Loading...
HomeMy WebLinkAboutHydrology Calculations for Borrow Site 7/2001 \fi o HYDROLOGY CALCULATIONS ' FOR TRACT NO. 29734 (BORROW SITE) BGR NO. 010320 1 1 1 1 1 I PREPARED BY: PREPARED FOR: TRANS-PACIFIC CONSULTANTS THE GARRETT GROUP,LLC 27431 ENTERPRISE CIRCLE WEST 43529 RIDGE PARK DRIVE TEMECULA, CA 92590 TEMECULA, CA. 92592 JULY 2001 1 1 I 1 ' TABLE OF CONTENTS I. RIVERSIDE COUNTY RATIONAL METHOD HYDROLOGY INSTRUCTIONS II. DESIGN CHARTS • HYDROLOGIC SOILS GROUP MAP FOR TEMECULA • TIME OF CONCENTRATION FOR INITIAL SUBAREA i • STANDARD INTENSITY- DURATION CURVES DATA • RUNOFF COEFFICIENT CURVES FOR SOILS GROUP-C 1 III. TIME OF CONCENTRATION, 100 YEAR FLOW ROUTING • HYDROLOGY CALCULATION (10 YR.) 1. BASIN "A" "B" "C" "D" "E" & "F" • HYDROLOGY CALCULATION (100 YR) 1 IV. HYDROLOGY MAP 1 I 1 i I 1 1 1 1 I I ' RIVERSIDE COUNTY RATIONAL METHOD HYDROLOGY INSTRUCTIONS A 1 1 1 1 r� 1 3 1 INSTRUCTIONS FOR RATIONAL ?MECO HYDROLOGY CALCULATIONS I t (Based on the Rational Formula, Q - CiA) ._ ' 1. On map of drainage area, draw drainage system and block off subareas tributary to it. ' 2. Determine the initial time of concentration , "T", using Plate D-3. The initial area should be less than'10 acres; have a flow path of less than 1,000 feet, and be the most upstream subarea. 11 3. Using the time of concentration, determine "I", intensity of rain- fall in inches per hour, frac the appropriate intensity-duration curve for the particular area under study. For areas where stan- dard curves are available, use Plates D-4.1 and D-4.2 to reproduce the standard curve. For areas where curves have not been published by the District, use Plates D-4.3 through D-4.7 to develop a suit- able intensity-duration curve. 4. Determine "C", the coefficient of runoff, using the runoff coeffi- 1 cient curve which corresponds as closely as possible with the soil, cover type and development of the drainage area. Standard curves (Plates D-5.1 through D-5.4) have been developed by the District 11 for the cc=—.in case of urban landscaping type cover. Where'these curves are not applicable, curves ray be developed using Plates D-5.5 through D-5.8. 11 S. Determine "A", the area of the subarea in acres. 6. Compute Q - CIA for the subarea. 11 7. Measure the length of flow to the point of inflow of the next sub- area downstream. Determine the velocity of flow in this reach for 11 the peak Q in the type of conveyance being considered (natural channel, street, pipe, or open channel) , using the tabling aids on Plates D-6 through D-9. Using the reach length and velocity determined above, compute the travel time, and add this time to the time of concentration for the previous subarea to determine a new time of' cbncentration. 11 8. Calculate Q for the new subarea, using steps 3 through 6 and the M new time of concentration. Determine "Q�, the peak Q for all sub- areas tributary to the system to this point by adding Q for the new subarea to the summation of Q for all upstream.,subareas. Deter- mine the time of concentration for the next subarea downstream using Step 7. Continue tabling downstream in similar fashion until a junction with a lateral drain is reached. 1 - r R C F C -11 W C D RATIONAL METHOD HYDROLOGY MANUAL INSTRUCTIONS I ! I II c ` 9. Start at the upper end of the lateral and table its Q down to the I junction with the main line, using the methods outlined in the previous steps. 