HomeMy WebLinkAboutHydrology & Hydraulic Calculations 12/2001 die
Trans-Pacific.
CONSULTANTS
1
1
HYDROLOGY & HYDRAULIC CALCULATIONS
1 FOR
TRACT NO. 29734
1
1
1 /
WON SANG YOO, R.C.E #26457
I
Prepared By:
Trans-Pacific Consultants, Inc.
27431 Enterprise Circle West a FEss'oNq
Temecula, CA 92590 toasANGyoo�2cm
' f' Na 26457 A
' DECEMBER 2001 Exp 3-31-04
\ CN11
rq�OF 0004.
1
1
1
SUBJECT: Drainage Study
Hydrology and Hydraulic Calculations
PROJECT: Tract No. 29734
' PREPARED BY: Roland Francisco
Trans-Pacific Consultants
' PROJECT MANAGER: H. Jei Kim, PLS
Vice President
1
1
1
1
2
' SECTION TABLE OF CONTENTS
' I. INTRODUCTION
II. RIVERSIDE COUNTY RATIONAL METHOD HYDROLOGY
INSTRUCTIONS
' III. DESIGN CHARTS
A. Runoff Coefficient Curves for Soil Group—B
B. Slope of Intensity Duration Curve
C. 2-Year— 1 Hour Precipitation
D. 100-Year-1 Hour Precipitation
' IV. 10-YEAR DEVELOPMENT STUDY (DEVELOPED
CONDITION)
' A. 10 Year Ultimate Study
B. Flows Tributary to Camino San Dimas
V. 100 YEAR DEVELOPMENT STUDY (DEVELOPED
CONDITION)
' A. 100 Year Ultimate Study
B. Flows Tributary To Camino San Dimas
VI. 10-YEAR EXISTING CONDITION
A. Basin A
' B. Basin B- Tributary Flows to Camino San Dimas
C. Basin C
VII. 100 YEAR EXISTING CONDITION
A. Basin A
B. Basin B-Tributary Flows to Camino San Dimas
C. Basin C
' VIII. HYDRAULIC CALCULATION
Line X
IX. CATCH BASIN SIZING
X. HYDROLOGY MAP
02 973
3
'
z
0
F
F
U
0
z
I me in la in l an an NE in no e n al um la
1
I. INTRODUCTION
' This project is to divide approximately 10.81 acres located at the
southeast of Redhawk Parkway and Highway 79 South, northeasterly corner
' of Via La Colorada and Camino San Dimas. This report covers the
hydrology and hydraulic studies conducted for the storni drain design of this
project.
' The hydrology study for this tract was done using the Riverside flood
Control District and Water Conservation District rational method. The soil
type was found on plate C-1.52 hydrologic soils group map. The soil type
for this tract is mainly Group B. The intensity for this tract was found on
' plates D-4.61, D-4.3, and the revised 24-hour isohytes for Murrieta Drainage
Plans Study.
1. FLOW ROUTING
' In the existing condition, the major watercourse runs to
the southwest corner the tract. The developed condition
' has lesser acreage of flows going to Camino San Dimas
compare to the existing condition. After build-out of this
tract, there will be an increase of approximately 3 CSF to
' exist 24" RCP built per Tr. 23064-2 considering 100-year
storm event year.
1 2. HYDRAULIC ANALYSIS
' Necessary hydraulic calculations for Line "X" and catch
basin sizing are included in this report.
S
1
1
1
IL
' RIVERSIDE COUNTY RATIONAL METHOD
' HYDROLOGY INSTRUCTIONS
1
1
1
I
1
(o
I . INSTRUCTIONS FOR RATIONAL Mr2HOD HYDROLOGY CALCULATIONS
(Based on the Rational Formula, Q 3. CIA)
II1. On map of drainage area, draw drainage system and .block off subareas
tributary to it.
I
2. Determine the initial time of concentration , "T", using Plate D-3.
The initial area should be less .than 10 acres, have a flow path of
' less than 1,000 feet, and be the most upstream subarea. '
3. Using the time of concentration, determine "I", intensity of rain-
I fall in inches per hour, from the appropriate intensity-duration
curve for the particular area under study. For areas where star_
dard curves are available, use Plates D-4.1 and D-4.2 to reproduce•
the standard curve. For areas where curves have not bean published
by the District, use Plates L-4.3 through D-4.7 to-.develop a suit-
able intensity-duration curve.
I
4. Determine "C", the coefficient of runoff, using the runoff coeffi-
cient curve which corresponds as- closely as possible with the soil,
cover type and development of the drainage area. Standard curves
I (Plates D-5.1 through D-5.4) have been developed by the District
for the common case of urban landscaping type cover. Where these
curves are not applicable, curves may be developed using Plates
ID-5.5 through D-5.8.
5. Determine "A", the area of the subarea in acres.
' 6. Compute Q = CIL for the subarea.
I . 7. Measure the length of flow to the point of inflow of the next sub-
area downstream. Determine the velocity of flow in this reach for
the peak Q in the type of conveyance being considered (natural
channel, street, pipe, or open channel) , using the tabling aids on
IIPlates D-6 through b-9..
Using the reach length and velocity determined above, cctpute the
II travel time, and add this time to the time of concentration for the
previous subarea to determine a new time of concentration.
' 8. Calculate Q for the new subarea, using steps 3 through 6 and the
new time of concentration. Determine "QP", the peak Q for all sub-
areas tributary to the system to this point by adding Q for the
I new subarea to the summation of Q for all upstream subareas. Deter-
mine the time 'of concentration for the next subarea downstream.using
Step 7. Continue tabling downstream in similar fashion until a
junction with a lateral drain is reached. •
.
RCFC F C & WOO RATIONAL METHOD
'
HYDROLOGY MANUAL INSTRUCTIONS
. • PLATE D-I (I '
7
9. Start at the upper end of the lateral and table. its Q down to the
I junction with the main line, using the methods outlined in the
previous steps.
I10. Compute the peak. Q at the junction. Let QA, TA, IA correspond to
the tributary area with the longer time of concentration, and QB,
TB, IB correspond to the tributary area with the shorter time of
I concentration and Qp, Tp.correspond to the peak Q and time of
concentration.
. I a. If the tributary areas have the same time of concentration,
the tributary Q's are Addeddirectlyto obtain the combined
peak Q.
' Qp = QA ÷ QB Tp = TA = . TB
' b. If the tributary areas have different times of concentration,
the smaller of the tributary Q's must be corrected as follows:
I (1) The usual case is where the tributary area with the lon-
ger time of concentration has the larger Q. In this case,
I the..smailer Q is corrected by a ratio of the intensities
and added to the larger Q to obtain the combined peak Q.
The tabling is then continued downstream, using the longer
time of concentration.
I m _
IB •
I
'(2) In some cases, the tributaryarea with the shorter time '
of concentration has the larger Q. In this case, the
smaller Q is corrected by a ratio of the times of concen-
I tration and added to the larger Q to obtain the combined
peak Q. The tabling is then continued dcwnsteam using
the shorter time of concentration.
' QP QB + QA TB Tp TB
TA
I
I
•
' R C F C a W C D RATIONAL . METHOD
I HYDROLOGY MANUAL INSTRUCTIONS •
I
' PLATE D-I (2 of 21
8li
1
1
1
DESIGN CHARTS
1
1
1
1
1
Y
L00 . I 2 3 4 5 6
: 0
! —H.Wa_IWhIiPiiuIInrnuuhunpoIllhJffffhJIm
: "••--- -tttttttt
NNtww mwtttttt_wtttt�t,p,��t�,���lip, itnalt ar
twntttNtttMtttt.ttttnttttwwwttttt 7tttNNttw•
•9 attNttmNwttNwmttttttNNwttaa ���I�I���Il�liitiilitiiiti
a attatamttmm�twtutwttNttttNtttt
ttttwnnntgwnmt--UNNwnttwttttulanmttttttntttwttt .9
flU— tw. mttwtaa■�nr_....sio■■tita tattNtNwtt1t
tttmmtatAtRrf-d-lNliaankl �= mNwttttwtMttt INMMMMtta�umtttw ••
tttwptUMNa2M 1Aw jautwt-wt■MEM-�myntm•mmpoaMNNtum t•
DIMEtt■��YNtt!CT�,l7� inanows�-rIMIll att■Ntttt�-
ttP t_.=MligiAlrr- .�]•\S�sr�j i•�N1Mnr-i.m— - N ttt tuft..
1 tP Z:11a�(�l• tYst�ttttt�—ataataa tt-ta\
-�NtNtttt!!.:att��tttttt■!!_.3-r�Att�ttwtttNN
6 — i�11 aattwN■r,.�wttt.rs- ■.��tt�Nt■�..otu
• �yv- attMtt� tN �� tt■!r:■wutNtttt—tw•tH
aaaft/a4�!• a --mio1t■�mttat—■!a•ltwttwtnnuttt—tnw .e
tttt/aWaRa� . 'mtnttttt•��•E�•: --ter tw—tt-t� wttwtN
1 nary l-�rs• mitio i•.a mMa•�nws-a�wnNURtttutttm .
..trlRIPEariwwVa3��V_dikar�wtttrt ....1 it.tu■l••an tt
.tNNryrialneritNttwttP%mmu tot
ran imNR\.Y irreatt♦0♦NN�twt nro-- ttttttttut ma
Mir a—N.v att�w N •nmtt4ttwfttn•
M uunwr i tmnpra aarr aNu tttatt
awtattarattmtt ammo .Ntad
7 s�ranr alma atattetra"�••wwrat�ittw — tttutwt••txwtp
=®a�ut,.t��rr��t��araw � �ptttwtw ttntttm .7
ilmaill
111 �a __.1,�N anac-A ' AutttwttttnttuttNm•nm• , ,
tt in ary Pr �Nw•mtwv�•a�tiriw�t•• tit
r' ®Y' ams Nwttn ouannu ttuutttttiw p.
wires r „Ana- t tnawNtI , . n • Z.
6 ,SO '�attp ttp�tttt����t t
�N/nnarfi�d mwwtNt t—•�•ttttt� tp. : : : f
1 N I .pttNttttnUN NNttwttNttntttttunnatm .6
ta/��lttttn��'atQoY/tttVattwttutwwNtwtwtttttn. tttuttnt��wtttgqt�t p1 ,
••atiN••O7YREIM11Y11tmttttt•••nt nNN �tttn I�t�t•■■t�gpttt is . I' . 4-.
a ra ITS. a.Itw NwttNwtt■tttut to I •
1a� r aA Ata:�tw NNtwwt■■■tat�ttttttiaMEM=ttN ■
.5 Bat!ltZILW I tr'��•••p�jdMili�t tt•••�t•�MEIIIIIME Stttt\tn•u : i H •
1 uxiu �ttt■rt�e..��7AttltttttnwwNNNmtwttttwtttWtt�nttt
rntt•at�r�l�t wtmtnttttn■ ttt tttwtitt W .5
Minn v n ■ : AFJD US •l• .w . l•PME, uttUU : : ,
• i M 8••F ► Nuttwa_wtit_t_UNnttw• inwt .
tutttm_NN—Nttnwmttttntmuttttmv 1 LL'
lltttr/ttt/LL.7t ttt MIAMI ttNtNNNattmtattIMMII ttNNttnttt lJ.l ■
�tti!—t/ttltttttttttIMIMMwNtt IIMMIMtttttttttttttttttttt O ■
4 iwr-iiu iiimmumummumtmormemarmillim elle--••t illuimm V • •4
lMMIrMlt•�nNpy jul
CI NTA OF I Vh CsrfR tamtttttttmat
111 ! . , � i , Ef � ;
NhIIIiINIf1 ;1 I 1 i , ,
• ,
1 .3 rAI AMINiiiiirigijinni oiR uiunliiliuui mg'1ius •3
III
Fininanninalin•malitilaMMI WI
■tt•ttutwtatutttatttttmw_Ntnttmttttttt ttttttt.NUUWUUN
iNcri nal
Sal annallinlinilThEMIMMIMINEWINII
ttrap Nttttnntattattttttt_Nwtata id
,full■.ittttt■u■ tnt—atattttnwwwttu HYDROIMMO
LOGY /JANUAL
1 2 11111 t 111IIIIIIIIIIIIIMIIIIIIIIIIMIttttttttttttwtNttNt ••••ii .2
11' " ; ' li ( 11110.11.1111I III RUNOFF COEFFICIENT
GROUP-B CURVES
III
SOI
I i COVER TYPE-URBAN LANDSCAPING
III IiH f
AMC-II
I 1111111 (RUNOFF INDEX NUMBER 56)
1 IIIIIIININIIf111 tttttlIINNNNNUUNtttttttttttttattttttta.Nttta •1
tfUONNtnuN.nUUNtt tt.Ntttttnn_tNt
®H®W 6':NNNEIM.IIIIRIMI1111=IMMIN 1
1 ettt tttwamwtftttmuNt
tttaNtt®NNNatttumwmam.
I ! . r ; . ' RAINFALL INTENSITY IN INCHES PER HOUR i I ; ; ; . ,
0 , • • , '
1 0 IN--mtumtuNaam®Nwtataawmmam : . . ' . 0
2 / cz>t
9 784, 6
LATE D-5.2 /e)
•
. , },.3_L,,_qty, `- .. .._._., f f, i.e./ • x • ,• • tr., !dNa, = ` :�4c' t.' ''r• • � •
::W ,
1, :4•j,. may'+ , '1� •'I_.r' i'•{Nt' �. _II M al L _.•F '4'''
1 '�i�t w(U � L 1�, `rh .�2 • 1 • . h S �-,���. j- ��. -...?.•
-;�•I '
j.
Y ' •;,�,-' ;�c •�. ,: ._ •:t. A, A4 .i' . f 1t•W 4, ��� •X11 ' ' ,K/ r' o = Q
r M r •• • ...7%,,„,,,f,._ t•.{J
. t.,.,, t''`"•-J ^/�, , F�=}r-.i "...,, , •''�,���y •..,:i-, ,s. .,, "4. 0'i -k tom+' / t ;r ■ - .I d4 21r�. L" �. F- ! `Q `, a
,'r ':e'}' .1% 7:NUi• �,'4. : - •r l•:tJ w.).,,•r'�/. • �:S••l1 '�� � i /. Ai'N a _ - �ra 1 ;' t. ,'.i. . Y.• . •'afr, O dfl.,JA0 � at
�• A .�' J• 'I' 'M'' >< oA,� `�' ''K''i1: r1 ,I l -1- y. z ?j , ,tb! • -a1 ,1-i _ ' fit • l a. 'i;' iiii f 'Yt �" Q ,
I I-1 ..a.}�_. d1' ► , : ' ..' • I i __.-' r „I I � . - •:i.'gq c�:,, 1.' V
/X• b_ f!' r , • 'mu;' ( -:` ,,t r y�'ti%.` ` _ r• ,D:. v4.`• Q 'Z
•
.1 If. ,(.[ e'• y, �Ji,'Q` , , ?Ai., ,rt I' I� 1 , ,. fP ft ��/ Y J-,.• t•T{' .: `•�f' •f•,i• ' U U r
y,•� • / * • ! ''''.1
gyp r �� p . I�•";‘•414'1%.1 ',,� ,il .(, Ct
:, w r`-• ;▪ ...47`,0"-
,f� 1j;• ,;t• ��a i'. .,.ti f. r '-- f ..r _f3��,ii
�l r :. 1 \ ,i ?:1-12--.••.-4 --t
*f`• �� 7• r.�,.u'.fi'"�• Y, ALJ ' a
•
.4 S. b,-,• SE._. .'v vss .,). 5t ~�Y • ^, - i .s •y,1 _ .. '� .fA w 1,�; 7^" 'r'.rV'. t.�. W 0
; �� I 1 J '`sv�,1LL Xr C r." t. .1 r a- R' r 'I't' i' 'v'µ�•Tj+'r-l+ '3 f.� �f•• _ ''}'e^.•,• -,r • i.lpiv...,'.t 7t, 1.• •• • i, U1 1- a
eio
1. •( •••"-IP.• i l4'2"tf• / r- ..76--1,...%.,"..'"'"I •tA i. • i� :ili' ''1 i 1 `• r L ', .i,iir `� • '.. 'I - ryf ,. I W
�1 rcc
�rf•",tId p/{{{.Yi`,ice -•1 5-'14,
1 •i-.1.,..„,,,,,'",....
i :+7(i�•+ ".;;-4t.:."71. I` i' '
;,„.r 7.• , ' / h' ; �• `+r r� % '� •J f r 'hG7l` f '�, •�,,•! I '•I
-r- -i..:!",,4' Is ', .�'e ••r•h, -c-w. i .......,;•4.,` -.. . [ 1 a i •�tiL; J y .) r... ) 1)'"I''•
ow}F.r•'i..•• 4.,• ;,;'`
I 5 J✓ l r :r Y' S ,'•• . 1 41,
Sr { I.�S J r '.'/V.") '#'4"1-..''i
y7 1'i .`f il.'. t" ti .'•�1
', • :Ij'`T„.. -•-••' tri •E. •�prt, •,.• F,,.e. • ':. /fr 4:{,'12 I. 4,l :I SSS°' s!”.1 :i::r...I:-
••'1.1'.-11'...`
II ,a yt' ••••7''.' f.•• .,111'''''..‘7:--..'''''''
, './
j' ~f'r
1' 'Z• ,I! /'-"' •1.,• `i''i� ,-. • oiv;yam. • .Y. ,0., • ' ,� •s ' I "" --•4 •:. 1 .{%+:i z!. ': '„. >I^Lr,."(i'•.�• .,, • �'ri. /1 i., 'h,„.y1•�5✓ • .1
• ...�i.i�A�'"-1 .., _l'' ji'�1y f.,' .:,,. •4- s•-T• • :, :' .� ` �` !' r �� nYv,r,�? :0•[•.,4:;y'` _t. :/• ...il.,.., ,,•-• . •.. ..4 •'..,•r,y -,vv,;%..•' 1 1.1 .i
••••,'N,‘R' Ia. {• , •1 1:I.c ,• w F•t,,,,,,+, '� . • „,,,..1(:• • ••
• ,ti"t,'J r •r•''� � r1. n” ice. , ^r 7 •r ;'i ';c; if rt,'`+"lS • •:.
•
°' �` IJ(. i,r 41i4•••-+- �'`••' I••1v:,, .V �' / / ?,ff' .p i' .(' 4^Y •4:, ark /•t•i, tij •�•�.�►• `},YL',r �}��!8 hi,” A7 �f• .f••�l }v �,, ✓,
• &opwl iii . 4••• ry...6,--" N '/ �t•I`.' h f '{ I y- r° Y ,{t,i{.,�f + ,t/t'•�`T:S ��ir4I 1 11 4'f'l 1�i-' �t: ...1-,..,
'•,. { ';r. 11 '•".:•-••••• • i'-"•7- Trs . ••••• i ,- --' 1 ..i. ';',.'-',...0-'4,...,'•` ` 1 •, •;1•.'y.*f.i r^- I• ` r
h . ' "r aM E'i7' •. I- +i j{.-
r. �l �. 4, a rti r r.Oil n1 ! • `` •A./ IL-. z ,, .. y :is, :4, a `,� / ' 'r (• ;ti•,� �t1 • � i. ri1 ;5 'fib '�:� I I F"r rE i 'L' ''•�`" „hr��\Irl' --'Y , '• � � rt b4 n Li? �_(' �L.%+ 1`., �jr+ 4. 1 �{'I�t.;::::'.....0.1;:-,
� '7 { �'•'` �� 14,•••,;......,,%;,..:
fit,;ray” • t•'/% ri'[ ,r
#`•,.. - .•1'' a'.,"' ~•" r'S.i fi ?�. _ }C ,•,.i'��' r , i :i, W ': • z�'f:'�j-% :. .., • i �./ ' ', �'• 1 !/t •t� !1 •1!,:;''' • t 4• '.
>• '4y e •,,., , r tt ▪ i' ` :
1\.
•••!%•• ' •••5..• ..- ',..0. . s 4-:4 'Co • p••••CtO':dr:- .r;;"1‘r$5,7?' IF,/g ''•1 -'' '•..-- • .0''•;77 4 pr$.•.•'...-:'•:.••• -•:•$.1...:-.4--.1 • •Z4
._. _ ),t,, .14 ,r,,.. ,, . .. .. s, ...,, , . 10:el:01 ..
. .... c 40 .ostiso..(.1,..„,,,,„„, .....„,s.n.Cr . , 3 ' , ,,,,sa. ..t . ..... ,.... ,.irk! i. '4.,...,1...•.:-.....!. ..,7".....i.;7.11.;:rfj: 7
`1011 '1 r)•#1. '.;VP 10 it7' N• ,-- .• r 3 460 --, • k • ,'''.3'• 43•1 , ;•"...A31 A.1 •••;.A.•r.f• .0 4
•.', -
::ISTII ' f. ' ti '•;','.1.1 i'l. • . --..fr_i••i(......L.H._,• ..pt.. ,..,:./H. .0,... p..: .•:•:, .--..-i ...
,..,. . c, ..E.-tsf..
A
4,.. ........ [4iii.,t.li tel ri)49 41. ._:, .
,.. .....114-..i. •!,.•F... /IA'...) til,i• 5 .‘,, ,,.._ ,K;•.1..i ,..... . .• .1.ki'L :••• ••.....• / '. s:•••• '1" 1 -•••• iv ••• ._ .
• .•A' '. .1.11 ..4 / ; • CI ..'i t) •$
: - Cr
.2.' 4.*fP.•701•41raei ;114 i .--. \• I.-11... . :11.•:•,:6 .•;?ry.'...,. •5.,. P•, .1 .,-.2-•,, c..-,-1. ,,„
, ....- • 4 .1... €
: • ,•••,• •• :;.$9i-- ni,4•1)/7.1* 4.-1„...• / -;45.4v`u , • if -I' 4, . •-,1 ' -..' -•••'-'11../L . ; ' 'One:
. cp. 01
, .,4,,.. .! „1-.z.,_,...,i..k. ,...,__ ,......-„:„.. - -,..),,,,L,, ••• ., ,..., , ..4. .,.,- Ix.4-.'e, :‘,4...1-.
., i ,.. ..1S.„... .1,, . •,,,r3., ..„,,,,,,5......, p ,,„ 4 !kit,,,,,,,4 h.it..., 1,5g,,,,„..i••••,,,..7,..rt / . „„.....,..;,-, .- ; .:_ „7,..ii z___,....„. , 0) 1 - -i ---- 4. ... u (A
,.
. .....
.• - • ..,.. 1,,,,..:1,... .... - ---ic:.„0",.., ,, 1 ... , .,.„5 ,.. 162,,m. i ___,I..;_ - =
1.,‘. -• ill i ill .
i 11 , ita 6, -.,.A.:7 k Pt-:.-Ar .. : • .i.,•••••.- -. . %'' it, VP r)....1.•, •, - :•17r , - • (.- .,44t,ritro. •
il•••• ,,D`• 4":'- •`';11%.... ..i..1,:. . ''. )1 'if, 411 ; -I !••:.11 ,Ir ' = ._ .(,);;MP;;,,...,),•4;••••:., o z .-F- .‘_-_) ,,ct
ertidig'....• .,•• /..t. 4:"'' _ ... .- ,' , !Az; ,..A.,
i , ( .1...r: A 1..,7......,k„.P.7...:', ' 4,.."...... ...I,r . ,e Pit•IIN,te. , e ii, 3 se t, .: . -....... Cr n+ttiv• 'ckiji?},:.k so 0 - I--- • -.1
..4Z:4,11)-4.• • •:,-17•-•1":, • ii•raPiFfi : A •sanfr..1.7-.)r. 1 '-• re ; ; it 'I/ 4111r14111 •'..till A•-+-•-. • .• ,. . rui I= . • LI a.
- ,
,...i.„, , <3( (i...,.,4 r, -1-f ir ' ' . tillINERIIII--
, :'. :, -?4,46.•.,,,te?,?>d,/,---2110-A,„2,v.T....,4 , ,,, •p,;... ..k••v,-,.:. ,7...•,,,....4. • ,•••••••,.u., r L4--•:e... :l • r gri wig rThme ( fill,.1 31 „A, .4.,..•••_41„,. • .4„.... ,_. z ).
. ;Iike..„..i..,,•,,,,,21% . , „,:,,...,,,..,,,i„..•!. ‘..,„,,,, a ,,,A..6.1., i,„., .. ..,.„., „):-. ,--1 1 3. opip• , . ---,II. Int r`-' .74v.jr,r.,,,
LU
ii ' ••• A ...4q'.`; .2 •; ..- , •'-`R.1, . .. '-- f. . 11 'Zia 4,./ ^.' Ato • AMIN
. .1 i'.• L 1 '..Pekt'. -4,6") ,'1 1':&,'et:14.' '3-, 1'.„14"'lk....1':•' E
.'0•11• "'" is -,4'e'.p.f.' i. ,, i i•'.,.. (I,• k.itr .. "%If ,d• • Ai t 6:4R• v . / 0.6 Z ‹. Li j
-..
