HomeMy WebLinkAboutHydrology Calculations for Borrow Site 7/2001 \fi
o
HYDROLOGY CALCULATIONS
' FOR
TRACT NO. 29734
(BORROW SITE)
BGR NO. 010320
1
1
1
1
1
I
PREPARED BY: PREPARED FOR:
TRANS-PACIFIC CONSULTANTS THE GARRETT GROUP,LLC
27431 ENTERPRISE CIRCLE WEST 43529 RIDGE PARK DRIVE
TEMECULA, CA 92590 TEMECULA, CA. 92592
JULY 2001
1
1
I
1
' TABLE OF CONTENTS
I. RIVERSIDE COUNTY RATIONAL METHOD
HYDROLOGY INSTRUCTIONS
II. DESIGN CHARTS
• HYDROLOGIC SOILS GROUP MAP FOR TEMECULA
• TIME OF CONCENTRATION FOR INITIAL SUBAREA
i • STANDARD INTENSITY- DURATION CURVES DATA
• RUNOFF COEFFICIENT CURVES FOR SOILS GROUP-C
1 III. TIME OF CONCENTRATION, 100 YEAR FLOW ROUTING
• HYDROLOGY CALCULATION (10 YR.)
1. BASIN "A" "B" "C" "D" "E" & "F"
• HYDROLOGY CALCULATION (100 YR)
1
IV. HYDROLOGY MAP
1
I
1
i
I
1
1
1
1
I
I
' RIVERSIDE COUNTY RATIONAL METHOD
HYDROLOGY INSTRUCTIONS
A
1
1
1
1
r�
1
3
1
INSTRUCTIONS FOR RATIONAL ?MECO HYDROLOGY CALCULATIONS
I
t
(Based on the Rational Formula, Q - CiA) ._
' 1. On map of drainage area, draw drainage system and block off subareas
tributary to it.
' 2. Determine the initial time of concentration , "T", using Plate D-3.
The initial area should be less than'10 acres; have a flow path of
less than 1,000 feet, and be the most upstream subarea.
11 3. Using the time of concentration, determine "I", intensity of rain-
fall in inches per hour, frac the appropriate intensity-duration
curve for the particular area under study. For areas where stan-
dard curves are available, use Plates D-4.1 and D-4.2 to reproduce
the standard curve. For areas where curves have not been published
by the District, use Plates D-4.3 through D-4.7 to develop a suit-
able intensity-duration curve.
4. Determine "C", the coefficient of runoff, using the runoff coeffi-
1 cient curve which corresponds as closely as possible with the soil,
cover type and development of the drainage area. Standard curves
(Plates D-5.1 through D-5.4) have been developed by the District
11 for the cc=—.in case of urban landscaping type cover. Where'these
curves are not applicable, curves ray be developed using Plates
D-5.5 through D-5.8.
11 S. Determine "A", the area of the subarea in acres.
6. Compute Q - CIA for the subarea.
11 7. Measure the length of flow to the point of inflow of the next sub-
area downstream. Determine the velocity of flow in this reach for
11 the peak Q in the type of conveyance being considered (natural
channel, street, pipe, or open channel) , using the tabling aids on
Plates D-6 through D-9.
Using the reach length and velocity determined above, compute the
travel time, and add this time to the time of concentration for the
previous subarea to determine a new time of' cbncentration.
11
8. Calculate Q for the new subarea, using steps 3 through 6 and the
M new time of concentration. Determine "Q�, the peak Q for all sub-
areas
tributary to the system to this point by adding Q for the
new subarea to the summation of Q for all upstream.,subareas. Deter-
mine the time of concentration for the next subarea downstream using
Step 7. Continue tabling downstream in similar fashion until a
junction with a lateral drain is reached.
1 -
r R C F C -11 W C D RATIONAL METHOD
HYDROLOGY MANUAL INSTRUCTIONS
I !
I
II c
` 9. Start at the upper end of the lateral and table its Q down to the
I junction with the main line, using the methods outlined in the
previous steps.
10. Compute the peak Q at the junction. Let QA, TA, IA correspond to
II the tributary area with the longer time of concentration, and QB,
TB, Ig correspond to the tributary area with the shorter time of
concentration and Qp, Tp correspond to the peak Q and time of
I/ concentration.
a. If the tributary areas have the same time of concentration,
II the tributary Q's are added directly to obtain the combined
peak Q.
II Qp — QA + QB Tp gm TA
I. Ta
II b. If the tributary areas have different times of concentration,
the smaller of the tributary Q's must be corrected as follows:
' (1) The usual case is where the tributary area with the ion-
ger time of concentration has the larger Q. In this case,
the smaller Q is corrected by a ratio of the intensities
and added to the larger Q to obtain the combined peak Q.
� The tabling is then continued downstream using the longer
time of concentration.
Qp * QA + QB IA TP TA
Ig
II
(2) In some cases, the tributary area with the shorter time
II - of concentration has the larger Q. In this case, the
smaller Q is corrected by a ratio of the times of concen—
tration and added to the larger Q to obtain the combined
peak Q. The tabling is then continued downsteam using
I the shorter time of concentration.
