Loading...
HomeMy WebLinkAboutHydrology & Hydraulic Calculations 12/2001 die Trans-Pacific. CONSULTANTS 1 1 HYDROLOGY & HYDRAULIC CALCULATIONS 1 FOR TRACT NO. 29734 1 1 1 / WON SANG YOO, R.C.E #26457 I Prepared By: Trans-Pacific Consultants, Inc. 27431 Enterprise Circle West a FEss'oNq Temecula, CA 92590 toasANGyoo�2cm ' f' Na 26457 A ' DECEMBER 2001 Exp 3-31-04 \ CN11 rq�OF 0004. 1 1 1 SUBJECT: Drainage Study Hydrology and Hydraulic Calculations PROJECT: Tract No. 29734 ' PREPARED BY: Roland Francisco Trans-Pacific Consultants ' PROJECT MANAGER: H. Jei Kim, PLS Vice President 1 1 1 1 2 ' SECTION TABLE OF CONTENTS ' I. INTRODUCTION II. RIVERSIDE COUNTY RATIONAL METHOD HYDROLOGY INSTRUCTIONS ' III. DESIGN CHARTS A. Runoff Coefficient Curves for Soil Group—B B. Slope of Intensity Duration Curve C. 2-Year— 1 Hour Precipitation D. 100-Year-1 Hour Precipitation ' IV. 10-YEAR DEVELOPMENT STUDY (DEVELOPED CONDITION) ' A. 10 Year Ultimate Study B. Flows Tributary to Camino San Dimas V. 100 YEAR DEVELOPMENT STUDY (DEVELOPED CONDITION) ' A. 100 Year Ultimate Study B. Flows Tributary To Camino San Dimas VI. 10-YEAR EXISTING CONDITION A. Basin A ' B. Basin B- Tributary Flows to Camino San Dimas C. Basin C VII. 100 YEAR EXISTING CONDITION A. Basin A B. Basin B-Tributary Flows to Camino San Dimas C. Basin C ' VIII. HYDRAULIC CALCULATION Line X IX. CATCH BASIN SIZING X. HYDROLOGY MAP 02 973 3 ' z 0 F F U 0 z I me in la in l an an NE in no e n al um la 1 I. INTRODUCTION ' This project is to divide approximately 10.81 acres located at the southeast of Redhawk Parkway and Highway 79 South, northeasterly corner ' of Via La Colorada and Camino San Dimas. This report covers the hydrology and hydraulic studies conducted for the storni drain design of this project. ' The hydrology study for this tract was done using the Riverside flood Control District and Water Conservation District rational method. The soil type was found on plate C-1.52 hydrologic soils group map. The soil type for this tract is mainly Group B. The intensity for this tract was found on ' plates D-4.61, D-4.3, and the revised 24-hour isohytes for Murrieta Drainage Plans Study. 1. FLOW ROUTING ' In the existing condition, the major watercourse runs to the southwest corner the tract. The developed condition ' has lesser acreage of flows going to Camino San Dimas compare to the existing condition. After build-out of this tract, there will be an increase of approximately 3 CSF to ' exist 24" RCP built per Tr. 23064-2 considering 100-year storm event year. 1 2. HYDRAULIC ANALYSIS ' Necessary hydraulic calculations for Line "X" and catch basin sizing are included in this report. S 1 1 1 IL ' RIVERSIDE COUNTY RATIONAL METHOD ' HYDROLOGY INSTRUCTIONS 1 1 1 I 1 (o I . INSTRUCTIONS FOR RATIONAL Mr2HOD HYDROLOGY CALCULATIONS (Based on the Rational Formula, Q 3. CIA) II1. On map of drainage area, draw drainage system and .block off subareas tributary to it. I 2. Determine the initial time of concentration , "T", using Plate D-3. The initial area should be less .than 10 acres, have a flow path of ' less than 1,000 feet, and be the most upstream subarea. ' 3. Using the time of concentration, determine "I", intensity of rain- I fall in inches per hour, from the appropriate intensity-duration curve for the particular area under study. For areas where star_ dard curves are available, use Plates D-4.1 and D-4.2 to reproduce• the standard curve. For areas where curves have not bean published by the District, use Plates L-4.3 through D-4.7 to-.develop a suit- able intensity-duration curve. I 4. Determine "C", the coefficient of runoff, using the runoff coeffi- cient curve which corresponds as- closely as possible with the soil, cover type and development of the drainage area. Standard curves I (Plates D-5.1 through D-5.4) have been developed by the District for the common case of urban landscaping type cover. Where these curves are not applicable, curves may be developed using Plates ID-5.5 through D-5.8. 5. Determine "A", the area of the subarea in acres. ' 6. Compute Q = CIL for the subarea. I . 7. Measure the length of flow to the point of inflow of the next sub- area downstream. Determine the velocity of flow in this reach for the peak Q in the type of conveyance being considered (natural channel, street, pipe, or open channel) , using the tabling aids on IIPlates D-6 through b-9.. Using the reach length and velocity determined above, cctpute the II travel time, and add this time to the time of concentration for the previous subarea to determine a new time of concentration. ' 8. Calculate Q for the new subarea, using steps 3 through 6 and the new time of concentration. Determine "QP", the peak Q for all sub- areas tributary to the system to this point by adding Q for the I new subarea to the summation of Q for all upstream subareas. Deter- mine the time 'of concentration for the next subarea downstream.using Step 7. Continue tabling downstream in similar fashion until a junction with a lateral drain is reached. • . RCFC F C & WOO RATIONAL METHOD ' HYDROLOGY MANUAL INSTRUCTIONS . • PLATE D-I (I ' 7 9. Start at the upper end of the lateral and table. its Q down to the I junction with the main line, using the methods outlined in the previous steps. I10. Compute the peak. Q at the junction. Let QA, TA, IA correspond to the tributary area with the longer time of concentration, and QB, TB, IB correspond to the tributary area with the shorter time of I concentration and Qp, Tp.correspond to the peak Q and time of concentration. . I a. If the tributary areas have the same time of concentration, the tributary Q's are Addeddirectlyto obtain the combined peak Q. ' Qp = QA ÷ QB Tp = TA = . TB ' b. If the tributary areas have different times of concentration, the smaller of the tributary Q's must be corrected as follows: I (1) The usual case is where the tributary area with the lon- ger time of concentration has the larger Q. In this case, I the..smailer Q is corrected by a ratio of the intensities and added to the larger Q to obtain the combined peak Q. The tabling is then continued downstream, using the longer time of concentration. I m _ IB • I '(2) In some cases, the tributaryarea with the shorter time ' of concentration has the larger Q. In this case, the smaller Q is corrected by a ratio of the times of concen- I tration and added to the larger Q to obtain the combined peak Q. The tabling is then continued dcwnsteam using the shorter time of concentration. ' QP QB + QA TB Tp TB TA I I • ' R C F C a W C D RATIONAL . METHOD I HYDROLOGY MANUAL INSTRUCTIONS • I ' PLATE D-I (2 of 21 8li 1 1 1 DESIGN CHARTS 1 1 1 1 1 Y L00 . I 2 3 4 5 6 : 0 ! —H.Wa_IWhIiPiiuIInrnuuhunpoIllhJffffhJIm : "••--- -tttttttt NNtww mwtttttt_wtttt�t,p,��t�,���lip, itnalt ar twntttNtttMtttt.ttttnttttwwwttttt 7tttNNttw• •9 attNttmNwttNwmttttttNNwttaa ���I�I���Il�liitiilitiiiti a attatamttmm�twtutwttNttttNtttt ttttwnnntgwnmt--UNNwnttwttttulanmttttttntttwttt .9 flU— tw. mttwtaa■�nr_....sio■■tita tattNtNwtt1t tttmmtatAtRrf-d-lNliaankl �= mNwttttwtMttt INMMMMtta�umtttw •• tttwptUMNa2M 1Aw jautwt-wt■MEM-�myntm•mmpoaMNNtum t• DIMEtt■��YNtt!CT�,l7� inanows�-rIMIll att■Ntttt�- ttP t_.=MligiAlrr- .�]•\S�sr�j i•�N1Mnr-i.m— - N ttt tuft.. 1 tP Z:11a�(�l• tYst�ttttt�—ataataa tt-ta\ -�NtNtttt!!.:att��tttttt■!!_.3-r�Att�ttwtttNN 6 — i�11 aattwN■r,.�wttt.rs- ■.��tt�Nt■�..otu • �yv- attMtt� tN �� tt■!r:■wutNtttt—tw•tH aaaft/a4�!• a --mio1t■�mttat—■!a•ltwttwtnnuttt—tnw .e tttt/aWaRa� . 'mtnttttt•��•E�•: --ter tw—tt-t� wttwtN 1 nary l-�rs• mitio i•.a mMa•�nws-a�wnNURtttutttm . ..trlRIPEariwwVa3��V_dikar�wtttrt ....1 it.tu■l••an tt .tNNryrialneritNttwttP%mmu tot ran imNR\.Y irreatt♦0♦NN�twt nro-- ttttttttut ma Mir a—N.v att�w N •nmtt4ttwfttn• M uunwr i tmnpra aarr aNu tttatt awtattarattmtt ammo .Ntad 7 s�ranr alma atattetra"�••wwrat�ittw — tttutwt••txwtp =®a�ut,.t��rr��t��araw � �ptttwtw ttntttm .7 ilmaill 111 �a __.1,�N anac-A ' AutttwttttnttuttNm•nm• , , tt in ary Pr �Nw•mtwv�•a�tiriw�t•• tit r' ®Y' ams Nwttn ouannu ttuutttttiw p. wires r „Ana- t tnawNtI , . n • Z. 6 ,SO '�attp ttp�tttt����t t �N/nnarfi�d mwwtNt t—•�•ttttt� tp. : : : f 1 N I .pttNttttnUN NNttwttNttntttttunnatm .6 ta/��lttttn��'atQoY/tttVattwttutwwNtwtwtttttn. tttuttnt��wtttgqt�t p1 , ••atiN••O7YREIM11Y11tmttttt•••nt nNN �tttn I�t�t•■■t�gpttt is . I' . 4-. a ra ITS. a.Itw NwttNwtt■tttut to I • 1a� r aA Ata:�tw NNtwwt■■■tat�ttttttiaMEM=ttN ■ .5 Bat!ltZILW I tr'��•••p�jdMili�t tt•••�t•�MEIIIIIME Stttt\tn•u : i H • 1 uxiu �ttt■rt�e..��7AttltttttnwwNNNmtwttttwtttWtt�nttt rntt•at�r�l�t wtmtnttttn■ ttt tttwtitt W .5 Minn v n ■ : AFJD US •l• .w . l•PME, uttUU : : , • i M 8••F ► Nuttwa_wtit_t_UNnttw• inwt . tutttm_NN—Nttnwmttttntmuttttmv 1 LL' lltttr/ttt/LL.7t ttt MIAMI ttNtNNNattmtattIMMII ttNNttnttt lJ.l ■ �tti!—t/ttltttttttttIMIMMwNtt IIMMIMtttttttttttttttttttt O ■ 4 iwr-iiu iiimmumummumtmormemarmillim elle--••t illuimm V • •4 lMMIrMlt•�nNpy jul CI NTA OF I Vh CsrfR tamtttttttmat 111 ! . , � i , Ef � ; NhIIIiINIf1 ;1 I 1 i , , • , 1 .3 rAI AMINiiiiirigijinni oiR uiunliiliuui mg'1ius •3 III Fininanninalin•malitilaMMI WI ■tt•ttutwtatutttatttttmw_Ntnttmttttttt ttttttt.NUUWUUN iNcri nal Sal annallinlinilThEMIMMIMINEWINII ttrap Nttttnntattattttttt_Nwtata id ,full■.ittttt■u■ tnt—atattttnwwwttu HYDROIMMO LOGY /JANUAL 1 2 11111 t 111IIIIIIIIIIIIIMIIIIIIIIIIMIttttttttttttwtNttNt ••••ii .2 11' " ; ' li ( 11110.11.1111I III RUNOFF COEFFICIENT GROUP-B CURVES III SOI I i COVER TYPE-URBAN LANDSCAPING III IiH f AMC-II I 1111111 (RUNOFF INDEX NUMBER 56) 1 IIIIIIININIIf111 tttttlIINNNNNUUNtttttttttttttattttttta.Nttta •1 tfUONNtnuN.nUUNtt tt.Ntttttnn_tNt ®H®W 6':NNNEIM.IIIIRIMI1111=IMMIN 1 1 ettt tttwamwtftttmuNt tttaNtt®NNNatttumwmam. I ! . r ; . ' RAINFALL INTENSITY IN INCHES PER HOUR i I ; ; ; . , 0 , • • , ' 1 0 IN--mtumtuNaam®Nwtataawmmam : . . ' . 0 2 / cz>t 9 784, 6 LATE D-5.2 /e) • . , },.3_L,,_qty, `- .. .._._., f f, i.e./ • x • ,• • tr., !dNa, = ` :�4c' t.' ''r• • � • ::W , 1, :4•j,. may'+ , '1� •'I_.r' i'•{Nt' �. _II M al L _.•F '4''' 1 '�i�t w(U � L 1�, `rh .�2 • 1 • . h S �-,���. j- ��. -...?.• -;�•I ' j. Y ' •;,�,-' ;�c •�. ,: ._ •:t. A, A4 .i' . f 1t•W 4, ��� •X11 ' ' ,K/ r' o = Q r M r •• • ...7%,,„,,,f,._ t•.{J . t.,.,, t''`"•-J ^/�, , F�=}r-.i "...,, , •''�,���y •..,:i-, ,s. .,, "4. 0'i -k tom+' / t ;r ■ - .I d4 21r�. L" �. F- ! `Q `, a ,'r ':e'}' .1% 7:NUi• �,'4. : - •r l•:tJ w.).,,•r'�/. • �:S••l1 '�� � i /. Ai'N a _ - �ra 1 ;' t. ,'.i. . Y.• . •'afr, O dfl.,JA0 � at �• A .�' J• 'I' 'M'' >< oA,� `�' ''K''i1: r1 ,I l -1- y. z ?j , ,tb! • -a1 ,1-i _ ' fit • l a. 'i;' iiii f 'Yt �" Q , I I-1 ..a.}�_. d1' ► , : ' ..' • I i __.-' r „I I � . - •:i.'gq c�:,, 1.' V /X• b_ f!' r , • 'mu;' ( -:` ,,t r y�'ti%.` ` _ r• ,D:. v4.`• Q 'Z • .1 If. ,(.[ e'• y, �Ji,'Q` , , ?Ai., ,rt I' I� 1 , ,. fP ft ��/ Y J-,.• t•T{' .: `•�f' •f•,i• ' U U r y,•� • / * • ! ''''.1 gyp r �� p . I�•";‘•414'1%.1 ',,� ,il .(, Ct :, w r`-• ;▪ ...47`,0"- ,f� 1j;• ,;t• ��a i'. .,.ti f. r '-- f ..r _f3��,ii �l r :. 1 \ ,i ?:1-12--.••.-4 --t *f`• �� 7• r.�,.u'.fi'"�• Y, ALJ ' a • .4 S. b,-,• SE._. .'v vss .,). 5t ~�Y • ^, - i .s •y,1 _ .. '� .fA w 1,�; 7^" 'r'.rV'. t.�. W 0 ; �� I 1 J '`sv�,1LL Xr C r." t. .1 r a- R' r 'I't' i' 'v'µ�•Tj+'r-l+ '3 f.� �f•• _ ''}'e^.•,• -,r • i.lpiv...,'.t 7t, 1.• •• • i, U1 1- a eio 1. •( •••"-IP.• i l4'2"tf• / r- ..76--1,...%.,"..'"'"I •tA i. • i� :ili' ''1 i 1 `• r L ', .i,iir `� • '.. 'I - ryf ,. I W �1 rcc �rf•",tId p/{{{.Yi`,ice -•1 5-'14, 1 •i-.1.,..„,,,,,'",.... i :+7(i�•+ ".;;-4t.:."71. I` i' ' ;,„.r 7.• , ' / h' ; �• `+r r� % '� •J f r 'hG7l` f '�, •�,,•! I '•I -r- -i..:!",,4' Is ', .�'e ••r•h, -c-w. i .......,;•4.,` -.. . [ 1 a i •�tiL; J y .) r... ) 1)'"I''• ow}F.r•'i..•• 4.,• ;,;'` I 5 J✓ l r :r Y' S ,'•• . 1 41, Sr { I.�S J r '.'/V.") '#'4"1-..''i y7 1'i .`f il.'. t" ti .'•�1 ', • :Ij'`T„.. -•-••' tri •E. •�prt, •,.• F,,.e. • ':. /fr 4:{,'12 I. 4,l :I SSS°' s!”.1 :i::r...I:- ••'1.1'.-11'...` II ,a yt' ••••7''.' f.•• .,111'''''..‘7:--..''''''' , './ j' ~f'r 1' 'Z• ,I! /'-"' •1.,• `i''i� ,-. • oiv;yam. • .Y. ,0., • ' ,� •s ' I "" --•4 •:. 1 .{%+:i z!. ': '„. >I^Lr,."(i'•.�• .,, • �'ri. /1 i., 'h,„.y1•�5✓ • .1 • ...�i.i�A�'"-1 .., _l'' ji'�1y f.,' .:,,. •4- s•-T• • :, :' .� ` �` !' r �� nYv,r,�? :0•[•.,4:;y'` _t. :/• ...il.,.., ,,•-• . •.. ..4 •'..,•r,y -,vv,;%..•' 1 1.1 .i ••••,'N,‘R' Ia. {• , •1 1:I.c ,• w F•t,,,,,,+, '� . • „,,,..1(:• • •• • ,ti"t,'J r •r•''� � r1. n” ice. , ^r 7 •r ;'i ';c; if rt,'`+"lS • •:. • °' �` IJ(. i,r 41i4•••-+- �'`••' I••1v:,, .V �' / / ?,ff' .p i' .(' 4^Y •4:, ark /•t•i, tij •�•�.�►• `},YL',r �}��!8 hi,” A7 �f• .f••�l }v �,, ✓, • &opwl iii . 4••• ry...6,--" N '/ �t•I`.' h f '{ I y- r° Y ,{t,i{.,�f + ,t/t'•�`T:S ��ir4I 1 11 4'f'l 1�i-' �t: ...1-,.., '•,. { ';r. 11 '•".:•-••••• • i'-"•7- Trs . ••••• i ,- --' 1 ..i. ';',.'-',...0-'4,...,'•` ` 1 •, •;1•.'y.*f.i r^- I• ` r h . ' "r aM E'i7' •. I- +i j{.- r. �l �. 4, a rti r r.Oil n1 ! • `` •A./ IL-. z ,, .. y :is, :4, a `,� / ' 'r (• ;ti•,� �t1 • � i. ri1 ;5 'fib '�:� I I F"r rE i 'L' ''•�`" „hr��\Irl' --'Y , '• � � rt b4 n Li? �_(' �L.%+ 1`., �jr+ 4. 1 �{'I�t.;::::'.....0.1;:-, � '7 { �'•'` �� 14,•••,;......,,%;,..: fit,;ray” • t•'/% ri'[ ,r #`•,.. - .•1'' a'.,"' ~•" r'S.i fi ?�. _ }C ,•,.i'��' r , i :i, W ': • z�'f:'�j-% :. .., • i �./ ' ', �'• 1 !/t •t� !1 •1!,:;''' • t 4• '. >• '4y e •,,., , r tt ▪ i' ` : 1\. •••!%•• ' •••5..• ..- ',..0. . s 4-:4 'Co • p••••CtO':dr:- .r;;"1‘r$5,7?' IF,/g ''•1 -'' '•..-- • .0''•;77 4 pr$.•.•'...-:'•:.••• -•:•$.1...:-.4--.1 • •Z4 ._. _ ),t,, .14 ,r,,.. ,, . .. .. s, ...,, , . 10:el:01 .. . .... c 40 .ostiso..(.1,..„,,,,„„, .....„,s.n.Cr . , 3 ' , ,,,,sa. ..t . ..... ,.... ,.irk! i. '4.,...,1...•.:-.....!. ..,7".....i.;7.11.;:rfj: 7 `1011 '1 r)•#1. '.;VP 10 it7' N• ,-- .• r 3 460 --, • k • ,'''.3'• 43•1 , ;•"...A31 A.1 •••;.A.•r.f• .0 4 •.', - ::ISTII ' f. ' ti '•;','.1.1 i'l. • . --..fr_i••i(......L.H._,• ..pt.. ,..,:./H. .0,... p..: .•:•:, .--..-i ... ,..,. . c, ..E.-tsf.. A 4,.. ........ [4iii.,t.li tel ri)49 41. ._:, . ,.. .....114-..i. •!,.•F... /IA'...) til,i• 5 .‘,, ,,.._ ,K;•.1..i ,..... . .• .1.ki'L :••• ••.....• / '. s:•••• '1" 1 -•••• iv ••• ._ . • .•A' '. .1.11 ..4 / ; • CI ..'i t) •$ : - Cr .2.' 4.*fP.•701•41raei ;114 i .--. \• I.-11... . :11.•:•,:6 .•;?ry.'...,. •5.,. P•, .1 .,-.2-•,, c..-,-1. ,,„ , ....- • 4 .1... € : • ,•••,• •• :;.$9i-- ni,4•1)/7.1* 4.-1„...• / -;45.4v`u , • if -I' 4, . •-,1 ' -..' -•••'-'11../L . ; ' 'One: . cp. 01 , .,4,,.. .! „1-.z.,_,...,i..k. ,...,__ ,......-„:„.. - -,..),,,,L,, ••• ., ,..., , ..4. .,.,- Ix.4-.'e, :‘,4...1-. ., i ,.. ..1S.„... .1,, . •,,,r3., ..„,,,,,,5......, p ,,„ 4 !kit,,,,,,,4 h.it..., 1,5g,,,,„..i••••,,,..7,..rt / . „„.....,..;,-, .- ; .:_ „7,..ii z___,....„. , 0) 1 - -i ---- 4. ... u (A ,. . ..... .• - • ..,.. 1,,,,..:1,... .... - ---ic:.„0",.., ,, 1 ... , .,.„5 ,.. 162,,m. i ___,I..;_ - = 1.,‘. -• ill i ill . i 11 , ita 6, -.,.A.:7 k Pt-:.-Ar .. : • .i.,•••••.- -. . %'' it, VP r)....1.•, •, - :•17r , - • (.- .,44t,ritro. • il•••• ,,D`• 4":'- •`';11%.... ..i..1,:. . ''. )1 'if, 411 ; -I !••:.11 ,Ir ' = ._ .(,);;MP;;,,...,),•4;••••:., o z .-F- .‘_-_) ,,ct ertidig'....• .,•• /..t. 4:"'' _ ... .- ,' , !Az; ,..A., i , ( .1...r: A 1..,7......,k„.P.7...:', ' 4,.."...... ...I,r . ,e Pit•IIN,te. , e ii, 3 se t, .: . -....... Cr n+ttiv• 'ckiji?},:.k so 0 - I--- • -.1 ..4Z:4,11)-4.• • •:,-17•-•1":, • ii•raPiFfi : A •sanfr..1.7-.)r. 1 '-• re ; ; it 'I/ 4111r14111 •'..till A•-+-•-. • .• ,. . rui I= . • LI a. - , ,...i.„, , <3( (i...,.,4 r, -1-f ir ' ' . tillINERIIII-- , :'. :, -?4,46.•.,,,te?,?>d,/,---2110-A,„2,v.T....,4 , ,,, •p,;... ..k••v,-,.:. ,7...•,,,....4. • ,•••••••,.u., r L4--•:e... :l • r gri wig rThme ( fill,.1 31 „A, .4.,..•••_41„,. • .4„.... ,_. z ). . ;Iike..„..i..,,•,,,,,21% . , „,:,,...,,,..,,,i„..•!. ‘..,„,,,, a ,,,A..6.1., i,„., .. ..,.„., „):-. ,--1 1 3. opip• , . ---,II. Int r`-' .74v.jr,r.,,, LU ii ' ••• A ...4q'.`; .2 •; ..- , •'-`R.1, . .. '-- f. . 11 'Zia 4,./ ^.' Ato • AMIN . .1 i'.• L 1 '..Pekt'. -4,6") ,'1 1':&,'et:14.' '3-, 1'.„14"'lk....1':•' E .'0•11• "'" is -,4'e'.p.f.' i. ,, i i•'.,.. (I,• k.itr .. "%If ,d• • Ai t 6:4R• v . / 0.6 Z ‹. Li j -.. ..• . •L •0••-',. '); -.. v , + •‘t ,_ _.. .-.:: ...,,:.I.-"‘...f., •s.... . „.. i •; .':<, e 1.,,, . ,.., , w.; .. .; .. ,; • ht.,-,, , -.7 , • ••,...'-• 'T • •••••1 1. i -.5"-1 / ' • t;° mi.. '.: .. ?•.)."•'•, 7.4-.; ai:.43444 . -,' ,)".• 6 ...D •.,.. NI ••. • ( , . t... «., • .• . i t) kJ CC ---L- •11:' ttkia 4, ,a,f,_ .. -iA• %,• :,-,,:i• ,), •. ols A.-"" VI 'Occr..' ,6.41q-1. . . '. P. '...Y..,...:Ii .0 izi-44...1.41 ' f0,... RI .--;}- . ' ki•• v;;;i1A1 ' PO°, .V..i...a2.0, , -P4., (Li ce > a. .4i 1, ..,-,,,..„, :veil. •,,ii144.... ;.-i-45-‘ •.:.• 4.-;...4„i„..... . , ,„,1/4 , ......ds.,,,, .... 63.... op . - ..1,--A.,...z..". o, .,:- ., ,A,. , i ..,,.,A, 1.,,,i,, : • 2 w 1 .... c 7. - - . .t.: ;r."441. *I‘d17i' • 5‘i, . '• " ''..,. 4•• '.'>'..... 1 ,:k.'4?'. 4' 1*".1...4 VI. , .. ., 13 te.-•. •"" ...1'; i',..---4 k:Lo 11-17,- .: - ., -•'. . r.,;6••. 1•2 ti 'N :-• ;.!..'" --...1,0 •. • .d.iti4j,z.!'4'.)r; Lij $-. .) , .,.-->. ,,, ..:.y.N...i, i, rf•-•1,.. I ., ,:-...f.4e:p--.; ' •i -e.,.,..T.--t .„ -lp-4tet 're.°11 > ysfu, II ( •Ii.:,WI ,i1.-1'•-•': -‘,,.1:4;1•4,',•,, -. ...` ,:.,yor., - , i • z 2,,,•,.., ,... .......-,, ,,e(4,.:,. ..'... ,,......A/.. e ,' .,w ,i ,•I E ririi„. ki V4,..,....1- • .i ; !• 4h,:ipaAr 7;.. if, c4,,,E1.„. .f.: • .L.r4„14.„,- ..,f,... .., 51 ).,.. f0. '1,..,'", ".-.:../do ,.,. l'• _4-1 r . ,..s.„.,.1.4 4: ,,,_,..,... • t., iv .....:Trr.lr iii•;•,:•c!. • • / ''' i;•••••,f' .*-- ' ,- lio.. 1...:,;?..s.,..1..:, ,-,•12,..>,-7,. ,ft,..".. ..,' ..%:., .,-•,1:.'1:14-, •-' ;.. ..4. 4. - •,-.7 ,'.,..4-ttie-t, .-..--„,...••• .4.;..,,•;•47.,. .••••• •f.*"...";.;:ti / .. 4''',C1, , ,, .,..1 . .• ,„t -•-•.. •.-.„.• ••• .. . „2.. , kr.-.)"... • I.,‘..,?'•,,.•.'iv)% 1. eck-ts • ' .0.'4'. fi••". •4'^.1.-ii r Is.e.cf;,'“ /6'rj-''' il': I' 1,11;117..., .It!';:7c;. !,/ 4-"•"'it'. -,i; ...:. C.V.:'..71., e‘ Z4:I ( \ ","--• 4 • 4 4_,..!......?..vr...r.,.,.. ) ,.,N ,, '''.:!,). ' *pt..1. ,•••••4s-: - f; 7.11 1 7 .1 .. . -- .1.,...4 :„..,,,„,ti •'• .24,--,S.L-i'• :!•41,...!.•:•, . il I, 9'.;,'„',',i,%:;, 4.*it,•',"r\.,ne 'Ir. -•-...N1 r%\if ..+:::-':;:ii,IFOY 1".•,, '1. ••1:;,-,Z.,.I, •'Lr''''' s‘ #' '' ' 1 ri 1...,J z., , • , - .. .1,A. ":". ''' •;60,t, "-- di -1;k kl. `‘,.• 4._;:::46.=.kinn'er / • ig‘• , , ,N‘. .-.44-4':•••4-- -- ..:'f 0 ••.1".7t,;(i.l•"'fl-sizx,r .„-,,•..: • _-.•• ,.• ,- ,, ;: ,•-•••• ,/ kf,z• 1 03 p.:: ox7.,,,..,,...4......-...,41;/ • A,'•-• .41 14 .. s • ! 6 - ' t., V,L,Ac7):*". ',.."