential far saturation collapse. The rQsul#s of t�is testing are presented graphically an Figure Nos. B�9 and 8-14. Expansion Testing: t3ne sampie w�s seiected far Expansion t�stfng. Expansion testing was performed ir� ��Gordance wikh the U�C Standard 'f8-2. This testing consists of remolding 4-i�►ch diameter by �-�nch thick test specimens to a moisture eontent and dry density corresponding to approximately 50 percent saturativn. The samples�re sub�ected to a surcharge of 144 pounds per square foot and allowed fo reach equElibrium. At thafi point the specimer�s are inundated with distilled water. The linear expans�on is then measured until complete. T'he results of this testing are shown on �'igure N�. 8-11. /�NALYTICAL TESTiNG Three samp�es were selected to determine the concentration of soluble sulfates, chiorides, pH level, and resist�vity of and within the on-sit� soi�s. The following table pr�sents the results of this testing: B-01 2.5-5.0 �0.0�1 <50U 'i 50{l 7.2 e-o� �.ae.2� o.00� <500 �a,�va �r.2 e-o� a.o-�.o o.�oa ��oa ��,�oa 7.� Geotechnica!InvesHgatlon--Mira Loma Drive Pro,�ect Na.F283-003-Aprr!2005 �-� IDi�t7�ld'Fou�tl�AttioDi.�`ngl"0����'l`�1g,I�tC. GENEF�AL All laboratory testing has been conducted in conformance with the applicab{e ASTM test methods by personnei trained and sup�rvised in canformance vLrith our QAIC�C policy, qur test data an�y relates ta#he specific soils tested. Soi� �vnditions typically vary and any significant variatic�r�s shauld be repa�ted to aur I�bora�ory f�r review and possible testing. The data presen#ed in this report are for the use af Paci�ic Group an�y and may nat be repr�duced ar used by others withaut written approval o�Inland Foundation Engineering, �nc. fr"eatechnicaJ Investigutian—h�ira.l.orna Dri ve� Projec�No.f'283-003-Apri1 Za13S $-3 I�dand Founrlatiori�'rtgxneering,.Xnc. �� �� .� �� ��� ����� � 1 ► � ;� �� ���� �� �'� �� �� �� �� w��►� , ���� � � i ���� ww� � �r�� , Irl�����►.wl��'+�I�1 �'.a�*"'�rs;���'"� !/''.�.\`��� :i�'�►`��.� r .__..�xrr+•�w�r�■■►� � •!�I■t�;r►�,�irir�.���*�►.'�M '��r'�+�■�>>��►"��M ��'��.�1\'�.`�►'. �►1,�►.'�► �►'1r"'�.�f► � ' �,��►"�� ' .�#�.�"""�� � �'-'��� ��...���►� '•��'� � � ► i."'�� ' �.,''�� �►� �� �� ���� ''• ��.� 7 � � �r ��� F � . � � ! � w��� : ,: �. �. _.. � " �! �� ���� � � >,� � �� � ; � � f i t • • i � � � I: � �� � • • . � - � � � : 1. f 1 ' � 1 : t � ' ���M���� # ` • � � • ! I . ���� N��; •:� : M: �.: �i: ♦ •w� � M i �� �1 ��. ���". � � • � � ' �� A . �. .. � 1�. � ! M • � � : M • 1 M R _ • � i w � •• r-� . . � : � i _� .t � �t ,� �i �� � � 1 ��1 �1�Yi��i��+i���������I���IM1��I�IIlI1�� ����� � � �� ._ r ., I�������������1��1�1!������������I��II���I���III�� I������IM����NII�II�►1����II��I��[I�1�11��1�II11I�■ :, ������II111��I�#�II������1111��������������l1����� �I����N1�����lI�II������II1:1111��l��1�1��11111���� : , 1���l��������f�111����'����1�l��t'��I��lli����l��1���� ��������11����1��1�1��'11���I�1�i�1!''�I����I����[��11��� .� �����N��11���I�M���1��1��1����►1�►��►��N��I�������I�1��� I1��11�111���1�����11��i1111�1�'��I�IIl1��ll�lll�r� , II���f�l�l�������1�����!II1��1��►��I�III����I�� 1��� � �I��I��li������[l�11���N��II1�11'�11���1�����1�11��� � . , #�������II���ifl�i11��11�1I11�#�ir�1111�����l111�■ � II�����I�����III��r1��11�11���1�►�I��l111■�11�II�1�� , �1���1��l11������1�����l���Ik��� ���I��i111����i11���� ��■�����f�������ri���������M►r����i�������M��i����� , ����i������■ ����r�������������►����������������r�r� ��������r��� ����r��������������►����������ii���� , ����������r��ii�����r��i������������������������� �����������������r���������r��������������������� � �������i����������������M�����r�����������N������� il 1 i E 1 1 !1 �. ��II��'G�L�.� ' *.. . w w �� ' ti: _ ' t►: '' �• � �� � �:�M'�� _ : : 1 ������ ���� � � ` ' � ������ �� : � . � . � ` ������ ����� C " � � N � ������� �� � � ` ������ L4 " � �.� � i � ������ �� �I t'��� 11 �I�:1 � � 1 � i �'1�',� ', � � '�� '. s ��I Il�,�r . : . i f �� : � >� : t ; i . i � t • i E ��� ; i� � � ; � � • :t �: t � f � .t ��.���� � f � �: � � _ t � .� i � :i � � t �;' : 1 F . , 1 1 % � f � _ . i iA1 ."« :• �.h : : i•. • •`• ! "' : If ►� �? �It-. � � � � . � 1 1! r' �. ,r .i. � w 1 � 1 : • � � i t � � � ♦ w � +� S�r � + � i � + �� + �f i i 1 � .�,1;�� ' ""'"� +��t�� , ���������f�������� 1���I��I1�����►1������������:I��ii . 11��r��I�����II11��I���1�1�1��►��1����1���1���11��� .' ����I��I11���IIII►��►������I����I��I�I�����I�I���� . 11��i���li1��111��1��1�►����I111�������������I�I11�� .� �1��I��I��1��111111I�:��1�M�11���1'�1���1�1��IiI11I1�� � 1���l��1�����1 #ll���'��'�►�1���1���I���I����I�N�i11�■ � ' ����I��I�11��! l�I��������I1�1��1N���11l����II����� 11�����I�I1��11l11�1��1��[►1���i�1�I�1i11��11�1�1��■ .' ����1��l1����11111����1�!l11�1��►�1��111��i���1���� 11��1������r�����1�1��I�►���1���1���11��11�1�11�� � ' lI��I�Il�I1���1�11����1�111�1������1Il������I111�� = ����I���II����I�IIII���������!������I11����11111�� �' 11���r�111���I�I�IA����I1�I1►�11�iI��I1���IIN1I11�� 1��������II��II��t�Ir���il111►�i��N��I����11�1�1��� ' II���i�1�I1��l1111�1��11111�11,'��.�iN�11�1��I��I�I1�� 11������IIIr�������1��I�I�M�11�II��i11���1��1��r� ' ����II��f1�������1�1i� ��1��1�►l�f�lll����III�II�� I���il��ll�����l�l��� 111��1�."i�l�l111��1����1��■ ' 1���11�1�1�����111��� ��III�i���;�i111��11�1111�� , �����������������rr�������i��������rr�������i���� �� � � , � t ,. � . ,! � ■��� ��� ._ � w M•� .:•�M�AiNAwMi�Iw�� M• � ' �: 1 : 1� ' ' � 1���� 1�� � ; � ' r ' ������ h� � ' i ��' • t � � ` '������ � : 1• � � � � �� il �i �� � i � f ! � M ����i �� � ������ � � s� • ��11 !.t � 1 � 1 � ,i" : : �• s • �� �� ��� � � � � � . � ►� = � i ; � . � ► � � � •- : � ��� : i � : i, 1 1 ! t 1 .: I 1 �� : I � . 1. t ' . t 1 .1 ! � ..� , � _ �� �•� c.• - „ - ., ` s.,a � "' j 11 ►f t-` �II:I� . �• � . . . i !1 r , � , , � � � � _ � � � ♦ f � i » w . w r � 1 �.Q S H i � 1.5 A R S T R � E w f3 H 1.0 k s f 0.5 0.�.0 �.� 1.0 �.5 2.0 NQRAAAI.PRESSElRE,ks# S�cimen ldenti�cation Cl�ssi�icatfon Phi Coh�sion DQ MG% �► �-0'� 11.5 S!L'�`1f SANQ SN! 38 p.3�3 9�l0 20 m �3-Cli �S.Q SIL'�'Y SAIV�►�M 40 O.Z84 '1i�� 4 ♦ �-0� �5q.0 SIl."�'YY SANC3 Si� 3+t O.d�S '�10 75 PR�J�GT �eoteCftnica!�n+res afldn AF2UJ�G7'NO. I'�283-003 •r DA�`E ri120,2U�� �i$°���T�$"� ���� � Inland�oundatlon En�tneering,ln�. San J�nto,Cglifam��92583 �IC3t��E Nt'}. �-T I 1 ; � 2.0 . S � H E �.5 A R � 5 T R � N �3 T t� 9.{} � . s f o.� ��O.C} 0.5 4.0 1.a �.0 NUiZN1Al.pR�55UR�,k�f Spec�men tden�tton Cl��sificafion Ph� CahesEofl Ud MC°Jb • B-U3 3.0 �i�,TY,C1.1�tY�Y S�IND SC-3M 36 �.0!3� '!'i� 9 r� �$ 8.l� SfL.�'Y SANa Sil� 34 tl.�� 1't6 1� PR(�,l�.CY Ceotec�nical irnr�s' tion �ROJ�CT NC�. #�2�3-�D3 f�AT� Ap�il 2t1,20�5 ���� ���� �I�� � I�t�nd Foundatksn�nginra�rlrtg�Iric. San Jac�rsta,�alifomia 52583 FtGV��N�. �-� � i � 1 - 2 3. 4 S � R A 5 N °� fi. 7 8 g �.. 10 '100 1,Q00 i a,Ot�(� ��� S1'R�SS,psf Specim�n ldentificatian Cl�ssl�catian DD MC°Io I� �-0� �.�i SILTYt CLAY�Y SANd SCSl4� 1't7 14 PRC3J�CT GeotecMnical lnv�sti �tion f�ROJ�CT Nt7. P283-bb3 ir L ma� . _._._._ --- w C7ATE April 24,2�Q5 � �Q�$a�N��1'T��� ���T Inlanci Foundat�on�n9inesring,�n�. San.lacin#o,C�lifomia 92�83 FIGUR�NC). BM9 0 1 2 3 A S 7 R 1 5 N a� � � � s -- - - - -- -- 10 9 qp �;0�� 1 C1,af30 105 S`Ci��S�,psf Speram�n ldenti�i�atinn Cl�ssiftcation DD MG% 1� s-�3 1'I.b S�4ND w(th 5[LT Sp 108 S PRaJ�CT Geate�hnica! InWestiga#ion PRQJ�C�'NO_ P��3,003 � DA�'� April 2D,�dQS �Q����.fa�1T��� ���� Inland Foun�atian En�in�ertng,inc. San Jac�nto,California 9Z583 FIGtJRE NCy. �m�1 Q EXPANSIC3N TEST SUMMARY B�03 6.25-8.� 118.6 7.6 20.4 13 Geotechnfcrrl lnvestfgativrr-�Mrra l,oma Drive Praject No.P283-OtI�-Apri120aS ��11 Inlanrl�'auridat�ora Eng�neerin�,.lracp 0 N � ~ U � •� � N � �� r 0 O (Q N � �a � � y�� y -�•�- ....�,. U U� � — � �, o � � � m �. � �,a Q � �v� _ W � �, � _ .� � o 0 a) u� � .� � "' � I� �m U .c U � 'i. � .�? �r� (� y � ^a pj � �� � -� V � � � � c�o y .� � a"' p Q g c�n � U "' � J _�— � � o ;�:.. o � N � -- �� � � O � O � � �-� � U _,� �F-I � 4-1 � � � �� Q� H �) � �-(� CD t�-� � NII '�'S� 0- O O- v�•-i N M(n -I�-l� �� O �" � O N � � U � N � � � � � � O �� O � O L � � r � � N � N � � � w^ � 4 7�-�-7 � � Q r'�� Z �� W J Q � _ � � � y.��-� O V, � '� i � � C .� -�__,) '� n l O � u^/, � +-�' W � � � �(,,) O N � �� o � - (v � TL � N � � �N � ' � T � _ � N C j y, .� Q � � � � � �- � o N � � O O�O � � N � N � � � CI) U � � � � � �I� � �.. ! 1 i I I I I I o I o I I N I � I I I I I I p I O I • I U o I � � I � � I I ' I � I N � .,.-{ I �-1 � O � � � � � � � O Q � � p I � � � O � � � I � .,-{ I � I u� N O�J' I � �2, O o� I � O O � • I �-i N'�' � .� ul lD �N I � � � I p � � I � � I � � I �s I a� a� a a � � v � i cn w � � •• � v� � N �l f N U cf' O � f � •,-{ O •rl f b" a �--1 'CS ! •r-1 U) 0o O d' � I � N O (''� d`G.Y., f ,i", �-E ,-t • I U U � � I � � � �.� I N I � � U S-� r. � � � o i 4-�i i � r' -� � � C7 r-I O �-1 o o i �+ I rd � O U / •r-I �-1 ?C • C1�' •r-I ! "� I �I �l-� � �-I O v) � ••yC N 3 � I � O �-t � U � N ,.� N I �-I E U' �I-� O� � �-I .1..1 �-1 Ca ! � ! �d rl.� � �1-� •rl '� � • I r-I I N � � N rA r-1 cq N ul o I •�-i E �-1 •rl 4-I� 4-I -,-� •�{ � � u�o ! rti E U >C O f-� �rl � O O �rl o rn UJ N O i f-*� I �-I O � u7 � u] W o r� �I �.,o o i f •rl �I �--I U i a� • a �c •�-+ , �, E U a � � 4--� � O O "�O d' d 1 � ! Q �1-� R1 O FC,' .1� r-f O O N 00 1 r-I i N tU O � / .r{ . • ,� � 1 � f rl .� � �-I ul V? O O U � i U I R, N O .� � .•u� S�-I .�c� I �-+ I •r-I r-I rt3 � [� +� � O .� ro b�o I -�-i I .a-� U .� co U � .t, (ll . •r-I � I C� I r--I �-I � � Rf i RS [� f�O I I � •rl O � r-i Cx� � � �-,a� �c� aoc� i �� � i � � �-� a, o U o N o o m?i� �C •� I �n u� I ts a� .. a� !� o] •�I �o „f�o o U o� I � -�-I I � Sa �'� �, �� arx � . .,� �n i � �n i -� � v a� .ia .i-� �, rn o o rr o o a.� I ro �, � u� �--a �n� aJ u� ��-1 �, -- Sa RS o �.n •r1 � � �--I I � •�-I �,rd w N �-1 r-I �-I � •r-I c�] S-I � � rd I rd r--� G rd 3 � •• � � O J-� �-I U I � I .� V-r �}•ri rn O a� �-t oo G -�-i in.� --- � �-oo �� � U r� � U � � a �i C2,4J N r-� f-1 H b�O (ll � S��o� Q1 � I •r-I 1 �-I r-I 21 �I 4-t -- � O � •• N •r-i o r-I t[i O • • 7-i o � I !-� 4-� I �d �d � O � ��[� U .� N • •� � va c��+ � • � i ro o I cU •� �+� � i � u�/s-I •rl r� ��o W �r� '� cn o tt3 I .V I � +� � �t �I I u] d? J-� � O J-�N O --� 4J ttS �O �-t I � "Ci 1 ��-1 W � O r� I p) ,� � rd ,---{•,-{,--I �-I rl) U O �N I O 1 Q1 � � � J-� I f�i b��--I r-I �t-� �--� � �' Sa., s� �d �-I �-1 �i I I .� I r-I •r-i � � U I •�•�� v� ,- o� v� � w a -.� i � i � a� � �s � i �/1 .��Cs+a U rl .d-�O • I Q Q �1 r-�i �1 ,� ( �-�-I � 1 �-I �-1 U� f=e CI1 I •�-I N ( u� I I `-' �Q O O O � �- U1 1 Q ••1, ( � 1 •rl O U R1 I v1 .l-� rcS N I S�I •r-I • t� ° � Ul .. •• �1-� i � �-�-3 I I U 4--I � � rn I �, v+-� U � •rl I .�•�o u} I O O O N �-7 U � I � I R,O 3 I N 'CJ � ul �U � .�� I �--I � RS N � I O..� � cll I ��.n � �' ��C 7C '"� I -N o •�1 t •�1•�-1 I •�-I N 1 cll �s rl I �s w r�r� s� i �w<r .-a i �-- a� i ro �s i �r� ro � �� u� i �n •� � s� .� �.n�o � / � N I � �''� •�-I I cV U I �-i O I Q1 • � 1 U rti � I � 4-i i � N N� •� � I r-C �, ..c,-, ..-� aa � �,-i � -- a� � ro � � •• •• a � a o .0 � u���-t o � � �� � � � ��r� � a� i �t'C>N �/1 O I �--� O I U I V-� I U U) N I 1 '�t' v� i � f-3-� I +V rl I �� �U •�€ C� I o •• � wi oc� wi `y`o wiao � i •��.� � ix� ai � �� i � � i �%, `" a� � zsi .a-� a�-� ro � ••-�o � Q s� � o o cn � u cu � .a-� i � � v� i �� � w s� G i �n U�-+ a� � � i .-� u� • �--� I .. . � � . . � rn v � i a� t a�w o i •� u� i � o v � ro i a�•� �n r-� ro � ro m o �a � �o cr� � o o v � � �U ..a i ,-+ � � o i�, i ua � �s 3 � i r�S �r--i Cu cn •�-i I •rl.�C� •�-I I �-i I � sa I b c1J •rl I .S2 1 � I E-� C�, I U �-i U � I � O � S�-1 I S,-I O� �-I I •�-I N I }-I � I •�-I�1-� �-I I rd I � �r-I I a-7 O I -rl O 41 •rl �-I I � f,-I U � � I N C� N I W Ra ! r1 I +-� G J-� I "� •�-I i rtS b�tti I � .� I +-� � 7�-� !-� U I �-I f� O E-+ �1-� I � J� 1 O O I •� I •�I H U1 I rd�--a �-i 1 S-1 �•.-I I � � I •rl U N •�-1 �-� I rCf F-I FC r� I rn td i �1 r-I I rc1 I � •�-I I O N I rt R3 S-I I W •�-I I S-I tL3 ,� 4-I •r-! I U' W �] �", I �", � I a c/J I Cs-+ I }--i f� I r-� � 1 �f1:E-+ I !Y. f-Q I U Gu E-i U U I c!'lfl d1 rl r-i�--I r-1 N(''1�'�ll')lfl[�F�OC1 Ol Ol r-1 M LO[�L�00 Ol O�--i N M'V'lfl l0 61 Ol�--I.-i r-i r-I N N(V N N N N M M V'�f't.f)�.f��1�.f')LO lQ f�f�00 00 [!��[��popp�m00000DwO��cx�o�o�000061alO1O000r-Ir-Ir-I�--[r-ir-ir-irl�-iNNNNNNNNNNNNCV NNN(V NNNNNNNN O�00000000m�000000commmo�000000000000alolo101�rnrn6lrnrnrn�OlCllrnolrnOlal�alolrnolrnrn61C3141o141rnrnrnrnrnrn� �x.i . . . . � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s . . . . . . . . . . . . . . . . . . . . . . r-1 r-I r-I r-1 rl r--I r-I r-1�--I�-i�-I v-I+-I r-a r-I r-I r-�1 r--1 r-I r-I r-I r-I r-I r��-1�-I�--I r--1 r-I�-I rl'--I f-1 r-I r-1 r-1�r-1 r-3�-i r-1 r-�i r-I r-1�c-i�-I�--I rl c--f r-i r-I r-I r-I r-I�r-i�-�i r-I l��i'NOOOOIDMr-I CSIC�ci'LUf✓�+-1N�Oi��f'NOOOO�.OM�-lQIOE�OQCIflNMI�O�t'61,--INMNOi-IOlO�'o�000(�-OOlO1�OOr-IO ',��'N O O f��M r-i�lO'ct'i.f)('')�--I cV Ob O l�'c1 N O O[�Lf)M t-1 CO O�l�d'lf�N M LO C�d'GD�--I N M N O�-I O t.f)d'f�O O�LP O CO OJ(�[�r-�O .� 'C�'�Y'NC?QC��Mc--i�lOci'u7M�--ICV OOC7l0`cY'NOO[�t.f')c"�l�-ICOOlPI��`tl')Nt'")�O�'d'Go�--iNMNO'-�Otl�d'[�OOOlPOG00Jf�C��� fL7NN N'�7'(''IMMC`')(V N N�Ml`')NNN NN NN C('"1('�1M('�N�'N(''7NMN�''1NNNNMNt'')NCV MN MNM�t'N�f'N�t'NN f''l('')C'')M (��'�--I r-I r--I r--I'--I r-1 r-�i r-I r-3'-1 r-1 r--1`--[�--t r--I r--I r-i r-i r-i r�r-�I r-i r-I rl rl�-i s--1 r-I r-I r-I r-I i-1 r-I�-�1 f--I r--i�--i rl r-I r--i r--I r-1 r--1 r-1�--1 r-I r-I c�-i�-I t-1 rl s-i�--I r--1 r-I r-1 f-I�-I r�-i 00 O 0000000 O OQ CJ O Q Q O C�O O O O O O 000 O O 00 C�Q 4 0o O Q O O O 00 C7 C�00 0000 ao 00000 CO O O�O �OOOOOOOOOOOOQQQCa000000C7C700000000000C�QC?C?QQ[1 OC7C�O[�OOI�Of�OOf�OOi�O ,.Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b�NNCV NNCV NNNNNNNNNNNNNNC�lNNNNNNNCV NNNNNCV aINNNNN�NCV NN�NN�N�NNOlNN61N •r-t c'C'�'�'�'�'d''v'�t'�''C cl'Ct''a'C�7'ct'�f'Ct'Ct''�'�'V'�'�'�''�7''CY'cr�''v'V'�F'C�!'(''l�'�'d''�t'c!'f'')�t'�t'c1''�t'(�"1 c7'<Y'('7�I'C''1 v'C'M v'�i'(`'��t' � � � ���'��'v��v"d�d�d"�1'�I'd�d��J'�7'�i'�t'�t'�'�'d'd'd'�ct'('��'(�'��I'M V'M�'lfl'd'�I'�f'�1'�'l0�'c'�V��t'lfl�[�lQ�'lflCrll'��('�(''71fl0 �1--+ct'�f'cJ'ct'�i'd'd'v'�V''c7'V'�'�'C'rt'V'�i'V'�t'V''cl'c1'�!'�?'c7'�'c'M�'(�'��I'M'�'(�")v'��t'�'�'�'�'��t'c'7�t'�'t.(')�t'M 1.f7�f'l.f)(''1 M N M M�O � . . . . . . . o . e . . . . . . . r r . . . . . . . e . . . . . . . . e . e . . . . . e . . e . . . e . . . . a . . . CT V'�t'�7'�!'v'�'cY'�7''tl'�t'V'�'V'd��l'�i'�7'�f'V�V�ct'�i'Ef'�Y'�'v'v'M�F'(�d'M�7'M�t'�l�'�'d''et'�T��ri c��'�t't.f)cl'('')u7 C�i!1(�'1 M ct�(''1 M�O •r-I V���V��d'd'CS'�c1'�7'v����t'�Y'�'�'�'d�d�'�I'V'�Y'cY'�!'v''Ct'l!�'d'�f?�'Lll�'��f'('"l�1+�7'¢7'V'�3'c'��'t.f)�7''�t'th`cr i.l�M�'(�'1��f'')�i(�f'�d+ �'i r-I�--I�-i�--I'--I�--1�--I r-1 r�-I r--i�--i'-1 rl rl�--i'---I c--I�--I r-1�-i r-{.--i r-��--1 r-I r--i r--i i-I r-E r-I i--i r-1 r-I�-i'-1 r--1 rl f-!a--i r---I�--t s--i r-i r-f�--!c--I r--I�-1 f-I r-I�-i f-i'-1�--I r-I�--I r-I'-1 v--I I � nc�n�o�������noao�c��0000000000000000Qoo�0000000000�oc000�o�o�oam�o�o�oo��o 1J 00000 00 O 00 00 O O C7 Q Ca CJQ 00 C�0000 00 000 Q O O N Q N N N N N O N Q O N O N 00 N�Q Q C�QOO O t�.� . . . . e . . . o . . . . . . a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NC700NCV N NN NN NOOONQ NC�C�Q�OC'�OOOOOOOOOC7a�N�����N�00�Ni.l�OOi.1�NNQCV�NNO � I � [�[�i�r-d r-i rl�-1'--I r-I r-f rf N N N r-I N r-i N N N N oo ao 0o C70 00 03 l�00[�00[�O�E1�9 r-�i LO LU lfl l�l0 r-1 l0[�CO l9�-i lfl N N lo r-I ri l�r--I N r-i r-i O .�J lfl lfl�rl�--��-I r-I r-I r-I r-f�E N N N�-I N r--1 N N N N[�[�(�[�[�[�lfl[�W[��[���r--i t1')L(�Lt7 LS7 u7 r-1 u7 L4[�l-!')c-i�N N��1 r-i lfl r-I N�I�-i O t�..� . . . . e . . . . o . � . . . . . . . . . . . e . . . . . . . � . . . . . . . . . . . . � . . . . . . . . . . . � . . N[�[�{��'d"�7'C�t'�t'G'c!'rl s-3 r-!d'�-I'�7'rl r--I r-I r-I V'cl'�J'C'd"d'C��'[��f't�d'E�a'�7'O O O O O cf'O[�Cf'O d'O rl rl O�'d�I��7'r-I V��i'00 a��'�+U�l.f)l.f)tfl Lfl 4n i.f�t.f)�!'�i'd'�Il�'t't!'7�1''�'�'d'f�'1('"1(''1!'"l M(�")d'M�i'f"')'�'f''l�'�9 t.f)lfl l�l0 l0�O�f)l.O�I'('�lD tl�lfl���O i.f')tf�¢7'tl��t'L(�l.C)(''7 I X �Ol�'[�d�l0 00 O�-I�--I�--I O�O M O�Lf�L17 lD i�l0�1'Ol O O C31 L��(7 61 r-I M lD Lf)Q 07(''1 O'Ct'r--1 QO Lf�t17[�U7 61 M N�Y'�r-1 O cY'C��h�l ul rl N O c� �-IMr-Ioo00�U�1'f'")ri61[�Lf')V'NOlNlflO(�G71�'c1'lfl�'r-1[�ef`�-i�COIQ�'Mf-IOo�CSIIDOr-I V'MON[�l ti7N�PESl61ao�!'O��.f1N�(�o� �1 . . . . . . . . . • . . . . . . . . . . . . . . . . . . � • . . . . . . . . . . . . . . . . . . • . . e . . . . . . . �rl'N Ql r-I Ql l�t.f)t'')O 00 lO t1�('')Q�t'oo N l0 d'rl Ol 6l€��N O CU Ol�[�(`')�'T�f`'1�--I r-i 6l d'lfl[�o��tl�O CO O�O N Ol 6l�'Oo N oo O l�CSl N C�l NNN��'M('lM(�(�'1NNM(�'S('"JN(V NNNN�-IMl�'1C'�1C''lf''�N('')NMN("�C�!