Loading...
HomeMy WebLinkAboutOld Vail Ranch Soils 1 1 1 1 ' FINAL SOILS AND GEOLOGIC REPORT TRACT 23267--1, OLD VAIL RANCH RIVERSIDE COUNTY, CALIFORNIA ' FOR PRESLEY OF SAN DIEGO ' 15010 AVENUE OF SCIENCE, SUITE 200 ; SAN DIEGO, CALIFORNIA 92121 ' W.O. 1156-SD JUNE 4, 1990 I 1 I - 1 1 1 1 ' GeoSoils, Inc. �' v�X bB���rvry B N W ,'b ggf qy a tawq�wy Nr ,p0 Wr 44LE�� Geotechnical Engineering.-Engineering Geology 5741 Paltrier Way•Carlsbad,California 92008•(619)438-3155•FAX(619)931-0915 ' June 4, 1990 W.O. 1156-SD PRESLEY OF SAN DIEGO 15010 Avenue of Science, Suite 200 ' San Diego, California 92121 Attention: Mr. Ray Casey ' Subject: Final Soils and Geologic Report, Tract 232$7-1, Old Vail Ranch Riverside County, California ' Gentlemen: ' This report presents a summary of the engineering testing - services and geologic observations provided by GeoSoils, Inc. ' during the earthwork phase of development for Unlit 1 of Tract 23267 in the County of .Riverside, California. The grading began ' on April 9, 1990 and completed May 18, 1990. ' The purpose of grading was to construct level building pads for residential structures, and associated roadways. Earthwork recommendations were based upon our prior report for the site ' (see enclosed reference list) and upon observations made during grading. Earthwork for this unit was performed concurrently ' with earthwork for Unit 2 within the development. An interim final soils and geologic report, dated May 14, 1990 has also been ' prepared which addresses the Model Site Lots 26 through 30 within ' Unit 1. In addition, this office observed removals and verified 1 .Los Angeles Co.(818)785-2158 • Orange Co.(714)647-0277 • Riverside Co.(714)677-9651 PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 2 1 ' fill placement performed as a part of tract boundary grading by Great American Development Company (GADCO) . 1 ENGINEERING GEOLOGY General ' The geologic conditions exposed duringthe process of grading p g ding ' were frequently observed by our staff geologists. Topsoil removal , fill keys, ---cut slopes, and the general grading procedures were included in these observations. ' Geologic Units Topsoil/Colluvium: Naturally occurring surficiall soils (i.e. , ' topsoil and colluvium) were removed to competent bedrock in both ' cut and fill areas. Bedrock: The bedrock materials underlying the site are ' sedimentary deposits of the Pauba Formation. The Pauba Formation is a late Pleistocene unit generally consisting �of sandstone, siltstone and conglomerate. The principal bedrock types encountered in Unit 1 were sandstone and silty sandstone. This material varied in texture from coarse grained and cemented to ' fine grained and loose. In addition, clayey siltstone interbeds ' or lenses were encountered locally. Bedding structure observed was essentially flat lying and undulatory, characteristic of the ' fluvial nature of the Pauba Formation. Cross-bedded, channeled ' GeoSoils, Inc. PRESLEY OF SAN DZEGO DUNE 4, 1990 W.O. 1156-SD PAGE 3 1 and filled sandstone, cobble-conglomerate, and siltstones were ' observed. cut Slopes The 2 : 1 and 3:1 cut slopes at the rear of Lots 22 to 25, 28 to ' 32 , and 33 to 37 exposed interbeds of loose, uncemented sand. As ' noted in our preliminary reports, cut slopes exposing such materials would be subject to higher rates of erosion. ' Stabilization fills were therefore recommended and constructed in these areas. Cut slopes at the rear of Lots 26 and 27 consist principally of ' sandstone and silty sandstone. A sandy interbed exposed in the ' relatively low height (6 feet) slope which ascends offsite in the southerly corner of Lot 28 may be subject to increased erosion until landscape vegetation is established. The cut slope which descends from the rear of Lots 44 to 46 exposes interbedded silty ' or clayey sandstone, and sandstone. ' SOUS ENGINEERING Preparation of Existing-Ground 1. Deleterious material such as concentrated organic matter and miscellaneous debris were disposed of offsite prior to placing any fill. ' GeoSoils, Inc. ' PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 4 2 . Loose and compressible materials (i.e. topsoil, colluvium and weathered bedrock) were removed to competent material in all areas . All such removals were observed by representatives of this office. ' 3 . All exploratory trenches, excavated during preliminary ' investigations were removed during grading operations. ' 4 . Stabilization fill keys with a minimum depth of 2 feet and minimum width of- 15 feet into competent bedrock were ' excavated (based on field staking) at the toes of the slopes at the rear of Lots 22 to 25, 28 through 21 and 33 through ' 37 . These keys were then tipped at least 1 foot into slope. Sackdrains consisting of 4" diameter perforateld pipe, filter ' fabric and gravel were placed per the grading guidelines in ' our preliminary report. ' 5. After completing removals, areas to receive fill were scarified, moisture conditioned and compacted. ' Fill Placement and Observation ' 1. Fill consisted of onsite soils which were placed in thin lifts approximately six to eight inches in thickness, ' brought to near optimum moisture content and compacted. 2 . The approximate maximum depth of fill is 11 feet, in the area of Lot 35. Table II, enclosed at the end of this ' GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JUNE 4 1990 W.O. 1156--SD PAGE 5 report, presents the approximate maximum depth of fill for each lot. 3 . Fill placed on surfaces having a slope gradient steeper than ' 5: 1 were keyed and benched into bedrock. 4 . Most pad areas exposing cut/fill transitions were ' overexcavated 30 inches and scarified to provide compacted pacted ' fill blankets resulting in uniform foundation support conditions. This was performed on Lots 1, 8-10, 21, and 28- 37. ILots 11, 15, and 18-20 expose cut/fill transitions. However, as the future residential structure does not ' encroach to within 5 feet of the transitions on these lots, Ithe client elected not to overexcavate these lots. This is acceptable to this. office however, any future changes to the structural layout on these lots should be reviewed by this office to assure suitable foundation support. ' Lots exposing P g materials with significant expansion differentials (i.e. clayey siltstone vs. sandstone) were similarly overexcavated to provide a uniform foundation ' support condition. This was performed on Lots 22, 37-38, and 40-42 . Lot 56 exposed very highly expansive claystone at finished grade. Since overexcavation of this lot would have resulted in spillage of materials onto the adjacent GeoSoils, Inc. 1 ' PRESLEY OF SAN DIEGO DUNE 4, 1990 W.O. 1156--SD PAGE 6 1 ' property (GADCO) , the client elected not to overexcavate this lot. Foundation recommendations for this lot are ' provided in a later section. ' In addition, where topsoil removals resulted in elevations below proposed cut pad grades, overexcavation was performed ' to provide a minimum 3 foot fill blanket across the pads. This occurred on Lots 2-7 and 50-53 . 5. A small area along the slope at the rear of Lot 46 was ' undercut for a haul road. This area was later cleared of loose and/or dry material, keyed a minimum 15 ' into bedrock, ' tilted into slope scarified, moisture conditioned and filled. r 6. For the purposes of foundation design, Lots 1-10, 21, 22, ' 28-38, 40-42 and 50--53 are fill lots. 7. Lots 11-20, 23-27, 39, 43-49, 54-56 for the purposes of ' foundation design, may be considered essentially to be cut lots. Slopes ' 1. Compaction on the face of the fill slopes was achieved utilizing a sheeps foot roller and by track walking and/or ' by overbuilding the slope and by cutting back to grade. ' 2 . Slopes should be planted with deep rooting, drought ' GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JUKE 4 W.O. 1156-SD , 199b PAGE 7 ' resistant vegetation as soon as possible after construction to control erosion and aid surficial stability. Irrigation ' for planted areas on and above slopes should be minimized to just support the vegetation and avoid developing artificial igroundwater accumulations. 3 . All slopes are considered grossly and surficially stable and should remain so under normal conditions of rainfall, ' provided an adequate program of landscaping and maintenance ' is followed. Field Testinct 1. Field density tests were performed using the sand cone method (ASTM D-1556-82) or nuclear density method (ASTM D- ' 2922-81) . The estimated locations of the field density tests are shown on the Compaction Test Location Maps, Plates 1 and 2, which utilize the 1"=401 scale grading plan provided by Crosby Mead Benton and Associates as a base map. Grading for Unit 1 was performed concurrently with grading for other areas of the Vail Ranch development, utilizing lizzng a single test number sequence. As such, the density test results presented in Table I, enclosed, indicate only those ' test results applicable to Unit 1. ' 2 . Field density tests were taken at periodic intervals and GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JUNE 4 1990 W.O. 1156-SD PAGE 8r ' random locations to check the compaction effort by the contractor. Where test results indicated the desired compaction standard was not obtained, the contractor was notified and the area was reworked until retesting indicated ' the minimum standards were obtained. Based on the grading operations observed, the test results herein are considered ' representative of the compacted fill. ' 3 . Visual classification of the soils in the field was the basis for determining which maximum density value to use for a given density test. Moisture-Density Relations The laboratory maximum dry density and optimum moisture content for each of the ma jor soil types was determined according to test ' method ASTM D-1557-78. The following table presents the results: Maximum Dry Optimum Moisture Sail a Densit cf Content $ A-Dark brown silty SAND 132 .0 9 . 0 ' B-Reddish brown sandy CLAY 124.5 12 .5 C-Yellowish Brown clayey SAND 129.5 10.5 D--Dark yellow brown silty SAND 131.0 9 . 0 ' E-Dark yellow brown silty SAND 131. 0 8. 5 F-Dark brown silty SAND 130.5 8. 5 G-Grayish brown silty SAND 129.5 9. 5 H-Dark brown sandy SILT 124. 0 13 . 0 I-Yellowish gray SAND with silt 105. 0 15.5 J-Medium brown silty SAND 127.0 10.5 ' K-Dark gray SAND with silt 109.5 14 .5 L-Yellowish brown silty SAND 130.5 10. 0 M-Light gray silty fine SAND 118. 0 14 . 5 ' GeoSolls, Inc. PRESLEY OF SAN DIEGO W.O. 1156--SD PONE 4, 1990 PAGE 9 ' E ansive Soils ' Expansive soil conditions have been evaluated for the lots. Representative samples of the soils near pad grade were recovered for classification and expansion testing. ' 1. Swell tests were performed on remolded samples compacted to 90 percent maximum density at 80 percent of optimum moisture ' in a brass ring having an inside diameter of 2� . 38 inches and a height of 1. 0 inches. Surcharge loads were applied and ' each sample was subm erged merged in water for 24 hours. The ' vertical swell was recorded as a percentage of the original sample height. 1 2 . The expansion potential for the various Lots is indicated in the foundation recommendations below and on Table III, enclosed at the end of this report. 1 ' FOUNDATION RECOMMENDATIONS ' Design 1. An allowable soil bearing pressure of 2, 000 pounds per square foot may be used for the design of continuous footings with a minimum width of 12 inches and depth of 12 inches. The bearing pressure may be increased by one-third ' for seismic or other temporary loads. GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JIINE 4, 1990 W.O. 1156-SD PAGE 12 2 . A grade beam, reinforced as above, and at least 12 inches wide should be provided across garage entrances. The base of the grade beam should be at the same elevation as the bottom of adjoining footings. ' 3 . Concrete slabs where moisture condensation is undesirable, should be underlain with a vapor barrier consisting of a minimum of six mil polyvinyl chloride or equivalent membrane ' with all laps sealed. This membrane should be covered with a ' minimum of one inch of sand to aid in uniform curing of the concrete. 4 . Concrete slabs, except in garage areas, should be reinforced with six inch by six inch, No. 10 by No. 10 welded wire mesh. All slab reinforcement should be supported to ensure ' placement near the vertical midpoint of the concrete. ' S. Garage slabs need not be reinforced with the above criteria; however, they should be poured separately from the residence footings and be quartered with expansion joints or saw cuts. A positive separation from the footings should be maintained with expansion joint material to permit relative movement. ' 6. Presaturation is recommended for these soil conditions. The ' moisture content of the subgrade soils should be equal to or greater than optimum moisture to a depth of 18 inches below grade in the slab areas and verified by this office within 48 ' GeoSofis, Inc. 1 PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 11 ' 2 . Concrete slabs, where moisture condensation is undesirable, should be underlain with a vapor barrier consisting of a minimum of six mil polyvinyl chloride or equivalent membrane with all laps sealed. This membrane should be covered with a ' minimum of one inch of sand to aid in uniform curing of the concrete. 3 . Concrete slabs, except in garage areas, should be reinforced with six inch by six inch, No. to by No. 10 welded wire mesh. ' All slab reinforcement should be supported to ensure proper positioning during placement of concrete. Garage slabs ' should be poured separately from the residence footings. A positive separation should be maintained with expansion joint material to permit relative movement. 4 . No specific presaturation is required, however, footing trenches and soil at pad grade should be well watered prior ' to pouring concrete. ' Moderately Expansive Soils (Lots 1-4, 14-20, 33-35, 40 and 41) 1. Exterior footings should be founded at a minimum depth of 18 inches below the lowest adjacent ground surface. Interior ' footings may be founded at a depth of 12 inches below the lowest adjacent ground surface. All footings should be ' reinforced with two No. 4 reinforcing bars, one placed near the top and one placed near the bottom of the footing. ' GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 10 1 ' 2 . An allowable coefficient of friction between concrete and compacted fill or bedrock of 0.4 may be used with the ' deadload forces. 3 . Passive earth pressure may be computed as an equivalent fluid pressure having a density of 250 pounds per cubic foot ' with a maximum earth pressure of 2, 000 pounds per square foot. 4 . All footings should maintain a minimum horizontal distance of ' five feet from the outside bottom edge of the footing to the face of an adjacent descending slope. Construction ' The laboratory test data indicates that the majority of near surface soils on the tract vary from low to moderately expansive. ' A few lots extend into the high to very highly expansive range. The following recommendations for residential lots are based on the laboratory test data and our observations. ' Low Expansive Soils (Lots 5-11, 21-32 36-39 and �42-55) 1. Footings may be constructed according to standard building code requirements regarding width and depth. We recommend placing one No. 4 reinforcing bar near the. top and bottom of ' footings. ' GeoSoils, Inc. PRESLEY OF SAN DIEGO JDNE 4 1990 W.O. 1156--SD PAGE 13 1 hours of pouring slabs and prior to placing visqueen or reinforcement. Very Highly EXpansive Soils (Lot 56) . ' 1. Exterior footings should be founded at a minimum depth of 18 inches below the lowest adjacent ground surface. Interior ' footings should have a minimum embedment of 18 inches below the top of the lowest adjacent concrete slab surface. However, a minimum penetration of 12 inches into the soil is ' required. All footings should be reinforced with a minimum of four No. 4 reinforcing bars two placed near the top and two placed ' near the bottom of the footing. 2 . A grade beam, reinforced as above and at least 12 inches square, should be utilized across garage entrances. The ba se ase ' of the grade beam should be at the same elevation as the bottom of the adjoining footings. ' 3 . concrete slabs should be underlain with a minimum of four ' inches of washed sand or crushed rock. In addition, where moisture condensation is undesirable, a vapor barrier ' consisting of a minimum of six mil polyvinyl chloride or ' equivalent membrane with all laps sealed should be provided. One inch of the sand should be placed over the membrane to ' aid in uniform curing of the concrete. ' GeoSoils, Inc. ' PRESLEY OF SAN DIEGO JUNE 4 1990 W.O. 1156-SD PAGE 14 ' 4 . Concrete slabs, including garages, should be reinforced with six inch by six inch, No. 6 by No. 6 welded wire mesh or its ' equivalent. All slab reinforcement should be supported to ensure placement near the vertical midpoint of the concrete. 5. Ga rage slabs should be poured separately from the residence footings and be quartered with expansion joints or saw cuts. A positive separation from the footings should be maintained with expansion joint material to permit relative movement. 6. Presaturation is recommended for these soil conditions. The moisture condition of each slab area should be equal to or greater than 120 percent of optimum to a depth of 18 inches ' below slab grade and verified by this office within 48 hours of pouring slabs and prior to placing visqueen or ' reinforcement. 1 1 1 GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 15 1 Post--Tensioned Slabs ' As an alternative to conventional spread footings post tensioned ' slabs may be employed. The recommendations found below may be used in design: Low/Moderate very highly Expansive Expansive Allowable bearing value psf 2000 2000 Coefficient of friction 0.4 0.4 Minimum depth of perimeter footing inches 12 18 (depth below the lowest adjacent grade) Passive earth pressure psf/ft 250 250 Edge moisture variation em-center feet 5.2 5.2 Edge moisture variation em-edge feet 2.5 2.5 Maximum differential swell for center lift ym-center inches 0.28 1 .15 Maximum differential swell for ' edge lift ym-edge inches 0.05 0.26 Maximum expected settlement inches 0.75 0.75 ' Presaturation is not required, however, we recommend that the moisture content of the subgrade soils should be equal to or ' greater than the optimum moisture to a depth of 18 inches below finish grade. To mitigate "dishing and "arching" of the slabs, stiffening interior grade beams should be provided. The maximum ' spacing between the grade beams should not exceed 20 feet on center. A visqueen vapor barrier should be lapped adequately to provide a ' continuous water-proof barrier under the entire slab. other recommendations presented in the referenced reports should be rGeoSoils, Inc. PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 16 adhered to during the design and construction phase of the project. 1 RETAINING WALLS Retaining walls may be designed for an equivalent fluid pressure as shown on the following table: Surface Slope of Equivalent Retained Material Fluid Weight Horizontal to Vertical Lb./ 3 ' Level 35 3 to 1 <38 ' 2 to 1 43 Retaining walls should be provided with a pipe and gravel backdrain or weepholes covered with a minimum of 12 inches of ' gravel, a compacted fill blanket at the surface, and proper ' surface drainage devices. Footings may be designed in accordance with the "Foundation Recommendations" section of this report. ' If passive earth pressure is added to the friction, the passive pressure should be reduced by one third. Additional active pressures should be added for a surcharge ' condition. 1 GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO W.O. 1156-SD J[JNE 4, 1990 ' PAGE 17 i POST GRADING CRITERIA ' Additional Grading This office should be notified in advance of any additional fill placement, regrading of the site, or trench backfilling after ' rough grading has been completed. This includes completion of grading in the street, parking areas, and utility trench and ' retaining wall backf ills. Footing trench spoil and any excess soils generated from 1 utility . trench excavations should be compacted to a minimum relative compaction p ion of 90 percent if not ' removed from the site. ' Drainage Positive site drainage should be maintained at all times. Drainage should not flow uncontrolled down any slope. Water should be directed away from foundations and not allowed to pond and seep into the ground. Pad drainage should be directed toward the street or other approved area. Footing Trench Excavations All footing trench excavations should be observed by a representative of this office prior to placing reinforcement. ' GeoSoils, Inc. 1 PRESLEY OF SAN DIEGO JUNE 4, 1990 W.O. 1156-SD PAGE 18 Trench Backfill All utility trench backfill should be placed to the following standards: 1. Ninety percent of the laboratory standard if native material is used as backfill. 2 . As an alternative for the interior of the slab, clean sand ' (SE>30) maybe utilized and jetted or flooded in place, 90 percent relative compaction is recommended. Observation, probing, and testing to verify adequate results is recommended. 3 . Exterior trenches, paralleling a footing and extending below ' a 1: 1 plane projected from the outside bottom edge of the footing should be compacted to 90 percent of the laboratory standard. Sand backfill, unless it is similar to the in the ' place fill, should not be allowed in these trench backfill areas. Density testing should be accomplished to verify the desired results. ' 4 . Regulations of the governing agency may supersede the above. ' 5. All trench excavations should conform to all applicable ' safety codes. ' GeoSoils, Inc. PRESLEY OF SAN DIEGO JUKE 4, 1990 W.O. 1156-SD PAGE 19 ' REGULATORY COMPLIANCE Cuts, fills, and processing of original ground under the purview of this report have been completed under the observation of, and with selective testing by GeoSoils, Inc. are found to be in compliance with the Grading Code of the County ''of Riverside, ' California. our findings were made and recommendations prepared in conformance with generally accepted professional engineering practices and no further warranty is implied nor made. This ' report is subject to review by the controlling authorities for this project. If you should have any questions, please do not hesitate to call ' our office. Very truly yours, GeoSoils, Inc. 782 -+ K+ a Lxp. 12-31-93 Vit yca S ghaneet, ��CHN� �� aulL. y 1117 ' Geot hni al En ineer F CAS Project Geologist VS/PLM/mc Enclosure: References Table I, Field Density Tests Table II, Depth of Fill ' Table III, Expansion Potential Plates 1 and 2, Compaction Test Location Maps Distribution: (6) Addressee (2) Crosby Mead Benton and Associates ' GeoSoils, Inc. REFERENCES ' 1. "Interim nterim Final Soils and Geologic Report, Tract 23267-1 for the ModelComplex, Lots 26 through 30, Vail Ranch, Riverside County, California", by GeoSoils, Inc. , dated May 14, 1990, W.O. 1156-SD. 2 . "Preliminary Geologic and Soil Engineering Investigation, Vesting Tentative Tract Map Numbers 23267 Unit 1, Old Vail Ranch, Rancho California, Riverside County, California", by ' GeoSoils, Inc. , dated, June 26, 1989, W.O. 994-SD. ' GeoSoils, Inc. 1 ' REFERENCES ' 1. "Interim Final Soils and Geologic Report, Tract 23267-1 for ' the ModelComplex, Lots 26 through 30, Vail Ranch, Riverside County, California", by GeoSoils, Inc. , dated May 14, 1990, W.O. 1156-SD. ' 2 . "Preliminary Geologic and Soil Engineering Investigation, Vesting Tentative Tract Map Numbers 23267 Unit 1, Old Vail Ranch, Rancho California, Riverside County, California", by ' GeoSoils, Inc. , dated, June 26, 1989, W.O. 994-SD. 1 1 1 1 1 1 1 1 1 ' GeoSoils, Inc. 1 ' PROJECT NAME: VAIL RANCH, UNIT 1 - GRADING Y.O_: 1156-1-SD ' CLIENT: PRESLEY OF SAN DIEGO DATE: 06/90 T A B L E I FIELD DENSITY TEST RESULTS ' Dry Relative Date of Test Moisture Density Compaction Test Soil Test No Test Location Elevation X. cf X Type TyDe ' 04-27-90 377 LOT 30 FG 5.8 117.2 89 ND C 378 LOT 29 FG 6.1 106.1 81 ND C ' 379 LOT 28 FG 4.8 118.1 90 ND C 377A LOT 30 FG 10.9 117.0 92 NO J 378A LOT 29 FG 10.8 114.3 90 NO J ' 04-30-90 379A LOT 28 FG 8.7 117.3 91 NO C ' 04-22-90 386 LOT 31 FG 11 .8 118.1 92 ND J 387 LOT 32 FG 10.6 114.1 90 NO J 04-26-90 407 LOT 29 1147.01 8.1 112.6 88 SC J ' 407A LOT 29 1147.0-1 8.4 119.5 92 NO C 408 LOT 32 1149.01 8.1 110.8 817 SC J 408A LOT 32 1149.0, 8.6 118.5 9I,1 ND C ' 409 LOT 31 1153.0, 8.9 117.4 90 ND C 410 LOT 28 1155.0, 9.2 117.7 91 NO C 05-01-90 421 LOT 19 1166.01 11 .1 125.2 96 SC C ' 422 LOT 21 1169.0, 10.4 121 .4 94 SC C 423 LOT 20 1172.0, 11 .1 122.5 95 SC C 424 LOT 21 1170.01 10.4 116.7 92 SC J ' 05-01-90 425 LOT 19 1174.01 14.1 111 .2 90 ND H ' 05-07-90 455 LOT 37 1154.01 10.4 117.6 91 ND C 456 LOT 34 1146.01 10.4 117.9 91 ND C 458 LOT 29 SLOPE 1155.01 8.4 115-1 91 ND J 459 LOT 32 SLOPE 1150.0, 8.3 114.0 90 NO J 460 LOT 21 SLOPE 1167.0, 8.6 118.0 91 ND C 461 LOT 19 SLOPE 1170.0, 8.2 117.4 90 NO C 05-08-90 465 LOT 35 1153.01 12.1 110.9 87 ND J 465A LOT 35 1153.01 11 .8 113.9 90 ND J 466 LOT 37 1155.01 9.8 118.0 89 NO A ' 466A LOT 37 1155.0, 10.4 119.7 91 ND A 467 LOT 37 1157.0, 9.2 116.1 90 NO C 468 LOT 34 1155.0, 10.8 121 .2 92 ND A 469 LOT 36 1157.0, 9.8 114.0 90 NO J 1 ' GeoSoils, Inc. 1 PROJECT NAME: VAIL RANCH, UNIT 1 - GRADING W.O.: 1156-1-SD ' CLIENT: PRESLEY OF SAN DIEGO DATE- 06/90 ' T A B L E I FIELD DENSITY TEST RESULTS ' Dry Relative Date of Test Moisture Density Compaction Test Soil _Test No Test Location Elevation M (pcf) (%) Type TYPe 1 05-10-90 485 LOT 38 FG 12.0 116.1 90 NO C 486 LOT 37 FG 11 .6 117.4 91 ND C ' 487 LOT 36 FG 9.2 113.9 88 SC C 488 LOT 35 FG 10.4 116.2 90 ND C 489 LOT 34 FG 8.7 116.2 90 ND C ' 490 LOT 33 FG 9.6 116.1 90 ND C 491 LOT 22 FG 11 .1 120.9 93 ND C 492 LOT 9 1173.01 9.8 117.5 91 SC C ' 493 LOT 6 1175.01 12.6 117.4 91 ND C 05-11-90 494 LOT 34 SLOPE 1153.01 9.4 114.1 90 NO J 495 LOT 37 SLOPE 1156.01 9.1 114.1 90 NO J 496 LOT 50 1173.01 10.4 116.1 91 SC J 497 LOT 52 1175.01 11 .1 116.7 92 ND J 05-14-90 498 LOT 2 1165.01 11 .1 112.1 90 SC B 499 LOT 4 1173.01 12.0 111 .6 90 ND B 500 LOT 3 1171 .01 12.0 112.4 90 ND B ' 05-14-90 588 LOT 5 FG 8.2 116.6 90 ND C 589 LOT 6 FG 10.3 119.1 92 ND C 590 LOT 7 FG 8.5 118.9 92 ND C ' 591 LOT 8 FG 8.7 117.8 91 ND C 592 LOT 9 FG 8.2 115.0 93 NO H 593 LOT 10 FG 9.7 111 .9 90 ND H ' 594 LOT 40 FG 9.0 107.2 91 NO M 595 LOT 41 FG 11 .9 107.4 91 ND M 596 LOT 42 FG 13.0 108.1 92 ND M 597 LOT 53 FG 9.5 114.1 90 NO J ' 598 LOT 52 FG 7.1 114.0 90 ND J 599 LOT 51 FG 8.3 117.6 93 ND J 600 LOT 50 FG 9.2 116.9 92 NO J ' 05-15-90 601 BACK OF LOT 11 FG 11 .5 124.7 94 NO A 602 LOT 21 FG 8.3 114.9 90 NO J ' 05-16-90 603 LOT 39, SLOPE 1168.0, 9.5 114.1 90 ND J 487A LOT 36 FG 9.1 119.9 93 NO C 1 GeoSoils, Ine. 1 PROJECT NAME: VAIL RANCH, UNIT 1 - GRADING L1.0.: 1756-1-SD ' CLIENT: PRESLEY OF SAN DIEGO DATE: 06/90 ' T A e L E I FIELD DENSITY TEST RESULTS ' Date of Test Dry RelativeMoisture Density Compaction Test Soil Test No Test Location Elevation (XII 0C.''! X Type Type ' 05-18-90 610 LOT 4 FG 11 .2 114.1 qQ ND i ' 611 LOT 3 FIG 9.3 116.1 91 ND J 612 LOT 2 FIG 9.6 114.5 90 ND 613 LOT 1 FIG 10.4 116.6 92 ND d NOTE: ND = NUCLEAR DENSITY GAUGE TEST SC = SAND CONE TEST A = RETEST FIG = FINISHED GRADE 1 1 1 1 1 1 GeoSoils, Inc. i r ' TA BLE zz ' Depth of Fill ' Lot s Approximate Approximate De th Ft.I Lo�s1 De th Ft. 1--4 3 38 r 5-7 4 3 39 0 �10 3 40-42 3 2 43 0 15*14 0 44 0 <1 45 0 16 17 0 46 8 7. 5 47 1 0 ' 20* 7. 5 48 0 6 0 21 49 0 10 50' 0 22 3 51 4 23-27 0 52 4 28' 9 53 4 29 30 10 54 0 8.5 31 55 0 9 56 0 r 32 33 9 34 10 35 11 36 g 37 8 * Transition lots with limited areas of fill. r r r i i GeoSoils, Inc. 1 1 TABLE III Expansion_Potential Lot Potential Lot Potential Lot Potential ' 1 moderate 24 low 47 low 2 moderate 25 low 48 low 3 moderate 26 low 49 low 4 moderate 27 low 50 low 5 low 28 low 51 low ' 6 low 29 low 52 low 7 low 30 low 53 low 8 low 31 low 54 low 9 low 32 low 55 low ' 10 low 33 moderate 56 very high 11 low 34 moderate 12 moderate 35 moderate ' 13 moderate 36 low 14 moderate 37 low 15 moderate 38 low ' 16 moderate 39 low 17 moderate 40 moderate 18 moderate 41 moderate 19 moderate 42 low ' 20 moderate 43 low 21 low 44 low 22 low 45 low ' 23 low 46 low 1 1 1 GeoSoils, Inc. D. J. ENGINEERING 17690 San Vicente Fountain Valley, CA 92708 (714)962-5425 POST-TENSIONED SLAB-ON-GRADE DESIGN CALCUL _TIONS FOR STONECREST 4, TEMECULA PRESLEY HOMES PLAN NO. : P.T. FOUNDATION PLAN PLAN 1 2 3 PREPARED FOR QROF� si ' J.L. DAVIDSON CO. , INC. ��0 IENe OP y� G2 JOB NO. : 93736 No. 3241 u Exp.9/30/93 k ■ CALCULATIONS Desion by: D. J. Engineering (714)96 '-5s125 PAGE (Q, 17690 San Vicente Fountain Valley, California '_}7c)8 1. Structural lesion of slab is based can recommendations by 'Design and Construction of Post-Tensioned Slabs cin Ground, 0936 Edition, publ.i--hed by the Port-Tensioninc Institute and 199 U.B,C. This comouter program covers a d?51an Qr ced�_lre =ir the dea.�.9 Of slab-on- ground foundations to resist the effects of ex0ansive sails in accordance with Chapter 29 of the Uniform Building Cade. Use of this prograrn shall be limited to buildings three stories or less in height in which gravity loads are transmitted to the foundation primarily by means of bearing walls constructed Of masonry.,wood or steel studs, end with or without masonry veneer. #k##•1E•ji•1F####•kaF#####�##•riF•�•h####•Y.•#####li•#####�F•1E•ir•i;###•]F###-lF#•1E•Y#######•r*#�-9F�r,•###iFif###�E Pro-ject Name STONECREST 4 (PLAN 1) Project Location : TEMECULA D. J. Enaineerina Job Number : 93736 Design date 7-13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Sail Report By : GEOSOILS Sail Report Number 1105-SD Soil Report Date 6--4-0 E X R AEA 3 I VE SC I L E3ES I GN PA RAC'BETE EIS 4 #•r######�###�•�####•��####sae###�••��###�####•�####��#*�###��##•x•#��##�-•�-�##•��:�##�•x�# ATTERBERG LIMIT: PI (Plasticity Index.) = Edge moisture variation distance: Em (Center Lift Condition)= 5. ' ft Em ( Edge Lift Condition)= 2.5 ft Estimated differential movement: Ym (Center Lift Condition) = 1. 15 in Ym ( Edge Lift Condition) = .''2F, in Allowable soil bearing pressure _ 2000 psf Slab-subarade friction coefficient = e75 Sail modulus Of elasticity Es (assumed if not provided) = 1000 psi _X CON BETE DYES I IS I3ATA -X- Concrete 38 days =_.t-renath f' c = 2500 p=-i Concrete elastic modulus E = 57.;SQ1R(f' c) = 2850 ksi Concrete creep modulus Ec = 0.5E = 142" k:=.i FOUNDATION SIZE: FiDundation plan Geometry = 56 ft bang. x 39 ft wide _lab thickness = 5 inches. Slab surface area = 2184 so.ft Mveraoee f,_--Undation overall thickness = F,.F, inches PAGE 2 STIFFENING BEAM SIZES: In the bang direction: Exterior Beams: 2 beams C 12.00 in. wide x 18.ff) in. deep (Incl. slab) Interior Beams: 1 beams @ 12.00 in. wide x 12'.00 in. deep (Incl. slab) (Average beam sQacin❑ = 19.5 ft. ) In the short direction: Exterior Beams: y beams C 12.00 in. wide x 18.00 in. deep (Intl. slab) Interior Beams: 21 beams C 12.00 in. wide ,. 12.0f, in. deep (Incl. slab) (Average beam spacin❑ = 13.7 ft. ) �-31(- P ./T 0-T r,A r4D DPIIGNI IDi%I-A -x--x- 7-wire 1/'Z in. dia. stress-relieved strands conforminq to ASTM-416 Tendon strength .Fuu _ 270 ksi Cross-sectional area = Aps = 0. 153 so.in Modulus of elasticity Eos 28,500,000 psi Maximum jacking farce (to overcame friction) = O.8Fpu x Aps = 28 E::ips Maximum anchor farce (tea account for seatinq loss) = 0.7Fou x Ap= _ 28.9 laps Maximum effective force (to account for total prestress lasses) = 0.6Fpu x Aps - 214.3 kips In the long direction: 10 provided slab strands at c.o.s. = 2.50 in. from top of slab 0 provided beam strands at c. q,s. = 0.00 in. from top of slab (Average strand spacing = 4.2 ft. o. c. ) In the short directy,_,n: 14 provided slab strands at c. p.s. = 2.50 in. from too of slab 0 provided beam strands at c. q.s. = 0.00 in. from ton of slab (Average strand spacinq = 4. ' ft. o. c. ) TOTAL STRAND QUANTITY = 1154.0 LF 605.9 LBS _X__X_ S L AFC '�`1EC-F Y 0P4i P FZO P E7ITT' I HS _X__X_-W- In the long direction: Cross-sectional area 2736.0 in-^2 Moment of inertia 33898.7 in"4 Yt (c. q. C. ) - 3.7 in Yb (c. g. c. ) - 12.3 in Section modulus, St = 5135.8 in'"3 Section modulus, )b = 2758.4 in"3 Beta distance (relative stiffness lengths) _ (Ec x I/Es)''.225/12 = 8.9 ft In the short direction: Crass-sectional area. - 3e40.0 .in 2 Moment of inertia 39607.9 in`4 Yt (c. g. c, ) - 3.5 in Yb (c.q. c. ) - 11.5 in Section modulo St = 1131 8 in' ,` Section modulus, Sb 3442.3 in''3 Beta distance (relative stiffness ienatFs) _ (Ec I/Es)``.;��/1�' _ ?.^ ft PAGE 3�5, ILLS Iil N L C7AD I ['+GCS -X--3K--X- UNIFORM LOADS WID USING CODE ALLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 15 1G :_nd Floor 15 40 Exterior sF in weight (In the lona dir. ) = 200 plf Exterior s4::in weight (In the short dir. ) = 300 n1f Lena Direction Short Direction (Exterior) (Interior) (Exterior) (Interior) TRIBUTARY WIDTHS - FT: Roof 13.00 0.00 i_).00 0.00 Ord Floor 0.00 it,00 (D.00 C).no 'nd Floor 12.00 0.C)tl 0.00 0.00 TOTAL BEAM LOADINGS (inclt.tdinq beam self-weight) - PLF DL only 967 130 525 150 DL + LL 1695 150 5 5 150 NUMBER OF BEAMS: 1 2 2 WEIGHTED AVERAGES - DL+LL (PLF) Averaae of all exterior and interior beams - 77 p1f Average of all exterior beams only = 12115 plf Average of interior beams only = 150 plf Use slab perimeter loadina o = 1250 elf (for flex�tre and shear deslign only) FZE=SUL-FS SE= SLAD A1\JAL`{'SIS a S30 I L F-5E-=A R I NC3 ST RE=SSE=S I VEST I GA-F 10NS-&-X (The average bearing stresses below are conservatively based on leads. carried by the rectangular beams cotpled with, effective slab OF wXW wi de) DL ONLY = 300 psf DL + LL = 46B psf Sail oreesi_tre safety factor = 4. 1 E=L1-=XURAL S7R€SSI-ES- IN V 1_=13-F 1 0 AI- ICONS -x--� � Tensile stresses are considered negative in sign c.cDnventions Allowable tensile stress = GxSQR(ff i'> - ,^'_'fit Allowable compressive stress 125 }-.:=_.i LA ` PAGE 1A, In the long direction Prestress summary: Averaae compressive stress at edge of building - 0.091 E;s.i Averaae compressive stress at distance Beta from edae of building = 0.085 - Averaae compressive stress at center of buildina 0.006 h:si Minimum number of strands required = 8.212 to overcome subarade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 10 at ayeraae c.a.s. _ 2.50 in. from top of slab Moment analysis: Calculated positive moment induced by EDGE LIFT - 1.1M ft-E;ips/ft Too compressive stress = 0. 141 E:si Bottom tensile stress = . 182 k:Gi Calculated negative moment induced by CENTER LIFT = 5. 1u ft-}::ips/ft Ton tensile stress = -. 174 k:si Bottom compressive stress = 0.962 4:si In the short direction : Prestress summary; Averaae compressive stress at edge of building - 0.090 ksi Average compressive stress at distance Beta from edge of building = 0.084 Averaae compressive stress at center of building = 0.073 };si Minimum number of strands required = 10.45 to overcome subgrade friction dra❑ and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 14 at average c.a.s. _ 2.50 in. from top of slab Moment analysis; Calculated positive moment induced by EDGE LIFT 0.96 ft-4::ip5/ft Too compressive stress = 0. 154 ksi Bottom tensile stress = -. 195 F::si Calculated negative moment induced by CENTER LIFT = 5.-13 ft-kips/ft Top tensile stress = 225 ksi Bottom compressive stress = 1.053 ksi -Y.-_X__X_ SHEFA FZ 'E=:a FRE�SS:I—E r AND D 11 FOIE F?1—HN7F 11 A L In the long direction Allowable shear stress = 1.5xS0R(f' c) = 0.075 }:si Allowable differential deflection at CENTER LIFT=(GxBeta or L)/w60= 1.38 in Allowable differential deflection at EDGE LIFT=(SxBeta or L)/800= t).63 in Actual shear stress induced by CENTER LIFT = -0.046 ksi E Dexted differential deflection at CENTER LIFT = 1, in Actual shear stress induced by EDGE LIFT --0.016 ksi E-;oected differential deflection at EDGE LIFT = 0.22 in In the short direction : Allowable shear stress = 1,5YS-0Rc:f' c) - 0.075 E:=_.i Allowable differential deflection at CENTER LIFT=(ExBsta or_ L)/360= 1.30 in Allowable differential deflection at EDGE LIFT- or L)/'R00= 0.59 in Actual shear stye=s induced by CENTER LIFT = -i.r_)44 i::C.i E:cpexted differential deflection at CENTER LIFT = 1 ir7 Actual shear stress induced by EDGE LIFT = -0.i)14 k;=.i Exoected differential deflection at EDGE LIFT = 0.'. t) in ' F'�Er:T ---TF�:� I �d�9€i7 �L.,�►�� —Cl(�l --C�e��LD� L?E� � �t�! —UP _rIONS CALE De=--ien by: E. .?. Empineerin❑ (714)?62_5 25 PAGE ,t-6 17690 San Vicente Fountain Valley. California 'K=)2 +--w-•x x-IDc-- dLmm Cr .- t_-e r- j- -x--W--m -34F 1. Structural design of slab is . based on recommendations by 'Design and Ccn=.truction c,f Post-Tens 4clned Slabs on Ground' , 1586 Edition, Published by the Past-Tensioning Institute and 1'491 U.B.C. 2. This core-rj (ter Qrcioram covers a desion proce-lure for the de-_ gn of slab-on- ground foundations to resist the effects of e',;ganFive soils in accordance with, Chapter 29 of the Uniform Building Cede. Use of this ❑rogram shall be limited to buildings three stories or less in h,ei+ght in which gravity loads are transmitted to the foundation primarily tv means of bearinq walls constructed of masonry,wood or Eteel. studs, and with or without me5C,nry Yerleer. �E•�•1E�•#•1F#?E##•�##•�'i.-�.`?F•b#•�:�:#?FaF•1f•Ya[-###aE1F•1F####'�.•1F�•#•7F•ljF•1F#aFac•1F�FaFjFiFjE#jF•1F##•!F'k•'�aE•1F•k•1��-####�F�F•3E•1F## . . Project Name : STONECREST (PLAN 1) Pro -ject Location : TEMECULA D. J. Enui nesrinc Jot, Number . 9373GI Design Late 7-15•-93 No. of Stories PROVIDED SOILS DE'=ISN INFORMATION: Soil Report By : SECSOIL5 Soil REQort Number . 1155-SD Soil ReDor•t Date : E-4-90 COMPPE=SS I BL_E SO I L_. DD IEEE:S I C-3N PARAMI=—TF--FZ E Expected may;. differential settlement = .75 in Allowable soil bearinq pressure = 20C)0 psf Slab--subarade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided) = 1000 psi •1F•1F#�cic�F•1F•l?•yFr•ic###-lF#��r;;•i�-iF#�Etie•7F�F�FiE•1F�E•iFjEyF•IESE#3F•1E-iFie7Ez#•x#jFkk�E#�r##iF•iF7Fsr�c#jE•it#jF###•3F7F•1F•1F•1F##iE#•1F -3�_W_ _NE- CON 0RE:TE: 13JE,S I SN DATA Concrete 28 days strength f' c = 2500 gsi Concrete elastic modulus E r 57 SQR(f' c) = 2850 ksi Concrete tree❑ modulus Ec = 0.5E 1425 k-si FOUNDATION SIZE: Foundation elan neometry 56 ft 1 na u'D ft wide Slab 1nChes Slab =-.,-lase area - 21S4 se. ft Average f�-_.undation c+verall LFiiCG;nGs - = .a ch=s ❑AGc 4Q STIFFENING BEAM SITES: in the long direction: Exterior Bea.;:s: 2' beams @ 12.00 in. wide x 1.8.00 in. deep (Incl. slab) _ Interior Beams; 1 beams @ 12.00 in. wide x 12.00 in. deep (Tncl. slab) (Average beam spacina = 19.5 ft. ) In the short direction: Exterior Seams: 2 beams @ 1 .00 in. wide x 18.00 in. deep (Intl. =_-lab) Interior Beams: 2 beams ra 12,.00 in. wide / 12.00 in. dee❑ (Incl. slab) :Average beam spacina = 15.7 ft. ) 7-wire 1/2' in. dia. stress-relieved strands conforming to ASTM-416' Tendon strength FDu = 2-17C) CroEs-5ecti�,nc.l area = ARs = 0. 