`'N'ik 1 Cji• i'.... ! :i ,'olf41,',-- .1-:::' I. Jr.j" . - •. ' AI- ..,,_,....... • 5, . , . ...kJ • ''''3'''' •P-•-''e:.14‘ 'Ft2. i. ''/414‘, 1:40.4. '4....t.t. '•••••• ' ' ... ''••))%! r ' ft‘it.:' ...1 4 . .1.:•••'). -"./1",-;:-.)r ' ' '',"1". 1,, 41,.,t77:---t Poo).,;(••••ii---• • ...7, . ii . • f)::/---:'114fccilvi• tE;4,,,, . , r.. • -., ...,.. ,,, . I., ..ri.. • ''', Nr, ..t . • - A••• .7••\)1 i '• 1. '•...• 1 , t •'N....! !,./. ::Arcs, ,. '‘.:Jai,b• i•• :' -I, .1-PN;? --t,,-;,.,; ',`'.. 'I (1.4 • '-+-,'.. II' .-A. .;, "''. --1..-4r,!-......., • ',ire "r•- •-• -""..k. . ' St. A- :dr- i .. '' •".!..‘.16.,..).) .',...,.. •h__'.4,6,`..144 '1,i2" Ra.•!. • . 'Ar"..,...i& *puif,1 fiz,,...w;ssv; ,..,:,ff,7trfr, ,,tt •te44A,,.,f...,' ,..'i.:,,i,„:11-6t . ic -r 1 )' .zi.'.".,7,.p...,,,: v ; ',..*::,491i..ff 1';'-`).:(?..,...'".,.-.(.!.; ' '•,,,,,,' '.2.;',,' .. " -,V ct: ''. l'ili.g.vitp. .:,,,:i'C.:=3-..- e • .er--1,,,.14' 0' '.,. !"ii. ,..fe$:;,!'". ..,*..41!7i.,Y,•';•;.'14:'..1 ':.i' 4, C11..,....::::-.T 1- '" ,!C..:'' ;1`- ‘E..7;.-...11.`.„4.... ;4-A.,,,;i1.*,:,-.41r4c,...4,-.0(N. ...=-"." If• •„' ' .1 '•': '•'.','"?.-:to,'1_6-;;•-:.,.',,`sA,4:?it'• .,4.' ,),C$11.5.4.1.:f7 ,b '••••••... • • •t---• . i . / IC,. .t• ,,,yr•-• , .,N7 i.1 ..;+.... ' .t.e.1 1,'.. ,- ", ,..--1 ..* ...to, I . V.,‘WI,-., ... Sr" ...."4, .01.' •;••••A• 4 ••• i,-(71 • I p: ,,,,'"I ,-* e••• ;,"1/4-A1.4": .4.-1 - '--.,r-,•!•,-Aki.tt..',.4-,01. .i, :•44.ti.ii 7;--: .."....,..7') • '1'; - ,'• ,•:.•,,,kr eii.----g---, -'57 'I. -s.t.4:01.&47..13.k- 411•1[1••Siit..:Ii•g,;i...• •." ''''...L '' 1...••••• .-s_1$14. •"11.:.•• • ':.•iistia;.,••••••••••;',,,,10‘se«..#•• • '1... ' ,, . ....., ....... ..!..,....‘rif At i7.,‘,.. ,.,ie. .1.,.2.; Ir.,3.,%......-1,..•,1 ..., f.r-Th ..7.....+:1 . . -0 ,,, • 111.1... , „„..,:ter ,F...V.:}4.1... et!.;"'?....,1; 1?. ... _. ".„•-••er • ...) ... / . . . 1 ... 'e,:e• .ficwg ipt,;;,......nr*.e,A..,;.., :. ~-,..i"z "' •-•°. .:.,,,,zi..c.,10T??..e.-...v.f aii.0\.1, •.,,, .,,. ).,- pii ... , l',9 ..,:.,. •'•th''or• ':- . v '...: •,-4: ,3 , ,.---I. 1,,, -iii.;.-, 7146,\:,1 ., ,-- l'i 4,4:"....0...(A. 0 NS ' VI' fiitta...V.i•414,41.1N"J" ' 1 . .E!(. ' I/ ' P 1 *" 1 ' . .i' • 4.C. -4 . . * si.., 4 , ,...,,...7 •'.1 •r,r1:12..,,•'(-..M7f i.,,,-± I._ c._.',.,.,,) . il‘.7 ,. Y ''..2 4 / : • illr .:;,,,s•. . '• 7 •, -.*• '''....4 . lin:, ., iii,-.-,. ..0...4„. .i.;,. i• (AI.otkii, .•.., . ,, ,( ..,1,....;,,, ..,.,?. •,,,,,,:......,k1 . 1' . A 0 1 1:'...,.:5. Lt..7.,'..z.Vk'f.'H,r-e-A.,„,,,',.- '41.11. . ......1,;'ii,,';i i ' 414). .1-'..''O.' -I d.. . .7..•4 7..4c.,..4..44,7. 1...1.4. 1: ...:f.....:.`.. ,:z r. !,.7 ". 1,..A:....?,•_.--;-:,...also," 4•...1:Slif. r ... ,5. ."..j".1 .•".7".....ititr.: -'• Nrf-..':,Ve,. • ._. .4 1, ., 'e -rl i'l II f.-14..",,..)r-'1• . . .,•tel..) '''• .•-• •-(.4 ••• ..•• ilrilir .' i, . '/-*.v.• •••- t.•/,0-.-(..i.,••,*:‘.`:4, ..1% ..t.1.07'1:.'''''• In‘' .1; '' iri- • ......,a . , i;1...k....--7 44. 1' St 4.de pl, : , ,„•••, , ..•...e, 0,3: ;•,..6.`...De 1.11 ....c n.' ,e.',So.'jf. .0.„.../.11,\Lly.tr,„;,1_,/,•, •1/43,:l ' •Vt;,1 11'4,•'., 2.7••' ... • ' F, : .i ..•.Map led .,_'-- .."-- ,t. cr,....1.;;- .,;.• •......1 •,.7;...134. ••;--- .. ••- ' . f.: -4:;,,t, ..91,e.5.14!•V•Vt''.. /'4..i. ;.• .,j.:,...• 17,-.,.',V,i le, ).., . I' 4 N••.• ?( ' .,, ' 4 1_ •••ir._..1... ..I"- P.7. 7 ,...,?. ,.,...;%. ....r,ir..44. :.•. irt•;, -• Z1,,.,' v ;:!-• j : ,-,* i„ i..-: ;.i-, ,-,,.a-• ,.Ativli..... ...• L....A, .., . .3 . ....,... ...-,,,51: - ... .1,1. ...• -........rkce,., „ :e te• -, -•-..r--. *.• ..ii• , 44 '• '4 ., .••••••• .1., 7 , i ! r. 4 i 011911110i, . . - , , . fil1,440,•10... ,..4 ,..,t v• 1•Nr.. ik 4 ......••••• ). •N ..',1,21 .• *•'3 11:414''S •/..) •• •73 .::.X. - • i .1_, : • ...• r 4i) ''', - •'• • • .5,4-‘e : -;... . . --ifr i,..... ,..,.. . .... i .. . .......‘;;',.- - '• ''...,.. r.•Ip',/i 's: 'f--.. 2't-.1.; ...,Mr..11-,toe•-• •(// 1. .1, '4, , . ,01:174,1,-. --. . ,.-c-- 1.t.:7.44, 'x,„4.' , I-7 F J.,e. :. i A --.Nip • ..,- . . •,.,;,,,:. ...,.,,,,-,..' se,kzeg.;:::j.,.4,...,.:- .t---1 k '.11 4 IL..7 .4 j:i,,, 9,•„..:'•Y y . 'Z(''i iii4•„Ifil'q'e.'i.,, *1.fli,;& _ . i,'•. • ..,/.1 .. q .,. • • ........,, % ....,. I - I.,A 2, ..., ••. ti ,,_,,• . , • • At .i •• , . ••••. I., ,.., „Tv',•c• . p gv• „ ., 1.,,,;..1..4.4% y W.I.,.• ..,„ %...t.v. 111.„ C.Le. 'IC.S'l••. ' ."•• 't Ile `i . 'CI 4 c4. s'''' i';'• - 1 1 ‘I'Vi t • ‘• ' "7A.'s 1 -°' 41-1.-.....Ili/ a Ot"; ''.7s..11'.4;44,-11 7'‘.4';'...,":".#!;gr,..•*•.rfli:,‘,.....' ..`ifigpA'.7.17.7X4.''::::Cl.ik.14:'..1.I.,"... r;.„A. 0 : ':14;15,...•??1,;::.i:-/r'r9/..v.iii.N.....(qt•-'1'..'r•` !..(,'. •-•....:',,,k;,...41`4.,9•''./.0.;:.,..).:11,:(1.1.*:::„..H.:. ',I...-:','N.'',..,.'•.:\.•\• : 1.-•st): • '44.7 •-.0"4 -414%1 r' ,::•,...,t' I. - •-• e-. ..,r . • ..' = -...40 r.„?-0.-_,e..v.:,....4,--,.•-• f,e,' -,. -•-...7..e.:i2''''• ..% . • .:I .. ''. ' ... k:F, '7 - -It i'"-4;•.! ,.:=.0.14:.-•-.e.':•:..r.y-qi. 4. . ''.'; ''• ,,r4; 't''' --•;17.4.• d• ... • •r. ..i..•;• ,%. Plat4..!. ' %•Ji••4&$•V,e3:90.)i .....t.' '.1..4 V•-:1--- 2P...Y/••• 1 frrie;lid -.."1 '..:';' r..74.C17:-....ere...? :,!: 11;,;%:;',d‘ ..:A•41. -,-,:s* ,, ie, •1,„..._, fr,.,,( •-•-•%s•!.. -- t t •.,,,,ii At. 4.-. - 4 it tc"..• I. • .4 •'..A..r "4....%: %.' '' '''Trit.s: ' .. ...:. -..t % •,-,..w. .;:e .,,i....t.....:,.I,•,.i.;. -)•,,,..,_,, ' -ii , -14 •,1 ""......,rt 4-- r. ••,,c - ..AN, A..0,.. .. .. .: - -....:....,n4,..44.., ' S...S.• .'VI. L; .,'7' 4 ' 0. ...*J‘,I '? 0 .1t•e 'S.,'•'C ..• .''. .• it 1.V.4°'' L. .X CL7i,! r2 fl ••••,,,• . _ .0 , 4 . ..,.:00..... .. '..r.r4 -..., yr y i • •■•••• <a-4„....,.._ Ift 7...,,• •• et„,...•7 •, i, , ..• .....1%,-/ f ."'!)'....2'1' 'V....P- ' 7•::0":1“.‘ %.'F..,.4 .,...tli'. .:4'•". '.. . i. .../.4. ,, -,,:,,,... ,,, ,.ss.,,,.4.-..r..... ? ,..0. ••1,....... .1,,,,.4.%,„.4.•.; f.I1 et d.3,:,..r..::lel' .0 .eittfii,, ..„-, .1.;..., :_ ,,,....). , .. ... 0,i! /v.; '''../.1.,,e• 1. 1 . .. .V 0,%ter; ( ..... .4. f.4./ .. "".. 1.1.i , •1".1......t.V;..' :.- . • . C .... 4.4" ..." .C151:•tri.;;,41.'.0j ii..::: !Z....„,1ky'.-rzz.-41 r. ..: - ,, ., •: . 4 ..- • w - .0 , Iva .. .,. "s• .r. F..'1'.'r•-(7.;,. ...., ..•41r. '• ...r. 21. 'At t kr re', •••••, . y...1' 7. ., I ' if ti• y r, 4,-, .. .11 ... ••• 1.....1 ..1,.:...e i 1.&,. ,.. ' cff. ,..,........ ai,....,1,.. ..-, , , 1 I „ke .* ; .:(ittie I :'P r•ye ••••• 41" • i' 11, • ,. 4 , ,. .".• a .T--,r -.... ., ..%,, . ..' I.47.'1 240 .'. m•_-.:. 4' • • ...4. pr. !";_....i.,. mk J..,,,.. . .,,q,.."11.. .. ..'...,.4.. ..ZZ; . ) 0;.:.fr.::' 1:. 1.. • ' q V: ' g...r. . N. .15.e ,f-4-....- • :", elf, P r24.11,-i'S'•• 1• • --Ps eV"- /,/,1,ai=,' ,gr, IN 7'..2.': -....l...,.....1.;. -.%- °";.: ,,_,, • ..... , „ -..t, , - .- - .....'11,••• -.; st . . .T4),, , ,. •,..,-.. •••••.. :, . 121-z,..4... •3• . ,-i...f..).• . •• ,:r•••" •1.. ,V..• ;i ."' fing 1, P lir •.' '. ;"Vilki.:. il, • •L'5113.,• WI • •_..„?',. '117....:'"::•.1.4 WI:!IY:17t'' •-'''. a '.6....•'• l'• ..'.1 441:- .al',to kii;', :,:$ ' . ..... ii Id 17 r .., ,,,,,,4 4....1-.......,..-• :‘. :• ‘. •., ,;:„..g d:' tit:400. .. 1,13....11,. ..4 ., . o •..,,,e. , , . . i ir . A,-,-,k. A, .:..,.1 , •:v.; ;':'2'4".. ?• •$: A..• - .A.V .r:,. • ......tre u., I,t.vle; • ....,.„:\r• .. 1 ,,.. , • .." ii_rt 4.-.4% c.e;,.., ?, .." •.' ',1.':i::'••• %.,. i 1 ‘' ,{'.' . t„,yik:i , .-4,.. ,:.. „Li - •iti% .."4i1.. ' . ' ,..-• ...•• 'IT '• • •'''''. • '. ... 'ID...t444 4.Uf. .44.:''‘j ,..;'.,_' '6. -1,r-le'l. -1,07 .•‘-73- ii-eV‘, 4,i Vr-.e. i..ti'..o 4-....?"''''••• .titt%111...1.:- .. 1-•,,A pio s - ),-v...., - ' .. qa:,...,,,,.04,ii! 6. 1.:,••••) --e,p-tirtisiiii;.''...":' •:.-~": . ,,...- re. rit P...:3•-%.,11:, .`::...;•!::vii(7..., i. ' ;ET, I.,.5. i, ..,:..'k .?,,,:...,4.:•:,ft.i ,'f..:......,..t .ti'. ;Of r.„:..1.•-.1•;•'. 4.4ers I 4. •'''.:-f' il'..X7' clPrVe/i,;C'11'''';4?0 ll'e'.J.le411V'rt',' Pt•1' ' • :.14-1:. 'is ..' ...,."1,')ii ,l','•Vs.' a' '16':;.1.'cit.re.::''''''4<0. %. '' .-Iii _,.irrx-r- 1- .; ' •••.1.---s, . •••:.•- -..r.4-..--/%vn-Pf-1 - iv 4 ,,,.,.,,,,, ,,,,. ,,..,,,,,,,, ,, ,,„,,,:,, ,cs, -:..,....1...A jf.wif• :4-:.1...-",,,...41.,.. ..,(,,-,!,• .. 1,1, ....,,o..ivar. ..,:t , .,-% . ... ..- -.ti..!:,...,,...,.'P.A.:- - -,,, •--b, -..- ..1 ,e.. .. -• . ,.k.:4.;./. ,-;-,-;,.k-, 11, ..„.-, :.,..1..t. ? / . ' ',r :4'.... • , '..- ....,* .1."....,::". •%„:./''.., *.•.r•i.:..........00:4,........;.... • ill '.°• 14 . • • •••.: (- , ' •.1)*,.:fi. .•!:'•,,I 71. -, •'::tv. ;,1 <c. 1..,1.) ;-;.f... -::::.:;. ,4,:t -;:',ut .:.''':r.7.:i'l)'N [T V ''.• ''''i' •••' 4. , T• ,,_4%'44 ..j.;• "/„; .),,..' 4f, -.,....4"1.1.1d,,..j. ,:'''' ''.!, ilLiitr. - ti. . 6:‘i't:'s.."' ''• ..r,j:,,‘".....::;;Je's.1..." 4,-'#.' ,::',. t.1061.?-:\t'.;,.4.4-;•11.••'4,43. , ... .1...,• . ..N.,........; 4.:4' ...1.' "':.1.r.j......e4:"A.! ,Y.:17‘;',!:. `,,.;I7 .„.ri .,.... A Ai ; • ; • : f '4,;2", 11 7.. •‘:,,.;,it••:' ' -i: ',.._, *AL-I, 1 :is.k.11 ;‘..; '. -..... •k. . - ..0., .4,....„. 5,‘, ....::•...,,..,,,,r.c.E'./. .0 ...i... ...::, -.•• tr-.., ,,...v........:1,.-./:,.,, ...! ... „4,2/...;.••14 . 0.' fe6 ,i 77••••Al 4,,i: 1(,,,/1,:. kz?fi, .-,r$7.-; . .v..-..„ pl , . ..itAi - ,..-:;:,,,z,......,1 .. ,..‘,„,:-,to.si, . 4•1`..s,.,....-;:ii.1.-A42.• ., ' •,,i..1-4-;.:-1_,IN - T -1:-ti: ',.•).'''' -.-1' ---, •, ',7„ La' -v:. .,430, q r•(/',‘, 1 -,Y,,kr,,;:_cp.r.; ,',:,..11,.., , cl. r./ / •• :... it ,...„,c,,F.N,...4.. . ....;:..... .,,...?!,;...0.r.4.:,:r,...! ,,i.i.A.,..,.: c........., i c.:...,....., ....,„:...., ..:_ „....i.:.... ....;,... ... . .:. .... , ,,..i,;r..- • •'I, "w :"..,-.4:..1(1,.,til.41. ',1-tfW. `, Lf,y1.1....;,,.:, li•, „', /, ',1.: 14.•,•.:•_s',••1 A,?:*i r('L''t ......-4-.J.-1.'',7 ''''. ''' r.=-7 c‘u•' ....:. , ''' '-- -IA.'• .`..3.`1' ..•. 41:1••. • )...tS-t•-• "'f . ..); vat@ ' •D, 1, 0/I 1 : i4 fe4-a. ? ,''..,i,sib el; .. ,X?,;•,..0...e.11,/, ': '-.‘.-:'. 2if(-,::•'- '4. i");1;73 4.1 'f2:if..: 'P''' -. . .';'ilt: :lb,4.5: 4 sil,.7-4,...r,..,I1C;;'14).' i....41f:.: 1.'..!I iiWC t!IW j..i'.. ....'. ‘1.:''-'24.77-4Y1V. ,i1A' tia.:Ift 1\ ..P !3:;41.7•:.:1'.''.(...i212.1c.11`:11 • .;1 .77>'. -:: '.;7'',. "*.::: -, '-1--. ..-;•:-L' • ..-6.••:- ••;:, •'_5;!-4.1,-.,,, ''''.:! ..'N't.4.t I.. ':.)0. . %kJ,: • ..4';,. .. A :, 4,L.t ,‘,t; ,y-s, .:. • tre i '.1t1A; .-‘.. ,_;-. '.f.., ••...3.1 4, , --,4-. ,.,:;.-:•.,• i :,. ..--,:•••••;ii.- ..7- .4:-.(;..... .;-../...)::-..:. :':•:;//-s.. --Liz%) ..,:-,i '.?in"' .4.1- 71 ..,ar.2:-.), ).-4-, ' le . ' Iv i Ii:16 .1,"4,11,-,.,:....Jr. 1 ,..4*. a .-'.'if -?.3 .....-e:;.: c,... ' II 4.- .eqt.'1444,.\.',...?"-10.11::' 1::::::fil::-‘'-7:4/- • ii",•.4 i'; 1. .. .,1.1".:'.-:1:.•e'N' ''' Iv-,•7.,';‘ez:-• '',.,41•.•• f ..,1„,,,:ii"?'!1 ' 1 i; ..'- ,N1 ,11/,,a. 4;14'1 ' 7 . ._...;,, f. , .. ..,..i.-,.•.,,,. 5 • - .,s; . _6....-t A., ... • . •:•y •/,1.4. - s„,.•,57 .....42 7,.:• ,n ,I.... .--.4..••• (., / .....--or,,,,..„ ••,..,,i., ,.'." l';'-4:' : .j., Ily”40.‘.1.1n;.:1 .,Y1, :,' ,rg•••••7,•%•‘••••••• 474.1.. : •4••ii. •i-kg-.:,t....,....,...k...; ...!.• •..4.. ... •..,1.---.;•..,11.:. -,..• ........,,•.,...,...,.., -... ,. , . i.4 k.4. ., ---.&7-tp• • ., i:.k ,..,:•,.,..‘t--?4.i, . .e ,..I, '-r:. .- .,......4- ..z.;:.,1;:c..).:(;1,;,,, _ 41•./. 4 -:- •.:.firl -,,w,,,!. .!-...- i,.;:i.si. •..,,,.. , .. . 1 ,,,,p•f*,,,,,, tp. ....,;0,11,-, • ,,..,.." ,,,,. ,.• N. pi. p' = •, '... 0.7.J.'..11. .,i. 4. i j.'7.4 > P:. /......,:..41 -.•e ill•.1..„).' i 8: 1 illi.*.•',1- • •q1117.j., d•S, L.' ‘ ••#-7? • • ;16'.1 .t., -: ..,.. . .. -. 4 1 11- ft'. illi'l ' .1 ii.• LA;'•••F !15'•.' .''' : •t-:::•••:t..„ • •• ,>•4;t2 of.......'.•req Vesikr....1 t.4.-M4\1,, .) vaild....: ..s.il 1'''ir, .....:%kJ!... .r...' ' ... .. . i,,,•,:f`V.orji It ..7 r . ,..70ci:',... ,:..‘:'„10 1.z..?; 't' eerilit§i: NSt: A '4.tir. '64-;i' ,4'..,,,,-. 41; "1,4;', • i .04.01•L'''''''''..N471'.ta- -- ....A.... i'.1;.f,-'--- 41:91,-,k. -.14`.....';' ' .' ".1:-...),' "110 . . '''.' f" , ';' ''.; 1,1;.,ti, ";', -*- L4 '• . . .., .. i ,14 .,.-.), 17.''i r .„1,4 ,40.1 .,t,, -, ,, ./ V''.1 7 Ifi...i---,, ill-. ..t i 73, .)..;n-':•.l'.:7: • LI';;:':...1.,'; q N.4'.F .1 VI:41 1 f' . • .. 17^04":4. Li.'S.11037 .---.-L.*: •••:,2.Tt., ' ff.t.4,X`' -:.; :f''...1.::'.,c'o: I'S .: 4,:-!ii r i LA liti,',44th ' (Pr': T. - / ,,,or 4 .:!: • -.....: r.-.-..,.. ,., 2.....4...„4e..-,4„„),, ,•!t•• ...1-4:...;.•:!•......,. -„; f''' alp T.,,,,. , . ..,.0 •„.••'•,,,' .,,...; -..„.r,-...Pr. h_4'.'.:•‘''.4.......... ;17" ,J7' '..%•'Y- 1./4''',,..:L''c'''..,;:,..' •!'.•\..x'.„.'''.4. Of .,1"::'‘ .. ....,:I •:11/!'4E4' '• 1, .. ',it, .44,,..W. . -.1m ' I Z. j . -.2•-•).• ;;:...11.-4,-;''s1-''''''....s•-, •.1.,''1:1',. .s1) ' ' ' piety ..illi..-4. .„, i: ,.'.- • • .. r -., .. J,•....4-:pa• %‘• .....4;,-v ac ... - . •-.,i ... .r,'• , . ..,:, trig11,44 ' ' ..,• • ' "r• r •••t' .. 141-4 7'A% (.•'''',•?:•• '4•:;t's•A..,1'• C1,••5.1,1 • ,. . :' '"%f 0k,7,1.,I 7...p.: ,,, ..1i.0.7,.:',.....? ,V..:*41 i 11,7' Si:, '1,-klil.;;;4...?.:/41ft.',.j. .3 e . ..,...16k,:,.. . ...: 4 TC- ...?.?,070.xi, ,„ ,. .5;* '11.' `,„.45.1, '‘. , .., ,-;--.1- - ',44,0 ,•:.?4::.:;',4,c,k .t ,;:.,,, , ... ... A IF: ,a, 4., -.. - L-- 1 4i-,1.--?!..-. • ., -,.., . -,. , ....t • .• #• ••.,. r•;1111N ' • *•':A,.•,-.14:*.e'sZ, ---'• '.-' • •• --5•41-1,-.2-11.N • 4 •.' k., In .k JO,' • •-• ',.7,-0,,,,.... -14.• .1 - 1 l'i'''''°O. s, it'M.*1'7.1::47.t....r.7'.';$A k*-.% .• . _,1•e ,; ,, vy,"-'•3f.4-4',;.....-. '-:,'", . '-'"- I :.:-., . 11-r-iti.:'.',,,.,,ipT). ,,;:4 . ; . 7! - `t--.,„ •f_ .-4'•:.1,•45.r,.P.1 ii.,IAN.-1,,q10,. !: :,• • . gi to •- t.• .. . .-...4.0....c•.• .,, . . .; .. A).• ' • ' 1' Lli ' - • '•.' •-• 1. KJ frr V. -- i - ..t.i• •4_ 1, 1,-1..QA.741111 7.4-fel ..,..ivi6.,‘'lli•zr ' ' ..:17 ...rf 1 • ,,r "4;.,...i.1,..'.,..1.4.4,,. •4_:'.i.7' .,.. 01. .i..-1-.:4_,..;•• .._ ...: = L-L..-..E:-.,e1 ".2;;.%,.•ti..... .,_.....'-v r'". 'pli ?,.,',.z.1.7!•,:!•=•AL--_':_jaii:,4 4.''...42., 1-;; :,...1, tH".;.:,,,..-1::::. ::• ' ...4.-. •.‘...,'''..N..'T ik ea. 4 •,• •,••' -• • 'I • --- i'f-• 4 •'...4 • . • •• 3• t ' ' • .f •TA Lai q••1' •141 .1 ": ... ... _.At,I. ,T-1:..rttr... . 4!•:• • .. .lie. • 1 , •I 04.L......204.0.4M4 1' •J..,-.-.,-- /1-1*g_. , . ....,••• .• •4 P.42' : ."...4 ::N l'• .:,rip:',., '.,, hir4, 4,,...,, . ,„ • 4 , ; ,•'1,t,.•) 1t4'. i ' ya-.;,, ,NPM- I ( -../-•,:ii: '',..4.V;,,,-;;Q..),.-11'41 ,, / %:-.1-14-'''''--0 ..1) 1'.'-74.4''',,i 1,4' -. • r 1,1,7.,!-...7, „..1",.‘,, •,:::: , . . . - .,,, - ,e, i. 4 ,•-•,--•, ..... ',)---q: A' . '•: il i" .ri•i!..••N i',...%. "1. i..=t •,N '- Z %•• I s.:I -1. . .. .e. . . .1- r,- .,• 1 f7.1:_•f,:t IP k iy T. •*.c.,or,.x"- i,•=.:p!,.; ,..;.•:i•!tr.i4„.4,,,,:?../;, ..- 4. - e...---..,..-..1..,,.: .3:,:i A „.-....it f ; v:5 - . •;:,,, 4 • _;%, -?,,,e i'; l-, •rcr..,4 ' .'' .t .if 'i - • .:4 ..,I.fe , •••••:i lio e'.3&„ .t'4 oil, ' e>0/ ,,%ii. 110e 44kt"4/1' i,i1V17;,-,;-;..• A••P,11 oy,-,.--,i• 'q:.fr . ':.4-.''''Y':' a 1 - :•,..'51 .4. -.,!' :. .. • ., - •,,,.,_1:,•/,,• ;,i ...;!; ,..--i y/z_i '.• - ..-.-....,-,11.4, ,,-.1.\,.. Z• Iii 4r, An,. w„, - , .• ..,.,, ., iiki:,/, . „r, ...7,4, ....,,, ..--i• e ef.f ,,,,• •••• ,• . • ,i• :,.)-• 4-•, .\•••• .:,•,... J. ....r ' - : '....7!•••ii.7 'i:. ..,•,.„ ...e.".1,. 13:',.,..' ..,..• ....... • ...7.'.LVL,F.Xii;,1„.•.4 1.,.N • ... _ ).16,• ...'• •:,..., .• . Ai i•'' Vo.r.,,I•f ••-'1`..-14 '. ...:..'..1. 10.'' l'-' ! ,-,... .-•• . --re:•4 . Oir, .-,-, ...T. . - - - •,•,...i..-- -• ; -i. - . ''"'.''' . g --v. \ill.: .v-. ._:e ;a,-, .. .--a; . -::".• -'4E,•-. -•',. i'Lg cv f• 1;,.. f,,...0-1.,•1-4,..1-...,- 17,1.4,..,:p ik. A t,. ..1,,,ir(...-i.:41.t.: - .:.. /..1 r•--...f.. 1, :\ :-... •/ ..,-. - ...--.T.. . - :,,-- -. ;...L.,,,,- , .- .-. __........, 7. ,L.s.• •*!. • • ',. .• •„4 -7'; ,t- ' ..ro., ..-1•`:', _t• ''' .r. Sokitil .,'..:,' .,,..."4%..1, --1 t• °o'i'ii,,23.(I 7: '..."?.-- ..' ...': . g ,,, . ..., i I. 1 •,••• ,..? % ', : S2 ''‘ k - '•"1.... i I A" Ar:--• .;').k. si• .._,:;,.."--‘ -; l'-- ' •b1.4-?Pf•141. 4,1••:'Y•' •-1-• ' 4! .07- 71.1.4V'''-• •• • tt"t• ,,.-4 .t.'"akiC,' ---4.1e; '• : - •.4•-•' .) • . • ' • ' ' '• '• 1% 1.1:•-..--. ..4L.4,',.•11:::,- I 54.',A.t., w ••' .••,1' , . ., . :.-.„,i . • . •• •„ ,.... •r„.. • , ;,...•,;.. ;- ?f• .., , "1 . t .. .•4 ' ..-+ .;01004?..`;(1,• :.e;. ., ,.., . ''• ‘ '•• ' ..1-7 • •-• a- '2; i 4.?..f:' :• .....'il ' "•9' I 1„" ' - .2-.. . , • - - -1 ..' - fr- ' •...•'''.,-••••.74-PIP', 4. ••••• •- t . . ...t.,._ ... , ' PP,'vp •, , N ..... w.•'•f•. no.. IP, ., ,.. :__ , ..3., 4 i. ,. ....t.; ilk,r•.:.•. I_. ;1.../ -Ng•:,,,. . '.•..„ IV 0 ..,/"P" V i : •••,,44•.%, .2'.-.1.-. '• ge---% .. (:37 : 1kKt: 7-.7.1-,- '. .," to, %" I...1,.., .allf, 1 • .''' .'' 1.9'-1-' Pill:"#14, a ,':; I:. ..1- - -'...:-', il\•.''';.:- ':•••111: 3 .. .V' '1 'I t''' ' '1' ....I 1' ... . .. • 410 k 'It ,401,1 A,...oar .,,,,24;Gk..* 1-„ - ,•;•-•;,--f, • ,4 4 .s. , . , . ., z A ,, .,....sto)011111r A ;•1 IM11,.._•;; - • 1, , ...;•,i,fi • ,.i 7. . rag' qi:4, ,#. .. ,.,.•,..). .1 r ' • [lc.' t.-, i'l '' I. . . ' • •• .W.'7;":t '..-' • 14..• . 1) • • • i';'''''' ••••::)::'...::..!"..f....,.. . i . La •- .1- .. ..i.14.. .,...,...(,,, .. -1' ' . . 'IL.% 4 pqr ...:4Blir a. ,... .4 ii. ..,...,:- - ( . --yl,(.• .1 :,.:-..4 .1; 1 ..r4.. ":- !..„; .• ' '.,,, -,e"?.., 1.,.. _ , ;ar,-,i ? it..iik...; .i-r th-I , ',..1 ‘-." 1 ,52 ' -. •, =1".-. ." .. 3,'• li f'.:I' /...*" ;11P•;• ''..7....''''s ‘ . i':... t: • i•.. ...,,,,e,,\ ,. 10'. t atk-N • rt, f._•1,,,.. f,1:(• 0'L..: ;‘, li... - - lc , ._..! ar. x, _____.0.. . _ .1* 3.. • • &....! 14 7, -e .. ; „, •,. 1/.•t• .6• -r-Vv., : , •-•.•••.„. 1 .".."• '•", A) -• • 's:-• 4.f. i'' .1 'i ''"1. .... F. ' . ....2F6' re,•:-2" . . .-. 4 '. . .L, .. ..... . .. ' .... :f . • ....Y.?/....:''''al. iet7'...N. N.. • ' a' .* 1,I : i.. ' . ... .. •C'..4. WV 2 Y. ! I r, :i0;'.21 t 'pi * -3-9:- /WL.0 I • .3 r , .4 .. . . z , :. --- ... „., omi....• . •1 •--' '1• .. 121i 'II.. .1 A, / t .. .4 '‘'1 ..' '. ....... '.\' . '.. 1 • 4.„. D •1.4: AV 41/4 : . 1°1 • - ZA--' 7.y.,••,1••• •••'nnEN".. . •. • ' ' '• -....• .0r. y 1 -1.'•A''y••... .,,, , IF, 1,-1‘,•1 ''. ,•••••411.411,A ‘,.:1.0z,ta, • .5119111 ....:...•••:II&. •10,, ,. , ....• .....2.....,-7 .- • 1.,) i,.. 2• , fMart.. ...._ ., .. riy.k.0 t • 1 pl 7.• _...4:•..r.-•:oric....-''; '- . 1 ".•-•,•:,.. . ,.1. , .1 .',%4ei•,,;.r,A.iteritir -.kle,7.......,. ••• . ... ,7,•__ ..• t .., .,• • ' " •• .%•VI • ., - v... ,.." ,..t. .. . .• Nf.. 's .,;4,,•-( • . ....4 .'• .`•'• "'" gp rsci.r.,,-4es. .,.,,0•. •• ..`,1, . ;‘• ..4• ,'kip,. : Ili. ••••• * 1;4-- ...I') • , z•re..-......'-• '• 'r• ' -i" ii.- .1; ..r A. iff,,,,- a , '4. .- ,47.-' • 11 ,74.IC. •''":21.7.V%"' " ?•,: V ' . '.2Y41r,.,;;Cq 1.,..1 . -a14" IF... 16), .f.., ..