II Qp c QB + QA TB TP TB -
TA
1
I
I RCFC - 81 WCDRATIONAL METHOD
IlHYDROLOGY MANUAL �p r� INSTRUCTIONS
- /� a / S
I
I
1
I
1
II.
DESIGN CHARTS
I
I
1
I
I
I
I
I
1
• B 13•34'EC D B 'C.,..‘ BC,41„-D I
B C 0 BC D teaac=w t ° 0 BC B B
I
rp` s s' ;in"' 'e— , • -51'. [---C. .- —lea• =„FZI� ,4 � • .,a� !F "• -
• �) s5"'a.' 3 .l r •`i �` Ill i CO •
A I tier].
i • l_ ; � ! JL4;,, ��'B , �. Zti-'Ljp �ln ty-r
BC ''7'-'7,• u -e i�» C! � �, > r 3'',\v x�w7 •G .. as
iyy „r. R �- II riD 'i-
BC ice. a C,✓ \ tit -r AW---; �Na 6 (r s'� ,�;/f 5 f.
A , ' B� � •.�� f Y ."A".-.y BC t /. �. 34r1 i -,,,,,,d),-,,,,,,„.,,Q,i 3 --
a - � s,• ,B c a ,rte L-..
BC BI` 7l i. lyDt Z G ' G - k"A�Gf.`f` �P':�"1v L
+..iD w p r/ .,L, D .------- ^ B`� 3,'rr` „�,f SC S-+ray Zs 3• •r --a;/). ,j)1 �-\� MA�.-
�i ` �� �j 6 �'�t rf -��vS o-`P•, s�-t �,�/.^� `f J„7i=v• �'��.\D1.3ay s B
6r✓ t.�e ice.• .��. r? 1� ,.,��1•�� f2 R� L ;� }���:.AAA f.'Z
+ , �•�` ?"� Cr'y -.. , „rrsi e l l` ,l'� s \ ,..,1;-,t--..„4„,-,N..,31
rCWtCf�: 7 .
.II / "`� <t' -. BC y: t'3C. e l ° w. Z:n Br S \". r=1-.: ,+f. ',�-`^�: y
.l`'� r��� Ge' a�1��' :� + < ^ <' ' 4Q T� ,..;,:k7" .1'. r^'n� v2 ( /fir s
i ��`�1 '�` y�' g: meg,`- g B'L.% '';',1', R
L[ /, A�-\ ' r,}C } '�`� it'� ''ri•
l `may •-_s;.,: tD, d • � �� eP o:�i r/ s t;V r r � t..-� ii
I :V �GTiyt 9 r, `4 ( J ` 4s'"J 4 F '•'-� :*47 :s�r0p2.:tvAr `L J\r
F 1 j ! H rl., • '6-1;a •�' �. ti. . }° Bz e Y>f` f..Y 5 Sa a._ ,2,,, r tel„ .. _
(a 3 t 4 � 1
J � 4s,";---7,....."4:,,
/S� / C' � � �� p KL Oaf• �1 \�S l � CE f J C < G
6 ,r y r f r ? I i 'ti m r j�'1 I�"tF•..r{*f y.,
.., S 9 2d �' 7'Ea S e Be f-2t . ' J 'l i�8 -� Yui-. °�` .—T o.a rl' .� !/"�_
TP y i :`� �, 't,;f� t� 9 r << +▪ 4 -S-_�y, �r>'�S /ir rc rl'��t -7e;:Vf.-see
/ 71k rtt : ( `1j) 7 5 r� � a-T
"1 l 1! l r� .m.y�r4rf 'u . r�l�l �''fr.,`ray'` . �{��.S�v rf / � l`1-1
9 \ .: t a /3{/r- y Cn .1 a )Y ;;T f tt%t rLy: t4^`�}�. fs `ate , {i-,_a j (
i \ i' l A'�51 1 R T� ' < l �l �t'l' 3 a `Y'�v•s `/� r/fi� .,} c4 v^ t T1! y� 7�} �.,�i .
�k ` )� '.(`I�? 4 v L �x $\ ll4r �fl*ry % / `'"'`` �:„ 1:.W4 -r.441/�t� -'-'Xl/ ,;, ,r
n \ Sr .. v eN7•7•N\ rl �2 n 'Y r
. e. S. )1 f1" 'r Iy 'l F .
