Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Supp of Info Liquifcation Hazard Analysis 8/27/2001
'41. ,, 1S V 4 ,f_ iZr4 .' jr :it • Iat. ` vry mt ;1:,,t-1•:,:. . v�' ?1 a4Nt £ 5r, n f. i 1 ^1 ' SLrx,I ►r : I 13;1 r}LNFOInIATI0NFOR T7�r AC; ION II ZkRll ANALYSIS Ci: ;?e,E tWK TOWNE 1C`T� TTCR = LJLaTORICAL CO iMERCIAL VAIL7IA1CI1 AT III ----1-1-- CALu?okNIA COUiTY OF RIVI RSIDE , IIIA 11,EN3STRONAIENTAT.,InIPAC1 • REPORT NU MIIICR 2 0 4 ,..... ....:,,... ..... ......... . .. 1 . „ .. ... .-... t "'<`2t11�'�'�ItLi7 i'OIt i z ' reP'3h2 L�Cl .1�Os�{.i R3eLY. StEEIG' RrT14A hTht ) OCINiR )�2 fl :i „ c $ .F Jlj , QtyII ,...,..1.„, NE Y4''',?...1''±' 't r ,yn Y , 0 4 AflCU sT 273 200I I N QS 4() f -•�y s P� • r ,°v _u vf S rT a l a t 1 fr S.'t •1 4 J5 1 7 2 3 IFS v v r ` `i S rIt' �a w : t r :. ,., 1 y, °, t r lE4Y Y s ✓ r i t 6 y r Qi } :. r . \ t PETRA COSTA MESA • SAN DIEGO • TEMECULA • LOS ANGELES August 27, 2001 J.N. 208-00 , i EXCEL LEGACY CORPORATION 17140 Bernardo Center Calif. 92128 Drive, Suite 300 San Diego, Attention: Mr. Geoffrey Sherman Information for the Potential Liquefaction Hazard, Redhamentallnform Historical Commercial Area A Subject: Center, County of Riverside, Final Redhhwk TowneRCalifornia, Ranch at Rancho ort Number 240. Environmental Impact Rep Lo r References: See Appendix A I Gentlemen:L lemental information In accordance with your request, this letter is to provide supp fr: concerning the Potential Liquefaction Hazard that could occur in the Redhawk Towne Centerdevelopmentg I anand mitigation measures that can be taken to reduce that hazard to an acceptable level of risk. The Redhawk Towne Center Development was • identified as Historical Commercial Area A in the Vail Ranch Final Environmental Impact Report Number 240. I. LIUEFACTION Liquefaction is a phenomena that occurs as the result of an earthquake in which a loss buildup of pore water pressure. of shear strength in cohesionless soil results from a The loss of shear strength can result in raspreading. For liquefaction to settlementoccur of a structure, loss of bearing al capacity, sand boils, surface cracking, and at least four factors must be present.The first two factors involve the earthquake.The l: qbuildupof pore water pressure in the soil. earthquake has to have a large enough rep a able horizontal ground acceleration and a sufficient number of cycles to produce t PETRA GEOTECHNICAL, INC. u o,��ihm.net - Fax' (858) 485.8215 • ae August 27, 2001 ORATION J.N. 00 EXCEL LEGACY CORP page 2 i REDHAWK TOWNE CENTER For all but the most critical of structures such as government communication facilities criteria is based on an earthquake producing a peak horizontal acceleration which has a ten public safety structures,the designof occurring during and percent probability In the analysis the peak horizontal acceleration is converted to a a fifty year period. the number of cycles dependent on the repeatable horizontal ground acceleration with magnitude of the earthquake.The third factor for liquefaction to occur is the presence generally considered to be within 50 feet of a high water table. A high water table is g of loose, cohesionless elms of the ground surface or less. The fourth factor is the presence soils within the upper 50 feet of material. Cohesive soils such porta clay not per it pressure during the relatively of pore water th during an j the buildup earthquake. Dense cohesionless soils do not lose their frictional shear strength an earthquake :: MITIGATION MEASURES involves changing the characteristics of at least one the soil's Mitigation normally Mitigation measures can properties or its response to the pore water pressure buildup. o involves improvement of the soil's be divided into three categories. The first category second • properties to remove it from the class of soils subject to liquefaction. Theation second categoryinvolves some improvement of the soils strength in involves ith cre itself. The third category - increasing the earthquake resistance of the building li uefaction effects. strengthening the building to withstand the effects of any q A few of the Category One mitigation techniques are listed below: replacement of the loose cohesionless liquefaction susceptible 1. Removal and rep cohesive soil. soil with non-liquefaction susceptibleliquefaction susceptible 2. Removal and replacement of the loose cohesionless • soil with denser non-liquefaction susceptible cohesionless soil. August 27,2001 . 