15^a sa.in Modulus of elasticity = Ep5 23.5 W-1. 0,; psi Maximum .jack:inp force (toy overcame friction) = ❑.SFpu x Aps = 33 kips Maximum anchor force =:•toy account for seatinq loss) = �_�.7FDu Aps = 28.9 k:ips- Maximum effective force (to account for total prestress losses) = 0.6Fp1.t x Aps __ , 0, -- y�-r.a In the long direction: 10 provided slab strands at c. c .s. = 2.50 in. -Prom top of slab C1 provided beam strands at c.g.s. = 0.00 in. from top of slab (Average strand spacing = 4.2 ft. o. c. ) In the short direction; 14 provided slab strands at c. g.5. 1.50 in. from top of slab 0 provided beam strands at c.q.s. 0.00 in. from top of slab (Average strand spacing = 4.2 ft. o. c. ) TOTAL STRANB QUANTITY = 1154.0 LF - 605.9 LBS -X- S!L-A FF !FZ=7ION PROP€R-rTF:S -X- -X- In the long direction: Grass-sectional area 736.0 in-"2 Moment of inertia - 33896.7 in^4 Yt (c. a. c. ) = 3.7 in Yb (c. q. c. ) = 12.3 in Section modulus, St = 5135.8 in S Section modulus. Sb 2758.4 in-^3 Beta distance (rela.tive stiffness lengths) = (Ec x I/Es)•^.35/12.' = S.9 ft In the short direction: Cross-sectional area - 3840.0 in"2 Moment of inertia - 3?6:07.9 in'4 Yt (C. O. c. ') - 3.5 in Yb (c. q. c. ) = it-5 in Section mod u1us, St = 1133S.5 in_,3 Section mJd:;!us, Ezb = ?44-2." i n•.,� Beta distance frelEtive stiffne== length=.) = eEc :: IifEs)'`.25 1 - 7.2 ft Dj—=a T ON LOADINGS UNIFORM LOADS WIG USING CODE ALLOWED LIVE LOAD REDUCTION (p�--f:) DL LL Roof 19 1E end Floor 15 40 Exterior skin weight (In the long dir. ) = 200 plf _ Exterior skin weight (In the short dir. :) 300 plf Lane Direction Short Direction (Exterior) (Interior) (Exterior) (Interior ) TRIBUTARY WIDTHS - FT, C),i)Q Crd Floor 0.00 0,00 nd Floor 1ti.,010 t_._I[1 (),()fl (1[1 TOTAL BEAM LQAn-I"'SS (inc1udinq beam s;nl;f-weieht7 - PLF c'2J 15 1 DL only ��' 150 DL + LL -F 2r.� 50 525 -_. 1�_ NUMBER OF BEAMS: � 1 WEIGHTED AVERAGES - DL+LL (PLF) Average of all exterior and interior beams = /55 plf Average of all exterior beams only = 1128 -lf Average of interior beams only = 150 plf Use slab perimeter loadinq p = 12.50 ❑lf :for flefure and shear design only) �•x�;�a�����c������>����a��:��1���������a::�i����-x Y��a���x��:�>r�a����-���-��a�a���>Ea-a����������� R.aS,UL-r S OF= GLAD ANALNf S I S v #SG I L I=:�_-A R I N0 S-r R 1—=CS S TFE3 11` VI=s-I- I GAT I ONS-X--)f- (The average Hearing stresses below are conservatively based on loads carried by the rectanQular beams coi_joled with effective slab OF '?kW wi deg DL ONLY = 300 psf DL + LL = 438 psf Soil pressure safety factor = 4. 1 -K--X--W F=L1=XURAL STR T-7SSF—=S I i�l EEST I GAT I C]NS -K Tensile stresses are considered negative in sicin conventions. Allowable tensile stress = S:•.SnR({' r.l .300 k:si r_ Allowable comoressi ve �-tress i }:-�i 1., +fie - F,veY'c.aE' c'_'Ir:�reSelVe stre=_S at e4ge ;�'f '�._t�id:np Avers-ee cwm�ree.sive strE?ss at di�±anc= Beta from Edge f b_{ilding = ��,i�8� Averaae compre=-live stress at center of building Minimum number of strands required = 8.22 to .--overcome subgrade friction drag and also reach 5V p=-i minimum. residual compressive _tresses Total number cif strands prc-vided = 10 at average c. q,s. = 2.50 in. from top of slab Moment analvsis: Calculated positive moment induced by expected maximum settlement ft-k:ips/ft Too compressive stress 0. 149 k:ai E+'c.ttom tensile stress = -.243 k:_i In the short direction Prestress summarv: Averace ccgDre=_live strp=_s a.t edge -f buildin❑ 0.(190 Aver%1'D_-' C= I '.' G41Ve Stress at distance BE fYCR] =-JQe Cf b1_li in '4 }::51 Avera.pe comore-Sive T-tresE at enter of build1no = 0-0 7 3 }:Si Minimum number of strands renuired 10.1-15 to ov?rcome subgrad-° friction drag and also reach 50 psi minimum residual. comr'reEsive st'r eEses s . _ ) in. from Tctal number ,f strand c y a. S top of slab Moment analysis: Calculated positive moment induced by expected maximum settlement 1.47 ft--kips/ft Top compressive stress - 0. 1,34 }:=-i Bottom tensile stre5s - .295 k:si -X -X--X- SHF-7AR S-FR€SSErS ANID D I T="]--- RE:N-F I AL -X--X--K- -X -X--X- SLAD DHT=LE C-T I ON I NVEES-F I OA-F I SNS �-1-c--X In the long direction . Allowable she-ar stress = 1.5xSQR(f' c) - 0.075 },si Allowable differential deflection =(FxBeta or L)/800= 0.63 in Actual shear stress ind�tced by expected maximum settlement = -1j.013 ksi Expected differential deflection 0.20 in in the short direction Allowable Shear strews = 1.5xE9R(f' c) 0.075 }!:si Allowable differential deflectic-n =CSxBeta or L)/,Sr t= 0-5'J in Actual shear stress induced by exaec.ted maximum settlement 0-013 }.si Expected differential deflection 0.22 in - `F'G�T --TEt�dG I �7�E•D �:L�e�� --Q�i —C'F;r4�E L]E� I Design by: D. J. Enaineerina (714)-362-54-25 PAGE 17690 San Vicente _—— Fountain Valley. California 9'2708 at 1. Structural design of slab is based on recommendations by 'Design and Construction !--,f Post-Tensioned Slabs on Ground' . 1?86 Edition, r<ublished by the Past-Tensionina Institute and 1991 U.D.C. '? This computer Proaram covers a design procedure for the design of slab—n- ground foundations to resist the effects of e Dansive sails in accordance with Chapter 29 of the Uniform Buildinq Cade. Use of this Drogram shall be limited to buildings three stories or less_s in height in which gravity leads are transmitted to the foundation primarily by means of bearing walls constructed of masonry,wood or steel studs, and with or without masonry veneer. ##•1F iF•!F#iF#iE#]E�F iF�F•1F lt 1F 3F•1F�F�F##�.`#iF jF�E#it 1E iE�E•lE•IF iF-k�F•1F iF•iF lr#j(••k�F Y-aE####T iF#•IF iF�F#It Yc iE�F iF#•k-ii k�i•1F•lE•1F�E-1k iF iF# Project Name : STONEGREST 4 (PLAN ) Project Location : TEMECULA D. J. Engineering .Job Number : 93736 Design date 7-13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Sail Report By : GEOSOILS Soil Report Number : 1156-SD Soil Report Date : G-4-90 }-1F•li•-1F-lE••k#•1F#-k##iE•1F•Yr-k•lk#iF•1F#•iF•li•!F#jF iF-lE•1F iF if 1F1F##•1F 1f-1Flh)f-iE•lE•1F iF 1F iEi'r 1F�--Yr iF•k•F:•k•it•1r 1F jF•1F#�F####•k•k-1�-#iE jF#�•]r#iF1F E PANSS I E ES I L DES I ON PARAMETERS = ATTERBERG LIMIT: PI (Plasticity Index)= Edqe moisture variation distance: Em (Center Lift Condition)= 5. ft Em ( Edqe Lift Condition:) = 2.5 ft Estimated differential movement: Ym (Center Lift Condition)= 1. 15 in Ym ( Edge Lift Condition)= ..ZS in Allowable sail bearinq pressure = 2000 psf Slab-subgrade friction coefficient = .75 Sail modulus of elasticity Es (assumed if not provided; 11')t)0 psi CONCRETE I?ES I ON ]?ATE+ Concrete 28 days strength f' c = 25OU psi Concrete elastic modulus E 57xS0R(f' c7 = 2850 ksi Concrete tree❑ modulus Ec 0.5E = 1425 k:si FOUNDATION SIZE: FC<<l_indatior•i Plan aeometry = 51 ft 1cIna -79 ft wide Glob thickness 5 inches Slab surface area 1389 50 ft Average found;:tion overall thickness r,.5 �iChev PAGE V& STIFFENING BEAM SIZES: In the long direction: Exterior Beams: 2 beams @ 1-2.00 in. wide x 18.00 in. deep (Incl. slab) Interior Beams: 1 beams r 12.O0 in. wide x 12.00 in. deep ".Incl. slab) (Average beam =.pacing = 19.5 ft. ) In the short direction: Exterior Beams: 2 beams G 12.00 in. wide x JS.on in. deep (Incl. slab) Interior Beams: 2 beams @ 12.00 in. wide x 12'.C)=) in. deer (Incl. slab) (Average beam snRcin❑ = 1.7.0 ft. ) 7--wire 1/2 in. dia. stress-relieved strands ccinformin❑ to ASTM-416 Tendon strength Fou = 370 k:si Cross-sectional area Aps 0. 153 Fa.in Modulus of elasticity Sos 28,500.000 psi Maximum jacking farce (to overcame friction) = O.BFpu x Aps = 33 kips Maximum anchor farce (to account for seatlnq loss.) = 0.7Fou x Aps = 2s3.8 gips Maximum effective force (to account for total prestress lasses) O.GFp)_1 x Aps = I124.8 kips In the long direction; 10 provided slab strands at c. a.s. _ 2.50 in. from top of sIlab 0 provided beam strands at c. q.s. = 0.00 in. from top , f lab (Average strand spacing = 4.3 ft. o. c. ) In the short direction: 13 provided slab strands at c. a.s. _ 2.50 in. from trap of slab 0 provided beam strands at c.❑.s. = 0.00 in. from top ��f slab. (Averaoe strand spacin4 = 4. ' ft. o. c. ) TOTAL STRAND QUANTITY = 1063.0 LF 558. 1 LBS _X__X_ E:L.AF1 �E:'+C -rICEN PFZORIE=RTIES3 -X- In the long direction: Cross-sectional area - 2736.0 in-'2 Moment of inertia - 33898.7 .in'4 Yt (c.q. c. ) - 3.7 in Yb (c. a. c. ) 12.3 in Section modulus! St 9135.8 in'2 Section mcid)_)lus, Sb 2758.4 iW'3 Beta distance (relative stiffness length=) = (E-c x I/Es)1. 'S/11. 6.'? ft In the short direction: Cross-sectional area = 3540.0 in"^ Moment of inertia 38661.5 iW'4 Yt (c. ❑. c. ) 3.G in Yb (c. q. c. ) 11.4 in Section modulus. St 10305.4 in`2 Section modulus, Sib 3384.8 in'''3 Beta distance (relative stiffness. lencthe) = �_Fc x I;'E=__)-%2:5/1'2 - 7.2 ft FACE (� UNIFORM LOADS W/O USING CODE ALLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 1'D 1G end Floor 15 40 Exterior skin weight (In the long dir. ) = 300 Of Exterior s1::in weight (In the short dir. ) = 300 pif Long Direction Short Direction (Exterior) (Interior) (Exterior) (Interior) TRIBUTARY WIDTHS - FT: Roof 13.00 0.00 C).N') C).nc) 3rd Floor t .00 ( .00 0.00 0.c-M and Floor 13.00 0.00 0.00 0.i70 TOTAL BEAM L❑ADINCS (including beam self-weia_ht) - PLF DL only 1367 150 525 150 DL + LL 16'35 150 525 150 NUMBER OF BEAMS: 1 WEIGHTED AVERAGES - DL+LL (PLF) Average of all exterior and interior beams = 774 plf Average of all exterior beams only = 1215 elf Average of interior beams only : 150 plf Use slab Perimeter loadinc) n = 1250 pif (for flexure and shear design only) Rl—=SUL-FS S1" SLA€3 ANAL_YS I S = —x ASS I L 1T74l=fie rR I NC3 S-r 1Z1=SSE1 S I NVLS—r I g of\js- --x- (The average bearing stresses below are conservatively based on loads carried by the rectanqular beams ccUDIed with effecI-ire slab OF 2XW wi de) DL ONLY = 294 psf DL + LL � 474 psf Soil preEsure safety faster = 4.2 FLE!XUR A L STR1—=SSIwS I Nv17=S-r I SAT I oNs �F#� Tensile stresses are considered negative in sign conventions Allowable tensile stress = FxSQR(f, c) _ -.300 k:si Allowable comQre==-.ive stress = i�.45;;f' c � 1. 125 k:si PAGE QUA In the long direction Prestress summary: Average compressive stress at edge of building = 0.091 k_=_.i Averaae compressive stress at distance Beta from edge of building = 0.084 Psi Average compressive stress at center of building = 0.060 Psi Minimum number of strands required = 9.01 to overcome subgrade friction drag and also reach. 50 psi minimum residual compressive =.tresses Total number of strands provided = 10 at average c. q.s. = 2.50 in. from too of slab Moment analysis: Calculated positive moment induced by EDGE LIFT - 1.00 ft-kip /ft Too compressive stress _ 0. 144 ksi Bottom tensile stress = -. 163 ksi Calculated negative moment induced by CENTER LIFT = 5. 15 ft--k:ips/ft Top tensile stress = -. 171 Psi Bottom compressive stress = 0.361 Psi In the short direction Prestress summary: Average compressive stress at edge of building - 0.091 ksi Average compressive stress at distance Beta from edge of building = 0.085 ksi Average compressive stress at center of building = 0.074 Psi Minimum number of strands required = 9.0 to overcome subprade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 13 at average c. g.s. = 2.50 in. from top of slab - Moment analysis: Calculated positive moment induced by EDGE LIFT = 0.96 ft-k:ips/ft Too compressive stress = 0. 154 Psi Bottom tensile stress = -. 182 ksi Calculated negative moment induced by CENTER LIFT = 5.43 ft-kips/ft Top tensile stress- = -.208 ksi Bottom Compressive stress = 0.972 Psi 1,4015 0H17.INFt W s F''I-S,S1-Q ANIV 3 13 I TO TO I-FtI-rqT I 1%L- 4v4v-4x- S L-1%13 13lw1=L-I=coir 10P4 I tAVKS i % c3I%T jr c3r4E3 4 4 In the long direction Allowable shear stress = 1.5xSQR(f} c) = 0.075 Psi Allowable differential deflection at CENTER LIFT=(GxDeta or L)/360= 1.39 in Allowable differential deflection at EDGE LIFT=(GxBeta or L)/800= 0.63 in Actual shear stress induced by CENTER LIFT = -•0.046 Psi Exoexted differential deflection at CENTER LIFT = 1.32 in Actual shear stress induced by EDGE LIFT = 10.01E ksi Exoected differential deflection at EDGE LIFT = 0.21 in In the short direction : Allowable shear stress == 1.5xSQR(f' & = 0.075 ._-i Allowable differential deflecti=_n at CENTER LIFT=(C•xDeta or L) /360= 1.30 in Allowable differential deflection at EDGE LIFT=(Gxbeta or L)/800= 0.5? in Actual shear stress induced by CENTER LIFT = -0.043 Psi ExoeXted differential deflection at CENTER LIFT - 1. 17 in Actual shear stress induced by EDGE LIFT = -0-014 Psi rxcected differentia'_ deflection at EDGE LIFT - 0. 13 in I F OS-r —T]Eht S I LINE D s t_AP --ON —GRADE: Dos I Grit CAt_CULA-rICNC Design by: D. J. Engineering (710 963-5425 PAGE 17690 San Vicente Fountain Valley, California 92709 1. Structural design of slab is based on recommendations by 'Design and Construction of Post-Tensioned Slabs on Ground, , 1996 Edition, published by the Past-Tensioninq Institute and 19?1 U.B.C. 2. This comuuter orwaram covers a desi'an orocedure for the deli an of slab-on- around foundations to resist the effects of expansive soils in accordance with Chapter 29 of the Uniform Buildinq Code. Use of this prnar-am shall be limited to buildings three stories or less in height in which', _gravity loads are transmitted to the foundation primarily by means of bearing walls constructed of masonry,wood or steel stud5, and with or without masonry veneer. 'k'1$-k#•IE•1FiF#•k�"1F'JF�F####•k7r#•}c•�ycyFjC�t�r#•-iF}3F#}1Fk#{�kiF�EiE?F#=f•Y#####x#iF•1F#•iE##•1F###•l?############�E Project Name : STONECREST 4 (PLAN 2) Project Location : TEMECULA D.J. Engineering_ Job Number . 93736 Design date : 7-13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By : GEO5OILS Soil Report Number : 1156-SD Soil Report Date : 6-4-90 C0P1 Fa FRE=CC I W LL 1--= SU I t_ D1—=,c3 I Ct14 PA RAMEE-FE_'Fes`.__►- : Expected may:. differential settlement - .75 in Allowable soil bearing pressure = 2000 Psf Slab-5ubgrade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided) = 1000 Pei �:lk#•k#�F•}E##########•3F#####3F##1F1(•1FjF�F9F1F�F#1F#Yc�f-'�'YrjF#�FF,t#•'r:##?�•DF•}:##�F###fE•}=#c#i[•}`######•1E•if#iF#�F 104545 C70P4C1F W1F1= 010 I Cr+t WNTA 4.4y4x- Concrete 28 days strength f' c = 2500 qsi Concrete elastic modulus E = 57xSQR(f' & = 2850 k:si Concrete creep modulus Ec = 0.5E = 1425 k:si FOUNDATION SIZE: Foundation plan geometry = 51 ft long x 29 ft wide Slab thickness = a inches Slab surface area = 1939 sa. ft Average foundation overall thickness E. inches PAGE JL'A STIFFENING BEA", SIZES: In the long direction: E:-;terior Beams: 2 beams @ 12.00 in. wide % 18.00 in. deep fIncl. --lab) Interior Beams: 1 beams Cd 12.00 in. wide x 1 :.00 in. deep (Intl. slab) (Average beam sDacinq = 19.5 ft. ) In the short direction: Exterior Beams: beams @ 1 '.00 in. wide 18.00 in. deep (Intl. slab) Interior Beams: 21 beams @ 12..0) in. wide x 12.00 in. deep "T ncl. slab) (Averaae beam Spacinq = 17.0 ft. ) 7-wire 1/2' in. dia. =tress-relieved strands conforming to ASTM-41E• Tandon strength Fmu = '27ii k:si Cross-sectional area = Aps = 0. 153 sa. in Modulus of elasticity = Eps - 2,'S,500,000 psi Maximum jackina force (to overcome friction) = 0.2Fpu x Ap_• = 1,45 Maximum anther force (to account for seating loss) = 0. Fou Aos = 23.9 kips Maximum effective forte (to account for total prestreEE jos=_es) = 0.8Fpl_l x Aps 24.5 kips In the long direction: 10 provided slab strands at c. a.s. = 2.50 in. from top of ,slab 0 ❑rovided beam strands at c. a.s. = 0.00 in. from top !--�f slab (Average Strand spacing = 4.2'' ft. o. c. ) In the short direction: 13 provided slab strands at c. q.s. = 2.50 in. from top c,f slab 0 provided beam strands at c. q.s. = 0.00 in. from tcD ---�f slab (Average strand spacing = 4.2 ft. o. c.) TGTAL STRAND QUANTITY = 10E3.t=1 LF - 558.1 LBS L ►�: 'EE= I ON P RO PI;FAT I I=13 -X- In the long direction: Crass-sectional area = 2736.0 in'`2 Moment of inertia = 33698.7 in'4 Yt (c. p. c. ) = 3.7 in Yb (c. g. c. ) - 12.3 in Section modulus, St = 9135.8 in''-3 Section modulus, Sb = '?,58.4 in-^3 Beta distance (relative stiffness. lengths) _ (Ec x I/Es)'.25/12 = 6.9 ft In the short direction: Crass-sectional area 3540.0 in-2 s' Moment of .inertia - 38GG1.5 in''`4 Yt (c. a. c. ) = 3.6 in Yb (c.q. c. ) - 11.4 in Section modulus. St ].0805.4 in-3 Section modulus, Eb - 3384.8 in^3 Beta distance (relative stiffness lengths) - fEc x .2 ft PAGE MA& In the lone direction . Prestress __mma.r:: A`:erage com reE ve stress at edge of building _ 0.031 ksi Average compressive stress at distance Beta from edge of building = 0.004 ksi - - Average compressive stress at center of buildine = 0.068 ksi Minimum number of strands required = 9.01 to overcome subar'ade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 10 at average c. g.s. 2.50 in. from too of slab - Moment analysis: Calculated positive moment induced by expected minimum settlement = 1.45 ft-kips/ft Too compressive stress 0. 1E7 ksi Bottom tensile stress - .260 ksi In the short direction Prestress summary: . Average compressive stress at edge of building 0.091 ksi Averape compressive stress at distance Beta from edge of building 0.085 ksi - - Average compressive strews at center of building - 0.074 ksi Minimum number of strands required = 9.63 to overcame subarade friction drag and also reach 50 psi Minimum residual compressive stresses -. Total number of strands provided v 13 at average c.g.s. _ 2.50 in. from top of slab Moment analysis: Calculated positive moment induced by expected maximum settlement . 1.58 ft-E:ips/ft Top compressive stress - 0. 199 ksi Bottom tensile stress = -.294 ksi as StHE-:A R SIF R E7S I=—S AWD 13 I IFF&FRRhIT I 4%L 454r4 4544W SLIN10 IDE=0L]ESTI0V4 Ihl V WSTIC3fii,TI0540 444 ac_- In the lung direction Allowable shear stress = 1.5xSOR(f' c) = 0.075 ksi Allowable differential deflection =(ExBeta or WHO 0.E3 in Actual shear stress induced by expected maximum settlement = -0.013 ksi Expected differential deflection = 0.20 in In the short direction Allowable shear stress = 1.5xSQR(f' c) 0.075 ksi Allowable differential deflection =(ExBeta or L)/800= 0.59 in Actual shear stress induced by expected maximum settlement -0.014 ksi Expected differential deflection 0.22 in 7NED E3 L.Ar- - ON —G R A D H DES ._ GN CALCULA7IONIS Design by: D. J. Enaineerinp (714)962-5425 PAGE (-7A 17690 San Vicente Fountain Valley, California 92709 _X__w_4E-_XDC-2s dLQn CY_ a_ t-(—_ ir- i 'EqL -W-X--X--K- 1. Structural design of s•.lsb is based on recommendations by 'Design and rc,nstruct'ion cif Post-Tsnsiconed Slabs ,_+n Ground? , 15E+6 Edition, Published by the Post--Tensionina Inwtitlte and 1'391 �. This _,-_-mQuter ❑rooram covers a design Rrocedure fc+r the design cif tsiab-on` ground fo_tndatictns to resist the effects of e Dansive soils in accordance with Chanter 1-3 of the Uniform Buildinq Cade. Use of th; s Dr,_-+aram shall be limited to buildings three stories or less in heiglht in which: nravity loads are transmitted to the foundation ❑ri.marily by means of b=arinq walls constructed of ITI%�Sc.nry,wclod clr steel studs, and with or without masonry veneE'r. #•}�##iF�FiF•k•1FiE#jE#1F•1F�[••k•X•+:•i�?�•k#?F#•3F#'r#�FaF#t�•�cjF 1F Y.-•�•k•3F1r##�i•#�E##jF#3E#�F#jE�F�FjF#yc#jF##'k•�•;�#�E###��E�F:F Project Name STONECREST 4 (PLAIN 3) Project Location : TEMECULA D. J. Enaineerinp ,lob Number '3373E Design date 7--13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By : GEOSOILS Soil Reoort Number : 1156—SD Soil ReDrrt Date 6-4-90 #••k�••a•#•Yr•Yr iF'�F•1F it•lE##iF•i�••lF•1F iF-3F##�F•lF••1F•1F�E16•Yr�F�E•1F•1F#•]F 1F 3e1F#•1F iF 1F•lE ih•1F if•#•iF•1�•�••A�•�iE#3••k##�F•1f••3F#ia•-1F•k;•1i-###.•iF•1F#'k•1F�C-�f•1F ATT RBERG LIMIT: PI (Plasticity Index) = Edge moisture variation distance: Em (Center Lift Conditi+_+n)= 5.2 ft Em ( Edoe Lift Condition)= 2.3 ft Estimated differential movement: 'rm (Center Lift Condition) = 1. 15 in Ym ( Edo-- Lift Cc,ndition) = .26 in Allowable soil bearinq pressure = 2000 ❑sf Slab-subarade friction coefficient = .75 Sail mQd111L1s Of last'city Es "easumad if not ❑rc+v'-ded 1 z _1'_i'-_I pKi •1t�riF Y•iF-1r•##i;k•k'�•Y�4�###•1�•1F•ki••iw##•lE•lE'k#ji k#�F•1F•k'r'�••if••1F•iE•k•iF#x-�1F�E k'e••k#r#�E4••lt�r#•k#•k�i ••��e�F•1F�F•)••Yc3r•1F•iF#•k•Y•# iE CiC71I�iC RITE UEC CNN! I A TA Concrete 28 days strength f p=_i ,.E Concrete elastic moduli-IsE - r 57 r,aG7R(f' c) _ 235;) k:si Concrete creec. modulus Ec = 0-5E = 1425 I;=i KUNIDATION' SIZE: Foundation plan geometry 5G fit long x 40 ft wide Slab thicl::nes.s = u inches Slab surface area = 2240 sa. ft Average foundation overall rhi'_:iness - 6.5 inches STIFFENING BEAM SIZES: PAGE In the long direction: Exterior Beams: 2` beams @ 1 . .00 in. wide x 18.00 in. deep (Incl. slab) 00 in. wide x 1'2-00 in. deep (Incl. slab? Interior Beams: I beams @ I (Average beam _macinq = 20.0 ft. In the short direction: Exterior Beams; 2 beams Cc! 12,00 in. wide x 12-00 in. deep (Incl. slab) Interior Deams; '2' beams @ 12.00 in. wide x 1.2'.00 in. deer) (InCl. slab) (Average bear, E p a 4 n Q 12.7 ft. ' X7_1K_ FS 7-wire 1/2 in. dia. stress-relieved strands conforming tc-, ASTM-41C, Tendon strength FQu k5i CrOss-sectional rims 0. 153 sa.in Modulus of elastic-itv Ems = 23.' 500'.000 psi J Maximum acl--.-inq force (to overcome frictic�n) C.BFbu x Aps Maximum anchor force (tc, account for seating- loss? = 0.7Fpu x Aps 28.9 kips MEXiML)M effective force rtC, a,LCCUnt for total Prestress losses) = O.GFpu x Aps z 24.8 kips In the long direction: 10 provided slab strands at c. o.s. = 2.51) in. from top of slab I 0 provided beam strands at c. Q.s. = 0.00 in. from top of slab (Average strand sDacinq = 4.3 ft. o. c. In the short direction: 14 provided slab strands at c. a.s. = 2.50 in. from top of slab 0 provided beam strands at c. a.s. = 0.00 in. from too of slab (Average strand spacing. = 4.2 ft. o. c. ) TOTAL STRAND DUANTITY = 1168.0 LF _X_ L A E7. E7 C'-1F T ON P R 0 PIE—R-F 1 In the long direction: Cros:-s-sectional arse. 2796.0 in'2 Moment of inertia 34109.S i n^4 Yt (C. C. C. ) 3.7 in Yb Cc:. Q. C. ) = 12.3 in Section modulus, St = 9257.5 in'-,:, bectic�n mc-dulus, Sb 2769.7 in'3 Beta distance (relative stiffness lengths) (Ec x I/Es)`.25/12 7.0 ft In the short directic+n- Cross-sectional area 384C).C, in'`: Moment Of inertia 39 S C)"I .9 i n-4 Y-V (C. O. C. ) in Yb (c. q. c. ) in Section modulus, St i133r_.8 in"3 Section modulus, S b 2442.3 in'-,3 Beta distance (relative stiffness lenoths) (Ec y I/Es:)1.2,5/j-_, ft FADE (qA 44 13E=s I C3 VA L C3eh13 I VAC35 UNIFORM LOADS W/O USING CODE ALLOWED LIVE LOAD REDUCTION (psf) . DL LL Roof 113 15 end Floor 15 40 Exterior skin weight (In the long dir. ) = 300 plf Exterior skin weight (In the short dir. ) = 300 plf Lon❑ Direction Shiort Direction (Exterior) 'Interior) 002rior) Qnterior) TRIBUTARY WIDTHS - FT: Roof 12.00 0.00 0.00 0100 Srd Floor 0,00 0.00 0.00 0.00 2nd Floor 13.00 0,00 0.00 0.00 TOTAL BEAM LOADINGS (including beam self-weight) - PLF DL only 967 150 525 150 DL + LL 1E55 150 525 150 NUMBER OF DREAMS. 2 1 2 2 WEIGHTED AVERAGES - DL+LL (PLF) Average of all exterior and interior beams = 774 plf Average of all exterior beams only = 1215 elf. Average of interior beams only = 150 plf Use slab ❑erimeter loading n = 1250 Of (for -flexure and shear design only) FR0C3LJL..TS OTT 0LchE3 4NN1%LYS I E, 45S0 I L 131—=AR I NO STR E:SSES I N VIEESIF I OA-r I 0NS-x-_x (The average bearinn stresses below are conservatively based on loads carried by .the rectangular beams coupled with, effective slab OF 2XW wi de) DL ONLY = 301 psf DL + LL = 492 psf Soil pressure safety factor = 4. 1 # L 11 X LJ ERA L SIF 6R1=SS€S I 0 %WJ=S`F 10 IN IF I C3NEs to4y Tensile stresses are considered negative in sign conventions Allowable tensile stress = GxSDR(f' c) _ -.300 .ksi Allowable corrne=sive stress = 0.45xf' c = 1. 125 k:s.i PAGE W&AA In the long direction , Prestress nummarv: Averaae compressive stress at edge of building - 0.089 ksi Average compressive stress at distance Beta from edge of buildIing = 0.083 ksi Average compressive stress at center of building = 0.064 ksi Minimum number of strands reouired = 8.41 to overcome subgrade friction drag and also reach, 50 psi minimum residual compressive stresses Total number of strands provided = 10 at average c. g.s. = 2.50 in. from top .cif slab Moment analysis, Calculated positive moment induced by EDGE LIFT 1.00 ft-kips/ft Too comore=_.=_.ive stress = 0. 139 ksi Bottum tensile strews = -. 186 ksi Calculated negative moment induced by CENTER LIFT 5.20 ft-k:ips/ft Top tensile stress = -. 182 ksi Bottom comofesslve stress = 0.989 ksi In the short direction Prestress summary: Average compressive stress at edge of building - 0,090 ksi Average compressive stress at distance Beta from edge of building = 0.094 ksi Average compressive stress at center of building = 0.073 ksi Minimum number of strands required = 10.51 to overcome subgrade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands ❑rovided = 14 at average c. u.s. = 2.50 in. from too of slab Moment analysis: Calculated positive moment induced by EDGE LIFT = 0.96 ft-kips/ft Too c�impressive stress = 0. 154 ksi Bottom tensile stress . 196 ksi Calculated negative moment induced by CENTER LIFT = 5.4.8 ft-k_ips/ft Top tensile stress = --.w 8 ksi Bottom compressive stress = 1.061 k:si ,SLIN13 131=VLI=C!IF110P4 INVI=QTIC31%71 I0 P4Q W44 In the lonq direction Allowable shear stress = 1.5x5CR(f' c) _ 0.075 ksi Allowable differential deflection at CENTER LIFT=(GxBeta or L)/360= 1.39 in Allowable differential deflection at EDGE LIFT=(ExBeta or L)/300= 0.63 in Actual shear stress induced by CENTER LIFT = -0.047 ksi. Expected differential deflection at CENTER LIFT = 1.38 in Actual shear stress induced by EDGE LIFT = -0.016 ksi Expected differential deflection at EDGE LIFT T 0.22 in In the short direction : Allowable shear stress = 1.5xSOR(f1c) = 0.075 ksi Allowable differential deflection at CENTER LIFT=(SyBeta or L)iHO= 1.33 in Allowable differential deflection at EDGE LIFT=(GxBeta or L)/300= 0.60 in Actual shear stress induced by CENTER LIFT = -0.045 ksi Exmexted differential deflection at CENTER LIFT = 1.30 in Actual shear stress induced by OFF LIFT - = -0.014 ksi Expected differential deflection at EDGE LIFT = 0,20 in c POST —T�i S l���JF.I I—E—;L_AD —ON —O RADA DIE—S I ON CALCULATIONIS Design by: D. J. Enaineerina ' (714)9E2-5425 PACE 17690 San Vicente Fountain Valley, California 5-'708 D e--ss d` ci r-k C i . t•ee r- J_at -x--3-L' 1. Structural. design of slab is based --,n recommendations by 'Desian and Constructicn of Post-Tens-Joned Slabs on Srcotnd, . 1996 Edition, publistied by the Post-Tensioning Institute and 1991 U.E.C. This computer grogram c!�vErs a de5ipn orocedure fol' file dc' -1 ]I7 c f �.iatJ'cIl- ciround foundatic,ris to resist the effects of ex0an=-ive =oils in accordance with Chapter 2'9 of the Uniform Building Cade. Use of this proarafri shall be limited to buildines three stories or less in heiaht in which Gravity leads are transmitted to the foundation orimlarily by means of bearing wails Constructed of masonry.wood or steel studs. and with or withc-ut mascinry veri=c'r. ###r##ir•1F####•1i•�i••�•Yr#•#•�##iE k-�###•1F####•1F#•k-le•lrk�###a••ih xc.•k•######ii•�i#Y•it##•iF�+F########•Yr#1F•iF### Pro .ject Name STONECREST 4 (PLAN C7 Pro-ject Locaticin : TEMECUL.A D.J. Enaineering Job Number 93736 Design date No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By : CE❑S❑ILS Soil Report Number : 1156-SD Sail Report Date : 6-4-90 COE'''1Pr l`SS IDLl` SO L Dl=—�,...r- ION PARAE' EI-F17RS = Expected max. differential settlement .75 in Allowable sail bearing pressure = 2000 psf Slab-subarade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided) = 1000 psi _X__X__X_ C0NCFRIETF7_ DIES I ON DATA Concrete 29 days strength f' c = 256r, osi Concrete elastic modulus E = 57xBOR(f' c) _ 2550 k:si Concrete creep mcdulus Ec = 0.5E = 1425 ksi Y FOUNDATION SI7E: _Foundati'on plan geometry = 56 ft lona x 40 fit wide Slab thick.n = 5 inches Slab =_.+jrf,.ce area = 2240 sa. ft AveraGe frjundati;-_�n C,verall thickness = 6.5 inch-s PAGE v� STIFFENING BEAM SIZES: In the Iona direction: Exterior Beams: 2 beams C 12.00 in. wide x 18.00 in. deep Wncl. slab) Interior Beams: 1 beams n 12.00 in. wide x 12,00 in. deep (Intl. slab) (Average beam spacing = 20.0 ft. ) In the short direction; Exterior Beams.: 2 beams @ 12.00 in. wide x 1E.00 in. den❑ (Incl. slab) interior Beams; 2 beams @ 12.00 in. wide x 12.00 in. deeo (Intl. slab) (Average beam spacing = 15.7 ft. ) 40WW P!T STPoAPVD DVW I GP4 0fiw`T4% 4&4h-W 7-wire 1/3 in. dia. stress-relieved strands conforming to ASTM-416 Tendon strength Fou _ 270 k;si Crows-sectional area v Aps = 0. 153 so. in Modulus of elasticity = Eps = 29,500,000 psi Maximum jacking force (to overcome friction) = ❑.BFpu x Aps = 33 kips Maximum anchor force (to account for seating less) = 0.7Fpu x Aps = 28.9 kips Maximum effective farce (to account for total prestress losses) = O.Wpu x Aps 34.3 kips In the long direction: 10 provided slab strands at c. q.s. = 2.50 in. from top of slab 0 provided team -strands at c.q.s. r 0.00 in, from too of slab (Avera.ge strand spacing = 4.3 ft. o. c. ) In the short direction: 14 provided slab strands at c. g.s. = 2.50 in. from top of slab 0 provided beam strands at c. q. s. = 0.00 in. from too of slab (Average strand spacing = 4.2 ft. o. c. ) TOTAL STRAND QUANTITY = 1158.0 LF 613.3 LBS L ON11 0FCT 10PA F FR0F'DF IF I inE3 W41- In the long direction; Cry ass.-sectional area - ::79E.0 in" ' Moment of inertia = 34109.8 in"4 Yt (c. a. c. ) = 3.7 in Yb (c. q. c. ) = 12.3 in Section modulus, St = 5257.5 in^3 Section modulus, Sb - 2769.7 in"3 Beta distance (relative stiffness lengths) = (Ec x I/Es)^.25/12 = 7.0 ft In the short direction: Cross-sectional area = 3840.0 in`''2 ��tF;�_ Moment of inertia = 37.9 in"4 Yt (c. a. c. ) 3.5 in Yb (c. g. c. ) - 11.5 in Section modulus. St = 11335.E in"3 Section modulus, Sb - 3442.3 in^3 Beta distance (relative stiffness. lenath,$) - (Ec x I/Es)".25/12 - 7.2 ft PAOE DES 10t1,! L SAD I P4OE3 UNIFORM LOAD; W/O L1SIr,;G CODE r,LLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 1'? 1El end Floor 15 40 - -- E•;ter i���r skin weight (In the long dir. ) - .�,7�_� elf Exterior skin weiah-t (In the short dir. ) 200 Of Lon❑ Direction Short Direction (E>:terior) (Interior) (Exterior) (Interior) TRIBUTARY WIDTHS - FT: Roof 1.3.00 0.00 0.00 0.00 3 r d F1oor p,00 0.rif,; {r;00 n.C'.C) r:nd Floor 13.00 CI,00 0,00 0.�_10 TOTAL BEAM LOADINSS (including beam self-weight) - PLF DL only _i67 150 525 150 DL + LL 1695 150 525 150 NUMBER OF BEAMS: � 1 WEIGHTED AVERAGES -- DL+LL (PLF) AveraQe 'Df all e_'zteri_+r and interior beams - 755 elf Average cif all exterior beams only = 1138 Of Average of interior beams only = 150 elf Use slab perimeter loading p = 1250 plf (for flexure and shear design only) R IEE S- U L -r S C3 T- S L A E9 A t'-J A L_ Y E3-F S 7{SCE I L E3EAR I N 0 STR-SSLS I hJVEE' —F I OA-r I QNS-x x- (The averaae bearing stresses below are conservatively based on 1-oads carried by the rectanqular beams coupled with effective slab OF 2XW wi de) DL ONLY = 301 ps.f DL + LL = 492 psf Soil pressure safety factor 4. 1 I=J_nXURAL STRESSES INVE' STISATIONr,__► c--x--x- Tensile stresses are considered negative in Sian conventions Allowable tensile _stress = 6x'JQR(f' c) -.30:_) ksi Allowable compressive stress = 0.45xf' c = 1. 125 ksi In the loom direction . Pre=.tress Eam arv: Averaas EomorES i Ve =tree Et edCle Of Wilding ng = 0. 063 Wi Averac e _c moreW ve stress at distance Fete from edge of building = WE', ksi Average compressive stress at center of building = 0.0E4 ksi Minimum number of strands reouired = 6.41 to Overcome suborady friction drag and also reach. 50 psi minimum residual compressive stresses Total number of strands provided = 10 at average 'c. g.s. = 2.50 in. from top of slab Moment analysis: Calculated positive moment induced by exoected maximum settlement = 1.25 ft-kips/ft Top compressive stress = 0. 157 k:=_i Bottom tensile stre=_s = -.247 ksi In the snort direction Prestress summary: Average compressive stress at edge of building = 0.0 0 ks.i Average comryressi ve stress at distance !yeta from edge of building = 0.094 ksi Average comores.=.ive stress at center of building = 0.073 ksi Minimum number of strands required = 1004 to overcome subgrade friction drag and also rea=h 50 psi minimum residual compressive stresses Total number of strands provided = .._14 at average c. g.s. = 2.50 in. from trip of slab Moment analysis: Calculated positive moment induced by e.:aected maximum settlement = 1.47 ft-k:ips/ft Top compressive stress - 0. 194 ksi Bottom tensile stress = -.294 ksi -X--X- !E3HF7Ar, ST RHsSI—=S AN 7D I T=FF7-FZE:hlT 3 A L -x--x--3*- a 13LAFE D3E1=LEC-r 1 ON T NVIEST I OAT I ONS -X- In the long direction Allowable shear stress = 1.500RU10 0.075 ksi Allowable differential deflection =(&Beta or WHO 0.62 in Actual shear stress induced by expected maximum settlement = �0;613 ksi Expected differential deflection = 0.20 in In the short direction Allowable shear stress = 1.5xSl1R(f' c) = 0.075 ksi Allowable differential deflection =(ExBeta or L)/300= 0.60 in Actual shear stress induced by expected maximum settlement = -0.013 ksi Rmected differential deflection = 0.22 in l 0(0 P 1 C��STONE TRUSS COMPANY STONECREST 4 VAILWOOD TEMECULA PLAN 3 _ r r A STONE TRUSS COMPANY STONE TRUSS CO. CERTIFIED INSPECTION s ICBO EVALUATION SERVICE INC. AA-583 IN STRICT ACCORDANCE V1/ITH U BC 25 - 17 PREFABRICATED 507)ONES ROAD • OCEANSIDE, CALIFORNIA 92054 + (619)967-6171 + FAX(619)967-6178 CAU5A090 92079027cn �IIIIIINIIINNIIgNIIINIIIIII:I O O L D i E n f7 I Ch I �' � I W m m Ir 0 0 a (17 m t/7 .~., Z �o Ln w a a a r m m m a O U G I- U W _ . ILJ LL LL LL LL O cc U o u 0. m a a m < cu 1n M0OOOU7 a �l I • N v J)J I In I- � �v-+ gym ., N 7 U LO LLP� _ z .. a o o " L) n n � c7 a o to m I In uj ccw U U U o � a cli ru z w - a ►- m a U) a a 0 x o a w x ti u7 1n U z UV ILO m C W Ccn IM L U 0 N m z d (!• M ry tZ N O t7 to C W M a a 2c 2 � _ o U a _ o z J J tn to W m .r 4 wy u1 04��� Na w� cu D O O �tA •� I1/�//ry 0 0 U 3 $ e c I S 6 to U .... `' Y 4'~ n 1�� Q I I W W41 a X X Q zm 1t7 1 1 �`¢ U, W �� �owLLa: W -qWm m 0. U1- d tU cu 'L =maWtc= �9 _ ��y:J t'tn m U) W 4 dJ QJ 0. a y Vy U y� LLI J LU .r ziw H FM 7 2 y p~2 N `gpw' w OF •• Q y 4 Gp K Z 4 z V =0 Lr) O �m�S ��:9v ►•I "4 txl r O I tl Y � o�o�aa W" N W NF ztT zU QQ ¢o cuCu u ' I j U� a !912 r S cm U)J P '� �" U') k a gm'"a��Aeg�� 2t1 W If) U7 rh H W _1 - K) �, y Om �� O wU H~ qh O �* j �W� � £ a acr zm X IV Fo ggy W w w F I—Lu O LL ITj X i' z.�"Y: e st�g �11kUI Ntn 7 7C2 wm oa i CCam"Yioa�4 !O O a`vgYo �� . Q Q LL. �t7 Lu 0 �" EWn 6-4 p ° .ti JJ I Fm ¢\ a; 1 1 '7- U) LIDO * o z .mi"M x - Z" tO `L '� W� �� �I W oaaaaaaa a aaaaa a ' xxx a tt rn I CU[YtU ..I U) a CL a a [Ar U7DOn mW Wtn I 0 * �YQ 0. ad U JQ U Wn+ CL O CL I- aaaaa ap JW ccAu At aaaaaaaaaa CAUSR090 92079023 Il �l O (V m llmllilllll a p In No c v 1 E In m p 1 N °I cn 'Ef. I 1 aC74 . 1 r+ o C) �z o o -- o �N w Lu �� 'fy� a J . ry Q W N J _� W w L7 W W mtl12 Z y ? c4� m w C C U.0 r fmu a C►J•Ip W U q 'I LL LL L. IL 4 tL 4 m tl O En In In In V a W Z O� h'r U 0. Q. Q. C o Ln w 4 m a O m iK 5 o v Lt7 � OOo0to o 1 Lo m ru _ U lD V Lo Ln •+ Q J o N x t= J to t17 F- rl rl (ry .. a: _ tt] m O` .4 z Q .ti � 7 U Ln m to Zxro w V' j crz oa _ 47 J J J J LL n o O i 4 Z tm7 r.r x ., .� ca a w to r Q 4 of o U 2 zP M ¢ C17 'cc c) c) L) o a s � r+ r+ a tr a u LL L` ��u.1 am m Lo o — a m La o I-4.■w W w w J z S W m l0 be L) m 4 m M / tC +) 0 m m m oWtgflF- W u o N N C] U m G Q 4 N 0 o Q ccama to '� Q X a m M L-to a w _ _ CU o I z Y 3IIN d :1 ` G Q [b 0l v Lri n] x X 1 ee J ¢ z da� a m `� G m 4 '" o aQiKa4Wo� - a d 0-- �WWr- I.-CD •�-� ca SYoSWo- u g � J J m XW4D Ww ¢ F-H g =o29ty m J W W SFi�aS W'" c x x -� ztn z W to rJ a oa Q m �� x as m in CL W N m tEA" .n L LJ x N ►Na z N�oi{ 4a 1•-I � IY'" "� o � dC LU r 2�S�o-. �Ww u CIO to Q v �mwaa���s Lo H Hx H N O a o g c 3 O Cc m na W En r N � aaa mo u to m r=god F•1 O O tj K = as r-w o aO cn LL L) o Q o L` Wi��sy�y1' 8� � ►z-I W J ►-I InX 0 0 a m u aW( 0 * !§1, -i E��.na� Z J¢ z m 1 - kg- 0 .�..r I-LL! ou. w �aFV7 NN L) Z W W Z s I O a w c a a ►'1 C[ Z I 4 I U.. w ac R � o ap da. m7W" U w � - g LL cn =`= J J I r 0] ¢� U -• 1° H I I Z to wo 4 * o w s "' 1 r QQQ 1X- ~ HU.L6 M W m f� o uo S yZJ Q Q Q Q a 000 QQ W0 wo W (u � Z QQQQQ NNN . W a CL cn H Q amo ' m DOW " cc QR I- v � w sLU r QQQQQa Q cnP- ua QQQQQQQQQQm a a a ru CAUSF1090 92079022 �IINIIIINIIHIII�IIIII�IIII� a 4 N fm 0 O e a 0 L E Ru p 0 Lu Ln m i I Er OLDQ 1 " c z C7Up a (7 ¢ L'V ER * In $ O ami m \�� In A�d a �CD � " z -i o I o: w 0 ca "i a ~ a �Lnr ,b � � Nanou00. M CJ LL LL L6 LL Q LL:Qm a 4r Oi O w 0 w 0 to I[1 0 wz o� ytit ^_ LO � UU a a LL a to Ut w -ia�o4p m Q I 4 0 Q '�' O O Ul) Lv a .>, Ln.—.wa � ... L6 '� M m Cu to a ID J ONVQ J m W •~ "' rn LL O a z z cu Ln n In in z x H O W y V � Lo ►-c� w r c a J .� J C z r-�-+Qcr L~n w a zm z 0 � _ c La O0Cc J 0 0 U o in m UU-K-K- o �' aw r " a a �/ m ►- o Ln �+ a ix Q La LL w�aw --- a o 0 �.W"w W vi o u m a cc W M6510 N ; UM<WD to Q 0 1 0= rW- L11 X 4 p c- CL LL U W-i J v N Ln U I I x zJJW a .. z U HO~m Qm 0 G W tx 8 7 LJ Q d 0 Ln En s La O O WWI I—La X I.- w q�Ns�� o .'J J m X W Q O W W L o C)iz LL E x x s; �+m itn ZJ a W Wwwzeom'"- '� U V a zm a 0 W � m r e a T 6`` u N �Oy m.�"YjvT 5 W En ` Lr W Zm�w�g_ _ w 0 z � � ¢ ON N L7 "s5�d 'R WJ Q O = Iz.1 " 0 e UH X O z $�'"'�0. 1��3 MW LL ge� H zQ 0 x$$�IIsxi $' i> x Q Ef WQ w y G Y a s$ b W uw W NM r U m4omi � 4"ei '^ P -a01 zU Q dQ LLO [1 CSQI wJ 8�-•' Ltty � .a `vow co4i� i UF- OC m O Q [U cc :�u -cm (n J C X I tp LL 0 Lna u il '.2���3 2 a w .f�7 I g e r W"t W G JL] H~ w 0 $ a as �o z X 3 RD,46 o Unto -] U M Q= g zw LL a I I-'9aG «•LL z 1 a • I cr W d x z c) g UCJlI W Qa ¢ C) LI4`€e :$ a�i co wto t0i m � m w J P X n W JJ Iz N� W4 Q X ) qw � " Nr _ " z" zLU rz I xxx dO mm .x � I I r2� Q � � L Q I cu ru c 1 LJL� d« H ry Ln d ,� Ln MRm of 1--w o a a cc Lr T=9 U Q .J LE Ln Y Q 0 UU W" mo w � � a � � aw- zv jw a 0m 0� arW a a n 0000D00000 CAU5R090 92079020 �Il�ll�llllll�lllllulllll o CDcp O N. L 9 l E U.) C7 m C O N 1 I OC7d 1 �. O �Z Q _ o to N C C4 U O + Ol m C 1.4 1J Q z d ER C a � U N N a m z ���aE t r� a � �+ z � V O O m -W a ydQ N w a C r-� a CL O JJP Z tbi , 4 6 C O C.1 O a -• a.•o r- o a In LL Qom CC NJ Cj w _ 1 N N Ill N W n N w z O �Q 4 lD m U a a a a apa0 a -r0. r 00OOLn m rn J m O J O � `~ V m # (D tT lf7 lf] 4 bL) cn Q¢ [n.-.W d N 1-a n C w v LO r .r, �, • w N O ONx¢ QZCn o m m "" w O 0 O—u• - OOzo 7C a �" Q W 7 -CZ �.-I tr W �..� -,,r F'� Ln X N >- C) O rn m axrQ c►- ►- � � r+ «r►-F-U C7 z a C7I In ao ¢ w V_ m ¢ z O WI O OO ZQJ¢W N «J O O r a = Uz2•• cCd o O a Go N a- UO a N QU -Xm0(n cu�Ow 1L 7 LD a O.m Uwcnd�- cc O O 00N ¢ U 0W r a �- M d 0 oawo zmd�z r `r. ! d e X ir�ccn Ucnaaa uo Q Q i L) o[ S-iJw ...IcaF Z J J adJ NJ¢ O U U M0ccd OZJ¢ En � Wr ¢OOO H S U O O W W n a X 7C .x•.a,x cOn u, LLI 0 W W L -sQio2,Q. $ v Lr) F - X X cuLl En cc Wm^ � ¢= W Zvi ui cn Lu-j 0 W Z 2% ad 1 O ►- tiYg� 4 �J� UI- O 1 ¢ 2 GQ I W �• d � w � Z ~D N [11 'Q N Ya�$Foa X WI-I W •4� �y 2� U vi4o'mYW's o O w (!lI- SW °R �x rn z rn a ca ¢ cr °' L. f+y if l d - wn QO U w .r d En QN Z ui J 0. co Ny' m ►r W e'nw••w`�o.:it i O t H NJ O ¢ m Z,2 ° C z lo L. Cc li co U acc cn-j x O cn a U o 4 'm a'P� ``P W ►Z+W J ►-I J L 3 Q Oa DY Z W w ° g�SA5 Wa W S H r W +, j N 0+�+ Lr) of) RI o * �'�o v_^-�� 2fip ...