, ,I .,r"s It ' F�It� s! r: ' a� -1 I{j6. t' =.i, f/.\\\\ r.. [I7F tiZvs •) �.. S-vu.l,f y y �S lr 0.r' �-cvi Ls��'i^\✓ /l 'J .1.\ ss\�F '� � �) �� \ ' l �~ x_ �tS Q`I 14rt�rs_ 4 yb � 'j rk�" _. c`"7 �,3. i//1t'C� 3 ' {;6ter'\1 4 ' �ki(r^ 3�1 L �T . y1211.s'y ' : �C`" lrLtir L 14 � V( \ j\ ,ti�`4 ,, . �\ (i�{� l/f�i = \ ,l\l_tr�;t:.r aC.�• x Zmoi , !1 ti-•
�� '44'e: \)\�> . rn �f1 rini I l , pt x � >e 1 r'i :L / + ix,
�' � ( .,; 1 � �I LY71i� +� \ + ' `" �li(:- ---;s•--:&"5-.;1-4 .,a"
-.,"+� " mss- '//�V-,
44--. .c,;•' ` Y'-' l� •`va,(;n `� �•.\�31 •�r „/S (_ .(.• . l i• 14-' ' �\`,,,, ryrr_ �'
'''Lt � C"tirr ` 1 .-- t 5 1 't t'` r' f/r'`' ai' i_tiW v�•�r Is 3':'``.,,,—E .! ��"'1'.s J I�.� ,a
\ ; "R a yy rf i! �t1Jt45(J-"�',a: �-�j '4 f ar' C/ f �G '?pf
.-w f . L r ,�- X1/5 ', �� , c >� 1� �
gi
i ! 1xr r . .r '111 F 1c‘,1_&.•••:.-•4.." y I
11 .F-rJ..�J fi ��JF•�F'a21 '3_, �i .1•,Yra '�.S.a i7i��'"' •.✓-i `�� i ';. �' r ft,-2(4-54.2(C:t� tQ
iY` ♦ C 3�• c' �i� Y !I:)7 I .'n- �) 4 y4 .y. U <` �� .��,, 1 `Y
`f41�y�' .:-t-s (,^/7(!r l'b.tS 1`L\�-1 =4...R.:1"•'\
i 4 .v-- \� i
�" (( i;c'V. i �` w L--1v L `S C A-r[ 1 �" '. ^r<: Fi '�
�.. ' fT (( -+4 p irF l�`�',Sg i r� /�L �5S✓- 1 �. �-4 "* Y iii
'il � i falf la t Z ti
aII � it $ \• �C��i4-J \ fes," '[o y 4r.r P .� \� Z y '�'F tl� . r . t� $
o t. :�..r. .su,_^t '�� a_.-.t i�..{ ., � tc.�-. �•t I.•,S�'\ , c..u5=".. ..-....-�. ;. e rr
n•ralo•
I
LEGEND HYDROLOGIC SOILS GROUP MAP
111 . — SOILS GROUP BOUNDARY FOR
• A SOILS GROUP DESIGNATION .„ k
RCFCaWCD PECHANGA
HYDROLOGY MANUAL0 FEET 5000
PLATE c—I.61 7
I
Tc' LIMITATIONS: c
L 100 I. Maximum length =10004 Tc
1000 90 2.Moximum area = 10 Acres 5 '
900
80 a
o H 6 e .
800 70 Y 9" 0 44000 a
M O 300
' 700 t 60 C 1' L bO 200 7
'
o N a .= io�p� E
cx
600 0 •
E 50a o `o g8
-e-
8 0
C
c E o v 30 2.
9 0
D.
o c
20
500 a • 0 (I) o • • —'I
' o ti o i0 10 E
35 o S C 4
• o
• 0. K A ; _ t t 4.
• a (I) o
400 f 30 Undeveloped • 2 12 c
Good Cover
' • 350 a 25 Undeveloped 5 t. o
o c71 Fair Cava V : o
300 20
19 Undeveloped 3 c
E Poor Covet o 2 {6 c
It r S E
18 Single Family 50 o I7 c
250 17
16 (V4 Acre) •
19 ^u
c 15 Commercia 20 Fr
0 14
o Q (Pav o 0
0 200 - 13 F
0
Tic 12 2 0 C
8 11 25, c
0
�" KEY
150 m
E 9 L.--I-1--Tc-K--Te o
•
i= 30
. .8 E
E
EXAMPLE: i
7 (I) L=5501 H =5.0, K Family(1/4 Ac.) 35
Oevetopment ,Tc=12.6 min.
6 (2) L=550, H =5.04, K= Commercial 40
100 Development ,Tc= 9.7 inin. .
5
/
/ /
4 Reterence:8ibliogrcphy item No•35.
R C F C a WC-0 TIME OF CONCENTRATION
' HYDROLOGY MANUAL FOR INITIAL SUBAREA
5
11111111111111111111ealillt air a s ar r a aaa ar, M Uri al aaa a
l
s •
RAINFALL INTENSITY- INCHES PER HOUR
A NIRA LORA MURRIETA • TENECUTA 110Rte PALM SPR I118f •
PERRIS MALLET
73 on 6 RANCHO CALIFORNIA
5 DURATION FREQUENCY • DURATION FREQUENCY DURATION FREQUENCY ' DURATION FREQUENCY DURATION FREQUENCY
MINUTES MINUTES MINUTES MINUTES MINUTES 11 101 11 101 11 101 II 101 10 101
•�� • YEAR TEAR - YEAR YEAR YEAR YEAR TEAR YEAR T(AR YEAR
K
5 2866 6.61 5 3.45• ..5.10 5 207 4.16 s 4.23 606 S ' 2466 3416
•
6 2.58 4.07 6 3.12 6.61 6 2.53 3.79 4 3.60 6.18 4 2.61 3.44
y.