0 0 Page 3 1 20 EXCEL LEGACY CORPORATION REDHAWK TOWNE CENTER J.N ation in-place of the loose cohesionless soil from the surface with a procedure ocedcure such as dynamic compaction means of 4. Increase in the shear strength of the loose cohesionless soil in situ by pressure grouting. ressure to prevent liquefaction of stone columns to permit the dissipation of pore water p 5. from occurring. ore water pressure to 6. Installation of wick drains to permit the dissipation of p prevent liquefaction from occurring. A few of the Category Two mitigation techniques are listed below: acted fill mat in conjunction with reinforced perimeter 1. Installation of a comp rade beams footings and connected g 2. Installation of a compacted fill mat in conjunction with a post tensioned slab design. ., A few of the Category Three mitigation techniques are listed below: A foundation system that extends through the liquefaction zone such as caissons, piles,iles, or piers. i. 2. A structural design that can tolerate the total and differential settlement that liquefaction could cause. SITE LI UEFACTION P OTENTIAL At awk at of the othe Towne Center site,the water table was encountered Ct investigations depthg fio 25 feet below the ground surface at the time that�a water tablevarious is about 16 feet below the were conducted. The historical high ground depth of the historical high ground water is ground surface. The actabley to proposed final ils, round rupture, or loss of bearing P such that there is no threat of sand boann structures from liquefaction. the shallow foundation of the p NI 1 August 27,2001 ORATION JN.27,2001 EXCEL LETOWNEC TER Page 4 I �Dllp'WK In earthquake,the soils beneath the site do have the potential B-16, which is located to the event of the designunder analysis was performed for the 60 foot Boring in liquefy theater is a Division I building theater.This proposed who could be present. The thehe UBCea of the proposed The zone classification based on the number of people potentially liquefy. eh not analysis indicated that the soils from 16 to 40 feet oml 1 O1 to 1.1 which thou from 40 to 50 feet had a factor of safety which would be considered a according to the analysis,has a factor of safety Below 55d liquefyingpotential to liquefy inadeq are above 40 which the analysis inadequate. The zone from 50 to 55 feet also haste of over 3.0 considered to feet,the blow counts representative of the soils density shows that these deep soils have a factor of safety location.0whichfcis liquefactionconsiedo be a non liquefiable condition. Settlement in this boring on the 38 feet We also performed the liquefaction analysis is � proposed theater. The � . estimated to be 6 `/Z inches. B-6 which is in the same area of the site as B 16 near the p p potentially boring all the soils from 16 to 38 feet being I analysis results were similar with liquefiable under the design earthquake. The settlement calculations indicated a eep potential of 4 `/< inches of settlement. A 31-foot l borng B-5.on the west side of potential.The materials from 16 the theater area was also analyzed for its liquefaction would not liquefy and had factors of safety from enough that they would potentially from to 3 feet were dense zone 1.34 to above three.The zone from 25 feet to 31 feet in this boring liquefy. A factor of safety of 1.25 would be considered adequate with respect to liquefaction. In structural analysis the main problem is handling differential settlement as these induce stresses into the building and its structural members. The normal design procedure is to assume that 1/2the total settlement will be manifested as differential settlement on the building.Investigations of actual quefaction events have shown that coach and liquefaction-induced settlements tend to be this is a very conservative app' over the effected area. much more uniform 1 August 27, 2001 TION J.N. 2001 EXCEL LEGACY CORPORATION page 5 i• REDILAWK TOWNS The intended approach at this site is to mitigate the risk for potential liquefaction by • e swill have a minimum of at least a . usfive a category two solution. All the building os The five-foot thick mat of compacted fill beneath the bottom of their footing structural engineer would then have to account for three inches of differential