(''IMNN(''7('")Nf'")NNMr-i�'N�f'('')f-I�f'N�t'N�M��'"1N U r-I r-I�--I r-I r-(r�i-1 t-i�-i r-I rl rl�-I�--I r-i r-1�--1 r--1 r--1 rl r-i rl r-�I r1 r--I r--t r--1 r-�r-I t-1�-I r-1 r-i r-I r-1 r-i v-1�--i�-I�-I r-�1 r-1 r--I r-i r-1 r-I r-I r-1'-1 f-I r-t r-I t-I r-a�I�-i r--1�I r-I I � �OOIDu�C7lONQl�O('')r-IO��DWOIflMIn�PO('")OJlOI�")r-i00000d'[��i'[�t!')[1tf��'\9C701M1O00u�N�90Dd'�OI�CV�i.f')O[��'a'OLOcO S-1�-1 r-i r-i(rl N N���--��O N rl�-I O O O Ol O,OJ l�r-I C7 Ol 00 l9 U�N C'f-I M O N al r-I O�-I�-1 N CJ N C?C�O�rl M O M C!J N"a"O d'[�O l�('")O�--1 � . e e . e . . . . . . . . . e o . . . . . . . . . . . . . . . . . o . . . . . a . . . . . . . . . . . . . . . . . . . ��-1NM19[�ooOlO�--INMl0l�-00�'Qlu�G71O,--IN'�t'�c!')l9C�coM61�O3-f)r-Iu��P�10�7'M[�NI�O�IflN'-I�OO(V lOQlu�i.t)I��T'C��M�' N L.f)Lf�lJ7�7'V'`�'�'�Ll7 1.f7 L!7'Ct''ct''�7'Lf')cl'�'�'��l.f��1''�7''c!'•d''V''�F'L!��!'Lf�Ill tf7�f-3 117 I.n�t'In Il��.�1���'Lf')IJ7 LC')c17`V�tJ7 tf��l'�t'�t'���'Il�L.C)ct'V' U � .� � � U f-I N M�t+�.f�l0[��Ol C7 r-I N M�'U7 l0 L�06 al O r-i N('')�'�.!-1 l�[�o0 61 O rl CV M�i'�l9 l�o�Ol O r-1 N(''�'�'t!)l.0 t�-00 Ol Q r-I N M�t't.f)lD[`�oo Ol �-I rl r-i f-I rl rl rl�--i�--I r-I�-i N N N N N N N N N N M M(�'7 M('')!'7 c''l M c''�('")d'd'd''Ct'v�'�Y''�Y'�'�i'�!'��l�U�tn tn L(�6f1 lS7�.(� .,-{ (J to c�o0 0 �,--t o0 0 �+ • . � 0000rnrn ,-�rnc�c� �n+-�oonrnrn N� � U . . ���r--i�oo N oo E�d� r-i �r-t Co�o c� �0�--1�1' ro Ul�(�I�NL� . . . � (U . 0 oJ c'�'d+ �J S�-I r--I(�')LU C7 Lf') f��N�' O J-� tt�t.f)oD M rl rl ,'�Cn r--I N cI' �-! N O O Q O O 6l6lOONNN�'�'�'Lf')�f�f�[�OD�lOIdIOOr--Ir--ir-INMM�('�!'�I'�.f�ll?�1�07000DO�O101 � �OOC7Q0 cV NMM(�'1f`'1(�')l'')(''1MMM(�Mc'�('?c'')C'")Md'�Y"Ci"�Q'�'ct'd'cf'�'�'��'�d'ct'St+�'�"�7'�f' �Cf U . . . e e 6l 61 61 Ol Ol 61 Ol Ol 6l 6l 61 61 61 61 61 Ol Ol C31 Ol Ol 6l al Ol dl Ol Ol Ol al 61 6l 61 Ol al C31 Ol Ql C5l CSl 61 al O Ol I�61 ',� �-1 O O O O O [-�O l0 l� � O c-I rl r-I'-1`--I r-I rl r-i t-I f-i r-1 r-I ri f-I r-i�--I s--I ri rl r1 rl r--I r-I�-1�-i r-I r-i�--I r-I r-I�-I�-I t-i t-I rl rl ri r--I r-I�--I • • • S.-1 Cs.� o�rn[� O �c� Q, 10101 MC�'I�PC'�O�'��-le--iCaON610NU1N07i��'l0�'M[�00�'[�f��-10o��61N6110 �l-�,-ION�1'� l.f)U7lOf�C�'��1-1MOd'l�r-fr-IC70NooQNooNf�'a'�.f')d'(�'71900�'101�r-3[�oJ¢t'ooN0:7l.f� d'(�i�� ..-r.[�rli�lfll0 . . . . . . . . . . . . . . . . . . . . O�' OD t��'� b� • l.!')U7 l0 M M lCl C'')O d'l�r-I r-I O Q N oD O N oo N f�d'tn d'(`'1�O O Q�'lO lfl�-i C�CO d'00 N 07 t_C) O�t' • • • • •ri r-I C�t17 O CV M('�N('?C'�i''1(''1CVNMMM�t'NNN'ct'NNNMNNMNMNd'NNNN{'1MCV NNNN� • • �7'N�C? �} CrIDN[� �-I v-1 i-i s-i�-I r--I�-I r-I r-I r-I�-i i-!'-I i--I r--I rl ri r-i r-I r-1 rl r-I r-I r-I i-i�-1'-1 r-I r-I f-1�-I�-�i r-i r-I�--i�--I r--1 r-i�-i r-I N d' l�Ol r-i d� .� N o7 N v'N r-t�--i rl �--I O O O�O CO O 4l O 00 Q C?�f`')O��CJ C�O('"1 O O Ql O('')O O O O O 61 i'')Q O M C7 O O Ol O 000t�Ot�00�0{�00[�Ch�QQ C�C�('')00�0(�OOOOOo�MQQ('�OOOODO •�C70000 . . . . . . . . . . . . . , . . . . . . . . . . . (�!x I ,.0 . . . . . N N N 61 N Ol N O N 61 CV CV��O N N CV N�fV N O N tJ�N CV N N CV O�.f�N N�N N N O N � � ��'�'d"'�''`7' ct'�'d'M�t'M ct'M�'M�'�'M C�C"')�i'�i'�''�7'M'�!'r7'M C'M�'�t'�I'�I'c1'(�f�'l�1'�t'(Y'l�t'�'�'(��t' I (�'1�'1('"�f'')('') OOrnt� I ul N r1�i� I �� ou»r� I � '� r-Ic'� I OOooC>O 'V' R7 I •�-1 O O O O C7 'cr C�,' 1 U7 • (�'�('�M li�c'+'�l0 f�"�m t�"1�O(�Ch i0['�oo f�d"(�'�M[��t'M 00'�[��c'")(�'��'1(�'l oo[��C"l f�(�'1<1'f'�00 ch • � t N O O O O O M('rl('��hc�'1�('')[�M�(`')M�10[�(`'�Cl�'�MID�'('')[�'d'10�+('")n"1M(�'1[�lD�'MlD(�'1V'C'')[�M �Y' I .�00000 . . . . . . . . . . . . . . . . v� I O�-I�-t r-I r-��i (�'1('')('�1�(�"1 tf�!�'l C�('''1�c"`'1('")t!�lD l fYl c'M f�l0�t't`'1[��'lo�'c'')fYl('")(Yl C�l0�t'M�O M d'M(�('') r-i c'')Co CV l� I U ���M�M tI��-�I�.�1 M�l.f')(�'7 N rl tI��7'tf')t!")N�f'�r-I d+N��l�tf)�.1�rl N�t't.f)N�.f�rt'��-1� rl CV Lf��' I r-I r-I r-I r-I r-I e--I r1�-1 f--I r--1`--1 rl r-�r-f r-i c--1�--1�--i,--I,--I r--I�-1 f--I r-I r-I ri�-�1 r--I rl r-I r-I r-�E r-1 c-1'--I r--I r-i,-i r--I�--I ��c�lQ I u�co�c+� I � r-I rl 1 �r-I r-I rl r-I t�-I � � a � � � o�oo��o�o�oo��o�o�o�o�000�o�o�Q�oc�ooc��o�o�000uaoo�o�o a� QaQoc�c.�c�caoa00000000000aaoc�0000c�00000000aQ �n� , . < e . , e . < . , . e . . . . . . . . ro.�r-�Qc��c- C7NaNNNQCV ONNONNNCVO00NONNQNO000NNNOONOONNQ � �m���� I �N��N N O rn I r� O M C''1�C'��1' I • c;�l��ai I o� • • I N o M M� I '-i i r-I N I �M O O lfl lfl N�I[�r-i r-I r-I N rl L�c-i�-1 N r-I i-I'-I�-1('')[�N r-i M r^�s--I('')rl f�'1 N 00[�r-i t-��-i('�l 00 ri N("''1 ri r--I oo --� I �M I�[�O�O� N�I�U ri rl rl N r-I LO r-i'-I N r-I�-I�-1 r--I t'')�N rl C�r�r-1(��M N[�lD rl r-i�-1 M C�rl N(�r-I r-I t� � I '� • • • • • . . . . . . . . o . . . . . . . . . . . . . . . . . . . . . . � I •r-INrIrINN rl d'[�'V'cl''V'r-i cf'[�C"d'r-I'�I'cf'ct'd'00 f��--I EJ'OD cY'�'OJ�'OJ f-1�i'[�c}'c!'�'OJ�'d'c--1 OJ ci''�'d' � U I � ��d�t.f')�.f���c1'U��7'�u7 d'U�ttl��N d''�'tf)N�3 u�N i.f')N'�]'M�'l.l�u�iIl N('l i.f)�Y'N��('"l V� •r-I I ..�Qu�olO rl I a U ��1'l�'d'N ul I ��•� " • � O M r-i oD N `--i I �<`"7(`"1('")('")M �cf�CO C�(� �t' � rl • • �� " I b�C7 C7 C�N N O I G I I I 01C001�1�'�O�[��[�N[�('')�101Oril9'�t'O�b(�'�Q�[�ooM(�COO�DooIS>t�t.f')61l'�Ol000�61 N � I � oDU�r1oDM61lf�OW�-IONN�hf-�IO�ril.f7oo[�ooll7NC1'oDt-i�6>N(VM�(�t.f)OriM6lr1'c-1 `-�' cll l . a . e . e . . . . . . . . . . (�OJ •rl P d'l lfJ�Y't77 lfl N f-I M Ol M O f-1�--I(`'1 O 01 r!l�(�`1 l0 Qo Lf')�1'�(V�OJ 61 tO f�l�C31 l0 CJ M[^�M 6l� l0�-I •• J-� l ('�(''�N(`')('')MMNNC'")M('')�t'N N�'"1('`1 NNh7MNNMN('"l(V(''lrl NNNN('')MNN NN(`') • • N �-I E r-�Il��--��'r--I �-i rl rl c--i r-i r-I�-1 t-i ri r-I rl r-I r-I r-I�--I.--1 t-1 r-!r--1 r-i r-1 s-1'-I r-I r-I�-1�-I�--I��-I r-f�--I�--I r-1 r-i r-i r--I r--E r-I�-i l�r-I U N f C/] fCf O[�N W LO a� i v��n ro i�, � � v • U I � � � ��oocv�o0 !�1 I �o o�r--�C� W I •rl I cn o��r r� I U I • � I �--I�--I Q1[�r--I CO O�O��-I al CV l0 O r-3 l�(''1�.f1'�Y'C�M Ol'¢J'['�d'117 Ol CV Ql l��N f��t'N O C7 C�oo lS�l0 I N Q N r-I li� � I �N�O'-I O�'!.f)l9 O O M rl N�Ol l0 L(7 N N�'O7 LO C�N��--�n3�l'[�l�N O r-I(''l CJ C7l l0 l`�� � I •• •• �-I r�N {d I , . . . . . . . . . • • S�-I I r�U � I [�C?CJ C��O �^[�aD N oo r-i t!)00 61 O Ol l0 Ol(�')('�C�M C7[�N�1'C?l0 tf)v--t l0 OU N�-I r--I 11�O I�(`'1 dl CSl f�N'�7'c") � 1 5C�C r--I � I JJ�C�[�'ct'N �t.ni.r7v��<r�M����t��(+')u»�pi.r7��lDM��d*�t1�lo�D(�'ld��u�c�'l�d'IOM�t� �-I I •�-I �i I 4-1 • • • • • •� � ro +a � a!c-o�--i c�� as i .. ..�+-i a� i ��r�n�n��n w i � a� �w�� � i i � � �-I'L7�o�c�t� o � �C �-I I U�I-� OJ • • � I +� I N ��L��O(�l� C7 I U I U1 � �tl'�'r ON I •r-1 I �!C, �-I i-I r-I N I QJ O r-I N M'd'�lfl E�'06 61 O r-1 N M�Y'L17 lfl[�00 dl O r-I N(''1�'tf)l0[�o�dl O r-!N c'"7�1'Lf��O[�a0 Ol J-� I � 4J U I U �o�o�o�o���o�o�wc��t~,t�t�[�r-[�[�[�000000000n0000000�o�rrlo�o�o�a�rno�a�a�a� •� I J-� � •r-t I •� ,--ic�c���n �-! i G N r-i I �--I U ! H C7 � I � 1�l�l0 lQ lt�LC�l.(�U�V��V�ct�rJ'�f'rJ'cr c!�t.n w7 IS�Lf��O l.0[�f�OD 00 O O N N�1'�f'�7'�O�o 61 61 C3l Ol Ol Ol Ql Q�61 Ol Ol 61 dl al dl Ol al 6l Ol 61 61 61 61 6l Ql Ol Ol O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d O O O C7 000 O O O O O O 00 O O O C7 O O O O O O O i-i t-i ri r-I r-i r-I��f-i 61 0o r-I�Lf l M Ql c�")�`�I'O 117 c'')61 N`CY'cC�7(�N rl�-I(''1 C''1 N[�U7 00�f't 1)N lQ N lfl 01 M� M l.f')Ol O 61 C�l0 l�N r--I 6l C�[��.f')O C�O l�f�l�O l�N d'(V Ol[�M OO lO U7 Ol Ql�l")t-I M . o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r-I 00�--1�N�'1.f7 Ql'-I O�O r-I l.f')61[�l.f)tD 00 lD�'O�OJ r-I d'�'�'t-1 f-I tI'7�00 u7 Ql t1�t1l M [�ON'tY'(''1MO�cI'O�'610C�'1C�'1�.!")(�'li�'lOu7�ON�N�-f')ON U�1O0001r-I O[�C31 tn[�03 Ql C�r--I N N('')�'�'�'�t!')tn lf)tS)t.C)t.f)�'h")N�--I O O Ol Ol m[�l9 t-f)�t'd'�l")(''1 r1 �--I(-I T--1 rl r--I f--I r--I'---I r--I r--I�--I r-I�--I�--I�--I f--I r-I r-I r-I�--I r-1 p O O O O O O O p O O O O O O O O O O O O O O O O O O O O O Q O Q O O Q O O O O O O O O O O O O O O O O O O O O O O O O Q O O O O Q O O O Q O O O 00 O O 000 O O O O O O 000 O O O O O O O 00 Q O O O C?C?Ca Q Q O O WOQI�t'MNO�-I�OOM('')OOr-1611.nO�011flct't-1'�1'l�('�OLf7[�l.f�r-IOO�Oo�6> I N MM�-IUGOI�OQI(''1 V'OOONMMOOr-IC7N�Or-IN�t�S�[���No�Oco(�"lC� I 67 . . . . . . . . . . . . . . . . I • lC�O OJ CV O[.f)�--I�'lp ol l0 QO'--I�7'�1'al Ol l�ul l0 N��Ul O t!")O Lf�f O(h Ol 00 tf')[�U") � [� 61 O lD N f'")M 00 M r-I'-I M Oo'�M'�Y'c`"1 N�-i N lfl'--1 r--1('')l�N r-I{�-cV Il')�00�O i�Ol 61 c�'�Q' I O lDr-1�7'��--I�r\OOIr-IM'�I'��OI�I�i�t�l'�L��-101[�MN�--IooC��'N61C�NON[�N I �1 s--I N N N f'"1(y'1 Ch M d'd'd'�''cM'd''�i'd'�'c�'N(Yl N(�'�(�'1 l�"1 M N N CV N r--I r-I r-I r-1 I r-I I � I � I QQQQOOOOOOC7040000000C�C700000000000000 � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . „� �rd+�r�f+�rrrv��rrr�r�r�r�+v�v�v�v��v��v���v�<r�r�r�crcra�a����r�r�r b� M(�(''�(''�(''7(Y)M(`'�M(�(�'1M!'')n'1f�('")M!'"1(`')(''?(''�(''l(�c�'lMc�'1n"1c'')Mc''1h�C�MMMM •r-I N S � O O O O O O O O O O O O O O O O O O CJ O Q Q CJ C?Ca C?O O O O O O O O O O I O 00 O O O O O Q O O O O O O O O O O O O O O Q O O CJ O C7 C�O 00 Q O O yC . . . e e < . � e e . . . . . . a e . e . . o . . . . . . < . . . . . . O p O OO O O O O O O O O O O O O O O O O O O O O�C7 Q Q C?O OO OO O O O O O O O O O O O O O O O O O O O O O O O O O O O O Q O C?O O�O O O r-1 r-I r--f r-1 r-I r-�I r--1�-�I r-�i c-1�-I�--I'-I r-I r-I r-I r-1�-1�-1�-i�-I�-I�-1'--I f-�I r--I r-I rl r-1 r-I r-I r-I r-I c--1�-i f-I c-i r--I r-I r--1 r-I r--I r-�1 r��-I rl'-1 r--I r-I r-�rl f-1 r-1�-1�-i i-I i-�f r-1 r--I r--I r-I r-I�--I r-I�--i r-I rl�---1 rd�--i r-i r--I t-t-c-[�c--t-c-c-[-[-i-�-��--��-�-�-cv�,--i,�c�r-r r c-�-�-�-i-o0 0o c-�-r, � r� a000m000�ooa000mo�o�o�o�o�o�aoaoo�[�oornooa>mcr�cpeoo�o�ood�d{[�000a I rn . . . . . . . . . . . . . . . . . . . . . . . . . , I . NNN(V NNNNNNNNNNCV NNNi-tNNNNNNNNCVNNNNiVONN � o I � I LO lD�1''c1'N N Q1 Ql lfl lfl N N oO 00 M t''1[�l��-I�O l0 03,-i OJ OJ O O N C�!M(�"1(�1��U"?� 00 0o N o�o0 0o C�C�l�[�t�[�lfl lfl�O lD ln 4f�I.f�['�[�'ct'�7'f�'1(�'1 c''7(''1 N CV rl r-I E�i`,�Ol dl .. . e . . . . . a e e . . e . . . . . . . ,�," . . o . . . . . . • . . e . . . NNNNNNNNNNNNNNNNNNi-1�--it-INNNNNN(VNNNr-Ii--[Or-I�--i }-� � G' Q) � O O lSJ�O(�M Q1 Ql u�u�N N QQ QQ l.f)tS�r--I�--i C�l�l��1'�J'O O I�[�f�(��Ol 61 l.0 iD lD N CV .5:: . . . . . e . . . . . . . . . .N o . � . . . . . � . . . . � . . . . . . . ��[�[�OONN��Oa000Qcrlt''1191�COo�oO�--i�--1�'d'191�0101r-1'-Id'v��'l�[� �d �-i rl ri r-I'-i r-I r-I r-I N N N N N N N N N��M M(�"1(�"1 M h')'ct''cY'ct'v'�t'�1'�7' W �'O[�N6IMODOIQQI'��f'�ct'�rl(`")01'ct'I�I��IOr--IN�[�190t-i61I��[��f'�f� I (� �t.f)t.f)Lf�O��D(�(�'1C�6lNl4Lf��OIM(�'10(31Nr-ir-1610161��Ol�IQ�Or1�l'r--10 ( N . . e e . . . e . e . . . • , I �t'i�Q(''')�OOaN�1'lO�000�CflCfIOlCJ1Q1c`')�f1'�t'�-Icolfltl)('')NOo�IQ�t'OQ1NlOCV I � ��NNNNMM('')('')M('")c�('"1('�1M('''1(''INNN('")NNNNNNr-ir-It-Irl i � I I MOOcI'CbN�I'lflli7lJ7NO�ONQ00r-I'c7'N�Q�NC�r-IQIC�C�[��OM(�(''7Otl�O r-i rn o3 lQ t(')(�'1�-i Q�[��N Q[�d'O i�c�'1 Ol�t+C�l i-t�Q�ct�1�r-I V'�Ol N C+�v�N O t.f')U� < . . . < . . . e . . e . . fLs Oli-ld'[�OM�CO'--1�1'I�ON�OOQ(�'l�ooOr-it�')1Do70(Yl�.f)[�OlNci'�D�OON � u7 W lS�l.0 l�[�[�I�O��00 61�l 6l 6l O Q Ca C7�-I�--i r-i r-!t-I N N N N N M(�M t�'1�'V �I' �-I r--i�-I f-�1 c--I r-I c-i c--1 e--!�--I r--1 r-I r-I r-I�--i rl r--1 r�-1 r--i c-1'-1 rl f� C!� 1 �C l�[�Oo Ol C�rl N(�'1'ct'11��[�oJ al O�-1 N M ei'u7 lQ t�CX�61 O r-I N M d'�LO f�oo C(1�'-I r--I r-i r-1 rl r-1 r--I t-I rl f-I rl N N N N N N N(V N N("'')(`'1("`'1('�f'�('')M��''l�'')�t'�t' a N � � U O (n M d �ri y, .-- � O (� N .� � � � � � y �- h �•Q. � U � — � �, o � "� a`. _ � � � � � Q- � --�� w r � t c� � � � v) 1� p„m U .c v U "i. � .y :•� c7 �� � ,p � v y � � � �h � � � p U � co a L. ~ � � `C t� :.... �'• O p �C � v�i � Ci "' � — ---- — J � � o :._. o y N � ~� �� � � O fO^ � � V i-1 � U -�I � � �N � fC3 � � � E� Q�'� O 7-�"� CO �_i � � NII '��: O O �� N M cn 11 � �,_i.c_; r'��o Q �: �- _ � \ � E o � N V � � �� U � � � �N � � d � O �� O � O L • • � � � L N ,� N � d' �-- , � � O � � Q �� Z �.� W J Q .�i � (� �� � -r--1 ` � � 'c .� � �� � � � '� o � � �.n,� I a� o' �I--I � 0 N � d_' o >' - N 0 � � � N � � �� � � � � _ � N C � O � a � M�- r.:• � ----1--------1----------1- I I I I _ I N � o o a�o � � N a o 0 0� �t (A U � � � � � �I � � � 0 � � V o? � C r- cn N � d .� N y L !� m (�'{ n o .�.�i � E � 0. O � in ` ` a «� � � � � � � N ` o N J ..k� � � m V '��, in C " - � � .� �L � .� �o � � i � � m N � Rf } � � � � � '� W ~ C,�.. -��° Q TL � � � U � � O - � � � a � � 4J O� r--I � �-I - � �{ z, -,-I � � � d .� -.---1 `; � � �� „_, �� v » �� � E � � � o - Q , l O r _� � ry W ���T� V' ` �--(� -i-� • � � / � U] N � � o a�o °1 0 N � b� r1 N � b O � '� M � � .� � U a � + _ �1 �' " � � - �y � Q t u; O L � O <n 1 � .y .� N � �;, �'� rn = A d +-. (Sf o - O � � � Ul � � � � � � � � � � � 0 0 0 0 0 0 0 0 0 o a o 00 I` (O sfi d' M � O � 00 h- N y � � r- � e- � <- O O O V� �e•- � r r �'- r � r t'� N .� � U � � a «, GALENA 6.10 Analysis R.esults 6icensee: GeoMat Testing Laboratories, Inc, Pcoject; 23,5 Feet High Fi31 Slope Eile; G;�Users�HNabilsilDocuments�GEOMAT DATA�ANNUAI AEPORTS12011 RE2QRT5�11061,Inland Cammunitioes Corp Tem,..�Fill Slope.gmf Pxocessedt 0� Sep 2013 12;52,99 DATh; Analysis 1 - Static Analysis. Material Properties {1 matecidl) �ateria�: 1 (Mohe-Coulomb Isotropic) - Native 5oi1 Cohesion Phi UnitWeight Ru 100.00 39.0 120,00 0,00 Material Profiles (1 profile) ----------------- Profile; 1 (2 points) �aterial beneath: 1 - Native Soil Q.00 1140..00 160.0.0 11A0.00 51ope Surface (4 points) 0,00 1101.70 20.4� 1101,70 67.00 1125,20 I27.00 1125,20 Failure Surface --------------- Initial ciccular surface for critical search defined by: X1,XR,R Intersects: XL: 2D.00 Y1: 1i01.70 XR; ST,00 YR: 1125>20 Centre; XC: 23.93 YC: T153.59 Radius: R. 52.00 Distributed Loads (1 load� Load X-L�ft Pcessure X-Riqht Pressure 1 79.D0 200.0 119.00 200,0 Variable Restraints Parameter descriptor: X6 X� R Range of variation: 20,9U 32,00 19,00 Trial pasitions within range; 10 10 10 -------------------------------------�--___-___�-___-___--------------------------------------------------------------------____ RESULTS: Analysis 1 - Statie Analysis Bishop Simpiified Method of Analysis - Circular Failure Surface Crit�cal Failure Circle Seacch using Maltiple CircLe Generation Technigues Ractox of Safety for anitial failure circle approximation, 1.99 There wece: 865 successful analyses from a total ofi 1005 trial circles 115 a�alyses terminated due ta unacceptable geometry Critical {�inimum} Factor of Safety; 1.97 Circl� and Results Summary (1o�est Factor of Safety cirCles) Circle X-Left Y-Left X-riight Y-Right X-Centre Y-Centre Radius FoS 1 1B.B9 1I01,70 68.79 1125,20 21,61 1160,69 59,00 1,969 2 16,B9 iioi.70 68,76 1125,20 22,36 1159,09 57,99 1,969 3 21,11 1102,26 66,76 1125,20 22,83 1159,b7 57,99 1,970 9 18.89 11D1.70 6B,7B 1125.2.0 23,12 1157,93 55,89 1,970 5 21.11 1102.26 6B.78 1125,20 22.07 1161,25 59.00 1.970 6 21.11 5102.26 66.7B 1125,20 23.59 1156,09 55,69 1,971 7 21,1i 1102,26 68.78 1125,20 24,36 1156,99 54,33 1.972 B 18,69 1101.70 66.76 1125,20 23.8B 1155,80 54,33 1.973 9 21.i1 1102.26 69.76 1125,20 25.�4 1154,86 52.76 1.975 10 18.89 1101,70 66.78 1125,20 24.66 1154,I6 52,7B 1.977 11 18.89 1101,�0 72.33 1125.20 24,97 1160,39 59,00 1,980 12 21.11 1102,26 68..7n 1125,20 25.92 1153.25 51.22 1.9�0 i3 21.11 11b2.2b 72.3� 1125,20 25.51 1IG1,09 59,00 1.980 19 16.89 1�01,74 68.78 1125,20 25,94 1I52,50 51,22 1.983 15 21.11 1102,26 12.33 1125,20 26,23 1I59.97 57.94 1,985 16 16.89 1101.70 ?2.33 1125,20 25,�0 1I58.�9 57,94 1.985 17 16.67 iI01.70 68.7B 1125.20 22,24 1158.87 57,44 1,9$6 18 16.67 1101.70 68,78 1125,20 21,50 116Q.50 59,00 1,986 19 21.11 1102.26 6B,76 1125.20 26,71 1151.61 99,67 1,986 20 2Q.00 11Q1.70 67.00 1I25.20 23,93 1153.59 52,00 1,987 21 16.67 1141.70 G8..78 1125,20 22,98 1157,23 55,89 1,987 22 16.67 1101.70 68.78 1125.20 23,73 1155,57 54,33 1,989 23 18,89 1101.70 68.78 1125.20 26,23 1150,82 49.67 1,990 29 2I,11 1102.25 72.33 1125,20 26,96 1157,89 55,69 1,990 25 23.33 1103.37 68.78 1125,20 25,21 1157,67 59.33 1,991 26 18,89 1101.70 72.33 1I25,24 26,93 1157,06 55,89 1,992 2? 23.33 1103.37 68.78 1125.20 29,95 1159,24 55.89 1.992 28 23,33 1103.