Loading...
HomeMy WebLinkAboutHydrology & Hydraulic Study 5/2/2001 I I HYDROLOGY AND HYDRAULICS STUDY ' REDHAWK DEVELOPMENT IN THE UNINCORPORATED TERRITORY OF THE COUNTY OF RIVERSIDE ' TRACT NO. 23065 — Phase 5 1 1 Prepared By: ' CROSBY MEAD BENTON & ASSOCIATES A DIVISION OF THE KEITH COMPANIES, INC. 5650 El Camino Real, Suite 100 ' Carlsbad, CA 92008 Tel (760) 438-1210 • Fax (760) 438-2765 Job No. 160097.00.000 May 2, 2001 1 I Engineer of Work: AoFESSlo4, OQ ti A� BOYD B.BEASTAQM m ► J •�� J Q Na 15674 Boyd :eastrom cHi� +� R.C.E. No. 15674 �' �� Exp. 06130!01 ATF of CA��FOQ� X.1160097\0501 doc 1 TABLE OF CONTENTS I. INTRODUCTION • VICINITY MAP ' • PROJECT DESCRIPTION • CONCLUSIONS ' II. HYDROLOGIC ANALYSIS . HYDROLOGY: METHODOLOGY/DESIGN CRITERIA ' • EXHIBITS • CALCULATIONS/COMPUTER PRINTOUTS • MAPS ' III. HYDRAULIC ANALYSIS • HYDRAULIC METHODOLOGY/DESIGN CRITERIA ' • CURB INLETS • CALCULATIONS/COMPUTER PRINTOUTS ' • MAPS 1 X:\160097\0501.doc 1 1 1 1 1 1 1 I. INTRODUCTION I • 1 1 ' X:LynneNct\hydroM42001\16009500000 PDS.doc re,aO(jJ/ -c 1 \ ROP00D GPC\co \ — o RPNCNO . , / L \ Z� tp � \ c9 ` ``"� c... ST Ce' PSE N' / ` TEMECULA \ _ %� P0 Ro' ' PEPPERCORN DR t \ % PROJECT SITE DEER HOLLOW WA j VIM 23065-5 illi PECHANGA RD. I TO `SAN DIEGO I I I I , I I REDHAWK VICINITY AMP 1. II 1 1 ' Introduction t PROJECT DESCRIPTION Red hawk Communities Tract 23065 is a proposed residential development located in an unincorporated portion of Riverside County west of the intersection of Deer Hollow Way and Pala Road. This drainage report analyzes the portion of the development that is east of Peach Tree Street — Phase 5 (see Vicinity map). A large off-site area contributes surface runoff towards the easterly edge of this portion of the development. ' However, a "clean-water" storm drain system will capture the majority of this runoff and convey it to a storm drain in Peach Tree Street. A separate storm drain system will ' handle the on-site runoff. This report contains the hydrologic and hydraulic analyses used to design the on-site storm drain system. CONCLUSION • Based on the studies, calculations and recommendations included herein, it would appear that when the project improvements have been constructed including the proposed storm drain system as shown herein, this project will be safe with respect to flood hazard. X:\160097\0501.doc S 1 I 1 1 1 1 II. HYDROLOGIC ANALYSIS 1 ' X:\LynneNet\hydro1W42001\16009500000 PDS.doc b 1 HYDROLOGY METHODOLOGY/DESIGN CRITERIA The hydrologic analyses are based on the Riverside County Flood Control and Water Conservation District's Hydrology Manual. The total study area covers approximately ' 77 acres; therefore, Rational Method analyses are required. Both 10- and 100-year Rational Method analyses were performed using CivilDesign's Riverside County Rational Hydrology Program, version 6.3. The 10- and 100-year analyses are included in Appendices A and B, respectively. The following summarizes the guidelines and data used in the Rational Method analyses: ' The study area and analyses were divided into seven major areas labeled Systems 100 through 700. Within each major area are several sub-basins. The major areas and sub-basins are shown on the hydrologic work map ' included at the back of this report. - The soil types were based on Plate C-1.61 and are primarily type BC with a small area of type D. Type C was used in the analyses for areas designated as type BC. Single family (1/4 acre) development was used. - The runoff coefficient for each sub-basin was based on the underlying soil type and single-family (1/4) acre development. Plates 4.3 through 4.6 were used to develop an intensity-duration curve. The ' 2-year, 1-hour precipitation is 0.6 inches; the 100-year, 1-hour precipitation is 1.4 inches; and the slope of the intensity-duration curve is 0.55. The curb inlet catch basins were designed to intercept 100 percent of the tributary street flow. 1 ' X:\160097\0501.doc 7 a . EXHIBITS t A. APAP ANA APAAPaesir aecaa ar IR c-a-c RAINFALL INTENSITY- INCHES PER HOUR 0 A MIR. LONA 6URR1ETA '' TEMECULA NORCO PALM SPRINGS FERRIS VALLEY - 3:1 4 RANCHO CALIFORNIA o DURATION FREQUENCY . ,DURATION FREOUENCT DURATION FR[OUEMCY DURATION FREQUENCY OURATION FRE6UENCr r n MINUTES MINUTES MINUTES MINUTES MINUTES o II toe to 19. 16 162 to loe 10 loo W -< o VEIN YEAR •EAR YEA, TUR TEAM TEAR YEAR TEAR 7246 s 1.14 4.48 s 1.46 S.11 S 2.77 •.16 S •.27 6.74 . s 2.44 3.10 6 2.01 4.07 4 3.12 ..41 6 2.53 3.79 4 7.16 4.11 6 2.41 7.46 K If 7 2.77 7.13 1 2.07 4.24 1 2.34 l.Sl t ]de S.S{ 7 2.24 ).21 0 2.21 3.49 1 2.47 ).94 0 2.19 ).2• a 3.22 S.1S I 2.09 7.01 0 • 2.00 7.20 9 2.69 1.69 • 2.07 3.14 9 3.11 4.41 • 1.94 2.44 2 C 0 le I.44 1.10 II 2.N 3.40 le 1.16 2.94 10 2.13 4.32 to LSO 2.19 D II 1.67 2.9S II 2.14 ).]6 U 1.87 2.04 11 2.67 •.21 It 1.79 2.31 12 1.76 2.42 I2 2.13 7.15 12 1.79 2.60 12 2.34 ../7 It 1.72 2.46 r 17 1.71 2.70 11 2.34 3.11 13 1.72 2.30 Il 2.43 1.06 17 1.43 2.17 14 1.64 2.40 1• 1.96 2.69 1• 1.66 2.40 I• 2.33 3.72 1• I.S• 2.29 IS I.SO 1.60 IS 1.89 2.79 IS 1.60 2.40 Is 2.23 _ ].Se IS 1.64 2.21 14 1.63 2.42 16 1.62 2.69 III I.SS 2.32 16 2.16 3.44 I{ 1.49 2.14 17 1.46 2.24 17 1.74 2.40 17 1.10 2.2S Il 2.60 3.32 17 I.43 2.06 II 1.44 2.27. 10 1.71 2.32 10 1.44 2.19 16 2.61 3.22 II 1.41 2.82 I. 1.41 2.21 19 1.66 2.44 14, 1.42 2.13 19 1.95 3.12 19 1.37 1.91 20 1.74 2.IS 20 1.61 2.38 . 26 1.19 2.18 20 1.89 3.03 20 1.34 1.92 22 1.211 2.64 22 1.31 2.24 22 1.72 1.96 22 1.79 2.66 22 1.28 1.6) 24 1.24 1.94 24 1.44 2.1S 24 1.26 1.94 26 1.74 2.72 24 1.22 1.73 24 1.18 1.67 26 1.19 2.46 26 .1.22 1.62 24 1.62 2.60 26 1.1$ 1.69 20 1.14 1.04 28 1.)4 1.96 20 1.17 1.76 26 1.54 2.49 28 1.13 1.63 30 1.10 1.73 30 1.29 1.90 30 1.13 1.70 34 1.49 2.39 30 1.10 1.67 32 1.06 1.67 32 1.24 1.64 32 1.18 1.64 32 1.44 2.34 32 1.54 1.12 Z 14 1.03 1.62 34 1.20 1.78 34 1.66 1.59 34 1.39 2.22 34 1.43 1.41 34 1.00 1.S7 36 1.17 1.72 ){ 1.61 1.33 ){ 1.34 2.13 36 1.40 1.44 m ]0 .97 1.63 34 1.13 1.67 30 I.11 1.31 • 31 1.10 2.06 31 .90 1.44 CZ 46 .94 1.49 40 1.10 1.62 40 .91 1.47 41 1.27 2.02 41 .93 1.37 a) N lA 43 .49 1.40 4S 1.03 1.S2 4s .92 1.39 4s 1.11 1.19 4S .96 1.29 < ,.,' So .54 1.32 10 .97 1.44 S1 .15 1.31 So 1.11 1.10 SO .os 1.22 SS .55 1.26 SS .92 1.]1 !S .44 1.25 SS 1.0S 1.60 SS JI 1.17 rn - Z 64 .76 1:20 60 .00 1.16 40 .55 1.24 40 1.06 1.60 60 .14 1.12 W I 0 aS .73 1.13 4S .e4 1.24 as .17 1.15 4S .9S 1.33 66 .7s 1.11 0 > "1 76 .70 1.11 70 .01 1.19 70 .14 1.11 74 .91 1.46 76 .72 1.14 D CC 1) x 7s .40 1.07 7S .76 1.IS 7s .72 1.47 73 .55 1.01 15 .70 1.06 0 = 86 .4s 1.03 00 .7S 1.11 SO .69 1.04 SI .0S 1.3s SI .68 .97 D' D 8S. 4] 1.06 IS .73 1.67 0S .41 1.11 OS .82 1.31 6s .46 .94 0 ""I SLOE • .S30 SLOPE • .558 SLOPE • .360 SLOPE • .S66 SLOPE • .490 Z A IfLO . I 2 3 4T 5 . , . . . . . . .6 . • . , I.0 1 1 • —.T I t 11 J1 ' 1 1I . ! 1 1 : , ,`r+ ! I { 1 1 I {f II IIII I ' , . : . I1ii ; i• i ! ' I , I , , il ' It , • 4 11 1 ' • i .I ' t . , . . ; , I . , , ■■ ■■r■■liifi■riiiiwiw , • 11:91111 �I ■ Si A -Mmil„i - ! /;Ivrelismovalp■!NY Y T B/ni ■� o- ' , . . . . . . . wide 1"7ih. , 1 �15i■■. V",..i 1. 4.,. I. I .. •I I!.: _ • I 1 1 . i 1 t• 1117- t a1a■IIL/�, 4w,.a■.w.■ir ■ ■■pp i ' ■ 4 1 t - ,. .... .. aia■raun'�'A117d■■■ -au . . i ■N N■ ■.� .;.:-• . ,• � - ..i - /,..IaN'I►'a0%NN■1'I■ N■ N■■ -_■,.._ . rt}.. . . 1.t. y { ice : MI.NPil aer■I►dw■- ■N■ ■ • . N'A■n'i-r:.rNNr.NN • \\■■Iowa. a y- j-J ._._ i _. _ .7 1I Ili YAW I= ,�.� -z 1. i'hr'a Iw■ ' wN✓awransmia■N■N ■ ■■■N■ ._ ' i 1ti; I ' I- AMIE> • a■wp■NNN. . • ww 1N■N■■■ .. 0 ■nnan.r�w\wra■■\Bw ■■N .N■■uw■■\\M■■MOUWASEWANNEUNNUMINEENESONENE ■B ■yN■N ■ Z- 6 ININFAAMN !■N.■■■■NN■■N■wN /N■■■w\■■NNw\wN■■■■■■■Ba■■N i` .6 masons waw■\\■■■a.w■\■■N_. N N■w■ ■\N\■■■■N■B■ ■EN �a IDELI ■■I.u■ws■■■w■■■■■■ NEENNENNENENNEEEEMEMENNMENNEEMESNMON ti. III■Cf.■■V■w.N■NN■a■NN N■■a■■■■NawN■uauw■ ■■■■B■■■■ ■ toN ■I■R/■■IM■■NMN■■■■■■■N_■N■■ ■■\N■w■wN.■N■■■U■■MYp ■■■ I■■faw■/■■■M■■■N■■■■\\N N.■�\w\N■■■N■■■N■■■■\B■N■■\■m IrimmnoNi a■N■ N■■■w■■ N■w■a■■ ■w . ■■■N■■■■■\■■■N■ ■■ . ■ 1■rIUiIN..�■■■N.■■■■■N ■N■■■■■■N.■■ ■■N■ ■■■■■r■■■ ■■■ I- ■ .I■/UIN■■w■■. ■N■■w■■.N N■■■■■■N■■www.■N■■■■■■■■a■■■\■ z. S . 5a■r1■wtn.l■■■•■ AND USE O, DEV L��■■=■■■UU■■■N..... W _ au■lru■NUN - ■ ■■■ ■■■■� - ■I■■al-Ja■N.■U■■■■■N■■■■■■N ■N■N■■■N■■■■w\■■NM■■■■■■ ■■■\■ U� I■II■siI■■w■■■Na■\NMf■■■N ■N■■■■w■N■■w■■■w■NN■■N■■ a U.r . a■'I■:iaNN.■N■M■w■■■■■■N ■w■N■■■N■■N■■■■N■M■■■■■NM ■■1/I+■■■B■uM■■■■N\■■■■wN ■Naw■■■NM■N■ ■N■■NNwwaala■■■■ V-r ■I■.ilii■■ w■■■■■■■N■\■■■■N .N■■■w.aN■ w■\Uu■w\■■■■■■■B\■■■ la .M�:::C'■'■ ■■■■ G'L�iQ:gd 'wawnansa. ei•u... u..U. ::C0.:: .4 f I I 3 i I ' ' I '.JiiIIIiI1IIIIIII■\■■■■■ ■■N\\■ ■■N ■wNN■nu /� /� 1 .1....■■NNNN■■N■■a■ww...E..n\ . R V F V 8 w c o •a■■■■uMN■B■■■■N■w■w■■N■_w■■■■w i■■■■■u■N■w■■■■■--nUUaiwww.I u.uu■is I"IYDRC{LOUI ' MANUAL ■ 2 , mi illlltITIIIIii? Illllril I I .2 ill III Ill, RUNOFF• SO COEFFICIENTGROUP CURVES 1 • '! { J , ; , COVER TYPE-URBAN LANDSCAPING ! : • i ' •I ± iji . , I ! I : ' I ; 11 I AMC-11 • AtII � i ' Ill : 1 i ! I W i l 11I (RUNOFF INDEX NUMBER 69) I iT.1 , I . ; i I •j 1 11i I 1 1f , EX}iIBilX 8 1 . I 1 I RAINFALL INTENSITY IN INCHES PER HOUR I . o 0 r 2 1 3 I 6 0 I ' 4 5 PLATE 0- .3 10 B p.. D B BC A DB C 0 BD D luoaLw tem - D cC 6 B , iazic It I r^ nil s ,�` 1t'i4�y `� g_ i SBC + \ �. t 1 .tea..t.ta BC ' � '" m r s. , �` 1.'� J a; �9�-✓ • ... . �1% L . ,,,� ya :Yi t c Qkr�.5 6 A'-"�r Wil''¢¢- v.,�,19:�}LFA br"�JYiej / �'r"� 4_� `6 �r-L'. -sT I BC 5'r '.�sNyc�•yritS,I�. Ivo-` ?iiic!;.!470 A t• c F-a;.._a O_ � .1-" , . ttP�. •- . winarn � . r R. //1-0- C_ 1 �.r9 :-IS L. rti V '�l� MW AA ri int.7 gl! t yy. Eic rr� y s_�i �� i?> 'F .�. 1. / e� r t*s y .i,,* :�;6;?e.ci� c� `-A _ -meq* 4"; e'if f i t'llw t-. .�T 'iySi L �< .�'—r.�. � > � I 1 i9. Ty�'?�$cw. 2'�' 4C / .k+�f S•♦r f^7'i,\i !H. >. t!r �, '+..'i-rds. `fit. ..?e<, s3r,.3lF4 WR J �.»�,��� _/'�>, R ^ y,�,� .. B � � .. \�c- Y� . ' t �Y. "�(, �CY.c (� I 1Y-T 6``' � a't'�'t �. f. L� 't r �, 4f al : - g(p�y✓17s ,��yyg4 t Q��, k �Y� r n 1 °f.1•J\".�S r i• 1 fl`+ • d .� Ir Arr7/ TYr"\YI>ac��.A 1 '�" I�-� .x 7: Trxi*, 3� ' il\ •' `p.V� . .kt\, . * rt. v:0 ct''• C"aS� ''Y�: .��,,{.,t ry��11 J\••,,t.:C1 B YiT' + .;• 4 , �--iii-:—_-y(.'("�1' F2! Qnt�.`r'�-�j it—r. '1^l ,r. (}�''Ktl+ `" v: r �e.1t1�a B a•i`' 1 1G \'te �`\, /...4,. ^��eR\�'f :44, vQ•id j✓ � ;.h .^40St ' �j 11i�t .�� 41�'rCll`l' //_A I S"_ ,R „- 'r+ .,r .4. r T:kr:, F : .Li: t 't°„�',-s.?j EF{ .. L far- wir y ��q fn ,, t40%r 11 5. d. IFS\, ' \.� `� t 'I'Ybi T YI i . Tt_ w rty�va� � i -•-'v i•'.1 j e p T 141v.,4,: fia tO4la. i. E4--- V�' - Z-,v4 ."ie e - .!. .:-It t r ,.. r`'�a �;r r, I is t '° v \K -42,1 _ a tFC f let, + a tt'si il' X`\ ''`r-%4 '.R, `t�.RS@ n.-✓ _' 'd '�-` . t. D..},,,r g -1,1, ' t i l .ef 1,..\�..1.4. 1!" ,Ois . 'V 4 .„,,,,,,c.44.9.4,--iNt Tgr 4 II0 -51- s 6' ; y`�S i!PAt \ iy. �-,. • i- ..1.1?-,,4. � `Yr T'TAh [ r'J: > .S rs:1 `�ysM1��`.`.1 v4 1/' 1111,4: - i r '(Fj s P'` - w-'Lr./.�i't-r' JNp.. pis. i j '.t,'� " ' ry K .,.q yTv. `.Ly`` '; SNk� .d tm�Y . pyl{> >� ni-.,r \ xl //(kJr�4I+�,Sffd" W • ay t '^..'t Ertl . `r414 ;: i tY i � d .11 kill/igid1 y1+9y 6°a . . s�`�o cid. ci 4. � r � l�h '"1.(`N°7 Il , 23 r rF�f �`�j� 'T�ir< a.� C' `F �lA� "tF� �1 �..�.. .,r ��j)l f rr 1 t4 4 ,If"��(a^ y`c ,i y; i� ( 4k_ 'c� �.t ,.:`t•/ : lrtar thrill f`f : k-1�}r3ti. l `;^�5� ) R LkR�q@.\�p�4l���, y 1 .-R >t`i17" H '� S Y ,°w`��( i � DT,n. it,-:::14;;Y r �1 , /t� a •I„ n '\ri1 ` 9 PSN{.s to ('mbar, B q$,, , c. ..iC r.. • 1/ Gtt.:( 1t.L'J! . ;.�� b ;�i j �M1��i�t�` FY �� �qpQ , "q11/41.V.--it.fi•� •Y'' ^`'1 • \ • 5^�'°'" '• � � e ri�• 'y �i t `CS ` ,...� �f. Ot wry ,;. 7! • Cg�t ��� L1(. 1J'aft. �R, A 1 F S j�Sy^HtY. /r d'; ^(y• py, j� r'm li 1 1 { p+ .i 1 `'. wY up y� Sy>• . et0 (T ay h."d:, .fa . ,,,'_ _ l Fi-"1y : 7`�f�. r J;,.,:arf. tti71/k• ,I .•ice •C Aa�ir �e � � / : S � Y,'� � �!/qi ..111', i , • > AfiiilliRjjT�i.„ i - ' : - 4j� Y1„. ' .� !i , ; `'c� S 1r.y'!°L "'. i��fjli �•� d ,y: i,y,. e,,,-: Y. ,E1f;,'�it 4 r '�+4 T+y.,TfFI n r ,ii X62 , d 1�S ,,,i 0. �" ' P,... ,.1 ''F 1 knLe4=siw L�' WG/'� .� ,,,• .\ +.' 3rd �ti i S 4 iv' Ate' r id�0� ��G-. 3t- '� s�• 'yr f� ( ''Jfi { F+9 t�f�'� � �`,.�11 yr .��ya Y.� ti. E," 44 Lu u`+7 '�"c":110-1.44,\ i� +}t. `�A tq+.�c'PaiIYrM�rf� a4-1,A,,, �i�,, ,s,.....,.. .,.......„„„44,,,,„,„„\ .royh �'r. `+7 -�... -. r yC.� va `` '„,•,. ...,."l- d . , i afs- a 44tato .>t=-, � T `ti `+> ;s=� 'v it'-. ` 4'' `t.i--if:, 1ii i ,I >. tc .ub-ie.,-2' g .Y. Y) \L ^ �,, ,lzi `.z``F4. •-� ti, 4' li C ,. y4 -44. ...._.‘r,,,,'�iP.::.{Fllfx.I'r.�✓ :� C wile 0 FIGURE I LEGEND HYDROLOGIC SOILS GROUP MAP H SOILS GROUP BOUNDARYS FOR A SOILS GROUP DESIGNATION R CF C & W C D PECHANGA 11 HYDROLOGY MANUAL 0 FEET 5000 / — pa'g°Cf�/,, s'� PLATE C—I.61 IL I' IN L Tc' 100 LIMITATIONS: I. Maximum length = 1000' Tc —1000 90 2. Maximum area = 10 Acres 5 Ig - 900 Bo or - 800 70 ab 6 1 = e - 3O0 r 700 60 g _— 200 . 7 '� _ I Y E ~ c K10 E _ 600 I S0 a e Eli 8 g Ili • o 111 :-- >1 ��a i 20 —500 0 (I) • - = 35 a' = 1 10 c — u. z ` I K p1 a — (�) II c _ 400 t 30 UnderNMN ° « _ 2 12 c Illi - Good Corer ;r "Tr 350 ! 25 Umdealoped c = 1 I. c e ` cc Fair Corer — µ • x _ 300 E underei ped 0 `�- .3 2 15 • _ c 20 Poor one ,2 E o _ 19 18 17 Single Family ,50 _ 17 J ~— 250 16 (IM Acre) fr , 13 « Caeli,00 s 20 19 F • :- 20o c s_ ? 14 `mmCq E g �/ • [ 12 13 1 II c [ 25 1 KEY _ 150 9 L-+1 Te-K-Tel e 30 • = B EXAMPLE: F 7 (I) L=550', .H =5.0. K=Single Famlly(1/4 Ac.) 35 Development ,Tc = 12.6 min. 6 (2) L=550', K* 40 — 100 Development , Tc = 9.7 min. III EXHIBIT D 4 Reference: Bibliography Item No. 35. R C FC II W C D TIME OF CONCENTRATION 11111 ' HYDROLOGY MANUAL . FOR INITIAL SUBAREA INPLATE D-3 I1- III Ill ACTUAL IMPERVIOUS COVER Recommended Value I Land Use (1) Range-Percent For Average Conditions-Percent(2 Ill11 Natural or Agriculture 0 - 10 0 111 Single Family Residential: (3) 40,000 S. F. (1 Acre) Lots 10 - 25 20 1111 20,000 S. F. (1 Acre) Lots 30 - 45 40 11 7,200 - 10,000 S. F. Lots 45 - 55 50 Multiple Family Residential: 1111 Condominiums 45 - 70 65 11 Apartments 65 - 90 80 11 Mobile Home Park 60 - 85 75 11' Commercial, Downtown 80 -100 90 11IBusiness or Industrial Notes: I 1. Land use should be based on ultimate development of the watershed. Long range master plans for the County and incorporated cities should be reviewed to insure reasonable land use assumptions. II2. Recommended values are based on average conditions which may not apply to a,particular study area. The percentage impervious may III vary greatly even on comparable sized lots due to differences in dwelling size, improvements, etc. Landscape practices should also be considered as it is common in some areas to use ornamental grav- U els underlain by impervious plastic materials in place of lawns and shrubs. A field investigation of a study area should always be made, and a review of aerial photos, where available may assist in estimat- ing the percentage of impervious cover in developed areas.lb , 3. For typical horse ranch subdivisions increase impervious area 5 per- cent over the values recommended in the table above. ExUierr ' E . II RCFC & WCD IMPERVIOUS COVER FOR HYDROLOGY MANUAL DEVELOPED AREAS _ ..... • . ,.r I I 1 I 1 I1 1 COMPUTER PRINTOUTS 1 u 1 /4 • 0 a Q 5 • ME - N OM N - S a NM M a a MI MEIa M a a 0 Cn >Mil O a a - a . MO Min n n n a a a a a a a a a Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s10010.out ' Redhawk 10-Year Storm Event System 100 Job Number 160097.00.000 ********* Hydrology Study Control Information English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400(In.) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.929(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 1.000 to Point/Station 2 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 160.000 (Ft. ) Top (of initial area) elevation = 1312 .000 (Ft. ) Bottom (of initial area) elevation = 1310.400 (Ft. ) Difference in elevation = 1.600(Ft. ) Slope = 0.01000 s (percent)= 1.00 ' TC = k(0.390) * [ (length"3)/ (elevation change) ) "0.2 Initial area time of concentration = 7.460 min. Rainfall intensity = 2.925 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.823 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.409(CFS) Total initial stream area = 0.170 (Ac. ) Pervious area fraction = 0.500 1 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1309.700 (Ft. ) End of street segment elevation = 1305.600 (Ft. ) ' Length of street segment = 510.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) 1111 Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (2) side (s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4.215(CFS) Depth of flow = 0.323 (Ft. ) , Average velocity = 1.772 (Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.358 (Ft. ) Flow velocity = 1.77 (Ft/s) Travel time = 4.80 min. TC = 12.26 min. t Adding area flow to street SINGLE FAMILY (1/4 Acre LotY Runoff Coefficient = 0.805 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.226(In/Hr) for a 10.0 year storm Subarea runoff = 5.659(CFS) for 3.160 (Ac. ) ' Total runoff = 6.068 (CFS) Total area = 3 .330 (Ac.) Street flow at end of street = 6.068 (CFS) Half street flow at end of street = 3 .034 (CFS) Depth of flow = 0.358 (Ft. ) , Average velocity = 1.923 (Ft/s) Flow width (from curb towards crown)= 12.088 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 3 .000 to Point/Station 4 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1305.600 (Ft. ) ' End of street segment elevation = 1290.200 (Ft.) Length of street segment = 240.000(Ft. ) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) _ . 0.020 ' Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I II Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 II Estimated mean flow rate at midpoint of street = 6.241(CFS) Depth of flow = 0.328 (Ft. ) , Average velocity = 5.059 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.570 (Ft. ) I Flow velocity = 5.06 (Ft/s) Travel time = 0.79 min. TC = 13 .05 min. Adding area flow to street . ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.802 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2.150 (In/Hr) for a 10 year storm Subarea runoff = 0.328 (CFS) for 0.190 (Ac0.. ) Total runoff = 6.396(CFS) Total area = 3.520 (Ac. ) Street flow at end of street = 6.396 (CFS) I Half street flow at end of street = 6.396 (CFS) Depth of flow = 0.330 (Ft.) , Average velocity = 5.087 (Ft/s) Flow width (from curb towards crown)= 10.682 (Ft.) Process from Point/Station 4.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1290.200 (Ft.) End of street segment elevation = 1268.500 (Ft.) I Length of street segment = 640.000 (Ft. ) Height of curb above gutter flowline = 6.0(In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 7.259(CFS) Depth of flow = 0.374 (Ft. ) , Average velocity = 4.091 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.877 (Ft. ) Flow velocity = 4.09 (Ft/s) . Travel time = 2.61 min. TC = 15.65 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff. Coefficient = 0.794 I. Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 I 7Z?Ji c6 5 -5 !4 II IPervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.945 (In/Hr) for a 10.0 year storm Subarea runoff = 1.468 (CFS) for 0.950 (Ac. ) ' Total runoff = 7.863 (CFS) Total area = 4 .470 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 7.863 (CFS) Depth of flow = 0.382 (Ft. ) , Average velocity = 4 .167 (Ft/s) I Flow width (from curb towards crown)= 13 .307 (Ft. ) Process from Point/Station 4.000 to Point/Station 5.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.470 (Ac. ) Runoff from this stream = 7.863 (CFS) Time of concentration = 15.65 min. ' Rainfall intensity = 1.945 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 6.000 to Point/Station 7.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 200.000 (Ft. ) I Top (of initial area) elevation = 1282.000 (Ft. ) Bottom (of initial area) elevation = 1280.000 (Ft.) Difference in elevation = 2.000(Ft.) Slope = 0.01000 s (percent)= 1.00 II TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 8.156 min. Rainfall intensity = 2 .784 (In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.820 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.548 (CFS) Total initial stream area = 0.240 (Ac. ) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1280.000 (Ft. ) End of street segment elevation = 1268.500(Ft. ) Length of street segment = 290.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000(Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 II JO II IIGutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .284 (CFS) Depth of flow = 0.219(Ft.) , Average velocity = 3 .012 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.127 (Ft. ) Flow velocity = 3.01(Ft/s) ' Travel time = 1.60 min. TC = 9.76 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.814 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.523 (In/Hr) for a 10.0 year storm Subarea runoff = 3.120 (CFS) for 1.520 (Ac.) I Total runoff = 3 .668 (CFS) Total area = 1.760 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 1.834 (CFS) Depth of flow = 0.250 (Ft. ) , Average velocity = 3.248 (Ft/s) I Flow width (from curb towards crown)= 6.696(Ft.) II Process from Point/Station 7.000 to Point/Station 5.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 II Stream flow area = 1.760 (Ac.) Runoff from this stream = 3.668 (CFS) Time of concentration = 9.76 min. ' Rainfall intensity = 2.523 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 7.863 15.65 1.945 I 2 3.668 9.76 2.523 Largest stream flow has longer time of concentration Qp = 7.863 + sum of Qb Ia/Ib II 3.668 * 0.771 = 2.829 Op = 10.692 Total of 2 streams to confluence: I . Flow rates before confluence point: 7.863 3.668 Area of streams before confluence: 4.470 1.760 II Results of confluence: Total flow rate = 10.692 (CFS) Time of. concentration = 15.654 min. ' Effective stream area after confluence = 6.230 (Ac. ) II a2/ II II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 5.000 to Point/Station 8.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1263 .500 (Ft. ) I Downstream point/station elevation = 1252.500 (Ft. ) Pipe length = 450.00 (Ft. ) Manning'ts N = 0.013 No. of pipes = 1 Required pipe flow = 10.692 (CFS) Given pipe size = 21.00 (In. ) II Calculated individual pipe flow = 10.692 (CFS) Normal flow depth in pipe = 9.64 (In.) Flow top width inside pipe = 20.93 (In. ) I Critical Depth = 14.62 (In. ) Pipe flow velocity = 9.92 (Ft/s) Travel time through pipe = 0.76 min. Time of concentration. (TC) = 16.41 min. II Process from Point/Station 8.000 to Point/Station 8.000 II . **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 6.230 (Ac. ) Runoff from this stream = 10.692 (CFS) Time of concentration = 16.41 min. Rainfall intensity = 1.896 (In/Hr) I Program is now starting with Main Stream No. 2 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 190.000 (Ft. ) Top (of initial area) elevation = 1273 .000 (Ft. ) Bottom (of initial area) elevation = 1272.100 (Ft. ) Difference in elevation = 0.900 (Ft. ) I Slope = 0.00474 s (percent) = 0.47 TC = k(0.390) * ( (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 9.278 min. Rainfall intensity = 2 .594 (In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.402 (CFS) Total initial stream area = 0.190 (Ac. ) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process. from Point/Station 10.000 to Point/Station 11.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** _ I 22. I Top of street segment elevation = 1269.300 (Ft. ) End of street segment elevation = 1262 .700 (Ft. ) ' Length of street segment = 255.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000(Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .020 (CES) Depth of flow = 0.225 (Ft. ) , Average velocity = 2.464 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.420 (Ft.) Flow velocity = 2 .46 (Ft/s) I Travel time = 1.73 min. TC = 11.00 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.809 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.362 (In/Hr) for a 10.0 year storm I Subarea runoff = Total runoff = 2.923 (CFS) for 1.530 (Ac. ) 3 .325 (CFS) Total area = 1.720 (Ac. ) Street flow at end of street = 3.325 (CFS) Half street flow at end of street = 1.662 (CFS) ' Depth of flow = 0.258 (Ft. ) , Average velocity = 2.681 (Ft/s) Flow width (from curb towards crown) = 7.099(Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/station 11.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.720(Ac. ) Runoff from this stream = 3 .325 (CFS) Time of concentration = 11.00 min. ' Rainfall intensity = 2 .362 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 5.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 220.000 (Ft. ) I Top (of initial area) elevation = 1268.900 (Ft.) Bottom (of initial area) elevation = 1263.200(Ft.) Difference in elevation = 5.700(Ft. ) ' Slope = 0.02591 s(percent)= 2.59 _ I I TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.004 min. Rainfall intensity = 3 .028 (In/Hr) for a 10.0 year storm 11 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.425 (CFS) Total initial stream area = 0.170 (Ac. ) Pervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 11.000 I **** CONFLUENCE OF MINOR STREAMS •*** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.170 (Ac.) I Runoff from this stream = 0.425 (CFS) Time of concentration = 7.00 min. Rainfall intensity = 3 .028 (In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.325 11.00 2.362 2 0.425 7.00 3.028 I Largest stream flow has longer time of concentration Qp = 3 .325 + sum of Qb Ia/Ib 0.425 * 0.780 = 0.331 ' OP = 3.656 Total of 2 streams to confluence: Flow rates before confluence point: I 3.325 0.425 Area of streams before confluence: 1.720 0.170 Results of confluence: I Total flow rate = 3.656(CFS) Time of concentration = 11.003 min. Effective stream area after confluence = 1.890 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 8.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1263 .200 (Ft. ) End of street segment elevation = 1257. 900 (Ft. ) Length of street segment = 230.000 (Ft. ) 11 Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 _ I t,I. W I ISlope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .831 (CFS) IIl Depth of flow = 0.330 (Ft. ) , Average velocity = 3.048 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.679(Ft. ) Flow velocity = 3.05 (Ft/s) I Travel time = 1.26 min. TC = 12 .26 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.805 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.225 (In/Hr) for a 10.0 year storm Subarea runoff = 0.322 (CFS) for 0.180(Ac. ) I Total runoff = 3 .979(CFS) area = 2 .070 (Ac.) Street flow at end of street = Total Total (CFS) Half street flow at end of street = 3.979 (CFS) Depth of flow = 0.333 (Ft. ) , Average velocity = 3.074 (Ft/s) IFlow width (from curb towards crown)= 10.854 (Ft.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 8.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.070 (Ac.) Runoff from this stream = 3.979(CFS) I Time of concentration = 12 .26 min. Rainfall intensity = 2.225 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity Na. (CFS) (min) (In/Hr) ' 1 10.692 16.41 12.26 1.896 2 3 .979 2.225 Largest stream flow has longer time of concentration Q41) = 10.692 + sum of I Qb Ia/Ib 3.979 * 0.852 = 3.389 Op = 14.082 11 Total of 2 main streams to confluence: Flow rates before confluence point: 10.692 3.979 11 Area of streams before confluence: I A A 5 I I6.230 2 .070 I Results of confluence: Total flow rate = 14 .082 (CFS) Time of concentration = 16.410 min. ' Effective stream area after confluence = 8.300 (Ac. ) I Process from Point/Station 8.000 to Point/Station 12.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1252.500 (Ft. ) I Downstream point/station elevation = 1250.100(Ft. ) Pipe length = 110.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.082 (CFS) Given pipe size = 21.00 (In. ) I Calculated individual pipe flow = 14.082 (CFS) Normal flow depth in pipe = 11.74 (In. ) Flow top width inside pipe = 20.85 (In.) Critical Depth = 16.72 (In.) I Pipe flow velocity = 10.18 (Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 16.59 min. Process from Point/Station 12.000 to Point/Station 12.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.300 (Ac. ) I Runoff from this stream = 14 .082 (CFS) Time of concentration = 16.59 min. Rainfall intensity = 1.884 (In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 13.000 to Point/Station 14 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) I Top (of initial area) elevation = 1266.000 (Ft. ) Bottom (of initial area) elevation = 1264.700 (Ft. ) Difference in elevation = 1.300 (Ft.) Slope = 0.01000 s (percent)= 1.00 - I TC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3.061 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I • Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 . Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.405 (CFS) I on I . ITotal initial stream area = 0.160 (Ac. ) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1264 .000 (Ft. ) End of street segment elevation = 1255.000 (Ft. ) I. Length of street segment = 480.000 (Ft. ) Height of curb above gutter flowline = _ 6.0 (In. ) Width of half street (curb to crown) 20.000 (Ft.) , Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.543 (CFS) Depth of flow = 0.264 (Ft.) , Average velocity = 2.320 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.409 (Ft.) Flow velocity = 2.32 (Ft/s) Travel time = 3.45 min. TC = 10.31 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .447 (In/Hr) for a 10.0 year storm Subarea runoff = 1.787 (CFS) for 0.900 (Ac. ) . I Total runoff = 2.192 (CFS) Total area = 1.060 (Ac. ) Street flow at end of street = 2 .192 (CFS) Half street flow at end of street = 2.192 (CFS) Depth of flow = 0.291(Ft. ) , Average velocity = 2.491(Ft/s) ' Flow width (from curb towards crown) = 8.739(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 14 .000 to Point/Station 12 .000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 I Stream flow area = 1.060 (Ac. ) Runoff from this stream = 2. 192 (CFS) Time of concentration = 10.31 mina ' Rainfall intensity = 2.447 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 15.000 to Point/Station 16.000 I Tcgso6s -s a7 I I **** INITIAL AREA EVALUATION **** Initial area flow distance = 150.000 (Ft. ) I Top (of initial area) elevation = 1266.000 (Ft. ) Bottom (of initial area) elevation = 1264.500 (Ft. ) Difference in elevation = 1.500 (Ft. ) Slope = 0.01000 s (percent) = 1.00 I TC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 Initial area time of concentration = 7.269 min. Rainfall intensity = 2 .966 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.342 (CFS) Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1264.200 (Ft. ) End of street segment elevation = 1256.300 (Ft. ) Length of street segment = 580.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.534 (CFS) Depth of flow = 0.347 (Ft. ) , Average velocity = 2.441 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.538 (Ft. ) Flow velocity = 2.44 (Ft/s) Travel time = 3 .96 min. TC = 11.23 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A = 0.000 I • Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.335 (In/Hr) for a 10.0 year storm Subarea. runoff = 4 .926 (CFS) for 2.610 (Ac. ) IITotal runoff = 5.268 (CFS) Total area = 2 .750 (Ac.) I a II ' Street flow at end of street = 5.268 (CFS) Half street flow at end of street = 5.268 (CFS) Depth of flow = 0.388 (Ft. ) , Average velocity = 2 .675 (Ft/s) ' Flow width (from curb towards crown) = 13 .612 (Ft. ) II Process from Point/Station 16.000 to Point/Station 12 .000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2 .750(Ac. ) Runoff from this stream = 5.268 (CFS) Time of concentration = 11.23 min. I Rainfall intensity = 2.335 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity I No. (CFS) (min) (In/Hr) 1 2.192 10.31 2 .447 I . 2 5.268 11.23 2.335 Largest stream flow has longer time of concentration Qp = 5.268 + sum of Qb Ia/Ib I 2.192 * 0.954 = 2.092 Qp = 7.360 Total of 2 streams to confluence: I Flow rates before confluence point: 2.192 5.268 Area of streams before confluence: I 1.060 2.750 Results of confluence: Total flow rate = 7.360 (CFS) Time of concentration = 11.229 min. ' Effective stream area after confluence = 3 .810 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 12.000 to Point/Station 12 .000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 3.810 (Ac. ) Runoff from this stream = 7.360 (CFS) Time of concentration = 11.23 min. I Rainfall intensity = 2.335 (In/Hr) Summary of stream data: I Stream Flow rate TC (min) Rainfall Intensity No. (CFS) (In/Hr) 1 14.082 16.59 1.884 2 7.360 11.23 2.335 Largest stream flow has longer time of concentration Qp = 14 .082 + sum of IQb Ia/Ib I I7.360 * 0.807 = 5.938 Qp = 20.020 I Total of 2 main streams to confluence: Flow rates before confluence point: 14.082 7.360 Area of streams before confluence: ' 8.300 3.810 III Results of confluence: Total flow rate = 20.020 (CFS) Time of concentration = 16.590 min. Effective stream area after confluence = 12 .110 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1255.000 (Ft. ) Downstream point/station elevation = 1229.000 (Ft.) I Pipe length = 330.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.020 (CFS) Given pipe size = 21.00 (In.) Calculated individual pipe flow = 20.020 (CFS) I . Normal flow depth in pipe = 9.88 (In. ) Flow top width inside pipe = 20.96 (In. ) Critical Depth = 19.18 (In.) I Pipe flow velocity = 18.01(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 16.90 min. Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MAIN STREAMS **** IThe following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12 .110 (Ac. ) I Runoff from this stream = 20.020 (CFS) Time of concentration = 16.90 min. Rainfall intensity = 1.865 (In/Hr) Program is now starting with Main Stream No. 2 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 54.000 (Ft. ) Top (of initial area) elevation = 1333 .000 (Ft. ) I Bottom (of initial area) elevation = 1308.000 (Ft. ) Difference in elevation = 25.000 (Ft. ) Slope = 0.46296 s (percent)= 46.30 I TC = k(0.390) * [ (length"3) / (elevation change) ) "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initialarea time of concentration = 5.000 min. ' Rainfall intensity = 3 .644 (In/Hr) for a 10.0 year storm I 30 1 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.122 (CFS) Total initial stream area = 0.040 (Ac.)- Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 19.000 to Point/Station 20.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1308.000 (Ft. ) End of street segment elevation = 1284 .400(Ft.) Length of street segment = 500.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 • Gutter width = 2.000(Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.150 (CFS) Depth of flow = 0.094 (Ft.) , Average velocity = 2 .659 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000 (Ft. ) ' Flow velocity = 2 .66 (Ft/s) Travel time = 3 .13 min. .TC = 8.13 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.820 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.789 (In/Hr) for a 10.0 year storm Subarea runoff = 1.052 (CFS) for 0.460 (Ac. ) Total runoff = 1.174 (CFS) Total area = 0.500 (Ac. ) Street flow at end of street = 1.174 (CFS) ' . Half street flow at end of street = 1.174 (CFS) Depth of flow = 0.215 (Ft. ) , Average velocity = 3.262 (Ft/s) Flow width (from curb towards crown)= 4 .937 (Ft. ) Process from Point/Station 20.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 3/ II ' Top of street segment elevation = 1284 .400 (Ft. ) End of street segment elevation = 1246.400 (Ft. ) Length of street segment = 1440.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 II Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street .. Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.642 (CFS) Depth of flow = 0.292 (Ft. ) , Average velocity = 2.965 (Ft/s) 1 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.802 (Ft. ) Flow velocity = 2.97 (Ft/s) Travel time = 8.09 min. TC = 16.23 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.792 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.907 (In/Hr) for a 10.0 year storm Subarea runoff = 1.889 (CFS) for 1.250(Ac. ) Total runoff = 3.064 (CFS) Total area = 1.750(Ac. ) IStreet flow at end of street = 3 .064 (CFS) Half street flow at end of street = 3.064 (CFS) Depth of flow = 0.304 (Ft. ) , Average velocity = 3 .060 (Ft/s) IIFlow width (from curb towards crown)= 9.407 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 20.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 I Stream flow area = 1.750 (Ac. ) Runoff from this stream = 3.064 (CFS) Time of concentration = 16.23 min. Rainfall intensity = 1.907 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 21.000 to Point/Station 22.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 32.000 (Ft. ) I Top (of initial area) elevation = 1272 .000 (Ft. ) Bottom (of initial area) elevation = 1257.000 (Ft. ) Difference in elevation = 15.000 (Ft. ) Slope = 0.46875 s (percent)= 46.88 ' TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 .- I I IP- Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. ' Rainfall intensity = 3 .644 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.061(CFS) Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 ' Process from Point/Station 22.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1257.000 (Ft. ) End of street segment elevation = 1247.100 (Ft. ) Length of street segment = 510.000(Ft. ) Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20.000(Ft. ) Distance from crown to crossfall grade break 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 0.072 (CFS) Depth of flow = 0.084 (Ft.) , Average velocity = 1.586 (Ft/s) Streetflow hydraulics at midpoint of street_ travel: Halfstreet flow width = 2 .000 (Ft. ) ' Flow velocity= 1.59(Ft/s) Travel time = 5.36 min. TC = 10.36 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.811 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Rainfall intensity = 2.441 (In/Hr) for a 10.0 year storm Subarea runoff = 0.713 (CFS) for 0.360 (Ac. ) Total runoff = 0.774 (CFS) Total area = 0.380(Ac. ) Street flow at end of street = 0.774 (CFS) ' Half street flow at end of street = 0.774 (CFS) Depth of flow = 0.217 (Ft. ) , Average velocity = 2 .099(Ft/s) Flow width (from curb towards crown) = 5.025 (Ft.) 1 11 II I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 17 .000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 2 in normal stream number 2 Stream flow area = 0.380 (Ac. ) II Runoff from this stream = 0.774 (CFS) Time of concentration = 10.36M7 Rainfall intensity = 2.441(In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I1 3.064 16.23 1.907 2 0.774 10.36 2.441 Largest stream flow has longer time of concentration I Qp = Qb3.064 + sum of Ia/Ib 0.774 * 0.781 = 0.605 Qp = 3.668 ' Total of 2 streams to confluence: Flow rates before confluence point: 3.064 0.774 I Area of streams before confluence: 1.750 0.380 Results of confluence: Total flow rate = 3 .668 (CFS) I Time of concentration = 16.228 min. Effective stream area after confluence = 2 .130 (Ac.) Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MAIN STREAMS **** IThe following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.130 (Ac. ) I Runoff from this stream = 668 (CFS) Time of concentration = 16.233M in. Rainfall intensity = 1.907 (In/Hr) Program is now starting with Main Stream No. 3 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 420.000(Ft. ) Top (of initial area) elevation = 1284.000 (Ft. ) I Bottom (of initial area) elevation = 1230.000 (Ft. ) Difference in elevation = 54.000(Ft. ) Slope = 0.12857 s (percent)= 12.86 I TC = k(0.530) * ( (length"3) / (elevation change) ) "0.2 Initial area time of concentration = 8.948 min. Rainfall intensity = 2.646 (In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.832 I 3y II ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 5.106 (CFS) I Total initial stream area = 2.320 (Ac. ) Pervious area fraction = 1.000 Process from Point/Station 24.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** IUpstream point/station elevation = 1230.000 (Ft. ) Downstream point/station elevation = 1229.000(Ft. ) Pipe length = 70.00 (Ft. ) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 5.106(CFS) Given pipe size = 18.00 (In. ) Calculated individual pipe flow = 5.106(CFS) Normal flow depth in pipe = 7.99(In.) I Flow top width inside pipe = 17.89(In. ) Critical Depth = 10.43 (In. ) Pipe flow velocity = 6.74 (Ft/s) Travel time through pipe = 0.17 min. ITime of concentration (TC) = 9.12 min. II Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2 .320(Ac. ) Runoff from this stream = 5.106 (CFS) ' Time of concentration = 9.12 min. Rainfall intensity = 2.618 (In/Hr) Summary of stream data: IIStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 20.020 16.90 1.865 2 3.668 16.23 1.907 3 5.106 9.12 2.618 Largest stream flow has longer time of concentration ' QP = Q20b .020 + sum of Ia/Ib 3.668 * 0.978 = 3.588 Qb Ia/Ib I 5.106 * 0.712 = 3.638 413 = 27.246 I Total of 3 main streams to confluence: Flow rates before confluence point: 20.020 3 .668 5.106 Area of. streams before confluence: ' 12.110 2.130 2.320 II 7,eol3065 -S I II Results of confluence: ' Total flow rate = 27.246 (CFS) Time of concentration = 16.895 min. Effective stream area after confluence = 16.560(Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.100 ' **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1229.000 (Ft. ) Downstream point/station elevation = 1227.000(Ft. ) I Pipe length = 200.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.246 (CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 27.246 (CFS) I Normal flow depth in pipe = 19.64 (In. ) Flow top width inside pipe = 24.05 (In.) Critical Depth = 21.83 (In.) Pipe flow velocity = 8.79(Ft/s) ' Travel time through pipe = 0.38 min. Time of concentration (TC) = 17.27 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.100 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 16.560 (Ac.) Runoff from this stream = 27.246 (CFS) I Time of concentration = 17.27 min. Rainfall intensity = 1.843 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.100 to Point/Station 22.100 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1258.600 (Ft. ) Bottom (of initial area) elevation = 1257.400(Ft. ) Difference in elevation = 1.200(Ft. ) Slope = 0.01000 s (percent)= 1.00 II TC = k(0.390) * [ (length"3) / (elevation change) ) "0.2 Initial area time of concentration = 6.649 min. Rainfall intensity = 3.116 (In/Hr) for a 10.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.335 (CFS) Total initial stream area = 0.130 (Ac.) Pervious area fraction = 0.500 I 3L I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.100 to Point/Station 17.100 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1257.100 (Ft. ) II End of street segment elevation = 1245.400 (Ft. ) Length of street segment = 720.000 (Ft. ) Height of curb above gutter flowline = 6.0(In. ) Width of half street (curb to crown) = 20.000 (Ft. ) II Distance from crown to crossfallg rade break = 10.000 (Ft. ) II Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.939 (CFS) II Depth of flow = 0.322 (Ft. ) , Average velocity = 2.509(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.272 (Ft. ) Flow velocity = 2.51 (Ft/s) I Travel time = 4.78 min. TC = 11.43 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.807 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.313 (In/Hr) for a 10.0 year storm I Subarea runoff = 3 .772 (CFS) for 2.020 (Ac. ) Total runoff = 4 .107 (CFS) Total area = 2.150 (Ac. ) Street flow at end of street = 4.107 (CFS) Half street flow at end of street = 4 .107 (CFS) II Depth of flow = 0.353 (Ft. ) , Average velocity = 2.704 (Ft/s) Flow width (from curb towards crown) . 11.842 (Ft. ) Process from Point/Station 22 .100 to Point/Station 17.100 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.150 (Ac. ) Runoff from this stream = 4.107 (CFS) . Time of concentration = 11.43 min. I Rainfall intensity = 2.313 (In/Hr) Summary of stream data: II' . Stream Flow rate TC (min) Rainfall Intensity No. (CFS) (In/Hr) I1 27.246 17.27 1.843 II 37 II I2 4 .107 11.43 2 .313 Largest stream flow has longer time of concentration Qp = 27.246 + sum of I Qb Ia/Ib 4 .107 * 0.797 = 3 .273 Qp = 30.518 II Total of 2 streams to confluence: Flow rates before confluence point: 27.246 4.107 Area of streams before confluence: II 16.560 2.150 Results of confluence: Total flow rate = 30.518 (CFS) I Time of concentration = 17.275 min. Effective stream area after confluence = 18.710 (Ac. ) Process from Point/Station 17.100 to Point/Station 25.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1227.000 (Ft. ) Downstream point/station elevation = 1224.400 (Ft.) Pipe length = 260.00(Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 30.518 (CFS) I Given pipe size = 33 .00 (In. ) Calculated individual pipe flow = 30.518 (CFS) Normal flow depth in pipe = -17.98 (In.) Flow top width inside pipe = 32.87 (In. ) I Critical Depth = 22 .04 (In.) Pipe flow velocity = 9.22 (Ft/s) Travel time through pipe = 0.47 min. I Time of concentration (TC) = 17.74 min. End of computations, total study area = 18.71 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. I Area averaged pervious area fraction(Ap) = 0.562 Area averaged RI index number = 71.1 II II I II II 3Q Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s20010.out Redhawk 10-Year Storm Event System 200 Job Number 160097.00.000 *******■* Hydrology Study Control Information English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 ' Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District. 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600(In.) 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.929(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 510.000 (Ft. ) Top (of initial area) elevation = 1295.400 (Ft.) Bottom (of initial area) elevation = 1287.800 (Ft. ) Difference in elevation = 7.600 (Ft. ) Slope = 0.01490 s (percent)= 1.49 ' TC = k(0.390) * [ (length"3) / (elevation change) ) "0.2 Initial area time of concentration = 10.951 min. Rainfall intensity = 2.368 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.809 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 1.265 (CFS) Total initial stream area = 0.660 (Ac. ) Pervious area fraction = 0.500 39 II I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31 .000 **** CONFLUENCE OF MAIN STREAMS **** IThe following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.660(Ac. ) I Runoff from this stream = 1.265 (CFS) Time of concentration = 10.95 min. .. Rainfall. intensity = 2.368 (In/Hr) ' Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 32.000 to Point/Station 33 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 60.000(Ft. ) I Top (of initial area) elevation = 1338.000(Ft.) Bottom (of initial area) elevation = 1308.100 (Ft. ) Difference in elevation = . 29.900 (Ft. ) Slope = 0.49833 s (percent)= 49.83 I TC = k(0.390) * [ (lengthA3) / (elevation change) ] *0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. I Rainfall intensity = 3.64a (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.122 (CFS) Total initial stream area = 0.040 (Ac.) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 33 .000 to Point/Station 34 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1308.100 (Ft. ) I End of street segment elevation = 1304 .500 (Ft.) Length of street segment = 220.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) II Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 0.140 (CFS) I 40 I ' Depth of flow = 0.111 (Ft. ) , Average velocity = 1.755 (Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 2.000 (Ft. ) II Flow velocity = 1.76 (Ft/s) Travel time = 2.09 min. TC = 7.09 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 3.008 (In/Hr) for a 10.0 year storm Subarea runoff 0.720 (CFS) for 0.290(Ac. ) Total runoff = 0.842 (CFS) Total area = 0.330(Ac.) Street flow at end of street = 0.842 (CFS) I Half street flow at end of street = 0.842 (CFS) Depth of flow = 0.228 (Ft. ) , Average velocity = 1.972 (Ft/s) Flow width (from curb towards crown)= 5.572 (Ft.) Process from Point/Station 34.000 to Point/Station 31.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1304.500 (Ft.) End of street segment elevation = 1286.600 (Ft.) Length of street segment = 560.000 (Ft. ) I Height of curb above gutter flowline = 6.0(In. ) Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on Cl] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .882(CFS) Depth of flow = 0.292 (Ft. ) , Average velocity = 3 .258 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.767 (Ft. ) Flow velocity = 3.26 (Ft/s) Travel time = 2.87 min. TC = 9.95 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .496 (In/Hr) for a 10.0 year storm Subarea. runoff = 3 .246 (CFS) for 1.600 (Ac. ) ' Total runoff = 4.087 (CFS) Total area = 1.930 (Ac. ) 1 W I ' Street flow at end of street = 4.087 (CFS) Half street flow at end of street = 4 .087 (CFS) Depth of flow = 0.321(Ft. ) , Average velocity = 3 .512 (Ft/s) ' Flow width (from curb towards crown) = 10.235 (Ft. ) I Process from Point/Station 34 .000 to Point/Station 31.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.930 (Ac. ) Runoff from this stream = 4.087 (CFS) I Time of concentration = 9.95 min. Rainfall intensity = 2.496 (In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 35.000 to Point/Station 36.000 **** INITIAL AREA EVALUATION **** IInitial area flow distance = 180.000 (Ft.) Top (of initial area) elevation = 1308.000 (Ft. ) Bottom (of initial area) elevation = 1304.000 (Ft. ) I Difference in elevation = 4.000 (Ft. ) Slope = 0.02222 s (percent)= 2.22 TC = k(0.390) * ( (length"3)/ (elevation change) ) "0.2 I Initial area time of concentration = 6.665 min. Rainfall intensity = 3.111(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.335 (CFS) Total initial stream area = 0.130 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 35.000 to Point/Station 36.000 **** CONFLUENCE OF MINOR STREAMS * * Along Main Stream number: 3 in normal stream number 1 I Stream flow area = 0.130 (Ac.) Runoff from this stream = 0.335 (CFS) Time of concentration = 6.67 min. ' Rainfall intensity = 3.111 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++.++++++++++++++++++++++++++++ I Process from Point/Station 36.100 to Point/Station 36.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) ' Top (of initial area) elevation = 1305.300(Ft. ) I 9; I ' Bottom (of initial area) elevation = 1304.000 (Ft. ) Difference in elevation = 1.300 (Ft. ) I Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3)/ (elevation change) ] -0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3 .061 (In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.354 (CFS) Total initial stream area = 0.140(Ac.) Pervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.100 to Point/Station 36.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 3 in normal stream number 2 Stream flow area = 0.140(Ac.) I Runoff from this stream = 0.354 (CFS) Time of concentration = 6.87 min. Rainfall intensity = 3.061(In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I1 0.335 6.67 3.111 2 0.354 6.87 3.061 Largest stream flow has longer time of concentration ' Qp = o0.354 + sum of Ia/Ib 0.335 * 0.984 = 0.329 Qp = 0.683 I Total of 2 streams to confluence: Flow rates before confluence point: ' 0.335 0.354 Area of streams before confluence: 0.130 0.140 Results of confluence: I Total flow rate = 0.683 (CFS) Time of concentration = 6.865 min. Effective stream area after confluence = 0.270 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.000 to Point/Station 31.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** il I Top of street segment elevation = 1304.000(Ft.) End of street segment elevation = 1286.700(Ft. ) Length of street segment = 520.000 (Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) I . -re023ody1/45--s I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875(In.) Manning's N in gutter =. 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.961(CFS) Depth of flow = 0.292 (Ft.) , Average velocity = 3.328 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.795 (Ft. ) Flow velocity = 3 .33 (Ft/s) Travel time = 2 .60 min. TC = 9.47 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.815 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.565 (In/Hr) for a 10.0 year storm Subarea runoff = 3 .762 (CFS) for 1.800 (Ac. ) I Total runoff = 4.445 (CFS) Total area = 2 .070 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 4.445 (CFS) Depth of flow = 0.327 (Ft. ) , Average velocity = 3.634 (Ft/s) Flow width (from curb towards crown)= 10.521(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 36.000 to Point/Station 31.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 3 Stream flow area = 2.070 (Ac. ) Runoff from this stream = 4.445 (CFS) ' Time of concentration = 9.47 min. Rainfall intensity = 2 .565 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity I No. (CFS) (min) (In/Hr) ' 1 1.265 10.95 2.368 2 4.087 9.95 2.496 3 4.445 9.47 2.565 Largest stream flow has longer or shorter time of concentration I Qp = 4.445 + sum of Qa Tb/Ta 1.265 * 0.865 = 1.093 Qa Tb/Ta I4.087 * 0.951 = 3.888 _ I 4W I IQP = 9.427 ' Total of 3 main streams to confluence: Flow rates before confluence point: 1.265 4.087 4.445 Area of streams before confluence: ' 0.660 1.930 2.070 Results of confluence: Total flow rate = 9.427 (CFS) Time of concentration = 9.469 min. Effective stream area after confluence = 4.660 (Ac. ) , I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 31.300 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** IIUpstream point/station elevation = 1281.700 (Ft.) Downstream point/station elevation = 1277.400 (Ft. ) I Pipe length = 170.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.427 (CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 9.427 (CFS) I Normal flow depth in pipe = 11.32 (In. ) Flow top width inside pipe = 12.91(In.) Critical Depth = 14.03 (In. ) Pipe flow velocity = 9.50 (Ft/s) I Travel time through pipe = 0.30 min. Time of concentration (PC) = 9.77 min. Process from Point/Station 31.000 to Point/Station 31.300 **** CONFLUENCE OF MINOR STREAMS **** II Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.660 (Ac.) Runoff from this stream = 9.427 (CFS) Time of concentration = 9.77 min. I Rainfall intensity = 2.522 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.100 to Point/Station 31.200 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 24.000 (Ft. ) Top (of initial area) elevation = 1311.800 (Ft. ) Bottom (of initial area) elevation = 1300.000 (Ft. ) Difference in elevation = 11.800 (Ft.) I Slope = 0.49167 s (percent)= 49.17 TC =. k(0.390) * [ (length"3) / (elevation change) ] "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. I. Initial area time of concentration = 5.000 min. Rainfall intensity = 3 .644 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff .Coefficient = 0.836 IDecimal fraction soil group A = 0.000 I 45 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.061 (CFS) I Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 IProcess from Point/Station 31.200 to Point/Station 31.300 **** PIPEFLOW TRAVEL TIME (User specified size) *••* ' Upstream point/station elevation = 1300.000(Ft.) Downstream point/station elevation = 1283.000 (Ft.) Pipe length = 300.00 (Ft. ) Manning's N = 0.018 No. of pipes = 1 Required pipe flow 0.061(CFS) I Given pipe size = 36.00 (In.) Calculated individual pipe flow = 0.061(CFS) Normal flow depth in pipe = 0.65 (In. ) I Flow top width inside pipe = 9.58 (In.) Critical depth could not be calculated. Pipe flow velocity = 2.13 (Ft/s) Travel time through pipe = 2.34 min. ' Time of concentration (TC) = 7.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 31.200 to Point/Station 31.300 **** SUBAREA FLOW ADDITION ***• SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 7.34 min. I Rainfall intensity = 2 .950 (In/Hr) for 10.0 year storm Subarea runoff = 0.705 (CFS) for 0a.290 (Ac. ) Total runoff = 0.766 (CFS) Total area = 0.310(Ac. ) Process from Point/Station 31.200 to Point/Station 31.300 I **** CONFLUENCE OF MINOR STREAMS •*** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.310(Ac. ) I Runoff from this stream = 0.766 (CFS) Time of concentration = 7.34 min. Rainfall intensity = 2.950 (In/Hr) Summary of stream data: . Stream Flow rate TC Rainfall Intensity No. - (CFS) (min) (In/Hr) I I Nh' I 1 9.427 9.77 2 .522 2 0.766 7.34 2 .950 ' Largest stream flow has longer time of concentration Qp = 9.427 + sum of Qb Ia/Ib 0.766 * 0.855 = 0.655 IQp = 10.082 Total of 2 streams to confluence: Flow rates before confluence point: II 9.427 0.766 Area of streams before confluence: 4.660 0.310 Results of confluence: I Total flow rate = 10.082 (CFS) Time of concentration = 9.767 min. Effective stream area after confluence = 4.970(Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.300 to Point/Station 37.000 le****** PIPEFLOW TRAVEL TIME (Program estimated size) *** I * Upstream point/station elevation = 1277.000 (Ft. ) Downstream point/station elevation = 1266.700 (Ft. ) ' Pipe length = 260.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.082 (CFS) Nearest computed pipe diameter = 15.00 (In. ) Calculated individual pipe flow = 10.082 (CFS) I Normal flow depth in pipe = 10.01(In. ) Flow top width inside pipe = 14.14 (In. ) Critical Depth = 14.23 (In. ) Pipe flow velocity = 11.60 (Ft/s) I Travel time through pipe = 0.37 min. Time of concentration (TC) = 10.14 min. Process from Point/Station 31.300 to Point/Station 37.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.970 (Ac. ) I Runoff from this stream = 10.082 (CFS) Time of concentration = 10.14 min. Rainfall intensity = 2.470(In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.082 10.14 2 .470 Largest stream flow has longer time of concentration Qp = 10.082 + sum of I Qp = 10.082 Total of 1 main streams to confluence: Flow rates before confluence point: I10.082 1 An II Area of streams before confluence: 4.970 ' Results of confluence: Total flow rate = 10.082 (CFS) I Time of concentration = 10.141 min. Effective stream area after confluence = 4 .970 (Ac. ) • IProcess from Point/Station 31.000 to Point/Station 37.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 380.000(Ft.) Top (of initial area) elevation = 1286.000 (Ft. ) Bottom (of initial area) elevation = 1274.000(Ft.) Difference in elevation = 12.000 (Ft. ) I Slope = 0.03158 s (percent)= 3.16 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 8.377 min. ' Rainfall intensity = 2.744 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.819 Decimal fraction soil group A = 0.000 I - Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.854 (CFS) Total initial stream area = 0.380 (Ac.) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 37.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.380 (Ac.) I Runoff from this stream = 0.854 (CFS) Time of concentration = 8.38 min. Rainfall intensity = 2.744 (In/Hr) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 39.000 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 110.000 (Ft. ) Top (of initial area) elevation = 1291.400 (Ft. ) Bottom (of initial area) elevation = 1090.300 (Ft.) Difference in elevation = 201.100 (Ft.) Slope = 1.82818 s (percent)= 182.82 TC = k(.0.390) * [ (length"3) / (elevation change) ] "0.2 I Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.644 (In/Hr) for a 10.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) I 41 1 Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.274 (CFS) Total initial stream area = 0.090 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 39.000 to Point/Station 37.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.300 (Ft. ) End of street segment elevation = 1273.500 (Ft. ) Length of street segment = 980.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875(In. ) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.687(CFS) ' Depth of flow = 0.213 (Ft. ) , Average velocity = 1.959(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4 .843 (Ft. ) Flow velocity = 1.96 (Ft/s) ' Travel time = 8.34 min. TC = 13 .34 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.801 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .125 (In/Hr) for a 10.0 year storm Subarea runoff = 5.123 (CFS) for 3.010 (Ac. ) Total runoff = 5.397 (CFS) Total area = 3 .100(Ac. ) Street flow at end of street = 5.397 (CFS) Half street flow at end of street = 5.397 (CFS) ' Depth of flow = 0.379 (Ft. ) , Average velocity = 2.939(Ft/s) Flow width (from curb towards crown)= 13.115 (Ft. ) Process from Point/Station 39.000 to Point/Station 37.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main .Stream number: 1 in normal stream number 2 y9 I IIStream flow area = 3.100 (Ac. ) Runoff from this stream = 5.397 (CFS) I Time of concentration = 13 .34 min. Rainfall intensity = 2 .125 (In/Hr) Summary of stream data: I Stream Flow rate No. (CFS) TC Rainfall Intensity - (min) (In/Hr) II 1 0.854 8.38 2.744 2 5.397 13 .34 2.125 Largest stream flow has longer time of concentration Qp = 5.397 + sum of I Qb 0.854 * Ia/Ib0.774 = 0.662 Qp = 6.059 I Total of 2 streams to confluence: Flow rates before confluence point: 0.854 5.397 II Area of streams before confluence: 0.380 3.100 Results of confluence: Total flow rate = 6.059(CFS) I Time of concentration = 13.336 min. Effective stream area after confluence = 3.480 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 37.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.480 (Ac.) Runoff from this stream = 6.059(CFS) II Time of concentration = 13.34 min. Rainfall intensity = 2.125 (In/Hr) Program is now starting with Main Stream No. 3 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 145.000 (Ft. ) Top (of initial area) elevation = 1291.400 (Ft. ) I Bottom (of initial area) elevation = 1289.950 (Ft. ) Difference in elevation = 1.450 (Ft.) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * ( (length"3) / (elevation change) ] "0.2 ' Initial area time of concentration = 7.172 min. Rainfall intensity = 2.989 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 I • .go I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.468 (CFS) I Total initial stream area = 0.190 (Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 41.000 to Point/Station 42 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' - - Top of street segment elevation = 1290.300 (Ft. ) End of street segment elevation = 1279.600 (Ft. ) Length of street segment = 630.000 (Ft.) , Height of curb above gutter flowline = 6.0 (In. ) I width of half street (curb to crown) = 20.000(Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.316 (CFS) Depth of flow = 0.331 (Ft. ) , Average velocity = 2.622 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 10.717 (Ft. ) Flow velocity = 2 .62 (Ft/s) Travel time = 4.01 min. TC = 11.18 min. Adding area flow to street ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000II Decimal fraction soil group -C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2 .341(In/Hr) for a 10.0 year storm Subarea runoff = 4 .372 (CFS) for 2.310 (Ac. ) Total runoff = 4.840 (CFS) Total area = 2.500 (Ac. ) Street flow at end of street = 4.840(CFS) I Half street flow at end of street = 4.840 (CFS) Depth of flow = 0.368 (Ft.) , Average velocity = 2.856 (Ft/s) Flow width (from curb towards crown) = 12.564 (Ft. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 42.000 to Point/Station 37.100 I **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1274.600 (Ft.) Downstream point/station elevation = 1266.700 (Ft. ) I Pipe length = 360.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.840 (CFS) Nearest computed pipe diameter = 12.00(In. ) Calculated individual pipe flow = 4 .840 (CFS) ' Normal flow depth in pipe = 9.05 (In. ) r • S/ Flow top width inside pipe = 10.34 (In. ) Critical Depth = 10. 90 (In. ) ' Pipe flow velocity = 7.62 (Ft/s) Travel time through pipe = 0.79 min. Time of concentration (TC) = 11. 96 min. ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 42 .000 to Point/Station 37.100 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2.500(Ac.) Runoff from this stream = 4.840 (CFS) Time of concentration = 11.96 min. Rainfall intensity = 2.255 (In/Hr) Process from Point/Station 43.000 to Point/Station 44.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 130.000(Ft. ) Top (of initial area) elevation = 1280.500 (Ft. ) Bottom (of initial area) elevation = 1279.500 (Ft.) ' Difference in elevation = 1.000 (Ft. ) Slope = 0.00769 s(percent) = 0.77 TC = k(0.390) * ( (length"3) / (elevation change) ) A0.2 Initial area time of concentration = 7.235 min. ' Rainfall intensity = 2.974 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.368 (CFS) Total initial stream area = 0.150 (Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 44 .000 to Point/Station 37.100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1279.000 (Ft. ) ' End of street segment elevation = 1274.400 (Ft. ) Length of street segment = 290.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20.000 (Ft. ) ' Distance from crown to crossfall grade break = 10.000(Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street .flow is on (1) side(s) of the street ' Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter. hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 1 Set I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 1.398 (CFS) Depth of flow = 0.263 (Ft. ) , Average velocity = 2.128 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.354 (Ft.) I Flow velocity = 2.13 (Ft/s) Travel time = 2.27 min. TC = 9.51 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.815 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.559(In/Hr) for a 10.0 year storm I Subarea runoff = 1.751 (CFS) for 0.840 (Ac. ) Total runoff = 2.119(CFS) Total area = 0.990 (Ac. ) Street flow at end of street = 2 .119(CFS) I Half street flow at end of street = 2 .119(CFS) Depth of flow = 0.295(Ft. ) , Average velocity = 2.316 (Ft/s) Flow width (from curb towards crown)= 8.939 (Ft.) Process from Point/Station 37.100 to Point/Station 37.100 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.990(Ac.) Runoff from this stream = 2.119(CFS) I . Time of concentration = 9.51 min. Rainfall intensity = 2.559(In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 4.840 11.96 2.255 2 2.119 9.51 2.559 Largest stream flow has longer time of concentration I Qp = 4.840 + sum of Qb Ia/Ib 2.119 * 0.881 = 1.868 Qp = 6.708 I Total of 2 streams to confluence: Flow rates before confluence point: 4.840 2.119 I Area of streams before confluence: 2.500 0.990 Results of confluence: Total flow rate = 6.708 (CFS) I Time of concentration = 11.964 min. Effective stream area after confluence = 3.490 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ _ I 53 I IIProcess from Point/Station 37.100 to Point/Station 37 . 000 **** CONFLUENCE OF MAIN STREAMS **" I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3 .490 (Ac. ) Runoff from this stream = 6.708 (CFS) I Time of concentration = 11.96 min. Rainfall intensity = 2.255 (In/Hr) _ Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 10.082 10.14 2.470 2 6.059 13.34 2.125 3 6.708 11.96 2.255 I Largest stream flow has longer or shorter time of concentration Qp = 10.082 + sum of Qa Tb/Ta 6.059 * 0.760 = 4.607 I Qa Tb/Ta 6.708 * 0.848 = 5.686 Qp = 20.375 I Total of 3 main streams to confluence: Flow rates before confluence point: 10.082 6.059 6.708 I Area of streams before confluence: - 4.970 3.480 3 .490 I Results of confluence: Total flow rate = 20.375 (CFS) Time of concentration .0 10.141 min. Effective stream area after confluence = 11.940 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 45.000 ' **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1266.700 (Ft. ) Downstream point/station elevation = 1238.200 (Ft. ) I Pipe length = 490.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.375 (CFS) Given pipe size = 21.00 (In. ) Calculated individual pipe flow = 20.375 (CFS) I Normal flow depth in pipe = 10.91 (In. ) Flow top width inside pipe = 20.98 (In. ) Critical Depth = 19.28 (In. ) Pipe flow velocity = 16.14 (Ft/s) I Travel time through pipe = 0.51 min. Time of concentration (TC) = 10.65 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 45.000 **** CONFLUENCE OF MAIN STREAMS **** I 54' I ' The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 11.940(Ac. ) ' Runoff from this stream = 20.375 (CFS) Time of concentration = 10.65 min. Rainfall intensity = 2.405 (In/Hr) Program is now starting with Main Stream No. 2 I Process from Point/Station 46.000 to Point/Station 47.000 ll **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) I Top (of initial area) elevation = 1267.500(Ft. ) Bottom (of initial area) elevation = 1266.200 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s(percent)= 1.00 ' TC = k(0.390) * [ (length*3) / (elevation change) ] A0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3.061(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.405 (CFS) I Total initial stream area = 0.160 (Ac.) Pervious area fraction = 0.500 Process from Point/Station 47.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1266.500 (Ft. ) End of street segment elevation = 1243.200 (Ft. ) Length of street segment = 410.000 (Ft.) I Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000(Ft.) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 ' Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .150 (CFS) Depth of flow = 0.249 (Ft.) , Average velocity = 3 .874 (Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.625(Ft.) Flow velocity = 3.87 (Ft/s) Travel time = 1.76 min. TC = 8.63 min. ' Adding area flow to street ScI I ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.818 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.699(In/Hr) for a 10.0 year storm Subarea. runoff = 3.048 (CFS) for 1.380 (Ac. ) I Total runoff = 3 .453 (CFS) - Total area = 1.540 (Ac. ) Street flow at end of street = 3.453 (CFS) Half street flow at end of street = 3.453 (CFS) Depth of flow = 0.283 (Ft. ) , Average velocity = 4.248 (Ft/s) ' Flow width (from curb towards crown)= 8.347 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 47.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 I . Stream flow area = 1.540(Ac. ) Runoff from this stream = 3 .453 (CFS) Time of concentration = 8.63 min. IIRainfall intensity = 2.699 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 48.000 to Point/Station 48.100 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 150.000 (Ft. ) I Top (of initial area) elevation = 1254.700 (Ft.) Bottom (of initial area) elevation = 1253.200(Ft. ) Difference in elevation = 1.500 (Ft.) Slope = 0.01000 s (percent)= 1.00 I TC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 Initial area time of concentration = 7.269 min. Rainfall intensity = 2 .966 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.367 (CFS) I Total initial stream area = 0.150 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 48.100 to Point/Station 49.000 **** STREET- FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1253.000 (Ft. ) End of street segment elevation = 1246.500 (Ft. ) Length..of street segment = 320.000(Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) I SG 1 Width of half street (curb to crown) = 20.000(Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 t Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.321 (CFS) Depth of flow = 0.251 (Ft.) , Average velocity = 2.327 (Ft/s) t Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.717 (Ft. ) Flow velocity = 2.33 (Ft/s) Travel time = 2.29 min. TC = 9.56 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.814 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.551(In/Hr) for a 10.0 year storm Subarea runoff = 1.621(CFS) for 0.780(Ac.) Total runoff = 1.988 (CFS) Total area = 0.930 (Ac.) Street flow at end of street = 1.988 (CFS) Half street flow at end of street = 1.988 (CFS) Depth of flow = 0.280 (Ft.) , Average velocity = 2.520 (Ft/s) Flow width (from curb towards crown) = 8.201(Ft. ) +++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 49.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.500 (Ft. ) ' End of street segment elevation = 1243 .200(Ft. ) Length of street segment = 405.000(Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000(Ft. ) ' Distance from crown to crossfall grade break = 10.000 (Ft. ) 'Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 2 .468 (CFS) Depth of flow = 0.337 (Ft. ) , Average velocity = 1.845(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.052 (Ft. ) Flow velocity = 1.85 (Ft/s) 59 I ITravel time = 3.66 min. TC = 13 .22 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.801 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 .. Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2 .135 (In/Hr) for a 10.0 year storm Subarea runoff = 0.770 (CFS) for 0.450 (Ac. ) Total runoff = 2.758 (CFS) Total area = 1.380 (Ac. ) Street flow at end of street = 2.758 (CFS) I Half street flow at end of street = 2.758 (CFS) Depth of flow = 0.348 (Ft. ) , Average velocity = 1.892 (Ft/s) Flow width (from curb towards crown)= 11.581(Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 49.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.380 (Ac.) Runoff from this stream = 2.758 (CFS) I Time of concentration = 13.22 min. Rainfall intensity = 2.135 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 3.453 8.63 2.699 2 2.758 13.22 2.135 Largest stream flow has longer or shorter time of concentration I Op = Qa3.453 + sum of Tb/Ta 2.758 * 0.653 = 1.800 Qp = 5.253 ITotal of 2 streams to confluence: Flow rates before confluence point: 3.453 2.758 I Area of streams before confluence: 1.540 1.380 Results of confluence: Total flow rate = 5.253 (CFS) I Time of concentration = 8.629 min. Effective stream area after confluence = 2.920 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 45.000 ' **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.920 (Ac. ) ' Runoff from this stream = 5.253 (CFS) I a I Time of concentration = 8.63 min. Rainfall intensity = 2 .699(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 20.375 10.65 2 .405 2 5.253 8.63 2.699 ' Largest stream flow has longer time of concentration Qp = 20.375 + sum of Q1230.375 b Ia/Ib 5.253 * 0.891 = 4.680 Qp = 25.055 Total of 2 main streams to confluence: Flow rates before confluence point: 20.375 5.253 Area of streams before confluence: 11.940 2 .920 ' Results of confluence: Total flow rate = 25.055 (CFS) Time of concentration = 10.647 min. ' Effective stream area after confluence = 14.860(Ac. ) End of computations, total study area = 14.86 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 1 1 1 t 7-'ea3D5 "s 59 1 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/20/01 File:s30010.out Redhawk ' 10-Year Storm Event System 300 Job Number 160097.00.000 Hydrology Study Control Information English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In.) 100 year, 1 hour precipitation = 1.400 (In.) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.929(In/Hr) Slope of intensity duration curve = 0.5500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 50.000 to Point/Station 51.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 440.000 (Ft. ) ' Top (of initial area) elevation = 1289.300(Ft.) Bottom (of initial area) elevation = 1280.000 (Ft. ) Difference in elevation = 9.300(Ft. ) Slope = 0.02114 s(percent)= 2.11 ' TC = k(0.390) * [ (lengthA3) / (elevation change) ) "0.2 Initial area time of concentration = 9.626 min. Rainfall intensity = 2 .542 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.814 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Perviousarea fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.662 (CFS) Total initial stream area = 0.320 (Ac. ) Pervious area fraction = 0.500 1 /oD Process from Point/Station 51.000 to Point/Station 52.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1280.000 (Ft. ) End of street segment elevation = 1251.500 (Ft. ) Length of street segment = 500.000(Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000.(Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.987(CFS) Depth of flow = 0.243 (Ft. ) , Average velocity = 3.824 (Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.350(Ft. ) Flow velocity = 3.82 (Ft/s) Travel time = 2.18 min. TC = 11.80 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.806 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.272 (in/Hr) for a 10.0 year storm Subarea runoff = 2 .344 (CFS) for 1.280 (Ac.) ' Total runoff = 3.007 (CFS) Total area = 1.600(Ac. ) Street flow at end of street = 3.007 (CFS) Half street flow at end of street = 3.007 (CFS) Depth of flow = 0.273 (Ft.) , Average velocity = 4.135 (Ft/s) Flow width (from curb towards crown)= 7.816 (Ft. ) ' Process from Point/Station 51.000 to Point/Station 52.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.600 (Ac. ) Runoff from this stream = 3.007 (CFS) Time of concentration = 11.80 min. ' Rainfall intensity = 2 .272 (In/Hr) Program is now starting with Main Stream No. 2 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 53.000 to Point/Station 54.000 **** INITIAL AREA EVALUATION **** 1 1 LI I IInitial area flow distance = 160.000 (Ft. ) Top (of initial area) elevation = 1284.500 (Ft.) Bottom (of initial area) elevation = 1282 .900 (Ft. ) I Difference in elevation = 1.600 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.460 min. I Rainfall intensity = 2.925 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A = 0.000 I . Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.458 (CFS) Total initial stream area = 0.190 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I . Process from Point/Station 54.000 to Point/Station 55.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1283.400 (Ft. ) I End of street segment elevation = 1272.200 (Ft.) Length of street segment = 460.000(Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) ' Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 1.722 (CFS) Depth of flow = 0.263 (Ft. ) , Average velocity = 2.633 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.333 (Ft.) I Flow velocity = 2.63 (Ft/s) Travel time = 2.91 min. TC = 10.37 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.811 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2 .440 (In/Hr) for a 10.0 year storm Subarea runoff = 2.078 (CFS) for area =Ac. ) Total runoff = 2.536 (CFS) Total area = 1.240 (Ac. ) Street flow at end of street = 2.536 (CFS) ' Half street flow at end of street = 2.536 (CFS) I • Depth of flow = 0.292 (Ft. ) , Average velocity = 2.848 (Ft/s) Flow width (from curb towards crown) = 8.799(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 54.000 to Point/Station 55.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.240 (Ac. ) ' Runoff from this stream = 2.536 (CFS) Time of concentration = 10.37 min. Rainfall intensity = 2 .440 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 56.000 to Point/Station 57.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 140.000 (Ft.) Top (of initial area) elevation = 1277.000(Ft.) Bottom (of initial area) elevation = 1275.600(Ft. ) t Difference in elevation = 1.400 (Ft.) Slope = 0.01000 s(percent)= 1.00 TC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 Initial area time of concentration = 7.072 min. ' Rainfall intensity = 3.012 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.522 (CFS) Total initial stream area = 0.210 (Ac.) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 57.000 to Point/Station 55.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1276.000(Ft. ) ' End of street segment elevation = 1272.200(Ft. ) Length of street segment = 200.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) ' Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1) side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000(Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.758 (CFS) 63 I Depth of flow = 0.216 (Ft.) , Average velocity = 2.074 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4 .993 (Ft. ) I Flow velocity = 2.07 (Ft/s) Travel time = 1.61 min. TC = 8.68 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.818 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2.691(Zn/Hr) for a 10.0 year storm Subarea runoff = 0.418 (CFS) for 0.190 (Ac. ) Total runoff = 0.940 (CFS) Total area = 0.400(Ac. ) Street flow at end of street = 0.940 (CFS) I Half street flow at end of street = 0.940 (CFS) Depth of flow = 0.230(Ft.) , Average velocity = 2.137 (Ft/s) Flow width (from curb towards crown) = 5.690 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 57.000 to Point/Station 55.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.400(Ac.) Runoff from this stream = 0.940 (CFS) I Time of concentration = 8.68 min. Rainfall intensity = 2.691(In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 58.000 to Point/Station 59.000 **** INITIAL AREA EVALUATION **** IInitial area flow distance = 160.000 (Ft. ) Top (of initial area) elevation = 1277.000 (Ft.) Bottom (of initial area) elevation = 1275.400(Ft. ) I Difference in elevation = 00 (Ft.) Slope 0.01000 s(percent) 1=-6 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ) -0.2 Initial area time of concentration = 7.460 min. I Rainfall intensity = 2.925(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 . Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.361 (CFS) Total initial stream area = 0.150 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 59.000 to Point/Station 55.000 I ,t �Y ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1276.000(Ft. ) I End of street segment elevation = 1272 .200 (Ft.) Length of street segment = 200.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on (1) side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000(Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 0.855 (CFS) Depth of flow = 0.224 (Ft.) , Average velocity = 2.107 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.380 (Ft. ) I Flow velocity = 2 .11 (Ft/s) Travel time = 1.58 min. TC = 9.04 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.817 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 2.631(In/Hr) for a 10.0 year storm • Subarea runoff = 0.881(CFS) for 0.410 (Ac. ) Total runoff = 1.242 (CFS) Total area = 0.560(Ac. ) Street flow at end of street = 1.242 (CFS) ' Half street flow at end of street = 1.242 (CFS) Depth of flow = 0.249 (Ft. ) , Average velocity = 2.239(Ft/s) Flow width (from curb towards crown)= 6.621(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 59.000 to Point/station 55.000 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.560 (Ac. ) Runoff from this stream = 1.242 (CFS) I Time of concentration = 9.04 min. Rainfall intensity = 2.631(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 2.536 10.37 2.440 2 0.940 8.68 2.691 3 1.242 9.04 2.631 Largest stream flow has longer time of concentration to I IQp = 2.536 + sum of Qb Ia/ib 0.940 * 0.907 = 0.853 I Qb Ia/Ib 1.242 * 0.927 = 1.152 Qp = 4.540 I Total of 3 streams to confluence: Flow rates before confluence point: 2.536 0.940 1.242 Area of streams before confluence: 1.240 0.400 0.560 Results of confluence: Total flow rate = 4 .540 (CFS) I Time of concentration = 10.371 min. Effective stream area after confluence = 2.200(Ac. ) Process from Point/Station 55.000 to Point/Station 60.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1272.200(Ft. ) End of street segment elevation = 1265.300(Ft.) Length of street segment = 270.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000(Ft.) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft.) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4.736 (CFS) Depth of flow = 0.345 (Ft.) , Average velocity = 3 .327 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 11.433 (Ft.) ' Flow velocity = 3.33 (Ft/s) Travel time = 1.35 min. TC = 11.72 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2.281(In/Hr) for a 10.0 year storm Subarea runoff = 0.349(CFS) for 0.190 (Ac. ) Total runoff = 4.890 (CFS) Total area = 2.390 (Ac. ) I Street flow at end of street = 4.890 (CFS) Half street flow at end of street = 4.890 (CFS) Depth of flow = 0.348 (Ft. ) , Average velocity = 3.352 (Ft/s) Flow width (from curb towards crown)= 11.587 (Ft. ) I /p G I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 52.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1265.300 (Ft. ) End of street segment elevation = 1251.500 (Ft. ) I Length of street segment = 300.000 (Ft. ) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 6.097 (CFS) I Depth of flow = 0.341 (Ft.) , Average velocity = 4.423 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.235 (Ft.) Flow velocity = 4.42 (Ft/s) ll Travel time = 1.13 min. TC = 12.85 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.803 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.168 (In/Hr) for a 10.0 year storm I Subarea runoff = 2.053 (CFS) for 1.180(Ac.) Total runoff = 6.943 (CFS) Total area = 3.570 (Ac.) Street flow at end of street = 6.943 (CFS) Half street flow at end of street = 6.943 (CFS) I Depth of flow = 0.354 (Ft.) , Average velocity = 4.555 (Ft/s) Flow width (from curb towards crown) = 11.866 (Ft. ) Process from Point/Station 60.000 to Point/Station 52.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.570 (Ac.) Runoff from this stream = 6.943 (CFS) I . Time of concentration = 12.85 min. Rainfall intensity = 2.168 (In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 61.000 to Point/Station 62.000 ' **** INITIAL AREA EVALUATION **** I -Fie ca SoAl-S I ' Initial area flow distance = 150.000 (Ft. ) Top (of initial area) elevation = 1284 .700 (Ft. ) I Bottom (of initial area) elevation = 1283 .200 (Ft. ) Difference in elevation = 1.500 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (lengthA3) / (elevation change) ] '0.2 I Initial area time of concentration = 7.269 min. Rainfall intensity = 2.966 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 ll Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.440 (CFS) ' Total initial stream area = 0.180 (Ac. ) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 62.000 to Point/Station 63.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1283.500 (Ft. ) End of street segment elevation = 1264.400 (Ft. ) Length of street segment = 860.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) II Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4.023 (CFS) Depth of flow = 0.336 (Ft. ) , Average velocity = 3.038 (Ft/s) Streetf low hydraulics at midpoint of street travel: II Halfstreet flow width = 10.991(Ft.) Flow velocity = 3 .04 (Ft/s) Travel time = 4.72 min. TC = 11.99 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.805 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I. Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 2.253 (In/Hr) for a 1year storm Subarea runoff = 5.317 (CFS) for 2.930 (Ac. )0.0 Total runoff = 5.757 (CFS) Total area = 3 .110 (Ac. ) Street flow at end of street = 5.757 (CFS) 1 II IHalf street flow at end of street = 5.757 (CFS) Depth of flow = 0.372 (Ft. ) , Average velocity = 3.296 (Ft/s) Flow width (from curb towards crown)= 12 .770 (Ft. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 63 .000 to Point/Station 52 .000 II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1264 .400 (Ft. ) I End of street segment elevation = 1251.500 (Ft. ) Length of street segment = 310.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 6.609(CFS) II Depth of flow = 0.354 (Ft. ) , Average velocity = 4 .333 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.870 (Ft.) Flow velocity = 4.33 (Ft/s) I Travel time = 1.19 min. TC = 13.18 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.802 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .138 (In/Hr) for a 10.0 year storm I Subarea runoff = 1.577 (CFS) for 0.920 (Ac. ) Total runoff = 7.334 (CFS) Total area = 4 .030 (Ac. ) Street flow at end of street = 7.334 (CFS) Half street flow at end of street = 7.334 (CFS) I Depth of flow = 0.364 (Ft. ) , Average velocity = 4.437 (Ft/s) Flow width (from curb towards crown) = 12 .396 (Ft. ) Process from Point/Station 63 .000 to Point/Station 52.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.030 (Ac. ) I Runoff from this stream = 7.334 (CFS) Time of concentration = 13.18 min. Rainfall intensity = 2 .138 (In/Hr) Summaryof stream data: I fog II ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II1 3 .007 11.80 2.272 2 6.943 12 .85 2 .168 3 7.334 13 .18 2 .138 II Largest stream flow has longer time of concentration Qp = 7.334 + sum of Qb Ia/Ib . 3 .007 * 0.941 = 2 .830 Qb Ia/Ib 6 .943 * 0.986 = 6.848 Op = 17.012 ITotal of 3 main streams to confluence: Flow rates before confluence point: 3.007 6.943 7.334 I Area of streams before confluence: 1.600 3.570 4.030 I Results of confluence: Total flow rate = 17.012 (CFS) Time of concentration = 13.180 min. IIEffective stream area after confluence = 9.200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 52.000 to Point/Station 45.000 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1251.500 (Ft. ) I. End of street segment elevation = 1242 .300 (Ft. ) Length of street segment = 160.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) 1 Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 II Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) II Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 17.160 (CFS) ' Depth of flow = 0.444 (Ft. ) , Average velocity = 6.126 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.386(Ft. ) Flow velocity = 6.13 (Ft/s) Travel time = 0.44 min. TC = 13 .62 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.800 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimalfraction soil group C = 1.000 Decimal fraction soil group D = 0.000 _ II 70 II IRI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.101 (In/Hr) for a 10.0 year storm ' Subarea runoff = 0.269(CFS) for 0.160 (Ac. ) Total runoff = 17.281 (CFS) Total area = 9.360 (Ac. ) Street flow at end of street = 17.281 (CFS) • Half street flow at end of street = 17.281 (CFS) II Depth of flow = 0.445 (Ft. ) , Average velocity = 6.136 (Ft/s) Flow width (from curb towards crown)= 16.432 (Ft. ) ll ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 52.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 1 in normal stream number 1 Stream flow area = 9.360 (Ac. ) Runoff from this stream = 17.281(CFS) I Time of concentration = 13.62 min. Rainfall intensity = 2.101 (In/Hr) Process from Point/Station 64.000 to Point/Station 65.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 44.000 (Ft. ) Top (of initial area) elevation = 1266.000 (Ft. ) Bottom (of initial area) elevation = 1244.000 (Ft.) Difference in elevation = 22.000 (Ft. ) I Slope = 0.50000 s (percent)= 50.00 TC = k(0.390) * ( (length"3) / (elevation change) ) "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the II time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3 .644 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ll Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.061 (CFS) II Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 65.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I . Top of street segment elevation = 1246.600 (Ft. ) End of street segment elevation = 1243.100 (Ft. ) Length of street segment = 360.000 (Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 IISlope from grade break to crown (v/hz) = 0.020 _ II 7/ II Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.076 (CFS) Depth of flow = 0.098 (Ft. ) , Average velocity = 1.239 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000(Ft. ) Flow velocity = 1.24 (Ft/s) Travel time = 4.84 min. TC = 9.84 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .511 (In/Hr) for a 10.0 year storm Subarea runoff = 0.980 (CFS) for 0.480 (Ac.) Total runoff = 1.041(CFS) Total area = 0.500 (Ac. ) I Street flow at end of street = 1.041 (CFS) Half street flow at end of street = 1.041 (CFS) Depth of flow = 0.260 (Ft. ) , Average velocity = 1.650 (Ft/s) ' Flow width (from curb towards crown)= 7.175 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ L Process from Point/Station 65.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 0.500 (Ac. ) Runoff from this stream = .1.041(CFS) Time of concentration = 9.84 min. Rainfall intensity = 2.511(In/Hr) IISummary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 17.281 13 .62 2.101 2 1.041 9.84 2.511 II Largest stream flow has longer time of concentration Qp = 17.281 + sum of Qb Ia/Ib 1.041 * 0.837 = 0.871 II Qp = 18.152 Total of 2 streams to confluence: ' Flow rates before confluence point: 17.281 1.041 Area of streams before confluence: 9.360 0.500 IIResults of confluence: 1,3 II ' Total flow rate = 18.152 (CFS) Time of concentration = 13 .616 min. Effective stream area after confluence = 9.860 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 45.000 ll **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: II - In Main Stream number: 1 Stream flow area = 9.860 (Ac.) Runoff from this stream = 18.152 (CFS) Time of concentration = 13.62 min. I Rainfall intensity = 2.101 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 18.152 13 .62 2.101 II Largest stream flow has longer time of concentration Op = 18.152 + sum of Qp = 18.152 ' Total of 1 main streams to confluence: Flow rates before confluence point: 18.152 Area of streams before confluence: II9.860 ' Results of confluence: Total flow rate = 18.152 (CFS) Time of concentration =. 13 .616 min. Effective stream area after confluence = 9.860 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 45.000 I **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2 .405 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.810 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' User specified values are as follows: TC = 10.65 min. Rain intensity = 2.40 (In/Hr) Total area = 14.86 (Ac. ) Total runoff = 25.06 (CFS) Process from Point/Station 45.000 to Point/Station 45.000 **** CONFLUENCE OF MAIN STREAMS **** I 73 ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 14.860 (Ac. ) ' Runoff from this stream = 25.055 (CFS) Time of concentration = 10.65 min. Rainfall intensity = 2 .405 (In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 18.152 13 .62 2 .101 2 25.055 10.65 2.405 II Largest stream flow has longer or shorter time of concentration Qp = 25.055 + sum of Qa Tb/Ta 18.152 * 0.782 = 14.194 IQp = 39.249 Total of 2 main streams to confluence: Flow rates before confluence point: ' 18.152 25.055 Area of streams before confluence: 9.860 14.860 IIResults of confluence: Total flow rate = 39.249 (CFS) Time of concentration = 10.647 min. II Effective stream area after confluence = 24.720 (Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 25.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** II Upstream point/station elevation = 1238.000 (Ft. ) Downstream point/station elevation = 1236.000 (Ft. ) Pipe length = 100.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 39.249(CFS) ll Nearest computed pipe diameter = 27.00 (In. ) Calculated individual pipe flow 39.249(CFS) Normal flow depth in pipe = 19.97 (In.) Flow top width inside pipe = 23.70 (In. ) ' Critical Depth = 24.98 (In.) Pipe flow velocity = 12.46 (Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 10.78 min. ' End of computations, total study area = 24.72 (Ac.) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 II II 20 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s40010.out Redhawk 10-Year Storm Event System 400 Job Number 160097.00.000 ' ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 N 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.929 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 66.000 to Point/Station 67.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000 (Ft. ) Top (of initial area) elevation = 1289.200 (Ft. ) Bottom (of initial area) elevation = 1244 .200 (Ft. ) Difference in elevation = 45 .000 (Ft. ) Slope = 0.04500 s (percent)= 4 .50 ' TC = k(0.390) * [ (lengtha3) / (elevation change) ) A0.2 Initial area time of concentration = 11.493 min. Rainfall intensity = 2 .306 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.807 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 2.699 (CFS) Total initial stream area = 1.450 (Ac. ) Pervious area fraction = 0.500 1 -T�a3o -s 16 II I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 66.000 to Point/Station 67.000 **** CONFLUENCE OF MINOR STREAMS **** 1 Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.450 (Ac. ) Runoff from this stream = 2.699(CFS) 11 Time of concentration = 11.49 min. Rainfall intensity = 2 .306 (In/Hr) Summary of stream data: 11 Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) , 1 2.699 11.49 2 .306 Largest stream flow has longer time of concentration Qp = 2.699 + sum of 11 QP = 2 .699 Total of 1 streams to confluence: Flow rates before confluence point: 1 2.699 Area of streams before confluence: 1.450 Results of confluence: ' Total flow rate = 2 .699 (CFS) Time of concentration = 11.493 min. Effective stream area after confluence = 1.450 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 68.000 to Point/Station 69.000 **** INITIAL AREA EVALUATION **** 11 Initial area flow distance = 48.000 (Ft. ) Top (of initial area) elevation = 1267.000 (Ft. ) I Bottom (of initial area) elevation = 1243 .000 (Ft. ) Difference in elevation = 24.000 (Ft. ) Slope = 0.50000 s (percent)= 50.00 TC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 11 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3 .644 (In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.061(CFS) Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0 .500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 69.000 to Point/Station 67.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 1 en' II ' Top of street segment elevation = 1246.200 (Ft. ) End of street segment elevation = 1244.200 (Ft. ) li Length of street segment = 180.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) II Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street 111 I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.069(CFS) I Depth of flow = 0.092 (Ft. ) , Average velocity = 1.272 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2 .000 (Ft. ) Flow velocity = 1.27 (Ft/s) 1 Travel time = 2 .36 min. TC = 7.36 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.947 (In/Hr) for a 10.0 year storm ' Subarea runoff = Total runoff = 0.631(CFS) for 0.260 (Ac. ) 0.692 (CFS) Total area = 0.280 (Ac. ) Street flow at end of street = 0.692 (CFS) Half street flow at end of street = 0.692 (CFS) I Depth of flow = 0.228 (Ft. ) , Average velocity = 1.625 (Ft/s) Flow width (from curb towards crown) = 5.566 (Ft. ) Process from Point/Station 69.000 to Point/Station 67.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.280 (Ac.) Runoff from this stream = 0.692 (CFS) Time of concentration = 7.36 min. ' Rainfall intensity = 2 .947 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.699 11.49 2 .306 ' 2 0.692 7.36 2 .947 Largest stream flow has longer time of concentration Qp = 2.699 + sum of II Qb Ia/Ib II II 0.692 * 0.782 = 0.542 OP = 3 .241 II Total of 2 streams to confluence: Flow rates before confluence point: 2.699 0.692 Area of streams before confluence: I 1.450 0.280 Results of confluence: Total flow rate = 3.241 (CFS) Time of concentration = 11.493 min. II Effective stream area after confluence = 1.730 (Ac. ) Process from Point/Station 67.000 to Point/Station 67.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.730 (Ac. ) Runoff from this stream = 3 .241 (CFS) ' Time of concentration = 11.49 min. Rainfall intensity = 2 .306 (In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 70.000 to Point/Station 71.000 **** INITIAL AREA EVALUATION **** IInitial area flow distance = 160.000 (Ft. ) Top (of initial area) elevation = 1253 .000 (Ft. ) Bottom (of initial area) elevation = 1251.400 (Ft. ) I Difference in elevation = 1.600 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3)/ (elevation change) ] A0.2 I Initial area time of concentration = 7.460 min. Rainfall intensity = 2.925.(In/Hr ) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0. 000 I RI index for soil (AMC" 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.337 (CFS) Total initial stream area = 0. 140 (Ac. ) Pervious area fraction = 0.500 I . Process from Point/Station 71.000 to Point/Station 72.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1250 .800 (Ft. ) End of street segment elevation = 1245 .300 (Ft. ) Length of street segment = 540.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I if I 1 Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 . Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .420 (CFS) Depth of flow = 0.325 (Ft. ) , Average velocity = 2.004 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.449 (Ft. ) I Flow velocity = 2 .00 (Ft/s) Travel time = 4.49 min. TC = 11.95 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2.257 (In/Hr) for a 10. Subarea runoff = 3.145 (CFS) for 1.730 (Ac. )0 year storm Total runoff = 3 .482 (CFS) Total area = 1.870 (Ac. ) Street flow at end of street = 3.482 (CFS) I Half street flow at end of street = 3 .482 (CFS) Depth of flow = 0.360 (Ft. ) , Average velocity = 2 .175 (Ft/s) Flow width (from curb towards crown) = 12.186(Ft. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 71.000 to Point/Station 72 .000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.870 (Ac. ) I Runoff from this stream = 3 .482 (CFS) Time of concentration = 11.95 min. Rainfall intensity = 2.257 (In/Hr) Process from Point/Station 73 .000 to Point/Station 74 .000 **** INITIAL AREA EVALUATION **** IInitial area flow distance = 170.000 (Ft. ) Top (of initial area) elevation = 1253.000 (Ft. ) Bottom (of initial area) elevation = 1251.300 (Ft. ) ' Difference in elevation = 1.700 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Initial area time of concentration = 7.643 min. I Rainfall intensity = 2 .886 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.823 Decimal fraction soil group A = 0.000 I 99 I IDecimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.522 (CFS) Total initial stream area = 0.220 (Ac. ) IPervious area fraction = 0.500 11 Process from Point/Station 74 .000 to Point/Station 72.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1250.800 (Ft. ) End of street segment elevation = 1245.300 (Ft. ) Length of street segment = 480.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 1.769(CFS) Depth of flow = 0.294 (Ft. ) , Average velocity = 1.960 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.865 (Ft.) I Flow velocity = 1.96 (Ft/s) Travel time = 4.08 min. TC = 11.72 min. Adding area flow to street I . SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.806 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 2.281(In/Hr) for a 1year storm Subarea runoff = 1.931 (CFS) for 1.050 (Ac. )0.0 Total runoff = 2.453 (CFS) Total area = 1.270 (Ac. ) Street flow at end of street = 2 .453 (CFS) I Half street flow at end of street = 2.453 (CFS) Depth of flow = 0.321 (Ft. ) , Average velocity = 2 .104 (Ft/s) Flow width (from curb towards crown)= 10.246 (Ft. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 74 .000 to Point/Station 72 .000 ' **** CONFLUENCE OF MINOR STREAMS **** II Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.270 (Ac. ) ' Runoff from this stream = 2 .453 (CFS) I Sc I Time of concentration = 11.72 min. Rainfall intensity = 2.281 (In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3 .482 11.95 2.257 ' 2 2 .453 11.72 . 2.281 I Largest stream flow has longer time of concentration Qp = 3.482 + sum of Qb Ia/Ib 2 .453 * 0.989 = 2.428 IQp = 5.910 Total of 2 streams to confluence: Flow rates before confluence point: I 3 .482 2.453 Area of streams before confluence: 1.870 1.270 Results of confluence: I Total flow rate = 5.910 (CFS) Time of concentration = 11.951 min. Effective stream area after confluence = 3.140 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 72.000 to Point/Station 67.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1246.700 (Ft. ) End of street segment elevation = 1244 .700 (Ft. ) I Length of street segment = 90.000 (Ft. ) . Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [11 side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 5.985 (CFS) Depth of flow = 0.376 (Ft. ) , Average velocity = 3 .326 (Ft/s) I Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 12 .974 (Ft. ) Flow velocity = 3 .33 (Ft/s) Travel time = 0.45 min. TC = 12 .40 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.804 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 I 10 I IPervious area fraction = 0.500; Impervious fraction = 0.500 1 Rainfall intensity = 2 .211(In/Hr) for a 10.0 year storm Subarea runoff = 0. 142 (CFS) for 0.080 (Ac. ) I Total runoff = 6.052 (CFS) Total area = 3 .220 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 6.052 (CFS) Depth of flow = 0.377 (Ft. ) , Average velocity = 3 .335 (Ft/s) IFlow width (from curb towards crown)= 13 .034 (Ft. ) Process from Point/Station 67.000 to Point/Station 67.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.220 (Ac. ) Runoff from this stream = 6.052 (CFS) I Time of concentration = 12 .40 min. Rainfall intensity = 2.211 (In/Hr) Summary of stream data: . Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 3 .241 11.49 2.306 2 6.052 12.40 2.211 Largest stream flow has longer time of concentration QP = 6.052 + sum of I Qb Ia/Yb 3 .241 * 0.959 = 3 .108 QP = 9.160 I Total of 2 main streams to confluence: Flow rates before confluence point: 3.241 6.052 I Area of streams before confluence: 1.730 3 .220 I Results of confluence: Total flow rate = 9. 160 (CFS) Time of concentration = 12.402 min. Effective stream area after confluence = 4 .950 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 67.000 to Point/Station 25.000 I **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1239.700 (Ft. ) I Downstream point/station elevation = 1228.300 (Ft. ) Pipe length = 570.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.160 (CFS) Given pipe size = 18.00 (In. ) I Calculated individual pipe flow = 9.160 (CFS) Normal flow depth in pipe = 10.22 (In. ) Flow top width inside pipe = 17.83 (In. ) Critical Depth = 14.05 (In. ) IPipe flow velocity = 8.84 (Ft/s) 8? Travel time through pipe = 1.07 min. Time of concentration (TC) = 13 .48 min. End of computations, total study area = 4.95 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 i 1 1 I 1 1 rt 's 5 g3 1 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/20/01 File:s50010.out Redhawk 10-Year Storm Event System 500 Job Number 160097.00.000 ********* Hydrology Study Control Informat. English (in-lb) Units used in input data file ' Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) ' 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.929(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 17.100 to Point/Station 25.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 1.816 (In/Hr) for a 10.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.788 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 17.74 min. Rain intensity = 1.82 (In/Hr) Total area = 18.71 (Ac.) Total runoff = 30.52 (CFS)++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 25.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 18.710 (Ac. ) Runoff from this stream = 30.518 (CFS) I g41 II ' Time of concentration = 17.74 min. Rainfall intensity = 1.816 (In/Hr) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 25.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** II Rainfall intensity = 2.388 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.810 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: I TC = 10.78 min. Rain intensity = 2.39 (In/Hr) Total area = 24 .72 (Ac.) Total runoff = 39.25 (CFS) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 24.720 (Ac. ) Runoff from this stream = 39.249(CFS) I Time of concentration = 10.78 min. Rainfall intensity = 2 .388 (In/Hr) Process from Point/Station 67.000 to Point/Station 25.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ' Rainfall intensity = 2.112 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.801 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 13 .48 min. Rain intensity = 2.11 (In/Hr) IITotal area = 4 .95 (Ac. ) Total runoff = 9.16 (CFS) I Process from Point/Station 67**.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS * * Along Main Stream number: 1 in normal stream number 3 I Stream flow area = 4. 950 (Ac. ) Runoff from this stream = 160 (CFS) Time of concentration = 13 .489M in. Rainfall intensity = 2 .112 (In/Hr) ' Summary of stream data: _ 0; I ' Stream Flow rate TC Rainfall Intensity IINo. (CFS) (min) (In/Hr) 1 30.518 17.74 1.816 2 39.249 10.78 2 .388 II 3 9.160 13 .46 2 .112 Largest stream flow has longer or shorter time of concentration Qp = 39.249 + sum of II Qa Tb/Ta 30.518 * 0.608 = 18.545 Qa Tb/Ta 9.160 * 0.800 = 7.325 ' Qp = 65.119 Total of 3 streams to confluence: Flow rates before confluence point: I 30.518 39.249 9.160 Area of streams before confluence: 18.710 24.720 4 .950 Results of confluence: I Total flow rate = 65.119(CFS) Time of concentration = 10.780 min. Effective stream area after confluence = 48.380 (Ac. ) Process from Point/Station 25.000 to Point/Station 75.000 ' **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1224 .400 (Ft. ) Downstream point/station elevation = 1217.200 (Ft.) ' Pipe length = 720.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 65.119(CFS) Given pipe size = 42.00 (In. ) Calculated individual pipe flow = 65.119(CFS) II Normal flow depth in pipe = 24.61 (In. ) Flow top width inside pipe = 41.37 (In.) Critical Depth = 30.35 (In. ) Pipe flow velocity = 11.12 (Ft/s) ' Travel time through pipe = 1.08 min. Time of concentration (TC) = 11.86 min. Process from Point/Station 25.000 to Point/Station 75.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 48.380 (Ac. ) ' Runoff from this stream = 65.119(CFS) Time of concentration = 11.86 min. Rainfall intensity = 2 .266(In/Hr) Program is now starting with Main Stream No. 2 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 76.000 to Point/Station 77.000 II **** INITIAL AREA EVALUATION **** is(o II II Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1246.800 (Ft. ) II Bottom (of initial area) elevation = 1245 .600 (Ft. ) Difference in elevation = 1.200 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (lengthA3) / (elevation change) ] "0.2 II Initial area time of concentration = 6.649 min. Rainfall intensity = 3.116 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) II Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.361 (CFS) ' Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 77.000 to Point/Station 78.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1245.400 (Ft. ) End of street segment elevation = 1243.300 (Ft. ) Length of street segment = 210.000 (Ft.) I Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 II Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2 .000 (Ft.) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.902 (CFS) Depth of flow = 0.249(Ft. ) , Average velocity = 1.625 (Ft/s) Streetflow hydraulics at midpoint of street travel: II Halfstreet flow width = 6.626(Ft. ) Flow velocity = 1.63 (Ft/s) Travel time = 2 .15 min. TC = 8 .80 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.818 • Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500. Rainfall intensity = 2.670 (In/Hr) for a 1year storm Subarea runoff = 0.917 (CFS) for 0.420 (Ac. )0.0 Total runoff = 1.278 (CFS) Total area = 0.560 (Ac.) ' Street flow at end of street = 1.278 (CFS) _ I 10 Half street flow at end of street = 1.278 (CFS) Depth of flow = 0.274 (Ft. ) , Average velocity = 1.737 (Ft/s) Flow width (from curb towards crown) = 7.870 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 78.000 to Point/Station 79.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1243 .300 (Ft. ) ' End of street segment elevation = 1241.000 (Ft. ) Length of street segment = 225.000 (Ft. ) Height of curb above gutter flowline = '6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) ' Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street ' Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) . Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 1.483 (CFS) Depth of flow = 0.284 (Ft. ) , Average velocity = 1.806(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.396(Ft. ) Flow velocity = 1.81(Ft/s) Travel time = 2.08 min. TC = 10.88 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.809 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .377 (In/Hr) for a 10.0 year storm Subarea runoff = 0.346 (CFS) for 0.180 (Ac. ) Total runoff = 1.624 (CFS) Total area = 0.740 (Ac. ) Street flow at end of street = 1.624 (CFS) Half street flow at end of street = 1.624 (CFS) Depth of flow = 0.291 (Ft. ) , Average velocity = 1.841(Ft/s) Flow width (from curb towards crown) = 8.752 (Ft. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 79.000 to Point/Station 75.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1241.000 (Ft. ) End of street segment elevation = 1235.000 (Ft. ) Length of street segment = 510.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0 .020 8g II ' Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .676 (CFS) Depth of flow = 0.358 (Ft. ) , Average velocity = 2.328 (Ft/s) ll Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12 .095 (Ft. ) Flow velocity = 2.33 (Ft/s) Travel time = 3 .65 min. TC = 14.53 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.797 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .027 (In/Hr) for a 10.0 year storm Subarea runoff = 3 .022 (CFS) for 1.870 (Ac. ) Total runoff = 4.646 (CFS) Total area = 2.610 (Ac. ) II Street flow at end of street = 4 .646 ( CFS) Half street flow at end of street = 4.646 (CFS) Depth of flow = 0.383 (Ft. ) , Average velocity = 2.456(Ft/s) ' Flow width (from curb towards crown)= 13.323 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 79.000 to Point/Station 75.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 I Stream flow area = 2.610 (Ac. ) Runoff from this stream = 4.646 (CFS) Time of concentration = 14.53 min. Rainfall intensity = 2.027 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 81.000 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1241.400 (Ft. ) II Bottom (of initial area) elevation = 1240.100 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s(percent) = 1.00 II TC = k(0.390) * [ (length"3)/ (elevation change) ] A0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3.061 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 . I9 B I IRI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.354 (CFS) II Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 81.000 to Point/Station 75.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 1 Top of street segment elevation = 1239.500 (Ft. ) End of street segment elevation = 1235.000 (Ft.) Length of street segment = 490.000 (Ft.) I Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 II Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .074 (CFS) Depth of flow = 0.316 (Ft.) , Average velocity = 1.860 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.995 (Ft. ) Flow velocity = 1.86 (Ft/s) Travel time = 4 .39 min. TC = 11.26 min. II Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.332 (In/Hr) for a 10.0 year storm Subarea runoff = 2.563 (CFS) for 1.360 (Ac.) Total runoff = 2.917 (CFS) Total area = 1.500 (Ac. ) ' Street flow at end of street = 2.917 (CFS) Half street flow at end of street = 2.917 (CFS) Depth of flow = 0.348 (Ft. ) , Average velocity = 2.007 (Ft/s) Flow width (from curb towards crown) = 11.564 (Ft. ) • II I . Process from Point/Station 61.000 to Point Station 75.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 ' Stream flow area = 1.500 (Ac.) Runoff from this stream = 2. 917 (CFS) Time of concentration= 11.26 min. Rainfall intensity = 2.332 (In/Hr) ' Summary of stream data: _ I 10 II ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I 1 4 .646 14.53 2.027 II 2 2 .917 11.26 2.332 Largest stream flow has longer time of concentration Qp = 4.646 + sum of Qb Ia/Ib - ' 2 .917 * 0.869 = 2.535 Qp = 7.181 Total of 2 streams to confluence: I Flow rates before confluence point: 4.646 2.917 Area of streams before confluence: 2.610 1.500 II Results of confluence: Total flow rate = 7.181 (CFS) Time of concentration = 14 .530 min. Effective stream area after confluence = 4.110 (Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 75.000 II **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 4.110 (Ac. ) Runoff from this stream = 7.181(CFS) Time of concentration = 14.53 min. ll Rainfall intensity = 2 .027 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 65.119 11.86 2.266 I 2 7.181 14.53 2.027 Largest stream flow has longer or shorter time of concentration Qp = 65.119 + sum of Qa Tb/Ta II 7.181 * 0.816 = 5.861 Op = 70.980 Total of 2 main streams to confluence: ll Flow rates before confluence point: 65.119 7.181 Area of streams before confluence: 1 48.380 4.110 Results of confluence: ' Total flow rate = 70.980 (CFS) Time of concentration = 11.859 min. Effective stream area after confluence = 52.490 (Ac. ) I Tiea.3d6.5--s 9J II I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 82.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** IUpstream point/station elevation = 1217.200 (Ft. ) Downstream point/station elevation = 1216.700 (Ft. ) ' Pipe length = 50.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow . = 70.980 (CFS) Given pipe size = 45.00 (In. ) Calculated individual pipe flow = 70.980 (CFS) I - Normal flow depth in pipe = 24.80 (In. ) Flow top width inside pipe = 44 .76 (In. ) Critical Depth = 31.11(In. ) Pipe flow velocity = 11.39(Ft/s) I Travel time through pipe = 0.07 min. Time of concentration (TC) = 11.93 min. Process from Point/Station 75.000 to Point/Station 82.000 **** CONFLUENCE OF MAIN STREAMS **** II The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 52 .490 (Ac. ) Runoff from this stream = 70.980 (CFS) II Time of concentration = 11.93 min. Rainfall intensity = 2.259(In/Hr) Program is now starting with Main Stream No. 2 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 83.000 to Point/Station 84.000 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 125.000 (Ft. ) Top (of initial area) elevation = 1247.500 (Ft. ) II Bottom (of initial area) elevation = 1246.250 (Ft. ) Difference in elevation = 1.250 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 ' Initial area time of concentration = 6.758 min. Rainfall intensity = 3.088 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.332 (CFS) ' Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 84.000 to Point/Station 85.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1246.200 (Ft. ) _ I ' End of street segment elevation = 1243.300 (Ft. ) Length of street segment = 330.000 (Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.149(CFS) Depth of flow = 0.271(Ft. ) , Average velocity = 1.615 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.715 (Ft.) Flow velocity = 1.61 (Ft/s) Travel time = 3.41 min. TC = 10.16 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.467 (In/Hr) for a 10.0 year storm Subarea runoff = 1.282 (CFS) for 0.640 (Ac. ) Total runoff = 1.614 (CFS) Total area = 0.770 (Ac. ) Street flow at end of street = 1.614 (CFS) Half street flow at end of street = 1.614 (CFS) Depth of flow = 0.297 (Ft. ) , Average velocity = 1.732 (Ft/s) Flow width (from curb towards crown)= 9.032 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 85.000 to Point/Station 86.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1243.300 (Ft. ) End of street segment elevation = 1231.400 (Ft. ) Length of street segment = 940.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street ' Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 5.660 (CFS) Depth of flow = 0.401 (Ft. ) , Average velocity = 2 .645 (Ft/s) 1 93 II II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.224 (Ft. ) Flow velocity = 2.65 (Ft/s) I Travel time = 5.92 min. TC = 16.09 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) II Runoff Coefficient = 0.793 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.916 (In/Hr) for a 10.0 year storm I Subarea runoff = 5.865 (CFS) for 3 .860 (Ac. ) Total runoff = 7.479(CFS) Total area = 4.630(Ac. ) Street flow at end of street = 7.479 (CFS) Half street flow at end of street = 7.479(CFS) II Depth of flow = 0.434 (Ft. ) , Average velocity = 2.824 (Ft/s) Flow width (from curb towards crown)= 15.911(Ft. ) Process from Point/Station 85.000 to Point/Station 86.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 1 Stream flow area = 4.630 (Ac. ) Runoff from this stream = 7.479 (CFS) I Time of concentration = 16.09 min. Rainfall intensity = 1.916 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 87.000 to Point/Station 88.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1240.700 (Ft. ) Bottom (of initial area) elevation = 1237.400 (Ft. ) Difference in elevation = 3 .300 (Ft. ) II Slope = 0.02538 s (percent)= 2 .54 TC = k(0.390) * [ (lengthA3)/ (elevation change) ] &0.2 Initial area time of concentration = 5.698 min. Rainfall intensity = 3.392 (In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.832 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.254 (CFS) Total initial stream area = 0.090 (Ac. ) Pervious area fraction = 0.500 Process- from Point/Station 88.000 to Point/Station 86.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** _ ' 9V I ' Top of street segment elevation = 1237.400 (Ft. ) End of street segment elevation = 1231.400 (Ft. ) I Length of street segment = 470.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000(Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade bieak to crown (v/hz) = 0.020 Street flow is on (1] side(s) of the street I Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.315 (CFS) I Depth of flow = 0.165 (Ft. ) , Average velocity = 1.782 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.461(Ft. ) Flow velocity = 1.78 (Ft/s) I Travel time = 4.40 min. TC = 10.09 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.812 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.476 (In/Hr) for a 10.0 year storm I Subarea runoff = 0.966 (CFS) for 0.480 (Ac.) Total runoff = 1.220 (CFS) Total area = 0.570 (Ac. ) Street flow at end of street = 1.220(CFS) Half street flow at end of street = 1.220 (CFS) I Depth of flow = 0.261(Ft. ) , Average velocity = 1.898 (Ft/s) Flow width (from curb towards crown) = 7.254 (Ft.) Process from Point/Station 88.000 to Point/Station 86.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.570 (Ac. ) Runoff from this stream = 1.220 (CFS) Time of concentration = 10.09 min. I Rainfall intensity = 2.476 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.479 16.09 1.916 2 1.220 10.09 2.476 Largest stream flow has longer time of concentration Qp = - 7.479 + sum of IQb Ia/Ib _ I 15 I I1.220 * 0.774 = 0.944 QP = 8.423 I Total of 2 streams to confluence: Flow rates before confluence point: 7.479 1.220 Area of streams before confluence: I 4 .6300.570 Results of confluence: Total flow rate = 8.423 (CFS) I - - Time of concentration = 16.087 min. Effective stream area after confluence = 5.200 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 82.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1226.400 (Ft.) Downstream point/station elevation = 1223.000 (Ft. ) Pipe length = 170.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.423 (CFS) I Given pipe size = 18.00 (In. ) Calculated individual pipe flow = 8.423 (CFS) Normal flow depth in pipe = 9.70 (In.) Flow top width inside pipe = 17.94 (In. ) I Critical Depth = 13.49(In. ) Pipe flow velocity = 8.67 (Ft/s) Travel time through pipe = 0.33 min. ' Time of concentration (TC) = 16.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 66*.000 to Point/Station 82 .000 **** CONFLUENCE OF MAIN STREAMS *** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 5.200 (Ac. ) Runoff from this stream = 8.423 (CFS) Time of concentration = 16.41 min. I Rainfall intensity = 1.895 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 70.980 11.93 2.259 I 2 8.423 16.41 1.895 Largest stream flow has longer or shorter time of concentration Op = 70.980 + sum of ' Qa Tb/Ta 8.423 * 0.727 = 6.123 Op = 77.103 I Total of 2 main streams to confluence: Flow rates before confluence point: 70.980 8.423 Area of- streams before confluence: I52.490 5.200 _ I 90 I I Results of confluence: I Total flow rate = 77.103 (CFS) Time of concentration = 11.932 min. Effective stream area after confluence = 57.690 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82 .000 to Point/Station 82.100 I **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1216.700 (Ft. ) Downstream point/station elevation = 1212 .900 (Ft. ) I Pipe length = 380.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 77.103 (CFS) Nearest computed pipe diameter = 39.00 (In.) Calculated individual pipe flow = 77.103 (CFS) I Normal flow depth in pipe = 29.86 (In. ) Flow top width inside pipe = 33.04 (In. ) Critical Depth = 33 .21(In. ) Pipe flow velocity = 11.31(Ft/s) I Travel time through pipe = 0.56 min. Time of concentration (TC) = 12.49 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.000 to Point/Station 82.100 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 57.690 (Ac. ) Runoff from this stream = 77.103 (CFS) I Time of concentration = 12 .49 min. Rainfall intensity = 2.202 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.200 to Point/Station 82.300 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1239.600 (Ft. ) Bottom (of initial area) elevation = 1238.300 (Ft. ) Difference in elevation = 1.300 (Ft.) I Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ) "0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3 .061 (In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.405 (CFS) Total initial stream area = 0.160 (Ac. ) Pervious area fraction = 0.500 I 97 I II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82 .300 to Point/Station 82.100 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1237.800 (Ft. ) End of street segment elevation = 1227.600 (Ft. ) I Length of street segment = 400.000(Ft. ) Height of curb above gutter flowline = 6.0 (In. ) width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.644 (CFS) I Depth of flow = 0.292 (Ft. ) , Average velocity = 2.982 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.776 (Ft. ) Flow velocity = 2.98 (Ft/s) I Travel time = 2 .24 min. TC = 9.10 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .622 (In/Hr) for a 10.0 year storm ' Subarea runoff = 3 .788 (CFS) for 1.770 (Ac.) Total runoff = 4.193 (CFS) Total area = 1.930 (Ac. ) Street flow at end of street = 4.193 (CFS) Half street flow at end of street = 4 .193 (CFS) ' Depth of flow = 0.332 (Ft. ) , Average velocity = 3.285 (Ft/s) Flow width (from curb towards crown) = 10.770 (Ft.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.300 to Point/Station 82.100 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.930 (Ac. ) Runoff from this stream = 4 .193 (CFS) I Time of concentration = 9.10 min. Rainfall intensity = 2.622 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 77.103 12 .49 2.202 _ 9g I II2 4 .193 9.10 2.622 Largest stream flow has longer time of concentration Qp = 77.103 + sum of I Qb Ia/Ib 4.193 * 0.840 = 3.522 Qp = 80.625 I Total of 2 streams to confluence: Flow rates before confluence point: 77.103 4.193 I Area of streams before confluence: 57.690 1.930 Results of confluence: Total flow rate = 80.625 (CFS) I Time of concentration = 12.492 min. Effective stream area after confluence = 59.620 (Ac. ) Process from Point/Station 82.100 to Point/Station 89.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** ' Upstream point/station elevation = 1212 .900 (Ft.) Downstream point/station elevation = 1210.700 (Ft. ) Pipe length = 220.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 80.625 (CFS) II Nearest computed pipe diameter = 39.00 (In. ) Calculated individual pipe flow = 80.625 (CFS) Normal flow depth in pipe = 31.17 (In. ) Flow top width inside pipe = 31.24 (In. ) I Critical Depth = 33.79(In.) Pipe flow velocity = 11.34 (Ft/s) Travel time through pipe = 0.32 min. ' Time of concentration (TC) = 12.82 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 82 .100 to Point/Station 89.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 I Stream flow area = 59.620 (Ac.) Runoff from this stream = 80.625 (CFS) Time of concentration = 12 .82 min. Rainfall intensity = 2.172 (In/Hr) ISummary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 80.625 12 .82 2 .172 Largest stream flow has longer time of concentration Qp = 80.625 + sum of Qp = 80.625 II Total of 1 streams to confluence: Flow rates before confluence point: 80.625 Area of- streams before confluence: I59.620 I Te02 3 ods -s 99 I ' Results of confluence: Total flow rate = 80.625 (CFS) Time of concentration = 12 .815 min. I Effective stream area after confluence = 59.620 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station90.000 to Point/Station 91.000 **** INITIAL AREA EVALUATION **** II Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1251.000 (Ft. ) Bottom (of initial area) elevation = 1242 .000 (Ft. ) , Difference in elevation = 9.000 (Ft.) I Slope = 0.06923 s (percent)= 6.92 TC = k(0.390) * [ (lengthA3)/ (elevation change) 1A0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. I Initial area time of concentration = 5.000 min. Rainfall intensity = 3.644 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.427 (CFS) I Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 91.000 to Point/Station 92 .000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1242 .000 (Ft. ) Downstream point/station elevation = 1222.000 (Ft. ) Pipe length = 340.00 (Ft. ) Manning's N = 0.018 No. of pipes = 1 Required pipe flow = 0.427 (CFS) I Given pipe size = 24.00 (In.) Calculated individual pipe flow = 0.427 (CFS) Normal flow depth in pipe = 1.75 (In. ) Flow top width inside pipe = 12.49 (In. ) I Critical depth could not be calculated. Pipe flow velocity = 4.14 (Ft/s) Travel time through pipe = 1.37 min. ' Time of concentration (TC) = 6.37 min. ' Process from Point/Station 91.000 to Point/Station 92.000 **** .SUBAREA FLOW ADDITION **** SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.829 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 _ I 100 II ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Time of concentration = 6.37 min. ll Rainfall intensity = 3. 190 (In/Hr) for a 1year storm Subarea runoff = 1.560 (CFS) for 0.590 (Ac. )0.0 Total runoff = 1.987 (CFS) Total area = 0.730 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 92 .000 to Point/Station 89.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** II Upstream point/station elevation = 1217.000 (Ft. ) Downstream point/station elevation = 1214.200 (Ft.) ' Pipe length = 140.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.987 (CFS) Given pipe size = 12.00 (In. ) Calculated individual pipe flow = 1.987 (CFS) I Normal flow depth in pipe = 5.24 (In.) Flow top width inside pipe = 11.90 (In. ) Critical Depth = 7.21 (In. ) Pipe flow velocity = 6.04 (Ft/s) ' Travel time through pipe = 0.39 min. Time of concentration (TC) = 6.75 min. Process from Point/Station 92.000 to Point/Station 89.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.730 (Ac. ) Runoff from this stream = 1.987 (CFS) I Time of concentration = 6.75 min. Rainfall intensity = 3.089(In/Hr) Process from Point/Station 93.000 to Point/Station 94.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1238.800 (Ft. ) Bottom (of initial area) elevation = 1237.600 (Ft. ) Difference in elevation = 1.200 (Ft.) I Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (lengtha3) / (elevation change) ) "0.2 Initial area time of concentration = 6.649 min. Rainfall intensity = 3 .116(In/Hr) for a 10.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.284 (CFS) Total initial stream area = 0.110 (Ac. ) Pervious area fraction = 0.500 II 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 94 .000 to Point/Station 89.000 II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1237.200 (Ft. ) End of street segment elevation = 1221.200 (Ft. ) II Length of street segment = 570.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I . Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street II Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) II Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.243 (CFS) ' Depth of flow = 0.277 (Ft.) , Average velocity = 2.938 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.045 (Ft. ) Flow velocity = 2.94 (Ft/s) I Travel time = 3.23 min. TC = 9.88 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.813 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.505 (In/Hr) for a 10.0 year storm II Subarea runoff = 3 .097 (CFS) for 1.520 (Ac. ) Total runoff = 3.380 (CFS) Total area = 1.630 (Ac.) Street flow at end of street = 3.380 (CFS) Half street flow at end of street = 3.380 (CFS) ' Depth of flow = 0.310 (Ft.) , Average velocity = 3.203 (Ft/s) Flow width (from curb towards crown)= 9.691 (Ft. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 94.000 to Point/Station 89.000 **** CONFLUENCE OF MINOR STREAMS **** II Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.630 (Ac. ) Runoff from this stream = 3 .380 (CFS) II Time of concentration = 9.88 min. Rainfall intensity = 2.505 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) III1 80.625 12 .82 2 .172 11 I2 1.987 6.75 3.089 3 3.380 9.88 2.505 Largest stream flow has longer time of concentration II Qp = 80.625 + sum of Qb Ia/Ib 1.987 * 0.703 = 1.397 Qb Ia/Ib II 3 .380 * 0.8,67 = 2.930 Qp = 84 .952 1 Total of 3 streams to confluence: Flow rates before confluence point: 80.625 1.987 3 .380 Area of streams before confluence: ll 59.620 .7 Results 1.630 Results of confluence: Total flow rate = 84.952 (CFS) Time of concentration = 12.815 min. ' Effective stream area after confluence = 61.980 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 89.000 to Point/Station 95.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1210.700 (Ft. ) II Downstream point/station elevation = 1191.100 (Ft. ) Pipe length = 440.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 84.952 (CFS) ' Nearest computed pipe diameter = 30.00 (In. ) Calculated individual pipe flow = 84 .952 (CFS) Normal flow depth in pipe = 24 .09(In.) Flow top width inside pipe = 23.86(In. ) I Critical depth could not be calculated. Pipe flow velocity = 20.10 (Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 13.18 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 89.000 to Point/Station 95.000 ll **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 61.980 (Ac. ) ' Runoff from this stream = 84.952 (CFS) Time of concentration = 13 .18 min. Rainfall intensity = 2.138 (In/Hr) Process from Point/Station 96.000 to Point/Station 97.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 110.000 (Ft. ) Top (of initial area) elevation = 1228.900 (Ft.) I Bottom (of initial area) elevation = 1227.800 (Ft. ) Difference in elevation = 1.100 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * ( (length"3)/ (elevation change) ] A0.2 Initial area time of concentration = 6.421 min. _ I l03 I ' Rainfall intensity = 3 .176 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.829 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.474 (CFS) I Total initial stream area = 0.180 (Ac. ) Pervious area fraction = 0.500 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 97.000 to Point/Station 95.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** II Top of street segment elevation = 1227.600 (Ft. ) End of street segment elevation = 1196.700 (Ft. ) Length of street segment = 650.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) II Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 II Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2.000 (Ft.) Gutter hike from flowline = 1.875(In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 ll Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.026 (CFS) Depth of flow = 0.280 (Ft.) , Average velocity = 3.851(Ft/s) Streetflow hydraulics at midpoint of street travel: II Halfstreet flow width = 8.183 (Ft. ) Flow velocity = 3.85 (Ft/s) Travel time = 2.81 min. TC = 9.23 min. Adding area flow to street ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II . Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 2.601 (In/Hr) for a 1year storm Subarea runoff = 4.116 (CFS) for 1.940 (Ac. )0.0 Total runoff = 4 .589 (CFS) Total area = 2.120 (Ac. ) Street flow at end of street = 4.589 (CFS) Half street flow at end of street = 4.589 (CFS) Depth of flow = 0.314 (Ft. ) , Average velocity = 4 .206 (Ft/s) Flow width (from curb towards crown)= 9.873 (Ft. ) Process from Point/Station 97.000 to Point/Station 95.000 ' **** CONFLUENCE OF MINOR STREAMS **** II /00 II I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2 .120 (Ac. ) II Runoff from this stream = 4.589(CFS) Time of concentration = 9.23 min. Rainfall intensity = 2.601 (In/Hr) ' Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 84.952 13 .18 2.138 2 4.589 9.23 2.601 I Largest stream flow has longer time of concentration Qp = 84 .952 + sum of Qb Ia/Ib 4.589 * 0.822 = 3.774 ' Qp = 88.726 Total of 2 streams to confluence: Flow rates before confluence point: II 84 .952 4 .589 Area of streams before confluence: 61.980 2.120 Results of confluence: I Total flow rate = 88.726 (CFS) Time of concentration =8 13.180 min. Effective stream area after confluence = 64.100 (Ac. ) Process from Point/Station 95.000 to Point/Station 96.000 II **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1191.900 (Ft. ) Downstream point/station elevation = 1189.800 (Ft. ) ' Pipe length = 50.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 88.726 (CFS) Given pipe size = 36.00 (In. ) Calculated individual pipe flow = 88.726 (CFS) I Normal flow depth in pipe = 21.12 (In. ) Flow top width inside pipe = 35.46 (In.) Critical Depth = 34.06 (In. ) Pipe flow velocity = 20.58 (Ft/s) I Travel time through pipe = 0.04 min. Time of concentration (TC) = 13 .22 min. End of computations, total study area = 64.10 (Ac. ) The following figures may IIbe used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 ' Area averaged RI index number = 69.0 II II /OS Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/20/01 File:s60010.out ' Redhawk 10-Year Storm Event System 600 Job Number 160097.00.000 ' ********* Hydrology Study Control Information English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 10.0 Calculated rainfall intensity data: ' 1 hour intensity = 0.929 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 97.000 to Point/Station 98.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 150.000 (Ft. ) ' Top (of initial area) elevation = 1249.100 (Ft. ) Bottom (of initial area) elevation = 1247.600 (Ft. ) Difference in elevation = 1.500 (Ft. ) ' Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.269 min. Rainfall intensity = 2.966 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.824 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.489 (CFS) Total initial stream area = 0.200 (Ac. ) Pervious area fraction = 0.500 1 . 1$ II ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 98.000 to Point/Station 99.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** IITop of street segment elevation = 1247.900(Ft. ) End of street segment elevation = 1225.900 (Ft. ) ' Length of street segment = 570.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000(Ft.) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.020 (CFS) Depth of flow = 0.288 (Ft. ) , Average velocity = 3.544 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.579(Ft. ) Flow velocity = 3.54 (Ft/s) , Travel time = 2.68 min. TC = 9.95 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.813 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.496 (In/Hr) for a 10.0 year storm Subarea runoff = 4.200 (CFS) for 2.070 (Ac.) II Total runoff = 4.689(CFS) Total area = 2.270(Ac. ) Street flow at end of street = Total (4 .689 (CFS) Half street flow at end of street = 4.689(CFS) Depth of flow = 0.325 (Ft. ) , Average velocity = 3 .896(Ft/s) ' Flow width (from curb towards crown)= 10.427 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 98.000 to Point/Station 99.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 ll Stream flow area = 2.270 (Ac.) Runoff from this stream = 4.689 (CFS) Time of concentration = 9.95 min. ' Rainfall intensity = 2 .496 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) ' Top (of initial area) elevation = 1245.300 (Ft. ) I 7"1 e. 30ea 5 S io? II II Bottom (of initial area) elevation = 1244 .000 (Ft.) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s(percent)= 1.00 II TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3 .061(In/Hr) for a 10.0 year storm II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I . Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.506 (CFS) Total initial stream area = 0.200 (Ac. ) Pervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 99.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** IITop of street segment elevation = 1248.700 (Ft.) End of street segment elevation = , 1225.900 (Ft.) II Length of street segment = 470.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) II Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 II Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.961(CFS) Depth of flow = 0.248 (Ft. ) , Average velocity = 3.570 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.579(Ft. ) Flow velocity = 3 .57 (Ft/s) Travel time = 2.19 min. TC = 9.06 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .628 (In/Hr) for a 10.0 year storm Subarea runoff = 2 .468 (CFS) for- 1.150 (Ac. ) II Total runoff = 2.974 (CFS) Total area = 1.350 (Ac. ) Street flow at end of street = 2.974 (CFS) Half street flow at end of street = 2 .974 (CFS) Depth of flow = 0.278 (Ft. ) , Average velocity = 3.868 (Ft/s) ' Flow width (from curb towards crown)= 8.077 (Ft. ) _ ' IDS II II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 101.000 to Point/Station 99.000 **** CONFLUENCE_OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.350 (Ac. ) Runoff from this stream = 2.974 (CFS) Time of concentration = 9.06 min. II Rainfall intensity = 2.628(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity 1 No. (CFS) (min) (In/Hr) 1 4.689 9.95 2 .496 II 2 2.974 9.06 2.628 Largest stream flow has longer time of concentration Qp = 4.689 + sum of Qb Ia/Ib II 2.974 * 0.950 = 2.824 Qp = 7.513 Total of 2 streams to confluence: II Flow rates before confluence point: 4.689 2 .974 Area of streams before confluence: I 2.270 1.350 Results of confluence: Total flow rate = 7.513 (CFS) Time of concentration = 9.950 min. ' Effective stream area after confluence = 3.620 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 99.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1221.800 (Ft. ) I Downstream point/station elevation = 1202 .900(Ft. ) Pipe length = 500.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.513 (CFS) Given pipe size = 15.00 (In. ) II Calculated individual pipe flow = 7.513 (CFS) Normal flow depth in pipe = 8.36(In. ) Flow top width inside pipe = 14.90 (In. ) Critical Depth = 13.08 (In. ) I Pipe flow velocity = 10.69(Ft/s) Travel time through pipe = 0.78 min. Time of concentration (TC) = 10.73 min. ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 99.000 to Point/Station 102 .000 ' **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 3 .620 (Ac. ) _ ' X09 II ' Runoff from this stream = 7.513 (CFS) Time of concentration = 10.73 min. Rainfall intensity = 2.395 (In/Hr) IProgram is now starting with Main Stream No. 2 Process from Point/Station 103 .000 to Point/Station 104 .000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1258.600 (Ft. ) Bottom (of initial area) elevation = 1257.400 (Ft. ) Difference in elevation = 1.200 (Ft.) II Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (lengthA3) / (elevation change) ] "0.2 Initial area time of concentration = 6.649 min. Rainfall intensity = 3.116 (In/Hr) for a 10.0 year storm II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.827 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Initial subarea runoff = 0.335 (CFS) Total initial stream area = 0.130 (Ac.) Pervious area fraction = 0.500 Process from Point/Station 104 .000 to Point/Station 105.000 II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1257.100(Ft. ) End of street segment elevation = 1226.300 (Ft. ) I Length of street segment = 700.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) II Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.650 (CFS) ' Depth of flow = 0.239 (Ft. ) , Average velocity = 3 .328 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.161 (Ft. ) Flow velocity = 3 .33 (Ft/s) I Travel time = 3.51 min. TC = 10.15 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff -Coefficient = 0.812 ' Decimal fraction soil group A = 0.000 _ 11 110 I. ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .468 (In/Hr) for a 10.0 year storm ' Subarea runoff = 2 .045 (CFS) for 1.020 (Ac. ) Total runoff = 2.380 (CFS) Total area = 1.150 (Ac. ) Street flow at end of street = 2.380 (CFS) Half street flow at end of street = 2 .380 (CFS) ' Depth of flow = 0.265 (Ft.) , Average velocity = 3.559(Ft/s) Flow width (from curb towards crown)= 7.433 (Ft. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** II Top of street segment elevation = 1225.300 (Ft. ) End of street segment elevation = 1209.600 (Ft. ) Length of street segment = 410.