..• . •L •0••-',. '); -.. v , + •‘t ,_ _.. .-.:: ...,,:.I.-"‘...f., •s.... . „.. i •; .':<, e 1.,,,
. ,.., , w.; .. .; .. ,; • ht.,-,, , -.7 , • ••,...'-• 'T • •••••1 1. i -.5"-1 / ' • t;° mi.. '.: .. ?•.)."•'•, 7.4-.; ai:.43444 . -,' ,)".• 6 ...D
•.,..
NI ••. • ( , . t... «., • .• . i t) kJ CC
---L- •11:' ttkia 4, ,a,f,_ .. -iA• %,• :,-,,:i• ,),
•. ols A.-"" VI 'Occr..' ,6.41q-1. . . '. P. '...Y..,...:Ii .0 izi-44...1.41 '
f0,...
RI .--;}- . ' ki•• v;;;i1A1 ' PO°, .V..i...a2.0, , -P4., (Li ce > a.
.4i 1, ..,-,,,..„, :veil. •,,ii144.... ;.-i-45-‘ •.:.• 4.-;...4„i„..... . , ,„,1/4 , ......ds.,,,, .... 63.... op . - ..1,--A.,...z..". o, .,:- ., ,A,. , i ..,,.,A, 1.,,,i,, : • 2 w 1
.... c 7. -
- . .t.: ;r."441. *I‘d17i' • 5‘i, . '• " ''..,. 4•• '.'>'..... 1 ,:k.'4?'. 4' 1*".1...4 VI. , .. .,
13 te.-•. •"" ...1'; i',..---4 k:Lo 11-17,- .: - ., -•'. . r.,;6••. 1•2 ti 'N
:-• ;.!..'" --...1,0 •. • .d.iti4j,z.!'4'.)r; Lij
$-. .) , .,.-->. ,,, ..:.y.N...i, i, rf•-•1,.. I ., ,:-...f.4e:p--.; ' •i -e.,.,..T.--t .„ -lp-4tet 're.°11 >
ysfu, II
( •Ii.:,WI ,i1.-1'•-•': -‘,,.1:4;1•4,',•,, -. ...` ,:.,yor., - , i • z 2,,,•,.., ,... .......-,, ,,e(4,.:,. ..'... ,,......A/.. e ,' .,w ,i ,•I E
ririi„. ki V4,..,....1- • .i ; !• 4h,:ipaAr 7;..
if, c4,,,E1.„.
.f.: • .L.r4„14.„,- ..,f,... .., 51 ).,.. f0.
'1,..,'", ".-.:../do ,.,. l'•
_4-1 r . ,..s.„.,.1.4 4: ,,,_,..,... • t., iv .....:Trr.lr iii•;•,:•c!. • •
/ ''' i;•••••,f' .*-- ' ,- lio.. 1...:,;?..s.,..1..:, ,-,•12,..>,-7,. ,ft,..".. ..,' ..%:., .,-•,1:.'1:14-, •-' ;.. ..4.
4. - •,-.7 ,'.,..4-ttie-t, .-..--„,...••• .4.;..,,•;•47.,. .••••• •f.*"...";.;:ti / .. 4''',C1, , ,, .,..1 . .• ,„t -•-•.. •.-.„.• ••• .. . „2.. , kr.-.)"... • I.,‘..,?'•,,.•.'iv)%
1. eck-ts • ' .0.'4'. fi••". •4'^.1.-ii r Is.e.cf;,'“ /6'rj-'''
il': I' 1,11;117..., .It!';:7c;. !,/ 4-"•"'it'. -,i; ...:. C.V.:'..71., e‘ Z4:I ( \ ","--•
4
• 4 4_,..!......?..vr...r.,.,.. ) ,.,N ,, '''.:!,). ' *pt..1. ,•••••4s-: - f; 7.11 1 7 .1 .. . -- .1.,...4 :„..,,,„,ti •'• .24,--,S.L-i'• :!•41,...!.•:•, . il I, 9'.;,'„',',i,%:;, 4.*it,•',"r\.,ne 'Ir.
-•-...N1 r%\if ..+:::-':;:ii,IFOY 1".•,, '1. ••1:;,-,Z.,.I, •'Lr''''' s‘ #' '' ' 1 ri 1...,J z., , • , - .. .1,A. ":". ''' •;60,t, "-- di -1;k kl. `‘,.• 4._;:::46.=.kinn'er /
• ig‘• , ,
,N‘. .-.44-4':•••4-- -- ..:'f 0 ••.1".7t,;(i.l•"'fl-sizx,r .„-,,•..: • _-.•• ,.• ,- ,, ;: ,•-•••• ,/ kf,z• 1 03 p.:: ox7.,,,..,,...4......-...,41;/ • A,'•-• .41 14 .. s • ! 6 - ' t., V,L,Ac7):*".
',.."`'N'ik 1 Cji• i'.... ! :i ,'olf41,',-- .1-:::' I. Jr.j" . - •. ' AI- ..,,_,....... • 5, . , . ...kJ
• ''''3'''' •P-•-''e:.14‘ 'Ft2. i. ''/414‘, 1:40.4. '4....t.t. '•••••• ' ' ... ''••))%! r '
ft‘it.:' ...1 4 . .1.:•••'). -"./1",-;:-.)r ' ' '',"1". 1,, 41,.,t77:---t Poo).,;(••••ii---• • ...7, . ii . • f)::/---:'114fccilvi• tE;4,,,,
. , r.. • -., ...,.. ,,, . I., ..ri.. • ''', Nr, ..t . • - A••• .7••\)1 i '• 1. '•...• 1
, t •'N....! !,./. ::Arcs, ,. '‘.:Jai,b• i•• :' -I, .1-PN;? --t,,-;,.,; ',`'.. 'I (1.4 • '-+-,'.. II' .-A. .;, "''. --1..-4r,!-......., • ',ire "r•- •-• -""..k. . ' St. A- :dr- i .. '' •".!..‘.16.,..).) .',...,.. •h__'.4,6,`..144 '1,i2" Ra.•!. • .
'Ar"..,...i& *puif,1 fiz,,...w;ssv; ,..,:,ff,7trfr, ,,tt •te44A,,.,f...,' ,..'i.:,,i,„:11-6t . ic -r 1 )' .zi.'.".,7,.p...,,,: v ; ',..*::,491i..ff 1';'-`).:(?..,...'".,.-.(.!.; ' '•,,,,,,' '.2.;',,' .. " -,V ct: ''. l'ili.g.vitp. .:,,,:i'C.:=3-..- e •
.er--1,,,.14' 0' '.,. !"ii. ,..fe$:;,!'". ..,*..41!7i.,Y,•';•;.'14:'..1 ':.i' 4, C11..,....::::-.T 1- '" ,!C..:'' ;1`- ‘E..7;.-...11.`.„4.... ;4-A.,,,;i1.*,:,-.41r4c,...4,-.0(N. ...=-"." If• •„' ' .1 '•': '•'.','"?.-:to,'1_6-;;•-:.,.',,`sA,4:?it'• .,4.' ,),C$11.5.4.1.:f7
,b
'••••••... • • •t---• . i . / IC,. .t• ,,,yr•-• , .,N7 i.1 ..;+.... ' .t.e.1 1,'.. ,- ", ,..--1 ..* ...to, I . V.,‘WI,-., ... Sr" ...."4, .01.' •;••••A• 4 •••
i,-(71 • I p: ,,,,'"I ,-* e•••
;,"1/4-A1.4": .4.-1 - '--.,r-,•!•,-Aki.tt..',.4-,01. .i, :•44.ti.ii 7;--: .."....,..7') • '1'; - ,'• ,•:.•,,,kr eii.----g---, -'57 'I. -s.t.4:01.&47..13.k- 411•1[1••Siit..:Ii•g,;i...• •." ''''...L '' 1...••••• .-s_1$14. •"11.:.•• • ':.•iistia;.,••••••••••;',,,,10‘se«..#•• • '1... '
,, . ....., ....... ..!..,....‘rif At i7.,‘,.. ,.,ie. .1.,.2.; Ir.,3.,%......-1,..•,1 ..., f.r-Th ..7.....+:1 . . -0 ,,, • 111.1... , „„..,:ter ,F...V.:}4.1... et!.;"'?....,1; 1?. ... _. ".„•-••er • ...) ... / . . . 1 ... 'e,:e• .ficwg ipt,;;,......nr*.e,A..,;..,
:. ~-,..i"z "' •-•°. .:.,,,,zi..c.,10T??..e.-...v.f aii.0\.1, •.,,, .,,. ).,- pii ... , l',9 ..,:.,. •'•th''or• ':- . v
'...: •,-4: ,3 , ,.---I. 1,,, -iii.;.-, 7146,\:,1 ., ,-- l'i 4,4:"....0...(A. 0 NS ' VI' fiitta...V.i•414,41.1N"J" ' 1 . .E!(. ' I/ ' P 1 *" 1 ' . .i' • 4.C. -4 . . *
si..,
4
, ,...,,...7 •'.1 •r,r1:12..,,•'(-..M7f i.,,,-± I._ c._.',.,.,,) . il‘.7 ,. Y ''..2 4 / : • illr .:;,,,s•. . '• 7 •, -.*• '''....4 . lin:, ., iii,-.-,. ..0...4„. .i.;,. i• (AI.otkii, .•.., . ,, ,( ..,1,....;,,, ..,.,?. •,,,,,,:......,k1 . 1' .
A 0 1 1:'...,.:5. Lt..7.,'..z.Vk'f.'H,r-e-A.,„,,,',.- '41.11. . ......1,;'ii,,';i i ' 414). .1-'..''O.' -I d.. . .7..•4 7..4c.,..4..44,7. 1...1.4. 1: ...:f.....:.`.. ,:z r. !,.7 ". 1,..A:....?,•_.--;-:,...also," 4•...1:Slif. r ... ,5. ."..j".1 .•".7".....ititr.:
-'• Nrf-..':,Ve,. • ._. .4
1, ., 'e -rl i'l II f.-14..",,..)r-'1• . . .,•tel..) '''• .•-• •-(.4 ••• ..•• ilrilir .' i, . '/-*.v.• •••-
t.•/,0-.-(..i.,••,*:‘.`:4, ..1% ..t.1.07'1:.'''''• In‘' .1; '' iri- • ......,a . , i;1...k....--7 44. 1' St 4.de pl, : , ,„•••, , ..•...e, 0,3: ;•,..6.`...De 1.11 ....c n.' ,e.',So.'jf.
.0.„.../.11,\Lly.tr,„;,1_,/,•, •1/43,:l ' •Vt;,1 11'4,•'., 2.7••' ... • ' F, : .i ..•.Map led .,_'-- .."-- ,t. cr,....1.;;- .,;.• •......1 •,.7;...134. ••;--- .. ••- ' . f.: -4:;,,t, ..91,e.5.14!•V•Vt''.. /'4..i. ;.•
.,j.:,...• 17,-.,.',V,i le, ).., . I' 4 N••.• ?( ' .,, ' 4 1_ •••ir._..1... ..I"- P.7. 7 ,...,?. ,.,...;%. ....r,ir..44. :.•. irt•;, -• Z1,,.,' v ;:!-• j : ,-,* i„ i..-: ;.i-, ,-,,.a-• ,.Ativli..... ...• L....A, .., .
.3 . ....,... ...-,,,51: - ... .1,1. ...• -........rkce,., „ :e te• -,
-•-..r--. *.• ..ii• , 44 '• '4 ., .••••••• .1., 7 , i ! r. 4 i 011911110i, . . - , , . fil1,440,•10... ,..4 ,..,t v• 1•Nr.. ik 4
......••••• ). •N ..',1,21 .• *•'3 11:414''S •/..) •• •73 .::.X. - • i .1_, : •
...• r 4i) ''', - •'• • • .5,4-‘e : -;... . . --ifr i,..... ,..,.. . .... i .. . .......‘;;',.- - '• ''...,.. r.•Ip',/i 's: 'f--.. 2't-.1.; ...,Mr..11-,toe•-• •(//
1. .1, '4, , . ,01:174,1,-. --. . ,.-c-- 1.t.:7.44, 'x,„4.' , I-7 F J.,e. :. i A --.Nip • ..,- . . •,.,;,,,:. ...,.,,,,-,..' se,kzeg.;:::j.,.4,...,.:- .t---1 k '.11 4 IL..7 .4 j:i,,, 9,•„..:'•Y y . 'Z(''i iii4•„Ifil'q'e.'i.,, *1.fli,;& _
. i,'•. • ..,/.1 .. q .,. • • ........,, % ....,. I - I.,A 2, ..., ••. ti ,,_,,• . , • • At .i •• , . ••••. I., ,.., „Tv',•c• . p gv• „ ., 1.,,,;..1..4.4% y W.I.,.• ..,„ %...t.v. 111.„
C.Le. 'IC.S'l••. ' ."•• 't Ile `i . 'CI
4 c4.
s'''' i';'• - 1 1 ‘I'Vi t • ‘• ' "7A.'s 1 -°' 41-1.-.....Ili/ a Ot"; ''.7s..11'.4;44,-11 7'‘.4';'...,":".#!;gr,..•*•.rfli:,‘,.....' ..`ifigpA'.7.17.7X4.''::::Cl.ik.14:'..1.I.,"... r;.„A. 0 : ':14;15,...•??1,;::.i:-/r'r9/..v.iii.N.....(qt•-'1'..'r•` !..(,'. •-•....:',,,k;,...41`4.,9•''./.0.;:.,..).:11,:(1.1.*:::„..H.:. ',I...-:','N.'',..,.'•.:\.•\• :
1.-•st): • '44.7 •-.0"4 -414%1 r' ,::•,...,t' I. - •-• e-. ..,r . • ..' = -...40 r.„?-0.-_,e..v.:,....4,--,.•-• f,e,' -,. -•-...7..e.:i2''''• ..% . • .:I .. ''. ' ... k:F, '7 - -It i'"-4;•.! ,.:=.0.14:.-•-.e.':•:..r.y-qi. 4. .
''.'; ''• ,,r4; 't''' --•;17.4.• d• ... • •r. ..i..•;• ,%. Plat4..!. ' %•Ji••4&$•V,e3:90.)i .....t.' '.1..4 V•-:1--- 2P...Y/••• 1 frrie;lid -.."1 '..:';' r..74.C17:-....ere...? :,!: 11;,;%:;',d‘ ..:A•41.
-,-,:s* ,, ie, •1,„..._, fr,.,,( •-•-•%s•!.. -- t t •.,,,,ii At. 4.-. - 4 it tc"..• I. • .4 •'..A..r "4....%: %.' '' '''Trit.s: ' .. ...:. -..t % •,-,..w. .;:e .,,i....t.....:,.I,•,.i.;. -)•,,,..,_,,
' -ii , -14 •,1 ""......,rt 4-- r. ••,,c - ..AN, A..0,.. .. .. .: - -....:....,n4,..44.., ' S...S.•
.'VI. L; .,'7' 4 ' 0. ...*J‘,I '? 0 .1t•e 'S.,'•'C ..• .''. .• it 1.V.4°'' L. .X CL7i,! r2 fl
••••,,,• . _ .0 ,
4
. ..,.:00..... .. '..r.r4 -..., yr y i •
•■•••• <a-4„....,.._ Ift 7...,,• •• et„,...•7 •, i, , ..• .....1%,-/ f
."'!)'....2'1' 'V....P- ' 7•::0":1“.‘ %.'F..,.4 .,...tli'. .:4'•". '.. . i.
.../.4. ,, -,,:,,,... ,,, ,.ss.,,,.4.-..r..... ? ,..0. ••1,....... .1,,,,.4.%,„.4.•.; f.I1 et d.3,:,..r..::lel' .0 .eittfii,, ..„-, .1.;..., :_ ,,,....). , .. ... 0,i! /v.;
'''../.1.,,e• 1. 1 . .. .V 0,%ter; ( ..... .4. f.4./ .. "".. 1.1.i , •1".1......t.V;..' :.-
. • . C ....
4.4" ..." .C151:•tri.;;,41.'.0j ii..::: !Z....„,1ky'.-rzz.-41 r. ..:
- ,, ., •: . 4 ..- • w - .0 , Iva .. .,. "s• .r. F..'1'.'r•-(7.;,. ...., ..•41r. '• ...r. 21. 'At t kr re', •••••, . y...1' 7. ., I ' if ti• y r, 4,-, .. .11 ... ••• 1.....1 ..1,.:...e i 1.&,. ,.. ' cff.
,..,........ ai,....,1,.. ..-, , , 1 I „ke .* ; .:(ittie I :'P r•ye ••••• 41"
• i' 11, • ,. 4 , ,. .".• a .T--,r -.... ., ..%,, . ..' I.47.'1 240 .'. m•_-.:. 4' • •
...4. pr. !";_....i.,. mk J..,,,.. . .,,q,.."11.. .. ..'...,.4.. ..ZZ; . ) 0;.:.fr.::' 1:. 1.. • ' q V: ' g...r. . N. .15.e ,f-4-....- • :", elf, P r24.11,-i'S'•• 1• • --Ps eV"- /,/,1,ai=,' ,gr, IN 7'..2.': -....l...,.....1.;. -.%- °";.:
,,_,, • ..... , „ -..t, , - .- - .....'11,••• -.; st . . .T4),, , ,. •,..,-.. •••••.. :, . 121-z,..4... •3• . ,-i...f..).• . •• ,:r•••" •1.. ,V..• ;i ."'
fing 1, P lir •.' '. ;"Vilki.:. il, • •L'5113.,• WI • •_..„?',. '117....:'"::•.1.4 WI:!IY:17t'' •-'''. a '.6....•'• l'• ..'.1 441:- .al',to kii;', :,:$ ' . ..... ii Id 17 r .., ,,,,,,4 4....1-.......,..-• :‘. :• ‘. •., ,;:„..g d:' tit:400. ..
1,13....11,. ..4 ., . o •..,,,e. , , . . i ir . A,-,-,k. A, .:..,.1 , •:v.; ;':'2'4".. ?• •$: A..• - .A.V .r:,. • ......tre u., I,t.vle; • ....,.„:\r• .. 1 ,,.. , • .." ii_rt 4.-.4% c.e;,.., ?, .." •.' ',1.':i::'••• %.,. i
1 ‘' ,{'.' . t„,yik:i , .-4,.. ,:.. „Li - •iti% .."4i1.. ' . ' ,..-• ...•• 'IT '• • •'''''. • '. ... 'ID...t444 4.Uf. .44.:''‘j ,..;'.,_' '6. -1,r-le'l. -1,07 .•‘-73- ii-eV‘, 4,i Vr-.e. i..ti'..o 4-....?"''''••• .titt%111...1.:- ..
1-•,,A pio s - ),-v...., - ' .. qa:,...,,,,.04,ii! 6. 1.:,••••) --e,p-tirtisiiii;.''...":' •:.-~": . ,,...- re. rit P...:3•-%.,11:, .`::...;•!::vii(7..., i. ' ;ET, I.,.5. i, ..,:..'k .?,,,:...,4.:•:,ft.i ,'f..:......,..t .ti'. ;Of r.„:..1.•-.1•;•'.
4.4ers
I 4. •'''.:-f' il'..X7' clPrVe/i,;C'11'''';4?0 ll'e'.J.le411V'rt',' Pt•1' ' • :.14-1:. 'is ..' ...,."1,')ii ,l','•Vs.' a' '16':;.1.'cit.re.::''''''4<0. %. '' .-Iii _,.irrx-r- 1- .; ' •••.1.---s, . •••:.•- -..r.4-..--/%vn-Pf-1 -
iv
4
,,,.,.,,,,, ,,,,. ,,..,,,,,,,, ,, ,,„,,,:,, ,cs, -:..,....1...A jf.wif• :4-:.1...-",,,...41.,.. ..,(,,-,!,• .. 1,1, ....,,o..ivar. ..,:t , .,-% . ... ..- -.ti..!:,...,,...,.'P.A.:- - -,,, •--b, -..- ..1 ,e.. .. -• . ,.k.:4.;./. ,-;-,-;,.k-, 11,
..„.-, :.,..1..t. ? / . ' ',r :4'.... • , '..- ....,* .1."....,::". •%„:./''.., *.•.r•i.:..........00:4,........;....
• ill '.°• 14 . • • •••.: (- , ' •.1)*,.:fi. .•!:'•,,I 71. -, •'::tv. ;,1 <c. 1..,1.) ;-;.f... -::::.:;. ,4,:t -;:',ut .:.''':r.7.:i'l)'N
[T V ''.• ''''i' •••' 4. , T• ,,_4%'44 ..j.;• "/„; .),,..' 4f, -.,....4"1.1.1d,,..j. ,:'''' ''.!, ilLiitr. - ti. . 6:‘i't:'s.."' ''• ..r,j:,,‘".....::;;Je's.1..." 4,-'#.' ,::',. t.1061.?-:\t'.;,.4.4-;•11.••'4,43. , ... .1...,• . ..N.,........; 4.:4' ...1.' "':.1.r.j......e4:"A.! ,Y.:17‘;',!:. `,,.;I7 .„.ri .,....
A
Ai ; • ; • : f '4,;2", 11 7.. •‘:,,.;,it••:' ' -i: ',.._, *AL-I, 1 :is.k.11 ;‘..; '. -..... •k. . - ..0., .4,....„. 5,‘, ....::•...,,..,,,,r.c.E'./. .0 ...i... ...::, -.•• tr-.., ,,...v........:1,.-./:,.,, ...! ... „4,2/...;.••14 . 0.'
fe6
,i 77••••Al 4,,i: 1(,,,/1,:. kz?fi, .-,r$7.-; . .v..-..„ pl , . ..itAi - ,..-:;:,,,z,......,1 .. ,..‘,„,:-,to.si, . 4•1`..s,.,....-;:ii.1.-A42.• ., ' •,,i..1-4-;.:-1_,IN - T -1:-ti: ',.•).'''' -.-1' ---,
•, ',7„ La' -v:. .,430, q r•(/',‘, 1 -,Y,,kr,,;:_cp.r.; ,',:,..11,.., , cl. r./ / •• :... it ,...„,c,,F.N,...4.. . ....;:..... .,,...?!,;...0.r.4.:,:r,...! ,,i.i.A.,..,.: c........., i c.:...,....., ....,„:...., ..:_ „....i.:.... ....;,... ... . .:. .... , ,,..i,;r..-
• •'I, "w :"..,-.4:..1(1,.,til.41. ',1-tfW. `, Lf,y1.1....;,,.:, li•, „', /, ',1.: 14.•,•.:•_s',••1 A,?:*i r('L''t ......-4-.J.-1.'',7 ''''. ''' r.=-7 c‘u•' ....:. , ''' '-- -IA.'• .`..3.`1' ..•. 41:1••. • )...tS-t•-• "'f . ..); vat@ ' •D,
1, 0/I 1
: i4 fe4-a. ? ,''..,i,sib el; .. ,X?,;•,..0...e.11,/, ': '-.‘.-:'. 2if(-,::•'- '4. i");1;73 4.1 'f2:if..: 'P''' -. . .';'ilt: :lb,4.5: 4 sil,.7-4,...r,..,I1C;;'14).' i....41f:.: 1.'..!I iiWC t!IW j..i'.. ....'.
‘1.:''-'24.77-4Y1V. ,i1A' tia.:Ift 1\ ..P !3:;41.7•:.:1'.''.(...i212.1c.11`:11 • .;1 .77>'. -:: '.;7'',. "*.::: -, '-1--. ..-;•:-L' • ..-6.••:- ••;:, •'_5;!-4.1,-.,,, ''''.:! ..'N't.4.t I.. ':.)0. . %kJ,:
•
..4';,. .. A :, 4,L.t ,‘,t; ,y-s, .:. • tre i '.1t1A; .-‘.. ,_;-. '.f.., ••...3.1 4, , --,4-. ,.,:;.-:•.,• i :,. ..--,:•••••;ii.- ..7- .4:-.(;..... .;-../...)::-..:. :':•:;//-s.. --Liz%) ..,:-,i '.?in"' .4.1- 71 ..,ar.2:-.), ).-4-, ' le .