�7 6B.7B 1125.20 25,96 1156,06 52,78 I.992 29 23.33 1103.37 68.78 1125.20 23,i� 1160,81 57,94 1,993 30 16.67 1101.90 68.78 1125.20 29,96 1153,90 52,7B 1,993 31 16.67 1101.70 72,33 I125,20 29.79 1160.14 59,00 1.993 32 23.33 1103.37 6B,78 1125,20 26,75 1159,97 51,22 1.999 33 21.11 11Q2.2G 68,78 1125.20 27,51 f149"94 98,i1 1.995 34 23.33 1103.37 68.,78 1125.20 22,95 1162,37 59,00 1,996 35 23,33 1103.37 72,33 1125.20 26,95 1162,26 59.�0 1.996. 36 23.33 1103.37 66,78 1125.20 27,52 1152,B5 49,6I 1.99T 37 21.11 1102.26 72,33 Y125,20 27,70 115b,19 59,33 1.998 3B 16.67 1141.7� 72,33 1125.20 25.50 I158,45 57,99 1,999 39 23.33 1103.37 72,33 i125,20 27,16 I160,68 57,49 1.999 40 16.67 11D1.70 6B.7B 1125.20 25.25 1152,20 51,22 I.999 91 SB.89 1101.70 72,33 1125.20 27,17 1155,40 59.33 2.000 42 16.89 1101.70 68,76 1T25.20 27,03 1149,12 98,T1 2.�01 43 23.33 1103,37 6B,78 1125,20 28,31 1151.22 9$,11 2.003 49 23.33 1103,37 72,33 1125.20 27,88 1159.07 55�69 2,UO3 95 14.99 1101.70 68,78 1125.20 22,0? 1158,69 57,49 2.D06 46 2L,11 1102.26 68,76 1125,20 26,33 1148,25 96,56 2.006 47 19,99 1101.70 b6,78 1125,20 21,35 1160,29 59,00 2,006 46 16.67 iioi.70 72.33 1125,20 26,21 1156,77 55,B9 2,006 49 21.11 1102,2b 72,33 1125.20 26,45 1159,52 52.78 2.006 50 14.9� ll01.70 68.79 1125,20 22,79 1156.96 55.89 2.007 5i 16.67 1101.70 68.78 1125,20 26,02 1156,48 99.67 � 2.00B 52 23.33 1103.37 72.33 1125.2Q 26,60 1157,49 59.33 2,006 53 14.94 1101.70 68.7B 1125.20 23,52 1155,27 59,33 2.010 59 2.3.33 1103.37 68.7@ 1125,20 29.11 1199,56 �6,56 2,010 55 18.89 1101.70 72.�3 1125,20 27.9i 1153,70 52,?S 2,010 56 14,94 110i.70 ?2.33 1125,20 29,56 1159,83 59,00 2,0�1 57 16.89 110i.70 65,22 1124,31 22.d4 1152,78 51,22 2,013 58 18.69 1101.70 65,22 1124.3i 23.94 1151.16 99,67 2,013 59 18.89 IlOk.70 68.78 1125.20 27,85 1147.39 96,56 2,014 60. 18,89 1101.70 �5.22 1124,31 2 L 86 1159.39 52,?8 2,014 �S1 23.33 I1Q3.37� 72.3.3 1125,2D 29,33 1155.,BQ 52,76 2.015 62 16.67 11'Q1�.70� 72.33 1�25,20 26,94 1155,05 54.33 2,015� b3 19.94 I101.76 66.78 1125,20 24,26 1153.56 52,76 2.015 59 25.56 I10A.98 66.78 1125.20 27,60 1155,66 51.22 2.015 65' 21.11 1102.26 65,22 1124.31 23,69 1151,84 49,67 2,015 b6 25,56 1109.48 66.78 1125,20 26,36 1154,07 49,67 2,016 ' b7 21..11 1�02.26 b5.22 1124,31 23.09 1153.94 51,22 2,016 68 25.56 1109.48 66.?8 1I25.2� 26.89 1157.24 52,78 2,016 ' 69 18.,89 1101.70 65,22 1I24,31 29,24 1149.51 48.11 2,016 �0 21.11 �102,26 65,22 1124,31 29.69 1150.23 98,11 2,016 �1 1B.89 1101.70 65.22 1124,31 21.06 1155.99 59,33 2,�16 ?2 19.44 1101.70 72.33 1I25,2D 25.26 1158,12 57,94 2,017 13 21.11 1102.26 72.33 1I25,2U 29,20 1152.83 51.22 2,017 74 25,56 1109.98 68:76 1125,2U 26,09 1158,81 59,33 2,017 75 21.11 1102.26 65,22 1I29.31 22,30 1155,02 52.76 2,018 �6 2b.56 1109.48 6B.76 1125,20 29,13 1152,96 48.11 2.O1B l7 25.56 1�09.96 72.33 1125,20 27,91 1163.95 59.00 2,016 TS 16.67 1101,7Q 6B.76 1125,20 2b,61 1I48,73 98,11 2.019 T9 21.11 1102.26 65.22 1129.31 25.51 1148,60 4fi,56 2,019 80 25.56 1104.98 72.33 1125,20 28,11 lI6L,8? 57,94 2,019 BI 23.33 1103,37 6B.7B 1125,20 23,91 1147,88 45,D0 2.020 62 21.11 1102.26 6B.76 1125,20 29,15 1I46,53 45.00 2.020 63 25.56 1109.96 66,76 1i25,20 25,34 1160,3? 55,B9 2,020 84 16.B9 1101,70 65,22 1129,31 20,31 1157,57 55,69 2.020 85 1B.6R 110I.70 65.22 1129.31 25,05 1147,B5 46,56 2,021 66 21.11 1102.26 65,22 1129,31 21,51 1156,59 59,33 2,021 87 25,56 1109.98 72,33 1125,20 2B,$2 1160,27 55,69 2,621 86 25.56 1109.98 68,76 I125.20 29,91 I150,B3 4b,56 2,022 89 14.44 1101.70 66,76 1125,20 25,02 1151,82 51,22 2,022 90 18.83 1101..70 72,33 1125,20 28,67 1151,96 51,22 2,023 91 23.33 1103.37 72,33 1125,20 �0,07 1159,14 51,22 2,023 92 25.5b 1104.98 '68,78 1125,20 24,60 1161,91 57,99 2,029 93 25.55 1109.98 72,33 1125,20 29,53 1158,67 59,33 2,029 94 19.A4 1101.70 72,33 I125,20 25,96 I155,39 55.89 2,025 95 2i.11 11Q2.26 65,22 1T29,31 26,33 _i14S,95 45,00 2.025 96 21.11 5102.26 65,22 1124.31 20.74 5158,14 55.BR 2,025 97 16.67 1101.70 72,33 �125,20 27,67 1153,32 52.78 2,025 96 25.56 1109,98 66,78 1125,20 30.70 1149,18 95.00 2.028 99 16.69 110I.70 65,22 I129,31 25,B8 1146;15 95.00 2.028 Critical Failure Circle Intersects: XL: 18.a9 YL; 1101.70 XR; 6Q,�a YR: 1125.20 Gentre: XC: 21.61 YC: i16Q.69 Rad�us: R: 59.00 Generated failure su�face; (ZO pointsy 1B.69 1101.70 21.91 1101.69 29.R3 1101,�3 2�,94 1101,98 30,93 1102,38 33,90 1102.93 36.B3 110.3.64 39.T3 1109,99 42,SB 1105.99 95,37 110b.64 48.11 1i07.92 5D.77 ll09.35 53.35 1�10,91 55,$6 1112.60 58,21 1114,41 60.5R 1116.35 62.B4 ll16.40 69.91 1120,56 66,90 1122.63 68.78 1125.20 Siice Geometry and ?roperties {39 slice�} --_______________�____ �_ 5lice %-S ___________________ Base------------------- PoreWater Narmal Test X-Left Area Angle width Length Matl Cohesion Phi �eight Force Steess Factar 1 18,89 0.41 -1.2 1,11 1.11 1 100,00 34<0 1.51 0,00 2,42 L O1 2 20.00 0.2b -1.2 �,95 0.95 1 I00,04 39,0 31,09 0.00 33,�1 1.01 3 20.95 0.73 -1.2 0.95 0.95 1 100.00 34.0 87,87 0,00 93.61 1.01 9 21.91 2.07 1.B 1.51 1.5� 1 100,00 34.0 29a.11 0.00 161.14 0.99 5 23.92 3.19 l.B 1.51 1.5I 1 100,00 34.0 3�6.37 0,00 245,25 0.99 b 29.93 9.13 9.7 1.50 1.51 1 100,00 39,0 495.99 0,00 316.53 0.98 ? 26,43 S.OB 4.? 1.50 i.51 1 100,00 39.0 &09.56 0,00 369,99 0.96 B 27.94 5.93 7.6 �.50 1.51 1 100.00 39,0 711,86 O.OD 94�.32 0,9G 9 29.43 5.75 7.6 1.5� 1.51 1 i0Q.00 J4,0 810,25 0.00 511,1G 0,96 10 30,93 7.95 10.6 1.98 1,51 1 100:00 34,0 893,89 0.00 557.1B 0.96 11 32.91 8,14 10.6 1,96 1.51 1 100,0� 39,0 9�6.82 0.00 609,70 0.9G 12 33.90 6.67 �3.5 1,97 1.51 a iao,00 39.0 1090,B7 0.00 6A3.62 0.95 13 35,37 9.23 13.5 1,97 1.51 1 10�,00 34,0 1108.15 0.00 686.16 0,95 19 36,83 9.60 16.4 1,95 1.51 1 100,00 34,0 I152.11 4.00 708,99 0,95 15 38:28 10.03 16.4 1.95 i.51 1 100.00 34,0 1203.75 0.00 7A1.33 0,95 16 39.73 10.23 19.4 1.�2 1.51 1 100.00 39,0 1227.53 0.00 753.20 0,95 17 41,16 10.53 14,4 1,42 1.51 1 100.04 34,0 1263.73 0.00 715.88 0.35 18 42.56 10.56 22.3 1.40 1.5� 1 100,00 34.0 1267,67 0,00 7�?.36 0.95 19 43;96 1Q,79 22.3 1,40 1.5I 1 100.00 39,0 1288,�6 0,00 790.63 0.95 20 95.37 10.61 25.2 1�37 1.51 1 100,II0 39,0 1273,59 0.00 782.23 0.95 21 46.79 10.5� 25,2 1.37 1.51 1 100,D0 39,0 1260.07 0,00 786.39 0.95 22 48,11 10.39 28.2 1.33 1.51 1 100.00 39,0 1246,96 0.00 766.b1 0.96 23 49,94 I0.33 26.2 1.33 1.51 1 100.00 39,0 5239,99 0.00 763,63 0.96 24 50,77 9.92 31.1 1.29 1,51 1 100.00 39,0 I189,96 0.0� 737,39 0,97 25 52.06 9.79 31.1 1.29 1.51 1 100.D0 34..0 1169,30 O.OQ 724.10 0,97 26 5J.35 9,2i 34,0 1.25 1.51 1 100,00 39.0 1105,24 0.00 689.49 0,9a 27 59.fi1 6,99 34,0 1.25 1,51 I 100,00 39,0 lO12,39 0,00 668,07 0,98 28 55.86 6,30 37,4 1.21 1.51 1 100,00 39,0 996,00 O,OD 625,93 0,99 29 57,06 ?.93 37.6 1.2I 1.51 1 100.00 39,0 95I,99 0,00 596.92 0,99 30 56,27 7.22 39.9 i.15 1.51 1 100,00 39,0 865,66 0,00 597.99 1,01 31 59,43 6.76 39.9 1.1G 1.51 1 106.00 39,0 81 L 7T 0,00 511.70 1.01 32 bQ.59 5,99 92,6 1.11 1.51 1 i00.00 34,0 716.74 0.00 956.66 I:03 33 b1.b9 5,97 42,6 1.11 1.51 1 100.00 34,0 655,97 9.00 913,B5 1.03 39 62:80 9.66 45,.B 1,05 1.51 1 100.00 34.Q 559,06 0.00 353,96 1.46 35 63.86 �.07 95,6 1,05 1.S1 1 10�,00 34,0 988�92 0.00 308,74 1,06 36 69.91 3.26 48.7 1,00 I.51 1 100,00 34,0 391.96 0.00 290,94 1,09 37 65,91' 2.63 A6.7 1,00 1.51 1 106,00 39,0 315,37 0.00 166.06 1,09 38 66,90 1.66 51.6 0.99 i.51 1 100.00 34.0 199.72 0.00 103.95 1,12 39 67,89 0.55 51.6 0.94 1.51 1 100.00 34,0 66,57 0.00 9.60 1,12 X-5 Rcea; 26i,62 Path Length: 57.38 X-S Weightt 31399,IB � 0 � N (� Q � m � � �O � .� � � '� � � � �" LL R d � � � �� � Q � � �, � 0 � � � � � � � J Q ..�°' � �i m � � � � iu �s v� a a; � 4- a t�i� � � � � � 'e qj u a 1-- � � � � � �C � w � O � �— o � cn G - - d' (�.) � � O � b � � ro a U ia � O `� .� ta �.� E '�"" � '�� o O -�� N � � � �_�w � � � �{--� � �_� � v+ C� � � � u. N� � a� o u o \ �� � � 0 <r ,� ri m II a YW .0 U O (C Q d' o�0 � � - C`1 0 � cci O ( o C� E - oi m � � � ��' in _ � � +-� .� o _ o � V tn L_. � �� � � � � a o � � a o o � � 'a� _ OD h- (O �Cl `�!' M N .- O � 00 1� N � N � e- �r- � �-- a- a- � � O C1 O !� T �� r !� �� � U � C) O m a « GAIENA 6.10 Analysis Aesults Licensae: GeoMat Testinq Laboratories, Inc, project: 23.5 Feet Hfgh Fill Slope File: C:�Users�HNabilsi�DocumentslGEOMAT DATAIANNUAL REPORTS12011 AEPQRTS111081,Inland Communitioes.,,1Fi11 Slope Seismic.gmf Processed; O1 Sep 2013 12:49:30 DATA: Analysis 1 - Seismic Analysis Material Aroperties (l material) Mater�al: 1 {�ohr-Coulomb Isotropic} - Native Soil Cohesion Phi Unit�eight Ru 100.0� 34,0 120.00 0.00 Materzal Profi�es {1 pxofiZe) ----------------- Profzle: 1 S2 points) Material beneath: 1 —Native Soi1 0.00 1140.40 160,00 1190.00 51ope Sur�ace (4 points} 0.40 110i.70 20.00 11Q1.70 67.-00 1125;20 127,00 1125.20 Failu�e Surface --------------- Initial circular surface for critical searclt defined by; X1,XR,R InterseCts: Xb: 20,00 Y6; 1101,70 XR; 67,00 YR: 1125,20 Centre, XC: 23.93 YC; 1153.59 Radius; R: 52,00 Distributed Lvads {1 load) Load X-Left Pressure X-Riqht Pressure 1 79,00 200.0 119.00 200.0 �arthquake�orce ---------------- Pseudo-static earthquake {seismic� coefficient: 0,150 Variable Restraints Parametec desc.riptor; XL X� R Range of variation; 2D,00 32.00 19.00 Trial positions within ranqe; 10 10 1D ------------------------------------------------------------------------------------------------------------------------------------ RESULTS; Analysis 1 - Seismic Analysis Bishap Simplified Method of Analysis - Circular Failure 5urface Critical Eailure Circle Search using'�ultiple Circle Generation Techniques Factve of Safety for initial failuce cixcle apprv.xi�ation, 1.45 There were; 886 successful analyses from a �otal of 1001 trial czrcles 115 analy�es terminated due to unaccepCable geometry Cr'xtical (minimum} Factoz of Safety: 1.49 Negative normal stresses exist on the base of one oe moce slices - examine slzce data and cansult the GALENA Heip utility Circle and Results Summary 4Lowest 99 Factor of Safety ci�cles) -------------------------- Circle X-Left Y-Left X-Rzqht Y-Right X-Centre Y-Centre Aadius Fo5 1 21.11 5102.26 72,33 1125.20 25.51 1161.09 59.00 1.937 2 18.89 1101.70 72,33 1125.20 24.97 1160,39 59,00 1.936 3 18.Q9 1101.70 68,78 1125.20 21.b1 116D.69 59.00 1.439 4 18,89 1101.70 68.78 1125,20 22,36 1]:59,09 57,49 1.490 5 2I.11 1102.26 68,78 1125,20 22.07 1161,25 59,00 1.490 5 21,11 1102.26 '68,78 1I25,20 22.83 1159,67 57,9A 1.990 7 21.11 1102.26 66,78 1125,20 23.59 1158.09 55,B9 1,491 8 21.11 1i02.26 72,33 1125.20 26,23 1159,47 57,49 1,A91 9 18.89 1101,70 6B,I8 1125,20 23,12 1157,43 55,69 1.991 10 21.11 1102,26 66,78 1125,20 29,36 1156,49 59.33 1,492 1� 18.89 1i01,70 72,33 1125.20 25,70 1158,74 57,49 1.943 12 18.89 1161,70 6B,?B i125,20 23.86 1155,�0 59,33 1,493 13 21,11 1i02,26 6B,I8 1125,20 25.19 1159,88 52,78 1,945 19 2 L 11 1102,26 72,33 1125.20 26,96 1157,64 55,69 1,946 15 16.89 1101,74 66,�8 1125,20 29,66 1154,16 52,76 1,947 15 18,89 1141,70 72,33 1125,20 26,43 1157�.OB 55,89 1,948 17 23.33 1103,37 72,33 1125,20 26,45 1162,26 59.00 1.948 18 16.67 1101,70 72,33 i125.20 29,79 1160.14 59,00 1.949 19 2i,11 1102.26 66,78 I125.20 25,92 1153.25 5i,22 1,999 20 23.33 1103.3� 72.33 1125.20 27,16 I160,66 57,49 1,951 21 18.89 1101.70 66.78 1125.20 25,49 I1S2.50 51,22 1,951 22 21.11 1�02.26 72,33 1125,20 27,?0 115b,19 59,33 1,952 23 16.67 1101.70 bB.76 1125.20 22:29 115B,87 57,99 1,953 24. 16.67 1101.70 68.76 1125,20 21,50 1160,50 59,00 L 953 25 1b.67 1101,70 72.33 1125,20 25,50 I15B,96 57,49 1.953 26 23:33 11�3.37 72.33 1125.26 27,88 1159.07 55,89 1.95A 27 1fi.67 11�1.70 68.78 ll25.24 22,98 1157,23 55,89 1.454 28 21,11 11Q2.2b 68.78 1125.20 26,71 115L 61 99,67 1.954 29 20,00 1101.70 67,00 1125.20 23,93 1153,59 52,00 1.955 30 16.69 �ioi.70 72,33 1�25,20 27.17 1155,40 59,33 1.955 31 16.67 I10�,70 &6.78 1125.20 23,�3 1155,5? 59,33 1.956 32 23.33 1103.31 6B.78 1125,20 25,21 1157,67 54,33 1.956 33 23.33 1103,3T 6B,78 1125,20 24,95 1I59,24 55,89 1,956 39 23.33 1iO3,37 66.76 1125,20 25,98 1156,06 52,T8 1,957 35 23,33 1103.3� 66.76 1125,20 23,70 1160.81 57.99 1.957 36 16.89 1101.70 66.7B 1125,20 2fi,23 �150:82 99,67 L 958 37 23.33 1�03.3T 72,33 1125,20 28,60 1157,99 54,33 1.958 3B 23.33 1103.37 66,76 1I25,20 26.75 1159,9� 51.22 1.959 39 23.33 1103.37 6B.76 1I25,20 22,95 1162.37 59,00 I,959 94 21.11 1102.26 72,33 1I25.20 28,95 1154.52 52.7B 1,959 91 16,67 1101.70 72,33 k125,2� 26.21 1.156,77 55,89 1,959 42 16,67 1101.70 b8,78 1125.2� 24,98 1153,90 52,76 1,959 43 21,11 1102,26 68,78 1125,20 27,51 1149,99 48,11 1,961 44 19,49 1101,70 72,33 1125,20 29,56 1I59,63 59,00 1,961 45 23,33 1103,37 b8,78 1125,2U 27;52 1152,86 49:67 1.962 46 25.56 1104,98 72,J3 1125,20 27,91 1I�3,95 59,Q0 1,963 47 18.69 1101.70 72,33 i125,20 27,91 1153,70 52,76 1,963 46 23.33 1103,37 72,33 1125,20 29,33 1T55,80 52,76 1,963 49 25,56 1104.48. 72,33 1125,20 28,11 1161,8? 57.44 1,969 50 16.61 1101,70 68,78 1125,20 25,25 1152,20 5Y.22 1,969 51 25.56 1104.48 12.33 1125,20 26.82 I160,27 55,69 1.465 52 16.67 1101.70 12.33 1125,20 26,94 1155,45 59,33 1.46G 53 1B.99 1101.70 58.78 1125,20 27.03 1149.12 98.11 1.46G 54 23.33 11Q3.�7 66.78 1125.20 28,31 115i,22 98�1T I.966 55 I4.94 iia1.70 72,33 1125.20 25,26 115B.12 57.99 1.466 55 14,94 1101.30 68,78 1125.20 22,07 1156,64 57,99 1.461 57 19.94 1101.70 68,78 1125.20 21.35 11b0,29 59.OQ 1.466 5B 2l.li 1102,26 72,33 1125,20 29,20 1152,63 51.22 1.466 59 19.99 1101.70 68,78 1125.20 22,79 1156.95 55,69 1.966 60 25.56 1i09.9B 72,33 1125,20 29,53 1158,67 59.33 1.469 61 21,1� 11D2,26 6B,78 1125,20 28,33 1198,25 96.56 1.970 62 23,33 1�03,37 72,33 1125.20 3D,07 1159.19 51.22 1.970 ;63 14.49 1101,90 6B,?B 1125.20 23.52 1155,2� 59.33 1.971 6� 16,67 1101.7� 6B,.?B 1125,20 26,02 1150,48 49,57 1.971 b5 23,33 11D3,37 66.79 1125,20 29.11 1149,56 96,56 1,972 56 25.56 1109,46 ?2.33 1125,2D 30,25 1157,05 52.76 1,972 fi7 14.49 1101.70 72.33 1125.20 25,96 1156,39 55,89 1.973 fi8 16.89 1101,70 72.33 1125.26 28,67 1151,98 51,22 1.973 59 25.56 1109.46 68.78 1125,2Q 27,60 1155,66 51,22 1.9�4 l0 25.56 1�09.96 66.76 1125.20 26,69 1157,29 52,18 1,974 �1 21.11 1102.26 75.89 1125.20 28,64 1160,75 59,00 L 974 l2 14.99 1101.70 68,78 1i25.20 24,26 Z153,56 52,18 1.975 T3 16.67 1101.7Q 72.33 1125,20 27.67 1153,32 52,18 1,975 19 18�89 1101.70 65,22 1124,31 22,69 liS2,76 51,22 1,975 �5 25,56 1104.48 68.78 1125,20. 26,36 1154,07 99,67 L 975 76 25.56 1104.48 68.78 1125,20 26,09 1158.81 54,33 L 976 77 16.89 1101.70 65.22 1124,31 21.86 ii��,39 52,78 L 976 78 18.89 11Q1.70 65.22 1i24,31 23,94 115 L 16 99.67 1.976 79 18,89 1101.70 75.69 1125,2D 26,21 1159,96 59.00 L 976 80 21.11 F102,26 65.22 1124,31 23.89 1151.89 49.67 1,976 81 21,11 1102,2b 65,22 1124,31 23,09 i153,98 51,22 1,976 62 25,56 I109.98 72�33 1I25,20 30,97 i155,91 51,22 1,977 B3 12.22 I101,70 72,33 1125,20 2A.29 1159,95 59.00 1,977 89 18.89 iZ01.70 66,78 1125,20 27.85 1147,39 46.56 1.977 85 25.56 1109.48 68.78 1125,20 29.13 1152.�6 48.11 1,977 B6 18.89 1101.70 <65.22 1124,31 21,06 1k55,99 59.33 1,977 67 25.56 1109.�8 68.78 i125,20 25,39 1160,37 55,89 1,977 88 21�11 1102.26 65.22 1I24,31 29,69 1150,23 48,11 1,A78 89 21.11 1102.26 65.22 1124,31 22,30 1155,02 52,78 1.978 90 18.89 1101.70 65.22 1I24,31 29,24 1199,51 48,11 1,978 91 23..33 1103,37 72.33 1125,2� 30,82 1152.97 99,67 1.978 92 21,I1 1102,2b 72.33 1125.20 29,97 1151.I3 4R,67 1,978 93 21.11 1102.26 65.22 i124,31 21,51 k156.59 59,33 1,980 99 15.67 I101.70 66.78 1I25.20 2.5.81 1148,73 48,11 1,9$0 9� 25.56 11U9,46 b6.78 1I25.20 29,60 1161,91 57,94 1,980 96 18.89 11Q1,70 65.22 1124.,31 20,31 1157,57 55,89 1,980 97 19,44 110 L 70 68.78 1125.20 25.02 1151,82 51,22 1,940 96 23,33 1103,37 6Q.76 1i25,20 29,91 1197.86 45,00 L 9b0 99 25,56 1�09.49 66,78 ll25,2b 29,91 1150,83 4b,56 1,980 Critical Failure Circle Intersects: XL: 21,i1 YL: 1102.26 XRc 72.33 YR: 1125,20 Centre: XCt 25,51 YC: 1161.09 Radius; R: 59,00 Generated failuce surfacet (2� pointsl 2L,11 1IO2.26 29,19 1102,11 2�.26 1102,i2 30.39 1102,29 33.90 1102.62 36.44 1103,11 39,95 1103,76 42.42 1104.57 95.34 1105,53 4�.21 1106.64 5I.02 1I07.89 53,76 1i09.30 56,42 I210.89 55.00 1112.52 61,99 1119.39 63.68 1116.2B 66,17 1i18.34 66,34 1120,52 70.90 1122.61 ?2,33 1125.20 Slice Geometry and Properties (36 slices} --------------------- ------- Slice X-s ---------M___w___,_ gd5� _____________________ Po�eWater Norrnal Test X-Ge#t Area Angle Width Length Matl Cohesion Phi �eight Force Stress Pactor 1 21,11 0.65 -2.6 1,54 1.59 1 100,00 39,0 77,60 0.00 55,24 1.07. 