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) II Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 II Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 ' Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .742 (CFS) Depth of flow = 0.281 (Ft. ) , Average velocity = 3 .463 (Ft/s) Streetflow hydraulics at midpoint of street travel: ' Halfstreet flow width = 8.219(Ft. ) Flow velocity = 3 .46 (Ft/s) Travel time = 1.97 min. TC = 12.13 min. Adding area flow to street ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I. Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 2 .239 (In/Hr) for a 10.0 year storm Subarea runoff = 0.647 (CFS) for 0.350(Ac. ) Total runoff = 3.027 (CFS) Total area = 1.500 (Ac. ) IIStreet flow at end of street = 3.027 (CFS) Half street flow at end of street = 3 .027 (CFS) Depth of flow = 0.288 (Ft. ) , Average velocity = 3 .534 (Ft/s) Flow width (from curb towards crown) = 8.602 (Ft. ) Process from Point/Station 105.000 to Point/Station 106.000 ' **** CONFLUENCE OF MINOR STREAMS **** _ II ill i Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.500 (Ac. ) Runoff from this stream = 3 .027 (CFS) Time of concentration = 12.13 min. Rainfall intensity = 2.239 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 170.000 (Ft. ) Top (of initial area) elevation = 1217.200 (Ft. ) Bottom (of initial area) elevation = 1215.500 (Ft. ) Difference in elevation = 1.700 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 I/ Initial area time of concentration = 7.643 min. Rainfall intensity = 2.886(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.485 (CFS) Total initial stream area = 0.200 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 108.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1215.400 (Ft. ) End of street segment elevation = 1210.700 (Ft. ) Length of street segment = 130.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 1 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.315 (CFS) Depth of flow = 0.223 (Ft. ) , Average velocity = 2.899(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.320 (Ft.) Flow velocity = 2.90 (Ft/s) Travel time = 0.75 min. TC = 8.39 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I 1/� I IIRunoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 2 .742 (In/Hr) for a 10.0 year storm Subarea runoff = 3 .466 (CFS) for 1.510 (Ac.) Total runoff = 3 .951(CFS) Total area = 1.710 (Ac. ) I . Street flow at end of street = 3.951(CFS) Half street flow at end of street = 1.975 (CFS) Depth of flow = 0.259(Ft. ) , Average velocity = 3 .172 (Ft/s) Flow width (from curb towards crown)= 7.117 (Ft. ) I Process from Point/Station 108.000 to Point/Station 106.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.710 (Ac. ) I Runoff from this stream = 3 .951(CFS) Time of concentration 8.39 min. Rainfall intensity = 2.742 (In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1. 3 .027 12.13 2.239 2 3 .951 8 .39 2.742 1 Largest stream flow has longer or shorter time of concentration QP = 3.951 + sum of Qa Tb/Ta 3.027 * 0.692 = 2.094 I. QP = 6.044 Total of 2 streams to confluence: Flow rates before confluence point: I 3.027 3 .951 Area of streams before confluence: 1.500 1.710 Results of confluence: I Total flow rate = 6.044 (CFS) Time of concentration = 8.390 min. Effective stream area after confluence = 3.210 (Ac.) Process from Point/Station 106.000 to Point/Station 102.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 ' Stream flow area = 3.210 (Ac. ) Runoff from this stream = 6.044 (CFS) Time of concentration = 8.39 min. Rainfall intensity = 2 .742 (In/Hr) ' Summary of stream data: II 1/3 II ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I 1 7.513 10.73 2.395 2 6.044 8.39 2.742 I Largest stream flow has longer time of concentration Qp = 7.513 + sum of Qb Ia/Ib II 6.044 * 0.873 = 5.280 Qp = 12.793 Total of 2 main streams to confluence: I Flow rates before confluence point: 7.513 6.044 Area of streams before confluence: 3.620 3 .210 I Results of confluence: Total flow rate = 12.793 (CFS) I Time of concentration = 10.730 min. Effective stream area after confluence = 6.830 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1202 .900 (Ft.) Downstream point/station elevation = 1190.200 (Ft. ) Pipe length = 375.00 (Ft.) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow 12.793 (CFS) Given pipe size = 15.00 (In. ) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is I 4.534 (Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 14.703 (Ft. ) Minor friction loss = 2 .531 (Ft. ) K-factor = 1.50 Pipe flow velocity = 10.42 (Ft/s) II Travel time through pipe = 0.60 min. Time of concentration (TC) = 11.33 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 107.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.830 (Ac. ) Runoff from this stream = 12.793 (CFS) I Time of concentration = 11.33 min. Rainfall intensity = 2.324 (In/Hr) Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 30.000 (Ft. ) I • iaV I ' Top (of initial area) elevation = 1272.000 (Ft. ) Bottom (of initial area) elevation = 1257.000(Ft. ) Difference in elevation = 15.000 (Ft. ) ' Slope = 0.50000 s (percent)= 50.00 TC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the I time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.644 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.061 (CFS) I Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 109.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1257.100 (Ft. ) End of street segment elevation = 1225.400 (Ft. ) Length of street segment = 735.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.080 (CFS) Depth of flow = 0.075 (Ft.) , Average velocity = 2.194 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 2.000 (Ft. ) Flow velocity = 2.19(Ft/s) Travel time = 5.58 min. TC = 10.58 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.810 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.413 (In/Hr) for a 10.0 year storm Subarea runoff = 1.193 (CFS) for 0.610 (Ac. ) Total runoff = 1.254 (CFS) Total area = 0.630(Ac. ) ' Street flow at end of street = 1.254 (CFS) _ I -re o2iOC.S -S 115 I ' Half street flow at end of street = 1.254 (CFS) Depth of flow = 0.222 (Ft. ) , Average velocity = 3.163 (Ft/s) ' Flow width (from curb towards crown) = 5.293 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 110.000 to Point/Station 107.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1225.400 (Ft. ) II . End of street segment elevation = 1196.000 (Ft. ) Length of street segment = 860.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.871 (CFS) I Depth of flow = 0.257 (Ft. ) , Average velocity = 3 .069(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.024 (Ft. ) I Flow velocity = 3 .07 (Ft/s) Travel time = 4.67 min. TC = 15.26 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.817 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 I Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 1.973 (In/Hr) for a 10.0 year storm I Subarea runoff = 1.000 (CFS) for 0.620 (Ac.) Total runoff = 2 .254 (CFS) Total area = 1.250 (Ac. ) Street flow at end of street = 2.254 (CFS) Half street flow at end of street = 2.254 (CFS) I Depth of flow = 0.270 (Ft. ) , Average velocity = 3.181 (Ft/s) Flow width (from curb towards crown)= 7.695 (Ft. ) Process from Point/Station 110.000 to Point/Station 107.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.250 (Ac. ) Runoff from this stream = 2 .254 (CFS) I Time of concentration = 15.26 min. Rainfall intensity = 1.973 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity _ I I ' No. (CFS) (min) (In/Hr) ' 1 12 .793 11.33 2.324 2 2 .254 15.26 1.973 Largest stream flow has longer or shorter time of concentration ' Op = 12.793 + sum of Qa Tb/Ta 2.254 * 0.743 = 1.674 Op = 14.467 11 Total of 2 streams to confluence: Flow rates before confluence point: 12 .793 2 .254 I Area of streams before confluence: 6.830 1.250 Results of confluence: Total flow rate = 14.467 (CFS) I Time of concentration = 11.329 min. Effective stream area after confluence = 8.080 (Ac. ) Process from Point/Station 107.000 to Point/Station 96.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1190.200 (Ft. ) Downstream point/station elevation = 1189.800 (Ft. ) Pipe length = 45.00 (Ft. ) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 14.467 (CFS) Given pipe size = 21.00 (In. ) Calculated individual pipe flow = 14 .467 (CFS) Normal flow depth in pipe = 16.64 (In.) I Flow top width inside pipe = 17.03 (In. ) Critical Depth = 16.95 (In. ) Pipe flow velocity = 7.08 (Ft/s) Travel time through pipe = 0.11 min. I Time of concentration (TC) = 11.44 min. End of computations, total study area = 8.08 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. IArea averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 71.0 I I I I I . I 1/7 1 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/20/01 File:s70010.out Redhawk 10-Year Storm Event System 700 Job Number 160097.00.000 Hydrology Study Control Information English (in-lb) Units used in input data file ' Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) ' 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 10.0 Calculated rainfall intensity data: ' 1 hour intensity = 0.929(In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 95.000 to Point/Station 96.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2 .135 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.801 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 13 .22 min. Rain intensity = 2.13 (In/Hr) Total area = 64.10 (Ac.) Total runoff = 88.73 (CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 95.000 to Point/Station 96.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 64.100 (Ac. ) Runoff from this stream = 88.726 (CFS) 1 1/8 1 ITime of concentration = 13 .22 min. Rainfall intensity = 2 .135 (In/Hr) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 96.000 i **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2 .312 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) 1 Runoff Coefficient = 0.814 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.670 I Decimal fraction soil group D = 0.330 RI index for soil (AMC 2) = 70.98 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: 1 TC = 11.44 min. Rain intensity = 2 .31(In/Hr) Total area = 8.08 (Ac.) Total runoff = 14 .47 (CFS) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 96.000 Sr '* * CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 8.080 (Ac.) Runoff from this stream = 14.467 (CFS) I Time of concentration = 11.44 min. Rainfall intensity = 2.312 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1 88.726 13.22 2.135 2 14 .467 11.44 2.312 Largest stream flow has longer time of concentration QP = 88.726 + sum of I Qb Ia/Ib 14 .467 * 0.924 = 13.361 Qp = 102.087 I Total of 2 streams to confluence: Flow rates before confluence point: 88.726 14.467 Area of streams before confluence: I 64.100 8.080 Results of confluence: Total flow rate = 102.087 (CFS) 1 Time of concentration = 13 .220 min. Effective stream area after confluence = 72.180(Ac. ) Process from Point/Station 96.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 1 Upstream point/station elevation = 1189.800 (Ft. ) _ II IDownstream point/station elevation = 1183.900 (Ft. ) Pipe length = 160.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 102.087 (CFS) II Nearest computed pipe diameter = 33.00(In. ) Calculated individual pipe flow = 102.087 (CFS) Normal flow depth in pipe = 27.19(In. ) ' Flow top width inside pipe = 25.14 (In.) Critical depth could not be calculated. Pipe flow velocity = 19.49(Ft/s) Travel time through pipe = 0.14 min. ' Time of concentration (TC) = 13.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 96.000 to Point/Station 108.000 **** CONFLUENCE OF MINOR STREAMS **** • Along Main Stream number: 1 in normal stream number 1 I Stream flow area = 72.180 (Ac. ) Runoff from this stream = 102.087 (CFS) Time of concentration = 13.36 min. Rainfall intensity = 2 .123 (In/Hr) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 110.000 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) I Top (of initial area) elevation = 1220.600 (Ft. ) Bottom (of initial area) elevation = 1219.300 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s(percent) = 1.00 I TC = k(0.390) * [ (length"3)/ (elevation change) F 0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 3 .061 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.329(CFS) I Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 110.000 to Point/Station 108.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1220.300 (Ft. ) End of street segment elevation = 1188.900 (Ft. ) Length of street segment = 620.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 _ I 40a I IStreet flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 II Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .542 (CFS) Depth of flow = 0.265 (Ft. ) , Average velocity = 3.815 (Ft/s) I . Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.418 (Ft. ) Flow velocity = 3 .81 (Ft/s) Travel time = 2.71 min. TC = 9.57 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.814 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.550 (In/Hr) for a 10.0 year storm Subarea runoff = 3.634 (CFS) for 1.750 (Ac. ) Total runoff = 3.962 (CFS) Total area = 1.880 (Ac. ) II Street flow at end of street = 3 .962 (CFS) Half street flow at end of street = 3.962 (CFS) Depth of flow = 0.299(Ft. ) , Average velocity = 4.177 (Ft/s) ' Flow width (from curb towards crown) = 9.123 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 110.000 to Point/Station 108.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 1.880 ( Ac. ) Runoff from this stream = 3 .962 (CFS) Time of concentration = 9.57 min. Rainfall intensity = 2.550 (In/Hr) ISummary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 102.087 13.36 2.123 2 3.962 9.57 2.550 I Largest stream flow has longer time of concentration Qp = 102.087 + sum of Qb Ia/Ib II3.962 * 0.833 = 3 .299 Qp = 105.386 Total of 2 streams to confluence: ' Flow rates before confluence point: 102 .087 3 .962 Area of streams before confluence: 72.180 1.880 ' Results of confluence: 1 1 . ' Total flow rate = 105.386 (CFS) Time of concentration = 13.357 min. Effective stream area after confluence = 74 .060 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 111.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1183. 900 (Ft. ) ,- Downstream point/station elevation = 1170.300 (Ft. ) Pipe length = 400.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 105.386(CFS) Nearest computed pipe diameter = 36.00 (In. ) ' Calculated individual pipe flow = 105.386 (CFS) Normal flow depth in pipe = 25.64 (In. ) Flow top width inside pipe = 32.60(In. ) Critical depth could not be calculated. Pipe flow velocity = 19.55 (Ft/s) Travel time through pipe = 0.34 mi . Time of concentration (TC) = 13.70 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 111.000 ' **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 74.060 (Ac. ) Runoff from this stream = 105.386 (CFS) Time of concentration = 13.70 min. Rainfall intensity = 2.094 (In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 112.000 to Point/Station 113 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 110.000 (Ft. ) ' Top (of initial area) elevation = 1207.400 (Ft. ) Bottom (of initial area) elevation = 1204 .200 (Ft. ) Difference in elevation = 3.200 (Ft. ) Slope = 0.02909 s (percent)= 2 .91 ' TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Initial area time of concentration = 5.186 min. Rainfall intensity = 3 .572 (In/Hr) for a 10.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil(AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.486 (CFS) Total initial stream area = 0.160 (Ac. ) Pervious area fraction = 0.500 1 II II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113 .000 to Point/Station 114.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** IITop of street segment elevation = 1204 .200 (Ft. ) End of street segment elevation = 1194 .800 (Ft. ) II Length of street segment = 250.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.625(CFS) Depth of flow = 0.244 (Ft. ) , Average velocity = 3 .110 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.373 (Ft. ) Flow velocity = 3.11 (Ft/s) Travel time = 1.34 min. TC = 6.53 min. II Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 ' RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.148 (In/Hr) for a 10.0 year storm Subarea runoff = 1.993 (CFS) for 0.750 (Ac. ) ' Total runoff = 2.479(CFS) Total area = 0.910 (Ac. ) Street flow at end of street = Total (2 .479 (CFS) Half street flow at end of street = 2 .479 (CFS) Depth of flow = 0.274 (Ft. ) , Average velocity = 3 .368 (Ft/s) Flow width (from curb towards crown) = 7.872 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 114.000 to Point/Station 111.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1194.800 (Ft. ) II End of street segment elevation = 1175.300 (Ft. ) Length of street segment = 560.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 • II Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter -width = 2 .000 (Ft. ) ' Gutter hike from flowline = 1.875 (In. ) _ 1 �i2o?306S S /a ./ II II Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 II Estimated mean flow rate at midpoint of street = 3 .010 (CFS) Depth of flow = 0.292 (Ft.) , Average velocity = 3.400 (Ft/s) Streetflow hydraulics at midpoint of street travel: ' Halfstreet flow width = 8.769 (Ft. ) Flow velocity = 3 .40 (Ft/s) Travel time = 2.74 min. TC = 9.27 min. Adding area flow to street ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Rainfall intensity = 2.595 (In/Hr) for a 10 year storm Subarea runoff = 0.825 (CFS) for 0.390 (Ac.0. ) Total runoff = 3 .305 (CFS) Total area = 1.300 (Ac. ) Street flow at end of street = 3 .305 (CFS) ' Half street flow at end of street = 3.305 (CFS) Depth of flow = 0.299(Ft.) , Average velocity = 3.468 (Ft/s) Flow width (from curb towards crown) = 9.146(Ft.) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114 .000 to Point/Station 111.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.300 (Ac. ) II Runoff from this stream = 3.305 (CFS) Time of concentration = 9.27 min. Rainfall intensity = 2 .595 (In/Hr) Process from Point/Station 117.000 to Point/Station 118.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 90.000 (Ft. ) II Top (of initial area) elevation = 1179.500 (Ft. ) 1 Bottom (of initial area) elevation = 1176.800 (Ft. ) Difference in elevation = 2.700 (Ft. ) Slope = 0.03000 s (percent)= 3 .00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the ll time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.644 (In/Hr) for a 10.0 year storm II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.975 (CFS) _ II 9 II ' Total initial stream area = 0.320 (Ac. ) Pervious area fraction = 0.500 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 II **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.320 (Ac. ) I . Runoff from this stream = 0.975 (CFS) Time of concentration = 5.00 min. Rainfall intensity= 3 .644 (In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II1 3.305 9.27 2 .595 2 0.975 5.00 3 .644 Largest stream flow has longer time of concentration II Qp = 3.305 + sum of Qb Ia/Ib 0.975 * 0.712 = 0.695 II Qp = 3 .999 Total of 2 streams to confluence: Flow rates before confluence point: I 3 .305 0.975 Area of streams before confluence: 1.300 0.320 Results of confluence: I Total flow rate = 3.999(CFS) Time of concentration = 9.271 min. Effective stream area after confluence = 1.620 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 111.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.620 (Ac. ) I Runoff from this stream = 3 .999 (CFS) Time of concentration = 9.27 min. Rainfall intensity = 2.595 (In/Hr) IIProgram is now starting with Main Stream No. 3 • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 115.000 to Point/Station 116.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) ' Top (of initial area) elevation = 1189.900 (Ft. ) Bottom (of initial area) elevation = 1188.600 (Ft.) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent) = 1.00 llTC = k(0.390) * [ (length"3)/ (elevation change) ] "0.2 II /OS 11 ' Initial area time of concentration = 6.865 min. Rainfall intensity = 3 .061 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) 11 Runoff Coefficient = 0.826 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 11Initial subarea runoff = 0.329(CFS) Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 111.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1188.900 (Ft. ) End of street segment elevation = 1176.200 (Ft.) Length of street segment = 410.000 (Ft.) 11 Height of curb above gutter flowline = 6.0 (In.) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000(Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.834 (CFS) Depth of flow = 0.259 (Ft. ) , Average velocity = 2.937 (Ft/s) 11 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.128 (Ft. ) Flow velocity = 2 .94 (Ft/s) Travel time = 2.33 min. TC = 9.19 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.816 Decimal fraction soil group A = 0.000 11 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.607 (In/Hr) for a 10.0 year storm Subarea runoff = 2.532 (CFS) for 1.190 (Ac. ) I . Total runoff = 2 .860 (CFS) Total area = 1.320 (Ac. ) Street flow at end of street = 2 .860 (CFS) Half street flow at end of street = 2.860 (CFS) Depth of flow = 0.292 (Ft.) , Average velocity = 3.212 (Ft/s) ' Flow width (from curb towards crown) = 8.799 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116 .000 to Point/Station 111.000 I **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: II In Main Stream number: 3 Stream flow area = 1.320 (Ac. ) Runoff from this stream = 2 .860 (CFS) Time of concentration = 9.19 min. II Rainfall intensity = 2.607 (In/Hr) Summary of stream data: I Stream Flow rate TC (min) Rainfall Intensity No. (CFS) (In/Hr) ' 1 105.386 13.70 9.27 2.094 2 3 .999 2.595 3 2 .860 9.19 2 .607 Largest stream flow has longer time of concentration II Qp = 105.386 + sum of Qb Ia/Ib 3.999 * 0.807 = 3 .227 Qb Ia/Ib II 2 .860 * 0.803 = 2.297 Qp = 110.910 Total of 3 main streams to confluence: II Flow rates before confluence point: 105.386 3.999 2 .860 Area of streams before confluence: ' 74.060 1.620 1.320 Results of confluence: I Total flow rate = 110.910 (CFS) Time of concentration = 13 .698 min. Effective stream area after confluence = 77.000 (Ac. ) • ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 119.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** ' Upstream point/station elevation = 1170.300 (Ft. ) Downstream point/station elevation = 1169.500 (Ft. ) Pipe length = 80.00 (Ft. ) Manning's N = 0.013 ' No. of pipes = 1 Required pipe flow = 110.910 (CFS) Nearest computed pipe diameter = 45.00 (In. ) Calculated individual pipe flow = 110.910 (CFS) Normal flow depth in pipe = 33 .94 (In. ) II Flow top width inside pipe = 38.75 (In. ) Critical Depth = 38.43 (In. ) Pipe flow velocity = 12.42 (Ft/s) ' Travel time through pipe = 0.11 min. Time of concentration (TC) = 13.81 min. End of computations, total study area = 77.00 (Ac.) The following figures may Ibe used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.3 I II In 1 1 1 1 1 1 f 1 f I 100 YEAR STORM 1 i �a a Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/16/01 File:s100.out Redhawk 100-Year Storm Event System 100 Job Number 160097.00.000 ' ********* Hydrology Study Control Information English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400 (In. ) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 160.000 (Ft. ) ' Top (of initial area) elevation = 1312.000 (Ft. ) Bottom (of initial area) elevation = 1310.400 (Ft. ) Difference in elevation = 1.600 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.460 min. Rainfall intensity = 4 .407 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0. 000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious. fraction = 0.500 Initial subarea runoff = 0.634 (CFS) Total initial stream area = 0.170 (Ac. ) Pervious area fraction = 0.500 I i;9 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2 .000 to Point/Station 3 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1309.700 (Ft. ) End of street segment elevation = 1305.600 (Ft. ) Length of street segment = 510.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000 (Ft.) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 6.525 (CFS) Depth of flow = 0.365 (Ft.) , Average velocity = 1.956 (Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.458 (Ft. ) Flow velocity = 1.96 (Ft/s) Travel time = 4.35 min. TC = 11.81 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.833 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.423 (In/Hr) for a 100.0 year storm Subarea runoff = 9.011(CFS) for 3 .160 (Ac. ) Total runoff = 9.645 (CFS) Total area = 3.330 (Ac. ) Street flow at end of street = 9.645 (CFS) Half street flow at end of street = 4 .823 (CFS) Depth of flow = 0.409 (Ft. ) , Average velocity = 2.141 (Ft/s) Flow width (from curb towards crown) = 14.615 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 3 .000 to Point/Station 4 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1305.600 (Ft. ) ' End of street segment elevation = 1290.200 (Ft. ) Length of street segment = 240.000 (Ft. ) Height of curb above gutter flowline = - 6.0 (In. ) ' Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ` Street flow is on [1) side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) lie I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 9.920 (CFS) Depth of flow = 0.373 (Ft. ) , Average velocity = 5.619(Ft/s) Streetflow hydraulics at midpoint of street travel : ' Halfstreet flow width = 12.842 (Ft. ) Flow velocity = 5.62 (Ft/s) Travel time = 0.71 min. TC = 12 .52 min. Adding area flow to street ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.831 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Rainfall intensity = 3.315 (In/Hr) for a 100.0 year storm Subarea runoff = 0.523 (CFS) for 0.190 (Ac. ) Total runoff = 10.169(CFS) Total area = 3 .520(Ac. ) Street flow at end of street = 10.169(CFS) ' Half street flow at end of street = 10.169(CFS) Depth of flow = 0.376(Ft. ) , Average velocity = 5.651 (Ft/s) Flow width (from curb towards crown) = 12 .973 (Ft. ) Process from Point/Station 4 .000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.200 (Ft. ) End of street segment elevation = 1268.500 (Ft. ) Length of street segment = 640.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter Eo grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 11.541 (CFS) Depth of flow = 0.427 (Ft. ) , Average velocity = 4.559(Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.542 (Ft.) Flow velocity = 4.56 (Ft/s) Travel time = 2.34 min. TC = 14.86 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 11Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 yenoa's s ) 3l I IPervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .017 (In/Hr) for a 100.0 year storm Subarea runoff = 2 .366 (CFS) for 0.950 (Ac. ) I Total runoff = 12.534 (CFS) Total area = 4.470 (Ac. ) Street flow at end of street = Total (12.534 (CFS) Half street flow at end of street = 12.534 (CFS) Depth of flow = 0.438 (Ft. ) , Average velocity = 4.648 (Ft/s) IFlow width (from curb towards crown) = 16.063 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.470 ( Ac. ) Runoff from this stream = 12 .534 (CFS) Time of concentration = 14.86 min. URainfall intensity = 3 .017 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 6.000 to Point/Station 7.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 200.000 (Ft.) I Top (of initial area) elevation = 1282.000 (Ft. ) Bottom (of initial area) elevation = 1280.000 (Ft. ) Difference in elevation = 2.000 (Ft. ) Slope = 0.01000 s (percent)= 1.00 I TC = k(0.390) * [ (lengthA3) / (elevation change) ] A0.2 Initial area time of concentration = 8.156 min. Rainfall intensity = 4.196(In/Hr) for a 100.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.844 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 U Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.850 (CFS) Total initial stream area = 0.240 (Ac. ) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 5.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1280.000 (Ft. ) End of street segment elevation = 1268.500(Ft. ) Length of street segment = 290.000 (Ft. ) 11 Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) U Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2) side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 _ I /3A I I Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .540 (CFS) Depth of flow = 0.248 (Ft.) , Average velocity = 3.227 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.574 (Ft. ) Flow velocity = 3.23 (Ft/s) Travel time = 1.50 min. TC = 9.65 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot). Runoff Coefficient = 0.839 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.824 (In/Hr) for a 100.0 year storm Subarea runoff = 4.877 (CFS) for 1.520 (Ac.) I Total runoff = 5.727 (CFS) Total area = 1.760 (Ac.) Street flow at end of street = Total (5.727 (CFS) Half street flow at end of street = 2.863 (CFS) Depth of flow = 0.283 (Ft. ) , Average velocity = 3.543 (Ft/s) ' Flow width (from curb towards crown)= 8.318 (Ft.) I Process from Point/Station 7.000 to Point/Station 5.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.760 (Ac.) Runoff from this stream = 5.727 (CFS) Time of concentration = 9.65 min. I Rainfall intensity = 3.824 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. - (CFS) (min) (In/Hr) 1 12 .534 14.86 3.017 I 2 5.727 9.65 3.824 Largest stream flow has longer time of concentration Op = 12.534 + sum of Qb Ia/Ib I 5.727 * 0.789 = 4.518 QP = 17.052 Total of 2 streams to confluence: I Flow rates before confluence point: 12.534 5.727 Area of streams before confluence: 4 .470 1.760 I Results of confluence: Total flow rate = 17.052 (CFS) Time ofconcentration = 14 .858 min. I Effective stream area after confluence = 6.230 (Ac. ) I In I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 5.000 to Point/Station 8.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1263 .500 (Ft. ) I Downstream point/station elevation = 1252 .500 (Ft. ) Pipe length = 450.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.052 (CFS) Nearest computed pipe diameter = 21.00 (In. ) II Calculated individual pipe flow = 17.052 (CFS) Normal flow depth in pipe = 12.80 (In. ) Flow top width inside pipe = 20.49 (In. ) I Critical Depth = 18.16 (In.) Pipe flow velocity = 11.10 (Ft/s) Travel time through pipe = 0.68 min. Time of concentration (TC) = 15.53 min. ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 8.000 I **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 I Stream flow area = 6.230 ( Ac.) Runoff from this stream = 17.052 (CFS) Time of concentration = 15.53 min. Rainfall intensity = 2.944 (In/Hr) IProgram is now starting with Main Stream No. 2 I Process from Point/Station 9.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 190.000 (Ft. ) Top (of initial area) elevation = 1273.000 (Ft. ) Bottom (of initial area) elevation = 1272.100 (Ft. ) Difference in elevation = 0.900 (Ft.) I Slope = 0.00474 s (percent)= 0.47 TC = k(0.390) * ( (lengthA3)/ (elevation change) ] A0.2 Initial area time of concentration = 9.278 min. Rainfall intensity = 3.908 (In/Hr) for a 100.0 year storm 11 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction, soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil(AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.624 (CFS) Total initial stream area = 0.190 (Ac. ) Pervious 'area fraction = 0.500 . Process from Point/Station 10.000 to Point/Station 11.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 1 LP/ Top of street segment elevation = 1269.300 (Ft. ) End of street segment elevation = 1262 .700 (Ft. ) Length of street segment = 255.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 . Street flow is on [2] side(s) of the street ' Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .136 (CFS) ' Depth of flow = 0.254 (Ft. ) , Average velocity = 2 .651 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.893 (Ft. ) Flow velocity = 2.65 (Ft/s) Travel time = 1.60 min. TC = 10.88 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.580 (In/Hr) for a 100.0 year storm ' Subarea runoff = Total runoff = 4 .577 (CFS) for 1.530 (Ac. ) 5.201 (CFS) Total area = 1.720(Ac. ) Street flow at end of street = 5.201 (CFS) Half street flow at end of street = 2.600 (CFS) Depth of flow = 0.292 (Ft. ) , Average velocity = 2.933 (Ft/s) Flow width (from curb towards crown) = 8.777 (Ft. ) Process from Point/Station 10.000 to Point/Station 11.000 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.720 (Ac. ) Runoff from this stream = 5.201(CFS) Time of concentration = 10.88 min. ' Rainfall intensity = 3 .580 (In/Hr) Process from Point/Station 5.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 220.000 (Ft. ) Top (of initial area) elevation = 1268.900 (Ft. ) Bottom (of initial area) elevation = 1263.200 (Ft. ) Difference in elevation = 5.700 (Ft.) Slope = 0.02591 s (percent)= 2 .59 /3s I ' TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.004 min. Rainfall intensity = 4 .562 (In/Hr) for a 100.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Initial subarea runoff = 0.658 (CFS) Total initial stream area = 0.170 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 5.000 to Point/Station 11.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.170 (Ac. ) I Runoff from this stream = 0.658 (CFS) 7.00 Time of concentration = min. Rainfall intensity = 4.562 (In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.201 10.88 3 .580 2 0.658 7.00 4 .562 IIQp stream flow has longer time of concentration Qp = 5.201 + sum of Qb Ia/Ib 0.658 * 0.785 = 0.516 IQp = 5.717 Total of 2 streams to confluence: Flow rates before confluence point: I 5.201 0.658 Area of streams before confluence: 1.720 0.170 Results of confluence: ' Total flow rate = 5.717 (CFS) Time of concentration = 10.881 min. Effective stream area after confluence = 1.890 (Ac. ) Process from Point/Station 11.000 to Point/Station 8.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1263.200 (Ft. ) End of street segment elevation = 1257.900 (Ft. ) El' Length of street segment = 230.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000(Ft. ) IISlope from gutter to grade break (v/hz) = 0.020 I 1317 I ISlope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rateat midpoint of street = 5.989(CFS) Depth of flow = 0.374 (Ft. ) , Average velocity = 3.373 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.881(Ft. ) Flow velocity = 3.37 (Ft/s) ' Travel time = 1.14 min. TC = 12.02 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.832 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.390 (In/Hr) for a 100.0 year storm Subarea runoff = 0.508 (CFS) for 0.180 (Ac. ) I Total runoff = 6.225 (CFS) Total area = 2 .070 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 6.225 (CFS) Depth of flow = 0.378 (Ft.) , Average velocity = 3 .403 (Ft/s) IFlow width (from curb towards crown)= 13.087 (Ft.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 8.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2 .070 (Ac. ) Runoff from this stream = 6.225 (CFS) I Time of concentration = 12.02 min. Rainfall intensity = 3 .390 (In/Hr) Summary of stream data: I Stream Flow rate TC (min) Rainfall Intensity No. (CFS) (In/Hr) ' 1 17.052 15.53 2.944 2 6.225 12.02 3.390 Largest stream flow has longer time of concentration II Qp = 17.052 + sum of Qb Ia/Ib 6.225 * 0.868 = 5.406 Qp = 22 .457 • ' Total of 2 main streams to confluence: Flow rates before confluence point: 17.052 6.225 IIArea of streams before confluence: I 137 1 6.230 2 .070 ' Results of confluence: Total flow rate = 22 .457 (CFS) Time of concentration = 15.533 min. Effective stream area after confluence = 8.300 (Ac. ) ' Process from Point/Station 8.000 to Point/Station 12.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1252 .500 (Ft. ) ' Downstream point/station elevation = 1250.100 (Ft. ) Pipe length = 110.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.457 (CFS) Nearest computed pipe- diameter = 21.00 (In.) ' Calculated individual pipe flow = 22.457 (CFS) Normal flow depth in pipe = 16.50 (In.) Flow top width inside pipe = 17.23 (In. ) Critical Depth = 19.76 (In. ) ' Pipe flow velocity = 11.08 (Ft/s) Travel time through pipe = 0.17 min. Time of concentration (TC) = 15.70 min. Process from Point/Station 12.000 to Point/Station 12.000 ' **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 8.300 (Ac. ) Runoff from this stream = 22 .457 (CFS) Time of concentration = 15.70 min. Rainfall intensity = 2. 927 (In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13 .000 to Point/Station 14.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) ' Top (of initial area) elevation = 1266.000 (Ft. ) Bottom (of initial area) elevation = 1264.700 (Ft.) Difference in elevation = 1.300 (Ft. ) Slope 0.01000 s (percent)= 1.00 ' TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 4 .613 (In/Hr) for a 100.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.626 (CFS) �j ry �JO I ' Total initial stream area = 0.160 (Ac. ) Pervious area fraction = 0.500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** IITop of street segment elevation = 1264.000 (Ft. ) End of street segment elevation = 1255.000 (Ft. ) Length of street segment = 480.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .387 (CFS) Depth of flow = 0.298 (Ft.) , Average velocity = 2 .536 (Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.082 (Ft.) Flow velocity = 2.54 (Ft/s) Travel time = 3.15 min. TC = 10.02 min. II Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .747 (In/Hr) for a 100.0 year storm Subarea runoff = 2 .826 (CFS) for 0.900 (Ac. ) I Total runoff = 3.452 (CFS) area = 1.060(Ac. ) Street flow at end of street = Total Total3 .452 (CFS) Half street flow at end of street = 3 .452 (CFS) Depth of flow = 0.330 (Ft.) , Average velocity = 2 .749 (Ft/s) ' Flow width (from curb towards crown)= 10.675 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 14**.000 to Point/Station 12.000 **** CONFLUENCE OF MINOR STREAMS ** Along Main Stream number: 2 in normal stream number 1 I Stream flow area = 1.060 (Ac. ) Runoff from this stream = 3.452 (CFS) Time of. concentration = 10.02 min. IIRainfall intensity = 3.747 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ IIProcess from Point/Station 15.000 to Point/Station 16.000 _ II 72267.3065 -s' X39 1 **** INITIAL AREA EVALUATION **** Initial area flow distance = 150.000 (Ft. ) Top (of initial area) elevation = 1266.000 (Ft. ) Bottom (of initial area) elevation = 1264.500 (Ft. ) Difference in elevation = 1.500 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] T0.2 Initial area time of concentration = 7.269 min. Rainfall intensity = 4 .470(In/Hr) for a 100.0 year storm ' - SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.530 (CFS) Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 16.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1264.200 (Ft. ) End of street segment elevation = 1256.300 (Ft. ) ' Length of street segment = 580.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 5.469(CFS) Depth of flow = 0.393 (Ft.) , Average velocity = 2 .699 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13 .821(Ft. ) Flow velocity = 2.70 (Ft/s) Travel time = 3 .58 min. TC = 10.85 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .586 (In/Hr) for a 100.0 year storm Subarea runoff = 7.820 (CFS) for 2.610 (Ac. ) Total runoff = 8.350 (CFS) Total area = 2.750 (Ac. ) II IIStreet flow at end of street = 8.350 (CFS) Half street flow at end of street = 8.350 (CFS) Depth of flow = 0.444 (Ft. ) , Average velocity = 2.981 (Ft/s) IIFlow width (from curb towards crown)= 16.385 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 12 .000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 innormal stream number 2 ll Stream flow area = 2.750 (Ac. ) Runoff from this stream = 8.350 (CFS) Time of concentration = 10.85 min. ' Rainfall intensity = 3 .586 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 3.452 10.02 3.747 I 2 8.350 10.85 3.586 Largest stream flow has longer time of concentration Qp = 8.350 + sum of Qb Ia/Ib I 3 .452 * 0.957 = 3 .304 Qp = 11.654 Total of 2 streams to confluence: I Flow rates before confluence point: 3.452 8.350 Area of streams before confluence: 1.060 2 .750 II Results of confluence: Total flow rate = 11.654 (CFS) Time of concentration = 10.851 min. IIEffective stream area after confluence = 3.810 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 12.000 to Point/Station 12 .000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 3 .810 (Ac. ) Runoff from this stream = 11.654 (CFS) Time of concentration = 10.85 min. ' Rainfall intensity = 3 .586 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity IINo. (CFS) (min) (In/Hr) 1 22 .457 15.70 2.927 II 2 11.654 10.85 3.586 Largest stream flow has longer time of concentration Qp = . 22 .457 + sum of IQb Ia/Ib _ II iU/ 11.654 * 0.816 = 9.512 QP = 31.969 ' Total of 2 main streams to confluence: Flow rates before confluence point: 22.457 11.654 ' Area of streams before confluence: 8.300 3 .810 ' Results of confluence: Total flow rate = 31.969 (CFS) Time of concentration = 15.699 min. Effective stream area after confluence = 12.110 (Ac. ) Process from Point/Station 12.000 to Point/Station 17.000 ' **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1255.000 (Ft. ) Downstream point/station elevation = 1229.000 (Ft. ) Pipe length = 330.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 31.969(CFS) Nearest computed pipe diameter = 21.00 (In. ) Calculated individual pipe flow = 31.969(CFS) ' Normal flow depth in pipe = 13.17 (In. ) Flow top width inside pipe = 20.31(In. ) Critical depth could not be calculated. Pipe flow velocity = 20.12 (Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 15.97 min. ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 12 .110 (Ac. ) Runoff from this stream = 31.969 (CFS) Time of concentration = 15.97 min. Rainfall intensity = 2 .899(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 54.000 (Ft.) ' Top (of initial area) elevation = 1333 .000 (Ft.) Bottom (of initial area) elevation = 1308.000 (Ft. ) Difference in elevation = 25.000 (Ft. ) Slope = 0.46296 s (percent)= 46.30 TC = k(0.390) * [ (lengthA3) / (elevation change) ] "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initialarea time of concentration = 5.000 min. Rainfall intensity = 5.491(In/Hr) for a 100.0 year storm /4?- SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.188 (CFS) Total initial stream area = 0.040 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 19.000 to Point/Station 20.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1308.000 (Ft. ) End of street segment elevation = 1284.400 (Ft. ) Length of street segment = 500.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) ' Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) ' Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 0.231(CFS) Depth of flow = 0.110 (Ft. ) , Average velocity = 2 .962 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000 (Ft.) Flow velocity = 2.96(Ft/s) Travel time = 2.81 min. TC = 7.81 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.845 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4 .296 (In/Hr) for a 100.0 year storm ' Subarea runoff = 1.670 (CFS) for 0.460 (Ac. ) Total runoff = 1.858 (CFS) Total area = 0.500(Ac.) Street flow at end of street = 1.858 (CFS) Half street flow at end of street = 1.858 (CFS) Depth of flow = 0.245 (Ft. ) , Average velocity = 3.497 (Ft/s) Flow width (from curb towards crown)= 6.442 (Ft. ) Process from Point/Station 20.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 1 I /43 1 . Top of street segment elevation = 1284 .400 (Ft. ) End of street segment elevation = 1246.400 (Ft. ) Length of street segment = 1440.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4.180 (CFS) Depth of flow = 0.332 (Ft. ) , Average velocity = 3 .276 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.769(Ft. ) Flow velocity = 3.28 (Ft/s) Travel time = 7.33 min. TC = 15.14 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 . ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.986 (In/Hr) for a 100.0 year storm Subarea runoff = 3.078 (CFS) for 1.250 (Ac. ) Total runoff = 4.936 (CFS) Total area = 1.750 (Ac. ) Street flow at end of street = 4.936 (CFS) Half street flow at end of street = 4.936 (CFS) Depth of flow = 0.347 (Ft. ) , Average velocity = 3 .401 (Ft/s) Flow width (from curb towards crown)= 11.555 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.750 (Ac. ) Runoff from this stream = 4.936 (CFS) Time of concentration = 15.14 min. Rainfall intensity = 2 .986 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 21.000 to Point/Station 22 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 32.000 (Ft. ) Top (of initial area) elevation = 1272.000 (Ft. ) Bottom (of initial area) elevation = 1257.000 (Ft. ) Difference in elevation = 15.000 (Ft. ) Slope =. 0.46875 s (percent)= 46.88 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 tyel ' Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. ' Rainfall intensity = 5.491 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.094 (CFS) Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 17.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1257.000 (Ft. ) ' End of street segment elevation = 1247.100 (Ft. ) Length of street segment = 510.000(Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 . Estimated mean flow rate at midpoint of street = 0.111(CFS) Depth of flow = 0.099 (Ft. ) , Average velocity = 1.767 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000 (Ft. ) Flow velocity = 1.77 (Ft/s) Travel time = 4 .81 min. TC = 9.81 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) t Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .790 (In/Hr) for a 100.0 year storm ' Subarea runoff = 1.144 (CFS) for 0.360 (Ac. ) Total runoff = 1.238 (CFS) Total area = 0.380 (Ac.) Street flow at end of street = 1.238 (CFS) ' Half street flow at end of street = 1.238 (CFS) Depth of flow = 0.248 (Ft. ) , Average velocity = 2.258 (Ft/s) Flow width (from curb towards crown) = 6.574 (Ft. ) 1115 I , I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22 .000 to Point/Station 17.000 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.380 (Ac. ) Runoff from this stream = 1.238 (CFS) I Time of concentration = 9.81 min. Rainfall intensity = 3.790 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 4.936 15.14 2.986 2 1.238 9.81 3 .790 Largest stream flow has longer time of concentration I Qp = 4.936 + sum of Qb Ia/Ib 1.238 * 0.788 = 0.975 Qp = 5.911 ' Total of 2 streams to confluence: Flow rates before confluence point: 4.936 1.238 Area of streams before confluence: 1.750 0.380 Results of confluence: Total flow rate = 5.911 (CFS) ' Time of concentration = 15. 139 min. Effective stream area after confluence = 2 .130 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.130 (Ac. ) I Runoff from this stream = 911 (CFS) Ti Tme of concentration = 15.145M in. Rainfall intensity = 2.986 (In/Hr) Program is now starting with Main Stream No. 3 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23 .000 to Point/Station 24.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 420.000 (Ft. ) Top (of initial area) elevation = 1284.000 (Ft. ) I . Bottom (of initial area) elevation = 1230.000 (Ft.) Difference in elevation = 54 .000 (Ft. ) Slope = 0.12857 s (percent) = .12.86 I TC = k(0.530) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 8.948 min. Rainfall intensity = 3 .987 (In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.854 II 10 I ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 86.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 7.895 (CFS) I Total initial stream area = 2 .320 (Ac.) Pervious area fraction = 1.000 Process from Point/Station 24 .000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** IUpstream point/station elevation = 1230.000 (Ft. ) Downstream point/station elevation = 1229.000 (Ft. ) Pipe length = 70.00 (Ft. ) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 7.895 (CFS) Nearest computed pipe diameter = 18.00 (In.) Calculated individual pipe flow = 7.895 (CFS) Normal flow depth in pipe = 10.35 (In. ) I Flow top width inside pipe = 17.80(In.) Critical Depth = 13.06 (In.) Pipe flow velocity = 7.51(Ft/s) Travel time through pipe = 0.16 min. ' Time of concentration (TC) = 9.10 min. I Process from Point/Station 17.000 to Point/Station 17.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.320 (Ac. ) Runoff from this stream = 7.895 (CFS) I Time of concentration = 9.10 min. Rainfall intensity = 3.949(In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 31.969 15.97 2 .899 2 5.911 15.14 2.986 3 7.895 9.10 3.949 Largest stream flow has longer time of concentration I Op = Qb31.969 + sum of Ia/Ib 5.911 * 0.971 = 5.740 Qb Ia/Ib I 7.895 * 0.734 = 5.795 Qp = 43 .505 I Total of 3 main streams to confluence: Flow rates before confluence point: 31.969 5.911 7.895 Area ofstreams before confluence: 12.110 2.130 2.320 _ I 're 02-30 (vS - " 1y7 I II Results of confluence: I Total flow rate = 43 .505 (CFS) Time of concentration = 15.972 min. Effective stream area after confluence = 16.560 (Ac. ) Process from Point/Station 17.000 to Point/Station 17.100 II **** PIPEFLOW TRAVEL TIME (Program estimated size) **** 111 Upstream point/station elevation = 1229.000 (Ft. ) Downstream point/station elevation = 1227.000 (Ft. ) I Pipe length = 200.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 43.505 (CFS) Nearest computed pipe diameter = 30.00 (In. ) Calculated individual pipe flow = 43.505 (CFS) I Normal flow depth in pipe = 26.72 (In. ) Flow top width inside pipe = 18.73 (In. ) Critical Depth = 26.39 (In. ) Pipe flow velocity = 9.42 (Ft/s) I , Travel time through pipe = 0.35 min. Time of concentration (TC) = 16.33 min. Process from Point/Station 17.000 to Point/Station 17.100 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 16.560 (Ac. ) Runoff from this stream = 43.505 (CFS) I Time of concentration = 16.33 min. Rainfall intensity = 2.864 (In/Hr) Process from Point/Station 21. 100 to Point/Station 22 .100 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1258.600 (Ft. ) Bottom (of initial area) elevation = 1257.400 (Ft. ) Difference in elevation = 1.200 (Ft. ) I Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] *0.2 Initial area time of concentration = 6.649 min. Rainfall intensity = 4 .695 (In/Hr) for a 100.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ll Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 . Pervious area fraction = 0.500; Impervious fraction = 0.500 111 Initial subarea runoff = 0.S1B (CFS) Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 I /y8 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22. 100 to Point/Station 17.100 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1257.100 (Ft. ) End of street segment elevation = 1245.400 (Ft. ) I Length of street segment = 720.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width ofhalf street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4 .544 (CFS) I Depth of flow = 0.363 (Ft. ) , Average velocity = 2.767 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12.352 (Ft. ) Flow velocity = 2.77 (Ft/s) I Travel time = 4.34 min. TC = 10.98 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.835 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.562 (In/Hr) for a 100.0 year storm I Subarea runoff = Total runoff = 6.009(CFS) for 2 .020(Ac. ) 6.527 (CFS) Total area = 2 .150 (Ac. ) Street flow at end of street = 6.527 (CFS) Half street flow at end of street = 6.527 (CFS) I Depth of flow = 0.403 (Ft. ) , Average velocity = 3.009 (Ft/s) Flow width (from curb towards crown) = 14 .327 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22 .100 to Point/Station 17.100 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.150 (Ac. ) Runoff from this stream = 6.527 (CFS) I Time of concentration = 10.98 min. Rainfall intensity = 3.562 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 43 .505 16.33 2.864 I 1VQ I II 2 6.527 10.98 3 .562 Largest stream flow has longer time of concentration CFP = 43 .505 + sum of I Qb Ia/Ib 6.527 * 0.804 = 5.249 Qp = 48.754 I Total of 2 streams to confluence: Flow rates before confluence point: 43.505 6.527 I Area of streams before confluence: 16.560 2.150 Results of confluence: Total flow rate = 48.754 (CFS) II Time of concentration = 16.326 min. Effective stream area after confluence = 18.710 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 17.100 to Point/Station 25.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** I Upstream point/station elevation = 1227.000 (Ft. ) Downstream point/station elevation = 1224.400 (Ft. ) Pipe length = 260.00 (Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 48.754 (CFS) I Nearest computed pipe diameter = 33.00 (In. ) Calculated individual pipe flow 48.754 (CFS) Normal flow depth in pipe = 24.98 (In. ) Flow top width inside pipe = 28.30 (In. ) I Critical Depth = 27.64 (In.) Pipe flow velocity = 10.10 (Ft/s) Travel time through pipe = 0.43 min. I Time of concentration (TC) = 16.75 min. End of computations, total study area = 18.71 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. IArea averaged pervious area fraction(Ap) = 0.562 Area averaged RI index number = 71.1 I I . 1 I 1 . I 150 1 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s200 .out ' Redhawk 100-Year Storm Event System 200 Job Number 160097.00.000 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In.) 100 .year, 1 hour precipitation = 1.400 (In. ) ' Storm event year = 100.0 Calculated rainfall intensity data: ' 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 30.000 to Point/Station 31.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 510.000 (Ft. ) ' Top (of initial area) elevation = 1295.400 (Ft. ) Bottom (of initial area) elevation = 1287.800 (Ft. ) Difference in elevation = 7.600 (Ft. ) Slope = 0.01490 s (percent) = 1.49 ' TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 10. 951 min. Rainfall intensity = 3 .568 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.835 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 1.967 (CFS) Total initial stream area = 0.660 (Ac. ) Pervious area fraction = 0.500 /5l II I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31. 000 **** CONFLUENCE OF MAIN STREAMS **** IThe following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.660 (Ac. ) I Runoff from this stream = 1.967 (CFS) Time of concentration = 10.95 min. Rainfall intensity = 3 .568 (In/Hr) IIProgram is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 32.000 to Point/Station 33 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 60.000 (Ft. ) I Top (of initial area) elevation = 1338.000 (Ft. ) Bottom (of initial area) elevation = 1308.100 (Ft. ) Difference in elevation = 29.900 (Ft. ) Slope = 0.49833 s (percent) = 49.83 I TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. I Rainfall intensity = 5.491 (In Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.188 (CFS) Total initial stream area = 0.040 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 33.000 to Point/Station 34 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1308.100 (Ft. ) I - End of street segment elevation = 1304 .500 (Ft. ) Length of street segment 220.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 II . Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning' s N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 0.215 (CFS) I 1S4 II II Depth of flow = 0.131 (Ft. ) , Average velocity = 1.956 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2 .000 (Ft. ) I Flow velocity = 1. 96 (Ft/s) Travel time = 1.87 min. TC = 6.87 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I - Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 4 .609 (In/Hr) for a 100.0 year storm Subarea runoff = 1.134 (CFS) for 0.290 (Ac. ) Total runoff = 1.322 (CFS) Total area = 0.330 (Ac. ) Street flow at end of street = 1.322 (CFS) I Half street flow at end of street = 1.322 (CFS) Depth of flow = 0.258 (Ft. ) , Average velocity = 2 .132 (Ft/s) Flow width (from curb towards crown) = 7.098 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34 .000 to Point/Station 31.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1304.500 (Ft. ) End of street segment elevation = 1286.600 (Ft. ) Length of street segment = 560.000 (Ft. ) II Height of curb above gutter flowline 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0 .020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning' s N in gutter = 0 .0150 I Manning' s N from gutter to grade break = 0.0180 Manning' s N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4 .526 (CFS) Depth of flow = 0.330 (Ft. ) , Average velocity = 3 .592 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.694 (Ft. ) Flow velocity = 3.59(Ft/s) Travel time = 2.60 min. TC = 9.47 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 . • ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .864 (In/Hr) for a 100.0 year storm Subarea runoff = 5. 191 (CFS) for 1.600 (Ac. ) ' Total runoff = 6.513 (CFS) Total area = 1.930 (Ac. ) . I /53 II IStreet flow at end of street = 6.513 (CFS) Half street flow at end of street = 6.513 (CFS) Depth of flow = 0.366 (Ft. ) , Average velocity = 3 .901 (Ft/s) ' Flow width (from curb towards crown) = 12 .464 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 34 .000 to Point/Station 31.000 **** CONFLUENCE OF MAIN STREAMS **** I - The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1. 930 (Ac. ) Runoff from this stream = 6.513 (CFS) I Time of concentration = 9.47 min. Rainfall intensity = 3 .864 (In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 35.000 to Point/Station 36.000 **** INITIAL AREA EVALUATION **** 1 Initial area flow distance = 180.000 (Ft. ) Top (of initial area) elevation = 1308.000 (Ft. ) Bottom (of initial area) elevation = 1304 .000 (Ft. ) I Difference in elevation = 4 .000 (Ft. ) Slope = 0.02222 s (percent) = 2 .22 TC = k(0.390) * ( (length"3) / (elevation change) ] A0.2 Initial area time of concentration = 6.665 min. I Rainfall intensity = 4.688 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.517 (CFS) Total initial stream area = 0.130 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 35.000 to Point/Station 36.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 I Stream flow area = 0.130 (Ac. ) Runoff from this stream = 0.517 (CFS) Time of concentration = 6 .67 min. ' Rainfall intensity = 4 .688 (In/Hr) - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 36.100 to Point/Station 36.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) IITop (of initial area) elevation = 1305 .300 (Ft. ) 154 I ' Bottom (of initial area) elevation = 1304 .000 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent) = 1.00 I TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 6. 865 min. Rainfall intensity = 4 .613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal .fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.548 (CFS) Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.100 to Point/Station 36.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 3 in normal stream number 2 Stream flow area = 0. 140 (Ac. ) Runoff from this stream = 0.548 (CFS) I Time of concentration = 6.87 min. Rainfall intensity = 4.613 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 0.517 6.67 4 .688 2 0.548 6.87 4 .613 Largest stream flow has longer time of concentration I Qp = 0.548 + sum of Qb Ia/Ib 0.517 * 0.984 = 0.509 Qp = 1.057 ITotal of 2 streams to confluence: Flow rates before confluence point: 0.517 0.548 I Area of streams before confluence: 0.130 0.140 Results of confluence: Total flow rate = 1.057 (CFS) I Time of concentration = 6.865 min. Effective stream area after confluence = 0.270 (Ac. ) Process from Point/Station 36.000 to Point/Station 31.000 ****. STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** • II Top of street segment elevation = 1304 .000 (Ft. ) End of street segment elevation = 1286.700 (Ft. ) Length of street segment = 520. 000 (Ft. ) ' Height of curb above gutter flowline = 6 .0 (In. )I re ea3Ob.5- -5 I 1 Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4 .580 (CFS) , Depth of flow = 0.329(Ft. ) , Average velocity = 3 .658 (Ft/s) I Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 10.657 (Ft. ) Flow velocity = 3 .66 (Ft/s) Travel time = 2 .37 min. TC = 9.23 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.919(In/Hr) for a 100.0 year storm Subarea runoff = 5.927 (CFS) for 1. 800 (Ac. ) Total runoff = 6. 984 (CFS) Total area = 2 .070 (Ac. ) I Street flow at end of street = 6.984 ( CFS) Half street flow at end of street = 6.984 (CFS) Depth of flow = 0.371 (Ft. ) , Average velocity = 4 .025 (Ft/s) IFlow width (from curb towards crown) = 12.723 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 36*.000 to Point/Station 31.000 **** CONFLUENCE OF MAIN STREAMS *** The following data inside Main Stream is listed: I In Main Stream number: 3 Stream flow area = 2.070 (Ac. ) Runoff from this stream = 6.984 (CFS) Time of concentration = 9.23 min. I Rainfall intensity = 3 .919(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity INo. (CFS) (min) (In/Hr) 1 1.967 10.95 3 .568 ' 2 6.513 9.47 3 .864 3 6.984 9.23 3 .919 Largest stream flow has longer or shorter time of concentration I Qp = 6.984 + sum of Qa Tb/Ta 1.967 * 0.843 = 1.659 Qa Tb/Ta 6.513 * 0.975 = 6.349 _ I is' I IQp = 14. 992 Total of 3 main streams to confluence: I Flow rates before confluence point: 1.967 6.513 6.984 Area of streams before confluence: 0 .660 1.930 2 .070 I Results of confluence: ' Total flow rate = 14.992 (CFS) Time of concentration = 9.234 min. Effective stream area after confluence - 4.660 (Ac. ) Process from Point/Station 31.000 to Point/Station 31.300 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** IUpstream point/station elevation = 1281.700 (Ft. ) Downstream point/station elevation = 1277.400 (Ft. ) Pipe length = 170.00 (Ft. ) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 14 .992 (CFS) Nearest computed pipe diameter 18.00 (In.) Calculated individual pipe flow = 14.992 (CFS) Normal flow depth in pipe = 13 .31 (In. ) ' Flow top width inside pipe = 15.80(In.) Critical Depth = 16.86 (In. ) Pipe flow velocity = 10.69(Ft/s) Travel time through pipe = 0..26 min. ITime of concentration (TC) = 9.50 min. Process from Point/Station 31.000 to Point/Station 31.300 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 1 Stream flow area = 4.660 (Ac. ) Runoff from this stream = 14.992 (CFS) Time of concentration = 9.50 min. ' Rainfall intensity = 3.858 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 31. 100 to Point/Station 31.200 **** INITIAL AREA EVALUATION **** Initial area flow distance = 24 .000 (Ft. ) I Top (of initial area) elevation = 1311. 800 (Ft. ) Bottom (of initial area) . elevation = 1300.000 (Ft. ) Difference in elevation = 11.800 (Ft. ) I Slope = 0 .49167 s (percent) = 49.17 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time ofconcentration is 5 minutes. I Initial area time of concentration = 5.000 min. Rainfall intensity = 5.491 In Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 856 ' Decimal fraction soil group A = 0.000 I 117 I IDecimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.094 (CFS) Total initial stream area = 0.020 (Ac. ) IPervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.200 to Point/Station 31.300 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1300.000 (Ft. ) Downstream point/station elevation = 1283 .000 (Ft. ) Pipe length = 300.00 (Ft. ) Manning's N = 0.018 No. of pipes = 1 Required pipe flow = 0.094 (CFS) I Given pipe size = 36.00 (In. ) Calculated individual pipe flow = 0.094 (CFS) Normal flow depth in pipe = 0.79 (In. ) Flow top width inside pipe = 10.55 (In. ) I Critical depth could not be calculated. Pipe flow velocity = 2 .43 (Ft/s) Travel time through pipe = 2.06 min. ' Time of concentration (TC) = 7.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.200 to Point/Station 31.300 I **** SUBAREA FLOW ADDITION **** SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1. 000 I Decimal fraction soil group D = 0 .000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 7.06 min. I Rainfall intensity = Subarea runoff = 4 .543 (In/Hr) for a 100.0 year storm 1.117 (CFS) for 0.290 (Ac. ) Total runoff = 1.211 (CFS) Total area = 0.310 (Ac. ) Process from Point/Station 31.200 to Point/Station 31.300 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.310 (Ac. ) I Runoff from this stream = 1.21l (CFS) Time of concentration = 7.06 min. Rainfall intensity = 4 .543 (In/Hr) Summary of stream data: . I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) /SS I I1 14.992 9.50 3.858 2 1.211 7 .06 4 .543 Largest stream flow has longer time of concentration I Qp = Q14b . 992 + sum of Ia/Ib 1.211 * 0.849 = 1.028 Qp = 16.020 I Total of 2 streams to confluence: Flow. rates before confluence point: I . 14 .992 1.211 Area of streams before confluence: 4.660 0.310 Results of confluence: I Total flow rate = 16.020 (CFS) Time of concentration = 9.499 min. Effective stream area after confluence = 4 .970 (Ac. ) Process from Point/Station 31.300 to Point/Station 37.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** IUpstream point/station elevation = 1277.000 (Ft. ) Downstream point/station elevation = 1266.700 (Ft. ) Pipe length = 260. 00 (Ft. ) Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 16.020 (CFS) Nearest computed pipe diameter = 18.00 (In. ) Calculated individual pipe flow = 16.020 (CFS) Normal flow depth in pipe = 11.81 (In. ) I Flow top width inside pipe = 17.10 (In. ) Critical Depth = 17.10 (In. ) Pipe flow velocity = 13 .04 (Ft/s) I Travel time through pipe = 0.33 min. Time of concentration (TC) = 9.83 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.300 to Point/Station 37 .000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4 .970 (Ac. ) Runoff from this stream = 16.020 (CFS) II Time of concentration = 9.83 min. Rainfall intensity = 3 .786 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. ,(CFS) (min) (In/Hr) I 1 16.020 9.83 3.786 Largest stream flow has longer time of concentration Qp = 16.020 + sum of ' Qp = 16.020 Total of 1 main streams to confluence: Flow rates before confluence point: I 16.020 is9 I IArea of streams before confluence: 4 .970 ' Results of confluence: Total flow rate = 16.020 (CFS) Time of concentration = 9.831 min. I Effective stream area after confluence = 4 .970 (Ac. ) Process from Point/Station 31.000 to Point/Station 37.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 380.000 (Ft. ) Top (of initial area) elevation = 1286.000 (Ft. ) Bottom (of initial area) elevation = 1274.000 (Ft. ) Difference in elevation = 12 .000 (Ft. ) I Slope = 0.03158 s (percent)= 3.16 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 8.377 min. Rainfall intensity = 4 .134 (In/Hr) for a 100.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 1.324 (CFS) Total initial stream area = 0.380 (Ac. ) Pervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 37.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.380 (Ac. ) I Runoff from this stream = 1.324 (CFS) 8.38 Time of concentration = min. Rainfall intensity = 4. 134 (In/Hr) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 39.000 **** INITIAL AREA EVALUATION **** IInitial area flow distance = 110.000 (Ft. ) Top (of initial area) elevation = 1291.400 (Ft. ) Bottom (of initial area) elevation = 1090.300 (Ft. ) I Difference in elevation = 201.100 (Ft. ) Slope = 1.82818 s (percent) = 182 .82 TC = k(0.390) * [ (length"3) / (elevation change) ) "0.2 I Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.491 (In/Hr) for a 100.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) _ ibo I ' Runoff Coefficient = 0 .856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.423 (CFS) Total initial stream area = 0.090 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 39.000 to Point/Station 37.000 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1290.300 (Ft. ) End of street segment elevation = 1273 .500 (Ft. ) I Length of street segment = 980.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.059(CFS) I Depth of flow = 0.241 (Ft. ) , Average velocity = 2 .087 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.256 (Ft. ) Flow velocity = 2.09 (Ft/s) I Travel time = 7.83 min. TC = 12.83 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .271 (In/Hr) for a 100.0 year storm Subarea runoff = 8. 175 (CFS) for 3.010 (Ac. ) II Total runoff = 8.598 (CFS) area = 3. 100 (Ac. ) Street flow at end of street = Total Total (CFS) Half street flow at end of street = 8.598 (CFS) IIDepth of flow = 0.433 (Ft. ) , Average velocity = 3 .277 (Ft/s) Flow width (from curb towards crown)= 15.834 (Ft. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 37.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 II II 14/ I I Stream flow area = 3 .100 (Ac. ) Runoff from this stream = 8.598 (CFS) Time of concentration = 12 .83 min. ' Rainfall intensity = 3 .271 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No: (CFS) (min) (In/Hr) 1 1.324 8.38 4 .134 2 8.598 12. 83 3.271 Largest stream flow has longer time of concentration , Op = 8.598 + sum of ' Qb Ia/Ib 1.324 * 0.791 = 1.048 Qp = 9.646 I Total of 2 streams to confluence: Flow rates before confluence point: 1.324 8.598 Area of streams before confluence: ' 0.380 Results 3.100 of confluence: Total flow rate = 9.646 (CFS) Time of concentration = 12 .825 min. IEffective stream area after confluence = 3.480 (Ac. ) Process from Point/Station 37.000 to Point/Station 37.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3 .480 (Ac. ) Runoff from this stream = 9.646 (CFS) I Time of concentration = 12.83 min. Rainfall intensity = 3 .271 (In/Hr) Program is now starting with Main Stream No. 3 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 41.000 **** INITIAL AREA EVALUATION **** IIInitial area flow distance = 145.000 (Ft. ) Top (of initial area) elevation = 1291.400 (Ft. ) Bottom (of initial area) elevation = 1289.950 (Ft. ) I Difference in elevation = 1.450 (Ft. ) Slope = 0.01000 s (percent) = 1. 00 TC = k(0.390) * [ (lengthA3) / (elevation change) ] A0.2 ' Initial area time of concentration = 7.172 min. Rainfall intensity = 4.503 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 • Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) _ 69.00 II IPervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.725 (CFS) Total initial stream area = 0.190 (Ac. ) IIPervious area fraction = 0.500 I Process from Point/Station 41.000 to Point/Station 42 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' . Top of street segment elevation = 1290.300 (Ft. ) End of street segment elevation = 1279.600 (Ft. ) Length of street segment = 630.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 II Estimated mean flow rate at midpoint of street = 5.131(CFS) Depth of flow = 0.374 (Ft. ) , Average velocity = 2.895 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12 .670 (Ft. ) ' Flow velocity = 2 .89(Ft/s) Travel time = 3.63 min. TC = 10.80 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Rainfall intensity = Subarea runoff = 3 .595 (In/Hr) for a 100.0 year storm 6.941 (CFS) for 2 .310 (Ac. ) Total runoff = 7.666 (CFS) Total area = 2.500 (Ac. ) Street flow at end of street = 7.666 (CFS) ' Half street flow at end of street = 7.666 (CFS) Depth of flow = 0.419 (Ft. ) , Average velocity = 3 .178 (Ft/s) Flow width (from curb towards crown) = 15. 151 (Ft. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ • Process from Point/Station 42 .000 to Point/Station 37.100 II **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1274 .600 (Ft. ) Downstream point/station elevation = 1266.700 (Ft. ) I Pipe length = 360.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.666 (CFS) Nearest computed pipe diameter = 15.00 (In. ) Calculated individual pipe flow = 7.666 (CFS) ' Normal flow depth in pipe = 10. 16 (In. ) Ure .