' Iv i Ii:16 .1,"4,11,-,.,:....Jr. 1 ,..4*. a .-'.'if -?.3 .....-e:;.: c,... ' II 4.- .eqt.'1444,.\.',...?"-10.11::' 1::::::fil::-‘'-7:4/- • ii",•.4 i'; 1. .. .,1.1".:'.-:1:.•e'N' ''' Iv-,•7.,';‘ez:-• '',.,41•.•• f ..,1„,,,:ii"?'!1 ' 1 i; ..'- ,N1 ,11/,,a. 4;14'1 ' 7
. ._...;,, f. , .. ..,..i.-,.•.,,,. 5 • - .,s; . _6....-t A., ... • . •:•y •/,1.4. - s„,.•,57 .....42 7,.:• ,n ,I.... .--.4..••• (., / .....--or,,,,..„ ••,..,,i., ,.'."
l';'-4:' : .j., Ily”40.‘.1.1n;.:1 .,Y1, :,' ,rg•••••7,•%•‘••••••• 474.1.. : •4••ii. •i-kg-.:,t....,....,...k...; ...!.• •..4.. ... •..,1.---.;•..,11.:. -,..• ........,,•.,...,...,.., -... ,. , .
i.4 k.4. ., ---.&7-tp• • ., i:.k ,..,:•,.,..‘t--?4.i, . .e ,..I, '-r:. .- .,......4- ..z.;:.,1;:c..).:(;1,;,,, _ 41•./. 4 -:- •.:.firl -,,w,,,!. .!-...- i,.;:i.si. •..,,,.. , .. .
1 ,,,,p•f*,,,,,, tp. ....,;0,11,-, • ,,..,.." ,,,,. ,.• N. pi. p' = •, '... 0.7.J.'..11. .,i. 4. i j.'7.4 > P:. /......,:..41 -.•e ill•.1..„).' i 8: 1 illi.*.•',1- • •q1117.j., d•S, L.' ‘ ••#-7? • • ;16'.1 .t., -: ..,.. . .. -.
4
1 11- ft'. illi'l ' .1 ii.• LA;'•••F !15'•.' .''' : •t-:::•••:t..„ • •• ,>•4;t2 of.......'.•req Vesikr....1 t.4.-M4\1,, .) vaild....: ..s.il 1'''ir, .....:%kJ!... .r...' ' ... .. . i,,,•,:f`V.orji It ..7 r . ,..70ci:',... ,:..‘:'„10 1.z..?;
't' eerilit§i: NSt: A '4.tir. '64-;i' ,4'..,,,,-. 41; "1,4;', • i .04.01•L'''''''''..N471'.ta- -- ....A.... i'.1;.f,-'--- 41:91,-,k. -.14`.....';' ' .' ".1:-...),' "110 . . '''.' f" , ';' ''.; 1,1;.,ti, ";', -*- L4 '• . . .., .. i ,14 .,.-.),
17.''i r .„1,4 ,40.1 .,t,, -, ,, ./ V''.1 7 Ifi...i---,, ill-. ..t i 73, .)..;n-':•.l'.:7: • LI';;:':...1.,'; q N.4'.F .1 VI:41 1 f' . • .. 17^04":4. Li.'S.11037 .---.-L.*: •••:,2.Tt., ' ff.t.4,X`' -:.; :f''...1.::'.,c'o: I'S .: 4,:-!ii
r i
LA liti,',44th ' (Pr': T. - / ,,,or 4 .:!: • -.....: r.-.-..,.. ,., 2.....4...„4e..-,4„„),, ,•!t•• ...1-4:...;.•:!•......,. -„; f''' alp T.,,,,. , . ..,.0 •„.••'•,,,' .,,...; -..„.r,-...Pr. h_4'.'.:•‘''.4.......... ;17" ,J7' '..%•'Y- 1./4''',,..:L''c'''..,;:,..' •!'.•\..x'.„.'''.4. Of .,1"::'‘ .. ....,:I
•:11/!'4E4' '• 1, .. ',it, .44,,..W. . -.1m ' I Z. j . -.2•-•).• ;;:...11.-4,-;''s1-''''''....s•-, •.1.,''1:1',. .s1) ' ' ' piety ..illi..-4. .„, i: ,.'.- • • .. r -., .. J,•....4-:pa• %‘• .....4;,-v ac ... - . •-.,i ... .r,'• , . ..,:,
trig11,44 ' ' ..,• • ' "r• r •••t' .. 141-4 7'A% (.•'''',•?:•• '4•:;t's•A..,1'• C1,••5.1,1 • ,. . :' '"%f 0k,7,1.,I 7...p.: ,,, ..1i.0.7,.:',.....? ,V..:*41 i 11,7' Si:, '1,-klil.;;;4...?.:/41ft.',.j. .3 e . ..,...16k,:,.. . ...: 4 TC-
...?.?,070.xi, ,„ ,. .5;* '11.' `,„.45.1, '‘. , .., ,-;--.1- - ',44,0 ,•:.?4::.:;',4,c,k .t ,;:.,,, , ... ... A IF:
,a, 4., -.. - L-- 1 4i-,1.--?!..-. • ., -,.., . -,. , ....t • .• #• ••.,.
r•;1111N ' • *•':A,.•,-.14:*.e'sZ, ---'• '.-' • •• --5•41-1,-.2-11.N • 4 •.'
k., In .k JO,' • •-• ',.7,-0,,,,.... -14.• .1 -
1 l'i'''''°O. s, it'M.*1'7.1::47.t....r.7'.';$A k*-.% .• . _,1•e ,; ,, vy,"-'•3f.4-4',;.....-. '-:,'", . '-'"- I :.:-., . 11-r-iti.:'.',,,.,,ipT). ,,;:4 . ; . 7! - `t--.,„ •f_ .-4'•:.1,•45.r,.P.1 ii.,IAN.-1,,q10,. !: :,• • .
gi
to •- t.• .. . .-...4.0....c•.• .,, . . .; .. A).• ' • ' 1' Lli ' - • '•.' •-• 1. KJ frr V. -- i - ..t.i• •4_
1, 1,-1..QA.741111 7.4-fel ..,..ivi6.,‘'lli•zr ' ' ..:17 ...rf 1 • ,,r "4;.,...i.1,..'.,..1.4.4,,. •4_:'.i.7' .,.. 01. .i..-1-.:4_,..;•• .._ ...: = L-L..-..E:-.,e1 ".2;;.%,.•ti..... .,_.....'-v r'". 'pli ?,.,',.z.1.7!•,:!•=•AL--_':_jaii:,4 4.''...42., 1-;; :,...1, tH".;.:,,,..-1::::. ::• ' ...4.-. •.‘...,'''..N..'T
ik
ea. 4 •,• •,••' -• • 'I • --- i'f-• 4 •'...4 • . • •• 3• t ' ' • .f
•TA Lai q••1' •141 .1 ": ... ... _.At,I. ,T-1:..rttr... . 4!•:• • .. .lie. • 1 , •I 04.L......204.0.4M4 1' •J..,-.-.,-- /1-1*g_. , . ....,••• .• •4 P.42' : ."...4 ::N
l'• .:,rip:',., '.,, hir4, 4,,...,, . ,„ • 4 ,
; ,•'1,t,.•) 1t4'. i ' ya-.;,, ,NPM- I ( -../-•,:ii: '',..4.V;,,,-;;Q..),.-11'41 ,, / %:-.1-14-'''''--0 ..1) 1'.'-74.4''',,i 1,4' -. • r 1,1,7.,!-...7, „..1",.‘,, •,:::: , . . . - .,,, - ,e, i. 4
,•-•,--•, ..... ',)---q: A' . '•: il i" .ri•i!..••N i',...%. "1. i..=t •,N '- Z %•• I s.:I -1. . .. .e. . . .1- r,- .,• 1
f7.1:_•f,:t IP k iy T. •*.c.,or,.x"- i,•=.:p!,.; ,..;.•:i•!tr.i4„.4,,,,:?../;, ..- 4. - e...---..,..-..1..,,.: .3:,:i A „.-....it f ; v:5 - . •;:,,, 4 • _;%, -?,,,e i'; l-, •rcr..,4 ' .'' .t .if 'i - • .:4 ..,I.fe , •••••:i
lio
e'.3&„ .t'4 oil, ' e>0/ ,,%ii. 110e 44kt"4/1' i,i1V17;,-,;-;..• A••P,11 oy,-,.--,i• 'q:.fr . ':.4-.''''Y':' a 1 - :•,..'51 .4. -.,!' :. .. • ., - •,,,.,_1:,•/,,• ;,i ...;!; ,..--i y/z_i '.• - ..-.-....,-,11.4, ,,-.1.\,.. Z• Iii
4r, An,. w„, - , .• ..,.,, ., iiki:,/, . „r, ...7,4, ....,,, ..--i• e ef.f ,,,,• •••• ,• . • ,i• :,.)-• 4-•, .\•••• .:,•,... J. ....r ' - : '....7!•••ii.7 'i:. ..,•,.„ ...e.".1,. 13:',.,..' ..,..• ....... • ...7.'.LVL,F.Xii;,1„.•.4 1.,.N • ... _
).16,• ...'• •:,..., .• . Ai i•'' Vo.r.,,I•f ••-'1`..-14 '. ...:..'..1. 10.'' l'-' ! ,-,... .-•• . --re:•4 . Oir, .-,-, ...T. . - - - •,•,...i..-- -• ; -i.
- . ''"'.''' . g --v. \ill.: .v-. ._:e ;a,-, .. .--a; . -::".• -'4E,•-. -•',. i'Lg cv
f•
1;,.. f,,...0-1.,•1-4,..1-...,- 17,1.4,..,:p ik. A t,. ..1,,,ir(...-i.:41.t.: - .:.. /..1 r•--...f.. 1, :\ :-... •/ ..,-. - ...--.T.. . - :,,-- -. ;...L.,,,,- , .- .-. __........, 7. ,L.s.• •*!. • • ',. .• •„4 -7';
,t- ' ..ro., ..-1•`:', _t• ''' .r. Sokitil .,'..:,' .,,..."4%..1, --1 t• °o'i'ii,,23.(I 7: '..."?.-- ..' ...': . g ,,, . ..., i I. 1 •,••• ,..? % ', : S2 ''‘ k - '•"1.... i I A" Ar:--• .;').k. si• .._,:;,.."--‘ -; l'-- '
•b1.4-?Pf•141. 4,1••:'Y•' •-1-• ' 4! .07- 71.1.4V'''-• •• • tt"t• ,,.-4 .t.'"akiC,' ---4.1e; '• : - •.4•-•' .) • . • ' • ' ' '• '• 1% 1.1:•-..--. ..4L.4,',.•11:::,- I
54.',A.t., w ••' .••,1' , . ., . :.-.„,i . • . •• •„ ,.... •r„.. • , ;,...•,;.. ;- ?f• .., , "1 . t .. .•4 ' ..-+ .;01004?..`;(1,• :.e;. ., ,.., . ''• ‘ '•• ' ..1-7 • •-• a-
'2; i 4.?..f:' :• .....'il ' "•9' I 1„" ' - .2-.. . , • - - -1 ..' - fr- ' •...•'''.,-••••.74-PIP', 4. ••••• •- t . . ...t.,._ ... ,
' PP,'vp •, ,
N ..... w.•'•f•. no.. IP, .,
,.. :__
, ..3., 4 i. ,. ....t.; ilk,r•.:.•. I_. ;1.../ -Ng•:,,,. . '.•..„
IV 0 ..,/"P" V i : •••,,44•.%, .2'.-.1.-. '• ge---% .. (:37 : 1kKt: 7-.7.1-,- '. .,"
to, %" I...1,.., .allf, 1
• .''' .'' 1.9'-1-' Pill:"#14, a ,':; I:. ..1- - -'...:-', il\•.''';.:- ':•••111: 3 .. .V' '1 'I t''' ' '1'
....I 1' ... .
.. • 410 k
'It ,401,1 A,...oar .,,,,24;Gk..* 1-„ - ,•;•-•;,--f, • ,4 4 .s. , . , . ., z A ,, .,....sto)011111r A ;•1 IM11,.._•;; - • 1, ,
...;•,i,fi • ,.i 7. . rag' qi:4, ,#. .. ,.,.•,..). .1 r ' • [lc.' t.-, i'l '' I. . . ' • •• .W.'7;":t '..-' • 14..•
. 1) • • • i';'''''' ••••::)::'...::..!"..f....,.. .
i . La •- .1- .. ..i.14.. .,...,...(,,, .. -1' ' . . 'IL.% 4
pqr ...:4Blir a. ,... .4 ii. ..,...,:- - ( . --yl,(.• .1 :,.:-..4
.1; 1 ..r4.. ":- !..„; .• ' '.,,, -,e"?..,
1.,.. _ , ;ar,-,i ? it..iik...; .i-r th-I , ',..1 ‘-." 1 ,52 ' -. •, =1".-. ." .. 3,'• li f'.:I' /...*" ;11P•;• ''..7....''''s ‘ . i':... t: • i•.. ...,,,,e,,\ ,.
10'. t atk-N • rt, f._•1,,,.. f,1:(• 0'L..: ;‘, li... - - lc , ._..! ar. x, _____.0..
. _ .1* 3..
• • &....!
14 7, -e .. ; „, •,.
1/.•t• .6• -r-Vv., : , •-•.•••.„. 1 .".."• '•", A) -• • 's:-• 4.f. i'' .1 'i ''"1. .... F.
' . ....2F6' re,•:-2" . . .-. 4
'. . .L, .. ..... . .. ' .... :f . • ....Y.?/....:''''al. iet7'...N. N.. • ' a' .* 1,I : i.. ' . ... ..
•C'..4. WV 2 Y. ! I r, :i0;'.21 t 'pi * -3-9:-
/WL.0 I • .3 r , .4 .. . . z , :. --- ... „., omi....• . •1 •--' '1• .. 121i 'II.. .1 A, / t .. .4 '‘'1 ..' '. ....... '.\' . '.. 1 •
4.„. D •1.4: AV 41/4 : . 1°1 • - ZA--' 7.y.,••,1••• •••'nnEN".. . •. • ' ' '•
-....•
.0r. y 1 -1.'•A''y••... .,,, , IF, 1,-1‘,•1 ''. ,•••••411.411,A ‘,.:1.0z,ta, • .5119111 ....:...•••:II&. •10,, ,. , ....• .....2.....,-7 .-
• 1.,) i,.. 2• ,
fMart.. ...._ ., .. riy.k.0 t • 1 pl 7.• _...4:•..r.-•:oric....-''; '- . 1 ".•-•,•:,.. . ,.1. , .1 .',%4ei•,,;.r,A.iteritir -.kle,7.......,. ••• . ... ,7,•__ ..•
t
.., .,• • ' "
•• .%•VI
• ., - v... ,.." ,..t. .. . .• Nf.. 's .,;4,,•-( • . ....4 .'• .`•'• "'" gp rsci.r.,,-4es. .,.,,0•. •• ..`,1, . ;‘• ..4• ,'kip,. : Ili. ••••• * 1;4--
...I') • , z•re..-......'-• '• 'r• ' -i"
ii.- .1; ..r A. iff,,,,- a , '4. .- ,47.-' • 11 ,74.IC. •''":21.7.V%"' " ?•,: V ' . '.2Y41r,.,;;Cq 1.,..1 . -a14" IF... 16), .f.., ..• • {if• 40:,' .:•• :. i'• :4'''''''4'411`.7.1"
!.e.,,,.....,‘' •• •••‘• ',• •4'. • ' I. - •• I._..its :1"'r- - :7:r"..., .. •:?.7....1- '_fa!''0'7: Al . Vi '1' '''' • ..t (g it, •••:..;1..• %.4. ?'.''• '...4 •,I..A.0 ."1. ....1 6c '
11 4.4• *I• ''. ' •1 .4•... • \ . '44.• ' lel frv-- 2: i rit-1. --.:: ;44,-1.1.. \ A: sqr e.•:'t .' ..,..,- .•'f', 2 4,.„.•?.,,,,••,,., . • •,) ••::<,•-c-•, , :: . -.; - ,
tr.'1.. ,4 ,•,• .. ...4, , .
: il.11.'arb%T.A.••••40a0 # + .. ,4 .• . • • 7 ..,1!
• 3. ‘3..; .. •7./ ii ..c. a i '''.... t,,., c -.( . '..13,t', r••` - vi •LI .irs, -.--,-,-.4.t. . -1,.. :i•kt. ',-h.,.'•:.-. '1.'' "2•••,,,- -''t . - ..t. - 4
.7••• /"..a...IV•101,:91. • p -- • - - ,„ ,•-•,;tk, --- - . LI . ... ,..,:'•. e 14.V.-1-• ';"X: • " i ' z"a® .;'1,$.'% •k •-•:;•rt• k "V1‘. ' ..• '?Al ..1 ','Il'Ar1.2i- ... _ ..m,''
• h'• .4.• •-- . \ - - . . _ .4•••. 4 1 ...!4: ... _. _i•. 4'.re. ,.: ,,,c. N .,,,,A . . ., )1,•-•,..1 ,0.,.. . ...t..._,..v7hr-t,; oi, .-,. •,si.,,. „,...... ••P I.-,
i'.1: .46E...E1P.417.••_..t.'11 il 4.7 .1,4, VA.0 29 I t ..... ' .1- ... -- .. in I..,to,f. i° . .',....•'4•• ,..4. -1, ;,.. N.,r,:, ... 7, l• yet%. •;:,A.., ,-,:-...,'":"/.7.1.0•••••• \io!...:-./I. ...':. \ 1 yri. Or ,,"-. ....: •.- . la'lig
••;t:'"
disti„„jaly '411a 4,41911111116'j:7 •'..!1,:4•..t.t.rtia''' ''';g0 e.T..._. •• . iif716 it)../ :...; •;.s. .-,f y ,..-•-••`;::,, .,•!..--.., ., f.51•114. :yos ,.-••-lif •••,', ,• ,?4,1":•.'..!4. :-:),,••••':,•:'••• 3.;•01-N*,.
t.1,10,1115Nni•iv i ",9. ,774 04.T.:Ng7-,.. / ,., -J• .. ih4 r.4' h, '''. ..." ! ••'.'"•'• . ;•,....u4 ',. '--.1 .-'...a. ' •L.:\-Zri,*';.-41'..:1_,._.., 1`)'''':. - -:'Y.. ' . ..;-'•••••,_.- :' '!.,c1;.4-'4___
9. .,0 ra.1 itImmtv la.
c '-.31f1jii-'1- -• :1....1,:', ' '' '. . ' sze.14),;1;5,4::;.:-.7:- 1 '' .11 /.4.•..!.. ,.- ., •,---,',4•TZ-.• •4,1-4;:m_.-.'`,314c -_,.• :e_p.' ,'‘'.I-', , . ,i','..11,7.;,:t d
ir.:-y:- . gWs
I
1 f., = . . - - ove ` ' t., 4(1' : .. -'2f.5 ...••••1. ill'.'0.,-!.';'. "4 - /. (. k4 - • .:... 11.1..i. • .131141NY 414' • •''f" --.4.... ''' 1. '' '
• yq g .... •
•1... .... • 1 ... „, ., ....e. `...;1„ .,...0,-
„i••-' - • '.7/01.4114;? tfail •i,A.,....‹. ..ivi,.(---;,. z,, ,..., 1 .-- .. ,-,,,........i.,.irt,4•••..:,. .,. .-i., , itl.. ,- ..,...1..,s... . . 4 .,,,• /.,. 'il .-., .L, ...,:q.,,.. • ..ki. ..
,'..,• 1 i 11 . •! -. 1 ',.... le:, 0,L. , 'k, - . • -.; 5, • .-- -...i;'.'.•"' .-:. -".- - . ff ; •'...... c'-':': ..-- '1;0'. t4/1*P0..116.0 I.i:." %.01.41 A W.0 04i4 „•' $'L...)17:44412 ''r GT
r '.1.i:‘,'•-!4.c:A •;,. -F./A 4 l::-1/4i,. .•-r1'.,' `,, ,- '-‘-e.- • . --..? ' - .. ,.'pg..rgi•vi. -"4"1'rt. ', ....,i'-1;'At: 'f .1.• ' I..C.,T-1••"../it •":•41. •,,c... s.-4-‘-',1*4(eL•
I te' . 9;1/
C..li , I p 1 ..f.,-(Ev-, , .,wo 4*. 41: , k.., . • .1.4 .. ,),'.• .r. 1.....,. .•-• 'Is.' • ...,. ..r.f.p. - ' •. . ii..;1 1:41..r 1 • ,.r -: • Al.,, .ir„..
6.4- 114F- i; -ii?!.• 4.-g.." :4i.•- .1.).;14t:fr'1. . 4.'.1.. c ."..1.. bt kc.6! '?•;)/,‘4, ..t. I ,, ,.„.. i,• ,,,,,x.,,,e-,,,ly,-..pi.-,.r.,..i.T.' -_.. .ual...*,,...
V Eg !fill ii.- '4... •.' ..- iti:: , ..t. ..k.. • . .)ii.t. , ! 5 el 41,e;k1411L..' ,. .•''' ..4.1.: • 'ref''..7. ..,',11.:, %/A , .,,T.,.*k-,.k..1,91'..Ci,q.', 1.-',.! ;i-,:" P,s,i, 'eAc i'...„
.•-•.,,A . • .N.,. ,. -• -,--: ••83 ., ,f-,........:•, t...A,:..:11:..r'.. ::). 7 . ' ,,..,,„:4,41-Li. '-_;,.. vr.rt,...,r,..„.....,:,,,,,,„,... .. l'..,."•.., ..,.+1••,:,'" ..••...1 •:',..,4; - -•,..'••• _,......,4,-,....$,..,‘-1-r:
t:II, • '1;:,.7.•''f, T ,•••IV. ',EV /./.'...1'..;.1/4 ;-,..,' .'..k 6. ..4; ...?.:„. tr. I. .pi.: ,,kt.f•A. .,.,.,r '.?P'Pr . ;;;„,:t. ..'li.,.. . A.;,....‘(.5..x..4,,..,..Ar ,,,.... ,, ,.c...:..z...,, •••.,...,,.., y•-,,,,- ,•••7,..:,-,1,•,1/4...,.
• •••,.. , 4. .,,,,,, . ,,,„,, ,„.- .,,,,,,,-- .,,. • 1-,.:. '• • • ".7.. .•, .wk.,' ... . k . 7.:••,•••' 71 a. . 1 IN vi.;;'V.'14...v. II. ,4.:•... 51:::.0.5.••-•• 'L.,' •••••IL " • ' 4'••• ..".i...11
. ' . ...,• •• / ' . •(.‘t• '::•.:(0")
• ••• ' 1 •Allii... 4 ...r? '*'t 1.41. •:'IR, - it'4..'d.:C1-7••••A •'',. " ... t .r,". -rl-i 1
t'''' . ''`. h.at '', h.''.1 !::' '''i4L)164i:e.."7.r-Y.T,W,0- t_ti:L'Istl.',-4'..9t.'g.' .1•••'?•::.";":'....::: -, ..1R.I. •k-'-%s'Y'r
-( •• ,I . 1 -Al jrilll , f Itoi,‘. ' .•:;1-S)jk '. ty":'.../...\•A Y,:,:!:'';'1," wff C. j .,..''%'"41.k. .'..'1°)., '‘, 'Ali ti.Ifirie<tr 1•..\e''' .44q.,e;:.2;e114::'14.:1!ie:,-J,:.3,b4-:.Z ''1;4'. !:-.7:::H;A,:r:' ":{q1: ".11t .{'°4L1,4'4,41‘"..7 '...);.••;17. t.iti"ii'lf...kki:%:.:(ii.l.t-1.-.1').!,,:cti•:efli
°I.. - . /pl.. id. AT • ,... . --. ,..,' 1/4 .,.. ' ._.. 041 *'•• 4,__ . • --....1 ,4.4'... ..4% ' ;Jo• - . 0 .1-t-)r..-' . ''',•:,.`;',C.ikod_ .„.1.1 ,- IS4-1,1,:•f,'F,,tif ""4:.'/E!..,P ''A.,-,t. ./
I.:.1 -r-! '"it 1115 :"kA .114t4:.477-11L.-;°::.'-'7,0frfr-2'4'''Or.fe6i:;'',.''r.'A;:•'-'',''.'a'''T,6r".'''',:f!&'.'1,''e''':".:tVt'';;.:.;i..:::fr;4;.J..-'r?;':I'r::::,';'''''?C":'%"4'k.4..,.:::';'.141':', 1.11"-:;;-; 1::":.4.4:Yiate*'(%?'2.";"::'.'7.t81.11-:.:'.....1. 4','",-.(:V,'(::''',11114`;"7.4,t.'414
kr'it 7iimi .2.k /41 a?1,),Pa'4:4,•?. '...x Tit'; 'Pi' •••': ., ste.. . . )
. ///• -1...-"'N'. :`..5 IIPIK.'t L ''''' ; 14.4"1...12-'.1.:N. it ' .s.V-s •• !f.,x. .