�rZ .J� ZQ R C7 m p X M N HW O1Oi W ¢ Cc C"x 4 X I fU m Z s+t(►7 (/1 Vi '7 U O O N Y cm Q m W N o W ti I••I ML Z�1 < W P 4'O L 1 j i u u w urea "Y L 1 L F 2 Uum w oo cc w ° Li- C O n7 w CL PW..Q r� Kra•+ mo Oc° o z I I g N w o d UI mD (1J w� U .., w .. + � 0 O0D00000 ¢ cn U ca m °�'O -� "' 1 w Q' 'q J �O w 0 W �- U L�N� I x x x I d Kr rn z d a� to cv M 0 0 0 0 0 NNN Q 0.� a^ •O• a m°v 0 a W Ul L0 �0 m2 W mI �W dz m moL xa Nxx M J¢ U ujuj Q N w" mo Z on000n I- z 0a ow _j E ao W -10C > c ¢ acn a Uti w� 000000000 KL CAUSR090 92079021 �II�I�IIIIIIII��IIIIIIIIII O to O Lti chru LL 6 9 0 i E N R1 I 4 G cn I a LLB (/7 Lmu G�a�ER * cc O " = U N cr ZJ o Uu ¢ N W [j LU o N N O Z j ? chi N w C dtn U 6 w M Cc CU m O U W +-' • ,�4. O I[) N N ILA N r+ cu 0 � m o � �! LD m U a a a a LV O J O W Nry10w * `� I OObC] Ln o (v e �+ 7 Ln y y, Lo Q Ln Ln N N O J J Qlw X mm .+ w p1 r&6 LT ¢ <L Z II"w e- :r C\l I 7 U ui L9 41..rn o H ¢ O�WaW ("a O ¢ C.1' J J J Jd Li Z - O m O I) Q.j I() r J d d 4 N 17 A.4 U _. ,,J�// O O ►U- 0 m O O En m N ¢ U 0 ►. :* �`� / I L7 Z k ro W 0) J: 1:. V b In O N. 0 0 qIn�O v, n o 0 ¢ Lu =c w m W O Z Ir 4 �L)1 U "LA W car IO+i O O W ►Or�QU L 1 r 4 O O U W 0 Pr41 y+t:n .r. U 0 r C O Q C] W w In Q Z t^ X Z a 0 W r /) 7C ox (ti) U 1 1 H Q . err QI J J N m °roe•• Y a$W U U I- o d 0 0 kv Jw cn F U s z a X u $ o O O I-OD J J O N La m U) a-•�n�4xa µY% I 1 m W LU U) 0�.~i� d 4J w .� �. gg� $=-G X X Z J u,..�p w a Zm 44= -j d O U U J o< ro >w r- m a �� 411Uwa Ln .J 411 7 X Q "pis; i w3 S x cu N :p WAcvM m N "8 Y 5 s 5 fn Er LU W c _ mo`7�� S m WJ " O x �� i� tello H H 1 0 P_ Z�c " a s L7 I a: iv :L 3 " HW I o O 4 �3g .gi u Q a .. .� = 40 I r � V11l1 �-I MZ ViC WI,,, +!'ice m to U n4 cam_: UIN-Ia 01. X Xw m Wu� d4 IcI�rIo +I OF gg .y� CPU 2J wa.w.a one I-w OAJ.1 z U 01- :.I UO cc u i - Qyr 4 ciX N.J .•I W Ll++ O Na w�nggso� y 7-a Iu -.1 o cc Lu a5- how W S �r o Q)4) LO to O W Z JM ZLr w++nG X _. O- HW ow MMOU rn CV a ti"o:i�e4 qbaN NN 7 W041 +' InWig' 1=.>cUM LL) oo +1m0w O m MCC" mo I7IG 0W_to W Z:" Ue� a4I� LA ¢� o+=+�adi X X W N *>gaQ � $� e �:mlW aU WIOD u Lr * o`ti� &uy4z I LL N �a �0 .LLwGGw41 I QQ QQ Q QQ uQQQ Uca -"Ie0c Z Wo XXX ¢ nW(D(ic N Z QQQQ y aLUIYN J w pN QLn . m a. Ul Enaaw go rOW 0 o MOD X I T tn o d � iw -i : imxit .v QQQQI` UU LU aL] wGzd QQ Q Q a� zv Jw 'cvao r QQQQQQQQQQ oO Ow .rW J �m c�¢ aN tiro 4)0. � • r i. � r � CAU514090 92079017 �k - �p�lgll����lllll 0 cu Ln R u II ao ao c e7 N¢ LMl 7C� � ¢ a ci l ui U z N a4 LU Ul f d V z -) L) Wuj LT W W �� Li ►- x LLI -aw 0. rn O r #. ¢ O CJ '0Q N N r OY U LLnn cn U. N Ln W O m 0 Ja 0 r 0 c 'n � GGOOLf1 a IC .L�. (a!f - Im LI O 117 LD W O L7 DOZO �•+ a �, •• •, �:J 6L•JL.] `•�" w ^^� LD in to Q Z 0 K � - cn Q 4 M OMM $ / ,� _� .. N N Q4JQW w �- '�; m a WO F UO O p 0 ti LD ID 4 W W N Z �� Cm v1 con 1I v Ln❑ +MIN O :O �: ri =� x 0 cu c ¢�c�N Ln ¢. . O V j cu I e7 CL>-awe"D o w O 0 ^ raaa¢ 0 :r�i ! L° ^ LawLnal- 0 0 ¢0 4Ln4 I � a•- L) N N - n4x r m- e!O P P u m x X aW W L7ao- 4� Ln�M� N :� arc L� C3�T�° 8 " x a n P--"Um N j a ¢ -`sffi' .sM'g M 2 w wow w t r o Aga H 0 CQ. a " j x Q N Cf1 X Z UJin b�^f4 -uogLx w e W F=m w 4 a a Q A 0tn �=�sffie vim` B WJ m Q wr�� d �o LL Cc r•IW 4 tyC f'U O Z$$�:,�i<Sb' %S S 00 0 LL,2 0 .�.� yL7d . � LL-1 L] 4Q LLD W�i7J c Ln OLr z 0�RmLr=M ru a - � WU C p Ln tLu,Wtiz .o Ull- ; a0 LAa 4 LU''L^mVi o fn wQ�Sww a••ZS ZQ ,WJ J p wd la.� � � � Q a+ aid'=qp= J Q 2 Q Z -" O++tn++ i X I SAS 15 6 W 0 aT W `.i rsm fw X eP 1- 1N 0 J LL 47 m f1�L• x Q 1 O rt $�y7 z i z a w a +• ea' c _ Q x _ �, 4 - 49 -p.w-� le .... K I-uii oLL ¢ +' Fade N "b qb N I tl1 Ln 7 a O 0 S. p 0 a 2 x . K w C, : ZZ Oa 0 yx.tiG 0 Qa-a. q�t� L)U= W O W o) wr q+M =IZ, 00 mu) x 0 - LU � $ JJ'L '-arra�' En WO N .4am * —i— X E LZW 0U reD W 4 0) - lv, & �3t c (n )La Ln li Ox L. LLJ � GbGGGGGGGG GGG GO WO w ''xxx a Men -a G v" I NNN JN 4^ .J y Fpglea J G = G tr aZ In - Q. ~ yyrna 4 I Oa N 0 wcma 0 - N 0 ow4 r 0 a � 0 Ow ♦-w 4x -0 �� bwim viC J¢ � GGGG G LJia W«+ a0 WW eU CfbO0 ar- z� .Jw im ::o:°•a GGGGGGGGGG �m ca.�¢ 4tu'ii cO�� s waryL'n CAUSR090 92079018 ullllglllllhll�llll�lllllll 0 0 Cu O r+ 5 9 0 [ CD E Ln rn eyIf Q p I N I cn cn I I I w 0 wLnLn Er. 0m m _ C nl ■ 0) m lr1 LL7 G�HE.ER * W cc z Ca N N Cc rye a U z wU en P. w C 4� .a En 3.-a m w d a r�. .Ln. D U W U o LL LL LL LL Q a [n an aN an "n m O ti U a a 0. 0. [n J a W r �,� anm0o0o [n b MCD X r��3t/ (] v Ul Ln ru ILO — an ¢ n W .. z 1 m 7 U L7 Q "' " ¢ a, z o In ¢ J J J a c " O L:1 rT w J O O tl ' x V W U U U O a 4 In O O Z LLO �v N m a ►- m 0 En [� Qcc n O W O Z CC O OI O O W Q In r ,✓ .1 � LL7 O x0 } a O U z C V W C U ¢ W _� c) 7 Ln L Z S Z Q '� 1 X (x U 0 ►Or Q � U Z [n V Ty 6 O O r G Qm J J a m U m � a I W WW O W W "aR U U J OQ d O �k� ��'v�_E Z u¢4 Q C7 N F i S P X N M d N a C m (r LLJ S K IS = LILJ C N Urn [A1J MNC w C7 .ya �d N�na# �SI U) N C =41 Zi§ ¢ -4LO } CL W UJ m= ti m m L0.1 U "-I +- � m m L A C m � d mwxBN�'ux a W�OGa T+' Uw wCC N i:4 �aNn vew a C%j x �. 4 D N m w v 1 t: �1; ID 0 > L. yr m Aau..eu� Q¢ V1J m pw� .tea O a Ana �n ao-• ., .. fis wa J - � 0 .- In U) O �Y aN W crQ+rm m s8�� �' �1 ■ Lux r• m �w aL� O X In, o * A �gMl��dd>M 4 O JU b fi A U) a X a as .zp ��x ` mom`.. m ""I- I-w O[� X x � +Iw cn Vi n �vvt t� p Q Ctl "' ■ I -mg S J` w¢ Zal .' 0 %.. r U) C ¢ a d 1-1yy W 4�N� •SS ad `�-r 0 r� a T N z�oggN�Fa UUCr U, O aovano0. Cy.4 I W Q^ c LL as mO Oco - da[L W" a-• a m N [n n4:!�!v > JJ I Hm Cry _0.0 aO 5 N L. U I * :4a'Se 't U. Cru Q Cc U P-m �L �� Ww °��w L. 00000000 0� v �NO z xxx a w� w 0 0 0 D 0 l c mnNN e • w 0 w o l tr U) 1Q[•c�m�tmo CUOC Wz q 9 m m+m+ ro ~Y~J O3 O Q L WU) O>16 cO^ W OOw �w ai C; a Qxxz [)Q JQ cvo U.0 WWO > 4'4'41 a 0 0 D 0 0 D Jw Ua >O go JU rm 0 4 in 00O0DD0 000 CL + r CAUS9090 92079019 Nll��llllllllll�lllulllllll a LO (LI cn ILLfu 9 a 0 T E Q m � N G 1 OI rn O I R * ri a m (_, a W w at who � � w2U N Ai •y U V w t7 W J W 161LW ��� N ¢ 0 0 0 O a � r m W I L .�Q,�l by'J F N LL w 0 N Cc N U 0. n a a W r ¢ * mGO00lt1 C 0 N W lfl = 0 CD } fl7 - IN Q W N N z J � � 14 --4 In Iv CC W O In r .-I .� m z cr cc 7 u W W Z a 4 Q-JUUU} z n !� CC wdooOxx CJ - cct9 J J J J LL I"I H J p G U W u 0 0 0 =1 a (no— 00 LL - .. .-I m r ri rn in i i =m z - -. In 1 I I rz M - w� 0 In in oN cn a ru O C ti 1 1 I o- qw cr _ O O cc 11 W I I I 4 W (n X Uh z z I-- X f1J ao 0 uo U i r i i i �O fr] co 1 1 a.W l l l w w a - 1 Z J .J x0 11 1 m O � U U � 1 I I +^- l Q— O r sx o a o D --a pm L, J J uzx T Ca Iu �m��rcyr X X PULr) Wcr ZJ W CUNamCro zm a O u V aOWOOLL 0a 1 m LLrMmz car f• m ~ -Q rr m Lo cr Mm�da a L I a � >- �� w� N z i d Lr) � _ -W o ea X X "' r a;z; � x oo t17 c*J w o XHIFt: o r z a u M I"I Z 1+1 0 «y G L p 0 N Q Q N Q= Z01 3cU Q O O ac cco ca 1 0 0) W J m (r7 Q fLl T E ""•¢�¢ W O ar r-W o Q z U Or N I b Q F b U k d m J Ir m Ln In o yl QCc NJ O En 0.ZCL U Z Inv? .-. O Q .� Wx OF w H ~ rO re J cmWa OD O * �g�Y'"•'� a as "0 z _� rn z��.��YWg2 anvil r~!1 N IWlf W (Wa m N J I Q i g.�= .r Q �=9g � IZ-IW z I a O sU i ,Tzz Q.i P (..�u�. w o0 0 UQ� pWNi aai mo pto o w go w .JIJ Mm •• wa UU I7 I IY W PM 0 .1 *w1 Zz W WLL. L w a�i Q Q Q waQ Q Q uaQ SQq�Q XXXap cc az � LZ �1 r w DOQQO Q W CUrUN JN ate+ M a w 6 ir a 0. Q N O J Z N z cn N �a $� I..I w Q 0r�tn fxul wN w N <n LL QOW �W 4 0 w El) CL n 11 W Q Jcc Q TxZt UIY Jx N Q �UU H qt UU �2 " no w z LLLL. QQQQQa Q ic O0 Ow' Jw -i J � ��a J �m UM aN a Q QQQOQQQQQQ CAUSR090 9207902B IIII I ►' � fU ull�alll l�llnlllllll I p O C11 m ., S L 0 t E Ln cn 4 O 1 I 1.9 o Lr7 Ln Z L7 L) ¢ .� d C 0cc U cc LU W LA ��y� ..* a W L) W J U W t� H of ly In U. ►- x 4 ~ 4 Lr CC J ¢ C3 U L7 d 4 U a J L� U_ LL k 0 a G o U a a m En a 4 w m w � Moo p0l[7 L7 N v -0I .. USQ � v cn n z w a L) a LU U W ►~I Q i 0 _ z O x 0 -:r b Ln ¢ (? J J J � Lay " J O C7 U CC N_ N CC U O _ I m W U U U Q CL o a 0 0 — X # L9 W) 0 CC ui x ru LD (O m L) m L) LL) ►y W d cn J .f _: ¢ cc T N N U z cl - u 4 La O 0 rr U) T� I- 0 T La W .'W I- 7 �i�, � p z z LY [C C=] L•9 J m U CL. t- Ci 0 2 U L) 0 0 �/ LO b G 0 W L) I X X m H WW Ln cc W a mv4�$ o8 d zm cc: w sgPm~a g =< u mU a a Uw LU a En La N m h N P W Cu LU otn (X CL Ln a� ;��� � W .. zil .moo fieF QQ �"I :s`�g�< P 1U+W 11 Imz; �0. wY� zO 0 L' <m��g�:�oo # w0 O La 0- MwZ �ggrw b Cr) 0 W mr vtLLo�z<~ e: U �•d �-�� zCn mo der J .r L7 = g £s6V ��3x CCN S Ln ~ 4 i P o 0� L-W 0 �tw coFa 'zUH bC 01 cr1Y�w"S=LL �p ? ffi AK b L/1 CL wi ID `p u��v o o= u y W e N W d d Cd w.0 �17 m Hyc` g`u ti ~• ~w OIL X L11 4 N� o s w 2 a LA cn Ln 7 a= P g "Cc z10. [h o a UUM Lu - 0 1 z 0-o�.'3 '� ma" mo OW LD a ao~ g0= m cn n e IL�O-tw iU Z" *I LLLL [A WU La � W C QQQ QQ nn QQ rQ rQ� WC XXX "Z QLU LU LU Jn Q Q Q Q Q W a� wFz-I QQonto Mw n Q UCCEm Qcr o � UCE Jm UU © zD QQQCL z ..W Q m Um �n * * 4 QQQQaQQa00 Y' I r. CAU5R090 92079031 Illlnll��llllllllllllll��llill ,� � a ; E n (r1 cu 0 0 I I cnIM O1 I fr'! CC7 �����a * r� w In 0 O w 'yy J CC U 0 w 2 a: to a a y I.- a W C9 W J V W w d U I I a h- r O 7- U W 1i li LL li C ccN w to w n .(� a a W O ¢ a,�! ID m a 0- a IL a .ra ui 10 Lq M00000 O « .aO m m �f a¢ u IV Lr) �" En�-a U. o IMP ID ¢zN J `" Ln .�, '" '" m '' N Cn m OOzo •+ O Z41CDC~.1 I.- w r ; w z !] u Z 0 0 as-a m r°Cv �. O Ln j ¢ I o Ca 0 0 z m.i¢W w Cc l0 (*1 H CC U W M CWUOCfl U w 0 Q .ti IU- m O L!1 xtow M w 0 -a �J ='- < Q a ]C ak v' a cn o r--r w In In O r-, O a o ¢�Utnrn ¢ w Q In fU ,.� L� 0 N N Q0C17R U C7 r a z a a N ', C .' ¢ O v1 rn ¢LD r- m w N N Fc..Q z O x U z N "�+X 2-1 7[ a U 0 O O OWUI I- U) G Q f�") ¢ VOa¢r W _' �' L fx p z M O a ¢ ww JU x 0 O J (-� �l cn U 1 1 r w Q �j v u nzJ¢ D o� LD 0 0 Croon I--CD I c~a uo -0. J .1 rlw o-UiZ W Ww w L!7 w W. r Y Z x o 2 c ya�y W NZ �c�a� v, $F 7C ?C UI w H W !� z J c--ro¢ Q zm p O FYW k� 'co�Ne� m F-•CaF a UF- g CL z lY aaa9� a� u w m< a N ■ (D (U W _° Jg` �oa S 0 Q X ¢ y CDW ���r;� "" � ti1w-r _ m W .. ►z-I Jpo 0 J� C o a c aY� g�rS�t 2 wOg �.��p�� z wa °' m a _ m �gQoY o O W U)I.- � .-c U �4 0 S U w m N ZQl AMU a v [[ (7 o CA ocn J ac C bar es cp Y z Oulu— a uI.- U z a En Q. In cL Lu c m tD m � drab wwW _1 O m 4F u R u`n o W $ Ale ` E s a N m z i z¢ c I M g g I� Q a e 0 Za= <Ns�g4 a as OW o < 0.4 J«a.y H HW O Cr, +, X ae rkakN NN 7 L� W¢ z� g cu O ¢ igmg� g�8 m x a d I z In W 5 9i ¢¢- mo acOD `� w 0 ae =ang-ZE -i 4k I.-m w� M .I, w � CC¢W Mu I-CD -P �k �4 `� �v* . lL l4 CS-1 $as W ati C C{7 ¢ N U� I Oa000000 0 LLJ I xs4cx �` wo 00000 NOUN Cr 0.` Q« CL ORU) LL W L WCA d¢ m rC7 CL caU n, z" aO m ~ 00000a a� zo JW o 00 Ulm aN �� 0. D000000000 Lo CAUSP090 92079029 �IIII�IIIIIIIIIIIIIIIIIII o ru h-� o fu II o r, LL . 9 C O L 6 o rn rQu a p l Ln ICh I .� CC,), I L CL fl U7 1��R * kiy LL 0 O z L-,a d , u 49 w Z J 2 .-I o U w N w a air a s Z ¢ ca4 [t ooUoCL H O T U + LL LL LL LL w o �m �Y U m m a a CL -JO - ��b trl = L� OOON IM LD LD Q Ln u-) N N�4¢ U u7 � .+ .r+ cn .. w m f^*7 cc .. ct N NlWMW LL) U U 2 Z Q L)Z W cc L9 J J J J W LO M W 0 W m 3c m !_I J C O L) O N Z¢J¢W I En Cc Q Cc Q O w r, .ti I p W LJ U m p DIM Lo ZLD►4 W Z I O v NM►W+WN � LL m mUNN m .- L7 WWO M Q a m N f.-O m>m U --� 'l- x N Cc a O ti c z "uwmI d m L7 �J W M N N arMr4Nw Z I_, -- •�. � � C U to cc cc C LI-d W M 1 I 1- W cn-im En I J J V)44W W Q 3 o a n0_im 1� rriLU ry Ca boo g 1 I 1-"z W H WLn L e y u m H4L10 a m O. o 'wYmi�� C6C ID Cn W N =mte Cu O ou) ¢ N zf fi tiH Q W = uI.- o Cu O crZ; g�$F� ~G LA E x Q LA G ::ax. oao 5 w— O X o0 U r Sgm� +� o L) wQ z Y C 13 W qIg zcn ZU ¢ av Lx0 w DO WJ CL U) eo`m�„ze z a� �uL CC w` a �' m m I m Oy �Z-I W J U. J 6 rn ¢ za z in r+.+M �w LL. ¢ m Z7rX"1c� � � ax` g� � N 12W 7 O �= Wa O� O .I Z CL mcr►+ mM QLO .Z 41 w ME W W B`2 n QQLL - w.. La L N "r..� �W JJ I HLflx m LU O U :<¢ u u�m LLI Ll * LL.LL .. W~ 00000000 0 N L)Ca N O w I vav I-o WO Z 0 0 Q 0 0 D cxxxI CULUru -j EnaJF 4 a a Z Dom OZ FCN'a d Q 0 CL OW �w a F-m -0 ,2 a c=a w¢ ac ww ` Q � � O �zD Za r $m ccim At IAJ(A U�- a 0000000000 CAU5R090 92079024 AIIIIIIIIIII�IInmlllll o Q fU rn Q w 0. UEO t [ 0 T E M M N pp p I O Y I cn . I En rn - O Lr l!7 .. pa. �� 0) fn cr cn � I--1 O1 1--1--Q LL m a U C7 W Ld a z J ~ W J CCW cc N a U W W a ~ CL .fir ■r n try W d J c , W 4 tX C r-I U. -_W I�f ¢ O O U O IL Uw6tn .. LD OWWEnc Or U a 1 7 c. o wx¢M ¢O F� to o- d v� ^" U CL a a Io rn Qmrtw CL dw 0 ¢ s~ -� L? CCaOGaIn N 0 o w x D -J o m m s�93a Q iD in v LCl Ll7 LO LC) o •• wYmaY ¢zcn JX '•I n tn¢ a¢ ouzo m o � U (n W Q m W �r-i► Lu X O 01 07Q 01- I- Y W ¢ w U U +•+ ¢W J W C7 Z<CD U M W Z O d Q H t?MAt ZdUZW �+ S J J J J LL. O O W a�qkzw ►-�¢Ov-•I¢ X 0 � En J O O r ¢ � r+ LO ¢ 0-i zJ(LW w U U U 0 0 11J ,-I p v U'a ¢At O W Cl ol i- I- m I- D w ncu Sa�,N�" Mw�U-Ia" Z O to a LL ou)x: U U)O►ocr WwEn o 0 `- 10►+Xx O W► D O z Q N a- U d p U W 0 01- U ►•I - -- 1 O _ 0 CD ¢¢wzz crCZ'aHa(n ¢ w nl O U d c N a OLuod¢ r.•dtn" Z O d U N t�r 2 w Z(n ►+Z �r ¢ O O LLULn1- owNJ W to zd ,JLL UOOW 0 W�¢oa oaa O¢ w z a (' Is W CL-z ••+J U x to J t- z I LLA Q. a c6 J J 0=1-O" to J¢ to m S p~ m.W g U �G " P: f 0^s co 5 Lno-j w0 O 01-u_ Oa0 1- J J S cum H w V to (n U (D ¢ I I I.-Ow 0 H---iz W WW m X W X x ¢4SCL -..�HWQ -xm WW'$ =Sd� M zJ U7 O r`�io�.No 9 W❑2 ►- O z Pn m OUmx(n rdal- a U�- cc z _ OCL CL OLu y m a r cn ►. aKi W Lryx� mo`�� S to z O to O Q En M" =J d x zEOn H►J-I H a z �W � -J� tZY rl vcr ~ � `aa<'x � Luca a x Clo '1 p om 15 ra�: Ix- oz z : -z LL) p ,I I o Oama Z U �a ¢ a tt�� �EE� o �U LL x zt71 MU W co O x S w = HI•+W cc ¢o a LO CL to =�d`m- `z►+¢UJ r O(7) wJ O X x ..i d R : �"I �<>.91 Z # o f H W I Q (� Z9 mLL00 (n U 01- a � ..... . . M dw �w NG NN LL) 4Q mJ H W g z(nXz C O NQ ► U a"�d & OOWW -3 zd w Z W� �K'ig ow t" w¢No 0 0¢ z} L0 LP ¢¢OU I w2 M Uer [' o a�- 0 JU QEv z WZ L9 Jd Z¢ ZN �Wg4 : a x oZ I da ry0 mw d r+•�� M WI-. n rW 4LL O Q s 1-wczia ow �w _jx X 1 i O¢►�a I- ►^I tT z I •J O O Z Q o� $g ; ::v) zar«M tz 0't QT fU w �oWS¢ q =`s UUm �0W O W O ¢" '•" tXcrr+ NUdQ a too InLO wx 1 w I I< caLL ••4U a W" I-a n J J I (xI I LL W¢ O m tI� 4 x L' I 4 ¢I x0w - WO J wzzCwxU Il "U_ c s Z— w [U LL W xx W m I- 00Dnnu :0 ti0 000 x ow \oQnv LL� nW W O Wo JO w Q( z crM dW I l U 1 [►F 4 pJ CC c N 0.` 4!' EIZi 4 w Ln m J p Z En OOM o �d w [tW w(n O(0.n Q � 4 Q J ¢¢m ►yMo►y O Oz 1--0 ¢ CCD) L CL ¢ Dow 1-WZtn I-W dZ Ofn X ¢ >- 4 H xxz zz►•m a UM J¢ SZ D 0 UU woo--w �+ W- CLO U- �) >-Uw Z z0 .J q0 OWMM r+ OW JW OO J 00000 0 D 0 D 0 1 w UOWO. Lim d,n I-a- a un CAU5H090 92079025 � IIIIIIIINIII�IIIIII'Illlll�ll' � � N ru � m Z 4 0 T E O i*1 ry I R to 1 Ol cr I I I o CJ G c W d� , O O z in w Q 4 [n �_ I U W H w C a Q M . H I W 4 ¢ C , Y yNZ O m 0 0 U O ►•- a �-Za m ►+J m cn wO 4" o �Cc U a a a 0. � a �a 'r' �" Lu . oa ¢ 0 � o a zo3cc U) •a¢ cu ►� w¢~a U)�CL O lD Q lf'1 u 1 N CD a J w CL ¢Z U1 I p U] i- irk .� In .. �al-C oaac to ¢ N H N U' WC►Z-40 pHWH w m 7 U U, r+ w Q Z mr-0E- C7Z4C7U ,� ¢ Z O C Z O ►ti Qa .ZCUZW 0 J -j a J LL IG m O ¢ CD I.- ►r o"M ►w J O O U O 0 C ZOJX ZM.JMW ✓: N ¢ C Q. CD ►I J i ¢ m ¢�ZZ ww QWUOW " w .y ICi o � m Q 0 m -i d CL4a -VID r. LE).. x Ir ¢ n N W w Uba_NJ ino"WUI y OD CV d .J UJxw MI.-Umm a W O O OZ O W-2 "' = < k. cc LL CJ UJmwa UWNDr "•" o % o 0 M W) 2 O U O Z Z CC CZ71- En L) 4 N N _ U wh^Hw 1-wdin C w ICl U U? O O C O mwZ¢ owcn I ¢ a m WMWO UOow ry (]1 O Z C9 O O QJU CQI- O Z m a d U UIOC-it ¢ I N U O O1-WO nrJUF �v Z J J C Z 0 TZZr U)-i¢ o ly4�1�$W��W� ¢ O U"Co Cn44W C.7 U 0 J OaZ OZJ¢ LO 0 0 ►- _j as ¢000 - _i J W O 4 0 IL d 0--"U(n k+ -V m w `^ ^ o r I 1 W m HJDJ �►-�Z n ¢ QuF�"s^JLL$^ X x in x LUl O n w H W .ay ev I # WW$-.. 5 ►y _JZIWO ►y a s w m �- v�i aa�v�i =aao Q � N: v � a txm�o�= z ,. H =y��e x rn z ru a o . N m<o o a¢ u' WJ Ln O .Na 2W o��do r Z � `awe iC•lr ��`c� _� � {X IL .n r.. ''"w LU 0 am � 7 Z Ma CL ¢ m O �p�uY14 W H W d W U W U)1^ r .Z U . -C ., ¢ 4 ZOI 3U ¢ ¢ CC Cc U W Dim WJ a N '•" ¢¢���µ pis r W W^W� l•1 W R W O ul N 0 s N U OI- w D .. � �rYux ea z $ .4 cc ins m co O Na U O Iu ZI0. Lu J cu Y e 8 p CD OY 2 W m C -im zM 5 0 Q aw w in u)u)n d LL U O 9 1 �o9a� o .z.¢ z I c `` 1 ¢am"K W Sze =z p4 O O d as�a�q � QQM Wo OW O CD IBC) N J.J� C-m W� U w u CD m I l x U) - WO C in O I HH XU Z Z WO O O �o wo IV yC iu Z" 00 � Oa 00I xxx oow MCEM �w CZ O Dm ih a CTUZ WK mo w W.I W Cu� ~ � p � � �4 n jx zzo rw a zm a 0 0 0 0 0 0 0 0 D 0 �m L) -cm a UO - cnusRoso 92079026 aIIIIIIIIiIINfliHllllttlll1ll! d o N ca'm ru E L 0 1 E O m no, bj Q I Ill 1 L>7 I LC! O o a) l i N O J � O � �E W i Q z J U w LD w I-- wi H Z v y�0 N U. cc Q Y S m Q O U O a- to-- W LL LL LL LL U q N N N N �L a a a a d w O� �'f ll) rr0C> QC> u7 C H 5 c Im ID r wr m z 7 U Ca• w LU U 2 ►., ¢ H J O O p LL 0-4 U 3 0 U O W U of-. 0 O a O I- m W Q N - a v cQa U ¢ eJ d d N N N z C (o a ,: ►r o C N v �m o z D W 1 O z ui a cu m ca v, qT IVZ ., . U u O O N ru O d rm CaE �W�: go$ J J I cn U (n cr W Rizamu��3o$aY I w W W w U U J da a ¢ a Vi��3� m a car a z En v 0 Y CU Q !,I 1.1 4 z cc In 0A wJ 0 W _ g�� o i u 1'" u7 o m LL O i+�r 2 u r z I s cf. w wz .e.y 3 0. � r�va z O I Q i Scar WM - -CcQ V Y{94 m '• wi c !u . I-,d �Lo N a dQ and X ¢ ¢ 8@ew �u�Z Z CU N ' g��We�� p am uJ qgg 0M. 0-LU r O tt ��m i e8 LL � � F5�i 0 in zQ W0. ¢ zCL wx OH Q * �iWi<� o O JU dd ►�O 2� w m- a 4% to I--W 01L Q z +Fit+N u)inzw 7 1 M s W � 4 Cr z i I a:t;ta LzaUFS w QO O 0.g s q& 4 crm" m0 Dm E a e Y dQk w" En JJ I H(Q LLB 7K W a I .'$ (II w0 7ko ex� aaIW DU �-to W LL .. (,,I N U La 1 aaa �C WO „z„ p p p p 0 Q xxx a ¢In 1 [U ru cu J En a++ CL W N Q.ct z N a to Qa m o� I--Lo 1' Q ou aaz cl ~ 00000a 0 oa Ow _iw 0--CD umaN a 0 0 D 0 0 0 0 0 0 0 y t r CAUSF080 92079033 _Ft * ���Inlllllllllllllllpll�lll 10 Q � a a LL 1n I Ll) Co0 1 cm dp CD ¢1 �• I U M --I CD 0 1 0 0 F 1 L n 4 h z c'� 4 ¢ u caw a J �y ~T a x �i' a a 2 0 0 u 0 H 1c/ U a a a a a Ja �. 5OCC GIr) O to •a¢ cp U7 Q l[7 u7 N a M I.-a U') �. .-+ N a cczEn In ouzo ¢ a U U c7 n C7 O r r _ µ) Z w z4cL)ZW ¢ r J d d -i LL U Q N a: •-I o••¢ W W R) Q z¢JQw N ~ ¢ Q W ¢C O - f. .r Q W U U U o d a n {p m Q W U o LA �-. 1 O CO- C U) Z N" ►-� O I o 1, a N O-W Er) -' ••� ll to O o W►ra C m d CNC~ Q Q 3 CT r_ �` ~ Q 1 N N ~ r"4xEn� U C1 CU a m a L) 0 1 acc 0 0 caaoow~ �'� �i a ¢" z M d D<qt .r 0 1 U a Qcdas "N LO z I J J (1) fl1 J 2 m cn4aW m g= U U �1 oZJ¢ rn I a u Z;W s ' ff S a a J oC000 I I r►rZ x cc a x x x MnwwW c.1 m �� W u �ig=muacu U U 2 Z040 a i O r O En r 4 a 1- CL CC U] Lo W H p N epC� X m w o (O ¢ ~C7W= �d`� ff WJ W z���� �J� W QQ % "' 4 C4 �` w ti u� r HW .v as o l o ff� �xtiff .r1 00 z z F4-I 'a �j D Y Is. rn a Y ��ff �T ff O cc N I W w,, w o Lli EnN r t+7 n `ff� 1a� ws o a .r. z N a o __ ZO) mU I O cc ¢ Q LL7 2 moo;m7, 0rn w- U wa N a I �QW QfN 2 - a m rT4z a i $ U dr W m O r 'z" � 0 EnQ U 0 $v sue a . O¢ 0T Z W N 3 3 e _ O )Ic '6'c"�'=b�m � Wx r 1- W * `s: z JU H ►+ Q O _ a asy� "0 C7 LU Z '��N4�W�g � 4 (A NU) OLL U o 96lFff�• zQ z I a r, 1 CCgm d xx as o o o. p U to or I.0 a ¢ I.0 o ff a ¢a1.+ aaa 010 d z w z o r N I--4 ¢�W OU 1p_ ��; r W w� a LL B 00000000 0 IaQQ Ho WOCC rn W H �<Fj NNN ar d�� ►Or a a QLO cc¢Nin of SEND o� 1' Oow �-w a3r 0--co } d* U¢ J¢ m UUL) W� ao w Ww p • 00 0W Jw J oa I--to U� 4V) a U1 00D 0000000 cl causQ090 92079032 pIIIIIIIIIIIINII�NNNININi Q o rn ru cn 6 1 0 1 E cu I lf� ) t7) m I � Ln Q t7 _ o . rnm o LL, Cl cc En W 0 �'�\N * r� U U. W CL x W J W .14 ¢ cr LL LL In .U, J 4 NQ CL N to v) a . U a a m a LO LLI � c) oo Ll.a w - tn U to c IIo ry -) . J LnI.- m w Al1 i O to W 7 U LU ui Q n'i Er CZ9 J J ,I Q 3 Co N ,� Ca O F a jr C Z k _. d N w a 0 0 0 0 Q Q W 0 z (p 10 tp Y U L7 ' U U to ¢O 1 O) to x -cc1 Iri r 4 N tY U Z O Cu m Q U ` O O M 0 tn W X Q z U 47 U U, o c) •• a try z e o 0 am . owg� ; a_e mw QW w w X x I- a-j W C Z0 Cl 14u �S)s9�Yi n H m ? 0. UH a - - - D CZ7 �Ik �Yorg W U) � `x m o c o g Cuo =m ��e f:]W5mn� S LU UH D 0- � 8 ' �aJ u ~''' p co �$�31=� 1� u �Z n7 3: a o Y y�=o�8c � O 1 W U)I.- U gg ma�BN t U • ZL) " a SW z rn zU av Mo ¢ g e�z 0rn w a IN N - oW-.�_ tI tY = o : N o s z owe I-W o Z V vzt;� 8 a0 U)a N ¢ 4 p"W -i - 7o -0 (EY tD Napo N¢ WS d as ou. •y•yl� HW ply w<atn V)U) 7 TI "Croa Z aoowg UU¢ w - O O CLe `$g'- ` 6�w �O W� twn 8'�#or JIX to WO Hw= U Z.Ur WW U)w Ut$ a0000000 �o wQ' x x x a m m NX a 0 � 0 � Q CYtYtY J En � Lo p� gM� z Ua zD 11 Cl 0 41r Z o r1 W �`' �uwi ** a 00 � 0000000 -J CAUSPOSO 92079030 rn 0 ru 0 cu , m m LL C, 03 p l 6 L L 0 1 C 1 cn 1" 0 'D CI& LW 0 r3 C) 0 En LU U2, cc -j LLJ -J E-) -x w 0 CD LU w G LL X .4 al U) 0. uj -C cr 014 >- z cc 01 0 u 0 EL i-. O>- L) m -i v IL U- Li- LL V) U) M W 0. Arui 0 0 D -io 0 O r-> C) LO 0 ch -Ata: tD a.a. . . . . En I.-4 u w CCZM LO I-- m OOZO ui m ..Do- -4 LOZ.<CDL) 10 j .r.j . LU Z<UZUJ ro p;- z Z x 10 (D r• zm_iaw 4 -1 0 0 cc.11 0 w En cr -C N <WUOW u 0 Z) (L L) LU, �2 m m z Le) 0 1 olin LL -C 04 0 a$.-UMM ¢ N 0 0 Lu":) 0 1-0 CL��-M L) uwwol--- u EL. CC -C z "I < 0 V Ef) (D Z kin 7: Ch < " 0 LLI(1) r- C'u L) -4 cr L.)COW 0 U) CC Q m I.- LU a) uj z CI CC cnoQx< z > L) "-JUM 0 U) 0 I- " -1 1 -j o-im Et) 0 a omxAtw uj LO, I U� Ej u =IZ-JCE 0 0 0 CD M C) 0 cro=)=) 0.-0-4 L)En M U) r ui M x x (1) m x w "P-41--Lu to L4 Ocr <-) 0 r MO-90 %j r CD Ll (T) 0- i.--a CL I.- a. I E- M 9 i;7 1-'- li 2 a) 9 LO tr x 0 LO wln E.�9�-ZID ho 9 LO q WM m z Zs2 M cr "W < 00 a] 0 3: I.- z C, "Z x u rn 0 CL Z,Iz Er. m Lu" 0 In cu m 0 w U)I-- Z u E U C- 6�.% 0 z 3mu cr 0-cl qr CC0 Lu In LU-j CL I V) cc cu Ow mow. a: z v u OP.- LU a: t;-W u I-- -C co M 5 w— AE cc M-i m - i -155'wzi�-s 0 mm D �k s ZCL Lu -j - 0 j 0-4 uj -i - cr ZCL z 0 Z):)- w W= LU M -J& F- cc a z -j zcr CD 4 -C-a 0"0 ,< "Cul 1� LU CU. cc z-- qb qb tn En m -3 0 Z LLI LL LL e Cr 0-9 21 cr s n 0 0 Uum LLJ - 0 LU , F I 1 m cr m C�x - o cn LLi u)LU D 1-to Lu""M X L)- Z Leta. ui L,) L)La En 0 0 0 0 0 0 0 0 WLL w LU c 17 La qr �-0 wo 0000 D i XXX < cc rn < c CU Cu Cu -j x CL CL - -1 0 Z U) C13 -C U) DOW mw tAi w cz M6 ct CD cm I--cm 0 Cl OLU �-w -cc 3c �-co ==Im u -icc u UU w CLO Lu LAJ < CL I.- z M Z�j 0 0 za -i LU zoo 00 _iw � - - in UO ly -to LO)I-Z -1 0 0 0 0 0 0 0 0 0 0 d i I W •I, a Fes\ 1 71 Ll I\ I „o•,z 71 r � f� I x � U - a v - -V-A - - - - 13 Z ` J Li ❑ L. F U u'I f K D. J. ENGINEERING 17690 San Vicente Fountain Valley, CA 92708 (714)962-5425 POST-TENSIONED SLAB-ON-GRADE DESIGN CALCULATIONS FOR STONECREST 4, TEMECULA PRESLEY HOMES PLAN NO. : P.T. FOUNDATION PLAN PLAN 1 2 3 PREPARED FOR Q�zorEssi . IEN cy �61 J.L. DAVIDSON CO. , INC. 4Q G2 JOB NO. : 93736 No. 3241 � Exp.9/30/93 �C *sl rRUC1�`�P��� 9T OF C A�`F� CALCULAT IONS Design by: D. J. Engineering (714 0-5425 PAGE (A 17690 San Vicente Fountain Valley. California 92708 4v4&404,1)ea•ss& cIro Cr & 1;exxr1 a 4545Wa� 1. Structural design of slab is based on recommendations by 'Design and Construction of Post-Tensioned ~labs on Ground' , 1586 Edition, published by the Post--Tensioning Institute and 1991 U.D.C. y. This computer program covers a design procedure for the design of slab-on- ground foundations to resist the effects of expansive soils In aCcc+rdance with Chapter 39 ,+_+f the Uniform Buildina Code. use of this program shall be limited to buildings three stories or less in height in which grality loads are transmitted to the foundation primarily by means of bearing walls constructed of masonry,wood or steel studs, and with or without masonry veneer. Project Name : STONECREST 4 (PLAN 1) Project Location . TEMECULA D. J. Enaineering Job Number : 93736 Design date 7-13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By : GEOSOILS Soil Report Number : 1156-SD Soil Report Date : E-4-90 E X PINP4 _►- I k?E SC3 I L ] )1-0 I CAI PA RAM]=—TE EIS ATTERDERG LIMIT: PI (Plasticity Index) = Edge moisture variation distance: Em (Center Lift Condition)= 512 ft Em ( Edge Lift Condition)= ±5 ft Estimated differential movement: Ym (Center Lift Condition) = 1. 15 in Ym ( Edge Lift Condition) = .26 in Allowable soil bearing pressure = 2"000 psf Slab-subgrade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided) 1000 psi 4r-lair-1�iFic1F9Fk9Fyrk-1F�jFjFi1riF9F9E1raE9Fk�ir�t9r#��Fkk3rW9t����dFdF9F�aFdFklFl!-kaFaEkrdF��dF��e�i�#�-i=jtir��f-�dE'�:�#� E ESE C0P4CFR10T7 13TO F3 I C3P4 ID IN IF A 40W Concrete 28 days strength f' c = 2500 psi Concrete elastic modulus E = 57xSOR(f' c) = 2854 ksi Concrete creep modulus Ec = 0.5E = 1425 ksi FOUNDATION SIZE: Foundation plan geometry .= 56 ft long x 39 ft wide Slab thickness = 5 inches Slab surface area = 2184 sa. ft Average foundation overall thickness = 6.6 inches 1.. Y STIFFENING BEAM SIZES: PASE �` In the lono direction: Exterior Beams: 2 beams @ 12.00 in. wide x IS-00 in. deep (Incl. slab) Interior Beams: 1 beams @ 12.00 in. wide x 12.00 in. deep (Incl. slab) (Averaoe beam seacino = 19.5 ft. ) In the short direction; Exterior Beams: 2 beams @ 12.00 in. wide x 19-00 in. deep (Incl. slab) Interior Beams: 2 beams @ 12.00 in. wide x 12.00 in. deep VIncl. slab) (Average team spacinq = 18.7 ft. ) 7-wire 1/2 in. dia. stress-relieved strands conforming to ASTM-416 Tendon strength, Fpu = 270 ksi Crass--sectional area = Aps r 0. 153 so.in Modulus of elasticity = Eps = 23,500,000 psi Maximum jacking force (to overcame friction) = O.8Fpu x Aps = 33 s Maximum anchor force ( kips to account for seating loss) _ 0.7Fpu ;: Aps = 2g,9 kips Maximum effective force (to account for total prestress losses) = O.EFpu x Aps In the long direction: 24.3 kips 10 provided slab strands at c. g.s. = 2.50 in. from top of slab g Provided beam strands at c. o.s. = 0.00 in. from top of slab (Average strand spacing = 4.2 ft. o. c. ) In the short direction: 14 provided slab strands at c. p.s. = 3.50 in. from top of slab 0 ❑rovided beam strands at c. q.s. = 0.00 in. from too of slab (Average strand spacino = 4.2 ft. o. c. ) TOTAL STRAND QUANTITY = 1154.0 LF 605.9 LBS E3L++N13 E317CC I0P4 PFR0FAEnFRTI17W W In the long direction: Cross-sectional area - 273G.0 in"2 Moment of inertia - 33898.7 in'4 Yt (c. g. c. ) 3.7 in Yb (c. g. c. ) - 12.3 in Section modulus, St 9135.3 in"3 Section modulus, Sb - 2758.4 in-3 Beta distance (relative stiffness lengths) (Ec x I/Es)".25/12 E.9 ft In the short direction: Crass-sectional area. - 3840.0 in"2 Moment of inertia; - 29607.9 in"4 Yt (c. g. c. ) - 3.5 in Yb (c. p. c. ) 11.3 in Section modulus. St W 11335.8 in"3 Section modulus, Sb , 3442.3 in 3 Beta distance (relative stiffness lenoths) = (Ec X I/Es)'`'-.25/12 7.2 ft PAGE gyp, I?l—=S I GN L OAD I NOS UNIFORM LOADS W/O USING CODE ALLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 19 1E 2nd Floor 15 40 Exterior skin weight (In the lon❑ dir. :) = 300 alf Exterior s4=:in weight (In the short did. ) _ 300 of f Lena Direction Short Direction (Exterior) (Interior) (Exterior) (IntLrior) TRIBUTARY WIDTHS - FT: Roof 1121,.00 0.00 0.00 o.kk Grd Flocir 0,�0 0,t 0 0.00 n,C)C) 'nd Floor 11,711.00 r).C)n 0.00 0.00 TOTAL BEAM LOADINGS (including beam self-weight) PLF DL only 967 150 525 150 DL + LL 1695 150 NUMBER OF BEAMS: 1 2 2 WEIGHTED AVERAGES - DL+LL (PLF) Averacie of all exterior and interior beams - 774 plf Average of all exterior beams only = 12'15 p 1 f Average of interior beams only = 150 plf Use slab perimeter leading p = 1:250 elf (for flexure and shear design only) FZF�SUL__F S 0T= SLAFt AN1ALYS I S M -x--x-S0I L E-iE=AR I NS S-FR=SSE=S I NV _r 1 SAT 10tgE3 � (The average bearing stresses below are conservatively based on loads carried by the .rectanciular beams coupled with effective- slab OF 2XW wi de) DL ONLY = 300 psf DL + LL = 499 asf Soil pressure safety factor = 4. 1 - FLI U R A L S_VRHScE=S INVIES-rIGA-rIQNs; Tensile stresses are considered negative in sign convention-. Allowable tensile stress � ExEGR(f' c) Allowable cc4mpressive stress 1. 125 ksi `.i PAGE LLA In the lonq direction Prestress summary: Average compressive stress at edge of building = 0.091 kst Average compressive stress at distance Beta from edge of building = - 0.085 k:s i Average compressive stress at center of building = 0.066 ksi: Minimum number of strands required = 8.22 to overcome subgrade friction drab and also reach 50 psi minimum residual compressive stresses " Total number of strands provided = 10 at average c.q. s. = 2.50 in. from top of slab Moment analysis: Calculated positive moment induced by EDGE LIFT - 1.00 dt--UPE/ft Too compressive stress = 0. 141 ksi Bottom tensile stress = . 183 ksi Calculated negative moment induced by CENTER LIFT = 5. 15 ft-k:ips/ft Too tensile stress = -. 174 ksi Bottom compressive stress = 0.862 ksi In the short direction Prestress mammary: Average compressive stress at edge of building = 0.090 ksi Average compressive stress at distance Beta from edge of building = 0.094 ksi Average compressive stress at center of building = 0.073 k:si. Minimum number of strands required = 10.45 to overcome subgrade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided - 14 at average c.q.s. = 2750 in. from top of slab Moment analysis: Calculated positive moment induced by EDGE LIFT 0.96 ft--kips/ft Top compressive stress = 0. 154 ksi Bottom tensile stress = -. 195 ksi Calculated negative moment induced by CENTER LIFT = 5.43 ft-kips/ft Top tensile stress = -.225 ksi Bottom compressive stress = 1.053 ksi 40,04F ED H E_AS FR ED T F!E�',�S W Q R 4413 ID I R EW M IF I A L -x- SLINE{ ID 7 L WECIF 10 V4 I V4VEEST' I C31 T S 0P4S W4&-43OF In the long direction Allowable shear stress = 1.5 :SGR(f' c) = 0.075 ksi Allowable differential deflection at CENTER LIFT=(6fBeta or L)/360= 1.39 in Allowable differential deflection at EDGE LIFT=(a :Beta or L)/300= 0.63 in Actual shear stress induced by CENTER LIFT = -0.04E ksi E oexted differential deflection at CENTER LIFT = 1.35 in Actual shear stress induced by EDGE LIFT = --0.016 ksi xoected differential deflection at EDGE LIFT = 0.22 in In the short direction : Allowable shear stress = i.TxGGR(f' c` = 0.075 ksi Allowable differential deflection at CENTER LIFT=(�xBPta or /3EO= 1.30 in Allowable differential deflection .at EDGE LIFT=(GxDeta _r_ L:+=800- 0.59 in Actual shear stress induced by CENTER LIFT = -0.044 ksi Expexted differential deflection at CENTER LIFT = 1.29 in Actual shear stress induced by EDGE LIFT = -0.014 ksi Exoacted differential deflection at EDGE LIFT = 0.20 in CALCULA-F I O S Design by: D. . Enaineerina (714)'39-2-514225 PAGE 17690 San Vi-ente Fountain Valley. California ':�l27ft9. 1. Structural design of slab is based on recommendations by 'Desian and Construction of Past-Tersinned Slabs on around' 1986 Edition. published by the Past-Tensionin© Institute and 1991 U.B.C. 2. This comciltter prraram covers a design Dr-c,cedure for the desian of slab-on- ground foundations to resist the effects of expansive Eoils in accordance with Chapter 29 of the Uniform Building Cade, Use of this oroaram shall be limited to buildings three stories or less in height in which gravity loads are transmitted to the foundation primarily by means of bearinq walls ccinstructed of masonry,Wood or Steel stud=. and with or without ma=C lay 4EIiCer. ##1E••�#•1(####•�•K••)f•�:•:•�###�_####•�k•Y•�-#••Y•3�•�#####•�E###*x#######•1F�••7E#9F•c•pF•1F#####•�F•�-iriE####-1F#3F#•Y,-•1F# Project blame : STONECREST :PLAN 17 Project Location : TEMECULA D. J. Encii neering lob Number. 037367 Design date : 7-13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By GEDSDILS Soil Report Number : 1155-SD Soil PeDor•t Date : E-4-0 ####3######•#•#•##•�,'-•'f:##•k•�•#######3F#1�•#•]F#•ii,•#•]t•#########••IF##•lE###jF•�#####•1E�;#•k###3E•�•#1¢3F##### CUM P RE:S0- I L3L I=— !E301 L- DIES I C3N PA RAi EII-F F S Expected max. differential settlement - .75 in Allowable soil bearing pressure = 2000 ps.f Slab-subprade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided) - 1000 psi CONCREITIE E> I C-3'tq DATA -w- Concrete -2 days strength f' c -= —2500 ❑si Concrete elastic modulus E 57xSQR(f' c) = 285o J?si Concrete creep modulus Ec = O-SE = 14''25 ksi FOUNDATION SIZE: Fecundation clan oeometry = 5S ft lcno x 9 ft wide Slab thin-kne=-s = 5 inches Slab surface area = 2154 =u. ft Averc3ge f- •r;r + ,: :;i _vx'r 11 thii �,Fj _. r;,G i nche- STIFFENING BEAM 5IcE3: "AGE In the Iona direction: Exterior Beams: 2 beams @ 1 '.00 in. wide x 18.07 in. deed ::Incl. slab: Interior Beams: 1 beams Two in. wide x 1^.0() in. deEn (Intl. slab) (Average beam suacina = 19.5 ft. ) L In the sh Irt direction: Exterior Beams: 2 beams Cq 12.s:� � in. wide 1B.iTC� in. deep (T;ICI. slab: Interior Beams: 2 beams ry 1'.�.C)O in. wide X 12'.00 in. deen (incl. slab) (Average beam SDacinq = 16.7 ft. --X--X- PX-' —FRA NID 1:)I=—S I (:�;h! I7A►-FA ��-'ou 7-wire 1/ ' in. dia, stress-relieved strands confcrminq to ASTPI-416 Tendon strength Fou _ .27si l-_si Cro=s-sectional area =• r pE = O. M so.in Modulus of elEsticit'v - EQs = 25.500,i C� ps.i Maximum .jaGk:inq farce (to overcome fri=tion) = O.PFpu x; Aps = 33 kips Maximum anchor fcirc= (t . acc-c:-unt for -eatinq loss) = 0.7Fp+_t x Aps = 2S.9 E.ips Maximum effective force (to account for total prestress 10sse--) _ 0-Erpu x Aps In the Iona direction: = 24.8 k:iAs 10 provided slab strands at c. a.s-. = 2.50 in. from top of lab 0 provided beam strands at c. a.s. = 0.00 in. from top of slab (Averaoe strand spacinq = 4.2, ft. O. c. ) In the short direction: 14 provided slab strands at c. a.s. = 2.50 in. from top Of slab 0 provided beam strands at c.g.s. = 0.00 in. from too of slab (Average stY'a-nd Spacing = 4.2 ft. O. C. ) TOTAL STRAND QUANTITY = 1154..E LF = E05.9 LBS In the long direction: Cros==--sectional area - _. 3E.0 in^ Moment of inertia - 33e9E.7 in^4 Yt (c. g, c. ) = 3.7 in Yb (c. q. c. ) - 12.3 in Section modulus, St = 9135.2 in'•'3 Sectic,n modulus, Sb = 3758.4 in^3 Beta distance (relEtive stiffness length-,) _ (EL :f I/Es:T". G;1' = 6.9 ft In the short direction: CroEs-sectional area = 2840.0 in''3 Moment of inertia 3'3150 , Yt (c.a. c. ) 3.5 in Yb (c. q. c. ) = 11.5 in Section modulus., St - 1137-E.e in • Secticin modulus, Cz.L - 3d42.3 i n'3 Beta distance (:r=l�-.tive stiffness. lenotth=:: _ (Ec .. I/Es)" .25/1'2 _ 7.2 f+ Y PA'w= 'Tb, DESIGN LOADINGS UNIFORM LOADS W/O USING CODE AL..LCWcD L1'.'E LOAD REDUCTION (p--.f) DL LL Roof 19 is end Floor 15 40 Exterior skin weight (In the long dir. ) = 300 plf terior sE::in weight "n the short dir. ) 200 plf Lone Direction Short Direction (E:,:terior) (Interior) (E::;teric,r) (Interior) TRIBUTARY WIDTHS -- FT: Roof 12.00 f').0o ,00 3rd Floor t1,Qc_) [ .00 _),fir) 'nd Floor 13.00 r`.':)11 0.00 0.(_10 TOTAL BEAM LCAD,11r'S "ir)clud; ne beam self-w�=iaht:) PLF DL only 9E7 15�) 525 1 r; DL + LL 1C95 150 525 150 NUMBER OF BEAMS: 2 1 y ._ WEIGHTED AVERACES - DL+LL (PLF) Averaae of all exterior and interior beams - 755 Average of all exterior beams only = 1123 ❑lf Average of interior beams only = 150 plf Use slab Perimeter loadinq Q = 1250 Qlf (for flexure and shear design only) #���•�•�•����•�•��•�•x������•��•>~���-���•��•r�:-r��•��•><•>F->�•�a��•>���•w•��•a�->E�•x�����:•�•;~-��--r=:•;~��•>t•>r��:�•�c•�� RIESUL-FS OT-- SLAB ANAL'%'SIS �•��•;�•x���•�a€•�•�aQ-�•>�•;~•�•x�r����#•x-�•��•�•>E•>E•>E�•>E��a�•��-�•����ai-��•�•�•�•>~� --r:•�•>���-)st•��••rx�-�:�:�a�•�•>F•r:•>F��;�� a�GG I L B=A R I NO S-FR1E=SST=-S I NVFW S-E- I GA-r I orl4s-x -X- (The averaae bearing stresses below are conservatively based on leads carried by the rectanciular beams coupled with effective slab OF 2XW wi de) DL ONLY = 300 Psf DL + LL = 499 Psf Sail Pressure safety factor = 4. 1 T=LF:XURAL S-FRIE ._,�- SE:S IRS VE=-STIGATIOHS -K- Tensile stresseC. are considered negative in sign convention_ Allowable tensile stress = :-;SCiR(f! c) ,300 4::si Allowable ccFMDTe51-1ve stress = 0.45xf1 c = 1. 125 ksl ` Tf-, t 1Dr.-- .directiom ,. Priestrecc c_'.T';1c7rV: AVeYc.,^E TiOreCS1Ve stress at edge of Average compressive stress at distance Peter from edge of bl_iildinp = 0.085 k:=1 - Averaae compressive stress at center of building = 0-QEG ,kE,i Minimum number of strands reQuired = 8.12 to overcc+me sl_;barade friction drag and also reach 50 psi minimum residual compressive =4- -fes Total number of strands provided = 10 at average- 2.50 in. from top of slab Moment analysis: Calculated Positive moment induced by expected maximum settlement = 1.17115 ft-[..iDs/ft T+_+p comore=_sive stress = C). 159 k:Gi Dc,tt-cim tensile stress = # }::=.i In the short direction Prestress Averaue compressive stress at edoe of building = 0.0?0 11si Aver_ce stress at distance Beta from edge of building = 0.094 Averane comCre=_.=-.i ve stress at center of bl_tildira - 0.073 r;si Minimum number +f strands required = 10- 45 to sl_ihc-rado friction dra.q and also rsachl 50 psi minimum residual compressive strssses Total number of strands orovided = 1.4 at average c. q,c-. - 2.50 in. from tc+p of slab Moment analysis: Calculated rositive moment induced by expected maximum settlement = 1.47 ft-kips/ft Top compressive stress = 0. 184 ksi Bottom tensile stress = .295 ksi ate# SH=AR STRESSES AND D I y=,pE:RII T I AL a -X--X--X- SLAD DET=LEGTI0N INVESTI !-SATI4 N_c3 In the long direction Allowable shear stress = 1.5x5CIR(f1c) = 0.075 ksi Allowable differential deflection =(P,xBeta or L)/800= C.83 in Actual shear stress induced by expected maximum settlement = -0.013, ksi Expected differential deflection - 0.20 in In the short direction Allowable shear stress = 1.5:SC!R(f' c7 = 0.075 k:si Allowable differential deflection ={Sxr-'eta or L/SC)C1- 0.59 in Actual shear stress induced by expected maximum settlement = -0.013 E::si :•;netted differential deflection = 0.22 in 4 S L Ate- —0N --S F,'A1)E Dr:E; I C3tq CALCULATIONS _ Desion by: D. J. Fnaineerinp (714)962-5425 jPAGE 17690 San Vicente Fountain Valley. California 92.708 1. Structural desion of slab is based can recommendations by 'Deslan and Construction )f Post-Tensioned Slabs on Ground' , 198E Edition. Published by the Past-Tensioning In=titut-e and 1991 U.D.C. 2. This computer Qr+ Yam covers = oc a A e_q _vets a de_iQn pr_ _ed�_tr_ for the design of slab-on- Qround foundations to re=iet the effects of exoans.ive sails in accordance with Chapter 29 +_+f the Uniform Building Code. Use of this Drogram shall be limited to buildings three stories or less in height in which gravity leads are transmitted to the foundation primarily by means of bearing walls ,ronstructed of masonry.woc+d or steel stud_, and with or withclut masonry veneer. Project Name : STONECREST 4 (PLAN 2) Project Location : TEMECULA D. J. Engineering ,lob Number : S3736 Design date 7-13--93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By : GEOSOILS Soil Reoort Number : 1156-SD Soil -Reciort Date : 6-4-90 EX PANE3I VIE SS0 I L DES 11-NI PA RAME-:7ERS ATTERBERG LIMIT: PI (Plasticity Index)= Edge moisture variation distance: Em (Center Lift Condition)- 5. ' ft Em ( Edge Lift Condition)= 2.5 ft Estimated differential movement: Ym (Center Lift Condition) = 1. 