`j -id-S 1103 II Flow top width inside pipe = 14 .02 (In. ) Critical Depth = 13.18 (In. ) Pipe flow velocity = 8.67 (Ft/s) I - Travel time through pipe = 0.69 min. Time of concentration (TC) = 11.49 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 42 .000 to Point/Station 37.100 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2 .500 (Ac. ) Runoff from this stream = 7.666 (CFS) I Time of concentration = 11.49 min. Rainfall intensity = 3.475 (In/Hr) Process from Point/Station 43.000 to Point/Station 44 .000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1280.500 (Ft. ) Bottom (of initial area) elevation = 1279.500 (Ft. ) Difference in elevation = 1.000 (Ft. ) I Slope = 0.00769 s (percent)= 0.77 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.235 min. I Rainfall intensity = 4 .482 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.569 (CFS) Total initial stream area = 0 .150 (Ac. ) Pervious area fraction = 0.500 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 44 .000 to Point/Station 37.100 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1279.000 (Ft. ) End of street segment elevation = 1274 .400 (Ft. ) II Length of street segment = 290.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side (s) of the street II Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter -hike from flowline = 1.875 (In. ) ' Manning's N in gutter = 0.0150 . II IManning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .163 (CFS) ' Depth of flow = 0.297 (Ft. ) , Average velocity = 2.326 (Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 9.022 (Ft. ) Flow velocity = 2.33 (Ft/s) I . Travel time = 2.08 min. TC = 9.31 min. Adding area flow to street . SINGLE FAMILY (1/4 Acre Lot) . Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .900 (In/Hr) for a 100.0 year storm ' Subarea runoff = 2 .752 (CFS) for 0.840 (Ac. ) Total runoff = 3 .322 (CFS) Total area = 0.990 (Ac. ) Street flow at end of street = 3.322 (CFS) Half street flow at end of street = 3.322 (CFS) II Depth of flow = 0.334 (Ft. ) , Average velocity = 2.554 (Ft/s) Flow width (from curb towards crown) = 10.883 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.100 to Point/Station 37.100 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.990 (Ac. ) Runoff from this stream = 3 .322 (CFS) II Time of concentration = 9.31 min. Rainfall intensity = 3 .900 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 7.666 11.49 9.31 3 .475 2 3 .322 3. 900 Largest stream flow has longer time of concentration OP = 7.666 + sum of ' Qb Ia/Ib 3 .322 * 0.891 = 2 .959 QP = 10.625 I Total of 2 streams to confluence: • Flow rates before confluence point: 7.666 3.322 ' Area of streams before confluence: 2 .500 0. 990 Results of confluence: Total flow rate = 10.625 (CFS) ' Time of concentration = 11.491 min. Effective stream area after confluence = 3.490 (Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ _ II /05 I II Process from Point/Station . 37.100 to Point/Station 37.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 3 .490 (Ac. ) Runoff from this stream = 10.625 (CFS) II Time of concentration = 11.49 min. Rainfall intensity = 3 .475 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.020 9.83 3.786 2 9.646 12.83 3.271 3 10.625 11.49 3 .475 I Largest stream flow has longer or shorter time of concentration QP = 16.020 + sum of Qa Tb/Ta 9.646 * 0.767 = 7.394 I Qa Tb/Ta 10.625 * 0.856 = 9.090 Qp = 32 .504 I Total of 3 main streams to confluence: Flow rates before confluence point: 16.020 9.646 10.625 Area of streams before confluence: I 4 .970 3.480 3.490 I Results of confluence: Total flow rate = 32 .504 (CFS) Time of concentration = 9.831 min. Effective stream area after confluence = 11.940 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37. 000 to Point/Station 45.000 I **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1266.700 (Ft. ) Downstream point/station elevation = 1238.200 (Ft. ) I Pipe length = 490.00 (Ft. ) Manning's N = 0. 013 No. of pipes = 1 Required pipe flow = 32 .504 (CFS) Nearest computed pipe diameter = 21.00 (In. ) Calculated individual pipe flow = 32 .504 (CFS) I Normal flow depth in pipe = 14 .88 (In. ) Flow top width inside pipe = 19.08 (In. ) Critical depth could not be calculated. Pipe flow velocity = 17.84 (Ft/s) II Travel time through pipe = 0.46 min. Time of concentration (TC) = 10.29 min. Process from Point/Station 37.000 to Point/Station 45.000 **** CONFLUENCE OF MAIN STREAMS **** II /1,4 II ' The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 11.940 (Ac. ) • I Runoff from this stream = 32.504 (CFS) Time of concentration = 10.29 min. Rainfall intensity = 3 .692 (In/Hr) IIProgram is now starting with Main Stream No. 2 ' Process from Point/Station 46.000 to Point/Station 47.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) ' Top (of initial area) elevation = 1267.500 (Ft. ) Bottom (of initial area) elevation = 1266.200 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent) = 1.00 I TC = k(0.390) * [ (lengthA3) / (elevation change) ] A0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 4 .613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.626 (CFS) I Total initial stream area = 0. 160 (Ac. ) i Pervious area fraction = 0.500 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 47 .000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** IITop of street segment elevation = 1266.500 (Ft. ) End of street segment elevation = 1243.200 (Ft. ) Length of street segment = 410.000 (Ft. ) II Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0. 020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 II Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1. 875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0. 0180 ' Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .326 (CFS) Depth of flow = 0.280 (Ft. ) , Average velocity = 4 .215 (Ft/s) • I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.202 (Ft. ) Flow velocity = 4 .22 (Ft/s) Travel time = 1.62 min. TC = 8.49 min. ' Adding area flow to street _ II ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.105 (In/Hr) for a 100.0 year storm Subarea runoff = 4 .774 (CFS) for 1.380 (Ac. ) I Total runoff = 5.400 (CFS) Total area = 1.540 (Ac. ) Street flow at end of street = 5.400 (CFS) Half street flow at end of street = 5.400 (CFS) Depth of flow = 0.320 (Ft. ) , Average velocity = 4 .674 (Ft/s) ' Flow width (from curb towards crown) = 10.194 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 47.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 . ' Stream flow area = 1.540 (Ac. ) Runoff from this stream .. 5.400 (CFS) Time of concentration = 8.49 min. Rainfall intensity = 4 .105 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 48.000 to Point/Station 48.100 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 150.000 (Ft. ) . Top (of initial area) elevation = 1254.700 (Ft. ) Bottom (of initial area) elevation = 1253 .200 (Ft. ) Difference in elevation = 1.500 (Ft. ) Slope = 0.01000 s (percent) = 1.00I TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Initial area time of concentration = 7.269 min. Rainfall intensity = 4 .470 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.568 (CFS) II Total initial stream area = 0.150 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 48.100 to Point/Station 49.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1253 .000 (Ft. ) End of street segment elevation = 1246.500 (Ft. ) Length of street segment = 320.000 (Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) II /68 ' Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0 . 020 ' Slope from grade break to crown (v/hz) = 0. 020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning' s N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2.044 (CFS) Depth of flow = 0.282 (Ft. ) , Average velocity = 2.534 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.308 (Ft. ) Flow velocity = 2 .53 (Ft/s) Travel time = 2.10 min. TC = 9.37 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.886 (In/Hr) for a 100.0 year storm Subarea runoff = 2 .546 (CFS) for 0.780 (Ac. ) Total runoff = 3. 114 (CFS) Total area = 0.930 (Ac. ) Street flow at end of street = 3 .114 ( CFS) Half street flow at end of street = 3. 114 (CFS) Depth of flow = 0.317 (Ft. ) , Average velocity = 2.772 (Ft/s) Flow width (from curb towards crown) = 10.035 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 49.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.500 (Ft. ) End of street segment elevation = 1243.200 (Ft. ) Length of street segment = 405.000 (Ft. ) Height of curb above gutter flowline = 6. 0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0. 020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.867 (CFS) Depth of flow = 0.383 (Ft. ) , Average velocity = 2.044 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13 .324 (Ft. ) Flow velocity = 2 .04 (Ft/s) I Im9 I ITravel time = 3 .30 min. TC = 12.68 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.831 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0 .000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0. 000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 1 Rainfall intensity = 3 .292 (In/Hr) for a 100.0 year storm Subarea runoff = 1.231 (CFS) for 0.450 (Ac. ) Total runoff = 4 .345 (CFS) Total area = 1.380 (Ac. ) Street flow at end of street = 4 .345 (CFS) ' Half street flow at end of street = 4.345 (CFS) Depth of flow = 0.396 (Ft. ) , Average velocity = 2. 100 (Ft/s) Flow width (from curb towards crown) = 13.972 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 49.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 2 in normal stream number 2 • Stream flow area = 1.380 (Ac. ) Runoff from this stream = 4.345 (CFS) I Time of concentration = 12.68 min. Rainfall intensity = 3 .292 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5 .400 8 .49 4 . 105 2 4.345 12.68 3.292 Largest stream flow has longer or shorter time of concentration I Qp = 5.400 + sum of Qa Tb/Ta 4 .345 * 0.669 = 2.909 Qp = 8.309 ,, Total of 2 streams to confluence: Flow rates before confluence point: 5 .400 4 .345 I Area of streams before confluence: 1.540 1.380 Results of confluence: Total flow rate = 8.309 (CFS) I Time of concentration = 8.486 min. Effective stream area after confluence = 2 .920 (Ac. ) Process from Point/Station 45.000 to Point/Station 45.000 **** CONFLUENCE OF MAIN STREAMS ****- 1 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2 . 920 (Ac. ) ' Runoff from this stream = 8.309 (CFS) _ I . 00 1 Time of concentration = 8.49 min. Rainfall intensity = 4.105 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 32 .504 10.29 3.692 2 8 .309 8.49 4.105 t Largest stream flow has longer time of concentration QP = 32 .504 + sum of 01302 .504 b Ia/Ib 8.309 * 0. 899 = 7 .473 ' QP = 39.977 Total of 2 main streams to confluence: Flow rates before confluence point: ' 32 .504 8.309 Area of streams before confluence: 11.940 2.920 11 Results of confluence: Total flow rate = 39.977 (CFS) ' Time of concentration = 10.289 min. Effective stream area after confluence = 14.860 (Ac. ) End of computations, total study area = 14 .86 (Ac. ) The following figures may ' be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 1 1 1 ne023o65 -5 /7/ Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s300.out ' Redhawk 100-Year Storm Event System 300 • Job Number 160097.00 . 000 ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 ' Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400 (In. ) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 51.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 440.000 (Ft. ) Top (of initial area) elevation = 1289.300 (Ft. ) Bottom (of initial area) elevation = 1280.000 (Ft. ) Difference in elevation = 9.300 (Ft. ) Slope = 0.02114 s (percent) = 2 .11 ' TC = k(0.390) * [ (lengthA3)/ (elevation change) ) A0.2 • Initial area time of concentration = 9.626 min. Rainfall intensity = 3 .830 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.839 Decimal fraction soil group A = 0. 000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 1.028 (CFS) Total initial stream area = 0.320 (Ac. ) Pervious area fraction = 0.500 /7.2 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 51.000 to Point/Station 52 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1280.000 (Ft. ) End of street segment elevation = 1251.500 (Ft. ) Length of street segment = 500.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.085 (CFS) Depth of flow = 0.275 (Ft. ) , Average velocity = 4.156 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.913 (Ft. ) Flow velocity = 4.16 (Ft/s) Travel time = 2 .00 min. TC = 11.63 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.833 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .452 (In/Hr) for a 100.0 year storm Subarea runoff = 3 .682 (CFS) for 1.280 (Ac. ) I Total runoff = 4 .711 (CFS) area = 1.600 (Ac. ) Street flow at end of street = Total- (4 .711 (CFS) Half street flow at end of street = 4 .711 (CFS) Depth of flow = 0.308 (Ft. ) , Average velocity = 4 .542 (Ft/s) IIFlow width (from curb towards crown) = 9.597 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 51*.000 to Point/Station 52 . 000 **** CONFLUENCE OF MAIN STREAMS *** The following data inside Main Stream is listed: I In Main Stream number: 1 Stream flow area = 1.600 (Ac. ) Runoff from this stream = 4.711 (CFS) I . Time of concentration = 11.63 min. Rainfall intensity = 3 .452 (In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 53 . 000 to Point/Station 54 .000 **** INITIAL AREA EVALUATION **** I X73 i Initial area flow distance = 160.000 (Ft. ) Top (of initial area) elevation = 1284 .500 (Ft. ) Bottom (of initial area) elevation = 1282 .900 (Ft. ) ' Difference in elevation = 1.600 (Ft. ) Slope = 0 . 01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 ' Initial area time of concentration = 7 .460 min. Rainfall intensity = 4 .407 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 t RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.708 (CFS) Total initial stream area = 0. 190 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 54 .000 to Point/Station 55.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1283 .400 (Ft. ) End of street segment elevation = 1272 .200 (Ft. ) Length of street segment = 460.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1. 875 (In. ) Manning' s N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .666 (CFS) Depth of flow = 0.296 (Ft. ) , Average velocity = 2 .878 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.000 (Ft. ) Flow velocity = 2.88 (Ft/s) Travel time = 2 .66 min. TC = 10. 12 min. Adding area flow to street ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 t Rainfall intensity = 3 .725 (In/Hr) for a 100.0 year storm Subarea runoff = 3.277 (CFS) for 1.050 (Ac. ) Total runoff = 3 .985 (CFS) Total area = 1.240 (Ac. ) Street flow at end of street = 3 .985 (CFS) Half street flow at end of street = 3 . 985 (CFS) I /74 I II Depth of flow = 0.331 (Ft. ) , Average velocity = 3 .142 (Ft/s) Flow width (from curb towards crown) = 10.735 (Ft. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 54 .000 to Point/Station 55.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.240 (Ac. ) II Runoff from this stream = 3 .985 (CFS) Time of concentration = 10.12 min. Rainfall intensity = 3.725 (In/Hr) Process from Point/Station 56.000 to Point/Station 57 .000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 140.000 (Ft. ) Top (of initial area) elevation = 1277.000 (Ft. ) Bottom (of initial area) elevation = 1275.600 (Ft. ) ' Difference in elevation = 1.400 (Ft. ) Slope = 0.01000 s(percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 7.072 min. I Rainfall intensity = 4 .538 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.808 (CFS) Total initial stream area = 0.210 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 57.000 to Point/Station 55.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1276.000 (Ft. ) ' End of street segment elevation = 1272.200 (Ft. ) Length of street segment = 200.000 (Ft.) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 IIStreet flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 IIEstimated mean flow rate at midpoint of street = 1.173 (CFS) I /75 75 II ' Depth of flow = 0.245 (Ft. ) , Average velocity = 2 .217 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.426 (Ft. ) I Flow velocity = 2.22 (Ft/s) Travel time = 1.50 min. TC = 8.58 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.842 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 4 .082 (In/Hr) for a 100.0 year storm Subarea runoff = 0.653 (CFS) for 0.190 (Ac. ) Total runoff = 1.461 (CFS) Total area = 0.400 (Ac. ) Street flow at end of street = 1.461 (CFS) I Half street flow at end of street = 1.461 (CFS) Depth of flow = 0.260 (Ft. ) , Average velocity = 2.308 (Ft/s) Flow width (from curb towards crown)= 7.189 (Ft. ) Process from Point/Station 57.000 to Point/Station 55.000 **** CONFLUENCE OF MINOR STREAMS **** IIAlong Main Stream number: 2 in normal stream number 2 Stream flow area = 0.400 (Ac. ) Runoff from this stream = 1.461 (CFS) I . Time of concentration = 8 .58 min. Rainfall intensity = 4 .082 (In/Hr) Process from Point/Station 58.000 to Point/Station 59.000 **** INITIAL AREA EVALUATION **** IInitial area flow distance = - 160.000 (Ft.) Top (of initial area) elevation = 1277.000 (Ft. ) Bottom (of initial area) elevation = 1275.400 (Ft. ) I Difference in elevation = 1.600 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] -0.2 Initial area time of concentration = 7.460 min. I Rainfall intensity = 4 .407 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0 .000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0 .559(CFS) Total initial stream area = 0.150 (Ac. ) IPervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 59.000 to Point/Station 55.000 _ II II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1276.000 (Ft. ) II End of street segment elevation = 1272 .200 (Ft. ) Length of street segment = 200.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I. Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 1.324 (CFS) Depth of flow = 0.253 (Ft. ) , Average velocity = 2 .266 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.841 (Ft.) ' Flow velocity = 2.27 (Ft/s) Travel time = 1.47 min. TC = 8.93 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0 . 841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil. group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Rainfall intensity = 3.991 (In/Hr) for a 100.0 year storm Subarea runoff = 1.377 (CFS) for 0.410 (Ac. ) Total runoff = 1.936 (CFS) Total area = 0.560 (Ac. ) Street flow at end of street = 1.936 (CFS) II Half street flow at end of street = 1. 936 (CFS) Depth of flow = 0.281 (Ft. ) , Average velocity = 2 .441 (Ft/s) Flow Width (from curb towards crown) = 8.228 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 59.000 to Point/Station 55.000 *.*** CONFLUENCE OF MINOR STREAMS **** IIAlong Main Stream number: 2 in normal stream number 3 Stream flow area = 0.560 (Ac. ) Runoff from this stream = 1. 936 (CFS) I Time of concentration = 8.93 min. Rainfall intensity = 3 .991 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 3 .985 10.12 3 .725 2 1.461 8 .58 4 .082 3 1.936 8.93 3 .991 ' Largest stream flow has longer time of concentration II 177 II QP = 3 .985 + sum of Qb Ia/Ib 1.461 * 0. 913 = 1.334 I Qb Ia/Ib 1.936 * 0.933 = 1. 807 Qp = 7.126 II Total of 3 streams to confluence: Flow rates before confluence point: 3. 985 1.461 1.936 ' Area of streams before confluence: 1.2400.400 0.560 Results of confluence: Total flow rate = 7.126 (CFS) I Time of concentration = 10.123 min. Effective stream area after confluence = 2 .200 (Ac. ) Process from Point/Station 55.000 to Point/Station 60.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1272.200 (Ft. ) End of street segment elevation = 1265.300 (Ft. ) Length of street segment = 270.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20 .000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 10. 000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 ' Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 7 .434 (CFS) Depth of flow = 0.392 (Ft. ) , Average velocity = 3 .690 (Ft/s) Streetflow hydraulics at midpoint of street travel : I Halfstreet flow width = 13.777 (Ft. ) Flow velocity = 3 .69(Ft/s) Travel time = 1.22 min. TC = 11.34 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.500 (In/Hr) for a 100.0 year storm Subarea runoff = 0.555 (CFS) for 0.190 (Ac. ) Total runoff = 7 .681 (CFS) Total area = 2 .390 (Ac. ) ' Street flow at end of street = 7 .681 (CFS) Half street flow at end of street = 7.681 (CFS) Depth of flow = 0.395 (Ft. ) , Average velocity = 3 .718 (Ft/s) Flow width (from curb towards crown) = 13 .962 (Ft. ) II i7V II I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 52 . 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ***" Top of street segment elevation = 1265.300 (Ft. ) I End of street segment elevation = 1251.500 (Ft. ) Length of street segment = 300.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 , Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 9.577 (CFS) I Depth of flow = 0.387 (Ft. ) , Average velocity = 4 .904 (Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 13 .551 (Ft. ) Flow velocity = 4 .90 (Ft/s) I Travel time = 1.02 min. TC = 12 .36 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.832 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0 .000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .338 (In/Hr) for a 100. 0 year storm I Subarea runoff = 3.275 (CFS) for 1. 180 (Ac. ) Total runoff = 10.956 (CFS) Total area = 3 .570(Ac. ) Street flow at end of street = 10.956 (CFS) Half street flow at end of street = 10. 956 (CFS) IIDepth of flow = 0.403 (Ft. ) , Average velocity = 5.061 (Ft/s) Flow width (from curb towards crown) = 14 .313 (Ft. ) Process from Point/Station 60.000 to Point/Station 52. 000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3 .570 (Ac. ) ' Runoff from this stream = 10.956 (CFS) Time of concentration = 12.36 min. Rainfall intensity = 3 .338 (In/Hr) Program is now starting with Main Stream No. 3 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 61.000 to Point/Station 62.000 II **** INITIAL AREA EVALUATION **** _ II 7',�,23o6S -s /79 II II Initial area flow distance = 150.000 (Ft. ) Top (of initial area) elevation = 1284.700 (Ft. ) ' Bottom (of initial area) elevation = 1283 .200 (Ft. ) Difference in elevation = 1.500 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 II Initial area time of concentration = 7.269 min. Rainfall intensity = 4 .470 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) II Runoff Coefficient = 0.847 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.681 (CFS) II Total initial stream area = 0.180 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 62. 000 to Point/Station 63 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1283 .500 (Ft. ) End of street segment elevation = 1264 .400 (Ft. ) Length of street segment = 860.000 (Ft. ) Height of curb above gutter flowline = 6. 0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 II Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 6.226 (CFS) Depth of flow = 0.380 (Ft. ) , Average velocity = 3 .356 (Ft/s) Streetflow hydraulics at midpoint of street travel : I Halfstreet flow width = 13 . 188 (Ft. ) Flow velocity = 3 .36 (Ft/s) Travel time = 4 .27 min. TC = 11.54 min. Adding area flow to street II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.634 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69. 00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .466 (In/Hr) for a 100.0 year storm Subarea runoff = 8 .468 (CFS) for 2 .930 (Ac. ) Total runoff = 9. 149 (CFS) Total area = 3 .110 (Ac. ) ' Street flow at end of street = 9.149 (CFS) II IHalf street flow at end of street = 9.149 (CFS) Depth of flow = 0.425 (Ft. ) , Average velocity = 3 .671 (Ft/s) Flow width (from curb towards crown) = 15 .413 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 63 .000 to Point/Station 52 .000 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top, of street segment elevation = 1264 .400 (Ft. ) I End of street segment elevation = 1251.500 (Ft. ) Length of street segment = 310.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000.(Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1) side (s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning' s N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 10.502 (CFS) I Depth of flow = 0.403 (Ft. ) , Average velocity = 4 .822 (Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 14 .359 (Ft. ) I Flow velocity = 4.82 (Ft/s) Travel time = 1.07 min. TC = 12 .61 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.831 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0 .500 Rainfall intensity = 3 .301 (In/Hr) for a 100.0 year storm 1 Subarea runoff = 2 .523 (CFS) for 0. 920 (Ac. ) Total runoff = 11.672 (CFS) Total area = 4 .030 (Ac. ) Street flow at end of street = 11.672 (CFS) Half street flow at end of street = 11.672 (CFS) I Depth of flow = 0.416 (Ft. ) , Average velocity = 4 .943 (Ft/s) Flow width (from curb towards crown)= 14 .984 (Ft. ) Process from Point/Station 63 .000 to Point/Station 52 .000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4 .030 (Ac. ) I Runoff from this stream = 11.672 (CFS) Time of concentration = 12 .61 min. Rainfall intensity = 3 .301 (In/Hr) Summary. of stream data: I II /0/ II IIStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 4.711 11.63 3 .452 2 10.956 12 .36 3 .338 3 11.672 12 .61 3 .301 II Largest stream flow has longer time of concentration QP = 11.672 + sum of Qb Ia/Ib 4.711 * 0. 956 = 4.505 II Qb Ia/Ib 10.956 * 0.989 = 10.836 QP = 27.013 IITotal of 3 main streams to confluence: Flow rates before confluence point: 4.711 10.956 11.672 II Area of streams before confluence: 1.600 3 .570 4.030 II Results of confluence: Total flow rate = 27 .013 (CFS) Time of concentration = 12 .612 min. Effective stream area after confluence = 9.200 (Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 52.000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1251.500 (Ft. ) ' End of street segment elevation = 1242 .300 (Ft. ) Length of street segment = 160.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street II Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) II Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0. 0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 27.248 (CFS) II Depth of flow = 0.512 (Ft. ) , Average velocity = 6.768 (Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.58 (Ft. ) I Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 19.765 (Ft. ) Flow velocity = 6.77 (Ft/s) Travel time = 0.39 min. TC = 13.01 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A = 0.000 llDecimal fraction soil group B = 0 . 000 _ II /0 1 1 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .246 (In/Hr) for a 100.0 year storm Subarea runoff = - 0.431 (CFS) for 0.160 (Ac. ) Total runoff = 27.444 (CFS) Total area = 9.360 (Ac. ) li Street flow at end of street = 27.444 (CFS) Half street flow at end of street = 27.444 (CFS) Depth of flow = 0.513 (Ft. ) , Average velocity= 6.772 (Ft/s) II Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.64 (Ft. ) Flow width (from curb towards crown)= 19.830 (Ft. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 52 .000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 1 in normal stream number 1 Stream flow area = 9.360 (Ac. ) Runoff from this stream = 27.444 (CFS) ' Time of concentration = 13 .01 min. Rainfall intensity = 3.246 (In/Hr) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 64 .000 to Point/Station 65.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 44 .000 (Ft. ) Top (of initial area) elevation = 1266 .000 (Ft. ) Bottom (of initial area) elevation = 1244.000 (Ft. ) IIDifference in elevation = 22 .000 (Ft. ) Slope = 0.50000 s (percent) = 50.00 TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Warning: TC computed to be less than 5 min. ; program is assuming the II time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.491 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) II Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.094 (CFS) I Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 65 .000 to Point/Station 45.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1246.600 (Ft. ) End of street segment elevation = 1243 .100 (Ft. ) Length of street segment = 360.000 (Ft. ) IIHeight of curb above gutter flowline = 6.0 (In. ) _ in II II Width of half street (curb to crown) = 20 . 000 (Ft. ) Distance from crown to crossfall grade break = 10. 000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 II Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0 . 020 II Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) .. Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0 .0180 Manning's N from grade break to crown = 0. 0180 Estimated mean flow rate at midpoint of street = 0.117 (CFS) Depth of flow = 0.115 (Ft. ) , Average velocity = 1.380 (Ft/s) II Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 2 .000 (Ft. ) Flow velocity = 1.38 (Ft/s) Travel time = 4.35 min. TC = 9.35 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .893 (In/Hr) for a 100.0 year storm Subarea runoff = 1.569 (CFS) for 0.480 (Ac. ) Total runoff = 1.663 (CFS) Total area = 0.500 (Ac. ) I Street flow at end of street = 1.663 (CFS) Half street flow at end of street = 1.663 (CFS) Depth of flow = 0.295 (Ft. ) , Average velocity = 1.814 (Ft/s) ' Flow width (from curb towards crown) = 8 .949 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 65.000 to Point/Station 45.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 0.500 (Ac. ) Runoff from this stream = 1.663 (CFS) Time of concentration = 9.35 min. Rainfall intensity = 3 .893 (In/Hr) ISummary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 27.444 13 .01 3 .246 2 1.663 9.35 3 .893 Largest stream flow has longer time of concentration Qp = 27.444 + sum of Qb Ia/Ib I 1.663 * 0.834 = 1.387 Qp = 28.831 Total of 2 streams to confluence: IIFlow rates before confluence point: I /10 II I27.444 1.663 Area of streams before confluence: 9.360 0.500 I Results of confluence: Total flow rate = 28.831 (CFS) Time of concentration = 13.006 min. IIEffective stream area after confluence = 9. 860 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 45.000 to Point/Station 45.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: II In Main Stream number: 1 Stream flow area = 9.860 (Ac. ) Runoff from this stream = 28.831(CFS) Time of concentration = 13 .01 min. ' Rainfall intensity = 3 .246 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 28.831 13 .01 3 .246 II Largest stream flow has longer time of concentration QP = 28.831 + sum of QP = 28.831 I Total of 1 main streams to confluence: Flow rates before confluence point: 28.831 ' Area of streams before confluence: 9.860 I Results of confluence: Total flow rate = 28.831 (CFS) Time of concentration = 13 .006 min. Effective stream area after confluence = 9.860 (Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 45.000 I **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3 .692 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0 .500 I User specified values are as follows: TC = 10.29 min. Rain intensity = 3.69 (In/Hr) Total area = 14.86 (Ac. ) Total runoff = 39. 98 (CFS) I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 45 .000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 14.860 (Ac. ) I Runoff from this stream = 39. 977 (CFS) Time of concentration = 10.29 min. Rainfall intensity = 3 .692 (In/Hr) I Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1 28.831 13 .01 3 .246 2 39.977 10.29 3 .692 I Largest stream flow has longer or shorter time of concentration Qp = 39.977 + sum of Qa Tb/Ta 28.831 * 0.791 = 22.808 IQp = 62.785 Total of 2 main streams to confluence: Flow rates before confluence point: II 28.831 39. 977 Area of streams before confluence: 9.860 14.860 111 Results of confluence: Total flow rate = 62.785 (CFS) I Time of concentration = 10.289 min. Effective stream area after confluence = 24 .720 (Ac. ) Process from Point/Station 45.000 to Point/Station 25.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** II Upstream point/station elevation = 1238.000 (Ft. ) Downstream point/station elevation = 1236.000 (Ft. ) Pipe length = 100.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 62 .785 (CFS) I Nearest computed pipe diameter = 33.00 (In. ) Calculated individual pipe flow 62.785 (CFS) Normal flow depth in pipe = 23 .16 (In. ) Flow top width inside pipe = 30.20 (In. ) ' Critical Depth = 30.27 (In. ) Pipe flow velocity = 14 .11 (Ft/s) Travel time through pipe = 0. 12 min. Time of concentration (TC) = 10.41 min. I End of computations, total study area = 24.72 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. I Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 I I / $G 11 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s400.out ' Redhawk 100-Year Storm Event System 400 Job Number 160097.00.000 ' ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on 11 Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 100.0 Calculated rainfall intensity data: ' 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 66.000 to Point/Station 67.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 1000.000 (Ft. ) Top (of initial area) elevation = 1289.200 (Ft. ) Bottom (of initial area) elevation = 1244.200 (Ft. ) Difference in elevation = 45.000 (Ft. ) Slope = 0.04500 s (percent) = 4.50 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 11.493 min. Rainfall intensity = 3 .474 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 4 .201 (CFS) Total initial stream area = 1.450 (Ac. ) Pervious area fraction = 0.500 /S7 I II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 66.000 to Point/Station 67.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 1 in normal stream number 1 Stream flow area = 1.450 (Ac. ) Runoff from this stream = 4 .201 (CFS) I Time of concentration = 11.49 min. Rainfall intensity = 3.474 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4 .201 11.49 3 .474 Largest stream flow has longer time of concentration Qp = 4.201 + sum of Qp = 4.201 Total of 1 streams to confluence: Flow rates before confluence point: I 4.201 Area of streams before confluence: 1.450 Results of confluence: II Total flow rate = 4.201 (CFS) Time of concentration = 11.493 min. Effective stream area after confluence = 1.450 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 68.000 to Point/Station 69.000 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 48.000 (Ft. ) Top (of initial area) elevation = 1267.000 (Ft. ) I Bottom (of initial area) elevation = 1243 .000 (Ft. ) Difference in elevation = 24 .000 (Ft. ) Slope = 0.50000 s (percent)= 50.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 I Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.491 (In/Hr) for a 100.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0 . 000 . RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.094 (CFS) Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process- from Point/Station 69.000 to Point/Station 67.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I /te II I Top of street segment elevation = 1246.200 (Ft. ) End of street segment elevation = 1244 .200 (Ft. ) I Length of street segment 180.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I - Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.106 (CFS) I Depth of flow = 0.108 (Ft. ) , Average velocity = 1.418 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2 .000 (Ft.) Flow velocity = 1.42 (Ft/s) I Travel time = 2 .12 min. TC = 7.12 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4 .523 (In/Hr) for a 100.0 year storm I Subarea runoff = 0.996 (CFS) for 0.260 (Ac. ) Total runoff = 1.090 (CFS) Total area = 0.280 (Ac. ) Street flow at end of street = 1.090 (CFS) Half street flow at end of street = 1.090 (CFS) I Depth of flow = 0.258 (Ft. ) , Average velocity = 1.757 (Ft/s) Flow width (from curb towards crown) = 7.102 (Ft. ) Process from Point/Station 69.000 to Point/Station 67.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.280 (Ac. ) Runoff from this stream = 1.090 (CFS) Time of concentration = 7.12 min. I Rainfall intensity = 4 .523 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.201 11.49 3.474 2 1.090 7 .12 4.523 Largest stream flow has longer time of concentration Qp = - 4.201 + sum of IQb Ia/Ib _ /s9 I I1.090 * 0.768 = 0.838 QP = 5.038 I Total of 2 streams to confluence: Flow rates before confluence point: 4 .201 1.090 I Area of streams before confluence: 1.450 0.280 Results of confluence: Total flow rate = 5.O38 (CFS) I Time of concentration = 11.493 min. Effective stream area after confluence = 1.730 (Ac. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 67.000 to Point/Station 67.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.730 (Ac. ) Runoff from this stream = 5.038 (CFS) I Time of concentration = 11.49 min. Rainfall intensity = 3 .474 (In/Hr) Program is now starting with Main Stream No. 2 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 70.000 to Point/Station 71.000 **** INITIAL AREA EVALUATION **** I Initial area flow distance = 16O.O00 (Ft. ) Top (of initial area) elevation = 1253.O00 (Ft. ) I Bottom (of initial area) elevation = 1251.400 (Ft. ) Difference in elevation = 1.6O0 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length'3) / (elevation change) ) A0.2 I Initial area time of concentration = 7.460 min. Rainfall intensity = 4.407 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction. soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction ,= 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.522 (CFS) Total initial stream area = 0.140 (Ac. ) IPervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 71.000 to Point/Station 72.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1250.800 (Ft. ) End of street segment elevation = 1245.3O0 (Ft. ) 1: Length of street segment = 540.O0O (Ft. ) Height of curb above gutter flowline = 6.O (In. ) Width of half street (curb to crown) = 20.0OO (Ft. ) _ 190 I I - Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on (1) side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.747 (CFS) Depth of flow = 0.368 (Ft.) , Average velocity = 2 .212 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 12 .563 (Ft. ) Flow velocity = 2.21 (Ft/s) Travel time = 4.07 min. TC = 11.53 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 3.468 (In/Hr) for a 100.0 year storm Subarea runoff = 5.003 (CFS) for 1.730 (Ac. ) Total runoff = 5.525 (CFS) Total area = 1.870 (Ac. ) ' Street flow at end of street = 5.525 ( CFS) Half street flow at end of street = 5.525 (CFS) Depth of flow = 0.411 (Ft. ) , Average velocity = 2.420 (Ft/s) Flow width (from curb towards crown)= 14 .719(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 71.000 to Point/Station 72 .000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.870 (Ac. ) I Runoff from this stream = 5.525 (CFS) Time of concentration = 11.53 min. Rainfall intensity = 3 .468 (In/Hr) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 73.000 to Point/Station 74 .000 11 111 **** INITIAL AREA EVALUATION **** Initial area flow distance = 170 .000 (Ft. ) Top (of initial area) elevation = 1253.000 (Ft. ) Bottom (of initial area) elevation = 1251.300 (Ft. ) Difference in elevation = 1.700 (Ft. ) Slope = 0.01000 - s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevationchange) ] A0.2 ' Initial area time of concentration = Rainfall intensity = 4 .348 ( 7.643 min. y In/Hr) for a 100.0 ear storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 ' Decimal fraction soil group A = 0.000 I 19/ II ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ll RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.809(CFS) I Total initial stream area = 0.220 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 74 .000 to Point/Station 72 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1250.800 (Ft. ) End of street segment elevation = 1245.300 (Ft. ) Length of street segment = 480.000 (Ft. ) • Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000(Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) ll Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0 .0180 Estimated mean flow rate at midpoint of street = 2.739(CFS) Depth of flow = 0.331 (Ft. ) , Average velocity = 2 .156 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 10.743 (Ft. ) Flow velocity = 2 .16 (Ft/s) Travel time = 3 .71 min. TC = 11.35 min. Adding area flow to street I - SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 3 .498 (In/Hr) for a 100.0 year storm Subarea runoff = 3.064 (CFS) for 1.050 (Ac.) Total runoff = 3 .873 (CFS) Total area = 1.270 (Ac. ) Street flow at end of street = 3 .873 (CFS) I Half street flow at end of street = 3 .873 (CFS) Depth of flow = 0.365 (Ft. ) , Average velocity = 2.332 (Ft/s) Flow width (from curb towards crown) = 12 .426 (Ft. ) Process from Point/Station 74.000 to Point/Station 72 .000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream -flow area = 1.270 (Ac.) ' Runoff from this stream = 3 .873 (CFS) _ II P4a II ' Time of concentration = 11.35 min. Rainfall intensity = 3 .498 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 5.525 11.53 3 .468 2 3 .873 11.35 3 .498 ' Largest stream flow has longer time of concentration Op = 5.525 + sum of Qb Ia/Ib 3 .873 * 0. 992 = 3 .840 ' QP = 9.365 Total of 2 streams to confluence: Flow rates before confluence point: ' 5.525 3. 873 Area of streams before confluence: 1.870 1.270 Results of confluence: Total flow rate = 9.365 (CFS) Time of concentration = 11.529 min. Effective stream area after confluence = 3.140 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 72. 000 to Point/Station 67.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1246.700 (Ft. ) End of street segment elevation = 1244.700 (Ft. ) ' Length of street segment = 90.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) II Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) II Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 • Estimated mean flow rate at midpoint of street = 9.484 (CFS) Depth of flow = 0.429 (Ft. ) , Average velocity = 3 .704 (Ft/s) ' Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15.635 (Ft. ) Flow velocity = 3 .70 (Ft/s) ' Travel time = 0.41 min. TC = 11.93 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.833 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0. 000 Decimal fraction soil group C = 1.000 Decimal- fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 II IPervious area fraction = 0 .500; Impervious fraction = 0.500 Rainfall intensity = 3 .403 (In/Hr) for a 100.0 year storm Subarea runoff = 0.227 (CFS) for 0.080 (Ac. ) ' Total runoff = 9.591 (CFS) Total area = 3 .220 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 9.591 (CFS) I Depth of flow = 0.430(Ft. ) , Average velocity = 3 .713 (Ft/s) Flow width (from curb towards crown)= 15.705 (Ft. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 67.000 to Point/Station 67.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.220 (Ac. ) Runoff from this stream = 9.591 (CFS) ' Time of concentration = 11.93 min. Rainfall intensity = 3 .403 (In/Hr) Summary of stream data: ' Stream Flow rate No. (CFS) TC Rainfall Intensity (min) (In/Hr) ' 1 5.038 11.49 3 .474 2 9.591 11.93 3 .403 Largest stream flow has longer time of concentration I Qp = 9.591 + sum of Qb Ia/Ib 5.038 *. 0.979 = 4 .935 Qp = 14 .526 I Total of 2 main streams to confluence: Flow rates before confluence point: 5.038 9.591 ' Area of streams before confluence: 1.730 3.220 I Results of confluence: Total flow rate = 14.526(CFS) Time of concentration = 11.934 min. Effective stream area after confluence = 4.950 (Ac. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 67.000 to Point/Station 25.000 ll **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1239.700 (Ft. ) I Downstream point/station elevation = 1228.300 (Ft. ) Pipe length = 570.00 (Ft. ) Manning' s N = 0 .013 No. of pipes = 1 Required pipe flow = 14 .526 (CFS) Nearest computed pipe diameter = 18.00 (In. ) ' Calculated individual pipe flow = 14 .526 (CFS) Normal flow depth in pipe = 14 .41 (In. ) Flow top width inside pipe = 14.38 (In. ) Critical Depth = 16.74 (In. ) IIPipe flow velocity = 9.58 (Ft/s) _ 1 ' Travel time through pipe = 0.99 min. Time of concentration (TC) = 12. 93 min. ' End of computations, total study area = 4. 95 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 1 ' 7"2o2SO 5 z- r 45 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/17/01 File:s500.out ' Redhawk 100-Year Storm Event System 500 Job Number 160097.00.000 ' ********* Hydrology Study Control Information ********** English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 100.0 Calculated rainfall intensity data: ' 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 17.100 to Point/Station 25.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 2.824 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.821 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 t Pervious area fraction = 0.500; Impervious fraction = 0 .500 User specified values are as follows: TC = 16.75 min. Rain intensity = 2 .82 (In/Hr) Total area = 18.71 (Ac. ) Total runoff = 48.75 (CFS) Process from Point/Station 17.000 to Point/Station 25.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream-flow area = 18.710 (Ac. ) Runoff from this stream = 48.754 (CFS) ' ►96 I ' Time of concentration = 16.75 min. Rainfall intensity = 2.824 (In/Hr) Process from Point/Station 45.000 to Point/Station 25 .000 ll **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3 .669(In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 . Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: ' TC = 10.41 min. Rain intensity = 3 .67 (In/Hr) Total area = 24.72 (Ac. ) Total runoff = 62.78 (CFS) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 45.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS **** II Along Main Stream number: 1 in normal stream number 2 Stream flow area = 24.720 (Ac. ) Runoff from this stream = 62 .785 (CFS) ' Time of concentration = 10.41 min. Rainfall intensity = 3.669(In/Hr) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 67.000 to Point/Station 25.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ' Rainfall intensity = 3 .256 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.830 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows : TC = 12 .93 min. Rain intensity = 3 .26 (In/Hr) Total area = 4 .95 (Ac. ) Total runoff = 14.53 (CFS) II ' Process from Point/Station 67.000 to Point/Station 25.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 I Stream flow area = 4.950 (Ac. ) Runoff from this stream = 14.526 (CFS) Time of concentration = 12 .93 min. Rainfall intensity = 3 .256 (In/Hr) Summary of stream data: _ I /97 II II Stream Flow rate TC Rainfall Intensity IINo. (CFS) (min) (In/Hr) 1 48.754 16.75 2.824 I 2 62 .785 10.41 3.669 3 14.526 12 .93 3.256 Largest stream flow has longer or shorter time of concentration Qp- = 62 .785 + sum of II Qa Tb/Ta II 48.754 * 0.621 = 30.300 Qa Tb/Ta 14 .526 * 0.805 = 11.695 ' QP = 104 .780 Total of 3 streams to confluence: Flow rates before confluence point: I 48.754 62 .785 14 .526 Area of streams before confluence: 18.710 24 .720 4.950 Results of confluence: II Total flow rate = 104 .780 (CFS) Time of concentration = 10.410 min. Effective stream area after confluence = 48.380 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 75.000 ' **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1224 .400 (Ft. ) Downstream point/station elevation = 1217.200 (Ft. ) ' Pipe length = 720.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 104 .780 (CFS) Nearest computed pipe diameter = 42 .00 (In. ) Calculated individual pipe flow = 104 .780 (CFS) ' Normal flow depth in pipe = 36.19 (In. ) Flow top width inside pipe = 29.01 (In. ) Critical Depth = 37.44 (In. ) Pipe flow velocity = 11.87 (Ft/s) I . Travel time through pipe = 1.01 min. Time of concentration (TC) = 11.42 min. Process from Point/Station 25.000 to Point/Station 75.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 48.380 (Ac. ) ' Runoff from this stream = . 104 .780 (CFS) Time of concentration = 11.42 min. Rainfall intensity = 3 .486 (In/Hr) Program is now starting with Main Stream No. 2 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 76.000 to Point/Station 77.000 ' **** INITIAL AREA EVALUATION **** 146 II 1 Initial area flow distance = 120 .000 (Ft. ) Top (of initial area) elevation = 1246.800 (Ft. ) II Bottom (of initial area) elevation = 1245.600 (Ft. ) Difference in elevation = 1.200 (Ft. ) Slope = 0.01000 s(percent)= 1.00 I TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 6.649 min. Rainfall intensity = 4 .695 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) I . Runoff Coefficient = 0.849 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0. 000 Decimal fraction soil group C = 1.000 1 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.558 (CFS) I Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 77.000 to Point/Station 78.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1245.400 (Ft.) End of street segment elevation = 1243 .300 (Ft. ) Length of street segment = 210.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 1 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 1 Manning's N from grade break to crown = 0. 0180 Estimated mean flow rate at midpoint of street = 1.395 (cFS) Depth of flow = 0.280 (Ft. ) , Average velocity = 1.768 (Ft/s) Streetflow hydraulics at midpoint of street travel: 1 Halfstreet flow width = 8.202 (Ft. ) Flow velocity = 1.77 (Ft/s) Travel time = 1.98 min. TC = 8.63 min. Adding area flow to street II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.842 Decimal fraction soil group A = 0.000 1 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4 .068 (In/Hr) for a 100.0 year storm Subarea runoff = 1.439 (CFS) for 0.420 (Ac. ) Total runoff = 1.997 (CFS) Total area = 0.560 (Ac. ) ' Street flow at end of street = 1.997 (CFS) _ 1 199 I IHalf street flow at end of street = 1. 997 (CFS) Depth of flow = 0.309 (Ft. ) , Average velocity = 1. 907 (Ft/s) Flow width (from curb towards crown) = 9.648 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 78.000 to Point/Station 79.000 II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1243 .300 (Ft. ) I End of street segment elevation = 1241.000 (Ft. ) Length of street segment = 225.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) I Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In.) I Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .318 (CFS) II Depth of flow = 0.321(Ft. ) , Average velocity = 1.987 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.247 (Ft. ) I Flow velocity = 1.99 (Ft/s) Travel time = 1.89 min. TC = 10.52 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .649 (In/Hr) for a 100.0 year storm I Subarea runoff = 0.549 (CFS) for 0.180 (Ac. ) Total runoff = 2 .546 (CFS) Total area = 0.740 (Ac. ) Street flow at end of street = 2 .546 (CFS) Half street flow at end of street = 2 .546 (CFS) I Depth of flow = 0.330 (Ft. ) , Average velocity = 2 .029 (Ft/s) Flow width (from curb towards crown)= 10.671 (Ft. ) Process from Point/Station 79.000 to Point/Station 75.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1241.000 (Ft. ) End of street segment elevation = 1235.000 (Ft. ) Length of street segment = 510.000 (Ft. ) . I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10 .000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ISlope from grade break to crown (v/hz) = 0.020 I o00' II I . Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 II Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 5.764 (CFS) Depth of flow = 0.407 (Ft. ) , Average velocity = 2 .583 (Ft/s) II Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 14.544 (Ft. ) Flow velocity = 2 .58 (Ft/s) Travel time = 3 .29 min. TC = 13 .81 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.828 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.141 (In/Hr) for a 100.0 year storm Subarea runoff = 4 .863 (CFS) for 1.870 (Ac. ) I . Total runoff = 7.409(CFS) Total area = 2 .610(Ac. ) Street flow at end of street = 7.409(CFS) Half street flow at end of street = 7.409 (CFS) Depth of flow = 0.438 (Ft. ) , Average velocity = 2 .740 (Ft/s) ' Flow width (from curb towards crown)= 16.086 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 79.000 to Point/Station 75.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 II Stream flow area = 2 .610 (Ac. ) Runoff from this stream = 7.409 (CFS) Time of concentration = 13 .81 min. Rainfall intensity = 3 . 141(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 81.000 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) II Top (of initial area) elevation = 1241.400 (Ft. ) Bottom (of initial area) elevation = 1240.100 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent) = 1.00 II TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 4.613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 I o?D/ I IRI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.548 (CFS) II Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 81.000 to Point/Station 75.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1239.500 (Ft. ) End of street segment elevation = 1235.000 (Ft. ) Length of street segment = 490.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .209 (CFS) Depth of flow = 0.357 (Ft. ) , Average velocity = 2 .051 (Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12 .034 (Ft. ) Flow velocity = 2 .05 (Ft/s) Travel time = 3 .98 min. TC = 10.85 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.836 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.587 (In/Hr) for a 100.0 year storm Subarea runoff = 4 .076 (CFS) for 1.360 (Ac. ) Total runoff = 4 .624 (CFS) Total area = 1.500 (Ac. ) II Street flow at end of street = 4 .624 (CFS) Half street flow at end of street = 4 .624 (CFS) Depth of flow = 0.396 (Ft. ) , Average velocity = 2 .231 (Ft/s) ' Flow width (from curb towards crown) = 13.986 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I . Process from Point/Station 81.000 to Point/Station 75.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 ' Stream flow area = 1.500 (Ac. ) Runoff from this stream = 4 .624 (CFS) Time of concentration = 10 . 85 min. Rainfall intensity = 3 .587 (In/Hr) ' Summary of stream data: ava I I Stream Flow rate TC Rainfall Intensity IINo. (CFS) (min) (In/Hr) 1 7.409 13.81 3. 141 I 2 4.624 10.85 3.587 Largest stream flow has longer time of concentration Qp = 7.409 + sum of Qb Ia/Ib ' 4.624 * 0.876 = 4 .049 Qp = 11.459 Total of 2 streams to confluence: 1 Flow rates before confluence point: 7.409 4.624 Area of streams before confluence: 2.610 1.500 I Results of confluence: Total flow rate = 11.459(CFS) Time of concentration = 13 .806 min. Effective stream area after confluence = 4 .110 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 75.000 to Point/Station 75.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 4.110 (Ac. ) Runoff from this stream = 11.459 (CFS) Time of concentration = 13.81 min. I Rainfall intensity = 3 .141 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 104.780 11.42 3 .486 I 2 11.459 13.81 3 .141 Largest stream flow has longer or shorter time of concentration Qp = 104.780 + sum of Qa Tb/Ta I 11.459 * 0.827 = 9.479 Qp = 114.259 I Total of 2 main streams to confluence: Flow rates before confluence point: 104 .780 11.459 Area of streams before confluence: ' 48.380 4 . 110 Results of confluence: I Total flow rate = 11,,.4 .259(CFS) Time of concentration . 11.421 min. Effective stream area after confluence = 52.490 (Ac. ) T�o?S 065 -zS 0103 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 82 .000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** II Upstream point/station elevation = 1217 .200 (Ft. ) Downstream point/station elevation = 1216.700 (Ft. ) I Pipe length = 50.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 114.259(CFS) Nearest computed pipe diameter = 45.00 (In. ) Calculated individual pipe flow = 114.259 (CFS) II Normal flow depth in pipe = 34 .83 (In. ) Flow top width inside pipe = 37.64 (In. ) Critical Depth = 38.85 (In. ) Pipe flow velocity = 12 .45 (Ft/s) I Travel time through pipe = 0.07 min. Time of concentration (TC) = 11.49 min. Process from Point/Station 75.000 to Point/Station 82.000 **** CONFLUENCE OF MAIN STREAMS **** I The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 52.490 (Ac. ) I Runoff from this stream = 114.259 (CFS) Time of concentration = 11.49 min. Rainfall intensity = 3 .475 (In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 83 .000 to Point/Station 84 .000 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 125.000 (Ft. ) Top (of initial area) elevation = 1247 .500 (Ft. ) I Bottom (of initial area) elevation = 1246.250 (Ft. ) Difference in elevation = 1.250 (Ft. ) Slope = 0.01000 s(percent) = 1.00 TC' = k(0.390) * [ (length"3) / (elevation change) ] "0.2 II Initial area time of concentration = 6.758 min. Rainfall intensity = 4 .653 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.513 (CFS) I Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 84 .000 to Point/Station 85.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1246.200 (Ft. ) _ I 4 o 1 End of street segment elevation = 1243 .300 (Ft. ) Length of street segment = 330.000 (Ft. ) ' Height of curb above gutter flowline 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 ' Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 1.777 (CFS) Depth of flow = 0.305 (Ft. ) , Average velocity = 1.768 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.428 (Ft.) Flow velocity = 1.77 (Ft/s) Travel time = 3.11 min. TC = 9.87 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69. 00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .778 (In/Hr) for a 100.0 year storm Subarea runoff = 2 .027 (CFS) for 0.640 (Ac. ) Total runoff = 2 .541(CFS) Total area = 0.770 (Ac. ) ' Street flow at end of street = 2 .54l (CFS) Half street flow at end of street = 2.541 (CFS) Depth of flow = 0.336 (Ft. ) , Average velocity = 1.913 (Ft/s) Flow width (from curb towards crown) = 11.010 (Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 85.000 to Point/Station 86.000 ' . **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1243.300 (Ft. ) End of street segment elevation = 1231.400 (Ft. ) Length of street segment = 940.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street - Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In-. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 8. 908 (CFS) Depth of flow = 0.457 (Ft. ) , Average velocity = 2.944 (Ft/s) .?n5 111 . IStreetflow hydraulics at midpoint of street travel: Halfstreet flow width = 17.057 (Ft. ) Flow velocity = 2 . 94 (Ft/s) ll Travel time = 5.32 min. TC = 15.19 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.825 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2 .980 (In/Hr) for a 100.0 year storm 1 ' Subarea runoff = 9.487 (CFS) for 3 .860 (Ac. ) Total runoff = 12.027 (CFS) Total area = 4.630 (Ac. ) Street flow at end of street = 12.027 (CFS) Half street flow at end of street = 12 .027 (CFS) I Depth of flow = 0.500 (Ft. ) , Average velocity = 3.162 (Ft/s) Warning: depth of flow exceeds top of curb Distance that curb overflow reaches into property = 0.01 (Ft. ) Flow width (from curb towards crown) = • 19.201(Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 85.000 to Point/Station 86.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 I Stream flow area = 4.630 (Ac. ) Runoff from this stream = 12 .027 (CFS) Time of concentration = 15.19 min. Rainfall intensity = 2.980 (In/Hr) Process from Point/Station 87.000 to Point/Station 88.000 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1240.700 (Ft. ) I Bottom (of initial area) elevation = 1237.400 (Ft. ) Difference in elevation = 3 .300 (Ft. ) Slope = 0.02538 s (percent) = 2 .54 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 I Initial area time of concentration = 5.698 min. Rainfall intensity = 5.110 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.853 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.392 (CFS) I Total initial stream area = 0 .090 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . II a n(. II .. IProcess from Point/Station 88.000 to Point/Station 86.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1237.400 (Ft. ) End of street segment elevation = 1231.400 (Ft. ) Length of street segment = 470.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 I - Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 ' I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 0.486(CFS) Depth of flow = 0.200 (Ft. ) , Average velocity = 1.662 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 4 .200 (Ft. ) Flow velocity = 1.66 (Ft/s) Travel time = 4 .71 min. TC = 10.41 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.837 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.668 (In/Hr) for a 100.0 year storm Subarea runoff = 1.474 (CFS) for 0.480 (Ac. ) Total runoff = 1.866 (CFS) Total area = 0.570(Ac. )II Street flow at end of street = 1.866 (CFS) Half street flow at end of street = 1.866 (CFS) Depth of flow = 0.294 (Ft. ) , Average velocity = 2 .069 (Ft/s) Flow width (from curb towards crown)= 8. 863 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 88.000 to Point/Station 86.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0 .570 (Ac. ) I Runoff from this stream = 1.866 (CFS) Time of concentration = 10.41 min. Rainfall intensity = 3 .668 (In/Hr) I Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12 .027 15.19 2.980 2 - 1.866 10.41 3.668 ' Largest stream flow has longer time of concentration I g07 II IQp = 12.027 + sum of Qb Ia/Ib 1.866 * 0.812 = 1.516 I Qp = 13 .543 Total of 2 streams to confluence: I Flow rates before confluence point: 12 .027 1.866 Area of streams before confluence: -4 .630 0.570 ' Results of confluence: Total flow rate = 13 .543 (CFS) Time of concentration = 15.191 min. Effective stream area after confluence = 5.200 (Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 82 .000 I **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1226.400 (Ft. ) Downstream point/station elevation = 1223 .000 (Ft. ) I Pipe length = 170.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13 .543 (CFS) Nearest computed pipe diameter = 18.00 (In. ) Calculated individual pipe flow = 13 .543 (CFS) I Normal flow depth in pipe = 13 .50 (In. ) Flow top width inside pipe = 15.59 (In. ) Critical Depth = 16.41 (In. ) I Pipe flow velocity = 9.53 (Ft/s) Travel time through pipe = 0.30 min. Time of concentration (TC) = 15 .49 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 82 .000 **** CONFLUENCE OF MAIN STREAMS **** IThe following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.200 (Ac. ) I Runoff from this stream = 13.543 (CFS) Time of concentration = 15.49 min. Rainfall intensity = 2. 949(In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 114 .259 11.49 3.475 2 13 .543 15.49 2.949 I Largest stream flow has longer or shorter time of concentration Qp = 114 .259 + sum of Qa Tb/Ta 13 .543 * 0.742 = 10.045 IQp = 124.304 Total of 2 main streams to confluence: Flow rates before confluence point: ' 114 .259 13 .543 _ II IArea of streams before confluence: 52 .490 5.200 Results of confluence: Total flow rate = 124.304 (CFS) I Time of concentration = 11.488 min. Effective stream area after confluence = 57.690 (Ac. ) Process from Point/Station 82 . 000 to Point/Station 82. 100 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** , I Upstream point/station elevation = 1216.700 (Ft. ) Downstream point/station elevation = 1212 .900 (Ft. ) Pipe length = 380.00 (Ft. ) Mannings N = 0.013 No. of pipes = 1 Required pipe flow = 124 .304 (CFS) I Nearest computed pipe diameter 45.00 (In. ) Calculated individual pipe flow = 124 .304 (CFS) Normal flow depth in pipe = 38.16 (In. ) Flow top width inside pipe = 32 .32 (In. ) I Critical Depth = 40.11 (In. ) Pipe flow velocity = 12.46 (Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) = 12 .00 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 82 .000 to Point/Station 82.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 I Stream flow area = 57.690 (Ac. ) Runoff from this stream = 124.304 (CFS) Time of concentration = 12 .00 min. Rainfall intensity = 3 .393 (In/Hr) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82 .200 to Point/Station 82 .300 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1239.600 (Ft. ) I Bottom (of initial area) elevation = 1238.300 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ) T0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 4 .613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69. 00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.626 (CFS) I Total initial stream area = 0.160 (Ac. ) _ I al 09 I . . Pervious area fraction = 0 .500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.300 to Point/Station 82 .100 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1237.800 (Ft. ) End of street segment elevation = 1227.600 (Ft. ) Length of street segment = 400.000 (Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on (1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0130 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4 .089(CFS) Depth of flow = 0.329 (Ft.) , Average velocity = 3.267 (Ft/s) Streetflow hydraulics at midpoint of street travel: II Halfstreet flow width = 10.655 (Ft.) Flow velocity = 3.27 (Ft/s) Travel time = 2 .04 min. TC = 8.91 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .998 (In/Hr) for a 100.0 year storm Subarea runoff = 5.953 (CFS) for 1.770 (Ac. ) Total runoff = 6.579 (CFS) Total area = 1.930 (Ac. ) I Street flow at end of street = 6.579 (CFS) Half street flow at end of street = 6.579 (CFS) Depth of flow = 0.377 (Ft. ) , Average velocity = 3 .630 (Ft/s) ' Flow width (from curb towards crown) = 13 .024 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.300 to Point/Station 82.100 I **** CONFLUENCE OF MINOR STREAMS **** • Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 1.930 (Ac. ) Runoff from this stream = 6.579(CFS) Time of concentration = 8.91 min. Rainfall intensity = 3 .998 (In/Hr) ISummary of stream data: Stream Flow rate TC Rainfall Intensity No. - (CFS) (min) (In/Hr) I II II 1 124 .304 12 .00 3 .393 2 6.579 8.91 3 .998 I Largest stream flow has longer time of concentration Qp = 124.304 + sum of Qb Ia/Ib 6.579 * 0.849 = 5.585 Qp = 129.889 Total of 2 streams to confluence: I Flow rates before confluence point: 124.304 6.579 Area of streams before confluence: 57.690 1.930 II Results of confluence: Total flow rate = 129.889(CFS) Time of concentration = 11.996 min. Effective stream area after confluence = 59.620 (Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82. 100 to Point/Station 89.000 II **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1212 .900 (Ft. ) I Downstream point/station elevation = 1210.700 (Ft. ) Pipe length = 220.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 129.889 (CFS) Nearest computed pipe diameter = 48.00 (In. ) I Calculated individual pipe flow = 129.889(CFS) Normal flow depth in pipe = 35.72 (In. ) Flow top width inside pipe = 41.89 (In. ) Critical Depth = 40.91 (In. ) II Pipe flow velocity = 12. 94 (Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 12 .28 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82 .100 to Point/Station 89.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 1 in normal stream number 1 Stream flow area = 59.620 (Ac. ) Runoff from this stream = 129.889(CFS) II Time of concentration = 12 .28 min. Rainfall intensity = 3.350 (In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 129.889 12.28 3.350 Largest stream flow has longer time of concentration Qp = 129.889 + sum of IQp = 129.889 Total of 1 streams to confluence: Flow rates before confluence point: I129.889 Tteno6c.5- 75" 1 if 1 1 Area of streams before confluence: 59.620 Results of confluence: 1 Total flow rate = 129.889 (CFS) Time of concentration = 12 .279 min. Effective stream area after confluence = 59.620 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ • Process from Point/Station 90.000 to Point/Station 91.000 1 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1251.000 (Ft. ) I Bottom (of initial area) elevation = 1242 .000 (Ft. ) Difference in elevation = 9.000 (Ft. ) Slope = 0.06923 s (percent) = 6.92 TC = k(0.390) * ( (length"3) / (elevation change) ] "0.2 1 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.491 (In/Hr) for a 100.0 year storm 1 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 1 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.658 (CFS) Total initial stream area = 0.140 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 91.000 to Point/Station 92 .000 1 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1242 .000 (Ft. ) Downstream point/station elevation = 1222.000 (Ft. ) 1 Pipe length = 340.00 (Ft. ) Mannings N = 0.018 No. of pipes = 1 Required pipe flow = 0.658 (CFS) Given pipe size = 24.00 (In. ) Calculated individual pipe flow = 0.658 (CFS) 1 Normal flow depth in pipe = 2 .15 (In. ) Flow top width inside pipe = 13.71 (In. ) Critical depth could not be calculated. Pipe flow velocity = 4.72 (Ft/s) 1 Travel time through pipe = 1.20 min. Time of concentration (TC) = 6.20 min. 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ . Process from Point/Station 91.000 to Point/Station 92 .000 **** SUBAREA FLOW ADDITION **** 1 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.851 Decimal fraction soil group A = 0.000 1 Decimal fraction soil group B = 0.000 _ I a/A II ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Time of concentration = 6.20 min. Rainfall intensity = 4.879(In/Hr) for a 100.0 year storm ' Subarea runoff = 2 .449(CFS) for 0.590 (Ac. ) Total runoff = 3.107 (CFS) Total area = 0.730 (Ac. ) Process from Point/Station 92 .000 to Point/Station 89.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** I Upstream point/station elevation = 1217.000 (Ft. ) Downstream point/station elevation = 1214 .200 (Ft. ) Pipe length = 140.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.107 (CFS) ' Nearest computed pipe diameter = 12.00 (In. ) Calculated individual pipe flow 3.107 (CFS) Normal flow depth in pipe = 6.81(In. ) Flow top width inside pipe = 11.89(In. ) I Critical Depth = 9.07 (In. ) Pipe flow velocity = 6.75 (Ft/s) Travel time through pipe = 0.35 min. IITime of concentration (TC) = 6.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 92 .000 to Point/Station 89.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I . Stream flow area = 0.730 (Ac. ) Runoff from this stream = 3 .107 (CFS) Time of concentration = 6.55 min. Rainfall intensity = 4 .735 (In/Hr) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 93 .000 to Point/Station 94 .000 I **** INITIAL AREA EVALUATION **** Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1238.800 (Ft. ) II Bottom (of initial area) elevation = 1237.600 (Ft:) Difference in elevation = 1.200 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3) / (elevation change W0 .2 II Initial area time of concentration = 6.649 min. Rainfall intensity = 4 .695 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) I. Runoff Coefficient = 0.849 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial. subarea runoff = 0.438 (CFS) ' Total initial stream area = 0.110 (Ac. ) I 113 ' Pervious area fraction = 0.500 II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 94 .000 to Point/Station 89.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1237.200 (Ft. ) End of street segment elevation = 1221.200 (Ft. ) - _ Length of street segment = 570.000 (Ft. ) ' Height of curb above gutter flowline = 6. 0 (In. ) Width of half street (curb to crown) 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [11 side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .468 (CFS) Depth of flow = 0.312 (Ft. ) , Average velocity = 3.220 (Ft/s) Streetflow hydraulics at midpoint of street travel: II Halfstreet flow width = 9.801(Ft. ) Flow velocity = 3 .22 (Ft/s) Travel time = 2.95 min. TC = 9.60 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.836 (In/Hr) for a 100.0 year storm Subarea runoff = 4.893 (CFS) for 1.520 (Ac. ) Total runoff = 5.332 (CFS) Total area = 1.630 (Ac. ) ' Street flow at end of street = 5.332 (CFS) Half street flow at end of street = 5.332 (cFS) Depth of flow = 0.352 (Ft. ) , Average velocity = 3 .544 (Ft/s) Flow width (from curb towards crown) = 11.782 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 94 .000 to Point/Station 89.000 I **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area = 1.630 (Ac. ) Runoff from this stream = 5.332 (CFS) Time of concentration = 9.60 min. Rainfall intensity = 3 .836 (In/Hr)I Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II PH/ II ; 1 } 1 129.889 12 .28 3 .350 2 3 .107 6.55 4 .735 II 3 5.332 9.60 3 .836 Largest stream flow has longer time of concentration Qp = 129.889 + sum of ' Qb Ia/Ib 3 .107 * 0.708 = 2.198 Qb Ia/Ib 5.332 * 0.873 = 4.656 ' Qp = 136.744 Total of 3 streams to confluence: Flow rates before confluence point: I 129.889 3 .107 5.332 Area of streams before confluence: 59.620 0.730 1.630 Results of confluence: II Total flow rate = 136.744 (CFS) Time of concentration = 12.279 min. Effective stream area after confluence = 61.980 (Ac. ) Process from Point/Station 89.000 to Point/Station 95.000 **** PIPEFLOW TRAVEL. TIME (Program estimated size) **** IIUpstream point/station elevation = 1210.700 (Ft. ) Downstream point/station elevation = 1191.100 (Ft. ) ' Pipe length = 440.