In • 013 . I • 2 741 it,: . . ,N ,_.., . ,.,-- 17..vr,
! ii,) 4 .___ • .1 ' , / „..„,s9 •• Jo.. :,•••. • ,:•• t..-4%It:, „,,•,11:•-:'.. 11 - .),'W" 4-- - •••;• 1.-- • .4•.ti• ' . : :, ..-
Y-r.....• f MI •11,11M i ,7 I .- 11•- C IF- ..!••44'41,,m,''' '1•11fr' •: 1 -Iv-4,4! .,..'. 1, .4.•i••••'%, , ..- ••!•,.i.A.,:-_,;,.;•?).121 ' ,,,.-. .-.,,, rLc.1},ii .)..., if;•...‘. .,.,,
,;. "1 iii 7"tra I I Li,"=2 i c r 1..7 .1.,•, (.1....c,7 0.:::,..,iiiks.r.v.-*..•12;:.,,,zf i j•Ak.v;.-4... ,,' ,;(`Ar 6.'? • 'C'. v.41f.:14,7,,,'7.1.. .-...;.-...-,,it„,-14. t21%f:s.'.,7,..,!..,117.-A.tvA --:;_,.; ,..-,,,tt% -.• 4 i
Mill Art ;LA I, % - 4. .4 IRAINTVii.,1:40 •tr,"'..! .,%;•••, ••It . ',4/..;1'fp, •r,... ... -,-,...3..;.,._.t."-'.17.3-1..:=••:.T.,,k5f4,Itv2•z'A'I'V..,x(-(i-s v-'4-4 b 4 /
- 1 LI L 4.° ) 0 ,i 'elec•
Wr S 4 utepoit0,- ..„ft. i '''. n .i..i... --t);\---q --g_1,., • 41,,iiiti- .1 ...e./,
t, . -:,•.,,,Ilre''•"f•• • - criVE:.• ' ..t.i.:.•••"Jr-,..-%re.A .---.< ,i4
a .,, ilt. ',-r 7,„, l'.,ili-y--VL. ,,y • t ,, 4. •," -..,,_-14...,_.....,..k....•==.,‘ •..x.._,: Itii,' )14•Ni• 11(11 1 ,), .4.-di ...7‘....
_ ,-...40'1 ' r' .....: ' L, •-r.. ..'?....:•••..",,.• •••'71') V....dry 4;• .01-.. • 14 . 4. '
.• .,% i raj 4.1111.,ti ,.., .ii.• Er. ,.. 15 , ,i 40.. ,?,„.; ,.. . , .4,1 . ..t...,,,..., . .Pk_ ..e."pc?),:.cleV•••• ../.."....,. i I.•t.,......) _ .1.,"4....... , ., . if.. r
• • • 1
' 1-1, f ,r,:yikiLg;/'4..,,." ,...1,,I !.' , , • 7 ,-\ -10/•i, i V.:..,. • • , p,:ifi,.6...4 . it 4, 4...4 . . • ••• . • 071_,...,.<•...i.'K. :(1.••,,_][..t. ,b -a••• ,4: ;• /, ,:t., ., r
..4,,E,_• ......:-0•11L.111:11 11:164. 1.1 r'' 3 Az.
. i .,,, ., i , . 0... ::.i;i,..tl'Al 1.:.4,7 . - 1- 4et•••2 ' ••• •••••••., • 1." -.. ,,,i- • `C.,. 'J.'. .: i.tk ...'. -f y' ;'1.-ie• e
i
, t.. _ '.•'1 ••:"'" 17'1, ' eV- XI' ..;..1,:: •_,,,tt''%.. n.%;:r11.‘ti••-•;11; t:•!;',•!•,, .7v•-•:•''i :,-:. •- s;• :,e'l •,-• . 't• •
-..... - ••-:• • • .,.., A-. •• ',•: -.', '''.: • 1.., ,a'rlill•‘1\4.**4' 8:.-LL-4i:IX.4.-1:-';.T.'''h."•A CI-'il.• •‘-';'•-••• P. ' ,...'",c...
,-..... • >,• . - in .r,•,,,A .. ..,
Aill M. 71:M. MIN VIM 11111. 7.. 7a= 'PM 11MI 'PIM TM Tan Tan II. -AM -...1111 -.1111/ __NM 11
ri •• EN iii---Iwo-NET-Ed--Emirs mirammr-ftmrks worm*mem ish itill IMPIN+11111Pati ME*=Ink=km,
a//Y• .y�,R �^•y-•[Y� --{tir 4r(;. s4 1. 1 1.. � -•-.5;_...:-,,,;:.-;' t w r ` ! .� Y� •
y i4 _'+1•�F{•I • .••.(,•r.d-.- / •a- y.;:',r.� 1`L%ss .,•2;.5.,..,..4..-4 .S+- 'a-, .,,,:t' „4,.r•':', vf••• : ui : 1
„1 4 ^Z.' }'`fl y L'e • a SI.p' I d' y `y,l ,' • r A h y C•',11 •. •r,� � :,,; l Y •,. ,�j-.++ , � �'.�••'- i� �y''r -�-� , ''" .•(�' 0� [R/�• „� `r r �Vl.1J ,• ei.11 t ` - ' . •y -- ♦ .� 44: Y' 1�7 ' ' r' A• -riillig • 7 •'' frill,1� � '� ,�
�` " 1� •
/,.... f E; .O. * 'rY1��+''' y.- • ', :'1: ;s'`% R\a ' `e'.t' •Rt ';i 1, `La� • s+ .' 1 �}^•(]1' 'J � E_ .� 111;111i.‘.
� .# .1
•
116
� 'Ie ir. l,:-" T"7 , }J'CW`�f`i.JS +A J r�w -�1 r •' •1 `' ...,,,i, ...'.,J';'
tf+• •Y•r•{`11a f' .v,',.. :C .�• , 'Y�1 111 f M i.�C1 I 1.-•C i, ,I t U,il illi :/ I-1 .
,�i �...�! .. 'D, ▪ `• ',i'. . -.i rli.'••:,<.•';• ,.t .'1 •45 . 7 :. .;14.X, '..•-'''..,'••• •t { '&'' j; E+.I / .r• f`f." I.
j ' /p'' o•
} i ':'•r,.'-' •.r rG --r r. t,4'.11....i:•. 1. .44,..! • r 3ii`. ft '! ` 4 .'11'. 1 I I
I ' J` / , ,ry;1 r} i N'.''Y N..4-'' ' !.,•, "•k• • ,,{1 ,' .4J1 t` e s-,=,...R.• •'�h •'-.., 0 Kt.r'�` �' //!'��-..„a .•. r' :[ .V ; �1 �i 1
' • , ` 1.f '4 .. .i •i• f ','l •, `�X1 1 r ` ,r' virt(6. :t.,,, . Tr f i •' .t V1 4. r ` +� C i�, l
/� .. ,�SS ' ',�„ '�'(�,::• R 41,„.„, • • r,. !r� •��� a -,r:•• .}, J;3.0; Ix14. ,ky•r rytt x.41-, f� i LT :5�� R ' +�
/ 1- ,(f .-''', .1,. , ti•,. • .. •� _ • • • .
E ' • �•g f`' ,t it - '1 u 111 .1t '
�`%r. /1!rl 1 * 3• ',i,•.� •�.-J4' �; l p• p`t: �y _h 1 ! • ii ,. `+ ��� I ,+q �;�del1 i\ Y� 'T'iti'/f. f J'. e�1;�� .'ti+l • le);
• •::,,' i •4.t'.•, . xF w•'J.`'1') ; ... l'�d f•. �F � + S..JI,'�."" ..� : 1., ' •.1 �� ; ' ,,,.:i •:. ,/ ',J S �[ : •• IIIc. r ./ i
•
sd ,a'-p :• ' ''ti' • �'• F•� k ':.. f.,[ .. -- ..F.-0.;7',..-_,,. .�a ,� .. ;:°...- a •''S I) a,` t', may , i• •!-.-' it J : ' 't • . •• 'V
i ,,-\_•,.ti ,4.,;• ''y ,. el _a•
T ` , r •,-,...-t?.- t.r 411 s• . �[ ; .. ff.41 :•" 1• ... a •\' t • • - 'Il •
k 4,!•.- {, ' \�. ���•�,, ;.....i.:-r' i .t. ' V iss414 4. a<. 4 /''i a • r' ./ 1, `f - �r I ' -1-�-1:,,
`'1 r �: ',iR� ., T(wv; . t 1..; .rP,i.*A .•(jam '' ,. • i r ". y' - r > c [� r- ;'�11f 1. r S r.,, i _ ✓t• t i 1 ,n ...,it ▪ •ice, ;; '• •✓„ f• '' „*.z. .% -'= - :tl L7'; , . .r F •- J , 'I) ),„ar.:
!r' h., '' i�� •t!,.}n,,'s 1 ilii %, .. : . , ) 4,4,c, ' J:I` , . '), r ; " f. r I." ` r�Ri r . ti r!i ••.}..../. '�fi•. ' . , •r £,: ,`.'1...1;, ',Kr�tv' ' J �V, e.' iw, •.• •}. , �'� ", . •,C•i• 51 .�'Il 61�•,��r^� ID �•.IA.1'; '`� ` '1�l(•
'J,,' NR. > . ', 1. _p:1' ji-, .A-4 J, i+i- ia'••y,'r v...1/4,, - , ,' ^ 'I ,1. +1. . w 4= 1 �, 11t t �'` '�! ' :�r • '1��. (y
•
1� •4: - _ :q:,-/..,1st ' I•.a -r�1, ,- 1Ma.•r.w • . ; t: y ' `1, L y r + {r ••• 9 r�_.`3{I'v/�, •,V‘,,'•4:1.1...
,.? r•:• } !t • ''� / -4''.441/...
f' �. ,,..� '• .• SK ........21:411..i.
''i} :_/ '4'.., tl. _-
01•111.114_• I\ �� ,
rl► {�! :1 �1,•. . ''711 ;L:'.:-.:1'' •: AA,, r • i�% '''.7-1."..1.4.4•:..` !i 'ter•. - :�, .#.:✓ • •• 24.7t1.1131.1.6141°
1 .i, ° .
V - ' yNr , r lv'. ,, y '• A ' '� ••'• .[.,:•+ :'' ' `5'!, , ✓!'•✓V\70a, `,.%",�. , �1. r i'
:A-'.;., `r ;(..r'"-,ii.././�Y'_r Y .',,:-',..-z' tJ: •1-rr'Li r f- ✓ R e:y. r'•+ •1� ;-1-
jam,, ,
' -1,.•
*v; 4‘7.f.7:•7.-,N1..,.J _. e- :•L',,,,„,',...1-fieZi1 *; r• '•.,s;',p7 j J! , q ., •'"'- 1' •. ,,,, '• r, / ( • 1 at .i '1�1� ,1. '•'. ••••i..q4.. ", -••a �� '
'• •e s/, i' •j i., •
▪ ••,: l' '' p▪ ',.. • 'r' rz. J t• ..A i` r.';•w o. ' i .-.- .et-.'i' .• '.'4L r• 0 �.47[� �■�trIri
A t .�' i,' ?')eif .t . .• r �Y ; r , >':. r : t "� v p h�
'fes . .t....1,,,,..- ` r :' Fj • ,..
f-1[`11 ,t .-}rr.' !-, • '.1•:!"" •'•1''.14`'''' �V. y.^;lir', .' ..s.. � i,,s-�A.) " JN.1 4�.i'La t 1 �� ,'. t' re r , I'
• �.��• [ '►- + 'k. ' .' (T `"K - . "b• %52. f ti.t Qf •si .-r� 'w �l t. _:.:,a . 'I '•i Al:l: �• , _ 7 ' ,-/�U[
, .j' • .., :. '' i ' •► �'• '7,r -(+_• �•)•fir I i` r -kr; • ,. I/{ +�:.• , ''4' ••.- �.r• • Ill r o jr,• -.;• • c ,, "`�►r�r ��,c '�� s. - +.- (' r_ �' rJ. 'yJJ__..! /!» • \'�{ vd �: ',r{X777' {. ♦^ , _ C. r� i ' I �. LI. If
4 ,� , l 5 t
• flptil
•'•P - - jr ''77'3:
1
1
1
1
'. IV.
10 YEAR DEVELOPMENT STUDY
A. 10 YEAR ULTIMATE STUDY
B. FLOWS TRIBUTARY TO
CAMINO SAN DIMAS
1
1
1
1�
1
1
1
1
1
y
1
�. Riverside County Rational Hydrology Program
' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 12/19/01
TRACT 29734 - 10 YEAR ULTIMATE CONDITION
1 FN: ROLAND HYDROLOGY/734Q10
DATE: 12-17-01
********* Hydrology Study Control Information **********
11
RANPAC Engineering Corporation, Temecula, CA - S/N 560
' Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10.00 Antecedent Moisture Condition = 2
' Standard intensity-duration curves data (Plate D-4 .1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr. )
10 year storm 60 minute intensity = 0.880 (in./hr. )
100 year storm 10 minute intensity = 3.480 (in./hr. )
100 year storm 60 minute intensity = 1.300 (in. /hr. )
Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in./hr. )
Slope of intensity duration curve = 0.5500
111
1
1 Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 132.000 (Ft. )
Top (of initial area) elevation = 1230.200 (Ft. )
Bottom (of initial area) elevation = 1228.210 (Ft. )
Difference in elevation = 1. 990 (Ft. )
Slope = 0.01508 s (percent)= 1.51
TC = k(0.390) *[ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 6.363 min.
Rainfall intensity = 3.023(In/Hr) for a 10.0 year storm
1 SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.784
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
' Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
1
1 T� ,9237 ,5
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.379 (CFS)
Total initial stream area = 0.160 (Ac. )
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' Process from Point/Station 2.000. to Point/Station 3.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1228.210 (Ft. )
End of street segment elevation = 1197.510 (Ft. )
Length of street segment = 345.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000(Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
' Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1.660 (CFS)
Depth of flow = 0.217 (Ft. ) , Average velocity = 5.009(Ft/s)
Streetfiow hydraulics at midpoint of street travel:
Halfstreet flow width = 4 .524 (Ft. )
Flow velocity = 5.01 (Ft/s)
Travel time = 1.15 min. TC = 7.51 min.
' Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.776
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.760 (In/Hr) for a 10.0 year storm
Subarea runoff = 2.313 (CFS) for 1.080 (Ac. )
Total runoff = 2.693 (CFS) Total area = 1.240 (Ac. )
Street flow at end of street = Total (2. 693 (CFS)
Half street flow at end of street = 2.693 (CFS)
Depth of flow = 0.248 (Ft. ) , Average velocity = 5. 413 (Ft/s)
1 Flow width (from curb towards crown)= 6.089(Ft. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 7.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1197.510 (Ft. )
End of street segment elevation = 1195.730 (Ft. )
Length of street segment = 92.000 (Ft. )
11
I
e4
Iww
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
' Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.801 (CFS)
Depth of flow = 0.307 (Ft. ) , Average velocity = 2. 982 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 9.015 (Ft. )
Flow velocity = 2.98 (Ft/s)
' Travel time = 0.51 min. TC = 8.02 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.773
Decimal fraction soil group A = 0. 000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
' Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2. 661 (In/Hr) for a 10.0 year storm Subarea runoff = 0.206 (CFS) for 0.100 (Ac. )
Total runoff =
2.898 (CFS) Total area = 1.340 (Ac. )
Street flow at end of street = 2.898 (CFS)
' Half street flow at end of street = 2.898 (CFS)
Depth of flow = 0.310 (Ft. ) , Average velocity = 3.005 (Ft/s)
Flow width (from curb towards crown)= 9.153 (Ft. )
Process from Point/Station 3.000 to Point/Station 7.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
' Stream flow area = 1.340 (Ac. )
Runoff from this stream = 2.898 (CFS)
Time of concentration = 8.02 min.
Rainfall intensity = 2.661 (In/Hr)
Program is now starting with Main Stream No. 2
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4 .000 to Point/Station 7.000
**** INITIAL AREA EVALUATION ****
' Initial area flow distance = 173.000 (Ft. )
Top (of initial area) elevation = 1197.920(Ft. )
Bottom (of initial area) elevation = 1195.730 (Ft. )
I
/7
II
I Difference in elevation = 2.190 (Ft. )
Slope = 0.01266 s (percent)= 1 .27
TC = k(0. 390)* [ (length^3) / (elevation change) ] ^0.2
' Initial area time of concentration = 7.342 min.
Rainfall intensity = 2.794 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.777
' Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
ll
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.348 (CFS)
Total initial stream area = 0.160 (Ac. )
11
Pervious area fraction = 0.500
Process from Point/Station 4.000 to Point/Station 7.000
**** CONFLUENCE OF MAIN STREAMS ****
IIThe following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.160 (Ac. )
' Runoff from this stream = 0.348 (CFS)
Time of concentration = 7 .34 min.
Rainfall intensity = 2.794 (In/Hr)
IIProgram is now starting with Main Stream No. 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 Process from Point/Station 5.000 to Point/Station 6.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 170.000 (Ft. )
II Top (of initial area) elevation = 1230.000 (Ft. )
Bottom (of initial area) elevation = 1228.000 (Ft. )
Difference in elevation = 2.000 (Ft. )
II Slope = 0.01176 s (percent)= 1.18
TC = k(0.390) *[ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 7.398 min.
Rainfall intensity = 2.783 (In/Hr) for a 10.0 year storm
1 SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.777
Decimal fraction soil group A = 0.000
II Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0. 000
Decimal fraction soil group D = 0. 000
RI index for soil (AMC 2) = 56. 00
II Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.519(CFS)
Total initial stream area = 0.240 (Ac. )
IIPervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
II
l D
II
I/ Process from Point/Station 6.000 to Point/Station 7.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
' Top of street segment elevation = 1228.000 (Ft. )
End of street segment elevation = 1195.730 (Ft. )
Length of street segment = 295.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
' Width of half street (curb to crown) = 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0. 020
Slope from grade break to crown (v/hz) = 0.020
II
Street flow is on [1] side(s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
I Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
II
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.108 (CFS)
Depth of flow = 0.226 (Ft. ) , Average velocity = -5.658 (Ft/s)
1 Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 4 . 959(Ft. )
Flow velocity = 5.66(Ft/s)
Travel time = 0.87 min. TC = 8.27 min.
I Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0. 771
' Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
I RI index for soil (AMC 2) = 56.00
Pervious area fraction = -0.500; Impervious fraction = 0.500
Rainfall intensity = 2. 618 (In/Hr) for a 10.0 year storm
Subarea runoff = 2.968 (CFS) for 1.470 (Ac. )
II
Total runoff = 3. 487 (CFS) Total area = 1.710 (Ac. )
Street flow at end of street = Total (CFS)
Half street flow at end of street = 3.487 (CFS)
II Depth of flow = 0.259(Ft. ) , Average velocity = 6.183 (Ft/s)
Flow width (from curb towards crown)= 6.613 (Ft. )
Process from Point/Station 6.000 to Point/Station 7.000
**** CONFLUENCE OF MAIN STREAMS ****
II The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 1.710 (Ac. )
' Runoff from this stream = 3.487 (CFS)
Time of concentration = 8.27 min.
Rainfall intensity = 2.618 (In/Hr)
li Summary of stream data:
IIIStream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
II
I
'9
II
1
1 2.898 8.02 2. 661
' 2
3 0.348 7 .34 2.794
3.487 - 8.27 2. 618
Largest stream flow has longer time .
concentration
Qp = 3.487 + sum of
' Qb Ia/Ib
2.698 * 0. 984 = 2.851
Qb Ia/Ib
' 0.348 * 0. 937 = 0.326
Qp = 6. 664
Total of 3 main streams to confluence:
Flow rates before confluence point:
II 2.898 0.348 3.487
Area of streams before confluence:
1.340 0.160 1.710
II
Results of confluence:
I Total flow rate = 6.664 (CFS)
Time of concentration = 8.267 min.
Effective stream area after confluence = 3.210 (Ac. )
Process from Point/Station 7.000 to Point/Station 10.000
I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1195.730 (Ft. )
End of street segment elevation = 1192.800 (Ft. )
II Length of street segment = 162.000(Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30. 000 (Ft. )
' Distance from crown to crossfall grade break — 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
II Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
II Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
II Estimated mean flow rate at midpoint of street = 6.840 (CFS)
Depth of flow = 0.394 (Ft. ) , Average velocity = 3.574 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 13.368 (Ft. )
' Flow velocity = 3.57 (Ft/s)
Travel time = 0.76 min. TC = 9.02 min.
Adding area flow to street
II SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.767
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
1
020
II
II Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
II Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.495 (In/Hr) for a 10.0 year storm
Subarea runoff = 0.325 (CFS) for 0.170 (Ac. )
Total runoff = 6. 989 (CFS) Total area = 3.380 (Ac. )
II
Street flow at end of street = 6.989 (CFS)
Half street flow at end of street = 6. 989 (CFS)
Depth of flow = 0.396 (Ft. ) , Average velocity = 3.593(Ft/s)
' Flow width (from curb towards crown)= 13.486(Ft. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
' Process from Point/Station 7 .000 to Point/Station 10.000.
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
II
In Main Stream number: 1
Stream flow area = 3.380 (Ac. )
Runoff from this stream = 6. 989 (CFS)
1 Time of concentration = 9.02 min.
Rainfall intensity = 2.495 (In/Hr)
Program is now starting with Main Stream No. 2
Process from Point/Station 8.000 to Point/Station 9.000
' **** INITIAL AREA EVALUATION ****
Initial area flow distance = 170.000 (Ft. )
Top (of initial area) elevation = 1217.000 (Ft. )
' Bottom (of initial area) elevation = 1214 . 330 (Ft. )
Difference in elevation = 2. 670 (Ft. )
Slope = 0.01571 s (percent)= 1.57
TC = k(0.390) *[ (length^3) /(elevation change) ]^0.2
I
Initial area time of concentration = 6.983 min.
Rainfall intensity = 2.872 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
1 Runoff Coefficient = 0.780
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
II Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
' Initial subarea runoff = 0.739 (CFS)
Total initial stream area = 0.330 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 9.000 to Point/Station 10.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
I
Top of street segment elevation = 1214.330 (Ft. )
End of street segment elevation = 1192.800 (Ft. )
I
I
2/
II
II Length of street segment = 445.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
' Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [11 side (s) of the street
II Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
' Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
II Estimated mean flow rate at midpoint of street = 2.385 (CFS)
Depth of flow = 0.261 (Ft. ) , Average velocity = 4 .135 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.710 (Ft. )
' Flow velocity = 4.14 (Ft/s)
Travel time = 1.79 min. TC = 8.78 min.
Adding area flow to street
II SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.768
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
' Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
ll Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity =
2.533 (In/Hr) for a 10.0 year storm
Subarea runoff = 2.861 (CFS) for 1.470 (Ac. )
Total runoff = 3. 600 (CFS) Total area = 1 .800(Ac. )
' Street flow at end of street = 3. 600 (CFS)
Half street flow at end of street = 3.600 (CFS)
Depth of flow = 0.291 (Ft. ) , Average velocity = 4 .505 (Ft/s)
' Flow width (from curb towards crown)= 6.200(Ft. )
' Process from Point/Station *9.000 to Point/Station 10.000
**** CONFLUENCE OF MAIN STREAMS ***
The following data inside Main Stream is listed:
' In Main Stream number: 2
Stream flow area = 1.800 (Ac. )
Runoff from this stream = 3.600 (CFS)
II Time of concentration = 8.78 min.
Rainfall intensity = 2.533 (In/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
' 1 6.989 9.02 2.495
2 3.600 8 .78 2.533
Largest stream flow has longer time of concentration
II
II
01.
II QP = 6.989 + sum of
Qb Ia/Ib
3. 600 * 0.985 = 3.546
IIQP = 10.535
Total of 2 main streams to confluence:
Flow rates before confluence point:
6.989 3.600
Area of streams before confluence:
II
3.380 1.800
IIResults of confluence:
Total flow rate = 10.535 (CFS)
Time of concentration = 9.023 min.II
Effective stream area after confluence =
5. 180 (Ac. )
Check of Previous Confluence Operations
IIOf all Main streams
' Total of 5 streams to confluence:
Flow rates before and maximum after confluence point:
No. Flow Rate TC I Max Confluence
II 1 2.898 8.780 2.532 10.540
2 0.348 8.097 2.648 9.763
3 3.487 9.023 2.495 10.541
4 3.600 8.776 2.533 10.538
5 0.325 9.023 2.495 10.541
NOTE: Last stream is area added between confluences
IResults of confluence check:
Total flow rate = 10.541 (CFS)
Time of concentration = 9.023 min.