• • {if• 40:,' .:•• :. i'• :4'''''''4'411`.7.1" !.e.,,,.....,‘' •• •••‘• ',• •4'. • ' I. - •• I._..its :1"'r- - :7:r"..., .. •:?.7....1- '_fa!''0'7: Al . Vi '1' '''' • ..t (g it, •••:..;1..• %.4. ?'.''• '...4 •,I..A.0 ."1. ....1 6c ' 11 4.4• *I• ''. ' •1 .4•... • \ . '44.• ' lel frv-- 2: i rit-1. --.:: ;44,-1.1.. \ A: sqr e.•:'t .' ..,..,- .•'f', 2 4,.„.•?.,,,,••,,., . • •,) ••::<,•-c-•, , :: . -.; - , tr.'1.. ,4 ,•,• .. ...4, , . : il.11.'arb%T.A.••••40a0 # + .. ,4 .• . • • 7 ..,1! • 3. ‘3..; .. •7./ ii ..c. a i '''.... t,,., c -.( . '..13,t', r••` - vi •LI .irs, -.--,-,-.4.t. . -1,.. :i•kt. ',-h.,.'•:.-. '1.'' "2•••,,,- -''t . - ..t. - 4 .7••• /"..a...IV•101,:91. • p -- • - - ,„ ,•-•,;tk, --- - . LI . ... ,..,:'•. e 14.V.-1-• ';"X: • " i ' z"a® .;'1,$.'% •k •-•:;•rt• k "V1‘. ' ..• '?Al ..1 ','Il'Ar1.2i- ... _ ..m,'' • h'• .4.• •-- . \ - - . . _ .4•••. 4 1 ...!4: ... _. _i•. 4'.re. ,.: ,,,c. N .,,,,A . . ., )1,•-•,..1 ,0.,.. . ...t..._,..v7hr-t,; oi, .-,. •,si.,,. „,...... ••P I.-, i'.1: .46E...E1P.417.••_..t.'11 il 4.7 .1,4, VA.0 29 I t ..... ' .1- ... -- .. in I..,to,f. i° . .',....•'4•• ,..4. -1, ;,.. N.,r,:, ... 7, l• yet%. •;:,A.., ,-,:-...,'":"/.7.1.0•••••• \io!...:-./I. ...':. \ 1 yri. Or ,,"-. ....: •.- . la'lig ••;t:'" disti„„jaly '411a 4,41911111116'j:7 •'..!1,:4•..t.t.rtia''' ''';g0 e.T..._. •• . iif716 it)../ :...; •;.s. .-,f y ,..-•-••`;::,, .,•!..--.., ., f.51•114. :yos ,.-••-lif •••,', ,• ,?4,1":•.'..!4. :-:),,••••':,•:'••• 3.;•01-N*,. t.1,10,1115Nni•iv i ",9. ,774 04.T.:Ng7-,.. / ,., -J• .. ih4 r.4' h, '''. ..." ! ••'.'"•'• . ;•,....u4 ',. '--.1 .-'...a. ' •L.:\-Zri,*';.-41'..:1_,._.., 1`)'''':. - -:'Y.. ' . ..;-'•••••,_.- :' '!.,c1;.4-'4___ 9. .,0 ra.1 itImmtv la. c '-.31f1jii-'1- -• :1....1,:', ' '' '. . ' sze.14),;1;5,4::;.:-.7:- 1 '' .11 /.4.•..!.. ,.- ., •,---,',4•TZ-.• •4,1-4;:m_.-.'`,314c -_,.• :e_p.' ,'‘'.I-', , . ,i','..11,7.;,:t d ir.:-y:- . gWs I 1 f., = . . - - ove ` ' t., 4(1' : .. -'2f.5 ...••••1. ill'.'0.,-!.';'. "4 - /. (. k4 - • .:... 11.1..i. • .131141NY 414' • •''f" --.4.... ''' 1. '' ' • yq g .... • •1... .... • 1 ... „, ., ....e. `...;1„ .,...0,- „i••-' - • '.7/01.4114;? tfail •i,A.,....‹. ..ivi,.(---;,. z,, ,..., 1 .-- .. ,-,,,........i.,.irt,4•••..:,. .,. .-i., , itl.. ,- ..,...1..,s... . . 4 .,,,• /.,. 'il .-., .L, ...,:q.,,.. • ..ki. .. ,'..,• 1 i 11 . •! -. 1 ',.... le:, 0,L. , 'k, - . • -.; 5, • .-- -...i;'.'.•"' .-:. -".- - . ff ; •'...... c'-':': ..-- '1;0'. t4/1*P0..116.0 I.i:." %.01.41 A W.0 04i4 „•' $'L...)17:44412 ''r GT r '.1.i:‘,'•-!4.c:A •;,. -F./A 4 l::-1/4i,. .•-r1'.,' `,, ,- '-‘-e.- • . --..? ' - .. ,.'pg..rgi•vi. -"4"1'rt. ', ....,i'-1;'At: 'f .1.• ' I..C.,T-1••"../it •":•41. •,,c... s.-4-‘-',1*4(eL• I te' . 9;1/ C..li , I p 1 ..f.,-(Ev-, , .,wo 4*. 41: , k.., . • .1.4 .. ,),'.• .r. 1.....,. .•-• 'Is.' • ...,. ..r.f.p. - ' •. . ii..;1 1:41..r 1 • ,.r -: • Al.,, .ir„.. 6.4- 114F- i; -ii?!.• 4.-g.." :4i.•- .1.).;14t:fr'1. . 4.'.1.. c ."..1.. bt kc.6! '?•;)/,‘4, ..t. I ,, ,.„.. i,• ,,,,,x.,,,e-,,,ly,-..pi.-,.r.,..i.T.' -_.. .ual...*,,... V Eg !fill ii.- '4... •.' ..- iti:: , ..t. ..k.. • . .)ii.t. , ! 5 el 41,e;k1411L..' ,. .•''' ..4.1.: • 'ref''..7. ..,',11.:, %/A , .,,T.,.*k-,.k..1,91'..Ci,q.', 1.-',.! ;i-,:" P,s,i, 'eAc i'...„ .•-•.,,A . • .N.,. ,. -• -,--: ••83 ., ,f-,........:•, t...A,:..:11:..r'.. ::). 7 . ' ,,..,,„:4,41-Li. '-_;,.. vr.rt,...,r,..„.....,:,,,,,,„,... .. l'..,."•.., ..,.+1••,:,'" ..••...1 •:',..,4; - -•,..'••• _,......,4,-,....$,..,‘-1-r: t:II, • '1;:,.7.•''f, T ,•••IV. ',EV /./.'...1'..;.1/4 ;-,..,' .'..k 6. ..4; ...?.:„. tr. I. .pi.: ,,kt.f•A. .,.,.,r '.?P'Pr . ;;;„,:t. ..'li.,.. . A.;,....‘(.5..x..4,,..,..Ar ,,,.... ,, ,.c...:..z...,, •••.,...,,.., y•-,,,,- ,•••7,..:,-,1,•,1/4...,. • •••,.. , 4. .,,,,,, . ,,,„,, ,„.- .,,,,,,,-- .,,. • 1-,.:. '• • • ".7.. .•, .wk.,' ... . k . 7.:••,•••' 71 a. . 1 IN vi.;;'V.'14...v. II. ,4.:•... 51:::.0.5.••-•• 'L.,' •••••IL " • ' 4'••• ..".i...11 . ' . ...,• •• / ' . •(.‘t• '::•.:(0") • ••• ' 1 •Allii... 4 ...r? '*'t 1.41. •:'IR, - it'4..'d.:C1-7••••A •'',. " ... t .r,". -rl-i 1 t'''' . ''`. h.at '', h.''.1 !::' '''i4L)164i:e.."7.r-Y.T,W,0- t_ti:L'Istl.',-4'..9t.'g.' .1•••'?•::.";":'....::: -, ..1R.I. •k-'-%s'Y'r -( •• ,I . 1 -Al jrilll , f Itoi,‘. ' .•:;1-S)jk '. ty":'.../...\•A Y,:,:!:'';'1," wff C. j .,..''%'"41.k. .'..'1°)., '‘, 'Ali ti.Ifirie<tr 1•..\e''' .44q.,e;:.2;e114::'14.:1!ie:,-J,:.3,b4-:.Z ''1;4'. !:-.7:::H;A,:r:' ":{q1: ".11t .{'°4L1,4'4,41‘"..7 '...);.••;17. t.iti"ii'lf...kki:%:.:(ii.l.t-1.-.1').!,,:cti•:efli °I.. - . /pl.. id. AT • ,... . --. ,..,' 1/4 .,.. ' ._.. 041 *'•• 4,__ . • --....1 ,4.4'... ..4% ' ;Jo• - . 0 .1-t-)r..-' . ''',•:,.`;',C.ikod_ .„.1.1 ,- IS4-1,1,:•f,'F,,tif ""4:.'/E!..,P ''A.,-,t. ./ I.:.1 -r-! '"it 1115 :"kA .114t4:.477-11L.-;°::.'-'7,0frfr-2'4'''Or.fe6i:;'',.''r.'A;:•'-'',''.'a'''T,6r".'''',:f!&'.'1,''e''':".:tVt'';;.:.;i..:::fr;4;.J..-'r?;':I'r::::,';'''''?C":'%"4'k.4..,.:::';'.141':', 1.11"-:;;-; 1::":.4.4:Yiate*'(%?'2.";"::'.'7.t81.11-:.:'.....1. 4','",-.(:V,'(::''',11114`;"7.4,t.'414 kr'it 7iimi .2.k /41 a?1,),Pa'4:4,•?. '...x Tit'; 'Pi' •••': ., ste.. . . ) . ///• -1...-"'N'. :`..5 IIPIK.'t L ''''' ; 14.4"1...12-'.1.:N. it ' .s.V-s •• !f.,x. . In • 013 . I • 2 741 it,: . . ,N ,_.., . ,.,-- 17..vr, ! ii,) 4 .___ • .1 ' , / „..„,s9 •• Jo.. :,•••. • ,:•• t..-4%It:, „,,•,11:•-:'.. 11 - .),'W" 4-- - •••;• 1.-- • .4•.ti• ' . : :, ..- Y-r.....• f MI •11,11M i ,7 I .- 11•- C IF- ..!••44'41,,m,''' '1•11fr' •: 1 -Iv-4,4! .,..'. 1, .4.•i••••'%, , ..- ••!•,.i.A.,:-_,;,.;•?).121 ' ,,,.-. .-.,,, rLc.1},ii .)..., if;•...‘. .,.,, ,;. "1 iii 7"tra I I Li,"=2 i c r 1..7 .1.,•, (.1....c,7 0.:::,..,iiiks.r.v.-*..•12;:.,,,zf i j•Ak.v;.-4... ,,' ,;(`Ar 6.'? • 'C'. v.41f.:14,7,,,'7.1.. .-...;.-...-,,it„,-14. t21%f:s.'.,7,..,!..,117.-A.tvA --:;_,.; ,..-,,,tt% -.• 4 i Mill Art ;LA I, % - 4. .4 IRAINTVii.,1:40 •tr,"'..! .,%;•••, ••It . ',4/..;1'fp, •r,... ... -,-,...3..;.,._.t."-'.17.3-1..:=••:.T.,,k5f4,Itv2•z'A'I'V..,x(-(i-s v-'4-4 b 4 / - 1 LI L 4.° ) 0 ,i 'elec• Wr S 4 utepoit0,- ..„ft. i '''. n .i..i... --t);\---q --g_1,., • 41,,iiiti- .1 ...e./, t, . -:,•.,,,Ilre''•"f•• • - criVE:.• ' ..t.i.:.•••"Jr-,..-%re.A .---.< ,i4 a .,, ilt. ',-r 7,„, l'.,ili-y--VL. ,,y • t ,, 4. •," -..,,_-14...,_.....,..k....•==.,‘ •..x.._,: Itii,' )14•Ni• 11(11 1 ,), .4.-di ...7‘.... _ ,-...40'1 ' r' .....: ' L, •-r.. ..'?....:•••..",,.• •••'71') V....dry 4;• .01-.. • 14 . 4. ' .• .,% i raj 4.1111.,ti ,.., .ii.• Er. ,.. 15 , ,i 40.. ,?,„.; ,.. . , .4,1 . ..t...,,,..., . .Pk_ ..e."pc?),:.cleV•••• ../.."....,. i I.•t.,......) _ .1.,"4....... , ., . if.. r • • • 1 ' 1-1, f ,r,:yikiLg;/'4..,,." ,...1,,I !.' , , • 7 ,-\ -10/•i, i V.:..,. • • , p,:ifi,.6...4 . it 4, 4...4 . . • ••• . • 071_,...,.<•...i.'K. :(1.••,,_][..t. ,b -a••• ,4: ;• /, ,:t., ., r ..4,,E,_• ......:-0•11L.111:11 11:164. 1.1 r'' 3 Az. . i .,,, ., i , . 0... ::.i;i,..tl'Al 1.:.4,7 . - 1- 4et•••2 ' ••• •••••••., • 1." -.. ,,,i- • `C.,. 'J.'. .: i.tk ...'. -f y' ;'1.-ie• e i , t.. _ '.•'1 ••:"'" 17'1, ' eV- XI' ..;..1,:: •_,,,tt''%.. n.%;:r11.‘ti••-•;11; t:•!;',•!•,, .7v•-•:•''i :,-:. •- s;• :,e'l •,-• . 't• • -..... - ••-:• • • .,.., A-. •• ',•: -.', '''.: • 1.., ,a'rlill•‘1\4.**4' 8:.-LL-4i:IX.4.-1:-';.T.'''h."•A CI-'il.• •‘-';'•-••• P. ' ,...'",c... ,-..... • >,• . - in .r,•,,,A .. .., Aill M. 71:M. MIN VIM 11111. 7.. 7a= 'PM 11MI 'PIM TM Tan Tan II. -AM -...1111 -.1111/ __NM 11 ri •• EN iii---Iwo-NET-Ed--Emirs mirammr-ftmrks worm*mem ish itill IMPIN+11111Pati ME*=Ink=km, a//Y• .y�,R �^•y-•[Y� --{tir 4r(;. s4 1. 1 1.. � -•-.5;_...:-,,,;:.-;' t w r ` ! .� Y� • y i4 _'+1•�F{•I • .••.(,•r.d-.- / •a- y.;:',r.� 1`L%ss .,•2;.5.,..,..4..-4 .S+- 'a-, .,,,:t' „4,.r•':', vf••• : ui : 1 „1 4 ^Z.' }'`fl y L'e • a SI.p' I d' y `y,l ,' • r A h y C•',11 •. •r,� � :,,; l Y •,. ,�j-.++ , � �'.�••'- i� �y''r -�-� , ''" .•(�' 0� [R/�• „� `r r �Vl.1J ,• ei.11 t ` - ' . •y -- ♦ .� 44: Y' 1�7 ' ' r' A• -riillig • 7 •'' frill,1� � '� ,� �` " 1� • /,.... f E; .O. * 'rY1��+''' y.- • ', :'1: ;s'`% R\a ' `e'.t' •Rt ';i 1, `La� • s+ .' 1 �}^•(]1' 'J � E_ .� 111;111i.‘. � .# .1 • 116 � 'Ie ir. l,:-" T"7 , }J'CW`�f`i.JS +A J r�w -�1 r •' •1 `' ...,,,i, ...'.,J';' tf+• •Y•r•{`11a f' .v,',.. :C .�• , 'Y�1 111 f M i.�C1 I 1.-•C i, ,I t U,il illi :/ I-1 . ,�i �...�! .. 'D, ▪ `• ',i'. . -.i rli.'••:,<.•';• ,.t .'1 •45 . 7 :. .;14.X, '..•-'''..,'••• •t { '&'' j; E+.I / .r• f`f." I. j ' /p'' o• } i ':'•r,.'-' •.r rG --r r. t,4'.11....i:•. 1. .44,..! • r 3ii`. ft '! ` 4 .'11'. 1 I I I ' J` / , ,ry;1 r} i N'.''Y N..4-'' ' !.,•, "•k• • ,,{1 ,' .4J1 t` e s-,=,...R.• •'�h •'-.., 0 Kt.r'�` �' //!'��-..„a .•. r' :[ .V ; �1 �i 1 ' • , ` 1.f '4 .. .i •i• f ','l •, `�X1 1 r ` ,r' virt(6. :t.,,, . Tr f i •' .t V1 4. r ` +� C i�, l /� .. ,�SS ' ',�„ '�'(�,::• R 41,„.„, • • r,. !r� •��� a -,r:•• .}, J;3.0; Ix14. ,ky•r rytt x.41-, f� i LT :5�� R ' +� / 1- ,(f .-''', .1,. , ti•,. • .. •� _ • • • . E ' • �•g f`' ,t it - '1 u 111 .1t ' �`%r. /1!rl 1 * 3• ',i,•.� •�.-J4' �; l p• p`t: �y _h 1 ! • ii ,. `+ ��� I ,+q �;�del1 i\ Y� 'T'iti'/f. f J'. e�1;�� .'ti+l • le); • •::,,' i •4.t'.•, . xF w•'J.`'1') ; ... l'�d f•. �F � + S..JI,'�."" ..� : 1., ' •.1 �� ; ' ,,,.:i •:. ,/ ',J S �[ : •• IIIc. r ./ i • sd ,a'-p :• ' ''ti' • �'• F•� k ':.. f.,[ .. -- ..F.-0.;7',..-_,,. .�a ,� .. ;:°...- a •''S I) a,` t', may , i• •!-.-' it J : ' 't • . •• 'V i ,,-\_•,.ti ,4.,;• ''y ,. el _a• T ` , r •,-,...-t?.- t.r 411 s• . �[ ; .. ff.41 :•" 1• ... a •\' t • • - 'Il • k 4,!•.- {, ' \�. ���•�,, ;.....i.:-r' i .t. ' V iss414 4. a<. 4 /''i a • r' ./ 1, `f - �r I ' -1-�-1:,, `'1 r �: ',iR� ., T(wv; . t 1..; .rP,i.*A .•(jam '' ,. • i r ". y' - r > c [� r- ;'�11f 1. r S r.,, i _ ✓t• t i 1 ,n ...,it ▪ •ice, ;; '• •✓„ f• '' „*.z. .% -'= - :tl L7'; , . .r F •- J , 'I) ),„ar.: !r' h., '' i�� •t!,.}n,,'s 1 ilii %, .. : . , ) 4,4,c, ' J:I` , . '), r ; " f. r I." ` r�Ri r . ti r!i ••.}..../. '�fi•. ' . , •r £,: ,`.'1...1;, ',Kr�tv' ' J �V, e.' iw, •.• •}. , �'� ", . •,C•i• 51 .�'Il 61�•,��r^� ID �•.IA.1'; '`� ` '1�l(• 'J,,' NR. > . ', 1. _p:1' ji-, .A-4 J, i+i- ia'••y,'r v...1/4,, - , ,' ^ 'I ,1. +1. . w 4= 1 �, 11t t �'` '�! ' :�r • '1��. (y • 1� •4: - _ :q:,-/..,1st ' I•.a -r�1, ,- 1Ma.•r.w • . ; t: y ' `1, L y r + {r ••• 9 r�_.`3{I'v/�, •,V‘,,'•4:1.1... ,.? r•:• } !t • ''� / -4''.441/... f' �. ,,..� '• .• SK ........21:411..i. ''i} :_/ '4'.., tl. _- 01•111.114_• I\ �� , rl► {�! :1 �1,•. . ''711 ;L:'.:-.:1'' •: AA,, r • i�% '''.7-1."..1.4.4•:..` !i 'ter•. - :�, .#.:✓ • •• 24.7t1.1131.1.6141° 1 .i, ° . V - ' yNr , r lv'. ,, y '• A ' '� ••'• .[.,:•+ :'' ' `5'!, , ✓!'•✓V\70a, `,.%",�. , �1. r i' :A-'.;., `r ;(..r'"-,ii.././�Y'_r Y .',,:-',..-z' tJ: •1-rr'Li r f- ✓ R e:y. r'•+ •1� ;-1- jam,, , ' -1,.• *v; 4‘7.f.7:•7.-,N1..,.J _. e- :•L',,,,„,',...1-fieZi1 *; r• '•.,s;',p7 j J! , q ., •'"'- 1' •. ,,,, '• r, / ( • 1 at .i '1�1� ,1. '•'. ••••i..q4.. ", -••a �� ' '• •e s/, i' •j i., • ▪ ••,: l' '' p▪ ',.. • 'r' rz. J t• ..A i` r.';•w o. ' i .-.- .et-.'i' .• '.'4L r• 0 �.47[� �■�trIri A t .�' i,' ?')eif .t . .• r �Y ; r , >':. r : t "� v p h� 'fes . .t....1,,,,..- ` r :' Fj • ,.. f-1[`11 ,t .-}rr.' !-, • '.1•:!"" •'•1''.14`'''' �V. y.^;lir', .' ..s.. � i,,s-�A.) " JN.1 4�.i'La t 1 �� ,'. t' re r , I' • �.��• [ '►- + 'k. ' .' (T `"K - . "b• %52. f ti.t Qf •si .-r� 'w �l t. _:.:,a . 'I '•i Al:l: �• , _ 7 ' ,-/�U[ , .j' • .., :. '' i ' •► �'• '7,r -(+_• �•)•fir I i` r -kr; • ,. I/{ +�:.• , ''4' ••.- �.r• • Ill r o jr,• -.;• • c ,, "`�►r�r ��,c '�� s. - +.- (' r_ �' rJ. 'yJJ__..! /!» • \'�{ vd �: ',r{X777' {. ♦^ , _ C. r� i ' I �. LI. If 4 ,� , l 5 t • flptil •'•P - - jr ''77'3: 1 1 1 1 '. IV. 10 YEAR DEVELOPMENT STUDY A. 10 YEAR ULTIMATE STUDY B. FLOWS TRIBUTARY TO CAMINO SAN DIMAS 1 1 1 1� 1 1 1 1 1 y 1 �. Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 12/19/01 TRACT 29734 - 10 YEAR ULTIMATE CONDITION 1 FN: ROLAND HYDROLOGY/734Q10 DATE: 12-17-01 ********* Hydrology Study Control Information ********** 11 RANPAC Engineering Corporation, Temecula, CA - S/N 560 ' Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10.00 Antecedent Moisture Condition = 2 ' Standard intensity-duration curves data (Plate D-4 .1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr. ) 10 year storm 60 minute intensity = 0.880 (in./hr. ) 100 year storm 10 minute intensity = 3.480 (in./hr. ) 100 year storm 60 minute intensity = 1.300 (in. /hr. ) Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in./hr. ) Slope of intensity duration curve = 0.5500 111 1 1 Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 132.000 (Ft. ) Top (of initial area) elevation = 1230.200 (Ft. ) Bottom (of initial area) elevation = 1228.210 (Ft. ) Difference in elevation = 1. 990 (Ft. ) Slope = 0.01508 s (percent)= 1.51 TC = k(0.390) *[ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 6.363 min. Rainfall intensity = 3.023(In/Hr) for a 10.0 year storm 1 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.784 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 1 1 T� ,9237 ,5 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.379 (CFS) Total initial stream area = 0.160 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 2.000. to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1228.210 (Ft. ) End of street segment elevation = 1197.510 (Ft. ) Length of street segment = 345.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000(Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 ' Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.660 (CFS) Depth of flow = 0.217 (Ft. ) , Average velocity = 5.009(Ft/s) Streetfiow hydraulics at midpoint of street travel: Halfstreet flow width = 4 .524 (Ft. ) Flow velocity = 5.01 (Ft/s) Travel time = 1.15 min. TC = 7.51 min. ' Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.776 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.760 (In/Hr) for a 10.0 year storm Subarea runoff = 2.313 (CFS) for 1.080 (Ac. ) Total runoff = 2.693 (CFS) Total area = 1.240 (Ac. ) Street flow at end of street = Total (2. 693 (CFS) Half street flow at end of street = 2.693 (CFS) Depth of flow = 0.248 (Ft. ) , Average velocity = 5. 413 (Ft/s) 1 Flow width (from curb towards crown)= 6.089(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1197.510 (Ft. ) End of street segment elevation = 1195.730 (Ft. ) Length of street segment = 92.000 (Ft. ) 11 I e4 Iww Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) ' Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.801 (CFS) Depth of flow = 0.307 (Ft. ) , Average velocity = 2. 982 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.015 (Ft. ) Flow velocity = 2.98 (Ft/s) ' Travel time = 0.51 min. TC = 8.02 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.773 Decimal fraction soil group A = 0. 000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2. 661 (In/Hr) for a 10.0 year storm Subarea runoff = 0.206 (CFS) for 0.100 (Ac. ) Total runoff = 2.898 (CFS) Total area = 1.340 (Ac. ) Street flow at end of street = 2.898 (CFS) ' Half street flow at end of street = 2.898 (CFS) Depth of flow = 0.310 (Ft. ) , Average velocity = 3.005 (Ft/s) Flow width (from curb towards crown)= 9.153 (Ft. ) Process from Point/Station 3.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 1.340 (Ac. ) Runoff from this stream = 2.898 (CFS) Time of concentration = 8.02 min. Rainfall intensity = 2.661 (In/Hr) Program is now starting with Main Stream No. 2 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4 .000 to Point/Station 7.000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 173.000 (Ft. ) Top (of initial area) elevation = 1197.920(Ft. ) Bottom (of initial area) elevation = 1195.730 (Ft. ) I /7 II I Difference in elevation = 2.190 (Ft. ) Slope = 0.01266 s (percent)= 1 .27 TC = k(0. 390)* [ (length^3) / (elevation change) ] ^0.2 ' Initial area time of concentration = 7.342 min. Rainfall intensity = 2.794 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.777 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 ll RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.348 (CFS) Total initial stream area = 0.160 (Ac. ) 11 Pervious area fraction = 0.500 Process from Point/Station 4.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** IIThe following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.160 (Ac. ) ' Runoff from this stream = 0.348 (CFS) Time of concentration = 7 .34 min. Rainfall intensity = 2.794 (In/Hr) IIProgram is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 Process from Point/Station 5.000 to Point/Station 6.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 170.000 (Ft. ) II Top (of initial area) elevation = 1230.000 (Ft. ) Bottom (of initial area) elevation = 1228.000 (Ft. ) Difference in elevation = 2.000 (Ft. ) II Slope = 0.01176 s (percent)= 1.18 TC = k(0.390) *[ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 7.398 min. Rainfall intensity = 2.783 (In/Hr) for a 10.0 year storm 1 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.777 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0. 000 Decimal fraction soil group D = 0. 000 RI index for soil (AMC 2) = 56. 00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.519(CFS) Total initial stream area = 0.240 (Ac. ) IIPervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II l D II I/ Process from Point/Station 6.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1228.000 (Ft. ) End of street segment elevation = 1195.730 (Ft. ) Length of street segment = 295.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0. 020 Slope from grade break to crown (v/hz) = 0.020 II Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 II Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.108 (CFS) Depth of flow = 0.226 (Ft. ) , Average velocity = -5.658 (Ft/s) 1 Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4 . 959(Ft. ) Flow velocity = 5.66(Ft/s) Travel time = 0.87 min. TC = 8.27 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 771 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 I RI index for soil (AMC 2) = 56.00 Pervious area fraction = -0.500; Impervious fraction = 0.500 Rainfall intensity = 2. 618 (In/Hr) for a 10.0 year storm Subarea runoff = 2.968 (CFS) for 1.470 (Ac. ) II Total runoff = 3. 487 (CFS) Total area = 1.710 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 3.487 (CFS) II Depth of flow = 0.259(Ft. ) , Average velocity = 6.183 (Ft/s) Flow width (from curb towards crown)= 6.613 (Ft. ) Process from Point/Station 6.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** II The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.710 (Ac. ) ' Runoff from this stream = 3.487 (CFS) Time of concentration = 8.27 min. Rainfall intensity = 2.618 (In/Hr) li Summary of stream data: IIIStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II I '9 II 1 1 2.898 8.02 2. 