10. Compute the peak Q at the junction. Let QA, TA, IA correspond to II the tributary area with the longer time of concentration, and QB, TB, Ig correspond to the tributary area with the shorter time of concentration and Qp, Tp correspond to the peak Q and time of I/ concentration. a. If the tributary areas have the same time of concentration, II the tributary Q's are added directly to obtain the combined peak Q. II Qp — QA + QB Tp gm TA I. Ta II b. If the tributary areas have different times of concentration, the smaller of the tributary Q's must be corrected as follows: ' (1) The usual case is where the tributary area with the ion- ger time of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the intensities and added to the larger Q to obtain the combined peak Q. � The tabling is then continued downstream using the longer time of concentration. Qp * QA + QB IA TP TA Ig II (2) In some cases, the tributary area with the shorter time II - of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the times of concen— tration and added to the larger Q to obtain the combined peak Q. The tabling is then continued downsteam using I the shorter time of concentration. II Qp c QB + QA TB TP TB - TA 1 I I RCFC - 81 WCDRATIONAL METHOD IlHYDROLOGY MANUAL �p r� INSTRUCTIONS - /� a / S I I 1 I 1 II. DESIGN CHARTS I I 1 I I I I I 1 • B 13•34'EC D B 'C.,..‘ BC,41„-D I B C 0 BC D teaac=w t ° 0 BC B B I rp` s s' ;in"' 'e— , • -51'. [---C. .- —lea• =„FZI� ,4 � • .,a� !F "• - • �) s5"'a.' 3 .l r •`i �` Ill i CO • A I tier]. i • l_ ; � ! JL4;,, ��'B , �. Zti-'Ljp �ln ty-r BC ''7'-'7,• u -e i�» C! � �, > r 3'',\v x�w7 •G .. as iyy „r. R �- II riD 'i- BC ice. a C,✓ \ tit -r AW---; �Na 6 (r s'� ,�;/f 5 f. A , ' B� � •.�� f Y ."A".-.y BC t /. �. 34r1 i -,,,,,,d),-,,,,,,„.,,Q,i 3 -- a - � s,• ,B c a ,rte L-.. BC BI` 7l i. lyDt Z G ' G - k"A�Gf.`f` �P':�"1v L +..iD w p r/ .,L, D .------- ^ B`� 3,'rr` „�,f SC S-+ray Zs 3• •r --a;/). ,j)1 �-\� MA�.- �i ` �� �j 6 �'�t rf -��vS o-`P•, s�-t �,�/.^� `f J„7i=v• �'��.\D1.3ay s B 6r✓ t.�e ice.• .��. r? 1� ,.,��1•�� f2 R� L ;� }���:.AAA f.'Z + , �•�` ?"� Cr'y -.. , „rrsi e l l` ,l'� s \ ,..,1;-,t--..„4„,-,N..,31 rCWtCf�: 7 . .II / "`� <t' -. BC y: t'3C. e l ° w. Z:n Br S \". r=1-.: ,+f. ',�-`^�: y .l`'� r��� Ge' a�1��' :� + < ^ <' ' 4Q T� ,..;,:k7" .1'. r^'n� v2 ( /fir s i ��`�1 '�` y�' g: meg,`- g B'L.% '';',1', R L[ /, A�-\ ' r,}C } '�`� it'� ''ri• l `may •-_s;.,: tD, d • � �� eP o:�i r/ s t;V r r � t..-� ii I :V �GTiyt 9 r, `4 ( J ` 4s'"J 4 F '•'-� :*47 :s�r0p2.:tvAr `L J\r F 1 j ! H rl., • '6-1;a •�' �. ti. . }° Bz e Y>f` f..Y 5 Sa a._ ,2,,, r tel„ .. _ (a 3 t 4 � 1 J � 4s,";---7,....."4:,, /S� / C' � � �� p KL Oaf• �1 \�S l � CE f J C < G 6 ,r y r f r ? I i 'ti m r j�'1 I�"tF•..r{*f y., .., S 9 2d �' 7'Ea S e Be f-2t . ' J 'l i�8 -� Yui-. °�` .—T o.a rl' .� !/"�_ TP y i :`� �, 't,;f� t� 9 r << +▪ 4 -S-_�y, �r>'�S /ir rc rl'��t -7e;:Vf.-see / 71k rtt : ( `1j) 7 5 r� � a-T "1 l 1! l r� .m.y�r4rf 'u . r�l�l �''fr.,`ray'` . �{��.S�v rf / � l`1-1 9 \ .: t a /3{/r- y Cn .1 a )Y ;;T f tt%t rLy: t4^`�}�. fs `ate , {i-,_a j ( i \ i' l A'�51 1 R T� ' < l �l �t'l' 3 a `Y'�v•s `/� r/fi� .,} c4 v^ t T1! y� 7�} �.,�i . �k ` )� '.(`I�? 4 v L �x $\ ll4r �fl*ry % / `'"'`` �:„ 1:.W4 -r.441/�t� -'-'Xl/ ,;, ,r n \ Sr .. v eN7•7•N\ rl �2 n 'Y r . e. S. )1 f1" 'r Iy 'l F . , ,I .,r"s It ' F�It� s! r: ' a� -1 I{j6. t' =.i, f/.\\\\ r.. [I7F tiZvs •) �.. S-vu.l,f y y �S lr 0.r' �-cvi Ls��'i^\✓ /l 'J .1.\ ss\�F '� � �) �� \ ' l �~ x_ �tS Q`I 14rt�rs_ 4 yb � 'j rk�" _. c`"7 �,3. i//1t'C� 3 ' {;6ter'\1 4 ' �ki(r^ 3�1 L �T . y1211.s'y ' : �C`" lrLtir L 14 � V( \ j\ ,ti�`4 ,, . �\ (i�{� l/f�i = \ ,l\l_tr�;t:.r aC.�• x Zmoi , !1 ti-• �� '44'e: \)\�> . rn �f1 rini I l , pt x � >e 1 r'i :L / + ix, �' � ( .,; 1 � �I LY71i� +� \ + ' `" �li(:- ---;s•--:&"5-.;1-4 .,a" -.,"+� " mss- '//�V-, 44--. .c,;•' ` Y'-' l� •`va,(;n `� �•.\�31 •�r „/S (_ .(.• . l i• 14-' ' �\`,,,, ryrr_ �' '''Lt � C"tirr ` 1 .-- t 5 1 't t'` r' f/r'`' ai' i_tiW v�•�r Is 3':'``.,,,—E .! ��"'1'.s J I�.� ,a \ ; "R a yy rf i! �t1Jt45(J-"�',a: �-�j '4 f ar' C/ f �G '?pf .-w f . L r ,�- X1/5 ', �� , c >� 1� � gi i ! 1xr r . .r '111 F 1c‘,1_&.•••:.-•4.." y I 11 .F-rJ..�J fi ��JF•�F'a21 '3_, �i .1•,Yra '�.S.a i7i��'"' •.✓-i `�� i ';. �' r ft,-2(4-54.2(C:t� tQ iY` ♦ C 3�• c' �i� Y !I:)7 I .'n- �) 4 y4 .y. U <` �� .��,, 1 `Y `f41�y�' .:-t-s (,^/7(!r l'b.tS 1`L\�-1 =4...R.:1"•'\ i 4 .v-- \� i �" (( i;c'V. i �` w L--1v L `S C A-r[ 1 �" '. ^r<: Fi '� �.. ' fT (( -+4 p irF l�`�',Sg i r� /�L �5S✓- 1 �. �-4 "* Y iii 'il � i falf la t Z ti aII � it $ \• �C��i4-J \ fes," '[o y 4r.r P .