II NOTE:
Maximum flow rate derived from previous confluences = 10.54 (CFS)
This exceeds normal confluence rate of 10.53 (CFS)
IITherefore, largest confluence flow rate and TC = 9.02 Min. is used.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 Process from Point/Station 10.000 to Point/Station 14 .000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
' Upstream point/station elevation = 1186. 98 (Ft. )
Downstream point/station elevation = 1183.00 (Ft. )
Pipe length = 69.74 (Ft. ) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 10.541 (CFS)
' Nearest computed pipe diameter = 15.00(In. )
Calculated individual pipe flow 10.541 (CFS)
Normal flow depth in pipe = 9.09(In. )
Flow top width inside pipe = 14 . 66(In. )
Critical depth could not be calculated.
Pipe flow velocity = 13.53 (Ft/s)
Travel time through pipe = 0.09 min.
II
' Time of concentration (TC) = 9.11 min.
Process from Point/Station 10.000 to Point/Station 14 .000
**** CONFLUENCE OF MAIN STREAMS ****
' The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 5.180 (Ac. )
' Runoff from this stream = 10.541 (CFS)
Time of concentration = 9.11 min.
Rainfall intensity = 2.482 (In/Hr) .
Program is now starting with Main Stream No. 2
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
II **** INITIAL AREA EVALUATION ****
Initial area flow distance = 115.000 (Ft. )
' Top (of initial area) elevation = 1201.000(Ft. )
Bottom (of initial area) elevation = 1197.920 (Ft. )
Difference in elevation = 3.080 (Ft. )
Slope = 0.02678 s (percent)= 2.68 •
II TC = k(0.390) *[ (length^3) /(elevation change) ] ^0.2
Initial area time of concentration = 5.368 min.
Rainfall intensity = 3.320 (In/Hr) for a 10.0 year storm
' SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.792
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
' Decimal fraction soil group C = 0.000
Decimal fraction soil. group D = 0.000
RI index for soil (AMC 2) = 56.00
' Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.399 (CFS)
Total initial stream area = 0.150 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 12.000 to Point/Station 14 .000
II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1197.920 (Ft. )
' End of street segment elevation = 1192.800 (Ft. )
Length of street segment = 382.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
1 Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
' Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000(Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
II
II
a
II
' Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated meanflow rate at midpoint of street = 2.038 (CFS)
Depth of flow = 0.296 (Ft. ) , Average velocity = 2.409(Ft/s)
Streetflow hydraulics at midpoint of street travel:
II Halfstreet flow width = 8.480 (Ft. )
Flow velocity = 2.41 (Ft/s)
Travel time = 2. 64 min. TC = 8.01 min.
Adding area flow to street
II SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.773
Decimal fraction soil group A = 0.000
I Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
' Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2. 664 (In/Hr) for a 10.0 year storm
Subarea runoff = 2.574 (CFS) for 1.250 (Ac. )
' Total runoff = 2. 968 (CFS) Total area = 1.900 (Ac. )
Street flow at end of street = 2. 968 (CFS)
Half street flow at end of street = 2.968 (CFS)
Depth of flow = 0.327 (Ft. ) , Average velocity = 2.621 (Ft/s)
' Flow width (from curb towards crown)= 10.028 (Ft. )
II Process from Point/Station 12.000 to Point/Station 14 .000
**** CONFLUENCE OF MAIN STREAMS ****
II The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.400 (Ac. )
Runoff from this stream = 2.968 (CFS)
II
Time of concentration = 8.01 min.
Rainfall intensity = 2. 664 (In/Hr)
Program is now starting with Main Stream No. 3
Process from Point/Station 13.00D to Point/Station 9.000
' **** INITIAL AREA EVALUATION ****
Initial area flow distance = 104 .000 (Ft. )
Top (of initial area) elevation = 1217.000 (Ft. )
Bottom (of initial area) elevation = 1214 .330 (Ft. )
. Difference in elevation = 2.670 (Ft. )
Slope = 0.02567 s (percent)= 2.57
' TC = k(0.390) * [ (length^3) / (elevation change) )^0.2
Initial area time of concentration = 5.200 min.
Rainfall intensity = 3.378 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
I/
Runoff Coefficient = 0.793
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
II
I
25
' Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.751 (CFS)
Total initial stream area = 0.280 (Ac. )
Pervious area fraction = 0.500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 14.000
' **** STREET FLOW TRAVEL TIME + SUBAREA. FLOW ADDITION ****
Top of street segment elevation = 1214 .330 (Ft. )
' End of street segment elevation = 1192.800 (Ft. )
Length of street segment = 490.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
' Width of half street (curb to crown) = 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
' Street flow is on (1] side(s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
' Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = ' .3.766(CFS)
Depth of flow = 0.298 (Ft. ) , Average velocity = 4 .382 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
' Halfstreet flow width = 8.560 (Ft. )
Flow velocity = 4 .38 (Ft/s)
Travel time = 1.86 min. TC = 7.06 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.779
Decimal fraction soil group A = 0.000
' Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
' Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.854 (In/Hr) for a 10.0 year storm
Subarea runoff = 5.004 (CFS) for 2.250 (Ac. )
Total runoff = 5.755 (CFS) Total area = 2.530 (Ac. )
Street flow at end of street = 5.755 (CFS)
Half street flow at end of street = 5.755 (CFS)
Depth of flow = 0.333 (Ft. ) , Average velocity = 4.821 (Ft/s)
Flow width (from curb towards crown)= 10.330 (Ft. )
Process from Point/Station 9.000 to Point Station 14 .000
**** CONFLUENCE OF MAIN STREAMS ****
1
II
I The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 2.530 (Ac. )
I Runoff from this stream = 5.755 (CFS)
Time of concentration = 7. 06 min.
Rainfall intensity = 2.854 (In/Hr)
Summary of stream data:
' Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 10.541 9.11 . 2.482 -
2 2.968 8.01 2.664
I 3 5.755 7.06 2.854
Largest stream flow has longer time of concentration
Qp = 10.541 + sum of
Qb Ia/Ib
II
2.968 * 0. 932 = 2.765
Qb Ia/Ib
5.755 * 0.869 = 5.004
' Qp = 18.310
Total of 3 main streams to confluence:
Flow rates before confluence point:
10. 541 2. 968 5.755
Area of streams before confluence:
5.180 1.400 2.530
II
Results of confluence:
Total flow rate = 18 .310 (CFS)
II Time of concentration = 9.109 min.
Effective stream area after confluence =
9. 110 (Ac. )
' Check of Previous Confluence Operations
Of all Main streams
' Total of 7 streams to confluence:
Flow rates before and maximum after confluence point:
No. Flow Rate TC I Max Confluence
ll
1 2.898 8.866 2.519 18.426
2 0.348 8.183 2. 632 18.012
3 3.487 9.109 2.482 18.311
' 4 3. 600 - 8.862 2.519 18. 426
5 0.325 9.109 2.482 18.311
6 2. 968 8.010 2. 664 17.903
7 5.755 7.063 2. 854 16.807
Results of confluence check:
' Total flow rate = 18.426 (CFS)
Time of concentration 8.866 min.
NOTE:
Maximum flow rate derived from previous confluences = 18. 43(CFS)
II
II
_ fl
This exceeds normal confluence rate of 18.31 (CFS)
Therefore, largest confluence flow rate and TC = 8.87 Min. is used.
Process from Point/Station 14 .000 to Point/Station 15.000
**** PIPEFLOW TRAVEL TIME (Programestimated size) ****
' Upstream point/station elevation = 1183.00 (Ft. )
Downstream point/station elevation = 1160. 96 (Ft. )
Pipe length = 250.73 (Ft. ) Mannings N = 0.013
No. of pipes = 1 Required pipe flow = ' 18.426(CFS)
Nearest computed pipe diameter = 15.00 (In. )
Calculated individual pipe flow = 18.426 (CFS)
I
Normal flow depth in pipe = 11.81 (In. ).
Flow top width inside pipe -= 12.27 (In. )
Critical depth could not be calculated.
. Pipe flow velocity = 17.77 (Ft/s)
Travel time through pipe = 0.24 min.
Time of concentration (TC) = 9.10 min.
End of computations, total study area = 9.11 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
Area averaged RI index number = 56.0
1 •
•
1
1
1
age
1
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 . Version 3.3
Rational Hydrology Study Date: 12/19/01
TRACT 29734- FLOWS TRIBUTARY TO CAMINO SAN DIMAS
' 10 YEAR - ULTIMATE CONDITION
FN: CAM10
12-17-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
' Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' Storm event (year) = 10.00 Antecedent Moisture Condition = 2
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
' 10 year storm 10 minute intensity = 2.360 (in. /hr. )
10 year storm 60 minute intensity = 0.880 (in./hr. )
100 year storm 10 minute intensity = 3.480 (in. /hr. )
' 100 year storm 60 minute intensity = 1.300 (in./hr. )
Storm event year = 10.0
Calculated rainfall intensity data:
' 1 hour intensity = 0.880 (in./hr. )
Slope of intensity duration curve = 0.5500
1
Process from Point/Station 16.000 to Point/Station 17.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 180.000 (Ft. )
Top (of initial area) elevation = 1231.000 (Ft. )
Bottom (of initial area) elevation = 1226.000 (Ft. )
Difference in elevation = 3.000 (Ft. )
Slope = 0.01667 s (percent)= 1. 67
TC = k(0.390) * ( (length^3) /(elevation change) ] ^0.2
Initial area time of concentration = 7.060 min.
' Rainfall intensity = 2.855 (In/Hr) for a 10.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.779
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
ai
I
I RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.556(CFS)
I Total initial stream area = 0.250 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 17.000 to Point/Station 18.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
' Top of street segment elevation = 1228.000 (Ft. )
End of street segment elevation = 1214.940 (Ft. )
Length of street segment = 320.000(Ft. )
I Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 18.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
I Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
I Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
I Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1.746(CFS)
Depth of flow = 0.201 (Ft. ) , Average velocity = 3.316 (Ft/s)
II
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 3.697 (Ft. )
Flow velocity = 3.32 (Ft/s)
' Travel time = 1. 61 min. TC = 8. 67 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.769
' Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
I Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 2.550 (In/Hr) for a 10.0 year storm
I Subarea runoff = 2.098 (CFS) for 1.070 (Ac. )
Total runoff = 2. 655 (CFS) Total area = 1.320 (Ac. )
Street flow at end of street = 2. 655 (CFS)
' Half street flow at end of street = 1.327 (CFS)
Depth of flow = 0.226 (Ft. ) , Average velocity = 3.472 (Ft/s)
Flow width (from curb towards crown)= 5.056 (Ft. )
End of computations, total study area = 1.32 (Ac. )
I The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
I
Area averaged RI index number = 56.0
II
I
30
1
1
1
v.
' 100 YEAR DEVELOPMENT STUDY
A. 100 YEAR ULTIMATE STUDY
B. FLOWS TRIBUTARY TO CAMINO
' SAN DIMAS
1
1
1
1
--pec;
fc 9739
3!
PI
' Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 12/19/01
TRACT 29734 - 100 YEAR ULTIMATE CONDITION
' FN: ROLAND HYDROLOGY/734ULT
DATE: 12-17-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
11 1978 hydrology manual
Storm event (year) = 100.00 Antecedent Moisture Condition = 3
Standard intensity-duration, curves data (Plate D-4 .1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in. /hr. )
' 10 year storm 60 minute intensity = 0.880 (in./hr. )
100 year storm 10 minute intensity = 3.480 (in./hr. )
100 year storm 60 minute intensity = 1.300 (in. /hr. )
' Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in. /hr. )
Slope of intensity duration curve = 0. 5500
' Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 132. 000 (Ft. )
11 Top (of initial area) elevation = 1230.200 (Ft. )
Bottom (of initial area) elevation = 1228.210 (Ft. )
Difference in elevation = 1 . 990 (Ft. )
Slope = 0.01508 s (percent)= 1.51
TC = k(0.390) *[ (length^3) /(elevation change) ] ^0.2
Initial area time of concentration = 6.363 min.
Rainfall intensity = 4 .466(In/Hr) for a 100.0 year storm
' SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.859
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
I
1
my
1
11 Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0. 614 (CFS)
Total initial stream area = 0.160 (Ac. )
Pervious area fraction = 0.500
1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 3.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1228.210 (Ft. )
End of street segment elevation = 1197.510 (Ft. )
Length of street segment 345.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2. 685 (CFS)
Depth of flow = 0.248 (Ft. ) , Average velocity = 5.410 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
IFHalfstreet flow width = 6.080(Ft. )
Flow velocity = 5.41 (Ft/s)
Travel time = 1.06 min. TC = 7.43 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
' Runoff Coefficient = 0. 856
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74.80
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 4.102 (In/Hr) for a 100.0 year storm
Subarea runoff = 3.791 (CFS) for 1.080 (Ac. )
i Total runoff = 4 .404 (CFS) Total area = 1.240 (Ac. )
Street flow at end of street = Total (CFS)
Half street flow at end of street = 4 .404 (CFS)
Depth of flow = 0.283(Ft. ) , Average velocity = 5. 976(Ft/s)
Flow width (from curb towards crown)= 7.812 (Ft. )
Process from Point/Station 3.000 to Point/Station 7.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
' Top of street segment elevation = 1197 .510 (Ft. )
End of street segment elevation = 1195.730 (Ft. )
Length of street segment = 92.000(Ft. )
I
I
13
1
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) 30.000 (Ft. )
Distance from crown to cross all grade break = 16.000 (Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
�' Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4 .582 (CFS)
Depth of flow = 0.350 (Ft. ) , Average velocity = 3.337 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.165 (Ft. )
Flow velocity = 3. 34 (Ft/s)
11 Travel time = 0.46 min. TC = 7.88 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.854
11
Decimal fraction soil group A = 0. 000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3. 969 (In/Hr) for a 100.0 year storm
Subarea runoff = 0.339 (CFS) for 0.100 (Ac. )
Total runoff = 4 .743 (CFS) Total area = 1.340 (Ac. )
Street flow at end of street = 4 .743 (CFS)
Half street flow at end of street = 4 .743 (CFS)
Depth of flow = 0.353 (Ft. ) , Average velocity = 3.364 (Ft/s)
Flow width (from curb towards crown)= 11.329 (Ft. )
11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 7.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
' Stream flow area = 1.340 (Ac. )
Runoff from this stream = 4.743 (CFS)
Time of concentration = 7 .88 min.
Rainfall intensity = 3. 969(In/Hr)
Program is now starting with Main Stream No. 2
It
Process from Point/Station 4 .000 to Point/Station 7.000
**** INITIAL AREA EVALUATION ****
_ Initial area flow distance = 173.000 (Ft. )
Top (of initial area) elevation = 1197.920 (Ft. )
Bottom (of initial area) elevation = 1195.730(Ft. )
I
34
it
Difference in elevation = 2.190 (Ft. )
Slope = 0.01266 s (percent)= 1.27
TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 7.342 min.
Rainfall intensity = 4 . 128 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.856
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.565 (CFS)
Total initial stream area = 0.160 (Ac. )
Pervious area fraction = 0. 500
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4 .000 to Point/Station 7.000
**** CONFLUENCE OF MAIN STREAMS ****
' The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 0.160 (Ac. )
I Runoff from this stream = 0.565 (CFS)
Time of concentration = 7.34 min.
Rainfall intensity = 4 . 128 (In/Hr)
tProgram is now starting with Main Stream No. 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
It Process from Point/Station5.000 to Point Station 6.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 170. 000 (Ft. )
Top (of initial area) elevation = 1230.000 (Ft. )
Bottom (of initial area) elevation = 1228.000 (Ft. )
Difference in elevation = 2.000 (Ft. )
Slope = 0.01176 s (percent)= 1. 18
TC = k(0.390) * [ (length^3) /(elevation change) ] ^0.2
Initial area time of concentration = 7.398 min.
Rainfall intensity = 4 .111 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.856
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
If
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
• RI index for soil (AMC 3) = 74 .80
it Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 0.844 (CFS)
Total initial stream area = 0.240 (Ac. )
Pervious area fraction = 0.500
It
IF
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
35
I
Process from Point/Station 6.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 7 .000
Top of street segment elevation = 1228 .000 (Ft. )
End of street segment elevation = 1195.730 (Ft. )
Length of street segment = 295.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
.1111 Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0. 020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
I' Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning' s N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
1Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 3.429 (CFS)
Depth of flow = 0.258 (Ft. ) , Average velocity = 6.163 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.556(Ft. )
Flow velocity = 6.16(Ft/s)
Travel time = 0.80 min. TC = 8.20 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0. 853
Decimal fraction soil group A = 0.000
� Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
�I RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0. 500; Impervious fraction = 0.500
-'" Rainfall intensity = 3.885 (In/Hr) for a 100.0 year storm
Q Subarea runoff = 4 .874 (CFS) for 1.470 (Ac. )
■�' Total runoff = 5.718 (CFS) Total area = 1.710 (Ac. )
�I Street flow at end of street = 5.718 (CFS)
Half street flow at end of street = 5.718 (CFS)
Depth of flow = 0.295 (Ft. ) , Average velocity = 6.856 (Ft/s)
Flow width (from curb towards crown)= 8.411 (Ft. )
Process from Point/Station 6.000 to Point/Station 7.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 3
Stream flow area = 1.710 (Ac. )
Runoff from this stream = 5.718 (CFS)
r Time of concentration = 8.20 min.
Rainfall intensity = 3.885 (In/Hr)
Summary of stream data:
I! Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
I
•
L
3�
/
1 4 .743 7.88 3. 969
1 2
3 0.565 7 .34 4 .128
5.718 . 8.20 3.885
Largest stream flow has longer time of concentration
Qp = 5.716 + sum of
Qb Ia/Ib
4 .743 * 0.979 = 4 . 644
Qb Ia/Ib
0.565 * 0.941 = 0.532
�t Qp = 10.894
�i Total of 3 main streams to confluence:
Flow rates before confluence point:
4.743 0.565 5.718
Area of streams before confluence:
1.340 0.160 1.710
Results of confluence:
Total flow rate = 10.894 (CFS) -
11 Time of concentration = 8.196 min.
Effective stream area after confluence 3.210 (Ac. )
11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 10.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
11 Top of street segment elevation = 1195.730 (Ft. )
End of street segment elevation = 1192.800 (Ft. )
Length of street segment = 162.000 (Ft. )
11Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000(Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
it Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
11 Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft.)
Gutter hike from flowline = 2.000 (In. )
' Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 11. 182 (CFS)
Depth of flow = 0.452 (Ft. ) , Average velocity = 4 .023(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 16.287 (Ft. )
Flow velocity = 4 .02 (Ft/s)
�( Travel time = 0.67 min. TC = 8.87 min.
1! Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
� Runoff Coefficient = 0.852
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
i
37
ma
r
Decimal fraction soil group C = 0.000
It Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0.500; Impervious fraction = 0.500
il
Rainfall intensity = 3.721 (In/Hr) for a 100.0 year storm
11
Subarea runoff = 0.539(CFS) for 0.170 (Ac. )
Total runoff = 11.433 (CFS) Total area = 3.380 (Ac. )
II Street flow at end of street = 11.433(CFS)
Half street flow at end of street = 11.433 (CFS)
Depth of flow = 0.455 (Ft. ) , Average velocity = 4 .045 (Ft/s)
Flow width (from curb towards crown)= 16.431 (Ft. )
L
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
II Process from Point/Station 7.000 to Point/Station 10.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 3.380 (Ac. )
Runoff from this stream = 11.433 (CFS)
Time of concentration = 8.87 min.
1i Rainfall intensity = 3.721 (In/Hr)
Program is now starting with Main Stream No. 2
I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 8.000 to Point/Station 9.000
**** INITIAL AREA EVALUATION ****
/1 Initial area flow distance = 170.000 (Ft. )
Top (of initial area) elevation = 1217.000 (Ft. )
Bottom (of initial area) elevation = 1214.330 (Ft. )
11 Difference in elevation = 2.670 (Ft. )
Slope = 0.01571 s (percent)= 1.57
TC = k(0.390) *[ (length^3) / (elevation change) ]^0.2
itInitial area time of concentration = 6.983 min.
Rainfall intensity = 4 .243 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.857
I Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
I/ Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 1.200 (CFS)
II Total initial stream area = 0.330 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 9.000 to Point/Station 10.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
,I Top of street segment elevation = 1214.330 (Ft. )
End of street segment elevation = 1192.800 (Ft. )
1'',
I
3s .
vs
1
Length of street segment = 445.000 (Ft. )
t, Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
1/1
Slope from gutter to grade break (v/hz) = 0. 020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
It
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning' s N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0. 0150
Estimated mean flow rate at midpoint of street = 3.873(CFS)
Depth of flow = 0.296(Ft. ) , Average velocity = 4 .578 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.481 (Ft. )
�. Flow velocity = 4 .58 (Ft/s)
Travel time = 1.62 min. TC = 8. 60 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0. 852
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0.500; Impervious fraction = 0.500
', Rainfall intensity = 3.783 (In/Hr) for a 100.0 year storm
Subarea runoff = 4 .740 (CFS) for 1. 470 (Ac. )
Total runoff = 5. 940 (CFS) Total area = 1.800(Ac. )
' Street flow at end of street = 5.940 (CFS)
Half street flow at end of street = 5. 940 (CFS)
Depth of flow = 0.332 (Ft. ) , Average velocity = 5.040 (Ft/s)
Flow width (from curb towards crown)= 10.256(Ft. )
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 9.000 to Point/Station 10.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.800(Ac. )
Runoff from this stream = 5.940 (CFS)
Time of concentration = 8.60 min.
IF Rainfall intensity = 3.783 (In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
1 11.433 8.67 3.721
111 2 5.940 8.60 3.783
Largest stream flow has longer time of concentration
I
a
I
QP = .433 + sum of
II
Qb11Ia/Ib
5. 940 * 0. 984 = 5.842
QP = 17.274
! Total of 2 main streams to confluence:
Flow rates before confluence point:
II11.433 5.940
Area of streams before confluence:
3.380 1.800
IIResults of confluence:
Total flow rate = 17.274 (CFS)
i
Time of concentration = 8. 867 min.
Effective stream area after confluence =
5.180 (Ac. )
Check of Previous Confluence Operations
Of all Main streams
II
Total of 5 streams to confluence:
IIFlow rates before and maximum after confluence point:
No. Flow Rate TC I Max Confluence
' 1 4 .743 8.556 3.795 17.233
2 0.565 8.013 3. 934 16.194
3 5.718 8.867 3.721 17.284
4 5.940 8 . 603 3.783 17 .283
'I5 0.539 8.867 3.721 17.284
NOTE: Last stream is area added between confluences
1 Results of confluence check:
Total flow rate = 17.284 (CFS)
Time of concentration = 8 .867 min.
NOTE:
II Maximum flow rate derived from previous confluences = 17.28 (CFS)
This exceeds normal confluence rate of 17.27 (CFS)
11Therefore, largest confluence flow rate and TC = 8.87 Min. is used.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
jj Process from Point/Station 10.000 to Point/Station 14 .000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1186. 98 (Ft. )
1 Downstream point/station elevation = 1183.00 (Ft. )
Pipe length = 69.74 (Ft. ) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 17.284 (CFS)
II Nearest computed pipe diameter = 18.00 (In. )
Calculated individual pipe flow 17.284 (CFS)
Normal flow depth in pipe = 10.98 (In. )
Flow top width inside pipe = 17 .56(In. )
II Critical depth could not be calculated.
Pipe flow velocity = 15.31 (Ft/s)
Travel time through pipe = 0.08 min.
II
11
S/D
1
Time of concentration (TC) = 8.94 min.
11
11
Process from Point/Station 10.000 to Point/Station 14 .000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
11
Stream flow area = 5.180 (Ac. )
Runoff from this stream = 17.284 (CFS)
11
Time of concentration = 8. 94 min.
_ Rainfall intensity = 3.703 (In/Hr)
Program is now starting with Main Stream No. 2
11
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
11Process from Point/Station 11.000 to Point/Station 12.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 115.000 (Ft. )
Top (of initial area) elevation = 1201.000 (Ft. )
Bottom (of initial area) elevation = 1197.920 (Ft. )
Difference in elevation = 3.060 (Ft. )
Slope = 0.02678 s (percent)= 2. 68
' TC = k(0.390) *[ (length^3) / (elevation change) ]^0.2
Initial area time of concentration = 5.368 min.
Rainfall intensity = 4.904 (In/Hr) for a 100.0 year storm
11SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.862
Decimal fraction soil group A = 0.000
Decimal fraction soil group = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0.500; Impervious fraction = 0.500
' Initial subarea runoff = 0.634 (CFS)
Total initial stream area = 0. 150 (Ac. )
Pervious area fraction = 0.500
Process from Point/Station 12.000 to Point/Station 14 .000
111 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1197.920 (Ft. )
1/ End of street segment elevation = 1192.800(Ft. )
Length of street segment = 382.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
I/ Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000(Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
I
r
4/
II
Ai
Gutter hike from flowline = 2.000(In. )
It Manning's N in gutter = 0.0150 •
Manning's N from gutter to grade break = 0.0150
11Manning's N from grade break to crown = 0.0150
Estimated mean .flow rate at midpoint of street = . 3.277 (CFS)
Depth of flow = 0.336 (Ft. ) , Average velocity = ' 2.681 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.466 (Ft. )
Flow velocity = 2. 68 (Ft/s)
II
Travel time = 2.37 min. TC = 7.74 min.