15 in Ym x Edge Lift Condition) = . :6, in Allowable sail bearing pressure = 2000 psf Slab-subgrade friction coefficient = .75 Soil modull_ts if elasticity Es (assumed if not provided) = 1000 psi C0NCF2ETE DEF331 GN DATA Concrete 28 days strength f' c = 21-100 psi Concrete elastic modulus E = 57xSQR(f' c) = 22230 ksi Concrete creep modulus Ec = 0.5E = 1425 k:=_i FOUNDATION SIZE: 'Foundation on. plan oe+_+metry = 5l ft lon❑ x 39 ft wide Slab thickness = 5 inches Slab surface area = 1'w89 s.a. ft Avera❑e foundation overall thickness = 6.6 inches - Y PAGE (bA STIFFENING BEAM SIZES: In the Iona direction: Exterior Beams: 2 beams @ 12.00 in. wide 18.00 in. deep (Intl. slab) Interi-Dr Beams: 1 beams r 12.00 in. wide x 121.00 in. de=p Incl. slab) (Average beam spacing = 15.5 ft. ) In the short directican: Exterior Beams: ? beams @ 12.00 in. wide x l.S.n{) in. deep (Inicl. slab) Interior BeamE: 2 beams @ 12.00 in. wide ti. 12-ff1 in. deer (Intl. slab) (Average beam C.raCina = 17J.C) ft. ) P 1 T ST F N15 IDI=S 1 (3P14 TDATA 4&4&-X- 7-wire 1/2' in. dia. stress-relieved strands conforming to ASTM-41E Tendon strength Fou = 270 ksi CroFs--sectional area = Aps 0. 1153 so.in Modulus of elasticity = Eps = 28,00,000 psi Maximum jack.inp force (toy overcome friction) _ ❑.BFp)u x Aps = 33 kips Maximum anchor farce (to account for seating loss) = Q.7Fp)_i x Ap, = 28.9 kips Ma::imum effective farce (to aCCOUnt for total prestress losses, _ O.c.Fpu x Aps In the long direction: 24.8 kig5 10 provided slab strands at c.a.s. = 2.50 in. from top of slab 0 provided beam strands at c. q.s. = 0.00 in. from top of slab (Average strand spacing = 4.2 ft. o. c. ) In the short direction: 13 provided slab =-trands at c. g. = 21.50 in. from ton of slab 0 provided beam strands at c. q.s. = 0.00 in. from too of slab (Average strand spacina = 4.2 ft. o. c. ) TOTAL STRAND QUANTITY = .063.n LF = 358.1 LBS E:L AF1' S!F'C T I c?N p Ro pE:RT I LDS In the long direction: CroEE-sectional area - �73E. in" Moment of inertia - 33098.7 in^4 Yt (c. g. C. ) = 2.7 in Yb (c. p. c. ) = 12.3 in Section modulus, St = 9135.8 in"-3 Section modulus.. Sb = 2758.4 in'3 Beta distance (relative stiffness lengths) = (Ec x I/Fs)'.251112 = E.S ft In the short directicin: Gross-sectional area = 3540.0 in'"2 Moment of inertia = 33EE1.5 in'--4 Yt (C. q. C. ) - 3.S in Yb (c. g. c. ) - 11.4 in Section modulus.. St - 10805.4 in-3 Section modulus, Sb = 3394.8 in''.? Beta distance (relative stiffnet.E. lencth=.) _ (Ec 1/EE)''. 5/1y = 7. ft PAGE D7=E3 I GN L GAIN I NOS AN& .W_ UNIFORM LOADS W/O USING CODE ALLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 19 1E end Floor 15 40 Exterior skin weight (In the long dir. ) 300 plf Exterior skin weight (In the short dir.) 300 plf Lonq Direction Short Direction (Exterior) (Interior) (Exterior) (Interior) TRIBUTARY WIDTHS - FT: Roof 13.00 Via.r),_i 0.00 3rd Floor 0.00 0.00 0.DD 0.100 end Floor 1.3.0u0 0,00 0.00 0.on TOTAL BEAM LOADINGS (including beam self-weight) - PLF DL only 9E7 150 525 15C) DL + LL 1E95 150 5'�5 150 NUMBER OF BEAMS: 2 1 2y WEIGHTED AVERAGEES - DL+LL (PLF) Average of all exterior and interior beams 774 plf Average of all exterior beams only = 1215 plf Average of interior beams only = 150 plf Use slab perimeter loading ❑ = I2150 plf (for flexure and shear design only) RI=—SULTG GF SLA'_R ANALYSIS S0 I L A R I NG S7RE~SS1-=S Y I SA r 10NS-x--X- (The averaoe bearing stresses below ere conservatively based on loads carried by the rectanqular beams coupled with effective slab OF 2XW wi de) DL ONLY = 294 psf DL + LL = 474 psf Sail Arest-:ure safety factor = 4. FLEXURAL STRElSSF�:S IINI S_` IGATIC7NE3 Tensile stresses are considered negative in sign convention- Allowable tensile stress = 6xSQR(f' c) = --.300 kc_i Allowable comDre=.s.ive stress - 0.45xf' c = 1. 1215 ksi In the long direction : PAGE (Ze, Prestress summary: Average compressive stress at edge of building = 0.091 F:_=_.i Averaae compre=Five stress at distance Beta from edge of building = 0.094 _ ksi Average compressive stress at center of building = 0.068 kai Minimum number of strands required = 8.01 to overcome subgrade friction drag and also reach 50 Psi minimum residual compressive stresses Total number of strands provided = 10 at average c.n.s. = 2.50 in. from top of slab - Moment analysis: Calculated positive moment induced by EDGE LIFT - 1.00 ft-k_ip_./ft Top compressive stress = 0. 144 ksi Bottom tensile stress = -. 183 ksi Calculated negative moment induced by CENTER LIFT 5. 15 ft-k_ios/ft Top tensile stress = -. 171 ksi Bottom compressive stress = 0.361 ksi In the short direction Prestress summary: Average compressive stress at edge of building 0.091 ksi Average comoressive stress at distance Beta from edge of building = 0.035 ksi Average compre=-sive stress at center of building = 0.074 ksi Minimum number of strands required = 8.63 to overcome subgrade friction drag and also reach, 50 psi minimum residual compressive stresses Total number of strands provided = 13 at average c. g. s. = 2.50 in. from top of slab Moment analysis: Calculated positive moment induced by EDGE LIFT - 0.96 ft--k_ips/ft Tog compressive stress = 0. 154 ksi Bottom tensile stress = --. 183 F;=i Calculated negative moment induced by CENTER LIFT = 5.43 ft-k:ips/ft Top tensile stress = -.200 ksi Bottom compressive stress = 0.972 ksi E aHETA►FR S a FRTOS S IF INP413 1) I T=T7 IT FR 10PAY I is L- 4va--4x- 454F45 Si AS !3In•FL10C1T 10P4 I h %ITOS I I C3 ON IF I C3r4i3 W45-4x- in the long direction . Allowable shear stress = 1.5xSOR(f' c) 0.075 ksi Allowable differential deflection at CENTER LIFT=(GxBeta or W-^- O= 1.39 in Allowable differential deflection at EDGE LIFT=(6xDeta or L)/800= 0.63 in Actual shear stress induced by CENTER LIFT = --0.046 ksi Ex0exted differential deflection at CENTER LIFT = 1.32 in Actual shear stress induced by EDGE LIFT = -0.016 k:=_.i Expected differential deflection at 'EDGE LIFT 0.21 in In the short direction : Allowable Hear stress = 1.50OR(f' c) ksi Allowable differential deflection at CENTER LIFT=16xBeta or L)/360= 1.30 in Allowable differential deflection at EDGE LIFTw(6xBeta or_ L)/SOO= 0.5? i:; Actual shear stress induced by CENTER LIFT 0.042 ksi E oexted differential deflection at CENTER LIFT = 1. 17 in Actual shear stress induced by EDGE LIFT = -0.014 ksi Expected differential deflection at EDGE LIFT 0. 13 in POST --_"]ENS I C NE_D SLAB —ON —S RADA DES I Gr4 CALC ULAIF I ONS Design by: D. J. Engineering (714)9E_'-54 5 PAGE t%& 17690 San Vicente Fountain Valley, California 92709 so AF 45 Qc D e3 sa& Ca r`ti C, jL 1.r en Y- i zx &F so so so 1. Structural design of =--lab is based on recommendations by 'Design and Construction of Pest-TenRioned Slabs on Ground, 1986 Edition, published by the Post-Tensioning In=_titute and 1991 U.E.C. 2. This wo!!nuter oroaram covers a design grozedure for thy design of slab-on- ground foundations to resist the effects of expansive soils in accordance with Chanter 29 of the Uniform Buildinq Cade. Use of this program shall be limited to buildings three stories or less in height in which gravity leads are transmitted to the foundation orimarily by means of bearing walls constructed of masonry,wood or steel studs, and with or without masonry veneer. . Project Name : STONECREST 4 (FLAN 2) Project Location : TEMECULA D. J. Engineering_ Job Number : 93736 Design date 7-12-93 No. of Stories , PROVIDED SOILS DESIGN INFORMATION: Sail Report By : GEOSOILS Sail Wort Number : 1156-SD Soil Report Date : 6-4-90 ######-iF#•#•##•tE'k•Ir•k3r####•1Fk####�t-#)F#####'####•lE••1F########i;#dF####•k}t####•iF=r:3:•]F•#.###•Xr1F###### C`0 P 1 P FR W S S 1113 L_W S O I L F:)P S I S N e"'- A► A"'E T 1 r,__►- a ##•#¢-A4###'k#•1Ei�####3E#####jF######•Y•1F#####�•'kxY#•K###ib•1F######•1F•1F###�#•}:#3r;;-'+-#•1F#�i;•######•k9[ F;rested max. differential settlement - .75 in Allowable soil bearing pressure = 2000 Qsf Slab-subgrade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided") = 1000 psi C:O 14 C ff In IF K D 1 u T C3 44 131%71 r 40 AF so Concrete 28 days strength f' c = 2500 psi Concrete elastic modulus E 57xSQR(f' c) _ 2250 k:si Concrete creeo modulus Ec 0.5F = 1425 k:si FOUNDATION SHE: Foundation plan geometry = 51 ft long x 39 ft wide Slab thickness = 5 inches Slab surface area = 1989 so.ft Average foundation overall thickness = E-6 inches RAGE (5A �E13 I QVA L o4a13 I tAC3S; 404-4W UNIFORM LOADS W/O USING CODE ALLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 1ST 16 end Floor 15 40 Exterior skin weight (In the long dir. ) Curl Clf Exterior skin weight (In the short dir. ) 300 Of Long Direction Short Direction (Exterior) (Interior) (Exterior) (interior) TRIBUTARY WIDTHS - FT: Roof 13.00 0.00 0.00 0.00 rd Floor (,l.r)i) n.t)fl 0.00 [1,00 'nd Floor 13.00 0.00 0.00 0.00 TOTAL BEAM LOADINGS (includinq beam self-weight) - PLF DL only 967 150 525 150 DL + LL 105 150 525 150 NUMBER OF BEAMS: _ 1 y 2 WEIGHTED AVERAGES - DL+LL (PLF) . Average of all exterior and interior beams. - 755 ❑lf Average of all exterior beams only = 1199 plf Average of interior beams only = 150 plf Use slab perimeter loading o = 1250 Of 0or flexure and shear design only) SO Y l._. 1-3=—AR I NC3 ES-FRI=ES s Z S I N%,�FFES-T` I OAT 10NS-�-X- (The average bearing stresses below are Conservatively based on loads carried by the rectangular beams coupled with effective slab OF 2XW wi de) DL ONLY = 294 psf DL + LL = 474 psf 7 Soil Pressure safety factor = 4.2 € TOL-KXLJRXyL- QTR17SSE7S I p4%,1=ST I C3/%T I0P423-- Tensile stresses are considered negative in sign conventions Allowable ten==-ile stress = GxSRR(f' c) _ -.300 ksi Allowable camoressive stress = 0.45x f l c = 1. 125 Ki WE 1 In the long direction ` Prestress =-ummara i Average compre=live stress at edge of building - 0.091 ksi Average compressive stress at distance Beta from edge of building = 0.034 ksi Average compressive stress at center of building = 0.068 ksi Minimum number of strands recuired = 8.01 to overcome subprade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 10 at average c. p. s. - 2.50 in. from too of slab Moment analysis: • Calculated positive moment induced by expected maximum settlement - 1.45 ft-kips/ft Top compressive stress 0. 1E7 ksi Bottom tensile stress - 60 ksi In the short direction : Prestress summary: Average compressive stress at edge of building 0.091 ksi Average compressive stress at distance Beta from edge of building = 0.035 ksi Average compressive stress at center of building = 0.074 ksi Minimum number of strands required = 9.E3 to overcome subgrade Friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 13 at average c.g.s. = 2.50 in. from trip of slab _ Moment analysis: Calculated positive moment induced by expected maximum settlement = 1.58 ft-kips/ft Top compressive stress - 0. 129 ksi Bottom tensile stress = -.294 ksi W4141 S H 10 Ab FR Ah D4 I3 T) I TO T 10 R I0N T I 44 d Y. 454h4h 23 L-4N13 ID17R LITC:A" 10N 114VWST I C3A-F 1004S ofA?-W In the long direction : - Allowable shear stress = 1.5 xSGR(f' c) = 0.075 ksi Allowable differential deflection =(GxBeta or L)/800= 0.63 in Actual shear stress induced by expected maximum settlement = -0.013 ksi Expected differential deflection - 0.20 in In the short direction : Allowable shear stress = 1.5x5G1R(f' c) 0.075 ksi Allowable differential deflection =(GxBeta or L)/800= 0.59 in Actual shear stress induced by expected maximum settlement = -0.014 ksi Expected differential deflection 0.22 in `POUT --TFi`•i�,� 100WED G L AE= —�]h! —G R�,D� �]�� Y GRl G�LGULF�T IOt�.LS Desia_n by: D. J. Engineering (714)96::-5425 PAGE (-7A 17690 San Vicente Fountain Valley, California 92703 -X--m-of-X-D j- c:F r-i G i- a t c-- r i-z9L -K--K--X -X- 1. Structural design of Flab is Lased .--In recommendations by 'De5ian and Construction of Pest-Tensioned Slabs on Ground' 1586 Edition, rotblished by the Post-Tensionina Institute and 1,7J 1 U.D.C. �. This comQuter Pro Karam covers a design procedure for the design of slab-on- around foundations to resist the effects of expansive soils in accordance with Chatter 39 of the Uniform Building Code. Use of this procram shall- be limited to buildings three stories or less in height in which gravity loads are transmitted to the foundation primarily by means of bearing walls constructed of masonry,wocid or steel studs, and with or without masonry veneer. ��a��a�at•���•�•��-�-���a���:�-������*���jc-�����������x•x#jai��•��a���--r:��a����}•�������a����•����c Project Name : STONECREST 4 (PLAN 3) Protect Location : TEMECULA D.J. Engineerina Job Number : 937a6 Design date 7--13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Sail Report By : GEOSOILS Soil Reciort Number : 1156-SD Soil Report Date : 6-4-90 H PANS I "tea SO I L DIES I G-NI PA Re$1 E:-r=-RS ATTERBERG LIMIT: PI (Plasticity Index.?= Edge moisture variation distance: Em (Center Lift Condition)= 5.21 ft Em ( Edge Lift Condi tion) = 2.5 ft Estimated differential movement: Ym (Center Lift Condition? 1. 15 in Ym ( Edge Lift Cc lndition) = .26 in Allowable soil tearing oressure = '000 ❑sf Slab-subarade friction coefficient = .75 Sail modulus of plasticity ES (assumed if not orovided:) ❑si -K- C 0 N C R1---7.: DE6O I Gt t DATA �-x--x- Concrete 28 days =-.trength f' c = 2500 psi Concrete elastic mcidulus E = i;xSCiR(f' c) = 2350 E:si Concrete creep modulus Ec = 0.5E = 1425 4::si FOUNDATION SIZE: Foundation plan geometry = 56 it Iona x 40 ft wide Slab thick.ness T 5 inches Slab surface area - 2240 sa.ft Average foundation overall thickness = 6.5 inches STIFFENING BEAM SIZES: In the lane direction: Exterior Beams: 2 beams Cd- 12.00 in. wide x 16.00 in. deeG (Incl. slab) Interior Beams: 1 beams. @ 12.00 in. wide x i�' .0t) in. dace (Intl. slab) y (Average beam spacing_ = 20.0 ft. ) In the short direction: Exterior Beams: 2' beams Cj 12.00 in. wide x 18.00 in. deep (Intl. slab) Interior Beams: beams r 122.0 0 in. wide x 12.C)0 in. deep f7lnci. slab) (Average beam spacinq = 15.7 ft. ) 7-wire 1/ ' in, di.a. stress-relieved strands conforming to ASTM-1416 Tendon strength FDu = 270 41-si Crass-sectional area = Aps = 0- 153 so-in Modulus of elasticity = Eps 2E,500.00 ) psi Maximum ;iack:ina force (tc, overcome friction) = O.SFQu x Aps = �'�S i::ips Maximum anther farce (to account for ceatinq loss) = 0.7Fpu x Aps = 28.9 F;ips Maximum, effective force (to account for total prestress losses) = t).EFpu x: Aps In the lonq direction: 10 provided slab strands at c. a.s. = -2.510 in. from top of slab G provided beam strands at c.a.s. = 0.00 in. from top cf slab (Average strand spacing = 4.3 ft. o. c. ) In the short direction: 14 provided slab strand„ at c. o.s. = d2'.50 in. from top of =lab C) provided beam strands at c.q.s. = 0.00 in. from t,0a of slab (Average strand spacinq = 4.2 ft. o. c. ) TOTAL STRAND DUANTITY = 1168.0 LF - E1 21 L B S In the lone direction: Crass-sectional area - 279E:f) ; n''`2 Moment of inertia - 34109.8 in-4 Yt (c. g. c. ) _ 33:7 in Yb (c. q. c. ) - 12.3 in Section modulus, St - 9257.5 in'3 Section modulus.. Sb - 2769.7 in' Beta distance (relative stiffness lengths) _ (Ec xi/Es)``. 5/1'? 7.0 ft In the =_-hart direction: Cross-sectional area ?84x:.,C. in- oment of inertiainA Yt (c. a. c. ) 3.5 in Yb (c. q. c. ) - !1.5 in Section modulus, St = 1123E.2 in"3 Secticin modulus, Sb = 3442'.2 in'- Beta distance (relative stiffness lengths) (Ec I/Es)".25,'1` = ft DES I GINJ L 0A13 I NOS PAGE (qA UNIFORM LOADS W/O USING CODE ALLOWED LIVE LOAD REDUCTION (psf) DL LL Roof 113 16 end Floor 15 40 Exterior skin weiraht (In the Iona dir. ) = 300 Of Exterior skin weiaht (In the short- dir. ) = 300 plf L,-:!no Direction Short �: recti_a (Exterior) (Interior) (ExtrLL, � r i T_r. •.anteri��r� TRIBUTARY WIDTHS - FT: Roof 137'.00 C),Ot) 0.00 0.00 Srd Floor Ca.iaia is.CC) 0.00 i_a,00 2nd Floor 13.oc) 0.00 0.00 TOTAL BEAM LOADINGS (including beam self-weight) - PLF DL only 967 150 525 15.a DL + LL 1E.95 150 5 a 15Ca NUMBER OF BEAMS: i 1 WEIGHTED AVERAGES -- DL+LL (PLF) Average of all exterior and interior beams = 774 elf Average of all exterior beams only = 1215 olf Average of interior beams only = 150 olf Use slab perimeter leading o = 12250 elf (for flexure and shear design only) IRE=SULTS 0 T= SLAB ANAL—yS-1 S SO I L SFEAR I No S-rRF:SSE=S I N VnST 1 SAT 1 0tj5-K--3- (The average bearing stresses below are conservatively based can leads carried by the rectangular beams coupled with effective slab OF 2XW wi de) DL ONLY = ^Cal psf DL + LL - 492 psf Soil pre-_rsure safety factor = 4. 1 # �F E 7�_L1=_XUFRAL STrRI:SSEF S � �"+� �ES�'�iwl IONS Tensile stresses are r-onsidered negative in C.ion conventicns Allowable tensile stress � FxSQRa:f' c) _ -.?iac) ksi Allowable M'Tipre=_.sivE stress = 0.45xf1 c - 1. 12.,5 k:si PAGE 7-Op In the long direction Prestress summary: Average compressive stress at edge of building - 0.0% ksi Average compressive stress at distance Peta from edge of building - 0. i83 ksi Averaue compressive stress at center of building = VOW ksi Minimum number of strands reouired = 8.41 to overcome Subprade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 10 at average c. q.s. = 2.50 in. from top of slab Moment analysis: Calculated mositive moment induced by EDGE LIFT i. _ ' ft-kips/ft Too comgres.sive stress = 0. 139 ksi Bottom tensile Stress w -. 186 L::=_i Calculated negative moment induced by CENTER LIFT 5.20 ft--k:ips/fit Top tensile stress = -. 182 ksi Bottom compressive stress = 0.883 ksi in the short direction : Prestress summary: Average compressive stress at edge of building 0.090 k:_=.i Average compressive stress at distance Beta from edge of building = 0.084 4csi - Average compressive stress at center of building = 0.073 ksi Minimum number of strands required = 10.51 to overcome suKor=de friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands orov?dad = 14 at average c. q.s. = 2.50 in. from too of slab Moment analysis: Calculated positive moment induced by EDGE LIFT - 0.96. ft-kips/ft Too compressive stress = D. 154--ksi Bottom tensile stress = -. 186 ksi ..- Calculated negative moment induced by CENTER LIFT = 5.43 ft-kips/ft TOP tensile stress = -.228 ksi Bottom compressive stress = 1.061 ksi 45454- 23LIN13 13IsT=LI=EDIFI 0k4 I P4V1=S I I C3Xa'T I Qf`JS WWI In the long direction Allowable shear stress = 1.5xSDR(f' c) 0.075 ksi Allowable differential deflection at CENTER LIFT=(GxBeta or L)/360= 1.38 in Allowable differential deflection at EDGE LIFT=(6xBeta or L)/300= 0.63 in Actual shear stress induced by CENTER LIFT = -0-047 ksi Expexted differential deflection at CENTER LIFT = 1.38 in Actual shear stress induced by EDGE LIFT = -0.016 ksi Expected differential deflection at EDGE LIFT = 0.22 in In the short direction : Allowable shear stress = 1.5xSOR(f' c) = 0.075 ksi Allowable differential deflection at ^WV4 L17T=(OBeta or L)/3 0= 1.33 in Allowable differential deflection at EDGE LIFT=(SxBeta _r- WHO 0.60 in Actual shear Orson induced Ly CENTER. LIFT = --0-045 ksi .E-. p 1 fG ti CENTER T .p_:�:te.� differential deflection at Cµta,_R LIFT -• 1.3o in Actual shear stress induced by EDGE LIFT 0.014 ksi Expected differential deflection at EDGE LIFT - 0.20 in CALGULATIONS Design by: D. J. Engineering (714)962-5425 PAGE ,44 17E90 San Vicente Fountain Valley, California. 92708 1. Structural design of slab is based on recommendations by 'Design and Construction of Post-Tensioned Slabs on Ground, , 1986 Edition, published by the Past-Tensioning Institute and 1291 U.B.C. 2 This computer program covers a design procedure for the design of slab`on•- pround foundations to resist the effects of expansive soils in accordance with Chaster 29 of the Uniform Building Cede. Use of this program shall be limited to buildinas three stories or less in height in which gravity loads are transmitted to the foundation primarily by means of bearing walls constructed of masonry.wood or steal studs. and with or without masonry veneer. Project Name : STONECREST 4 (PLAN-3) Project Location : TEMECULA D.J. Engineeri.n❑ ,j ob Number . 93736 Design date a 7-13-93 No. of Stories PROVIDED SOILS DESIGN INFORMATION: Soil Report By : GEOSOILS Soil Report Number a 115G--SD Soil Report Date : C-4-90 #########3f•K k}##•�###•rc'D•####•A�#•�•k'r######i�####•Y�•Yr}r,-#######iE•###•�##•1{•##.•#1�F####•bi•#'!E"�#### GC3P1F'FRWGWI12LlE COIL DlErF3Ir7N PARAMl:TJE=RS ########x•'�•'k•�•D:#•k#•DE•##$}i•iFii•##•1EiE##jd'�F''1F#######jF•IE1F##jE•]#•i-k###•#•!�•-Y-•n=3F$:�•####•►•####•1!'####'�#�•jE•k Expected max. differential settlement - .75 in Allowable sail tearing pressure = 2000 ps.f Slab-subgrade friction coefficient = .75 Soil modulus of elasticity Es (assumed if not provided) W 1000 psi •lE###�E•3F�F�E###3F####-�1[-##############3f••�ari:########3E3F1F#########iF###�E###•z�yF########•1f•iF 4010W C:C304C1FTWIFW DlEG I C3P4 DATA 4945-W Concrete 28 days strength f' c = :500 nsi Concrete elastic modulus E = 57%SQR(f' c) = ,230 ksi Concrete Creed modulus Ec = 0.5E = 1425 ksi FOUNDATION SIZE: Foundation plan geometry = 56 ft lon❑ x 40 ft wide Slab thickness - a inche=. Slat surface area = 2240 sa.ft A - r•iVE'raQ�' foundation overall trllCk('ies= = 6.5 1nCrlcs STIFFENING BEAM SIZES: PACE In the lona direction: Exterior Beams: 2 beams @ 12.00 in. wide x 12-00 in. deem (Incl. slEb) Interior Beams: 1 beams 9 12.00 in. wide x 12.00 in. deem Lincl. slab) (Average beam spacing = 20.0 ft. :) In the short direction: Exterior Beams; 2 beams @ 12,00 in. wide x 12.00 in. deem (Inc!, slab) Interior Beams: 2 beams @ 12.00 in. wide x 12.00 in. deep (Incl. slab) (Average beam spacino 16.7 ft. ) WWAs F? a 7r FR AN rJ 13 13 J=E3 'r (3 p4 J3 yN 11 yX W W 7-wire 1/2 in. dia. stresE-relieved strands conforming to ASTM-416 Tendon strenath Fou 270 ksi CrOsa-sectional area Aps 0. 152 sc. in Modulus sf elanticitY Eos 22,500,000 psi Maximum jacking force (to overcome friction) = D.BFpu x Aps = 33 kips Maximum anchor force (to account for seating loss) = 0.7FPu x Aps = 22.9 kips Maximum effective force (to account for total prestress losses) = O.Wpu x Aps In the long direction: = 24.2 kips 10 provided slab strands at c. p.F. = 2.50 in. from top of slab 0 Provided beam strands at c.q.s. = 0.00 in. from top of 510 (Average strand spacing = 4.2 ft. o. c. :i In the short direction: 14 Provided slab strands at c. q.s. w 2.50 in. from top of slab 0 provided beam strands at :. ;. s. = 0.00 in. from tom of slab (Averape strand suacino = 4.2 ft. o. c. ) TOTAL STRAND DUANTITY = 1163.0 LF1 613.2 LDS E3 L_IN 10 EA EF C2 ir iE C3 P4 F"Ft C3 F'10 FR 17 1 in 13 45 W-W In the long direction; Cross-sectional area 2796.0 in^2 Moment of inertia 34109.8 in'4 Yt (C. P. C. ) 3.7 in Yb (c. g. c. ) 12.3 in Section modulus, St 9257.3 in'3 Section modulus, Sb 2769.7 in"S Beta distanze (relative stiffness lengths) (Ec x I/Es)".25/12 7.0 ft In the short direction: Cross-sectional area 3840.0 in-2 Moment of inertia 39607.9 in"4 Yt 3.5 in Yb (c. a. c. ) 11.5 in Section modulus, St 11226.0 in,2 Section modulus, Sb 3442.3 in"2 Beta distance (relative stiffness lensths) (Ec x T/Es)".25/12 7.2 ft :+ PAGE 7U D�EEO I Ohl L OAD I NCt — - UNIFORM LOADS W/O USING COPE ALLOWED LIVE LOAD REDUCTION (psf) DL LL S.E -Ind Floor• 15 40 Exterior =-k:in weight (In the lonq dir. ) C)o plf Exterior skin weight (In the short dir. ) = 200 plf • Lang Direction Short Direction, i:E tericr) (Intericr) (Ex teri,Dr) :Interior) TRIRUTAP,Y WIDTHS - FT: Roof 11-71,.r)0 0.00 C).[](1 C .{ 0 Wrd Floor- C). )o 4).f_nj q.c)�� ,;- -j rand Floor 13.00 0.C:_) 0,00 0,00 TOTAL REAM LOADINGS (includinq beam self-weia_ ht) - PLF DL only 567 150 525 150 DL + LL 1693 150 525 150 NUMBER OF REAMS: 2 1 WEIGHTED AVERAGES -- DL+LL (PLF) Average f_:,f all exterior and interior beams - 755 plf Average of all exterior beams only = 1158 Dlf Average of interior beams only = 150 plf Use slab perimeter loadinq D = 1::50 ❑lf (for fi;--xure and shear design only) R=-OUL-F,.S OT;-` OLAfit AP-!ALYE3IOw at SS- O I L DIE R I NO S 7 RZ-01:-:;E:O I 1 Vj=-O i I �aT I ONO__- (The average bearing stresses below are conservatively based on loads carried by the rectangular beams coupled with effective slab OF '�XW wi de) DL ONLY = 301 Dsf DL + LL = 432 qsf Soil Press"re Safety factor = 4. 1 T=L]-=XURAL O7RIESS;IES I t +. E=OT I OAT I ONS Tensile stresses are considered negative in sign conventions Allowable tensile stress = S;:SOR(fI c) = -.300 k:si Allowable camuressive stress = 0.45;;f+ c = 1. 1 5 k_si 1n the l -, _ t VEiQ Aver C-�C.' _,DmQreE sive; strs Es .� 1 a -.c tui - no kEi si - Avere:ge cc mprewsive stress at distance seta from edge ofTL-.:.i:dinq - 0 083 k Average compre=.Give stress at center of building _E.4 E::si Minimum number of strands required = 8.41 to overcame -ubgrade friction drag and also reach 50 psi minimum residual compressive stresses Total number of strands provided = 10 at average c.g.s. = 2.150 in. from top of slab Moment analvs•i=: Calculated positive moment induced by expected maximum 1.25 ft-kips/ft Top compressive stre=-= 0. 157 k-si Bottom tensile stress - .247 [,Si In the short direction Prestress summary: Average ccimaressive stress at edap of buildino - C�, igi} ksi E;51 Averane comoressive stress at distance Beta from edge of building = 0.084 - Averape compressive stress at center I:,f 0,073 E-:si Minimum number of strands required = 10.51 to overcomie subgrade friction drag and also, reach, 50 psi minimum residual compressive _:tresses Total number of strands provided = 14 at average c. g. s. _ .-I in. from top of slab 2.50 Moment analysis: Calculated positive moment induced by expected maximum Settlement 1.��? ft--kips/ft Top compres=_ive stress 0. 184 ksi Bottom tensile stress = .'�'�} ksi -W--X- SHEAR S-r RE:SSES AND D I FF� N-F I A L -X-a�-3*- SLAEK DEEFFL]ES`r1Ohl II"VIEES-FIGA-FIOINIS. -X- In the long direction ; Allowable sh-ear stress = 1.5x8OP(f1' F) 0.075 ksi Allowable differential deflection =(GxBe..ta or L)/800= r).S3 in Actual shear stress induced by expected maximum settlement = --0-018 ksi Expected differential deflection 0.20 in In the short direction Allowable shear stress = 1.5xSQR(f' c) 0-075 k_c.i Allowable differential deflection =(ExBeta or L)/'C)C)= C).Sn in Actual shear stress induced by expected maximum settlement = -i�,C�13 k:si Expected differential deflection = C).22 in NRR-24--1992 14;4g FROM L.I BBY ENGINEERS TO � � 4277307 P.01 -E GowAng StrWW- nd Erpordmn U M .FACS1141LE COVER SHEET FAX NO. (619) 284-3533 DELIVER TO: Name : Firm: ' Location; Psosimile No: z r Total Number of Pages Transmitted ( including cover mheet) � If you Ho not receive all page a transmitted, PlestsO cell our offi,ne at (619) 283-5424. COMNTS REMARKS �10 CONTACT r IF YOU WISH TO DISCUSS THE OONTEENTS OF ItHi S For.' Date Transmitted: •2 2� Time Tranami tted: Tr&nswitted by: err Job No. • ��'� COPY SENT BY MAID YES NO 44OZ'4RAC4ER WENUE,,&VI PIE00,CA'$1 20 PiONr;(619) -0424 Jamax A.I,;Ibbyl a AwW dba L"_Eiji FAX(619)9344533 MLErC 1689:13aWTSD MAP--24-1992 1 4:4! FROM L I BBY ENGINEERS TO 4e773O7 P.02 - STRUCTURAL CALCULATIONS FOR RETAINING WALL # or BRIDLEVALE JOS No . 2 9 1 9 Do AA. b 878 Cansdno S�u`d Enchm Exp �'1 31A9 (6,9) Z83-5424 - 4452 Gl ooier Aveme Scan Df eao. CA 92120 � 11AR 24 -1992 14;46 FROM L I EBY E Z I VEERS TO 197?30"1 P.03 ELlbby En inem g Computed By: � •.,.• Date !_L-lZ Checked By: Data he Nra_�bf „ ' Pr*02_6 'k (Vote No. ,_Subject .. .. ............ _ r, l i Ste' ���..�...........................,,..... ... . . _. w p� . .. ...k _ X.. '. •a �v N*,-24-1992 14:4 , FROM l._]BBY ENGINEERS TO 4877307 P.04 ELlbby Engineers Computed By: - .. Date 3-1 I�Z ChP k�ed By: —E)ate_�. ,.Sheet No_�nf Project l Note No,_ Subject_ iwl ...... t -67 ., 1 (�✓ ..�'. .• •. ��.. ]fir ,r "Zj _ �.. r 1 - - ..... [77 ...........` .. ..........__ ..... . MAR-24-1992 14:47 FRON L I BBY ENGINEERS TO 4977307 P.05 ELIbby Engineers Computed By:— -Date Checked By: Cate_.. . .{•Shett No �Qf Project Note No. Subject All . ........... wk r• -- •: a�' ___ �..../ .. ....................... ... _..... ..yam -�- � .......... ....,._,...... ... .. .. . -. .. �b .. '41 .............. ............. w MRR-24-1992 14:47 FROM L I BBY ENGINEERS TO 497'?307 P.QS ELlbby Erg ineem 9 Computed By: 'tL-- Date I.-..!_l-°�'"�(;hpc;ked By;�� pate. S�test No. Dt Projectl�, �t Note No. Subject ti t ,. ...,..0....,.4.... .f. .. r ...._....... r r MAR-24-1992 14!40 FROM LIBBY ENGINEERS TO 4877307 P.07 Table la - Section Properties for Partially Gnvuted f - Inch Concrete Masonry Wails (CM Units 62% W id) t Grout .5pacing, Area _Morent �f Inertia, 5ectiG5 Modulus, Inches A-in. /Ft Ixin. /Ft. 5-1n, /rt. yo Grout a2_DO 153.4? 514.55 48 46.25 157.51 56.00 f 40 47.10 158,33 56.29 k 32 48-37 159.55 56,73 24 50.50 161.6p 57.46 r 16 5C 75 165.70 i 58.91 Solid(r) 67.50 177.98 f 63.Za NHR-24-1992 14:48 FROM LIBBY ENGINEERS TO 4877307 R.08 I 4' f I� I ' Table lb - Secttvn PropartleS for Partially Grouted $ - inch Concrete Masonry Wails (CM Limits S5% Solid) Crgut 'Spacing, A=en.Z/Ft Moment Inertia, Section Modulus` Inches /Ft 5-in.3/Ft. No Gout 50.i0 363.83 95.43 j 48 57.00 377,0$ j 40 $8.38 379,73 99.60 32 60.45 363.71 100.54 i 2d 63.90 39CL 33 102.36 i6 70.80 4C3.58 105,$6 Sol td 91,50 443.32 116.28 I i I MAR-24-1992 14;49 FROM LIBBY aiGINEERS TO 4877307 P.09 �k C>i IJ '4 HORIw. 9- 2_4" DC.----\ / 3 —TOTAL._ f uT J• r ^f ti rr f ❑ Orl4 a !Z'l O•G. �9 _._ PF-7AiNIN WAIL- TFACT z . -�TEN1Er_QL44 CA. ►� FDA PR�SL '•t` CF SAN M1E60 Ewn*q 31 wtwd6�� 2G 11 'r L. HK 7 5, 'a� A wc. r: %". sm aI#go. Ca 121to a �: I.Z2 —9 G.M. SKEET 1 -CIF 5 MHR-24-1992 14:49 FROM L.IBB'r ENGINEERS TO 4877307 P.10 6" 18 DIAM. 18 DIAM. . 1211 i TG GY. 4�3 IV. T !{ .FOOTING STEP SHOWN —5" L x Rl1 L OIL 6UNDATION PLAN TYPICAL WALL FOOTING STEP Libby ! 'f"A FOR, PRF-et OF SAN D1�Gc� FCU�A A. Caes�l�q 5lruet�rd 6�,raE Eflolnsa?s 05 -- aa€'a ee ►v.. Son �mw. c, sx320 A k -Z�-�i� DWG. 8 G.N1. sI' MAR-24--1992 14:50 FROM L I BBY ENGINEERS TO 48 r 7-707 F. 11 ALTERCATE H11115 4C LIAM. 4. GO 011M. 2' -0 MIN. f 2'-0 MIN. i t if i i AL'6. CORNERS AID INTERSECTION5 SHALL HAVE 1#5 VERTICAL ' UNLE5$ NOTED ON THE PLANS �A' -TEEL 1.... YOU T 47, ` FOR pp5s L-Fy OF 5AN C l i:-Gc O6 `• '� + NO.: 91tyy :: M M Y � 1 -zzC Sr:�.. 9�•�, : �:� SHEET IIAR-24-1992 14:50 FROM L I BB'Y E1.0 I VEERS TO 4377307 P.12 GENERAL 1. PRIOR TO BEGINNING OF EXCAVATION, THE CONTRACTOR SHALL LOCATE EXISTING UTILITY SERVICES IN AREAS TO BE EXCAVATED. 2. THE CONTRACTOR IS RESPONSIBLE FOR PROTECTING EXISTING UTILITIES IN THE WORK AREA AND SHALL REPAIR ANY DAMAGE CAUSED BY HIS OPERATIONS AT MIS OWN COST. 3. CANTILIVERCD RETAINING WALLS SHALL NOT BE BACKFIELD UNTIL THE GROUT HAS ATTAINED ITS MINIMUM SPECIFIER COMPRESSIVE STRENGTH BUT IN NO CASE EARLIER THAN 14 DAYS AFTER GROUT PLACING. FOUNDATIONS AND SOIL 1. AN EXPLORATION OF THE SOILS UNDERLYING THE SITE OF THIS PROJECT WAS MADE BY GEOSOILS, INC. AND IS DESCRIBED IN A REPORT DATED AUGUST 28, 1991 WHICH IS ON FILE WITH THE OWNER. THE CONTRACTOR SHOULD BECOME FAMILIAR WITH THE INFORMATION CONTAINED THEREIN PRIOR TO COMMENCING ANY WORK. 2. WHERE GREATER DEPTHS OF BASEMENT OR RETAINING WALLS ARE REQUIRED, THE CONTRACTOR SHALL IMMEDIATELY NOTIFY THE ENGINEER. 3. SOIL COMPACTION AND SITE PREPARATION SHALL BE IN ACCORDANCE WITH THE SOILS REPORT. 4. ALL SOILS SITE WORK SHALL BE DONE UNDER THE DIRECT OBSERVATION OF 'THE SOILS ENGINEER. S. FOOTING EXCAVATIONS SMALL BE FREE FROM LOOSE MATERIAL AND STANDING WATER, BEFORE ANY FOOTING CONCRETE IS PI..ACFD. 6. All FOUNnATION EXCAVATIONS SHALL BE CHECKED BY THE SOILS ENGINEER TO INSURE COMPLIANCE WITH THE INTENT OF THE SOILS REPORT AND THESE PROVISIONS. REINFORCED CONCRETE 1. THE MAXIMUM SLUMP AND MINIMUM CEMENT CONTENT SHALL BE 4 INCHES AND 500 LBS/GY, RESPECTIVELY. THE MINIMUM 28 DAY CYLINDER STRENGTH SHALL BE AS FOLLOWS. A. `GUNDATIONS EOOO PST QL CR.LTE 9LOCKZQN IT MASONRY 1. ALL CONCRETE MASONRY UNITS SHALL CONFORM TO ASTM C 90, GRADEN-1, (MEDIUM) WEIGHT, F'm - 1,500 PSI. 2. MORTAR SMALL BE TYPE "S" HAVING A MINIMUM COMPRESSIVE STRENGTH OF 1,800 PSI AT 28 DAYS. 3. GROUT SHALL AI i-AIN A MINIMUM G(>{ FRLS51VE: SiRLNGIH OF 2,000 PSI AT 28 DAYS. 4. GROUT ALL CELLS IN MASONRY. 4of5 MAR ?4-199? 4 1 FROr L I PP r ENG INEERS _ TO 4877307 —R 13 - S. VERTICAL REINFORCING BARS ARE TO BE PLACED IN THE CENTER OF ALL MALLS. 0. PROVIDE INSPECTION AND CLEAN-OUT HOLES AT THE BASES OF VERTICAL CELLS HAVING GROUT LIFTS WHICH ARE MORE THAN 4'-0" IN HEIGHT. 7. OVERHANGING MORTAR AND MORTAR DROPPINGS AND ALL DEBRIS SHALL BE REMOVED FROM THE CELLS TO RECEIVE GROUT. 8. ALL HORIZONTAL REINFORCEMENT SHALE. BE PLAGLU IN BOND BEAM, S. MISALIGNED DOWELS SHALL BE RLPLACLU W11H PROPERLY ALIGNED DOWELS EPDXY GROUTED INTO DRILLED HOLES SATISFACTORY TO THE ENGINEER, S p i CAL-._I IDS P E CT I ON SPECIAL INSPECTION BY SPECIAL INSPECTORS SATISFACTORY TO THE BUILDING OFFICIAL IS REQUIRED FOR THE FOLLOWING TYPES OF WORK IN CONFORMANCE WITH UBC' SEC. 306 OF THE 1988 EDITION. 1. CONCRETE: DURING THE TAKING OF TEST SPECIMENS AND PLACING OF A�LF. REINFORCED CONCRETE. 2. REINFORCING STEEL 3. STRUCTURAL MASONRY: DURING SAMPLING AND PLACING OF ALL MASONRY UNITS, PLACEMENT OF ALL REINFORCEMENT, INSPECTION OF GROUT SPACE IMMEDIATELY PRIOR TO CLOSING OF CLEANOUTS, AND DURING ALL GROUTING OPERATIONS. 5 of 5 TOTPL P. 13 • OCTOBER 1 ST, 1992 SED JN: 391-2088 SHAKTI i s CORPORATION ENGINEERING and DESIGN GROUP A CONSULTING ENGINEERS & DESIGNERS A CALIFORNIA CORPORATION CLIENT i THE PRESLEY COMPANIES ARCHITECT BASSENIAN/LAGONI + PROJECT DESCRIPTION STRUCTURAL CALCULATION ON THE "STONECREST 4 / VAILWOOD" PROJECT, FOR PRESLEY OF SAN DIEGO, TO BE BUILT THE CITY OF TEMECULA ,COUNTY OF RIVERSIDE, CALIFORNIA • PLANS 1 ,213 AND DETAILS ❑ 17821 Skypark Circle - Suite J - Irvine - CA 92714 - (714) 261-2060 - FAX (714)261-5899 4130 La Jolla Village Drive - Suite 303 - La Jolla- CA 92037- (619) 535-8999- FAX (619)535-9077 SHAKTI TM a� CORPORATION , ENGINEERING and DESIGN GROUP STANDARD SPECIFICATIONS FOR STRUCTURAL CALCULATIONS * PRESLEY. OF SAN DIEGO PLANS 1 , 2, 3 SED JN: 391-2088 & DETAILS L-1.. :.C. 199t THE D RAW I P.GS W CAL..L';t..J _AT IONS, {:;PEC I F I C::AT I f_•JNS,AkII7 REPRODUCTIONS ARE,- uJs-uF UPIE:.NT•S OF SERV I C.:E TO BE_ USED ONLY FOR PROJECT COVERED BY AGREEMEN•1` AND COVER SHEET. ANY OTHER' USE IS S(:L.I: L_Y • - Tf•IE STRUCTURAL.- CA[-.(:`L.JI.._(v-IONS It•:IC:,LL.JDI:�T) I-•IETZE ARE FOR THE ANALYE IS AND DESIGN OF THE PRIMARY STIRL.JCTURAL SYSTE-M I'•.1(:)r'.I—S-1-RL.JC:TUF.,'AL_ ELEMENTS AND THE A.1"TA(,HMF...NT MECI-4ANISIl IS THE::: RESPONSIBILITY OP '1••F••lf;, �AR(:::I•-I;L TE:'.(• T OR DEf:S I.GNEI UNLESS SPEC I F•I C;AL..L...Y SHOWN OTHERWISE=, ALL CHANGE'S MADE T(] THE SUBJE:.C"T PROJECT SHALL LSE: SL.IBM I T-I-ED TO --c I _� EW AND C::C:MMI NT S. • , "I"HE. 6TRUCrI fUI,AL_I�DE'I-TA ILLS I1\1 7•T•HE.?SEE I�CALCULATIONS�� � } EMf'F••i-)5,I 'L• THE . E'1'1[3IN LEE: R I G A5PI-"CT OF• -I"I••iE 1DEa S I61\1. - ----- ____---- -------__ ---- ,------_ _--_----__ ------------_--_------ JFgCiCJF' F=LCM(DFR • I.._I VE LDOE, 16.,0 PSF W/O CC:NCRETI:_: BU I LD---UF' LIVE LOAD 4C)-0 PSF_ Iilf:? 13F: TRUS6 1 .5 DL_. OF FIPSI FL 5,0 CEILING is-T 1 .5 :�h IE::.Al"1 I:f N(:a 1• DRYWAL..L E:'.-`.; f: L.00R JOISTS 3.0 I`1:L E:,C;, 1. ,. :) DRYWALL.. 2.5 DEAD I.._(=JAI:) SI.._ 'I-OTAL DEAL) L_-OAIID 12-0 PSF_ TD T•AL L...OAID •3ti ,t; F'l;F: TOTAL. -L..OAI) 52 0 FEIF L..i_-/I . 5-4-DI__ :31. .,,i) f•'-`ctil. --------------------------------------------------w------------ --- SHAKTI ENGINEERING AND DESIGN REVISIONS: DATE: • A DATE: . . . . . . . . . . . . . THIS SIGNATURE IS TO BE A WET B DATE: . . . . . . . . . . . . . . : : SIGNATURE, NOT A COPY. C DATE: . . . . . . . . . . . . . . - - D DATE: . . . . . . . . . . . E DATE: . . . . . . . . . . . . . . PROJECT DESCRIPTION: ( 1 ) 1— STORY HOUSE (2) 2-- STORY HOUSES Z STONECREST 4 TEMECULA, CA. PROJECT ENGINEER:AMIR \ y' _ - OCT 1 9 f SHAKTI 3.. CORPORATION ENGINEERING and DESIGN GROUP • GENERAL REQUIREMENTS O • ALL ENGINEERS DRAWING, CALCULATIONS, SPECIFICATIONS, SKETCHES AND THE IDEAS I INCORPORATED THEREIN, WHETHER IN THE FORM OF ORIGINAL DOCUMENTS OR COPIES THERE OF AS INSTRUMENTS OF SERVICE ARE AND SHALL REMAIN THE PROPERTY OF SHAKTI CORPORATION. SUCH DOCUMENTS MAY NOT BE USED BY THE CLIENT OR OTHERS ON ANY OTHER PROJECT NOR MODIFIED FOR THIS OR ANY OTHER PROJECT WITHOUT THE EXPRESS WRITTEN PERMISSION OF OUR FIRM • IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, THE • CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THE PROJECT INCLUDING SAFETY OF ALL PERSONS AND PROPERTY, THAT THIS REQUIREMENT SHALL BE MADE TO APPLY CONTINUOUSLY AND NOT TO BE LIMITED TO NORMAL WORKING HOURS. i • SHAKTI CORPORATION MAKES NO RESPONSIBILITY CONCERNING SOIL CONDITIONS AND IS NOT RESPONSIBLE. FFOR ANY LIABILITY THAT MAY ARISE OUT OF THE MAKING OR FAILURE TO MAKE SOIL SURVEYS, OR SUB-SURFACE SOIL TESTS, OR GENERAL SOIL TEtTING. h • SHAKTI CORPORATION IS NOT RESPONSIBLE FOR THE CONTRACTORS OPERATIONS IN THE AREA OF CONSTRUCTION SAFETY, METHODS OF ACCOMPLISHING THE WORK, OR TIME OF COMPLETION. • SHAKTI CORPORATION IS NOT RESPONSIBLE FOR ANY PERSONAL INJURIES OR (CASUALTIES ON THE JOB SITE WHILE UNDER CONSTRUCTION AND OR ANYTIME THEREAFTER. • THE ENGINEER IS NOT RESPONSIBLE FOR DELAY, NOR SHALL THE ENGINEER BE RESPONSIBLE • FOR DAMAGES OR BE IN DEFAULT OR DEEMED TO BE IN DEFAULT BY REASON OF STRIKES, LOCKOUTS, ACCIDENTS, OR NATURAL DISASTERS, OR THE FAILURE OF THE CLIENT TO FURNISH TIMELY INFORMATION OR TO APPROVE OR DISAPPROVE ENGINEERS WORK PROMPTLY OR DELAY OR FAULTY PERFORMANCE BY_THE CLIENT, OTHER CONTRACTORS, GOVERNMENTAL AGENCIES, OR ANY OTHER DELAYS BEYOND CONSULTANTS REASONABLE CONTROL. X A COMPLETE SET OF CALCULATIONS SHOULD.BE ON THE JOB SITE DURING CONSTRUCTION. SKETCHES OF DETAILS IN CALCULATIONS ARE ONLY GRAPHIC REPRESENTATIONS OF TRUE CONDITIONS ON PLANS. ARCHITECT OR DESIGNER IS RESPONSIBLE FOR DRAWING DETAILS IN PLANS WHICH REPRESENT TRUE FRAMING CONDITIONS AND SCALE. (THIS WOULD APPLY WHEN SHAKTI CORPORATION IS NOT DOING DRAWINGS.) SHAKTI tt . CORPORATION ENGINEERING and DESIGN GROUP • GENERAL NOTES 1. THE GENERAL CONTRACTOR SHALL VERIFY ALL DIMENSIONS, FRAMING CONDITIONS AND SITE CONDITIONS BEFORE STARTING WORK. THE ARCHITECT OR SHAKTI CORPORATION SHALL BE NOTIFIED OF ANY DISCREPANCY. 2. THE DESIGN, ADEQUCY AND SAFTY OF ERECTION BRACING, SHORING TEMPORARY SUPPORTS, ETC. IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR, AND HAS NOT BEEN CONSIDERED BY SHAKTI CORPORATION. THE CONTRATOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE PRIOR TO THE APPLICATION OF ALL SHEAR WALLS, ROOF& FLOOR DIAPHRAGRAMS AND FINISH MATERIALS. HE SHALL PROVIDE THE NECESSARY • BRACING TO PROVIDE $TABILITY PRIORR TO THE APPLICATION OF THE AFOREMENTIONED MATERIALSS.. OBSERVATION VISITS TO THE SITE BY SHAKIT CORPORATION SHALL NOT INCLUDF,INSPECTION OF THE ABOVE ITEMS. 3. CONTRACTOR SHALL INVESTIGATE SITE DURING CLEARING AND EARTHWORK OPERATION FOR FILLED EXCAVATIONS OR BURIED STRUCTURES SUCH. AS CESSPOOLS, CISTERNS, FOUNDITIONS ETC. IF ANY SUCH STRUCTURES ARE FOUND, SHAKTI CORPOATION SHALL BE NOTIFIED IMMEDIATELY. 4. THE GENERAL CONTRACTOR SHALL CORDINATE AND VERIFY WITH THE PLUMBING, • MECHANICAL AND ELECTERICAL CONTRACTORS .THE SIZE & LOCATION OF ALL PIPING, DUCTWORK, PITS, DDEPRESSION, ROOF OPENINGS, TRENCHES, SLEEVES, SPECIAL BOLTING FOR EQUIPMENT CONDUITS, ETC. , THROUGH AND UNDER CONCRETE SLABS PRIOR TO POURING OF FOOTINGS AND FLOOR SLABS.' 5. ALL WORK SHALL CONFORM TO THE MINIMUM STANDARDS OF THE 1991 EDITION OF THE U.B.C, AND ANY OTHER REGULATING AGENCIES WHICH HAVE AUTHORITIY OVER ANY'PORTION OF THE WORK, INCLUDING THE STATE OF CALIFORNIA DIVISION OF INDUSTRIAL SAFETY AND THOSE CODES AND STANDARDS LISTED IN THESE NOTES AND SPECIFICATIONS. 