� \� Z y '�'F tl� . r . t� $ o t. :�..r. .su,_^t '�� a_.-.t i�..{ ., � tc.�-. �•t I.•,S�'\ , c..u5=".. ..-....-�. ;. e rr n•ralo• I LEGEND HYDROLOGIC SOILS GROUP MAP 111 . — SOILS GROUP BOUNDARY FOR • A SOILS GROUP DESIGNATION .„ k RCFCaWCD PECHANGA HYDROLOGY MANUAL0 FEET 5000 PLATE c—I.61 7 I Tc' LIMITATIONS: c L 100 I. Maximum length =10004 Tc 1000 90 2.Moximum area = 10 Acres 5 ' 900 80 a o H 6 e . 800 70 Y 9" 0 44000 a M O 300 ' 700 t 60 C 1' L bO 200 7 ' o N a .= io�p� E cx 600 0 • E 50a o `o g8 -e- 8 0 C c E o v 30 2. 9 0 D. o c 20 500 a • 0 (I) o • • —'I ' o ti o i0 10 E 35 o S C 4 • o • 0. K A ; _ t t 4. • a (I) o 400 f 30 Undeveloped • 2 12 c Good Cover ' • 350 a 25 Undeveloped 5 t. o o c71 Fair Cava V : o 300 20 19 Undeveloped 3 c E Poor Covet o 2 {6 c It r S E 18 Single Family 50 o I7 c 250 17 16 (V4 Acre) • 19 ^u c 15 Commercia 20 Fr 0 14 o Q (Pav o 0 0 200 - 13 F 0 Tic 12 2 0 C 8 11 25, c 0 �" KEY 150 m E 9 L.--I-1--Tc-K--Te o • i= 30 . .8 E E EXAMPLE: i 7 (I) L=5501 H =5.0, K Family(1/4 Ac.) 35 Oevetopment ,Tc=12.6 min. 6 (2) L=550, H =5.04, K= Commercial 40 100 Development ,Tc= 9.7 inin. . 5 / / / 4 Reterence:8ibliogrcphy item No•35. R C F C a WC-0 TIME OF CONCENTRATION ' HYDROLOGY MANUAL FOR INITIAL SUBAREA 5 11111111111111111111ealillt air a s ar r a aaa ar, M Uri al aaa a l s • RAINFALL INTENSITY- INCHES PER HOUR A NIRA LORA MURRIETA • TENECUTA 110Rte PALM SPR I118f • PERRIS MALLET 73 on 6 RANCHO CALIFORNIA 5 DURATION FREQUENCY • DURATION FREQUENCY DURATION FREQUENCY ' DURATION FREQUENCY DURATION FREQUENCY MINUTES MINUTES MINUTES MINUTES MINUTES 11 101 11 101 11 101 II 101 10 101 •�� • YEAR TEAR - YEAR YEAR YEAR YEAR TEAR YEAR T(AR YEAR K 5 2866 6.61 5 3.45• ..5.10 5 207 4.16 s 4.23 606 S ' 2466 3416 • 6 2.58 4.07 6 3.12 6.61 6 2.53 3.79 4 3.60 6.18 4 2.61 3.44 y. .1 * 7 2.37 ; 3.75 T 2017 •.26 7 2. .3 3• 31 7 3.48 3.56 7 2.24 3.21 6 2.21. 2.61 8 2.67 3.94 I 2.11 3.21 I 3.22 5.15 8 2.19 3.11 D 1 2.11 3.2/ 1 2.51 3.69 9 . 2.17 3.18 9 3.01 6./1 1 1.11 2.16 v 11 1. 4 3.11 10 2.26 3.11 10 Ion 2.16 11 2.13 6.32 1/ 1./1 2.61 II 1.11 2.93 II 2.26 3.70 11 1.17 2.60 Il 2.61 4.26 11 1.79 2.57 12 1.70 2.12 12 2.13 3.15 12 1.71 2.61 12 2.56 4.01 12 1.72 2. 4 1 13 1.71 2.71 13 2.06 3.01 13 1.72 208 13 2.63 3,81 13 1.65 2.37 14 1.64 2.66 14 1.114 7.81 14 1.66 2.41 14 203 3.72 ' le 1.59 2.21 IS 1.51 2.51 16 1.19 2.19 • 15 1.68 2.61 15 2.23 3.58 IS 1.56 2.21 16 1.53 2.62 16 1.02 2.69 16 1.35 2.32 . 16 2.15 3.44 16 1.69 2.16 17 1.61 2.36 17 1.76 2.61 17 1.30 2.25 - 17 2.01 302 17 1.4$ 2.01 18 1.66 2.27 11 1.11 2.52 10 1.46 2.19 11 2.11 3.22 1/ 1.41 2.12 19 1.61 2.21 19 1.66 2. 6 I1 1.62 2.13 19 1.93 3.12 11 1.77 1.11 21 1.26 2.15 20 1461 2.30 21 1.79 2.11 21 1.19 3.13 21 1.26 1.92 22 1.21 2.14 • 22 1.33 2.26 22 1.72 1.11 22 1.71 2.16 22 1.21 . 1.83 24 1.24 1.15 24 106 2.13 24 1.26 2.16 24 1.76 2.72 24 1.22 1.75 26 1.16 1.07 26 1.39 2.06 26 1.22 1.62 26 1.62.12.64 26 1.11 1.69 _ 26 l.1• 11 26 1.34 1.18 2$ 1.17 1.16 2/ 1.36 2.• 28 1.13 1.63 31 1.1$ 103 30 1.29 1.10 30 1.13 1.11 31 1.61 2011 31 1.10 1.31 32 1.16 1.67 32 1.26 1.16 32 1.10 1.66 32 1.44 2.30 32 1.16 1.52 Z 34 1.13 1.62 34 1.20 1.76 34 106 1.59 34 109 2.22 34 1.63 1.66 36 1.11 1.57 36 1.17 10276 1.03 1.55 36 1.3• 2.23 36 1.11 1.16 Ill ]1 .1T I.53 71 1.I1 1.61 30 1491 1.51 31 1.31 2.1$ ]/ .91 1.60 C 2 61 .14 1.69 40 1.10 1.62 68 .91 107 41 1.77 2.12 41 .93 "1.31 .23 Cl) Cn 63 .1/ 1.41 65 1.03 1.52 45 02 1.31 45 1.11 1.11 45 .91 1.21 S1. ./• 1.32 51 .97 1.14 50 .10 1.31 31 1.11 1.1/ 50 .IS 1.22 55..• .01 1.26 SS .92 1.36 SS .16 1.23 SS 1.05 1.61 SS .11 1.17 rn '< Z 61'• .76 1.28 60 .88 1.21 61 .N 1.26 61 1.11 1.61 44 .// 1.12 y ( 0 66 .73 2.13 65 .6• 1.2• 65 .71 1.15 63 .1S 1.53 6S .76 1.01 r--I D q 23 (]D - TO .71 loll 10 .61 1.11 To .14 1.11 T1 .11 1.