.1 * 7 2.37 ; 3.75 T 2017 •.26 7 2. .3
3• 31 7 3.48 3.56 7 2.24 3.21
6 2.21. 2.61 8 2.67 3.94 I 2.11 3.21 I 3.22 5.15 8 2.19 3.11
D 1 2.11 3.2/ 1 2.51 3.69 9 . 2.17 3.18 9 3.01 6./1 1 1.11 2.16
v 11 1. 4 3.11 10 2.26 3.11 10 Ion 2.16 11 2.13 6.32 1/ 1./1 2.61
II 1.11 2.93 II 2.26 3.70 11 1.17 2.60 Il 2.61 4.26 11 1.79 2.57
12 1.70 2.12 12 2.13 3.15 12 1.71 2.61 12 2.56 4.01 12 1.72 2. 4
1 13 1.71 2.71 13 2.06 3.01 13 1.72 208 13 2.63 3,81 13 1.65 2.37
14 1.64 2.66 14 1.114 7.81 14 1.66 2.41 14 203 3.72 ' le 1.59 2.21
IS 1.51 2.51 16 1.19 2.19 • 15 1.68 2.61 15 2.23 3.58 IS 1.56 2.21
16 1.53 2.62 16 1.02 2.69 16 1.35 2.32 . 16 2.15 3.44 16 1.69 2.16
17 1.61 2.36 17 1.76 2.61 17 1.30 2.25 - 17 2.01 302 17 1.4$ 2.01
18 1.66 2.27 11 1.11 2.52 10 1.46 2.19 11 2.11 3.22 1/ 1.41 2.12
19 1.61 2.21 19 1.66 2. 6 I1 1.62 2.13 19 1.93 3.12 11 1.77 1.11
21 1.26 2.15 20 1461 2.30 21 1.79 2.11 21 1.19 3.13 21 1.26 1.92
22 1.21 2.14 • 22 1.33 2.26 22 1.72 1.11 22 1.71 2.16 22 1.21 . 1.83
24 1.24 1.15 24 106 2.13 24 1.26 2.16 24 1.76 2.72 24 1.22 1.75
26 1.16 1.07 26 1.39 2.06 26 1.22 1.62 26 1.62.12.64 26 1.11 1.69 _
26 l.1• 11 26 1.34 1.18 2$ 1.17 1.16 2/ 1.36 2.• 28 1.13 1.63
31 1.1$ 103 30 1.29 1.10 30 1.13 1.11 31 1.61 2011 31 1.10 1.31
32 1.16 1.67 32 1.26 1.16 32 1.10 1.66 32 1.44 2.30 32 1.16 1.52
Z 34 1.13 1.62 34 1.20 1.76 34 106 1.59 34 109 2.22 34 1.63 1.66
36 1.11 1.57 36 1.17 10276 1.03 1.55 36 1.3• 2.23 36 1.11 1.16
Ill
]1 .1T I.53 71 1.I1 1.61 30 1491 1.51 31 1.31 2.1$ ]/ .91 1.60
C 2 61 .14 1.69 40 1.10 1.62 68 .91 107 41 1.77 2.12 41 .93 "1.31
.23 Cl) Cn 63 .1/ 1.41 65 1.03 1.52 45 02 1.31 45 1.11 1.11 45 .91 1.21
S1. ./• 1.32 51 .97 1.14 50 .10 1.31 31 1.11 1.1/ 50 .IS 1.22
55..• .01 1.26 SS .92 1.36 SS .16 1.23 SS 1.05 1.61 SS .11 1.17
rn '< Z 61'• .76 1.28 60 .88 1.21 61 .N 1.26 61 1.11 1.61 44
.// 1.12
y ( 0 66 .73 2.13 65 .6• 1.2• 65 .71 1.15 63 .1S 1.53 6S .76 1.01
r--I D q 23 (]D - TO .71 loll 10 .61 1.11 To .14 1.11 T1 .11 1.•6 ' 70 .72 1.16
• F
C 75
II .61 1.11
.63 1.13 Ts
Ie .11 1.Is
.13 1.11 75
60 .1t 7.61
.N 1.11 15
80 .et , 1••I
.13 1.73 75
11 .78 1.1$
468 .91
(TI D D 6S .b 1481 6s .73 1.07 15 .67 1.01 1S •82 1.31 - 83 .66 Al
v --i ••
U Q SLOPE • .531 SLOPE • .550 SLOPE • .511 SLOPE • .5/1 SLOPE • .•91
A
Z
44 . -
0 .
•y
V
r l , 1;....7
.
0 I 2 3 4 5 6
l i . 1.0
■■■■■■■M.DTII.....m.I.M.■I..IMMIIIM.M.uiW.M.tlI.iI .
iMMIIIIIIIIIMIMMINUNIIIIMIIIIIIIMMUNMEMIONNIMINIMINNIIMMUIMMUMIM
■■w■■tl■n■■■■■■■■■■■■■nr■■■■■■tl!■■■tl■r•■N■■■■■N■■n■ • ..
■■■■■■■MIn.MnMI..tlI■I__..I..■MM.IIM■tl■■MIII ■_■■■■tl
■ ■■■■N■tl■■N■■■■MENIIM■■■N_ ■■■■■■tltl■■■tl■tl■N■■N■N■■■tl■tl
I
9 as E 'III
' I■tl U I liN • ll,.[i. 'lir_- , MIMI .9
IlltiMaina _ �'� ao - _
. I 't NIII.I.
alig11,71456:21:111& Mtn ill" • -941:1117=11111"..