661 ' 2 3 0.348 7 .34 2.794 3.487 - 8.27 2. 618 Largest stream flow has longer time . concentration Qp = 3.487 + sum of ' Qb Ia/Ib 2.698 * 0. 984 = 2.851 Qb Ia/Ib ' 0.348 * 0. 937 = 0.326 Qp = 6. 664 Total of 3 main streams to confluence: Flow rates before confluence point: II 2.898 0.348 3.487 Area of streams before confluence: 1.340 0.160 1.710 II Results of confluence: I Total flow rate = 6.664 (CFS) Time of concentration = 8.267 min. Effective stream area after confluence = 3.210 (Ac. ) Process from Point/Station 7.000 to Point/Station 10.000 I **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1195.730 (Ft. ) End of street segment elevation = 1192.800 (Ft. ) II Length of street segment = 162.000(Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30. 000 (Ft. ) ' Distance from crown to crossfall grade break — 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street II Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) II Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 II Estimated mean flow rate at midpoint of street = 6.840 (CFS) Depth of flow = 0.394 (Ft. ) , Average velocity = 3.574 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 13.368 (Ft. ) ' Flow velocity = 3.57 (Ft/s) Travel time = 0.76 min. TC = 9.02 min. Adding area flow to street II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.767 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 1 020 II II Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.495 (In/Hr) for a 10.0 year storm Subarea runoff = 0.325 (CFS) for 0.170 (Ac. ) Total runoff = 6. 989 (CFS) Total area = 3.380 (Ac. ) II Street flow at end of street = 6.989 (CFS) Half street flow at end of street = 6. 989 (CFS) Depth of flow = 0.396 (Ft. ) , Average velocity = 3.593(Ft/s) ' Flow width (from curb towards crown)= 13.486(Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 7 .000 to Point/Station 10.000. **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: II In Main Stream number: 1 Stream flow area = 3.380 (Ac. ) Runoff from this stream = 6. 989 (CFS) 1 Time of concentration = 9.02 min. Rainfall intensity = 2.495 (In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 8.000 to Point/Station 9.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 170.000 (Ft. ) Top (of initial area) elevation = 1217.000 (Ft. ) ' Bottom (of initial area) elevation = 1214 . 330 (Ft. ) Difference in elevation = 2. 670 (Ft. ) Slope = 0.01571 s (percent)= 1.57 TC = k(0.390) *[ (length^3) /(elevation change) ]^0.2 I Initial area time of concentration = 6.983 min. Rainfall intensity = 2.872 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) 1 Runoff Coefficient = 0.780 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.739 (CFS) Total initial stream area = 0.330 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 9.000 to Point/Station 10.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** I Top of street segment elevation = 1214.330 (Ft. ) End of street segment elevation = 1192.800 (Ft. ) I I 2/ II II Length of street segment = 445.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) ' Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [11 side (s) of the street II Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 II Estimated mean flow rate at midpoint of street = 2.385 (CFS) Depth of flow = 0.261 (Ft. ) , Average velocity = 4 .135 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.710 (Ft. ) ' Flow velocity = 4.14 (Ft/s) Travel time = 1.79 min. TC = 8.78 min. Adding area flow to street II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.768 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 ll Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.533 (In/Hr) for a 10.0 year storm Subarea runoff = 2.861 (CFS) for 1.470 (Ac. ) Total runoff = 3. 600 (CFS) Total area = 1 .800(Ac. ) ' Street flow at end of street = 3. 600 (CFS) Half street flow at end of street = 3.600 (CFS) Depth of flow = 0.291 (Ft. ) , Average velocity = 4 .505 (Ft/s) ' Flow width (from curb towards crown)= 6.200(Ft. ) ' Process from Point/Station *9.000 to Point/Station 10.000 **** CONFLUENCE OF MAIN STREAMS *** The following data inside Main Stream is listed: ' In Main Stream number: 2 Stream flow area = 1.800 (Ac. ) Runoff from this stream = 3.600 (CFS) II Time of concentration = 8.78 min. Rainfall intensity = 2.533 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) ' 1 6.989 9.02 2.495 2 3.600 8 .78 2.533 Largest stream flow has longer time of concentration II II 01. II QP = 6.989 + sum of Qb Ia/Ib 3. 600 * 0.985 = 3.546 IIQP = 10.535 Total of 2 main streams to confluence: Flow rates before confluence point: 6.989 3.600 Area of streams before confluence: II 3.380 1.800 IIResults of confluence: Total flow rate = 10.535 (CFS) Time of concentration = 9.023 min.II Effective stream area after confluence = 5. 180 (Ac. ) Check of Previous Confluence Operations IIOf all Main streams ' Total of 5 streams to confluence: Flow rates before and maximum after confluence point: No. Flow Rate TC I Max Confluence II 1 2.898 8.780 2.532 10.540 2 0.348 8.097 2.648 9.763 3 3.487 9.023 2.495 10.541 4 3.600 8.776 2.533 10.538 5 0.325 9.023 2.495 10.541 NOTE: Last stream is area added between confluences IResults of confluence check: Total flow rate = 10.541 (CFS) Time of concentration = 9.023 min. II NOTE: Maximum flow rate derived from previous confluences = 10.54 (CFS) This exceeds normal confluence rate of 10.53 (CFS) IITherefore, largest confluence flow rate and TC = 9.02 Min. is used. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 Process from Point/Station 10.000 to Point/Station 14 .000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** ' Upstream point/station elevation = 1186. 98 (Ft. ) Downstream point/station elevation = 1183.00 (Ft. ) Pipe length = 69.74 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.541 (CFS) ' Nearest computed pipe diameter = 15.00(In. ) Calculated individual pipe flow 10.541 (CFS) Normal flow depth in pipe = 9.09(In. ) Flow top width inside pipe = 14 . 66(In. ) Critical depth could not be calculated. Pipe flow velocity = 13.53 (Ft/s) Travel time through pipe = 0.09 min. II ' Time of concentration (TC) = 9.11 min. Process from Point/Station 10.000 to Point/Station 14 .000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 5.180 (Ac. ) ' Runoff from this stream = 10.541 (CFS) Time of concentration = 9.11 min. Rainfall intensity = 2.482 (In/Hr) . Program is now starting with Main Stream No. 2 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 115.000 (Ft. ) ' Top (of initial area) elevation = 1201.000(Ft. ) Bottom (of initial area) elevation = 1197.920 (Ft. ) Difference in elevation = 3.080 (Ft. ) Slope = 0.02678 s (percent)= 2.68 • II TC = k(0.390) *[ (length^3) /(elevation change) ] ^0.2 Initial area time of concentration = 5.368 min. Rainfall intensity = 3.320 (In/Hr) for a 10.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.792 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil. group D = 0.000 RI index for soil (AMC 2) = 56.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.399 (CFS) Total initial stream area = 0.150 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 12.000 to Point/Station 14 .000 II **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1197.920 (Ft. ) ' End of street segment elevation = 1192.800 (Ft. ) Length of street segment = 382.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) 1 Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000(Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) II II a II ' Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated meanflow rate at midpoint of street = 2.038 (CFS) Depth of flow = 0.296 (Ft. ) , Average velocity = 2.409(Ft/s) Streetflow hydraulics at midpoint of street travel: II Halfstreet flow width = 8.480 (Ft. ) Flow velocity = 2.41 (Ft/s) Travel time = 2. 64 min. TC = 8.01 min. Adding area flow to street II SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.773 Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2. 664 (In/Hr) for a 10.0 year storm Subarea runoff = 2.574 (CFS) for 1.250 (Ac. ) ' Total runoff = 2. 968 (CFS) Total area = 1.900 (Ac. ) Street flow at end of street = 2. 968 (CFS) Half street flow at end of street = 2.968 (CFS) Depth of flow = 0.327 (Ft. ) , Average velocity = 2.621 (Ft/s) ' Flow width (from curb towards crown)= 10.028 (Ft. ) II Process from Point/Station 12.000 to Point/Station 14 .000 **** CONFLUENCE OF MAIN STREAMS **** II The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.400 (Ac. ) Runoff from this stream = 2.968 (CFS) II Time of concentration = 8.01 min. Rainfall intensity = 2. 664 (In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 13.00D to Point/Station 9.000 ' **** INITIAL AREA EVALUATION **** Initial area flow distance = 104 .000 (Ft. ) Top (of initial area) elevation = 1217.000 (Ft. ) Bottom (of initial area) elevation = 1214 .330 (Ft. ) . Difference in elevation = 2.670 (Ft. ) Slope = 0.02567 s (percent)= 2.57 ' TC = k(0.390) * [ (length^3) / (elevation change) )^0.2 Initial area time of concentration = 5.200 min. Rainfall intensity = 3.378 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) I/ Runoff Coefficient = 0.793 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 II I 25 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.751 (CFS) Total initial stream area = 0.280 (Ac. ) Pervious area fraction = 0.500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 14.000 ' **** STREET FLOW TRAVEL TIME + SUBAREA. FLOW ADDITION **** Top of street segment elevation = 1214 .330 (Ft. ) ' End of street segment elevation = 1192.800 (Ft. ) Length of street segment = 490.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on (1] side(s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 ' Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = ' .3.766(CFS) Depth of flow = 0.298 (Ft. ) , Average velocity = 4 .382 (Ft/s) Streetflow hydraulics at midpoint of street travel: ' Halfstreet flow width = 8.560 (Ft. ) Flow velocity = 4 .38 (Ft/s) Travel time = 1.86 min. TC = 7.06 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.779 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.854 (In/Hr) for a 10.0 year storm Subarea runoff = 5.004 (CFS) for 2.250 (Ac. ) Total runoff = 5.755 (CFS) Total area = 2.530 (Ac. ) Street flow at end of street = 5.755 (CFS) Half street flow at end of street = 5.755 (CFS) Depth of flow = 0.333 (Ft. ) , Average velocity = 4.821 (Ft/s) Flow width (from curb towards crown)= 10.330 (Ft. ) Process from Point/Station 9.000 to Point Station 14 .000 **** CONFLUENCE OF MAIN STREAMS **** 1 II I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.530 (Ac. ) I Runoff from this stream = 5.755 (CFS) Time of concentration = 7. 06 min. Rainfall intensity = 2.854 (In/Hr) Summary of stream data: ' Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.541 9.11 . 2.482 - 2 2.968 8.01 2.664 I 3 5.755 7.06 2.854 Largest stream flow has longer time of concentration Qp = 10.541 + sum of Qb Ia/Ib II 2.968 * 0. 932 = 2.765 Qb Ia/Ib 5.755 * 0.869 = 5.004 ' Qp = 18.310 Total of 3 main streams to confluence: Flow rates before confluence point: 10. 541 2. 968 5.755 Area of streams before confluence: 5.180 1.400 2.530 II Results of confluence: Total flow rate = 18 .310 (CFS) II Time of concentration = 9.109 min. Effective stream area after confluence = 9. 110 (Ac. ) ' Check of Previous Confluence Operations Of all Main streams ' Total of 7 streams to confluence: Flow rates before and maximum after confluence point: No. Flow Rate TC I Max Confluence ll 1 2.898 8.866 2.519 18.426 2 0.348 8.183 2. 632 18.012 3 3.487 9.109 2.482 18.311 ' 4 3. 600 - 8.862 2.519 18. 426 5 0.325 9.109 2.482 18.311 6 2. 968 8.010 2. 664 17.903 7 5.755 7.063 2. 854 16.807 Results of confluence check: ' Total flow rate = 18.426 (CFS) Time of concentration 8.866 min. NOTE: Maximum flow rate derived from previous confluences = 18. 43(CFS) II II _ fl This exceeds normal confluence rate of 18.31 (CFS) Therefore, largest confluence flow rate and TC = 8.87 Min. is used. Process from Point/Station 14 .000 to Point/Station 15.000 **** PIPEFLOW TRAVEL TIME (Programestimated size) **** ' Upstream point/station elevation = 1183.00 (Ft. ) Downstream point/station elevation = 1160. 96 (Ft. ) Pipe length = 250.73 (Ft. ) Mannings N = 0.013 No. of pipes = 1 Required pipe flow = ' 18.426(CFS) Nearest computed pipe diameter = 15.00 (In. ) Calculated individual pipe flow = 18.426 (CFS) I Normal flow depth in pipe = 11.81 (In. ). Flow top width inside pipe -= 12.27 (In. ) Critical depth could not be calculated. . Pipe flow velocity = 17.77 (Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 9.10 min. End of computations, total study area = 9.11 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 Area averaged RI index number = 56.0 1 • • 1 1 1 age 1 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 . Version 3.3 Rational Hydrology Study Date: 12/19/01 TRACT 29734- FLOWS TRIBUTARY TO CAMINO SAN DIMAS ' 10 YEAR - ULTIMATE CONDITION FN: CAM10 12-17-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 ' Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. ' 10 year storm 10 minute intensity = 2.360 (in. /hr. ) 10 year storm 60 minute intensity = 0.880 (in./hr. ) 100 year storm 10 minute intensity = 3.480 (in. /hr. ) ' 100 year storm 60 minute intensity = 1.300 (in./hr. ) Storm event year = 10.0 Calculated rainfall intensity data: ' 1 hour intensity = 0.880 (in./hr. ) Slope of intensity duration curve = 0.5500 1 Process from Point/Station 16.000 to Point/Station 17.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 180.000 (Ft. ) Top (of initial area) elevation = 1231.000 (Ft. ) Bottom (of initial area) elevation = 1226.000 (Ft. ) Difference in elevation = 3.000 (Ft. ) Slope = 0.01667 s (percent)= 1. 67 TC = k(0.390) * ( (length^3) /(elevation change) ] ^0.2 Initial area time of concentration = 7.060 min. ' Rainfall intensity = 2.855 (In/Hr) for a 10.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.779 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 ai I I RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.556(CFS) I Total initial stream area = 0.250 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 17.000 to Point/Station 18.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1228.000 (Ft. ) End of street segment elevation = 1214.940 (Ft. ) Length of street segment = 320.000(Ft. ) I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 I Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) I Slope from curb to property line (v/hz) = 0.025 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 I Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.746(CFS) Depth of flow = 0.201 (Ft. ) , Average velocity = 3.316 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.697 (Ft. ) Flow velocity = 3.32 (Ft/s) ' Travel time = 1. 61 min. TC = 8. 67 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.769 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 2.550 (In/Hr) for a 10.0 year storm I Subarea runoff = 2.098 (CFS) for 1.070 (Ac. ) Total runoff = 2. 655 (CFS) Total area = 1.320 (Ac. ) Street flow at end of street = 2. 655 (CFS) ' Half street flow at end of street = 1.327 (CFS) Depth of flow = 0.226 (Ft. ) , Average velocity = 3.472 (Ft/s) Flow width (from curb towards crown)= 5.056 (Ft. ) End of computations, total study area = 1.32 (Ac. ) I The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 I Area averaged RI index number = 56.0 II I 30 1 1 1 v. ' 100 YEAR DEVELOPMENT STUDY A. 100 YEAR ULTIMATE STUDY B. FLOWS TRIBUTARY TO CAMINO ' SAN DIMAS 1 1 1 1 --pec; fc 9739 3! PI ' Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 12/19/01 TRACT 29734 - 100 YEAR ULTIMATE CONDITION ' FN: ROLAND HYDROLOGY/734ULT DATE: 12-17-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 11 1978 hydrology manual Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity-duration, curves data (Plate D-4 .1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in. /hr. ) ' 10 year storm 60 minute intensity = 0.880 (in./hr. ) 100 year storm 10 minute intensity = 3.480 (in./hr. ) 100 year storm 60 minute intensity = 1.300 (in. /hr. ) ' Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in. /hr. ) Slope of intensity duration curve = 0. 5500 ' Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 132. 000 (Ft. ) 11 Top (of initial area) elevation = 1230.200 (Ft. ) Bottom (of initial area) elevation = 1228.210 (Ft. ) Difference in elevation = 1 . 990 (Ft. ) Slope = 0.01508 s (percent)= 1.51 TC = k(0.390) *[ (length^3) /(elevation change) ] ^0.2 Initial area time of concentration = 6.363 min. Rainfall intensity = 4 .466(In/Hr) for a 100.0 year storm ' SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.859 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 I 1 my 1 11 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0. 614 (CFS) Total initial stream area = 0.160 (Ac. ) Pervious area fraction = 0.500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1228.210 (Ft. ) End of street segment elevation = 1197.510 (Ft. ) Length of street segment 345.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2. 685 (CFS) Depth of flow = 0.248 (Ft. ) , Average velocity = 5.410 (Ft/s) Streetflow hydraulics at midpoint of street travel: IFHalfstreet flow width = 6.080(Ft. ) Flow velocity = 5.41 (Ft/s) Travel time = 1.06 min. TC = 7.43 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) ' Runoff Coefficient = 0. 856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74.80 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4.102 (In/Hr) for a 100.0 year storm Subarea runoff = 3.791 (CFS) for 1.080 (Ac. ) i Total runoff = 4 .404 (CFS) Total area = 1.240 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 4 .404 (CFS) Depth of flow = 0.283(Ft. ) , Average velocity = 5. 976(Ft/s) Flow width (from curb towards crown)= 7.812 (Ft. ) Process from Point/Station 3.000 to Point/Station 7.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ' Top of street segment elevation = 1197 .510 (Ft. ) End of street segment elevation = 1195.730 (Ft. ) Length of street segment = 92.000(Ft. ) I I 13 1 Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) 30.000 (Ft. ) Distance from crown to cross all grade break = 16.000 (Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 �' Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 4 .582 (CFS) Depth of flow = 0.350 (Ft. ) , Average velocity = 3.337 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.165 (Ft. ) Flow velocity = 3. 34 (Ft/s) 11 Travel time = 0.46 min. TC = 7.88 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.854 11 Decimal fraction soil group A = 0. 