2 22,65 1.99 -2.8 1.54 I.59 1 1Q0.00 34.0 233,32 0,00 158.76 1.02 3 '24.19 3.18 0.2 1,54 1.59 1 100,00 34,0 382.03 0,00 297,53 1,00 9 25.72 4,36 0.2 1,59 1.59 1 lOQ.00 39,0 523.10 0,00 339.02 1,00 5 27,26 5,46 3.2 1.54 1,59. 1 100.00 39,A 655,61 0,00 911,33 0,98 6 28.80 6,51 3.2 L 59 1.59 1 100.00 39,0 78I,49 0.00 491,72 0,98 � 30,34 7.96 6.2 1.53 1,59 1 100.00 39,fl 695.75 0.40 599,86 0.96 8 31,87 8.38 6,2 1.53 1,59 1 100.00 39.0 1005,76 0.00 618.27 0,96 9 33,40 9.17 9,2 1.52 1,54 1 100,D0 34.0 1104,16 0,60 662,60 0.99 10 39,92 9,95 9,2 1.52 1.5A i 100,D0 34.0 1193,91 0,00 719,92 0.99 11 36,44 10.56 12,2 1.50 1.54 1 100.-00 34.0 1267.25 �.00 751.25 0.93 12 3T.94 11.20 12.2 1.50 1.54 1 1�0,00 39,0 1344.97 0.00 797,63 0.93 13 39:45 11.63 15.2 1.49. 1.59 1 100.00 39,0 1395.95 0,00 816.96 0.92 14 90..93 12,14 15.2 1.99 1.54 1 10�.00 39,0 1956,b3 0,00 853.16 0.92 15 92.42 12.36 16.1 1.96 1.54 1 100.00 39,0 1986�01 0.00 660.82 0.91 16 93.88 12.75 IB.2 1.96 1,54 1 100.00 39,0 1530,21 0.00 886.96 0.91 17 95.39 12.81 21,1 1.99 1,54 1 100.00 39,0 1537,69 0,00 683.86 0.91 18 96.7B 13.05 21,1 1.99 �.54 I 100,00 34.0 1565,67 0.00 9D0.36 D.91 1R 48,21 12.93 29,1 1,90 1.54 1 100,00 34.0 1551,B7 0.00 8B7.12 0.91 20 99.,62 13.�3 29,1 1.A6 1.54 1 100,00 34,0 1564,17 0.00 894,39 0.91 21 51.02 12.75 27.1 1.37 1.54 1 100.00 39,0 1530.15 0.00 B71,80 0,91 22 &2.39 12.73 27.1 1,37 1.59 1 lOD.00 39,0 152?.43 O.DO 870.16 0,91 23 53:76 12.24 30.1 1,33 1.59. 1 100.00 39,0 1974.72 0.00 838,96 0,91 29 55.09 12.15 30.1 .1.33 1.59 1 100.00 34,0 1457,73 0.00 826,69 0,91 25 5fi;92 11.5? 33.1 1.29 1.59 1 100,00 34,0 13�8,28 0.00 789.71 0.91 26 57.71 11,32 33.1 1.29 1.59 1 100,00 34,0 1357,48 0.00 771.75 0.91 21 59:00 16,62 35.1 1,24 1.54 1 140,OD 34.0 127�,11 4.00 �25.97 0.92 28 60,25 10.26 3fi.1 1.24 1.54 1 100,00 34,0 T231,62 6.00 700.05 0.92 29 61.49 9.9� 39.1 1.i9 1.59 1 100.00 39,0 1135,99 0,00 fi97.50 0,93 30 62,69 9.02 39.1 1.i9 1.59 1 100.00 39,0 1082,54 0,00 615.11 0.93 3I 61,88 8.15 92.1 1.19 1.59 1 100.�0 39,D 978,13 0,00 557.25 Q,RS 32 65.02 7.63 92.1 1.19 L 59 1 Y06.00 34,0 915,07 0.00 516.h5 D.95 33 b6.17 5.2Q �95.1 0.83 1.16 1 100,D0 39.0 b29,43 0.40 461.93 0.9fi 39 67,00 7.i7 95.1 1,39 1,90 1 100.00 34,0 p60,60 0,00 389,59 0,96 35 66.34 4,23 46.0 1.D3 1.54 1 100,00 39,0 507,5i 0,00 2�3.20 0.96 36 69:37 3,-05 98.0 1.03 1.5A 1 100.00 39,0 366,16 0,00 182,95 0.98 37 70.90 1,79 51,0 0.91 1.59 1 100.�0 39.0 20B.9� 0,00 61,85 1.01 38 71.37 0.58 51..0 0.97 1.54 1 100.00 39.0 69,50 0,00 -9.01 1.01 X-S Areac 329.50 Path Genqth, 5B,49 X-S Weight: 39539,95 Tentafiive Trac�Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 SLOPE MAINTENANCE GUIDELINES Hil(side fots in general, and hillside slopes in particular, need expensive retaining devices. Undercutting of the bottom of a maintenance to continue to funct�on and retain their value, Many slope might possibly lead to slope instability or failure and homeowners are unaware of this and alfow deteriorafion af their should not be undertaken without expert consultation. property. fn addition to his nwn praperty, the hameowner may be subject to liability for damage occurring to neighboring properties as (h) If unusual racking, settling, or earth slippage occurs on the a result af his negligence. It is therefore impartant to familiarize property, the homeowner should cansult a qualified soil homeowners with some guidelines for mainter�ance of #heir engineer or an engineering geofogist immediately. properties and make them aware of the importance of maintenance. (i) The most common causes of slope erosson and shallow slope Nature siowly wears away land, but human activities such as failures are as follows: construction increase the rate of erosion 200,even 2,000 times that amount. When we remove vegetation or other objects that hold soil •3 Grnss negligent of the care and maintenance of the in place,we expose it to the action of wind and water, and increase slopes and drainage devices. its chance of eroding. ❖ Inadequate andlor improper planting. (Barren areas The following guidelines are provided for the protection of the should be replanted as soon as possible,) homeawner's 'tnvestment, and should be emplayed throughout the year. :• Excessive or insufficient irrigation ar diversion of runoff over the slope. (a) Care should be taken that slopes, terraces, berms (ridges at crown of slapes}, and proper !ot drainage are not disturbed. •;• Foot traffic on slapes destroying v�getation and exposing Surface drainage shoufd be conducted from the rear yard to soil to erosion potentia[, the street by a graded swale through the sideyard, or alternative approved devices. (j) Homeawners shauld not let conditians on their property create a problem for their neighbors. Cooperation with neigh�ors (b) In general, roof and yard runoff should be conducted #o either could prevent problems; also increase the aesth�tic the street or storm drain by nonerosive devices such as attractiveness of the property. sidewalks, drainage pipes, ground gutters, and driveways. Drainage systems should not be aftered without expert WINTER ALERT consultation, lt is especially important to "winterize" your property by mid- (c) All drains should be kept cleaned and unclogged, including September. Don't wait until spring to put in landscaping, You need gutters and downspouts. Terrace drains or gunite ditches winter protection. Final landscaping can be done Iater, fnexpensive should be kept free of debris to allow proper drainage, During measures installed by mid-September will give you pratection heavy rain periods, performancs of the drainage system should q�ickly that will last all during the wet season. be inspected. Problems, such as gullying and ponding, if abserved,should be corrected as soon as possible. ❖ Check before storms to see that drains, gutters, downspouts, and ditches are not clogged by leaves and rubble. (d) Any leakage from paols,waterlines, etc. ar bypassing of drains should be repaired as soon as passible. •:< Check after majar storms to be sure drains are clear and vegeta#ion is holding on slopes, Repair as necessary. (e) Animal burrows should be filled since they may cause diversion of surface runoff, promote accelerated erosion, and even •:o Spot seed any bare areas. Braadcast seeds or use a trigger shallow sail failures. mechanical seeder, A typical slope or bare areas can be done in less than an hour. (fl Slopes should not be a[tered without expert consuftation. Whenever a homeowner plans a significant topagraphic •;d Give seeds a boost with fertilizer. modification of the lot or slope, a qualified geotechnical consultant should be contacted. �`• Muich if you can,with grass clippings and leaves; bark chips ar straw. (g) 1f plans for modificatian of cut, fill, or natural slapes within a property are considered, an engineering geologist should be >3 Use netting ta hold soil and seeds on steep slopes. cnnsulted. Any oversteepening may result in a need for GeoMat Teste��Laboratorres, Inc. Appendix E-1 Tenta�ive Tract Map 33584 Project No. 11081-01 City of Temecula, California August 31, 2013 ❖ Check with your landscape architect or local nursery for advice. provide other erosion control services -- are listed under "landscaping"irt the phone book. ❖ Prepare berms and ditches to drain surface runoff water away from problem areas such as steep,bare slapes. Mats of excelsior, jute netting, and p(astic sheets can be effective temporary covers, but they mus# be in contact with the soil and •:� Prepare base areas on slopes for seeding by raking the fastened securely to work efifectively. surface to loosen and roughen soil sa it will hold seeds. Roof drainage can be collected in barrels or storage containers ar CONSTRUCTI�N touted into lawns, planter boxes, and gardens. Be sure to cover stored water so yau don't collect mosquitoes. Excessive runoff ❖ Plan construction activities during spring and summer, so that should be directed away from your hause, Too much water can erosion contral measures can be in place when fhe rain comes, damage tress and make foundations unstable. ❖ Examine your site carefufly before building. Be aware of the STRUCTURAL RUNOFF C4NTR4LS slope, drainage patterns and soil types. Proper site design will help you avoid expensive stabilization work. Even with proper timing and planting, you may need to protect ❖ Preserve exis#ing vegeta#ion as much as possible. Vegetatian disturbed areas from rainfall until fhe plants have time to establish will naturally curb erosion, improve the appearanee and value #hemselves. Or you may need permanent ways to transport water of your property,and reduce fhe cost of landscapfng later. across your property so that it doesn't cause erosion. ❖ Use fencing tn protect plants from fifl material and traffic. If you To keep water from carrying sail from your site and dumping it into have to pave near trees, do so with permeable asphalt or nearby 1ots, streets, streams and channels, you need ways to porous paving blocks. reduce its volume and speed. Some examples of what you might use are: ❖ Minimize the length an� steepness of sfapes by bene�ing, terracing, ar consfructing diversion structures. Landscape •:� Riprap (rock lining) — to protect channel banks from erasive benched areas to stabilize the slope and improve its wafer flow. appearance. ❖ Sediment trap --ta stop runoff carrying sediment and trap the ❖ As soon as possible after grading a site, plant vegetatian on all sediment. areas#hat are not to be paved or otherwise covered, ❖ Storm drain outlet protection — to reduce the speed of water TEMPORARY MEASURES TO STABILIZE THE SOIL flowing from a pipe onto open graund or into a natural channel. Grass pravides the cheapest and most effective short-term erosian '�' Diversion dike or perimeter dike — to divert excess water fo control, lt grows quickly and covers#he ground completeCy, To find places where it can be disposed of properly, ; the best seed mixtures and plants for your area, check with your focal landscape architect, locai nursery, or the U,S, Department of •�' Straw bale dike — to stop and detain sediment from small- Agriculture Sail Conservation Service. Mulches hold soil moisture unprotected areas�a short-term measure). and provide ground protecfion from rain drainage. They also provide a favorable environment for starting and growing plan#s. •�• Perimeter swale —to divert runoff from a disturbed area or to Easy-to-obtain mulches are grass clippings, leaves, sawdust, bark contain runoff within a disturbed area. chips,and straw. ❖ Grade stabifization structure �- to carry concentrated runoff Straw mulch is nearly 100 percent effective when held in place by down a slope, spraying with an organic glue or wood fiber(tackifiers), by punching it into the sail with a shovel or roller,or by tacking a netting over it. Cammercial applications of waod fibers cpmbined with various seeds and fertilizers (hydraulic mulching) are effective in stabilizing sloped areas. Hydraulic mulching with a tackifier should be dane in two separate applicatians; the first compnsed af seed fertilizer and half the mulch, fhe second composed of the remaining mulch and tackifier. Commercial hydraulic mulch applicators — who alsa �eoNlaf T'�stin�Lab��'afo►�ie�, In�. Appendix E-2 __ _ __ _ _ _ _ __ � LIQU EFACTION ANALYSIS Tentative Tract 33584 Hole No.=B-3 Water Depth=0 ft Magnitude=6.75 Acceleration=0.55g Shear Stress Rafio Factor of Safety Settlemenf Soi!Description Raw Unit Fines i !(�I 0 2 0 9 5 0(in.) 1 SPT Wei ht % ; � I t I I I I I i I i"1 I I I I I l I I 1 21 12� 52 Sandy Silt 21 120 52 � --- - - -_ _ - 10 � Sand with Silt � � � - -- 16 120 NoLq Lean Clay � � 20 �' 13 120 NoLq � � � \ '��'��I Sand with Silt _.____--.--_ _._ _ _ __ 15 120 8 , ���.•. . , . . 30 ; :�:j Silty Sand _ 24 120 14 , � ' _._ �;�'�� _.__ . -.__ __ __ __ __ __ 32 120 NoLq; �/`/ Lean Clay �� 40 l 35 120 NoLqi 110 120 NoLq. / 50 fs1=1 S=0.39 in. ��. . - - 74 120 58 f E CRR CSR fs1---� Saturated — Lean Clay �i Shaded Zone has Liquefaction Potential Unsaturat. — U .�..( .� .� 5 Q� � 60 � � 0 � L U d � .� <U i �I 70 � � � J 11081-01 GeoMat Testing Laboratories, Inc. LIQUEFACTION ANALYSIS CALCULATION SUMMARY SHEET 2/12/ZOl2 1�:00:19 AM Title: Tentative Tract 33584 Subtitle: 11081-01 Input Data: Surface Elev.= Ho1e No.=B-3 D�pth o� Hole=50.0 ft Water Tab1e during Earthquake= 0.0 �t Water Table during In-Situ Testing= 29.0 ft Max. Acceleration=0.55 g Earthquake Magnitude=6. 8 1. SPT or BPT Calculation. 2. Settlemen� Analysis Me�hod: Ishihara / Yoshimine* 3. Fines Correcta.on for Liquefaction: Stark/Olson et al.* 4 . Fine Correction for Settlement: During Lique�action* 5. Settlement Cal.cul.ation in: All zones* 6. Hammer Energy Ratio, Ce -� 1. 60 7. Borehole Diameter, Cb= 1.05 8. Sampling Method, Gs= 1.2 9. User request factor of safety (apply to CSR) , User= 1 Plot one CSR curve (fs1=1) l0. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: Depth SPT gamma Fines ft pcf � 0.021.0 120.0 52.0 5.021.0 120.a 52.0 10.0 22.0 120.0 6.0 l5.0 1.6.0 12 Q.0 NoL.iq 20.0 13.0 120.0 NoLiq 25.0 15.0 120.0 8.0 30.0 2� .0 120.0 14.0 35.0 32.0 120.0 NoLiq 40.0 35.0 120.0 NoLiq 45.0 110.0 120.0 NoLiq 50.0 74 .0 120.0 58.Q Output Resu.ltsd Set�lement o� Saturated Sands=0.39 in. Settlement of Unsaturated Sands=0.00 in. Tota1 Settlement of Saturated and Unsaturated Sands=0. 39 in. Differential Settlement=0.193 to 0.255 in. Depth CRRv CSRm F.S. S_sat. S_dry S_all ft in, in. in. 0.00 2.00 0.36 5.00 0.39 0.00 0.39 �.00 2.00 0.74 3.52 0.39 0.00 0.39 2.00 2.Q0 0.79 3.53 0.39 0.00 0.39 3.00 2.00 0.74 3.54 0.39 0.00 0.39 4.00 2.00 0.7� 3.55 0.39 O.OQ 0.39 5.00 2.00 0.74 3.56 0.39 0.00 0.39 6.00 2.00 0.73 3.57 0.39 0.00 0.39 7.00 2.00 0.73 3.57 0.39 0.00 0.39 8.00 2.00 0.73 3.58 0.39 0.00 0.39 9.00 2.00 0.73 3.59 0.39 0.00 0.39 10.00 2.00 0.73 3.60 0.39 0.00 0.39 11.00 2.00 0.73 3.61 0.39 0.00 0.39 12,00 2.00 0.72 3.62 0.39 0.00 0.39 13.00 2.00 0.72 3.63 0.39 0.00 0.39 14.00 2.00 0.72 3.63 0.39 0.00 0.39 15.00 2.00 0.72 5.00 Q.3$ 0.00 0.38 16.0� 2.00 0.72 5.00 0.38 0.00 0.38 17.00 2.00 0.72 5.00 6.38 0.00 0.38 18.00 2.00 0.71 5.00 0.38 0.00 0.38 19.00 2.00 0.71 5.00 0.38 0.00 0.38 20.00 2.00 0.71 5.00 0.38 0.00 0.38 2i.00 2.00 0.71 5.00 0.38 0.00 0.3$ 22.00 2.00 0.71 5.00 �.38 0.00 0.38 23.00 2.00 0.70 5.00 0.38 0.00 0.38 24.00 2.00 0.70 5.00 0.38 0.00 0.36 25.00 2.00 0.70 5.00 0.38 0.00 0.38 26.00 0.32 0.70 0.59* 0.19 0.00 0.19 27.00 0.39 0.70 0.73* 0.04 0.00 0.04 28.00 1.98 0.70 3.73 0.00 0.00 0.00 29.00 1.97 0.69 3.72 0.00 0.00 0.00 30.00 1.97 0.69 3.71 0.00 0.00 0.00 31.00 1.96 0.69 3.74 0.00 0.00 0.00 32.00 1.95 0.68 3.76 0.00 0.00 0.00 33.00 1.95 0.67 3.78 0.00 O.aO 0.00 39.00 1.94 0.67 3.61 0.00 O.QO 0.00 35.00 1.94 0.66 3.83 0.00 0.00 0.00 36.00 2.0� 0.66 5.00 0,00 0.00 0.00 37.00 2.00 0.65 5.00 0.00 0.00 0.00 38.00 2.00 0.64 5.00 0.00 0.00 0.00 39.00 2.00 0.64 5.00 0.00 0.00 0.00 40.00 2.00 0.63 5.00 0.00 0.00 0.00 A1.00 2,00 0.63 5.00 0.00 0.00 0.00 42.00 2.00 0.62 5.00 0.00 0.00 0.00 43.00 2.00 0.61 5.00 0.00 0.00 0.00 44.00 2.00 0.61 5.0� 0.00 0.00 0.00 45.00 2.00 0.60 5.0� 0.00 0.00 0.00 46.00 2.00 0.60 5.00 0.00 0.00 0.00 47.00 2.00 0.59 5.00 0.00 0.00 0.00 48.00 2.00 0.58 5.00 0.00 0.00 0.00 49.00 2.00 0.58 5.00 0.00 0.00 0.00 50.00 2.00 0.57 5.00 0.00 0.00 0.00 * F.S.<l, Liquefaction Potential Zone (F.S. is limited to 5, CRR is �imited to 2, CSR is limi�ed to 2) Units:Depth = ft, Stress or Pressure = tsf (atm) , Unit Weight = pcf, Settlement = in. CRRv Cyclic resistance ra�io from soils CSRm Cyclic stress ratio induced by a given earthquake (with user request factor o� safety) F.S. Factor of Safe�y agains� liquefaction, F.S.=CR�2v/CSRm S sat Settlement from saturated sands STdry Settlement from Unsaturated Sands STall Tota]. Settlement from Saturated and Unsaturated Sands IVoLiq No-Lique�y Soils LIQUEFACTION ANALYSIS CALCULATION SHEET 2/12/2012.. 11:00:42 AM Title: Tentative Tract 33584 Subtitle: 11081--01 Input Data: Surface Elev.= Hole No.=B-3 Depth of Hole=50.0 ft Water Table during Earthquake= 0.0 ft Wa�er Table during Tn-Situ Testing= 29.0 ft Max. Acceleration=0.55 g Earthquake Magnitude=6.8 �. SPT or BPT Calcu�.ation. 2. Settlement Analysis Method: Tshihara / Yoshimine* 3. Fines Correction for Lique�action: S�ark/Olson et al.* 4. Fine Correction £or SettJ.ement: During Liquefaction* 5. Settlement Calculation in: All zones* 6. Hammer Energy Ratio, Ce = 1. 