I W.,•%.�tl■■ '..B■■■vaN■.1Mia■■■!M.■tl■tl■■1�..■ntlN■■
it`s• r .8
110 .8
reAr
■nraUrr_.1tra'ai■ enir- �in■■tln■flan ■
rearrameadorsimmummomonorI./■?7/..■■rAtzi■■■■N►...... Nntl■.■tl■tltl.■■tl■n. tlNNn■tl■■
.I■■IN■iii'/old■■.tl'INP�■.tltl•■■pI ■••tl■■.tlIi■Ntl.■name, U
7 MalratY111 � i� : , , l I ar -direr. T: H41 ,- III i : I . I — .7
allIWIII _ � tl - II
MSM�Htli ■ntl.tlM■SU ' . : . IL
/tlIEI M��./ UU UUMtl
•
IP INEW[:YMaffl W M■tl■■■MMtl■M. : 1 O
Mt0Mat,A■II■M■MN.M■■■MM■■tl■■MM.. Z
USnar 7.WII. I.I f.MMn.
6 nV.,I�n ■■.WMM.IIMIM.aN.BM■N. k •6
NN MIIII ISMIU M■ntl�n■=•WIMI.■.MMtl.M.M■■■MINMtlN.
IP Wl..■.......nN.■M.■■■.■■.MM■MM.MMN■M■M■ I
NCO..MI.raN■N■.■M■■■.■M.MM■.tl■■MM■■■M■M■00fl L_r
MIUMMISMIAIMIIIIIMIIMIBMIIMISIMMIWIEMMINIIIIMMEMIMIIIMME
B■nS.rI.I/Y. — n nII-- _n.UNMMINMmIN.nI■MMM
1IIIIVIMS/I.MI■.M.tlI.I.IMM.M.I.MMnN■.M.■W■■.MN■■■
f ■INi■F ,...JMtl■■■■■■M■tltl■■.MMtl■tl■MMN■M■M■aIM.■W■a1■
- 5 ■IMQV..INI■■M■Mtl■NWMM MIUM M■ANIS ®■..■MN• I z- 5
• 11■Vr.M..'��III��. LA •ND USE 0: OEVEL• 'MENT T PE .mI■ I I WL
.Ira 'INIIU.flo� MIN..I.■ I-
B IINIIR /.M...N.NM■n■tl tlIIIf.MINtltl.MI
IIIIISIn-.II■.M■■M■Na1 M■M.■■NMNf '
ala. ,MINIM tl.M■M■■.■■tl■MM■tltl■M■tl..■tlM■M.■
■■./I,■■n■n■■■■■■M■.■tl■■■MM■■tl■.M■Mtl■■■MMM■■NMNN W
Ur11.■UUN■■■tl■■M■.■■..■■MM■■■■■■M a.na.Unu•U.�na OI
II UUUIU•:
1
II
O
Q
0
aIII.
TIME OF CONCENTRATION,
100 YEAR FLOW ROUTING
1
1
•
i
I
1
I
1 .
1
1
1
1
i
I,
1
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 07/12/01
10 YR - ULTIMATE STUDY (BORROW SITE)
FN:29734
7-11-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
' Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc, Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in. /hr. )
10 year storm 60 minute intensity = 0.880 (in./hr. ) •
100 year storm 10 minute intensity = 3.480 (in. /hr. )
100 year storm 60 minute intensity = 1. 300 (in. /hr. )
Storm event year = 10.0
Calculated rainfall intensity data:
' 1 hour intensity = 0. 880 (in./hr. )
Slope of intensity duration curve = 0.5500
I
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
I/ Initial area flow distance = 217 .000 (Ft. )
Top (of initial area) elevation = 1235.000 (Ft. )
Bottom (of initial area) elevation = 1230.000 (Ft. )
Difference in elevation = 5.000 (Ft. )
Slope = 0.02304 s (percent)= 2.30
TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 7. 131 min.
Rainfall intensity = 2.839(In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.822
' Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI indeR for soil (AMC 2) = 69.00
1 ^
'd
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 1. 983 (CFS)
Total initial stream area = 0.850(Ac. )
Pervious area fraction = 0.500
Process from Point/Station 11.900 to Point/Station 13.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
' Top of street segment elevation = 1230.000 (Ft. )
End of street segment elevation = 1199.400 (Ft. )
Length of street segment = 420.000 (Ft. )
' Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 18.000 (Ft. )
Distance from crown to crossfall grade break = 16. 000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
' Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side (s) of the street
Distance from curb to property line = 12.000 (Ft. ) •
' Slope from curb to property line (v/hz) = 0. 025
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 5. 132 (CFS)
Depth of flow = 0.252 (Ft. ) , Average velocity = 4 . 946(Ft/s)
1 Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.262 (Ft. )
Flow velocity = 4 .95 (Ft/s)
Travel time = 1.42 min. TC = 8 .55 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.815
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0. 000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.570 (In/Hr) for a . 10.0 year storm
Subarea runoff = 5. 656(CFS) for 2.700 (Ac. )
Total runoff = 7. 639(CFS) Total area = 3.550 (Ac. )
Street flow at end of street = 7.639 (CFS)
Half street flow at end of street = 3.819(CFS)
Depth of flow = 0.280 (Ft. ) , Average velocity = 5.359(Ft/s)
Flow width (from curb towards crown)= 7 . 655 (Ft. )
Process from Point/Station 11.000 to Point/Station 13.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream' flow area = 3.550 (Ac. )
-reol 92,39
/ 3
ll
IIRunoff from this stream = 7. 639(CFS)
Time of concentration = 8.55 min.