000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3. 969 (In/Hr) for a 100.0 year storm Subarea runoff = 0.339 (CFS) for 0.100 (Ac. ) Total runoff = 4 .743 (CFS) Total area = 1.340 (Ac. ) Street flow at end of street = 4 .743 (CFS) Half street flow at end of street = 4 .743 (CFS) Depth of flow = 0.353 (Ft. ) , Average velocity = 3.364 (Ft/s) Flow width (from curb towards crown)= 11.329 (Ft. ) 11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 ' Stream flow area = 1.340 (Ac. ) Runoff from this stream = 4.743 (CFS) Time of concentration = 7 .88 min. Rainfall intensity = 3. 969(In/Hr) Program is now starting with Main Stream No. 2 It Process from Point/Station 4 .000 to Point/Station 7.000 **** INITIAL AREA EVALUATION **** _ Initial area flow distance = 173.000 (Ft. ) Top (of initial area) elevation = 1197.920 (Ft. ) Bottom (of initial area) elevation = 1195.730(Ft. ) I 34 it Difference in elevation = 2.190 (Ft. ) Slope = 0.01266 s (percent)= 1.27 TC = k(0.390) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 7.342 min. Rainfall intensity = 4 . 128 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.565 (CFS) Total initial stream area = 0.160 (Ac. ) Pervious area fraction = 0. 500 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4 .000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.160 (Ac. ) I Runoff from this stream = 0.565 (CFS) Time of concentration = 7.34 min. Rainfall intensity = 4 . 128 (In/Hr) tProgram is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ It Process from Point/Station5.000 to Point Station 6.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 170. 000 (Ft. ) Top (of initial area) elevation = 1230.000 (Ft. ) Bottom (of initial area) elevation = 1228.000 (Ft. ) Difference in elevation = 2.000 (Ft. ) Slope = 0.01176 s (percent)= 1. 18 TC = k(0.390) * [ (length^3) /(elevation change) ] ^0.2 Initial area time of concentration = 7.398 min. Rainfall intensity = 4 .111 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.856 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 If Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 • RI index for soil (AMC 3) = 74 .80 it Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 0.844 (CFS) Total initial stream area = 0.240 (Ac. ) Pervious area fraction = 0.500 It IF ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 35 I Process from Point/Station 6.000 to Point/Station **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 7 .000 Top of street segment elevation = 1228 .000 (Ft. ) End of street segment elevation = 1195.730 (Ft. ) Length of street segment = 295.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) .1111 Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0. 020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 I' Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning' s N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 1Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.429 (CFS) Depth of flow = 0.258 (Ft. ) , Average velocity = 6.163 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.556(Ft. ) Flow velocity = 6.16(Ft/s) Travel time = 0.80 min. TC = 8.20 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 853 Decimal fraction soil group A = 0.000 � Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 �I RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0. 500; Impervious fraction = 0.500 -'" Rainfall intensity = 3.885 (In/Hr) for a 100.0 year storm Q Subarea runoff = 4 .874 (CFS) for 1.470 (Ac. ) ■�' Total runoff = 5.718 (CFS) Total area = 1.710 (Ac. ) �I Street flow at end of street = 5.718 (CFS) Half street flow at end of street = 5.718 (CFS) Depth of flow = 0.295 (Ft. ) , Average velocity = 6.856 (Ft/s) Flow width (from curb towards crown)= 8.411 (Ft. ) Process from Point/Station 6.000 to Point/Station 7.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.710 (Ac. ) Runoff from this stream = 5.718 (CFS) r Time of concentration = 8.20 min. Rainfall intensity = 3.885 (In/Hr) Summary of stream data: I! Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) I • L 3� / 1 4 .743 7.88 3. 969 1 2 3 0.565 7 .34 4 .128 5.718 . 8.20 3.885 Largest stream flow has longer time of concentration Qp = 5.716 + sum of Qb Ia/Ib 4 .743 * 0.979 = 4 . 644 Qb Ia/Ib 0.565 * 0.941 = 0.532 �t Qp = 10.894 �i Total of 3 main streams to confluence: Flow rates before confluence point: 4.743 0.565 5.718 Area of streams before confluence: 1.340 0.160 1.710 Results of confluence: Total flow rate = 10.894 (CFS) - 11 Time of concentration = 8.196 min. Effective stream area after confluence 3.210 (Ac. ) 11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 10.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** 11 Top of street segment elevation = 1195.730 (Ft. ) End of street segment elevation = 1192.800 (Ft. ) Length of street segment = 162.000 (Ft. ) 11Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000(Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) it Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street 11 Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft.) Gutter hike from flowline = 2.000 (In. ) ' Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 11. 182 (CFS) Depth of flow = 0.452 (Ft. ) , Average velocity = 4 .023(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 16.287 (Ft. ) Flow velocity = 4 .02 (Ft/s) �( Travel time = 0.67 min. TC = 8.87 min. 1! Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) � Runoff Coefficient = 0.852 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 i 37 ma r Decimal fraction soil group C = 0.000 It Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0.500; Impervious fraction = 0.500 il Rainfall intensity = 3.721 (In/Hr) for a 100.0 year storm 11 Subarea runoff = 0.539(CFS) for 0.170 (Ac. ) Total runoff = 11.433 (CFS) Total area = 3.380 (Ac. ) II Street flow at end of street = 11.433(CFS) Half street flow at end of street = 11.433 (CFS) Depth of flow = 0.455 (Ft. ) , Average velocity = 4 .045 (Ft/s) Flow width (from curb towards crown)= 16.431 (Ft. ) L ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II Process from Point/Station 7.000 to Point/Station 10.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 3.380 (Ac. ) Runoff from this stream = 11.433 (CFS) Time of concentration = 8.87 min. 1i Rainfall intensity = 3.721 (In/Hr) Program is now starting with Main Stream No. 2 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 **** INITIAL AREA EVALUATION **** /1 Initial area flow distance = 170.000 (Ft. ) Top (of initial area) elevation = 1217.000 (Ft. ) Bottom (of initial area) elevation = 1214.330 (Ft. ) 11 Difference in elevation = 2.670 (Ft. ) Slope = 0.01571 s (percent)= 1.57 TC = k(0.390) *[ (length^3) / (elevation change) ]^0.2 itInitial area time of concentration = 6.983 min. Rainfall intensity = 4 .243 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.857 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 I/ Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.200 (CFS) II Total initial stream area = 0.330 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 9.000 to Point/Station 10.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** ,I Top of street segment elevation = 1214.330 (Ft. ) End of street segment elevation = 1192.800 (Ft. ) 1'', I 3s . vs 1 Length of street segment = 445.000 (Ft. ) t, Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) 1/1 Slope from gutter to grade break (v/hz) = 0. 020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) It Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning' s N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0. 0150 Estimated mean flow rate at midpoint of street = 3.873(CFS) Depth of flow = 0.296(Ft. ) , Average velocity = 4 .578 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.481 (Ft. ) �. Flow velocity = 4 .58 (Ft/s) Travel time = 1.62 min. TC = 8. 60 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0. 852 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0.500; Impervious fraction = 0.500 ', Rainfall intensity = 3.783 (In/Hr) for a 100.0 year storm Subarea runoff = 4 .740 (CFS) for 1. 470 (Ac. ) Total runoff = 5. 940 (CFS) Total area = 1.800(Ac. ) ' Street flow at end of street = 5.940 (CFS) Half street flow at end of street = 5. 940 (CFS) Depth of flow = 0.332 (Ft. ) , Average velocity = 5.040 (Ft/s) Flow width (from curb towards crown)= 10.256(Ft. ) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.800(Ac. ) Runoff from this stream = 5.940 (CFS) Time of concentration = 8.60 min. IF Rainfall intensity = 3.783 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.433 8.67 3.721 111 2 5.940 8.60 3.783 Largest stream flow has longer time of concentration I a I QP = .433 + sum of II Qb11Ia/Ib 5. 940 * 0. 984 = 5.842 QP = 17.274 ! Total of 2 main streams to confluence: Flow rates before confluence point: II11.433 5.940 Area of streams before confluence: 3.380 1.800 IIResults of confluence: Total flow rate = 17.274 (CFS) i Time of concentration = 8. 867 min. Effective stream area after confluence = 5.180 (Ac. ) Check of Previous Confluence Operations Of all Main streams II Total of 5 streams to confluence: IIFlow rates before and maximum after confluence point: No. Flow Rate TC I Max Confluence ' 1 4 .743 8.556 3.795 17.233 2 0.565 8.013 3. 934 16.194 3 5.718 8.867 3.721 17.284 4 5.940 8 . 603 3.783 17 .283 'I5 0.539 8.867 3.721 17.284 NOTE: Last stream is area added between confluences 1 Results of confluence check: Total flow rate = 17.284 (CFS) Time of concentration = 8 .867 min. NOTE: II Maximum flow rate derived from previous confluences = 17.28 (CFS) This exceeds normal confluence rate of 17.27 (CFS) 11Therefore, largest confluence flow rate and TC = 8.87 Min. is used. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ jj Process from Point/Station 10.000 to Point/Station 14 .000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 1186. 98 (Ft. ) 1 Downstream point/station elevation = 1183.00 (Ft. ) Pipe length = 69.74 (Ft. ) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.284 (CFS) II Nearest computed pipe diameter = 18.00 (In. ) Calculated individual pipe flow 17.284 (CFS) Normal flow depth in pipe = 10.98 (In. ) Flow top width inside pipe = 17 .56(In. ) II Critical depth could not be calculated. Pipe flow velocity = 15.31 (Ft/s) Travel time through pipe = 0.08 min. II 11 S/D 1 Time of concentration (TC) = 8.94 min. 11 11 Process from Point/Station 10.000 to Point/Station 14 .000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 11 Stream flow area = 5.180 (Ac. ) Runoff from this stream = 17.284 (CFS) 11 Time of concentration = 8. 94 min. _ Rainfall intensity = 3.703 (In/Hr) Program is now starting with Main Stream No. 2 11 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 11Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 115.000 (Ft. ) Top (of initial area) elevation = 1201.000 (Ft. ) Bottom (of initial area) elevation = 1197.920 (Ft. ) Difference in elevation = 3.060 (Ft. ) Slope = 0.02678 s (percent)= 2. 68 ' TC = k(0.390) *[ (length^3) / (elevation change) ]^0.2 Initial area time of concentration = 5.368 min. Rainfall intensity = 4.904 (In/Hr) for a 100.0 year storm 11SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.862 Decimal fraction soil group A = 0.000 Decimal fraction soil group = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0.500; Impervious fraction = 0.500 ' Initial subarea runoff = 0.634 (CFS) Total initial stream area = 0. 150 (Ac. ) Pervious area fraction = 0.500 Process from Point/Station 12.000 to Point/Station 14 .000 111 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1197.920 (Ft. ) 1/ End of street segment elevation = 1192.800(Ft. ) Length of street segment = 382.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) I/ Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000(Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) I r 4/ II Ai Gutter hike from flowline = 2.000(In. ) It Manning's N in gutter = 0.0150 • Manning's N from gutter to grade break = 0.0150 11Manning's N from grade break to crown = 0.0150 Estimated mean .flow rate at midpoint of street = . 3.277 (CFS) Depth of flow = 0.336 (Ft. ) , Average velocity = ' 2.681 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.466 (Ft. ) Flow velocity = 2. 68 (Ft/s) II Travel time = 2.37 min. TC = 7.74 min. Adding area flow to street . 11 SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.855 . Decimal fraction soil group A = 0.000 R Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 ' RI index for soil (AMC 3) = 74 .80 II Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4 .009 (In/Hr) for a 100.0 year storm Subarea runoff = 4 .283 (CFS) for 1.250 (Ac. ) ' Total runoff = 4. 917 (CFS) Total area = 1.400 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 4 . 917 (CFS) Depth of flow = 0.375 (Ft. ) , Average velocity = 2. 948 (Ft/s) IIFlow width (from curb towards crown)= 12.415 (Ft. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 14 .000 **** CONFLUENCE OF MAIN STREAMS ***`` 11 The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.400 (Ac. ) Runoff from this stream = 4 . 917 (CFS) 11 Time of concentration = 7.74 min. Rainfall intensity = 4 .009(In/Hr) Program is now starting with Main Stream No. 3 II Process from Point/Station .13.000 to Pont/Station 9.000 II **** INITIAL AREA EVALUATION **** Initial area flow distance = 104 .000 (Ft. ) 11 Top (of initial area) elevation = 1217.000 (Ft. ) Bottom (of initial area) elevation = 1214 .330 (Ft. ) Difference in elevation = 2.670 (Ft. ) Slope = 0.02567 s (percent)= 2.57 TC = k(0. 390)* [ (length"3) / (elevation change) ) ^0.2 11 Initial area time of concentration = 5.200 min. Rainfall intensity = 4 . 990 (In/Hr) for a 100.0 year storm I SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.863 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 1/ I 42 1 • Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 74 .80 ' Pervious area fraction = 0.500; Impervious fraction = 0.500 Initial subarea runoff = 1.206(CFS) Total initial stream area = 0.280 (Ac. ) Pervious area fraction = 0.500 11 Process from Point/Station 9.000 to Point/Station 14 .000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1214 .330 (Ft. ) 11 End of street segment elevation = 1192.800 (Ft. ) Length of street segment = 490.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 30.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) 11 Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 11 Street flow is on [1] side(s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) ' Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.050 (CFS) Depth of flow = 0.338 (Ft. ) , Average velocity = 4 .877 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.554 (Ft. ) Flow velocity = 4 .88 (Ft/s) Travel time = 1.67 min. TC = 6.87 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) 11 Runoff Coefficient = 0.857 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 1 RI index for soil (AMC 3) = 74 . 80 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 4 .280 (In/Hr) for a 100.0 year storm Subarea runoff = 8 .255 (CFS) for 2.250 (Ac. ) Total runoff = 9.461 (CFS) Total area = 2.530 (Ac. ) Street flow at end of street = 9.461 (CFS) Half street flow at end of street = 9.461 (CFS) Depth of flow = 0.381 (Ft. ) , Average velocity = 5.415 (Ft/s) 11 Flow width (from curb towards crown)= 12.730 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 9.000 to Point/Station 14 .000 **** CONFLUENCE OF MAIN STREAMS **** 1/ I . 93 The following data inside Main Stream is listed: II In Main Stream number: 3 Stream flow area = 2.530 (Ac. ) I Runoff from this stream = 9.961 (CFS) Time of concentration = 6.87 min. Rainfall intensity = 4 .280 (In/Hr) Summary of stream data: IIStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II1 17.284 8. 94 3.703 2 4 .917 7.74 4.009 II 3 9.461 6.87 4.280 Largest stream flow has longer time of concentration Qp = 17.284 + sum of Qb Ia/Ib I/ 9 . 917 * 0. 924 = 4 .542 Qb Ia/Ib 9.461 * 0.865 = 8.187 OP = 30.013 II Total of 3 main streams to confluence: Flow rates before confluence point: II 17.284 4 .917 9.461 Area of streams before confluence: 5.160 1.400 2.530 11 Results of confluence: Total flow rate = 30.013 (CFS) II Time of concentration = 8.943 min. Effective stream area after confluence = 9.110 (Ac. ) Ili Check of Previous Confluence Operations Of all Main streams II Total of 7 streams to confluence: Flow rates before and maximum after confluence point: IINo. Flow Rate TC I Max Confluence 1 4 .743 8. 632 3.776 30.215 2 0.565 8 .089 3.914 29.657 3 5.718 8 .943 3.703 30.015 ii 4 5. 940 8. 679 3.765 30.226 II 5 0.539 8. 943 3.703 30.015 6 4 .917 7.742 4 .009 29.290 7 9.461 6.874 4 .280 27.600 II Results of confluence check: Total flow rate = 30.226(CFS) II Time of concentration = 8.679 min. NOTE: Maximum flow rate derived from previous confluences = 30.23(CFS) I/ 1/ lig 1 This exceeds normal confluence rate of 30.01 (CFS) Therefore, largest confluence flow rate and TC = 8. 68 Min. is used. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ _ Process from Point/Station 14 .000 to Point/Station 15.000 " PIPEFLOW TRAVEL TIME (Program estimated size) **** rUpstream -point/station elevation = 1183.00 (Ft. ) Downstream point/station elevation = 1160. 96 (Ft. ) Pipe length = 250.73 (Ft. ) Mannings N = 0.013 No. of pipes = 1 Required pipe flow = 30.226(CFS) Nearest computed pipe diameter = 18.00 (In. ) Calculated individual pipe flow = 30.226(CFS) 1 Normal flow depth in pipe = 14.30 (In. ) Flow top width inside pipe = 14 .55 (In. ) Critical depth could not be calculated. Pipe flow velocity = 20.08 (Ft/s) 1 Travel time through pipe = 0.21 min. Time of concentration (TC) = 8.89 min. End of computations, total study area = 9.11 (Ac. ) 11 The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 11 Area averaged RI index number = 56.0 1 1 1 1 r 1 r i I i ''S Y 1 11 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 RationalHydrologyStudy Date: 12/19/01 111 TRACT 29734 - FLOWS TRIBUTARY TO CAMINO SAN DIMAS 100 YEAR - ULTIMATE CONDITION FN: ROLAND HYDROLOGY/ CAM100 12-17-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100. 00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4 .1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. ' 10 year storm 10 minute intensity = 2.360 (in./hr. ) 10 year storm 60 minute intensity = 0.880 (in. /hr. ) 100 year storm 10 minute intensity = 3.480 (in. /hr. ) 100 year storm 60 minute intensity = 1.300 (in./hr. ) Storm event year = 100.0 Calculated rainfall intensity data: I 1 hour intensity = 1.300 (in. /hr. ) Slope of intensity duration curve = 0.5500 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 180.000 (Ft. ) Top (of initial area) elevation = 1231.000 (Ft. ) Bottom (of initial area) elevation = 1228 .000 (Ft. ) 1 Difference in elevation = 3.000 (Ft. ) Slope = 0.01667 s (percent)= 1. 