settlement. This should not be too difficult as most buildings are capable of handling differential settlements of 1 inch across 20 feet without any major structural distress.th or width This is normally represented as an L/240 ratio. Three inches over the ng of the theater and other buildings on the site would be less than L12 40. ;' We believe that this approach provides that the building can be designed safely in the uake occurs and the site experiences the settlements whit h event that the design earthq I have been predicted for the Redhawk Towne Center project. questions, please do not hesitate to contact us. If there are any other concerns or q Sincerely yours, PETRA GEOTECHNICAL,INC. OSSN� .r, q !`24'`'.2 A(cit.: ��t(//�-j�JI .:.c pia, RUsy�y�Gc � ���_'Yr'i �� �' 'ter. tm cc X0. 042204 { m Joseph Ex; 3 3/_0/ •1 oy J. Rushing Associate L. Welch Q .enior Associate Geologi EXP. 1080 z — s'ir C�v1� 0- C.E.G. 1080 Q Engineer ��\�ALtF G. E.. 2239 J>47 _Z1- , OF CA������ Distribution: (6) Addressee g Service (1) Matthew Fagen Consultive Attachments: Appendix A References Appendix B Additional Liquefaction Calculations 4 August 27,2001 ORATION • EXCEL LEGACY CORP REDHAWK TOWNE CENTER J.N. 208-00 • Page 6 APPENDIX A REFERENCES Proposed W almart,Redhawk Towne Center Route "Geotechnical9Sou , elnvestigatia Parkwayp and Apis Road, Temecula, County2000 1) between Redhawk Riverside,South, reared by Petra Geotechnical Inc. dated May 25, California` prepared cal/Geological and Geotechnical/Geological Geotechnical Investigation Route 79 South, "Review of Study Proposed Redhawk Towne Center, 2) Temecula, County of Riverside, Engineering and Apis Road, County 2000 Riverside, California"een Redhawk Park"`e ay California" prepared by Petra Geotechnical Inc. datedApril Study proposed Redhawk Towne ical Engineering and Apis " enter, South Side of $etween Redhawk Parkway En GEN County of Riverside,California",prepared by L. 3) Center, Souof Temecula Route 79 South, Road,City April 7 dated , 2000. Corporation, at Temecula, Temecula, California", "Geotechnical Investigation, Wa1Mart 4) Geocon Incorporated, dated May 18, 1999. prepared by Remedial Grading for and Observation Services During 5) "Report of Testing September 1994, em Vail Ranch Commercial Sitdated Sep 23172, Temecula, California", byprGeocon Incorporated, Liquefaction - Induced Bartlett, 1995, Empirical Prediction of Liq and Youd, T. L � Engineering,Vol. 121,No 6) ueLateralSF., read, Journal of Geotechnical Induced Sp 1997 4 Paper 7247. Program for Determining, Blake,T. F., 1998,"UBCSEIS" - A Computer parameters,Version 1.03 7) Building Code Designfor Empirical Uniform "LIQUEFY2" - A Computer Program F. 1998, Liquefaction Potential,Version 1.50. 8) Blake, T. Earthquake - Induced Liq for the Deterministic 9) Prediction ., Earthq A Computer Program Blake,T.F., 1996,"EQFAULT" Digitalize California Faults, Prediction of Peak Horizontal Acceleration from Dig Version 2.20. Springs in Water Wells and • California Dep 1971,11Watershed, and p o.91 artonoftheUpperSantaMara 10) the Western Portion of the Upper 20. 4 August 27, 01 ORATION J.N. 2001 EXCEL LEGACY EOREPNTER 20Page 7 REDHAWK TOWN and0 Mitigating Seismic Hazards in California", 11) "Guidelines for n Geology Special Publication 117,March 13, California Divisioon ooff Minesng and 1997. and Seed,H. B., 1998,Evaluation of Settlementin Sands a ND Due 12) ToEarthqu, e n Journal of Geotechnical engineering, 8, to Earthquake Shaking, paper No. 21706. the Elsinore Kennedy,M. P., 1977,Recency and Character of Faulting Along 13) Riverside County, California, Division of Mines and n GeoFaullogy, gy, sZone ecial Repo31. Geology, P • • • �.I 4 ******x***+**********+******* * LIQUEFY2 * * * Version 1.50 * EMPIRICAL PREDICTION LIQUEFACTION POTENTIAL EARTHQUAKE-INDUCED DATE: 08-OB-2001 JOB NUMBER: 208-00 JOB NAME: Redhawk Theater SOIL-PROFILE NAME: 208b5.0N BORING GROUNDUATER DEPTH: 16.00 ft CALCULATION GROUNDUATER DEPTH: 16.00 ft DESIGN EARTHQUAKE MAGNITUDE: 6.50 Mw g SITE PEAK GROUND ACCELERATION: 1 00 BOREHOLE DIAMETER CORRECTION FACTOR: SAMPLER S12E CORRECTION FACTOR: 1.00 N60 HAMMER CORRECTION FACTOR: 1.00 drj55 (1997 in press) MAGNITUDE SCALING FACTOR METHOD: �.' Magnitude Scaling Factor: 1.442 rd-CORRECTION METHOD: NCEER (1997) FIELD SPT N-VALUES ARE CORRECTED FOR THE LENGTH OF THE DRIVE RODS. Rod Stick-Up Above Ground: 3.0 ft CN NORMALIZATION FACTOR: 1.044 tsf MINIMUM CN VALUE: 0.6 4, • i NCEER C19971 Method PAGE 1 LIQUEFACTION ANALYSIS SUMMARY _________.