Adding area flow to street .
11
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.855 .
Decimal fraction soil group A = 0.000
R Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000 '
RI index for soil (AMC 3) = 74 .80
II
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 4 .009 (In/Hr) for a 100.0 year storm
Subarea runoff = 4 .283 (CFS) for 1.250 (Ac. )
' Total runoff = 4. 917 (CFS) Total area = 1.400 (Ac. )
Street flow at end of street = Total (CFS)
Half street flow at end of street = 4 . 917 (CFS)
Depth of flow = 0.375 (Ft. ) , Average velocity = 2. 948 (Ft/s)
IIFlow width (from curb towards crown)= 12.415 (Ft. )
1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 12.000 to Point/Station 14 .000
**** CONFLUENCE OF MAIN STREAMS ***``
11 The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.400 (Ac. )
Runoff from this stream = 4 . 917 (CFS)
11 Time of concentration = 7.74 min.
Rainfall intensity = 4 .009(In/Hr)
Program is now starting with Main Stream No. 3
II
Process from Point/Station .13.000 to Pont/Station 9.000
II **** INITIAL AREA EVALUATION ****
Initial area flow distance = 104 .000 (Ft. )
11 Top (of initial area) elevation = 1217.000 (Ft. )
Bottom (of initial area) elevation = 1214 .330 (Ft. )
Difference in elevation = 2.670 (Ft. )
Slope = 0.02567 s (percent)= 2.57
TC = k(0. 390)* [ (length"3) / (elevation change) ) ^0.2
11 Initial area time of concentration = 5.200 min.
Rainfall intensity = 4 . 990 (In/Hr) for a 100.0 year storm
I SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.863
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
1/
I
42
1 •
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 74 .80
' Pervious area fraction = 0.500; Impervious fraction = 0.500
Initial subarea runoff = 1.206(CFS)
Total initial stream area = 0.280 (Ac. )
Pervious area fraction = 0.500
11
Process from Point/Station 9.000 to Point/Station 14 .000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1214 .330 (Ft. )
11 End of street segment elevation = 1192.800 (Ft. )
Length of street segment = 490.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 30.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
11
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
11 Street flow is on [1] side(s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
' Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 6.050 (CFS)
Depth of flow = 0.338 (Ft. ) , Average velocity = 4 .877 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 10.554 (Ft. )
Flow velocity = 4 .88 (Ft/s)
Travel time = 1.67 min. TC = 6.87 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
11 Runoff Coefficient = 0.857
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
1 RI index for soil (AMC 3) = 74 . 80
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 4 .280 (In/Hr) for a 100.0 year storm
Subarea runoff = 8 .255 (CFS) for 2.250 (Ac. )
Total runoff = 9.461 (CFS) Total area = 2.530 (Ac. )
Street flow at end of street = 9.461 (CFS)
Half street flow at end of street = 9.461 (CFS)
Depth of flow = 0.381 (Ft. ) , Average velocity = 5.415 (Ft/s)
11 Flow width (from curb towards crown)= 12.730 (Ft. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I Process from Point/Station 9.000 to Point/Station 14 .000
**** CONFLUENCE OF MAIN STREAMS ****
1/
I . 93
The following data inside Main Stream is listed:
II In Main Stream number: 3
Stream flow area = 2.530 (Ac. )
I Runoff from this stream = 9.961 (CFS)
Time of concentration = 6.87 min.
Rainfall intensity = 4 .280 (In/Hr)
Summary of stream data:
IIStream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
II1 17.284 8. 94 3.703
2 4 .917 7.74 4.009
II 3 9.461 6.87 4.280
Largest stream flow has longer time of concentration
Qp = 17.284 + sum of
Qb Ia/Ib
I/
9 . 917 * 0. 924 = 4 .542
Qb Ia/Ib
9.461 * 0.865 = 8.187
OP = 30.013
II
Total of 3 main streams to confluence:
Flow rates before confluence point:
II 17.284 4 .917 9.461
Area of streams before confluence:
5.160 1.400 2.530
11 Results of confluence:
Total flow rate = 30.013 (CFS)
II Time of concentration = 8.943 min.
Effective stream area after confluence =
9.110 (Ac. )
Ili Check of Previous Confluence Operations
Of all Main streams
II Total of 7 streams to confluence:
Flow rates before and maximum after confluence point:
IINo. Flow Rate TC I Max Confluence
1 4 .743 8. 632 3.776 30.215
2 0.565 8 .089 3.914 29.657
3 5.718 8 .943 3.703 30.015
ii
4 5. 940 8. 679 3.765 30.226
II
5 0.539 8. 943 3.703 30.015
6 4 .917 7.742
4 .009 29.290
7 9.461 6.874 4 .280 27.600
II
Results of confluence check:
Total flow rate = 30.226(CFS)
II Time of concentration = 8.679 min.
NOTE:
Maximum flow rate derived from previous confluences = 30.23(CFS)
I/
1/
lig
1
This exceeds normal confluence rate of 30.01 (CFS)
Therefore, largest confluence flow rate and TC = 8. 68 Min. is used.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
_ Process from Point/Station 14 .000 to Point/Station 15.000
" PIPEFLOW TRAVEL TIME (Program estimated size) ****
rUpstream -point/station elevation = 1183.00 (Ft. )
Downstream point/station elevation = 1160. 96 (Ft. )
Pipe length = 250.73 (Ft. ) Mannings N = 0.013
No. of pipes = 1 Required pipe flow = 30.226(CFS)
Nearest computed pipe diameter = 18.00 (In. )
Calculated individual pipe flow = 30.226(CFS)
1 Normal flow depth in pipe = 14.30 (In. )
Flow top width inside pipe = 14 .55 (In. )
Critical depth could not be calculated.
Pipe flow velocity = 20.08 (Ft/s)
1 Travel time through pipe = 0.21 min.
Time of concentration (TC) = 8.89 min.
End of computations, total study area = 9.11 (Ac. )
11 The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
11 Area averaged RI index number = 56.0
1
1
1
1
r
1
r
i
I
i
''S
Y
1
11
Riverside County Rational Hydrology Program
' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
RationalHydrologyStudy Date: 12/19/01
111 TRACT 29734 - FLOWS TRIBUTARY TO CAMINO SAN DIMAS
100 YEAR - ULTIMATE CONDITION
FN: ROLAND HYDROLOGY/ CAM100
12-17-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100. 00 Antecedent Moisture Condition = 3
Standard intensity-duration curves data (Plate D-4 .1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
' 10 year storm 10 minute intensity = 2.360 (in./hr. )
10 year storm 60 minute intensity = 0.880 (in. /hr. )
100 year storm 10 minute intensity = 3.480 (in. /hr. )
100 year storm 60 minute intensity = 1.300 (in./hr. )
Storm event year = 100.0
Calculated rainfall intensity data:
I 1 hour intensity = 1.300 (in. /hr. )
Slope of intensity duration curve = 0.5500
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 16.000 to Point/Station 17.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 180.000 (Ft. )
Top (of initial area) elevation = 1231.000 (Ft. )
Bottom (of initial area) elevation = 1228 .000 (Ft. )
1 Difference in elevation = 3.000 (Ft. )
Slope = 0.01667 s (percent)= 1. 67
TC = k(0.390) * [ (length^3) /(elevation change) ]^0.2
Initial area time of concentration = 7.060 min.
Rainfall intensity = 9 .216 (In/Hr) for a 100.0 year storm
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.857
Decimal fraction soil group A = 0.000
' Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 79 .80
I
f/4
7.
11
11 Pervious area fraction = 0. 500; Impervious fraction = 0.500
Initial subarea runoff = 0.903 (CFS)
Total initial stream area = 0.250 (Ac. )
IIPervious area fraction = 0.500
Process from Point/Station 17.000 to Point/Station 18.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
II Top of street segment elevation = 1228. 000 (Ft. )
End of street segment elevation = 1214 . 940 (Ft. )
Length of street segment = 320.000 (Ft. ) •
I Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 18.000 (Ft. )
Distance from crown to crossfall grade break = 16.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
II Slope from grade break to crown (v/hz) = 0.020
Street flow is on [2] side (s) of the street
Distance from curb to property line = 12.000(Ft. )
Slope from curb to property line (v/hz) = 0.025
11 Gutter width = 2.000 (Ft. )
Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
II Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.836(CFS)
Depth of flow = 0.232 (Ft. ) , Average velocity = 3.508 (Ft/s)
II Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 5.269 (Ft. )
Flow velocity = 3.51 (Ft/s)
I Travel time = - 1.52 min. TC = 8.58 min.
Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.852
IDecimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
II RI index for soil (AMC 3) = 74 .80
Pervious area fraction = 0. 500; Impervious fraction = 0.500
Rainfall intensity = 3.789 (In/Hr) for a 100.0 year storm
Subarea runoff =
3.455 (CFS) for 1.070 (Ac. )
Total runoff =
4 .359(CFS) Total area = 1. 320(Ac. )
Street flow at end of street = 4 .359(CFS)
Half street flow at end of street = 2.179 (CFS)
II Depth of flow = 0.260(Ft. ) , Average velocity = 3.794 (Ft/s)
Flow width (from curb towards crown)= 6.691 (Ft. )
End of computations, total study area = 1.32 (Ac. )
II The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.500
I/ Area averaged RI index number = 56.0
I
II 77e02973c, y?
I
r
1
i
I
VI.
10 YEAR EXISITING CONDITION
A. BASIN A
B. BASIN B- TRIBUTARY FLOWS
TO CAMINO SAN DIMAS
' C. BASIN C
I
I
1
1
I
r
g
I
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 12/20/01
TRACT 29734- 10YEAR INTERIM CONDITION
BASIN 'A'
FN: 10BASA
12-17-01
,/ ********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 10. 00 Antecedent Moisture Condition = 2
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
' 10 year storm 10 minute intensity = 2.360 (in. /hr. )
10 year storm 60 minute intensity = 0.680 (in. /hr. )
100 year storm 10 minute intensity = 3.480 (in./hr. )
100 year storm 60 minute intensity = 1.300 (in./hr. )
' Storm event year = 10. 0
Calculated rainfall intensity data:
' 1 hour intensity = 0.880 (in./hr. )
Slope of intensity duration curve = 0.5500
I
Process from Point/Station 1.000 to Point/Station 2.000
"" INITIAL AREA EVALUATION
I/ Initial area flow distance = 145.000 (Ft. )
Top (of initial area) elevation = 1301.140 (Ft. )
Bottom (of initial area) elevation = 1225.000 (Ft. )
' Difference in elevation = 76. 140 (Ft. )
Slope = 0.52510 s (percent)= 52.51
TC = k(0.530) *[ (length^3) / (elevation change) ]^0.2
Warning: TC computed to be less than 5 min. ; program is assuming the
I/ time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 3.452 (In/Hr) for a 10.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.812
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
419
1
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0.920 (CFS)
Total initial stream area = 0.150 (Ac. )
Pervious area fraction = 1.000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 5.000
I/ **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1225.000 (Ft. )
End of natural channel elevation = 1161.000 (Ft. )
Length of natural channel = 770.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 6. 695 (CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48 (q^.33) (slope^.992)
Velocity using mean channel flow = 3.02 (Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
I/ Normal channel slope = 0.0831
Corrected/adjusted channel slope = 0.0831
Travel time = 4 .25 min. TC = 9.25 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
' Runoff Coefficient = 0.781
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.461 (In/Hr) for a 10.0 year storm
Subarea runoff = 8. 606 (CFS) for 9 .960 (Ac. )
Total runoff = 9.026 (CFS) Total area = 4 . 630 (Ac. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
' The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 4 . 630 (Ac. )
Runoff from this stream = 9.026 (CFS)
Time of concentration = 9.25 min.
Rainfall intensity = 2.461 (In/Hr)
Program is now starting with Main Stream No. 2
I/
5o
1
Process from Point/Station 3.000 to Point/Station 4.000
**** INITIAL AREA EVALUATION ****
11 Initial area flow distance = 63.000 (Ft. )
Top (of initial area) elevation = 1291. 600 (Ft. )
Bottom (of initial area) elevation = 1270.000 (Ft. )
11 Difference in elevation = 21. 600 (Ft. )
Slope = 0.34286 s (percent)= 34 .29
TC = k(0.530) * [ (length^3) / (elevation change) ] A0.2
Warning: TC computed to be less than 5 min. ; program is assuming the
1/ time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 3.452 (In/Hr) for a 10.0 year storm
UNDEVELOPED (poor cover) subarea
11 Runoff Coefficient = 0.812
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
11 Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
11 Initial subarea runoff = 0.280 (CFS)
Total initial stream area = 0. 100 (Ac. )
Pervious area fraction = 1.000
I/ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4 .000 to Point/Station 5.000
I/ **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1270.000 (Ft. )
' End of natural channel elevation = 1161.000 (Ft. )
Length of natural channel = 630.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 6.555 (CFS)
' Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48 (q^.33) (slope^.492)
Velocity using mean channel flow = 4 .30 (Ft/s)
11
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
I/ Normal channel slope = 0. 1730
Corrected/adjusted channel slope = 0.1730
Travel time = 2.44 min. TC = 7.44 min.
' Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.793
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
' Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.773 (In/Hr) for a 10.0 year storm
5!
II
IISubarea runoff = 9. 847 (CFS) for 4 .480 (Ac. )
Total runoff = 10.128 (CFS) Total area = 4 .580 (Ac. )
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4 .000 to'-Point/Station 5.000
II **** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 4 .580 (Ac. )
Runoff from this stream = 10.128 (CFS)
Time of concentration = 7.44 min.
1 Rainfall intensity = 2.773 (In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
INo. (CFS) (min) (In/Hr)
1 9.026 9.25 2. 461
I
2 10.128 7.44 2.773
Largest stream flow has longer or shorter time of concentration
Qp = 10.128 + sum of
Qa Tb/Ta
9.026 * 0.804 = 7 .261
Op = 17. 388
A Total of 2 main streams to confluence:
Flow rates before confluence point:
9.026 10.128
' Area of streams before confluence:
4 . 630 4 . 580
' Results of confluence:
Total flow rate = 17.388 (CFS)
Time of concentration = 7.442 min.
Effective stream area after confluence = 9.210 (Ac. )
11 End of computations, total study area = 9.21 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
IIArea averaged pervious area fraction(Ap) = 1.000
Area averaged RI index number = 78.0
II
I
II
I
jet
aw
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational .Hydrology Study Date: 12/20/01
i TRACT 29734 - 10 YEAR INTERIM CONDITION
BASIN "B" - TRIBUTARY FLOWS TO CAMINO SAN DIMAS
FN: 10BASB
12-17-01
., ********* Hydrology Study Control Information **********
1 RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' Storm event (year) = 10.00 Antecedent Moisture Condition = 2
Standard intensity-duration curves data (Plate D-4 .1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr. )
10 year storm 60 minute intensity = 0.880 (in. /hr. )
100 year storm 10 minute intensity = 3.480 (in. /hr. )
100 year storm 60 minute intensity = 1.300 (in./hr. )
' Storm event year = 10.0
Calculated rainfall intensity data:
1 hour intensity = 0.880 (in. /hr. )
Slope of intensity duration curve = 0.5500
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 7.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 135.000 (Ft. )
Top (of initial area) elevation = 1301.400 (Ft. )
Bottom (of initial area) elevation = 1250.200 (Ft. )
Difference in elevation = 51.200 (Ft. )
1
Slope = 0.37926 s (percent)= 37 . 93
TC = k(0.530) * [ (length^3) / (elevation change) ] ^0.2
Warning: TC computed to be less than 5 min. ; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 3. 452 (In/Hr) for a 10.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.812
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
52
mm
' Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78 .00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0.560 (CFS)
Total initial stream area = 0.200(Ac. )
Pervious area fraction = 1.000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1250.200 (Ft. )
' End of natural channel elevation = 1216.000 (Ft. )
Length of natural channel = 420.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 1.149 (CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5. 48 (q^ .33) (slope^.992)
Velocity using mean channel flow = 1. 67 (Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
' Normal channel slope = 0.0814
Corrected/adjusted channel slope = 0.0814
Travel time = 4 .19 min. TC = 9.19 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
' Runoff Coefficient = 0.781
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1. 000
Decimal fraction soil group C = 0.000
' Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
Pervious area fraction = 1.000; Impervious fraction = 0.000
1 Rainfall intensity = 2.469 (In/Hr) for a 10.0 year storm
Subarea runoff = 0.810 (CFS) for 0.420 (Ac. )
Total runoff = 1. 370 (CFS) Total area = 0.620 (Ac. )
Process from Point/Station 8.000 to Point/Station 12.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
' Top of natural channel elevation = 1216.000 (Ft. )
End of natural channel elevation = 1197.500 (Ft. )
' Length of natural channel = 45.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 1.481 (CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8 (q^.352) (slope^0. 5)
Velocity using mean channel flow = 10. 38 (Ft/s)
1
Sof
r
I !
IICorrection to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.4111
II Corrected/adjusted channel slope = 0.4111
Travel time = 0. 07 min. TC = 9.26 min.
IIAdding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.781
I/ Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000 '
Decimal fraction soil group C = 0.000
II Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78 .00
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2. 459(In/Hr) for a 10.0 year storm
' Subarea runoff = 0. 192 (CFS) for 0.100 (Ac. )
Total runoff =
1.562 (CFS) Total area = 0.720(Ac. )
Process from Point/Station 8.000 to Point/Station 12.000
**** CONFLUENCE OF MAIN STREAMS ****
i
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.720 (Ac. )
I Runoff from this stream = 1.562 (CFS)
Time of concentration = 9.26 min.
Rainfall intensity = 2.459 (In/Hr)
IProgram is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1 Process from Point/Station 9.000 to Point/Station 10.000
! **** INITIAL AREA EVALUATION ****
Initial area flow distance = 345.000 (Ft. )
I Top (of initial area) elevation = 1271.400 (Ft. )
Bottom (of initial area) elevation = 1247.000 (Ft. )
Difference in elevation = 24 .400 (Ft. )
I
Slope = 0.07072 s (percent)= 7.07
TC = k(0.530) *[ (length^3) / (elevation change) ]^0.2
Initial area time of concentration = 9.322 min.
Rainfall intensity = 2.450 (In/Hr) for a 10.0 year storm
' UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.780
Decimal fraction soil group A = 0.000
I/ Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
II Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0. 956 (CFS)
Total initial stream area = 0.500 (Ac. )
Pervious area fraction = 1.000
a973f 55
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station 11.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1247. 000 (Ft. )
End of natural channel elevation = 1221.000 (Ft. )
Length of natural channel = 50.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 1.052 (CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8 (q^.352) (slope^0.5)
Velocity using mean channel flow = 10. 92 (Ft/s)
Correction to map slope used on extremely rugged channels with
' drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.5200
Corrected/adjusted channel slope = 0.5200
Travel time = 0.08 min. TC = 9. 40 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0. 780
Decimal fraction soil group A = 0.000 •
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0. 000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
IPervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2. 439(In/Hr) for a 10.0 year storm
Subarea runoff = 0. 190 (CFS) for 0.100 (Ac. )
Total runoff = 1. 146(CFS) Total area = 0. 600 (Ac. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 11.000 to Point/Station 12.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment. elevation = 1221.000 (Ft. )
End of street segment elevation = 1197.500(Ft. )
Length of street segment = 470.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
' Width of half street (curb to crown) = 22.000 (Ft. )
Distance from crown to crossfall grade break = 20. 000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
' Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0. 0150
Manning's N from gutter to grade break = 0.0150
I/ Manning's N from grade break to crown = 0.0150
I
56
ll
Estimated mean flow rate at midpoint of street = 1.987 (CFS)
Depth of flow = 0.247 (Ft. ) , Average velocity = 4 .046(Ft/s)
I Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.037 (Ft. )
Flow velocity = 4.05 (Ft/s)
Travel time = 1. 94 min. TC = 11 .33 min.
II Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.755
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1 .000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
II RI index for soil (AMC 2) = 56.00
Pervious area fraction = 0. 500; Impervious fraction = 0.500
Rainfall intensity = 2.201 (In/Hr) for a 10.0 year storm
Subarea runoff = 1.462 (CFS) for 0. 880 (Ac. )
II Total runoff = 2. 608 (CFS) Total area = 1.480 (Ac. )
Street flow at end of street = Total (2.608 (CFS)
Half street flow at end of street = 2. 608 (CFS)
II Depth of flow = 0.266 (Ft. ) , Average velocity = 4 .265 (Ft/s)
Flow width (from curb towards crown)= 6. 963 (Ft. )
Process from Point/Station 11.000 to Point/Station 12.000
**** CONFLUENCE OF MAIN STREAMS ****
II The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.480 (Ac. )
II Runoff from this stream = 2. 608 (CFS)
Time of concentration = 11.33 min.
Rainfall intensity = 2.201 (In/Hr)
Summary of stream data:
IIStream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
II1 1.562 9.26 2.459
2 2. 608 11. 33 2.201
II Largest stream flow has longer time of concentration
Qp = 2. 608 + sum of
Qb Ia/Ib
' 1.562 * 0. 895 = 1. 398
Qp = 4 .006
Total of 2 main streams to confluence:
1/ Flow rates before confluence point:
1.562 2. 608
Area of streams before confluence:
0.720 1.480
II
Results of confluence:
Total flow rate = 4 .006 (CFS)
II
_ 57
1
' Time of concentration = 11.334 min.
Effective stream area after confluence = 2.200 (Ac. )
' End of computations, total study area = 2.20 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.800
Area averaged RI index number = 69.2
1
I
I
I
ft
1
Riverside County Rational Hydrology Program
' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3. 3
Rational Hydrology Study Date: 12/20/01
TRACT 29734 - 10 YEAR INTERIM CONDITION
BASIN "C"
FN: 10BASC
' 12-17-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' Storm event (year) = 10. 00 Antecedent Moisture Condition = 2
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
' 10 year storm 10 minute intensity = 2.360 (in. /hr. )
10 year storm 60 minute intensity = 0.880 (in./hr. )
100 year storm 10 minute intensity = 3.480 (in. /hr. )
' 100 year storm 60 minute intensity = 1.300 (in./hr. )
Storm event year = 10. 0
Calculated rainfall intensity data:
' 1 hour intensity = 0.880 (in. /hr. )
Slope of intensity duration curve = 0.5500
1
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 19 .000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 85.000(Ft. )
Top (of initial area) elevation = 1271.400 (Ft. )
Bottom (of initial area) elevation = 1267.000 (Ft. )
Difference in elevation = 4 .400 (Ft. )
Slope = 0.05176 s (percent)= 5.16
TC = k(0.530) *[ (length^3) / (elevation change) ]^0.2
Initial area time of concentration = 5.665 min.
' Rainfall intensity = 3.222 (In/Hr) for a 10.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.806
' Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
S9
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0.390 (CFS)
' Total initial stream area = 0.150 (Ac. )
Pervious area fraction = 1.000
' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 14 .000 to Point/Station 15.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1267.000 (Ft. )
End of natural channel elevation = 1228.300 (Ft. )
Length of natural channel = 230.000 (Ft. )
' Estimated mean flow rate at midpoint of channel = 0. 961 (CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5. 48 (q^.33) (slope".492)
Velocity using mean channel flow = 2.25 (Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.1683
Corrected/adjusted channel slope = 0.1683
Travel time = 1.70 min. TC = 7.37 min.
Adding area flow to channel
' UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.793
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 2) = 78.00
' Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 2.789 (In/Hr) for a 10.0 year storm
Subarea runoff = 0.973 (CFS) for 0.440 (Ac. )
Total runoff = 1.363 (CFS) Total area = 0.590 (Ac. )
End of computations, total study area = 0.59 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
' Area averaged pervious area fraction(Ap) = 1.000
Area averaged RI index number = 78 .0
Go
1
VII.