67 TC = k(0.390) * [ (length^3) /(elevation change) ]^0.2 Initial area time of concentration = 7.060 min. Rainfall intensity = 9 .216 (In/Hr) for a 100.0 year storm SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.857 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 79 .80 I f/4 7. 11 11 Pervious area fraction = 0. 500; Impervious fraction = 0.500 Initial subarea runoff = 0.903 (CFS) Total initial stream area = 0.250 (Ac. ) IIPervious area fraction = 0.500 Process from Point/Station 17.000 to Point/Station 18.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** II Top of street segment elevation = 1228. 000 (Ft. ) End of street segment elevation = 1214 . 940 (Ft. ) Length of street segment = 320.000 (Ft. ) • I Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 18.000 (Ft. ) Distance from crown to crossfall grade break = 16.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 II Slope from grade break to crown (v/hz) = 0.020 Street flow is on [2] side (s) of the street Distance from curb to property line = 12.000(Ft. ) Slope from curb to property line (v/hz) = 0.025 11 Gutter width = 2.000 (Ft. ) Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 II Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.836(CFS) Depth of flow = 0.232 (Ft. ) , Average velocity = 3.508 (Ft/s) II Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.269 (Ft. ) Flow velocity = 3.51 (Ft/s) I Travel time = - 1.52 min. TC = 8.58 min. Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.852 IDecimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 3) = 74 .80 Pervious area fraction = 0. 500; Impervious fraction = 0.500 Rainfall intensity = 3.789 (In/Hr) for a 100.0 year storm Subarea runoff = 3.455 (CFS) for 1.070 (Ac. ) Total runoff = 4 .359(CFS) Total area = 1. 320(Ac. ) Street flow at end of street = 4 .359(CFS) Half street flow at end of street = 2.179 (CFS) II Depth of flow = 0.260(Ft. ) , Average velocity = 3.794 (Ft/s) Flow width (from curb towards crown)= 6.691 (Ft. ) End of computations, total study area = 1.32 (Ac. ) II The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.500 I/ Area averaged RI index number = 56.0 I II 77e02973c, y? I r 1 i I VI. 10 YEAR EXISITING CONDITION A. BASIN A B. BASIN B- TRIBUTARY FLOWS TO CAMINO SAN DIMAS ' C. BASIN C I I 1 1 I r g I Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 12/20/01 TRACT 29734- 10YEAR INTERIM CONDITION BASIN 'A' FN: 10BASA 12-17-01 ,/ ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 10. 00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. ' 10 year storm 10 minute intensity = 2.360 (in. /hr. ) 10 year storm 60 minute intensity = 0.680 (in. /hr. ) 100 year storm 10 minute intensity = 3.480 (in./hr. ) 100 year storm 60 minute intensity = 1.300 (in./hr. ) ' Storm event year = 10. 0 Calculated rainfall intensity data: ' 1 hour intensity = 0.880 (in./hr. ) Slope of intensity duration curve = 0.5500 I Process from Point/Station 1.000 to Point/Station 2.000 "" INITIAL AREA EVALUATION I/ Initial area flow distance = 145.000 (Ft. ) Top (of initial area) elevation = 1301.140 (Ft. ) Bottom (of initial area) elevation = 1225.000 (Ft. ) ' Difference in elevation = 76. 140 (Ft. ) Slope = 0.52510 s (percent)= 52.51 TC = k(0.530) *[ (length^3) / (elevation change) ]^0.2 Warning: TC computed to be less than 5 min. ; program is assuming the I/ time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.452 (In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.812 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 419 1 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.920 (CFS) Total initial stream area = 0.150 (Ac. ) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 5.000 I/ **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1225.000 (Ft. ) End of natural channel elevation = 1161.000 (Ft. ) Length of natural channel = 770.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 6. 695 (CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48 (q^.33) (slope^.992) Velocity using mean channel flow = 3.02 (Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) I/ Normal channel slope = 0.0831 Corrected/adjusted channel slope = 0.0831 Travel time = 4 .25 min. TC = 9.25 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.781 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.461 (In/Hr) for a 10.0 year storm Subarea runoff = 8. 606 (CFS) for 9 .960 (Ac. ) Total runoff = 9.026 (CFS) Total area = 4 . 630 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** ' The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4 . 630 (Ac. ) Runoff from this stream = 9.026 (CFS) Time of concentration = 9.25 min. Rainfall intensity = 2.461 (In/Hr) Program is now starting with Main Stream No. 2 I/ 5o 1 Process from Point/Station 3.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** 11 Initial area flow distance = 63.000 (Ft. ) Top (of initial area) elevation = 1291. 600 (Ft. ) Bottom (of initial area) elevation = 1270.000 (Ft. ) 11 Difference in elevation = 21. 600 (Ft. ) Slope = 0.34286 s (percent)= 34 .29 TC = k(0.530) * [ (length^3) / (elevation change) ] A0.2 Warning: TC computed to be less than 5 min. ; program is assuming the 1/ time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3.452 (In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea 11 Runoff Coefficient = 0.812 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 11 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 11 Initial subarea runoff = 0.280 (CFS) Total initial stream area = 0. 100 (Ac. ) Pervious area fraction = 1.000 I/ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4 .000 to Point/Station 5.000 I/ **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1270.000 (Ft. ) ' End of natural channel elevation = 1161.000 (Ft. ) Length of natural channel = 630.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 6.555 (CFS) ' Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48 (q^.33) (slope^.492) Velocity using mean channel flow = 4 .30 (Ft/s) 11 Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) I/ Normal channel slope = 0. 1730 Corrected/adjusted channel slope = 0.1730 Travel time = 2.44 min. TC = 7.44 min. ' Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.793 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.773 (In/Hr) for a 10.0 year storm 5! II IISubarea runoff = 9. 847 (CFS) for 4 .480 (Ac. ) Total runoff = 10.128 (CFS) Total area = 4 .580 (Ac. ) ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4 .000 to'-Point/Station 5.000 II **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4 .580 (Ac. ) Runoff from this stream = 10.128 (CFS) Time of concentration = 7.44 min. 1 Rainfall intensity = 2.773 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity INo. (CFS) (min) (In/Hr) 1 9.026 9.25 2. 461 I 2 10.128 7.44 2.773 Largest stream flow has longer or shorter time of concentration Qp = 10.128 + sum of Qa Tb/Ta 9.026 * 0.804 = 7 .261 Op = 17. 388 A Total of 2 main streams to confluence: Flow rates before confluence point: 9.026 10.128 ' Area of streams before confluence: 4 . 630 4 . 580 ' Results of confluence: Total flow rate = 17.388 (CFS) Time of concentration = 7.442 min. Effective stream area after confluence = 9.210 (Ac. ) 11 End of computations, total study area = 9.21 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. IIArea averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 II I II I jet aw Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational .Hydrology Study Date: 12/20/01 i TRACT 29734 - 10 YEAR INTERIM CONDITION BASIN "B" - TRIBUTARY FLOWS TO CAMINO SAN DIMAS FN: 10BASB 12-17-01 ., ********* Hydrology Study Control Information ********** 1 RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 10.00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4 .1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr. ) 10 year storm 60 minute intensity = 0.880 (in. /hr. ) 100 year storm 10 minute intensity = 3.480 (in. /hr. ) 100 year storm 60 minute intensity = 1.300 (in./hr. ) ' Storm event year = 10.0 Calculated rainfall intensity data: 1 hour intensity = 0.880 (in. /hr. ) Slope of intensity duration curve = 0.5500 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 135.000 (Ft. ) Top (of initial area) elevation = 1301.400 (Ft. ) Bottom (of initial area) elevation = 1250.200 (Ft. ) Difference in elevation = 51.200 (Ft. ) 1 Slope = 0.37926 s (percent)= 37 . 93 TC = k(0.530) * [ (length^3) / (elevation change) ] ^0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 3. 452 (In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.812 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 52 mm ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78 .00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.560 (CFS) Total initial stream area = 0.200(Ac. ) Pervious area fraction = 1.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1250.200 (Ft. ) ' End of natural channel elevation = 1216.000 (Ft. ) Length of natural channel = 420.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 1.149 (CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5. 48 (q^ .33) (slope^.992) Velocity using mean channel flow = 1. 67 (Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) ' Normal channel slope = 0.0814 Corrected/adjusted channel slope = 0.0814 Travel time = 4 .19 min. TC = 9.19 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.781 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1. 000 Decimal fraction soil group C = 0.000 ' Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 Pervious area fraction = 1.000; Impervious fraction = 0.000 1 Rainfall intensity = 2.469 (In/Hr) for a 10.0 year storm Subarea runoff = 0.810 (CFS) for 0.420 (Ac. ) Total runoff = 1. 370 (CFS) Total area = 0.620 (Ac. ) Process from Point/Station 8.000 to Point/Station 12.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1216.000 (Ft. ) End of natural channel elevation = 1197.500 (Ft. ) ' Length of natural channel = 45.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 1.481 (CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8 (q^.352) (slope^0. 5) Velocity using mean channel flow = 10. 38 (Ft/s) 1 Sof r I ! IICorrection to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.4111 II Corrected/adjusted channel slope = 0.4111 Travel time = 0. 07 min. TC = 9.26 min. IIAdding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.781 I/ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ' Decimal fraction soil group C = 0.000 II Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78 .00 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2. 459(In/Hr) for a 10.0 year storm ' Subarea runoff = 0. 192 (CFS) for 0.100 (Ac. ) Total runoff = 1.562 (CFS) Total area = 0.720(Ac. ) Process from Point/Station 8.000 to Point/Station 12.000 **** CONFLUENCE OF MAIN STREAMS **** i The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.720 (Ac. ) I Runoff from this stream = 1.562 (CFS) Time of concentration = 9.26 min. Rainfall intensity = 2.459 (In/Hr) IProgram is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 Process from Point/Station 9.000 to Point/Station 10.000 ! **** INITIAL AREA EVALUATION **** Initial area flow distance = 345.000 (Ft. ) I Top (of initial area) elevation = 1271.400 (Ft. ) Bottom (of initial area) elevation = 1247.000 (Ft. ) Difference in elevation = 24 .400 (Ft. ) I Slope = 0.07072 s (percent)= 7.07 TC = k(0.530) *[ (length^3) / (elevation change) ]^0.2 Initial area time of concentration = 9.322 min. Rainfall intensity = 2.450 (In/Hr) for a 10.0 year storm ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.780 Decimal fraction soil group A = 0.000 I/ Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 II Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0. 956 (CFS) Total initial stream area = 0.500 (Ac. ) Pervious area fraction = 1.000 a973f 55 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 11.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1247. 000 (Ft. ) End of natural channel elevation = 1221.000 (Ft. ) Length of natural channel = 50.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 1.052 (CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: Velocity = (7 + 8 (q^.352) (slope^0.5) Velocity using mean channel flow = 10. 92 (Ft/s) Correction to map slope used on extremely rugged channels with ' drops and waterfalls (Plate D-6.2) Normal channel slope = 0.5200 Corrected/adjusted channel slope = 0.5200 Travel time = 0.08 min. TC = 9. 40 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0. 780 Decimal fraction soil group A = 0.000 • Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0. 000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 IPervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2. 439(In/Hr) for a 10.0 year storm Subarea runoff = 0. 190 (CFS) for 0.100 (Ac. ) Total runoff = 1. 146(CFS) Total area = 0. 600 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment. elevation = 1221.000 (Ft. ) End of street segment elevation = 1197.500(Ft. ) Length of street segment = 470.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) ' Width of half street (curb to crown) = 22.000 (Ft. ) Distance from crown to crossfall grade break = 20. 000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) ' Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0. 0150 Manning's N from gutter to grade break = 0.0150 I/ Manning's N from grade break to crown = 0.0150 I 56 ll Estimated mean flow rate at midpoint of street = 1.987 (CFS) Depth of flow = 0.247 (Ft. ) , Average velocity = 4 .046(Ft/s) I Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.037 (Ft. ) Flow velocity = 4.05 (Ft/s) Travel time = 1. 94 min. TC = 11 .33 min. II Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.755 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1 .000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 2) = 56.00 Pervious area fraction = 0. 500; Impervious fraction = 0.500 Rainfall intensity = 2.201 (In/Hr) for a 10.0 year storm Subarea runoff = 1.462 (CFS) for 0. 880 (Ac. ) II Total runoff = 2. 608 (CFS) Total area = 1.480 (Ac. ) Street flow at end of street = Total (2.608 (CFS) Half street flow at end of street = 2. 608 (CFS) II Depth of flow = 0.266 (Ft. ) , Average velocity = 4 .265 (Ft/s) Flow width (from curb towards crown)= 6. 963 (Ft. ) Process from Point/Station 11.000 to Point/Station 12.000 **** CONFLUENCE OF MAIN STREAMS **** II The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.480 (Ac. ) II Runoff from this stream = 2. 608 (CFS) Time of concentration = 11.33 min. Rainfall intensity = 2.201 (In/Hr) Summary of stream data: IIStream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II1 1.562 9.26 2.459 2 2. 608 11. 33 2.201 II Largest stream flow has longer time of concentration Qp = 2. 608 + sum of Qb Ia/Ib ' 1.562 * 0. 895 = 1. 398 Qp = 4 .006 Total of 2 main streams to confluence: 1/ Flow rates before confluence point: 1.562 2. 608 Area of streams before confluence: 0.720 1.480 II Results of confluence: Total flow rate = 4 .006 (CFS) II _ 57 1 ' Time of concentration = 11.334 min. Effective stream area after confluence = 2.200 (Ac. ) ' End of computations, total study area = 2.20 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 69.2 1 I I I ft 1 Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3. 3 Rational Hydrology Study Date: 12/20/01 TRACT 29734 - 10 YEAR INTERIM CONDITION BASIN "C" FN: 10BASC ' 12-17-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 10. 00 Antecedent Moisture Condition = 2 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. ' 10 year storm 10 minute intensity = 2.360 (in. /hr. ) 10 year storm 60 minute intensity = 0.880 (in./hr. ) 100 year storm 10 minute intensity = 3.480 (in. /hr. ) ' 100 year storm 60 minute intensity = 1.300 (in./hr. ) Storm event year = 10. 0 Calculated rainfall intensity data: ' 1 hour intensity = 0.880 (in. /hr. ) Slope of intensity duration curve = 0.5500 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 19 .000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 85.000(Ft. ) Top (of initial area) elevation = 1271.400 (Ft. ) Bottom (of initial area) elevation = 1267.000 (Ft. ) Difference in elevation = 4 .400 (Ft. ) Slope = 0.05176 s (percent)= 5.16 TC = k(0.530) *[ (length^3) / (elevation change) ]^0.2 Initial area time of concentration = 5.665 min. ' Rainfall intensity = 3.222 (In/Hr) for a 10.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.806 ' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 S9 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.390 (CFS) ' Total initial stream area = 0.150 (Ac. ) Pervious area fraction = 1.000 ' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14 .000 to Point/Station 15.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1267.000 (Ft. ) End of natural channel elevation = 1228.300 (Ft. ) Length of natural channel = 230.000 (Ft. ) ' Estimated mean flow rate at midpoint of channel = 0. 961 (CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5. 48 (q^.33) (slope".492) Velocity using mean channel flow = 2.25 (Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1683 Corrected/adjusted channel slope = 0.1683 Travel time = 1.70 min. TC = 7.37 min. Adding area flow to channel ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.793 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 2) = 78.00 ' Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 2.789 (In/Hr) for a 10.0 year storm Subarea runoff = 0.973 (CFS) for 0.440 (Ac. ) Total runoff = 1.363 (CFS) Total area = 0.590 (Ac. ) End of computations, total study area = 0.59 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78 .0 Go 1 VII. 100 YEAR EXISTING CONDITION A. BASIN A B. BASIN B-TRIBUTARY FLOWS TO CAMINO SAN DIMAS B. BASIN C 1 1 1 1 Riverside County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational Hydrology Study Date: 12/20/01 TRACT 29734 - 100 YEAR INTERIM CONDITION BASIN "A" FN: ROLAND HYDROLOGY/ BASA 12-17-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on ' Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 100. 00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc, Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in. /hr. ) 10 year storm 60 minute intensity = 0.880 (in. /hr. ) 100 year storm 10 minute intensity = 3.480 (in./hr. ) 100 year storm 60 minute intensity = 1.300 (in./hr. ) ' Storm event year = 100. 0 Calculated rainfall intensity data: ' 1 hour intensity = 1.300 (in./hr. ) Slope of intensity duration curve = 0.5500 ' ++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION ' Initial area flow distance = 145. 