60 7. Borehole Diameter, Cb= 1..05 8. Sampling Method, Cs= 1.2 9. User request �actor of safety (appl.y to CSR) , User= 1 Plot one CSR curve (fs1=1) 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: Depth SPT Gamma Fines ft pcf o 0.0 21.0 120.0 52.0 5.Q 21.0 120,0 52.0 10.0 22.0 120.0 6.0 15.0 16.0 120.0 NoLiq 20.0 1.3.0 120.0 NoLiq 25.0 15.0 120.0 $ .0 30.0 24 .0 120.0 14 .0 35,0 32e0 120.0 NoLiq 40.0 35.0 120.0 NoLiq 4500 110.0 120.0 NoLiq 50.0 74 .0 12p.0 5$.Q Output Results: Ca1.cu�.ation segment, dz=0.050 ft User defined Print Interval, dp=1.00 ft CSR Calculation: Depth gamma sigma gamma' sigma' rd CS� fsl CSRfs ft pcf tsf pcf tsf *fsl 0.00 57.6 0.000 57.6 0.000 1.00 0.36 1.0 0.36 1.00 120.0 0.060 57.6 0.029 1.00 0.79 1.0 0.74 2.Q0 120.0 0.120 57.6 0.058 1.00 0.79 1.0 0.74 3.00 120.0 0.180 57.6 0.086 0.99 0.79 1.0 0.74 4.00 120.0 0.290 57.6 0.115 0.99 0.79 1.0 0.79 5.00 120.0 0.300 57.6 0.144 0.99 0.79 l.0 0.74 6.00 120.0 0.360 57.6 0.173 0.99 0.73 1.0 0.73 7.00 120.0 0.420 57.6 0.202 0.98 0.73 1.Q 0.73 8.00 120.0 0.480 57.6 0.230 0.98 0.73 1.0 0.73 9.00 120.0 0.540 57.6 0.259 0.98 0.73 1.Q 0.73 10.00 120.0 0,600 57.6 0.288 0.98 0.73 1.0 0.73 �1.00 120.0 0.660 57.6 0.317 0.97 0.73 1,0 0.73 12.00 120.0 0.720 57.6 0.346 0.97 0.72 1.0 0.72 13.00 120.0 0.780 57.6 0.374 0.97 0.72 1.0 0.72 14.00 120.0 0.840 57.6 0.403 0.97 0.72 1.0 0.72 �5.00 120.0 0.900 57.6 0.432 0.97 0.72 1.0 0.72 16.00 120.0 0.96� 57.6 0.461 0.96 0.72 1.0 0.72 17,00 120.0 1.02fl 57.6 0.490 0.96 0.72 1.0 0.72 18,00 120.0 1,080 57.6 0.518 0.96 0.71 1.0 0.71 19.00 120.0 1.190 57.6 0.547 0.96 0.71 1.0 0.71 20.00 120.0 1,200 57.6 0.576 0.95 0.71 1.0 0.71 21.00 120.0 1.260 57.6 0.605 0.95 0.71 1.0 0.71 22.00 120.0 1.320 57.6 0.634 0.95 0.71 1.0 0.71 23.00 120.0 1.380 57.6 0.662 0.95 0.70 1.0 0.70 24.00 120.0 1.440 57.6 0.691 0.94 0.70 1.0 0.70 25.00 120.0 1.500 57.6 0.720 0.99 0.70 1.0 0.70 26.00 120.0 1.560 57.6 0.749 0.99 0.70 1.0 0.70 27.00 120.0 1.620 57.6 0.778 Q.99 0.70 1.0 a.70 28.00 120.0 1.680 57.6 0.806 0.93 0.70 1.0 0.70 29.OQ 120.0 1.790 57.6 0.835 0.93 0.69 1.� 0.69 30.00 120.0 1.800 57.6 0.869 0.93 0.69 1.0 0.69 31.00 120.0 �.860 57.6 0.893 0.92 0.69 1,Q 0.69 32.00 120.0 1,920 57.6 0.922 0.91 0.68 1.0 0.68 33.00 120.0 1,980 57.6 0.950 0.91 0.67 1.0 0.67 34.00 120.0 2,040 57.6 0.979 0.90 0.67 1.0 0.67 35.00 120.0 2.100 57.6 1.008 0.89 0.66 1.0 0.66 36.00 120.0 2.160 57.6 1.037 0.88 0.66 1.0 0.66 37.00 120.0 2.220 57.6 1.066 0.87 0.55 1.0 �.65 .. �E.00 120.0 2.280 57.6 1.094 0.66 0.64 Z.0 0.64 39.00 120.0 2.340 57.6 1.123 0.86 0.64 1.0 0.64 90.00 120.0 2.400 57.6 1.152 0.85 0.63 1.0 0.63 41.00 120.0 2.460 57.6 1.181 0.69 0.63 1.0 Q.63 42.00 120.0 2.520 57.6 1.210 0.63 0.62 1.0 0.62 93.00 120.0 2.580 57.6 1.238 0.82 0.61 1.0 0.61 44.00 120.0 2.640 57.6 1.267 0.82 0.61 1.0 0.6� 95.00 120.0 2.700 57.6 1.296 0.61 0.60 1.0 0.60 96.00 120.0 2.760 57.6 �.325 0.60 0.60 1.0 0.60 97.�0 120.0 2.820 57.6 1.354 0.79 0.59 1.0 0.59 48.00 120.0 2.880 57.6 1.382 0.78 0.58 1.0 0.58 49.00 120.0 2.940 57.6 1.411 0.78 0.58 1.0 0.58 50.00 120.0 3.000 57.6 �.490 0.77 0.57 1.0 0.57 GSR is based on water table at 0.0 during earthquake CRR Calculation from SPT or BPT data: Depth SPT Cebs Cr sigma' Cn (Nl)60 Fines d(Nl)60 (Ni}60f CRR7.5 ft ts� % 0.00 21.00 2.02 0.75 0.000 1.70 53.98 52.00 7.20 61.18 2.00 1.00 21.00 2.02 0.75 0.060 1.70 53.98 52.00 7.20 61.18 2.00 2.00 21.00 2.02 0.75 0.120 1.70 53.96 52.00 7.20 61.18 2.00 3.00 21.00 2.02 0.75 �.180 1.70 53.98 52.00 7.20 61.18 2.00 4.00 21.00 2.02 0.75 0.290 1.70 53.98 52.00 7.20 61.18 2.�0 5.00 21.00 2.02 0.75 0.300 1.70 53.98 52.00 7.20 61.18 2.00 6.00 21.20 2.02 d.75 0.360 1.67 53.92 42.80 7.20 60.62 2.00 7.00 21.40 2.02 0.75 0.420 1.59 49.93 33.60 6.86 56.79 2.00 8.00 21.60 2.02 0.75 0.480 1.99 47.14 29.40 4.66 51.80 2.00 9.00 21.80 2.02 0.85 0.540 1.36 50.84 I5.20 2.45 53.28 2.00 10.00 22.00 2.02 0.85 0.600 1.29 48.67 6.00 0.29 48.91 2,00 11.00 20.80 2.02 0.85 0.660 1.23 43.B7 6.00 0.24 49.11 2.00 12.60 I9.60 2.02 0.85 0.720 1.18 39.58 6.00 0.24 39.82 2.00 13.00 18.40 2.02 0.85 0.780 1.13 35.70 6.00 Q.24 35.99 2.00 14.00 17.20 2.02 0.85 Q.890 1.09 32.16 6.00 0.24 32.40 2.00 15.00 16.00 2.02 0.95 Q.900 1.OS 32.30 NoLiq 7.20 39.50 2.00 16.40 15.40 2.02 0.95 0.960 1.02 30.10 NnLiq 7.20 37.30 2.00 17.00 I4.80 2.02 0.95 1.020 0.99 28.07 NoLiq 7.20 35.27 2.00 18.00 �4.20 2.02 0.95 1.080 0.96 26.17 NoLiq 7.20 33.37 2.00 19.00 13.60 2.02 0.95 1.190 0.94 24.39 NoLiq 7.20 31.59 2.00 20.00 13.00 2.02 0.95 1.200 0.91 22.73 NoLiq 7.20 29.93 0.44 21.00 13.40 2.02 0.95 1.260 0.89 22.86 NoLiq 7.20 30.06 0.48 22.00 13.80 2.02 0.95 1.320 0.87 23.00 NoLiq 7.20 30.20 2.OQ 23.00 14.20 2.02 0.95 1.380 0.85 23.15 NoLiq 7.20 30.35 2.00 29.00 14.60 2.02 0.95 1.940 0.83 23.30 NoLiq 7.20 30.50 2.00 25.00 15.00 2.02 0.95 1.500 0.82 23.46 No�iq 7.20 30.66 2.00 26.00 16.80 2.02 0.95 1.560 0.80 25.76 9.20 1.01 26.77 0.31 27.00 18.60 2.02 0.95 1.620 0.79 27.99 10.40 1.30 29.28 0.39 28.00 20.40 2.02 1.00 1.680 0.77 31.73 11.60 1.58 33.31 2.00 29.00 22.20 2.02 I.00 1.740 0.76 33.93 12.B0 1.87 35.80 2.00 30.00 24.00 2.02 1.00 1.770 0.75 36.36 14.00 2.16 38.52 2.00 31.00 25.60 2.02 3.00 1.799 0.75 38.48 19.00 2.16 40.64 2.00 32.00 27.20 2.02 1.00 1.826 0.74 40.56 14.00 2.16 42.72 2.00 33.00 26.80 2.02 1.00 1.857 0.73 42,61 14.00 2.16 44.77 2.00 39.00 30.40 2.02 1.00 1.886 a.73 44.63 14.00 2.16 46.79 2.00 35.00 32.00 2.02 1.00 1.919 0.72 46.63 14.00 2.16 98.79 2.00 36.00 32.60 2.02 1.00 �.993 0.72 47.15 NoLiq 7.20 54.35 2.00 37.00 33.20 2.02 1.00 1.972 0.71 47.66 NoLiq 7.20 54.86 2.00 38.00 33.80 2.02 1.00 2.001 0.71 48.17 NoLiq 7.20 55.37 2.00 39.00 34.90 2.02 1.00 2.030 0.70 98.66 NoLiq 7.20 55.88 2.00 40.00 35.0� 2.02 1.00 2.058 0.70 99.�8 NOLiq 7.20 56.38 2.00 9�.00 A9.99 2.02 1.00 2.087 0.69 69.76 No�iq 7.20 76.96 2.00 42.00 69.99 2.02 1.00 2.116 0.69 90.06 NoLiq 7.20 97.28 2.00 93.00 79.99 2.02 1.00 2.145 0.68 110.12 NoLiq 7.20 117,32 2.00 44.00 94.99 2.02 1.0� 2.174 0.68 129.90 NoLiq 7.2Q 137.10 2.00 45.00 109.99 2.02 1.00 2.202 0.67 149.42 NoLiq 7.20 156.62 2.00 96.OQ 102.80 2.02 1.00 2.231 0.67 138.75 NoLiq 7.20 145.95 2.00 97.00 95.60 2.02 1.00 2.260 0.67 128.21 NoLiq 7.20 135.41 2.00 48.00 68.40 2.02 1.00 2.289 0.66 i17.B0 NoLiq 7.20 125.00 2.00 49.00 81.20 2.02 1.00 2.318 0.66 107.53 NoLiq 7.20 119.73 2.00 50.00 74.00 2.02 1.00 2.346 0.65 97.40 NoLiq 7.20 109.60 2.00 CRR is based on wate� tab�e at 29.0 during In-Situ Testing Factor of Safety, - Earthquake Magnitude= 6.8: Depth sigC' CRR7.5 Ksigma CRRv CSRfs MSF CSRm F.S. ft tsf tsf tsf tsf ts� CRRv/CSRm 0.00 0.00 2.00 1.00 2.00 0.36 1.31 0.27 5.00 1.00 0.04 2.00 1.00 2.00 0.74 1.31 0.57 3.52 2.00 0.08 2.00 1.00 2.00 0.74 1.31 0.57 3.53 3.00 0.12 2.00 1.00 2.00 0.74 1.31 0.56 3.59 4.00 0.16 2.00 1.00 2.00 0.74 1.3� 0.56 3.55 5.00 0.20 2.00 1.00 2.00 0.74 1.31 0.56 3.56 6.00 0.23 2.00 1.00 2.00 0.73 1.31 0.56 3.57 7.00 0.27 2.00 1.00 2.00 0.73 1.3� 0.56 3.57 8.00 0.31 2.00 1.00 2.00 0.73 1.31 0.56 3.58 9.00 0.35 2.00 1.00 2.00 0.73 1.31 4.56 3.59 10.00 Q.39 2.00 1.00 2.00 0.73 1.31 0.56 3.60 11.00 0.43 2.00 1.00 2.00 0.73 1.31 0.55 3.61 12.00 0.47 2.00 1.00 2.00 0.72 1.31 0.55 3.62 13.00 0.51 2.00 1.00 2.00 0.72 1.31 0.55 3.63 19.00 0.55 2.00 1.00 2.00 0.72 1.31 0.55 3.63 15.00 0.59 2.00 i.00 2.00 0.72 1.31 0.55 5.00 ^ 16.00 0.62 2.00 1.00 2.00 0.72 1.31 0.55 5.00 ^ 17.00 0.66 2.00 1.00 2.00 0.72 1.31 0.55 5.00 ^ 18.00 0.70 2.00 i.00 2.00 �.71 1.31 0.55 5.00 ^ 19.00 0.74 2.00 1.0� 2.00 0.71 1.31 0.54 5.00 ^ 20.00 0.78 0.49 1.�0 2.00 0.71 1.31 0.54 5.00 ^ 21.00 0.82 0.48 1.00 2.00 0.71 1.31 0.54 5.00 ^ 22.00 0.86 2.00 1.00 2.00 0.71 1.31 0.54 5.0� ^ 23.00 0.90 2.00 1.00 2.00 0.70 1.31 0.54 5.00 ^ 24.00 0.94 2.00 1.00 2.00 0.70 1.31 0.59 5.00 ^ 25,00 0.98 2.00 1.00 2.00 0.70 1.31 0.54 5.00 ^ 26.00 1.01 0.31 1.00 0.32 0.70 i.3i 0.53 0.59 * 27.00 1.Q5 0.39 1.00 0.39 0.70 1.3i 0.53 0.73 * 2g.00 i.09 2.00 0.99 1.98 0.70 1.31 0.53 3.73 29.00 1.13 2.00 0.99 1.97 0.69 1.31 0.53 3.72 30.00 1.15 2.00 0.98 1.97 0.69 1.31 0.53 3.71 31.00 �.17 2.00 0.98 1.96 0.69 1.31 0.52 3.74 32.00 1.19 2.00 �.98 1.95 0.66 �.31 0.52 3.76 33.00 I.21 2.00 0.97 1.95 0.67 1.31 0.52 3.78 34.00 1.23 2.Q0 0.97 1.94 0.67 I.3I 0.51 3.81 35.00 1.24 2.00 0.97 1.94 0.66 1.31 0.5� 3.83 36.00 1.26 2.00 0.97 2.00 0.66 1.31 0.50 5.00 ^ 37.00 1.26 2.00 0.96 2.00 0.65 1.31 �.50 5.00 ^ 38.00 1.30 2.b0 0.96 2.00 0.64 1.31 0.99 5.00 ^ 39.00 1.32 2.00 0.96 2.00 0.64 1.31 0.49 5.00 ^ 40.00 1.34 2.00 0.96 2.00 0.63 1.31 0.48 5.00 ^ 41.00 1.36 2.00 0.95 2.00 0.63 1.31 0.48 5.00 ^ 42.00 1.38 2.00 0.95 2.00 0.62 1.31 0.47 5.00 ^ 43.00 1.39 2.00 0.95 2.00 0.61 1.31 0.47 5.00 ^ 44.00 1.91 2.00 0.94 2.00 0.6� 1.31 0.46 5.00 ^ 45.00 1.43 2.00 0.94 2.00 0.60 1.31 0.46 5.00 ^ 46.00 1.45 2.00 0.94 2.00 0.60 1.31 0.45 5.00 ^ 47.00 1.47 2.00 0.94 2.00 0.59 1.31 0.45 5.00 ^ 48.00 1.49 2.00 0.93 2.00 0.58 1.31 O.fl5 5.00 ^ 49.00 1.51 2.00 0.93 2.00 0.58 1.31 0.44 5.00 ^ 50.00 1.53 2.00 0.93 2.00 0.57 1.31 0.44 5.Q0 ^ * F,S.<1: Liquefaction Potential Zone. (If above water table: F.S.=5) ^ No-liquefiable Soils. {F.S. is limited to 5, CRR is ��mited to 2, CSR is limited to 2) CPT convert to SPT �or Settlement Analysis: Fines Correction for Settlement Analysis: Depth Ic qc/N60 qcl (N1)60 Fines d{�1)60 (N1)60s f� tsf g 0.00 - - - 61.1@ 52.0 0.00 61.18 1.00 - - - 61.18 52.0 0.00 61.18 2.00 - -- -- 61.18 52.0 0.00 61.18 3.00 - - - 61.38 52.0 0.00 61.18 4.00 - - - 61.I8 52.0 0.00 61.18 5.00 - - - 61.18 52.0 0.00 61.16 6.00 - - - 60.62 42.8 0.00 60.62 7.00 - - - 56.79 33.6 0.00 56.79 8.00 - - - 51.80 24.4 0.00 51.80 9.00 - - - 53.28 15.2 0.00 53.28 10.00 -- - -- 98.91 6.0 0.00 49.91 11.OQ -- - - 94.11 6.0 0.00 44.11 12.00 - - - 39.82 6.0 0.00 39.82 13.00 - - - 35.94 6.0 0.00 35.94 19.00 - - - 32.40 6.0 0.00 32.40 15.00 - - - 39.50 NoLiq 0.00 39.50 16.00 - - - 37.30 NoLiq 0.00 37.30 17.00 - - - 35.27 NoLiq 0.00 35.27 18.00 - -- - 33.37 NoLiq 0.00 33.37 19.00 �- -- -- 31.59 NoLiq 0.00 31.59 20.00 - -- - 29.93 NoLiq 0.00 29.93 21.00 - - - 30.06 NoLiq 0.00 30.06 22.00 - - - 30.20 NoLiq 0.0� 30.20 23.00 - - - 3�.35 NOLiq 0.00 30.35 24.0� - - - 30.50 NoLiq 0.00 30.50 25.00 - - - 30.66 NoLiq 0.00 30.66 26.00 - - - 2&.77 9.2 0.00 26.77 27.00 - - - 29.28 10.4 0.00 29.28 28.00 - - - 33.31 11.6 0.00 33.31 29.00 - - - 35.80 12.8 0.00 35.8Q 30.00 - - - 38.52 14.0 0.00 38.52 31.00 - - - 90.64 14.0 0.00 40.64 32.00 - - - 92.72 ].4.0 0.00 42.72 33.00 - - - 94,77 14.0 0.00 49.77 34.00 - - - 46.79 14.0 0.00 46.79 35.00 - - - 98.79 14.0 0.00 48.79 36.00 - - - 54.35 NoLiq 0.00 54.35 37.00 w -- -- 54.86 NoLiq 0.00 54.86 38.00 -- -- -- 55.37 NoLiq 0.00 55.37 39.00 - - - 55.88 NoLiq 0.00 55.88 40.00 - - - 56.38 NoT,iq 0.00 56.38 41.00 � - - 76.96 NoLiq 0.00 76.96 42.0� - - - 97.28 NoLiq 0.00 97.28 43.00 - - - 100.00 NoLiq 0.00 100.00 44.00 - - - �.00.00 NoLiq 0.00 100.00 45.00 - - - �.�0.00 NoLiq 0.00 100.00 46.00 - - - 100.00 NoLiq 0.00 100.00 47.0� - � �- 100.00 NoLiq 0.00 100.00 48.00 - - - 100.00 NoLiq 0.00 100.06 99.00 - - - 100.00 NoLiq 0.00 I00.00 50.00 - - - 100.00 No�,iq 0.00 1.00.00 (N1) 60s has been tines corrected in 1.iqu�faction ana�.ysis, therefore d(N1) 60=0. Fines=NoLiq m�ans the soils are not liquefiable. Set.tlement of Saturated Sands: Settlement Analysis Method: Ishihara / Yoshimine* Depth CSRm F.S. Fines (Nl)60s Dr ec dsz dsp S f� � � $ in. in. in. 49.95 0.44 5.00 NoLiq 1�0.00 100.00 0,000 O.OEO 0.000 O.00fl 99.00 0.44 5.00 NoLiq 100.00 100.00 0.000 O.OEO 0.000 0.000 48.00 0.45 5.00 NoLiq 100.00 100.00 0.000 O.OEO 0.00� Q.000 47.00 0.45 5.00 NOLiq 100.00 I00.00 0.000 O.OEO 0.000 0.000 46.00 0.95 5.00 NoLiq 100.00 I00.00 0.000 O.OEO 0.000 0.000 45.00 �.96 5.00 NoLiq 100.00 100.0� 0.000 O.OEO 0.000 0.000 49.00 0.96 5.00 NoLiq 100.00 100.00 0.000 O.OEO 0.000 0.000 43.00 0.47 5.00 NoLiq 100.00 100.00 Q.000 O.OEO 0.000 0.000 42.00 0.47 5.00 NoLiq 97.28 100.00 0.000 O.OEO 0.000 0.000 91.00 0.46 5.00 NoLiq 76.96 100.00 0.000 O.OEO 0.000 0.000 90.04 0.98 5.00 NoLiq 56.38 100.00 0.000 O.OEO 0.000 0.000 39.00 0.99 5.00 NoLiq 55.88 100.00 0.000 O.OEO 0.000 0.000 38.00 0.99 5.00 NoLiq 55.37 100.00 O.OaO O.OEO 0.000 0.000 37.00 0.50 5.0� NoLiq 54.86 100.00 �.000 O.OEO 0.000 0.000 36.00 0.50 5.00 NoLiq 59.35 100.00 0.000 O.OEO 0.000 fl.000 35.00 0.51 3.83 14.0 98.79 100.00 0.000 O.OEO 0.0�0 0.000 34.00 0.51 3.81 14.0 96.79 100.00 0.000 O.OEO 0.000 0.000 33.00 0.52 3.76 14.0 4A.77 100.00 0.000 O.OEO 0.000 0.000 32.00 0.52 3.76 19.0 42.72 100.00 0.000 0.0�0 0.000 0.000 31.00 0.52 3.74 14.0 40.64 100.00 0.000 O.OEO 0.000 0.000 30.Q0 0.53 3.71 14.0 38.52 100.00 0.000 O.OEO 0.000 0.000 29.00 0.53 3.72 12.8 35.80 100.00 0.000 O.OEO 0.000 0.000 28.00 0.53 3.73 11.6 33.31 98.08 0.000 O.OEO 0.000 0.000 27.00 0.53 0.73 10.9 29.28 88.96 0.975 5.9E-3 0.035 0.035 26.00 O.S3 0.59 9.2 26.77 83.18 1.500 9.0E-3 0.152 0.187 25.fl0 0,54 5.00 NoLiq 30.66 91.56 0.000 O.OEO 0.191 0.378 24.00 0.54 5.00 NoLiq 36.50 91.20 0.000 O.OEO 0.000 0.378 23.00 0.54 5.00 NoLiq 30.35 90.85 0.000 O.OEO 0.000 0.378 22.00 0.59 5.00 NoLiq 30.20 90.52 0.000 O.OEO 0.000 0.378 21.00 0.54 5.00 NoLiq 30.06 90.20 0.000 O.OEO 0.000 0.378 20.00 0.54 5.00 NoLiq 29.93 89.89 0.000 O.OEO 0.000 0.378 19.00 0.54 5.00 NoLiq 31.59 93.78 0.000 O.OEO 0.000 0.378 18.00 0.55 5.04 NoLiq 33.37 98.22 0.000 O.OEO 0.000 0.378 �7.Oa 0.55 5.00 NoLiq 35.27 100.00 0.000 O.OEO 0.000 0.378 16.00 0.55 5.00 NoLiq 37.30 100.00 0.000 O.OEO 0.000 0.378 15.Op 0.55 5.00 NoLiq 39.50 100.00 0.000 O.OEO 0.000 0.378 19.00 0.55 3.63 6.0 32.40 95.75 0.000 O.OEO 0.008 0.387 13.00 0.55 3.63 6.0 35.94 100.00 0.000 O.OEO 0.000 0.387 12.00 0.55 3.62 6.0 39.82 100.00 0.000 O.OEO 0.000 0.387 11.00 0.55 3.61 6.0 44.11 100.00 0.000 O.OEO 0.000 0.387 10.00 0.56 3.60 6.0 48.91 100.00 0.000 O.OEO 0.000 0.387 9.00 0.56 3.59 15.2 53.28 100.00 0.000 O.OEO 0.000 0.387 8.00 0.56 3.56 24.4 51.80 100.00 0.000 0.0�0 0.000 �.387 7.00 0.56 3.57 33.6 56.79 100.00 0.000 O.OEO 0.000 0.387 6.00 0.56 3.57 42.8 60.62 100.00 0.000 O.OEO 0.000 0.387 5.00 0.56 3.56 52.0 61.18 100.00 0.000 O.OEO 0.000 0.387 9.00 0.56 3.55 52.0 61.18 100.00 0.000 O.OEO 0.000 0.387 3.00 0.56 3.59 52.0 61.18 100.00 0.000 O.OEO 0.000 0.387 2.00 0.57 3.53 52.0 61.18 100.00 0.000 O.OEO 0.000 0.387 1.00 0.57 3.52 52.0 61.18 100.00 0.000 O.OEO 0.000 0.387 0.00 0.27 5.00 52.0 61.18 100.00 0.000 Q.OEO 0.000 0.387 Settlement of Saturated Sands=0.387 in. qc1 and (N1) 60 is after fines correction in liquefaction analysis dsz is per each segment, dz=0.�5 �t dsp is per each print interval, dp=1.00 ft S is cumulated settlement at this depth Sett�ement of Unsaturated Sands: Depth sigma' sigC' (N1�60s CSRfs Gmax g*Ge/Gm g_eff ec7.5 Cec ec dsz dsp S ft tsf tsf ts� � s in. in. in. 0.0 0.00 1.53 0.00 0.36 0.0 O.OEO 0.0000 0.0000 0.00 0.0000 O.00EO 0.000 0.000 Settlement of Unsaturated Sands=0.aoo in. dsz is per each segment, dz=0.05 ft dsp is per each print interval, dp=1.00 ft S is cumulated settlement at this depth Total Settlement of Saturated and Unsaturated Sands=0.387 in. Differential Settlement�0. 193 to 0.255 in. Units Depth = ft, Stress or Pressure = tsf (atm) , Unit Weight = pcf, Settlement = in. SPT Field data from Standard Penetration Test (SPT) BPT Field data from Becker Penetration Test (BPT} qc Field data from Cone Penetration Test (CPT) �s Friction from CPT testing gamma Tota1 unit weight o� soil gamma' Effective unit weight of soil Fines Fines can�ent [o] D50 Mean grain size Dr Relative Density sigma motal vertica� s�ress [tsf] sigma' Effec�ive vertical stress [tsf] sigC' Effective confining pressure [tsf] rd Stress reduction coefticient CRR7.5 Cyclic resistance rat�o (M=7.5) Ksigma Overburden stress correction factor for CRR7.5 CRRv CRR a�ter overburden stress correction, CRRv=CRR7.5 * Ksigma F.S. Calculated factor o� safety against liquefaction �.S.=CRRv/CSRm User User request factor ot safety, which may apply to CSR fs1 First CSR curve in graphic defined in #9 of Advanced page fs2 2nd CSR curve in graphic defined in #9 of Advanced page CSR Cyclic stress ratio induced by earthquake CSRfs CSRfs=CSR*fsl, fs1=1 or User, defined in #9 of Advanced page MS� Magnitude scaling factor for CSR CSRm After magnitude scal�ng correction CSRm=CSRfs/MSF Cebs Energy Ratio, Borehole Dia., and Sampling M�thod Corrections Cr Rod Length Corrections Cn Overburden Pressure Correction (N1)60 SPT after corrections, (N1) 60=SPT * Cr * Cn * Cebs d(Nl)60 Fines correction of SPT (N1)60f (N1)60 after fines corrections, (N1) 60t=(N1� 60 + d(N1) 60 Cq Overburden stress correction factor qcl CPT a£ter Overburden stress correction dqcl �"ines correcta.on of CPT qclf CPT a�ter Fines and Overburden correction, qclf=qcl -� dqcl qc1.n CPT after normaliza�ion in Robertson`s methad ICc Fine correction factor in Robertson's Me�hod qc�.