100 YEAR EXISTING CONDITION
A. BASIN A
B. BASIN B-TRIBUTARY FLOWS
TO CAMINO SAN DIMAS
B. BASIN C
1
1
1
1
Riverside County Rational Hydrology Program
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational Hydrology Study Date: 12/20/01
TRACT 29734 - 100 YEAR INTERIM CONDITION
BASIN "A"
FN: ROLAND HYDROLOGY/ BASA
12-17-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
' Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' Storm event (year) = 100. 00 Antecedent Moisture Condition = 3
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc, Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in. /hr. )
10 year storm 60 minute intensity = 0.880 (in. /hr. )
100 year storm 10 minute intensity = 3.480 (in./hr. )
100 year storm 60 minute intensity = 1.300 (in./hr. )
' Storm event year = 100. 0
Calculated rainfall intensity data:
' 1 hour intensity = 1.300 (in./hr. )
Slope of intensity duration curve = 0.5500
' ++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** INITIAL AREA EVALUATION
' Initial area flow distance = 145. 000 (Ft. )
Top (of initial area) elevation = 1301.140 (Ft. )
Bottom (of initial area) elevation = 1225.000 (Ft. )
Difference in elevation = 76. 140 (Ft. )
Slope = 0.52510 s (percent)= 52.51
TC = k(0. 530) * [ (length^3) / (elevation change) ] ^0.2
Warning: TC computed to be less than 5 min. ; program is assuming the .
' time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm
UNDEVELOPED (poor cover) subarea
' Runoff Coefficient = 0.874
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
b7
I
1 Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
1
Initial subarea runoff = 0. 669(CFS)
Total initial stream area = 0. 150(Ac. )
Pervious area fraction = 1.000
1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 5.000
I
- **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1225.000 (Ft. ) .
1 End of natural channel elevation = 1161.000 (Ft. )
Length of natural channel = 770.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 10. 652 (CFS)
1 Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5. 48 (q^.33) (slope^.992)
Velocity using mean channel flow = 3.52 (Ft/s)
1
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
1 Normal channel slope = 0.0831
Corrected/adjusted channel slope = 0.0831
Travel time = 3.65 min. TC = 8. 65 min.
1 Adding area flow to channel
UNDEVELOPED (poor cover) subarea
1 Runoff Coefficient = 0.865
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
1 Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 3.773 (In/Hr) for a 100.0 year storm
1
Subarea runoff = 14 . 629 (CFS) for 4 .480 (Ac. )
Total runoff =
15.292 (CFS) Total area = 4 . 630 (Ac. )
1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station 5.000
**** CONFLUENCE OF MAIN STREAMS ****
1 The following data inside Main Stream is listed:
In Main Stream number: 1
1 Stream flow area = 4 . 630 (Ac. )
Runoff from this stream = 15.292 (CFS)
Time of concentration = 8. 65 min.
Rainfall intensity = 3. 773 (In/Hr)
1 Program is now starting with Main Stream No. 2
II 77e c2 97s 7
G3
II
' Process from Point/Station '
3.000 to Point/Station 4 .000
**** INITIAL AREA EVALUATION ****
' Initial area flow distance = 63.000 (Ft. )
Top (of initial area) elevation = 1291. 600 (Ft. )
Bottom (of initial area) elevation = 1270.000 (Ft. )
' Difference in elevation = 21. 600 (Ft. )
Slope = 0.34286 s (percent)= 34 .29
TC = k(0.530) * [ (length^3) / (elevation change) ) ^0.2
Warning: TC computed to be less than 5 min. ; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 5.099 (In/Hr) for a 100.0 year storm
II UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.874
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
' Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
I .
Initial subarea runoff = 0.446(CFS)
Total initial stream area = 0.100 (Ac. )
Pervious area fraction = 1.000
II
Process from Point/Station 4 .000 to Point/Station 5.000
' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1270.000 (Ft. )
' End of natural channel elevation = 1161.000 (Ft. )
Length of natural channel = 630.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 10.429(CFS)
ll Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5.48 (q^.33) (slope^.492)
Velocity using mean channel flow = 5.01 (Ft/s)
II
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
I Normal channel slope = 0. 1730
Corrected/adjusted channel slope = 0. 1730
Travel time = 2.10 min. TC = 7.10 min.
' Adding area flow to channel
UNDEVELOPED (poor cover) subarea
' Runoff Coefficient = 0.869
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1. 000
Decimal fraction soil group C = 0.000
I Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
' Rainfall intensity = 4 .206(In/Hr) for a 100.0 year storm
II
49
II
' Subarea runoff = 16.370 (CFS) for 4 .480 (Ac. )
Total runoff = 16.816 (CFS) Total area = 4 .580 (Ac. )
1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4 .000 to Point/Station 5.000
' **** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
I
Stream flow area = 4 .580 (Ac. )
Runoff from this stream = 16.816(CFS)
Time of concentration = 7 .10 min.
II Rainfall intensity = 9 .206 (In/Hr)
Summary of stream data:
Stream Flow rate TC Rainfall Intensity
' No. (CFS) (min) (In/Hr)
1 15.292 8. 65 3.773
I
2 16.816 7. 10 4 .206
Largest stream flow has longer or shorter time of concentration
Qp = 16.816 + sum of
I Qa Tb/Ta
15.292 * 0.820 = 12.547
Qp = 29.363
' Total of 2 main streams to confluence:
Flow rates before confluence point:
15.292 16.816
I Area of streams before confluence:
4 .630 4 .580
II Results of confluence:
Total flow rate = 29.363 (CFS)
Time of concentration = 7.095 min.
Effective stream area after confluence = 9.210 (Ac. )
I End of computations, total study area = 9.21 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
' Area averaged pervious area fraction(Ap) = 1.000
Area averaged RI index number = 78.0
II
I
I
II
b5
•
I
Riverside County Rational Hydrology Program
' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3
Rational . Hydrology Study Date: 12/20/01
1 TRACT 29734 - 100YEAR INTERIM CONDITION
BASIN "B" - TRIBUTARY FLOWS TO CAMINO SAN DIMAS
FN: ROLAND HYDROLOGY / BASB
12-17-01
********* Hydrology Study Control Information **********
RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
Riverside County Flood Control & Water Conservation District
1978 hydrology manual
Storm event (year) = 100. 00 Antecedent Moisture Condition = 3
Standard intensity-duration curves data (Plate D-4 . 1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2. 360 (in. /hr. )
10 year storm 60 minute intensity = 0.880 (in. /hr. )
100 year storm 10 minute intensity = 3. 480 (in. /hr. )
100 year storm 60 minute intensity = 1.300 (in./hr. )
Storm event year = 100. 0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in. /hr. )
Slope of intensity duration curve = 0.5500
I
Process from Point/Station 6.000 to Point/Station 7.000
**** INITIAL AREA EVALUATION ****
Initial area flow distance = 135.000 (Ft. )
Top (of initial area) elevation = 1301.400 (Ft. )
Bottom (of initial area) elevation = 1250.200 (Ft. )
Difference in elevation = 51.200 (Ft. )
Slope = 0.37926 s (percent)= 37. 93
TC = k(0.530) *[ (length^3) / (elevation change) ] ^0.2
Warning: TC computed to be less than 5 min. ; program is assuming the
time of concentration is 5 minutes.
Initial area time of concentration = 5.000 min.
Rainfall intensity = 5.099 (In/Hr) for a 100. 0 year storm
UNDEVELOPED (poor cover) subarea
1 Runoff Coefficient = 0.874
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1 .000
Decimal fraction soil group C = 0.000
GG
i •
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0.891 (CFS)
Total initial stream area = 0.200 (Ac. )
Pervious area fraction = 1. 000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1250.200 (Ft. )
11 End of natural channel elevation = 1216.000 (Ft. )
Length of natural channel = 420.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 1.827 (CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
Velocity = 5. 48 (q^.33) (slope^.492)
Velocity using mean channel flow = 1.95 (Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
11 Normal channel slope = 0.0814
Corrected/adjusted channel slope = 0.0814
Travel time = 3.60 min. TC = 8. 60 min.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.865
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1. 000
Decimal fraction soil group C = 0. 000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 3.785 (In/Hr) for a 100.0 year storm
Subarea runoff = 1.376 (CFS) for 0.420 (Ac. )
Total runoff = 2.267 (CFS) Total area = 0.620 (Ac. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 6.000 to Point/Station 12.000
• **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
11 Top of natural channel elevation = 1216.000 (Ft. )
End of natural channel elevation = 1197.500 (Ft. )
11 Length of natural channel = 45.000 (Ft. )
Estimated mean flow rate at midpoint of channel = 2. 450 (CFS)
Natural valley channel type used
' L.A. County flood control district formula for channel velocity:
Velocity = (7 + 8 (q' .352) (slope^0.5)
Velocity using mean channel flow = 11.52 (Ft/s)
I
4?
II
IICorrection to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
II Normal channel slope = 0.4111
Corrected/adjusted channel slope = 0.4111
Travel time = 0.07 min. TC = 8. 66 min.
IAdding area flow to channel
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.865
I Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
II Decimal fraction soil group D = 0. 000
RI index for soil (AMC 3) = 89.80
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 3.769 (In/Hr) for a 100.0 year storm
II Subarea runoff = 0.326 (CFS) for 0.100 (Ac. )
Total runoff = 2.593 (CFS) Total area = 0.720 (Ac. )
IIProcess from Point/Station 8. 000 to Point/Station 12.000
**** CONFLUENCE OF MAIN STREAMS ****
IIThe following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area = 0.720 (Ac. )
11
Runoff from this stream = 2.593 (CFS)
•
Time of concentration = 8. 66 min. •
Rainfall intensity = 3.769 (In/Hr)
IIProgram is now starting with Main Stream No. 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
I/ Process from Point/Station 9.000 to Point/Station 10.000
**** INITIAL AREA EVALUATION ****
II Initial area flow distance = 345.000 (Ft. )
Top (of initial area) elevation = 1271.400 (Ft. )
Bottom (of initial area) elevation = 1247.000 (Ft. )
Difference in elevation = 24 . 400 (Ft. )
II Slope = 0.07072 s (percent)= 7.07
TC = k(0.530) * [ (length^3) / (elevation change) ] ^0.2
Initial area time of concentration = 9.322 min.
Rainfall intensity = 3.620 (In/Hr) for a 100.0 year storm
11 UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.664
Decimal fraction soil group A = 0.000
II Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
11 Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 1.564 (CFS)
Total initial stream area = 0.500 (Ac. )
11 Pervious area fraction = 1.000
II
/ G
f 0
1
I
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 10.000 to Point/Station. 11.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
Top of natural channel elevation = 1247.000 (Ft. )
End of natural channel elevation= 1221.000 (Ft. )
Length of natural channel = 50.000 (Ft. )
I. Estimated mean flow rate at midpoint of channel = 1.720 (CFS)
Natural valley channel type used
L.A. County flood control district formula for channel velocity:
' Velocity = (7 + 8 (q^. 352) (slope"0. 5)
Velocity using mean channel flow = 12.03 (Ft/s)
Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.5200
Corrected/adjusted channel slope = 0.5200
Travel time = 0. 07 min. TC = 9. 39 min.
Adding area flow to channel
' UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0. 864
Decimal fraction soil group A = 0.000
Decimal fraction soil group 8 = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89. 80
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 3.605 (In/Hr) for a 100.0 year storm
Subarea runoff = 0.311 (CFS) for 0. 100 (Ac. )
Total runoff = 1.875 (CFS) Total area = 0. 600 (Ac. )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
i Process from Point/Station 11.000 to Point/Station 12.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1221.000 (Ft. )
t End of street segment elevation = 1197.500 (Ft. )
Length of street segment = 470.000 (Ft. )
Height of curb above gutter flowline = 6.0 (In. )
Width of half street (curb to crown) = 22.000 (Ft. )
Distance from crown to crossfall grade break 20.000 (Ft. )
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
' Street flow is on [1] side (s) of the street
Distance from curb to property line = 12.000 (Ft. )
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000 (Ft. )
1 Gutter hike from flowline = 2.000 (In. )
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
1
69
I
1 Estimated mean flow rate at midpoint of street = 3.250 (CFS)
Depth of flow = 0.282 (Ft. ) , Average velocity = 4 .465 (Ft/s)
Streetflow hydraulics at midpoint of street travel:
II
Halfstreet flow width = 7.754 (Ft. )
Flow velocity = 4 . 46(Ft/s)
Travel time = 1.75 min. TC = 11. 15 min.
I Adding area flow to street
SINGLE FAMILY (1/4 Acre Lot)
Runoff Coefficient = 0.846
II Decimal fraction soil group A = 0.000 .
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
II RI index for soil (AMC 3) = 74.80
Pervious area fraction = 0.500; Impervious fraction = 0.500
Rainfall intensity = 3.281 (In/Hr) for a 100.0 year storm
Subarea runoff = 2.442 (CFS) for 0.880 (Ac. )
I Total runoff = 4 .317 (CFS) Total area = 1.480 (Ac. )
Street flow at end of street = Total (CFS)
Half street flow at end of street = 4 . 317 (CFS)
Depth of flow = 0.304 (Ft. ) , Average velocity = 4.749 (Ft/s)
11 Flow width (from curb towards crown)= 8.645 (Ft. )
11 Process from Point/Station 11.000 to Point/Station 12.000
**** CONFLUENCE OF MAIN STREAMS ****
II The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area = 1.480 (Ac. )
.' Runoff from this stream = 4 .317 (CFS)
Time of concentration = 11.15 min.
Rainfall intensity = 3.281 (In/Hr)
Summary of stream data:
1 Stream Flow rate TC Rainfall Intensity
No. (CFS) (min) (In/Hr)
II1 2.593 8 . 66 3.769
2 4 .317 11.15 3.281
Largest stream flow has longer time of concentration
II QP = 4.317 + sum of
Qb Ia/Ib
2.593 * 0.870 = 2.257
IQp = 6.575
Total of 2 main streams to confluence:
Flow rates before confluence point:
111 2.593 4 .317
Area of streams before confluence:
0.720 1.480
II
Results of confluence:
I/ Total flow rate = 6.575 (CFS)
II
20
1
Time of concentration = 11.145 min.
Effective stream area after confluence = 2.200 (Ac. )
' End of computations, total study area = 2.20 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area.
Area averaged pervious area fraction(Ap) = 0.800
Area averaged RI index number = 69.2
1
I
1
1
1
I
i
I/
1
11
1
I
1
9/
r
I
Riverside County Rational Hydrology Program
1 CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3. 3
Rational Hydrology Study Date: 12/20/01
It TRACT 29734 -100 YEAR ULTIMATE CONDITION
BASIN "C"
FN: ROLAND HYDROLOGY / BASC
12-17-01
********* Hydrology Study Control Information **********
' RANPAC Engineering Corporation, Temecula, CA - S/N 560
Rational Method Hydrology Program based on
' Riverside County Flood Control & Water Conservation District
1978 hydrology manual
' Storm event (year) = 100.00 Antecedent Moisture Condition = 3
Standard intensity-duration curves data (Plate D-4 .1)
For the [ Murrieta,Tmc,Rnch Callorco ] area used.
10 year storm 10 minute intensity = 2.360 (in./hr. )
10 year storm 60 minute intensity = 0. 880 (in./hr. )
100 year storm 10 minute intensity = 3.480 (in./hr. )
100 year storm 60 minute intensity = 1.300 (in./hr. )
Storm event year = 100.0
Calculated rainfall intensity data:
1 hour intensity = 1.300 (in. /hr. )
Slope of intensity duration curve = 0. 5500
++++++++++++++++++++++++++++++++*+4+4+++++++++++++++++++++++++++++++++++++
Process from Point/Station 13.000 to Point/Station 14.000
**** INITIAL AREA EVALUATION
Initial area flow distance = 85.000 (Ft. )
Top (of initial area) elevation = 1271.400 (Ft. )
Bottom (of initial area) elevation = 1267.000 (Ft. )
' Difference in elevation = 4 .400 (Ft. )
Slope = 0.05176 s (percent)= 5.18
TC = k(0.530) * [ (length^3) /(elevation change) ] ^0.2
Initial area time of concentration = 5.665 min.
Rainfall intensity = 9 .760 (In/Hr) for a 100.0 year storm
UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.872
Decimal fraction soil group A = 0.000
' Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
I
' Pervious area fraction = 1.000; Impervious fraction = 0.000
Initial subarea runoff = 0. 623 (CFS)
II Total initial stream area = 0.150 (Ac. )
Pervious area fraction = 1 .000
Process from Point/Station 14 .000 to Point/Station 15.000
**** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION ****
' Top of natural channel elevation = 1267.000 (Ft. )
End of natural channel elevation = 1228.300 (Ft. )
Length of natural channel = 230.000 (Ft. )
IIEstimated mean flow rate at midpoint of channel = 1.536(CFS)
Natural mountain channel type used
L.A. County flood control district formula for channel velocity:
' Velocity = 5.48 (q^.33) (slope^. 492)
Velocity using mean channel flow = 2.63 (Ft/s)
' Correction to map slope used on extremely rugged channels with
drops and waterfalls (Plate D-6.2)
Normal channel slope = 0.1683
Corrected/adjusted channel slope = 0.1683
IITravel time = 1. 46 min. TC = 7.12 min.
Adding area flow to channel
II UNDEVELOPED (poor cover) subarea
Runoff Coefficient = 0.869
Decimal fraction soil group A = 0.000
II Decimal fraction soil group B = 1 .000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
RI index for soil (AMC 3) = 89.80
I
Pervious area fraction = 1.000; Impervious fraction = 0.000
Rainfall intensity = 4 .197 (In/Hr) for a 100.0 year storm
Subarea runoff = 1. 604 (CFS) for 0.440 (Ac. )
1 Total runoff = 2.227 (CFS) Total area = 0.590 (Ac. )
End of computations, total study area = 0.59 (Ac. )
The following figures may
be used for a unit hydrograph study of the same area. .
' Area averaged pervious area fraction (Ap) = 1.000
Area averaged RI index number = 78.0
II
II
1
II
II
73
1
1
1
i
' VIII.
HYDRAULIC CALCULATION
1
1
1
1
1
1
1
1
1
1
1
1
9N
Nis
i
WARNING NO. 2 -- - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HONEDS, N.S.ELEV - INV + Iv'
N S P G N - CIVILDESIGN Vera 7.1 PAGE 1
For: RANPAC Inc., Temecula, California - S/N 560
WATER SURFACE PROFILE LISTING Date:12-19-2001 Time:11: 1:13
I TRACT 29734 - LINE ..E.
FN: RO]AND HYDROLOGY / LINEX
DATE: 12-17-01
I Invert I Depth I Water I 0 I Vet Vel I Energy I Super ICriticallFlow ToplHeigh[/IBaae Mt! INo Nth
Station I Elev I OFT) I Elev I ICES/ ( (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I IL IPra/Pip
-1
L/Elem 'CI Slope!I 1I 1
1
1 1SF Avel HF ISE Dpth(Froude NINorm Dp I 'N' II ZR iType Cl
I
1 i f I 1
I
I I
I I I
1629.29 1160.96 .978 1161.918 30.2 19.00 6.089 1168.026 .00 1.866 2.00 2.00 .00 .00 1 .0
9.08 .05105 .070189 .38 .98 3.999 1.107 .013 .00 PIPE
II I
I I
I I
I I
1 I
1619.17 1161.21 .969 1162.178 30.2 20.02 6.221 1168.399 .00 1.866 2.00 2.O0 .00 .00 1 .0
17.45 .05105 .084728 1.99 .97 9.058 1.107 .013 .00 PIPE
I I I I I I I 1 I I I I I
1651.62 1162.10 .935 1163.035 30.2 20.99 6.842 1169.078 .00 1.866 2.00 2.00 .00 .00 1 .0
III 2.00 .06000 .090746 .18 .93 4.355 1.053 .013 .00 PIPE
I
I I
1 I
1653.62 1162.22 .931 1162 151 30.2 2L.09 6,908 1170.059 3.00 1.966 2.00 2.00 .00 .00 1 .0
-I -1 -I -I -I -1 -I-
2.00
1 2.00 .05499 .092022 .30 2.00 9.396 1.082 .013 .00 PIPE
I I I I I I 1 1 I 1 I I.
' 3655.62 1162.33 .927 1161.257 20.2 21.21 6.986 1170.294 .00 1.066 1.99 2.00 .00 .00 1 .0
I
I
I I I I
12.26 .06635 .096203 1.18 .93 4.422 1.022 .012 .00 PIPE
I I
1667.86 1163.14 .908 1164.052 30.2 21.79 7.372 1111.924 .00 1.066 1.99 2.00 .00 .00 3 A
17.53 .06635 .106526 1.87 .91 4.601 1.022 .013 .00 PIPE
I
1 i f I
1685.91 1164.31 .815 3165.182 30.2 22.85 8.109 1173.291 .00 1.866 3.98 2.00 .00 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
19.22 .06635 .121242 1.72 .88 4.932 1.022 .012 .00 PIPE
I I 1 I I I 1 I I I I I
1699.63 1165.25 .895 1166.095 20.2 23.97 8.920 1175.015 .00 1.066 1.98 2.00 .00 .00 1 .0
II/
-I-
9.56
I
9.56 .06627 .135790 3.20 .89 5.286 1.022 .013 .00 PIPE
III I
I I
I
I I
I
I I
1]09.19 1165.89 .021 3366.704 30.2 29.95 9.588 1176.292 .00 1.066 1.9] 2.00
1-
10.81 .06627 .152339 1.65 .82 5.569 1.022 .013 .00 PIPE
' N S P G N - CIVILDES1GN Vera 7.1 PAGE 2
For: PANPAC Inc., Temecula, California - S/N 560
WATER SURFACE PROFILE LISTING Date:12-19-2001 Time:ll: 1:13
TRACT 29734 - LINE "X"
IN: ROLAND HYDROLOGY / LINEX
DATE: 12-17-01
I Invert I Depth I Water I U I Vel Vel 1 Energy Super IC[it icallFlov ToplHeigh[/IBaae NCI !No 0th
Station Elev IFTI Elev IC FSI IFP51 Head 1 Crd.E1.I Elev I Depth I Width 'Dia.-Filar I.0.1 IL IPra/Pip
L/Elan (Cl S10pel 1 I I SF Avel HF ISE OpN IFroode NINorm Dp I 'N' I I ZR !Type Ch
I I I I I I I I I I I I I I
I I
I 1 I I
17200 1166.60 .792 316].J9] 30.2 26.06 10.597 33]].940 .00 1.866 1.96 2.00 .00 .00 1 .0
3.85 .23083 .159328 .61 .79 5.965 .121 .OIJ .00 PIPE
I I I I I I I I I I I I I
1723.95 1167.49 .801 1168.289 20.2 25.71 10.262 1178.552 .00 1.966 1.96 2.00 .00 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
10.75 .23083
I
.116]]0 1.58 .80 5.849 .721 .013 .00 PIPE
I I I I ' 1 I I I I I I I
1734.60 1169.97 .830 1170.801
- 30.2 24.51 9.329 1160.130 .00 3.966 1.97 2.00 .00
-1 -I I -I -1 -I -I -I
8.02 .23002 .128840 1.03 .83 5.461 .721 .013 .00 PIPE
1 I I I I I I 1 I 1 I I
1742.62 1171.82 .060 1172.682 30.2 23.37 8.401 1101.164 .00 1.006 1.98 2.00
II/ .00 .00 1 .0
6.28 .23083 .113165
.71 .86 5.096 .721 .012 .00 PIPE
I I 1 I I I I I I I 1 I I
1748.90 1173.27 .092 1174.164 30.2 22.20 7.710 3181.874 .00 1.866 1.99 Z.00
-1- -I- -1- -1 -1- -1- -I- -I- -1- -I- -I- -1- -1-5.00 .23083 .099464 .51 .69 9.759 .721 .013 .00 PIPE
IIII I I I I I I I I I I I I
3]]3.99 1119.95
.925 1177.311 30.2 21.21 7.009 1182.380 .00 1.866 1.99 2.00
-I- -I- -I- -I- -I- -I- -1- -I- -I- -I- -I- -I- -I- 1-
1.20 .23083 .0879]0 .37 .93 9.9]3 .721 .013 .00 PIPE
I I I I 1 I I I I I I I I
1758.19 1175.42 .960 1176.375 30.2 20.26 6.372 1192.740 .00 1.966 2.00 2.00 .00 .00 1 .0
1 -I3.53 .23083
.076998 .27 .96 4.131 .721 .013 .00 PIPE
I I
I 1 1I
1761.71 11]6.2] .997 3177.226 30.2 19.31 5.793 1183.019 .00 1.866 2.00 2.00 .00 .00 1 .0
1-
3.00 .23083 .067818 .20 1.00 3.849 .721 .013 .00 PIPE
1 I I I I 1 I I 1 I 1 1 1
' 1764.71 1176.92 1.035 1177.956 30.2 18.92 5.266 1183.222 .00 3.866 2.00 2.00 .00 .00 1 .0
-I -I -1
2.56 .23083 .059760 .15 1.04 3.581 .721 .013 .00 PIPE
0 S P G N - CIVILDEIIGN Vers 7.1 PAGE 3
For: RA19PAC Inc., Temecula. California - S/N 560
WATER SURFACE PROFILE LISTING Date:12-19-2001 Time:11: 1:12
TRACT 29734 - LINE 'X"
III
75
I .