•6 ' 70 .72 1.16 • F C 75 II .61 1.11 .63 1.13 Ts Ie .11 1.Is .13 1.11 75 60 .1t 7.61 .N 1.11 15 80 .et , 1••I .13 1.73 75 11 .78 1.1$ 468 .91 (TI D D 6S .b 1481 6s .73 1.07 15 .67 1.01 1S •82 1.31 - 83 .66 Al v --i •• U Q SLOPE • .531 SLOPE • .550 SLOPE • .511 SLOPE • .5/1 SLOPE • .•91 A Z 44 . - 0 . •y V r l , 1;....7 . 0 I 2 3 4 5 6 l i . 1.0 ■■■■■■■M.DTII.....m.I.M.■I..IMMIIIM.M.uiW.M.tlI.iI . iMMIIIIIIIIIMIMMINUNIIIIMIIIIIIIMMUNMEMIONNIMINIMINNIIMMUIMMUMIM ■■w■■tl■n■■■■■■■■■■■■■nr■■■■■■tl!■■■tl■r•■N■■■■■N■■n■ • .. ■■■■■■■MIn.MnMI..tlI■I__..I..■MM.IIM■tl■■MIII ■_■■■■tl ■ ■■■■N■tl■■N■■■■MENIIM■■■N_ ■■■■■■tltl■■■tl■tl■N■■N■N■■■tl■tl I 9 as E 'III ' I■tl U I liN • ll,.[i. 'lir_- , MIMI .9 IlltiMaina _ �'� ao - _ . I 't NIII.I. alig11,71456:21:111& Mtn ill" • -941:1117=11111".. I W.,•%.�tl■■ '..B■■■vaN■.1Mia■■■!M.■tl■tl■■1�..■ntlN■■ it`s• r .8 110 .8 reAr ■nraUrr_.1tra'ai■ enir- �in■■tln■flan ■ rearrameadorsimmummomonorI./■?7/..■■rAtzi■■■■N►...... Nntl■.■tl■tltl.■■tl■n. tlNNn■tl■■ .I■■IN■iii'/old■■.tl'INP�■.tltl•■■pI ■••tl■■.tlIi■Ntl.■name, U 7 MalratY111 � i� : , , l I ar -direr. T: H41 ,- III i : I . I — .7 allIWIII _ � tl - II MSM�Htli ■ntl.tlM■SU ' . : . IL /tlIEI M��./ UU UUMtl • IP INEW[:YMaffl W M■tl■■■MMtl■M. : 1 O Mt0Mat,A■II■M■MN.M■■■MM■■tl■■MM.. Z USnar 7.WII. I.I f.MMn. 6 nV.,I�n ■■.WMM.IIMIM.aN.BM■N. k •6 NN MIIII ISMIU M■ntl�n■=•WIMI.■.MMtl.M.M■■■MINMtlN. IP Wl..■.......nN.■M.■■■.■■.MM■MM.MMN■M■M■ I NCO..MI.raN■N■.■M■■■.■M.MM■.tl■■MM■■■M■M■00fl L_r MIUMMISMIAIMIIIIIMIIMIBMIIMISIMMIWIEMMINIIIIMMEMIMIIIMME B■nS.rI.I/Y. — n nII-- _n.UNMMINMmIN.nI■MMM 1IIIIVIMS/I.MI■.M.tlI.I.IMM.M.I.MMnN■.M.■W■■.MN■■■ f ■INi■F ,...JMtl■■■■■■M■tltl■■.MMtl■tl■MMN■M■M■aIM.■W■a1■ - 5 ■IMQV..INI■■M■Mtl■NWMM MIUM M■ANIS ®■..■MN• I z- 5 • 11■Vr.M..'��III��. LA •ND USE 0: OEVEL• 'MENT T PE .mI■ I I WL .Ira 'INIIU.flo� MIN..I.■ I- B IINIIR /.M...N.NM■n■tl tlIIIf.MINtltl.MI IIIIISIn-.II■.M■■M■Na1 M■M.■■NMNf ' ala. ,MINIM tl.M■M■■.■■tl■MM■tltl■M■tl..■tlM■M.■ ■■./I,■■n■n■■■■■■M■.■tl■■■MM■■tl■.M■Mtl■■■MMM■■NMNN W Ur11.■UUN■■■tl■■M■.■■..■■MM■■■■■■M a.na.Unu•U.�na OI II UUUIU•: 1 II O Q 0 aIII. TIME OF CONCENTRATION, 100 YEAR FLOW ROUTING 1 1 • i I 1 I 1 . 1 1 1 1 i I, 1 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 07/12/01 10 YR - ULTIMATE STUDY (BORROW SITE) FN:29734 7-11-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on ' Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc, Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in. /hr. ) 10 year storm 60 minute intensity = 0.880 (in./hr. ) • 100 year storm 10 minute intensity = 3.480 (in. /hr. ) 100 year storm 60 minute intensity = 1. 300 (in. /hr. ) Storm event year = 10.0 Calculated rainfall intensity data: ' 1 hour intensity = 0. 880 (in./hr. ) Slope of intensity duration curve = 0.5500 I Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** I/ Initial area flow distance = 217 .000 (Ft. ) Top (of initial area) elevation = 1235.000 (Ft. ) Bottom (of initial area) elevation = 1230.000 (Ft. ) Difference in elevation = 5.000 (Ft. ) Slope = 0.02304 s (percent)= 2.30 TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 7. 131 min. Rainfall intensity = 2.839(In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.822 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI indeR for soil (AMC 2) = 69.00 1 ^ 'd Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1. 983 (CFS) Total initial stream area = 0.850(Ac. ) Pervious area fraction = 0.500 Process from Point/Station 11.900 to Point/Station 13.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1230.000 (Ft. ) End of street segment elevation = 1199.400 (Ft. ) Length of street segment = 420.000 (Ft. ) ' Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16. 000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) • ' Slope from curb to property line (v/hz) = 0. 025 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 5. 132 (CFS) Depth of flow = 0.252 (Ft. ) , Average velocity = 4 . 