� CPT after Fines correction in Robertson's Method Ic Soil �ype index in Suzuki's and Robertson's Methods (N1)60s (Nl)60 after settlemen� fines corrections ec Volumetric strain for satura�ed sands dz Calculation segment, dz=0.050 ft dsz Settlement in each segment, dz dp User defined pxint interval dsp Settlement in each print interval, dp Gmax Shear Modul.us at low strain g eff gamma_eff, Effective shear Strain g*Ge/Gm gamma_eff * G eff/G max, Strain-modulus ratio ec7.5 Voiumetric Strain for magnitude=7.5 Cec Magnitude correction �'actor for any magnitude ec Volume�ric strain for unsaturated sands, ec=Cec * ec7.5 NoLiq No-Liquefy Soils References: l. NCEER Workshop on Evaluation o� Liquefac�ion Resistance of Soils. Youd, T.L., and Zdriss, T.M., eds., Technica3 Report NCEER 97-0022. SP117. Southern California Earthquake Center. Recommended Procedures for Implementation of DMG Special Publ.ication 117, Guidelines �or Analyzing and Mitiqating Liquefaction in California. University of Sou�hern California. March 1999. 2. RECENT ADVANCES ZN SOIL LTQUEFACTION ENGINEERING AND SEISMTC SITE R�SPONSE EVALUATTON, Paper No. SPZ-2, PROCEEDTNGS: Fourth International Con�erence on Recent Advances in Geo�echnical. �a.rthquake Enqine�rinq and Soil Dynamics, San Diego, CA, Maxch 2001. 3. RECENT ADVANCES IN SOTL LIQUEFAC'I'ION ENGINEERTNG: A UNTFIED AND CONSZSTENT FRAMEWORK, Earthquake Engineering Research Center, Report No. EERC 2003-06 by R.B Seed and etc. April 2003. __ _ _ __ ___ _ ' LI UEFACTION ANALYSIS � Q , � � Tentative Tract 33584 � Hole No.=B-5 Water Depth=0 ft Magnitude=6.75 , Acceleration=0.55g , ,, Shear Stress Ratio Facfor of Safety Settlement Soil Descripfion Raw Unit Fines I'�, (ft)O p 2 0 1 5 0(in.) 1 S30 �20 ht15 ---- -___ _. - - -- --i � � � i i i i �--r-r� _r�_ »-r i_� � .•::, Silty Sand � �+I' � �, ����1 �i 30 120 15 �! i � i ,i � �� 14 120 15 .....i . . � -- ---- 16 120 NoLq i � Sandy Silty Clay ; �,� � � f� � 20 ' '�� Silty Sand 14 120 30 ; i . .� . . . , . . { , . . , --_------- 15 120 No q " Lean Clay � , 30 --- ' _- - -- --- -- 20 120 6 ; '��+ Sand with Silt � :�i ' ::1 i ' 26 120 8 j � 40 :..::{ 110 120 6 �� : : i � ,�.�.:1 i � + � ���•::i 70 120 33 I �i . fs1=1 S=0.35in. � �� -- • .::� -- - - - -- -_. - 82 120 33 :, � 50 CRR CSR fs1----- Saturafed — Silty Sand ,I � Shaded Zone has Liquefaction Potential Unsaturat. — t U N .; �I �� Q: �j 60 � � � a �; {5 i a�� ~I .>i U' II o� I �; 70 I � � � � �_ 11081-01 GeoMat Testing Laboratories, Inc. ANALY S IS cALCULATY�N �xEET L14�EFACTI� 12:59:05 pM 2/�-3/2a12 33�$� T�n.�at�ve Txact �itle: ���81_p1 Subtyt�,e: �nput Data: Surface Ele�.� 5 Ho�-��o��Ho�e=50•� Earthquake~ ��� �51.0 �t Wa er Tab�-e during In_Situ Testing= Water Tab1-e dur 55 g ACceleration`�' Max• h uake M�gnitude-6'a � Eart q yp5himine or Calcula s�-�' Ishil�ara � Olson et al,� BPT ethod� stax'k� t�on* ti. S�T t Analysa. ue�action� Liquef ac �, settlemen e�t1on for L1q ement� Durinq Fin�� Co�r �or Sett1 �oneS� 3• ection �n; All q , Fine Corr CalculatiOn � 1,60 Settlement Ratio, Ce '' EnergY Cb� 1.05 User= 1 6. xamme� Diameter► 2 to CSR) ► � , Borehole Cs= 1' �-y Method� safety �app Sampla.ng �actor o� 9�, User re�uCSR curVe lfs1-1* P�"�t Curve Sm°othinq� Yes �p, Use * gecommended �l�tiOn In--Situ Test Datamma Fines Depth SPT g f� ��� � 0 12�°� �5�� ��� 30• o ���.0 ��.0 �•� �4..0 120.0 19.0 1.0.0 120.0 NoLiq 16•� 3p .0 �5,p 14oQ 120.� NoL�-q 20•� 15�p �.20.0 a 25.0 p 120.fl 6. �d'� 2�•�� 120�� 8 � 0 35,4 �lp.0 120.0 6° � �Oe� p 120.0 33• 45•� 82�.p 120.0 33.0 �0�� �.�5 in• Output Re�ult o� Saturated ed Sands-0•O�Saturated Sands=�•35 �-n� Settlemen of �nsatuxa nt of Saturated and n Settlement � 1-13 to �.228 in• Tota�- Settleme t1emen�� pif�erent�-al Set D�pth CRRv CSRm F.S. S sat. S dry S alI ft in. in. in. 0.00 2.00 0.36 5.00 0.35 0.00 0.35 1.00 2.00 0.74 3.52 0.35 0.00 0.35 2.00 2.00 0.74 3.53 0.35 0.00 0.35 3.00 2.00 0.79 3.59 0.35 0.00 0.35 4.00 2.0� 0.74 3.55 0.35 0.00 0.35 5.00 2.00 0.74 3.56 0.35 0.00 0.35 6.00 2.00 0.73 3.57 0.35 0.00 0.35 7.00 2.00 0.73 3.57 0.35 0.00 0.35 8.00 2.00 0.73 3.58 0.35 0.00 0.35 9,00 2.00 0.73 3.59 0.35 0.00 0.35 10.00 2.00 0.73 3.60 0.35 0.00 0.35 11.00 2.00 0.73 3.61 0.35 0.00 0.35 12.00 2.00 0.72 3.62 0.35 0.00 0.35 13.00 2.00 0.72 3.63 0.35 0.00 0.35 19,00 2.00 0.72 3.63 0.35 0.00 0.35 15.00 2.00 0.72 5.00 0.35 0.00 0.35 16.00 2.00 �.72 5.00 0.35 0.00 �.35 17.00 2.00 0.72 5.00 0.35 0.00 0.35 18.00 2.00 0.71 5.00 0.35 0.00 0.35 19.00 2.00 0.71 5.00 0,35 0.00 0.35 20.00 2.00 0.71 5.00 0.35 0.00 0.35 21.00 2.00 0.71 3.70 0.35 0.00 0.35 22.00 0.96 0.71 0.85* 0.30 0.00 0.30 23.00 0.93 0.70 0.79* 0.21 0.00 0.21 24.00 0.41 0.70 0.76* 0.11 0.00 0.11 25.00 0.90 0.70 0.74* 0.01 0.00 0.01 26.00 2.00 �.70 5.00 0.00 0.00 0.00 27.00 2.00 0.70 5.00 0.00 0.00 0.00 28.00 2.00 0.70 5.00 0.00 0.00 0.00 29.00 2.00 0.69 5.00 0.00 0.00 0.00 30.00 2.00 0.69 5.00 0.00 0.00 0.00 31.00 1.95 0.69 3.71 0.00 0.00 0.00 32.00 1.94 0.68 3.73 0.00 0.00 0.00 33.00 1.92 0.67 3.74 0.00 0.00 0.00 34.00 1.91 0.67 3.75 0.00 0.00 0.00 35.00 1.90 0.66 3.76 0.00 0.�0 0.00 36.00 1.89 0.66 3.77 0.00 0.00 0.00 37.00 1.68 �.65 3.79 0.00 0.00 0.00 38.00 1.87 0.64 3.80 0.00 0,00 0.00 39.00 1.86 0.64 3.82 0.00 0.00 0.00 40.00 1.65 0.63 3.83 0.00 0.00 0.00 41.00 1.69 0.63 3.85 0.00 0.00 0.00 42.00 1.83 0.62 3.86 0.00 0.00 0.00 43.00 1.62 0.61 3.88 0,00 0.00 0.00 44.00 1.61 0.61 3.90 0.00 0.00 0.00 45.00 1.60 d.60 3.92 0.00 0.00 0.00 46.00 1.79 0.60 3.94 0.00 0.00 0.00 47.00 1.78 d.59 3.96 0.00 0.00 0.00 48.00 1.77 0.58 3.98 0.00 0.00 0.00 49.00 1.76 0.58 4.00 D.00 0.00 0.00 50.00 1.75 0.57 4.02 0.00 0.00 0.00 * F.So<1, Liquefaction Potential �one (F.S. is limited to 5� CRR is limi�ed to 2, CSR is limited to 2) Units: Depth = ft, Stress or Pressure = tsf (atmj , Unit Weight = pcf, Se�tlement = in. , CRRv Cyclic resistance ratio from soils CSRm Cyclic stress ratio induced by a given earthquake (with user requ�st factor of safety) F.S. Factor of Safety against liquefaction, F.S.=CRRv/CSRm S sat Settlement �rom sa�uxa�ed sands STd�y Settlement from Unsa�urated Sands STa1.1 Tptal Settlement from Saturated and Unsaturated Sands NoLiq No-Liquefy Soi�.s LTQUEFACTION ANALYSIS CALCULATION SHEET 2/�3/2Q12 1:00°06 PM Title: Tentative Tract 33584 Subtitle: 11081�01 Input Data: Sur£ace E1ev.= Hole No.=B-5 Depth of Hoie=50,0 ft Water Table during Earthquake= 0.0 ft Water Table during In-Situ Testing= 51.0 ft Max. Acceleration=0.55 g Earthquake Magnitude=6. 8 l. SPT or BPT Calculation. 2. Settlement Analysis Method: Ishihara / Yoshimine* 3. Fines Correction for Liquefaction: Stark/Olson et al.* 4. Fine Correction for Settlement: During Liquefaction* 5. Settlement Cal.cu�ation in: All zones* 6. Hammer Energy Ratio, Ce = 1. 60 7. Borehole Diameter, Cb= 1.05 8. Sampling Method, Cs= �..2 9. Us�r request factor ot safety {appl.y to CSR) , User= 1. Plot one CSR curve (fsl=1} 10. Use Curve Smoothing: Yes* * Recommended Options In-Si�u Test Data: Depth SPT Gamma Fines ft pcf o Q.0 30.0 120.0 15.0 5.0 30.0 120.0 15.0 �0.0 14 .0 120.0 19.0 15e0 16.0 120.0 NoLiq 20.0 �.4 .0 120.0 30.0 25e0 15.0 120.0 NoLiq 30<0 20,0 120.0 6.0 35>0 26.0 120.0 8 .� 40.0 ].10.Q1.20.06. 0 45.0 70v0 120.0 33.0 50.0 82.0 120.0 33.0 Output Results: Calculation segment, dz=0.050 �t User defi.ned Print Interval, dp=1.00 ft CSR Calculation: Depth gamma sigma gamma' siqma' rd CSR fsl CSRfs ft pc� tsf pcf ts� *fsl 0.00 57.6 0.000 57.6 0.000 1.00 0.36 1.0 0.36 7..00 120.0 0.060 57.6 0.029 1.00 0.74 i.0 0.74 2.00 120.0 0.120 57.6 0.058 1.00 0.74 1.0 0.79 3.00 120.0 0.180 57.6 0.086 0.99 0.79 1.0 0.74 9.00 1.20.0 0.240 57.6 O.il5 0.99 0.79 1.0 0.79 5.00 126.0 0.300 57.6 0.194 0.99 0.74 1.� 0.74 6.00 120.0 0.360 57.6 0.J.73 0.99 0.73 1..0 0.73 7.00 120.0 0,420 57.6 0.202 0.98 0.73 1.0 0.73 8.00 120.0 0.480 57.6 0.230 0.98 0.73 1.0 0.73 9.00 120.0 0.590 57.6 0.259 0.98 0.73 1.0 0.73 10.00 120.0 0.600 57.6 0.288 0.98 0.73 1.0 0.73 11.00 120.0 0.660 57.6 0.317 0.97 0.73 I.0 0.73 12.00 120.0 0.720 57.6 0.346 0.97 0.72 1.0 0.72 13.00 120.0 �.780 57.6 0.379 0.97 0.72 1.0 0.72 �.9.p0 120.0 0.840 57.6 0.403 0.97 0.72 1.0 0.72 �.5.00 120.0 �.900 57.6 0.432 0.97 0.72 1.0 0.72 16.00 120.0 0.960 57.6 0.461 0.96 0.72 1.0 0.72 17.00 120.0 1.020 57.6 0.990 0.96 0.72 1.0 0.72 18.00 120.0 1.080 57.6 0.518 0.96 0.71 1.0 0.71 I9.00 120.0 1..140 57.6 0.547 0.96 0.71 1.0 0.71 20.00 120.0 J..200 57.6 0.576 0.95 0.71 1.0 0.71 27..00 120.0 1.26Q 57.6 0.605 0.95 0.71 1.0 0.71 22.00 120.0 1.320 57.6 0.634 0.95 0.71 1..0 0.71 23.00 120.0 1.380 57.6 0.662 0.95 0.70 7..0 0.70 24.00 120.0 1.440 57.6 Q.69J. 0.94 0.70 1.0 0.70 25.00 120.0 1.500 57.6 0.720 0.99 0.70 1.0 0.70 26.00 120.0 1.560 57.6 0.799 0.99 0.70 1.0 0.70 27.00 120.0 1.620 57.6 0.778 0.99 0.70 1.0 0.70 28.00 120.0 1.680 57.6 0.806 0.93 0.70 1.0 0.70 29.00 120.0 1.740 57.6 0.835 0.93 0.69 1.0 0.69 30.00 120.0 1.800 57.6 0.864 0.93 0.69 1.0 0.69 31.00 120.0 1.860 57.6 0.693 0.92 Oe69 1.0 0.69 32.00 120.0 1.92Q 57.6 0.922 0.91 0.68 1.0 0.68 33.00 120,0 1.980 57.6 0.950 0.91 0.67 1.0 0.67 34.00 120.0 2.040 57.6 0.979 0.90 0.67 1.0 0.67 35.00 120.0 2.100 57.6 1.008 0.89 0.66 1.0 0.66 36.00 120.0 2.160 57.6 1.037 0.88 0.66 1.0 0.66 37.00 120.0 2.220 57.6 1.066 0.87 0.65 1.0 0.65 38.00 J.20.0 2.280 57.6 1.094 0.86 0.64 1.0 0.64 39.00 120.0 2.340 5"7.6 1.123 0.86 0.64 1..0 0.64 40.00 120.0 2.400 57.6 1.152 0.85 0.63 1.0 0.63 41.00 120.0 2.460 57.6 1.181. 0.84 0.63 1.0 0.63 92.00 120.0 2.52Q 57.6 1.210 0.83 0.62 1.0 0.62 93.00 120.0 2.580 57.6 1.23g 0.82 0.6]. 1.0 0.61 4�.00 120.0 2.640 57.6 1.267 0.82 0.61 1.0 0.61 45.00 120.0 2.700 57.6 1.296 0.8�. 0.60 1.0 0.60 46.00 120.0 2.760 57.6 J..325 0.80 0.60 1.0 0.60 47.00 120.0 2.820 57.6 1.354 0.79 0.59 1.0 0.59 46.00 120.0 2.880 57.6 1.382 0.78 0.58 1.0 0.58 49.00 120.0 2.990 57.6 1.411 0.78 0.58 1.0 0.58 50.00 120.0 3.000 57.6 1.440 0.77 0.57 1.0 0.57 CSR is based on water table at O°0 during earthquake CRR Calculation from SPT or BPT data: Depth SPT Cebs Cr sigma' Cn {��)60 Fines d(N1)60 (N1)60f CRR7.5 £� tsf � 0.00 30.00 2.02 0.75 0.000 1.70 77.11 15.00 2.40 79.51 2.00 i.00 30.00 2.02 0.75 0.060 1.70 77.11 15.00 2.40 79.51 2.00 2.Ofl 30.00 2.02 0.75 0.120 l.'7Q 77.1� 15.00 2.4Q 79.51 2.Q0 3.00 30.00 2.02 0.75 0.180 1.70 77.11 15.00 2.40 79.51 2.00 4.00 30.00 2.02 0.75 0.240 1.70 77.11 15.00 2.40 79.51 2.00 5.00 30.00 2.02 0.75 0.300 1.70 77.11 15.00 2.40 79.51 2.00 6.00 26.60 2.02 0.75 0.360 1.67 67.54 15.80 2.59 70.13 2.00 7.00 23.60 2.02 0.75 0.420 1.54 55.06 16.60 2,78 57.84 2.00 8.00 20.40 2.02 0.75 0.480 1.44 44.52 17.40 2.98 47.50 2.00 9.00 17.20 2.02 0.85 0.540 1.36 40.11 1$.20 3.17 43.28 2.00 10.00 �9.00 2.02 0.85 0.600 1.29 30.97 19.00 3.36 34.33 2.00 11.00 19.40 2.02 0.85 0.660 1.23 30.37 19.00 3.36 33.73 2.00 12.00 14.80 2.02 0.85 0.720 i.18 29.89 I9.00 3.36 33.25 2.00 13.00 15.20 2.02 0.85 0.780 i.13 29.49 19.00 3.36 32.85 2.00 14.00 15.60 2.02 O.SS 0.890 1.09 29.17 19.00 3.3� 32.53 2.00 15.00 16.00 2.02 0.95 0.900 1.05 32.30 NoLiq 7.20 39.50 2.00 16.00 15.60 2.02 0.95 �.960 1.02 30.49 NoLiq 7.20 37.69 2.00 17.00 15.20 2.02 0.95 1.020 0.99 28.82 NoLiq 7.20 36.02 2.00 18.00 1�,80 2.02 0.95 1.080 0.96 27.27 NoLiq 7.20 34.47 2.00 19.00 14.40 2.02 0.95 1.140 0.94 25.83 NoLiq 7.20 33.03 2.00 20.00 14.00 2.02 0.95 1.200 0.91 24.46 NoLiq 7.20 31.68 2.00 21.00 14.20 2.02 0.95 1.260 0.89 24.23 30.00 6.00 30.23 2.00 22.00 14.40 2.02 0.95 1.320 0.87 24.00 30.00 6.00 30.00 0.46 23.00 14.60 2.02 0.95 1.380 0.85 23.80 30.00 6.00 29.80 0.43 24.00 14.80 2.02 0.95 1.490 0.83 23.62 30.00 6.00 29.62 0.41 25.00 15.00 2.02 0.95 1.500 0.82 23.46 30.00 6.00 29.46 0.40 26.00 16.00 2.02 0.95 1.560 0.80 24.53 NoLiq 7.20 31,73 2.00 27.00 17.00 2.02 0.95 1.620 0.79 25.58 NoLiq 7.20 32.78 2.00 28.00 18.00 2.02 1.00 1.680 0.77 28.00 NoLiq 7.20 35.20 2.00 29.00 19.00 2.02 1.00 1.740 0.76 29.09 NoLiq 7.20 36.24 2.00 30.00 20.00 2.02 1.00 1.800 0.75 30.05 NoLiq 7.20 37.25 2.00 31.00 21.20 2.02 1.00 1.860 0.73 31.34 6.40 0.34 31.67 2.00 32.00 22.40 2.02 1.00 1.920 0.72 32.59 6.80 0.93 33.02 2.00 33.00 23.60 2.02 1.00 1.980 0.71 33.81 7.20 0,53 34.34 2.00 39.00 24.80 2.02 1.00 2.040 0.70 35.00 7.60 Q.62 35.63 2.00 35.00 26.00 2.02 1.00 2.100 0.69 36.17 8.00 0.72 36.89 2.00 36.00 92.60 2.02 1.00 2.160 0.68 58.70 7.60 0.62 59.33 2.00 37.00 59.60 2.02 1.00 2.220 0.67 80.64 7.20 0.53 81.16 2.00 38.00 76.4Q 2.02 1.00 2.280 0.66 102.00 6.80 0.43 102.43 2.00 39.00 93.19 2.02 1.00 2.340 0.65 122.82 6.40 0.34 123.16 2.00 40.00 Z09.99 2.02 1.00 2.900 0.65 193.19 6.00 0.24 143.38 2.00 41.00 102.00 2.02 1.00 2.960 0.64 131.11 11.40 1.54 132.69 2.00 42.00 99.00 2.02 1.00 2.520 0.63 119.38 16.80 2.83 122.21 2.00 43.00 86.00 2.02 1.00 2.580 0.62 107.99 22.20 4.13 112.07 2.00 44.00 78.00 2.02 1.00 2.690 0.62 96.78 27.60 5.42 102.21 2.00 45.00 7Q.00 2.02 1.00 2.700 0.61 85.69 33.00 6.72 92.61 2.00 46.00 72.40 2.02 1.00 2.760 0.60 87.86 33.00 6.72 94.58 2.00 47.00 74.80 2.02 1.00 2.820 0.60 89.B0 33.00 6.72 96.52 2.00 48.00 77.20 2.02 1.00 2.880 0.59 91.71 33.00 6.72 96.93 2.00 49.00 79.60 2.02 1.Q0 2.940 0.58 93.59 33.00 6.72 100.31 2.00 50.00 62.00 2.02 1.00 3.000 0.58 95.49 33.00 6.72 102.16 2.00 CRR is based on water �able at 51.0 during In-Situ Testing Factor o� Safety, - Earthquake Magnitude� 6.8: Depth sigC' CRR7.5 Ksigma CRRv CSRfs MSF CSRm F.S. ft tsf tsf tsf ts� �sf CRRv/CSRm o.00 o.o0 2.00 �.00 a.00 0.36 i.31 o.a� s.00 1.00 0.04 2.00 1.00 2.00 0,74 1.31 0.57 3.52 2.00 0.08 2.00 1.d0 2.00 0.74 1.31 0.57 3.53 3.00 0.12 2.00 1.00 2.00 0.74 1.31 0.56 3.54 4.00 0.16 2.00 1.00 2.00 0.74 1.31 0.56 3.55 5.00 0.20 2.00 1.00 2.00 0.74 1.31 0.56 3.56 6.00 0.23 2.00 1.00 2.00 0.73 1.31 0.56 3.57 7.00 0.27 2.00 1.00 2.00 0.73 1.31 0.56 3.57 8.00 0.31 2.00 1.00 2.00 0.73 1.3� 0.56 3.58 9.00 0.35 2.00 1.Q0 2.00 0.73 1.31 0.56 3.59 10.00 0.39 2.Q0 1.00 2.00 0.73 1.31 0.56 3.60 11.00 0.43 2.00 1.00 2.00 0.73 1.31 0.55 3.61 12.00 0.�7 2.00 1.00 2.00 0.72 1.31 0.55 3.62 13.00 0.51 2.00 1.00 2.00 0.72 1.31 0.55 3.63 14.00 0.55 2.00 1.00 2.00 0.72 1.31 0.55 3.63 15.00 0.59 2.00 1.00 2.00 0.72 1.31 0.55 5.00 ^ 16.00 0.62 2.00 1.00 2.00 0.72 1.31 0.55 5.00 ^ 17.00 0.66 2.00 1.00 2.00 0.72 1.31 �.55 5.00 ^ 18.00 0.70 2.00 1.00 2.00 0.71 1.31 0.55 5.00 ^ 19.00 0.74 2.00 1.00 2.00 0.71 1.31 0.54 5.00 ^ 20.00 0.78 2.00 1.00 2.00 0.71 1.31 0.54 5.00 ^ 21.00 0.82 2.00 1.00 2.00 0.71 1.31 0.54 3.70 22.00 0.86 0.46 1.00 0.46 0.71 1.31 0.54 0.85 * 23.00 0.90 0.43 1.00 0.43 0.70 1.31 0.54 0.79 * 24.00 0.99 0.41 1.00 0.41 0.70 1.31 0.54 Q.76 * 25.60 0.98 0.40 1.00 0.40 0.70 1.31 0.54 0.79 * 26.00 1.01 2.00 1.00 2.00 0.70 1.31 0.53 5.00 ^ 27.00 1.05 2.00 1.00 2.00 0.70 1.31 0.53 5.00 ^ 28.40 1.09 2.00 0.99 2.00 0.70 1.31 0.53 5,00 ^ 29.00 1.13 2.00 0.99 2.00 0.69 1.31 0.53 5.00 ^ 30.00 1.17 2.00 0.98 2.00 0.�9 1.31 0.53 5.00 ^ 31.00 1.21 2.00 0.97 1.95 0.69 1.31 0.52 3.71 32.00 1.25 2.00 0.97 1.94 0.68 1.31 0.52 3.73 33.00 I.29 2.OQ 0.96 1.92 0.67 1.31 0.52 3.74 34.00 1.33 2.00 0.96 1.91 0.67 1.31 0.51 3.75 35.00 1.37 2.00 0.95 1.90 0.66 1.31 0.51 3.76 36.00 1.90 2.00 0.95 1.89 0.66 1.31 0.50 3.77 37.00 1.99 2.00 0.94 1.88 0.65 1.31 0.50 3.79 36.00 1.98 2.00 0.94 1.87 0.64 1.31 0.49 3.80 39.00 1.52 2.00 0.93 1.86 0.64 1.31 0.49 3.82 40.00 1,56 2.00 0.92 1.65 0.63 1.31 0.48 3.83 A�.00 1.60 2.00 0.92 1.84 0.63 1.31 0.48 3.85 42.00 1.64 2.00 0.91 1.83 0.62 1.3� 0.47 3.86 43.00 1.68 2.00 0.91 1.82 0.61 1.31 0.47 3.88 44.00 1.72 2.00 0.91 �.81 0.61 1.31 0.46 3.90 45,00 1.76 2.00 0.90 1,$0 0.60 1.31 0.46 3.92 46.00 1.79 2.00 0.90 1.79 0.60 1.31 0.45 3.94 97.00 1.83 2.00 0.89 1.78 0.59 1.31 0.45 3.96 48.00 1.87 2.00 0.89 1.77 0.58 1.31 0.45 3.98 49°00 1.91 2.00 0.88 1.76 0.58 1.31 0.49 4.00 50.00 1.95 2.00 0.88 1.75 0.57 1.31 0.44 4,02 * F.S.<1: Liquefaction Potential Zone. (Tf above water table: F.S.