6. THESE NOTE SHALL BE USED IN CONJUCTION WITH THE PLANS AND ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCH ITECT/ENGINEER_ 7. DIMENSIONS SHALL TAKE PRECENDCE OVER SCALES SHOWN ON DRAWINGS.I TYPICAL DETAILS AND GENERAL NOTES ARE MINIMUM REQUIREMENTS TO BE USED WHEN CONDITIONS ARE NOT SHOWN OTHERWISE. 8. NOTES AND DETAILS ON DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL NOTES AND TYPICAL DETAILS_ WHERE NO DETAILS ARE SHOWN CONSTRUCTION SHALL CONFORM TO • SIMILAR WORK ON PROJECT 9. APPROVAL BY THE INSPECTOR DOES NOT MEAN APPROVAL OR FAILUR TO C*oMPLY WITH THE PLANS AND SPECIFICATIONS. ANY DESIGN WHICH FAILS TO BE CLEAR OR IS AMBIGUOUS MUST BE REFERRED TO THE DESIGNER OR ENGINEER FOR INTERPRETATION OR CLARIFICATION. 10. VIBRATION EFFECTS OR MECHANICAL EQUIPMENT HAVE NOT BEEN CONSIDERED BY SHAKTI CORPORATION 11. CONSTRUCTION MATERIALS SHALL BE SPREAD OUT IF PLACED ON FRAMED FLOORS OR ROOF • LOAD SHALL NOT EXCEED THE DESIGN LIVE LOAD PER SQUARE FOOT. PROVIDE ADEQUATE SHORING AND/OR BRACING WHERE STRUCTURE HAS NOT ATTAINED DESIGN STRENGTH. 12. DESIGN, MATERIALS, EQUIPMENT, AND PRODUCTS OTHER THAN THOSE DESCRIBED BELOW OR INDICATED ON THE DRAWINGS MAY BE CONSIDERED FOR USE, PROVIDED PRIOR APPROVAL IS OBTAINED FRROM THE OWNER ARCHITECTS/ENGINEER, AND THE APPLICABLE GOVERNING CODE AUTHORITY. 13. CONCRETE SLAB ON GRADE HAS NOT BEEN DESIGNED BY SHAKTI CORPORATION. • ' SHAKTI 5 CORPORATION ENGINEERING and DESIGN GROUP • GENERAL SPECIFICATION NOTES . THESE NOTES SHALL BE USED IN CONJUNCTION WITH THIE PLANS AND ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ARCHITECT/ENGINEER. I - ALL WOOD, BEARING ON CONCRETE OR MASONRY SHALL BE PRESSURE TREATED DOUGLAS FIR. II - PLYWOOD FOR ROOF SHEATHING SHALL BE COX. 'USE EXTERIOR TYPE, MINIMUM GRADE WHERE PLYWOOD IS EXPOSED TO WEATHER. III - PROVIDE 1 X6 DIAGONAL LET IN BRACING ([a APPROXIMATE 45-DEGREE) EVERY 25'-0" MAXIMUM IN STUD WALLS NOT SHEATED. NAIL BRACES WITH (2)-8d'S PER STUD AND(3)-8d'S AT EACH TO PLATE. IV - ALL BEAMS TO BE SUPPORTED WITH FULL BEARING UNLESS OTHERWISE NOTED. V - ALL NAILING IS TO BE PER TABLE 250 OF THE UNIFORM BUILDING CODE, 1991 EDITION, UNLESS OTHERWISE NOTED. VI - TOP PLATES OF ALL STUD WALLS SHALL BE 2 PIECES OF SAME SIZE AS STUDS. SPLICES TO LAP 4'-0" MINIMUM. . VIII - PROVIDE 2X SOLID BLOCKING BETWEEN JOISTS,RAFTERS AND TRUSSES AT ALL SUPPORTS, AND AT 8'-o"O.C.,MAXIMUM. BLOCKING SHALL BE ONE PIECE ANDTHE FULL DEPTH OF THE JOISTS OR RAFTERS. VIV - PROVIDE DOUBLE JOISTS UNDER PARTITIONS AND WALLS WHICH ARE PARALLEL TO THE DIRECTION OF THE FLOOR JOISTS. X - ALL WOOD FRAMED STRUCTURES ARE TO BE CONSTRUCTED UPON SECTION 2516 AND 2517 OF THE UNIFORM BUILDING CODE UNLESS OTHERWISE NOTED. XI - ALL HARDWARE IS TO BE SIMPSON STRONG TIE OR AN APPROVED EQUAL IN STRUCTURAL _ DESIGN AND LOAD VALUES. FULLY NAIL ALL THE HARDWARE, I.E. STRAPS,PA'S HANGERS PB'S, PG'S AND ETC. XII - ALL EXTERIOR WALLS ARE TO SECURED WITH 1/2"01AMETER X 10"LONG ANCHOR BOLTS AT MINIMUM OF 72"O.C., UNLESS OTHERWISE NOTED. XIII - ALL INTERIOR WALLS ARE TO BE SECURED WITH SHOT PINS PER MANUFACTURER RECOMMENDATIONS UNLESS OTHERWISE NOTED. RECOMMEND RAMSET#3348 AT 36"O.C. FOR SHEAR/BEARING;WALLS AND 48"O.C. AT NON-SHEAR/NON-BEARING WALLS, CALCULATIONS GOVERN IN ALL THE CASES. XIV - ALL ISOLATED POSTS AND BEAMS ARE TO HAVE SIMPSON PB'S AND PC'S MINIMUM(OR AN APPROVED EQUAL IN STRUCTURAL DESIGN AND LOAD VALUES) UNLESS OTHERWISE NOTED. XV - FLOOR JOISTS ARE NOT DESIGNED TO SUPPORT WATER BEDS. INFINITY GROUP SHOULD BE NOTIFIED IF WATER BEDS ARE USED. XVI -ALL EXPOSED BEAMS 4X OR LARGER ARE TO FOHC(FREE OF HEART CENTER). XVII - WOOD EMBEDDED IN THE GROUND OR IN DIRECT CONTACT WITH THE EARTH AND USED FOR THE SUPPORT OF PERMANENT STRUCTURES SHALL BE PRESSURE TREATED WOOD OR FOUNDATION GRADE REDWOOD. XVIII- PHILLIPS 'RED HEAD"ANCHORS WS-1254 W/2-1/4"MIN. EMBEDMENT MAY BE USED IN-LIEU OF MISS-PLACED 1/2"DIA.X 10-LONG ANCHOR BOLTS. XIV - PROVIDE FURRING AS NEEDED TO ALIGN NON-SHEAR WALLS,WITH SHEAR WALLS. XV - TRUSS MANUFACTURER TO PROVIDE CALCULATIONS, SHOP DRAWINGS, DETAILS, BRIDGING AND ERECTION BRACING. Y SHAKTI 6 CORPORATION ENGINEERING and DESIGN GROUP SOLE PLATE NAILING 12N 16d SOLE PLATE NAILING AT 12" O.C. 10N 16d SOLE PLATE NAILING AT 10" O.C. 8N 16d SOLE PLATE NAILING AT 8"O.C. 6N 16d SOLE PLATE NAILING AT 6" O.C. 4N 16d SOLE PLATE NAILING AT 4" O.C. 2N 16d SOLE PLATE NAILING AT 2" O.C. t BALLOON FRAME WALL A. (1)-2 X 4 AT 16" O.C. 14'-0" MAX. LATERALLY UNSUPPORTED HEIGHT. B. (2)-2 X 4 AT 16" O.C. 16'-0" MAX. LATERALLY UNSUPPORTED HEIGHT. C. (3)-2 X 4 AT 16" O.C. 18'-0" MAX. LATERALLY UNSUPPORTED HEIGHT D. (4)-2 X 4 AT 16" O.C. 20'-0- MAX. LATERALLY UNSUPPORTED HEIGHT. E. (1)-2 X 6 AT 16"O.C. 20'-0" MAX. LATERALLY UNSUPPORTED HEIGHT. MAXIMUM CEILING JOIST SPAN r 2X4AT24"O.C. 8'-6" 2X4AT16"O.C. 9'-6" 2 X 6 AT 24" Q.C. 12'-0" 2X6AT16"O.C. 13'-0" 2 X 8 AT 24"O.C. 14'-0" 2X8AT16"O.C. 16'-0" HEADER SIZE HEADER SIZES REFLECTS MINIMUM REQUIREMENTS ONLY AND SHOULD NOT LAY FLAT CONTRACTOR MAY USE 6 X HEADERS WHERE APPLICABLE. SHAKTI 7 CORPORATION ENGINEERING and DESIGN GROUP 4 • QUALITY AND DESIGN CRITERIA OF THE MATERIAL OF RESIDENTIAL CONSTRUCTION (A). GENERAL - 1991 UNIFORM BUILDING CODE. - LOS ANGELES BUILDING CODE. - CALCULATION.SHEETS WILL SUPERSEDE THIS DESIGN CRITERIA SHEET IN ALL CASES. (B). TIMBER - WESTERN LUMBER GRADING RULES 81, W.W.P.A_ GRADE MARKED W.C.D.F. LARCH (SEASONED LUMBER, 19% MAXIMUM MOISTURE CONTENT). 2X RESPETITIVE USE •No 1 1750 95 1800 SINGLE USE No 1 1500 95 1800 REPETITIVE USE No 2 1450 95 1700 SINGLE USE No 2 1250 95 1700 V 4X No 1 1500 95 1800 No 2 1250 95 1700 6X OR GREATER 'No 1 1200 85 1600 No 1 1300 85 1600 "S.S. 1500 85 1600 " S.S. 1600 85 1600 GLUE-LAM BEAMS DF/DF 2400 165 1800 " ..... WIDTH NOT MORE THAN 2" GRATER THAN THICKNESS. S.S. .. SELECT STRUCTURAL GRADE. DF/.DF . DOUGLAS FIR-LARCH, 24F-V4 -ALL STUDS AND PLATES SHALL BE W.C.D.F.#2 OR BETTER. - IT IS RECOMMENDED THAT LUMBER BE FREE OF HEART CENTER. (C). CONCRETE - ALL CONCRETE SHALL REACH MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS. - ALL SLAB-ON-GRADE, CONTINUOUS FOOTING AND PADS F' (c)=2000 psi ALL STRUCTURAL CONCRETE .............................................. F' (c)=3000 psi. - FOR USE IN SPACES LESS THAN 2"CLEAR IN ANY DIMENSIONS AND DRYPACK, GROUT PROPORTIONED BY VOLUME SHALL BE 1 PART CEMENT AND 2-1/4 TO 3 PARTS SAND TO WHICH 1/10 PART LIME MAY BE ADDED - CEMENT SHALL BE PORTLAND CEMENT CONFORMING TO ASTM C-150. FINE AND COARSE AGGREGATE SHALL CONFORM TO ASTM C-33 REFERENCE BOOK; ULTIMATE STRENGTH DESIGN HANDBOOK, ACI (B). MASONRY - CONCRETE BLOCK SHALL CONFORM TO ASTM C-90 FOR GRADE N-1 LIGHTWEIGHT UNITS WITH MAX. LINEAR SHRINKAGE OF 0.06%. - SOLID GROUT ALL CELLS WITH STEEL, EXCEPT RETAINING WALL WHERE ALL CELLS SHOULD BE SOLID GROUTED. - LOCATE ALL VERTICAL REINFORCING STEEL IN CENTER OF THE WALL EXCEPT RETAINING WALL WHICH SHOULD BE,REFERRED TO DETAIL. - CONCRETE SURFACES SHALL BE CLEANED OF ALL DEBRIS PRIOR TO SETTING OF BLOCKS. - REFERENCE BOOK; MASONRY CODES AND SPECIFICATION 1991 SHAKTI $ CORPORATION ENGINEERING and DESIGN GROUP (E). REINFORCING STEEL CONCRETE PROTECTION FOR REINFORCEMENT SHALL BE ATjLEAST EQUAL TO THE BAR DIAMETER. THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCEMENT: A. CONCRETE CAST AGAINST EARTH, PERMANENTLY..... 3". B. CONCRETE CAST AGAINST FORM BELOW GRADE....... 2". C. CONCRETE CAST AGAINST WEATHER,#5 & SMALLER. 1-1/2". D. SLAB-ON-GRADE FROM TOP OF SLAB............................. 1". E. COLUMNS AND BEAMS TO MAIN BARS............................. 2". ALL REINFORCING BARS SHALL BE ACCURATELY AND SECURELY PLACED BEFORE POURING CONCRETE, OR GROUTING MASONRY. SPLICING OF BARS SHALL HAVE LAPPING OF 30 BAR DIAMETER OR 2'-0"MINIMUM IN ALL CONTINUOUS CONCRETE REINFORCEMENT. MASONRY REINFORCEMENT SHALL HAVE LAPPINGS OF 40 BAR DIAMETER OR 2'-0". THIS IS IN ALL CASES UNLESS OTHERWISE NOTED. ALL REINFORCING SHALL BE ASTM A-615-40 FOR#5 BARS AND SMALLER. - ALL REINFORCING SHALL BE ASTM A-615-60 FOR,$6 BARS AND GREATER. WELDED WIRE FABRIC TO BE ASTM A-185, LAP 1-1/2 SPACES, 9" MINIMUM. LOW HYDROGEN WELDING RODS SHALL BE USED-'OR ALL WELDING OR REINFORCING BARS. - SPLICES IN ADJACENT HORIZONTAL WALL REINFORCING BARS SHALL BE STAGGERED 4'-0" MIN. UNLESS OTHERWISE NOTED. - #5 OR LARGER REINFORCING BARS SHALL NOT BE RE-BENT WITHOUT APPROVAL OF ENGINEER. (F). STRUCTURAL STEEL - STEEL SHALL CONFORM TO ASTM A-36. - PIPE COLUMNS SHALL CONFORM TO ASTM A-53, GRADE B. - TUBE COLUMNS SHALL CONFORM TO ASTM A-501 OR A-500 GRADE B. - ALL WELDING SHALL BE PERFORMED BY CERTIFIED WELDER, USING THE ELECTRIC SHIELDED ARC PROCESS AT LICENSED SHOPS OR OTHERWISE APPROVED BY THE BUILDING DEPARTMENT. CONTINUOUS INSPECTION REQUIRED FOR ALL FIELD WELDING. - ALL STEEL EXPOSED TO WEATHER SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION OR OTHER APPROVED WEATHER PROOFING METHOD. - WHERE FINISH IS ATTACHED TO STEEL PROVIDE 1/2" BOLT HOLES AT 4'-0" O.C. FOR ATTACHMENT OF NAILERS.. SEE ARCHITECTURAL DRAWING FOR FINISHES (NELSON STUDS 1/2" DIA X 3" CPL- MAY BE USED TO REPLACE BOLTS) ALL BOLTS FOR STEEL MEMBERS SHALL CONFORM TO ASTM A-307 UNLESS OTHERWISE NOTED. HI-TENSILE BOLTS SHALL CONFORM TO ASTM A-325 OR ASTM A-490 AND SHALL BE FRICTION TYPE. - REFERENCE BOOK; SPECIFICATION FOR THE DESIGN, FABRICATION, AND ERECTION OF STRUCTURAL STEEL FOR BUILDING AND AISC, CURRENT EDITION. ti SHAKTI CORPORATION ENGINEERING and DESIGN GROUP HAKTI EN INEERIN AND DE 1 N 1 n ul IV V VI S S P CEILING ROOF RAFT./JST ROOF RAFT./JST ROOF RAFT./JST ROOF RAFT./JST FLOOR JST. FLOOR JST. I A JOIST SLP>/4:12(SHAKE) LP>/3:12 (ROCK) SLP>/4:12 (TILE) SLP>/4:12 (TILE) LL=40 PSF LL-40 PSF Z C W/O W/DRYWALL W/O W/DRYWALL W/O W/DRYWALL W/O W/DRYWALL WIO CONC. W/CONC. EE N0.2 NO.1 NO.2 NO.2 NO.1 NO.2 N0.2 NO.1 NO.2 NO.2 NO.1 NO.2 NO.2 NO.1 No.2 No.1 No.2 No.1 212 12-0 12-3 X 16 10-8 11-0 . 424 9-0 9-8 212 19-6 20-3 15-2 14-4 14-6 14-0 13-3 13-9 13-6 13-0 13-3 13-0 12-3 12-9 10-6 10-9 9-6 10-0 X 16 17-6 18-0 13-9 13-3 13-6 12-9 12-3 12-6 11-9 11-6 11-9 11-3 10-9 11-0 -6 9-9 8-6 9-0 624 15-3 15-9 11-6 11-0 11-3 10-9 10-9 11-0 9-6 9-0 9-3 8-9 8-3 8-6 8-3 8-6 7-0 7-6 212 25-0 26-0 20-3 19-3 19-9 18-6 18-0 18-3 18-0 17-6 17-9 17-3 16-9 17-0 14-0 14-3 13-0 13-9 X 16 22-9 23-6 18-3 17-3 17-9 17-0 16-3 16-9 15-9 15-3 15-6 15-3 14-9 15-0 12-9 13-0 11-6 12-0 824 20-0 20-9 15-3 15-0 15-3 14-3 14-0 14-3 12-0 11-9 12-0 11-9 11-3 11-6 10-9 11-3 9-6 10-6 212 32-0 33-0 25-0 24-9 25-3 24-0 23-0 23-6 23-3 22-3 22-9 23-3 21-9 22-0 18-0 18-6 17-3 17-6 X 16 28-4 30-0 23-6 22-3 22-9 21-6 20-9 21-3 20-0 19-6 19-9 19-9 19-3 19-6 16-0 16-6 15-0 16-0 1024 25-9 26-6 19-6 18-3 19-3 18-0 17-3 17-6 15-9 15-3 15-6 15-3 14-9 15-0 13-9 14-4 12-0 13-3 212 30-9 22-9 30-3 28-6 27-9 28-0 27-9 26-9 27-3 273 26-3 26-9 1-9 22-6 20-9 21-6 X 16 28-0 26-9 27-9 25-9 25-3 25-6 24-9 23-9 v 24-3 24-3 23-3 23-9 19-9 20-0 18-9 19-6 1224 24-3 22-0 23-9 21-9 20-9 21-3 19-3 18-9 19-0 18-9 18-3 18-6 16-0 17-6 15-0 16-0 212 5-0 26-0 24-9 26-0 X 16 422-6 23-6 21-6 22-9 14 24 19-0 20-6 17-0 18-0 . ALLOWABLE SPANS FOR RAFTERS,CEILING AND FLOOR JOISTS. AS PER 1991 STANDARD GRADING RULES FOR WESTERN LUMBER DOUGLAS FIR-LARCH (NORTH): No. 1 &APPEARANCE: F(BENDING)=1750 psi F ( SHEAR )= 95 psi E (MOD.E1. )-1800 ksi DEFLECT(LL)=L/360 ; DEFLECT(LL+1/2DL)-L/240 No. 2............................: F(BENDING)=1450 psi F( SHEAR ) = 95 psi E(MOD.E1. ) .1700 ksi DEFLECT(LL)=L/360 ; DEFLECT(LL+WDL)-L/240 a HE SPANS IN THIS TABLE ARE INTENDED FOR USE IN COVERED STRUCTURES r R WHERE MOISTURE CONTENT AT TIME OF INSTALLATION AND INSTALLED DROWN-UP DOWS NOT EXCEED 19%--- 1991 UNIFORM BUILDING CODE. ' I LA SHAKTI O CORPORATION ENGINEERING and DESIGN GROUP r LATERAL SHEAR WALL NOTES (1991 UNIFORM BUILDING CODE) VERTICAL DIAPHRAGM VALUES FOR GYPSUM BOARD WILL BE DEVIDED BY TWO IF SEISMIC GOVERNS STUD SPACING r 1 2-LAYERS OF 5/8"BLOCKED DRYWALL AT 16"O.C. W/6D COOLER NAILS AT 9"O.C.AT EDGES&FIELD AT BASE LAYER W/8D COOLER NAILS AT 7"O.C.AT EDGES& FIELD AT FACE LAYER(TABLE 47-1 UBC).................................. 1/2'250 PLF 2 1/2"DRYWALL WITH 5D COOLER NAILS AT 7"O.C.AT EDGES AND FIELD(TABLE 47-1 UBC)........................... 1/2'100 PLF . P ......................... 1/2"115 PLF 3 5/8"DRYWALL WITH 6D COOLER AI ILS AT 7"O.C.AT EDGES AND FIELD(TABLE 47-I UBC).. 4 1/2"DRYWALL WITH 5D COOLER NAILS AT 4"O.G.AT EDGES AND FIELD(TABLE 47-1 UBC)........................ ... 1/2'125 PLF 5 5/8"DRYWALL WITH 6D COOLER NAILS AT 4"O.C.AT EDGES AND FIELD(TABLE 47-1 UBC)............................ 1/2.145 PLF 6 1/2"BLOCKED DRYWALL WITH 5D COOLER NAILS AT4"O.C.AT EDGES AND FIELD (TABLE 47-1 UBC).......... 1/2'150 PLF 7 5/8"BLOCKED DRYWALL WITH 6D COOLER NAILS AT 4"O.C.AT EDGES AND FIELD (TABLE 47-1 UBC).......... 1/2.175 PLF 8 7/8 STUCCO OVER PAPER LATH WITH 16 GAUGE STAPLES AT 6"O.C.AT TOP &BOTTOM PLATES, EDGE OF SHEAR WALL ON FIELD(ICBO REPORT NO. 1318 APRIL 1991).....................................................................180 PLF 9 7/8"STUCCO OVER PAPER LATH WITH 16 GAUGE STAPLES AT 3"O.C.AT TOP & BOTTOM PLATES, EDGE OF SHEAR WALL ON FIELD (ICBO REPORT NO. 1318 APRIL 1991)........................................................ ....... .325 PLF a 10 3/8"STRUCTURAL II PLYWOOD WITH 8D NAILS AT 6"O.C.AT EDGES& 12"O.C.AT FIELD(TABLE 25K UBC)........265 PLF 11 3/8"STRUCTURAL 11 PLYWOOD WITH 8D NAILS AT 4"O.G.AT EDGES& 12"O.C.AT FIELD(TABLE 25K WBC)........384 PLF 12 3/8"STRUCTURAL 11 PLYWOOD WITH 8D NAILS AT 3"O.C.AT EDGES& 12"O.C.AT FIELD(TABLE 25K UBC).......492 PLF *13 3/8"STRUCTURAL II PLYWOOD WITH 8D MAILS AT 2"O.C.AT EDGES& 12'O.C.AT FIELD (TABLE 25K UBC).....636 PLF i 14 15/32'STRUCTURAL I PLYWOOD WITH 8D NAILS AT 2"O.C.AT EDGES& 12"O.C.AT FIELD (TABLE 25K UBC)....730 PLF *15 15/32 STRUCTURAL I PLYWOOD WITH 1 OD NAILS AT 2"O.C.AT EDGES& 12"O.C.AT FIELD (TABLE 25K UBC)...870 PLF NOTES:,- USE CDX,C.C. OR STD W/EXTERIOR GLUE IN-LIEU OF STRUCTURAL 11 PLYWOOD. -THE ALLOWABLE LOADS ARE BASED ON DOUGLAS FIR STUDS ONLY. -WHERE PLYWOOD IS APPLIED ON BOTH FACES OF A WALL AND NAIL SPACING IS LESS THAN 6", PANEL JOINTS SHALL BE OFFSET TO FALL ON DIFFERENT FRAMING MEMBERS OR USE 2-2X,3X OR THICKER FRAMING WITH STAGGERED NAILING. - FRAMING SHALL BE 3"NOMINAL AND NAILS SHALL BE STAGGERED WHERE NAILS ARE SPACED 2"O.C. USE A MIN.4X6 POST AT VERTICAL PANEL SPLICES AND.(1)-3X4 BLOCK ON EDGE AT HORIZONTAL PANEL SPLICES. HORIZONTAL DIAPHRAGM NOTES • ROOF 1/2"CDX PLYWOOD SHEATHING, PII 24/0,WITH 8D NAILS AT 6"O.C. EDGES AND BOUNDARIES,AND 12"Q.C.AT FIELD,ALL PANEL EDGES UNBLOCKED. FLOOR 3/4"PLYWOOD STANDARD SHEATHING, PII 40/20,TONGUE&GROVE,WITH 10D NAILS AT 6"O,C.AT EDGES AND BOUNDARIES,AND 12"O.C. AT FIELD,ALL PANEL EDGES UNBLOCKED. SHAKTI CORPORATION ENGINEERING and DESIGN GROUP PLAN I R f SHAKTI �Z CORPORATION ti , ENGINEERING and DESIGN GROUP 1 I PRESLEY OF SAN 61EGO SHAKTI CORPORATION PLAN 1 / "STONECREST 4" DATE 7-09-9� TEMECULA, CA. SED JN: 391-2088 ARCH. ; BASSENIAN LAGONI U.B.C. 1991 I i 1. BEAM HDR a RIGHT OF M.RM: U n i f-oi rn Loads: W: Roci1:' ( 31 psf i ( 39/2 •+• 1 .5 ) _ 651 .0 plf -r• Wa 11 ( 114, p sf 7 t :3 + t_) ) ' �. cF;�,i.) 1 f' +_ P o p ( ,-. .p r,f ) t C) + t_) ) :... [_Y c"] Of, f B 11 DI-_ 1.+) Fz 1 f -- 10.0 p:I.f Total l..J'nif'orrn L_.ortd Activig c,n Beam . . . . . . . 703,.0 pIf Moment Shear . Deflection . -- - M(u)=WL^2/8 Depth = 5.5 in Length= 3ft M(u)= 790.875 ft-lbs V(u) = 732.3 lbs D(all )= L/24O F(b )= 1250 psi F(v) - 95 psi D(all )= 0. 150 in S = M(u) /Fb Area = 1 .5V/Fv I (u) =5WL^4/384ED *Sa = 7.6 cu-in *Area - 11 .6 sq in E(bm) = 1 ,700 ksi R( lft )= 1 ,055 lbs *I (uk 5.0 in^4 R(rht )= 1 ,055 lbs • >>> USE 4 X 6 W.C.D.F. #2 iw? BEAM HDR a RIGHT OF LIV; lJ: F:c,oi' 31 p5f7 �rG/i' t J .: 666.5 p 1 f i Wall = { 14 p st- ) ( 3 + 0 ) a - 42 p I'f M F='l c: o t` + c) li L1 I:)I.._= 1 '•) Fa:I..I. � :I.c:�.c�) p 1•i" 7,C.1taI tJ-nifr_.r(n Ac-A"'ing cars . . . . . '718.5 pl-f Lev-igth, C5 f•t Moment Shear Deflection --------------- d --------_-- ----- ___-_------__-- j P'1{c..c)=Wl...`''-2/8 Depth 9.25 in l._ength 6 f-l. I'I{ -0 32::33.2 f't- :LI::) => V(u) :l60:I. ..'7 1 b s D(a1 :l )= LM/t:?4c::) b = 125c::) F`>i F(vi 1?5 psi D(all )= 0.c:3r_)0 in P' ku) /Fb Area == 1. .5V/F=v :I: (c_c) 31 . :) cLl- a.r) *Area - 25.9 s,q iri E(brn7 = 1 -�70c:) I R( I'f't ) 2036 lbs- *I (c_c) _. 41 „ :I. -in,-•4 R(rht i- 2 , 1�`.)6 lbs »> USE 4 X 10 W.C.D.F #2 1 • . I j SHAKTI CORPORATION ENGINEERING and DESIGN GROUP . E3 Ee�.F-'t f'1 r)l IE_Ea I.C-3 i 4 i PRESLEY OF SAN DIEGO SHAKTI CORPORATION. PLAN 1 / "STONECREST 4" DATE : 7-09--92 TEMECULA, CA. SED •7N: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 i 3 DROP BEAM a FRONT OF GAR. : Uniform Loads: Wt Roof = ( .:.31 psf ) ( 2012 -+ 1 .5 V 356.5 plf Wall _.. r 14 psf l ( 3 + 0 ) _.. 70.0 plf Floor•= ( 52 psf ) ( 0 + 0 ) ' = 0.0 plf F1P'I DL= ;S p1f 25.0 plf Total. Uniform Load Acting on Beam . . 451. ..5 plf Length = 21 . 1 f t Moment Shear Deflection M(u )=WL''2/9 I: epth = - 16 in Length= 21 . 17 ft M(u)=2529:3.53 fl:-•-lbs V(u) = 41.77.. 1 lbs D(oll )= L/240 F(h )- 2712 psi F(v) 285 psi D4all )-= 1 .059 in S = MCA) /Fb Area = 1 .IV/Fv l (u) -SWI._^4/384ED S - 111 .9 cu--in *Area - 22.0 sp in E(bm) = 2,000 k:si I ( 1 f t ) 4,779 l b s *1 (u) •- 963.8 i n"4 R(r..hL; )- 4,779 lhs • >>> USE (3) 1-3/4" X 16" MICRO=LAM BEAMS WITH 112'' DIAMETER MACHINE BOLTS a 18" O.C. STAGGERED. I SHAKTI CORPORATION ENGINEERING and DESIGN GROUP I._.!4'T'E: FRAL. S3 , PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 1 / "STONECRES•T 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 , : :Wind , P=C(e)C(q )q (s) I ; (70MPH/Exp"C" )= ( 1 , 19) ( 1 .3) ( 12.6) ( 1 ) 19.49 . : :Design Seismic Coefficient , a=ZIC/Rw = ( ,4)*( 1 )*(2,75) /6 = 0. 18333 . : :as per COUNTY OF RIVERSIDE, Tel . (714) 767-6146 _ LOCATION AT ENTIRE HOUSE : I._CJIVt-"� x -rt,.jn x NAL 1 -FFRC- , F DI:WL B INCREMENT ! DESIGN TI-Z I B 1tICr;EhC�N I LA-)AD 3 LENC31-1-i OF:" I....OADS 1 LOADS LENGTH OF t._OADS v rj sf f t P I f f p s•f f t I WIND- 19.5) 151.5 5.5 272.9 _' 19.5 175 5.5 2 33.9 S E 11,3 1"I.0 C: I:)I__ 1 F3 . . .:t- = 1044.0 1 18 �. 41 .5 � 747.0 EX I• Wr'aLL. 1.14 r 1- 1......J.5 2 )= 154.C) 14 at 14-...7 .( � 9 6.0 I N T WALL 10 11•--5..5 2 ; W 1,1C),0 1 10 at•11-- .5 110.0 F I_0(_)1•": DI..- 12 -n' r„j •!� .� ) j i 1.i:] .#. f] •j¢' __ t�j.t_1 S l O I AL Dl:: AI7 L._L7iiC) .. 0TOT AL_ BASE .I-1EAR . , .. . . .. . . . , . . . 2 3 39.[ 1 . . . . . . . .�► . , . , . . . . . . .y :t 9�3. 1 i CONTROLLING LATERAL LOAD 272.9 1CONTROL'G LATERAL LOAD 233.9 (WIND) (WIND) r ' r SHAKTI CORPORATION ENGINEERING and DESIGN GROUP • A v _ l«t� 1 1 1 � i 11O 1 • ma cxa wr•Ir..� � NBA. i AABR. Ir 1 arpa� awl•x« Pal e UPS t-Ire A am arm omm wj" r q. Low ON cal►Pklo 0 NOOK 60 RETREAT � . KIT. Y BRrM.3 DIN. • � � � • `` t-r-r �k1 1 � t-Ir UN. ` ILI � nr. r S 1 tax i - r 1 COML tk�� ti # •rk ® ScStl R'lll°, A6V1YR PER MWN, 1 SL$ •KRG ►.Ir. 1 ROOF FRAMING PLAN I � 5�p Sri-: 3gi�88 � I SHAKTI ti ite CORPORATION ENGINEERING and DESIGN GROUP 311-1 E-z:#a%r-:;: w0::�L .I..... I M. P4 PRESLEY OF SAN DIE'Go SHAKTI CORPORATION PLAN 1 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED .TN: 391-2088 ARCH. : BASSENIAN LAGONI U. H. C. 1991 WALL @ LEFT ELEV. : L_ = 1. 1. i:a I 'L ft I...-Or,D T'I­:.l:D L 1',I GTH TOTAL_. SidEAR SHI_AF: C WAI.._L .1.In /f t 4190 »»U S E 9 WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 16 "o. c . . . . . . . . . 16 i1 2 )WALL @ RIGHT ELEV. : I._ 1-8. 5 +F,. 67 +13 - 30 1.7 ft . 1....O(-`D rF::1B I....NFiTH r0TAI.... "3PIEAI:: SiI-ilEAF: •ft ft lbs lbs/ft »»U S E /L e� WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 72 "a. c . . . . . . . . . 72 I WALL @ REAR ELEV. . 1_ _ 5 � :�. :-`:, — ';„ ']; Ft: TF:'I:IE{ L._Ni TI•I ..rc.-•1•'AI_.. clHEAF: 1 �+ »»U S E WITH (2) 1/2" DIA X 10" L ANCHOR BOLTS PER PANEL O. T. M. = 7274 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . R. MOMENT= 1519 lbs. ft NET. M. = 5756 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . UPLIF"T = 2302 lbs. WITH ( 1 ) SIMP HPAHD22 PER MIN. 4X4 POST AT PANEL ENDS. r r Y SHAKTI P CORPORATION ENGINEERING and DESIGN GROUP :D IIR-7 I.:-a- I Ka m PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 1 / "STONECREST 4" DATE 7-09-92 TEMECULA, CA. SED- JN: 391-2088 ARCH. : HASSENIAN LAGONI U. B. C. 1991 -w, I 4 WALL @ REAR OF MASTER RM: L + C) +• - 8 ft I_-Cli D Tf:':I:I3 INi `CFI TOTAL.. c;IiL•":(af:: SHEAF' @ WAL...L I.I ;:• f 1. F t ].b ::> 7.I:a�11 !f'l - - ._........... ___........ .._.._.__ >>>>U S E 14`, WITH 1/2" DIA X 12" L ANCHOR BOLTS AT 8 "o. c . . . . . . . . . 8 O. T. M. =50544 lbs. f,,t . . . . . . . . . . . . . . . . . . . . . R. MOMENT= 2616 lbs. ft NET. M. =479 8 lbs. f,t . . . . . . . . . . . . . . . . . . . . . . . UPLIFT = 3255 lbs. WITH ( 1 ) SIMP HPAH-D22 PER MIN. 4XG POST AT LEFT END. O. T. M. =50544 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . R. MOMENT= 34920 lbs. ft NET. M.,=15624 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . UPLIFT - 1953 lbs. WITH ( 1 ) SIMP HPAHD22 PER MIN. 4X4 POST AT RIGHT END. p r SHAKTI CORPORATION PRESLEY OF SAN DIE66 SHAKTI CORPORATION PLAN 1 "STONECREST 4" DATE 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENTON LACONI U. B. C. 1991 5 WALL FRONT OF G�RAGE: 67 + C-1 C) 4 7. 6,7 -f t 1 0 A F) `34- 1.bs/ f t 4 3 -f t, 5031 1 hs L D 1 5 0 3 1. 1 F)=,/ 7., 6 7 f t 656 p'l f I--I�-H(7)-4 (11 t f rc-irj 1-alate tc, bcctt�om -,f h e�--(d a r G, 7 f t 0. T 11. 7�;; 1-- v, �-j .4(-.)7. 2 -x (:.:1� 67 -ft J/1 . 32,x 15C Q f-c t i c,i, 1�1 o d u I u OTMxl.2 )c) x O. T. M. u-i n f t I.T. M 1' kE ----I b s T fDr-1 holdown R 9 1 b 5 T c�I'l i:--i I.-J c., r C-:i cl ut.-e d b y 3'3"1 3C)C)(.,. 7 I'bs.:, >>>>U G E 4 W/ (3)-1/2" Dd� 12" L ANCHOR BOLTS PER SHEAJR PANEL, L=3. 6�71 . W/ (4) -1/2" DIA X 12" L ANCHOR BOLTS PER SHEAR PANEL, L=4. W/ ( l )-SIMP. ST-6236 PER MIN. 4X4 POST AT EACH PANEL END. W/ ( l )-SIMP. HPAHD22 PER MIN. 4X4 POST AT. EACH PANEL END. L= KING STUD TOP PLATES EQ. JXR W/ EQ. ST- 6236 EACH POST 0/ PLYVI). + POSTS- FULL VEARMG FDR H.W V/ PLYVD EX NO WALL MATERIAL iEE PLAN W-STUDS e iv o.r- I/Z"X 12- A-11!s PER PANEL V/ �3 X4 MLL PLATE (-:,-,FF F-L)L-tjfD/\,l It flAt,J) (1) StWSON PAHn PER P13ST 0/ PLYWOOD L X- 7 SIEE r-�LAN� SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 1--i eA F:62N I.-=i I—E W A L_L.- 13[=_E3 1: (3 pq PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 1 / "STONECREST 4" DATE : 7-99-92 TEMECULA, CA. SED JN: 391,-2oee ARCH. : BASSENIAN LAGONI U. B.C. 1991 5B WALL @ FRONT OF GARAGE: + L 3.. (S7 17 + 5.. 84 ft AI" El FE V T T 0 1\1 S D 1...0 A D 11-.) f-t 42., f t 2 49 14 1 b s 5 841 pl -f 49 14 Itm/ 'J. 84 f t from sil,l pliate tc'l loottcmn c-f heiaden- G. S 7 ft 0. 1­� M 1 x 1­1 2 C)8 9� I I h sr. x 6. 6 7' f t .-,.-)5,,.-)7 f t I b Sect; .ic.)n MOdUlt-is Rc�2cjuirpci OTlvl.xl,,:./l. . 33x 1500 (. X O. T. M. j.n -f-t--I b-;a R. M. 1_93. " T = lerii.-Aon cin i,.-.t e t_-I s,t i,-a p cir hcll.dc.lwn 5:-285. 8 1 b s T e n-i o n t; 1:)c,, -c c.-�d i..�--c d ID, 3% _ S974. 3 lbs y, >>>>U S E W/ (4)-1/2" DIA X 12" L ANCHOR DOLTS PER -SHEAR PANEL, L=3. 671 . W/ (3)-1 /2" DIA X 12" L ANCHOR DOLTS PER SHEAR PANEL, L=2. 171 . W/ ( l )-SIMP. ST-6236 PER MIN. 4X4 POST AT EACH PA EL END. W/ ( I )-SIMP. HPAHD22 PER MIN. 4X4 POST AT EACH PA EL END. L= SEEPL&I E.K. KING STUD TCP lull � PLATES ' EQ. EX R V/ Ex E(L ST- 6236 EACH PWT D/ PLYWD. + P13S I S- FILL BEARING FUR HM V/ -PLYVD EX WALL HATERLAL SEE PLAN im4-sTuDs e iv o.r- 1/2"X 2- AJL's PER PANEL �3 X4 SILL PLATE (__,FF f7_00001\Tic NJ (I) StWS13N 1-4 PARD FER PaST G/ PLYWIXIII- X- SEE PLAN Q SHAKTI ENGDEERDiG L DESIGN GIMUP, pc GARAGE- SHEAR PANEL A SHAKTI CORPORATION ENGINEERING and DESIGN GROUP f--a A F;�-A 0A r=- W A L-L.- 0EES a 1.7ahl PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 1 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391--2088 ARCH. : HASSENIAN LAGONI U. B. C. 1991 5C j WALL C FRONT OF GARAGE: AT ELEVATION "C" : L = 2. 83 + 2.67 + 2. 83 = 8. 33 ft L_f="IAI) r -I :I. ID a!ft. i (: -1•3 f 1-1 5t"):'1. I b SHEAR I.._t7Fli]i I._ 5031. l b 0. 3:-3 ft kf,-04 Rl -f. I1 Iiritllil: fr-c rr, -,i.]. I b 1.tcim , ,f %,. E,7 ft I x H 11"7 0%.j. : 1 b-- E,. (.',7 f t = 1. :L 4t>>�:� f t f t�s Sec"I_ i.cin 1�1 �t..I(_(:I.(_( f'e:�ra(_(i (�(1 = 0TMx 12 1 . ::33,: 15f) � R. hi. :::: :71. '. FI r I;.....:I.b 1d-wn - • f :�,7'?(�.. �::, 1.b<- :.-.= �FtiI—�:::;:I,f�n i:al—I S•I:(:_F.f :.>f:T ra 7 " fl ` 5 [::: - -- -9 3 C_I'1:..:1.��.�L•1 I �..� �i i<? T' .._CI t..l._e'l:1 b�✓ .. ../ :-, »»U S E A W/ (3)-1/2" DIA X 12" L ANCHOR BOLTS PER SHEAR PANEL. W/ ( 1 ) —SIMP. ST-6236 PER MIN. 4X4 ,F`OST AT EACH PANEL END. W/ ( 1 )—SIMP. HPAHD22 PER MIN. 4X4 POST AT EACH PANEL END. KING STUD TOP PLATES Lkt +Q. ER V/ Ell' sT-- 6236 EACH POST EV PLYVD. 4x 4 POSTS- FULL BEARING F13R HIM. V/ PLYVD E.N. A VALL MATERIAL SEE PLAN ?-x4 STUDS a iv or. l� A.S.'s PER PANEL V/3 X4' SILL. PLATE(SF-E fGvnibArjoA)pLAN� II II (1) SEWSON H PAHII PER PAST 0/ PLYWOOD X= SEE PLAN ® SHAKTI EWADVEE RING 7fr DESIGN GROUP, INC SHA I z1 CORPORATION ENGINEERING and DESIGN GROUP 1"1 44 K I LJ 1`"'1 S3 T'1....@ r.) H EE I CS t.-1"I"" PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 1 / "STONECREST 4" DATE : 7-09--92 TEMECULA, CA. SED JN: 391-2oee ARCH. : HASSENIAN LAGONI U.H.C. 1991 Location: Exterior Wall a front elevation: WIND) LOAD f P ( :1 . 19) ( 12.6) ( 1 .3) ( :t , t,; L4»49 p��f L..I:]f ::: 1 -33 • A 1...1...(:7 W A I i L...Ec: c;T R is�'{:;Mi F..-S All l,Cfill:) Stec?.ss Pclrall to Grain =• 1150 psi f�).•a Ti3 ?rirai.r'1g c,•l:r es » » . . . . . . •• 1200 psi. ModUILAS (:,f elae:;'ticity . . . . . . . . . . 1 .5 x 1(;"[- ps:si All Comp f_3l;r e IVr..�1-mal o 61-ai}-1 - F,r'.?'W; Car>i C O L.U I''I N C f-P A C I T"•r She:athinc.:l p1-ovidc-s lat(:VZA1. St.-lpl7Or.t at)CILIt ti-le axis. II-)E•?1"'e T C i} (�, �::I"1(i:?c:I: f:(;i 1.l..l fTl 17 t:)t..t r..I•:.7. i.17 r� rl t') l: the " " 'a," g t t•1 ,1_- =•• O,c f.t St (I..../cl ) ... . . . 32.5'7 Slr,rlderness Rati (:i 24. - Al 1 Comp F3tr-es,T, tji tFj cc•1 stet:)i l i ty t'c:►t~:tGal 4214. 1 7 ,F) :i F•1.1. 1 r t c:a r:l r i ri 9 Of S•l;u c] 1-,cl t h e 4J a l l P l at t:e . . . . . . c:,;5.C. E:•:tE1,JD:f.N0 Assume . . . . (2)-2x4's 16" o .c . Construction Grade Properties . . . . 2 x 4 3 x 4 2 x 6 Area, Sq in 5.25 8.75 8.25 Section, Cu in 3.06 5. 10 7.56 Mom Intr , in^4 5.36 e.93 20.8 Wind Goad per 16" o .c 25.92 plf M - 292.46 ft-lbs . f(b)= 453.54 psi . . . . / 1 .33 = 341 .0 psi < 1200 psi AXIAL Total Vertical D.L. . . 514.71 plf 18#(40/2+1 .5)*1 .33 f(c )= 49.02 psi . . . load per linear foot K µ 21 .01 F'c = 424 . 17 psi > 49.02 psi O.K. COMBINED STRESS J = 2. 15 f(c ) . ( F' (c ) = 0. 12 + f(b ) / (F(b )-Jxf(c ) ) = 0.30 ------------- 0.42 < 1 .0 Q.K. SHAKTI L27— CORPORATION ENGINEERING and DESIGN GROUP PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 1 "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-20BB ARCH. : BASSENIAN LAGONI U. B. C. 1991 F-C-3 U N ID A-F- I C3 N A P%j A L-V S3 1 E3 -x--x--w - J Pr FT r) -ng -Sul P= P s f t e r i f i e y S,:-,j I - 1- S & bv' Bldg. 13"dc..'r to c0nst-rt..t--tJ.1-,n. er, I ENGI E -jor REPOR --10. W� 0. 1 5 G D DA-F1 January 1C), TEI EiPHON-K-7 111E.,i. 9-3 1, 3,4 ('40/2-1-1 . 5 731 Pl 'f -j 126 plf F I P1 f 857 Widt-�h Rer:jk.-iir(-,,?d:;z( 3 5)7 0 0 44 f t * Use 12 in. wide x le in. deep cont . ft . Moderate Expansive soil * Use 12 in. wide x 12 in. deep cont . ft . Low Expansive Soil * Use ( 1 ) #4 bar at top & bottom * .These represent minimum foundation requirements. Foundation recommendations by the soils engineer that ca.1-1 for more severe requiremWnts are to superced.e the above-mentio.ned minimum requirements 2. Point Loaded Footing: F x = �39*S*W/144 P max: Moderate Expan. Soil= 7700 lbs. ; Low Expan. Soil= 5850 lbs. 3. Pads & steel needed: P: P = R( 1 ) 11329 lbs. LR 3-POINT GIRDER TRUSS I Wea 1 .1. 2 0 5C Al scl� ft . 2. -4 -f t . USE 30" SQ X 12" DEEP CONC. PAD FOOTING WITH (2)-#4 BARS @ BOTTOM EACH WAY. P: P = R(2) 6930 lbs. RR 3-POINT GIRDER TRUSS '593* 2 C)0 0 50 2 5':.".] f ft. USE 24" SQ X 12" DEEP CONC. PAD FOOTING WITH (2) 7#4 BARS @ BOTTOM EACH WAY. SHAKTI CORPORATION ENGINEERING and DESIGN GROUP PLAN d • f r v SHAKTI CORPORATION, ENGINEERING and DESIGN GROUP 13r'w:f S; I CSP4 PRESLEY OF SAN. DIEGO SHAKTI CORPORATION PLAN 2 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 ] FLUSH BM. @ LIVING: Uniform L..o<ac:1s: W: Roof _ ( 31. p fs f ) ( 3 9/2 + 6 i)[�,5 p 1 f I W ZA I I = ( 10 p_f- (:t ) " =_ [)..[:,t p 1 f Floor= { 52 p f 0 ) ' = 6.0 pIf BM 171...::: :::3() I:i:I.f 3C .it pIf Total. LJnifc,r••n-,' I,_.cjaarl Ac:.Lir-Ig c.1-1 1E:(e:-Acr: pl"( Length =- 17 ft Moment Shear Deflection ---------------- ------_..------- M(L[)=Wl-.'-•"2/2 Depth = 16 Sri Length= 17 ft r•I(t.[)=°022921 .91 •f'-L,.....I i_)��; V 0.0 ::_ /+'54.7.. >3 1 b F(b )== P-712 p<.-:.i F(v) t2F.3'5 psi D(all )= 0,850 in 1:1 L[ r-i.,a 1 ,5V/1:=v I ((.a) ==5WL "'4/:394ED 1(--)1 .4 c.::L[- iri *Area 23.9 scl iri F_"(bm) 2.()0(") k.si Fti( :lf't )_ -,,::39'3 1b T (t_[) -- 701 .4 in-­-4 R(r••ht )_= 5,393 lbs >>> USE (3) 1-3/4" X lb" MICRO=LAMS W/ 1/2" DIA. MACHINE BOLTS aO le" O.C. STAGGERED. >>> ALT b X 16 W.C.D.F. #1 j HEADER BM. . a RIGHT OF BEDROOM #3: J l_1nifoi-m L..oc c:ls: W- Rc-..1clf = ( 31 ps1" o } 46.5 Of t Wai l 14 psf ) ( 1 .5 -1• 0 ) ' - 21 .0 p•if - Of f- - 10.0 p l f Total. Uni•for•m Load Acting on 1.3c rAm . . , . . . , -77.E-plf-� Length = 5 ft Pc-.,i rt t L...oz.xr- : F:•F:?OM GIRDER TRtJSIS: 31•x•7!c?•��=?�:3/c?-r•3].•*•r[•.a/c•#•1i7.F:i�•1.7,'7.'.i/%?:3-F•�31iF( 12x�!L•��2,�,�r^'..)�•1?.5f�2:3 L(Lciad ) from left - ('t.5 ft L(Right End ) = 4.!; ft Point L...c••,acl -_. 194-4.S lbs:. ~ Moment Shear Deflection M(L[)=-WL.``2/8 (-lepth't _ ^^9.Z2 i���.tt L.c ngth[= ._ _J ft N(U)--•,242. 1F37''_i ft ILas V(L[) == 134 . )1 lbs I:}(aIl )= L.../b4C) M(c )_= 875.,()6 f•t_.1I:is V(_") 1384. 1 lbs D{aI1 )= CthF?;"::Fit in M(T)-- I I 1 2'.25 1-t•••-lbs F(v) 95 psi I (L[ ) =5WL_"•4/384ED F(b )== 1F?`0 1:7<.�s. Arc•?a 1 . V/F'v I ( ~1 S r'I(L[) /1=b i I I A t-ea 29.7 s cl i ri 1 .700 I:,s i *S w 10.7 ELL--il"I R( 1-f•t )::= 1 ,944 lbs * I ( t1 ) = a.:'. i.n`'`4 R(r-ht )-- 388 lb, >>> USE 4 X 10 W.C.D.F. #2 i SHAKTI CORPORATION ENGINEERING and DESIGN GROUP E3 FEE AP1 I7a:E3 X QiP4 PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. I t SED 7N: 391-2oee ARCH. : BASSENIAN LAGONI U.B.C. 1991 r♦ �3 ? FLUSH ISM D GARAGE: / L_3nifc,I m Lo dty: { W. Rc.�of == 3.1 psf) ( 12.`_i/2 Cr ) ' i 3.B p1f h Wall = 1.4h (_rs ) ! B*4.5/ + tj ) " _ 41-3.a 1f' wall = ( 1 :_r p f ) ( 8*7/11 4e.7 p1f ps,r 1 .33; [ C) ) ' - 34.6 Of BM DL= 2(.. pli - 20.0 (a1f / TOtGa1 1-31••ri•ftlr-rn Load Acting oi 1-ec,m . , . . . . . _222.9Tplf_- Lenclth :-- 11 .5 f t Po i nt Load :: FROM C-3I RD1.R TRUSS' °: FL...FR LOAD: ..31�•1.��.:"ii2•�•i•::.'..�:i/ir?�iir.�i/c':3•+•31�{7/c'•+�hi2•rFl[�r.S/2"?)-rF23/•2_[- i (:�1�[•{7;"2•[-1. ,.'�-i)•a-1.�-rx•C'3-h•�2•r�7/'•?)•�•6/i:? L(Laad ) fr-c:,m IL�f-t - 4. 5 f•t L.(Riclht Er-id ) = 7.0 ft . Poi.r•rt I....oad - . 3031 lbs Moment Shear Deflection M(t_t)=•WL._.` 2/13 tJepth -- 11 .1,375 in Length-- 11 .5 ft M(L.0-=3685.095; .ft•-11.7< V(u) -: 1061 . 1 lbs D(aII L/240 M(c )=: 03[)1 ,79 ft­lbs V(T) = 29C)6.0 lbs 17(all 0.575 ir•r 1 1`'>'86.f:39 1:'l: 1.b[_s 1::7(v) 285 psi I (t.t) F (bl== 2F3C)(") p Area 1 .5V/F='v I (c ) °°:P(ab )'' 2/3E1)L... M(t-t) /F•b a..I✓I([.- )a 17/I.... k A r-e a == 1 5.3 !:a q i r•r E(b m) W 2..0(:r 0 J::s i j c; -. 51 . _4 c i.t-i r-r R( l f t )-= 23, 127 l b s *-I ( t l i IT-,4 »> USE (2) 1-3/4" X 11 7/B" MICRO=LAM WITH 1/2" DIAMETER MACHINE BOLTS @ 18" O.C. ,STAGGERED. 1 4 DROP BM. D RIGHT OF GARAGE: Uni-foI in Loads;,: W. Rc,0f' =: ( ;i psf ) ( (4.5/2 -I 5.5/is ) ' 201 .5 Of -r- Wall = ( i- Flaar= { 5 ? (a f ) ( 11 .5l2 + [:r ) ' M 299.(-) plf B11 DL..= 1.', P.I.f :15.;"r p1f I-C.-t a 1 U r i i f'o r-in L.n a d A[-:1:i n g [-j r..r la ea in , , . . . . . ' 627.5-p l.f.-- Lenc)tFr =- 16.3 ft Moment Shear Deflection ^_ W - M(U)==WL -"2/J - Depth 1B in Length= 1[).33 ft 11U.t)=8369.`i'79 f't••--lbs V(t_t) 2299.3 lbs D(all )= L._/24rr F•(h )-• 2677 psi F(v) 205 psi D(al l )= 0.517 in S I`1([..() /P I::r Area = 1 .:':.;V/Fv 4[..[) -5WL.,.'"4/384E::D 37.5 cL.t-•i.r7 *Area :::: 12- 1 sq in E(brn) = 2,r,nc)- 1:=si Fi( lf'E; ):::: '31241 lbs *10_0 - 155.6 :l.r•r`4 R(rht )=-: 3,241 lbs »> USE (2) 1-3/4" X le" MICRO=LAMS W/ (3)--ROWS OF 16d NAILS @ 12" O.C. SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 1F E=_90k M 31)E=—S3 3: Ca P4 I PRESLEY OF SAN DIEGO SHAKTI CORPORATION f PLAN 2 1 "STONECREST 4" DATE : 7109-92 TEMECULA, CA. SED JN: 391-20BB ARCH. : BASSENIAN LAGONI U.B.C. 1991 s j FLUSH BM. a REAR OF FAMILY: W: Roc,f -- ( :31 psf l. ( ; + 0 } ' _ t_t.ti plf + Wall :: { :1.1) psf ) { 3*8.51/ +3* 3.5/ ) " _. 82..6 pl-f I, FlaC.t...W 52 piz-:.f ) ( 25/2 4. it 65t-t.0 plf I, F;i 1f 1i_)..t; p1.f` Total LJ;�a.ft-�r rrt l...a<:�rl Actii-ig c.:,r7 E'leam . . . . . . . 742.6 plf Len th = 6..) f t Moment Shear . Deflection _____---_-_-__ ________________ --------------- M(U)=WL-"'-2/9 Depth = 11 Length 6.5 ft 11(t..t)=3921 .629 ft -11-3t: V(t_t) = 1678.0 1L1s D(a]. l ) L/24fr ` F(tt ) 2tsi rt_; P S F(v) -- 285 psi D(all )= 0.325 in a = M(t..t) /F'h Area - I .,5V/Fv :L' (t t) ---:-;WL---4/384ED *S 16.�3 r_t..t-•.,1.rt *Area .._ 8.0 s W i n C"(6 m) _ 2,()t_)(:) I:,{( Ift }::_ 2,4.1.3 1bs *l (u) 45.9 i.t•l'.•_ri. R(r1'tt )= 2,413 lbs >>> USE (2)-1--3/4" X 11-7/8" MICRO=LAMS W/ 1 /2" DIA. MACHINE BOLTS @ 1811 O.C. STAGGERED. 5» ALT 4 X 12 W.C.D.F. #2 DROP BM @- REAR OF GARAGE: U1-tifar rrt LaZAds W: Roof 31 p s f- ) ( i_; 4- [t ) ' _- 0.0 p l f -t- Wa.l1. :W { 1.ti F)sf ) ( 8*IC).5 d t=t ) ' iit tt p1f Floc,-ice, { 52 psf ) ( 17/2 + t_) ) ' - 442.t_; p1•f' BM DL= 1.5 p l f - 1 5.0 I:i i f Tc,taI LJi'ij.f( r(n Load Acting on T•:)k:+a(n . . . . . . . 527.0 plf Length - 9 f t Moment Shear Deflection ^--_- ^ h1(u)=WL.``•2/9 Depth - 9.5 in Length= 9ft 11(t..0= 33S.8'__15 f!'.-•-11...)s V(u) 19.;rt . 3 lbs 17(r ll )= L/240 F(b ) 21:3 ti F:r=j F(v) -. 285 psi D(all. )= 0.450 in S == I1(u i I:::L:t Al-E+a -- :L .5V/Fv .1 (t_t) =SWL_'''•4/284ED _X'S _ 2 2.9 ct..t- in *Area I(--).3 sc1 in E(t•;m) _ 2.i_)t_)ii ksisi R( lft: ) := 2,372 1L:ts *I (u) 86.4 in-"-4 R(rht )= 2J3.72 lbs >>> USE (2) 1-3/4" X 9-1/2" MICRO=LAMS W/ (2)-ROWS OF 16d NAILS @ 12" Q.C. >>> ALT 4 X 12 ?W.C.D.F. #2 SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 13E.AM nES T c-jp4 I PRESLEY OF SAN DIEGO SHAKTI CORPORATION FLAN 2 / "STONECREST 4" RATE 7 -09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 1 C-7 > DROP BM. D LEFT OF GARAGE: IJnifoi m Lo ads: j W: . Roof ( 31 psf ) ( 2/2+-1 . +3.5/2 ) " _ 2()9.3 pIf• + w a 1. 1. _ ( 14 p s f ) ( ;3 A- [1 ) ' 1 12- .0 p 1 f FF'loor ( 5e;? psf ) ( 11 .5/2 -4-3*13/1 1 ' 4 r.3 p I f BM DL=-, 135 lal-F -- 35_o p1•f Tot_tI Unif'r..-rm, L (".iAd Acting on F.ieam . . , . . . . 831. .6 plf Length = 1"7.;7 ff't Point Load : F FtOM D1`1. # 3 -- FLOOR LOAD: 312 I--(:31�('7,/,`'.f.1 .:=�)�-1%�•��3-Fr;2�7/i:?}•u•�rl2-x•7/11 .�i•-:i2-x-1. .33/i_?-�11 , /i:� L(Load ) from 1.c_�fi: = b ft L(Right End ) = 1. 1, .7 f't Point L..oacl = 2108 lbs Moment Shear Deflection --- - 1 (t..t)::-W1._''''2/cG de li th f- 1.8 i n i-,Lngth • '7 1 .7 `1 ft M(U)=-32E566.41 ft.-• Ibs V(LA) 6112.2 lbs D(r:tll )=:- L/240 M(c: )=:: 036J. .54 ft-lb V(•T) = '750 5.8 1las D(ctll = C).985 j.1-1 I"1( T)=4(_)927..,_,5 f t lbs F (v) - 285 psi I (U) =JWL_ -4/3f.34ED f=(h 2677 F)si. Area 1 .5V/F='v I (c: ) :-P(aI.a ).:'-E::'1:3E:1)L S = h1(t..t I1(c )KAb/'L *Area 3"?-5 sq in E(hm) = 2,C)()() k's,i 1f3;3..:`� t_t- i.t;7 IF ( If t 3 75:3 .lbs *I ( I'A. ) 1229.6 irv"'4 R(r-ht )-= 0,'()74 lbs >>> USE (3) 1-3/4" X 18" MICRO=LAMS W/ 1,/2" DIA. MACHINE BOLTS 18" O.C. STAGGERED f Y' SHAKTI 2�B CORPORATION ENGINEERING and DESIGN GROUP PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 / "STONECREST 4° `DATE : 7-09-92 TEMECULA, CA. SED 7N: 391-2088 ARCH.: BASSENIAN/LA60N1 U.B.C. 1991 STONECREST 4 LATERAL ANALYSIS: i ..ZONE No. 4 North-South Elevation ..00CUPANCY IP9PORTANCE FACTOR, I ............. 1.00 ..NUMERICAL COEFFICIENT, C = 1.25*S/(T)^2/3... 5.49 ..MAXIMUM BUILDING HEIGHT, h(ft) ............. 21.5 ft 1 ; (♦ ..DIMENSION OF STRUCT PARALLEL TO LO, 0(ft) .. 39.0 ft v ..FUNDAMENTRL PERIOD, T = Ct*(hn)A3/4......... 0.20 sec ..COEFFICIENT OF SITE-STRUCTURE RESONANCE, S.. 1.50 ..MAXIMUM VALUE OF C.......................... 2.75 ..NUMERICAL COEFFICIENT (Rw) TABLE 23-0....... 6 ..NO CONCENTRATED LOAD AT UPPER LEVELS ...T .. 0.20 < 0.7 ... O.K.! ..MIN EARTHQUAKE FORCE FOR STRUCTURE AT BASE V=2*I*C/Rw*W(DL) = 0.1833 W(DEAD LD) = 8.7 Kips <<{ DISTRIBUTION OF LATERAL FORCES **ROOF LOAD = 18*48 .................. 864-.0 plf: R 0 0 F **Ext-Wal LD= 14* 812 2 ......... 112.0 plf:Total ----- W nt-Wal LD= 10* 8/2 2 ......... 80.0 plf(Load= 1056 X 0.183333 = 194 plf **LOFT LOAD = 0 0.0 plfl ( plf ) **Floor LD = 12*39 .................. 468.0 plf! 1ST FLR **Ext-Wal LD= 14* 8/2+9/2 * 2 ......... 238.0 plf!Total ------- **Int-Wal LD= 10* 8/2+9/2 * 2.5 ......... 212.5 plf(Load= 918.5 Xb.183333 = 168 plf ( plf 1 ..Tri6. Length = 24 ft. Totl Dead 1974.5 ..F(x) _ (V - F(t))*W(x)*h(x)/SUM(n..i=l)W(i)*h(i) LD of Unt ( plf 1 Lateral Story Story Shear LEVEL W(i) NO Wi*hi F(t) NO Force Shear per Lin ft Units Kips ft K- ft Kips Kips Kips Kips plf R 0 0 F 25.3 17.0 430.9 0.0 5.9 5.9 ***** ***** 1ST FLR 22.0 9.0 198.4 0.0 2.7 2.7 5.9 248 if; BASE 47.4 629.2 9.7 362 «; SHAKTI i CORPORATION ENGINEERING and DESIGN GROUP Y PRESLEY OF SAN DIE60 PLAN 2 / '5TONECRE5T 4' � SHAKTI CORPORATION' DATE ; 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH.; BAS5ENIAN/LAGONI U.B.C. 1991 STONECREST 4 LATERAL ANALYSIS: i ..ZONE No. 4 left-right Elevation ..00CUPANCY IMPORTANCE FACTOR, I ............. 1.00 g ..NUMERICAL COEFFICIENT, C = 1.25*S/(T)"2/3... 5.09 {-------------� ..MAXIMUM BUILDING HEIGHT, h(ft) ............. '25.0 ft ..DIMENSION OF STRUCT PARALLLL TO LD, D(ft) .. 24.0 ft ..FUNDAMENTAL PERIOD, T = Ct*(hn)^3/4......... 0.22 sec ..COEFFICIENT OF SITE-STRUCTURE RESONANCE, S.. 1.50 ..MAXIMUM VALUE OF C.......................... 2.75 �! ..NUMERICAL COEFFICIENT (Rw) TABLE 23-0....... 6 ..NO CONCENTRATED LOAD AT UPPER LEVELS ...T .. 0.22 < 0.7 ... O.K.! ..MIN EARTHQUAKE FORCE FOR STRUCTURE AT BASE . V=Z*I*C/Rw*W(DL) = 0.1833 W(DEAD LD) = 8.2 Kips «< DISTRIBUTION OF LATERAL FORCES Total Load **ROOF LOAD = 18*24 .................. 432.0 plf� per Level R 0 0 F **Ext-Wal LD= 14f 8/2 2 ......... 112.0 plf!Total ( plf 1 . ------- **Int-Wal LD= 10* 812 1 ......... 40.0 plf(Load= 584 X 0.183333 = 107 plf 107 **LOFT LOAD = 0 .................. 0.0 plf: ( plf 1 l plf 1 **Floor LD = 12*24 .................. 298.0 plf( 1ST FLR **Ext-Wal LD= 14* B/2+9/2 * 2 ......... 238.0 plf;Total ------- **Int-Wal LD= 10* 8/2+9/2 * 0.5 ......... 