Rainfall intensity = 2.570 (In/Hr)
IIProgram is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.0,00 to Point/Station 13.000
**** INITIAL AREA EVALUATION ****
' Initial area flow distance = 167 .000 (Ft. )
Top (of initial area) elevation = 1205.000 (Ft. )
Bottom (of initial area) elevation = 1199.400 (Ft. )
Difference in elevation = 5. 600 (Ft. )
I Slope = 0.03353 s (percent)= 3.35
TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 5.957 min.
II Rainfall intensity = 3. 135 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0. 828
Decimal fraction soil group A = 0.000
II
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
' RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0. 500; Impervious fraction = 0.500
Initial subarea runoff = 1.739 (CFS)
Total initial stream area = 0. 670 (Ac. )
IIPervious area fraction = 0.500
1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 13.000
**** CONFLUENCE OF MAIN STREAMS ****
II The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0. 670 (Ac. )
I Runoff from this stream = 1.739(CFS)
Time of concentration = 5. 96 min.
Rainfall intensity = 3. 135 (In/Hr)
Summary of stream data:
IStream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
II 1 7. 639 8 . 55 2.570 ,
2 1 .739 5. 96 3.135
1 Largest stream flow has longer time of concentration
Qp = 7. 639 + sum of
Qb Ia/Ib
1.739 * 0.820 = 1.426
1 Qp = 9.064
Total of 2 main streams to confluence:
IIFlow rates before confluence point:
I
/1/
I
7 . 639 1.739
Area of streams before confluence:
3.550 0. 670
Results of confluence:
Total flow rate = 9. 064 (CFS) =
Time of concentration= 8.546 min.Effective stream area after confluence4 .220 (Ac. )
Process from Point/Station 13.000 to Point/Station 16.000
1 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1199. 400 (Ft. )
End of street segment elevation = 1188.000 (Ft. )
' Length of street segment = 390.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 18.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.065
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side(s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2. 000 (In. )
1 Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 10.052 (CFS)
Depth of flow = 0.339(Ft. ) , Average velocity = 3. 995 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10. 637 (Ft. )
' Flow velocity = 3.99 (Ft/s)
Travel time = 1 . 63 min. TC = 10. 17 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.808
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.335 (In/Hr) for a 10.
Subarea runoff = 1.736 (CFS) for 0. 920 (Ac. )0 .year storm
Total runoff = 10.801 (CFS) Total area = 5. 140(Ac. )
Street flow at end of street = 10.801 (CFS)
Half street flow at end of street =10.801
5.400 (CFS)
Depth of flow = 0. 346(Ft. ) , Average velocity = 4 .062 (Ft/s)
Flow width (from curb towards crown)= 10. 968 (Ft. )
M
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process 'from Point/Station 13.000 to Point/Station 16.000
/5
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5. 140 (Ac. )
Runoff from this stream = 10.801 (CFS)
Time of concentration =. 10.17 min.
I/
Rainfall intensity = 2.335 (In/Hr).
Program is now starting with Main Stream No. 2
Process from Point/Station 14 .000 to Point/Station 15.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 162.000 (Ft. )
Top (of initial area) elevation = 1217.000 (Ft. )
' Bottom (of initial area) elevation = 1215.000 (Ft. )
Difference in elevation = 2.000 (Ft. )
Slope = 0.01235 s (percent)= 1.23
TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2
' Initial area time of concentration = 7. 187 min.
Rainfall intensity = 2.827 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.821
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
' Initial subarea runoff = 1. 811 (CFS)
Total initial stream area = 0.780 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 15.000 to Point/Station 16.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1215.000 (Ft. )
End of street segment elevation = 1188.000 (Ft. )
I
Length of street segment = 480.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 18.000(Ft. )
' Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning' s N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0. 0150
Estimated mean flow rate at midpoint of street = 5.526 (CFS)
ll,
II
' Depth of flow = 0.319(Ft. ) , Average velocity = 5.254 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 9.618 (Ft. )
II Flow velocity = 5.25 (Ft/s)
Travel time = 1 .52 min. TC = 8.71 min.
Adding area flow to street
I
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.814 ,
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
II Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
II Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.599 (In/Hr) for a 10.0 year storm
Subarea runoff = 6. 628 (CFS) for 3.200 (Ac. )
Total runoff = 8. 439 (CFS) Total area = 3.980 (Ac. )
II Street flow at end of street = 8. 939(CFS)
Half street flow at end of street = 8.439(CFS)
Depth of flow = 0. 357 (Ft. ) , Average velocity = 5.793 (Ft/s)
' Flow width (from curb towards crown)= 11.533 (Ft. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
II Process from Point/Station 1000 to Point/Station 16.000
**** CONFLUENCE OF MAIN STREAMS ****5.
The following data inside Main Stream is listed:
1 In Main Stream number: 2
Stream flow area = 3.980 (Ac. )
Runoff from this stream = 8.439(CFS)
' Time of concentration = 8.71 min.