-- __ -CORR. LIQUE. INDUL. LIQUE. File Name: 208b5.0UT _______________ SAFETY _ FC (N1)60 RESISTI CALL. TOTAL EFF. FIELD DELTA CN (N1)60 RATIO d STRESSRATIO FACTOR .. _+______+FACT__ 44-I DEPT4. H STRs..*.....)I N1_60 --...+-.___.+---- -- - * * * * * ** 1 0.75 0.016 0.016 5858 - * * * * * ** * * * * ** 1 0.75 0.04778 0.0477 58 _ * * * * .+ 1 1.25 0.078 0.078 5588 8 - * * * * **. 1 1.25 80:1490 .149 80:18490 .109 _ + * * * * ** 1 2.25 0.140 0.140 58 - * * * * * ** 2.75 0.171 0.171 _ * * 1 0.202 58 * * * ** 1 3.25 0.202 58 - * *1 3.75 0.233 0.233 - * * * ** * 1 4.25 0.264 0.264 58 - * * * * * *x 1 4.25 0.2950.325 58 - * * * * * ** 1 5.75 0.326 0.326 58 - * * * * ** 1 .25 0.358 0.38 58 - * * * * * ** 1 6.25 0.419 0.3884 58 - * * * * * ** 1 6.75 0.419 0.419 11 - * * * * ** 7.75 0.448 0.47748 * * 2 0.5 0.50 11 _ * * * * ** ' 2 7.75 11 * * ++ 2 8.25 0.506 0.506 11 _ * * * * * ** 2 9.25 0.53 0.56335 11 _ * * * * * ** q 75 0.563 0.593 _ * * * 2 0.592 0.592 11 * * ** 2 9.75 11 + + «* 10.257 0.621 0.621 _ + * * 20.650 11 * * ** 10.25 0.60 - * * 2 11 * * «« 11.25 0.678 0.707 _ * * * 2 11.25 0.707 0.707 11 _ * * * * * ** 2 0.735 0.765 11 - * * * ** 2 12.25 11 _ * * 0.795 * * * ** 2 12.75 0.765 11 * * * ** , 13.75 0.822 0.823 _ * * * * * ** 2 13.75 0.822 0.822 11 * * * +* 2 14.25 0.851 0.851 . 11 - * * * * * ** 2 14.75 0.880 0.880 11 _ * 2 15.25 0.908 0.938 11 2 1 .25 0.935 0.938 30 10.45 1.038 38.2 Infin 0.962 0.303 NonLiq 3 16.25 0.995 0.9700.9 30 10.45 1.038 38.2 Infin 0.961 0.307 NonLiq 3 17.25 1.021.03 30 10.45 1.038 38.2 Infin 0.960 0.311 NonLiq 3 17.25 0.982 30 10.45 1.038 38.2 Infin 0.959 0.316 NonLiq 38.2 Infin 0.957 0.320 NonLiq 3 17.75 1.0 . 30 10.45 1.038 38.2 Infin 0.956 0.320 NonLiq • 3 18 75 1.0761 1.00618 30 10.45 1.038 Infin 0.956 0.3273 NonLiq 3 18.75 1.104 1.018 30 10.45 1.036 38.2 tnf in 0.954 0.331 NonLiq 3 19.25 1.132 1.030 30 10.45 1.038 38.2 0 in 0.954 0.335 1.Li 3 .25 1.160 1.1.053 29 0.64 0.986 27.7 0.340 0.952 0.3385 1.45 46 4 20.25 1.2111. 1.03 29 0.64 0.986 27.7 0.340 0.950 0.342 1.43 4 20.75 1.2371.0633 29 0.64 0.986 27.7 0.340 0.949 0.345 1.423 4 21.25 1.082 29 0.64 0.986 27.7 1.39 4 21.25 1.262 1.092 29 0.64 0.986 27.7 0.340 0.948 0.349 1.40 4 22.75 1.3 1.102 29 0.64 0.986 27.7 0.340 0.947 0.352 4 22.75 1.312 1.111 29 0.64 0.986 27.7 0.340 0.946 0.355 0.340 0.946 0.358 1.37 4 23.25 1.338 1.121 29 0.64 0.986 27.7 4 23.25 1.383 29 0.64 0.986 27.7 0.340 0.943 0.361 1.36 4 24.25 1.3881.413 1.13129 0.64 0.986 27.7 0.340 0.942 0.364 1.34 4 24.75 1.440 1.140 22 1.31 0.937 21.9 0 235 0.94.235 1 0.367 0.92 7 0.92 5 25.25 1.152 1.31 0.937 21.9 0.235 0.939 0.3720 0.912 5 2 .25 1.468 1.164 1.177 22 1.31 0.937 21.9 5 26.25 1.55 1.189 22 1.31 0.937 21.9 0.235 0.938 0.375 0.90 0.235 0.936 0.377 0.90 5 26.75 1.525 22 1.31 0.937 21.9 5 27.25 1.53 1.202 1.215 22 1.31 0.937 21.9 0.235 0.935 0.380 0.8 9 ` 5 27.75 1.581 22 1.31 0.937 21.9 0.235 0.934 0.382 0.235 0.933 0.382 0.89 5 28.25 1.610 1.227 1.31 0.937 21.9 8 5 29.25 1.638 1.240 22 1.253 22 1.31 0.937 21.9 0.235 0.932 0.387 0.88 5 29.25 1.666 6 30.2522 1.31 0.937 21.9 0.235 0.931 0.389 0.87 • 5 29.75 1.694 1.722 1.2654 1.279 9 31 1.47 0.894 29.2 0 380 0.924 .380 0.391 1.40 • „31 1.47 0.894 29.2 6 30.751.754 1.29308 31 1.47 0.894 29.2 0.380 0.920 0.391 1.40 ~/ b 311.25 1.784 1.308 SETTLEMENT DUE TO EARTHQUAKE SHAKING i Boring BS uuefiable Layer 3 (16-20 feet)Non Liq (N1) 60= 382 Dram Output) 4 Feet 0.303 (FROM LIQUEFY_Proms Thickness of Layer Topof layer Induced Stress Ratio= 0.331 . Bottom of layer= 0.317 Average of layer= Using Figure 5 Tokimateau and Seed, 1987 V(s)= 0.2 Settlement= (s)/100)*T(15) 15 0.008 Feet 0.096 inches Layer 4 (20-25 feet)Does not Liquefy 1 60= 27.7 i (N D > Feet Induced Stress Ratio= 0334(FROM LIQUEF1'2 Program Output) Bottom of layer= 2 Thickness of Layer= Topof Jaye 0.36 Average of layer= 0.348 62 Using Figure 5 Tokimateau and Seed, 1987 V(s)= 1.1 Settlement= (V(s)/100)*T(15) = 0.055 Feet 0.66 inches Layer 5 (25-30 feet) (Ni)60= 21.9 5 Feet UEFY2 Program Output) Thickness of Layer0.367 (FROM LI Q Induced Stress Ratio= Top of layer— 0.389 Bottom of layer 0 373 Average of layer Using Figure 5 Tokimateau and Seed, 1987 V(s)= 125 T Settlement= (V(s)/100)* (15 ) 0.0625 Feet 0.75 inches Boring B5 Layer 