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 136.744 (CFS) Nearest computed pipe diameter = 36.00 (In. ) Calculated individual pipe flow = 136.744 (CFS) I Normal flow depth in pipe = 28 .59 (In. ) Flow top width inside pipe = 29.10 (In. ) Critical depth could not be calculated. Pipe flow velocity = 22 .69 (Ft/s) I Travel time through pipe = 0.32 min. Time of concentration (TC) = 12 .60 min. Process from Point/Station 89.000 to Point/Station 95.000 **** CONFLUENCE OF MINOR STREAMS **** II Along Main Stream number: 1 in normal stream number 1 Stream flow area = 61.980 (Ac. ) Runoff from this stream = 136.744 (CFS) Time of concentration = 12 .60 min. ' Rainfall intensity = 3 .303 (In/Hr) Process from Point/Station 96.000 to Point/Station 97.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 110.000 (Ft. ) I Top (of initial area) elevation = 1228. 900 (Ft.) Bottom (of initial area) elevation = 1227 .800 (Ft. ) Difference in elevation = 1. 100 (Ft. ) ' Slope = , 0.01000 s (percent) = 1.00 _ ll 0is I , TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 6.421 min. Rainfall intensity = 4 .785 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.850 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction 0.500 Initial subarea runoff = 0.732 (CFS) Total initial stream area = 0.180 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 97.000 to Point/Station 95 .000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1227.600 (Ft. ) End of street segment elevation = 1196.700 (Ft. ) Length of street segment = 650.000 (Ft. ) Height of curb above gutter flowline = 6. 0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) ' Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4 .677 (CFS) ' Depth of flow = 0.315 (Ft. ) , Average velocity = 4 .224 (Ft/s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 9.956 (Ft. ) Flow velocity = 4.22 (Ft/s) Travel time = 2 .56 min. TC = 8.99 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .978 (In/Hr) for a 100.0 year storm Subarea runoff = 6.491 (CFS) for 1.940 (Ac. ) Total runoff = 7.223 (CFS) Total area = 2. 120 (Ac. ) Street flow at end of street = 7.223 (CFS) Half street flow at end of street = 7.223 (CFS) ' Depth of flow = 0.356 (Ft. ) , Average velocity = 4 .655 (Ft/s) Flow width (from curb towards crown) = 11.981 (Ft. ) aIb I ' Process from Point/Station 97.000 to Point/Station 95.000 **** CONFLUENCE OF MINOR STREAMS **** II Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.120 (Ac. ) Runoff from this stream = 7.223 (CFS) Time of concentration = 8.99 min. I Rainfall intensity = 3 .978 (In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 136.744 12 .60 3.303 2 7.223 8.99 3.978 Largest stream flow has longer time of concentration Qp = 136.744 + sum of II Qb Ia/Ib 7.223 * 0.830 = 5.997 Op = 142.741 II Total of 2 streams to confluence: Flow rates before confluence point: 136.744 7.223 Area of streams before confluence: II 61.980 2.120 Results of confluence: Total flow rate = 142 .741(CFS) ' Time of concentration = 12 .602 min. Effective stream area after confluence = 64 .100 (Ac. ) Process from Point/Station 95.000 to Point/Station 96.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** I Upstream point/station elevation = 1191. 900 (Ft. ) Downstream point/station elevation = 1189. 800 (Ft. ) Pipe length = 50.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 142 .741 (CFS) II Nearest computed pipe diameter = 36.00 (In. ) Calculated individual pipe flow = 142 .741 (CFS) Normal flow depth in pipe = 31.22 (In. ) Flow top width inside pipe = 24.43 (In. ) II Critical depth could not be calculated. Pipe flow velocity = 21.93 (Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 12 .64 min. II End of computations, total study area = 64.10 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 II ai / Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational Hydrology Study Date: 04/20/01 File:s600.out Redhawk 100-Year Storm Event System 600 Job Number 160097.00.000 ********* Hydrology Study Control Information English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In. ) ' 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 97.000 to Point/Station 98.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 150.000 (Ft. ) ' Top (of initial area) elevation = 1249.100 (Ft. ) Bottom (of initial area) elevation = 1247.600 (Ft.) Difference in elevation = 1.500 (Ft. ) Slope = 0.01000 s (percent) = 1.00 TC = k(0.390) * ( (lengthA3) / (elevation change) ] "0.2 Initial area time of concentration = 7.269 min. Rainfall intensity = 4 .470 (In/Hr) for a 100.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.847 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0 .757 (CFS) Total initial stream area = 0.200 (Ac. ) Pervious area fraction = 0.500 alt I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 98.000 to Point/Station 99.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** IITop of street segment elevation = 1247.900 (Ft. ) End of street segment elevation = 1225.900 (Ft. ) Length of street segment = 570.000 (Ft. ) II Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I. Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4.675(CFS) Depth of flow = 0.325 (Ft. ) , Average velocity = 3 .894 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.413 (Ft. ) Flow velocity = 3.89(Ft/s) Travel time = 2.44 min. TC = 9.71 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.839 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.812 (In/Hr) for a 100.0 year storm Subarea runoff = 6.620 (CFS) for 2.070 (Ac. ) I Total runoff = 7.377 (CFS) area = 2.270 (Ac. ) Street flow at end of street = Total Total (7 .377 (CFS) Half street flow at end of street = 7.377 (CFS) Depth of flow = 0.369 (Ft. ) , Average velocity = 4 .316 (Ft/s) IIFlow width (from curb towards crown)= 12.621(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 98.000 to Point/Station 99.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 II Stream flow area = 2.270 (Ac. ) Runoff from this stream = 7.377 (CFS) Time of concentration = 9.71 min. lRainfall intensity = 3 .812 (In/Hr) I. Process from Point/Station 100.000 to Point/Station 101.000 **** INITIAL AREA EVALUATION **** Initial. area flow distance = 130.000 (Ft. ) ' Top (of initial area) elevation = 1245.300 (Ft. ) . II 7/2 .22a4S--.5-a 01 /9 1 ' Bottom (of initial area) elevation = 1244.000 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 4 .613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimalfraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.783 (CFS) Total initial stream area = 0.200 (Ac. ) Pervious area fraction = 0.500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 99.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1248.700 (Ft.) End of street segment elevation = 1225.900 (Ft. ) Length of street segment = 470.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 ' Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3.032 (CFS) Depth of flow = 0.279(Ft.) , Average velocity = 3 .884 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.152 (Ft. ) Flow velocity = 3 .88 (Ft/s) Travel time = 2.02 min. TC = 8.88 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.003 (In/Hr) for a 100.0 year storm Subarea runoff = 3 .874 (CFS) for 1.150 (Ac. ) Total runoff = 4.656 (CFS) Total area = 1.350 (Ac. ) Street flow at end of street = 4 .656 (CFS) Half street flow at end of street = 4 .656 (CFS) Depth of flow = 0.314 (Ft. ) , Average velocity = 4.253 (Ft/s) Flow width (from curb towards crown) = 9.892 (Ft. ) I II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 101.000 to Point/Station 99.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 1.350 ( Ac. ) Runoff from this stream = 4 .656 (CFS) Time of concentration = 8.88 min. I Rainfall intensity = 4.003 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 7.377 9.71 3 .812 I 2 4.656 8.88 4.003 Largest stream flow has longer time of concentration QP = 7.377 + sum of Qb Ia/Ib II 4.656 * 0.952 = 4.434 Op = 11.810 Total of 2 streams to confluence: II Flow rates before confluence point: 7.377 4 .656 Area of streams before confluence: 2 .270 1.350 I Results of confluence: Total flow rate = 11.810 (CFS) Time of concentration = 9.709 min. ' Effective stream area after confluence = 3.620 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 99.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1221.800 (Ft. ) Downstream point/station elevation = 1202.900 (Ft. ) Pipe length = 500.00 (Ft. ) Manning's N = 0.013 il No. of pipes = 1 Required pipe flow = 11.810 (CFS) Given pipe size = 15.00 (In.) II Calculated individual pipe flow = 1])..810 (CFS) Normal flow depth in pipe = 11.55 (In. ) Flow top width inside pipe = 12.62 (In. ) Critical depth could not be calculated. ' Pipe flow velocity = 11.64 (Ft/s) Travel time through pipe = 0.72 min. Time of concentration (TC) = 10.43 min. Process from Point/Station 99.000 to Point/Station 102 .000 ' **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 IIStream flow area = 3.620 (Ac. ) _ II 'il tRunoff from this stream = 11.810 (CFS) Time of concentration = 10.43 min. Rainfall intensity = 3 .666 (In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 103 .000 to Point/Station 104.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 120.000 (Ft. ) Top (of initial area) elevation = 1258.600 (Ft.) Bottom (of initial area) elevation = 1257.400 (Ft. ) Difference in elevation = 1.200 (Ft. ) Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (lengthA3) / (elevation change) ] "0.2 Initial area time of concentration = 6.649 min. Rainfall intensity = 4 .695 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.849 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.518 (CFS) Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104 .000 to Point/Station 105.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1257.100 (Ft. ) End of street segment elevation = 1226.300 (Ft. ) Length of street segment = 700.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1) side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 2 .551 (CFS) Depth of flow = 0.270 (Ft. ) , Average velocity = 3 .608 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.687 (Ft. ) Flow velocity = 3.61 (Ft/s) Travel time = 3.23 min. TC = 9.88 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 838 Decimal fraction soil group A = 0.000 as OE I IDecimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.775 (In/Hr) for a 100.0 year storm Subarea runoff = 3 .228 (CFS) for 1.020 (Ac. ) I Total runoff = 3.746 (CFS) Total area = 1.150 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 3.746(CFS) I Depth of flow = 0.300 (Ft.) , Average velocity = 3.906 (Ft/s) Flow width (from curb towards crown)= 9.181 (Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1225.300 (Ft. ) End of street segment elevation = 1209.600(Ft. ) Length of street segment = 410.000 (Ft. ) Height of curb above gutter flowline = 6.0 (in. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 I Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4.317 (CFS) Depth of flow = 0.318 (Ft. ) , Average velocity = 3.814 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 10.077 (Ft. ) Flow velocity = 3.81 (Ft/s) Travel time = 1.79 min. TC = 11.67 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0:849 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 3 .445 (In/Hr) for a 100.0 year storm Subarea runoff = 1.023 (CFS) for 0.350 (Ac. ) • Total runoff = 4 .770 (CFS) Total area = 1.500 (Ac. ) Street flow at end of street = 4.770 (CFS) II Half street flow at end of street = 4.770 (CFS) Depth of flow = 0.327 (Ft. ) , Average velocity = 3 .899 (Ft/s) Flow width (from curb towards crown) = 10.521 (Ft. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process. from Point/Station 105.000 to Point/Station 106.000 ' **** CONFLUENCE OF MINOR STREAMS **** . II aa9 ' Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.500 (Ac. ) I Runoff from this stream = 4 .770 (CFS) Time of concentration = 11.67 min. Rainfall intensity = 3 .445 (In/Hr) Process from Point/Station 107.000 to Point/Station 108.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 170.000 (Ft. ) Top (of initial area) elevation = 1217.200 (Ft. ) I Bottom (of initial area) elevation = 1215.500 (Ft. ) Difference in elevation = 1.700 (Ft.) Slope = 0.01000 s(percent) = 1.00 TC = k(0.390) * [ (length"3)/ (elevation change) ) A0.2 I Initial area time of concentration = 7.643 min. Rainfall intensity = 4 .348 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.858 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.746 (CFS) Total initial stream area = 0.200 (Ac. ) I Pervious area fraction = 0.500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 106.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1215.400 (Ft. ) End of street segment elevation = 1210.700 (Ft. ) Length of street segment = 130.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 I Street flow is on [2] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2 .000 (Ft. ) I Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 II Estimated mean flow rate at midpoint of street = 3.564 (CFS) Depth of flow = 0.251 (Ft. ) , Average velocity = 3 .111 (Ft/s) Streetflow hydraulics at midpoint of street travel: ' Halfstreet flow width = 6.757 (Ft. ) Flow velocity = 3 .11 (Ft/s) Travel time = 0.70 min. TC = 8.34 min. Addingarea flow to street ' SINGLE FAMILY (1/4 Acre Lot) _ a4)y I ' Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 4 .145 (Zn/Hr) for a 100.0 year storm Subarea runoff = 5.360 (CFS) for 1.510 (Ac. ) Total runoff = 6.106 (CFS) Total area = 1.710 (Ac. ) 6.106(CFS) I Street flow at end of street = Half street flow at end of street = 3 .053 (CFS) Depth of flow = 0.291 (Ft. ) , Average velocity = 3.461 (Ft/s) Flow width (from curb towards crown) = 8.751 (Ft. ) Process from Point/Station 108.000 to Point/Station 106.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.710 (Ac.) I Runoff from this stream = 6.106 (CFS) Time of concentration = 8.34 min. Rainfall intensity = 4.145 (In/Hr) Summary of stream data: IIStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.770 11.67 3.445 2 6.106 8.34 4.145 I Largest stream flow has longer or shorter time of concentration QP = 6.106 + sum of Qa Tb/Ta 4 .770 * 0.714 = 3.407 I QP = 9.513 Total of 2 streams to confluence: 4 Flow rates before confluence point: I 4 .770 6.106 Area of streams before confluence: 1.500 1.710 Results of confluence: I Total flow rate = 9.513 (CFS) Time of concentration .9.513 (CFS) min. Effective stream area after confluence = 3.210 (Ac. ) Process from Point/Station 106.000 to Point/Station 102 .000 I **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 I. Stream flow area = 3 .210 (Ac. ) Runoff from this stream = 9.513 (CFS) Time of concentration = 8.34 min. Rainfall intensity = 4.145 (In/Hr) Summary of stream data: _ .2 AS II ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I 1 11.810 10.43 3.666 2 9.513 8.34 4 .145 I Largest stream flow has longer time of concentration Qp = 11.810 + sum of Qb Ia/Ib 9:513 * 0.884 = 8.414 Qp = 20.224 Total of 2 main streams to confluence: ' Flow rates before confluence point: 11.810 9.513 Area of streams before confluence: 3.620 3 .210 IResults of confluence: Total flow rate = 20.224 (CFS) I Time of concentration = 10.425 min. Effective stream area after confluence = 6.830 (Ac. ) Process from Point/Station 102.000 to Point/Station 107.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 1202 .900 (Ft. ) Downstream point/station elevation = 1190.200 (Ft.) Pipe length = 375.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.224 (CFS) I Given pipe size = 15.00 (In. ) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is I 30.371(Ft. ) at the headworks or inlet of the pipe(s) Pipe friction loss = 36.745 (Ft. ) Minor friction loss = 6.326 (Ft. ) K-factor = 1.50 Critical depth could not be calculated. . Pipe flow velocity = 16.48 (Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 10.80 min. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 107.000 **** CONFLUENCE OF MINOR STREAMS **** IAlong Main Stream number: 1 in normal stream number 1 Stream flow area = 6.830 (Ac. ) Runoff from this stream = 20.224 (CFS) I Time of concentration = 10.80 min. Rainfall intensity = 3 .594 (In/Hr) Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** I II aaIt I IInitial area flow distance = 30.000 (Ft. ) Top (of initial area) elevation = 1272.000 (Ft. ) Bottom (of initial area) elevation = 1257.000 (Ft. ) ' Difference in elevation = 15.000 (Ft. ) Slope = 0.50000 s (percent) = 50.00 TC = k(0.390) * [ (length"3) / (elevation change) ] "0.2 I Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.491 (In/Hr) for a 100.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B. = 0.000 I Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Initial subarea runoff = 0.094 (CFS) Total initial stream area = 0.020 (Ac. ) Pervious area fraction = 0.500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ITop of street segment elevation = 1257.100 (Ft. ) End of street segment elevation = 1225.400 (Ft. ) Length of street segment = 735.000 (Ft.) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft. ) I Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 0.123 (CFS) Depth of flow = 0.089 (Ft. ) , Average velocity = 2.444 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 2.000 (Ft. ) Flow velocity = 2.44 (Ft/s) Travel time = 5.01 min. TC = 10.01 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.838 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .748 (In/Hr) for a 100.0 year storm Subarea runoff = 1.916 (CFS) for 0.610 (Ac. ) Total runoff = 2 .010 (CFS) Total area = 0.630 (Ac. ) II 7 X3o&s-z aav I IStreet flow at end of street = 2.010 (CFS) Half street flow at end of street = 2 .010 (CFS) Depth of flow = 0.254 (Ft. ) , Average velocity = 3 .418 (Ft/s) ' Flow width (from curb towards crown) = 6.868 (Ft. ) I Process from Point/Station 110.000 to Point/Station 107.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I . Top of street segment elevation = 1225.400 (Ft. ) End of street segment elevation = 1196.000 (Ft. ) Length of street segment = 860.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) I Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 II Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) ' Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 2.999(CFS) Depth of flow = 0.292 (Ft. ) , Average velocity = 3.373 (Ft/s) Streetflow hydraulics at midpoint of street travel: 111 Halfstreet flow width = 8.791 (Ft. ) Flow velocity = 3 .37 (Ft/s) Travel time = 4.25 min. TC = 14.26 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.843 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 I Rainfall intensity = 3.085 (In/Hr) for a 100.0 year storm Subarea runoff = 1.613 (CFS) for 0.620 (Ac. ) Total runoff = 3.623 (CFS) Total area = 1.250 (Ac. ) Street flow at end of street = 3.623 (CFS) I Half street flow at end of street = 3.623 (CFS) Depth of flow = 0.308 (Ft. ) , Average velocity = 3.512 (Ft/s) Flow width (from curb towards crown)= 9.568 (Ft. ) Process from Point/Station 110.000 to Point/Station 107.000 ' **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.250 (Ac. ) -II Runoff Runoff from this stream = 623 (CFS) Time of concentration = 14.263M in. Rainfall intensity = 3 .085 (In/Hr) Summary of stream data: I - I a SIt II • ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 20.224 10.80 3.594 2 3.623 14.26 3 .085 Largest stream flow has longer or shorter time of concentration II Qp = 20.224 + sum of Qa Tb/Ta 3 .623 * 0.758 = 2.745 ' - QP = 22 .969 Total of 2 streams to confluence: Flow rates before confluence point: I 20.224 3.623 Area of streams before confluence: 6.830 1.250 Results of confluence: ' Total flow rate = 22.969(CFS) Time of concentration = 10.805 min. Effective stream area after confluence = 8.080 (Ac.) Process from Point/Station 107.000 to Point/Station 96.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ' Upstream point/station elevation = 1190.200 (Ft. ) Downstream point/station elevation = 1189.800 (Ft. ) I Pipe length = 45.00 (Ft.) Mannings N = 0.013 No. of pipes = 1 Required pipe flow = 22.969(CFS) Given pipe size = 21.00 (In. ) NOTE: Normal flow is pressure flow in user selected pipe size. I The approximate hydraulic grade line above the pipe invert is 2.669(Ft. ) at the headworks or inlet of the pipe (s) Pipe friction loss = 0.945 (Ft. ) Minor friction loss = 2.124 (Ft. ) K-factor = 1.50 ' Critical depth could not be calculated. Pipe flow velocity = 9.55 (Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 10.88 min. I End of computations, total study area = 8.08 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. I Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 71.0 II I II II 2a9 1 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989 - 2000 Version 6.3 Rational' Hydrology Study Date: 04/20/01 File:s700.out ' Redhawk 100-Year Storm Event System 700 Job Number 160097.00.000 ********* Hydrology Study Control Information *********" English (in-lb) Units used in input data file Crosby Mead Benton & Associates, Carlsbad, CA - S/N 776 ' Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 2 year, 1 hour precipitation = 0.600 (In.) ' 100 year, 1 hour precipitation = 1.400 (In. ) Storm event year = 100.0 Calculated rainfall intensity data: ' 1 hour intensity = 1.400 (In/Hr) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 95.000 to Point/Station 96.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Rainfall intensity = 3 .297 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.831 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: TC = 12 .64 min. Rain intensity = 3.30 (In/Hr) Total area = 64.10 (Ac. ) Total runoff = 142 .74 (CFS) Process from Point/Station 95.000 to. Point/Station 96.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 64 .100 (Ac. ) Runoff from this stream = 142 .741 (CFS) no II ' Time of concentration = 12.64 min. Rainfall intensity = 3.297 (In/Hr) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 96.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** II Rainfall intensity = 3 .581 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) I. Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.670 ' Decimal fraction soil group D = 0.330 RI index for soil (AMC 2) = 70.98 Pervious area fraction = 0.500; Impervious fraction = 0.500 User specified values are as follows: II - TC = 10.88 min. Rain intensity = 3.58 (In/Hr) Total area = 8.08 (Ac. ) Total runoff = 22 .97 (CFS) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 96.000 **** CONFLUENCE OF MINOR STREAMS **** ' Along Main Stream number: 1 in normal stream number 2 Stream flow area = 8.080 (Ac. ) . Runoff from this stream = 22 .969(CFS) I Time of concentration = 10.88 min. Rainfall intensity = 3 .561 (In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 142.741 12 .64 3 .297 2 22 .969 10.88 3.581 Largest stream flow has longer time of concentration QP = 142.741 + sum of ll Qb Ia/Ib 22 .969 * 0.921 = 21.151 Op = 163.892 II - Total of 2 streams to confluence: Flow rates before confluence point: 142 .741 22 .969 Area of streams before confluence: ' 64. 100 8.080 Results of confluence: Total flow rate = 163.892 (CFS) ' Time of concentration = 12 .640 min. Effective stream area after confluence = 72 .180 (Ac. ) Process from Point/Station - 96.000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** IIUpstream point/station elevation = 1189.800 (Ft. ) _ 023/ Downstream point/station elevation = 1183 .900 (Ft. ) Pipe length = 160.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 163 .892 (CFS) ' Given pipe size = 39.00 (In. ) Calculated individual pipe flow = 163 .892 (CFS) Normal flow depth in pipe = 33 .28 (In. ) Flow top width inside pipe = 27.59(In. ) Critical depth could not be calculated. Pipe flow velocity = 21.73 (Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 12 .76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 96.000 to Point/Station 108.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 72.180 (Ac. ) Runoff from this stream = 163.892 (CFS) Time of concentration = 12.76 min. Rainfall intensity = 3 .280 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 109.000 to Point/Station 110.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 130.000 (Ft.) ' Top (of initial area) elevation = 1220.600 (Ft. ) Bottom (of initial area) elevation = 1219.300 (Ft. ) Difference in elevation = 1.300 (Ft. ) Slope = 0.01000 s (percent) = 1.00 ' TC = k(0.390) * [ (length"3) / (elevation change) ] A0.2 Initial area time of concentration = 6.865 min. Rainfall intensity = 4.613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.509 (CFS) ' Total initial stream area = 0.130 (Ac. ) Pervious area fraction = 0.500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 108.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1220.300 (Ft. ) End of street segment elevation = 1188.900 (Ft. ) Length of street segment = 620.000 (Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 111 Slope from grade break to crown (v/hz) = 0.020 II ' Street flow is on (11 side(s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 ' Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 II Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 3 .932 (CFS) Depth of flow = 0.298 (Ft. ) , Average velocity = 4.171 (Ft/s) Streetflow hydraulics at midpoint of street travel: I Halfstreet flow width = 9.092 (Ft. ) Flow velocity = 4.17 (Ft/s) Travel time = 2.48 min. TC = 9.34 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.840 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 I Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.894 (In/Hr) for a 100.0 year storm Subarea runoff = 5.724 (CFS) for 1.750 (Ac. ) Total runoff = 6.232 (CFS) Total area = 1.880(Ac. ) I Street flow at end of street = 6.232 (CFS) Half street flow at end of street = 6.232 (CFS) Depth of flow = 0.338 (Ft. ) , Average velocity = 4 .614 (Ft/s) ' Flow width (from curb towards crown)= 11.111(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 108.000 II **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 I Stream flow area = 1.880 (Ac. ) Runoff from this stream = 6.232 (CFS) Time of concentration = 9.34 min. Rainfall intensity = 3.894 (In/Hr) ISummary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 - 163 .892 12 .76 3 .280 2 6.232 9.34 3 .894 I Largest stream flow has longer time of concentration Qp = 163 .892 + sum of Qb Ia/Ib 6.232 * 0.842 = 5.250 IIQp = 169.142 Total of 2 streams to confluence: II Flow rates before confluence point: 163 .892 6.232 Area of streams before confluence: 12.180 1.880 ' Results of confluence: II a33 I ITotal flow rate = 169.142 (CFS) Time of concentration = 12.763 min. IIEffective stream area after confluence = 74 .060 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 111.000 II **** PIPEFLOW TRAVEL TIME (User specified size) **** . Upstream point/station elevation = 1183 .900 (Ft. ) II . Downstream point/station elevation = 1170.300(Ft. ) Pipe length = 400.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 169.142 (CFS) Given pipe size = 39.00 (In. ) I NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 12.862 (Ft. ) at the headworks or inlet of the pipe(s) Pipe friction loss = 16.780 (Ft. ) II Minor friction loss = 9.683 (Ft.) K-factor = 1.50 Critical depth could not be calculated. Pipe flow velocity = 20.39(Ft/s) Travel time through pipe = 0.33 min. ' Time of concentration (TC) = 13.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 108.000 to Point/Station 111.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 1 Stream flow area = 74.060 (Ac. ) Runoff from this stream = 169.142 (CFS) II Time of concentration = 13.09 min. Rainfall intensity = 3 .234 (In/Hr) Program is now starting with Main Stream No. 2 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112 .000 to Point/Station 113 .000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 110.000 (Ft. ) Top (of initial area) elevation = 1207.400 (Ft. ) Bottom (of initial area) elevation = 1204 .200 (Ft.) I Difference in elevation = 3.200 (Ft.) Slope = 0.02909 s (percent)= 2 .91 TC = k(0.390) * [ (length'3) / (elevation change) ] "0.2 - Initial area time of concentration = 5.186 min. II Rainfall intensity = 5.382 (In Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.866 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 II RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.745 (CFS) Total initial stream area = 0.160 (Ac. ) IIPervious area fraction = 0.500 II .239 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 113 .000 to Point/Station 114.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1204 .200 (Ft. ) II End of street segment elevation = 1194.600 (Ft. ) Length of street segment = 250.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) II Width of half street (curb to crown) = 20.000 (Ft.) Distance from crown to crossfall grade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 II Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) ' Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 I Estimated mean flow rate at midpoint of street = 2.493 (CFS) Depth of flow = 0.274 (Ft. ) , Average velocity = 3 .372 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.892 (Ft. ) I Flow velocity = 3 .37 (Ft/s) Travel time = 1.24 min. TC = 6.42 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0.862 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 RI index for soil (AMC 2) = 75.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 4.785 (In/Hr) for a 100.0 year storm Subarea runoff = 3.093 (CFS) for 0.750 (Ac. ) Total runoff = 3.838 (CFS) Total area = 0.910 (Ac. ) Street flow at end of street = 3 .838 (CFS) I Half street flow at end of street = 3 .838 (CFS) Depth of flow = 0.308 (Ft. ) , Average velocity = 3 .691 (Ft/s) Flow width (from curb towards crown) = 9.610 (Ft. ) Process from Point/Station 114 .000 to Point/Station 111.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** llTop of street segment elevation = 1194.800 (Ft. ) End of street segment elevation = 1175.300 (Ft. ) I . Length of street segment = 560.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft. ) Distance from crown to crossfall grade break = 10.000 (Ft.) II Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 10.000 (Ft. ) IISlope from curb to property line (v/hz) = 0.020 _ II 722 3 oa's -s . A 3s II Gutter width = 2 .000 (Ft. ) Gutter hike from flowline = 1.875 (In. ) Manning's N in gutter = 0.0150 II Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 Estimated mean flow rate at midpoint of street = 4 .661 (CFS) I Depth of flow = 0.329 (Ft. ) , Average velocity = 3 .738 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.632 (Ft. ) Flow .velocity = 3 .74 (Ft/s) ' - - Travel time = 2 .50 min. TC = 8.92 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.841 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3 .994 (In/Hr) for a 100.0 year storm Subarea runoff = 1.311 (CFS) for 0.390 (Ac. ) I Total runoff = 5.149 (CFS) Total area = 1.300 (Ac. ) Street flow at end of street = Total (5.149(CFS) Half street flow at end of street = 5.149 (CFS) Depth of flow = 0.338 (Ft. ) , Average velocity = 3.822 (Ft/s) Flow width (from curb towards crown) = 11.094 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 114.000 to Point/Station 111.000 **** CONFLUENCE OF MINOR STREAMS *** II Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.300 (Ac. ) Runoff from this stream = 5.149 (CFS) Time of concentration = 8.92 min. IIRainfall intensity = 3.994 (In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 117.000 to Point/Station 118.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 90.000 (Ft. ) ' Top (of initial area) elevation = 1179.500 (Ft. ) Bottom (of initial area) elevation = 1176.800 (Ft. ) Difference in elevation = 2 .700 (Ft. ) Slope = 0.03000 s (percent) = 3 .00 I TC = k(0.390) * ( (length"3) / (elevation change) ] ^0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. IIInitial area time of concentration = 5.000 min. Rainfall intensity = 5.491(In Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 II Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal. fraction soil group D = 0.000 IIRI index for soil (AMC 2) = 69.00 II '24 II ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.504 (CFS) Total initial stream area = 0.320 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 117.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** 1 Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.320 (Ac. ) Runoff from this stream = 1.504 (CFS) Time of concentration = 5.00 min. ' Rainfall intensity = 5.491 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity IINo. (CFS) (min) (In/Hr) 1 5.149 8.92 3.994 I 2 1.504 5.00 5.491 Largest stream flow has longer time of concentration Qp = 5.149 + sum of Qb Ia/Ib II 1.504 * 0.727 = 1.094 QP = 6.242 II Total of 2 streams to confluence: Flow rates before confluence point: 5.149 1.504 Area of streams before confluence: I 1.300 0.320 Results of confluence: Total flow rate = 6.242 (CFS) Time of concentration = 8.919 min. IEffective stream area after confluence = 1.620 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 118.000 to Point/Station 111.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: II In Main Stream number: 2 Stream flow area = 1.620 (Ac. ) Runoff from this stream = 6.242 (CFS) Time of concentration = 8.92 min. Rainfall intensity = 3.994 (In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 115.000 to Point/Station 116.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 130.000 (Ft. ) Top (of initial area) elevation = 1189.900 (Ft. ) Bottom (of initial area) elevation = 1188.600 (Ft. ) IIDifference in elevation = 1.300 (Ft. ) _ II Z37 II ' Slope = 0.01000 s (percent)= 1.00 TC = k(0.390) * [ (length-3) / (elevation change) ] A0.2 Initial area time of concentration = 6.865 min. I Rainfall intensity = 4.613 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 ll Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 I - RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.509 (CFS) Total initial stream area = 0.130 (Ac. ) ' Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 116.000 to Point/Station 111.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1188.900 (Ft. ) I End of street segment elevation = 1176.200 (Ft. ) Length of street segment = 410.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 20.000 (Ft.) II Distance from crown to crossfallg rade break = 10.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street I Distance from curb to property line = 10.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) I Gutter hike from flowline = 1.875 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0180 Manning's N from grade break to crown = 0.0180 ' Estimated mean flow rate at midpoint of street = 2 .837 (CFS) Depth of flow = 0.292 (Ft. ) , Average velocity = 3 .207 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8 .766 (Ft. ) I Flow velocity = 3.21(Ft/s) Travel time = 2.13 min. TC = 9.00 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) I Runoff Coefficient = 0.841 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.975 (In/Hr) for a 100.0 year storm Subarea runoff = 3.979(CFS) for 1.190 (Ac. ) Total runoff = 4 .488 (CFS) Total area = 1.320 (Ac. ) Street flow at end of street = 4 .488 (CFS) I Half street flow at end of street = 4 .488 (CFS) Depth of flow = 0.331(Ft. ) , Average velocity = 3 .542 (Ft/s) Flow width (from curb towards crown) = 10.727 (Ft.) II 0738 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 111.000 **** CONFLUENCE OF MAIN STREAMS **** IThe following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.320 (Ac. ) I Runoff from this stream = 4 .48$ (CFS) Time of concentration = 9.00 min. - - - Rainfall intensity = 3 .975 (In/Hr) I Summary of stream data: Stream Flow rate TC Rainfall Intensity , No. (CFS) (min) (In/Hr) I1 169.142 13 .09 3 .234 2 6.242 8.92 3 .994 I 3 4.488 9.00 3 .975 Largest stream flow has longer time of concentration Qp = 169.142 + sum of Qb Ia/Ib I 6.242 * 0.810 = 5.055 Qb Ia/Ib 4 .488 * 0.814 = 3.651 Qp = 177.848 ITotal of 3 main streams to confluence: Flow rates before confluence point: 169.142 6.242 4.488 I Area of streams before confluence: 74.060 1.620 1.320 I Results of confluence: Total flow rate = 177.848 (CFS) Time of concentration = 13 .090 min. ' Effective stream area after confluence = 77.000 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 111.000 to Point/Station 119.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 1170.300 (Ft. ) I Downstream point/station elevation = 1169.500 (Ft. ) Pipe length = 80.00 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 177.848 (CFS) Given pipe size = 51.00 (In. ) II Calculated individual pipe flow = 177.848 (CFS) Normal flow depth in pipe = 44.81 (In. ) Flow top width inside pipe = 33 .30 (In. ) Critical Depth = 46.10 (In. ) II Pipe flow velocity = 13 .47 (Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 13 .19 min. I End of computations, total study area = 77.00 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 0.500 II a39 1 ' Area averaged RI index number = 69.3 I 1 I I I 1 f . I 1 . t J44* 1 I 1 1 1 i t 111 • i ' M. HYDRAULIC ANALYSIS \WTSERVER\GLOBALDOC\LynneNct\hydrol\442001\16009500000 PDS.doc 1 al 'r A7/ I . . I _ ' HYDRAULICS METHODOLOGY/DESIGN CRITERIA IThe computerized program PIPEFLOW developed by Advanced Engineering Software I (AES)was used to model the pipe flow hydraulics of the proposed storm drain systems. The model Ts constructed by assigning node numbers to the different segments of the main Isystems starting from downstream. The analysis starts downstream and between nodes, the appropriate pressure pipe flow process is applied. These processes are as follows: 1 = Friction Losses i 2 = Manhole Losses . 3 = Pipe-bend Losses , 4 = Sudden Pipe-enlargement I5 = Junction Losses • 8 = Angle-point Losses ' 7 = Sudden Pipe Reduction ' 8 = Catch Basin Entrance Losses 9 = Transition Losses In essence, at the input level of the program, the model is assuming pressure flow all the I way. However, at the execution level using the "Coupled Pressure Flow and Gradually Varied plow Analysis" option, the program analyzes both supercritical and subcritical flows Iand determines the correct Water Surface Profile in each pipe reach by using several I Energy Balance Iterations. The head loss computations are based on the Los Angeles County "Water Surface Profile Grade' (WSPG) head-loss functions. IThree systems were analyzed and labeled as System 1, 2 & 2A. Refer to the Hydraulic ' Map and the computer printouts. " AVS- 1 1 1 1 1 1 1 1 1 CALCULATIONS 1 i 1 i 1 1 1 ' CURB INLETS ' X:\160097\0501.doc 1 1 1 1 Curb Inlet Sizing • The 100-year hydrologic results were used to size the curb inlet catch basins. For inlets on a grade, the 100-year flow rate and street slope were entered on Plate D-7.7 to ' determine the flow depth at the curb. Plate D-7.7 is for a 32-foot wide street, while the development will have 40-foot wide streets (there are no plates for 40-foot wide streets ' with a 2 percent cross-slope). However, Plate D-7.7 is appropriate because the flow depth does not exceed the 32-foot wide street centerline at any of the curb inlets. The flow depth, Y, and 100-year flow rate, Q, are then entered into the curb inlet capacity equation, Q-0.7L(0.33+Y)3"2, to determine the required length, L. Appendix C contains • the sizing calculations for the inlets on a grade. For inlets in a sump, the Orange County Environmental Management Agency's Street Capacity and Inlet Design Aides contains a nomograph (see Appendix C) for determining the capacity. Using a curb opening height of***inches and a depth of water of 10 inches, the nomograph indicates that the capacity is***cubic feet per second per lineal foot. Therefore, the required length is determined by dividing the 100-year flow rate by****. Appendix C contains the sizing calculations for the inlets in a sump. t i 1 X:\160097\0501.doc aus MI =I M MN MINI NM NM Nisi r• a ai mill -E -a r • la int z H \1 ^... \I C; �< II \I4 N u w f� N' C N : Y o' c Height of opening (h) in feet a o M c ro �., I. Ir '# i# b v be '0 O ° tr i 1 . . . i . r . r t is . 1 . 1, . % a 1 Cs \ai. ,i. ./ -r.11t •t4l . r . { N it .h. .j . J, tl . L 'o_ m n + W tir\ w M a 1� a A �I a 0l �0 p� : N - xz W G % V V D \ o m Height of Opening \ h) in inches n % ` J` • AQP 3' r N C \ > a \ U r 3' ir) I t` Capacity per toot of ieusth o, opening ;Q/L)\ i cfe per foot 10 Fl c \ w ro 4 N , Oi q (w w �� R■ o. O W W # a Or o I j it L \t 1 � t 1 1j11I . lI ! 111 Jt \ 1. N %♦pt 0t • 4. ♦ ♦ CO t• ♦'S �. a ♦♦ n•, A S s Ta. n tr \. • A b Ratio of depth of water at opening to height of opening 111/b)•ti, in ft/ft in a 1 - - - - I . . . . I . . . • 1 • , •-I . r 1 I 1 r 1 -1 i l l ir ( r 1'tr111rr { r [ 1111 r N e I IRedhawk — Sizing of Inlets in a Sump Location' Qioo, cfs Inlet Opening2, ft Inlet Size, ft. ' 17 45 5.9 3.0 7 South 8.3 4.2 7 45 North 28.8 14.4 21 I 67 East 5.0 2.5 7 67 West 9.6 4.8 . 7 75 11.5 5.8 103 I 86 99 13.5 6.8 103 11.8 5.9 103 111 East 5.2 2.6 7 I 'Location is based on Rational Method Node Number. See work map at the back of this report. I2From Orange County Environmental Management Agency nomograph, the capacity of an inlet in a sump is 2 cfs/foot. ' 3Inlets in cul-de-sacs are one size above minimum required to provide a factor of safety. I I I I I I I I aye 4 :.- •-• ,'.'.', vom 5 r 4' ' . i : 4,-. 'i4:'•:01b, - r .- • 11 i 50'R/V! ii..,,,•:•.- 1......., .;.4.,:.... :. t .. • ,. . . • 32. ....., '',-• . . ,..::',..-. ' i .... . . ... . . , 16' 1 • 16 ' 1.___4mgilm.... ....___2::•./ 1 2 e/0 1,/,•••••,,tt P• ,.' '. : 6•0.oie F==r----- ••...• . ' .. -- • .... • . .. . TYPICAL SECTION .. , „ ..,-.- : •.. .., . _ .. . -.,..,r....,•,,... -, ,.. . . 1 4 li - IV a 10 II 10 15 30 40 50 40 40 IGO 150 100 300 400 aoo 400 030 1000 40 N. .., ,ki. --. ,...• 40 -- ..- • .....- .............................-----..,.- .. . , ...,..t.1..,31t... ..........7,:nr_... ••• 311:31.1 . ...•'":3"RE=====...... 3 ...:::::......1.:3E.I..::::i:::.33,ii3i331=-_ -E.-=__=== :im.,..,,,,,,,:!;.„,.....z /•,.:...:•-•,=..t.,--- '.-- ..- ,..pIT...:IiirreiEEEpt:........ -=----.. _ ..._..:.......::......,.......i.T.-:::iii!...... -... -_ 1.„.. .:1,..,,A4,,.,...,,..?•-••••-• ....... .. '.ik'''''' ...'' ,, ---- •••• -... . • J'I • 2Z -.....63•*:th:;:iiF :12:::r4:11PRIE-2 .E.7.r.,7.3EEEI iiiiiigh,?!Igirli .,.... ......,.. 1. cr•-•,-..r..v..-•••4..bo . .......cncr.::::::=:.-...........c=...-.......= • •,.••••••:•p••••••••• ••: • ---•••••====... ....................:tc.. ;irci:1 .:•:....4i g i:4..T.-=== --... -...r.: "="7--.7.=;-'.... ..."iiurl:4E1.:':-.-'llt:-....-- • ipt..011 ,, M..Z,........IC 2 n.trA4EW I .' .'7 . -.1 -' • ..........i:ArAtli.1.1:1.1.:::='''=== '•"'''''••••'" .14117======............. . ..•••.1,1141 111.111...i .64. ...:ralt:3:::: :rif;EE::-.......:..-....: -Iii::::="'n7-1':3=ErriiiiPlIrr:-.41.14=i;,.,;..g....1 4.1.........., i-•''. ..''' t... 1. ' .... ....Mtratirl:11111113=:;_lririgl"1"1114=2=:11111111111 ..."IirnTrIlpIrl SIMI 11 IIIML.1. 1111•IPIREmastaCp111,••Artivikowailios.:111:1 .111, tionossoimusimmouteis.n. MIPIIIII MI= .M III .."I'"11•Ill• .111:11•11•011•••••••• ••••••M•11••IIIIIIWem A•••I I -......Ithilfill . ...... .00 , I ,- le IIIIIIIII ..... I I I IIII. : 1M1111111111" tumninTrirass::::: 11,MIMOMPOINIBMID‘I.,ow!,i•:.4.444 ppm rsoicis min iiiii mum 1 1 ..., .......men"Hililig Ili iiiall=iiiimmilloW4NP.C.r.,dem-.Mr IIIMHOWIRle 511,1111111111111111111 • l • ' -. • aifi NB iiiiIiiiIIIIIIIIIIIIIIIIII............nu;111 ail illIMM•110111V15.6..111,.. j1j111,1111111141411!__ 11!!!! A GI_11 rig* 4suis ••;0_41itio..autumuowe elemi111111111111,i I': ' - iiiIIIIMUMMIIIIMIIISHIMM:1":12112:2:: 1 11;soull111111111,11;411W11.11.1•_171611.1..L.,_;Elly.';1111811.7.*'‘U111111101111iillifirliiimiliiiiiiiii 1111.11_.. ____Wirdlillil...II.11101,111101.111111/11110111.3C:1111111U111(111MINMEVe.1111.....1111.1.001M111111111111/11111 M1111111111111111 6 .1'•• - SHIGIIIIIIIMMIMMUM11111111WM111011MBEerAmmesom mosnuilimmmu gimpimun ism pi ....,1;.yAimelllw.igek-liguer..:Amea: otaitaniaatitia!!!!!!!!:ils 9-,•",•• - . - •-•• .sualasialumuniimininaliammilisaiuminowcommoseamasuallimmminiain1011111:mmilohoy,,,..,..---e4sorou!srie,..asamoll maimitsionmatii . - •. • sailialtanotolliwitaulalumniniouliumumumwoolinuralawilimmiimiatalaalpitini nuo.ita--41:w..1-ameziongemaiiiEiiukiiiiiiitaillaiiiiiiiiiiiiiiiitai ....:?...,4,06.„ ,• • .......„„ii„„„i„, ii;initilliiiiliMuniiiiiimMilangligiii11111111iiiiiiiiii,411091117rAiiiiiv.Hottini,APT:ligininiltil IiitUnitfflimilailiiiiiiiilimililllii ' e.fir. ,-.-,. •iiiiiiiiiiiiiiiiiiiiiiiirinviimmiumantimuneouliniliummirgion;,..11iticrAir:ilar..cie.:::10.....tdimilail iffunnuoultunwoquuNi •-.....4• r.-.... 10 ... ,.._,=•_ ...,,=_____.„: :_____-;.44.,,.,,......-..i.„.,,,,,,...,,•„1.10i...]:;•,,,,-._,.----.-.._,;=,_•---„IF.4.E.S__E.....13z, iii:-T:li.i.i.!_il.... I: r: :-.,:i•::. : . 14).'. _, - .41.1i111 •:1 - 1: ' - .. ..... - II ik _ .,,2 =-...---- ••-r.--- ------- .-riV,..4 :aKsFi'.1:51:::.titt.',":_,....ff..-ff. t„-:. ,. - lizatt .7,...-11.Eftp.vili.i-...,...............' s • 1-.AS' ' - - -• "-I'"'----=-... •'•=1.-=.2 2:...... -.:rr.r.:•1",i... ." ---3;.-',-....-.=-•=ii-7----=3:1- : '. it..,,,. , . ........ .. • 4 . .( ,i. 'pi:. .• I..: iii _ .. ..--- ...:=:!h : ==2:"1=='::4":72:- ...1:7;:.'";:;,..0Prit .'"air :.•-.:i..191:7,t1W.d-..=.-===-iii iiiiiii:iin....IFAESEIE1:5••-••-•-'- '- *:''.-..:;;f4.-,.- - 7 i . .::::1.1:: r• .......===.•12.=••.= ....:22:.r.- •Z=.....I. ....0...41.....:•••........i ....•••,.., .. r .r...e.,:: ' ,, • z-4.1 ........ -r"-----....----z,--a----E,-==.•11-''=4••F:ii. -' ,''. ...-..g?"i:113reZair. ....r:'••====iii-z...3ii="irail::1"131E,IS );t4f,,, •'‘. . • , .. ..''''' .•.';''.';....'"':""..:7:::-.. =1.E.F.lir....="- irzti...1n:i.r2:4.41!::4=:•....;ii ?_r :: :! 311...Jmnau...... ...,....:............... :• , . ............ ....I...4=14..-e'............•.."-...-...Sr...7,- ;•,,,41.4.••••g!”.;.1...!...sar•..°...,0,-.------2,-;:=1::::::::::::...=mg rat:::.:::„.......... Tf.,...at.,:,'•,", - . - • Ilk 2:-.....-- - ..'".:iii!i'.7..."7....-.1.1iNtiv,:d474::-T-tigaEl-Alis.P.,;:air..:Itti.InslInsw.:ilitP....0...6= ..9.: :::::::11 II:wa.:: I....r..:•!' . . •. II -zf.- -'.;rt"iii-- u i' -,r,!iiqc'1='.... 1=•••=';-21";':Ei15-...71t. l __:50:6iliiiff43:tilh--Z0774.--.C1.5-Ellifiliiiiirligilliiiit':;;:.;!;;AIZEP----. ..i':. a;j.• '' -,..••• hz-3.:=i4iiiiiiiigi...................................... ..............................................................................................-..11'.!iiiimiE....iiii,i7: "" Jit-- ..e:•.',''-, '4-• - 1.7-'' ' .--":1":-:.....P• ,''' 7.-. --.'fia="1-3'i.,,-.7.7 7,--.E.=-=. Zim:rz...-1-.-.EzE•::-:.45,r-ir:f--exix-.,1 ,1 .spiscsit--....s.zzazaariiiiiitipiiii::...... .a::44.,..,.• .. ,,4:-.,•• .- - , 7-' • . . -91111W.....agg:illii7:' =v- -"'- .1.:1'.2.--.-'''...;•=".*-40/11 ;'.10.--1-0---.1P.1"--"•"igE. -•=e•- i..=...T.'-rag.zw---1......1:::::: • ".•- 7•..--• -....;,:'•"-----ii;:kiiMI"!g1; pFlOiPw"riPtriE*'-'11:15iii:tni5:::1--71 ?.i:0:94i:tiligitlliligii--..iigiEEE...zirliiiiiitilipiliiiiiiliA ,,,,.... -- ...-r •-•- :-.•-•- -r •F=TPAZI=7.1 -.......,-....,:,41 ...Oa. .. . . ..% 34,, .t''a-1,. --- ANDIPW. .'inlriUM:1 eili:ii •''' V=11411•••• .N.SIEN, ..,••••••••••..••••••••...1.• 1n= •••...4. •.... ......2.'"Z=G.72=:r' irirt.1..,.;.cil..q. gr.rt,irrr... •, 3 ..A.'.7...'.... -•'' r • ....:".' --4-'6:"1".61.1116j:Erj.-1'•r-'7-.'127""7$1;;P:::"7.1111F7'.1'61411"P4Wiiiii"iiiii IRESEHEi.S:""' ii::31::111111Liiiirgiiiiiiiip,:!g nu::::::r's. - ... - 1-!.4•2•or or;41.111.4. ....;:oraa/Tari igr.-tair.oirol-.1:./4”....igl.4.sesi000noi.oairmim .o.:..3.o. ..211 loom in.....we o• it. I/ 11 . • . '').if..'...'i''''.•...•:. ....i - - . ..•••••••'..r.•:/••••....;........mor-.m........-..••••owe.-•o....i....••%••••••oofi.ilg 1114 Y••••••=m==••••••••• • 111...1.1/1. • i , ..i.,_,,,. .• ••,L,,, . ..... .....,.1 I II IMIIIIMMI.111111 ..:1:111111r;iFig:!!!3.1.1lint MI r-t,..7....-:-.-.,:vz•••:•;c:,...r.- -...:;:ragr,.::......stlii fi.im...z....::5-7.1.....: .....11.16:=2,,,..el I et.4..:1...X:::V, •• ,II 4 7.i',......•. I.1•••••• . ..r ,,,,,,,,•...•...........4,.....• •..,-1.. -...P'.er g“-ri•Irj;',Ili •.ra:::::urahimmimmans.. .:-.:ril:;:i.u....1.....,,,,,,,a I........Rim:: -..v.-., 'V:,..,i‘'it •'''........!!!:,,,,,;;;;;13gri.:.'".4.':-!-' :11V•9'.4!!"...011:11'•1....:vtleir,%,1 I...ixanutinammanusu soeir tom ma so m .....IIIIIIIIIIHII. Al 111111.1111ENI MI MI II.IIIIIIiiIIIM1411111111nI1111•111 .........111112i ,. - . . . - "1 .,.'"...4 •i III""""rwl!'"'' -.r‘ "9!.119---"P"-.P".”.-"8.1"1!"'".r.enrilirigilliTilititillUlliiiiimMISINI:11:1 -a- ..flipliiiiiiiiiirs 4.3 • .,,,,,, , ..., ..., 1,1 1.6.......innuy a,c,••......0 AM.. app....r.am_afr•esr,01•.rt IOU °III II I Il I 111111111 -1'. '2.....:.'1' it so 5 t i••-• • .1,....:,..ssaix.,...;..1110•.osdirdman IP.4111P.,f. .0,...........su In.rm. w•rrol- PligrIVIVJINTE7111111',Ifitr...11,111M1/1111 I......MIMI ,, , • '.1...."" •" ill•III.IIIIII,...- IIIIIII..t;iv flow .06311111.:010130 ill. A mommiaimipmei Ili. .i lir!Hum a..' ii 41,41111661.,..112_.II.'•I 1 1111MIIII I ...1111111111111 ......, . .. ...:7-. ,•. . '•'.4.11111601: lillii;'..-il,...1111111.•AINIMMIPI ..io,.f..4siliesiellimitstiiiminuifiluneol(itilkinituummomaig esimoliaiallimulamill.: imitimiiil... . ' ••c" .".. •• le.:-. ,i,,,,•::..11.all,, ...010,.to,!:.1.1rA-impow...r.,.1...-mal!imitiptionqualloaialu mull ninu fa roaaisolseumpanunnimaanimiminoniam . -, -,, ,•.;;(•,40'..'',-• -`• ' • aa.....;..ditili..;,,,ilalinit,.1111111..101111101"010-..edig eglainall.,.....:7,10:01,III tut- ii...mu,. All linral; I ; 111111111IIDNINNINIIIIIpilililtIll1111111111111dmi -. ' ' ' •.Alr.,.!:....11i0141111114111,..111i.K.M1111111'..11MallrAID DIDOIIIIIIIIIRIUM111111M11111111 1 01111111 1113 1111 111111111 11111111111111 t11111 11111111111101.. t •: . 4,, :;.:2.• f 611 1111','/"1..!:;iiiii';31111P:xlillillIP:0111111.K4211_f 111 111:•!!!!rt7:1 I,r II Ii w 1 II mg limp IHN 11111111111111111111191IMMIHMIIIHNIIII,..re:. P :Pq; IIIIJ!::iiitill191i1P:tillgirillin:11041111111111MENii1111111111fildUllti1111/111111i111111411111 In gm ill 10111111111SIIIIIIIIIi111111111:11111111111;111ValeAc: 41,.L-----":7‘..iEtiiiit' "'...-.---m•iirl;:.ti':.!.4iz'''iiig*---7;a-'1'ilii•i.•t•iiitra-iiriss..4.: . •:•.iiii.:i:iiiiiiiiiiiiiiiX -:.-a-__-tfil.,..=E-'4..41 .tf,=-.i:-],:,:•-, ,,, -•-...:......i.,,' - -4,•I',,.. '`..''' Q.T. ::::E.-:.ii::: ar•::;iv...:if.. .e-ii.iliiiiiiit,..:-:'ffi .Tratr7-.7..i.itaUf.tg.i.iiii.rifiEJAIEHilli-vilirit- A-grfit ---E:.;;-..ii:-.."-- •,,, : ----- i • . . r. .,. -----EP--• •-•••'• • -- ---'• :-.--,-F.i-- --- -9.= 7..- a;:ti:---•-I:,• •. ----.::....::::;:... 4 CO, 1.'.•••••., .,.. •.,-.. ..1:4• • ........-.::::::::.....:. 3 ..iiitiiiijiiiE== E2ESE Ez•=17,---T-1itidifflip,M E „.„.3„iic.,,a;.„,..,,,, 1 .. ., 4...•... . ' ' .• ---"-" ........ --:::::.::::11:1..11.1i1===:»ac;Cr ri:=2.:-.:EiziE.K..glItuf5...:.:..f.=....=!C.4...Cit...-5.......,ger-Es .....C..L.........,:........... ............. . , -'••".. . • i."--''' ••i•' -IA IIIl'il- 411::11:1111=iiP4H "diEstsh:rlifilikiiilEfiliffile=i-I'zrillitiks-2--eihiliT:IT 11111:4;!=iiiiiliiN . ' z•-:::a..,..........w....... •::::1 -;111: nl. -= .... 111Zini 0 Hir...,...r... ..., ,, ,, .... .....mt•67 . •..•.• •..•. ,1 '..".:., . •0-0 ..i n:r*--"T''...--1.1111F;1114;"3 =--Ilia 1E3 •1:-. :::ru:::.:1610:•11111211F1-q1ril=-1E-.1-. - .3.cmil 1,,,-3 04 -.be... • • ' '.• . • . 3::::13 io 64.41.11::13....loi:41.44.11ME===.11,122.4 2E1 ••.2 1.1:amidailiii 1 ra jdAE, _. a iii• nr.111r.R., . .,, ..........: , ... ....• 0,0P 3;Ii•...........-••••• rl::•-1144:::E.--E-74-1;-ii.i'5'. 212 .......u'i";;:::!iiEgitlf.P.filiI::...w.3_..g.-.g.-giiiittif iiiiHIFI i17:::i.:. • .1,.`. ,,., . 7 " 2 "I' .."11.i....1..-....:: 4 .,':ii...!'. ..-=E-..-'1='-,s Ir-'..14................. i 'Ailtl.1.1...44:-:.:4 - ==.-,= =-EilityziE-..,.51.-'!•?'.....,......- --i- "..... .• - . liz==.1r:::::::3!EM:::5....3nr.-r--====c --...:31=::::::::.......1:.::..r: :my -------zt-----......x: . • ' .0A ... -0.4 .... •• - 7 a 4 5 6 0 10 II ZO Z5 30 40 50 GO 10 100 150 ZOO 100 400 600 1100 KO 1000 • • • - . 0 1: 17. 1 Cr.5 DISCHARGE - C.F S. • . . • • -,-- .•• 5'; 2•G to (TOTAL FLOW IN STREET) •. . . VL FTI-1 -7-• 0,31i RIVERSIDE COUNTY FLOOD CONTROL i -.. )"1. AND • . ,-1 .)3.t-'31 , . WATER CONSERVATION DISTRICT • - • - L = 412. 0' VELOCITY DISCHARGE CURVES • . -...( . .. . . . . , . . . ... . _ . - - • ' ' RCFC a WCD HYDROLOGY MANUAL • . . • . I c COUNTY STANDARD No. 106 321 ROADWAY. 6"a 8"CURBS 0•••••....„ea.: . ....,.... A....V.1.T.isii•o••i.•••• ai.. co....0,,,,rercyr- g or.. ..11&MVO VAX N. . . ., . . PLATE D-7.7 - ' • 021/t • • i .i ' SO'R/V/ _ '' r ;},. 321 i �i, " 16' 16' t , ".• u+' ,• 2 a/L 2% L/'F�_ l', .sor ft •.1 31wn•O.OIO TYPICAL SECTION •' t !,: 1 • 4 8 s I 10 18 m 26 30 40 00 SO 00 100 ISO too 300 400 100 800 800 Inco d.N �'• '-'.e'. :09 •s: :r - - r. ----'-'--=----'"= u .: :: ,...�i:..-__ s_ •..:1:1:7::::::..":1.?S3ci:{zlii=i:i?:::: .. +O '.1. 11th -'.1:=M.s:"9:•.--:•.'.=_____ e E» ___-11__11.... .• 1::::.......... w:z:zsil3'�1ef�`�ii5i1-• •ii •- •i':^r.. ...... ii: s.-:��.axr'i •' • f i::•_�1•'•'•'Iiii ii w: ..._=====a===�== i:s:r«iiir..N.1::..::11..1 •.:IyMii~=' =s=? _. .y.,, :• .,., d • ,.,:::i........ ''P 0A:4.,!.'1,;- ;-' t9.. 1111. ,I.t. �..:~'.`-CH ..:;t::i::i..... '•• j 1.......•1....71 � �--C-SZ' i'itU>:^ill::1...'..I..i::i1...i.l.Y..l....l.. to rr '• h ' 77:'.mo:!........or,.......• 19 . ..;---- ..•••••:•• 1111:' 1 ..$J , P'. tt11...Y..1. t • 1111111i11 /u1Y,1 illi�1il111:. M /. N MONO 10•1••• 11 I/ryryY IMI:C _��iSil.� .N.+M\Y�NIII:/1::••i Y M '' ' ' '•1' I1:•l:1.111111 1tI'I.N11111i1111:==__� 'II'�:'ll•11 111 MI M- 1•�/_••••• • iii..31•,••1••1/•1.„i••••: 1.� .....:1.•••••t',/ 'l•-• �' `'r i ';J •1111Y UIY 111111{III••,u•ii lu�lt IIIIIIIINM__.wl "�II IIIII IIN{;1...•1.11.1111 SI1NI II`II� Y.■* .w. . 111 '.�1`II II�/?'1111111Y r�■.11.1111......llll11111 •- _ 111 I .nll/, ,IIP 11.1.111_---...... i 11111,IIYII,II.i......1IIII,II1...111/11$11...10 ----n....i.'MI.1...r'• 1,....u.I. Iu1..5....... en l,:'' . .so , 111•1III.UI4Y ..IIIIu111111 111_�r1w. 1 IUII mum u_�_. .Ir....•w'r' 11:.1'1• 111111.■.1.111111111111IIIII f I- inununlungqm u1I unI I{In/__._..• 11011111111101.111110U11111111IUI.1111__•• 101141401011.�:•�i'r..lr euu unuul m 1 nnullu /1.IIIIIIIIIIIIIIIII... .111111111111111111___wl.l.lt.$5 11.11111111ilIIIl ! 111111IIHI_J♦_..R. I7i!r.•IIM'1I11 IIWIIIIN7II l !101111111 i.�: •• . 18r/1111111IIIIlIhi11111111111111111111111111111111•_O./f911t.•hi.111.•.,Ila III.' -11,188Ns11111/1111111111U1U_S •1h�/ I8•. IIW.'/41111111111111111111111111,411111111111 111111111t1111111111N11HI111111111111/11__r■i111■bi18/8Ylrrt11114rI11I.1111111111■N/1 11'.1_11111111•71t1�_UV/�.i dP .lU'.N11111111IIIIII•UI1S11)111111111111111INII ,I 11;.11' ■■i r II • r 11 1!tIllllllllllt 111111111111111111 IIIHlllllllllln_� J1 11.I818II1111111N111111{I1111111111111 Iltllpl.. ,/� �'':" 18 - .11111111111111 IIIIIII11N11111111111111111111 . •-• -' .II1u 111111111•IIIIIIIIIIIH111111IIIII11111 p!IIIIII■■t■HIUU111/1111 1111IIIIIIIIIIIII II11111111111:IMI1111., .,11P dP.i/I'.e'A,�IHIIIIIIIIll111I�IIIIIIIHIIIIUIIIIIIIIIIIIIIIII 1111nIIIIIIII111111111111m IIU111111111111111nion numannlinuni 1H�1111111111nidicininl•IU•IIII111IW1•AMeIrS.../Si.!,:,��,:dn'111111 uniiii itl1111 IIIIIIIIIIII��IIBIIIIII _ ,,•'':_:-----'-,: ' ' - 1111I111111I11I1111iIW111111111111I111111 INIIIIIIIIMMIIIu11111111I11111NUI i 14Ma 'ill!4i160;; W 4n.i%'111111Ni 4.1iM IIA IIIIIIIT111111111IIIIIII'lI ./.'' f:. 10`.. -. ... • 1 I.1 ' _ x .....: iE- 51674;1".i=',"•iii1 e'...a 16 v:r"�ev??': Tc.i.:i .. . 1 'T, i1.• L,1y I.I....I.. .-- - ..---1.::::::._. .:y. - _ - - Iir.n ..siafl'' ni ,uae i$=�oj-z°a =IEi: • z . A.)(,1'11-e' t i•-- pr . .•• . .• ..• • . . ;i:;"i'" ti. '',-,..,:' - ''':'''.•', ' , ' - 1.1' • - •'--• - 50'R/Vd I i.7:.4 "-' ;...'N. • ----... ' 32. .. .- . . • • 161• •-• .•-• , -..,‘ ... • I . : r, O. 2 6' • / ; ' • . . • .1 • , 1F :r---- - . - • .. A•o.oie . • , . • • .- . .... .... * k ,. ,, „ . ., . •. - .- .. ,. ,. , .- :. • TYPICAL SECTION • .. .. •.. . . . 4 9 a IP PO 15 22 2 30 40 00 GO SO 100 160 200 300 400 600 SOO SOO IOW . ..• , ,:',,1../•-••• . ••••''' 40 ' . --..v.......,.. ....., ,• .A.,-k• . . . ........... ... . . ..._. .:::::1:::::. . .. =. ..::::: :"...-...-...."...:.... iiiiiilt%Fig3 iculiittili"AiliEH!iiiRiiEEHiiimig ... 40 4',.,k i ,•,1s,": /.........-. .. ........ ..:',.,..r.''•'""'•- -11:22•i•••••••'"'"EB.S...=1".-- .I'''"' -i. ..'«:::::ii: 11-::. ..r.iT•... :"."1111i"'"=-=.2Bilir- 2 EiFiiiiiiiiKiE:c:......s---tiiillEMEH • '.1'-'.1-%:,--1,-r• lko . 111.t.........1:4=1`""'111.!*rr: =::2:=="'" 3.. ..:33"....... - 3 1•"'”+.111.7: E=2::''2 2 12223:61:31:::::2=4:36:2===33: „ •• ... 1.-trillill-'1..li•-..7..F.Z ..'''"'"33""'"........ lit'....... - -....1.„... "'"**-:••••2F.:9iiE=EHIEE-zs t: tuseua:::::•-•.40::. E.1/4.- • .14:•:-.--:•-n...gl:thmit,i3::----- . ---:- .............-„.............Iiiii ..zzi- ...:::::111..nium::7;t:•:::::!..mm...,.. ....... 1•11=111MINIMMI•am ....... o: ... .is.. .........._ ....2...... .•....4••.• I.......MIMI. ' .. 4. • .' • .. ... ...........01111 :11.11111::....:.hilt i .. ,1::::. ...r.r.,,....„. .... .,. ..• ;;;;11.1„,...... :i t r. 1:4..,'.t.•.r L•'•,* :IsTainigil::: ilrip,":11:pi====c ....................... I Willi : •: al.- IS1.IIIIIIIIII n III...........DOI • "11111111:11: =INICIIISI:::. A.: L...4111:11--.,:in..... 1 .., .........,.......,.....s. .. ffliiimmmm•simus '1 • t.:•I' 'A. '110 J 101,11w.•=in moll,.....W11111111 11141111.4.1.1.1P1111M.M11115µ,r,allpl 0..1.4/111/1111111 Slim..........ii11111 20 .p.'•' ; . : . • g .....mum,......ma i1111111112111==== ..fiiiiillaii llillIIIMINMIffIliMpall.11111•111111111t.n..:dP•..411.11/'0111111111412 11111 11111111111111111111 1 1.....11111111111 11n11111i11111111M=MM. .........11111 111111522......1111111111 irtrmmlin•et.4.E1r., _aerie.411111111011111. 1111111100i111111111 "; i..r..• ' .. '• .11111111111111111111111111111111111011111111111E.0101031 I 1 II-6 I.111r.'i Alfa'II-I-ills7inelimiiiiiiiminglogi .7 55'.Agiir:,•,...imptilimiliiiininsiiiiiitimmiip .. .....1611111111111111111111111111111111131111111111111111 U 1MM .lialsall/ii..111111011Ms ImIC:11111111113,3$Sae I/AP.1".."./141net11',1111111111111111141111111111111111111111111111 .'; :.;1 : !Elisions tumuli'mom imi nemmtmiinompumissosesisiiiiiiiiiiiiiiminiiiiiimnisiiiiiiiii..71:11tAmpor.miit"..ialit;;Aniiimimpuniiiiiiiiitiiimumnffl n " '4•••••• %•••••" - - • ..kaki111111111111ifflifia4i1111111111111U111111111anillr_mossoullsookkkemmunDokkiumutmum,,,_,Ep_....4...-..,0sP:...AsioNnnummiNninieutiummuunik ..).-.....--.,.-..:--...:.. , Issegiiminimiiimimaliu iiiiminiumiummtausommnitioilieemmuumminiiiii-lummiiiiv.o ,: rzier,..d.w.rie.druni munimioupimimithimunim • •:-.- 1 .. -' -,- • . .1111111 III 1111111111111111111111111 11 11111111111111111111111INgssoniersueitiiiimilmoqueir,y;ilmumr,4001t--041.-,,,nitindelitni '...t. ;'-,, ' ...1. iiiiii111111111110iillIfiiiiiiiiiiiniloinffiunoMMIIINIlillituiliithUri;,:anic'41!%6111t,'Air..T.K.:0.;•tdililuill • ....,,,,..1,.-4.,1 !:,...• 7,....-,-, .4--..i ,--„i.ii: - 2..,r.,1:444.-107,......-7_,:,-_,..„,-..7.--___....%...,____.__..3,......:___......___ .,:::::.:.-iiiii!.F.4,01,-,::;;.....t.3,:-.•-zia.nsai-Faiii....i.iiish.-.i.iiriteig.10.!!eiiiiiiiiisvoi::::i......:::.-..: •I,- c --•*-,p;•1 -4.....1* p..."-,.441.0-"Air"..mr..iitt if is l :s iiiss.ffie..,.rif:zi-t•"•-•iti: t, • 4=4-.4,,1! -, P4 ... .zi 4gbr..."!7•H- ..ThIONg.g1". -7-=-E:.--:11:4••=:.167.-- .I.Pr•-='W to3P...:2..:..6.f.s,--==•.42 • • •••-.L. -.....6:mt:1=1.-^ - -Nt.......:E.F.•=r.7 =•:::.... ..:::-. . - .••• -1-:..sm-.4C awr:-.16- -2 2.- ... ...... 2:222:i....- ...2212:. . 6 . • ( 1.,"...4.,"•:..:11''t -- 1. 2:2 -.....•-••2•11L1,1::::=ULME•it.W4:•C• •==-. '-= --- -sii.. .-:-..;i:••:. 'H'..1-4-pnot•-p-•.ffiEEkfige acii•iitujc,:tr.1.Przia.4:::1=!.::•,•ifid:.... • •....,1,1 -.4. •.... •, * , ::..! zz.-r....:sm.1.1. -..::: .....: .: •-•=-_,-•: ,=.-i.7..,. _ ...=:....,;,;_,..., =._.-t..... ..,:s,......, ... •-•:: 7 ''.1C-',6'''' '..,i .'. . . "'"32'-::..,t:taf..TEHP'till::«Fi=ELE•i .--"•••..11E..--.rt.--,,-.T.-'7'.. ...---....W....ii-t•tt..;::.:;.:::-.:i':••---Fir:7.i.i.,•!.=N.P-..4:-z iti :Eir:EirctIi&E.1. I:iii":ill'iff.....Tr:HE:: . 1 t '''••• ' .10Plk ••• • ..:••:::•••••:•••••°•- •-.1".11;-• •••.•••••'-•=: =-:.-1-:=.7.0.•- ::•-•:;.:::m... :112.•.antr....1::•ff....r.g-2 .: - !1.-.g.i:th:::::2:::: :: .4.5.::::.:............ . " .., " ..... :,...r====.---a...J.--.----.--- ----- ------3.•...... •------2:- ---.....---n-rs "11. -'• ;0- ...-••--.'•.4-...- --" .. --,.....mgrar."m9--„,,----=....r-_,.-r...;•-:!,..4:-.::...11:::.zr..x.....1.1:;.•....,...',.::4=1E===s1....i -.::::::9::::::;L:::=:ileg.:4:.1.4....:::.:.: 4.. P.P s...,.......•• "'-....".- •''''''''........r..J...•.••4 UM El nor'w.m.1••••"--...•• ••.-..,Ammeler-.•••••••••.e.4:111:•• •••;Ala..., nowt IBM VI :........ 11118... nelar11••.....truir.... • •: ••" • .:,..,..-..".•11L' ;;:l .--iPit:1:':::1----:::Iiiiii "--n:-..-4 -1.-7 -•===Z;7ErE4-::=i- 11FF !i!:' :A1P..ciln-.12-rZ.F.ZIE-52j. =:, Ili:141-31.tii:...: hruz.::...,Iti!iff.. . 4t-.41,..'..:.1 i • ,'-.1 --------:..::.:.n'Ir:...1••••::.F..,,--...2.--2,..2- ..-.=...e .-..z.._-. z...-. ---- .- _, ..• -••• • .. - :•111 Arek,11.1:2:11,4$ .;:i...FilliAM;;;4:4,13-E'ff'ffr_.•0 --•.-- -7-•ii5. 0.1..:21111i:E;r:iil ..1:•::4.3'.7f. ,:!4'..iii•''''ialliggilfigi Hafil!.iia.:•4::::::. F: .7,-4.. A-..-7.• ". .....,-,:---•••,••••-• ..-"I'' '.4.--a:".;'"",.....•S-1.7"--7== .• ..-4:- ::•-•uo•-..r.:-'11/..ottait-••I -==E,§ 5.3.2-: :::.....„...i....... ...1::::!:::::,:: • ,• ..4 ••••• ''•-•..-.:.:.''' .i..ir.; :l .t.:;.P.F.c.T.:::.4. .-_,2,...----,===:...1:. •• z:am...,,. ..••..t. . .:ii-•===_.?..1..c.g.s.z....m--c--a ....:!::::1-••••:--'••••• '.41; '."--- :-ziiiiima:i'.. T.-iiir.--,-:*--"7:i;;-,--ri-E-5E.:E7.43-:=-:!i0::;-F;..+,:iti.;;::,ii:if--'151!ir:===-FeEEIL..11.....i :i•in................ .. =.............. ,••. .' .• «Tr'.:-..‘i•••'y''".., --....:.-.iitfiiiiiiiiii.:k:111. .-.,..!":',.-=,,ir,==,...:.:.t.z",...;ai,.tr.:,:.-,,:,:,i.,...311,..i.u. •-••:8-3:EE,E2m...tere..:.1=11. z...:01!::=Iltlig.m:F„::,iiiiii .....•-• .. a •,..• ( 7 ,:•.:.a•, :. ,":..*...r. :iii;;;;;;:".1.-- -,,. ----•,:iump:4•;;;•:Tio5-f2-----49;17,•:Farg;;!!!'.1:5F71:11illiNr..:;. -..Hui!iiiiiiiiiFS=EliEg;;:tifiiiPliii:IBIFLtiiiiiii......r ;:j1.-,:-.• -. •''..f,'j' ••!•::'•: .•...;;1 -- ...:.:126:6 '""!'..1:Iiirl!..;:.1;;C::".-.I-FIL-sdr-.;;;;02:::F.:::;,,;4;:v.ILimi:.!aLli:::.."....it:itimE=--=--ill:...itic:ii."..nt!?...„.1.. 1 ."4::-•,... - L .....rre iroloirloorr.,••,...W.M.,.M•1/...".ANNUM,.dr,ons•-. Oil.i1.1,11.11111 ..11....immaiNill.• MIIDO*IIII610//19•IlellIi VI mtsupw..,......i. my.-:-....,.........••.mors•-..re.. . :"Iiairr'aill r•iir pietoistmememommia............f•sosamssi.,is•lirloosimssies ,1111111.1111• ? .• „ •:,:',.7..,....it::.;",...1.!./ :::P.1; ,,.---!:::!!!••`",',"„-;;;;;;1,;.:-..-r-i.n.-dro:;-....'i......,api::::NRIAIIIIM=Enzai•::::rdi:911...,141:""ni.: •1 ;.....,...,: . , .....„..,„;;,,,n,411....-... -11„!..4..:-..•..........-..:.luiluo.•_Lair....'' .-..1111.111115111/.....IIIIUIIIIIIIIII mom oliftwee Ise N .....HD Pillins a 111111aileifilt. .• . t '.ft....,&4.,:',"''.••J7.•Si‘.-....-:„„,,,iiew.,1111....:,...r. - --,,,,,,,,......- ...•••••••-...aaVo.11111H4041111iluiiigi ..mulilM1M111111111106111111111160•111/11,11mill In 2111111 11....init. ..i..4-•„...-•_;A....,l:... 1., .i.....r.:;.,,,iiiii,,1.,:•,..N.,,E.111....!,..j.:..r.j...:.....,,.........••;.ilw usilliimitill III 1 111111_1111111111W wimmEis rimmilasassirolit in!......Iiiiiiiiiits......ouleximilim .....• .inimintici,..;,..ggaiir.:;.,,iiirr,,, ,is erosion.Alglire±igegigum..,.:”.114111111 irli ttrsniirtriv.w7mirt T'...M1791'23sarnarlelt.7tolitioirimilessollommumilini, 4. Pk .,p.:7:,40,.7.Q6.,-;,- ..,-..,,,i,-.,1111,..,-...a..,„,.,0,..v. HMO:::4011111111,1011,..,00111111111111111111011111.1•111' .1,/11,i1111,1.14‘ia. a __!IL.A ICI 11k..41%;1 1.'•111111141Hui 141 1 1......1111012Mii ;....; . y.: ',"-. • tr•-!•••I'A.4, siskiiiiielf....wmat•:;;•,,seitist'!....11 ill' 1411 ".......IllEarir.rlii.,41Miliiiiiiiiillillill111111111111111iilinininiiHM..........111i1.111M11111:11111111filliiiii.....MiiiEllitlill i,: is :-.9'a."1.:.ell.imi..:„.....11uir.umar..iip.iwilsh014121”111111111111111 0,,,11,211 itr, HI upuill11111 •I II 111111111111111111111111111111U1111111111111111111111y111 ''• ..11. ..,,... . 1110••,i32111111itillp111111/2.411101,iiIIIEWI:aig roifdr.s41 iniiNsiii.:/1 ii'ii ii lili- I.. 11, -ill• 11....11: oi - .Himi!iquimiliwonuniiikiisimmimilidili ... • :.--..,...• --• ' • - . •,IV to•:;is" OP 111111i1illtft'llit111111111111.111.Mil YAM MINI.111111 I111111111111111 11111 1 1 I NI a liollni1111111111111111111111111111111iiiiillrilliiii: I '. • '''',',V;i•• ' •;•: -• , giiiiip iji- lir Iiiiirdmipiir intiou Ain gesili11,;! 11:7:ill- irr,rn Ii ui si i g Ilf Ivs int iiiiiiminumitoollemilimionmis j-.4,•:', ,, .„.,,„,„ .• •_ .......: 4 ., . -,.....! . . .__ ,. el .$11'4....‘._4')Il... 7-q:'64,1; 11111nliii111111/111111.1111.11111411MIP.1111111111111111 11111111111111111111111111111111111111111111111111 11 1111 Illal II In II 1111 1 11 111111111111111111111111111111f111111111:1(1111•Altt,.:" SIP:-F7),1 -•,•'• •13,1' •' . t- ..... .. ai:ji .--... . ..."EFIE•ii.z:;.;.; ii--...'i .ii.‘ iiiii .i3ii•'.. -.# ?.--i•-' --"-‘,..:.. •%. 7..! : :-.: :::.•.... r• pc, .....: 'In :rit.wre:::::r:::_•...=_-..v.".tr.r.n.,:c.,r .,,--., . .-• •••'' ..'4. e J.:: • .. .,04 ••,..iii:•ai-v•--;.1•••••tty-pi. . w:i:i•• -- Er.P'f....= .2.--"El.r AT Z.,. .,......... ....4 ;-.' ttiiim•Hicli:::mE-••t.••,-,TI.at-E•s-n-••-:-- -•- ,•.-..,•: : ,.• .... V..1 r.......,04,-.,k,:..:...,-;-_, ,,,...•.,:se xxx__*.-1.,-,..,iiiti.,!i......................... pmrt;:4:11:11-.=- .4 6.1..=....==.-......1.z..x.... ...:..c.....:-21.-....ril.. ..!iE, Ex! =---==e _ _tcc-----:::::i...,..... - . • •• : cox,.. - i1.4!fiptElilx -:. :i:"41(..LIHIM3-iffli-=TEE....irri..-.2:-?,i-" tc. "... **i -_-_-•• -.-:i:•: . '.1%,, .. - ,7.., .&1..-.• . 9...i.. .....-::::Eiiiiitillenti:Fti::hliiEEiiiaiiiiIESE SEWS- .....- IS .2 ......!!::!.:::Lii=E.,..-==:-==z_•:!!-a::::1..::cul......: s-a• .::... . 6 v. . . ... . . 1111111105iiiitiila'LE-Y-fiiiiri`' :gdii.11.1. iffiliiiiilifmit himiiiiiiiiii!..nifilhimmh:nclr'.111.:- '.......• ' • ,•o Ai . .. ............r: . arr':. .1" =-..-.:4 -.- '-Li - ' . ' ' • . iiiir::-T-lighlr.-6orirlin"...t.LiiiiE --------iE *: •:iiiiiitii.• :561'..11si...16.011...quigr,Przi222:1:9110- -.i...-1-91iiiiiht.411! ::::: ...' ' •••;......... ..,,.........._ ._ M-...I--G. .., '• e - liiin""liqr!.3-..7fliiifi•L'll'Hii';''1.2gge...a.-1%.--Eass..:-..• Hilikiilliiiiii:ECM hblifk. ..1!!-=- --g-P-.4EgiBiEE.V.I14?•!ili ight.HiEii.l.!Pipit:. y,.• . • '' ''' .••• •' '• 42t4IttrtHINiaiNiiiiIiiiiiiiiirrilitHlii::±4E E.S.7 "I..i"•T.'.IfTliglEil"1" i -,MIEnittig.ill'iti55:1 1 s......i•••::::F:- .....:i i ' .' • ' 0.4 0.4 ' . • •. . a i 4 2 4 • 10 111 20 26't 30 40 ao 40 40 I00 160 100 300 400 000 000 000 1000 ' •,. . . . , , .. ... • . '0 7...i 1, 7 er5 DISCHARGE - C.E S. • • . i . 5; Z-4 v (TOTAL FLOW IN STREET) • t • . •. ' OCPM , 35 z=,-71-(,))+..3 )3/1- RIVERSIDE COUNTY FLOOD CONTROL A N D Ic• . . . . , . -- if WATER CONSERVATION DISTRICT •.. ,- • - • . • • ' VELOCITY DISCHARGE CURVES •- WCD, . , . .. . . - , RCFC , El • i-1YDROLOGY MANUAL , -- ... COUNTY STANDARD No. 106 I - 321 ROADWAY 6u a 8u CURBS -.. 1,,,, - r :..47 ioriiirsor •41:ne; *ill. coe•C.6 Ihr.a. gerT:liollit 1:4• •e ... .. . • ..... . t . . .- -. . . • ' • ' .... • . . ..(•,. :• I I - • . PLATE D-77 E1SD r i,• A n 1 2 g I -)- I •i , pe II: • • • . . .. • . . . , •. k ,.. .ri • f ... '. .. .,. •. •, , •'1,. ,, , 501 R/W ji . 32' 0 v , 16 16' • . .1 . I t____.L4. 14ammosommoja:simg.„.imit., 2% 1 or 4 = ---- • n•0.015 P. .--•.*-- . •,•,.. .. . 1- ....."• • .., . •• .„ TYPICAL SECTION • ,.,•..' ... , • • . 1 „., 2,,,. II 41 5 0 5 10 15 20 26 SO 40 50 SO SO 160 150 too 200 400 BOO 600 500 1000 _, 40 . V '''s !.: ' 10 "•••":::....ia... .••17. ..-11.-...: E..., '-.29rianiiiiii,"r*i2.„..if.6•7•161:i;:c....„, ......•-•":::,• -.CZ........2......01:12.....S.1........ I.s. .' •:I.''':,•' :'• :EE-P-iiiraFFTT:..171.::2:1::1:::::.:::::.EE-=_. .7 . • .i.-.....-..- -----------•===3=----t--- ---e-,-,-c-ami......rciur.4:iiiit:HirE;: ..4'. -;::-::-.1f.....'.--; .to: -- .-1-•!!:•:-.•'z'r."11:13:=.-tirtignill:t11:11-=======1;i7=::-::-- it22:1r...:11kli."gi'll:il ::: ..411113:11.:liEE-=...IEEL2E---2: ili:::::::....4.-..F............trZ4.:L=Ant..21.:::;;;; „ i;:. :F...nEEr.simg..n c. -- ....n.r.: 1... .41 ....--------- ....s.-. •... ..,,,,..... -.167..mg.----mn.... .;..1.11.iiffiiir.iii..?..g.tri.aulilit.ni,1,...1 ..... 1=6111=4011Em.inwEga1.0a 6.6111 11.1 /11 10. .":;11..1a1 11718n...meal=.....:111.h1liMil=11M11•1•••••.. i •111:::8::F1:13=rn1”•amm "" '"..":r.irrli :: r"WD /...1•117:rji::,:rx. 1.... . . . , • •:I- - •, , ,-. ....5111111,111116111111 IA.....i1111 11111M1611 1 1 1 1 1101/1111 ____.211111. 1..:/1211:fliF111:11111.. MIH"112FraZINVIE..:;:;;E:::::!..f.R11..1....ar.::.. Mb ..*".;"."' ' . -: ' • •1.111411111 WI 11111t,11.11111-tO111 piimirlimIll1 •1 ••_______ U........1. 111111 1011............ MEMIII 1%IN I ',MI 141011 SIN .1 1 111 1111111111 ..,.. ....11.....i111/11111111 HI.11111 111 1.111111 IINIGNIIIMMII1M1womm A - L- 119 , 1 1111 .asseliumiiriimmozz.. willIINSIIIIM MPINEEIPANIP,o1111 0.1-11,MI 1111111.• ..1111111131a,,,,,,, ..; umunulliii4imiligigi.111211LHosimCs•molv.r.,d.....10 auniiiniiiAlir ii .. 8, 1 :•.-••'.1 , • . unglilliiiiiirain•NN.....2.1115111111U,1110110!MUM ......11111Mlio 1111015.611..n.trolvr,..2effimr.....qmr.i.,4!,..... minim •.'...0• • ...............ltiiiiluilliliireirilli.....................................4-1 s.1111.'s Ma!II 1-11,1111.....11111111111111N11111-374,.r Orrsvgair im...111 miliulICIIIIIIIIIIIIIIiiiiiiiii .•• 111111111111111111111111111110111111111011Mull111401111MILIkIng_ Iti illdb.111101111111111111.1.1C11 1 HMIS' m valve:, 1., sisiminimilionnumummir:irmil • ilinimiiiiiiimminumewimumnniiiiiiiimmus 1114!"%l'ege" .-:III:i'.4 iiiiiiiiiiiMININIIIIIUM1111111111iNi insilliiiiiiiiiiiiiiNIONAMIIININNININIIINININit 1111111•111111111111111HIMINIM11111111111111111111.,•'J It...e.0•,:ion et .4H 1:-..'-•'-,-•• •iniMiiiiiiiiiiillifiliallIMUIIIIIIIMMIIIIIMULIENniiiiiIIIIMIMIIIIIMIIHIMPIP1111111W,OpRir_40rpro"&‘!..eirinillIfilrpillirillilliiiiiii0111111 1, :•-.*: 6 ' •..'' iiiiiiiiiiiiiiiiiiiiiiiiiiiiilligliiiiiiiliiiiiiiiiiiiiMMUiiiiiiiiiiii_liqllimiiinILIIIITIMMTPiri:,i9tilase„.17.•_..Ap.er, .! Ini IN 111111 IA 1111111 Iiiiiiill 111116111 1 • ;•':''''."'• ' .4''.''- 11111111111111111111111111011111111111111111111H11111111111111MMIIIIIIIIIIIiiiii 1 INIII to.111111154111..05,J1 .ounor...00-...fisr...gp.. es I • 101.• - ---, ,,:.:.::• , -- '-'''"46;-'-' •( - '-46'-'244ii"iii-AgiFiTIPtifillq,'44a. I.. --.4:-•miaPp-,Iilb".".7..1..._ .....,:sr..•:7---."- -..:- - -.1-1 2..• !"::•'1:!-:.1 ...,..ii. ....•:-. -1-: 1.•----"`I"Er:I'''7-7==-:---- •=f',9"1::7.: F.-iii'i--i--P1'11.m: er"--55P:14-4*OlitIgitiliNgliiilleje5.11111iisgilii •:::.:: ..• - • -..,i,,,,i-.1...1:.-:-.z...i..,,7,=:., ,..,_....%...10,1.1„,.,.._Ef....ao,..r..,..,:i..............=F...... •.i-.. 1:'t.1.•'• . . [6, -- - ..iiiiiii!P';"; 1,RI lv!::i!..-z-_= :. ,.:1-.--,..i..,•1.-„...=... ,..0_...._.,...i.i._,...., ==..=_____zz...nrainaur... ::= .......p.6_,:=1::. ... .L • 4 5" . •• --:-1::::.....••••••,..... .I:-J-......-.EE.==.4.EFeti*diiiirrifz;-arr, :rfli:J2-01"--1-tifP:5--.4 -r-rESE*----t--15-:1E"IIM'El'ILLEHREIRE:=::: T . L 1.'n - --12 .'..-z.• -0..;-=:.,--..0.,:..4,-- --,--s-- .:-E-:::Igf,EirdieSI:is..ti:s= .:::: - - f4::• :. ;:.1. : LIE:•-1:1:::rall ....;,,,;O:=1.9= ..1=-4!! "-C44,717."4--;17111•41 ......"iill..1«lierie!....".J..1.11!...;".....43=7'7;413.z... :: .......................................................... 14rst '''.." ...•' ::::".. .4.......-2'.....7•""...'.. •133"•'•••'IL6;•=-- -•••--'..2". s .‘"".4.9.4 --""i"'::1 '''..:Iii. '74.''''.... ' .....'''......:01;314E:211112:::unum:::::: ..r.s.t.• .....4.46.•••••••••,•••:•11 ..jp.111111,M. 1" .:: _.....L..•_!..........:........./as,•-•,■Olimm... '5 ,x 4'...=. """'""•.;i:MittiNgil:Mral"!!=aill.....r.=91112.,, ....1:•.- 1. 3I.I... .::.!„.-...ti,..--.-...,;ratt...,,r47,7„__.±....2::: ijilt i .isiiiiitifilii.!............................. .1. -,' l'7.