' FN: ROLAND HYDROLOGY / LINE%
DATE: 12-17-01
I Invert I Depth I Water t Q I Vel Vel I Energy I Super ICriticallFlov ToplHeight/IBaae Wt; Wo Wth
Station I- Elev I (FT) I Elev I (CMI (FPS) Head I Gri.E1.I Elev 1 Depth I Width IDia.-FTIor I.0.1 21, IPre/Pip
III
-I- -I- -I- -1- -I- -1- -1- -I- -1- -1- -1- -1-
L/Elem ICh Slope! BF Avel HE' ISE DpthlFioutle HINoim Op "N" I I ZR (Type Ch
I
I
I
I
I
I I
1 { I
1767.28 1177.51 1.075 1118.508 30.2 17.56 4.788 1183.375 .00 1.866 1.99 2.00 .00 .00 1 .0
-1- -I- -I- -I- -I- -I- -I- -1- -1- -I- -1- -1- -I- I-
' 2.23 .23093 .052]08 .12 1.08 3.330 .721 .013 .00 PIPE
I I 1 i I
1769.98 1179.02 1.117 1379.190 30.2 16.74 4.352 1183.992 .00 1.866 1.99 2.00 .00 .00 1 .O
-I- -1- -I- -1- -I- -I- -1- -I- -I- -1- -1- -I- -1- 1-
1.90 .23093 .046546 .09 1.12 3.094 .721 .013 .00 PIPE
I I I I I I I I I I I I I
1771.39 1170.46 1.162 1179.624 30.2 15.96 3.957 1193.580 .00 1.866 1.97 2.00 .00 .00 1 .0
1.65 .23083 .041158 .0] 1.16 2.8]2 .721 .013 .00 PIPE
I I I
I I
1173.03 1170.89 1.209 1180.051 30.2 15.22 3.597 1183.648 .00 1.866 1.96 2.00 .00 .00 1 .0
1-
1.42 .23083 .036439 .05 1.21 2.661 .721 .013 .00 PIPE
I 1 I I i 1I
1]]{.96 11]9.1] 1.259 1180.930 30.2 14.51 J.2]0 1183.700 .00 1.066 1.93 2.00 .00 .00 1 .0
-I -I -I -I1 -I 1
1.23 .23083 .032316 .04 1.26 2.463 .721 .013 .00 PIPE
I 1 1 1 1 1 I I 1 I 1 I I
1]]5.69 1179.46 1.312 1100.767 30.2 13.84 2.973 1103.740 .CO 1.866 1.90 2.00 .00 .00 1 .0
' 1.06 .23083 .028709 .03 1.31 2.274 .721 .013 .00 PIPE
II
I
I I
I1
1776.75 1119.70 1.368 1181.068 30.2 13.19 2.702 1183.1]0 .00 1.866 1.86 2.O0 .00 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I-
.90 .23093 .025567 .02 1.37 2.094 .721 .013 .00 PIPE
I I 1 I I I I I 1 I I I I
III 1]7].65 1179.91 1.429 1181.337 30.2 12.56 2.457 1183.793 .00 1.866 1.91 2.00 .00 .00 1 .0
_1_
.75 .23083 .022858
.02 1.43 1.922 .721 .013 .CO PIPE
I I I 1 I I
1778.40 1180.0a 1.496 1181.577 30.2 11.99 2.233 1183.811 .00 1.866 1.74 2.00 .00 .00 1 .0
-I- -I- -1- -I- -1- -1- -1- -1- -1- -1- -1- -1- -1- 1-
.62 .23083 .020522 .01 1.50 1.754 .721 .013 .00 PIPE
' W S P G N - CIVILDEBIGN Vere 7.1 PAGE 4
For: RANFAC Inc., Temecula. California - 1/N 560
WATER SURFACE PROFILE LISTING Date:12-39-2001 Time:ll: 1:13
TRACT 29734 - LINE "X"
FN: ROLAND HYDROLOGY / LINEX
' DATE: 12-17-01
I Invert I Depth 1 Water I Q I Vel Vel Energy Super Cri ticalI Flow ToplHelght/IBase NLI INo Wth
Station Elev IFtI Elev I (CPS) IFPSI Head 1 Grd.E1.I Elev I Depth t Width IDla.-FTIor 1.0.1 ZL litre/Pip
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I-
L/Elea ICh Slope! I I I SF Ave; HF ISE DpthlFroude N1Norm Dp 1 "N" I I ZR (Type Ch
I I 1 I I 1 I I 1 I 1 I I I
II I I
1 II I I
1]79.02 1180.22 1.568 1181.793 30.2 11.9] 2.O30 1183.823 .00 1.866 1.65 2.00 .00 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I-
.48 .23083 .016592 .O1 1.57 1.590 .721 .011 .00 PIPE
1 I I 1 I I 1 I 1 1 1 I
1779.51 1180.34 1.650 1181.987 30.2 10.90 1.846 1183.932 .00 1.866 1.52 2.00 .00 .00 1 .0
.34 .23083
.016934 .O1 1.65 1.422 .721 .013 .00 PIPE
I t 1 I
1]]9.85 1180.42 1.744 1182.160 30.2 10.40 1.619 1183.838 .00 1.866
1.34 2.00 .00 .00 1 .0
-1- -I- -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I-
.15 .23083 .015830 .00 1.74 1.242 .723 .013 .00 PIPE
I I I I I I I I I I I I I
1780.00 1180.45 1.066 1102.316 30.2 9.91 1.524 1191.840 .00 1.866 1.00 2.00 .00 .00 1 .0
I
I
JUNCT STR .02000 .010638 1.06 1.87 1.000 O1] .00 PIPE
1800.02 1102.95 2.981 1185.931 17.3 5.50 .470 1185.901 .00 1.498 .00 2.00 .00 .00 1 .0
2.13 .01410 .005835 .01 2.98 .000 1.167 .013 .00 PIPE
III I I I I I I I I I I I I I
1002.15 1182.49 2.994 1105.479 17.3 5.50 .9]D 1185.943 .00 1.998 .00 2.00 .00 .D0 1 .0
-I- -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1-
25.30 .02001 .005835 .15 2.99 .000 1.047 .013 .00 PIPE
I I I I I I 1 1 I I I I 1
1907.45 1182.99 2.631 1185.617 17.3 5.50 .470 1186.087 .00 1.498 .00 2.00 .00 .00 1 .0
1 -I
HYDRAULIC SUMP
I
I
I I
I I
I I
1907.45 1182.99 .815 1183.80111.3 14.36 3.202 1187.004 .00 1.498 1.97 2.00 .00 .00 1 .0
-I- -I- -I- -1 -I- -I- -I- -I- -I- -I- -I- -I- 1-
3.13 .02001 .048607 .15 .02 3.234 1.047 .013 .00 PIPE
I I I I I I 1 1 1 I I
1910.58 1103.05 .009 1183.858 17.3 14.50 3.265 1187.123 .00 1.999 1.96 2.00 .00 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- 1-
9.11 .02001 .052658 .4B .01 3.280 1.047 .013 .00 PIPE
W S P G N - CIVILDESIGN Vero 7.1 PAGE 5
For: RANPAC Inc., Temecula, California - S/N 560
11/
WATER SURFACE PROFILE LISTING Oate:12-19-2001 Time:11: 1:13
TRACT 29734 - LINE "X"
FN: ROLAND HYDROLOGY / LINEX
DATE: 12-ll-0l
1 Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFloW ToplHeight/lease Wt1 INo Wth
II/ Station ; Elev 1 LFT) I Elea I (CFs) 1 IFPS) Head I Grd.E1.I Elev I Depth 1 Width IDia.-FTIor I.D.1 2L IPra/Pip
-1- -1- -1- -I- -I- -I- -1- -I- -1- -1- -1- -1- -1- 1-
I
94
' L/Eleni ICN Slope] 1I Sr Avel HF ISE DpthlFroudt N1Norm Dp I "N" I I ZR !Type Cl
1 I I I 1 I I 1
1 I I I I I I I I I I 1 1
1919.69 1183.23 .780 1384.011 17.3 15.21 3.591 1187.602 .00 1.498 1.95 2.00 .00 .00 1 .0
III
-1 1
0.30 .02001 .060000 .50 .lB 3.512 1.047 .013 .00 PIPE
1 I I I 1 1 i
192!.00 1183.40 .753 1104.150 17.3 15.95 3.950 1100.101 .00 3.999 1.94 2.00 .00 .00 1 .0
1-
7.63 .02001 .069440 .52 .75 3.759 1.047 .013 .00 PIPE
I I I 1 1 1 I I 1 1 1 1 1
' 1935.63 3193.55 A28 1184.278 17.3 16.73 4.345 1199.623 .00 1.998 1.92 2.00 .00 1 .0
I
I
3.59 .24274 .069585 .11 .73 4.024 .532 .013 .00 PIPE
I I 1
1937.17 1101.92 .746 1184.670 17.3 16.15 4.052 1180.722 .00 1.990 1.93 2.00 .00 .00 1 .0
1.89 .24274 .062157 .12 .75 3.928 .532 .013 .00 PIPE
1i 1 1 t 1
1939.06 1184.38 .773 1195.156 I].J
15.40 3.684 1189.839 .00 1.498 1.95 2.00 .00 .00 1 .0
1.63 .24274 .054536 .09 .77 3.577 .532 .013 .00 PIPE
I 1 1 1 1 1 I I i I 1 1 1
1940.69 1184.78 .801 1185.579 17.3 14.69 3.349 3188.928 .00 1.499 1.96 2.00 .00 .00 1 .0
III
-1 -I-
1.41
1
3.43 .24279 .091860 .% .80 3.340 .532 .013 .00 PIPE
I I 1
1992.10 1185.12 .830 1185.952 I].] 14.00 3.045 1189.996 .00 1.498 1.97 2.00 .00 .00 1 .0
1.22 .29274 .042030 .05 .83 3.119 .532 .013 .00 PIPE
1 I I.
1943.33 1185.42 .061 1186.280 1].3 13.35 3.768 3389.048 .00 1.990 1.90 2.00 .00 .00 1 .0
3.07 .24274 .036934 .04 .B6 2.911 .532 .013 .00 PIPE
I 1 1 I 1 1 1 1 I 1 I 1 1
1944.40 1385.68 .893 3186.571 17.3 12.73 2.516 1189.007 .00 1.498 1.99 2.00 .00 .00 1 .0
.93 .24274 .032462 .03 .89 2.715 .532 .013 .00 PIPE
V 5 P G N - CSVILDESIGN Vera 7.1 PAGE 6
For: RANPAC Inc., Temecula, URrnla - 5/N 560
MATERER SURFACE PROFILE LISTING Oa[e:12-19-2001 Time Ill: 1:13
TRACT 29734 - LINE "K"
e 12
RO -DHYDROLOGY / LINES
DATE: 12-11-OS
I Invert I Depth I Water 1 0 1 Vel Tel 1 Energy 1 Super ICriticallFlov ToplHeight/Wase Vt1 INo Nth
Station 1 Elev 1 IFTI I Elev 1 ICFSI 1 IFPS) Head 1 Grd.E1.I Elev 1 Depth 1 Width !Dia.-ETD): I.D.I EL IPra/Pip
L/Eleni PM Slope! I 1 I SF Avel HF ISE Opth1hl Frouae NINorm Op I "N" 1 I ZR !Type Ch
I 1 1 1
1 1 1 i I I 1
1995.]] 1185.90 .926 1396.BI0 17.3 12.14 2.29] 1189.11] .00 1.499 3.99 2.00 .00 .00 1 .0
.01 .24274 .020547 .02 .93 2.532 .532 .013 .00 PIPE
I I I I 1 1 I I I 1 I I I
1946.03 1186.10 .961 1187.061 17.3 11.57 2.080 1189.140 .00 1.499 2.00 2.00
' .00 .00 1 .0
-1- -I- -1- -1- -1- -1- -1- -1- -1- -1- -I- -1- -1- 1-
.70 .24274 .025119 .02 .9'0 2.359 .532 .013 .00 PIPE
I II
1946.54 1186.27 .997 1181.267 17.3 11.03 1.890 1199.158 .00 1.499
2.00 2.00
.61 .24274 .022113 .01 1.00 2.197 .532 .013 .00 PIPE
I I
I 1 I I 1 1
3997.44 1386.42 1.015 118].953 1].3 10.52 1.719 3189.171 .00 1.498 2.00 2.00
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- 1-
.52 .292]4 .019994 .O1 :.D4 2.045 .532 .013 .00 PIPE
1 1 1 1 1 1 I 1 1 1 1 1 I
1947.96 1186.54 1.076 1187.619 17.3 10.03 1.562 1189.191 .00 1.998 1.99 2.00 .00 .00 1 .0
.44 .24274 .017200 .O1 1.08 1.902 .532 .013 .00 PIPE
I 1 II I
1948.40 1186.65 1.310 118].]69 t].J 9.56 1.420 1109.189 .00 1.998 1.99 2.00
.37 .29274 .015104 .01 1.12 1.767 .532 .013 .00 PIPE
1
1998.18 11156.19 1.162 118].90] 17.3 9.12 1.291 1189.395 .00 1.998 1.97 2.00ill
.00 .00 1 .0
-I- -I- -I- -1- I-
.JI .24274 .013421 .00 1.16 1.640 .532 .013 .00 PIPE
1949.08 1586.82 1.209 1189.025 17.3 8.69 1.174 1189.199 .00 1.498 1.96 2.00 .00 .00 1 .0
.25 .24279 .011882 .00 1.21 1.520 .532 .013 .00 PIPE
ill
I I I
I
I I
1 1
1999.]] 1186.BB 1.259 1188.115 17.3 8.29 1.067 1109.202 .OD 1.498 1.93 2.00
'1 -I -1 -I -I -I -I -I -I -I -I -I 'I
.19 .24274 .010537 .00 1.26 1.406 .532 .013 .00 PIPE
V S P G N - CIVILOESIGN Vers 7.1 PAGE 7
/ For: RANPAC Inc.. Temecula, California - S/N 560
NATER SURFACE PROFILE LISTING Date:12-19-2001 Time:11: 1:13
TRAGI 29734 - LINE "%"
FN: R81AND DAOIAGT / 11y
E.S
DATE: 12-17-01
I Invert I Depth I Water I 0 I Vel Tel 1 Energy I Super ICriticallFlov ToplHeight/IBase 0911 INo 6181
station I Cleo I fRl I Elev I (C F51 I (FPS) Head I GrO.E1.1 [ley I Depth 1 Width 101.1.-rTIor I.01 IL IPra/Pip
L/Eleni ICh Slope] SF Avel NF ISE OpthlFroude NINorm Op I "N" I ZR (Type CN
1 I
I I I I I I 1 I I I I I
1949.52 1186.92 1.312 1108.234 17.3 7.90 .970 1189.204 .00 1.498 1.90 2.00 .00 .00 1 .0
1
.13 .29274 .009364 .00 1.31 1.299 .532 .013 .00 PIPE
I
_ 77
I
I I I I I I I I I -I I I I I
1949.65 1106.95 1.369 1169.121
17.3 7.54 .882 1189.205 .00 1.498 1.66 2.00 .00 .00 1 .0
3-
.08 .24274 .008343 .00 1.37 1.196 .532 .013 .00 PIPE
I 1 1 1 I I I I I I I
111 1949.]) 1186.97 1.930 1188.409 17.3 7.19 .802 1199.206 .00 1.498 1.81 2.00 .00 .00 1 .0
-1 -I
.03 .21279 .00]95] .00 1.43 1.097 .532 .013 .00 PIPE
I I I 1
1949.76 1106.99 1.498 1189.470 17.3 6.85 .728 1189.206 .00 1.498 1.73 2.00 .00 .00 1 .0
-I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
' WAIL ENTRANCE -
1 I I 1 1 I I I 1 1 I I I
1999.76 1106.99 2.566 1199.546 17.3 2.14 .Oil 1189.617 .00 .960 3.14 6.00 3.14 .00 0 .0
-I- -I- -I' -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- I-
I
I
I
I
I
I
III
I
7f
I
I WSPGN - EDIT LISTING - Version 7.0 Ua[c 12-19-2001 Time al: 1: 5
DATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1
CARD SECT CNN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y111 1)21 1131 Ylq Y15) Y16) YI71 Y(81 YI91 YILo)
CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP
II COC1 4 1 2.00
CD 1 1.50
D 2.00
CD 4 2 0 .00 6.00 3.14 -.5D
WSPGN PAGE NO 1
I
WATER SURFACE PROFILE - TITLE CARD LISTING
HEADING LINE NO 1 IS -
TRACT 29734 - LINE 'C.
HEADING LINE NO 2 IS -
EN: ROLAND HYDROLOGY / LINE%
HEADING LINE NO 3 IS -
DATE: 12-1J-OS
'
WSPGN PAGE NO 2
WATER SURFACE PROFILE - ELEMENT CARD LISTING
ELEMENT NO 1 IS A SYSTEM OUTLET '
U/S DATA STATION INVERT SECT W S ELEV
1629.29 1160.96 1 1161.96
I ELEMENT NO 2 IS A REACH
VEA DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
1651.62 1162.10 1 .013 .000 .000 .000 0
ELEMENT FO 3 IS A REACH
U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
1653.62 1162.22 1 .013 .000 .000 .000 1
I
ELEMENT NO 4 IS A REACH =
UAGA BTATION INVERT SECT N RADIUS ANGLE ANG PT MAX H
1655.62 1162.33 1 .013 2.046 56.021 .000 D
ELEMENT NO 5 IS A REACH
U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
1699.63 1165.25 1 .013 .000 .000 .000 0
ELEMENT NO 6 IS A REACH •
' /5 DATA STATICN. INVERT SECT N RAOIUS ANGLE PT MAN H
1120.00 1166.60 I .013 .000 .000 .000 0
ELEMENT NO ] IS A UREACH •
U/S DATA STATION INVERT BELT N RADIUS ANGLE AVG PT MAN H
1780.00 1160.45 1 .013 .000 .000 .000 0
ELEMENT NO 8 IS A JUNCTION
' V/5 DATA STATION• INVERT SECT LAT-1 LAT-2 N 03 p9 INVERT-3 INVERT-4 PHI 3 PHI 4
1880.02 1102.45 3 2 0 .013 12.95 .00 1184.45 .00 90.00 .00
RADIUS ANGLE
.000 .000
ELEMENT NO 9 IS A REACH •
U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN N
1882.15 1182.48 3 .013 .000 .000 -19.690 D
I ELEMENT NO 10 IS A REACH •
U/5 DASA STATICN INVERT SECT N RADIUS ANGLE ANG PT MAN N
1935.63 1103.55 3 .013 .000 .000 .000 0
ELEMENT NO 11 IS A REACH
U/5 DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H
1949.76 1186.98 3 .011 .000 .000 .000 0
ELEMENT NO 12 I5 A WALL ENTRANCE •
I U/S DATA STATION INVERT SECT FP
1949.76 1186.98 4 .500
WSPGN PAGE NO 3
WATER SURFACE PROFILE - ELEMENT CARD LISTING
ELEMENT NO 13 IS A SYSTEM HEAWORKS • •
I U/S DATA STATION INVERT SECT W S ELEV
1999.76 1186.98 4 1186.98
I
III
III
III
I 7c::::? 923coo
79
I
' T1 TRACT 29734 - LINE "X" 0
T2 FN: ROLAND HYDROLOGY / LINEX
T3 DATE: 12-17-01
IISO 1629.291160. 96 1 1161. 96
R 1651 . 621162.10 1 . 013 .000 . 000 0
' R 1653.621162.22 1 .013 .000 . 000 1
' R 1655.621162.33 1 .013 56.021 .000 0
R 1699. 631165.25 1 .013 .000 .000 0
R 1720.001166.60 1 .013 .000 .000 0
R 1780. 001180.45 1 .013 .000 .000 0
II
JX 1880.021182.45 3 2 .013 12.95
1184 .45 90.0 .000
R 1882.151182.48 3 .013 .000 -19. 680 0
R 1935. 631183.55 3 .013 .000 .000 0
' R 1949.761186.98 3 .013 .000 .000 0
WE 1949.761186. 98 4 .500
SH 1949.761186. 98 4 1186.98
CD 1 4 1 .00 2.00 .00 .00 .00 .0
' CD 2 4 1 .00 1.50 .00 .00 .00 .0
CD 3 4 1 .00 2.00 . 00 .00 .00 . 0
CD 4 2 0 .00 6.00 3.14 .00 .00 -.5
' Q 17.28 . 0
II
1
II
II
1
II
II
I
I
1
II
SO
I
I
I
I
I
IX.
I CATCH BASIN SIZING
I
I
I
I
I
I
I
I
I
I
I
I
I
S1
***************************************************************************
****** STREET FLOW CALCULATIONS ******
CALCULATE DEPTH OF FLOW GIVEN:
' Street Slope =
.024600 (Ft. /Ft. ) = 2.4600 %
Given Flow Rate = 17.28 Cubic Feet/Second
1
*****************************************************************************
This softwareprepared for: Ran ac Engineering
*****************************************************************************
*** OPEN CHANNEL FLOW - STREET FLOW ***
' Street Slope (Ft. /Ft. ) = .0246
Mannings "n" value for street = . 015
Curb Height (In. ) = 6.
Street Halfwidth (Ft. ) = 30.00
Distance From Crown to Crossfall Grade Break (Ft. ) = 16.00
Slope from Gutter to Grade Break (Ft./Ft. ) = .020
Slope from Grade Break to Crown (Ft. /Ft. ) _ .020
' Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft. ) = 12.00
Slope from curb to property line (Ft. /Ft. ) _ .020
' Gutter width (Ft. ) = 2.000
Gutter hike from flowline (In. ) = 2.000
Mannings "n" value for gutter and sidewalk = .015
Depth of flow = .484 (Ft. )
Average Velocity = 5.21 (Ft./Sec. )
Streetflow Hydraulics :
Halfstreet Flow Width(Ft. ) = 17.85
' Flow Velocity(Ft. /Sec. ) = 4 .55
Depth*Velocity = 2.20
Flow rate of total street channel = 17.28 (CFS)
' Flow rate in gutter = 5. 84 (CFS)
Velocity of flow in gutter and sidewalk area = 7.293 (Ft./Sec. )
Average velocity of total street channel = 5.214 (Ft. /Sec. )
-t_f f ‘,./A-PJIT-r c ( 4um"r .c),1o(n orJ')
a . 44
( 4- (. g(2-) ) O- 4g1, s
1 � 6 532 cr' 17. 26 Gr 5
I
Jr 9-- 0I r 1 .
1
�oZ
' IATUa tj. Sl a r-3006 IJ0 1 \
****** STREET FLOW CALCULATIONS ******
CALCULATE DEPTH OF FLOW GIVEN:
Street Slope =
.024600 (Ft. /Ft. ) = 2.4600 %
Given Flow Rate = 4 . 92 Cubic Feet/Second
1
*****************************************************************************
' This software prepared for: Ranpac Engineering
*** OPEN CHANNEL FLOW - STREET FLOW ***
' Street Slope (Ft./Ft. ) = .0246
Mannings "n" value for street = .015
Curb Height (In. ) = 6.
' Street Halfwidth (Ft. ) = 30.00
Distance From Crown to Crossfall Grade Break (Ft. ) = 16.00
Slope from Gutter to Grade Break (Ft./Ft. ) = .020
Slope from Grade Break to Crown (Ft. /Ft. ) _ . 020
' Number of Halfstreets Carrying Runoff = 1
Distance from curb to property line (Ft. ) = 12.00
Slope from curb to property line (Ft./Ft. ) = .020
Gutter width (Ft. ) = 2.000
' Gutter hike from flowline (In. ) = 2.000
Mannings "n" value for gutter and sidewalk = . 015
Depth of flow = .335 (Ft. )
Average Velocity =
4 .06 (Ft./Sec. )
Streetflow Hydraulics
Halfstreet Flow Width (Ft. ) = 10. 42
' Flow Velocity(Ft. /Sec. ) = 2. 98
Depth*Velocity = 1.00
Flow rate of total street channel = 4 .92 (CFS)
' Flow rate in gutter = 2.81 (CFS)
Velocity of flow in gutter and sidewalk area = 5.575 (Ft./Sec. )
Average velocity of total street channel = 9 .060 (Ft. /Sec. )
' 'C/".‘ ei c— tt Gf11.G111--1t'l0ht.. ( 4 ma c c 4A+n0�\
0.3P)t,
wc, 14'
i � ,5
t6
go3 of '7 4612 of "
' t,J` 14 Is O 4.
23
1
1
1
1
X.
II HYDROLOGY MAP
1
'1
. 1
1
1
1
1
1
1
1
1
1
1
84{