6 (30- 315 feet)Does not Liquefy (1‘11) 60= 292Thickam Output) 1.5 Feet 0.390 (FROM LIQUEFY2 Program InducededsS of s RaLayetio= Topof layer=Stress Ratio= 0.391 Bottom of layer— 0 390 Average of layer= Using Figure 5 Tokimateau and Seed, 1987 V(s)= 0.9 Settlement= (V(s)/100) T(15 ) = 0.0135 Feet 0.162 inches TOTAL SETTLEMENT= 1.668 inches 1 •1. ****#*********************#** * LIQUEFY2 * version 1.50 * EMPIRICAL PREDICTION OF EARTHQUAKE-INDUCED LIQUEFACTION POTENTIAL DATE: O8-08-2001 JOB NUMBER: 208-00 JOB NAME: Redhawk Theater SOIL-PROFILE NAME: 208b6.LOW BORING GROUNDWATER DEPTH: 16.00 ft CALCULATION GROUNDWATER DEPTH: 16.00 ft DESIGN EARTHQUAKE MAGNITUDE: 6.50 Mu SITE PEAK GROUND ACCELERATION: 0.480 g BOREHOLE DIAMETER CORRECTION FACTOR: 1.00 SAMPLER SIZE CORRECTION FACTOR: 1.00 N60 HAMMER CORRECTION FACTOR: 1.00 MAGNITUDE SCALING FACTOR METHOD: Idriss (1997, in press) ( Magnitude Scaling Factor: 1.442 rd-CORRECTION METHOD: NCEER (1997) FIELD SPT N-VALUES ARE CORRECTED FOR THE LENGTH OF THE DRIVE RODS. Rod Stick-Up Above Ground: 3.0 ft CN NORMALIZATION FACTOR: 1.044 tsf MINIMUM CN VALUE: 0.6 ______________________ LIQUEFACTION ANALYSIS ... -----NCEER 119971---- Method ________________ SUMMARY PAGE 1_________ IINDUC.ILIOUE. File Name: 208b6.0U7 -_-_ -_ -__FC- -" -CORK. LIOUE. STRESS SAFETY ___--- EFF. FIELD C ( ORR. RESIST d RATIO FACTOR ____________ CALL- TOTAL N DELTA 60 N (8/ft) RATIO SOIL DEPTH STRESS STRESS (8/ft) +-- -+-* * *-'+__-_6 _ * + * ++ +--0.75+ 0.016 0.016 35 - * ** * *« * +* 1 0.047 0.047 - + +* 1 0.75 0.078 35 - * * * 1.25 0.078 35 * * * ** 1 0.109 0.109 - * * 1 1.7535 _ * * ** 2.25 0.14071 0.140 * * * * ++ 1 0.17135 - * * * * 1 2.75 0.17135 * * * +* 3.25 0.202 0.2023 35 * * * *« 10.23360.233 - * * * * ** 14 3.750.264 35 - * * * * 4.25 0.264 35 * * * ** 1 326 0.2952 - * * * ++ 1 4.75 0 0.326 35 - * * • * 5.25 0.326 35 * * *+ 1 0.358 0.38 _ * * * 5.75 35 * * ** 1 0.389 0. 9 _ + * * 6.2535 * * *+ 1 0,419 0.4194 - * * 6.75 13 * * **1 0.448 0.478 - * * * * .+ 2 7.25 0.477 0.50 13 - * * * * ** 2 7.75 13 - * * 0.506 0.506 * * ** 2 8.25 13 - * * * g.75 0.533 0.533 13 * * ** 'i . 2 0.59 - * * * * ** 2 9.25 0.563 0.592 13 - * * * * * ++ 2 9.75 0.592 13 * * * 0.651 0.621 * * *« 2 1 1 25 13 - * * * 10.75 0.650 0.650 13 * * * ** 2 0.707 0. - * * 2 11.2513 - * * 0.707 0.7073 * * 11.75 13 * * ** 2 0.765 0.75 * * ** 2 12.25 0.7653 13 - * * * * 12.75 0.76513 * * * +* 2 0.7 0.723 - * * * 13.25 13 * * `+ 2 0.822651 0.651 - * * * 13.7513 * . +« 2 0.851 0.851 _ * * 14.25 13 * * ** 2 0.900 0-980 - * * 2 14.75 0,93 13 - * * 0.303 0.85 2 15.25 0.908 0.937 13 16,4 0.176 0.962 0.307 0.84 2 15.75 0.937 0.958 14 3.47 1.037 16.4 0.178 0.961 0,311 0.83 3 16.25 0.966 0.971 14 3.47 1.037 16.4 0.178 0.960 0.315 0.82 3 16.75 0.99584 14 3.47 1.037 0.178 0.959 0.319 0.81 3 17.25 1.023 0.99 14 3.47 1.037 16.4 0.178 0.957 0.323 0.80 0.998 14 3.47 1.037 0.178 0.956 0,79 3 17.75 1.052 1.011 3.47 1.037 16.4 0.327 3 18.25 1.0811416.4 0.178 0.955 0.331 0.78 3 18.75 1.110 1.024 14 3.47 1.037 16.4 0.178 0.954 0.334 0.71 3 19.25 1.138 1.037 14 3,47 1.037970.165 0.953 1.167 1.0500.338 0.71 3 20. 1.063 16 0.49 0.979 15.3 0.165 0.952 0,71 4 2 25 1.1961.25216 0,49 0.979 15.3 0.165 0.950 0.3410. 44 0.69.7 4 20.75 1.224 1.076 16 0,49 0.979 15.3 0.165 0.949 0.348 0.69 4 21.25 2 1.3091. 16 0,49 0.979 15.3 0.165 0.948 0.351 0.689 0 1.280 1.101 16 0.49 0.9790.165 0.9470.67 4 2 275 1.114 15.30.354 4 22.25 1.3651.126 16 0.49 0.979 15.3 0.165 0.946 0.354 0.67 4 22.75 1. 3716 0.49 0.979 15.3 0.165 0.945 0.359 0.667 1.139 16 0,49 0.979 0.165 0.943 2 0,66 4 24 25 .421 .152 15.30.3 9 y 23.75 1.393 1.17764 16 0.49 0.979 15.3 0.165 0.942 0.365 0.66 4 24.25 1.422 1,190 16 3.90 0.929 0.197 0.941 0.367 0.78 1g.b 4 24.75 1. 50 1.1.202 16 3.90 0.922 18.6 0.197 0.940 0.3707 0.77 5 25.25 1.478 16 3.90 0.922 18.6 0.197 0.9390.767 8 3.90 0.922 0.372 5 26 75 1.506.561.2157 16 18.6 0.197 0.938 0.372 0.76 5 27 25 1.5911.516 3.90 0.922 18.6 0.197 0.936 0.375 0.76 1.563 1.227 16 3.90 0.922 0.197 0.935 5 26.75 1.24016.6 0.379 0.75 5 27.25 .6416 3.90 0.922 0.197 0.934 0.379 0.75 1.619 1.253 16 3.90 0.922 18.6 0.197 0.933 0,74 5 27.75 1.265 18.6 0.3 2 5 28.25 1.648 3.90 0.922 0.197 0.932 0.386 0.74 16 1g.6 5 28.75 1.676 1.278 16 3.90 0.922 18.6 0.197 0.931 0.386 0.664 1.2914 3,90 0.922 0,177 0.928 0,66 j, 5 29.25 1.704 .31 16 0.177 0.924 0.387 4' 5 29.75 1.732 1.21 1.21 0.878 17 0 6 30.25 1.760 1.316 1g 6 30.75 1.788 1.328 18 *... i __ __-________ PAGE 2 �. ___ER LIQUEFACTION ------IS SUMMARY �, NCEER C19971 Method _ ______ 208h6.0UT __ _____________DUE. File Name: __ .