000 (Ft. ) Top (of initial area) elevation = 1301.140 (Ft. ) Bottom (of initial area) elevation = 1225.000 (Ft. ) Difference in elevation = 76. 140 (Ft. ) Slope = 0.52510 s (percent)= 52.51 TC = k(0. 530) * [ (length^3) / (elevation change) ] ^0.2 Warning: TC computed to be less than 5 min. ; program is assuming the . ' time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099(In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.874 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 b7 I 1 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 1 Initial subarea runoff = 0. 669(CFS) Total initial stream area = 0. 150(Ac. ) Pervious area fraction = 1.000 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 5.000 I - **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1225.000 (Ft. ) . 1 End of natural channel elevation = 1161.000 (Ft. ) Length of natural channel = 770.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 10. 652 (CFS) 1 Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5. 48 (q^.33) (slope^.992) Velocity using mean channel flow = 3.52 (Ft/s) 1 Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) 1 Normal channel slope = 0.0831 Corrected/adjusted channel slope = 0.0831 Travel time = 3.65 min. TC = 8. 65 min. 1 Adding area flow to channel UNDEVELOPED (poor cover) subarea 1 Runoff Coefficient = 0.865 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 1 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.773 (In/Hr) for a 100.0 year storm 1 Subarea runoff = 14 . 629 (CFS) for 4 .480 (Ac. ) Total runoff = 15.292 (CFS) Total area = 4 . 630 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 5.000 **** CONFLUENCE OF MAIN STREAMS **** 1 The following data inside Main Stream is listed: In Main Stream number: 1 1 Stream flow area = 4 . 630 (Ac. ) Runoff from this stream = 15.292 (CFS) Time of concentration = 8. 65 min. Rainfall intensity = 3. 773 (In/Hr) 1 Program is now starting with Main Stream No. 2 II 77e c2 97s 7 G3 II ' Process from Point/Station ' 3.000 to Point/Station 4 .000 **** INITIAL AREA EVALUATION **** ' Initial area flow distance = 63.000 (Ft. ) Top (of initial area) elevation = 1291. 600 (Ft. ) Bottom (of initial area) elevation = 1270.000 (Ft. ) ' Difference in elevation = 21. 600 (Ft. ) Slope = 0.34286 s (percent)= 34 .29 TC = k(0.530) * [ (length^3) / (elevation change) ) ^0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099 (In/Hr) for a 100.0 year storm II UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.874 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 ' Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 I . Initial subarea runoff = 0.446(CFS) Total initial stream area = 0.100 (Ac. ) Pervious area fraction = 1.000 II Process from Point/Station 4 .000 to Point/Station 5.000 ' **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1270.000 (Ft. ) ' End of natural channel elevation = 1161.000 (Ft. ) Length of natural channel = 630.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 10.429(CFS) ll Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5.48 (q^.33) (slope^.492) Velocity using mean channel flow = 5.01 (Ft/s) II Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) I Normal channel slope = 0. 1730 Corrected/adjusted channel slope = 0. 1730 Travel time = 2.10 min. TC = 7.10 min. ' Adding area flow to channel UNDEVELOPED (poor cover) subarea ' Runoff Coefficient = 0.869 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1. 000 Decimal fraction soil group C = 0.000 I Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 ' Rainfall intensity = 4 .206(In/Hr) for a 100.0 year storm II 49 II ' Subarea runoff = 16.370 (CFS) for 4 .480 (Ac. ) Total runoff = 16.816 (CFS) Total area = 4 .580 (Ac. ) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4 .000 to Point/Station 5.000 ' **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 I Stream flow area = 4 .580 (Ac. ) Runoff from this stream = 16.816(CFS) Time of concentration = 7 .10 min. II Rainfall intensity = 9 .206 (In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity ' No. (CFS) (min) (In/Hr) 1 15.292 8. 65 3.773 I 2 16.816 7. 10 4 .206 Largest stream flow has longer or shorter time of concentration Qp = 16.816 + sum of I Qa Tb/Ta 15.292 * 0.820 = 12.547 Qp = 29.363 ' Total of 2 main streams to confluence: Flow rates before confluence point: 15.292 16.816 I Area of streams before confluence: 4 .630 4 .580 II Results of confluence: Total flow rate = 29.363 (CFS) Time of concentration = 7.095 min. Effective stream area after confluence = 9.210 (Ac. ) I End of computations, total study area = 9.21 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. ' Area averaged pervious area fraction(Ap) = 1.000 Area averaged RI index number = 78.0 II I I II b5 • I Riverside County Rational Hydrology Program ' CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3.3 Rational . Hydrology Study Date: 12/20/01 1 TRACT 29734 - 100YEAR INTERIM CONDITION BASIN "B" - TRIBUTARY FLOWS TO CAMINO SAN DIMAS FN: ROLAND HYDROLOGY / BASB 12-17-01 ********* Hydrology Study Control Information ********** RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on Riverside County Flood Control & Water Conservation District 1978 hydrology manual Storm event (year) = 100. 00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4 . 1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2. 360 (in. /hr. ) 10 year storm 60 minute intensity = 0.880 (in. /hr. ) 100 year storm 10 minute intensity = 3. 480 (in. /hr. ) 100 year storm 60 minute intensity = 1.300 (in./hr. ) Storm event year = 100. 0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in. /hr. ) Slope of intensity duration curve = 0.5500 I Process from Point/Station 6.000 to Point/Station 7.000 **** INITIAL AREA EVALUATION **** Initial area flow distance = 135.000 (Ft. ) Top (of initial area) elevation = 1301.400 (Ft. ) Bottom (of initial area) elevation = 1250.200 (Ft. ) Difference in elevation = 51.200 (Ft. ) Slope = 0.37926 s (percent)= 37. 93 TC = k(0.530) *[ (length^3) / (elevation change) ] ^0.2 Warning: TC computed to be less than 5 min. ; program is assuming the time of concentration is 5 minutes. Initial area time of concentration = 5.000 min. Rainfall intensity = 5.099 (In/Hr) for a 100. 0 year storm UNDEVELOPED (poor cover) subarea 1 Runoff Coefficient = 0.874 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1 .000 Decimal fraction soil group C = 0.000 GG i • Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0.891 (CFS) Total initial stream area = 0.200 (Ac. ) Pervious area fraction = 1. 000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1250.200 (Ft. ) 11 End of natural channel elevation = 1216.000 (Ft. ) Length of natural channel = 420.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 1.827 (CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: Velocity = 5. 48 (q^.33) (slope^.492) Velocity using mean channel flow = 1.95 (Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) 11 Normal channel slope = 0.0814 Corrected/adjusted channel slope = 0.0814 Travel time = 3.60 min. TC = 8. 60 min. Adding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.865 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1. 000 Decimal fraction soil group C = 0. 000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.785 (In/Hr) for a 100.0 year storm Subarea runoff = 1.376 (CFS) for 0.420 (Ac. ) Total runoff = 2.267 (CFS) Total area = 0.620 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 12.000 • **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** 11 Top of natural channel elevation = 1216.000 (Ft. ) End of natural channel elevation = 1197.500 (Ft. ) 11 Length of natural channel = 45.000 (Ft. ) Estimated mean flow rate at midpoint of channel = 2. 450 (CFS) Natural valley channel type used ' L.A. County flood control district formula for channel velocity: Velocity = (7 + 8 (q' .352) (slope^0.5) Velocity using mean channel flow = 11.52 (Ft/s) I 4? II IICorrection to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) II Normal channel slope = 0.4111 Corrected/adjusted channel slope = 0.4111 Travel time = 0.07 min. TC = 8. 66 min. IAdding area flow to channel UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.865 I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 II Decimal fraction soil group D = 0. 000 RI index for soil (AMC 3) = 89.80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.769 (In/Hr) for a 100.0 year storm II Subarea runoff = 0.326 (CFS) for 0.100 (Ac. ) Total runoff = 2.593 (CFS) Total area = 0.720 (Ac. ) IIProcess from Point/Station 8. 000 to Point/Station 12.000 **** CONFLUENCE OF MAIN STREAMS **** IIThe following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.720 (Ac. ) 11 Runoff from this stream = 2.593 (CFS) • Time of concentration = 8. 66 min. • Rainfall intensity = 3.769 (In/Hr) IIProgram is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I/ Process from Point/Station 9.000 to Point/Station 10.000 **** INITIAL AREA EVALUATION **** II Initial area flow distance = 345.000 (Ft. ) Top (of initial area) elevation = 1271.400 (Ft. ) Bottom (of initial area) elevation = 1247.000 (Ft. ) Difference in elevation = 24 . 400 (Ft. ) II Slope = 0.07072 s (percent)= 7.07 TC = k(0.530) * [ (length^3) / (elevation change) ] ^0.2 Initial area time of concentration = 9.322 min. Rainfall intensity = 3.620 (In/Hr) for a 100.0 year storm 11 UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.664 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 11 Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 1.564 (CFS) Total initial stream area = 0.500 (Ac. ) 11 Pervious area fraction = 1.000 II / G f 0 1 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station. 11.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** Top of natural channel elevation = 1247.000 (Ft. ) End of natural channel elevation= 1221.000 (Ft. ) Length of natural channel = 50.000 (Ft. ) I. Estimated mean flow rate at midpoint of channel = 1.720 (CFS) Natural valley channel type used L.A. County flood control district formula for channel velocity: ' Velocity = (7 + 8 (q^. 352) (slope"0. 5) Velocity using mean channel flow = 12.03 (Ft/s) Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.5200 Corrected/adjusted channel slope = 0.5200 Travel time = 0. 07 min. TC = 9. 39 min. Adding area flow to channel ' UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0. 864 Decimal fraction soil group A = 0.000 Decimal fraction soil group 8 = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89. 80 Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 3.605 (In/Hr) for a 100.0 year storm Subarea runoff = 0.311 (CFS) for 0. 100 (Ac. ) Total runoff = 1.875 (CFS) Total area = 0. 600 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ i Process from Point/Station 11.000 to Point/Station 12.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 1221.000 (Ft. ) t End of street segment elevation = 1197.500 (Ft. ) Length of street segment = 470.000 (Ft. ) Height of curb above gutter flowline = 6.0 (In. ) Width of half street (curb to crown) = 22.000 (Ft. ) Distance from crown to crossfall grade break 20.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 ' Street flow is on [1] side (s) of the street Distance from curb to property line = 12.000 (Ft. ) Slope from curb to property line (v/hz) = 0.020 Gutter width = 2.000 (Ft. ) 1 Gutter hike from flowline = 2.000 (In. ) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 1 69 I 1 Estimated mean flow rate at midpoint of street = 3.250 (CFS) Depth of flow = 0.282 (Ft. ) , Average velocity = 4 .465 (Ft/s) Streetflow hydraulics at midpoint of street travel: II Halfstreet flow width = 7.754 (Ft. ) Flow velocity = 4 . 46(Ft/s) Travel time = 1.75 min. TC = 11. 15 min. I Adding area flow to street SINGLE FAMILY (1/4 Acre Lot) Runoff Coefficient = 0.846 II Decimal fraction soil group A = 0.000 . Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 II RI index for soil (AMC 3) = 74.80 Pervious area fraction = 0.500; Impervious fraction = 0.500 Rainfall intensity = 3.281 (In/Hr) for a 100.0 year storm Subarea runoff = 2.442 (CFS) for 0.880 (Ac. ) I Total runoff = 4 .317 (CFS) Total area = 1.480 (Ac. ) Street flow at end of street = Total (CFS) Half street flow at end of street = 4 . 317 (CFS) Depth of flow = 0.304 (Ft. ) , Average velocity = 4.749 (Ft/s) 11 Flow width (from curb towards crown)= 8.645 (Ft. ) 11 Process from Point/Station 11.000 to Point/Station 12.000 **** CONFLUENCE OF MAIN STREAMS **** II The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.480 (Ac. ) .' Runoff from this stream = 4 .317 (CFS) Time of concentration = 11.15 min. Rainfall intensity = 3.281 (In/Hr) Summary of stream data: 1 Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) II1 2.593 8 . 66 3.769 2 4 .317 11.15 3.281 Largest stream flow has longer time of concentration II QP = 4.317 + sum of Qb Ia/Ib 2.593 * 0.870 = 2.257 IQp = 6.575 Total of 2 main streams to confluence: Flow rates before confluence point: 111 2.593 4 .317 Area of streams before confluence: 0.720 1.480 II Results of confluence: I/ Total flow rate = 6.575 (CFS) II 20 1 Time of concentration = 11.145 min. Effective stream area after confluence = 2.200 (Ac. ) ' End of computations, total study area = 2.20 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. Area averaged pervious area fraction(Ap) = 0.800 Area averaged RI index number = 69.2 1 I 1 1 1 I i I/ 1 11 1 I 1 9/ r I Riverside County Rational Hydrology Program 1 CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992 Version 3. 3 Rational Hydrology Study Date: 12/20/01 It TRACT 29734 -100 YEAR ULTIMATE CONDITION BASIN "C" FN: ROLAND HYDROLOGY / BASC 12-17-01 ********* Hydrology Study Control Information ********** ' RANPAC Engineering Corporation, Temecula, CA - S/N 560 Rational Method Hydrology Program based on ' Riverside County Flood Control & Water Conservation District 1978 hydrology manual ' Storm event (year) = 100.00 Antecedent Moisture Condition = 3 Standard intensity-duration curves data (Plate D-4 .1) For the [ Murrieta,Tmc,Rnch Callorco ] area used. 10 year storm 10 minute intensity = 2.360 (in./hr. ) 10 year storm 60 minute intensity = 0. 880 (in./hr. ) 100 year storm 10 minute intensity = 3.480 (in./hr. ) 100 year storm 60 minute intensity = 1.300 (in./hr. ) Storm event year = 100.0 Calculated rainfall intensity data: 1 hour intensity = 1.300 (in. /hr. ) Slope of intensity duration curve = 0. 5500 ++++++++++++++++++++++++++++++++*+4+4+++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** INITIAL AREA EVALUATION Initial area flow distance = 85.000 (Ft. ) Top (of initial area) elevation = 1271.400 (Ft. ) Bottom (of initial area) elevation = 1267.000 (Ft. ) ' Difference in elevation = 4 .400 (Ft. ) Slope = 0.05176 s (percent)= 5.18 TC = k(0.530) * [ (length^3) /(elevation change) ] ^0.2 Initial area time of concentration = 5.665 min. Rainfall intensity = 9 .760 (In/Hr) for a 100.0 year storm UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.872 Decimal fraction soil group A = 0.000 ' Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 I ' Pervious area fraction = 1.000; Impervious fraction = 0.000 Initial subarea runoff = 0. 623 (CFS) II Total initial stream area = 0.150 (Ac. ) Pervious area fraction = 1 .000 Process from Point/Station 14 .000 to Point/Station 15.000 **** NATURAL CHANNEL TIME + SUBAREA FLOW ADDITION **** ' Top of natural channel elevation = 1267.000 (Ft. ) End of natural channel elevation = 1228.300 (Ft. ) Length of natural channel = 230.000 (Ft. ) IIEstimated mean flow rate at midpoint of channel = 1.536(CFS) Natural mountain channel type used L.A. County flood control district formula for channel velocity: ' Velocity = 5.48 (q^.33) (slope^. 492) Velocity using mean channel flow = 2.63 (Ft/s) ' Correction to map slope used on extremely rugged channels with drops and waterfalls (Plate D-6.2) Normal channel slope = 0.1683 Corrected/adjusted channel slope = 0.1683 IITravel time = 1. 46 min. TC = 7.12 min. Adding area flow to channel II UNDEVELOPED (poor cover) subarea Runoff Coefficient = 0.869 Decimal fraction soil group A = 0.000 II Decimal fraction soil group B = 1 .000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 RI index for soil (AMC 3) = 89.80 I Pervious area fraction = 1.000; Impervious fraction = 0.000 Rainfall intensity = 4 .197 (In/Hr) for a 100.0 year storm Subarea runoff = 1. 604 (CFS) for 0.440 (Ac. ) 1 Total runoff = 2.227 (CFS) Total area = 0.590 (Ac. ) End of computations, total study area = 0.59 (Ac. ) The following figures may be used for a unit hydrograph study of the same area. . ' Area averaged pervious area fraction (Ap) = 1.000 Area averaged RI index number = 78.0 II II 1 II II 73 1 1 1 i ' VIII. HYDRAULIC CALCULATION 1 1 1 1 1 1 1 1 1 1 1 1 9N Nis i WARNING NO. 2 -- - WATER SURFACE ELEVATION GIVEN IS LESS THAN OR EQUALS INVERT ELEVATION IN HONEDS, N.S.ELEV - INV + Iv' N S P G N - CIVILDESIGN Vera 7.1 PAGE 1 For: RANPAC Inc., Temecula, California - S/N 560 WATER SURFACE PROFILE LISTING Date:12-19-2001 Time:11: 1:13 I TRACT 29734 - LINE ..E. FN: RO]AND HYDROLOGY / LINEX DATE: 12-17-01 I Invert I Depth I Water I 0 I Vet Vel I Energy I Super ICriticallFlow ToplHeigh[/IBaae Mt! INo Nth Station I Elev I OFT) I Elev I ICES/ ( (FPS) Head I Grd.E1.1 Elev I Depth I Width IDia.-FTlor I.D.I IL IPra/Pip -1 L/Elem 'CI Slope!I 1I 1 1 1 1SF Avel HF ISE Dpth(Froude NINorm Dp I 'N' II ZR iType Cl I 1 i f I 1 I I I I I I 1629.29 1160.96 .978 1161.918 30.2 19.00 6.089 1168.026 .00 1.866 2.00 2.00 .00 .00 1 .0 9.08 .05105 .070189 .38 .98 3.999 1.107 .013 .00 PIPE II I I I I I I I 1 I 1619.17 1161.21 .969 1162.178 30.2 20.02 6.221 1168.399 .00 1.866 2.00 2.O0 .00 .00 1 .0 17.45 .05105 .084728 1.99 .97 9.058 1.107 .013 .00 PIPE I I I I I I I 1 I I I I I 1651.62 1162.10 .935 1163.035 30.2 20.99 6.842 1169.078 .00 1.866 2.00 2.00 .00 .00 1 .0 III 2.00 .06000 .090746 .18 .93 4.355 1.053 .013 .00 PIPE I I I 1 I 1653.62 1162.22 .931 1162 151 30.2 2L.09 6,908 1170.059 3.00 1.966 2.00 2.00 .00 .00 1 .0 -I -1 -I -I -I -1 -I- 2.00 1 2.00 .05499 .092022 .30 2.00 9.396 1.082 .013 .00 PIPE I I I I I I 1 1 I 1 I I. ' 3655.62 1162.33 .927 1161.257 20.2 21.21 6.986 1170.294 .00 1.066 1.99 2.00 .00 .00 1 .0 I I I I I I 12.26 .06635 .096203 1.18 .93 4.422 1.022 .012 .00 PIPE I I 1667.86 1163.14 .908 1164.052 30.2 21.79 7.372 1111.924 .00 1.066 1.99 2.00 .00 .00 3 A 17.53 .06635 .106526 1.87 .91 4.601 1.022 .013 .00 PIPE I 1 i f I 1685.91 1164.31 .815 3165.182 30.2 22.85 8.109 1173.291 .00 1.866 3.98 2.00 .00 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 19.22 .06635 .121242 1.72 .88 4.932 1.022 .012 .00 PIPE I I 1 I I I 1 I I I I I 1699.63 1165.25 .895 1166.095 20.2 23.97 8.920 1175.015 .00 1.066 1.98 2.00 .00 .00 1 .0 II/ -I- 9.56 I 9.56 .06627 .135790 3.20 .89 5.286 1.022 .013 .00 PIPE III I I I I I I I I I 1]09.19 1165.89 .021 3366.704 30.2 29.95 9.588 1176.292 .00 1.066 1.9] 2.00 1- 10.81 .06627 .152339 1.65 .82 5.569 1.022 .013 .00 PIPE ' N S P G N - CIVILDES1GN Vera 7.1 PAGE 2 For: PANPAC Inc., Temecula, California - S/N 560 WATER SURFACE PROFILE LISTING Date:12-19-2001 Time:ll: 1:13 TRACT 29734 - LINE "X" IN: ROLAND HYDROLOGY / LINEX DATE: 12-17-01 I Invert I Depth I Water I U I Vel Vel 1 Energy Super IC[it icallFlov ToplHeigh[/IBaae NCI !No 0th Station Elev IFTI Elev IC FSI IFP51 Head 1 Crd.E1.I Elev I Depth I Width 'Dia.