Rainfall intensity = 2.544 (In/Hr)
Summary of stream data:
II Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
' 1 10.801 10. 17 2.335
2 8. 439 8 .71 2. 544
Largest stream flow has longer time of concentration
II Qp = 10.801 + sum of
Qb Ia/Ib
8 .439 * 0.918 = 7 .748
Qp = 18.548
llTotal of 2 main streams to confluence:
Flow rates before confluence point:
II 10.801 8 .439
Area of streams before confluence:
5. 140 3. 980
II
Results of confluence:
Total flow rate = 18.548 (CFS)
IITime or concentration = 10. 173 min.
II
I /
n
1
Effective stream area after confluence = 9. 120 (Ac. )
Check of Previous Confluence Operations
Of all Main streams
' Total of 4 streams to confluence:
Flow rates before and maximum after confluence point:
No. Flow Rate TC I Max Confluence
' 1 7 . 639 10.173 2.335 18 . 602
2 1.739 7 .585 2.745 16.076
3 8 .439 8 .710 2.544 18.076
4 1.736 10.173 2. 335 18. 602
NOTE: Last stream is area added between confluences
Results of confluence check: /
Total flow rate = 18. 602 (CFS) v/
• Time of concentration = 10. 173 min.
NOTE:
Maximum flow rate derived from previous confluences = 18 .60 (CFS)
This exceeds normal confluence rate of 18.55 (CFS)
Therefore, largest confluence flow rate and TC = 10. 17 Min. is used.
End of computations, total study area = 9.12 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
Area averaged RI index number = 69.0
I
1
I
i
i
/'
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 07/12/01
100 YEAR- ULTIMATE STUDY (BORROW SITE)
FN:29734
7-11-01
' ********* Hydrology Study Control Information **********
1 RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 2
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc, Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr. )
10 year storm 60 minute intensity = 0.880 (in./hr. )
100 year storm 10 minute intensity = 3. 480 (in. /hr. )
100 year storm 60 minute intensity = 1.300 (in. /hr. )
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in. /hr. )
Slope of intensity duration curve = 0.5500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 217. 000 (Ft. )
Top (of initial area) elevation = 1235.000 (Ft. )
Bottom (of initial area) elevation = 1230.000 (Ft. )
Difference in elevation = 5.000 (Ft. )
Slope = 0.02304 s (percent)= 2. 30
TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 7.131 min.
Rainfall intensity = 4 . 195 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0. 844
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
t9
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 3.008 (CFS)
Total initial stream area = 0.850 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 11.900 to Point/Station 13.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
' Top of street segment elevation = 1230.000 (Ft. )
End of street segment elevation = 1199.400 (Ft. )
Length of street segment = 420.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) 18.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
' Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
' Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 7.786 (CFS)
Depth of flow = 0.281 (Ft. ) , Average velocity = 5.381 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 7.726 (Ft. )
Flow velocity = 5.38 (Ft/s)
Travel time = 1.30 min. TC = 8.43 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.839
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.825 (In/Hr) for a .100.0 year storm
I
Subarea runoff = 8 . 666(CFS) for 2.700 (Ac. )
Total runoff = 11. 675 (CFS) Total area = 3. 550 (Ac. )
Street flow at end of street = 11.675 (CFS)
Half street flow at end of street = 5.837 (CFS)
Depth of flow = 0. 313 (Ft. ) , Average velocity = 5.880 (Ft/s)
Flow width (from curb towards crown)= 9.306(Ft. ) _
Process from Point/Station 11.000 to Point/Station 13.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 3.550 (Ac. )
1
.2o
II
IIRunoff from this stream = 11. 675 (CFS)
Time of concentration = 8.43 min.
Rainfall intensity = 3.825 (In/Hr)
IProgram is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
'
Process from Point/Station 12.900 to Point/Station 13.000
**** INITIAL AREA EVALUATION ****
' Initial area flow distance = 167 .000 (Ft. )
Top (of initial area) elevation = 1205.000 (Ft. )
Bottom (of initial area) elevation = 1199. 400 (Ft. )
Difference in elevation = 5. 600 (Ft. )
II
Slope = 0.03353 s (percent)=, 3.35
TC = k(0. 390) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 5. 957 min.
II Rainfall intensity = 9 . 631 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.848
Decimal fraction soil group A = 0.000
' Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
II RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0.500; Impervious fraction = 0. 500
Initial subarea runoff = 2. 632 (CFS)
Total initial stream area = 0. 670 (Ac. )
' Pervious area fraction = 0. 500
II Process from Point/Station 12.000 to Point Station 13.000
**** CONFLUENCE OF MAIN STREAMS ****
' The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0. 670 (Ac. )
Runoff from this stream = 2. 632 (CFS)
II Time of concentration = 5. 96 min.
Rainfall intensity = 4 . 631 (In/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 1 11. 675 8. 43 3.825
2 2. 632 5. 96 4 . 631
' Largest stream flow has longer time of concentration
Qp = 11. 675 + sum of
Qb Ia/Ib
2. 632 * 0.826 = 2. 175
IQp = 13. 849
Total of 2 main streams to confluence:
IIFlow rates before confluence point:
' 925
1
11. 675 2.632
Area of streams before confluence:
3.550 0. 670
Results of confluence:
Total flow rate = 13.849(CFS)
Time of concentration = 8.432 mip.