__---- - INDUC.ILI FC CORK. LIQUE• STRESS SAFETY --N -- DELTAI C I(N1)60IRESISTI d RATIO FACTOR TOTAL EFF. FIELD I --CALL. STRESS N (B/ft) RATIO _+_FACTOR SOIL DEPTH ISTRESS (tsf) (8/ft) N1_60 _-__+-- 0,389 0.66 NO. (f t) (tsf) _+___.._+_____+__-__+__ 0.177 0.920 ......4 --'+_- 1.21 0.878 170 0,177 0.916 0.389 0.66 ..-.1.661 145 18 0.66 6 3311.:755 2 25 1.816 18 1.21 0.878 17.0 0.177 0.912 0.390 1.844 1.353 18 1.21 0.878 0.391 0.65 6 3 275 1.36570.177 0.907 0.391 0.65 6 33 25 1.9218 1.21 0.878 17.0.0 0.177 0.903 0.391 0.65 6 33 75 1.90051..60 18 1.21 0.878 17.0 0.177 0.899 1.928 1.390 18 1.21 0.878 0.392 0.65 1.9 6 34 25 1.403 17.0 0.177 0.895 392 0.65 6 34 75 2.012 18 1.21 0.878 0.177 0.891 0. 0.586 984 1.415 18 1.21 0.878 17.0 0.392 6 35 25 2.040 1.427 15.2 0.157 0.887 0.392 0.58 6 35 75 61 .442 18 0.02 0.845 15.2 0.157 0.883 0.392 0.58 7 35.25 18 0.02 0.845 15.2 0.157 0.8790.57 0.02 0.845 0.157 0.875 0.393 0.57 7 35.75 2.068 1.452 18 15.20.393 7 36.25 2.095 1.463 18 0.02 0.845 15.2 0.157 0.871 2.123 1.475 18 0.02 0.845 0.393 0 57 7 37 75 1,487 0.157 0 867----_--_ 7 37.25__ 2.150___ 18 0 02 0 845 __2__ 499 37.75 2.178 1. ---- I. • L ; 411 SETTLEMENT DUE TO EARTHQUAKE SHAKING Boring B6 Layer 3 (16-20 feet) 16.4 FROM LIQUEFY2 Program Output) 60 4 Feeto 0.303 Thickness of Layer= Top layer 0.331 Induced Stress Ratio= Bottom of layer= p 311 Average of layer Using Figure 5 Tokimateau and Seed, 1987 V(s) 1.45 = Settlement-- (V(s)/100)*T(15) _ 0.058 Feet 0.696 inches Layer 4 (20-25 feet) 153 LI UEF�'2 Program Output) (-N1)60= 5 Feet 0.334(FROM Q Thickness of Layer= 5 Fe t layer 0.362 Induced Stress Ratio= Bottom of layer— 0.348 i Average of layer I„” Using Figure 5 Tokimateau and Seed, 1987 V(s)= 1.6 Settlement= (V(s)1100)*TO 5) = 0.08 Feet 0.96 inches Layer 5 (25-30 feet) 18.6 (FROM LIQUEFY2 Program Output) ( 60= 5 Feet 0.365 Thickness of Layer= Toppof layer= 0.386 Induced uced Stress Ratio= Bottom of layer= 0.316 Average of layer Using Figure 5 Tokimateau and Seed, 1987 V(s) 1.34 = Settlement= (V(s)/100)*T(15) = 0.067 Feet 0.804 inches 4 1 Boring B6 Layer 6 (30-35 fe17.0 ara n Output) (N1)60= 5 Feet FROM LIQUEFY2 Prop 0387 Thickness of Layer= 5 TFp of layer0.392 Induced Stress Ratio= Bottom of layer 0.389 Average of layer Using Figure 5 Tokimateau and Seed, 1987 V(s)= 1.42 V(s)/100)*T(15) Settlement= ( = 0.071 Feet 0.852 inches Layer 7 (35 -38 feet) (NI)60= 15.2 1JEFY2 Program Output) 3 opet 0.392(FROM LIQ Thickness of Layer TFe t layer p.393 Induced Stress Ratio= Bottom of layer 0.3923 Average of layer j' 1987 1 Using Figure 5 Tokimateau and Seed, V(s)= 1.6 V s /100)*T(15) Settlement= ( ( ) = 0.08 Feet 0.96 inches q 272 inches TOTAL SETTLEMENT= * L I D U E F Y 2 * „ Version 1.50 • * ******tit*************tkx ik * EMPIRICAL PREDICTION OF EARTHQUAKE-INDUCED LIQUEFACTION POTENTIAL DATE: OS-08-2001 JOB NUMBER: 208-00 JOB NAME: RedHauk Theater SOIL-PROFILE NAME: 208816.LDW BORING GROUNDWATER DEPTH: 16.00 ft CALCULATION GROUNDWATER DEPTH: 16.00 ft DESIGN EARTHQUAKE MAGNITUDE: 6.50 Mu 1 - SITE PEAK GROUND ACCELERATION: 0.480 g FACTOR: 1.00 BOREHOLE DIAMETER CORRECTION SAMPLER SIZE CORRECTION FACTOR: 1.00 N60 HAMMER CORRECTION FACTOR: 1.00 MAGNITUDE SCALING FACTOR METHOD: Idriss (1997, in press) �'..; Factor: 1.442 Magnitude Sca(in9 1997) NCEER ( DRIVE RODS. rd-CORRECTION METHOD: FOR THE LENGTH OF THE FIELD SPT N-VALUES ARE CORRECTED Rod Stick-Up Above Ground: 3.0 ft CN NORMALIZATION FACTOR: 1.044 tsf MINIMUM CN VALUE: 0.6 41 I __________________ PAGE 1 LIQUEFACTION ANALYSIS SUMMARY j. NCEER ----- ----- Method ----------------------------- File Name: 208b16.0U1 _ .___----'" .CORK. LIQUE. INDUC. LIOUE. ---DEPT. TRTSL TCF. FINLD ECRATIO FACTOR IDELTA C (N1)60RESISTrd ILIQUE. SOIL DEPTH IST tsf) STRESS NN (B7ft) RATIO + _**__ SAFETY tsf) ------ N1_60 _-_-+----- - -. NO. (fit) ( _ ......+_____.+- * *-+......