42.5 plf:Load= 568.5 X 0.183333 = 104 plf 211 M l plf 1 _ h ..Tri6. Length = 39 ft. Totl Dead 1152.5 ..F(x) = (V - F1t)1*W(x)*h(x)/SUM(n..i=1)W(i)fh(i) LD of Unt ( plf ) Lateral Story Story Shear, r LEVEL W(i) h(i) Wi*hi F(t) Flx1 Force Shear per Lin ft Units Kips ft K- ft Kips Kips Kips Kips plf R 0 0 F 22.8 17.0 387.2 0.0 5.4 5.4 ***** ***f* 1ST FLR 22.2 9.0 199.5 0.0 2.8 2.B 5.4 140 « BASE 44.9 586.7 8.2 212 «( r SHAKTI CORPORATION ENGINEERING and DESIGN GROUP PRESLEY OF SAN D[EGD SHAKTI CORPORATION PLAN 2 / "STONECREST 4" DATE 7-09-92 TEMECULA, CA, SED JN: 391-'2088 ARCH.: BASSENIAN/LAGONI STONECREST 4 LATERAL ANALYSIS: Design Wind Pressure: Design Criteria Source: UPC 1991 EDITION Exposure: Wind '.Geed: 70 MPH Wind Load :. C(e)*C(q)+Q(s)*I Where: C(e) = Combined Ht, Exposure and Gust Factor ........ 1.19 C(q) = Wind Pressure Coefficient of Structure ....... 1.3 Q(s) = Wind Stagnation Pressure at Height 301, psf .. 12.6 I = Building Occupancy Importance Factor ......... 1.0 LATERAL WIND FORCE LEFT-RIGHT ELEVATION: (-------) Level Height C(e) C(q) Q(s) I Totl W Tributary Wind TL Wind TL Seismic Units It psf LO, psf Length,ft plf plf 1 plf Roof 17.0 1.2 1.3 13 1.0 19.5 6+0/2 194.9 194.9 )? 140.0 1ST FLP, 9.0 1.2 1.3 13 1.0 19.5 8/2+9/2 165.7 360.6 i) 212.0 LATERAL WIND„FORCE, FRONT-REAR ELEVATION• Level Height C(e) C(q) 9(s) I Totl W Tributary Wind TL Wind TL Seismic Units ft psf LD, psf Len�th,ft plf plf plf v Roof 17.0 1.2 1.3 13 1.0 19.5 6/2+8/2 136.4 136.4 0" 248.0 1ST FLP 9.0 1.2 1,3 13 1.0 19.5 8/2+912 165.7 302.1 G! 362.0 SHAKTI ,� CORPORATION ENGINEERING and DESIGN GROUP L_A"T-ErF2AL. Af'+JAL Ne c_= 3: IB PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 / "STONECREST 4" DATE 7-09--92 TEMECULA, CA. SED JN: 391-208B ARCH. : BASSENIAN/LAGONI U. B. C. 1991 . : : Wind, P=C(e)-C(q)q (s) I ; (70MPH/Exp"C" )=( 1 . 19) ( 1 . 3) ( 12. 6) . . . 19. 49 psf . : : Design Seismic Coefficient , a=ZIKCS = ( . 4)*( 1 )*(2. 75) /6 = 0. 18333 A : : : as per COUNTY OF RIVERSIDE, Tel , (714) 787-6146 G ION LIVING & DINING: , . L-0 IINJ C-3 T 'T-1..JI.n I Is,I A I_ I T F;'A t%J 15 V IE IF=-"EB E <--> ------------------------------------------------------- ---------- DI^S1:1:iP:'; T'f::L { I N =71-I•'1F..NT I DESIGN TR I D :C Ni-:RF_I"IENT I I-_DA)1c LEl�.li:"i"rL� OF LOADS 1 I_-OODS L_EN13TH OF LOADS -f•t pl f : psyf ft p.1. f W I I`.ID I.'-�„ � :I- 7 0, � = 1.t��. ;� : 1.Si.. .:� � t,r t) t:r., t'r '1== f r-1I I SEISMIF:_. I. -- 558. (' I 18 1 G = 280. ) WAI..-1 14 1.C,_-£:i tt t: :,' ) - ::,:.4. t•_i : 14 *14--7 t: 1. ) '-38. t=; I!\11- wAL._I_ 1,u o ) 0. 0 10 x t:r ! L...0(117:' D1.... :I- t; >F i)„ C) I: 12 -rc) rify1.-.. DI:-AI:) L...OAD . , . . . . . . . . . 782.,. tr I . . .. . . . . . . . . . . . . . -8t7 r BA ':7HI: Af: 1! . , 143. 4 I . 70. 3 7 I CONTROLLING LATERAL LOAD . . . . . 165. 7 : CDNTROL' G LATERAL LOAD 70. 8 (WIND) (SEISMIC) V t 1 4 SHAKTI 32 CORPORATION ENGINEERING and DESIGN GROUP r-- o a • • sruo•r e><eJJ ttx.� , 1 r~, � .,.. �o Iwo• r.e. 1 yns. wic 0 TOP C +tin "Q el• , w u w W If +o•i' e 1 C. w 1 - - - 'wss mo lair u$q r 1/t ra/b lfl . i • MI WI IMM r ala.a Sim 4p11 u 1 ' avl to al. MBR. '" 1 �y.� � All'• {+.•• le L 1 � 1 1 b ■�INS y /. 1>R 1 an ON A 1 1 1 "AI;o - •d 1� • 3 .vl rrrr. 1 •A �� . 04 ••I 1 • pen NOW. 1 ' •F90fD A�esss•>l�'oq.1 1 1 - , vp wwr. 1 1 l r—� �`• 811 '• M __ —4 ti 1 --�r------� MBR. : ro nw al>r i 1r,c[s E n•IIorR a vets to DOW-m-r ■a own a Kwu 40,10 sm- *so-r HALL RETREAT irlq/ r sm Maggio"rl Qe"mm" al 0e9c OUR. r[. Hiks i • ROOF FRAMING PLAN.? ADDENDA SHAKTI ; CORPORATION ENGINEERING and DESIGN GROUP Y. • Za SUM•I4r%46 b fi +tir; • N WOK Do STUN DIN. K�T_Q • ''!' ° — --i wax ' wn o . • `i x�ra� FAM. • 7 q +mx++-s/r t-+r axr ' � • ENTRY Q 1 LAUN. I - x � PWDR. L r-r � .. ❑ .,fin � • r d Y.i■ FM smo-1 ILL_- - ~ e GAFF. 7�: • � 7 � «a 6 Comm � MSR. R ax1• • 'e, ~ PF71 �wxsm•Ir" 4 L-W A •' i S RETREAT 4c+o>-+w+was nd w►pus x= 4 I ' FLOOR FRAMING PLAN 'z `` SG D tJ r,? SHAKTI �- CORPORATION ENGINEERING and DESIGN GROUP . S3F-4L 'IKaA"t WAL-11- 0 FZ— $S I (-'�iN PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 • 5...,, WALL @ REAR OF BATH #2: L = 5.75 +5.7 + t=} - 11 .5 f t L..OAD L_.NGTI••i `I-CII-AL. SI•• IEAR SHEAR 6) WAL_L_ lbs/ft -f-t. lbs lbs/ft 271 3120 >>>>U S E 1,1' WITH 16d SOLE PLATE NAILS AT 6 "o .c . . . . . . . . . 6 N 6 WALL a FRONT OF BEDROOM #4: L + cF + C) 81 f is LOAD l•I::•t 113 I....NGTH TOTAL ail E.-AIt SHEAR @ WALL lbs/ F•t f I: lbs lbss/ft ___._-_..._____- -.•-.._...._......._.....__... ........._ _ ___.W...__.-._..._.._.__ ......._-.--.--__-- 195 I. /l' >>>>U S E Z-i O WITH 16d SOLE PLATE NAILS AT B "o .c . . . . . . . . . 8 N O.T.M.- 5850 lbs.ft. . . . . . . . . . . . . . . . . . . . . . .R.MOMENT= 1256 lbs.f NET.M.= 4594 lbs.ft. . . . .. . . . . . . . . . . . . . . . . . .UPLIFT - 864 lbs. W/ ( 1 )-SIMP. ST6224 AT EACH PANEL END. 7 )WALL a RIGHT OF MASTER BDR: L... 8 + C) + C) =. FI ft � 4 LOAD 17:'19 LN(.3-IT-1 T01"AL M3t••IE::AFti sHl:.-AIR .@ WALL... lbs/ft ft 1t_)s lb=i/ft 2976 372 »»U S E Z10 " WITH 16d SOLE PLATE NAILS AT 4 "o .c . . 4 N r f r SHAKTI CORPORATION Lac I ENGINEERING and DEAGN GROUP E-3 F-4 r=-f4 FR W A L-I— n[E—iE; I (Bm PRESLEY OF SAN DIEGO 4 SHAKTI CORPORATION PLAN 2 "STONECREST 4" ', DATE : 7-09-92, TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 WALL @ LEFT OF LIVING: L = 6.67 + 0 +0 6.67 ft TRIO LNGTH TOTAL SHEAR SHEAR @ WALL I-OAD lbs/ft ft lbs lbs/ft --------- ------------ ------------- 172 14.5 /2 1247 >>>>>>>>>>>> 187 >>>>U S E A, WITH ,(2)-1/2" DIA X 10" L ANCHOR BOLTS PER PANEL. O.T.M.=16631 lbs.ft . . . . . . . . . . . . . . . . . . . . . .R.MOMENT= 9564 lbs.ft NET.M.= 7271 lbs.ft . . . . . . . . . . . . . . . . . . . . . .UPLIFT 1090 lbs. NO HOLDOWN REQUIRED. I WALL @ LEFT OF KITCHEN: L 8 + 0 +0 8 ft LOAD TRIO LNGTH TOTAL SHEAR SHEAR @ WALL I b S.,/f t ft lbs lbs/ft --------- ------------ -------- ------ 362-248=114 PLF, SEISMIC LOAD @ FLOOR LEVEL ONLY 1413 12.5 /2 + 248*30 /45 23 /2 + 114*13 /45 10 /2 2960 >>>>>>>>>y>> 370 >>>>U S E WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 24 "o .c . . . . . . . .24 WALL @ LEFT OF GARAGE: L =10.83 +4.67 +0 15.5 ft I OAD I-RID LNGTH TOTAL SWEAR SHEAR @ WALI lb5/ft f t, lbs-, lbs/ft --------- ------------ ----------- ------------ 362-248-114 PLF, SEISMIC LOAD @ FLOOR LEVEL ONLY 249*15 /45 23 /2 -1- 114 29 /2 2604 �>>>>>>>>>>> 169 >>>>U S E WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 56 "a .c . . . . . . . . SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 'EB 1--i E,-- F�t W IcA L-L- T>EZ$S 1 C-3 F44 PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 "STONECREST 411 DATE : 7-09-92 JEMECULA, CA. SED JN: 391-eOeB 'ARCH. : BASSENIAN LAGONI U.B.C. 1991 , 11 ) WALL @ REAR OF KITCHEN: L 5.83 + o +C) 5.83 f-t LOAD T I-NGTH 1-01-AL SHI-EAR SHEAF--� Z-'I) WALl- ft lbs lbs/ft 361 1'3 /2 2347 >X�% 402 >>>>U S E . WITH 1/2" DIAX-- 10" L ANCHOR BOLTS AT 24 "o.c . . . ... . . .24 O.T.M.421119 lbs-ft . . . . . . . . . . . . . . . . . . . . . . .R.MOMENT= 6135 lbs.ft NET.M.=14984 lbs.ft . . . . . . . . . . . . . . . . :. . . . . .UPLIFT 2570 lbs. W/ ( l )-SIMP. HPAHD22 PER MIN. 4X POST AT EACH PANEL END. 2) WALL @ FRONT OF KITCHEN: L + +C) 10 f t LD(4D TRIB LNGTI-1 T(.31"A L SHEAR SHEAR @ WALL lbs/ft ft ............ ............ 361--195=---166 F'L F: .. WIND LOAD @ FLOOR LEVEL ONLY 193 29 /2 + 23 /2 - > >>>>U S E Z12 WITH 112" DIA X 10" L ANCHOR BOLTS AT 16 "o .c . . . . . . . . 16 �3 WALL @ FRONT OF FAMILY: L 0 + 8 +(-) 1-1 ft L,OAD --l-RIB LNGTH TOTAL SHEAI-Z Sl--lEAR @ WALL. lbs/ft f t b lbs/ft 361----J.95=1�)6 PL F:--� WIND LOAD ;31 FLOOR LEVEL ONLY 166 16 /2 166 >>>>U S E (2) Al� WITH 1/2" DIA X 10" L ANCHOR BOLTS AT SHAKTI CORPORATION AEGINFRING and DES ROUP W OR"L omb F:. r:>E:S; I GiN . PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH.,: BASSENTAN LAGONI U. B. C. 1991 (�4) WALL @ REAR OF GARAGE: L .1.3. 5 + 0 +C) 13. 5 ft D(1)1) TRI I,-' L N G T H TOTAL SHEAR SHEAF' @ WALL c,lif t: -f t I b s .......------ ................... —1`35=166 PLF, WIND LOAD (31 FLOOR LEVEL ONI Y. 5*5 2() 1.5 /2 l..-, 95 /2 2 G 6 26 8 >>>>U S E WITH 1 /2" DlA X 10" L ANCHOR BOLTS AT 24 "o. c . . . . . . . . 24 Q-!) WALL @ RIGHT OF GARAGE: L 12 + + -f t TAI S I --AR @ WALL LOAD 1-17.11-3 LNGTF-1 TO '7j)- F 'I L)s/f-t--. f t 1.b I b s -f t 2 5�4 427 >>>>U s E WITH 1 /2" DIA4 10" L ANCHOR DOLTS AT 16 110- c . . . . . . . . 16 • SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 01�-AImo.AFf WALL. PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U. B. C. 1991 i 6B WALL @ FRONT OF BEDROOM #4: I._ = 3. 5 •+•3. 5r"f = ft I._.C]F1D TI-:ill I....Ni-i'TH TOTAL. SHEAR SHEAF: WALL :I-bs/ft i ft lbs 1bs/ft -------------- >>>>U S E 10 • WITH 16d SOLE PLATE NAILS AT 8 "a. c . . . . . . . . 8 N O. T. M. = 5850 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . R. MOMENT= 1210 lbs. ft NET. M:= 4640 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . UPLIFT - 997 lbs. W/ ( 1 )--SIMP. ST-22 AT EACH PANEL END. • L tt SEE PLAN E.N. r MDR. SEE PLAN "SIMPSON" STEEL STRAP ` ST-6236 0 EA. POST O/PLYWD SHTH'G 4X 4` POSTS - FULL • CD BEARING FOR MDR. W/PLYWD. EDGE •NAIL a f ®SHEAR MATERIAL, SEE PLAN 2X STUDS It 16" o,r. III& XI 2 A.B.'s PER • :A ; y PANEL W/.3 X 4 SILL PLATE r C 1 )-"SIMPSON" HPAHD 0 .� EA. POST O/PLYWD ' X- •SEE PLAN � 1988 SHAKTI CORPORATION • 4 • SHAKTI CORPORATION ENGINEERING and DESIGN GROUP rIAXIMUM E3-run "E: 11a"-r PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 "STONECREST 4'' DATE 7-09-92 TEMECULA, CA. SED JN: 391-2oes ARCH. : BASSENIAN LAGONI U. B. C. 1991 Location: Exterior Wall @ Left of Dining: WIND LOAD P = C(e)C(q)q (s) l ps-F LDF AL I-OWABLE STRESSES All Comp, Stress Parall to Grain = 1050 psi. All Bending Stress . . . . . . . . . . . . . " 1450 psi. Modulus of elasticity . . . . . . . . . . . 1. 7 x 1016 psi All Comp Stress Normal to Grain , = 625 psi COLUMN CAPACITY Sheathing provides lateral support ' about the weak axis. Therefore, check column buckling about the "X" axis. Stud Length, L - 15. 3 ft Stud Depth, d = 5. 5 ji-i (L/d) x . . . . . . . . 33- 38 Slandelness Ratio K = 27. 0C) All Comp Stress with col stability factor 457. 57 psi. All Bearing of Stud to the Wall Plate . . . . . . 625. 00 psi SENQNI--.� Assume . . . . . . . . 2x6ls @ 16" o.c . W. C. D. F. #2 Stud Wall Properties . . . . - 2 x 4 3 x 4 2 x E Area, Sq in 5. 25 8. 75 8. 25 Section, Cu in 3. 06 5. 10 7. 56 Mom into in"4 5. 36 8. 93 20. 8 Wind Load per le" o, c . . . . . . . . . 25. 92 plf M 756. 59 f I-I b f (b)- 1534. E3 psi . . . . / 1 . 33 = 1153. 9 psi < 1450 psi A X I AL Total Vertical D. L. 161 . 595 plf 18*( 10- 5/2+1 . 5)*1 . 33 f (c )- 19- 39 psi . . . load per linear foot K = 23. 41 Fic 457. 67 psi 1 19. 59 psi O. K. 1,-�OMB I NED SYRESS I j = 1 . 80 f (c ) / FIQ )# ::,- 0. 04 Kb) / (F(b)7'-JXf CC O. S1 ------------- 0. 85 < 1 . 0 D. K. SHAKTI 41 CORPORATION ENGINEERING and DESIGN GROUP MeMb X T mum C_�3_1_un "E=-: I C-i"-r PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 2 "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-20eS ARCH. : BASSENIAN LAGONI U. B. C. 1991 Location: Exterior Wall Left of Living: w 1:IN D 1.-0 A 1) P Cq')q 0::01 L 0 19. 4'1-1 psf C ( 1. . 3') L D F At.-I OVIADLE r_3-FREIS)SESD All 105( p si All j'3erfdj'I-1(_1 Stre�"'i�... . . . . . . . . . . . . . 1.45C) P�i M':::'dull-us c---f eliasti-c. -Ity t . 7 x 10 b p j. Jr r, 6 2 5 psi 1-�:01 (JIYIN C-APACITY abc-lut the �,-)eak: axi5. T h r e. r h c k t..t jTj I-) Ij k- - i. :j _ng abOUt thf.- "Y." aXij:,. Stk-ul I_ength, I 13. 55 f t St'L-k(J D(-��J:O-J-1' d in d' 2`4- 45 Slenderness Ratio 7 All S t r 1 wi.!'h stat-0-lity factc-'r 587. 85 psi A I I 'Bearinq z-lf StLicl Wal 1. P 1.a t em . . . . . . G'2'_'5'.. 00 p�__i B E 1\1 P 1,1117-1 Assume . . . . . . . . 2x6ls @ 16" o. c . W. C. D. F. #2 Stud Wall r.-,ID i­r I: i X 3 X .4 X_ N E, Sq J. 5. :-z 5 8. 75 B,, :25 S e'_-.1,; ic'In, t..t i In os 5. IC rl,:::-m In t r i n,--'-4 5. 26 3. 93 :20. 0- Wind :25. 9:'�: pl -f M 5'::'10. GO ft I jDtj f I-j 1.0 5 '7­2, PTi 1 23 7 92,z. E� psi < 1.450 psi A X I A L TcJta 1 V e i-t: al D. L.. -':_fYJ. ,4'75 pl. f 18*( 14. 5/:2+1 .5')*1 . 331 f 7 Psi _ - I--�,ad 1:-.)ei,- lineal, 6 Fy ,- 85 p-1 i 3'3 p--j, 0 1' 'T, -N 1 :01"11.3 NED s-rr-.E��s j f + .....--------- SHAKTI CORPORATION ENGINEERING and DESIGN GROUP Y P: P = R(2) = 8753 lbs. BEAM #7 L-R Area = ( 8753 ) / ( 2000 75 ) 11 -- 4. 55 sq. ft . 2. 1 ft . * USE 30" SO X 18" DEEP CONC. PAD FOOTING *, WITH (2) -#4 BARS @ BOTTOM EACH WAY. P: P = R(3) = 11315 lbs. BEAM #7 & #4 Area = ( 11315 ) / ( 2000 - 75 ) - 5. 88 sq. ft . . . . . = 2. 4 ft . ** USE 30" SO X 18" DEEP CONC. PAD FOOTING * WITH (2)---#4 BARS @ BOTTOM EACH WAY. P: P = R(4) 8520 lbs. BEAM #1 nc #3 LR Area = ( 8520 ) / ( 2000 - 75 ) 4. 43 sq. ft . 2. 1 ft . USE 30" SO X 18" DEEP CONC. PAD FOOTING ** WITH (2) -44 BARS @ BOTTOM EACH WAY. s ' s s • s SHAKTI CORPORATION Lq ENGINEERING and DESIGN GROUP y V PLAN 3 e ' • e i d SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 1-3EAM ES; T c-3p4 PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED 7N: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 ] DROP BM @ RIGHT OF LIVING RM: Uniform Loads. W: Roof ( 31 psf ) ( 14/2 +26/2 ) ' - 620.0 plf W ca l l ( 14 p s f ) ( (_) -I- 0 ) ' _. c),(-) p].f .. F I o o r ( 52 ps•f } { 0 + C) ) ' 0.C) p I f Z t 11 D L_ 3(--) p 1 f _ 3 c).(-) p 1 f Total LJriifc)-rn Lead Acting on Beam . . . . . . . -650.0 Of- L.angth == 15.5 ft Moment Shear Deflection T ___ - M(u)=WL.^2/e Depth = 14 in Length= 16ft M(u)= 19520 ft-lbs V(u) = 4279.2 lbs D(all )= L/240 • F(b )= 2752 psi F(v) = 285 psi D(all )= 0.775 in S = M(u) /Fb Area = 1 .5V/Fv I (u) =514L^4/384ED *S - 85. 1 cu-in *Area = 22.5 sq in E<(bm) = 2,000 ksi R( lft )= 5,038 lbs *I (u) = 544.6 in^ R(rht )= 5,038 lbs >>> USE (3) 1-�3/4" X_14" MICRQ=LAM W/ 1/2" DIA. MACHINE BOLTS a1 8" O.C. STAGGERED. >>> ALT 6 X 16 W.C.D.F. #1 / DROP BM ABOVE GARAGE: l.J)�i.fcrm L..(..eadf_s» W: Roof = ( 31 psf ) { 14/�-4-1 -i-•( 12/2+ ) ' _ 401 .3 plf + JA a 1 1 = ( 1.4 p s f ) t L3 9- C) ) " _ 1. 12.() p 1 f FIoor ( 52 psf ) ( 14/2*5 -W0*4/14 ) ' = 185. 1 plf DM DL.=:: 2;15 p I f = 35.C) p 1 f Total Unifc.11-rn Load Acting on Beam . . . . . . . 733.5 plf L_er-ioth = 113.5 ft Point Load : FROM ROOF & WAI....L L. (3J.*13/2•+10*8+15)*14/2 I (L o�;L(-I ) f r c.(r) l e ft - 5.5 f l; L(F i g h t E.)i d ) = 13.i-) f.l. F oint Load 2(i76 1k:)s Moment Shear Deflection _ ' M(u)=WL^2/8 depth = 18 in Length= 19 ft M(u)= 31378 ft-lbs V(u) - 5684 lbs D(all )= JL/240 M(c )= B021 .53 ft-lbs V(T) = 7142.7 lbs D(all )= 0.925 in M(T)=39399.49 ft-lbs F(v) - 285 psi 1 (u) =5WL^4/384ED F(b )= 2677 psi Area = 1 .5V/Fv 1 (c ) =P(ab )^2/3ED S = M(u) /Fb+M(c )ab/L *Area - 37.6 sq in E(bm) = 2,000 ksi *S = 176.6 cu-in R( lft )= 8,243 lbs *I ( tl ) = 1223.5 in^ R(rht )= 7,401 lbs >>> USE (3) 1-3/4" X 18" MICRO=LAM W/ 1/2" DIA. MACHINE BOLTS a'7 18" O.C. STAGGERED. SHAKTI 4e CORPORATION ENGINEERING and DESIGN GROUP X-1EEAN 0aS3 X (3N PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 33 ,� DROP SM ABOVE GARAGE: i Uniform l..-oarJs. W: Roof = ( 31 psf ) ( 6/2+1 . + 0 ) ' = 139.5 plf + Wall = ( A psf ) ( 8 + 0 ) ' 11 .0 plf Floor= 12 p f ) ( 14/2 +• 0 ) = 264.0 plf BM DL= 20 plf - 20.0 plf ------------ Totr:al UnifoYm Load Acting on Beam . . . . . . . 625.5 plf Lgpgth = 1.0.5 ft Point Load : L(L-_o add fi-'r.:m leant =- 3 ft L(Right End ) 7.5 ft 31*6/2*1.2..`::i/2*8/14+31*12. i/L*6*5/1/4+14*3*12,.`/2 Point Load =- 1447 lb= Moment Shear Deflection --------------- ----------------- ------------------ M(u)=WL^2/8 depth = 18 in Length= 11 ft M(u)= 8758 ft-lbs V(u) = 2383 lbs D(all )= L/240 M(c )= 3101 .40 ft-lbs V(T) = 3416.9 lbs D(all )= 0.525 in M(T)=11859.39 ft-lbs F(v) = 285 psi I (u) =IWL^4/384E F(b )= 2677 psi Area = 1 .5V/Fv I (e ) =P.(ab )^2/3E L • S = M(u) /Fb+M(c )ab/L *Area - 18.0 sq in E(bm) = 2,000 ks' *8 = 53.2 cu-in R( lft )= 4,37.0 lbs *I ( tl ) = 203.8 in 4 R(rht )= 3,750 lbs >>> USE (2) 1-3/4" X 18" MICRO=LAM W/ 1/2" DIA. MACHINE BOLTS a le" O.C. STAGGERED. c+ FLUSH BEAM ABOVE GARAGE: Uniform Loads: W: Roof =- ( 31 Psf ) ! 13/2+1 +I V33/2 ) ' - 268.6 plf. + wall ( 14 p t-:,f ) t 8 +- (") 112.0 p 1 f Float = t 52 psf ) ( 1 .:33/2 •+• 0 ) = 34.6 plf BM DI. = 1.5 plf 15..0 plf Total Uniform Load Acting on T3eam . . . . . . . 4:30.2 plf Length = 14 ft Moment Shear Deflection ---------------- --------M------- --------------- M(u)=WL^2/8 Depth = 11 .875 in Length= 14 ft M(u)= 10540 fit-lbs V(u) = 2585.7 lbs D(all )= 0/240 F(b )= 2800 psi F(v) - 285 psi D(all )= 0.700 in S = M(u) /Fb Area = 1 .5V/Fv I (u) =5WL^4/384E *S = 45.2 cu-in *Area = 13.6 sq in E(bm) = 2,000 ks R( lft )= 3,011 lbs *I (u) = 265.6 in-4 R(rht )= 3,011 lbs >>> USE (2) 1-3/4" X 11-7/8" MICRO=LAM W/ (2) ROWS OF 16d NAILS a 12" O.C. SHAKTI CORPORATION ENGINEERING and DESIGN GROUP ni—=ss x e3N F SAN , DIEGO TC SHAKTI CORPORATION PLAN 3 "STONEtREST 4" T M C PRESLEY7 U DATE 7-09-92 EMECULA, CA. C . B 5;�_ SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 HIP BM ABOVE PORCH: Ur-i i J car (yj W: Ro(-,f psf C) + 0. 0 0 0.0 plf' + F I psf* + . 0.0 Plf' C) p 1 P M If 20.0 pl-f Tot'-A), Lo.,A(:j Actil-Ig B eAm . ... . . . . :2 L 0.o plf erigth l4-5 f t 45--D W 0-0of 1629 lbs Moment ---------- --- ---- Shear eflection ----------- M(U)=WL^2/8 -7 ----- ------- M( 1 )=0. 1283wL depth 11 -S75-- in Length= 14.5 ft M( t )= 3556.9 ft-lbs V( t ) = 1 ,212 lbs D(all )= L/240 F(b )= 2800.0 psi F(v) 285.0 psi D(all )= 0.725 in S M( t ) /Fb Area 1 -5V/Fv I (U) =5WL^4/384ED *Area 6-4 sq in I ( l ) =.013WL-3/ED *S 15.2 cu-in R( lft )= 688 lbs E(bm) = 2,000 ksi R(rht )= .1 ,231 lbs *I ( t ) = 90.9 in-4 >>> USE 1-3/4" x 11-7/9" MICRO=LAM FLUSH BM @ REAR OF FAMILY RM:.- LJ ri i fc.1 jTj L c,a d 45. W Rc'0 f i1 .0 "- - -f .0 + 0.0 W LA l .1 J. C) psf0 0 p i 1---,1 C1 r -P ii + ).C) I C)() C) Of psf 29/�2 + Q- .0 p p 0 t CA I U 1-1 i o r rn Load B(.:?am Length 5.1jT f-t 864.o pif Moment Shear -------------- ---------------- Deflection --------------- M(u)=WL-2/e Depth 11 .075 in Length= 5.5 ft M(u)= 3267.0 ft-lbs V(u) 1521 .0 lbs D(all )= L/240 F(b )= 2800.0 psi S M(u) /Fb F(v) 285.0 psi D(all )= 0.275 in *S Area I .5V/Fv 1 (u.) =5WL^4/384ED 14.0 cu-in *Area = 13.0 sq in E(bm) = 2,000 ksi R( Ift )= 2,376 lbs *I (u) = 32.3 in^4 R(rht )= 2,376 lbs >>> USE (2) 1-3/4" X 11 7/e,, W1. 1/2"DIA. MACHINE BOLTS @ le" O-C-STAGGERED. • SHAKTI x CORPORATION ti 8 ENGINEERING and DESIGN GROUP PRESLEY OF SAN DIEGO PLAN 3 / "STONECREST 4- SHAKTI CORPORATION TEMECULA, CA. DATE ; 7-09-9� U.B.C. 1941 ARCH.:BASSENIAN LAGONI SED 1N: 391-20B8 STONECREST 4 LATERAL ANALYSIS: ..ZONE No. 4 OCCUPANCY IMPORTANCE FACTOR, I ......... 1.Do North-South Elevation f " ..NUMERICAL COEFFICIENT, C = 1.25*S/(T)"2/3... 5.55 , • ..MAXIMUM BUILDING HEIGHT, h(ft) ............. 21.0 ft ..DIMENSION OF STRUCT PARALLEL TO LD, D(ft) .. 38.0 ft ..FUNDAMENTAL PERIOD, T = Ct*(hn)"314......... 0.20 sec ..COEFFICIENT OF SITE-STRUCTURE RESONANCE, S.. 1.50 V ..MAXIMUM VALUE OF C.......................... 2.75 -NUMERICAL COEFFICIENT (Rw) TABLE 23-0...... 6 ..NO CONCENTRATED LOAD AT UPPER LEVELS ...T •, 0,20 ( 0.7 O,K,( ..MIN EARTHQUAKE FORCE FOR STRUCTURE AT BASE , V=ZflfC/Rm*U(DL) 0.1933 W(DEAD LD) = 13.3 Kipsl (({ DISTRIBUTION OF LATERAL FORCES f*ROOF LOAD = 18*50 •• Total Load 900.0 plf� per Level R 0 � F f*Ext-Wal LD= 14f 8/2 f ••�2•,,,,,,,,, 112.0 plf)Tatal ------- fflnt-Wal LD= 10* 812 f 2 ....... ( plf 1 80,0 plf,Load= 1092 X 0.183333 = 200 plf 200 **LOFT LOAD = 12*0 .................. 0.0 plfl l plf 1 **Floor LD = 12*38 .•• •. 456.0 plf 1ST FLR Wxt-Wal LD= 108/2+9/2 f 2 „,,,,,,. P38.0 plf)Total ------- f*Int-Wal L➢- 10* Bf2+9/2 * ......... 170.0 plf!Load= 864 X 0.183333 = 158 plf 359 ( plf ) ..Tri6. Length = 37 ft. Totl .Dead 1956 ..F(x) _ (U - F(t))fW(x)fh(x)/SUM(n..i=1)W(i)*h(i) LD oe Unt ( plf 1 a LEVEL W(i) h(i) Wi*hi Lateral Story Story Shear r F(t) F(x) Force Shear perLinft Units Kips ft K- ft Kips Kips Kips Kips plf R O 0 F 40.4 17.0 686.9 0.0 9.4 9.4 fffft fff** 1ST FLR 32.0 9.0 287.7 0.0 3.9 3.9 9.4 253 <(( BASE 72.4 974.6 - 13.3 359 <<( 0 SHAKTI Lh CORPORATION ENGINEERING and DESIGN GROUP PRESLEY OF SAN DIEGO. _. PLAN 3 / 'STONECREST 4' SHAKTI CORPORATION TEMECULA, CA. DATE : 7-09-92 ARCH.:BASSENIAN LAGONI U.B.C. 1991 SED JN: 391-2088 STONECREST 4 LATERAL ANALYSIS: ..ZONE No. 4- ..00CUPANCY IMPORTANCE FACTOR, I ........, left-right Elevation ..NUMERICAL COEFFICIENT, C = 1.25fS/(T)^2/3... . 5.19 ..MAXIMUM BUILDING HEIGHT, h(ft) ............. 24.0 ft ..DIMENSION OF STRUCT PARALLEL' TO LD, D(ft) .. 26.0 ft ..FUNDAMENTAL`PERIOD, T = Ctf(hn)A3/4......... 0.22 sec ..COEFFICIENT OF SITE-STRUCTURE RESONANCE, S.. 1.50 ..MAXIMUM VALUE OF C....................... 2.75 ..NUMERICAL COEFFICIENT (Rw) TABLE 23-0....... 6 ..NO CONCENTRATED LOAD AT UPPEk LEVELS ...T .. 0.22 ( 0.7 ... O.K.1 ..MIN EARTHQUAKE FORCE FOR STRUCTURE AT BASE . V=ZfIfC/RwfW(DL) f = 0.1833 W(DEAD LD) = 8.7 Kips {Cf DISTRIBUTION OF LATERAL FORCES HROOF LOAD = 18f26 Total Load . 468.0 plf; per level R 0 0 F Wxt-Wal LD= 14f B/2 f 2.......... 112.0 plf:Total ( L ) ------- fflnt-Wal LD= 104 812 * 1 ......... 40.0 plf;Load= 620 X 0.183333 = 114 plf 114 +*LOFT LOAD = 0 0.0 plf: ( plf 1 i plf ) *#Floor LD = 12f26 . ... 312.11 plf: 1ST FLR ffExt-Wal LD= 10 8/2+4/2 2--, - , , 238.O P1f;Total ------- W nt=Wa1 LD= 10+ 8/2+9/2 t 1 .......... 85.0 plf;Load= 635 X 0.183333 = 116 plf 230 ( plf 1 ..Trih. Length = 38 ft. Totl Dead ^--1255- ..F(x) _ (V - F(t))*W(x)fh(x)/SUM(n..i=l)W(i)*h(i) LD of Unt l plf 1 v Lateral Story Story Shear LEVEL W(i) h(i) Wifhi F(t) F(xl Force Shear per Lin ft Units Kips ft K- ft Kips Kips Kips Kips plf R 0 0 F 23.6 17.0 400.5 0.0 5.7 5.7 fffff fffff 1ST FLR 24.1 9.0 217.2 0.0 3.1 3.1 5.7 150 «: , r BASE 47.7 617.7 0.7 230 «; r r • SHAKTI CORPORATION ENGINEERING and DESIGN GROUP PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. + SED ,IN: 391-2088 ARCH.:BASSENIAN LAGONI STONECREST 4 LATERAL ANALYSIS: Design Wind Pressure: Design Criteria source. UBC*1991 EDITION 4po5ure: "C" Wind Speed: 70 MPH Wind Load C(e)*C(q)*Q(s)*I Where: C(e) = Combined Ht, Exposure and Gust Factor ........ 1.19 C(q) = Wind Pressure Coefficient of Structu*te ....... ',1.3 R Q(s) = Wind Stagnation Pressure at Height 301, psf .. 12.6 I = Building Occupancy Importance Factor ......... I1.0 LATERAL WIND FORCE, LEFT-RIGHT ELEVATION: f Level Height C(e) C(q) O(s) I Totl W Tributary Wind TL Wind TL Seismic Units ft psf LD, psf Length,ft plf plf plf Roof 17.0 _1,2 1.3 . 13 1.0 19.5 5+8/2 175.4 175.4 )) 150.0 1ST FLR 9.0 1.2 1.3 13 1.0 19.5 8/2+9/2 165.1 341.1 )) 230.0 LATERAL WIND FORCE, FRONT-REAR ELEVATION: . Level Height C(e) C(q) Q(s) I Tat] W Tributary Wind TL Wind TL Seismic Units ft psf LD, psf Length,ft plf plf plf v Roof 17.0 1.2 1.3 13 1.0 19.5 6/2+8/2 136.4 136.4 (( 253.0 1ST FLR 9.0 1.2 1.3 13 1.0 19.5 812+912 165.7 302,1 (( 359.0 SHAKTI CORPORATION ENGINEERING and DESIGN GROUP PRESLEY OF SAN DIEGO 5HAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U. B. C. 1991 . : : Wind, P=C(e)C(q)q (s) I ; (70MPH/Exp"C" )= ( 1 . 19) r1 . 3) ( 12. 6) ( 17 19. 49 p f . : : Design Seismic Coefficient , a=ZIC/Rw =. ( . 4)*( 1)*(2. 75) /6 = ' ' 0. 18333 * . : : as per COUNTY OF RIVERSIDE, Tel . (714) 787--6146 - - - - ' - `�.0 Q AI101y LIVING ROOM: ----__--___—__--_____--__---•-----------_..__---+----____-------------------- ------ DF S I i.::iN T1'I D I N'-:F-`E'ME-NT 1 DES 11-3N TF'T fi I NF-:F'EMENT 1..-.0AD:; OF LOADS : LOADS I-..ENGTH OF LOADS "' p`f f•t p f ps-F ft p l •f. _._.......... �._...... --.._..... �r�:r.r.iD: 1 �. �::� � :1.5 — •:�. � ..._ •�•r-.,. ; 1'.:a.. 5 � `j—.� �_y -___--__•�__-_ a. _ 0. (,y ROOF DI.._ :I. � 1:.`' � 756. CK 18 * 15 I� � 27r>>., C) F )( f WAL_I.... 1. :1. a:1.2 -i wf - 1Ge. C). 14 *12--8 TNT WALL 1. 0 C j 10 . C) TOTAL... DEAD 1_ A- D . .. . . . . . ,. . . . .. . . '324. Q 1 . . . . . • . . . . . 4 „ „ TOTAL._ RASE SHE-Ai:;:' „ „ „ . 16 . 41 . . . . . , . . . . . . . . ,,.. . .. CONTROLLING LATERAL. LOAD . . . . . 169. 4 1CONTROL' G LATERAL LOAD 64. 9 (SEISMIC) (SEISMIC) r Y SHAKTI s17 CORPORATION ENGINEERING and DESIGN GROUP � 8 S ATTIC 1vIBR. MpA MBk Aft • UP% rrs rwir. - Al so wC•oars Ulm W ; vwm ER i r � Tom m__ 452 •xi � j slum Ll % um vww nrs pelt asww. BA..2 •♦; � aaa nu�ss ♦ i A �• #r�s � cis ; • ' m i 0 i �------------------- -------- y SECOND FLOOR FRAMING PLANN3" Ni3q,_208� A _ SHAKTI . CORPORATION . ENGINEERING and DESIGN GROUP DIN. F/W. . • a.a .Kam. per. � - - �««•ws�o aia N_ i i d ENTRY SAW • ' t �. 0 CLqo �• x _ NW , • __ ___ ? ocarm roa imam Is Aff MR ow -------- r/�ra fiLT rCa m wr t _ • f •av � as Lam• • wrMm FIRST FLOOR FRAMING PLAN 3ELL ..Ca ALL sawnawL way.awes w To ow'=-r .. . •ME ALL vw wu watts.Crams arm m wwQ 11D-r . •waeHEv AWN nmxm orr nwx mx now araun eoNEWiar uwa err.MM9 . •wm wwas Ia•{AR UR A Am Sam ADAV tim coollossoftMkt joam •Aa AL 1a0scol-a 1 wwas t MuLs wdcb sm lmw W-C ' • SED N=3ql-zndd SHAKTI CORPORATION ENGINEERING and DESIGN GROUP �FA I=- A F::t w IK-4 L-L- 1z) Y bhp PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 "STONECREST 4" DATE :i 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U.B.C. 1991 WALL @ LEFT OF -MBR. : 12.5 + 0 0 = 12.5 ft LOAD 1-1=1'11B LNGTH TOT(-lI SHEAR SI-JE.7 AR @ WALL lbs/ft ft 1bs I bs/ft .............. ........ 169 14 -12 + 43 348 >),>>U S E WITH 16d SOLE PLATE NAILS AT 4 "o .c . . . . . . . . . . 4 N 2 )WALL @ RIGHT ELEV. : L = 9 + 0 + 0 9 ft L(]AD TR 11-3 LNGTH TOTAL- S1-AEAl'-R SHEAR @ WALL lbs/ft ft I b s 1'Ibs/ft ............ ............------ 253 25 12 3163 351 >>>>U S E al-T44 16d SOLE PLATE NAILS AT 4 llo .c . . . . . . . ... 4 N 3 ';WALL � REAR OF MBA. : L = 7.El 3 + 0 + 0 eq ft LOAD TRIB L.NGTH TOI-AL SHEAR SHEAR @ WALL lbs/f t . ft 1 b si lbs/ft ........... 65 19 /P + 150 19 /2 E?043 > 261 > >>>>U S E - 10 WITH 16d SOLE PLATE NAILS AT 6 "o.c . . . . . . . . . 6 N SHAKTI 9 CORPORATION ENGINEERING and DESIGN GROUP E;HFEAFe WALL i 0 IE E3 a la PSI PRESLEY OF SAN D"IEGO SHAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE 7-09-92 TEMECULA, CA. SED JN: 391--2088 ARCH. : BASSENIAN LAGONI U. B. C. 1991 * 5 WALL @ FRONT OF BR #3: 1_ _ 3, 5 +2. 5 -+- c:+ ::- 7 ft 8 ft L_D D TF:113 LNi3TH TOTAL_ SHEAR SHEAF: C2 WAI_t_ 1.I:3r/ f•L: ft 1 b.=. 1 bs/ft C5 EI.._L•_V. a1; " o n� .. 323 >>>'>U S E 11 WITH 16d SOLE PLATE NAILS AT 4 "o. c . . . . . . . 4 N O. T. M. =10449 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . R. MOMENT= 441 lbs. ft NET.M. =10008 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . UPLIFT = 1504. 9 lbs. WITH ( 1 ) SIMP ST-6224 PER 4X4 POST AT ENDS. ��'WALL @ LEFT OF LIV. & DIN. : L 7.03 F 1c:�„ i +:+ = 1.8. 17 ft LOAD 'TR I B I....N(JTH TOTAL SHEAF: aHE:AF: @ WALL .1.I::)s/f t ft lb5 Ibt:s/ft a :I.C,'::a 14 /2 = :I. 1. 3 G 5 »»U S E 8 WITH 112" DIA 10" L ANCHOR BOLTS AT 72 "o, c . . . . . . . 72 7 WALL @ LEFT OF KITCHEN: L _ " . 67 •+• c-+ + c=+ _ ":r. 67 ft L 0 A D I I`:11:+ I_.I,a�;i l F I Tc.31-A1.... �SHEAF: ...)HEAP C�! WALL_ 1.bs: /f•L: f•l; lbs 1bs/ft, "5"+ `4 3 := 1. "+G F'L._F; SET.SM I C 1- _- 0 D @ FL (:)0F LEVEL ONI....Y W .., _F.1__ ti . . . . . . . . . . 4-49 »»U S E 112_� WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 16 "o. c . . . . . . . 16 9 SHAKTI CORPORATION ENGINEERING and DESIGN GROUP L- PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 "STONECREST 4" DATE : �17-09-92 TEMECULA, CA. SED JN: 391-208e ARCH. : BASSENIAN LAGONI U. B. C. 1991 WALL @ LEFT OF GARAGE: 8 + 0 + C) = 8 -f 1 0 A D LNG-1-H -1-01..Al SHEAF 1. SHE @ WALL ............................ ........... WIND I-OAD Cd FLOOR LEVEL ONLY t E I C-1 2 0 7 15 2 5, >>>>U S E 10 WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 40 "o. c. . . . . . . 40 WALL @ R113HT ELEV. : + F r 14 9 1 0 A D T R I B I-Ni-j--ri-i T 1)-1-A L GH E AR SHEAR W A L L f t -f 1- 1,bs/f t ........................ ................... 44 f3 0 . . . . . . >>>>U S E zi WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 64 "o. c . . . . . . . 64 10 WALL & REAR OF K I TCHEN & FAM.- 93 +3. 7 + C) -f t Tr:I B I.-1\1 t-J 1-1--4 TOTAL -S H E A F,,' SHE-)F: @ WALL t . t b,---.,/f f 1 hs 1.bs;/,f t, 3,CK-3, --1.3 7 1-1 .F, WIND I-OAD @ FLOOR LEVEL ONLY 17 G 1',') 1:2 17 /: >>>>U S E WITH (2) 1/2" DIA X 10" L ANCHOR BOLTS PE PANEL, L = 2. 133" WITH (3) 1/2" DIA X 10" L ANCHOR DOLTS PE 'PANEL, L = 3.175" O. T. M. =15813 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . R- MOMENT= 1329 lbs. ft NET. M. =14484 lbs. ft . . . . . . . . . . . . . . . . . . . . . . . UPLIFT = 3e62. 4 lbs. WITH ( 1 ) SIMP' HPOHD22 PER MIN. 4X4 POST AT EACH PANEL END. SHAKTI CORPORATION �fjV%"GaVPAJG1GROUP 0 E:40 1 Gj Its PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN. , 391-20ee ARCH- * BASSENION LAGONI U. B. C. 1991 1 1) WALL @ FRONT OF FAMILY: 0 = 1-11 f TH TOTAL.. SHEAF' SHEAF: WALL 1 f t ft 1.b s -Lbs/ft 34-,.:,: 1, 7( := 16 P111-F W]'[\I D 0 A D @ F I OOR LEVEL ONLY 6'G. 4717 3:33 >>>>U S E Z& WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 24 . . . . . . . 24 12 ) WALL Ca REAR OF GARAGE: L == 12 + 0 1:2 f t 1 DAD TF-,'[P L Ni.3-1-1-1 I-1.3-1-AL SHEOF' SHEA- F! @ WALL ...........------- 2 4:: Pl F, Wl N 1) 1—0 A I) Cc! F L 0 0 Fe. L E V 1-1 ONLY 1 C-16 /2 53,1,_j 443 A >>>>U S E 2\ WITH 1/2" DIA X 10" L ANCHOR BOLTS AT 16 . . . . . . . 16 SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 17AAR,ACGE wAL_L_ 0 ID E S I (a r%j PRESLEY OF SAN DIEGO SHAKTI CORPORATION PLAN 3 / "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U. B. C. 1991 113 WALL @ FRONT OF GARAGE: L w 1 . 83 + 1 . 83' = 3. 66 ft� 76 1- a!:;'' :l b s/f t ) f t/ 2 LOAD 4 J.7cS 1.hs-/ft ? x-I f.F J 2 ') = 3050 1 bs I_0AD/I.... :()::1 #:2,'0 :I.1::)!:— 3. 6FE, f t = 833 p]. f H-Height. f -cm, sill I:.-OI -at-H tC- blJt:tl:­lrn of header- G. 67 ft O- T. M. = I.... :=: k•1 ,, '' :I.b :s S., 67 -f t 1':"�1.7:' f t� 1 h ec t i. n r'I r_(-1(..(:I.(_t:a• I,::e{:l(..(:i.r e�(J ,:: I-a-I..M x 1 /1 . 3 3 x 15 0 r r„ ��0Cx O. T. M. = G1 r T '_ {F.?11 :v:I.+:.I1 Ti i'�.(`?[:_�.I. � t1' ia I/ { i" hc 1.d 4Jfl 4i . 9 1c: {::?I-1sic.I-i r(:..(-1 L.l c-e r.1 by ...,.:.,/ . . . .. 3,.�1 1 1 b S »»U S E 15 �r W/ (2)-1/2" DIA X 12" L ANCHOR BOLTS PER SHEAR PANEL. W/ ( 1 )-SIMP. ST-6236 PER MIN. 4X4 POST AT EACH PANEL END. W/ ( 1 )-SIMP. HPAHD22 PER MIN. 4X4 POST AT EACH PANEL END. KING E.N. STUD TOP PLATES Ea. Fm R V/ E.N. fill EQ. ST- 6236 EACH POST D/ PLYWIL 4-�I_`+ POSTS-- PULL SEARM F'13R HOL V/ PLYVD Eft. .a n �r WALL MATERIAL SEE PLAN r EX ISTUDS ! 16" ac. a)-- 1/2"X 1 A.H."t PER PANEL V/ X4 SILL PLATE 11 p f I> SDqPS[1N H PAHD PER POST i IL i 0/ PLYWOOD X- SEE Q SHAKTI ENGD&RING L DESIGN GROUPi INC M ' SHAKTI CORPORATION ENGINEERING and DESIGN GROUP michx1r-lum E3-run H E I el r PRESLEY OF SAN DIEGO SHAKT I CORPORATION PLAN 3 "STONECREST 4" DATE : 7-09-92 TEMECULA, CA. SED JN: 391-2088 ARCH. : BASSENIAN LAGONI U. B. C'. 1991 Location: Exterior Wall @ LEFT ELEV. : W I ND LOAD F J.'9- 49 ps-f L D F ALLOWABLE 50 psi A t t Grain (..-) Bf-�ndinc! 1450 pSi c' 'f . . . . . . . = 1 ., 7 x psi. All Stresi-7, N-:.,rmal tc-1 Grain 62.'5 p s i 1-01 tJ 11 N 1,0 P A 17'r'7 lateri-al support abC-Ut the weak axis. bLt,, I-)( abrut the "X" axis, Length, L 12. C f t :3)tt-td Depth, (j 5. 10 SI (�?ndpri-iess Rat i,:-, :7. 00 A 1. 1. P �':"t I-0?S5; with -ftability facti-cr 9' 5. 63 T:�C'al` inc-1 C)f Stud tc-, the Wall Plate. . . . . . E"2`J. p 9 N DI 1\1 G Assume . . . . . . . . 2xG' s @ 1611 o. c . W. C. D. F. #2 Properties . . . . 1 2 x 4 3 x 4 2 x 6 Area, Sq in , 5. 25 8. 75 8. 25 Section, Cu in 3. 06 5. 10 7. 56 Mom Intr, in^4 5. 36 e. 93 20. 8 Wind Load per 161, o. c . . . . . . . . . 25. 92 plf M 466. 64 ft-lbs f (b)= , 740. 41 psi . . . . 1 . 33 = 556. 7 psi < 1450 psi AXIAL Total Vertical D. L. 323 plf 31*( 14/2+1 )*1 . 33 f (c )- 39. 15 psi . . . load per linear foot K = . 23. 41 F' c = 744. 00 psi > 39. 15 psi O. K. COMBINED STRESS j = 1 . 22 *4 f (c ) / F" (c ) = 0. 05 + f (b) (F(b)-Jxf (c ) ) = 0.;39 ------------- -0. 45 SHAKTI CORPORATION ENGINEERING and DESIGN GROUP 01:-- SAN DIEC-3o SHAI--..T I � ORPOFRAT I ON C-r s i-n i,,.1 r---.c.: r,. DATE 5ED JN. 3-31 DASS)ENIAN I Ai-_j(­)j\j, C L i. Bearinq Pressure= '000 p5f 1::)0 V(`?)- ifi6?(J 13Y Soils Report by ]E(.Id(,I. Tel:)artment prirv,, -J-.c, nS jc t SO I I ENGINEER Inc . JOE' REPORT 1\1C-.)­ :; W., O. 1156-SI) i-)�T i:-_ * J t_t&I r y TELEPI-10NE I%-K1),, S ' -43N`21,5S I . Continuous Footing Design: _/2 69 plf 170. 0 I-A. f 2 i r = 754 p l f 992. 0 p l f W i d t 1-1 e..dn. "..?,0 00 75) n7-n. 5-2 f-L * Use 15 in. 'wide x 18 in. deep cont . ft . for 2-story * Use 12 in. wide x 18 in. deep - cont . ft . Moderate Expan. soil , 1-stcry. * Use 12 in. wide x 12 in. deep cont . ft . Low Expan. Soil , 1-story. * Use ( 1 ) 44 bar at top & bottom * These represent minimum foundation requirr.%ments. Foundation recommendations by th e soils engineer that call for more severe requirements are to supersede the above-mentioned minimum requirements. 2. Point Loaded Footing: P Sr3*5*W/144 P max- l.-Story: Med. Expan. Soil= 7700 lbs. Low Expan. Sail- 5e50 lbs. 2-Story: All Cases= 9625 lbs. 3. Pads & steel needed: P: P - R( l ) � 503e lbs. BEAM #_1 RIGHT, Area 5030 ) / ( 2000 - 73 2. 62 sq. ft . . . . . = 1 . 6 ft . USE 2411 SQ X DEEP CONC. PAD FOOTING WITH (2) -#4 BARS @ BOTTOM EACH WAY. A SHAKTI CORPORATION ENGINEERING and DESIGN GROUP P: P R(2) = 7401 lbs. BEAM #2 RIGHT Ares = ( 7401 ) / ( 2000 -- 75 ) 3. 84 sq. ft . 2. 0 ft . USE 30" SO X 18" DEEP CONC. PAD FOOTING * * WITH (2)-#4 BARS @ BOTTOM EACH WAY. P: P = R(3) - 11993 lbs. BM #2 L. & BM #3 R. Area ( 11993 ) / ( 2000 - 75 ) - 6. 23 sq. ft . 2. 5 ft . USE 36" SO X 1B" DEEP CONC. PAD FOOTING WITH (3)-#4 BARS @ BOTTOM EACH WAY. P: P = R(4) = 8049 lbs. BM #1 L. & BM #4 R. Area = ( 8049 ) / ( 2000 - 75 ) 4. 18 sq. ft . 2. 0 ft . tJ * USE 30" SO X le" DEEP CONC. PAD FOOTING **# WITH (2)-#4 BARS @ BOTTOM EACH WAY. r SHAKTI CORPORATION ENGINEERING and DESIGN GROUP r DETAILS r w I�KT� S H ENGINEERING and DESIGN GROUP Structural Design A Consulting DETAILS JN: 39 - S rLVVM • ex Duna V/ now hslfll PLY VWD w SHTH'G Ex PRESSURE ILK*& T11uss rLTHm� Ex TRUSS NOW Ipnlrs 1TIr r AT[! I •SIX SIMPSON ex EN H1 a 40" a/c w ! rx I . I iAIJt! 76P PLATES DTL SIMP HI Afft a M' or- SEE 1 E4" • m IW TEA PLAN (HEAR MATERIAL MAY DTL A-m� W'r D I r BE APPLIED TO EITIER P IWAR MTWMK MAT .EX fAC1A FACE OF STUD WALL D It NTLM11014[MIND ' 01969 SFIAKTI CO 4 RPGRATIgN A JT2 N"T .. 1909 SHAKTI C13RPMATIDN . TRUSS TO WALL CONNECT .- TpUSS TO WALL CONN. 2 •,F 8D1 A �► L W 101 SD 1-Ell PLYVD It[><]F SHTwci cx Raw ofm, SIMP• A33-F rx 10 •'dtAG TRUYYM 'to >IE ��►A� N6C I DESIGNED TU RESIST Stu= DffmLATERAL LUAII r agrtaH uw Ta UP PlAtis UMA W PLAN ~ 1SDq /I a ipr.Aayr 0 idr.An-f � 4w Ili T SIWU*f Aga LA i r � R 48" tLc. AIL TOP PLATS TGP f cIt PLATES SEE R OIL 31MP. A33"s " r ►RITE r 1 —3e-I�•� r�r TL NOV.A=11 iKAA MATE1lIAL MAr I l'4~ oc. sE APPLIED To EITM[R 3 16" o[, Sao= = er'•a rmx Gr STUD MALL a 1a-re O 1998 SMI(TI MPORATIl7H C 19M SICAKTI CIIEtPIVATIEN TRU.SS ' '1WA' ,L. ONNECT •TRUSS TO WALL CONNECT i r 'AIL + r1'S SD 1 DETAIII +! %A SHAKTI ENGINEEnING and DESIGN GROUP L---= stfuctulRl Design a Consulting i DETAILS JN: -3-9 I- wnw Aw rm. p � • • TA a" l Vz M =1W, A2., OW. Pft ILG Of an+a�ru PUt PLAN ~ a°°r r11 TCr hSTU 0 ra rrr-�� I1.ATCS [A 119L Tip *� u PLATLS a.anon PLXM xK'4 C v+a mwL ar Rv4(A�D /1110 UML �IcOR MLTL'LC STun 1089 SHAKTI CatPc7RAfitnM LJ '�A 1000 SHAn DraMmsq pq« 0 rAll. ♦ `. .. $D1 DETAIL 4, Sol DEARING KAM 91w. 31-19 ■ Eq lW NAIL,! Rli'C/c ex m sHTH'R 916 I slrpStlN >N,qNM-> � EN • ■ 2x FACIA HTttA R1KR LE 16� K PALS eu WrLODls a4 'VC PER p4LUMaRFUST LOV At CA, EM' TL l6r NAILS 4.10/ PUT )Ra >t!1 PLA N F.PL/I. RAt Igt:/ lI IRAhr WILL 3 a SIDE_VlEV 1 . 4 4 tWTI PIONEERING L OCsM MMjp POST T O BEAM CONNECT spwcTl YwR�rRnw r Kr1°" °"m"" ROOF TO WALL SHEAR SHAKTI ENGINEERING And DESIGN GF oup Slruclurel Desion 6 Consu111ng e -• [DETAILS JN: S9 I z ogg PLC SHTM • E.K J-4 PLYW9 sm"s TRUSS SIMP. .JOIST A3S's 81 4B"o.C. ■ �--AIL TOP PLATES TA.Kw'G JDiST •• STUA WALL � 17L A33's Ite.c. SDr. A]Ys pL PLATES32 • 8 24 3 16 STD!! MALL w DTL A33'■ SHAKTI ENG WIMING L DESIGN GR", INC. . 3 16 JST TO WALL CONNECT I Dxwcom IL t: (p(ps SD 1 DETAIL r!'.tI&& SDI K �-STUD WALL . l6d Srx ! FLA S THE 16" ox„ UM1 r STUD WALL Ex Ex PLYWD rLMR SMTH'G • I6d MAILS ! 160 a/C. UMq 1 �TRr<RS XK'G EN TJI JST. IfLK% O TJJII JST. * : SD?IP, A35'■ FnR * 48" a.¢. ■ ST SIMP. A35 111 TIN! PLT'■ ■ 4!' U/C A DTL A35•s l.YVCra STuo WALL ■ DTL A73's 4 4 I w ! _4" ti 3 fb" ,• SIAKT DESIGN GRmr. INC. MiNCrI ENG MMIMfI a DESIGN G=r, INC. - WALL TO FLR CONNECT CANTILEVER FLR TIE L_, SD/ DETAIL, SDIR--� ENGINEEniNG and DESIGN-OnOUP Slruclurnl 003Ign A Consulting * DETAILS JN: 39 1—zag8 EDGE HAIL SIIEATI1ING SD*. ST-GZ34 N VL (2)PX UR BEAM • SMrSQN ST-6276 N M Tlr MIL POST- trait-••- MST tat M XT. _. DBt. TEM Eti. to. STUDS SEE PLAN 1'1.T (P).?)( [MI FULL 1aT. iTIA ■ UNA ON PLAN �--. (SEE PLAN) 0'[AM StOt y1Il�, Sum MAY K INSTALLED q S S E D FACE W TOP PLATS �_ ST-6lR4 MSf-�• SWJCTS [rrgllKl:TMM L KSION 001Ur. On i SI IAKTi 1140111EEkINt1 F, DES154 canim DROP BM AT PLATE FELT TO FLUSH BM TIE I ' o ML f 1 I Z SD 1 N DEYAN. t I2+ SD 1 + Zvrm IT- ff." N a^Q lea. }• 1 t I U IWIiKR lLT. TT _ TT>N Pt.T .. TQ rl/1T1L .. • r an RX Ix rare • 11 DTL M& Crr NAB! mm SpLK3c w � t n Il! FiT�L rnaw , >. rt-ire a Nrr-+■ I MM i W aF i9KTTALLSED SHAM L>�RiD1ECll M L K= M OUP i steam Movouetr+a L lxstm am", an TOP PLATE SPLICE PLT TO DROP BM •TIES •AlL 17I p I AIL # o S t SHAIM • 1 ENGINEEnING and DESIGN GROUP 511uctuial Deslgn Colloulling. 1]ETAI L,S JN: S9 !-zo ge, L SEC PLA.4 t+ra vAA1L[x vrllt).AAeuvt w6 IrAIM MAL** TO nnT We PL r7 [x HBR. S[[ PLAN77 Sfirflpl NMMA VA4A u»-I64 ySIM"Shc'• STEEL STRAP IIAL f ST-MG R [A. POST NISI LL O/PLYVB SNTH'G PK-SENT [ltiptn "L NPA►p TIG1R 4X POSTS - FULL4 1MTclNaR VN,L AWM>:T Peti BEARING FOR MDR. AM v V/PLYVR. EarsE NAiL r • } 0 SHEAR MATERIAL. SEC.PLAN Comm r st 2X STUDS R 16" n,c. NM a)-w ff IRE � �""coR r • r�r plll X A l•R PER t PALL W... X 4 SiLL PLATE,, _ ( 1 1`SIMPSOIP• IVAIM 11 tI�Tdl [A Dt Ii D/PLYVp 1t+SSE[ t Me a Cox ML ItL �IRK LAIR L pLr.V r Tp PafT. MAf4 AItAT!R Mrl1[>t TO 91TIKR suc or PaI uA& PM ifM SHARTI CGRPMAVION 19K SAHIB CATALOG Ala V"L' NU114"IM • i © llwf �Tl COIPORAiIOM GARAGE"SHEAR PANEL PA HOLDOWN TO FOOTING ' t . TAIL Co SD1 DETAIL f Z74 1 SD1a n uR 660M MAIL WM oL M Jow KMK PLAN AND CUNCH �i,• eR KX L W., CA I6r IPA • llpw: Araar• CA . PLYVD. ROOT SHTWM Rif"' �' I - TR fAllc•o EA poor SHTWIL I TJ1 PLC.7'aT. TJI Rr• T• ` TiI m HANKER 2x BEVELED • PCR I A AW . TRUSS -� NA TR R r v ` Mom KM Q SJUR A-35 S[7C O 41r o.c. l PLIW WOOD BEAM V/ ow XAM MTL. TRUSS HANGER Cblhat " PA ILS PER �1•. O xFfWn ENGINEER WG t, DMIGN GRap. I, Q S11A Il OMfii#PVO 6 KMM fMUPJSC. RAFT TO TRUSS CONNECT LATERAL.SHEAR TRANSOR' AIL DETAIL ♦ -34P40% W S� _ ._.... . SD 1� • SHAKTI ENGINEERING and DESIGN GROUP Structural Design i Consulting _ DETAILS LA ""/J w FMG KM xll Nllt'0 01 !FR'0 it1IL.900 OF i ais fY1. A-s� M i [A $rK "IT � iA rqr r'LATf i Mmx I AW i UNM PS s�r1 . rtrr. A-14 ON C& COL.1RV jpa OR gem ■/ta IMLi MR US-vw aft r ttw . trtup Ir�tt MCHM U LT P[R ILL, As"To"MAY VARY 1 • Y,MA 1Na JIM1tA proM[IWea a Clem a>mw TOP vim; RAFT�J8T TA. WALL T#E • 1'111LLIM; M ►iM I VS-1234 MAY is U=9 `S AM ALTERMTtC ' t DETAIL ♦ pETAIL + Z • r old MENEM r• SHAKTI e� _ ENIOINEERING and DESIGN GROUP Structural Design A Consulting i DETAILS JN= .311 -20,�58" SEE PLAIT RX 9LK'G V/ Cx lad tax a 2-16c NAILS Ex PER PLAN- I6a'oe W' 0r 16" wc. uxa Pr'R STUD IQ NAY BE APPLIED [x AT EITHER FACE r�CHbR.D C7 rLm• SHOM I IIF STUD WALL Lk RIXr SHTMG I ///7�Qut�Ww -I- , y,W 1, /sa s�Ta e `R w mil! TJI 1 jT►r `�Y�f`' I 16" ox- U.NA. Wil(ad NAIL* • I FLR. yrd.L•. SHTH'G . 