• .'!!',.:2-1,7.44.....:- tilii-4,: ifiiMiiiiit74 -t--7-: :12.--7s-,i_IIP,11-2-2fg.:41$hg.,t' 40,--.....4=`!"14F,P,,---E-2-2:-:miiii iidgliail.iqiitaggiig;: 4-.,.. . _ re. l&fire!f4:Eittgal497:iiife.77.*:%-;;E-4-2.se:.-F-.7i--.41:efly::0-,0•.,0'11;-f-.7.,e.:;•=..-• m=-E=IN -.. ,13z...-..:_;;;"1;ii.:-.::-r___ uiling.;iH: .....14.1..--:,..:,:t,...,..;ziLliti:.-ihidilw.-4.1,0....;: T1 ;„.1.p.E1111:100.74.1i.z....1172,71,01,....,i,,atiiithmittill_n=..ss_.,114:..:2.siria,117211:..„ viiiirr_:_irlit:Lni.oi.....::.,_ .. : t..c --4,?;;::Era"2914-!---"*44'"7-E-ii,MiLn"1",Eligiitr7,,,114.4,4%-ilittigt.5§.41.1n:......... .-L-at1:1:...nii ....... .r.r. 11119:114,Lki.tir__...iriii.17H;:rx - - ' !/i-..?, ' ;7,,,-,...,..-.,,,;;;"iiht”:...famimk::.“;;;;;...4,._F-T,id.m... „, ....1e :pi.::,:,:uvr,im--filErz.::!:,.... , , ....a....,.. . ... - -,.- - -., ---.-----,--------,.2-yarol,..........----, m......ura.r,si=m:.........i......T..... -.......•... I ..... . iseu..::mar..i-n ...--...........v.... --31-2"---"n-i-lr=:=.7,11IZEI•0.1110111 all:••••::11.1 1 Mimi!1111•.$11 WS 1 1 1 111 so 11,..„: r-i-.1' ' •.. ••..' • - 'n."". . '''."." 1 ..".:47.4211.=...r11.CS rir.... • ,', ..... ...a MN: . /./, ,E•2•11111110•:• . 111.111.1:14.........i:....MILI..., -.• -.... L-, • • '..i. ""..Irlo.C.`170:0:11!`"!!-.au.'.a.--...7-1.1;r1,10-!:;',/ ..L.:;.12 V7,47,,•4'.'",tl. ' ""1"P"'""''-"I"P'11-1.10:17;,:iimer,!.aire 41:::":8111111"1""111 2.121.12i.":2" :::::0:=....:::ri:',:ill...:A..... ..----!....inu!!'..-----;.-::::...1.1.ir,...--,sisisr:.,ons,•.•:50,0....1%.;151.0:11-114 unilluni ..1.1. "" • ------ 17' •"' 4.-It. --- ........-r--.- • .g.-P.....„,...........aisrvoi7eur mipsiiiimil . 1.............................................................................. It 1 .lo ..1111111111111.'• I 111111111111,ic,.; t. L r..." 1:i1-.' " .:L"::11.:"';114111:!-4"411. ;;P-I-1::"IP:".11.:1.-:--'"wvilliniii.81..............II........ -"Lr.i..... ,..,..,..,-,,,..,......,. .•"1.,...1.?;•,,.."T.1%,qtre; i':§111:1!:111:111'.1-1!.".11:iiiil:01.-LuiroireirigrAwarii!...-•.,,,IssIshmilistimileilimiliiimmintikun'illiulilluisemana• ummergitausisitu_ Nptivitin!_l__ matimmuil-... mil aimistsiniumnit; 1 •;.. „,.._',„,..•4,.. •,.- 511.,...,al"..•.2'1 l' "pi 11.1.1111 .. ePereitimil si mu ' 's.-'‘ - '..---.. ' - II.- 12- ' i14"--'d WiPr'°"::;IIIP.1.1..P.1119.'"hb'1114"."1"11"""111"iiirl"11111111:11,iglArigr11 : .iirsumlullimillrmi mmitibinginhu -1411 11 'II :11 - i I. • fl .:'- ' -' litr.-A:"..1.1111111111:41111.:11111411111 411i1'.4"IiIIIIIIIIIITIll41111171111111111;1111141Orliiiiii.111101,111firririll...1111. 1111 ;pp wiras I In t pumuuniniummiliqglymy!..,. -ci 7..,..,..;.,-, 'Asian IA. 1.:',ImnP,IIIIp.i oink motiordnueliiiii_.;,•__!_i_iirishiliolimilvi iliiiiii ii lini Inn lin 1111111 .i..4 1,84,14-;,,,'.-'.4-.;:m. illoa.,. nalmor.dillittuu:ip:iimumns11111111Iiiiii_imiii P IN111111M1111111111131iilitIM1111111011!.;i,i, ti 'lr -'S.' '4.50--.L-.i.- "..';' '''r :.iiiT#•-"Ii '''r.------4• -•-€ 4.41FiTE.:`.._....!.„...pli, dL--1-2a_5..=1:ii-jr__._:!iii..p.i.„:...,.:..,:„.!...........:.,.„,:i,•,:-....-,...z...:,. . . It '.. '-. '' '1 . .."t' ".. '.114'!'* ' z--43: 17.-- a5ifITTT:Ii12-1=iii-i-- .4't'''.:2.:114R :f12--.---1E-E4E•112: ..rai.Ett:thielE........ -1............... „ca ?...3";''. 1 f''41' ''2.1ii. '6!'. :. ‘1'iii''''1;21.2311 JillthliNilLu- 1E.---56.i=7I 4". 22 •=hglili:L'4.12.::..4-:1-1Ets3Csul ---- :zzisznac um: 4, -.:1:1,...-,•(...• D.A.. -.......--•-•--:+-1E.=-1 2:8w •-- zr--- --- ":..'.-'-'' -- "2= R-1-= 5=7.21-2----"--41.-"P:4'.7-422 P`11 ....."-niEEEEEdieEEie::2::ME:::::=:::::-- .6.7 •kl. '••• .' • •• 4:: :"V114::..;r..11::1:.11%.1131iME,.....s=====e-..........n.4x2intv..:2.:=,iFain.7.411.a,„_._...___________. .,....... _.............:,....:,,.. . 4-r"..-1=24. ...2• •"111g4." .7. Sm•••••••'2,f.”1.1.42r:221:1:11,::.1 . '2 !kl:" lEiii29421:lit";411i.'4.%1.1 hiti141F;PLC;41322112u-2i-..2:1r: -=Eii::::::1= . =11E=3-etzrac..: .s.r- :-•-• -.. : 214 '-' 2. 2 • 2-''-- 1.11••:::.ir--:11:=1: aml•se mi....m.: -=.... 2 ' ' •"":113i: --311-21zu iti."."1.-"--"--- ----zAh121"-=-E1.1 0-4:31:92ftE- 122,n, ••• m-MCI:=::.12:::: - 0 ::..i......... ' '- -: • - "1:91.rilliliiiNUN:01.18 ..N2211itiE=5,=.. .2: .. - man.,....r:11:1K113:q E. p?..:77... .1:15_11_ !!!!!1..111riF,1:::::!: ::;ei.ip, „........ . , • -.....- .. " . • . ... . . :E'..?....-"--.'.. .' .' 4Erri =1.=. .grigibrif-li.:_ ig":01Iifl tifilliaEleaffign-t-5E-ggg.EPAIENalgh:E.2: pi!.. ............ friiii"."!i' `.1:2''''''illiii g"--1.- -==='==--a .T.--.---:4%-.--,..... 23.1.1-it 11111 IL/11j11. M= -c.es.z. E; :Ni.iii,-...;,...w.•...:,1 I._..,, ..""` '"•' 1 .'• : . e'l'i........ii'. l'':"cllail thig•'r•t'r..--41----E•E .=526--:•-•-:MiiiiiiELIE:':ailth" ;in=it!.- 5:---=:- :2 --rzu- , 4..M.:-. .... . 0.4 ,• 0.4 . . . • • . 2 2 4 5 6 II 10 16 20 25 30 40 50 GO SO 100 100 ZOO SOO 400 600 1100 SOO MOO . . . • 0:4,5 e,F5 DISCHARGE- C.F.' S. . . . . . . ..J•• . . 5 7: 0319 e (TOTAL FLOW IN STREET) I • RIVERSIDE COUNTY FLOOD CONTROL ,35?)Vi.. A N D • '.., -• ' L 1 .. • 1 WATER CONSERVATION DISTRICT • , r.= 10 6 VELOCITY DISCHARGE CURVES ( • . COUNTY STANDARIS No. 106 RCFC & WCD. , - • 32' ROADWAY 6u a 811CURBS . ..• . . • • . • • I ......• .4e„, ...":01011.mr MR. - ... IrlYDROLOGY MANUAL ; - .1..117.i.p....e. •11:-.11::•11111i C1•414.4....AZ . R. L.. 0... Ow Ns h . • ' - • • , . . , . . . . • PLATE D-7.7 0251 I r a - • 1100( 3 ) f 1,4{- '•, ISO,R/w - �: �0pro_____46.0nominoi 321 161 •.rz 16 I/ t. • ' . , 2% L...,ft r 0.0.016 • •;, • TYPICAL SECTION i •:.'. .•.:• l,• • a 4 6 • • /016 m t 5 10 40 60 60 60 POO 160 ZOO 300 400 600 400 000 1000 •xr� '-• :::. ::i.:== --- - 40 _• I• - -a• ••:::::G::µ:::.!L.....i:::.....t•........ 3, 'ii:et' /?' _ �.. ....:sis. :I::::a. . -------e:a ::::s n_-.._..... ..e_............1, i . r" ... - __- "Rii .!.1. •I".«:f:Fiil >w�c=--=a K:iii.... ;i;;?. ::: : i T • �q • ..- •::--,•,-;;;/•:::!...L.� " a_====- - - ..a ----- .. :::C.I >y in .tl:..:7.. •..,...i:•s-.-it.•.:::;...::::: • • : :::i1"......Y..1:1 ... : 1 ' ';' ----_: . ...5\... .:.."::4 y ui :7::- .. :t.l •�};'l 7."•' ��±2•i.Y�:' ' l',". CUNINIIUIL. • ::.31:"1..1r•1Inlldnn===-=-= `•iu:ii:ui:i:l.¢u.N...N nil,.1: IG �C� N .......11•.i.Jis::;:'. .'i:•:NI.IHintriIu • pp y y F .�-. Y.. .Y u.. l..•• t i�iiiii HINI�II•fill"' IYIWOIIIg1111 �----- : n,It I i1u1•M ii it rHHr•S r iWu..;.,.w... ...,,.ilii i:iii NMN. .'•-•• .. •.'•'` • .-: 11I111�'i�ii 1 .......................- 1GG 1 111 P1I-_ - ■ mos • 11� • �^`•' ' •• • t-' J ■ INNal 1111IiiiiiiHilliI 111111 .��NHH .111111:11111liILIi I'IYII11pI;11Cr lu=i=l lintliii1:HIIs111111.IIIIIII¢II■\IIHIHIIIIII UIIIIIII. .I f0 1 YI I ueu ,1111q 11111■■■nuH1111u111U. 111 1•4010H IIIIIU IIID I1�U1���� Hwo;•,C•4�• +..n 1•:.✓ IIIIIIIHII/ IIIp HIII IIIIIHHP !0 •,��'.' • • I1 I 1 1111111I111II111I111111a11111111111111• . 1111.11111111111111 11iiiiiiIIIu111111 I15F11•MEM* 4 P I III'u ILII 111111i111I11 IIUIIINI 1111111151 ti �r •L II IIIIIIIIIIIIIIIIIIIII IIII IIIIIUI IIIb Nfif/l i•6."III,. It II! -11.1111111551111111111411911611/1.n..0,41..4.. I iiiII11111111111111111111UII11IO11I111111111111111111•MINVJ\tBi1•••JYI■N111.Iu111Inu111111111.1t'111WiIliJlI .!ill'./11•.11"111111111111U11111I11111111111111INHI ti '1' i 11111111111 111111I11UI111 11111 111111111111IIIU.. •lu ■0011M1/111111111111111UI11111IIH11111 11111 1«!I;.'I•,MP151•dl?:.:14R al 1111111'IIIII I11111111111111111111111II*II _ r 1 0.:'▪ •',.IM1111t111III111I111111IlI11111111II111I"IUOIIIIIl U •lN00111111111111111111111111111111111111111I11111I Iil.:: MIIIMIA■!i4P'.I'A11�1111111IIIfl1111I111111I1111I111111111111111 1111111111111111111111111AIN1H111111111111 IIIUIII�■11M■■IIIII111111111 1111111111111111111111.411111111110 01/..Zi%,SrI!rrJi 111!'111111111111111111 11111111111 1111111111 'i:'''I 't�;,.;',..; ;._1111111111nUIIIUIlnlluun1lrinnaalunuIIIIUUNUIIII111nuu1nnn111u•:uuluiur�11: 111190;410._.4P - ira'111=uliinufuull$tU111.10Inlnupmunm r•'.4 r; .'•.•sf •+•_•1111!111111111111111111111111111111111111111A1NIIMhll�11IU11111111111111HUI.'VAIHIlGall ite..11M„uIN■- ./_Nr!J 1111 111111111 IIIII 1111111111 IIIIII111111II111N1' ---' ---- _ z:::1L -.."__.... i ;....:F _ :_a: _:42ia-:e i'i "�.,i�'�{1�;.-.•, -• •F•:•-•”&.‘t::.:::._�-- r.sd:l..l.Y::a'3-�=L�S��-s=�✓_• 3�ii'_�.r_ ..•'� � T - - - ._tl7 i:c. � _. • 1t ,1 ''�,. „iM - -- •--2"7.7,-........:::;;;....../:::e • _ .••11.::I;r;;....._c=s_a- --s^=•z:r...F. Ey:.:.r.j"e"�s4l:,- i....ca- --a -.__ _xaea:ai'1.: �r. cl .. _. -a:ar. ::. .r' -_ -_ ......2•_.=== .-i ri:.•>•.•- :.a:�..•c •..,:ef_ s-__ __s::.z::l::.:I: ... .•'�- _(/,• +�q-�a9 .C::U.::S:FSC ' a .ie_F- 1... . --¢ ►•• IC .�+yf�,•1at �► - .ir....iF. � - _ _ .:• sr- -.i � =ri--s. 4.".r -a" :� ::n:1.•:azi�^:roecJ^.T;�C-i' -�' F'.r� 1. s'y• .'i i..•. z:..a.. .J1............_ .1. ...i:�::-:.. ;c# i '' ,. .L iQ µilii?:In::n: :r:. �E siw'. •s »i r .e.: ac=---:: s11.:-9i:,1.•.•......-.__F::.1 o "� .'+�. - a- - - ..ntli?!i�••..rx .. •;. Eis.f_ :iiia.:.................... .::::.f... ' K: VI"I. ::Fi"«i r : .. - _ _ •i •::ii;.• ;«-F'-_=- - -1:1•e• ..1:.-:ai::::::S::It:•:••C...-..... L •'. � •)a v. 4:. - iiwiiiizlii.: -_'_-_ •'I'�:-.::#":.' iii •'. s - :S ::I.� :::-.. .t.:.:.i::::::::L .;'�'y■r,.,,;k i .1!��� � '-t.. rii:In!:i's!tm>~•::: _ ___��s� ::�w:u:.-.:�:at••�.�r:ma.a's?-_= - :s....1:i:r.:x:::�..... . • ` h?` ,,. .•r;A .�r:Fra w. IOC-t:1*•5::.:ta1"r«';rCCO •:•#1:�=•..�,::.. ..-mr•..:•/ 1 74�CC -.............................::::,' 1:S•••....•........ ...' . .ira.r,...•ia� •a.i:H .-.--' ':7i' ',moi :i'. `...- IS'' M- ._ .....:.-x11:-'!=.�w.:Hni tr..�-'S�.;-==-: �:_ .:r.u=n,.:4=ur\..:i. •Y-.iz:=y:C.S-_ -- . . w «''.N�. .uG i1'::!'•YYr.«":1: a:. _._ .___ al::ii -•••a - ' __.aai•z=-••.i•. ii;iiii •e rIgtara== - 'i c_?¢-ii=. I:f;,!Hi.,,...:i • r . ::...•.. .. .i•...'••:...� ::?-nesi,-s:::,a:iF36iie9iJii«'i?lilix,^�«EI?=_�T4=a:�_es�r�..a4:ie�:�:.nafi:•':;i- .Itra_===a_ -1::.t. is.. .:iii:: '4%i 1.1'P,Nf'r►i ="-¢ :S•°7g�'^s.'�. g t Eiirga 4.ii = ==e��5 Tse zatt:^, :.•::^•#�s_FJ. :l:dis• gEo rBti=3:?:1ia i"'i•• i••:eiil1 iiiiii.::::1:'::.a• f ���,•_ •_ :=, -ta�Fii'+�::..•'::..sa�:s---'�:::i •"?•s==--=�•.�:::••:::la•:.-. �'�'i i�:::::t,�z '''i;Mff=�=:_'�::»=1'_1 s :...... 3�i%�.... a .- _�� _ i 7,�ieE•'t-leis».- ::BU�:a:•�•_" �--__�:- :&�:.:.a»�' •a °tom:t:ii'��'���---- �-..�a.�:i�:•- e::«:l�i:::::...:r:.• +• C �. i'. ss r:•s •e..•. <.. ": Is. _ -: • . . • ! !::.:I.:::.I;C:'1.:;$'4..:4,:ii,::, .,:•• ' . !IF . AlQile 37 P 4` ' 1...iVe;Vi 11),;m''," .. : ,. ,: - . • 1 71:5,•••••;.i;:1:1'lki!:‘..1,:.. . IF , • 50u R/W 321 4 ' , • .. , , • t. 1.•'.. ,.,..t... .,.,..,,•.':...... •-•:• *.,...... •▪ ,,• .'.•. •. .. _Lm :timnwmimmo16' II pi•o,.oia 16' Ft _ _ rz=tI2% . . .. Aim,isif.i • . . . •• ...„ . A - - ... , - .• -• TYPICAL SECTION . . , --,,-. . 4 .... .111,.. 3 • 5 S • 10 15 20 5530 40 50 10 SO 100 ISO 000 .500 400 800 800 800 K100 ....,t‘‘.4 'I e(,,.• 40 ' .......... : Z.--.a.-7-.1::, eirr....Z.,-44., .....__,..- 40 1.,- .-•'' '•••t.o.. ,),,i. • . .R..... i!.::::1-17-e7:-...=,-===;;IIEHL:11.silt Littilliri...i.9.53...!ii1E1111:',[1:;11. iv,'"•-" 4 .4),.•-,-• ..:..1.:i,. ,.:,:;111_: i ==== sti ..... F''''4k• '`.•'.le'.‘7▪ ...r. -..' .....,,,•:-. • IHA ==2=2 .T.:3-:21:10:121 .11.::!i:ii::"3:--:::--,:li-illt7============="LIEEriii=:1:119.7...:1:2,......!"13:11:::.. :i?:::::.: jc, ..'in...;4 :.liii.!:•;":12:1.4.74.7r;triitili:",rL=2 .. .".i.'ffETZ:=31r1:::;''''''...i:31M1::Iiii===siar..2c. le:iiiiiiEZ, Ir .:...... . N..es•mtrio..........cm.....•I. es cal...s.,,.:::a.,=== • , ., , • -. , •, •• .... 1111.11111.1 itn........izar.=_....,:..:..::••••••.„- •1:11..„ 1111...0-=--....ti...g...:u.:::1: ta.i...•mr=llitthEiiiii•iie ..--• •-•-••...11•11.11104.11..•...au........"16.•....,...m6aimmozz emb•011o ..1.•et. .::••••...;.:• ........ ::= _!..144•Til :I 41=":1,:g-z-r.1...:=•"......, :111:11......,. .11:113” “...4666 oil 6. ..-C-F..• '••'-‘,"-t"' 4" ' ..."..:::41116"1,161;3;3:2111110016"61:::::::= I';. .:•. 6 t. •4to , ill welli•ogoms..•..011•11111111E mIllolvillIIIMIME111111111•00 1111141........41/111.....1111111111•11.111.1f1111•111111.1.1.1 . '...''. ' •-••...It . 4:011111111111.........,111101111........11111111101:11111114111111111011111111010 • • ••.:.: • • 04414 1 110111111111112111111101111111411114111111551111111111111115 .neimi6160.1141........um imiutilitomi22.1111Mips.• weigp•••••,,s g.....trx,sumo mg "13:138:1=3:1=1:11M11111131214mgme::::::::stigill..ailnigr.gistraigiu:N.:. ..,,,, 10 "1""p . .... ..2........iiimiq :::prirroiiP.ro;reittiniiiiiiiiiiiiiiniiiiiiiriiiiiiii ....III 111111111 i nu, arm i ,.„, ir...,.. ,... .....u....um.. •.- • •• .• • 81818114111111......1111111111811111111011111118111881831111.•11.1110•i-h,1•'SI',I...itiaulliii.111-11t1:unilltiminlii1111111111111111114•ion. .:,•21..or.iiiio...tusuratittlitui_n_nit!sinvirahle . ..1111111111111111111111111H11111111111111111511MINIVAIIIIikai Mull.. gilag1/11.11111181111tglgiV21111111111.181111M Vi P_Z..mee.r.Ietallir• 1111111111111Ur'lin lin s i 'Or,illAIPIr.,aiiiiinlimisimaiiiiiitimmuin11111 - ...'';1.- "• 111111/1111111111111111R1111111111111H11111111115111•11111VAIIIIsm511.111111111111111151111111111H11111111111111 I Asps ., . . ,, Hum _ - '1,'-,...i'•,•:.;. .-• --- isrlosaiimmumnmotmogiownilluipiffinsimit smill111111111111111111111111111/1111111111111111111111111111111k-',11110...ili ......01 0,.. ini imiimmuomimillinu •i.c..,:,r' >.,,' ',. • -:• . HmulimomullmummuutmmiunownoisommempignuilipsiHmullmy!tr..041_1-r_sLi.•_ny.laiw, . . 6.0/. , llimmilminin IiiiiiiiiiiiinimiiiiiilliiiiiIIHIllumiliiiiimummosooliiiim_nmiiIIHIIIHHIliiliiiiii ' '.'•- '7d 111U1111111H11111111111iIIIIIIIIIIIIIIIIHHIHWIRIIIIIIMMIHUliHniIIHIIIIIIIINV..411111CWII-210trit;intil, .....1 -,••FA 1111 11. 111111111111111111111M11111111111111111 . -,- u.- -i=== "--`-•-• ..1.7-sr. ..:-..-.V.F.:7 ...?;,t.lii ii....ilit.ifili:if,:i!:e ... . 20' .4 .-ik •1.,--..:.,,,.....-.--. - .---"......m...,...-="_,_,.. --. ...4.---i::.i.:iWP'."1...... .;•--7-T•77. -li. : ---1': ."........i.., ..'• .,-/... . . .•,AP• :( ....''ii":i':'''''! ., i•a7:41•Pthq-ill;••• =22 -1===-------.1.:- .-45.:1:4! ,rA..-P41.:''-'1..!a°31;:..01-•"•-=F.A1= z '-:::!: Hii!!!!.!H1iiili!,..: 70*--- :....• .-',2 ... '•''• .147..i,, :F,..wag,t` _..1i•EiE11::1......... " --TT.. -==-: :4:- •••••-•- -...A-41. -:•-.0-.4.=-`'.=':=:-%": ---,"g-- - E.,- Am.....: !::::.:::::......:. ,„- • 'L ...Y. ' '.0-•.tt 1.-ttC.4. :2:1' . .iiiiii!P!iiii:Iiii.P.NNERFiaTIF.F•41:73.- r.i.........„,.32".1.-.k. AtTal.i .:10.4......,F.:...A.Z.V4 ." „it!.41 ....1............. . .7 kkt .f.,•Y•i'' 4 i. .--" • ..- --•-............•-•••=., :. .7.,-. ;...111,iiii :;.1.-:::-...",:r.ti.iLIP:ffrs.::::.::IEF. ..CEE. _ _ 2 t'''''' .....LI:V.Fiiiiff::::..:r. "i: . I dt "'4.''."..":'43 .. I .. - °•=7= '-'-." i.11r12; '-•'"':!8.:712110:12.8r4021t,..Zrir%-r...a922 2 ' nr........... . : c. ...„..4,;.... .,.,, '''t'"'••r•0,' ' :=MI:EZZ. a . • ' ..1"..............t"'""''e.-:; =';:"'-'77.141ii5i.F...Z:rig 11 ?.iir.:a0.......gr•EP:---- - .. '% '1;1..I 6k,14.i.1: an.magamt - .. '' eims•woow••••..•01.a.r.•rammo...--....a.• ..t•Anogr;.......,..--,i.j.:...1..,. -..-- :.. 1 1 . ......-..... . .. ..• .... ...ilot.,, . .., ....:-e..::.. ;. ".!" .;=-".:11:ilt, _=.•._7"..1"-..- -‘:. -;-r”" :.r.".....',64";,--g.- ...-,aie, ==-.. . -.1:,. -•IT -..;•.;!•-•:-.:.•,,-.! -- •- • ......, ..,.., 8.1,,.,:: ..,k • * ' •.2-th,"-• , „.-t", 4•••..1,41;10-7.,--=7.14,131......2a114..ii,,,..V.,,ItAifilii.!.,,..4.1..„..12,1.11Sppi,a,,,„_==.EE Ei.i "1,-•:,4...4` .-2.--''''....- "; :iilEi'.."7;:' :1, •-.Esiflittii.; i'jrliF' :..:!•-, . ....i.tffkisitigt f:H...-g.-_ ---4,1-:_z tilt.;",-..... i--.- 14; 1."•- -- -::::',I,:ii: k F.:t3!":1IL... -.;::'... -,. iiPi'!!........4 Eff=r_, ..Fr.j 27:gPf"" 17117Csag:Ii..:1;:i=E=EairsE.,E=Z.13-...I t " :tiAlii:.: . 4... .. • .. fi 1 --:-- -" !!!;;;Iiiiir-•:Iiiiiffil itlIF-=---"--133,:gEi r. e.r.doltf..617,0p.f-•ri,c =1-1:E-E-1=:::4...==----1•••c ,...... •,..1 :. .....r.!...... ', . ( rg-It' 1.1..,."4Et'i 1:•••75.!.:7-•:1Eiiitilii•......::...ii .,11114:74-•;•,,, Eii;:.::.i.,,,,...--,0.......,edi.MHzir:!E-==EleE--. 3, i.....,...iiii.,.... :: „. ,i..,....... ,- ....i;•.• " ......•3*-N4iitrip1"4112/El;•eli, ;:rii.• •===......1-ar. -1-ii......:2.1:ir 10•••••-••-• ..--g•-•1......nr,....==E====-----e:- ••••r•-•i...g1:::: :: 1.: Lug.:.....:. .' I . •t. ....r.i3..•;;I:..'Y'6):.ti , .-"":'i,•••1'4.:1,1;1_=•""..7''''..".:-••'-z.:::::..,:.:. :;:•':..::`:".::::: ,,-7,.."•"' .....o4=.......- • "'4 •,''•;. -'1 .. .. .1:-1.,.i.1111:1:3C 1•••••""' 11 r.."---i•ii.-,-7-.•----••••• ••'..:-.4.--it:•:, re..!:.-.:::::it-.. thil:., ==zurec:i...3.•3C• I' 1.1 tielm11.111••3141....rurii ,, ,..1 .. "4...,:4--:...k:::*,•••. '7.. 1 - • ••••••••••M:::::;:!''*LI ii.111Pr'..:1'.i a.".....""itii17"-!.=.211..'-iitt---..11:01....'lir;•;:irr.it.,.." !..7..-121 I imli:.".11..-..-.111==.: l"g.!;;;14„. 't0::,...: •-: - L ,•,"'•'•••-?-; -."..;').': : . 1 ditigUnttliiii11111;11;4;46*T.17.41!!!;•••,:er!:7.::::: -''-...for..=4,1tr,p..:::parimrdr..7.r.cogn-......si: -,--ar.i,:ti:In.•:. i ......--..P.•.o.-aPow--,:,'.. ..;g1111:::0:11;;III Jr III11:1 jr:N__- H;101::EHr14.1 ... ........, __I ...up.11 lipw...s.-rdil .4•111-...., 1011. al I :it.................a:=1:::::i,... , .......hc....i., I,,,', ,. , -.,,..,..- •....4-•.;E. .• r.." Nuit...:,"...glillig#411. ....•••••:.,111.,0. .....,.....111111.!.111141111111M11......gagunitiliggimaggaligm ossw• mige....• I ...0.8118Oiliegg.......'mum , '':`:.1•.'''. ..".-.. 1:"4"1"::riii..ril.*INIMP Ogg'lillar•V•AP:;:i:111.;fallr:;41'4111111111111 iIIIIIIIIIIIErril:1:0111:::::::1;18inipliIIIIIIIITI 1 di 111110111 IIIII.....Will iii_iiill.....1111110.111111 . . tilt...'‹ 4-4, 4 - ......A0113111111-t.;:lia4101 :Itgti.:i ..artror.asrums:•.f.:01iittiAls.,•:”.11M1 Eir!111117:tr rrugt ...arme vier.oriiit.-.Ittettiniis ta.....Isititmtionsiii • t-. •-e,..:•••-;... '...41tieti.::"..1411111•••:-.1,P.Fiitits ,.;$Igor.: re• I .....111.111111110•11i....i UI-. 111, 1 411.1..1.1.".......91110 illilIV.11111.%!/p'.001011114111111110311101.011111111 ...•,,, ....,.'".".......%. *.e...▪ !.. "ve,-• iii414aroNmi111111.!:;,,iiiiini..t.;Lii.:101111r-..•411MMINIPATieV.1111....... 111111111111111111111111111111111010111011101101MINEIMM00111011111111111111111110111111111111.....1111111k111111511111 .• , :.• ,, .114 Ati..7•1)'.;*.;'-ft.....:i le.....nr 01111!..,"•,,IT 15"!::.;tia0411111jr.:..!!:ii 1r unix........:,....olimprnimuloninitinupplii illitipsuipill N 511112111111113S1110114111111111111111111111/1101111111 ''••• :ti7.1Fr-''....--' 11210"die11111":;:itill1151113irtii111114.01/1N115 OProirteginiiilidir73;11101., il!I If.:1/1!.111111' :111k pi...1w i - 111111Iffilfli1111111111111111111 11111111111111111111111thi P .4.'''••••,‘' •:•••.•4:1•.if"•!!!...isilluI1111111N111F-niim•:1111111111v.a i.a1111/411100110111111 11111111M11 MIIIIIN 11111 111111111111. lilli HI III 111111111111110111 1111111111111111111n11. . • • ' .•••,t•J': -' .-v„,i-„,,,..• ,,,cgiip.11,61:•:.'s,;,i1o..111111%1111111IP:moil 11M111111111111111111:_.I.70_•1117and.mr,. oi 1 notiv.„plogim iiiiiiiiimunummoinsiatimoompinii tff-t-4-... Iliq. mliihr dliiiiratiler iv ifigin ismossuluilimiumniuniniumithitaitii im inummusoson thi lull uniminuoilinumnimmitiii.410,-,• •.. -......40.4;....,,,,h. .....oni .. .! _ ..0. 121.. .....7.4......1,11Et. i: ..:Zr"...'..'i••• ...•-• -- '.... .41 1 . • '•1...••1•.'lli -.:11T...q-i'.r;7-.1.iii .--7-•••§-47.,-----:---. ••••,T,Iiiiii ::-....----...:.......---....IS:i,:tiT. .-..7.-.••-•- .__..-......= e.-= f Eat. : si 17.1111H:.,,7i, ir.ir.F...i.::::.7..:: j :•?;.... .' el.-:1:1i;---'..'" . .-:•••••."..ii.:1E11:::1;;•••'' &-%•'.--. --- "-r ......'"-.......!..NEiH'ii:glialt;.§.1taliBiZiligiP41:4:::;:'!' i ........-. ', '",i,.. ."...• "...1..----•••=tc----:::::; -=2 3 -- -- .••'3'..• •- ---' i;: . .7,-,.,.. ..... ...1.•,..▪:' •i,..-"• ,..• ......' -- ...--. .,- , „:11 :: Er.-,-=.= .---:---z --i-.1..^L.:- - ..r.TIFFEE:titasiELESE---=c---- -1.....-•• r '• 1.'•-• .-. '1., • ' •• • . ---- '""i:.:...;: 2::::1111111:tES.!II =======--. '':•.4.S.s•!••. • 4.7 „ -::1- . ---:. :A.m.. --.:_-.--- -:::1:::;.4-•-v=r101:-.4:14:tnaJt:c.:===...c===--.--=- : - -11-:2:•"-''"-1==55.x:iir•.. . ......:r:-.. • .:• • - O./. 3... L.- ' =-••-• ' ..filr•II:iit'sl:zz==-17:9i.air.uigaz LI.F.amEier.: c ..- 'k " ." • itlii ....-:;1111.1;::::-::::-....: -nab,::=====ta=c l-„ . '0-0 .......--la . .... .1:11::113sli::====.... 2 ...i.,-;t......r : ::-i::6....:=1...,=.-=ft-g_zr=:::.:::::1 :: ..o.• •.• • . . , liiighl!!!6.2---=---E5:1::::::,irlincuilEI:r.:::::14:Bler=14..EEN=Bizzrzei;te .....„.., ....:: ...... --•2•-••, °•8 - . .3.1.,., --.-1••••11,1 ff=E- .c :: --------x3s3 ;=2fill'IBPiiiiisErfEEf5Etiliiii,, - : .. - 0.4• '. : .-- i'?1,!,=!!!...- __...=.7,.-F..7,'.1..7: '3..gi!-- '3... - .3...-r.-4,,,..0- .=.&-=„Es - .. . - _ . ii 7g#51.11 ....'''!ii.".":iiiig'1"'ii"r. E- -• -=;=:zNigiEE:iiiEiglih-g-:=r-gMEEEEi3"-- .. ..:: ' ::. : . -0.4 •• -3.' .6. .....•••1.............:=.:::it: •. == .. 0.4 ' '• 2 3 4 8 4 111 to 15 20 25 30 40 50 40 40 100 ISO 500 300 400 SOO WO OW IMO • . • _:. • , . . • , • DISCHARGE - C.F S. • ii. • (TOTAL FLOW IN STREET) . . . • : - : . . . OEM 1-- ,361 r 311)112' - RIVERSIDE COUNTY FLOOD CONTROL .. . • A N D • . • • ' • .- . a-:- a L(,))# ii. . . Ls 2,7,41 . .: . WATER CONSERVATION DISTRICT . VELOCITY DISCHARGE CURVES . COUNTY STANDARD No. 106 1 ,•. WCD . . 32' ROADWAY 611a 8H CURBS . • ....... • •. ... • . . }-1YDROLOGY MANUAL i u., v.....iteswiarit •di.14 Milli 44..0.14eZ.:.ka CM P. • I Dar.04.•••• :1:.:..• ..... ... • ' • . . , • • '1.4., • i •,. . • PLATE D-7.7 •• -- .1 •• ;53 r, . - .,• , • • AJL)P6 ' 7, I P 1' _. • . . r• . ..• . • . •. i 14.'4..,.ip..... . • - - . . r '.:- 11.''.:7 ..N-,- .. • 60'R/Vi . , 1.• 1 ''- •-•" - . . . ' 32' ,. E • • • ' 161 . • ,... _ . . . • - - 1 .. ,I 2 919•••••• n••'' 0 e 1= 7------ :, ,g"-.....'- '. - • - • • - •• .0 ... te. it.I. .. ..• , • . •. ii....,,. . .. . . .-1,.... ,,. • .. . . ... . • • • .. . • TYPICAL SECTION • . . . . . _.t• . 4 41.• S. IP SO 15 50 55 30 40 50 40 40 P00 ISO !CO 300 400 000 000 400 .000 410 -,-,,,:it, '.,. • i. •;... • ---- '''' ::: z.--E...T.:7,...... ', .. .:' ..11::4::::irxmc:::::mm=-EE===-'' ' ' 74'...''.`..1.0.1.11:1451E:69911'griir.'=E:=E=='4-EH-17::: .•:?,:t!iittgliffiliditil-'-il!-•:"1.:EiTi..,,.. "?..'•''.1.::11::4::.•.......;..... .w.. ..E. .Ert.a.EEEi :•••:lipi=E..=,f.:Er-EIEE EIEEEF.U:FtEEE-:i3=1:1313 i''.4:v A.--I'to' 4:: " ..:1' 41E=°1:15= 24.4-.. so ........ RI I...,1" ::::::11.. '''::::J.1. ..E....r.01111.X.tryr.E671...i...4ME.::: ::1442•8.....112.1.6010::RELitio 114:11grlli: SEEFIZZ:.' ....C:IniiillitlitTir"..11611iga4: *.."..i•' . - '. .; ''' • ...11.Rd 112111 1411.112.1M1.1.' IN 1 .,mmalmill... 4••••11.1111141114,427%.11.111.1•4121 ' P10111.101 BPI •1111111===INIMPIDIOnmm '7pape Islo 114111E26mmilimmomopops ••••••1 ROMP/W..0 WO OlIMM11/0101141,1 ' ..1..mum::::::nntammzr,-- :LI'''':''''''itRill1;411.1i_risc:= .1:trairig...-,am:imph. :.71,..,,e-... .- t•.• o••.-- .....n...:::::=:::PlitiiliplIN•1111011111111114111111 WINN. 14111.111.1111 ISOM 1111Y1111110,1V ...•:.: eu ' f": •."."'": "I WI' I, • .. ''...........NN: liliinlin:31 :.•••A ''''u'll'Itani i'mfilidl.4 Elifizr • •:11..Arti.,....,;11:1:0111:1,.,1141:1, .a.„ . •.•. ,-, ,:i."....to 1 : '''''111.1U11111 niinuilmilluIMIMININS '''''''Tim 111111111111.1.........r.•••,..or,,Enw!.!..41'''''i„.„11...pi:''''''mu., .._ „.....,, .,. _ .. ''''ii,„„11.11,''''''''11111111111101111•=11111111 II IIIIIIIIIII 111111141 romiumps• 1111.141111111•II•."0...•1111,ft1111111111111 PHU I'''''1111111111 1..,----.';..1.: • 1 10ii m11010111 11111•111011mumomm Num Hunt I a"..I,., •. .., ,. iiiii'''''I I I lull iiiiiiiiiiiii'''''ill if II I 111111111111MMIMMIII11511,1 1-'''''''hlullr.h'11111.1'..liiikraltili111111111511101141/:1111.1111 1111111111111110111$121.111114154rIPM.PA61715/.4rir:111:111;31"11114111111511111 lllllllll HI 11 11 Ill MI ...- tam llllllllllll 15511111511 81111 11111 I I 1115111111111111111111iliWA MIVAII.1.1r.e./.!:Sir.111111111111111111111111111 111111111111151111 '`,.'. -- 1111145 II I II I 111111111W11111111 III 111101 IHI111111111111.1MIWANIMISSIIIIIIII111111111 111111{11111101111111111111111111f411:4-1'AMIRINtglOr..,'i0140 :411111111H11111111141 IIIHIIII 111111111111110 -.4 V.';.?-•r' +. ...' `..'..1111111111 I 11111111111111111011111 I I 111111INIIIII110111111111111•110111111111111111111111111111101111111111111111111111kMP...1.dPrio0P. 00'4,11 1111111111011111111111111U1111111111111011 •i-:....7'; -'••• -7:: • zi 111111111 I 111111111111111111111 litl11111111111111111111811111LAIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111111-111P1111111111•'0Wr.zig,..:apon•Inzimmuninnituilimuisompinumni I- :-," I-... '., ;'.. • .iliiiiiiiiiiiiiiiiiiiIiiiiIiiiIiMilim111111111tiffilInummi.1111111111i11111111100111011r1p,:t119101,2_:0011iPzi3OP__,%.,PUIP141111111011111V111111111:1ilitIIIIIIIIIIIIIIIIIIIIii • IIIMIIII I III I I II 111111111111!ill I I I III I I IIIIINIffillEMMIMI1111.111111111UMW1117';':Allir./Infleill!.:4501,../nAn;15!5111111111111111iiiMill11111111 I Will ill I II II 1111111{11 . Atilt•I -1• 111*-, --- , lll,,, •:,' •- -- ;llllllll i I: r: ===- - ll r.112.,..------::.".ifir--1.. •-__-s•E;===...Lor-;,,,..... d.;..17.,.."--1:..,...v.,,,--5.4:-'-,.F.3z., ,...';.E ii ::' . " . So J Af.'. • • ...'"?4:4' ':•-:;.• ....l.:...- -; .. . ' ' .7-'7-- rs-i-r:...---..is-- •-•.14-1-::::.--4• :1° •J.,- --.---g!-',_=-..i... . z _-- ..... -:'-.:.:..,'.....-...- -•,A- -Ci 1,_ ! •ef::'t; .6,..e0! _ l • -1 i.!.i..:!i i::: :: ,c ;........SE ?..:---,47,47.:. ..::::•::,.e.:E.::=r.tr.-...1E:-fl!. .113,..42-..,1::::4.T.P .g.r.x..r==....----•*•- 'IF r! 'l i Ei!i,. ... . - l:. • • ;0 .,.•'-,,... 0 . --i .......”I=Lji.iiiiiiiitNiiiiiiiig"IP. EPF.: 71:-...:"..gi.r..:«iii..YAP-..i.:;•:, : 211.1............ i ii:i E::::..... ::.i::::t..... '?4... e ;,... , , 4 •.. __ r, ,..,.. ,.,, ........:. .. 4. ,_• ..0•-...pi 2.....2..... -.sir..2.r.:. ...f.......=.•s-- - . _... ., 1:1-Farg 11{ • ::_. . r Li 'fr--,1 .01-:'^: !.....''.1.................r.............ilir.1”.19,................*"':"...1.=?...g.='''-....TaeNn2=7.17.:..r.... .........112.r.t.4:411,..!....LL:=1..........r....ltr....F.IT..-....gEt.: «.......2'"'.3'4. 1::::F.:ii:ii.;sir.liallir.i. ... - ....... .p....N. 4• I ..,. ...- ;44.4.-.,-,,3..,, . ,.;:.. ,::_,;...... ;;Y!,..„L- -caffss.- ,;....t.mar4FLar,•:=11?:•411:0,-,===- ----...-...,..Ag.“43"iiiii....,4E31: I ....! :11 .........'7.,•&,0i17.!....;:r.r.r.i-alear-... ":Pag!". C:2=2...., 41.41141.21.•••1144..1111•1111111• . SOAP •••••144414.11041•144....A.:1:43:: .41i..- -----.' .-..V.." --•. -' 3. 'imi....Se=.--E====" -.7IE....:-..--1 .iH.:••:'..4:.i.1,.*_;!,!:•111N,. 151krz5•5 E5i 5-- - . .... .-...-.. -.... .. . ..,.... Jki,..,47...i.-.„,.. ikt., . LEE;E:,.::..,... .....-pm--x....i,,,,,7--_,,•:PP.,:_,•44.,.--,..;,- ..m.Fr.r...,._4c.,-44 .=••,...,..!:.,•-. .122r,4-.lug .crr::=_=--..,-==- --a.- g.H.V1..11...d......:1116:B6...,. .1K2stalliMiihrunnr:i,:.aim: .. '. F 't •• .--'.1 .14%11. 7- ni ........-...i. - -..7:r.:::-;;;;.:3FF-..---tEE=7.E-r-r--:..:zi:i7.:0•;:1-.7'.;r:,.•••.-..r..47:1;:::v.•iiiMig.T.g--3.-E-Z3krinreilyaiiiilaigiiris::::11ii:1:1HI.A.t.;:l.i• 4 • .' .--*1, 6.1..."4. .,le-:..-- . ..:-. ..-.. -,....••••'..,:•••':•,-- ==.-:-,F..- :::.::•'.. :E..----.,-, . -.. ....r-ric •-•:- ..:Fiaa.E..1. .c.-.... '--" liET:iiiili:'..iii i .7- ' ..71 4,..,4X'i.•'.- '''`. '.f.iF; :::-"..Ez5":171 T1 *:n: -,--i•--.4-:Ei=n:;:i.--:•7!:0:F. ilit:::::!§-.1"1_.E.i.nm...-i.iiEi...r.r.r.:r.... --.1=in"-" 4' ',.;..-9.^:4,;.‘2.7..1cri", -.:iiiiR;222"'"iVilliivi!"4iiiiglin'..,..,..71RAIEFEE7•.-05.F..:ii•-:::E.M:: : :47..;fa171,, NiiriEi== _=EIEE -.13:::EiEEE!!!3."-";:::ii.:.:.......;:::....::::: ,., :: ',f,..f:.•-k.1,p;e:-• ---- - -- J::::,-.::::::,.....m..4.'-' 17..21". :1113"1".:=V.::••.2,:11.,:e.-fr.t........82:Z:::........431-- ''' IMCG"'''""":::::::::::=.1 1=1111 C:..........1:::51 .` i 7... ..... '''.•-•7•*.,7 -r: ....: I-• '.41' ....1!iii:'1I .i"4"":EF.•:'/7F.'5;;;;;; :;';7-115;1:-.11:IVIE74:FifiiiIIiirlilliFE.'"-% .. ...!::31E.Hill.....! g..... li:%.."iiiii''' r"..; . ':.;.17:'':.,••.-•"•;•• .•. '•- -• - m -1.:11:3r1r.!Lit; :.!!•:..7:.g.&""' :;9.1"*"..1:11.::::............::11-E---=--2E:- ::::::::•"--1 t-, . .,.: . - ..., . ---- '' , '.....e......•....maim....M...--.dii• ••--.. Es....,. -. .•.%ire,.•.........m.nu..14144.111.20....414 :.•.r i ........1„,,,,troir...--./w....op......m. •...6 -...•...mu, • ". tn.al., 14 I 210M1222•1112tamm.••gi / /...,...., • 1444111/44121441. R.. 1 .,. ..;,..XE• . k‘..'.,*;! 11.1 e.sa,.....-....-I.1 on,''''' , ...NIP . ...-.0........_1.-... ,•,..miln••••(.!!!loploPpop olmmwilma 'np a" ...."6".."'"..."111"""I"'ate S.....9_4.1110...4_;"''''"”...".Iiiiiiiiiiiirlirgiard====2= Hp•itupp'''''Ine.1.4.;41;'''''''1.11101118111111; • N A.••.r..1; •111816/1116••••••4.1.• 111/11 1,....:;.444111 110.41...........Mio.-,imp 42 DOI OOP 116111411111111 II 11.111111114; .. ...' ''',.......--4..In...". "... OlOgo•.:.,o11111(11 41'..nsis.---r. •.....0.....:•.A....r......sp-...••••••.plo”...p..........H.:1 ii''''''iiiiiiiimimmmmommupg•••44 .111;egito isamii.., , : . . 1, ••..,7 -- ,.,;,' ,...,I ....mbutuipli ••:...tomi 4 I!4:...•!:•pp,...1100'. moir.1.0"..mirT.ow.Foon.,01 ...mr•mounittit mut HI smilut!dineR1111•001111,1111111161 . . ...!''''I iiiitilill '''Illlei1110 • . .4y."7111.1tfiki% •!.....414111111 I..t..41.1111 I.,....11111'.1..71-imp:or-dor Ass,. f...iessus.11h....!....111 ir.11 ,..,imi/T iv.WIrriariri77..14rnc3sar LI,11. .1141110115111 '''1111111111; ., ...- : •;;1' 4!- 111,;,,..e/IIIP41 1111/..:,4111111/1.r.I.O.A11111".,,,insp„dB '',.. 1 '''1111M15,141.1. 1'1_141..11111,,,,A,11111.1.1 I. -..,4.1.1111,-..II ..„/,'-11111[0.11111111‘ '1111111111 ,... 4:!".....vttp.,.. • '"".•- 5''''''r'1,..;9111".":;,11111!UP.,...P1'.111111111In'AelaillIrOM:o'.49 421118111iIIIIIIIIII 11111iiiiiisou inn Inieuntiwiessommumagia roar t itimiimiaitilitimi . .atininilit• -.. .. .... ...-.;.'....- ..• . -. : 010.7:.:.:110...',•7.1i.111"::4•••plordr:,..iir,smor.sov.oboislpusuptiiimpiniipulluf mous upilempipezreeletimempenunitheittia1111.eneineei . • '. ii.'..iesmi .......liteneloP.iiee.,..inettrogesZeise:nelle11a.,.... ,•I'lluill'.'11,:liliasi. ink' -I oil At.: Loll :1 itialliikuliiiiiiiilliltuniiimitimimilliwii -• ;,. . NIP d!.:INiiiiAl lb.11p010011P-...;s•ilt:•11 I II 11111..iirdilliiiliFillIIMIIIIiIIIVNIIIIINilin II i IMMO 11. 111111111N11141111111111111110111111111 I 11111111111111100,-.. • • ."..":1 .;4.;4.• '...i...', 1.4CIIIIIIIIM'4.-...,;1111r,.11111111',1111 111111r..111111111.4.1...1.111111;2!!EWNni.:111.111131T: El I gumming' guiliiiiiiimmilitionlamiummirain •14 ..., „:..':,"•••144, 1810w:soul IIIiihroplitiviiiwir.ililliiiIiill11111111111111111UlliddlithillIllialuailffluliiiii L. 11WIIIIIIILIONIN lffilliffill11111111111i1110111111111:11MIIHM111111•:e.-.., .... ...... i • r"117. .L'".;15,,,-.1"; :lit. .1."-r--":F-Iii iiii':i::,'.. . T, . ii';:i!P - raI-- -.. t:tisstE„.9.4.411diitililrga .:3:4ti;;;'::.t;FIEEEE:;;E:::;*.1-€:•:::::::.;;;;;:i--:- :;-.„. • CY I-0. -,' O. ri:i t...L.,--asr..11. ."--'11.4t.stiin:-:--*.lir.7.1:1...F.--.11.77.irar.ii.... --.--..i:Vi.----.41-HilgrienibB2--E.-e6.6a11.5-iiif.ii...itztif.:;,:rw. '- -ii;E. " , .. • ?••-7-., ' J;,en'ri-Z,..' :.0 -_. ---Ii:.:•:::::11.,:ii!E-I= .....2.:tiOnx.:--Ar.a...az---.sp,24..E.1 Ls- tmite:TIEFeTiljt:tx:Embult:,......t x=-==sEse...._ __: .II ::;::::.::•••• ••• -1.. --zriniHr.;..1•••'"••••.2::::::.+^=3:fti.FiEZNE.1.1Ar•-.2=z-.:.•=,=11.1kr.:ii.1.1:K........:i::iiffi eqiIr_h:ga-Egg7,-.T...s.iLlii:i.r.i•tiiiiiipa;.....,.: -• -!.,.,............T1:941 '.. i_.4 ''P'. ,.-. • • .....F.E::•.::-1..--IL...-...-niihillusurvea:=--===s-- -..n.F.:=.:L.c..?:5...inn:m.:u.S1.1.11..'W.......- -3...--3.... Z. L...a....1:11=..12.L3.1.1...3.!.!........ - • '' • " 1j---' ." ii: " ;='".Priiii'L'i"II,'E",-.''g'T'EE-2- E:1""ii" .111E19:1-iiih11,541;Pj R=17E511'1=212" :1 ys-.11ii: hnInnt::::..... ''' •• - • His LH ni IIIIii:!IF.i- iii13 :::iii..rithslac.i.7.:iit " - ..:i" qt-=.- mii....E.....11 #I-BEE==- acme:: :Atm 314:::1,...a................ r.-ra • .......imr.= --arr.. .,- . ill lurini .11.M:711r:till:::rib:Ft:I:ME 0111====ii n' '''..1 Iiir•dirapP..clillifinillEAligiihsEPlagrillEirit-liffiliiliIn"nuililiiiRi i. 0-4 ....11.1/10.. • - ' 1 .• 94 3 ..............!!.. 22.••••••••••,..m.• pool:4. Pe 421.212 4 ..„••• , .• bi .1 1•11 Vil..413.2,::: .,11.•::.:,.. OA 4" ti . :.= .i.d .9 E,„ !:.!„! 2 =p•-4'..:::si: :!g-1-•=F-_-_ ___.: ..7. ..:1:: ...5.5F:.,-----OstiEngi it iMilg§gi EVEgiii iiEhai nal rlisp:tird...,1.,1 itiii.,..,.......... • I '...:::i;:li'::. i illiri :I'Llx;r4- 27-'" E:12='=i i.2 4.....::.i - iigiliiiilliNg-ggg---;111iiiijiiiilii'.......!!!!!!!!!'ili i"'11::;;....... . .. ... .....- 0.4 • - . 5 1 4 0 4 4 10 II 40 44 30 40 50 00 110 100 150 400 500 400 400 400 1001000 • , • ..• --, '' . . • , . . . 0-7, 3;-.3 6E5 i DI S CHARGE - C.F S. . . orni 7----zii .,,... . - 5-:- (,-2 7,, • • (TOTAL FLOW IN STREET) .. . , 1., - I.:- 9.f , RIVERSIDE COUNTY FLOOD CONTROL AND •• ' • WATER CONSERVATION DISTRICT I- •- ' : •-*.. ..,,. :. . VELOCITY DISCHARGE CURVES . . COUNTY STANDARD No. 106 t7--- •• . ,... _ - . . RCFC 11 WCD 32' ROADWAY 611a 811CURBS • . . . - . . . I 111 ...--- , • • HYDROLOGY MANUAL ; 1.2120•• t2•••••••••••• ••2.0 PPE GK..2.1.W. p. .... , •.. - ' .., ''.-• ., -,• ,_. 1111 . . - . . . .. . ' PLATE D-7.7 . .- -.7511 . 4' • IJ) ' ' '• r. -7-- - - Pi I- : • . . '• • 11 f:,„?„. .4.1f....":..,..--""e .•" ' - • ••14 ' . i *. • .11.:i2r ..i.;.,.. . 50'R/W I •• .t.:-II .4. " .' • Ir. '' . . • r . 32 . . . . i ...•;. ., •.- -. it • 1 6' 16. , r, - ...', •--. °41„,mommemottmor 4 2 Ito Velret ft . . a••0-0:5 t - ... . cr. -‘,..: •*••• . 1: . ;,. -.. • '..''...:',.1. ' • • TYPICAL SECTION ., . •A _ x. "- ...:1• . ' • i.i. •• ' O.;"'•-•;..:' ' . • t,. a 4 . 0 • 0• II 10 BS 20 26 30 40 BO GO SO 100 ISO 302 SOO 400 500 GOO 500 4000 %..."0.1: !:.:I. .. 40 ...-isliiiiiiiiii'litiulait: k'.4.1Z' ' '"-• - ::.:------- j.W51.77::i"--"'"=-_--3-ft."====== "U..= Iii:air.1:=E===---=::2••••--:::::::=:„,,•-•::E... : :m......- -----------"---12 ==-::-. ...cm.- v....: -1....-4. i-t.7."47!';. 7.4:1»t:i.:L_Li.:1 .,..:171::::;•:-;;;-:=E-Eair-'-- t.------i.„.........mr.r. :.z:'':•.-.:;!=%.•E==.E.,.--mi....a . . ''.. ;.2.4=...... . -, -,.•1!,...,_-,.-:::aa .....FE:::=!t::::::: :.1.111:ff:=:::i:E=-=- 1-..t:..„ r iu,-.agt:-.=.=--::::--- •-truinva::,.:...um.s. ..t..,..... 10 • • - . • ;:-•:.. :..u..1;-fun:-,:;,.!":1;.,,vi„i....==--. .: ..vg"...,;13:11-491!Bi=ziESEEEire::::'Sii"iiiIih::"tt.• .8iiiiiill,t1th:::.tr. . . ; •• :•32••23•••• "'• :i:;I. . -0,:.-==- e„-•:::..- -,.. •-.• . • ...no••••••1111•11M=IIIIDMI .•••••••• ...... .......3111:1:11:E=4::::::::::::EN:1441 NO i::::12:ii;*and BO IA .- ..'.• 111=11:=1::1=1711: I hill. i'"'2=2,2,U.••••••rir,J1=1..:?..14:::3 Ii:MummZe p. ...,...4 •MIMI Ile I MN ...III.II. P 0.. - .'.'' t. . ', elbill411411A11211:11 ..."11r""= CM=.NINO •011 11141111.i tiiiittli.vvv.:1.=p,••••..gliel....wapopies..tailaiiiimvoiliiil.........INIII 1 i ' 011 , Bhp •• 1111111 Mr "111.1m111===:•••admpial ......1111111111/11111 •....11 1111111=11111MIsm•111•11111EN i I..1141511•11..-.1111111.01.11/11 I IIIII. ." 11111111111111iii.....itili11111111 Ili 1111111:11111111:12:1..au. '111:11:18.11.1.111111111111gligill:n ::Z:;i:',.".;:arr::;:t;i1:1 1111::::;L:j;CiN i;111:=11: , . •• .. - 1111111/111 lllllllllll 11111111 11 11111111111 11111111 111111111M=MM•SE 11141161111:1 1111111 111111 salmi 1 1111 11111111111111111111111=1441 P1•44•or:.t.r.sopraimmitilaci 111111 1111 1111111111 F'"•"-;-' . ....-. . .. ':-' 11111.11111111111111111101:131111:1111111111:1111:31:2:L11:1;A:t1111 Awi• :lij.-.3:1413::21 ll gunonso ...vr doily.1111111_7.•aghtli11111111111W1111111111111111111111Mili • .".f...00'.:.:410'.14111119111111111101144111111111111111100. 1., ,'', . 1 ' ill1110151111111111100011111 111111111111011011110.MPUIMuswestebl.:T.Trmpor.otv_iseir.;•Aiiiiiiiiiliiiiiiiiiniiiiiiiiiiiiimiliniytt 41- it.- •-:• - - ' , . 3111111 111111111111111111111 1111 11111111111111111111111111111.11111N11111011111111111111111111111111111111111111111111lift,0•4•/....e.00.../#000:411.14111111111101111111HIIHIIIIUNIMIll11011 'I ,3.-•',,-' ,,,-,, 1111111111 1111111111111111111111111111111111111111111111111111/11111111111111111111111111111111111111111111U-1111'1111111Hb'.10"411/.1mr.'IAA'170:1111111111111111110111111Pf111 11111111111111111111 . '-'' *I"' - : ' 11111111111 1111111111111111111111fithifillifillthIllUiliaiiiii11111111filiiiilliFillilliliroP:111111110;„;11111Proi4P7.-.0.;,, dillAill11110111111111liilliiiIIIIIMII1111111111111111 -- .v.-,r • .-- _. if-.W.. ,.,%•':- ••• • 1111111111INKIffill111141111111111111111h1111111111 ME1411111111111111111111111 IIINUI'VAIIIIVAllttlitr.,11":;will,."..ipo':.igOEIV:1111111111 II III I I I II MI1111111111111111 1111 1 1111111W • : 1 o• -1 AZ•V..C..''.-.1;7'l•f:i ;r v:ii1P1'":1 ,::-•== =:-------zEsilligii iiiiiii: Wri4g-1:11111?-riie::.giff-f- :-A "-- l Ei! 9:.T:.IL!!-_-::',.-1kL ... p ,..,..., .;:k•- 4..\+r. , -.:Li-..144 :-.,.....-- ..,..,:liAgti,,4-.-I,•,.‘i,..-E.E.„.-1,!;-,E4:4,,..i..........,==.:.__,--__,_z::-..:!1.4.-:....r..- i:.:?..*:„.e.4.4,....e zsria:.:140.:}:,,,!%F.:,.....:,-,pr,,,..7.4 . :_ti:Htrii;i.r::: -:. - ----t•i- : 0 gr,...•e a.- 7...7.."2-- ': ....h...."11.3!""ii:.:'''!Ii="liirii -: H.:Eili:=4::1:...:z '-•111_ . . 4, ..:, --.-" :,,,....,..., ..---=:::•;iiisit-:::.;:w== =r -- ---:r.0- .or-.;:r.:.ag-.:r...as......4•Ipt••._a=mi -= s ::: ,Ii!' - „','_LI'''''''' --------------:TE...... r I ... ".• ,,itt,..1•!i „ , •si• : :W../ •..;"•"'''n:I...-....;..urnix=r4=='-- -15.2.1.1035%;.:1r.' ""P"..lw.r..1:1111r.....:1.0r.ar.m......- :... .... 1.I........... ............ ., •''-"- -- " -".:"."-- U"''..e.g.""'""-""... ..11..:*....".7..X.===2 2- .. ......r.r ...........E.= ••." ...4,_.......•t . ' 4 =4--1.2=== -_'.z;.1:29P.:...r.al.61,-..1,1•0!...v....-.=.adr....- . ... . .-T...1....„ ,-:•• .,. .,...... -....41,....,,-.-.........“, _.,....-_...2,......-_,,..,„„ -,,,tim.,=,,,,.„,„,, ...,„2,.........,... _..... ."'"3:::.........M.V..1e.::•'" • rr a • • %i'.:Vijiikilit*A- _-;**-4t11.-- ......"-. _ r:..,..--..-,-s--,-T.=5:2•;"-'-'-'-,----1,,--,....,--.----.-2-1.,:-..1,-.41 ilf".EiRES--- --.E-E=E. :.7.:- 7. .t....-....-4.-HiHEEI2trm±iiiigiiii::- ,.. . ' • '•it. -........ !!"!:! :•!!:%* A -z.:_,.....c•-±7.24,..4.2: ..i.5.42.1.a •-,4iirj:0.1:.--,01,F7,- f....;:f.t. fi :-.igr" r • s INktrit'-1141/6:'-. -j2" .P...'irIV1410.11:Aj'Aiirt..:IF.:;112.1..j...44.1.1e..Ar!ffiggrESEIEE9.4.1 2:iir_ •.---±tAii...:Nisifizi.u.r..4i,ii;Iilinl- lea.""Tilt• PI:.11-*E.''-''. -1..,..." ••1”.:;'...."iilmoipm ;9:11i::;iii..-";11..Z= 702=mmr” naniiii:.eiFFr.:1a".til:ira.liiiEE=EggE=ZSZ 52 -if,L ,..:Fii:::...,....:I.. . ( 4,.L.. ,.....--'1,L4; - .-"r•L.".7:...•"ii3:14.P..,:."...r.:211,1:;:::::::.:-•,.:._,-•_.,....T..1=2:."..722=," ==:•••...-.1it....,. -...1TP .11'"•....."'=='....-' ...'-C.r....: =''' ' 'ZS.' .....v....xi ...::: • ' • 4-,-•v:.-1•41...p.--.•••„,7.:7......:--11:1:::”•••:::..,1 .. i =---tar.r.:-...;:mt•....:0-7:1:77.! , :: . ... . , 1::;.•.wiatinfili%17,7: : ='-1,11 r 2: :.r3"r- *; l---ia::-=E:Er.::-..E't- •-•:.....?:thir.r.:1.-,.........t..............I,:i!. a -... k -- 4::,.." ':1'''. -'..°..If It..- ......1!..!:„.-...;;;•,:i---k: •••••-•-:-.2r.0.1=..7.z.7•7:-.;:,:,-0-.0::1•.•1...;:11!;;;A.....timpirdpisarati=-=.. 1:::wsjja.•:..i:::::: 1 k 2.; .. ..- 31. .J1'lip:! =k-grIff.7;:earff.Le.:.%9. :t:i.1.1:-.41.1:1811:”..1.1a. ..!.. *, ,.i.,j..3••f' ...• --- .....HP111111'•111,:tir.7.'•• ...."•'' - -.a:M.•'"..1r...a.11:...':Li.::.pr:.=.471:=N:IN:i.1=112,1= I ..1."%'..1641 t'• ) {:,......................ii:ingitr--11!=rAit's."•:i0.....i.144.• - 6111P.11.1 NI..: ul Isom=Miaow:74:4N Li. ../MIMI.........i..........III MA .....in 110.011111.91.9.........11111•1111i pp••••ea..........pm,: . .'...' .„t! W..a:;1-1 ••11;44":”.. 1p../P:Er 1111-1 :7,..i.r..1.:; •-..........,,....497.....pni...niairzi=amig -.••d.11111,11111111.1t i.s..fini......ru... , • . .1, ..,.4r..!j_.• .4..1- ,-.,.. .......,..ri..11413,..-:.613ii lir Al 4.•':,.0.-...........iime.- : ..7:Mite isPI .Iii Ilibliliil MOM IIIII MOM II I•O II t 111111111 I nn"" ' * Io -,---7r,f,•: '..•.:,. •.••••-:..•.1101;,!!isii••••...t;%.4iippiii:.ivilniprizorr-.ii,:r.:;,..e.,,avziowlarr "1"'" :1111•14.1 ..NI:1:11:111:1:11: ..i.ii.i. imilu!..4...1..._ .....i mom • 'L i'Al -I'2 .'0.- . _Ill I--.de ..1.8 . .. -. 11111111111W i ''.- 111";11":1.''-'-'°1";11 . 11161."116i"-dil."11r/ '11"u"1".1.:"r:1811;114""ililltilli.P71."47 41.11'::':".a1iTIL:71:11;:g3t.......,....wimii.„, .,. , 4r.:,":„. 1.-r•'. s,•% ;;;;;;II!!!!!!1:;iia:t!',1,:;;;;;P:01:r.;irar"..i.....1,1".;-.111111111111..1111111,111.13111miiltitIliim. .1...m..i.lipli•gielin.......1.,,„ f .....imii.miliifini, ;:•ftr, -.: -- -- • s.•;:.a.,•!:;..,..1.1,..0•..-iy.fillo,.0....:inir;Mworaitrwilboli!!!ifirmininifilititiermurul in!olaiipt.pstt utig!iitie mil'muumuu iwi Wu tut Mt pi! •,: , '',-;12.,••••• • • •' -•ite.•.'imilllirt::;:a11111111111,4111111 -affilltraioteilEra.41111111111m_.,. 1;41 0 ,11,:III.;1,I.' Al, .11 11111.isLiti : Illull111111111111111111111i1111!I I!,1111111111111111ill . ...I. '-''.....-- - '• 4 -.. Kir da."-- igiurrunguir.e.;:iir.1111 11111P.01:71/Y/INIIIIIIINIIIIIIN1111111111,1111111111111111M lit DOI a.11.1.1... 1.11mhimilimimiwinnimiminitimil.., ... . 4,' 71 4.-4',z-•: :. 'f ..r.7911e.liiiireinill Ilr.it4MEgtHISOPM11100_1.1117i!,l'ir.;Artfillfrr: ,. ill 1 HMO.,I I pimp int iniimminuiromiimiliiiimmirom ..p: :,,,;44:air.' iiii!•:::fitiiilmitirdiliiiir.11P!nir iiIiIiiiiimmoONINSIMMUillegulkonnindida ii MI InainsmaN11111 VIII 111111111111111111KP WI 1111111111,1 III • 'p -------......--- .::" ----,- - - --== -=-1-======iihimiEhnhvi!.......n:i; ii Eiliiiii:iiliidifi-Y_ iiiiggiEP.Eiri Phil';is.....- ::.:.: :..---....: 4,..y.,t :i. 21.11.,°..1.:, ',I.,' --:•,:_. ..i...1:.'...:- 1 - 1.:::1-. ..-4 *rt... !!'141THilgIVE:#'-L3fti2za'rz-;:, ii'; .i ii1-4:'.: if-E.! :ii.•........•; P'' ••.•':(..-.Zvir"f",144.-. :-...........,,...... ..-.::-....,II . .,,__""..• „:: '' - -- "'"'":" .2 gir MUM E..-7-5'-'' ........ I.:el.-. .-IFI:V7 1 ' 4 3"•• * ' ••• .. --. ""--1.......:"1: : :::: l..:1::.::=====z '....----iih":.2-ri: ."..1:.9 ..qi. ani..--:==2==-EEIEF..:rsz!,:-...-24::::::-.5h-• ur:.. . 7• %.0.11' ... dr% ............... ••t: ,.. t..=rut.: . - -;'-• • .3.-.......•-•-••• .-• --Ef-= -F.-..f.::::-:. . ....:...... . ..I , ...a 1,Nia,=11-.....7.-,..r..= .. :4F:1010.-... iimseigIEEE===iSci...--c--Ihr...i .....:..: . :,.,_ _ 0.6 == iiL.....vaqummmi ........= .I; 3=:=5-1.25- ...11:143F"':'n.IFI"ElirilliVrE-15-4eralic Hisiirldill....II....:4-.:.=. - . - • •_ iii ::m......, ..........1.,....Z: 1=11M 5--- :: s•1/2:nult:•.11:tra::i• r. .:1..-E -= 2 ..r: ,...-.........,,,,,, • .' . . • . il •N.....,••••••••.• auf.palei, •MMA•••••.••••• ,t , . 0-0 g : .. ...........L..::iii.n.tii t.p.v,g=E=E- .....2.i ......:., .--gffi.--giiIipiiii..2 iiiq ..--;••••------•-----i----L.-4tt: tl:.uz, ..,..=EEE:v_ __.__rzi.. !,____..H:!....... 1:Fili.mi,..;;.;-.. -.= -- .nzai---- ' "........' ". . . ' '- -- P.::1 ..;'-''''iMitiliiiii.Li i.in"Lin.r:-.1.---=-=-==== -`-' ' unim:::::::1•5"IrRin:141Mflg.. =-ST==== ==E=2" 5 ...... 1-. ..".“..........i::: • 0.4 -0.4 • . . . 2 $ 4 0 4 0 10 IS 20 55 SO 40 5040 100 100 100 200 300 400 000 1100 400 11000 " • j.7 C F5 DISCHARGE - C.F S. -. • .•.11.1 * • . - (TOTAL FLOW IN STREET) . , 0 * ' • ' ' (Jeri/I - , - 34-1 RIVERSIDE COUNTY FLOOD CONTROL . .• •• • a,-,71-(,'34 -34)* WATER CONSERVATION AND .I- DISTRICT ' . '. - . . (-:= ZO II VELOCITY DISCHARGE CURVES t.'..,••••••- . . C OUNTY STANDARD No. 106 RCFC & WCD 32' ROADWAY 6m& 8nCURBS . • YDROLOGY . --- ..e -•,.< we I i . l 1 • PLATE 0n • -7.7 _ •.. .. 62, 5' I . . r 7 1 134 )1.ki 1- 1 . 1 . .- a c.•- . . .p. . . • . • . • • . • & . 50'R/W • 32' 16' I.._ . Is • Per te. 2 / 16' ''' 24miminnolmor 2 Jo Vasier ft • -..---"17 :p I A•0.018 . , -. . I TYPICAL SECTION II 111 • 2 3 4 5 1 e 10 143 20 23 30 40 30 40 80 WO 150 200 300 400 200 400 SOO 1000 40 • 60 -8.4.if ................... i 13! 2 iiir:1:•.:177.ire:i3aiiiiiiiii:iiii!EFIEEEEE/PliiiiPiligirii!.::::::.:ifiI111:::::::::;IPE:=E1=====3 s:::::::!!3:•:-:::•::::r121t--r 1--:•.::-..... - !..:....... :zzi-------r..r.;!..:wi:-...-::: :...-,.....EEE=----....:31 .4:-- 2. .e: ..I = - • igr..... ::::E===. . "." :...--..1!”11FM--43E-ri :!...611117.ii!-I.T.......3.7:.."2... -tr.- II . . $O ............•••••••• F7'''1;74,1i 4.•======2::::. .-....... .''''''''""'""'• 11.13:::S .ra:. ,•:a" ol.ii .-,.a.,- .1mmmaimal:::::..... ........,ur.: - .• ..Era.I MI I..... I........• ..MM...... ...." "M=IniMagn1111::1:=M:=C1. -..,::::::::::::::........„..1:;..c....2. ........n..:11;..u.:1:.1... ....1111011 • . ::::i ...n:::1.....,......unraug:NrauEzzaccrxxi:: 1; --- ---znr.: .:.• , 4"•"" -.'",.1:441 ....... .... • ... .11111111IMU111.1.....ill11.0111•11111...1101111•11 INIMMI=MIMMINI ......r4,411111:::::111:.1.41..id II•I'l ri 1411'111.11 MI 1.• ••I•1.II Mit II'.II mu., wit, 1413:11 31:I,IlIl aiI.Maitinil=r1laillIgnil:::menvutr,nraz=::::-.:".: ..........unthit:13: i4LII:Iiitliii •i:iiitist:1;-.4giliv.!;.;=:::::111:131111111111 r to sapseassiltioullIfillIt1111 IMO/111111i.......1111111111111 U1111111111111111111.11MMIMM• 111101111PililiMMMME. ......INI111111 IIIII 7 .......rimitli„11„1•1•11:...........................................111,Tiirnint:?;4631,1111:111:1115111:9111:11;11 20 1111111•11111116411111111111111111 11 I 111111111111MMINEMER.. II. . ii•osiiiimmiimmulitiitiusiemommithinfinonsf ell oll-le•"II .'s Ara ir .1-IP001411.....11111 111881 kil• k , .... .. ..., . , ' 11131911111111111111111111M111111111H11111111RIIIIIINIMINWSEMIN11311111......ilithithh.iiiiimiien 60:000Um • in V"I .0.:..."..1 ...p11,•11111•111111111111.1 II 1111111111111111111 . 1 11111111111siiiiiiiiiiiillffillIIIIIIIIIIN111111011101111111J11111111111111IIiiiii11111111111141111171.11411 160:il•Anir sp...011-.,010,,.Aimmoompiiiilitiiiiimilimmou ..-. • iiiiimmimilitutnielimmuutimiiimiur AsallilliM1111111111111111111111Hill III I III 111111111 101w YArlikolle.IIIIP...re 01. 110. ii 11111101101111111H111111111101111111111i 1 • 111111 I I 1111111111111111111111MIIIMIIIIIIIIIIIIIINNIUMOMOMIIIIIIIIIIIDIDDHIUMI 11PrIPIIM Ifil'anlir If idle/14010.4 HI ifiniiiiiii101111111111111111111111111111 , , . • iiiiiiiIiiiiiiiiiiiiiiIIIIIMililliiiiiiiiillillignigH11110.111111.1111111111Piliiii:011iiiir ill'i Iliiiii jefelOii Leir"Al .•0110t1111 II Hiqpititnin limiting Homill .. . . . .. IIM111111111111111111111111111111111111111111111111101111111111111111111111/11111111111111111141MIir.:411111GAff!Zilfoll:;ullivarzre/ging III 1111u111111111111110111111111i1H11111111 . , I 0• . FY . Si., i''''.==.-../.f=piiw-,:i:-: .-T.--.-z:-.7.,:z.:_Eg=--:-.----1 :..,...gzi::-.;itif.o.'„igniF,i,f419:44- -415iiliefsu_lt.liillil!HIli'mill ht pir-;i::.. , _ . • e - ...,,;.,i. • ,• ,.. :2__,...Liitftut..L.-.::::=..-............k.tit4.I.....:..=-=-,_'-.11.f.g.e. 3-;.;.:_.-,-.. fitt.:::-'..L:1..•---_,F.,,..4.i. ..,•._;Aidit,':•41......„,,,Lm-*,,,,-,Atao-- 41fitglimrifi:ifi t fur.?.:2!..!. . . .... ....11!....1.......--....-......1....-.!=•."=.=-•=•.. ....Z.7......==.• . .....4- 11 L:i; ..... ..ar.rma :...... =r,-=====.-- a•-.......... e.;.t.g: ::,,a0:-- '''' :_-....2 .7r_ ..• gi.....-;;:- 1 . hil;-: gith ....11::1:EEE4-=- C.:53 :f5_'".:T:iiFI: 81.11P1*-1.1k.i4.#F7:,_ Fr:41 ttclitlifii151.6f1.=ii:•E:EEEIE iii::::.41:1:... • :.23.47;ngri-117.1.3Iiiii.1;9i--5:61:7.11• i-7---------651=r•-.1.-:risiff-:::16T:.:+474--.,t:7•zi;=-Tr•:--"ipF--g-- =- - .:1--:-r:::•:!•••=16.:M:::::11:...-1:••••••-• I • • ::2::-.1....r.:-.^.19!::::fiii:”.•::::..:arnt.=•• =.?--:-..1-1=2:: ;:-.er...!:;. 4•...rzsarrl ....=iii....e: BEE =A zi--::??2!:=:=1...- --• :- . . ..-::::::::•:-----•••" ••••-.----.=ar,--r• ••--'''•••• •••!•••-..---- --nr.••r-o,az-,-.,-.,-.-.A.- 2,-7,,--;;::p.••• •••••”*"""Inni::::1:0.. • --,„=-11:;,,,,,.... ....;;;,";,..=..„„,..,, r••= ... r ,:-.4,144.-:,:..7.-.."....%,..,..-4„,1;....-gi-....-....-c--3..:-.•.....ii......m......,... ......."' t' '... ., .. . • iiii. .. •....IA 11.11111•110.16.....orliltitpl,.10••••,.....E.M.engig../101..•• •...LIVI 1.1.•:„..n, .•••,..,',..ifil)4...., •=1••==M OM g_ .. ann. i : . ,• • . .... • 5 !. ___ _ _I!!!!L•!.....Tf: 1=102=0.0---- ....m--- - .41.:,. 0,•.,i00t....r.”-:-0-„,..._,• ,...... ...t.s....n.-=. -.... . .1...4........!..0-0, . .. • ,•••• r7. ...:111 -.1.9...L.E2: 1.:*::.-.:!..1.4E22.....:::- 9#4.1.7...,...W.:112:::::,:r_1...r....",......e%:40N - 15 ii'l i• 5 : ...:., 1::::•H•:: -L. 4: iI-•• .- i --.-- i..T.iiiel.:41•,•- ••=e:•:.firtr-•-.“..=-..---F-,--7...-a.=..E....i.Eti.i•-...r.tir.v.iriviii..=-7z.=--- il----.74--,.•iHigl .=--E. =-Er7.-E-riE..--.•=- i ii:r.:::iii..':'•'...-": ill:...• - • . ., .: • : .'.. : : 'ff..;:::!1::E•nt. :=...-..7- ,IrsietilliF,EM--i•-•E•Fillie7r7F.17.11:11re:IREPI:::Or.c:•::::;_•'_4.-::Li:7' -2=-E9=sE:91.e. -: ....?......iiiiir.1.....-----""uirilr. . - • ' • •!" :.-----7;51:7::::::..ErAW..:Gilii#1;1'43EIE•ri!"":"'" 7J'T..:-:i :4ii:ilif§-.7EiEr115;111ME Hilltli4-l .=1 litg!Ifi... I. ' . . ' .-..r12""-'-liiijr..;-^.±7::::11!itLm-ir.'AEF..21:11:#._.2t-z..r.._4.!::::7:;1:-.121,..::, tql-qIUTEENE.EE:ertiirrz!iiiiii,,q,IF,,0111.:.1:lit.ii,,. .....sr.mrsr"_::: a--7:1:e.'.i.-s......7.27.:•.--ic --f.,:. :*r.:.,...r.Z.e.e...."..--.....1=.:• 2" ---2=e--•-•:•=.-ra.:.17..:............ ...;..:::::::::::::;:::• '' ".. '• • t::2. , s- .:::.;;:t...7..iiiiii 4.44'1 illg,"=",---..'-..---,.i....c.743;-,-r.".i.-''...6:-..,"sim-r-.;tplrii,:,-; -,iiimiHrericsa----zs-- r=!-:iimist :zu.,.....„ c•-:fi::!,t,xv.h...,. •;-i -, -. . __ :c r.- .,.;.,:7-til... ..•-adr.•-•... 4...atf,..:m..„;.....:-...............•61: ..hts.......-.....::*;:.... ....MIMI .iion..... • - 1 . ,;12:::-...•;:if1::;:i."Sinissi:OTZ'In MI::..de::ritirnigirdiat sairinsi""1.1.nin ImnognInEgrzni:s.ni•I! 1....::inentettims.....unglm: 1111 ... S4 ••- "I;;iii,';'!.;."'!"--"";.:41:ser...;..;:e--avi.;...Parnr.......t',3g1::::1:rlicloimi, -,:nelEat:.Eff UI ,......:::::: . issome“.1.-...w,.;3.......11.•::: 11110111.cli....7.•4111.1.111411,...aa.....isill.e al -.m1411111namien1411111141111212=MIM 111111•11•11• :Oa 11 11•11111•111111 . ••••7.14.11N111.• r•-•....1 III 1111.. .111110,•10/.11.41MINIP"."ADO8.1.11111,•lar InintInli SIN i.....Winn . 4. . IliT.0.,-.5- ...i...44.•• P.:n•r MIA...". 111 311%,AI r 11111..411141111 n 11 SI I 14 iipmpirilawirini:::ni........11:11:gr"............::::::::::: - . ivival,i.;iiiigt.,....,....;.;,.., ;...,,,..,,, „ t...1„...; :...-,...ii.„...,.,...,....,11.:4 lin. III.' All .4 7 sr,Firo•.7111111111111 111111111111/i I • .. . . 4,-.84111111K.11111,,...11111118,!nle ..1•8111...111W1Wiall .......1114111111......i.Ii81111588•11i1, ",11.;ilillIli. A.1 '9Ni 4 414‘•,..14....A i.•IIIIIMIH1111111111t1111114111111111 4,!•,, ' 'anemias,l•.-;.inuni":-.nnmp,....-.1,:aioilia.-••Emour.i.t:.,,,4111 iiiiiIiiiiiiiii iiiiiiiiiiiini Mil Mt II MN MI • 113•111111111111N 11111111111111........1111111111111111, -• - •• •918'.411.11:Ft'4.1-111"qiv d ii iik.stir,:atiFimmwdowe..ibolumnrciiiii iiirigi!;1 in ill 0 orou,....a . misreplorpilumuummegirimumimiumm cm ,,iiiiin r,.•,I,Nollififirolo II.4-,iisfismicsenor,,r ...,,,„,,,,,,,,,i1.,..,,,,,,,,,.,.,..,,,„,_ I: li II,' .11 ' re,-s : 1 ' •t.. .„,„.....„.,,„„,„„„„...i.,...„„„, L. ... ., ......"...,„„,,,„„,..,„:„ ;,...,,,,„,,,„„,.....,... ....,,...., n Irmo!multi I IliII ii pill inTimummoriettliiiiiiiiiimimoi.'2,.''..... . 111 .. railiiiiii. •• . nal .0 .q..-' r.iimt:i,uttilii^.iniiiordom souiltig. or- 1'7; wrnrgi: 7.1 1 4 i 1 1 __ ,I.i •.w ,P II I 1111161MIMI III 111.!IIIIIIIIIIIIIIIIIIiiili Jo,'1, • _ • . ... ' - iiivtuaininildindliiiiun :iie.tmismesninsilidilighsi ihmilima 1 inimil ii 1 , , ,.... _1151111111111111:11111111111111.;icli 41n lr* -:!..1.,.th.j...,-,:ztql 1:1 _a_..=_....._-1,,....i.: ,,,,Ellia...p.-,.......i.i.....:.-..-. ...1,.Eat-fir.14,41iniil,a...i,=.i.,E.i:....:. , .... ...: .:...... ..• , Eat':=•%.51.I•iir'----- -- :-.: ;.,• -..!4_H-- ===-====:: ,.-:::-;....;...::?......7;.. ..ii.:N.:114,y,,,Inpies..= 0.9 ---za.• i'i'l: "..:::•-••'''.1=P. --"IiH.F4-7. 31;-----,:=-7-a.-:7-z7 ;.--4-1 -----="iiiiir.a...r--;4E-a.:Eisii --"Lziii -17.W-F. ifitigi-r.csaszEuxun•]'.i-••: ' * --' ... '16.11kt, . ,. ili==..L=:-4.-...7, .fiiiii...... PA:a5r=.1ET•i::•=...ze, L4i..:7. V11:: :il..,1::::.....IIII.a:44. -.1....-2===riiiiiii"iiiEr iii: :.:i : il: 1 : ••••• .r.f.zr::'r ... ..-4:::::-- EE . :..-: 1-•:-...-:-:::•::••:::1 2:91X1 '"-z===EZ S=.13:"" ; tl F. hll diZ nil E = T1 1 M 'ill. E 7 22=7......... 1 ......1-11,,,, F ..1 . ,..,..-.....---3 .........._ 0- 3--ir-•4:::•fr...- -a lisial e;E'i".-;el'• klEF.71.111-h-..-. =1.-21,fflp:ETV:4*--. . .:::'! :-Erl•-:ii.4.:....Lz1=:„-.:::.%11.!: •••• r41:4=::.-nzwx.tti-SE -E :Er:« :::rt: =r:E4.T. "- .-1.' 0.6 Erz:1::::::::::;P:61.1i1=;;;;;P: liMp.....0sEERBEEErzir- g.rnr.ronciraih-FaMiL:iiiiiiirEg...-.7.-w..m.f.- F•c:::iiiii; a a ;IE.3".111 t1.1.””.°17•141111 liliii1F.:11M ,T.rda7 st..,,,•Eithri.ni:....:4:14:iililliEL:=1.4! -•- --,-,:-..,1...-1,......."4[. .-1..V...c•,,,..a..,-_-=-..t..-. =-.....-...... -- n .... •.=..-- --.--------= '. ==---.-.11-,,..E-H-,,--:-:::::-......, la,.!..:1 1111i. q1=ft...„-.2_i--.... 11E1iiiiii.:sii:=EE=5=SEI SliEiliiiiiii-. ill,.......zr,,I,kil 4, • _V. ,-gg.g .4.gF..14ssE22 3•••K-L,.!.nAr.:::.==,. iiitftilitigiMlitifFTAErdlif 4.5.x.iminzzEE.----=EF•E Billi....:: --ii'-'011114ik4liiMMEEI.EEL-Tillf. iiril r-----;,•-:-••=r- ...•.:.: • 0.4 ..------- - E . 0.4 • • 2 3 • 8 4 I 10 15 20 28 30 40 5040 SO *0 150 100 300 400 BOO SOO SOO woo g ii 0 Cli 4, etc DISCHARGE - C F S • . • • . - .. 1 5 z 7-6 iii (TOTAL FLOW IN STREET) I vertm 1 0'3°4 0=,-/Lt 33 #. ,3C))/1 .- RIVERSIDE COUNTY FLOOD CONTROL AND IWATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No. 106 1 • RCFC 81 WCD 32' ROADWAY 611 a 811 CURBS 1.....rel•• ....11.ss. ..,..........1, after Alm I I 4.......ors• nYDROLOGY J\AANUAL -,.. ......" ••••• •••• Camcss Oryirifir.. „C ' • be I. 111 ' _•••11 044ero 4,144. ..., . ,.....1. . i PI ATF fl-77 A)rio I 0 012 e i 1 •I .. _ , • . - 50 /w 32. 16' 16' 1 , • 24 1,4-,ft 2% or's,ft ' , ------ • ° 4malmisomir r-r------ 3 1 0.015 I . I ' TYPICAL SECTION 0 2 1 4 5 4 • 10 15 20 t530 40 60 40 110 100 150 200 - , 300 400 100 400 400 0000 f , 40 mms- -- ---- -------•' - maw::-----:----=-.-----zr s. 40 . 1. 1.:i 1 . ..1••=r7-"E-1.1.-..= ::ii:',211:=1121"11IiiiiIIIIii:::::::: ...0,Eilard==SEE- EEFEEMMitRirgt=.1%!::::::"".1:-"' ..- me --..r... i,''.i:;d•--.IlihnirgpirIII:==1- --F-.,-,: - .:B.).,_1.-- .1.9,11,1::-------------------------------------------- 1,,,,,i.,;k.E.%M.l'ili.s.,,,,...,,I:=F .1.1:.!.................E.:, 171:•••••••••••IIIIIIMNI•IINNILMIABON:=6•11== = ....ii.:---r.• mr: .1.• •tzs:.::=-.----- -.-z:.:..at.t.s........-.:-:: r ' " ::::::.: ul:.:.v•.::.:7,-;;;,,1-1._.:._===== --.:: 11:11:'"•""...."111;:191.:===3E=ETrcr...::rifrigi:411411414;:aLL'''''''" 111 3 ****".":*""..-....i..1.:11:31i.ii:iiiszlE- --'3111"....."''''''' .....l'I.L:1131E7222,ZEEk..::::24VaElli::15 "F.7 " ;;:::1 ••••••••11......fr. nElmilm mmor mamas......emu.....1.1.011111. •IN •0011.11•4111. •••: -..n.....-.'...... -E=. .ssc--•••••=liE...........................iiiiiliiltiparipsfrE...iii.2 r1:11:--........4.31 I T.;.....::11:::;:::::;11,1•.....111011111 W.MIIMI 1111111111b•NM........::::::::::: billet".......111111111MMII:AlkillIZIMINZMZZ:: LI: 1 11:111111,111131 I'Ml 11111131 SKI • • UØ iiiiiii.41:1:to"..i:::=:::::::......::::::::::: • to I .: DINH.......1111n. nunit311:11111=LI'" 11::::+slimul:::Ip11:112-E-:1:17..1-:;!,:or2Nirn-rigicr.::1;:millmr,mrz: i° 2222322ition......111111111. .11111t1161113111111111 .1......11111111111 ims is. 0111 mlinnt ... 111111 .V e." a 1.10, 1111111111111H.1 .11111 111111310itiot Vigil.....1111111111111111111.....iiiiiiiiiiiititpufflommumemisi it-rg,•lir•.11i.i II 1-winusiennimplimiagiebk.,,,g1.._Agoi•j..- .0,immimiiiippossinummiumm, I. - iiimainsainsiaiiintiliomumumirda. 11.0•111.,11111111111111111C1 11111111 M.WW V411,:e1".1111:4111.11.,1111111111111111111.1111111111111111111111111111 ' 1 M11111111111111111111111115111111111101111111111135115MAIIIIIIIIIIIIimulsesimmiliemmilimmir.41,.vAppwr.1111'"-;,i111111:,41111111111111111111111111111111111111111111111 11111I111 HIM 11111111114Milill 1 1 I 1111111111111101MMILMONNeeligualleimumimmipimileiiinii olitro.,•1,..mp,,re.dir_ 0•1!:ir....fiiiiiiiiniimmiNiitolinuimiiimion • - iiiiiiiiiiiiiiiiiiiIiiiiiiiiiiiiiunitiiiimuiiiiiMmiimmosnitiiiiiiiiiiimilmigniiiiiiiiir lil iilo'.0WrZoilt/....0.0%., 1111 1111111111111011111111 IIIIIIIIIIMMIIII 11111111 III 11111111111111111111111111111111111111111111111.11110/161111111111 II 1111111111 411011111r•.41111 soiltilmmir:e.11Piiiql!ii iiiiiiiiiitillainillimilliPmulint . !!iiiiitiiiiiiiiiillffillifigilillINUMilHmitiMEMOINiliiiimilliiiiiiir:0:AnctdinNotimromr-- -a"e.diev..doill uniiiiiiiiiimiii:iiiiiliiiiiiiiiniugm • . . ..........--lel.-.4.1.... =...-.......V.----- - --... . -,.. ..1.T_3=_.:-.5... 3.Mi.---.1-.11. il • II 0.. .5.---............,il--:-; ..1,...•-et. ..-='..?".".--AS.'e-714131..E, ii ziFii.!_ .4.;?..-:.1 , r.'' • 9 -1 f4 Il .=..,== ,._ F. : 0, .. :P:T.;.--. stt b. I•EiliLiniiiii i::!: li- 15zraimmissznuse::::Finisr::ii-----4......sr.......===:.•.= =:::: tz .: ...... (=I1:-............ =r..=-r. a -...7...::”. .:41'111* •ilf."7:fillii7 . zEil .•'I'":1'. .1 ,E.:::i......•••:11.7d11.1:1,:::i::::::5M74:::::::=.22.".7.-.:ESELT...,•itif.:.,..:,_ .ii.6”:„...:-.47.-_Ii.7.:,::!EF-..Z-- ...,E: ......mi.....,:=:::::!: 1 11 .... . - -- 1 1 ''i'mnr..:::Earmirm.nr.;..lamt::=F;a-.7.7.1-;--=:----.- --:•:!!...;:::1-7,4:& ..a.V.-..44;lie.:.-er:g31.1E.m.S: 3.."2 . 1:nn=nr.iir...•L::: . ...,1.-,. r".:1IF:!EE:;;r. ---......PFE...-::=- 2 "-:=Pgr--..;;;; .. ••• ===-3: I'M' "'"Iii1:-.11iiiiiiilEa••••••:::.....:: ,t:','.i. ' 1..- - • . . . ..-.:r.:4:::::....... ... .r.:.....:.r....r....T..----r.es-)4, _.4 . .;r4it. r .pr.-.a9Sem-----ozzi :•-• -.::.!....:2i3:-...: I.....-.....• i,--.1.. ..., i..., - .ThigE.;;;;!!!!!:,;',;ingligll!1!E9 _-,-,wiNg- .7-7,-Egg!rizi-F-3 ..ii., aiig.ii ,:-. -;!1;iill/Pv..diNg-ff-----;:q-Ei•TEll_if-i !' ilibiliiiiltiE!: ;; 7....731ih.: -,--, - . • EF:/pEdIstilili.,:34..w.01-..-tspiir.:Pg .2=F411-1-11:11:1E,-,1:-.F.Lte.:0!.7.4tP-Pttilgrifirs-r-.Esaalliii i 2VI Et...........i ii : 11. ir Ir.,..••••.1. .' •1:::::*........................tiiiiFlii;.:. • .1A'''I''' .ii;:iiiF."12.::4:iipi!iiii.g.4 ii-f:".7...ce.i.EiraigilY...z...c;P:=•:::14?-dis2.1!:lairf"..Egul.7.fq1.111:440_ .11P :•"-E,F.' ....-..... ............"" ' j :44 .t. Zii.- '!•;'Ctil 31F.:Iii!:=1.1111404.4E:FiES::$1SFIrLOiti:iii:::::gt:.;:en-Zifo::4311P. 'EIF,E==ESEIESIErzliii!"-a:-::41:::'::.::-......"i ' ,*,4 4-# / - ... _...tag.11:1.“,......2:F. !!•:.a.grDD.,.._-j_...".. ?--- -.62='!.1s=1•.rr...-:'.^::.Nurr.e.:: ••••nrint7=-?.E====:=it...;:itU:ii::::...:37.•::;:::d..i..:...... •Ip li. a ' St • il:: .11;"•-•-I --.. -F-• 9iff.F.17-1-'27.E;r0.4r-re;:j'elf....'imi1;4"/ ill'UFRIltEraatfirja 1.13r1:11F11.5'iniiii:iiit4.... '...IL:: - P,-P. 1/11 , .--...;;;;I:111 .%.;:barlIN.:PS;;..;-,W.F:..-Eldr.;-:•---'!:‘:::a.:-.0.:;4611...1rEE,11.....:.1.,4t.kli="4--,..: :1171isi.l."6:1/4r...,.......::?iiiiii:ii.. •...,L .......n:r...1 .;4:3.l,-1:::56,11:-..771,-;,,...n.t7.---1;cer.-46:..; ,..,:::::p:r.::---ai::: :::.;,=====s;E:::;iric.....rliiipfiriiira......4:::::::=;::: ,.).. ., -.:1.......;;;„„a,,14.::...4. 0„:41.:-..‘,:-...1..1;:r...,:.:„.--....„r::::ii-t""iniptil:::::Eczaii::E:sigaqq:4.1:.........::::: , 2 . _ ..-...”*.toisiTrut....Z.4111111U!Id•411/..:...M..-..011,...lir.-.Mr.• .., ::.1111•11111 LI I MR HI 11141111111 M1== MINN MIMI .. r.- - • :11.21Piiiiiiji1P841.!"Piti:i 1,1-.1TrirAii:O.IiiriAlitiiii air,:ill:La:141j rig:11:11114 liviii:i1Z-4...--ii:;:mri"r 111111101 Min 41;1111111111 r......ktrar.::: 4: )MINIM., ;.,./' 1- 1111.04111, ',..'''k - •..J ,1 , 1•:!Ille0.-.104111111K1•1111111..:411.001t.!!!.11!11.41.L.L.117./.1.1.1!.../11_!,."2...etRirlil..111,....:',•.111 1-347 11/:;111..71.11•1 ,1';MTV%SUNI:41,1717:111111111111111.....011111...!..113iiii es:,-•,i b . -• . ' . - iiiiiirilniLliiirtliatifigl lal:l'qr.::!!!'lliggr,ifilli;e:in!!;'4iiii1111/1111 11111101111111:..1;111 IliikinkiitilariiiiiANIFUillirili-"liiiiiitildiriltillitli.......41:111::::: ,10.1,4,..A. i . .. : ,„:41,...:;,,,,..1,.., .i...dimpr.p.r.,„,r,.....,....e,sh,ogiitil . InzimilleiNiguilipi: Or 1:1.8,!11.22,111:illIfyilliniiiiiiini!tlIMIIIII11311111111 ..e.i.rT . 1111P!!.guillid!:...11,1011Wili.glimp ailmiu,.... 1111111•`1111111111111s.,... :71.411401 1,:41111 Ilk .1 II II 4 I - RIB I lilill11111111114111111CIMMIIIIIIIIIIIIM. Ilrl11414141111111111117 LisiffilpViliiillralle011i,1111111111M11111M IMIIIIR 1141 Ili I III • II:1 IiIIIIIIIWIIIIiiiiintIMIIIMIIItionliti I',j •• .. -' fdllillill..):'-1..ailltrodll IIPMII!1111.11611111r.11111.111lolliti;:!ir 0::11i;r:aruir:rrr: t 1 to flos !HI Illiii111111111111111111 1!1!I 11111111111111'1111t IN' ..•.%,:- • • '. ' 111121740111111111005111111 10:111,12;10511VIIIMMENNOiliiinniiifilllillifilinlillilllilliii111 III MOM' I 11111 Inilli1111311111111 1 111111111111111111ii •• g •..... - • ' -=az =.=--sr.: r tr.:..r -...-•--•0:•:t ,----..---..-assr ==•.•a-a-a-c.a.-0 ::::.. :.. - aa..--..s.-:•:1-.:gar.= vsgrEir.rulliitrit rh.e.1- .:3-iiitt t.140:II:=--. =2.4,--Txhis^.."1" .!F.!. mg.__,.III.,Egnrr.r.--:-..-L. -fig==g;seirizgh.-.:i ri::-1---,. - - 1-1114 i-i:al.1"1-`71.'21-.1 14:ira...::-.1:iiiiiki.._-,--M---E-=,,-=..-E-.2-5-'...7-:-..!.:i1-3",.......•,.. -' r-j....11:ii--,..E.--?.-E- .,- .' ' :-. , ... ,.: ,,,. ..2.--:-....-.m..:ff......4=r. ::1:zes.r.:mms,....er.. ••=.- ....= r...:. ...r.,.1-...:7sth .m:R.zza--===c - -•-:-::E•t:::::.e:::.• : •. ,,! : . -'' -ifEfiligf-airmur..n. : Milm".1saE =x- :••••••••1-•:rtz.EL:tiii •11::^1:21iFFM.P1P9:11-1E-ga. .19:-iii..1r.4.qirt:i:. -: : 't• . !... . EY:62 t:.•.1•1:111 ,,!'1111.111E1=1:1,4liii2==..-=====.33.===.9x=gupt=neur.J..1::-EliEziiiv.5:55:6:,E -e- - fr.3:11 .:0.7:1:!EU.I'' Z. •...e. . . °.1 22.:Eirr-Hin-PrFfFiii:....: rii":1-it,i:at'm-ta:-.:77:'E.------iielitli =c9=17-:":911 el' ----i'L.rpii....-i,i--.- ...i- Eil:.::i::::::!:::::1:::::::1:.P.:1.=imirr.!:=L-zrai:E......: ::::::74.agy°23:31arlIS= : IEME_ILI3 SL-lea--:-.Irnillutg.1411' • „,.r.f. ..,pli.... . 1).9 4.121="::: 1r1ILIV:Vn riNII:tir21:110::ICE&•=a11C.:......H...1.101;11;iragralianinlVAgc,,s-r::uliNirig:.....i :-...--....... 0.5 ' r• :: ::11....1..in.13=1 rArrINCjigii411M.S . ":"" •ii.1::_h D.:1.1'41;indal=r0t - - 3inzir:Eii:::.::.:.. -----.......... ••.......•,••• • ••••••. *a EAE ! 7,...,........- , = =,...-11-....`,.!:!•P -41 INEE,:pliLi;ElikL4ffEE.-t.-27=s,..ricss::::gligi---41iijii! wilwii II-ig.proggiliNt:41;.--gigtiii!lri.n.1, . Er.F14,-..!_!,-. .... -...- ..,.., OA i :1=9:-.-4iiiiii HiCtEiii:-MF.gibildiiiiieqiiiig...15: '=...E:=: :-.2.E.P.--271"..11-1"4- !=,....IiiiNii! it jir--1.g7:11$1.!4,N.E.ET:-=-=======-_Efinlitf---e...-;-...li.-.i::-.F.:-Eiii:-:6.._....... •• 0.4 ... 0.4 2 3 4 a 4 4 10 21 20 26 30 40 50 60 SO POO 150 200 300 400 Goo 500 NAMO . •• II DISCHARGE - C.F S. .„. . , • CF.5 - (TOTAL FLOW IN STREET) 1 1 I Iter}f= a-10 RIVERSIDE COUNTY FLOOD CONTROL AND I0= ,71..(a 4.y ) Yie :. ,7i_ (.,33-r-24)f4 WATER CONSERVATION DISTRICT i_ 16. 2' VELOCITY DISCHARGE CURVES : COUNTY STANDARD No. 106 I RCFC 131 WCD 321 ROADWAY 6"a 8"CURBS . , ....... 4)0- .1g,4....-... I 1 ; A".".".7.1.11,•10•11,1.1•1. •••••• ••••• [Move..,,,r4f. nYDROLOGY MANUAL 0.r•Os... VAIW Or. rer• ' _ I . -1.• . PL ATE D-7.7 eil 6b 7 it , /Jove qc-- • . I . r 50'R/124 . , 32' L . I 16' 16' I I . ' . 2°km...al 2 % i/4•••r ft ------ 14 ii==i------ II•0.0111 . • I . , TYPICAL SECTION. . 2 3 4 5 11 II 10 15 20 2 5 30 40 50 SO 80 IGO ISO SOO 300 400 100 SOO 1100 1000 ; • . - 40 .. .,,......4,.....,,,-.G..- -.- ------ -....E..====.:„.,,,,,,z ...var.,..;.:....:;:,,,;;;;;;:::;;;;;;;:iiiii.lEE-z.m•zsr.r.-..7-.7.3ziiii.mminit5:-...,..k...3:----.....::.ir:i:L: 40• .: k • iwatiiiiir:1,1%r.:1:;..-F27.2ameguni:E::::!E-=.?.= -• a.'""45iiiiii'lz""Ni!iiiiii:::4:: :::=11:::::11.-#131114[41::r.:......;-.................... . , ::.„.......44;g:".....7.-.:".1.....!,.....=1151-........... - .... : 110 . 10 ......-........ .. ..................... at 2..1::*2::::::11111rA r.::..lirr;Ti-.71'.'i•"-=== -- ."tit'''''3........."""I'"'" 1.•"•••u:111:=1:=BILEzzaa-•.::riill'ihuhrr... ‘..3: 1 t............. •" .............r4;:lii3i1,0:::::":".122-**'•`"3"' lammtamo••••• . •• ..............41:iriEn12222•111"'.411;1111.41..:1n1•11..:•-i hosiaq :•"tr.". ....of • :::1111 !!!!!!!=mgri::#4azza:ra . ............:::= .7.:•-a.T.:=::::::;r-1:11::=,.......4::::"..-:;..........-"' ., , .....Gait isouniiiiiini....•...y. " 44.4_0 maramomossoa wawa!INN........fi..116.01.1adin.../...1.81111. ..f... 11..1,.., 1.501.09.111. 4 :INUUM11111'il I IP OA 1111 SI = mmumessic I 1.1 LINN EM•MMIA .1:..14,11,,:iiiIall1.11:O= - .......... ...IIIII.11!,I,I31' 1„1:1 MIL; •2:::::Staik'..41:1P.'..41;;;:;r::11.5:111.::::113:::::: t 10 sop......gleiuginimuliini......nolosaisso. III lisminnim p ......swim mu pomplip lomp•psos• aft .1511.447•NISP.:,./...11111.1110 spopepn........111110 10 10•111111, 0104011 lo Ill IU II 101111itilmisailimmiliim1iltv mixopolielor.8..•10.:61111,eilittlifilifillilM11/ mown, imosiminewsotomisioi maul......insissusissimmo ...upwitts isooppoiespoulsossoti::rsamphr.• A NY,:44144r#1111111411iiptuf Mica.....imilisiit • 111111111111101111111.111101110111o11111,10 111111111HOWIMg01151111t1 1-11•Ilf`a•1161.11'I.12.10,.....1111111141111111.111 KIWI. 0.!141111 ....of i!,..damn Iiiiiimisofel.....immilitiii, - 11111111111111111111111011111111111111011101110115111MINMWA111114111111101.....1114•14011.1111111 141:1111111.111 MIS= vo :of.f..s....fu•immuiffinimulieftifieftumilientiiii ' . i tguli1111111111111111111011111111111MIMIIIIIMInUMF'AMIIIIMINIIIIIIIIIIH11111111110111114111H111111111111quA il' ll_WINs.',011',101111107;diiiiilliliinilliMlinifilliiiiiiiiiiiiltil. :L.:• - . filliiiIIIIIIIIIIIIIMiniiiiillilliMillnillinIMENIMEMIIIIIII111111111111111111111111111111111111111ffillilkorM1,50.11 ,i'idlino•O° II 11111111211111f111111111.1111111111111111Ill - • * . - • . 121.111111111111111111IIIIIIIIIMUIMIIIMIIIIIIIIIMMILIESONO11.21111111111111111111111111211111sin°1111rWrialoitle/.1401214i DI Hi 11111111111111111111111111111111111 . iiiiiiiiiiiiiiiiiiminimiliiiiiiiiimillimuirouRommiiiiiiiiiiiiiiimiiiii.mom r,i,,:il Hi 00111...Tr _./4-EdiP.;dil L m0;1111011 Immini mon miwillimillimiitummilmmuminumommnfluummillimunumr'..e:amil;•Ao!.:iir.x,::APPAPIEiiedll111 ad 111111111W11111111111111111111111111N1 .„, - -, 110 ..---,-,,,..,.,-...•:4 . •..- . ..----. i ...fiiiijiir ,,/..:.i.!... ...F..a..,..', 5.2,11E--„,..qiiiiiiiig:il!ii.i.q.e?....".i i••••,.: . ..- ,7-.', • . . • 2 . - i• -. *--1.-...‘- .7.. .C.-.1-x-.Z--2-- I . .::.-- . f7 %Pilm.3.. :?2*..E4...s.iiiiiir4ii:t?::i:::::. • ;-! `1:( . • .1.1•':"1:'•1. Ur11-2.iiiiiii,:igig!Hi,O=.°-" 43321't-' -. ..-1".7:::itile'Llitgffilr.:.ails-ad• Ic-...2 .: ".4 I -9,11u I.., 5 ir-..iiii lilqiiiiiiiiiiiiLi!::::enr.11::MillEIME-z .==r;----."31.:i5:-.P,•:...- ." E....." -. -14'-:-.-i-E-iiiNir..-ii:.-iiii.jalhil' . • .A, ,:. -...4.2e 2:11z. u; .....:E.:=7,-.•z==, -- -_:.-=:,,... . _ r.211r.;••411••:......., ,r,..::•=i1-..„0.,....`.._._ ....,=., - _ 2..F...:. ..... ...1101.11:.•::: -" i I..• : , . • ' 2221' ,I.'"--.--------;„,:i..-:41•41••'15--= Elfi•I.11.2:E2m,.....-.Sri:TH:3n ....::•••• i . .. ..F.-------4-1-:;n1:_ ---,:r•-,--.,_---_-,--7.17:2,--:::-.....,--...;w:g.,u-r_ginr.F.4:xr-a•;:acE.Sz...,-:3-:1:::huvoia..:-.:•-• -. . ' s .,_.,....:....••••••""""nr.:- " •"*".31"..".:7,4-•M - ..''-« ..,...- ..... •,.' "" ..:.... .•..; . ------.4.... ................=.g.. . -V.I..V.'#:..:::: 2 • ..4 j•-•;;PTEriiialn11147.:":r!!'7.":;"--=EE,•-•:.- iitir•- rA;i:e.•r•-;,err...u.Or....';v:07.;====----1:1:-E-.1r:Ligi••-•-•::•::::h'IN-a••1";:--: - - -.. ',': • t . , . e - .,:-.7.6....1:Irm.-”...--r.:7:::::30....-ZoTt.r..var.ir.',-..;.:4:10.;;:::::”.:;"6:311.nrscri•.....iif.4.zie.ts:....--- -i,..iiiI.E.:11tig:::: I iii?i:E:51i: . i, ;-•-:,,, . • . • • ..-5.1!°21.111P1r.n,4i;45111-J11.11M................. --gi'2114-111Pr_girf'.1:-;41"ii.021=-- -f--E--!"±-_.,...-HP iiii,..21i1,1Iiiiii:gFiE!,!,- .......... .2- .•v• I . ,.':........-...,..• . : „4',: iii......grin.4.1. ... __ .===E07.44:13:;.. ;2 .,3,73.......4111.1.,LI::.?ika•w5-:1Mi-q,..a-Lza_fezi-21.111, .712.:Tilita. .i.p.iii.77..=.....,i,:..,.......1i„.‘1,..41111/4a. 4..-_-.1,,,,r..1. • St5'5Filicligi.;;;I:k.:01-jii;"3#1.fCe.411t-51.40---_..tEk5E-El•zi4-1--..:211P#Ii0:1:•".:144.g0L2ii.tirpriln=7-TlAW.z.-s ei.PLit5:::::: 2ili:is::,-.1.:::;1,1f,.... r. - ( F • . ,-=_-.F.-!“-%11.0g..............................rii"....,i.:...H.. -:_u_.E.s.-..11_szt:,-....,F.--,..,F,..ziei .4.s.-1-z-ip-...ii....::1.......:Aii..5..1-:- ...i......... ..0.7'.1'.• -- ---1;•" r ..: ‘,1:'qqr....-..,..17-- -see....--Llsr.t;I:sm..1.n.,:,!....:.-:•4•••.tvti,-• -4:21=2' -=.E:zzais:-.F.h. ii:t!..--g:--3. 11!:°,71:::::can• ' ...4 lb. -.a.o.a..::["" 7.4..;:cmt:=.7'..:"•=.„4p::.42P.I.0"r„12:”..--;"-,:-.. .....TELL'ulfr1„-Ci "':"%•4V.:_.1.."4,41..:r--::-hii....aram - "-Ir...::::;::.::: .‘. -•:- . -....-ia ,,,,,,,•:zinnia;1. ,..--;g:..w..,r-ds,.."..;;;n:e:g....,..,4::.::;. ::::::.::=ItirtiMn=oVall:IMglitrunvegNi"ol:..... 'relit 4 • • '' .--- -""' ••F••..:...•-'....••...'..• ..••••..1.1••• MP..m. •.1•••••••...•••••••....•.isi••NoNNa.........INI.NNINI MM.. Seev•• rel...li.i. , 6160.0•11: • : ,L _-. !er......-....m.m...-,......-,.p.mu,....Norl.nar•marcaml...............mammie Ammo. ra....•4.•••••••...PITA,amilar,M11......M..•111M........mm Ara TTOIM111.11•MMMm.111:1111000.11111:::::1011.1 It.1111.41111111021111.........MIT,: am@ ... •:;;....•;{,1.:1.alvi...41 r,...,_,,; „sria ;,.../.11110H .°1111111111111••••11 1110•••.1.1111111.11.1 0.•... :Iii .1 .1401.1i.•:• ...! i.•.ig.ilar....''4 'Iiii alliiPfilil.....1.4ana 4ino....;:eige. •:".11INIIIII'll"iiiirJggI131:2:11ALIE LIZSIZI.. :I......111111111:IILI. t1,1;:i.....1111:111:1: 7 • !' 2 um.-- •II 11W Mow.- • i Miiirlillhal•-.f.1-!.....iiI41;1-:...L."../!;i10,1.71110:t7.1611.417;I:Sr.fdilLINirigall1:11N:11111:::NCIZ"1:111111,1017""liN"""11111:::1 ....111111:111:1 ' • : I!' '••• •.; : •,:".11111114111111.h.::••1111... ...Intl.-al..idererigla Al 5."4:0111.111..Ih... .11,11 1'111..1. 11.-,11f:* i1.11 •11.-MT? 711,17.ar:p!.*!f01111111iiIIIii111414141111111114IIIIIII .,i, •i i . ..1-. ' .. ,• - • 4•11-44/111frA11111L•1.11-1111111114•L;•111'.11011w.41111111118:4111111151141111'..411111111111111111111111011101,41/11LL"1..L11111h II.a.fi ......11110411111,•elty,11:•1111111111111111 I • . . - :1111111M .4. ' - • illilliiirt:lial!filli.!:;itiliiillit.r, ...14114111P"PAISIMINIIP4M.:".•4111111 44U111.......111111111111114111111111 111011UIIMM SIMMEME1111141111111111111111111411111111146111111111111111IIIII -.• ,,,• • IIPT744•411111"..7.041-N10%...iird110 IVal,i.'4111011111.10%11111grAMI4191111111111111111111111111111011111191 : IIIIIIMp plirillilaplfflinalallaaliall1161MIIIIIIIMaiiiii, ...*x.-.44.: 111112,teislinll!%•;cipipliill2irt14411,,,iiilliiIIP: __nfilitVlilllia__,...;-,',II:II II 111111 Ii ' I III.' ;I .112.44; LI ; illirillIn11111101111111111§1111111111111,111111.:il "ti^, 110P4..::11011411"51111NPIP?WK.,.iffilill17/411Zerall .1110111110,4111111111101 Iffillilln 1141n1 1.111111 a 2 II 11111111HIU11111111111111111111111111111111IIII.V. 0.ta% I'•., - - - "411111111111•9ril: Iii0ndllillP1111 1151.:411111..4gin hillnil5;:-5r,iri'f111:dritrrrrE. ui IP nosiliviiii 1 _pliftimutimmimmtlimilimilopull,•:. ,IF"'N -, • lii!!:.74::::::111iiii:dmiliP:iiim 1,:immisonsousumuoulliallilittniuminimithut anisso Ong IIIIIiiinii111111111111110111111:1111iffilii:111:.:- .. . - . • ,..-E.J.ii..4.::•••,..!:iE,.±:.,.--,--- - - ;7..._-.._-...4.--i-1,&--.-. ....F-Rhi.i.,.:. I4. ii.:Lii. ..T..- iii igiiirif-di..4.t.. .-......_EEff__.7.11=Ei=i11131,.iiii ,-.•-,_-,:r.:,.:,. ,...: .,• : !•,•••..;1 .1..-. ... ..._..-- - 4 • .,• . ...:,..:.:•„... ,r, ,.. ..a1:.M. ..-,-.. .7-,..7s. . . ...c 4.F.J.E.;..ii 1.1.,-.!Iiigma..1-p.iiiiat .. F,,5a4-4.11,-;...,___,....,!9!..Fiii,i..:,.:.i ..a .• • • 2-5,-.2: -.. :iLW.e..1,i-fiir iiii '::..--I.:4-z-ZF.8.:1-E=. ?I-. ... •- .. • - 0•° :..F- :3---- - • -4.- .:' :".3:t::::" =---===.1:2i--- C.:::-.17h1LW. RS:•=lif--ir.HERT,F. .E-ENE=E-.,•22HirE15.1-.,.H..1.-4„..-:-.ii::E:.::, t":r.-iiiigihe:.:i:r.-Fir 411 iiiliELIICIRMEA= = 3-z.=2s.r.e.T.sr:sz..z:1::::::tr.s==..:.hine::auf.E:==...-E= ---31:..:s,.........:41n--... .. ... • . • , . ,.. ' 0•7 ::::;".7.1..:Ffigir".;.:"..7;t151:•:ji !-I.AraV.1"1-.T1=;.t...:"171ill.".zilaclilir:!...4iii21";";ffilt.%17.2E1-21.7=:-.4.1-11L'Ulta/. -.11E=E14-1.1=alliiii .iri:E.:iiriaLil.rIE-Iiii---ii:11-:11-':%::-.:..::' **-6.1%.; 0.4 ---,51;1 :NI., c:::=Es EE Br ••• '.....11.1:::::.".trilii:::mil:::Iiffis::::::::Higiliai==vNES",i4Eg;FroCiiillii ii Fir."•i..ii!ii::..... : OA . EilliiiiiiLl......1.11111131:141:41 =11rdENN.N...::::::•12:01gaholiialFIN:Ntekm.:141 E s ..eihig:.-1.11.... 1.. .......-....... 04 " .1%77::.'111Lriii1-.4:111........................ 31.-NIT-==.7.1.-:===-=-; ..:13;illti1i==-‘'-'111:-EiliiPkill-lhitTli'llgiar7.1-r9EERIM*4 itili-.14.1111.ffil •! .. -.