-Filar I.0.1 IL IPra/Pip L/Elan (Cl S10pel 1 I I SF Avel HF ISE OpN IFroode NINorm Dp I 'N' I I ZR !Type Ch I I I I I I I I I I I I I I I I I 1 I I 17200 1166.60 .792 316].J9] 30.2 26.06 10.597 33]].940 .00 1.866 1.96 2.00 .00 .00 1 .0 3.85 .23083 .159328 .61 .79 5.965 .121 .OIJ .00 PIPE I I I I I I I I I I I I I 1723.95 1167.49 .801 1168.289 20.2 25.71 10.262 1178.552 .00 1.966 1.96 2.00 .00 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- 10.75 .23083 I .116]]0 1.58 .80 5.849 .721 .013 .00 PIPE I I I I ' 1 I I I I I I I 1734.60 1169.97 .830 1170.801 - 30.2 24.51 9.329 1160.130 .00 3.966 1.97 2.00 .00 -1 -I I -I -1 -I -I -I 8.02 .23002 .128840 1.03 .83 5.461 .721 .013 .00 PIPE 1 I I I I I I 1 I 1 I I 1742.62 1171.82 .060 1172.682 30.2 23.37 8.401 1101.164 .00 1.006 1.98 2.00 II/ .00 .00 1 .0 6.28 .23083 .113165 .71 .86 5.096 .721 .012 .00 PIPE I I 1 I I I I I I I 1 I I 1748.90 1173.27 .092 1174.164 30.2 22.20 7.710 3181.874 .00 1.866 1.99 Z.00 -1- -I- -1- -1 -1- -1- -I- -I- -1- -I- -I- -1- -1-5.00 .23083 .099464 .51 .69 9.759 .721 .013 .00 PIPE IIII I I I I I I I I I I I I 3]]3.99 1119.95 .925 1177.311 30.2 21.21 7.009 1182.380 .00 1.866 1.99 2.00 -I- -I- -I- -I- -I- -I- -1- -I- -I- -I- -I- -I- -I- 1- 1.20 .23083 .0879]0 .37 .93 9.9]3 .721 .013 .00 PIPE I I I I 1 I I I I I I I I 1758.19 1175.42 .960 1176.375 30.2 20.26 6.372 1192.740 .00 1.966 2.00 2.00 .00 .00 1 .0 1 -I3.53 .23083 .076998 .27 .96 4.131 .721 .013 .00 PIPE I I I 1 1I 1761.71 11]6.2] .997 3177.226 30.2 19.31 5.793 1183.019 .00 1.866 2.00 2.00 .00 .00 1 .0 1- 3.00 .23083 .067818 .20 1.00 3.849 .721 .013 .00 PIPE 1 I I I I 1 I I 1 I 1 1 1 ' 1764.71 1176.92 1.035 1177.956 30.2 18.92 5.266 1183.222 .00 3.866 2.00 2.00 .00 .00 1 .0 -I -I -1 2.56 .23083 .059760 .15 1.04 3.581 .721 .013 .00 PIPE 0 S P G N - CIVILDEIIGN Vers 7.1 PAGE 3 For: RA19PAC Inc., Temecula. California - S/N 560 WATER SURFACE PROFILE LISTING Date:12-19-2001 Time:11: 1:12 TRACT 29734 - LINE 'X" III 75 I . ' FN: ROLAND HYDROLOGY / LINE% DATE: 12-17-01 I Invert I Depth I Water t Q I Vel Vel I Energy I Super ICriticallFlov ToplHeight/IBaae Wt; Wo Wth Station I- Elev I (FT) I Elev I (CMI (FPS) Head I Gri.E1.I Elev 1 Depth I Width IDia.-FTIor I.0.1 21, IPre/Pip III -I- -I- -I- -1- -I- -1- -1- -I- -1- -1- -1- -1- L/Elem ICh Slope! BF Avel HE' ISE DpthlFioutle HINoim Op "N" I I ZR (Type Ch I I I I I I I 1 { I 1767.28 1177.51 1.075 1118.508 30.2 17.56 4.788 1183.375 .00 1.866 1.99 2.00 .00 .00 1 .0 -1- -I- -I- -I- -I- -I- -I- -1- -1- -I- -1- -1- -I- I- ' 2.23 .23093 .052]08 .12 1.08 3.330 .721 .013 .00 PIPE I I 1 i I 1769.98 1179.02 1.117 1379.190 30.2 16.74 4.352 1183.992 .00 1.866 1.99 2.00 .00 .00 1 .O -I- -1- -I- -1- -I- -I- -1- -I- -I- -1- -1- -I- -1- 1- 1.90 .23093 .046546 .09 1.12 3.094 .721 .013 .00 PIPE I I I I I I I I I I I I I 1771.39 1170.46 1.162 1179.624 30.2 15.96 3.957 1193.580 .00 1.866 1.97 2.00 .00 .00 1 .0 1.65 .23083 .041158 .0] 1.16 2.8]2 .721 .013 .00 PIPE I I I I I 1173.03 1170.89 1.209 1180.051 30.2 15.22 3.597 1183.648 .00 1.866 1.96 2.00 .00 .00 1 .0 1- 1.42 .23083 .036439 .05 1.21 2.661 .721 .013 .00 PIPE I 1 I I i 1I 1]]{.96 11]9.1] 1.259 1180.930 30.2 14.51 J.2]0 1183.700 .00 1.066 1.93 2.00 .00 .00 1 .0 -I -I -I -I1 -I 1 1.23 .23083 .032316 .04 1.26 2.463 .721 .013 .00 PIPE I 1 1 1 1 1 I I 1 I 1 I I 1]]5.69 1179.46 1.312 1100.767 30.2 13.84 2.973 1103.740 .CO 1.866 1.90 2.00 .00 .00 1 .0 ' 1.06 .23083 .028709 .03 1.31 2.274 .721 .013 .00 PIPE II I I I I1 1776.75 1119.70 1.368 1181.068 30.2 13.19 2.702 1183.1]0 .00 1.866 1.86 2.O0 .00 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- .90 .23093 .025567 .02 1.37 2.094 .721 .013 .00 PIPE I I 1 I I I I I 1 I I I I III 1]7].65 1179.91 1.429 1181.337 30.2 12.56 2.457 1183.793 .00 1.866 1.91 2.00 .00 .00 1 .0 _1_ .75 .23083 .022858 .02 1.43 1.922 .721 .013 .CO PIPE I I I 1 I I 1778.40 1180.0a 1.496 1181.577 30.2 11.99 2.233 1183.811 .00 1.866 1.74 2.00 .00 .00 1 .0 -I- -I- -1- -I- -1- -1- -1- -1- -1- -1- -1- -1- -1- 1- .62 .23083 .020522 .01 1.50 1.754 .721 .013 .00 PIPE ' W S P G N - CIVILDEBIGN Vere 7.1 PAGE 4 For: RANFAC Inc., Temecula. California - 1/N 560 WATER SURFACE PROFILE LISTING Date:12-39-2001 Time:ll: 1:13 TRACT 29734 - LINE "X" FN: ROLAND HYDROLOGY / LINEX ' DATE: 12-17-01 I Invert I Depth 1 Water I Q I Vel Vel Energy Super Cri ticalI Flow ToplHelght/IBase NLI INo Wth Station Elev IFtI Elev I (CPS) IFPSI Head 1 Grd.E1.I Elev I Depth t Width IDla.-FTIor 1.0.1 ZL litre/Pip -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- L/Elea ICh Slope! I I I SF Ave; HF ISE DpthlFroude N1Norm Dp 1 "N" I I ZR (Type Ch I I 1 I I 1 I I 1 I 1 I I I II I I 1 II I I 1]79.02 1180.22 1.568 1181.793 30.2 11.9] 2.O30 1183.823 .00 1.866 1.65 2.00 .00 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- .48 .23083 .016592 .O1 1.57 1.590 .721 .011 .00 PIPE 1 I I 1 I I 1 I 1 1 1 I 1779.51 1180.34 1.650 1181.987 30.2 10.90 1.846 1183.932 .00 1.866 1.52 2.00 .00 .00 1 .0 .34 .23083 .016934 .O1 1.65 1.422 .721 .013 .00 PIPE I t 1 I 1]]9.85 1180.42 1.744 1182.160 30.2 10.40 1.619 1183.838 .00 1.866 1.34 2.00 .00 .00 1 .0 -1- -I- -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- .15 .23083 .015830 .00 1.74 1.242 .723 .013 .00 PIPE I I I I I I I I I I I I I 1780.00 1180.45 1.066 1102.316 30.2 9.91 1.524 1191.840 .00 1.866 1.00 2.00 .00 .00 1 .0 I I JUNCT STR .02000 .010638 1.06 1.87 1.000 O1] .00 PIPE 1800.02 1102.95 2.981 1185.931 17.3 5.50 .470 1185.901 .00 1.498 .00 2.00 .00 .00 1 .0 2.13 .01410 .005835 .01 2.98 .000 1.167 .013 .00 PIPE III I I I I I I I I I I I I I 1002.15 1182.49 2.994 1105.479 17.3 5.50 .9]D 1185.943 .00 1.998 .00 2.00 .00 .D0 1 .0 -I- -I- -I- -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- 1- 25.30 .02001 .005835 .15 2.99 .000 1.047 .013 .00 PIPE I I I I I I 1 1 I I I I 1 1907.45 1182.99 2.631 1185.617 17.3 5.50 .470 1186.087 .00 1.498 .00 2.00 .00 .00 1 .0 1 -I HYDRAULIC SUMP I I I I I I I I 1907.45 1182.99 .815 1183.80111.3 14.36 3.202 1187.004 .00 1.498 1.97 2.00 .00 .00 1 .0 -I- -I- -I- -1 -I- -I- -I- -I- -I- -I- -I- -I- 1- 3.13 .02001 .048607 .15 .02 3.234 1.047 .013 .00 PIPE I I I I I I 1 1 1 I I 1910.58 1103.05 .009 1183.858 17.3 14.50 3.265 1187.123 .00 1.999 1.96 2.00 .00 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- 1- 9.11 .02001 .052658 .4B .01 3.280 1.047 .013 .00 PIPE W S P G N - CIVILDESIGN Vero 7.1 PAGE 5 For: RANPAC Inc., Temecula, California - S/N 560 11/ WATER SURFACE PROFILE LISTING Oate:12-19-2001 Time:11: 1:13 TRACT 29734 - LINE "X" FN: ROLAND HYDROLOGY / LINEX DATE: 12-ll-0l 1 Invert I Depth I Water I Q I Vel Vel I Energy I Super ICriticallFloW ToplHeight/lease Wt1 INo Wth II/ Station ; Elev 1 LFT) I Elea I (CFs) 1 IFPS) Head I Grd.E1.I Elev I Depth 1 Width IDia.-FTIor I.D.1 2L IPra/Pip -1- -1- -1- -I- -I- -I- -1- -I- -1- -1- -1- -1- -1- 1- I 94 ' L/Eleni ICN Slope] 1I Sr Avel HF ISE DpthlFroudt N1Norm Dp I "N" I I ZR !Type Cl 1 I I I 1 I I 1 1 I I I I I I I I I I 1 1 1919.69 1183.23 .780 1384.011 17.3 15.21 3.591 1187.602 .00 1.498 1.95 2.00 .00 .00 1 .0 III -1 1 0.30 .02001 .060000 .50 .lB 3.512 1.047 .013 .00 PIPE 1 I I I 1 1 i 192!.00 1183.40 .753 1104.150 17.3 15.95 3.950 1100.101 .00 3.999 1.94 2.00 .00 .00 1 .0 1- 7.63 .02001 .069440 .52 .75 3.759 1.047 .013 .00 PIPE I I I 1 1 1 I I 1 1 1 1 1 ' 1935.63 3193.55 A28 1184.278 17.3 16.73 4.345 1199.623 .00 1.998 1.92 2.00 .00 1 .0 I I 3.59 .24274 .069585 .11 .73 4.024 .532 .013 .00 PIPE I I 1 1937.17 1101.92 .746 1184.670 17.3 16.15 4.052 1180.722 .00 1.990 1.93 2.00 .00 .00 1 .0 1.89 .24274 .062157 .12 .75 3.928 .532 .013 .00 PIPE 1i 1 1 t 1 1939.06 1184.38 .773 1195.156 I].J 15.40 3.684 1189.839 .00 1.498 1.95 2.00 .00 .00 1 .0 1.63 .24274 .054536 .09 .77 3.577 .532 .013 .00 PIPE I 1 1 1 1 1 I I i I 1 1 1 1940.69 1184.78 .801 1185.579 17.3 14.69 3.349 3188.928 .00 1.499 1.96 2.00 .00 .00 1 .0 III -1 -I- 1.41 1 3.43 .24279 .091860 .% .80 3.340 .532 .013 .00 PIPE I I 1 1992.10 1185.12 .830 1185.952 I].] 14.00 3.045 1189.996 .00 1.498 1.97 2.00 .00 .00 1 .0 1.22 .29274 .042030 .05 .83 3.119 .532 .013 .00 PIPE 1 I I. 1943.33 1185.42 .061 1186.280 1].3 13.35 3.768 3389.048 .00 1.990 1.90 2.00 .00 .00 1 .0 3.07 .24274 .036934 .04 .B6 2.911 .532 .013 .00 PIPE I 1 1 I 1 1 1 1 I 1 I 1 1 1944.40 1385.68 .893 3186.571 17.3 12.73 2.516 1189.007 .00 1.498 1.99 2.00 .00 .00 1 .0 .93 .24274 .032462 .03 .89 2.715 .532 .013 .00 PIPE V 5 P G N - CSVILDESIGN Vera 7.1 PAGE 6 For: RANPAC Inc., Temecula, URrnla - 5/N 560 MATERER SURFACE PROFILE LISTING Oa[e:12-19-2001 Time Ill: 1:13 TRACT 29734 - LINE "K" e 12 RO -DHYDROLOGY / LINES DATE: 12-11-OS I Invert I Depth I Water 1 0 1 Vel Tel 1 Energy 1 Super ICriticallFlov ToplHeight/Wase Vt1 INo Nth Station 1 Elev 1 IFTI I Elev 1 ICFSI 1 IFPS) Head 1 Grd.E1.I Elev 1 Depth 1 Width !Dia.-ETD): I.D.I EL IPra/Pip L/Eleni PM Slope! I 1 I SF Avel HF ISE Opth1hl Frouae NINorm Op I "N" 1 I ZR !Type Ch I 1 1 1 1 1 1 i I I 1 1995.]] 1185.90 .926 1396.BI0 17.3 12.14 2.29] 1189.11] .00 1.499 3.99 2.00 .00 .00 1 .0 .01 .24274 .020547 .02 .93 2.532 .532 .013 .00 PIPE I I I I 1 1 I I I 1 I I I 1946.03 1186.10 .961 1187.061 17.3 11.57 2.080 1189.140 .00 1.499 2.00 2.00 ' .00 .00 1 .0 -1- -I- -1- -1- -1- -1- -1- -1- -1- -1- -I- -1- -1- 1- .70 .24274 .025119 .02 .9'0 2.359 .532 .013 .00 PIPE I II 1946.54 1186.27 .997 1181.267 17.3 11.03 1.890 1199.158 .00 1.499 2.00 2.00 .61 .24274 .022113 .01 1.00 2.197 .532 .013 .00 PIPE I I I 1 I I 1 1 3997.44 1386.42 1.015 118].953 1].3 10.52 1.719 3189.171 .00 1.498 2.00 2.00 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -1- 1- .52 .292]4 .019994 .O1 :.D4 2.045 .532 .013 .00 PIPE 1 1 1 1 1 1 I 1 1 1 1 1 I 1947.96 1186.54 1.076 1187.619 17.3 10.03 1.562 1189.191 .00 1.998 1.99 2.00 .00 .00 1 .0 .44 .24274 .017200 .O1 1.08 1.902 .532 .013 .00 PIPE I 1 II I 1948.40 1186.65 1.310 118].]69 t].J 9.56 1.420 1109.189 .00 1.998 1.99 2.00 .37 .29274 .015104 .01 1.12 1.767 .532 .013 .00 PIPE 1 1998.18 11156.19 1.162 118].90] 17.3 9.12 1.291 1189.395 .00 1.998 1.97 2.00ill .00 .00 1 .0 -I- -I- -I- -1- I- .JI .24274 .013421 .00 1.16 1.640 .532 .013 .00 PIPE 1949.08 1586.82 1.209 1189.025 17.3 8.69 1.174 1189.199 .00 1.498 1.96 2.00 .00 .00 1 .0 .25 .24279 .011882 .00 1.21 1.520 .532 .013 .00 PIPE ill I I I I I I 1 1 1999.]] 1186.BB 1.259 1188.115 17.3 8.29 1.067 1109.202 .OD 1.498 1.93 2.00 '1 -I -1 -I -I -I -I -I -I -I -I -I 'I .19 .24274 .010537 .00 1.26 1.406 .532 .013 .00 PIPE V S P G N - CIVILOESIGN Vers 7.1 PAGE 7 / For: RANPAC Inc.. Temecula, California - S/N 560 NATER SURFACE PROFILE LISTING Date:12-19-2001 Time:11: 1:13 TRAGI 29734 - LINE "%" FN: R81AND DAOIAGT / 11y E.S DATE: 12-17-01 I Invert I Depth I Water I 0 I Vel Tel 1 Energy I Super ICriticallFlov ToplHeight/IBase 0911 INo 6181 station I Cleo I fRl I Elev I (C F51 I (FPS) Head I GrO.E1.1 [ley I Depth 1 Width 101.1.-rTIor I.01 IL IPra/Pip L/Eleni ICh Slope] SF Avel NF ISE OpthlFroude NINorm Op I "N" I ZR (Type CN 1 I I I I I I I 1 I I I I I 1949.52 1186.92 1.312 1108.234 17.3 7.90 .970 1189.204 .00 1.498 1.90 2.00 .00 .00 1 .0 1 .13 .29274 .009364 .00 1.31 1.299 .532 .013 .00 PIPE I _ 77 I I I I I I I I I I -I I I I I 1949.65 1106.95 1.369 1169.121 17.3 7.54 .882 1189.205 .00 1.498 1.66 2.00 .00 .00 1 .0 3- .08 .24274 .008343 .00 1.37 1.196 .532 .013 .00 PIPE I 1 1 1 I I I I I I I 111 1949.]) 1186.97 1.930 1188.409 17.3 7.19 .802 1199.206 .00 1.498 1.81 2.00 .00 .00 1 .0 -1 -I .03 .21279 .00]95] .00 1.43 1.097 .532 .013 .00 PIPE I I I 1 1949.76 1106.99 1.498 1189.470 17.3 6.85 .728 1189.206 .00 1.498 1.73 2.00 .00 .00 1 .0 -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- ' WAIL ENTRANCE - 1 I I 1 1 I I I 1 1 I I I 1999.76 1106.99 2.566 1199.546 17.3 2.14 .Oil 1189.617 .00 .960 3.14 6.00 3.14 .00 0 .0 -I- -I- -I' -1- -I- -I- -I- -I- -I- -I- -I- -I- -I- I- I I I I I I III I 7f I I WSPGN - EDIT LISTING - Version 7.0 Ua[c 12-19-2001 Time al: 1: 5 DATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CNN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y111 1)21 1131 Ylq Y15) Y16) YI71 Y(81 YI91 YILo) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP II COC1 4 1 2.00 CD 1 1.50 D 2.00 CD 4 2 0 .00 6.00 3.14 -.5D WSPGN PAGE NO 1 I WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - TRACT 29734 - LINE 'C. HEADING LINE NO 2 IS - EN: ROLAND HYDROLOGY / LINE% HEADING LINE NO 3 IS - DATE: 12-1J-OS ' WSPGN PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET ' U/S DATA STATION INVERT SECT W S ELEV 1629.29 1160.96 1 1161.96 I ELEMENT NO 2 IS A REACH VEA DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1651.62 1162.10 1 .013 .000 .000 .000 0 ELEMENT FO 3 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1653.62 1162.22 1 .013 .000 .000 .000 1 I ELEMENT NO 4 IS A REACH = UAGA BTATION INVERT SECT N RADIUS ANGLE ANG PT MAX H 1655.62 1162.33 1 .013 2.046 56.021 .000 D ELEMENT NO 5 IS A REACH U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1699.63 1165.25 1 .013 .000 .000 .000 0 ELEMENT NO 6 IS A REACH • ' /5 DATA STATICN. INVERT SECT N RAOIUS ANGLE PT MAN H 1120.00 1166.60 I .013 .000 .000 .000 0 ELEMENT NO ] IS A UREACH • U/S DATA STATION INVERT BELT N RADIUS ANGLE AVG PT MAN H 1780.00 1160.45 1 .013 .000 .000 .000 0 ELEMENT NO 8 IS A JUNCTION ' V/5 DATA STATION• INVERT SECT LAT-1 LAT-2 N 03 p9 INVERT-3 INVERT-4 PHI 3 PHI 4 1880.02 1102.45 3 2 0 .013 12.95 .00 1184.45 .00 90.00 .00 RADIUS ANGLE .000 .000 ELEMENT NO 9 IS A REACH • U/S DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN N 1882.15 1182.48 3 .013 .000 .000 -19.690 D I ELEMENT NO 10 IS A REACH • U/5 DASA STATICN INVERT SECT N RADIUS ANGLE ANG PT MAN N 1935.63 1103.55 3 .013 .000 .000 .000 0 ELEMENT NO 11 IS A REACH U/5 DATA STATION INVERT SECT N RADIUS ANGLE ANG PT MAN H 1949.76 1186.98 3 .011 .000 .000 .000 0 ELEMENT NO 12 I5 A WALL ENTRANCE • I U/S DATA STATION INVERT SECT FP 1949.76 1186.98 4 .500 WSPGN PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 13 IS A SYSTEM HEAWORKS • • I U/S DATA STATION INVERT SECT W S ELEV 1999.76 1186.98 4 1186.98 I III III III I 7c::::? 923coo 79 I ' T1 TRACT 29734 - LINE "X" 0 T2 FN: ROLAND HYDROLOGY / LINEX T3 DATE: 12-17-01 IISO 1629.291160. 96 1 1161. 96 R 1651 . 621162.10 1 . 013 .000 . 000 0 ' R 1653.621162.22 1 .013 .000 . 000 1 ' R 1655.621162.33 1 .013 56.021 .000 0 R 1699. 631165.25 1 .013 .000 .000 0 R 1720.001166.60 1 .013 .000 .000 0 R 1780. 001180.45 1 .013 .000 .000 0 II JX 1880.021182.45 3 2 .013 12.95 1184 .45 90.0 .000 R 1882.151182.48 3 .013 .000 -19. 680 0 R 1935. 631183.55 3 .013 .000 .000 0 ' R 1949.761186.98 3 .013 .000 .000 0 WE 1949.761186. 98 4 .500 SH 1949.761186. 98 4 1186.98 CD 1 4 1 .00 2.00 .00 .00 .00 .0 ' CD 2 4 1 .00 1.50 .00 .00 .00 .0 CD 3 4 1 .00 2.00 . 00 .00 .00 . 0 CD 4 2 0 .00 6.00 3.14 .00 .00 -.5 ' Q 17.28 . 0 II 1 II II 1 II II I I 1 II SO I I I I I IX. I CATCH BASIN SIZING I I I I I I I I I I I I I S1 *************************************************************************** ****** STREET FLOW CALCULATIONS ****** CALCULATE DEPTH OF FLOW GIVEN: ' Street Slope = .024600 (Ft. /Ft. ) = 2.4600 % Given Flow Rate = 17.28 Cubic Feet/Second 1 ***************************************************************************** This softwareprepared for: Ran ac Engineering ***************************************************************************** *** OPEN CHANNEL FLOW - STREET FLOW *** ' Street Slope (Ft. /Ft. ) = .0246 Mannings "n" value for street = . 015 Curb Height (In. ) = 6. Street Halfwidth (Ft. ) = 30.00 Distance From Crown to Crossfall Grade Break (Ft. ) = 16.00 Slope from Gutter to Grade Break (Ft./Ft. ) = .020 Slope from Grade Break to Crown (Ft. /Ft. ) _ .020 ' Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft. ) = 12.00 Slope from curb to property line (Ft. /Ft. ) _ .020 ' Gutter width (Ft. ) = 2.000 Gutter hike from flowline (In. ) = 2.000 Mannings "n" value for gutter and sidewalk = .015 Depth of flow = .484 (Ft. ) Average Velocity = 5.21 (Ft./Sec. ) Streetflow Hydraulics : Halfstreet Flow Width(Ft. ) = 17.85 ' Flow Velocity(Ft. /Sec. ) = 4 .55 Depth*Velocity = 2.20 Flow rate of total street channel = 17.28 (CFS) ' Flow rate in gutter = 5. 84 (CFS) Velocity of flow in gutter and sidewalk area = 7.293 (Ft./Sec. ) Average velocity of total street channel = 5.214 (Ft. /Sec. ) -t_f f ‘,./A-PJIT-r c ( 4um"r .c),1o(n orJ') a . 44 ( 4- (. g(2-) ) O- 4g1, s 1 � 6 532 cr' 17. 26 Gr 5 I Jr 9-- 0I r 1 . 1 �oZ ' IATUa tj. Sl a r-3006 IJ0 1 \ ****** STREET FLOW CALCULATIONS ****** CALCULATE DEPTH OF FLOW GIVEN: Street Slope = .024600 (Ft. /Ft. ) = 2.4600 % Given Flow Rate = 4 . 92 Cubic Feet/Second 1 ***************************************************************************** ' This software prepared for: Ranpac Engineering *** OPEN CHANNEL FLOW - STREET FLOW *** ' Street Slope (Ft./Ft. ) = .0246 Mannings "n" value for street = .015 Curb Height (In. ) = 6. ' Street Halfwidth (Ft. ) = 30.00 Distance From Crown to Crossfall Grade Break (Ft. ) = 16.00 Slope from Gutter to Grade Break (Ft./Ft. ) = .020 Slope from Grade Break to Crown (Ft. /Ft. ) _ . 020 ' Number of Halfstreets Carrying Runoff = 1 Distance from curb to property line (Ft. ) = 12.00 Slope from curb to property line (Ft./Ft. ) = .020 Gutter width (Ft. ) = 2.000 ' Gutter hike from flowline (In. ) = 2.000 Mannings "n" value for gutter and sidewalk = . 015 Depth of flow = .335 (Ft. ) Average Velocity = 4 .06 (Ft./Sec. ) Streetflow Hydraulics Halfstreet Flow Width (Ft. ) = 10. 42 ' Flow Velocity(Ft. /Sec. ) = 2. 98 Depth*Velocity = 1.00 Flow rate of total street channel = 4 .92 (CFS) ' Flow rate in gutter = 2.81 (CFS) Velocity of flow in gutter and sidewalk area = 5.575 (Ft./Sec. ) Average velocity of total street channel = 9 .060 (Ft. /Sec. ) ' 'C/".‘ ei c— tt Gf11.G111--1t'l0ht.. ( 4 ma c c 4A+n0�\ 0.3P)t, wc, 14' i � ,5 t6 go3 of '7 4612 of " ' t,J` 14 Is O 4. 23 1 1 1 1 X. II HYDROLOGY MAP 1 '1 . 1 1 1 1 1 1 1 1 1 1 1 84{