946(Ft/s) 1 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.262 (Ft. ) Flow velocity = 4 .95 (Ft/s) Travel time = 1.42 min. TC = 8 .55 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.815 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0. 000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.570 (In/Hr) for a . 10.0 year storm Subarea runoff = 5. 656(CFS) for 2.700 (Ac. ) Total runoff = 7. 639(CFS) Total area = 3.550 (Ac. ) Street flow at end of street = 7.639 (CFS) Half street flow at end of street = 3.819(CFS) Depth of flow = 0.280 (Ft. ) , Average velocity = 5.359(Ft/s) Flow width (from curb towards crown)= 7 . 655 (Ft. ) Process from Point/Station 11.000 to Point/Station 13.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream' flow area = 3.550 (Ac. ) -reol 92,39 / 3 ll IIRunoff from this stream = 7. 639(CFS) Time of concentration = 8.55 min. Rainfall intensity = 2.570 (In/Hr) IIProgram is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.0,00 to Point/Station 13.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 167 .000 (Ft. ) Top (of initial area) elevation = 1205.000 (Ft. ) Bottom (of initial area) elevation = 1199.400 (Ft. ) Difference in elevation = 5. 600 (Ft. ) I Slope = 0.03353 s (percent)= 3.35 TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 5.957 min. II Rainfall intensity = 3. 135 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 828 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0. 500; Impervious fraction = 0.500 Initial subarea runoff = 1.739 (CFS) Total initial stream area = 0. 670 (Ac. ) IIPervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.000 **** CONFLUENCE OF MAIN STREAMS **** II The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0. 670 (Ac. ) I Runoff from this stream = 1.739(CFS) Time of concentration = 5. 96 min. Rainfall intensity = 3. 135 (In/Hr) Summary of stream data: IStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II 1 7. 639 8 . 55 2.570 , 2 1 .739 5. 96 3.135 1 Largest stream flow has longer time of concentration Qp = 7. 639 + sum of Qb Ia/Ib 1.739 * 0.820 = 1.426 1 Qp = 9.064 Total of 2 main streams to confluence: IIFlow rates before confluence point: I /1/ I 7 . 639 1.739 Area of streams before confluence: 3.550 0. 670 Results of confluence: Total flow rate = 9. 064 (CFS) = Time of concentration= 8.546 min.Effective stream area after confluence4 .220 (Ac. ) Process from Point/Station 13.000 to Point/Station 16.000 1 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1199. 400 (Ft. ) End of street segment elevation = 1188.000 (Ft. ) ' Length of street segment = 390.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.065 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2. 000 (In. ) 1 Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 10.052 (CFS) Depth of flow = 0.339(Ft. ) , Average velocity = 3. 995 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10. 637 (Ft. ) ' Flow velocity = 3.99 (Ft/s) Travel time = 1 . 63 min. TC = 10. 17 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.808 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.335 (In/Hr) for a 10. Subarea runoff = 1.736 (CFS) for 0. 920 (Ac. )0 .year storm Total runoff = 10.801 (CFS) Total area = 5. 140(Ac. ) Street flow at end of street = 10.801 (CFS) Half street flow at end of street =10.801 5.400 (CFS) Depth of flow = 0. 346(Ft. ) , Average velocity = 4 .062 (Ft/s) Flow width (from curb towards crown)= 10. 968 (Ft. ) M ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process 'from Point/Station 13.000 to Point/Station 16.000 /5 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5. 140 (Ac. ) Runoff from this stream = 10.801 (CFS) Time of concentration =. 10.17 min. I/ Rainfall intensity = 2.335 (In/Hr). Program is now starting with Main Stream No. 2 Process from Point/Station 14 .000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 162.000 (Ft. ) Top (of initial area) elevation = 1217.000 (Ft. ) ' Bottom (of initial area) elevation = 1215.000 (Ft. ) Difference in elevation = 2.000 (Ft. ) Slope = 0.01235 s (percent)= 1.23 TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2 ' Initial area time of concentration = 7. 