` . ' .- • • • •Izi....-'2211iii.............•••••izi........AE.,---;•---8 ••••......,---=a•========-E.............z..,.. .=.,..:iri..-...iiiiiiiiivin:44--:Pm fi- can "•- L.m.t-i--- :it....1-14::::.-main .,...,",•=-.--.,,,=.--.7=-:..r.:=::.2:.---nl..i..„.„,........-...h.., :m -„-sc--=-_:....t....c.N • ••-- •- • - . •. • 0-4 .6.• . . 3 3 4 B I I 10 15 zo ts ao 40 50 10 50 100 150 100 500 400 100 400 006 1000 •- , I DISCHARGE - C.F S. - ., . : a= 7.1 ef5 . . z 3.$ ,,, (TOTAL FLOW IN STREET) I ... RIVERSIDE COUNTY FLOOD CONTROL • 7 I.(,351-.3u .... 13/1. AND • .• IL.= za 01 WATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES . . . . • COUNTY STANDARD No. 106 . 1 RCFC & WCD 32' ROADWAY 6"8 8"CURBS . ., . . ---Sio.; ,421 e..er 4.• • • I . 1 1 A.......m. nYDROLOGY J\JJANUAL 1 4.....0 rftiliMiall •il:Mi Ai. Cm....e.01,,tr • _Wan _Van 1..m... , DO 1•• • I . . • . - - ...• : •• PI AfiTF n-77 1St I iiii)c loz, I • 70. RAY . e.... 5 2' I 26 T . 2(Ya + 2 6 1 , . 2 °le 1/4"per ft. ,L. 1 n:0.015 .4--- I TYPICAL SECTION 2 5 4 5 g 4 10 SS 20 23 30 40 50 00 00 POO 150 200 300 400 1300 SOO 000 1000 40 40 I 30 ..........-- ....-.....-.--- - ..............m .. .........................Eliiiiiiimin.......... --.-......-.............-.s.s:.............- .. I ............................ . - - ...............::=„.... -......:::::::::=--..... .. s = ..=.12 .. ...... .• ..cnai:Eiiiii:r.iii"--.................. . •::~.... .Irv: " 'qiiii:E.Iiiii===•••• --- ••• -- .,===,,,,-...1r.E.,.. IMITNii: :: :: ::::......''"'..... 1° • PM.............*“...,•••0••01m. m....mmo• •••11 OM MI MO • .. fiHip:1.:',1:::: 34.'"""i311''''="sam “"1""=.7:::=22:: .. I'; 1:3nr;:r:31= .. . ,..,, n........,-,== ....k. .............-r. il... = = ONE•RI'.110141 PIP.H.•II; 'JIM,A.........11.11111:: I 20 •.....""INNIUM.....'""......1111....311:11:12ZZ. ORLI (SIAM.....“IIIIIIII........lif.......t111111==1•1 win' lumneligivinitimmosi .....1111111111111MINIMIN 111111111:.......Isiossouvesisessi..........1111111111•111MEIMO. .....inii!Plilit._ !PP!.11111/51111110. We. •I_EIR:REIMP:pfpq!poilierpet!• ..._••Pll.......I MIIII.I. . III:::::.:11"*""'"....:1133:=M=C,ZZ:2:::::21:::1 IIIFInAll:::::::-.1:'..i..,............:11::::' MIMI 1111=M1/11111E. 11111111111111111.....I 11111111111411•1111111111111111M•1111 II !d Ill lill......./PM:. Pm' •• 1 I • ••,••.......111111 MI IIIII ........11.1111111 111111111111111.....I 1111111111111111•11111•12•Imsevic.,r.ski,,l ,...e...suiseituu.....isissii• .......1111111111181111111111111111.....11110118111111MME1111111110881111118. 111/111111111111119 a •Nale 111111111111111111118m. ...,Ard....a..naiii.,iiiitiasatasumpliamili• • • lulls.......maiumitinitwaanallaiminiiimmostel:1::11:55,1111 PIP 1:4:le...minis moue issi slisissinussmemar•la..ar••••Arlai.e limoi•Ausiiimiussoles.......1 11111 11,11 1111111111111111111111111111111111111111111111121111111111111111:11111:::::111111111111111111111111111110:131111111111111111PrlailL)iP: rlillrollii5j11111111111111111111111111111111111111111111111: 11111111111111111111111111111111111111111111111111111MINMEN1111111111111111111111111111111. 11111111111111111111111IIIIIIIiiiiiiiiiillifilffillilllowesissoullililiiilmitimu-pv.ailuiniminirdimigot!;r51.:%eiiilige.:iiiiiiiiiiiiitai iiilmiummiiiiiiii . . ill"' In. 5044 Ind 0 11111111/111111IIIIIIIIIIIIII11111111111111M11111111.1111111111111.111111111111111111111..112111111111111111 ....11511.1111 -,O . II_ glag11111111111111111M011111(1111111111111111111 ... ,. P . • . .. . ......,...,,,.. „,..-,...,,il, ..,..,:_........._.., .• . .... ... . •' I• --.......• ••••••-•;••••- 18•..1i!.• • .. • •V) ........rAlightil0 Mil;:iPTIE .E7a-E-:.7':-::::: .. _..4.ii:.::-..;....-::::'::;:::': F e-i,..,.E.2..i !itz''"fr"=".!!!!!!!e..:...!:.7......:...... :::;:t: .••.....a: I • 8 _ --.....:1.........sm......=sta. .......... :7. :145.2.--3::ral...i!..........:.............. . 1-riSiiTir.417 .F.....i.77 :27:::::2.::.7;;-4.-":11:••77.- a-li.... ',:,•;'•.;:-,;,•••••• :., :::: !iftl.liF."21Ell'i''. :::,:,.. ...:ritifiiini r37.......1••••:::..eralCh".:7:==.;=:-.. ..".'217=6P-''''''-•••••;Rlie.i".::ffit!: e"•‘"_,.!!dr' ..:-...i:EE'Er1• ""•'2'"3'"":•••'1 ..... .........". .' • $ •,,.. 1 .,• • liii: EF,:.1.ii:.::............................Pr.zi.Fie,f,iia:;"'"--•::T«;:ii:OBEOF-:--e.7.1EEF-77.--- ..,....1 : .,. . rr.;.s..... .....-......4101Ct":1.'..- -:. ,----...,..CM.---..,,,,,,Lliiii:,:m.rx.--naw4:::1;g:::.T.- v2.1:. 1 , . ,•,......__:;+...•••;,..-...,-.._...,==•.., .... .. ......altr.t.1.,•22.4....,..., =••.:7.7.===== C- .....::.. ••••I ''>. I• -• . '2"::ii:1•3......t.i.41.......LT-r-:--.!i.lf i 1--.7...-...-.•-.......,--:cliFizezzztar^..4::4!-:::4111.371:3F:dr,..,f:aqiii,-tF.=------ :":i .1sEl. ! .t,7•'. "--AigliiPliffilWailiP•T;iii1TriliffaL.-:-=:-.ETT. -.:;!tlrialiFaiiiiiiiiii2:41:201.1:7;rdAr 1;iF...aaga==fri Sat.- 4 7--......-. 1-"'n---r-------arr.-:•- . '''''====-7''.7. 1 .' iiiiiiiiaii.--i•-••:....terr-i,our..-..... 7.= - ;........................:::::..... •.4 , - • -'-'-''- 7-".. _41:ter•`.-.- 'or-...1:E== E=e32 7.-:: sz=" ....::........ii...............H?...... - - -, (...) ....... _ -1... i-.7•••• -4......... .......z..- =....--- ........... ....::::r . ........:: :-10'.-.....:=-....=-- -:. 2: - - --‘::; ---1?-::...11:::.......1:;=•...i. r.:01....,:mr.. .-1,- - - .nro........:-.4!-....:10.::::?..d“...=F-==== 3''''': ''. ....mon....... ---•""==::::"'!"'..;.irr-...' ........."' 1::::="- 0 2,...---... r.:7-- roc ..' ,...J 1 .....: :,... ,.,,, Jel...- •...„...ho 111..,---Ez...._.t.--- „„ar., .. „:...g=2:m.....;:g..,:n...,...411!„1...r.,,..0:!!!.:11:..la ""===..- ....POW Aral .k.W1._••••••:....11.1p•••0•1/•-.••=•••••••-••••.......•...;,•MN••.41/11.1.11 me.•R•iille0.16111.4.1 M1410 •8 3:.:g... ..r..... 1:-.....4 1. ii! :I: 1 1:1=11...... s............ ,•AIN,f•••••:..if NI ri•Pt..•••==Erill••11.-_ M•AlirAP,•.1•TIP;•,•101...Nts•••11.1......11•11:=”MMOINIC.. . :11••1.....PIMPS....:::••••••......TN:, ,.....'0,4.. 1."..!!!::•141".";1.1;•••_,,-Pair 111767Pt!":117.•: - ••••r".111;04,..1:•1.11/i1N;;;.11:" IMIT•r111 ...h•Or• rl111/1111Thri .PI•11111141P ' i-C.-ipir ...••:.•••11•111,1111%....1.11111M1W-P.............6•• . - ..- .11.,,,,•.01.inimpu,•, 1111l111.1 MUD.. . 2 •-•1111111..11111111..".:.• ••• ...I 1110110.•:6•11./OB..-.w..ser,s.•. . Hussey .!temiluimmummouggslimil ....mnio, ..1,• --. lum,-.....r.l........•!;•..r..1.1rs.-sonimir-1..ssini. ,.-,.'.19 1111111111,...firi 91119111111 •U .111111111111111111. II 111111111111111 . r • .. , ONNI!IiiI.!:•:1 .0 11:..-:•••...1111•.;;,filil 41E10.1:-. IllraeT.: OP'P.II 1111111.....1:(1111 II 11111 ill$11,11111111111H1 M111111111111! „.! '..•• I 2.....,-..wam....:;...noi..:;,-.,,,,,,.......i............,-......2,..,-..i.,....1.2.22., iiimmim22.22........1.2plogiunif niesimoimputiome.......1111118111111 . ail,•'-'T; FI0H11III•,!::411111111ti101R111.....-..1111111111111111,181•5:1idElliallVdra'aWee11111811:1111111111 I i1111111111M•1111=115wall55111•2111111111111111111101111 1111181111111 ...., . • 1111, ii'dfigi'l..:1.41811111•••••/•1118iii8111811" 81111....18.4511:eif.,•-illiiiiiliir"111111111111111111111111111n18811WEimpouomesesmisipmainimuilimmamoomil, migie iioni?1,;•!.....i.onsinglittita_.:1.01 niciumumpuor,or,,,,Aulimpaihi,a,111111. 111V111,Hi I Jr. IN ft ..rPSTIIIIIN.4P!I"TM1111011111111Y1111111111111111t111. •.. ' iriliPPNiiiP4111101111111P::iii11111111111111 ieSipEz15a .KvaiL ,t1:1a4111r1P21411.:11 1114214J/1i1L:i11111a111:fi11l1L11A1111111111111111111111111111111111111111111111111111111111111111111 -''.-' - isigiiiiiImpiemaiiiiiiiimmrlldringiih.rquinilliiiiimillifilliryllnill:r11111111RMIRIPIPP0111111111111111111111111111111111111111111111111 . iiii!niildiiiIiiirofilliiiiiiiiiIM4iii 111i0SPV4.11NillllMikJILIIIIIMllill13 -'.•. ,., i ,-, • I 2... - ----.,,,..,ii'gFa=',"-."--'-•:.--z-- v-..,..... .-,..Eif:'.4:Hz:. ..!::::::;i;;Hi!i- -t-:..-z.;--..-F...i 1 .1.:127.2::: ., ..--.:----•••-• ---- -.,..:::• !..:-.- ----=_ ____-_it•:! r• • -- ::: -:.21.i lit ,-,•_-=._ =-.=•....zic ..i. -i;i--:.-pr..- :•:,.........:::a====...,,==i4; . ---- , re. .--.....===-_=g-3.1.,.1 0.. E.:.. ----.-:.......,,...:.:::::.............,....:::::,.._=====........;:.......,--.:.;: .., ,..._.,....-. • : '7- -3i-----p-;E ----.......... .-. . a- nr, -- e • 0,8 ' OP• ....„••••::::1:=====m= -.. t•::•[ .... , ..•............ LA .1 •••& -='"='''''N'' ."...1%-1..?..e.r.a.1 s :::::c:F.HEF4ii" .€==-=ESME.f.11-11-il,aim:a:v&.1..- II:: Eir-il Ei.".---"•••••1 ..u:::s::::31!?..iiiiii:i!i'x....'..7.--7-'4?-=,-7,-;...7... .r. . ••••••E=: uamil:e.1====.F.=,===za :::::: ::18. .1 • °'7 ;ig..- ';'17:1'"2:iiii«ila3i91.'iEB-7.1*,;-Ii'iii:.Pi •L.i....;r::=4::1 r",..:P•iii..V-Iiiiii Ez--= - . 3-r""ii:::- . ....... ....................... 0.7 _ ........... nu.. il 1 1:i.. -2i::::::=::ii:!::1:,..-.- 2:T...1 zi:sillIT....4.iiiii:e11=17.1::Est1111 =ESP.M=SEsE:r.- -.• ---.....-: I 0-* :I::: ::::=:•::i...."-1::::::::•:::i.r,::::::::::===- ...i." .....1•1404,4/ •••• •• 0.8 VM:.'22 ZIE..j::.:5:::::::::: • --LE.. .. .,,,== - .: rm.,........-,..,:allsr...:eagle OW====,-04..:::. :c ..... : ... .. ................., 04. ••1:i.•.........1110.0 111.19.0111.1110.111111411MIMIIMMW . •....*asap."pm rvmp••••••cm ••••• :120.: : ....1111... n.1 li 11 •-1 ...e.•::::!: : fi..9.1,1....::•, , .4:.--, 1 .1:1_1:4-i..... -II,.,,,::11.....,,,,,-.---: •-nq -=- =-= =. ..- •"*"...11:7-L:!::. .11::: ::"..:7":• " -7:' - GT. •112,1•,..,.............. . ....1!!!". iik 0 . ... ' . ......... E!...... . ..E... i..F.M::.:,,..1 ;Ilfil..4.2141,ii ....ii====.....= . ...............................................................•• 0.4 . 0.4 1$ I 2 3 4 5 $ 5 io20 25 30 40 50 00 80 100 • 150 200 300 400 KO GOO 000 1000 DISCHARGE- C.F S. . . I 5 1 3:2,e / (TOTAL FLOW IN STREET) PCYrif 7 031 RIVERSIDE COUNTY FLOOD CONTROL •-, )3/4- I 0'7 .7 (,3,1- .12 A PI 0 WATER CONSERVATION DISTRICT L-- 2 5.4 ' VELOCITY DISCHARGE CURVES I COUNTY STANDARD No. i 1 I - RCFC Si W C D 52' ROADWAY 6"a 8"CURBS , ---- ...C.o.," .......m. III HYDROLOGY MANUAL !,:,... comii•iiiiiiime.1 -u 4..... Cm*C04.,It• t I 0Ar•0•••• Om ••• 7°./e C::lie:'&•••5°.7,...‹ • Dl A l'C' r-,..7 '01 4,5•9 A/171)t /O .. . . . I W . 50'R/W 32. .• I " 16 16 1 • 1/4wer fi, 2 N 2 eYo Vete,. I:== • TYPICAL SECTION I 2 3 4 5 4 I 10 15 20 25 30 40 50 40 40 ISO 150 !CO 300 400 SOO 400 100 1000 • , •21 --- - -- --.. 2.... 1° "'' ''"'E'ill... Iiiiiraiiin.13...'.." -."HE-.7.:17.....-7.--:E=-•-=';Erza i:::::---::-:::::::::::: ..:---------.-.19,4:•i-e•-7•2;•-4=E-°.F.3.E..6-. F.1.11::::::a.. 2ili•-.71:----:P.:::::.:-..:.: ..4.E2 ::: ...r,11 1:.14 •--e••1-43'....1-==-E ---•-- c 711 -.. -gt-' !=:1-3•:'••• 112177.-.E,-v•---i zrizs:::::......1.::::::1!?.....z ---"mt.•::::: • • e.".. ---•-••••::1:i••••=E=.7:e.E.===2 ::- iiieiV17iiit=g3:2•U'r":1 iN Mlifint;.;.:7n6:ILII.R.• ••••••••"1-1zr.::::tdiii rt•E==_ ;1::1:::am.,..„... --;::--------.::::=:- , 4:::•.1.1.7:: ------------:;;,,...4411'; 1.41....n4:11.1014:_mmas7.;112E3-2i22:- --:- dirll:In j1 :s."1::...1,1i:::::li 3° ' I :s ...us.-"'" ....mil awl,...71.•••••.,m./Em/•••••••••••••••••••••• f-------Niglio s, '••itIll• .m.. r.a.mm:::...2:::::::llij.ild:1:!:,:tt......------4 3•4:= • -------114•••••••••••-----•ntoraraisoeun Oil 1•11111WWWW •W•i•i• i.....Timm i•••••••••••.....III.flItl•••WW :711:1 itil.......III 111111113:::21: == :3 1 .........;..,......... Ilic.1.1=E72.1=: ........ .. 111._..411::r""' .....41:11 .....•••••••••••••••1.....••• •••••••••1 IMMO'..... ==1•1•1111•••• •ppm slilli.....Will 1•11.1111 Ill HI 1.1111/011 . II i.111111/1.111111'MI 11111•111111/111111111111WINNE11=M=MMMIE/MOO ....... ............ lam/II 3 iiiiims.:.".th.,,,,r.i.,.....,irmuiii...., II ronuoillettinitluilltliti=====nommE • 11111•il MAIM I./i• 111••.ii11111111,O. •1 111111 WWII..... .,.. I to I. gogs:.1 III .rifinic......nutiporinizz..... ....1,„in..,..4......„,„.,„,ar.,----,..wirmowwn,.v.m.:;.•40,4.......,'ICU(110111141101111..... ••••• lilt 1111•11 til•Ilusi timkip•BwrrsiNIA.P... de ....illi ellilliii•mu I OH iiill iiiiiinnumi 1 . ISIS Hill..........1111111in..........I MO 111111MHIMIIIIIMINII0111. if.....11111111111 111111•11 I 111I1111111111111 limminillEn•14 ILIre :orew.oimmuttiou.i aimmimitits. ......immuniu 1111.1114 1111MINIMIWIIIII 01 1..b 11'182.'4 122112.11 i-ousuivotem000mmunimise 1..../.0. ...... ...•,......,„„„,,„„„„,......,,,,,, . • soulisissinthemiriminnisandumummialismierame ..........nimmoniunikauoiolliflieriono vo ir.,.met....iii,..ittliiiiiiiiiiiipuliteei 11 ill 11111 1111,11111 megiesommilimmitmagistiominimiviiinimprAmponisitemieimutimumwmunewilmoup.;n:siewo,_;:am.v.atiiiiiiiplimosinmetionieuimimilif, 3,. 111111111111111111111M.1111111111HIIIIMIIIIIMIEKEEMPIIIIIIIIIIIIIH11411111/109111441111111 IIIIIINI...*Aurdied .....;puirallo II 1111111111111111M1111 I 111111111111111111111 U111111111111111111111111111111111 111111111111111$1111111•111111111111111111111111111111111111111111111 rlir11111 NV,IWW,•,11.11.!/..,de!,:isr. 11111,111/1111111111111111111 111111111111111M 111111111i 111111111111111U11111111 11111111111111111111ENNallualstuellimmipm.im% lyn rionlifkAn...0.00. voi! Iiiniiiipuniiiiiu mini Hinny •' 111111111111111111111111111110111111M1111111111111111Mmill11111111111111111111111111Hill 411!..Ile.11117.4i1111:.10 ,:di -dellullill 11111111i11111m1111111 11111111 11111111111 ,,, ......,..:„,1 ;,,,t,:iiii,..ill,m_as . I .4:2.7.,,,...si, ii_, 1112.1„..,?.,.,....:::4-r....•........--,-ggF,45.9i.._3.2 .1.,,....1.....imillic.4:i:ttiati riligiliutifini.1:,.. ,...• •, • .t .gipizi,...,:.---..1.."...2.45_Ai.lii. .a.=..M=acC2LE..i.;;;.,,...,,I.,,,,,i2,1- :.*,..v...r..k.L.ip:::11E:0-•....4.1::::...".±.. .:6,...i.7-:!...-iikiiii.i...iii.-iiii.lni:itiii,„, i i .tukdiq........,..... • - • 6 -- .............•*--:--- -:: i::::ii:::E.......===.7.-Iii--.=,•-7...: t :asa:nii:... . :::::-- *W••••:4•lir,. '''''' ..... '...''• 3' ..li:......•.•••••••••'''C . •••'• . ••••••::::::::' • 1 • • • -- -........ ..- ..... - - --=r.-a-z--... ; - ..-si .1,-..irr'exl-::.6--.:/-1.1.:.,-.14.-. &E-..S.Ftger...SL•filizElliii!iii:r ....;Hifi kiihir:1:::::::i. .• I . i-7 ..•••doli:31;:1:2222241:=:::"."•"2-'3"_'-::.2-Ex===.-z--.t....fi--- .-...-- ...- - -----4-....1. ......n.„.„itz......uea„:,/,..„=...... , 1 :..........•..s.,7, -gr,..•,1:.:=.= •§--.7..=2.ii .....F.rm • • .. ••• ...."••:.........msy. ...:...awatt-EF..=:-.- =?.7.774--ii.Erzz-,r-'":"--'1"-••";•--.".ii:e...rilF:ailif7/....int-*---4.:12...EE-...--- --L.A....az:A- 3 • A • • • 4 • .. .i ••%;l1: -•••••••::::::1::•••••ro•••••-••Z-••••••=CM....1.,.Z.:1.-r.••••...r.::::11i4•47..tr.•Ar......74r.,===i3platili.......... .'ir nif p• 7 • r....k:. • • ". .."-......iri:rwi;11.2PPL...:..4 .ii•ir.E.P.M.-- 11-22lri :7•742222•••'...:••-aritlr:,,,••p•'".r."22P4iiir•V::::/.IIICT.:gg==1:111121a1741101•••118rillURint:Z:41::2;:•••••iiiirli== -........:•••I•••••••-.!,••••••••rw••••• -••••••••••-•••ma•...wii. ...a.m •••mmmi••••••• • • •......••• •••••,m, •••••••••••••••••• 1••••••••••••••••••••••••• . $0,, Eiii5i!!!!'ji;110iiiiiiiiiiiIiiel--1=:717.Eff-=. 241F;g1Pgu-e-lifIi :it:illividtiEZ.z.---Ergigiliia-glifillifil isti:-:.:;!apliF.10.ifpiptin:-:. .. .'..., • • •- • .- := - --...,.,.•....•:,-.. :::!?..-..,.........,e1,.:1-,.:-..-.Ae.r._=.....7,-...,====... ;_.tv..A!!!..,;41:9•3_....z.r._th.. . ,, --_.,a-=_=..z1,„.--,..,si„-i...-:. A:L.:-.: i-'.:.-:- ' • •• II ....." alliiIhT;:• ...ariffzi... .,-4:;..4-..- --'--=.-=Pi=-.•Z --.T.Ill••::::?!:.,...e.r..V.'7.•:Alf:-cilt.i.ir.1..F.a.Emeg-r.-.T.wa...elizza...--i:Fs ini..,........141:iiiiiiikg1h•-• 1-•-4. ..1 -----:=---1-- --:-- --- 4r-i:.4,- E-=iii-•== i iii -.i-': -',ii- .iP-atistrt.1.4. -_=5.7.. .E*E.i:EiEEE0; F"' eolitolitt-tag-...:11-531g,.f.,..„ffj;M ti,..,4E:ri•-:Iii :-.• , '•; M .......12. ..... a: . . - .e-m- ---iiiii; :'...:......................................................403--V.--re• -sir-eatnom ri====-E-soalm:r::::::::g;Iiiti=1--r".---:::r::::=: • • . '12••- I., ril•••14.•••••• ...no .4,www.m..•••••=.1,0.ms•a2.....2F1 ssi ..0 • ri Ire..== = C''...• ...... 2••.•3•4 ••• . ....11.• .1•••apeo...,.. i 4*,4. 41 if • "' 'd......./..-------.4- ---2.--- -----a.f.• P.....re. %un-,g=I::::1:J. ...-_E....m=ezzigp-ieva.....i.u..tnE: .4.111..r.r........ . ‘ 3 ...- .1"i'l 1:"•:: "17: 21.-1. .' ."':•"="'" :" :14.4“•`•"alit::"1-..44*''""'ll""'F ""'"•- .=3 7.7.....i=1::n""..."••• 1 3''1 ...!!!,I,3,,,,..i::::::•.::.:,:g..:13.,. .r.Z.arr..r. ..:10.;ipt•.•ie.-70;244•...ir:ii:::17.1:::.:::::.....===filISE:=I::::....11.1..J1..............n..eirrk . -1 ', '.. .- --'•••"•'g::::::::"..::::WIP.•-It•'`'.:',....iinrenl:r.lig:r.:;-7:14:6• "•'''' ' "." ••••......."'""" "' •• :•• • •••••••".t...4...• .sw. ...iv -.HO..., •••..naelommuimilmm •••••am onninSII ill naafi Illig.; , I• ..- . fiiii# :6-7.-4.7--- iHrlirraiiiii::................ ir,... .......„...... ..•.......int.ent...• ..••••4 •ii oi,••....I -Am,willEP",011,.F5..I. imietowisi li niii.i==eipixrai ,.. ..Minnie!!I.eo.••;..1011 Atillee• alliPt.•1 I III•7•111.1,e.,01..I.0,0to ,altiIIIIINVIIIIIIIII 111141 /1111 •1== oppi II KI•41111/11 . i.....NIA ••- .. • .......••iii1111111.01111 1••'•:••••111iiilli al*. ;;•,111.7..air..tI ....1111.•' 10111HIN1......II\MORIN IIIII =MI= •IBM•IM•111.611111111111111.111:1311111.11,11.11. :e.......110110 , 2 111.• ..."7;•......IP" !II • 1,1_, ,•••••;,••••1,•;alp•••••111.1. .0.1211.7..gra11111111111ritiiitatemilimmimmimmiMMNIMMONIMONVW imiiiiitmoqop ; .1811.•-•/1111•11111 1.!,...,•......it . ggin...••••10-- r Am.,0.:.iiir.n01111011 rill 111111pumplosir, imp....... ...........rx........... ......,, •• .- s ........1111 IIIIMil"t.*•11••••••....dio,„.„..0,, st,,,,,,,,, 0141141 III muli ..,,1-..trritirElIV.PITIllinT JIIIrT .It Sr"a111711. tomitillisom......inmemilio, , . I.... ,duil.•,:mininpa•::•IF:4M1211.'...iipM,_;flaill...iii....•1111111111111111111111141111114141111. "I IN.:1211:Ar ••2111,' L,Z1142 11114-..21-4/21•aoimmornin 111411•1111• 1.,...1.1 114111r i;iini lill'1:11r11:11!1" -11'11111"--4.111:r4e °'11-111:1111 110;41:1111111111111111131:911gibirillpinfrillaillp iiiiine.U;11;::1 111.111111111110111111:1/3;1111:1141111111 . ‘4 •.1 I . t.411111 ..ii....iiinews 4111.I/olibb. I 111.!oildilir.3110111111111FAUCIP IlliOntrinrr.e.iimeany imi. .iiinfli II ill • il Piiiiirria go... I' - iii.ul iluriummumicitintimpluniaili -,• • O ::ii iii V1111111111'eleir.iliblIIIP.illiel, elliNili nrlupi rim milisill n I al ail il r mwomilimplumminomol ‘4. 4 V I oallli1111 111:t1: Muriilla N.111111111%.11111MICA111111111111111ii:igii i..,T:11.!..111.111:"111: 11111iMINIIIIIIII 111111r111 II 111111111111111111M 111111111111111'111'.:1#1.111-• - 111!..nesfillIlii 11111:111111111;111!:;110:g1111111111•1111111111111111111111111111111111111111111111011111 1111 111111111111111 ill 111111111111111111111111IIIIiiimmuumnihr.„- 1.,!, . -•. - :: • ' f,a: i4Hilieli 1.4';iN''"" - -'-..: •-.--Z-E.--*.-3r7=---'T- --.-24. k.i .. ..-__ EI .T..f.is'l F... .-. ...:, 0-3 •-" '-..,11:15'•::- ' " .Z:Ili• '': *--="74q;,•••==•i -1174.2.41:.:•-4,-. - '-a• '. . ..--= =•".iffil .. Z:..s.r.--- . ' ' - s. • .12.b441, ' :.-z-a2r. -"I! -M.F.-11 =.7a,ILAN:8"-iiE:ii-:iliNflqi:iiiar--1A6iig-_g-gttg.===i3ife...fitiliii!'..7:!:-_,-.. _ r.-:.. .. •.„.- t. 0-111 -;"---::ii:::ii iii:-''''..i::::::',.iiiiiii:!i.:..:7"-='" -4--M 2: i=SF.4 5=4:4 1::Fi!c 1.1 uui 062 E EE=E2_,--r. .i E Ii.4 itiil r,iii,if,: .1 .i.lh• •-'. n•-__. - s t --P.:nib:W.14i II --f2.11-iiiii:Eilit.-.LiF-4.-Eilif....:....fel:NLEI.L.E.-.= - -- ---2 -- ..s..-.-.1.:1-......: . .........,. a 0.7 s-...,se---. , -----”; -: ,.... r=---7.•••••7-Ez• a.,-.2--:-:-----;----- - :=--.-3--xx sx---=:-;a::--N.....a.---tz is: 1........,: _ .r ,-.,.._--:5.:iiqs...,:e...0 t,Emaieiii_....ra:. a...ts..n.2w....31-..2d.......sisto,mag..„4„,;z2...1:„...=„,...“•,•••••••••••••••o .u,...:.. Dl -1411-11711•1=1*•:•..1:: em,.....ag....:::"4"• "..*. '71.N•InatZIMPIMMIIMene•-11 .1. WO ..: .1 ....14::-'-'=:...11= . ...... ...r. aussc:.;:: ::..tr.::u-"1m:::9 !1.:............ 0, , n a 1.13`153.~.1i'll Ii.ilifigiiiiii9!T:1116 =55111514: .....110:2:1E4141".11.ii9r111:11111162F3:112p911111J6:11;71;44N:tr.liti:jittiliinn:11:1ra. .."."..".; -- i i''11;iiigiii ii •PliEs! iiiEt:•-milliii=mE-E-mg:-E;17=1111 ""..1!..::;;4lL12111HPIMilliiiIT,Fic_ffikgg2iligiiPiiiilqnitl!!!!! -:i:f, ! 1!;, - iiiii giiiiii...;.,Flaiiiiii" .iEi : --€.=..-7-:z :-...---:: ;-;`,!---:--ii".,111111111VmaffolziEEL-Itilli-2.-:EH .., - II-, ...1:I: ' f 0.40.4 • ' 2 3 4 5 I I 10 IS 20 25 30 40 50 10 50 100 150 200 700 400 900 100 wet IOOO I (2= 3.C; e 6 DISCHARGE -C.F S. • ; 3..'77Q (TOTAL FLOW IN STREET) I 0 N 7 t 3ci RIVERSIDE COUNTY FLOOD CONTROL = ( L3-r:I A N 0 •i WATER CONSERVATION DISTRICT II't VELOCITY DISCHARGE CURVES COUNTY STANDARD No. 106 I RCFC & WCD 32' ROADWAY 6"a 8"CURBS .. . an......iii. „co...stigi....,.. I 1 ,I. A••••••••• .47 ir.i.;*8.••ori as. .........fe- . nYDROLOGY _MANUAL ;,4,....• i 4..0 o••••• en il• I . • • . , •, I : PI ATF n-77 0 ,2& I Al J 0 i ci ._ 1 ‘ . • I . , 50'R/W 32i II . . • 1/4" "------ell161 16' aionlmomil4:491. 2 cY0 eio.015 Vil'per.it. 1===r---- • .. . • I • I IP• TYPICAL SECTION it • . 2 3 4 5 S S 10 15 MO £330 40 3050 00 100 110 200 SOO 400 900 400 5001000 • 40 .... • 40 '' '"'"•======-•• . I. ...... --7.i.' .,..E.-47.==:E=Ess.t.:=2:2fir.:17,:ipEiniimAillEFF-1.-1:::11.:32::::::. • ""'' ...'''''' "'n."'::::::1:::1.. ....I .'. ...".' ......r..:12ii:e.U:tiiiii::11:::::::=!....t:=BEF.- r-:7 -3::::::iva ..i::: ....!Eirliii•vti &.. :22:_lf:..'4.1.'"1:1:,....I1.=•.....7i..11,9„..9.1„.!:.1.,flil.h--1...iiiii-C'.5.132-• ...iibilisiniiiiiiiiiNi:7"....lingt4. .1E-31 lEiTiiiiiiiEim-•:',.1:3----;n::::::::81.-- 1 ........3:1;:rx. .:...,..:3:-, Sm ..tr 4 ,....... I 30 .. .. ... '".• .• ....or ........ .1! ' ."'==...........v. i:iSi.-1::::E310iNi 1::::-=r;:i -01.4:,a=== ..F.,.. :---.: 5.....i•-m-i-mipiipsr-77.sin:21:::::nii":1h.:ix,..,.... = 1.........-- .8 O •I. • .....ii::::::«Amnar.:-'31,11-1:1;11.1..1: =cc.-.---'---:::::;:::,..u... :::-1.zwn==-=:zzs-.. ....!1;1.imivr.-:11., 1 . •-•-i.......--r--..... It,Inna:EmEmz-.....is Ili ::::::1 hir...,irishiiii::r-1:4::::::1...-..;c:1 .....11111.1111.116/1111•1.....lonam.s.p.imploopmanisit num .....pinn.qmit 1.1111111•1111 NUMMI 10113111 .0.434 apse Bp ...5,At,...Np.,.....• 1 ""uu'u""11:igralislillinitsiv,===::::-....:::"""""IIIIIIIII:11:111 .11111:1:11 .. =1111111:111t-.41:fnIf".:i....::::13:::::...I,....... 1 20 i:p_l___ i 11 1111111.111 11111111111114111111111.111.1 NB 711111811,11.11116111 Lliiimmeismimmipmail!..,F;,..r....-1....“..ulmmeissei.......Holm,. -- mii smile.....tiontititmit utunimputimmismilmissiarip......pilissummitts iillii101110111/11111111111 nomimple wmpas...)...de ...le! .0utontimie lip 101111111moome !lei lisemstionim. morimineessamosimm ileimuTini mum MI1111111 11111M1hIniklr CP, ....iplPAIII40111111141.1 III II I I 1 I 11111111MM e•iseiiiiiiiiiiiliiiinineliiii.....111111.11111 1111141111911.1111111,111.1 II.li i''111'.'s Milli •I-IIIIIIIIIS III 111111111111111114M23 ,;..._,_4 • P.41111#-•••iiiiiiiii 11111111111111 11111111/1111111111W I '. • ' 1111111 I 1111111111111111111111111M111010111111111.1111111•114WA1001.64 1111/01111 sh.111.1111911/111111.11:1111111111110490 1/11 ,:ire.".4.:.141r.i 11H11111111111111111111111 11101111111011111. ! NIIIIIIIIIIIIIIIIIIIIIIMIlilliiiiiiiiilillitUirlompUlligiilliltaSH111111111111111111111011Htl 1111111111111401:•1,All_por.iirv:a11110;;Ainiiiiiippiiiiiiiimut eminumuthisit 111111111111111111111411111111111111H111111111111MINIKIIIIIMIN11111111 11111110111111111111p111111111111111111111111,1.).4•11,74e:-Arriirlr401. iliiimiuil Millie H1111111111111111111110 ill esiliiiinimuilimmulimummilonnommatinailiiilliiiiiiiiiiiiIIIIIIIIIIMIU11111-11PIIIIIiitu,dwiy.:dr,Veafticia iiiuitliiiNNINNuisiiitiiiiiIIIIIIINMI • 1111111111111111111111111;IIII11111111111111111111I11111111111811511111111111111111111111111N1111priT1111N14011I,alm-e4 _lieFi/111 11101111111110iII13111111IIIIIplimm . . • 1111111M111111111111111011111111111111111111H11111111 111111111111111111111111111111r /4116.40.iir:oll:;diNri. 010:APmartil 1111 111 1111111111111111111111111111111111111N1 .- •• •." 27 - - • ... si.; pt,",w-i..:1.:,..--,•1......:::_..----.S.S.,=L-.4...1.."-- 1 .....--1.11:10•iti.-•••_:- ...,• ....•-•.•-•..:-r-----...- -..F.4 21. ,...1,1H1111-'t::i _:.‘::. ..;.: .i.: .04:°' e •-:i.t.ati!.tii====,1== .. . .1:.•'..7-,:i1=0::•OP:1:,1,5r.i .•-.„,e•_•:-_:- ..1.,,,,.- 0 •; . . ..- I' • 1 IF -1"di!ii!ii! :::::::?H !itt •-• :.,':f....j=37::-E:::E=.7.::-.:.:fiE!if'::1r1"4:1.5!7,e'i: ?7,4,.. .,:s-...Vzffidrt...-- -T,--!:-.E4Ii fl!:::. -: -. ,.........: -:i• :• • .• •t ...• . . . 111 2 :1'1!'•••'''''•-••••..--. .11:1*--" -=1""••:1"=-SE-7.7.• •'•••••••1:1:•'Zi•': ::::.::.7::::1.41.";:,..',..-nr..-= 'r::--1...==-7-- - s ............. -...!:....,tr..:::.::.3,,:..g.:.:mr.......:...i...i..i.L;,. : 41 • ;: LT! E!!:::.....::::::::::nqiiiir.:-----4iiEillEE=E47.____..:!,:_i;.; ..... ...-•-..-.-....::r2t-.•asairdea= znitiii.f.is thii?....... . -E:Iiith..,.......:. ,,! .• • . 7 .r.,...F=r-;---a-,---. ............... _......,......_ ..... ::::a I- • • , - . • - ......,«..---.1n1:.11....---4..1.-...Erter!:-7"----2-ai.1...."128.'1!"-'rff';':14..1.;...r:"..gear. ...1r-,itrr- gEEEEs-- - 3:.:FP;I:r s.:..............-1.:i4.11.:-:...............:.:•• ' '•- . • ..........•••;14:13:::,11..I...op willijillh:I.,!!!tio..."_:;---sEr,l'a ..,0111•ii."-:•.....FartipillY.Mg.f 7.2==craix ER ignii: .t: ......;11.•r..3::3 ... , •• . I -` •--- •.; .."'. • • "E ...:.................................................... ...:;:vallI,.. :iiiihro....th.7p!..:c....14.=.63.zrzt-'11 Sr"......" nr:....:•, .......:11!!:”.”!.:::: .. • ;••• .. i • ''' - '• - --F•AL-E-i.::.... ":F.41.DI-s' '1.ETyiti!::,-•-141:-...-.4r,zeprg !----- ,-.-.4-. : ilizElEm; : ..--- • ;,.. ,•,-,. • - •=-. 21:0111:-.7•2'... .A.t.r I= ..'V...ii:ie-f.711:::•.:1:hill;q7:EL: 4M:. . •ii.14:11=gg7. -i' " .:. .."-:. . • .:::: :. .. r..:1-'', - ...'.-... •E El.14ilif..SE3E1:7 ..........1:11=::---..:,•,:ralr. .-,ft.11•.=u.-...T.r.m•-..2."--,07.7.;:-:..r.%!:I1,-.:......4::• ir:vaziEhillg.,E.E.f.E=12..f., ii:•- ..... -••••--- :::i I ' ' . --11.03„..-. •:4-.......z.7.. ..7.-,- - --7....t.-i,-•- ..i....,.. ...II lia...4 - . ........... .c............:...... ..•qt.:,...1.!''' ...• '.:-.4.1.:::,..3.1.1'.1:....r.iiEL.::12.....wilitiE.e.-....=.,--.....z..EF•Am22::::-;,a..1114.4/er.:.402.;011!...rpritiilFirgE%-z.L.-7ZZ.., .....g.I.N.1..... ..i',.. . _.. . .7..7.... ...- -........c-::".- _...-...=?... ........ ,... .... , .• .•,.....•_,,,e,c .14:. .„.....: ==...,...=c=== =1" ""-.1:1.. ..."• ...-... ... ......• ..:..... .‘ •"-; 4!iii.T.IMI""!!:;;r4iliii:;'riiiPu":ireeffUEFtht-Eri.-7:::K.:1 %isgv..*:B-'00'frumplf:===E1163.=iiii=glf":f:Eii:;q1 a- A 0.-1..1 ( 1.' ,c:, • a ille.Pirt:iii:"1:4==12:7;.i1:111.S.:Itml:::•1'.!=tri=:-:••:L:''................0Zr.!:td • " -4.:113114.4.!.:!EF.E== erz:r.lic«,:iiki:::1.. .......::.:..._.. 4 ::::::..,..., „-:...;,.... . --,......,„,„,„,,..„, ,. ,,,,„:,::: , . , i..... , •,, .,...,...-....--- •,,,,,....::::::”:"=',C.1Farisiir..9.Z•14;i5...3.40/...is.• Wii,..S.mammEmmi::1:nam•aisi...m. ............::,.ILL.::it' , ..-..... ammeren.......•os .. -....• ......... .... - • ,. IA. iiiiiiiiiiirliiii:NT::4;iiiiiiiiiir•fii-AsiE%rifri:::::,:%:iiiiiiiiii:I.:iiiiiiiiiiiiiiaiiiiiiri•VBEEilivel.'" :Nog 111411.1,timiso/981•1119111•11*.•ONS.11., ' , . e••• ...4. •1.. • ....................•....i.e..,.. ...........,..1.11111111111.1111=1Mimit. in ..el,p et.e .+11111110•11truip.....aim.essilmon, , ,. - ...'"'""iif". -" 'ill"""4"'"--'5"'"'"7..' -":'. -:ia:1:13=:11=111:11:11111EZZCZ.:::::“:::1:1 s:::::::1:::::::, r.....m„,r,.. • • . 1111111108.....•...U..111111.1M I...Oil II If dlY.'"...rdlffil/:.•11/- •, .• son.-:...eleuraniet...:...rn U itspeor..,,:qpir.:-....,..4.......„....,..,,,,,",,,.:.„,,,,,,,,„,„„,11,,,,,,p1 Imm""m".1111" I 119•1110 n ....11"11 A limilig.t. ,,7. ',.• 111111111111 . • - • - ii"..:1!"111:"Iiinnierit.'" :"1"..11- 0---!...---0,..•,,..iirir-mr,gra""rIIIVIt.'"!!ra5P"- 1" isa--,1--Hp;,11,1144.1.......pomp - ..1 1: , -., • • • •!up, ..e.11111 1111111IL ,.,...II 111°....mil •11 -0111100:0.101.041.1.• -el 010.00010.-• I ril a 0_t ISP- "lin T . 344r _;;. -,;I I .. I _ . , I., ..8 I. • "•• Mallir. 0 CV . .. . ....111111,•_ .n16 ..I I.011111 ,gfIVISP...AI ,1 ...631111111111111111113116111w11311 .‘1Arlar31115iiNSA.111011.1..-_19_kii. ILISL.11,-.116=1411:11941111.1.11111,114::111:1 it;...1 ,. • , .. . . .. i • . ' ousiseir,..;:minli....vi•oniiii nti!!Ir.iiiiiim,-Ammordot..._....fimisiiiiiiiiiiiiiiiiiiiiimisuleinum 1 utltIOSIIIHIBISIII11wS /NIP • 191!; 4141111PIr:-.,1•1./11i"....--i'.IHIlirair;idirmager.ir,e,gb,g4impielimirilll iiIIIIiiiiiiiime In 11 111111111111113101111 11111111111111111111111111M11111111111/11111111111111111111, ...424:t..'s IVO' islifilli7.':iiffiltlilliirgil liNv-iiimiraior,e.ailre11111111111494:71;Ind: .II :911 ft' 111111. ;1 ' !Till; L1 - lin my 1H111/11111101111110t)mlultionaP IN:alli:;eisillOttpunNwPfl.sii tiliiiillor..intiradis emiiimmulmiimplimiiiiii Till I m - .'„ opiri.:•iiinimgmas • IIIIIIIIii.1.!1117::1 Tii111-Nit;riF:, m 1 , ii00.3.7:iiiiiiilmonaiirrdillIii,:inliNassineniiiiMuillilitiii IIIIIIIIiI11111111111 1111 MI • ' - .... r.ilip:-..-•,,,_-.-m-- iti.,-,...,..!hdii.,.,•,‘,1114,.==,..=...filn--,..........!....!:::......i..livil.•weil. illnlifl 6 1.111,,,,IIIIIIIINItiliniiii111Mittiiimmthol.v.ir,t. . Ili i11111t111111111111111INI!!!11111111111111N1111.: rr,7- 1111111111111111111111111III%/1111111111111111111'• . ::. •i,•...4.3E,..t----.Mff.g_iiiiiiiHii;h1-4,:t::i:F •!: _ . .•:•,..,-...,-, .4- -Z4 0.9 -.17...-----::-t- ''' .!.; -giiti Iii.1'.E.5.54- F. :',•=2 =_I- .9I:I:i.E:iii::"T--I:.1,...r::::!g-r.FTMEL-44:42ErEEIltili:=:-:;;L''',4iiiiii -,:.7 - '.;';';'.`.".:..*.!' • .'- It:- AEI.................................. iiiiirepur2gge..:....-.:iirEigit E.vairdm:.- :-.43.-.1zi:rivziFciPpilLIM--427..E1,-z-BiEvair..4.-:.ill:reliiiiihiii-•••••ur:u..- '.'"'-. ••=1:-xyl:r---r-F-"=•It• '"'04- 2 -=---21--se--g•-'1:1•••ra - ......1:4:4:.. A O-7 Ealh-Hai:114:1:tiiiiti •P' .A.01 Z••-•77 .919;3411!"E!..r3i9Eirir----Eh': -.ippi„.E--g,"FEET:ili-tqa:st::::::11..;E:Ef"3 g'. .... .-w-V.'.- 3:33ISIE13::::1APit 1=lmar4 liff.aaaiial3E--- 2 in--raranItazglnia'-...:Mt trrx-22E 33 st ::::1.1.33.s.:33:4 1.:iiim...::::::::;""... 0.4 i32:2:* iiiiiiiil.... iii:ipi...1 i iggilir.91_=!=rzar..... ,.:49:1--., r:.:1:m::-.1i-girrarmr.=-r-mrth.--Eitiraisiiiir.:1 1.1.7..: 1•••-iHr..1!pji • ,, •T, 1.•••.•.1-..•11S11.111.......••••.11 11111114111.... . M, 0.0 WNW...OM 001:::.•!..111.n.1..._Millt.41!••••14, --...51 '&045::kr.:.e1t5E ...trzirefinlinin.-1.10!:.1;,;.•• 0.4 Eirififilli Fi"!; iiii Iffiliiiigf-7-==.-=-EgiiiiiiiliJ:_:•:;;10g!igi tilOirRivrAl.:-.is-gg.loatilifir.4.'..-hliflkihEiiiiiittiliiiIilii HEN?...7..7 . • ,a2 :!:a IfENYERiiiiiiiii Willnigiliktig,---- ... iltiiiiiiirii.tffli::::.:::1i-ligifidAta -s-ilzi iliflifiEziniiliTirr:liii7:4:i.::::......-- - 1 0.1 ..................... 0.4 • 2 3 dl 6 II 6 10 le 20 2S so 40 50 50 90 MO 150 SOO SOO 100 000 SOO SOO 0000 .. I DISCHARGE - C.F S. i 5. 1 11 70 (TOTAL FLOW IN STREET) • , IOerM 0,Z ' 36. RIVERSIDE COUNTY FLOOD CONTROL 0= .714, 3)4 _ z 9 AND 11 i,..:* IS. 1 i WATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES COUNTY STANDARD No. 106 I RCFC 81 WCD 32' ROADWAY 6ha 8"CURBS --- eyar-..... HYDROLOGY • .----7....r.•-,,,•.. •a"opi mi.. °woos sr...4r . MANUAL ; ..r. 04.1 Dom.. C. 111* ' I . * • , . . . • • • , • PI ATF 0-77 /I,/ . .• . I : . .' • : ';'.. 'lc.... . A/01)6 i 1 1 ,•.. ,,;,,,, . • '„ ••. . . i ..- .:•.".ii--; • 50'Rif Vi 32' ' /. 1 " ] . . . • ts . 1 r 6' 16' • its por ft 2 cy 2 ° 1i4.00r ft. ' . • .• - .,. ro..; - . •••• ,.'.• ..1 . - . ------L:===L - .901121111.11111112111.1111, r ____r--..-- 11•0.016 •• .A...••',i-' . ...•• , • . '-• • 4. . I TYPICAL SECTION .• 1 - . '''et:'• ''' •, • .'h: :-.. •"f . ...!.• 0".. - . . 4'1..: . • . • .....•-4r.:-:•. 'I , . I ,. 3 4 . 11 6 4 PO 16 223 25 30 40 60 SO SO 100 ISO SOO 300 400 BOO SOO SOO 1000 . as'''. .r. ,.- 40 - "- --•-•- --. . ------==.- .-- zzz rt:::;11-c-aiti3"2-........... ""41........;.....- -- :::::Eisr:i r.1,1...-1:. : -....i.,; - ---- i -------------------------------E:.::: effk,,,,..ts,;,."..?. •: .. ..:-- -:.;,.144»-4:•;;Eil-:::::::-----::====_____:Z=Z:=:9i:....,7,1„...r:,:t:oilili5115:=a=""'" '7.-Z.2.........:.„mit iiiiiiiiiiiFiisszse•-••••••••ppF.:: :..::,...........r.:.:.::: - 4--.):1Ale't... bei :: :::::::::;gc:Fin ..:::::::SE.--.•== .•=1.. ..1-1--r.limmt-m-all-i=-r"7"7'7'-2n...nt.t.„.!..-..........„,...t...1....., i 0 ....•.r.t j .. 11:.: ' 2.1.1`•.'";;;...:!:..2.==.7. :ii:Bril;1"71':no•1 1 •..1,.- . ..... .n.•1111.•MOM II.•••• 0.11.1116 ..=== Zigt= ---:sir-:=;;;;....1.116:111•••1111.......r:13;71 -- m 131:4"..frnIn filvgitti ...m.zz _zcs 1 til••••••••...Ire•••••hr 11••••••••• •9.•••••well,........,.1m.E_____mwom ano••••••-lin 4.,4 44.4.•••••• a I:annum:it MI/.1.11•113,III•IIIMI===. .411111.1..1 ....ii WI/ INIIIINImmimmdm•10.4.08.0•04111 IN41.4611•`.•.••••4011••••••••••••.....nut 44.11111..... 11111 it 11141.11111111,E Z.271:1 : •11.11311 11%blgianczz. ....Fi ....",ttirm" ........ i,a**"A:ei •••1 1-.,"N' ''' MN ...m/ .•114111Nillill 14 II 111/11:11 .mm1111:111111 gp_p_§..;;C;;11.:'_1;.•Aallifi•;i:i34,r_qi:ILT:Himiti......1 • -.•‘,..- ' •- •^4e0').•. .11U111114...........IffIlifriiri.iiii=2:12•1111111 .1:11 111:31111:: IIMIthri 2WImommonolemna [.......14.-...i..1111.1681111.••••••11111111111111 20 *.,..-t•::,‘. 4-'14' - unituitn 1111111t mil.pnimemasi. Niiiiiiiiiii1=2:.. #11.11•114 mil poi11.014iiiii genlilliii uossompaipmeremer.ow....alel•t0,..11111111,1.1111 sem pv1111141141 11111lialligtimassissionmosel I.r.,40..•IVO NW 10111111111111111111 I I ill 1111111111 •4-`I' •,....i . ' . MI I 11111111111111 .II.....I/II I II MU 11111111/1.....I I MI 11111i1 immillE144111,gmer...•....,filiii.•iffiletiumiNi;i i.1:7i:',Li."I.:7. i.. I-. 155iii.....mmumitimiiiiionwimummitommoN00,110 31-ID•'1111/.`i 00411 l'hl'ImirmlasilifiliiriiiiiiitnEla ".",.." "t;;A:-."%inii::iiiiiiIIII:iiiiiiiiii:1111111111111111111111111111:1111i 'hi-•' • ,'''-.7 ill::1:::::riiiiiiilElluninineliiiirailliNgiiitliiilliiiiiiiiiiiiiiMiiiiiiiiiiilliffiliiiiiiiiar.P.;rupor...01F".:11111P;;,ffiiiiiimliiiniiiiiiitH1111111111111natii •141,--.% ?Zi% . ;•.F."I..I 111111 I I 1111111 1111111111111111 I I IIIHJIIIIIIIIIIIMMKEN 1111111111111111 II 11111 111111110111111111 I 11 II III ill.,..,,lip-eaP...:opizio.Autimitumniumitettiousimminii -...,, -.!4.,,.•.;,-4.,, 11111111111111M111111111111111111UM1111111111111111111111011131101111111111111111111111111111111111111111111-111111111i111V.01WP.Zir/ttalinFIMIIII 11111111111111111Iff11111111111111W111111 r.A . rs. .';' `:.'-ililiiIIIIIIIIIIIIIRMIllililliIIIIIIMIIIIIIIIIIIMMUNENIIIiii111111 11 ill 1 111111,111111ilirli.: 11 dell1151111111!11 PIWIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHMI flilliril I 11111 111111111141111111111WWill1HVIIIIMCINNIIIIIIIIIi111111111filIN,;411E;PAI!1.:iie;allt:;algri.:;01PEW:111111Hil 1111111111111111111111111111111111111111111 • • pr... 4 .,•A,, 2. 4,117:1•;t•LT - ,,,.-.4L-...&,..slir.E.L.111.1,..iiii.--,15.,..Tiiiiiiiiiki:„111,...,_-,. . nilt...a.;,...i.-... ..... F.4.21.21,...:;;EEizili.!:....iiii?.T!,._, - -.....,-•: .:11°.' ' •- • -.! i z' .e..7%•.., i- , A EF.:: ii;F:i4.5 .--iii,, E-..EF.'_:';'t.1..,k" .s3::::,-f.,1-17.--fx .17,ittilFs.:0,2•LOP,17,:zipp•-::,,-..47. -.---•ell'kosE.. -?.=.7..f.r.F.Mii,...Mbilu..., / 1 A•t c: •ii -•-- : . .. . iiiiifign: *.i-'11173-Atizit-. ;f7-. ..1!itT.n0E--''`i.O.,..affix:eri:744EP:igL---• 2 itifiiiinimT2iMiiiiiiiiiiiiiii2iiiiiiiii4g.: •-• • I - .. .,,,,I. . '• 7 i, - .._ - --- ... --- '4,;;.--,---:-==...-!:«.- -it--Inr ...----,•=- ........=ia:F.I... ....„..............-me, 7 i '••• : •,' ''..... " • .''.1:•............ llialir.:Ing::".*:•.-•si'.X .Vr'111,.•mai.igkinaV.7"„ig,".;pr.,,200r...;,..xr...r...F.r.•ABEEr.,---,....mr.....-:.::/:.-i:...tr......• . .... I ' 4.:•"-."'''' ' " ' 2 '. '........... = :'':'.41/5---..41=r-j•-•mr• T'EF..-'•-: =F.:ii!!!!•111MMilieliiiii•*:•:::.:.:-H:!•::ieji 5. .. .vi41.4.1. _ ...- . '.."7 :::raila i.:t"..."'--.1"- 7737`.-.Eri -'11:a7•0111.11i.;Z:1ii iP I nr:..01:aux?:al-m.:-'2'--r. N.*:::"Nrhf....13:12 111“"..... 41....., ."..-Is. a - . . .....!.....' lir1 .!54."::.iraigiiiil...E.;=;-ar.4-#61:;;r4.1:229...i:1..;...:;2:1a120.41214.'iiiiPLIP:.1.2EZZ'''''''"::3.:222•E$2:1W4...11:32: --•••"4:11:-•:::. O. . -; ' .•9•'• , ------ . .1 r"...... ' Iligliiiigiii4".iirit:'"2=':7g..7...= ..4:11f=111.7;111:4;iTi- 0...sii Li!Mr---g-'2Eig.:41 3."tri 1.Iiiii.j.•:ni-......::1P iiiiiiii: n: ., . .4..1.' •',4 '....4.:.1.---- .........!:! •..:P . - 4.'.'". r"..1 •••3!Pr..r • •- E.- ==-3- ''':' LP .s.,,, • --- 2 ... L•i-• -4'-, '"......-===.r.:=-3.- t.l.ti-..:.a my.::: -L:m.;--M --4-___-sE z- z .,....z..i .b.E....iii...... .. 11. s:.: s'a- • ,,..'.1".1. 77-=:zz,-E!,--- ---:t! Iii"!!:::;•,:tilE,,,r..•--====r_tr4.!...--stzerr.-.n:-...:r.:,-..r_./4-!...ah: 0-- --2 .'" 6.....••••-•......•••.'"it 2.Hi -.1 4 . 640 A . I -"'g.t ' P.'"!-: ''''.-- .."t.:....'''':i.' ......zikeilii74-4"a_f-.1--:-.•gi P:....4..••,.!iiii iiir.,44.7:;e1;ii-Ltiiiiiitiiff.it---Evitg. -if:g3 itq,--- ........ ...:.... ;11i440::-. ( e ,-„fr4e. ,-.___ ...awi ; .• _,.. .......:. --..::...r.,•:, •:zip...., Fr..:::_aa-r_-_,.....aa?„,,;.-..,3F3.-.........,i,,::::1::::...........F,.r... , •••• --.. •...1;...1::- --742!•• ... -.li HP:i1F.F.:::"7"-F7S,==2.:ELIF:01:::.1f7.4i:atir". ...;ir ....'1Rr431•"11::.71.::li 6.7..===.2E-..... :11.....-AmiE mt..'..... 1;umug.x,i $•'' i .. ; 5 , - ::iiiii;:ilki":601":19P1.7.1E3--::" 7.14;P-4.17H'''1"i::!!:;! :kc4 .::,.-3:411.0,..i:44:1:1.3111:1"41::liliFir.:11...411...=ffigfiriiiiiiii:1ii3i' "`1::!fhil:V314. .....,•........• ..•.• ---.......• .....•........=...•.48,..411•••.o1110,/4 4., IIIMI4mm.41•mmout Emon II." 4 44.41:1 l :i:::,....• "--r....-17. . ...t.x...;-,1:,::,..o.... ,..401:11:1:rag..rnliNtr,Nitmr.===. -.... EI::::: MI .........I.MI. W.T14•3!. ... ..••••'I,pli.....3.'..1.. .11,.....-..40.-•...OW.»......... .._A Alin..ome•..11.11.,111.1119_N., 14 im ..-.. 3 (Of .........Iii:: L......1=111:11 .$1,17 ••••;4,.t.‘'.4-..,-,i t- I i MI MIN 01111MM•IN • IN.........Wm 1”1:::'..11;11;111111 'I 110-1:;"Sa....a*P.4:11ig."111 Tr.111:11111118141:4""" J111411111112=111 .. Itirl:W" Ill I Ill, .. • . i , I .4t--,s"• .•• •.• .-- sas..."-;.•eiirpw.Ratag•-::-.."a , ir'.....livir•:.4pwrAmars•••••••6,...3,91•••••1•.IIHIN11111114, I 1111111411=1111•11111•11.11111Mliesiu III incur allow*................N1111111. ..... . 1„,....s... ...„,,, .1.14 7.1...1......, ..... in•IIII,I!.....1111!1.12,..Z.1.“-'11IIIral4P. . gelP...I.1",...../P 4,51,!..0......lull':14.milvd inly.mitripimprigr. imosul71:r.L......„:..42,ilag:ra.........:31:;11:::::::: ... , . ,. . . „imipii...-_....111,11 lull'..... di -.ET/_.•MIP AMP. _. • 1111." '•• -,:," 111•!...otiliii;lpill' _*14tuf 118P.:...19:0111T,..opor...an. ......... qin. 1 111111111111115,34.041„1111,;11.1111111AIJE.111.....TLAllisg.,Ii!....4!/s.•,111111M9151114....111111P1111111111. ...•.,". 2411111111111111111111111111115111111111111111111511MMEMINEMMISP1111111111111111111:111111521111111111111(1111111111111-..' 7.. ..• ,..tp ..,.11.!...,.4..,...,, !..r.v.,- vemiqiwt.:.4iittP1•••Pr10.1ui' •.:..1111'" "eilmilliiird.'f/1 411Hipiiiiiiiviii ii r Hu ii li 11111,11.r ...,,. ...,,..,„ ... ; ....:.,...41,...1.-0.I..,i,! „...tioll, „...0.,......111111•.616. ,, 1111 111 E/!!",h"ilig"paill.,:irsilmIr.::::111:1111:1:11111 ':-..- ,.. . ...- ... . ;•,........1111110".:411,11111111011111,.11011pitiegneill.a".1511111}tn2r.:1:11 ill, ., li I MI Iiil"' ii• IlY 1 IJIII aliENNwilsol IIII II I 1111u11111 Ili11111 11111'111111l1111111 *''''. :..0.1 iir,a-i-dolrilvm viiiiiiilohuracio..rdili;:ra::nwillinlii,.!,!Ir ,, iiii i ttlaut allou mill lisliminimillmitfuniiiiiiiiiiiiiinc..:i.' . '4.7 .-=:-.,.';.e iiionaliiiiiiiiiiigigiiivdammiiiiimmossoaluousiiiiiiiiiiiiiiiiiiimituilliiiiiiimm maim nouninumnitipounuommlamonvolv.-4-;;. . .....____ • •.. .... . ... :. .. • ,- r ir7/7 t 91.•C/.:Ii. .. .44:!:,.. ..ti'••••......:31:1:7., 4-1,..=-... sasiT:ti'-' i' :, ,;..ij4 ....k22.44143;---;::.__I ..4.0;.- • '1. 0•S".•.-z. 5.-1.:•,,,:.: ... -- '-- •:.:ii-iiiif.E1:::%.7--- -l: E.::-:.E.T.J.:r-5 - - :- ' .“Iiiil.Miitri-iiii2E -:€E.Ellialg...,.,.,: :,..:.'1. ii‘i.:.in.2.ii.. •...„:i.ii..,',,.::: ..11.0 '""'tfi:x"--•-....-...e...--c:ia 1=- -: =:..44..i.i---te.. sr. -::----'s•=:::s4111 -cm..T.1. ...1.1firt=qt.::::::..6:. '1:....................cs 'iri: !''. •••..D'IP, =2 "- '.z •••••••••^ ;;:nr.z..a. .iii!••••••::ES'aZ- -- I........-.............4 , .ff:HFEIIP.E.!.. ..t2it==.--- eillii?....11,111. ;1.4•-•-••si - .......... 0'7- -- ----;1":""'• ::....,1;:iniiiiam!Eil =.=----i........ -..N:::=:.-Iiia::z....1:-.:..m:a..:.===-...C=i:==si..:::.c..-:....ra-..... :.........„,. • Eii iiiraili:Fitiiiii ii:iiiiiVii.4i .ife•TL'IT...,==zz=z1-....3-:=iiiiiialirt.=:iii:......iiiffegit.,13F..iiisz:::szi::=:=1..,......,..rm.,,fii:::.'.... •01 .• .. •.0.. '.:.F.^7...........:...-••1!:1:•;..........i..•.1 1 1..1:=11r.......::',e...=====nan r....-a •ts-•-- ==• . . . log •••someassonspot.....o viol......BO P..MII=111: • . . - :0 ;1111140111.r A......11;,iillliiiii :=IIIIMMIMMM. .. 4..• .. ,,, ,, 0.5 .....NI' EE MMW./Mil01.M.VCC:Claa onnaLTra=Mb;33;•••:,••••i• . . drill ir:11:1:iiigligla Lniii' =f&fstillirettliett::iii.'","il-q LIL.iras-...-praiii: .,,.,.., . ____Phili iillifiN iiiiligN 1::::;!;;Lillii -E-g-k-75:=.. _ ..__..iii........3.r.ii;:;ii'...."Wil likiril::.:.-1.' ff. iiiiiii4=E?",1F,fiEi 1F u; till. . 1 . .. . . ..!... . . . I 0.4- 2 . ,• 2 , • . . . • .s4t1P",i!i!iliil:E1:11!liEiii!Hiiiiiigkig=2-1= = -= -= 1 ' 4 6 4 0 :: - t•F 6 10 ' 0.5 , Iiiii iisiiiiiiE;.-Iiiiiiniii.....:in:High jiliiiiitu;;;:i,": °I ...1:.::,2 -z:ce::1:3• •-•.....=--. 16 20 55 30 40 60 40 SO 100 DISCHARGE - C.F S. 140 SOO ' . 0.4 SOO 400 500 400 500 1000 (TOTAL FLOW IN STREET) ctere - t ,-i- 7,, . . I . vk-rni ...; ..170 RIVERSIDE COUNTY FLOOD CONTROL AND ..'.:1'...` '': .' •tr; ;)L t ,33.t• 3o)111- WATER CONSERVATION DISTRICT VELOCITY DISCHARGE CURVES ,. . - . . 12 i ' ..' ....i .. •1,.: , COUNTY STANDARD No. 106 • C ,:;:., • , • . RCFC & WCD • 32' ROADWAY 6"a 8°CURBS . .. . • • . ; ----- .....e..7...." .-sew HYDROLOGY MANUAL 7 A••••••••••• : crir-imi.:•••• ••-poi •41.• Coosco.•O-rir/V 11' '- ":" • •• . % • • . • . .,. ' - . . ::0: . i. •''. . . . . •-• . - ' • . . ' PLATE D-7.7 •• i 1 t ' COMPUTER PRINTOUTS 620 1 � I I 11 II PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE I (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date : 2/20/92 License ID 1225 I Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES I 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 I ************************** DESCRIPTION OF STUDY ************************** * REDHAWK -UNIT 5 - UNE A * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR STORM EVENT J. N. 160097 * II FILE NAME: HARHKA.DAT TIME/DATE OF STUDY: 17:12 4/29/2001 I ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE II (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 113 .00- 4 .50 5930. 91 2 .73* 6573.98 } FRICTION 112 .00- 4 .48 5911.38 2 .71* 6609. 16 I 111 .001- JUNCTION 3 .73 Dc 5903 .29 3.03* 6293. 22 } FRICTION+BEND I 110.30- 3 .72 Dc 5903 .27 3 .01* 6312 .51 } FRICTION 110.20- 3.72 Dc 5903 .27 2.95* 6399.23 } FRICTION+BEND II 110. 10- 3.72 Dc 5903.27 2 . 84* 6559.60 } MANHOLE 110.00- 3.96 5954 .12 2 .78* 6659.57 } FRICTION 109.00- 3.72 Dc 5903 .27 2 .74* 6734 .71 } JUNCTION 108.00- 4 .21 5873 .42 2.55* 6733 . 19 I 107.001- FRICTION 3 .69 Dc 5624 .46 2.47* 6931 .24 } FRICTION+BEND 106.00- 3 .69 Dc 5624 .46 2 .40* 7109 .25 II } FRICTION+BEND 97.00 3 .69 Dc 5624 .46 2 .35* 7253 .34 } JUNCTION II 96. 00- 4 .71 5270 .65 1.89* 7063 .62 _ II I aq II 1 } FRICTION 95.50- 3 .53 DC 4573 . 29 1.93* 6863 . 77 } JUNCTION II 95.00- 4 .04 4486. 50 1. 80* 6844 .48 } FRICTION 90 .00- 3 .48 Dc 4295. 07 2 .33* 5239.21 II } JUNCTION 89.00- 3 .60 4192 .23 2 .25* 5224 .70 } FRICTION 89.50- 3 .45 Dc 4180.72 2 .27* 5190 .99 I 88.001- JUNCTION 3 .96 4144 .38 2 .14* 5180 .02 } FRICTION I 87.00- 3 .41 Dc 3987 .61 2 .16* 5131.56 } FRICTION+BEND ,41 3 .41 Dc 3987 .61 2 .29* 4847. 04 } JUNCTION I 82 .10- 3 . 98 3936 .69 2 .12* 4818. 66 } FRICTION+BEND 82.07- 3 .35 Dc 3744 .47 2.97* 3819.57 I 82 .06-} MANHOLE 3 .42 3746.81 2.93* 3839.05 } FRICTION 82.05- 3 .35*Dc 3744 .47 3 .35*Dc 3744 .47 I 82 .00)- JUNCTION 4 .11* 3669. 88 2. 86 3391 .09 } FRICTION+BEND 76.00- 3 .97* 3563 .54 3 .23 Dc 3324.60 II } JUNCTION 75.00 4 .29* 3487. 07 2 .89 2967.35 } FRICTION+BEND I 74.00- 4 .26* 3466.48 3 .10 DC 2947. 11 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** I DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 113.00 FLOWLINE ELEVATION = 1164 .42 PIPE FLOW = 174 .21 CFS PIPE DIAMETER = 54 . 00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1168.920 INODE 113 .00 : HGL = c 1167 .148>;EGL= < 1171.780>;FLOWLINE= < 1164.420> I FLOW PROCESS FROM NODE 113 .00 TO NODE 112.00 IS CODE = 1 UPSTREAM NODE 112 .00 ELEVATION = 1164 .50 (FLOW IS SUPERCRITICAL) II CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 174.21 CFS PIPE DIAMETER = 54 .00 INCHES PIPE LENGTH = 8. 00 FEET MANNING'S N = .01300 IINORMAL DEPTH(FT) = 3.29 CRITICAL DEPTH(FT) = 3 .83 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 . 71 1 II 2 iU5 II II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 2 . 710 17.405 7.416 6609. 16 8 .000 2. 728 17.267 7 .360 6573 .98 IINODE 112 .00 : HGL = < 1167 .210>;EGL= < 1171.916>;FLOWLINE= < 1164 . 500> II FLOW PROCESS FROM NODE 112.00 TO NODE 111.00 IS CODE = 5 UPSTREAM NODE 111. 00 ELEVATION = 1165 .00 (FLOW IS SUPERCRITICAL) II CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 169. 14 48. 00 .00 1165 .00 3.72 16 .556 II DOWNSTREAM 174 .21 54 . 00 1164 .50 3 .83 17.410 LATERAL #1 5.07 18. 00 45 .00 1166 .22 .87 2.953 LATERAL #2 _00 . 00 .00 .00 .00 .000 11 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - 1 Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01629 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01720 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 01674 II JUNCTION LENGTH = 4 .66 FEET FRICTION LOSSES = .078 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) +(FRICTION LOSS) +(ENTRANCE LOSSES) I JUNCTION LOSSES = ( .293) + ( .078) + ( .000) = .371 NODE 111 .00 : HGL = < 1168.031>;EGL= < 1172 .287>;FLOWLINE= < 1165. 000> FLOW PROCESS FROM NODE 111.00 TO NODE 110 .30 IS CODE = 3 UPSTREAM NODE 110.30 ELEVATION = 1165.37 (FLOW IS SUPERCRITICAL) I CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 169. 14 CFS PIPE DIAMETER = 48. 00 INCHES CENTRAL ANGLE = 15.560 DEGREES MANNING'S N = .01300 I PIPE LENGTH = 24 .44 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 3 .13 CRITICAL DEPTH(FT) = 3 .72 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3 .01 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 3 .015 16.641 7 .317 6312 . 51 6 .912 3 .020 16.614 7 .308 6306.74 14.079 3 .024 16.587 7 , 299 6301 .02 21.524 3 .029 16.561 7 . 290 6295.34 II 24 .440 3 .031 16 .551 7. 287 6293 .22 _ 1 3 II I NODE 110.30 : HGL = < 1168.385>;EGL= < 1172.688>; FLOWLINE= < 1165. 370> I II ****************************************************************************** ******************* FLOW PROCESS FROM NODE 110.30 TO NODE 110.20 IS CODE = 1 UPSTREAM NODE 110.20 ELEVATION = 1166.40 (FLOW IS SUPERCRITICAL) IICALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 169. 14 CFS PIPE DIAMETER = 48. 00 INCHES PIPE LENGTH = 69. 13 FEET MANNING'S N = .01300 IINORMAL DEPTH(FT) = 3 . 16 CRITICAL DEPTH(FT) = 3 .72 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2. 95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 2 . 948 17 .034 7 .456 6399.23 II 7 .577 2 . 956 16 .983 7 .437 6387 .84 15 .408 2 . 964 16 .933 7 .419 6376.60 23 .514 2 . 973 16.883 7.402 6365.52 31.923 2 .981 16.834 7.384 6354.59 I 40 .662 2 .990 16 .785 7 . 367 6343 . 82 49.767 2 .998 16.736 7. 350 6333. 19 59.276 3 .007 16.688 7. 334 6322.72 69.130 3 .015 16.641 7. 317 6312. 51 IINODE 110.20 : HGL = < 1169.348>;EGL= < 1173.856>; FLOWLINE= < 1166 .400> I ****************************************************************************** FLOW PROCESS FROM NODE 110.20 TO NODE 110. 10 IS CODE = 3 UPSTREAM NODE 110.10 ELEVATION = 1167.65 (FLOW IS SUPERCRITICAL) I CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 169. 14 CFS PIPE DIAMETER = 48. 00 INCHES CENTRAL ANGLE = 16.370 DEGREES MANNING'S N = .01300 I PIPE LENGTH = 83 .41 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 3 . 15 CRITICAL DEPTH(FT) = 3 .72 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 . 84 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 2 .840 17 .723 7. 720 6559.60 I 8.346 2 .852 17 .640 7. 687 7.654 6539.79 16.946 2 .865 17 .558 6520.34 25.823 2 .877 17 .477 7.623 6501.27 35.003 2 .889 17 .397 7.592 6482. 57 II 44 . 515 2 .902 17 .318 7. 562 6464 .22 54 .394 2 .914 17 .240 7.532 6446.23 64 .679 2 .926 17 . 163 7. 503 6428.60 II 75.417 2 .939 17 .087 7.475 6411 .31 II i4?01113 0 6 -5 1107 I I83 .410 2. 948 17 .034 7.456 6399.23 I NODE 110.10 : HGL = < 1170.490>;EGL= < 1175.370>;FLOWLINE= < 1167 .650> FLOW PROCESS FROM NODE 110.10 TO NODE 110. 00 IS CODE = 2 I UPSTREAM NODE 110. 00 ELEVATION = 1167 .73 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 169.14 CFS PIPE DIAMETER = 48. 00 INCHES II AVERAGED VELOCITY HEAD = 4 . 995 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05* ( 4 .995) = .250 INODE 110.00 : HGL = < 1170.511>;EGL= < 1175.620>;FLOWLINE= < 1167 .730> FLOW PROCESS FROM NODE 110.00 TO NODE 109.00 IS CODE = 1 1 UPSTREAM NODE 109. 00 ELEVATION = 1171.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : I PIPE FLOW = 169. 14 CFS PIPE DIAMETER== 48. 00 INCHES PIPE LENGTH = 197.37 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 2 . 80 CRITICAL DEPTH(FT) = 3 .72 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .74 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: II DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I . 000 2 .739 18.436 8.020 6734 .71 6. 844 2 .742 18.418 8.012 6730 .29 13.963 2 .744 18.400 8.005 6725 .88 21.381 2 .746 18.383 7.997 6721 .49 II 29.128 2 .749 18. 365 7 . 989 6717 .12 37.234 2 .751 18. 348 7. 982 6712 .75 45.737 2 .754 18. 331 7. 974 6708 .41 II 54.680 2 .756 18.313 7. 967 6704 .08 64 . 112 2 .758 18.296 7. 959 6699.76 74 . 094 2 .761 18.279 7. 952 6695 .46 84 .696 2 .763 18.261 7. 944 6691 .18 II 96. 004 2 .765 18.244 7. 937 6686 .90 108. 123 2.768 18.227 7. 930 6682.65 121. 182 2 .770 18.210 7. 922 6678 .41 I 135.346 2 .772 18. 193 7. 915 6674 .18 150.825 2 .775 18. 176 7. 908 6669.97 167.897 2 .777 18. 159 7. 901 6665 .77 186 .939 2 .779 18. 142 7. 893 6661 .59 II 197.370 2 .781 18. 134 7. 890 6659.57 NODE 109.00 : HGL = < 1174 .379>;EGL= < 1179.660>;FLOWLINE= < 1171.640> FLOW PROCESS FROM NODE 109.00 TO NODE 108. 00 IS CODE = 5 UPSTREAM NODE 108.00 ELEVATION = 1171.68 (FLOW IS SUPERCRITICAL) 1 II S 098' II II CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 163 .89 48.00 . 00 1171 .68 3. 69 19.349 DOWNSTREAM 169. 14 48.00 1171 .64 3 . 72 18 .441 LATERAL #1 5 .25 18.00 45.00 1172 .87 . 88 3 .015 II LATERAL #2 .00 .00 .00 .00 00 000 Q5 . 00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16.1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .02395 II DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .02096 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 02246 JUNCTION LENGTH = 2 . 00 FEET FRICTION LOSSES = .045 FEET ENTRANCE LOSSES = . 000 FEET I JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( .342) + ( .045) +( .000) _ .387 I NODE 108. 00 : HGL = < 1174.234>;EGL= < 1180.047>;FLOWLINE= < 1171 .680> ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE = 1 I UPSTREAM NODE 107 .00 ELEVATION = 1172 .86 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : I - PIPE FLOW = 163.89 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 62.26 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 2 .78 CRITICAL DEPTH (FT) = 3 .69 IUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.47 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 2 .471 20. 101 8. 749 6931 .24 8.361 2 .484 19. 984 8. 689 6900 .33 16.988 2 .496 19.868 8.629 6869.95 25. 906 2 .508 19.755 8.572 6840 .08 I 35. 143 2 .520 19.642 8.515 8.460 6810 .72 44 .729 2.533 19.531 6781 .86 54 .701 2.545 19.421 8 .406 6753 .50 62.260 2.554 19.343 8.367 6733 . 19 II NODE 107 .00 : HGL = < 1175.331>;EGL= < 1181.609>;FLOWLINE= < 1172 .860> FLOW PROCESS FROM NODE 107.00 TO NODE 106 .00 IS CODE = 3 UPSTREAM NODE 106. 00 ELEVATION = 1173 . 73 (FLOW IS SUPERCRITICAL) II CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 163 . 89 CFS PIPE DIAMETER = 48 .00 INCHES CENTRAL ANGLE = 28 .400 DEGREES MANNING'S N = .01300 IIPIPE LENGTH = 44 .61 FEET BEND COEFFICIENT(KB) = I 6 II II NORMAL DEPTH(FT) = 2 . 75 CRITICAL DEPTH (FT) = 3 .69 II UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 ,40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 2 .404 20.767 9.105 7109.25 I 8 .612 2 .418 20. 626 9.028 7071.26 17.490 2 .432 20.487 8.953 7034 . 00 26.659 2 .446 20.350 8.880 6997.43 I 36.146 2 .459 20.215 8. 809 6961.56 44.610 2 .471 20. 101 8.749 6931 .24 NODE 106.00 : HGL = < 1176.134>;EGL= < 1182. 835>;FLOWLINE= < 1173 . 730> III ****************************************************************************** ************t** FLOW PROCESS FROM NODE 106. 00 TO NODE 97. 00 IS CODE = 3 UPSTREAM NODE 97.00 ELEVATION = 1174 .27 (FLOW IS SUPERCRITICAL) II CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 163 .89 CFS PIPE DIAMETER = 48. 00 INCHES I CENTRAL ANGLE = 18. 000 DEGREES MANNING'S N = .01300 PIPE LENGTH = 28 .25 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 2 .77 CRITICAL DEPTH(FT) = 3 .69 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .35 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 2.354 21 .297 9.401 7253 .34 9.106 2.371 21.118 9.300 7204 .39 18.477 2.388 20 .942 9.202 7156.54 II 28.135 2.404 20.769 9.106 7109.78 28.250 2 .404 20.767 9.105 7109.25 NODE 97.00 : HGL = < 1176.624>;EGL= < 1183 .672>;FLOWLINE= < 1174 .270> I ****************************************************************************** FLOW PROCESS FROM NODE 97 .00 TO NODE 96.00 IS CODE = 5 UPSTREAM NODE 96.00 ELEVATION = 1174.55 (FLOW IS SUPERCRITICAL) IICALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I UPSTREAM (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) 142 .74 48. 00 .00 1174 .55 3.53 24 .488 DOWNSTREAM 163 .89 48. 00 - 1174 .27 3.69 21 .303 LATERAL #1 21. 15 24.00 45 .00 1176.55 1.65 7 .643 I LATERAL #2 .00 .00 .00 .00 . 00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== IILACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: _ II 7 off D II II DY= (Q2*V2-Q1*V1*COS(DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = . 04829 II DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = . 03060 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .03945 JUNCTION LENGTH = 5. 67 FEET II FRICTION LOSSES = .224 FEET ENTRANCE LOSSES = . 000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( 1. 853) +( .224)+ ( . 000) = 2 .077 II NODE 96 . 00 : HGL = < 1176.436>;EGL= < 1185.748>;FLOWLINE= < 1174 .550> I FLOW PROCESS FROM NODE UPSTREAM NODE 95. 50 96. 00 TO NODE 95.50 IS CODE = 1 ELEVATION = 1178 .36 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : II PIPE FLOW = 142 .74 CFS PIPE DIAMETER-= 48. 00 INCHES PIPE LENGTH = 70 .40 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = 1.83 CRITICAL DEPTH(FT) = 3 .53 II UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.93 II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 1. 935 23 .693 10 .657 6863 .77 4 .770 1. 930 23 .762 10 .704 6881. 15 9.763 1. 926 23 .831 10 .750 6898 .65 I 15 .000 1. 922 23 .901 10.798 6916 .25 20 .503 1. 917 23 .971 10 .845 6933 .98 26 .298 1. 913 24.041 10.893 6951.82 32 .416 1.909 24.112 10.942 6969. 78 II 38.891 1. 904 24 .183 10.991 6987. 86 45.763 1 . 900 24.254 11. 040 7006. 05 53 . 083 1.896 24 .326 11. 090 7024 .37 II 60.907 1.891 24 .399 11. 141 7042 .80 69. 305 1.887 24 .472 11. 192 7061.36 70.400 1 .886 24 .480 11. 198 7063 .62 II NODE 95. 50 : HGL = < 1180.295>;EGL= < 1189.017>;FLOWLINE= < 1178.360> FLOW PROCESS FROM NODE 95.50 TO NODE 95. 00 IS CODE = 5 IIUPSTREAM NODE 95 .00 ELEVATION = 1178 .46 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 136. 74 48.00 .00 1178 .46 3 .48 24 . 844 DOWNSTREAM 142 . 74 48.00 - 1178 .36 3 .53 23 .701 II LATERAL #1 6. 00 18 .00 45.00 1179.66 95 5. 110 LATERAL #2 . 00 .00 00 00 .00 . 000 Q5 . 00===Q5 EQUALS BASIN INPUT=== II II 8 27/ II ILACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*CO5 (DELTA3) - Q4*V4*COS (DELTA4) ) / ( {A1+A2) *16. 1) IUPSTREAM: MANNING'S N = . 01300; FRICTION SLOPE _ .05174 DOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .04424 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 04799 I JUNCTION LENGTH = 2 . 00 FEET FRICTION LOSSES = .096 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( .736) + ( .096) +( .000) = . 832 1 NODE 95.00 : HGL = < 1180.265>;EGL= < 1189. 849>;FLOWLINE= < 1178.460> I ****************************************************************,r************* FLOW PROCESS FROM NODE 95. 00 TO NODE 90.00 IS CODE = 1 UPSTREAM NODE 90. 00 ELEVATION = 1201 .55 (FLOW IS SUPERCRITICAL) 1 CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 136 .74 CFS PIPE DIAMETER = 48 .00 INCHES PIPE LENGTH = 427.60 FEET MANNING'S N = .01300 1 NORMAL DEPTH(FT) = 1 .78 CRITICAL DEPTH(FT) = 3 .48 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .33 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 2 .333 17 .965 7.348 5239.21 2.974 2 .311 18 .173 7.442 5283 .79 I 6 .152 2 .289 18 .385 7. 541 5329 . 88 9.553 2.267 18.603 7.644 5377. 52 13.198 2.245 18.827 7.752 5426.75 17.114 2.223 19. 056 7. 865 5477.63 I 21.329 2.201 19.291 7. 983 5530.20 25. 877 2.179 19.533 8. 107 5584 .53 30.797 2.157 19.781 8 .236 5640 .66 I 36. 138 2. 135 20.035 8 .372 5698 .66 41.955 2 . 113 20.296 8 .513 5758 .59 48 .315 2 .091 20.564 8 .662 5820 .52 55 .302 2 .069 20 .840 8 . 817 5884.50 1 63 .020 2 .047 21.123 8. 980 9. 150 5950. 63 71.597 2 .025 21.414 6018. 96 81 .201 2.003 21.713 9.329 6089.58 92.053 1.981 22.021 9.516 6162 . 56 II 104 .452 1.959 22 .338 9.712 6238. 01 118. 815 1. 937 22.663 9.918 6316.00 135.757 1. 915 22 . 999 10 . 134 6396 .64 1 156.228 1. 893 23 .344 10 .360 10 .598 6480.03 181.823 1. 871 23 .699 6566.26 215 .528 1. 849 24 .065 10 .848 6655 .46 264 .060 1.827 24 .443 11. 110 6747 .74 II 348.963 1.805 24 .832 11.386 6843 .23 427.600 1 .805 24 .837 11. 389 6844 .48 II NODE 90.00 : HGL = < 1203 . 883>;EGL= < 1208 .898>;FLOWLINE= < 1201.550> 1 9 Al7Z II II FLOW PROCESS FROM NODE 90. 00 TO NODE 89 . 00 IS CODE = 5 IIUPSTREAM NODE 89.00 ELEVATION = 1201.75 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 134 .22 48 .00 .00 1201. 75 3 .45 18. 393 DOWNSTREAM 136.74 48 .00 - 1201.55 3 .48 17. 971 I LATERAL #1 2.52 18 .00 45.00 1202 .93 .60 1 . 983 LATERAL #2 .00 .00 .00 . 00 .00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16.1) I UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .02353 DOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .02191 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02272 I JUNCTION LENGTH = 4.66 FEET FRICTION LOSSES = .106 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS)+ (ENTRANCE LOSSES) JUNCTION LOSSES = ( .254) + ( .106) + ( .000) = . 360 IINODE 89.00 : HGL = < 1204 .004>;EGL= < 1209.258>;FLOWLINE= < 1201 .750> I FLOW PROCESS FROM NODE 89.00 TO NODE 89. 50 IS CODE = 1 UPSTREAM NODE 89. 50 ELEVATION = 1202.20 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 134 .22 CFS PIPE DIAMETER = 48 .00 INCHES PIPE LENGTH = 16. 16 FEET MANNING'S N = . 01300 I NORMAL DEPTH(FT) = 2 . 14 CRITICAL DEPTH(FT) = 3 .45 _ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .27 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 2 .270 18.230 7.434 5190 .99 5. 018 2 .265 18.281 7 .458 5201 .91 10.278 2 .260 18.333 7 .482 5212 .92 II15.801 2.255 18.384 7 .506 5224 .01 16. 160 2 .254 18 .388 7 .508 5224.70 IINODE 89. 50 : HGL = < 1204 .470>;EGL= < 1209.634>;FLOWLINE= < 1202.200> FLOW PROCESS FROM NODE 89. 50 TO NODE 88. 00 IS CODE = 5 IUPSTREAM NODE 88.00 ELEVATION = 1202 .26 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: I PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY _ I 10 /2/3 I II (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 129.89 48.00 . 00 1202 .26 3 .41 19. 038 DOWNSTREAM 134 .22 46 .00 - 1202.20 3 .45 18.236 I LATERAL #1 4 . 33 18.00 45.00 1203.48 .80 3 .658 LATERAL #2 . 00 .00 . 00 . 00 00 .000 Q5 . 00===Q5 EQUALS BASIN INPUT=== ILACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) IUPSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .02629 DOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .02301 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02465 I JUNCTION LENGTH = 2 .00 FEET FRICTION LOSSES = .049 FEET ENTRANCE LOSSES = . 000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( .340) +( .049) + ( .000) = .389 1 NODE 88.00 : HGL = < 1204.395>;EGL= < 1210 .023>;FLOWLINE= < 1202 .260> I FLOW PROCESS FROM NODE UPSTREAM NODE 67 .00 88.00 TO NODE 87.00 IS CODE = 1 ELEVATION = 1203 .77 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW 129.89 CFS PIPE DIAMETER = 48 .00 INCHES PIPE LENGTH = 53.92 FEET MANNING'S N = . 01300 I NORMAL DEPTH(FT) = 2 .09 CRITICAL DEPTH(FT) = 3 .41 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .16 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 000 2.156 18 .804 7 .650 5131.56 5.266 2.153 18 .831 7 .663 5137 .20 I 10.770 2 .151 18 .857 7 .676 5142 .87 16 .533 2.148 18 .884 7 .689 5148 .55 22 .579 2. 146 18 .911 7 .703 5154 .26 28 .935 2. 143 18 .938 7 .716 5159.99 I 35.633 2. 141 18.965 7 .729 7.743 5165. 75 42. 711 2. 139 18.992 5171. 52 50.212 2 . 136 19.019 7 .756 5177. 31 U 53. 920 2 . 135 19.032 7.763 5180. 02 NODE 87. 00 : HGL = < 1205.926>;EGL= < 1211.420>;FLOWLINE= < 1203.770> FLOW PROCESS FROM NODE 87. 00 TO NODE 83 .00 IS CODE = 3 UPSTREAM NODE 83 .00 ELEVATION = 1207. 81 (FLOW IS SUPERCRITICAL) II CALCULATE PIPE-BEND LOSSES(LACFCD) : PIPE FLOW = 129.89 CFS PIPE DIAMETER = 48 .00 INCHES CENTRAL ANGLE = 17.100 DEGREES MANNING'S N = .01300 II PIPE LENGTH = 144 .40 FEET BEND COEFFICIENT(KB) = _ 1 1/ II IINORMAL DEPTH(FT) = 2 . 10 CRITICAL DEPTH(FT) = 3 .41 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .29 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: tDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 2 .293 17.430 7 .013 4847 .04 II 4 .585 2 .285 17. 504 7.045 7 .078 4861 .87 9.405 2 .277 17. 578 4876 .89 14 .483 2 .269 17.653 7 .111 4892 .09 II 19.842 2 .261 17.728 7 .144 4907 .48 25 .509 2 .253 17. 805 7 .179 4923 .06 31 .518 2 .245 17.881 7 .213 4938.82 37.904 2.237 17. 959 7 .249 4954 . 78 I 44.711 2 .229 18 .037 7.285 7.321 4970.94 51.991 2.222 18 . 116 4987.29 59.804 2.214 18 .196 7. 358 5003 . 85 68.225 2.206 18 .277 7. 396 5020.60 II 77. 344 2.198 18 .358 7.434 5037.56 87.274 2.190 18.440 7.473 5054 .73 98. 156 2. 182 18 .523 7.513 5072 . 10 I 110.171 2. 174 18.606 7.553 5089.68 123.561 2.166 18.690 7.594 5107 .48 138.648 2. 158 18.775 7.636 5125 .50 144 .400 2. 156 18.804 7 .650 5131 .56 IINODE 83 .00 : HGL = < 1210. 103>;EGL= < 1214 .823>;FLOWLINE= < 1207. 810> IFLOW PROCESS FROM NODE 83 . 00 TO NODE 82.10 IS CODE = 5 UPSTREAM NODE 82 . 10 ELEVATION = 1207. 87 (FLOW IS SUPERCRITICAL) II CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) I UPSTREAM 124 .30 48 .00 .00 1207 .87 3 .35 18.428 DOWNSTREAM 129.89 48 .00 1207.81 3.41 17.436 LATERAL #1 5 .59 18 .00 45 .00 1209.09 .91 4.713 LATERAL #2 .00 .00 .00 . 00 .00 .000 IIQ5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: l DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS(DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = . 02481 DOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .02089 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02285 JUNCTION LENGTH = 2 .00 FEET FRICTION LOSSES = . 046 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) IIJUNCTION LOSSES = ( .390) + ( .046) + ( .000) = .435 NODE 82 .10 : HGL = < 1209.986>;EGL= < 1215.259>;FLOWLINE= < 1207 .870> 1 II 12 II II ****************************************************************************** FLOW PROCESS FROM NODE 82 . 10 TO NODE 82 .07 IS CODE = 3 UPSTREAM NODE 82 .07 ELEVATION = 1214 .46 (FLOW IS SUPERCRITICAL) IICALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 124.30 CFS PIPE DIAMETER = 48. 00 INCHES II CENTRAL ANGLE = 27.200 DEGREES MANNING'S N = .01300 PIPE LENGTH = 235.32 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 2 .04 CRITICAL DEPTH(FT) = 3 .35 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .97 tGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) ' 000 2.973 12.408 5.365 5.391 3819.57 1.425 2.935 12 . 572 3836.08 3 .055 2 .898 12 .743 5.421 3854 .42 I 4. 910 2 .861 12 . 921 5 .455 3874 .67 7. 014 2 .824 13 . 105 5.492 3896 .87 9.390 2 .786 13 .297 5 .533 3921. 12 12. 071 2 .749 13 .496 5 .579 3947.47 I 15.091 2. 712 13 .702 5 .629 3976.01 18.491 2 .674 13 . 917 5 .684 4006. 82 22 .321 2 . 637 14 . 140 5 .744 4039. 99 26.640 2.600 14 .373 5 .809 4075. 62 II 31.519 2 . 562 14 .614 5 .881 4113 . 82 37.045 2.525 14 .865 5 .958 4154 .68 43 .326 2.488 15. 126 6 .043 4198. 32 I 50.501 2 .451 15 .398 6.134 4244 . 88 58.746 2 .413 15 .681 6 .234 4294 .48 68.293 2.376 15 . 976 6 .342 4347.27 79.460 2.339 16.283 6.458 4403 .39 II 92 .688 2 . 301 16 .604 6 .585 4463 .02 108.629 2 .264 16. 938 6 .722 4526.33 128.290 2 .227 17 .287 6 .870 4593 .51 I 153 .360 2 . 189 17 .652 7 .031 4664 .76 187.009 2 . 152 18 .032 7 .204 4740.31 235.320 2 . 116 18 .422 7 .389 4818 .66 II NODE 82 . 07 : HGL = < 1217.433>;EGL= < 1219.825>;FLOWLINE= < 1214.460> ****************************************************************************** I FLOW PROCESS FROM NODE UPSTREAM NODE 82.06 82. 07 TO NODE 82 .06 IS CODE = 2 ELEVATION = 1214 .55 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD) : I PIPE FLOW = 124 .30 CFS PIPE DIAMETER = 48 .00 INCHES AVERAGED VELOCITY HEAD = 2 .429 FEET HMN = . 05* (AVERAGED VELOCITY HEAD) = . 05* ( 2 .429) = .121 I NODE 82 .06 : HGL = < 1217.479>;EGL= < 1219.946>;FLOWLINE= < 1214 . 550> ****************************************************************************** I FLOW PROCESS FROM NODE 82 . 06 TO NODE 82 .05 IS CODE = 1 _ II 13 .1 74)[) II II UPSTREAM NODE 82. 05 ELEVATION = 1215 . 92 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : - II PIPE FLOW 124 .30 CFS PIPE DIAMETER = 48 .00 INCHES PIPE LENGTH = 137 .25 FEET MANNING'S N .01300 U NORMAL DEPTH(FT) = 2 .88 CRITICAL DEPTH(FT) = 3 .35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3 .35 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 3.348 11. 061 5 .249 3744 .47 . 093 3.329 11.117 5 .250 3744 .65 . 383 3.310 11.174 5.250 3745 . 18 ' 884 3.291 11.232 5 .252 3746 .08 1.613 3.272 11.291 5 .253 3747.34 2 .592 3.254 11.352 5.256 3748.96 I 3 . 843 3.235 11.414 5.259 3750. 96 5.394 3.216 11.477 5 .262 3753 . 34 7.278 3. 197 11.541 5 .266 3756. 10 9.532 3 . 178 11.607 5.271 3759.24 I 12 .204 3 . 159 11.674 5.276 3762.77 15. 348 3 . 140 11.742 5.282 3766.70 19.034 3 .121 11 .812 5.289 3771.04 23 .346 3 . 102 11 .883 5.296 3775.78 II 28.391 3 .083 11. 955 5. 304 3780.93 34 .308 3 .064 12 .029 5.313 3786.50 41.278 3 .045 12 .105 5. 322 3792 .50 I 49.550 3 .026 12 .181 5. 332 5.343 3798 .93 59.468 3 .008 12 .260 3805.80 71.542 2 .989 12 .340 5.354 3813.11 86 .558 2 .970 12 .421 5. 367 3820.87 I 105 .835 2 .951 12 .504 5.380 3829.09 131 .848 2 .932 12 .589 5.394 3837.78 137 .250 2 .929 12.601 5.396 3839.05 II NODE 82 .05 : HGL = < 1219.268>;EGL= < 1221.169>;FLOWLINE= < 1215. 920> II FLOW PROCESS FROM NODE 82 .05 TO NODE 82.00 IS CODE = 5 UPSTREAM NODE 82 .00 ELEVATION = 1215. 96 (FLOW IS AT CRITICAL DEPTH) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 114 .26 48. 00 . 00 1215. 96 3 .23 9.093 I DOWNSTREAM 124 .30 48. 00 1215. 92 3 .35 11 .065 LATERAL #1 10.04 18. 00 45. 00 1217 . 19 1.22 5 .681 LATERAL #2 .00 . 00 .00 .00 .00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== II LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1+A2) *16.1) _ I 14 027 ? II IUPSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .00633 DOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = . 00722 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00677 II JUNCTION LENGTH = 4 . 66 FEET FRICTION LOSSES = .032 FEET ENTRANCE LOSSES = . 000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) I JUNCTION LOSSES = ( . 155) + ( .032) + ( . 000) = . 187 NODE 82 .00 : HGL = < 1220 .073>;EGL= < 1221.356>;FLOWLINE= < 1215.960> IIFLOW PROCESS FROM NODE 82 .00 TO NODE 76. 00 IS CODE = 3 UPSTREAM NODE 76.00 ELEVATION = 1216 .47 (FLOW SEALS IN REACH) I CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 114.26 CFS PIPE DIAMETER = 48 .00 INCHES CENTRAL ANGLE = 4 .200 DEGREES MANNING'S N = .01300 II PIPE LENGTH = 51.20 FEET BEND COEFFICIENT(KB) = 04066 ADJUSTED CENTRAL ANGLE = ( 4.200) * ( 45 .35/ 51.20) = 3 .720 FLOW VELOCITY = 9. 09 FEET/SEC. VELOCITY HEAD = 1.284 FEET I HB=KB* (VELOCITY HEAD) = ( .041) * ( 1 .284) = .052 SF= .00629 HF=L*SF = ( 51 .20) * ( .00629) = .322 TOTAL HEAD LOSSES = HB + HF = ( .052) + ( .322) = .374 IDOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4 .11 PRESSURE FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I . 000 4.113 9. 093 5 .396 3669.88 45.353 4.000 9.093 5 .284 3581.58 II _NORMAL DEPTH(FT) = 2.70 CRITICAL DEPTH(FT) = 3 .23 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 4 .00 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I 45.353 4 .000 9.090 5.284 3581.58 51.200 3 .975 9.097 5.261 3563.54 IINODE 76.00 : HGL = < 1220.445>;EGL= < 1221.731>;FLOWLINE= < 1216.470> FLOW PROCESS FROM NODE 76.00 TO NODE 75. 00 IS CODE = 5 I UPSTREAM NODE 75.00 ELEVATION = 1216.49 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY II (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 104.78 48 .00 .00 1216.49 3 .10 8 .338 DOWNSTREAM 114.26 48 .00 - 1216.47 3 .23 9.100 I LATERAL #1 9.48 18 .00 45.00 1217 .72 1 .19 5.365 _ II '5 R7Y II ILATERAL #2 . 00 .00 .00 . 00 . 00 .000 Q5 . 00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16 . 1) II UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00532 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00592 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00562 JUNCTION LENGTH = 2 .00 FEET I FRICTION LOSSES = . 011 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( .115)+( .011) +( .000) = .127 IINODE 75. 00 : HGL = < 1220.778>;EGL= < 1221.857>;FLOWLINE= < 1216.490> I FLOW PROCESS FROM NODE 75 .00 TO NODE 74. 00 IS CODE = 3 UPSTREAM NODE 74.00 ELEVATION = 1216.61 (FLOW IS UNDER PRESSURE) I CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 104 .78 CFS PIPE DIAMETER = 48 .00 INCHES CENTRAL ANGLE = 1 .100 DEGREES MANNING'S N = . 01300 PIPE LENGTH = 13 .13 FEET BEND COEFFICIENT(KB) = . 02211 U FLOW VELOCITY = 8.34 FEET/SEC. VELOCITY HEAD = 1.080 FEET HB=KB* (VELOCITY HEAD) = ( .022) * ( 1.080)LO= . 024 SF=(Q/K) **2 = ( ( 104 .78) / ( 1436 .271) ) **2 = .00532 HF=L*SF = ( 13 .13) * ( . 00532) = .070 IITOTAL HEAD LOSSES = HB + HF = ( .024) + ( .070) = . 094 NODE 74 .00 : HGL = < 1220.872>;EGL= < 1221. 951>;FLOWLINE= < 1216.610> 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 74 .00 FLOWLINE ELEVATION = 1216 .61 IIASSUMED UPSTREAM CONTROL HGL = 1219.71 FOR DOWNSTREAM RUN ANALYSIS 11 END OF GRADUALLY VARIED FLOW ANALYSIS 1 I II I f279 I `r_ II PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE I (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 II Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES I 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 IDESCRIPTION OF STUDY * REDHAWK - UNIT 5 LINE A 1 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR STORM EVENT J. N. 160097 * IIFILE NAME: HARHKAl.DAT TIME/DATE OF STUDY: 15 :43 4/30/2001 I ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE II (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ II NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 111. 00- 1. 81* 159.59 .53 144 . 12 } FRICTION } HYDRAULIC JUMP 111. 10- . 97*Dc 94 .35 .97*Dc 94 .35 I 111 .10}- CATCH BASIN 1.47* 54 .12 .97 Dc 31 .58 IIMAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. IDOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 111 .00 FLOWLINE ELEVATION = 1166.22 PIPE FLOW = 6.24 CFS PIPE DIAMETER = 18 .00 INCHES IIASSUMED DOWNSTREAM CONTROL HGL = 1168. 030 NODE 111.00 : HGL = < 1168 .030>;EGL= < 1168.224>;FLOWLINE= < 1166 .220> I ****************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 111.10 IS CODE = 1 UPSTREAM NODE 111. 10 ELEVATION = 1167.87 (HYDRAULIC JUMP OCCURS) IICALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 6 .24 CFS PIPE DIAMETER = 18. 00 INCHES IIPIPE LENGTH = 16 .54 FEET MANNING'S N = . 