=5) ^ No-l�que�iable Soils. (F.S. is lamited to 5, CRR is limited �0 2, CSR �s limited to 2) CPT convert to SPT for Settlement Analysis: Fines Correction for Settlement Analysis: Depth Ic qc/N60 qc1 (N1)60 Fines d(N1)6� (N1)60s ft tsf $ 0.00 - - - 79.51 15.0 0.00 79.51 1.00 - - - 79.51 15.0 0.00 79.51 2.00 - - - 79.51 15.0 0.00 79.51 3.00 - - - 79.51 15.0 0.00 79.51 4.00 - -- -- 79.51 15.0 0.00 79.51 5.00 - - - 79.51 15.0 0.00 79.51 6.00 - - - 70.13 1.5.8 0.00 70.13 7.00 - - - 57.84 16.6 0.00 57.84 8.00 - - - 47.50 17.4 0.00 97.50 9.00 - - -- 43.28 I8.2 0.00 43.28 10.00 � - - 34.33 I9.0 0.00 3�.33 11.00 - - - 33.73 19,0 0.00 33.73 �.2.00 - - - 33.25 19.0 0.00 33.25 13.00 - - - 32.85 19.0 0.00 32.85 14.00 - - - 32.53 19.0 0.00 32.53 15.00 - -- - 39.50 NoLiq 0.00 39.50 16.00 - - - 37.69 NoLiq 0.00 37.69 �.7,00 - -- - 36.02 NoLiq 0.00 36.02 1B.00 -- - - 39.47 NoLiq 0.00 34.97 19.00 - - - 33.03 NoLiq 0.00 33.03 20.00 - -- - 31.68 NoLiq O.Ofl 31.68 21.00 - - - 30.23 30.0 0.00 36.23 22.00 - - - 30.00 30.0 0.00 30.00 23.00 - - - 29.80 30.0 0.00 29.80 24.00 - - - 29.62 30.0 0.00 29.62 25.00 - - - 29.46 30.0 0.00 29.96 26.00 - - - 31.73 NoLiq 0.00 31,73 27.00 - -- - 32.78 NoLiq 0.00 32.78 28.00 -- - - 35.20 NoLiq 0.00 35.20 29.60 - - - 36.24 NoLiq 0.00 36.24 30.00 - - - 37.25 NoLiq 0.00 37.25 31.00 - - - 31.67 6.4 0.00 31.67 32.00 - - - 33.02 6.8 0.00 33.02 33.00 - - - 39.34 7.2 0.00 34.34 34.00 - - - 35.63 7.6 0.00 35.63 35.00 - - - 36.89 8.0 0.00 36.89 36.00 - -- - 59.33 7.6 Q.00 59.33 37.00 - -- - 81.16 7.2 0.00 81.16 38.00 -- - - i00.00 6.8 0.00 100.00 39.00 - - - lOQ.00 6.4 0.00 100.00 40.00 - - - 100,00 6.0 0.00 100.00 41.00 - - - 100.00 11.4 0.00 100.00 42.00 - - - 100.00 16.8 0.00 100.00 43.00 - - �- 100.00 22.2 0.00 100.00 44.00 - - - 100.00 27.5 0.00 100.00 �5.00 - - - 92.61 33.0 0.00 92.61 46.00 - - - 94.58 33.0 0.00 94,58 47.00 - - - 96.52 33.0 0.0� 96.52 48.00 - - - 98.43 33.0 0.00 98.43 49.00 - - - 100.00 33.0 0.00 100.00 50.00 - - - 1�0.00 33.0 0.00 100.00 (N1) 60s has been fines corrected in liquefaction analysis, therefore d(Nl) 60=0. Fines=NoLiq means the soils are not liquefiable. Settlement of Saturated Sands: Settlemen� Analysis Method: Ishihara / Yoshimine* Depth CSRm �.S. Fines (N1)60s Dr ec dsz dsp S ft � � � in. in. in. 49.95 0.44 9.02 33.0 100.00 100.Q0 0.000 O.OEO 0.000 0.000 49.00 0.44 4.00 33.0 100.00 I00.00 0.000 O.OEO 0.000 0.000 48.00 0.45 3.98 33.0 98.43 100.00 0.000 O.OEO 0.000 0.000 47.00 0.45 3.96 33.0 96.52 100.00 6.000 O.OEO 0.000 0.000 46.00 0.45 3.99 33.0 99.58 100.00 0.000 O.OEO 0.000 0.000 45.00 0.46 3.92 33.0 92.6� 100.00 0.000 O.OEO 0.000 0.000 44.00 0.96 3.90 27.6 100.00 100.00 0.000 O.OEO 0.000 0.000 43.00 0.47 3.88 22.2 100.00 100.60 0.000 0.0�0 0.000 0.000 - 42.00 0.47 3.86 16.8 100.00 100.00 0.000 O.OEO 0.000 0.000 41.00 0.48 3.85 11.4 100.00 100.Ofl 0.000 O.OEO 0.000 0.000 40.00 0.48 3.83 6.0 100.04 1�0.00 �.000 O.OEO 0.000 0.000 39.00 0.49 3.82 6.4 100.00 100.00 0.000 O.OEO 0.000 0.000 38.00 0.49 3.80 6.8 100.00 100.00 0.000 O.OEO 0.000 0.000 37.00 0.50 3.79 7.2 81.16 100.00 0.000 O.OEO 0.000 0.000 36.00 0.56 3.77 7.6 59.33 100.00 0.000 O.OEO O.00Q 0.000 35.00 0.51 3.76 8.0 36.89 100.00 0.000 O.OEO 0.000 0.000 34.00 0.51 3.75 7.6 35.63 100.00 0.000 O.OEO 0.000 0.000 33.00 0.52 3.74 7.2 34.39 100.00 0.000 O.OEO 0.000 0.000 32.00 0.52 3.73 6.8 33.02 97.33 0.000 O.OEO 0.000 0.000 31.00 0.52 3.71 6.4 31.67 93.97 0.000 O.OEO 0.000 0.000 30.00 0.53 5.00 NoLiq 37.25 100.00 0.000 O.OEO 0.000 0.000 29.00 0.53 5.00 NoLiq 36.24 100.00 0.000 O.OEO 0.000 0.000 28.00 0.53 5.00 NoLiq 35.20 100.00 0.000 O.OEO O.D00 0.000 27.00 0.53 5.00 NoLiq 32.78 96.71 0.000 O.OEO 0.000 0.000 26.00 0.53 5.00 NoLiq 31.73 94.11 0.000 O.OEO 0.000 0.000 25.00 0.59 0.74 30.0 29.46 88.84 0.926 5.6E-3 0.006 0.006 24.00 0.59 0.76 30.0 29.62 89.21 0.872 5.2E-3 0.108 0.1�3 23.00 0.54 0.79 30.0 29.80 89.61 0.797 4.8E-3 0.100 0.219 22.00 0.59 0.85 30.0 30.00 90.07 0.694 4.2E-3 0.090 0.303 21.00 0.59 3.70 30.0 3Q.23 90.57 0.000 O.OEO 0.042 0.345 2Q.00 �.59 5.00 NoLiq 31.68 93.97 0.000 O,OEO 0.000 0.345 19.00 0.54 5.00 NoLiq 33.03 97.35 0.000 O.OEO 0.000 0.345 18.00 0.55 5.00 NoLiq 3A.47 100.00 0.000 O.OEO 0.000 0.345 17.00 0.55 5.00 NOLiq 36,02 100.00 0.000 O.OEO 0.000 0.345 16.00 0.55 5.00 NoLiq 37.69 100.00 0.000 O.OEO 0.000 0.345 15.00 0.55 5.00 NoLiq 39.50 100.00 0.000 O.OEO 0.000 0.345 19.00 0.55 3.63 19.0 32.53 96.�7 0.000 O.OEO 0.000 0.345 13.00 0.55 3.63 19.0 32.85 96.89 0.000 O.OEO 0.000 0.345 12.00 O.S5 3.62 19.0 33.25 97.91 0.000 O.OEO 0.000 0.345 11.00 0.55 3.61 19.0 33.73 99.18 0.000 O.OEO 0.000 0.345 10.00 0.56 3.60 19.0 34.33 100.00 0.000 O.OEO 0.000 0.345 9.00 0.56 3.59 18.2 43.28 100.00 0.000 O.OEO 0.000 0.395 6.�0 0.56 3.58 17.4 47.50 100.00 0.000 O.OEO 0.000 0.395 7.00 0.56 3.57 16.6 57.89 100.00 0.000 O.OEO 0.000 0.345 6.00 0.56 3.57 15.8 70.13 100.00 0.000 O.aEO 0.000 0.345 5.00 0.56 3.56 15.0 79.51 100.�0 0.000 O.OEO 0.000 0.345 4.00 �.56 3.55 15.0 79,51 100.00 0.000 O.OEO 0.000 0.345 3.00 0.56 3.54 15.0 79.51 100.00 0.000 O.OEO 0.000 0.345 2.00 0.5� 3.53 15.0 79.51 100.00 0.000 O.OEO 0.000 0.345 1.00 0.57 3.52 15.0 79.51 100.00 0.000 O.OEO 0.000 0.345 0.00 0.27 5.00 15.0 79.51 100.00 0.000 O.OEO 0.000 0.345 Settlement of Saturated Sands=0.345 in. � qc� and (N�) 60 is after fines correction in liquefaction analysis dsz is per each segment, dz=0.05 ft dsp is per each print interval, dp=1.00 ft S is cumulated settlement at this depth Settlement of Unsaturated Sands: Repth sigma' sigC' (N1)60s CSRfs Gmax g*Ge/Gm g_e�f ec7.5 Cec ec dsz dsp S ft tsf tsf tsf o % in. in. in. 0.00 0.00 1.95 0.00 0.36 0.0 O.OEO 0.0000 0.0000 0.00 0.0000 O.00EO 0.000 0.000 Settlement of Unsaturated Sands=0.000 in. dsz is per each segment, dz=0.05 ft dsp is per each print interval, dp=1.00 ft S is cumulated sett�ement at this depth Total Se�tlement of Saturated and Unsaturated Sands=0.395 in. Di�ferential 5ettlement=0.173 to 0.228 in. -.n Units: Depth = ft, Stress or Pressure = tsf (atm) , Unit Weight = pcf, Settlement = ine SPT Field data from Standa�d Penetration Test (SPTy BPT Field data from Becker Penetration Test (BPT) qc �ield data from Cone Penetration Test (CPT) fs Friction from CPT testing gamma Total unit weight of soil gamma' Effective unit weight of. soil Fines Fines content [oJ D50 Mean grain size Dr Relative Density sigma Total vertical stress [�st] sigma' Effec�ive vertical stress [tsf] sigC` E�fective confining pressure [tsf] rd Stress reduction coefficient CRR7.5 Cyclic resistance ratio (M=7.5) Ksigma Overburden stress correction factor for CRR7.5 CRRv CRR aft�r overburden stress correction, CRRv=CRR7.5 * Ksigma F.S. Calculated £actor o£ safety against Iiquefaction F.S.=CRRv/CSRm User User request facto� o� sa�ety, which may apply to CSR fs1 First CSR curve in graphic defined in #9 of Advanced page fs2 2nd CSR curve in graphic defined in #9 of Advanced page CSR Cyclic stress ratio induced by earthquake CSRfs CSRfs=CSR*fs1, fs1=1 or User, defined in #9 of Advanced page MSF Magnitude scaling �actor for CSR CSRm After magnitude scaling correction CSRm=CSRfs/MSF Cebs Energy Ra�io, Borehole Dia., and Sampling Method Corrections Cr Rod Length Co�rections Cn Overburden Pressure Correction {N1)60 SPT a�ter corrections, (N1) 60=SPT * Cr * Cn * Cebs dEN1) 60 Fines correction o� SPT (Nl) 60� (N1)60 after fines corrections, (Nl} 60f=(N1) 60 + d(N1) 60 Cq Overburden stress correction factor qc1 CPT after Overburden stress correction dqcl Fines correction of CPT qclf CPT after F'ines and Overburden correction, qclf=qcl + dqcl qcln CPT after normal.iza�ion in Robertson's method Kc E'ine correction factor in Robertson's Method qclf CPT after Fines correction in Robertson's Method Ic Soil type index in Suzuki's and Robertson's Methods (N1}60s (N1}60 a�ter set�lement fines corrections ec Volumetric strain for saturated sands dz Calculation segment, dz=0.050 tt dsz Settlement in each segment, dz dp User defined p�int interval dsp Settlement in each print in�erval, dp Gmax Shear Modulus a� low strain g_eff qamma_e��, E�fective shear Strain g*Ge/Gm gamma_eff * G_eff/G max, Strain-modulus ratio ec7e5 Volumetric Strain for magnitude=7.5 Cec Magnitude correction tactor for any magnitude ec Volumetric strain fo� unsaturated sands, ec=Cec * ec7.5 NoLiq No-Liquefy Soils Refe�enceso 1e NCEER Workshop on Evaluation o� Liquefaction Resistance of Soi1s. Youd, T.L., and Idriss, Z.M., eds., Technical Report NCEER 97--0022. SP117. Southern California Earthquake Center. Recommended Procedures for Imp].ementation of DMG Special Publication 117, Guidelines �or Analyzing and Mitigating Liquefaction in California. University of Southern Cal.ifornia. March 1999. 2. RECENT ADVANCES IN SOT� LTQUEFACTION ENG�NEERING AND SEISMIC STTE RESPONSE EVALUATION, Faper No. SPL-2, PROCEEDINGS: Fourth International ConPerence on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, CA, March 2001.. 3. REC�NT ADVANCES IN SOTL LTQUEFACTION ENGINEERING: A UNIFIED AND CONSIS`I'ENT FRAM�WORK, Earthquake Engineering Research Center, Report No. E�RC 2003-06 by R.B Seed and etc. April 2003. . � � C.�E�I:�RA.L�AR'THVaOT�.A3.VU G��,DTNG S�'ECIFICA'Z'IC�N�FOR�C�CJGH�RA.��INt� � � `x'able o�'Cuntents � Section Pa�e ,_� l.� G�N�RA.L 1 L � 1.1 int�nt 1 1.2 The Geotec�nical Consul�nt of R�corc� � 1.3 Th� E�thwc�rk Conttactar 2 2.0 I�REPAR.�i�`�(�N O�'AR.E�S�'0 BE F�L�,ED 2 2.� Cl�e�ri.n.g and Grtibbing 2 j 2.2 Pr��essin� 3 2.3 4verexcavation 3 , � 2.4 Bench.u�g � �.S Evalua�ionlAccegta.nce o�Fill Axeas � ` �: 3.0 F�L�1�ATERT�Ia 4 � . 3.� General 4 � 3.2 Qversize 4 : ) 3.3 Ixxzport. 4 � 4.0 ��,L�'�AC��F.NT ANI��;t�IVr�'A�TT(�N �4 E 4.1 �'ill L,a�ers 4 4.2 �il� M.oisture Cv.�c�itaanang 4 � 4.3 Campaction of Fi�l 5 4.4 Corr�paction c�f�ill S�op�s S � �:� Compaction'�'�stin� S ` � 4.b �'requency�f�ampaction Testfng � �.7 Cc�mpaction T�st Lcacations 5 �. � : ' S.Q SCJBDR.�I�1 Il'�S'T�.�,�.ATIt�N � . � �.(� E�C�.�'trATIQN 6 � ?.0 T.��1V���AGK.�'I�,�,S � 6 � � 7.1 �afety � .�_ 7.'� ��cid�t�g an�.�ackf.l� b fi.� L�ft'��ckri�ss � 7_4 Observatic�n and T��tin� fi £ ! � . � GENER.�L��.T�W��K AND GRAl��NG �PECIFICATIONS FUR RULTGH GRAL7ING � , �"able a�'Cc�nt�nts(Cont d.} : � , . S#anda�ri Deta�ls � A �- �cyi�g�nd Be�.rhi.ng Rear of Text B - Oversiz�Rock L1i�p�sa1 R.ea�-of'7'ext . . �' - �;�1�OI��U�Td.1�15 �,eaZ'Of�7'eX.t ; D - �u�tres�or�epracenr�e�t Fill Sub�rai��s l�.e�r of�l"e�t E w '�'ransitzon Lt�t Fills and�ide Hil1�'ill� Rear of Te�t i l . � � � e I 1 �: . � � � � x � � a � � . �. . 's � �eneral Earthw+�rk and Gradin�Specificatians � , � 1.(J General � 1.1 Intent: 'I'he�e G�n�ral Earthwork and Gradin�Sp�ci�cations are fur the gr�ding�nd earthwark shown on the approvec� grading pi��(s) andlor indicattd in the , � geutechnical rcpr�rt(s}. '�`kiese Specifications are a p�rt of the r�coinn�end�tions contained in th� g�otechnical report(s}. Ir� case of conflict, the speci�xc � recammendatioi�s in tl�e ��Qt�C�7n1C�� xeport shall supersed� t�ies� m�re �ener�l . � Specif c�.tions, {�bserv�tion5 c�� th� earthwc+rk by the prajeci Geot�chnical Consultant duri.sag th� caurse of gra.din� may re5ult in �ew or reuis�d � re�ommendations that co�1d su�cr.sede t�lese s�eci:�ications or the r�comm�ndatiuns , in the geotechnical repc�rt(��. 1.? `,�'he Geotechru�al Con�ultant caf �t,.ecord: Pri�r ta �on�mencement of work., the i �wj.ler shall �mploy th� �eatechnical Consui�cit of �.ccord (Geotechnic�l (ronsuXtant). T`he Ge�technic.al C;onsult��t� shall be responsi�l� for reviernring th� � �PPzov�d �;eotechnzca.l report�s} �nd a�cep�ing the adequacy of the pr�liminary � �eot�chn�cal findings, cancl��sions, a.nd r�co�x����i�dations prior to the commenc�rnen.t of the gr�ding. r � Priar to carxuziencement v�' grading, the �eot�chni�al Consul.tant sh�11 ��;vi�w the "w�rk pl�n" pre�ared by the Eartliwork Contraetor (C�ntractor) an�i sch�dulc . " � su�cient per�onnel to �erfarm t��e �ppro�z�zatc Ievel c�f observatian, m�pping,. and � campaction�estin�. � � D�.�ing the gr��iing �nd earthwork aperatians, the Geotec�a.nical Cansultant sllall � observe, m�p, and tiu�um.ent th� sub�urfae� exposu.�es tc� veri.Cy lh� �;eate�hnical desi�l assumptions. If the ob��rved conditioxls are foun.d to b� �i�ni�ic�ntly � differen�t�.an the interpr�ted assum�tions during the design pl��se, the G�ate�hni�al � Consuitant sh�ll anform the uwner, recammend apprvpri�fie chan�;es in d�sign to accarnrno�ate the observed c;onditions,and natify thc review agency ti�vh�r�requixed. C Subsurface areas to be geotechnically �bserv�d, mapped, elevaiions �ecorded, � and/or t�sfied a.nelude nai�ural ground after it has been c~le�r�ci fr��- �c�iving fill but before fiil is placed, bott�ms c�f all "remediaJ remaval" areas, all key battoms, a��d � � benc�e�m�d��n s�opi:n�graun.d to receive fill. � . , 'I`�ae� ��eatcchnical C;c�.nsu�.tant �hall obse�-�� the moistur�-conditioning ax�d � pz'oeessin� �f the sub�ade and f Il �'nat�ri�ls �.nd p�rForm relative comp�ction t�st�ng of fill to det�r�nnine the a�tained l�v�l af compactio�l. T71e G��technical , �onsuitant shall provi�ic ihe test r�sults to the own�r and the Con�actor on�rouz�.e � an.d fr�quen� �asi�s. ; �, 1. � Cryre��ral E��r�vurk�nd Cirading��ecifcatic�n� � � i 1.3 The E�xtkiwork Contractor: �ie �;�rt,hwork ContracXur �Cantractor) sha!] be � quali�i�d, e�perienc�d, and k.nor�vledgeable in �arthwork lt��istics, prepa�rat�on and � proc�ssing af ground t.o receiv� #i.l,l, moisture�condition�.ng �nd. proc��sin� of fill, �� ar�d cornp�.cting�fil�. �`he Can�ractor shall re�riew a�.d�ccept khe plans, �eote�hnical � repart{s),axad these Spec�ficativn�priar to cQmmenc�ernent of�t•ading. 'I�e �c�ntractor shall la�so�ely responsible for p�rforn�i.n��he gr�din�in acccrrdance wit�x � the pla�ns and specifications. � �"he Contxactor 5h��11 prcpare arid subrnit to the owner anci the Geat���ir�ic�l . �onsult�t a work plan that i.ndicates th� seque�ce of earthwork. �•adx���, t,he numbex o� "spreacis" af�ror�. and t�e estimated qua.ntities a�' daily earthvvor� � cantemp�ated far the site prior to commenccment of�radxn�. The Cantractor s�d1i ; iinfai�m t�e owner anci the C�eotechnic� �`onsultant of chan�es in �+ro�-k sche�iules ancl upd�tes to the wor� pla�� at least 24 haurs in advance of sucl� chaxzges sa that � aPFrt�Priate observations ar�d tests ca.n be pl�nned and acco�nnp�xsh�d. The , � �antraetor �h�ll not assume that th� (��ot�chnical �cansultant is aware uf all g;radin�; operatipns. . � The Contractc�r skiall.have tl�e sole reS onsi.bility ta provide adequat��quipment�nd P �nethods tt� ��comp�ish the e�rY.h�vvc�rk in. a�c�rciance vv�th �h� applicable grading : � c;c�des and age�ncy ordinac�c�:s, t��ese Specifeatians, and the recom�rr��nda#ians in the approVed gevtechnical rep�rt(s} and �adi.n� plan(s). if', in the o�ruuon of the Geotechnzca.l Consuliarit, un�;atisfacto�y cUnciitions, such �s unsuitable soil, � i.mproper maistur� c:c�naition, �nadequate cc�rnpaction, insu�cien� buttress k�y size, " ac�verse weather, �tc., are zesuitixag in a qualit� c�f work less ihan �equ�xed ia� these specifica�tions, th.e Geot��hnicai Consul�ant shall reject the war�C and may z-�Gomranend to the awner that canstructzon be �topped until th� con�i�ions are � rectifi�d: � 2.Q Preparatian of.A�reas to_be F'ill�d � 2.1 Cleari�,� ar�d _Grubbin.�: ��getation, such as b�h, �s, roo�,s, �d ath�r delet�rious znaterial sha�l be suff��;iently rerz�ov�d..and p.raper��r disposed of in a . method acceptable ta the own�r, gaverning agencies, anc� th� G�otechn�.ca[ � Consultant • � The Geot�chnical Consu�ta.r�t shal� evaluate the extent of th�s�: ren�ovals d�p�ndin� � on specXfic s'rte �oric�itions. �arth fil� z�at�ria� shall not cUntaiu� �nore than 1 pexc�nt of organic mat�rials (by volurr�e). No �ill lif� sha1I �vnt�.in �ore t��.n 5 percent of �,_ organic rnat�er. I�Tes�ing o�'th��rg�.nic�.aterials shal�na1:b�allo�nred. r t V � . � G�n��ra��art�.hv�rork anci Gxa�iing S��ci�catioris � - � ��potentially hazarciou�materials�.r��ncowntezed, th.e Con�ractr�r shall stap work�iva � t.�e affected arc�, and a hazardous material special.ist sh�.11 he �infc�:rnned immediatel� for praper evaluatic�n a.n.d handli.ng�f thes�m�er.ials priar t� continuu�,�;to work .in fhat area � . �S;s pres�ntly d�fincd by #he State of Califomia, mast �efincd petrc�l�urri products �gasaline, diesel fuel, mator ail, �rease, coalant, et�.) have chemical constituen�s � that are c�nsid�red tc� be ha2ardous wa5te. ,As such, #he indiscriminat� duznping or spilia�e of these fluid� onti� the graut�� rnay �onstitute a m�sdeme�tar, prtuushablc by fines andfar irnprisonment,and shal�nat�e allowed. 2.2 Processin : �xisting�round that has-been c��clared sa�is#'�ctory for support of f1I by �he �eotechnical Cansultant shall be �earified to a rninixnwn d+�pth �f 6 inehes. I �xis�ing �,round �a.at is not sati�factary �hall be ave�xcavated a� specified in tr�e fallo�w�in.g s��tic�n. Scarif���tion sha.il continue until st�ils are bral�en dowr� and fre� ` � of large>�1ay hunps or clods�ra.d the w�rking surface is reasonably unifoxm, fla�, and frec ofuneven.f�a�ur�s that would inhibit wufo.rxn campactian. � 2.3 t�verexcavation: �n additran to r�mavals and overexGavations re�ommended in the � appxoved geotechnical r��art�s� �nd the �rdding �lan, sc�f�, loose, dry, saturated, spon�;y, ar�anic�z�ch, highly fracriued or ��.herw�se unsuitable �roun� sha�l be � � ouerexcavated to campetent �.round as evaluated by �e �evteck�ni.ca� Cvr�sulia��t � duri.