+ _ t ** 1 0.75 0.016 0.016 59 - * * * * ** * ** 1 0.75 0.047 0.047 59 - * * * * ** 1 1.25 0.109 0.0781 59 _ * * * * * ** 1 1.75 0.109 0.109 59 _ * * * * * ** 1 2.25 0.140 0.140 59 - * * * * ** * * 1 2.75 0.171 0.171 59 _ * * * ** * * 1 3.25 0.202 0.202 59 - * * * ** * * 1 3.75 0.233 0.233 _ * * * * ** 1 4.25 0.264 0.264 59 - * * * ** 1 5.25 0.3 0.295 - * * * * * ** 1 5.25 0.326 0.326 59 - * * * * * ** 1 .25 0.3880.38 0.3880.38 59 _ * * * * ** 1 6.25 61 1 59 _ * * * * * ** 59 ** 1 6.75 0.419 0.419 59 - * * * * 1 7.25 0.4 0.450 - * * * * ** 1 8.25 0.48110.481159 - * * * * ** 1 8.75 0.543 0.513 59 - * * * * * ** 59 * * ** 1 8.75 0.543 0.543 21 - * * * 2 9.25 0.572 0.572 _ * * ** 21 * * *2 9.25 0.601 0.631 - * * * ** 2 10.25 0.630 0.65930 21 - * * * ** * * * 2 11.25 0.687 0.6 21 * * * ** ` 0.687 21 - * * 2 11.25 0.68721 * * ** * * * 2 11.75 0.716 0.716 _ * * ** 0.745 0.745 21 * * 2 12.25 21 - * * * ** 2 12.75 0.774 0.774 = * * ** 21 * * * 2 13.25 0.802 0.802 * 21 * * * 2 13.75 0.831 0.8316 * * * ** ** 0.860 21 * * * 2 14.25 0.860 21 - * * * ** * * * ** 14.75 0.889 0.88921 _ * * * * * �I 2 15.25 0.9174 0.917 _ 2 1 .25 0.946 0.946 21 3.31 1.032 13.4 0.147 0.962 0.303 0.70 3 16.25 . 03 0.967 71 3.31 1.032 13.4 0.147 0.961 0.307 0.69 3 17.25 1.003 0.993 11 3.31 1.032 13.4 0.147 0.960 0.311 0.68 3 17.25 1.032 .006 11 3.31 1.032 13.4 0.147 0.959 0.315 0.67 3 17.75 1.060 1.0061 11 3 18.25 1.089 1.019 11 3.31 1.032 13.4 0.147 0.957 0.319 0.66 3.31 1.032 13.4 0.147 0.955 0.327 0.65 3 18.75 1.117 1.031 11 3.31 1.032 13.4 0.147 0.956 0.323 0.65 3 19.25 1.146 1.057 11 20.253.31 1.032 13.4 0.147 0.954 0.331 0.64 4 19.75 1.174 1.05711 0.45 0.982 12.5 0.135 0.953 0.334 0.58 4 1.203 1.070 13 0.45 0.982 12.5 0.135 0.952 0.338 0.58 4 20.75 1.260 1.097 13 0.45 0.982 12.5 0.135 0.950 0.341 0.57 4 21.25 1.289 1.09711 13 0.45 0.982 12.5 0.135 0.949 0.344 0.57 4 21.75 1.3 1.113 13 0.45 0.982 12.5 0.135 0.948 0.347 0.56 4 22.25 1.3118 7 1.136 13 0.45 0.982 12.5 0.135 0.947 0.350 0.56 4 22.75 1.347 1.136 13 0.45 0.982 12.5 0.135 0.946 0.353 0.55 0.135 0.945 0.356 0.55 4 23.25 1.3751.14913 0.45 0.982 12.5 4 24.25 1.4334 1.1752 13 0.45 0.982 12.5 0.135 0.943 0.359 0.54 4 24.25 1.433 1.175 13 0.45 0.982 12.5 0.135 0.942 0.362 0.54 4 24.75 1.462 1.189 136 3.90 0.932 18.6 0.197 0.941 0.364 0.78 5 25.25 1.4901 1.2021 16 3.90 0.932 18.6 0.197 0.939 0.369 0.77 5 25.75 1.518 1.214 16 3.90 0.932 18.6 0.197 0.940 0.367 0.78 5 26.25 1.575 1.227 16 3.90 0.932 18.6 0.197 0.938 0.372 0.76 0.197 0.936 0 372 0.76 5 27. 5 1. 0 1.2529 16 3.90 0.932 18.6 5 27.25 1.603 1.262 3.90 0.932 18.6 0.197 0.934 0.379 0.75 5 27.75 1.631 1.265 16 3.90 0.932 18.6 0.197 0.935 0.376 0.76 5 28.25 1.660 1.277 16 3.90 0.932 18.6 0.197 0.933 0.381 0.75 5 28.75 1.688 1.290 16 3.90 0.932 18.6 0.197 0.932 0.383 0.74 5 29.25 1.716 1.315 16.25 3.90 0.932 18.6 0.197 0.931 0.385 0.74 5 3 1.744 1.3 6 30.25 1.80 1.328 20 1.25 0.882 18.9 0.197 0.928 0.386 0.73 6 6 30.75 1.8011 1.341 2016 20 1.25 0.882 18.9 0.197 0.924 0.387 0.73 t I PAGE 2 'I NCEER "1997 LIQUEFACTION ANALYSIS SUMMARY NCEER [1997) Method • File Name= 208b16.0UT ___--._____9999- -CORR. LIQUE. -- INDUC. LtQUE. 9999 DELTA C (N1)60 RESIST rd STRESS S SAFETY FC I CALL. TOTAL EFF. FIELDFACTOR N N (8/ftp ......4.____-_ SOILI DEPTH I57RESSISTRsf) (8/ft) N1_60I +......+.....+---- 0.73 • (tsf) < _+. .-----+--- 0.388 N6 31.25(ft353 0.197 0.920 -___+_.9999+9999--+--- 20 1.25 0.882 18.9 p 197 0.916 0.388 0.73 1.25 0.882 18.9 0.73 6 1.82981.35320 1.25 0.852 18.9 0.197 0.912 0.389 6 31.75 1.857 1.366 20 6 32.25 1.94 1.3920 1.25 0.882 18.9 0.197 0.907 0.389 0.73 0.197 0.903 0.390 0.73 0.73 6 32.75 1.914 1.39141.25 0.882 18.9 6 33.25 1.942 1.417 20 1.25 0.882 18.9 0.197 0.899 0.390 6 33.75 1.9709 1.417 429 20 1.25 0.882 18.9 0.197 0.895 0.391 0.73 0.197 0.891 0.391 0 6 34.25 1. 1• 20 1.25 0.882 18.9 6 34.75 2.027 1.442 0.01 0.844 8.4 0.089 0.887 0.391 0.33 .73 2.055 1.454 10 0.089 0.883 0.391 0.33 7 35.25 2.083 1.467 10 0.01 0.844 8.4 7 3 . 0.01 0.844 8.4 0.089 0.879 0.391 0.33 10 0.089 0.875 0.391 0.33 7 36.25 2.11 1.492 10 0.01 0.844 8.4 0.089 0.871 0.391 0.33 7 36.75 2.1392.167 1.504 10 0.01 0.844 8.4 0.089 0.871 0.33 0.391 0.33 7 37.25 1.516 10 0.01 0.844 8.4 0.089 0.863 0.391 7 37.75 2.19510 0.01 0.844 8.40.391 0.33 7 38.25 2.223 1.529 0.01 0.844 8.4 0.089 0.859 0.391 0.33 1.541 10 0.089 0.855 7 375 2.2511.5510 0.01 0.844 8.4 7 39.25 2.279 0.01 0.844 8.4 0.089 0.851 0.391 0.33 10 0.272 0.846 0.391 1.00 7 39.75 2.307 1.566 31 0.15 0.813 25.4 _: 8 40.25 2.31.590 31 0.15 0.813 25.4 0.272 0.842 0.390 1.00 8 40.7512.362 1.590 0.15 0.813 25.4 0.272 0.838 0.390 1.00 31 1 -,,, 8 41.25 2.390 1.602 1.614 31 0.15 0.813 25.4 0.272 0.834 0.390 1.0 8 41.25 5 