71►T�►1i TRUSS HANGER Ell [1l wUls TRUSS � •a��, [A PER Aqw. «r w.ucSc X Q 1 S![E , r TRUSS ruw • [x Ex l glad NAILS -- D ow BAN- - rr:R Ir.aal PLAN 40 l2)-16d NAILS TWN1 Set F1rA PAID ® BoomalmlralRls 16 Kamm 011a1r P+C. PER SLOCK LATERAL SHEAR TRANSFR O 1969 SHAM CORPORATION ,�ATtr►:�.L �-•I�+~•f f�_ •11•hl:i:1'r.IC DETAIL ♦ �ZIA&Dl? A 131 b F ,W2 9 Was PER lit t" WL2 fta 111m CAIaF.FµIC FLTV/ ft"m Raw aNum LJl SHTW4 [x `mow NAats e tx�MATw !t" rw:w RLN PLTVII SwwO "ORA4 GIRDER COHIVAa}rS UNDER TRUSS. CALIF. FRAWNR DCSTGNEs TO a sins a �~K S RESIST LATERAL or too PLF S -L'ta%'LAM Ex ex rLX'e sk o Paw DETWEE14 TRUSSES Et WALL To VIn41r iMy WOWTRUi! 3Mil1�a aMTVALL CCrpq - A-S'JF a 9-"" PER IALKMAII! 400 1 N STUD WALL L .A —WE KTAL NANO" STUB WALL —f PCR TRlm WHF.RS OLGARM IMM,IAt:TIRTiR � 0 1999 SHAM CORPI RATIM � sawlil ae:lrazalrq L DEtte>t urrr, _ ..... •-- DETAIL. f 2"/ / ' 4 '' C [Diiiullt.�r ��12 A sod D �{ r is 4 SHAKTI — 1 -70 ENGINEERING and DESIGN GROUP ° Structural Design A Consulting DETAILS JN: q -dog ham STLM • PL TECL LIL w rx par 11"T" an CAM MST W,pLyw pt . 4WILL HATGIK SEE Pt Mr a Bases at CRM a up, a� w IN XXL PLATE XW. HAN= J a me tvb. �. r�j, R Pmw P L j R POST GIRDfR" T-.RUS8 CONNECT` L � SHAI(TY 1NRi l DES ��•� . GARAGE SHEAR P,4NffL TAIL + I SD2 011TAl.•' y 3 A F L.YVC]UD SHTH'G 791P PLATES 16d NAILS -- E.N. @ I2' B.C. 31 9X EX41a R EA TILE 13P STUD 0 16d NAr S 2X BLOCK' E'N' ti a t«P"o e th i X rii►crl COMEC. 1 1H END ��X1W A-33's a EA SII s>rt �7 � 4xts tt�le In I6d NAILS aw = PER STUD 15SES "' ex FACIA 4xte Hatt ,4' U'C'- L`—' 2X FINGERS I e 4 U.C. Ett EO (m SIW. TP-33 N E.N. DS ! i11rSON EMN SIDE PACE M-13 i bd NAILS M..M. O.C. ST-"36 LENDiT [F STUDS 100 D EACH i1DC IM TRttr1ER • XX-4 TRllg411 EX4 Kvnc Sno 6* IFULL HEIGHT 40 SHAXTI ENGINEERING IL DESIGN GRDUF' s1lAlcrt I:rwn4E�Rrrlc a �Esrr,N c�DUP, rNc, GARAGE BM SPLICE CONNECT. -TAR, 0 8021AaRAIL 4 ., 65 H sDz ll ENGINEERING and DESIGN GROUPSHAKTI ' Structurel Design&Consulting DETAILS Irv: S 9 f -z a8�,> C- RK'0 M/ L1[ 1a1pr VII�Md IM�i 1� SA �HA : am RTw! WR •IMM A At rM N 111 sly r R/MI 11[I� iMT1fq ;81111 l fAd SPA 6 /p AIL�J17 16• am um zr B4KG ' oc urra aIut pr/4rv. SHT" w I&a M�►� nR. s 4na .,.� of 1 min r W'M cu sx rx rul wwr►. I Rs F-A Fx F.l p al T%= }MICTM Q1M tiM1NM1 SII 111C'0 CA Q bt a�� • �I S11AIR1 ORi�[ISIR 1, 1[�1 d�11tE sr� M '"'� 'c"" GARAGE FLR t1E/WALL 19w SWXTi C>3 DR�TJM LATF—RAir e_,SkvT 1kK tf?WSF" DETl11t, f •5 ii SD2 M DETAIL. r 27&A K 16d W" a 16, Q/G uJW, - TO• MLATC% w/ Mvwa lam w�ra �" >.X P.l.�. 11 > _ FL aic nI II II ipfNdl II sT � cN t N 17RY'1�/11L� 1 � • IM" �- a/cRX• IIiIIl;Ma �Vx Ma 1II II IIfI s IIII II II ;FWCTL f1WrEER1fJCi 6 AI SIGN GROW, U C'. ^4012a IMTS rreY va • I�Tq iTAa wlMLil11 • SHEAR PANEL SECTION. 1 . 'DETAIL o34 S DETAIL qp SD2�M 1 , HAKTI ENGINEERING and DESIGN GROUP Structural Design 6 Consulting DETAILS 2X BL1c'G. R[]OF SHTH'G. Y/ (2)16d NAILS PER 4X Pl3ST !.___ BL K'G. I EA. ETID � — PLYVD 111EAK PANEL YVD EN E7� TTa aC 7LKTi . --y=2X �C.J —� 4XsEE t PLAN E.N. � �, -E `�. TRIJSi �r-•--,- YEN SEE PLAN ZX DLKG. -46w/tpMr- a/KYVD -->Zx xX'G VA3n6d +— STUD WALL fI35-c7i CONNNECTMINN STUD �L S71 TRIMMER --i _ p Dgc ROOF TO WALL CONNECT sHAKT` MINERIN6 ` DESIM GMV BEAM TO WALL STRAP Y 1 DETAIL. f 3 3 SD2 DETAIL;*. ?7S O SD2 i EACH SWE OF TRL=W-W ZX L_t~D&r+K e+•IL5 ie ter. .JST. WED Lw4'--w, V/ u.M.V. !d K40.2 ! 6"o-c. FLR TRUSS IILK'G V/ YyM¢ LAC-s"e-W5 3x rsL�'11.•ate, r-E STAGOMD PLYVD ANT X S" L-ONG ��zc. itLJV All /NAM{ ! ElS V/ APwEA Sf/�GG'p x•r,POM TnP Pt rs FLOOR SHTH'S METAL HANU M2S ! EA. END (SEND OUTSIDE rap;epx E!L EA FLANGE AS REL) Zr •ACG am XT y J V/ iilt• �� rIM� ' APPROVED r� l ' METAL FLWR i1R I HAN&ER TRUSS JST TRUSS .j D1JL 4X LEDGER V/ 3/4' a a•I U 9 . JST. PLTS LAG REDS ! B-c G Slw. A3S'■ STUD VALL 4OW TDV%M I A-3s ! 16"oc SHAKTI ENGINEERING i DESIGN GROUP, INC. SHAXTI ENGI►EERM13 L DESIGN VRouP, INC. FLR JST TO FLR TRUSS CONNECT DECK JOIST TO FLR CONNECT DETAIL 0 ---^---.. D2 � OETAI � fir, SD201 .a SHAKTI 1-73 , ENGINEERING and DESIGN GROUP Structural Design&Consulting i I . i I DETAILS JN: r31:7/ Ss POST I (SEE PuW)_ PK a Cw IF2mFL Tpuss f f RYwc>ov0. �61GIN�n RE61 A LATE KIL DOLTS _0A0 ar I vat MIS u•N.o aN FLAr4 2 XTRW . SILL AS REQUIRED PLT_ IGl HI.KFl� 13LW'Gy PTLIC2N tW1�6 �Y v Fla+F SNnmr. mzw DOLT EMBEDMENT 19" • . N I"' 12• `'* r Sp. X 1 4• 1 W Sm. WASHER PLT. 51H COMPLY W/ALL MAHUF. SPECS. j #M113'p� rNMACWM EM I ANCK.a10111 UAM f avev NDAA 1 2-3/4.0 3/r0 if Slav' HF-TAL. HA"CR MD7A �7 II A 1y wA4l. •$. GnS Z`t t7t 1. N1.� `G!4•Vj v + . �IM�pMK11 LEI�a1Mib11 & HDAMD HOLDDOWN OF TAIL `� %aIS SD2a 17aTAR. f 970 SD2a EXTET SHEAR CO MATERIAL CONT. W/O INTERRUPTION EX CALIF. REIPF SHTlI'G. -'-� :X LEDGFR — SEE PIAN FRAMING U PLYWG. SHTH'Q/ N ROOF SHTH'G II• STUD 16d'S PER 2— 16d TOENAILS PER BLK'G 16d S.P.N. O 16' a/c U.N.O. E.N.2X CUNT. 0x CON.. LEDGER BLK'G V/(2) FLOOR SHTH'G RAi f W/ 6d S O.G 26d NAILS tY a/c PER FLOCK ySI 2X BLOCKING V/ - - -� ROOF S 4TH'G. E.N. 2X FtLK•C 1 w/ FLR. E.N. ALT. LOCATION TRUSS 1I11 RAFTER, r� SIMP. A-35'S SEE PLAN ` /� I v O 32" a/c • d 5HAKtI ENGINEERING L DESIGN GRi]UI', INC 1991 SHAKTI CORPORATION ROOF TO ROOF SHEAR a DETAIL ♦ -�'' B V nETAII. 0 (�,q ? 5021...:.J SHAKTI �2 ENGINEERING and DESIGN GROUP Structural Design 6 Consulting e i DETAILS JN: 39/-Zo 8 8 v SEE PLAN 16d NAILS f �E 16. 11/C..UN.Q. Ia I PLYVD pLE (�I rFLR. SHT'G EN (2)16d NAILS - -= TPER STUD i'X F.J EN . i ,i 2X rS LEDGER 2X C.J _ EN STR—U EN I �� DRYVALL�CEIL'G DR SIMP. gA�LMN FRAME VAGL HANGERS SHWTI ENGINEERING L DESIGN GRQUP, INC. LATERAL SHEAR TRANSFR I - j DETAIL ZI SD2 Ell, DETAIL# X i I I i �i tz0�K. T�tJ SS a • si mot✓ PI.'r • I izp -'p-d s s Ty r���T G o k►-1. ►�v�-f� T� "i I L c a w I.1. V A . J 1♦ DETAIL 0 SD2 DETAIL - - --.._. . __----. ___—__--__-------------. SD-2 Ell IRVINEWEST TITLE 24 CALCULATIONS 638 SOUTHERN AVENUE ORANGE , CALIFORNIA 92665 ( 714) 921-0800 FEBRUARY 04 , 1993 OWNER: PRESLEY OF SAN DIEGO 15010 AVENUE OF SCIENCE SUITE No_ 200 SAN DIEGO, CALIFORNIA 92128 DESIGNER. BASSENIAN/LAGONI ARCHITECTS_ ___ 2031 ORCHARD DRIVE SUITE #100 SANTA ANA HEIGHTS, CALIF . 92707 PROJECT: STONECREST 4 - VAILWOOD TEMECULA --PLANS No. 1 , 2 & 3 STATEMENT OF COMPLIANCE The energy conservation standards for new residential buildings as set forth in Title 24 , Part 2 , Chapter 2-53; and Title 20 , Chapter 2 , . Subchapter 4 , Article 1 , of the California Administrative Code, have been reviewed. This design conforms to all requirements as they apply in Zone 10, using MICROPAS 4, VERSION 4 .01 , A California Energy Commission approved computer performance method program . PREPARED BY: RA Y DOWNS Licen No . 468609 C20 TABLE OF .CONTENTS TAB No. 1 : PLAN No. 1 CF-1R FORMS C-2R FORMS TAB No. 2: PLAN No . 2 CF--1R FORMS C-2R FORMS TAB No. 3: PLAN No . 3 CF-1R FORMS--- C-2R FORMS TAB No. 4: MISCELLANEOUS MF-1R FORM INSULATION CERTIFICATE INSTALLATION CERTIFICATE: CF--6R GENERAL LIGHTING HEATING AND COOLING CALCULATIONS EQUIPMENT SCHEDULE EQUIPMENT SPECIFICATIONS CERTIFICATE OF COMPLIANCE : RESIDENTIAL Page 1 CF-1R Project Title . . . . . . . . . . STONECREST 4--VAILWOOD Date . . . . . . . . 02/03/93 Project Address . . . . . . . . PRESLEY OF SAN DIEGO -------------_---___--___ TEMECULA Dsmentation Author . . . RANDY D . DOWNS ; Building Permit # Company . . . . . . . . . . . . . . . . IRVINEWEST Telephone . . . . . . . . . . . . . . ( 714 ) 921--0800 Plan Check / Date Compliance Method . - . , , . MICROPAS4 by Enercomp , Inc . ; Field Check/ Date Climate Zone . . . . . . . . . . . 10 --------------------_----____ MICROPAS4 v4 .01 File-PSDSC41 Wth-CT71OS92 Program--FORM CF--1R User#-MP1343 User-IRVINEWEST Run-PLAN No - 1 ------------------------------------------------------------------------------- GENERAL INFORMATION -------------------- Conditioned Floor Area . . . . . 1668 sf Building Type . . . . . . . _ _ - - - Single Family Detached Construction Type . . . . . . . . . New Building Front Orientation . Cardinal -- N ,E ,S ,W Number of Dwelling Units . . . 1 Number of Stories . . . 1 Floor Construction Type, . . . Slab On Grade ( Package D ) BUILDING SHELL INSULATION ------------------------- Component Insulation Assembly Type R- value U--Value Location/Comments ------------ ---------- -------- ----- -_ -_-_-----__-------_---......------- Wall R-13 0 .088 BACK , RIGHT , GARAGE WALL , FRONT , LEFT Roof R-38 0 .025 WITH ATTIC Door R-0 0 .330 SOLID WOOD , TO GARAGE SlabEdge R-o- 0 .900 to outside SlabEdge R---O 0 .720 to outside SlabEdge __ R-o 0 .550 to garage SlabEdge R--O 0 .500 to garage FENESTRATION ------------ Over-- Area U_ 4 of Interior Exterior hang/ Framing Orientation ( sf ) Value Panes Shading Shading Fins Type Window Back ( S ) 31 .0 0 .750 2 cec: std . None None Metal Window Back ( S ) 154 .5 0 .750 2 roller shd 50% bug scrn None Metal Window Back ( S ) 24 .0 0 .750 2 cec std . 50% bug scrn None Metal Window Right ( W ) 40 .0 0 -750 2 roller shd 50% bug scrn None Metal Window Right ( W ) 18 -0 0 ,750 2 roller shd 50% bug scrn Yes Metal Window Front ( N ) 5 .0 0 .750 2 cec std , Bldg Shade None Metal Window Front ( N ) 40 .0 0 .750 2 cec std , 50% bug scrn Yes MetalMul Window Left ( E ) 24 .8 0 .750 2 cec std , None I None Metal Window Left ( E ) 65 .0 0 .750 2 roller shd 50% bug scrn None Metal W516ow Left ( E ) 12 .0 O .75Q 2 roller shd 50% bug scrn Yes Metal CERTIFICATE OF COMPLIANCE: RESIDENTIAL Page 2 CF-1R Project Title . . . . . . . . . . STONECREST 4-VAILWOOD -~�-_ _—Date . . . . . . -02/03/93 ' MICROPAS4 v4 .01�-File-PSDSC41 �Wth-CTZ1OS92�mm Program-FORM-CF-1R---��--_� ' �- User#-MP1343� User-IRVINEWEST Run-PLAN No _ 1 '�_----- - _---__..__------------ -------- ___ - THERMAL MASS ------------ Area Thickness Type Exposed ( sf ) ( in ) Location/Comments SlabOnGrade Yes 206� ---4 .0 ENTRY-KIT-LAU-BATH____ SlabOnGrade No 1416 4 .0 TYPICAL InteriorHorz Yes 46 1 .0 KITCHEN & BATHS InteriorVert Yes 113 1 .0 BATHS HVAC SYSTEMS ------------ Minimum Duct Duct Thermostat Equipment Type Efficiency Location R-value Type - -u -- - Gas 0 .800 AFUE Attic R�-4 2 Setback AirCond 10 .50 SEER Attic R-4 .2 Setback WATER HEATING SYSTEMS --------------------- Number Tank External in Energy size Insulation nk Type Heater Type Distribution Type System Factor ( gal ) R-value -----w-W---- ------------ _-----w- _- -- _----__.. __-------- - _-_--�- _----__----�---_ . Storage Gas Standard 1 0 .63 EF 47 .5 R-- 0 SPECIAL. FEATURES/REMARKS - This is a multiple orientation building with no orientation restrictions _ This printout is -for the front facing North . CERTIFICATE. OF COMPLIANCE : RESIDENTIAL Page 3 CF-1R Project Title . . . . , . . . . ,vSTONECRESTw4--VAILWOOD Date , . 02/03/93 ' MICROPA54-v4 .01File-PSDSC41-HWth-�CT710592 ' Program-FORM CF-1R , User#-MP1343 User-IRVINEWEST Run-PLAN No . 1 - -------- ------------ --------------- --_--_--__---_-__- COMPLIANCE STATEMENT This certificate of compliance- � � liststhebuilding features and performance specifications needed to comply with Title-24 , Parts 1 and 6 of the California Cade of Regulations , and the administrative regulations to implement them . This certificate has been signed by the individual with overall design responsibility . When this certificate of compliance is submitted for a single building plan to be built in multiple orientations , any shading feature that is varied is indicated in the Special Features/ Remarks section . DESIGNER or OWNER DOCUMENTATION AUTHOR Name . . . . ARAM BASSENIAN Name . . . . RANDY D . DOWNS Company . BASSENIAN/ I ARCH . Company . IRVINEWEST Address . 2031 O. - T #100 Address . 638 SOUTHERN AVENUE SANT 'G'� 92797 ORANGE , CALIFORNIA 92665 Phone . . . ( 7 �c Phone . . . - ( 714 ) 921-0800 License . Signed . . C8395 � Signed . . LX_Q�� C!� - " 3 ( at ) ( date ) . ENFO NT AGE Name . . . . �`� Cf, _ Title . . . Agency . . Phone . . . Signed . . ( date ) COMPUTER METHOD SUMMARY Page 1 C-W2R Project Title „ . . . . . . . . ^STONECREST 4-VAILWOOD �mm Date . . . . . . . 02/03/93 Project Address . . . „ . . . . PRESLEY OF SAN DIEGO --------------------- TEMECULA D mentation Author , . . RANDY D . DOWNS ; Building Permit # Company . . . . . . . . . . . . . . . . IRVINEWEST Telephone . . . . . . , . . „ , , , , ( 714 ) 921-0800 ; Plan Check / Date Compliance Method . . . , . . MICROPAS4 by Enercomp , Inc . ; Field Check/ Date ' Climate lone . . . . . , , . , , . 10 MICROPAS4^v4 .01File-WPSDSC41 �Wth-CT710S92- Program-FORMyC-2R�~�- Users#--MP1343 User-IRVINEWEST Run-PLAN No . 1 ' ____-___-w____..___---_-____. _____-...___-__-__--- -____--__--_____-____-__-----_ MICROPAS4 ENERGY USE SUMMARY- ---------------------------- Energy Use Standard Proposed Compliance = ( kBtu/sf-wyr ) Design Design Margin = _ ---- Space Heating . . . . . . . . . . 8 .79 7 .18-~ __w- �-1 .61 - - Space Cooling . . . . . . . . , „ 14 .81 17 . 17 -2 .36 - Water Heating . , . , , . ,. , . 13 .24 12 . 11 1 , 13 - - - North Total 36 .84 36 .46 �0 .38 TM Space Heating . 8 .79 8 .24 0 .55 = Space Cooling . . . . . . . . . 14 .81 16 .48 -1 „67 = = Water Heating , . . , . . . , , . 13 .24 12 . 11 1 , 13 East "total 36 .84 36 „83 0 .01 Space Heating , . . . , . . . . . 8 .79 8 .82 -0 .03 = _ Space.--Coo- ling . . . . . . . . . . 14 .81 12 .63 2 . 18 - Water Heating . . . . . . . . . , 13 .24 12 .11 1 .13 w - South Total 36 .84 33 .56- -y- �3 .28 - Space Heating , . . . ,.. . . . . 8 .79 7 .07 1 .72 Space Cooling . . . , . . . , . . 14 .81 14 .41 -0 .40 mm - Water Heating . . . . . . . . . . 13 .24 12 , 11 1 . 13 = West Total 36 .84 33 .S9 -`- - �32S _ *** Building complies with Computer Performance - GENERAL INFORMATION ------------------- C.;onditioned Floor Area . . . . . 1668 sf Building Type . . . . . . . . . . . . . . Single Family Detached Construction Type New Building Front Orientation . Cardinal - N ,E ,S ,W . Number of Dwelling Units . , . 1 Number of Building Stories . 1 Weather Data Type . . . . . . . . . . ReducedYear COMPUTER METHOD SUMMARY Page 2 C-2R Project Title . . . . . . . . . . STONECREST�4-VAIL_WOOD Date. . . . . �~02/03/93 MICROPAS4wv4 01-vFile-PSDSC41Wthw-CT710S92�vProgram---FORMIC-2R User#-MP1343 User-IRVINEWEST Run-PLAN No _ 1 -------- ------------ ---------------__-- _---W--_---_ Floor Construction Type : _ Slab On Grade ( Package D ) Number of Building Zones . . . 1 Conditioned Volume . . . . . . . . . 17198 cf Footprint Area . . . . . . . . . . . . . 1622 sf Ground Floor Area . . . . . , . . . , 1622 sf Slab--On-Grade Area . . . . _ . . . . 1622 sf Glazing Percentage . . . , , . _ . . 24 .8 % of FA Average Ceiling Height . . . , . 10 .3 ft BUILDING ZONE INFORMATION _ Floor # of ___ Vent Special Area Volume Dwell Cond-- Thermostat Height Vent Area Zone�Type ��___ __( sf )�__ �( cf )_-- Units itioned __�Type uT__� -( ft )- _-( sf )___ HOUSE Residence .1668 17198 1 .00 Yes Setback 2 .0 n/a OPAQUE SURFACES --------------- :Area U- Insul Act Solar Form 3 Location/ Surface ( sf ) value R-val Azm Tilt Gains Reference Comments HE--__ �___� ______ _�___ _��__ _�_ ___- -____.. ------------ -____-__- ----- 1 Wall 220 0 .088 R--13 180 90 Yes None BACK 2 Wall 319 0 .088 R-13 270 90 Yes None RIGHT 3 Wall 171 0 .088 R-13 270 90 No None GARAGE WALL_ 4 Wall 97 0 .088 R--13 0 90 Yes None FRONT 5 Wall 179 0 .088 R-13 0 90 No None GARAGE WALL_ 6 Wall -_ . 481 0 .088 R---13 90 90 Yes None LEFT 7 Wall 32 0 .088 R-13 90 90 No None GARAGE WALL 8 Roof 2011 0 .025 R-38 0 24 Yes None WITH ATTIC 9 Door. 20 0 .330 R--O 0 90 Yes None SOLID WOOD 10 Door 18 O .330 R-0 0 90 No None TO GARAGE PERIMETER LOSSES ---------------- L_.ength F2 InsuI Surface ( ft ) Factor R--val Location/Comments ------- �--_-______-__-_--_----- HOUSE 11 SlabEdge 28 0 .900 R-0 to outside 12 SlabEdge 119 O .720 R--O to outside 13 SlabEdge 15 0 .550 R--O to garage 14 SlabEdge 29 0 .500 R--0 to garage COMPUTER METHOD SUMMARY Page 3 C--2R Project Title . , . . . . . . . . .STONECREST�4--VAILWOOD Date .N . . 02/03/93 MICROPAS4 v4 .01File-PSDSC41w�Wth-CTZ10S92 Program-FORM�C--2R User#_-MP1343 User-IRVINEWEST Run-PLAN No _ 1 ' ____ -___--w____.._----_--___-...___----_--.-_-- ___-___--_-___--_---__---_ FENESTRATION SURFACES --------------------- SC SC Interior Area ## of Frame Open U- Act Glass Int Shade .Surface ( sf ) Panes Type- Type__ value Azm Tilt Only- Shade Description ----------- ` H- HOUSE 1 Window 31 .0 2 Metal Fixed 0 .75 180 90 0 .88 0 .78 cec std . 2 Window 96 .0 2 Metal Slider 0 .75 180 90 0 ,88 0 .40 roller slid 3 Window 58 .5 2 Metal Slider 0 .75 180 90 0 .88 0 .40 roller shd 4 Window 24 .0 2 Metal Slider 0 .75 180 90 0 .88 0 .78 cec std . 5 Window 40 .0 2 Metal Slider 0 „75 270 90 0 .88 0 .40 roller shd 6 Window 18 .0 2 Metal Slider 0 .75 270 90 0 „88 0 .40 roller shd 7 Window 5 .0 2 Metal Fixed 0 .75 0 90 0 .88 0 .78 cec std . 8 Window 40 .0 2 MetalMul Slider 0 .75 0 90 0 .88 0 .78 cec std - 9 Window 24 .8 2 Metal Fixed 0 .75 90 . 90 0 .88 0 .78 cec std . 10 Window 65 .0 2 Metal Slider 0 .75 90 90 0 .88 0 .40 roller shd 11 Window 12 .0 2 Metal Slider 0 .75 90 90 0 .86 0 .40 roller shd - OVERHANGS AND SIDE FINS ----------------------- ---Window-- ------Overhang----- ---Left Fin-_- --__Right Fin--- Area Left- Rght S&aGc ___ -( sf ) Hght Wdth� Dpth Hght Ext --Ext` Ext` Dpth Hght Ext Dpth Hght HOUSE ---- __ --- - __-_ ---- 6 Window 18 .0 6 .0 3 .0 1 .5 1 .5 n/a n/a n/a n/a n/a n/a n/a n/a 8 Window 40 .0 5 .0 8 .0 2 .5 1 .5 n/a n/a n/a n/a n/a n/a n/a n/a 11 Window 12 .0 6 .0 2 .0 1 „5 1 .5 n/a n/a n/a n/a n/a n/a n/a n/a EXTERIOR SHADING ---------------- Area Shading SC of Surface ( sf ) Type Ext Shade _-�..-_--^-HOUSE 2 Window 96 .0 So p bug scrn 0 ,84 3 Window 58 .5 Sop bug scrn 0 .84 4 Window 24 .0 50% bug scrn 0 .84 5 Window 40 .0 Sop bug scrn . 0 .84 6 Window 18 .O 50% bug scrn 0 .84 7 Window 5 .0 Bldg Shade O ,20 8 Window 40 .0 50% bug scrn 0 .84 10 Window 65 .0 50m bug scrn 0 .84 11 Window 12 .0 50m bug scrn 0 .84 COMPUTER METHOD SUMMARY Page 4 C--2R Project Title . . . . . . . . . . �STONECREST�4-VAILWOOD Date . . . . . . . . 02/03/93 ' MICROPAS4�v4 01File-PSDSC41�TWth-CTZ10S92�vProgram-FORM-C-W2Rv��mmMv�~^mm ' User#---MP1343 User-IRVINEWEST Run-PLAN No . 1 ' -�--_ -W---------_-_-_---_----_..------_----------------_--------- _---- ------- ___-_-- THERMAL MASS ------------ Area Thick Heat Conduct- Surface Mass Type ( sf ) . ( in ) Cap ivity R-value Location/Comments ----- -------- --------------------------- HOUSE 1. S1abOnGrade 206 4 .0 28 .0 0 .98 R---O .0 ENTRY-KIT-LAU--BATH 2 S1abOnGrade 1416 4 .0 28 .0 0 .98 R-2 .0 TYPICAL 3 InteriorHorz 46 1 .0 24 .0 0 .67 R-0 .0 KITCHEN & BATHS 4 InteriorVert ' 113 1 .0 24 .0 0 .67 R-0 .0 BATHS HVAC SYSTEMS ------------ Minimum Duct Duct Duct System Type Efficiency Location R--value Efficiency ----- ------- --.�__--_-- HOUSE Gas 0 .800 AFUE Attic R-4 .2 0 ,830 AirCond 10 .50 SEER Attic R---4 .21 0 .810 WATER HEATING SYSTEMS --------------------- Number Tank External in Energy Size Insulation Tank Type Heater Type Distribution Type System Factor ( gal ) R-value __ ---------- 1 Storage Gas Standard ��-_ ---__�r..� --�0 .63--� 47 :5 RWa SPECIAL FEATURES/REMARKS - ` ' This is a multiple orientation building with noorientation restrictions . This printout is for the front facing North . CERTIFICATE OF COMPLIANCE : RESIDENTIAL Page 1 CF--1R Project Title . . . . . . . . . .�STONECREST 4-VAILWOOD Date . . . . . . . .�02/04/93 Project Address . , . . . . . . PRESLEY OF SAN DIEGO ---..___________________ TEMECULA D . mentation Author . . . RANDY D . DOWNS ; Building Permit # Company . . . . . . . . . . . . . . . . IRVINEWEST Telephone . . . . . . . . . . . . . . ( 714 ) 921-0800 ; Plan Check / Date Compliance Method . . . . . . MICROPAS4 by Enercomp , Inc . ; Field Check/ Date Climate Zone . . _ 10 ___-----____...-____---- MICROPAS4 v4 .01 File-PSDSC42vYWth-CTZ10S92 �Program--FORM�CF-1R User#-MP1343 User-IRVINEWEST Run-PLAN No . 2------------------------------------------------------------------------------ � GENERAL INFORMATION ~ Conditioned Floor Area . . . . . 1894 sf Building Type . . . . . . . . . . . . . Single Family Detached Construction Type . . . New Building Front orientation . Cardinal - N ,E ,S ,W Number of Dwelling Units . . . 1 Number of Stories . . . . . . . . . . 2 Floor Construction Type . . . . Slab on Grade ( Package D ) BUILDING SHELL INSULATION ------------------------- Component Insulation Assembly Type R--value U-Value Location/Comments ------- ----- --- ------------------ Wall R-13 0 ,088 BACK , RIGHT , GARAGE WALL , FRONT , LEFT Roof R-38 0 .025 WITH ATTIC Roof R-30 0 .036 TRUE SLOPE Floor R-19 0 .048 FLR . 0/GARAGE Door R-0 0 .330 SOLID WOOD , TO GARAGE S1abEdge -- R-0 0 .900 to outside S1abEdge R-0 0 .720 to outside S1abEdge R---0 0 .550 to garage SlabEdge R-0 0 .500 to garage FENESTRATION ------------ Over- Area U- # of Interior Exterior hang/ Framing Orientation -� ( sf ) Value Panes Shading Shading Fins Type ,�__ ___-___ ___ _-- . Window Back ( S ) 9 .0 0 .750 __2 cec-std . - None���--_��-- Yes- _ Metal v�- Window Back ( S ) 20 .0 O .750 2 cec std . None None Metal. Window Back ( S ) 179 .0 0 .750 2 Roller shd So% bug scrn None Metal Window Right (W ) 36 .0 0 .750 2 Roller shd 50% bug scrn None MetalMul Window Right ( W ) 15 .0 0 .750 2 cec std . None Yes Metal Window Right ( W ) 40 .0 0 .750 2 Roller shd 50, bug scrn Yes Metal Window Right ( W) 48 .0 0 .750 2 Roller shd 50% bug scrn None Metal WiAJJPw Front ( N ) 8 .0 0 .750 2 cec std . None Yes MetalMul Wilwow Front ( N ) 7 .6 0 .750 2 cec std , None Yes Metal Window Front ( N ) 24 .0 0 .750 2 Roller shd 50a bug scrn Yes MetalMul Window Front ( N ) 3 .0 0 .750 2 cec std . None None MetalMul Window Front ( N ) 15 .0 0 .750 2 cec std . Bldg Shade None Metal Window Front ( N ) 9 .0 0 .750 2 cec std . None None Metal Window Front ( N ) 15 .0 0 .750 2 cec std . 50 4 bug scrn None MetalMul CERTIFICATE OF COMPLIANCE: RESIDENTIAL Page 2 CF-1R Project Title . . . . . . . . . .. STONECREST�4-VAILWOOD Date . . . . v . 02/04/93 ' MICROPAS4 v4 .01� File-PSDSC42 �Wth-CTZ1OS92N Program-FORM�CF-1R�--�_ . User#-MP1343 User-IRVINEWEST Run-PLAN No . 2 _ -----------------_..-_-------_----------------_----_-----..----_---_..__---W.-_--___-- --- FENESTRATION ------------ Over- Area U- # of Interior Exterior hang/ Framing Orientation ( sf ) Value Panes Shading Shading Fins Type - --- ---u ---- - -W Window Left ( E ) 6 .8 0 .750 2 cec std , None Yes - Metal Window Left ( E ) 18 .0 0 .750 2 cec std . None Yes MetalMul Window Left ( E ) 30 .0 0 .750 2 cec std . 50e bug scrn None MetalMul THERMAL MASS ------------ Area Thickness Type Exposed ( sf ) ( in ) Location/Comments S1abOnGrade Yes 274 -- ��-4 .0 H ENTRY-KIT-LAU-BAT _____ S1abOnGrade No 643 4 .0 TYPICAL. InteriorHorz Yes 46 1 .0 KITCHEN & BATHS InteriorVert Yes 112 1 .0 BATHS HVAC SYSTEMS ------------ Minimum Duct Duct Thermostat Equipment Type Efficiency Location R-value Type _ -- -- -- Gas 0 .800 AFUE Attic R-4 .2 Setback AirCond 10 .50 SEER Attic R-4 .2 Setback WATER HEATING SYSTEMS --------------------- Number Tank External in Energy Size Insulation Tank Type Heater Type Distribution Type System Factor ( gal ) R--value Storage Gas Standard --- - ` ------ -- '-_ -` 1 6 .63EF47 .5 R-- p SPECIAL FEATURES/REMARKS Thisis a multiple orientation- � � - building orientation restrictions . This printout is for the front facing North . CERTIFICATE OF COMPLIANCE : RESIDENTIAL Page 3 CF-1R Project Title . . . . . . . . . . STONECREST 4-VAILWOOD� �Date ,- . . . . . . .�02/04/93 MICROPAS4�v4 .01File-wPSDSC42 �Wth-CTz10S92 Program--FORM�CF-w1R� User#-MP1343 User-IRVINEWEST Run-PLAN No . 2 � ----------------------------------------------- _--_--_-_--------_-_-- COMPLIANCE STATEMENT -------------------- This certificate of compliance lists the building features and performance specifications needed to comply with Title-24 , Parts 1 and 6 of the California Code of Regulations , and the administrative regulations to implement them . This certificate has been signed by the .individual with overall design responsibility . When this certificate of compliance is submitted for a single building plan to be built in multiple orientations , any shading feature that is varied is indicated in the Special Features/ Remarks section . DESIGNER or OWNER DOCUMENTATION AUTHOR Name . . . . SRAM BASSENIAN Name . . . . RANDY D . DOWNS Company . BASSEN ARCH . Company . IRVINEWEST Address . 2031 / T #100 Address . 638 SOUTHERN AVENUE_ SA 92797 ORANGE , CALIFORNIA 92665 Phone . . . ( -9 '�'i Phone . . . ( 714 ) 921-0800 License . n Signed.. . REN.4-30-93 * Signed . . clJ, (P e ) ( date ,ENFO�T CAO Name . . . . ' Title . . . Agency . . Phone . . . Signed .' . ( date ) COMPUTER METHOD SUMMARY Page 1 C-2R Project Title , . . . . . . . , .-STONECREST-4-VAILWOOD�-N_- Date , . . . . . .-02/04/93 Project Address . . . . . . . . PRESLEY OF SAN DIEGO ----_.� __- _--____- - TEMECULA Do mentation Author . . , RANDY D _ DOWNS ; Building Permit # ' Company , . . . , . . . . . . . . . IRVINEWEST Telephone p . . . , . . . - , . . ( 714 ) 921-0800 ; Plan Check / Date Compliance Method , . . . . . MICROPAS4 by Enercomp , Inc . ; Field Check/ Date ' Climate Zone . . ' MICROPAS4vV4 .01- File-PSDSC42--Wth-CTZIOS92- Program-FORM-C--2Rmm-N User#-MP1343 User-IRVINEWEST Run-PLAN No . 2 _-----------------------..__-_.-__--_______--------------------._._..__---___,-__----- MICROPAS4 ENERGY USE SUMMARYN��--_- --__-- ---------------------------- Energy Use Standard Proposed Compliance = ( kBtu/sf-Wyr ) Design Design Margin - W ____ Space Heating . . . . . , . . . . 9 ,68 9 13-- u--V 4-0 .55 - Space Cooling . . , , . . . . . . 14 .82 1.6 .39 -1 .57 _ Water Heating . . . . . . . . . . 12 ,24 11 .20 1 .04 - North Total 36 .74 36.72Y � 0 .02 = Space Heating , , . . . . . . , , 9 .68 9 .68 0 .00 = Space Cooling . , , , . . . . . . 14 .82 14 .21 0 .61 = - Water Heating . . . . : . . . . . 12 .24 11 .20 1 .04 = = - East Total 36 .74 35 .09 1 .65 Space Heating . . . . . , . , 9 .68 9 . 19 0 .49 - Space Coolin.g . . . . . . . . . . 14 .82 13 . 17 1 .65 - - Water Heating . . . . . . . . . . 12 .24 11 .20 1 .04 - -v u South Total 36 .74 33 56 3 - 18 _ - Space Heating . . . . . . - . . . 9 .68 8 . 17 1 .51 - - Space Cooliing . . . . . . . . . . 14 .82 15 .70 -0 .88 _ Water Heating . . , . . . , . . . 12 .24 11 .20 1 .04 - - West Total 36 .74 35.07- Vv- -1 .67 _ - * * Building complies with Computer Performance W GENERAL INFORMATION ------------------- Conditioned Floor Area . . . . . 1894 sf Building Type. . . . . . . . . . . . . . Single Family Detached Construction Type New Building Front Orientation , Cardinal - N ,E ,S ,W Number of Dwelling Units . . . 1 Number of Building Stories , 2 Weather Data Type . _ , . . . , - - - ReducedYear COMPUTER METHOD SUMMARY Page 2 C-2R Project Title . . . . . . . . . . STONECREST 4-VAILWOOD � Date . . . . . .- _ 02/04/93 MICROPAS4 v4 .01 File-PSDSC42 -Wth-CTZ1OS92 Program-FORMvC-2R-���--�-�- User#-MP1343 User IRVINEWEST Run-PLAN No 2 , __-____----------_----___-----___---------------------------__-__-! Floor Construction Type . . . . Slab On Grade ( Package D ) Number of Building Zones . . . 1 Conditioned Volume , . . . . . . . . 19402 of Footprint Area . . . . . . . . . . . . . 1318 sf Ground Floor Area . . . . . . . . . . 1318 sf Slab-On-Grade Area . . . . . . . . . 917 sf Glazing Percentage . . . . . . . . . 25 .5 p of FA Average Ceiling Height . . . . . 10 .2 ft BUILDING ZONE INFORMATION ------------------------- Floor # of Vent Special Area volume Dwell Cond- Thermostat Height Vent Area Zone Type ( sf ) ( of ) Units itioned Type. ( ft ) ( sf ) ------ ---__..�.�__ HOUSE Residence 1894 19402 1 .00 Yes Setback 8 .0 n/a OPAQUE SURFACES --------------- Area U_ Insul Act Solar Form 3 Location/ Surface ( sf ) value R-val Azm Tilt Gains Reference Comments 1 Wall 489 0 .088 R-13 180 90 Yet None BACK 2 Wall 493 0 .088 R-13 270 90 Yes None RIGHT" 3 Wall 50 0 .088 R-13 270 90 No None GARAGE WALL 4 Wall 230 0 .088 R--13 0 90 Yes None FRONT 5 Wall 228 0 .088 R-13 .0 .. 90 No None GARAGE WALL 6 Wall 489 0 .088 R-13 90 90 Yes None LEFT 7 Roof 1032 0 .025 R-38 0 24 Yes None WITH ATTIC 8 Roof 355 0 .036 R--30 0 24 Yes None TRUE SLOPE 9 Floor 401 0 .048 R-19 0 0 Yes None FLR . 0/GARAGE 10 Door 20 0 .330 R-0 0 90 Yes None SOLID WOOD 11 Door 18 0 .330 R-0 0 90 No None TO GARAGE PERIMETER LOSSES ---------------- Length F2 Insul Surface ( ft ) Factor R-val Location/Comments _..__-__-_�.__-_-- HOUSE 12 SlabEdge 47 0 .900 R-0 to outside 13 SlabEdge 57 0 .720 R-0 to outside 14 SlabEdge 26 0 .550 R---O to garage 15 SlabEdge 9 0 .500 R--O to garage COMPUTER METHOD SUMMARY Page 3 C-2R Project Title . . , . . . . . . . STONECREST 4--VAILWOOD� ---��____ -Date . --vv ,�02/04/93 MICROPAS4 v4 .01 File-PSDSC42v�Wth-CTZ10S92 �Program-FORM�C-2Rv User#-MP1343 User--IRVINEWEST Run-PLAN No _ 2 FENESTRATION SURFACES --------------------- SC SC Interior Area # of Frame Open U- Act Glass Int shade Surface ( sf ) Panes Type Type value Azm Tilt Only Shade Description ----- __---.----___ HOUSE 1. Window 9 .0 2 Metal Fixed 0 .75 180 90 0 .88 0 .78 cec std . 2 Window 20 .0 2 Metal Fixed 0 .75 180 90 0 .88 0 .78 cec std . 3 Window 179 .0 2 Metal Slider 0 .75 180 90 0 .88 0 .40 Roller shd 4 Window 15 .0 2 MetalMul Slider 0 .75 270 90 0 .88 0 .40 Roller shd 5 Window 15 .0 2 Metal Fixed 0 ,75 270 90 0 .88 0 .78 cec- std . 6 Window 40 .0 2 Metal Slider- 0 .75 270 90 0 .88 0 .40 Roller shd 7 Window 21 .0 2 MetalMul Slider 0 .75 270 90 0 ,88 0 .40 Roller shd 8 Window 48 .0 2 Metal Slider 0 .75 270 90 0 .88 0 .40 Roller shd 9 Window 8 .0 2 MetalMul Fixed 0 .75 0 90 0 .88 0 .78 cec std , . 10 Window 7 .0 2 Metal Fixed 0 .75 0 90 0 .88 0 .78 cec std . 11 Window 24 .0 2 MetalMul Slider 0 .75 0 90 0 ,88 0 ,40 Roller shd 12 Window 3 .0 2 MetalMul Fixed 0 .75 0 90 0 .88 0 .78 cec std _ 13 Window 15 .0 2 Metal Fixed 0 .75 0 90 0 .88 0 .78 cec std . 14 Window 9 .0 2 Metal Fixed 0 .75 0 90 0 .88 0 .78 cec std . 15 Window 15 .0 2 MetalMul Slider 0 .75 0 90 0 .88 0 .78 cec std . 16 -ndow . 6 .8 2 Metal Fixed 0 .75 _90 90 0 .88 0 .78 cec std . 17 indow 18 .0 2 MetalMul Fixed 0 .75 90 90 0 .88 0 .78 cec std . 18 Window 30 .0 2 MetalMul Slider 0 .75 90 90 0 .88 0 .78 cec std . OVERHANGS AND SIDE FINS ----------------------- "---Window--- --------Overhang---- - - ___Left Fin---- ---Right Fin--- Area Left Rght .surface ( sf ) Hght Wdth Dpth Fight Ext Ext Ext Dpth Hght Ext Dpth Fight ---- - ------ __ -___ _-_- -__- -___ HOUSE 1. Window 9 .0 3 .0 3 .0 1 .5 2 .5 n/a n/a n/a n/a n/a n/a n/a n/a 5 Window 15 .0 3 .0 5 ,0 5 .0 0 .75 n/a n/a n/a n/a n/a n/a n/a n/a 6 Window 40 .0 4 .0 1 .0 1 .5 0 ,75 n/a n/a n/a n/a n/a n/a n/a n/a 9 Window 8 .0 2 .0 4 .,0 1 .5 0 .5 n/a n/a n/a n/a n/a n/a n/a. n/a 10 Window 7 .0 1 ,5 n/a 3 .0 0 .75 n/a n/a n/a n/a n/a n/a n/a n/a 11 Window 24 .0 4 .0 6 .0 3 .0 2 .0 n/a n/a h/a n/a n/a n/a n/a n/a 16 Window 6 .8 4 .5 n/a 1 .5 2 .5 n/a n/a n/a n/a n/a n/a n/a n/a 17 Window 18 .0 3 .0 n/a 1 .5 1 .0 n/a n/a n/a n/a n/a n/a n/a n/a EXTERIOR SHADING ----------------- Area Shading SC of Surface ( sf ) Type Ext Shade ---_____.�____ __ ------ HOUSE 3 Window 179 .0 50% bug scrn 0 .84 4 Window 15 .0 50% bug scrn 0 .84 6 Window 40 .0 50% bug scrn 0 .84 7 Window 21 .0 50% bug scrn 0 .84 8 Window 48 .0 50% bug scrn 0 ,84 11 Window 24 .0 50% bug scrn 0 .84 COMPUTER METHOD SUMMARY Page 4 C-2R Project Title . . . . . . . . . . STONECRESTW4--VAILWOOD Date . . . . . . . . 02/04/93 MICROPAS4�v4 .01mm File-PSDSC42� Wth-WCTZIOS92Program-FORM~C-2R~W��H�T��v ' User#-MP1343 User-IRVINEWEST Run-PLAN No . 2 _ --__-_ __-----___-__..__---_.._____---____--w_..__..-__--_..__--W-___..-__--____..__----___--__ EXTERIOR SHADING ----------------- Area Shading SC of Surface ( sf ) Type Ext Shade __ 13 Window 15 .0 Bldg Shade 0 .20 15 Window 15 .0 SO% bug scrn 0 .84 18 Window 30 .0 50% bug scrn O ,84 THERMAL MASS ------------ Area Thick Heat Conduct- Surface Mass Type ( sf ) ( in ) Cap ivity R-value Location/Comments -------- ____-_____________________ HOUSE 1 SlaboriGrade 274 4 .0 28 .0 0 .98 R-0 .0 ENTRY--KIT-LAU-BATH 2 SlabOnGrade 643 4 .0 28 .0 0 .98 R-2 .0 TYPICAL 3 InteriorHorz 46 1 .0 24 .0 0 .67 R-0 .0 KITCHEN & BATHS 4 In'teriorVert 112 1 .0 24 .0 0 .67 R-0 .0 BATHS HVAC SYSTEMS ------------ Minimum Duct Duct Duct System Type Efficiency Location R-value Efficiency ---- -�-___-- ---------- HOUSE Gas 0 .800 AFUE Attic R-4 _2 0 .880 AirCond 10 .50 SEER Attic R-4 .2 I 0 .870 �^ WATER HEATING SYSTEMS --------------------- Number Tank External in Energy Size Insulation Tank Type Heater Type Distribution Type System Factor ( gal ) R-value ------------------- Storage Gas Standard .�.�__ .�.�....1__ -------�_ �_63-_ .�_ -- 47 .5 R� -____ SPECIAL FEATURES/REMARKS - - - This is a multiple orientationbuildingwithno-orientation restrictions . This printout is for the front facing North . CERTIFICATE OF COMPLIANCE : RESIDENTIAL Page 1 CF-1R Project Title . . . . . . . . .-STONECREST 4-VAILWOOD-=� µ-_--�-_-Date . . . . . . . 02/04/93 Project Address .'. . . . . . . PRESLEY OF SAN DIEGO - --------------. -- TE.MECULA D mentation Author . .. RANDY D . DOWNS ; Building Permit # Company . , . . . . . . . . IRVINEWEST Telephone . . . . . . . . , . ( 714 ) 921--0800 ; Plan Check / Date Compliance Method . . . . . . MICROPA54 by Enercomp , Inc . ; Field Check/ Date ' Climate zone . . . . . . . . . . . 10 ____--_,.-_____-___- - . MICROPAS4 V4 .01-�File-PSDSC43 Wth-CTZ10S92�mmProgram-FORM CF-1R User4-MP1343 User-IRVINEWEST Run-PLAN No _ 3 ' _- __-...w___-____-___-_____-___. ----------------------------___---_..__---_____--- GENERAL INFORMATION - Conditioned Floor Area . . . . . 2118sf- Building Type . . . . . . . . . . . . . . Single Family Detached Construction Type New Building Front Orientation . Cardinal - N ,E ,S ,W Number of Dwelling Units . . . 1 Number of Stories . . . , . . . . . . 2 Floor Construction Type . . . . Slab On Grade ( Package D ) BUILDING SHELL INSULATION _-- - --- Component Insulation Assembly -- �? Type . R-value U-Value Location/Comments ------------- -------�---- ------�---- -----------�-W----�-----�---__----M-_------_--- Wall R--13 0 .088 BACK , RIGHT , FRONT , GARAGE WALL , LEFT CORNER , CORNER GARAGE Roof R-38 0 .025 WITH ATTIC Roof R-30 0 .036 TRUE SLOPE Floor R--19 0 .048 FLR . O/GARAGE Door R=0 0 .330 SOLID WOOD , TO GARAGE SlabEdge R--O 0 .900 to outside SlabEdge R-0 0 .720 to outside SlabEdge R-O 0 .550 to garage SlabEdge R--O 0 .500 to garage FENESTRATION ------------- Over- Area U- # of Interior Exterior hang/ Framing Orientation ( sf ) Value Panes Shading Shading _- Fins Type ------------------- _ ___ _ ___ _______ _ _ Window Back ( S ) 6 .0 0`750 -2 cec std , _ None--A -- Yes- � Metal_ _ Window Back ( S ) 23 .0 0 .750 2 cec std , None None Metal Window Back ( S ) 67 .0 0 .750 2 roller shd 50% bug scrn Yes Metal Window Back ( S ) 78 .0 0 .750 2 roller shd 50% bug scrn None MetalMul Window Back ( S ) 72 .0 0 .750 2 roller shd 50% bug scrn None Metal Window Back ( S ) 10 .0 0 .750 2 cec std _ None None MetalMul W ow Right ( W ) 14 .0 0 .750 2 cec std _ None Yes Metal Wi ow Right ( W ) 12 .0 0 .750 2 cec std , 50% bug scrn Yes Metal Window Right ( W ) 18 .0 0 .750 2 cec std . 50% bug scrn None Metal Window Right ( W ) 26 .0 .0 .750 2 roller shd 50% bug scrn Yes Metal Window Right ( W ) 25 .0 0 .750 2 roller shd 50 bug scrn None Metal Window Front ( N ) 8 .0 0 .750 2 cec std . None Yes MetalMul Window Front ( N ) 30 .0 0 ..750 2 roller shd None Yes MetalMul CERTIFICATE OF COMPLIANCE : RESIDENTIAL Page 2 Cr_1R Project Title . . . . . . . . . , STONECREST�4--VAILWOOD Date . v . . . . .�02/04/93 • MICROPAS4 v4 .01File-PSDSC43�^Wth-CTZ10S92 Program-FORM~CF-1R User#-MP1343 User-IRVINEWEST Run--PLAN No . 3 -------------------------------------------------------------------------------- FENESTRATION ------------ Over Area U_ # of Interior Exterior hang/ Framing Orientation ( sf ) Value Panes Shading Shading Fins Type - 4-y- W- Window Front ( N ) 12 .0 0 .750 2 cec std . Bldg Shade None MetalMul Window Front ( N ) 25 .0 0 .750 2 roller shd Bldg Shade None MetalMul Window Left ( E ) 13 .0 0 .750 2 cec std . None Yes Metal Window Left ( E ) 25 .0 0 .750 2 roller shd 50% bug scrn None MetalMul. Window Back ( SW ) 9 .0 0 .750 2 cec std , None Yes Metal Window Front ( NE ) 13 .0 0 .750 2 cec std . Bldg Shade None Metal THERMAL MASS ------------ Area Thickness Type Exposed ( sf ) ( in ) Location/Comments -- µ - S1abOnGrade Yes 245 3 ,5 ENTRY-KIT-LAU-BATH � SlabOnGrade No 882 3 .5 TYPICAL InteriorHorz Yes 43 1 .0 KITCHEN & PATHS InteriorVert Yes 165 1 .0 BATHS HVAC SYSTEMS ------------- Minimum Duct Duct Thermostat Equipment Type Efficiency Location R-value Type ------------- -__� T-____ Gas 0 .800 AFUE Attic R-5 Setback AirCond 10 .50 SEER Attic R-5 Se back WATER HEATING SYSTEMS --------------------- Number Tank External in Energy Size Insulation Tank Type Heater Type Distribution Type System . Factor ( gal ) R-value --- _--�. 0 63 EF 47 ,5 _- ------- T __��_--0__ Storage Gas Standard SPECIAL FEATURES/REMARKS ~ - W - This is a multiple orientation buildingwithnoorientation restrictions . This printout is for the front facing North . CERTIFICATE OF COMPLIANCE: RESIDENTIAL_ Page 3 CF-1R Project Title . . . . . . . . . STONECREST 4-VAILWOOD � Date . . . . . . . . 02/04/93 MICROPAS4Yv4 ,011�File-PSDSC43-~Wth-CT71OS92mm-Program-FORM CF-rv1RvW��mm-=�� , User#-MP1343 User---IRVINEWEST Run--PLAN No . 3 ------------------------------------------------------------------------------ COMPLIANCE STATEMENT ----------------- This certificate of compliance-lists the building features and performance specifications needed to comply with Title--24 , Parts 1 and 6 of the California Code of Regulations , and the administrative regulations to implement them . This certificate has been signed by the individual with overall design responsibility . When this certificate of compliance is submitted for a single building plan to be built in multiple orientations , any shading feature that is varied is indicated in the Special Features/ Remarks section . DESIGNER or OWNER DOCUMENTATION AUTHOR Name . . . . ARAM BASSENIAN Name , . . . RANDY D . DOWNS Company . BASSENIA ARCH . Company , IRVINEWEST Address . 2031 A , T #100 Address . 638 SOUTHERN AVENUE SAS•, 92797 ORANGE , CALIFORNIA 92665 Phone . . . ( 7 F,L 4_1 Phone . . . ( 714 ) 921-0800 License . C 8395 Signed . . _ 4 Signed . . }.. ( a e ) ( date ) ENFO T A OF CAL�FO Name . . . . Title . , . Agency , . Phone . . . Signed . . ( date ) COMPUTER METHOD SUMMARY Page 1 C-2R Project Title . . . . . . . . . . STONECREST�4-VAILWOOD--���--_ _--=Date . . . . . --=02/04/93 Project Address . . . . . . . . PRESLEY OF SAN DIEGO --------------------- TEMECULA D 0 mentation Author . . . RANDY D . DOWNS ; Building Permit # Company . . . . . . . . . . . . . . . . IRVINEWEST Telephone . . . . . . . . . . . . . . ( 714 ) 921-0800 ' Plan Check / Date Compliance Method . . . . . . MICROPAS4 by Enercomp , Inc . ; Field Check/ Date Climate Zone . . . . . . . . . . . 