�g�rading. � 2.4 Benchin : �Where �11� are to be placed an graund with slopes steeper than 5:1 t �horizantal to vertical u�its),the$rt�und shall b� �tcpped or ben�hed. Pl�ase see the �tandard Details for a gra�hic illustrataon. `:I'he low�st bench or key shall be a minimum of �5 feet wicie �d at 1�ast 2 f�et deep, into cvmpetent m�tc�al as � ' evaluated by t1�� tYeate�hnical Cansult�at. �ther benches sh�.11 be cxca��tcd a , minimum height of 4 feet into competent materi�l or as otherwise �ecammended by ` �he C'reatechn.ic�l Consultant. F�"i11 plac�d on �raund sloping fla�er than �:l shall r p' alsa be benched ox atherwrse ov�rexcavated to pxovide a#�.at sub�rade far tk�e tll. � �.S Evaluat�onl�cce.ptance of Fill Areas: A.II ar�..� to receive fill, incluc�ing �rem�val �d pararessed areas, �ey b�tt�x.ns, and benel�es, �hall be observed, mapped, � elev�tic�ns rec�rded, and/or tcsted privr ta being accepted b� the Gcot�ch�7ic�l � Can�ultant �s su�table to re�exve :�'i11. Z'he Contracior shall vhta��. a wntten aceep���c� fram the �'i�atechtu�al �onsultant prior to �ill pla�emcnt. A. licensed su�vey�r shall provide the sutvey con��rr�l for d�t��mu��1� �Ieva`tion� of pracesseci � areas,keys,ar�d benches. �_ 3 f ; C"�en�ral Earthr�vorl�and Grading Spe�i#icati�ns i � 3.� �'i11 N�ater�al � - 3.1 C"Tener�l: Material to be us�d as f 11 shall �c ess�ntiaily �irce of or�an.�c .matter and . other deleteriau.:� �ubs�ances evaluatec� and accepter�by�tie Geotechn�cal Consultarit � � priar�p p�ace�n�nt. Soils of�aor quality, such�those r�th t��acceptable �rac�ation; . � hxgh expansion pot�ntial, or 1o�v s�tren�th shall be placecl in areas accepta.ble tp �he •. �ie+��ech���ca1 �onsult�nt or mixed with oth�r soils to ac�.ieve satrsfactory �ill � material. � �.2 ��versize: CJversize malerial defi:ned as rocl�, or other �rred�tcible materi�l with a ; tn�x.unum dimension greatex �han $ i.�ches, shail not be b�xried ar place�. �n f�ll unles� lacation, m�.terials, and placem�nt methods are specif ca11y accepteci by che Ueotechnical �ansultant. I'lac�ment o�erations sh�11 be such that n�sting o� � �versized rr��terial da�s not occur and suGh t��at c�versize mat�z�al is com�ietely surroundec� �ay cam�acted ar densi�"ie� �11. Qversi�:e �naterial sha1X nr�t be placed x{ �vi�un 1 U r�ertical �eet af finish gr�de or v�ithin 2 fe�t of future utilit�es ar E underground constxuction. ' ° 3.3 Impvrt: I� i�npoz�in� o�` fi11 materi•a� is required �ar �a�ing, ��aposed import � � � rnater�al sha.�l meet the r�c�u:irements Q�' Secti�n 3.1. ".[�ze potenti�.i in�pc�rt souxcc shall �e given #� the C�eotcchnical Co�sultant at least 48 hours (? �rc�rking days) � � before imparti.ng begu� sa that rts st�ita,hility can be determineci and appropriate r � tests p�rforn�ed. • �3 i � 4.� �ill P�a�e�n�nt and Compa�tiQn 4,1 �itl La�ers: A�proveci fiil. materia.i shall be piaced in areas prcparcd to reccive fili � (per Sectian �.0) in near-horizontal layers not ex�eer�in.g 8 inc�es in loose thickness, � The C'r�vteehni�al Co.n�ultant may ��Gept t�.icker layers i� test-ing indicates the � �'ading proc�ciur�s can adec�u�t�ly �omp�ct t��e tY�ic�er �ay�rs. �a�h layer s1�a11 be spr��d ev�nly and mixed thorou�hly ta at�tain. r�lative uni�'ormity o� zx��teria.l and . �.�isture�hrc�u�h�ut, � � � 4.2 Fill 1V�oistu.re G+�nditionin�: �'ill soils shali be watel��d, dr�e�i back, blended, ai�dlor � mix.ed,as x�ec�ssary to atta.i�a relatively uni�om� m�o�sture content at ar�l��htl.y�v�r , � o�timum. Max�murri de.nsity and r�ptimurn sail moi�ture cantent tes�t� shall be perforxneci in accordance wi.t�� th� �1..n���.can �oci�:�y af Testing a.n�l Iv1a�t�rials � (AST'� T�st�ethod l��5�i }. . . f „_� � w `$ 1 # C�neral�arth�nrork and Grading S�eci#icatians � . � - � �.� Com�act�an of Fi1i; After cach l�yer ha..� be�n maislure�canditioned, mi�ed, and � evenl.y spread, it shall �ae u�.ifonnly compacted to not less than �0 percent of . � rn�imum d.ry densifiy (ASTM Test Mefi.had D1SS7 }. �am�actiun equipment : r sha�l be acieyuatel� sized and b� erther sp�c��Ccally desi�ecl �'or suil compaetic�n or � of prc��ven reliability ta e�i�;ientl.y achie�re th�: specified level c�f compactian wi,th iuufomxity. + � 4.4 Comt�action of�Fill Sla es: �n addit�ion tc� norrn�.l eampac�tion�rcacedu�res speci��c� abave, cornpaction af slopcs shall be a�camplishe�. b� bacl�ral.ling of slopes �vith . sh�eps�'oot roliers at incremen�.� c��a to 4 feet in f l�l �levation, or by othe�methods : �roducin� satisfactory ;results acceptable to the Geotechni�ai Cansultant. �EJpon comp�etion af�rading, relati�c com,paction of th� fill, out to the sl�� �ace, sha11 be at least 9a perGent of max�ix�.u�m density per�:�"I�V[�I'est Mefihod:�15�7 . ; �4.5 �omp�ctian Testin�: �i�ld tests for�nais#.u.r�con.tent�a r�l�tive cc�mp�.ctiun af the ` �i11 sc�ils sh�ll be perfonned by the Geotechnic�l Consult�nt. �focatian �nci . � frequency o�`tcsts shall be at th� C�nsultant's discretioz� b�ed on f�eld canditions encountered. Compaction test loca�ians will not necessa��y be seiect�d an a �' � r�nda� basis. "[est locatio�s shall be selected to veri� adequacy of co��ac�ion ' l�v�ls in areas tha� are jud�ed to �� prane to inadequat�; com�pactxc�n �such as close ta slo�faces and at the i�l�lb�drock bench�;s). .. � , � 4.b Freq_uencv �f C��a�actican T��tin�: I'ests shall be taker� at interv�s not e�ceeding �fe�t in verticar�is� andlor 1,a0�cubic yarc�s uf eompacted fill soils em1�a��kxr�ent. � � In addition, as a guideline, at Icast one test shall. bc taken on slope faces fo� each � 5,400 square feet o�slfl�e face and/or �ac�. X 0 feet afi`�vertical height af slo��. T�ae Cantractor shall assure that �11 construct�on is sucl� that th� t�stin� schedule can be ` accom�lished hy the Ueot�ch�xical Cansultant. "I"he Contractor shall �top or slo��v ' da�vn the earthwork�onstructic�n i�the�e mi:nimurn st�.ndards ar�nc�t met. i 4.7 �ampact�r���'es� �.acatiuns: �Ze C�otechnical Consultant �hall docu�m�nt th� � i approxzrnate elevation and horizontal coc�rdin��tes o�' �ach t�st lacation. T�ae �QntractQr shali coordinate v�ri�h�he project suz�veyor to assure that su�ci�nt �ade � � stakes are est��lished so that the �eotechn�cal Con�ultant can dc;te�rmine �.he test lt�catians with suf�cient accuracy. At � �ninimurn, two grade st�.kes v�rithin � � honzontal dista.n►��o�100 Feet anti v��rtically less than S f��t a�art�`ram�t�tential tc;st � locati�►ns sha�1 be provided. � . i � d� � _.. ! .. . � Creneral E�i�vork and(rr�dxng Spe�;if cations 1 I � . 5.0 Subdrai�.Instal��tian . � Subd.rain syst�ms shall b� inst,�lled `u� acco.rd�cz wifih the approv�d �ec�technical report(s�, � � the grading pl�n, and the Sta�dard Details. r��i� GeateL,hnic� �an�ultant may zecanun�nd � arlditi�nal subdr�i�� and/o� chang�s in subdrain �xtent, lacation� gr��.�, �r m�terial dependin� on�condit�on� encc�unter�d clur�n� gradi.rig. All �ubrirains sh�ll b� swrveyed by � � land swrvcyorlci�ii cn�ineer tar line and �de aft,�r installation and prior to burial. � Suf�i�cient tim�should be�.11ow�d by the�Cc�ntractur�or these su�v�ys. . 6.� �xcavation . Excav�tion�, as w�11 � aver-excavation f�r rernedial purpases, shall be �valu�ted by the � �r�vtechnical Consult�nt cluring �radin�. R.emedial remov�� depth� shnwn�n geotechnical plans are estirnates or.�,y. Thc actual cxtent af r�moval shall be determ�n�d by fihe Cxe�technica� Co�nsultant based on �h� �eld evaluation of exposec� �onditians durin� � �.din . i�hexe r11-o�e�-cut slopes are ta be gra�ed, the cut porti�n af the slope sha�l be �' b xnade, evaluated, and a�ccpt�d by the Geatechnical Cc�nsultiant prior ta plac�n�enfi of ma�e�i�ls for c�nstx�action c�f the f 11 �ari:ian of the slope,unless ot�her�is�recammendec�by . � � the Creotecl�nical �onsul�ant. . 1 � �.0 r.�rench�3ackfills � ` 7.1 �a�e : The Contrac�or shall follow ali O�,SA and Ca11(�SHA. r�quircrnents for � safety��f trcnck�excav�tic�ns. � � 7�2 F3eddin� at�.cl Back#ill: Ali bedc�ing at�d b�ackfiIl of utility trenc��es shall be done �n ' accordance witk� the �ppl�cable pro�isions �f Stand�rd Specificatic�ns of P�iblic 'S�Vorks Cc�n�st�ction. Beddin�matenal shall h�ve a Sand Equivalent gr�ater th.an 30 � (5����)}. The beddin� sha11 be p��c�d to 1 �ovfi over �:he top a�f the conduit ancl densified b� je��ting;. Back�'i1l shall b� pla��c� and �.ens�f ed 1:� a in.tn�murr� oi. 4 �D perc�nt of m�imum frorr� I f��t ab�ve the top of the�anduit ta the surface. � � ` z 'Fhe �eotechnical �"ansultant shall �t�est the t�ench� ba�kfill f�� r�lative comp�.ction. � At least an�te�t should be ni�.de for every 3Q0 fcet of trench an�2 feet c�f fill. � � 7.3 �ift T�.ickness: Lift th.ickness c�f t�rench ba+ck#'��I �hall nc�t �x�e�d thase all��uved in ; the:St�ndard �pecifcations of.l�ublic �/ork.s Can.stxuction unJ.es��the Contractor can. � demon.�trate t�the Greotechnical Consu�tant that t�1e fill lif�can b� campacted ta t[�e minimum re�ative comp�c:tion by his alte�native equipment and metl�ad. � � � 7.4 �bse�ratioz� and '�`estin : The jetting caf th� �edciiz�� axou�d the conduit� shall be observed by t�.e Geotechrucal C'onsultar�t. � � � � r.,.���PliC�'�..�" E: -�------w--r-����.,.-—�.w # ���.�..�_.�.__.��.�.....�*•,.,�� .,... �.�`�......_.._ �,,r,.w.� --...,. ,�,_..,,..�� -�........ � Tr�nrr► r.r�y-~} Y ., ' �������.a� """."'".,"���.r��„-..�.�,�....�.-..�.._.....«s � �-_ - _� �'��,i..5�..�JP� C�':;L�'I't]�1�%�Ci-�C�l.li�ItJ �.' -`:...fy=" ''`f� Fth�c]YL�' .....�,.-''..��~� �.. ��F'�"Y�!C.ii.. 1Jl�[a�TtT`ASL� r[A7'11RAL ...,...�_ — �UIZ'�'^,xiAL � G�t�uriD _..�..�.�,.�..� � � �� �.:.$�.� . � -�--� ""_'....�...""'""" �' H�G�-IT � ,�_ ._.,_.r, ' .�""'��Itlr.�.rr. Y � � �„��� �--�--��"�it�L-�----� �D�� Lf31N�i'H�.'�tG�3 �� ' --- ..�.,W.��.�.,..�....., � � ��AP'ACT�' �r-"'� . . --�t,=�__.�_'"'`.�.:...''"' �LL�-01TE.��-�C?,3�" �.�.���,_�., * . �--��� '�, �LL7�'� f' �--..�.-- .,� �•rn��c.,c, ru�►�� _._.. Gr'"IQL�NI7 '��� — HE�1C�i �. � ��,,,,,"�""' � 8E.'',IC�F -"""� �' H�iG:-iT . � �, '"�-�'r — _r--�-' "_"'------ --'�"�►�itM.r-•• . U i�[�� _.�-"" �'!!C Mii�l.--�*� �A��31,t,. ' -�'''� �,�Si`Q�.�:ICr]�' ;. � �r Z'�IN. � �r.�� lcc.'',!D�x ['H . Y � �t�7'F�C... . . �� �� '7�F�.l.FX.,�C.��l�it 7�?� t�T F� = At;�i.�."'�.'A7'E��l.�C�C CCt,�17K.."N3 "C�BE�"•�T'U4'i���1 � 'T�F3L Pl.�.€��1T �,..� � � htA'�73RAt ./ C'�T-t�'�E.i�y� G�t7�lND � 5�.�}�� -'r � . ,' �� /, . r�v�ast�s��'�n '�=.�=-�- �.� � ��� ��� �" �. �nr �ubdr�ir�s Se� �`'i- �t�ndarc� Cle�� C t�������.a�� � �'�" �" .�- � � �t�tav� ���a�E � �.��.��� �s�rr�c.� ; � �-�a�t �uM�.~� �- .���.r .. �a�ta.� ��s�� ,.�.�"�-� . � �Gu�:r-��+rrr� �z'....-��� a•��.0 � �..��:,�,.�..,.- . :: � � PAC�� e�uc� �-��.�,t�.�H��t�i�' � ,���� , :..W.�.,........._.,._ �c,.�-r�rac��.�u.J...�����..,�a��. � -r�.��r�-=��- ,�,r�ct,����az..����.��a�r�uv�:-� , ' Ms�ttMUM I�,."�c:�H�-CHz'�I-�Ax..�.H��Fc�z � ��'w�N.. • ` ' ���N�� G�1�I�'��t� M[NiMUl4+��iLL.,114�S7 IA1.,l,.�3L 3� ��� � . , i ' f 'Y- .. _.. ������ �Y����� V�1A LMf��6./ . N� P►N� ���J��IN�' �����IC.A►T�aNS �'ANDAR� �E�`A�I.� � w � N ATIJ�AL � � GROUND � � �,, _ � � rv . � — ...... .... ..._ _ _. ..._. ..... ...._ _ _ � ..... _.._ _ .... .� - - - - - ._ � �..� — y,�� �CUM PACTm FI#,.t. ^ ^ _ `�-�* --- �,�` � �,,,�_ : .,,• ��'��� `�' �'_. ��. ���` � ��r`~. � .� TYF�ICAL �—....__`��=""�..�-:w;,�.. i BEN�N�N� _ _ _ _ ._.. ...,. _ .._. _ _ ..� A .�. _.... R�10VE `�,�` �� — .�..-1'''W. \,�` UNSi�xTA�LE MA�(ERIA� ._ _ ...� _ .,. �,�'� --�-�.�_ 5UBDRAl:N (See Alt��'n�tes A and 8) �U6DF�AIN AL?ERI�!lA7EA P����q���'����� FILTER MAT'�R7ALSHALLB� LA Sr2 F'�RMFAdI.�MA'CERI/�I.i'�RSf"ATEO� WITH FIL�Ma��fi�� CAL.I�ORI3IA SI"JW DAf2l�SP�QFICA"!�C')f+lr C}R RPPROV�D AL�k7tNATE FIL��t MA'CERIAL(9�T]FTJ Ct1AS5 2 GRItOING A51�1L(?WS: � Sleve Scae Peraent P��lrx� j' 100 �,��,'r•�•�� i 31�" 90-.L00 , , ��::� �r + 3/s- an-icx� . �1�pN:C(N+Ci{ ., '+ �S-4O � . �;� � ` .� r. N4.�4 w,�'":j• J� �.L, ,,.. < h14-8 lb�33 , " ' �i. F ,• No.30 �'� . � ::• "�'�3.� No.5L1. 0-7 � " �"�IH� JYa.200 i q•' : � 5U8DRAIN ALTEWVA'1'�A-� SUBDRAiN,AI,.7�RNATE A-2 PE�t�C1RJ17E37 DlPE s-�r�zcv. � � z ' SE.I�QRAIN A�.TERNATE B D�'AI�C3F CANY(�N SUBDRAIN T�.RMZ�VAL 3f 4"GRAVEt,..ww�APED Iiu F3LTI�t FABRiC n�, I2" MYN. t�/k�.AP . �w�sH�acaran� �`� r�u.�A r�e�c � tx�ws�z t�ana� ' �JLT�FABi�C xv r�u�.aaaa�u. ac�av�o rc�wv�u� �: �MIRA�140NG QR . AE'PR��l�J�tfiVA�.BV7) .,, ' � .• e�`u •,; 4•`: .� z'f� : � .�_� 1 .. ',`- ._ � 'S;b•�fy '�'\'�•,�• .;. • ,..r �s�'�'.�"..�'---.�' �a'�a+.._._«•. 3M�7tGRADEt}Gx,4uE1 ,� $ � 5'MIN. f'HtRJruTEU $'0 FW. ❑R PYFRCFIII��QJ7VPLE7iY 3/�4"MAX.GRAV�fJ�R aav��� ALT�NATE$��. AppftqVEb�QUNAI.E�YT A�T�RNA7E B-2 � (�''3!� ���ea��Fza,-r�4 �ra��s oRcloruu.�t �qv�rvxrv�a��rvcY'��=c�urn��mv�r's � . i �,._. �E�fE�L EA�.THWt�R�{A�N� �RAD�N� � �A�IYCIN . SP���F��ATIt�N� �LI�[�RA�N �"AND�4RD DETAIL� � � � �s ��►v. � J �+.�� � �....._..W..�� � . 1 OUTL�"'pIP�S __.� _ 4"� NON-PERFaRAT��? pIp�, ������� ' � fIXl' MAX. �.C, H�R�Zp�11TA11.Y .—.� �' �-.�.� � �o� r�ax. a.�. v���nrAu.Y .���w=��_�� - ' ' .��...-,-.-.�..��'' ' `"-----.�-�a/a MIiTV. �— BACKCllT � ._ _� __:�.�,�`== ± ��� ��������� .�_ _=���.��.��= BENCHIN� ` �' =�'=— _�����'�� . �������� ����'T� 1't __�—��.�.�.��_ ��� . � �, .__ ..�"...-��Z"/n MIN,--.�..�.' y 'D � _, __ _ ___��.�`�=_- � _�_=;;�"�,—;����__=.��`�_ Si1BDRAYN ALT�RNAT� B �"�=��°lo M IN. �1� I�jT1�E. �. MIN. 1������Z.�f"I I�I.JI•1 I�1�I�V�' K�'(`D��'H� KE`t'WID�-1 t . y � �` 1�+1IN. \ j �'` , PQSITNE SEAI.�-iC1lJLq 8E f ��� FILTER FA�RIC SiJBDRAIN ALT�RJUAT�A PRoan�a���r���ar�vr � �'� �-. ,,�'i t�+a�a�i i�ocx� - � , .; . AAI�I�OVEZ7 ,;.-,., �QUIVALE3�1� C.4L7f7AtyS C7.AS"5 2 �� l�TIN, FILTER MA'i'EFi�AL(3F73/FT} "-� 'l ��' r " 1 �fVt�N-PER�i�Dt� �� ..-''��'�' f� .� � 4U'fLE'f PfP� (NC3N•P�R�'JRATF.�) , , � 6"NlTM. 31a"Rf�C�C(3FI'.�lFT� : . ... : wtza�a��r��€�,r�t��er�c � � ;. �'+� • �n j"��. , i ��✓ ✓ s T�CC�IN�C1"[�N PRC�M � CC7lt�CTiON PIPE TO C�lli�t,�f i�IP� � • SUSpRAIN INSi'At,.IAT[(�N � S�bdrain c�ll�r pipe shall be instiail�d wiift perFor�tir3ns down ar, unless oth��rvise des��nat�d by�he geot�hnica!c�n�ltan�. Ou��C pipes sha!! b�non-�pe�fr.xa�ci pipe.'1'h� subdraln pipe shall have at least 8 p�rfr�ra�cans t�niforrr�ly spac�ci per foc�fi. P�oration shall � bt� 1/4"tr� 1/2"'if dril[ed h�les are us�ti, All�bdraira pipes sha11 have a gradierlt at I�st� aIti towards t�� outl�� e . �" �i��DRAiN P�P�-S�bdr�in pipe shall be A��TM D�7S1, /�TM D1S�7{Sche�lule 4q)or SC3�.2'�.S AB5 pip� or As�`TM D�i�34(�hedule�)Qr SDR 23.�p1/C pipe. � �._ �fi autiet pip�shatl b�piace� in a Crenrh and, after fiii is pl��d above it� rodded t�veri�'y fc�Ceyrrty. - �#JTTR��� t�R ��N�E�1L�4RTHW{�RKAiVC1 G1�AiDIN� �.��LA����iVT F��.L s���c���r�s ��J��I�AINS s���A�a��«s a i , I CUf"-FI�.1�TRANST"iT�N LQT U�/�RFJCCAVATION ' E , 'i � V � . � aa�c� � ..�-� "„'� U 1VSUITASi.E �,,,. �F�IUND � ,,.�� �,., . . � � � t � "",,� � � � MIN. ' . ^ _ ..... .._, ..... ..r� �.T..._.—..��� r.. .�",... '"" ��Mrr�. l`\..R!. — — -CC3MPACTFD fZIL --^ — — —,,,.-• �. — .— ..._ .-� ��.....y __.. ..,.....�r,,•• —� �� ��,.r ��� ��,.� � _,,•.r��w �� _... .,.... � .._ �. �'� — �� � r. .... ._... T ._..*C f ���` UV'�}'t�XCAVAI� _ _�,,,,. _ ANL712ECOMPACT � w.. ,._. ..._ -' T�'�IGu. � ,_ .M., ..�. ���_, a�cmr�� —=�� UM1tWEA'E'Fif1t�Q H�C3PoClIX qR MA'T�WAL APPRAYED � "'r BY'tH E C�QTL^�'HtJ ICJaI CLW SULT1`.�Ci' � �\ .`�. ' �- � � � ��DE HYLL FILL Ft]R CUT PAD t�n�,r�v. ��uNQ .,� ..�-- : 3 . .,,,:.. ,--. � � y .,,.,._ ''� .,.-�' , � � � � RE�'i TRICTE q lJ5 E AREl1 �/'" ''"�r .f''� C}VEf3EXCAVAT'E �,/ � ✓'' FINISFi�CICUr'PP(a AND HECGMRACT' � (R�Pl.P�CFJv1ENt'hALa �,..�.�,.-�..._.'��,�''� ' .\ �� .� � .ti .� � � _._. � .- ...w .�/ tl a •�♦♦ • � Y • �• Y • • r•♦�Y a•a�w t� ` OVERBUftaF�1 ,. ,..- � -.. ��—�„_... _.. � (JRl1N5ll1TABl.� — ^ �jy�'�"" ;.r�'`:,,,. MATERIAL ,.... .� — �L' PAq OV�R£)fCAVATiC7N AND AECAh�lLCfIDN r .1 _ _ `"/"'�-�� _ .�_ SNAU.B�P�17�t7RM�D 3P SPSCIFT�D ( -^-: — — /`- �— �a+''� TYPI�. 8��'I�G�CIT�CtiNTGaLCON511LTAN1" :� — ��,�,.%""� B�3VCHCI�[G � ,�'� x�r�atv=...._ " � ,�`` 5�STRNOARO C�`fATI.f�OR St18i�Ai+�tS WNEN 3�EC�lJIRED 8Y t�C3T�CHNiC1U.COtVSUI,TAN"1' y'M1i�. � 2"M IN. i �E� UNWFAI�H�D B�Dt�IX OR MA'T�RTAL f1PPPoJV� ' ' ' HY'7HE GEQIECI�NK.Al�t�NSt1l:."I"ANT .�,. - G�NERAL EARTf-i�UC}!�C�ND C�AI�ItyC� T�►NS�IC�N �C�T° FT�.1.� ����-�r�Ns ��G� �"IC�E ��LL F�ILL� s-���v��r�o r��r�r��