187 min. Rainfall intensity = 2.827 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.821 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 1. 811 (CFS) Total initial stream area = 0.780 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 15.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1215.000 (Ft. ) End of street segment elevation = 1188.000 (Ft. ) I Length of street segment = 480.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 18.000(Ft. ) ' Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning' s N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0. 0150 Estimated mean flow rate at midpoint of street = 5.526 (CFS) ll, II ' Depth of flow = 0.319(Ft. ) , Average velocity = 5.254 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.618 (Ft. ) II Flow velocity = 5.25 (Ft/s) Travel time = 1 .52 min. TC = 8.71 min. Adding area flow to street I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.814 , Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.599 (In/Hr) for a 10.0 year storm Subarea runoff = 6. 628 (CFS) for 3.200 (Ac. ) Total runoff = 8. 439 (CFS) Total area = 3.980 (Ac. ) II Street flow at end of street = 8. 939(CFS) Half street flow at end of street = 8.439(CFS) Depth of flow = 0. 357 (Ft. ) , Average velocity = 5.793 (Ft/s) ' Flow width (from curb towards crown)= 11.533 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 1000 to Point/Station 16.000 **** CONFLUENCE OF MAIN STREAMS ****5. The following data inside Main Stream is listed: 1 In Main Stream number: 2 Stream flow area = 3.980 (Ac. ) Runoff from this stream = 8.439(CFS) ' Time of concentration = 8.71 min. Rainfall intensity = 2.544 (In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 10.801 10. 17 2.335 2 8. 439 8 .71 2. 544 Largest stream flow has longer time of concentration II Qp = 10.801 + sum of Qb Ia/Ib 8 .439 * 0.918 = 7 .748 Qp = 18.548 llTotal of 2 main streams to confluence: Flow rates before confluence point: II 10.801 8 .439 Area of streams before confluence: 5. 140 3. 980 II Results of confluence: Total flow rate = 18.548 (CFS) IITime or concentration = 10. 173 min. II I / n 1 Effective stream area after confluence = 9. 120 (Ac. ) Check of Previous Confluence Operations Of all Main streams ' Total of 4 streams to confluence: Flow rates before and maximum after confluence point: No. Flow Rate TC I Max Confluence ' 1 7 . 639 10.173 2.335 18 . 602 2 1.739 7 .585 2.745 16.076 3 8 .439 8 .710 2.544 18.076 4 1.736 10.173 2. 335 18. 602 NOTE: Last stream is area added between confluences Results of confluence check: / Total flow rate = 18. 602 (CFS) v/ • Time of concentration = 10. 173 min. NOTE: Maximum flow rate derived from previous confluences = 18 .60 (CFS) This exceeds normal confluence rate of 18.55 (CFS) Therefore, largest confluence flow rate and TC = 10. 17 Min. is used. End of computations, total study area = 9.12 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 I 1 I i i /' Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 07/12/01 100 YEAR- ULTIMATE STUDY (BORROW SITE) FN:29734 7-11-01 ' ********* Hydrology Study Control Information ********** 1 RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc, Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr. ) 10 year storm 60 minute intensity = 0.880 (in./hr. ) 100 year storm 10 minute intensity = 3. 480 (in. /hr. ) 100 year storm 60 minute intensity = 1.300 (in. /hr. ) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in. /hr. ) Slope of intensity duration curve = 0.5500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 217. 000 (Ft. ) Top (of initial area) elevation = 1235.000 (Ft. ) Bottom (of initial area) elevation = 1230.000 (Ft. ) Difference in elevation = 5.000 (Ft. ) Slope = 0.02304 s (percent)= 2. 30 TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 7.131 min. Rainfall intensity = 4 . 