2.2.445 31 0.15 0.813 25.4 0.272 0.830 0.389 1.01 8 42.71.626 1.638 31 0.15 0.813 25.4 0.272 0.826 0.389 1.01 0.272 0.822 0 389 1.01 8 42.75 2.47231 0.15 0.813 25.4 8 43.25 2.5001.6601 31 0.15 0.813 25.4 0.272 0.818 0.388 1.01 8 43.75 2.5527 31 0.15 0.813 25.4 0.272 0.814 0.388 1.01 8 44.75 2.551.685 1.685 31 0.15 0.813 25.4 0.272 0.810 0.387 1.01 9 9 45.25 2.582134 0.03 0.781 26.6 0.290 0.806 0.387 1.08 45.75 2.618 1.697 1.7110 34 0.03 0.781 26.6 0.290 0.802 0.386 1.08 9 45.75 2.638 34 0.03 0.781 26.6 0.290 0.798 0.385 1.08 9 46.25 2.666 1.722 34 0.03 0.781 26.6 0.290 0.794 0.385 1.09 q 46.75 2.694 1.735 34 0.03 0.781 26.6 0.290 0.789 0.384 1.09 9 47.25 2.722 1.757 34 0.03 0.781 26.6 0.290 0.785 0.383 1.10 9 9 47.75 2.750 1.772 34 0.03 0.781 26.6 0.290 0.781 0.382 1.09 9 48.25 2.306 1.772 0.03 0.781 26.6 0.290 0.777 0.381 0 290 0.777 0.381 1.10 9 48.75 2.834 1.794 34 0.03 0.781 26.6 9 49.25 2.82 1.797 1.809 34 0.03 0.781 26.6 0.290 0.769 0.380 1.10 10 49.7522.862 17 1.15 0.752 13.9 0.138 0.765 0.379 0.52 9 50.75 2.99 1.822 17 1.15 0.752 13.9 0.138 0.761 0.378 0.53 0.53 10 50.75 2.9198 1.8351.848 17 1.15 0.752 13.9 0.138 0.757 0.138 0.753 0.3776 0 53 10 51.25 2.948 61 17 1.15 0.752 13.9 0.53 10 51.75 3.0053. 1.874 17 1.15 0.752 13.9 0.138 0.749 0.375 0.53 10 52.25 3.034 1.888 17 1.15 0.752 13.9 0.138 0.745 0.373 10 52.75 1.901 17 1.15 0.752 13.9 0.138 0.741 0.372 0.53 10 53.25 3.06317 1.15 0.752 13.9 0.138 0.737 0.371 0.54 4 10 53.75 3.092 1.917 17 0.370 0.54 1.927 1.15 0.752 13.9 0.138 0.732 0 370 0.5 10 54.25 3.120149 1.940 17 1.15 0.752 13.9 0.138 0.7240.720.369 NonLiq 10 54.75 3 1.953 48 0.04 0.727 34.9 Infin 0.720 0.367 NonLiq 11 55.75 3.177 1.965 48 0.04 0.727 34.9 Infin 0.720 0.365 NonLiq 11 55 25 3.205 1 978 48 0.04 0.727 34.9 Infin 0 716 0.364 NonLiq 11 56.25 3.233 990 48 0.04 0.727 34.9 Infin 0.712 0.363 NonLiq • 11 56.75 3.261 1. 48 0.04 0.727 34.9 Infin 0.362 NonLiq • 11 57.25 3.3173.32.002015 48 0.04 0.727 34.9 Infin 0.7004 0.360 NonLiq 11 57.75 3.345 2. 48 0.04 0.727 34.9 Infin0.359 NonLiq 11 58.25 73 2.02748 0.04 0.727 34.9 Infin 0.696 0.358 NonLiq 0.692 11 58.75 3.373 2.040 48. 0.04 0.727 34.9 Infin 0.688 0.356 NonLiq 11 59.25 3.401 2.052648 0.04 0.727 34.9 Infin 0.684 0.356 NonLiq 11 59.75 3.429 2.064 0.06 0.707 45.3 Infin 12 60.2573.458 2.097 64 0.06 0.707 45.3 Infin 0.680 0.354 NonLiq 12 6___ 3.487___ 2____ 64 0,06 0.707 45.3____ Infin 0.676 0.352____ NonLiq ____________________ 12 61.25 3.515 _______ . SETTLEMENT DUE TO EARTHQUAKE SHAKING i I Boring B16 Layer 3 (16-20 feet) (N1)60= 13.4 ram Output) 4 Feet 0.303 (FROM LIQUEFY2 Prog Thickness of Layer Top of layer Induced Stress Ratio= 0.331 Bottom of layer= • p 317 Average of layer Using Figure 5 Tokimateau and Seed, 1987 • V(s)= 2.0 T Settlement= (V(s)/100)* (15 ) = 0.08 Feet 0.96 inches Layer 4 (20-25 feet) (N1)60= 12.5 Program Output) 5 Feet p 334 (FROM LIQUEFY2 Thickness S of s RaLayetio- Topof layer= Induced Stress Ratio= 0.362 Bottom of layer 0.348 Average of layer • I:. Using Figure 5 Tokimateau and Seed, 1987 V(s)= 2.2 Settlement= (V(s)1100)*T 15( ) = 0.11 Feet 1.32 inches • Layer 5 (25-30 feet) (N1)60= 18.6ThProgram Output) 5 Feet 0.364(FROM LIQUEFY2 Induced Ss of s RatLayeio= Top of layer Induced Stress Ratio= 0.385 Bottom of layer p374 Average of layer • Using Figure 5 Tokimateau and Seed, 1987 V(s)= 1.34 Settlement= (V(s)1100)*T(15) = 0.067 Feet 0.804 inches \� 1.. 1Boring B16 Layer 6 (30-35 feet) I (N1)60= 18.9 Thickness of Layer= 5 Feet Induced Stress Ratio= Top of layer= 0.386Output) (FROM LIQUEFY2 Program Bottom of layer= 0.391 Average of layer 0.388 . Using Figure 5 Tokimateau and Seed, 1987 V(s)= 1.33 Settlement= (V(s)/100)*T(15) = 0.0665 Feet 0.798 inches Layer 7 (35-40 feet) • (1,11)60= 8.4 • • Thickness of Layer= 5 Fee[ 0.391 ROM LIQUEFY2 Program Output) Induced Stress Ratio= Bottom of layer= 0391 Average of layer= 0.391 - Using Figure 5 Tokimateau and Seed, 1987 V(s)= 2.6 Settlement= (V(s)/100)*T(15) = 0.13 Feet 1.56 inches Layers 8 &9 (40-50 feet)Do Not Liquefy Layer 10 (50-55 feet) (NI)60= 13.9 Thickness of Layer= 5 Feet Induced Stress Ratio= Top of layer= 0.379 (FROM LIQUEFY2 Program Output) Bottom of layer 0.369 Average of layer= 0.374 • Using Figure 5 Tokimateau and Seed, 1987 V(s)= 1.9 • Settlement= (V(s)/100)*T(15) = 0.095 Feet 1.14 inches Layers 11 &12 (55-61.5 feet) Do No Liquefy TOTAL SETTLEMENT= 6.582 inches t U