10 --------------------- MICROPAS4-v4 .01File-PSDSC43- Wth-CTZ10S92-T Program-FORM-C-2R User#-MP1343 User-IRVINEWEST Run-PLAN No . 3 � MICROPAS4 ENERGY USE SUMMARY--`^--_-^�-- ---------------------------- Energy Use Standard Proposed Compliance - ( kBtu/sf-yr ) Design Design Margin = -u --- -- Space Heating . . . . . . . . . . 8 .56 7 .820 .74 - Space Cooling . . . . . . . . . . 13 .25 13 .78 -0 .53 Water Heating . . . . . . . . . . 11 .46 10 .49 0 .97 - - - North Total 33 .27 32 .091 . 18 _ - Space Heating . . . . . . . . . . 8 .56 8 .66 -0 . 10 = - Space Cooling . . . . . . . . . . 13 .25 11 .27 1 .98 - -- Water Heating , . .. . . . . . . . 11 .46 10 .49 0 .97 - ---------- ---------- -------- East Total 33 .27 30 .42 2 .85 = .Space Heati_ng . . . . . . . . . . 8 .56 8 .64 -0 .08 - Space Coaling . . . . . . . . . . 13 .25 9 . 13 4 .12 = Water Heating . . . . . . . . . . 11 .46 10 .49 0 .97 = -South Total 33 .27 28 .26 5 .01 = -- Space Heating . . . . . . . . . . 8 .56 6 .85 1 .71 Space Cooling . . . . . . . . . . 13 .25 11 ..95 1 .30 - - Water Heating . . . . . . . . . . 11 .46 10 .49 0 .97 = - - West Total 33 .27 29 .29 3 .98 *** Building complies with Computer Performance ** GENERAL INFORMATION Conditioned Floor Area . . . . . 2118 sf Building Type . . . . . . . . . . . . . Single Family Detached Construction Type New Building Front Orientation _ Cardinal - N ,E ,S ,W Number of Dwelling Units . . . 1 Number of Building Stories _ 2 Weather Data Type . . . . . . . . . . ReducedYear COMPUTER METHOD SUMMARY Page 2 C-2R . Project Title . . . . . . . . . . STONECREST�4-VAILWOOD Date: . . . . . . . -02/04/93 MICROPAS4 v4 .01MwFile-PSDSC43�~Wth-CTZ1OS92 �Program---FORMNC-2R���`�TT 1343 ----------------User#-MP------Use------NEWEST--Run-PLAN-No-`3__-----_--_____-- Floor- Construction Type . . . . Slab On Grade ( Package D ) Number of Building Zones . . . 1 Conditioned Volume . . . . . . . . . 21667 cf Footprint Area . . . . . . . . . . . . . 1411 sf Ground Floor Area . . . . . . . , . . 1411 sf Slab--On-Grade Area . . . . . . . . . 1127 sf. Glazing Percentage . . . . . . . . . 22 .9 % of FA Average Ceiling Height . . . . . 10 .2 ft BUILDING ZONE INFORMATION Floor # of ----- Vent Special Area Volume Dwell Cond- Thermostat Height Vent Area Zonee-Typew ___ _( sf ) sf )__ __( cf )_�_ Units itioned -__Type-____ ------_( ft )_ __(sf )_-_ HOUSE Residence 2118 21667 1 .00 Yes Setback 8 .0 n/a OPAQUE SURFACES --------------- Area U_ Insul Act Solar Form 3 Location/ Vace ( sf ) value R--val Azm Tilt Gains Reference ' Comments ---------- ------ ----- ----- __ - ---- ----- ------------ ------------__-- HOUSE 1 Wall 419 0 .088 R-13 180 90 Yes None BACK 2 Wall 529 0 .088 R-13 270 90 Yes None RIGHT 3 Wall 54 0 .088 R-w13 0 90 Yes None FRONT 4 Wall 221 _ 0 .088 R-13 0 90 No None GARAGE WALL 5 Wall 451 0 .088 R-13 90 90 Yes None LEFT 6 Wall 38 0 .088 R-13 45 90 Yes None CORNER 7 Wall 24 0 .088 R-13 225 90 Yes None CORNER 8 Wall 41 0 .088 R-13 315 90 Yes None CORNER GARAGE 9 Roof 1097 0 .025 R-38 0 24 Yes None WITH ATTIC 10 Roof 357 0 .036 R--30 0 24 Yes None TRUE SLOPE 11 Floor 284 0 .048 P--19 0 0 Yes None FLR . O/GARAGE 12 Door 33 0 .330 R-0 45 90 Yes None SOLID WOOD 13 Door 18 0 .330 R-O 0 90 No None TO GARAGE PERIMETER . LOSSES ---------------- Length F2 Insul Surface ( ft ) Factor R-Wval Location/Comments HOUSE 14 SlabEdge 36 0 .900 R-O to outside 15 SlabEdge 87 0 .720 R-0 to outside 16 SlabEdge 20 0 .550 R--O to garage 17 SlabEdge 11 0 .500 R---O to garage COMPUTER METHOD SUMMARY page 3 C--2R Project Title . . . . . I — . STONECRESTv4-VAILWOOD Date . . . . . . . . 02/04/93 MICROPAS4 v4 01-^File-PSDSC43-vWth-CTZ10S92�~Program-FORM�C--2RvT�-____�_ ;. User#--MP1343 User-IRVINEWEST Run -PLAN No . 3 FENESTRATION SURFACES --------------------- Sc SC Interior Area # of Frame Open U_ Act Glass Int Shade Surface ( sf ) Panes Type Type value Azm Tilt Only Shade Description ------ _ --- --_ ---- - --- ----- -------- HOUSE I Window 6 .0 2 Metal Fixed 0 .75 180 90 .0 .88 0 .78 cec std . 2 Window 23 ,0 2 Metal Fixed 0 ,75 180 90 0 .88 0 .78 cec std . 3 Window 22 .0 2 Metal. Slider 0 .75 180 90 0 .88 0 ,40 roller shd 4 Window 45 .0 2 Metal Slider 0 .75 180 90 0 .88 0 .40 roller shd 5 Window 48 .0 2 MetalMul Slider 0 .75 180 90 O .88 0 .40 roller shd 6 Window 72 .0 2 Metal Slider 0 .75 180 90 0 .88 0 .40 roller shd 7 Window 10 .0 2 MetalMul Fixed 0 .75 180 90 0 .88 0 .78 cec std - 8 Window 30 .0 2 MetalMul Slider 0 .75 180 90 0 ,77 0 .22 roller shd 9 Window 14 .0 2 Metal Fixed 0 .75 270 90 0 .88 0 .78 cec std . 10 Window 12 .0 2 Metal Fixed 0 ,75 270 90 0 .88 0 .78 cec std _ 11 Window. 18 .0 2 Metal Fixed 0 .75 270 90 0 .88 0 .78 cec std . 12 Window 20 .0 2 Metal Slider 0 .75 270 90 0 .88 0 .40 roller shd 13 Window 6 .0 2 Metal Slider 0 .75 270 90 0 .88 0 .40 roller shd 14 Window 25 .0 2 Metal Slider 0 .75 270 90 0 .88 0 .40 roller shd 1 indow 8 .0 2 MetalMul Fixed 0 .75 .0 90 0 .88 0 .78 cec std . 1indow 30 .0 2 MetalMul Slider 0 .75 0 90 0 ,77 0 .22 roller shd 17 Window 12 .0 2 MetalMul Fixed 0 .75 0 90 0 .88 0 .78 cec std . 18 Window 25 .0 2 MetalMul Slider 0 .75 0 90 0 ,77 0 .22 roller shd 19 Window 13 .0 2 Metal Fixed 0 .75 90 90 0 .88 0 .78 cec std , 20 Window 25 .0 2 MetalMul Slider 0 .75 90 90 0 .77 0 .22 roller shd 21 Window 9 .0 2 Metal Fixed 0 .75 225 90 O .88 0 .78 cec std . 22 Window 13 .0 2' Metal Fixed 0 .75 45 90 0 .88 0 .78 cec std , OVERHANGS AND SIDE FINS ---Window-- _- Overhang------ ---'Left Fin---- ----Right Fin— Area Left Rght Surface ( sf ) Hght Wdth Dpth Hght Ext Ext Ext Dpth Hght Ext_ Dpth Hght - µ- - _ - - - T HOUSE I. Window 6 .0 1 ,5 n/a 1 .5 3 ,0 n/a n/a n/a n/a n/a n/a n/a n/a 3 Window 22 .0 4 .5 n/a 1 .5 2 .0 n/a n/a n/a n/a n/a n/a n/a n/a 4 Window 45 .0 6 .0 n/a 1 .5 0 .0 n/a n/a n/a n/a n/a n/a n/a n/a 9 Window 14 ,0 4 .5 n/a 1 .5 0 .5 n/a n/a n/a n/a n/a n/a n/a n/a 10 Window 12 .0 6 .0 n/a 1 .5 1 .0 n/a n/a n/a n/a n/a n/a n/a n/a 12 Window 20 .;0 4 .0 n/a 1 .5 0 .5 n/a n/a n/a n/a n/a n/a n/a n/a 13 Window 6 .O 3 ,0 n/a 1 .5 0 .5 n/a n/a n/a n/a n/a n/a n/a n/a 15 Window 8 .0 2 ,0 n/a 1 .5 0 .5 n/a n/a n/a n/a n/a n/a n/a n/a 16 Window 30 .0 5 .0 n/a 1 .5 1 .5 n/a n/a n/a n/a n/a n/a n/a n/a 1 endow 13 .O 2 .5 n/a 1 .5 2 .0 n/a n/a n/a n/a n/a n/a n/a n/a. 2 6indow 9 .0 4 .5 n/a 1 .5 3 .0 n/a n/a n/a n/a , n/a n/a n/a n/a COMPUTER METHOD SUMMARY Page 4 C--2R Project Title . . . . . . . . . .-STONECREST�4-VAILWOODDate . . . . . . .�02/04/93 M -MICROPAS4vv4 .01�-File--PSDSC43^�Wth--CT710S92T-Program-FORM yC-2RN-_ _�_T-�� User##-MP1343 User-IRVINEWEST Run--PLAN No . 3 EXTERIOR SHADING Area Shading SC of Surface ( sf ) Type Ext Shade HOUSE ---�-- W-----____-_ 3 Window 22 .0 50% bug scrn 0 .84 4 Window 45 .0 50% bug scrn 0 .84 5 Window 48 .0 50% bug scrn 0 .84 6 Window 72 .0 50% bug scrn 0 .84 8 Window 30 .0 50% bug scrn 0 .84 10 Window 12 .0 50% bug scrn 0 .84 11 Window 18 .0 50% bug scrn 0 .84 12 Window 20 .0 50% bug scrn 0 .84 13 Window 6 .0 50% bug scrn 0 .84 14 Window 25 .0 50% bug scrn 0 .84 17 Window 12 .0 Bldg Shade 0 .20 18 Window 25 .0 Bldg Shade 0 .20 20 Window 25 .0 50% bug scrn 0 .84 22 Window 13 .0 Bldg Shade 0 .20 THERMAL MASS Area Thick Heat Conduct- Surface Mass_Type -`^ _ -( sf )_ ( in )_ _Cap- -ivitYr_ R`value- +Location/Comments__--Y___ HOUSE 1 S1abOnGrade 245 3 .5 28 .0 0 .98 R-0 .0 ENTRY-KIT-LAU-BATH 2 S1abOnGrade 882 3 .5 28 .0 0 .98 R-2 .0 TYPICAL 3 InteriorHorz 43 1 .0 24 .0 0 .67 R-0 .0 KITCHEN & BATHS 4 InteriorVert 165 1 .0 24 .0 0 .67 R-0 .0 BATHS HVAC SYSTEMS ------------ Minimum Duct Duct Duct System-Type ----- ` _� �__ Efficiency Location R-value Efficiency HOUSE Gas 0 .800 AFUE Attic R-5 0 .888 AirCond 10 .50 SEER Attic R-5 0 .878 WATER HEATING SYSTEMS --------------------- Number Tank External Tank T in Energy Size Insulation -.YP.... Heater -Distribution.Type System -in ( gal )- R-value - _-- Storage Gas Standard 1 0 .63 47 .5 R--O COMPUTER METHOD SUMMARY Page 5 C--2R Project Title . . . . . . , . . . STONECRESTmm4--VAILWOOD Date . . . . . . . .102/04/93 . MICROPAS4 v4 .01 File-PSDSC43Wth-CTZ10S92�-Program-FORM C-2R User#t-MP1343 User-IRVINEWEST Run-PLAN No . 3 ------------------------------------------- ------------------------------------- SPECIAL. FEATURES/REMARKS - - This is a multiple orientation buildingwithno-orientation restrictions . This printout is for the front facing North . i - Mandatory Measures Checklist: Residential MF-1 R NOTE: Lowrise residential buildings subject to the Standards must contain these measures regardless of the compliance approach used. Items marked with an asterisk (') may be superseded by more stringent compliance requirements ' listed on the Certificate of Compliance. When this checklist is Incorporated into the permit documents, the features �.; noted shall be considered by all parties as binding minimum component performance specifications for the - mandatory measures whether they are shown elsewhere in the documents or on this checklist only. DESCRIPTION DESIGNER ENFORCEMENT Building Envelope Measures *§150(a): Minimum R-19 ceiling insulation. §150(b): Loose fill insulation manufacturer's labeled R-Value. *§150(9: Minimum R-13 wall insulation in framed walls(does not apply to exterior mass walls).- *§I50(d): Minimum R-13 raised floor insulation in framed floors;minimum R-8 in concrete raised floors. §150(I): Slab edge insulation-water absorption rate no greater than 0.3%,water vapor transmission rate no greater than 2.0 perm/inch. §118: Insulation specified or installed meets California Energy Commission quality standards. Indicate type and form. §116.17: Fenestration products,Exterior Doors and InfiltratioNExfiltrafion Controls a. Doors and windows between conditioned and unconditioned spaces designed to limit air leakage. b. Manufactured fenestration products have label with certified U-value,and infiltration certification. c. Exterior doors and windows wea diers tipped;all joints and penetrations caulked and sealed. §150(g): Vapor barriers mandatory in Climate Zones 14 and 16 only, §150(9: Special infiltration barrier Installed to comply with§151 meets Commission quality standards. §150(e): Installation of Fireplaces,Decorative Gas Appliances and Gas Logs 1. Masonry and factory-built fireplaces have: a.Closeable metal or glass door b.Outside air intake with damper and control .., c.Flue damper and control 2. No continuous burning gas pilots allowed. Space Conditioning, Water Heating and Plumbing System Measures §110-13: HVAC equipment,water heaters,showerheads and faucets certified by the Commission. §150(i): Setback thermostat on all applicable heating systems. §1500): Pipe and Tank Insulation 1. Indirect hot water tanks(e.g.,unfired storage tanks or backup solar hot water tanks)have insulation blanket(R-12 or greater)or combined intedodexterior insulation(R-16 or greater). 2. First 5 feet of pipes closest to water heater tank,non-recirculating systems,insulated(R-4 or greater). 3. All buried or exposed piping insulated in recirculating sections of hot water system. 4. Cooling system piping below 55°F insulated. 5. Piping insulated between heating source and indirect hot water tank. *§150(m): Ducts and Fans 1. Ducts constructed,installed and sealed to comply with UMC Sections 1002 and 1004;ducts insulated to a minimum installed value of R-4.2 or ducts enclosed entirely within conditioned space. 2. Exhaust fan systems have backdraft or automatic dampers 3. Gravity.ventilating systems serving conditioned spats have either automatic or readily accessible, manually operated dampers,. §114: Pool and Spa Heating Systems and Equipment 1. System is certified with 78%thermal efficiency,on-off switch,weatherproof operating instructions, .no electric resistance heating and no pilot light. 2. System is installed with: a. At least 36"pipe between Filter and heater for future solar heating. b. Cover for outdoor pools or outdoor spa. 3. Pool system has directional inlets and a circulation pump time switch. §115: Gas-fired central furnace,pool heater,spa heater or household cooking appliance have no continuously buring pilot light. (Exception: Non-electrical cooking appliance with pilot c 150 8fu/hr.) Lighting Measures §150(k): 40 lumens/watt or greater for general lighting in kitchens and rooms with water closets: and recessed ceiling fixtures IC(insulation cover)approved. Revised January 1992 Insulation, Certificate • Number sad Strtiat Cuy County Subdivision Lot Nttuiber Description of Installation ROOF Material . 1'hirxnesx(inches) Brand Name Tharnal Resistance(R-Value) EXTERIOR WALL Material Thickness(inches) Brand Name TbcnnalResi=ce(R-Value) CEILING Bait or Blanket Type Th.ickn=(inches) Brand Name Loose Full Type Thermal Resistance(R-Value) Contractor's miniMUM installed wpghV � Brand Name Itifini.mum thickxtess inches Mau�'s weight per squ=footoot to acbcivo Thermal Resistance(R-Value) RALsED FLOOR Brand Narne ThermalThicSanesa(inches) T c -V (R alue) SLA-B FLOOR Material Thi (inch) Brand Name width (Lnches) Thurnal Resistance(R-Value) FOUNDATION WALL Material Tluclrn=�(=nes) Brand Name Thermal Resistance(R_Val.) Declaration I hereby certify that the above insulation was installed in the building at the above location in conformance with the cttrrcnt Building Energy Eff ciency Standards for new residential buildings contained Ln Title 24 of the California Administrative (7odc. General Cant wtoir Wu3Jder) Licerxse Number sip we • pat 5 ub-Contracror(Insuluion Insc�a) LaccrLse Numbs S i gma and T-ul e Data Installation Certificate: Residential CF-BR Use of this form to satisfy the requirements of the Administrative Code Is optional,but the Information must be provided and posted. Site Address Permit Number An installation certificate is required to be posted at the building site prior to the issuance of the occupancy permit. This form may be used to meet these requirements. All appliance categories listed below are the actual equipment installed. Note that the efficiency and type of the appliance installed must be equivalent or better than the appliance specified on the Certificate of Compliance(CF-1R). This certificate (or its equivalent)shall be prepared and signed by the person(s)assuming overall responsibility for the appliance installation. I,the undersigned,verify that the equipment listed in the category above my signature is the actual equipment installed and that the equipment meets or exceeds the requirements of the Appliance Efficiency Standards. In addition, I have verified that the equipment is equivalent to or more efficient than the equipment specified on the Certificate,of Compliance submitted to demonstrate compliance with the Energy Efficiency Standards for residential buildings. HVAC SYSTEMS Note: Hydronic boiler information is entered here. Other hydronic or combined hydronic equipment is listed under Water Heating Systems. Heating Equip. CEC Certified Actual Distribution Duct or Heating Load Heating Type(furnace, Manuf.Make& Efflclency Type and Piping Before Over- Equipment heat pump,etc.) Model Number AFUE etc. Location R-Value Sizing Btuh Capacity Btuh CEC Certified Cooling Equip. Compressor Unit Actual Distribution Duct or Type(air cond., Manuf.Make& Efficiency Type and Piping heat Pump.etc.) Model Number SEER Location R-Value The building design heat loss and design heat gain rate have been determined using a method specified in Section 150(h)of the Energy Efficiency Standards, and are two of the criteria used for equipment sizing and selection. Signature Date HVAC Subontractor(Co.Name)or General Contractor or Owner WATER HEATING SYSTEMS Eneri Water Heating CEC Certifled Rated' Tank Factor or Ta k nal System Type Manuf.Make& Input(kW Capacity Recovery Standby' Insulation (storage gas,etc. Model Number or Btuh) fgallons Eff IcIency Loss % R-Value 1. For small gas storage(rated input 5 75,000 Btu/hr),electric resistance and heat pump water heaters,list Energy Factor. For large gas storage water heaters(rated input a75,000 Btu/hr),list Rated Input,Recovery Efficiency and Standby Loss. For Instantaneous gas water heaters,list Rated Input and Recovery Efficiency. For Instantaneous electric water heaters,list Rated Input. FAUCETS & SHOWER HEADS .All faucets and showerheads installed are listed in the Commission's Directory of Certified Faucets and Showerheads, pursuant to Title 24, Part 6,Subchapter 2, Section 111. Signature Date Plumbing Subcontractor(Co.Name)or General Contractor or Owner Revised January 1992 Pilot Lights Prohibited [§115] in Table 2-6, a 40 watt standard fluorescent lamp Any of the following natural gas systems or is approximately four times as efficient as a 100 • equipment may be installed only if it does not have watt incandescent lamp. a continuously burning pilot light: - Fan type central furnaces; Kitchen Lighting - Household cooking appliances,except The Standards require that general lighting in. cooking appliances without an electrical kitchens have an efficacy of at least 40 lumens per supply voltage connection and in which each watt and be controlled by the most accessible pilot consumes less than 150 Btu/hi; switch(es) in the kitchen. The light switch location determines how the occupant will use the lighting. Pool heaters; or Luminaires used only for specific decorative - Spa heaters. effects (and which are not the only luminaires in the kitchen)need not meet this requirement. General lighting is lighting designed to provide a uniform level of light distribution throughout a space. This can be achieved by light fixtures in the ceiling or around the perimeter of the room. Lighting fixtures under cabinets may meet the 2.4 LIGHTING MEASURES general lighting requirements if they provide uniform light distribution in the kitchen(see Figure 2-11). A luminaire which is the only Lighting [§150(k)] lighting in a kitchen will be considered general _ Installing energy-efficient lamps and fixtures can lighting. reduce lighting energy costs without sacrificing the quality or quantity of light available. As indicated Table 2-5. Typical Efficacy of Lurninairesl Light Source Fixture Type Watts Typical EfficacyLumens/Watt Incandescent Standard 40- 100 14 - 18 Standard Capsule Halogen 40-250 20 Infrared-Reflecting Halogen 60- 100 30 Fluorescent Standard(Full-Size,4') 32 -40 69 - 79 Electronic Ballast(Full-Size,4') 32 -40 83 -91. U-Shaped T-8 Bipin 16 - 31 78 -90 Compact Fluorescent 5 -9 26 - 38 Compact Fluorescent 13+ 42 -58 Metal Halide Compact Metal Halide 32 - 175 66 -90 High Pressure Sodium White High Pressure Sodium 35 - 100 36 -55 1 Source: Advanced Lighting Guidelines, Commission publication#P400-90-014 (March, 1990). Mandatory Measures Revised January 1992 2-1 7 Bathroom Lighting The Standards require.that each room containing a water closet must have at least one luminaire with lamps with an efficacy of at least 40 lumens per watt. As an alternative, this requirement may be met by installing the high efficacy luminaire in an adjacent room that has complementary plumbing fixtures. If there is more than one luminaire in the room, the high-efficacy luminaire must be switched at an entrance to the room. General Luminaires installed to meet the 40 lumens per watt requirements cannot contain medium base incandescent lamp sockets, and must be on separate switches from incandescent lighting. All incandescent lighting fixtures recessed into insulated ceilings must be approved for zero-clearance insulation cover(I.C.)by Underwriters Laboratories or other testing/rating laboratories recognized by the International Conference of Building Officials (ICBO). Recessed lighting fixtures left uninsulated significantly increase the heat loss and heat gain through the roof/ceiling area. __VV/ 2-18 Revised January 1992 Residential Manual v�- n D "A" must be fluorescent "A" must be fluorescent; "D" can be incandescent E B OD uqc-- A E s L B "A" , "B" or "E" must be fluorescent "B" or "E" must be fluorescent Figure 2-12: Bathroom Lighting Examples 2-20 Revised January1992 Residential Manual I r7 A A 00 I O " 0 _1 00 I "A" must be fluorescent "A" must be fluorescent An I-1 . I 101 I A a a 010 01 I U Luw!�- All of"C" must be fluorescent "A" or all of"C" must be fluorescent Figure 2-11: Kitchen Lighting Examples Mandatory Measures Revised January 1992 2.1 g HVAC SIZING Page 3 HVAC Project Title . . . . . . . . �STONECRESTN4 � pate . . . . . . . .�06/09/92 ^MICROPAS3�v3-11� File-PSDSC41v Wth-CTZ10 �Program-HVAC�SIZING �--�v~^�� ' User#-MP1343 Userw-IRVINEWEST Run-PLAN No . 1 ____W----------- -------------------------=-----------------. -- --------------- GENERAL INFORMATION ------------------- Floor Area . . . . . . . . . . . . . . . . . 1668 sf Volume . . . . . . . . . . . . . . . . . . . . . 17198 of Front Orientation . . . . . . . . . . Front Facing 180 deg ( S ) Sizing Location . . . . . , . . . . , . ELSINORE Latitude . . . . . . . . . . . . . . . . . . . 33 .7 degrees Winter Outside Design . . . . . . 26 F Winter Inside Design . . . . . . . 70 F Summer Outside Design . . . . . . 101 F Summer Inside Design . . . . . . , 78 F Summer Range . . . . . . . . . . . . . . . 39 F Shading Used . . . . . . . . . . . . . . . Yes Latent Load Fraction , . . . . , . 0 ,20 HEATING AND COOLING LOAD SUMMARY -------------------------------- Heating ' Cooling Description ( Btuh ) ( Btuh ) -- Opaque Conduction and Solar . . . . . . 15811V�� W�5857 ` Glazing Conduction . . . . . . . . . . . . . . . 11848 6193 Glazing Solar n/a 11451 Infiltration . . . . . . . . . . . . . . . . . . . . . 11251 3361 Internal Gain . . . . . . . . . . . . . . . . . . . . n/a 2550 Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . 3891. 2941 Sensible Load . . . . . . . . . . . . . . . . . . . . 42800 32353 Latent Load , . . . . . . . . . . . . . . . . . . . . n/a 6471 Total Load 42800 38824--- Note : The loads shown are only one of the criteria affecting the selection of HVAC equipment . Other relevant design factors such as air flow requirements , outdoor design temperatures , coil sizing , availability of - equipment , oversizing safety margin , etc . , must also be considered . It is the HVAC designer 's responsibility to consider all factors when selecting the HVAC equipment . CEC Maximum output for gas central furnaces only: 1 .3 x ( 42800 + ( 10 x 1668 ) ) - 77324 Btuh HVAC SIZING Page 4 HVAC Project Title . . . . . . . . . ^STONECREST^4� Date . . - . .-=06/08/92 MICROPAS3�v3 . 11 File-PSDSC42 �Wth-CTZ10 -Program-HVAC SIZING User#k-MP1.343 User-IRVINEWEST Run--PLAN No . 2 ----_----------w-_---_----_--- ---_- -_-----__---------------__-------- ---_-----� GENERAL INFORMATION - Floor Area . . . . . . . . . . . . . . 1894 sf Volume . . . . . . . . . . . . . . . . . . . . . 19402 cf Front Orientation . . . . . . . . . . Front Faci.ng 270 deg ( W ) Sizing Location . . . . . . . . . . . . ELSINORE Latitude . . . . . . . . . . . . . . . . . . . 33 .7 degrees Winter Outside Design . . . . . . 26 F Winter Inside Design . . . . . . . 70 F Summer Outside Design . . . . . . 101 F Summer Inside Design . . . . . . . 78 F Summer Range . . . . . . . . . . . . . . . 39 F Shading Used . . . . . . . . . . . . . . . Yes . Latent Load Fraction . . . . . . . 0 .20 HEATING AND COOLING LOAD SUMMARY Heating Cooling Description ( Stuh ) (Btuh ) Opaque Conduction and Solar . . . . . . �- -Ww� 16560 6364 -- Glazing Conduction . . . . . . . . . . . . . . . 13807 7217 Glazing Solar . . . . . . . n/a 17528 Infiltration . . . . . . . . . . . . . . 12693 3791 Internal Gain . . . . . . . . . . . . . . . . . . . . n/a 3000 Ducts . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 4306 3790 Sensible Load . . . . . . . . . . . . . . . . . . . . 47366 41691 Latent Load . . . . . . . . . . . . . . . . . . . . . . n/a 8338 . Total Load 47366 50029- - Note: The loads shown are only one of the criteria affecting the selection Of HVAC equipment . Other relevant design factors such as air flow requirements , outdoor design temperatures , coil sizing , availability of equipment , oversizing safety margin , etc . , must also be considered . It is . the HVAC designer 's responsibility to consider all factors when selecting the HVAC equipment . CEC Maximum output for gas central furnaces only : 1 .3 x ( 47366 + ( 10 x 1894 ) ) = 86197 atuh HVAC SIZING Page 2 HVAC Project Title . . . . , , . � vSTONECREST-4w Date . . . . . . . . 06/09/92 MICROPAS3�v3 . 11 �-File-PSDSC43v-Wth--CTZ10 Prograrn-HVAC SIZING��T__-� User#-MP1343 User-IRVINEWEST Run--PLAN No . 3 -___-w--___-__--- __----____ --_-__---_-_____---__- ---_...___-____-W____-_____----- GENERAL INFORMATION ------------------- Floor Area . . . . . . . . . . . . . . . . . 2118 sf Volume . , . . . . . . : ­ ­ . . . . . ­ olume . . . . . . . . . . . . . . . . . . . . . 21667 of Front Orientation . . . . . . . . . , Front Facing 90 deg ( E ) Sizing Location . . . . . . . . . . . . ELSINORE Latitude . . . . . . . . . . , . . . . . . 33 .7 degrees Winter Outside Design . . . . . . 26 F Winter Inside Design . . . . . . . 70 F Summer Outside Design . . . . . . 101 F Summer Inside Design . . . . . . . 78 F Summer Range . . . . . . . . . . . . . . 39 F Shading Used . , . . . . . . . . . . . . . Yes Latent Load Fraction . . . , . . . 0 .20 HEATING AND COOLING LOAD SUMMARY -------------------------------- Heating Cooling Description ( Btuh ) ( Btuh ) --- -W --W4 -- Opaque Conduction and Solar . . . . . . 161.63 6172 Glazing Conduction . . . . . . . . . . . _ _ 139GO 7266 Glazing Solar . . . n/a 17931 Infiltration . . ` . . . . . . . . . . . . . . . 14174 4234 Internal Gain . . ... . . . . . . . . . . . . . . . . n/a 3000 Ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4424 3860 Sensible Load . . . . . . . . . . . . . . . . . . . . 48660 42462 Latent Load . . . . . . . . . . . . . . . . . . . . . . n/a 8492 Total Load 48660 50955- - Note: The loads shown are only one of the criteria affecting the selection of HVAC equipment . Other relevant design factors such as air flow requirements , outdoor design temperatures , coil sizing , availability of equipment , oversizing safety margin , etc . , must also be considered . It is the HVAC designer 's responsibility to consider all factors when selecting the HVAC equipment . CEC Maximum output for gas central furnaces only . ' 1 .3 x ( 48660 + ( 10 x 2118 ) ) = 90792 Btuh EQUIPMENT SCHEDULE PRESLEY OF SAN DIEGO PAYNE COMPANY TEMECULA STONECREST 4 - VAILWOOD ------_--------------------- ------ -- ' � � --- ---i---_--_--_�-__--_- PLAN No_ 1 2 � ' 3 -------------------------------_- -----------= '- ^--" _-` FURNACES ; 383KA048075 ; 383KA060090 ; 383KA060090 AFUE 80.0% 80.0% ; 80 .0% ; BTUH OUTPUT i 71 ,000 BTUH 91 ,000 BTUH ; 91 ,000 BTUH - - '-- COILS ; CA5A048 CA5A060 ; CA5A060 --__; ' ---------- ---------- ---61NX060 ,' __5 --- CONDENSERS ; 561ANX060 ' S A 61ANX060 SEER ; 10.50 ; 10 .50 ; 10 .50 ' TONAGE 4 .0 5 .0 5 .0 i ----------------------------------------------- . ------------------------------ Payne MID-EFFICIENCY UPFLOW Air Cpnr11f10rnng Model 3�31< INDUCED-COMBUSTION FURNACE S+iz or3�5 C'Iyr':li, •, Irk lhru 1 G5 C.�Iy r.l�rifl�:Kl'y CA i I This is our special induced-combustion furnace manufactured to R meet the requirements of builders and budget minded consum- ers,i;• r Lower cost with the same quality and efficient Y You expect. FEATURES � !! EFFICIENCY—The 383K Induced-Combustion Gas Furnace pro- �"' ■■or�r��. EFFvides the efficiency customers want with 80% AFUE. r• `h�, f %•`� �� HOT SURFACE IGNITION—No pilot to waste gas with this field proven ignition n system. ALUMINIZED* HEAT EXCHANGER—The patented four-pass heat exchanger Is made of aluminized steel and backed by a 10- �_( ..,,. year Limited Warranty. INTELLIGENT CONTROL BOARD—The 383K Furnace has an Ar !�R •..,,^' Intelligent control board that monitors the operation of the fur- nace, This control board also has a self-test feature that enables y r _ the servicing technician to verify operation of the board itself, r. the inducer, the hot-surface ignitor, both high• and low-speed £• f" .Y r, blower operation,and the humidifier. 40-INCH HEIGHT—The 383K is assembled in a cabinet only 40 inches high. This simplifies installation in alcoves, attics, base- ments (ideal for short basement), closets, and utility rooms, f. v especially with a taller high-efficlency cooling coil. CABINET—An embossed galvanized steel with a clear coating that surpasses our 200•hour high humidity test. It provides supe- rior rust and humidity protection. �h PATENTED DRAFT SAFEGUARD— t • t' F•r^. • -.•r4, �x�F4,• ;fir Our induced-combustion furnace has a patented draft safeguard switch. The safeguard switch will stop furnace operation if the vent system becomes i I'' jr[ry+ia blocked ,,;, f,�.•;'��:;lr;'f �''yhdl�� �y���i�' IS notope ting pro EASY INSTALLATION—The Model 383K has many features that make installation easier: left or right gas and electrical con- A90161 nections, blower speed selector, matching toll sizes, accessory low-voltage connections,and many more. Form No. PDS 383K.35.1 P f NOTES; 1. A factory-supplied panel covers the pack side of the accessory return. air cabinet that extends above the furnace, fm DIA.4 0 2. Hefei: to the furnace installation instructions for proper venting proce- o R ENTnY R ENTMY 't, ::2 DIA.h 0 dures. 714 91A.K 0.- 0A9 ENTRV: ACCESOORV 11�7' T i.0'.HOLE QAbENTnY 108 DIA K 0 1 12 LM.HOLEERMUSIAT' K 0 DIMENSIONS (In Inches) Sip I k INLEt Vent* Shipping Size A D E Connection Welght _.ql 114 024035 14�3/16 12-9/16 ii-11/ie 4 . ..... �J 036035 1 4.3-11-6T 1279FJ'F _1_1.1—1/16- 4 116 — 024055 1 4.3/1 6 12.9/16 11.11ij6 4 124 -T-3——12—911-6--1-1-1-1 _6 —4 — A88367 (5605� 4 116 126 CLEARANCES(In Inches) D36075 -T7.-1/2 5-7/8 15 4 — 140 048075 21 19-3/8 18.1/2 4 144 Size 035&050 075 thru 125 036090 17--112- 15-7/8 1-5 _4 1-50 SldeS-Slngle-Wall Vent 1 0 048090 21 19-3/8 _18_-_1/2 —4 1-56 Type B-1 Double-Wall Vent —0 —0 060090 24--1/2 22.718 22 4 172 --648110 �1� 19-3/8 18_1!2�5 Back 0 0 168 --7— —_ 5 Top of Plenum 1 060110 24-1/2 22-7/8 22 5 182 Vent Connector-Sin1 060125 24-1/2 1 22,7/8 22 5 6 6 5 192 TXpe B-1 Double-Wall 1 1 *See note 2- Front*Single-Well 6 Type B-1 Double.W;II Vent— 3 Service 30 30 *The 3-Inch. front clearance Is needed for combustion-air and ventliation-air entry. SPECIFICATIONS §1H 024035 036035 024055 0-360-55— 03 6 0_75 04t8075,8,000 Input Blt1h* 44.000 44,000 66,000 66.000 88,000 88,000 _La�clt (Bluh)t Non 35,000 35,000 53,000 53,000 71.000 71,000 AFUEt Nonweajh9r1zeLjCS)** 80-0 —80 ___� '0 80,0 80,0 80.0 80.0 California Seasonal Ef-ficlency(CSE)t 73,8 73,1 75.7 74.7 75-6 75,0 Certified Temperature Rise Range OF -55 - 75 45- 25 20 50 45- 75 35-65 . 0 Certified External Static Pf­tfssurp. Heal/Cool 0,10/0,50 0 10/0.50 0,12/0,50 12/0 50 0.15/0.50 0,15/0-50 Ow CFMt Heatiri2 8-55 10-70 11-75 11-50 —1445 Coaling ELECTRICAL 17-40 Unit Volls-Her-12-Phase I I?J-60-1 1_2REq �Ilage Range 104-127 — ,Maximum Unit Ampacil 61 8-3 7,1 8,7 �—q- — 104 -Maximum Wire Length 43 41 4 Mil"Ilmllm Wire size (Measure One Wa Fee 53 50 ­ ___ I—1 =:::4_ 35 14 -Tax-f—mum Transformer(24-V) 15 40VA External Control eatin 12VA Power Available Cooling 35VA Air-Condilioninto Blower Rplav CONTRULimit Conlrnl LS 9PST '�O_a jl�W_e I Control— Solid Stale Time_Operation - Blimers T—Molloporij 2 _ 2 3-- 3 4 Gas Connertinn Size -� GAS NTROLS llc�UT CO "'v'"edundaril) White Rodgers Min Inlet Pressure4 5 inches weMax Inlet—Pressure 12 11i01 Device 13.6 inches we �_— 't DATA Hot Surface I-SLOWEll -Direcl-Drive Motor HP- -e 1/3-PSC l/ --p C 1/3--PSC 1.!2-PSC 79 0 5-A 10)�8 0 x Motor Full Load Amps —3 4 5-8 3A 8 7 9 ,•RPM(Nominal-Speed$ 1075-4 1075-4 —1075-7-- TO-75-4 Blower WheelDiameter x Width — 10 X 6 —10x 6 'a X 6 107�-4 1075--4 1QX6 19<7 1OX8 Filler Size—Permanent Washable(Sup lied) (1) 16 x 25 x I L(_l)20x 25 x I 0 Twinni Kit 313542-701 Gas WrIiion Kit-Nai7r-a-17to-—Propane 310318-701 Gas Conversion Kit-Propane-to-Natural 310325-701 a Filter Rack With Washable Filter 316280,70 1.06(Filler Size 16 x?5 x 1) m Filter cabinet(With Washable Fillers) 3162 i'9-791 Filler—Size 2=20—x 2_5_x_') *Gas Input ratings are certified(or elevations to 2000 feet For elevations above 2000 feet.reduce ratings 4 1,0 for each 1000 feet above sea level.Refer to National Fuel Gas Code Table F4_ ,fCapacity in OICCordarfCP with U.S,government DOE lest procedures,California Seasonal Efficiencies based on Calift'Mia-suecified Procedures. fAIr delivery above 1800 cfm requires that both sides,or a combination of one side and bottorn,or bottom only of the furnace be used fm return air.A filter Is.required for each return-air supply. "Isolated Combustion System(ICS) WA Payne A..c"n`''I ion,r' ELECTRIC 561A (60 Hz) .AIR CONDITIONER Sizes 018 thru 060 C ly n1 IwJu,,1,y ',A Model 561 A Energy-Efficient Air Conditioners incorporate inno- vative technology to provide quiet, reliable summer cooling per- formance. Built into these units are the features most desired by homeowners today including SEER ratings of at least 10.0 when used with components as designated by manufacturer. All mod- els are listed with U.L., CSA, ARI and CEC. FEATURES UNIT DESIGN—Copper tube, enhanced sine wave aluminum fin coil is designed for optimum heat transfer. Vertical air discharge carries sound and hot condenser air up and away from adjacent patio areas and foliage. Heat pump style base pan for easy re- moval of water, dirt and leaves- ELECTRICAL RANGE—Units are offered in 208-230-volts sin- gle phase. WIDE RANGE OF SIZES—Available in seven nominal sizes from 018 through 060 to meet the needs for residential and light com- mercial applications. WEATHER-PROTECTIVE CABINET—The top and access panels are protected with a heavy coating commonly called "gal- vanizing." then coated with a layer of zinc phosphate to which a „ Tr ... r. coat of modified polyester powder coating is applied and baked- - 7 on.This provides each unit with a hard,smooth finish that will last _ I for many years. All screws on cabinet exterior are coated for a long-lasting, rust- resistant. quality appearance. II �r I TOTALLY E NCLOSED FAN MOTOR---Means realer reliability 9 y under rain conditions and dependable performance for many �rr ears, Permanent-split-capacitor-typem - II �� �� ` Y otors provide more eco- nomical N � nomical operation. P 1 APPLICATION VERSATILITY—The 561A can be combined with II r1 variety a wide y of evaporator'po ator coils and blower packages to provide quiet. dependable comfort. Unit can be installed on roof r t rr ' a a o a �r l ground level on a slab. f r f r EXTERNAL SERVICE VALVES—Both� .. service valves are brass, r i ' front seating type with sweat connections. Valves are externally ly 1 � rIM 4 - ocated so refrigerant tube connections can be made quickly and easily. Each valve has a service port for ease of checking operat- ing refrigerant pressures. A91231 EASY SERVICEABILITY—One access panel provides access to electrical controls- Removal of top gives access to fan motor, condenser coil and compressor. COMPRESSOR PROTECTION—Each compressor Is protected with internal temperature-and current-sensitive overloads.An in- ternal pressure relief valve provides high-pressure protection to the refrigerant system. Form No. PDS 561 A.18.1 P RATINGS & PERFORMANCE Continued OUTDOOR SEAS.EFF. SEAS.Il SOUND INDOOR EVAP AIR TOT CAP. W/FDR.90t W/O FDR.90t RATING { MODEL MODEL CFM BTUH SEER SEER (GELS 519DS/509ASO48C 1400 39.000 10.20 10,00 8.2 519DS/509ASO48C 1400 39,000 - 10.20 10.00 8.2 519E042 1400 37,600 10.00 9.50 8.2 519E048 1400 39.000 10,20 10.00 8.2 508A048 1400 38,500 10.20 10.00 8.2 561A-042-A 506BSO42 1400 37,800 10.00. 9.50 82 506BSO49 1400 40,000 10.20 10.00 8.2 617AN(A,U,M,F,G)042A 1400 38.500 10.00 9.50 8.2 617AN(A,U,M,F,(3)048A 1400 39,500 10.20 10.00 8.2 618AN(A,F 042A 1400 40,000 - 10.00 8.2 618AN(A,F;048A 1400 41,000 - 10.50 8.2 618ZNA048A 1400 41,000 - 10.50 8.2 C85AA048 1 000 45,000 10,20 10,00 8.2 CA5A/CB5AW048 1600 45.000 10.20 10.00 8.2 CA5A/CB5AA060 1600 45.000 10.50 10,20 8.2 *CC5A/CD5AA048 1600 46.000 10.50 10,00 8.2 CC5A/CD5AC048 1500 45,500 10.50 10,00 8.2 CC5A/CD5AW048 1600 46,000 10.50 10,00 8.2 CC5A/CD5AA060 1600 46,500 10.50 10,20 8.2 CC5A/CD5AW060 1600 47,500 10.50 10.20 8.2 CD3AA048 1600 46,000 10.50 10.00 8.2 CD3AA060 1600 46,500 10.50 10.20 8.2 CE3AA048 1600 46,500 10.50 10.20 8.2 CE3AA060 1600 47,500 10.50 10.20 8.2 CF5AA048 1500 46,500 10.50 10.20 8.2 FB5AN(A.F)048 1600 47.000 - 10,50 8.2 FB4AN(A,M,F)048 1600 47,000 - 10,50 8.2 FB5AN(A,F)060 1600 47,500 - 10.50 8.2 FB4AN(A,M,F)060 1600 47.500 - 10.50 8.2 561A-048-B FG3AAA048 1600 45,500 10.50 10,00 8.2 FG3AAA060 1600 47,500 10.50 10.20 8.2 FK4ANF005 1600 47,000 - 11.00 8.2 FK4ANF006 1600 48,000 - 11.20 82 519DS1509ASO48W 1600 45.000 10.20 10.00 8.2 519DS/509ASO48C 1600 45,500 10.50 10.00 8.2 519DS/509AS057C 1600 46,000 10.50 10,00 82 519DS/509AS061 1600 47,500 10.50 10.20 8.2 519E048 1600 45,000 10.20 10,00 8.2 519EO60 1600 46,000 10.50 10.00 8.2 508A048 1600 44,500 10.50 10.00 8.2 5068SO49 1600 46,000 10.50 10 00 8.2 50OBS061 1600 48,000 10_70 10.50 8.2 618ZNA005A 1600 47,000 11.00 8.2 618ZNA006A 1600 48,000 - 11.20 8.2 617AN(A,U,M,F,G)048A 1600 45,500 10.20 10,00 8.2 617AN(A,U,M,F,G)060A 1600 47,000 10.20 10.00 82 618AN(A,F).048A 1600 47,000 - 10.50 8.2 618AN(A.F)060A 1600 48.000 11.00 8.2 CA5A/CB5AA060 1800 _ 55,000 10.50 10.00 8.2 CA5A/CB5AW060 1800 55500 10.50 10.00 8.2 "CC5A/CD5AA060 1800 56,000 10,50 10.120 8.2 CC5A/CD5AW060 1800 57,000 10.50 10.00 8.2 CD3AA060 1800 56,000 10.50 10,00 8.2 CE3AA060 1800 56,000 10,50 10,20 8.2 FB5AN(A,F)060 1800 57,500 - 10,50 8.2 FB4AN(A,M,F)060 1800 57,500 - 10.50 8.2 561A-060-B F84AN(M,F)070 1800 58,000 - 10.50 8.2 FG3AAA060 1800 57,000 10.50 10.20 8.2 FK4ANF006 1800 58,000 - 11.00 8.2 519DS/509AS057C 1800 54,000 10.20 10,00 8-2 519DS/509AS061 1800 57.000 10.50 10.00 8.2 519EO60 1800 54,000 10.20 10.00 8.2 5066SO61 1800 57,500 10.50 10.00 8.2 618ZNA006A 1800 58,000 - 11.00 8.2 617AN(A,U,M,F,G)060A 1800 55,500 10.00 9.50 8.2 618AN(A,F)060A 1 1800 58,000 - 10.50 13.2 'Tested Combination NOTES; 1. Ratings are net values reflecting the effects of circulating fan motor heat.Supplemental electric heat is not included. 2. Tested outdoor1ndcor combinations have been tested In accordance with DOE test procedures for central air conditioners.Ratings for other combina- tions are determined under DOE computer simulation procedures. 3. Determine actual cfrn values obtainable for your system by referring to fan performance'data in fan coil or furnace coil literature. 4. The dashes(-)appearing In the SEAS.EFF.W;FOR.90-4-SEER column indicate no improvement in efficiency due to factory installed hard shut-ck TXV(618A,616Z and FK4A fan coils)or time-delay function built into TDR board as manufactured(FB4A.FB5A). tSee FOR .90 TABLE. A 90 second time delay function can be met by use of external devices,or the time delay feature incorporated Into specific furnaces,heaters and thermostats. -7-