195 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 844 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 t9 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 3.008 (CFS) Total initial stream area = 0.850 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 11.900 to Point/Station 13.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1230.000 (Ft. ) End of street segment elevation = 1199.400 (Ft. ) Length of street segment = 420.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 ' Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) ' Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.786 (CFS) Depth of flow = 0.281 (Ft. ) , Average velocity = 5.381 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.726 (Ft. ) Flow velocity = 5.38 (Ft/s) Travel time = 1.30 min. TC = 8.43 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.839 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.825 (In/Hr) for a .100.0 year storm I Subarea runoff = 8 . 666(CFS) for 2.700 (Ac. ) Total runoff = 11. 675 (CFS) Total area = 3. 550 (Ac. ) Street flow at end of street = 11.675 (CFS) Half street flow at end of street = 5.837 (CFS) Depth of flow = 0. 313 (Ft. ) , Average velocity = 5.880 (Ft/s) Flow width (from curb towards crown)= 9.306(Ft. ) _ Process from Point/Station 11.000 to Point/Station 13.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.550 (Ac. ) 1 .2o II IIRunoff from this stream = 11. 675 (CFS) Time of concentration = 8.43 min. Rainfall intensity = 3.825 (In/Hr) IProgram is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 12.900 to Point/Station 13.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 167 .000 (Ft. ) Top (of initial area) elevation = 1205.000 (Ft. ) Bottom (of initial area) elevation = 1199. 400 (Ft. ) Difference in elevation = 5. 600 (Ft. ) II Slope = 0.03353 s (percent)=, 3.35 TC = k(0. 390) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 5. 957 min. II Rainfall intensity = 9 . 631 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.848 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0. 500 Initial subarea runoff = 2. 632 (CFS) Total initial stream area = 0. 670 (Ac. ) ' Pervious area fraction = 0. 500 II Process from Point/Station 12.000 to Point Station 13.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0. 670 (Ac. ) Runoff from this stream = 2. 632 (CFS) II Time of concentration = 5. 96 min. Rainfall intensity = 4 . 631 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1 11. 675 8. 43 3.825 2 2. 632 5. 96 4 . 631 ' Largest stream flow has longer time of concentration Qp = 11. 675 + sum of Qb Ia/Ib 2. 632 * 0.826 = 2. 175 IQp = 13. 849 Total of 2 main streams to confluence: IIFlow rates before confluence point: ' 925 1 11. 675 2.632 Area of streams before confluence: 3.550 0. 670 Results of confluence: Total flow rate = 13.849(CFS) Time of concentration = 8.432 mip. Effective stream area after confluence = 4 .220 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 16.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1199.400 (Ft. ) End of street segment elevation = 1188.000 (Ft. ) ' Length of street segment = 390.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.065 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ' Estimated mean flow rate at midpoint of street = 15.359(CFS) Depth of flow = 0.381 (Ft. ) , Average velocity = 4 .412 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 12 .704 (Ft. ) ' Flow velocity = 4 . 41 (Ft/s) Travel time = 1.47 min. TC = 9. 91 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.834 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.501 (In/Hr) for a 100.0 year storm Subarea runoff = 2 . 687 (CFS) for 0. 920 (Ac. ) . Total runoff = 16. 536(CFS) Total area 5. 140 (Ac. ) ' Street flow at end of street = 16.536(CFS) Half street flow at end of street =16.536 8.268 (CFS) Depth of flow = 0.389 (Ft. ) , Average velocity = 4 .490 (Ft/s) Flow width (from curb towards crown)= 13.095 (Ft. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Procesd 'from Point/Station 13.000 to Point/Station 16.000 as 1 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5. 140 (Ac. ) Runoff from this stream = 16.536 (CFS) Time of concentration = 9. 91 min. Rainfall intensity = 3. 501 (In/Hr)/ Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14 .000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 162.000 (Ft. ) Top (of initial area) elevation = 1217 .000 (Ft. ) t Bottom (of initial area) elevation = 1215.000 (Ft. ) Difference in elevation = 2.000 (Ft. ) Slope = 0.01235 s (percent)= 1.23 TC = k(0. 390) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 7. 187 min. Rainfall intensity = 4 . 177 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 844 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 ' Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 2.748 (CFS) Total initial stream area = 0.780 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1215.000 (Ft. ) End of street segment elevation = 1188.000 (Ft% ) ' Length of street segment = 480.000 (Ft. ) Height of curb above gutter flowline 6.0 (In. ) Width of half street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0. 020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000 (Ft. ) t Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 ' Estimated,mean flow rate at midpoint of street = 8 .385 (CFS) 023 IIDepth of flow = 0.357 (Ft. ) , Average velocity = 5.784 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.502 (Ft. ) ' Flow velocity = 5.78 (Ft/s) Travel time = 1.38 min. TC = 8.57 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) II Runoff Coefficient = 0. 839 , Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 II Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 69.00 ,, Pervious area fraction = 0.500; Impervious fraction = 0.500 II Rainfall intensity = 3.791 (In/Hr) for a 100.0 year storm Subarea runoff = 10. 174 (CFS) for 3.200 (Ac. ) Total runoff = 12. 922 (CFS) Total area = 3. 980 (Ac. ) Street flow at end of street = 12. 922 (CFS) Half street flow at end of street =12. 922 12. 922 (CFS) Depth of flow = 0.402 (Ft. ) , Average velocity = 6.408 (Ft/s) Flow width (from curb towards crown)= 13.747 (Ft. ) II ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 15.000 to Point/Station '16.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: ' In Main Stream number: 2 Stream flow area = 3. 980 (Ac. ) Runoff from this stream = 12. 922 (CFS) II Time of concentration = 8.57 min. Rainfall intensity = 3.791 (In/Hr) Summary of stream data: II Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 16.536 9. 91 3.501 2 12. 922 8.57 3.791 Largest stream flow has longer time of concentration I Qp = 16.536 + sum of Qb . Ia/Ib 12.922 * 0. 923 = 11. 933 Op = 28.469 ' II Total of 2 main streams to confluence: Flow rates before confluence point: ' 16.536 12. 922 Area of streams before confluence: 5. 140 3. 980 II Results of confluence: Total flow rate = 28.469 (CFS) Time ofconcentraon =ti 9.905 min. II AV 1 ' Effective stream area after confluence = 9. 120 (Ac. ) Check of Previous Confluence Operations Of all Main streams Total of 4 streams to confluence: Flow rates before and maximum after cpnfluence point: No. Flow Rate TC I Max Confluence ' 1 11. 675 9. 905 3.501 28.542 2 2 . 632 7.431 4 . 101 24 . 610 3 12. 922 8.570 3.791 27.782 4 2. 687 9. 905 3.501 28.542 NOTE: Last stream is area added between confluences Results of confluence check: Total flow rate = 28. 542 (CFS) ✓ Time of concentration = • 9. 905 min. NOTE: ' Maximum flow rate derived from previous confluences = 28.54 (CFS) This exceeds normal confluence rate of 28. 47 (CFS) Therefore, largest confluence flow rate and TC = 9. 91 Min. is used. ' End of computations, total study area = 9. 12 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 69.0 1 1 1 1 .1J/ 1 1 ' IV. ' HYDROLOGY MAP 1 1 1 1 1 1 1 1 1 1 1 .�lo