Effective stream area after confluence = 4 .220 (Ac. )
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 16.000
' **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1199.400 (Ft. )
End of street segment elevation = 1188.000 (Ft. )
' Length of street segment = 390.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 18.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.065
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
' Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
' Estimated mean flow rate at midpoint of street = 15.359(CFS)
Depth of flow = 0.381 (Ft. ) , Average velocity = 4 .412 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 12 .704 (Ft. )
' Flow velocity = 4 . 41 (Ft/s)
Travel time = 1.47 min. TC = 9. 91 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.834
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
' Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.501 (In/Hr) for a 100.0 year storm
Subarea runoff = 2 . 687 (CFS) for 0. 920 (Ac. ) .
Total runoff = 16. 536(CFS) Total area 5. 140 (Ac. )
' Street flow at end of street = 16.536(CFS)
Half street flow at end of street =16.536
8.268 (CFS)
Depth of flow = 0.389 (Ft. ) , Average velocity = 4 .490 (Ft/s)
Flow width (from curb towards crown)= 13.095 (Ft. )
1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Procesd 'from Point/Station 13.000 to Point/Station 16.000
as
1
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5. 140 (Ac. )
Runoff from this stream = 16.536 (CFS)
Time of concentration = 9. 91 min.
Rainfall intensity = 3. 501 (In/Hr)/
Program is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14 .000 to Point/Station 15.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 162.000 (Ft. )
Top (of initial area) elevation = 1217 .000 (Ft. )
t Bottom (of initial area) elevation = 1215.000 (Ft. )
Difference in elevation = 2.000 (Ft. )
Slope = 0.01235 s (percent)= 1.23
TC = k(0. 390) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 7. 187 min.
Rainfall intensity = 4 . 177 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0. 844
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
' Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
' Initial subarea runoff = 2.748 (CFS)
Total initial stream area = 0.780 (Ac. )
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 15.000 to Point/Station 16.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1215.000 (Ft. )
End of street segment elevation = 1188.000 (Ft% )
' Length of street segment = 480.000 (Ft. )
Height of curb above gutter flowline 6.0 (In. )
Width of half street (curb to crown) = 18.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0. 020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft. )
t Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
' Estimated,mean flow rate at midpoint of street = 8 .385 (CFS)
023
IIDepth of flow = 0.357 (Ft. ) , Average velocity = 5.784 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.502 (Ft. )
' Flow velocity = 5.78 (Ft/s)
Travel time = 1.38 min. TC = 8.57 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
II
Runoff Coefficient = 0. 839 ,
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
II Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 69.00 ,,
Pervious area fraction = 0.500; Impervious fraction = 0.500
II Rainfall intensity = 3.791 (In/Hr) for a 100.0 year storm
Subarea runoff = 10. 174 (CFS) for 3.200 (Ac. )
Total runoff = 12. 922 (CFS) Total area = 3. 980 (Ac. )
Street flow at end of street = 12. 922 (CFS)
Half street flow at end of street =12. 922
12. 922 (CFS)
Depth of flow = 0.402 (Ft. ) , Average velocity = 6.408 (Ft/s)
Flow width (from curb towards crown)= 13.747 (Ft. )
II
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' Process from Point/Station 15.000 to Point/Station '16.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
' In Main Stream number: 2
Stream flow area = 3. 980 (Ac. )
Runoff from this stream = 12. 922 (CFS)
II Time of concentration = 8.57 min.
Rainfall intensity = 3.791 (In/Hr)
Summary of stream data:
II Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
' 1 16.536 9. 91 3.501
2 12. 922 8.57 3.791
Largest stream flow has longer time of concentration
I Qp = 16.536 + sum of
Qb . Ia/Ib
12.922 * 0. 923 = 11. 933
Op = 28.469 '
II
Total of 2 main streams to confluence:
Flow rates before confluence point:
' 16.536 12. 922
Area of streams before confluence:
5. 140 3. 980
II
Results of confluence:
Total flow rate = 28.469 (CFS)
Time ofconcentraon =ti 9.905 min.
II
AV
1
' Effective stream area after confluence = 9. 120 (Ac. )
Check of Previous Confluence Operations
Of all Main streams
Total of 4 streams to confluence:
Flow rates before and maximum after cpnfluence point:
No. Flow Rate TC I Max Confluence
' 1 11. 675 9. 905 3.501 28.542
2 2 . 632 7.431 4 . 101 24 . 610
3 12. 922 8.570 3.791 27.782
4 2. 687 9. 905 3.501 28.542
NOTE: Last stream is area added between confluences
Results of confluence check:
Total flow rate = 28. 542 (CFS) ✓
Time of concentration = • 9. 905 min.
NOTE:
' Maximum flow rate derived from previous confluences = 28.54 (CFS)
This exceeds normal confluence rate of 28. 47 (CFS)
Therefore, largest confluence flow rate and TC = 9. 91 Min. is used.
' End of computations, total study area = 9. 12 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
' Area averaged pervious area fraction(Ap) = 0.500
Area averaged RI index number = 69.0
1
1
1
1
.1J/
1
1
' IV.
' HYDROLOGY MAP
1
1
1
1
1
1
1
1
1
1
1
.�lo