01300 II 1 ;90 I -} II HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS IINORMAL DEPTH(FT) = .44 CRITICAL DEPTH(FT) = . 97 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .97 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) 1.384 MOMENTUM(POUNDS) 000 . 965 5. 189 94 .35 .010 . 944 5. 323 1.385 94 .42 I .041 . 923 5.465 1 .388 94 .62 095 . 902 5.617 1 .393 94 .98 177 . 881 5.777 1 .400 95 .49 .289 . 860 5 . 949 1.410 96. 17 I .436 . 839 6 . 131 1.424 1.440 97.02 622 .818 6 .326 98. 06 . 853 .798 6 .533 1.461 99. 31 1. 138 .777 6 .756 1.486 100.77 11 1.484 .756 6.994 1.516 102 .46 1. 902 .735 7.250 1.551 104 .41 2 .405 .714 7. 525 1.593 106.63 I 3 .011 .693 7. 822 1 .643 1 .702 109.15 3 .740 .672 8. 142 112 .00 4 .620 .651 8.488 1 .770 115 .21 5 .689 .630 8.864 1 .850 118.81 II 6.996 .609 9.272 1 .944 122.85 8.615 .588 9.718 2.055 127.37 10.649 .567 10.205 2.185 132 .44 I 13.263 .546 10.739 2.337 2.507 138. 12 16.540 .526 11.292 144 . 12 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS IDOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1 . 81 U PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 1. 810 3 .531 2 .004 1.694 159.59 3 .222 1.500 3 .531 125.40 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1 , 50 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3 .222 1.500 3. 530 1.694 125 .40 3 .433 1.479 3. 540 1 .673 123.17 I 3 .633 1.457 3 .559 1 .654 121.05 3 .826 1.436 3 .583 1.635 119 .01 4 .014 1.414 3 .612 1. 617 117.05 II 4.196 1.393 3 .645 1. 600 115. 16 _ II 2 asJ II II } 4 .374 1.372 3. 682 1 .582 113 .33 4 .546 1.350 3 .723 1 .566 111.58 4 .714 1.329 3 .768 1 .550 109.90 11 4.876 1.308 3 . 816 1 .534 108.28 5.034 1.286 3 . 868 1.519 106 .74 5.186 1 .265 3 . 924 1.504 105 .28 I 5.332 5.472 1 .243 3 . 983 1.490 1.476 103 .90 1 .222 4 . 047 102 .59 5.605 1 .201 4. 114 1.464 101 .37 5.731 1.179 4. 186 1.451 100 .23 I 5. 850 5.961 1.158 4 .262 1 .440 99.18 1 .136 4 .343 1 .429 98.22 6.063 1 .115 4 .428 1.420 97.35 II 6.155 1 .094 4 . 519 1.411 96.59 6.236 1 .072 4 .615 1.403 95.93 6.306 1 .051 4 .717 1 .397 95.38 6 .363 1.030 4 .825 1.391 94 . 94 U 6.406 6.433 1.008 4 . 939 1. 387 94 .61 .987 5.060 1.385 94 .42 6.442 .965 5. 189 1.384 94 .35 I 16.540 .965 5.189 1.384 94 .35 END OF AULIC JUMP ANALYSIS E+MOMENTUM BALANCE OCCURS DRAT 1.76 FEET UPSTREAM OF NODE 111. 00 I DOWNSTREAM DEPTH = 1.641 FEET, UPSTREAM CONJUGATE DEPTH = .536 FEET I INODE 111.10 : HGL = < 1168 .835>;EGL= < 1169.254>;FLOWLINE= < 1167.870> ****************************************************************************** I FLOW PROCESS FROM NODE 111.10 TO NODE 111.10 IS CODE = 8 UPSTREAM NODE 111. 10 ELEVATION = 1167.87 (FLOW IS AT CRITICAL DEPTH) I CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : PIPE FLOW = 6.24 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.19 FEET/SEC. VELOCITY HEAD = .418 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .418) = .084 IINODE 111.10 : HGL = < 1169.337>;EGL= < 1169. 337>;FLOWLINE= < 1167 .870> IIUPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 111. 10 FLOWLINE ELEVATION = 1167 .87 ASSUMED UPSTREAM CONTROL HGL = 1168. 84 FOR DOWNSTREAM RUN ANALYSIS II END OF GRADUALLY VARIED FLOW ANALYSIS II I I 11 1 3 sl S'" 1 �} 1 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 ' Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES ' 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 DESCRIPTION OF STUDY * REDHAWK - UNIT 5 - LINE A-2 * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * * 100 YEAR STORM EVENT J. N. 160097 * FILE NAME: HARHKA2 .DAT TIME/DATE OF STUDY: 16:26 4/30/2001 ' ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ ' NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 108. 00- 1 .36 112 .22 .47* 166.49 } FRICTION 108. 10- .96*Dc 94 .15 .96*Dc 94 . 15 ' 108.10}- CATCH BASIN 1.47* 53 .98 . 96 Dc 31.52 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ' DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 108.00 FLOWLINE ELEVATION = 1172 .87 PIPE FLOW = 6.23 CFS PIPE DIAMETER = 18 .00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1174 .230 NODE 108 .00 : HGL = < 1173.336>;EGL= < 1176. 093>;FLOWLINE= < 1172.870> ' ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108. 10 IS CODE = 1 ' UPSTREAM NODE 108.10 ELEVATION = 1176 .83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.23 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 39.60 FEET MANNING'S N = .01300 131 1 1 NORMAL DEPTH(FT) = .44 CRITICAL DEPTH(FT) _ .96 II UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = . 96 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 .965 5.186 1.382 94 . 15 I .010 .944 5.320 1.383 94 .22 041 .923 5.462 1.386 94 .42 .095 .902 5.613 1.391 94 .78 II .177 . 881 5. 774 1.399 95 .29 288 . 860 5. 945 1.409 95.96 434 . 839 6.128 1 .422 96.82 .620 . 818 6.323 1 .439 97. 86 ' 851 .797 6.531 1 .459 99. 10 1.135 .776 6.753 1 .484 100.56 1.480 .755 6.992 1 .514 102 .25 1.897 .734 7.248 1.550 104 .20 II 2 .400 .713 7 .523 1.592 106 .42 3 .004 .692 7 .820 1. 642 108 .94 3 .731 .671 8 . 140 1. 700 111 .79 I 4 .610 .650 8 .487 1.769 114 .99 5 .676 .629 8.863 1. 849 118 .59 6 .981 .608 9.271 1. 944 122.63 8 .596 .587 9.717 2 .054 127. 15 II 10 .627 .566 10.205 2 . 184 132.22 13.237 .545 10.739 2 .337 137.90 16.702 . 524 11. 328 2 .518 144 .27 I 21.542 . 503 11. 979 2 .733 2 .988 151.43 28.926 .482 12.701 159.49 39.600 .466 13.321 3 .223 166.49 II NODE 108.10 : HGL = < 1177.795>;EGL= < 1178.212>;FLOWLINE= < 1176. 830> I FLOW PROCESS FROM NODE 108.10 TO NODE 108 .10 IS CODE = 8 UPSTREAM NODE 108.10 ELEVATION = 1176.83 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : I PIPE FLOW = 6.23 CFS PIPE DIAMETER = 18 .00 INCHES FLOW VELOCITY = 5. 19 FEET/SEC. VELOCITY HEAD = .417 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .417) = .083 II NODE 108 . 10 : HGL = < 1178.296>;EGL= < 1178.296>;FLOWLINE= < 1176.830> ****************************************************************************** I UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 108 .10 FLOWLINE ELEVATION = 1176.83 ASSUMED UPSTREAM CONTROL HGL = 1177.79 FOR DOWNSTREAM RUN ANALYSIS _= a END OF GRADUALLY VARIED FLOW ANALYSIS II 11 z 1 .} 11 PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 DESCRIPTION OF STUDY * REDHAWK - UNIT 5 - LINE A-3 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * * 100 YEAR STORM EVENT J. N. 160097 FILE NAME: HARHKA3.DAT TIME/DATE OF STUDY: 15 : 15 5/ 1/2001 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ ' NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 95 .00- 1.04 Dc 114 .69 . 52* 193 .86 } FRICTION 95 .10- 1.04*Dc 114 .69 1. 04*Dc 114 .69 ' 95 .101- CATCH BASIN 1 .61* 94 .62 1. 04 Dc 37 .47 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 95.00 FLOWLINE ELEVATION = 1179.66 ' PIPE FLOW = 7.22 CFS PIPE DIAMETER = 18 .00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1180 .270 *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( .61 FT. ) IS LESS THAN CRITICAL DEPTH( 1.04 FT. ) ' ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 95.00 : HGL = < 1180.178>;EGL= < 1182 .940>;FLOWLINE= < 1179.660> FLOW PROCESS FROM NODE 95.00 TO NODE 95 .10 IS CODE = 1 UPSTREAM NODE 95. 10 ELEVATION = 1182.93 (FLOW IS SUPERCRITICAL) i II `r_ 1 CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 7 .22 CFS PIPE DIAMETER = 18. 00 INCHES 11 PIPE LENGTH = 32 .53 FEET MANNING'S N .01300 NORMAL DEPTH(FT) = .47 CRITICAL DEPTH(FT) = 1 .04 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.04 a GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I . 000 1.041 5 .517 1.514 114 .69 . 011 1. 018 5 .654 1.515 114 .77 .045 . 995 5 .799 1.518 115.02 .105 .973 5 .953 1.523 115 .44 I .194 .316 . 950 6.117 1.531 1.543 116 .05 . 927 6 .293 116.86 .476 . 905 6.480 1.557 117.88 1 .679 . 882 6.680 1.575 119.13 . 932 . 859 6.894 1 .598 120.62 1.242 . 837 7.123 1 .625 122.37 1.619 .814 7. 369 1.658 124 .40 I 2. 074 .791 7.633 1.697 126.74 2.622 .769 7. 917 1.743 129.40 3.281 .746 8.223 1.797 132 .43 4. 074 .723 8.554 1.860 135. 84 II 5.032 8. 912 1.935 139.69 6. 194 .678 9.301 2.022 144 .01 7.616 .656 9.724 2. 125 148.86 I 9.376 .633 10. 186 2.245 2.386 154 .29 11.587 .610 10.691 160.38 14 .430 .588 11.245 2.552 167.21 18.205 .565 11.855 2. 749 174 .86 II 23 .477 .542 12 .530 2. 982 183.47 31.520 .520 13 .279 3 .259 193 .16 32 .530 .518 13 .332 3 .280 193.86 II NODE 95.10 : HGL - < 1183.971>;EGL= < 1184.444>;FLOWLINE. < 1182 .930> I FLOW PROCESS FROM NODE 95.10 TO NODE 95. 10 IS CODE = 8 UPSTREAM NODE 95.10 ELEVATION = 1182 .93 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : II PIPE FLOW = 7.22 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5. 52 FEET/SEC. VELOCITY HEAD = .473 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .473) = .095 INODE 95. 10 : HGL = < 1184.538>;EGL= < 1184 .538>;FLOWLINE= < 1182 .930> ****************************************************************************** 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 95 . 10 FLOWLINE ELEVATION = 1182. 93 ASSUMED UPSTREAM CONTROL HGL = 1183 .97 FOR DOWNSTREAM RUN ANALYSIS 1 i ogi I �} s END OF GRADUALLY VARIED FLOW ANALYSIS 1 1 I 1 1 1 I I ~'r_ II PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE II (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 . 5A Release Date: 2/20/92 License ID 1225 Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES II 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 I DESCRIPTION OF STUDY * REDHAWK - UNIT 5 - LINE 4 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR STORM EVENT J. N. 160097 * IIFILE NAME: HARHKA4 .DAT TIME/DATE OF STUDY: 15:34 5/ 1/2001 I ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE II (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 89.00- 1. 07 53 .81 . 39* 55 .56 } FRICTION 89.30- .67 Dc 37.98 .40* 52.91 II } FRICTION+BEND 89.20 . 67 Dc 37 .98 . 36* 60 .06 } FRICTION I 89.10- .67*Dc 37. 98 .67*Dc 37 .98 } CATCH BASIN 89.10- .98* 20.42 . 67 Dc 13 .48 I MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST ICONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 89. 00 FLOWLINE ELEVATION = 1202 . 93 I PIPE FLOW = 3 . 11 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1204 . 000 NODE 89. 00 : HGL = < 1203 .317>;EGL= < 1204.472>;FLOWLINE= < 1202 .930> FLOW PROCESS FROM NODE 89.00 TO NODE 89.30 IS CODE = 1 UPSTREAM NODE 89.30 ELEVATION = 1203 . 83 (FLOW IS SUPERCRITICAL) _ II GI II II `r. • II CALCULATE FRICTION LOSSES (LACFCD) : II _ PIPE FLOW = 3 . 11 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 20.24 FEET MANNING'S N . 01300 NORMAL DEPTH(FT) = . 38 CRITICAL DEPTH(FT) = .67 ' UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .40 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 .404 8.118 1.428 52.91 .628 .403 8.145 1.433 53.05 1 .286 .402 8.172 1.439 53. 19 1 .977 .401 8.200 1.445 53. 33 ' 2 .703 .400 8.227 1 .451 1 .457 53.47 3.469 .399 8.255 53.61 4.277 .398 8.282 1 .464 53 .76 I 5. 134 . 397 8. 310 1 .470 53 .91 6.043 . 396 8. 338 1 .476 54 .05 7.013 . 395 8. 367 1 .483 54 .20 8.050 . 394 8. 395 1 .489 54 .35 I 9. 164 .393 8.424 1.496 54 .50 10. 367 . 392 8.452 1 .502 54 .65 11.672 . 391 8.481 1.509 54 .80 13.097 .390 8.510 1.515 54 .96 II 14.666 .389 8 .540 1.522 55.11 16.408 .388 8 .569 1.529 55.27 18. 365 .387 8 .599 1.536 55.43 I 20.240 .387 8 .624 1.542 55. 56 NODE 89.30 : HGL = < 1204.234>;EGL= < 1205 .257>;FLOWLINE= < 1203.830> IIFLOW PROCESS FROM NODE 89. 30 TO NODE 89.20 IS CODE = 3 UPSTREAM NODE 89.20 ELEVATION = 1205.60 (FLOW IS SUPERCRITICAL) IICALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 3 .11 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 45.000 DEGREES MANNING'S N = .01300 IPIPE LENGTH = 52.18 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) _ . 41 CRITICAL DEPTH(FT) = .67 II UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) _ .36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 .362 9.459 1.752 60.06 I .903 .364 9.393 1.735 59. 71 1.838 .366 9.328 1.718 59.35 2 . 806 .367 9.264 1.701 59.00 II 3 . 811 .369 9.201 1.685 58. 66 II ; i9 II xt I4 .857 . 371 9. 138 1 .669 58. 32 5.947 .373 9. 077 1.653 57. 99 7 .087 . 375 9. 016 1.637 57.66 I 8 .283 . 376 8. 955 1.622 57.33 9.540 . 378 8. 896 1.608 57. 01 10 .868 .380 8.837 1.593 56.70 I 12 .276 .382 8.779 1.579 56.38 13 .775 .383 8 .721 1.565 56.08 15 .382 .385 8 .664 1.552 55.77 17 .113 .387 8 .608 1.538 55 .48 II 18 .994 .389 8 .553 1.525 55 .18 21.055 .391 8 .498 1.513 54 .89 23 .340 .392 8 .443 1.500 54 .60 I 25. 908 .396394 8 .390 1 .488 54 .32 28. 848 8 .336 1 .476 54 .04 32 .295 .398 8 .284 1 . 464 53 .77 36.477 .400 8 .232 1.452 53.50 I 41.822 .401 8 .181 1.441 53.23 49.290 .403 8.130 1.430 52. 97 52.180 .404 8 .118 1.428 52 . 91 IINODE 89.20 : HGL = < 1205. 962>;EGL= < 1207.352>;FLOWLINE= < 1205.600> ****************************************************************************** II FLOW PROCESS FROM NODE 89.20 TO NODE 89. 10 IS CODE = 1 UPSTREAM NODE 89. 10 ELEVATION = 1210.97 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : II PIPE FLOW = 3 .11 CFS PIPE DIAMETER = 18. 00 INCHES PIPE LENGTH = 87.71 FEET MANNING'S N = . 01300 I NORMAL DEPTH(FT) = .35 CRITICAL DEPTH(FT) _ .67 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .67 ========= = IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 .671 4 .063 . 927 37. 98 . 009 .658 4 . 167 . 928 38. 00 .036 .645 4 .276 .929 38.07 I .084 .632 4 .391 . 932 38. 19 .156 .620 4 .512 . 936 38. 36 .253 .607 4 .640 . 941 38.58 I .381 .594 4 .774 . 948 38.86 .542 .581 4.916 . 957 39.20 .741 .568 5 .065 . 967 39.61 .985 .556 5.224 . 980 40.08 I 1.279 .543 5.392 .994 40.62 1.633 .530 5.570 1.012 41.24 2. 056 .517 5. 759 1.032 41. 94 2 .562 .504 5.960 1.056 42.73 II 3 . 166 .491 6. 175 1.084 43 .62 3 .890 .479 6.403 1. 116 44 .60 4 .762 .466 6 . 648 1. 152 45.69 II5 .819 .453 6. 910 1. 195 46. 91 II 4296 1 4} I7 .116 .440 7.191 1.244 48.25 8 .731 .427 7 .494 1. 300 49.73 10.785 .414 7 .819 1.364 51.37 II 13 .485 .402 8 .171 1.439 53 . 18 17.215 . 389 8 .552 1.525 55. 18 22. 840 . 376 8 .965 1 .625 57 .39 II 33. 138 .363 9.415 1 .741 59.83 87.710 .362 9.459 1.752 60.06 NODE 89.10 : HGL = < 1211.641>;EGL= < 1211.897>;FLOWLINE= < 1210.970> II FLOW PROCESS FROM NODE 89. 10 TO NODE 89.10 IS CODE = 8 1 UPSTREAM NODE 89. 10 ELEVATION = 1210. 97 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD) : PIPE FLOW = 3 .11 CFS PIPE DIAMETER = 18. 00 INCHES I FLOW VELOCITY = 4 .06 FEET/SEC. VELOCITY HEAD = .256 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .256) = .051 I NODE 89.10 : HGL = < 1211.949>;EGL= < 1211.949>;FLOWLINE= < 1210.970> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: I NODE NUMBER = 89.10 FLOWLINE ELEVATION = 1210. 97 ASSUMED UPSTREAM CONTROL HGL = 1211.64 FOR DOWNSTREAM RUN ANALYSIS I END OF GRADUALLY VARIED FLOW ANALYSIS I I 1 II II II 1 II II 77e ,22065 -5- .7‘91 1 PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE ' (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 . 5A Release Date: 2/20/92 License ID 1225 I Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 ' ************************** DESCRIPTION OF STUDY ************************** * REDHAWK - UNIT 5 - LINE 5 * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * 100 YEAR STORM EVENT J. N. 160097 FILE NAME: HARHKA5.DAT TIME/DATE OF STUDY: 15 :45 5/ 1/2001 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ ' NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 88. 00- .92 76.72 .39* 156.16 } FRICTION 88. 10- .89*Dc 76 .58 . 89*Dc 76 .58 ' 88. 101- CATCH BASIN 1.33* 42.61 .89 Dc 26 .14 ' MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. IDOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 88.00 FLOWLINE ELEVATION = 1203.48 PIPE FLOW = 5.33 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1204.400 NODE 88. 00 : HGL = < 1203. 867>;EGL= < 1207.255>;FLOWLINE= < 1203.480> 1 FLOW PROCESS FROM NODE 88. 00 TO NODE 88 .10 IS CODE = 1 UPSTREAM NODE 88. 10 ELEVATION = 1207.81 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) • PIPE FLOW = 5. 33 CFS PIPE DIAMETER = 18 .00 INCHES PIPE LENGTH = 24 .04 FEET MANNING'S N = . 01300 1 age . I ,} II NORMAL DEPTH(FT) = . 35 CRITICAL DEPTH(FT) = . 89 _ I UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = .89 _ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 .889 4. 882 1.260 76.58 I . 006 .868 5.029 1.261 76.65 025 .846 5. 185 1.264 76. 87 . 059 .825 5.353 1.270 77.23 II 109 .803 5.532 1.279 77.77 179 .782 5.724 1.291 78.48 .272 .760 5.930 1.306 79.37 .389 .738 6 .151 1.326 80.47 I . 537 .717 .695 6.390 1.351 81.79 720 6.647 1 .382 B3 .35 . 944 .674 6.926 1.419 85 .17 II 1.216 .652 7 .227 1.464 87 .28 1.548 .631 7 .555 1.518 89.70 1.950 .609 7.913 1.582 92.46 2 .439 .587 8.304 1.659 95. 61 11 3 .036 .566 8.732 1.751 99.20 3 .769 .544 9.203 1.860 103.27 4 .675 .523 9.723 1.992 107.88 5 .811 .501 10.300 2.150 113. 12 I 7 .256 .480 10.942 2.340 119.08 9. 139 .458 11.660 2. 570 125. 86 11.674 .436 12.467 2.852 133.61 I 15 .266 .415 13.381 3.197 142 .49 20.828 .393 14.420 3.624 152.72 24 .040 .387 14.768 3.775 156. 16 ' NODE 88. 10 : HGL = < 1208.699>;EGL= < 1209.070>;FLOWLINE= < 1207.810> I FLOW PROCESS FROM NODE UPSTREAM NODE 88. 10 88.10 TO NODE 88.10 IS CODE = 8 ELEVATION = 1207.81 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD) : I PIPE FLOW = 5.33 CFS PIPE DIAMETER = 18. 00 INCHES FLOW VELOCITY = 4 .88 FEET/SEC. VELOCITY HEAD = .370 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .370) = . 074 I NODE 88. 10 : HGL = < 1209.144>;EGL= < 1209. 144>;FLOWLINE= < 1207.810> I UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 88.10 FLOWLINE ELEVATION = 1207.81 ASSUMED UPSTREAM CONTROL HGL = 1208.70 FOR DOWNSTREAM RUN ANALYSIS IIEND OF GRADUALLY VARIED FLOW ANALYSIS II II 0193 II `r_ I I PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 IIAnalysis prepared by: I CROSBY MEAD BENTON & ASSOCIATES 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 II ************************** DESCRIPTION OF STUDY * REDHAWK -UNIT 5 - LINE A-6 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR STORM EVENT J. N. 160097 * 1 FILE NAME: HARHKA6-DAT TIME/DATE OF STUDY: 13:51 5/ 1/2001 II GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 82.10- .99 DC 101.26 .49* 173 .36 } FRICTION II 82.20- .99*Dc 101.26 . 99*Dc 101.26 } CATCH BASIN 82 .20- 1.52* 84.52 .99 Dc 33 . 63 I MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. IIDOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82 ,10 FLOWLINE ELEVATION = 1209. 09 I PIPE FLOW = 6.58 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1209.990 *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( .90 FT. ) IS LESS THAN CRITICAL DEPTH( .99 FT. ) II ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS IINODE 82.10 : HGL = < 1209.581>;EGL= < 1212 .244>;FLOWLINE= < 1209.090> FLOW PROCESS FROM NODE 82 . 10 TO NODE 82 .20 IS CODE = 1 II UPSTREAM NODE 82 .20 ELEVATION = 1212 .42 (FLOW IS SUPERCRITICAL) _ 1 V9 ' '1-: IICALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 6 .58 CFS PIPE DIAMETER = 18.00 INCHES I PIPE LENGTH = 33.32 FEET MANNING'S N = .01300 NORMAL DEPTH(FT) = .45 CRITICAL DEPTH(FT) = - 99 11 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) II . 000 .992 5 .303 1.429 101 .26 010 .971 5 .438 1.430 101.34 042 .949 5 .581 1.433 101 .56 .099 .927 5 .733 1 .438 101 .93 II 183 .906 5 .896 1 .446 102 .48 298 .884 6.068 1 .456 103 .20 .450 . 863 6.253 1 .470 104.11 .642 . 841 6 .449 1 .487 105 .22 I .881 . 820 6 .659 1 .509 106.55 1.174 .796 6 .884 1.534 108.11 1 .531 . 776 7 .125 1 .565 109.92 I 1. 962 . 755 7 .384 1 , 602 112.00 2 .482 .733 7.662 1.646 114 .38 3 .106 .712 7.962 1.697 117.07 3 .858 .690 8 .286 1. 757 120. 11 II 4 .766 .669 8.637 1. 828 123 .54 5.868 .647 9.017 1. 910 127. 38 7.217 .625 9.431 2. 007 131.70 I 8.885 .604 9.882 2.121 136.53 10. 983 .582 10.375 2.255 141. 95 13 .679 .561 10.917 2.412 148.02 17.258 .539 11 .513 2. 598 154 .83 t 22 .258 .517 12.171 2. 819 162 .49 29.885 .496 12.902 3 . 082 171.10 33 .320 .491 13.092 3. 154 173 .36 II NODE 82 .20 : HGL = < 1213.412>;EGL= < 1213.849>;FLOWLINE= < 1212.420> I FLOW PROCESS FROM NODE 82.20 TO NODE 82 .20 IS CODE = 8 UPSTREAM NODE 82.20 ELEVATION = 1212 .42 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD) : II PIPE FLOW = 6.58 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.31 FEET/SEC. VELOCITY HEAD = .437 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .437) = .087 IINODE 82.20 : HGL = < 1213 .937>;EGL= < 1213 .937>;FLOWLINE= < 1212.420> II UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82 .20 FLOWLINE ELEVATION = 1212 .42 ASSUMED UPSTREAM CONTROL HGL = 1213.41 FOR DOWNSTREAM RUN ANALYSIS II II 29s 1 �} END OF GRADUALLY VARIED FLOW ANALYSIS I 1 1 1 I 1 I II } 1 PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE II (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4.5A Release Date: 2/20/92 License ID 1225 IIAnalysis prepared by: CROSBY MEAD BENTON & ASSOCIATES II 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 I ************************** DESCRIPTION OF STUDY ************************** * REDHAWK - UNIT 5 - LINE 7 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * I * 100 YEAR STORM EVENT J. N. 160097 * ************************************************************************** II FILE NAME: HARHKA7.DAT TIME/DATE OF STUDY: 14:20 5/ 1/2001 II ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE II (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 82.00- 2.88* 435.92 .82 378.76 } FRICTION 82.03- 2.55* 399.16 .83 377.77 I } FRICTION+BEND } HYDRAULIC JUMP 82.02- 1.66 301.21 .84* 372.46 } FRICTION I 82.01- 1.37*Dc 278.51 1.37*Dc 278.51 } CATCH BASIN 82.01- 2.56* 199.89 1.37 Dc 68.42 I MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. I ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82.00 FLOWLINE ELEVATION = 1217.19 II PIPE FLOW = 13.54 CFS PIPE DI070AMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1220. NODE 82.00 : HGL = < 1220.070>;EGL= < 1220.982>;FLOWLINE= < 1217.190> I ****************************************************************************** FLOW PROCESS FROM NODE 82.00 TO NODE 82.03 IS CODE = 1 II UPSTREAM NODE 82.03 ELEVATION = 1217.69 (FLOW IS UNDER PRESSURE) - 6197 II '} I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 13 .54 CFS PIPE DIAMETER = 18.00 INCHES I PIPE LENGTH = 10 .03 FEET MANNING'S N = . 01300 SF= (Q/K) **2 = ( ( 13.54) / ( 105 .050) ) **2 = .01661 HF=L*SF = ( 10 .03) * ( .01661) = .167 IINODE 82.03 : HGL = < 1220.237>;EGL= < 1221.148>;FLOWLINE= < 1217 .690> I FLOW PROCESS FROM NODE 82.03 TO NODE 82 .02 IS CODE 3 UPSTREAM NODE 82.02 ELEVATION = 1219.20 (HYDRAULIC JUMP OCCURS) I CALCULATE PIPE-BEND LOSSES(LACFCD) : PIPE FLOW = 13 . 54 CFS PIPE DIAMETER = 18 .00 INCHES CENTRAL ANGLE = 38.500 DEGREES MANNING'S N = . 01300 PIPE LENGTH = 30 .24 FEET 1 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = . 82 CRITICAL DEPTH(FT) = 1 .37 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .84 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 .839 13.322 3 .596 372 .46 1 547 .838 13 338 3 602 372 .84 3.164 .837 13 .355 3 .608 373 .22 I 4.855 6 .629 .836 13.372 3 .614 3 .620 373 .61 .835 13 .389 374 .00 8.493 .834 13 .405 3 .626 374 .38 10 .457 .833 13.422 3 .633 374 .77 II 12. 531 .833 13.439 3 .639 3 .645 375.16 14.728 .832 13.456 375.55 17.063 .831 13.473 3 .651 375 .95 I 19.554 .830 13.490 3 .658 376.34 22.222 .829 13.507 3 .664 376.73 25. 094 .828 13 .524 3 .670 377.13 28.202 . 827 13 . 541 3 .677 377.53 II30.240 . 827 13. 552 3 .680 377.77 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS IIDOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2. 55 PRESSURE FLOW PROFILE COMPUTED INFORMATION: IDISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 2 .547 7.662 3 .458 399.16 1 30.240 1 .658 7 .662 2 .570 301.21 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 6.87 FEET UPSTREAM OF NODE 82. 03 II I DOWNSTREAM DEPTH = 2 .345 FEET, UPSTREAM CONJUGATE DEPTH = .829 FEET I II .198' 1 ,}. II NODE 82.02 : HGL = < 1220.038>;EGL= < 1222.796>;FLOWLINE= < 1219.200> IIFLOW PROCESS FROM NODE 82 .02 TO NODE 82 .01 IS CODE = 1 UPSTREAM NODE 82.01 ELEVATION = 1224 .60 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 13 .54 CFS PIPE DIAMETER = 18. 00 INCHES PIPE LENGTH = 107. 90 FEET MANNING'S N = .01300 IINORMAL DEPTH(FT) = .82 CRITICAL DEPTH(FT) = 1.37 tUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1 .37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: II DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1.368 8 .004 2. 364 278 .51 I .034 1.346 8 .097 2.365 278 .63 137 1.324 8 .199 2 .368 279.01 313 1.302 8 .309 2 .375 279.64 .566 1.280 8 .427 2 .383 280.52 I .902 1.258 8 .554 2 .395 281.67 1.328 1.236 8 .691 2 .409 283 . 08 1.854 1.214 8 .836 2 .427 284 . 77 2.490 1.192 8 .991 2 .448 286. 74 II 3 .250 1.170 9.155 2 .472 289. 01 4 .151 1.148 9.331 2 .500 291. 59 5 .213 1.126 9.517 2 .533 294.49 I 6.461 1.103 9.714 2 .570 297.74 7 .927 1.081 9.924 2 .612 301.34 9.650 1.059 10.146 2 .659 305.33 11.683 1.037 10 .382 2 .712 309.71 II 14 .093 1.015 10 .633 2 .772 314 .52 16 .975 . 993 10 .900 2 .839 319.79 20.460 .971 11 . 183 2 .914 325. 54 ' 24 .740 . 949 11.484 2 .998 331. 80 30 .115 . 927 11 .805 3 .092 338.62 37.087 . 905 12.147 3 .198 346. 04 46. 600 . 883 12 .512 3 .315 354 . 10 I 60.773 . 861 12.901 3 .447 362. 85 86.410 . 839 13.317 3.594 372.35 107. 900 . 839 13 . 322 3 .596 372 .46 IINODE 82.01 : HGL = < 1225.968>;EGL= < 1226 .964>;FLOWLINE= < 1224 .600> I FLOW PROCESS FROM NODE 82. 01 TO NODE 82 .01 IS CODE = 8 UPSTREAM NODE 82 .01 ELEVATION = 1224.60 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD) : II - PIPE FLOW = 13 .54 CFS PIPE DIAMETER = 18. 00 INCHES FLOW VELOCITY 8.01 FEET/SEC. VELOCITY HEAD . 995 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( . 995) = .199 1 II 17e 02306 --. 1 �} NODE 82 .01 : HGL = = 1227. 163>;EGL= < 1227 .163>;FLOWLINE= < 1224 .600> ' UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 82 .01 FLOWLINE ELEVATION = 1224 .60 ASSUMED UPSTREAM CONTROL HGL = 1225 .97 FOR DOWNSTREAM RUN ANALYSIS r = END OF GRADUALLY VARIED FLOW ANALYSIS 1 1 t 1 r I I I I Soo II II PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE I (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4.5A Release Date: 2/20/92 License ID 1225 I Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 1 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 U DESCRIPTION OF STUDY * REDHAWK UNIT 5 - LINE 8 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR STORM EVENT J. N. 160097 * IIFILE NAME: HARHKA8.DAT TIME/DATE OF STUDY: 14 :41 5/ 1/2001 I ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE II (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ ' NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 75.00- 3.06* 398 .75 .78 295 .19 } FRICTION 75. 10- 1.69* 247.20 1.29 Dc 217 .76 1 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 I NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. DOWNSTREAM PIPE FLOW CONTROL DATA: I NODE NUMBER = 75.00 FLOWLINE ELEVATION = 1217.72 PIPE FLOW = 11.46 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1220.780 I NODE 75. 00 : HGL = < 1220.780>;EGL= < 1221.433>;FLOWLINE= < 1217.720> II FLOW PROCESS FROM NODE 75. 00 TO NODE 75. 10 IS CODE = 1 UPSTREAM NODE 75.10 ELEVATION = 1219.28 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES (LACFCD) :I - PIPE FLOW 11.46 CFS PIPE DIAMETER = 18 .00 INCHES PIPE LENGTH = 15. 60 FEET MANNING'S N . 01300 SF= (Q/K) **2 = ( ( 11.46) / ( 105. 045) ) **2 = .01190 II HF=L*SF = ( 15.60) * ( .01190) = .186 _ 1 NODE 75.10 : HGL = < 1220.966>;EGL= < 1221.619>;FLOWLINE= < 1219.280> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 75. 10 FLOWLINE ELEVATION = 1219.28 ' ASSUMED UPSTREAM CONTROL HGL = 1220.57 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 1 1 1 1 1 1 1 367- 1 �r II PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE I (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 . 5A Release Date: 2/20/92 License ID 1225 IIAnalysis prepared by: CROSBY MEAD BENTON & ASSOCIATES I 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 IDESCRIPTION OF STUDY REDHAK - UNI5 - LIE B * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR STORM EVENT J. N. 160097 * IIFILE NAME: HARHKB.DAT TIME/DATE OF STUDY: 11:29 5/ 1/2001 II GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE II (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 96. 00- 1.71 Dc 498.72 . 97* 711.61 } FRICTION 107.50- 1.71 DC 498.72 1. 12* 617.47 II } JUNCTION 107 .00 2 . 16 479.38 . 90* 607.62 } FRICTION I 106.00- 1.61 Dc 416.19 .88* 625.89 } FRICTION+BEND 105. 00- 1.61 Dc 416.19 .91* 605. 03 } FRICTION II 104. 00- 1.61 Dc 416.19 .91* 602 .06 } JUNCTION 103 . 00- 1 .47 Dc 529.90 1 .28* 553 .53 } FRICTION+BEND II 102 .60- 1 .47 Dc 529.90 1 .37* 536.23 } FRICTION 102 .50- 1.47*Dc 529.90 1.47*Dc 529.90 I 102 .001- JUNCTION 2 . 87* 514.71 1.21 378 .64 } FRICTION 101 .50- 2. 71* 497.62 1.42 Dc 361 .30 l 101 .001- JUNCTION 3 . 69* 477.66 . 86 281. 11 } FRICTION } HYDRAULIC JUMP I 100.10- 1.31 Dc 227.47 . 89* 273 . 17 1 50 1 `} I } MANHOLE 100. 00- 1 .31 Dc 227 .47 . 90* 270 .36 } FRICTION+BEND I 99.60- 1 .31 Dc 227 .47 . 86* 282.16 } MANHOLE 99.50- 1 .31 Dc 227 .47 .87* 279.36 I } FRICTION+BEND 99.00 1 .31*Dc 227 .47 1.31*Dc 227.47 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 IINOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. I DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 96.00 FLOWLINE ELEVATION = 1176. 59 PIPE FLOW = 22. 97 CFS PIPE DIAMETER = 24 .00 INCHES II ASSUMED DOWNSTREAM CONTROL HGL = 1177 .590 *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.00 FT. ) IS LESS THAN CRITICAL DEPTH( 1 .71 FT. ) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH IIFOR UPSTREAM RUN ANALYSIS NODE 96.00 : HGL = < 1177.565>;EGL= < 1181.108>;FLOWLINE= < 1176.590> II FLOW PROCESS FROM NODE 96. 00 TO NODE 107. 50 IS CODE = 1 UPSTREAM NODE 107.50 ELEVATION = 1178.76 (FLOW IS SUPERCRITICAL) II CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 22 .97 CFS PIPE DIAMETER = 24 .00 INCHES II PIPE LENGTH = 33 .65 FEET MANNING'S N = . 01300 NORMAL DEPTH(FT) _ . 88 CRITICAL DEPTH(FT) = 1 .71 I UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = = 1.12 = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(PT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 1.123 12.640 3 .606 617.47 I 1.223 1.113 12.777 3 .650 3.696 622 .43 2 .527 1.104 12 .916 627.55 3 . 919 1. 094 13 .058 3.743 632 .82 5.407 1. 084 13 .204 3.793 638 .25 II 7.001 1. 074 13 .354 3.845 643 .84 8 .713 1. 065 13 .506 3. 899 649.60 10.556 1. 055 13 .663 3 . 955 655.54 I 12 .545 1. 045 13 .823 4. 014 4. 075 661.66 14 .699 1. 035 13 .987 667. 96 17 .040 1.026 14 . 155 4. 139 674.45 19.594 1.016 14 .327 4.205 681. 13 ' 22 .394 1.006 14 .504 4 .275 688.02 25.479 . 996 14 .685 4 . 347 695.12 28 .901 .987 14 .870 4 .422 702 .43 II 32.724 .977 15.060 4 .501 709. 96 _ II 30 1 L} t33 .650 .975 15.102 4 .516 711.61 NODE 107. 50 : HGL = < 1179.883>;EGL= < 1182. 366>;FLOWLINE= < 1178 .760> II FLOW PROCESS FROM NODE 107.50 TO NODE 107. 00 IS CODE = 5 I UPSTREAM NODE 107.00 ELEVATION = 1178 .86 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I UPSTREAM (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) 20.22 24.00 .00 1178.86 1.61 14.671 DOWNSTREAM 22.97 24 .00 - 1178.76 1.71 12.645 I LATERAL #1 LATERAL #2 2.75 18.00 45.00 1179.06 .63 3 .044 . 00 .00 .00 .00 . 00 . 000 Q5 . 00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .04541 II DOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .02810 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .03676 JUNCTION LENGTH = 2 .00 FEET I FRICTION LOSSES = . 074 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS)+ (ENTRANCE LOSSES) JUNCTION LOSSES = ( .667)+( .074) + ( . 000) = .740 II NODE 107.00 : HGL = < 1179.764>;EGL= < 1183 . 106>;FLOWLINE= < 1178.860> II FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE = 1 UPSTREAM NODE 106.00 ELEVATION = 1179.39 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : I PIPE FLOW = 20.22 CFS PIPE DIAMETER-= 24.00 INCHES PIPE LENGTH = 15.71 FEET MANNING'S N .01300 IINORMAL DEPTH(FT) = .98 :RITICALRDEPTH(FT) = 1. 61 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) . 88 II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 . 880 15.184 4 .462 625.89 2 .544 .884 15.090 4 .422 622.56 5.175 . 888 14.997 4.383 619.27 II 7.901 .892 14 .906 4 .345 616.03 10.732 .897 14. 815 4 .307 612.83 13 .677 . 901 14 .726 4 .270 609.68 15 .710 . 904 14 .667 4 .246 607.62 IINODE 106.00 : HGL = < 1180.270>;EGL= < 1183 . 852>;FLOWLINE= < 1179.390> I .} IIFLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 3 UPSTREAM NODE 105 .00 ELEVATION = 1181.32 (FLOW IS SUPERCRITICAL) I CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 20.22 CFS PIPE DIAMETER = 24 . 00 INCHES CENTRAL ANGLE = 45.000 DEGREES MANNING'S N = .01300 I PIPE LENGTH = 35 .34 FEET BEND COEFFICIENT(KB) _ NORMAL DEPTH(FT) _ . 86 CRITICAL DEPTH(FT) = 1 .61 II UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = . 91 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 .907 14 .593 4.216 605. 03 II 1.744 .905 14 .635 4.233 606.48 3 . 569 .903 14 .676 4 .250 607. 94 5.484 .901 14 .718 4.267 609.41 7.496 .899 14 .760 4 .284 610.89 I 9.615 .897 14 .802 4 .302 612 .38 11. 851 .895 14 .845 4 .319 613 .88 14.219 .893 14 .888 4 .337 615 .39 I 16.731 .891 14 .931 4 .355 616 .91 19.408 .889 14 .974 4 .373 618 .43 22.268 .887 15 .017 4 .391 619.97 25.339 .885 15 .061 4 .410 621 .52 II 28.650 .883 15 .105 4 .428 623.08 32.242 .881 15.149 4 .447 624 .64 35. 340 .880 15 .184 4 .462 625.89 INODE 105 .00 : HGL = < 1182.227>;EGL= < 1185.536>;FLOWLINE= < 1181.320> I FLOW PROCESS FROM NODE 105.00 TO NODE 104 .00 IS CODE = 1 UPSTREAM NODE 104 .00 ELEVATION = 1181 .52 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 20.22 CFS PIPE DIAMETER = 24 .00 INCHES PIPE LENGTH = 3 .73 FEET MANNING'S N = .01300 II NORMAL DEPTH(FT) = .86 CRITICAL DEPTH(FT) = 1.61 UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = . 91 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 4 . 182 MOMENTUM(POUNDS) 000 . 911 14.509 602 . 06 1.751 .909 14 .549 4 . 198 603 .49 3.584 .907 14 .590 4 .215 604 . 92 II3.730 .907 14 .593 4 .216 605.03 NODE 104 .00 : HGL = < 1182 .431>;EGL= < 1185.702>;FLOWLINE= < 1181.520> II 11 3619 I FLOW PROCESS FROM NODE 104 .00 TO NODE 103 .00 IS CODE = 5 UPSTREAM NODE 103 .00 ELEVATION = 1182.24 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) ' UPSTREAM 20 .22 18.00 . 00 1182 .24 1 .47 12. 623 DOWNSTREAM 20 .22 24 .00 - 1181.52 1.61 14. 513 LATERAL #1 .00 . 00 .00 .00 .00 .000 LATERAL #2 .00 . 00 .00 .00 . 00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS (DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .03486 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .04410 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 03948 JUNCTION LENGTH = 4 .00 FEET FRICTION LOSSES = . 158 FEET ENTRANCE LOSSES = .000 FEET I JUNCTION LOSSES = (DY+HV1-HV2) +(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( .130) + ( .158) + ( .000) = .288 NODE 103 .00 : HGL = < 1183.516>;EGL= < 1185 .990>;FLOWLINE= < 1182.240 FLOW PROCESS FROM NODE 103 . 00 TO NODE 102 .60 IS CODE = 3 IIUPSTREAM NODE 102.60 ELEVATION = 1191.67 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 20.22 CFS PIPE DIAMETER = 18.00 INCHES IICENTRAL ANGLE = 51.900 DEGREES MANNING'S N = .01300 PIPE LENGTH = 269.29 FEET BEND COEFFICIENT(KB) = ' NORMAL DEPTH(FT) = 1.27 & 1 .49 CRITICAL DEPTH(FT) = 1 .47 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.37 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1.374 11. 920 3 .581 536.23 1 .759 1 .370 11.944 3.586 536.74 II 3 .621 1.366 11. 969 3.591 537.28 5.596 1. 362 11 . 994 3 .597 537. 82 7.693 1.357 12 .019 3.602 538. 39 9. 922 1.353 12 .045 3 .608 538. 98 II12.297 1. 349 12 .071 3.613 539. 58 14 .832 1.345 12 .098 3.619 540.20 17.546 1.341 12.125 3 .625 540. 84 II 20.460 1.337 12.152 3 .632 541.49 23 .597 1 .333 12.180 3 .638 542 . 17 26.990 1.329 12.209 3 .645 542 .86 30 .675 1.325 12.237 3 .652 543 .57 II II 77e0230 65 -s3 r7 II 30t 1 x} II34 .698 1.321 12 .267 3 .659 544 . 30 39. 117 1.317 12 .296 3 .666 545 .04 44 .008 1.313 12 .327 3 .674 545 .81 II 49.469 1.309 12 .357 3 .681 546.59 55 .634 1.305 12 .388 3.689 547.39 62 .691 1.300 12 .419 3.697 548.20 II 70 .915 1.296 12 .451 3 .705 549. 04 80 .733 1.292 12 .484 3.714 549. 89 92 .859 1.288 12 .516 3.722 550.76 108 .634 1.284 12 .549 3.731 551.65 II 131 .070 1 .280 12 .583 3 , 740 552 .56 169.831 1 .276 12 .617 3 .750 553 .49 269.290 1.276 12 .619 3 . 750 553 .53 INODE 102 . 60 : HGL = < 1193 .044>;EGL= < 1195 .252>;FLOWLINE= < 1191.670> I FLOW PROCESS FROM NODE 102 .60 TO NODE 102.50 IS CODE = 1 UPSTREAM NODE 102 .50 ELEVATION = 1192.40 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 20.22 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 20.87 FEET MANNING'S N = . 01300 I NORMAL DEPTH (FT) = 1.27 & 1 .49 CRITICAL DEPTH(FT) = 1 .47 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1 .47 II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1.469 11.497 3 .523 529. 90 .236 1.461 11 .520 3.523 529. 95 I 846 1.453 11.546 3.524 530. 11 1.744 1.445 11 .574 3.527 530.35 2 .888 1.437 11 .604 3.530 530.69 I 4.258 1.430 11 .636 3.534 3.538 531. 10 5 .844 1.422 11 .671 531 .60 7.648 1.414 11 .707 3.543 532.17 9.676 1 .406 11.745 3. 549 532 .81 1 11.941 1.398 11.784 3 .556 533 .53 14 .463 1 .390 11.826 3 .563 534.32 17.267 1.383 11.869 3 .571 535.17 20.386 1.375 11. 914 3 .580 536.10 II20.870 1.374 11. 920 3 .581 536.23 NODE 102 .50 : HGL = < 1193.869>;EGL= < 1195 .922>;FLOWLINE= < 1192 .400> II FLOW PROCESS FROM NODE 102.50 TO NODE 102.00 IS CODE = 5 UPSTREAM NODE 102 .00 ELEVATION = 1192 .53 (FLOW IS AT CRITICAL DEPTH) IICALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) 1 ;} IUPSTREAM 16 .02 18. 00 .00 1192 .53 1.42 9.065 DOWNSTREAM 20 .22 18.00 - 1192 .40 1.47 11 .500 LATERAL #1 4 .20 18. 00 45 .00 1192 .47 .79 2.377 I LATERAL #2 .00 . 00 .00 .00 .00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== I LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1*V1*COS(DELTA1) -Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = . 02326 I DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE _ . 03313 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02819 JUNCTION LENGTH = 4 . 00 FEET II FRICTION LOSSES = .113 FEET ENTRANCE LOSSES = . 000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = ( . 636) +( .113)+( .000) _ .749 II NODE 102.00 : HGL = < 1195 .396>;EGL= < 1196.672>;FLOWLINE= < 1192.530> FLOW PROCESS FROM NODE 102 .00 TO NODE 101.50 IS CODE = 1 IIUPSTREAM NODE 101.50 ELEVATION = 1193 .10 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES (LACFCD) : I PIPE FLOW = 16.02 CFS PIPE DIAMETER== 18.00 INCHES PIPE LENGTH = 17. 84 FEET MANNING'S N .01300 SF= (Q/K) **2 = ( ( 16 .02) / ( 105.046) ) **2 = .02326 HF=L*SF = ( 17 .84) * ( .02326) = .415 I NODE 101.50 : HGL = < 1195.810>;EGL= < 1197.087>;FLOWLINE= < 1193 .100> FLOW PROCESS FROM NODE 101. 50 TO NODE 101.00 IS CODE = 5 UPSTREAM NODE 101.00 ELEVATION = 1193.24 (FLOW IS UNDER PRESSURE) I CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) I UPSTREAM 11 .81 18.00 . 00 1193 .24 1.31 6.683 DOWNSTREAM 16.02 18.00 1193.10 1 .42 9.065 LATERAL #1 4 .21 18.00 45. 00 1193.13 .79 2.382 LATERAL #2 .00 .00 . 00 .00 .00 . 000 I Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: I DY= (Q2*V2-Q1*V1*COS(DELTA1) -Q3*V3*COS(DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16.1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE = . 01264 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .02326 I AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01795 JUNCTION LENGTH = 4 .66 FEET FRICTION LOSSES = .084 FEET ENTRANCE LOSSES = .000 FEET JUNCTION LOSSES = (DY+HV1-HV2) + (FRICTION LOSS) +(ENTRANCE LOSSES) II JUNCTION LOSSES = ( .458) + ( . 084) + ( .000) = .542 NODE 101.00 : HGL = < 1196. 935>;EGL= < 1197 .628>;FLOWLINE= < 1193 .240> II f II FLOW PROCESS FROM NODE 101.00 TO NODE 100.10 IS CODE = 1 UPSTREAM NODE 100.10 ELEVATION = 1202.49 (HYDRAULIC JUMP OCCURS) IICALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 11.81 CFS PIPE DIAMETER = 18. 00 INCHES I PIPE LENGTH = 289. 15 FEET MANNING'S N = .01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS 1 NORMAL DEPTH(FT) = .86 CRITICAL DEPTH(FT) = 1. 31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = . 89 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 2.698 MOMENTUM(POUNDS) . 000 .892 10.783 273 .17 1.462 .891 10.800 2 .703 273 .48 2 . 991 .889 10. 818 2.708 273 .79 II4 .593 .888 10. 835 2.712 274 .11 6.275 .887 10. 852 2.717 274 .42 8.045 .886 10. 870 2 .722 274.74 II 9.911 .885 10. 887 2 .726 275 .06 11.885 . 883 10. 904 2 .731 275.38 13 .979 . 882 10. 922 2 .736 275.70 16.206 . 881 10.940 2 .741 276.03 II 18.585 . 880 10.957 2 .745 276.35 21.136 . 879 10. 975 2 .750 276.68 23 .885 . 878 10.993 2.755 277.01 I 26.864 . 876 11.011 2 .760 277.34 30.112 . 875 11 .028 2.765 277.67 33 .682 .874 11 .046 2.770 278.00 37 .640 . 873 11.064 2.775 278 .33 I 42 .079 .872 11 .083 2 .780 278 .67 47.127 .871 11 .101 2.785 279.01 52. 973 .869 11 .119 2.790 279.35 II 59.909 .868 11 .137 2.795 279.69 68.426 .867 11.156 2.801 280 .03 79.440 .866 11.174 2. 806 280 .37 95.015 .865 11.192 2 . 811 280.72 I 121.770 . 863 11.211 2 .816 281.07 289.150 .863 11.213 2 .817 281. 11 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS II DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 3 .69 _ II PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I 000 3 .695 6.683 4.388 477.66 113.419 1 .500 6.683 2.194 235.65 I ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 _ I j1 1 `,. I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 113 .419 1.500 6.681 2 . 194 235.65 I 113.768 1.492 6.685 2 . 187 234 . 90 114. 072 1.485 6.693 2 .181 234 .22 114.349 1.477 6.703 2 . 175 233 .59 114 .606 1.469 6.715 2 . 170 233 . 01 I 114. 844 1.461 6 .728 2 . 165 232 .47 115. 067 1.454 6.743 2 . 160 231. 96 115.276 1.446 6.759 2 . 156 231.49 II 115.471 1.438 6.776 2 . 151 231.04 115 .653 1.430 6 .795 2 . 148 230.63 115 .824 1.423 6 .815 2 .144 230.24 115 .982 1.415 6 .836 2 . 141 229.88 II 116 .130 1.407 6 .857 2 .138 229.54 116 .266 1.399 6 .880 2 .135 229.23 116 .392 1.392 6 .904 2 . 132 228.95 I 116.507 1.384 6 .929 2 . 130 228.69 116.612 1.376 6 .955 2 .127 228.46 116.705 1.368 6.981 2 .126 228.25 116.789 1.361 7.009 2 .124 228. 07 I 116 .861 1.353 7 .037 2 .122 227.91 116 .923 1.345 7 .067 2 .121 227.78 116 .974 1.337 7.097 2 .120 227. 66 117 .014 1.330 7.129 2 .119 227. 58 II 117 .043 1. 322 7 .161 2 .118 227. 52 117.061 1.314 7 .194 2 .118 227.48 117 .066 1.306 7 .228 2 .118 227.47 I 289.150 1.306 7 .228 2 .118 227.47 END OF HYDRAULIC JUMP ANALYSIS PRESSURE+MOMENTUM BALANCE OCCURS AT 92.13 FEET UPSTREAM OF NODE 101.00 I II DOWNSTREAM DEPTH = 1.912 FEET, UPSTREAM CONJUGATE DEPTH = . 863 FEET I NODE 100.10 : HGL = < 1203.382>;EGL= < 1205 . 188>;FLOWLINE= < 1202 .490> I FLOW PROCESS FROM NODE 100.10 TO NODE 100 .00 IS CODE = 2 UPSTREAM NODE 100.00 ELEVATION = 1202 .62 (FLOW IS SUPERCRITICAL) I CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 11. 81 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.781 FEET I HMN = .05* (AVERAGED VELOCITY HEAD) = . 05* ( 1.781) = .089 NODE 100.00 : HGL = < 1203.523>;EGL= < 1205 .278>;FLOWLINE= < 1202.620> I ****************************************************************************** **************** FLOW PROCESS FROM NODE 100.00 TO NODE 99.60 IS CODE = 3 UPSTREAM NODE 99. 60 ELEVATION = 1208.57 (FLOW IS SUPERCRITICAL) I CALCULATE PIPE-BEND LOSSES(LACFCD) : PIPE FLOW = 11. 81 CFS PIPE DIAMETER = 18. 00 INCHES CENTRAL ANGLE = 33 . 100 DEGREES MANNING'S N = . 01300 II PIPE LENGTH = 215.58 FEET BEND COEFFICIENT(KB) = II i // I -} II NORMAL DEPTH(FT) = . 90 CRITICAL DEPTH (FT) = 1 .31 II UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .86 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 .860 11.269 2 .833 282 . 16 I 1.776 .862 11.241 2 .825 281.63 3 .619 .863 11.213 2 .817 281. 10 5.536 .865 11. 185 2 .809 280.58 I 7.532 9.616 .867 11. 157 2 .801 2 .793 280.06 869 11. 129 279.54 11 .797 .870 11.102 2 .785 279.02 14 .085 .872 11.074 2 .778 278 .51 I 16 .493 .874 11 .047 2 .770 278.01 19.035 .876 11 .020 2.763 277.50 21.729 .878 10 .993 2.755 277. 01 I 24.594 .879 10 .966 2.748 276.51 27.658 .881 10 .939 2 . 740 276. 02 30.952 . 883 10 .912 2 . 733 275. 53 34.516 . 885 10 .886 2. 726 275. 04 I 38 .401 .886 10 .860 2.719 274 .56 42.675 .888 10.834 2.712 274 . 08 47.430 . 890 10.808 2 .705 273.61 52.796 .892 10.782 2.698 273 . 14 II 58.960 .894 10.756 2 .691 272 .67 66.216 .895 10.730 2 .684 272 .21 75 .053 . 897 10 .705 2 .678 271.75 I 86 .391 . 899 10 .679 2 .671 271.29 102 .297 . 901 10.654 2 .664 270.83 129.396 . 903 10.629 2 .658 270 .38 215.580 .903 10.628 2 .658 270.36 11 NODE 99.60 : HGL = < 1209.430>;EGL= < 1211.403>;FLOWLINE= < 1208.570> I FLOW PROCESS FROM NODE 99.60 TO NODE 99.50 IS CODE = 2 UPSTREAM NODE 99. 50 ELEVATION = 1208 .71 (FLOW IS SUPERCRITICAL) I CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 11. 81 CFS PIPE DIAMETER = 18 .00 INCHES AVERAGED VELOCITY HEAD = 1 .947 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05* ( 1 .947) = .097 II NODE 99.50 : HGL = < 1209.579>;EGL= < 1211.500>;FLOWLINE= < 1208 .710> FLOW PROCESS FROM NODE 99.50 TO NODE 99.00 IS CODE = 3 UPSTREAM NODE 99.00 ELEVATION = 1211.10 (FLOW IS SUPERCRITICAL) II CALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 11.81 CFS PIPE DIAMETER = 18.00 INCHES CENTRAL ANGLE = 87. 100 DEGREES MANNING'S N = .01300 IIPIPE LENGTH = 68 .38 FEET BEND COEFFICIENT(KB) = II J11 I } II NORMAL DEPTH(FT) = . 84 CRITICAL DEPTH(FT) = 1.31 I UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 1 .31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1.306 7.228 2 .118 227.47 I .031 1.288 7.314 2 .119 227. 54 126 1.269 7 .405 2 .121 227.76 .289 1.250 7 .502 2.125 228. 13 I .528 847 1.231 7 .605 2.130 2.137 228.65 1.213 7.713 229.33 1.255 1. 194 7 .827 2.146 230. 17 1. 761 1.175 7.948 2.157 231. 18 I 2.378 3.118 1. 157 8.075 2.170 2.185 232 .37 1. 138 8.208 233 .74 3. 997 1. 119 8. 349 2.202 235.29 5. 037 1.100 8.497 2.222 237.04 II 6.261 1.082 8. 652 2.245 238.99 7.701 1 .063 8.816 2.271 241 .16 9.396 1.044 8. 988 2 .300 243 .56 I 11.395 13 .767 1 .026 9. 169 2 .332 2 .368 246. 19 1 .007 9.360 249. 06 16.601 .988 9.561 2 .409 252.20 20. 026 .970 9.772 2 .453 255.62 II 24 .227 .951 9.995 2 .503 259.33 29.496 .932 10.230 2 .558 263 .34 36.318 .913 10.478 2 .619 267.69 I 45.607 .895 10.740 2 .687 272 .38 59.414 .876 11.016 2 .762 277.44 68.380 .869 11 .120 2 .790 279.36 II NODE 99. 00 : HGL = < 1212 .406>;EGL= < 1213 .218>;FLOWLINE= < 1211.100> I UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 99.00 FLOWLINE ELEVATION = 1211 .10 ASSUMED UPSTREAM CONTROL HGL = 1212.41 FOR DOWNSTREAM RUN ANALYSIS IIEND OF GRADUALLY VARIED FLOW ANALYSIS II 1 II 1 1 Pi 1 1 ****************************************************************************** ' PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 ' Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 ************************** DESCRIPTION OF STUDY * REDHAWK - UNIT 5 - LINE B-1 * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * 100 YEAR STORM EVENT J. N. 160097 * FILE NAME: HARHKB1.DAT TIME/DATE OF STUDY: 17:33 5/ 1/2001 ' ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ ' NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 107 .00- 1.01 55.08 .36* 80. 10 } FRICTION ' 107 .10- .73*Dc 46.22 . 73*Dc 46.22 } CATCH BASIN 107 .10 1 .07* 24 .99 .73 Dc 16.27 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ' DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107. 00 FLOWLINE ELEVATION = 1178 .75 PIPE FLOW = 3.62 CFS PIPE DIAMETER = 18 .00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1179.760 NODE 107.00 : HGL = < 1179. 113>;EGL= < 1180 .986>;FLOWLINE= < 1178.750> ' ****************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107 .10 IS CODE = 1 ' UPSTREAM NODE 107 .10 ELEVATION = 1181. 04 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 3.62 CFS PIPE DIAMETER = 18 .00 INCHES PIPE LENGTH = 22 .87 FEET MANNING'S N = . 01300 I II ' II NORMAL DEPTH(FT) = .33 CRITICAL DEPTH(FT) = .73 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .73 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 .726 4 .267 1.009 46.22 II .007 .711 4.388 1 .010 46.25 030 .695 4 .517 1 .012 46 .36 .069 .679 4.653 1 . 016 46 .54 II .128 .664 4 .797 1 .021 46 .80 210 .648 4 .951 1.029 47 .15 . 316 .632 5.113 1.039 47 .59 .451 .617 5.287 1.051 48 .12 II .620 .601 5.471 1.066 48 .76 . 826 .585 5. 669 1.084 49.51 1.078 .570 5.879 1. 107 50.37 I 1.382 .554 6.105 1.133 51.37 1.748 .538 6.348 1. 164 52. 50 2 .189 .522 6. 609 1.201 53 . 78 2 .719 .507 6. 890 1.244 55.23 ' 3 .359 .491 7. 193 1.295 56.86 4 . 136 .475 7.522 1.355 58.68 5.087 .460 7. 879 1.424 60.73 6.263 .444 8.267 1.506 63 . 02 II 7.741 .428 8.692 1.602 65.58 9.639 .413 9. 157 1.715 68.44 12 . 157 .397 9.668 1.849 71.65 II 15.671 .381 10.231 2 .008 75.25 21.027 .366 10. 856 2 . 197 79.29 22. 870 .363 10. 979 2 .236 80 .10 IINODE 107.10 : HGL = < 1181.766>;EGL= < 1182.049>;FLOWLINE= < 1181. 040> I FLOW PROCESS FROM NODE 107.10 TO NODE 107.10 IS CODE = 8 UPSTREAM NODE 107. 10 ELEVATION = 1181.04 (FLOW IS AT CRITICAL DEPTH) CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : II PIPE FLOW = 3 .62 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4 .27 FEET/SEC. VELOCITY HEAD = .283 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( .283) = .057 II NODE 107. 10 : HGL = < 1182.106>;EGL= < 1182 . 106>;FLOWLINE= < 1181.040> ****************************************************************************** II UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107 .10 FLOWLINE ELEVATION = 1181 .04 ASSUMED UPSTREAM CONTROL HGL = 1181.77 FOR DOWNSTREAM RUN ANALYSIS II END OF GRADUALLY VARIED FLOW ANALYSIS ' PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 Analysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 ************************** DESCRIPTION OF STUDY * REDHAWK - UNIT 5 - LINE B-2 * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION ' * 100 YEAR STORM EVENT J. N. 160097 FILE NAME: HARHKB2 .DAT TIME/DATE OF STUDY: 18: 7 5/ 1/2001 L GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE 11 (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 102 .00- 2 .93* 265. 14 .44 106.00 } FRICTION ' 102 .10- 1 .12* 75.41 . 84 Dc 65.83 } CATCH BASIN 102 .10 1.33* 55.45 . 84 Dc 22 . 73 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. rDOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102 .00 FLOWLINE ELEVATION = 1192.47 PIPE FLOW = 4 .75 CFS PIPE DIAMETER = 18 .00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1195.400 NODE 102.00 : HGL = < 1195.400>;EGL= < 1195 .512>;FLOWLINE= < 1192.470> ****************************************************************************** FLOW PROCESS FROM NODE 102 .00 TO NODE 102 . 10 IS CODE = 1 UPSTREAM NODE 102 .10 ELEVATION = 1194 .25 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 4 .75 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 17.79 FEET MANNING'S N = .01300 3'G 1 }. II DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2 .93 IIPRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 2 .930 2 .688 3 .042 265 .14 14 .590 1.500 2.688 1.612 107 .44 II NORMAL DEPTH(FT) = . 38 CRITICAL DEPTH(FT) = . 84 =_==__=_ ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 IGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 14 .590 1.500 2.687 1.612 107.44 14 . 652 1.473 2 .698 1.587 104 .63 I 15. 105 1.447 2 .717 1.562 101.91 15.352 1.420 2.743 1 .537 99.26 15 .595 1.394 2 .774 1 .514 96.70 15.834 1.367 2 .809 1.490 94 .21 II 16.068 1.341 2 .849 1 .467 91 .80 16.298 1. 314 2 .893 1 .444 89.47 16.523 1.288 2 .941 1 .422 87 .22 16.744 1.261 2 . 994 1 .401 85 .06 I 16. 959 1.235 3 .051 1 .380 82 .98 17. 169 1.208 3 .112 1 .359 81.00 17.374 1. 182 3 .179 1 .339 79.12 I 17. 571 1. 155 3 .251 1.320 77.34 17.762 1. 129 3 .328 1.301 75.66 17.790 1. 125 3 .341 1.298 75.41 I NODE 102.10 : HGL = < 1195.375>;EGL= < 1195.548>;FLOWLINE= < 1194.250> ****************************************************************************** 11 FLOW PROCESS FROM NODE 102 . 10 TO NODE 102.10 IS CODE = 8 UPSTREAM NODE 102. 10 ELEVATION = 1194 .25 (FLOW IS SUBCRITICAL) CALCULATE CATCH BASIN ENTRANCE LOSSES (LACFCD) : I PIPE FLOW = 4 .75 CFS PIPE DIAMETER = 18. 00 INCHES FLOW VELOCITY = 3 -34 FEET/SEC. VELOCITY HEAD = .173 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) = .2* ( . 173) = .035 II NODE 102 .10 : HGL = < 1195.583>;EGL= < 1195.583>;FLOWLINE= < 1194 .250> I UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102 . 10 FLOWLINE ELEVATION = 1194.25 ASSUMED UPSTREAM CONTROL HGL = 1195 .09 FOR DOWNSTREAM RUN ANALYSIS 11 END OF GRADUALLY VARIED FLOW ANALYSIS II II 31 7 1 ,.} 1 **********************************************************************t******* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE II (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4.5A Release Date: 2/20/92 License ID 1225 iAnalysis prepared by: CROSBY MEAD BENTON & ASSOCIATES II 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 IDESCRIPTION OF STUDY * REDHAWK - UNIT 5 - LINE B-3 * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * I * 100 YEAR STORM EVENT J. N. 160097 * ************************************************************************** IIFILE NAME: HARHKB3 .DAT TIME/DATE OF STUDY; 18:18 5/ 1/2001 I ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 101. 00- 3.45* 322 .57 .45 104.22 } FRICTION 101. 10- 1. 86* 147 .61 .84 Dc 66 .01 II } CATCH BASIN 101. 10- 2 . 00* 137 .67 .84 Dc 22.79 tMAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. IDOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.00 FLOWLINE ELEVATION = 1193.49 I PIPE FLOW = 4.76 CFS PIPE DIAMETER = 18 .00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 1196 .940 NODE 101. 00 : HGL = < 1196.940>;EGL= < 1197 .053>;FLOWLINE= < 1193 .490> I ****************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.10 IS CODE = 1 UPSTREAM NODE 101.10 ELEVATION = 1195.11 (FLOW IS UNDER PRESSURE) IICALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 4 .76 CFS PIPE DIAMETER = 18 .00 INCHES II PIPE LENGTH = 16.22 FEET MANNING'S N = . 01300 1 ii' r tSF= (Q/K) **2 = ( ( 4 .76)/ ( 105.014) ) **2 - .00205 HF-L*SF - ( 16.22) * ( .00205) • .033 NODE 101.10 : HGL = < 1196.973>;EGL= c 1197.086>;FLOWLINE= < 1195.110> ' FLOW PROCESS FROM NODE 101. 10 TO NODE 101.10 IS CODE = 8 UPSTREAM NODE 101.10 ELEVATION = 1195.11 (FLOW IS UNDER PRESSURE) ' CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD) : PIPE FLOW = 4 .76 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 2 .69 FEET/SEC. VELOCITY HEAD = .112 FEET CATCH BASIN ENERGY LOSS = .2* (VELOCITY HEAD) _ .2*( .112) = .022 NODE 101.10 : HGL = < 1197.108>;EGL= < 1197.108>;FLOWLINE= < 1195.110> r UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 101.10 FLOWLINE ELEVATION = 1195.11 ASSUMED UPSTREAM CONTROL HGL = 1195.95 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS r r r r r I i r r r 3/9 1 ,} II PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE II (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4 .5A Release Date: 2/20/92 License ID 1225 IIAnalysis prepared by: CROSBY MEAD BENTON & ASSOCIATES 11 5650 EL CAMINO REAL, SUITE 200 CARLSBAD, CALIFORNIA 92008 (619) 438-1210 r ************************** DESCRIPTION OF STUDY * REDHAWK - UNIT 5 - (CLEAR WATER LINE) * * HYDRAULIC CALCULATIONS - DEVELOPED CONDITION * II * 100 YEAR EVENT J. N. 160097 * IIFILE NAME: HARHKC.DAT TIME/DATE OF STUDY: 10:41 5/ 2/2001 II GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM I NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used. ) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ I NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 9.10- 7.00 21111.36 3 .73* 25546.12 } JUNCTION 9.20- 4 .81 Dc 14982 .36 2 .79* 21739.71 II } FRICTION 9.30 4 . 81 Dc 14982 .36 2 .79* 21731.08 } FRICTION+BEND II 10.00- 4 .81 Dc 14982 .36 2 .80* 21654.86 } FRICTION+BEND 11.80- 4. 81 Dc 14982 .36 2 .85* 21230 .93 } MANHOLE I 11.90- 4 . 89 14993.85 2 .81* 21572 .53 } FRICTION 15.40- 4 . 81 Dc 14982 .36 3. 01* 20088 .42 I FRICTION+BEND 16. 90)- 4 .81 Dc 14982.36 3.40* 17897 .77 } MANHOLE 17.00- 4 .99 15053 .37 3 .35* 18148 .93 I 18.201- FRICTION+BEND 4 .81 Dc 14982 .36 3 .41* 17870 .01 } FRICTION I 20.30- 4 .81 Dc 14982 .36 3.68* 16800 .64 } MANHOLE 2D.40 5.05 15126.77 3.60* 17061 .00 } FRICTION+BEND II 25.30- 4 .61 Dc 14982 .36 4.36* 15274 .04 3000 II .} I } MANHOLE 25 .40- 5 .08 15163. 56 4.21* 15491 .58 } FRICTION II 32.50- 4 .81 Dc 14982 . 36 4 .43* 15185.50 } MANHOLE 32.60- 5 .10 15188. 09 4 .25* 15420.65 I } FRICTION 33 .10 4 .81*DC 14982 . 36 4 . 81*DC 14982 .36 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 IINOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. IDOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 9.10 FLOWLINE ELEVATION = 1152 .89 PIPE FLOW = 502 .33 CFS PIPE DIAMETER = 84 . 00 INCHES I ASSUMED DOWNSTREAM CONTROL HGL = 1159.890 NODE 9. 10 : HGL = < 1156.617>;EGL= < 1165.650>;FLOWLINE= < 1152.890> II FLOW PROCESS FROM NODE 9.10 TO NODE 9.20 IS CODE = 5 UPSTREAM NODE 9.20 ELEVATION = 1154.89 (FLOW IS SUPERCRITICAL) IICALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY I (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 348.69 60.00 .00 1154 . 89 4 .81 30.926 DOWNSTREAM 502 .33 84.00 1152. 89 5. 85 24 .119 LATERAL #1 153 .64 60.00 45.00 1154. 89 3 .55 10.295 I LATERAL #2 Q5 .00 .00 .00 . 00 . 00 .000 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: II DY=(Q2*V2-Q1*V1*COS(DELTA1) -Q3*V3*COS(DELTA3) - Q4*V4*COS (DELTA4) ) / ( (A1+A2) *16.1) UPSTREAM: MANNING'S N = .01300; FRICTION SLOPE _ . 04975 II DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = . 02005 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 03490 JUNCTION LENGTH = 13 .00 FEET FRICTION LOSSES = .454 FEET ENTRANCE LOSSES = . 000 FEET II JUNCTION LOSSES = (DY+HV1-HV2) +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = ( 6 .430)+ ( .454) + ( .000) = 6.884 IINODE 9.20 : HGL = < 1157.682>;EGL= < 1172 .533>;FLOWLINE= < 1154.890> FLOW PROCESS FROM NODE 9.20 TO NODE 9.30 IS CODE = 1 I UPSTREAM NODE 9.30 ELEVATION = 1155.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : II PIPE FLOW = 348 .69 CFS PIPE DIAMETER-= 60. 00 INCHES PIPE LENGTH = 8 .00 FEET MANNING'S N .01300 NORMAL DEPTH (FT) = 2 .77 CRITICAL DEPTH(FT) = 4 . 81 1 II } IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 .79 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: II DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) II 000 2.793 30. 903 17 .631 21731. 08 8.000 2.792 30. 916 17 .643 21739.71 NODE 9.30 : HGL = < 1158.093>;EGL= < 1172.931>;FLOWLINE= < 1155 .300> II FLOW PROCESS FROM NODE 9.30 TO NODE 10 .00 IS CODE = 3 I UPSTREAM NODE 10 .00 ELEVATION = 1158.65 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES (LACFCD) : IPIPE FLOW = = 348 .69 CFS PIPE DIAMETER = 60 .00 INCHES CENTRAL ANGLE = 43.170 DEGREES MANNING'S N = .01300 PIPE LENGTH65.56 FEET BEND COEFFICIENT(KB) INORMAL DEPTH(FT) = 2 .77 CRITICAL DEPTH(FT) = 4 . 81 UPSTREAM CONTROL ASSUMED FLOWDEPTH (FT) = 2 . 80 II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 2 .802 30.780 17 .523 21654 .86 8.401 2 .801 30.798 17 .539 21666.02 17.167 2 .800 30 .816 17.555 21677.20 U 26.330 35.928 2 .798 30 .834 17.571 21688.39 2 .797 30.852 17 .586 21699.60 46.002 2 .796 30.870 17.602 21710. 83 56.602 2 .794 30.888 17.618 21722 . 06 II65. 560 2.793 30 .903 17.631 21731. 08 NODE 10.00 : HGL = < 1161.452>;EGL= < 1176.173>;FLOWLINE= < 1158.650> II FLOW PROCESS FROM NODE 10.00 TO NODE 11.80 IS CODE = 3 UPSTREAM NODE 11.80 ELEVATION = 1168.21 (FLOW IS SUPERCRITICAL) ICALCULATE PIPE-BEND LOSSES(LACFCD) : PIPE FLOW = 348.69 CFS PIPE DIAMETER = 60 .00 INCHES ' CENTRAL ANGLE = 77.430 DEGREES MANNING'S N = .01300 PIPE LENGTH = 186 .86 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 2 .77 CRITICAL DEPTH(FT) = 4 .81 IUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2 . 85 I GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCI'Y SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) II .000 2 .854 30 .099 16. 930 21230 .93 II �j J4 I -1 II8.130 2. 851 30. 143 16 .968 21258 .40 16.624 2 .847 30. 187 17 .006 21285. 96 I 25.516 2.844 30.232 17 .044 21313 .62 34.841 2. 840 30.277 17 .083 21341.38 44 .643 2.837 30.321 17. 122 21369.24 54.970 2.833 30.366 17 .161 21397.20 I 65.879 77 .436 2 .830 30.412 17.200 21425.26 2.826 30.457 17.240 21453 .41 89.722 2 .823 30. 502 17.279 21481 .67 102.828 2 .820 30.548 17. 319 21510.03 II 116 .870 2 .816 30.594 17.359 21538 .49 131. 985 2 .813 30.640 17. 399 21567 .05 148 .346 2 .809 30.686 17.440 21595.72 I 166. 170 2 .806 30.732 17.480 21624 .49 185.736 2 .802 30.778 17. 521 21653 .36 186. 860 2 .802 30 .780 17.523 21654 . 86 I NODE 11 .80 : HGL = < 1171. 064>;EGL= < 1185.140>;FLOWLINE= < 1168.210> I FLOW PROCESS FROM NODE 11.80 TO NODE 11 .90 IS CODE = 2 UPSTREAM NODE 11.90 ELEVATION = 1168.45 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) : I PIPE FLOW = 348 .69 CFS PIPE DIAMETER = 60.00 INCHES AVERAGED VELOCITY HEAD = 14.335 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05* (14.335) = .717 1 NODE 11.90 : HGL = < 1171.262>;EGL= < 1185.857>;FLOWLINE= < 1168 .450> I FLOW PROCESS FROM NODE 11.90 TO NODE 15.40 IS CODE = 1 UPSTREAM NODE 15.40 ELEVATION = 1186 .58 (FLOW IS SUPERCRITICAL) II CALCULATE FRICTION LOSSES (LACFCD) : _ PIPE FLOW 348 .69 CFS PIPE DIAMETER = 60 .00 INCHES PIPE LENGTH = 356.72 FEET MANNING'S N .01300 I NORMAL DEPTH(FT) = 2.77 CRITICAL DEPTH(FT) = 4 .81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3 .01 = II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ I CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 3.009 28.237 15.398 20088 .42 7.412 3. 000 28.343 15.481 20152 .73 15.188 2. 990 28.450 15.566 20217.66 I 23.358 31.961 2. 981 28.557 15.652 20283 .22 2. 971 28.666 15.739 20349.41 41 .039 2.962 28 .775 15.827 20416.25 I 50.641 60 .824 2.953 26 .886 15 .917 20483.73 2.943 28 .997 16 .007 20551.87 71.654 2.934 29. 109 16 .099 20620.67 83 .210 2 .924 29.222 16 .192 20690. 14 II 95 .587 2 .915 29.336 16 .287 20760.28 I re43o6 ` S ,W I a} ' 108 .898 2.905 29.451 16 .383 20831. 11 123 .282 2 . 896 29. 567 16 .480 20902 .62 I 138.911 2. 887 29.684 16 .578 20974 . 83 156.003 2. 877 29. 803 16 .678 21047.75 174 .837 2. 868 29. 922 16 .779 21121.38 195.782 2 . 858 30.042 16 .881 21195.72 I 219.336 246.199 2 . 849 30. 163 16 .985 21270.79 2 . 840 30.285 17 .090 21346.60 277.395 2 . 830 30.408 17 .197 21423 .15 314.511 2. 821 30.533 17 .305 21500 .45 II356.720 2. 812 30.648 17 .407 21572 .53 NODE 15.40 : HGL = < 1189.589>;EGL= < 1201 . 978>;FLOWLINE= < 1186. 580> I FLOW PROCESS FROM NODE 15.40 TO NODE 16 .90 IS CODE = 3 UPSTREAM NODE 16.90 ELEVATION = 1194.38 (FLOW IS SUPERCRITICAL) IICALCULATE PIPE-BEND LOSSES(LACFCD) : PIPE FLOW = 348. 69 CFS PIPE DIAMETER = 60.00 INCHES I CENTRAL ANGLE = 29.230 DEGREES MANNING'S N = .01300 PIPE LENGTH = 150.74 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 2 .76 CRITICAL DEPTH(FT) = 4 .81 IIUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.40 UGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) ' 000 3.400 24 . 516 12 .739 17897 .77 5.622 3.374 24.725 12 .873 18016 .14 11.594 3.349 24. 938 13 .012 18137 .70 I 17.947 3 .323 25.156 13 . 155 18262 .55 24.718 3.297 25.378 13 .304 18390 .77 31.949 3.272 25. 605 13 .459 18522 .42 39.689 3 .246 25.838 13 .619 18657 .59 II 47.994 3 .220 26.075 13 .784 18796 .37 56.931 3.195 26.317 13 . 956 18938 .85 66 . 577 3.169 26. 565 14 . 134 19085 .13 77.027 3 .143 26. 818 14 .318 19235 .29 I 88.393 3 .118 27.076 14 .509 19389.44 100. 813 3.092 27.341 14 .707 19547 .68 114 .460 3 .066 27. 611 14 . 912 19710 .13 I 129. 548 3.041 27. 888 15. 125 19876 .89 146.358 3 .015 28. 171 15.345 20048 .08 150.740 3 .009 28.237 15.398 20088.42 II NODE 16.90 : HGL = < 1197.780>;EGL= < 1207.119>;FLOWLINE= < 1194 .380> ' FLOW PROCESS FROM NODE UPSTREAM NODE 17 .00 16. 90 TO NODE 17.00 IS CODE = 2 ELEVATION = 1194 .57 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) : II PIPE FLOW = 348 .69 CFS PIPE DIAMETER = 60.00 INCHES II 1.07 1 ‘} IIAVERAGED VELOCITY HEAD = 9.509 FEET HMN = . 05* (AVERAGED VELOCITY HEAD) = .05* ( 9.509) = .475 I NODE 17 .00 : HGL = < 1197 .916>;EGL= < 1207.594>;FLOWLINE= < 1194 .570> II FLOW PROCESS FROM NODE 17 .00 TO NODE 18.20 IS CODE = 3 UPSTREAM NODE 18 .20 ELEVATION = 1198.37 (FLOW IS SUPERCRITICAL) CALCULATE PIPE-BEND LOSSES (LACFCD) : II PIPE FLOW = 348 .69 CFS PIPE DIAMETER 60. 00 INCHES CENTRAL ANGLE = 24 .000 DEGREES MANNING'S N = . 01300 PIPE LENGTH = 123.36 FEET BEND COEFFICIENT(KB) = INORMAL DEPTH(FT) = 3 .27 CRITICAL DEPTH(FT) = 4 . 81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.41 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 3 .406 24 .467 12.708 17870 .01 8 .587 3 .401 24 .511 12.736 17894 .82 II 17.573 26. 992 3.395 24 .555 12.764 17919.77 3 .390 24 .600 12.792 17944 .86 36.885 3 .384 24 .644 12.821 17970 .09 II 47 .299 3 .379 24 .689 12 .849 17995 .47 58.286 3 .373 24 .734 12 .878 18020.99 69.910 3 .368 24 .779 12 .908 18046.66 82.242 3 .362 24 .824 12 .937 18072 .48 1195.369 3 .357 24 .870 12 .967 18098 .44 109.393 3 .351 24 .915 12 .997 18124 .55 123.360 3 .346 24 . 958 13 .025 18148. 93 I NODE 18 .20 : HGL = < 1201.776>;EGL= < 1211. 078>;FLOWLINE= < 1198 .370> ****************************************************************************** I FLOW PROCESS FROM NODE 18.20 TO NODE 20. 30 IS CODE = 1 UPSTREAM NODE 20.30 ELEVATION = 1204 . 93 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) : I PIPE FLOW = 348 .69 CFS PIPE DIAMETER== 60. 00 INCHES PIPE LENGTH = 212 .80 FEET MANNING'S N . 01300 IINORMAL DEPTH(FT) = 3 .27 CRITICAL DEPTH(FT) = 4 . 81 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3 .68 IIGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 3 .679 22 .511 11. 552 16800.64 7 . 102 3 .662 22 .617 11.610 16856.40 14 .598 3 .646 22 .724 11.669 16913.19 II 22 .525 3 .630 22 . 833 11.730 16971.04 _ II 340/ 5 1 1. II30 .922 3 .613 22.943 11 .792 17029.94 39.836 3 . 597 23 .055 11 . 855 17089. 92 I 49.319 59.435 3.580 23 .168 11. 920 17150.98 3 .564 23 .283 11. 987 17213 .15 70.256 3 .547 23 .399 12 . 055 17276.43 81 .868 3 .531 23 .517 12 . 124 17340.85 I 94 .373 3 . 515 23 .636 12 . 195 17406.41 107 .895 3 .498 23 .757 12.268 17473. 13 122 .587 3 .482 23 . 880 12 .342 17541.04 I 138.635 3.465 24 .004 12.418 17610.13 156.277 3.449 24 . 130 12 .496 17680.44 175.819 3.433 24.258 12 .576 17751.98 197.662 3.416 24 . 387 12 .657 17824 .76 I 212. 800 3.406 24.467 12 .708 17870 .01 NODE 20.30 : HGL = < 1208.609>;EGL= < 1216.482>;FLOWLINE= < 1204.930> ' FLOW PROCESS FROM NODE 20.30 TO NODE 20.40 IS CODE = 2 UPSTREAM NODE 20.40 ELEVATION = 1205 .06 (FLOW IS SUPERCRITICAL) ICALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 348. 69 CFS PIPE DIAMETER = 60. 00 INCHES AVERAGED VELOCITY HEAD = 8. 047 FEET IIHMN = .05* (AVERAGED VELOCITY HEAD) = .05* ( 8.047) = .402 NODE 20.40 : HGL = < 1208 .665>;EGL= < 1216.885>;FLOWLINE= < 1205 .060> IIFLOW PROCESS FROM NODE 20 .40 TO NODE 25 .30 IS CODE = 3 UPSTREAM NODE 25.30 ELEVATION = 1217.14 (FLOW IS SUPERCRITICAL) ICALCULATE PIPE-BEND LOSSES (LACFCD) : PIPE FLOW = 348 .69 CFS PIPE DIAMETER = 60. 00 INCHES II CENTRAL ANGLE = 90 .000 DEGREES MANNING'S N = .01300 PIPE LENGTH = 487 .05 FEET BEND COEFFICIENT(KB) = NORMAL DEPTH(FT) = 3 .54 CRITICAL DEPTH(FT) = 4 .81 IUPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4 .36 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: IIDISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) I .000 4 .358 19. 194 10.082 15274 .04 4 .471 4 .325 19. 312 10.120 15316.51 9. 369 4 .292 19.433 10 . 160 15361. 86 14 .727 4 .260 19. 558 10 .203 15410.10 120.585 26. 988 4 .227 19.688 10 .249 15461.26 4 . 194 19.821 10.299 15515.37 33 . 987 4 . 162 19 .958 10 .351 15572.48 I 41.644 50.032 4 . 129 20 .100 10.406 15632.61 4 . 096 20 .245 10.465 15695.82 59.237 4. 064 20 .395 10.527 15762. 14 69.362 4 . 031 20 .549 10.592 15831.64 II80.533 3 .999 20.708 10. 661 15904. 35 II 3e44 1 ..} II92 . 902 3.966 20. 871 10.734 15980 .35 106.662 3.933 21. 038 10 .810 16059.69 122.053 3.901 21.210 10.891 16142 .43 II 139.385 3 .868 21.387 10. 975 16228 .65 159.068 3.835 21.569 11.064 16318 .41 181.658 3.803 21.755 11. 157 16411.79 I 207. 932 239.033 3 .770 21. 947 11.254 16508.88 3 .737 22 . 144 11.356 16609.76 276.730 3 .705 22 .346 11.464 16714 . 50 323 .988 3 .672 22 .554 11 .576 16823.21 I 386.370 3 . 639 22 .767 11 .693 16935. 99 476.372 3.607 22 .986 11 .816 17052 . 93 487.050 3 .605 23 .001 11 .825 17061. 00 IINODE 25.30 : HGL = < 1221 .498>;EGL= < 1227.222>;FLOWLINE= < 1217 .140> t FLOW PROCESS FROM NODE 25.30 TO NODE 25.40 IS CODE = 2 UPSTREAM NODE 25.40 ELEVATION = 1217.24 (FLOW IS SUPERCRITICAL) I CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 348.69 CFS PIPE DIAMETER = 60.00 INCHES AVERAGED VELOCITY HEAD = 5.896 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05* ( 5 .896) = .295 INODE 25.40 : HGL = < 1221.448>;EGL= < 1227.517>;FLOWLINE= < 1217.240> 1 FLOW PROCESS FROM NODE 25 .40 TO NODE 32.50 IS CODE = 1 UPSTREAM NODE 32.50 ELEVATION = 1229.53 (FLOW IS SUPERCRITICAL) I CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 348.69 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 714 .58 FEET MANNING'S N = .01300 I NORMAL DEPTH(FT) = 4.20 & 4 .99 CRITICAL DEPTH(FT) = 4. 81 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. I UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4 .43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: I DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 4 .434 18 .934 10.004 15185.50 II 7 .367 4 .425 18 .965 10. 013 15195 .52 15 .153 4 .415 18 .996 10.022 15205.78 23 .396 4 .406 19.027 10.031 15216 .28 32.136 4 .397 19.059 10.041 15227.01 I 41.419 4 .387 19.091 10. 050 15237 .97 51.302 4 .378 19.124 10. 060 15249.18 61 .846 4 .368 19.156 10. 070 15260.62 I 73 .125 4 .359 19.189 10. 081 15272 .29 85.229 4 .350 19.223 10. 091 15284 .20 98.261 4 .340 19.257 10. 102 15296.35 112.348 4.331 19.291 10. 113 15308 .74 ' 127.646 4.321 19.325 10. 124 15321.36 II CW I 1 `} I144 .345 4 .312 19. 360 10. 135 15334 .22 162 .690 4 .303 19.395 10.147 15347. 33 I 182 . 992 205.663 4.293 19.430 10. 159 15360.67 4 .284 19.466 10. 171 15374 .25 231.259 4 .274 19.502 10. 184 15388.07 260.561 4 .265 19.538 10. 196 15402 . 14 I 294.714 335.491 4 .256 19.575 10.209 15416.44 4 .246 19.612 10.222 15431 .00 385 .864 4 .237 19.649 10.235 15445.79 I 451.407 4 .227 19.686 10.249 15460. 83 544 .640 4 .218 19.724 10.263 15476. 11 705 .742 4 .209 19.763 10.277 15491. 64 714 .580 4.209 19.763 10.277 15491. 58 INODE 32.50 : HGL = < 1233 .964>;EGL= < 1239.534>;FLOWLINE= < 1229.530> I FLOW PROCESS FROM NODE 32 .50 TO NODE 32 .60 IS CODE = 2 UPSTREAM NODE 32.60 ELEVATION = 1229. 61 (FLOW IS SUPERCRITICAL) I CALCULATE MANHOLE LOSSES (LACFCD) : PIPE FLOW = 348 .69 CFS PIPE DIAMETER = 60.00 INCHES AVERAGED VELOCITY HEAD = 5.765 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05* ( 5.765) = .288 IINODE 32.60 : HGL = < 1233 . 863>;EGL= < 1239.823>;FLOWLINE= < 1229.610> IFLOW PROCESS FROM NODE 32.60 TO NODE 33 . 10 IS CODE = 1 UPSTREAM NODE 33 . 10 ELEVATION = 1230 .96 (FLOW IS SUPERCRITICAL) 11 CALCULATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 348.69 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH = 60.00 FEET MANNING'S N = .01300 IINORMAL DEPTH(FT) = 3 .68 CRITICAL DEPTH(FT) = 4. 81 = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4 .81 IGRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ II CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 000 4. 606 17. 983 9.831 14982 .36 .395 4.762 18. 068 9.834 14985.66 I 1.542 4.717 18.162 9.842 14995.28 3.405 4.672 18.265 9.855 15010.87 5.975 4.627 18.375 9.873 15032.20 9.261 4 .582 18.493 9.896 15059. 11 II 13.287 4 .537 18.619 9. 923 15091. 50 18.092 4 .492 18.753 9. 956 15129.29 23.731 4 .447 18.893 9. 993 15172 .44 I 30.276 37.820 4 .402 19.041 10. 035 15220.96 4 .357 19.197 10. 083 15274 .85 46.476 4 .312 19.359 10.135 15334 . 15 56.391 4 .267 19.530 10. 193 15398 .92 II 60.000 4 .253 19.585 10.213 15420.65 1 30i i i 1 ,} 1 NODE 33 .10 : HGL = < 1235 .766>;EGL= < 1240 .791>;FLOWLINE= < 1230. 960> 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 33.10 FLOWLINE ELEVATION = 1230.96 ASSUMED UPSTREAM CONTROL HGL = 1235 .77 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 1 1 t I 1 1 1 I 1 1 1 1 1 • • ;•1 • 11)g‘ 4)S C\L rft • • • PM NM NE MOM INN NM INN ION NM =I I= OM MEI EN INN MIN NM